N

N

Real-time and efficient control for autonomous racing
Nan Li

» To cite this version:

Nan Li. Real-time and efficient control for autonomous racing. Artificial Intelligence [cs.Al]. Institut
Polytechnique de Paris, 2023. English. NNT : 2023IPPAT008 . tel-04061550

HAL Id: tel-04061550
https://theses.hal.science/tel-04061550v1
Submitted on 6 Apr 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-04061550v1
https://hal.archives-ouvertes.fr

4, <@
' bg o®

INSTITUT
POLYTECHNIQUE
DE PARIS

2023IPPAT008

NNT

Composition du Jury :

Liliana Cucu-Grosjean
Directrice de recherche, INRIA (KOPERNIC)

Michel Kieffer
Professeur, CentraleSupélec (L2S)

Frank Singhoff
Professeur des Universités,
Université de Bretagne Occidentale (STICC)

Pierre-Loic Garoche
Professeur, ENAC (LII)

Laurent Pautet
Professeur, Télécom Paris (LTCI)

Eric Goubault
Professeur, Ecole Polytechnique (LIX)

Sylvie Putot
Professeur, Ecole Polytechnique (LIX)

fe
—
O
O
o,
5
O
g
©
)
O
- -
F—-

TELECOM

Paris
o4 {iin

%2 IP PARIS

*,

Real-Time and Efficient Control for

Autonomous Racing

Thése de doctorat de I'Institut Polytechnique de Paris

préparée a Télécom Paris

Ecole doctorale n°626 Ecole doctorale de I'lnstitut Polytechnique de Paris

(ED IP Paris)
Spécialité de doctorat : Informatique

Thése présentée et soutenue a Palaiseau, le 24 mars 2023, par

NAN LI

Présidente,
Examinatrice

Rapporteur

Rapporteur
Examinateur
Directeur de these
Co-directeur de thése

Invitée

Acknowledgements

I am deeply grateful to my thesis advisors, Sylvie, Eric, and Laurent, for their in-
valuable guidance and support throughout my doctoral journey. Having met them
during my master’s studies, I was immediately drawn to their rigorous academic
attitude and energetic teaching. Throughout my Ph.D. study, the regular meetings
and discussions with them helped me understand the paradigm of scientific research
and enhance my presentation skills, both orally and in writing. While the research
paradigm of “identifying and defining the problem, targeting the problem and de-
veloping the solution, presenting the result in a scientifically rigorous way” may
seem simple, it was not easy for me to internalize and incorporate it into my own
thinking. Fortunately, with the help of my mentors, I gradually gained insight into
this process, which not only enhanced my thesis work but will also certainly benefit
my future career. By the way, I believe that this research paradigm will serve as
a valuable foundation for understanding, designing, and evaluating prompts in the
era of large language models (LLM). In addition to their academic guidance, they
provided an excellent working environment and offered compassionate care, encour-
aging me to maintain a healthy work-life balance, especially during the challenging
times of the pandemic. During the writing of the dissertation and the preparation
for the defense, they were always aware of my emotional state and provided me with
genuine encouragement and support as both mentors and friends.

I extend my heartfelt gratitude to the reviewers, Michel and Frank, for their
precious feedback. Their comments provided me with profound insights and helped
me delve deeper into my research, refine my dissertation, and prepare for my defense.
Michel, together with Xavier, also participated in my mid-term defense, offering
crucial suggestions that enabled me to identify issues in my project and explore
potential solutions. I am immensely grateful for their help, which was important
for the completion of subsequent work. I would also like to thank the examiners,
Liliana and Pierre-Loic, for agreeing to be members of the thesis committee and for
sharing their expertise in a very friendly and supportive manner!

Thanks to the enjoyable atmosphere in the lab, I was able to happily carry out
my Ph.D. work for over three years. Engaging in discussions with my colleagues has

ii

provided me with a lot of new ideas and spiritual support. Amidst the pandemic,
Francois, Maria, and I worked together to participate in an online competition. The
experience was enriching as we collaborated and learned from one another. Francois
and Elena provided me with valuable advice on the writing of my Ph.D. thesis.
With Aloysio and Mathile, I had a lot of enlightening discussions regarding robot
projects, and I appreciate very much their help in rehearsing my defense. I also
had many fascinating conversations with Sergio and Riccardo regarding life and
[talian cuisine. Emmanuel’s genuine smile always exudes warmth, and I appreciate
his introduction to French and Swiss culture as well as our discussions on BigLiu’s
science-fiction books. I am grateful to Nathan and Aly-Bora for their help in review-
ing and improving the French version of the abstract and introduction in this thesis.
I really appreciate Bernardo’s kind invitation to several parties and his efforts in cre-
ating a convivial and cheerful office ambiance. Martin generously provided me with
PowerPoint templates and insights for the defense. Conversions with Jiayi, Jiong,
Yanzhu, and Mathieu have been inspiring and have made my life less monotonous. I
am grateful to Jakie for her enthusiastic help and encouragement. Other colleagues
in the LIX lab were incredibly supportive as well and they shared a lot of interesting
ideas. Moreover, I want to express my gratitude to Samuel and Etienne from the
LTCI lab for offering me the opportunity to participate in the courses and the mon-
itoring of student projects, which allowed me to gain a fresh perspective on teaching
in Télécom Paris.

I am genuinely grateful for the support of my friends outside the lab through-
out my doctoral studies. I would like to express my sincere gratitude to my friend
Bernard, whom I first met during my time at Télécom ParisTech in the Rue Bar-
rault era, more specifically, at the train station of Dax for the school’s “week-end
d’intégration”. Bernard has always been a great listener, empathetic to my feelings,
and blessed with intelligence and a nice sense of humor. I have pleasant memories of
my trips to Clément-Ferrand, where I received a very warm reception from Bernard’s
parents, Paula and Michel. Their generosity and thoughtfulness are deeply appre-
ciated. I would like to extend my sincere thanks to Adrien and Fabien, whom I
first met during summer school in Poitier. Since then, we have continued to meet
regularly and offer each other constant support and encouragement. In addition,
I must express my profound gratitude to my Chinese friends, especially my book
club companions, who have had a significant impact on my personal and intellectual
growth beyond the scope of my Ph.D. research. Our shared experiences, such as
reading and discussing together, traveling together, and collaborating together on
our podcast “Books and Faraway Life”, have been tremendously enjoyable.

Ever since I set foot in France in July 2016, I have been benefiting from its
openness and tolerance that encourages self-development. A rich recreational life
(exhibitions, skiing, etc.) has broadened my horizons and provided me with great in-
spiration for self-knowledge and personal growth. I am grateful to the French higher
education system for its characteristic engineering program and doctoral system
that prioritizes personal growth. A quote from Ernest Hemingway, though maybe
clichéd, perfectly captures how I feel and what I hope at this moment: “If you are
lucky enough to have lived in Paris as a young man, then wherever you go for the

iii

rest of your life, it stays with you, for Paris is a moveable feast.”

Among everything else, my parents have always been a pillar of great support,
despite being thousands of miles away. Ever since I was a child, I have looked
up to them as role models for their diligent work ethic and kind demeanor. Their
commitment to understanding and accepting my new perspectives and their empa-
thy toward my various situations have been invaluable to me. Their unconditional
support has enabled me to pursue my dreams and make important decisions with
confidence, and for that, I am forever grateful.

iv

Contents

1 Introduction 1
1.1 Motivation and backgroundo 0oL 1
1.2 Research scope 3
1.3 Thesis outline 4

2 Autonomous race car control: state of the art 7
2.1 Control design for autonomous vehicles 7
2.2 Racetrack model 10
2.3 Vehicle dynamics oo 11
2.4 Experiment platform L 13
2.5 Model Predictive Control (MPC) 14

2.5.1 MPC principles 14
2.5.2 Time-optimal Nonlinear MPC (NMPC) formulation 16
2.5.3 Ingredients for solving NMPC 19
2.6 Head-to-head racing 21
2.6.1 General techniques 21
2.6.2 MIP related method 23
2.7 Conclusion 26
3 Autonomous racing in single-vehicle mode 29
3.1 NMPC framework and real-time related issue 29
3.1.1 A motivation example 30
3.2 Triggering-based recalculation method 33
3.2.1 Basicconcepto 33
3.2.2 Triggering conditions 34
3.2.3 Initialization related issues 36
3.3 Experiment: baseline method v.s. triggering-based method 37
3.3.1 Implementation and experimental setup 37
3.3.2 Racing with the baseline method 38
3.3.3 Racing with the triggering-based method 39

vi CONTENTS

3.4 Conclusion 46
4 Autonomous racing in head-to-head mode 47

4.1 Introduction: decision-making for safe and efficient overtaking ma-
NEUVETS .+« v v v e v e e e e e e e e e e e 47
4.2 Representation of the vehicle’s footprint 48
4.2.1 State of the art: the footprint in the Cartesian coordinate 49
4.2.2 Approximation of the footprint in the curvilinear coordinate . 49
4.3 MIP-based approach for overtaking problem 50
4.3.1 Encode collision avoidance constraints as a MIP 50
4.3.2 Experiment 52
4.4 Simplified decision-making approach for overtaking problem 55
4.4.1 Deterministic control period and short-horizon NMPC 55

4.4.2 LOROFO (Left-side Overtaking, Right-side Overtaking, and
FOllowing) algorithm 57
4.4.3 Experimento 58
4.5 Refinement for vehicle shape representation 62
4.5.1 Decomposition into multiple identical parts. 62
4.5.2 Integration of refined footprint into constraints. 64
4.6 Conclusion e 67
5 Task execution model for autonomous racing systems 69
5.1 A generic system architecture 69
5.1.1 Software components 69
5.1.2 Directed Acyclic Graph (DAG) 74
5.1.3 Hardware platforms 75
5.2 Task execution model L 76
5.2.1 degreeppo =2 and degree=1 76
5.2.2 degreepgo = degree =2 77
5.2.3 degreepac =D - - o o oo oo 78
5.2.4 Summary e e 80
5.3 Hardware-in-the-Loop simulation 80
5.3.1 Hardware and software configuration 81
5.3.2 WCET measurement 81
5.3.3 Implementation in Robot Operating System (ROS) 83
5.3.4 Impact of parameters Land R. 84
54 Conclusion 85
6 Conclusion and perspectives 87
6.1 Conclusion 87
6.2 Perspectives L 89
A Introduction (en Francais) 91
A.1 Motivation et contexte 91
A2 Champ d’étude delathese 93
A3 Plandelathese 94

List of Figures

2.1
2.2
2.3
24

2.5

3.1
3.2
3.3
3.4
3.5

3.6
3.7

3.8

3.9

3.10

4.1

Vehicle state in the curvilinear coordinate. 10
Control loop, 1:43 race car, and racetrack. 13
Fltenth race car and its related resources. 14
An example scenario demonstrating the vehicle’s state and intended

trajectory, including the relationship between time ¢ and progress s
along the trajectory in both a time-dependent and track-dependent

System.o 17
An example of overtaking maneuver encoding. 24
Deployment procedure for NMPC in the classical framework. 30
NMPC framework. o 31
Histograms for the value of At = At) — At5. 32

Deployment procedure for NMPC using the triggering-based method. 34
Curvature distribution for the center line of racetracks used in Section
3.1. The layout of both tracks can be found in Fig. 3.7. 35
Estimation for vehicle’s traveling path. 36
Trajectories using the triggering-based method (N = 30) (Top/Down:
track 1/2). Green dots represent progress points triggering-based
NMPC recalculation events; red points represent the baseline NMPC

recalculation events. Colorbars represent speed. 40
Trajectories with/without triggering-based method (N = 30) (Top/Down:
track 1/2). L 41
Progress time and NMPC recalculation time (Left/Right: track 1/2;
Top/Down: without/with triggering method). 42
Trajectories using different configurations of the triggering conditions
(Top/Down: track 1/2). Dots represent recalculation events. 45

Approximation of the vehicle’s footprint. The vehicle’s shape is ap-
proximated as a sector (in blue) in the Cartesian coordinate and then
converted into a rectangle in the curvilinear coordinate. 50

vii

viil

LIST OF FIGURES

4.2

4.3
4.4
4.5
4.6

4.7

4.8

5.1

5.2

5.3

5.4

5.5

5.6

5.7

A typical example of predicted trajectories of the ego/opponent vehi-
cle on track 1. Blue/green rectangles: the ego/opponent vehicle at the
actual location, followed by predicted positions at steps 5 / 10 / 15

Deployment procedure for NMPC using periodic control. 56
An illustrative example for the LOROFO algorithm. 58
Histogram of “NMPC FW?” per-iteration execution time. 60
A typical scenario in head-to-head competition using the LOROFO
method. The ego/opponent vehicle is shown in blue/orange. The
dotted lines are planned optimal trajectories. 61
Refined approximation of the vehicle’s footprint. The vehicle’s shape
is decomposed into two rectangles which are covered by two circles.
They are further approximated as sectors (in blue and orange) in the
Cartesian coordinate and converted into rectangles in the curvilinear
coordinate. 62
A typical example of predicted trajectories of the ego/opponent ve-
hicle on track 2 (Left/Right: using a rough/refined approximation
for the vehicle’s footprint). Blue/green rectangles: the ego/opponent
vehicle at the actual location, followed by predicted positions at steps
5 /10 /15 /20 /25 / 30. Dot lines: predicted trajectories of the
ego/opponent vehicle. oL o 66

Examples for showing relative poses between two vehicles: ego/opponent
vehicle in blue/orange. Blue points: LiDAR points captured by the

ego vehicle. Red points: laser rays reflected from the opponent vehicle. 70
Example for showing Particle Filter algorithm. Ego/opponent vehicle

in blue/orange. Small orange arrows: pose of different particles. Big
green arrow: averaged pose estimation.o 72
Directed Acyclic Graph (DAG) for modeling software components and

data flow in the generic system architecture for head-to-head racing
mode. ..o 74
An example for degreep,, = 2 and degree = 1, on 3 available proces-

sors. Numbers on rectangles represent the release order of jobs. DAG
components belonging to the same job are marked with the same color. 77
An example for degreep, o = 2 and degree = 2, on 4 available proces-

sors. Numbers on rectangles represent the release order of jobs. DAG
components belonging to the same job are marked with the same color. 77
An example for degreep,, = degree = 2, on m (m is odd) available
processors. Numbers on rectangles represent the release order of jobs.

DAG components belonging to the same job are marked with the same

color. . . . L 78
An example for degreep,, = degree = 3, on 5 processors, C' = 10.
Numbers on rectangles represent the release order of jobs. DAG com-
ponents belonging to the same job are marked with the same color. . 80

LIST OF FIGURES ix

5.8 Experiment setup with a Hardware-in-the-Loop configuration. 81
5.9 Histogram of particle filter’s execution time for all 100000 samples

(on an ARM A57 CPU of Jetson TX2) 82
5.10 Visualization of ROS nodes/topics for the proposed generic architec-

ture. Ovals: nodes. Boxes: topics. Arrows: data flow. 83

5.11 Screenshots of vehicles’ pose at different time instants. Blue/orange
rectangle: ego/opponent vehicle. Dot lines: planned trajectories.
Green area: the collection of a large number of arrows representing
the pose of each particlein PF. 84

X LIST OF FIGURES

List of Tables

2.1

3.1

3.2
3.3
3.4

3.5
3.6
3.7

4.1
4.2
4.3

5.1
5.2

Comparison between autonomous passenger car driving and autonomous
race car TaCING. v v v vt e e e e 8
Statistics for classical NMPC framework: progress time, calculation
time, and SQP iteration numbers.o 31
Physical constraints on state variables. 37
Simulation results for single-vehicle racing using the baseline method. 38

Statistics for NMPC with triggering method (N = 30): progress time,

calculation time, and SQP iteration numbers. 42
Lap time [s] for baseline and triggering-based methods on 2 tracks. . 43
Statistics of activation times of triggering conditions. 43
Analysis of two terms in the triggering conditions. 44
Simulation result for head-to-head racing using MIP. 53
Controller execution time on Jetson TX2 (in [ms]). 60
Simulation result for head-to-head racing using MIP and the refined

approximation of the vehicle’s footprint. 65
Comparison of latency/update rate under different configurations. . . 80
Execution time of different nodes (in [ms|). 82

xi

xii LIST OF TABLES

Nomenclature

Abbreviations

ACADO Toolkit for Automatic Control and Dynamic Optimization

ADAS Advanced Driver Assistance Systems
CoG Center of Gravity

CPS Cyber-Physical Systems

DAG Directed Acyclic Graph

EK Extended Kinematic Model

HiL Hardware-in-the-Loop

IP Interior Point method

KKT Karush-Kuhn-Tucke condition

KS Kinematic Single-track Model

LiDAR Light Detection and Ranging

LOROFO Left-side Overtaking, Right-side Overtaking, and FOllowing
MB Multi-Body Model

MINLP Mixed Integer Nonlinear Programming

MIP Mixed Integer Programming

MIQP Mixed Integer Quadratic Programming

MPC Model predictive control

x1il

xiv NOMENCLATURE

NMPC Nonlinear Model predictive control
OD Opponent Detection

ODE Ordinary Differential Equations
PF Particle Filter

QP Quadratic Programming

ROS Robot Operating System

SLAM Simultaneous Localization and Mapping
SQP Sequential Quadratic Programming
ST Single-Track Model

WCET Worst-Case Execution Time

NOMENCLATURE XV

Notations
ap
aR

A6

degree

degreep ,q

€y

LR

Tctrl

Vg

slip angle at front wheels

slip angle at rear wheels

change rate of delta

change rate of d

calculation time used for step k

progress time for step k

steering angle

curvature of the center line at progress s
Lagrangian

angular velocity

the actual number of DAG components that are executed in parallel

the maximum number of tasks in the DAG that can be executed in
parallel on an unbounded number of processors

state vector
motor engine parameter

relative distance between the CoG of the vehicle and the projection
point

relative angle between the orientation of the vehicle and the tangent
angle at the projection point

parameters in task execution models: end-to-end latency, control refresh
rate

progress distance along the track’s center line
progress time

control update rate

control vector

lateral velocity

longitudinal velocity

CHAPTER 1

Introduction

1.1 Motivation and background

In recent years, the research of sophisticated control algorithms has gained signif-
icant attention. Lots of efforts have been made to enhance the quality of service
in autonomous systems. Despite the notable progress, there is still a need to fur-
ther investigate their application in real-time settings. This dissertation focuses on
real-time control for autonomous driving and more specifically autonomous race car
racing.

Autonomous driving is classified by the Society of Automotive Engineers [I]
from Level 0 (no driving automation), Level 1 (driver assistance), up to Level 5 (full
driving automation under all conditions). Advanced Driver-Assistance Systems [2]
(ADAS, including electronic stability control, roll stability control, lane departure
warning, adaptive cruise control, parking assistance systems, etc.) provide Level 1
functions, which assist human drivers to drive safely, efficiently, and with a better
user experience. The study of ADAS has been ongoing for decades. DARPA Urban
Challenge [3] is one milestone that has greatly promoted the advancement of the field
of autonomous driving. Since then, related research has been massively carried out in
both academia and industry. Although several companies have released autonomous
driving systems with high levels of automation, e.g. Tesla’s Full Self-Driving (FSD)
[1], Level 5 driving is still a decade or more away from the grand public because of
ethical and regulatory issues, along with several technical difficulties: the inability to
handle unexpected extreme situations, the absence of sophisticated understanding
of implicit behaviors of traffic agents, etc.

Autonomous vehicle racing [5] is a special form of autonomous driving, in which
the race car should achieve a lap time as short as possible while avoiding potential
collisions with track boundaries or rival vehicles. Since the race car usually runs at
a high speed and requires extreme handling capacities (active drift, sharp steering,
etc.), we have the opportunity to study the system’s performance at its physical

1

2 CHAPTER 1 « INTRODUCTION

limits. These investigations on edge cases can also help advance the study of au-
tonomous passenger car driving [6]. Other relevant domains may derive benefits
from the study of autonomous vehicle racing as well. For instance, the time-optimal
control problem for a race car, which is under engine and traction saturation con-
straints and over a confined trajectory, is analogous to the time-optimal control
problem for a robot arm that moves through a constrained path with actuator sat-
uration constraints. In both cases, in order to achieve desired behaviors, the control
system takes into account constraints and objectives in a similar problem structure.
From the perspective of the academic world, the setting up of autonomous racing is
an ideal research platform for the study of Cyber-Physical Systems (CPS) [7], where
the physical plants (i.e. race cars) have rapidly changing system dynamics, and the
computation is typically carried out on embedded systems as widely used in CPS.

Model predictive control (MPC) is a state-of-the-art control technique for con-
trolling a physical plant in the receding horizon framework to achieve a specified
objective while satisfying a set of constraints. Among different control techniques
for the autonomous vehicle racing problem, we are especially interested in MPC for
the following reasons:

1. MPC is one of the most promising model-based methods for taking into ac-
count accurate physical dynamic models and pertinent constraints. It makes
sense to apply MPC to racing problems since MPC can effectively incorpo-
rate our prior knowledge of race car dynamics and make use of pre-defined
state/control constraints of race cars.

2. MPC is one typical representative of optimization-based controllers that in
general provide optimal results at the cost of high complexity. By studying
MPC on a race car with embedded computing units, we gain a better under-
standing of how to effectively design and deploy optimization-based algorithms
on devices with limited calculation resources.

3. MPC is extensible for working in conjunction with other control techniques.
For instance, it can cooperate with Mixed Integer Programming (MIP) for
decision-making problems. In the literature, it is coupled with several other
tools to enhance its capability and improve its performance, e.g. game theory
[8] for enabling MPC to react to the opponents’ intended actions, viability
theory [9] for ensuring the recursive feasibility of MPC, Koopman operator
theory [10] for assisting the system identification of a vehicle with unknown
dynamics in MPC, etc.

In this study, to precisely capture the system dynamics of the autonomous race car,
we represent them using ordinary differential equations (ODE). They will appear
in MPC as nonlinear equality constraints. Under some circumstances, inequality
constraints in MPC, such as collision avoidance constraints, might also be nonlinear.
The focus of this work is hence Nonlinear MPC (NMPC).

NMPC needs to work correctly in 2 senses. On one hand, its prediction horizon
should be long enough for providing reliable control. On the other hand, NMPC with

1.2. RESEARCH SCOPE 3

a longer prediction horizon requires more computation resources. It might result in
an obsolete result, i.e. result arriving after the deadline, that is regarded as useless
and incorrect. Since deterministic behaviors are desirable in real-time systems, the
worst-case execution time of NMPC should be bounded within a reasonable value
considering the limited resource of embedded systems.

Controllers, including NMPC, collaborate with other system components, such
as perception tasks for self-localization and opponent detection. They work as a
task chain and share computation resources. Different computational components
may be parallelizable, and modern processors, such as multi-core CPUs and GPUs,
have the ability to parallelize tasks. It is therefore crucial building a suitable task
execution model to maximize the use of the processor’s parallelization capabilities
for decreasing latency and increasing control update rate, which improves overall
controller performance and prevents non-deterministic behaviors.

1.2 Research scope

In this section, we define the research scope of the dissertation. The research problem
is limited to autonomous vehicle racing in 2 modes: single-vehicle mode (similar to
the time trial mode in Formula 1 qualifying sessions, in which a single race car aims
to achieve the fastest lap time) and head-to-head mode (in which two race cars
compete on the same racetrack for being first to cross the finish line).

In Chapters 3 and 4, which cover algorithm-level controller design, we assume
that the controller of the ego vehicle can access its own exact state as the control
input, as well as the pose and intended trajectory of the opponent vehicle. Both
vehicles are assumed to have prior knowledge of the curvature information anywhere
on the racetrack.

In Chapter 5, which is related to system-level task execution model design, we
assume that the LiDAR data serves as the ego vehicle’s control input. Perception
algorithms are needed for self-localization and opponent detection. Additionally, the
opponent vehicle’s intended trajectory is not provided. The experiment is performed
in a Hardware-in-the-Loop (HiL) setup, i.e. software components of the ego vehicle
are executed on an embedded device while other simulation components run on a
standard laptop.

In this dissertation, we address the following problems.

« NMPC typically requires a relatively long solving time, especially when the
prediction horizon is long. Meanwhile, long-horizon NMPC generally yields
a better outcome. We are interested in knowing how to make long-horizon
NMPC feasible within a given time budget while both reducing computation
costs and obtaining satisfactory performance.

e Decision-making, e.g. overtaking, is a crucial element in the racing problem.
Combining decision-making methods with existing control frameworks is still
an open question. We will discuss how to formulate the overtaking problem

4 CHAPTER 1 « INTRODUCTION

in a MIP form and how to create a simpler yet online feasible overtaking
controller.

o A task execution model needs to be properly built to reduce latency, increase
control update rate and ensure that tasks are completed before their deadlines.
We consider the task’s parallelism and the processor’s parallelization capabil-
ities when constructing this model. As a result, it helps to improve control
performance and reliability.

There are still some interesting topics not included in the research scope. For
example, taking into account the uncertainty (which might come from either the
environment or the model mismatch of system dynamics) is meaningful for deploying
algorithms on vehicles operating in imperfect circumstances.

1.3 Thesis outline

The dissertation is organized in the manner described below. We first introduce the
context and state-of-the-art of the autonomous racing problem. The aforementioned
problems in Section 1.2 are then addressed respectively in different chapters.

o Chapter 2, Autonomous race car control: state of the art, covers topics on
control techniques for the autonomous racing problem. A racetrack model and
vehicle dynamics are discussed. The MPC principles and associated solving
techniques are presented. We introduce the time-optimal NMPC that serves
as a basis for the following chapters. A discussion of the head-to-head racing
problem gives insight into decision-making problems in the racing scenario.

o Chapter 3, Autonomous racing in single-vehicle mode, focuses on the com-
plexity of NMPC and presents the timing issue raised by the classical NMPC
framework in single-vehicle racing mode. We come up with a triggering-based
solution for meeting the time budget constraint and reducing computational
workload while maintaining adequate lap time performance.

Contribution: The proposed method uses two triggering conditions. One
is associated with the time budget constraint and enables real-time NMPC
execution with a long prediction horizon. The other is inspired by the rac-
ing behavior of human drivers. It seeks to allocate computational loads in
accordance with how the surrounding environment is changing, which can be
regarded as an on-demand computing model.

o Chapter 4, Autonomous racing in head-to-head mode, concentrate on the au-
tonomous racing problem in head-to-head racing mode. We suggest encoding
collision-avoidance constraints into the form of MIP for making overtaking
decisions within an NMPC framework in the curvilinear coordinate system.
Based on the observations in the experiment of the MIP-based approach, an
alternative overtaking strategy is proposed to enable online execution.

1.3. THESIS OUTLINE 5

Contribution: We provide a technique for representing the geometry of the
vehicle, which can be used to set up collision-avoidance constraints in the
curvilinear coordinate. The combination of NMPC and MIP provides one ef-
fective way for resolving decision-making challenges in the racing problem. As
an alternative method to MIP, the algorithm LOROFO (Left-side Overtaking,
Right-side Overtaking, and FOllowing) efficiently attempts grouped overtak-
ing decisions. This algorithm is online feasible and serves as an example of
showing how to reduce the complexity of decision-making problems.

Chapter 5, Task execution model for autonomous racing systems, first intro-
duces a generic system architecture for the autonomous race car, including
software components, task chain, and hardware platforms. A task execution
model is then proposed for assigning software components to available pro-
cessors with different parallelism degrees. This task execution model aims to
decrease the latency and enhance the control update rate. A Hardware-in-the-
Loop simulation is performed to demonstrate how the task execution model is
implemented in the Robot Operating System (ROS) and how it performs.

Contribution: The task execution model is validated to efficiently improve
system performance in the race scenario by making use of the parallelization
capabilities of processors available. It provides insight for building task exe-
cution models in other similar autonomous systems.

6 CHAPTER 1 « INTRODUCTION

CHAPTER 2

Autonomous race car control: state of the art

In this chapter, we review the development of control techniques from autonomous
passenger car driving to autonomous race car racing. Essential ingredients such as
the racetrack model and vehicle dynamics are investigated. As one state-of-the-art
control method that is used throughout this dissertation as a basis, the Model Pre-
dictive Control (MPC) based time-optimal controller is comprehensively discussed.
For head-to-head racing, various approaches such as Mixed Integer Programming
(MIP) are introduced.

2.1 Control design for autonomous vehicles

Techniques in the autonomous passenger car driving domain have been developed for
decades, which typically hierarchically structure the control system into 4 levels [1 1]:
global planning, behavioral decision-making, local motion planning, and feedback
control. We begin by introducing various techniques used for autonomous passenger
car driving at each control level, particularly those that have strong connections
to the autonomous race car racing problem. With the reason stated at the end of
this section, in this dissertation, we will primarily investigate a control framework
that integrates decision-making, local planning, and feedback control in a one-level
structure. Despite this, we present the state-of-the-art control techniques for the
autonomous race car racing problem still in a 4-level structure to facilitate the
comparison with the development in the autonomous passenger car driving field.

The global planning, also known as route planning in the passenger car driving
field, is on the highest level where a vehicle selects a minimum-cost path on a
road network graph using algorithms such as Dijkstra [12] and A* [13]. After a
route plan has been found, the autonomous vehicle uses the behavioral decision-
making component to interact with other traffic participants in accordance with
traffic regulations and conventions.

8 CHAPTER 2 « AUTONOMOUS RACE CAR CONTROL: SOTA

After determining a local driving intention, the local motion planning compo-
nent generates a collision-free path/trajectory (time-parametrized path) that satis-
fies kinematic or dynamic constraints on the vehicle’s motion. It usually comes with
the problem of optimum seeking for a given objective function with different pur-
poses: minimizing travel time, penalizing hazardous motions, maximizing passenger
comfort degree, etc. Three categories of planning methodology are available: graph-
searching methods, incremental tree-based methods (e.g. RRT [11] and RRT* [15]),
and optimization-based methods. Since optimization-based methods can explicitly
take into consideration the satisfaction of constraints and the minimization of ob-
jectives, they are more desirable than other planning methods. However, they often
involve a high level of complexity. The feedback control on the low level is used
to stabilize the reference path/trajectory tracking in the presence of modeling error
and other forms of uncertainty. Various methods are available: geometric-based
method (e.g. Pure Pursuit [16]), output feedback linearization [17], MPC, etc.

Table 2.1: Comparison between autonomous passenger car driving and autonomous
race car racing.

Autonomous Autonomous
Passenger Car Driving Race Car Racing
Road high-way / urban road

type with lane segment closed racetrack

safety, travel time, smoothness,

Objective passenger comfort degree safety, lap time

Physical T —
sty;’zza (usually) far away from limit | (often) close to limit

Behavi . —

COES,? r: iorft traffic conventions competition rules

Autonomous passenger car driving and autonomous race car racing share many
techniques. For instance, most works on autonomous racing also use a similar 4-level
control structure as autonomous driving [5]. There are some distinctions between
the two research fields as well, which are listed in Table 2.1 and discussed in more
detail below.

On the global planning level of the autonomous racing system, the primary
task for the race car is to solve the minimum lap time problem, i.e. find an opti-
mal trajectory which is called the race line. Existing methods can be classified into
two main groups [18]: quasi-steady state methods and transient optimal methods.
Quasi-steady state methods explore the feature that the racing is performed on a
closed racetrack and can be split into a sequence of segments. The vehicle is as-
sumed in stationary conditions for each segment, i.e. with constant speed and lateral
acceleration. Geometrical constraints (e.g. the track boundaries) and mechanical
constraints (e.g. engine power, braking capacity, and tire limits) are imposed on
each segment for calculating the race line profile. Quasi-steady state methods in-
clude several variants: using evolutionary algorithms to find a set of control point
positions [19][20], mimicking human drivers’ behavior to define straight paths and

2.1. CONTROL DESIGN FOR AUTONOMOUS VEHICLES 9

curve paths along the racetrack [21][22], finding the best compromise between the
shortest and the least curvature track based on geometric properties of the track
[23]. Transient optimal methods optimize an objective function, e.g. maximizing
the traveled distance along a racetrack in a given time [21], maximizing the vehi-
cle speed at the final point of the maneuver [25], or directly minimizing the lap
time [26][27] by transferring the time-dependent system into a space-dependent and
space-variant system.

On the behavioral decision-making level, approaches such as game theory
can be used for finding the best action to win the racing game by taking into consid-
eration adversary vehicles’ intentions and responses [28][29][30]. The appearance of
the opponent vehicles can also be handled on the local motion planning level by
modifying the global plan, i.e. to find a collision-free local trajectory by changing the
constraints or cost functions [31][32], assembling motion primitives [33][34][35][30],
or dynamically sampling feasible local paths in free space [37][33][39].

The low-level feedback control usually serves to track the race line at the poten-
tial physical limit. Authors in [10] use the G-G diagram (a graphical representation
of the performance envelope of a car, with x/y axis standing for lateral /longitudinal
acceleration) to design a feedforward controller and use the safe § —r phase portrait
(slide slip angle - yaw velocity, calculated using the Pacejka Magic Formula [11])
envelopes to generate active yaw moment for tracking the race line at its limits.
Authors in [12] set up feedforward and feedback controllers to make use of all the
available friction force. The MPC-based method [13] has the ability to forecast the
future trajectory and act proactively to the potential tracking error. It is widely
used with several variations: Tube-MPC [11] for dealing with nonlinear effects and
external disturbances, Stochastic MPC [15] for handling model uncertainty at high
speeds/accelerations, etc.

The hierarchical control structure that was described above has several disad-
vantages. For instance, the smoothness level of the high-level path planning is a
factor that the low-level controller depends on. The system performance could be
unsatisfactory if the intended racing line is not sufficiently smooth. Additionally,
because racing lines are often computed offline by high-level planners, it is difficult
to instantly adapt the race line to the changing environment from a global perspec-
tive. Actually, one can combine high-level planning and low-level action into one
single control framework, which is the approach used in this dissertation.

Authors in [34] formulate the racing problem in a predictive control framework
to incorporate system constraints (track boundaries, state/control constraints) and
the objective function (maximization of progress distance). This framework directly
optimizes the low-level control variable, allowing the vehicle to follow a locally opti-

mal trajectory. Authors in [25] developed a one-level sampling-based MPC algorithm
that is based on the path integral control [16] which relies on the stochastic sampling
of trajectories. Authors in [17] directly optimize the progress time of the race car

by using an MPC framework under the curvilinear coordinate system. As demon-
strated in the aforementioned articles, the MPC framework can actually transfer the
hierarchical control structure into one-level optimal control paradigms.

10 CHAPTER 2 « AUTONOMOUS RACE CAR CONTROL: SOTA

2.2 Racetrack model

A racetrack consists of a single lane that is defined as a drivable space with an inner
and an outer bound. We focus on tracks in the form of 2 dimensions, where the
inner and outer bounds are represented by sampling points (z,y), as used in the
open-source racetrack library [18]. A common way to build a racetrack model is to
construct an occupancy grid mapping from bound lines, which can assess whether a
given position is on or off the track [28]. Another widely used method is to establish a
reference line, such as the racetrack’s center line that is determined by the inner and
outer bounds [34][47]. The reference line can be represented as spline polynomials
and parameterized by its arc length s € [0, L], where L is the total length of the
center line.

In this dissertation, we use the latter method to model the racetrack. We first
sample M control points (z,y);,¢ = 1,..., M on the center line of the racetrack as
a reference. Then, we fit each segment between the control point ¢ and 7 4+ 1 into
a cubic spline interpolation in 2 dimensions: (f;(s), fy(s)), where s is the progress
along the reference line and f,/, is the spline function for the axis x/y. Since the
cubic spline is smooth and 2-order differentiable, it is convenient to calculate one
important character of the racetrack: the curvature of the reference line at the

progress s, i.e. £(s) = (f1(s)f(s) = f3(s) [(5))/(fi(s)* + fy(5)%)*/2.

tangent line
track center line

Figure 2.1: Vehicle state in the curvilinear coordinate.

As shown in Fig. 2.1, the vehicle’s center of gravity (CoG) has a projection point
on the reference line with the arc length s (i.e. the progress along the center line
since the starting point). The deviation distance between the vehicle’s CoG and
the projection point on the reference line is denoted as e,. The difference between
the vehicle’s orientation and the tangent angle at the projection point is denoted as
ey. We can thus set up the curvilinear coordinate along the reference line using the
cubic spline interpolation, in which the vehicle’s position is represented as (s, ey, ey).

In addition to the convenient calculation of curvature, there are other advantages
to employing this racetrack model. For instance, the track boundary can be pre-
sented as a simple interval form, i.e. e, € [e,,€,]. In the curvilinear coordinate, we

2.3. VEHICLE DYNAMICS 11

can also set the progress s as the independent variable and use the progress time ¢
as the dependent variable, which will be used later in Section 2.5 for directly setting
the progress time as the optimization objective.

However, using this racetrack model in the curvilinear coordinate brings incon-
venience to the representation of the vehicle’s occupied area. In the Cartesian coor-
dinate, it is usually represented as a simple rectangle. The existence of an overlap
between two rectangles indicates the collision. The representation can be further
simplified as a circle with a diameter equal to the length of the vehicle’s diagonal.
In this case, we compare the distance between the centers of the two circles with
the diameter to verify the collision situation. The vehicle’s occupied area can also
be decomposed as several circles for getting a more precise representation than the
single-circle one. The collision-free constraint requires that the distance between any
pair of centers should be greater than the diameter. In the curvilinear coordinate,
either a rectangle or circle from the Cartesian coordinate will be transformed into
an irregular shape, making it difficult to directly port them for collision checking.
In Section 4.2, we discuss how to design a new representation method under the
curvilinear coordinate and set up the corresponding collision-avoidance constraints.

2.3 Vehicle dynamics

Different vehicle dynamics are reviewed in [19] and [50]. The point-mass model is
the simplest model which contains the position, velocity, and acceleration at the
vehicle’s CoG. The Kinematic Single-Track Model (KS), which represents the front
and rear wheel-pairs by two single wheels, is a more precise model. This kinematic
model does not consider any tire slip and assumes that the vehicle follows exactly
the desired kinematic path even if it is indeed dynamically infeasible. Single-Track
Model (ST), which is also called the bicycle model, considers the slip angle of tires
and thus can simulate important effects such as drifting, understeer driving, and
oversteer driving. A more precise model, Multi-Body Model (MB), can model the
load transferring between 4 wheels and other effects. Extended Kinematic Model
(EK) [51] [52] is one model combining features of KS and ST, which takes into
account the existence of tire slip angle but does not explicitly model the lateral
force.

The high-fidelity vehicle models enable the controller to produce a more reliable
solution, which is crucial for the racing problem. However, complex models also
bring high computational costs. Since the ST model represents most of the dynamic
effects that we need and its complexity is reasonably acceptable, we use the ST
model in the control algorithm design in Chapter 3 and in Section 4.3 of Chapter 4.
The analysis in [71] shows that, when vehicles run below a threshold velocity, the
EK model results in a precise enough solution. Given that the vehicle model is a
replaceable component in the controller, in Section 4.4 of Chapter 4 and in Chapter
5, we use the EK model within the controller to reduce calculation complexity and,
as a result, to facilitate online calculation. The EK model is also attractive due
to another fact that it needs fewer parameters for system identification, making it

12 CHAPTER 2 « AUTONOMOUS RACE CAR CONTROL: SOTA

easier to deploy in real-world settings in further research.

The ST model in the curvilinear coordinate is stated as in Eq. 2.1, in which
the system state is defined as & = [ey, e,, Vs, vy, w, ¢, 5,d, 6], where: v,, v, are the
longitudinal and lateral velocities; w is the angular velocities; d is the parameter for
the motor engine; 0 is the vehicle steering angle; ¢ is the progress time of the vehicle.
The control vector is u = [Ad, Ad], i.e. change rates of d and .

fe,] [wesin(ey) + v, cos(ey)
ey w—k(s)-$
Uy L(Fpry — Frysind + moyw)
4 | ~(Fry + Frycosd — mu,w)
Gl i(lfFF’y cosd — U, Fry) |,
t 1
5 5
d Ad
Lol | Ad | (2.1)

vy cos(ey) — vy sin(ey)

1—ey,-K(s)
Fre = (Comy — Cppvy)d — Cp — Cqv?
Fp, = D;sin(Cyarctan(Brar))
ap = —arctan((wly +vy)/v,) + 6
Fr, = D, sin(C, arctan(B,ag))

ap = arctan((wl, — v,)/v;)

where m is the vehicle weight; [and [, are the distance between the vehicle center
of mass and front/rear wheels respectively; Fr, denotes the longitudinal force of
the rear wheel, which includes motor parameters C,,, and C,,, as well as friction
parameters C, and Cy; Fp g, is a function of (vg, vy, w, d, §) for modeling the lateral
forces of the front and rear tires based on the Pacejka tire model, which depends
on empirical parameters (B, Cy/r, Dy/p); slip angles at front/rear wheels, ap/g,
capture intricate behaviors including drifting and some other phenomena.

The EK model is presented as in Eq. 2.2, in which the system state is defined as
£ = ley, €y, Vg, Uy, w, t, 5,] and the control vector is u = [a, Ad], i.e. the longitudinal
acceleration a and the change rate of steering angle 9.

2.4. EXPERIMENT PLATFORM 13

e,] (v, sin(ey) + vy cos(ey)]
ey w—k(s)-$
Uy ¢
d vy _ pen (v + 0v;)
- j ' ,
dt L; 4 (51}ic + dv,) (2.2)
S]
| 0] AS

. vgcos(ey) — vysin(ey)

1 —ey,-k(s)

2.4 Experiment platform

isi UsB3 i Ethernet
Infrared Vision - Carl?etegtlon | Controller
System Estimation
A
Reflecting
Markers Bluetooth
Car -4

Figure 2.2: Control loop, 1:43 race car, and racetrack. Image taken from [31].

A 1:43 scale race car named Kyosho dnano is widely studied, e.g. in [34], [17]
and [53]. Since we can make use of existing knowledge (such as system identification
parameters) and use the previous research as a baseline, we use this miniature
race car model in the simulation of Chapter 3 and in Section 4.3 of Chapter 4 for
validating the controller design. The race car is too small (with a length of about
6cm) to accommodate a powerful onboard computation card. As shown in Fig. 2.2,
in [34], the calculation is performed in a controller implemented on the host PC and
the race car simply executes the control command that it receives.

A 1:10 scale race car named Fltenth [35] is another experiment target that cap-
tures our attention. We use this model in the simulation of Chapter 5 and in Section
4.4 of Chapter 4. As shown in Fig. 2.3, it is a modularized experiment platform
with an NVIDIA Jetson series card and a high-precision LiDAR which is similar to
a full-scale autonomous vehicle. The chassis of Fltenth delivers realistic dynamics,
allowing researchers to safely and cost-effectively test their algorithms on the 1/10
scale. Fltenth supports a popular software platform: the Robot Operating System
(ROS), making it simple to leverage existing work in the robotics community. A
realistic F1tenth simulator exists and it facilitates the development and deployment
of algorithms.

14 CHAPTER 2 « AUTONOMOUS RACE CAR CONTROL: SOTA

< -)

FLIR Flea Zed
Camera Depth Camera

Focbox

< VESC X
NVIDIA Jetson TX1/TX2
K Chassis Design System Integration /
/ Software System Architecture Research Enabled \
ROS SLAM ‘ ‘ DNN
o GPU Accelerated
Libraries Lane Keeping rviz FPV F1-Tenth Gazebo

Assist Data Collection Simulator
Hph) . 8 ")
=B
= -

Figure 2.3: Fltenth race car and its related resources. Image taken from [35].

2.5 Model Predictive Control (MPC)

Model Predictive Control (MPC) is suited for controlling the autonomous race car
since it explicitly takes into account system dynamics and physical constraints. In
order to give a smooth and optimal control strategy, it can combine high-level plan-
ning and low-level action into a unified control framework. In this dissertation,
we use a variant of MPC, Nonlinear MPC (NMPC), as the base controller for the
autonomous race car to capture the non-linearity in dynamics and constraints. In
this section, we first describe the principles of MPC. Then, we discuss time-optimal
NMPC formulations. Finally, we present the main ingredients for solving an NMPC
problem.

2.5.1 MPC principles

MPC, a.k.a receding horizon control, is originally used as an alternative for tradi-
tional feedback controllers (e.g. PID) in the application of oil and chemical industries
[54][55]. With the development in the last decades, MPC can run reliably at millisec-
ond sampling times even on embedded devices [56]. It aims to synthesize a feedback
law p while obeying constraints on state & and control w in a finite prediction horizon
with the length N.

The first type of MPC, tracking/stabilizing MPC, synthesizes a feedback law
w for stabilizing the system state £ to stay around the equilibrium state £*. Its stage
cost (£, u) penalizes the control effort u and the difference between ¢ and £*, e.g.,
& u) = [|§ = &7 + Allul[%, A = 0.

An important property of the tracking/stabilizing MPC is asymptotic stability
which implies both the attraction (£, — &* when step k — 00) and the stability (for
an initialization close to £*, the final solution remains close to £*). With the help of
the Lyapunov function, the asymptotic stability has been analyzed and proven under
different conditions: with “equilibrium terminal constraint” (i.e. a constraint {y =

2.5. MODEL PREDICTIVE CONTROL 15

£* at the N-th/terminal step) [77], with “regional terminal constraint and terminal
cost” (i.e. a regional terminal constraint £* € =, in which = is a region around £*,
and a Lyapunov function terminal cost F') [58], and without any stabilizing terminal
constraints (i.e. without the aforementioned constraints) [59][60].

While MPC is effective at solving tracking/stabilizing problems, such as vehicle
guidance, pressure maintenance, and temperature regulation, it can also be applied
to problems that involve objectives other than target tracking. Economic MPC,
in contrast to the tracking/stabilizing MPC, does not penalize the term for the
difference between the predicted state and the equilibrium state in the stage cost.
Instead, it directly set the economic criterion as the objective function. For example,
if we let 1(&,u) = ||€]|?, it directly optimizes the squared sum of the state.

In the economic MPC, if the optimal equilibrium is known a priori and set as
a terminal constraint, the asymptotic stability and the optimality can be proven in
an averaged sense [01], which means that the average long-run performance is no
worse than the best admissible steady state. Without such terminal constraints, the
asymptotic stability is only ensured around a small neighbor zone of £* [62][63], and
the averaged performance is only approximately achieved in a practical manner: a
larger N, a better control result [64].

Once we select the type of MPC and determine the kind of stage cost function,
we have a formal definition of MPC with a prediction horizon of length N and an
initial state &, at control step k:

Comin Iy (6 u) = S (i wak) + U, Eoe = &k (2.3)
where Jy(+) is the objective function over N steps; states &x,7 = 0,..., N follow the
requirement of dynamics evolution %fiﬂw = fayn (&> wapk); “u admissible” means
that control and state stay in the feasible set, i.e. u € U™ and € € EN*T!. The
resulting optimal state series is denoted as §§| PR ,5}‘V| i and the resulting optimal
control sequence is denoted as ugy, ..., uy_q. The MPC feedback law p for a

system with the initial state &, is defined as (&) := g

We should mention the similarity between the economic MPC and the continuous
Optimal Control Problem (OCP). We first formulate the OCP as follows:

min [R (2.4a)
s.t. £(r) = FE(T), ulr)), (2.4b)
M(Er), u(r) < 0. (2.40)

where f(-) is the dynamic function and h(-) represents the state and control con-
straints. The OCP can be discretized into a form with finite parameterization, using
either single-shooting (the intermediate states o, ..., &y disappear and there exist
only piece-wise constant control variables u, . .., ux_1) or multiple-shooting method
(both state and control variables are treated as variables to be optimized, control
variables are piece-wise constant while control variables are continuous) [65]. The
resulting discretized OCP is equivalent to the economic MPC problem.

16 CHAPTER 2 « AUTONOMOUS RACE CAR CONTROL: SOTA

In this dissertation, we regard the racing problem as an OCP which optimizes an
objective related to the lap time and solve it in the form of discretized OCP /economic
MPC. More specifically, the racing problem will be solved in the form of time-
optimal Nonlinear MPC that integrates the system dynamics, physical constraints,
and objective function into a first-principle model-based optimization framework.

2.5.2 Time-optimal Nonlinear MPC (NMPC) formulation

In this section, we discuss several existing works on how to set up an objective func-
tion that leads to the fastest lap time. In the case that we discretize the prediction
horizon in terms of progress time ¢, the time ¢ is a dependent variable. It hence
cannot be optimized directly, for which case there exist methods for approximating
the time-optimal objective. Otherwise, the use of a curvilinear coordinate system
allows the representation of progress s as the dependent variable and time ¢ as the
independent variable, allowing for the direct incorporation of time ¢ into the ob-
jective function. In this case, there are several varieties of time-optimal objective
functions to choose from. The following is a detailed explanation of the methods in
both cases.

The model predictive contouring control (MPCC) based approach in [31] is the
very first attempt in the literature to combine both path planning and path following
into a one-level control framework as an NMPC problem. The authors approximate
the time-optimal objective by maximizing the progress of the race car, which is
measured as the distance traveled by a projection of the vehicle’s center along the
racetrack’s center line. To handle the nonlinear constraints, they locally linearize
the continuous nonlinear system dynamics to obtain a linear time-varying (LTV)
model. The resulting convex optimization problem is then solved at each sampling
time by an interior point solver.

Instead of indirectly maximizing progress to achieve the time-optimal objective,
authors in [53] employ a transformation from the Cartesian coordinate to the curvi-
linear coordinate, making time ¢ as a dependent variable to be optimized. Similar
ideas for transforming time-dependent vehicle dynamics to track-dependent dynam-
ics have been proposed in [66] and [67] for making it convenient to represent obstacles
and road boundaries. As shown in Fig. 2.4, in a time-dependent system dynamics,
the prediction horizon is discretized in terms of ¢, while in a track-dependent system
dynamics, steps are discretized in terms of s. The transformation on the state vector
¢ in the curvilinear coordinate is:

de_dedt _dil

ds> dtds dts
where s is defined by the kinematic relation, i.e. as the velocity of the projection of
the vehicle’s center on the center line of the racetrack (see Fig. 2.4):

(2.5)

: . ||T(ls)|| vc0s(ey) — vysin(ey)
§= (UxCOS(€¢) - Uy‘%n(ew))) || 1 || + ||6 || = 1—e - I:JJ(S)
K(s) Y Y

2.5. MODEL PREDICTIVE CONTROL 17

outer buondary

: track center line >t
1At 3-At
. 2:At 4At
‘intended trajectory ¢, | |, |
[
| |
L .- l L
(L
K(s) | i |
| | | |
T
L .
| | 1 | > S
1-As 3-As
2-As 4-As

Figure 2.4: An example scenario demonstrating the vehicle’s state and intended tra-
jectory, including the relationship between time ¢ and progress s along the trajectory
in both a time-dependent and track-dependent system.

Authors in [53] describe the racing problem as a continuous optimal control
problem (OCP). By using a curvilinear coordinate and applying the dynamic trans-
formation (2.5), the system dynamics are transformed from time-dependent to track-
dependent (i.e. depending on the vehicle’s progress distance s). The progress time
at the end of the prediction horizon is explicitly included in the objective function:
T = ﬁtof ldt = [/ %ds. To take the advantage of the existing efficient algorithms
that rely on least-squares formulations and the generalized Gauss-Newton method,

the authors propose the formulation as in (2.6).

min ||T — Tyt |° 2.6a
Juin T = T 260
st &(s0) = &o, (2.6b)
d
£f(3) = fayn(&(5),u(s)), Vs € [so, sy] (2.6¢)
E(s) € [£,€], Vs € [so, s¢] (2.6d)
u(s) € [u,a], Vs € [so, S (2.6¢)
where Ti¢f in the objective function (2.6a) is a sufficiently small “target time”. (2.6b)

is the initial value condition that depends on state measurement or state estimation.
(2.6¢) requires that the evolution of system dynamics conform to system dynamics
and it is formulated as ordinary differential equations (ODE). (2.6d) and (2.6e)
impose physical restrictions on state and control in the form of intervals.

Although the least-squares objective function in formulation (2.6) is a good ap-
proximation for the time-optimal objective, the choice of parameter T} has a signif-

18 CHAPTER 2 « AUTONOMOUS RACE CAR CONTROL: SOTA

icant impact on the outcome and it is difficult to determine. Authors in [47] propose
to directly set the progress time 7" as the objective function as shown in (2.7).

min T (2.7a)

£()u()
st E(so) = o (2.70)

d

75608) = fag(€(s), uls)), Vs € [so, /] (2.7¢)
E(s) € [£,€], Vs € [so, s¢] (2.7d)
u(s) € [u,u), Vs € [so, S¢l. (2.7¢)
The authors use a direct multiple-shooting method [68] for discretizing the prediction

horizon of the continuous OCP (2.7) into NN intervals. Control in each interval is
piece-wise constant. The multiple-shooting approach differs from the single-shooting
method in how they handle system dynamics; the former discretizes both control
and state variables, whilst the latter discretizes only control variables. The multiple-
shooting method is better suited for high-dimension state spaces and long prediction
horizons, which is exactly the need for racing problems. The resulting formulation
as in (2.8) is thus in a standard form of time-optimal Nonlinear MPC. The subscript
k means that we are currently at the k-th control step.

min Jy(§, u) =t (2.8a
st o = &rs (2.8b
d .
£z+1|k fdyn(gz\ka uz\k) = 07 s 7N -1

(2.
§i|k€[§7€]7 1=0,...,N (.8d
ujk € [u, 1), i =0,..,N—1. (2.8e

The challenge with formulation (2.8) is that the computationally efficient Gauss-
Newton method, which is based on first-order sensitivities, is no longer appropriate.
It must be solved using an exact Hessian-based technique that is based on second-
order sensitivities and is usually expensive. Thanks to the work in [69], where a time
and memory efficient algorithm is proposed using a novel symmetric algorithmic
differentiation scheme, the propagation of second-order derivatives is online feasible.
Combining this efficient method with the Hessian matrix regulation and condensing
techniques, authors in [17] finally succeed to solve (2.8) for real-time racing problem
in single-vehicle racing mode.

We note that a formulation similar to continuous OCP (2.7) is previously solved
in [70] for a Formula 1 vehicle racing problem. However, the selected solving tech-
nique is time-consuming and the calculation must be performed offline, making it
impractical for online use.

In this dissertation, we employ NMPC formulation (2.8) as a baseline controller
for the autonomous race car in the single-vehicle racing mode. We are interested in
how to enable its online execution and extend it to the head-to-head racing mode.

2.5. MODEL PREDICTIVE CONTROL 19

2.5.3 Ingredients for solving NMPC

In this subsection, we introduce ingredients for solving NMPC. We write NMPC
formulation in a generic and compact form as in (2.9).

mln f(y) (2.9a)
s.t. g(y) =0 (2.9b)
h(y) <0 (2.9¢)

where we have vector y = (&, u;). (2.9a) represents a generic objective function,
while (2.9b) and (2.9¢) represent equality and inequality constraints.

The local optimal solution y* of (2.9) satisfies the Karush-Kuhn-Tucker (KKT)
conditions, i.e. there exists multiplier vectors A* and p* such that the following
equations hold:

vyﬁ(y*a)‘*7 ,U*) =0 (210&)
9(y") = 0 (2.10)
h(y*) <0 (2.10¢)
w >0 (2.10d)
hi(y")i =0,i=1,..., N, (2.10e)
where L(y, A, 1) = f(y) + g(y)" A+ h(y)" p
There are two families of Newton-type optimization methods [65] for solving

NMPC problems in form (2.9): Sequential Quadratic Programming (SQP) [71] and
Interior Point (IP) method [72].

With the SQP method, the KKT system (2.10) is sequentially solved. The KKT
condition (2.10a) can be linearized around initial guessed values (7, A, 71) as (2.11).
(2.10b) and (2.10c) can be linearized as (2.12). Actually, (2.11) and (2.12) are
exactly the KKT conditions for the Quadratic Programming (QP) problem (2.13).
Solving (2.11) and (2.12) is equivalent to solving the sub-problem (2.13).

> >l >
= =

5

YA\ - Ay + Vyg(@) - AN+ Vh(7) - Ap =0

Vyg([@) - (A +AX) + V,h(G) - (7 + Af) =0
(2.11)

-V E(yXﬁ)ijz
= V(@) + VLG A1) - Ay

+

9(¥) +Vyg9(@) - Ay =0

hG) + Vyh(y) - Ay <0 (2.12)

20 CHAPTER 2 « AUTONOMOUS RACE CAR CONTROL: SOTA

.1 _
Hilyn §AyTV§£(-)Ay + V., f(y)Ay
sit. g(y) + Vyg(y)Ay =0 | X+ AN (2.13)

BG) + Vyh(5)dy <0 | i+ Ap

where £(-) = f(y) + 9(&)" A+ h(y)"
After obtaining the QP solution (Ay, A\, Ap), we update (57, AT, i*) as in
(2.14), where « is the step size that can be varied. We repeat the initialization

and calculation of QP sub-problems until the original KKT condition (2.10) is fully
satisfied.

yt=y+aly
AT = X4 aAX (2.14)
i =g+ alp

We should mention that the QP sub-problems are convex only when the Hessian
matrix V;E(-) is positive and semi-definite. Convexification procedures are available
in [73] and [09] to regularize the Hessian matrix. One example approach is to use
the mirroring technique to ensure the convexity of the QP sub-problems: by using
the eigenvalue decomposition result, we can approximate the exact Hessian matrix
as H := Vabs(I)VT with H = VI'VT | where the operator abs(y) = y(if ¥ > ¢) or
e(if v <€), € is a small positive constant value.

A major difference between the IP method and SQP is that the IP method solves
a modified KKT system (2.15) by introducing a positive parameter 7. This system
contains only equality constraints and can be solved with Newton’s method. We
start the calculation from a fixed value of 7. Once one approximated solution is
obtained, we decrease the value of 7 and redo the calculation until the original KKT
conditions (2.10) are fully satisfied. In this way, we actually solve a sequence of
barrier problems (2.16).

V, Ly, X, 1) =0 (2.15a)
9(y*) =0 (2.15D)
hz(y*)ﬂj :T,i: 17-'~7Nh (2150)

Np,
min - f(y) = 7> _In(=hi(y)) (2.16a)
st. g(y)=0 (2.16b)

When the KKT system (2.10) is satisfied with the given precision, both IP and
SQP methods converge to the same local optimum, i.e. resulting in the same solu-
tion. The execution time of both methods depends on concrete problem structures
and available solvers.

2.6. HEAD-TO-HEAD RACING 21

ACADO Code Generation Toolkit [71] is one state-of-the-art open-source soft-
ware for employing the SQP method. It provides options on discretization algo-
rithms (single or multiple-shooting), Hessian representation methods, condensing
methods (for exploiting the sparse Hessian matrix structure), convexification pro-
cedures, integration routines (for handling system dynamics in the form of equality
constraints), automatic differentiation methods, etc. The resulting SQP calculation
framework is self-contained C++ code that facilitates code implementation on em-
bedded systems. For further solving QP sub-problems, the ACADO toolkit offers
an interface for various QP solvers, such as qpOASES [75] (a parametric active-set
method) and HPMPC [76] (an interior-point QP solver). For employing the IP
method, the open-source software IPOPT [77] is a very popular option.

Let us review the solving techniques chosen in the works that are discussed in
Section 2.5.2. Authors in [53] and [17] use the ACADO Toolkit to generate an SQP
framework with an interface to QP solver qpOASES for solving the time-optimal
NMPC. The main purpose of choosing SQP in both works is to cooperate with the
real-time iteration (RTI) scheme [78] for online feasible implementation. We should
mention that the RTI scheme addresses the issue of online feasibility, but does not
ensure system constraints are not violated. In contrast, one goal of this dissertation
is to handle the same problem while ensuring constraint satisfaction. The NMPC
problem in [34] is also solved under the SQP framework, while its extension work
[51] uses the IP method under a commercial framework ForcesPro NLP [79]. In
this dissertation, we choose the SQP method and use the ACADO Toolkit for two
reasons. First, it is the same choice as in baseline works [53] and [17]. Second,
the ACADO Toolkit offers interfaces for integrating additional tools, such as Mixed
Integer Programming solvers that we will discuss in Section 2.6, and it is suited for
implementation on embedded devices.

2.6 Head-to-head racing

In this section, we first introduce general control techniques for the head-to-head
racing problem, more specifically for enabling safe and efficient overtaking maneu-
vers. Then, we present the principles of Mixed-integer programming (MIP), which
will be used in Chapter 4.

2.6.1 General techniques

In head-to-head racing mode, the ego vehicle runs together with the opponent vehicle
on the same racetrack. Both vehicles compete by attempting to overtake each other
or maintain the leading position in order to complete the lap faster.

We focus on the head-to-head racing scenario instead of directly studying the
multiple-vehicle racing problem for several reasons. First, the head-to-head scenario
is clear in structure and easy to analyze, making it an ideal setting to understand the
underlying principles of the racing problem. Second, by studying the head-to-head
scenario in detail, we can gain insights and develop strategies that can be extended to

22 CHAPTER 2 « AUTONOMOUS RACE CAR CONTROL: SOTA

the multiple-vehicle racing scenario. An intriguing challenge that will be taken into
account in future work is how to build task execution models in multi-vehicle cases
to effectively allocate computation resources and prevent the violation of real-time
constraints as the number of race cars increases. The key action in the head-to-head
racing scenario, overtaking maneuver, is one main subject in this dissertation.

Overtaking behavior has been largely studied in the autonomous passenger car
driving domain for lane-changing/merging problems. Classical graph/tree-based
motion planning methods, such as A* and RRT, can take into account the appear-
ance of vehicles on different lanes. However, these methods are usually designed
for multiple-lane traffic systems, while in the racing scene, the vehicle can freely
maneuver on the track without adhering to specific lanes. More importantly, they
usually make use of imprecise kinematic models for a smooth and safe driving style
while maintaining a conservative minimum distance between vehicles for safety pur-
poses. It is not suitable for aggressive racing maneuvers in a highly dynamic racing
environment that requires the vehicle to operate close to the limits of handling. In
contrast, the optimization-based method, such as MPC, can catch the complex non-
linear system dynamics, which is suitable for racing scenarii. In [30], the authors
build a local risk map and use a robust tube-based MPC to generate a feasible and
safe trajectory for realizing one-side overtaking maneuvers in high-speed structured
environments. In [67], the vehicle’s objective is to follow the center line of a straight
track while avoiding collisions with static obstacles.

For the autonomous racing problem, few works take into consideration the dy-
namic opponents. In [81], trajectory planning is considered as an optimization
problem by maximizing the progress of the race car while penalizing deviation from
a reference trajectory using a receding horizon approach, on top of which a dynamic-
programming-based high-level corridor planner is proposed to generate convex con-
straints for moving obstacles. In [32], a similar idea of maximizing the progress of
the race car is used. The authors take into consideration the relative position and
velocity between the ego vehicle and the opponent vehicle for setting up constraints
to avoid a potential collision. In [$3], an off-line viability kernel computation is used
to ensure continuous feasibility, which allows for improving the performance of the
online controller. The authors also take into account the interaction between two
race cars and formulate it as a bimatrix game, a type of game theory problem.

Recently, the learning-based method shows its potential for solving complex
decision-making problems by leveraging a large volume of data generated in ei-
ther simulation or the real world. For instance, authors in [$1] succeed to tackle the
high-speed autonomous race car overtaking problem in the video game Gran Tur-
ismo Sport by using curriculum reinforcement learning. One challenge for such kind
learning-based methods is that overtaking is a sparse signal and can be difficult to
collect. In this work, we focus on the NMPC-based method for overtaking problems.
As a byproduct, it could generate well-structured data for use in learning-based ap-
proaches and improve data efficiency.

Mixed-integer programming (MIP) catches our interest since it can be used for
encoding discrete decisions in different tasks [35]: assignment problems, control of
hybrid systems, control of piece-wise-affine systems, and problems with non-convex

2.6. HEAD-TO-HEAD RACING 23

constraints. Several MIP-based works exist for collision avoidance in structured en-
vironments. For example, it is used in [36] and [87] to encode and solve the two-lane
expressway overtaking problem. The authors represent the moving obstacles (vehi-
cles other than the ego vehicle) as rectangles enclosed by hyperplanes. They further
define the feasible region as the intersection of the complement of the obstacles. The
collision-free decision is to make the ego vehicle lay in at least one feasible halfspace
split by hyperplanes. The feasibility of each halfspace is set as a binary variable,
resulting in a MIP problem. In [38], authors aim to realize safe lane-changing ma-
neuvers in an MPC framework. A binary variable at each prediction step encodes
3 stages of the lane maneuver: Pre (following the initial lane), Peri (lane change),
and Post (following the goal lane). The objective is to prevent the total number of
Peri steps from falling below a threshold, i.e. to guarantee a sufficient time budget
for lane switching.

MIP can also be used in unstructured environments. We notice that in [89], a
MIP encoding method combined with the NMPC framework is used for solving the
subclass problem of autonomous racing, which requires the race car to stay as close
as possible to the optimal race line while crossing as many as possible pre-defined
bonus zones for collecting rewards. Their NMPC formulation’s objective function is
different from the one used in this dissertation: instead of directly optimizing the
time variable ¢, they set the minimization of the deviation from the optimal race line,
the maximization of the collected rewards from pre-defined zones, and other terms
as the objective function. In the Frenet-Serret frame, they define “gates” (free space
between obstacles, or areas where exist rewards) for cars to pass through. The MIP
problem arises from the combinatorial selection of “gates” at different prediction
steps.

2.6.2 MIP related method

We select MIP as a base method for handling the overtaking problem in this dis-
sertation because it can naturally model the decision-making series for overtaking
maneuvers and ultimately outcome efficient and optimal results by working together
with NMPC.

In this section, we first introduce how MIP can be used for modeling overtaking
maneuvers. Then, we discuss several sub-problem classes of MIP and the solving
technique. Finally, we talk about how we can reduce the complexity of MIP.

Basic concept

The overtaking maneuver can be readily encoded in a MIP form. As an example
shown in Fig. 2.5, the ego vehicle has the option to position its center of gravity
(CoG) in 4 different configurations: fully behind, fully in front of, to the left of,
or to the right of the opponent vehicle’s CoG. These configurations are represented
by the letters A, B, C, and D, respectively. For 2-step planning, the decision series
can be represented as (dy,dy) with dy,dy € (A, B,C, D). There are a total of 16
decision combinations that can be represented as integers in a MIP form and solved

24 CHAPTER 2 « AUTONOMOUS RACE CAR CONTROL: SOTA

l:l ego (current) i""-f ego (predicted)

—_—
progress direction PR
El opp (current) 2 . opp (prediected)

prediction : prediction

step 0 :
step 1 i step 2

Figure 2.5: An example of overtaking maneuver encoding.

for a given objective. It is important to note that, in Fig. 2.5, the ego vehicle’s step
size is not restricted to a particular value in order to more clearly show the relative
position between the two vehicles. In Chapter 4, the step size is limited to the length
of the vehicle. This means that the decision series dy = Bordy = A & dy = B
are infeasible since they require a step size larger than the vehicle’s length. The
MIP solver will automatically identify these decisions as violating the constraints
and eliminate them. A formal and detailed presentation on this MIP-based method
is discussed in Chapter 4.

Taxonomy of MIP and the solving technique

MIP is a general optimization problem containing decision variables in the form of
integers as in equation (2.17).

i, f(zx, 2) (2.17a)
st. g(x,z) <0 (2.17b)

In the case that the objective function (2.17a) and the constraints (2.17b) are all
linear (i.e. f(z,2) = flz + fI'z and g(z,2) = Ayz + Ayz < 0 with matrices Ay, Ay
and vectors fi, f2), it refers to Mixed Integer Linear Programming (MILP). In the
case that the objective function is quadratic (i.e. f(z,2) = a7 Flo + 127 Foz +
cl'z + 'z with matrices Fy, Fy and vectors ¢y, ¢) while the constraints are linear, it
refers to Mixed Integer Quadratic Programming (MIQP). Mixed Integer Nonlinear
Programming (MINLP) is a special form of MIP where the objective function f(x, z)
and/or the constraints g(z, z) are nonlinear.

In Section 4.1 of Chapter 4, we will introduce that the overtaking problem can
be written in a generic form (2.18), where f(-) denotes the objective function, g(-)
denote equality constraints, h,(-) denote inequality constraints, along with vectors C'
and d for representing constants and integer variables, respectively. It is an extension
of the generic formulation of time-optimal NMPC (2.9), while we separate inequality
constraints (2.9c) as two parts, hy(y) and hy(y), for distinguishing the constraints
with/without integer variables. Since both the equality constraints (2.18c) that

2.6. HEAD-TO-HEAD RACING 25

represent the system dynamics and the inequality constraints (2.18d) that represent
the collision avoidance conditions are nonlinear, formulation (2.18) is actually an
MINLP problem.

Jmin - f(y) (2.18a)

st. g(y)=0 (2.18b)

hi(y) <0 (2.15¢)

ha(y) < Cd (2.18d)

MINLP solvers are rarely built entirely from scratch [90]. Solvers are usually

classified either as extending NLP solvers to handle integer variables or as extending
MIP solvers to handle nonlinear objectives and constraints. In this dissertation, the
SQP technique, as one type of NLP solver for formulation (2.9), is still available for
solving (2.18) except that the intermediate sub-problem is no more a simple QP but
an MIQP. The previous QP sub-problem (2.13) is modified in an MIQP form:

1 _
min - SAY"VIL()AY + Y, f([7)Ay

Yy
st. g(y) +Vyg(y)Ay =0 | A+ AN
hl(g) + Vthy(g)Ay <0 | Hy + AVT
ha(y) + Vyhay(y)Ay < Cd | Tip + Apg
where £(-) = f(7) + g(@)" A + ha(§)" fir + ha(9)" iz

(2.19)

There exist standard algorithms to solve MIQP (2.19), which are implemented in
solvers such as GUROBI [91], CPLEX [92] and COIN-Cbc [93]. The branch-and-
bound algorithm [94] is a popular technique choice for these solvers. It searches
in a “tree” with different integer settings to find a globally optimal solution. The
heuristic methods belong to another approach family that includes simulated anneal-
ing, genetic algorithms, Tabu search, etc. Its randomness reduces the possibility of
getting “stuck” in local optimality. In this work, we use the branch-and-bound al-
gorithm in the GUROBI solver. Once the sub-problem (2.19) is solved, we repeat
the SQP procedure (2.14) until the KKT value reaches the given precision.

Methods for reducing MIP complexity

Combining NMPC and MIP will result in a long execution time whi