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PREFACE

This thesis deals with the optimization of structured nonsmooth functions,
which appear for example in machine learning and signal processing. In

particular, we consider matrix functions which feature eigenvalue functions and
the nuclear norm. Our approach consists in exploiting the structure of these
nonsmooth functions to design algorithms that converge fast – at the speed
of Newton’s method, thus yielding high precision estimates of nonsmooth
minimizers.

More precisely, the nondifferentiability points of structured functions organize
in smooth manifolds, such that the nonsmooth function is smooth along the
manifold and nonsmooth across it. In this thesis, we propose optimization
algorithms that detect and exploit these structure manifolds. The two key
ingredients in our approach are (i) subtle geometrical properties of the proximal
operator, and (ii) algorithmic tools from smooth constrained programming. We
operate without assuming knowledge of the optimal structure manifold, and
use variational analysis tools to cover both convex and nonconvex settings.
We first consider the minimization of the sum of a smooth function and a

nonsmooth function, which encompasses sparse regression problems such as
the “lasso”. We show that the proximal-gradient operator, well-known for
its minimization properties, also identifies relevant structure manifolds. We
propose an algorithm that combines this identification information with tools
fromRiemannian optimization, and prove that it converges locally quadratically.
We illustrate numerically this fast convergence on classical learning problems.
We also consider the minimization of the composition between a smooth

map and a nonsmooth function. This setting encompasses the minimization
of the largest eigenvalue of a smoothly parameterized symmetric matrix. We
introduce and characterize a proximal identification tool that detects relevant
structure manifolds near arbitrary points. We propose an algorithm that
combines this tool with Newton steps for smooth constrained minimization.
We prove that, when started near a minimizer, the algorithm exactly identifies
its optimal manifold and converges quadratically. We compare our algorithm
with state-of-the-art algorithms for nonsmooth optimization.
Thus, the proximal identification procedures proposed in this thesis detect

efficiently the relevant manifolds of additive and composite nonsmooth func-
tions. The obtained algorithms are carefully implemented in the Julia language
and are released as open-source packages.
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RÉSUMÉ

Cette thèse traite de l’optimisation de fonctions non-différentiables structurées,
qui apparaissent notamment en apprentissage statistique et en traitement du

signal. En particulier, nous considérons des fonctions matricielles, qui mettent
en jeu les valeurs propres ou la norme nucléaire. Notre approche consiste à
exploiter la structure de ces fonctions non-différentiables pour développer des
algorithmes qui convergent rapidement – à la vitesse de la méthode de Newton
– et qui retournent ainsi des estimations précises des solutions.

Plus précisément, les points de non-différentiabilité des fonctions structurées
s’organisent en variétés différentiables, qui captent les directions de différen-
tiabilité dans l’espace tangent et les directions de non-différentiabilité dans
l’espace normal. Dans cette thèse, nous proposons des algorithmes qui détectent
et exploitent ces variétés de structure. Les deux outils clés pour notre approche
sont (i) des propriétés géométriques fines de l’opérateur proximal, et (ii) les
méthodes algorithmiques de l’optimisation sous contraintes. Nous raisonnons
sans supposer connue la variété optimale, et utilisons les outils de l’analyse
variationnelle pour couvrir simultanément les cas convexes et non-convexes.
Nous considérons d’abord la minimisation de la somme d’une fonction

différentiable et d’une fonction non-différentiable, cadre qui inclut notam-
ment les problèmes de régression parcimonieuse tels que le “lasso”. Nous
montrons que l’opérateur gradient-proximal, connu pour ses propriétés de
minimisation, identifie aussi les variétés de non-différentiabilité pertinentes.
Nous proposons un algorithme qui combine ce résultat d’identification avec des
outils de l’optimisation Riemannienne, et montrons qu’il converge localement
quadratiquement. Cette convergence rapide est illustrée en pratique sur des
problèmes d’apprentissage classiques.

Nous considérons ensuite la minimisation de la composition entre une appli-
cation différentiable et une fonction non-différentiable. Ce cadre couvre notam-
ment la minimisation de la valeur propre maximale d’une matrice symétrique
paramétrée. Nous introduisons et caractérisons un outil d’identification prox-
imale, qui détecte les variétés de non-différentiabilité autour de tout point.
Nous montrons que cet outil peut être combiné avec des itérations de New-
ton de l’optimisation différentiable sous contrainte. Nous démontrons que
l’algorithme obtenu détecte localement la variété d’un minimiseur et converge
quadratiquement. Nous comparons notre algorithme avec l’état de l’art pour
l’optimisation non-différentiable.
Ainsi, les procédés d’identification proximale proposés dans cette thèse

sont à même de détecter efficacement les variétés pertinentes des fonctions
non-différentiables additives et composites. Les algorithmes obtenus, ainsi que
les ressorts numériques sur lesquels ils reposent, sont mis à disposition de la
communauté sous forme de paquets Julia open source.
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1
INTRODUCTION

This section serves as an overview of the content of this manuscript. We first
briefly introduce the rich domain of nonsmooth optimization. We then lay

down the lines of research our work inherits from. We finally give a detailed
summary of the contributions of this thesis.

1.1 nonsmooth optimization: motivations & first order methods

We consider optimization problems of the form

min
G∈R=

�(G) with � : R= → R∪ {+∞}

where � is not differentiable everywhere. Throughout this thesis, we call
such functions nonsmooth.1 Such nonsmooth optimization problems abound
in machine learning, signal processing, and operations research among other
fields.

In this introductory section, we first review the main sources of nonsmooth-
ness in applications. Then, we turn our attention to two kinds of first-order
methods for minimizing nonsmooth functions. These methods are the counter-
parts of the gradient method, when the gradient of the objective does not exist
everywhere.

1.1.1 Faces of nonsmoothness

In applications, nonsmoothness is produced by some special operations. We
review three families of nonsmoothness: implicit, chosen, and in-between.

implicit nonsmoothness. Nonsmoothness often appears implicitly: the
function to minimize is defined implicitly as the result of another computation.
Typically, it is the solution of an optimization subproblem: for a given G ∈ R= ,

�(G) = sup
D∈*

ℎ(G, D). (1.1)

Such nonsmooth functions appear in particular in the decomposition of A part of my team, DAO
https:
//dao-ljk.imag.fr,
works on distributionally
robust optimization,
which produces problem
of type (1.1); see Kuhn
et al. (2019) for
applications in machine
learning.

large-scale or complex problems with, e.g., Lagrangian relaxation, Benders
decomposition, or resources decomposition; see Briant et al. (2008) for applica-
tions in combinatorial optimization and Bonnans et al. (2006, Sec. 8.2-3) for a
review of decomposition schemes. Such nonsmoothness also emerges naturally

1 Depending on the literature, “smooth” mean functions which are either differentiable, C∞, or have
Lipschitz continuous gradient. Here, we will use smooth for functions differentiable everywhere,
out of coherence with the term “nonsmooth”.

1
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2 introduction

in robust and risk-averse optimization, see e.g., the monograph Ben-Tal et al.
(2009).
If ℎ(·, D) is convex for all D ∈ * , then � is convex as well. In that case,

for a given G, solving problem (1.3) provides the function value �(G) and a
subgradient E ∈ %�(G), both potentially noisy if the subproblem is solved
approximately. This subgradient gives some local first-order information onThis is the so-called

“black-box” setting. the function, akin to the gradient of smooth functions. We come back to this
setting in Section 1.1.2.

chosen nonsmoothness. In sharp contrast with implicit nonsmoothness,
many optimization problems explicitly incorporate some chosen nonsmoothness.
This is notably the case for inverse problems stemming from statistical learning
and image processing applications, which formalize as nonsmooth (convex)
optimization problems; see e.g., the monograph Scherzer et al. (2009). There,
the nonsmoothness is willingly added to the problem because it ensures some
“low complexity” of the solutions.
A popular example is that of linear regression with ℓ1-norm regularization

(Tibshirani, 1996), called lasso in the machine learning community:

min
G∈R=

1
2 ‖�G − 1‖

2
2 +�‖G‖1. (lasso)

Adding a multiple of the ℓ1-norm to the smooth “data-fitting” term ensures
that the learned vector is sparse, and that it benefits from improved statistical
properties (Candès et al., 2006). In the same spirit, Bach (2008); Candès and
Recht (2013) follow the seminal work Fazel et al. (2001) and consider matrix
learning problems regularized with the trace norm (the sum of the singular
value of the matrix). The obtained solution has again a low complexity — itsThis setting encompasses

e.g., matrix completion
and recommender

systems tasks; see e.g.,
Koren et al. (2009).

rank is low, and it benefits from improved statistical guarantees.
More generally, many inverse problems formalize as the minimization of

�(G) = 5 (G) + 6(G), (1.2)

where 5 is a smooth function and 6 is a nonsmooth function; see the review
paper Vaiter et al. (2015). In such problems, nonsmoothness is crucial: it
is chosen (and sometimes crafted) to enforce a low complexity property on
minimizers. This explicit nonsmoothness can also simplify optimization.
The nonsmoothness of these problems is usually localized in one or several

simpler elements of the split objective function. When simple enough, this
nonsmooth function admits a tractable “proximity operator”, akin to a gradient
step in smooth optimization. Handling each element separately then allows to
build optimization methods minimizing nonsmooth objective functions such as
e.g., Forward Backward for (1.2), or Douglas-Rachford, ADMM; see Bauschke
and Combettes (2017). We return to the proximity operator and this setting (1.2)
in Section 1.1.2.

in between. It also happens that the nonsmoothness is not chosen while still
being explicit. This is the case when the nonsmooth problem writes as

�(G) = 6 ◦ 2(G), (1.3)

where 6 is a nonsmooth function and 2 a smooth mapping. This setting
encompasses a wide range of problems and applications listed in Shapiro (2003);
Lewis and Wright (2016) e.g., penalty functions of nonlinear programming,
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Figure 1.1: Illustration of the level lines and the subdifferentials of two nonsmooth
functions of the plane. They are introduced in Example 1.1, we plot �1 on
the left, and �2 on the right. The subdifferential is displayed at point G, H,
and I. Depending on the smoothness of the function, it is either a single
vector, the gradient of the function (e.g., for I), or a full set (e.g., for G).

robust regression which includes phase synchronization, and optimal control
of helicopters (Apkarian et al., 2004).
In particular, we consider in this thesis the maximal eigenvalue function:

�(G) = �max ◦ 2(G),

where 2(G) is a symmetric real matrix that depends smoothly on G. We
place this function in the class of problems with explicit nonsmoothness
since �max is a convex function, with known subdifferential and second-order
information (Shapiro and Fan, 1995). This function appears in problems
stemming from applications in control, learning or operations research such
as matrix completion, community detection, phase retrieval. For instance,
semidefinite programs with constant trace can be written in such a form
(Helmberg and Rendl, 2000, Sec. 2-3).

A common element in problems (1.2) and (1.3) is the explicit nonsmoothness,
which allows at a given point to compute more than one arbitrary subgradient:
the full subdifferential, and even some second-order information, is available.
We illustrate this idea with two nonsmooth functions in the following example,
which will accompany us throughout the introduction.
Example 1.1 (Examples with explicit nonsmoothness). Throughout the intro-
duction, we illustrate our discussion on two functions from R2 to R which
admit an explicit nonsmoothness:

�1(G) = 10(G1 − 1)2 + 5|G2
1 − G2 |,

and �2 a two dimensional lasso function. Both functions are illustrated in (1.1),
where we show the level lines and the subdifferential at three points G, H and I
where � is smooth or nonsmooth. �

1.1.2 Basic nonsmooth algorithms

subgradient methods. At nonsmooth points, the notion of “subdifferential”
replaces and generalizes that of gradient (Hiriart-Urruty and Lemaréchal, 1993;
Rockafellar andWets, 1998). This set contains all “subgradients” at a given point,
that is, roughly speaking, the slopes of all linear tangent under-approximations
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of the function at that point. Figure 1.1 shows the subdifferential of two simple
functions at smooth and nonsmooth points.

The simplest algorithm to minimize a nonsmooth function is the subgradient
method, which mimics the gradient descent method: G:+1 = G: − �:E:/‖E: ‖,
with E: ∈ %�(G:) and �: > 0 such that �: vanishes and

∑
�: diverges (Nesterov,

2018, Th. 3.2.2). This method is simple, but converges at a sublinear rate
(Beck, 2017, Th. 8.13). More efficient and practical algorithms in the convexOne subgradient

provides only partial
first-order information.

case include the bundle method (Hiriart-Urruty and Lemaréchal, 1993, Chap.
XV), where one iteratively refines and leverages a model of the nonsmooth
function by successive black box oracle calls. The bundle algorithm benefits
from theoretical convergence guarantees to critical points, is backed by several
decades of research, and is used in some important industrial applications
(Hechme-Doukopoulos et al., 2010). Leveraging the fact that a Lipschitz function
is almost everywhere differentiable, a gradient sampling algorithm was shown
to converge to critical points,2 albeit with a strong iteration cost; see the review
article Burke et al. (2020). Besides, it was noted in Lewis and Overton (2013)
that the quasi-Newton BFGS method converges well — often linearly — on
nonsmooth functions, even though no theoretical guarantees are available.

proximal methods. Another central notion in nonsmooth optimization is
the proximity operator of a nonsmooth function. This operator is defined, for
E ∈ R= and a proximal step � > 0, by

prox�6(G) = arg min
D∈R=

{
6(D) + 1

2� ‖D − G‖
2
}

. (1.4)

We discuss this definition and some characterizations in Section 2.2. ThisThe proxmial operator
thus uses the full

first-order information,
which is more than one
(arbitrary) subgradient.

operator acts as an implicit (subgradient) step. As such, it has the nice property
of ensuring some minimal functional descent between input and output point;
see Lemma A.5 for a precise statement and references. The proximal point
algorithm, defined by G:+1 = prox�6(G:), thus generates a sequence of points
which converge to minimizers, albeit with a slow sublinear rate; see Güler (1991)
for precise results in the convex case.

However, the proximal point algorithm is rather impractical in general.
Indeed, each iteration consists in applying the proximal operator to the current
iterate, which amounts to solving one optimization problem. Interestingly,
bundle methods can be seen as an implementable form of approximate proximal
point algorithm (Correa and Lemaréchal, 1993).

For simple enough functions, the proximal operator is easy to compute, and
sometimes even available in closed form; see e.g., Example 1.2. This includes
popular functions such as the ℓ1 norm and the trace norm (Bach et al., 2012). ThisSee

the numerous examples of
proximity-operator.

net

remark is key in building prox-like operators for certain nonsmooth functions
which do not admit an explicit prox but have some additional structure, as we
discuss in the next section.

2 Convergence occurswith probability one, if the iterative process never encounters a nondifferentiable
point.

proximity-operator.net
proximity-operator.net
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Example 1.2 (Closed-form proximity operator). The ℓ1 norm and the maximum
function are nonsmooth but simple enough to have explicit proximity operators.
Indeed, for H ∈ R= , their coordinate-wise expression is

[prox�‖·‖1(H)]8 =


H8 + � if H8 < −�
0 if |H8 | ≤ �

H8 − � if H8 > �

[
prox�max(H)

]
8
=


B if H8 > B

H8 else

where B is the unique real number such that
∑
{8:H8>B}(H8 − B) = �. �

1.2 structured nonsmoothness

As shown by their wide use in machine learning and signal processing, the
first order methods discussed above work well in practice. However, they reach
their limit when one requires minimizers with high precision. This is relevant for
instance in learning problems (1.2), where the low complexity of the solutions
is valuable for practitioners: giving guarantees on this low complexity requires
having a high precision estimation on the nonsmooth minimizer. This is also
relevant in control applications (1.3), where the precision of the minimizer
affects the performance of the ensuing controller.
In this section, we look at two types of structure in nonsmooth functions:

first, additive and composite expressions in Section 1.2.1, and second, the
existence of a smooth substructure in Section 1.2.2. We discuss the algorithmic This presentation of this

section draws from
Sagastizábal (2011).

improvements that each of these two structures bring on the first-order methods
presented above. This sets the tone for the discussions of the next sections,
where we present how combining these two structures lead to locally fast
nonsmooth algorithms.

1.2.1 Additive and composite structure

When the objective function to minimize is explicit, the nonsmoothness can
often be isolated in one simpler component. We consider in this thesis two
type of functions: additive nonsmooth functions (1.2), which write as the sum
of a smooth and a nonsmooth function, and composite functions (1.3), that is
functions that write as a composition of a smooth mapping and a nonsmooth
function. For example, the functions illustrated in Fig. 1.1 both write as the sum
of a smooth and a nonsmooth function, and as well as a composition between a
smooth mapping and a nonsmooth function.
We now detail how the first-order methods can be improved with this

additional information.

additive functions. Bundle methods are able to exploit the additive struc-
ture of (1.2): the model of � combines a subgradient-based model, specific to
the nonsmooth function 6, with a second-order Taylor expansion of the smooth
term 5 (Lemaréchal et al., 2007).

If, in addition, the nonsmooth term admits an explicit proximal operator, one
can compute the proximal-gradient operator of the objective function, defined as Proximal gradient

G:+1 = prox�6(G: − �∇ 5 (G:)).
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Figure 1.2: Illustration of the smooth substructure(s) of functions �1 and �2, introduced
in Example 1.1. The smooth substructure manifolds are represented in green;
their expression is given in Example 1.3.

Iterating this operator yields a first order algorithm akin to the proximal point
algorithm: in the convex case, it converges from any starting point at a sublinear
rate (Beck, 2017, Th. 10.15, 10.21). It is popular to equip the proximal gradient
with a computationally cheap inertial term (Nesterov, 1983), sometimes called
“Nesterov acceleration”, which improves its sublinear rate for convex functions.Accelerated proximal

gradient / FISTA This is the setting of Chapter 3, in which we introduce a Newton acceleration of
the proximal gradient.

composite functions. When the function writes as a composition (1.3),
bundle methods can also be adapted (Sagastizábal, 2013). Again, one buildsComposite bundle
a model of the (simpler) nonsmooth term and use derivatives of the smooth
mapping, which results in a finer model of the whole objective function. In
specific cases, notably when the nonsmooth term is piece-wise linear, it was
observed that the sequence of serious steps converges at a superlinear rate. This
is the kind of result we aim at in this thesis.
One can also consider proxlinear methods (Lewis and Wright, 2016). EachProxlinear method

iteration writes G:+1 = arg minD∈R= {6 (2(G:) + Jac2(G:) · (D − G:)) + �
2 ‖D − G: ‖2},

where Jac2 denotes the Jacobian of 2. Note the resemblance with the proximity
operator, the only difference lying in the linearization of the smooth element 2. In
this sense, the proxlinear operator can be seen as the counterpart of the proximal
gradient operator for composite functions. This subproblem is rarely explicit,
its solution needs to be approximated. In a weakly convex setting, Drusvyatskiy
and Paquette (2019) analyze the complexity of the method: they show that,
when the nonsmooth subproblem is smoothed and solved by a gradient-based
method, the global complexity is sublinear, and just slightly worse than that of
gradient descent. While this approach fully uses the composite nature of the
problem, the smoothing of the subproblem alters the nice smooth substructure
induced by the nonsmoothness, which we now discuss.

1.2.2 Smooth substructure

In many examples of interest, including (1.2), and (1.3) under some geometrical
assumptions, the nonsmooth function to minimize usually locally exhibits a
smooth substructure. More precisely, there is near a point a smooth submanifold
such that the function is

(i) smooth when restricted to the manifold, and

(ii) nonsmooth in all directions normal to the manifold.
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Figure 1.3: Illustration of the identification of the proximal point (left pane) and the
proximal gradient (right pane) on functions introduced in Example 1.1:
the iterates eventually reach and remain on the smooth substructure of the
minimizer.

A. Lewis formalizes this idea with the notion of partial smoothness (Lewis, 2002),
which will be central in our work; see the precise definition in Section 2.4.
Many classes of functions can be shown to be partly smooth under some natural
assumptions, including problems (1.2) and (1.3), among other examples in
Lewis (2002, Sec. 3). We illustrate in the next example and Fig. 1.2 such smooth
substructures on two simple functions.
Example 1.3 (Smooth substructure). We illustrate the notion of smooth sub-
structure on functions �1 and �2, introduced in Example 1.1. The partial
smoothness manifolds presented here are displayed in Fig. 1.2.

Function �1 admits a unique partial smoothnessmanifoldM = {G ∈ R2 : G2
1 =

G2}: either G ∈M, and �1 is partly smooth at G relative to M, or G ∈ R2 \M,
and �1 is smooth at G (or partly smooth relative to the manifold R2).
Function �2 is nonsmooth at points for which one coordinate is null. �2

admits several partial smoothness manifolds: M1 = R × {0}, M2 = {0} ×R,
andM3 = {0} × {0}. The partial smoothness of a point is given by its support
e.g., at point G = (0, C)with C ≠ 0, the function is partly smooth relative toM2.�

identification of prox-based algorithms. When � admits a smooth
substructure, the proximity operator (1.4) gets an additional property: it maps
neighborhoods of a minimizer to its smooth substructure manifold. For instance, the Operator identification
proximity operator of the ℓ1-norm, recalled in Example 1.2, sets any coordinate
small in absolute value to zero. As a result, the output of the prox is exactly a
nondifferentiable point of the objective function. We illustrate this behavior in
the forthcoming Fig. 1.4, and discuss it precisely in Section 2.4.

As a consequence, the iterates of the proximal point algorithm end up exactly
on the smooth manifold, as illustrated in Fig. 1.3a. This behavior is the so-called
identification property of the proximal point algorithm (Daniilidis et al., 2006,
Th. 28). Actually, most prox-based algorithms also identify the structure of Algorithmic

identificationminimizers; see e.g., the review paper Iutzeler and Malick (2020, Sec. 4-5).
For instance, Fig. 1.3b illustrates the identification of the proximal-gradient
algorithm on a lasso problem.
The proximal identification mechanism is strong: it exactly maps points to

the structure manifold. Other identification mechanisms are known; for
instance, the proxlinear method implicitly “detects” the smooth substructure of
minimizers, even though its iterates never actually lie exactly on it; see Lewis
andWright (2016, Sec. 4.5). In Chapter 4, wewill develop an indirect identification
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for composite functions, following a similar idea. Besides, the general topic of
identification of smooth substructure has received attention in the literature;
see e.g., Burke and Moré (1988); Wright (1993); Drusvyatskiy and Lewis (2014);
Lewis et al. (2022). In the section and the rest of the thesis, the notions of smooth
substructure and identification will be useful to refine the analysis of existing
algorithms, and to design Newton-type algorithms.

1.3 towards fast algorithms

In this section, we discuss two approaches to build locally fast algorithms for
nonsmooth optimization. They rely on the nonsmooth function admitting a
smooth substructure, as discussed in the previous section.

1.3.1 Better understanding and tuning of existing algorithms

Consider the additive problem (1.2). With the help of partial smoothness and
the proximal identification discussed above, it becomes possible to analyze
the behavior of the proximal-gradient algorithm after identification. The
nonsmoothness eventually traps the iterates of the method in the optimal
manifold — that of the minimizer, after which the algorithm enters a somewhat
smooth regime. Indeed, Liang et al. (2014) show that the convergence rate
of the proximal-gradient algorithm improves from sublinear to linear after
identification, when the smooth manifold is an affine subspace. This reveals
a similarity with the (local) convergence speed of gradient descent in smooth
optimization (Nesterov, 2018, Th. 2.1.15). In addition, Liang et al. (2014)
propose a better tuning of the method parameters after identification, and
show the surprising fact that this fine-tuned proximal-gradient can be faster
than the popular accelerated proximal-gradient method. Similar properties
are established for operator splitting methods, such as Douglas-Rachford or
Alternating Direction of Multiplier Method (Liang et al., 2017b). A delicate
point here is that the time of identification is unknown in general, making the
moment to tune the method hard to decide in practice. Although it is possible
to derive bounds on the maximum number of iterations necessary to reach the
optimal manifold in specific cases (Nutini et al., 2019; Liang et al., 2017a), these
bounds are conservative, and they rely on quantities delicate to estimate. In
this thesis, we will pay a special attention to deriving algorithms that do not rely
on the identification time or unknown quantities.

1.3.2 Towards Newton methods

We now discuss how to explicitly leverage both the composite nature of the
function and the smooth substructure of its minimizers. The main idea stems
from the following observation. Assume that the smooth substructure of a
minimizer is known, then minimizing the nonsmooth function simplifies into
minimizing its smooth restriction constrained on the smooth manifold. The
smoothness of the latter problem makes it easier to deal with; one can employ
efficient Newton-type methods for the reduced smooth problems. The major
difficulty is the same as in Section 1.3.1: the crucial information of the optimal
smooth substructure is not known beforehand. We illustrate this idea on the
nonsmooth functions illustrated before.
Example 1.4 (Nonsmooth to smooth constrained). We illustrate on the running
examples, introduced in Example 1.1, how the knowledge of the optimal
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manifold allows us to reduce the nonsmooth minimization problem into a
smooth constrained problem.

Function �1 features only one smooth substructure manifold M, introduced
in Example 1.3. Knowing that the minimizer belongs to that manifold simplifies
the minimization problem into the following reduced problem:

min
G∈R2

10(G1 − 1)2 s.t. G2
1 − G2 = 0

The lasso example has minimizer G★ = (0, 1), with smooth substructure
M★ = {0} ×R. Knowledge of this optimal manifolds simplifies the problem
into the following smooth reduced problem:

min
G∈R2

1
2 ‖�G − 1‖

2
2 +�G2 s.t. G1 = 0.

Ndiaye et al. (2017) proposed identification rules tailored to the lasso problem.
These rules opened the way to very fast solvers that leverage the smooth
substructure of the minimizers; see e.g., Massias et al. (2018); Bertrand et al.
(2022). �

This idea is not new, and has been investigated by several authors; let us
review the main approaches. All existing algorithms iteratively perform

(i) a smooth substructure detection operation, and

(ii) an efficient Newton-type step relative to the detected smooth substructure.

The case of the maximum of smooth functions was pioneered by Womersley
and Fletcher (1986), which proposes an algorithm that (i) detects structure
by comparing the activity of the smooth functions at different points, and (ii)
employs Sequential Quadratic Programming (SQP) steps. The minimization
of the maximum eigenvalue of a parametrized matrix is approached in a
similar fashion by Noll and Apkarian (2005); Helmberg et al. (2014). The
authors propose to (i) detect the smooth substructure, which corresponds to
the multiplicity of the maximal eigenvalue, and (ii) employ SQP steps. Both
methods locally exhibit a quadratic convergence speed if theminimizer structure
is correctly detected; see Womersley and Fletcher (1986, p. 515) and Noll and
Apkarian (2005, Th. 1).
The VU-algorithm Mifflin and Sagastizábal (2005) uses similar ideas for the

general class of convex functions. Relying on the proximal point interpretation
of the bundle method, the authors propose to (i) gather (approximate) smooth
substructure information from each bundle serious step. This information is
then used by (ii) taking (approximate) “U-Newton” steps (Lemaréchal et al.,
2000) on the corresponding subspace. When theminimizer structure is correctly
identified, the serious steps of the method converge locally superlinearly; see
Mifflin and Sagastizábal (2005, Th. 15). Note that the presence of a number
of null steps between each serious step, hard to control in theory, makes the
analysis of the full iterate sequence more delicate.
The efficiency of the above-mentioned methods hinges on the assumption

that they correctly identify the smooth substructure of the minimizer. There
are no identification guarantees for the methods of Womersley and Fletcher
(1986); Noll and Apkarian (2005); the VU-algorithm only benefits from such a
guarantee for a certain subclass of convex functions (Daniilidis et al., 2009). We
conclude by noting that this question of identification reveals a combinatorial
aspect of nonsmooth optimization, reminiscent of constraint identification in
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the field of smooth constrained optimization. This is the main difficulty we will
face too, in this thesis.

1.4 structure of this thesis

We first give a high level overview of the ideas and organization of this thesis.
Then, we provide a detailed summary of each chapter.

1.4.1 Problematic, approach, and philosophy

The objective of this thesis is to provide fast algorithms forminimizing structured
nonsmooth functions. Specifically, we seek algorithms with the following
properties:

(i) guaranteed identification, without any prior information on the minimizer
structure.

(ii) guaranteed fast local convergence, with either superlinear or quadratic speed.

Building on the rich existing work presented before, our approach consists
in detecting and leveraging the smooth substructure of nonsmooth objective
functions.
We detect structure for specific functions, which display an additive or

composite structure, and whose nonsmooth element admits a simple proximity
operator. We use this proximity operator as a structure oracle. Indeed, we note a
simple but crucial observation: the (nonsmooth) output of a proximity operator
step often comes explicitly with its structure, at no additional cost. For instance,
the prox of the trace norm sets singular values of the input matrix to 0 after a
simple test. Tracking the number of singular values set to zero by the prox thus
gives the exact rank of the outputmatrix, which encodes its smooth substructure.
We illustrate these ideas in two contexts in this thesis. We consider in Chapter 3
the additive case, where the proximal gradient operator provides structure
information while also minimizing the function. In Chapter 4 we study the
more intricate composition setting, and build an identification tool based on
the prox of the outer nonsmooth function.
We leverage nonsmooth structure and make efficient steps by following the

philosophy of Section 1.3.2. If the structure of the minimizer were known, the
nonsmooth minimization problem would reduce into a smooth constrained
optimization problem. The major difficulty is that we never know the structure
of theminimizer a priori, or during the course of the algorithms. We thus develop
new tools to use smooth substructure adaptively, without ever assuming it is
optimal: at each iteration, a new candidate manifold is obtained by a proximal
identification procedure, which is leveraged by taking a Newton step on the
smooth reduced subproblem. This is the main technical difference between our
work and the literature reviewed in the previous section. The Newton steps on
the reduced problems are taken from Riemannian optimization in Chapter 3,
and from nonlinear programming in Chapters 4 and 5.

1.4.2 Detailed contributions

Wenowoutline precisely the setting and contributions of each chapter. Through-
out the thesis, we pay a special attention to illustrate our results with repro-
ducible experiments and precise figures.
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Chapter 2: preliminaries. This preliminary chapter provides the math-
ematical foundations of this thesis. We first present the necessary tools of
variational analysis and Riemannian optimization. We then introduce the
proximity operator and recall (and slightly extend) a classical characterization
result, helpful in a nonconvex setting. We proceed with the notion of partial
smoothness, and recall how it allows capturing the local identification behavior
of the proximity operator near structured minimizers. This property is the
foundation of the main intuitions and results of this thesis. We illustrate it in
Fig. 1.4.
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Figure 1.4: Illustration on a simple nonsmooth function of partial smoothness, and of the
operator and algorithmic identification properties of the proximal operator.

This chapter is based on
Bareilles et al. (2022b).Chapter 3: a newton method for nonsmooth additive minimization.

We first consider problems of the form (1.2): minG∈R= 5 (G) + 6(G), where 5
is smooth and 6 is a nonsmooth function that admits an explicit proximity
operator. We take as examples for 6 twopopular nonsmooth functions stemming
from machine learning and signal processing applications: the ℓ1-norm and the
trace norm.
We begin by a precise study of the identification behavior of the proximal

gradient operator. In a nonconvex setting, we give precise conditions which
guarantee that the operator locally maps points to a given smooth substructure;
see Theorem 3.1. In particular, we take special care to prove the result both
with practical stepsizes and near arbitrary (structured) points, rather than small
enough stepsizes and near minimizers.
We then introduce and study an optimization algorithm which alternates

between a proximal gradient step, providing a structure candidate, and a
Riemannian (truncated) Newton step, providing superlinear convergence near
minimizers; see Fig. 1.5 for an illustration. We show that the method converges
globally to critical points (Theorem 3.2), and that when the critical point is
a qualified minimizer, the algorithm identifies its smooth substructure and
converges locally superlinearly (Theorem 3.3). We illustrate this behavior on
ℓ1-norm and trace norm regularized regression problems.

This chapter is based on
Bareilles et al. (2022a).Chapter 4: local newton method for nonsmooth composite minimiza-

tion. In this chapter, we turn to nonsmooth optimization problems of the
form (1.3): minG∈R= �(G) = 6(2(G)), where 2 : R= → R< is a smooth mapping
and 6 : R< → R∪ {+∞} is a nonsmooth function, possibly nonconvex, which
admits an explicit proximity operator. We illustrate our developments on two
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problems: the pointwise maximum of smooth real-valued functions 28 , and the
maximum eigenvalue of a parametrized symmetric real matrix function 2:

�(G) = max
8=1,...,<

(28(G)) and �(G) = �max (2(G)). (1.5)

We first show that the proximity operator of the simple nonsmooth function 6
can provide the exact structure of minimizers of the full function 6 ◦ 2. The prox
parameter plays a crucial role here and should thus be selected carefully —
neither too small nor too big. We derive precise and implementable bounds
that help selection in practice (Theorem 4.4). Identification areas are illustrated
in Fig. 1.6a.
We then combine this proximal identification procedure with sequential

quadratic programming steps on the identified subspace. We show that,
when started near a minimizer, decreasing geometrically the prox parameter
ensures eventual identification of the minimizer structure, and local quadratic
convergence (Theorem 4.7).
We illustrate numerically the behavior of our method on problems shown

in Eq. (1.5), using exact second-order information. We show that it compares
favorably with existing methods; see e.g., Fig. 1.6b for the minimization of the
maximum eigenvalue of a parameterized matrix. This shows the benefits of
exploiting substructure, when possible.
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Chapter 5: towards a global newton method for nonsmooth com-
posite minimization. In this last chapter, we consider the task of building
a Newton algorithm that retains the nice guarantees of the local Newton
algorithm of Chapter 4 when started from arbitrary points. We outline the
challenges associated with the globalization of both the structure detection and
the structure exploitation steps of the algorithm. We report partial results with
a linesearch SQP algorithm for minimizing composite functions (1.1). We show
that the linesearch may prevent the algorithm from reaching the local quadratic
convergence speed, and prove that a second-order correction term fixes this
issue (Theorem 5.6). We also introduce an optimality condition for a pair
(point, smooth substructure), and propose a way to detect whether a structure
manifold is optimal in sharp directions (Lemma 5.9). With these elements, we
propose a heuristic algorithm and illustrate numerically its identification and
local quadratic rate.
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Figure 1.7: Illustration of the areas of detection of structure for the proximity operator
of � (red), and the identification tool of Chapter 4 (green), on a maximum
of three smooth function. The non-minimizing point G2 may trap the local
method of Chapter 4.

1.5 work not included in this thesis

To conclude the introduction, I give below short summaries of the two papers
not included in this thesis, and outline some implementation work not detailed
here either.

1.5.1 Theoretical contributions

I detail here two research projects that are not presented in this thesis.

interplay between acceleration and identification. In this project,
we study the interplay between inertial acceleration and structure identification
for the proximal gradient algorithm. We report and analyze several cases where
this interplay has negative effects on the algorithm behavior (iterates oscillation,
loss of structure identification, etc.). We present a generic method that tames
acceleration when structure identification may be at stake. Under a natural
geometric condition, our method retains the convergence rate of the accelerated
proximal gradient. We show empirically that the proposed method is more
stable in terms of subspace identification compared to the accelerated proximal
gradient method while keeping a similar functional decrease.
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This project was realized with Franck Iutzeler during an internship that
preceeded the PhD. It touches on the same themes as this thesis, but the huge
jump forward was to introduce second-order information and to deal with
identification.
The associated publication is:

G. Bareilles, F. Iutzeler. On the Interplay between Acceleration and
Identification for the Proximal Gradient algorithm. Computational
Optimization and Applications, 2020.

randomized and asynchronous progressive hedging. In this project,
we study the Progressive Hedging algorithm, a popular decomposition method
for solving multi-stage stochastic optimization problems. A computational
bottleneck of this algorithm is that all scenario subproblems have to be solved at
each iteration. We introduce randomized versions of the Progressive Hedging
algorithm able to produce new iterates as soon as a single scenario subproblem
is solved. Building on the relation between Progressive Hedging and monotone
operators, we leverage recent results on randomized fixed point methods to
derive and analyze the proposed methods.

This project was realized at the beginning of my PhD. I was glad to be part of
a team work, which was a nice way to collaborate with and learn from other
PhD students. This project led to the following publication:

G. Bareilles, Y. Laguel, D. Grishchenko, F. Iutzeler, J. Malick. Ran-
domized Progressive Hedging methods for Multi-stage Stochastic
Programming. Annals of Operations Research, 2020.

1.5.2 Algorithmic contributions

Implementing known methods and testing ideas numerically has been a ma-
jor source of inspiration and intuition for me. Following the principles of
reproducible research, all the algorithms presented or used in this thesis are
accompanied by easy-to-use and free open-source Julia (Bezanson et al., 2017)
implementations.

In this spirit, I released the following toolboxes for the proposed algorithms:

• StructuredSolvers.jl –proximal gradient algorithmand its acceleration
with inertia (à la Nesterov) and Riemannian methods, introduced in
Chapter 3. The numerical experiments of Section 3.6 make use of this
toolbox.

• RandomizedProgressiveHedging.jl – this toolbox contains easy-to-use
implementations of the algorithms studied in the above-mentioned paper,
and shows the practical interest of randomized algorithms, notably in a
parallel context.

• LocalCompositeNewton.jl – this package contains the algorithm intro-
duced in Chapter 4 and the code used to reproduce the experiments. The
baselines are implemented in a dedicated toolbox, presented below.

It was instructive to implement existingmethods for nonsmooth optimization.
I collected this code in the following packages:

• NonSmoothSolvers.jl – algorithms for blackbox nonsmooth optimiza-
tion: nonsmooth BFGS with a specific line search (Lewis and Overton,
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2013), Gradient Sampling (Burke et al., 2020), and the VU-algorithm
(Mifflin and Sagastizábal, 2005).

• QuadProgSimplex.jl – minimizing quadratic functions over the simplex
(Wolfe, 1976; Kiwiel, 1986). These methods serve as subroutines for
the bundle methods and gradient sampling algorithms implemented
NonSmoothSolvers.jl.

All these packages are available on my webpage: gbareilles.fr.

gbareilles.fr




2
PRELIMINARIES

In this chapter, we introduce the main mathematical notions which will be
used in our developments. Our notation and terminology follow closely those

of the monographs Rockafellar and Wets (1998) for nonsmooth optimization
and Absil et al. (2009a); Boumal (2022) for Riemannian optimization.
For this chapter, 6 : R= → R̄ = R∪ {+∞} is a function, possibly nonsmooth

and nonconvex.

2.1 variational analysis in a nutshell

We begin with the basic notions of variational analysis used throughout this
thesis.

A function 6 is properwhen 6(G) < +∞ for at least one G ∈ R= and 6(G) > −∞
for all G ∈ R= . Besides, we say that 6 is lower semi-continuous at point Ḡ when,
for all � > 0, there exists a neighborhood NḠ of Ḡ such that any G in NḠ satisfies
6(G) > 6(Ḡ) − �. This function is lower semi-continuouswhen this property holds
at any point, or equivalently when the epigraph of 6 is closed.

subgradients. Several types of subgradients exist for nonconvex functions,
in contrast with the convex setting. We introduce and discuss the types of
subgradients that will be used throughout this thesis, following Rockafellar
and Wets (1998, Chap. 8.B).

Consider a point Ḡ with 6(Ḡ) finite. The set of regular (or Fréchet) subgradients

%̂6(Ḡ) , {
E : 6(G) ≥ 6(Ḡ) + 〈E, G − Ḡ〉 + >(‖G − Ḡ‖) for all G ∈ R=

}
is closed and convex, but the subdifferential mapping %̂6(·)may not be outer
semi-continuous (Rockafellar and Wets, 1998, Th. 8.6, Prop. 8.7). To overcome
this problem, the set of (general or limiting) subgradients is defined as

%6(Ḡ) ,
{
lim
A
EA : EA ∈ %̂6(GA), GA → Ḡ, 6(GA) → 6(Ḡ)

}
.

The limiting subdifferential is by design outer semi-continuous:

lim sup
G→Ḡ

%6(G) = {D : ∃GA → Ḡ,∃DA → D with DA ∈ %6(GA)} ⊂ %6(Ḡ),

which is an attractive property to study sequences of points whose subgradients
converge.
A function 6 is (Clarke) regular at Ḡ when the regular and limiting subdiffer-

entials at Ḡ coincide (Rockafellar and Wets, 1998, Def. 7.25, Cor. 8.11). This is
notably the case for convex functions where the two above definitions coincide
with the convex subdifferential (Rockafellar and Wets, 1998, Prop. 8.12).

17
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optimality condition. The subdifferential allows to formulate necessary
optimality conditions: any local minimizer G★ of 6 satisfies the generalized Fermat
rule (Rockafellar and Wets, 1998, Th. 10.1):

0 ∈ %6(G★).

A point satisfying these conditions is called a critical point. When � is convex,
critical points coincide with (global) minimizers. In a nonconvex setting, a
critical point can also be a local maximum or a saddle point.

2.2 proximity operator

A central tool to tackle non-differentiable functions is the proximity operator,
introduced by the founding work of Jean Jacques Moreau (Moreau, 1965). The
proximity operator of a function 6 with step � > 0 at point H ∈ R= is defined as

prox�6(H) , arg min
D∈R=

{
6(D) + 1

2� ‖D − H‖
2
}

.

While this operator is always well-defined as a set-valued mapping, it gains
properties when 6 is prox-regular and prox-bounded. We quickly introduce
these two notions and provide a result on the uniqueness and characterization
of the prox operator, which is important in our developments.

Note that, though computing the proximal operator of an arbitrary function
is difficult, it comes easy for some relevant cases such as the ℓ1-norm and the
maximum function, or some matrix functions such as the trace-norm and the
�max functions (see Sections 3.2 and 4.2.1).

prox-regularity and prox-boundedness. A function 6 is prox-regular at a
point H̄ for a subgradient Ē if 6 is finite and locally lower semi-continuous at H̄
with Ē ∈ %6(H̄), and there exist A > 0 and � > 0 such that

6(H′) ≥ 6(H) + 〈E, H′ − H〉 − A2 ‖H
′ − H‖2

whenever E ∈ %6(H), ‖H − H̄‖ < �, ‖H′− H̄‖ < �, ‖E − Ē‖ < �, and 6(H) < 6(H̄) + �.
When this holds for all Ē ∈ %6(H̄), we say that 6 is prox-regular at H̄ (Rockafellar
and Wets, 1998, Def. 13.27).
A function 6 is prox-bounded if there exists ' ≥ 0 such that the function

6+ '
2 ‖ · ‖2 is boundedbelow. The corresponding threshold (of prox-boundedness)

is the smallest A?1 ≥ 0 such that 6 + '
2 ‖ · ‖2 is bounded below for all ' > A?1 . In

this case, 6 + '
2 ‖ · −H̄‖2 is bounded below for any H̄ and ' > A?1 (Rockafellar

and Wets, 1998, Def. 1.23, Th. 1.25).

characterization of the proximity operator. We can now recall a
relevant result on the characterization of proximal points, Theorem 1 of Hare
and Sagastizábal (2009). At points where 6 is prox-regular and prox-bounded,
this result guarantees that the proximity operator is unique and locally Lipschitz,
as well as give a complete characterization by its first-order optimality condition.

Theorem 2.1 (Nonconvex prox characterization). Suppose that the lower semi-
continuous function 6 is prox-regular at Ḡ for Ē ∈ %6(Ḡ) with parameter A?A , and
prox-bounded with threshold A?1 . Then, for any � < min(A−1

?A , A−1
?1 ) and all H near

Ḡ + �Ē, the proximal operator is:
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• single-valued and locally Lipschitz continuous;

• uniquely determined by the relation

G = prox�6(H) ⇔ H ∈ G + �%6(G).

We will need a slightly stronger version of this result in our developments,
that describes a situation with the additional knowledge of a pair of points
linked by the proximal operator. This result will prove useful for taking large
steps � in Chapter 3. This is the only

contribution of this
chapterLemma 2.2 (Nonconvex prox characterization). Consider a function 6 : R= →

R, a pair of points Ḡ, H̄ and a step length �̄ > 0 such that Ḡ = prox�̄6(H̄) and 6 is A
prox-regular at Ḡ for subgradient Ē , (H̄ − Ḡ)/�̄.
Then, for any � ∈ (0, min(1/A, �̄)), there exists a neighborhood NH̄ of H̄ over which

prox�6 is single-valued and (1− �A)−1-Lipschitz continuous. Furthermore, there holds

G = prox�6(H) ⇔ H ∈ G + �%6(G)
for H ∈ NH̄ and G near Ḡ in the sense ‖G − Ḡ‖ < �, |6(G) − 6(Ḡ)| < � and ‖(H − G)/�−
Ē‖ < �.

Proof. One can easily check that prox-regularity of 6 at Ḡ for subgradient Ē
is equivalent to prox-regularity of function 6̃ around 0 for subgradient 0,
with 6̃ = 6(· + Ḡ) − 〈Ē, ·〉 − 6(Ḡ) and a change of variable G̃ = G − Ḡ. Similarly,
Ḡ = prox�̄6(H̄) is characterized by its global optimality condition

6(G) + 1
2�̄ ‖G − H̄‖ > 6(Ḡ) + 1

2�̄ ‖ Ḡ − H̄‖
2 for all G ≠ Ḡ,

which we may write as

6(G) > 6(Ḡ) + 〈Ē, G − Ḡ〉 − 1
2�̄ ‖G − Ḡ‖

2 for all G ≠ Ḡ.

Under that same change of variable, since 6̃(0) = 0, this optimality condition
rewrites as

6̃(G̃) > − 1
2�̄ ‖ G̃‖

2 for all G̃ ≠ 0.

We may thus apply Theorem 4.4 from Poliquin and Rockafellar (1996) to get
the claimed result on 6̃, which transfers back to 6 as our change of function
and variable is bĳective. We thus obtain that for � ∈ (0, min(1/A, �̄)), on a
neighborhoodNH̄ of H̄, prox�6 is single-valued, (1− �A)−1-Lipschitz continuous
and prox�6(H) = [� + �)]−1(H), where ) denotes the 6-attentive �-localization
of %6 at Ḡ. Taking H near H̄ and G near Ḡ such that ‖G − Ḡ‖ < �, |6(G) − 6(Ḡ)| < �
and ‖(H − G)/� − Ē‖ < � allows to identify the localization of %6(G) with %6(G),
so that

H − G
�
∈ %6(G) ⇔ H − G

�
∈ )(G) ⇔ (� + �))(G) = H ⇔ G = prox�6(H).

Note that the proof of Poliquin and Rockafellar (1996, Th. 4.4) includes a minor
error relative to the Lipschitz constant computation, we report here a corrected
value. �
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Remark 2.1 . Note here that the condition � ∈ (0, min(1/A, �̄))may bemisleading
since for the second part of the result, the conditions ‖(H − G)/� − Ē‖ < � and
H ∈ NH̄ also have to be fulfilled. This means that the quantity

‖ H̄ − Ḡ‖
(

1
�
− 1
�̄

)
also has to be small. This can be done either a) by taking � sufficiently close to
�̄ (which may not be possible since � has to be smaller than 1/A); or b) when
‖ H̄ − Ḡ‖ is sufficiently small, i.e., around fixed points of the proximal operator.4

2.3 basics of riemannian optimization

In this section, we introduce the tools of Riemannian optimization used in this
thesis. We refer the reader to monographs Absil et al. (2009a) and Boumal
(2022) for detailed presentations.

submanifolds. A subsetM of R= is said to be a ?-dimensional C2-submanifold
of R= around Ḡ ∈M if there exists a C2 manifold-defining map ℎ : R= → R=−?
with a surjective derivative at Ḡ ∈M that satisfies for all G close enough to Ḡ:
G ∈M⇔ ℎ(G) = 0.
A basic tool to investigate manifolds is the notion of smooth curves. A smooth

curve on M is a C2 application � : � ⊂ R → M ⊂ R= , where � is an open
interval containing 0. At each point G ∈M, the tangent space, noted )GM, can
be defined as the velocities of all smooth curves passing by G at 0:

)GM , {2′(0) | 2 : � →M is a smooth curve around 0 and 2(0) = G} .

The tangent space is a ?-dimensional space containing tangent vectors. Each
tangent space )GM is equipped with a scalar product 〈·, ·〉G : )GM×)GM→ R,
and the associated norm ‖ · ‖G . Inmany cases, the tangentmetric varies smoothly
with G, making the manifold Riemannian. In this thesis, we always use the
ambient space scalar product to define the scalar product on tangent spaces; we
will thus drop the subscript in the tangent scalar product and norm notations.
Related to the tangent space, we will also consider the normal space #GM at
G ∈M, defined as the orthogonal space to )GM in R= , and the tangent bundle
manifold defined by:

)B ,
⋃
G∈M
(G,)GM).

Note also that both tangent and normal spaces at G ∈ M admit explicit
expressions from the differential of a local manifold-defining map:

)GM = Ker D ℎ(G) #GM = Im D ℎ(G)∗.
In this thesis,

distgeoM(G, H) denotes the
geodesic distance

between two points on
M, while distM(G) is
the Euclidean distance

from G to M.

A metric onM can be defined as the minimal length over all curves joining
two points G, H ∈ M, i.e., distgeoM (G, H) , inf2∈�G,H

∫ 1
0 ‖2′(C)‖2(C)dC, where �G,H

is the set of [0, 1] → M smooth curves 2 such that 2(0) = G, 2(1) = H. The
minimizing curves generalize the notion of straight line between two points
to manifolds. The constant speed parametrization of any minimizing curve is
called a geodesic.

riemannian gradient and hessian. Let 5 : M → R. The Riemannian
differential of 5 at G is the linear operator D 5 (G) : )GM → R defined by
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D 5 (G)[�] , d
dC 5 ◦ 2(C)

��
C=0, where 2 is a smooth curve such that 2(0) = G and

2′(0) = �. In turn, the Riemannian gradient grad 5 (G) is the unique vector of
)GM such that, for any tangent vector �, D 5 (G)[�] = 〈grad 5 (G),�〉. If grad 5 (G)
exists, a first order Taylor development can be formulated. Let (G,�) ∈ )B and
2 denote a smooth curve passing by G, with velocity � at 0; then, for C near 0,

5 ◦ 2(C) = 5 (G) + C〈grad 5 (G),�〉 + >(C).

In order to define second-order objects, we first introduce the notions of
derivation for vector fields and of acceleration for curves. Consider a curve
2 : � → M and a smooth vector field / on 2, i.e., a smooth map such that
/(C) ∈ )2(C)M for C ∈ �. The covariant derivative of / on the curve 2, denoted
D
dC/ : � → ∪G∈M)GM, is defined by D

dC/(C) , proj2(C) /′(C), where /′(C) denotes
the derivative in the ambient space R= and projG corresponds to the orthogonal
projector from R= to)GM. The acceleration of a curve 2 is defined as the covariant
derivative of its velocity: 2′′(C) , D

dC 2
′(0).

The Riemannian Hessian of 5 at G is the linear operator Hess 5 (G) : )GM→
)GM defined, for � ∈ )GM, by the relation Hess 5 (G)[�] , D

dC grad 5 (2(C))��C=0,
where 2 is a smooth curve such that 2(0) = G and 2′(0) = �. Equivalently,
we have 〈Hess 5 (G)[�],�〉 = d2

dC2 5 ◦ �(C)
���
C=0

, where � is a geodesic such that
�(0) = G, �′(0) = �. A second order Taylor development can now be formulated.
Let (G,�) ∈ )B and 2 be a smooth curve such that 2(0) = G, 2′(0) = �. Then, for
C near 0,

5 ◦ 2(C) = 5 (G) + C〈grad 5 (G),�〉 + C
2

2 〈Hess 5 (G)[�],�〉

+ C
2

2 〈grad 5 (G), 2′′(0)〉 + >(C2).

Remark 2.2 (Euclidean to Riemannian gradient, Hessian). If 5 : M → R has a
smooth extension onR= , the Riemannian gradient andHessian can be computed
from their Euclidean counterparts: for a smooth function 5̄ : R= → R that
coincides with 5 onM,

grad 5 (G) = projG(∇ 5̄ (G)), (2.1)

and, for �̄ : R= → R= a smooth mapping that coincides with grad 5 on M,

Hess 5 (G)[�] = projG
(
D �̄(G)[�]) . (2.2)

4

practical taylor developments with retractions. Riemannian opti-
mization methods require a way to produce curves onM given a point G and
a tangent vector �. While a geodesic curve passing at (G,�) is attractive as the
generalization of the straight line to manifolds, it usually has a prohibitive
computational cost. We thus use retractions, i.e., approximations of geodesics,
defined on a manifold M as smooth maps R : )B→M such that

RG(0) = G and D RG(0) : )GM→ )GM is the identity map: D RG(0)[E] = E,

where, for each G ∈M, RG : )GM→M is defined as the restriction of R at G, so
that RG(E) = R(G, E). A second-order retraction is a retraction R such that, for all
(G,�) ∈ )B, the curve 2(C) = RG(C�) has zero acceleration at 0: 2′′(0) = 0. Thus
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Figure 2.1: Illustration of partial smoothness on function 6(G) = 10(G1 − 1)2 + 5|G2
1 − G2 |.

The function is smooth alongM, nonsmooth across, and the tangent space
at G ∈M is perpendicular to the subdifferential.

C ↦→ RG(C�) is a practical curve passing by (G,�) at 0, and provides a similar
development as above: for C near 0,

5 ◦RG(C�) = 5 (G) + C〈grad 5 (G),�〉 + C
2

2 〈Hess 5 (G)[�],�〉 + >(C2‖�‖2). (2.3)

2.4 partial smoothness and proximal identification

In this section, we introduce the key notion of partial smoothness. We then
illustrate how it allows to characterize the identification behavior of the proximal
operator, and of the corresponding proximal point algorithm.

partial smoothness. The concept of partial smoothness, introduced in
Lewis (2002), formalizes the idea that a nonsmooth function 6 is locally smooth
along a manifold and nonsmooth across it. We illustrate it on Figure 2.1 and
Example 2.1.This notion will be

central in Chapters 3
and 4, which focus on the

local analysis of
algorithms near

(structured) minimizers.

A function 6 is (C2-)partly smooth at a point H̄ relative to a setM6 containing
H̄ if M6 is a C2 manifold around H̄ and if

• (smoothness) the restriction of 6 to M6 is a C2 function near H̄;

• (regularity) 6 is regular at all points H ∈M6 near H̄, with %6(H) ≠ ∅;
• (sharpness) the affine span of %6(H̄) is a translate of #H̄M6 ;

• (sub-continuity) the mapping %6 restricted toM6 is continuous at H̄.

Example 2.1 . We detail each requirement of partial smoothness on the function
6(G) = 10(G1 − 1)2 + 5|G2

1 − G2 |; see Fig. 2.1 for an illustration. At any G ∈M =
{G ∈ R2 : G2

1 − G2 = 0}, 6 is partly smooth relative to M: (i) its restriction to M,
6
��
M = 10(G1 − 1)2 is smooth, (ii) the function is convex, thus (Clarke) regular

everywhere. The subdifferential at G ∈M writes

%6(G) = 20

(
G1 − 1

0

)
+ 5 Conv

((
2G1

−1

)
,

(
−2G1

1

))
,

it is thus (iii) perpendicular to the tangent space toM at G (i.e., parallel to the
normal space), (iv) and continuous. �
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typical use in nonsmooth analysis. Combining partial smoothness
and prox-regularity ensures that the proximal operator smoothly locates the
structure manifold of qualified minimizers. This result is formalized in the
following theorem, from Daniilidis et al. (2006, Th. 28).

Here, we have an
operator view of
identification: the prox
maps a neighborhood of
the minimizer to the
manifold.

Proposition 2.3 (Prox locates manifold at minimizer). Consider 6 a lower semi-
continuous function on R= , and Ḡ a critical point 0 ∈ %6(Ḡ). Suppose that 6 is both
prox-bounded and prox-regular at Ḡ, and partly-smooth relative to M at Ḡ.
Take � > 0. If 0 ∈ ri %6(Ḡ) and � is small enough, then the proximal operator

H ↦→ prox�6(H) is C1 and M-valued near Ḡ.

We note that, throughout this thesis, the assumption of partial smoothness
goes in hand with that of prox-regularity. One reason is that, in this case,
uniqueness of the partial smoothness manifold is guaranteed locally. We derive
a self-contained proof of this folklore result, that parallels Hare and Lewis (2004,
Corollary 4.2, Example 7.1) for partly smooth sets.

Proposition 2.4 (Uniqueness of manifold). Consider a function 6, two manifolds
M1,M2 and a point Ḡ ∈M1∩M2 such that 6 is A-prox-regular at Ḡ and partly-smooth
relative to both manifoldsM1 and M2. Then, near Ḡ,M1 =M2.

Proof. For the sake of eventual contradiction, let (G:) denote any sequence
converging to Ḡ such that G: ∈ M1 \M2 for all :. Since 6 is prox-regular,
Rockafellar and Wets (1998, Prop. 13.37) tell us that there is �̄ > 0 such that
Ḡ = prox�̄6(H̄) for some H̄ ∈ Ḡ + �̄ ri %6(Ḡ) ∈ R= (since 6 is partly smooth, %6(Ḡ)
has non-empty relative interior, and H̄ can be taken as Ḡ + �̄Ē for any Ē ∈ ri %6(Ḡ)
by reasoning as in the proof of Hare and Sagastizábal (2009, Th. 4)).
We can thus select a sequence E: ∈ %6(G:) converging to Ē = (H̄ − Ḡ)/�̄ ∈

ri %6(Ḡ) and define H: = G: + �E: for some � ∈ (0, �̄). It is immediate to see that
the sequence (H:) converges to H� = (1− (�/�̄))Ḡ + (�/�̄)H̄ and that H� can be
made arbitrarily close to H̄ by taking � close to �̄. Thus, we can consider that,
properly choosing �, H: reaches any neighborhood of H̄ in a finite number of
iterations.
Lemma 2.2 then indicates that for : large enough, we have G: = prox�6(H:).

Furthermore, Proposition 2.3 applied with 5 = 0,M =M2 shows that prox�6 is
M2-valued near H̄ which implies that G: = prox�6(H:) ∈M2 for large : which
contradicts G: being in M1\M2. �

algorithmic identification of the proximal point algorithm. We
now informally illustrate the algorithmic identification of the proximity operator.
Consider a proper closed convex function 6. The proximal point algorithm,
defined for some � ∈ R∗+ and G0 ∈ R= as

G:+1 = prox�6(G:),

generates sequences that converge to critical points; see e.g., Attouch and
Bolte (2009, Th. 1) for subanalytic functions. If the limit point Ḡ satisfies a
qualification condition 0 ∈ ri %6(Ḡ) and � is small enough, Proposition 2.3
provides the existence of a neighborhoodNḠ over which the proximity operator
isM-valued. Since the iterates converge to Ḡ, they all belong to the identification
neighborhoodNḠ after some finite (but unknown) time. Therefore, the sequence Here we take an

algorithmic view of
identification: the
iterates eventually belong
to the minimizer
manifold.

of iterates is M-valued after some finite time, which provides an algorithmic
view of identification.
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Figure 2.2: Illustration of the local identification of the proximal operator (Proposi-
tion 2.3) and finite time identification of proximal point algorithm. The
minimizer is G★ = (1, 1), with structure manifoldM★ = {G ∈ R2 : G2

1 = G2}.
The green area shows the operator identification property of the prox: the
operator maps a neighborhood of the minimizer to M★. The red iterates
illustrate the algorithmic identification of the proximal point algorithm: the
iterates eventually belong toM★.

We can now return to Figure 1.3a of the introductory chapter, recalled and
enriched here as Fig. 2.2. The nonsmooth function is:

6(G) = 10(G1 − 1)2 + 5|G2
1 − G2 |.

A direct computation yields an explicit formula for the proximity operator:

prox�6(G) =


( G[1]+20�

1+30� , G2 + 5�) if G2 ≤
(
G1+20�
1+30�

)2
− 5�

(C, C2) if
(
G1+20�
1+30�

)2
− 5� ≤ G2 ≤

(
G1+20�
1+10�

)2
+ 5�

( G1+20�
1+10� , G2 − 5�) if G2 ≥

(
G1+20�
1+10�

)2
+ 5�

,

where Cminimizes the function!(C) = 10(C− G1)2+1/(2�) ((C − G1)2 + (C2 − G2)
)2.

Note that the set of points mapped to M, fully represented in Fig. 2.2, is
actually more than a neighborhood of the minimizer. We return on this topic in
Chapter 3.



3
A NEWTON METHOD FOR NONSMOOTH ADDIT IVE
MINIMIZATION

# This chapter incorporates material from Bareilles et al. (2022b)

3.1 introduction

In this chapter, we consider the nonsmooth optimization problem

min
G∈R=

�(G) , 5 (G) + 6(G), (P)

where 5 is a smooth differentiable function, and 6 is a nonsmooth function.
Throughout the chapter, we illustrate our developments on two nonsmooth
functions stemming from machine learning and signal processing applications:
the ℓ1 norm

6 : G ↦→ ‖G‖1 =
=∑
8=1
|G8 | (3.1)

and the nuclear norm

6 : G ↦→ ‖G‖∗ = ‖�(G)‖1, (3.2)

where �(G) denotes the singular values of G. In these cases and many others,
the nonsmooth objective function presents a smooth substructure, which involves
smooth submanifold on which the function is locally smooth. In the sense of partial

smoothness, see
Section 2.4.

A critical aspect is the requirement that the proximal operator of 6 can be
computed explicitly, and that it outputs a representation of the submanifold
of the output point. In this setting, first-order methods to minimize � are the
(accelerated) proximal gradient algorithms; see Beck (2017, Chap. 10) for a
general review of these methods and their analysis. In nondegenerate cases, the
iterates produced by these algorithms eventually reach the optimal submani-
fold (i.e., the manifold which contains the minimizer): it is the (algorithmic)
identification property of proximal algorithms, discussed in previous chapters.
We note that the identification of the final manifold happens after a finite but This property is

illustrated on Fig. 3.1,
and discussed for the
proximal point in
Section 2.4

unknown number of iterations, which can be estimated only in specific cases.
We propose in this chapter a Newton acceleration of the proximal gradient

algorithm that adaptively uses identification. Our algorithm consists of two
main ingredients:

i) structure identification, relying on the explicit proximal gradient operator
to extract structure information, and

ii) structure exploitation, based on RiemannianNewton steps on the identified
manifolds.

25
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Figure 3.1: Illustration of the typical level lines of a Lasso objective and the eventual
(algorithmic) identification of the proximal gradient: the iterates belong
to the smooth substructure M★ = {G ∈ R2 : G1 = 0} of the minimizer
G★ = (0, 1) in finite time.

We present a convergence analysis showing superlinear convergence of the
resulting algorithm, under some natural qualification assumptions but without
prior knowledgeon thefinal optimal submanifold. Finally,weprovidenumerical
illustrations showing the interests of the proposed Newton acceleration on
typical structure-inducing regularized problems (sparse logistic regression and
low-rank least-squares). Along the way, our study reveals results that have
some interest on their own, in particular: we refine the smoothness properties
of the proximal gradient operator around structured points, and we formalize
complementary properties on line searches in Riemannian optimization.

Let us finally note that the Newton acceleration of the proximal gradient that
we propose here should not be confused with proximal-Newton schemes such
as Lee et al. (2014); Becker et al. (2019); Aravkin et al. (2022). These methods
essentially replace the gradient step by a (quasi-)Newton step before applying
a proximity operator. They therefore do not use second order information on
6, which is crucial to obtain quadratic local rates. Besides, we choose the term
“Newton acceleration” to emphasize the similarity with the celebrated Nesterov
acceleration (Nesterov, 1983). Indeed both methods add an acceleration step
after the proximal gradient iteration. But, unlike Nesterov’s method where
the acceleration is provided by an inertial step, the Newton acceleration comes
from a second-order step on a smooth substructure, as we detail in this chapter.

outline of this chapter. First, in Section 3.2 we recall the relevant prop-
erties of the ℓ1-norm (3.1) and nuclear norm (3.2). In Section 3.3, we show the
structure identification properties of the proximal gradient near structured
points. Then, we introduce in Section 3.4 our template algorithm, alternating a
proximal gradient step with a Riemannian update on the identified manifold
and show its convergence and identification properties. In Section 3.5, we
specify the implementation of efficient Riemannian Newton-type methods and
illustrate their performances in Section 3.6. Somematerial used in our proofs has
been deferred to Appendices A.1 and A.2; most of these results are well-known
and just recalled here, but some seem to be less-known or not precisely treated
in the literature.
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3.2 examples of structure manifolds, proximal operator and rie-
mannian derivatives

In this section, we illustrate on the ℓ1 norm (3.1) and nuclear norm (3.2)
the notions of Riemannian and nonsmooth optimization. We first present
the structure submanifolds associated with these functions and the related See Section 2.3
Riemannian objects. Then, we describe the proximity operator of the ℓ1 and See Sections 2.1, 2.2

and 2.4nuclear norm, detail their partial smoothness and prox-regularity properties,
and finally give their Riemannian derivatives.

submanifolds and related objects.
Example 3.1 (Fixed coordinate-sparsity subspaces). We consider the manifold

M� , {G ∈ R= : G8 = 0 for 8 ∈ �}, (3.3)

where � ⊂ {1, . . . , =}. This manifold is actually a vector space and all related
notions have simple expressions, as follows.

The tangent space at any point identifieswith themanifold itself: )GM� =M� .
The orthogonal projection of a vector 3 ∈ R= on the tangent spacewritesprojG(3),
where [projG(3)]8 is 38 if 8 ∉ �, and null otherwise. Themap RG(�) = G +� defines
a second-order retraction.
Given a function 5 defined on the ambient space, the Riemannian gradient

and Hessian-vector product of the restriction of � toM� are obtained from their
Euclidean counterparts by a simple projection: for (G,�) ∈ )B,

grad 5 (G) = projG(∇ 5 (G)) Hess 5 (G)[�] = projG(∇2 5 (G)[�]). �

Example 3.2 (Fixed rank matrices). We consider the manifold of fixed-rank ma-
trices

MA , {G ∈ R<×= : rank(G) = A}, (3.4)

for which we refer to Boumal (2022, Sec. 7.5). A rank-A matrix G ∈ MA is
represented as G = *Σ+>, where * ∈ R<×A , + ∈ R=×A , Σ ∈ RA×A such that
*>* = �= , +>+ = �< and Σ is a diagonal matrix with positive entries. Such a
decomposition can be obtained by computing the singular value decomposition
of the matrix G. Using this representation, a tangent vector � ∈ )GMA writes

� = *"+> +*?+> +*+>? ,

where " ∈ RA×A , *? ∈ R<×A , +? ∈ R=×A such that *>*? = 0, +>+? = 0.
The orthogonal projection of a vector 3 ∈ R<×= onto )GMA writes projG(3) =
3 −*>3+ .
Given a function 5 defined on the ambient space, a Riemannian gradient

and Hessian-vector product of 5 restricted to MA can be obtained from their
Euclidean counterparts: for G,� ∈ )B, andwith%>* = �< −**>, %>+ = �= −++>.

grad 5 (G) = projG(∇ 5 (G))
Hess 5 (G)[�] = projG(∇2 5 (G)[�]) + [

%>*∇ 5 (G)+?Σ−1] +> +* [
%>+∇ 5 (G)>*?Σ−1]> .

�
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proximity operator and structure manifolds.

Example 3.3 (ℓ1 norm). In the context of Example 3.1,we consider the ℓ1 norm (3.1).
This function is convex, thus prox-regular at every pointwith A = 0. Its proximity
operator admits a closed form:

[prox�‖·‖1(H)]8 =


H8 + � if H8 < −�
0 if − � ≤ H8 ≤ �

H8 − � if H8 > �

which naturally gives sparse outputs. In other words, G = prox�‖·‖1(H) lies on
M� (see (3.3)) where � is the complementary of support of G.
Actually, one readily checks that ‖ · ‖1 is partly smooth at G relative to the

structure manifold M� . In particular, the restriction of ‖ · ‖1 to the manifold
M� is locally smooth at G; the ℓ1 norm thus admits a Riemannian gradient and
Hessian at point G:

grad ‖ · ‖1(G) = sgn(G) and Hess ‖ · ‖1(G) = 0,

where sgn(G) ∈ {−1, 0, 1} denotes the sign of G, null when G = 0. �

Example 3.4 (nuclear norm). Following the notation of Example 3.2, we consider
the nuclear norm (3.2). where Σ denotes the diagonal term of the singular value
decomposition of G. This function is convex, and thus prox-regular at every
point with A = 0. Its proximity operator admits a closed form: for matrix H
(= *Σ+>),

prox�‖·‖∗(H) = *(Σ− �)++>,

where the coefficient (8, 9) of (Σ − �)+ is defined as max(Σ8 9 − �, 0). Thus,
G = prox�‖·‖∗(H) has low rank, by construction. Said otherwise, G lies on MA

(see (3.4)) where A = rank(Σ− �)+.
Similarly, one readily checks that ‖ · ‖∗ is partly smooth at G relative to the

structure manifold MA . In particular, the restriction of ‖ · ‖∗ to the manifold
MA is locally smooth; the nuclear norm thus admits a Riemannian gradient
and Hessian at point G: denoting � = *"+> +*?+> +*+>? ∈ )GMA a tangent
vector,

grad ‖ · ‖∗(G) = *+>
Hess ‖ · ‖∗(G)[�] = *

[
�̃ ◦ (" −">)] +> +*?Σ−1+> +*Σ−1+)

? ,

where ◦ denotes the Hadamard product and �̃ ∈ RĀ×Ā is such that �̃8 9 =
1/(Σ9 9 +Σ88) if Σ9 9 ≠ Σ88 , and �̃8 9 = 0 otherwise. We provide a self-contained
derivation of these derivatives in Appendix B.2. �

3.3 collecting structure with the proximal gradient

In this section, we show that the proximal gradient operator smoothly locates
structure in nonsmooth nonconvex settings. Building on this result, we then
formulate minimal assumptions on points for which the proximal gradient
detects structure.
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Figure 3.2: Illustration of Theorem 3.1 on the additive function �(G) = 10(G1 − 1)2 +
5|G2

1 − G1 |. The minimizer is G★ = (1, 1), the structure manifold is M = {G ∈
R2 : G2

1 = G2}. The red area shows the points mapped to M by the proximal
gradient operator.

3.3.1 Smoothness and localization of the proximal gradient operator

The results of this section are built on 6 being a partly smooth and prox-regular
function. Under this assumption, we show in the next theorem that the proximal
gradient smoothly locates active manifolds: if some input H̄ is mapped ontoM,
then the proximal gradient is M-valued and C1 around H̄; see Figure 3.2.

Theorem 3.1 (Proximal gradient points smoothly locate manifolds). Let 5 be a
C2 function on R= and 6 a lower semi-continuous function on R= . Suppose that 6 is
both A-prox-regular at Ḡ and partly-smooth relative toM at Ḡ.
Take �, �̄ such that 0 < � < �̄ ≤ 1/A and Ḡ = prox�̄6(H̄ − �̄∇ 5 (H̄)). If

i) 1
� (H̄ − Ḡ) − ∇ 5 (H̄) ∈ ri %6(Ḡ) (the relative interior of the subdifferential at Ḡ);

ii) either a) � is sufficiently close to �̄, or b) H̄ is sufficiently close to Ḡ;

then, the proximal gradient H ↦→ prox�6(H − �∇ 5 (H)) is C1 and M-valued near H̄.

This result is based on the sensitivity analysis of partly smooth functions
(Lewis, 2002, Sec. 5). The proof extends and refines the rationale of Dani-
ilidis et al. (2006, Th. 28) on the proximal operator, recalled in this thesis as
Proposition 2.3. Theorem 3.1 thus extends existing results on three aspects: i) it
describes the proximal gradient operator rather than the proximal operator, ii)
it allows for a full stepsize range of (0, 1/A) in the proximal gradient, and iii)
it describes the identification property near any structured point, rather than
only minimizers.

Before moving to the proof, we note that the assumptions of Theorem 3.1 are
rather tight: prox-regularity and partial smoothness areminimal assumptions in
this setting. The following example shows on an example that, when assumption
i) fails, the proximal gradient mapping looses the property of mapping a full
neighborhood of H̄ toM along with its smoothness.

Remark 3.1 (Proximal gradient at non-qualified points.). Assumption i) is nec-
essary to ensure the identification ofM on a full neighborhood. This assumption
fails when 1

� (H̄ − Ḡ) − ∇ 5 (H̄) lies on the relative boundary of %6(Ḡ). In this case,
the proximal gradient may still identify depending on additional quantities,
such as its initialization, stepsize, etc. Fadili et al. (2018) show that enlarged



30 a newton method for nonsmooth additive minimization

identification properties still holds when i) fails; Bareilles and Iutzeler (2020)
illustrate this situation. We also note that the distance from 1

� (H̄ − Ḡ) − ∇ 5 (H̄)
to the relative boundary of %6(Ḡ) can be computed after the prox computation
without significant additional cost for the ℓ1 and nuclear norms.
We illustrate failure of i) on a simple example. Take 5 (G) = 1

2 (G − 1)2 and
6(G) = |G | for any G ∈ R, and � ∈ (0, 1). The unique minimizer lies at the
origin and 5 + 6 is partly smooth there relative to the manifold M = {0}.
However, the minimizer is not an A-structured critical point as it is not qualified:
0 ∉ ri %( 5 + 6)(0) = ri[−2; 0] = (−2; 0). The proximal gradient operator of 5 + 6
writes

prox�6(H − �∇ 5 (H)) =


(1− �)H + 2� if H ≤ −2�

1−�
0 if −2�

1−� ≤ H ≤ 0

(1− �)G if 0 ≤ H
,

there is no neighborhood of 0 on which the operator is smooth andM-valued.4

Proof (of Theorem 3.1). Adopting the same reasoning as in Lewis (2002, Sec. 5)
and Daniilidis et al. (2006, Sec. 4.1), we consider the function

� : R= ×R= → R

(G, H) ↦→ 6(G) + 1
2� ‖G − H + �∇ 5 (H)‖2,

and denote by �H = �(·, H). Computing the proximal gradient prox�6(H −
�∇ 5 (H)) can then be seen as minimizing the parameterized function �H .
Step 1. As a first step, we study the minimizers of �H restricted toM, for H near
H̄. We consider the parametric manifold optimization problem, for H near H̄:

min
G∈M

�H(G). (%M(H))

Since 6 is C2-partly-smooth relative to M and 5 is C2(R=), �H is twice contin-
uously differentiable onM. Moreover, the A-prox-regularity gives easily (see
Lemma A.7) that �H̄ is lower-bounded by ( 1

� − A)‖ · −Ḡ‖2/2 on a neighborhood
of Ḡ in R= and, a fortiori, in M. Thus Ḡ is a strong local minimizer. The
Riemannian sufficient optimality conditions Lemma A.1 imply

grad �H̄(Ḡ) = 0 Hess �H̄(Ḡ) �
( 1
�
− A

)
� � 0,

which are the conditions to apply the implicit functions theorem, as follows.
We consider the equation Φ(G, H) = 0, for G, H near Ḡ, H̄, where Φ : M ×

R= → )B is defined as Φ(G, H) = grad �H(G). This function is continuously
differentiable on a neighborhood of (Ḡ, H̄), and its differential relative to Ḡ at
that point, Hess �H̄(Ḡ), is invertible. The implicit function theorem thus grants
the existence of neighborhoods NḠ , NH̄ of Ḡ, H̄ in M, R= , and a continuously
differentiable function Ĝ : NH̄ → NḠ such that, for any H in NH̄ , Φ(Ĝ(H), H) =
grad �H(Ĝ(H)) = 0. Actually, Ĝ(H) is a strong minimizer of �H on M for H
close enough to H̄. Indeed, the mapping Ĝ is continuous on NH̄ , so that
H ↦→ Hess �H(Ĝ(H)) is also continuous there and the property Hess �H̄(Ĝ(H̄)) � 0
extends locally around H̄.
Step 2. As a second step, we turn to show that the minimizer Ĝ(H) of �H onM is
actually a strong critical point of �H in R= (Lewis, 2002, Def. 5.3), and thus the
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proxg/r

Figure 3.3: Illustration of a A-structured critical point. Point i) is illustrated by the blue
arrow, and point ii) implies that the red cross is in the interior of the black
segment. Partial smoothness appears in the fact that the black segment is
perpendicular to the tangent plane ofM at Ḡ.

proximal gradient of point H. More precisely, we claim that, for H near H̄ and
G = Ĝ(H), there holds 0 ∈ ri %�H(G), that is

1
�
(H − G) − ∇ 5 (H) ∈ ri %6(G).

This property holds at (Ḡ, H̄) by assumption. By contradiction, assume there
exist sequences of points (HA) with limit H̄, (GA) = (Ĝ(HA)) with limit Ḡ = Ĝ(H̄)
and (ℎA) of unit norm ‖ℎA ‖ = 1 such that for all A, ℎA separates 0 from %�HA (GA):

inf
ℎ∈%�HA (GA )

〈ℎA , ℎ〉 ≥ 0.

Since (ℎA) is bounded, a converging subsequence can be extracted from it, let ℎ̄
denote its limit. At the cost of renaming iterates, we assume that limA→∞ ℎA = ℎ̄.
The above property still holds at the limit A →∞. Indeed, let D̄ ∈ %�H̄(Ḡ). Since
6 is partly smooth, the mapping (G, H) ∈ NḠ ×NH̄ ↦→ %�H(G) = %6(G) + 1

� (G − H)
is continuous. Therefore, there exists a sequence (DA) such that DA ∈ %�HA (GA)
and limA→∞ DA = D̄. We have for all A: 〈DA , ℎA〉 ≥ 0, which yields at the limit
〈D̄, ℎ̄〉 ≥ 0. Thus ℎ̄ separates 0 from %�H̄(Ḡ), which contradicts our assumption.
Conclusion. We thus have a continuously differentiable function Ĝ defined on a
neighborhood of H̄ such that i) Ĝ(H̄) = Ḡ, ii) Ĝ(H) is a strong minimizer of �H on
M, iii) 0 ∈ ri %�H(Ĝ(H)).
This last point tells us that (H − Ĝ(H))/� − ∇ 5 (H) ∈ %6(Ĝ(H)). The charac-

terization of proximity by the optimality condition (Lemma 2.2) gives that
Ĝ(H) = prox�6(H − �∇ 5 (H)) for H close enough to H̄. �

3.3.2 Assumptions for structure identification

Theorem 3.1 captures the localization properties of the proximal gradient
operator. It also enables us to precisely define a condition under which a point
can be localized. We formalize it in the definition of A-structured critical points,
an illustration of which is depicted on Fig. 3.3.

Definition 3.1 . A point Ḡ of a �2 submanifold M is A-structured critical for
( 5 , 6) if we have:

i) proximal gradient stability: Ḡ = prox6/A(Ḡ − 1/A∇ 5 (Ḡ)) ;
ii) qualification condition: 0 ∈ ri(∇ 5 + %6)(Ḡ);
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iii) prox-regularity: 6 is A-prox-regular at Ḡ;

iv) partial smoothness: 6 is partly-smooth at Ḡ with respect to M.

While points ii), iii), iv) are standard in the literature (see e.g., (Daniilidis
et al., 2006)), point i) is not always explicited (an exception is for the notion of
identifiability in Drusvyatskiy and Lewis (2014)). It is directly verified when 6
is convex (for any A > 0), but this is not the case when 6 is nonconvex, as shown
in Example 3.5.
Without point i) of our assumption, the following results would still hold

by replacing “for any � ∈ (0, 1/A)” by “for � small enough”, we did not take this
option since we wanted to de-correlate the local identification from the stepsize
choice.
Example 3.5 (Lack of proximal gradient stability). The following example shows
that in the nonconvex setting, ii) and iii) do not necessarily imply i). Take 5 null
and 6 as follows, then the proximity operator of 6 at 0 writes:

6(G) =


G2/2 if |G | ≤ 1

1− 3G/2 if G ≥ 1

1+ 3G/2 if G ≤ −1

, prox�6(0) =


0 if � ∈ (0, 8/9)
{−3�/2, 0, 3�/2} if � = 8/9
{−3�/2, 3�/2} if � > 8/9.

The function 6 is 1-prox-regular at 0, there holds 0 ∈ ri %6(0) = {0}, and yet 0 is
not a fixed point of the proximal operator with stepsizes close to 1. �

3.4 general proximal algorithm with riemannian acceleration

As already mentioned, the output of a proximity operator often comes with the
knowledge of the manifold on which it lives. In this section, we leverage this
property to an algorithmic advantage by temporarily reducing our working
space to the identified structure. “Smooth” structures, involving smooth
submanifolds and smooth restrictions on it, emerge locally and open the way to
Newton acceleration.

Let us start by specifying the blanket assumptions on the problem (P). These
assumptions are mostly common except for the third point, which directly
comes from our idea of using the proximal operator both for the optimization
itself and as an oracle for the current structure of the iterates.

Assumption 3.1 . The functions 5 and 6 are proper and

i) 5 is C2(R=)with an !-Lipschitz continuous gradient;

ii) 6 is lower semi-continuous;

iii) prox�6 is non-empty on R= for any � > 0;

iv) �(G) = 5 (G) + 6(G) is bounded below.

In this setup, we propose a general algorithm (Algorithm 3.1) which consists
in, first, performing a proximal gradient step G: ∈ prox�6(H:−1 − �∇ 5 (H:−1))
that provides both the current point G: and the manifoldM: where it lies, and,
second, carrying out a Riemannian optimization update ManAccM: on the
current manifold. This algorithm is general in the sense that we do not precise
for now what is the Riemannian step ManAcc.
In Section 3.4.1, we show that Algorithm 3.1 retains the global convergence

properties of the proximal gradient algorithm. In Section 3.4.2, we study how
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Figure 3.4: Illustration of Algorithm 3.1. Left pane: proximal gradient step from G:
mapped to the optimal manifold M★, and the area of points mapped to
M★ by the proximal gradient. Right pane: ManAcc step, decomposed as a
(Riemannian Newton) step 3 ∈ )GM★ in the tangent space and its retraction
G:+1 onto M★.

Riemannian methods with local superlinear convergence (such as Riemannian
Newton’s method) propagate their rate to Algorithm 3.1. We will investigate
later in Section 3.5 the Riemannian Newton acceleration falling into this scheme.

Algorithm 3.1: General structure exploiting algorithm
Require: Pick G0 arbitrary, � ∈ (0, 1/!).
1: repeat
2: Compute G: ∈ prox�6(H:−1 − �∇ 5 (H:−1)) and get M: 3 G:
3: Update H: = ManAccM: (G:) on the current manifold
4: until stopping criterion

3.4.1 Global convergence

The following result shows that Algorithm 3.1 converges to a critical value of �,
and all accumulation points of its iterates are critical points. For this to hold,
we only need the mild assumption that the manifold update does not increase
the functional value. This offers a broad choice of methods since this kind of
descent is easily obtained by line search as discussed in Section 3.5.1.

Theorem 3.2 (Global convergence). Let Assumption 3.1 hold and take � ∈ (0, 1/!).
Suppose that the manifold update ManAccM provides descent, that is for any G in M

�(ManAccM(G)) ≤ �(G).

Then, Algorithm 3.1 generates non-increasing functional values (�(G:+1) ≤ �(H:) ≤
�(G:) for all :) and all limit points of (G:) and (H:) are critical points of �, that share
the same functional value.

Proof. It iswell-known that the proximal gradient update provides a descent (see
the result and reference in Appendix A.2). Choosing H: such that �(H:) ≤ �(G:)
(by assumption on the manifold update) yields:

�(G:+1)
Lemma A.5≤ �(H:) − 1− �!

2� ‖G:+1 − H: ‖2 ≤ �(G:) − 1− �!
2� ‖G:+1 − H: ‖2.

(3.5)



34 a newton method for nonsmooth additive minimization

The sequence (�(G:)) is thus non-increasing and lower-bounded, therefore it
converges. Besides, any accumulation point of (G:) is a critical point of �.
Indeed, summing equation (3.5) for : = 1, . . . , = yields:

1− �!
2�

=∑
:=1
‖G:+1 − H: ‖2 ≤ �(G1) − �(G=+1) ≤ �(G1) − inf � < +∞.

Therefore the general term of the above series ‖G:+1 − H: ‖2 converges to 0, which
implies, by Lemma A.6, that the distance from %�(G:) to 0 converges to 0. The
outer-semi continuity property of the limiting subdifferential allows to conclude
that every accumulation point of (G:) is a critical point of �. Finally, all limit
points share the same functional value as � is lower semi-continuous. �

3.4.2 Local identification and superlinear convergence

Using the structure identification result of the proximal gradient Theorem 3.1,
we can guarantee that our method, Algorithm 3.1, benefits from superlinear
convergence provided that the considered Riemannian method converges
(locally) superlinearly around a limit point.

Theorem 3.3 (Local convergence). Let Assumption 3.1 hold and take � ∈ (0, 1/!),
where ! is the Lipschitz constant for ∇ 5 . Assume that Algorithm 3.1 generates a
sequence (H:) which admits at least one limit point Ḡ such that:

i) Ḡ ∈M is a A-structured critical point for ( 5 , 6) with A < 1/�;

ii) ManAccM has superlinear convergence rate of order 1 + � ∈ (1, 2] near Ḡ in
M: for some @ > 0 and G ∈M near Ḡ,

distgeoM(ManAccM(G), Ḡ) ≤ @ distgeoM(G, Ḡ)1+�.

Then, after some finite time:

a) the full sequence (G:) lies onM;

b) G: converges to Ḡ superlinearly with the same order as ManAcc:

distgeoM(G:+1, Ḡ) ≤ 2 distgeoM(G: , Ḡ)1+� for some 2 > 0. (3.6)

Proof. Let us note T(H) = prox�6(H − �∇ 5 (H)) for H ∈ R= . The part i) of the
assumptions enables us to show the existence of some neighborhood of Ḡ on
which the proximal gradient operation is M-valued and Lipschitz continuous.
More precisely, Theorem 3.1 implies that there exists �1 > 0 and � > 0 such
that,

T(H) ∈M and ‖T(H) − T(Ḡ)‖ ≤ �‖H − Ḡ‖ for all H in B(Ḡ, �1).

Now, if H belongs to M, we get that there exists �1 > 0 such that for any H in
BM(Ḡ, �1), T(H) ∈M; but in addition, the Euclidean Lipschitz continuity can be
translated into a Riemannian one (see Lemma A.4) since for some � > 0,

(1− �)distgeoM (T(H), Ḡ) = (1− �)distgeoM (T(H), T(Ḡ)) ≤ ‖T(H) − T(Ḡ)‖
≤ �‖H − Ḡ‖ ≤ �(1+ �)distgeoM (H, Ḡ) (3.7)
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Hence, there is @1 > 0 such that for any H in BM(Ḡ, �1)

distgeoM (T(H), Ḡ) = distgeoM (T(H), T(Ḡ)) ≤ @1 distgeoM (H, Ḡ). (3.8)

Then, the part ii) of the assumptions gives us the existence of �2, @2 > 0 and
� ∈ (0, 1) such that, for any G in BM(Ḡ, �2),

distgeoM (ManAccM(G), Ḡ) ≤ @2 distgeoM (G, Ḡ)1+�. (3.9)

Let us now take any G ∈ BM(Ḡ, �)where � = min(�1, �2, (�1/@2) 1
1+� , (@2@1)− 1

� ):
(i) Since G ∈ BM(Ḡ, �2), the manifold update (3.9) yields

distgeoM (ManAccM(G), Ḡ) ≤ @2 distgeoM (G, Ḡ)1+� ≤ @2 �
1+� ≤ �1.

(ii) AsManAccM(G) lies inBM(Ḡ, �1), the proximal gradient update (3.8) applied
to H = ManAccM(G) gives

distgeoM (T(ManAccM(G)), Ḡ) ≤ @1 distgeoM (ManAccM(G), Ḡ)
≤ @1@2 distgeoM (G, Ḡ)1+� ≤ @1@2 �

� distgeoM (G, Ḡ). (3.10)

Since @2@1�� ≤ 1 by construction, this gives

distgeoM (T(ManAccM(G)), Ḡ) ≤ distgeoM (G, Ḡ) for any G ∈ BM(Ḡ, �). (3.11)

We have thus proved the existence of a neighborhood BM(Ḡ, �) of Ḡ inMwhich
is stable for an iteration of Algorithm 3.1 and over which one iteration has a
superlinear improvement of order 1+ � (by (3.10)).
Finally, since Ḡ is a limit point of (H:), there exists  < ∞ such that H ∈

B(Ḡ, (1− �)�/�). Besides, (3.7) tells us that distgeoM (T(H ), Ḡ) ≤ � and thus G: and
H: belong toBM(Ḡ, �) for all : >  by (3.11). We conclude that G:+1 = T(H:) ∈M
for all : ≥  , and, using (3.10), that we have (3.6) with 2 = @1@2, for all : >  .�

3.5 riemannian newton acceleration, in practice

In this section, we investigate the possibilities of manifold acceleration within
Algorithm 3.1. We show in Sections 3.5.2 and 3.5.3 how to use Riemannian
(truncated) Newton accelerations within our framework and derive quadratic
(superlinear) convergence guarantees. A technical difficulty to ensure global
convergence when interlacing proximal gradient updates with Riemannian
Newton accelerations is to guarantee some functional decrease. Thus, we first
study in Section 3.5.1 the use of line search for ManAccM in our context.

3.5.1 Ensuring functional descent while preserving local rates: line search

We use in the following convergence proofs three properties of ManAccM: it
should produce an update that lives onM, enjoy a superlinear local convergence
rate, andnot degrade function value. For this last point, we consider a simple line
search andwe prove that, under mild assumptions, it helps to find a point which
decreases function value, and retains the favorable local properties of Newton’s
method. Surprisingly, this result does not appear in the standard references
on Riemannian optimization. We provide here the necessary developments
inspired from the classical monograph by Dennis Jr and Schnabel (1996).
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Standing at point G ∈Mwith a proposed direction � ∈ )GM, a stepsize  > 0
is acceptable if it satisfies the following Armĳo condition

�(RG(�)) ≤ �(G) +<1〈grad �(G),�〉, for 0 < <1 < 1/2. (3.12)

The line search employs a second-order retraction RG , e.g., the exponential
map, a projection retraction (Absil and Malick, 2012), or any other second-order
retraction (Boumal, 2022).1 The conditions under which stepsizes satisfying the
Armĳo rule exist are discussed in Dennis Jr and Schnabel (1996, Sec 6.3), the
following lemma can then be derived.

Lemma 3.4 . Let Assumption 3.1 hold and consider a manifold M equipped with a
retractionR and a pair (G,�) ∈ )B. If � is differentiable onM at G, 〈grad �(G),�〉 < 0,
and <1 < 1, then there exists ̂ > 0 such that any stepsize  ∈ (0, ̂) is acceptable by
the Armĳo rule (3.12).

Proof. We adapt a part of the proof of Dennis Jr and Schnabel (1996, Th. 6.3.2)
for the Armĳo rule and the Riemannian setting. Since <1 < 1/2, for any 
sufficiently small there holds

� ◦RG(�) ≤ � ◦RG(0) +<1 D (� ◦RG) (0)[�] = �(G) +<1〈grad �(G),�〉.

Since � is bounded below, there exists a smallest ̂ such that �(RG(̂�)) =
�(G) +<1̂〈grad �(G),�〉. Thus all stepsizes in (0, ̂) are acceptable by (3.12).�

In addition, a line search performed near aminimizerwith aNewton direction
should accept the unit stepsize, so that the full Newton step may be taken. This
is the case when the Riemannian Hessian around this minimizer is positive
definite as stated by the next lemma, which is a direct corollary of Theorem B.1.

Lemma 3.5 . Let Assumption 3.1 hold and consider a manifold M equipped with
a retraction R, a point G★ ∈ M and a pair (G,�) ∈ )B. Assume that � is twice
differentiable on M near G★ and that G★ is a strong local minimizer on M, that is
Hess 5 (G★) is positive definite. If the direction � brings a superlinear improvement
towards G★, that is distgeoM(RG(�), G★) = >(distgeoM(G, G★)) as G → G★, and 0 < <1 <
1/2, then � is acceptable by the Armĳo rule (3.12) with unit stepsize  = 1.

In the following, we will consider a backtracking line search for finding an
acceptable stepsize : the unit stepsize is first tried, and then the search space
is reduced geometrically. In practice, we use exactly Dennis Jr and Schnabel
(1996, Alg. A6.3.1), which features polynomial interpolation of 5 ◦ RG in the
search space.

3.5.2 Riemannian Newton & quadratic convergence

We construct a manifold update based on the Riemannian Newton method
(Absil et al., 2009a, Chap. 6), which is the simplest methodwith a local quadratic
convergence. It consists in finding 3 ∈ )GM that minimizes the second order
model (2.3) of � at point G ∈M, or equivalently that solves Newton equation
(see Boumal (2022, Sec. 6.2)):

grad �(G) +Hess �(G)[3] = 0 (Newton eq.)

1 Indeed, inmany applications of Riemannian optimization, computing geodesics and the exponential
map can be costly and then retractions provide an efficient alternative. For this reason, we consider
here second-order retractions (Absil et al., 2009a; Boumal, 2022).
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Algorithm 3.2: ManAcc-Newton
Require: Manifold M, point G ∈M
1: Find 3 in )GM that solves (Newton eq.)
2: Find  satisfying the Armĳo condition (3.12) with direction 3
3: return H = 'G(3)

Theorem 3.6 . Let Assumption 3.1 hold and take � ∈ (0, 1/!). Consider the sequence
of iterates (G:) generated by Algorithm 3.1 equipped with the Riemannian Newton
manifold update (Algorithm 3.2). If Hess �(G:) is positive definite at each step, then
all limit points of (G:) are critical points of � and share the same functional value.
Furthermore, assume that the sequence (H:) admits a limit point G★ such that

i) G★ ∈M is a A-structured critical point for ( 5 , 6) with A < 1/�;
ii) HessM �(G★) � 0 and HessM � is locally Lipschitz around G★.

Then, after some finite time,

a) the sequence (G:) lies onM;

b) G: converges to G★ quadratically: for large :, there exists 2 > 0 such that

distgeoM(G:+1, G★) ≤ 2 distgeoM(G: , G★)2.

Proof. As the Riemannian Hessian is assumed to be positive definite, Newton’s
direction is a descent direction:

〈grad �(G:), 3:〉 = −〈grad �(G:), Hess �(G:)−1 grad �(G:)〉 < 0.

The Riemannian Newton manifold step is therefore well-defined, and the line
search terminates by Lemma 3.4, so that the manifold update is well-defined
and provides descent (�(H:) ≤ �(G:)). Theorem 3.2 thus ensures that all limit
points of (G:) are critical points of � and share the same functional value.
Now we apply the local convergence of Riemannian Newton (Absil et al.,

2009a, Th. 6.3.2): assumption ii) ensures that the Riemannian Newton direction
3 computed in step 1 of Algorithm 3.2 provides a quadratic improvement on a
neighborhood of G★ on M. Moreover, the line search returns the unit-stepsize
after some finite time:  = 1 is tried first, and is acceptable for directions
providing superlinear improvement by Lemma 3.5. Thus the whole Riemannian
Newton update provides quadratic improvement after some finite time. Using
this and assumption i), Theorem 3.3 applies and yields the results. �

This theorem states that alternating proximal gradient steps and Riemannian
Newton steps converges quadratically to structured points under virtually
the same assumptions required by the Euclidean Newton method. The two
standard issues of Newton’s method therefore hold in our setting: at each
iteration, a linear system has to be solved to produce the Newton direction; and
this direction does not always provide descent (without positive definiteness of
the Hessian). We show in the next section that truncated versions overcome
these issues in our framework.

3.5.3 Riemannian Truncated Newton & superlinear convergence

We consider amanifold update based on a truncatedNewton procedure (Dembo
and Steihaug, 1983). (Riemannian) Truncated Newton consists in solving
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(Newton eq.) partially by using a (Riemannian) conjugate gradient procedure
so that whenever the resolution of (Newton eq.) is stopped, the resulting
direction provides descent on the function. The quality of the truncated Newton
direction is controlled by a parameter � ∈ [0, 1) which bounds the ratio of
residual and gradient norms:

‖ grad �(G) +Hess �(G)[3]‖ ≤ �‖ grad �(G)‖. (Inexact Newton eq.)

Algorithm 3.3: ManAcc-Newton-CG
Require: ManifoldM, point G ∈M, convergence defining parameter � ∈ (0, 1]
1: Let � = ‖ grad �(G)‖�
2: Find 3 that solves (Inexact Newton eq.)
3: Find  satisfying the Armĳo condition (3.12) with direction 3
4: return H = 'G(3)

Theorem 3.7 . Let Assumption 3.1 hold and take � ∈ (0, 1/!). Consider the sequence
of iterates (G:) generated by Algorithm 3.1 equipped with the Riemannian Truncated
Newton manifold update (Algorithm 3.3). Then all limit points of (G:) are critical
points of � and share the same function value.
Furthermore, assume that sequence (H:) admits a limit point G★ such that

i) G★ ∈M is a A-structured critical point for ( 5 , 6) with A < 1/�;
ii) HessM �(G★) � 0 and HessM � is locally Lipschitz around G★.

iii) we take �: = O(‖ grad �(G:)‖�), for some � ∈ (0, 1].
Then, for : large enough, the full sequence (G:) lies on M, and G: converges to G★
superlinearly with order 1+ �: for large :, there exist 2 > 0,

distgeoM(G:+1, G★) ≤ 2 distgeoM(G: , G★)1+�.

Proof. Applying the analysis of Dembo and Steihaug (1983, Lemma A.2) to the
approximate resolution of (Inexact Newton eq.) on the euclidean space )GM
yields:

〈grad �(G), 3〉 ≤ −min(1, ‖Hess �(G)‖−1)‖ grad �(G)‖2.

Therefore, the direction provided by (Inexact Newton eq.) is a descent direction,
and by Lemma 3.4 the line search terminates: the updates are well-defined and
provide descent. Thus, as in the proof of Theorem 3.6 we get that every accu-
mulation point of the iterate sequence is a critical point for �. We can apply now
the local convergence of the Riemannian truncated Newton method (Absil et al.,
2009a, Th. 8.2.1): assumptions ii) and iii) ensure that the direction 3 computed
in step 1 of Algorithm 3.3 provides a local superlinear improvement towards
G★. The end of the proof is the same as the one of the proof of Theorem 3.6. �

3.6 numerical illustrations

In this section, we illustrate the effect of Newton acceleration. We consider
Algorithm 3.1 equipped with either the Newton update of Algorithm 3.2,
denoted ‘Alt. Newton’ or the truncated Newton update of Algorithm 3.3,
denoted ‘Alt. Truncated Newton’. These methods are compared to the Proximal
Gradient and the Accelerated Proximal Gradient, which serve as baseline. The
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algorithms and problems are implemented in Julia (Bezanson et al., 2017);
experiments may be reproduced using the code available at https://github.
com/GillesBareilles/NewtonRiemannAccel-ProxGrad.

We report the numerical results in figures showing a) the suboptimality
�(G:) − �(G★) of the current iterate G: versus time, and b) the dimension of the
currentmanifoldM: 3 G: versus iteration. We also report a table comparing the
algorithms at the first iteration that makes suboptimality lower than tolerances
10−3 and 10−9 for various measures summarized in the following table:

�(G: ) − �(G★) Suboptimality at current iteration.
#prox. grad. steps Number of proximal gradient steps, each involve computing ∇ 5 (·) and

prox�6(·) once.
#ManAcc steps Number of Riemannian steps, each involve computing grad �(·) once and

Hess �(·)[·]multiple times (one per Conjugate Gradient iteration).
#Hess �(·)[·] Number of Riemannian Hessian-vector products, approximates the effort

spent in manifold updates since algorithm started.
# 5 Number of calls to 5 (G), one per iteration + some for the line search + some

for the backtracking estimation of the Lipschitz constant.
#6 Number of calls to 6(G), one per iteration + some for the line search.

The proximal gradient updates, present in all methods, include a backtracking
procedure that maintains an estimate of the Lipschitz constant of ∇ 5 , so that
the proximal gradient step length is taken as the inverse of that estimate.
The Conjugate Gradient used to solve (Newton eq.) and (Inexact Newton eq.)
follows Boumal (2022, Alg. 6.2); it is stopped when the (in)exactness criterion is
met, or after 50 iterations for the logistic problem and 150 for the trace-norm one,
or when the inner direction 3 makes the ratio 〈Hess �(G:)[3], 3〉/‖3‖2 small.2
The manifold updates are completed by a backtracking line search started
from unit stepsize, a direct implementation of Dennis Jr and Schnabel (1996,
Alg. 6.3.1).

3.6.1 Two-dimensional nonsmooth example

We consider the piecewise quadratic problem of Lewis and Wylie (2019):

min
G∈R2

2G2
1 + G2

2 + |G2
1 − G2 |.

The objective function is partly-smooth relative to the parabola {G : G2 = G2
1}, for

which an expression for the tangent space, the orthogonal projection on tangent
space, a second-order retraction and conversion from Euclidean gradients and
Hessian-vector products to Riemannian ones are readily available.

We detail here the oracles of 5 (G) , 2G2
1 + G2

2 and 6(G) , |G2
1 − G2 |:

2 Each CG iteration requires one Hessian-vector product, avoiding to form the Hessian matrix. A test
on this ratio is used to detect a direction of quasi-negative curvature for the (Riemannian) Hessian,
which is a stopping criterion of the Conjugate Gradient. In our implementation, we require this
quantity to be smaller than 10−15 for the Newton method. For the truncated version, we reduce the
threshold when getting close to the solution: initialized at 1, the threshold is decreased by a factor
10 each time the unit-step is accepted by the line search.

https://github.com/GillesBareilles/NewtonRiemannAccel-ProxGrad
https://github.com/GillesBareilles/NewtonRiemannAccel-ProxGrad
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• proximity operator: For � < 1/2, there holds

prox�6(G) =


( G1

1+2� , G2 + �) if G2 ≤ G2
1

(1+2�)2 − �
( G1

1+4�C−2� , G2 + 2�C − �) if G2
1

(1+2�)2 − � ≤ G2 ≤ G2
1

(1−2�)2 + �
( G1

1−2� , G2 − �) if G2
1

(1−2�)2 + � ≤ G2

where C solves G2
2 + (−2�C + � − G2)(1+ 4�C − 2�)2 = 0.

• Riemannian gradient and Hessian: Since 6 is identically null on M, for
any point (G,�) ∈ )B, grad 6(G) = 0 and Hess 6(G)[�] = 0. Moreover, Eu-
clidean gradient and Hessian-vector product are converted to Riemannian
ones using equations (2.1) and (2.2):

grad 5 (G) = projG(∇ 5 (G))

Hess 5 (G)[�] = projG

(
∇2 5 (G)[�] −

(
2�1

0

) 〈
∇ 5 (G),

(
2G1

−1

)〉
1

1+ 4G2
1

)
,

and the orthogonal projection onto )GM writes

projG(3) = 3 −
〈
3,

(
2G1

−1

)〉
1

1+ 4G2
1

(
2G1

−1

)
.

We run the proximal gradient, its accelerated counterpart, and Algorithm 3.1
with the Newton update Algorithm 3.2. For our illustrative purposes, the
proximal gradient steps of all algorithms have a constant stepsize � = 0.05, all
algorithms are started from point (2, 3).

observations. The iterates are displayed in Fig. 3.5. The Proximal Gradient
iterates reach the parabola in finite time, and then converge linearly on the
parabola while the Accelerated Proximal Gradient iterates “overshoot” the
optimal manifold (see Bareilles and Iutzeler (2020)). The iterates of the Alt.
Newton method stay on the parabola and the quadratic convergence behavior
appears clearly since two Newton updates bring suboptimality below 10−3, and
one additional step gets it below 10−12.

3.6.2 ℓ1-regularized logistic problem

We now turn to the ℓ1-regularized logistic problem:

min
G∈R=

1
<

<∑
8=1

log(1+ exp(−H8 〈�8 , G〉)) +�‖G‖1,

where � ∈ R<×= , H ∈ {−1, 1}< , and � > 0. The nonsmooth part 6(G) = �‖G‖1
is described in Section 3.2.
We consider an instance where = = 4000, < = 400, � = 10−2 and the final

manifold has dimension 249. The coefficients of � are drawn independently
following a normal law. From a sparse random vector B, H8 is set to 1 with
probability 1/(1+ exp(−〈�8 , B〉)), and −1 otherwise. All algorithms start from
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Proximal Gradient
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Algorithm tol F-F* proxgrad gradF HessF f g

Prox. Gradient 1 · 10−3 7.74 · 10−4 29 – – 30 30
Prox. Gradient 1 · 10−9 7.59 · 10−10 60 – – 61 61

Accel. Prox. Gradient 1 · 10−3 9.63 · 10−4 16 – – 17 17
Accel. Prox. Gradient 1 · 10−9 5.18 · 10−10 63 – – 64 64

Alt. Newton 1 · 10−3 1.49 · 10−4 2 2 10 7 7
Alt. Newton 1 · 10−9 8.75 · 10−13 3 3 15 10 10

Figure 3.5: Nonsmooth example

the same point which is the output of 35 iterations of the accelerated proximal
gradient randomly initiated.

observations. The experiments are presented in Fig. 3.6.3 The optimal
manifold is identified around iteration 200 for all methods except for Proximal
Gradient, which needs 1000 iterations. The two baselines Proximal Gradient
and its accelerated version show linear convergence, with a better rate for the
non accelerated version once the final manifold is reached. Alt. Truncated
Newton shows superlinear acceleration, while Alt. Newton fails to converge in
the given time budget.

As iterations grow, the (Accelerated) Proximal Gradient identifies manifolds
of decreasing dimension in a roughly monotonical way. Alt. Truncated Newton
behaves differently: after identifying monotonically manifolds of dimension
lower than 2000, the dimension of the current manifold jumps to about 3000 for
about 10 iterations, to finally reach quickly the final manifold. We believe that
this partial loss of identified structure is caused by iterates getting close to a
point having one non-null but very small coordinate. There, the second-order
Taylor extension is valid on a small set however it may lead to a Newton step that
lies outside that set, thus driving the iterate away. The same behavior occurs
for Alt. Newton. This difficulty can be related to the well-known problem of
constraint activation in nonlinear programming. Despite this, Algorithm 3.1
retains a good rate overall.

3 In Figs. 3.6a and 3.6b, the marks help distinguish curves. In particular they do not indicate that the
algorithm has performed one (or any number of) iteration.
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Prox. Gradient Accel. Prox. Gradient Alt. Newton Alt. Truncated Newton

Algorithm tol F-F* proxgrad gradF HessF f g

Prox. Gradient 1 · 10−3 9.96 · 10−4 357 – – 779 358
Prox. Gradient 1 · 10−9 9.97 · 10−10 2,306 – – 4,677 2,307

Accel. Prox. Gradient 1 · 10−3 9.26 · 10−4 90 – – 246 91
Accel. Prox. Gradient 1 · 10−9 9.9 · 10−10 953 – – 1,972 954

Alt. Newton 1 · 10−3 9.76 · 10−4 62 61 6,303 556 427
Alt. Newton 1 · 10−9 – – – – – –

Alt. Truncated Newton 1 · 10−3 9.56 · 10−4 51 50 2,616 437 321
Alt. Truncated Newton 1 · 10−9 3.77 · 10−15 105 105 5,091 742 572

Figure 3.6: Logistic-ℓ1 problem

3.6.3 Trace-norm regularized problem

We consider the following matrix regression problem:

min
G∈R=1×=2

1
2

<∑
8=1

(〈�8 , G〉 − H8 )2 +�‖G‖∗, (3.13)

where �8 ∈ R=1×=2 for 8 = 1, . . . ,<, H ∈ R< and � denotes a positive scalar. The
nonsmooth part 6(G) = �‖G‖∗ is described in Section 3.2.
We consider an instance of (3.13) where =1 = 10, =2 = 12, < = 60, � = 10−2

and the final manifold is that of matrices of rank 6. The coefficients of the �8 ’s
are drawn independently from a normal law. From a sparse random vector B,
H8 is taken as 〈�8 , B〉 + �8 , where �8 follows a centered normal law with variance
0.012. All algorithms start from the same point which is the output of 103

iterations of the accelerated proximal gradient randomly initiated.

observations. The experiments are presented in Fig. 3.7.4 We see on
Fig. 3.7a that the Proximal Gradient algorithm and its accelerated version
converge sublinearly. We conjecture that this slow rate is due to the lack of
strong convexity of the objective problem. Alt. Truncated Newton converges
superlinearly, and shows the interest of the Newtonian acceleration. Figure 3.7b
shows that the Proximal Gradient does not reach the final optimal manifold
within the budget of iterations; similarly for the Newton method, within the
budget of time.

4 In Figs. 3.7a and 3.7b, the marks help distinguish curves. In particular they do not indicate that the
algorithm has performed one (or any number of) iteration.
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Algorithm tol F-F* proxgrad gradF HessF f g

Prox. Gradient 1 · 10−3 – – – – – –
Prox. Gradient 1 · 10−9 – – – – – –

Accel. Prox. Gradient 1 · 10−3 9.99 · 10−4 1,489 – – 3,073 1,490
Accel. Prox. Gradient 1 · 10−9 9.86 · 10−10 43,283 – – 86,661 43,284

Alt. Newton 1 · 10−3 9.83 · 10−4 93 93 28,063 873 687
Alt. Newton 1 · 10−9 – – – – – –

Alt. Truncated Newton 1 · 10−3 9.7 · 10−4 76 76 16,342 738 568
Alt. Truncated Newton 1 · 10−9 2.27 · 10−11 128 128 27,786 1,101 879

Figure 3.7: Trace-norm problem

3.6.4 Robustness of Riemannian Newton accelerations
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Figure 3.8: Performance profile for the time to decrease suboptimality below 10−9

We illustrate the robustness of the Newton acceleration on several instances
of the trace-norm problem (3.13). More precisely, we compare the 4 algorithms
on 20 random instances of the tracenorm problem, in terms of wallclock time
required to reach a suboptimality of 10−9. We then provide in Fig. 3.8 a
performance profile (i.e., the ordinate of a curve at abscissa C ≥ 1 indicates the
proportion of problems for which the corresponding algorithm was able to
satisfy the criterion within C times the best algorithm time for each problem;
see Dolan and Moré (2002)).
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Weobserve the following on Fig. 3.8. The ordinate at origin of a curve gives the
proportion of problems for which the corresponding algorithm performed best:
methods with Newton acceleration are the most efficient in 95%(= 75%+ 20%)
of the instances. Furthermore, they require about 2.5× less time to converge
in half of the instances. Note also that the proximal gradient is completely
outperformed by the others algorithms since it takes 5× more time than the
best algorithm, for all instances.



4
LOCAL NEWTON METHOD FOR NONSMOOTH COMPOSITE
MINIMIZATION

# This chapter incorporates material from Bareilles et al. (2022a).

4.1 introduction

In this chapter, we consider nonsmooth optimization problems of the form

min
G∈R=

�(G) , 6(2(G)), (4.1)

where the inner mapping 2 : R → R< is smooth and the outer function
6 : R< → R ∪ {+∞} is nonsmooth and may be nonconvex, but admits an
explicit proximity operator. In Chapter 3, we considered the additive composite
model, we now turn to the composition model. This model is more difficult to
handle in general, and encompasses the additive model as a particular case.
Here, we illustrate our developments on two classes of functions: the pointwise
maximum of < smooth real-valued functions 28

�(G) = max
8=1,...,<

(28(G)) (4.2)

and the maximum eigenvalue of a parametrized symmetric real matrix 2

�(G) = �max (2(G)). (4.3)

In these two examples and many others, subgradients of � can be computed
and thus the composite function can be minimized using standard nonsmooth
optimization algorithms (e.g.,subgradient methods, gradient sampling (Burke
et al., 2020), nonsmooth BFGS (Lewis and Overton, 2013),1 or black box bundle
methods (Hiriart-Urruty and Lemaréchal, 1993)). Nevertheless, these methods
do not exploit the fact that � is a composition of a smooth mapping 2, which
can hinder their performance. In contrast, the so-called prox-linear methods
leverage this composite expression by introducing an extension of the proximity
operator where the nonlinear mapping 2 is iteratively replaced by a first-
order Taylor approximation (Lewis and Wright, 2016). These methods benefit
from theoretical convergence guarantees, and nicely generalize to Taylor-like
approximations (Drusvyatskiy et al., 2021; Bolte et al., 2020). However these
methods are not always directly implementable because the prox-linear step
may be hard to compute, as in (4.3). In a similar spirit, a variant of bundle
methods also exploits the composite expression of the function, by leveraging
the subgradients of the outer nonsmooth function and the derivatives of the

1 Contrary to the other mentioned algorithms, nonsmooth BFGS has no theoretical convergence
guarantees when applied to nonsmooth functions.

45
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inner mapping; see Sagastizábal (2013) for general composite functions (4.1)
and Helmberg and Rendl (2000) for (4.3).
In this chapter, we propose an optimization algorithm for solving (4.1) ex-

ploiting that the nonsmooth objective function � = 6 ◦ 2 writes as a composition
between a smooth mapping 2 and a simple nonsmooth function 6, which
displays some smooth substructure, as discussed below.

4.1.1 Smooth substructure, identification, and existing algorithms

For many composite functions, including (4.2) and (4.3), the nondifferentiability
points locally organize into smooth manifolds over which � evolves smoothly. We
illustrate in Figure 4.1 such a smooth substructure for a maximum of two
functions.
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Figure 4.1: Smooth substructure on a simple example (= = < = 2). The figures show the
level curves of 6(H) = max(H1, H2) (on the right, in the intermediate space)
and of � = 6 ◦ 2, with two quadratic functions 21(G), 22(G) (on the left, in the
input space). The manifolds of non-differentiability are in green; the image
of 2 is the red area.

The smooth substructure of � can help in solving (4.1). Indeed, if the
optimal solution G★ belongs to a manifoldM★ that is known beforehand, then
minimizing the nonsmooth function � over R= boils down to minimizing the
smooth restriction � |M★ over this smooth optimal manifold M★. This would
enable to solve (4.1) by smooth constrained optimization algorithms, such as
Sequential Quadratic Programming (SQP) methods (see e.g., Nocedal and
Wright (2006); Bonnans et al. (2006)). The main difficulty in practice is that we
do not know M★ in advance.

Thus, the algorithms exploiting this smooth substructure require two ingre-
dients:

i) a mechanism to identify the optimal manifold;

ii) an efficient method to minimize � restricted to this manifold.

For general convex functions, the algorithm of Mifflin and Sagastizábal (2005)
mixes a proximal bundle iteration (as a heuristic for identification) and a so-
called U-Newton iteration (which interprets as an SQP step; see Miller and
Malick (2005, Sec. 5)). The obtained superlinear rate hinges on the identification
of the optimal manifold.

For max-of-smooth functions (4.2), Womersley and Fletcher (1986) pioneered
the idea of seeking the optimal manifold and using it to make second-order
steps. Their identification heuristic uses the indices of the maximal function
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along a descent direction. Recently, Lewis and Wylie (2019); Han and Lewis
(2023) investigate a related setting and propose bundle-like algorithms incorpo-
rating high-order information that converge (super)linearly on max-of-smooth
functions when the optimal manifold is known.

For the maximum eigenvalue of a parametrizedmatrix (4.3), a specific version
of the U-Newton method discussed above is studied by Noll and Apkarian
(2005). Again, the identification mechanism is a heuristic determining the
multiplicity of the maximal eigenvalue and the optimization step is an SQP
iteration.
None of these methods guarantee identification of the optimal manifold:

they either assume that the optimal manifold is known in advance, or rely on
heuristics for identification. Here, we aim at further harnessing the smooth
substructure of � = 6 ◦ 2 to have guaranteed local identification of the optimal
manifold and then guaranteed quadratic convergence when using SQP iterations.

4.1.2 Contributions and outline

Wepropose a local second-order algorithm for solving the nonsmooth composite
problem (4.1) that identifies the optimal manifold of non-differentiability. The
two main ingredients of our algorithm are the following:

i) we use the explicit proximal operator of 6 with chosen stepsizes to provide
a guaranteed identification procedure;

ii) for a candidate manifold M, we make an SQP iteration minimizing a
smooth extension of � |M subject to the constraint of belonging to M.

Proximal-based operators identify the manifolds of minimizers under some
natural geometrical assumptions: we looked at the proximal and proximal
gradient operators in Proposition 2.3 and Theorem 3.1; see also Lee (2023);
Lewis andWright (2016). Here, we only have access to the proximity operator of
6. In order to exploit the structure it provides, we face the double challenge of,
first, identifying the smooth structure around a point which is not a minimizer
for 6, and, second, deducing the corresponding structure of � = 6 ◦ 2. Thus,
our main technical contribution is to establish that prox�6 maps a point H close
to 2(G★) to 2(M★). The step � should be carefully chosen, in particular larger
than the distance of H to 2(M★).

We combine this new identification result with standard SQP-steps to propose
a local algorithm for minimizing the composite function �. We pay a special
attention to prevent the quadratic convergence of SQP from jeopardizing
identification: we prove that, for a well-chosen stepsize policy, the method
identifies the optimal structure and locally converges quadratically. We illustrate
numerically these properties on problems of the form (4.2) and (4.3).

outline of this chapter. First, in Section 4.2, we illustrate the technical
tools to describe the manifold identification brought by proximity operators.
Furthermore, we lay out two technical properties needed for proximal iden-
tification in the composite setting. In Section 4.3, we show our main result
consisting in a description of a stepsize range forwhich the proximity operator of
6 identifies the optimal manifold locally around a minimizer. In Section 4.4 we
detail the proposed method combining SQP-steps and proximal identification
steps. Finally, we present in Section 4.5 numerical illustrations of our method
and of the identification result. Some results concerning our two examples have
been deferred to Appendix C.
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4.2 setting and assumptions

Let us start by representing schematically the type of functions we consider:

R= 2−−−−−−−−−−−−→
smooth mapping

Im(2) ⊂ R< 6−−−−−−−−−−−−−−→
nonsmooth function

R∪ {+∞}.

Throughout the chapter, we denote by G points in the input space R= and by H
points in the intermediate space R< .

In all the results presented in this chapter, we make the following assumption
that describes theminimal global properties on 6 and 2 to conduct our reasoning.

Assumption 4.1 . The mapping 2 : R= → R< is C2, the function 6 : R< →
R∪ {+∞} is proper and lower semi-continuous.

In the remainder of this section, we illustrate on our running examples the
proximity operator in Section 4.2.1 and the structure manifolds in Section 4.2.2.
Then, in Section 4.2.3 we introduce two assumptions required for identification
and show they hold on our examples.

4.2.1 Proximity operator: examples

Example 4.1 (Maximum). The subdifferential of 6(H) = max(H1, . . . , H<) is

%max(H) = Conv
{
48 : H8 = max(H)} ,

where 48 is the 8-th element of the Cartesian basis of R< . This function is convex,
thus globally prox-regular and prox-bounded everywhere (with parameters 0).
Its proximity operator is given (coordinate-wise) by

[
prox�max(H)

]
8
=


B if H8 > B

H8 else

where B is the unique real number such that
∑
{8:H8>B}(H8 − B) = �. �

Example 4.2 (Maximum eigenvalue). Denote the eigenvalue decomposition of
a point H ∈ S< as H = �Diag(�)�>, where � ∈ R< is a vector with decreasing
entries and� ∈ R<×< anorthogonalmatrix. The subdifferential of themaximum
eigenvalue at H writes (Lewis, 2002, Ex. 3.6)

%�max (H) = {�1:A/�>1:A ,/ ∈ SA ,/ � 0, trace/ = 1}

where A is the multiplicity of the maximum eigenvalue of H. This function is
convex, thus prox-regular and prox-bounded (with parameters 0). Its proximity
operator can be expressed using the one of the max function as

prox��max
(H) = �Diag(prox�max (�))�>. �

4.2.2 Structure manifolds: examples

To highlight the relation between a structure manifold and the corresponding
function 6, we use the notation M6 for the structure manifold related to 6.
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Example 4.3 . The structure manifolds of max are

Mmax
� = {H ∈ R< : H8 = max(H) for 8 ∈ �},

where � ⊂ {1, . . . ,<}. A smooth manifold-defining map for Mmax
� is ℎ : R< →

R|� |−1 such that ℎ(H); = H8; − H8 |� | , where |� | denotes the size of � and 8; the ;-th
element of � (with some ordering). As required, this map is surjective. At
any point H ∈ R< , the maximum is partly smooth relative to Mmax

� , where
� = {8 : H8 = max(H)}. �

Example 4.4 . The structure manifolds of �max in S< consist of all matrices
having a largest eigenvalue with fixed multiplicity A:

M�max
A = {H ∈ S< : �1(H) = · · · = �A(H)}.

A manifold-defining map of M�max
A is described in Shapiro and Fan (1995) and

�max is partly smooth relative to M�max
A at any point H ∈M�max

A . �

In view of the expression of the proximity operators in our examples, their
output naturally lie on the structure manifolds described above. More precisely,
prox�max(H) belongs to the structure manifold Mmax

� , where � collects the
indices of the : largest entries of H and : grows as � increases. Similarly,
prox��max

(H) belongs to the structure manifold M�max
A , where A increases as �

does. This observation is at the core of the ability of proximal operators to
identify neighboring structure manifolds.

4.2.3 Structure Identification

The proximity operator identifies structure locally around critical points: all As discussed
in Proposition 2.3.points near a minimizer are mapped to its structure manifold, and this structure

is revealed during the computation of the operator.2
In the composite setting we consider, the proximity operator of � cannot

be explicitly computed. However, prox�6 is available and can provide some
structure in the intermediate space R< that we would like to exploit. To do
so, we introduce two properties (satisfied by two running examples), that will
allow us to retrieve the structural information in the intermediate space near
points that are not minimizers of 6.

normal ascent property. The first property holds at point H̄ ∈ M6 if
the nonsmooth function 6 strictly increases on all directions on which it is
nonsmooth.

Property 4.1 (Normal ascent). A function 6 satisfies the normal ascent property
at point H̄ if 0 lies in the relative interior of the projection of %6(H̄) on the normal
space at H̄, that is:

0 ∈ ri proj#H̄M6 %6(H̄).

Notice that this normal ascent property is weaker than the usual property
0 ∈ ri %�(H̄) appearing in stability results near nonsmooth critical points, such

2 Computing exactly the structure of the output point of the operator, as can be done for the prox, is
opposed to merely observing the structure of the output after its computation. This last option
is not desirable in our opinion as it entails delicate numerical questions such as testing equality
between reals for the maximum, or computing the multiplicity of the maximal eigenvalue of a
matrix.
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Figure 4.2: Illustration of the level-curves of function 6 in Example 4.6, along with the
image of 2 and the tangent and normal spaces toM6 at the minimizer.

as Theorem 3.1 or Proposition 2.3. Indeed, we study here the stability of the
proximity operator of 6 near points that are not minimizers of 6. This property
has a natural interpretation when 6 is regular and Lipschitz: it requires that
the function (strictly) increases in all directions normal to M6 , leaving tangent
directions free. We discuss this interpretation precisely in the next remark.

Remark 4.1 (Positive directional derivative). In a “nice” setting where 6 is Lip-
schitz continuous and regular at H̄, Property 4.1 implies that the directional
derivative of 6 along any normal direction 3 ∈ #H̄M6 is positive. Indeed,
in that case one-sided directional derivatives are well-defined (Rockafellar
and Wets, 1998, p. 358, Th. 9.16), and the derivative along direction F equals
maxE∈%6(G)〈E,F〉. Along a normal direction 3 ∈ #HM6 , by partial smooth-
ness the directional derivative writes maxE=∈proj#HM6 (%6(G))〈E= , 3〉. Property 4.1
ensures the existence of  > 0 such that 3 ∈ proj#HM6 (%6(G)), making the
derivative positive. 4

Let us briefly discuss that, even if Property 4.1 may look strong, in practice it
is not. For a given nonsmooth function � which can be decomposed as � = 6 ◦ 2,
Property 4.1 may not hold for 6 at 2(G★) for a minimizer G★. Nevertheless,
the property often holds for a different decomposition � = 6̃ ◦ 2̃. We give two
examples where changing the decomposition of � ensures that Property 4.1
holds at minimizers.
Example 4.5 (Normal ascent for regularized-type problem). Consider the mini-
mization of �(G) = 5 (G) + A(G), where 5 (G) = 3

2 G and A(G) = |G | − 1
2 G, whosemin-

imizer is G★ = 0. This writes as a composite problem by setting 2(G) = ( 5 (G), G)
and 6(H) = H1 + A(H2). We note first that Property 4.1 does not hold for 6 at
2(G★), the structure manifold of 6 at 2(G★) being M6 = R× {0}. However the
function also writes �(G) = 5̃ (G) + Ã(G), with 5̃ (G) = G and Ã(G) = |G |. Letting
similarly 2̃(G) = ( 5̃ (G), G) and 6̃(H) = H1 + Ã(H2), we now get that Property 4.1
holds for 6̃ at 2̃(G★). �

Example 4.6 (Normal ascent property for composite problems). Consider min-
imizing � = 6 ◦ 2, with

6(H) =

H1 + H2 if H1 > 0

H1 + 0.25 H2 else
, 2(G) =

(
2− G

2G

)
.
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The minimizer is G★ = 0, since 6 is strictly increasing at all H ∈ Im(2) near
H★ = 2(G★); see Fig. 4.2. However the normal ascent property does not hold at
G★: 6 is decreasing at H★ along the normal direction (0;−1).
The composite function boils down to �(G) = 2 +max(G,−0.5G) = 6̃ ◦ 2̃(G),

where 6̃(H) = 2 +max(H) and 2̃(G) = (G,−0.5G). With this decomposition, 6̃
does satisfy the normal ascent property at G★. �

curve property. The second property is more technical and controls the
velocity of a curve on the manifold M6 .

Property 4.2 (Curve property). A function 6 partly smooth at H̄ relative to M6

satisfies the curve property at H̄ when there exists a neighborhood NH̄ of H̄
and ) > 0 such that any smooth application 4 : NH̄ × [0,)] →M6 such that
4(H, 0) = projM6 (H), 3

3C 4(H, C)|C=0 = −grad 6(projM6 (H)) satisfies

‖ proj#4(H,C)M6 (4(H, C) − H)‖ ≤ distM6 (H) + !̃ C2 for all H ∈ NH̄ , C ∈ [0,)],

where distM6 (H) , ‖H − projM6 (H)‖ is the distance between M6 and H and
grad 6(?) ∈ )?M6 denotes theRiemannian gradient of 6 obtained asgrad 6(?) =
proj)?M6 (%6(?)).

The idea behind this property is to ensure that the differential of the projection
of the (time dependent) normal space is (uniformly) negligible at time 0. Note
that for affine spaces, we trivially have ‖ proj#4(H,C)M6 (H − 4(H, C))‖ = distM6 (H)
for all C near 0: the normal spaces are equal at all points of the manifold.
These two properties are satisfied at any structured point for the two non-

smooth functions max and �max of our running examples as detailed in the
following lemma. The proofs for the two functions are rather direct but require
precise technical descriptions; we defer them to Appendix C.

Lemma 4.3 . Consider either:

• 6 = max, H̄ ∈ R< , and the structure manifold Mmax
� (of Example 4.3);

• 6 = �max , H̄ ∈ S< , and the structure manifoldM�max
A (of Example 4.4).

Then, Properties 4.1 and 4.2 hold at H̄.

Finally, the structure provided by prox�6 lies in the intermediate space
R< , while the optimization variable lives in R= . In order to transfer the
structure information to the input space, we will also require the smooth map
2 : R= → R< to be transversal toM6 ⊂ R< at some point Ḡ ∈ R= , which holds
when M6 is a manifold around 2(Ḡ) and the following (equivalent) conditions
hold:

Ker D 2(Ḡ)∗ ∩#2(Ḡ)M6 = {0} or )2(Ḡ)M6 + Im D 2(Ḡ) = R< . (4.4)

In that case, the set 2−1(M6) is a submanifold of R= (Lee, 2003, Th. 6.30), whose
normal space has the same dimension as the one of M6 . Furthermore, we have
(Lee, 2003, Ex. 6-10)

#G2−1(M6) = D 2(G)∗#2(G)M6 and )G2−1(M6) = D 2(G)−1)2(G)M6 . (4.5)
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4.3 collecting structure with the proximity operator

We show in this section how to exactly detect the optimal structure manifold of
the composite function � = 6 ◦ 2 around a point Ḡ using the proximity operator
of 6.
In our nonconvex and nonsmooth setting, we seek only structured points

which satisfy certain assumptions summarized in our definition of a qualified
point.We adapt the notion of

qualified point, already
present in Chapter 3, to

the setting of this chapter.
Definition 4.1 (Qualified points). A point Ḡ ∈ R= is qualified relative to a de-
composition (6, 2) of � and manifold M6 if

1. 6 is prox-bounded and prox-regular at 2(Ḡ);
2. 6 is partly smooth at 2(Ḡ) relative toM6 ;

3. 2 is transversal to M6 at Ḡ;

4. 6 satisfies Properties 4.1 and 4.2 at point 2(Ḡ).
Three of these assumptions constrain only the nonsmooth function 6 and are

easily verifiable in practice. Only the transversality condition limits the range
of acceptable smooth mappings; see e.g., Lewis (2002, Sec. 4). For such qualified
points, we get two useful properties: first, � is partly smooth at Ḡ relative to
the manifold M, locally defined as M , 2−1(M6) 3 Ḡ by the chain rule of
Lewis (2002, Th. 4.2), and second, the operator prox�6 is single-valued, locally
Lipschitz, and defined by its optimality condition near 2(Ḡ).

4.3.1 Main result: prox�6 ◦2 as a structure detector

We show in the following theorem that if G is near a qualified point of �
with structure M, then prox�6(2(G)) will output a point on M6 = 2(M), the
structure manifold of 6 corresponding toM (in the intermediate space). Our
theorem provides precise conditions on G and � that guarantee this structure
identification and forms the main theoretical contribution of the chapter. We
illustrate this behavior in Figures 4.3 and 4.4.
The position of this result with respect to the literature is discussed right

after in Remark 4.2, and the proof is given in the following Section 4.3.2, in
a succession of technical lemmas. We stress that we give guarantees on the
structure to which the point prox�6(2(G)) belongs, rather than on the point itself.

Theorem 4.4 (Prox for structure detection). Consider a function � = 6 ◦ 2 and a
point Ḡ. Assume that Ḡ is qualified relative to a manifold M6 ⊂ R< . Then, there
exists a neighborhood NḠ of Ḡ and a constant Γ such that, for all G ∈ NḠ ,

prox�6(2(G)) ∈M6 for all � ∈ [!(distM(G)),Γ],

where distM(G) denotes the distance from G to the manifold M and ! is defined as

!(C) = 2ri
2!̃

©«1−
√√

1− 4!̃2mapC

22
ri

ª®¬ =
2map

2ri
C +

!̃22
map

23
ri

C2 + >(C2),

with 2ri, 2map, and !̃ (of Property 4.2) positive constants.
In particular, there exists ! > 0, � > 0 such that

‖G − G★‖ ≤ � and !‖G − G★‖ ≤ � ≤ Γ =⇒ prox�6(2(G)) ∈M6 .
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Figure 4.3: Illustration of the main result in the intermediate space, on the function of
Fig. 4.4. The structure manifolds of max : R3 → R are displayed as the
three half-planes and the line in green. The red line illustrates the curve
� ↦→ prox�max(2(G)). When � < 0.25, the curve does not lie on any structure
manifold. For � ∈ [0.25, 0.75), the curve lies on the optimal manifold Mmax

2,3 .
For � ≥ 0.75, the curve lies on Mmax

1,2,3.
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{G : prox� max(2(G)) ∈ Mmax
{1,2,3}}

{G : prox� max(2(G)) ∈ Mmax
{1,2}}

{G : prox� max(2(G)) ∈ Mmax
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{G : prox� max(2(G)) ∈ Mmax
{2,3}}

Figure 4.4: Illustration of the main result on a maximum of three quadratic functions,
with Ḡ ∈ Mmax

{1,2} and a point G̃ near Ḡ. The three figures show the areas
where prox�6 ◦2 detects manifolds for three stepsizes: � = 0.4 (upper left),
� = 1 (upper right) and � = 2.3 (lower left). We see on the upper left fig. that
prox�6 ◦2 detects no structure from Ḡ because � is too small, and in contrast,
on the lower fig., that it wrongly detects too much structure (Mmax

{1,2,3})
because � is too large. On the upper right fig., the optimal manifold is
detected with � chosen in the right interval.
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Note that Property 4.2 is only used to compute explicitly an interval of �
guaranteed to provide the correct structure; the existence of that interval holds
independently.

Remark 4.2 (Relation with existing results). ThedifferencebetweenTheorem4.4
and existing results lies in two aspects. First, the identification properties of the
proximal operator (Daniilidis et al., 2006, Th. 28, recalled as Proposition 2.3), the
proximal-gradient operator Theorem 3.1, or even approximate prox-gradient
operators (Lee, 2023) give structure information directly in the input space (even
in abstract algorithmic frameworks (Hare and Lewis, 2004, Th. 4) or (Lewis and
Zhang, 2013, Th. 4.10)). In the composite case, the proximity operator reveals
structure in the intermediate space only, and extra work is required to bring it
back to the input space.

Second, most existing results investigate identification properties near mini-
mizers, and not just arbitrary points (two notable exceptions give results near
arbitrary structured points: (Lewis and Zhang, 2013) for an abstract algorithmic
framework, and Theorem 3.1 for the proximal gradient). Here, we evaluate
prox�6 near 2(Ḡ), a point without any specific properties (even if Ḡ is a local
minimizer). This is why we need Property 4.1 to guarantee identification in the
intermediate space, and bring the structure information to the input space. 4

Remark 4.3 (About prox-linear methods). Prox-linear methods are known to
identify structure on composite problems (Lewis andWright, 2016). Specifically,
Lewis and Wright (2016, Th. 4.11) establishes that, after some finite time, an
intermediate quantity belongs to the structure manifold of 2(G★). It is then
mentioned that this information could be used to take efficient second-order
steps to minimize � along the identified manifold. Whether this can be done
generically is unclear to us: checking that this quantity, obtained from the
subproblem solution, belongs to a structure manifold is delicate. Though it
is reasonable if the subproblem is solved with a suitable active-set method,
it becomes delicate if only an approximation of the subproblem solution is
available, using e.g., interior point methods. In that case, the quantity will be
somewhat close to the structure manifold, and one would have to resort to
�-based tests. 4

Remark 4.4 (Theorem 4.4 as a structure identification tool). In contrast with the
identification of prox-linear methods, Theorem 4.4 provides a simple result
for the detection of structure manifolds near any point G ∈ R= . We also
underline that the bounds on the range of � that provide correct identification
are surprisingly simple: the upper bound is constant and the lower bound
is essentially a linear function of the distance to the manifold. These simple
and explicit bounds allow us to build a simple algorithm in the forthcoming
Section 4.4. 4

4.3.2 Proof of Theorem 4.4

The main difficulty of the proof is to build a suitable identification result for the
nonsmooth function 6. Theorem 4.4 (identification for 6 ◦ 2) would then follow
by taking into account the action of the smooth map 2.

To derive an identification result on 6, we have to give conditions on H and � so
that ? = prox�6(H) lies on the considered manifold M6 . Since 6 is prox-regular
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and prox-bounded at point 2(Ḡ), Theorem 2.1 allows us to characterize this
relation by its first-order optimality condition:

H ∈ ? + �%6(?).

Whenever ? ∈M6 (which is what we want to show), this inclusion decom-
poses along )?M6 and #?M6 as:

proj)?M6 (H − ?) = � grad 6(?) (4.6)

proj#?M6 (H − ?) ∈ � proj#?M6 %6(?). (4.7)

Thus we will show that for suitable (H, �), there is a unique ? that satisfies
these two equations. We do so by considering the smooth tangent component
Eq. (4.6) first and then the nonsmooth normal component Eq. (4.7) as follows:

• We first show in Lemma 4.5 that for H near H̄ and � small, there exists a
unique point ? = 4(H, �) on M6 that satisfies Eq. (4.6), which depends
smoothly on � and H. This result is obtained by applying the implicit
function theorem.

• Then, we prove in Lemma 4.6 that 4(H, �) also satisfies the second inclusion
Eq. (4.7) if � belongs to the interval [!6(distM6 (H)),Γ6]. This result is a
consequence of the application of some variational analysis tools.

Putting these two results together, we obtain the existence and uniqueness of
a point ? = 4(H, �) ∈M6 verifying both Eq. (4.6) and Eq. (4.7) for all H near H̄
and � ∈ [!6(distM6 (H)),Γ6]. By the first-order optimality condition presented
above, this point is necessarily prox�6(H).

Finally, this identification result in the intermediate space on 6 is transferred
back to the input space using transversality.

Part 1: tangent optimality

We first show that, for H near H̄ and � small, there is a unique point ? on the
manifoldM6 that satisfies the tangent component of this optimality condition:

proj)?M6 (H − ?) = � grad 6(?), (4.8)

where grad 6(?) , proj)?M6 %(6(?)) is unique by the sharpness property of
partial smoothness, and matches the Riemannian gradient of 6 onM6 (see Sec-
tion 2.3). Such points ? are given by a smooth manifold-valued application
4(H, �), the existence of which is guaranteed by the following lemma.

Lemma 4.5 . Consider a function 6 : R< → R ∪ {+∞}, a point H̄ ∈ R< , and a
manifold M6 with 6 partly smooth at H̄ relative to M6 . Then, there exists a smooth
curve 4 : NH̄ ×N0 →M defined on a neighborhood of (H̄, 0) in R< ×R+ such that

• for all H ∈ NH̄ , 4(H, 0) = projM6 (H) and 3
3� 4(H, �)|�=0 = −grad 6(projM6 (H));

• for all H ∈ NH̄ , � ∈ N0, Eq. (4.8) is satisfied for ? = 4(H, �).

Proof. We define the mapping Φ : R< ×R×M6 → ∪G∈M6)GM6 as

Φ(H, �, ?) = � grad 6(?) − proj)?M6 (H − ?)
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and consider the equation Φ(H, �, ?) = 0 near the point (H̄, 0, H̄). Using the
smoothness of 6 onM6 given by partial smoothness, we have that this mapping
is continuously differentiable on a neighborhood of (H̄, 0, H̄). We see that its
differential with respect to ? is D? Φ(H̄, 0, H̄) = �. Indeed, for � ∈ )?M6 ,

D? Φ(H, �, ?)[�] = �Hess 6(?)[�] + � −D?′
(
?′ ↦→ proj)?′M6 (H − ?)

)
(?)[�].

At point (H̄, 0, H̄), the first term vanishes, and the third term writes

D?′
(
?′ ↦→ proj)?′M6 (0)

)
(H̄)[�]

and vanishes as well as the differential of the null function ?′ ↦→ proj)?′M6 (0).
Thus D? Φ(H̄, 0, H̄) = � is invertible. The implicit functions theorem thus grants
the existence of neighborhoods N 1

H̄ , N 2
0 , N 3

H̄ of H̄, 0, H̄ in R< , R, M6 and a
continuously differentiable function 2 : N 1

H̄ ×N 2
0 → N 3

H̄ such that, for any
(H, �) ∈ N 1

H̄ ×N 2
0 , Equation (4.8) is satisfied with ? = 4(H, �). For H ∈ N 1

H̄ , 4(H, 0)
satisfies H − 4(H, 0) ∈ #4(H,0)M6 , which is the first-order optimality condition
of 4(H, 0) = projM6 (H). Possibly reducing N 1

H̄ so that, for all H ∈ NH̄ projM6 (H)
is well-defined and unique, the previous optimality condition is equivalent to
4(H, 0) = projM6 (H). Besides, differentiating Φ(H, �, 4(H, �)) = 0 relative to � at
� = 0 yields

D� 4(H, 0) = −[D? Φ(H, 0, projM6 (H))]−1 D� Φ(H, 0, projM6 (H))
= −grad 6(projM6 (H)),

which concludes the proof. �

Part 2: normal optimality

The previous lemma shows that for every (H, �) one can find a point 4(H, �) on the
manifold M6 that solves the tangent part of the optimality condition (4.8). The
next lemma determines the values of H and � for which the whole optimality
condition

H ∈ 4(H, �) + � ri %6(4(H, �)) (4.9)

holds, as illustrated in Figure 4.5a.

N γ
ȳ

e(y, 0) = projM(y)

e(y,
¯
γg(y))

y Mg

(a) the curve � ↦→ 4(H, �) on M.

N γ
ȳ

y = prox0g(y)

ȳ

prox
¯
γg(y)g(y)

Mg

(b) the curve � ↦→ prox�6(H) onM
for � ≥ !(distM6 (H)).

Figure 4.5: Illustration of Lemma 4.6 and its consequences.



4.3 collecting structure with the proximity operator 57

Lemma 4.6 . Consider a function 6, a point H̄ ∈ R< and a manifold M6 such that
6 is partly smooth at H̄ relative to M6 and that 6 satisfies Property 4.1 at H̄. Let 4
denote a smooth M-valued application defined on a neighborhood of (H̄, 0) provided
by Lemma 4.5. Then, there exists � > 0 such that:

1. for all � ∈ [0,�], 4(H̄, �) verifies (4.9) with H = H̄,

2. for all � ∈ [0,�], there exists a neighborhood N �
H̄ of H̄ such that, for all H ∈ N �

H̄ ,
4(H, �) verifies (4.9),

Further assume that 6 satisfies Property 4.2 at H̄ with constant !̃, then

3. there exist Γ6 > 0 and a neighborhood NH̄ of H̄ such that for all H ∈ NH̄

4(H, �) verifies (4.9) for all � ∈ [!6(distM6 (H)),Γ6],

where 2ri ≥ 0 and !6(C) = 2ri
2!̃

(
1−

√
1− 4!̃C

22
ri

)
= 1

2ri
C + !̃

23
ri
C2 + >(C2).

The proof consists in finding the points H, � such that 0 ∈ riΨ(H, �), where
the mappingΨ : R< ×R→ ∪G∈M6#GM6 is defined as

Ψ(H, �) = proj#4(H,�)M6

(
1
�

(
4(H, �) − H) + %6 (

4(H, �)) ) .

Items i) and ii) are shown by extending the property 0 ∈ Ψ(H̄, 0) to a neighbor-
hood of (H̄, 0), using the inner-semicontinuity properties ofΨ. We then derive
explicit bounds on the interval of steps such that 0 ∈ riΨ(H, �): for a fixed
H ∈ NH̄ , when � decreases past some value, say

¯
�(H), the condition 0 ∈ riΨ(H, �)

no longer holds. Precisely at
¯
�(H), 0 lies on the (relative) boundary ofΨ(H,

¯
�(H)):

denoting rbd ( , ( \ ri ( the relative boundary of set (,

0 ∈ rbd proj#4(H,
¯
�(H))M6

(
1

¯
�(H)

(
4(H,
¯
�(H)) − H

)
+ %6

(
4(H,
¯
�(H))

))
.

Denoting %# 6(?) , proj#?M6 (%6(?)) the projection of the subdifferential on the
normal space of its structure manifold and taking norms yields:

‖ proj#4(H,
¯
�(H))M6 (H − 4(H,

¯
�(H)))‖ ≥

¯
�(H) inf

E=∈rbd %# 6(4(H,
¯
�(H)))
‖E= ‖

≥
¯
�(H) inf

?∈NH̄
inf

E=∈rbd %# 6(?)
‖E= ‖︸                     ︷︷                     ︸

,2ri

.

By partial smoothness, %6 is continuous on M6 at H̄, and thus in particular
inner-semicontinuous. The inclusion 0 ∈ ri proj#H̄M6 %6(H̄) therefore holds on
a neighborhood of H̄ on M6 (Daniilidis et al., 2006, Lemma 20), thus making
the constant 2ri positive. We note that this kind of quantity also appears as the
modulus of identifiability, proposed recently by Lewis and Tian (2022, Def. 2.3),
where it has the same property: its positivity enables the identification of the
associated structure manifold.
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Using Property 4.2, the left-hand side is upper bounded by a simpler expres-
sion:

!̃
¯
�(H)2 + distM6 (H) ≥ 2ri ¯

�(H), that is
¯
�(H) ≤ 2ri

2!̃

(
1−

√
1− 4!̃distM6 (H)

22
ri

)
,

which provides the expression for !6 used in the lemma.

Proof. Item i)We first considerΨH̄(·) = Ψ(H̄, ·). Since H̄ ∈M6 , Lemma 4.5 tells
us that 4(H̄, �) = H̄ − � grad 6(H̄) + >(�), and thus

ΨH̄(0) = proj#H̄M6

(−grad 6(H̄) + %6(H̄)) = proj#H̄M6 (%6(H̄))

where we used that grad 6(H̄) ∈ )H̄M6 is orthogonal to #H̄M6 .
Property 4.1 provides that 0 ∈ riΨH̄(0). We now turn to showing that there

exists �′ such that, for all � ∈ [0,�′], 0 ∈ riΨH̄(�).
By contradiction, assume there exist a sequence �: → 0 such that 0 ∉ riΨH̄(�:).

This means that there exists a sequence of unit norm vectors (B:) such that for
all :,

〈B: , I〉 ≤ 0 for all I ∈ ΨH̄(�:). (4.10)

As a bounded sequence, B: admits at least one limit point, say B̄. Take Ī ∈ ΨH̄(0).
The continuity of %6 (by partial smoothness, item iv), of � ↦→ (4(H̄, �) −
H̄)/� (by smoothness of 4), and of � ↦→ proj#4(H̄,�)M6 (by smoothness of M6)
yield the continuity of ΨH̄ as a set-valued map. This mapping is thus inner-
semicontinuous (Rockafellar andWets, 1998, Def. 5.4), so there exists a sequence
I: ∈ ΨH̄(�:) such that I: converges to Ī. Taking the correct subsequence and
renaming iterates, we can write B: → B̄ and I: → Ī. Equation (4.10) provides
〈B: , I:〉 ≤ 0 for all :, which gives at the limit 〈B̄, Ī〉 ≤ 0. This actually holds for
all Ī ∈ ΨH̄(0): B̄ separates 0 andΨ(0), which contradicts 0 ∈ riΨH̄(0).

Finally, let us take the constant � such that [0,�] is included in [0,�′] and the
neighborhood of 0 provided by Lemma 4.5. Then, for any � ∈ [0,�], adding
the two orthogonal inclusions 0 ∈ riΨH̄(�) and 0 = Φ(H, �, 2(H, �)), we obtain
that 4(H̄, �) verifies (4.9) with H = H̄.

Item ii) Let � ∈ [0,�]. We turn to show the existence of a neighborhoodN �
H̄ of H̄

such that, for all H ∈ N �
H̄ , 4(H, �) verifies (4.9). By contradiction, assume that

there exists a sequence (H:) that converges to H̄ such that (4.9) fails for (H: , �).
Since the tangent component of (4.9) does hold, necessarily 0 ∉ riΨ(H: , �).
However, the mapping H ↦→ Ψ(H, �) is inner-semicontinuous (from the same
arguments as in the proof of item i) and there holds 0 ∈ riΨ(H̄, �). A reasoning
similar to that of item i) reveals the contradiction.

Item iii)DefineNH̄ a neighborhood of H̄ and Γ6 a positive constant such that Prop-
erty 4.2 applies over NH̄ × [0,Γ6], NH̄ is contained in ∪�∈[0,�]N �

H̄ ∩N �
H̄ and

0 ∈ riΨ(H, �) holds for all (H, �) ∈ NH̄ × [0,Γ6]. The second condition can be
met on a nontrivial neighborhood of (H̄, 0): it holds at that point, and Ψ is
inner-semicontinuous (4(H, �) lies on M6 and %6 is inner-semicontinuous by
partial smoothness of 6).

Let H ∈ NH̄ and � ∈ [!6(distM6 (H)),Γ6]. We show that 0 ∈ riΨ(H, �), that is

proj#4(H,�)M6 (H − 4(H, �)) ∈ � ri %# 6
(
4(H, �)) .
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Combining this with the orthogonal inclusion 0 = Φ(H, �, 4(H, �)) yields the
claim.
The inequality !6(distM6 (H)) ≤ � implies !̃�2 + distM(H) ≤ �2ri. We have

successively by definition of NH̄ and the above bound that

‖ proj#4(H,�)M6 (H − 4(H, �))‖ ≤ distM(H) + !̃�2 ≤ �2ri

≤ � inf{‖=‖, = ∈ rbd %# 6(4(H, �))}.

This means that proj#4(H,�)M6 (H − 4(H, �)) belongs to the ball of center 0 and
radius � inf{‖=‖, = ∈ rbd %# (6(4(H, �)))} in #4(H,�)M6 . Besides, this ball is
included in �%# (6(4(H, �)) since 0 ∈ %# 6(4(H, �) by definition of NH̄ . Therefore,
0 ∈ riΨ(H, �) for all H ∈ NH̄ and � ∈ [!6(distM6 (H)),Γ6]. �

Part 3: From the intermediate space to the input space

To conclude the proof of Theorem 4.4, we will first identify the curve 4(H, �) to
prox�6(H) and thus prove that it belongs to the sought manifold, as illustrated
in Fig. 4.5b. Then, this intermediate identification result is brought back to the
input space using transversality.

Proof (of Theorem 4.4). The standing assumptions allow to call Lemma 4.6 at
point 2(Ḡ) with manifold M6 . This yields the neighborhood N2(Ḡ), constants
Γ6 and �, a function !6 , and a smooth mapping 4 : N2(Ḡ) × [0,�] →M6 such
that, for H ∈ N2(Ḡ) and � ∈ [!6(distM6 (H)),Γ6], 4(H, �) verifies the optimality
condition (4.9) of 4(H, �) = prox�6(H). Besides, since 6 is prox-regular and
prox-bounded at point 2(Ḡ), these properties also hold on a neighborhood of
that point. Under these conditions, Theorem 2.1 allows to recover the equality
4(H, �) = prox�6(H). TakeNḠ = 2−1(N2(Ḡ)), a neighborhood of Ḡ as the preimage
of a neighborhood of 2(Ḡ) by the continuous 2. For all G ∈ NḠ ,

prox�6(2(G)) ∈M6 for all � ∈ [!6(distM6 (2(G))),Γ6].

We turn to show that, for some constant 2map > 0, there holds distM6 (2(G)) ≤
2map distM(G) for all G ∈ NḠ . Let G ∈ NḠ and GM = projM(G), so thatdistM(G) =
‖GM − G‖. Using successively that 2(GM) ∈ M6 and smoothness of 2, there
holds for G near Ḡ

distM6 (2(G)) ≤ ‖2(G) − 2(GM)‖
≤ ‖ Jac2(GM) · (G − GM)‖ +O(‖G − GM‖2)

≤
(

sup
E=∈#GMM,‖E= ‖=1

‖ Jac2(GM) · E= ‖
)
‖G − GM‖ +O(‖G − GM‖2)

≤
(

sup
G′∈NḠ

sup
E=∈#G′M,‖E= ‖=1

‖ Jac2(G′) · E= ‖
)

︸                                          ︷︷                                          ︸
�′′

‖G − GM‖ +O(‖G − GM‖2).

We show by contradiction that the constant �′′ is positive. If �′′ = 0, there exists
E= ∈ #ḠM of unit norm such that D 2(Ḡ)E= = 0. By Eq. (4.5), we have E= =
D 2(Ḡ)∗Ê= for some Ê= ∈ #2(Ḡ)M6 , so that D 2(Ḡ)D 2(Ḡ)∗3 = 0. Pre-multiplying
by Ê∗= yields ‖D 2(Ḡ)∗Ê= ‖2 = 0: there holds Ê= ∈ Ker(D 2(Ḡ)∗) ∩ #2(Ḡ)M6 . The
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transversality condition Eq. (4.4) implies Ê= = 0, and in turn E= = 0, which
contradicts the fact that this vector has unit length.

Therefore, for all G ∈ NḠ and a constant 2map > �′′, there holdsdistM6 (2(G)) ≤
2map distM(G). Monotonyof!6 implies that!6(distM6 (2(G))) ≤ !6(2map distM(G)),
which yields the claimed bounds with

!(C) = 2ri
2!̃

©«1−
√√

1− 4!̃2mapC

22
ri

ª®¬ and Γ = Γ6 .

Finally, we show the existence of positive constants �, ! such that

‖G − Ḡ‖ ≤ � and !‖G − Ḡ‖ ≤ � ≤ Γ =⇒ prox�6(2(G)) ∈M6 .

Since Ḡ ∈ M, distM(·) ≤ ‖ · −Ḡ‖. By monotony and smoothness of !, there
exists ! > 0 such that !(distM★(·)) ≤ !‖ · −G★‖ over B(G★, �). Reducing � if
necessary so that !� < Γ yields the result. �

4.4 a local newton algorithm for nonsmooth composite minimiza-
tion

In this section, we use the results of Section 4.3 to propose an optimization
method that locally identifies the structure of a minimizer and converges
quadratically to this point.
Recall the basic idea: if the optimal manifold M★ corresponding to a min-

imizer G★ is known, the nonsmooth optimization problem turns into a smooth
constrained optimization problem. In turn, this problem can be solved using
algorithms from smooth constrained optimization such as Sequential Quadratic
Programming.

Using this idea and the structure identification mechanism developed in the
previous section, we propose a method which: i) uses the proximity operator of
6 to gather structure in the intermediate space, ii) brings back this structure to
the input space, and iii) optimizes smoothly along the identified manifold. The
resulting algorithm is precisely described in Section 4.4.1 and then analyzed in
Section 4.4.2.

4.4.1 Description of the algorithm

We proceed to describe the three steps exposed above. The full algorithm is
depicted in Algorithm 4.1.
Gathering structure. We showed in Theorem 4.4 that near a qualified point

in R= , the operator prox�6(2(·)) provides the optimal structure M6★ (in the
intermediate space R<) for an explicit range of steps. We thus define from
the current iterate G: ∈ R= and stepsize �: the working manifold M6

: (in the
intermediate space) as the structure of prox�: 6(2(G:)). One technical point is
to guarantee that, after some time, �: ∈ [!‖G: − G★‖,Γ] so that the optimal
manifold is identified; this is done by decreasing �: linearly at each iteration.
From the intermediate to the input space. We now have a structure manifold

M6
: in the intermediate space, and can define 6̃: , a smooth extension of 6

on M6
: to R< . Using a local equation ℎ6: of M6

: , we define the smooth map
ℎ: = ℎ6: ◦ 2 : R= → R?: , which locally defines M: = 2−1(M6

: ). Similarly, a
smooth extension of � on M: is defined by �̃: = 6̃: ◦ 2.
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Optimizing in the input space. We can now take steps to minimize the smooth
extension �̃: on the smooth setM: characterized by ℎ:(G) = 0:

min
G∈R=

�̃:(G) s.t. ℎ:(G) = 0.

We turn to an elementary version of the traditional second-order Sequential
Quadratic Programming methodology; see e.g., Bonnans et al. (2006, Chap. 14).
At iteration :, the SQP direction 3SQP

: (G:) at point G: is defined as the solution
of the following quadratic problem:

3SQP
: (G:) = arg min

3∈R=
〈∇�̃:(G:), 3〉 + 1

2 〈∇
2
GG!:(G: ,�:(G:))3, 3〉

s.t. ℎ:(G:) +D ℎ:(G:)3 = 0
(4.11)

where∇2
GG!: denotes theHessian of the Lagrangian !:(G,�) = �̃:(G)+ 〈�, ℎ:(G)〉,

and the multiplier �:(G:) defined from the following least-squares problem:

�:(G:) = arg min
�∈R?:

∇�̃:(G:) + ?:∑
8=1

�8∇ℎ:,8(G:)
2

. (4.12)

Finally, we check that G: + 3SQP
: (G:) provides a functional decrease in order to

avoid degrading the iterate when the current structure is suboptimal. If the test
is not verified, G: is not updated and �: is decreased until a satisfying structure
is detected.

Algorithm 4.1: General structure exploiting algorithm
Require: Pick G0 near a minimizer, �0 large enough.
1: repeat
2: �: =

�:−1
2

3: Compute prox�: 6(2(G:)) and obtainM6
: locally defined by ℎ6:

4: ℎ: = ℎ
6
: ◦ 2 (local equation of M:), �̃: = 6̃: ◦ 2 (smooth extension)

5: Compute 3SQP
: (G:) by solving (4.11)

6: if �(G: + 3SQP
: (G:)) ≤ �(G:) then

7: G:+1 = G: + 3SQP
: (G:)

8: else
9: G:+1 = G:
10: end if
11: until stopping criterion

Remark 4.5 (Complexity of one iteration). The main computational cost of one
iteration of Algorithm 4.1 consists in the resolution of the quadratic pro-
gram (4.11). Its plain resolution incurs a O(=3) complexity. However, effi-
cient approaches reduce this problem to a quadratic program on the subspace
Ker D ℎ:(G:), which has dimension dim(M:). We refer to (Bonnans et al., 2006,
Chap. 14) for an in-depth exposition of these techniques. The cost of an iteration
is thusO(dim(M:)3). In situations where minimizers are highly structured (i.e.,
dim(M★) � =) this complexity may be comparable with the O(=2) iteration
complexity of classical nonsmooth optimization algorithms, such as nonsmooth
BFGS (Lewis and Overton, 2013). 4
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4.4.2 Convergence of Algorithm 4.1

We proceed to give the result guaranteeing identification and local quadratic
convergence of Algorithm 4.1.
In order to benefit from the quadratic rate of SQP, the elements of (4.11)

should have the minimal regularity typically required by smooth constrained
Newton methods (see e.g., Bonnans et al. (2006, Th. 14.5)); we thus make the
following assumption.

Assumption 4.2 (Regularity of functions). The smooth extension and the man-
ifold defining map are C2 with Lipschitz second derivatives, and the Jacobian
of the constraints is full rank near the solution.

In order to focus on the algorithmic originality of the method, we slightly
simplify the situation and make the two following algorithmic assumptions.

Assumption 4.3 (Nonconvex stability). The iterates of Algorithm 4.1 remain in
the connex component of the sublevel set {G : �(G) ≤ �(G0)} that contains G★.
This assumption ensures that an update that does not increase functional value
remains in the neighborhood of the minimizer G★. It is naturally satisfied when
� is convex, or when G★ is a global minimizer of � and G0 is close enough to G★.

Assumption 4.4 (No Maratos effect). The iterates of Algorithm 4.1 are such that
a step 3 that makes G + 3 quadratically closer to G does not increase function
value: �(G + 3) ≤ �(G).

In smooth constrained optimization, getting closer (even at quadratic rate) to a
minimizer does not imply decrease of objective value and constraint violation
(measured by a merit function). This so-called Maratos effect (see e.g., Bonnans
et al. (2006)) is one of the main difficulties in globalizing SQP schemes, which is
out of the scope of the current chapter. We thus assume this effect does not affect
our algorithm in theory, and use in practice one of the successful refinements,
as discussed in Section 4.5.2.
We are now ready for the main convergence result of Algorithm 4.1, which

establish that, after some finite time, the iterates identify exactly the optimal
manifold and converge to the minimizer at a quadratic rate.

Theorem 4.7 (Exact identification and quadratic convergence). Consider a func-
tion � = 6 ◦ 2 and G★ a strong minimizer,3 qualified relative to the optimal manifold
M★. Assume that the smooth extension �̃ of � relative toM★ and the corresponding
manifold defining map ℎ satisfy Assumption 4.2.
If G0 and �(G0) are close enough to G★ and �(G★), �0 is large enough and the

simplifying algorithmic Assumptions 4.3 and 4.4 hold, then there exists � > 0 such
that the iterates (G: ,M:) generated by Algorithm 4.1 verify:

M: =M★ and ‖G:+1 − G★‖ ≤ �‖G: − G★‖2 for all : large enough.

The proof of this result consists in two steps. We first show the existence of a
neighborhood of initialization on which the proximity operator will eventually
identify the optimal manifold, once the stepsize has been sufficiently decreased.
From this point onward, we prove that the SQP step provides a quadratic
improvement and that the stepsize policy makes the manifold identification
stable.

3 There exists � > 0, � > 0 such that �(G) ≥ �(G★) + �‖G − G★‖2 for all G ∈ B(G★, �).
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Proof. Local identification of the optimal structure. By Theorem 4.4, there exists a
ball centered around G★ of radius �1 > 0 and two positive constants !, Γ such
that, for all G ∈ B(G★, �1) and � ∈ [!‖G − G★‖,Γ], prox�6(2(G)) belongs to the
optimal manifoldM6★ = 2(M★).
Local quadratic convergence of SQP on the optimal structure. Let us assume that the
optimal manifold has been identified. The least square multiplier � is defined
by the optimality condition of (4.12):

�(G) = −[Jacℎ(G) Jacℎ(G)>]−1 Jacℎ(G)∇�̃(G).

and since ℎ is smooth and its Jacobian is full-rank near G★, � is a Lipschitz
continuous function near G★.

Since G★ is a strong minimizer of �, the Hessian of the Lagrangian restricted
to the tangent space is positive definite. Indeed, since G★ is a strong minimizer
of � onM★, the Riemannian Hessian relative to the optimal manifold is positive
definite. With the choice of multiplier (4.12), the Riemannian Hessian is exactly
the Hessian of the Lagrangian restricted to the tangent space toM★ at G★ (see
Boumal (2022, Sec. 7.7)), which is thus itself positive definite.

Thus, using the local quadratic convergence of SQP (Bonnans et al., 2006, Th.
14.5), we get that there exists a ball centered around G★ of radius �2 > 0 such
that the SQP step computed at a point G in that neighborhood relative to the
optimal manifold provides a quadratic improvement towards G★. Reducing �2
if necessary, we can in addition have that the convergence is at least linear with
rate 1/2.
Initialization, identification, and quadratic convergence. Let � = min(�1, �2,Γ/(2!)).
We will now show that initializing with G0 ∈ {G : �(G) ≤ �(G★) + ��2} and
�0 ≥ Γ provides the claimed behavior.
First, the functional decrease test of the algorithm and Assumption 4.4

guarantee that all iterates satisfy �(G:) ≤ �(G0). Using that G★ is a strong
minimizer, we get that �‖G: − G★‖2 ≤ �(G:) − �(G★) ≤ �(G0) − �(G★) ≤ ��2, and
thus that the iterates remain in B(G★, �).
Second, as !‖G − G★‖ ≤ Γ/2 for all G ∈ B(G★, �) by construction, the fact that

�0 > Γ and (�:) decreases with geometric rate 1/2 implies that there exists  
such that !‖G − G★‖ ≤ � ≤ Γ.
Now, assume that at iteration : ≥  , !‖G: − G★‖ ≤ �: ≤ Γ. Since G: ∈

B(G★, �1), we have from above that M★ is identified. Thus, the SQP step
is performed relative to the optimal manifold and G: + 3SQP

: (G:) brings a
linear improvement of factor 1/2 at least. Assumption 4.3 ensures that
�(G: + 3SQP

: (G:)) ≤ �(G:) so that G:+1 = G: + 3SQP
: (G:) and thus

!‖G:+1 − G★‖ ≤ !
2 ‖G: − G

★‖ ≤ �:
2 = �:+1.

This shows that !‖G:+1 − G★‖ ≤ �:+1 ≤ Γ, which completes the induction. We
get that �: ∈ [!‖G: − G★‖,Γ] for all : ≥  . Finally, we have that for all : ≥  ,
M: =M★ and G:+1 is quadratically closer to G★ than G: . �

Remark 4.6 (Generalizations). Theorem4.7 actually holds for anydecrease factor
of �: in (0, 1) with the presented SQP update, or actually any superlinearly
convergent update (e.g., a quasi-Newton type update). The above result is also
readily adapted to an update that converges merely linearly, as long as its rate
of convergence is faster than that of �: . This opens the possibility of using SQP
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methods that rely only on first-order information (see e.g., Bolte and Pauwels
(2016)). 4

4.5 numerical illustrations

In this section, we provide numerical illustrations for our results. Our goal here
is twofold:

1. to illustrate the identification of the optimal manifold by the proximity
operator near a minimizer as provided by Theorem 4.4;

2. to demonstrate the applicability ofAlgorithm4.1 andobserve the quadratic
rates predicted by Theorem 4.7 on our running examples.

4.5.1 Test problems

We first consider the minimization of a maximum of smooth functions (4.2):

min
G∈R=

max
8=1,...,<

(28(G)).

We take the celebrated MaxQuad instance, where = = 10, < = 5 and each 28 is
quadratic convex, making the whole function � convex (Bonnans et al., 2006, p.
153). In this instance, the optimal manifold is Mmax

� with � = {2, 3, 4, 5}.
Second, we consider the minimization of the maximum eigenvalue of an

affine mapping (4.3):

min
G∈R=

�max

(
�0 +

=∑
8=1

G8�8

)
.

We take = = 25 and we generate randomly = + 1 symmetric matrices of size 50.
In this instance, the multiplicity of the maximum eigenvalue at the minimizer is
A = 3.
We note that the “maximum” structure of a point, that is the partial smooth-

ness manifold with smallest dimension, isM�max
A with A = 6. In particular, the

multiplicity A cannot reach the matrix size < = 50. Indeed, the codimension of
M�max

A , that is the dimension of its normal spaces, should be lower than that
of R= : A(A + 1)/2− 1 ≤ 25, that is A ≤ 6 (see the discussion in Shapiro and Fan
(1995, pp. 555-556, Eq. 2.5)).

4.5.2 Numerical setup

All the algorithms are implemented in Julia (Bezanson et al., 2017); experiments
may be reproduced using the code available online4.

algorithm. For the initialization of Algorithm 4.1, we set �0 as the smallest
� such that prox�6(2(G0)) has the most structure (e.g., if 6 = max, we increase
� until the output of the proximity operator sets all coordinates to the same
value). We solve the quadratic subproblem (4.11) providing the SQP step
by the reduced system approach presented in Bonnans et al. (2006, p. 133).
Tangent vectors are expressed in an orthonormal basis of the nullspace of the

4 See https://github.com/GillesBareilles/LocalCompositeNewton.jl for Algorithm 4.1 and
https://github.com/GillesBareilles/NonSmoothSolvers.jl for the baselines.

https://github.com/GillesBareilles/LocalCompositeNewton.jl
https://github.com/GillesBareilles/NonSmoothSolvers.jl
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Jacobian of the constraints at the current iterate. At iterate G: , a second-order
correction step 3corr[G:] is added to the SQP step 3SQP[G:]. It is obtained
as 3corr[G:] = arg min3∈R= {‖ℎ(G:) + Jacℎ(G:) 3‖, s.t. 3 ∈ Im Jacℎ(G:)>}. The
full-step is thus G: + 3SQP[G:] + 3corr[G:].

baselines. For the two nonsmooth problems, we compare with the nons-
mooth BFGS algorithm of (Lewis and Overton, 2013) (nsBFGS) and the gradient
sampling algorithm (Burke et al., 2020). The nsBFGS method is not covered by
any theoretical guarantees; it is known to perform relatively well in practice,
often displaying a linear rate of convergence. In contrast, the Gradient Sampling
algorithm generates with probability one a sequence of iterates for which all
cluster points are Clarke stationary for � (Burke et al., 2020, Th. 3.1).5 It is known
however to have an iteration cost significantly higher than that of nonsmooth
BFGS.
On a technical note, the iterations of nsBFGS stop as soon as the algorithm

“breaksdown in theory”, and thequadratic subproblemof thegradient sampling
iteration is solved by the method presented in Wolfe (1976).
Other methods could be considered relevant baselines.We mentioned the

existence of methods for general composite functions, such as the composite
bundle (Sagastizábal, 2013). In Section 1.3.2, we also reviewed schemes with
potential superlinear rate specific to the maximum of smooth functions (Wom-
ersley and Fletcher, 1986), and the maximum eigenvalue minimization (Noll
and Apkarian, 2005; Helmberg et al., 2014). We do not include these methods
in our comparison since they are difficult to implement efficiently, contrary
to the two methods proposed. We will review the VU-algorithm (Mifflin and
Sagastizábal, 2005) in Chapter 5.

oracles. Traditional methods for nonsmooth optimization, and notably
bundle methods, require a first-order oracle:

G ↦→ (�(G), E) where E ∈ %�(G)

while Gradient Sampling and nsBFGS require additionally to know if � is
differentiable at point G. Algorithm 4.1 requires rather different information
oracles:

G ↦→ �(G)
G ↦→M6 3 prox�6(2(G))

M, G ↦→ ℎ(G), Jacℎ(G),∇�̃(G),∇2!(G,�).

The second part of the oracle provides the candidate structure at point G. The
last part of the oracle, which requires a point and a candidate structure, provides
the second-order information of � required by the SQP step.

4.5.3 Experiments

Figure 4.6 reports the suboptimality of the considered methods in terms of
CPU time and each marker corresponds to one iteration. All algorithms are
initialized at a point G0 obtained by running nsBFGS for several iterations.

5 This holdswhen � is locally Lipschitz overR= and lower bounded, the algorithm iterates indefinitely
and the sampling radius decreases to 0.
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Figure 4.6: Suboptimality vs time (s)

Our algorithm compares favorably to nsBFGS and Gradient Sampling: it
converges in a handful of iterations and less time. Note that this happens
even though the iteration cost of our algorithm is higher than that of the other
methods. Indeed, the oracles of our method are more complex and a quadratic
problem needs to be solved, while the iteration cost of nsBFGS and Gradient
Sampling is dominated by the computation of function values and subgradients
at each trials of the line search.
In terms of identification, our method finds the correct manifold at the first

iteration forMaxQuad, and at the third iteration for Eigmax. From that point, the
iterates of Algorithm 4.1 reach machine precision in 3 iterations. This illustrates
the quadratic convergence, and supports the idea that, for nondifferentiable
problems as well, it is worth computing higher-order information to get fast
local methods.
Figures 4.7 and 4.8 show the behavior of the same algorithms on the same

problems with a higher numerical precision than Figure 4.6.6 This allows
to observe the identification of the algorithm and the quality of the bounds
of Theorem 4.4. For each iterate G: of Algorithm 4.1, we report the current
step �: along with the minimal and maximal steps

¯
�(G:), �̄(G:) such that

prox�6(2(G:)) belongs to the optimal manifold. A first remark is that, as
predicted by Theorem 4.7, the pair G: , �: satisfies the identification condition
�: ∈ [!‖G: − G★,Γ] after a few iterations. We also observe that �̄(G:) is near
constant and that

¯
�(G:) converges to zero linearly with ‖G: − G★‖, as predicted

by our result. Finally, we note that even though the initial point is away from the
minimizer (‖G0 − G★‖ ≈ 10−2) and arbitrary, thus likely a differentiable point,
the initialization of �0 ensures a quick identification.

6 Indeed, the flexibility of the Julia language allows to use the same implementation with the high
precision BigFloat type, which precision is 1.73 · 10−72, or the usual Float64 type, which precision
is 2.22 · 10−16.
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5
TOWARDS A GLOBAL NEWTON METHOD FOR NONSMOOTH
COMPOSITE MINIMIZATION

5.1 introduction

In this chapter, we consider theminimization of composite nonsmooth functions

min
G∈R=

�(G) = 6 ◦ 2(G), (5.1)

where 2 is a smooth mappnig, and 6 is a nonsmooth real-valued function.
Recall that in Chapter 4, we provided an algorithm, Algorithm 4.1 that, when
started near a minimizer, identifies the smooth substructure and converges
locally fast to it. We consider here the next step: we aim at providing a variant
of the algorithm with same guarantees when started at arbitrary points.

A direct application of Algorithm 4.1 from arbitrary points is not satisfactory,
since the algorithm can get trapped in nonminimizing points. Indeed, the
structure detection tool introduced in Chapter 4 is not discriminating enough,
as it detects the smooth substructure of any nearby nonsmooth point, including
points which admit normal descent directions. We will come back on this
behavior in details. This is a sufficient property near minimizers, but away from
minimizers, the structure detection tool does not provide enough information
anymore.

A possible fix would be a “two-phase” algorithm: first, finding a point near a
minimizer with, e.g., nonsmooth BFGS or a bundle method, and then running
the local Algorithm 4.1. The issue with such a scheme lies in choosing when
to switch between algorithms. Furthermore, if the phase 1 method is very
slow on a particular instance, a neighborhood of the minimizer will not be
reached in reasonable time, making the fast local convergence unreachable
in practice. This kind of difficulties is exactly what we wish to avoid in this
thesis, by proposing methods that identify and exploit structure adaptively,
with guaranteed identification.

5.1.1 Towards globalization: tools and issues

We review here three elements for globalization, as well as the two main
difficulties we face when applying them.

69
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newton-like steps. Building onChapter 4, we can useNewton-type Sequen-
tial Quadratic Programming (SQP) steps to obtain the fast local convergence.
At point G with candidate manifold M, the SQP direction 3SQP

M (G) is defined as

3SQP
M (G) = arg min

3∈R=
〈∇�̃:(G:), 3〉 + 1

2 〈":3, 3〉

s.t. ℎ:(G:) +D ℎ:(G:)3 = 0
(5.2)

where ℎ definesmanifoldM, and �̃ is a smooth extension of � relative toM. The
main difference with Chapter 4 is that": may be the hessian of the Lagrangian
∇2
GG!:(G: ,�:(G:)), or any positive definite matrix. This flexibility allows to deal

with non positive-definite Hessians, and encompasses quasi-Newton strategies
such as BFGS or truncated Newton. This is a first element of globalization.

linesearch procedure. In order to obtain a functional decrease at each
iteration, we propose to use a linesearch procedure: at point G: with direction
3(= 3SQP(G)), find some steplength  > 0 that satisfies the following Armĳo
condition:

�(G + 3) ≤ �(G) + <�′(G; 3), (5.3)

where < ∈ (0, 1
2 ) and �′(G; 3) = maxE∈%�(G)〈E, 3〉. This is the second element of

globalization.

main difficulty #1. One delicate point is to guarantee that the linesearch
does not jeopardize the final quadratic rate brought by the SQP steps. To do so,
we need tomake sure that the unit stepsize is acceptable in a neighborhood of the
minimizer. We will see on a simple example that this may not be possible, even
arbitrarily close to minimizers. This issue was already present in Algorithm 4.1This difficulty also

appeared in Chapter 3;
see Theorem B.1.

as the algorithm incorporates a functional descent test. It was handled with
Assumption 4.4 for the analysis.

identification. The last element of globalization is the identification pro-
cedure. We expect the globalized identification procedure to incorporate the
behavior of the local algorithm. In addition, around arbitrary points, we only
want to select manifolds that locally do not admit normal descent directions;
see Section 5.4.1. In addition, the SQP step should be a descent direction forSuch manifolds are called

“identifiable” by Davis
et al. (2021).

the objective function to make the linesearch possible; mathematically, we need
�′(G; 3SQP

M ) < 0.

main difficulty #2. At this point, we can point out a difficulty with the local
identification scheme of Algorithm 4.1. The structure detection tool prox�6 ◦2
doesn’t provide enough information: it essentially selects manifolds based on
function value information, and is thus oblivious to first-order information. In
particular, it may select manifolds that admit descent directions in their normal
space. On Fig. 5.1, prox�6 ◦2 detects structureM2 on a neighborhood of G2. A
direct application of Algorithm 4.1 could result in the convergence to point G2.
This point is indeed a minimizer of � along the manifold, but not for the full
function �: there exists descent directions in the normal space to M2 at G2.
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Figure 5.1: Attraction areas of prox�� (red), and of prox�6 ◦2 (green) on a maximum of
three smooth functions. The nonsmooth function admits two substructure
manifoldsM1 andM2; points G1 and G2 are the minimizers of the restriction
of � on these manifolds. Only G1 is optimal for �. As expected, both
operators detect the correct structure in a neighborhood of G1, and prox��
is not stable near G2. However, prox�6 ◦2 does detect the structure of G2 on
a neighborhood of this point, thus potentially trapping algorithms in that
non-optimal substructure.

5.1.2 Motivation, approach and algorithm

Wenow lay out our approach. We first draw inspiration from the field of smooth
constrained programming, and then present our approach and the preliminary
results obtained.

a detour in nonlinear optimization. The composite problem (5.1) in-
cludes the particular class of ℓ1 merit functions of nonlinear programming
(Bonnans et al., 2006). These functions appear when transforming theminimiza-
tion of a (smooth) function under (smooth) equality and inequality constraints
into the unconstrained minimization of a crafted nonsmooth function. In that This is an instance of

problems with chosen
nonsmoothness,
discussed in Chapter 1.

setting, finding the smooth substructure of a minimizer corresponds to finding
exactly which inequality constraints hold with equality at the minimizer. The
topic of globalizing an “active set” approach has been extensively studied,
with several approaches including linesearch or filter methods (Nocedal and
Wright, 2006). We set aside filter methods, which rely on the “multiobjective”
nature of nonlinear programming, and focus here on linesearch methods. The
theoretical analyses of linesearch active set methods (see e.g., Spellucci (1998))
show that, for nonlinear programming, (1) one can build a linesearch SQP
scheme that generate iterates which limit points satisfy KKT conditions and (2)
if a qualification condition holds on one of the limit points, then the methods
identifies exactly the minimizer structure and converges to it quadratically.

objectives and contributions. We aim to generalize the above classic re-
sults in smooth constrained optimization to the setting of nonsmooth composite
optimization. For a correctly specified algorithm, we wish to show that:

(i) all limit points of the iterate sequence are critical points,

(ii) if one limit point is qualified, then its structure is eventually identified
and the iterates converge to it quadratically.

We propose Algorithm 5.1, an “ideal” algorithm that alternates a structure
identification step and a linesearch on efficient Newton-like steps. In this
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Algorithm 5.1: Ideal global algorithm for structured composite optimization
1: repeat
2: ObtainM: , ℎ: by an identification procedure at point G: ⊲ Structure

detection
3: Select a smooth extension �̃: and a matrix ":
4: Compute 3SQP

: (G:) by solving (5.2) ⊲ Structure exploitation
5: Find : by Armĳo linesearch on � (5.3)
6: G:+1 = G: + :3SQP

: (G:).
7: until stopping criterion

prospective chapter, we leave out the identification step to heuristics (related
to objective (i), see Section 5.3.3), and show first results towards showing the
feasibility of such a linesearch SQPmethod (related to objective (ii)). Specifically,
we give the following results:

• With a second order correction, the SQP step provides descent near
structured minimizers which structure is correctly guessed;

• We show that near a qualified minimizer, the full SQP direction provides
descent;

outline of this chapter. In Section 5.2, we introduce some technical tools
and results on nonsmooth analysis and SQP steps. In Section 5.3, we provide
theoretical guarantees on the behavior of the method after identification of the
optimal manifold: well-posedness of the linesearch and eventual admissibility
of the unit stepsize that ensures a fast local rate. In Section 5.4, we introduce a
tractable optimality condition for structured nonsmooth problems, and make a
step towards an identification procedure by proposing a way to detect smooth
substructures with only normal ascent directions. We briefly discuss the
standing questions in Section 5.5, including the standing question of combining
linesearch steps with an identification procedure (objective (i)). Finally, we
propose in Section 5.6 an identification heuristic and numerical illustrations of
a proposed algorithm.

5.2 a closer look into nonsmoothness and sqp steps

In this section, we discuss technical properties thatwill be useful in the following
developments. First, we introduce two geometrical properties on nonsmooth
functions, and second, we discuss the structure of SQP steps.

5.2.1 Two properties on nonsmooth functions

We consider in this section, and more generally in this chapter, a nonsmooth
real-valued function � : R= → R.

We introduce two properties, taken in Davis et al. (2021), that will be central
in studying the descent of SQP steps near minimizers.

Property 5.1 ((b) regular). We say that � is (b)-regular alongM at Ḡ if, for any
� > 0, there exists a neighborhood NḠ of Ḡ such that

|�(H) − �(G) − 〈E, H − G〉| ≤ �
√

1+ ‖E‖2‖G − H‖

hold for all G ∈ NḠ , H ∈M∩NḠ and E ∈ %�(G).
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Broadly speaking, this property allows to control, near substructure mani-
folds, the growth of the function by the distance to the manifold and elements
of the subdifferential of � onM.
Remark 5.1 (Validity of (b)-regularity). There are several ways to establish that
a function is (b)-regular.

First, Davis et al. (2021, Th. 2.6.2) provides a chain rule for composite functions
� = 6 ◦ 2: if 6 is (b)-regular at H̄, M6 is a C?-smooth manifold, the restriction
of 6 to M6 is C? smooth, and transversality (recall Eq. (4.4)) holds at H̄, then
� is (b)-regular at 2−1(H̄) relative to 2−1(M). One readily checks this property
on the nonsmooth functions max and �max , which were the main examples of
Chapter 4.
More generally, for any real-valued continuous definable function, and any

? > 0, there exists a partition of R= into finitely many C?-smooth manifolds
such that � is (b)-regular at any Ḡ ∈M along M, for any manifold M (Davis
et al., 2021, Th. 2.7.4). 4
Property 5.2 (proximal aiming). We say that � satisfies the proximal aiming
property a Ḡ when there exist a constant 2 > 0 and a neighborhoodNḠ of Ḡ such
that

〈E, G − projM(G)〉 ≥ 2 distM(G), (5.4)

for all G ∈ NḠ and E ∈ %�(G).
This property captures the fact that subgradients form an acute angle with

the opposite of the direction to the nonsmoothness manifold of Ḡ.
Remark 5.2 (Validity of proximal aiming). By Davis et al. (2021, Cor. 2.1.5), the
proximal aiming property holds when there exists a locally smooth manifold
M 3 Ḡ over which � is locally smooth, � is locally Lipschitz, (b)-regular along
M at Ḡ, subdifferentially regular at Ḡ, and there holds:

inf{‖E‖, E ∈ %�(G), G ∈ NḠ \M} > 0,

where NḠ denote a neighborhood of Ḡ. Note the proximity between the above
assumption, the modulus of identifiability of Lewis and Tian (2022, Def. 2.3),
and the positivity of 2ri(= inf?∈NH̄ infE=∈rbd %# 6(?) ‖E= ‖) that appears in the proof
of Theorem 4.4. It interprets as all normal directions being ascent for �. 4

5.2.2 Anatomy of SQP-type steps

We introduce tools that will be useful in the analysis of the local convergence of
SQP steps. These facts are standard in the SQP literature; see Bonnans et al.
(2006, Chap. 14).

translated manifold. We will need to consider points close to a target
subspace M but not on it. At such a point G, we introduce the translated
manifold MG , ℎ−1({ℎ(G)}), where ℎ : R= → R? is a manifold-defining map
for M. Therefore, G lies on MG and we have tangent and normal spaces there. See Section 2.3.

Wewill require an additional property for ourmanifold definingmaps, which
we lay out below.
Property 5.3 . Consider a function �, partly smooth at point Ḡ relative to a
manifold M. We say that the manifold defining map ℎ of M agrees with � at
first-order if there exists a neighborhood NḠ of Ḡ such that, for any G ∈ NḠ ,

Par(%�(G)) ⊂ #GMG .
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Figure 5.2: Illustration of the different components of an SQP step described in
Lemma 5.4.

Here, Par(�) denotes the linear space spanned by �, defined as Par(�) ,
Aff(�) − 0, for 0 ∈ �.
In practice, one checks that usual manifold defining maps for the maximum of
smooth functions or the maximum eigenvalue meet this condition.
In this setting, we introduce the following objects:

• /−(G) ∈ R?×= : a basis of the tangent space )GMG ;

• gradM �(G) , /−>(G)E ∈ )GMG for E ∈ %�(G): the reduced gradient of the
smooth function �̃;Here, /−> denotes the

transpose of /−.
• HessM �(G) , /−>(G)"/−(G): the reduced Hessian, that is the restriction

to )GMG of the linear operator " in the step computation Eq. (5.2).

In the following, we drop the dependence in G when no confusion is possible.

sqp step. The SQP step splits in three components, which we illustrate on
Fig. 5.2. This decomposition essentially comes form the developments in
Bonnans et al. (2006, Chap. 14).

Lemma 5.4 (SQP step decomposition). The SQP step 3SQP Eq. (5.2) forminimizing
a smooth function �̃ on the manifoldM, computed at point G, writes:

3SQP(G) = 3SQP
= (G) + 3SQP

C (G) + 3SQP
A (G),

where

• 3SQP
= (G) = arg min3∈#GMG

‖ℎ(G) +D ℎ(G) · 3‖ is a Newton-Raphson step, that
solely aims at increasing the feasibility relative to M.

• 3SQP
C (G) = −/−(G)[HessM �(G)]−1 gradM �(G) ∈ )GMG interprets, when G

is feasible but not optimal, as the Riemannian Newton step prior its retraction on
the manifold; see Absil et al. (2009b) for details.

• 3SQP
A (G) = −/−(G)[HessM �(G)]−1/−>(G)"3SQP

= (G) ∈ )GMG is a residual
term, required to obtain a quadratic convergence rate.

Proof. This decomposition is a simple rewriting in our notation of Bonnans et al.
(2006, Eqs. 14.33, 14.34). �
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5.3 after identification: validity of linesearch on sqp steps

In this section, we study the SQP step relative to �, assuming that the optimal
manifold has been correctly identified. We first show in Section 5.3.1 that the
SQP is a descent direction for � near a minimizer. In Section 5.3.2, we show
that taking a full-length plain SQP step may increase function value, and prove
that adding a second-order correction resolves this issue. Finally, we discuss in
Section 5.3.3 a condition under which this correction is dispensable, allowing to
alleviate its cost in practice.

These results parallel closely those from Non Linear Programming; they have
been largely inspired by Bonnans et al. (2006, Chap. 17).

5.3.1 Descent of SQP steps

We first show that an SQP step near a minimizer Ḡ and relative to this point is a
descent direction.

Lemma 5.5 (descent of SQP step near identifiable minimizers). Consider a func-
tion � and a point Ḡ such that 0 ∈ %�(Ḡ), � is partly smooth at Ḡ relative toM, assume
that � meets the proximal aiming property at G★ (property 5.2), and that the manifold
defining map for ℎ agrees with � at Ḡ (property 5.3).
Then there exists a neighborhood NḠ such that, for G ∈ NḠ ,

�′(G; 3SQP) = −〈HessM �(G)3SQP
C , 3SQP

C 〉 + max
E∈%�(G)

〈E, 3SQP
= 〉 + >(distM(G))(5.5)

≤ −〈HessM �(G)3SQP
C , 3SQP

C 〉 − 2 distM(G) + >(distM(G)),

where the steps are computed at point G.

Proof. The directional derivative is obtained from the subdifferential as follows:

�′(G; 3SQP) = max
E∈%�(G)

〈E, 3SQP〉.

Using property 5.3 and injecting the structure of the SQP step described in
Lemma 5.4, we get

�′(G; 3SQP) = max
E∈%�(G)

〈
E, 3SQP

= + 3SQP
C + 3SQP

A

〉
= max
E∈%�(G)

〈E, 3SQP
= 〉 + 〈gradM �(G), 3SQP

C 〉 + 〈gradM �(G), 3SQP
A 〉.

Combining 3SQP
A = O(distM(G)) andgradM �(G) = >(1)yields 〈gradM �(G), 3SQP

A 〉 =
>(distM(G)). Therefore,

�′(G; 3SQP) = max
E∈%�(G)

〈E, 3SQP
= 〉 + 〈gradM �(G), 3SQP

C 〉 + >(distM(G)).

Since 3SQP
C = −/−[HessM �(G)]−1 gradM �(G), we get

〈gradM �(G), 3SQP
C 〉 = −〈HessM �(G)3SQP

C , 3SQP
C 〉,

which yields the first part of the result. The second part follows from the
proximal aiming (Eq. (5.4)), and the fact that 3SQP

= = projM(G) − G + >(distM(G))
(Eq. (5.8)). �
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Figure 5.3: The Maratos effect: an SQP step 3SQP from point G increases function value;
see Example 5.1. Adding a second-order correction step 3corr Eq. (5.6) reduces
function value.

5.3.2 Eventual admissibility of unit step size

Iterating SQP steps in a neighborhood of a minimizer generates points that
converge quadratically to the minimizer (Bonnans et al., 2006, Th. 14.5). To
globalize the method, we use a linesearch procedure: we follow the SQP step
only by some factor that ensures a sufficient decrease of the function value
that satisfies Armĳo’s equation Eq. (5.3). At this point, it is not clear that the
globalized scheme still converges locally quadratically. Indeed, following the
SQP step with a unit stepsize may cause a functional increase, even when the
step brings the next iterate quadratically closer to the minimizer.
We review an example of this phenomenon, called Maratos effect in the

following example. We then propose a way to fix it.
Example 5.1 (Functional ascent of SQP step). We illustrate the “Maratos effect”
on a simple function, and illustrate it on Fig. 5.3. This example is directly
adapted from non linear programming (Bonnans et al., 2006, 17.6). Consider

�(G) = −G1 +max
(
1.6‖G‖2 − 1.6, 0.4‖G‖2 − 0.4

)
.

The plain SQP step from point G = (cos�, sin�) admits a closed form expression

3SQP(G) = (sin2 �,− sin� cos�),
so that �(G) = − cos� and �(G + 3SQP(G)) = − cos� + 0.4 sin2 �. In particular,
�(G + 3SQP(G)) > �(G) for all �: the full SQP step increases functional value for
G arbitrarily close to G★. �

We adopt one classical possibility to fix this issue, the so-called second-order
correction step (Bonnans et al., 2006, pp. 310-314). At point G with SQP
step 3SQP, one computes 3corr as a Newton-Raphson step aimed at improving
feasibility of G + 3SQP:

3corr = arg min
3∈#GMG

‖ℎ(G + 3SQP(G)) +D ℎ(G) · 3‖. (5.6)

This step is illustrated on Fig. 5.3.
Adding a second-order correction to the SQP step result ensures satisfaction

of an Armĳo rule, as shown in the following theorem.
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Theorem 5.6 (Eventual admissibility of unit step). Consider a function � and point
G★ such that � is partly smooth at G★ relative to some manifold M★, G★ is a strong
minimizer:

0 ∈ ri %�(G★) and Hess �(G★) � 0,

and assume that � meets the proximal aiming property at G★ (property 5.2) and is
(b)-regular at G★ along M (property 5.1), and that the manifold defining map for ℎ
agrees with � at Ḡ (property 5.3). Finally, assume that matrix " is taken such that,
when G goes to G★, there holds:〈

HessM �(G)3SQP
C , 3SQP

C

〉
≥

〈
proj)G★M★ Hess �(G★)proj)G★M★ 3

SQP
C , 3SQP

C

〉
+ >(‖3SQP(G)‖2) + >(distM(G)) (5.7)

Then there exists a neighborhood NG★ of G★ such that, if G ∈ NG★ and < ∈ (0, 1/2),

�(G + 3SQP(G) + 3corr(G)) ≤ �(G) +<�′(G; 3SQP(G)),

where 3SQP(G) denotes the SQP step (5.2) and 3corr(G) the second-order correction (5.6),
both performed relative to M★.

The proof consists in two steps: first building a local description of � at points
G and G + 3SQP + 3corr with precision >(distM(G)) + >(‖3SQP‖2), then using it to
show the sufficient decrease of the corrected SQP update with steplength 1.
Figure 5.4 depicts the situation.
The effect of adding the second-order correction appears in Eq. (5.13): if G+

fails to incorporate 3corr(G), then 〈EG+ , GM+ − G+〉 = O(distM(G + 3SQP)). This
term cannot be controlled, in particular when G is nearM★ and the manifold
has non-null curvature as in Fig. 5.3.
We first require a simple result: the tangent space )GMG evolve slowly as G

moves away from M. The following proofs are based on three points: some
point G, GM its projection on M and the local minimum G★. We consider the
situation when G tends to G★ and use the > and O notation.

Lemma 5.7 (Tangent spaces along normal directions). Consider a point G, con-
tained in a manifoldM locally defined by a C2 mapping ℎ, and a smooth vector 3(G)
that vanishes as G goes to Ḡ. Then,

proj)GMG
(3(G)) = proj)GMM(3(G)) + >(distM(G)).

where GM denotes the orthogonal projection of G onM.

Proof. The projections of a fixed vector 3 on the tangent spaces write

proj)GMG
(3) = 3 − [

D ℎ(G)>]† 3
proj)GMM(3) = 3 −

[
D ℎ(GM)>]† 3

where the symbol † denotes the Moore Penrose pseudo-inverse. Since ℎ is C2,
the two projections are related by a Taylor development, which first order term
is: Since the above functions are C1, there holds, on a neighborhood NG of G,

‖ proj)GMG
(3) − proj)GMMG

(3)‖ ≤
[D ℎ(G)>]† − [

D ℎ(GM)>]† ‖3‖
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Figure 5.4: Illustration of the points and vectors that appear in the proof of Theorem 5.6.

≤ sup
D∈NG

D
(
G ↦→ [

D ℎ(G)>]†) (D) ‖G − GM‖︸      ︷︷      ︸
=distM(G)

‖3‖

Applying the above inequality with a vector 3(G) = >(1) yields the result. �

We now proceed with the proof of Theorem 5.6.

Proof (of Theorem 5.6). Consider a point G near G★, and let G+ = G + 3SQP(G) +
3corr(G). We denote GM = projM(G) and GM+ = projM(G+).
As a preliminary step, we collect some useful estimates on the SQP and

correction steps, from the proof of Bonnans et al. (2006, Th. 17.7):

3SQP
= = GM − G + >(distM(G)) (5.8)

distM(G) ≤ �‖ℎ(G)‖ (5.9)
‖ℎ(G + 3SQP + 3corr)‖ = >(‖3SQP‖2). (5.10)

step 1. We first connect �(G) and �(G+) via the intermediate points GM and
GM+ , with precision >(‖ distM(G)‖) + >(‖3SQP(G)‖2).
First, the (b)-regularity property 5.1 provides, for any EG ∈ %�(G),

�(G) ≥ �(GM) + 〈EG , G − GM〉 + >(distM(G))
= �(GM) − 〈EG , 3SQP

= 〉 + >(distM(G)), (5.11)

where we used the estimate (5.8).
Then, the second-order Taylor model of � on M Eq. (2.3) gives, for any

second-order retraction R,

�(GM+ ) = �(GM) + 〈grad �(GM),�〉 + 1
2 〈Hess �(GM)�,�〉 + >(‖�‖2), (5.12)

where � ∈ )GMM is defined implicitly by GM+ = RGM(�).
Finally, the (b)-regularity property 5.1 provides, for EG+ ∈ %�(G+),

�(GM+ ) ≥ �(G+) + 〈EG+ , GM+ − G+〉 + >(distM(G+))
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Applying Cauchy-Schwarz’ inequality and using local boundedness of %� near
Ḡ, we deduce 〈EG+ , GM+ − G+〉 = O(distM(G+)). Applying the estimates detailed
in Eqs. (5.9) and (5.10) yields distM(G+) = O(ℎ(G+)) = >(‖3SQP‖2). Therefore,

�(GM+ ) ≥ �(G+) + >(‖3SQP‖2). (5.13)

Summing up Eqs. (5.11)–(5.13) yields, for any EG ∈ %�(G),

�(G) ≥ �(G+) − 〈EG , 3SQP
= 〉 − 〈grad �(GM),�〉 − 1

2 〈Hess �(GM)�,�〉
+ >(distM(G)) + >(‖3SQP‖2) + >(‖�‖2). (5.14)

We now turn to explicit quantity � by expressing it in terms of 3SQP. We
choose to use in (5.12) the orthographic retraction, defined in Proposition A.2,
as it locally admits an explicit inverse:

� = proj)GMM(GM+ − GM)
= proj)GMM(GM+ − G+) + proj)GMM(G+ − G) + proj)GMM(G − GM),

where the first term is bounded by distM(G+) = >(‖3SQP‖2) and the third is null
as GM − G is normal to M at GM. Since G+ = G + 3SQP + 3corr,

� = proj)GMM(3SQP + 3corr) + >(‖3SQP‖2).

Applying first Lemma 5.7, since 3SQP + 3corr = >(1), and then the SQP step
decomposition introduced in Lemma 5.4 with the fact that 3SQP

= , 3corr ∈ #GMG

yields

� = proj)GMG
(3SQP + 3corr) + >(distM(G)) + >(‖3SQP‖2)

= 3SQP
C + 3SQP

A + >(distM(G)) + >(‖3SQP‖2).

We can now explicit the � terms of Eq. (5.14):

〈grad �(GM),�〉 = 〈grad �(GM), 3SQP
C 〉 + >(distM(G)) + >(‖3SQP(G)‖2)

〈Hess �(GM)�,�〉 = 〈Hess �(GM)3SQP
C , 3SQP

C 〉 + >(distM(G)) + >(‖3SQP(G)‖2),

where we used that 3SQP
A (G) = O(distM(G)), grad �(GM) = >(1), and 3SQP

C (G) =
>(1). Notice that grad �(GM) = gradM �(G) + O(distM(G)), so that, with
Lemma 5.4,

〈grad �(GM), 3SQP
C 〉 = −〈HessM �(G)3SQP

C , 3SQP
C 〉 + >(distM(G)).

Besides, using that the Riemannian hessian of � is continuous on M, we get

〈Hess �(GM)3SQP
C , 3SQP

C 〉 = 〈Hess �(G★)3SQP
C , 3SQP

C 〉 + >(‖3SQP‖2),

where, by a slight abuse of notation, we omit the projection on )G★M★ sur-
rounding Hess �(G★). Finally, we reach the following estimate:

�(G) ≥ �(G+) − 〈EG , 3SQP
= 〉 + 〈HessM �(G)3SQP

C , 3SQP
C 〉

− 1
2

〈
Hess �(G★)3SQP

C , 3SQP
C

〉
+ >(distM(G)) + >(‖3SQP‖2). (5.15)
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step 2. We now show that �(G + 3SQP + 3corr) ≤ �(G) +<�′(G, 3SQP).
Combining (5.15) with EG ∈ arg maxG∈%�(G)〈E, 3SQP

= 〉 and the estimate of the
directional derivative near a minimizer (5.5) yields

�(G+) − �(G) −<�′(G; 3SQP) ≤ (1−<) max
G∈%�(G)

〈E, 3SQP
= 〉

+
〈(
(< − 1)HessM �(G) + 1

2 Hess �(G★)
)
3SQP
C , 3SQP

C

〉
+ >(distM(G))+ >(‖3SQP‖2).

Using assumption (5.7), we reach:

�(G+) − �(G) −<�′(G; 3SQP) ≤ (1−<) max
G∈%�(G)

〈E, 3SQP
= 〉

+
(
< − 1

2

) 〈
Hess �(G★)3SQP

C , 3SQP
C

〉
+ >(distM(G)) + >(‖3SQP‖2)

Since Hess �(G★) is positive definite on )G★M and the max term is negative
by the proximal aiming property (5.4), the result holds as soon as < ∈ (0, 1

2 ).�

5.3.3 When to correct?

The second-order correction term ensures functional decrease with the unit
stepsize near minimizers. It is however somewhat costly: it requires to evaluate
the smooth map (and potentially its eigenvalue decomposition) at a new point.
A second look at the proof of Theorem 5.6 shows that, when

‖3SQP
= ‖ ≥ �‖3SQP

C + 3SQP
A ‖

for some constant � > 0, the plain SQP step provides functional descent.

Note that this fits exactly Example 5.1: the points are exactly feasible, so
that the restoration step is null. Again, this situation mirrors that of nonlinear
programming; see (Bonnans et al., 2006, Prop. 17.8).

Theorem 5.8 (Avoiding second-order corrections). Consider a function � and
point G★ such that � is partly smooth at G★ relative to some manifold M★, G★ is
a strong minimizer:

0 ∈ ri %�(G★) and Hess �(G★) � 0,

and assume that � meets the proximal aiming property at G★ (property 5.2) and is
(b)-regular at G★ alongM (property 5.1). Let � denote any positive constant. Then for
all iterations such that

‖3SQP
= (G:)‖ ≥ �‖3SQP

C (G:) + 3SQP
A (G:)‖,

the Armĳo rule holds with unit stepsize:

�(G + 3SQP(G)) ≤ �(G) +<�′(G; 3SQP(G)).

Proof. The proof follows closely the above developments, we omit it. �
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5.4 validity of local structure

5.4.1 A structure-based implementable stopping criterion

Let Ḡ be a minimizer of �. Fermat’s rule gives necessary optimality conditions:

0 ∈ %�(Ḡ). (5.16)

When � is partly smooth at Ḡ relative to some manifold M, this implies:

Ḡ ∈M
grad �(Ḡ) = 0

0 ∈ proj#ḠM %�(Ḡ)

The first condition is ensured by partial smoothness; the other two follow from
projecting Fermat’s rule (5.16) on the tangent and normal spaces. Recall that,
the projection of the subdifferential on the tangent space is a unique vector: the
Riemannian gradient of the restriction of � toM, denoted grad �(Ḡ).

A practical convergence criterion is a quantity that continuously goes to zero
as the point which it qualifies goes to a minimizer. The two last items above
are problematic for points near Ḡ but not necessarily on M: the Riemannian
gradient of � is not defined at G ∈ R= \M, and the subdifferential dimensionality
changes; recall e.g., Fig. 1.1.

subdifferential smooth extension. Wepropose to dealwith this difficulty
by using information on the smooth substructure. We introduce here a smooth
extension of %� relative to some structure manifold M, that is, a continuous
set-valued map that matches %� on M.

Definition 5.1 (Subdifferential smooth extension). Consider a function � and
a point Ḡ at which � is partly smooth relative to manifoldM. The set-valued
application %M� : R= ⇒ R= is a smooth extension of the subdifferential relative to
M at Ḡ if

• %M�(G) = %�(G) for all G near Ḡ onM, and

• %M� is continuous on a neighborhood of Ḡ in R= .

These two conditions seem strong, but it is straightforward to build valid
smooth extensions of subdifferentials for the maximum of smooth functions, the
maximum eigenvalue of a parameterized function, or ℓ1-regularized functions.
We propose such extensions in Examples 5.2–5.4.

Remark 5.3 (Relations with the literature). In a similar fashion, Liu et al. (2019)
study enlargement of subdifferentials that incorporate information on the
nonsmooth function along normal directions. The studied enlargements are
smooth set-valued maps that depend on a parameter �, such that the maps
converge to the usual subdifferential as � goes to zero. This is the main
difference with the extensions discussed here, which instead depend on a
structure manifold M. These structure-aware enlargements are intended to
replace in bundle methods the usual �-subdifferential, as an attempt to make
the structure identification of the VU -bundle algorithm more stable in practice.
4
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approximate optimality condition. We thus consider the following ap-
proximate optimality conditions for a pair (G,M):

‖ℎ(G)‖ ≤ �

dist
(
0, %M�(G)) ≤ �

(5.17)

where ℎ definesM locally. A point G that verifies Eq. (5.17) is such that there
exists a point Ḡ ∈M at distance O(�) of G such that dist(0, %�(Ḡ)) ≤ O(�). This
last condition implies that Ḡ is almost optimal: �′(Ḡ, 3) ≥ −O(�)‖3‖.

examples. We now provide valid smooth extensions of the subdifferential
on three functions discussed in this thesis.
Example 5.2 (Maximum of smooth functions). We consider the maximum of
smooth functions �(G) = max ◦2. At a point G with smooth substructureMmax

� ,
upon satisfaction of the transversality condition Eq. (4.4), the subdifferential
writes:

%�(G) = Conv {∇28(G) : 8 ∈ �} .

A natural smooth extension, defined for any G ∈ R= , is:

%M
max
� �(G) = Conv {∇28(G) : 8 ∈ �} . �

Example 5.3 (Maximum eigenvalue). We consider the maximum eigenvalue of
a smoothly parameterizedmatrix. At a point Gwith smooth substructureM�max

A ,
upon satisfaction of the transversality condition Eq. (4.4), the subdifferential
writes:

%�(G) = {D 2∗(G) · �(G)/�(G)>, for / ∈ SA , tr(/) = 1},
where �(G) ∈ R<×A denotes a smooth orthonormal basis of the eigenspace
corresponding to the A largest eigenspaces. Therefore, a natural smoothSee Shapiro and Fan

(1995) for the smooth
basis construction.

extension, defined for any G ∈ R= , is:

%M
�max
A �(G) = {D 2∗(G) · �(G)/�(G)>, for / ∈ SA , tr(/) = 1}. �

Example 5.4 (ℓ1-regularization). Finally, we consider an ℓ1 regularized function
�(G) = 5 (G) + �‖G‖1. At point G with structure Mℓ1

� = {G ∈ R= : G8 = 0, 8 ∈ �},
the subdifferential writes %�(G) = ∇ 5 (G) +�%‖ · ‖1(G), where

[%‖ · ‖1(G)]8 = %| · |(G8) =


−1 if G8 < 0

[−1, 1] if G8 = 0

1 if G8 > 0

.

A natural smooth extension, defined at any G ∈ R= , is %M
ℓ1
� �(G) = ∇ 5 (G) +

�%M
ℓ1
� ‖ · ‖1(G), where the smooth extension %M

ℓ1
� ‖ · ‖1(G) is defined coordinate-

wise as follows: [
%M

ℓ1
� ‖ · ‖1(G)

]
8
=


[−1, 1] if 8 ∈ �
%| · |(G8) else

. �
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Remark 5.4 . We report the subdifferential enlargements proposed by Liu et al.
(2019) on Examples 5.2 and 5.4.

• When �(G) = max ◦2, the proposed subdifferential enlargement is (see
5.4)

���(G) = Conv {∇28(G) : 8 ∈ ��(G)} , where ��(G) = {8 : G8 ≥ 5 (G)− �}.

• When �(G) = 5 (G) +�‖G‖1, the proposed subdifferential enlargement is
(see 6.2.2)

%��(G) = ∇ 5 (G) +�Conv{B ∈ R= : B8 = ±1, 〈B, G〉 ≥ ‖G‖1 − �}. 4

5.4.2 Towards structure screening: detecting nearby normal descent direction

In this subsection, we look more closely to qualified points. We discuss the
geometrical meaning of this qualification condition in the structured setting
and show that qualification can be detected locally. This will be relevant in the
manifold selection of the forthcoming Algorithm 5.2.

near qualified points. Most guarantees in this thesis are given for qualified
points, that is point that satisfy a strengthened version of Fermat’s rule:

0 ∈ ri %�(Ḡ).

When � is partly smooth at Ḡ relative to some manifold M, this equation
formalizes the fact that the function strictly increases in all directions normal to
M at Ḡ: �′(Ḡ; 3) > 0 for all 3 ∈ #GM.

This property actually holds at all points near Ḡ onM, as proved by Daniilidis
et al. (2006, Lemma 20): they show that there exists a neighborhood NḠ of Ḡ
such that, for all G ∈ NḠ ∩M,

proj%�(G)(0) ∈ ri %�(G). (5.18)

This interprets as �′(G; 3) > 0, for all 3 ∈ #GM and G ∈ NḠ ∩M.
With a smooth extension of the subdifferential relative to M, we can now

extend this property to a neighborhood of Ḡ on R= , which we formalize in
the next lemma. This gives an implementable criterion to detect structure
manifolds which admit only ascent normal directions, from points that are near,
but not on, the structure manifold. This provides a useful tool for the structure
identification process, discussed in Section 5.6.1. Note that the following lemma
considers a point Ḡ with structureM that admits only normal ascent directions.
In particular, Ḡ is not necessarily a minimizer of � on the manifold.

Lemma 5.9 (Persistence of normal ascent). Consider a function �, a point Ḡ and a
manifold M such that � is prox-regular at Ḡ, and � is partly smooth at Ḡ relative to
M. If This condition captures

for �, in the input space
R= , the same geometrical
property as property 4.1
did for 6, in the
intermediate space R< .

proj%�(Ḡ)(0) ∈ ri %�(Ḡ)
Then, for all G near Ḡ on R= , there holds, equivalently,

0 ∈ ri proj#GMG
(%M�(G)) (5.19)

proj%M�(G)(0) ∈ ri %M�(G)
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Proof. We follow closely the proof of Daniilidis et al. (2006, Lemma 20). With
a basis of #GMG that depends smoothly on G, we first construct a continuous
function G ↦→ #G such that #G : #GMG → R? is a linear bĳection. Now, the
multifunction � : R= ⇒ R? defined by �(G) = #G(%M�(G) − proj%M�(G)(0)) is
continuous around Ḡ by continuity of #G and %M�(G). Besides, it satisfies
proj%M�(G)(0) ∈ ri %M�(G) ⇔ 0 ∈ int�(G). The argument of Daniilidis et al.
(2006, Lemma 20) applies to this setting and yields the conclusion. �

remote detection of qualified points and screening. We now discuss
how to compute, on our examples, the distance from zero to the smooth
subdifferential extension (5.17), and how this can at the same time provide
whether Eq. (5.19) holds or not.
Example 5.5 (Maximum of smooth functions). Building onExample 5.2, the dis-
tance from zero to the subdifferential is obtained by solving

min
∈∆�

∑
8∈�

8∇28(G)
 ,

where ∆� = { ∈ R|� | : 8 ≥ 0 for all 8 ∈ �, ∑8∈� 8 = 1} denotes the simplex with
coordinates �.
Under transversality at G, condition (5.19) holds when the minimizer ★

belongs to the interior of the simplex, that is when ★8 > 0 for all 8 ∈ �. �

Example 5.6 (Maximum eigenvalue). Building on Example 5.3, the distance
from zero to the subdifferential is obtained by solving

min
/∈SpA

D 2(G)∗ · �/�>
where � ∈ R<×A is an orthonormal basis of the eigenspace associated with A
largest eigenvalues of 2(G), and SpA = {/ ∈ SA ,/ � 0, trace(/) = 1} denotes the
spectraplex of dimension A.
Under transversality at G, condition (5.19) holds when the minimizer /★

belongs to the interior of the spectraplex, that is when all its eigenvalues are
positive. �

Example 5.7 (ℓ1-regularization). Building on Example 5.4, the distance from
zero to the subdifferential is obtained by solving

min
E∈R=
‖∇ 5 (G) +�E‖22 =

∑
8∈�

(
max(|∇ 58(G)| −�), 0

)2 +
∑
8∉�

(∇ 58(G) +� sgn(G8)
)2 ,

where sgn(C) denotes the sign of C, and ∇ 58(G) denotes the 8-th coordinate of
∇ 5 (G). We have assumed that Mℓ1

� contains all null coordinates of G.
This time, condition (5.19) holds when the minimizer E★ satisfies E8 ∈ (−1, 1)

for 8 ∈ �. �

Remark 5.5 (Relations with the literature). The above mentioned problems al-
low to quantify the optimality of a pair (G,M) and to detect the existence of
normal ascent directions. We point out below similarities with three structure
detection schemes proposed in the literature.
For bundle methods, Mifflin and Sagastizábal (2005) detects structure by

observing the solution of a particular quadratic program constrained on the
simplex (denoted �-QP). In particular, it is the activity of this solution, that is
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indices of the non-null coordinates, that allows to estimate the local smooth
substructure.
The spectral bundle method of Helmberg et al. (2014) detects structure

by considering the minimizer of a quadratic program constrained on the
spectraplex. In particular, their guess for the local smooth substructure is based
on the rank of the minimizing matrix.

Recently, Bertrand et al. (2022) proposed a working set approach to minimizer
functions regularized with separable functions. The working set contains, as
Mℓ1

� , a subset of the coordinates. They are ranked and chosen using a score
function that quantifies a distance to optimality akin to (5.18); see Bertrand et al.
(2022, Eq. 5). 4

5.5 what is still missing

In the previous sections, we have gathered partial guarantees on ingredients
of Algorithm 5.1. We quickly outline here the remaining questions and the
approach we tried to follow.
The above developments show that a linesearch SQP method may retain

the fast quadratic rate near minimizers, assuming identification of the optimal
manifold.

Themain difficulty consists in combining the identification procedurewith the
linesearch. We list below some of the questions we faced, and the approach we
adopted, again strongly inspired by developments of nonlinear programming
(Bonnans et al., 2006, Chap. 17).

• At each iteration, we would expect the SQP step to be a descent direction
for �, that is: �′(G, 3SQP) < 0. This is a necessary condition to execute a
linesearch on �. This condition could be satisfied either by the manifold
selection scheme, or by a careful adjustment of the SQP step, following
Spellucci (1998, Eq. 14).

• A second difficulty is to show that the linesearch stepsize cannot be
arbitrarily small.1 For example, this happens on the one dimensional
function !(G) = max(−G, 0.5G, 2G − 3) if one considers the SQP step from
point C < 0 arbitrarily close to zero, relative to the smooth substructure
M = {2}. Here, the trouble comes from the identification of the (non-
optimal) structure M = {2} rather than the closer (optimal) M = {0}.

• With the two above elements, we would expect to be able to extract
properties on the limit points of the sequence of iterates. Indeed, summing
the Armĳo rule provided in Eq. (5.3) yields for lower bounded objectives:∑

:≥0
:�′(G: ; 3SQP

: ) ≤ �(G0) −min �.

If the linesearch step is bounded away fromzero, we get lim: �′(G: ; 3SQP
: ) =

0. Is this informative enough to obtain that any limit point Ḡ satisfies
0 ∈ %�(Ḡ)? Lemma 5.5 seems to imply that, near minimizers and relative
to the optimal manifold, the above limit would imply that Ḡ lies on the
manifold and that it is critical for � restricted to the manifold (3SQP

C = 0).
Does this extend away from minimizers?

1 One would also expect that the linesearch terminates after a finite number of trials. These two
aspects are closely related.
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These questions deal with the behavior of nonsmooth functions away from
minimizers. We believe that providing grounded answers requires to go beyond
the local description provided by e.g., partial smoothness, by using global
information onnonsmoothness. In this respect, the recent line ofworkdeveloped
by Davis et al. (2021) seems promising: they provide a global description of
the nonsmoothness manifolds in the form of a Whitney stratification of the
domain of the function, with expressive local geometrical properties such as
properties 5.1 and 5.2. More work and insight will be necessary to provide
precise answers to these questions.

5.6 numerical illustrations

In this section, we propose an algorithm that integrates the globalization
guarantees, and ideas presented in this chapter. We detail here the identification
heuristic we rely on, and then we illustrate the behavior of this global algorithm
on several problems, including those of Chapter 4.

5.6.1 Identification heuristic and proposed algorithm

Wepropose an identification scheme that combines the ideas of the localNewton
method Algorithm 4.1, and the detection of normal ascent directions, discussed
in Section 5.4.2.

Building on Chapter 4, we use the proximity operator as a structure detector:
at point G and for step �, we consider the manifold M relative to which 6 is
partly smooth at point prox�6(G). We use here the prox as a filter for relevant
information. We remark that varying � and collecting M 3 prox�6(G) provides
only a subset of the possible substructure manifolds. Note also that for � near 0,
the dimension of the structure manifold M increases as � reduces, to generally
reach M = R= for � small enough.
We propose to select the candidate manifold in this subset of manifolds,

picking the one with the smaller dimension, that meets the normal ascent
condition (5.19). Let us illustrate this heuristic on a simple example.
Example 5.8 (Manifold selection for max ◦2). Here is an instance of the pro-
posed identification heuristic. At some point, say we have

2(G) ≈ [100, 3, 23, 21,−12].

Then the proximal detection tool suggests the following manifolds, ranked by
increasing dimension:

� = {1, 2, 3, 4, 5}, � = {2, 3, 4, 5}, � = {2, 4, 5}, � = {2, 5}, � = {5}

Removing the manifolds Mmax
� whose feasibility is too big leaves only a subset

of these manifolds. It remains to evaluate Eq. (5.19) successively to find the
manifold with smallest dimension that meets this normal ascent condition. �

Note that this heuristic requires only one evaluation of 2 and Jac2 , for all these
computations.

proposed algorithm. The proposed algorithm is summarized in Algo-
rithm5.2. It includes the describedheuristic and the stopping criterionpresented
in Section 5.4.1.
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Algorithm 5.2: Global Newton algorithm (heuristic)
Require: Set G0 ∈ R= , M0 = R= , �init > 0, < ∈ (0, 1/2), � > 0. For example,

take < = 10−3 �init = 102 and � = 10−13.
1: repeat
2: Form � ↦→M� 3 prox�6 ◦2(G:) ⊲ Structure detection
3: �:+1 = �init
4: whileM�:+1 does not satisfy the normal ascent property Eq. (5.19), and

is not the last manifold do
5: Reduce �:+1 to the greater value changing M�:+1

6: end while
7: Set M:+1 =M�:+1 (R= if no satisfactory manifold was found)
8: Select a smooth extension �̃: and a matrix ":
9: Compute 3SQP

: (G:) by solving (5.2) ⊲ Structure exploitation
10: Obtain G:+1 from the linesearch procedure Algorithm 5.3.
11: until ‖ℎ:(G:)‖ ≤ � and dist

(
0, %M:�(G:)

) ≤ �

We provide here some implementation details. The backtracking linesearch
selects the higher step of the form  = (1/2)8 , for some integer 8. We compute
a truncated SQP step at each iteration, following Bonnans et al. (2006, Alg.
TSQP, p. 305). This is done by taking" as the exact Hessian of the Lagrangian,
and solving problem (5.2) exactly, or until a negative curvature direction is
found. We handle the Maratos effect by adding the second-order correction,
defined in Eq. (5.6), only at iterations where it is necessary. Specifically, we
use the approach described in Chauvier et al. (2003, p. 20), summarized in
Algorithm 5.3. The algorithm stops when the pair (G: ,M:)meets the optimality
conditions Eq. (5.17).

5.6.2 Numerical experiments

test problems. We consider the same problems and similar instances as in
the numerical experiments of Section 4.5, which we detail below.

First, we take the celebratedMaxQuad instance, of the form �(G) = max8=1,...,<(28(G)),
where = = 10, < = 5 and each 28 is quadratic convex, making the whole function
� convex (Bonnans et al., 2006, p. 153). For this instance, the optimal manifold
is Mmax

� with � = {2, 3, 4, 5}.
Second, we consider the problems F3d-U�, which also write as maximum of

quadratics with = = 3, and < = 4; see Mifflin and Sagastizábal (2005, Sec. 6).2
The mappings are defined as

2(G) =
©«

1
2
(
G2

1 + G2
2 + �G2

3
) − G2 − G3

G2
1 − 3G1

G2

G3

ª®®®®®¬
− ��,

2 We report slightly corrected mappings – see 24 and �2
4, so that the minimizers and optimal function

value of the problem match the values announced in Table 1.
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Name n M★ dimM★ �(G★) G★ starting point
MaxQuad 10 Mmax

{2,3,4,5} 7 –† –† 1

F3d-U0 3 Mmax
{1,2,3,4} 0 0 (1, 0, 0) G★ + (100, 33,−100)

F3d-U1 3 Mmax
{1,3,4} 1 0 (0, 0, 0) G★ + (100, 33,−100)

F3d-U2 3 Mmax
{1,3} 2 0 (0, 0, 10) G★ + (100, 33,−100)

F3d-U3 3 Mmax
{1} 3 0 (0, 1, 10) G★ + (100, 33,−100)

eigmax 25 M�max
3 20 – – G★ + 0.11

Table 5.1: Description of the experiment problems. 1 denotes the vector of ones. For
the approximate optimal point and functional value (–†), see (Bonnans et al.,
2006, p. 153).

where ��, for � ∈ {0, . . . , 3} denotes the (� + 1)th column of

� =

©«
0.5 0 −5 −5.5
−2 10 10 10
0 0 0 11
0 0 20 20

ª®®®®®¬
Finally, we consider maximal eigenvalue problems of the form

min
G∈R=

�max

(
�0 +

=∑
8=1

G8�8

)
.

We take = = 25 and we generate randomly = + 1 symmetric matrices of size 50.
For this instance, the multiplicity of the maximum eigenvalue at the minimizer
is A = 3.
All problems data are described in Table 5.1. We report the results in

Figures 5.5–5.10.

algorithms & implementation details. As in Chapter 4, we solve the
problems with the nonsmooth BFGS (Lewis and Overton, 2013), the Gradient
Sampling method (Burke et al., 2020), and Algorithm 5.2. In addition, we also
solve the problems with the VU-algorithm of Mifflin and Sagastizábal (2005).
As suggested in the paper, the algorithm does not make use of second-order
information in the U -Newton steps, but rather approximates it from first-order
information with a quasi-Newton BFGS scheme. We stop these algorithms after
a fixed number of iterations, or when their termination criteria are met, when
they have one. All the algorithms are implemented in Julia (Bezanson et al.,
2017); experiments may be reproduced using the code available online.3

iteration costs per algorithm. At this stage, we summarize the iteration
costs of each algorithm. The nonsmooth BFGS and the VU-bundle method
require a changing number of function values and subgradients per iteration.
Indeed, the former method employs a linesearch, which may require several
trials before finding a suitable point, and the latter refines a cutting plane model
of the function, which requires several oracle calls before the model is precise
enough to take a serious step. In contrast, the Gradient Sampling requires a

3 See https://codeberg.org/GillesBareilles/GlobalCompositeNewton.jl for Algorithm 5.2
and https://github.com/GillesBareilles/NonSmoothSolvers.jl for the baselines.

https://codeberg.org/GillesBareilles/GlobalCompositeNewton.jl
https://github.com/GillesBareilles/NonSmoothSolvers.jl
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Algorithm 5.3: Efficient linesearch with second-order correction.

1: if �(G: + 3SQP
: ) ≤ �(G:) +<�′(G: , 3SQP

: ) then
2: G:+1 = G: + 3SQP

3: else
4: if ‖3SQP

= ‖ ≤ �‖3SQP
C ‖ then

5: Compute the second–oder correction 3corr

6: if �(G: + 3SQP + 3corr) ≤ �(G + 3SQP) then
7: Do an arc-search along  ↦→ G: + 3SQP + 23corr

8: else
9: Do a line-search along  ↦→ G: + 3SQP

10: end if
11: else
12: Do a line-search along  ↦→ G: + 3SQP

13: end if
14: end if

constant number of black-box oracle calls per iteration, set to twice the dimension
of the optimization space R= in the experiments. Algorithm 5.2 requires
information of a different nature: the value of 2(G) and its (partial) eigenvalue
decomposition, the Jacobian Jacℎ(G), and the hessian of the Lagrangian for the
smooth reduced problem obtained from identification. Besides, the linesearch
requires evaluating � at several points. Comparison with respect to iterations is
therefore not completely fair.

But the running time of the algorithms is not entirely satisfactory as a progress
measure: obtaining implementations of comparable qualities requires different
implementation effort, depending on the algorithms complexities.

illustrations. We report on Fig. 5.5a to 5.10a the evolution of the subopti-
mality versus iterations, and on Fig. 5.5b to 5.10b the evolution of suboptimality
versus time. On the MaxQuad problem, Algorithm 5.2 obtains the correct man-
ifold at iteration 13. Three iterations later, the iterates (G: ,M:) satisfy the
optimality condition (5.17) with � = 2 · 10−13. The linesearch selects the unit
stepsize during these iterations, as hinted by the quadratic convergence rate
displayed in Fig. 5.5. On the maximum eigenvalue problem, the proposed
algorithm obtains the right manifold at iteration 8, and the unit stepsize at
iteration 13 until convergence. Similar remarks hold for Algorithm 5.2 on the
F3d-U� instances.
The serious steps of the VU-algorithm converge as well very fast on all

instances, even with only approximate second-order information. We also note
that the algorithm succeeds in detecting the optimal manifold dimension in
each instance, except for the F3d-U0 problem.

We report in Figs. 5.5d and 5.10d the optimality condition Eq. (5.17) and the
normal ascent test Eq. (5.19) at the last point of each algorithm, relative to the
optimal manifold for both problems. Only the VU -algorithm and Algorithm 5.2
get a really high precision, and our implementation of the VU -algorithm appears
to favor feasibility over optimality along structure manifolds. We also note that,
across all problems, the final point of each algorithm meets the normal ascent
condition Eq. (5.19), although some points may be away from the minimizer.



90 towards a global newton method for nonsmooth composite minimization

0 50 100 150 200 250 300
10−15

10−8

10−1

iteration
�
(G
:)
−�

★

(a) Suboptimality vs iterations

0 0.5 1 1.5 2 2.5 3

·10−2

10−15

10−8

10−1

time (s)

�
(G
:)
−�

★

(b) Suboptimality vs time (s)

0 10 20 30 40 50
0

5

7

10

iteration

di
m
(M

:)

(c) Manifold dimension vs iterations

Gradient Sampling nsBFGS VU -algorithm Global Newton

Algorithm ‖ℎ(G)‖ dist(%M�(Ḡ), 0) proj%�(Ḡ)(0) ∈ ri %�(Ḡ)
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Figure 5.5: MaxQuad problem
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Figure 5.6: F3d-U0 problem
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Figure 5.9: F3d-U3 problem
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Figure 5.10: Eigmax Problem





6
CONCLUSION & PERSPECTIVES

This thesis considers the question of detecting and leveraging the smooth
substructure of nonsmooth functions that appear in some machine learning,

signal processing, and control applications. After a chapter of introduction
(Chapter 1), and a chapter of recalls (Chapter 2), the contributions of this thesis
were presented in Chapters 3–5. We briefly review them here, to better lay
down a number of on-going works, further questions, and perspectives.
In Chapter 3, we considered the minimization of additive nonsmooth func-

tions. For such nonconvex functions, we first proved that the proximal gradient
operator detects smooth substructure: its sends neighborhoods of nonsmooth
minimizers to the optimal submanifold (Theorem 3.1). Then, we proposed an
algorithm that alternates a proximal-gradient step with an efficient Riemannian
step on the detected manifold (Algorithm 3.1). We proved that this algorithm
converges to critical points and that, if one of the minimizers meets a natural
geometrical condition, the algorithm eventually detects the smooth substructure
and converges at a quadratic speed (Theorems 3.2 and 3.3). We also observed
this fast convergence numerically on classical structured regression problems.
In Chapter 4, we studied the local structure of functions that write as a

composition of a nonsmooth function with a smooth mapping. When the
proximity operator of the nonsmooth function is explicitly available, we showed
that it can be used to detect the smooth substructure of minimizers of the full
function (Theorem 4.4). We used this information to propose a local Newton
method that minimizes the objective by exploiting the detected structure
(Algorithm 4.1). This method is guaranteed to identify the structure of the
minimizer and to converge quadratically (Theorem 4.7), which we illustrated
on two popular nonsmooth problems.

In Chapter 5, we also considered theminimization of composite functions, but
from a global perspective. We proposed preliminary results aimed at designing
an algorithm that converges from any starting point, and with the same local
guarantees as the Newton algorithm of Chapter 4. There, we touched more
closely than before the difficulties of globalization and of the combinatorial
aspect brought by identification. We showed that linesearch SQP method, with
a correction term, still retains the fast local Newton rate (Theorem 5.6). We also
proposed an optimality criterion for algorithms that explicitly use the smooth
substructure of nonsmooth functions. While a theoretically sound combination
of linesearch and identification procedure has yet to be reached, we illustrated
numerically the behavior of a heuristic global Newton algorithm (Algorithm 5.2)
on two nonsmooth problems.

Nonsmooth optimization is an exciting field; we are glad to have obtained
some results and proposed promising algorithms. During this PhD, we dis-
covered the beauties and difficulties of nonsmoothness; in particular, we have
faced many technical challenges. Some of them were quite subtle, and probably
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explain why interest in structure exploitation slowed down after founding
contributions in the 2000s, including Mifflin and Sagastizábal (2005); Lewis
(2002), central in this work. We are glad to note a renewed interest in such
questions, with e.g., Han and Lewis (2023); Davis and Drusvyatskiy (2019); Lee
(2023). Facing these challenges allowed us to propose several refined technical
results, such as the description of identification of the proximal gradient away
from minimizers, or the precise description of the proximity operator behavior
relative to its stepsize. On the other hand, the question of globalizing the local
Newton method for composite minimization, discussed in Chapter 5, proved
to be particularly delicate for us. The recent preprint Davis et al. (2021) was
released timely, providing a rich theoretical framework based on Whitney
stratification of definable functions. This approach sheds an interesting light on
the globalization question, allowing the preliminary developments of Chapter 5.
The key in Chapter 5, and more generally in this thesis, was to combine a

theoretical study of the nonsmoothness, a review of the recent literature, and
thorough numerical experimentation. Comparing theoretical ideas with their
behavior in practice was, for us, a very effective way to build and refine intuition
on the behavior of methods or procedures. From that point, seeking out fine
geometrical reasons for these intuitions brought forth most results of this thesis.
Along the way, we encountered many interesting questions, ranging from

intriguing technical facts to appealing applications. While some questions
remained at the stage of remarks, others led to promising developments. I
list below some of these questions: first, the questions regarding applications
to specific problems, and second, those regarding extensions of the results
presented in this thesis.

additive settings with several nonsmooth functions. Chapter 3
considered additive functions with two elements. One could consider the
wider setting of functions that write as 5 + 6 + ℎ(!·) with one smooth and two
nonsmooth functions with an explicit prox. This function can be written as a
composition of a smooth map and a nonsmooth function with an explicit prox,
that appear in signal processing e.g., 3d mesh denoising (Repetti et al., 2015;
Thouvenin et al., 2022). The composition-based methods of Chapters 4 and 5
thus apply. How would these methods compare to the splitting methods such
Condat-VU (Condat, 2013; Vũ, 2013) or three-operator splitting (Davis and Yin,
2017)? Can these two approaches be combined to obtain a globally convergent
and locally fast algorithm akin to the Riemannian acceleration of Chapter 3? I
would like to explore these questions in a medium run.

minimization of smooth functions over projection-explicit sets. The
additive setting of Chapter 3 captures the minimization of a smooth function
over a set which admits an explicit projection; it suffices to take 6 as the indicator
function of the set. In this wide setting, let us underline the minimization of
quadratics over the simplex, which forms the bundle subproblem (Bonnans
et al., 2006, Eq. 10.9), or on the spectraplex, which appears in the spectral bundle
(Helmberg et al., 2014, Sec. 5.2) (and in Chapter 5). The interest of the algorithm
of Chapter 3, in this case a Newton acceleration of the projected gradient, is the
identification of the minimizer smooth substructures, which corresponds to the
active constraints. This is indeed the relevant information for the mentioned
problems: finding the active linear functions for the bundle subproblem, or the
rank of the matrix that minimizes over the spectraplex. These problems are
respectively dealt with by a specific QP solver on the simplex (Kiwiel, 1986),



conclusion & perspectives 99

or heuristically in Helmberg et al. (2014). An interesting direction would thus
be to adapt the algorithm of Chapter 3 to this setting, and investigate their
applicability in the above settings. Notably, this requires adapting linesearches
to extended-value functions.

We now turn to perspectives to improve the algorithms and results present
in this thesis.

improve the global efficiency of newton acceleration of proxgrad.
The Newton acceleration of the proximal gradient converges fast around
minimizers, as discussed in Chapter 3. However, the observed convergence rate
away from minimizers is still similar to that of the proximal gradient. Several
extensions are possible.
First, both building blocks can be refined: the truncation strategy used in

Chapter 3 was a first attempt to improve on the plain Newton method but other
Newton accelerations could be considered (e.g., trust-region (Absil et al., 2007),
cubic regularization (Agarwal et al., 2021)), as well as other proximal algorithms
(e.g., prox-Newton (Lee et al., 2014), fast proximal gradient (Beck and Teboulle,
2009)).

Second, computing aproximal gradient canbe costly in some settings e.g., with
nuclear-norm regularization of large problems, since it amounts to computing
an SVD. For such problems, the Burrer-Monteiro (Waldspurger, 2021) approach
represents the low-rank iterates in factorized form. Could this approach be
adapted for the Riemannian acceleration of the proximal gradient? One could
consider an algorithm which performs at each step either a proximal gradient
step or a Riemannian step, and try to limit the number of prox steps. How to
decide weather it is beneficial to perform an identification or a Riemannian
step? How often should an identification step, less efficient than a Riemannian
step, be performed? Going step further, can the proximal gradient be altogether
replaced by a computationally lighter identification procedure? Ideas from
Chapter 5 could help.

identification near nonqualified minimizers. In practical settings
the minimizers can be non-qualified, which means that both 0 ∈ %�(Ḡ) and
0 ∉ ri %�(Ḡ) hold, at least numerically. This setting was studied for “mirror-
stratifiable” functions of Fadili et al. (2018). It leads to a “sandwhich” identifica-
tion behavior: the algorithm provably converges to one of a subset of structure
manifolds, and in practice, it often identifies the manifold with largest dimen-
sion. What is the behavior of the algorithms introduced in this thesis on non
qualified problems? Do they retain some identification and local convergence
properties? More generally, how can this partial substructure be exploited?

generality of properties normal ascent and curve. The developments
of Chapter 4 required the introduction of Properties 4.1 and 4.2, which hold on
our examples. How constraining are these properties? Regarding the normal
ascent property, as discussed on an example, it seems a linear tilt along a normal
direction could ensure it holds. Can this remark be formalized and integrated
to the theory properly? Besides, the curve property was proved to hold at
any nonsmooth points of the maximum and maximum eigenvalue functions.
For what function does this property fails? Is there a simple criterion on the
nonsmooth function that ensures this property?
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APPENDIX





A
ELEMENTARY RESULTS ON THE PROXIMAL GRADIENT
AND RIEMANNIAN OPTIMIZATION

In this appendix, we provide elementary, though usefull, technical results and
tools that are useful in our developments. These results may be seen as folklore

knowledge, and appear more or less explicitly in the literature.

a.1 technical results on riemannian manifolds

We first state Riemannian sufficient optimality conditions (Lemma A.1), then
build a specific retraction (Proposition A.2), and finally show that Euclidean
and Riemannian distances are locally equivalent (Lemma A.4).

a.1.1 Sufficient optimality conditions

Using Taylor extension on smooth curves (see e.g., Boumal (2022, Chap 4.2,
6.1)), we recover in the Riemannian setting sufficient optimality conditions for
strong minimizers.

Used to prove
Theorem 3.1.Lemma A.1 (Sufficient optimality conditions). Consider a manifold M embedded

in R= , a point Ḡ ofM and a function 5 defined on a neighborhood of Ḡ inM for which
Ḡ is a strong minimizer i.e., for all G near Ḡ in ",

5 (G) ≥ 5 (Ḡ) + 22 ‖G − Ḡ‖
2.

Then, there holds

grad 5 (Ḡ) = 0 and Hess 5 (Ḡ) � 2�.

Proof. Let � ∈ )ḠM and denote � a geodesic going through Ḡ with velocity �
at C = 0. The quadratic growth assumption can be applied at G = �(C), which
allows to write

1
C
( 5 ◦ �(C) − 5 ◦ �(0)) ≥ 2

2

�(C) − �(0)√
C

2
.

Taking the limit C → 0 yields 〈grad 5 (Ḡ),�〉 ≥ 0. The same reasoning holds with
G = �(−C) and yields the converse inequality, so that 〈grad 5 (Ḡ),�〉 = 0.
Besides, summing the quadratic growth conditions applied at �(C) and �(−C)

provides

1
C2
( 5 ◦ �(C) − 2 5 ◦ �(0) + 5 ◦ �(−C)) ≥ 2

2

�(C) − �(0)C

2
+ 22

�(−C) − �(0)C

2
.
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x

η ∈ TxM

Rx(η)

M

Figure A.1: Illustration of the Orthographic retraction (Proposition A.2).

Taking the limit as C → 0 yields 〈Hess 5 (H̄)[�],�〉 ≥ 2‖�‖2. As � is picked
arbitrarily in )ḠM, the results are obtained. �

a.1.2 Orthographic retraction
This term echoes the

orthographic map
projection of Earth.

We introduce a specific retraction and show it is a second-order retraction (Absil
and Malick, 2012). This retraction was introduced in Miller and Malick (2005,
Th. 2.2), before the notions of (second-order) retraction became established; it is
illustrated in Fig. A.1.

Used to prove
Lemma A.4

and Theorem 5.6
Proposition A.2 . Consider a ?-dimensional C:-submanifold M of R= around a
point Ḡ ∈ M. The mapping R : )B → M, defined for (G,�) ∈ )B near (Ḡ, 0)
by projG(R(G,�)) = � defines a second-order retraction near (Ḡ, 0). The point-wise
retraction, defined as RG = R(G, ·), is locally invertible with inverse R−1

G = projG .

Proof. LetΨ : R= → R=−? denote a C: function defining M around Ḡ: for all
G close enough to Ḡ, there holds G ∈M⇔ Ψ(G) = 0, and DΨ(G) is surjective.
Consider the equation Φ(G,�C ,�=) = 0 around (Ḡ, 0, 0), with

Φ :
{
G,�C ,�= : G ∈M,�C ∈ )GM,�= ∈ #GM

} → R

G,�C ,�= ↦→ Ψ(G + �C + �=).

The partial differential D�= Φ(Ḡ, 0, 0) is, for �= ∈ #ḠM,

D�= Φ(Ḡ, 0, 0)[�=] = DΨ(Ḡ)[�=].

Since Ḡ ∈M, D�= Φ(Ḡ, 0, 0) is surjective from#ḠM to R=−? so its a bĳection. The
implicit function theorem provides the existence of neighborhoods N 1

Ḡ ⊂M,
N 2

0 ⊂ ∪G∈M)GM, N 3
0 ⊂ ∪G∈M#GM and a unique C: function �= : N 1

Ḡ ×N 2
0 →

N 3
0 such that, for all G ∈ N 1

Ḡ , �C ∈ N 2
0 and �= ∈ N 3

0 , �=(Ḡ, 0) = 0 and

Φ(G,�C ,�=(G,�C)) = 0⇔ G + �C + �=(G,�C) ∈M.

It also provides an expression for the partial derivative of �= at (G, 0) along �C :
for �C ∈ )GM,

D�C �=(G, 0)[�C] = −
[
D�= Φ(G, 0, 0)]−1 D�C Φ(G, 0, 0)[�C].

As noted before, D�= Φ(G, 0, 0) is bĳective since G ∈M. Besides, D�C Φ(G, 0, 0) =
DΦ(G)[�C] = 0 since )GM identifies as the kernel of DΦ(G). Thus D�C �=(G, 0) =
0.
Now, define a map R : N 1

Ḡ ×N 2
0 →M by R(G,�C) = G + �C + �=(G,�C). This

map has degree of smoothness C: since �= is C: , satisfies R(G, 0) = G since
�=(G, 0) = 0 and satisfies D�C �=(G, 0) = � +D�C (G, 0) = �. Thus R defines a
retraction on a neighborhood of (Ḡ, 0).
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We turn to show the second-order property of R. Consider the smooth curve
2 defined as 2(C) = R(G, C�) for some G ∈ N 1

Ḡ , �C ∈ )GM∩N 2
0 . It’s first derivative

writes
2′(C) = � +D�C �=(G, C�)[�] = �.

The acceleration of the curve 2 is obtained by computing the derivative of 2′(·)
in the ambient space and then projecting onto )GM. Thus 2′′(C) = 0 and in
particular, 2′′(0) = 0 which makes R a second-order retraction. �

a.1.3 Euclidean spaces and manifolds, back and forth

We show here that, locally, the Euclidean and Riemannian distances are equiva-
lent.

This result is used to
prove Theorem B.1
and Lemma A.4.

Lemma A.3 . Consider a point Ḡ of a Riemannian manifold M, equipped with a
retraction R such that RḠ is C2. For any � > 0, there exists a neighborhood NḠ of Ḡ in
M such that

(1− �)distM(G, Ḡ) ≤ ‖ R−1
Ḡ (G)‖ ≤ (1+ �)distM(G, Ḡ) for all G ∈ NḠ .

where R−1
Ḡ : M→ )ḠM is the smooth inverse of RḠ defined locally around Ḡ.

Proof. The retraction at Ḡ canbe inverted locally around 0. Indeed, asD RḠ(0)ḠM) =
� is invertible and RḠ is C2, the implicit function theorem provides the existence
of a C2 inverse functionR−1

Ḡ : M→ )ḠMdefined locally around Ḡ. Furthermore,
one shows by differentiating the relation RḠ ◦R−1

Ḡ that the differential of R−1
Ḡ at

Ḡ is the identity.
We consider the function 5 : M→ Rdefinedby 5 (G) = ‖ logḠ(G)‖ − ‖ R−1

Ḡ (G)‖.
Clearly 5 (Ḡ) = 0, and D 5 (Ḡ) = 0 as the differentials of both R−1

Ḡ and logarithm
at Ḡ are the identity. In local coordinates Ĝ = logḠ G around Ḡ, 5 is represented
by the function 5̂ = 5 ◦ expḠ : )ḠM→ R. As 5̂ ( ˆ̄G) = 0, D 5̂ ( ˆ̄G) = 0 and 5̂ is C2,
there exists some � > 0 such that

−�‖ Ĝ − ˆ̄G‖2 ≤ 5̂ (Ĝ) ≤ �‖ Ĝ − ˆ̄G‖2 in a neighborhood N̂ of ˆ̄G,.

For any � > 0, by taking a small enough neighborhood N̂′ ⊂ N̂, there holds

−�‖ Ĝ − ˆ̄G‖ ≤ 5̂ (Ĝ) ≤ �‖ Ĝ − ˆ̄G‖.

Thus for all G in NḠ = RḠ(N̂′),

−�‖ logḠ(G)‖ ≤ ‖ logḠ(G)‖ − ‖ R−1
Ḡ (G)‖ ≤ �‖ logḠ(G)‖,

as Ĝ = logḠ(G), ˆ̄G = 0. We conclude with distM(G, Ḡ) = ‖ Ĝ − ˆ̄G‖ = ‖ logḠ(G)‖. �
Used in to prove
Theorem 3.3.Lemma A.4 . Consider a point Ḡ of a Riemannian manifold M. For any � > 0, there

exists a neighborhood NḠ of Ḡ in M such that, for all G ∈ NḠ ,

(1− �)distM(G, Ḡ) ≤ ‖G − Ḡ‖ ≤ (1+ �)distM(G, Ḡ),

where ‖G − Ḡ‖ is the Euclidean distance in the ambient space.

Proof. Let Ḡ, G denote two close points onM. Consider the tangential retraction
introduced in Proposition A.2. As a retraction, it satisfies:

RḠ(�) = RḠ(0) +D RḠ(0)[�] +O(‖�‖2) = Ḡ +O(‖�‖2).
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Taking G = RḠ(�) allows to write G = Ḡ +O(‖ R−1
Ḡ (G)‖2), so that for any small

�1 > 0, there exists a small enough neighborhoodN 1
Ḡ ⊂ NḠ of Ḡ inM such that

(1− �1)‖ R−1
Ḡ (G)‖ ≤ ‖G − Ḡ‖ ≤ (1+ �1)‖ R−1

Ḡ (G)‖.

By Lemma A.3, for �2 > 0 small enough, there exists a neighborhood N 2
Ḡ ⊂ NḠ

of Ḡ such that,

(1− �2)distM(G, Ḡ) ≤ ‖ R−1
Ḡ (G)‖ ≤ (1+ �2)distM(G, Ḡ). �

With �1, �2 such that 1− � = (1− �1)(1− �2), we combine the two estimates to
conclude.

a.2 technical results on the proximal gradient.

Out of completeness, we present below basic results about the proximal gradient
along with their proofs. We refer to Beck (2017, Chap. 10) for a general reference
on the topic.

This first lemma ensures functional descent of the proximal gradient, as soon
as the stepsize � is lower than 1/!.

This result is used to
prove Theorem 3.2. Lemma A.5 (Functional descent). Let Assumption 3.1 hold. For any H ∈ R= , � ∈

R+, and G ∈ prox�6(H − �∇ 5 (H)), we have

�(G) + 1− �!
2� ‖G − H‖2 ≤ �(H).

Proof. By definition,

G ∈ arg min
D∈R=

(
6(D) + 1

2� ‖D − (H − �∇ 5 (H))‖
2
)

= arg min
D∈R=

(
5 (H) + 〈∇ 5 (H), D − H〉 + 6(D) + 1

2� ‖D − H‖
2
)

︸                                                      ︷︷                                                      ︸
,BH (D)

and the optimality of G implies that BH(G) ≤ BH(H), i.e.,

5 (H) + 〈∇ 5 (H), G − H〉 + 6(G) + 1
2� ‖G − H‖

2 ≤ 5 (H) + 6(H).

Finally, the !-Lipschitz continuity the gradient of 5 implies that 5 (G) ≤
5 (H) + 〈∇ 5 (H), G − H〉 + !/2‖H − G‖2 (Bauschke and Combettes, 2017, Th. 18.15).
Combined with the previous equation, this yields the result. �

This second lemma links the output of the proximal gradient operator and
the subdifferential of �, see Bolte et al. (2015, Prop. 13).

This result is used to
prove Theorem 3.2. Lemma A.6 (Bound on distance to subdifferential). Let Assumption 3.1 hold. For

any H ∈ R= , � ∈ R+, and G = prox�6(H − �∇ 5 (H)), we have

dist(0, %�(G)) ≤ !� + 1
�
‖H − G‖.
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Proof. The first order optimality condition defining G are

0 ∈ %6(G) + 1
�
(G − (H − �∇ 5 (H))) ⇔ 0 ∈ %6(G) + ∇ 5 (G) + G − H

�
+∇ 5 (H) − ∇ 5 (G),

which can be rewritten as H−G
� + ∇ 5 (G) − ∇ 5 (H) ∈ %�(G). Using the !-Lipschitz

continuity of ∇ 5 yields the following bound:

dist(0, %�(G)) ≤
 H − G�

+ ∇ 5 (G) − ∇ 5 (H)
 ≤ (

1
�
+ !

)
‖H − G‖. �

Finally, we show below that any critical point of the proximal-gradient
minimization problem is actually a strong local minimizer, provided that 6 is
prox-regular there. This result appears more or less explicitly in some articles,
including Daniilidis et al. (2006).

This result is used to
prove Theorem 3.1.Lemma A.7 . Let 5 and 6 denote two functions and Ḡ, H̄ two points such that 5 is

differentiable at H̄ and 6 is A-prox-regular at Ḡ for subgradient 1
� (H̄ − Ḡ) − ∇ 5 (H̄) ∈

%6(Ḡ) with � ∈ (0, 1/A). Then, the function �H̄ : G ↦→ 6(G) + 1
2� ‖ H̄ − �∇ 5 (H̄) − G‖2

satisfies

�H̄(G) ≥ �H̄(Ḡ) + 1
2

(
1
�
− A

)
‖G − Ḡ‖2, for all G near Ḡ.

Proof. Prox-regularity of 6 at Ḡ with subgradient 1
� (H̄ − �∇ 5 (H̄) − Ḡ) ∈ %6(Ḡ)

writes
6(G) ≥ 6(Ḡ) + 1

�
〈H̄ − �∇ 5 (H̄) − Ḡ, G − Ḡ〉 − A2 ‖G − Ḡ‖

2.

The identity 2〈1 − 0, 2 − 0〉 = ‖1 − 0‖2 + ‖2 − 0‖2 − ‖1 − 2‖2 applied to the
previous scalar product yields:

6(G) ≥ 6(Ḡ) + 1
2� ‖ H̄ − �∇ 5 (H̄) − Ḡ‖

2 + 1
2� ‖G − Ḡ‖

2 − 1
2� ‖ H̄ − �∇ 5 (H̄) − G‖

2

− A2 ‖G − Ḡ‖
2,

which rewrites

6(G) + 1
2� ‖ H̄ − �∇ 5 (H̄) − G‖

2︸                               ︷︷                               ︸
=�H̄ (G)

≥ 6(Ḡ) + 1
2� ‖ H̄ − �∇ 5 (H̄) − Ḡ‖

2︸                               ︷︷                               ︸
=�H̄ (Ḡ)

+ 1
2

(
1
�
− A

)
‖G − Ḡ‖2,

which is the claimed inequality. �





B
TECHNICAL RESULTS ON RIEMANNIAN OPTIMIZATION

In this appendix, we provide some results on Riemannian optimization that
are important in our developments, and that we have not been able to locate

in the existing literature.

b.1 acceptation of the unit stepsize by riemannian line search algo-
rithms

We provide here a technical result used in the proofs of Section 3.5. Theorem B.1
ensures that a step providing superlinear improvement towards a strong mini-
mizer locally decreases function value. Such a step is thus directly acceptable
by an Armĳo line search. The result and proof adapt Bonnans et al. (2006, Th.
4.16) to the Riemannian setting.

Theorem B.1 (Soundness of the Riemannian line search). Consider a manifold
M equipped with a retraction R and a twice differentiable function 5 : M → R

that admits a strong local minimizer G★, that is, a point such that Hess 5 (G★) is positive
definite. If G is close to G★, � brings a superlinear improvement towards G★, that
is distM(RG(�), G★) = >(distM(G, G★)) as G → G★, and 0 < <1 < 1/2, then � is
acceptable by the Armĳo rule (3.12) with unit stepsize  = 1.

Proof. Let G,� ∈ )B denote apair such that G is close to G★ anddistM(RG(�), G★) =
>(distM(G, G★)). For convenience, let G+ = RG(�) denote the next point.
Following Absil et al. (2009a) (see e.g. the proof of Th. 6.3.2), we work in

local coordinates around G★, representing any point G ∈ M by Ĝ = logG★(G)
and any tangent vector � ∈ )GM by �̂G = D logG★(G)[�]. The function 5 is
represented by 5̂ = 5 ◦ expG★ : )G★M → R. Defining the coordinates via the
logarithm grants the useful property that the Riemannian distance of any two
points G, H ∈Mmatches the euclidean distance between their representatives:
distM(G, H) = ‖ Ĝ − Ĥ‖. Besides, there holds

D 5 (G)[�] = D 5̂ (Ĝ)[�̂] and Hess 5 (G)[�,�] = D 5̂ (Ĝ)[�̂, �̂]. (B.1)

Indeed, D 5 (G)[�] = ( 5 ◦ �)′(0) and Hess 5 (G)[�,�] = ( 5 ◦ �)′′(0), where �

denotes the geodesic curve defined by �̂(C) = Ĝ + C�̂. Using 5 ◦ � = 5̂ ◦ �̂, one
obtains the result.
Step 1. We derive an approximation of D 5 (G)[�] = 〈grad 5 (G),�〉 in terms

of D2 5̂ (Ĝ★)[Ĝ − Ĝ★]2. To do so, we go through the intermediate quantity
D 5̂ (Ĝ)[Ĝ+ − Ĝ], and handle precisely the >(·) terms. By smoothness of 5̂ and
since D 5̂ (Ĝ★) = 0, Taylor’s formula for D 5̂ writes

D 5̂ (Ĝ)[Ĝ+ − Ĝ] = D2 5̂ (Ĝ★)[Ĝ+ − Ĝ, Ĝ − Ĝ★] + >(‖ Ĝ − Ĝ★‖2)

115
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= −D2 5̂ (Ĝ★)[Ĝ − Ĝ★]2 +D2 5̂ (Ĝ★)[Ĝ+ − Ĝ★, Ĝ − Ĝ★] + >(‖ Ĝ − Ĝ★‖2)
= −D2 5̂ (Ĝ★)[Ĝ − Ĝ★]2 + >(‖ Ĝ − Ĝ★‖2),

where, in the last step, we used that ‖ Ĝ+ − Ĝ★‖ = >(‖ Ĝ − Ĝ★‖) to get that
‖D2 5̂ (Ĝ★)[Ĝ+ − Ĝ★, Ĝ − Ĝ★]‖ = ‖D2 5̂ (Ĝ★)‖‖ Ĝ+ − Ĝ★‖‖ Ĝ − Ĝ★‖ = >(‖ Ĝ − Ĝ★‖2).
We now turn to show thatD 5̂ (Ĝ)[Ĝ+ − Ĝ] behaves asD 5 (G)[�]up to >(‖ Ĝ+ − Ĝ‖2).
Since D 5 (G)[�] = D 5̂ (Ĝ)[�̂] by (B.1), there holds:

‖D 5 (G)[�]−D 5̂ (Ĝ)[Ĝ+− Ĝ]‖ = ‖D 5̂ (Ĝ)[�̂−(Ĝ+− Ĝ)]‖ ≤ ‖D 5̂ (Ĝ)‖‖�̂−(Ĝ+− Ĝ)‖.

As 5 is twice differentiable and exp is C∞, 5̂ is twice differentiable as well. In
particular its derivative is locally Lipschitz continuous, so that for Ĝ near Ĝ★, we
obtain a first estimate:

‖D 5̂ (Ĝ)‖ = ‖D 5̂ (Ĝ) −D 5̂ (Ĝ★)‖ = O(‖ Ĝ − Ĝ★‖).

Besides, the following estimate holds ‖�̂ − (Ĝ+ − Ĝ)‖ = >(‖ Ĝ − Ĝ★‖). Indeed,
as the function logG★ ◦RG : )GM → )G★M is differentiable, there holds for
� ∈ )GM small,

logG★(RG(�)) = logG★(RG(0)) +D logG★(RG(0))[D RG(0)[�]] + >(‖�‖),

which simplifies to Ĝ+ = Ĝ + �̂ + >(‖�‖). Lemma A.3 allows to write ‖�‖ =
‖ R−1

G (G+)‖ = O(distM(G, G+)). Using the triangular inequality and the assump-
tion that distM(G+, G★) = >(distM(G, G∗))we get

distM(G, G+) ≤ distM(G, G★) + distM(G★, G+) = O(distM(G, G∗)) = O(‖ Ĝ − Ĝ★‖),

so that the second estimate holds.

Combining the two above estimates allows to conclude that

‖D 5 (G)[�] −D 5̂ (Ĝ)[Ĝ+ − Ĝ]‖ = >(‖ Ĝ − Ĝ★‖2),

so that overall,

D 5 (G)[�] = D 5̂ (Ĝ)[Ĝ+ − Ĝ] + >(‖ Ĝ − Ĝ★‖2) = −D2 5̂ (Ĝ★)[Ĝ − Ĝ★]2 + >(‖ Ĝ − Ĝ★‖2).

Using that ‖ Ĝ − Ĝ★‖ = distM(G, G★) and D2 5̂ (Ĝ★) = Hess 5 (G★) (B.1), we
obtain

D 5 (G)[�] = −Hess 5 (G★)[Ĝ − Ĝ★]2 + >(distM(G, G★)2). (B.2)

Step 2. The function 5 admits a second-order development around G★: ap-
plying Eq. (2.3) with the exponential map expG★ as a second-order retraction
yields

5 (G) = 5 (G★) + 1
2 Hess 5 (G★)[Ĝ − Ĝ★]2 + >(distM(G, G★)2), (B.3)

where we used that distM(G, G★) = ‖ logG★(G) − logG★(G★)‖. Denote 0 < ; ≤ !
the lower and upper eigenvalues of Hess 5 (G★). The combination (B.3)+<1(B.2)
writes

5 (G) +<1 D 5 (G)[�] = 5 (G★) + (12 −<1)Hess 5 (G★)[Ĝ − Ĝ★]2 + >(distM(G, G★)2)
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≥ 5 (G★) + (12 −<1); distM(G, G★)2 + >(distM(G, G★)2),

Let � > 0 such that 1
2!�

2 < ( 12 −<1);. As distM(G+, G★) = >(distM(G, G★)), for
G close enough to G★ there holds distM(G+, G★) ≤ �distM(G, G★). Combining
this with the second-order development of 5 at G+, there holds:

5 (G+) = 5 (G★) + 1
2 Hess 5 (G★)[Ĝ+ − Ĝ★]2 + >(distM(G+, G★)2)

≤ 5 (G★) + 1
2!distM(G+, G★)2 + >(distM(G+, G★)2)

≤ 5 (G★) + 1
2!�

2 distM(G, G★)2 + >(distM(G, G★)2).

Subtracting the two estimates yields

5 (G+) − ( 5 (G) +<1 D 5 (G)[�]) ≤
(

1
2!�

2 − (12 −<1);
)

distM(G, G★)2

+ >(distM(G, G★)2),

which ensures that the Armĳo condition is satisfied. �

b.2 riemannian derivatives of the nuclear norm

We compute in Lemma B.2 the derivatives of the matrices involved in the
singular value decomposition. These results may be seen as part of folklore,
but, up to our knowledge, there are not explicitly written in the literature. Based
on these derivatives, we compute in Proposition B.3 the Riemannian gradient
and Hessian of the trace-norm function.

Lemma B.2 . Consider the manifold of fixed rank matricesMA , a pair (G,�) ∈ )B and
a smooth curve 2 : � →MA such that 2(0) = G, 2′(0) = �. Besides, let*(C), Σ(C),+(C)
denote smooth curves of (C(<, A), RA×A , (C(=, A) such that �(C) = *(C)Σ(C)+(C)>. The
derivatives of the decomposition factors at C = 0 write

*′ = *
(
� ◦ [

*>�+Σ+Σ+>�>*] ) + (�< −**>)�+Σ−1

+′ = +
(
� ◦ [

Σ*>�+ ++>�>*Σ] ) + (�= −++>)�>*Σ−1

Σ′ = �: ◦
[
*>�+

]
,

where �: is the identity of R:×: , ◦ denotes the Hadamard product and � ∈ RA×A is such
that �8 9 = 1/(Σ2

9 9 −Σ2
88) if Σ9 9 ≠ Σ88 , and �8 9 = 0 otherwise. Equivalently, when the

tangent vector is represented as � = *"+> +*?+> +*+>? , the above expressions
simplify to

*′ = *
(
� ◦ [

"Σ+Σ">] ) +*?Σ−1

+′ = +
(
� ◦ [

Σ" +">Σ] ) ++?Σ−1

Σ′ = �: ◦",

Proof. We consider the curve � and all components and derivatives at C = 0,
therefore we don’t mention evaluation time. Differentiating � = *Σ+> yields

� = *′Σ+> +*Σ′+> +*Σ+′> (B.4)
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As a tangent vector to the Stiefel manifold at point* ,*′ can be expressed as
Absil et al. (2009a, Ex. 3.5.2)

*′ = *Ω* +*⊥�* , (B.5)

where Ω* ∈ RA×A is a skew-symmetric matrix, �* ∈ R<−A×<−A , and*⊥ is any
matrix such that *>*⊥ = 0 and *>⊥*⊥ = �<−A . Similarly, +′ = +Ω+ ++⊥�+ ,
whereΩ+ ∈ RA×A is skew-symmetric, �+ ∈ R=−A×=−A , and+⊥ is any matrix such
that +>+⊥ = 0 and +>⊥+⊥ = �=−A .

Computing*> × (B.4)×+ yields

*>�+ = Ω*Σ+Σ′ +ΣΩ>+ .

Looking at the diagonal elements of this equation yields the derivative of the
diagonal component of �. This is done by taking the Hadamard product of both
sides of previous equation with the identity matrix of RA×A , and writes

Σ′ = �A ◦
[
*>�+

]
.

The off-diagonal elements of this equation write

�̄A ◦
[
*>�+

]
= Ω*Σ+ΣΩ>+ , (B.6)

where �̄A has zeros on the diagonal and ones elsewhere. Adding (B.6)Σ and
Σ(B.6)> yields

�̄A ◦
[
*>�+Σ+Σ+>�>*]

= Ω*Σ2 −Σ2Ω* ,

which decouples coefficient-wise. At coefficient (8 9), with 8 ≠ 9,[
*>�+Σ+Σ+>�>*]

8 9 = [Ω* ]8 9
(
Σ2
9 9 −Σ2

88

)
,

hence Ω* = � ◦ [
*>�+Σ+Σ+>�>*]

, where � ∈ R<−A×A has zeros on the
diagonal and for 8 ≠ 9, �8 9 = 1/(Σ2

9 9 −Σ2
88) if Σ2

9 9 ≠ Σ
2
88 , 0 otherwise. Besides,

left-multiplying (B.4) by *>⊥ yields *>⊥� = *>⊥*′Σ+>, which rewrites, using
the decomposition (B.5) of *′, as *>⊥� = �*Σ+>. Hence �* = *>⊥�+Σ−1 and
we get the complete expression for *′ by assembling the expressions of Ω*

and �* with the decomposition (B.5). The term*>⊥*⊥ is eliminated using that
*>* +*>⊥*⊥ = �< .

Let’s follow the same steps to get expressions for +′. Adding Σ(B.6) and
(B.6)>Σ yields

�̄A ◦
[
Σ*>�+ ++>�>*Σ]

= Ω+Σ2 −Σ2Ω+ ,

from which we get Ω+ = � ◦
[
Σ*>�+ ++>�>*Σ]

. Besides, right-multiplying
(B.4) by +⊥ yields �+⊥ = *Σ+′>+⊥, which rewrites using the decomposition
+′ = +Ω+ ++⊥�+ as �+⊥ = *Σ�>+ . Hence �+ = +>⊥ �>*Σ−1, and we get the
claimed formula by eliminating the +⊥ terms with +>+ ++>⊥+⊥ = �= . The
simplified expressions are obtained using that*>* = �< ,*>*? = 0, +>+ = �=
and +>+? = 0. �

We are now ready to give the expression of the Riemannian gradient and
Hessian of the nuclear norm.
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Proposition B.3 . The nuclear norm 6 = ‖ · ‖∗ restricted to MA is C2 and admits a
smooth second-order development of the form (2.3) near any point G = *Σ+> ∈MA .
Denoting � = *"+> +*?+> +*+>? ∈ )GMA a tangent vector, there holds:

grad 6(G) = *+>
Hess 6(G)[�] = * [

�̃ ◦ (" −">)] +> +*?Σ−1+> +*Σ−1+)
? ,

where ◦ denotes the Hadamard product and �̃ ∈ RA×A is such that �̃8 9 = 1/(Σ9 9 +Σ88)
if Σ9 9 ≠ Σ88 , and �̃8 9 = 0 otherwise.

Proof. Let 2 : � → MA denote a smooth curve over MA such that �(0) = G
and �′(0) = �, and consider ! = ‖2(·)‖∗ : � → R. Writing the decomposition
2(C) = *(C)Σ(C)+(C)>, for *(C), Σ(C), +(C) smooth curves of (C(<, A), RA×A ,
(C(=, A) allows to write !(C) = Tr(Σ(C)). Applying Lemma B.2 yields

!′(0) = Tr(Σ′(0)) = Tr(*>�+) = Tr(�+*>) = 〈�,*+>〉,

so that grad 6(G) = *+> ∈ )-M.
In order to obtain the Riemannian Hessian, let /̄ : � → R= denote a smooth

extension of grad 6(2(·)), defined by /̄(C) = *(C)+(C)>. The RiemannianHessian
is then obtained as Hess 6(G)[�] = projG /̄′(0). The derivative of /̄ at 0 is simply
/̄′(0) = *′+> +*+′> and thus writes, applying Lemma B.2

/̄′(0) = * (
� ◦ [

"Σ+Σ">] ) +> +*?Σ−1+>

+* (
� ◦ [

Σ" +">Σ] )>
+> +*Σ−1+>?

This expression simplifies to the statement by using the fact that � is antisym-
metric and applying the identity (� ◦ �)> = �> ◦ �>. �





C
THE MAXIMUM AND MAXIMUM EIGENVALUE SATISFY THE
NORMAL ASCENT AND CURVE PROPERTIES

In Chapter 3, we built a proximal identification scheme for additive functions
that satisfy some properties. We show here that the maximum and the

maximum eigenvalue indeed meet the normal ascent Property 4.1 and curve
properties Property 4.2.
We begin with a lemma that simplifies verification of Property 4.2.

Lemma C.1 . Consider a function 6, partly smooth at a point H̄ relative to a manifold
M6 , and a smooth application 4 : NH̄ × [0,)] →M6 defined for a neighborhood NH̄

of H̄ and ) > 0 such that 4(H, 0) = projM6 (H), 3
3C 4(H, C)|C=0 = −grad 6(projM6 (H)).

If D
(
C ↦→ proj#4(H,C)M6 (projM(H) − H)

)
= 0 for all H ∈ NH̄ , then 6 satisfies Prop-

erty 4.2 at point H̄.

Proof. We denote �(H, C) = proj#4(H,C)M6 (4(H, C) − H). First,

3
3C
�(H, C)|C=0 =D

(
C ↦→ proj#4(H,C)M6 (projM6 (H) − H)

)
+ proj#projM(H)M6

(
D(C ↦→ (4(H, C) − H))(0)) ,

where the first term is null by assumption and the second is also null since
it is the normal projection of the tangent vector grad 6(projM6 (H)). Thus,
3
3C�(H, C)|C=0 = 0. Using this fact and smoothness of �, Taylor’s theorem with
Lagrange remainder yields, for all H ∈ NH̄ , the existence of C̄ ∈ [0,)] such that,
for all C ∈ [0,)],

�(H, C) = �(H, 0) + C
2

2
32

3C2
�(H, C̄).

Therefore, for all H ∈ NH̄ and C ∈ [0,)],

‖�(H, C)‖ ≤ ‖�(H, 0)‖ + C
2

2 sup
C̄∈[0,)]

32

3C2
�(H, C̄) ≤ ‖�(H, 0)‖ + C2!̃,

where !̃ = supH∈NH̄
supC̄∈[0,)]

32

3C2 �(H, C̄). �

We can now proceed with the proof of Lemma 4.3, divided into two parts
corresponding to the two cases of the result. The case 6 = max comes easily,
due to the polyhedral nature of the function.

Lemma C.2 . Consider 6 = max, a point H̄ ∈ R< and the corresponding structure
manifoldMmax

� (of Example 4.3). Then Properties 4.1 and 4.2 hold at H̄.

Proof. Normal ascent Take H ∈Mmax
� for some active indices � ⊂ {1, . . . ,<}. A

normal direction 3 ∈ #HMmax
� is such that 38 = 0 for 8 ∉ � and

∑
8∈� 38 = 0. Thus
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max(H + C3) = H8 + C38 with 8 = arg max8 38 , and D max(H)[3] = limC↘0(max(H +
C3) −max(H))/C = 38 > 0 for all 3 ≠ 0.

Curve assumption Since the structure manifold of max are affine subspaces, the
normal spaces are equal at all points of the manifold. Therefore the derivative
of the projection at a parametrized point is null and Lemma C.1 provides the
result. �

The case 6 = �max is not difficult per se, but requires a precise description of
the geometry of the maximum eigenvalue function and its structure manifolds;
we refer to Shapiro and Fan (1995); Oustry (1999) for the derivation of these
tools.

Lemma C.3 . Consider 6 = �max , a point H̄ ∈ S< and the corresponding structure
manifold M�max

A (of Example 4.4). Then Properties 4.1 and 4.2 hold at H̄.

Proof. Normal ascent Take H ∈M�max
A , let * ∈ R<×A denote a basis of the first

eigenspace of matrix H and 3 ∈ #HM�max
A . The normal space at H ∈ M�max

A
writes (Oustry, 1999, Th. 4.3, Cor. 4.8)

#HM�max
A = {*(H)/*(H)>,/ ∈ SA , trace(/) = 0}.

Therefore, 3 = */*> for some / ∈ SA such that trace(/) = 0. Let B =
*(�/A + /)*> where  > 0 is small enough so that B is positive definite. Since
B has also unit trace, it is a subgradient of �max at H (Oustry, 1999, Th. 4.1).
Thus �′max (H; 3) = supE∈%�max (H)〈E, 3〉 ≥ 〈B, 3〉 = 〈�/A + /,/〉 = ‖/‖2. Hence
�′max (H; 3) > 0 for any 3 ∈ #HM�max

A \ {0}.
Curve assumption Let H̄ ∈ M�max

A . For any H ∈ S< , we denote by %(H)
the orthogonal projection on the eigenspace corresponding to the A largest
eigenvalues of H (counting multiplicities). This operator is smooth. We
can define a mapping * : S< → R<×A such that: *(H)>*(H) = �A , %(H) =
*(H)*(H)>, * is smooth near our reference point H̄ and its derivative at H̄
satisfies D*(H̄)>*(H̄) = 0. The mapping* defines a smooth orthonormal basis
of the eigenspace corresponding to the A largest eigenvalues (Shapiro and Fan,
1995, p. 557). Finally, for a point H′ ∈ M�max

A , the projection of 3 ∈ S< on
#H′M�max

A writes

proj#H′M�max
A
(3) = *(H′)

{
*(H′)>3*(H′) − 1

A
trace(*(H′)>3*(H′))�A

}
*(H′)>.

Now, fix H near H̄, consider the eigenbasis * with reference point 4(H, 0) =
projM�max

A
(H). Following Lemma C.1, let � : C ↦→ proj#4(H,C)M�max

A
(3) with 3 =

projM�max
A
(H) − H. We can now give an explicit expression of �(C) and show that

3
3C �(0) is null. Denoting*(C) = *(4(H, C)), we have

�(C) = *(C)
{
*(C)>3*(C) − 1

A
trace(*(C)>3*(C))�A

}
︸                                             ︷︷                                             ︸

,"(C)

*(C)>.

First, as 3 is a normal vector to M�max
A at point projM�max

A
(H), there exists

/ ∈ SA such that 3 = *(0)/*(0)>. Using that D*(0)>*(0) = 0 yields

D*(0)>3*(0) = D*(0)>*(0)/*(0)>*(0) = 0.
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Then, one readily checks that*(0)D "(0)*(0) = 0.
We turn to the term D*(0)"(0)*(0)>. A quick computation from the eigen

decomposition of H shows that 3 writes *(0)/*(0)>, where / is actually
diagonal. Therefore, "(0) = / − (1/A) trace(/)�A is a diagonal matrix, so that

D*(0)"(0)*(0)> =
A∑
8=1

"(0)88 D*8(0)*8(0)>.

Following Shapiro and Fan (1995), the differential of C ↦→ *(4(H, C)) at C = 0
writes

D*8(0) =
<∑

:=A+1

1
�1 −�:*:(0)*:(0)>�*8(0),

with� = grad�max (projM�max
A
(H)). Using that�max (H) = (1/A)∑A

8=1*8(H)>H*8(H),
we compute the Riemannian gradient: grad�max (H) = (1/A)∑A

8=1*8(H)>*8(H)
(see Boumal (2022, Sec. 7.7)). By orthogonality of the smooth basis of eigenvec-
tors, the terms*:(0)>*8(0) vanish for all 8 ∈ {1, . . . , A} and : ∈ {A + 1, . . . ,<}.
We get that D*(0)"(0)*(0)> = 0, and thus that D �(0) = 0. Thus, Lemma C.1
applies and yields the result. �
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