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ABSTRACT

We aim at retrieving 3D refractive optical index (RI) of large samples (around 200 µm)

from Intensity Diffraction Tomography (IDT) where the dataset is obtained by recording

diffraction image with a variety of illumination angles. IDT targets biological imaging in a

label-free manner using the optical variation within the sample and multiple tilted imag-

ing to reconstruct the 3D map of RIs. However, standard IDT techniques reveal several

drawbacks in terms of limited field of view and feasibility of imaging living samples in

time-lapse conditions. We focused on time-lapse imaging of large sample (>200µm) with-

out the need of large NA objective or immersion oil.

The challenge created by the absence of the phase information (intensity only mea-

surements) as well as the limited illumination angle (low NA due to low magnification)

has been solved using a Beam Propagation Method (BPM) embedded inside a deep lean-

ing framework. The layers are encoding the 3D optical representation of the sample. Be-

sides, we included in the forward model the effect of the spherical aberration introduced

by the optical interfaces, which gave a strong impact on measurements under oblique il-

lumination in terms of 3D spatial resolution. Using this framework, we achieved 3D re-

constructions of mouse embryos (>100µm) in time-lapse conditions over 7 days, as well

as liver organoid. We could observe the intrinsic embryonic development from single cell

(low-scattering sample) to the blastocyst level (highly scattering sample) as well as the

rotational movement and growth rate of liver organoid. Such time-lapse yields quanti-

tative information on the development and viability of biological sample in view of the

sub-cellular imaging capacities. Our technology opens up novel opportunities for 3D live

cell imaging of whole organoids in time-lapse.

However, the use of a wide field of view inherently limits the maximum illumination

angle possible. This directly affects the 3D reconstruction as it generates an axial elonga-

tion of each object or inner substructure, leading to a poor axial resolution (10 times greater

than radial resolution) Motivated by the great results of Convolutional Neural Network
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in correcting reconstruction problem, we decided to apply deep learning methods to our

elongation problem. The idea of our process is to combine two learning methods each

proven to solve a different axial reconstruction issue. One network recovers the inner

structures; the other retrieves the global structure of the object. To ensure the continuity

of the CNN output along each direction the training is performed on 3D random synthetic

volumes. We will assess the quality of this learning method by checking its efficiency on

mouse embryo and prostatic organoid as well as many various synthetic data.
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RESUME

Le but de cette thèse est de reconstruire en 3D l’indice de réfraction de gros échantillons

biologiques (> 200 µm) grâce à de la tomographie de diffraction à partir d’image d’intensité

(IDT). L’information 3D est encodée dans une multitude d’images de diffraction à des

angles d’éclairage différents.

La tomographie de diffraction n’a pas besoin de fluorescence pour imager des échan-

tillons biologiques, elle se contente d’exploiter les changements de propriétés optiques

de l’échantillon pour en reconstruire une carte 3D de l’indice de réfraction. Comme les

techniques standards ont des champs de vue limités ainsi que des systèmes complexes

souvent non compatibles avec les incubateurs, on s’est principalement concentré sur la

création d’un système compact pouvant imager de gros échantillons (> 200 µm) sans huile

de couplage ni objectifs à forte ouverture numérique.

La complexité de la reconstruction 3D causée par une faible couverture angulaire (elle

même causée par une faible ouverture numérique d’objectif à faible grossissement), un

manque d’information (Image d’intensité uniquement, sans la phase) est grande. Afin d’y

parvenir, un modèle multicouche prenant en compte les diffractions multiples (le BPM)

a été implémenté dans une infrastructure logicielle d’apprentissage profond. Les aberra-

tions sphériques générées par des épaisseurs de verres non standards sont aussi prises

en compte dans le modèle direct. Cela nous a permis d’imager toutes les heures pen-

dant sept jours le développement d’un embryon de souris du stade unicellulaire au stade

blastocyste. Ces capacités d’imagerie ont aussi été validées sur des organoïdes de foie.

Ces timelapses apportent des informations quantitatives sur le développement et la vi-

abilité des échantillons biologiques. Cette technologie apporte de nouvelles possibilités

pour l’imagerie 3D en incubateur.

Cependant, l’utilisation d’un grand champ de vue limite la couverture angulaire ex-

ploitable. Cela affecte grandement les reconstructions 3D, qui se retrouvent étirées ax-

ialement, dégradant cette résolution. Motivé par de récentes utilisations de réseaux de
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neurones convolutifs dans le domaine de la correction d’artefact de reconstructions, nous

avons décidé de résoudre ce problème à l’aide d’une approche moderne par apprentis-

sage profond. L’idée principale est de combiner deux réseaux, un qui retrouve la forme

originale des structures intracellulaires, et un qui estime la forme extérieure de l’objet. Les

réseaux sont entraînés sur données simulées uniquement. Ces données sont produites

avec des objets 3D aléatoires mimant de possibles formes d’objets multicellulaires.

La généralisation de cet ensemble de réseaux est testée avec succès sur l’embryon à

différents stade de développement, mais peine à se généraliser aux organoïdes de foie.
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Chapter 1

Introduction

We live in a three dimensional world that is constantly evolving, changing and moving.

We started to observe and understand the world around us with our own eyes before re-

cently creating sensor to extend our own limited capabilities. Nowadays our synthetic

perception range goes from huge galaxy millions of kilometers away to individual atom.

This inaccessible information for our primitive senses was revealed thanks to a tremen-

dous amount of work in physics, engineering and computational power. Such progress

have radically changed our understanding of the world.

Microscopes are a part of the story and are deeply link to the stereotypes of scientist, if

we type science in google image, 25% of the images include a microscope on the first page.

The idea of seeing small object that are around us at every moment but that cannot be seen

with our bare eyes might explain this collective psyche. Looking through a microscope is

a way to ask a fundamental question about the life that surround us. The microscope char-

acteristics such as field of view or resolution mark the boundary of what can be questioned

and more importantly how precise will our answer be.

Over the past decade, microscopes became more sophisticated, more complex and

more demanding on the studied sample. In this thesis we will focus on gentle imaging

technique that are soft with the sample because we want to study the development of

1
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biological sample trough time without changing habits of biologist or perturbing their ex-

periments. Organoids or cell cultures are grown in incubator that are often not bigger than

a small fridge forcing us to use simple and compact hardware. This was made possible

only because of the progress in Computed Imaging where the final images are extracted

from the measurements using algorithms that rely on a significant amount of computing.

The microscope encodes the desired information, and the computational power is required

to decode the information.

Every Computed Imaging system is a set of three intrinsic parts that must be designed

as a whole. It is always composed of:

• An imaging system that can encodes the information

• A physical model of the imaging system

• A reconstruction algorithm to decode the desired information

This introduction is here to give a context to this thesis, starting with a brief history of

standard microscopy, before diving into 3D imaging of biological sample with fluorescent

markers. Finally, I will review the standard methods used in 3D phase imaging system

that relies on computed imaging system.

1.1 FROM STANDARD MICROSCOPY TO COMPUTATIONAL IMAGING

Before the invention of light microscopy, lenses had been produced for many centuries, but

their entire scientific potential had remained hidden. It all started in 1590 when Hans and

Zacharias put lenses in a tube to magnify object [1]. This invention remained unnamed

and we had to wait 1609 for Galileo to design its famous compound microscope and 1625

for Giovanni Faber to formulate the word describing Galileo invention: microscope.

Microscopes where then used for decades to unveil new insight in microbiology with

the invention of the word cell by Anton van Leeuwenhoek. He was known for polishing

and grinding his own lenses, greatly improving microscope quality at that time, enabling
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Figure 1.1: The Raleigh limit of resolution. NA is the numerical aperture of the objective,
λ the wavelength of the light source and η the refractive index between the object and the
objective.

him to see the many microscopic animals [49] and bacteria surrounding us. Even though

microscopic technique improved with the creation of Achromatic Lens in the 18th century,

their true theoretical modelling and technical limitation were introduced in the nineteenth

century with the famous diffraction limit theory.

The resolution of conventional light microscopes has an inherent limit; by working in

the "far-field", i.e. many wavelength away from the sample, the light diffraction becomes

significant. Using a microscope makes the feature of interest in the sample to scatter light,

this scattering creates blurry patches called Airy disks in Fig.1.1. The generally accepted

criterion for the minimum resolvable detail before two objects blur into each other is the

Raleigh criterion [36].

Nowadays CMOS sensor are still limited by the Raleigh criterion but they are more and

more efficient and capture directly the electromagnetic signal with a low noise to signal

ratio compare to our eyes. A signal that can be analyzed, filtered, or modified computa-

tionally to produce better image. Computational part emerged in every part of the micro-

scope, whether it is to control the auto-focus [77] [74] or the fluorescence wavelength. Such

computationally-assisted microscopes were optimised to be used through a computer and not

by a human operator. Even though it was not meant to be used by human, the output of

such microscope were high quality image directly understandable by a human.

On the contrary, computational microscopes need on top of the microscope a physical
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model of the setup as well as a reconstruction algorithm to produce human readable data

output. A simple example of a computational microscopes is the simplest modern microscope

possible the lens free microscope. The sample is placed on top of a CMOS sensors bellow

a LED without any lenses, the raw image is the scattering pattern created by the sample

as shown in Fig.1.2. Using a free space propagation model it is possible to compute back

what was the object that produces such pattern.

Figure 1.2: Example of a computed microscope The lens free microscope with its simple
setup.

1.2 BIOLOGICAL MICROSCOPY THANKS TO FLUORESCENCE IMAGING

Microscopes first intensive usage was for biological research with the publication of Mi-

crographia in 1665 [49]. It was then used in many other field such as material characteri-

zation [52] or monitoring of semiconductor chip manufacturing [113], but the main usage

remained biological imaging.

One of the key discovery that put microscopy as reference technique for biologist is

fluorescence labeling [102]. Fluorescent labels are nowadays the gold standard to label

cell unit depending on their intrinsic chemistry to unveil the interaction between various

cell parts inside a more complex organism. Fluorescence labeling binds fluorescent dyes

to functional groups contained in biological molecules so that they can emit light when

they are properly excited. The re-emitted light has a larger wavelength and this facili-

tates the imaging of the desired bio-molecule. The emergence of various fluorophores has

increased the number of possibilities for the sensitive detection of bio-molecules and mul-
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tiple fluorophores may be used simultaneously thus enabling biologist to analyse complex

interactions. It produces stunning results but it has also drawbacks. The fluorescence de-

grades over time: photobleaching occurs, i.e., fluorophores emit less and less light when

they are repetitively illuminated. The process to label the desired object is time consuming.

Finally, fluorophores only bind to a small amount of the desired cell substructures.

Figure 1.3: Illustration of the confocal microscopy. a) Commercial microscope ZEISS
LSM 980 b) Excitation and emission light pathways in a basic confocal microscope con-
figuration. c) Muscles of a Cyphonautes (aquatic invertebrate animal larva). Courtesy of
Dr. Bruno C. Vellutini for Nikon Small World 2018

Despite these drawbacks, its high signal to noise ratio and its single molecule high

sensitivity maintain fluorescence imaging as a standard. The three main techniques are the

confocal microscopy, the light-sheet microscopy and the multi-photon microscopy. All of

these techniques are intricately 3D and since most biological tissues and cells are inherently
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spatial (three-dimensional objects), it is particularly suited to biological imaging.

1.2.1 3D fluorescence imaging technique

The first used 3D microscopy imaging technique is confocal imaging, presented in Fig.1.3.

Its goal is to get rid off light that comes from out of focus plane. It is achieved with a

diaphragm in the conjugate focal plane [115] [2] [23](explaining the name "confocal"). The

volume to analyse is sensored one point at a time leading to time consuming acquisition

for wide 3D volume at high resolution. They remain widely used nowadays because of

their ease of use and manufacturing.

Figure 1.4: Illustration of the light sheet microscopy. a) Excitation light shaped in a thin
plane is in Blue and the emitted fluorescence light is in green. b) Commercial microscope,
ZEISS lightsheet 7 . c) Mouse embryo (day 12.5) stained for motor (red) and sensory (ma-
genta) nerves and nerve endings (cyan). Courtesy of Dr. Gist F. Croft Lauren Pietila, Dr.
Ali H. Brivanlou for Nikon Small World 2018

Multiple improvement have been brought to confocal imaging in order to reduce the

acquisition time or the photo bleaching of fluorophores due to the high amount of inci-

dent light required. The idea emerged to illuminate only a plane of the sample with sheet

shaped laser beam. In light sheet microscopy [134] [4] [124] the beam is shaped with a
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cylindrical lens into a thin plane orthogonal to imaging part as shown in Fig.1.4. The 3D

volume is created by stacking the imaged plane. The main advantages are to decrease the

imaging time as well as increasing the time of imaging for a sample. These setups are more

complex to build but the first commercial products arrived in the 2010s.

Figure 1.5: Illustration of a two photon microscopy. a) Schematics of a one and two photon
excitation strategy. b) Commercial microscope. c) Quantum dot fluorescence image of
mouse small intestine. Courtesy of Thomas J. Deerinck for photomicrography competition
2005

Other way of improving confocal imaging also emerged with two-photon [27] [28] [146]

and multi photon imaging [42] [29]. The idea behind this technique illustrated in Fig.1.5 is

that if a fluorophore can absorb a photon with wavelength λ1, it can also absorb 2 photons

simultaneously that have a wavelength λ2 as long as λ1 = 2λ2 and they arrive at the

same place, at the same time. This constraint is mostly respected in the focal plane of

the illuminated objective where the photon density is the highest. The acquisition time
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remains unchanged, but the contrast is largely increased since out of focus fluorescence is

merely excited. Another good point in that longer wavelength are used, enabling a deeper

penetration of the illumination light. Finally, the sensitivity of the microscope is increased

since aperture in the conjugate focal plan is no longer required. Finally, less light is used,

so photo-bleaching is reduced.

All these fluorescence imaging technique remained limited by the diffraction barrier un-

til 2006, the year of a general emergence of super-resolution microscopy for fluorescence

imaging. PALM [9], STORM [109], FPALM [46] enable the computation of images way be-

yond the diffraction limit by collecting a large amount of images, each having only some

isolated activated fluorophores as shown in Fig. 1.6.

Figure 1.6: Photo-Activable Localization Microscopy illustration a) Scheme of the PALM
technique b) Confocal and STORM images of nuclear bodies in Drosophila cells (unpub-
lished). Courtesy of CBS from CNRS

Biological fluorescence microscopy became a standard for the study of, often chemi-

cally cleared, cell cultures, organoids or embryos. Even though fluorescence microscopy is

widely used, it has inherent drawbacks.

• Natural auto-florescence is rare and most of the time the samples have to be labeled

or worst, genetically modified. It is then never possible to take images from the
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sample in its natural state.

• The dyes injection in the sample must be carefully executed with strict biological

protocols that are time- consuming.

• Fluorophores are not neutral in the biochemistry of the sample, they may induce

toxicity for two reasons. Either because they release toxic molecules for the sample,

or because their activation damages the sample tissue or molecules.

• Only some parts of a cell of organoid can be functionally activated with florescent

dyes, inherently limiting fluorescence imaging to theses parts as the other one a not

being observable.

• Fluorescence gives information about shape and density, but its is not a quantitative

imaging technique, unless special specific criteria are met [91].

• The number of fluorophores available is low and they respond to high energy pho-

tons (ultraviolet) that cause phototoxicity.

• The performance of a fluorophore degrades with time; it can be problematic when

studying a sample for long periods of time.

To overcome these drawbacks, other imaging techniques have emerged, like the quan-

titative phase imaging (QPI).

1.3 QUANTITATIVE PHASE IMAGING TOWARD INTENSITY DIFFRACTION TO-

MOGRAPHY

Quantitative phase imaging relies on the delays an illuminating field encounters as it

passes through the sample to reconstruct the structural information of the imaged sam-

ple.



10

The incident light encounters longer travel lengths in dense materials and the sample’s

non-uniform 3D distribution of its refractive index relative to its surrounding medium will

create temporal delays. Those delays create scattering pattern in the far field.

Depending on the intensity of the refractive index gap, the generated scattering can be

light or very strong to the point it can perturb significantly the illumination. Directly mea-

suring the phase of a incoming visible light field is not possible, that is why quantitative

phase imaging focuses on the delay introduced by the sample, measuring only the phase

shift ϕ compared to a reference field.

ϕ =
2π

λ
δnD

Here D stands for the thickness of the sample, δn if the refractive index gap with the

refractive index around the sample, λ is the wavelength of the incoming light.

Quantitative phase imaging is complex for two reasons; first the phase information that

is our value of interest is not accessible with common image sensor that only record the

intensity of light and not its phase. This can be solved with interferometric techniques for

example [62]. The second issue is the difficulty to separate the refractive index gap δn from

the sample thickness D when you have managed to record the phase-shift ϕ.

To overcome these complications QPI uses custom setup that encodes the phase infor-

mation inside the intensity image and that includes also 3D information about the object

to enable a 3D reconstruction of the refractive index gap [56].

These 3D QPI methods have been welcomed by the biology community as refractive

index imaging relies exclusively on the 3D shape of the imaged sample without having to

use contrast agents. This advantage over standard methods like fluorescence imaging is

important in the sense that the sample can be studied intact and not tampered by any kind

of toxic fluorescent dyes. This is crucial to truly understand biological life in its "natural"

condition.

The most mature system for 3D QPI is the Optical Diffraction Tomography (ODT).
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It uses scanned illumination angle coupled with an interferometric detection system to

directly capture phase information in the intensity measurements [139] [89] [126]

In the recent year, ODT’s hardware and reconstruction algorithms were improved,

widening its range of possibility in a compact and robust hardware that is commercialized.

The recent developments focused on the use of digital micromirror devices [117], annular

illumination [21] and reconstruction improvements through iterative [80] and learning-

based reconstruction methods [58] and automatic regularisation parameter tuning [25].

Most of this advancement made it possible for this technique to reach commercial success

[3] with application in Cell biology [116] [111], Microbiology [57] [63] etc. ...

Though ODT is the 3D QPI technique the most widely used, it has some drawbacks

that limit its utility in biological research. The first one comes from its use of laser-based il-

lumination for scanning the sample. Lasers have high spatial coherence and long temporal

coherence lengths that generates high quality interference fringes that enable to retrieve the

sample’s phase with high sensitivity. From this laser illumination comes coherent noise,

phase instabilities and complex system alignment protocol. The coherent noise comes from

unwanted interference that take the form of speckle. Moreover two-arm interferometer de-

sign can introduce phase offsets and inaccurate phase measurements if there are any route

length anomalies. This severe geometric constraint is only respected with very stable me-

chanical construction. Otherwise an extensive calibration procedure is needed to produce

accurate 3D QPI, these constraints may stop biological labs to build custom ODT installa-

tions. Commercial setup of ODT provides pre-calibrated, well-designed setups ready for

3D QPI, are still costly.

To overcome these limitations and make 3D QPI more accessible, a great amount of

work was done with standard transmission microscope and uncomplicated hardware mod-

ification. Intensity-only 3D QPI techniques, also known as Intensity diffraction Tomogra-

phy (IDT) get rid of the phase information from the measurement in exchange of a sim-

plified and more robust setup, like in Fig.1.7. The phase information is retrieved from

a variety of possible phase encoding strategies like sample scanning or rotating [39] [55]
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Figure 1.7: Modified inverted microscope for quantitative phase imaging from intensity
image only. Courtesy of Tianlab

[121], custom illumination [75] [13], pupil engineering [89] [138] etc. If the sample pro-

duces strong multiple scattering, iterative reconstruction algorithm with multiple scatter-

ing physical model [128] [15] [78] [58] [96] were developed. The computational times in-

creases strongly but with the emergence of GPU and efficient implementation of these mul-

tiple scattering model reconstruction can happen in quasi real time for time-lapse imaging.

1.4 THESIS OUTLINE

This thesis aims at providing a gentle microscope with a wide field of view (> 100× 100×

100 µm3) to image wide and thick biological samples. Fluorescence imaging is not an

option here because we want our microscope to be non-intrusive and to keep the sample

integrity. Quantitative phase imaging system are aligned with our vision of label free

microscopy, but in order to enhance the simplicity and usability of our imaging system

for biological study we want to keep the hardware as simple (and cheap) as possible to

maximise its range of usage possibility. That is why interferometric system were not used

as well as laser-based illumination.

Considering these constraints on the absence of staining agent, field of view, capacity,

resolution and imaging frequency we decided to design a LED array microscope, where
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the 3D distribution of the refractive index of the object is encoded in multiple intensity only

images for various illumination angles. Chapter 2 discusses the scattering of light with

various models that goes from the standard and simple born approximation toward an

iterative solving of the Helmholtz equation. A multi-slice model that accounts for multiple

scattering was chosen due to its higher performance for the desired discretization size.

Chapter 3 introduces some optimisation algorithms to recover the 3D refractive opti-

cal index volume of an object from multiple angle intensity-only-measurement. The al-

gorithms are formulated as inverse problems, and solutions are obtained through an op-

timization performed by gradient descent based solvers. We model the physics of light

scattering by using a deep learning framework, enabling automatic gradient propagation

and GPU acceleration. The reconstruction algorithm is validated on simulated and bio-

logical data. Finally, the time-lapse ability of the whole system is also validated with a

week-long 3D video of an mouse embryo developing.

Chapter 4 introduces Deep Learning with a short history and its key features that make

it so appealing in computer vision. First, a failure case is presented on the training of a 2D

Unet on random stack of random image. The complete reconstruction loop is applied to

the generated volume to create pairs of perfect and artefact full object. The neural network

then tries to go from the corrupted images to the real images.

A second attempt on synthetic 3D continuous volumes was successfully applied to the

complete time-lapse of mouse embryo.





Chapter 2

Monochromatic light scattering physics and GPU

implementation

The goal of this chapter is to show how to model the diffraction of plane wave by the

variation of the complex refractive index of a sample.

Multiple models have been introduced to describe the way light interacts with chang-

ing refractive index. This chapter will start with the Helmholtz equation that is the prob-

lem we are trying to solve and a brief reminders on plane wave and Fourier transform that

is fundamental before doing physical optics.

Then a reference model will be introduced, The LS model that solves interactively the

Helmotz equation. This model is complex to evaluate and takes a lot of computing power

but it is very accurate even with strongly scattering object.

Finally the usual models used in optical tomography will all be compared to this refer-

ence model to choose the most precise model for our discretization size.

2.1 FROM MAXWELL TO HELMHOLTZ

Lets consider a space Ω centered on O with direct orthonormal X, Y, Z axes. Any point

of this space will be noted r⃗ = (x, y, z). If ϵ(r⃗) and µ(r⃗) are respectively the permittivity

14
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and the permeability of Ω, macroscopic formulation of Maxwell equations in the absence

of free charges are:

∇⃗.E⃗ = 0 (2.1)

∇⃗.H⃗ = 0 (2.2)

∇⃗ × E⃗ + µ
∂H⃗

∂t
= 0 (2.3)

∇⃗ × H⃗ − ϵ
∂E⃗

∂t
= 0 (2.4)

where E⃗ is the electric field, and H⃗ is the magnetic field. More precisely, the rectilinear

components of E⃗ on X, Y, Z are respectively (Ex, Ey, Ez). Same notation will be used with

H⃗ : (Hx, Hy, Hz). Both E⃗ and H⃗ depends of the time t and the position r⃗.

For biological samples, media are generally dielectric, linear, isotropic so we will limit

our study to media with such properties. The linearity of the medium is satisfied if the

medium has all the usual linearity properties [40]. The isotropic property of the medium is

satisfied if ϵ and µ are independent of the polarization direction (E⃗ and H⃗ direction). The

nondispersive property is satisfied if ϵ is not function of the wavelength in a wavelength

region in which the wave propagates.

By applying operator ∇× on both side of Eq.2.2, by using the vector identity (∇⃗ × ∇⃗ ×

A⃗ = ∇⃗(∇⃗.A⃗)− ∇⃗2A⃗) and Eq.2.4, we get:

∇⃗ × (∇⃗ × E⃗) + µ
∂∇⃗ × H⃗

∂t
= ∇⃗(∇⃗.E⃗)− ∇⃗2E⃗ + µϵ

∂2E⃗

∂t2
= 0 (2.5)

where c is the vacuum propagation velocity defined by the relation ϵ0µ0c2 = 1. Eq.2.5 can
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be expressed with only c and the refractive index η =
√
ϵ/ϵ0 as:

∇⃗2E⃗ − η2

c2
∂2E⃗

∂t2
= 0 (2.6)

If we apply the same calculus to H⃗ we find the same exact equation:

∇⃗2H⃗ − η2

c2
∂2H⃗

∂t2
= 0 (2.7)

We can further notice that each component of H⃗ : (Hx, Hy, Hz) and E⃗ : (Ex, Ey, Ez)

obeys to the same scalar equation, for example with Hx:

∆Hx −
η2

c2
∂2Hx

∂t2
= 0 (2.8)

Therefore, we summarize the behaviour of the electromagnetic field by a single scalar

wave equation:

∆U(r⃗, t)− η(r⃗)2

c2
∂2U(r⃗, t)

∂t2
= 0 (2.9)

where U(r⃗, t) can be any of the electromagnetic field components.

This approximation is known as the scalar theory and it is widely used in optics, it

relies on the hypothesis that the spatial gradient of ϵ is small. As stated in the 3rd chapter

of Introduction to Fourier Optics [41], this approximation remains valid as long as the studied

structures are small compared to the wavelength.

As we aim at analyzing signal from diffraction measurements, light coherence is needed.

This explains the interest to consider monochromatic wave; for such a wave with fre-

quency f , U can be decomposed in spacial and temporal parts as:

U(r⃗, t) = U(r⃗).e−i2πft (2.10)



17

By injecting Eq.2.10 into Eq.2.9, we obtain:

∆U(r⃗)− 4π2f2η(r⃗)2

c2
U(r⃗) = 0 (2.11)

By introducing the wave vector k = 2πη/λ, and the wavelength λ = c/f , we can state

that each component of a monochromatic wave in a linear, isotropic, homogeneous, and

nondispersive medium abides by the equation:

∆U(r⃗) + k2(r⃗)U(r⃗) = 0 (2.12)

Please note that η(r⃗) is the complex refractive index, its real part represents the stan-

dard refractive index, used for example in the Fresnel’s law [30], while its imaginary parts

represents the absorption of the object[119].

Eq.2.12 is known as the Helmholtz equation and it may be difficult to interpret it. Even

though we know it contains everything about complex multiple scattering, Snell Descartes

refraction law etc, there is no notion of light rays, interfaces, refraction, reflections. Even

the simplest concept of propagation direction is not accessible. That is why a further de-

velopment of the Helmholtz equation is required.

The extended use of monochromatic wave in this chapter will bring us to use its Fourier

representation that is more compact. That is why before diving into Helmholtz equation,

we will start with reminders of plane waves and Fourier transform.

2.2 PLANE WAVES AND FOURIER TRANSFORM

2.2.1 Plane wave definition

Let consider a monochromatic plane wave U µ⃗ of frequency f , with equation:

U µ⃗(r⃗, t) = e2πµ⃗.r⃗.e−2iπft = e2iπ(µxx+µyy+µzz−ft) (2.13)
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where µ⃗ is the propagation direction. Such a wave propagates in a homogeneous medium

of refractive index η0 if its propagation direction verifies:

|µ⃗| = η0/λ (2.14)

as shown in Appendix A.3 and Eq.A.1. From the latter definition, we obtain that λ is the

wavelength of a plane wave propagating in the vacuum (η0 = 1) and η0/λ is the wave-

length of a plane wave propagating in a medium with optical index η0.

In the same way that the Helmholtz Eq.2.12 focuses only on the spacial part of the

scalar representation of the electromagnetic field, we will now focus on the spacial part of

the field of U .

U µ⃗(r⃗) = e2πµ⃗.r⃗ (2.15)

To illustrate the shape of plane waves as defined by Eq.2.15, let first consider the case

of a plane wave U µ⃗0 with µ⃗0 = (0, 0, η0/λ) as plotted in Fig.2.1 (amplitude and angle of

the complex field at Z = 0 its Fourier transform at Z = 0 as defined afterwards in section

2.2.2, and its angle a X = 0). The figure shows that, for this particular plane wave:

• the amplitude is constant everywhere, there is no attenuation,

• the phase along the Z direction enables us to visualize the wavelength,

• the propagation is along the Z direction,

• if the time was reintroduced by using Eq.2.13, we would find that it propagates along

increasing Z.

Let now consider the case of a plane waveU µ⃗1 with none null µ1y,U µ⃗1 = 1/
√
2(0, η0/λ, η0/λ).

As one may expect, this plane wave is propagating at 45° as shown on Fig.2.2.

A plane wave with wavelength λ propagating in a homogeneous medium, is entirely

defined by its propagation direction µ⃗. µ⃗ is a 3 dimensional vector, but due to the con-
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Figure 2.1: Plane wave along Z direction and its Fourier transform

straint of Eq.2.14, it can be characterised by only 2 numbers if we consider that the waves

propagates from the negative Z toward the positive Z. As Z axis will be used as the prin-

cipal direction of light propagation, plane waves will be expressed in function of its X and

Y direction: µ⃗ = (µx, µy,
√

n2
o
λ2

− µ2x − µ2y)

This formulation helps us to better understand 3D plane wave, since it is parameterized

only by two numbers (µx, µy), it is completely characterized in 2D. In other words, if we

know a plane wave on a 2D plane, we have all the information about its 3D behaviour.

Afterwards, by expressing any wave as a sum of plane waves (Fourier transform), we will

also be able to compute the light field Uz at a plane Z=z from the knowledge of the light

field U0 at position Z = 0 where we used the notation:

Uz : (x, y) 7→ U(x, y, z)

. These words explain why Fourier transform is at the core of physical optics.
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Figure 2.2: Plane wave along Y and Z direction and its Fourier transform

2.2.2 Fourier transform

In this part (µx, µy) 7→ Ũz(µx, µy) = FT2D(Uz)(µx, µy) are two notations for the 2D Fourier

transform of (x, y) 7→ Uz(x, y) defined as:

Ũz(µx, µy) =

∫
Uz(x, y)e

−2iπ(µxx+µyy)dx.dy (2.16)

With this definition, the inverse formula is:

Uz(x, y) =

∫
Ũz(µx, µy)e

2iπ(µxx+µyy)dµx.dµy (2.17)

In the same way that we can represent the wave U on the Cartesian axes of a direct

orthonormed system X , Y , Z, we can also express it on an other complete, orthonormed

system based on Fourier series.

The Fourier transform of Uz can be interpreted as the decomposition of the light field

U on a plane waves basis, which is parameterized by coordinates (µx, µy). For the case of a
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plane wave U µ⃗, Eq.2.16 shows that the Fourier transform of U µ⃗z is null for every direction,

except its own propagation direction µ⃗:

FT2D(U
µ⃗0
z )(µ⃗′) = e2iπµzzδ(µ⃗′ − µ⃗) (2.18)

where δ is the Dirac function. This situation was illustrated in Fig.2.1 for the case of a plane

wave propagating along Z axis and in Fig.2.2 for a plane wave tilted at 45°. In these two

cases, we see that the Fourier transforms of U0 are Diracs, centered on (0,0) in the first case

and shifted toward bigger µy in the second case.

From here it is clear that every Dirac in the Fourier transform is associated with a planar

wave.

2.2.3 Free propagation

In the case of homogeneous medium, it is useful to know how to propagate a wave from

one plane to another without having to know the field in every intermediate plane. For

example if a detector is placed far away from the simulated object, then it is expensive

and useless to simulate the light field in all the volume in between this object and the

detector. Other use cases are the multi-slices models, where a simulated object is sliced

into a discrete stack of 2d slices. Therefore it is necessary to be able to go from one slice to

the next. Such propagation are performed efficiently in the Fourier space.

Let us consider a light field U . We want to compute Uz from a known U0. Since U satis-

fies the Helmholtz equation (Eq.2.12), applying the Fourier transform (Eq.2.16) on Eq.2.12,

with homogeneous η = η0 leads to:

4π2
(
−µ2x − µ2y +

η20
λ2

)
Ũ +

∂2Ũ

∂2z
= 0 (2.19)

It is important to remember that each coefficient of the Fourier space represents a plane

wave satisfying the constraint Eq.2.14 which can be re-expressed as µ2z = −µ2x − µ2y +

η20/λ
2. By Using that latter equation and by looking for an exponential solution of the
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partial derivative equation (PDE) Eq.2.19, i.e.: Ũ = C1e
C2z with C1(µx, µy) and C2(µx, µy)

complex, Eq.2.19 becomes:

(2πµz)
2C1e

C2z + C2
2C1e

C2z = 0 (2.20)

This leads to setting C2 = 2iπµz , and since Ũ(µx, µy, 0) = Ũ0(µx, µy), the value for C1

is trivial: C1 = Ũ0(µx, µy).

Finally the relation between Ũ0 and Ũz is a product:

Ũz = Ũ0.H̃z (2.21)

where H̃z , is known as the spectro angular propagation kernel, defined by:

H̃z = e2iπµzz with µz =

√
n2o
λ2

− µ2x − µ2y (2.22)

Equivalently, field in the real space can be propagated from one Z-plane to another by

using:

Uz(x, y) = FT−1
2D (FT2D(U0(x, y)).H̃z) (2.23)

To obtain this formula no approximation of assumption has been made on top of those

used to obtain the Helmholtz equation, the homogeneity of the medium and the hypothe-

sis that the waves propagates from the negative Z toward the positive Z. This means that

we have an efficient and correct way to propagate light as long as the refractive index is

homogeneous. This propagation methods is know as the angular spectrum method. For

tilted plane wave, the edges of the simulated volume with scatter light [96], a solution to

this problem is known as tilt-transfer, see Appendix A, Section A.2.

In Fourier optics, the Fresnel approximation has been applied earlier to light propaga-

tion in free space [7]. The Fresnel kernel is expressed as follow:

H̃Fresnel
z = e

2iπη0z
λ e

−iπλz
η0

(µ2x+µ
2
y) (2.24)
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This operator is valid only if the size of the wave support (for example the size of an

aperture from which we want to find the scattering pattern) is small compared to the prop-

agation distance. An other way to understand what does Fresnel formulation approximate

is to see it as an approximation of the spectrum angular kernel for low (µ2x+µ
2
y) compared

to η2o
λ2

. Under this approximation we have that
√

η2o
λ2

− µ2x − µ2y ≈
ηo
λ − λ

η0

µ2x+µ
2
y

2 . If we inject

it in Eq.2.22 we get Eq.2.24, the Fresnel approximation. If we want a physical interpretation

of this approximation ( (µ2x + µ2y) <<
n2
o
λ2

) we have to remember that in the Fourier space

each point (µx, µy) represents a plane wave propagating along (µx, µy,
√

n2
o
λ2

− µ2x − µ2y).

This means that the previous approximation is valid only if the field is mainly composed

of waves that are propagating parallel or with a small angle to the Z direction. In most

cases with thick biological object and off axis illumination the Fresnel approximation does

not hold. That is why we will only use the spectro angular propagator.

2.3 EXTENSIVE EXPLORATION OF THE HELMHOLTZ EQUATION

The Helmholtz equation Eq.2.12 governs the physics of light propagation in free space as

we saw in §2.2.3 but also in complex media with non homogeneous optical index η(r⃗).

Here, we explain how the varying optical index affects light propagation.

In other words, we want to find the light field U , obtained by illuminating an object

defined with optical index η(r⃗) different of η0 in the space region Ω. We know that U

verifies ∆U + k2U = 0 and we suppose we also know the illumination, characterized by

the field Uinc that would exist if the object had the homogeneous optical index η0.

To find U , we follow a usual strategy which uses the notion of Greens’s function and

which applies for most partial derivative equations (PDE). The steps are summed up below

and developed in the remaining of the current section 2.3.

P0: Original problem: ∆U + k2U = 0 can be written as LU = S = 0 with L = ∆ + k2.

The operator L of the PDE is linear, NOT spatially invariant (because k depends of r⃗) and

has a NULL source terme S.
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P1: spatially invariant problem: To solve the original problem P0, we study the twin

problem P1, L0G = −δ, where L0 is chosen as spatially invariant and which has a source

term, a (minus) Dirac distribution located at 0⃗. The minus of the source term is used for

later convenience. Any solution G of the twin problem is called the Green’s function. It

allows to find the solution f of spatially invariant PDE with a non null source term S,

L0f = −S: f = S ⊛G. (⊛ being the convolution operator)

Resolution of the original problem: The original problem P0 is manipulated and refor-

mulated as P1. It allows to give the solution of P0 as a convolution of a source term and

the Green’s function.

Let develop the concept of Green’s function and apply this strategy to Helmholtz equa-

tion.

2.3.1 Green’s function

As we saw in the previous forewords, the concept of Green’s function is used to solve

PDEs, such as Eq.2.12 in particular.

2.3.1.1 Green’s function in a general case

Let L0 be a linear and spatially invariant operator. A Green’s function G is an impulse

response of L0 to a minus Dirac distribution (located at 0⃗), which is expressed as:

L0G = −δ (2.25)

The Green’s function analytical expression is known for multiple partial differential

equations, defined by the formula of L0. Such expression exists for the wave equation [6],

the Schrodinger equation [31], the Poisson equation etc. ...

Since the L0 is spatially invariant, G(r⃗ − r⃗0) is the solution of:

L0G(r⃗ − r⃗0) = −δ(r⃗ − r⃗0) (2.26)
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Finally since a extended source S may be expressed as S(r⃗) =
∫
S(r⃗0)δ(r⃗ − r⃗0)dr⃗0 =

S ⊛ δ, by linearity of L0,

f = S ⊛G (2.27)

is a solution of:

L0f = −S (2.28)

where ⊛ stands for the 3D convolution on Ω:

(A⊛B)(r⃗) =

∫
Ω
A(r⃗′)B(r⃗ − r⃗′)dr′ (2.29)

2.3.1.2 Spatial and frequency expressions of the Green’s function

In our case of Helmholtz equation in 3D homogeneous medium, the linear operator ∆+k20

is spatially invariant, and its Green’s function, G, is the solution of:

(∆ + k20)G = −δ (2.30)

which a solution is known and has the following analytical expression:

G(r⃗) =
eik0|r⃗|2

4π |r⃗|2
(2.31)

Note that G, defined as a solution of Eq.2.30 is not unique because any solution G0

of (∆ + k20)G0 = 0 may be added. G + G0 would still be solution of Eq.2.30. To get

unicity for G, additional constraint should be introduced. In our case, it is the physics

consideration stating that diffracted light should tend toward 0 at infinity. With such an

implicit constraint added to Eq.2.30, Eq.2.31 is unique.

As we will see afterwards (in §2.4), we are interested by the Green’s function expressed

in the Fourier space in order to perform convolution operations efficiently. The 3D Fourier

transform of the Green’s function, G̃(µx, µy, µz), is demonstrated in Appendix A.1. As
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formulated in the same way as Vico et al [135], we get:

G̃(µ⃗) =
1

k20 − 4π2µ⃗2
(2.32)

Another form of the Green’s function, expressed with mixed coordinates in real and

Fourier space, G̃(µx, µy, z), will be needed in section §2.5. Since G̃(µx, µy, z) is the in-

verse Fourier of Eq.2.32 with respect to µz , by using the usual Fourier transform formula:

TF1D[z 7→ e−|a|z](µz) =
2a

a2+4π2µ2z
, and by taking a = 2iπ

√
η20/λ

2 − µ2x − µ2y, we get:

G̃z(µx, µy) = G̃(µx, µy, z) =
iλ

4πη0C
e2iπz

√
η20/λ

2−µ2x−µ2y (2.33)

where C = λ
η0

√
η20/λ

2 − µ2x − µ2y is the cosine of the angle between Z and the propaga-

tion vector the wave (µx, µy, µz(µx, µy)) which can propagate inside the medium with the

optical index η0.

We recognize the free propagation kernel as already seen in Eq.2.22, therefore we can

write:

G̃z =
iλ

4πη0C
H̃z (2.34)

2.3.2 Solution of the Helmholtz equation

Our goal is to express the total field U inside Ω knowing the incident field Uinc and the

refractive index η. We arbitrary separate the total field in two parts, the incident wave as

it would propagate if the refractive index was to be constant Uinc and the wave diffracted

by the sample Udif .

U(r⃗) = Uinc(r⃗) + Udif (r⃗) (2.35)
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2.3.2.1 Lippmann-Schwinger

We recall that, for a monochromatic wave, U verifies Eq.2.12:

∆U + k2U = 0 (2.36)

whereas the illuminating wave verifies:

∆Uinc + k20Uinc = 0 (2.37)

By adding −k20Uinc on both side of Eq.2.36 and subtracting Eq.2.37 we get:

∆(U − Uinc) + k20(U − Uinc) = −(k2 − k20)U (2.38)

Using Eq.2.35, Eq.2.38 can be rewritten as:

∆Udif + k20Udif (r⃗) = −(k2 − k20)U (2.39)

Udif is governed by a homogeneous equation with a source term (k2 − k20)U . k2 −

k20 is called the scattering potential. According to §2.3.1.1, Udif can be rewritten with a

convolution as:

Udif = ((k2 − k20)U)⊛G (2.40)

Finally, by using Eq.2.35 and Eq.2.40, we get the Lippmann-Schwinger solution of

equation Eq.2.12

U = Uinc + ((k2 − k20)U)⊛G (2.41)

or fully developed, the expression becomes:

U(r⃗) = Uinc(r⃗) +
1

λ2

∫
Ω
(η2(r⃗′)− η20)U(r⃗′)

eik0|r⃗−r⃗
′|

|r⃗ − r⃗′|
dr⃗′ (2.42)
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Since the Green’s function is spherical, the geometrical interpretation of Eq.2.41 or Eq.2.42

is that each point of the source term S emits a spherical wave. The sum of all the emitted

spherical waves creates the total wave.

One could think that the problem is solved, but since U appears in both the left and

right sides of Eq.2.41 or Eq.2.42, U cannot be determined in a simple manner.

2.3.2.2 1st Born approximation

An elementary way to get a first order approximation to compute the Lippmann-Schwinger

solution is to assume that the object is weakly scattering. If the scattering potential of the

object is small then the diffracted wave will be small compared to the incident wave. This

is implemented by replacing U by Uinc in Eq.2.40:

Udif =
(
(k2 − k20)Uinc

)
⊛G (2.43)

This formulation called the “first Born approximation" [43] allows for an efficient way

to compute the diffracted field but relies on strong approximations that are often not valid

[73]. Indeed, a wave that diffracts in the object will not interact again with the object.

The validity of such an approximation has been well studied [69] and it is known that for

biological imaging, objects bigger than a few microns produce scattering waves as intense

as the incoming wave and cannot be neglected.

2.3.2.3 Rytov approximation

For optically thicker objects, object with a phase-shit introduced by the sample of more

than a wavelength, an other approximation is widely used which yields better results [84].

The Rytov approximation [26] is expressed by:

U(r⃗) = Uinc(r⃗)e
ψ(r⃗) (2.44)

with the complex phase ψ(r⃗) defined by:
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ψ(r⃗) =
Udif (r⃗)

Uinc(r⃗)
(2.45)

Interestingly, the Born approximation can also be view as a first order development of

the exponential inside Eq.2.44. Indeed if |Udif (r⃗)| << |Uinc(r⃗)| then |ψ(r⃗)| << 1 and since

ex ≈ 1 + x if x << 1:

U(r⃗) ≈ Uinc(r⃗)(1 +
Udif (r⃗)

Uinc(r⃗)
) = Uinc(r⃗) + Udif (r⃗) (2.46)

The global approximation for Born and Rytov is the same: U/Uinc ≈ 1. The main

difference is that Born is formulated as a sum between the incident wave and the diffracted

wave whereas Rytov is formulated as a product with an exponential. Rytov approximation

is better than Born approximation for thicker and more scattering object [120] but it still

fails to model correctly highly scattering object [120].

2.3.2.4 Iterative resolution of the Lippmann-Schwinger equation

In order to capture all the complexity of multiple scattering sample, the Lippmann-Schwinger

Eq.2.40 has to be directly solved. It has no analytical solution in general except for particu-

lar geometries such as those describing homogeneous cylindrical objects or homogeneous

spherical objects [5].

In the general case, the diffraction can be computed, with a precision as good as de-

sired, by numerical means. U is formulated as the solution of a minimization problem

which can be found by a minimization procedure such a the gradient descent method (de-

tails in Section 3.1.4 ).

If we introduce the linear operator Lf associated to the scattering potential f = k2−k20 :

Lf : X(r⃗) −→ X(r⃗)−
∫
Ω
X(r⃗).f(r⃗).G(r⃗ − r⃗′)dr′ (2.47)



30

We notice that the Lippmann-Schwinger Eq.2.41 can be expressed as:

LfU − Uinc = 0 (2.48)

U is the solution of a linear system of high dimension which is usually tackled by using

an iterative method. An overview of such the method is the following: we start by taking

an initial guess on the total field, U0. Then, at each iteration n, an error ϵ is computed on

how wrong the total field Un is. From this error, a gradient ∇ϵ is computed in order to give

information on how variation δUn of Un influences ϵ, (see §2.3.2.4.1). From this gradient

and the current value of the total field, a step of the optimisation algorithm is performed.

The simplest update is a gradient descent where Un+1 = Un − α∇ϵ.

2.3.2.4.1 Gradient expression The gradient ∇ϵ of a real scalar function ϵ(U), is a vector

which connects variation δϵ of ϵ to variation δU of its variables. When U is a complex

vector, ∇ϵ is also a complex vector with the same dimension as U and is defined by:

δϵ = Re(⟨∇ϵ∗, δU⟩) (2.49)

In our case, we aim at finding a field U which verifies Eq.2.48 as closely as possible.

The easiest way to measure the goodness of U is the squared of Eq.2.48 integrated on all

the domain Ω:

ϵ(U) =
1

2

∫
Ω
(LfU − Uinc)

2 =
1

2
⟨LfU − Uinc, LfU − Uinc⟩ (2.50)

With this definition, “The more ϵ(U) is close to 0, the better U is solution of Eq.2.48.”. By

using the calculus of Appendix A.4, Eq.A.3 allows to extract the gradient:

∇ϵ = LHf (LfU − Uinc) (2.51)
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With:

LHf : Y (r⃗) −→ Y (r⃗)−
∫
Ω
Y (r⃗).f∗(r⃗).G∗(r⃗ − r⃗′)dr′ (2.52)

2.3.2.4.2 Detailed algorithm for forward LS computation Now that we have all the

pieces to solve the LS equation, the full reconstruction algorithm is detailed below:

Algorithm 1 LS solve (η, Uinc, Niters)

Initialize U1 = 0 and b0 = 1 and p0 = p1 = 0
for ni = 1, 2, . . . , Niters do

bni =
1+

√
1+4b2ni−1

2

Uni+1 = Uni +
bni−1−1

bni
(Uni − Uni−1) – Nesterov acceleration

∇ϵ = LHf (LfUni+1 − Uinc) – Compute the gradient toward ϵ
Uni+1 = Uni+1 − σ∇ϵ – Update the field U

end for

For objects that mimic biological samples with variation of refractive index difference

bellow 0.1, we found that a good convergence is obtain with only 30 iterations with a

gradient descent step σ = 0.3.

2.4 NUMERICAL SIMULATION WITH THE 3D DISCRETIZED GREEN’S FUNC-

TION

In the previous chapter we claimed that the Lippmann-Schwinger (LS) equation was solved

for low scattering sample, and a more complex iterative process has been presented to

solve the LS equation even for highly scattering object. But all of those solution were based

on Continuous Convolution Operation (CCO). Even though such convolution (CCO) are

convenient for solving ordinary differential equation they are known to be challenging to

work with. The main issue is to determine the range of integration and the appropriate

integrand for analytical solving. In our case we are lucky since we will not have those

issues.
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2.4.1 Convolution

Convolution has been used first in 1760s by Euler (L. Euleri, Institutionum Calculi Inte-

gralis, vol. 2. Petropoli: Impensis Academiae Imperialis Scientiarum, 1768.), but it was

not until the end of the 19th century that it received its first name. At the beginning of

the 20th century, it earned a general name, “convolution product" in English, “faltung" in

German (G. Doetsch, Theorie und Anwendung der Laplace-Transformation. New York:

Dover, 1943. p 157). The lack of interest in convolution (it took almost 2 centuries before

it was specifically named) in the 18th and 19th century was balanced by the 20th century

with the apparition of the convolution theorem.

The convolution theorems states that, under suitable conditions, the convolution of two

functions (or signals) is the inverse Fourier transform of the point wise product of their

Fourier transforms. The importance of convolution theorems is that they allow computing

the corresponding convolution indirectly through fast Fourier transform (FFT).

2.4.2 Discretization and padding

Instead of working with continuous function and convolution, all the numerical simula-

tion and reconstructions will be performed with discretized field and Fast Fourier Trans-

form.

In order to do the numerical computation, one will have to work on a discrete bounded

3D space. The easiest model is a cubic volume divided uniformly in cubic voxels lying on

a regular mesh of size n × n × n. The sides of the voxel are dv × dv × dv Let x3D, y3D and

z3D be the 3D matrices of the coordinates on a mesh as defined above, centered on (0, 0, 0).

Let use the symbols × for the conventional matrix product and . for the pointwise product.

For example, the 3D complex matrix of a unitary plane wave that propagates along the

direction k⃗ = (kx, ky, kz) is:

U
k⃗
= ei(kxx3D+kyy3D+kzz3D) (2.53)
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The discretization of the simulated object is straightforward, one just have to take the

value of the refractive index at every point of the discretized volume to create the 3D

matrix of the refractive index η3D. From which the 3D matrix of the scattering potential is

generated by: f3d =
(
2π
λ )2(η23D − η20)

Because of the singularity of the Green’s function (Eq.2.31) and its Fourier transform

(i.e. from Eq.2.32, ˜G(µ) = 1
k20−µ2

), G3D (the 3D matrix of the discretized Green’s function)

cannot be defined through a naive discretization of G(r⃗). In the next section, we will

describe how G3D has to be defined in order to minimize the approximation error with

respect to the continuous model (Eq.2.31).

2.4.2.1 discretization of the Green’s function

This section is mainly based on the work of T.-A. Pham et Al [96] and Vico et al. [135].

2.4.2.1.1 Truncated Green’s function The refractive index is assumed constant outside

of the region of interest Ω. This is convenient in the way that we can work not with the full

Green’s function but with a truncated version Gt:

Gt(r⃗) = rect

(
∥r⃗∥

2
√
3L

)
G(r⃗) (2.54)

With rect defined as such: rect(x) = {1 if ∥x∥< 0.5, 0 otherwsise}, and L = n ∗ dv, the

size of the volume.

Fig.2.3 is a visual representation in 3D of why the Green’s function only have to be

considered inside a sphere of radius
√
3L. This truncated Green’s function still has a sin-

gularity, but not its Fourier transform. That is satisfactory since the convolution will be

computed as pointwise product in the Fourier space, That is why we are more interested

about getting a correct discretization in the Fourier space than in the spatial domain.



34

Figure 2.3: Visual representation of the volume used during a convolution with the 3D
Green’s function and f that has a finite support Ω

Fourier transform of the Green’s function G̃t(r⃗) is:

G̃t(r⃗) =
1

∥r⃗∥2−k20

(
1− ei

√
3Lk0(cos(

√
3L∥r⃗∥)

+ik0
√
3L sinc(

√
3L∥r⃗∥)

)) (2.55)

The apparent singularity when ∥r⃗∥2= k20 is inconsequential. Indeed it can be extended

by continuity when ∥r⃗∥2= k20 with:

G̃t(r⃗) = i

(√
3L

2k0
− ei

√
3Lk0

2k20
sin
(√

3Lk0

))

Now that G̃t(r⃗) is smooth, its discretization is straightforward, and will be noted G̃4p
3D.

The 4p is there to point out that a 4 time padding around Ω is required in order to be

coherent with our initial support size for Gt(r⃗) as shown on Fig.2.3. If we want to be

more precise, since the support diameter of Gt(r⃗) is 2
√
3L ≈ 3.4L, a 3.4 time padding

should be sufficient. But it is more commun to work with an integer padding number. A
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4 times padding in 3 dimensions means that if we want to simulated a volume Ω with a

size n×n×n, we need to do all the computations (FFT, compute of Green’s matrix etc) on

matrix of size 4n × 4n × 4n. This matrix is 64 times bigger that its un-padded pair. This

means that the memory consumption can become very intense, and limit the simulation

capacities. On the computational burden side, what used to takes minutes on an unpadded

volumes, now takes hours. Favorably for us, an equivalent truncated Green’s function but

that only requires a 2 times padding exists.

2.4.2.1.2 Green’s function pre-computation for only 2 times padding T.-A. Pham et Al

[96] show that using the previous truncated Green’s function with a 4 times padding is

equivalent as using the following modified Green’s function with a 2 times padding:

G2t(r⃗) =
8
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∑
s⃗∈[[0;1]]3

F−1
(
G̃t([2 · −s⃗]

)
[r⃗]e

−iπ
n
r⃗.s⃗

This modified kernel is smooth just as the truncated Green’s function, so the discretiza-

tion will not be an issue, the discrete modified Green’s function notation is: G2p
3D. The first

thing to notice is that this time the modified Green’s function is defined in the spatial do-

main. To use it inside the convolution theorem, one has to take its Fourier transform, or in

the discretized world, its Fast Fourier Transform: G̃2p
3D = FFT (G2p

3D)

Since it is defined on the spatial domain, a graphical interpretation is possible on why

adding and translating can reduce the padding requirement (see Fig. 2.4).

The main advantage of using the translated Green’s function is to fill more efficiently

the simulated space Ω with the simulated object f. Fig.2.4 shows a 2D illustration. Of

course, in our case in 3D, it is not 4 but 8 Green’s functions that are used to filled a cube

instead of 4 circles used to fill a square.

Before detailing the final discretized equation to compute Born or Rytov or LS model,

a last way to discretize the Green’s function has to be presented. It is not supported by

strong mathematical theory but it behaves notably well. The idea for this third Green’s
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Figure 2.4: Graphical interpretation of the modified Green’s function

discretization is to truncates the Green’s function numerically.

First a naive discretization of Eq.2.31 is performed, noted Gn_ut
3D with “n_ut" for naive

un-truncated. We said earlier that we could not discretized it because of its singularity,

but most of the time no voxel actually hits the singularity, and even if one voxel goes to

high or NaN it can be replaced by any arbitrary “big" value, for example 1e10. Then this

matrix goes trough an exponential decay on the edge thus creating our final naive Green’s

function: Gnt3D

After describing 3 way to discretized the Green’s function, a naive discretization with

an numerical exponential decay on the edge, a truncated Green’s function with the rect(.)

function, and a ’P2’ truncated Green’s function that only needs a 2 times padding.

In order to visualize each Green’s function discretization we will used the intensity of

it. The intensity of a complex field or a complex kernel is defined as such:

I(U) = |U |2 (2.56)

In the Fourier space, the behaviour for µz = 0 and µz = 2η0λ frequency of G̃2p
3D, G̃4p

3D and

Gn_ut
3D is shown on Fig.2.5
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Figure 2.5: Green’s function kernel in the Fourier space for 3 different discretizations

2.4.3 Results comparison

Since the First Born and Rytov approximation are based on a low-scattering approxima-

tion, we will use a highly scattering sphere to understand the limitations of such model,

and the performance of the direct solving of the Lippmann-Schwinger equation. The main

advantage of simulating a sphere is that the Mie theory [85] provides an analytical solution

against which we can compare the 3 models detailed previously.

Figure 2.6: Light diffraction by 3 different models of a 3 µm radius sphere of refractive
index 1.4 in a 1.33 refractive index medium with the P2trunc Green’s function

On Fig.2.6 the First Born approximation fails to model how this highly scattering sphere

diffracts light. Even from the left part of the sphere we can see that the field intensity is
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too high. This might be related to the fact that the Born approximation does not conserve

energy. Indeed the final field has more energy than the incoming field, this extra-energy is

found inside and after the sphere.

The Rytov approximation does conserve energy and it looks less wrong, but it does not

predicts correctly the destructive interference nor the maximal energy locations.

Finally, and as expected, the LS models looks close to the MIE theory, LS is the most

accurate model we present in this document. To study the influence of the Green’s kernel

discretization we will use this model that is well describing the underlying physic.

Figure 2.7: Light diffraction by 3 different discretizations of the Green’s function of a 3 µm
radius sphere of refractive index 1.4 in a 1.33 refractive index medium

On Fig.2.7 the first image is the intensity of the field according to the MIE theory,

whereas the other plots are the absolute error between the MIE theory and the LS model

with the chosen discretization.

All discretizations behave the same in the center of the field. For the truncated Green’s

function the error approximation rises higher than the 2 others on the edge of the simu-

lated field. This might explain why a 4 times padding is required with this discretization

against only 2 with the P2 pre-computed Green’s function. For the naive ED (exponential

decay) Green’s function no theoretical value for padding exists, but it looks like it behaves

comparably to the P2 Truncated Green’s function.

As long as the discretization is fine enough (and avoids singularity) the prediction error

comes most from the model chosen to model light than the chosen discretization method.

The LS model is more accurate than Born or Rytov, but it takes roughly 30 times longer to

compute.
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2.4.4 Discussion on memory requirement

From the previous section one could think that the LS model in almost perfect and could

easily be used to simulate light scattering in the biological objects, like embryos. But in

order to image an embryo, we need to simulate a 100 × 100 × 100 µm3 or bigger volume.

Considering the need of using a 2 times padding on top of a λ/4 discretization in all di-

mension (according to Fig.2.9 that will be introduced later in section 2.5), we can say that

the simulation matrix would have a size of 1500× 1500× 1500. This takes up to 27 Gb for

one single field stored on double float. If we take into account that at least 6 fields need

to be kept in memory (Uin, Udif , error, gradient, Green’s function, scattering potential), we

understand that it is not feasible to model such a big object with this model.

If we consider this time a 10 × 10 × 10 µm3 volume, everything can be easily done on

the GPU since the 6 required fields would only take 0.16Gb if stored on double float.

New model need to be considered in order to simulate wider field of view to image

large object.

2.5 MULTI-SLICE MODEL

The main idea behind this section is that merely no reflection occurs in biological samples

where optical index varies in a small range (1.33-1.35). Such a knowledge comes from the

exact theory of Mie [5] or from Lippmann-Schwinger simulations. Therefore, we will make

the approximation that light field completely propagates with increasing Z. So instead of

considering the 3D field and its 3D diffraction, we will to compute the field slice after slice.

2.5.1 Multiple Born scattering (MBS)

From Eq.2.23 it is easy to propagate a wave between two planes if the refractive index is

constant in between. Now we will detail the calculus to take into account a non-homogeneous

refractive index.

According to the Lippman-Schwinger equation Eq.2.41, if f = k2 − k20 is the scattering
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potential, after developing the convolution we get:

UZ = UincZ +

∫
dz (fzUz)⊛2D GZ−z

where, we use the notation that, for any function with 3D variables g, we call gz the func-

tion of 2D variables such as g(x, y, z) = gz(x, y). By using the convolution theorem and the

Eq.2.34 (Green’s function with mixed variables), we obtain:

ŨZ = ŨincZ +
iλ

4πη0C

∫
dz.TF [fzUz] H̃Z−z

To extend this continuous formulation to a multi-slice one, we need to assume that the

field is mainly propagating along the Z direction. Enabling us to replacing the integral

that is continuous by a sum over P discrete planes separated by a distance ∆z. If we now

use the z-discretization convention, where gp := gp∆z , the previous equation with
∫
dz

replaced by Σp∆z becomes:

ŨP = ŨincP +
iλ

4πη0C

p=P−1∑
p=0

∆z.TF [fpUp] H̃P−p (2.57)

and at plan P+1:

ŨP+1 = ŨincP+1 +
iλ

4πη0C

p=P∑
p=0

∆z.TF [fpUp] H̃P+1−p (2.58)

Uinc is the unperturbed wave propagating inside the medium with homogeneous op-

tical index η0, so it follows the theory of the free propagation we saw in §2.2.3. We have

then: ŨincP+1 = ŨincP .H̃∆z . By looking at Eq.2.23, we see that the same is true for HZ , we

have H̃P+1 = H̃P H̃∆z . From these remarks, we deduce that:

ŨP+1 = (ŨP +
iλ∆z

4πη0C
.TF [fp.UP ]).)H̃∆z (2.59)
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This multi-slice iterative way to model light scattering was introduced by Michael

Chen et Al. [12] in 2020, to the best of my knowledge they arrived to this model by trying

to introduce Born diffraction (forward and backward scattering) at each slice in order to

improve their previous model. Here we detailed all the approximation required to go from

the Helmholtz equation to this multiple Born scattering (MBS) model. The only assump-

tions that we use are that the refractive index varies slowly in the Z direction and that the

field propagates mainly in the Z direction. This is mainly correct if the Z discretization is

thin enough, and if the backward scattering is low.

2.5.2 Beam propagation methods (BPM)

The previous model detailed in Eq.2.59, can be simplified again if we consider that the

light in mainly propagating with small angle with the Z direction and that the refractive

index of the object stays close to the medium refractive index.

Using those 2 assumptions, C can be approximate to be constant, C ≈ 1 and fp =

4π2/λ2(n2p − n20) ≈ 8η0π
2δnp/λ

2, with δnp = (np − n0), this leads to this recurrent formula-

tion:

ŨP+1 ≈
(
ŨP + TF

[
2iπη0δηP∆z

λ
UP

])
H̃∆z

ŨP+1 ≈ TF

[
UP

(
1 +

2iπη0δηP∆z

λ

)]
H̃∆z

And by using the approximation: exp(u) ≈ 1 + u, we get the final equation:

ŨP+1 ≈ TF

[
UP exp

(
2iπ

η0δηP∆z

λ

)]
H̃∆z (2.60)

This formulation from Eq.2.60 can be physically interpreted. The field UP+1 at the (P +

1)th plane is computed from the field UP at the the P th plane as an optics physicist would

expect. The field UP enters in the medium slice P of thickness ∆z and of optical index
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ηP . So, the optical length seen by the wave inside this slide is ηP∆z and the optical path

difference (compared withUinc) is δηP∆z. Since the wavelength inside the medium is λ/η0,

we expect a phase shift of 2πη0δηP∆z/λ. Finally this phase-shifted field is propagated ∆z

further with the spectro angular propagator (with tilt transfer, see A.2). This formulation

which takes into account multiple scattering has been around since 1970 [33]. It is normally

presented as an independent model, but just as the multiple Born model, everything can

be deduced from the Helmholtz equation and some approximation.

Even though the beam propagation methods (BPM, detailed in Eq.2.60) can model mul-

tiple scattering they have flaws: BPM is inaccurate when the refractive index does not vary

smoothly on the Z axis. Due to the paraxial approximation, predictions lose accuracy for

high angle illumination. And finally it does not model backward scattering at all. MBS

address the last two problems (backward scattering and high angle of illumination).MBS

is also more accurate in low angle illumination. Indeed in the same way that Rytov model

is more accurate than first Born, the use of the exponential formulation instead of its first

order expansion helps the BPM to deal with optically thicker slices.

2.5.3 Numerical implementation and discretization

Since the two previous models formulations only present kernels that are continuous, the

discretization process will be much less complex that with the 3D Green’s function.

The direct model computes the output field from a list of Nz slice of arrays of size

N ×N . We call Wk (as “weight”) the variable that stores the variations of refractive index.

This corresponds to the discretization of the continuous function δηk.

The incoming complex field U0 is a N × N complex field. We assume that we are far

enough from the source for the incoming field to be a plane wave with constant phase

and unitary amplitude. Then from the incoming field, all the intermediate fields will be

computed recursively. Field Uk at the entrance of the kth slice of the object, is computed as

such ( . denotes element wise multiplication of matrices).

For the BPM model, where Fk stores the scatterring potential:
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Uk+1 = FFT−1
2D

[
FFT2D

[
Uk.e

2iπη0Wk∆z

λ

]
.e2iπ

√
(
η0
λ
)2−µ2x−µ2ydz

]
(2.61)

For the MBS model:

Uk+1 = FFT−1
2D

[(
FFT2D [Uk] +

iλC∆z

4πη0
FFT2D [Fk + Uk]

)
.e2iπ

√
(
η0
λ
)2−µ2x−µ2y∆z

]
(2.62)

UK is the field at the bottom of the object, a last refocusing step is needed to simulate

the imaging system. The final field Ufoc, focused at a distance zfoc from field exiting the

domain, follows the next equation:

Ufoc = FFT−1
2D

[
FFT2D [UK ] .ezfoc(2iπ

√
(no

λ
)2−µ2x−µ2y)

]
(2.63)

For a focus in the middle of the object, a negative value of zfoc needs to be used.

Now that the models have been introduced, and their full implementation detailed, it

is time to quantitatively compare the forward predictions of all the models introduced.

2.5.4 Results comparison

In order to compare quantitatively the accuracy of all the models introduced, a phantom

will be studied and simulated.

This phantom is composed of 2 “nucleus" represented by sphere of refractive index 1.37

and radius 1 µm embedded in 4 µm radius bigger sphere of refractive index 1.35. Inside

this bigger sphere, two “holes" of refractive index 1.33 and radius 1 µm have been placed

on the direct opposite of the first two nuclei. The big sphere is covered with a 1 µm thick

layer of refractive index 1.39. A 3D visualisation and sectional plot as detailed on Fig. 2.8

From section 2.4 it is clear that with a proper discretization the LS model is very precise

compared to an analytical MIE solution. On the case of our synthetic cell, no analytical

solution are available. That is why the LS model will be used as a reference when we
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Figure 2.8: Forward simulated image for a highly scattering synthetic cell

simulate the field through our synthetic cell.

First we compare all the model for various discretization size. To demonstrate how

the predictions looks like, Fig.2.8 shows the intensity of the focus field for the five models

introduced in the previous sections. The source has a wavelength of 532 nm, the medium

refractive index is 1.33. The “on axis" lighting is obtained by using a plane wave that

propagates only along the Z direction (this means a wave vector of value (0,0,2.5)). The

“off axis" lighting is obtain by using a plane wave that propagates with an angle of 28° to

the Z direction (this means a wave vector of value (0,-1.1737,2.207))

Fig.2.8 plot has been computed with a discretization size of dx = λ/4, and a volume of

256 × 256 × 256. Focused at the center slide, the output field has a size of 256 × 256 with

pixel size dx× dx. On top is the simulated image with on axis illumination, on the bottom

is the off-axis one. The first thing that appears on this plot is that Born and Rytov are

visually “wrong". The low scattering hypothesis does not hold with this highly scattering

sample. In order to have a quantitative comparison of all the model, on Fig.2.9 the error

of each model for various discretization size is plotted. The error is the mean difference

between the intensity simulated with the current discretization and current model, and the

intensity of the field obtain with a fine discretization and LS model.

As we observed on the forward plot, both Born and Rytov are applied way out of

their validity range. An interesting thing to notice is that for discretization size of λ/2,

all the model based on the discretized 3d Green’s function have the same error. We are
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Figure 2.9: Forward model error depending on the discretization size. The object simu-
lated is the same than the one used in Fig.2.8. The error is the mean Squared Error, and
the reference is the output of the LS model with thin discretization. a) Error of different
forward model respectively to the voxel size. b) Error of multi-slice forward model for
various voxel size along the propagation direction: z

outside of the validity range of the discretized Green’s function, and then the model used

does not matter because all of the error comes from the convolution with a corrupted

kernel. Theoretically the MBS model is supposed to be more precise for higher angle,

this is indeed true with our highly scattering sample for a discretization size bellow λ/3.

For on axis illumination, the error from the MBS model is almost an order of magnitude

higher, regardless of the discretization size.

In order to have a better understanding of the behaviour of the MBS model for high

discretization size only on the Z dimension, the Fig.2.9 b) was created. It shows the error

for various discretization along the Z dimension, while keeping the discretization size con-

stant in X and Y at λ/4 . The BPM model can maintain a low forward error even if the Z dis-

cretization is much higher than the wavelength, up to four wavelength in Figure2.9. This

is not the case for the MBS model that becomes worse than BPM as soon as the discretiza-

tion size become larger than half the wavelength. In the same way that Rytov outperforms

Born because it has an “exponential then product" way of computing the diffracted field

instead of “linear then sum" for Born. BPM outperforms MBS for high discretization size

because if has an “exponential then product" way of computing the diffracted field.
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2.6 CONCLUSION

The physics from the Maxwell equation to new multi-slice model of light propagation have

been detailed above. Historically, a strong approximation of low-scattering [34] was neces-

sary to predict the diffraction from a 3D refractive object illuminated by oblique incoming

light. Nowadays various models have emerged, either based on the discretized 3D Green’s

function or on multi-slice approach. Each model have its strength and weakness. It isei-

ther precise but with high computation cost, or less accurate for high illumination angles

but faster and more robust to strong discretization.





Appendix A

Appendix on light scattering physics

A.1 FOURIER TRANSFORM OF THE GREEN’S FUNCTION

In order to express the Fourier transform of the Green’s function we can apply the Fourier

transform to the definition of the Green’s function in Eq.2.31 ( ∆G+ k20G = −δ ):

FT
[
∆G+ k20G)

]
= FT [δ]

(2iπµ⃗)2G̃+ k20G̃ = 1

Therefore, we get the Fourier transform of the Green’s function:

G̃(µ⃗) =
1

k20 − 4π2µ⃗2

A.2 TILT TRANSFER

We model off-axis incoming wave has on-axis incoming with a modified spectro angular

propagator. This technique is known as “tilt transfer" [96] and avoids diffraction on the

border of the simulated fields.

The full detail off this technique is described in detail in [122] (Equation 7 to 11) or in

47
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[96] (Section 3.D).

The “off axis” incoming wave in modelled as an “on axis” incoming wave but the prop-

agation direction is transferred to the propagation kernel [38] by a shift in the Fourier space

[39]. The main advantage of this technique is that we provide an incoming field that is con-

tinuous even with xy repetition of the field. Therefore when an FFT is performed on the

field (an FFT implies that the field is infinitely repeated on each direction), no discontinu-

ity will create scattering artefact. The tilt transfer enables us to diminish the discretization

errors and attenuate the scattering artifacts.

A.3 PROPAGATION DIRECTION VECTOR NORM IS CONSTANT FOR PLANE WAVE

From Eq.2.13 we haveU(r⃗, t) = ei2πµ⃗.r⃗.e−2iπft. By injecting this equation inside the Helmholtz

Eq.2.12 with homogeneous medium (ie: ∆U(r⃗) + k2η20U(r⃗) = 0), we get:

−4π2 |µ⃗|2 + 4π2
η20
λ2

= 0

And this leads to:

|µ⃗| = η0
λ

(A.1)

A.4 GRADIENT OF LIPPMANN-SCHWINGER EQUATION

The definition of the gradient that we use in this document is defined in by the relation:

δϵ = Re(⟨∇ϵ, δU⟩)

In our case, the error we will aim to minimize is the squared of Eq.2.48 integrated on

all the domain Ω.

ϵ =
1

2

∫
Ω
(LfU − Uinc)

2 =
1

2
⟨LfU − Uinc, LfU − Uinc⟩ (A.2)

From this we can calculate the derivative of ϵ:
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δϵ =
1

2
⟨LfδU, LfU − Uinc⟩+

1

2
⟨LfU − Uinc, LfδU⟩

δϵ = Re(⟨LfU − Uinc, LfδU⟩)

δϵ = Re(⟨LHf (LfU − Uinc), δU⟩) (A.3)

From Eq.A.3, we can directly extract the gradient:

∇ϵ = LHf (LfU − Uinc) (A.4)

The last step is to compute the LHf operator, it is defined as such:

⟨LHf Y,X⟩ = ⟨Y, LfX⟩ (A.5)

In our case:

⟨Y, LfX⟩ =
∫
Ω
Y ∗
(
X −

∫
Ω
XfG

)

⟨Y, LfX⟩ =
∫
Ω
Y ∗(r⃗)X(r⃗)d⃗r −

∫
Ω

∫
Ω
Y ∗(r⃗)X(r⃗)f(r⃗)G(r⃗ − r⃗′)d⃗rd⃗r′

⟨Y, LfX⟩ =
∫
Ω
X(r⃗)

(
Y ∗(r⃗)−

∫
Ω
Y ∗(r⃗)f(r⃗)G(r⃗ − r⃗′)d⃗r′

)
d⃗r

⟨Y, LfX⟩ =
∫
Ω

(
Y (r⃗)−

∫
Ω
Y (r⃗)f∗(r⃗)G∗(r⃗ − r⃗′)d⃗r′

)∗
X(r⃗)d⃗r

⟨Y,LfX⟩ = ⟨Y −
∫
Ω
Y f∗G∗, X⟩

From Eq.A.5 we can identify the LHf operator:
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LHf : Y (r⃗) −→ Y (r⃗)−
∫
Ω
Y (r⃗).f∗(r⃗).G∗(r⃗ − r⃗′)dr′ (A.6)



Chapter 3

3D refractive index reconstruction for time-lapse

imaging

The goal of this chapter is to explain how to reconstruct a 3D object from many off axis

acquisitions with a LED array microscope. In the previous chapter most of the notation

used came from the physical notation. In this chapter that is more optimisation oriented,

we will used notation from the applied mathematics world. We start the chapter by giving

an overview over the fine-tuning of the regularisation parameters on simulated spherical

objects, before moving to living biological samples. This will provide the reader with a

sufficient background to correctly understand the more complex scenario of imaging and

analysing growing biological specimens.

3.1 OPTIMISATION FOR 3D RECONSTRUCTION

In this chapter a deep understanding of the physics used is not necessary even though it

will help to understand when and why an optimisation algorithm may fail to converge.
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3.1.1 Optical light diffraction - Summary

The most valuable part of the previous chapter about the light scattering model is that

we have a rather simple yet quite accurate model to simulate the images acquired by an

intensity only microscope illuminated by a plane wave.

Indeed, the image depends only on 7 parameters:

· λ: the wavelength of the illumination source

· µ0x, µ0y: the illumination wave vector in the Fourier space of the source.

· η0: the refractive index of the surrounding medium

·W = {Nk, k ∈ {1, ..., n}}: The 3D matrix of the refractive index of the object The object

to simulate or reconstruct can be represented as a stack of nz slice Nk of complex

refractive indexes. Nk = Nk + iKk where Nk is the real part of the refractive index

and Kk the imaginary part of the refractive index that corresponds to the absorption

of light by the object.

· dz: the distance between each slice of W

· Zfoc: The distance between the end of the object and the focal plan

· NA: The numerical aperture of the objective

The simulated image is defined with an iteration through all the slices of the simulated

object:

Algorithm 2 Ufoc = LightScat(λ, µ0x, µ0y, η0,W, dz, Zfoc, NA)

Initialize U1 = 1 and b0 = 1 and p0 = p1 = 0
for k = 1, 2, . . . , Nz do

Uk+1 = FFT−1
2D (FFT2D(Uk.e

2iπWkdz

λ ).e2iπ
√

(no
λ
)2−(µx−µ0x)2−(µy−µ0y)2dz)

end for
Ufoc = FFT−1

2D (p(µx, µy)FFT2D(UNz+1).e
zfocCONJ(2iπ

√
(no

λ
)2−(µx−µ0x)2−(µy−µ0y)2))

Where the pupil is defined by:
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p(µx, µy) =


0, if

√
µ2x + µ2y >

NA
λ

1, otherwise
(3.1)

3.1.2 Reconstruction of an object as an inverse problem

Considering that we can model our physical measurement system as a function f , we want

to find W that produced the measured y where y = f(W )

3.1.3 Reconstruction of an object as a minimisation problem

As explained in the introduction, we will focus on methods in which only one intensity

image is recorded at each illumination angle. Even-though half the information is lost

when an intensity image is recorded (the light phase is lost), it is still possible to retrieve the

refractive index information of the imaged object. It was first shown when a microscope

lamp was replaced by a LED array [142] [141]. Then a lot of work was done to increase

resolution and speed in 2D [129] [132] [130]. The 3D volumes were also reconstructed with

the same kind of computational microscope [133] [131] [51].

We can consider that when the recording is done we have Nimg intensity diffraction

images Ii under Nimg different illuminations angles. From this set of measurements, our

goal is to find the object Wrecons that produced the acquired intensity diffraction images.

If our reconstruction algorithm was perfect, the output of our light-scattering model

LightScat(λ, µ0x, µ0y, η0,Wrecons, dz, Zfoc, NA) from the reconstructed objectWrecons would

produce exactly the same image as the recorded image.

Wrecons = argmin
W

Nimg∑
i=1

∣∣∣|LightScat(µix, µiy,W )| −
√
Ii

∣∣∣2 (3.2)

Please note that the intensity acquired by a camera is proportional to the square of the

field computed with our model LightScat.

When we want to address the problem of reconstruction of the 3D map of a sample
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for multiple images taken with various illumination angles, a lot of parameters from Algo-

rithm 1 can be considered known and constant. For a given illumination source at a given

place, the wavelength λ is given by the manufacturer and the illumination angle (µ0x, µ0y)

can be computed with some basic Trigonometry. Even if we don’t know the refractive in-

dex of the object we are trying to image (W ), we know the refractive index in which it is

embedded, η0. The numerical aperture is given by the objective chosen, and dz and Zfoc

depend of the discretization chosen for W

3.1.4 First gradient descent

3.1.4.1 Without regularisation

To solve our inverse problem formulated as a minimisation problem, a first naive idea is

to do a gradient descent algorithm on the data fidelity term ϵ:

ϵ(W ) =

Nimg∑
i=1

∣∣∣|LightScat(µix, µiy,W )| −
√
Ii

∣∣∣2 (3.3)

A gradient descent algorithm is a first order optimization algorithm used to find the

local minimum of a function that can be differentiated. It works by doing a steep toward

the opposite of the gradient (i.e. the steepest descent) and then compute the gradient at this

new location and repeat iteratively this process. This idea is formalized in the following

algorithm with ϵ the differentiable function, η the gradient step and Nit the number of

iterations.

Algorithm 3 Wopt = GD(ϵ, η,Nit)

Initialize W1 = 0
for k = 1, 2, . . . , Nit do

ϵk = ϵ(Wk)

∆Wk =
∂ϵ(Wk)
∂Wk

Wk+1 =Wk − η∆Wk

end for
Wopt =WNit+1
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To have a better idea of the convergence rate and the quality of the reconstructed objects

with this algorithm, we will start by considering a simple bead and simulate the acquisition

in the same conditions than our time-lapse prototype presented in section 3.2.1.

The object is a 2 µm spherical bead of refractive index 1.37 in a medium of refractive

index 1.33. It creates a refractive index mismatch of 0.04. The acquisitions are composed

of 84 images of size 256 × 256 with a pixel size of 0.126 × 0.126 µm2 and a NA of 0.4. The

simulated angles range from 0° to 15°. The convergence of the gradient descent algorithm

3 for the first 100 iterations are plotted in Fig.3.1

Figure 3.1: Convergence of the data fidelity error for various η using the GD algorithm

For high learning rate (η = 0.2 or η = 0.4) the GD algorithm converges toward the same

object. For lower learning rate (η < 0.2) 100 iterations are not enough to achieve conver-

gence. The higher the learning rate the faster the data fidelity decreases. The issue when

using learning rates that are too high is the divergence issue. Indeed, when using η =

0.6 the data fidelity error decreases only for the first iterations, then the error starts rising

again, like the black line in Fig. 3.1.

However, the equality of the error for different η does not mean that the reconstructed
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objects are identical. Fig.3.2 depicts the xy and ZY cross sections for different values of

the learning rate η, showing that the GD algorithm converges toward the same object for

sufficiently high learning rate (η > 0.1). This object is a local minimum, indeed once the

gradient descent has reached this object or does not move because we can see the error

stagnating. This means that the gradient is null or almost null, but the reconstructed object

is not the correct spherical object.

Figure 3.2: xy and ZY slice of the reconstructed 3D bead from the simulated measurement

We can observe that regardless of the hyperparameter η used, only the edges of the

object are reconstructed. The center part looks constant and null. This was expected be-

cause in our scattering model we consider only the intensity of the light recorded and not

its phase. But the intensity of the light only contains information about the gradient of the

refractive index (changes). If the refractive index is constant it will not scatter, thus we will

have no information about it on our intensity only image. That is why the high frequen-

cies of the object are easier to be reconstructed, contrary to the low frequencies where the

information available is much lower.

A second reconstruction artefact is the elongation of shapes along the optical axis (z

axis). This is slightly improved as the algorithm converges but the object is still 3 times

longer in the z direction than the correct object in this example. This is mostly due to the

limited angle coverage and our low NA used.

The first reconstruction artefact (i.e. lack of low frequency of objects) can be dealt with

by adding some priors on the object we reconstruct. A first idea would be to impose a non-

negativity constraint as we know that biological objects (W = n − n0) are only composed
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of positive values. Indeed their refractive index (n) is always higher than the surrounding

medium (n0). A second idea would be to use the fact that most of the biological object we

aim to reconstruct are continuous and full object. In this case a Total-Variation (TV) priors

that penalises the gradient of the object would help a lot to reconstruct the low frequency

since constant pattern would not be penalized by the TV priors but would increase the

data-fidelity since the object shape is more correct.

3.1.4.2 With regularisation, positivity

To help the optimisation algorithm to converge towards a correct object, we have to use

some prior knowledge about the object we want to reconstruct. We have to keep in mind

that the end goal is to image biological samples and that our priors must be biologically

compatible.

Since we have a different prior on the common refractive index (the imaginary part of

W ), and the absorption (the real part of W ) we will use the following notation to clarify

the next sections:

• Wn will be the usual refractive index, Wn = real(W )

• Wabs will be the absorption part of the complex refractive index, Wabs = imag(W )

The positivity is the first prior we will investigate in this section. Positivity means that

our object has a higher refractive index than the surrounding water or medium. Indeed

the dry mass of a biological sample is correlated to the increase of its refractive index

integrated over the whole sample.

To solve our inverse problem formulated as a minimisation problem with a regularisa-

tion term regnneg(Wn) = nneg ∗ ||ReLU(−Wn)||22 we need to minimize ϵnneg(W ):

ϵnneg(W ) = ϵ(W ) + regnneg(Wn) (3.4)
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(a) (b)

Figure 3.3: Convergence of the data fidelity error and the regularisation loss for η = 0.2
and η = 0.4 and various nneg values using the GDnneg algorithm

With ReLU(x) =

 0 for x < 0

x for x ≥ 0

An explicit formulation of the quantity to minimize is:

ϵnneg(W ) =

Nimg∑
i=1

∣∣∣|LightScat(µix, µiy,W )| −
√
Ii

∣∣∣2 + nneg ∗ReLU(−Wn) (3.5)

The same naive gradient descent algorithm will be used to evaluate the impact of this

regularisation:

Algorithm 4 Wopt = GDnneg(ϵ, η,Nit)

Initialize W1 = 0
for k = 1, 2, . . . , Nit do

ϵk = ϵnneg(Wk)

∆Wk =
∂ϵ(Wk)
∂Wk

Wk+1 =Wk − η∆Wk

end for
Wopt =WNit+1

For very small value of the nneg parameter this problem is almost identical to the min-

imisation problem without regularisation, and the convergence plot is identical. To avoid
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(a) GDnneg with η = 0.2

(b) GDnneg with η = 0.4

Figure 3.4: xy and xz slice of the reconstructed sphere for η = 0.2 and η = 0.4 and various
nneg values using the GDnneg algorithm

having to deal with too many hyper-parameters, we will only consider power of 10 for the

nneg regularization and a gradient step of 0.2 and 0.4 that provided the faster convergence

in the first naive gradient descent. The data fidelity loss and the regularisation loss are

plotted in Fig.3.3.

For higher values of nneg, the data fidelity error decreases slower than previously, see

the red and green solid lines on Fig.3.3. We can see that for η = 0.2 the loss decreases

in a smother way than for η = 0.4, where it starts oscillating for the green and orange

solid lines. If the oscillations are too high the algorithm is not stable and it diverges; this

happens for η = 0.6.

As shown previously, the value of η does not have a large impact on the reconstructed

object (comparing Fig.3.4(a) and Fig.3.4(b)) as long as it is high enough for the gradient

descent to converge and small enough to prevent divergence of the algorithm.
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On the contrary, the nneg parameter has a huge impact on the reconstructed object.

First we see that the higher nneg, the less negative voxel are present in the reconstruction.

This was the main goal of the introduced regularization. When the regularization is too

strong, the algorithm converges toward a minimum where all the background has a high

refractive index value. This has a good data agreement, but it is far from what we expected.

We can also see that the elongation issue along the z direction has not been corrected at all,

regardless of the nneg value.

If the non-negativity constraint cannot help with the elongation issue, other regulari-

sations must be considered.

3.1.4.3 With regularisation, positivity and total-variation

The total-variation (TV) norm on a 3D continuous object f is defined as such:

TV (f) =

∫
|∇f(r⃗)| (3.6)

The idea behind this regularisation is to penalise noisy objects, as only the gradient

of the object is penalized and not its value. In other words, every times that the value of

the object increases or decreases the regularisation value increases, but when the value is

constant the regularisation is null, no matter how high the value is.

Total-variation minimisation has been used in image processing for image denoising

with edge preservation [106] [136]. It has also been suggested as a regularization function

in Bayesian reconstructions [92] [95] [94] and used in tomographic scans [118] before being

adapted to the optical diffraction tomography field [68].

The formulation on a discrete object W is an isotropic formulation that does not favor

vertical or horizontal patterns:
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TV (W ) =

Nx∑
i=1

Ny∑
i=1

Nz∑
i=1

|(W [i+ 1, j, k]−W [i, j, k])2 + (W [i, j + 1, k]−W [i, j, k])2+

(W [i, j, k + 1]−W [i, j, k])2|

(3.7)

Other discrete total-variation formulations have been proposed in 2D for images [19]

but have not been tested on 3D volumes, yet.

To solve our inverse problem formulated as a minimisation problem with a regular-

isation term regnneg,β(Wn) = nneg ∗ ReLU(−Wn) + β ∗ TV (Wn) we need to minimize

ϵnneg,β(W ):

ϵnneg,β(W ) = ϵ(W ) + regnneg,β(Wn) (3.8)

An explicit formulation of the quantity to minimize is:

ϵnneg,β(W ) =

Nimg∑
i=1

∣∣∣|LightScat(µix, µiy,W )| −
√
Ii

∣∣∣2 + nneg×ReLU(−Wn) + β × TV (Wn)

(3.9)

The same naive gradient descent algorithm is used to evaluate the impact of this double

regularisation.

The TV regularization was mainly introduced to control the noise level in various

inverse-problems on image [107] [125]. On our simple example based on simulation mea-

sures, there is almost no noise and that is why the main benefit we were expecting from the

TV regularization is its ability to penalise less objects that are full than edges-only object

(empty shell).

Looking at the xy slice on Fig.3.5 (a), we can see that the central slice is not filled and

a hole in the refractive index value is still present at the center of the sphere. This hole is

smaller than without TV regularization, but still present. What was not expected is that
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(a) xy slice with GDnneg,β with η = 0.4 (b) xz slice with GDnneg,β with η = 0.4

Figure 3.5: xy and xz slice of the reconstructed sphere for η = 0.4 with various nneg and β
values using the GDnneg algorithm

this TV regularisation also decreased the elongation along the Z direction, as it can be

observed on the xz slice in Fig.3.5.

This preliminary study with un-optimal optimisation algorithm was performed to give

us an insight over which regularization can help with the various problems we are facing

in intensity only holography tomography.

3.1.5 Accelerate gradient descent

State of the art for non-convex optimisation on light multiple scattering model is stochastic

proximal-gradient algorithm. It was successfully used for high resolution optical tomo-

graphic imaging system [59] as well as intensity only imaging system [16].

For standard non-convex optimisation many other approach exists, in the 2D physical

optics reconstruction, ADMM [86] and Conjugate gradient methods [45] have been used.

We will first review a conjugate gradient method before comparing it to state of the art

proximal-gradient method.
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3.1.5.1 conjugate gradient method

Conjugate gradient has been first introduced to solve symmetric positive linear system.

For example if A is a real, symmetric, and positive-definite model (as in our case), B is

our data and X our parameter. Conjugate gradient is an algorithm to find the unique X∗

that solves AX = B.

The iterative conjugate gradient can be seen as a regular gradient descent with a conju-

gation constraint on the direction to follow. An efficient way to enforce it is by forcing the

next direction to be built from the current gradient as well as all the previous directions

followed.

A non-linear version of the conjugate gradient exists and is suitable to our problem. It

has been used in ODT [32] [65], magnetic resonance imaging (MRI) [66], as well as X-ray

imaging [101] or spherical tomography [48].

The following algorithms details the conjugate gradient steps for Nit iterations to min-

imize the function ϵ of W :

Algorithm 5 Wopt = CGD(ϵ,Nit)

Initialize W1 = 0
r1 =

∂ϵ(W1)
∂W1

d1 = r1
for k = 1, 2, . . . , Nit do

αk = argminα ϵ(Wk + αdk)
Wk+1 =Wk + αkdk
rk+1 = −∂ϵ(Wk+1)

∂Wk+1

bk+1 =
rTk+1(rk+1−rk)
−dTk (rk+1−rk)

dk+1 = rk+1 + bk+1dk
end for
Wopt =WNit+1

There are three main differences between the linear and non-linear conjugate gradient

descent. First, the residual is always the opposite of the gradient (i.e. rk+1 = −∂ϵ(Wk+1)
∂Wk+1

).

Second, the distance αk to move in the new direction dk is more complex to compute, but

any value that truly estimates argminα ϵ(Wk + αdk) can be used. Finally, the formulation
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for bk+1 mentioned here was derived from the Hestenes-Stiefel paper [47]. Other solutions

have been proposed, such as the Fletcher–Reeves [35] bk+1 =
rTk+1rk+1

rTk rk
, the Polak–Ribière

[100] or the Dai-Yuan [22] equations. All those variants are equivalent in the linear case

and thus produce the same value for bk+1. For non-linear cases, like our inverse problem

with the non-linear forward model LightScat , there is no guarantee that one expression

may provide faster convergence than another.

This non-linear conjugate gradient descent comes with more unknown on the conver-

gence speed than its linear version: i) the more f is different to a quadratic function, the

faster the directions dk will lose their conjugation; ii) if f has local minima we have no

assurance that the CGD will converge to the global minimum instead of the closest local

minimum; iii) the CGD can only generate n conjugate vectors in a n dimensional space,

thus the algorithms is logically restarted every n iterations. This issue does not concern our

problematics, as we work in a dimensional space with millions of dimensions, therefore

expecting the algorithm to converge in less than a few hundred iterations.

In order to assess the performances of this algorithm we will use the same optimisation

problem as in the previous section.

The inverse problem will be regularized by 4 parameters nneg,β,spars,sparsabs. “spars”

stands for "sparsity".

ϵnneg,β,l1,l1abs(W ) =

Nimg∑
i=1

∣∣∣|LightScat(µix, µiy,W )| −
√
Ii

∣∣∣2 + nneg.ReLU(−Wn)

+ β.TV (W ) + l1.|Wn|+l1abs.|Wabs|

To evaluate this more complex optimisation algorithm the same object will be used

as in section 3.1.3: a 2 µm bead of refractive index 1.34 embedded in water (RI = 1.33).

84 intensity images were simulated at angles corresponding to our prototype real data

acquisition. We used the conjugate gradient algorithm to solved the regularised problem
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from the simulated intensity images.

A grid search on the parameters gave us some base values that produce a good 3D

reconstruction in terms of RI shape, noise and value. The parameters that gave the best

overall result are: βman = 0.04, nnegman = 0.1, l1man = 0.01, l1absman = 0.01. To have

a better understanding of the effect of each parameter we will tune it from zero up to

32 times the initial value. The reconstructed object will change from not regularized

enough to overly regularized.

Figure 3.6: xy slice of the reconstructed 3D bead from the simulated measurement. The
coefficients in the first column were progressively increased from zero up to 32 times the
initial value.

Figure 3.7: yz slice of the reconstructed 3D bead from the simulated measurement. The
coefficients in the first column were progressively increased from zero up to 32 times the
initial value.

Each regularisation parameter introduced in Section 3.1.4.3 is important to produce
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correct reconstructions, as shown in Fig.3.6 and 3.7.

We will review here-below the effect of each parameter:

• tv: the total-variation regularisation tends to smooth out the object in constant patches.

If it is set too high, the object gets completely removed, similarly to the sparsity. If

the opposite happens, then the object tends to be very noisy and some artefacts ap-

pears. Even in this simulation where no noise was added (only some blurring), rings

around the reconstructed object and other high-spatial frequency features appear at

low tv coefficients. These features are not present in the real object and therefore

considered as errors of the regulation method.

• nneg: if the non-negativity constraint is too low, a ring of negative RI gap appears

around the sphere. This ring acts by decreasing the RI value inside the sphere as well,

behaving as low-frequency features (the sphere has constant RI). If we had warranty

on the convergence of our optimisation algorithm, with any "high" value of the non

negativity constraint, no more voxels with negative RI value should remain, putting

the non-negativity loss to zero. This is not the case here: when the nneg parameters

increases, the algorithm starts diverging and produces reconstructions that clearly

diverge from the real spherical object (see coef 8,16,32 in the nneg line in Fig.3.6,3.7).

• spars: the sparsity on the real refractive index tends to flatten the background back

to zero. If this paramareter is set too low, the refractive index that should normally

be inside the sphere is spread across the whole volume. If it set too high, the object

is also considered as background and the whole volume is reduced to zero.

• sparsabs: the sparsity on the absorption object (imaginary part of the refractive in-

dex) is here to ensure that most of the information in stored into the real refractive

index part, since we know that the observed objects will be mainly transparent. In-

terestingly, the larger the regularisation on the absorption, the most compact the re-

constructed sphere is (there is less elongation with a higher sparsabs). Similarly to
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the nneg, the sparsity in the absorption could theoretically be as big as we want and

it should always converge toward a real-only refractive index object. Here again, the

algorithm cannot converge if the sparsabs is set too high.

Regardless of the parameters used, the sphere is always elongated along the optical axis

and this is problematic for two reasons: first, the geometry is not correct and it lowers the z

resolution of the microscope; second, the RI distribution is also elongated over the optical

axis, thus decreasing the real refractive index values of the reconstructed object. Indeed,

the most important part of the scattering fields comes from the optical path difference of

the object, and for a given optical path difference if an object is 2 time longer, its refractive

index will be 2 time smaller. That is why on Fig.3.6,3.7 the maximum RI gap is 0.006 instead

of the simulated 0.010.

Since elongation comes from the intrinsic physical lacks of information, our system

will never be quantitative for each voxel value. But it can be quantitative in the sense that

the optical path difference (OPD) can be correct, as shown in Fig.3.8. We can compute the

optical path difference (OPD) by integrating the distance times the refractive index gap.

The OPD value represents the phase shift introduced by the object; if this value is constant

over the object and equal to the wavelength (or a multiple of the wavelength), then on a

phase sensor one should record a constant phase.

OPD((Wk)k∈1...Nz) =

Nz∑
k=1

Wkδz (3.10)

For a 2 µm radius sphere with a refractive index gap of 0.01, the maximum OPD is

0.04 µm, a value that matches the various OPDs from Fig.3.8.

This simulation study on the conjugate gradient as an efficient optimiser shows that

all the regularisations introduced in section 3.1.4.3 are important to have reconstructions

that better match the real object. The 3D reconstructions are not quantitative, but their 2D

projections (OPD) are quantitative.
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Figure 3.8: OPD of the reconstructed 3D bead from the simulated measurement

3.1.5.2 Iterative proximal Nesterov method

This new optimisation algorithm aims at minimising the same regularised inverse problem

as defined in section 3.1.5.1:

ϵnneg,β,l1,l1abs(W ) =

Nimg∑
i=1

∣∣∣|LightScat(µix, µiy,W )| −
√
Ii

∣∣∣2 + nneg.ReLU(−Wn)

+ β.TV (W ) + l1.|Wn|+l1abs.|Wabs|

The main difference is that this time the whole criteria will not be minimised as a whole,

but it will be separated in 2 parts:

1. an accelerated gradient descent (with Nesterov) will handle the data fidelity term

and the easy regularization terms for l1 and non-negativity.

ϵi,nneg,l1,l1abs(W ) =
∣∣∣|LightScat(µix, µiy,W )| −

√
Ii

∣∣∣2+nneg.ReLU(−Wn)+l1.|Wn|+l1abs.|Wabs|

2. a proximal operator will be used to enforce the TV minimisation where a standard

gradient is not very efficient. For total variation minimisation it is often shown that gradi-

ent are more unstable than proximal iterations [8].
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This mixture optimisation algorithm is the following one:

Algorithm 6 Fast proximal gradient descent (nneg, β, l1, l1abs, η)

Initialize W 1
1 = 0 and b0 = 1 and p0 = p1 = 0

for ni = 1, 2, . . . , Niters do

bni =
1+

√
1+4b2ni−1

2

Wni
1 = pni +

bni−1−1

bni
(pni − pni−1) – Nesterov acceleration

for i = 1, 2, . . . , Nimg do
ϵ = ϵi,nneg,l1,l1abs(W

ni
i ) – Compute the data fidelity error and the l1 and non-neg reg.

∆i =
∂ϵ

∂W
ni
i

– Compute gradient for image i

Wni
i+1 =Wni

i − η(∆i)
end for
pni+1 = Proxβ∥·∥TV

(
Wni
Nimg+1

)
end for

With Proxβ∥·∥TV
(x) = argminu

{
1
2∥u− x∥2 + β∥u∥TV

}
This algorithm 6 has been tested against the same optimisation problem as in the previ-

ous section 3.1.3: a 2 µm bead of refractive index 1.34 embedded in water with 84 intensity

images with anlges corresponging to the data from our prototype.

Figure 3.9: xy slice of the reconstructed 3D bead from the simulated measurement

Even though the optimisation problem is the same, with this approach the effect of each

parameter is slightly different. This time, the initial values that produce good 3D recon-

struction are slightly different (see below), mainly because the regularisation is performed
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Figure 3.10: yz slice of the reconstructed 3D bead from the simulated measurement

at every angle. The TV regularisation inside the proximal is also different because it does

not compete against the data fidelity but against a difference with the previous iteration

object (the 1
2∥u− x∥2 in the proximal definition). The parameters used that gave satisfying

results are: βman = 0.0004, nnegman = 0.25, l1man = 0.1, l1absman = 2.5, ηman = 2. To have

a better understanding of the effect of each parameter we will tune it again from zero up

to 32 times the initial value. The reconstructed object will change from not regularized

enough to overly regularized.

The first and most important thing to observe is that the TV and η row are symmetri-

cal. It was expected since the TV is working against the data fidelity term in alternations.

Weakening the TV normalization will have the same effect as increasing the step of the

optimisation algorithm. On the other hand, lowering the η will result in the same object

as the one obtained after increasing the β. The main difference is that once the step is too

high, the algorithm diverges and no results are produced (see the empty columns over the

last row in Figures 3.9 and 3.10).

The TV effect on the object is sharper than previously, as it tends to fill the object with

a constant value. A side effect of this discrete total-variation defined in equation 3.7 is that

it tends to make the object wider and less intense in terms of RI. In the X and Y direction

it is not an issue since the data fidelity imposes sharp refractive index gap. Along the Z
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direction there is less information in the measurement to inform the algorithm on where

the object should start or end. Since the TV norm tends to make the object as elongated

as possible, as long as the data fidelity remains good, for high value of TV we have very

elongated objects. This is an issue with our compact and low angular coverage proto-

type, because under low angle illumination most of the diffraction patterns comes from

the OPD of the object and not from its shape along the Z dimension. An idea to reduce this

elongation would be to change the L1 norm the gradient in each direction by a L0 norm.

However, this is not technically feasible, as gradient descent cannot deal with L0 norm. A

compromise would be to use a L0.9 or L0.8 norm, but it is already very unstable and quite

challenging to use in a sens that the algorithm can diverge rapidly.

Figure 3.11: OPD of the reconstructed 3D bead from the simulated measurement

As it can be seen in Fig. 3.10 the non-negativity produced the desired result, i.e. it

removes the negative voxel values in the reconstructed volume. This time the implemen-

tation is more stable and no undesirable effects (like strong hallucinated shape) happen

even when the regularisation is 32 times stronger than the baseline.

Interestingly, the sparsity has almost no effect, the object looks sightly more elongated

when it is removed (coef 0) but otherwise the choice of this parameter is not critic.

Finally the sparsity on the absorption seems to have a constant effect as long as it is not
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pushed down to zero, where an elongation and a lowering of the refractive index happens.

Both accelerated gradient descent algorithms behaved much better than the naive gra-

dient descent. Globally, the fast proximal gradient descent algorithm 6 provides better

results than the conjugate gradient in terms of a quantitative OPD values Even objects

without noise have an OPD close to the theoretical value of 0.04. The final reconstructions

also show more robustness, as a wrong estimation of nneg, β, l1, l1abs has less influence

on the reconstructed object. For example, the nneg or the sparsity can be set factor of 30

higher without causing any significant issue on the reconstructed object (not the case for

the conjugate gradient approach).

This sphere simulation emphasizes the crucial role of the regularisation hyper-parameters

in the reconstruction and the necessity to choose them carefuly in the reconstruction pro-

cess.

For stability reasons the Iterative proximal Nesterov method from section 3.1.5.2 will

be used in the remaining of the manuscript for simulation and for biological sample.

3.2 TIMELAPSE PROTOTYPE

Our prototype conception was motivated by the will to study small developing organisms

in 3D, from unicellular organisms to small animal models such as Caenorhabditis elegans

[10] as well as organoids and preimplantation embryos. This requires imaging in three

dimensions on a broad range of length scales, from micrometer to study subcellular struc-

tures, to millimeter to analyse whole organisms. As detailed in the Introduction 1, we

chose to use a non-fluorescent technique where we exploit a contrast due to light diffrac-

tion as in optical diffraction tomography (ODT [44] [88]) instead of fluorescence. Results

of this section have been partially published in [99] and orally presented at [97].
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3.2.1 Illumination and imaging component choice

To study living organisms one must be able to do so in the standard conditions where

biological sample are grown. Most of these cultures take place in an incubator, a device

maintaining specific temperature, humidity and CO2 levels for growing and conserveing

cell cultures as well as microbiological cultures. Incubators are therefore essential for the

physiological development of the sample. That is why we made the choice to conceive a

microscope able to work inside the incubator. The two main limitations are humidity and

size: standard incubators are as big as a small fridge, leaving a maximum usable volume

around 50×50×50 cm3. It explains why our prototype has to be compact, and the smaller

the better because incubators may be used for several different experiments at the same

time and all the volume inside is not always accessible.

Another issue of long-term imaging of image biological samples is phototoxicity, es-

pecially for fragile samples like embryos. The amount of photons we target toward the

sample must not interfere with the physiological development of the sample. Even though

the question on how much phototoxicity affects the biological cultures is complex, some

good practice emerged [71] and a proper quantification of this phenomenon should be

performed before concluding any biological results. Considering the volume constraint

as well as phototoxicity, a commercial LED array (SCI-Microscopy, US, λ = 0.532 µm for

the green array, λ = 0.625 µm for the red array) was used for illumination. The photo-

toxicity can append with LED illumination, but the amount of photon that passes through

the sample is much lower when using bright-field illumination instead of point scanning

illumination where the whole sample has to probed like in confocal imaging.

Concerning the field of view, we aim to image biological samples that are thin enough

for the collected light to be mainly ballistic and not diffused. Therefore we will limit us

to biological object that are less than 200 µm thick. Considering this constraint, two bio-

logical samples were selected to be imaged with our prototype, mouse embryos and liver

organoids. Both have a spheroid shape, that is why we chose to limit our field of view to
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200 µm× 200 µm in the xy direction. Considering a standard CMOS sensor with a 2.4 µm

pixel size and a 3088× 2076 resolution (IDS UI3880), a 20X objective gives the desired field

of view.

One last constraint that must be taken into account is a high sample versatility. A

microscope should accept various shapes and thickness of sample containers. It excludes

the use of immersion oil for simplicity of use, as well as the use of objective with high

numerical aperture that usually have a short working distance (unless for very complex

objective that comes at a premium price).

Figure 3.12: Overview of our compact L-shaped 3D microscopy setup

The final design of our prototype that fulfills all the previous requirements is presented

in Fig.3.12. The illumination is achieved with a commercial LED array (SCI-Microscopy,

US, λ = 0.532 µm) centered at 84 mm above the objective. Only the first 133 LEDs are

routinely used, providing a 0.346 NA illumination. With the goal to obtain a wide field of

view (≥ 100× 100 µm2), we used a Motic 20× 0.4 NA objective with a tube lens (Thorlabs,

focal distance of 180 mm) to image on CMOS sensor with a 2.4 µm pixel size (IDS UI3880 -

Schematic in Fig.3.12). This optical configuration results in a 0.120 µm effective pixel size.

A 45° mirror has been added after the tube lens to have an “L-shaped” prototype that is

more compact than an inverted in-line microscope.
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3.2.2 Raw image normalisation

3.2.2.1 Integration time tuning

The CMOS sensor stores the gray value of each pixel in 8 bits, ranging from 0 to 255. To

avoid saturation (value over 255 that will be decreased to 255) a good integration time

must be chosen for each LED. The closer an LED is from the center of the LED array (that

is aligned with the optical axis of the system), the brighter the image is. To characterise

this effect we will study the mean value of an image with a constant exposition time of 30

ms.

Figure 3.13: Evolution of the intensity of the light at the end of the optical system relatively
to the distance to the center

On Fig.3.13 it is clear that a the mean pixel values decreases with the distance to the

center of the LED array. Even more interestingly, the diversity of illumination intensity for

a given distance to the center of the LED array is high. The brighter image for an LED that

is placed at 50 mm from the center is 4 times higher than the darker one.

A simple model was fitted on the data with the goal to change the exposure to have

a constant signal over noise ratio. Instead of a constant exposition time (et) of 30 ms,

the exposition time was changed in function of the distance toward the center d by et =

0.1 ∗ (300 + d3

150)

This adaptation to keep a constant signal to noise ratio on individual acquisitions and

for any given illumination source changed the integration time between 80 and 800 ms,
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Figure 3.14: Intensity of the light at the end of the optical system relatively to the distance
to the center with a corrected exposure time.

producing a total acquisition times of about 2 minutes for 133 frames.

3.2.2.2 Prepossessing of the raw images

(a) Numerically normalized (b) Un-normalized

Figure 3.15: Brightfield images of an embryo acquired with four consecutive illumination
LED Fig.a) shows the images after normalization Fig.b) shows the raw images

For the reconstructions, an intensity background level close to unit is essential to match
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the value of the incoming plane wave of our forward light scattering model (see Section

3.1.1). This means that if no object diffracts light, the acquired image should be a constant

image with value one.

Even though the adaptation of the exposure times was a first step toward having nor-

malised raw data, the variability inside each ring is too high and each image has to be

treated individually. To have a constant background with the value 1, each image is di-

vided by the mean value calculated over the overall intensity distribution of a manually

selected crop of the image where no object is present. This guaranties that every image

is correctly normalized, but requires a manual input from the user on the reconstruction

algorithm.

3.2.3 Reconstruction on calibrated micro sphere

To validate our normalization procedure and confirm the first results obtain after simu-

lations in section 3.1.5.2, we will first apply our reconstruction algorithms 6 to the recon-

struction of calibrated micro-sphere. We chose 1 µm silica beads that have a refractive

indice (RI) of 1.4570 at 625 nm. They are placed inside water with a refractive index of

1.33. It creates an OPD of 0.127 µm, slightly less than 2 times the wavelength. This is al-

ready considered as an optically thick sample, challenging enough for a first validation of

the prototype.

To perform the reconstruction of these silica micro-spheres, 133 images were recorded

with illumination angles ranging from 0° to 20.3° at 625 nm and a 20X/0.4NA objective.

The Fast proximal gradient descent algorithm with 40 iterations and regularisation pa-

rameter βman = 0.0016, nnegman = 2, l1man = 0.15, l1absman = 1.5, ηman = 8 was used to

produce results in Fig.3.16-e-f-g-h. On the z cross-sectioning of Fig.3.16-e the reconstructed

bead is elongated up to 4 times its length along the z direction. This elongation is mainly

caused by a limited angle coverage and a rather low numerical aperture of our objective

compared to high NA objective (NA>1) as used in reference [143].

This elongation leads to a refractive index that is lower than expected inside the bead
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Figure 3.16: Reconstruction of a calibrated micro-sphere. a-b-c-d - Theoretical micro-
sphere. e-f-g-h - Reconstructed micro-sphere. d, h, optical path difference (OPD) of the
theoretical and reconstructed micro-sphere, respectively. i- Line plot of the OPD shown in
Fig 3.16 d,h. j is a 3D rendering of the reconstructed micro-sphere.

(0.045 in Fig.3.16-g instead of 0.12 in Fig.3.16-c). At present our system does not yield

quantitative results for every voxel reconstructed. Nevertheless if we consider the object

as a whole, we can compute the optical path difference (OPD) on-axis (Fig.3.16-d,h). When

comparing the micro-sphere reconstructed OPD with a theoretical value, we found on

Fig.3.16-i a good agreement between the theory and our system.

Our final goal is to achieve time-lapse imaging of thick biological samples, therefore we

cannot limit our study to calibrated object like micro spheres. The following sections will

therefore describe the assessment of our imaging capability on biological living samples.
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Figure 3.17: Resolution and shape characterisation on a 3D printed cell phantom. a- Shows
the 3D reconstruction of the phantom. First image is the central zx slice. Second image is
the yx section on the bottom of the phantom (position shown by the top dotted line on the
zx slice). Third image is another yx slice (lower red dotted line). Finally the dotted blue
line is plotted to show the refractive index distribution over a given section. b- Shows the
3D theoretical phantom. First image is the central zx slice. Second image is the yx in top
of the phantom, position showed by the upper dotted line on the zx slice. Thirds image is
an other yx slice (lower red dotted line). Finally the dotted blue line is plotted. c- Zoom on
the Y resolution target, with the plot of the RI distribution

3.2.4 Lateral and axial Resolution

In microscopy, the notion of resolution is crucial and everyone expects a value for the xy

direction, as well as the Z direction. For 3D optical diffraction tomography this question
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does not always have a simple answer, like in any regular microscopic system. Ziem-

czonok, M., Kuś, A., Wasylczyk, P. etal. proposed a new way to quantify phase imaging

systems with novel 3D printed biological cell phantoms [137]. This technique it is based on

photo-lithography, where the absorption of photons leads to the curing of a liquid polymer.

This creates phase only 3D structures with a 100 nm lateral and 500 nm axial resolutions

and given refractive index. This phantom was used to characterize the resolution of our

setup (as detailed below), as a part of an active collaboration with the group in Warsaw

University of Technology.

The phantom is a half dome of 30 × 20 µm on its base and 20 µm thick as shown in

Fig.3.17 b). The main features of the phantom are the three spherical nucleoli placed in a

region of lower (gray) RI that mimics a nucleus, which is often present in many cells. The

features are here to access our ability to reconstruct shapes of large sub-cellular structures

and their RI. Outside of this fake nuclei there are three resolution test targets with a strong

RI gap along all the axis. These resolution target enable us to quantify the capacity of the

system to reconstruct high RI gradients features, such as lipid droplets.

3.2.4.1 Lateral resolution

A total of 84 intensity fields were acquired with our prototype equipped with a ×20 ob-

jective (NA = 0.40) and green LEDs with λ = 530 nm. The reconstructions of this single

cell that is 20µm × 30µm and 15µm thick was performed with the Fast proximal gradient

descent algorithm detailed in section 3.1.5.2.

As excepted with our low NA, the reconstructed image after intensity only acquisitions

is strongly elongated along the Z direction. On Fig.3.17 a-, the first yx slice looks like it is

in the middle of the reconstructed phantom, but we are truly on the top of the phantom

because we can observe the top layer of the 3D printed top. This is not visible on the

edges because the gap between each printed slice are really small, but on top, the distance

between each printed slice is bigger and can be observed. Yet, the major key morphological

characteristics of this phantom are correctly retrieved.
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To answer the resolution question, we can start by defining exactly what is the resolu-

tion. Resolution is the minimum distance at which two distinct objects of a sample can still

be seen as separate entities. The resolution target on Fig.3.17 c- is perfect to measure reso-

lution. As shown in the image and in the RI distribution graph, the first two 300nm marks

are indistinguishable and appear blurred as only one object. Then the 500 nm hole can

be separated sharply from the 700 nm hole, while the graph show a slight blend over the

300 nm hole. From this study we can affirm that our system has a 1 µm lateral resolution.

The theoretical value from Fig.1.1 with our system composed of a 0.4 NA objective and

λ = 0.532 is around 0.8 µm.

3.2.4.2 Axial resolution

In the previous section, we used the following definition for the resolution: "the unique

minimum distance at which two distinct objects of a sample can still be seen as separate en-

tities". Since our major issue is the axial elongation, and that this elongation has the shape

of cone, the width of the object has a huge impact on how far will this cone propagate.

For example if we stack two 2 µm beads from section 3.2.3, they would appear as sep-

arate entities if we place them at 6 µm from each other. But if we use smaller object, like a

1µm sphere, we could bring them closer before their elongation cones hit each other, 3µm

in this case. If we consider bigger objects like embryos that are 100 µm wide, they need to

be placed more that 300 µm away so that it can be seen as separate entities.

The question remains, what is the axial resolution of our system ? 3µm ? 6µm ? 300µm

?

3.2.5 Fixed embryo 3D reconstruction and aberration correction

Most of the cell cultures are essentially 2D, the cells are grown on a slice or any other cell

container and remain mainly flat as they develop. In order to access more complex sample
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a collaboration with the hospital in Grenoble1 was initiated, allowing us to image mouse

embryos. This is the perfect sample to validate our microscope with, since embryos vary

between 100 and 150 µm with many 3D complex internal structure. The team at Grenoble

hospital was responsible for all embryo collection and manipulation.

3.2.5.1 Embryo preparation and transportation

Embryo preparation

Zygotes were collected from mature C57BL/6 females, synchronized with 7.5 units

of pregnant mare serum gonadotrophin (PMSG, MSD santé animale # Chronogest 600)

and 7.5 units of human chorionic gonadotrophin (hCG, MSD santé animale # Chorulon

1500), mated with fertile males. Oviducts were removed in M2 medium (Sigma-Aldrich #

M7176) and zygotes were collected from the ampulla. Cumulus cells were removed with

hyaluronidase 0.1 mg/ml. Embryos were then washed and maintained until blastocyst

stage in KSOM medium (Merk MR-106-D) in an incubator at 5% CO2 and 37°C. The incu-

bator used is a SANYO CO2 incubator MCO-19AIC.

Animals ethics

All animal procedures were run according to the French guidelines on the use of ani-

mals in scientific investigations with the approval of the local Ethics Committee (ComEth

Grenoble N° 318, ministry agreement number #7128 UHTA-U1209-CA). All animals (C57BL/6)

were from Charles River laboratories. All animals used were 5-8 weeks old for females and

2-6 months old for males.

Embryo transportation

During the first month of test, the embryos were prepared in the hospital by the biol-

ogist and transported in our lab to fine tune the microscope. Since it was not allowed to

bring living organism cultivated in another lab, we had to fix those embryo with a solution

of paraformaldehyde. This makes the embryos more stable over time, they can be easily

1Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Ge-
netics Epigenetics and Therapies of Infertility, 38000 Grenoble, France.
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transported without the need to have a controlled environment (37°C and 5%CO2) but

their true shape and all the inner structures are unmodified. They still need to be main-

tained in a KSOM medium (Merk MR-106-D) not to dry out. Routinely they are stored in a

Lab-Tek® container with 0.5mm on oil on top of the solution to prevent evaporation. This

kind of container must be transported carefully to prevent the medium or the oil to spill,

and it was not possible to guarantee it while crossing the city from the hospital to our lab.

To guarantee that the sample holder would not spill, we chose to transport the fixed

embryos in 20 µm LEJA slide sealed with synthetic resin. These slide have a 1000 µm glass

thickness on one side and 720 µm on the other side. It produced a stable sample that had

almost no changes in its shape of internal structure up to a week, that could be transported

easily without particular care and that was fixed (i.e. not living anymore).

Figure 3.18: Reconstruction of a multi-cell embryo trough a thick (720 µm) glass sample a-
The raw images acquired with our microscope for various LED. b- The 3D refractive index
reconstruction with 3 different xy slice. Each slice is positioned with a dotted red line on
the zx slice (from top to bottom, respectively).

Even though the transport was robust, the first images with this sample preparation

were disastrous. The raw images in Fig.3.18 a show a speckle-like pattern for every imag-

ing angle, and only the contour of the object looks like a standard diffraction pattern with
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fringes. After reconstruction (Fig.3.18 b), the center of the embryo is almost constant with

a zero value, meaning that no phase information could be retrieved from the raw images.

As expected, only the edges are sharp and visible.

3.2.5.2 Aberration correction - Theoretical formulation

It took me a few months to understand why we had the disastrous results from the previ-

ous section 3.2.5.1. What was causing those aberrations is the glass thickness between the

object and the objective. Normally, standard objective are design to work with standard

coverslip that are 170 µm thick. In our case the LEJA slide was 720 µm thick.

A theoretical study on the effects of the glass thickness was thus conducted to have a

better idea of the effect and strength of the aberrations.

(a) (b)

Figure 3.19: Schematic view of a microscope interface system. a) Representation of the
nominal configuration of the objective. b) Representation of the configuration with a cus-
tom sample container and thick object.

If we consider the objective in its nominal utilisation, it is supposed to accurately re-

produce the object to image on the CMOS sensor (except for the high frequency that are

cut by the numerical aperture). This can be expressed with the following equation:

1 = Hobj(µ⃗2D)e
2iπ(zcs

√
(
ng
λ
)2−µ22D+(zfoc+f)(

√
(na

λ
)2−µ22D) (3.11)
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From the previous equation we can extract an analytical formulation of the full objec-

tive transfer function and inject it inside the general case equation:

Hglobal(µ⃗2D) = p(µ⃗2D)e
2iπ(zm

√
(nm

λ
)2−µ22D+(zg−zcs)

√
(
ng
λ
)2−µ22D+(zfoc2−zfoc1)(

√
(na

λ
)2−µ22D)

(3.12)

The zfoc2 − zfoc1 remains to be expressed. In both situation (a) and b) from Fig.3.19)

the field propagates equally in the Fourier space, this means that the propagation before

entering the objective have to be equal between a) and b):

(3.13)ezm(2iπ
√

(nm
λ

)2−µ2x−µ2y).e
zg(2iπ

√
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λ
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By using the notation µλ = λ2(µ2x + µ2y) we can simplify the previous equation to:

zmnm

√
1− µλ

n2m
+ zgng

√
1− µλ

n2g
+ zfoc1na

√
1− µλ

n2a
= zcsnm

√
1− µλ

n2g
+ zfoc2na

√
1− µλ

n2a
(3.14)

After noticing that µλ << 1 every
√
1− x can be approximated by 1 − x

2 as long as

x << 1:

(3.15)
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Then the zfoc2 − zfoc1 distance expression is straightforward:

(3.16)zfoc2 − zfoc1 = na(
zm
nm

+
zg − zcs
ng

)

by replacing it inside equation 3.12 we get:

Hglobal(µ⃗) = p(µ⃗)e
2iπ(zm

√
(nm

λ
)2−µ2+(zg−zcs)

√
(
ng
λ
)2−µ2−na(

zm
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+
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ng
)(
√

(na
λ
)2−µ2) (3.17)

This new transfer function 3.17 gives us the possibility to account for a non-standard

coverslip thickness as well as a various depth inside the container, making our reconstruc-

tion algorithms quite versatile and adjustable to different applications.
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3.2.5.3 Aberration correction - Effect on calibrated micro sphere

To make sure that this new transfer function mimics correctly the way a glass layer distorts

the electromagnetic field, we imaged 2 µm silica beads with given optical index n = 1.46

(at λ = 532 nm) in water. The solution was placed in a custom container that produced 2

different aberrations on each side. On one side the interface thickness is 170 µm, one the

opposite side it is 1000 µm. This was a custom build with a 170 µm coverslip taped on top

of a standard microscope slide. The comparison between the light scattering model and

the true acquisition from the prototype are detailed in Fig.3.20

Figure 3.20: Comparison between 2 µm silica beads of given n obtained with simulations
at various thicknesses of interface and with microscopy acquisitions using an illumination
angle of 15° in air. a-b-d-e are results of the simulation with 3 spheres of refractive index
gap 0.002, 0.05 ,0.02 (from left to right) c-f are the real image from our microscope. Zi
denotes the interface thickness

As expected, Fig.3.20 a-d are identical, since this model does not account for inter-

face aberration. When the interface is taken into account, it is clear that the shape of the
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diffracted wave after the silica bead better matches our microscopy acquisitions. Indeed,

Fig.3.20 e has thin white and black fringes bellow the bead, while the fringes on the top

are wider and more distant from each other, similarly to the brightfield image from the

microscope in Fig.3.20 f.

It appears that our multiple scattering model is more precise when we take into ac-

count the aberrations introduced by the non-standard interfaces. However, this does not

automatically guarantee that the reconstructions will be improved as well. To prove this

point, we decided to conduct a study on a phase calibration slide.

3.2.5.4 Aberration correction - Experiment on calibrated phase USAF targets

We emphasized that in the case of non-standard coverslip thicknesses or sample depths

inside the imaging medium it is important to take into account the spherical aberrations in

the direct model. This will be further shown herebelow on measurements performed with

a 1000 µm thick USAF phase calibration slide.

On a 1000 µm thick microscope slide, 300 nm of glass have been etched everywhere

except on the USAF target patterns. It creates a really thin, characterized, phase target

with an Optical Path Difference (OPD) of 150 nm.

This calibration sample has been imaged in the same condition as the calibrated micro-

sphere. 133 images were recorded with illumination angles ranging from 0° to 20.3° at

625 nm and a 20X/0.4NA objective. At 625 nm the glass has a refractive index (RI) of

1.5154. The glass is placed in the air creating a refractive index gap of 0.5154 on 300 nm,

resulting in a theoretical optical path difference of 154 nm. The fast proximal gradient

descent algorithm 6 with 40 iterations was used to produce results in the Fig.3.21-a-b.a

The reference measurements have been acquired with a quadriwave lateral shearing

interferometry (QLSI) integrated in a commercial Phasics camera. Measurements were

performed on a conventional inverted microscope (Zeiss Observer Z1) with 40× 0.64 NA

air objective using Kohler illumination with a 750 nm long pass filter (AHF F32-750E). A

wavefront sensor SID4Bio (Phasics, Saint-Aubin, France) was mounted on the video port
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Figure 3.21: Reconstruction of a USAF phase target. a- Reconstruction without using the
aberration kernel. b- Reconstruction with the aberration kernel. c- Reference image (QLSI).
d- OPD plot of the dotted line in Fig. a-b-c. Scale bar is 20 µm wide.

of the microscope. The wavefront sensor SID4Bio contains a 2D grating (modified Hart-

mann mask) placed in front of the camera. The grating replicates the incident wavefront

and after a short propagation an interferogram is recorded on a CCD camera. The in-

terferogram is analyzed in real time by Fourier transforms to extract intensity in 0 order

and OPD gradients in 1 orders, along X and Y directions. The latter are finally integrated

in two dimensions to yield wavefront measurement, which is the OPD in the projective

approximation.

Intensity only measurements only contain information about the variation of the re-

fractive index. This is why the high spatial frequencies of objects are easier to reconstruct

than the lower spatial frequencies. This can be observed on the big square in Fig.3.21 a

and b, where only the edges are visible. To recover the lower spatial frequencies, we need
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an accurate light scattering model that can perceive differences between an "edge only"

object and a "full object", in addition to a regularization that favors continuous and "full

object" like the total variation (TV) norm. When the spherical aberrations are not taken

into account, the light scattering model is not precise enough and the TV norm cannot fill

the rectangle object on the right of the image in Fig.3.21 a. When spherical aberrations are

taken into account, the rectangles on the right in Fig.3.21 b are more filled, even though

the edges are still higher that the center as plotted on Fig.3.21 d at 100µm and 115µm with

the green curve.

When looking at the zx slice in Fig.3.21 a-b we can observe that the elongation along

the z direction is less pronounced (red ellipse) when using our aberration kernel.

This USAF phase target is far from biological objects for which our microscope has

been designed. Indeed when we have a biological sample with an OPD of 150 nm, it

often measures 15 µm with a refractive index of 1.34 inside a water of refractive index

1.33. This creates a refractive index gap of 0.01 and the fact that this gap is much lower

that the refractive index of the medium (here water at 1.33) is part of the approximations

of our light scattering model. In this USAF phase target the refractive index gap is 0.5,

this might be one of the reasons why our OPD measurements are 3 times lower than the

reference measurements. Even though we are not phase-quantitative on this phase target,

the morphology was correctly retrieved.

The last step to validate the aberration correction algorithms is to show their relevance

when applied to biological sample.

3.2.5.5 Aberration correction - Reconstruction on thick biological objects

After validation on a calibration slide we tackled a more challenging sample, a multi-

scattering 5 days embryo. In Fig.3.22, its cross-sections are shown, with and without tak-

ing into account spherical aberrations. The embryo was placed inside a LEJA slide (Ref

026857 from IMV Technologies - LEJA) with a thickness of 720 µm (by thickness we mean

the Zg distance defined in Fig.3.19). The non-standard glass thickness created spherical
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aberrations that are taken into account with the kernel detailed in section 3.2.5.2.

Figure 3.22: Reconstruction of a thick, multiple scattering embryo at blastocyst stage. e,a
- Axial view of the reconstructed embryo with and without taking into account spherical
aberrations, respectively. b,f - cross section view at z = −28.35 µm. c,g - cross section view
at z = 9.45 µm. d,h - cross section view at z = −31.5 µm.

Fig.3.22g shows a blastocyst composed of more than a hundred cells, mostly found in

the inner cell mass in the top left (red arrow). This creates a cavity (the blastocoel) that

is almost empty, which can only be distinguished in Fig.3.22g. Taking into account the

aberrations allows to identify the typical trophoblast cells, composing the periphery of

nominal developing blastocysts (green dashed circles one on Fig.3.22 f).

The external structures are correctly retrieved with our device without correction of

spherical aberrations for the top part of this embryo (see Fig.3.22 b). However, as we move

deeper inside the embryo (toward negative z, Fig.3.22 d) the optical aberrations produce

artifacts that are not physiologically present in healthy embryos. This is highlighted by the

comparison between Fig.3.22 c and 3.22 g or between Fig.3.22 d and 3.22 h.

3.2.6 3D time lapse of in-vivo embryo

The set up was further used in real-time directly in a cell culture incubator to unveil em-

bryonic development in physiological conditions. Even if the lower illumination angle
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Figure 3.23: Time lapse images of a mouse embryo developing from fertilization to ex-
panded blastocyst a) Illustrations of images taken at different developmental time and
corresponding to different analyses (3D, Z projection, z = −12 µm and z = +18 µm). The
color code on figure one the z projection represents the position along the z axis. See Visu-
alization 1 for all the frames. Scale bar is 30 µm. b) is the z projection a t = 12 h. c) is the
z projection at t = 100 h d) is a z slice at t = 12 h. e) is a z slice at t = 100 h. Orange and
green arrow point the two pronuclei that are in different z positions, the red arrow points
the polar body and the white arrow points the inner cell mass of the blastocyst.

and the simple optics degrades the resolution, it brings new possibilities in real-time mon-

itoring. Embryos were prepared as described in Section 3.2.5.1 and seeded in a 16-dish
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EmbryoSlide (Vitrolife). The acquisition was performed with 84 illumination angles every

hour for 6 days on a growing mouse embryo and the reconstructions were performed with

the fast proximal gradient descent algorithm detailed in section 3.1.5.2 with 40 iterations.

The reconstructed volume was 1024× 1024× 128 big, resulting in a 35 minutes reconstruc-

tion time for each volume on a non-professional GPU, a NVIDIA GEFORCE RTX 3090.

Fig.3.23 and visualization 1 show all the major steps of embryo development, from

an initial stage of one cell zygote to a blastocyst. Even-though we cannot truly know

when fertilization occurred, we will consider that the first mitosis happens 20 h after the

fertilization and all the timing in this section will take the seeding as t = 0. At t = 12 h, we

can identify the 2 pro-nuclei that will merge during embryo development. The male and

the female pro-nuclei are not in the same z position, the one pointed with the orange arrow

can be seen in the −12 µm optical slice where the one pointed by the green arrow is more

located around +18 µm.

Figure 3.24: Time lapse of the first cell division of a mouse embryo. Scale bar is 30 µm.

On Fig.3.24, the pro-nuclei that are originally far away start to slowly converge toward

each other before merging at t = 19 h. Thanks to the 3D reconstruction we can observe
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that the pro-nuclei that were 20 µm away in the z direction at t = 17 h are visible on the

same slice (Fig.3.24 c - z = +3.6 µm) at t = 18 h. This is an indication that the pro-nuclei

movement is truly in 3D, and that our prototype can well positioned and follow them in

3D. After the pro-nuclei have merged at t = 19 h (red dashed circle), the zygote divides in

a two cell embryo at t = 20 h. The pro-nuclei fusion is an event that can be reliably used to

predict the incoming first mitosis of the embryo.

Another example of the ability of our setup to locate accurately object in 3D is shown

on the 4 cells stage, at t = 51 h on Fig.3.23. The polar body is at the bottom of the embryo

and appears on the z =−12 µm slice (red arrow) but it is absent of the +18 µm slice. This

highlights the interest in using 3D imaging when the sample to study has a 3D behavior.

Seventy hours after the beginning of the time-lapse (t = 81 h), a cavity (called the blasto-

coel) starts forming on the top of the embryo. It is important to notice that the appearance

of the blastocoel can be accurately identified thanks to the 3D images. In contrast, in z pro-

jection, the appearance of the blastocoel is hidden and not detectable. Later, at 104 h, two

cell types become apparent: internal spherical cells forming the internal cell mass (white

arrow in Fig.3.23 ) and tightly joined flattened cells at the periphery of the blastocyst (the

trophoblast cells).

This 3D video microscope is a precise instrument that produce high resolution images

over various key part of the embryo at multiple stages of development. Those 3D time

lapse reconstructions are a first step toward a fully autonomous and non-invasive micro-

scope to monitor the growing and healthiness of embryos. Importantly, these first results in

collaboration with the CHU-Grenoble laid the foundation for a further grant opportunity

that got funded in 2021 French National Research Agency (ANR), project LIVE 3D_CNN

(ANR-21-CE19-0020).

3.2.7 3D time lapse of liver organoid

After this extensive study on embryo developing we wanted to focus on an other liv-

ing multi-cellular organism, namely mouse liver organoids. The goal was to validate the
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capabilities of our system on a different biological sample. Other biological sample are

presented in Appendix B, this section focuses on organoids. Their existence relies on re-

cent breakthroughs in the development of culture conditions for adult stem cells. Those

new culture conditions enable long-term expansion of adult primary tissues from liver into

self-organizing 3D structures named ‘organoids’.

For biologists, such self-organizing 3D structures can be used to study genetic diseases

as well as cancer in a more efficient way than what can actually be done with standard 2D

cell cultures. That is why organoids can provide more accurate understanding of cell-cell

communication, naturally improving the efficiency of invitro studies. Moreover, these 3D

structures might be suitable to replace animal models in specific conditions, therefore de-

creasing the amount of animals needed for specific experiments. All the results here below

were conducted in collaboration with Dr. Luca Valenti, from the Università degli Studi

Milano, Fondazione IRCCS Ca’ Granda Policlinico under the project REVEAL (European

Union’s Horizon 2020 research program under grant agreement N°101016726). The group

in Milano was responsible for all of the organoid culture and development.

3.2.7.1 Organoids culture conditions

Liver organoids were obtained following a previously published protocol ??. Human liver

samples kept at 4°C in Basal Medium (Advanced/DMEM F-12 supplemented with 1%

Penicillin/Streptomycin, 1% glutamax, and 10 mM HEPES) before processing. Samples

were manually minced and washed twice with 10mLwash medium (DMEM high-glucose

supplemented with 1% FBS, 100units/ml penicillin and 0.1 mg/ml streptomycin). Sample

was then dissociated by enzymatic digestion (basal medium with collagenase and dispase

II 0.125mg/ml, DNaseI 0.1mg/ml) at 37°C for no more than 90 minutes to obtain an 80-

100% single cell solution. Solution was then filtered through a 70µM pores cell strainer and

volume was increased to 50mLwith ice-cold Wash Medium before centrifuging at 300g for

5 minutes at 8°C. Pellets were resuspended in 15mLwash medium and washed twice with

15mL wash medium and once with 10mL basal medium (each time pelleting the material
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by centrifuging at 300 g for 5 min at 8 °C). Cells were then resuspended in Matrigel and

seeded in 40µLMatrigel drops in 35mm µ-Dishes (Ibidi, DE). Drops were incubated for 20

minutes before being overlayed with 1 ml isolation medium (basal media supplemented

with 1X B27 supplement without Vitamin A, 1X N2 supplement, 1mM N-Acetylcysteine,

500 µg/ml R-spondin1, 10mM nicotinamide, 10 nM recombinant human [Leu]-Gastrin I,

50 ng/ml recombinant human EGF, 100 ng/ml recombinant human FGF10, 5 µM A83-01,

10 µM forskolin, 25 ng/ml recombinant human HGF, 25 ng/mL noggin, 50 ng/mL Wnt3a,

10 Y-27632). After 3-4 days, isolation medium was replaced with 1ml expansion medium

(lacking noggin, Wnt3a and Y-27632).

3.2.7.2 Vibrations and solutions

For organoid imaging, the microscope making the subject of this thesis was moved to

the laboratories in Milan and installed in their cell culture incubator. As detailed before,

organoids were seeded in a viscous medium (Matrigel) surrounded by expansion medium,

an environment very sensitive to the ambient vibrations. Indeed, in their laboratories,

imaging vibrations were the main cause of artifacts during acquisitions. Three causes of

vibrations were identified over the experiments conducted in Milan:

centrifuges [? ] are placed on the same table as the incubator They often produce a high

level of vibration.

The solution is of course to place the incubator in which the microscope sits on an-

other table, free of centrifuges. But in a space-limited biological laboratory it is not

always possible. In that case, for "short" time-lapse (less than 12h) it is possible to

acquire them during the night when no one is working.

the expansion medium out-spaces the Matrigel: This time the organoids are in 8 well

slides, where each rectangular hole is 9.4mm× 10.7mm.

the obvious way to reduce this source of vibration would be to use a different con-

tainer or a different imaging setup. However, our goal is to cope with the constraints
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that the biologists have, in order to keep exactly the same protocol as with our imag-

ing setup. Moreover, the volume of expansion medium is not a true source of vibra-

tion but more of an amplification of the surrounding vibrations.

other people opening and closing incubators nearby. Even after finding a place without

centrifuges, this space was still shared with other biologist also working with incu-

bator. The "fast" closing of door was generating high peaks of vibrations that lasted

only a few seconds. The solution here was purely social, one just had to remind other

people to close or open the door softly.

Vibrations are intuitive to visualise on a video, while it is much harder on a static im-

age. To give an idea of the intensity of the vibrations, we compared in Fig.3.25 images at

different time-frames with the mean image from a video. Vibrations can have different

effects on the image, e.g. it can blur it as we can see on the image at t = 0ms. The blurring

is not the most problematic artefact that can happen, because it only destructs the high fre-

quency creating a slight loss in resolution. What is more problematic is the displacement

introduced by the vibration, like the image at t = 150ms on Fig.3.25 where the roganoid

shifts to the right. If every image is randomly shifted in every direction, the result of the

reconstruction would be an average of every object (i.e. a blurred object) even if every raw

image is sharp with well-defined high frequencies.

Even with the vibration issues acknowledged and dealt with, other problems were

present on the raw images that decreased the quality of the reconstructed volumes. The

different artefacts are detailed below.

3.2.7.3 Corrupted images to to high organoids concentration

When working with single objects alone in the field of view, it is easier to ensure that the

incident plane wave on the biological object is effectively a plane wave (i.e. the intensity

level of the background is close to unit). Moreover, when other objects are present they

may interfere with the scattering of the sample under imaging. For the intrinsic culture
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Figure 3.25: Visualisation of the vibration on organoids. a) is the raw images at various
time during the video. The mean image is computed over the full 5 seconds of the video
acquired. b) is the difference between the raw image and the mean image.

of organoids (cell seeding in Matrigel from pellet re-suspension), different samples can be

easily find in the same field of view or overlay the one under imaging.

To have an idea of the effect of surrounding objects on the organoid under imaging, the

normalised 84 images cropped around a liver organoid are presented in Fig.3.26. The on-

axis images are clean without any perturbation, but many images (circled in red) present

the "shadow" of an other organoid higher in the medium. This second organoid is detected

during the angular change of the illumination. This shadow also skews the normalisation

procedure, that fails to normalise two images with variable intensity levels of the back-

ground (6th row in Fig.3.26).

These corrupted images might interfere with the reconstruction algorithm. To qual-

itatively inspect the effect of such a shadow moving in the raw images, we performed

the reconstruction twice. One with the full 84 measurements, one without the corrupted

images, leaving only 54 measurements available for the reconstructions.

The major improvement that we can observe from removing the undesirable normal-

ized images in Fig.3.27 is the increasing of the resolution. The small lipid droplet pointed

out by the red arrow in Fig.3.27 d-h is completely blurred when the optimisation algorithm

has to deal with the shadow passing over. Every interesting feature of the organoid is also
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Figure 3.26: Cropped images of a liver organoid after normalisation for the first 84 LED’s
placed at a distance of 86 cm from the imaging holder. LED number increases from left to
right, and from top to bottom.

Figure 3.27: 3D reconstruction of a liver organoid with and without the corrupted images
from Fig.3.26. a–d are slices for the volume reconstructed with all of the images (including
the corrupted one - Sections are indicated with red dotted lines in a), from top to bottom.
e–h are slices for the volume reconstructed with only the clean normalized images. b-f are
slices at z = 29 µm. c-g are slices at z = 51 µm. d-h are slices at z = 87 µm. Scale bars are 20
µm wide

sharper, like the inner cellular mass circled in green (3.27 c-g). Finally on the first slice

at z = 29 µm the amount of unwanted ring (circular structured) is lower and the back-
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ground is smoother. Even though much improvements were made on the data selection

and the vibration management, spherical aberrations due to the position of the organoid

inside the Matrigel still corrupted the final reconstruction and defined outer border or in-

ner structures of the organoids could not be retrieved yet (3.27 c-g).

This study indicates that images acquired with strong artefacts must not be used to

perform the reconstruction. This is easy to deal with for a single reconstruction object, but

for a time-lapse with hundreds of volumes this manual task can become time consuming

and must be automated as in Section 3.2.7.6 with Fig.3.31.

The next Section investigates the effects of spherical aberration on the reconstructions.

3.2.7.4 Aberration due do the non-standard medium thickness

Figure 3.28: 3D reconstruction of a liver organoid projected in 2D with depth coloring for
various aberration correction parameters.

The aberration study performed in Section 3.2.5.2 showed that a non-standard cover-

slip thickness or a non-zero medium thickness (the distance between the top of the cover-

slip and the object that is in focus) will introduce aberrations. In section 3.2.5.3 3.2.5.5, only

the effect of the non-standard coverslip thickness was investigated since it was our major

source of aberrations at that time. On the contrary, with the organoid setup the sample

holder has a thickness that is corrected by the objective (i.e. 170 µm), but the samples are

placed at various height, sometimes far from the bottom of the holder.
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If this Zm distance was known, we could directly use this value to have a more accurate

forward model that would produce better reconstructions. In order to experimentally find

this value from the measurements, we used a grid search on this parameter and performed

a reconstruction with all the values ranging from 0 µm to 1000 µm. Each reconstruction

has been projected in 2D using a depth color code to produce Fig.3.28. The true shape

of the organoid is not known, but in terms of refractive indexes we know that its outer

layer should be constant and surrounded by a zero refractive index gap. This mean that

the best object is the one with the less rings around the object and with the darkest back-

ground. With a focus on internal lipid droplet pointed by the white arrow in Fig.3.28, the

dot is sharp only for values between 400 and 500 µm. The images with the green rectangle

around seem to give slightly better results than without any correction at the end of the

reconstruction process.

This study suggests that the organoid is floating between 400 and 500 µm above the

bottom of the culture container, leaving a lot of space for other organoids to move below

or on top of it. That might explain the issues that we were facing in section 3.2.7.3.

3.2.7.5 Time-Lapse of a single liver organoid at early stage of development

Imaging of organoids turn out to be challenging because of the presence of vibrations, high

organoid concentration, and strong aberrations. Once all of theses issues were settled,

the goal was to perform a 3D video of a growing liver oragnoid. The acquisition were

performed with 84 illumination angles every 5 minutes for 6 hours. The reconstructions

of theses 76 3D objects were performed with the Fast proximal gradient descent algorithm

detailed in section 3.1.5.2.

Fig.3.29 shows the first steps of a liver organoid development. The white arrows point

at small internal cavities that can be visualized over the time-lapse. Their number grows

to 5, before they start merging to create a bigger one that is visible at 220 min on top of

a small one. When looking at the purple color, which represents the lower part of the

organoid, we can see that the cavity seems bigger in the lower part at the beginning (20
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Figure 3.29: Time lapse visualization of the 3D reconstruction of a liver organoid projected
in 2D with depth coloring.

and 60 min). Then it shrinks during a few hours to become small (10µm) in the lower part.

This happens at the same time that the higher cavity grows, suggesting that this is just an

internal movement of cells.

Only 9 volumes are shown on Fig.3.29, but the full video available in supplementary

helps to understand the internal movement with a much higher frame rate (one every five

minutes). This organoid was slightly moving in the xy direction for the first hour then

stayed almost static.
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3.2.7.6 Time-Lapse of a moving liver organoid

After further discussion with the biologist team, the organoid from section 3.2.7.5 did not

appear to be very healthy as the cavity should be much bigger, creating an almost empty

organoid that has the shape of football. Most of the cells are normally placed on the edge

creating this eternal membrane that is characteristic of these liver organoid. This time we

wanted to image a more healthy organoid that develops well.

A second time lapse was performed over night, to significantly reduce the vibration

issue. The acquisition was performed with 84 illumination angles every 5 minutes for 12 h

with the red LED array at λ = 0.625 µm. The reconstructions of theses 146 3D objects were

performed with the fast proximal gradient descent algorithm detailed in section 3.1.5.2.

Figure 3.30: Time lapse visualization of the 3D reconstruction of a liver organoid. The
first raw shows the acquisition image for the first LED only. The second raw shows a 3D
depth projection of the reconstructed volume. The third raw shows a slice at z = 0 µm (in
the center of the organoid). The last raw shows a slice at z = 35 µm (in the center of the
organoid). The volume has been extracted every 90° turn.

Even though time-lapse are meant to be visualized as movie, seven interesting volume

out of the 146 reconstructed were chosen to provide a static 2D representation of the key

moment of this organoid development in Fig.3.30.
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The first interesting behaviour that the biologists could observe for the first time thanks

to the temporal nature of the reconstruction, is that the organoids are rotating around their

center. On Fig.3.30 one volume has been extracted every 90° turn. The speed of rota-

tion varies between 1.3°/min and 3°/min. All the small organoids (smaller than 100 µm)

present in the field of view (results not shown) seemed to be rotating in the same direction,

until they became larger and stop rotating. The rotation can be visualized from the inner

cells that are attached to the membrane, clearly visible on the z slice at the center of the

organoid, 3rd row on Fig.3.30. Another interesting behaviour is the temporary shrinkage

of the organoid. As the time passes the organoid gets bigger and bigger, it can grows up

to 300µm in a day. But sometimes the organoid stops growing and shrinks for a few hours

before resuming its growth, as it can be observed between 6h 26 and 7h 46 on Fig.3.30.

The organoid is moving a lot in its culture medium; as long as it stays inside the field of

view it can be tracked manually in the X and Y axis, but a movement in the Z axis creates

a change of focus. At the beginning of the time-lapse the organoid is perfectly focus at its

center, but as the time passes the defocus increases. This displacement along the Z axis

increases the aberration due to non-optimal imaging condition. Using the technique from

Section 3.2.7.4 we can estimate the medium thickness that induces aberration. This manual

operation is time consuming and cannot be performed for every object from the time-lapse.

This distance was computed for 5 time frame, and was estimated with a constant then log

function for every other time frame of the time-lapse, shown in Fig.3.31

Once the depth of every object is known, this value can be used to take into account

the aberration introduced by a non-standard medium thickness as introduced in section

3.2.5.2. Every volume was reconstructed again with this aberration correction procedure,

and the comparison with and without correction are visible on Fig.3.32

The first improvement that our new model brings is the reduction of the diffraction

pattern in the reconstruction. This is visible at 6h 26 on Fig.3.32, there are less parasite

circular rings on the corrected reconstruction. Even if the corrected image is slightly better,

it is still very blurry and a lot of diffraction pattern are present in the reconstruction. If
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Figure 3.31: Z displacement of the organoid over time. The 5 dots represents the manual
estimation of the z value. The solid line represents the function used to estimate the z
displacement for every time an acquisition was performed.

Figure 3.32: Comparison of 3D reconstruction of a liver organoid during a timelapse. Raw
1-2 are projection in 2D with depth coloring. Raw 3-4 show the central xy slice of the
organoid. Raw 5-6 show a top xy slice of the organoid.
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we compare the organoid of t=6h26 to the one from t=0 it is clear that we have worst

results after a few hours and that the spherical aberration is not the main problem. The

main difference between the nice looking organoid and the corrupted one is the change

of focus due to organoid movement. Apparently out of focus organoid are less accurately

reconstructed by our model.

Concerning the value of the refractive index, for the early stage of development (before

2 hours) the corrected model seems to yield brighter images, reflecting an higher refrac-

tive index reconstructed. Considering the fact that the refractive index is almost always

underestimated due to the Z elongation, an higher refractive index is a good sign. The

inner structure that allowed us to measure the rotation behaviour of theses organoids also

seem more detailed and slightly brighter. This might be a side effect of the reduction of the

parasite circular ring.

Even though the correction does not have a strong effect, is it important to remember

that it comes with almost no extra computational cost, the only cost is an extra point wise

multiplication that is neglectable compared to the hundred of FFT’s that are performed at

each model evaluation.

Most of the artefacts present in the reconstruction only appear when the imaged object

is out of focus. On simulation, if an object is on focus or out of focus, the reconstructions

will be equivalent. It appears that is not the case for images with our prototype. The ex-

planation for this problem would be the presence of aberration inside our imaging system.

The first step would be to characterize the pupils function of the system as in [90].

3.2.8 Limitations of the imaging setup

3.2.8.1 Acquisition time

To date, the total acquisition time of 2 to 3 minutes (for 84 different angles) limits the

application of the system to biological samples that evolve in the range of minutes to hours,

e.g embryon, cell culture and organoids. In order to address the imaging of living samples
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at a faster rate, one could use fewer and brighter LEDs as in [76]. A ring of 8 powerful

LEDs is placed on top of commercial inverted microscope, enabling them to image in 3D

at a 10Hz rate.

3.2.8.2 Sensitivity to the focus

Theoretically, the focus placement inside the object has no impact. If we do the focus at

the center of the object, then the reconstructed volume will have the reconstructed object

at its center. If we focus on the top of the object, then the reconstructed volume will be in

the lower part of the reconstructed object. In practice, when we are not focus exactly in the

center of an object, it creates artefact. The circular interference created by the defocus are

not reconstructed properly and end up directly in the reconstructed volume (visible at the

end of the time-lapse from Fig 3.32).

For the imaging of single object, this will be solved by using a xy motorized stage to

follow the individual object and then use a piezoelectric stage to perform an auto-focus on

the desired object.

To image multiple 3D object placed at different heights (and thus being out of focus),

this sensitivity to the focus will have to be studied and corrected.

3.2.8.3 Lack of quantitative information

With a tight control on the experimental conditions the previous limitations are not prob-

lematic. But we chose by conception to have huge lack of information to perform the 3D

reconstructions. We are missing the phase of the acquired light field because we are not

using an interferometric system for simplicity. We are also loosing a lot of information

because we have a limited angular illumination due to the low NA objective we use to

maintain a wide field of view. All of this missing information results in three major issues.

First we are missing the low frequency of objects. Most of the signal we acquired with

our CMOS sensor comes from the edges in the observed object, leading to reconstructed

object that are not correctly measured in terms of refractive index (i.e. objects with con-
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stant n are not filled, but only the edges are visible). To fill the object we rely mainly on

regularisation with the TV penalisation.

Then the low angle coverage results in an axial elongation of object as discussed in

section 3.1.4.3. With recent method like deep-learning, this issue can be addressed with

learning based methods as presented in Chapter 4.

Finally this elongation reduces the reconstructed refractive index, leading to a non-

quantitative system concerning the value of the refractive index for every voxel.





Appendix B

Appendix on 3D biological reconstruction

The microscope presented in Section 3.2 was used to image many other biological sample

than embryo and organoids. For wider object the field of view of 200 × 200µm is not

enough. To image with a wider field of view, we decided to use a lower magnification

objective (10X instead of 20X), with a lower NA (0.2 instead of 0.4). This should decrease

the resolution by 2.

To increase the field of view once more without degrading the resolution, we decided to

use a shorter lens tube of 9 cm instead of the nominal 18cm. This reduces the magnification

from 10X to 5X while maintaining a 10X NA and resolution.

B.1 IMAGING WITH WIDER FIELD OF VIEW

The first sample to be used with a wider field of view is challenging by its support. The

imaged section in Fig. B.1 is a part of a microfluidic channel in which organoid vascular-

ization is studied.

The second sample in Fig. B.2 is a pancreas organoid studied for its possible insulin

generation in presence of glucose.

108



109

Figure B.1: xy cross section of a microfluidic channel growing a vascular network
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Figure B.2: xy cross section of a pancreas oragnoid





Chapter 4

Deep learning and Intensity Diffraction Tomog-

raphy

The goal of this chapter is to introduce deep learning, starting with its short history be-

fore detailing the main parts that make it so popular in computer vision and in biological

imaging. Then it will be used to solve our main 3D reconstruction artefacts. Importantly,

results from this chapter were filed into a patent that is still under processing and orally

presented on [98]

4.1 DEEP LEARNING: BASICS

In this section, the deep learning essentials will be introduced, with a focus on convolu-

tional neural networks, which are the foundation of modern computer vision algorithms

and computational microscopy.

Artificial intelligence (AI) has experienced several hype cycles, with alternating periods

of reduced funding or high interest in AI research. Thanks to the increasing in power com-

pute and data available, a part of AI, deep learning, exploded during the last decade. Year

after year it is now making huge breakthroughs in many fields. It started with computer

vision, but quickly extended to machine translation or speech recognition, as examples

111
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[72].

To have a better idea of how fast deep learning (DL) improved the performance in

image recognition, let’s have a look at the ImageNet [24] image classification competition

that started in 2009. As shown on Fig.4.1 the level stagnated for the first few year with high

error rate (> 25%). From 2012 every winner was using deep learning architecture and the

error rate quickly dropped bellow the 5% that is an estimation of the human error rate.

Figure 4.1: Performance of the winner of ImageNet [24] image recognition challenge over
the years (von Zitzewitz 2017). Deep learning architectures are in blue. Fig. 10 from [82]

This first successful application quickly brought the interest from other fields where

super-human performances were rapidly obtained, in visual reasoning [114], in poker [87]

and traffic sign recognition [18].

4.1.1 Machine learning

An important part of AI is machine learning, which contains all of the algorithms that let a

machine autonomously train its model to performed a desired task . At present, machines

refers to computer programs and the implemented algorithms aim at estimating the prob-

ability densities that describes the data under observation. Every machine learning model

follows the same principles.

A model f(x,W ) has a set of parameters W which influence its comportment. The

model has to map all the input x to all the corresponding output y in a way that y =
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f(x,W ). We can consider that x is drawn from an unknown probability distribution P (X).

To build the best model possible, the conditional probability distribution P (Y |X) is re-

quired but never available for real world examples. For real application only some inputs

χ and their matching output Υ are known. Machine learning goals is to find the best Ŵ

with the intent that the predicted ŷ = f(x, Ŵ ) will match as closely as possible the real y.

If everything works perfectly, the known input data χ is well modeled as well as the true

underling distribution. We can then say that the model did not remember all the examples,

but has truly learned the unknown data distribution. Another way to look at the problem

is to see it as an optimisation problem on a supplied dataset (χ,Υ). Even-though it is not

always possible to map a machine learning to an optimisation problem, it will be the case

for all the model presented in this document.

The two major goal of machine learning are the following:

• 1 - Searching for the best model. Since there are countless way to create a model,

a great amount of research focus in improving the existing model or building new

ones.

• 2 - Estimating the best W possible.

Concerning the weight estimation, the gradient descent is by far the most efficient and

democratized method. First the idea is to calculate ŷ = f(x,W ) on the training examples

and an initial W and then estimate the error between ŷ and y with a loss function L(y, ŷ).

The loss function measures the similarity of ŷ and y and if the loss was correctly build,

smaller values of L(y, ŷ) shows higher similarity. Then by computing the first and rarely

the second derivatives of L(y, ŷ) with respect to W , a small adjustment dW is computed

such that L(y, f(x, Ŵ + dW )) < L(y, f(x, Ŵ )). This is the gradient descent of a loss func-

tion and even if many alternatives were tested, it is currently the most efficient method

for training (i.e. finding the best parameter W ) for neural networks and multiple other

machine learning models.
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4.1.2 Neural networks

Deep learning is the part of machine learning where the model used is an artificial neural

network. This artificial neuron was inspired by the biological neuron, and simply repre-

sents a transfer function where the inputs data are multiplied by coefficients and summed.

This sum is then transformed by an activation function to produce the output. The coef-

ficients are the weights, or trainable parameters of this model, and the goal is to find the

weights W that produce the desired output for a given task and data.

Figure 4.2: Illustration of an artificial neuron: the perceptron

This artificial neuron was named perceptron [105] and works as a linear regression,

therefore it cannot solve complex non-linear problems. The multi-layer perceptron [108]

combined with non-linear activation function is complex enough to guarantee that weights

W exists for every imaginable task [50].

To find the desired weights for a given task, multiple steps are required and summa-

rized in Fig.4.3. First, a forward pass is performed where each neuron receives the input

data and computes the output results ypred steps after steps. During the training the de-

sired output ytrue is know, and an error between the produced output and the real output

can be computed through the loss function.

This error is then back-propagated layer after layer to compute the gradient of the
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Figure 4.3: Schematic view of an artificial neural network composed of 2 hidden layers and
its training loop composed of 4 parts. The forward pass computes the output. epsilon is
the cost function to compute the error of this output. The backpropagation pass computes
how the weights should change to minimise the error. The actual change of the weights
decreases through gradient descent.

weights relatively to the error. From this gradient, the weights can be updated. For more

detail about the gradient descent please refer to Chapter 2 on optimisation (section 3.1.4).

4.1.3 Dataset

The gradient descent is performed on the training dataset, and the weights of the neural

network will be fitted to have the lowest cost function possible. To control over-fitting

issues (detailed in section 4.1.7), a validation dataset is commonly used to control the

performance of the neural network in an unbiased way. Each model has intrinsic hyper-

parameters that can be tuned, such as the number of layers, the learning rate of the opti-

mizer, the type of the optimizer etc. This tuning is normally realized on the dataset itself,

therefore the performance of the model on this dataset will not reflect the overall true per-

formance. A third dataset is normally used to estimate the true performance of the model

on unseen data, the test dataset. In theory we assume that these three dataset are sampled
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from the same data distribution, but in practice we often have only one dataset that we

split into training and validation. The validation is used as the test dataset in many cases,

even if the predicted performance will be biased.

4.1.4 Convolutional neural network

The first work on convolutional neural network (CNN) started in 1980 [38] and stay quite

confidential for thirty years until this field of research started to explode. The idea behind

CNN is brilliant: instead of applying fully connected layers to a (long) 1D array of 2D

points that automatically hides the structural information of the dataset (i.e. the intercon-

nection between points), convolution operations are used.

4.1.4.1 Convolution

One may ask why it is an issue to apply fully connected layer directly between the input

and the output of our data.

The first major drawback of fully connecting layers for image treatment is the absence

of translation invariance, for example in the case of an image translation task where empty

circles need to be filled. Once a network was trained to fill circles on the top left of an

image, it will not be able to fill circles anywhere else on the image. Thus the training data

need to contain examples of circles everywhere on the image. For a simple task such as

circle filling this is tedious, but doable. However, for a more complex biological sample, it

might not be possible to gather images with all the possible positions and orientations of

an object or detail.

The second major drawback is the memory consumption of fully connecting layer for

an image-to-image task. For a 512 × 512 image, there are 262144 pixels. If x and ŷ have

that 1D shape, the weight matrix W of a single perceptron would have more than 68 719

millions parameters. With float 32 bits, it represents more that 256 Gb of memory, which

are at the current time an order of magnitude bigger to be used on any commercial GPU.
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The solution to both issues is the use of discrete convolution with a kernel. The param-

eter of these convolution kernel are the trainable parameter. The output of the convolution

is a feature map, that is then feed to the activation function. The number of parameter is

given by the size of the kernel and does not depends on the size of the image. This pro-

vides a good scaling ability without hardware bottleneck, as well as a native 2D or 3D data

support without any 1D vectorization. The translation invariance comes from the defini-

tion of a convolution that apply the same operation everywhere on an image. That means

that once the network can fill a circle at one place of an image, it can perform this change

at any position.

4.1.4.2 Receptive field and pooling

The use of convolution is not perfect either, even if it is widely use. The main drawback

comes from the fact that an output pixel only has information from a part of the input

image, depending on the kernel size and the presence of pooling layer. The number of

pixels available from an output is called the "receptive field". A good network architecture

must have a "receptive field" that is big enough to correctly perform the desired task. For

the example of circle filling, it should be big enough to "see" the whole circle before filling

it. An easy way to increase the receptive field is to increase the kernel size, but the number

of trainable parameter increases quadratic with the kernel size. That is why most of the

architecture uses 3× 3 or 5× 5 convolution kernel.

Another way to increase the receptive field is to put multiple convolutions one after

another, thus allowing to linearly increase the receptive field. By stacking two 3× 3 layers,

the output can have information from a 4 × 4 image on input. This is why a lot of con-

volutions are required to have a big receptive fields. This number can be reduce by using

pooling operation. The pooling operation aims at selecting only the most important infor-

mation, thus reducing the amount of computing power required. The most used pooling is

the max pooling that selects only the highest value, disregarding all the other values. Once

the high level features have been extracted by the accumulation of convolution, activation,
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Figure 4.4: a) Architecture of a deep neural network. b) Convolution
mechanism. c) Max and average pooling example. Images modified from
https://blogs.nvidia.com/blog/2018/09/05/

pooling, the following part can be shaped to match the desired output structure.

Figure 4.5: Feature map of the VGG16 with a cat and dog input. Genarated with code from
https://gist.github.com/TejaSreenivas

In the case of VGG16 presented as an example in Fig.4.4, it is used to classify images

into 1000 classes, therefore the output is a 1×1000 1D vector. After each convolution block,

the image can still be visualized, for example with a dog and cat in Fig.4.5. In the first layers

the filters are reasonably closed to usual filters, such as for high or low frequency selection.
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Deeper inside the network, the filters are becoming more complex and less intelligible.

Nonetheless these advanced filters are decisive in the process of correctly extracting the

features needful to perform correctly the assigned task.

4.1.5 Image to image network and U-net

The classification network presented in section 4.1.4 outputs a 1D probability vector, but if

we want an image as an output other architectures need to be use.

For these image-to-image task, the U-net [104] architecture has been widely used, after

being introduced in 2015 for biological image segmentation. It combines many interesting

architecture choices that made it a reference in the domain. First there is a compression

stage where the input image is down-sampled with convolution and pooling to extract the

meaningful feature present inside the image. As shown on Fig.4.6 the features extracted

have multiple resolutions,and the pooling operation reduces the resolution by a factor of

2 at each convolution block. This gives room to increasing the number of features at each

block with an increasing number of convolution channels. Moreover, from each condensed

image representation there is the up-sampling branch that goes back to the original image

size. For up-sampling, transposed 2D convolution are used, where a kernel of trainable

parameters perform the size expansion. This auto-encoder architecture helps correcting

the image in its low frequencies, but for higher frequency details skip connection were

introduced. The data are just copied and concatenated with the result of an up-convoluted

layer that has the same shape. The goal is to keep the features that were extracted by the

compression filter to help the up-sampling part in keeping high frequency details. The U-

net was originally used for classification on every pixels (segmentation), this is the reason

why it uses 1× 1 convolution to avoid the downside of fully connected layers. For image-

to-image translation, slightly different final layers are used. The sigmoid that is almost

always used for classification was removed and replace by a ReLU [37].
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Figure 4.6: Modified U-net architecture.

4.1.6 GPU and training

Of course the new model architectures and good practices around deep learning helped

a lot to increase its performances, even though the main improvements came from the

hardware. With the increase of compute power thanks to the modern GPUs (developed

first for gamers), the number of operations that can be performed is ten to hundred time

higher than a recent CPU that is already ten times faster than a CPU from the early 2000.

GPUs are faster for deep learning training because they have thousands of cores that can

parallelize the operations, while a CPU only has between 4 and 32 cores. The CPU is

more robust and can crunch a lot of various task, but to perform a task that can be highly

parallelized, like huge matrix product or a high number of convolution, GPUs are faster.

In addition, the price of data storage also dropped rapidly during the past two decades

allowing researchers and private companies to gather, label and store huge amount of

data (see 4.7).

4.1.7 Overfitting

One of the many way a neural network can malfunction is overfitting. This issue is not

specific to deep learning but can be found in many machine learning task. It can be naively

illustrated with polynomial fitting on a 1D regression task in Fig.4.8.

If the number of parameters is too small and the model is not complex enough to rep-

resent the underlying data distribution, we are in an underfitting situation. On the other

side of the spectrum, if the model is too flexible it will match every data points of the train-
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Figure 4.7: A simplified way to look at data-scaling of deep learning algorithms.

Figure 4.8: Overfitting visual explanation. Source: https://fr.acervolima.com/

ing set without understanding the underlying distribution, namely overfitting. The model

does not learn the proper data distribution but remembers all the training points. Then,

when it will face new unseen data, its predictions will be wrong.

Overfitting appears when the number of training data is lower than the trainable pa-

rameter of a model. Indeed, manually annotating data points is a tedious work and mod-

ern deep learning (DL) architecture often have ten’s or hundred’s of millions parameters.

That is why overfitting is a common problem in the DL field.

In practice to detect overfitting while training, we need to use the validation dataset.

By monitoring the error (loss) on the training dataset and the validation after each training

step, one can notice if and when the model if overfitting. On Fig.4.9 it happens when
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Figure 4.9: Overfitting detection and early stopping placement.

the validation loss starts to rise while the training loss keeps decreasing. A commonly

used technique to deal with overfitting is early-stopping [11], where overfitting is tracked

and the training stopped as soon as the model starts to overfit. The overfitting control

can also be performed by increasing the training dataset, either by gathering more data

(often expensive and tedious work) or by virtual data augmentation. On images, data

augmentation will slightly alter the available data by modifying the original images with

simple operations, such as cropping, rotating, changing exposure, adding noise etc. The

idea is to alter the input data to prevent the network from remembering each image, and

instead forcing it to find the important characteristics of images. With the same idea but

for the inner weights, the dropout [123] is extensively used. With dropout random neuron

are deactivated at each training stage, thus limiting the possible complex co-adaptations

and forcing the network to find robust features. To accelerate and stabilise the training, the

batch-normalisation normalises the data to the mean and standard deviation of the current

batch [53] . The same image will have therefore slightly different pixel values depending

on the overall images present in the current batch, also preventing overfitting.



123

4.2 DEEP LEARNING AND TOMOGRAPHIC RECONSTRUCTION FROM SCAT-

TERING IMAGES

4.2.1 State of the art

The field of optical diffraction tomography was not unaffected by the deep learning wave

and during the past five years various strategies have been used. A graphical view is

presented in Fig.4.10.

Deep Learning (DL) has been originally used to pre-process raw images from the ac-

quisition setup and remove noise [14]. This problematic is omnipresent with quantitative

phase measurements, where the phase is obtained from the interference with a reference

beam. Since we are working with intensity only images (see the previous Chapters), our

images are much cleaner and such network is not needed. An other use of DL on mea-

surements was to help removing the unusable measurements [110], whether because they

are too noisy or because another object has perturbed the acquisition. This step has been

manually performed in our acquisitions (See section 3.2.7.3).

A different research team trained a network to go directly from the normalized mea-

surement to the final 3D map of the refractive indexes [60] [61]. This task is the most

difficult of all, since it does not includes the physic of light scattering and therefore was

mainly performed on phantoms and spherical objects. The variety in wavelengths, re-

fractive index range, and experimental conditions, makes the amount and the variety of

data required for real bio-usage gigantic. Even if this technique would be the fastest, at

the current time no direct inversion with DL was performed on real, diverse, biological

samples.

A more precise approach was to only introduce deep learning for the regularisation

part with deep priors [140] [144]. The idea is to replace the common L1 or Total variation

regularisation by a network trained to perform a similar task. The main drawback of this

technique was that at each iteration the gradient descent from the measurements was elon-

gating and increasing the edges instead of providing compact and full objects. It can be
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considered as an improved regularisation based on deep learning.

Figure 4.10: Integration of the deep learning strategies inside a standard learning tomog-
raphy from transmitted images.

Deep learning was also introduced inside the light scattering model with a "Physics-

informed neural networks" [112]. A modified U-net is trained to compute the scattered field

induced by the 3D refractive index map. This trained network can approach the accuracy

of a finite-element solving of the Maxwell equation, therefore being more accurate than

multi-slice models even for high illumination angles. Once the network is trained, it takes

only a few tens of seconds instead of tens of minutes to compute the forward model. This

is groundbreaking for high resolution systems with high numerical aperture (NA > 1),

where most of the error comes from the accuracy of the scattering model. However, in our

case, this technique might not be relevant, since the multi-slice model is good enough to

cop with low NA objectives and aberrating optical systems.

Finally, deep learning was trained to correct optical aberrations on volumes recon-

structed with a linear model and direct inversion [79] [83]. For this approach, random
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volumes are generated and reconstructed, and the network is trained on simulated data

only to go from the corrupted volume toward the real ones. Lim et. al. [79] were the

first one to implement such a method and restraint their use case to red blood cells only.

This was the first step to show that training on simulation was good enough to generalize

to real biological red blood cells. Then Matlock and Tian [83] trained their network on

random stack of 2D images as 3D volume, and the network perfectly generalized to real

biological samples without any fine-tuning.

Our approach detailed below also lies in the "artefact correction" category.

4.2.2 Artefact correction from random stacked images as 3D biological volumes

The approach that looked the most promising for our 3D reconstructions was the work

done by Matlock and Tian [83], were at the starting point of the network was given the

best possible linear reconstruction and it had to guess the real object from that. In their

work, the axial resolution was truly improved and, since the network was train on random

non-biological images, its generalisation capabilities are not questionable.

We decided to use the exact same method for the data generation and the training of the

neural network, except that we replace their reconstruction model by our model. The goal

for our data processing would be to decrease the elongation on the z axis and improve the

resolution of n. Matlock and Tian have a high resolution and low aberration microscope

(i.e. an expensive and big inverted commercial microscope) coupled with a linear model

reconstruction, and the goal of their neural network is to correct their model error. On

our side we have a multi-slice reconstruction model, but coupled with cheaper and more

prone to aberration hardware. The sections below will describe the adaptation of their

algorithms to our model.

4.2.2.1 Data generation from random images

In order to train a network to correct artefacts from reconstructed volumes, the first task is

to create a training dataset with paired volumes with and without artefacts. In 2D phase
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imaging, this kind of datasets can be acquired by taking an image with a reference micro-

scope after imaging the sample with the current method [103]. But in 3D the few quanti-

tative microscopes that exists are still laboratory prototype, that were not available for us

to use. Note that their high numerical aperture force them to have a huge magnification,

leading to a field of view too small for our applications.

Since we cannot get real training data for our artefact correction model, we will have

to simulate the data. Simulated volumes of size 128 × 128 × 30 were be generated by

stacking 30 normalized images randomly drown and cropped from the COCO dataset [81]

that contains over 300 millions images taking from everyday images.

The normalisation procedure follow the next steps:

• randomly rotate the image between 0 and 360°;

• divide the pixel values by a random number between 255*20 and 255*1000. This

ensures a maximum refractive index gap between 0.05 and 0.001.

• 30% of the time return an image with 0 for every pixel. This is to train the network

to return empty refractive indexes where there is no object;

From this generated volume, the microscope intensity images are simulated to ap-

proach what we would have measured if the generated object was place inside our mi-

croscope. From those simulated measurement, we reconstruct the object using the same

exact loop that the one used in Chapter 2 for the time lapse reconstruction.

An example of a generated and simulated volume is shown in Fig.4.11. The axial (i. e.

Z axis) elongation in clearly visible in the YZ slice. This elongation is reflected on the XY

slice by the fact that the shape present in one slice only appears on the previous and next

slices, like the brick wall or the surfer.

2800 volumes have been generated and simulated, providing more than 80 000 paired

images for training the neural network. 200 more volumes have been generated to create

a validation dataset.
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Figure 4.11: Example of a volume generated from random images and its simulated mea-
surements, used to perform the reconstruction of this volume. All scale bars are 6 µm wide.

4.2.2.2 Model development and training

Now that we have paired 3D volumes with and without artefacts, we can use them to train

a neural network to go from the distorted volume to the correct one.

Since we have 3D data, a straightforward strategy would be to use a 3D network such

as a modified 3D U-net [17]. However, it has been shown that a multichannel 2D network

would train faster and give similar results, provided that the multichannel input includes

a central XY slice with various Z around it for each channel [83]. The idea is to give the

network some 3D information, but not the whole volume, just 3 or 5 slice. We decided

to use the same architecture that pix2pix [54] uses for image translation tasks. The only
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Figure 4.12: Architecture of the 2D modified U-net to take into account axial information
with a 5 channel input.

modification was to use 5 input channels instead of the 3 standard channels for red, green,

blue.

The main difference between the used architecture presented in Fig.4.12 and the origi-

nal U-net is the use of modules of the form convolution, such as then BatchNorm [53] and

the Leaky-ReLu. The BatchNorm layer helps the convergence and the leaky-ReLu helps

the gradient to propagate during the backward passes.

This network was trained using Adam [64] algorithms with a learning rate of 1e-3 and

a batch size of 20. One epoch correspond to 280 volumes. The data are selected randomly
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before being fed to the neural network. All of this means that every 15 epochs, the network

has seen every data once. The training and validation loss are visible on Fig.4.13. We are in

a typical overfitting situation, where the training loss keep decreasing, while the validation

loss remains constant and even increases after epochs 70. It is interesting to notice that the

validation loss is always lower than the training loss during the first 30 epochs, meaning

that the model performs better on unseen data. This can happen if the validation dataset

is slightly easier, due to a lucky random draw of the images that created the volumes.

Figure 4.13: Loss evaluation during the training of our modified U-net. The training loss
is the mean loss on the training dataset, the validation loss is the mean loss at the end of
the epoch on the validation dataset.

An early stopping at epoch 61 was performed to keep the model that had the lowest

validation loss. The performance on training and validation is shown on Fig.4.14.

The results on the training data are really encouraging. First every time that a image

was supposed to be empty, the algorithm detected it as empty and returned a black (zero)

image. Second, the elongation along the z direction disappeared, as excepted. Third, the

image intensity (corresponding to the refractive index value) is much closer to the original

image. For our microscopy setup, having a correct refractive index value is important

because this parameter can be related to protein density or cell dry mass. Finally, the fine
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Figure 4.14: Visualisation of the output of the modified U-net on the training data created
from random images.

details and high frequencies of the images are well preserved, as it can be seen in the bricks

or on the wheel of the motorbike.

On the downside, we can see that the output from the neural network are not as clean
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as the original images. Some details are blurry, and some important details tend to appear

in the next or previous slice. (creating a 1µm or more elongation of object). For example

the sky cannot be differentiated from the see in the surfer image.

The performance of any network on the training data is only relevant to make sure that

the training went well and that the network is flexible enough to perform the desired task.

To evaluate the performance on unseen data we need to use the validation dataset. An

example of the output of the network on the validation dataset is shown on Fig.4.15.

The results are worst on this validation volume than on the training. Indeed, the vali-

dation dataset is much more complex to reconstruct, having a lot of different images next

to each other, while on the training volume only 2 images were next to each other with a

lot of empty refractive index examples before the third one. This complexity is visible on

the reconstruction (the input data from the neural network), were all the images are mixed

up and it is almost impossible for a human to guess what was the original image. Only the

high contrast feature are found by the network, like the edge of picture are z = 9µm or the

reversed head at z = 8µm.

What is interesting on this validation volume is the correctness of the refractive index

intensities, not going higher than 0.008 on the reconstruction and mapped them correctly

to the good intensity range for each images (as high as 0.05). Another good point is the

elongation correction, for z = 7µm the output of the network is almost black, preventing

any elongation of the head along the z direction. Concerning the elongation, the features

present in one slice are not present in the neighbouring ones, i.e. every image is different

from the one on top or below. This means that even if the low contrast features are lost,

the objects or shapes detected are correctly placed along the z axis and they don’t mix with

each other. This fact is pretty stunning considering the fact that the axial resolution of our

microscope with an objective of 0.4 NA and the red LED’s with λ = 0.625µm is 5µm. This

means that punctual objects are not supposed to be distinguished if they are not distant by

at least 5 µm (theoretical resolution for the lateral direction). Here it looks like the modified

U-net can separate high contrast features that are distant only by 1µm.
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Figure 4.15: Visualisation of the output of the modified U-net on the validation data cre-
ated from random images.

Concerning the fact that this modified U-net network cannot retrieve the low contrast

objects or shapes when it is in the middle of many images, it might not be a relevant for

biological objects. Indeed, the features inside a biological object are not changing that fast
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along the z direction. See Fig.4.11 with YZ slice of the generated volume that is really far

from a continuous slice inside a biological object because it contains a lot of white line.

It looks closer to a barcode than an embryo. Concerning the refractive index gap, most

features in which we are interested (lipid droplet, nuclei etc.) have a strong refractive

index gap which is not the case here with a lot of low refractive index gap images.

4.2.2.3 Model testing on biological data

Now that our model is trained and that its performance is estimated on unseen simulation

data, we can apply it to our real biological data.

Figure 4.16: Performance of the modified U-net trained on random stack of images applied
to a mouse embryo. Scale bars are 20µm.
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The chosen volume for this test is a 2 cell embryo from the time-lapse presented in

Chapter 2. This volume is 1024 × 1024 × 128 with the same spatial resolution than the

128 × 128 × 30 volumes used for training (i.e. 0.128 × 0.128 × 1µm3). This embryo was

reconstructed using the same algorithm than the simulated data. On Fig.4.16 we can see

that the reconstructed refractive index range is the same for the embryo reconstructed

with the BMP model and after passing the U-net architecture. The shape of 1024 × 1024

can be processed directly by the network; indeed the proposed U-net architecture is fully

convolutional with max pooling factor of 2, therefore any power of 2 times 128 can pass

forward.

The output of the neural network trained on random stack of image is presented in

Fig.4.16. Since we do not have a reference image, only qualitative evaluation will be pos-

sible. The neural network had two main objectives: i) removing the axial (along z axis)

elongation, therefore increasing the refractive index value; ii) filling the object refractive

index to avoid the frequent "empty shell" aspect caused by the lack of phase information

in the acquisition.

Concerning the elongation reduction, it is clearly visible that no reduction at all was

performed by the neural network. Indeed, when we observe the nuclei or the liquid

droplets that are almost spherical inside a mouse embryo, they appear with a strong elon-

gation along the Z axis before and after the neural network. If we look closely at each

droplet, we can see that its center is brighter. It might be explained by the fact that the

neural network was trained on stacked images, and therefore was used to find in which

slice a shape was originally from. But it never had to retrieve an object that was originally

on multiple slices like a sphere. This might be the neural network answer to a sphere that

he has never seen before. Even though the inner object of this embryo kept their elongated

shape, their refractive was increased significantly, most likely leading to an overestimated

refractive index.

Concerning the filling of object that only have their edges reconstructed, it is hard to tell

whether the cells from this embryo are more compact before or after the neural network,
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especially if we keep in mind the difference of color-map between the two images.

One may ask: why did it work that bad on real biological data ? A First answer would

be the strong difference between the training data and the biological data. The network

has never been confronted to any kind of continuous 3D shape along the z direction. Even

though the refractive index ranges are similar over different layers, it appears that the

network cannot still recognize continuous 3D shapes as single objects.

This answer is not fully satisfactory, because Matlock and Tian [83] managed to use

their network trained on stack of images of various biological sample. Maybe we missed

a crucial step in the data generation or in the neural network training, but the simplest

answer to this question is that our biological and technical scenarios are more complex than

what they were facing. In their case of intensity diffraction tomography the reconstructions

were not satisfactory because of the use of a linear model. In our case, we are processing

measurements with information content much lower as the incident wave phase is not

recorded.

To find a solution to the elongation of reconstruction, we decided to change the object

training to biological-like objects, with a particular focus on embryo-like objects. Here-

below we describe the new methodology.

4.2.3 Artefact correction from simulated 3D biological volumes.

A large amount of 3D biological volumes are available, but they are mostly MRI images

and CT scans. These imaging technique produce 3D volume always on grayscale and can

easily be converted to a refractive index gap. The main issue with this idea is that most of

the available dataset are very redundant in term of shape and contrast. Indeed a human

lung will always look quite similar to an other human lung, and even when mixing all

the body parts available (heart, liver, brain, knee etc.) the volumes were all looking quite

similar. With heavy data augmentation it might have been to simulate the deformation

from our microscope and train a network on it, but it seemed not diverse enough.

In microscopy, such 3D dataset exist but the number of cell imaged is still low [127]
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or focused on 2D sample [20]. More importantly, there is no commercial reference mi-

croscope for refractive index imaging and all of the recent advances in optical diffraction

tomography only include a low number of samples.

Considering the lack of synthetic 3D data available, we concluded that 3D synthetic

data have to be generated.

4.2.3.1 Synthetic embryo generation

In the previous data generation we decided to promote diversity over biological-like fea-

tures. This time, we will try to match as closely as possible the biological features while

maintaining a high diversity of shapes and contrasts. Since no available dataset is available

with such criteria, we created it from scratch.

From acquired images we observed that most of the features and shapes inside an

embryo are some kind of ’blobs’ or spheroid-like objects. These kinds of objects can be

generated randomly and with a great amount of diversity.

The idea to generate a random spheroid-like object is to generate a sphere with variable

radii in 3D. Perlin noise[93], originally designed to generate random map with hills and

valley, was used to generate objects with various shapes by mapping this Perlin noise in

3D on the radius(see Fig.4.17).

To have an idea of the refractive index gap to use for the generated cell and nuclei we

used Phasics (see section 3.2.5.4 for more detail) images and an hypothesis of sphericity

of the object to go from a 2D quantitative phase image to the refractive index of object.

Therefore the procedure to generate a synthetic embryo follows those three steps:

• Generate and place randomly between 10 and 20 synthetic cells. Each cell was cre-

ated with a medium noise frequency and a low noise amplitude, as per Fig.4.17 a).

Each cell is scaled randomly between 6 and 50 µm, with a refractive index gap ran-

domly between 0.01 and 0.02.

• Inside each cell, add between 70 and 160 synthetic lipid droplets. Each lipid droplet
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Figure 4.17: Evolution of the shape of a spheroid-like object generated with a random
Perlin noise on the radius of a 3D sphere. a) was used to create the fake cell for the synthetic
embryo. b) was used to create the fake lipid droplet for the synthetic embryo

is created with a high noise frequency and medium noise amplitude, as in Fig.4.17

b). Each lipid droplet is scaled randomly between 0.2 and 25m and has a refractive

index between 0.005 and 0.015 higher than its cell refractive index.

• Finally, an envelope is added around all the cells, representing the zona pellucida

found on nominal embryos. This enevelope was created with a medium noise fre-

quency and a low noise amplitude, as in Fig.4.17 a). This volume is then scaled

randomly between 80 and 90 µm and the 90 % inside volume are removed. The

refractive index was varied between 0.003 and 0.007.
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Figure 4.18: Visualisation of a synthetic embryo generated with the procedure from section
4.2.3.1. Scale bar is 40 µm a) is the original generated volume. b) is the volume after simu-
lated the optical system and doing the reconstruction from those generated measurement.
The methodological procedure is the same as the one detailed in Section 4.2.2.1

A typical volume is presented in Fig.4.18, the same procedure than section 4.2.2.1 was

used to produce the reconstruction from simulated measurement available in Fig 4.18 b,

except for the volume size and discretization. Volumes of size 1024 × 1024 × 1024 with a

voxel size of 0.128× 0.128× 0.128µm3 were used to simulated the microscope acquisition.

From those acquisition, volumes of size 1024 × 1024 × 128 with a voxel size of 0.128 ×

0.128× 1µm3 were reconstructed.

It took 1 week using an un-optimised generation code and an optimized reconstruction

code to generate 105 reference volume pairs. These volume pairs were used as training

data for the neural network in the next section.

4.2.3.2 Neural network training and inference

The same modified U-net from section 4.2.2.2 was trained using Adam [64] algorithm with

a learning rate of 1e-3. Random crops of 128× 128× 5 were used for training with a batch
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size of 20. One epoch correspond to 280 mini batch. Statistically, every 30 epochs, the

network has seen every data once from the 105 1024 × 1024 × 128 volumes. The training

and validation loss are visible on Fig.4.19. As usual, elongations over the z axis are clearly

visible after the 3D reconstruction.

Figure 4.19: Loss evaluation during the training of our modified U-net on random volumes
generated with perlin noise. The training loss is the mean loss on the training dataset, the
validation loss is the mean loss at the end of the epoch on the validation dataset.

As observed in Fig.4.19, overfitting was not an issue on 100 epoch training. The con-

vergence was well achieved, as the validation loss tend to a plateau.

The performance of this trained network on a validation volume is shown on Fig.4.20.

The first thing to notice after the output of the modified U-net is how clean and continuous

the xz cross-section is. This is impressive since each xy slice is produced separately and

therefore we have no guaranty that the object generated in 3D will be continuous and

without any noise like an object that appears only on one slice and disappears the next

slice (this kind of flickering is a known issue with deep learning and temporal predictions

[70]).

When looking at arrow number 1 on Fig.4.20 b), we can see that this synthetic cell with

3 synthetic droplets inside was suffering from heavy elongation along the z axis. Only
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Figure 4.20: Qualitative evaluation of the modified U-net on the central (?) slice of a vali-
dation volume generated with Perlin noise. Scale bar is 40 µm.

the x and y edges of this cell were reconstructed, without clear boundary perceptible on

the z axis. A human not familiarized with this kind of image would not have understood

the true nature of this object. Only an expert used to work with embryos could have
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guessed that it was an empty sphere with 3 dots inside. The neural network has clearly

reached this level of comprehension, as it was able to find back the true xyz boundaries

of the cell and to position correctly the inside synthetic droplets (Fig.4.20 c) arrow 1). The

reduction of the elongation also benefits the xy cross section: as an example, the arrow 4

points at an inner structure that is not present in the theoretical volume and has appeared

after the reconstructions. This structure exists in different layers of the volume, and only

its elongation is visible in the studied slice. Our model truly identified this element and

5 others as not present in the original slice and correctly removed them, going back to 5

individual droplets, same than the reference volume in Fig.4.20 a) arrow 4. Inner structures

can be removed while the cell remains, but entire cells can be removed too if they are not

supposed to be on the slice, like the ones pointed by the arrow 3 or 5.

On the negative points of this model the removal of too many information is certainly

the prominent one, like the cell pointed out with the arrow 5. This cell was partially present

on the reconstructed volume, and should be present on the slice according to the theoretical

volume (see the arrow 5 on Fig.4.20 c). The same bug happened for the bottom part of the

ring around the cells (arrow 2). The outer membrane was not completely restored and only

a partial ring was reconstructed. Considering the amount of information available in the

reconstructed volume, it seems reassuring that the full outer membrane was not created

everywhere (on the xz slice for example) because it would be too much guessing and not

base on available information.

Even if most parts were correctly retrieved, some elements are missing. It is interesting

to note that no element was hallucinated. Every object present in the output of the neural

network truly exists in the theoretical volume.

4.2.3.3 Neural network evaluation on biological data

The results on simulated data are satisfactory enough to try the application of the proposed

architecture on images of an embryo acquired with our setup.

The sample used for this test is the same one used in Section 4.2.2.3, a two cell embryo
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from the time-lapse presented in Chapter 2. This volume is 1024 × 1024 × 128 with the

same spatial resolution than the volumes used for training. This embryo was reconstructed

using the same algorithm than the simulated data.

On Fig.4.21 we can see the behaviour of the architecture on the mouse embryo. As

expected, the cells are now filled with a higher refractive index than the reconstructed one.

The z resolution of the inner lipid droplets is significantly improved after the application of

the proposed U-net architecture, i.e. the droplets are a lot less elongated. Moreover, some

lipid droplets that were indistinguishable on the standard reconstruction are now clearly

separated. This network improves the images under different aspects: the elongation from

inner structure as well as the one of the big cell are corrected, the empty shell effect on big

objects is removed with a coherent refractive index filling, and finally the refractive index

range is corrected to a higher value. This functioning network will be named "Uxy" for the

remain part of this document.

Figure 4.21: Qualitative evaluation of the modified U-net trained on synthetic volumes
with Perlin noise. We named this model Uxy. The volume is tested on 2 cells mouse
embryo. Scale bar is 40 µm.
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The major drawback of Uxy is the lateral hallucination of the shape when an empty

space sourrounds the object. Indeed, the contour of the cells in the z direction is neither

lean nor correctly localized. This might be the limit of using 2D deep learning model to

deal with a 3D problem. With more information along the z direction it looks trivial to say

that nothing should be predicted at the top and bottom of the reconstructed volume. A last

experiment that can be performed with 2D model but with more information along the z

direction would be to make it predict yz slice or xz slice.

4.2.3.4 Training of a second network specialized along the axial direction

To understand the effects of an architecture that has more information on the axial direction

(using yz or xz slice), a further training was performed using the same 3D training data

already presented in 4.2.3.1.

The same neural network architecture was used, except for the first layer where mono

channel 2D images were used instead of the 5 channel 2D images used in Uxy (see section

4.2.2.2 for more detail). The data-loader was of course modified to present randomly xz or

yz slice. The amount of training data is doubled since we can pass each pixel twice in each

epochs (inside a xz slice or inside a yz slice).

This model will be named Uz and can applied to all the xz slices of a reconstructed

volume as well as all the yz slices. These two corrected volumes are presented in Fig.4.22.

The performance of this network (Uz) is poor compared to Uxy. Indeed, the intracellular

lipid droplets are less separated and a flickering effect appeared. This is caused by the

fact that each xz or yz slice is generated separately from the others. If the neural network

hesitates, it is common to have one slice white then black then white again etc. This creates

the horizontal or vertical stripes. This issue was not present within Uxy model because

each slice was predicted using multiple sequential slice, this means that at each prediction

only a fifth of the input data was changing instead of 100% for the Uz model. A good idea

to reduce the flickering effect on this model would be to change all its training loop and

architecture and use multiple slices as input. This work was not done because even when
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Figure 4.22: Qualitative evaluation of the Uz model trained on xz and yz slice from vol-
umes generated with Perlin noise. The volume is tested on 2 cells mouse embryo. Scale
bar is 40 µm.

looking at individual predicted slice like the yz slice from Fig.4.22 b), the predictions were

less accurate than the one from Uxy.

The work done on this second network was important to give us hints on how to solve

the drawbacks of Uxy and obtain meaningful 3D reconstructions. Indeed, the model Uz

never hallucinates objects outside of the main target. An idea would be to use the output

of the Uz as an envelope of the refractive index generated by Uxy.
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4.2.3.5 Ensembling of two neural networks: one specialised on the axial information and one

specialized in the radial information

The output of the network Uz trained with xz and yz slice is considered too noisy and

presents undesired dark stripes. Some operations will be required to obtain a clean and

smooth envelope from this neural network. The reconstructed embryo will be Er. To have

a more homogeneous volume we can sum up the volumes generated with Uz, Esum =

Uz(Er, XZ) + Uz(Er, Y Z). Uz(x,A) is the results of the trained network Uz on the input

data x, where the data are sliced in the plan A. A can be XZ or YZ.

Esum will then be blurred with a Gaussian filter of size 20 and a threshold value of a

fifth of the maximum value, create Ebin. It creates a finite support for the object that was

inspired by [67].

Ebin =


0, if Esum ⊛ σ20 <

1
5max(Esum)

1, otherwise
(4.1)

This binary envelope will finally be blurred again with a Gaussian filter of size 3 to

extend it slightly outside of its primary range, Eenv = Ebin ⊛ σ3

The final output volume of our method will be the product between the enveloppe

Eenv created from Uz and the output of the network Uxy.

Efinal = Eenv.Uxy(Er)

Efinal is the artefact corrected volume on the bottom of the summary Fig.4.23 of our

neural network ensembling method.

Using the method described above and summarized in Fig.4.23, the two cell embryo

reconstructed volumes were corrected to reduce the axial elongation, fill constant object

and correct the refractive index value.

An extensive comparison is performed in Fig.4.24. The elongation reduction that Uz

could perform on its own is still present in the ensemble, allowing small inner structures
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Figure 4.23: Summary of our ensembling method using two neural network, Uz special-
ized in the axial properties and Uxy specialized in the radial information.

to appear spherical in 3D, like the one pointed by the arrow 1. The 3D view allows the user

to keep track of the particles while rotating the object. This is not possible with the non-

corrected embryo, where every object is so elongated that they overlap each other. This

elongation correction also separates object that appeared as one in the raw reconstructions,

like the one pointed by arrow 2.
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Figure 4.24: Comparison between the reconstructed volume and the output of the ensem-
bling of the trained neural network Uz and Uxy. a) is a maximum intensity projection
along the z axis with a color code for the z position. b) is a YZ slice where the elongation
reduction of the neural network is clearly visible. c) is a 3D rendering. Scale bar is 40 µm
wide

The contour of each cell is perfectly defined on the output of the neural network and

no hallucinated object is present in the volume, which is a great improvement from the

previous method in Section 4.2.3.3 with only Uz (see Fig ?? for the previous hallucinated
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object).

On the drawback of this ensembling method, some small objects outside of the embryo

where lost, like the one pointed by the arrow 3. This might be because the second net-

work was used to compute the envelope of compact object and not to recover single small

objects. To include small object outside of the main volumes could be an improvement

direction considering that some small object on the side were correctly retrieved, arrow 4.

We can also state that the zona pellucida around the embryo that was barely visible on

the reconstruction was only kept visible on half of the embryo on Fig.4.24 a).

We are satisfied by the result of this deep learning method for artefact correction on

this 2 cell embryo. It is now time to address the generalisation question: will this method

works for embryo at other stage of development ? And will this methods works for other

biological object than embryo ? Each question will be answer in its own subsection.

4.2.3.6 Generalisation to other embryo stage

We saw in Chapter 2 that a complete time lapse of a mouse embryo was reconstructed in

3D. For each volume, the ensembling method of section 4.2.3.5 was used. Since the data

were obtained with good experimental conditions, i.e. without vibration nor noticeable

change in focusing distance, the neural network generalised well to embryo with only one

cell, or multiple cells like the 4 cells embryo presented in Fig.4.25.

The same characteristics of this method were also present at every stage of the embryo

development, as the elongation reduction or the good enveloping detection of each cell.

however, the same drawbacks were also present with the issue of the outer membrane, the

zona pellucida, that appears and disappears randomly.

It is important to remind us that these neural networks were trained only with sim-

ulated data and has never been confronted to real acquisitions before. The fact that they

perform well and consistently with embryos at various stage of development is interest-

ing, it showcases the generalisation capabilities of modern deep learning architecture in

computer vision [145].
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The choice of the training data is of paramount importance, and the main reason why

the generalisation from simulated to real biological data was possible is because the gen-

erated data were carefully handcraft to mimic real data.

Figure 4.25: Comparison on a 4 cell mouse embryo between the reconstructed volume
and the output of the ensembling of the trained neural network Uz and Uxy. a) is the
reconstructed refractive index volume with 3 cross sections. b) is the 3 cross sections of the
output of the ensembling of 2 neural networks specialised in radial and axial information.
Scale bar is 40 µm wide

Indeed, with the volumes generated from random images almost no generalisation was

observed. Without changing the training data is it possible for our algorithm to generalise

to more compact and most complex living organism ?

4.2.3.7 Generalisation to denser and more complex biological sample

A good sample to try our ensembling model is the dense liver organoid from Chapter 2,

Section 2.7.6. The oragnoid chosen was the one after 60 minutes of timelapse. Its recon-

struction and the output of the neural networks is visible on Fig.4.26.

This object is not too far from an embryo because both the refractive range as well

as the global size of the object are similar to the embryo . Moreover, there are some inner

structures that produce elongated dots in the same manner than the embryo. However, the

cells that compose the organoid are more entangled with each other that inside an embryo
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and the hole that is present in the left part of the xy slice of the reconstructed volume is

also new. .

Figure 4.26: Comparison on a liver organoid between the reconstructed volume and the
output of the ensembling of the trained neural network Uz and Uxy. a) is the reconstructed
refractive index volume with 3 cross sections. b) is the 3 cross sections of the output of the
ensembling of 2 neural networks specialised in radial and axial information. Scale bar is
40 µm wide.

Considering the refractive index range, our ensembling method seems to have in-

creased the refractive index and also filled the cell regardless of their shape, like the one

pointed from arrow 1 where only the edges were visible on Fig.4.26 a).

Concerning the elongation reduction, the few inner structures were correctly corrected

to a better looking shape, but in the process, many non-existing inner structures were

hallucinated by the network, pointed out by the arrows 2. Finally, considering the ability to

find the correct envelope of the object and limit its spreading along the z axis, the networks

performed poorly. Indeed, we expect the organoid to be rather spherical and no objects

should appear outside of the dash circle. We would also expect a functional network to

remove every refractive index shape from outside this circle, especially for very high of

very low z. This is definitely not the case since the network predicts numerous features on

the edges of the volume where it should be empty.

The generalization capabilities of our networks is not satisfactory toward non-embryo
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biological object. Even with this non very challenging liver organoid, many drawbacks

in terms of object hallucination or failure to understand the true shape in 3D makes this

method non trustable to track the development of such organoid.

4.2.4 Conclusion on deep learning for artefact correction

Deep learning was used to tackle the main challenge of 3D refractive index imaging from

intensity only images with a low NA objective and a wide field of view: the axial elonga-

tion of results. The state of the art in this field is still young and diverse, with deep learning

blocks used at almost every points during the reconstruction loop. We decided to use deep

learning models to correct the artefact present at the end of an iterative, regularized recon-

struction with a multiple scattering model.

We have indeed demonstrated that it is possible to train a deep learning model to cor-

rect the major artefacts present in our TV regularized reconstruction with a BPM model

using intensity only measurement from a low NA objective. Contrary to what was previ-

ously done with high quality optics but single scattering model, training on random stacks

of images did not provide a good generalisation to 3D biological samples.

The training data need to be carefully created to match real refractive index distribu-

tions in terms of shape and RI range. Such dataset was generated with Perlin noise on

random 3D spheroid. From those syntetic model, the measurements were simulated and

reconstructed to create a 3D paired dataset of refractive index volumes. An ensemble of

two 2D U-net models were used to correctly retrieve the refractive index in 3D.

The generalisation capacity of such network was good on embryos at various stage of

development, which was the primary use case for this method. However the performance

on liver organoid was unsatisfactory with hallucinated objects. That is why we think that

the choice of the simulated training data is of paramount importance and the simulated

objects need to be handcrafted with the support of an expert to be sure that the simulated

volumes match real ones. A non-supervised approach might be envisaged to generalize

the corrections to different samples and different acquisition parameters (e.g. different
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magnifications or objective NAs), but this methodology is out of the scope of this thesis

and was not pursued.



Chapter 5

Conclusion

5.1 GENERAL CONCLUSION

During this thesis we have explored the world of 3D microscopic refractive index imaging

of biological sample. We choose to be as less intrusive as possible with the creation of a

compact and cheap LED microscope. This prototype can image, in time-lapse, complex

3D biological sample developing inside the incubator. An efficient reconstruction algo-

rithm that run on GPU was introduced to perform the 3D reconstruction with a multiple

scattering model. It can run on a laptop as an oragnoids or an embryo develops for quasi-

real time reconstruction. With simple hardware modification it can image up to a cubic

millimeter volume and perform an acquisition every two minutes.

Chapter 2 presents five different light scattering model to solve the Helmholtz wave

equation. Comparing to the Mie theory, the LS model is order of magnitude more accurate

and more complex to compute than the other models introduced. It serves as a reference

model to compare Born, Rytov, BPM and MBS (the first two are single scattering and the

last two are multiple scattering). With our constraint of discretization size up to five times

the wavelength, we choose to use the Beam Propagation Method (BPM) as our light scat-

tering model for the rest of the thesis.

Chapter 3 introduces the inverse problem of optical diffraction tomography from intensity-

153
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only measurements as an optimisation problem. It is solved through accelerate gradient

descent with multiple priors such as Total variation, Sparsity and non-negativity. On sim-

ulation the importance of each prior is demonstrated. Then this reconstruction algorithm

is used on real biological data with an extra layer of aberration correction for non-standard

thickness container. By design our prototype was compact and compatible with biological

culture conditions enabling us to image in time lapse the first week of a mouse embryo as

well as the development of liver organoid.

Chapter 4 starts with a brief history of deep learning to have a better grasp on why it

has revolutionised computer vision over the last decade. Deep learning strategies in op-

tical diffraction tomography are reviewed and appear at every stage of the reconstruction

algorithm. We choose to use a modified Unet to correct the main artefact that we were

facing in Chapter 3 (i.e. axial elongation of object, and "edge only" object with a lack of low

frequency). The final architecture ensembles two models trained on axial and radial infor-

mation. Great results are obtained after a training only on simulated data. The training

data was generated in the shape of fake multi cellular object and it generalizes well to real

life embryo at various stage of development. The generalisation toward liver oragnoid is

not good enough to be used routinely, with a lot of hallucinated objects.

5.2 DISCUSSION

Before diving into all the problems we are still facing and how to improve it with future

works, let’s remember that the computational system presented in this document is func-

tional and robust. The preliminary results on embryo were foundation for further grant

opportunity, the ANR project LIVE 3D_CNN (ANR-21-CE19-0020) and it is part of an Eu-

ropean Union’s Horizon 2020 research program, project REVEAL (grant agreement N°

101016726.).

The first drawback that is easy to improve is the imaging time of our setup. In order

to address the imaging of living samples at a faster rate, one could use fewer and brighter
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LEDs as in [76]. A ring of 8 powerful LEDs is placed on top of commercial inverted micro-

scope, enabling them to image in 3D at a 10Hz rate. Reducing the number of image from

84 to 8 might lead to a higher noise or a slight loss of resolution.

The main drawback of our system is the strong axial elongation of object. This is not

caused by flaw in our physical model or our reconstruction algorithm but is comes from

a lack of information due to the missing cone problem well known in X-ray tomographic

system. For this issue the state of the art method are learning tomography with sparse

regularisation. To reduce the elongation higher NA optics needs to be used but the field

of view will be reduce. Using deep learning method to “guess” the correct shape of object

can provide stunning results, but the generalisation is never guarantied and the range of

application of such supervised method is always limited. The lack of axial information

for low NA diffractive tomographic microscope is still an open problem that will not be

solved easily because of its inner lack of information.

Finally the focus needs to be discussed. Usually the imaged object is on focus at its

center. When it is not the case because the object moved in 3D our resolution started to

decreased with some artefacts appearing. The loss of resolution can also be observed for

very thick objects where the most out of focus parts suffer from artefacts and the blurring

effect. A study on the effect of defocus on diffractive tomographic microscope needs to be

conducted to have a better understanding on this effect. For very thick object, one could

try to image the same sample at multiple focuses in order to gain resolution everywhere

inside the object.
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