.

If ℎ(•, ) is convex for all ∈ , then is convex as well. In that case, for a given , solving problem (1.3) provides the function value ( ) and a subgradient ∈ ( ), both potentially noisy if the subproblem is solved approximately. This subgradient gives some local first-order information on This is the so-called "black-box" setting.

the function, akin to the gradient of smooth functions. We come back to this setting in Section 1.1.2.

. In sharp contrast with implicit nonsmoothness, many optimization problems explicitly incorporate some chosen nonsmoothness. This is notably the case for inverse problems stemming from statistical learning and image processing applications, which formalize as nonsmooth (convex) optimization problems; see e.g., the monograph Scherzer et al. (2009). There, the nonsmoothness is willingly added to the problem because it ensures some "low complexity" of the solutions.

, called lasso in the machine learning community:

. In the same spirit, Bach (2008); Candès and Recht (2013) follow the seminal work Fazel et al. (2001) and consider matrix learning problems regularized with the trace norm (the sum of the singular value of the matrix). The obtained solution has again a low complexity -its This setting encompasses e.g., matrix completion and recommender systems tasks see e.g.,

T thesis deals with the optimization of structured nonsmooth functions, which appear for example in machine learning and signal processing. In particular, we consider matrix functions which feature eigenvalue functions and the nuclear norm. Our approach consists in exploiting the structure of these nonsmooth functions to design algorithms that converge fast -at the speed of Newton's method, thus yielding high precision estimates of nonsmooth minimizers.

More precisely, the nondifferentiability points of structured functions organize in smooth manifolds, such that the nonsmooth function is smooth along the manifold and nonsmooth across it. In this thesis, we propose optimization algorithms that detect and exploit these structure manifolds. The two key ingredients in our approach are (i) subtle geometrical properties of the proximal operator, and (ii) algorithmic tools from smooth constrained programming. We operate without assuming knowledge of the optimal structure manifold, and use variational analysis tools to cover both convex and nonconvex settings.

We first consider the minimization of the sum of a smooth function and a nonsmooth function, which encompasses sparse regression problems such as the "lasso". We show that the proximal-gradient operator, well-known for its minimization properties, also identifies relevant structure manifolds. We propose an algorithm that combines this identification information with tools from Riemannian optimization, and prove that it converges locally quadratically. We illustrate numerically this fast convergence on classical learning problems.

We also consider the minimization of the composition between a smooth map and a nonsmooth function. This setting encompasses the minimization of the largest eigenvalue of a smoothly parameterized symmetric matrix. We introduce and characterize a proximal identification tool that detects relevant structure manifolds near arbitrary points. We propose an algorithm that combines this tool with Newton steps for smooth constrained minimization. We prove that, when started near a minimizer, the algorithm exactly identifies its optimal manifold and converges quadratically. We compare our algorithm with state-of-the-art algorithms for nonsmooth optimization.

Thus, the proximal identification procedures proposed in this thesis detect efficiently the relevant manifolds of additive and composite nonsmooth functions. The obtained algorithms are carefully implemented in the Julia language and are released as open-source packages.

iii R É S U M É C thèse traite de l'optimisation de fonctions non-différentiables structurées, qui apparaissent notamment en apprentissage statistique et en traitement du signal. En particulier, nous considérons des fonctions matricielles, qui mettent en jeu les valeurs propres ou la norme nucléaire. Notre approche consiste à exploiter la structure de ces fonctions non-différentiables pour développer des algorithmes qui convergent rapidement -à la vitesse de la méthode de Newton -et qui retournent ainsi des estimations précises des solutions.

Plus précisément, les points de non-différentiabilité des fonctions structurées s'organisent en variétés différentiables, qui captent les directions de différentiabilité dans l'espace tangent et les directions de non-différentiabilité dans l'espace normal. Dans cette thèse, nous proposons des algorithmes qui détectent et exploitent ces variétés de structure. Les deux outils clés pour notre approche sont (i) des propriétés géométriques fines de l'opérateur proximal, et (ii) les méthodes algorithmiques de l'optimisation sous contraintes. Nous raisonnons sans supposer connue la variété optimale, et utilisons les outils de l'analyse variationnelle pour couvrir simultanément les cas convexes et non-convexes.

Nous considérons d'abord la minimisation de la somme d'une fonction différentiable et d'une fonction non-différentiable, cadre qui inclut notamment les problèmes de régression parcimonieuse tels que le "lasso". Nous montrons que l'opérateur gradient-proximal, connu pour ses propriétés de minimisation, identifie aussi les variétés de non-différentiabilité pertinentes. Nous proposons un algorithme qui combine ce résultat d'identification avec des outils de l'optimisation Riemannienne, et montrons qu'il converge localement quadratiquement. Cette convergence rapide est illustrée en pratique sur des problèmes d'apprentissage classiques.

Nous considérons ensuite la minimisation de la composition entre une application différentiable et une fonction non-différentiable. Ce cadre couvre notamment la minimisation de la valeur propre maximale d'une matrice symétrique paramétrée. Nous introduisons et caractérisons un outil d'identification proximale, qui détecte les variétés de non-différentiabilité autour de tout point. Nous montrons que cet outil peut être combiné avec des itérations de Newton de l'optimisation différentiable sous contrainte. Nous démontrons que l'algorithme obtenu détecte localement la variété d'un minimiseur et converge quadratiquement. Nous comparons notre algorithme avec l'état de l'art pour l'optimisation non-différentiable.

Ainsi, les procédés d'identification proximale proposés dans cette thèse sont à même de détecter efficacement les variétés pertinentes des fonctions non-différentiables additives et composites. Les algorithmes obtenus, ainsi que les ressorts numériques sur lesquels ils reposent, sont mis à disposition de la communauté sous forme de paquets Julia open source.
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We consider optimization problems of the form min ∈R ( ) with : R → R ∪ {+∞}

where is not differentiable everywhere. Throughout this thesis, we call such functions nonsmooth. 1 Such nonsmooth optimization problems abound in machine learning, signal processing, and operations research among other fields.

In this introductory section, we first review the main sources of nonsmoothness in applications. Then, we turn our attention to two kinds of first-order methods for minimizing nonsmooth functions. These methods are the counterparts of the gradient method, when the gradient of the objective does not exist everywhere.

Faces of nonsmoothness

In applications, nonsmoothness is produced by some special operations. We review three families of nonsmoothness: implicit, chosen, and in-between.

. Nonsmoothness often appears implicitly: the function to minimize is defined implicitly as the result of another computation. Typically, it is the solution of an optimization subproblem: for a given ∈ R ,

( ) = sup ∈ ℎ( , ).
(1.1) Such nonsmooth functions appear in particular in the decomposition of large-scale or complex problems with, e.g., Lagrangian relaxation, Benders decomposition, or resources decomposition; see [START_REF] Briant | Comparison of bundle and classical column generation[END_REF] for applications in combinatorial optimization and Bonnans et al. (2006, Sec. 8.2-3) for a review of decomposition schemes. Such nonsmoothness also emerges naturally rank is low, and it benefits from improved statistical guarantees.

More generally, many inverse problems formalize as the minimization of

( ) = ( ) + ( ), (1.2)
where is a smooth function and is a nonsmooth function; see the review paper [START_REF] Vaiter | Low complexity regularization of linear inverse problems[END_REF]. In such problems, nonsmoothness is crucial: it is chosen (and sometimes crafted) to enforce a low complexity property on minimizers. This explicit nonsmoothness can also simplify optimization. The nonsmoothness of these problems is usually localized in one or several simpler elements of the split objective function. When simple enough, this nonsmooth function admits a tractable "proximity operator", akin to a gradient step in smooth optimization. Handling each element separately then allows to build optimization methods minimizing nonsmooth objective functions such as e.g., Forward Backward for (1.2), or Douglas-Rachford, ADMM; see [START_REF] Heinz | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]. We return to the proximity operator and this setting (1.2) in Section 1.1.2.

. It also happens that the nonsmoothness is not chosen while still being explicit. This is the case when the nonsmooth problem writes as

( ) = • ( ), (1.3)
where is a nonsmooth function and a smooth mapping. This setting encompasses a wide range of problems and applications listed in [START_REF] Shapiro | On a Class of Nonsmooth Composite Functions[END_REF]; [START_REF] Lewis | A proximal method for composite minimization[END_REF] e.g., penalty functions of nonlinear programming, 1, we plot 1 on the left, and 2 on the right. The subdifferential is displayed at point , , and . Depending on the smoothness of the function, it is either a single vector, the gradient of the function (e.g., for ), or a full set (e.g., for ).

robust regression which includes phase synchronization, and optimal control of helicopters [START_REF] Apkarian | A Spectral Quadratic-SDP Method with Applications to Fixed-Order H2 and H∞ Synthesis[END_REF].

In particular, we consider in this thesis the maximal eigenvalue function:

( ) = max • ( ),
where ( ) is a symmetric real matrix that depends smoothly on . We place this function in the class of problems with explicit nonsmoothness since max is a convex function, with known subdifferential and second-order information [START_REF] Shapiro | On Eigenvalue Optimization[END_REF]. This function appears in problems stemming from applications in control, learning or operations research such as matrix completion, community detection, phase retrieval. For instance, semidefinite programs with constant trace can be written in such a form (Helmberg and Rendl, 2000, Sec. 2-3).

A common element in problems (1.2) and (1.3) is the explicit nonsmoothness, which allows at a given point to compute more than one arbitrary subgradient: the full subdifferential, and even some second-order information, is available. We illustrate this idea with two nonsmooth functions in the following example, which will accompany us throughout the introduction.

Example 1.1 (Examples with explicit nonsmoothness). Throughout the introduction, we illustrate our discussion on two functions from R 2 to R which admit an explicit nonsmoothness:

1 ( ) = 10( 1 -1) 2 + 5| 2 1 -2 |,
and 2 a two dimensional lasso function. Both functions are illustrated in (1.1), where we show the level lines and the subdifferential at three points , and where is smooth or nonsmooth.

Basic nonsmooth algorithms

. At nonsmooth points, the notion of "subdifferential" replaces and generalizes that of gradient (Hiriart-Urruty and Lemaréchal, 1993;[START_REF] Rockafellar | Variational Analysis[END_REF]. This set contains all "subgradients" at a given point, that is, roughly speaking, the slopes of all linear tangent under-approximations of the function at that point. Figure 1.1 shows the subdifferential of two simple functions at smooth and nonsmooth points.

The simplest algorithm to minimize a nonsmooth function is the subgradient method, which mimics the gradient descent method: +1 = -/ , with ∈ ( ) and > 0 such that vanishes and diverges (Nesterov, 2018, Th. 3.2.2). This method is simple, but converges at a sublinear rate (Beck, 2017, Th. 8.13). More efficient and practical algorithms in the convex

One subgradient provides only partial first-order information.

case include the bundle method (Hiriart-Urruty and Lemaréchal, 1993, Chap. XV), where one iteratively refines and leverages a model of the nonsmooth function by successive black box oracle calls. The bundle algorithm benefits from theoretical convergence guarantees to critical points, is backed by several decades of research, and is used in some important industrial applications [START_REF] Hechme-Doukopoulos | The short-term electricity production management problem at edf[END_REF]. Leveraging the fact that a Lipschitz function is almost everywhere differentiable, a gradient sampling algorithm was shown to converge to critical points,2 albeit with a strong iteration cost; see the review article [START_REF] James V Burke | Gradient sampling methods for nonsmooth optimization[END_REF]. Besides, it was noted in [START_REF] Lewis | Nonsmooth optimization via quasi-Newton methods[END_REF] that the quasi-Newton BFGS method converges well -often linearly -on nonsmooth functions, even though no theoretical guarantees are available.

. Another central notion in nonsmooth optimization is the proximity operator of a nonsmooth function. This operator is defined, for ∈ R and a proximal step > 0, by prox ( ) = arg min

∈R ( ) + 1 2 -2 .
(1.4)

We discuss this definition and some characterizations in Section 2.2. This

The proxmial operator thus uses the full first-order information, which is more than one arbitrary subgradient.

operator acts as an implicit (subgradient) step. As such, it has the nice property of ensuring some minimal functional descent between input and output point; see Lemma A.5 for a precise statement and references. The proximal point algorithm, defined by +1 = prox ( ), thus generates a sequence of points which converge to minimizers, albeit with a slow sublinear rate; see [START_REF] Osman | On the Convergence of the Proximal Point Algorithm for Convex Minimization[END_REF] for precise results in the convex case.

However, the proximal point algorithm is rather impractical in general. Indeed, each iteration consists in applying the proximal operator to the current iterate, which amounts to solving one optimization problem. Interestingly, bundle methods can be seen as an implementable form of approximate proximal point algorithm [START_REF] Correa | Convergence of some algorithms for convex minimization[END_REF].

For simple enough functions, the proximal operator is easy to compute, and sometimes even available in closed form; see e.g., Example 1.2. This includes popular functions such as the ℓ 1 norm and the trace norm [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF]. This

See the numerous examples of proximity-operator. net

remark is key in building prox-like operators for certain nonsmooth functions which do not admit an explicit prox but have some additional structure, as we discuss in the next section.

Example 1.2 (Closed-form proximity operator). The ℓ 1 norm and the maximum function are nonsmooth but simple enough to have explicit proximity operators. Indeed, for ∈ R , their coordinate-wise expression is

[prox • 1 ( )] =              + if < - 0 if | | ≤ - if > prox max ( ) =        if >
else where is the unique real number such that { : > } ( -) = .

1.2

As shown by their wide use in machine learning and signal processing, the first order methods discussed above work well in practice. However, they reach their limit when one requires minimizers with high precision. This is relevant for instance in learning problems (1.2), where the low complexity of the solutions is valuable for practitioners: giving guarantees on this low complexity requires having a high precision estimation on the nonsmooth minimizer. This is also relevant in control applications (1.3), where the precision of the minimizer affects the performance of the ensuing controller.

In this section, we look at two types of structure in nonsmooth functions: first, additive and composite expressions in Section 1.2.1, and second, the existence of a smooth substructure in Section 1.2.2. We discuss the algorithmic This presentation of this section draws from Sagastizábal . improvements that each of these two structures bring on the first-order methods presented above. This sets the tone for the discussions of the next sections, where we present how combining these two structures lead to locally fast nonsmooth algorithms.

Additive and composite structure

When the objective function to minimize is explicit, the nonsmoothness can often be isolated in one simpler component. We consider in this thesis two type of functions: additive nonsmooth functions (1.2), which write as the sum of a smooth and a nonsmooth function, and composite functions (1.3), that is functions that write as a composition of a smooth mapping and a nonsmooth function. For example, the functions illustrated in Fig. 1.1 both write as the sum of a smooth and a nonsmooth function, and as well as a composition between a smooth mapping and a nonsmooth function.

We now detail how the first-order methods can be improved with this additional information.

. Bundle methods are able to exploit the additive structure of (1.2): the model of combines a subgradient-based model, specific to the nonsmooth function , with a second-order Taylor expansion of the smooth term [START_REF] Lemaréchal | A bundle-type algorithm for routing in telecommunication data networks[END_REF].

If, in addition, the nonsmooth term admits an explicit proximal operator, one can compute the proximal-gradient operator of the objective function, defined as Iterating this operator yields a first order algorithm akin to the proximal point algorithm: in the convex case, it converges from any starting point at a sublinear rate (Beck, 2017, Th. 10.15, 10.21). It is popular to equip the proximal gradient with a computationally cheap inertial term [START_REF] Yurii | A method for solving the convex programming problem with convergence rate (1/ 2 )[END_REF], sometimes called "Nesterov acceleration", which improves its sublinear rate for convex functions.

Proximal gradient +1 = prox ( -∇ ( )).

Accelerated proximal gradient / FISTA

This is the setting of Chapter 3, in which we introduce a Newton acceleration of the proximal gradient.

. When the function writes as a composition (1.3), bundle methods can also be adapted [START_REF] Sagastizábal | Nonsmooth Optimization: Thinking Outside of the Black Box[END_REF]. Again, one builds Composite bundle a model of the (simpler) nonsmooth term and use derivatives of the smooth mapping, which results in a finer model of the whole objective function. In specific cases, notably when the nonsmooth term is piece-wise linear, it was observed that the sequence of serious steps converges at a superlinear rate. This is the kind of result we aim at in this thesis.

One can also consider proxlinear methods [START_REF] Lewis | A proximal method for composite minimization[END_REF]. Each

Proxlinear method

iteration writes +1 = arg min ∈R { ( ( ) + Jac ( ) • ( -)) + 2 -2 }, where Jac denotes the Jacobian of . Note the resemblance with the proximity operator, the only difference lying in the linearization of the smooth element . In this sense, the proxlinear operator can be seen as the counterpart of the proximal gradient operator for composite functions. This subproblem is rarely explicit, its solution needs to be approximated. In a weakly convex setting, [START_REF] Drusvyatskiy | Efficiency of minimizing compositions of convex functions and smooth maps[END_REF] analyze the complexity of the method: they show that, when the nonsmooth subproblem is smoothed and solved by a gradient-based method, the global complexity is sublinear, and just slightly worse than that of gradient descent. While this approach fully uses the composite nature of the problem, the smoothing of the subproblem alters the nice smooth substructure induced by the nonsmoothness, which we now discuss.

Smooth substructure

In many examples of interest, including (1.2), and (1.3) under some geometrical assumptions, the nonsmooth function to minimize usually locally exhibits a smooth substructure. More precisely, there is near a point a smooth submanifold such that the function is (i) smooth when restricted to the manifold, and

(ii) nonsmooth in all directions normal to the manifold. A. Lewis formalizes this idea with the notion of partial smoothness [START_REF] Lewis | Active sets, nonsmoothness, and sensitivity[END_REF], which will be central in our work; see the precise definition in Section 2.4. Many classes of functions can be shown to be partly smooth under some natural assumptions, including problems (1.2) and (1.3), among other examples in Lewis (2002, Sec. 3). We illustrate in the next example and Fig. 1.2 such smooth substructures on two simple functions.

Example 1.3 (Smooth substructure). We illustrate the notion of smooth substructure on functions 1 and 2 , introduced in Example 1.1. The partial smoothness manifolds presented here are displayed in Fig. 1.2. Function 1 admits a unique partial smoothness manifold M = { ∈ R 2 : 2 1 = 2 }: either ∈ M, and 1 is partly smooth at relative to M, or ∈ R 2 \ M, and 1 is smooth at (or partly smooth relative to the manifold R 2 ).

Function 2 is nonsmooth at points for which one coordinate is null. 2 admits several partial smoothness manifolds: M 1 = R × {0}, M 2 = {0} × R, and M 3 = {0} × {0}. The partial smoothness of a point is given by its support e.g., at point = (0, ) with ≠ 0, the function is partly smooth relative to M 2 .

-. When admits a smooth substructure, the proximity operator (1.4) gets an additional property: it maps neighborhoods of a minimizer to its smooth substructure manifold. For instance, the Operator identification proximity operator of the ℓ 1 -norm, recalled in Example 1.2, sets any coordinate small in absolute value to zero. As a result, the output of the prox is exactly a nondifferentiable point of the objective function. We illustrate this behavior in the forthcoming Fig. 1.4, and discuss it precisely in Section 2.4.

As a consequence, the iterates of the proximal point algorithm end up exactly on the smooth manifold, as illustrated in Fig. 1.3a. This behavior is the so-called identification property of the proximal point algorithm (Daniilidis et al., 2006, Th. 28). Actually, most prox-based algorithms also identify the structure of Algorithmic identification minimizers; see e.g., the review paper Iutzeler and Malick (2020, Sec. 4-5). For instance, Fig. 1.3b illustrates the identification of the proximal-gradient algorithm on a lasso problem.

The proximal identification mechanism is strong: it exactly maps points to the structure manifold. Other identification mechanisms are known; for instance, the proxlinear method implicitly "detects" the smooth substructure of minimizers, even though its iterates never actually lie exactly on it; see Lewis and Wright (2016, Sec. 4.5). In Chapter 4, we will develop an indirect identification for composite functions, following a similar idea. Besides, the general topic of identification of smooth substructure has received attention in the literature; see e.g., [START_REF] James | On the identification of active constraints[END_REF][START_REF] Stephen | Identifiable surfaces in constrained optimization[END_REF]; [START_REF] Drusvyatskiy | Optimality, identifiability, and sensitivity[END_REF]; Lewis et al. (2022). In the section and the rest of the thesis, the notions of smooth substructure and identification will be useful to refine the analysis of existing algorithms, and to design Newton-type algorithms.

1.3

In this section, we discuss two approaches to build locally fast algorithms for nonsmooth optimization. They rely on the nonsmooth function admitting a smooth substructure, as discussed in the previous section.

Better understanding and tuning of existing algorithms

Consider the additive problem (1.2). With the help of partial smoothness and the proximal identification discussed above, it becomes possible to analyze the behavior of the proximal-gradient algorithm after identification. The nonsmoothness eventually traps the iterates of the method in the optimal manifold -that of the minimizer, after which the algorithm enters a somewhat smooth regime. Indeed, [START_REF] Liang | Local linear convergence of forwardbackward under partial smoothness[END_REF] show that the convergence rate of the proximal-gradient algorithm improves from sublinear to linear after identification, when the smooth manifold is an affine subspace. This reveals a similarity with the (local) convergence speed of gradient descent in smooth optimization (Nesterov, 2018, Th. 2.1.15). In addition, [START_REF] Liang | Local linear convergence of forwardbackward under partial smoothness[END_REF] propose a better tuning of the method parameters after identification, and show the surprising fact that this fine-tuned proximal-gradient can be faster than the popular accelerated proximal-gradient method. Similar properties are established for operator splitting methods, such as Douglas-Rachford or Alternating Direction of Multiplier Method [START_REF] Liang | Local Convergence Properties of Douglas-Rachford and Alternating Direction Method of Multipliers[END_REF]. A delicate point here is that the time of identification is unknown in general, making the moment to tune the method hard to decide in practice. Although it is possible to derive bounds on the maximum number of iterations necessary to reach the optimal manifold in specific cases [START_REF] Nutini | Active-set complexity" of proximal gradient: How long does it take to find the sparsity pattern?[END_REF]Liang et al., 2017a), these bounds are conservative, and they rely on quantities delicate to estimate. In this thesis, we will pay a special attention to deriving algorithms that do not rely on the identification time or unknown quantities.

Towards Newton methods

We now discuss how to explicitly leverage both the composite nature of the function and the smooth substructure of its minimizers. The main idea stems from the following observation. Assume that the smooth substructure of a minimizer is known, then minimizing the nonsmooth function simplifies into minimizing its smooth restriction constrained on the smooth manifold. The smoothness of the latter problem makes it easier to deal with; one can employ efficient Newton-type methods for the reduced smooth problems. The major difficulty is the same as in Section 1.3.1: the crucial information of the optimal smooth substructure is not known beforehand. We illustrate this idea on the nonsmooth functions illustrated before.

Example 1.4 (Nonsmooth to smooth constrained). We illustrate on the running examples, introduced in Example 1.1, how the knowledge of the optimal manifold allows us to reduce the nonsmooth minimization problem into a smooth constrained problem.

Function 1 features only one smooth substructure manifold M, introduced in Example 1.3. Knowing that the minimizer belongs to that manifold simplifies the minimization problem into the following reduced problem:

min ∈R 2 10( 1 -1) 2 s.t. 2 1 -2 = 0
The lasso example has minimizer ★ = (0, 1), with smooth substructure M ★ = {0} × R. Knowledge of this optimal manifolds simplifies the problem into the following smooth reduced problem: [START_REF] Ndiaye | Gap safe screening rules for sparsity enforcing penalties[END_REF] proposed identification rules tailored to the lasso problem. These rules opened the way to very fast solvers that leverage the smooth substructure of the minimizers; see e.g., [START_REF] Massias | Celer: a fast solver for the lasso with dual extrapolation[END_REF]; [START_REF] Bertrand | Beyond L1: Faster and Better Sparse Models with skglm[END_REF].

min ∈R 2 1 2 -2 2 + 2 s.t. 1 = 0.
This idea is not new, and has been investigated by several authors; let us review the main approaches. All existing algorithms iteratively perform (i) a smooth substructure detection operation, and

(ii) an efficient Newton-type step relative to the detected smooth substructure.

The case of the maximum of smooth functions was pioneered by [START_REF] Womersley | An algorithm for composite nonsmooth optimization problems[END_REF], which proposes an algorithm that (i) detects structure by comparing the activity of the smooth functions at different points, and (ii) employs Sequential Quadratic Programming (SQP) steps. The minimization of the maximum eigenvalue of a parametrized matrix is approached in a similar fashion by [START_REF] Noll | Spectral bundle methods for non-convex maximum eigenvalue functions: Second-order methods[END_REF]; [START_REF] Helmberg | The spectral bundle method with second-order information[END_REF]. The authors propose to (i) detect the smooth substructure, which corresponds to the multiplicity of the maximal eigenvalue, and (ii) employ SQP steps. Both methods locally exhibit a quadratic convergence speed if the minimizer structure is correctly detected; see Womersley and Fletcher (1986, p. 515) and Noll and Apkarian (2005, Th. 1).

The VU-algorithm [START_REF] Mifflin | A VU-algorithm for convex minimization[END_REF] uses similar ideas for the general class of convex functions. Relying on the proximal point interpretation of the bundle method, the authors propose to (i) gather (approximate) smooth substructure information from each bundle serious step. This information is then used by (ii) taking (approximate) "U-Newton" steps [START_REF] Lemaréchal | The u-lagrangian of a convex function[END_REF] on the corresponding subspace. When the minimizer structure is correctly identified, the serious steps of the method converge locally superlinearly; see Mifflin and Sagastizábal (2005, Th. 15). Note that the presence of a number of null steps between each serious step, hard to control in theory, makes the analysis of the full iterate sequence more delicate.

The efficiency of the above-mentioned methods hinges on the assumption that they correctly identify the smooth substructure of the minimizer. There are no identification guarantees for the methods of [START_REF] Womersley | An algorithm for composite nonsmooth optimization problems[END_REF]; [START_REF] Noll | Spectral bundle methods for non-convex maximum eigenvalue functions: Second-order methods[END_REF]; the VU-algorithm only benefits from such a guarantee for a certain subclass of convex functions [START_REF] Daniilidis | Identifying structure of nonsmooth convex functions by the bundle technique[END_REF]. We conclude by noting that this question of identification reveals a combinatorial aspect of nonsmooth optimization, reminiscent of constraint identification in the field of smooth constrained optimization. This is the main difficulty we will face too, in this thesis.

1.4

We first give a high level overview of the ideas and organization of this thesis. Then, we provide a detailed summary of each chapter.

Problematic, approach, and philosophy

The objective of this thesis is to provide fast algorithms for minimizing structured nonsmooth functions. Specifically, we seek algorithms with the following properties:

(i) guaranteed identification, without any prior information on the minimizer structure.

(ii) guaranteed fast local convergence, with either superlinear or quadratic speed.

Building on the rich existing work presented before, our approach consists in detecting and leveraging the smooth substructure of nonsmooth objective functions.

We detect structure for specific functions, which display an additive or composite structure, and whose nonsmooth element admits a simple proximity operator. We use this proximity operator as a structure oracle. Indeed, we note a simple but crucial observation: the (nonsmooth) output of a proximity operator step often comes explicitly with its structure, at no additional cost. For instance, the prox of the trace norm sets singular values of the input matrix to 0 after a simple test. Tracking the number of singular values set to zero by the prox thus gives the exact rank of the output matrix, which encodes its smooth substructure. We illustrate these ideas in two contexts in this thesis. We consider in Chapter 3 the additive case, where the proximal gradient operator provides structure information while also minimizing the function. In Chapter 4 we study the more intricate composition setting, and build an identification tool based on the prox of the outer nonsmooth function.

We leverage nonsmooth structure and make efficient steps by following the philosophy of Section 1.3.2. If the structure of the minimizer were known, the nonsmooth minimization problem would reduce into a smooth constrained optimization problem. The major difficulty is that we never know the structure of the minimizer a priori, or during the course of the algorithms. We thus develop new tools to use smooth substructure adaptively, without ever assuming it is optimal: at each iteration, a new candidate manifold is obtained by a proximal identification procedure, which is leveraged by taking a Newton step on the smooth reduced subproblem. This is the main technical difference between our work and the literature reviewed in the previous section. The Newton steps on the reduced problems are taken from Riemannian optimization in Chapter 3, and from nonlinear programming in Chapters 4 and 5.

Detailed contributions

We now outline precisely the setting and contributions of each chapter. Throughout the thesis, we pay a special attention to illustrate our results with reproducible experiments and precise figures. . This preliminary chapter provides the mathematical foundations of this thesis. We first present the necessary tools of variational analysis and Riemannian optimization. We then introduce the proximity operator and recall (and slightly extend) a classical characterization result, helpful in a nonconvex setting. We proceed with the notion of partial smoothness, and recall how it allows capturing the local identification behavior of the proximity operator near structured minimizers. This property is the foundation of the main intuitions and results of this thesis. We illustrate it in Fig. 1.4. C 3: . We first consider problems of the form (1.2): min ∈R ( ) + ( ), where is smooth and is a nonsmooth function that admits an explicit proximity operator. We take as examples for two popular nonsmooth functions stemming from machine learning and signal processing applications: the ℓ 1 -norm and the trace norm.

We begin by a precise study of the identification behavior of the proximal gradient operator. In a nonconvex setting, we give precise conditions which guarantee that the operator locally maps points to a given smooth substructure; see Theorem 3.1. In particular, we take special care to prove the result both with practical stepsizes and near arbitrary (structured) points, rather than small enough stepsizes and near minimizers.

We then introduce and study an optimization algorithm which alternates between a proximal gradient step, providing a structure candidate, and a Riemannian (truncated) Newton step, providing superlinear convergence near minimizers; see Fig. 1.5 for an illustration. We show that the method converges globally to critical points (Theorem 3.2), and that when the critical point is a qualified minimizer, the algorithm identifies its smooth substructure and converges locally superlinearly (Theorem 3.3). We illustrate this behavior on ℓ 1 -norm and trace norm regularized regression problems.

This chapter is based on Bareilles et al. a .

C 4: -. In this chapter, we turn to nonsmooth optimization problems of the form (1.3): min ∈R ( ) = ( ( )), where : R → R is a smooth mapping and : R → R ∪ {+∞} is a nonsmooth function, possibly nonconvex, which admits an explicit proximity operator. We illustrate our developments on two problems: the pointwise maximum of smooth real-valued functions , and the maximum eigenvalue of a parametrized symmetric real matrix function :

( ) = max =1,..., ( ( )) 
and ( ) = max ( ( )).

(1.5)

We first show that the proximity operator of the simple nonsmooth function can provide the exact structure of minimizers of the full function • . The prox parameter plays a crucial role here and should thus be selected carefullyneither too small nor too big. We derive precise and implementable bounds that help selection in practice (Theorem 4.4). Identification areas are illustrated in Fig. 1.6a.

We then combine this proximal identification procedure with sequential quadratic programming steps on the identified subspace. We show that, when started near a minimizer, decreasing geometrically the prox parameter ensures eventual identification of the minimizer structure, and local quadratic convergence (Theorem 4.7).

We illustrate numerically the behavior of our method on problems shown in Eq. (1.5), using exact second-order information. We show that it compares favorably with existing methods; see e.g., Fig. 1.6b for the minimization of the maximum eigenvalue of a parameterized matrix. This shows the benefits of exploiting substructure, when possible. -. In this last chapter, we consider the task of building a Newton algorithm that retains the nice guarantees of the local Newton algorithm of Chapter 4 when started from arbitrary points. We outline the challenges associated with the globalization of both the structure detection and the structure exploitation steps of the algorithm. We report partial results with a linesearch SQP algorithm for minimizing composite functions (1.1). We show that the linesearch may prevent the algorithm from reaching the local quadratic convergence speed, and prove that a second-order correction term fixes this issue (Theorem 5.6). We also introduce an optimality condition for a pair (point, smooth substructure), and propose a way to detect whether a structure manifold is optimal in sharp directions (Lemma 5.9). With these elements, we propose a heuristic algorithm and illustrate numerically its identification and local quadratic rate. 

-2 -1 0 1 2 -1 0 

1.5

To conclude the introduction, I give below short summaries of the two papers not included in this thesis, and outline some implementation work not detailed here either.

Theoretical contributions

I detail here two research projects that are not presented in this thesis.

. In this project, we study the interplay between inertial acceleration and structure identification for the proximal gradient algorithm. We report and analyze several cases where this interplay has negative effects on the algorithm behavior (iterates oscillation, loss of structure identification, etc.). We present a generic method that tames acceleration when structure identification may be at stake. Under a natural geometric condition, our method retains the convergence rate of the accelerated proximal gradient. We show empirically that the proposed method is more stable in terms of subspace identification compared to the accelerated proximal gradient method while keeping a similar functional decrease. This project was realized with Franck Iutzeler during an internship that preceeded the PhD. It touches on the same themes as this thesis, but the huge jump forward was to introduce second-order information and to deal with identification.

The associated publication is:

G. Bareilles, F. Iutzeler. On the Interplay between Acceleration and Identification for the Proximal Gradient algorithm. Computational Optimization and Applications, 2020.

. In this project, we study the Progressive Hedging algorithm, a popular decomposition method for solving multi-stage stochastic optimization problems. A computational bottleneck of this algorithm is that all scenario subproblems have to be solved at each iteration. We introduce randomized versions of the Progressive Hedging algorithm able to produce new iterates as soon as a single scenario subproblem is solved. Building on the relation between Progressive Hedging and monotone operators, we leverage recent results on randomized fixed point methods to derive and analyze the proposed methods.

This project was realized at the beginning of my PhD. I was glad to be part of a team work, which was a nice way to collaborate with and learn from other PhD students. This project led to the following publication: G. Bareilles, Y. Laguel, D. Grishchenko, F. Iutzeler, J. Malick. Randomized Progressive Hedging methods for Multi-stage Stochastic Programming. Annals of Operations Research, 2020.

Algorithmic contributions

Implementing known methods and testing ideas numerically has been a major source of inspiration and intuition for me. Following the principles of reproducible research, all the algorithms presented or used in this thesis are accompanied by easy-to-use and free open-source Julia [START_REF] Bezanson | Julia: A fresh approach to numerical computing[END_REF] implementations.

In this spirit, I released the following toolboxes for the proposed algorithms:

• StructuredSolvers.jl -proximal gradient algorithm and its acceleration with inertia (à la Nesterov) and Riemannian methods, introduced in Chapter 3. The numerical experiments of Section 3.6 make use of this toolbox.

• RandomizedProgressiveHedging.jl -this toolbox contains easy-to-use implementations of the algorithms studied in the above-mentioned paper, and shows the practical interest of randomized algorithms, notably in a parallel context.

• LocalCompositeNewton.jl -this package contains the algorithm introduced in Chapter 4 and the code used to reproduce the experiments. The baselines are implemented in a dedicated toolbox, presented below.

It was instructive to implement existing methods for nonsmooth optimization. I collected this code in the following packages:

• NonSmoothSolvers.jl -algorithms for blackbox nonsmooth optimization: nonsmooth BFGS with a specific line search [START_REF] Lewis | Active sets, nonsmoothness, and sensitivity[END_REF]Overton, 2013), Gradient Sampling (Burke et al., 2020), and the VU-algorithm [START_REF] Mifflin | A VU-algorithm for convex minimization[END_REF].

• QuadProgSimplex.jl -minimizing quadratic functions over the simplex [START_REF] Wolfe | Finding the nearest point in A polytope[END_REF][START_REF] Krzysztof | A Method for Solving Certain Quadratic Programming Problems Arising in Nonsmooth Optimization[END_REF]. These methods serve as subroutines for the bundle methods and gradient sampling algorithms implemented NonSmoothSolvers.jl.

All these packages are available on my webpage: gbareilles.fr.

P R E L I M I N A R I E S I this chapter, we introduce the main mathematical notions which will be used in our developments. Our notation and terminology follow closely those of the monographs [START_REF] Rockafellar | Variational Analysis[END_REF] for nonsmooth optimization and Absil et al. (2009a); [START_REF] Boumal | An introduction to optimization on smooth manifolds[END_REF] for Riemannian optimization.

For this chapter, : R → R = R ∪ {+∞} is a function, possibly nonsmooth and nonconvex.

2.1

We begin with the basic notions of variational analysis used throughout this thesis.

A function is proper when ( ) < +∞ for at least one ∈ R and ( ) > -∞ for all ∈ R . Besides, we say that is lower semi-continuous at point ¯ when, for all > 0, there exists a neighborhood N ¯ of ¯ such that any in N ¯ satisfies ( ) > ( ¯ ) -. This function is lower semi-continuous when this property holds at any point, or equivalently when the epigraph of is closed.

. Several types of subgradients exist for nonconvex functions, in contrast with the convex setting. We introduce and discuss the types of subgradients that will be used throughout this thesis, following Rockafellar and Wets (1998, Chap. 8.B).

Consider a point ¯ with ( ¯ ) finite. The set of regular (or Fréchet) subgradients

( ¯ ) : ( ) ≥ ( ¯ ) + , -¯ + ( -¯ ) for all ∈ R
is closed and convex, but the subdifferential mapping (•) may not be outer semi-continuous (Rockafellar and Wets, 1998, Th. 8.6, Prop. 8.7). To overcome this problem, the set of (general or limiting) subgradients is defined as

( ¯ ) lim : ∈ ( ), → ¯ , ( ) → ( ¯ ) .
The limiting subdifferential is by design outer semi-continuous:

lim sup → ¯ ( ) = { : ∃ → ¯ , ∃ → with ∈ ( )} ⊂ ( ¯ ),
which is an attractive property to study sequences of points whose subgradients converge.

A function is (Clarke) regular at ¯ when the regular and limiting subdifferentials at ¯ coincide (Rockafellar and Wets, 1998, Def. 7.25, Cor. 8.11). This is notably the case for convex functions where the two above definitions coincide with the convex subdifferential (Rockafellar and Wets, 1998, Prop. 8.12).

. The subdifferential allows to formulate necessary optimality conditions: any local minimizer ★ of satisfies the generalized Fermat rule (Rockafellar and Wets, 1998, Th. 10.1): 0 ∈ ( ★ ).

A point satisfying these conditions is called a critical point. When is convex, critical points coincide with (global) minimizers. In a nonconvex setting, a critical point can also be a local maximum or a saddle point.

2.2

A central tool to tackle non-differentiable functions is the proximity operator, introduced by the founding work of Jean Jacques Moreau [START_REF] Moreau | Proximité et dualité dans un espace Hilbertien[END_REF]. The proximity operator of a function with step > 0 at point ∈ R is defined as prox ( )

arg min ∈R ( ) + 1 2 -2 .
While this operator is always well-defined as a set-valued mapping, it gains properties when is prox-regular and prox-bounded. We quickly introduce these two notions and provide a result on the uniqueness and characterization of the prox operator, which is important in our developments. Note that, though computing the proximal operator of an arbitrary function is difficult, it comes easy for some relevant cases such as the ℓ 1 -norm and the maximum function, or some matrix functions such as the trace-norm and the max functions (see Sections 3.2 and 4.2.1).

--. A function is prox-regular at a point ¯ for a subgradient ¯ if is finite and locally lower semi-continuous at ¯ with ¯ ∈ ( ¯ ), and there exist > 0 and > 0 such that

( ) ≥ ( ) + , --2 -2
whenever ∈ ( ), -¯ < , -¯ < , -¯ < , and ( ) < ( ¯ ) + . When this holds for all ¯ ∈ ( ¯ ), we say that is prox-regular at ¯ (Rockafellar and Wets, 1998, Def. 13.27).

A function is prox-bounded if there exists ≥ 0 such that the function + 2 • 2 is bounded below. The corresponding threshold (of prox-boundedness) is the smallest ≥ 0 such that + 2 • 2 is bounded below for all > . In this case, + 2 • -¯ 2 is bounded below for any ¯ and > (Rockafellar and Wets, 1998, Def. 1.23, Th. 1.25).

. We can now recall a relevant result on the characterization of proximal points, Theorem 1 of [START_REF] Hare | Computing proximal points of nonconvex functions[END_REF]. At points where is prox-regular and prox-bounded, this result guarantees that the proximity operator is unique and locally Lipschitz, as well as give a complete characterization by its first-order optimality condition.

Theorem 2.1 (Nonconvex prox characterization). Suppose that the lower semicontinuous function is prox-regular at ¯ for ¯ ∈ ( ¯ ) with parameter , and prox-bounded with threshold . Then, for any < min( -1 , -1 ) and all near ¯ + ¯ , the proximal operator is:

• single-valued and locally Lipschitz continuous;

• uniquely determined by the relation

= prox ( ) ⇔ ∈ + ( ).
We will need a slightly stronger version of this result in our developments, that describes a situation with the additional knowledge of a pair of points linked by the proximal operator. This result will prove useful for taking large steps in Chapter 3.

This is the only contribution of this chapter

Lemma 2.2 (Nonconvex prox characterization). Consider a function : R → R, a pair of points ¯ , ¯ and a step length ¯ > 0 such that ¯ = prox ¯ ( ¯ ) and is prox-regular at ¯ for subgradient ¯ ( ¯ -¯ )/ ¯ .

Then, for any ∈ (0, min(1/ , ¯ )), there exists a neighborhood N ¯ of ¯ over which prox is single-valued and (1 -) -1 -Lipschitz continuous. Furthermore, there holds

= prox ( ) ⇔ ∈ + ( ) for ∈ N ¯ and near ¯ in the sense -¯ < , | ( ) -( ¯ )| < and ( -)/ - ¯ < .
Proof. One can easily check that prox-regularity of at ¯ for subgradient ¯ is equivalent to prox-regularity of function ˜ around 0 for subgradient 0, with ˜ = (• + ¯ ) -¯ , • -( ¯ ) and a change of variable ˜ = -¯ . Similarly, ¯ = prox ¯ ( ¯ ) is characterized by its global optimality condition

( ) + 1 2 ¯ -¯ > ( ¯ ) + 1 2 ¯ ¯ -¯ 2 for all ≠ ¯ ,
which we may write as

( ) > ( ¯ ) + ¯ , -¯ - 1 2 ¯ -¯ 2 for all ≠ ¯ .
Under that same change of variable, since ˜ (0) = 0, this optimality condition rewrites as

˜ ( ˜ ) > - 1 2 ¯ ˜ 2 for all ˜ ≠ 0.
We may thus apply Theorem 4.4 from [START_REF] Poliquin | Prox-regular functions in variational analysis[END_REF] to get the claimed result on ˜ , which transfers back to as our change of function and variable is bijective. We thus obtain that for ∈ (0, min(1/ , ¯ )), on a neighborhood N ¯ of ¯ , prox is single-valued, (1 -) -1 -Lipschitz continuous and prox ( ) = [ + ] -1 ( ), where denotes the -attentive -localization of at ¯ . Taking near ¯ and near ¯ such that -¯ < , | ( ) -( ¯ )| < and ( -)/ -¯ < allows to identify the localization of ( ) with ( ), so that

-∈ ( ) ⇔ -∈ ( ) ⇔ ( + )( ) = ⇔ = prox ( ).
Note that the proof of Poliquin and Rockafellar (1996, Th. 4.4) includes a minor error relative to the Lipschitz constant computation, we report here a corrected value.

Remark 2.1 . Note here that the condition ∈ (0, min(1/ , ¯ )) may be misleading since for the second part of the result, the conditions ( -)/ -¯ < and ∈ N ¯ also have to be fulfilled. This means that the quantity

¯ -¯ 1 - 1
¯ also has to be small. This can be done either a) by taking sufficiently close to ¯ (which may not be possible since has to be smaller than 1/ ); or b) when ¯ -¯ is sufficiently small, i.e., around fixed points of the proximal operator.

2.3

In this section, we introduce the tools of Riemannian optimization used in this thesis. We refer the reader to monographs Absil et al. (2009a) and [START_REF] Boumal | An introduction to optimization on smooth manifolds[END_REF] for detailed presentations.

. A subset M of R is said to be a -dimensional C 2 -submanifold of R around ¯ ∈ M if there exists a C 2 manifold-defining map ℎ : R → R - with a surjective derivative at ¯ ∈ M that satisfies for all close enough to ¯ :

∈ M ⇔ ℎ( ) = 0. A basic tool to investigate manifolds is the notion of smooth curves. A smooth curve on M is a C 2 application : ⊂ R → M ⊂ R ,
where is an open interval containing 0. At each point ∈ M, the tangent space, noted M, can be defined as the velocities of all smooth curves passing by at 0:

M { (0) | : → M is a smooth curve around 0 and (0) = } .
The tangent space is a -dimensional space containing tangent vectors. Each tangent space M is equipped with a scalar product •, • : M × M → R, and the associated norm • . In many cases, the tangent metric varies smoothly with , making the manifold Riemannian. In this thesis, we always use the ambient space scalar product to define the scalar product on tangent spaces; we will thus drop the subscript in the tangent scalar product and norm notations. Related to the tangent space, we will also consider the normal space M at ∈ M, defined as the orthogonal space to M in R , and the tangent bundle manifold defined by: B ∈M ( , M).

Note also that both tangent and normal spaces at ∈ M admit explicit expressions from the differential of a local manifold-defining map:

M = Ker D ℎ( ) M = Im D ℎ( ) * .
In this thesis, dist geo M ( , ) denotes the geodesic distance between two points on M, while dist M ( ) is the Euclidean distance from to M.

A metric on M can be defined as the minimal length over all curves joining two points , ∈ M, i.e., dist geo d , where , is the set of [0, 1] → M smooth curves such that (0) = , (1) = . The minimizing curves generalize the notion of straight line between two points to manifolds. The constant speed parametrization of any minimizing curve is called a geodesic.

M ( , ) inf ∈ , ∫ 1 0 ( ) ( )
. Let : M → R. The Riemannian differential of at is the linear operator D ( )

: M → R defined by D ( )[ ] d d • ( ) =0
, where is a smooth curve such that (0) = and (0) = . In turn, the Riemannian gradient grad ( ) is the unique vector of M such that, for any tangent vector , D ( )[ ] = grad ( ), . If grad ( ) exists, a first order Taylor development can be formulated. Let ( , ) ∈ B and denote a smooth curve passing by , with velocity at 0; then, for near 0,

• ( ) = ( ) + grad ( ), + ( ).

In order to define second-order objects, we first introduce the notions of derivation for vector fields and of acceleration for curves. Consider a curve : → M and a smooth vector field on , i.e., a smooth map such that ( ) ∈ ( ) M for ∈ . The covariant derivative of on the curve , denoted 

= d 2 d 2 • ( ) =0
, where is a geodesic such that (0) = , (0) = . A second order Taylor development can now be formulated. Let ( , ) ∈ B and be a smooth curve such that (0) = , (0) = . Then, for near 0,

• ( ) = ( ) + grad ( ), + 2 2 Hess ( )[ ], + 2 2 grad ( ), (0) + ( 2 ).
Remark 2.2 (Euclidean to Riemannian gradient, Hessian). If : M → R has a smooth extension on R , the Riemannian gradient and Hessian can be computed from their Euclidean counterparts: for a smooth function ¯ : R → R that coincides with on M,

grad ( ) = proj (∇ ¯ ( )), (2.1) 
and, for ¯ : R → R a smooth mapping that coincides with grad on M,

Hess ( )[ ] = proj D ¯ ( )[ ] . (2.2)
. Riemannian optimization methods require a way to produce curves on M given a point and a tangent vector . While a geodesic curve passing at ( , ) is attractive as the generalization of the straight line to manifolds, it usually has a prohibitive computational cost. We thus use retractions, i.e., approximations of geodesics, defined on a manifold M as smooth maps R :

B → M such that R (0) = and D R (0) : M → M is the identity map: D R (0)[ ] = ,
where, for each ∈ M, R : M → M is defined as the restriction of R at , so that R ( ) = R( , ). A second-order retraction is a retraction R such that, for all ( , ) ∈ B, the curve ( ) = R ( ) has zero acceleration at 0: (0) = 0. Thus 

( ) = 10( 1 -1) 2 + 5| 2 1 -2 |.
The function is smooth along M, nonsmooth across, and the tangent space at ∈ M is perpendicular to the subdifferential.

↦ → R ( ) is a practical curve passing by ( , ) at 0, and provides a similar development as above: for near 0,

• R ( ) = ( ) + grad ( ), + 2 2 Hess ( )[ ], + ( 2 2 ). (2.3) 2.4
In this section, we introduce the key notion of partial smoothness. We then illustrate how it allows to characterize the identification behavior of the proximal operator, and of the corresponding proximal point algorithm.

. The concept of partial smoothness, introduced in Lewis ( 2002), formalizes the idea that a nonsmooth function is locally smooth along a manifold and nonsmooth across it. We illustrate it on Figure 2.1 and Example 2.1.

This notion will be central in Chapters and , which focus on the local analysis of algorithms near structured minimizers.

A function is (C 2 -)partly smooth at a point ¯ relative to a set M containing ¯ if M is a C 2 manifold around ¯ and if

• (smoothness) the restriction of to M is a C 2 function near ¯ ;
• (regularity) is regular at all points ∈ M near ¯ , with ( ) ≠ ∅;

• (sharpness) the affine span of ( ¯ ) is a translate of ¯ M ;

• (sub-continuity) the mapping restricted to M is continuous at ¯ .

Example 2.1 . We detail each requirement of partial smoothness on the function

( ) = 10( 1 -1) 2 + 5| 2 1 -2 |; see Fig. 2.1 for an illustration. At any ∈ M = { ∈ R 2 : 2 1 -2 = 0}
, is partly smooth relative to M: (i) its restriction to M, M = 10( 1 -1) 2 is smooth, (ii) the function is convex, thus (Clarke) regular everywhere. The subdifferential at ∈ M writes

( ) = 20 1 -1 0 + 5 Conv 2 1 -1 , -2 1 1 ,
it is thus (iii) perpendicular to the tangent space to M at (i.e., parallel to the normal space), (iv) and continuous.

. Combining partial smoothness and prox-regularity ensures that the proximal operator smoothly locates the structure manifold of qualified minimizers. This result is formalized in the following theorem, from Daniilidis et al. (2006, Th. 28).

Here, we have an operator view of identification the prox maps a neighborhood of the minimizer to the manifold.

Proposition 2.3 (Prox locates manifold at minimizer). Consider a lower semicontinuous function on R , and ¯ a critical point 0 ∈ ( ¯ ). Suppose that is both prox-bounded and prox-regular at ¯ , and partly-smooth relative to M at ¯ . Take > 0. If 0 ∈ ri ( ¯ ) and is small enough, then the proximal operator ↦ → prox ( ) is C 1 and M-valued near ¯ .

We note that, throughout this thesis, the assumption of partial smoothness goes in hand with that of prox-regularity. One reason is that, in this case, uniqueness of the partial smoothness manifold is guaranteed locally. We derive a self-contained proof of this folklore result, that parallels Hare and Lewis (2004, Corollary 4.2, Example 7.1) for partly smooth sets.

Proposition 2.4 (Uniqueness of manifold). Consider a function , two manifolds

M 1 , M 2 and a point ¯ ∈ M 1 ∩ M 2 such that is -prox-regular at ¯ and partly-smooth relative to both manifolds M 1 and M 2 . Then, near ¯ , M 1 = M 2 .
Proof. For the sake of eventual contradiction, let ( ) denote any sequence converging to ¯ such that ∈ M 1 \ M 2 for all . Since is prox-regular, Rockafellar and Wets (1998, Prop. 13.37) tell us that there is ¯ > 0 such that ¯ = prox ¯ ( ¯ ) for some ¯ ∈ ¯ + ¯ ri ( ¯ ) ∈ R (since is partly smooth, ( ¯ ) has non-empty relative interior, and ¯ can be taken as ¯ + ¯ ¯ for any ¯ ∈ ri ( ¯ ) by reasoning as in the proof of Hare and Sagastizábal (2009, Th. 4)).

We can thus select a sequence ∈ ( ) converging to ¯ = ( ¯ -¯ )/ ¯ ∈ ri ( ¯ ) and define = + for some ∈ (0, ¯ ). It is immediate to see that the sequence ( ) converges to = (1 -( / ¯ )) ¯ + ( / ¯ ) ¯ and that can be made arbitrarily close to ¯ by taking close to ¯ . Thus, we can consider that, properly choosing , reaches any neighborhood of ¯ in a finite number of iterations.

Lemma 2.2 then indicates that for large enough, we have = prox ( ). Furthermore, Proposition 2.3 applied with = 0, M = M 2 shows that prox is

M 2 -valued near ¯ which implies that = prox ( ) ∈ M 2 for large which contradicts being in M 1 \M 2 .
. We now informally illustrate the algorithmic identification of the proximity operator. Consider a proper closed convex function . The proximal point algorithm, defined for some ∈ R * + and 0 ∈ R as

+1 = prox ( ),
generates sequences that converge to critical points; see e.g., Attouch and Bolte (2009, Th. 1) for subanalytic functions. If the limit point ¯ satisfies a qualification condition 0 ∈ ri ( ¯ ) and is small enough, Proposition 2.3 provides the existence of a neighborhood N ¯ over which the proximity operator is M-valued. Since the iterates converge to ¯ , they all belong to the identification neighborhood N ¯ after some finite (but unknown) time. Therefore, the sequence

Here we take an algorithmic view of identification the iterates eventually belong to the minimizer manifold.

of iterates is M-valued after some finite time, which provides an algorithmic view of identification. 

M ★ = { ∈ R 2 : 2 1 = 2 }.
The green area shows the operator identification property of the prox: the operator maps a neighborhood of the minimizer to M ★ . The red iterates illustrate the algorithmic identification of the proximal point algorithm: the iterates eventually belong to M ★ .

We can now return to Figure 1.3a of the introductory chapter, recalled and enriched here as Fig. 2.2. The nonsmooth function is:

( ) = 10( 1 -1) 2 + 5| 2 1 -2 |.
A direct computation yields an explicit formula for the proximity operator:

prox ( ) =                ( [1]+20 1+30 , 2 + 5 ) if 2 ≤ 1 +20 1+30 2 -5 ( , 2 ) if 1 +20 1+30 2 -5 ≤ 2 ≤ 1 +20 1+10 2 + 5 ( 1 +20 1+10 , 2 -5 ) if 2 ≥ 1 +20 1+10 2 + 5
, where minimizes the function

( ) = 10( -1 ) 2 + 1/(2 ) ( -1 ) 2 + ( 2 -2 ) 2 .
Note that the set of points mapped to M, fully represented in Fig. 2.2, is actually more than a neighborhood of the minimizer. We return on this topic in Chapter 3. where is a smooth differentiable function, and is a nonsmooth function.

Throughout the chapter, we illustrate our developments on two nonsmooth functions stemming from machine learning and signal processing applications: the ℓ 1 norm

: ↦ → 1 = =1 | | (3.1)
and the nuclear norm

: ↦ → * = ( ) 1 , (3.2)
where ( ) denotes the singular values of . In these cases and many others, the nonsmooth objective function presents a smooth substructure, which involves smooth submanifold on which the function is locally smooth.

In the sense of partial smoothness, see Section . .

A critical aspect is the requirement that the proximal operator of can be computed explicitly, and that it outputs a representation of the submanifold of the output point. In this setting, first-order methods to minimize are the (accelerated) proximal gradient algorithms; see Beck (2017, Chap. 10) for a general review of these methods and their analysis. In nondegenerate cases, the iterates produced by these algorithms eventually reach the optimal submanifold (i.e., the manifold which contains the minimizer): it is the (algorithmic) identification property of proximal algorithms, discussed in previous chapters. We note that the identification of the final manifold happens after a finite but unknown number of iterations, which can be estimated only in specific cases.

We propose in this chapter a Newton acceleration of the proximal gradient algorithm that adaptively uses identification. Our algorithm consists of two main ingredients: i) structure identification, relying on the explicit proximal gradient operator to extract structure information, and ii) structure exploitation, based on Riemannian Newton steps on the identified manifolds. 

M ★ = { ∈ R 2 : 1 = 0} of the minimizer ★ = (0, 1) in finite time.
We present a convergence analysis showing superlinear convergence of the resulting algorithm, under some natural qualification assumptions but without prior knowledge on the final optimal submanifold. Finally, we provide numerical illustrations showing the interests of the proposed Newton acceleration on typical structure-inducing regularized problems (sparse logistic regression and low-rank least-squares). Along the way, our study reveals results that have some interest on their own, in particular: we refine the smoothness properties of the proximal gradient operator around structured points, and we formalize complementary properties on line searches in Riemannian optimization.

Let us finally note that the Newton acceleration of the proximal gradient that we propose here should not be confused with proximal-Newton schemes such as [START_REF] Lee | Proximal newton-type methods for minimizing composite functions[END_REF]; [START_REF] Becker | On quasi-newton forward-backward splitting: Proximal calculus and convergence[END_REF][START_REF] Aleksandr | A proximal quasi-newton trust-region method for nonsmooth regularized optimization[END_REF]. These methods essentially replace the gradient step by a (quasi-)Newton step before applying a proximity operator. They therefore do not use second order information on , which is crucial to obtain quadratic local rates. Besides, we choose the term "Newton acceleration" to emphasize the similarity with the celebrated Nesterov acceleration [START_REF] Yurii | A method for solving the convex programming problem with convergence rate (1/ 2 )[END_REF]. Indeed both methods add an acceleration step after the proximal gradient iteration. But, unlike Nesterov's method where the acceleration is provided by an inertial step, the Newton acceleration comes from a second-order step on a smooth substructure, as we detail in this chapter.

. First, in Section 3.2 we recall the relevant properties of the ℓ 1 -norm (3.1) and nuclear norm (3.2). In Section 3.3, we show the structure identification properties of the proximal gradient near structured points. Then, we introduce in Section 3.4 our template algorithm, alternating a proximal gradient step with a Riemannian update on the identified manifold and show its convergence and identification properties. In Section 3.5, we specify the implementation of efficient Riemannian Newton-type methods and illustrate their performances in Section 3.6. Some material used in our proofs has been deferred to Appendices A.1 and A.2; most of these results are well-known and just recalled here, but some seem to be less-known or not precisely treated in the literature.

, -

In this section, we illustrate on the ℓ 1 norm (3.1) and nuclear norm (3.2) the notions of Riemannian and nonsmooth optimization. We first present the structure submanifolds associated with these functions and the related See Section .

Riemannian objects. Then, we describe the proximity operator of the ℓ 1 and See Sections . , . and .

nuclear norm, detail their partial smoothness and prox-regularity properties, and finally give their Riemannian derivatives.

. Example 3.1 (Fixed coordinate-sparsity subspaces). We consider the manifold

M { ∈ R : = 0 for ∈ }, (3.3) 
where ⊂ {1, . . . , }. This manifold is actually a vector space and all related notions have simple expressions, as follows.

The tangent space at any point identifies with the manifold itself: M = M . The orthogonal projection of a vector ∈ R on the tangent space writes proj ( ), where [proj ( )] is if ∉ , and null otherwise. The map R ( ) = + defines a second-order retraction.

Given a function defined on the ambient space, the Riemannian gradient and Hessian-vector product of the restriction of to M are obtained from their Euclidean counterparts by a simple projection: for ( , ) ∈ B,

grad ( ) = proj (∇ ( )) Hess ( )[ ] = proj (∇ 2 ( )[ ]).
Example 3.2 (Fixed rank matrices). We consider the manifold of fixed-rank matrices

M { ∈ R × : rank( ) = }, (3.4)
for which we refer to Boumal (2022, Sec. 7.5). A rank-matrix ∈ M is represented as = Σ , where

∈ R × , ∈ R × , Σ ∈ R × such that = , =
and Σ is a diagonal matrix with positive entries. Such a decomposition can be obtained by computing the singular value decomposition of the matrix . Using this representation, a tangent vector ∈ M writes

= + + , where ∈ R × , ∈ R × , ∈ R × such that = 0, = 0. The orthogonal projection of a vector ∈ R × onto M writes proj ( ) = - .
Given a function defined on the ambient space, a Riemannian gradient and Hessian-vector product of restricted to M can be obtained from their Euclidean counterparts: for , ∈ B, and with = -, = -.

grad ( ) = proj (∇ ( ))

Hess ( )[ ] = proj (∇ 2 ( )[ ]) + ∇ ( ) Σ -1 + ∇ ( ) Σ -1 . . Example 3.3 (ℓ 1 norm).
In the context of Example 3.1, we consider the ℓ 1 norm (3.1). This function is convex, thus prox-regular at every point with = 0. Its proximity operator admits a closed form:

[prox • 1 ( )] =              + if < - 0 if -≤ ≤ - if >
which naturally gives sparse outputs. In other words, = prox • 1 ( ) lies on

M (see (3.3))
where is the complementary of support of . Actually, one readily checks that • 1 is partly smooth at relative to the structure manifold M . In particular, the restriction of • 1 to the manifold M is locally smooth at ; the ℓ 1 norm thus admits a Riemannian gradient and Hessian at point :

grad • 1 ( ) = sgn( ) and Hess • 1 ( ) = 0,
where sgn( ) ∈ {-1, 0, 1} denotes the sign of , null when = 0.

Example 3.4 (nuclear norm). Following the notation of Example 3.2, we consider the nuclear norm (3.2). where Σ denotes the diagonal term of the singular value decomposition of . This function is convex, and thus prox-regular at every point with = 0. Its proximity operator admits a closed form: for matrix

(= Σ ), prox • * ( ) = (Σ -) + ,
where the coefficient ( , ) of (Σ -) + is defined as max(Σ -, 0). Thus, = prox • * ( ) has low rank, by construction. Said otherwise, lies on M (see (3.4)) where = rank(Σ -) + .

Similarly, one readily checks that • * is partly smooth at relative to the structure manifold M . In particular, the restriction of • * to the manifold M is locally smooth; the nuclear norm thus admits a Riemannian gradient and Hessian at point : denoting

= + + ∈ M a tangent vector, grad • * ( ) = Hess • * ( )[ ] = ˜ • ( - ) + Σ -1 + Σ -1 , where • denotes the Hadamard product and ˜ ∈ R ¯ ׯ is such that ˜ = 1/(Σ + Σ ) if Σ ≠ Σ
, and ˜ = 0 otherwise. We provide a self-contained derivation of these derivatives in Appendix B.2.

3.3

In this section, we show that the proximal gradient operator smoothly locates structure in nonsmooth nonconvex settings. Building on this result, we then formulate minimal assumptions on points for which the proximal gradient detects structure. 

( ) = 10( 1 -1) 2 + 5| 2 1 -1 |. The minimizer is ★ = (1, 1), the structure manifold is M = { ∈ R 2 : 2 1 = 2 }.
The red area shows the points mapped to M by the proximal gradient operator.

Smoothness and localization of the proximal gradient operator

The results of this section are built on being a partly smooth and prox-regular function. Under this assumption, we show in the next theorem that the proximal gradient smoothly locates active manifolds: if some input ¯ is mapped onto M, then the proximal gradient is M-valued and C 1 around ¯ ; see Figure 3.2. Theorem 3.1 (Proximal gradient points smoothly locate manifolds). Let be a C 2 function on R and a lower semi-continuous function on R . Suppose that is both -prox-regular at ¯ and partly-smooth relative to M at ¯ .

Take , ¯ such that 0

< < ¯ ≤ 1/ and ¯ = prox ¯ ( ¯ -¯ ∇ ( ¯ )). If i) 1 ( ¯ -¯ ) -∇ ( ¯ ) ∈ ri ( ¯ ) (the relative interior of the subdifferential at ¯ ); ii) either a) is sufficiently close to ¯ , or b) ¯ is sufficiently close to ¯ ; then, the proximal gradient ↦ → prox ( -∇ ( )) is C 1 and M-valued near ¯ .
This result is based on the sensitivity analysis of partly smooth functions (Lewis, 2002, Sec. 5). The proof extends and refines the rationale of Daniilidis et al. (2006, Th. 28) on the proximal operator, recalled in this thesis as Proposition 2.3. Theorem 3.1 thus extends existing results on three aspects: i) it describes the proximal gradient operator rather than the proximal operator, ii) it allows for a full stepsize range of (0, 1/ ) in the proximal gradient, and iii) it describes the identification property near any structured point, rather than only minimizers.

Before moving to the proof, we note that the assumptions of Theorem 3.1 are rather tight: prox-regularity and partial smoothness are minimal assumptions in this setting. The following example shows on an example that, when assumption i) fails, the proximal gradient mapping looses the property of mapping a full neighborhood of ¯ to M along with its smoothness.

Remark 3.1 (Proximal gradient at non-qualified points.). Assumption i) is necessary to ensure the identification of M on a full neighborhood. This assumption fails when 1 ( ¯ -¯ ) -∇ ( ¯ ) lies on the relative boundary of ( ¯ ). In this case, the proximal gradient may still identify depending on additional quantities, such as its initialization, stepsize, etc. [START_REF] Fadili | Sensitivity analysis for mirror-stratifiable convex functions[END_REF] show that enlarged identification properties still holds when i) fails; [START_REF] Bareilles | On the interplay between acceleration and identification for the proximal gradient algorithm[END_REF] illustrate this situation. We also note that the distance from 1 ( ¯ -¯ ) -∇ ( ¯ ) to the relative boundary of ( ¯ ) can be computed after the prox computation without significant additional cost for the ℓ 1 and nuclear norms.

We illustrate failure of i) on a simple example. Take ( ) = 1 2 ( -1) 2 and ( ) = | | for any ∈ R, and ∈ (0, 1). The unique minimizer lies at the origin and + is partly smooth there relative to the manifold M = {0}. However, the minimizer is not an -structured critical point as it is not qualified: 0 ∉ ri ( + )(0) = ri[-2; 0] = (-2; 0). The proximal gradient operator of + writes prox

( -∇ ( )) =              (1 -) + 2 if ≤ -2 1- 0 if -2 1-≤ ≤ 0 (1 -) if 0 ≤
, there is no neighborhood of 0 on which the operator is smooth and M-valued.

Proof (of Theorem 3.1). Adopting the same reasoning as in Lewis (2002, Sec. 5) and Daniilidis et al. (2006, Sec. 4.1), we consider the function

: R × R → R ( , ) ↦ → ( ) + 1 2 -+ ∇ ( ) 2 ,
and denote by = (•, ). Computing the proximal gradient prox ( -∇ ( )) can then be seen as minimizing the parameterized function .

Step 1. As a first step, we study the minimizers of restricted to M, for near ¯ . We consider the parametric manifold optimization problem, for near ¯ :

min ∈M ( ). ( M ( ))
Since is C 2 -partly-smooth relative to M and is C 2 (R ), is twice continuously differentiable on M. Moreover, the -prox-regularity gives easily (see Lemma A.7) that ¯ is lower-bounded by ( 1 -) • -¯ 2 /2 on a neighborhood of ¯ in R and, a fortiori, in M. Thus ¯ is a strong local minimizer. The Riemannian sufficient optimality conditions Lemma A.1 imply

grad ¯ ( ¯ ) = 0 Hess ¯ ( ¯ ) 1 - 0,
which are the conditions to apply the implicit functions theorem, as follows.

We consider the equation Φ( , ) = 0, for , near ¯ , ¯ , where

Φ : M × R → B is defined as Φ( , ) = grad ( ).
This function is continuously differentiable on a neighborhood of ( ¯ , ¯ ), and its differential relative to ¯ at that point, Hess ¯ ( ¯ ), is invertible. The implicit function theorem thus grants the existence of neighborhoods N ¯ , N ¯ of ¯ , ¯ in M, R , and a continuously differentiable function ˆ : N ¯ → N ¯ such that, for any in N ¯ , Φ( ˆ ( ), ) = grad ( ˆ ( )) = 0. Actually, ˆ ( ) is a strong minimizer of on M for close enough to ¯ . Indeed, the mapping ˆ is continuous on N ¯ , so that ↦ → Hess ( ˆ ( )) is also continuous there and the property Hess ¯ ( ˆ ( ¯ )) 0 extends locally around ¯ .

Step 2. As a second step, we turn to show that the minimizer ˆ ( ) of on M is actually a strong critical point of in R (Lewis, 2002, Def. 5.3), and thus the proximal gradient of point . More precisely, we claim that, for near ¯ and = ˆ ( ), there holds 0 ∈ ri ( ), that is

M x x + 1 r ∂g(x) T xM x -1 r ∇f (x) prox g/r
1 ( -) -∇ ( ) ∈ ri ( ).
This property holds at ( ¯ , ¯ ) by assumption. By contradiction, assume there exist sequences of points ( ) with limit ¯ , ( ) = ( ˆ ( )) with limit ¯ = ˆ ( ¯ ) and (ℎ ) of unit norm ℎ = 1 such that for all , ℎ separates 0 from ( ):

inf ℎ∈ ( ) ℎ , ℎ ≥ 0.
Since (ℎ ) is bounded, a converging subsequence can be extracted from it, let h denote its limit. At the cost of renaming iterates, we assume that lim →∞ ℎ = h. The above property still holds at the limit → ∞. Indeed, let ¯ ∈ ¯ ( ¯ ). Since is partly smooth, the mapping ( , ) ∈ N ¯ × N ¯ ↦ → ( ) = ( ) + 1 ( -) is continuous. Therefore, there exists a sequence ( ) such that ∈ ( ) and lim →∞ = ¯ . We have for all : , ℎ ≥ 0, which yields at the limit ¯ , h ≥ 0. Thus h separates 0 from ¯ ( ¯ ), which contradicts our assumption. Conclusion. We thus have a continuously differentiable function ˆ defined on a neighborhood of ¯ such that i)

ˆ ( ¯ ) = ¯ , ii) ˆ ( ) is a strong minimizer of on M, iii) 0 ∈ ri ( ˆ ( ))
. This last point tells us that ( -ˆ ( ))/ -∇ ( ) ∈ ( ˆ ( )). The characterization of proximity by the optimality condition (Lemma 2.2) gives that ˆ ( ) = prox ( -∇ ( )) for close enough to ¯ .

Assumptions for structure identification

Theorem 3.1 captures the localization properties of the proximal gradient operator. It also enables us to precisely define a condition under which a point can be localized. We formalize it in the definition of -structured critical points, an illustration of which is depicted on Fig. 3

.3. Definition 3.1 . A point ¯ of a 2 submanifold M is -structured critical for ( , ) if we have: i) proximal gradient stability: ¯ = prox / ( ¯ -1/ ∇ ( ¯ )) ; ii) qualification condition: 0 ∈ ri(∇ + )( ¯ );
iii) prox-regularity: is -prox-regular at ¯ ; iv) partial smoothness: is partly-smooth at ¯ with respect to M.

While points ii), iii), iv) are standard in the literature (see e.g., [START_REF] Daniilidis | Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems[END_REF]), point i) is not always explicited (an exception is for the notion of identifiability in [START_REF] Drusvyatskiy | Optimality, identifiability, and sensitivity[END_REF]). It is directly verified when is convex (for any > 0), but this is not the case when is nonconvex, as shown in Example 3.5.

Without point i) of our assumption, the following results would still hold by replacing "for any ∈ (0, 1/ )" by "for small enough", we did not take this option since we wanted to de-correlate the local identification from the stepsize choice.

Example 3.5 (Lack of proximal gradient stability). The following example shows that in the nonconvex setting, ii) and iii) do not necessarily imply i). Take null and as follows, then the proximity operator of at 0 writes:

( ) =              2 /2 if | | ≤ 1 1 -3 /2 if ≥ 1 1 + 3 /2 if ≤ -1 , prox (0) =              0 if ∈ (0, 8/9) {-3 /2, 0, 3 /2} if = 8/9 {-3 /2, 3 /2} if > 8/9.
The function is 1-prox-regular at 0, there holds 0 ∈ ri (0) = {0}, and yet 0 is not a fixed point of the proximal operator with stepsizes close to 1.

3.4

As already mentioned, the output of a proximity operator often comes with the knowledge of the manifold on which it lives. In this section, we leverage this property to an algorithmic advantage by temporarily reducing our working space to the identified structure. "Smooth" structures, involving smooth submanifolds and smooth restrictions on it, emerge locally and open the way to Newton acceleration. Let us start by specifying the blanket assumptions on the problem (P). These assumptions are mostly common except for the third point, which directly comes from our idea of using the proximal operator both for the optimization itself and as an oracle for the current structure of the iterates.

Assumption 3.1 . The functions and are proper and

i) is C 2 (R ) with an -Lipschitz continuous gradient; ii) is lower semi-continuous; iii) prox is non-empty on R for any > 0; iv) ( ) = ( ) + ( ) is bounded below.
In this setup, we propose a general algorithm (Algorithm 3.1) which consists in, first, performing a proximal gradient step ∈ prox ( -1 -∇ ( -1 )) that provides both the current point and the manifold M where it lies, and, second, carrying out a Riemannian optimization update ManAcc M on the current manifold. This algorithm is general in the sense that we do not precise for now what is the Riemannian step ManAcc.

In Section 3.4.1, we show that Algorithm 3.1 retains the global convergence properties of the proximal gradient algorithm. In Section 3.4.2, we study how Riemannian methods with local superlinear convergence (such as Riemannian Newton's method) propagate their rate to Algorithm 3.1. We will investigate later in Section 3.5 the Riemannian Newton acceleration falling into this scheme. The following result shows that Algorithm 3.1 converges to a critical value of , and all accumulation points of its iterates are critical points. For this to hold, we only need the mild assumption that the manifold update does not increase the functional value. This offers a broad choice of methods since this kind of descent is easily obtained by line search as discussed in Section 3.5.1. Theorem 3.2 (Global convergence). Let Assumption 3.1 hold and take ∈ (0, 1/ ). Suppose that the manifold update ManAcc M provides descent, that is for any in M

(ManAcc M ( )) ≤ ( ).
Then, Algorithm 3.1 generates non-increasing functional values ( ( +1 ) ≤ ( ) ≤ ( ) for all ) and all limit points of ( ) and ( ) are critical points of , that share the same functional value.

Proof. It is well-known that the proximal gradient update provides a descent (see the result and reference in Appendix A.2). Choosing such that ( ) ≤ ( ) (by assumption on the manifold update) yields:

( +1 ) Lemma A.5 ≤ ( ) - 1 - 2 +1 - 2 ≤ ( ) - 1 - 2 +1 - 2 .
(3.5)

The sequence ( ( )) is thus non-increasing and lower-bounded, therefore it converges. Besides, any accumulation point of ( ) is a critical point of . Indeed, summing equation (3.5) for = 1, . . . , yields:

1 - 2 =1 +1 - 2 ≤ ( 1 ) -( +1 ) ≤ ( 1 ) -inf < +∞.
Therefore the general term of the above series +1 -2 converges to 0, which implies, by Lemma A.6, that the distance from ( ) to 0 converges to 0. The outer-semi continuity property of the limiting subdifferential allows to conclude that every accumulation point of ( ) is a critical point of . Finally, all limit points share the same functional value as is lower semi-continuous.

Local identification and superlinear convergence

Using the structure identification result of the proximal gradient Theorem 3.1, we can guarantee that our method, Algorithm 3.1, benefits from superlinear convergence provided that the considered Riemannian method converges (locally) superlinearly around a limit point.

Theorem 3.3 (Local convergence). Let Assumption 3.1 hold and take ∈ (0, 1/ ), where is the Lipschitz constant for ∇ . Assume that Algorithm 3.1 generates a sequence ( ) which admits at least one limit point ¯ such that:

i) ¯ ∈ M is a -structured critical point for ( , ) with < 1/ ; ii) ManAcc M has superlinear convergence rate of order 1 + ∈ (1, 2] near ¯ in M: for some > 0 and ∈ M near ¯ , dist geo M (ManAcc M ( ), ¯ ) ≤ dist geo M ( , ¯ ) 1+ .
Then, after some finite time: a) the full sequence ( ) lies on M; b) converges to ¯ superlinearly with the same order as ManAcc:

dist geo M ( +1 , ¯ ) ≤ dist geo M ( , ¯ ) 1+
for some > 0.

(3.6)

Proof. Let us note T( ) = prox ( -∇ ( )) for ∈ R . The part i) of the assumptions enables us to show the existence of some neighborhood of ¯ on which the proximal gradient operation is M-valued and Lipschitz continuous. More precisely, Theorem 3.1 implies that there exists 1 > 0 and > 0 such that,

T( ) ∈ M and T( ) -T( ¯ ) ≤ -¯ for all in B( ¯ , 1 ).
Now, if belongs to M, we get that there exists 1 > 0 such that for any in B M ( ¯ , 1 ), T( ) ∈ M; but in addition, the Euclidean Lipschitz continuity can be translated into a Riemannian one (see Lemma A.4) since for some > 0,

(1 -) dist geo M (T( ), ¯ ) = (1 -) dist geo M (T( ), T( ¯ )) ≤ T( ) -T( ¯ ) ≤ -¯ ≤ (1 + ) dist geo M ( , ¯ ) (3.7)
Hence, there is 1 > 0 such that for any in B M ( ¯ , 1 )

dist geo M (T( ), ¯ ) = dist geo M (T( ), T( ¯ )) ≤ 1 dist geo M ( , ¯ ). (3.8)
Then, the part ii) of the assumptions gives us the existence of 2 , 2 > 0 and ∈ (0, 1) such that, for any in B M ( ¯ , 2 ),

dist geo M (ManAcc M ( ), ¯ ) ≤ 2 dist geo M ( , ¯ ) 1+ .
(3.9)

Let us now take any ∈ B M ( ¯ , ) where = min( 1 , 2 ,

( 1 / 2 ) 1 1+ , ( 2 1 ) -1 ): (i) Since ∈ B M ( ¯ , 2 ), the manifold update (3.9) yields dist geo M (ManAcc M ( ), ¯ ) ≤ 2 dist geo M ( , ¯ ) 1+ ≤ 2 1+ ≤ 1 . (ii) As ManAcc M ( ) lies in B M ( ¯ , 1 ), the proximal gradient update (3.8) applied to = ManAcc M ( ) gives dist geo M (T(ManAcc M ( )), ¯ ) ≤ 1 dist geo M (ManAcc M ( ), ¯ ) ≤ 1 2 dist geo M ( , ¯ ) 1+ ≤ 1 2 dist geo M ( , ¯ ). (3.10) Since 2 1 ≤ 1 by construction, this gives dist geo M (T(ManAcc M ( )), ¯ ) ≤ dist geo M ( , ¯ ) for any ∈ B M ( ¯ , ). (3.11)
We have thus proved the existence of a neighborhood B M ( ¯ , ) of ¯ in M which is stable for an iteration of Algorithm 3.1 and over which one iteration has a superlinear improvement of order 1 + (by (3.10)).

Finally, since ¯ is a limit point of ( ), there exists < ∞ such that ∈ B( ¯ , (1 -) / ). Besides, (3.7) tells us that dist geo M (T( ), ¯ ) ≤ and thus and belong to B M ( ¯ , ) for all > by (3.11). We conclude that +1 = T( ) ∈ M for all ≥ , and, using (3.10), that we have (3.6) with = 1 2 , for all > .

,

In this section, we investigate the possibilities of manifold acceleration within Algorithm 3.1. We show in Sections 3.5.2 and 3.5.3 how to use Riemannian (truncated) Newton accelerations within our framework and derive quadratic (superlinear) convergence guarantees. A technical difficulty to ensure global convergence when interlacing proximal gradient updates with Riemannian Newton accelerations is to guarantee some functional decrease. Thus, we first study in Section 3.5.1 the use of line search for ManAcc M in our context.

Ensuring functional descent while preserving local rates: line search

We use in the following convergence proofs three properties of ManAcc M : it should produce an update that lives on M, enjoy a superlinear local convergence rate, and not degrade function value. For this last point, we consider a simple line search and we prove that, under mild assumptions, it helps to find a point which decreases function value, and retains the favorable local properties of Newton's method. Surprisingly, this result does not appear in the standard references on Riemannian optimization. We provide here the necessary developments inspired from the classical monograph by Dennis Jr and [START_REF] Jr | Numerical methods for unconstrained optimization and nonlinear equations[END_REF].

Standing at point ∈ M with a proposed direction ∈ M, a stepsize > 0 is acceptable if it satisfies the following Armijo condition (R ( )) ≤ ( ) + 1 grad ( ), , for 0 < 1 < 1/2.

(3.12)

The line search employs a second-order retraction R , e.g., the exponential map, a projection retraction [START_REF] Absil | Projection-like retractions on matrix manifolds[END_REF], or any other second-order retraction [START_REF] Boumal | An introduction to optimization on smooth manifolds[END_REF]). 1 The conditions under which stepsizes satisfying the Armijo rule exist are discussed in Dennis Jr and Schnabel (1996, Sec 6.3), the following lemma can then be derived.

Lemma 3.4 . Let Assumption 3.1 hold and consider a manifold M equipped with a retraction R and a pair ( , ) ∈ B. If is differentiable on M at , grad ( ), < 0, and 1 < 1, then there exists ˆ > 0 such that any stepsize ∈ (0, ˆ ) is acceptable by the Armijo rule (3.12).

Proof. We adapt a part of the proof of Dennis Jr and Schnabel (1996, Th. 6.3.2) for the Armijo rule and the Riemannian setting. Since 1 < 1/2, for any sufficiently small there holds

• R ( ) ≤ • R (0) + 1 D ( • R ) (0)[ ] = ( ) + 1 grad ( ), .
Since is bounded below, there exists a smallest ˆ such that (R ( ˆ )) = ( ) + 1 ˆ grad ( ), . Thus all stepsizes in (0, ˆ ) are acceptable by (3.12).

In addition, a line search performed near a minimizer with a Newton direction should accept the unit stepsize, so that the full Newton step may be taken. This is the case when the Riemannian Hessian around this minimizer is positive definite as stated by the next lemma, which is a direct corollary of Theorem B.1. Lemma 3.5 . Let Assumption 3.1 hold and consider a manifold M equipped with a retraction R, a point ★ ∈ M and a pair ( , ) ∈ B. Assume that is twice differentiable on M near ★ and that ★ is a strong local minimizer on M, that is Hess ( ★ ) is positive definite. If the direction brings a superlinear improvement towards ★ , that is

dist geo M (R ( ), ★ ) = (dist geo M ( , ★
)) as → ★ , and 0 < 1 < 1/2, then is acceptable by the Armijo rule (3.12) with unit stepsize = 1.

In the following, we will consider a backtracking line search for finding an acceptable stepsize : the unit stepsize is first tried, and then the search space is reduced geometrically. In practice, we use exactly Dennis Jr and Schnabel (1996, Alg. A6.3.1), which features polynomial interpolation of • R in the search space.

Riemannian Newton & quadratic convergence

We construct a manifold update based on the Riemannian Newton method (Absil et al., 2009a, Chap. 6), which is the simplest method with a local quadratic convergence. It consists in finding ∈ M that minimizes the second order model (2.3) of at point ∈ M, or equivalently that solves Newton equation (see Boumal (2022, Sec. 6.2)): grad ( ) + Hess ( )[ ] = 0 (Newton eq.)

Algorithm 3.2: ManAcc-Newton

Require: Manifold M, point ∈ M 1: Find in M that solves (Newton eq.) 2: Find satisfying the Armijo condition (3.12) with direction 3: return = ( ) Theorem 3.6 . Let Assumption 3.1 hold and take ∈ (0, 1/ ). Consider the sequence of iterates ( ) generated by Algorithm 3.1 equipped with the Riemannian Newton manifold update (Algorithm 3.2). If Hess ( ) is positive definite at each step, then all limit points of ( ) are critical points of and share the same functional value. Furthermore, assume that the sequence ( ) admits a limit point

★ such that i) ★ ∈ M is a -structured critical point for ( , ) with < 1/ ;
ii) Hess M ( ★ ) 0 and Hess M is locally Lipschitz around ★ .

Then, after some finite time, a) the sequence ( ) lies on M; b) converges to ★ quadratically: for large , there exists > 0 such that

dist geo M ( +1 , ★ ) ≤ dist geo M ( , ★ ) 2 .
Proof. As the Riemannian Hessian is assumed to be positive definite, Newton's direction is a descent direction: grad ( ), = -grad ( ), Hess ( ) -1 grad ( ) < 0.

The Riemannian Newton manifold step is therefore well-defined, and the line search terminates by Lemma 3.4, so that the manifold update is well-defined and provides descent ( ( ) ≤ ( )). Theorem 3.2 thus ensures that all limit points of ( ) are critical points of and share the same functional value. Now we apply the local convergence of Riemannian Newton (Absil et al., 2009a, Th. 6.3.2): assumption ii) ensures that the Riemannian Newton direction computed in step 1 of Algorithm 3.2 provides a quadratic improvement on a neighborhood of ★ on M. Moreover, the line search returns the unit-stepsize after some finite time:

= 1 is tried first, and is acceptable for directions providing superlinear improvement by Lemma 3.5. Thus the whole Riemannian Newton update provides quadratic improvement after some finite time. Using this and assumption i), Theorem 3.3 applies and yields the results. This theorem states that alternating proximal gradient steps and Riemannian Newton steps converges quadratically to structured points under virtually the same assumptions required by the Euclidean Newton method. The two standard issues of Newton's method therefore hold in our setting: at each iteration, a linear system has to be solved to produce the Newton direction; and this direction does not always provide descent (without positive definiteness of the Hessian). We show in the next section that truncated versions overcome these issues in our framework.

Riemannian Truncated Newton & superlinear convergence

We consider a manifold update based on a truncated Newton procedure [START_REF] Dembo | Truncated-newtono algorithms for large-scale unconstrained optimization[END_REF]. (Riemannian) Truncated Newton consists in solving (Newton eq.) partially by using a (Riemannian) conjugate gradient procedure so that whenever the resolution of (Newton eq.) is stopped, the resulting direction provides descent on the function. The quality of the truncated Newton direction is controlled by a parameter ∈ [0, 1) which bounds the ratio of residual and gradient norms: grad ( ) + Hess ( )[ ] ≤ grad ( ) .

(Inexact Newton eq.)

Algorithm 3.3: ManAcc-Newton-CG

Require: Manifold M, point ∈ M, convergence defining parameter ∈ (0, 1] 1: Let = grad ( ) 2: Find that solves (Inexact Newton eq.) 3: Find satisfying the Armijo condition (3.12) with direction 4: return = ( ) Theorem 3.7 . Let Assumption 3.1 hold and take ∈ (0, 1/ ). Consider the sequence of iterates ( ) generated by Algorithm 3.1 equipped with the Riemannian Truncated Newton manifold update (Algorithm 3.3). Then all limit points of ( ) are critical points of and share the same function value. Furthermore, assume that sequence ( ) admits a limit point ★ such that i) ★ ∈ M is a -structured critical point for ( , ) with < 1/ ;

ii) Hess M ( ★ ) 0 and Hess M is locally Lipschitz around ★ .

iii) we take = O( grad ( ) ), for some ∈ (0, 1].

Then, for large enough, the full sequence ( ) lies on M, and converges to ★ superlinearly with order 1 + : for large , there exist > 0,

dist geo M ( +1 , ★ ) ≤ dist geo M ( , ★ ) 1+ .
Proof. Applying the analysis of Dembo and Steihaug (1983, Lemma A.2) to the approximate resolution of (Inexact Newton eq.) on the euclidean space M yields: grad ( ), ≤ -min(1, Hess ( ) -1 ) grad ( ) 2 .

Therefore, the direction provided by (Inexact Newton eq.) is a descent direction, and by Lemma 3.4 the line search terminates: the updates are well-defined and provide descent. Thus, as in the proof of Theorem 3.6 we get that every accumulation point of the iterate sequence is a critical point for . We can apply now the local convergence of the Riemannian truncated Newton method (Absil et al., 2009a, Th. 8.2.1): assumptions ii) and iii) ensure that the direction computed in step 1 of Algorithm 3.3 provides a local superlinear improvement towards ★ . The end of the proof is the same as the one of the proof of Theorem 3.6.

3.6

In this section, we illustrate the effect of Newton acceleration. We consider Algorithm 3.1 equipped with either the Newton update of Algorithm 3.2, denoted 'Alt. Newton' or the truncated Newton update of Algorithm 3.3, denoted 'Alt. Truncated Newton'. These methods are compared to the Proximal Gradient and the Accelerated Proximal Gradient, which serve as baseline. The algorithms and problems are implemented in Julia [START_REF] Bezanson | Julia: A fresh approach to numerical computing[END_REF]; experiments may be reproduced using the code available at https://github. com/GillesBareilles/NewtonRiemannAccel-ProxGrad.

We report the numerical results in figures showing a) the suboptimality ( ) -( ★ ) of the current iterate versus time, and b) the dimension of the current manifold M versus iteration. We also report a table comparing the algorithms at the first iteration that makes suboptimality lower than tolerances 10 -3 and 10 -9 for various measures summarized in the following table: The proximal gradient updates, present in all methods, include a backtracking procedure that maintains an estimate of the Lipschitz constant of ∇ , so that the proximal gradient step length is taken as the inverse of that estimate. The Conjugate Gradient used to solve (Newton eq.) and (Inexact Newton eq.) follows Boumal (2022, Alg. 6.2); it is stopped when the (in)exactness criterion is met, or after 50 iterations for the logistic problem and 150 for the trace-norm one, or when the inner direction makes the ratio Hess ( )[ ], / 2 small. 2 The manifold updates are completed by a backtracking line search started from unit stepsize, a direct implementation of Dennis Jr and Schnabel (1996, Alg. 6.3.1).

Two-dimensional nonsmooth example

We consider the piecewise quadratic problem of [START_REF] Lewis | A simple Newton method for local nonsmooth optimization[END_REF]:

min ∈R 2 2 2 1 + 2 2 + | 2 1 -2 |.
The objective function is partly-smooth relative to the parabola { : 2 = 2 1 }, for which an expression for the tangent space, the orthogonal projection on tangent space, a second-order retraction and conversion from Euclidean gradients and Hessian-vector products to Riemannian ones are readily available.

We detail here the oracles of ( )

2 2 1 + 2 2 and ( ) | 2 1 -2 |:
2 Each CG iteration requires one Hessian-vector product, avoiding to form the Hessian matrix. A test on this ratio is used to detect a direction of quasi-negative curvature for the (Riemannian) Hessian, which is a stopping criterion of the Conjugate Gradient. In our implementation, we require this quantity to be smaller than 10 -15 for the Newton method. For the truncated version, we reduce the threshold when getting close to the solution: initialized at 1, the threshold is decreased by a factor 10 each time the unit-step is accepted by the line search.

• proximity operator: For < 1/2, there holds

prox ( ) =              ( 1 1+2 , 2 + ) if 2 ≤ 2 1 (1+2 ) 2 - ( 1 1+4 -2 , 2 + 2 -) if 2 1 (1+2 ) 2 -≤ 2 ≤ 2 1 (1-2 ) 2 + ( 1 1-2 , 2 -) if 2 1 (1-2 ) 2 + ≤ 2 where solves 2 2 + (-2 + -2 )(1 + 4 -2 ) 2 = 0.
• Riemannian gradient and Hessian: Since is identically null on M, for any point ( , ) ∈ B, grad ( ) = 0 and Hess ( )[ ] = 0. Moreover, Euclidean gradient and Hessian-vector product are converted to Riemannian ones using equations (2.1) and (2.2):

grad ( ) = proj (∇ ( ))

Hess ( )[ ] = proj ∇ 2 ( )[ ] - 2 1 0 ∇ ( ), 2 1 -1 1 1 + 4 2 1 ,
and the orthogonal projection onto M writes proj ( ) = -, 2 1

-1

1 1 + 4 2 1 2 1 -1 .
We run the proximal gradient, its accelerated counterpart, and Algorithm 3.1 with the Newton update Algorithm 3.2. For our illustrative purposes, the proximal gradient steps of all algorithms have a constant stepsize = 0.05, all algorithms are started from point (2, 3).

. The iterates are displayed in Fig. 3.5. The Proximal Gradient iterates reach the parabola in finite time, and then converge linearly on the parabola while the Accelerated Proximal Gradient iterates "overshoot" the optimal manifold (see [START_REF] Bareilles | On the interplay between acceleration and identification for the proximal gradient algorithm[END_REF]). The iterates of the Alt. Newton method stay on the parabola and the quadratic convergence behavior appears clearly since two Newton updates bring suboptimality below 10 -3 , and one additional step gets it below 10 -12 .

ℓ 1 -regularized logistic problem

We now turn to the ℓ 1 -regularized logistic problem:

min ∈R 1 =1 log(1 + exp(- , )) + 1 ,
where ∈ R × , ∈ {-1, 1} , and > 0. The nonsmooth part ( ) = 1 is described in Section 3.2.

We consider an instance where = 4000, = 400, = 10 -2 and the final manifold has dimension 249. The coefficients of are drawn independently following a normal law. From a sparse random vector , is set to 1 with probability 1/(1 + exp(-, )), and -1 otherwise. All algorithms start from . The experiments are presented in Fig. 3.6. 3 The optimal manifold is identified around iteration 200 for all methods except for Proximal Gradient, which needs 1000 iterations. The two baselines Proximal Gradient and its accelerated version show linear convergence, with a better rate for the non accelerated version once the final manifold is reached. Alt. Truncated Newton shows superlinear acceleration, while Alt. Newton fails to converge in the given time budget.
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As iterations grow, the (Accelerated) Proximal Gradient identifies manifolds of decreasing dimension in a roughly monotonical way. Alt. Truncated Newton behaves differently: after identifying monotonically manifolds of dimension lower than 2000, the dimension of the current manifold jumps to about 3000 for about 10 iterations, to finally reach quickly the final manifold. We believe that this partial loss of identified structure is caused by iterates getting close to a point having one non-null but very small coordinate. There, the second-order Taylor extension is valid on a small set however it may lead to a Newton step that lies outside that set, thus driving the iterate away. The same behavior occurs for Alt. Newton. This difficulty can be related to the well-known problem of constraint activation in nonlinear programming. Despite this, Algorithm 3.1 retains a good rate overall. 

Trace-norm regularized problem

We consider the following matrix regression problem:

min ∈R 1 × 2 1 2 =1 , - 2 + * , (3.13) 
where ∈ R 1 × 2 for = 1, . . . , , ∈ R and denotes a positive scalar. The nonsmooth part ( ) = * is described in Section 3.2. We consider an instance of (3.13) where 1 = 10, 2 = 12, = 60, = 10 -2 and the final manifold is that of matrices of rank 6. The coefficients of the 's are drawn independently from a normal law. From a sparse random vector , is taken as , + , where follows a centered normal law with variance 0.01 2 . All algorithms start from the same point which is the output of 10 3 iterations of the accelerated proximal gradient randomly initiated.

. The experiments are presented in Fig. 3.7. 4 We see on Fig. 3.7a that the Proximal Gradient algorithm and its accelerated version converge sublinearly. We conjecture that this slow rate is due to the lack of strong convexity of the objective problem. Alt. Truncated Newton converges superlinearly, and shows the interest of the Newtonian acceleration. Figure 3.7b shows that the Proximal Gradient does not reach the final optimal manifold within the budget of iterations; similarly for the Newton method, within the budget of time. Prox. Gradient 1 We illustrate the robustness of the Newton acceleration on several instances of the trace-norm problem (3.13). More precisely, we compare the 4 algorithms on 20 random instances of the tracenorm problem, in terms of wallclock time required to reach a suboptimality of 10 -9 . We then provide in Fig. 3.8 a performance profile (i.e., the ordinate of a curve at abscissa ≥ 1 indicates the proportion of problems for which the corresponding algorithm was able to satisfy the criterion within times the best algorithm time for each problem; see [START_REF] Dolan | Benchmarking optimization software with performance profiles[END_REF]).

• 10 -3 - - - - - - Prox. Gradient 1 • 10 -9 - - - - - - Accel. Prox. Gradient 1 • 10 -3 9.
We observe the following on Fig. 3.8. The ordinate at origin of a curve gives the proportion of problems for which the corresponding algorithm performed best: methods with Newton acceleration are the most efficient in 95%(= 75% + 20%) of the instances. Furthermore, they require about 2.5× less time to converge in half of the instances. Note also that the proximal gradient is completely outperformed by the others algorithms since it takes 5× more time than the best algorithm, for all instances. where the inner mapping : R → R is smooth and the outer function : R → R ∪ {+∞} is nonsmooth and may be nonconvex, but admits an explicit proximity operator. In Chapter 3, we considered the additive composite model, we now turn to the composition model. This model is more difficult to handle in general, and encompasses the additive model as a particular case. Here, we illustrate our developments on two classes of functions: the pointwise maximum of smooth real-valued functions

( ) = max =1,..., ( ( )) (4.2)
and the maximum eigenvalue of a parametrized symmetric real matrix

( ) = max ( ( )). (4.3)
In these two examples and many others, subgradients of can be computed and thus the composite function can be minimized using standard nonsmooth optimization algorithms (e.g.,subgradient methods, gradient sampling [START_REF] James V Burke | Gradient sampling methods for nonsmooth optimization[END_REF], nonsmooth BFGS [START_REF] Lewis | Nonsmooth optimization via quasi-Newton methods[END_REF]),1 or black box bundle methods (Hiriart-Urruty and Lemaréchal, 1993)). Nevertheless, these methods do not exploit the fact that is a composition of a smooth mapping , which can hinder their performance. In contrast, the so-called prox-linear methods leverage this composite expression by introducing an extension of the proximity operator where the nonlinear mapping is iteratively replaced by a firstorder Taylor approximation [START_REF] Lewis | A proximal method for composite minimization[END_REF]. These methods benefit from theoretical convergence guarantees, and nicely generalize to Taylor-like approximations [START_REF] Drusvyatskiy | Nonsmooth optimization using Taylorlike models: Error bounds, convergence, and termination criteria[END_REF][START_REF] Bolte | The multiproximal linearization method for convex composite problems[END_REF]. However these methods are not always directly implementable because the prox-linear step may be hard to compute, as in (4.3). In a similar spirit, a variant of bundle methods also exploits the composite expression of the function, by leveraging the subgradients of the outer nonsmooth function and the derivatives of the inner mapping; see [START_REF] Sagastizábal | Nonsmooth Optimization: Thinking Outside of the Black Box[END_REF] for general composite functions (4.1) and [START_REF] Helmberg | A Spectral Bundle Method for Semidefinite Programming[END_REF] for (4.3).

In this chapter, we propose an optimization algorithm for solving (4.1) exploiting that the nonsmooth objective function = • writes as a composition between a smooth mapping and a simple nonsmooth function , which displays some smooth substructure, as discussed below.

4.1.1 Smooth substructure, identification, and existing algorithms For many composite functions, including (4.2) and (4.3), the nondifferentiability points locally organize into smooth manifolds over which evolves smoothly. We illustrate in Figure 4.1 such a smooth substructure for a maximum of two functions. The smooth substructure of can help in solving (4.1). Indeed, if the optimal solution ★ belongs to a manifold M ★ that is known beforehand, then minimizing the nonsmooth function over R boils down to minimizing the smooth restriction | M ★ over this smooth optimal manifold M ★ . This would enable to solve (4.1) by smooth constrained optimization algorithms, such as Sequential Quadratic Programming (SQP) methods (see e.g., [START_REF] Nocedal | Numerical optimization[END_REF]; [START_REF] Bonnans | Numerical optimization: theoretical and practical aspects[END_REF]). The main difficulty in practice is that we do not know M ★ in advance.

Thus, the algorithms exploiting this smooth substructure require two ingredients: i) a mechanism to identify the optimal manifold; ii) an efficient method to minimize restricted to this manifold.

For general convex functions, the algorithm of [START_REF] Mifflin | A VU-algorithm for convex minimization[END_REF] mixes a proximal bundle iteration (as a heuristic for identification) and a socalled U-Newton iteration (which interprets as an SQP step; see Miller and Malick (2005, Sec. 5)). The obtained superlinear rate hinges on the identification of the optimal manifold.

For max-of-smooth functions (4.2), [START_REF] Womersley | An algorithm for composite nonsmooth optimization problems[END_REF] pioneered the idea of seeking the optimal manifold and using it to make second-order steps. Their identification heuristic uses the indices of the maximal function along a descent direction. Recently, [START_REF] Lewis | A simple Newton method for local nonsmooth optimization[END_REF]; [START_REF] Han | Survey Descent: A Multipoint Generalization of Gradient Descent for Nonsmooth Optimization[END_REF] investigate a related setting and propose bundle-like algorithms incorporating high-order information that converge (super)linearly on max-of-smooth functions when the optimal manifold is known.

For the maximum eigenvalue of a parametrized matrix (4.3), a specific version of the U-Newton method discussed above is studied by [START_REF] Noll | Spectral bundle methods for non-convex maximum eigenvalue functions: Second-order methods[END_REF]. Again, the identification mechanism is a heuristic determining the multiplicity of the maximal eigenvalue and the optimization step is an SQP iteration.

None of these methods guarantee identification of the optimal manifold: they either assume that the optimal manifold is known in advance, or rely on heuristics for identification. Here, we aim at further harnessing the smooth substructure of = • to have guaranteed local identification of the optimal manifold and then guaranteed quadratic convergence when using SQP iterations.

Contributions and outline

We propose a local second-order algorithm for solving the nonsmooth composite problem (4.1) that identifies the optimal manifold of non-differentiability. The two main ingredients of our algorithm are the following: i) we use the explicit proximal operator of with chosen stepsizes to provide a guaranteed identification procedure;

ii) for a candidate manifold M, we make an SQP iteration minimizing a smooth extension of | M subject to the constraint of belonging to M.

Proximal-based operators identify the manifolds of minimizers under some natural geometrical assumptions: we looked at the proximal and proximal gradient operators in Proposition 2.3 and Theorem 3.1; see also [START_REF] Lee | Accelerating inexact successive quadratic approximation for regularized optimization through manifold identification[END_REF]; [START_REF] Lewis | A proximal method for composite minimization[END_REF]. Here, we only have access to the proximity operator of . In order to exploit the structure it provides, we face the double challenge of, first, identifying the smooth structure around a point which is not a minimizer for , and, second, deducing the corresponding structure of = • . Thus, our main technical contribution is to establish that prox maps a point close to ( ★ ) to (M ★ ). The step should be carefully chosen, in particular larger than the distance of to (M ★ ).

We combine this new identification result with standard SQP-steps to propose a local algorithm for minimizing the composite function . We pay a special attention to prevent the quadratic convergence of SQP from jeopardizing identification: we prove that, for a well-chosen stepsize policy, the method identifies the optimal structure and locally converges quadratically. We illustrate numerically these properties on problems of the form (4.2) and (4.3).

. First, in Section 4.2, we illustrate the technical tools to describe the manifold identification brought by proximity operators. Furthermore, we lay out two technical properties needed for proximal identification in the composite setting. In Section 4.3, we show our main result consisting in a description of a stepsize range for which the proximity operator of identifies the optimal manifold locally around a minimizer. In Section 4.4 we detail the proposed method combining SQP-steps and proximal identification steps. Finally, we present in Section 4.5 numerical illustrations of our method and of the identification result. Some results concerning our two examples have been deferred to Appendix C.

4.2

Let us start by representing schematically the type of functions we consider:

R ------------→ smooth mapping Im( ) ⊂ R --------------→ nonsmooth function R ∪ {+∞}.
Throughout the chapter, we denote by points in the input space R and by points in the intermediate space R .

In all the results presented in this chapter, we make the following assumption that describes the minimal global properties on and to conduct our reasoning.

Assumption 4.1 . The mapping : R → R is C 2 , the function : R → R ∪ {+∞} is proper and lower semi-continuous.

In the remainder of this section, we illustrate on our running examples the proximity operator in Section 4.2.1 and the structure manifolds in Section 4.2.2. Then, in Section 4.2.3 we introduce two assumptions required for identification and show they hold on our examples.

Proximity operator: examples

Example 4.1 (Maximum). The subdifferential of ( )

= max( 1 , . . . , ) is max( ) = Conv : = max( ) ,
where is the -th element of the Cartesian basis of R . This function is convex, thus globally prox-regular and prox-bounded everywhere (with parameters 0). Its proximity operator is given (coordinate-wise) by

prox max ( ) =        if > else
where is the unique real number such that { : > } ( -) = .

Example 4.2 (Maximum eigenvalue). Denote the eigenvalue decomposition of a point ∈ S as = Diag( ) , where ∈ R is a vector with decreasing entries and ∈ R × an orthogonal matrix. The subdifferential of the maximum eigenvalue at writes (Lewis, 2002, Ex. 3.6) max ( )

= { 1: 1: , ∈ S , 0, trace = 1}
where is the multiplicity of the maximum eigenvalue of . This function is convex, thus prox-regular and prox-bounded (with parameters 0). Its proximity operator can be expressed using the one of the max function as prox max ( ) = Diag(prox max ( )) .

Structure manifolds: examples

To highlight the relation between a structure manifold and the corresponding function , we use the notation M for the structure manifold related to .

Example 4.3 . The structure manifolds of max are

M max = { ∈ R : = max( ) for ∈ },
where ⊂ {1, . . . , }. A smooth manifold-defining map for M max is ℎ : R →

R | |-1 such that ℎ( ) = -| |
, where | | denotes the size of and the -th element of (with some ordering). As required, this map is surjective. At any point ∈ R , the maximum is partly smooth relative to M max , where = { : = max( )}.

Example 4.4 . The structure manifolds of max in S consist of all matrices having a largest eigenvalue with fixed multiplicity :

M max = { ∈ S : 1 ( ) = • • • = ( )}.
A manifold-defining map of M max is described in [START_REF] Shapiro | On Eigenvalue Optimization[END_REF] and max is partly smooth relative to M max at any point ∈ M max .

In view of the expression of the proximity operators in our examples, their output naturally lie on the structure manifolds described above. More precisely, prox max ( ) belongs to the structure manifold M max , where collects the indices of the largest entries of and grows as increases. Similarly, prox max ( ) belongs to the structure manifold M max , where increases as does. This observation is at the core of the ability of proximal operators to identify neighboring structure manifolds.

Structure Identification

The proximity operator identifies structure locally around critical points: all As discussed in Proposition . . points near a minimizer are mapped to its structure manifold, and this structure is revealed during the computation of the operator. 2 In the composite setting we consider, the proximity operator of cannot be explicitly computed. However, prox is available and can provide some structure in the intermediate space R that we would like to exploit. To do so, we introduce two properties (satisfied by two running examples), that will allow us to retrieve the structural information in the intermediate space near points that are not minimizers of .

. The first property holds at point ¯ ∈ M if the nonsmooth function strictly increases on all directions on which it is nonsmooth.

Property 4.1 (Normal ascent). A function satisfies the normal ascent property at point ¯ if 0 lies in the relative interior of the projection of ( ¯ ) on the normal space at ¯ , that is:

0 ∈ ri proj ¯ M ( ¯ ).
Notice that this normal ascent property is weaker than the usual property 0 ∈ ri ( ¯ ) appearing in stability results near nonsmooth critical points, such 2 Computing exactly the structure of the output point of the operator, as can be done for the prox, is opposed to merely observing the structure of the output after its computation. This last option is not desirable in our opinion as it entails delicate numerical questions such as testing equality between reals for the maximum, or computing the multiplicity of the maximal eigenvalue of a matrix. as Theorem 3.1 or Proposition 2.3. Indeed, we study here the stability of the proximity operator of near points that are not minimizers of . This property has a natural interpretation when is regular and Lipschitz: it requires that the function (strictly) increases in all directions normal to M , leaving tangent directions free. We discuss this interpretation precisely in the next remark.

Remark 4.1 (Positive directional derivative). In a "nice" setting where is Lipschitz continuous and regular at ¯ , Property 4.1 implies that the directional derivative of along any normal direction ∈ ¯ M is positive. Indeed, in that case one-sided directional derivatives are well-defined (Rockafellar and Wets, 1998, p. 358, Th. 9.16), and the derivative along direction equals max ∈ ( ) , . Along a normal direction ∈ M , by partial smoothness the directional derivative writes max ∈proj M ( ( ))

, . Property 4.1 ensures the existence of > 0 such that ∈ proj M ( ( )), making the derivative positive.

Let us briefly discuss that, even if Property 4.1 may look strong, in practice it is not. For a given nonsmooth function which can be decomposed as = • , Property 4.1 may not hold for at ( ★ ) for a minimizer ★ . Nevertheless, the property often holds for a different decomposition = ˜ • ˜ . We give two examples where changing the decomposition of ensures that Property 4.1 holds at minimizers. 

( ) =        1 + 2 if 1 > 0 1 + 0.25 2 else , ( ) = 2 - 2 .
The minimizer is ★ = 0, since is strictly increasing at all ∈ Im( ) near ★ = ( ★ ); see Fig. 4.2. However the normal ascent property does not hold at ★ : is decreasing at ★ along the normal direction (0; -1).

The composite function boils down to ( ) = 2 + max( , -0.5 ) = ˜ • ˜ ( ), where ˜ ( ) = 2 + max( ) and ˜ ( ) = ( , -0.5 ). With this decomposition, ˜ does satisfy the normal ascent property at ★ . . The second property is more technical and controls the velocity of a curve on the manifold M . Property 4.2 (Curve property). A function partly smooth at ¯ relative to M satisfies the curve property at ¯ when there exists a neighborhood N ¯ of ¯ and > 0 such that any smooth application :

N ¯ × [0, ] → M such that ( , 0) = proj M ( ), ( , 
)| =0 = -grad (proj M ( )) satisfies proj ( , ) M ( ( , ) -) ≤ dist M ( ) + ˜ 2 for all ∈ N ¯ , ∈ [0, ],
where dist M ( ) -proj M ( ) is the distance between M and and grad ( ) ∈ M denotes the Riemannian gradient of obtained as grad ( ) = proj M ( ( )).

The idea behind this property is to ensure that the differential of the projection of the (time dependent) normal space is (uniformly) negligible at time 0. Note that for affine spaces, we trivially have proj ( , ) M ( -( , )) = dist M ( ) for all near 0: the normal spaces are equal at all points of the manifold.

These two properties are satisfied at any structured point for the two nonsmooth functions max and max of our running examples as detailed in the following lemma. The proofs for the two functions are rather direct but require precise technical descriptions; we defer them to Appendix C. Then, Properties 4.1 and 4.2 hold at ¯ .

Finally, the structure provided by prox lies in the intermediate space R , while the optimization variable lives in R . In order to transfer the structure information to the input space, we will also require the smooth map : R → R to be transversal to M ⊂ R at some point ¯ ∈ R , which holds when M is a manifold around ( ¯ ) and the following (equivalent) conditions hold:

Ker D ( ¯ ) * ∩ ( ¯ ) M = {0} or ( ¯ ) M + Im D ( ¯ ) = R . (4.4)
In that case, the set -1 (M ) is a submanifold of R (Lee, 2003, Th. 6.30), whose normal space has the same dimension as the one of M . Furthermore, we have (Lee, 2003, Ex. 6-10)

-1 (M ) = D ( ) * ( ) M and -1 (M ) = D ( ) -1 ( ) M . (4.5)

4.3

We show in this section how to exactly detect the optimal structure manifold of the composite function = • around a point ¯ using the proximity operator of .

In our nonconvex and nonsmooth setting, we seek only structured points which satisfy certain assumptions summarized in our definition of a qualified point.

We adapt the notion of qualified point, already present in Chapter , to the setting of this chapter. Three of these assumptions constrain only the nonsmooth function and are easily verifiable in practice. Only the transversality condition limits the range of acceptable smooth mappings; see e.g., Lewis (2002, Sec. 4). For such qualified points, we get two useful properties: first, is partly smooth at ¯ relative to the manifold M, locally defined as M

-1 (M ) ¯ by the chain rule of Lewis (2002, Th. 4.2), and second, the operator prox is single-valued, locally Lipschitz, and defined by its optimality condition near ( ¯ ).

Main result: prox • as a structure detector

We show in the following theorem that if is near a qualified point of with structure M, then prox ( ( )) will output a point on M = (M), the structure manifold of corresponding to M (in the intermediate space). Our theorem provides precise conditions on and that guarantee this structure identification and forms the main theoretical contribution of the chapter. We illustrate this behavior in Figures 4.3 and 4.4.

The position of this result with respect to the literature is discussed right after in Remark 4.2, and the proof is given in the following Section 4.3.2, in a succession of technical lemmas. We stress that we give guarantees on the structure to which the point prox ( ( )) belongs, rather than on the point itself.

Theorem 4.4 (Prox for structure detection). Consider a function = • and a point ¯ . Assume that ¯ is qualified relative to a manifold M ⊂ R . Then, there exists a neighborhood N ¯ of ¯ and a constant Γ such that, for all ∈ N ¯ ,

prox ( ( )) ∈ M for all ∈ [ (dist M ( )), Γ],
where dist M ( ) denotes the distance from to the manifold M and is defined as

( ) = ri 2 ˜ 1 -1 - 4 ˜ map 2 ri = map ri + ˜ 2 map 3 ri 2 + ( 2 ),
with ri , map , and ˜ (of Property 4.2) positive constants.

In particular, there exists > 0, > 0 such that . When < 0.25, the curve does not lie on any structure manifold. For ∈ [0.25, 0.75), the curve lies on the optimal manifold M max 2,3 . For ≥ 0.75, the curve lies on M max 1,2,3 .

-★ ≤ and -★ ≤ ≤ Γ =⇒ prox ( ( )) ∈ M . 2 1 3 M max 2,3 M max 1,3 M max 1,2 M max 1,2,3 ( ) prox 0.25 max ( ( )) prox 0.75 max ( ( )) prox 1.2 max ( ( ))
-1 -0.5 0 0.5 1 Note that Property 4.2 is only used to compute explicitly an interval of guaranteed to provide the correct structure; the existence of that interval holds independently.

M 23 M 123 = 2.3 { : prox max ( ( )) ∈ M max {1,2,3} } { : prox max ( ( )) ∈ M max {1,2} } { : prox max ( ( )) ∈ M max {1,3} } { : prox max ( ( )) ∈ M max {2,3} }

Remark 4.2 (Relation with existing results

). The difference between Theorem 4.4 and existing results lies in two aspects. First, the identification properties of the proximal operator (Daniilidis et al., 2006, Th. 28, recalled as Proposition 2.3), the proximal-gradient operator Theorem 3.1, or even approximate prox-gradient operators [START_REF] Lee | Accelerating inexact successive quadratic approximation for regularized optimization through manifold identification[END_REF] give structure information directly in the input space (even in abstract algorithmic frameworks (Hare and Lewis, 2004, Th. 4) or (Lewis and Zhang, 2013, Th. 4.10)). In the composite case, the proximity operator reveals structure in the intermediate space only, and extra work is required to bring it back to the input space.

Second, most existing results investigate identification properties near minimizers, and not just arbitrary points (two notable exceptions give results near arbitrary structured points: [START_REF] Lewis | Partial Smoothness, Tilt Stability, and Generalized Hessians[END_REF] for an abstract algorithmic framework, and Theorem 3.1 for the proximal gradient). Here, we evaluate prox near ( ¯ ), a point without any specific properties (even if ¯ is a local minimizer). This is why we need Property 4.1 to guarantee identification in the intermediate space, and bring the structure information to the input space.

Remark 4.3 (About prox-linear methods). Prox-linear methods are known to identify structure on composite problems [START_REF] Lewis | A proximal method for composite minimization[END_REF]. Specifically, Lewis and Wright (2016, Th. 4.11) establishes that, after some finite time, an intermediate quantity belongs to the structure manifold of ( ★ ). It is then mentioned that this information could be used to take efficient second-order steps to minimize along the identified manifold. Whether this can be done generically is unclear to us: checking that this quantity, obtained from the subproblem solution, belongs to a structure manifold is delicate. Though it is reasonable if the subproblem is solved with a suitable active-set method, it becomes delicate if only an approximation of the subproblem solution is available, using e.g., interior point methods. In that case, the quantity will be somewhat close to the structure manifold, and one would have to resort to -based tests.

Remark 4.4 (Theorem 4.4 as a structure identification tool). In contrast with the identification of prox-linear methods, Theorem 4.4 provides a simple result for the detection of structure manifolds near any point ∈ R . We also underline that the bounds on the range of that provide correct identification are surprisingly simple: the upper bound is constant and the lower bound is essentially a linear function of the distance to the manifold. These simple and explicit bounds allow us to build a simple algorithm in the forthcoming Section 4.4.

Proof of Theorem 4.4

The main difficulty of the proof is to build a suitable identification result for the nonsmooth function . Theorem 4.4 (identification for • ) would then follow by taking into account the action of the smooth map .

To derive an identification result on , we have to give conditions on and so that = prox ( ) lies on the considered manifold M . Since is prox-regular and prox-bounded at point ( ¯ ), Theorem 2.1 allows us to characterize this relation by its first-order optimality condition:

∈ + ( ).

Whenever ∈ M (which is what we want to show), this inclusion decomposes along M and M as:

proj M ( -) = grad ( ) (4.6) proj M ( -) ∈ proj M ( ). (4.7)
Thus we will show that for suitable ( , ), there is a unique that satisfies these two equations. We do so by considering the smooth tangent component Eq. ( 4.6) first and then the nonsmooth normal component Eq. ( 4.7) as follows:

• We first show in Lemma 4.5 that for near ¯ and small, there exists a unique point = ( , ) on M that satisfies Eq. (4.6), which depends smoothly on and . This result is obtained by applying the implicit function theorem.

• Then, we prove in Lemma 4.6 that ( , ) also satisfies the second inclusion Eq. (4.7) if belongs to the interval [ (dist M ( )), Γ ]. This result is a consequence of the application of some variational analysis tools.

Putting these two results together, we obtain the existence and uniqueness of a point = ( , ) ∈ M verifying both Eq. (4.6) and Eq. (4.7) for all near ¯ and ∈ [ (dist M ( )), Γ ]. By the first-order optimality condition presented above, this point is necessarily prox ( ).

Finally, this identification result in the intermediate space on is transferred back to the input space using transversality.

Part 1: tangent optimality

We first show that, for near ¯ and small, there is a unique point on the manifold M that satisfies the tangent component of this optimality condition:

proj M ( -) = grad ( ), (4.8)
where grad ( ) proj M ( ( )) is unique by the sharpness property of partial smoothness, and matches the Riemannian gradient of on M (see Section 2.3). Such points are given by a smooth manifold-valued application ( , ), the existence of which is guaranteed by the following lemma.

Lemma 4.5 . Consider a function : R → R ∪ {+∞}, a point ¯ ∈ R , and a manifold M with partly smooth at ¯ relative to M . Then, there exists a smooth curve :

N ¯ × N 0 → M defined on a neighborhood of ( ¯ , 0) in R × R + such that • for all ∈ N ¯ , ( , 0) = proj M ( ) and ( , )| =0 = -grad (proj M ( ));
• for all ∈ N ¯ , ∈ N 0 , Eq. (4.8) is satisfied for = ( , ).

Proof. We define the mapping

Φ : R × R × M → ∪ ∈M M as Φ( , , ) = grad ( ) -proj M ( -)
and consider the equation Φ( , , ) = 0 near the point ( ¯ , 0, ¯ ). Using the smoothness of on M given by partial smoothness, we have that this mapping is continuously differentiable on a neighborhood of ( ¯ , 0, ¯ ). We see that its differential with respect to is D Φ( ¯ , 0, ¯ ) = . Indeed, for ∈ M ,

D Φ( , , )[ ] = Hess ( )[ ] + -D ↦ → proj M ( -) ( )[ ].
At point ( ¯ , 0, ¯ ), the first term vanishes, and the third term writes

D ↦ → proj M (0) ( ¯ )[ ]
and vanishes as well as the differential of the null function ↦ → proj M (0). Thus D Φ( ¯ , 0, ¯ ) = is invertible. The implicit functions theorem thus grants the existence of neighborhoods

N 1 ¯ , N 2 0 , N 3 ¯ of ¯ , 0, ¯ in R , R, M and a continuously differentiable function : N 1 ¯ × N 2 0 → N 3 ¯ such that, for any ( , ) ∈ N 1 ¯ × N 2 0 , Equation (4.8) is satisfied with = ( , ). For ∈ N 1 ¯ , ( , 0) satisfies -( , 0) ∈ ( ,0
) M , which is the first-order optimality condition of ( , 0) = proj M ( ). Possibly reducing N 1 ¯ so that, for all ∈ N ¯ proj M ( ) is well-defined and unique, the previous optimality condition is equivalent to

( , 0) = proj M ( ). Besides, differentiating Φ( , , ( , )) = 0 relative to at = 0 yields D ( , 0) = -[D Φ( , 0, proj M ( ))] -1 D Φ( , 0, proj M ( )) = -grad (proj M ( )),
which concludes the proof.

Part 2: normal optimality

The previous lemma shows that for every ( , ) one can find a point ( , ) on the manifold M that solves the tangent part of the optimality condition (4.8). The next lemma determines the values of and for which the whole optimality condition ∈ ( , ) + ri ( ( , )) (4.9) holds, as illustrated in Figure 4.5a. Using Property 4.2, the left-hand side is upper bounded by a simpler expression:

˜ ¯ ( ) 2 + dist M ( ) ≥ ri ¯ ( ), that is ¯ ( ) ≤ ri 2 ˜ 1 -1 - 4 ˜ dist M ( ) 2 ri
, which provides the expression for used in the lemma.

Proof. Item i) We first consider Ψ ¯ (•) = Ψ( ¯ , •). Since ¯ ∈ M , Lemma 4.5 tells us that ( ¯ , ) = ¯ -grad ( ¯ ) + ( ), and thus

Ψ ¯ (0) = proj ¯ M -grad ( ¯ ) + ( ¯ ) = proj ¯ M ( ( ¯ ))
where we used that grad ( ¯ ) ∈ ¯ M is orthogonal to ¯ M . Property 4.1 provides that 0 ∈ ri Ψ ¯ (0). We now turn to showing that there exists such that, for all ∈ [0, ], 0 ∈ ri Ψ ¯ ( ). By contradiction, assume there exist a sequence → 0 such that 0 ∉ ri Ψ ¯ ( ). This means that there exists a sequence of unit norm vectors ( ) such that for all , , ≤ 0 for all ∈ Ψ ¯ ( ).

(4.10)

As a bounded sequence, admits at least one limit point, say ¯ . Take ¯ ∈ Ψ ¯ (0). The continuity of (by partial smoothness, item iv), of ↦ → ( ( ¯ , ) -¯ )/ (by smoothness of ), and of ↦ → proj ( ¯ , ) M (by smoothness of M ) yield the continuity of Ψ ¯ as a set-valued map. This mapping is thus innersemicontinuous (Rockafellar and Wets, 1998, Def. 5.4), so there exists a sequence ∈ Ψ ¯ ( ) such that converges to ¯ . Taking the correct subsequence and renaming iterates, we can write → ¯ and → ¯ . Equation (4.10) provides , ≤ 0 for all , which gives at the limit ¯ , ¯ ≤ 0. This actually holds for all ¯ ∈ Ψ ¯ (0): ¯ separates 0 and Ψ(0), which contradicts 0 ∈ ri Ψ ¯ (0).

Finally, let us take the constant such that [0, ] is included in [0, ] and the neighborhood of 0 provided by Lemma 4.5. Then, for any ∈ [0, ], adding the two orthogonal inclusions 0 ∈ ri Ψ ¯ ( ) and 0 = Φ( , , ( , )), we obtain that ( ¯ , ) verifies (4.9) with = ¯ .

Item ii) Let ∈ [0, ]. We turn to show the existence of a neighborhood N ¯ of ¯ such that, for all ∈ N ¯ , ( , ) verifies (4.9). By contradiction, assume that there exists a sequence ( ) that converges to ¯ such that (4.9) fails for ( , ). Since the tangent component of (4.9) does hold, necessarily 0 ∉ ri Ψ( , ). However, the mapping ↦ → Ψ( , ) is inner-semicontinuous (from the same arguments as in the proof of item i) and there holds 0 ∈ ri Ψ( ¯ , ). A reasoning similar to that of item i) reveals the contradiction.

Item iii) Define N ¯ a neighborhood of ¯ and Γ a positive constant such that Property 4.2 applies over

N ¯ × [0, Γ ], N ¯ is contained in ∪ ∈[0, ] N ¯ ∩ N ¯ and 0 ∈ ri Ψ( , ) holds for all ( , ) ∈ N ¯ × [0, Γ ].
The second condition can be met on a nontrivial neighborhood of ( ¯ , 0): it holds at that point, and Ψ is inner-semicontinuous ( ( , ) lies on M and is inner-semicontinuous by partial smoothness of ).

Let

∈ N ¯ and ∈ [ (dist M ( )), Γ ]. We show that 0 ∈ ri Ψ( , ), that is proj ( , ) M ( -( , )) ∈ ri ( , ) .
transversality condition Eq. ( 4.4) implies ˆ = 0, and in turn = 0, which contradicts the fact that this vector has unit length.

Therefore, for all ∈ N ¯ and a constant map > , there holds dist M ( ( )) ≤ map dist M ( ). Monotony of implies that (dist M ( ( ))) ≤ ( map dist M ( )), which yields the claimed bounds with

( ) = ri 2 ˜ 1 -1 - 4 ˜ map 2 ri
and Γ = Γ .

Finally, we show the existence of positive constants , such that

-¯ ≤ and -¯ ≤ ≤ Γ =⇒ prox ( ( )) ∈ M . Since ¯ ∈ M, dist M (•) ≤ • -¯ .
By monotony and smoothness of , there exists > 0 such that

(dist M ★ (•)) ≤ • -★ over B( ★ , ).
Reducing if necessary so that < Γ yields the result.

-

In this section, we use the results of Section 4.3 to propose an optimization method that locally identifies the structure of a minimizer and converges quadratically to this point.

Recall the basic idea: if the optimal manifold M ★ corresponding to a minimizer ★ is known, the nonsmooth optimization problem turns into a smooth constrained optimization problem. In turn, this problem can be solved using algorithms from smooth constrained optimization such as Sequential Quadratic Programming.

Using this idea and the structure identification mechanism developed in the previous section, we propose a method which: i) uses the proximity operator of to gather structure in the intermediate space, ii) brings back this structure to the input space, and iii) optimizes smoothly along the identified manifold. The resulting algorithm is precisely described in Section 4.4.1 and then analyzed in Section 4.4.2.

Description of the algorithm

We proceed to describe the three steps exposed above. The full algorithm is depicted in Algorithm 4.1.

Gathering structure. We showed in Theorem 4.4 that near a qualified point in R , the operator prox ( (•)) provides the optimal structure M ★ (in the intermediate space R ) for an explicit range of steps. We thus define from the current iterate ∈ R and stepsize the working manifold M (in the intermediate space) as the structure of prox ( ( )). One technical point is to guarantee that, after some time, ∈ [ -★ , Γ] so that the optimal manifold is identified; this is done by decreasing linearly at each iteration.

From the intermediate to the input space. We now have a structure manifold M in the intermediate space, and can define ˜ , a smooth extension of on M to R . Using a local equation ℎ of M , we define the smooth map ℎ = ℎ • : R → R , which locally defines M = -1 (M ). Similarly, a smooth extension of on M is defined by ˜ = ˜ • .

Optimizing in the input space. We can now take steps to minimize the smooth extension ˜ on the smooth set M characterized by ℎ ( ) = 0:

min ∈R ˜ ( ) s.t. ℎ ( ) = 0.
We turn to an elementary version of the traditional second-order Sequential Quadratic Programming methodology; see e.g., Bonnans et al. (2006, Chap. 14). At iteration , the SQP direction SQP ( ) at point is defined as the solution of the following quadratic problem:

SQP ( ) = arg min ∈R ∇ ˜ ( ), + 1 2 ∇ 2 ( , ( )) , s.t. ℎ ( ) + D ℎ ( ) = 0 (4.11)
where ∇ 2 denotes the Hessian of the Lagrangian ( , ) = ˜ ( ) + , ℎ ( ) , and the multiplier ( ) defined from the following least-squares problem:

( ) = arg min ∈R ∇ ˜ ( ) + =1 ∇ℎ , ( ) 2 .
(4.12)

Finally, we check that + SQP ( ) provides a functional decrease in order to avoid degrading the iterate when the current structure is suboptimal. If the test is not verified, is not updated and is decreased until a satisfying structure is detected. end if 11: until stopping criterion Remark 4.5 (Complexity of one iteration). The main computational cost of one iteration of Algorithm 4.1 consists in the resolution of the quadratic program (4.11). Its plain resolution incurs a O( 3 ) complexity. However, efficient approaches reduce this problem to a quadratic program on the subspace Ker D ℎ ( ), which has dimension dim(M ). We refer to (Bonnans et al., 2006, Chap. 14) for an in-depth exposition of these techniques. The cost of an iteration is thus O(dim(M ) 3 ). In situations where minimizers are highly structured (i.e., dim(M ★ )

) this complexity may be comparable with the O( 2 ) iteration complexity of classical nonsmooth optimization algorithms, such as nonsmooth BFGS [START_REF] Lewis | Nonsmooth optimization via quasi-Newton methods[END_REF].

Convergence of Algorithm 4.1

We proceed to give the result guaranteeing identification and local quadratic convergence of Algorithm 4.1.

In order to benefit from the quadratic rate of SQP, the elements of (4.11) should have the minimal regularity typically required by smooth constrained Newton methods (see e.g., Bonnans et al. (2006, Th. 14.5)); we thus make the following assumption. Assumption 4.2 (Regularity of functions). The smooth extension and the manifold defining map are C 2 with Lipschitz second derivatives, and the Jacobian of the constraints is full rank near the solution.

In order to focus on the algorithmic originality of the method, we slightly simplify the situation and make the two following algorithmic assumptions. This assumption ensures that an update that does not increase functional value remains in the neighborhood of the minimizer ★ . It is naturally satisfied when is convex, or when ★ is a global minimizer of and 0 is close enough to ★ .

Assumption 4.4 (No Maratos effect). The iterates of Algorithm 4.1 are such that a step that makes + quadratically closer to does not increase function value: ( + ) ≤ ( ).

In smooth constrained optimization, getting closer (even at quadratic rate) to a minimizer does not imply decrease of objective value and constraint violation (measured by a merit function). This so-called Maratos effect (see e.g., [START_REF] Bonnans | Numerical optimization: theoretical and practical aspects[END_REF]) is one of the main difficulties in globalizing SQP schemes, which is out of the scope of the current chapter. We thus assume this effect does not affect our algorithm in theory, and use in practice one of the successful refinements, as discussed in Section 4.5.2.

We are now ready for the main convergence result of Algorithm 4.1, which establish that, after some finite time, the iterates identify exactly the optimal manifold and converge to the minimizer at a quadratic rate.

Theorem 4.7 (Exact identification and quadratic convergence). Consider a function = • and ★ a strong minimizer,3 qualified relative to the optimal manifold M ★ . Assume that the smooth extension ˜ of relative to M ★ and the corresponding manifold defining map ℎ satisfy Assumption 4.2.

If 0 and ( 0 ) are close enough to ★ and ( ★ ), 0 is large enough and the simplifying algorithmic Assumptions 4.3 and 4.4 hold, then there exists > 0 such that the iterates ( , M ) generated by Algorithm 4.1 verify:

M = M ★ and +1 -★ ≤ -★ 2 for all large enough.
The proof of this result consists in two steps. We first show the existence of a neighborhood of initialization on which the proximity operator will eventually identify the optimal manifold, once the stepsize has been sufficiently decreased. From this point onward, we prove that the SQP step provides a quadratic improvement and that the stepsize policy makes the manifold identification stable.

Proof. Local identification of the optimal structure. By Theorem 4.4, there exists a ball centered around ★ of radius 1 > 0 and two positive constants , Γ such that, for all ∈ B( ★ , 1 ) and ∈ [ -★ , Γ], prox ( ( )) belongs to the optimal manifold M ★ = (M ★ ).

Local quadratic convergence of SQP on the optimal structure. Let us assume that the optimal manifold has been identified. The least square multiplier is defined by the optimality condition of (4.12):

( ) = -[Jac ℎ ( ) Jac ℎ ( ) ] -1 Jac ℎ ( )∇ ˜ ( ).
and since ℎ is smooth and its Jacobian is full-rank near ★ , is a Lipschitz continuous function near ★ .

Since ★ is a strong minimizer of , the Hessian of the Lagrangian restricted to the tangent space is positive definite. Indeed, since ★ is a strong minimizer of on M ★ , the Riemannian Hessian relative to the optimal manifold is positive definite. With the choice of multiplier (4.12), the Riemannian Hessian is exactly the Hessian of the Lagrangian restricted to the tangent space to M ★ at ★ (see Boumal (2022, Sec. 7.7)), which is thus itself positive definite.

Thus, using the local quadratic convergence of SQP (Bonnans et al., 2006, Th. 14.5), we get that there exists a ball centered around ★ of radius 2 > 0 such that the SQP step computed at a point in that neighborhood relative to the optimal manifold provides a quadratic improvement towards ★ . Reducing 2 if necessary, we can in addition have that the convergence is at least linear with rate 1/2. Initialization, identification, and quadratic convergence. Let = min( 1 , 2 , Γ/(2 )).

We will now show that initializing with 0 ∈ { : ( ) ≤ ( ★ ) + 2 } and 0 ≥ Γ provides the claimed behavior.

First, the functional decrease test of the algorithm and Assumption 4.4 guarantee that all iterates satisfy ( ) ≤ ( 0 ). Using that ★ is a strong minimizer, we get that -★ 2 ≤ ( ) -( ★ ) ≤ ( 0) -( ★ ) ≤ 2 , and thus that the iterates remain in B( ★ , ).

Second, as -★ ≤ Γ/2 for all ∈ B( ★ , ) by construction, the fact that 0 > Γ and ( ) decreases with geometric rate 1/2 implies that there exists such that -★ ≤ ≤ Γ. Now, assume that at iteration ≥ , -★ ≤ ≤ Γ. Since ∈ B( ★ , 1 ), we have from above that M ★ is identified. Thus, the SQP step is performed relative to the optimal manifold and + SQP ( ) brings a linear improvement of factor 1/2 at least. Assumption 4.3 ensures that ( + SQP ( )) ≤ ( ) so that +1 = + SQP ( ) and thus

+1 -★ ≤ 2 -★ ≤ 2 = +1 .
This shows that +1 -★ ≤ +1 ≤ Γ, which completes the induction. We get that ∈ [ -★ , Γ] for all ≥ . Finally, we have that for all ≥ , M = M ★ and +1 is quadratically closer to ★ than .

Remark 4.6 (Generalizations). Theorem 4.7 actually holds for any decrease factor of in (0, 1) with the presented SQP update, or actually any superlinearly convergent update (e.g., a quasi-Newton type update). The above result is also readily adapted to an update that converges merely linearly, as long as its rate of convergence is faster than that of . This opens the possibility of using SQP methods that rely only on first-order information (see e.g., [START_REF] Bolte | Majorization-Minimization Procedures and Convergence of SQP Methods for Semi-Algebraic and Tame Programs[END_REF]).

4.5

In this section, we provide numerical illustrations for our results. Our goal here is twofold:

1. to illustrate the identification of the optimal manifold by the proximity operator near a minimizer as provided by Theorem 4.4;

2. to demonstrate the applicability of Algorithm 4.1 and observe the quadratic rates predicted by Theorem 4.7 on our running examples.

Test problems

We first consider the minimization of a maximum of smooth functions (4.2):

min ∈R max =1,..., ( ( )). 
We take the celebrated MaxQuad instance, where = 10, = 5 and each is quadratic convex, making the whole function convex (Bonnans et al., 2006, p. 153). In this instance, the optimal manifold is M max with = {2, 3, 4, 5}. Second, we consider the minimization of the maximum eigenvalue of an affine mapping (4.3):

min ∈R max 0 + =1 .
We take = 25 and we generate randomly + 1 symmetric matrices of size 50. In this instance, the multiplicity of the maximum eigenvalue at the minimizer is = 3. We note that the "maximum" structure of a point, that is the partial smoothness manifold with smallest dimension, is M max with = 6. In particular, the multiplicity cannot reach the matrix size = 50. Indeed, the codimension of M max , that is the dimension of its normal spaces, should be lower than that of R : ( + 1)/2 -1 ≤ 25, that is ≤ 6 (see the discussion in Shapiro and Fan (1995, pp. 555-556, Eq. 2.5)).

Numerical setup

All the algorithms are implemented in Julia [START_REF] Bezanson | Julia: A fresh approach to numerical computing[END_REF]; experiments may be reproduced using the code available online4 .

. For the initialization of Algorithm 4.1, we set 0 as the smallest such that prox ( ( 0 )) has the most structure (e.g., if = max, we increase until the output of the proximity operator sets all coordinates to the same value). We solve the quadratic subproblem (4.11) providing the SQP step by the reduced system approach presented in Bonnans et al. (2006, p. 133). Tangent vectors are expressed in an orthonormal basis of the nullspace of the Jacobian of the constraints at the current iterate. At iterate , a second-order correction step corr [ ] is added to the SQP step SQP 

[ ]. It is obtained as corr [ ] = arg min ∈R { ℎ( ) + Jac ℎ ( ) , s.t. ∈ Im Jac ℎ ( ) }. The full-step is thus + SQP [ ] + corr [ ].
. For the two nonsmooth problems, we compare with the nonsmooth BFGS algorithm of [START_REF] Lewis | Nonsmooth optimization via quasi-Newton methods[END_REF] (nsBFGS) and the gradient sampling algorithm [START_REF] James V Burke | Gradient sampling methods for nonsmooth optimization[END_REF]. The nsBFGS method is not covered by any theoretical guarantees; it is known to perform relatively well in practice, often displaying a linear rate of convergence. In contrast, the Gradient Sampling algorithm generates with probability one a sequence of iterates for which all cluster points are Clarke stationary for (Burke et al., 2020, Th. 3.1). 5 It is known however to have an iteration cost significantly higher than that of nonsmooth BFGS.

On a technical note, the iterations of nsBFGS stop as soon as the algorithm "breaks down in theory", and the quadratic subproblem of the gradient sampling iteration is solved by the method presented in [START_REF] Wolfe | Finding the nearest point in A polytope[END_REF].

Other methods could be considered relevant baselines.We mentioned the existence of methods for general composite functions, such as the composite bundle [START_REF] Sagastizábal | Nonsmooth Optimization: Thinking Outside of the Black Box[END_REF]. In Section 1.3.2, we also reviewed schemes with potential superlinear rate specific to the maximum of smooth functions [START_REF] Womersley | An algorithm for composite nonsmooth optimization problems[END_REF], and the maximum eigenvalue minimization [START_REF] Noll | Spectral bundle methods for non-convex maximum eigenvalue functions: Second-order methods[END_REF][START_REF] Helmberg | The spectral bundle method with second-order information[END_REF]. We do not include these methods in our comparison since they are difficult to implement efficiently, contrary to the two methods proposed. We will review the VU-algorithm [START_REF] Mifflin | A VU-algorithm for convex minimization[END_REF] in Chapter 5.

. Traditional methods for nonsmooth optimization, and notably bundle methods, require a first-order oracle: ↦ → ( ( ), ) where ∈ ( ) while Gradient Sampling and nsBFGS require additionally to know if is differentiable at point . Algorithm 4.1 requires rather different information oracles:

↦ → ( ) ↦ → M prox ( ( )) M, ↦ → ℎ( ), Jac ℎ ( ), ∇ ˜ ( ), ∇ 2 ( , ).
The second part of the oracle provides the candidate structure at point . The last part of the oracle, which requires a point and a candidate structure, provides the second-order information of required by the SQP step. where is a smooth mappnig, and is a nonsmooth real-valued function.

Experiments

Recall that in Chapter 4, we provided an algorithm, Algorithm 4.1 that, when started near a minimizer, identifies the smooth substructure and converges locally fast to it. We consider here the next step: we aim at providing a variant of the algorithm with same guarantees when started at arbitrary points.

A direct application of Algorithm 4.1 from arbitrary points is not satisfactory, since the algorithm can get trapped in nonminimizing points. Indeed, the structure detection tool introduced in Chapter 4 is not discriminating enough, as it detects the smooth substructure of any nearby nonsmooth point, including points which admit normal descent directions. We will come back on this behavior in details. This is a sufficient property near minimizers, but away from minimizers, the structure detection tool does not provide enough information anymore.

A possible fix would be a "two-phase" algorithm: first, finding a point near a minimizer with, e.g., nonsmooth BFGS or a bundle method, and then running the local Algorithm 4.1. The issue with such a scheme lies in choosing when to switch between algorithms. Furthermore, if the phase 1 method is very slow on a particular instance, a neighborhood of the minimizer will not be reached in reasonable time, making the fast local convergence unreachable in practice. This kind of difficulties is exactly what we wish to avoid in this thesis, by proposing methods that identify and exploit structure adaptively, with guaranteed identification.

Towards globalization: tools and issues

We review here three elements for globalization, as well as the two main difficulties we face when applying them.

-

. Building on Chapter 4, we can use Newton-type Sequential Quadratic Programming (SQP) steps to obtain the fast local convergence. At point with candidate manifold M, the SQP direction SQP M ( ) is defined as

SQP M ( ) = arg min ∈R ∇ ˜ ( ), + 1 2 , s.t. ℎ ( ) + D ℎ ( ) = 0 (5.2)
where ℎ defines manifold M, and ˜ is a smooth extension of relative to M. The main difference with Chapter 4 is that may be the hessian of the Lagrangian ∇ 2 ( , ( )), or any positive definite matrix. This flexibility allows to deal with non positive-definite Hessians, and encompasses quasi-Newton strategies such as BFGS or truncated Newton. This is a first element of globalization.

. In order to obtain a functional decrease at each iteration, we propose to use a linesearch procedure: at point with direction (= SQP ( )), find some steplength > 0 that satisfies the following Armijo condition:

( + ) ≤ ( ) + ( ; ), (5.3) 
where ∈ (0, 1 2 ) and ( ; ) = max ∈ ( ) , . This is the second element of globalization.

#1. One delicate point is to guarantee that the linesearch does not jeopardize the final quadratic rate brought by the SQP steps. To do so, we need to make sure that the unit stepsize is acceptable in a neighborhood of the minimizer. We will see on a simple example that this may not be possible, even arbitrarily close to minimizers. This issue was already present in Algorithm 4.1

This difficulty also appeared in Chapter see Theorem B. .

as the algorithm incorporates a functional descent test. It was handled with Assumption 4.4 for the analysis.

. The last element of globalization is the identification procedure. We expect the globalized identification procedure to incorporate the behavior of the local algorithm. In addition, around arbitrary points, we only want to select manifolds that locally do not admit normal descent directions; see Section 5.4.1. In addition, the SQP step should be a descent direction for Such manifolds are called "identifiable" by Davis et al. . the objective function to make the linesearch possible; mathematically, we need

( ; SQP M ) < 0.
#2. At this point, we can point out a difficulty with the local identification scheme of Algorithm 4.1. The structure detection tool prox • doesn't provide enough information: it essentially selects manifolds based on function value information, and is thus oblivious to first-order information. In particular, it may select manifolds that admit descent directions in their normal space. On Fig. 5.1, prox • detects structure M 2 on a neighborhood of 2 . A direct application of Algorithm 4.1 could result in the convergence to point 2 . This point is indeed a minimizer of along the manifold, but not for the full function : there exists descent directions in the normal space to M 2 at 2 . The nonsmooth function admits two substructure manifolds M 1 and M 2 ; points 1 and 2 are the minimizers of the restriction of on these manifolds. Only 1 is optimal for . As expected, both operators detect the correct structure in a neighborhood of 1 , and prox is not stable near 2 . However, prox • does detect the structure of 2 on a neighborhood of this point, thus potentially trapping algorithms in that non-optimal substructure.

Motivation, approach and algorithm

We now lay out our approach. We first draw inspiration from the field of smooth constrained programming, and then present our approach and the preliminary results obtained.

. The composite problem (5.1) includes the particular class of ℓ 1 merit functions of nonlinear programming [START_REF] Bonnans | Numerical optimization: theoretical and practical aspects[END_REF]. These functions appear when transforming the minimization of a (smooth) function under (smooth) equality and inequality constraints into the unconstrained minimization of a crafted nonsmooth function. In that This is an instance of problems with chosen nonsmoothness, discussed in Chapter .

setting, finding the smooth substructure of a minimizer corresponds to finding exactly which inequality constraints hold with equality at the minimizer. The topic of globalizing an "active set" approach has been extensively studied, with several approaches including linesearch or filter methods [START_REF] Nocedal | Numerical optimization[END_REF]. We set aside filter methods, which rely on the "multiobjective" nature of nonlinear programming, and focus here on linesearch methods. The theoretical analyses of linesearch active set methods (see e.g., [START_REF] Spellucci | An SQP method for general nonlinear programs using only equality constrained subproblems[END_REF] show that, for nonlinear programming, (1) one can build a linesearch SQP scheme that generate iterates which limit points satisfy KKT conditions and (2) if a qualification condition holds on one of the limit points, then the methods identifies exactly the minimizer structure and converges to it quadratically.

. We aim to generalize the above classic results in smooth constrained optimization to the setting of nonsmooth composite optimization. For a correctly specified algorithm, we wish to show that:

(i) all limit points of the iterate sequence are critical points, (ii) if one limit point is qualified, then its structure is eventually identified and the iterates converge to it quadratically.

We propose Algorithm 5.1, an "ideal" algorithm that alternates a structure identification step and a linesearch on efficient Newton-like steps. In this Find by Armijo linesearch on (5.3) 6:

+1 = + SQP ( ).
7: until stopping criterion prospective chapter, we leave out the identification step to heuristics (related to objective (i), see Section 5.3.3), and show first results towards showing the feasibility of such a linesearch SQP method (related to objective (ii)). Specifically, we give the following results:

• With a second order correction, the SQP step provides descent near structured minimizers which structure is correctly guessed;

• We show that near a qualified minimizer, the full SQP direction provides descent;

. In Section 5.2, we introduce some technical tools and results on nonsmooth analysis and SQP steps. In Section 5.3, we provide theoretical guarantees on the behavior of the method after identification of the optimal manifold: well-posedness of the linesearch and eventual admissibility of the unit stepsize that ensures a fast local rate. In Section 5.4, we introduce a tractable optimality condition for structured nonsmooth problems, and make a step towards an identification procedure by proposing a way to detect smooth substructures with only normal ascent directions. We briefly discuss the standing questions in Section 5.5, including the standing question of combining linesearch steps with an identification procedure (objective (i)). Finally, we propose in Section 5.6 an identification heuristic and numerical illustrations of a proposed algorithm.

5.2

In this section, we discuss technical properties that will be useful in the following developments. First, we introduce two geometrical properties on nonsmooth functions, and second, we discuss the structure of SQP steps.

Two properties on nonsmooth functions

We consider in this section, and more generally in this chapter, a nonsmooth real-valued function : R → R.

We introduce two properties, taken in [START_REF] Davis | Subgradient methods near active manifolds: Saddle point avoidance, local convergence, and asymptotic normality[END_REF], that will be central in studying the descent of SQP steps near minimizers.

Property 5.1 ((b) regular). We say that is (b)-regular along M at ¯ if, for any > 0, there exists a neighborhood N ¯ of ¯ such that

| ( ) -( ) -, -| ≤ 1 + 2 - hold for all ∈ N ¯ , ∈ M ∩ N ¯ and ∈ ( ).
Broadly speaking, this property allows to control, near substructure manifolds, the growth of the function by the distance to the manifold and elements of the subdifferential of on M.

Remark 5.1 (Validity of (b)-regularity). There are several ways to establish that a function is (b)-regular.

First, Davis et al. (2021, Th. 2.6.2) provides a chain rule for composite functions = • : if is (b)-regular at ¯ , M is a C -smooth manifold, the restriction of to M is C smooth, and transversality (recall Eq. (4.4)) holds at ¯ , then is (b)-regular at -1 ( ¯ ) relative to -1 (M). One readily checks this property on the nonsmooth functions max and max , which were the main examples of Chapter 4.

More generally, for any real-valued continuous definable function, and any > 0, there exists a partition of R into finitely many C -smooth manifolds such that is (b)-regular at any ¯ ∈ M along M, for any manifold M (Davis et al., 2021, Th. 2.7.4).

Property 5.2 (proximal aiming). We say that satisfies the proximal aiming property a ¯ when there exist a constant > 0 and a neighborhood

N ¯ of ¯ such that , -proj M ( ) ≥ dist M ( ), (5.4) 
for all ∈ N ¯ and ∈ ( ).

This property captures the fact that subgradients form an acute angle with the opposite of the direction to the nonsmoothness manifold of ¯ .

Remark 5.2 (Validity of proximal aiming). By Davis et al. (2021, Cor. 2.1.5), the proximal aiming property holds when there exists a locally smooth manifold M ¯ over which is locally smooth, is locally Lipschitz, (b)-regular along M at ¯ , subdifferentially regular at ¯ , and there holds:

inf{ , ∈ ( ), ∈ N ¯ \ M} > 0,
where N ¯ denote a neighborhood of ¯ . Note the proximity between the above assumption, the modulus of identifiability of Lewis and Tian (2022, Def. 2.3), and the positivity of ri (= inf ∈N ¯ inf ∈rbd ( )

) that appears in the proof of Theorem 4.4. It interprets as all normal directions being ascent for .

Anatomy of SQP-type steps

We introduce tools that will be useful in the analysis of the local convergence of SQP steps. These facts are standard in the SQP literature; see Bonnans et al. (2006, Chap. 14).

. We will need to consider points close to a target subspace M but not on it. At such a point , we introduce the translated manifold M ℎ -1 ({ℎ( )}), where ℎ : R → R is a manifold-defining map for M. Therefore, lies on M and we have tangent and normal spaces there.

See Section . . We will require an additional property for our manifold defining maps, which we lay out below. Here, Par( ) denotes the linear space spanned by , defined as Par( ) Aff( ) -, for ∈ .

In practice, one checks that usual manifold defining maps for the maximum of smooth functions or the maximum eigenvalue meet this condition.

In this setting, we introduce the following objects:

• -( ) ∈ R × : a basis of the tangent space M ;

• grad M ( ) -( ) ∈ M for ∈ ( ): the reduced gradient of the smooth function ˜ ;

Here, -denotes the transpose of -.

• Hess M ( ) -( ) -( ): the reduced Hessian, that is the restriction to M of the linear operator in the step computation Eq. (5.2).

In the following, we drop the dependence in when no confusion is possible.

. The SQP step splits in three components, which we illustrate on Fig. 5.2. This decomposition essentially comes form the developments in Bonnans et al. (2006, Chap. 14).

Lemma 5.4 (SQP step decomposition). The SQP step SQP Eq. (5.2) for minimizing a smooth function ˜ on the manifold M, computed at point , writes:

SQP ( ) = SQP ( ) + SQP ( ) + SQP ( ),
where

• SQP ( ) = arg min ∈ M ℎ( ) + D ℎ( ) •
is a Newton-Raphson step, that solely aims at increasing the feasibility relative to M.

• SQP ( ) = --( )[Hess M ( )] -1 grad M ( ) ∈ M interprets, when
is feasible but not optimal, as the Riemannian Newton step prior its retraction on the manifold; see [START_REF] Absil | All roads lead to Newton: Feasible second-order methods for equality-constrained optimization[END_REF] for details.

• SQP ( ) = --( )[Hess M ( )] -1 -( ) SQP ( ) ∈ M is a residual
term, required to obtain a quadratic convergence rate.

Proof. This decomposition is a simple rewriting in our notation of Bonnans et al. (2006, Eqs. 14.33, 14.34).

:

In this section, we study the SQP step relative to , assuming that the optimal manifold has been correctly identified. We first show in Section 5.3.1 that the SQP is a descent direction for near a minimizer. In Section 5.3.2, we show that taking a full-length plain SQP step may increase function value, and prove that adding a second-order correction resolves this issue. Finally, we discuss in Section 5.3.3 a condition under which this correction is dispensable, allowing to alleviate its cost in practice. These results parallel closely those from Non Linear Programming; they have been largely inspired by Bonnans et al. (2006, Chap. 17).

Descent of SQP steps

We first show that an SQP step near a minimizer ¯ and relative to this point is a descent direction.

Lemma 5.5 (descent of SQP step near identifiable minimizers). Consider a function and a point ¯ such that 0 ∈ ( ¯ ), is partly smooth at ¯ relative to M, assume that meets the proximal aiming property at ★ (property 5.2), and that the manifold defining map for ℎ agrees with at ¯ (property 5.3).

Then there exists a neighborhood N ¯ such that, for ∈ N ¯ ,

( ; SQP ) = -Hess M ( ) SQP , SQP + max ∈ ( ) , SQP + (dist M ( ))(5.5) ≤ -Hess M ( ) SQP , SQP -dist M ( ) + (dist M ( )),
where the steps are computed at point .

Proof. The directional derivative is obtained from the subdifferential as follows:

( ; SQP ) = max ∈ ( )
, SQP .

Using property 5.3 and injecting the structure of the SQP step described in Lemma 5.4, we get

( ; SQP ) = max ∈ ( ) , SQP + SQP + SQP = max ∈ ( )
, SQP + grad M ( ), SQP + grad M ( ), SQP .

Combining SQP = O(dist M ( )) and grad M ( ) = (1) yields grad M ( ), SQP = (dist M ( )). Therefore,

( ; SQP ) = max ∈ ( )
, SQP + grad M ( ), SQP + (dist M ( )).

Since SQP = --[Hess M ( )] -1 grad M ( ), we get grad M ( ), SQP = -Hess M ( ) SQP , SQP , which yields the first part of the result. The second part follows from the proximal aiming (Eq. (5.4)), and the fact that SQP = proj M ( ) -+ (dist M ( )) (Eq. (5.8)). -0 .9 9 -0 .9 9 -0 .9 9 -0 .9 7 -0 .9 7 -0 .9 5 -0 .9 5 -0 .9 3 -0 .9 3 -0 .9 1 -0 .9 1 -0. 89 -0.89 -0 .8 7 -0 .8 5 

★ + SQP + SQP + corr

Eventual admissibility of unit step size

Iterating SQP steps in a neighborhood of a minimizer generates points that converge quadratically to the minimizer (Bonnans et al., 2006, Th. 14.5). To globalize the method, we use a linesearch procedure: we follow the SQP step only by some factor that ensures a sufficient decrease of the function value that satisfies Armijo's equation Eq. ( 5.3). At this point, it is not clear that the globalized scheme still converges locally quadratically. Indeed, following the SQP step with a unit stepsize may cause a functional increase, even when the step brings the next iterate quadratically closer to the minimizer.

We review an example of this phenomenon, called Maratos effect in the following example. We then propose a way to fix it.

Example 5.1 (Functional ascent of SQP step). We illustrate the "Maratos effect" on a simple function, and illustrate it on Fig. 5.3. This example is directly adapted from non linear programming (Bonnans et al., 2006, 17.6). Consider ( ) = -1 + max 1.6

2 -1.6, 0.4 2 -0.4 .

The plain SQP step from point = (cos , sin ) admits a closed form expression SQP ( ) = (sin 2 , -sin cos ), so that ( ) = -cos and ( + SQP ( )) = -cos + 0.4 sin 2 . In particular, ( + SQP ( )) > ( ) for all : the full SQP step increases functional value for arbitrarily close to ★ .

We adopt one classical possibility to fix this issue, the so-called second-order correction step (Bonnans et al., 2006, pp. 310-314). At point with SQP step SQP , one computes corr as a Newton-Raphson step aimed at improving feasibility of + SQP : corr = arg min

∈ M ℎ( + SQP ( )) + D ℎ( ) • .
(5.6)

This step is illustrated on Fig. 5.3. Adding a second-order correction to the SQP step result ensures satisfaction of an Armijo rule, as shown in the following theorem.

2. We now show that ( + SQP + corr ) ≤ ( ) + ( , SQP ).

Combining (5.15) with ∈ arg max ∈ ( ) , SQP and the estimate of the directional derivative near a minimizer (5.5) yields

( + ) -( ) - ( ; SQP ) ≤ (1 -) max ∈ ( )
, SQP + ( -1) Hess M ( ) + 1 2 Hess ( ★ ) SQP , SQP + (dist M ( )) + ( SQP 2 ).

Using assumption (5.7), we reach:

( + ) -( ) - ( ; SQP ) ≤ (1 -) max ∈ ( ) , SQP + - 1 2 Hess ( ★ ) SQP , SQP + (dist M ( )) + ( SQP 2 )
Since Hess ( ★ ) is positive definite on ★ M and the max term is negative by the proximal aiming property (5.4), the result holds as soon as ∈ (0, 1 2 ).

When to correct?

The second-order correction term ensures functional decrease with the unit stepsize near minimizers. It is however somewhat costly: it requires to evaluate the smooth map (and potentially its eigenvalue decomposition) at a new point.

A second look at the proof of Theorem 5.6 shows that, when SQP ≥ SQP + SQP for some constant > 0, the plain SQP step provides functional descent.

Note that this fits exactly Example 5.1: the points are exactly feasible, so that the restoration step is null. Again, this situation mirrors that of nonlinear programming; see (Bonnans et al., 2006, Prop. 17.8).

Theorem 5.8 (Avoiding second-order corrections). Consider a function and point ★ such that is partly smooth at ★ relative to some manifold M ★ , ★ is a strong minimizer: 0 ∈ ri ( ★ ) and Hess ( ★ ) 0, and assume that meets the proximal aiming property at ★ (property 5.2) and is (b)-regular at ★ along M (property 5.1). Let denote any positive constant. Then for all iterations such that SQP ( ) ≥ SQP ( ) + SQP ( ) ,

the Armijo rule holds with unit stepsize:

( + SQP ( )) ≤ ( ) + ( ; SQP ( )).

Proof. The proof follows closely the above developments, we omit it.

5.4

A structure-based implementable stopping criterion

Let ¯ be a minimizer of . Fermat's rule gives necessary optimality conditions: 0 ∈ ( ¯ ).

(5.16)

When is partly smooth at ¯ relative to some manifold M, this implies:

¯ ∈ M grad ( ¯ ) = 0 0 ∈ proj ¯ M ( ¯ )
The first condition is ensured by partial smoothness; the other two follow from projecting Fermat's rule (5.16) on the tangent and normal spaces. Recall that, the projection of the subdifferential on the tangent space is a unique vector: the Riemannian gradient of the restriction of to M, denoted grad ( ¯ ).

A practical convergence criterion is a quantity that continuously goes to zero as the point which it qualifies goes to a minimizer. The two last items above are problematic for points near ¯ but not necessarily on M: the Riemannian gradient of is not defined at ∈ R \ M, and the subdifferential dimensionality changes; recall e.g., Fig. 1.1.

. We propose to deal with this difficulty by using information on the smooth substructure. We introduce here a smooth extension of relative to some structure manifold M, that is, a continuous set-valued map that matches on M.

Definition 5.1 (Subdifferential smooth extension). Consider a function and a point ¯ at which is partly smooth relative to manifold M. The set-valued application M : R ⇒ R is a smooth extension of the subdifferential relative to

M at ¯ if • M ( ) = (
) for all near ¯ on M, and

• M is continuous on a neighborhood of ¯ in R .
These two conditions seem strong, but it is straightforward to build valid smooth extensions of subdifferentials for the maximum of smooth functions, the maximum eigenvalue of a parameterized function, or ℓ 1 -regularized functions. We propose such extensions in Examples 5.2-5.4.

Remark 5.3 (Relations with the literature). In a similar fashion, [START_REF] Liu | Subdifferential Enlargements and Continuity Properties of the V U $$\mathcal { {VU}}$$ -Decomposition in Convex Optimization[END_REF] study enlargement of subdifferentials that incorporate information on the nonsmooth function along normal directions. The studied enlargements are smooth set-valued maps that depend on a parameter , such that the maps converge to the usual subdifferential as goes to zero. This is the main difference with the extensions discussed here, which instead depend on a structure manifold M. These structure-aware enlargements are intended to replace in bundle methods the usual -subdifferential, as an attempt to make the structure identification of the VU-bundle algorithm more stable in practice.

. We thus consider the following approximate optimality conditions for a pair ( , M): (5.17) where ℎ defines M locally. A point that verifies Eq. (5.17) is such that there exists a point ¯ ∈ M at distance O( ) of such that dist(0, ( ¯ )) ≤ O( ). This last condition implies that ¯ is almost optimal: ( ¯ , ) ≥ -O( ) .

       ℎ( ) ≤ dist 0, M ( ) ≤
. We now provide valid smooth extensions of the subdifferential on three functions discussed in this thesis.

Example 5.2 (Maximum of smooth functions). We consider the maximum of smooth functions ( ) = max • . At a point with smooth substructure M max , upon satisfaction of the transversality condition Eq. (4.4), the subdifferential writes:

( ) = Conv {∇ ( ) : ∈ } .

A natural smooth extension, defined for any ∈ R , is:

M max ( ) = Conv {∇ ( ) : ∈ } .
Example 5.3 (Maximum eigenvalue). We consider the maximum eigenvalue of a smoothly parameterized matrix. At a point with smooth substructure M max , upon satisfaction of the transversality condition Eq. (4.4), the subdifferential writes:

( ) = {D * ( ) • ( ) ( ) , for ∈ S , tr( ) = 1},
where ( ) ∈ R × denotes a smooth orthonormal basis of the eigenspace corresponding to the largest eigenspaces. Therefore, a natural smooth See Shapiro and Fan for the smooth basis construction.

extension, defined for any ∈ R , is:

M max ( ) = {D * ( ) • ( ) ( ) , for ∈ S , tr( ) = 1}.
Example 5.4 (ℓ 1 -regularization). Finally, we consider an ℓ 1 regularized function ( ) = ( ) + 1 . At point with structure M ℓ 1 = { ∈ R : = 0, ∈ }, the subdifferential writes ( ) = ∇ ( ) +

• 1 ( ), where

[ • 1 ( )] = | • |( ) =              -1 if < 0 [-1, 1] if = 0 1 if > 0 . A natural smooth extension, defined at any ∈ R , is M ℓ 1 ( ) = ∇ ( ) + M ℓ 1
• 1 ( ), where the smooth extension M ℓ 1 • 1 ( ) is defined coordinatewise as follows:

M ℓ 1 • 1 ( ) =        [-1, 1] if ∈ | • |( ) else .
Proof. We follow closely the proof of Daniilidis et al. (2006, Lemma 20). With a basis of M that depends smoothly on , we first construct a continuous function ↦ → such that : M → R is a linear bijection. Now, the multifunction : R ⇒ R defined by ( ) = ( M ( ) -proj M ( ) (0)) is continuous around ¯ by continuity of and M ( ). Besides, it satisfies proj M ( ) (0) ∈ ri M ( ) ⇔ 0 ∈ int ( ). The argument of Daniilidis et al. (2006, Lemma 20) applies to this setting and yields the conclusion.

. We now discuss how to compute, on our examples, the distance from zero to the smooth subdifferential extension (5.17), and how this can at the same time provide whether Eq. (5.19) holds or not. Under transversality at , condition (5.19) holds when the minimizer ★ belongs to the interior of the simplex, that is when ★ > 0 for all ∈ . where ∈ R × is an orthonormal basis of the eigenspace associated with largest eigenvalues of ( ), and Sp = { ∈ S , 0, trace( ) = 1} denotes the spectraplex of dimension .

Under transversality at , condition (5.19) holds when the minimizer ★ belongs to the interior of the spectraplex, that is when all its eigenvalues are positive.

Example 5.7 (ℓ 1 -regularization). Building on Example 5.4, the distance from zero to the subdifferential is obtained by solving

min ∈R ∇ ( ) + 2 2 = ∈ max(|∇ ( )| -), 0 2 + ∉ ∇ ( ) + sgn( ) 2 ,
where sgn( ) denotes the sign of , and ∇ ( ) denotes the -th coordinate of ∇ ( ). We have assumed that M ℓ 1 contains all null coordinates of . This time, condition (5.19) holds when the minimizer ★ satisfies ∈ (-1, 1) for ∈ .

Remark 5.5 (Relations with the literature). The above mentioned problems allow to quantify the optimality of a pair ( , M) and to detect the existence of normal ascent directions. We point out below similarities with three structure detection schemes proposed in the literature.

For bundle methods, [START_REF] Mifflin | A VU-algorithm for convex minimization[END_REF] detects structure by observing the solution of a particular quadratic program constrained on the simplex (denoted -QP). In particular, it is the activity of this solution, that is indices of the non-null coordinates, that allows to estimate the local smooth substructure.

The spectral bundle method of [START_REF] Helmberg | The spectral bundle method with second-order information[END_REF] detects structure by considering the minimizer of a quadratic program constrained on the spectraplex. In particular, their guess for the local smooth substructure is based on the rank of the minimizing matrix.

Recently, [START_REF] Bertrand | Beyond L1: Faster and Better Sparse Models with skglm[END_REF] proposed a working set approach to minimizer functions regularized with separable functions. The working set contains, as M ℓ1 , a subset of the coordinates. They are ranked and chosen using a score function that quantifies a distance to optimality akin to (5.18); see Bertrand et al. (2022, Eq. 5).

5.5

In the previous sections, we have gathered partial guarantees on ingredients of Algorithm 5.1. We quickly outline here the remaining questions and the approach we tried to follow.

The above developments show that a linesearch SQP method may retain the fast quadratic rate near minimizers, assuming identification of the optimal manifold.

The main difficulty consists in combining the identification procedure with the linesearch. We list below some of the questions we faced, and the approach we adopted, again strongly inspired by developments of nonlinear programming (Bonnans et al., 2006, Chap. 17).

• At each iteration, we would expect the SQP step to be a descent direction for , that is: ( , SQP ) < 0. This is a necessary condition to execute a linesearch on . This condition could be satisfied either by the manifold selection scheme, or by a careful adjustment of the SQP step, following Spellucci (1998, Eq. 14).

• A second difficulty is to show that the linesearch stepsize cannot be arbitrarily small. 1 For example, this happens on the one dimensional function ( ) = max(-, 0.5 , 2 -3) if one considers the SQP step from point < 0 arbitrarily close to zero, relative to the smooth substructure

M = {2}.
Here, the trouble comes from the identification of the (nonoptimal) structure M = {2} rather than the closer (optimal) M = {0}.

• With the two above elements, we would expect to be able to extract properties on the limit points of the sequence of iterates. Indeed, summing the Armijo rule provided in Eq. ( 5.3) yields for lower bounded objectives:

≥0 ( ; SQP ) ≤ ( 0 ) -min .
If the linesearch step is bounded away from zero, we get lim ( ; SQP ) = 0. Is this informative enough to obtain that any limit point ¯ satisfies 0 ∈ ( ¯ )? Lemma 5.5 seems to imply that, near minimizers and relative to the optimal manifold, the above limit would imply that ¯ lies on the manifold and that it is critical for restricted to the manifold ( SQP = 0). Does this extend away from minimizers? These questions deal with the behavior of nonsmooth functions away from minimizers. We believe that providing grounded answers requires to go beyond the local description provided by e.g., partial smoothness, by using global information on nonsmoothness. In this respect, the recent line of work developed by [START_REF] Davis | Subgradient methods near active manifolds: Saddle point avoidance, local convergence, and asymptotic normality[END_REF] seems promising: they provide a global description of the nonsmoothness manifolds in the form of a Whitney stratification of the domain of the function, with expressive local geometrical properties such as properties 5.1 and 5.2. More work and insight will be necessary to provide precise answers to these questions.

5.6

In this section, we propose an algorithm that integrates the globalization guarantees, and ideas presented in this chapter. We detail here the identification heuristic we rely on, and then we illustrate the behavior of this global algorithm on several problems, including those of Chapter 4.

Identification heuristic and proposed algorithm

We propose an identification scheme that combines the ideas of the local Newton method Algorithm 4.1, and the detection of normal ascent directions, discussed in Section 5.4.2.

Building on Chapter 4, we use the proximity operator as a structure detector: at point and for step , we consider the manifold M relative to which is partly smooth at point prox ( ). We use here the prox as a filter for relevant information. We remark that varying and collecting M prox ( ) provides only a subset of the possible substructure manifolds. Note also that for near 0, the dimension of the structure manifold M increases as reduces, to generally reach M = R for small enough.

We propose to select the candidate manifold in this subset of manifolds, picking the one with the smaller dimension, that meets the normal ascent condition (5.19). Let us illustrate this heuristic on a simple example.

Example 5.8 (Manifold selection for max • ). Here is an instance of the proposed identification heuristic. At some point, say we have ( ) ≈ [100, 3, 23, 21, -12].

Then the proximal detection tool suggests the following manifolds, ranked by increasing dimension:

= {1, 2, 3, 4, 5}, = {2, 3, 4, 5}, = {2, 4, 5}, = {2, 5}, = {5} 
Removing the manifolds M max whose feasibility is too big leaves only a subset of these manifolds. It remains to evaluate Eq. (5.19) successively to find the manifold with smallest dimension that meets this normal ascent condition.

Note that this heuristic requires only one evaluation of and Jac , for all these computations.

. The proposed algorithm is summarized in Algorithm 5.2. It includes the described heuristic and the stopping criterion presented in Section 5.4.1.

Algorithm 5.2: Global Newton algorithm (heuristic)

Require: Set 0 ∈ R , M 0 = R , init > 0, ∈ (0, 1/2), > 0. For example, take = 10 -3 init = 102 and = 10 -13 . 1: repeat

2: Form ↦ → M prox • ( ) ⊲ Structure detection 3: +1 = init 4:
while M +1 does not satisfy the normal ascent property Eq. (5.19), and is not the last manifold do Obtain +1 from the linesearch procedure Algorithm 5.3. 11: until ℎ ( ) ≤ and dist 0, M ( ) ≤

We provide here some implementation details. The backtracking linesearch selects the higher step of the form = (1/2) , for some integer . We compute a truncated SQP step at each iteration, following Bonnans et al. (2006, Alg. TSQP, p. 305). This is done by taking as the exact Hessian of the Lagrangian, and solving problem (5.2) exactly, or until a negative curvature direction is found. We handle the Maratos effect by adding the second-order correction, defined in Eq. (5.6), only at iterations where it is necessary. Specifically, we use the approach described in Chauvier et al. (2003, p. 20), summarized in Algorithm 5.3. The algorithm stops when the pair ( , M ) meets the optimality conditions Eq. (5.17).

Numerical experiments

. We consider the same problems and similar instances as in the numerical experiments of Section 4.5, which we detail below.

First, we take the celebrated MaxQuad instance, of the form ( ) = max =1,..., ( ( )), where = 10, = 5 and each is quadratic convex, making the whole function convex (Bonnans et al., 2006, p. 153). For this instance, the optimal manifold is M max with = {2, 3, 4, 5}.

Second, we consider the problems F3d-U , which also write as maximum of quadratics with = 3, and = 4; see Mifflin and Sagastizábal (2005, Sec. 6). 2 The mappings are defined as end if 14: end if constant number of black-box oracle calls per iteration, set to twice the dimension of the optimization space R in the experiments. Algorithm 5.2 requires information of a different nature: the value of ( ) and its (partial) eigenvalue decomposition, the Jacobian Jac ℎ ( ), and the hessian of the Lagrangian for the smooth reduced problem obtained from identification. Besides, the linesearch requires evaluating at several points. Comparison with respect to iterations is therefore not completely fair.

( ) = 1 2 2 1 + 2 2 + 2 3 -2 -3 2 1 -3 1 2 3 -, Algorithm 
But the running time of the algorithms is not entirely satisfactory as a progress measure: obtaining implementations of comparable qualities requires different implementation effort, depending on the algorithms complexities.

. We report on Fig. 5.5a to 5.10a the evolution of the suboptimality versus iterations, and on Fig. 5.5b to 5.10b the evolution of suboptimality versus time. On the MaxQuad problem, Algorithm 5.2 obtains the correct manifold at iteration 13. Three iterations later, the iterates ( , M ) satisfy the optimality condition (5.17) with = 2 • 10 -13 . The linesearch selects the unit stepsize during these iterations, as hinted by the quadratic convergence rate displayed in Fig. 5.5. On the maximum eigenvalue problem, the proposed algorithm obtains the right manifold at iteration 8, and the unit stepsize at iteration 13 until convergence. Similar remarks hold for Algorithm 5.2 on the F3d-U instances.

The serious steps of the VU-algorithm converge as well very fast on all instances, even with only approximate second-order information. We also note that the algorithm succeeds in detecting the optimal manifold dimension in each instance, except for the F3d-U0 problem.

We report in Figs. 5.5d and 5.10d the optimality condition Eq. (5.17) and the normal ascent test Eq. ( 5.19) at the last point of each algorithm, relative to the optimal manifold for both problems. Only the VU-algorithm and Algorithm 5.2 get a really high precision, and our implementation of the VU-algorithm appears to favor feasibility over optimality along structure manifolds. We also note that, across all problems, the final point of each algorithm meets the normal ascent condition Eq. (5.19), although some points may be away from the minimizer. 

) (c) Manifold dimension vs iterations Gradient Sampling nsBFGS VU -algorithm Global Newton Algorithm ℎ( ) dist( M ( ¯ ), 0) proj ( ¯ ) (0) ∈ ri ( ¯ )
Gradient Sampling 1.08 . Note that the optimal manifold has dimension 0, it reduces to { ★ } near ★ . This explains the fast rate of the VU -algorithm, independent of the poor quality of the U space and Newton step on this example. T thesis considers the question of detecting and leveraging the smooth substructure of nonsmooth functions that appear in some machine learning, signal processing, and control applications. After a chapter of introduction (Chapter 1), and a chapter of recalls (Chapter 2), the contributions of this thesis were presented in Chapters 3-5. We briefly review them here, to better lay down a number of on-going works, further questions, and perspectives.

In Chapter 3, we considered the minimization of additive nonsmooth functions. For such nonconvex functions, we first proved that the proximal gradient operator detects smooth substructure: its sends neighborhoods of nonsmooth minimizers to the optimal submanifold (Theorem 3.1). Then, we proposed an algorithm that alternates a proximal-gradient step with an efficient Riemannian step on the detected manifold (Algorithm 3.1). We proved that this algorithm converges to critical points and that, if one of the minimizers meets a natural geometrical condition, the algorithm eventually detects the smooth substructure and converges at a quadratic speed (Theorems 3.2 and 3.3). We also observed this fast convergence numerically on classical structured regression problems.

In Chapter 4, we studied the local structure of functions that write as a composition of a nonsmooth function with a smooth mapping. When the proximity operator of the nonsmooth function is explicitly available, we showed that it can be used to detect the smooth substructure of minimizers of the full function (Theorem 4.4). We used this information to propose a local Newton method that minimizes the objective by exploiting the detected structure (Algorithm 4.1). This method is guaranteed to identify the structure of the minimizer and to converge quadratically (Theorem 4.7), which we illustrated on two popular nonsmooth problems.

In Chapter 5, we also considered the minimization of composite functions, but from a global perspective. We proposed preliminary results aimed at designing an algorithm that converges from any starting point, and with the same local guarantees as the Newton algorithm of Chapter 4. There, we touched more closely than before the difficulties of globalization and of the combinatorial aspect brought by identification. We showed that linesearch SQP method, with a correction term, still retains the fast local Newton rate (Theorem 5.6). We also proposed an optimality criterion for algorithms that explicitly use the smooth substructure of nonsmooth functions. While a theoretically sound combination of linesearch and identification procedure has yet to be reached, we illustrated numerically the behavior of a heuristic global Newton algorithm (Algorithm 5.2) on two nonsmooth problems.

Nonsmooth optimization is an exciting field; we are glad to have obtained some results and proposed promising algorithms. During this PhD, we discovered the beauties and difficulties of nonsmoothness; in particular, we have faced many technical challenges. Some of them were quite subtle, and probably 97 explain why interest in structure exploitation slowed down after founding contributions in the 2000s, including [START_REF] Mifflin | A VU-algorithm for convex minimization[END_REF]; [START_REF] Lewis | Active sets, nonsmoothness, and sensitivity[END_REF], central in this work. We are glad to note a renewed interest in such questions, with e.g., [START_REF] Han | Survey Descent: A Multipoint Generalization of Gradient Descent for Nonsmooth Optimization[END_REF]; [START_REF] Davis | Active strict saddles in nonsmooth optimization[END_REF]; [START_REF] Lee | Accelerating inexact successive quadratic approximation for regularized optimization through manifold identification[END_REF]. Facing these challenges allowed us to propose several refined technical results, such as the description of identification of the proximal gradient away from minimizers, or the precise description of the proximity operator behavior relative to its stepsize. On the other hand, the question of globalizing the local Newton method for composite minimization, discussed in Chapter 5, proved to be particularly delicate for us. The recent preprint [START_REF] Davis | Subgradient methods near active manifolds: Saddle point avoidance, local convergence, and asymptotic normality[END_REF] was released timely, providing a rich theoretical framework based on Whitney stratification of definable functions. This approach sheds an interesting light on the globalization question, allowing the preliminary developments of Chapter 5.

The key in Chapter 5, and more generally in this thesis, was to combine a theoretical study of the nonsmoothness, a review of the recent literature, and thorough numerical experimentation. Comparing theoretical ideas with their behavior in practice was, for us, a very effective way to build and refine intuition on the behavior of methods or procedures. From that point, seeking out fine geometrical reasons for these intuitions brought forth most results of this thesis.

Along the way, we encountered many interesting questions, ranging from intriguing technical facts to appealing applications. While some questions remained at the stage of remarks, others led to promising developments. I list below some of these questions: first, the questions regarding applications to specific problems, and second, those regarding extensions of the results presented in this thesis.

. Chapter 3 considered additive functions with two elements. One could consider the wider setting of functions that write as + + ℎ( •) with one smooth and two nonsmooth functions with an explicit prox. This function can be written as a composition of a smooth map and a nonsmooth function with an explicit prox, that appear in signal processing e.g., 3d mesh denoising [START_REF] Repetti | A random blockcoordinate primal-dual proximal algorithm with application to 3d mesh denoising[END_REF][START_REF] Thouvenin | Parallel faceted imaging in radio interferometry via proximal splitting (Faceted HyperSARA): II. Code and real data proof of concept[END_REF]. The composition-based methods of Chapters 4 and 5 thus apply. How would these methods compare to the splitting methods such Condat-VU [START_REF] Condat | A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms[END_REF][START_REF]A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF] or three-operator splitting [START_REF] Davis | A three-operator splitting scheme and its optimization applications[END_REF]? Can these two approaches be combined to obtain a globally convergent and locally fast algorithm akin to the Riemannian acceleration of Chapter 3? I would like to explore these questions in a medium run.

-

. The additive setting of Chapter 3 captures the minimization of a smooth function over a set which admits an explicit projection; it suffices to take as the indicator function of the set. In this wide setting, let us underline the minimization of quadratics over the simplex, which forms the bundle subproblem (Bonnans et al., 2006, Eq. 10.9), or on the spectraplex, which appears in the spectral bundle (Helmberg et al., 2014, Sec. 5.2) (and in Chapter 5). The interest of the algorithm of Chapter 3, in this case a Newton acceleration of the projected gradient, is the identification of the minimizer smooth substructures, which corresponds to the active constraints. This is indeed the relevant information for the mentioned problems: finding the active linear functions for the bundle subproblem, or the rank of the matrix that minimizes over the spectraplex. These problems are respectively dealt with by a specific QP solver on the simplex [START_REF] Krzysztof | A Method for Solving Certain Quadratic Programming Problems Arising in Nonsmooth Optimization[END_REF], or heuristically in [START_REF] Helmberg | The spectral bundle method with second-order information[END_REF]. An interesting direction would thus be to adapt the algorithm of Chapter 3 to this setting, and investigate their applicability in the above settings. Notably, this requires adapting linesearches to extended-value functions.

We now turn to perspectives to improve the algorithms and results present in this thesis.

. The Newton acceleration of the proximal gradient converges fast around minimizers, as discussed in Chapter 3. However, the observed convergence rate away from minimizers is still similar to that of the proximal gradient. Several extensions are possible.

First, both building blocks can be refined: the truncation strategy used in Chapter 3 was a first attempt to improve on the plain Newton method but other Newton accelerations could be considered (e.g., trust-region [START_REF] Absil | Trust-region methods on riemannian manifolds[END_REF], cubic regularization [START_REF] Agarwal | Adaptive regularization with cubics on manifolds[END_REF]), as well as other proximal algorithms (e.g., prox-Newton [START_REF] Lee | Proximal newton-type methods for minimizing composite functions[END_REF], fast proximal gradient [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]).

Second, computing a proximal gradient can be costly in some settings e.g., with nuclear-norm regularization of large problems, since it amounts to computing an SVD. For such problems, the Burrer-Monteiro [START_REF] Waldspurger | Lecture notes on non-convex algorithms for low-rank matrix recovery[END_REF] approach represents the low-rank iterates in factorized form. Could this approach be adapted for the Riemannian acceleration of the proximal gradient? One could consider an algorithm which performs at each step either a proximal gradient step or a Riemannian step, and try to limit the number of prox steps. How to decide weather it is beneficial to perform an identification or a Riemannian step? How often should an identification step, less efficient than a Riemannian step, be performed? Going step further, can the proximal gradient be altogether replaced by a computationally lighter identification procedure? Ideas from Chapter 5 could help.

. In practical settings the minimizers can be non-qualified, which means that both 0 ∈ ( ¯ ) and 0 ∉ ri ( ¯ ) hold, at least numerically. This setting was studied for "mirrorstratifiable" functions of [START_REF] Fadili | Sensitivity analysis for mirror-stratifiable convex functions[END_REF]. It leads to a "sandwhich" identification behavior: the algorithm provably converges to one of a subset of structure manifolds, and in practice, it often identifies the manifold with largest dimension. What is the behavior of the algorithms introduced in this thesis on non qualified problems? Do they retain some identification and local convergence properties? More generally, how can this partial substructure be exploited?

. The developments of Chapter 4 required the introduction of Properties 4.1 and 4.2, which hold on our examples. How constraining are these properties? Regarding the normal ascent property, as discussed on an example, it seems a linear tilt along a normal direction could ensure it holds. Can this remark be formalized and integrated to the theory properly? Besides, the curve property was proved to hold at any nonsmooth points of the maximum and maximum eigenvalue functions. For what function does this property fails? Is there a simple criterion on the nonsmooth function that ensures this property? Taking the limit as → 0 yields Hess ( ¯ )[ ], ≥ 2 . As is picked arbitrarily in ¯ M, the results are obtained.

.

Orthographic retraction

This term echoes the orthographic map projection of Earth.

We introduce a specific retraction and show it is a second-order retraction [START_REF] Absil | Projection-like retractions on matrix manifolds[END_REF]. This retraction was introduced in Miller and Malick (2005, Th. 2.2), before the notions of (second-order) retraction became established; it is illustrated in Fig. The acceleration of the curve is obtained by computing the derivative of (•) in the ambient space and then projecting onto M. Thus ( ) = 0 and in particular, (0) = 0 which makes R a second-order retraction.

.1.3 Euclidean spaces and manifolds, back and forth

We show here that, locally, the Euclidean and Riemannian distances are equivalent.

This result is used to prove Theorem B. and Lemma A. .

Lemma A.3 . Consider a point ¯ of a Riemannian manifold M, equipped with a retraction R such that R ¯ is C 2 . For any > 0, there exists a neighborhood N ¯ of ¯ in M such that

(1 -) dist M ( , ¯ ) ≤ R -1 ¯ ( ) ≤ (1 + ) dist M ( , ¯ ) for all ∈ N ¯ .
where R -1 ¯ : M → ¯ M is the smooth inverse of R ¯ defined locally around ¯ .

Proof. The retraction at ¯ can be inverted locally around 0. Indeed, as D R ¯ (0 ¯ M ) = is invertible and R ¯ is C 2 , the implicit function theorem provides the existence of a C 2 inverse function R -1 ¯ : M → ¯ M defined locally around ¯ . Furthermore, one shows by differentiating the relation R ¯ • R -1 ¯ that the differential of R -1 ¯ at ¯ is the identity.

We consider the function : M → R defined by ( ) = log ¯ ( ) -R -1 ¯ ( ) . Clearly ( ¯ ) = 0, and D ( ¯ ) = 0 as the differentials of both R -1 ¯ and logarithm at ¯ are the identity. In local coordinates ˆ = log ¯ around ¯ , is represented by the function ˆ = • exp ¯ : ¯ M → R. As ˆ ( ˆ ) = 0, D ˆ ( ˆ ) = 0 and ˆ is C 2 , there exists some > 0 such that -ˆ -ˆ 2 ≤ ˆ ( ˆ ) ≤ ˆ -ˆ 2 in a neighborhood N of ˆ ,.

For any > 0, by taking a small enough neighborhood N ⊂ N, there holds -ˆ -ˆ ≤ ˆ ( ˆ ) ≤ ˆ -ˆ .

Thus for all in N ¯ = R ¯ ( N ),

log ¯ ( ) ≤ log ¯ ( ) -R -1 ¯ ( ) ≤ log ¯ ( ) , as ˆ = log ¯ ( ), ˆ = 0. We conclude with dist M ( , ¯ ) = ˆ -ˆ = log ¯ ( ) .

Used in to prove Theorem . . Finally, we show below that any critical point of the proximal-gradient minimization problem is actually a strong local minimizer, provided that is prox-regular there. This result appears more or less explicitly in some articles, including [START_REF] Daniilidis | Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems[END_REF].

This result is used to prove Theorem . . Lemma A.7 . Let and denote two functions and ¯ , ¯ two points such that is differentiable at ¯ and is -prox-regular at ¯ for subgradient 1 ( ¯ -¯ ) -∇ ( ¯ ) ∈ ( ¯ ) with ∈ (0, 1/ ). Then, the function ¯ : ↦ → ( ) + 1 2 ¯ -∇ ( ¯ ) -2 satisfies ¯ ( ) ≥ ¯ ( ¯ ) + 1 2 1 --¯ 2 , for all near ¯ .

Proof. Prox-regularity of at ¯ with subgradient 1 ( ¯ -∇ ( ¯ ) -¯ ) ∈ ( ¯ ) writes

( ) ≥ ( ¯ ) + 1 ¯ -∇ ( ¯ ) -¯ , -¯ -2 -¯ 2 .
The identity 2 -, -= -2 + -2 --2 applied to the previous scalar product yields:

( ) ≥ ( ¯ ) + 1 2 ¯ -∇ ( ¯ ) -¯ 2 + 1 2 -¯ 2 - 1 2 ¯ -∇ ( ¯ ) -2 -2 -¯ 2 , which rewrites 
( ) + 1 2 ¯ -∇ ( ¯ ) -2 = ¯ ( ) ≥ ( ¯ ) + 1 2 ¯ -∇ ( ¯ ) -¯ 2 = ¯ ( ¯ ) + 1 2 1 - -¯ 2 ,
which is the claimed inequality. this appendix, we provide some results on Riemannian optimization that are important in our developments, and that we have not been able to locate in the existing literature.

.1 -

We provide here a technical result used in the proofs of Section 3.5. Theorem B.1 ensures that a step providing superlinear improvement towards a strong minimizer locally decreases function value. Such a step is thus directly acceptable by an Armijo line search. The result and proof adapt Bonnans et al. (2006, Th. 4.16) to the Riemannian setting. 

= -D 2 ( ★ )[ -★ ] 2 + D 2 ( ★ )[ + -★ , -★ ] + ( -★ 2 ) = -D 2 ( ★ )[ -★ ] 2 + ( -★ 2 ),
where, in the last step, we used that + -★ = ( -★ ) to get that D 2 ( ★ )[ + -★ , -★ ] = D 2 ( ★ ) + -★ -★ = ( -★ 2 ). We now turn to show that D ( )[ + -] behaves as D ( )[ ] up to ( + -2 ). As is twice differentiable and exp is C ∞ , is twice differentiable as well. In particular its derivative is locally Lipschitz continuous, so that for near ★ , we obtain a first estimate: Step 2. The function admits a second-order development around ★ : applying Eq. (2.3) with the exponential map exp ★ as a second-order retraction yields

D ( ) = D ( ) -D ( ★ ) = O( -★ ).
( ) = ( ★ ) + 1 2 Hess ( ★ )[ -★ ] 2 + (dist M ( , ★ ) 2 ), (B.3)
where we used that dist M ( , ★ ) = log ★ ( ) -log ★ ( ★ ) . Denote 0 < ≤ the lower and upper eigenvalues of Hess ( ★ ). The combination (B.3) + 1 (B.2) writes

( ) + 1 D ( )[ ] = ( ★ ) + ( 1 2 -1 ) Hess ( ★ )[ -★ ] 2 + (dist M ( , ★ ) 2 )
As a tangent vector to the Stiefel manifold at point , can be expressed as Absil et al. (2009a, Ex. 3.5.2) = Ω + ⊥ , (B.5)

where Ω ∈ R × is a skew-symmetric matrix, ∈ R -× -, and ⊥ is any matrix such that ⊥ = 0 and ⊥ ⊥ = -. Similarly, = Ω + ⊥ , where Ω ∈ R × is skew-symmetric, ∈ R -× -, and ⊥ is any matrix such that We are now ready to give the expression of the Riemannian gradient and Hessian of the nuclear norm.

Then, one readily checks that (0) D (0) (0) = 0.

We turn to the term D (0) (0) (0) . A quick computation from the eigen decomposition of shows that writes (0) (0) , where is actually diagonal. Therefore, (0) = -(1/ ) trace( ) is a diagonal matrix, so that D (0) (0) (0) = =1 (0) D (0) (0) . Following [START_REF] Shapiro | On Eigenvalue Optimization[END_REF], the differential of ↦ → ( ( , )) at = 0 writes

D (0) = = +1 1 1 - (0) (0) (0),
with = grad max (proj M max ( )). Using that max ( ) = (1/ ) =1 ( ) ( ), we compute the Riemannian gradient: grad max ( ) = (1/ ) =1 ( ) ( ) (see Boumal (2022, Sec. 7.7)). By orthogonality of the smooth basis of eigenvectors, the terms (0) (0) vanish for all ∈ {1, . . . , } and ∈ { + 1, . . . , }. We get that D (0) (0) (0) = 0, and thus that D (0) = 0. Thus, Lemma C.1 applies and yields the result. Attraction areas of prox (red), and of prox • (green) on a maximum of three smooth functions. The nonsmooth function admits two substructure manifolds M 1 and M 2 ; points 1 and 2 are the minimizers of the restriction of on these manifolds. Only 1 is optimal for . As expected, both operators detect the correct structure in a neighborhood of 1 , and prox is not stable near 2 . However, prox • does detect the structure of 2 on a neighborhood of this point, thus potentially trapping algorithms in that non-optimal substructure. 71 The monospaced text (hyperlinks, etc.) was typeset in Bera Mono, originally developed by Bitstream, Inc. as "Bitstream Vera" (with Type 1 PostScript fonts by Malte Rosenau and Ulrich Dirr).

The typographic style of this dissertation was inspired by the authoritative genius of Bringhurst's Elements of Typographic Style, ported to L A T E X by André Miede, the original designer of the classicthesis template. Any unsightly deviations from these works should be attributed solely to the author's (not always successful) efforts to conform to the awkward A4 paper size.

Structured nonsmooth optimization: proximal identification, fast local convergence, and applications

Figure 1 . 1 :

 11 Figure 1.1: Illustration of the level lines and the subdifferentials of two nonsmooth functions of the plane. They are introduced in Example 1.1, we plot 1 on the left, and 2 on the right. The subdifferential is displayed at point , , and . Depending on the smoothness of the function, it is either a single vector, the gradient of the function (e.g., for ), or a full set (e.g., for ).

Figure 1 . 2 :

 12 Figure 1.2: Illustration of the smooth substructure(s) of functions 1 and 2 , introduced in Example 1.1. The smooth substructure manifolds are represented in green; their expression is given in Example 1.3.

Figure 1 . 3 :

 13 Figure 1.3: Illustration of the identification of the proximal point (left pane) and the proximal gradient (right pane) on functions introduced in Example 1.1: the iterates eventually reach and remain on the smooth substructure of the minimizer.

Figure 1 . 4 :

 14 Figure 1.4: Illustration on a simple nonsmooth function of partial smoothness, and of the operator and algorithmic identification properties of the proximal operator.

Figure 1 . 5 :

 15 Figure 1.5: Proximal gradient steps, attracted to nonsmoothness (left pane) and Riemannian steps, that converge fast to the minimizer on that subspace (right pane).

Figure 1 . 6 :

 16 Figure 1.6: Illustration of structure detection and quadratic convergence.

Figure 1 . 7 :

 17 Figure 1.7: Illustration of the areas of detection of structure for the proximity operator of (red), and the identification tool of Chapter 4 (green), on a maximum of three smooth function. The non-minimizing point 2 may trap the local method of Chapter 4.

:

  → ∪ ∈M M, is defined by D d ( ) proj ( ) ( ), where ( ) denotes the derivative in the ambient space R and proj corresponds to the orthogonal projector from R to M. The acceleration of a curve is defined as the covariant derivative of its velocity: ( ) D d (0). The Riemannian Hessian of at is the linear operator Hess ( ) : M → M defined, for ∈ M, by the relation Hess ( )[ ] D d grad ( ( )) =0 , where is a smooth curve such that (0) = and (0) = . Equivalently, we have Hess ( )[ ],

Figure 2 . 1 :

 21 Figure 2.1: Illustration of partial smoothness on function( ) = 10( 1 -1) 2 + 5| 2 1 -2 |.The function is smooth along M, nonsmooth across, and the tangent space at ∈ M is perpendicular to the subdifferential.

Figure 2 . 2 :

 22 Figure 2.2: Illustration of the local identification of the proximal operator (Proposition 2.3) and finite time identification of proximal point algorithm. The minimizer is ★ = (1, 1), with structure manifoldM ★ = { ∈ R 2 : 2 1 = 2 }.The green area shows the operator identification property of the prox: the operator maps a neighborhood of the minimizer to M ★ . The red iterates illustrate the algorithmic identification of the proximal point algorithm: the iterates eventually belong to M ★ .

Figure 3 . 1 :

 31 Figure 3.1: Illustration of the typical level lines of a Lasso objective and the eventual (algorithmic) identification of the proximal gradient: the iterates belong to the smooth substructure M ★ = { ∈ R 2 : 1 = 0} of the minimizer ★ = (0, 1) in finite time.

Figure 3 . 2 :

 32 Figure 3.2: Illustration of Theorem 3.1 on the additive function( ) = 10( 1 -1) 2 + 5| 2 1 -1 |. The minimizer is ★ = (1, 1), the structure manifold is M = { ∈ R 2 : 2 1 = 2 }.The red area shows the points mapped to M by the proximal gradient operator.

Figure 3 . 3 :

 33 Figure 3.3: Illustration of a -structured critical point. Point i) is illustrated by the blue arrow, and point ii) implies that the red cross is in the interior of the black segment. Partial smoothness appears in the fact that the black segment is perpendicular to the tangent plane of M at ¯ .
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 34 Figure 3.4: Illustration of Algorithm 3.1. Left pane: proximal gradient step from mapped to the optimal manifold M ★ , and the area of points mapped to M ★ by the proximal gradient. Right pane: ManAcc step, decomposed as a (Riemannian Newton) step ∈ M ★ in the tangent space and its retraction +1 onto M ★ .

Algorithm 3. 1 :

 1 General structure exploiting algorithm Require: Pick 0 arbitrary, ∈ (0, 1/ ). 1: repeat 2: Compute ∈ prox ( -1 -∇ ( -1 )) and get M 3: Update = ManAcc M ( ) on the current manifold 4: until stopping criterion 3.4.1 Global convergence

(

  ) -( ★ ) Suboptimality at current iteration. #prox. grad. steps Number of proximal gradient steps, each involve computing ∇ (•) and prox (•) once. #ManAcc steps Number of Riemannian steps, each involve computing grad (•) once and Hess (•)[•] multiple times (one per Conjugate Gradient iteration). #Hess (•)[•] Number of Riemannian Hessian-vector products, approximates the effort spent in manifold updates since algorithm started. # Number of calls to ( ), one per iteration + some for the line search + some for the backtracking estimation of the Lipschitz constant. # Number of calls to ( ), one per iteration + some for the line search.
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 35 Figure 3.5: Nonsmooth example

FigureFigure 3 . 8 :

 38 Figure 3.7: Trace-norm problem
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  Level curves of and image of

Figure 4 . 1 :

 41 Figure 4.1: Smooth substructure on a simple example ( = = 2). The figures show the level curves of ( ) = max( 1 , 2 ) (on the right, in the intermediate space)and of = • , with two quadratic functions 1 ( ), 2 ( ) (on the left, in the input space). The manifolds of non-differentiability are in green; the image of is the red area.

Figure 4 . 2 :

 42 Figure 4.2: Illustration of the level-curves of function in Example 4.6, along with the image of and the tangent and normal spaces to M at the minimizer.

  Example 4.5 (Normal ascent for regularized-type problem). Consider the minimization of ( ) = ( ) + ( ), where ( ) = 3 2 and ( ) = | | -1 2 , whose minimizer is ★ = 0. This writes as a composite problem by setting ( ) = ( ( ), ) and ( ) = 1 + ( 2 ). We note first that Property 4.1 does not hold for at ( ★ ), the structure manifold of at ( ★ ) being M = R × {0}. However the function also writes ( ) = ˜ ( ) + ˜ ( ), with ˜ ( ) = and ˜ ( ) = | |. Letting similarly ˜ ( ) = ( ˜ ( ), ) and ˜ ( ) = 1 + ˜ ( 2 ), we now get that Property 4.1 holds for ˜ at ˜ ( ★ ).

  Example 4.6 (Normal ascent property for composite problems). Consider minimizing = • , with

Lemma 4. 3 .

 3 Consider either: • = max, ¯ ∈ R , and the structure manifold M max (of Example 4.3); • = max , ¯ ∈ S , and the structure manifold M max (of Example 4.4).

Definition 4. 1 (

 1 Qualified points). A point ¯ ∈ R is qualified relative to a decomposition ( , ) of and manifold M if 1. is prox-bounded and prox-regular at ( ¯ ); 2. is partly smooth at ( ¯ ) relative to M ; 3. is transversal to M at ¯ ; 4. satisfies Properties 4.1 and 4.2 at point ( ¯ ).

Figure 4 . 3 :

 43 Figure 4.3: Illustration of the main result in the intermediate space, on the function of Fig. 4.4. The structure manifolds of max : R 3 → R are displayed as the three half-planes and the line in green. The red line illustrates the curve ↦ → prox max ( ( )). When < 0.25, the curve does not lie on any structure manifold. For ∈ [0.25, 0.75), the curve lies on the optimal manifold M max 2,3 . For ≥ 0.75, the curve lies on M max 1,2,3 .

Figure 4 . 4 :

 44 Figure 4.4: Illustration of the main result on a maximum of three quadratic functions, with ¯ ∈ M max {1,2} and a point ˜ near ¯ . The three figures show the areas where prox • detects manifolds for three stepsizes: = 0.4 (upper left), = 1 (upper right) and = 2.3 (lower left). We see on the upper left fig. that prox • detects no structure from ¯ because is too small, and in contrast, on the lower fig., that it wrongly detects too much structure (M max {1,2,3} ) because is too large. On the upper right fig., the optimal manifold is detected with chosen in the right interval.

  the curve ↦ → prox ( ) on M for ≥ (dist M ( )).

Figure 4 . 5 :

 45 Figure 4.5: Illustration of Lemma 4.6 and its consequences.

  prox ( ( )) and obtain M locally defined by ℎ 4: ℎ = ℎ • (local equation of M ), ˜ = ˜ • (smooth extension)

Assumption 4. 3 (

 3 Nonconvex stability). The iterates of Algorithm 4.1 remain in the connex component of the sublevel set { : ( ) ≤ ( 0 )} that contains ★ .

Figure 4 .Figure 4 . 8 :

 448 Figure 4.6 reports the suboptimality of the considered methods in terms of CPU time and each marker corresponds to one iteration. All algorithms are initialized at a point 0 obtained by running nsBFGS for several iterations.

Figure 5 . 1 :

 51 Figure 5.1: Attraction areas of prox (red), and of prox • (green) on a maximum of three smooth functions. The nonsmooth function admits two substructure manifolds M 1 and M 2 ; points 1 and 2 are the minimizers of the restriction of on these manifolds. Only 1 is optimal for . As expected, both operators detect the correct structure in a neighborhood of 1 , and prox is not stable near 2 . However, prox • does detect the structure of 2 on a neighborhood of this point, thus potentially trapping algorithms in that non-optimal substructure.

Property 5. 3 .Figure 5 . 2 :

 352 Figure 5.2: Illustration of the different components of an SQP step described in Lemma 5.4.

Figure 5 . 3 :

 53 Figure 5.3: The Maratos effect: an SQP step SQP from point increases function value; see Example 5.1. Adding a second-order correction step corr Eq. (5.6) reduces function value.

  Example 5.5 (Maximum of smooth functions). Building on Example 5.2, the distance from zero to the subdifferential is obtained by solving min ∈∆ ∈ ∇ ( ) , where ∆ = { ∈ R | | : ≥ 0 for all ∈ , ∈ = 1} denotes the simplex with coordinates .

  Example 5.6 (Maximum eigenvalue). Building on Example 5.3, the distance from zero to the subdifferential is obtained by solving min ∈Sp D ( ) * •

  = M +1 (R if no satisfactory manifold was found)

5. 3 :

 3 Efficient linesearch with second-order correction. 1: if ( + SQP ) ≤
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  Figure 5.5: MaxQuad problem
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  Figure 5.6: F3d-U0 problem
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  Figure 5.7: F3d-U1 problem
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  Figure 5.8: F3d-U2 problem
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  Figure 5.9: F3d-U3 problem

Figure 5 .

 5 Figure 5.10: Eigmax Problem

Figure A. 1 :

 1 Figure A.1: Illustration of the Orthographic retraction (Proposition A.2).

  A.1.Used to proveLemma A. and Theorem .Proposition A.2 . Consider a -dimensional C -submanifold M of R around a point ¯ ∈ M. The mapping R : B → M, defined for ( , ) ∈ B near ( ¯ , 0) by proj (R( , )) = defines a second-order retraction near ( ¯ , 0). The point-wise retraction, defined as R = R( , •), is locally invertible with inverse R -1 = proj .Proof. Let Ψ : R → R -denote a C function defining M around ¯ : for all close enough to ¯ , there holds ∈ M ⇔ Ψ( ) = 0, and D Ψ( ) is surjective. Consider the equation Φ( , , ) = 0 around ( ¯ , 0, 0), withΦ : , , : ∈ M, ∈ M, The partial differential D Φ( ¯ , 0, 0) is, for ∈ ¯ M, D Φ( ¯ , 0, 0)[ ] = D Ψ( ¯ )[ ].Since ¯ ∈ M, D Φ( ¯ , 0, 0) is surjective from ¯ M to R -so its a bijection. The implicit function theorem provides the existence of neighborhoodsN 1 ¯ ⊂ M, N 2 0 ⊂ ∪ ∈M M, N 3 0 ⊂ ∪ ∈M M and a unique C function : N 1 ¯ × N 2 0 → N 3 0 such that, for all ∈ N 1 ¯ , ∈ N 2 0 and ∈ N 3 0 , ( ¯ , 0) = 0 and Φ( , , (,)) = 0 ⇔ + + ( , ) ∈ M.It also provides an expression for the partial derivative of at ( , 0) along : for ∈ M,D ( , 0)[ ] = -D Φ( , 0, 0) -1 D Φ( , 0, 0)[ ].As noted before, D Φ( , 0, 0) is bijective since∈ M. Besides, D Φ( , 0, 0) = D Φ( )[ ] = 0 since M identifies as the kernel of D Φ( ). Thus D ( , 0) = 0. Now, define a map R : N 1 ¯ × N 2 0 → M by R( , ) = + + ( ,). This map has degree of smoothness C since is C , satisfies R( , 0) = since ( , 0) = 0 and satisfies D ( , 0) = + D ( , 0) = . Thus R defines a retraction on a neighborhood of ( ¯ , 0). We turn to show the second-order property of R. Consider the smooth curve defined as ( ) = R( , ) for some ∈ N 1 ¯ , ∈ M ∩ N 2 0 . It's first derivative writes ( ) = + D ( , )[ ] = .

Lemma A. 4 .

 4 Consider a point ¯ of a Riemannian manifold M. For any > 0, there exists a neighborhoodN ¯ of ¯ in M such that, for all ∈ N ¯ , (1 -) dist M ( , ¯ ) ≤ -¯ ≤ (1 + ) dist M ( , ¯ ),where -¯ is the Euclidean distance in the ambient space.Proof. Let ¯ , denote two close points on M. Consider the tangential retraction introduced in Proposition A.2. As a retraction, it satisfies:R ¯ ( ) = R ¯ (0) + D R ¯ (0)[ ] + O( 2 ) = ¯ + O(
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Theorem B. 1 (

 1 Soundness of the Riemannian line search). Consider a manifold M equipped with a retraction R and a twice differentiable function : M → R that admits a strong local minimizer ★ , that is, a point such that Hess ( ★ ) is positive definite. If is close to ★ , brings a superlinear improvement towards ★ , that is dist M (R ( ), ★ ) = (dist M ( , ★ )) as → ★ , and 0 < 1 < 1/2, then is acceptable by the Armijo rule (3.12) with unit stepsize = 1.Proof. Let , ∈ B denote a pair such that is close to ★ and dist M (R ( ), ★ ) = (dist M ( , ★ )).For convenience, let + = R ( ) denote the next point. Following Absil et al. (2009a) (see e.g. the proof of Th. 6.3.2), we work in local coordinates around ★ , representing any point ∈ M by = log ★ ( ) and any tangent vector ∈ M by = D log ★ ( )[ ]. The function is represented by = • exp ★ : ★ M → R. Defining the coordinates via the logarithm grants the useful property that the Riemannian distance of any two points , ∈ M matches the euclidean distance between their representatives: dist M ( , ) = -. Besides, there holds D ( )[ ] = D ( )[ ] and Hess ( )[ , ] = D ( )[ , ]. (B.1) Indeed, D ( )[ ] = ( • ) (0) and Hess ( )[ , ] = ( • ) (0), where denotes the geodesic curve defined by ( ) = + . Using • = • , one obtains the result. Step 1. We derive an approximation of D ( )[ ] = grad ( ), in terms of D 2 ( ★ )[ -★ ] 2 . To do so, we go through the intermediate quantity D ( )[ + -], and handle precisely the (•) terms. By smoothness of and since D ( ★ ) = 0, Taylor's formula for D writes D ( )[ + -] = D 2 ( ★ )[ + -, -★ ] + ( -★ 2 ) 115

  Since D ( )[ ] = D ( )[ ] by (B.1), there holds: D ( )[ ] -D ( )[ + -] = D ( )[ -( + -)] ≤ D ( ) -( + -) .

  Besides, the following estimate holds -( + -) = ( -★ ). Indeed, as the function log★ • R : M → ★ M is differentiable, there holds for ∈ M small, log ★ (R ( )) = log ★ (R (0)) + D log ★ (R (0))[D R (0)[ ]] + ( ),which simplifies to+ = + + ( ). Lemma A.3 allows to write = R -1 ( + ) = O(dist M ( , + )).Using the triangular inequality and the assump-tion that dist M ( + , ★ ) = (dist M ( , * )) we get dist M ( , + ) ≤ dist M ( , ★ ) + dist M ( ★ , + ) = O(dist M ( , * )) = O( -★ ),so that the second estimate holds.Combining the two above estimates allows to conclude thatD ( )[ ] -D ( )[ + -] = ( -★ 2 ), so that overall, D ( )[ ] = D ( )[ + -] + ( -★ 2 ) = -D 2 ( ★ )[ -★ ] 2 + ( -★ 2 ). Using that -★ = dist M ( , ★ ) and D 2 ( ★ ) = Hess ( ★ ) (B.1), we obtain D ( )[ ] = -Hess ( ★ )[ -★ ] 2 + (dist M ( , ★ ) 2 ). (B.2)

  ⊥ = 0 and ⊥ ⊥ = -. Computing × (B.4) × yields = Ω Σ + Σ + ΣΩ .Looking at the diagonal elements of this equation yields the derivative of the diagonal component of . This is done by taking the Hadamard product of both sides of previous equation with the identity matrix of R × , and writesΣ = • .The off-diagonal elements of this equation write¯ • = Ω Σ + ΣΩ , (B.6)where ¯ has zeros on the diagonal and ones elsewhere. Adding (B.6)Σ andΣ(B.6) yields ¯ • Σ + Σ = Ω Σ 2 -Σ 2 Ω , which decouples coefficient-wise. At coefficient ( ), with ≠ , Σ + Σ = [Ω ] Σ 2 -Σ 2 , hence Ω = • Σ + Σ, where ∈ R -× has zeros on the diagonal and for ≠ , = 1/(Σ 2 -Σ 2 ) if Σ 2 ≠ Σ 2 , 0 otherwise. Besides, left-multiplying (B.4) by ⊥ yields ⊥ = ⊥ Σ , which rewrites, using the decomposition (B.5) of , as ⊥ = Σ . Hence = ⊥ Σ -1 and we get the complete expression for by assembling the expressions of Ω and with the decomposition (B.5). The term ⊥ ⊥ is eliminated using that + ⊥ ⊥ = . Let's follow the same steps to get expressions for . Adding Σ(B.6) and (B.6) Σ yields¯ • Σ + Σ = Ω Σ 2 -Σ 2 Ω , from which we get Ω = • Σ + Σ . Besides, right-multiplying (B.4) by ⊥ yields ⊥ = Σ⊥ , which rewrites using the decomposition = Ω + ⊥ as ⊥ = Σ . Hence = ⊥ Σ -1 , and we get the claimed formula by eliminating the ⊥ terms with + ⊥ ⊥ = . The simplified expressions are obtained using that = ,

L

  Figure 1.1 Illustration of the level lines and the subdifferentials of two nonsmooth functions of the plane. They are introduced in Example 1.1, we plot 1 on the left, and 2 on the right. The subdifferential is displayed at point , , and . Depending on the smoothness of the function, it is either a single vector, the gradient of the function (e.g., for ), or a full set (e.g., for ). 3 Figure 1.2 Illustration of the smooth substructure(s) of functions 1 and 2 , introduced in Example 1.1. The smooth substructure manifolds are represented in green; their expression is given in Example 1.3. 6 Figure 1.3 Illustration of the identification of the proximal point (left pane) and the proximal gradient (right pane) on functions introduced in Example 1.1: the iterates eventually reach and remain on the smooth substructure of the minimizer. 7 Figure 1.4 Illustration on a simple nonsmooth function of partial smoothness, and of the operator and algorithmic identification properties of the proximal operator. 11 Figure 1.5 Proximal gradient steps, attracted to nonsmoothness (left pane) and Riemannian steps, that converge fast to the minimizer on that subspace (right pane). 12 Figure 1.6 Illustration of structure detection and quadratic convergence. 12 Figure 1.7 Illustration of the areas of detection of structure for the proximity operator of (red), and the identification tool of Chapter 4 (green), on a maximum of three smooth function. The non-minimizing point 2 may trap the local method of Chapter 4. 13 Figure 2.1 Illustration of partial smoothness on function ( ) = 10( 1 -1) 2 + 5| 2 1 -2 |. The function is smooth along M, nonsmooth across, and the tangent space at ∈ M is perpendicular to the subdifferential. 22 Figure 2.2 Illustration of the local identification of the proximal operator (Proposition 2.3) and finite time identification of proximal point algorithm. The minimizer is ★ = (1, 1), with structure manifold M ★ = { ∈ R 2 : 2 1 = 2 }. The green area shows the operator identification property of the prox: the operator maps a neighborhood of the minimizer to M ★ . The red iterates illustrate the algorithmic identification of the proximal point algorithm: the iterates eventually belong to M ★ . 24 Figure 3.1Illustration of the typical level lines of a Lasso objective and the eventual (algorithmic) identification of the proximal gradient: the iterates belong to the smooth substructure M ★ = { ∈ R 2 : 1 = 0} of the minimizer ★ = (0, 1) in finite time. 26
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  Figure 4.8 Suboptimality vs time (s) 67 Figure 5.1Attraction areas of prox (red), and of prox • (green) on a maximum of three smooth functions. The nonsmooth function admits two substructure manifolds M 1 and M 2 ; points 1 and 2 are the minimizers of the restriction of on these manifolds. Only 1 is optimal for . As expected, both operators detect the correct structure in a neighborhood of 1 , and prox is not stable near 2 . However, prox • does detect the structure of 2 on a neighborhood of this point, thus potentially trapping algorithms in that non-optimal substructure. 71 Figure 5.2 Illustration of the different components of an SQP step described in Lemma 5.4. 74 Figure 5.3 The Maratos effect: an SQP step SQP from point increases function value; see Example 5.1. Adding a second-order correction step corr Eq. (5.6) reduces function value. 76 Figure 5.4 Illustration of the points and vectors that appear in the proof of Theorem 5.6. 78 Figure 5.5 MaxQuad problem 90 Figure 5.6 F3d-U0 problem 91 Figure 5.7 F3d-U1 problem 92 Figure 5.8 F3d-U2 problem 93 Figure 5.9 F3d-U3 problem 94 Figure 5.10 Eigmax Problem 95 Figure A.1 Illustration of the Orthographic retraction (Proposition A.2). 110
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Depending on the literature, "smooth" mean functions which are either differentiable, C ∞ , or have Lipschitz continuous gradient. Here, we will use smooth for functions differentiable everywhere, out of coherence with the term "nonsmooth".

Convergence occurs with probability one, if the iterative process never encounters a nondifferentiable point.

# This chapter incorporates material fromBareilles et al. b 

Indeed, in many applications of Riemannian optimization, computing geodesics and the exponential map can be costly and then retractions provide an efficient alternative. For this reason, we consider here second-order retractions(Absil et al., 

2009a;[START_REF] Boumal | An introduction to optimization on smooth manifolds[END_REF].

InFigs. 3.6a and 3.6b, the marks help distinguish curves. In particular they do not indicate that the algorithm has performed one (or any number of) iteration.

InFigs. 3.7a and 3.7b, the marks help distinguish curves. In particular they do not indicate that the algorithm has performed one (or any number of) iteration.

Contrary to the other mentioned algorithms, nonsmooth BFGS has no theoretical convergence guarantees when applied to nonsmooth functions.

There exists > 0, > 0 such that ( ) ≥ ( ★ ) + -★ 2 for all ∈ B( ★ , ).

See https://github.com/GillesBareilles/LocalCompositeNewton.jl for Algorithm 4.1 and https://github.com/GillesBareilles/NonSmoothSolvers.jl for the baselines.

This holds when is locally Lipschitz over R and lower bounded, the algorithm iterates indefinitely and the sampling radius decreases to 0.

Indeed, the flexibility of the Julia language allows to use the same implementation with the high precision BigFloat type, which precision is 1.73 • 10 -72 , or the usual Float64 type, which precision is 2.22 • 10 -16 .

One would also expect that the linesearch terminates after a finite number of trials. These two aspects are closely related.

We report slightly corrected mappings -see 4 and 2 4 , so that the minimizers and optimal function value of the problem match the values announced in Table1.

See https://codeberg.org/GillesBareilles/GlobalCompositeNewton.jl for Algorithm 5.2 and https://github.com/GillesBareilles/NonSmoothSolvers.jl for the baselines.

Lemma 4.6 . Consider a function , a point ¯ ∈ R and a manifold M such that is partly smooth at ¯ relative to M and that satisfies Property 4.1 at ¯ . Let denote a smooth M-valued application defined on a neighborhood of ( ¯ , 0) provided by Lemma 4.5. Then, there exists > 0 such that:

1. for all ∈ [0, ], ( ¯ , ) verifies (4.9) with = ¯ , 2. for all ∈ [0, ], there exists a neighborhood N ¯ of ¯ such that, for all ∈ N ¯ , ( , ) verifies (4.9), Further assume that satisfies Property 4.2 at ¯ with constant ˜ , then 3. there exist Γ > 0 and a neighborhood N ¯ of ¯ such that for all ∈ N ¯ ( , ) verifies (4.9) for all ∈ [ (dist M ( )), Γ ],

where ri ≥ 0 and ( )

The proof consists in finding the points , such that 0 ∈ ri Ψ( , ), where the mapping Ψ : R × R → ∪ ∈M M is defined as

Items i) and ii) are shown by extending the property 0 ∈ Ψ( ¯ , 0) to a neighborhood of ( ¯ , 0), using the inner-semicontinuity properties of Ψ. We then derive explicit bounds on the interval of steps such that 0 ∈ ri Ψ( , ): for a fixed ∈ N ¯ , when decreases past some value, say ¯ ( ), the condition 0 ∈ ri Ψ( , ) no longer holds. Precisely at ¯ ( ), 0 lies on the (relative) boundary of Ψ( , ¯ ( )): denoting rbd \ ri the relative boundary of set ,

Denoting ( ) proj M ( ( )) the projection of the subdifferential on the normal space of its structure manifold and taking norms yields:

By partial smoothness, is continuous on M at ¯ , and thus in particular inner-semicontinuous. The inclusion 0 ∈ ri proj ¯ M ( ¯ ) therefore holds on a neighborhood of ¯ on M (Daniilidis et al., 2006, Lemma 20), thus making the constant ri positive. We note that this kind of quantity also appears as the modulus of identifiability, proposed recently by Lewis and Tian (2022, Def. 2.3), where it has the same property: its positivity enables the identification of the associated structure manifold.

Combining this with the orthogonal inclusion 0 = Φ( , , ( , )) yields the claim.

The inequality

We have successively by definition of N ¯ and the above bound that proj

This means that proj ( , ) M ( -( , )) belongs to the ball of center 0 and

Part 3: From the intermediate space to the input space

To conclude the proof of Theorem 4.4, we will first identify the curve ( , ) to prox ( ) and thus prove that it belongs to the sought manifold, as illustrated in Fig. 4.5b. Then, this intermediate identification result is brought back to the input space using transversality.

Proof (of Theorem 4.4). The standing assumptions allow to call Lemma 4.6 at point ( ¯ ) with manifold M . This yields the neighborhood N ( ¯ ) , constants Γ and , a function , and a smooth mapping :

, Γ ], ( , ) verifies the optimality condition (4.9) of ( , ) = prox ( ). Besides, since is prox-regular and prox-bounded at point ( ¯ ), these properties also hold on a neighborhood of that point. Under these conditions, Theorem 2.1 allows to recover the equality ( , ) = prox ( ). Take N ¯ = -1 (N ( ¯ ) ), a neighborhood of ¯ as the preimage of a neighborhood of ( ¯ ) by the continuous . For all

We turn to show that, for some constant map > 0, there holds dist M ( ( )) ≤ map dist M ( ) for all ∈ N ¯ . Let ∈ N ¯ and M = proj M ( ), so that dist M ( ) = M -. Using successively that ( M ) ∈ M and smoothness of , there holds for near

We show by contradiction that the constant is positive. If = 0, there exists ∈ ¯ M of unit norm such that D ( ¯ ) = 0. By Eq. (4.5), we have = D ( ¯ ) * ˆ for some ˆ ∈ ( ¯ ) M , so that D ( ¯ ) D ( ¯ ) * = 0. Pre-multiplying by ˆ * yields D ( ¯ ) * ˆ 2 = 0: there holds ˆ ∈ Ker(D ( ¯ ) * ) ∩ ( ¯ ) M . The Our algorithm compares favorably to nsBFGS and Gradient Sampling: it converges in a handful of iterations and less time. Note that this happens even though the iteration cost of our algorithm is higher than that of the other methods. Indeed, the oracles of our method are more complex and a quadratic problem needs to be solved, while the iteration cost of nsBFGS and Gradient Sampling is dominated by the computation of function values and subgradients at each trials of the line search.

In terms of identification, our method finds the correct manifold at the first iteration for MaxQuad, and at the third iteration for Eigmax. From that point, the iterates of Algorithm 4.1 reach machine precision in 3 iterations. This illustrates the quadratic convergence, and supports the idea that, for nondifferentiable problems as well, it is worth computing higher-order information to get fast local methods.

Figures 4.7 and 4.8 show the behavior of the same algorithms on the same problems with a higher numerical precision than Figure 4.6. 6 This allows to observe the identification of the algorithm and the quality of the bounds of Theorem 4.4. For each iterate of Algorithm 4.1, we report the current step along with the minimal and maximal steps ¯ ( ), ¯ ( ) such that prox ( ( )) belongs to the optimal manifold. A first remark is that, as predicted by Theorem 4.7, the pair , satisfies the identification condition ∈ [ -★ , Γ] after a few iterations. We also observe that ¯ ( ) is near constant and that ¯ ( ) converges to zero linearly with -★ , as predicted by our result. Finally, we note that even though the initial point is away from the minimizer ( 0 -★ ≈ 10 -2 ) and arbitrary, thus likely a differentiable point, the initialization of 0 ensures a quick identification.

Theorem 5.6 (Eventual admissibility of unit step). Consider a function and point

★ such that is partly smooth at ★ relative to some manifold M ★ , ★ is a strong minimizer: 0 ∈ ri ( ★ ) and Hess ( ★ ) 0, and assume that meets the proximal aiming property at ★ (property 5.2) and is (b)-regular at ★ along M (property 5.1), and that the manifold defining map for ℎ agrees with at ¯ (property 5.3). Finally, assume that matrix is taken such that, when goes to ★ , there holds:

Then there exists a neighborhood N ★ of ★ such that, if ∈ N ★ and ∈ (0, 1/2),

where SQP ( ) denotes the SQP step (5.2) and corr ( ) the second-order correction (5.6), both performed relative to M ★ .

The proof consists in two steps: first building a local description of at points and + SQP + corr with precision (dist M ( )) + ( SQP 2 ), then using it to show the sufficient decrease of the corrected SQP update with steplength 1. Figure 5.4 depicts the situation.

The effect of adding the second-order correction appears in Eq. ( 5.13): if + fails to incorporate corr ( ), then

. This term cannot be controlled, in particular when is near M ★ and the manifold has non-null curvature as in Fig. 5.3.

We first require a simple result: the tangent space M evolve slowly as moves away from M. The following proofs are based on three points: some point , M its projection on M and the local minimum ★ . We consider the situation when tends to ★ and use the and O notation.

Lemma 5.7 (Tangent spaces along normal directions). Consider a point , contained in a manifold M locally defined by a C 2 mapping ℎ, and a smooth vector ( ) that vanishes as goes to ¯ . Then,

where M denotes the orthogonal projection of on M.

Proof. The projections of a fixed vector on the tangent spaces write

where the symbol † denotes the Moore Penrose pseudo-inverse. Since ℎ is C 2 , the two projections are related by a Taylor development, which first order term is: Since the above functions are C 1 , there holds, on a neighborhood N of ,

.4: Illustration of the points and vectors that appear in the proof of Theorem 5.6.

≤ sup

Applying the above inequality with a vector ( ) = (1) yields the result.

We now proceed with the proof of Theorem 5.6.

Proof (of Theorem 5.6). Consider a point near ★ , and let + = + SQP ( ) + corr ( ). We denote M = proj M ( ) and M + = proj M ( + ). As a preliminary step, we collect some useful estimates on the SQP and correction steps, from the proof of Bonnans et al. (2006, Th. 17.7):

(5.10)

1. We first connect ( ) and ( + ) via the intermediate points M and M + , with precision ( dist M ( ) ) + ( SQP ( ) 2 ). First, the (b)-regularity property 5.1 provides, for any ∈ ( ),

where we used the estimate (5.8).

Then, the second-order Taylor model of on M Eq. ( 2.3) gives, for any second-order retraction R,

where ∈ M M is defined implicitly by M + = R M ( ). Finally, the (b)-regularity property 5.1 provides, for + ∈ ( + ),

Applying Cauchy-Schwarz' inequality and using local boundedness of near ¯ , we deduce

Applying the estimates detailed in Eqs. (5.9) and (5.10) yields dist M ( + ) = O(ℎ( + )) = ( SQP 2 ). Therefore,

(5.13) Summing up Eqs. (5.11)-(5.13) yields, for any ∈ ( ),

We now turn to explicit quantity by expressing it in terms of SQP . We choose to use in (5.12) the orthographic retraction, defined in Proposition A.2, as it locally admits an explicit inverse:

where the first term is bounded by dist M ( + ) = ( SQP 2 ) and the third is null as Mis normal to M at M . Since

). Applying first Lemma 5.7, since SQP + corr = (1), and then the SQP step decomposition introduced in Lemma 5.4 with the fact that SQP , corr ∈ M yields

We can now explicit the terms of Eq. (5.14):

where we used that SQP ( ) = O(dist M ( )), grad ( M ) = (1), and SQP ( ) =

(1). Notice that grad ( M ) = grad M ( ) + O(dist M ( )), so that, with Lemma 5.4,

Besides, using that the Riemannian hessian of is continuous on M, we get

where, by a slight abuse of notation, we omit the projection on ★ M ★ surrounding Hess ( ★ ). Finally, we reach the following estimate:

(5.15)

Remark 5.4 . We report the subdifferential enlargements proposed by [START_REF] Liu | Subdifferential Enlargements and Continuity Properties of the V U $$\mathcal { {VU}}$$ -Decomposition in Convex Optimization[END_REF] on Examples 5.2 and 5.4.

• When ( ) = max • , the proposed subdifferential enlargement is (see 5.4)

• When ( ) = ( ) + 1 , the proposed subdifferential enlargement is (see 6.2.2)

Towards structure screening: detecting nearby normal descent direction

In this subsection, we look more closely to qualified points. We discuss the geometrical meaning of this qualification condition in the structured setting and show that qualification can be detected locally. This will be relevant in the manifold selection of the forthcoming Algorithm 5.2.

. Most guarantees in this thesis are given for qualified points, that is point that satisfy a strengthened version of Fermat's rule:

When is partly smooth at ¯ relative to some manifold M, this equation formalizes the fact that the function strictly increases in all directions normal to M at ¯ : ( ¯ ; ) > 0 for all ∈ M. This property actually holds at all points near ¯ on M, as proved by Daniilidis et al. (2006, Lemma 20): they show that there exists a neighborhood N ¯ of ¯ such that, for all ∈ N ¯ ∩ M, proj ( ) (0) ∈ ri ( ).

(5.18)

This interprets as ( ; ) > 0, for all ∈ M and ∈ N ¯ ∩ M. With a smooth extension of the subdifferential relative to M, we can now extend this property to a neighborhood of ¯ on R , which we formalize in the next lemma. This gives an implementable criterion to detect structure manifolds which admit only ascent normal directions, from points that are near, but not on, the structure manifold. This provides a useful tool for the structure identification process, discussed in Section 5.6.1. Note that the following lemma considers a point ¯ with structure M that admits only normal ascent directions. In particular, ¯ is not necessarily a minimizer of on the manifold. Lemma 5.9 (Persistence of normal ascent). Consider a function , a point ¯ and a manifold M such that is prox-regular at ¯ , and is partly smooth at ¯ relative to M. If This condition captures for , in the input space R , the same geometrical property as property . did for , in the intermediate space R .

Then, for all near ¯ on R , there holds, equivalently,

1 0 (0, 0, 0) ★ + (100, 33, -100) Table 5.1: Description of the experiment problems. 1 denotes the vector of ones. For the approximate optimal point and functional value (- † ), see (Bonnans et al., 2006, p. 153).

where , for ∈ {0, . . . , 3} denotes the ( + 1)th column of We take = 25 and we generate randomly + 1 symmetric matrices of size 50. For this instance, the multiplicity of the maximum eigenvalue at the minimizer is = 3. All problems data are described in Table 5.1. We report the results in Figures 5.5-5.10.

&

. As in Chapter 4, we solve the problems with the nonsmooth BFGS [START_REF] Lewis | Nonsmooth optimization via quasi-Newton methods[END_REF], the Gradient Sampling method (Burke et al., 2020), and Algorithm 5.2. In addition, we also solve the problems with the VU-algorithm of [START_REF] Mifflin | A VU-algorithm for convex minimization[END_REF]. As suggested in the paper, the algorithm does not make use of second-order information in the U-Newton steps, but rather approximates it from first-order information with a quasi-Newton BFGS scheme. We stop these algorithms after a fixed number of iterations, or when their termination criteria are met, when they have one. All the algorithms are implemented in Julia [START_REF] Bezanson | Julia: A fresh approach to numerical computing[END_REF]; experiments may be reproduced using the code available online. 3 . At this stage, we summarize the iteration costs of each algorithm. The nonsmooth BFGS and the VU-bundle method require a changing number of function values and subgradients per iteration. Indeed, the former method employs a linesearch, which may require several trials before finding a suitable point, and the latter refines a cutting plane model of the function, which requires several oracle calls before the model is precise enough to take a serious step. In contrast, the Gradient Sampling requires a

this appendix, we provide elementary, though usefull, technical results and tools that are useful in our developments. These results may be seen as folklore knowledge, and appear more or less explicitly in the literature.

.1

We first state Riemannian sufficient optimality conditions (Lemma A.1), then build a specific retraction (Proposition A.2), and finally show that Euclidean and Riemannian distances are locally equivalent (Lemma A.4).

.

Sufficient optimality conditions

Using Taylor extension on smooth curves (see e.g., Boumal (2022, Chap 4.2, 6.1)), we recover in the Riemannian setting sufficient optimality conditions for strong minimizers.

Used to prove Theorem . . Lemma A.1 (Sufficient optimality conditions). Consider a manifold M embedded in R , a point ¯ of M and a function defined on a neighborhood of ¯ in M for which ¯ is a strong minimizer i.e., for all near ¯ in ,

Then, there holds grad ( ¯ ) = 0 and Hess ( ¯ ) .

Proof. Let ∈ ¯ M and denote a geodesic going through ¯ with velocity at = 0. The quadratic growth assumption can be applied at = ( ), which allows to write

Taking the limit → 0 yields grad ( ¯ ), ≥ 0. The same reasoning holds with = (-) and yields the converse inequality, so that grad ( ¯ ), = 0. Besides, summing the quadratic growth conditions applied at ( ) and (-) provides

), so that for any small 1 > 0, there exists a small enough neighborhood

By Lemma A.3, for 2 > 0 small enough, there exists a neighborhood

With 1 , 2 such that 1 -= (1 -1 )(1 -2 ), we combine the two estimates to conclude.

.2 .

Out of completeness, we present below basic results about the proximal gradient along with their proofs. We refer to Beck (2017, Chap. 10) for a general reference on the topic. This first lemma ensures functional descent of the proximal gradient, as soon as the stepsize is lower than 1/ .

This result is used to prove Theorem . . Lemma A.5 (Functional descent). Let Assumption 3.1 hold. For any ∈ R , ∈ R + , and ∈ prox ( -∇ ( )), we have

Proof. By definition,

and the optimality of implies that ( ) ≤ ( ), i.e.,

Finally, the -Lipschitz continuity the gradient of implies that ( ) ≤ ( ) + ∇ ( ), -+ /2 -2 (Bauschke and Combettes, 2017, Th. 18.15). Combined with the previous equation, this yields the result. This second lemma links the output of the proximal gradient operator and the subdifferential of , see Bolte et al. (2015, Prop. 13).

This result is used to prove Theorem . . Lemma A.6 (Bound on distance to subdifferential). Let Assumption 3.1 hold. For any ∈ R , ∈ R + , and = prox ( -∇ ( )), we have

)), for close enough to ★ there holds dist M ( + , ★ ) ≤ dist M ( , ★ ). Combining this with the second-order development of at + , there holds:

Subtracting the two estimates yields

which ensures that the Armijo condition is satisfied.

.2

We compute in Lemma B.2 the derivatives of the matrices involved in the singular value decomposition. These results may be seen as part of folklore, but, up to our knowledge, there are not explicitly written in the literature. Based on these derivatives, we compute in Proposition B.3 the Riemannian gradient and Hessian of the trace-norm function.

Lemma B.2 . Consider the manifold of fixed rank matrices M , a pair ( , ) ∈ B and a smooth curve : → M such that (0) = , (0) = . Besides, let ( ), Σ( ), ( ) denote smooth curves of ( , ), R × , ( , ) such that ( ) = ( )Σ( ) ( ) . The derivatives of the decomposition factors at = 0 write

where is the identity of R × , • denotes the Hadamard product and ∈ R × is such that = 1/(Σ 2 -Σ 2 ) if Σ ≠ Σ , and = 0 otherwise. Equivalently, when the tangent vector is represented as = + + , the above expressions simplify to

Proof. We consider the curve and all components and derivatives at = 0, therefore we don't mention evaluation time. Differentiating = Σ yields 

This expression simplifies to the statement by using the fact that is antisymmetric and applying the identity (

Chapter 3, we built a proximal identification scheme for additive functions that satisfy some properties. We show here that the maximum and the maximum eigenvalue indeed meet the normal ascent Property 4.1 and curve properties Property 4.2.

We begin with a lemma that simplifies verification of Property 4.2.

Lemma C.1 . Consider a function , partly smooth at a point ¯ relative to a manifold M , and a smooth application :

where the first term is null by assumption and the second is also null since it is the normal projection of the tangent vector grad (proj M ( )). Thus, ( , )| =0 = 0. Using this fact and smoothness of , Taylor's theorem with Lagrange remainder yields, for all ∈ N ¯ , the existence of ¯ ∈ [0, ] such that, for all ∈ [0, ],

2 ( , ¯ ). We can now proceed with the proof of Lemma 4.3, divided into two parts corresponding to the two cases of the result. The case = max comes easily, due to the polyhedral nature of the function. Curve assumption Since the structure manifold of max are affine subspaces, the normal spaces are equal at all points of the manifold. Therefore the derivative of the projection at a parametrized point is null and Lemma C.1 provides the result.

The case = max is not difficult per se, but requires a precise description of the geometry of the maximum eigenvalue function and its structure manifolds; we refer to [START_REF] Shapiro | On Eigenvalue Optimization[END_REF]; [START_REF] Oustry | The U-Lagrangian of the Maximum Eigenvalue Function[END_REF] for the derivation of these tools.

Lemma C.3 . Consider = max , a point ¯ ∈ S and the corresponding structure manifold M max (of Example 4.4). Then Properties 4.1 and 4.2 hold at ¯ . Proof. Normal ascent Take ∈ M max , let ∈ R × denote a basis of the first eigenspace of matrix and ∈ M max . The normal space at ∈ M max writes (Oustry, 1999, Th. 4.3, Cor. 4.8)

Therefore, = for some ∈ S such that trace( ) = 0. Let = ( / + ) where > 0 is small enough so that is positive definite. Since has also unit trace, it is a subgradient of max at (Oustry, 1999, Th. 4.1). Thus max ( ; ) = sup ∈ max ( ) , ≥ , = / + , = 2 . Hence max ( ; ) > 0 for any ∈ M max \ {0}.

Curve assumption Let ¯ ∈ M max . For any ∈ S , we denote by ( ) the orthogonal projection on the eigenspace corresponding to the largest eigenvalues of (counting multiplicities). This operator is smooth. We can define a mapping : S → R × such that: ( ) ( ) = , ( ) = ( ) ( ) , is smooth near our reference point ¯ and its derivative at ¯ satisfies D ( ¯ ) ( ¯ ) = 0. The mapping defines a smooth orthonormal basis of the eigenspace corresponding to the largest eigenvalues (Shapiro and Fan, 1995, p. 557). Finally, for a point ∈ M max , the projection of ∈ S on M max writes proj M max ( ) = ( ) ( ) ( ) -1 trace( ( ) ( )) ( ) . Now, fix near ¯ , consider the eigenbasis with reference point ( , 0) = proj M max ( ). Following Lemma C.1, let : ↦ → proj ( , ) M max ( ) with = proj M max ( ) -. We can now give an explicit expression of ( ) and show that (0) is null. Denoting ( ) = ( ( , )), we have

First, as is a normal vector to M max at point proj M max ( ), there exists ∈ S such that = (0) (0) . Using that D (0) (0) = 0 yields D (0) (0) = D (0) (0) (0) (0) = 0.