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ABSTRACT

We aim at retrieving 3D refractive optical index (RI) of large samples (around 200 pm)
from Intensity Diffraction Tomography (IDT) where the dataset is obtained by recording
diffraction image with a variety of illumination angles. IDT targets biological imaging in a
label-free manner using the optical variation within the sample and multiple tilted imag-
ing to reconstruct the 3D map of RIs. However, standard IDT techniques reveal several
drawbacks in terms of limited field of view and feasibility of imaging living samples in
time-lapse conditions. We focused on time-lapse imaging of large sample (>200um) with-
out the need of large NA objective or immersion oil.

The challenge created by the absence of the phase information (intensity only mea-
surements) as well as the limited illumination angle (low NA due to low magnification)
has been solved using a Beam Propagation Method (BPM) embedded inside a deep lean-
ing framework. The layers are encoding the 3D optical representation of the sample. Be-
sides, we included in the forward model the effect of the spherical aberration introduced
by the optical interfaces, which gave a strong impact on measurements under oblique il-
lumination in terms of 3D spatial resolution. Using this framework, we achieved 3D re-
constructions of mouse embryos (>100pm) in time-lapse conditions over 7 days, as well
as liver organoid. We could observe the intrinsic embryonic development from single cell
(low-scattering sample) to the blastocyst level (highly scattering sample) as well as the
rotational movement and growth rate of liver organoid. Such time-lapse yields quanti-
tative information on the development and viability of biological sample in view of the
sub-cellular imaging capacities. Our technology opens up novel opportunities for 3D live
cell imaging of whole organoids in time-lapse.

However, the use of a wide field of view inherently limits the maximum illumination
angle possible. This directly affects the 3D reconstruction as it generates an axial elonga-
tion of each object or inner substructure, leading to a poor axial resolution (10 times greater

than radial resolution) Motivated by the great results of Convolutional Neural Network



in correcting reconstruction problem, we decided to apply deep learning methods to our
elongation problem. The idea of our process is to combine two learning methods each
proven to solve a different axial reconstruction issue. One network recovers the inner
structures; the other retrieves the global structure of the object. To ensure the continuity
of the CNN output along each direction the training is performed on 3D random synthetic
volumes. We will assess the quality of this learning method by checking its efficiency on

mouse embryo and prostatic organoid as well as many various synthetic data.



RESUME

Le but de cette these est de reconstruire en 3D l'indice de réfraction de gros échantillons
biologiques (> 200 pm) grace a de la tomographie de diffraction a partir d'image d’intensité
(IDT). L'information 3D est encodée dans une multitude d’images de diffraction a des
angles d’éclairage différents.

La tomographie de diffraction n’a pas besoin de fluorescence pour imager des échan-
tillons biologiques, elle se contente d’exploiter les changements de propriétés optiques
de I’échantillon pour en reconstruire une carte 3D de l'indice de réfraction. Comme les
techniques standards ont des champs de vue limités ainsi que des systémes complexes
souvent non compatibles avec les incubateurs, on s’est principalement concentré sur la
création d'un systeme compact pouvant imager de gros échantillons (> 200 um) sans huile
de couplage ni objectifs a forte ouverture numérique.

La complexité de la reconstruction 3D causée par une faible couverture angulaire (elle
méme causée par une faible ouverture numérique d’objectif a faible grossissement), un
mangque d’information (Image d’intensité uniquement, sans la phase) est grande. Afind’y
parvenir, un modele multicouche prenant en compte les diffractions multiples (le BPM)
a été implémenté dans une infrastructure logicielle d’apprentissage profond. Les aberra-
tions sphériques générées par des épaisseurs de verres non standards sont aussi prises
en compte dans le modéle direct. Cela nous a permis d’imager toutes les heures pen-
dant sept jours le développement d’un embryon de souris du stade unicellulaire au stade
blastocyste. Ces capacités d’imagerie ont aussi été validées sur des organoides de foie.
Ces timelapses apportent des informations quantitatives sur le développement et la vi-
abilité des échantillons biologiques. Cette technologie apporte de nouvelles possibilités
pour I'imagerie 3D en incubateur.

Cependant, l'utilisation d'un grand champ de vue limite la couverture angulaire ex-
ploitable. Cela affecte grandement les reconstructions 3D, qui se retrouvent étirées ax-

ialement, dégradant cette résolution. Motivé par de récentes utilisations de réseaux de



neurones convolutifs dans le domaine de la correction d’artefact de reconstructions, nous
avons décidé de résoudre ce probleme a l'aide d'une approche moderne par apprentis-
sage profond. L'idée principale est de combiner deux réseaux, un qui retrouve la forme
originale des structures intracellulaires, et un qui estime la forme extérieure de 1’objet. Les
réseaux sont entrainés sur données simulées uniquement. Ces données sont produites
avec des objets 3D aléatoires mimant de possibles formes d’objets multicellulaires.

La généralisation de cet ensemble de réseaux est testée avec succés sur 'embryon a

différents stade de développement, mais peine a se généraliser aux organoides de foie.
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Chapter 1

Introduction

We live in a three dimensional world that is constantly evolving, changing and moving.
We started to observe and understand the world around us with our own eyes before re-
cently creating sensor to extend our own limited capabilities. Nowadays our synthetic
perception range goes from huge galaxy millions of kilometers away to individual atom.
This inaccessible information for our primitive senses was revealed thanks to a tremen-
dous amount of work in physics, engineering and computational power. Such progress
have radically changed our understanding of the world.

Microscopes are a part of the story and are deeply link to the stereotypes of scientist, if
we type science in google image, 25% of the images include a microscope on the first page.
The idea of seeing small object that are around us at every moment but that cannot be seen
with our bare eyes might explain this collective psyche. Looking through a microscope is
a way to ask a fundamental question about the life that surround us. The microscope char-
acteristics such as field of view or resolution mark the boundary of what can be questioned
and more importantly how precise will our answer be.

Over the past decade, microscopes became more sophisticated, more complex and
more demanding on the studied sample. In this thesis we will focus on gentle imaging

technique that are soft with the sample because we want to study the development of



biological sample trough time without changing habits of biologist or perturbing their ex-
periments. Organoids or cell cultures are grown in incubator that are often not bigger than
a small fridge forcing us to use simple and compact hardware. This was made possible
only because of the progress in Computed Imaging where the final images are extracted
from the measurements using algorithms that rely on a significant amount of computing.
The microscope encodes the desired information, and the computational power is required
to decode the information.

Every Computed Imaging system is a set of three intrinsic parts that must be designed

as a whole. It is always composed of:

¢ Animaging system that can encodes the information
¢ A physical model of the imaging system

¢ A reconstruction algorithm to decode the desired information

This introduction is here to give a context to this thesis, starting with a brief history of
standard microscopy, before diving into 3D imaging of biological sample with fluorescent
markers. Finally, I will review the standard methods used in 3D phase imaging system

that relies on computed imaging system.

1.1 FROM STANDARD MICROSCOPY TO COMPUTATIONAL IMAGING

Before the invention of light microscopy, lenses had been produced for many centuries, but
their entire scientific potential had remained hidden. It all started in 1590 when Hans and
Zacharias put lenses in a tube to magnify object [1]. This invention remained unnamed
and we had to wait 1609 for Galileo to design its famous compound microscope and 1625
for Giovanni Faber to formulate the word describing Galileo invention: microscope.
Microscopes where then used for decades to unveil new insight in microbiology with
the invention of the word cell by Anton van Leeuwenhoek. He was known for polishing

and grinding his own lenses, greatly improving microscope quality at that time, enabling
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Figure 1.1: The Raleigh limit of resolution. NA is the numerical aperture of the objective,
A the wavelength of the light source and 7 the refractive index between the object and the
objective.

him to see the many microscopic animals [49] and bacteria surrounding us. Even though
microscopic technique improved with the creation of Achromatic Lens in the 18th century,
their true theoretical modelling and technical limitation were introduced in the nineteenth
century with the famous diffraction limit theory.

The resolution of conventional light microscopes has an inherent limit; by working in
the "far-field", i.e. many wavelength away from the sample, the light diffraction becomes
significant. Using a microscope makes the feature of interest in the sample to scatter light,
this scattering creates blurry patches called Airy disks in Fig.1.1. The generally accepted
criterion for the minimum resolvable detail before two objects blur into each other is the
Raleigh criterion [36].

Nowadays CMOS sensor are still limited by the Raleigh criterion but they are more and
more efficient and capture directly the electromagnetic signal with a low noise to signal
ratio compare to our eyes. A signal that can be analyzed, filtered, or modified computa-
tionally to produce better image. Computational part emerged in every part of the micro-
scope, whether it is to control the auto-focus [77] [74] or the fluorescence wavelength. Such
computationally-assisted microscopes were optimised to be used through a computer and not
by a human operator. Even though it was not meant to be used by human, the output of
such microscope were high quality image directly understandable by a human.

On the contrary, computational microscopes need on top of the microscope a physical



model of the setup as well as a reconstruction algorithm to produce human readable data
output. A simple example of a computational microscopes is the simplest modern microscope
possible the lens free microscope. The sample is placed on top of a CMOS sensors bellow
a LED without any lenses, the raw image is the scattering pattern created by the sample
as shown in Fig.1.2. Using a free space propagation model it is possible to compute back

what was the object that produces such pattern.

Raw image Reconstructed image

Figure 1.2: Example of a computed microscope The lens free microscope with its simple
setup.

1.2 BIOLOGICAL MICROSCOPY THANKS TO FLUORESCENCE IMAGING

Microscopes first intensive usage was for biological research with the publication of Mi-
crographia in 1665 [49]. It was then used in many other field such as material characteri-
zation [52] or monitoring of semiconductor chip manufacturing [113], but the main usage
remained biological imaging.

One of the key discovery that put microscopy as reference technique for biologist is
fluorescence labeling [102]. Fluorescent labels are nowadays the gold standard to label
cell unit depending on their intrinsic chemistry to unveil the interaction between various
cell parts inside a more complex organism. Fluorescence labeling binds fluorescent dyes
to functional groups contained in biological molecules so that they can emit light when
they are properly excited. The re-emitted light has a larger wavelength and this facili-
tates the imaging of the desired bio-molecule. The emergence of various fluorophores has

increased the number of possibilities for the sensitive detection of bio-molecules and mul-



tiple fluorophores may be used simultaneously thus enabling biologist to analyse complex
interactions. It produces stunning results but it has also drawbacks. The fluorescence de-
grades over time: photobleaching occurs, i.e., fluorophores emit less and less light when
they are repetitively illuminated. The process to label the desired object is time consuming.

Finally, fluorophores only bind to a small amount of the desired cell substructures.

a) b) Excitation Emission
Detector

pinholes

}_Eq Confoca
o

Figure 1.3: Illustration of the confocal microscopy. a) Commercial microscope ZEISS
LSM 980 b) Excitation and emission light pathways in a basic confocal microscope con-
figuration. c) Muscles of a Cyphonautes (aquatic invertebrate animal larva). Courtesy of
Dr. Bruno C. Vellutini for Nikon Small World 2018

Despite these drawbacks, its high signal to noise ratio and its single molecule high
sensitivity maintain fluorescence imaging as a standard. The three main techniques are the
confocal microscopy, the light-sheet microscopy and the multi-photon microscopy. All of

these techniques are intricately 3D and since most biological tissues and cells are inherently



spatial (three-dimensional objects), it is particularly suited to biological imaging.

1.2.1 3D fluorescence imaging technique

The first used 3D microscopy imaging technique is confocal imaging, presented in Fig.1.3.
Its goal is to get rid off light that comes from out of focus plane. It is achieved with a
diaphragm in the conjugate focal plane [115] [2] [23](explaining the name "confocal"). The
volume to analyse is sensored one point at a time leading to time consuming acquisition
for wide 3D volume at high resolution. They remain widely used nowadays because of

their ease of use and manufacturing.

Figure 1.4: Illustration of the light sheet microscopy. a) Excitation light shaped in a thin
plane is in Blue and the emitted fluorescence light is in green. b) Commercial microscope,
ZEISS lightsheet 7 . ¢) Mouse embryo (day 12.5) stained for motor (red) and sensory (ma-
genta) nerves and nerve endings (cyan). Courtesy of Dr. Gist F. Croft Lauren Pietila, Dr.
Ali H. Brivanlou for Nikon Small World 2018

Multiple improvement have been brought to confocal imaging in order to reduce the
acquisition time or the photo bleaching of fluorophores due to the high amount of inci-
dent light required. The idea emerged to illuminate only a plane of the sample with sheet

shaped laser beam. In light sheet microscopy [134] [4] [124] the beam is shaped with a



cylindrical lens into a thin plane orthogonal to imaging part as shown in Fig.1.4. The 3D
volume is created by stacking the imaged plane. The main advantages are to decrease the
imaging time as well as increasing the time of imaging for a sample. These setups are more

complex to build but the first commercial products arrived in the 2010s.

a) b)
1-photon excitation 2-photon excitation

Figure 1.5: Illustration of a two photon microscopy. a) Schematics of a one and two photon
excitation strategy. b) Commercial microscope. ¢) Quantum dot fluorescence image of
mouse small intestine. Courtesy of Thomas J. Deerinck for photomicrography competition
2005

Other way of improving confocal imaging also emerged with two-photon [27] [28] [146]
and multi photon imaging [42] [29]. The idea behind this technique illustrated in Fig.1.5 is
that if a fluorophore can absorb a photon with wavelength Ay, it can also absorb 2 photons
simultaneously that have a wavelength A\, as long as A\; = 2)\; and they arrive at the
same place, at the same time. This constraint is mostly respected in the focal plane of

the illuminated objective where the photon density is the highest. The acquisition time



remains unchanged, but the contrast is largely increased since out of focus fluorescence is
merely excited. Another good point in that longer wavelength are used, enabling a deeper
penetration of the illumination light. Finally, the sensitivity of the microscope is increased
since aperture in the conjugate focal plan is no longer required. Finally, less light is used,
so photo-bleaching is reduced.

All these fluorescence imaging technique remained limited by the diffraction barrier un-
til 2006, the year of a general emergence of super-resolution microscopy for fluorescence
imaging. PALM [9], STORM [109], FPALM [46] enable the computation of images way be-
yond the diffraction limit by collecting a large amount of images, each having only some

isolated activated fluorophores as shown in Fig. 1.6.

a) Localization microscopy b) confocal
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Figure 1.6: Photo-Activable Localization Microscopy illustration a) Scheme of the PALM
technique b) Confocal and STORM images of nuclear bodies in Drosophila cells (unpub-
lished). Courtesy of CBS from CNRS

Biological fluorescence microscopy became a standard for the study of, often chemi-
cally cleared, cell cultures, organoids or embryos. Even though fluorescence microscopy is

widely used, it has inherent drawbacks.

¢ Natural auto-florescence is rare and most of the time the samples have to be labeled

or worst, genetically modified. It is then never possible to take images from the



sample in its natural state.

¢ The dyes injection in the sample must be carefully executed with strict biological

protocols that are time- consuming.

¢ Fluorophores are not neutral in the biochemistry of the sample, they may induce
toxicity for two reasons. Either because they release toxic molecules for the sample,

or because their activation damages the sample tissue or molecules.

¢ Only some parts of a cell of organoid can be functionally activated with florescent
dyes, inherently limiting fluorescence imaging to theses parts as the other one a not

being observable.

* Fluorescence gives information about shape and density, but its is not a quantitative

imaging technique, unless special specific criteria are met [91].

¢ The number of fluorophores available is low and they respond to high energy pho-

tons (ultraviolet) that cause phototoxicity.

¢ The performance of a fluorophore degrades with time; it can be problematic when

studying a sample for long periods of time.

To overcome these drawbacks, other imaging techniques have emerged, like the quan-

titative phase imaging (QPI).

1.3 QUANTITATIVE PHASE IMAGING TOWARD INTENSITY DIFFRACTION TO-
MOGRAPHY

Quantitative phase imaging relies on the delays an illuminating field encounters as it

passes through the sample to reconstruct the structural information of the imaged sam-

ple.
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The incident light encounters longer travel lengths in dense materials and the sample’s
non-uniform 3D distribution of its refractive index relative to its surrounding medium will
create temporal delays. Those delays create scattering pattern in the far field.

Depending on the intensity of the refractive index gap, the generated scattering can be
light or very strong to the point it can perturb significantly the illumination. Directly mea-
suring the phase of a incoming visible light field is not possible, that is why quantitative
phase imaging focuses on the delay introduced by the sample, measuring only the phase

shift ¢ compared to a reference field.

o= 2;(571D

Here D stands for the thickness of the sample, dn if the refractive index gap with the
refractive index around the sample, ) is the wavelength of the incoming light.

Quantitative phase imaging is complex for two reasons; first the phase information that
is our value of interest is not accessible with common image sensor that only record the
intensity of light and not its phase. This can be solved with interferometric techniques for
example [62]. The second issue is the difficulty to separate the refractive index gap én from
the sample thickness D when you have managed to record the phase-shift ¢.

To overcome these complications QPI uses custom setup that encodes the phase infor-
mation inside the intensity image and that includes also 3D information about the object
to enable a 3D reconstruction of the refractive index gap [56].

These 3D QPI methods have been welcomed by the biology community as refractive
index imaging relies exclusively on the 3D shape of the imaged sample without having to
use contrast agents. This advantage over standard methods like fluorescence imaging is
important in the sense that the sample can be studied intact and not tampered by any kind
of toxic fluorescent dyes. This is crucial to truly understand biological life in its "natural"
condition.

The most mature system for 3D QPI is the Optical Diffraction Tomography (ODT).
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It uses scanned illumination angle coupled with an interferometric detection system to
directly capture phase information in the intensity measurements [139] [89] [126]

In the recent year, ODT’s hardware and reconstruction algorithms were improved,
widening its range of possibility in a compact and robust hardware that is commercialized.
The recent developments focused on the use of digital micromirror devices [117], annular
illumination [21] and reconstruction improvements through iterative [80] and learning-
based reconstruction methods [58] and automatic regularisation parameter tuning [25].
Most of this advancement made it possible for this technique to reach commercial success
[3] with application in Cell biology [116] [111], Microbiology [57] [63] etc. ...

Though ODT is the 3D QPI technique the most widely used, it has some drawbacks
that limit its utility in biological research. The first one comes from its use of laser-based il-
lumination for scanning the sample. Lasers have high spatial coherence and long temporal
coherence lengths that generates high quality interference fringes that enable to retrieve the
sample’s phase with high sensitivity. From this laser illumination comes coherent noise,
phase instabilities and complex system alignment protocol. The coherent noise comes from
unwanted interference that take the form of speckle. Moreover two-arm interferometer de-
sign can introduce phase offsets and inaccurate phase measurements if there are any route
length anomalies. This severe geometric constraint is only respected with very stable me-
chanical construction. Otherwise an extensive calibration procedure is needed to produce
accurate 3D QPI, these constraints may stop biological labs to build custom ODT installa-
tions. Commercial setup of ODT provides pre-calibrated, well-designed setups ready for
3D QP], are still costly.

To overcome these limitations and make 3D QPI more accessible, a great amount of
work was done with standard transmission microscope and uncomplicated hardware mod-
ification. Intensity-only 3D QPI techniques, also known as Intensity diffraction Tomogra-
phy (IDT) get rid of the phase information from the measurement in exchange of a sim-
plified and more robust setup, like in Fig.1.7. The phase information is retrieved from

a variety of possible phase encoding strategies like sample scanning or rotating [39] [55]
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Figure 1.7: Modified inverted microscope for quantitative phase imaging from intensity
image only. Courtesy of Tianlab

[121], custom illumination [75] [13], pupil engineering [89] [138] etc. If the sample pro-
duces strong multiple scattering, iterative reconstruction algorithm with multiple scatter-
ing physical model [128] [15] [78] [58] [96] were developed. The computational times in-
creases strongly but with the emergence of GPU and efficient implementation of these mul-

tiple scattering model reconstruction can happen in quasi real time for time-lapse imaging.

1.4 THESIS OUTLINE

This thesis aims at providing a gentle microscope with a wide field of view (> 100 x 100 x
100 pm?) to image wide and thick biological samples. Fluorescence imaging is not an
option here because we want our microscope to be non-intrusive and to keep the sample
integrity. Quantitative phase imaging system are aligned with our vision of label free
microscopy, but in order to enhance the simplicity and usability of our imaging system
for biological study we want to keep the hardware as simple (and cheap) as possible to
maximise its range of usage possibility. That is why interferometric system were not used
as well as laser-based illumination.

Considering these constraints on the absence of staining agent, field of view, capacity,

resolution and imaging frequency we decided to design a LED array microscope, where
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the 3D distribution of the refractive index of the object is encoded in multiple intensity only
images for various illumination angles. Chapter 2 discusses the scattering of light with
various models that goes from the standard and simple born approximation toward an
iterative solving of the Helmholtz equation. A multi-slice model that accounts for multiple
scattering was chosen due to its higher performance for the desired discretization size.

Chapter 3 introduces some optimisation algorithms to recover the 3D refractive opti-
cal index volume of an object from multiple angle intensity-only-measurement. The al-
gorithms are formulated as inverse problems, and solutions are obtained through an op-
timization performed by gradient descent based solvers. We model the physics of light
scattering by using a deep learning framework, enabling automatic gradient propagation
and GPU acceleration. The reconstruction algorithm is validated on simulated and bio-
logical data. Finally, the time-lapse ability of the whole system is also validated with a
week-long 3D video of an mouse embryo developing.

Chapter 4 introduces Deep Learning with a short history and its key features that make
it so appealing in computer vision. First, a failure case is presented on the training of a 2D
Unet on random stack of random image. The complete reconstruction loop is applied to
the generated volume to create pairs of perfect and artefact full object. The neural network
then tries to go from the corrupted images to the real images.

A second attempt on synthetic 3D continuous volumes was successfully applied to the

complete time-lapse of mouse embryo.






Chapter 2

Monochromatic light scattering physics and GPU

implementation

The goal of this chapter is to show how to model the diffraction of plane wave by the
variation of the complex refractive index of a sample.

Multiple models have been introduced to describe the way light interacts with chang-
ing refractive index. This chapter will start with the Helmholtz equation that is the prob-
lem we are trying to solve and a brief reminders on plane wave and Fourier transform that
is fundamental before doing physical optics.

Then a reference model will be introduced, The LS model that solves interactively the
Helmotz equation. This model is complex to evaluate and takes a lot of computing power
but it is very accurate even with strongly scattering object.

Finally the usual models used in optical tomography will all be compared to this refer-

ence model to choose the most precise model for our discretization size.

2.1 FROM MAXWELL TO HELMHOLTZ

Lets consider a space 2 centered on O with direct orthonormal X, Y, Z axes. Any point

of this space will be noted 7 = (z,y, 2). If () and p(7) are respectively the permittivity

14
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and the permeability of {2, macroscopic formulation of Maxwell equations in the absence

of free charges are:

V.E=0 2.1)
V.H=0 (2.2)
6><E+u8£—0 (2.3)
6xﬁ—e%§:o (2.4)

where E is the electric field, and H is the magnetic field. More precisely, the rectilinear
components of E on X, Y, Z are respectively (E,, E,, E.). Same notation will be used with
H : (H,, Hy,, H.). Both E and H depends of the time ¢ and the position 7.

For biological samples, media are generally dielectric, linear, isotropic so we will limit
our study to media with such properties. The linearity of the medium is satisfied if the
medium has all the usual linearity properties [40]. The isotropic property of the medium is
satisfied if € and 1 are independent of the polarization direction (E and H direction). The
nondispersive property is satisfied if € is not function of the wavelength in a wavelength
region in which the wave propagates.

By applying operator Vx on both side of Eq.2.2, by using the vector identity (V x V x
A =V(V.A) — V24) and Eq.2.4, we get:

0*E

oo o oo o B
=V(V.E) - V*E + Heoy = 0 (2.5)

V x (Vx E)+

where c is the vacuum propagation velocity defined by the relation egpuoc? = 1. Eq.2.5 can
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be expressed with only ¢ and the refractive index n = \/¢/¢g as:

V2E-LZ 2 =9 (2.6)

If we apply the same calculus to H we find the same exact equation:

2 92 f[
—’2 b 77 (9 _
VA~ 5oy =0 2.7)

We can further notice that each component of H . (Hy, Hy, H,) and E . (B, By, E)
obeys to the same scalar equation, for example with H,:

n? 9%H,

AH = 2 Ot2

=0 (2.8)

Therefore, we summarize the behaviour of the electromagnetic field by a single scalar

wave equation:
n(r)? QU (7' 1)

AU (7, t) — 2 oz

=0 (2.9)

where U(7,t) can be any of the electromagnetic field components.

This approximation is known as the scalar theory and it is widely used in optics, it
relies on the hypothesis that the spatial gradient of ¢ is small. As stated in the 3"¢ chapter
of Introduction to Fourier Optics [41], this approximation remains valid as long as the studied
structures are small compared to the wavelength.

As we aim at analyzing signal from diffraction measurements, light coherence is needed.
This explains the interest to consider monochromatic wave; for such a wave with fre-

quency f, U can be decomposed in spacial and temporal parts as:

U(7,t) = U(F).e 27/t (2.10)
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By injecting Eq.2.10 into Eq.2.9, we obtain:
A2 £2 2
AU(R) = 20 g (2.11)

By introducing the wave vector k = 271/, and the wavelength A\ = ¢/ f, we can state
that each component of a monochromatic wave in a linear, isotropic, homogeneous, and

nondispersive medium abides by the equation:
AU () + k(AU () =0 (2.12)

Please note that 7(r) is the complex refractive index, its real part represents the stan-
dard refractive index, used for example in the Fresnel’s law [30], while its imaginary parts
represents the absorption of the object[119].

Eq.2.12 is known as the Helmholtz equation and it may be difficult to interpret it. Even
though we know it contains everything about complex multiple scattering, Snell Descartes
refraction law etc, there is no notion of light rays, interfaces, refraction, reflections. Even
the simplest concept of propagation direction is not accessible. That is why a further de-
velopment of the Helmholtz equation is required.

The extended use of monochromatic wave in this chapter will bring us to use its Fourier
representation that is more compact. That is why before diving into Helmholtz equation,

we will start with reminders of plane waves and Fourier transform.

2.2 PLANE WAVES AND FOURIER TRANSFORM

2.2.1 Plane wave definition

Let consider a monochromatic plane wave U* of frequency f, with equation:

Uu(,’:»’ t) _ e?ﬂﬂ.F'e—Qiﬂ'ft _ €2i7r(,u,;:r:+,uyy+pzz—ft) (213)
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where /i is the propagation direction. Such a wave propagates in a homogeneous medium

of refractive index 7y if its propagation direction verifies:

|l =mo/A (2.14)

as shown in Appendix A.3 and Eq.A.1. From the latter definition, we obtain that A is the
wavelength of a plane wave propagating in the vacuum (19 = 1) and 7/ is the wave-
length of a plane wave propagating in a medium with optical index 7.

In the same way that the Helmholtz Eq.2.12 focuses only on the spacial part of the
scalar representation of the electromagnetic field, we will now focus on the spacial part of

the field of U.

UA(7) = ¥ AT (2.15)

To illustrate the shape of plane waves as defined by Eq.2.15, let first consider the case
of a plane wave U”° with jiyp = (0,0,70/)) as plotted in Fig.2.1 (amplitude and angle of
the complex field at Z = 0 its Fourier transform at Z = 0 as defined afterwards in section

2.2.2, and its angle a X = 0). The figure shows that, for this particular plane wave:

the amplitude is constant everywhere, there is no attenuation,

¢ the phase along the Z direction enables us to visualize the wavelength,

the propagation is along the Z direction,

if the time was reintroduced by using Eq.2.13, we would find that it propagates along

increasing Z.

Let now consider the case of a plane wave U#* with none null p1,, Ut = 1/v/2(0, 10/, 70/ \).

As one may expect, this plane wave is propagating at 45° as shown on Fig.2.2.
A plane wave with wavelength \ propagating in a homogeneous medium, is entirely

defined by its propagation direction . /i is a 3 dimensional vector, but due to the con-
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Figure 2.1: Plane wave along Z direction and its Fourier transform

straint of Eq.2.14, it can be characterised by only 2 numbers if we consider that the waves
propagates from the negative Z toward the positive Z. As Z axis will be used as the prin-
cipal direction of light propagation, plane waves will be expressed in function of its X and
Y direction: i = (fig, fty, 1/ %ﬁ — pz = p2)

This formulation helps us to better understand 3D plane wave, since it is parameterized
only by two numbers (i, jty), it is completely characterized in 2D. In other words, if we
know a plane wave on a 2D plane, we have all the information about its 3D behaviour.
Afterwards, by expressing any wave as a sum of plane waves (Fourier transform), we will
also be able to compute the light field U, at a plane Z=z from the knowledge of the light

tield Uy at position Z = 0 where we used the notation:
U,: (x,y)— U(z,y,z)

. These words explain why Fourier transform is at the core of physical optics.



angle(U;=o)
1.10 2 3
2
1.05 1
= = 1
g £
= 1.00 ¢ O 0
= =
-1
0.95 -1
-2
0.90 -2 -3
-2 -1 0 1 2
X (in um)
angle(U(x=0))
2 3
2
1
- = 1
§ £
< c 0 0
z <
5 > 1
-1
ful
-2 -1 0 1 2 -2 -1 0 1 2

Figure 2.2: Plane wave along Y and Z direction and its Fourier transform

2.2.2 Fourier transform

In this part (i, 1) = Us(pte, pty) = FTop(U,)(pa, 1ty) are two notations for the 2D Fourier

transform of (z,y) — U,(z,y) defined as:

Us (e, pry) = / U, y)e™ 2 Watib) dy. dy (2.16)

With this definition, the inverse formula is:

U,(z,y) = /Uz(uz,uy)eQi”(“x$+“yy)dyx.duy (2.17)

In the same way that we can represent the wave U on the Cartesian axes of a direct
orthonormed system X, Y, Z, we can also express it on an other complete, orthonormed
system based on Fourier series.

The Fourier transform of U, can be interpreted as the decomposition of the light field

U on a plane waves basis, which is parameterized by coordinates (1, p, ). For the case of a
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plane wave U i Eq.2.16 shows that the Fourier transform of U f is null for every direction,

except its own propagation direction /i:
FTop(UE) (@) = ¥ ™=*5(ii' — fi) (2.18)

where ¢ is the Dirac function. This situation was illustrated in Fig.2.1 for the case of a plane
wave propagating along Z axis and in Fig.2.2 for a plane wave tilted at 45°. In these two
cases, we see that the Fourier transforms of Uj are Diracs, centered on (0,0) in the first case
and shifted toward bigger p, in the second case.

From here it is clear that every Dirac in the Fourier transform is associated with a planar

wave.

2.2.3 Free propagation

In the case of homogeneous medium, it is useful to know how to propagate a wave from
one plane to another without having to know the field in every intermediate plane. For
example if a detector is placed far away from the simulated object, then it is expensive
and useless to simulate the light field in all the volume in between this object and the
detector. Other use cases are the multi-slices models, where a simulated object is sliced
into a discrete stack of 2d slices. Therefore it is necessary to be able to go from one slice to
the next. Such propagation are performed efficiently in the Fourier space.

Let us consider a light field U. We want to compute U, from a known Uj. Since U satis-
ties the Helmholtz equation (Eq.2.12), applying the Fourier transform (Eq.2.16) on Eq.2.12,
with homogeneous 7 = 7, leads to:

3\ 5 U
s (—ui — py + Zg) Ut 55 =0 (2.19)

It is important to remember that each coefficient of the Fourier space represents a plane
wave satisfying the constraint Eq.2.14 which can be re-expressed as p? = —pu2 — uf/ +

ng/A2. By Using that latter equation and by looking for an exponential solution of the
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partial derivative equation (PDE) Eq.2.19, i.e.: U = C1e?* with C (1, j1,,) and Ca (g, pty)

complex, Eq.2.19 becomes:

(27 p2)2C1e“2% + C2C1ef% = 0 (2.20)

This leads to setting Co = 2imp,, and since U (fzy oy, 0) = Uo(ux, L), the value for Cy
is trivial: C1 = Up(jue, fiy)-

Finally the relation between Uy and U is a product:

U. =Up.H. (2.21)

where H, is known as the spectro angular propagation kernel, defined by:

T iTT 22 < pri ng
H, = ™% with p, = 2 pz — i (2.22)
Equivalently, field in the real space can be propagated from one Z-plane to another by
using:

U.(z,y) = FTy5 (FTop(Uo(x,y)).H,) (2.23)

To obtain this formula no approximation of assumption has been made on top of those
used to obtain the Helmholtz equation, the homogeneity of the medium and the hypothe-
sis that the waves propagates from the negative Z toward the positive Z. This means that
we have an efficient and correct way to propagate light as long as the refractive index is
homogeneous. This propagation methods is know as the angular spectrum method. For
tilted plane wave, the edges of the simulated volume with scatter light [96], a solution to
this problem is known as tilt-transfer, see Appendix A, Section A.2.

In Fourier optics, the Fresnel approximation has been applied earlier to light propaga-

tion in free space [7]. The Fresnel kernel is expressed as follow:

~ 2imngz —iTAZ (,,2 2
Hfresnelze e 0 (ug+iy) (2.24)
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This operator is valid only if the size of the wave support (for example the size of an
aperture from which we want to find the scattering pattern) is small compared to the prop-
agation distance. An other way to understand what does Fresnel formulation approximate
is to see it as an approximation of the spectrum angular kernel for low (u? + 2) compared
to Z—‘E Under this approximation we have that 4/ Z—é —pE -~ %@ﬁ If we inject
itin Eq.2.22 we get Eq.2.24, the Fresnel approximation. If we want a physical interpretation
of this approximation ( (u3 + p2) << ;‘é ) we have to remember that in the Fourier space
each point (4, 1ty) represents a plane wave propagating along (fiz, £y, 1/ i\l—é — pz = ).
This means that the previous approximation is valid only if the field is mainly composed
of waves that are propagating parallel or with a small angle to the Z direction. In most
cases with thick biological object and off axis illumination the Fresnel approximation does

not hold. That is why we will only use the spectro angular propagator.

2.3 EXTENSIVE EXPLORATION OF THE HELMHOLTZ EQUATION

The Helmholtz equation Eq.2.12 governs the physics of light propagation in free space as
we saw in §2.2.3 but also in complex media with non homogeneous optical index 7(7).
Here, we explain how the varying optical index affects light propagation.

In other words, we want to find the light field U, obtained by illuminating an object
defined with optical index 7(7) different of 7y in the space region 2. We know that U
verifies AU + k*U = 0 and we suppose we also know the illumination, characterized by
the field U, that would exist if the object had the homogeneous optical index 7.

To find U, we follow a usual strategy which uses the notion of Greens'’s function and
which applies for most partial derivative equations (PDE). The steps are summed up below
and developed in the remaining of the current section 2.3.

P0: Original problem: AU + k?U = 0 can be written as LU = S = 0 with L = A + k2.

The operator L of the PDE is linear, NOT spatially invariant (because k depends of ') and

has a NULL source terme S.
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P1: spatially invariant problem: To solve the original problem P0, we study the twin

problem P1, LoG = —d, where Ly is chosen as spatially invariant and which has a source
term, a (minus) Dirac distribution located at 0. The minus of the source term is used for
later convenience. Any solution G of the twin problem is called the Green’s function. It
allows to find the solution f of spatially invariant PDE with a non null source term S,
Lof = =5: f =5 ®G. (® being the convolution operator)

Resolution of the original problem: The original problem P0 is manipulated and refor-

mulated as P1. It allows to give the solution of PO as a convolution of a source term and
the Green’s function.
Let develop the concept of Green’s function and apply this strategy to Helmholtz equa-

tion.

2.3.1 Green’s function

As we saw in the previous forewords, the concept of Green’s function is used to solve
PDEs, such as Eq.2.12 in particular.

2.3.1.1 Green'’s function in a general case

Let Ly be a linear and spatially invariant operator. A Green’s function G is an impulse

response of Ly to a minus Dirac distribution (located at 0), which is expressed as:
LoG = -6 (2.25)

The Green’s function analytical expression is known for multiple partial differential
equations, defined by the formula of Lj. Such expression exists for the wave equation [6],
the Schrodinger equation [31], the Poisson equation etc. ...

Since the Ly is spatially invariant, G(7* — 7{) is the solution of:

LoG (7 — 7o) = —6(7 — 7p) (2.26)
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—

Finally since a extended source S may be expressed as S(r) = [ S(7)d(F — 7o)dry =
S ® 0, by linearity of L,
f=S®G (2.27)

is a solution of:

Lof = —S (2.28)

where ® stands for the 3D convolution on :

(A® B)(1r) = /QA(r VB(7 — r")dr’ (2.29)

2.3.1.2  Spatial and frequency expressions of the Green’s function

In our case of Helmholtz equation in 3D homogeneous medium, the linear operator A + k2

is spatially invariant, and its Green’s function, G, is the solution of:
(A + kg)G =9 (2.30)

which a solution is known and has the following analytical expression:

eik()lFIZ
dn 71

G(7) (2.31)

Note that G, defined as a solution of Eq.2.30 is not unique because any solution Gy
of (A + k2)Gy = 0 may be added. G + Gy would still be solution of Eq.2.30. To get
unicity for G, additional constraint should be introduced. In our case, it is the physics
consideration stating that diffracted light should tend toward 0 at infinity. With such an
implicit constraint added to Eq.2.30, Eq.2.31 is unique.

As we will see afterwards (in §2.4), we are interested by the Green’s function expressed
in the Fourier space in order to perform convolution operations efficiently. The 3D Fourier

transform of the Green's function, @(,ux, [y, 1t2), is demonstrated in Appendix A.1. As
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formulated in the same way as Vico et al [135], we get:

~ 1

Glil) = 5—5= 2.32

Another form of the Green’s function, expressed with mixed coordinates in real and
Fourier space, G(iz, iy, 2), will be needed in section §2.5. Since Gy, Ly, 2) is the in-

verse Fourier of Eq.2.32 with respect to 1., by using the usual Fourier transform formula:

TFplz — e 192 () = and by taking a = 2i7r\/77(2)/)\2 — p2 — pz, we get:

2a
a2 +47T2M§ ’

5 5 AN S oy p ey
G (pa, py) = G(pas py, 2) = Wez o/ N —pE =1 (2.33)

where C' = 77/\0\/ 15/ 22 — p2 — p2 is the cosine of the angle between Z and the propaga-
tion vector the wave (fiz, fty, itz (ttz; tty)) Which can propagate inside the medium with the
optical index 7.

We recognize the free propagation kernel as already seen in Eq.2.22, therefore we can

write:
~ I ~
G, = H
= 4y CTF

(2.34)

2.3.2 Solution of the Helmholtz equation

Our goal is to express the total field U inside €2 knowing the incident field U;,. and the
refractive index 7. We arbitrary separate the total field in two parts, the incident wave as
it would propagate if the refractive index was to be constant Uj;,,. and the wave diffracted
by the sample Ug;;.

U(7) = Uine(™) + Uaip(7) (2.35)



27

2.3.2.1 Lippmann-Schwinger

We recall that, for a monochromatic wave, U verifies Eq.2.12:
AU+ KU =0 (2.36)
whereas the illuminating wave verifies:
AUjpe + k§Uine = 0 (2.37)

By adding —k2U;,. on both side of Eq.2.36 and subtracting Eq.2.37 we get:

AU = Uipe) + k2(U = Upne) = —(k* — KU (2.38)

Using Eq.2.35, Eq.2.38 can be rewritten as:

AUgig + kgUaif (7) = — (K = k§)U (2.39)

Uqis is governed by a homogeneous equation with a source term (k* — k2)U. k* —
k3 is called the scattering potential. According to §2.3.1.1, Uy;s can be rewritten with a
convolution as:

Ugif = (K = k)U) ® G (2.40)

Finally, by using Eq.2.35 and Eq.2.40, we get the Lippmann-Schwinger solution of
equation Eq.2.12
U=Upe+ (K -k)U)®G (2.41)

or fully developed, the expression becomes:

. 1 eik0|77—77'\
U = Unel?)+ 535 | (0P 07) =)0 242)
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Since the Green’s function is spherical, the geometrical interpretation of Eq.2.41 or Eq.2.42
is that each point of the source term S emits a spherical wave. The sum of all the emitted
spherical waves creates the total wave.

One could think that the problem is solved, but since U appears in both the left and

right sides of Eq.2.41 or Eq.2.42, U cannot be determined in a simple manner.

2.3.2.2 1st Born approximation

An elementary way to get a first order approximation to compute the Lippmann-Schwinger
solution is to assume that the object is weakly scattering. If the scattering potential of the
object is small then the diffracted wave will be small compared to the incident wave. This

is implemented by replacing U by Uy, in Eq.2.40:

Udif = (K = k§)Uine) ® G (2.43)

This formulation called the “first Born approximation" [43] allows for an efficient way
to compute the diffracted field but relies on strong approximations that are often not valid
[73]. Indeed, a wave that diffracts in the object will not interact again with the object.
The validity of such an approximation has been well studied [69] and it is known that for
biological imaging, objects bigger than a few microns produce scattering waves as intense

as the incoming wave and cannot be neglected.

2.3.2.3 Rytov approximation

For optically thicker objects, object with a phase-shit introduced by the sample of more
than a wavelength, an other approximation is widely used which yields better results [84].

The Rytov approximation [26] is expressed by:

U (7) = Uppe(7) e’ (2.44)

with the complex phase 1 (7) defined by:
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o _ Yaig(7)
= 2.45

Interestingly, the Born approximation can also be view as a first order development of

the exponential inside Eq.2.44. Indeed if |Uy; ¢ (7)| << |Uinc(7)| then |¢(7)] << 1 and since

e x=1+zrife << 1:

Uais (7)

U(7) = Uipe(7) (1 + Uine(7)

) = Uine(7) + Uagiy (7) (2.46)

The global approximation for Born and Rytov is the same: U/U;,. ~ 1. The main
difference is that Born is formulated as a sum between the incident wave and the diffracted
wave whereas Rytov is formulated as a product with an exponential. Rytov approximation
is better than Born approximation for thicker and more scattering object [120] but it still

fails to model correctly highly scattering object [120].

2.3.2.4 Iterative resolution of the Lippmann-Schwinger equation

In order to capture all the complexity of multiple scattering sample, the Lippmann-Schwinger
Eq.2.40 has to be directly solved. It has no analytical solution in general except for particu-
lar geometries such as those describing homogeneous cylindrical objects or homogeneous
spherical objects [5].

In the general case, the diffraction can be computed, with a precision as good as de-
sired, by numerical means. U is formulated as the solution of a minimization problem
which can be found by a minimization procedure such a the gradient descent method (de-
tails in Section 3.1.4 ).

If we introduce the linear operator L associated to the scattering potential f = k* — kZ:

Ly X(F) — X(7) —/QX(f).f(f).G(f—ﬁ)dr' (2.47)
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We notice that the Lippmann-Schwinger Eq.2.41 can be expressed as:
LU —Ujpe=0 (2.48)

U is the solution of a linear system of high dimension which is usually tackled by using
an iterative method. An overview of such the method is the following: we start by taking
an initial guess on the total field, Uy. Then, at each iteration n, an error € is computed on
how wrong the total field U, is. From this error, a gradient Ve is computed in order to give
information on how variation §U,, of U,, influences ¢, (see §2.3.2.4.1). From this gradient
and the current value of the total field, a step of the optimisation algorithm is performed.

The simplest update is a gradient descent where U,, 1 = U,, — aVe.

2.3.24.1 Gradient expression The gradient Ve of a real scalar function ¢(U), is a vector
which connects variation de of € to variation dU of its variables. When U is a complex

vector, Ve is also a complex vector with the same dimension as U and is defined by:
de = Re((Ve™, dU)) (2.49)

In our case, we aim at finding a field U which verifies Eq.2.48 as closely as possible.
The easiest way to measure the goodness of U is the squared of Eq.2.48 integrated on all

the domain Q:

1 1
e(U) = 3 /Q(LfU —Upne)? = 5<LfU — Uines LU — Usne) (2.50)

With this definition, “The more ¢(U) is close to 0, the better U is solution of Eq.2.48.”. By

using the calculus of Appendix A.4, Eq.A.3 allows to extract the gradient:

Ve =LY (LU = Upne) (2.51)
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With:

—

LY (7)) — Y(7) —/QY(F).f*(F).G*(F—r )dr! (2.52)

2.3.2.4.2 Detailed algorithm for forward LS computation Now that we have all the

pieces to solve the LS equation, the full reconstruction algorithm is detailed below:

Algorithm 1 LS solve (1, Uinc, Niters)

Initialize Uy = 0and by = 1 and pg = p1 =0
forn; =1,2,..., Njers do
14, /14462 _
n; = %
b, —1—1

Uni+1 = Un; + =4~ (Un,; — Un,—1) — Nesterov acceleration

Ve = L]Ic{ (LfUpn,+1 — Uinc) — Compute the gradient toward e
Un;+1 = Up,+1 — Ve —Update the field U
end for

For objects that mimic biological samples with variation of refractive index difference
bellow 0.1, we found that a good convergence is obtain with only 30 iterations with a

gradient descent step o = 0.3.

24 NUMERICAL SIMULATION WITH THE 3D DISCRETIZED GREEN’S FUNC-
TION

In the previous chapter we claimed that the Lippmann-Schwinger (LS) equation was solved
for low scattering sample, and a more complex iterative process has been presented to
solve the LS equation even for highly scattering object. But all of those solution were based
on Continuous Convolution Operation (CCO). Even though such convolution (CCO) are
convenient for solving ordinary differential equation they are known to be challenging to
work with. The main issue is to determine the range of integration and the appropriate
integrand for analytical solving. In our case we are lucky since we will not have those

issues.
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2.4.1 Convolution

Convolution has been used first in 1760s by Euler (L. Euleri, Institutionum Calculi Inte-
gralis, vol. 2. Petropoli: Impensis Academiae Imperialis Scientiarum, 1768.), but it was
not until the end of the 19th century that it received its first name. At the beginning of
the 20th century, it earned a general name, “convolution product” in English, “faltung" in
German (G. Doetsch, Theorie und Anwendung der Laplace-Transformation. New York:
Dover, 1943. p 157). The lack of interest in convolution (it took almost 2 centuries before
it was specifically named) in the 18th and 19th century was balanced by the 20th century
with the apparition of the convolution theorem.

The convolution theorems states that, under suitable conditions, the convolution of two
functions (or signals) is the inverse Fourier transform of the point wise product of their
Fourier transforms. The importance of convolution theorems is that they allow computing

the corresponding convolution indirectly through fast Fourier transform (FFT).

2.4.2 Discretization and padding

Instead of working with continuous function and convolution, all the numerical simula-
tion and reconstructions will be performed with discretized field and Fast Fourier Trans-
form.

In order to do the numerical computation, one will have to work on a discrete bounded
3D space. The easiest model is a cubic volume divided uniformly in cubic voxels lying on
a regular mesh of size n x n x n. The sides of the voxel are dv x dv x dv Let x3p, y3p and
z3p be the 3D matrices of the coordinates on a mesh as defined above, centered on (0, 0, 0).
Let use the symbols x for the conventional matrix product and . for the pointwise product.

For example, the 3D complex matrix of a unitary plane wave that propagates along the

direction k = (k,, ky, k) is:

U, = e!(kzw3p+kyysp+k=23p) (2.53)
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The discretization of the simulated object is straightforward, one just have to take the
value of the refractive index at every point of the discretized volume to create the 3D
matrix of the refractive index 73p. From which the 3D matrix of the scattering potential is
generated by: f3; = (27”)2(77§D —n3)

Because of the singularity of the Green’s function (Eq.2.31) and its Fourier transform
(i.e. from Eq.2.32, G (1) = ﬁ), G3p (the 3D matrix of the discretized Green’s function)
cannot be defined through a naive discretization of G(7). In the next section, we will

describe how G3p has to be defined in order to minimize the approximation error with

respect to the continuous model (Eq.2.31).

2.4.2.1 discretization of the Green’s function
This section is mainly based on the work of T.-A. Pham et Al [96] and Vico et al. [135].
2.4.21.1 Truncated Green’s function The refractive index is assumed constant outside

of the region of interest (2. This is convenient in the way that we can work not with the full

Green’s function but with a truncated version G;:

_ 171 .
G(7) = rect (2\/§L) G(7) (2.54)

With rect defined as such: rect(z) = {1 if ||z||< 0.5,0 otherwsise}, and L = n x dv, the
size of the volume.

Fig.2.3 is a visual representation in 3D of why the Green’s function only have to be
considered inside a sphere of radius v/3L. This truncated Green’s function still has a sin-
gularity, but not its Fourier transform. That is satisfactory since the convolution will be
computed as pointwise product in the Fourier space, That is why we are more interested

about getting a correct discretization in the Fourier space than in the spatial domain.
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g
Ii;

Figure 2.3: Visual representation of the volume used during a convolution with the 3D
Green’s function and f that has a finite support 2

Fourier transform of the Green’s function Gy () is:

- 1 .
Gi(P) =y (1= V30 (cos(v/3L | 7])
[P %2

(2.55)
+ikoV/3L sinc(\/gLHFH )) )

The apparent singularity when ||7|?= 2 is inconsequential. Indeed it can be extended

by continuity when ||7]|?= k% with:

o (vBL ek
Gt(r)—z<2k0 - 202 51n<\/§Lk0)

Now that G;(7) is smooth, its discretization is straightforward, and will be noted C;’g%.
The %7 is there to point out that a 4 time padding around € is required in order to be
coherent with our initial support size for G() as shown on Fig.2.3. If we want to be
more precise, since the support diameter of G;(7) is 2v/3L ~ 3.4L, a 3.4 time padding

should be sufficient. But it is more commun to work with an integer padding number. A
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4 times padding in 3 dimensions means that if we want to simulated a volume (2 with a
size n x n x n, we need to do all the computations (FFT, compute of Green’s matrix etc) on
matrix of size 4n x 4n x 4n. This matrix is 64 times bigger that its un-padded pair. This
means that the memory consumption can become very intense, and limit the simulation
capacities. On the computational burden side, what used to takes minutes on an unpadded
volumes, now takes hours. Favorably for us, an equivalent truncated Green’s function but

that only requires a 2 times padding exists.

2.4.2.1.2 Green’s function pre-computation for only 2 times padding T.-A. Pham et Al
[96] show that using the previous truncated Green’s function with a 4 times padding is
equivalent as using the following modified Green’s function with a 2 times padding;:
Gu) = 55 3 (Gl ) e
4
sefo;1]3

This modified kernel is smooth just as the truncated Green’s function, so the discretiza-
tion will not be an issue, the discrete modified Green’s function notation is: Gg’l)). The first
thing to notice is that this time the modified Green’s function is defined in the spatial do-
main. To use it inside the convolution theorem, one has to take its Fourier transform, or in
the discretized world, its Fast Fourier Transform: G37 = FFT(G3b)

Since it is defined on the spatial domain, a graphical interpretation is possible on why
adding and translating can reduce the padding requirement (see Fig. 2.4).

The main advantage of using the translated Green’s function is to fill more efficiently
the simulated space 2 with the simulated object f. Fig.2.4 shows a 2D illustration. Of
course, in our case in 3D, it is not 4 but 8 Green’s functions that are used to filled a cube
instead of 4 circles used to fill a square.

Before detailing the final discretized equation to compute Born or Rytov or LS model,
a last way to discretize the Green’s function has to be presented. It is not supported by

strong mathematical theory but it behaves notably well. The idea for this third Green’s
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1 Green’s function : 4 times padding 4 translated Green'’s fonction : 2 times padding

Figure 2.4: Graphical interpretation of the modified Green’s function

discretization is to truncates the Green’s function numerically.

First a naive discretization of Eq.2.31 is performed, noted G47" with “n_ut" for naive
un-truncated. We said earlier that we could not discretized it because of its singularity,
but most of the time no voxel actually hits the singularity, and even if one voxel goes to
high or NaN it can be replaced by any arbitrary “big" value, for example 1e10. Then this
matrix goes trough an exponential decay on the edge thus creating our final naive Green’s
function: G,

After describing 3 way to discretized the Green’s function, a naive discretization with
an numerical exponential decay on the edge, a truncated Green’s function with the rect(.)
function, and a ‘P2’ truncated Green’s function that only needs a 2 times padding.

In order to visualize each Green’s function discretization we will used the intensity of

it. The intensity of a complex field or a complex kernel is defined as such:
I(U) =|U)? (2.56)

In the Fourier space, the behaviour for . = 0 and . = 27 frequency of G3 iy Gé% and

G45" is shown on Fig.2.5
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Figure 2.5: Green’s function kernel in the Fourier space for 3 different discretizations

2.4.3 Results comparison

Since the First Born and Rytov approximation are based on a low-scattering approxima-
tion, we will use a highly scattering sphere to understand the limitations of such model,
and the performance of the direct solving of the Lippmann-Schwinger equation. The main
advantage of simulating a sphere is that the Mie theory [85] provides an analytical solution
against which we can compare the 3 models detailed previously.

5
4

3

1

o = N W & U oo N

o B N W & U0 o0 N

0

Figure 2.6: Light diffraction by 3 different models of a 3 pm radius sphere of refractive
index 1.4 in a 1.33 refractive index medium with the P2, Green’s function

On Fig.2.6 the First Born approximation fails to model how this highly scattering sphere

diffracts light. Even from the left part of the sphere we can see that the field intensity is
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too high. This might be related to the fact that the Born approximation does not conserve
energy. Indeed the final field has more energy than the incoming field, this extra-energy is
found inside and after the sphere.

The Rytov approximation does conserve energy and it looks less wrong, but it does not
predicts correctly the destructive interference nor the maximal energy locations.

Finally, and as expected, the LS models looks close to the MIE theory, LS is the most
accurate model we present in this document. To study the influence of the Green’s kernel

discretization we will use this model that is well describing the underlying physic.
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Figure 2.7: Light diffraction by 3 different discretizations of the Green’s function of a 3 pm
radius sphere of refractive index 1.4 in a 1.33 refractive index medium

On Fig.2.7 the first image is the intensity of the field according to the MIE theory,
whereas the other plots are the absolute error between the MIE theory and the LS model
with the chosen discretization.

All discretizations behave the same in the center of the field. For the truncated Green’s
function the error approximation rises higher than the 2 others on the edge of the simu-
lated field. This might explain why a 4 times padding is required with this discretization
against only 2 with the P2 pre-computed Green’s function. For the naive ED (exponential
decay) Green’s function no theoretical value for padding exists, but it looks like it behaves
comparably to the P2 Truncated Green’s function.

As long as the discretization is fine enough (and avoids singularity) the prediction error
comes most from the model chosen to model light than the chosen discretization method.
The LS model is more accurate than Born or Rytov, but it takes roughly 30 times longer to

compute.
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2.4.4 Discussion on memory requirement

From the previous section one could think that the LS model in almost perfect and could
easily be used to simulate light scattering in the biological objects, like embryos. But in
order to image an embryo, we need to simulate a 100 x 100 x 100 um? or bigger volume.
Considering the need of using a 2 times padding on top of a \/4 discretization in all di-
mension (according to Fig.2.9 that will be introduced later in section 2.5), we can say that
the simulation matrix would have a size of 1500 x 1500 x 1500. This takes up to 27 Gb for
one single field stored on double float. If we take into account that at least 6 fields need
to be kept in memory (Usy,, Ugs s, error, gradient, Green’s function, scattering potential), we
understand that it is not feasible to model such a big object with this model.

If we consider this time a 10 x 10 x 10 um? volume, everything can be easily done on
the GPU since the 6 required fields would only take 0.16GDb if stored on double float.

New model need to be considered in order to simulate wider field of view to image

large object.

2.5 MULTI-SLICE MODEL

The main idea behind this section is that merely no reflection occurs in biological samples
where optical index varies in a small range (1.33-1.35). Such a knowledge comes from the
exact theory of Mie [5] or from Lippmann-Schwinger simulations. Therefore, we will make
the approximation that light field completely propagates with increasing Z. So instead of

considering the 3D field and its 3D diffraction, we will to compute the field slice after slice.

2.5.1 Multiple Born scattering (MBS)

From Eq.2.23 it is easy to propagate a wave between two planes if the refractive index is
constant in between. Now we will detail the calculus to take into account a non-homogeneous
refractive index.

According to the Lippman-Schwinger equation Eq.2.41, if f = k* — k3 is the scattering
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potential, after developing the convolution we get:

Uz :Uch—l—/dz (f2U,) ®2p Gz—,

where, we use the notation that, for any function with 3D variables g, we call g, the func-
tion of 2D variables such as g(z, y, z) = g.(z,y). By using the convolution theorem and the

Eq.2.34 (Green’s function with mixed variables), we obtain:

Uz = Uinez +

i\ -
dz.TF|f,U,|Hy_,
47”700/ z [f.U.]Hz

To extend this continuous formulation to a multi-slice one, we need to assume that the
field is mainly propagating along the Z direction. Enabling us to replacing the integral
that is continuous by a sum over P discrete planes separated by a distance Az. If we now
use the z-discretization convention, where g, := g,a., the previous equation with [ dz

replaced by ¥, Az becomes:

=P—-1
. . ix P
Up = Uinep + ——— TG Z Az TF [f,U,) Hp_, (2.57)
and at plan P+1:
i e L
Upt1 = Uincpy + —— TG Z Az TF [f,U,) Hpi1p (2.58)

Uinc is the unperturbed wave propagating inside the medium with homogeneous op-
tical index 1y, so it follows the theory of the free propagation we saw in §2.2.3. We have
then: Uipe i1 = Umcp.f] A-- By looking at Eq.2.23, we see that the same is true for Hz, we

have H pi1 = HpHAa,. From these remarks, we deduce that:

INAZ

pr—t TF [f,-Up)).)Hn. (2.59)

UPJrl (UP + —
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This multi-slice iterative way to model light scattering was introduced by Michael
Chen et Al. [12] in 2020, to the best of my knowledge they arrived to this model by trying
to introduce Born diffraction (forward and backward scattering) at each slice in order to
improve their previous model. Here we detailed all the approximation required to go from
the Helmholtz equation to this multiple Born scattering (MBS) model. The only assump-
tions that we use are that the refractive index varies slowly in the Z direction and that the
tield propagates mainly in the Z direction. This is mainly correct if the Z discretization is

thin enough, and if the backward scattering is low.

2.5.2 Beam propagation methods (BPM)

The previous model detailed in Eq.2.59, can be simplified again if we consider that the
light in mainly propagating with small angle with the Z direction and that the refractive
index of the object stays close to the medium refractive index.

Using those 2 assumptions, C can be approximate to be constant, C ~ 1 and f, =
Am? /X2 (n2 — ng) = 8now>dn, /A%, with ény, = (n, — ng), this leads to this recurrent formula-

tion:

- - 2imnodnpd -
Up1 ~ <UP Y TF [W’OA"PZUPD Ha.

- 2imngdnpA -
Upi1 ~TF [UP <1+ MWOUPZ)} Ha.

A

And by using the approximation: exp(u) ~ 1 + u, we get the final equation:

) SnpAz\] -
Upi1 ~TF [Upexp (mnon;wﬂ Ha. (2.60)

This formulation from Eq.2.60 can be physically interpreted. The field Up,; at the (P +
1) plane is computed from the field Up at the the P plane as an optics physicist would

expect. The field Up enters in the medium slice P of thickness Az and of optical index
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np. So, the optical length seen by the wave inside this slide is npAz and the optical path
difference (compared with Uj,.) is dnpAz. Since the wavelength inside the medium is A /7,
we expect a phase shift of 2m9dnpAz/\. Finally this phase-shifted field is propagated Az
further with the spectro angular propagator (with tilt transfer, see A.2). This formulation
which takes into account multiple scattering has been around since 1970 [33]. It is normally
presented as an independent model, but just as the multiple Born model, everything can
be deduced from the Helmholtz equation and some approximation.

Even though the beam propagation methods (BPM, detailed in Eq.2.60) can model mul-
tiple scattering they have flaws: BPM is inaccurate when the refractive index does not vary
smoothly on the Z axis. Due to the paraxial approximation, predictions lose accuracy for
high angle illumination. And finally it does not model backward scattering at all. MBS
address the last two problems (backward scattering and high angle of illumination).MBS
is also more accurate in low angle illumination. Indeed in the same way that Rytov model
is more accurate than first Born, the use of the exponential formulation instead of its first

order expansion helps the BPM to deal with optically thicker slices.

2.5.3 Numerical implementation and discretization

Since the two previous models formulations only present kernels that are continuous, the
discretization process will be much less complex that with the 3D Green’s function.

The direct model computes the output field from a list of NV, slice of arrays of size
N x N. We call Wy, (as “weight”) the variable that stores the variations of refractive index.
This corresponds to the discretization of the continuous function 7.

The incoming complex field Uy is a N x N complex field. We assume that we are far
enough from the source for the incoming field to be a plane wave with constant phase
and unitary amplitude. Then from the incoming field, all the intermediate fields will be
computed recursively. Field Uy, at the entrance of the k' slice of the object, is computed as
such (. denotes element wise multiplication of matrices).

For the BPM model, where F}, stores the scatterring potential:
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2imno WAz

Ups1 = FFT; [FFTZD [Uk.eiA ].62” (R — 13 —pidz (2.61)

For the MBS model:

INC Az

10

Uki1 = FFT,, [<FFT2D [Ug] + FFTyp [F + Uk]> i (’&OV—H%—/L%AZ] (2.62)

Uk is the field at the bottom of the object, a last refocusing step is needed to simulate
the imaging system. The final field Uy,., focused at a distance zy,. from field exiting the

domain, follows the next equation:

Ufoe = FFT; |[FFTyp [Uk] %o (imy/ (=105 (2.63)

For a focus in the middle of the object, a negative value of z,. needs to be used.
Now that the models have been introduced, and their full implementation detailed, it

is time to quantitatively compare the forward predictions of all the models introduced.

2.5.4 Results comparison

In order to compare quantitatively the accuracy of all the models introduced, a phantom
will be studied and simulated.

This phantom is composed of 2 “nucleus" represented by sphere of refractive index 1.37
and radius 1 pm embedded in 4 pm radius bigger sphere of refractive index 1.35. Inside
this bigger sphere, two “holes" of refractive index 1.33 and radius 1 pm have been placed
on the direct opposite of the first two nuclei. The big sphere is covered with a 1 pm thick
layer of refractive index 1.39. A 3D visualisation and sectional plot as detailed on Fig. 2.8

From section 2.4 it is clear that with a proper discretization the LS model is very precise
compared to an analytical MIE solution. On the case of our synthetic cell, no analytical

solution are available. That is why the LS model will be used as a reference when we
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Figure 2.8: Forward simulated image for a highly scattering synthetic cell

simulate the field through our synthetic cell.

First we compare all the model for various discretization size. To demonstrate how
the predictions looks like, Fig.2.8 shows the intensity of the focus field for the five models
introduced in the previous sections. The source has a wavelength of 532 nm, the medium
refractive index is 1.33. The “on axis" lighting is obtained by using a plane wave that
propagates only along the Z direction (this means a wave vector of value (0,0,2.5)). The
“off axis" lighting is obtain by using a plane wave that propagates with an angle of 28° to
the Z direction (this means a wave vector of value (0,-1.1737,2.207))

Fig.2.8 plot has been computed with a discretization size of dz = \/4, and a volume of
256 x 256 x 256. Focused at the center slide, the output field has a size of 256 x 256 with
pixel size dz x dz. On top is the simulated image with on axis illumination, on the bottom
is the off-axis one. The first thing that appears on this plot is that Born and Rytov are
visually “wrong". The low scattering hypothesis does not hold with this highly scattering
sample. In order to have a quantitative comparison of all the model, on Fig.2.9 the error
of each model for various discretization size is plotted. The error is the mean difference
between the intensity simulated with the current discretization and current model, and the
intensity of the field obtain with a fine discretization and LS model.

As we observed on the forward plot, both Born and Rytov are applied way out of
their validity range. An interesting thing to notice is that for discretization size of \/2,

all the model based on the discretized 3d Green’s function have the same error. We are
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Figure 2.9: Forward model error depending on the discretization size. The object simu-
lated is the same than the one used in Fig.2.8. The error is the mean Squared Error, and
the reference is the output of the LS model with thin discretization. a) Error of different
forward model respectively to the voxel size. b) Error of multi-slice forward model for
various voxel size along the propagation direction: z

outside of the validity range of the discretized Green’s function, and then the model used
does not matter because all of the error comes from the convolution with a corrupted
kernel. Theoretically the MBS model is supposed to be more precise for higher angle,
this is indeed true with our highly scattering sample for a discretization size bellow A/3.
For on axis illumination, the error from the MBS model is almost an order of magnitude
higher, regardless of the discretization size.

In order to have a better understanding of the behaviour of the MBS model for high
discretization size only on the Z dimension, the Fig.2.9 b) was created. It shows the error
for various discretization along the Z dimension, while keeping the discretization size con-
stantin Xand Y at A\/4 . The BPM model can maintain a low forward error even if the Z dis-
cretization is much higher than the wavelength, up to four wavelength in Figure2.9. This
is not the case for the MBS model that becomes worse than BPM as soon as the discretiza-
tion size become larger than half the wavelength. In the same way that Rytov outperforms
Born because it has an “exponential then product” way of computing the diffracted field
instead of “linear then sum" for Born. BPM outperforms MBS for high discretization size

because if has an “exponential then product” way of computing the diffracted field.

—— mbs error, off axis
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2.6 CONCLUSION

The physics from the Maxwell equation to new multi-slice model of light propagation have
been detailed above. Historically, a strong approximation of low-scattering [34] was neces-
sary to predict the diffraction from a 3D refractive object illuminated by oblique incoming
light. Nowadays various models have emerged, either based on the discretized 3D Green’s
function or on multi-slice approach. Each model have its strength and weakness. It isei-
ther precise but with high computation cost, or less accurate for high illumination angles

but faster and more robust to strong discretization.






Appendix A

Appendix on light scattering physics

A.1 FOURIER TRANSFORM OF THE GREEN’S FUNCTION
In order to express the Fourier transform of the Green’s function we can apply the Fourier
transform to the definition of the Green’s function in Eq.2.31 ( AG + k3G = —§ ):
FT [AG + k3G)] = FT[5]
(2imi)?G + k3G =1

Therefore, we get the Fourier transform of the Green’s function:

A.2 TILT TRANSFER

We model off-axis incoming wave has on-axis incoming with a modified spectro angular
propagator. This technique is known as “tilt transfer" [96] and avoids diffraction on the
border of the simulated fields.

The full detail off this technique is described in detail in [122] (Equation 7 to 11) or in
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[96] (Section 3.D).

The “off axis” incoming wave in modelled as an “on axis” incoming wave but the prop-
agation direction is transferred to the propagation kernel [38] by a shift in the Fourier space
[39]. The main advantage of this technique is that we provide an incoming field that is con-
tinuous even with xy repetition of the field. Therefore when an FFT is performed on the
field (an FFT implies that the field is infinitely repeated on each direction), no discontinu-
ity will create scattering artefact. The tilt transfer enables us to diminish the discretization

errors and attenuate the scattering artifacts.

A.3 PROPAGATION DIRECTION VECTOR NORM IS CONSTANT FOR PLANE WAVE

From Eq.2.13 we have U (7, t) = €277 =27/t By injecting this equation inside the Helmholtz

Eq.2.12 with homogeneous medium (ie: AU(7) + k213U (7) = 0), we get:

21 -2 2 77(2)
And this leads to:

- 1o

A.4 GRADIENT OF LIPPMANN-SCHWINGER EQUATION

The definition of the gradient that we use in this document is defined in by the relation:

de = Re((Ve, oU))

In our case, the error we will aim to minimize is the squared of Eq.2.48 integrated on

all the domain €.

1 1
€ = 5 / (LfU — Umc)2 = §<LfU — Umc,LfU — Uinc) (AZ)
Q

From this we can calculate the derivative of e:
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1 1
e = §<Lf5U, LfU — Umc> + §<LfU — Umc,Lf(SU)
de = Re((LfU — Ujpe, L6U))

o = Re((L{ (LyU = Uinc), 0U)) (A3)

From Eq.A.3, we can directly extract the gradient:
Ve =LY (LU = Upne) (A.4)

The last step is to compute the ij operator, it is defined as such:

(LYY, X) = (Y, LX) (A.5)

<Y,LfX>:/QY* (X—/QXfG)

Y, LX) = /Q Y* ()X (7)dr — /Q /Q Y* ()X (A F (G — ) drdr

In our case:

—

(Y, LX) = /Q X (7) <Y*(F)— /Q Y*(7) f(f)G(f-ﬁ)d?«/) dr

—

(Y, LX) = /Q (Y(F)— /Q Y () f*(f)G*(f—ﬁ)drf>*X(f')d7~

(Y, LX) = (Y — /QYf*G*,X>

From Eq.A.5 we can identify the L? operator:
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Y(F) — Y(7) — /W)f (7).G*(F — 1)dr (A.6)



Chapter 3

3D refractive index reconstruction for time-lapse

imaging

The goal of this chapter is to explain how to reconstruct a 3D object from many off axis
acquisitions with a LED array microscope. In the previous chapter most of the notation
used came from the physical notation. In this chapter that is more optimisation oriented,
we will used notation from the applied mathematics world. We start the chapter by giving
an overview over the fine-tuning of the regularisation parameters on simulated spherical
objects, before moving to living biological samples. This will provide the reader with a
sufficient background to correctly understand the more complex scenario of imaging and

analysing growing biological specimens.

3.1 OPTIMISATION FOR 3D RECONSTRUCTION

In this chapter a deep understanding of the physics used is not necessary even though it

will help to understand when and why an optimisation algorithm may fail to converge.
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3.1.1 Optical light diffraction - Summary

The most valuable part of the previous chapter about the light scattering model is that
we have a rather simple yet quite accurate model to simulate the images acquired by an
intensity only microscope illuminated by a plane wave.

Indeed, the image depends only on 7 parameters:
- A: the wavelength of the illumination source
- [0z, Moy: the illumination wave vector in the Fourier space of the source.
- no: the refractive index of the surrounding medium

- W = {Nj, k € {1,...,n}}: The 3D matrix of the refractive index of the object The object
to simulate or reconstruct can be represented as a stack of n, slice N, of complex
refractive indexes. N;, = N, + iK}, where NN}, is the real part of the refractive index
and K}, the imaginary part of the refractive index that corresponds to the absorption

of light by the object.
- dz: the distance between each slice of W
- Zfoc: The distance between the end of the object and the focal plan
- N A: The numerical aperture of the objective

The simulated image is defined with an iteration through all the slices of the simulated

object:

Algorithm 2 Uy,. = LightScat(\, poe, toy, 10, W, dz, Zoc, NA)
Initialize Uy = 1land by = 1 and pgp = p1 =0
fork=1,2,...,N, do ‘
Uk+1 = FFT;[}(FFTQD(U;C.GWWXW )-€2i7r\/(TLTD)Q_(M_MM)Q—(M’_“%)2dz)
end for ‘
Usoe = FETy (pljtan ty) FF Tap (U, 11).*oCONI Cimy/ TR 0o =hos 7))

Where the pupil is defined by:
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0, ify/p2+p2> N4
(3.1)

1, otherwise

p(,Uaz, My) =

3.1.2 Reconstruction of an object as an inverse problem

Considering that we can model our physical measurement system as a function f, we want

to find W that produced the measured y where y = f(W)

3.1.3 Reconstruction of an object as a minimisation problem

As explained in the introduction, we will focus on methods in which only one intensity
image is recorded at each illumination angle. Even-though half the information is lost
when an intensity image is recorded (the light phase is lost), it is still possible to retrieve the
refractive index information of the imaged object. It was first shown when a microscope
lamp was replaced by a LED array [142] [141]. Then a lot of work was done to increase
resolution and speed in 2D [129] [132] [130]. The 3D volumes were also reconstructed with
the same kind of computational microscope [133] [131] [51].

We can consider that when the recording is done we have N;,,, intensity diffraction
images I; under N;y,, different illuminations angles. From this set of measurements, our
goal is to find the object W.ccons that produced the acquired intensity diffraction images.

If our reconstruction algorithm was perfect, the output of our light-scattering model
LightScat(X, poz, oy, 10, Wrecons, 2, Zfoc, N A) from the reconstructed object W.econs would
produce exactly the same image as the recorded image.

Nz‘mg

2
Wirecons = arg min Z |LightScat(tig, tiy, W)| — \/E (3.2)
[

Please note that the intensity acquired by a camera is proportional to the square of the
tield computed with our model LightScat.

When we want to address the problem of reconstruction of the 3D map of a sample
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for multiple images taken with various illumination angles, a lot of parameters from Algo-
rithm 1 can be considered known and constant. For a given illumination source at a given
place, the wavelength A is given by the manufacturer and the illumination angle (1.2, ftoy)
can be computed with some basic Trigonometry. Even if we don’t know the refractive in-
dex of the object we are trying to image (W), we know the refractive index in which it is
embedded, 79. The numerical aperture is given by the objective chosen, and dz and Zy,.

depend of the discretization chosen for W

3.1.4 First gradient descent
3.1.4.1 Without reqularisation

To solve our inverse problem formulated as a minimisation problem, a first naive idea is

to do a gradient descent algorithm on the data fidelity term e:

Nimg

W)y=>"

=1

2
|LightScat(piz, ptiy, W)| — VT (3.3)

A gradient descent algorithm is a first order optimization algorithm used to find the
local minimum of a function that can be differentiated. It works by doing a steep toward
the opposite of the gradient (i.e. the steepest descent) and then compute the gradient at this
new location and repeat iteratively this process. This idea is formalized in the following
algorithm with e the differentiable function, n the gradient step and N;; the number of

iterations.

Algorithm 3 W,,; = GD(e,n, Nit)

Initialize W7 =0
fork=1,2,...,N;; do
e = (W)

Oe(W;
A = a(W:)

Wi = Wi — nAwy,
end for
Wopt = WNit—&-l
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To have a better idea of the convergence rate and the quality of the reconstructed objects
with this algorithm, we will start by considering a simple bead and simulate the acquisition
in the same conditions than our time-lapse prototype presented in section 3.2.1.

The object is a 2 um spherical bead of refractive index 1.37 in a medium of refractive
index 1.33. It creates a refractive index mismatch of 0.04. The acquisitions are composed
of 84 images of size 256 x 256 with a pixel size of 0.126 x 0.126 um? and a NA of 0.4. The
simulated angles range from 0° to 15°. The convergence of the gradient descent algorithm

3 for the first 100 iterations are plotted in Fig.3.1

T T T T T T T T T T T T T T
Convergence of the Grad. desc. Alg. |

— n=0.01

4 —— n=0.05 ]
n=2~0.1

3 — n=0.2 ]
— n=04

n=0.6

Data fidelity error

0 20 40 60 80
Iteration number

Figure 3.1: Convergence of the data fidelity error for various 1 using the GD algorithm

For high learning rate (n = 0.2 or = 0.4) the GD algorithm converges toward the same
object. For lower learning rate (n < 0.2) 100 iterations are not enough to achieve conver-
gence. The higher the learning rate the faster the data fidelity decreases. The issue when
using learning rates that are too high is the divergence issue. Indeed, when using 7 =
0.6 the data fidelity error decreases only for the first iterations, then the error starts rising
again, like the black line in Fig. 3.1.

However, the equality of the error for different 77 does not mean that the reconstructed
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objects are identical. Fig.3.2 depicts the zy and ZY cross sections for different values of
the learning rate 7, showing that the GD algorithm converges toward the same object for
sufficiently high learning rate (n > 0.1). This object is a local minimum, indeed once the
gradient descent has reached this object or does not move because we can see the error
stagnating. This means that the gradient is null or almost null, but the reconstructed object

is not the correct spherical object.

real object grad n=0.01 n=0.05 n=0.1 =

-..nnnn -
0.0000
-..nnnn o
—0.0016

Figure 3.2: 2y and ZY slice of the reconstructed 3D bead from the simulated measurement

We can observe that regardless of the hyperparameter 7 used, only the edges of the
object are reconstructed. The center part looks constant and null. This was expected be-
cause in our scattering model we consider only the intensity of the light recorded and not
its phase. But the intensity of the light only contains information about the gradient of the
refractive index (changes). If the refractive index is constant it will not scatter, thus we will
have no information about it on our intensity only image. That is why the high frequen-
cies of the object are easier to be reconstructed, contrary to the low frequencies where the
information available is much lower.

A second reconstruction artefact is the elongation of shapes along the optical axis (z
axis). This is slightly improved as the algorithm converges but the object is still 3 times
longer in the z direction than the correct object in this example. This is mostly due to the
limited angle coverage and our low NA used.

The first reconstruction artefact (i.e. lack of low frequency of objects) can be dealt with
by adding some priors on the object we reconstruct. A first idea would be to impose a non-

negativity constraint as we know that biological objects (W = n — ng) are only composed
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of positive values. Indeed their refractive index (n) is always higher than the surrounding
medium (ng). A second idea would be to use the fact that most of the biological object we
aim to reconstruct are continuous and full object. In this case a Total-Variation (TV) priors
that penalises the gradient of the object would help a lot to reconstruct the low frequency
since constant pattern would not be penalized by the TV priors but would increase the

data-fidelity since the object shape is more correct.

3.1.4.2  With regularisation, positivity

To help the optimisation algorithm to converge towards a correct object, we have to use
some prior knowledge about the object we want to reconstruct. We have to keep in mind
that the end goal is to image biological samples and that our priors must be biologically
compatible.

Since we have a different prior on the common refractive index (the imaginary part of
W), and the absorption (the real part of W) we will use the following notation to clarify

the next sections:
e W, will be the usual refractive index, W,, = real(W)
* W,ps will be the absorption part of the complex refractive index, W5 = imag(W)

The positivity is the first prior we will investigate in this section. Positivity means that
our object has a higher refractive index than the surrounding water or medium. Indeed
the dry mass of a biological sample is correlated to the increase of its refractive index
integrated over the whole sample.

To solve our inverse problem formulated as a minimisation problem with a regularisa-

tion term regpney(Wy) = nneg * ||ReLU (—W,,)||3 we need to minimize €,,e,(W):

€nneg(W) = (W) + 1€gnneg(Whn) (3.4)
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Figure 3.3: Convergence of the data fidelity error and the regularisation loss for n = 0.2
and 7 = 0.4 and various nneg values using the G D, algorithm

0 for <0
With ReLU (z) =

z for >0

An explicit formulation of the quantity to minimize is:

Nimg 2
€nneg(W) = Z |LightScat(piz, tiy, W)| — V| + nneg « ReLU (—W,,) (3.5)
=1

The same naive gradient descent algorithm will be used to evaluate the impact of this

regularisation:

Algorithm 4 W,,; = GDypeq(€,n, Nit)
Initialize W7 =0
fork=1,2,...,N;; do

€L = enneg(Wk)

A = 86@(&0

Wi = Wi —nAwy,
end for

Wopt = WNit—i—l

For very small value of the nneg parameter this problem is almost identical to the min-

imisation problem without regularisation, and the convergence plot is identical. To avoid
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Figure 3.4: zy and xz slice of the reconstructed sphere for n = 0.2 and 1 = 0.4 and various
nneg values using the G D,,;,¢4 algorithm
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having to deal with too many hyper-parameters, we will only consider power of 10 for the
nneg regularization and a gradient step of 0.2 and 0.4 that provided the faster convergence
in the first naive gradient descent. The data fidelity loss and the regularisation loss are
plotted in Fig.3.3.

For higher values of nneg, the data fidelity error decreases slower than previously, see
the red and green solid lines on Fig.3.3. We can see that for = 0.2 the loss decreases
in a smother way than for n = 0.4, where it starts oscillating for the green and orange
solid lines. If the oscillations are too high the algorithm is not stable and it diverges; this
happens for n = 0.6.

As shown previously, the value of 7 does not have a large impact on the reconstructed
object (comparing Fig.3.4(a) and Fig.3.4(b)) as long as it is high enough for the gradient

descent to converge and small enough to prevent divergence of the algorithm.
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On the contrary, the nneg parameter has a huge impact on the reconstructed object.
First we see that the higher nneg, the less negative voxel are present in the reconstruction.
This was the main goal of the introduced regularization. When the regularization is too
strong, the algorithm converges toward a minimum where all the background has a high
refractive index value. This has a good data agreement, but it is far from what we expected.
We can also see that the elongation issue along the z direction has not been corrected at all,
regardless of the nneg value.

If the non-negativity constraint cannot help with the elongation issue, other regulari-

sations must be considered.

3.1.4.3 With regularisation, positivity and total-variation

The total-variation (TV) norm on a 3D continuous object f is defined as such:

TV(f) = / V) (3.6)

The idea behind this regularisation is to penalise noisy objects, as only the gradient
of the object is penalized and not its value. In other words, every times that the value of
the object increases or decreases the regularisation value increases, but when the value is
constant the regularisation is null, no matter how high the value is.

Total-variation minimisation has been used in image processing for image denoising
with edge preservation [106] [136]. It has also been suggested as a regularization function
in Bayesian reconstructions [92] [95] [94] and used in tomographic scans [118] before being
adapted to the optical diffraction tomography field [68].

The formulation on a discrete object W is an isotropic formulation that does not favor

vertical or horizontal patterns:
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Nac JVL’J Nz

TVW) => D D [(W[i+ 1,5,k — Wi, j, k) + (W[i, 5 + 1, k] — Wi, j, k])*+ 57
=1 i=1 =1 .

(W[Z’J’k+ 1] - W[ivjv k])2‘

Other discrete total-variation formulations have been proposed in 2D for images [19]
but have not been tested on 3D volumes, yet.

To solve our inverse problem formulated as a minimisation problem with a regular-
isation term regnneq 3(Wn) = nneg * ReLU(—W,) + B * TV (W,) we need to minimize

€nneg,5(W):

67"0”69,,3(W) = E(W) + regnneg,B(Wn) (38)

An explicit formulation of the quantity to minimize is:

N’ng

€nneg,B(W) = Z

=1

2
|LightScat(piz, iy, W)| — V/Ii| +nneg x ReLU(=W,,) + 8 x TV (W)

(3.9

The same naive gradient descent algorithm is used to evaluate the impact of this double
regularisation.

The TV regularization was mainly introduced to control the noise level in various
inverse-problems on image [107] [125]. On our simple example based on simulation mea-
sures, there is almost no noise and that is why the main benefit we were expecting from the
TV regularization is its ability to penalise less objects that are full than edges-only object
(empty shell).

Looking at the zy slice on Fig.3.5 (a), we can see that the central slice is not filled and
a hole in the refractive index value is still present at the center of the sphere. This hole is

smaller than without TV regularization, but still present. What was not expected is that
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Figure 3.5: zy and zz slice of the reconstructed sphere for 7 = 0.4 with various nneg and /3
values using the G Dy;,¢4 algorithm

this TV regularisation also decreased the elongation along the Z direction, as it can be
observed on the xz slice in Fig.3.5.

This preliminary study with un-optimal optimisation algorithm was performed to give
us an insight over which regularization can help with the various problems we are facing

in intensity only holography tomography.

3.1.5 Accelerate gradient descent

State of the art for non-convex optimisation on light multiple scattering model is stochastic
proximal-gradient algorithm. It was successfully used for high resolution optical tomo-
graphic imaging system [59] as well as intensity only imaging system [16].
For standard non-convex optimisation many other approach exists, in the 2D physical
optics reconstruction, ADMM [86] and Conjugate gradient methods [45] have been used.
We will first review a conjugate gradient method before comparing it to state of the art

proximal-gradient method.



63

3.1.5.1 conjugate gradient method

Conjugate gradient has been first introduced to solve symmetric positive linear system.

For example if A is a real, symmetric, and positive-definite model (as in our case), B is
our data and X our parameter. Conjugate gradient is an algorithm to find the unique X,
that solves AX = B.

The iterative conjugate gradient can be seen as a regular gradient descent with a conju-
gation constraint on the direction to follow. An efficient way to enforce it is by forcing the
next direction to be built from the current gradient as well as all the previous directions
followed.

A non-linear version of the conjugate gradient exists and is suitable to our problem. It
has been used in ODT [32] [65], magnetic resonance imaging (MRI) [66], as well as X-ray
imaging [101] or spherical tomography [48].

The following algorithms details the conjugate gradient steps for IV;; iterations to min-

imize the function € of W:

Algorithm 5 W,,; = CGD(e, Ny)
Initialize W7 =0

_ 0e¢(Wh)
1= "am
d1 =T

fork=1,2,...,N;; do
ay = arg ming, (W + ady)
Wk+1 = Wk + akdk

Tk+1 = _%::11)

il (Pey1—7k)

7dz(rk+1frk)
A1 = Tp41 + bet1di

end for

WOPt = WNit+1

bk+1 =

There are three main differences between the linear and non-linear conjugate gradient

86(Wk+1))_

descent. First, the residual is always the opposite of the gradient (i.e. rp11 = — Wi

Second, the distance a;, to move in the new direction dj, is more complex to compute, but

any value that truly estimates argmin,, e(W}, + adj) can be used. Finally, the formulation
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for by mentioned here was derived from the Hestenes-Stiefel paper [47]. Other solutions

have been proposed, such as the Fletcher-Reeves [35] by = T’%k%:i“ , the Polak—-Ribiére
[100] or the Dai-Yuan [22] equations. All those variants are equivalent in the linear case
and thus produce the same value for by ;. For non-linear cases, like our inverse problem
with the non-linear forward model LightScat , there is no guarantee that one expression
may provide faster convergence than another.

This non-linear conjugate gradient descent comes with more unknown on the conver-
gence speed than its linear version: ¢) the more f is different to a quadratic function, the
faster the directions dj, will lose their conjugation; ii) if f has local minima we have no
assurance that the CGD will converge to the global minimum instead of the closest local
minimum; ii7) the CGD can only generate n conjugate vectors in a n dimensional space,
thus the algorithms is logically restarted every n iterations. This issue does not concern our
problematics, as we work in a dimensional space with millions of dimensions, therefore
expecting the algorithm to converge in less than a few hundred iterations.

In order to assess the performances of this algorithm we will use the same optimisation
problem as in the previous section.

The inverse problem will be regularized by 4 parameters nneg,3,spars,sparsqps. “spars”

stands for "sparsity".

Nimg

Enneg7ﬁ7l17l1abs (W) = Z
i=1

2
|LightScat(jiz, fiy, W)| — VI;| + nneg.ReLU(—W,)

+ BTV (W) + 11| Wy |+ aps. | Waps|

To evaluate this more complex optimisation algorithm the same object will be used
as in section 3.1.3: a 2 pm bead of refractive index 1.34 embedded in water (RI = 1.33).
84 intensity images were simulated at angles corresponding to our prototype real data

acquisition. We used the conjugate gradient algorithm to solved the regularised problem
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from the simulated intensity images.

A grid search on the parameters gave us some base values that produce a good 3D
reconstruction in terms of RI shape, noise and value. The parameters that gave the best
overall result are: (40, = 0.04, nnegman = 0.1, l1en = 0.01, 14s,,,, = 0.01. To have
a better understanding of the effect of each parameter we will tune it from zero up to
32 times the initial value. The reconstructed object will change from not regularized

enough to overly regularized.
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Figure 3.6: zy slice of the reconstructed 3D bead from the simulated measurement. The
coefficients in the first column were progressively increased from zero up to 32 times the
initial value.
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Figure 3.7: yz slice of the reconstructed 3D bead from the simulated measurement. The
coefficients in the first column were progressively increased from zero up to 32 times the
initial value.

Each regularisation parameter introduced in Section 3.1.4.3 is important to produce
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correct reconstructions, as shown in Fig.3.6 and 3.7.

We will review here-below the effect of each parameter:

* tv: the total-variation regularisation tends to smooth out the object in constant patches.
If it is set too high, the object gets completely removed, similarly to the sparsity. If
the opposite happens, then the object tends to be very noisy and some artefacts ap-
pears. Even in this simulation where no noise was added (only some blurring), rings
around the reconstructed object and other high-spatial frequency features appear at
low tv coefficients. These features are not present in the real object and therefore

considered as errors of the regulation method.

* nneg: if the non-negativity constraint is too low, a ring of negative RI gap appears
around the sphere. This ring acts by decreasing the RI value inside the sphere as well,
behaving as low-frequency features (the sphere has constant RI). If we had warranty
on the convergence of our optimisation algorithm, with any "high" value of the non
negativity constraint, no more voxels with negative RI value should remain, putting
the non-negativity loss to zero. This is not the case here: when the nneg parameters
increases, the algorithm starts diverging and produces reconstructions that clearly

diverge from the real spherical object (see coef 8,16,32 in the nneg line in Fig.3.6,3.7).

* spars: the sparsity on the real refractive index tends to flatten the background back
to zero. If this paramareter is set too low, the refractive index that should normally
be inside the sphere is spread across the whole volume. If it set too high, the object

is also considered as background and the whole volume is reduced to zero.

* sparsgps: the sparsity on the absorption object (imaginary part of the refractive in-
dex) is here to ensure that most of the information in stored into the real refractive
index part, since we know that the observed objects will be mainly transparent. In-
terestingly, the larger the regularisation on the absorption, the most compact the re-

constructed sphere is (there is less elongation with a higher sparsgs). Similarly to
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the nneg, the sparsity in the absorption could theoretically be as big as we want and
it should always converge toward a real-only refractive index object. Here again, the

algorithm cannot converge if the sparsq is set too high.

Regardless of the parameters used, the sphere is always elongated along the optical axis
and this is problematic for two reasons: first, the geometry is not correct and it lowers the z
resolution of the microscope; second, the RI distribution is also elongated over the optical
axis, thus decreasing the real refractive index values of the reconstructed object. Indeed,
the most important part of the scattering fields comes from the optical path difference of
the object, and for a given optical path difference if an object is 2 time longer, its refractive
index will be 2 time smaller. That is why on Fig.3.6,3.7 the maximum RI gap is 0.006 instead
of the simulated 0.010.

Since elongation comes from the intrinsic physical lacks of information, our system
will never be quantitative for each voxel value. But it can be quantitative in the sense that
the optical path difference (OPD) can be correct, as shown in Fig.3.8. We can compute the
optical path difference (OPD) by integrating the distance times the refractive index gap.
The OPD value represents the phase shift introduced by the object; if this value is constant
over the object and equal to the wavelength (or a multiple of the wavelength), then on a

phase sensor one should record a constant phase.

OPD(Wiker.n.) = > Widz (3.10)

For a 2 pm radius sphere with a refractive index gap of 0.01, the maximum OPD is
0.04 um, a value that matches the various OPDs from Fig.3.8.

This simulation study on the conjugate gradient as an efficient optimiser shows that
all the regularisations introduced in section 3.1.4.3 are important to have reconstructions
that better match the real object. The 3D reconstructions are not quantitative, but their 2D

projections (OPD) are quantitative.
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Figure 3.8: OPD of the reconstructed 3D bead from the simulated measurement

3.1.5.2 Iterative proximal Nesterov method

This new optimisation algorithm aims at minimising the same regularised inverse problem

as defined in section 3.1.5.1:

Nimg
2
€nneg,B,11,11,5. (W) = Z ‘|Light5’cat(mx,,uiy, W)| = /Ii| + nneg.ReLU(—W,)
=1

+ ﬂ.TV(W) + ll.‘Wn‘+llabs.‘Wabs|

The main difference is that this time the whole criteria will not be minimised as a whole,
but it will be separated in 2 parts:
1. an accelerated gradient descent (with Nesterov) will handle the data fidelity term

and the easy regularization terms for /1 and non-negativity.

2
€inneg 111, (W) = || LightScat(iz, priy, W)| — /I;| +nneg. ReLU (= W) 1| W |+ aps. | Waps|

2. a proximal operator will be used to enforce the TV minimisation where a standard
gradient is not very efficient. For total variation minimisation it is often shown that gradi-

ent are more unstable than proximal iterations [8].
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This mixture optimisation algorithm is the following one:

Algorithm 6 Fast proximal gradient descent (nneg, 3,11, 145, 7)

Initialize Wi = 0and by = 1and py = p1 =0
for n; = 1, 2 Nzters do
1+, /1+4b2

n;—1

mn; T
Wi = pp, + =5 (pnl Pn,—1) — Nesterov acceleration
fori=1,2,. szg do
€ = € nneg,1,11,,. (W;") — Compute the data fidelity error and the 11 and non-neg reg.

bn, —

A= m‘;’/nz — Compute gradient for image i
Wi = W = n(A))
end for
Prni+1 = P?“OSL‘B”.HTV (WJP’\L/ng—&-l)
end for

With Proxg) .|, (z) = argmin, {%Hu —z)* + BHuHTV}
This algorithm 6 has been tested against the same optimisation problem as in the previ-
ous section 3.1.3: a 2 pm bead of refractive index 1.34 embedded in water with 84 intensity

images with anlges corresponging to the data from our prototype.
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Figure 3.9: zy slice of the reconstructed 3D bead from the simulated measurement
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Even though the optimisation problem is the same, with this approach the effect of each
parameter is slightly different. This time, the initial values that produce good 3D recon-

struction are slightly different (see below), mainly because the regularisation is performed
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Figure 3.10: yz slice of the reconstructed 3D bead from the simulated measurement

at every angle. The TV regularisation inside the proximal is also different because it does
not compete against the data fidelity but against a difference with the previous iteration
object (the & |u — z||? in the proximal definition). The parameters used that gave satisfying
results are: B0 = 0.0004, nnegman = 0.25, 1yan = 0.1, 4ps,,0, = 2.5, Mman = 2. To have
a better understanding of the effect of each parameter we will tune it again from zero up
to 32 times the initial value. The reconstructed object will change from not regularized
enough to overly regularized.

The first and most important thing to observe is that the TV and 7 row are symmetri-
cal. It was expected since the TV is working against the data fidelity term in alternations.
Weakening the TV normalization will have the same effect as increasing the step of the
optimisation algorithm. On the other hand, lowering the 1 will result in the same object
as the one obtained after increasing the 5. The main difference is that once the step is too
high, the algorithm diverges and no results are produced (see the empty columns over the
last row in Figures 3.9 and 3.10).

The TV effect on the object is sharper than previously, as it tends to fill the object with
a constant value. A side effect of this discrete total-variation defined in equation 3.7 is that
it tends to make the object wider and less intense in terms of RI. In the X and Y direction

it is not an issue since the data fidelity imposes sharp refractive index gap. Along the Z
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direction there is less information in the measurement to inform the algorithm on where
the object should start or end. Since the TV norm tends to make the object as elongated
as possible, as long as the data fidelity remains good, for high value of TV we have very
elongated objects. This is an issue with our compact and low angular coverage proto-
type, because under low angle illumination most of the diffraction patterns comes from
the OPD of the object and not from its shape along the Z dimension. An idea to reduce this
elongation would be to change the L1 norm the gradient in each direction by a L0 norm.
However, this is not technically feasible, as gradient descent cannot deal with LO norm. A
compromise would be to use a L0.9 or L0.8 norm, but it is already very unstable and quite

challenging to use in a sens that the algorithm can diverge rapidly.
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Figure 3.11: OPD of the reconstructed 3D bead from the simulated measurement
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As it can be seen in Fig. 3.10 the non-negativity produced the desired result, i.e. it
removes the negative voxel values in the reconstructed volume. This time the implemen-
tation is more stable and no undesirable effects (like strong hallucinated shape) happen
even when the regularisation is 32 times stronger than the baseline.

Interestingly, the sparsity has almost no effect, the object looks sightly more elongated
when it is removed (coef 0) but otherwise the choice of this parameter is not critic.

Finally the sparsity on the absorption seems to have a constant effect as long as it is not
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pushed down to zero, where an elongation and a lowering of the refractive index happens.

Both accelerated gradient descent algorithms behaved much better than the naive gra-
dient descent. Globally, the fast proximal gradient descent algorithm 6 provides better
results than the conjugate gradient in terms of a quantitative OPD values Even objects
without noise have an OPD close to the theoretical value of 0.04. The final reconstructions
also show more robustness, as a wrong estimation of nneg, 3,11,114s has less influence
on the reconstructed object. For example, the nneg or the sparsity can be set factor of 30
higher without causing any significant issue on the reconstructed object (not the case for
the conjugate gradient approach).

This sphere simulation emphasizes the crucial role of the regularisation hyper-parameters
in the reconstruction and the necessity to choose them carefuly in the reconstruction pro-
cess.

For stability reasons the Iterative proximal Nesterov method from section 3.1.5.2 will

be used in the remaining of the manuscript for simulation and for biological sample.

3.2 TIMELAPSE PROTOTYPE

Our prototype conception was motivated by the will to study small developing organisms
in 3D, from unicellular organisms to small animal models such as Caenorhabditis elegans
[10] as well as organoids and preimplantation embryos. This requires imaging in three
dimensions on a broad range of length scales, from micrometer to study subcellular struc-
tures, to millimeter to analyse whole organisms. As detailed in the Introduction 1, we
chose to use a non-fluorescent technique where we exploit a contrast due to light diffrac-
tion as in optical diffraction tomography (ODT [44] [88]) instead of fluorescence. Results

of this section have been partially published in [99] and orally presented at [97].
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3.2.1 Illumination and imaging component choice

To study living organisms one must be able to do so in the standard conditions where
biological sample are grown. Most of these cultures take place in an incubator, a device
maintaining specific temperature, humidity and CO; levels for growing and conserveing
cell cultures as well as microbiological cultures. Incubators are therefore essential for the
physiological development of the sample. That is why we made the choice to conceive a
microscope able to work inside the incubator. The two main limitations are humidity and
size: standard incubators are as big as a small fridge, leaving a maximum usable volume
around 50x50x50 em?. It explains why our prototype has to be compact, and the smaller
the better because incubators may be used for several different experiments at the same
time and all the volume inside is not always accessible.

Another issue of long-term imaging of image biological samples is phototoxicity, es-
pecially for fragile samples like embryos. The amount of photons we target toward the
sample must not interfere with the physiological development of the sample. Even though
the question on how much phototoxicity affects the biological cultures is complex, some
good practice emerged [71] and a proper quantification of this phenomenon should be
performed before concluding any biological results. Considering the volume constraint
as well as phototoxicity, a commercial LED array (SCI-Microscopy, US, A = 0.532 pum for
the green array, A = 0.625 ym for the red array) was used for illumination. The photo-
toxicity can append with LED illumination, but the amount of photon that passes through
the sample is much lower when using bright-field illumination instead of point scanning
illumination where the whole sample has to probed like in confocal imaging.

Concerning the field of view, we aim to image biological samples that are thin enough
for the collected light to be mainly ballistic and not diffused. Therefore we will limit us
to biological object that are less than 200 pm thick. Considering this constraint, two bio-
logical samples were selected to be imaged with our prototype, mouse embryos and liver

organoids. Both have a spheroid shape, that is why we chose to limit our field of view to
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200 pm x 200 pm in the zy direction. Considering a standard CMOS sensor with a 2.4 yum
pixel size and a 3088 x 2076 resolution (IDS UI3880), a 20X objective gives the desired field
of view.

One last constraint that must be taken into account is a high sample versatility. A
microscope should accept various shapes and thickness of sample containers. It excludes
the use of immersion oil for simplicity of use, as well as the use of objective with high
numerical aperture that usually have a short working distance (unless for very complex

objective that comes at a premium price).
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Figure 3.12: Overview of our compact L-shaped 3D microscopy setup

The final design of our prototype that fulfills all the previous requirements is presented
in Fig.3.12. The illumination is achieved with a commercial LED array (SCI-Microscopy,
US, A = 0.532 um) centered at 8 mm above the objective. Only the first 133 LEDs are
routinely used, providing a 0.346 NA illumination. With the goal to obtain a wide field of
view (> 100 x 100 um?), we used a Motic 20x 0.4 NA objective with a tube lens (Thorlabs,
focal distance of 180 mm) to image on CMOS sensor with a 2.4 ;;m pixel size (IDS UI3880 -
Schematic in Fig.3.12). This optical configuration results in a 0.120 pum effective pixel size.
A 45° mirror has been added after the tube lens to have an “L-shaped” prototype that is

more compact than an inverted in-line microscope.
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3.2.2 Raw image normalisation
3.2.2.1 Integration time tuning

The CMOS sensor stores the gray value of each pixel in 8 bits, ranging from 0 to 255. To
avoid saturation (value over 255 that will be decreased to 255) a good integration time
must be chosen for each LED. The closer an LED is from the center of the LED array (that
is aligned with the optical axis of the system), the brighter the image is. To characterise
this effect we will study the mean value of an image with a constant exposition time of 30

ms.

mean value
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Figure 3.13: Evolution of the intensity of the light at the end of the optical system relatively
to the distance to the center

On Fig.3.13 it is clear that a the mean pixel values decreases with the distance to the
center of the LED array. Even more interestingly, the diversity of illumination intensity for
a given distance to the center of the LED array is high. The brighter image for an LED that
is placed at 50 mm from the center is 4 times higher than the darker one.

A simple model was fitted on the data with the goal to change the exposure to have
a constant signal over noise ratio. Instead of a constant exposition time (et) of 30 ms,
the exposition time was changed in function of the distance toward the center d by et =
0.1 % (300 + %)

This adaptation to keep a constant signal to noise ratio on individual acquisitions and

for any given illumination source changed the integration time between 80 and 800 ms,
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Figure 3.14: Intensity of the light at the end of the optical system relatively to the distance
to the center with a corrected exposure time.

producing a total acquisition times of about 2 minutes for 133 frames.

3.2.2.2  Prepossessing of the raw images

(a) Numerically normalized (b) Un-normalized

Figure 3.15: Brightfield images of an embryo acquired with four consecutive illumination
LED Fig.a) shows the images after normalization Fig.b) shows the raw images

For the reconstructions, an intensity background level close to unit is essential to match
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the value of the incoming plane wave of our forward light scattering model (see Section
3.1.1). This means that if no object diffracts light, the acquired image should be a constant
image with value one.

Even though the adaptation of the exposure times was a first step toward having nor-
malised raw data, the variability inside each ring is too high and each image has to be
treated individually. To have a constant background with the value 1, each image is di-
vided by the mean value calculated over the overall intensity distribution of a manually
selected crop of the image where no object is present. This guaranties that every image
is correctly normalized, but requires a manual input from the user on the reconstruction

algorithm.

3.2.3 Reconstruction on calibrated micro sphere

To validate our normalization procedure and confirm the first results obtain after simu-
lations in section 3.1.5.2, we will first apply our reconstruction algorithms 6 to the recon-
struction of calibrated micro-sphere. We chose 1 um silica beads that have a refractive
indice (RI) of 1.4570 at 625 nm. They are placed inside water with a refractive index of
1.33. It creates an OPD of 0.127 pm, slightly less than 2 times the wavelength. This is al-
ready considered as an optically thick sample, challenging enough for a first validation of
the prototype.

To perform the reconstruction of these silica micro-spheres, 133 images were recorded
with illumination angles ranging from 0° to 20.3° at 625 nm and a 20X/0.4NA objective.
The Fast proximal gradient descent algorithm with 40 iterations and regularisation pa-
rameter Byqn = 0.0016, nnegman = 2, {lman = 0.15, llgps,... = 1.5, Nman = 8 was used to
produce results in Fig.3.16-e-f-g-h. On the z cross-sectioning of Fig.3.16-e the reconstructed
bead is elongated up to 4 times its length along the z direction. This elongation is mainly
caused by a limited angle coverage and a rather low numerical aperture of our objective
compared to high NA objective (NA>1) as used in reference [143].

This elongation leads to a refractive index that is lower than expected inside the bead
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Figure 3.16: Reconstruction of a calibrated micro-sphere. a-b-c-d - Theoretical micro-
sphere. e-f-g-h - Reconstructed micro-sphere. d, h, optical path difference (OPD) of the
theoretical and reconstructed micro-sphere, respectively. i- Line plot of the OPD shown in
Fig 3.16 d,h. j is a 3D rendering of the reconstructed micro-sphere.

(0.045 in Fig.3.16-g instead of 0.12 in Fig.3.16-c). At present our system does not yield
quantitative results for every voxel reconstructed. Nevertheless if we consider the object
as a whole, we can compute the optical path difference (OPD) on-axis (Fig.3.16-d,h). When
comparing the micro-sphere reconstructed OPD with a theoretical value, we found on
Fig.3.16-i a good agreement between the theory and our system.

Our final goal is to achieve time-lapse imaging of thick biological samples, therefore we
cannot limit our study to calibrated object like micro spheres. The following sections will

therefore describe the assessment of our imaging capability on biological living samples.



0.008
0.006 -

0.004
An

0.002

0.000 r\
—0.002 -

0 10HM20 30
0030{ A

0.025 -
0.020 -
0.A1%
0.010-

0.005 A J
0.000 { —

0 1em 20

r0.030
C) 0.0035 -
r0.025
0.0030 4
r 0.020
1 2 3 4 5 6 7 8

0.0025 A
f0.015

0.0020
r0.010

RI-Reconstructed

0.0015 L s

0.0010 t 0.000

y (um)

Figure 3.17: Resolution and shape characterisation on a 3D printed cell phantom. a- Shows
the 3D reconstruction of the phantom. First image is the central zx slice. Second image is
the yz section on the bottom of the phantom (position shown by the top dotted line on the
zx slice). Third image is another yz slice (lower red dotted line). Finally the dotted blue
line is plotted to show the refractive index distribution over a given section. b- Shows the
3D theoretical phantom. First image is the central zx slice. Second image is the yz in top
of the phantom, position showed by the upper dotted line on the zz slice. Thirds image is
an other yz slice (lower red dotted line). Finally the dotted blue line is plotted. c- Zoom on
the Y resolution target, with the plot of the RI distribution

3.2.4 Lateral and axial Resolution

In microscopy, the notion of resolution is crucial and everyone expects a value for the zy

direction, as well as the Z direction. For 3D optical diffraction tomography this question
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does not always have a simple answer, like in any regular microscopic system. Ziem-
czonok, M., Ku$, A., Wasylczyk, P. etal. proposed a new way to quantify phase imaging
systems with novel 3D printed biological cell phantoms [137]. This technique it is based on
photo-lithography, where the absorption of photons leads to the curing of a liquid polymer.
This creates phase only 3D structures with a 100 nm lateral and 500 nm axial resolutions
and given refractive index. This phantom was used to characterize the resolution of our
setup (as detailed below), as a part of an active collaboration with the group in Warsaw
University of Technology.

The phantom is a half dome of 30 x 20 pm on its base and 20 pm thick as shown in
Fig.3.17 b). The main features of the phantom are the three spherical nucleoli placed in a
region of lower (gray) RI that mimics a nucleus, which is often present in many cells. The
features are here to access our ability to reconstruct shapes of large sub-cellular structures
and their RI. Outside of this fake nuclei there are three resolution test targets with a strong
RI gap along all the axis. These resolution target enable us to quantify the capacity of the

system to reconstruct high RI gradients features, such as lipid droplets.

3.2.4.1 Lateral resolution

A total of 84 intensity fields were acquired with our prototype equipped with a x20 ob-
jective (NA = 0.40) and green LEDs with A = 530 nm. The reconstructions of this single
cell that is 20 g x 30 pm and 15 pm thick was performed with the Fast proximal gradient
descent algorithm detailed in section 3.1.5.2.

As excepted with our low NA, the reconstructed image after intensity only acquisitions
is strongly elongated along the Z direction. On Fig.3.17 a-, the first yz slice looks like it is
in the middle of the reconstructed phantom, but we are truly on the top of the phantom
because we can observe the top layer of the 3D printed top. This is not visible on the
edges because the gap between each printed slice are really small, but on top, the distance
between each printed slice is bigger and can be observed. Yet, the major key morphological

characteristics of this phantom are correctly retrieved.
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To answer the resolution question, we can start by defining exactly what is the resolu-
tion. Resolution is the minimum distance at which two distinct objects of a sample can still
be seen as separate entities. The resolution target on Fig.3.17 c- is perfect to measure reso-
lution. As shown in the image and in the RI distribution graph, the first two 300 nm marks
are indistinguishable and appear blurred as only one object. Then the 500 nm hole can
be separated sharply from the 700 nm hole, while the graph show a slight blend over the
300 nm hole. From this study we can affirm that our system has a 1 pm lateral resolution.

The theoretical value from Fig.1.1 with our system composed of a 0.4 NA objective and

A = 0.532 is around 0.8 um.

3.2.4.2  Axial resolution

In the previous section, we used the following definition for the resolution: "the unique
minimum distance at which two distinct objects of a sample can still be seen as separate en-
tities". Since our major issue is the axial elongation, and that this elongation has the shape
of cone, the width of the object has a huge impact on how far will this cone propagate.

For example if we stack two 2 ym beads from section 3.2.3, they would appear as sep-
arate entities if we place them at 6 ym from each other. But if we use smaller object, like a
1 wm sphere, we could bring them closer before their elongation cones hit each other, 3 m
in this case. If we consider bigger objects like embryos that are 100 pm wide, they need to
be placed more that 300 pm away so that it can be seen as separate entities.

The question remains, what is the axial resolution of our system ? 3 um ? 6 um ? 300 pm

3.2.5 Fixed embryo 3D reconstruction and aberration correction

Most of the cell cultures are essentially 2D, the cells are grown on a slice or any other cell

container and remain mainly flat as they develop. In order to access more complex sample
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a collaboration with the hospital in Grenoble! was initiated, allowing us to image mouse
embryos. This is the perfect sample to validate our microscope with, since embryos vary
between 100 and 150 pm with many 3D complex internal structure. The team at Grenoble

hospital was responsible for all embryo collection and manipulation.

3.2.5.1 Embryo preparation and transportation

Embryo preparation

Zygotes were collected from mature C57BL/6 females, synchronized with 7.5 units
of pregnant mare serum gonadotrophin (PMSG, MSD santé animale # Chronogest 600)
and 7.5 units of human chorionic gonadotrophin (hCG, MSD santé animale # Chorulon
1500), mated with fertile males. Oviducts were removed in M2 medium (Sigma-Aldrich #
M7176) and zygotes were collected from the ampulla. Cumulus cells were removed with
hyaluronidase 0.1 mg/ml. Embryos were then washed and maintained until blastocyst
stage in KSOM medium (Merk MR-106-D) in an incubator at 5% CO; and 37°C. The incu-
bator used is a SANYO CO2 incubator MCO-19AIC.
Animals ethics

All animal procedures were run according to the French guidelines on the use of ani-
mals in scientific investigations with the approval of the local Ethics Committee (ComEth
Grenoble N° 318, ministry agreement number #7128 UHTA-U1209-CA). All animals (C57BL/6)
were from Charles River laboratories. All animals used were 5-8 weeks old for females and
2-6 months old for males.
Embryo transportation

During the first month of test, the embryos were prepared in the hospital by the biol-
ogist and transported in our lab to fine tune the microscope. Since it was not allowed to
bring living organism cultivated in another lab, we had to fix those embryo with a solution

of paraformaldehyde. This makes the embryos more stable over time, they can be easily

'Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Ge-
netics Epigenetics and Therapies of Infertility, 38000 Grenoble, France.
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transported without the need to have a controlled environment (37°C and 5%C0O) but
their true shape and all the inner structures are unmodified. They still need to be main-
tained in a KSOM medium (Merk MR-106-D) not to dry out. Routinely they are stored in a
Lab-Tek® container with 0.5 mm on oil on top of the solution to prevent evaporation. This
kind of container must be transported carefully to prevent the medium or the oil to spill,
and it was not possible to guarantee it while crossing the city from the hospital to our lab.

To guarantee that the sample holder would not spill, we chose to transport the fixed
embryos in 20 ym LEJA slide sealed with synthetic resin. These slide have a 1000 um glass
thickness on one side and 720 pm on the other side. It produced a stable sample that had
almost no changes in its shape of internal structure up to a week, that could be transported

easily without particular care and that was fixed (i.e. not living anymore).

a) Normalized raw images
1 : LED Number 21 ; LED Number

b) 3D refractive index recon,

Figure 3.18: Reconstruction of a multi-cell embryo trough a thick (720 um) glass sample a-
The raw images acquired with our microscope for various LED. b- The 3D refractive index
reconstruction with 3 different zy slice. Each slice is positioned with a dotted red line on
the zz slice (from top to bottom, respectively).

Even though the transport was robust, the first images with this sample preparation
were disastrous. The raw images in Fig.3.18 a show a speckle-like pattern for every imag-

ing angle, and only the contour of the object looks like a standard diffraction pattern with



84

fringes. After reconstruction (Fig.3.18 b), the center of the embryo is almost constant with
a zero value, meaning that no phase information could be retrieved from the raw images.

As expected, only the edges are sharp and visible.

3.2.5.2  Aberration correction - Theoretical formulation

It took me a few months to understand why we had the disastrous results from the previ-
ous section 3.2.5.1. What was causing those aberrations is the glass thickness between the
object and the objective. Normally, standard objective are design to work with standard
coverslip that are 170 pm thick. In our case the LEJA slide was 720 pm thick.

A theoretical study on the effects of the glass thickness was thus conducted to have a

better idea of the effect and strength of the aberrations.

—_— TR
Glass layer ﬁ Glass layer

Objective Objective

Sensor CMOS ——— Sensor CMOS ———
(@ (b)

Figure 3.19: Schematic view of a microscope interface system. a) Representation of the
nominal configuration of the objective. b) Representation of the configuration with a cus-
tom sample container and thick object.

If we consider the objective in its nominal utilisation, it is supposed to accurately re-
produce the object to image on the CMOS sensor (except for the high frequency that are
cut by the numerical aperture). This can be expressed with the following equation:

1:Hobj(ﬁ2D)e2iTr(zcs ("Tg)z*ugpﬂznﬁf)( (%)2*:‘1%[;) (311)
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From the previous equation we can extract an analytical formulation of the full objec-

tive transfer function and inject it inside the general case equation:

)eziﬂ-(z’m V (nTm)Q_IU’%DJ’_(ZQ_ZCS) \/ (nTg)2_M§D+(Z,f002_zfocl)(\/ (nTa)Q—N/%D)

(3.12)

Hglobal (:JQD) = p(ﬁQD

The zfoc2 — 2zfoc1 remains to be expressed. In both situation (a) and b) from Fig.3.19)
the field propagates equally in the Fourier space, this means that the propagation before

entering the objective have to be equal between a) and b):

. ; ngN2_,,2_,,2 :
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By using the notation s, = A\?(u2 + uf,) we can simplify the previous equation to:

[. b [ [ Ha [ [ Ha
ZmNm |1 — N + zgng, /1 — 2 + Zfoc1May |1 — 2 = ZesMim, |1 — 2 + Zfoc2Maq |1 — 2
m g a g a

(3.14)

After noticing that 1y << 1 every v/1 —x can be approximated by 1 — 3 as long as

r <<l
2 z z z z
Zm oy Zg 4 Zfocl _ Zes | Zfoc2 (3.15)
N Nyg Ng N, Ng
Then the z .0 — 27001 distance expression is straightforward:
Zg — Zcs
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m g9

) (3.16)

by replacing it inside equation 3.12 we get:

; T2 _ 2 _ ngV2_ 2y zm | (2g—Zcs) a2 _ 2
Hglobal(ﬁ) _ p(ﬁ)ezw"(zm ( A )2 =2 +(2g—2cs)4/ ( X\ )2 —u na(nm"f‘ ng IEVA 2\ )2 —u?) (317)

This new transfer function 3.17 gives us the possibility to account for a non-standard
coverslip thickness as well as a various depth inside the container, making our reconstruc-

tion algorithms quite versatile and adjustable to different applications.
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3.2.5.3 Aberration correction - Effect on calibrated micro sphere

To make sure that this new transfer function mimics correctly the way a glass layer distorts
the electromagnetic field, we imaged 2 pm silica beads with given optical index n = 1.46
(at A = 532 nm) in water. The solution was placed in a custom container that produced 2
different aberrations on each side. On one side the interface thickness is 170 um, one the
opposite side it is 1000 m. This was a custom build with a 170 yzm coverslip taped on top
of a standard microscope slide. The comparison between the light scattering model and

the true acquisition from the prototype are detailed in Fig.3.20

Without interface With interface

Model Model Measurements
without interface with interface : No immersion

An:0.0020.050.02: [OO O

Figure 3.20: Comparison between 2 um silica beads of given n obtained with simulations
at various thicknesses of interface and with microscopy acquisitions using an illumination
angle of 15° in air. a-b-d-e are results of the simulation with 3 spheres of refractive index
gap 0.002, 0.05 ,0.02 (from left to right) c-f are the real image from our microscope. Z;
denotes the interface thickness

As expected, Fig.3.20 a-d are identical, since this model does not account for inter-

face aberration. When the interface is taken into account, it is clear that the shape of the
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diffracted wave after the silica bead better matches our microscopy acquisitions. Indeed,
Fig.3.20 e has thin white and black fringes bellow the bead, while the fringes on the top
are wider and more distant from each other, similarly to the brightfield image from the
microscope in Fig.3.20 f.

It appears that our multiple scattering model is more precise when we take into ac-
count the aberrations introduced by the non-standard interfaces. However, this does not
automatically guarantee that the reconstructions will be improved as well. To prove this

point, we decided to conduct a study on a phase calibration slide.

3.2.5.4 Aberration correction - Experiment on calibrated phase USAF targets

We emphasized that in the case of non-standard coverslip thicknesses or sample depths
inside the imaging medium it is important to take into account the spherical aberrations in
the direct model. This will be further shown herebelow on measurements performed with
a 1000 pm thick USAF phase calibration slide.

On a 1000 pm thick microscope slide, 300 nm of glass have been etched everywhere
except on the USAF target patterns. It creates a really thin, characterized, phase target
with an Optical Path Difference (OPD) of 150 nm.

This calibration sample has been imaged in the same condition as the calibrated micro-
sphere. 133 images were recorded with illumination angles ranging from 0° to 20.3° at
625 nm and a 20X/0.4NA objective. At 625 nm the glass has a refractive index (RI) of
1.5154. The glass is placed in the air creating a refractive index gap of 0.5154 on 300 nm,
resulting in a theoretical optical path difference of 154 nm. The fast proximal gradient
descent algorithm 6 with 40 iterations was used to produce results in the Fig.3.21-a-b.a

The reference measurements have been acquired with a quadriwave lateral shearing
interferometry (QLSI) integrated in a commercial Phasics camera. Measurements were
performed on a conventional inverted microscope (Zeiss Observer Z1) with 40x 0.64 NA
air objective using Kohler illumination with a 750 nm long pass filter (AHF F32-750E). A

wavefront sensor SID4Bio (Phasics, Saint-Aubin, France) was mounted on the video port
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Image type
\ — a - without abberation correction

- b - with abberation correction ]
c - reference image (LSI) ]
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Figure 3.21: Reconstruction of a USAF phase target. a- Reconstruction without using the
aberration kernel. b- Reconstruction with the aberration kernel. c- Reference image (QLSI).
d- OPD plot of the dotted line in Fig. a-b-c. Scale bar is 20 pm wide.

of the microscope. The wavefront sensor SID4Bio contains a 2D grating (modified Hart-
mann mask) placed in front of the camera. The grating replicates the incident wavefront
and after a short propagation an interferogram is recorded on a CCD camera. The in-
terferogram is analyzed in real time by Fourier transforms to extract intensity in 0 order
and OPD gradients in 1 orders, along X and Y directions. The latter are finally integrated
in two dimensions to yield wavefront measurement, which is the OPD in the projective
approximation.

Intensity only measurements only contain information about the variation of the re-
fractive index. This is why the high spatial frequencies of objects are easier to reconstruct
than the lower spatial frequencies. This can be observed on the big square in Fig.3.21 a

and b, where only the edges are visible. To recover the lower spatial frequencies, we need
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an accurate light scattering model that can perceive differences between an "edge only"
object and a "full object", in addition to a regularization that favors continuous and "full
object" like the total variation (TV) norm. When the spherical aberrations are not taken
into account, the light scattering model is not precise enough and the TV norm cannot fill
the rectangle object on the right of the image in Fig.3.21 a. When spherical aberrations are
taken into account, the rectangles on the right in Fig.3.21 b are more filled, even though
the edges are still higher that the center as plotted on Fig.3.21 d at 100 y#m and 115 pm with
the green curve.

When looking at the zz slice in Fig.3.21 a-b we can observe that the elongation along
the z direction is less pronounced (red ellipse) when using our aberration kernel.

This USAF phase target is far from biological objects for which our microscope has
been designed. Indeed when we have a biological sample with an OPD of 150 nm, it
often measures 15 um with a refractive index of 1.34 inside a water of refractive index
1.33. This creates a refractive index gap of 0.01 and the fact that this gap is much lower
that the refractive index of the medium (here water at 1.33) is part of the approximations
of our light scattering model. In this USAF phase target the refractive index gap is 0.5,
this might be one of the reasons why our OPD measurements are 3 times lower than the
reference measurements. Even though we are not phase-quantitative on this phase target,
the morphology was correctly retrieved.

The last step to validate the aberration correction algorithms is to show their relevance

when applied to biological sample.

3.2.5.5 Aberration correction - Reconstruction on thick biological objects

After validation on a calibration slide we tackled a more challenging sample, a multi-
scattering 5 days embryo. In Fig.3.22, its cross-sections are shown, with and without tak-
ing into account spherical aberrations. The embryo was placed inside a LEJA slide (Ref
026857 from IMV Technologies - LEJA) with a thickness of 720 um (by thickness we mean

the Z, distance defined in Fig.3.19). The non-standard glass thickness created spherical
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aberrations that are taken into account with the kernel detailed in section 3.2.5.2.

Without taking spherical aberration into account

Taking spherical aberration into account

Figure 3.22: Reconstruction of a thick, multiple scattering embryo at blastocyst stage. e,a
- Axial view of the reconstructed embryo with and without taking into account spherical
aberrations, respectively. b,f - cross section view at z = —28.35 ym. ¢,g - cross section view
atz =9.45 um. d,h - cross section view at z = —31.5 um.

Fig.3.22g shows a blastocyst composed of more than a hundred cells, mostly found in
the inner cell mass in the top left (red arrow). This creates a cavity (the blastocoel) that
is almost empty, which can only be distinguished in Fig.3.22g. Taking into account the
aberrations allows to identify the typical trophoblast cells, composing the periphery of
nominal developing blastocysts (green dashed circles one on Fig.3.22 f).

The external structures are correctly retrieved with our device without correction of
spherical aberrations for the top part of this embryo (see Fig.3.22 b). However, as we move
deeper inside the embryo (toward negative z, Fig.3.22 d) the optical aberrations produce
artifacts that are not physiologically present in healthy embryos. This is highlighted by the
comparison between Fig.3.22 c and 3.22 g or between Fig.3.22 d and 3.22 h.

3.2.6 3D time lapse of in-vivo embryo

The set up was further used in real-time directly in a cell culture incubator to unveil em-

bryonic development in physiological conditions. Even if the lower illumination angle



91

a) t=12h t=31h t=51h t=60h t=71h t=281h t=91h t=100h t=105h t=114h
64pm

z
projection

zslice
z=-12um

. . e < . 2 B
zslice . 3 A /7. . X \ . o | 0.002
z=+18um e . . : / f 3 :

Figure 3.23: Time lapse images of a mouse embryo developing from fertilization to ex-
panded blastocyst a) Illustrations of images taken at different developmental time and
corresponding to different analyses (3D, Z projection, z = —12 ym and z = +18 um). The
color code on figure one the z projection represents the position along the z axis. See Visu-
alization 1 for all the frames. Scale bar is 30 ym. b) is the z projection a t = 12 h. c) is the
z projection at t = 100 h d) is a z slice at = 12 h. e) is a z slice at t = 100 h. Orange and
green arrow point the two pronuclei that are in different z positions, the red arrow points
the polar body and the white arrow points the inner cell mass of the blastocyst.

and the simple optics degrades the resolution, it brings new possibilities in real-time mon-

itoring. Embryos were prepared as described in Section 3.2.5.1 and seeded in a 16-dish
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EmbryoSlide (Vitrolife). The acquisition was performed with 84 illumination angles every
hour for 6 days on a growing mouse embryo and the reconstructions were performed with
the fast proximal gradient descent algorithm detailed in section 3.1.5.2 with 40 iterations.
The reconstructed volume was 1024 x 1024 x 128 big, resulting in a 35 minutes reconstruc-
tion time for each volume on a non-professional GPU, a NVIDIA GEFORCE RTX 3090.
Fig.3.23 and visualization 1 show all the major steps of embryo development, from
an initial stage of one cell zygote to a blastocyst. Even-though we cannot truly know
when fertilization occurred, we will consider that the first mitosis happens 20 h after the
fertilization and all the timing in this section will take the seeding as t = 0. Att=12h, we
can identify the 2 pro-nuclei that will merge during embryo development. The male and
the female pro-nuclei are not in the same z position, the one pointed with the orange arrow
can be seen in the —12 pum optical slice where the one pointed by the green arrow is more

located around +18 pum.

T=17h T=18h T=1% T=20h T=21h T=22h

64um

a-z
projection

-64pm

b -z slice
z =+18l

c—zslice
z=+43,6Q

d—zslice
z=-12pm

Figure 3.24: Time lapse of the first cell division of a mouse embryo. Scale bar is 30 pm.

On Fig.3.24, the pro-nuclei that are originally far away start to slowly converge toward

each other before merging at t = 19 h. Thanks to the 3D reconstruction we can observe
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that the pro-nuclei that were 20 m away in the z direction at t = 17 h are visible on the
same slice (Fig.3.24 c - z = +3.6 wm) at t = 18 h. This is an indication that the pro-nuclei
movement is truly in 3D, and that our prototype can well positioned and follow them in
3D. After the pro-nuclei have merged at t = 19 h (red dashed circle), the zygote divides in
a two cell embryo at t = 20 h. The pro-nuclei fusion is an event that can be reliably used to
predict the incoming first mitosis of the embryo.

Another example of the ability of our setup to locate accurately object in 3D is shown
on the 4 cells stage, at t = 51 h on Fig.3.23. The polar body is at the bottom of the embryo
and appears on the z =—12 um slice (red arrow) but it is absent of the +18 pm slice. This
highlights the interest in using 3D imaging when the sample to study has a 3D behavior.

Seventy hours after the beginning of the time-lapse (t = 81 h), a cavity (called the blasto-
coel) starts forming on the top of the embryo. It is important to notice that the appearance
of the blastocoel can be accurately identified thanks to the 3D images. In contrast, in z pro-
jection, the appearance of the blastocoel is hidden and not detectable. Later, at 104 h, two
cell types become apparent: internal spherical cells forming the internal cell mass (white
arrow in Fig.3.23 ) and tightly joined flattened cells at the periphery of the blastocyst (the
trophoblast cells).

This 3D video microscope is a precise instrument that produce high resolution images
over various key part of the embryo at multiple stages of development. Those 3D time
lapse reconstructions are a first step toward a fully autonomous and non-invasive micro-
scope to monitor the growing and healthiness of embryos. Importantly, these first results in
collaboration with the CHU-Grenoble laid the foundation for a further grant opportunity
that got funded in 2021 French National Research Agency (ANR), project LIVE 3D_CNN
(ANR-21-CE19-0020).

3.2.7 3D time lapse of liver organoid

After this extensive study on embryo developing we wanted to focus on an other liv-

ing multi-cellular organism, namely mouse liver organoids. The goal was to validate the
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capabilities of our system on a different biological sample. Other biological sample are
presented in Appendix B, this section focuses on organoids. Their existence relies on re-
cent breakthroughs in the development of culture conditions for adult stem cells. Those
new culture conditions enable long-term expansion of adult primary tissues from liver into
self-organizing 3D structures named ‘organoids’.

For biologists, such self-organizing 3D structures can be used to study genetic diseases
as well as cancer in a more efficient way than what can actually be done with standard 2D
cell cultures. That is why organoids can provide more accurate understanding of cell-cell
communication, naturally improving the efficiency of invitro studies. Moreover, these 3D
structures might be suitable to replace animal models in specific conditions, therefore de-
creasing the amount of animals needed for specific experiments. All the results here below
were conducted in collaboration with Dr. Luca Valenti, from the Universita degli Studi
Milano, Fondazione IRCCS Ca” Granda Policlinico under the project REVEAL (European
Union’s Horizon 2020 research program under grant agreement N°101016726). The group

in Milano was responsible for all of the organoid culture and development.

3.2.7.1 Organoids culture conditions

Liver organoids were obtained following a previously published protocol ??. Human liver
samples kept at 4°C in Basal Medium (Advanced/DMEM F-12 supplemented with 1%
Penicillin/Streptomycin, 1% glutamax, and 10 mM HEPES) before processing. Samples
were manually minced and washed twice with 10m L wash medium (DMEM high-glucose
supplemented with 1% FBS, 100 units/ml penicillin and 0.1 mg/ml streptomycin). Sample
was then dissociated by enzymatic digestion (basal medium with collagenase and dispase
IT 0.125 mg/ml, DNasel 0.1 mg/ml) at 37°C for no more than 90 minutes to obtain an 80-
100% single cell solution. Solution was then filtered through a 70 uM pores cell strainer and
volume was increased to 50m L with ice-cold Wash Medium before centrifuging at 300¢ for
5 minutes at 8°C. Pellets were resuspended in 15m L wash medium and washed twice with

15mL wash medium and once with 10 m L basal medium (each time pelleting the material
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by centrifuging at 300 g for 5 min at 8 °C). Cells were then resuspended in Matrigel and
seeded in 40 L Matrigel drops in 35 mm p-Dishes (Ibidi, DE). Drops were incubated for 20
minutes before being overlayed with 1 ml isolation medium (basal media supplemented
with 1X B27 supplement without Vitamin A, 1X N2 supplement, 1 mM N-Acetylcysteine,
500 p1g/ml R-spondinl, 10 mM nicotinamide, 10 nM recombinant human [Leu]-Gastrin I,
50 ng/ml recombinant human EGF, 100 ng/ml recombinant human FGF10, 5 uM A83-01,
10 pM forskolin, 25 ng/ml recombinant human HGE, 25 ng/mL noggin, 50 ng/mL Wnt3a,
10 Y-27632). After 3-4 days, isolation medium was replaced with 1 ml expansion medium

(lacking noggin, Wnt3a and Y-27632).

3.2.7.2 Vibrations and solutions

For organoid imaging, the microscope making the subject of this thesis was moved to
the laboratories in Milan and installed in their cell culture incubator. As detailed before,
organoids were seeded in a viscous medium (Matrigel) surrounded by expansion medium,
an environment very sensitive to the ambient vibrations. Indeed, in their laboratories,
imaging vibrations were the main cause of artifacts during acquisitions. Three causes of

vibrations were identified over the experiments conducted in Milan:

centrifuges [? ] are placed on the same table as the incubator They often produce a high

level of vibration.

The solution is of course to place the incubator in which the microscope sits on an-
other table, free of centrifuges. But in a space-limited biological laboratory it is not
always possible. In that case, for "short" time-lapse (less than 12h) it is possible to

acquire them during the night when no one is working.
the expansion medium out-spaces the Matrigel: This time the organoids are in 8 well
slides, where each rectangular hole is 9.4 mm x 10.7 mm.

the obvious way to reduce this source of vibration would be to use a different con-

tainer or a different imaging setup. However, our goal is to cope with the constraints
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that the biologists have, in order to keep exactly the same protocol as with our imag-
ing setup. Moreover, the volume of expansion medium is not a true source of vibra-

tion but more of an amplification of the surrounding vibrations.

other people opening and closing incubators nearby. Even after finding a place without
centrifuges, this space was still shared with other biologist also working with incu-
bator. The "fast" closing of door was generating high peaks of vibrations that lasted
only a few seconds. The solution here was purely social, one just had to remind other

people to close or open the door softly.

Vibrations are intuitive to visualise on a video, while it is much harder on a static im-
age. To give an idea of the intensity of the vibrations, we compared in Fig.3.25 images at
different time-frames with the mean image from a video. Vibrations can have different
effects on the image, e.g. it can blur it as we can see on the image at ¢t = 0 ms. The blurring
is not the most problematic artefact that can happen, because it only destructs the high fre-
quency creating a slight loss in resolution. What is more problematic is the displacement
introduced by the vibration, like the image at t = 150 ms on Fig.3.25 where the roganoid
shifts to the right. If every image is randomly shifted in every direction, the result of the
reconstruction would be an average of every object (i.e. a blurred object) even if every raw
image is sharp with well-defined high frequencies.

Even with the vibration issues acknowledged and dealt with, other problems were
present on the raw images that decreased the quality of the reconstructed volumes. The

different artefacts are detailed below.

3.2.7.3 Corrupted images to to high organoids concentration

When working with single objects alone in the field of view, it is easier to ensure that the
incident plane wave on the biological object is effectively a plane wave (i.e. the intensity
level of the background is close to unit). Moreover, when other objects are present they

may interfere with the scattering of the sample under imaging. For the intrinsic culture
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Figure 3.25: Visualisation of the vibration on organoids. a) is the raw images at various
time during the video. The mean image is computed over the full 5 seconds of the video
acquired. b) is the difference between the raw image and the mean image.

of organoids (cell seeding in Matrigel from pellet re-suspension), different samples can be
easily find in the same field of view or overlay the one under imaging.

To have an idea of the effect of surrounding objects on the organoid under imaging, the
normalised 84 images cropped around a liver organoid are presented in Fig.3.26. The on-
axis images are clean without any perturbation, but many images (circled in red) present
the "shadow" of an other organoid higher in the medium. This second organoid is detected
during the angular change of the illumination. This shadow also skews the normalisation
procedure, that fails to normalise two images with variable intensity levels of the back-
ground (6th row in Fig.3.26).

These corrupted images might interfere with the reconstruction algorithm. To qual-
itatively inspect the effect of such a shadow moving in the raw images, we performed
the reconstruction twice. One with the full 84 measurements, one without the corrupted
images, leaving only 54 measurements available for the reconstructions.

The major improvement that we can observe from removing the undesirable normal-
ized images in Fig.3.27 is the increasing of the resolution. The small lipid droplet pointed
out by the red arrow in Fig.3.27 d-h is completely blurred when the optimisation algorithm

has to deal with the shadow passing over. Every interesting feature of the organoid is also
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Figure 3.26: Cropped images of a liver organoid after normalisation for the first 84 LED’s
placed at a distance of 86 cm from the imaging holder. LED number increases from left to
right, and from top to bottom.

Figure 3.27: 3D reconstruction of a liver organoid with and without the corrupted images
from Fig.3.26. a—d are slices for the volume reconstructed with all of the images (including
the corrupted one - Sections are indicated with red dotted lines in a), from top to bottom.
e—h are slices for the volume reconstructed with only the clean normalized images. b-f are
slices at z = 29 pm. c-g are slices at z = 51 pm. d-h are slices at z = 87 pm. Scale bars are 20
pm wide

sharper, like the inner cellular mass circled in green (3.27 c-g). Finally on the first slice

at z = 29 um the amount of unwanted ring (circular structured) is lower and the back-
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ground is smoother. Even though much improvements were made on the data selection
and the vibration management, spherical aberrations due to the position of the organoid
inside the Matrigel still corrupted the final reconstruction and defined outer border or in-
ner structures of the organoids could not be retrieved yet (3.27 c-g).

This study indicates that images acquired with strong artefacts must not be used to
perform the reconstruction. This is easy to deal with for a single reconstruction object, but
for a time-lapse with hundreds of volumes this manual task can become time consuming
and must be automated as in Section 3.2.7.6 with Fig.3.31.

The next Section investigates the effects of spherical aberration on the reconstructions.

3.2.7.4  Aberration due do the non-standard medium thickness

Figure 3.28: 3D reconstruction of a liver organoid projected in 2D with depth coloring for
various aberration correction parameters.

The aberration study performed in Section 3.2.5.2 showed that a non-standard cover-
slip thickness or a non-zero medium thickness (the distance between the top of the cover-
slip and the object that is in focus) will introduce aberrations. In section 3.2.5.3 3.2.5.5, only
the effect of the non-standard coverslip thickness was investigated since it was our major
source of aberrations at that time. On the contrary, with the organoid setup the sample
holder has a thickness that is corrected by the objective (i.e. 170 pm), but the samples are

placed at various height, sometimes far from the bottom of the holder.
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If this Z,,, distance was known, we could directly use this value to have a more accurate
forward model that would produce better reconstructions. In order to experimentally find
this value from the measurements, we used a grid search on this parameter and performed
a reconstruction with all the values ranging from 0 ym to 1000 gm. Each reconstruction
has been projected in 2D using a depth color code to produce Fig.3.28. The true shape
of the organoid is not known, but in terms of refractive indexes we know that its outer
layer should be constant and surrounded by a zero refractive index gap. This mean that
the best object is the one with the less rings around the object and with the darkest back-
ground. With a focus on internal lipid droplet pointed by the white arrow in Fig.3.28, the
dot is sharp only for values between 400 and 500 yzm. The images with the green rectangle
around seem to give slightly better results than without any correction at the end of the
reconstruction process.

This study suggests that the organoid is floating between 400 and 500 pm above the
bottom of the culture container, leaving a lot of space for other organoids to move below

or on top of it. That might explain the issues that we were facing in section 3.2.7.3.

3.2.7.5 Time-Lapse of a single liver organoid at early stage of development

Imaging of organoids turn out to be challenging because of the presence of vibrations, high
organoid concentration, and strong aberrations. Once all of theses issues were settled,
the goal was to perform a 3D video of a growing liver oragnoid. The acquisition were
performed with 84 illumination angles every 5 minutes for 6 hours. The reconstructions
of theses 76 3D objects were performed with the Fast proximal gradient descent algorithm
detailed in section 3.1.5.2.

Fig.3.29 shows the first steps of a liver organoid development. The white arrows point
at small internal cavities that can be visualized over the time-lapse. Their number grows
to 5, before they start merging to create a bigger one that is visible at 220 min on top of
a small one. When looking at the purple color, which represents the lower part of the

organoid, we can see that the cavity seems bigger in the lower part at the beginning (20
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Figure 3.29: Time lapse visualization of the 3D reconstruction of a liver organoid projected
in 2D with depth coloring.

and 60 min). Then it shrinks during a few hours to become small (10 #m) in the lower part.
This happens at the same time that the higher cavity grows, suggesting that this is just an
internal movement of cells.

Only 9 volumes are shown on Fig.3.29, but the full video available in supplementary
helps to understand the internal movement with a much higher frame rate (one every five
minutes). This organoid was slightly moving in the zy direction for the first hour then

stayed almost static.
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3.2.7.6  Time-Lapse of a moving liver organoid

After further discussion with the biologist team, the organoid from section 3.2.7.5 did not
appear to be very healthy as the cavity should be much bigger, creating an almost empty
organoid that has the shape of football. Most of the cells are normally placed on the edge
creating this eternal membrane that is characteristic of these liver organoid. This time we
wanted to image a more healthy organoid that develops well.

A second time lapse was performed over night, to significantly reduce the vibration
issue. The acquisition was performed with 84 illumination angles every 5 minutes for 12 h
with the red LED array at A = 0.625 um. The reconstructions of theses 146 3D objects were

performed with the fast proximal gradient descent algorithm detailed in section 3.1.5.2.

t=0h00 1h06 2h36 4h06 6h26 7h46 10h26

Z slice -
z=0pm

Figure 3.30: Time lapse visualization of the 3D reconstruction of a liver organoid. The
first raw shows the acquisition image for the first LED only. The second raw shows a 3D
depth projection of the reconstructed volume. The third raw shows a slice at z = 0 pm (in
the center of the organoid). The last raw shows a slice at z = 35 pm (in the center of the
organoid). The volume has been extracted every 90° turn.

Even though time-lapse are meant to be visualized as movie, seven interesting volume
out of the 146 reconstructed were chosen to provide a static 2D representation of the key

moment of this organoid development in Fig.3.30.
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The first interesting behaviour that the biologists could observe for the first time thanks
to the temporal nature of the reconstruction, is that the organoids are rotating around their
center. On Fig.3.30 one volume has been extracted every 90° turn. The speed of rota-
tion varies between 1.3°/min and 3°/min. All the small organoids (smaller than 100 ym)
present in the field of view (results not shown) seemed to be rotating in the same direction,
until they became larger and stop rotating. The rotation can be visualized from the inner
cells that are attached to the membrane, clearly visible on the z slice at the center of the
organoid, 3rd row on Fig.3.30. Another interesting behaviour is the temporary shrinkage
of the organoid. As the time passes the organoid gets bigger and bigger, it can grows up
to 300 wm in a day. But sometimes the organoid stops growing and shrinks for a few hours
before resuming its growth, as it can be observed between 6h 26 and 7h 46 on Fig.3.30.

The organoid is moving a lot in its culture medium; as long as it stays inside the field of
view it can be tracked manually in the X and Y axis, but a movement in the Z axis creates
a change of focus. At the beginning of the time-lapse the organoid is perfectly focus at its
center, but as the time passes the defocus increases. This displacement along the Z axis
increases the aberration due to non-optimal imaging condition. Using the technique from
Section 3.2.7.4 we can estimate the medium thickness that induces aberration. This manual
operation is time consuming and cannot be performed for every object from the time-lapse.
This distance was computed for 5 time frame, and was estimated with a constant then log
function for every other time frame of the time-lapse, shown in Fig.3.31

Once the depth of every object is known, this value can be used to take into account
the aberration introduced by a non-standard medium thickness as introduced in section
3.2.5.2. Every volume was reconstructed again with this aberration correction procedure,
and the comparison with and without correction are visible on Fig.3.32

The first improvement that our new model brings is the reduction of the diffraction
pattern in the reconstruction. This is visible at 6h 26 on Fig.3.32, there are less parasite
circular rings on the corrected reconstruction. Even if the corrected image is slightly better,

it is still very blurry and a lot of diffraction pattern are present in the reconstruction. If
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Figure 3.31: Z displacement of the organoid over time. The 5 dots represents the manual
estimation of the z value. The solid line represents the function used to estimate the z
displacement for every time an acquisition was performed.
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Figure 3.32: Comparison of 3D reconstruction of a liver organoid during a timelapse. Raw
1-2 are projection in 2D with depth coloring. Raw 3-4 show the central zy slice of the
organoid. Raw 5-6 show a top zy slice of the organoid.
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we compare the organoid of t=6h26 to the one from t=0 it is clear that we have worst
results after a few hours and that the spherical aberration is not the main problem. The
main difference between the nice looking organoid and the corrupted one is the change
of focus due to organoid movement. Apparently out of focus organoid are less accurately
reconstructed by our model.

Concerning the value of the refractive index, for the early stage of development (before
2 hours) the corrected model seems to yield brighter images, reflecting an higher refrac-
tive index reconstructed. Considering the fact that the refractive index is almost always
underestimated due to the Z elongation, an higher refractive index is a good sign. The
inner structure that allowed us to measure the rotation behaviour of theses organoids also
seem more detailed and slightly brighter. This might be a side effect of the reduction of the
parasite circular ring.

Even though the correction does not have a strong effect, is it important to remember
that it comes with almost no extra computational cost, the only cost is an extra point wise
multiplication that is neglectable compared to the hundred of FFT’s that are performed at
each model evaluation.

Most of the artefacts present in the reconstruction only appear when the imaged object
is out of focus. On simulation, if an object is on focus or out of focus, the reconstructions
will be equivalent. It appears that is not the case for images with our prototype. The ex-
planation for this problem would be the presence of aberration inside our imaging system.

The first step would be to characterize the pupils function of the system as in [90].
3.2.8 Limitations of the imaging setup

3.2.8.1 Acquisition time

To date, the total acquisition time of 2 to 3 minutes (for 84 different angles) limits the
application of the system to biological samples that evolve in the range of minutes to hours,

e.g embryon, cell culture and organoids. In order to address the imaging of living samples



106

at a faster rate, one could use fewer and brighter LEDs as in [76]. A ring of 8 powerful
LEDs is placed on top of commercial inverted microscope, enabling them to image in 3D

at a 10Hz rate.

3.2.8.2 Sensitivity to the focus

Theoretically, the focus placement inside the object has no impact. If we do the focus at
the center of the object, then the reconstructed volume will have the reconstructed object
at its center. If we focus on the top of the object, then the reconstructed volume will be in
the lower part of the reconstructed object. In practice, when we are not focus exactly in the
center of an object, it creates artefact. The circular interference created by the defocus are
not reconstructed properly and end up directly in the reconstructed volume (visible at the
end of the time-lapse from Fig 3.32).

For the imaging of single object, this will be solved by using a xy motorized stage to
follow the individual object and then use a piezoelectric stage to perform an auto-focus on
the desired object.

To image multiple 3D object placed at different heights (and thus being out of focus),

this sensitivity to the focus will have to be studied and corrected.

3.2.8.3  Lack of quantitative information

With a tight control on the experimental conditions the previous limitations are not prob-
lematic. But we chose by conception to have huge lack of information to perform the 3D
reconstructions. We are missing the phase of the acquired light field because we are not
using an interferometric system for simplicity. We are also loosing a lot of information
because we have a limited angular illumination due to the low NA objective we use to
maintain a wide field of view. All of this missing information results in three major issues.

First we are missing the low frequency of objects. Most of the signal we acquired with
our CMOS sensor comes from the edges in the observed object, leading to reconstructed

object that are not correctly measured in terms of refractive index (i.e. objects with con-
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stant n are not filled, but only the edges are visible). To fill the object we rely mainly on
regularisation with the TV penalisation.

Then the low angle coverage results in an axial elongation of object as discussed in
section 3.1.4.3. With recent method like deep-learning, this issue can be addressed with
learning based methods as presented in Chapter 4.

Finally this elongation reduces the reconstructed refractive index, leading to a non-

quantitative system concerning the value of the refractive index for every voxel.






Appendix B

Appendix on 3D biological reconstruction

The microscope presented in Section 3.2 was used to image many other biological sample
than embryo and organoids. For wider object the field of view of 200 x 200um is not
enough. To image with a wider field of view, we decided to use a lower magnification
objective (10X instead of 20X), with a lower NA (0.2 instead of 0.4). This should decrease
the resolution by 2.

To increase the field of view once more without degrading the resolution, we decided to
use a shorter lens tube of 9 cm instead of the nominal 18cm. This reduces the magnification

from 10X to 5X while maintaining a 10X NA and resolution.

B.1 IMAGING WITH WIDER FIELD OF VIEW

The first sample to be used with a wider field of view is challenging by its support. The
imaged section in Fig. B.1 is a part of a microfluidic channel in which organoid vascular-
ization is studied.

The second sample in Fig. B.2 is a pancreas organoid studied for its possible insulin

generation in presence of glucose.
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90um

Figure B.1: zy cross section of a microfluidic channel growing a vascular network
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Figure B.2: zy cross section of a pancreas oragnoid






Chapter 4

Deep learning and Intensity Diffraction Tomog-

raphy

The goal of this chapter is to introduce deep learning, starting with its short history be-
fore detailing the main parts that make it so popular in computer vision and in biological
imaging. Then it will be used to solve our main 3D reconstruction artefacts. Importantly,
results from this chapter were filed into a patent that is still under processing and orally

presented on [98]

4.1 DEEP LEARNING: BASICS

In this section, the deep learning essentials will be introduced, with a focus on convolu-
tional neural networks, which are the foundation of modern computer vision algorithms
and computational microscopy.

Artificial intelligence (Al) has experienced several hype cycles, with alternating periods
of reduced funding or high interest in Al research. Thanks to the increasing in power com-
pute and data available, a part of Al, deep learning, exploded during the last decade. Year
after year it is now making huge breakthroughs in many fields. It started with computer

vision, but quickly extended to machine translation or speech recognition, as examples
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[72].

To have a better idea of how fast deep learning (DL) improved the performance in
image recognition, let’s have a look at the ImageNet [24] image classification competition
that started in 2009. As shown on Fig.4.1 the level stagnated for the first few year with high
error rate (> 25%). From 2012 every winner was using deep learning architecture and the
error rate quickly dropped bellow the 5% that is an estimation of the human error rate.

ImageNet Classification Error (Top 5)
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Figure 4.1: Performance of the winner of ImageNet [24] image recognition challenge over
the years (von Zitzewitz 2017). Deep learning architectures are in blue. Fig. 10 from [82]

This first successful application quickly brought the interest from other fields where
super-human performances were rapidly obtained, in visual reasoning [114], in poker [87]

and traffic sign recognition [18].

4.1.1 Machine learning

An important part of Al is machine learning, which contains all of the algorithms that let a
machine autonomously train its model to performed a desired task . At present, machines
refers to computer programs and the implemented algorithms aim at estimating the prob-
ability densities that describes the data under observation. Every machine learning model
follows the same principles.

A model f(z, W) has a set of parameters W which influence its comportment. The

model has to map all the input = to all the corresponding output y in a way that y =
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f(x,W). We can consider that « is drawn from an unknown probability distribution P(X).
To build the best model possible, the conditional probability distribution P(Y|X) is re-
quired but never available for real world examples. For real application only some inputs
x and their matching output T are known. Machine learning goals is to find the best W
with the intent that the predicted § = f(x, W) will match as closely as possible the real y.
If everything works perfectly, the known input data x is well modeled as well as the true
underling distribution. We can then say that the model did not remember all the examples,
but has truly learned the unknown data distribution. Another way to look at the problem
is to see it as an optimisation problem on a supplied dataset (x, T). Even-though it is not
always possible to map a machine learning to an optimisation problem, it will be the case
for all the model presented in this document.

The two major goal of machine learning are the following:

¢ 1 - Searching for the best model. Since there are countless way to create a model,
a great amount of research focus in improving the existing model or building new

ones.
¢ 2 - Estimating the best W possible.

Concerning the weight estimation, the gradient descent is by far the most efficient and
democratized method. First the idea is to calculate § = f(x, W) on the training examples
and an initial W and then estimate the error between g and y with a loss function L(y, §).
The loss function measures the similarity of § and y and if the loss was correctly build,
smaller values of L(y, y) shows higher similarity. Then by computing the first and rarely
the second derivatives of L(y, y) with respect to W, a small adjustment dWW is computed
such that L(y, f(z, W + dW)) < L(y, f(x,W)). This is the gradient descent of a loss func-
tion and even if many alternatives were tested, it is currently the most efficient method
for training (i.e. finding the best parameter W) for neural networks and multiple other

machine learning models.



114

4.1.2 Neural networks

Deep learning is the part of machine learning where the model used is an artificial neural
network. This artificial neuron was inspired by the biological neuron, and simply repre-
sents a transfer function where the inputs data are multiplied by coefficients and summed.
This sum is then transformed by an activation function to produce the output. The coef-
ficients are the weights, or trainable parameters of this model, and the goal is to find the

weights W that produce the desired output for a given task and data.

S

Activation
function

inputs weights

Figure 4.2: Illustration of an artificial neuron: the perceptron

This artificial neuron was named perceptron [105] and works as a linear regression,
therefore it cannot solve complex non-linear problems. The multi-layer perceptron [108]
combined with non-linear activation function is complex enough to guarantee that weights
W exists for every imaginable task [50].

To find the desired weights for a given task, multiple steps are required and summa-
rized in Fig.4.3. First, a forward pass is performed where each neuron receives the input
data and computes the output results y,,.q steps after steps. During the training the de-
sired output Y, is know, and an error between the produced output and the real output
can be computed through the loss function.

This error is then back-propagated layer after layer to compute the gradient of the
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Figure 4.3: Schematic view of an artificial neural network composed of 2 hidden layers and
its training loop composed of 4 parts. The forward pass computes the output. epsilon is
the cost function to compute the error of this output. The backpropagation pass computes
how the weights should change to minimise the error. The actual change of the weights
decreases through gradient descent.

weights relatively to the error. From this gradient, the weights can be updated. For more

detail about the gradient descent please refer to Chapter 2 on optimisation (section 3.1.4).

4.1.3 Dataset

The gradient descent is performed on the training dataset, and the weights of the neural
network will be fitted to have the lowest cost function possible. To control over-fitting
issues (detailed in section 4.1.7), a validation dataset is commonly used to control the
performance of the neural network in an unbiased way. Each model has intrinsic hyper-
parameters that can be tuned, such as the number of layers, the learning rate of the opti-
mizer, the type of the optimizer etc. This tuning is normally realized on the dataset itself,
therefore the performance of the model on this dataset will not reflect the overall true per-
formance. A third dataset is normally used to estimate the true performance of the model

on unseen data, the test dataset. In theory we assume that these three dataset are sampled
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from the same data distribution, but in practice we often have only one dataset that we
split into training and validation. The validation is used as the test dataset in many cases,

even if the predicted performance will be biased.

4.1.4 Convolutional neural network

The first work on convolutional neural network (CNN) started in 1980 [38] and stay quite
confidential for thirty years until this field of research started to explode. The idea behind
CNN is brilliant: instead of applying fully connected layers to a (long) 1D array of 2D
points that automatically hides the structural information of the dataset (i.e. the intercon-

nection between points), convolution operations are used.

4.1.4.1 Convolution

One may ask why it is an issue to apply fully connected layer directly between the input
and the output of our data.

The first major drawback of fully connecting layers for image treatment is the absence
of translation invariance, for example in the case of an image translation task where empty
circles need to be filled. Once a network was trained to fill circles on the top left of an
image, it will not be able to fill circles anywhere else on the image. Thus the training data
need to contain examples of circles everywhere on the image. For a simple task such as
circle filling this is tedious, but doable. However, for a more complex biological sample, it
might not be possible to gather images with all the possible positions and orientations of
an object or detail.

The second major drawback is the memory consumption of fully connecting layer for
an image-to-image task. For a 512 x 512 image, there are 262144 pixels. If  and y have
that 1D shape, the weight matrix W of a single perceptron would have more than 68 719
millions parameters. With float 32 bits, it represents more that 256 Gb of memory, which

are at the current time an order of magnitude bigger to be used on any commercial GPU.
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The solution to both issues is the use of discrete convolution with a kernel. The param-
eter of these convolution kernel are the trainable parameter. The output of the convolution
is a feature map, that is then feed to the activation function. The number of parameter is
given by the size of the kernel and does not depends on the size of the image. This pro-
vides a good scaling ability without hardware bottleneck, as well as a native 2D or 3D data
support without any 1D vectorization. The translation invariance comes from the defini-
tion of a convolution that apply the same operation everywhere on an image. That means
that once the network can fill a circle at one place of an image, it can perform this change

at any position.

4.1.4.2 Receptive field and pooling

The use of convolution is not perfect either, even if it is widely use. The main drawback
comes from the fact that an output pixel only has information from a part of the input
image, depending on the kernel size and the presence of pooling layer. The number of
pixels available from an output is called the "receptive field". A good network architecture
must have a "receptive field" that is big enough to correctly perform the desired task. For
the example of circle filling, it should be big enough to "see" the whole circle before filling
it. An easy way to increase the receptive field is to increase the kernel size, but the number
of trainable parameter increases quadratic with the kernel size. That is why most of the
architecture uses 3 x 3 or 5 x 5 convolution kernel.

Another way to increase the receptive field is to put multiple convolutions one after
another, thus allowing to linearly increase the receptive field. By stacking two 3 x 3 layers,
the output can have information from a 4 x 4 image on input. This is why a lot of con-
volutions are required to have a big receptive fields. This number can be reduce by using
pooling operation. The pooling operation aims at selecting only the most important infor-
mation, thus reducing the amount of computing power required. The most used pooling is
the max pooling that selects only the highest value, disregarding all the other values. Once

the high level features have been extracted by the accumulation of convolution, activation,
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pooling, the following part can be shaped to match the desired output structure.

Filter : 31 Filter : 59 Filter : 16 Filter : 274 Filter : 351 Filter : 314

Filter : 286 Filter : 330 Filter : 427

Filter : 27 Filter : 61 Filter : 80 Filter : 437 Filter : 341

First layer of VGG16 Last layer of VGG16

Figure 4.5: Feature map of the VGG16 with a cat and dog input. Genarated with code from
https:/ / gist.github.com / TejaSreenivas

In the case of VGG16 presented as an example in Fig.4.4, it is used to classify images
into 1000 classes, therefore the outputis a 1 x 1000 1D vector. After each convolution block,
the image can still be visualized, for example with a dog and cat in Fig.4.5. In the first layers

the filters are reasonably closed to usual filters, such as for high or low frequency selection.
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Deeper inside the network, the filters are becoming more complex and less intelligible.
Nonetheless these advanced filters are decisive in the process of correctly extracting the

features needful to perform correctly the assigned task.

4.1.5 Image to image network and U-net

The classification network presented in section 4.1.4 outputs a 1D probability vector, but if
we want an image as an output other architectures need to be use.

For these image-to-image task, the U-net [104] architecture has been widely used, after
being introduced in 2015 for biological image segmentation. It combines many interesting
architecture choices that made it a reference in the domain. First there is a compression
stage where the input image is down-sampled with convolution and pooling to extract the
meaningful feature present inside the image. As shown on Fig.4.6 the features extracted
have multiple resolutions,and the pooling operation reduces the resolution by a factor of
2 at each convolution block. This gives room to increasing the number of features at each
block with an increasing number of convolution channels. Moreover, from each condensed
image representation there is the up-sampling branch that goes back to the original image
size. For up-sampling, transposed 2D convolution are used, where a kernel of trainable
parameters perform the size expansion. This auto-encoder architecture helps correcting
the image in its low frequencies, but for higher frequency details skip connection were
introduced. The data are just copied and concatenated with the result of an up-convoluted
layer that has the same shape. The goal is to keep the features that were extracted by the
compression filter to help the up-sampling part in keeping high frequency details. The U-
net was originally used for classification on every pixels (segmentation), this is the reason
why it uses 1 x 1 convolution to avoid the downside of fully connected layers. For image-
to-image translation, slightly different final layers are used. The sigmoid that is almost

always used for classification was removed and replace by a ReLU [37].
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Figure 4.6: Modified U-net architecture.

4.1.6 GPU and training

Of course the new model architectures and good practices around deep learning helped
a lot to increase its performances, even though the main improvements came from the
hardware. With the increase of compute power thanks to the modern GPUs (developed
tirst for gamers), the number of operations that can be performed is ten to hundred time
higher than a recent CPU that is already ten times faster than a CPU from the early 2000.
GPUs are faster for deep learning training because they have thousands of cores that can
parallelize the operations, while a CPU only has between 4 and 32 cores. The CPU is
more robust and can crunch a lot of various task, but to perform a task that can be highly
parallelized, like huge matrix product or a high number of convolution, GPUs are faster.
In addition, the price of data storage also dropped rapidly during the past two decades
allowing researchers and private companies to gather, label and store huge amount of

data (see 4.7).

4.1.7 Overfitting

One of the many way a neural network can malfunction is overfitting. This issue is not
specific to deep learning but can be found in many machine learning task. It can be naively
illustrated with polynomial fitting on a 1D regression task in Fig.4.8.

If the number of parameters is too small and the model is not complex enough to rep-
resent the underlying data distribution, we are in an underfitting situation. On the other

side of the spectrum, if the model is too flexible it will match every data points of the train-
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Figure 4.8: Overfitting visual explanation. Source: https://fr.acervolima.com/

ing set without understanding the underlying distribution, namely overfitting. The model
does not learn the proper data distribution but remembers all the training points. Then,
when it will face new unseen data, its predictions will be wrong.

Overfitting appears when the number of training data is lower than the trainable pa-
rameter of a model. Indeed, manually annotating data points is a tedious work and mod-
ern deep learning (DL) architecture often have ten’s or hundred’s of millions parameters.
That is why overfitting is a common problem in the DL field.

In practice to detect overfitting while training, we need to use the validation dataset.
By monitoring the error (loss) on the training dataset and the validation after each training

step, one can notice if and when the model if overfitting. On Fig.4.9 it happens when
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the validation loss starts to rise while the training loss keeps decreasing. A commonly
used technique to deal with overfitting is early-stopping [11], where overfitting is tracked
and the training stopped as soon as the model starts to overfit. The overfitting control
can also be performed by increasing the training dataset, either by gathering more data
(often expensive and tedious work) or by virtual data augmentation. On images, data
augmentation will slightly alter the available data by modifying the original images with
simple operations, such as cropping, rotating, changing exposure, adding noise etc. The
idea is to alter the input data to prevent the network from remembering each image, and
instead forcing it to find the important characteristics of images. With the same idea but
for the inner weights, the dropout [123] is extensively used. With dropout random neuron
are deactivated at each training stage, thus limiting the possible complex co-adaptations
and forcing the network to find robust features. To accelerate and stabilise the training, the
batch-normalisation normalises the data to the mean and standard deviation of the current
batch [53] . The same image will have therefore slightly different pixel values depending

on the overall images present in the current batch, also preventing overfitting.
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4.2 DEEP LEARNING AND TOMOGRAPHIC RECONSTRUCTION FROM SCAT-
TERING IMAGES

4.2.1 State of the art

The field of optical diffraction tomography was not unaffected by the deep learning wave
and during the past five years various strategies have been used. A graphical view is
presented in Fig.4.10.

Deep Learning (DL) has been originally used to pre-process raw images from the ac-
quisition setup and remove noise [14]. This problematic is omnipresent with quantitative
phase measurements, where the phase is obtained from the interference with a reference
beam. Since we are working with intensity only images (see the previous Chapters), our
images are much cleaner and such network is not needed. An other use of DL on mea-
surements was to help removing the unusable measurements [110], whether because they
are too noisy or because another object has perturbed the acquisition. This step has been
manually performed in our acquisitions (See section 3.2.7.3).

A different research team trained a network to go directly from the normalized mea-
surement to the final 3D map of the refractive indexes [60] [61]. This task is the most
difficult of all, since it does not includes the physic of light scattering and therefore was
mainly performed on phantoms and spherical objects. The variety in wavelengths, re-
fractive index range, and experimental conditions, makes the amount and the variety of
data required for real bio-usage gigantic. Even if this technique would be the fastest, at
the current time no direct inversion with DL was performed on real, diverse, biological
samples.

A more precise approach was to only introduce deep learning for the regularisation
part with deep priors [140] [144]. The idea is to replace the common L1 or Total variation
regularisation by a network trained to perform a similar task. The main drawback of this
technique was that at each iteration the gradient descent from the measurements was elon-

gating and increasing the edges instead of providing compact and full objects. It can be
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considered as an improved regularisation based on deep learning.
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Figure 4.10: Integration of the deep learning strategies inside a standard learning tomog-
raphy from transmitted images.

Deep learning was also introduced inside the light scattering model with a "Physics-
informed neural networks” [112]. A modified U-net is trained to compute the scattered field
induced by the 3D refractive index map. This trained network can approach the accuracy
of a finite-element solving of the Maxwell equation, therefore being more accurate than
multi-slice models even for high illumination angles. Once the network is trained, it takes
only a few tens of seconds instead of tens of minutes to compute the forward model. This
is groundbreaking for high resolution systems with high numerical aperture (NA > 1),
where most of the error comes from the accuracy of the scattering model. However, in our
case, this technique might not be relevant, since the multi-slice model is good enough to
cop with low NA objectives and aberrating optical systems.

Finally, deep learning was trained to correct optical aberrations on volumes recon-

structed with a linear model and direct inversion [79] [83]. For this approach, random



125

volumes are generated and reconstructed, and the network is trained on simulated data
only to go from the corrupted volume toward the real ones. Lim et. al. [79] were the
first one to implement such a method and restraint their use case to red blood cells only.
This was the first step to show that training on simulation was good enough to generalize
to real biological red blood cells. Then Matlock and Tian [83] trained their network on
random stack of 2D images as 3D volume, and the network perfectly generalized to real
biological samples without any fine-tuning.

Our approach detailed below also lies in the "artefact correction” category.

4.2.2 Artefact correction from random stacked images as 3D biological volumes

The approach that looked the most promising for our 3D reconstructions was the work
done by Matlock and Tian [83], were at the starting point of the network was given the
best possible linear reconstruction and it had to guess the real object from that. In their
work, the axial resolution was truly improved and, since the network was train on random
non-biological images, its generalisation capabilities are not questionable.

We decided to use the exact same method for the data generation and the training of the
neural network, except that we replace their reconstruction model by our model. The goal
for our data processing would be to decrease the elongation on the z axis and improve the
resolution of n. Matlock and Tian have a high resolution and low aberration microscope
(i.e. an expensive and big inverted commercial microscope) coupled with a linear model
reconstruction, and the goal of their neural network is to correct their model error. On
our side we have a multi-slice reconstruction model, but coupled with cheaper and more
prone to aberration hardware. The sections below will describe the adaptation of their

algorithms to our model.

4.2.2.1 Data generation from random images

In order to train a network to correct artefacts from reconstructed volumes, the first task is

to create a training dataset with paired volumes with and without artefacts. In 2D phase
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imaging, this kind of datasets can be acquired by taking an image with a reference micro-
scope after imaging the sample with the current method [103]. But in 3D the few quanti-
tative microscopes that exists are still laboratory prototype, that were not available for us
to use. Note that their high numerical aperture force them to have a huge magnification,
leading to a field of view too small for our applications.

Since we cannot get real training data for our artefact correction model, we will have
to simulate the data. Simulated volumes of size 128 x 128 x 30 were be generated by
stacking 30 normalized images randomly drown and cropped from the COCO dataset [81]
that contains over 300 millions images taking from everyday images.

The normalisation procedure follow the next steps:

¢ randomly rotate the image between 0 and 360°;

¢ divide the pixel values by a random number between 255*20 and 255*1000. This

ensures a maximum refractive index gap between 0.05 and 0.001.

¢ 30% of the time return an image with 0 for every pixel. This is to train the network

to return empty refractive indexes where there is no object;

From this generated volume, the microscope intensity images are simulated to ap-
proach what we would have measured if the generated object was place inside our mi-
croscope. From those simulated measurement, we reconstruct the object using the same
exact loop that the one used in Chapter 2 for the time lapse reconstruction.

An example of a generated and simulated volume is shown in Fig.4.11. The axial (i. e.
Z axis) elongation in clearly visible in the YZ slice. This elongation is reflected on the XY
slice by the fact that the shape present in one slice only appears on the previous and next
slices, like the brick wall or the surfer.

2800 volumes have been generated and simulated, providing more than 80 000 paired
images for training the neural network. 200 more volumes have been generated to create

a validation dataset.
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Figure 4.11: Example of a volume generated from random images and its simulated mea-
surements, used to perform the reconstruction of this volume. All scale bars are 6 pm wide.

4.2.2.2  Model development and training

Now that we have paired 3D volumes with and without artefacts, we can use them to train
a neural network to go from the distorted volume to the correct one.

Since we have 3D data, a straightforward strategy would be to use a 3D network such
as a modified 3D U-net [17]. However, it has been shown that a multichannel 2D network
would train faster and give similar results, provided that the multichannel input includes
a central XY slice with various Z around it for each channel [83]. The idea is to give the
network some 3D information, but not the whole volume, just 3 or 5 slice. We decided

to use the same architecture that pix2pix [54] uses for image translation tasks. The only
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Figure 4.12: Architecture of the 2D modified U-net to take into account axial information
with a 5 channel input.

modification was to use 5 input channels instead of the 3 standard channels for red, green,
blue.

The main difference between the used architecture presented in Fig.4.12 and the origi-
nal U-net is the use of modules of the form convolution, such as then BatchNorm [53] and
the Leaky-ReLu. The BatchNorm layer helps the convergence and the leaky-ReLu helps
the gradient to propagate during the backward passes.

This network was trained using Adam [64] algorithms with a learning rate of 1e-3 and

a batch size of 20. One epoch correspond to 280 volumes. The data are selected randomly
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before being fed to the neural network. All of this means that every 15 epochs, the network
has seen every data once. The training and validation loss are visible on Fig.4.13. We are in
a typical overfitting situation, where the training loss keep decreasing, while the validation
loss remains constant and even increases after epochs 70. It is interesting to notice that the
validation loss is always lower than the training loss during the first 30 epochs, meaning
that the model performs better on unseen data. This can happen if the validation dataset

is slightly easier, due to a lucky random draw of the images that created the volumes.

Loss (MSE) —— Training loss
1.2 4 Validation loss
11
1.0 A
0.9 1
%1 h\\
0.7 4
0 20 40 60 80 100

Epochs number

Figure 4.13: Loss evaluation during the training of our modified U-net. The training loss
is the mean loss on the training dataset, the validation loss is the mean loss at the end of
the epoch on the validation dataset.

An early stopping at epoch 61 was performed to keep the model that had the lowest
validation loss. The performance on training and validation is shown on Fig.4.14.

The results on the training data are really encouraging. First every time that a image
was supposed to be empty, the algorithm detected it as empty and returned a black (zero)
image. Second, the elongation along the z direction disappeared, as excepted. Third, the
image intensity (corresponding to the refractive index value) is much closer to the original
image. For our microscopy setup, having a correct refractive index value is important

because this parameter can be related to protein density or cell dry mass. Finally, the fine
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Figure 4.14: Visualisation of the output of the modified U-net on the training data created
from random images.

details and high frequencies of the images are well preserved, as it can be seen in the bricks
or on the wheel of the motorbike.

On the downside, we can see that the output from the neural network are not as clean
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as the original images. Some details are blurry, and some important details tend to appear
in the next or previous slice. (creating a 1lpm or more elongation of object). For example
the sky cannot be differentiated from the see in the surfer image.

The performance of any network on the training data is only relevant to make sure that
the training went well and that the network is flexible enough to perform the desired task.
To evaluate the performance on unseen data we need to use the validation dataset. An
example of the output of the network on the validation dataset is shown on Fig.4.15.

The results are worst on this validation volume than on the training. Indeed, the vali-
dation dataset is much more complex to reconstruct, having a lot of different images next
to each other, while on the training volume only 2 images were next to each other with a
lot of empty refractive index examples before the third one. This complexity is visible on
the reconstruction (the input data from the neural network), were all the images are mixed
up and it is almost impossible for a human to guess what was the original image. Only the
high contrast feature are found by the network, like the edge of picture are z = 9um or the
reversed head at z = 8um.

What is interesting on this validation volume is the correctness of the refractive index
intensities, not going higher than 0.008 on the reconstruction and mapped them correctly
to the good intensity range for each images (as high as 0.05). Another good point is the
elongation correction, for z = 7um the output of the network is almost black, preventing
any elongation of the head along the z direction. Concerning the elongation, the features
present in one slice are not present in the neighbouring ones, i.e. every image is different
from the one on top or below. This means that even if the low contrast features are lost,
the objects or shapes detected are correctly placed along the z axis and they don’t mix with
each other. This fact is pretty stunning considering the fact that the axial resolution of our
microscope with an objective of 0.4 NA and the red LED’s with A\ = 0.625 pm is 5 ypm. This
means that punctual objects are not supposed to be distinguished if they are not distant by
atleast 5 ym (theoretical resolution for the lateral direction). Here it looks like the modified

U-net can separate high contrast features that are distant only by 1um.
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Figure 4.15: Visualisation of the output of the modified U-net on the validation data cre-
ated from random images.

Concerning the fact that this modified U-net network cannot retrieve the low contrast
objects or shapes when it is in the middle of many images, it might not be a relevant for

biological objects. Indeed, the features inside a biological object are not changing that fast
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along the z direction. See Fig.4.11 with YZ slice of the generated volume that is really far
from a continuous slice inside a biological object because it contains a lot of white line.
It looks closer to a barcode than an embryo. Concerning the refractive index gap, most
features in which we are interested (lipid droplet, nuclei etc.) have a strong refractive

index gap which is not the case here with a lot of low refractive index gap images.

4.2.2.3 Model testing on biological data

Now that our model is trained and that its performance is estimated on unseen simulation

data, we can apply it to our real biological data.

a) Input of the modified Unet, reconstruction of a mouse embryo

0.01

Rl gap

-0.005

BN-N

0.06

Figure 4.16: Performance of the modified U-net trained on random stack of images applied
to a mouse embryo. Scale bars are 20.m.
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The chosen volume for this test is a 2 cell embryo from the time-lapse presented in
Chapter 2. This volume is 1024 x 1024 x 128 with the same spatial resolution than the
128 x 128 x 30 volumes used for training (i.e. 0.128 x 0.128 x 1um?). This embryo was
reconstructed using the same algorithm than the simulated data. On Fig.4.16 we can see
that the reconstructed refractive index range is the same for the embryo reconstructed
with the BMP model and after passing the U-net architecture. The shape of 1024 x 1024
can be processed directly by the network; indeed the proposed U-net architecture is fully
convolutional with max pooling factor of 2, therefore any power of 2 times 128 can pass
forward.

The output of the neural network trained on random stack of image is presented in
Fig.4.16. Since we do not have a reference image, only qualitative evaluation will be pos-
sible. The neural network had two main objectives: i) removing the axial (along z axis)
elongation, therefore increasing the refractive index value; i) filling the object refractive
index to avoid the frequent "empty shell" aspect caused by the lack of phase information
in the acquisition.

Concerning the elongation reduction, it is clearly visible that no reduction at all was
performed by the neural network. Indeed, when we observe the nuclei or the liquid
droplets that are almost spherical inside a mouse embryo, they appear with a strong elon-
gation along the Z axis before and after the neural network. If we look closely at each
droplet, we can see that its center is brighter. It might be explained by the fact that the
neural network was trained on stacked images, and therefore was used to find in which
slice a shape was originally from. But it never had to retrieve an object that was originally
on multiple slices like a sphere. This might be the neural network answer to a sphere that
he has never seen before. Even though the inner object of this embryo kept their elongated
shape, their refractive was increased significantly, most likely leading to an overestimated
refractive index.

Concerning the filling of object that only have their edges reconstructed, it is hard to tell

whether the cells from this embryo are more compact before or after the neural network,
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especially if we keep in mind the difference of color-map between the two images.

One may ask: why did it work that bad on real biological data ? A First answer would
be the strong difference between the training data and the biological data. The network
has never been confronted to any kind of continuous 3D shape along the z direction. Even
though the refractive index ranges are similar over different layers, it appears that the
network cannot still recognize continuous 3D shapes as single objects.

This answer is not fully satisfactory, because Matlock and Tian [83] managed to use
their network trained on stack of images of various biological sample. Maybe we missed
a crucial step in the data generation or in the neural network training, but the simplest
answer to this question is that our biological and technical scenarios are more complex than
what they were facing. In their case of intensity diffraction tomography the reconstructions
were not satisfactory because of the use of a linear model. In our case, we are processing
measurements with information content much lower as the incident wave phase is not
recorded.

To find a solution to the elongation of reconstruction, we decided to change the object
training to biological-like objects, with a particular focus on embryo-like objects. Here-

below we describe the new methodology.

4.2.3 Artefact correction from simulated 3D biological volumes.

A large amount of 3D biological volumes are available, but they are mostly MRI images
and CT scans. These imaging technique produce 3D volume always on grayscale and can
easily be converted to a refractive index gap. The main issue with this idea is that most of
the available dataset are very redundant in term of shape and contrast. Indeed a human
lung will always look quite similar to an other human lung, and even when mixing all
the body parts available (heart, liver, brain, knee etc.) the volumes were all looking quite
similar. With heavy data augmentation it might have been to simulate the deformation
from our microscope and train a network on it, but it seemed not diverse enough.

In microscopy, such 3D dataset exist but the number of cell imaged is still low [127]
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or focused on 2D sample [20]. More importantly, there is no commercial reference mi-
croscope for refractive index imaging and all of the recent advances in optical diffraction
tomography only include a low number of samples.

Considering the lack of synthetic 3D data available, we concluded that 3D synthetic

data have to be generated.

4.2.3.1 Synthetic embryo generation

In the previous data generation we decided to promote diversity over biological-like fea-
tures. This time, we will try to match as closely as possible the biological features while
maintaining a high diversity of shapes and contrasts. Since no available dataset is available
with such criteria, we created it from scratch.

From acquired images we observed that most of the features and shapes inside an
embryo are some kind of ‘blobs” or spheroid-like objects. These kinds of objects can be
generated randomly and with a great amount of diversity.

The idea to generate a random spheroid-like object is to generate a sphere with variable
radii in 3D. Perlin noise[93], originally designed to generate random map with hills and
valley, was used to generate objects with various shapes by mapping this Perlin noise in
3D on the radius(see Fig.4.17).

To have an idea of the refractive index gap to use for the generated cell and nuclei we
used Phasics (see section 3.2.5.4 for more detail) images and an hypothesis of sphericity
of the object to go from a 2D quantitative phase image to the refractive index of object.

Therefore the procedure to generate a synthetic embryo follows those three steps:

* Generate and place randomly between 10 and 20 synthetic cells. Each cell was cre-
ated with a medium noise frequency and a low noise amplitude, as per Fig.4.17 a).
Each cell is scaled randomly between 6 and 50 um, with a refractive index gap ran-

domly between 0.01 and 0.02.

¢ Inside each cell, add between 70 and 160 synthetic lipid droplets. Each lipid droplet
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Figure 4.17: Evolution of the shape of a spheroid-like object generated with a random
Perlin noise on the radius of a 3D sphere. a) was used to create the fake cell for the synthetic
embryo. b) was used to create the fake lipid droplet for the synthetic embryo

is created with a high noise frequency and medium noise amplitude, as in Fig.4.17
b). Each lipid droplet is scaled randomly between 0.2 and 25 m and has a refractive

index between 0.005 and 0.015 higher than its cell refractive index.

¢ Finally, an envelope is added around all the cells, representing the zona pellucida
found on nominal embryos. This enevelope was created with a medium noise fre-
quency and a low noise amplitude, as in Fig.4.17 a). This volume is then scaled
randomly between 80 and 90 ym and the 90 % inside volume are removed. The

refractive index was varied between 0.003 and 0.007.



138

Figure 4.18: Visualisation of a synthetic embryo generated with the procedure from section
4.2.3.1. Scale bar is 40 yim a) is the original generated volume. b) is the volume after simu-
lated the optical system and doing the reconstruction from those generated measurement.
The methodological procedure is the same as the one detailed in Section 4.2.2.1

A typical volume is presented in Fig.4.18, the same procedure than section 4.2.2.1 was
used to produce the reconstruction from simulated measurement available in Fig 4.18 b,
except for the volume size and discretization. Volumes of size 1024 x 1024 x 1024 with a
voxel size of 0.128 x 0.128 x 0.128m? were used to simulated the microscope acquisition.
From those acquisition, volumes of size 1024 x 1024 x 128 with a voxel size of 0.128 x
0.128 x 1um? were reconstructed.

It took 1 week using an un-optimised generation code and an optimized reconstruction
code to generate 105 reference volume pairs. These volume pairs were used as training

data for the neural network in the next section.

4.2.3.2  Neural network training and inference

The same modified U-net from section 4.2.2.2 was trained using Adam [64] algorithm with

a learning rate of 1e-3. Random crops of 128 x 128 x 5 were used for training with a batch
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size of 20. One epoch correspond to 280 mini batch. Statistically, every 30 epochs, the
network has seen every data once from the 105 1024 x 1024 x 128 volumes. The training
and validation loss are visible on Fig.4.19. As usual, elongations over the z axis are clearly

visible after the 3D reconstruction.

Loss (MSE) —— Training loss
1.2 Validation loss
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Figure 4.19: Loss evaluation during the training of our modified U-net on random volumes
generated with perlin noise. The training loss is the mean loss on the training dataset, the
validation loss is the mean loss at the end of the epoch on the validation dataset.

As observed in Fig.4.19, overfitting was not an issue on 100 epoch training. The con-
vergence was well achieved, as the validation loss tend to a plateau.

The performance of this trained network on a validation volume is shown on Fig.4.20.
The first thing to notice after the output of the modified U-net is how clean and continuous
the xz cross-section is. This is impressive since each xy slice is produced separately and
therefore we have no guaranty that the object generated in 3D will be continuous and
without any noise like an object that appears only on one slice and disappears the next
slice (this kind of flickering is a known issue with deep learning and temporal predictions
[70]).

When looking at arrow number 1 on Fig.4.20 b), we can see that this synthetic cell with

3 synthetic droplets inside was suffering from heavy elongation along the z axis. Only
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a) Theoretical volume

Figure 4.20: Qualitative evaluation of the modified U-net on the central (?) slice of a vali-
dation volume generated with Perlin noise. Scale bar is 40 pm.

the x and y edges of this cell were reconstructed, without clear boundary perceptible on
the z axis. A human not familiarized with this kind of image would not have understood

the true nature of this object. Only an expert used to work with embryos could have
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guessed that it was an empty sphere with 3 dots inside. The neural network has clearly
reached this level of comprehension, as it was able to find back the true xyz boundaries
of the cell and to position correctly the inside synthetic droplets (Fig.4.20 c) arrow 1). The
reduction of the elongation also benefits the xy cross section: as an example, the arrow 4
points at an inner structure that is not present in the theoretical volume and has appeared
after the reconstructions. This structure exists in different layers of the volume, and only
its elongation is visible in the studied slice. Our model truly identified this element and
5 others as not present in the original slice and correctly removed them, going back to 5
individual droplets, same than the reference volume in Fig.4.20 a) arrow 4. Inner structures
can be removed while the cell remains, but entire cells can be removed too if they are not
supposed to be on the slice, like the ones pointed by the arrow 3 or 5.

On the negative points of this model the removal of too many information is certainly
the prominent one, like the cell pointed out with the arrow 5. This cell was partially present
on the reconstructed volume, and should be present on the slice according to the theoretical
volume (see the arrow 5 on Fig.4.20 c). The same bug happened for the bottom part of the
ring around the cells (arrow 2). The outer membrane was not completely restored and only
a partial ring was reconstructed. Considering the amount of information available in the
reconstructed volume, it seems reassuring that the full outer membrane was not created
everywhere (on the zz slice for example) because it would be too much guessing and not
base on available information.

Even if most parts were correctly retrieved, some elements are missing. It is interesting
to note that no element was hallucinated. Every object present in the output of the neural

network truly exists in the theoretical volume.

4.2.3.3 Neural network evaluation on biological data

The results on simulated data are satisfactory enough to try the application of the proposed
architecture on images of an embryo acquired with our setup.

The sample used for this test is the same one used in Section 4.2.2.3, a two cell embryo
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from the time-lapse presented in Chapter 2. This volume is 1024 x 1024 x 128 with the
same spatial resolution than the volumes used for training. This embryo was reconstructed
using the same algorithm than the simulated data.

On Fig.4.21 we can see the behaviour of the architecture on the mouse embryo. As
expected, the cells are now filled with a higher refractive index than the reconstructed one.
The z resolution of the inner lipid droplets is significantly improved after the application of
the proposed U-net architecture, i.e. the droplets are a lot less elongated. Moreover, some
lipid droplets that were indistinguishable on the standard reconstruction are now clearly
separated. This network improves the images under different aspects: the elongation from
inner structure as well as the one of the big cell are corrected, the empty shell effect on big
objects is removed with a coherent refractive index filling, and finally the refractive index
range is corrected to a higher value. This functioning network will be named "Uxy" for the
remain part of this document.

a ) Reconstructed volume

Figure 4.21: Qualitative evaluation of the modified U-net trained on synthetic volumes
with Perlin noise. We named this model Uxy. The volume is tested on 2 cells mouse
embryo. Scale bar is 40 pm.
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The major drawback of Uxy is the lateral hallucination of the shape when an empty
space sourrounds the object. Indeed, the contour of the cells in the z direction is neither
lean nor correctly localized. This might be the limit of using 2D deep learning model to
deal with a 3D problem. With more information along the z direction it looks trivial to say
that nothing should be predicted at the top and bottom of the reconstructed volume. A last
experiment that can be performed with 2D model but with more information along the z

direction would be to make it predict yz slice or xz slice.

4.2.3.4 Training of a second network specialized along the axial direction

To understand the effects of an architecture that has more information on the axial direction
(using yz or xz slice), a further training was performed using the same 3D training data
already presented in 4.2.3.1.

The same neural network architecture was used, except for the first layer where mono
channel 2D images were used instead of the 5 channel 2D images used in Uxy (see section
4.2.2.2 for more detail). The data-loader was of course modified to present randomly zz or
yz slice. The amount of training data is doubled since we can pass each pixel twice in each
epochs (inside a xz slice or inside a yz slice).

This model will be named Uz and can applied to all the xz slices of a reconstructed
volume as well as all the yz slices. These two corrected volumes are presented in Fig.4.22.
The performance of this network (Uz) is poor compared to Uxy. Indeed, the intracellular
lipid droplets are less separated and a flickering effect appeared. This is caused by the
fact that each xz or yz slice is generated separately from the others. If the neural network
hesitates, it is common to have one slice white then black then white again etc. This creates
the horizontal or vertical stripes. This issue was not present within Uxy model because
each slice was predicted using multiple sequential slice, this means that at each prediction
only a fifth of the input data was changing instead of 100% for the Uz model. A good idea
to reduce the flickering effect on this model would be to change all its training loop and

architecture and use multiple slices as input. This work was not done because even when
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a ) Reconstructed volume

Figure 4.22: Qualitative evaluation of the Uz model trained on zz and yz slice from vol-
umes generated with Perlin noise. The volume is tested on 2 cells mouse embryo. Scale
bar is 40 pm.

looking at individual predicted slice like the yz slice from Fig.4.22 b), the predictions were
less accurate than the one from Uxy.

The work done on this second network was important to give us hints on how to solve
the drawbacks of Uxy and obtain meaningful 3D reconstructions. Indeed, the model Uz
never hallucinates objects outside of the main target. An idea would be to use the output

of the Uz as an envelope of the refractive index generated by Uxy.



145

4.2.3.5 Ensembling of two neural networks: one specialised on the axial information and one

specialized in the radial information

The output of the network Uz trained with zz and yz slice is considered too noisy and
presents undesired dark stripes. Some operations will be required to obtain a clean and
smooth envelope from this neural network. The reconstructed embryo will be E,.. To have
a more homogeneous volume we can sum up the volumes generated with Uz, Ey,,, =
Uz(E,,XZ)+Uz(E,,YZ). Uz(z, A) is the results of the trained network Uz on the input
data x, where the data are sliced in the plan A. A can be XZ or YZ.

Esum Will then be blurred with a Gaussian filter of size 20 and a threshold value of a
tifth of the maximum value, create Ey;,. It creates a finite support for the object that was
inspired by [67].

0, if Egym ® 090 < %maaU(Esum)

1, otherwise
This binary envelope will finally be blurred again with a Gaussian filter of size 3 to
extend it slightly outside of its primary range, Ecpy = Epin, ® 03
The final output volume of our method will be the product between the enveloppe

Eeny created from Uz and the output of the network Uxy.

Etinat = Eeny . Uzy(E})

Etina is the artefact corrected volume on the bottom of the summary Fig.4.23 of our
neural network ensembling method.

Using the method described above and summarized in Fig.4.23, the two cell embryo
reconstructed volumes were corrected to reduce the axial elongation, fill constant object
and correct the refractive index value.

An extensive comparison is performed in Fig.4.24. The elongation reduction that Uz

could perform on its own is still present in the ensemble, allowing small inner structures
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Reconstructed volume

Uzon XZ

Artefact corrected
volume

Figure 4.23: Summary of our ensembling method using two neural network, Uz special-
ized in the axial properties and Uxy specialized in the radial information.

to appear spherical in 3D, like the one pointed by the arrow 1. The 3D view allows the user
to keep track of the particles while rotating the object. This is not possible with the non-
corrected embryo, where every object is so elongated that they overlap each other. This
elongation correction also separates object that appeared as one in the raw reconstructions,

like the one pointed by arrow 2.
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a) Reconstructed volume Output of the ensembling of Uxy and Uz

Figure 4.24: Comparison between the reconstructed volume and the output of the ensem-
bling of the trained neural network Uz and Uxy. a) is a maximum intensity projection
along the z axis with a color code for the z position. b) is a YZ slice where the elongation
reduction of the neural network is clearly visible. c) is a 3D rendering. Scale bar is 40 pm
wide

The contour of each cell is perfectly defined on the output of the neural network and
no hallucinated object is present in the volume, which is a great improvement from the

previous method in Section 4.2.3.3 with only Uz (see Fig ?? for the previous hallucinated
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object).

On the drawback of this ensembling method, some small objects outside of the embryo
where lost, like the one pointed by the arrow 3. This might be because the second net-
work was used to compute the envelope of compact object and not to recover single small
objects. To include small object outside of the main volumes could be an improvement
direction considering that some small object on the side were correctly retrieved, arrow 4.

We can also state that the zona pellucida around the embryo that was barely visible on
the reconstruction was only kept visible on half of the embryo on Fig.4.24 a).

We are satisfied by the result of this deep learning method for artefact correction on
this 2 cell embryo. It is now time to address the generalisation question: will this method
works for embryo at other stage of development ? And will this methods works for other

biological object than embryo ? Each question will be answer in its own subsection.

4.2.3.6  Generalisation to other embryo stage

We saw in Chapter 2 that a complete time lapse of a mouse embryo was reconstructed in
3D. For each volume, the ensembling method of section 4.2.3.5 was used. Since the data
were obtained with good experimental conditions, i.e. without vibration nor noticeable
change in focusing distance, the neural network generalised well to embryo with only one
cell, or multiple cells like the 4 cells embryo presented in Fig.4.25.

The same characteristics of this method were also present at every stage of the embryo
development, as the elongation reduction or the good enveloping detection of each cell.
however, the same drawbacks were also present with the issue of the outer membrane, the
zona pellucida, that appears and disappears randomly.

It is important to remind us that these neural networks were trained only with sim-
ulated data and has never been confronted to real acquisitions before. The fact that they
perform well and consistently with embryos at various stage of development is interest-
ing, it showcases the generalisation capabilities of modern deep learning architecture in

computer vision [145].
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The choice of the training data is of paramount importance, and the main reason why
the generalisation from simulated to real biological data was possible is because the gen-
erated data were carefully handcraft to mimic real data.

a) Reconstructed volume b) Output of the ensembling of Uxy and Uz

Figure 4.25: Comparison on a 4 cell mouse embryo between the reconstructed volume
and the output of the ensembling of the trained neural network Uz and Uxy. a) is the
reconstructed refractive index volume with 3 cross sections. b) is the 3 cross sections of the
output of the ensembling of 2 neural networks specialised in radial and axial information.
Scale bar is 40 pm wide

Indeed, with the volumes generated from random images almost no generalisation was
observed. Without changing the training data is it possible for our algorithm to generalise

to more compact and most complex living organism ?

4.2.3.7 Generalisation to denser and more complex biological sample

A good sample to try our ensembling model is the dense liver organoid from Chapter 2,
Section 2.7.6. The oragnoid chosen was the one after 60 minutes of timelapse. Its recon-
struction and the output of the neural networks is visible on Fig.4.26.

This object is not too far from an embryo because both the refractive range as well
as the global size of the object are similar to the embryo . Moreover, there are some inner
structures that produce elongated dots in the same manner than the embryo. However, the

cells that compose the organoid are more entangled with each other that inside an embryo
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and the hole that is present in the left part of the xy slice of the reconstructed volume is

also new. .

a) Reconstructed volume b) Output of the ensembling of Uxy and Uz

Figure 4.26: Comparison on a liver organoid between the reconstructed volume and the
output of the ensembling of the trained neural network Uz and Uxy. a) is the reconstructed
refractive index volume with 3 cross sections. b) is the 3 cross sections of the output of the
ensembling of 2 neural networks specialised in radial and axial information. Scale bar is
40 pm wide.

Considering the refractive index range, our ensembling method seems to have in-
creased the refractive index and also filled the cell regardless of their shape, like the one
pointed from arrow 1 where only the edges were visible on Fig.4.26 a).

Concerning the elongation reduction, the few inner structures were correctly corrected
to a better looking shape, but in the process, many non-existing inner structures were
hallucinated by the network, pointed out by the arrows 2. Finally, considering the ability to
find the correct envelope of the object and limit its spreading along the z axis, the networks
performed poorly. Indeed, we expect the organoid to be rather spherical and no objects
should appear outside of the dash circle. We would also expect a functional network to
remove every refractive index shape from outside this circle, especially for very high of
very low z. This is definitely not the case since the network predicts numerous features on
the edges of the volume where it should be empty.

The generalization capabilities of our networks is not satisfactory toward non-embryo
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biological object. Even with this non very challenging liver organoid, many drawbacks
in terms of object hallucination or failure to understand the true shape in 3D makes this

method non trustable to track the development of such organoid.

4.2.4 Conclusion on deep learning for artefact correction

Deep learning was used to tackle the main challenge of 3D refractive index imaging from
intensity only images with a low NA objective and a wide field of view: the axial elonga-
tion of results. The state of the art in this field is still young and diverse, with deep learning
blocks used at almost every points during the reconstruction loop. We decided to use deep
learning models to correct the artefact present at the end of an iterative, regularized recon-
struction with a multiple scattering model.

We have indeed demonstrated that it is possible to train a deep learning model to cor-
rect the major artefacts present in our TV regularized reconstruction with a BPM model
using intensity only measurement from a low NA objective. Contrary to what was previ-
ously done with high quality optics but single scattering model, training on random stacks
of images did not provide a good generalisation to 3D biological samples.

The training data need to be carefully created to match real refractive index distribu-
tions in terms of shape and RI range. Such dataset was generated with Perlin noise on
random 3D spheroid. From those syntetic model, the measurements were simulated and
reconstructed to create a 3D paired dataset of refractive index volumes. An ensemble of
two 2D U-net models were used to correctly retrieve the refractive index in 3D.

The generalisation capacity of such network was good on embryos at various stage of
development, which was the primary use case for this method. However the performance
on liver organoid was unsatisfactory with hallucinated objects. That is why we think that
the choice of the simulated training data is of paramount importance and the simulated
objects need to be handcrafted with the support of an expert to be sure that the simulated
volumes match real ones. A non-supervised approach might be envisaged to generalize

the corrections to different samples and different acquisition parameters (e.g. different
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magnifications or objective NAs), but this methodology is out of the scope of this thesis

and was not pursued.



Chapter 5

Conclusion

51 GENERAL CONCLUSION

During this thesis we have explored the world of 3D microscopic refractive index imaging
of biological sample. We choose to be as less intrusive as possible with the creation of a
compact and cheap LED microscope. This prototype can image, in time-lapse, complex
3D biological sample developing inside the incubator. An efficient reconstruction algo-
rithm that run on GPU was introduced to perform the 3D reconstruction with a multiple
scattering model. It can run on a laptop as an oragnoids or an embryo develops for quasi-
real time reconstruction. With simple hardware modification it can image up to a cubic
millimeter volume and perform an acquisition every two minutes.

Chapter 2 presents five different light scattering model to solve the Helmholtz wave
equation. Comparing to the Mie theory, the LS model is order of magnitude more accurate
and more complex to compute than the other models introduced. It serves as a reference
model to compare Born, Rytov, BPM and MBS (the first two are single scattering and the
last two are multiple scattering). With our constraint of discretization size up to five times
the wavelength, we choose to use the Beam Propagation Method (BPM) as our light scat-
tering model for the rest of the thesis.

Chapter 3 introduces the inverse problem of optical diffraction tomography from intensity-

153
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only measurements as an optimisation problem. It is solved through accelerate gradient
descent with multiple priors such as Total variation, Sparsity and non-negativity. On sim-
ulation the importance of each prior is demonstrated. Then this reconstruction algorithm
is used on real biological data with an extra layer of aberration correction for non-standard
thickness container. By design our prototype was compact and compatible with biological
culture conditions enabling us to image in time lapse the first week of a mouse embryo as
well as the development of liver organoid.

Chapter 4 starts with a brief history of deep learning to have a better grasp on why it
has revolutionised computer vision over the last decade. Deep learning strategies in op-
tical diffraction tomography are reviewed and appear at every stage of the reconstruction
algorithm. We choose to use a modified Unet to correct the main artefact that we were
facing in Chapter 3 (i.e. axial elongation of object, and "edge only" object with a lack of low
frequency). The final architecture ensembles two models trained on axial and radial infor-
mation. Great results are obtained after a training only on simulated data. The training
data was generated in the shape of fake multi cellular object and it generalizes well to real
life embryo at various stage of development. The generalisation toward liver oragnoid is

not good enough to be used routinely, with a lot of hallucinated objects.

5.2 DISCUSSION

Before diving into all the problems we are still facing and how to improve it with future
works, let’s remember that the computational system presented in this document is func-
tional and robust. The preliminary results on embryo were foundation for further grant
opportunity, the ANR project LIVE 3D_CNN (ANR-21-CE19-0020) and it is part of an Eu-
ropean Union’s Horizon 2020 research program, project REVEAL (grant agreement N°
101016726.).

The first drawback that is easy to improve is the imaging time of our setup. In order

to address the imaging of living samples at a faster rate, one could use fewer and brighter
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LEDs as in [76]. A ring of 8 powerful LEDs is placed on top of commercial inverted micro-
scope, enabling them to image in 3D at a 10Hz rate. Reducing the number of image from
84 to 8 might lead to a higher noise or a slight loss of resolution.

The main drawback of our system is the strong axial elongation of object. This is not
caused by flaw in our physical model or our reconstruction algorithm but is comes from
a lack of information due to the missing cone problem well known in X-ray tomographic
system. For this issue the state of the art method are learning tomography with sparse
regularisation. To reduce the elongation higher NA optics needs to be used but the field
of view will be reduce. Using deep learning method to “guess” the correct shape of object
can provide stunning results, but the generalisation is never guarantied and the range of
application of such supervised method is always limited. The lack of axial information
for low NA diffractive tomographic microscope is still an open problem that will not be
solved easily because of its inner lack of information.

Finally the focus needs to be discussed. Usually the imaged object is on focus at its
center. When it is not the case because the object moved in 3D our resolution started to
decreased with some artefacts appearing. The loss of resolution can also be observed for
very thick objects where the most out of focus parts suffer from artefacts and the blurring
effect. A study on the effect of defocus on diffractive tomographic microscope needs to be
conducted to have a better understanding on this effect. For very thick object, one could
try to image the same sample at multiple focuses in order to gain resolution everywhere

inside the object.



Bibliography

[1] History of microscopy — timeline. https://www.sciencelearn.org.nz/resources/
1692-history-of-microscopy-timeline. Accessed: 2022-01-28.

[2] Introductory confocal concepts. https://www.microscopyu.com /techniques /
confocal/introductory-confocal-concepts. Accessed: 2021-01-05.

[3] Tomocube company website. https://www.tomocube.com. Accessed: 2020-01-21.

[4] Light sheet fluorescence microscopy. Nature Reviews Methods Primers, 1(1), Novem-
ber 2021.

[5] Rajat Acharya. Interaction of waves with medium. In Satellite Signal Propagation,
Impairments and Mitigation, pages 57-86. Elsevier, 2017.

[6] S. Amini and S.M. Kirkup. Solution of helmholtz equation in the exterior domain by
elementary boundary integral methods. Journal of Computational Physics, 118(2):208—
221, 1995.

[7] M. Bernhardt, F. Wyrowski, and O. Bryngdahl. Coding and binarization in digital
fresnel holography. Optics Communications, 77(1):4-8, June 1990.

[8] Dimitri P. Bertsekas. Incremental proximal methods for large scale convex optimiza-
tion. Mathematical Programming, 129(2):163-195, June 2011.

[9] Eric Betzig, George H. Patterson, Rachid Sougrat, O. Wolf Lindwasser, Scott
Olenych, Juan S. Bonifacino, Michael W. Davidson, Jennifer Lippincott-Schwartz,

and Harald F. Hess. Imaging intracellular fluorescent proteins at nanometer resolu-
tion. Science, 313(5793):1642-1645, sep 2006.

[10] S Brenner. THE GENETICS OF CAENORHABDITIS ELEGANS. Genetics, 77(1):71-
94, May 1974.

[11] Rich Caruana, Steve Lawrence, and C. Giles. Overfitting in neural nets: Backpropa-
gation, conjugate gradient, and early stopping. In T. Leen, T. Dietterich, and V. Tresp,
editors, Advances in Neural Information Processing Systems, volume 13. MIT Press,
2000.

[12] Michael Chen, David Ren, Hsiou-Yuan Liu, Shwetadwip Chowdhury, and Laura
Waller. Multi-layer born multiple-scattering model for 3d phase microscopy. Optica,
7(5):394-403, May 2020.

156


https://www.sciencelearn.org.nz/resources/1692-history-of-microscopy-timeline
https://www.sciencelearn.org.nz/resources/1692-history-of-microscopy-timeline
https://www.microscopyu.com/techniques/confocal/introductory-confocal-concepts
https://www.microscopyu.com/techniques/confocal/introductory-confocal-concepts
https://www.tomocube.com

157

[13] Michael Chen, Lei Tian, and Laura Waller. 3d differential phase contrast microscopy.
Biomed. Opt. Express, 7(10):3940-3950, Oct 2016.

[14] Gunho Choi, DongHun Ryu, YoungJu Jo, Young Seo Kim, Weisun Park, Hyun seok
Min, and YongKeun Park. Cycle-consistent deep learning approach to coherent noise
reduction in optical diffraction tomography. Opt. Express, 27(4):4927-4943, Feb 2019.

[15] Shwetadwip Chowdhury, Michael Chen, Regina Eckert, David Ren, Fan Wu, Nicole
Repina, and Laura Waller. High-resolution 3d refractive index microscopy of
multiple-scattering samples from intensity images. 6(9):1211.

[16] Shwetadwip Chowdhury, Michael Chen, Regina Eckert, David Ren, Fan Wu, Nicole
Repina, and Laura Waller. High-resolution 3d refractive index microscopy of
multiple-scattering samples from intensity images. Optica, 6(9):1211-1219, Sep 2019.

[17] Ozgﬁn Cigek, Ahmed Abdulkadir, Soeren S. Lienkamp, Thomas Brox, and Olaf Ron-
neberger. 3d u-net: Learning dense volumetric segmentation from sparse annota-
tion. CoRR, abs/1606.06650, 2016.

[18] Dan C. Ciresan, Ueli Meier, and Jiirgen Schmidhuber. Multi-column deep neural
networks for image classification. CoRR, abs/1202.2745, 2012.

[19] Laurent Condat. Discrete total variation: New definition and minimization. SIAM
Journal on Imaging Sciences, 10(3):1258-1290, 2017.

[20] Ryan Conrad and Kedar Narayan. Cem500k, a large-scale heterogeneous unlabeled
cellular electron microscopy image dataset for deep learning. eLife, 10:e65894, apr
2021.

[21] Yann Cotte, Fatih Toy, Pascal Jourdain, Nicolas Pavillon, Daniel Boss, Pierre Mag-
istretti, Pierre Marquet, and Christian Depeursinge. Marker-free phase nanoscopy.
Nature Photonics, 7(2):113-117, jan 2013.

[22] Y. H. Dai and Y. Yuan. A nonlinear conjugate gradient method with a strong global
convergence property. SIAM Journal on Optimization, 10(1):177-182, 1999.

[23] P. Davidovits and M. D. Egger. Scanning laser microscope for biological investiga-
tions. Appl. Opt., 10(7):1615-1619, Jul 1971.

[24] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 248-255, 2009.

[25] L. Denneulin, F. Momey, D. Brault, M. Debailleul, A. M. Taddese, N. Verrier, and
O. Haeberlé. Gsure criterion for unsupervised regularized reconstruction in tomo-
graphic diffractive microscopy. J. Opt. Soc. Am. A, 39(2):A52-A61, Feb 2022.

[26] A.]. Devaney. Inverse-scattering theory within the rytov approximation. 6(8):374-
376. Publisher: Optical Society of America.



158

[27] Alberto Diaspro, Giuseppe Chirico, and Maddalena Collini. Two-photon fluores-
cence excitation and related techniques in biological microscopy. Quarterly Reviews
of Biophysics, 38(2):97-166, 2005.

[28] Kenneth W. Dunn and Pamela A. Young. Principles of multiphoton microscopy.
Nephron Experimental Nephrology, 103(2):e33—-e40, mar 2006.

[29] Kenneth W. Dunn and Pamela A. Young. Principles of multiphoton microscopy.
Nephron Experimental Nephrology, 103(2):e33—e40, March 2006.

[30] M. A. Dupertuis, B. Acklin, and M. Proctor. Generalization of complex
snell-descartes and fresnel laws. Journal of the Optical Society of America A, 11(3):1159,
March 1994.

[31] Eleftherios N. Economou. Green’s Functions in Quantum Physics. Springer Berlin
Heidelberg, 2006.

[32] Florian Faucher, Clemens Kirisits, Michael Quellmalz, Otmar Scherzer, and Eric Set-
terqvist. Diffraction Tomography, Fourier Reconstruction, and Full Waveform Inver-
sion. 31 pages, 21 figures, October 2021.

[33] M. Feit and J. Fleck. Light propagation in graded-index optical fibers. Applied optics,
17 24:3990-8, 1978.

[34] J. R. Fienup. Phase retrieval algorithms: a comparison. 21(15):2758-2769. Publisher:
Optical Society of America.

[35] Reeves Fletcher and Colin M Reeves. Function minimization by conjugate gradients.
The computer journal, 7(2):149-154, 1964.

[36] Lord Rayleigh ER.S. Xxxi. investigations in optics, with special reference to the spec-
troscope. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Sci-
ence, 8(49):261-274, 1879.

[37] Kunihiko Fukushima. Cognitron: A self-organizing multilayered neural network.
Biological Cybernetics, 20(3-4):121-136, 1975.

[38] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological Cybernet-
ics, 36:193-202, 1980.

[39] Greg Gbur and Emil Wolf. Diffraction tomography without phase information. Opt.
Lett., 27(21):1890-1892, Nov 2002.

[40] Joseph W Goodman. Introduction to fourier optics. Introduction to Fourier optics, 3rd
ed., by JW Goodman. Englewood, CO: Roberts & Co. Publishers, 2005, 1, 2005.

[41] Joseph W Goodman. Introduction to fourier optics. Introduction to Fourier optics, 3rd
ed., by JW Goodman. Englewood, CO: Roberts & Co. Publishers, 2005, 1, 2005.



159

[42] Enrico Gratton, Nicholas P. Barry, Sabrina Beretta, and Anna Celli. Multiphoton
fluorescence microscopy. Methods, 25(1):103-110, 2001.

[43] Timur E. Gureyev, Timothy J. Davis, Andrew Pogany, Sheridan C. Mayo, and
Stephen W. Wilkins. Optical phase retrieval by use of first born- and rytov-type
approximations. 43(12):2418-2430.

[44] O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac. Tomographic diffractive
microscopy: basics, techniques and perspectives. Journal of Modern Optics, 57(9):686—
699, 2010.

[45] L. Herve, O. Cioni, P. Blandin, F. Navarro, M. Menneteau, T. Bordy, S. Morales,
and C. Allier. Multispectral total-variation reconstruction applied to lens-free mi-
croscopy. Biomed. Opt. Express, 9(11):5828-5836, Nov 2018.

[46] Samuel Hess, Thanu Girirajan, and Michael Mason. Ultra-high resolution imaging
by fluorescence photoactivation localization microscopy. Biophysical journal, 91:4258—
72,01 2007.

[47] Magnus R Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving.
Journal of research of the National Bureau of Standards, 49(6):409, 1952.

[48] Ralf Hielscher and Michael Quellmalz. Optimal mollifiers for spherical deconvolu-
tion. Inverse Problems, 31(8):085001, jun 2015.

[49] Robert Hooke. Micrographia: or some physiological descriptions of minute bodies made
by magnifying glasses, with observations and inquiries thereupon. Courier Corporation,
2003.

[50] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359-366, 1989.

[61] Roarke Horstmeyer, Jaebum Chung, Xiaoze Ou, Guoan Zheng, and Changhuei
Yang. Diffraction tomography with fourier ptychography. Optica, 3(8):827, jul 2016.

[52] B.J. Inkson. 2 - scanning electron microscopy (sem) and transmission electron mi-
croscopy (tem) for materials characterization. In Gerhard Hiibschen, Iris Altpeter,
Ralf Tschuncky, and Hans-Georg Herrmann, editors, Materials Characterization Using
Nondestructive Evaluation (NDE) Methods, pages 17-43. Woodhead Publishing, 2016.

[53] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

[54] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image trans-
lation with conditional adversarial networks, 2016.

[65] Micah H. Jenkins and Thomas K. Gaylord. Three-dimensional quantitative phase
imaging via tomographic deconvolution phase microscopy. Appl. Opt., 54(31):9213—
9227, Nov 2015.



[56]

[57]

[61]

[62]

[63]

[66]

160

Di Jin, Renjie Zhou, Zahid Yaqoob, and Peter T. C. So. Tomographic phase mi-
croscopy: principles and applications in bioimaging [invited]. Journal of the Optical
Society of America B, 34(5):B64, apr 2017.

YoungJu Jo, Sangjin Park, JaeHwang Jung, Jonghee Yoon, Hosung Joo, Min hyeok
Kim, Suk-Jo Kang, Myung Chul Choi, Sang Yup Lee, and YongKeun Park. Holo-
graphic deep learning for rapid optical screening of anthrax spores. Science Advances,
3(8), August 2017.

Ulugbek S. Kamilov, Ioannis N. Papadopoulos, Morteza H. Shoreh, Alexandre Goy,
Cedric Vonesch, Michael Unser, and Demetri Psaltis. Learning approach to optical
tomography. Optica, 2(6):517.

Ulugbek S. Kamilov, Ioannis N. Papadopoulos, Morteza H. Shoreh, Alexandre Goy,
Cedric Vonesch, Michael Unser, and Demetri Psaltis. Optical tomographic image
reconstruction based on beam propagation and sparse regularization. IEEE Transac-
tions on Computational Imaging, 2(1):59-70, 2016.

Iksung Kang, Alexandre Goy, and George Barbastathis. Computational optical
tomography using 3-d deep convolutional neural networks. Optical Engineering,
57(04):1, apr 2018.

Iksung Kang, Alexandre Goy, and George Barbastathis. Limited-angle tomographic
reconstruction of dense layered objects by dynamical machine learning, 2020.

Myung K. Kim. Principles and techniques of digital holographic microscopy. SPIE
Reviews, 1(1):018005, 2010.

Tae In Kim, Buki Kwon, Jonghee Yoon, Ick-Joon Park, Gyeong Sook Bang, YongKeun
Park, Yeon-Soo Seo, and Sung-Yool Choi. Antibacterial activities of graphene ox-
ide-molybdenum disulfide nanocomposite films. ACS Applied Materials, 9(9):7908—
7917, February 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2014.

Clemens Kirisits, Michael Quellmalz, Monika Ritsch-Marte, Otmar Scherzer, Eric
Setterqvist, and Gabriele Steidl. Fourier reconstruction for diffraction tomography
of an object rotated into arbitrary orientations. Inverse Problems, 37(11):115002, oct
2021.

Tobias Knopp, Stefan Kunis, and Daniel Potts. A note on the iterative MRI recon-
struction from nonuniform space data. International Journal of Biomedical Imaging,
2007:1-9, 2007.

Wojciech Krauze. Optical diffraction tomography with finite object support for the
minimization of missing cone artifacts. Biomed. Opt. Express, 11(4):1919-1926, Apr
2020.



161

[68] Matgorzata Kujawiriska, Wojciech Krauze, Arkadiusz Kus, Julianna Kostencka,
Tomasz Kozacki, Bjorn Kemper, and Michat Dudek. Problems and solutions in 3-d
analysis of phase biological objects by optical diffraction tomography. International
Journal of Optomechatronics, 8(4):357-372, 2014.

[69] Knut Kvien. Validity of weak-scattering models in forward two-dimensional optical
scattering. Applied Optics, 34(36):8447, December 1995.

[70] Wei-Sheng Lai, Jia-Bin Huang, Oliver Wang, Eli Shechtman, Ersin Yumer, and Ming-
Hsuan Yang. Learning blind video temporal consistency. CoRR, abs/1808.00449,
2018.

[71] P Philippe Laissue, Rana A Alghamdi, Pavel Tomancak, Emmanuel G Reynaud, and
Hari Shroff. Assessing phototoxicity in live fluorescence imaging. Nature Methods,
14(7):657-661, July 2017.

[72] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436—444, may 2015.

[73] Peng Lee, Wanrong Gao, and Xianling Zhang. Performance of single-scattering
model versus multiple-scattering model in the determination of optical properties
of biological tissue with optical coherence tomography. Applied Optics, 49(18):3538,
June 2010.

[74] Chen Li, Adele Moatti, Xuying Zhang, H. Troy Ghashghaei, and Alon Greenbaum.
Deep learning-based autofocus method enhances image quality in light-sheet fluo-
rescence microscopy. Biomed. Opt. Express, 12(8):5214-5226, Aug 2021.

[75] Jiaji Li, Qian Chen, Jiasong Sun, Jialin Zhang, Junyi Ding, and Chao Zuo. Three-
dimensional tomographic microscopy technique with multi-frequency combination
with partially coherent illuminations. Biomed. Opt. Express, 9(6):2526-2542, Jun 2018.

[76] Jiaji Li, Alex C. Matlock, Yunzhe Li, Qian Chen, Chao Zuo, and Lei Tian. High-speed
in vitro intensity diffraction tomography. Advanced Photonics, 1(6):1 — 13, 2019.

[77] Qingxiang Li, Lifen Bai, Shifu Xue, and Luyun Chen. Autofocus system for micro-
scope. Optical Engineering, 41(6):1289 — 1294, 2002.

[78] Joowon Lim, Ahmed B. Ayoub, Elizabeth E. Antoine, and Demetri Psaltis. High-
tidelity optical diffraction tomography of multiple scattering samples. 8(1):82.

[79] Joowon Lim, Ahmed B. Ayoub, and Demetri Psaltis. Three-dimensional tomography
of red blood cells using deep learning. Advanced Photonics, 2(02):1, mar 2020.

[80] JooWon Lim, KyeoReh Lee, Kyong Hwan Jin, Seungwoo Shin, SeoEun Lee,
YongKeun Park, and Jong Chul Ye. Comparative study of iterative reconstruction
algorithms for missing cone problems in optical diffraction tomography. Opt. Ex-
press, 23(13):16933-16948, Jun 2015.



162

[81] Tsung-Yi Lin, Michael Maire, Serge ]. Belongie, Lubomir D. Bourdev, Ross B. Gir-
shick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dolldr, and C. Lawrence
Zitnick. Microsoft COCO: common objects in context. CoRR, abs/1405.0312, 2014.

[82] Yifang Ma, Zhenyu Wang, Hong Yang, and Lin Yang. Artificial intelligence appli-
cations in the development of autonomous vehicles: a survey. IEEE/CAA Journal of
Automatica Sinica, 7(2):315-329, March 2020.

[83] Alex Matlock and Lei Tian. Physical model simulator-trained neural network for
computational 3d phase imaging of multiple-scattering samples. arXiv, 03 2021.

[84] Francesco Merola, Pasquale Memmolo, Lisa Miccio, Roberto Savoia, Martina Mug-
nano, Angelo Fontana, Giuliana D'Ippolito, Angela Sardo, Achille Iolascon, An-
tonella Gambale, and Pietro Ferraro. Tomographic flow cytometry by digital holog-
raphy. Light: Science & Applications, 6(4):e16241-e16241, October 2016.

[85] Gustav Mie. Beitrdge zur optik triiber medien, speziell kolloidaler metallésungen.
Annalen der Physik, 330(3):377-445, Apr 1908.

[86] Kristina Monakhova, Joshua Yurtsever, Grace Kuo, Nick Antipa, Kyrollos Yanny,
and Laura Waller. Learned reconstructions for practical mask-based lensless imag-
ing. Opt. Express, 27(20):28075-28090, Sep 2019.

[87] Matej Moravcik, Martin Schmid, Neil Burch, Viliam Lisy, Dustin Morrill, Nolan
Bard, Trevor Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deep-
stack: Expert-level artificial intelligence in no-limit poker. Science, 356, 01 2017.

[88] Paul Miiller, Mirjam Schiirmann, and Jochen Guck. The theory of diffraction tomog-
raphy, 2016.

[89] Tan H. Nguyen, Mikhail E. Kandel, Marcello Rubessa, Matthew B. Wheeler, and
Gabriel Popescu. Gradient light interference microscopy for 3d imaging of unlabeled
specimens. Nature Communications, 8(1), August 2017.

[90] Xiaoze Ou, Guoan Zheng, and Changhuei Yang. Embedded pupil function recovery
for fourier ptychographic microscopy. Opt. Express, 22(5):4960-4972, Mar 2014.

[91] Francesco Pampaloni, Bo-Jui Chang, and Ernst H. K. Stelzer. Light sheet-based flu-
orescence microscopy (LSFM) for the quantitative imaging of cells and tissues. Cell
and Tissue Research, 360(1):129-141, mar 2015.

[92] V.Y. Panin, G.L. Zeng, and G.T. Gullberg. Total variation regulated em algorithm
[spect reconstruction]. IEEE Transactions on Nuclear Science, 46(6):2202-2210, 1999.

[93] Ken Perlin. An image synthesizer. ACM Siggraph Computer Graphics, 19(3):287-296,
1985.

[94] M Persson, D Bone, and H Elmqvist. Total variation norm for three-dimensional
iterative reconstruction in limited view angle tomography. Physics in Medicine and
Biology, 46(3):853-866, feb 2001.



[95]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

163

Mikael Persson, Dianna Bone, and Hakan Elmqvist. Three-dimensional total vari-
ation norm for spect reconstruction. Nuclear Instruments & Methods in Physics Re-
search Section A-accelerators Spectrometers Detectors and Associated Equipment - NUCL
INSTRUM METH PHYS RES A, 471:98-102, 09 2001.

T. Pham, E. Soubies, A. Ayoub, J. Lim, D. Psaltis, and M. Unser. Three-dimensional
optical diffraction tomography with lippmann-schwinger model. IEEE Transactions
on Computational Imaging, 6:727-738, 2020.

William Pierré, Lionel Hervé, Cédric Allier, Sophie Morales, Sergei Grudinin, Shwe-
tadwip Chowdhury, Laura Waller, Christophe ARNOULIT, Pierre RAY, and Mag-
ali Dhellemmes. Deep learning framework applied to optical diffraction tomogra-
phy (ODT). In Thomas G. Brown, Tony Wilson, and Laura Waller, editors, Three-
Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XX VIII.
SPIE, March 2021.

William Pierré, Lionel Hervé, Cédric Allier, Sophie Morales, Sergei Grudinin, Pierre
RAY, Christophe Arnoult, and Magali Dhellemmes. 3D live cell imaging of whole
organoids in time-lapse using intensity diffraction tomography. In Marc P. Georges,
Gabriel Popescu, and Nicolas Verrier, editors, Unconventional Optical Imaging I1I, vol-
ume PC12136, page PC1213612. International Society for Optics and Photonics, SPIE,
2022.

William Pierré, Lionel Hervé, Chiara Paviolo, Ondrej Mandula, Vincent Remondiere,
Sophie Morales, Sergei Grudinin, Pierre F. Ray, Magali Dhellemmes, Christophe
Arnoult, and Cédric Allier. 3d time-lapse imaging of a mouse embryo using in-
tensity diffractiontomography embedded inside a deep learning framework. Appl.
Opt., 61(12):3337-3348, Apr 2022.

Boris Teodorovich Polyak. The conjugate gradient method in extremal problems.
USSR Computational Mathematics and Mathematical Physics, 9(4):94-112, 1969.

Daniel Potts and Gabriele Steifdl. A new linogram algorithm for computerized to-
mography. IMA Journal of Numerical Analysis, 21, 07 2001.

Malte Renz. Fluorescence microscopy-a historical and technical perspective. Cytom-
etry Part A, 83(9):767-779, April 2013.

Yair Rivenson, Tairan Liu, Zhensong Wei, Yibo Zhang, Kevin de Haan, and Aydogan
Ozcan. PhaseStain: the digital staining of label-free quantitative phase microscopy
images using deep learning. Light: Science Applications, 8(1), feb 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional net-
works for biomedical image segmentation, 2015.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386—408, 1958.



164

[106] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1):259-268, 1992.

[107] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1):259-268, 1992.

[108] David E. Rumelhart, Geoffrey E. Hinton, and Ronald ]. Williams. Learning repre-
sentations by back-propagating errors. Nature, 323(6088):533-536, oct 1986.

[109] Michael ] Rust, Mark Bates, and Xiaowei Zhuang. Sub-diffraction-limit imaging by
stochastic optical reconstruction microscopy (STORM). Nature Methods, 3(10):793—
796, aug 2006.

[110] DongHun Ryu, Young]Ju Jo, Jihyeong Yoo, Taean Chang, Daewoong Ahn, Young Seo
Kim, Geon Kim, Hyun-Seok Min, and YongKeun Park. Deep learning-based optical
field screening for robust optical diffraction tomography. Scientific Reports, 9(1), oct
2019.

[111] DongHun Ryu, Jinho Kim, Daejin Lim, Hyun-Seok Min, In Young Yoo, Duck Cho,
and YongKeun Park. Label-free white blood cell classification using refractive index
tomography and deep learning. BME Frontiers, 2021:1-9, jul 2021.

[112] Amirhossein Saba, Carlo Gigli, Ahmed B. Ayoub, and Demetri Psaltis. Physics-
informed neural networks for diffraction tomography, 2022.

[113] Vijay Sankaran, Charles M. Weber, Fred Lakhani, and Jr. Kenneth W. Tobin. Inspec-
tion in semiconductor manufacturing, December 1999.

[114] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pas-
canu, Peter Battaglia, and Timothy Lillicrap. A simple neural network module for
relational reasoning. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

[115] C.J.R. Sheppard and A. Choudhury. Image formation in the scanning microscope.
Optica Acta: International Journal of Optics, 24(10):1051-1073, 1977.

[116] Seungwoo Shin, Doyeon Kim, Kyoohyun Kim, and YongKeun Park. Super-
resolution three-dimensional fluorescence and optical diffraction tomography of live
cells using structured illumination generated by a digital micromirror device. Scien-
tific Reports, 8(1), jun 2018.

[117] Seungwoo Shin, Kyoohyun Kim, Jonghee Yoon, and YongKeun Park. Active illumi-
nation using a digital micromirror device for quantitative phase imaging. Opt. Lett.,
40(22):5407-5410, Nov 2015.

[118] Emil Y. Sidky, Chien-Min Kao, and Xiaochuan Pan. Accurate image reconstruction
from few-views and limited-angle data in divergent-beam ct. 2009.



165

[119] Bertrand Simon, Matthieu Debailleul, Anne Beghin, Yves Tourneur, and Olivier Hae-
berlé. High-resolution tomographic diffractive microscopy of biological samples.
Journal of Biophotonics, 3(7):462—-467, March 2010.

[120] M. Slaney, A.C. Kak, and L.E. Larsen. Limitations of imaging with first-order diffrac-
tion tomography. IEEE Transactions on Microwave Theory and Techniques, 32(8):860—
874, August 1984.

[121] Juan M. Soto, José A. Rodrigo, and Tatiana Alieva. Label-free quantitative 3d tomo-
graphic imaging for partially coherent light microscopy. Opt. Express, 25(14):15699-
15712, Jul 2017.

[122] Ferreol Soulez. Gauging diffraction patterns: field of view and bandwidth estima-
tion in lensless holography. Appl. Opt., 60(10):B38-B48, Apr 2021.

[123] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfit-
ting. Journal of Machine Learning Research, 15(56):1929-1958, 2014.

[124] Frederic Strobl, Alexander Schmitz, and Ernst H K Stelzer. Improving your four-
dimensional image: traveling through a decade of light-sheet-based fluorescence
microscopy research. Nature Protocols, 12(6):1103-1109, may 2017.

[125] David Strong and Tony Chan. Edge-preserving and scale-dependent properties of
total variation regularization. Inverse Problems, 19(6):5165-5187, nov 2003.

[126] Yongjin Sung, Wonshik Choi, Christopher Fang-Yen, Kamran Badizadegan, Ra-
machandra R. Dasari, and Michael S. Feld. Optical diffraction tomography for high
resolution live cell imaging. Opt. Express, 17(1):266-277, Jan 2009.

[127] Ahmad P. Tafti, Andrew B. Kirkpatrick, Jessica D. Holz, Heather A. Owen, and
Zeyun Yu. 3dsem: A 3d microscopy dataset. Data in Brief, 6:112-116, 2016.

[128] Waleed Tahir, Ulugbek S. Kamilov, and Lei Tian. Holographic particle localization
under multiple scattering. Advanced Photonics, 1(03):1, June 2019.

[129] Lei Tian, Xiao Li, Kannan Ramchandran, and Laura Waller. Multiplexed coded il-
lumination for fourier ptychography with an led array microscope. Biomed. Opt.
Express, 5(7):2376-2389, Jul 2014.

[130] Lei Tian, Ziji Liu, Li-Hao Yeh, Michael Chen, Jingshan Zhong, and Laura Waller.
Computational illumination for high-speed in vitro fourier ptychographic mi-
croscopy. Optica, 2(10):904-911, Oct 2015.

[131] Lei Tian and Laura Waller. 3d intensity and phase imaging from light field measure-
ments in an led array microscope. Optica, 2(2):104-111, Feb 2015.

[132] Lei Tian and Laura Waller. Quantitative differential phase contrast imaging in an led
array microscope. Opt. Express, 23(9):11394-11403, May 2015.



166

[133] Lei Tian, Jingyan Wang, and Laura Waller. 3d differential phase-contrast microscopy
with computational illumination using an led array. Opt. Lett., 39(5):1326-1329, Mar
2014.

[134] Peter J Verveer, Jim Swoger, Francesco Pampaloni, Klaus Greger, Marco Marcello,
and Ernst H K Stelzer. High-resolution three-dimensional imaging of large speci-
mens with light sheet-based microscopy. Nature Methods, 4(4):311-313, March 2007.

[135] Felipe Vico, Leslie Greengard, and Miguel Ferrando. Fast convolution with free-
space green’s functions. Journal of Computational Physics, 323:191 — 203, 2016.

[136] Curtis R. Vogel and Mary E. Oman. Iterative methods for total variation denoising.
SIAM J. Sci. Comput., 17:227-238, 1996.

[137] Olga V Volodina and https://pnojournal.wordpress.com/2022/07/01/volodina-
3/. Formation of future teachers” worldview culture by means of foreign-language
education. P Sci Edu, 57(3):126-159, July 2022.

[138] Zhuo Wang, Larry Millet, Mustafa Mir, Huafeng Ding, Sakulsuk Unarunotai, John
Rogers, Martha U. Gillette, and Gabriel Popescu. Spatial light interference mi-
croscopy (slim). Opt. Express, 19(2):1016-1026, Jan 2011.

[139] Emil Wolf. Three-dimensional structure determination of semi-transparent objects
from holographic data. Optics Communications, 1(4):153-156, 1969.

[140] Zihui Wu, Yu Sun, Alex Matlock, Jiaming Liu, Lei Tian, and Ulugbek S. Kamilov.
SIMBA: Scalable inversion in optical tomography using deep denoising priors. IEEE
Journal of Selected Topics in Signal Processing, 14(6):1163-1175, oct 2020.

[141] Guoan Zheng, Roarke Horstmeyer, and Changhuei Yang. Wide-field, high-
resolution fourier ptychographic microscopy. Nature Photonics, 7(9):739-745, jul 2013.

[142] Guoan Zheng, Christopher Kolner, and Changhuei Yang. Microscopy refocusing
and dark-field imaging by using a simple led array. Opt. Lett., 36(20):3987-3989, Oct
2011.

[143] Kevin C. Zhou and Roarke Horstmeyer. Diffraction tomography with a deep image
prior. Optics Express, 28(9):12872, April 2020.

[144] Kevin C. Zhou and Roarke Horstmeyer. Diffraction tomography with a deep image
prior. Opt. Express, 28(9):12872-12896, Apr 2020.

[145] Pan Zhou and Jiashi Feng. Understanding generalization and optimization perfor-
mance of deep cnns. CoRR, abs/1805.10767, 2018.

[146] Warren R Zipfel, Rebecca M Williams, and Watt W Webb. Nonlinear magic: mul-
tiphoton microscopy in the biosciences. Nature Biotechnology, 21(11):1369-1377, oct
2003.



	Acknowledgements
	Abstract
	Resume
	List of Figures
	List of Symbols and Abbreviations
	Introduction
	From standard microscopy to computational imaging
	Biological microscopy thanks to fluorescence imaging
	3D fluorescence imaging technique

	Quantitative phase imaging toward intensity diffraction tomography
	Thesis outline

	Monochromatic light scattering physics and GPU implementation
	From Maxwell to Helmholtz
	Plane waves and Fourier transform
	Plane wave definition
	Fourier transform
	Free propagation

	Extensive exploration of the Helmholtz equation
	Green's function
	Solution of the Helmholtz equation

	Numerical simulation with the 3D discretized Green's function
	Convolution
	Discretization and padding
	Results comparison
	Discussion on memory requirement

	Multi-slice model
	Multiple Born scattering (MBS)
	Beam propagation methods (BPM)
	Numerical implementation and discretization
	Results comparison

	Conclusion

	Appendix on light scattering physics
	Fourier transform of the Green's function
	Tilt transfer
	Propagation direction vector norm is constant for plane wave
	Gradient of Lippmann-Schwinger equation

	3D refractive index reconstruction for time-lapse imaging
	Optimisation for 3D reconstruction
	Optical light diffraction - Summary
	Reconstruction of an object as an inverse problem
	Reconstruction of an object as a minimisation problem
	First gradient descent
	Accelerate gradient descent

	Timelapse prototype
	Illumination and imaging component choice
	Raw image normalisation
	Reconstruction on calibrated micro sphere
	Lateral and axial Resolution
	Fixed embryo 3D reconstruction and aberration correction
	3D time lapse of in-vivo embryo
	3D time lapse of liver organoid
	Limitations of the imaging setup


	Appendix on 3D biological reconstruction
	Imaging with wider field of view

	Deep learning and Intensity Diffraction Tomography
	Deep learning: basics
	Machine learning
	Neural networks
	Dataset
	Convolutional neural network
	Image to image network and U-net
	GPU and training
	Overfitting

	Deep learning and tomographic reconstruction from scattering images
	State of the art
	Artefact correction from random stacked images as 3D biological volumes
	Artefact correction from simulated 3D biological volumes.
	Conclusion on deep learning for artefact correction


	Conclusion
	General conclusion
	Discussion


