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CHAPTER 1

Introduction

1.1 Motivation and background
In recent years, the research of sophisticated control algorithms has gained signif-
icant attention. Lots of efforts have been made to enhance the quality of service
in autonomous systems. Despite the notable progress, there is still a need to fur-
ther investigate their application in real-time settings. This dissertation focuses on
real-time control for autonomous driving and more specifically autonomous race car
racing.

Autonomous driving is classified by the Society of Automotive Engineers [1]
from Level 0 (no driving automation), Level 1 (driver assistance), up to Level 5 (full
driving automation under all conditions). Advanced Driver-Assistance Systems [2]
(ADAS, including electronic stability control, roll stability control, lane departure
warning, adaptive cruise control, parking assistance systems, etc.) provide Level 1
functions, which assist human drivers to drive safely, efficiently, and with a better
user experience. The study of ADAS has been ongoing for decades. DARPA Urban
Challenge [3] is one milestone that has greatly promoted the advancement of the field
of autonomous driving. Since then, related research has been massively carried out in
both academia and industry. Although several companies have released autonomous
driving systems with high levels of automation, e.g. Tesla’s Full Self-Driving (FSD)
[4], Level 5 driving is still a decade or more away from the grand public because of
ethical and regulatory issues, along with several technical difficulties: the inability to
handle unexpected extreme situations, the absence of sophisticated understanding
of implicit behaviors of traffic agents, etc.

Autonomous vehicle racing [5] is a special form of autonomous driving, in which
the race car should achieve a lap time as short as possible while avoiding potential
collisions with track boundaries or rival vehicles. Since the race car usually runs at
a high speed and requires extreme handling capacities (active drift, sharp steering,
etc.), we have the opportunity to study the system’s performance at its physical
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2 CHAPTER 1 • INTRODUCTION

limits. These investigations on edge cases can also help advance the study of au-
tonomous passenger car driving [6]. Other relevant domains may derive benefits
from the study of autonomous vehicle racing as well. For instance, the time-optimal
control problem for a race car, which is under engine and traction saturation con-
straints and over a confined trajectory, is analogous to the time-optimal control
problem for a robot arm that moves through a constrained path with actuator sat-
uration constraints. In both cases, in order to achieve desired behaviors, the control
system takes into account constraints and objectives in a similar problem structure.
From the perspective of the academic world, the setting up of autonomous racing is
an ideal research platform for the study of Cyber-Physical Systems (CPS) [7], where
the physical plants (i.e. race cars) have rapidly changing system dynamics, and the
computation is typically carried out on embedded systems as widely used in CPS.

Model predictive control (MPC) is a state-of-the-art control technique for con-
trolling a physical plant in the receding horizon framework to achieve a specified
objective while satisfying a set of constraints. Among different control techniques
for the autonomous vehicle racing problem, we are especially interested in MPC for
the following reasons:

1. MPC is one of the most promising model-based methods for taking into ac-
count accurate physical dynamic models and pertinent constraints. It makes
sense to apply MPC to racing problems since MPC can effectively incorpo-
rate our prior knowledge of race car dynamics and make use of pre-defined
state/control constraints of race cars.

2. MPC is one typical representative of optimization-based controllers that in
general provide optimal results at the cost of high complexity. By studying
MPC on a race car with embedded computing units, we gain a better under-
standing of how to effectively design and deploy optimization-based algorithms
on devices with limited calculation resources.

3. MPC is extensible for working in conjunction with other control techniques.
For instance, it can cooperate with Mixed Integer Programming (MIP) for
decision-making problems. In the literature, it is coupled with several other
tools to enhance its capability and improve its performance, e.g. game theory
[8] for enabling MPC to react to the opponents’ intended actions, viability
theory [9] for ensuring the recursive feasibility of MPC, Koopman operator
theory [10] for assisting the system identification of a vehicle with unknown
dynamics in MPC, etc.

In this study, to precisely capture the system dynamics of the autonomous race car,
we represent them using ordinary differential equations (ODE). They will appear
in MPC as nonlinear equality constraints. Under some circumstances, inequality
constraints in MPC, such as collision avoidance constraints, might also be nonlinear.
The focus of this work is hence Nonlinear MPC (NMPC).

NMPC needs to work correctly in 2 senses. On one hand, its prediction horizon
should be long enough for providing reliable control. On the other hand, NMPC with
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a longer prediction horizon requires more computation resources. It might result in
an obsolete result, i.e. result arriving after the deadline, that is regarded as useless
and incorrect. Since deterministic behaviors are desirable in real-time systems, the
worst-case execution time of NMPC should be bounded within a reasonable value
considering the limited resource of embedded systems.

Controllers, including NMPC, collaborate with other system components, such
as perception tasks for self-localization and opponent detection. They work as a
task chain and share computation resources. Different computational components
may be parallelizable, and modern processors, such as multi-core CPUs and GPUs,
have the ability to parallelize tasks. It is therefore crucial building a suitable task
execution model to maximize the use of the processor’s parallelization capabilities
for decreasing latency and increasing control update rate, which improves overall
controller performance and prevents non-deterministic behaviors.

1.2 Research scope
In this section, we define the research scope of the dissertation. The research problem
is limited to autonomous vehicle racing in 2 modes: single-vehicle mode (similar to
the time trial mode in Formula 1 qualifying sessions, in which a single race car aims
to achieve the fastest lap time) and head-to-head mode (in which two race cars
compete on the same racetrack for being first to cross the finish line).

In Chapters 3 and 4, which cover algorithm-level controller design, we assume
that the controller of the ego vehicle can access its own exact state as the control
input, as well as the pose and intended trajectory of the opponent vehicle. Both
vehicles are assumed to have prior knowledge of the curvature information anywhere
on the racetrack.

In Chapter 5, which is related to system-level task execution model design, we
assume that the LiDAR data serves as the ego vehicle’s control input. Perception
algorithms are needed for self-localization and opponent detection. Additionally, the
opponent vehicle’s intended trajectory is not provided. The experiment is performed
in a Hardware-in-the-Loop (HiL) setup, i.e. software components of the ego vehicle
are executed on an embedded device while other simulation components run on a
standard laptop.

In this dissertation, we address the following problems.

• NMPC typically requires a relatively long solving time, especially when the
prediction horizon is long. Meanwhile, long-horizon NMPC generally yields
a better outcome. We are interested in knowing how to make long-horizon
NMPC feasible within a given time budget while both reducing computation
costs and obtaining satisfactory performance.

• Decision-making, e.g. overtaking, is a crucial element in the racing problem.
Combining decision-making methods with existing control frameworks is still
an open question. We will discuss how to formulate the overtaking problem
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in a MIP form and how to create a simpler yet online feasible overtaking
controller.

• A task execution model needs to be properly built to reduce latency, increase
control update rate and ensure that tasks are completed before their deadlines.
We consider the task’s parallelism and the processor’s parallelization capabil-
ities when constructing this model. As a result, it helps to improve control
performance and reliability.

There are still some interesting topics not included in the research scope. For
example, taking into account the uncertainty (which might come from either the
environment or the model mismatch of system dynamics) is meaningful for deploying
algorithms on vehicles operating in imperfect circumstances.

1.3 Thesis outline
The dissertation is organized in the manner described below. We first introduce the
context and state-of-the-art of the autonomous racing problem. The aforementioned
problems in Section 1.2 are then addressed respectively in different chapters.

• Chapter 2, Autonomous race car control: state of the art, covers topics on
control techniques for the autonomous racing problem. A racetrack model and
vehicle dynamics are discussed. The MPC principles and associated solving
techniques are presented. We introduce the time-optimal NMPC that serves
as a basis for the following chapters. A discussion of the head-to-head racing
problem gives insight into decision-making problems in the racing scenario.

• Chapter 3, Autonomous racing in single-vehicle mode, focuses on the com-
plexity of NMPC and presents the timing issue raised by the classical NMPC
framework in single-vehicle racing mode. We come up with a triggering-based
solution for meeting the time budget constraint and reducing computational
workload while maintaining adequate lap time performance.
Contribution: The proposed method uses two triggering conditions. One
is associated with the time budget constraint and enables real-time NMPC
execution with a long prediction horizon. The other is inspired by the rac-
ing behavior of human drivers. It seeks to allocate computational loads in
accordance with how the surrounding environment is changing, which can be
regarded as an on-demand computing model.

• Chapter 4, Autonomous racing in head-to-head mode, concentrate on the au-
tonomous racing problem in head-to-head racing mode. We suggest encoding
collision-avoidance constraints into the form of MIP for making overtaking
decisions within an NMPC framework in the curvilinear coordinate system.
Based on the observations in the experiment of the MIP-based approach, an
alternative overtaking strategy is proposed to enable online execution.
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Contribution: We provide a technique for representing the geometry of the
vehicle, which can be used to set up collision-avoidance constraints in the
curvilinear coordinate. The combination of NMPC and MIP provides one ef-
fective way for resolving decision-making challenges in the racing problem. As
an alternative method to MIP, the algorithm LOROFO (Left-side Overtaking,
Right-side Overtaking, and FOllowing) efficiently attempts grouped overtak-
ing decisions. This algorithm is online feasible and serves as an example of
showing how to reduce the complexity of decision-making problems.

• Chapter 5, Task execution model for autonomous racing systems, first intro-
duces a generic system architecture for the autonomous race car, including
software components, task chain, and hardware platforms. A task execution
model is then proposed for assigning software components to available pro-
cessors with different parallelism degrees. This task execution model aims to
decrease the latency and enhance the control update rate. A Hardware-in-the-
Loop simulation is performed to demonstrate how the task execution model is
implemented in the Robot Operating System (ROS) and how it performs.
Contribution: The task execution model is validated to efficiently improve
system performance in the race scenario by making use of the parallelization
capabilities of processors available. It provides insight for building task exe-
cution models in other similar autonomous systems.
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CHAPTER 2

Autonomous race car control: state of the art

In this chapter, we review the development of control techniques from autonomous
passenger car driving to autonomous race car racing. Essential ingredients such as
the racetrack model and vehicle dynamics are investigated. As one state-of-the-art
control method that is used throughout this dissertation as a basis, the Model Pre-
dictive Control (MPC) based time-optimal controller is comprehensively discussed.
For head-to-head racing, various approaches such as Mixed Integer Programming
(MIP) are introduced.

2.1 Control design for autonomous vehicles
Techniques in the autonomous passenger car driving domain have been developed for
decades, which typically hierarchically structure the control system into 4 levels [11]:
global planning, behavioral decision-making, local motion planning, and feedback
control. We begin by introducing various techniques used for autonomous passenger
car driving at each control level, particularly those that have strong connections
to the autonomous race car racing problem. With the reason stated at the end of
this section, in this dissertation, we will primarily investigate a control framework
that integrates decision-making, local planning, and feedback control in a one-level
structure. Despite this, we present the state-of-the-art control techniques for the
autonomous race car racing problem still in a 4-level structure to facilitate the
comparison with the development in the autonomous passenger car driving field.

The global planning, also known as route planning in the passenger car driving
field, is on the highest level where a vehicle selects a minimum-cost path on a
road network graph using algorithms such as Dijkstra [12] and A* [13]. After a
route plan has been found, the autonomous vehicle uses the behavioral decision-
making component to interact with other traffic participants in accordance with
traffic regulations and conventions.

7



8 CHAPTER 2 • AUTONOMOUS RACE CAR CONTROL: SOTA

After determining a local driving intention, the local motion planning compo-
nent generates a collision-free path/trajectory (time-parametrized path) that satis-
fies kinematic or dynamic constraints on the vehicle’s motion. It usually comes with
the problem of optimum seeking for a given objective function with different pur-
poses: minimizing travel time, penalizing hazardous motions, maximizing passenger
comfort degree, etc. Three categories of planning methodology are available: graph-
searching methods, incremental tree-based methods (e.g. RRT [14] and RRT* [15]),
and optimization-based methods. Since optimization-based methods can explicitly
take into consideration the satisfaction of constraints and the minimization of ob-
jectives, they are more desirable than other planning methods. However, they often
involve a high level of complexity. The feedback control on the low level is used
to stabilize the reference path/trajectory tracking in the presence of modeling error
and other forms of uncertainty. Various methods are available: geometric-based
method (e.g. Pure Pursuit [16]), output feedback linearization [17], MPC, etc.

Table 2.1: Comparison between autonomous passenger car driving and autonomous
race car racing.

Autonomous
Passenger Car Driving

Autonomous
Race Car Racing

Road
type

high-way / urban road
with lane segment closed racetrack

Objective safety, travel time, smoothness,
passenger comfort degree safety, lap time

Physical
state (usually) far away from limit (often) close to limit

Behavior
constraint traffic conventions competition rules

Autonomous passenger car driving and autonomous race car racing share many
techniques. For instance, most works on autonomous racing also use a similar 4-level
control structure as autonomous driving [5]. There are some distinctions between
the two research fields as well, which are listed in Table 2.1 and discussed in more
detail below.

On the global planning level of the autonomous racing system, the primary
task for the race car is to solve the minimum lap time problem, i.e. find an opti-
mal trajectory which is called the race line. Existing methods can be classified into
two main groups [18]: quasi-steady state methods and transient optimal methods.
Quasi-steady state methods explore the feature that the racing is performed on a
closed racetrack and can be split into a sequence of segments. The vehicle is as-
sumed in stationary conditions for each segment, i.e. with constant speed and lateral
acceleration. Geometrical constraints (e.g. the track boundaries) and mechanical
constraints (e.g. engine power, braking capacity, and tire limits) are imposed on
each segment for calculating the race line profile. Quasi-steady state methods in-
clude several variants: using evolutionary algorithms to find a set of control point
positions [19][20], mimicking human drivers’ behavior to define straight paths and
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curve paths along the racetrack [21][22], finding the best compromise between the
shortest and the least curvature track based on geometric properties of the track
[23]. Transient optimal methods optimize an objective function, e.g. maximizing
the traveled distance along a racetrack in a given time [24], maximizing the vehi-
cle speed at the final point of the maneuver [25], or directly minimizing the lap
time [26][27] by transferring the time-dependent system into a space-dependent and
space-variant system.

On the behavioral decision-making level, approaches such as game theory
can be used for finding the best action to win the racing game by taking into consid-
eration adversary vehicles’ intentions and responses [28][29][30]. The appearance of
the opponent vehicles can also be handled on the local motion planning level by
modifying the global plan, i.e. to find a collision-free local trajectory by changing the
constraints or cost functions [31][32], assembling motion primitives [33][34][35][36],
or dynamically sampling feasible local paths in free space [37][38][39].

The low-level feedback control usually serves to track the race line at the poten-
tial physical limit. Authors in [40] use the G-G diagram (a graphical representation
of the performance envelope of a car, with x/y axis standing for lateral/longitudinal
acceleration) to design a feedforward controller and use the safe β−r phase portrait
(slide slip angle - yaw velocity, calculated using the Pacejka Magic Formula [41])
envelopes to generate active yaw moment for tracking the race line at its limits.
Authors in [42] set up feedforward and feedback controllers to make use of all the
available friction force. The MPC-based method [43] has the ability to forecast the
future trajectory and act proactively to the potential tracking error. It is widely
used with several variations: Tube-MPC [44] for dealing with nonlinear effects and
external disturbances, Stochastic MPC [45] for handling model uncertainty at high
speeds/accelerations, etc.

The hierarchical control structure that was described above has several disad-
vantages. For instance, the smoothness level of the high-level path planning is a
factor that the low-level controller depends on. The system performance could be
unsatisfactory if the intended racing line is not sufficiently smooth. Additionally,
because racing lines are often computed offline by high-level planners, it is difficult
to instantly adapt the race line to the changing environment from a global perspec-
tive. Actually, one can combine high-level planning and low-level action into one
single control framework, which is the approach used in this dissertation.

Authors in [34] formulate the racing problem in a predictive control framework
to incorporate system constraints (track boundaries, state/control constraints) and
the objective function (maximization of progress distance). This framework directly
optimizes the low-level control variable, allowing the vehicle to follow a locally opti-
mal trajectory. Authors in [28] developed a one-level sampling-based MPC algorithm
that is based on the path integral control [46] which relies on the stochastic sampling
of trajectories. Authors in [47] directly optimize the progress time of the race car
by using an MPC framework under the curvilinear coordinate system. As demon-
strated in the aforementioned articles, the MPC framework can actually transfer the
hierarchical control structure into one-level optimal control paradigms.
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2.2 Racetrack model
A racetrack consists of a single lane that is defined as a drivable space with an inner
and an outer bound. We focus on tracks in the form of 2 dimensions, where the
inner and outer bounds are represented by sampling points (x, y), as used in the
open-source racetrack library [48]. A common way to build a racetrack model is to
construct an occupancy grid mapping from bound lines, which can assess whether a
given position is on or off the track [28]. Another widely used method is to establish a
reference line, such as the racetrack’s center line that is determined by the inner and
outer bounds [34][47]. The reference line can be represented as spline polynomials
and parameterized by its arc length s ∈ [0, L], where L is the total length of the
center line.

In this dissertation, we use the latter method to model the racetrack. We first
sample M control points (x, y)i, i = 1, . . . ,M on the center line of the racetrack as
a reference. Then, we fit each segment between the control point i and i + 1 into
a cubic spline interpolation in 2 dimensions: (fx(s), fy(s)), where s is the progress
along the reference line and fx/y is the spline function for the axis x/y. Since the
cubic spline is smooth and 2-order differentiable, it is convenient to calculate one
important character of the racetrack: the curvature of the reference line at the
progress s, i.e. κ(s) = (f ′

x(s)f ′′
y (s)− f ′

y(s)f ′′
x (s))/(f ′

x(s)2 + f ′
y(s)2)3/2.

Figure 2.1: Vehicle state in the curvilinear coordinate.

As shown in Fig. 2.1, the vehicle’s center of gravity (CoG) has a projection point
on the reference line with the arc length s (i.e. the progress along the center line
since the starting point). The deviation distance between the vehicle’s CoG and
the projection point on the reference line is denoted as ey. The difference between
the vehicle’s orientation and the tangent angle at the projection point is denoted as
eψ. We can thus set up the curvilinear coordinate along the reference line using the
cubic spline interpolation, in which the vehicle’s position is represented as (s, ey, eψ).

In addition to the convenient calculation of curvature, there are other advantages
to employing this racetrack model. For instance, the track boundary can be pre-
sented as a simple interval form, i.e. ey ∈ [ey, ey]. In the curvilinear coordinate, we



2.3. VEHICLE DYNAMICS 11

can also set the progress s as the independent variable and use the progress time t
as the dependent variable, which will be used later in Section 2.5 for directly setting
the progress time as the optimization objective.

However, using this racetrack model in the curvilinear coordinate brings incon-
venience to the representation of the vehicle’s occupied area. In the Cartesian coor-
dinate, it is usually represented as a simple rectangle. The existence of an overlap
between two rectangles indicates the collision. The representation can be further
simplified as a circle with a diameter equal to the length of the vehicle’s diagonal.
In this case, we compare the distance between the centers of the two circles with
the diameter to verify the collision situation. The vehicle’s occupied area can also
be decomposed as several circles for getting a more precise representation than the
single-circle one. The collision-free constraint requires that the distance between any
pair of centers should be greater than the diameter. In the curvilinear coordinate,
either a rectangle or circle from the Cartesian coordinate will be transformed into
an irregular shape, making it difficult to directly port them for collision checking.
In Section 4.2, we discuss how to design a new representation method under the
curvilinear coordinate and set up the corresponding collision-avoidance constraints.

2.3 Vehicle dynamics
Different vehicle dynamics are reviewed in [49] and [50]. The point-mass model is
the simplest model which contains the position, velocity, and acceleration at the
vehicle’s CoG. The Kinematic Single-Track Model (KS), which represents the front
and rear wheel-pairs by two single wheels, is a more precise model. This kinematic
model does not consider any tire slip and assumes that the vehicle follows exactly
the desired kinematic path even if it is indeed dynamically infeasible. Single-Track
Model (ST), which is also called the bicycle model, considers the slip angle of tires
and thus can simulate important effects such as drifting, understeer driving, and
oversteer driving. A more precise model, Multi-Body Model (MB), can model the
load transferring between 4 wheels and other effects. Extended Kinematic Model
(EK) [51] [52] is one model combining features of KS and ST, which takes into
account the existence of tire slip angle but does not explicitly model the lateral
force.

The high-fidelity vehicle models enable the controller to produce a more reliable
solution, which is crucial for the racing problem. However, complex models also
bring high computational costs. Since the ST model represents most of the dynamic
effects that we need and its complexity is reasonably acceptable, we use the ST
model in the control algorithm design in Chapter 3 and in Section 4.3 of Chapter 4.
The analysis in [51] shows that, when vehicles run below a threshold velocity, the
EK model results in a precise enough solution. Given that the vehicle model is a
replaceable component in the controller, in Section 4.4 of Chapter 4 and in Chapter
5, we use the EK model within the controller to reduce calculation complexity and,
as a result, to facilitate online calculation. The EK model is also attractive due
to another fact that it needs fewer parameters for system identification, making it
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easier to deploy in real-world settings in further research.

The ST model in the curvilinear coordinate is stated as in Eq. 2.1, in which
the system state is defined as ξ = [ey, eφ, vx, vy, ω, t, s, d, δ], where: vx, vy are the
longitudinal and lateral velocities; ω is the angular velocities; d is the parameter for
the motor engine; δ is the vehicle steering angle; t is the progress time of the vehicle.
The control vector is u = [∆d,∆δ], i.e. change rates of d and δ.

d

dt



ey
eψ
vx
vy
ω
t
s
d
δ


=



vx sin(eψ) + vy cos(eψ)
ω − κ(s) · ṡ

1
m

(FR,x − FF,y sin δ +mvyω)
1
m

(FR,y + FF,y cos δ −mvxω)
1
Iz

(lfFF,y cos δ − lrFR,y)
1
ṡ

∆d
∆δ


,

ṡ = vx cos(eψ)− vy sin(eψ)
1− ey · κ(s)

FR,x = (Cm1 − Cm2vx)d− Cr − Cdv2
x

FF,y = Df sin(Cf arctan(BfαF ))
αF = − arctan((ωlf + vy)/vx) + δ

FR,y = Dr sin(Cr arctan(BrαR))
αR = arctan((ωlr − vy)/vx)

(2.1)

where m is the vehicle weight; lf and lr are the distance between the vehicle center
of mass and front/rear wheels respectively; FR,x denotes the longitudinal force of
the rear wheel, which includes motor parameters Cm1 and Cm2 as well as friction
parameters Cr and Cd; FF/R,y is a function of (vx, vy, ω, d, δ) for modeling the lateral
forces of the front and rear tires based on the Pacejka tire model, which depends
on empirical parameters (Bf/r, Cf/r, Df/r); slip angles at front/rear wheels, αF/R,
capture intricate behaviors including drifting and some other phenomena.

The EK model is presented as in Eq. 2.2, in which the system state is defined as
ξ = [ey, eφ, vx, vy, ω, t, s, δ] and the control vector is u = [a,∆δ], i.e. the longitudinal
acceleration a and the change rate of steering angle δ.
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d

dt



ey
eψ
vx
vy
ω
t
s
δ


=



vx sin(eψ) + vy cos(eψ)
ω − κ(s) · ṡ

a
lr

lf +lr (δ̇vx + δv̇x)
1

lf +lr (δ̇vx + δv̇x)
1
ṡ

∆δ


,

ṡ = vxcos(eψ)− vysin(eψ)
1− ey · κ(s) .

(2.2)

2.4 Experiment platform

Figure 2.2: Control loop, 1:43 race car, and racetrack. Image taken from [34].

A 1:43 scale race car named Kyosho dnano is widely studied, e.g. in [34], [47]
and [53]. Since we can make use of existing knowledge (such as system identification
parameters) and use the previous research as a baseline, we use this miniature
race car model in the simulation of Chapter 3 and in Section 4.3 of Chapter 4 for
validating the controller design. The race car is too small (with a length of about
6cm) to accommodate a powerful onboard computation card. As shown in Fig. 2.2,
in [34], the calculation is performed in a controller implemented on the host PC and
the race car simply executes the control command that it receives.

A 1:10 scale race car named F1tenth [35] is another experiment target that cap-
tures our attention. We use this model in the simulation of Chapter 5 and in Section
4.4 of Chapter 4. As shown in Fig. 2.3, it is a modularized experiment platform
with an NVIDIA Jetson series card and a high-precision LiDAR which is similar to
a full-scale autonomous vehicle. The chassis of F1tenth delivers realistic dynamics,
allowing researchers to safely and cost-effectively test their algorithms on the 1/10
scale. F1tenth supports a popular software platform: the Robot Operating System
(ROS), making it simple to leverage existing work in the robotics community. A
realistic F1tenth simulator exists and it facilitates the development and deployment
of algorithms.
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Figure 2.3: F1tenth race car and its related resources. Image taken from [35].

2.5 Model Predictive Control (MPC)
Model Predictive Control (MPC) is suited for controlling the autonomous race car
since it explicitly takes into account system dynamics and physical constraints. In
order to give a smooth and optimal control strategy, it can combine high-level plan-
ning and low-level action into a unified control framework. In this dissertation,
we use a variant of MPC, Nonlinear MPC (NMPC), as the base controller for the
autonomous race car to capture the non-linearity in dynamics and constraints. In
this section, we first describe the principles of MPC. Then, we discuss time-optimal
NMPC formulations. Finally, we present the main ingredients for solving an NMPC
problem.

2.5.1 MPC principles
MPC, a.k.a receding horizon control, is originally used as an alternative for tradi-
tional feedback controllers (e.g. PID) in the application of oil and chemical industries
[54][55]. With the development in the last decades, MPC can run reliably at millisec-
ond sampling times even on embedded devices [56]. It aims to synthesize a feedback
law µ while obeying constraints on state ξ and control u in a finite prediction horizon
with the length N .

The first type of MPC, tracking/stabilizing MPC, synthesizes a feedback law
µ for stabilizing the system state ξ to stay around the equilibrium state ξ∗. Its stage
cost l(ξ, u) penalizes the control effort u and the difference between ξ and ξ∗, e.g.,
l(ξ, u) = ||ξ − ξ∗||2 + λ||u||2, λ ≥ 0.

An important property of the tracking/stabilizing MPC is asymptotic stability
which implies both the attraction (ξk → ξ∗ when step k →∞) and the stability (for
an initialization close to ξ∗, the final solution remains close to ξ∗). With the help of
the Lyapunov function, the asymptotic stability has been analyzed and proven under
different conditions: with “equilibrium terminal constraint” (i.e. a constraint ξN =
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ξ∗ at the N -th/terminal step) [57], with “regional terminal constraint and terminal
cost” (i.e. a regional terminal constraint ξ∗ ∈ Ξ, in which Ξ is a region around ξ∗,
and a Lyapunov function terminal cost F ) [58], and without any stabilizing terminal
constraints (i.e. without the aforementioned constraints) [59][60].

While MPC is effective at solving tracking/stabilizing problems, such as vehicle
guidance, pressure maintenance, and temperature regulation, it can also be applied
to problems that involve objectives other than target tracking. Economic MPC,
in contrast to the tracking/stabilizing MPC, does not penalize the term for the
difference between the predicted state and the equilibrium state in the stage cost.
Instead, it directly set the economic criterion as the objective function. For example,
if we let l(ξ, u) = ||ξ||2, it directly optimizes the squared sum of the state.

In the economic MPC, if the optimal equilibrium is known a priori and set as
a terminal constraint, the asymptotic stability and the optimality can be proven in
an averaged sense [61], which means that the average long-run performance is no
worse than the best admissible steady state. Without such terminal constraints, the
asymptotic stability is only ensured around a small neighbor zone of ξ∗ [62][63], and
the averaged performance is only approximately achieved in a practical manner: a
larger N , a better control result [64].

Once we select the type of MPC and determine the kind of stage cost function,
we have a formal definition of MPC with a prediction horizon of length N and an
initial state ξ̃k at control step k:

min
u admissible

JN(ξ, u) = ΣN−1
i=0 l(ξi|k, ui|k) + l(ξi|N), ξ0|k = ξ̃k (2.3)

where JN(·) is the objective function over N steps; states ξi|k, i = 0, . . . , N follow the
requirement of dynamics evolution d

dt
ξi+1|k = fdyn(ξi|k, ui|k); “u admissible” means

that control and state stay in the feasible set, i.e. u ∈ UN and ξ ∈ ΞN+1. The
resulting optimal state series is denoted as ξ∗

0|k, . . . , ξ
∗
N |k, and the resulting optimal

control sequence is denoted as u∗
0|k, . . . , u

∗
N−1|k. The MPC feedback law µ for a

system with the initial state ξ̃k is defined as µ(ξ̃k) := u∗
0|k.

We should mention the similarity between the economic MPC and the continuous
Optimal Control Problem (OCP). We first formulate the OCP as follows:

min
ξ,u

∫ t+T

t
l(ξ(τ), u(τ))dτ, (2.4a)

s.t. ξ̇(τ) = f(ξ(τ), u(τ)), (2.4b)
h(ξ(τ), u(τ)) ≤ 0. (2.4c)

where f(·) is the dynamic function and h(·) represents the state and control con-
straints. The OCP can be discretized into a form with finite parameterization, using
either single-shooting (the intermediate states ξ0, . . . , ξN disappear and there exist
only piece-wise constant control variables u0, . . . , uN−1) or multiple-shooting method
(both state and control variables are treated as variables to be optimized, control
variables are piece-wise constant while control variables are continuous) [65]. The
resulting discretized OCP is equivalent to the economic MPC problem.
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In this dissertation, we regard the racing problem as an OCP which optimizes an
objective related to the lap time and solve it in the form of discretized OCP/economic
MPC. More specifically, the racing problem will be solved in the form of time-
optimal Nonlinear MPC that integrates the system dynamics, physical constraints,
and objective function into a first-principle model-based optimization framework.

2.5.2 Time-optimal Nonlinear MPC (NMPC) formulation
In this section, we discuss several existing works on how to set up an objective func-
tion that leads to the fastest lap time. In the case that we discretize the prediction
horizon in terms of progress time t, the time t is a dependent variable. It hence
cannot be optimized directly, for which case there exist methods for approximating
the time-optimal objective. Otherwise, the use of a curvilinear coordinate system
allows the representation of progress s as the dependent variable and time t as the
independent variable, allowing for the direct incorporation of time t into the ob-
jective function. In this case, there are several varieties of time-optimal objective
functions to choose from. The following is a detailed explanation of the methods in
both cases.

The model predictive contouring control (MPCC) based approach in [34] is the
very first attempt in the literature to combine both path planning and path following
into a one-level control framework as an NMPC problem. The authors approximate
the time-optimal objective by maximizing the progress of the race car, which is
measured as the distance traveled by a projection of the vehicle’s center along the
racetrack’s center line. To handle the nonlinear constraints, they locally linearize
the continuous nonlinear system dynamics to obtain a linear time-varying (LTV)
model. The resulting convex optimization problem is then solved at each sampling
time by an interior point solver.

Instead of indirectly maximizing progress to achieve the time-optimal objective,
authors in [53] employ a transformation from the Cartesian coordinate to the curvi-
linear coordinate, making time t as a dependent variable to be optimized. Similar
ideas for transforming time-dependent vehicle dynamics to track-dependent dynam-
ics have been proposed in [66] and [67] for making it convenient to represent obstacles
and road boundaries. As shown in Fig. 2.4, in a time-dependent system dynamics,
the prediction horizon is discretized in terms of t, while in a track-dependent system
dynamics, steps are discretized in terms of s. The transformation on the state vector
ξ in the curvilinear coordinate is:

d

ds
ξ = dξ

dt

dt

ds
= dξ

dt

1
ṡ

(2.5)

where ṡ is defined by the kinematic relation, i.e. as the velocity of the projection of
the vehicle’s center on the center line of the racetrack (see Fig. 2.4):

ṡ = (vxcos(eψ)− vysin(eψ)) ·
|| 1
κ(s) ||

|| 1
κ(s) ||+ ||ey||

= vxcos(eψ)− vysin(eψ)
1− ey · κ(s) .
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Figure 2.4: An example scenario demonstrating the vehicle’s state and intended tra-
jectory, including the relationship between time t and progress s along the trajectory
in both a time-dependent and track-dependent system.

Authors in [53] describe the racing problem as a continuous optimal control
problem (OCP). By using a curvilinear coordinate and applying the dynamic trans-
formation (2.5), the system dynamics are transformed from time-dependent to track-
dependent (i.e. depending on the vehicle’s progress distance s). The progress time
at the end of the prediction horizon is explicitly included in the objective function:
T =

∫ tf
t0 1dt =

∫ sf
s0

1
ṡ
ds. To take the advantage of the existing efficient algorithms

that rely on least-squares formulations and the generalized Gauss-Newton method,
the authors propose the formulation as in (2.6).

min
ξ(·),u(·)

||T − Tref||2 (2.6a)

s.t. ξ(s0) = ξ̃0, (2.6b)
d

ds
ξ(s) = fdyn(ξ(s), u(s)), ∀s ∈ [s0, sf ] (2.6c)

ξ(s) ∈ [ξ, ξ], ∀s ∈ [s0, sf ] (2.6d)
u(s) ∈ [u, u], ∀s ∈ [s0, sf ] (2.6e)

where Tref in the objective function (2.6a) is a sufficiently small “target time”. (2.6b)
is the initial value condition that depends on state measurement or state estimation.
(2.6c) requires that the evolution of system dynamics conform to system dynamics
and it is formulated as ordinary differential equations (ODE). (2.6d) and (2.6e)
impose physical restrictions on state and control in the form of intervals.

Although the least-squares objective function in formulation (2.6) is a good ap-
proximation for the time-optimal objective, the choice of parameter Tref has a signif-
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icant impact on the outcome and it is difficult to determine. Authors in [47] propose
to directly set the progress time T as the objective function as shown in (2.7).

min
ξ(·),u(·)

T (2.7a)

s.t. ξ(s0) = ξ̃0, (2.7b)
d

ds
ξ(s) = fdyn(ξ(s), u(s)), ∀s ∈ [s0, sf ] (2.7c)

ξ(s) ∈ [ξ, ξ], ∀s ∈ [s0, sf ] (2.7d)
u(s) ∈ [u, u], ∀s ∈ [s0, sf ]. (2.7e)

The authors use a direct multiple-shooting method [68] for discretizing the prediction
horizon of the continuous OCP (2.7) into N intervals. Control in each interval is
piece-wise constant. The multiple-shooting approach differs from the single-shooting
method in how they handle system dynamics; the former discretizes both control
and state variables, whilst the latter discretizes only control variables. The multiple-
shooting method is better suited for high-dimension state spaces and long prediction
horizons, which is exactly the need for racing problems. The resulting formulation
as in (2.8) is thus in a standard form of time-optimal Nonlinear MPC. The subscript
k means that we are currently at the k-th control step.

min
ξi,ui

JN(ξ, u) = tN |k (2.8a)

s.t. ξ0|k = ξ̃k, (2.8b)
d

ds
ξi+1|k = fdyn(ξi|k, ui|k), i = 0, . . . , N − 1 (2.8c)

ξi|k ∈ [ξ, ξ], i = 0, . . . , N (2.8d)
ui|k ∈ [u, u], i = 0, ..., N − 1. (2.8e)

The challenge with formulation (2.8) is that the computationally efficient Gauss-
Newton method, which is based on first-order sensitivities, is no longer appropriate.
It must be solved using an exact Hessian-based technique that is based on second-
order sensitivities and is usually expensive. Thanks to the work in [69], where a time
and memory efficient algorithm is proposed using a novel symmetric algorithmic
differentiation scheme, the propagation of second-order derivatives is online feasible.
Combining this efficient method with the Hessian matrix regulation and condensing
techniques, authors in [47] finally succeed to solve (2.8) for real-time racing problem
in single-vehicle racing mode.

We note that a formulation similar to continuous OCP (2.7) is previously solved
in [70] for a Formula 1 vehicle racing problem. However, the selected solving tech-
nique is time-consuming and the calculation must be performed offline, making it
impractical for online use.

In this dissertation, we employ NMPC formulation (2.8) as a baseline controller
for the autonomous race car in the single-vehicle racing mode. We are interested in
how to enable its online execution and extend it to the head-to-head racing mode.
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2.5.3 Ingredients for solving NMPC
In this subsection, we introduce ingredients for solving NMPC. We write NMPC
formulation in a generic and compact form as in (2.9).

min
y

f(y) (2.9a)

s.t. g(y) = 0 (2.9b)
h(y) ≤ 0 (2.9c)

where we have vector y = (ξi, ui). (2.9a) represents a generic objective function,
while (2.9b) and (2.9c) represent equality and inequality constraints.

The local optimal solution y∗ of (2.9) satisfies the Karush-Kuhn-Tucker (KKT)
conditions, i.e. there exists multiplier vectors λ∗ and µ∗ such that the following
equations hold:

∇yL(y∗, λ∗, µ∗) = 0 (2.10a)
g(y∗) = 0 (2.10b)
h(y∗) ≤ 0 (2.10c)
µ∗ ≥ 0 (2.10d)

hi(y∗)µ∗
i = 0, i = 1, . . . , Nh (2.10e)

where L(y, λ, µ) = f(y) + g(y)Tλ+ h(y)Tµ.
There are two families of Newton-type optimization methods [65] for solving

NMPC problems in form (2.9): Sequential Quadratic Programming (SQP) [71] and
Interior Point (IP) method [72].

With the SQP method, the KKT system (2.10) is sequentially solved. The KKT
condition (2.10a) can be linearized around initial guessed values (y, λ, µ) as (2.11).
(2.10b) and (2.10c) can be linearized as (2.12). Actually, (2.11) and (2.12) are
exactly the KKT conditions for the Quadratic Programming (QP) problem (2.13).
Solving (2.11) and (2.12) is equivalent to solving the sub-problem (2.13).

∇yL(y, λ, µ)+
∇y(∇yL(y, λ, µ)) ·∆y+
∇λ(∇yL(y, λ, µ)) ·∆λ+
∇µ(∇yL(y, λ, µ)) ·∆µ = 0

→ ∇yL(y, λ, µ) +∇2
yL(y, λ, µ) ·∆y +∇yg(y) ·∆λ+∇yh(y) ·∆µ = 0

→ ∇yf(y) +∇2
yL(y, λ, µ) ·∆y +∇yg(y) · (λ+ ∆λ) +∇yh(y) · (µ+ ∆µ) = 0

(2.11)

g(y) +∇yg(y) ·∆y = 0
h(y) +∇yh(y) ·∆y ≤ 0

(2.12)
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min
∆y

1
2∆yT∇2

yL(·)∆y +∇yf(y)∆y

s.t. g(ȳ) +∇yg(ȳ)∆y = 0 | λ+ ∆λ
h(ȳ) +∇yh(ȳ)∆y ≤ 0 | µ+ ∆µ

where L(·) = f(ȳ) + g(ȳ)T λ̄+ h(ȳ)T µ̄

(2.13)

After obtaining the QP solution (∆y,∆λ,∆µ), we update (ȳ+, λ̄+, µ̄+) as in
(2.14), where α is the step size that can be varied. We repeat the initialization
and calculation of QP sub-problems until the original KKT condition (2.10) is fully
satisfied.

ȳ+ = ȳ + α∆y
λ̄+ = λ̄+ α∆λ
µ̄+ = µ̄+ α∆µ

(2.14)

We should mention that the QP sub-problems are convex only when the Hessian
matrix∇2

yL(·) is positive and semi-definite. Convexification procedures are available
in [73] and [69] to regularize the Hessian matrix. One example approach is to use
the mirroring technique to ensure the convexity of the QP sub-problems: by using
the eigenvalue decomposition result, we can approximate the exact Hessian matrix
as H̃ := V abs(Γ)V T with H = V ΓV T , where the operator abs(γ) = γ( if γ > ϵ) or
ϵ( if γ ≤ ϵ), ϵ is a small positive constant value.

A major difference between the IP method and SQP is that the IP method solves
a modified KKT system (2.15) by introducing a positive parameter τ . This system
contains only equality constraints and can be solved with Newton’s method. We
start the calculation from a fixed value of τ . Once one approximated solution is
obtained, we decrease the value of τ and redo the calculation until the original KKT
conditions (2.10) are fully satisfied. In this way, we actually solve a sequence of
barrier problems (2.16).

∇yL(y∗, λ∗, µ∗) = 0 (2.15a)
g(y∗) = 0 (2.15b)

hi(y∗)µ∗
i = τ, i = 1, . . . , Nh (2.15c)

min
y

f(y)− τ
Nh∑
i=1

ln(−hi(y)) (2.16a)

s.t. g(y) = 0 (2.16b)

When the KKT system (2.10) is satisfied with the given precision, both IP and
SQP methods converge to the same local optimum, i.e. resulting in the same solu-
tion. The execution time of both methods depends on concrete problem structures
and available solvers.
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ACADO Code Generation Toolkit [74] is one state-of-the-art open-source soft-
ware for employing the SQP method. It provides options on discretization algo-
rithms (single or multiple-shooting), Hessian representation methods, condensing
methods (for exploiting the sparse Hessian matrix structure), convexification pro-
cedures, integration routines (for handling system dynamics in the form of equality
constraints), automatic differentiation methods, etc. The resulting SQP calculation
framework is self-contained C++ code that facilitates code implementation on em-
bedded systems. For further solving QP sub-problems, the ACADO toolkit offers
an interface for various QP solvers, such as qpOASES [75] (a parametric active-set
method) and HPMPC [76] (an interior-point QP solver). For employing the IP
method, the open-source software IPOPT [77] is a very popular option.

Let us review the solving techniques chosen in the works that are discussed in
Section 2.5.2. Authors in [53] and [47] use the ACADO Toolkit to generate an SQP
framework with an interface to QP solver qpOASES for solving the time-optimal
NMPC. The main purpose of choosing SQP in both works is to cooperate with the
real-time iteration (RTI) scheme [78] for online feasible implementation. We should
mention that the RTI scheme addresses the issue of online feasibility, but does not
ensure system constraints are not violated. In contrast, one goal of this dissertation
is to handle the same problem while ensuring constraint satisfaction. The NMPC
problem in [34] is also solved under the SQP framework, while its extension work
[51] uses the IP method under a commercial framework ForcesPro NLP [79]. In
this dissertation, we choose the SQP method and use the ACADO Toolkit for two
reasons. First, it is the same choice as in baseline works [53] and [47]. Second,
the ACADO Toolkit offers interfaces for integrating additional tools, such as Mixed
Integer Programming solvers that we will discuss in Section 2.6, and it is suited for
implementation on embedded devices.

2.6 Head-to-head racing
In this section, we first introduce general control techniques for the head-to-head
racing problem, more specifically for enabling safe and efficient overtaking maneu-
vers. Then, we present the principles of Mixed-integer programming (MIP), which
will be used in Chapter 4.

2.6.1 General techniques
In head-to-head racing mode, the ego vehicle runs together with the opponent vehicle
on the same racetrack. Both vehicles compete by attempting to overtake each other
or maintain the leading position in order to complete the lap faster.

We focus on the head-to-head racing scenario instead of directly studying the
multiple-vehicle racing problem for several reasons. First, the head-to-head scenario
is clear in structure and easy to analyze, making it an ideal setting to understand the
underlying principles of the racing problem. Second, by studying the head-to-head
scenario in detail, we can gain insights and develop strategies that can be extended to
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the multiple-vehicle racing scenario. An intriguing challenge that will be taken into
account in future work is how to build task execution models in multi-vehicle cases
to effectively allocate computation resources and prevent the violation of real-time
constraints as the number of race cars increases. The key action in the head-to-head
racing scenario, overtaking maneuver, is one main subject in this dissertation.

Overtaking behavior has been largely studied in the autonomous passenger car
driving domain for lane-changing/merging problems. Classical graph/tree-based
motion planning methods, such as A* and RRT, can take into account the appear-
ance of vehicles on different lanes. However, these methods are usually designed
for multiple-lane traffic systems, while in the racing scene, the vehicle can freely
maneuver on the track without adhering to specific lanes. More importantly, they
usually make use of imprecise kinematic models for a smooth and safe driving style
while maintaining a conservative minimum distance between vehicles for safety pur-
poses. It is not suitable for aggressive racing maneuvers in a highly dynamic racing
environment that requires the vehicle to operate close to the limits of handling. In
contrast, the optimization-based method, such as MPC, can catch the complex non-
linear system dynamics, which is suitable for racing scenarii. In [80], the authors
build a local risk map and use a robust tube-based MPC to generate a feasible and
safe trajectory for realizing one-side overtaking maneuvers in high-speed structured
environments. In [67], the vehicle’s objective is to follow the center line of a straight
track while avoiding collisions with static obstacles.

For the autonomous racing problem, few works take into consideration the dy-
namic opponents. In [81], trajectory planning is considered as an optimization
problem by maximizing the progress of the race car while penalizing deviation from
a reference trajectory using a receding horizon approach, on top of which a dynamic-
programming-based high-level corridor planner is proposed to generate convex con-
straints for moving obstacles. In [82], a similar idea of maximizing the progress of
the race car is used. The authors take into consideration the relative position and
velocity between the ego vehicle and the opponent vehicle for setting up constraints
to avoid a potential collision. In [83], an off-line viability kernel computation is used
to ensure continuous feasibility, which allows for improving the performance of the
online controller. The authors also take into account the interaction between two
race cars and formulate it as a bimatrix game, a type of game theory problem.

Recently, the learning-based method shows its potential for solving complex
decision-making problems by leveraging a large volume of data generated in ei-
ther simulation or the real world. For instance, authors in [84] succeed to tackle the
high-speed autonomous race car overtaking problem in the video game Gran Tur-
ismo Sport by using curriculum reinforcement learning. One challenge for such kind
learning-based methods is that overtaking is a sparse signal and can be difficult to
collect. In this work, we focus on the NMPC-based method for overtaking problems.
As a byproduct, it could generate well-structured data for use in learning-based ap-
proaches and improve data efficiency.

Mixed-integer programming (MIP) catches our interest since it can be used for
encoding discrete decisions in different tasks [85]: assignment problems, control of
hybrid systems, control of piece-wise-affine systems, and problems with non-convex
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constraints. Several MIP-based works exist for collision avoidance in structured en-
vironments. For example, it is used in [86] and [87] to encode and solve the two-lane
expressway overtaking problem. The authors represent the moving obstacles (vehi-
cles other than the ego vehicle) as rectangles enclosed by hyperplanes. They further
define the feasible region as the intersection of the complement of the obstacles. The
collision-free decision is to make the ego vehicle lay in at least one feasible halfspace
split by hyperplanes. The feasibility of each halfspace is set as a binary variable,
resulting in a MIP problem. In [88], authors aim to realize safe lane-changing ma-
neuvers in an MPC framework. A binary variable at each prediction step encodes
3 stages of the lane maneuver: Pre (following the initial lane), Peri (lane change),
and Post (following the goal lane). The objective is to prevent the total number of
Peri steps from falling below a threshold, i.e. to guarantee a sufficient time budget
for lane switching.

MIP can also be used in unstructured environments. We notice that in [89], a
MIP encoding method combined with the NMPC framework is used for solving the
subclass problem of autonomous racing, which requires the race car to stay as close
as possible to the optimal race line while crossing as many as possible pre-defined
bonus zones for collecting rewards. Their NMPC formulation’s objective function is
different from the one used in this dissertation: instead of directly optimizing the
time variable t, they set the minimization of the deviation from the optimal race line,
the maximization of the collected rewards from pre-defined zones, and other terms
as the objective function. In the Frenet-Serret frame, they define “gates” (free space
between obstacles, or areas where exist rewards) for cars to pass through. The MIP
problem arises from the combinatorial selection of “gates” at different prediction
steps.

2.6.2 MIP related method
We select MIP as a base method for handling the overtaking problem in this dis-
sertation because it can naturally model the decision-making series for overtaking
maneuvers and ultimately outcome efficient and optimal results by working together
with NMPC.

In this section, we first introduce how MIP can be used for modeling overtaking
maneuvers. Then, we discuss several sub-problem classes of MIP and the solving
technique. Finally, we talk about how we can reduce the complexity of MIP.

Basic concept

The overtaking maneuver can be readily encoded in a MIP form. As an example
shown in Fig. 2.5, the ego vehicle has the option to position its center of gravity
(CoG) in 4 different configurations: fully behind, fully in front of, to the left of,
or to the right of the opponent vehicle’s CoG. These configurations are represented
by the letters A, B, C, and D, respectively. For 2-step planning, the decision series
can be represented as (d1, d2) with d1, d2 ∈ (A,B,C,D). There are a total of 16
decision combinations that can be represented as integers in a MIP form and solved
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Figure 2.5: An example of overtaking maneuver encoding.

for a given objective. It is important to note that, in Fig. 2.5, the ego vehicle’s step
size is not restricted to a particular value in order to more clearly show the relative
position between the two vehicles. In Chapter 4, the step size is limited to the length
of the vehicle. This means that the decision series d1 = B or d1 = A & d2 = B
are infeasible since they require a step size larger than the vehicle’s length. The
MIP solver will automatically identify these decisions as violating the constraints
and eliminate them. A formal and detailed presentation on this MIP-based method
is discussed in Chapter 4.

Taxonomy of MIP and the solving technique

MIP is a general optimization problem containing decision variables in the form of
integers as in equation (2.17).

min
x∈R,z∈Z

f(x, z) (2.17a)

s.t. g(x, z) ≤ 0 (2.17b)

In the case that the objective function (2.17a) and the constraints (2.17b) are all
linear (i.e. f(x, z) = fT1 x + fT2 z and g(x, z) = A1x + A2z ≤ 0 with matrices A1, A2
and vectors f1, f2), it refers to Mixed Integer Linear Programming (MILP). In the
case that the objective function is quadratic (i.e. f(x, z) = 1

2x
TF1x + 1

2z
TF2z +

cT1 x+ cT2 z with matrices F1, F2 and vectors c1, c2) while the constraints are linear, it
refers to Mixed Integer Quadratic Programming (MIQP). Mixed Integer Nonlinear
Programming (MINLP) is a special form of MIP where the objective function f(x, z)
and/or the constraints g(x, z) are nonlinear.

In Section 4.1 of Chapter 4, we will introduce that the overtaking problem can
be written in a generic form (2.18), where f(·) denotes the objective function, g(·)
denote equality constraints, h∗(·) denote inequality constraints, along with vectors C
and d for representing constants and integer variables, respectively. It is an extension
of the generic formulation of time-optimal NMPC (2.9), while we separate inequality
constraints (2.9c) as two parts, h1(y) and h2(y), for distinguishing the constraints
with/without integer variables. Since both the equality constraints (2.18c) that
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represent the system dynamics and the inequality constraints (2.18d) that represent
the collision avoidance conditions are nonlinear, formulation (2.18) is actually an
MINLP problem.

min
y∈R,d∈Z

f(y) (2.18a)

s.t. g(y) = 0 (2.18b)
h1(y) ≤ 0 (2.18c)
h2(y) ≤ Cd (2.18d)

MINLP solvers are rarely built entirely from scratch [90]. Solvers are usually
classified either as extending NLP solvers to handle integer variables or as extending
MIP solvers to handle nonlinear objectives and constraints. In this dissertation, the
SQP technique, as one type of NLP solver for formulation (2.9), is still available for
solving (2.18) except that the intermediate sub-problem is no more a simple QP but
an MIQP. The previous QP sub-problem (2.13) is modified in an MIQP form:

min
∆y

1
2∆yT∇2

yL(·)∆y +∇yf(y)∆y

s.t. g(ȳ) +∇yg(ȳ)∆y = 0 | λ+ ∆λ
h1(ȳ) +∇yh1,y(ȳ)∆y ≤ 0 | µ1 + ∆µ1

h2(ȳ) +∇yh2,y(ȳ)∆y ≤ Cd | µ2 + ∆µ2

where L(·) = f(ȳ) + g(ȳ)T λ̄+ h1(ȳ)T µ̄1 + h2(ȳ)T µ̄2

(2.19)

There exist standard algorithms to solve MIQP (2.19), which are implemented in
solvers such as GUROBI [91], CPLEX [92] and COIN-Cbc [93]. The branch-and-
bound algorithm [94] is a popular technique choice for these solvers. It searches
in a “tree” with different integer settings to find a globally optimal solution. The
heuristic methods belong to another approach family that includes simulated anneal-
ing, genetic algorithms, Tabu search, etc. Its randomness reduces the possibility of
getting “stuck” in local optimality. In this work, we use the branch-and-bound al-
gorithm in the GUROBI solver. Once the sub-problem (2.19) is solved, we repeat
the SQP procedure (2.14) until the KKT value reaches the given precision.

Methods for reducing MIP complexity

Combining NMPC and MIP will result in a long execution time which is usually 2
to 4 times more than simple NMPC [95], depending on the length of the prediction
horizon. The additional complexity of MIP makes it more difficult to complete the
calculation in time. There are various approaches [85] for reducing the complexity
of MIP.

• Removal of constraints. In some cases, we can exploit the prior knowledge to
initially ignore some constraints. At each iteration, we check the feasibility of
the solution to the original problem, and constraints are re-applied if necessary.



26 CHAPTER 2 • AUTONOMOUS RACE CAR CONTROL: SOTA

One example of using this technique to reduce the complexity of MIP is shown
in [96], where MIP is used to prevent vehicles from collisions with circular
obstacles.

• Feasible initialization. If we can find a feasible solution as initialization (even
potentially sub-optimal), the branch-and-bound procedure can be terminated
earlier and finished with faster calculation. Using the dynamic programming
method as a high-level planner [34] is one effective solution for finding such
feasible initialization.

• Approximated Cost-to-go. We can calculate an exact solution for a horizon
in the near future and approximate the cost-to-go beyond this horizon, which
will largely simplify the optimization problem. For instance, in the case of [97]
for handling maneuvers of autonomous fixed-wing aerial vehicles, MIP is used
to plan a precise trajectory in a short prediction horizon, combining with a
cost function accounts for decisions beyond the planning horizon.

• Time-step grouping. The computation can be simplified by “sharing” the vari-
ables across adjacent time steps. Take the vehicle overtaking problem as an
example, the action usually lasts for several consecutive time-steps. Using the
time-step grouping will significantly reduce the problem size [98], but at the
cost of conservatism compared to the original problem.

In Section 4.4 of Chapter 4, we will propose a method similar to “time-step
grouping” for regrouping and simplifying decision sequences for overtaking maneu-
vers. Using Fig. 2.5 as an example, the combinational decision-making problem can
be reduced to 3 options: left-side overtaking (C,C), right-side overtaking (D,D), or
following (A,A). The resulting trajectory might be sub-optimal but the complexity
is decreased.

2.7 Conclusion
In this chapter, we reviewed general control techniques for the autonomous race
car racing problem and compared them with the methods developed for the au-
tonomous passenger car driving problem. We introduced the racetrack model, vehi-
cle dynamics, and their integration into a one-level time-optimal NMPC framework.
NMPC is selected as the base controller in this dissertation since it explicitly takes
into account system dynamics and physical constraints for generating optimal fea-
sible trajectories. It complies with the requirements of safety, high model accuracy,
and optimality in the autonomous racing problem. With decades of development,
NMPC has become more and more reliable and efficient. However, there remain a
few challenges when applying it in real-time systems, which is the research subject
in Chapters 3 and 5. We also described techniques for solving NMPC, which will be
used in subsequent chapters.

The head-to-head racing problem was also discussed in this chapter. We reviewed
various state-of-the-art methods for handling the overtaking problem, among which
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the MIP-based works were presented in detail. MIP is a natural form to encode
decision series for overtaking maneuvers, producing efficient and optimal results. We
will use this technique in Chapter 4 for modeling and solving the decision-making
problem.
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CHAPTER 3

Autonomous racing in single-vehicle mode

In this chapter, we first present the classical NMPC framework along with the
real-time related challenge that it raises. To address this problem, we introduce a
triggering-based approach that enables the online execution of long-horizon NMPC,
which is validated in an experiment.

3.1 NMPC framework and real-time related issue
NMPC provides locally optimal results at the cost of high complexity. We discuss
this issue using formulation (2.8) within the control framework. We recall that:
instead of discretization in terms of time t as in other NMPC formulations, the
prediction horizon of formulation (2.8) is discretized in terms of progress distance
s along the racetrack’s center line; at the progress step k, the initial state is noted
as ξ̃k, the state series in the prediction horizon is noted as ξi|k, i = 0, . . . , N , while
the piece-wise constant control series is noted as ui|k, i = 0, . . . , N − 1. ξ∗

i|k and u∗
i|k

represent the resulting optimal results.
In the classical NMPC framework, only the first-step control command in the

optimal control series, i.e. the feedback law µ(ξ̃k) = u∗
0|k, is deployed at the begin-

ning of the progress step k. On the left of Fig. 3.1, the orange dash line represents
the resulting optimal control series u∗

i|k, while on the right of the figure, the purple
solid line depicts the actually deployed 1st-step control command. The green solid
line illustrates how the system could evolve toward a state that differs from the
prediction. The rest of the optimal control series is dropped and an NMPC recal-
culation is supposed to be done during the progress step k. A new optimal control
series u∗

i|k+1 is available at the beginning of the progress step k + 1. On the right
of Fig. 3.1, the orange dash line represents the dropped optimal control series and
the purple dash line represents the newly generated optimal control series. The new
control command, i.e. the feedback law µ(ξ̃k+1) = u∗

0|k+1, will be deployed. This

29
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Figure 3.1: Deployment procedure for NMPC in the classical framework.

procedure repeats.
As shown in Fig. 3.2, the system evolution and the NMPC calculation occur

simultaneously. On one hand (the system evolution part), the vehicle moves forward
using the optimal control input u∗

0|k. The system ultimately evolves to a new state
ξk+1 during the progress time ∆tpk = tk+1 − tk. On the other hand (the calculation
part), we prepare the optimal control for the next evolution step: first, we measure
the current state ξk and predict the initial state at the beginning of the next step,
ξ̃k+1, using the integration of system dynamics or a simple interpolation; then, taking
this initial state as input, NMPC is calculated using time ∆tck. The necessary
condition for enabling online execution is that: ∆tpk ≥ ∆tck. Using the classical
NMPC framework, this condition is not always respected, especially in long-horizon
NMPC. The computed trajectory may be obsolete taking into account the progress
of the vehicle during the calculation, i.e. the result might arrive after the task
deadline.

3.1.1 A motivation example
We demonstrate this problem by using an experiment in the classical NMPC frame-
work. Formulation (2.8) and model parameters from the system identification in [34]
are used to generate a controller for the race car. We consider two representative
prediction horizon lengths, N = 15 and 30, to investigate the online feasibility under
different computational complexity. The SQP method is used for solving formula-
tion (2.8) with a pre-defined maximum iteration number 20, and a KKT precision
10−4 requiring that the violation of KKT condition (2.10) does not exceed this value.

Two well-studied racetracks, [47] and [81], are used for the vehicle to start with
the pose (s, ey, eψ) = (0, 0, 0) and completes a lap with the maximum velocity
1.6[m/s]. The first racetrack has straight sections and corners which have the same
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Figure 3.2: NMPC framework.

Table 3.1: Statistics for classical NMPC framework: progress time, calculation time,
and SQP iteration numbers.

Track 1 Track 2
horizon N 15 30 15 30

Per-step
progress time

[ms]

max 57.8 54.5 73.7 66.5
min 17.2 17.3 12.8 12.2

mean 33.2 32.7 33.9 33.4
Per-step

calculation time
[ms]

max 19.7 81.6 19.2 101.3
min 2.4 8.1 1.2 3.8

mean 6.8 27.0 6.4 25.2
SQP

iteration
number

max 15 11 14 18
min 2 2 1 1

mean 4.4 4.3 3.9 4.0
Lap time [s] 4.852 4.773 10.189 10.064

curvature, whereas the second is more complex with a combination of segments with
varying and large curvatures. Layouts of both tracks are shown in Fig. 3.7 and they
take respectively 145 and 300 progress steps to run through.

The experiment runs on a standard laptop with an Intel i7 processor with the
code optimization level set to be ‘-O3’. In order to observe the online non-feasible
cases, the calculation and the simulation are done alternately (instead of simulta-
neous execution): we get the vehicle state at step k, then we calculate the optimal
control series of NMPC; once the calculation finishes, we simulate the evolution
of system dynamics during step k + 1 by an integration method using the control
command from NMPC; the NMPC calculation and the simulation repeat.
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Figure 3.3: Histograms for the value of ∆t = ∆tpk −∆tck.

In Table 3.1, the first group of rows shows the statistic result for per-step progress
time. The vehicle’s actual traveled distance and velocity differ at each step, resulting
in a varied progress time. The second/third group of rows demonstrate the calcula-
tion time/SQP iteration numbers for solving each NMPC problem. They fluctuate
at each step due to the change in NMPC input. Since the maximum iteration num-
ber does not exceed the allowed maximum number 20, constraints in (2.8) are fully
satisfied within a precision 10−4. We can observe that the average calculation time
for N = 30 is about 4 times more than that for N = 15. To examine the constraint
∆tpk ≥ ∆tck for each step, we display the value of ∆t = ∆tpk −∆tck in Fig. 3.3. The
value of ∆t should always be positive to allow online execution. We see that on track
1, the constraint is totally satisfied with N = 15 while this is not the case for certain
steps with N = 30. On track 2, there are 2 steps out of 300 where the calculation
time exceeds the progress time by 2.2[ms] and 0.7[ms] respectively. With N = 30,
the constraint is violated at more steps.

From this motivation example, we can find that: with a long prediction horizon
(e.g. N = 30 in this experiment), the NMPC calculation time ∆tc might be higher
than ∆tp; with large curvature segments (e.g. corners on track 2), and when the race
car travels along the inside of the track, the actual traveled distance will be short
and results in a short progress time ∆tp. Both situations can prevent the constraint
∆tpk ≥ ∆tck from being satisfied in the classical NMPC framework.

Therefore, we need to find a method to guarantee that the online feasibility
constraint ∆tpk ≥ ∆tck is always satisfied, especially in the case of long-horizon NMPC
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which is appealing because of its superior performance in terms of lap time (as shown
in the last row in Table 3.1).

3.2 Triggering-based recalculation method
In this section, we propose a triggering-based recalculation method for NMPC in
single-vehicle racing mode, which ensures the online feasibility of NMPC with limited
computation resources, especially for one with a long horizon, and allocates the
computation load efficiently. To be precise, we use two triggering conditions in this
method: one for ensuring the constraint ∆tpk ≥ ∆tck will be respected, and another
one for maintaining the performance in terms of lap time while using as less as
possible the computation resources. The latter is related to the type change of
racetrack segments, which is indicated by the curvature change on the racetrack’s
center line. To the best of our knowledge, no triggering methods using either of the
above two conditions for NMPC recalculating have been previously proposed in the
literature.

3.2.1 Basic concept
The triggering method is well-studied in path-tracking problems. For example, au-
thors in [99] propose two triggering modes: self-triggering and event-triggering. The
difference is that the event-triggered mode relies on the environment and requires
continuous measurement of system states, while in the self-triggered mode, the next
triggering point is pre-computed based on the current state and a predicted con-
trol sequence. In [100], authors determine the threshold in an event-based trigger-
ing method by applying the statistical method to the historical data. Through an
experiment, they demonstrate that their approach reduces the computational and
communication burdens without compromising performance. Both works attempt to
alleviate the computation burden in the task of path tracking (tracking/stabilizing
MPC problem, as defined in Section 2.5.1 of Chapter 2), which is distinct from
ours. The triggering-based method used in this work aims to ensure that the time
budget is respected while maintaining sufficient system performance and leverag-
ing computation resources efficiently in a time-optimal control problem (economic
MPC problem, as defined in Section 2.5.1 of Chapter 2). Moreover, the triggering
conditions used in these 2 works differ from ours.

In our method, the first triggering condition for an NMPC recalculation is
straightforward: waiting for a sufficient amount of calculation time to be avail-
able. It allows us to run long-horizon NMPC without exceeding the allotted time
budget. The second triggering condition is inspired by human drivers’ behavior in
single-vehicle racing mode. They have been observed to adjust the intended trajec-
tory only when they are aware that the vehicle is about to enter a track segment
that is different from the one they had originally planned for (e.g. from a straight
line to a corner, or in reverse). It inspires us that the planned trajectory of NMPC
needs to be significantly changed only when the vehicle is about to run into different
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racetrack types. In other words, it is only necessary to recalculate NMPC under this
specific circumstance. Based on this fact, we propose the second triggering condition
to reduce total calling times to the NMPC solver while maintaining a sufficient level
of system performance.

Figure 3.4: Deployment procedure for NMPC using the triggering-based method.

Our triggering method actually belongs to the self-triggering mode. As shown
in Fig. 3.4, m-steps in the optimal control series, instead of one single step in a
classical framework, will be deployed. The main problem is to define a triggering
condition for determining the value of m. In the experiments in Section 3.3, we
will demonstrate that our triggering method significantly reduces the number of
recalculations while still maintaining comparable lap times to the classical NMPC
framework, in which recalculations occur at every progress step. It is worth mention-
ing that we solve NMPC under this triggering method by the SQP procedure (2.14)
until its convergence. In this way, the convergence criteria of NMPC can naturally
guarantee that the system constraints are not violated within given precision.

3.2.2 Triggering conditions
As the first triggering condition, we require that the progress time between the
current step k and recalculation step k + m to be long enough for finishing the
recalculation in time budget C: ∆tpk = ∆tpk→k+m = tk+m − tk ≥ C ≥ ∆tck, 1 ≤ m ≤
N − 1. We should find a minimum step number m1 for satisfying this constraint.

To save computation resources, we reuse m2,m2 ≥ m1 steps in the NMPC predic-
tion horizon until other factors trigger the recalculation. In the following paragraphs,
we present the second triggering condition based on the curvature of the racetrack’s
center line κ(s), which depends on the progress s along the center line and indicates
the type of segments of the racetrack. As an example, we demonstrate in Fig 3.5
that racetracks used in Section 3.1 are characterized by the curvature distribution.
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Figure 3.5: Curvature distribution for the center line of racetracks used in Section
3.1. The layout of both tracks can be found in Fig. 3.7.

Intuitively, we can scan the curvature change value and when it is greater than
a threshold ϵκ, a recalculation will be triggered. At step k, we check for a candidate
recalculation step k+i, i = 1, . . . , N−1. The end of this potential prediction horizon
is at step k+i+N . If there is a significant difference between the racetrack curvature
at step k + i + N and step k + N (i.e. the end of the current prediction horizon),
the recalculation of NMPC could provide us with a different optimal trajectory;
otherwise, the resulting trajectory should not be significantly different from the
previous optimization result. The condition is formally expressed as finding the first
i = m, i ∈ [1, . . . , N − 1] such that:

∆tpk→k+i = tk+i − tk ≥ C

and |κ(sk+i+N)− κ(sk+N)| ≥ ϵκ
(3.1)

The first term is a necessary condition for meeting the requirement of the time
budget. The second term indicates the potential change of the optimal trajectory. It
is meant to trigger the recalculation as late as possible to save computation resources
while maintaining the system’s performance in terms of lap time.

It is difficult to calculate the first term in (3.1) since the progress time at step
k+i, tk+i, is an unknown future state variable. However, we can make a conservative
estimation of the vehicle’s traveling path: assuming that it travels along the inner
boundary of the track (the side of the track that is closer to the center of the curve,
as shown in Fig. 3.6), the vehicle will take the shortest route which results in the
shortest progress time. We use a simple geometric relation to under-approximate
the progress time between steps k + j and k + j + 1, 0 ≤ j < i as:

∆tj,min = dprogress
min /vego

max = ∆s · (1−
∣∣∣eymax · κ(sj)

∣∣∣)/vego
max ≤ tk+j+1 − tk+j.

Since we have ∆tpk→k+i = tk+i − tk = ∑i−1
j=0(tk+j+1 − tk+j) ≥

∑i−1
j=0∆tj,min, the trig-

gering condition is reformulated as finding the first i = m, i ∈ [1, . . . , N − 1] such
that:
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Figure 3.6: Estimation for vehicle’s traveling path.

∑i−1
j=0∆tj, min ≥ C

and |κ(sk+i+N)− κ(sk+N)| ≥ ϵκ
(3.2)

It is noteworthy that the second term in triggering conditions (3.2) can be re-
placed by other factors. For example, the difference between the predicted state
and the actually measured state can also be used as a triggering condition, which
can be studied in future work. In this study, we suppose that there is no external
disturbance or model mismatch that could cause this kind of state difference.

3.2.3 Initialization related issues
Skipping recalculation points makes it harder to design an initialization strategy.
In the classical NMPC framework, we have the optimal solution at progress step
k − 1, i.e. ξ∗

i|k−1, u
∗
i|k−1. Only the first step in the optimal control series, u∗

0|k−1,
will be applied. When we recalculate NMPC at progress step k, the state and
control at the first N − 1 prediction steps can be initialized by the previous optimal
state/control series (it is called “state/control shifting”, which is a key component
of the RTI method [101]):

ξi|k = ξ∗
i+1|k−1, i = 0, . . . , N − 1

ui|k = u∗
i+1|k−1, i = 0, . . . , N − 2

(3.3)

The state/control values at the last prediction step can be a direct copy from
the second last prediction step: ξN |k = ξN−1|k and uN−1|k = uN−2|k. Another option
is to only copy the control at the last prediction step uN−1|k = uN−2|k and estimate
the last step state by extrapolation: ξN |k = f integration

Runge Kutta(ξN−1|k, uN−1|k).
Using the triggering-based recalculation, the state/control shifting is only feasible

for the first N −m steps. For the remaining m steps, we currently use an all-zero
strategy with several exceptions, e.g. the velocity is set to be a constant non-zero
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value inside its value range. Although no initialization-related errors appeared in
the following experiments, this simple initialization method might need more SQP
iterations than other approaches to converge.

3.3 Experiment: baseline method v.s. triggering-
based method

In this section, we show the experiment results for single-vehicle racing, including
the performance at baseline and the performance of the suggested triggering-based
method.

3.3.1 Implementation and experimental setup
We first implement problem formulation (2.8) in the syntax of ACADO Code Gener-
ation Toolkit [102]. In this implementation, we use the vehicle model identification
parameters described in [81], which corresponds to a 1:43 miniature race car, and
set various physical constraints as listed in Table 3.2. We select code generation
options in ACADO Toolkit: Hessian approximation method [103] is set to EX-
ACT_HESSIAN ; discretization type is set to MULTIPLE_SHOOTING; QP solver
is set to QP_QPOASES [75]. We set the KKT value to 10−4 for the SQP procedure,
which means that the optimization process ends when the KKT condition reaches
this precision level, indicating that it is sufficiently optimal and all constraints are
satisfied as well. In terms of vehicle position, it means that the maximum precision
error is no more than 0.01[cm], which is relatively small and acceptable given that
the vehicle size is about 6[cm]. The maximum QP iteration number in an SQP
procedure is set to 20. After the configuration, an SQP framework is generated by
ACADO Toolkit.

Table 3.2: Physical constraints on state variables.

Variable Range
ey [−0.17,+0.17] m
eψ [−1.5,+1.5] rad
vx [0.05,+1.6] m/s
vy [−1.0,+1.0] m/s
r [−8.0,+8.0] rad
d [−1.0,+1.0]
δ [−0.6,+0.6] rad

∆d [−10.0,+10.0] s−1

∆δ [−10.0,+10.0] rad/s

The racetrack is characterized by sample points on the center line using Cartesian
coordinates. We create a cubic spline using these sample points and this spline allows
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us to readily obtain information on the curvature of the racetrack at any location.
Two classic racetracks are employed in the experiment: track 1, used in [47] with
the full length of 8.7[m] and track 2, used in [81] with the full length of 18.0[m].
Both tracks have a constant width of 0.34[m]. The vehicle is initially located at the
(s, ey, eψ) = (0, 0, 0) and runs along the racetrack for finishing a full lap.

We write a script to simulate the vehicle’s progress along the racetrack. We
recall that, as same as the motivation experiment in Section 3.1.1, the experiment
is based on alternate execution, a method that allows testing the controller even
though some steps were online infeasible due to constraint violations of ∆tpk ≥ ∆tck.
Both the baseline method and the triggering-based method operate in this alternate
manner: we get the vehicle state and calculate the optimal control series of NMPC;
once the calculation finishes, we simulate the evolution of system states for advancing
one step; the NMPC calculation and the simulation repeat.

In this racing scenario, the progress step length is selected to be 0.06[m] which
is close to the length of vehicles. The choice of horizon length N has an important
impact on the lap time performance and calculation time, which is discussed in
Section 3.3.2. In this simulation script, the functionality of visualization is also
provided. The raw data of the experiment is logged and will be used for data
analysis after the experiment.

The code implementation discussed above is stored in a code repository 1. The
following experiments are performed on a standard laptop featuring an Intel i7 CPU
and 32 GB of RAM under Ubuntu 18.04.

3.3.2 Racing with the baseline method

Table 3.3: Simulation results for single-vehicle racing using the baseline method.
Horizon length

N
Lap time [s] Mean calculation

time per step [s]

Track
1

15 4.852 0.137
20 4.802 0.171
30 4.773 0.245
40 4.768 0.355
50 4.767 0.483

Track
2

15 10.189 0.118
20 10.107 0.140
30 10.064 0.205
40 10.059 0.307
50 10.059 0.460

We test the single-vehicle racing scenario using the classical NMPC framework
as a baseline to compare the influence of different lengths N of prediction horizon on

1https://github.com/nanli42/NMPC_baseline_vs_triggering_based_method

https://github.com/nanli42/NMPC_baseline_vs_triggering_based_method
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the lap time. The result is shown in Table 3.3. For track 1, the lap times achieved
for N = 40 and 50 indicate that the minimum lap time is around 4.767 s. This shows
that N = 30 achieves a good enough lap time (0.13% slower than N = 50) while
maintaining a relatively low calculation time. N = 15 is also an appealing choice
because of its low computational cost. Experiments on track 2 show very similar
results. We use the prediction horizon N = 30 to conduct the following experiment
for testing the online feasibility of long-horizon NMPC with the triggering-based
method. We will compare its performance with this baseline method.

3.3.3 Racing with the triggering-based method

Parameter configuration

To ensure the robustness and efficacy of the triggering condition (3.2), careful con-
sideration should be given to the selection of the parameter ϵκ. A small value of ϵκ
makes the triggering condition more sensitive, thus, more calculations will be per-
formed. A large value of ϵκ makes it less sensitive and we might miss the recalculation
points that lead to the global optimal trajectory. We select ϵκ = 10% · (κmax−κmin)
as a compromise according to the general curvature condition on both tracks. An-
other important parameter to be determined is the time budget C. According to
statistics in Table 3.1, we find that the average calculation time of one QP is about
6.3[ms]. The total QP number is usually less than 20. We set the maximum allowed
QP number as 20 and give a 20% margin to estimate the WCET as time budget:
C = (1 + 20%) ·∆tmean observed time = (1 + 20%) · (20 · 6.3[ms]) ∼ 150[ms].

Resulting trajectory and check on triggering conditions

The resulting trajectory is shown in Fig. 3.7. We find that: on track 1 (resp. track
2), NMPC is triggered 12 (resp. 26) times for recalculation, while it is recalculated
145 (resp. 300) times in the baseline NMPC.

Starting from the triggering-based NMPC recalculation points (shown as big
green dots in Fig. 3.7), we find that the track type (indicated by the curvature
value of the racetrack’s center line) at the end of the prediction horizon (i.e. N = 30
steps away or N ·∆s = 30·0.06 = 1.8[m] away) is different from the one that is at the
end of the previous prediction horizon. It shows the effectiveness of the second term
in the triggering condition (3.2) for reacting to a potential trajectory modification.

We then verify whether the first term in (3.2) is satisfied for all recalculation
steps, i.e. whether the progress time is always long enough to allow the NMPC
recalculation to be completed. Fig. 3.9 gives an intuitive comparison of progress time
and calculation time at each step. Table 3.4 shows detailed statistical information.
The minimum progress time on track 1 (resp. track 2) is 196.5[ms] (resp. 161.8[ms]),
which is longer than C = 150[ms]. The maximum calculation time is 118.8[ms]
(resp. 144.6[ms]), which does not exceed C. As a result, the constraint on the time
budget is respected.
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Figure 3.7: Trajectories using the triggering-based method (N = 30) (Top/Down:
track 1/2). Green dots represent progress points triggering-based NMPC recalcula-
tion events; red points represent the baseline NMPC recalculation events. Colorbars
represent speed.
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Figure 3.8: Trajectories with/without triggering-based method (N = 30)
(Top/Down: track 1/2).
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Figure 3.9: Progress time and NMPC recalculation time (Left/Right: track 1/2;
Top/Down: without/with triggering method).

Table 3.4: Statistics for NMPC with triggering method (N = 30): progress time,
calculation time, and SQP iteration numbers.

Track 1 Track 2
Per-step

progress time
[ms]

max 820.0 819.2
min 196.5 161.8

mean 398.2 360.4
Per-step

calculation time
[ms]

max 118.8 144.6
min 25.4 24.3

mean 62.0 68.5
SQP

iteration
number

max 20 20
min 6 4

mean 10.2 10.4
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Table 3.5: Lap time [s] for baseline and triggering-based methods on 2 tracks.
Track 1 Track 2

baseline method N = 15 4.852 10.189
N = 30 4.773 10.064

triggering-based method N = 30 4.775 10.075

Table 3.6: Statistics of activation times of triggering conditions.
Track 1 Track 2

1st term in conditions (3.2)
is firstly activated 8 14

2nd term in conditions (3.2)
is firstly activated 4 10

two terms are activated
at the same time 0 2

Lap time and analysis on triggering conditions

We also check the performance in terms of lap time. By comparing the lap times
between different methods in Table 3.5, we find that the proposed method has a
slightly worse lap time than the baseline method with N = 30 but is still better
than the one with N = 15. It is also confirmed in Fig. 3.8 that the resulting
trajectories using the triggering-based method are quite close to those using the
baseline method.

The recalculation is only triggered when both terms of the triggering conditions
(3.2) are activated. The recalculation must be delayed as long as the first term is
not activated (i.e. the time budget is insufficient). Once the first term is active,
the recalculation can occur until the end of the horizon at the cost of a potential
loss of optimality. The second term aims at forcing the recalculation before the end
of the horizon by estimating that a change of curvature causes a loss of optimality.
As shown in Table 3.6, the recalculation is delayed by the time budget constraints
4 (resp. 10) times on track 1 (resp. track 2); in the rest of 8 (resp. 16) times
recalculation on track 1 (resp. track 2), the recalculation is triggered only when
there is the necessity to perform a re-planning, which is indicated by the change of
the curvature. We can conclude that the slight loss of optimality is caused by the
delayed recalculations for fulfilling the requirement of the first term in the triggering
conditions (3.2). It is still close to the optimal result because the second term in
the triggering conditions (3.2) relaunches NMPC efficiently, i.e. the recalculation is
launched in a sporadic manner without deviating too much from the global optimal
trajectory.

Using the following supplementary experiment, we analyze in detail the func-
tionality of both terms of the triggering conditions (3.2). Suppose that in case 1,
once the first term of the triggering conditions (i.e. ∑i−1

j=0∆tj, min ≥ C) is activated,
we launch the recalculation without waiting for the activation of the second term.
In case 2, after the activation of the second term (i.e. |κ(sk+i+N)− κ(sk+N)| ≥ ϵκ),
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we do not immediately launch the recalculation but wait until the end of the horizon
(the first term is automatically activated since the progress time is long enough to
cover the time budget). In case 3, we use the triggering conditions as normal, i.e.
launch the recalculation when both terms are activated.

Table 3.7: Analysis of two terms in the triggering conditions.
Track 1 Track 2

lap
time
[s]

cumulative
calculation
time [ms]

recalculation
number

lap
time
[s]

cumulative
calculation
time [ms]

recalculation
number

case 1 4.777 1153.2 22 10.071 2484.6 51
case 2 5.331 340.8 4 10.533 692.6 10
case 3 4.775 795.4 12 10.075 1743.0 26

From the testing result in Table 3.7, we can find that recalculations in case 1
are launched more than in the other 2 cases and it consumes more computation
resources. In case 2, the number of recalculations is reduced to a minimum but
at the cost of poor performance in terms of lap time. As shown in Fig. 3.10, its
resulting trajectory is much worse than the other 2 cases. In case 3, the number of
recalculations is between cases 1 and 2. On track 2, it has a slightly worse lap time
than case 1. On track 1, it has even a marginally faster lap time than case 1, which
may be due to the fact that NMPC only provides a locally optimal solution, and
thus, more recalculations do not necessarily result in a globally optimal solution. As
shown in Fig. 3.10, the resulting trajectories of case 1 and 3 are close to each other,
which demonstrate the effectiveness of the second term of the triggering conditions
(3.2).

Initialization related issue

From the statistics of NMPC recalculation in Table 3.4, we notice that several
NMPC recalculations reach the maximum iteration number, i.e. 20. To be precise,
on track 1 (resp. track 2), 1 out of 12 (resp. 3 out of 26) recalculation points
reaches the maximum iteration number, finishing with the KKT value 1.2 × 10−4

(resp. 2.3 × 10−4). As discussed in Section 3.3.3, the maximum precision error is
limited to 0.012[cm] (resp. 0.023[cm]), which is acceptable because it is small given
the size of the vehicle.

By comparing Table 3.4 with Table 3.1, we find that the average number of SQP
iterations using the proposed triggering method is about twice that in the classical
NMPC framework, resulting in a per-step calculation time that is also about twice
as long. This can be explained by the fact that the classical NMPC framework
benefits from a better initialization method, i.e. state/control shifting, as discussed
in Section 3.2.3. With the current simple initialization, the proposed triggering-
based method needs more SQP iterations to make the NMPC algorithm converge.
To further reduce the iteration number and thus reduce the total calculation time, a
better initialization method should be studied in future work. One interesting study
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Figure 3.10: Trajectories using different configurations of the triggering conditions
(Top/Down: track 1/2). Dots represent recalculation events.
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direction is to use imperfect but low-cost algorithms, such as A* [13] and RRT [14],
to make the initial states close to optimal.

3.4 Conclusion
This chapter presented NMPC for single-vehicle racing mode. We identified an
online feasibility issue with the classical NMPC framework: one-step recalculation
might become infeasible due to the violation of the necessary condition for online
execution: ∆tpk ≥ ∆tck. To enable the real-time execution of long-horizon NMPC,
we suggested a triggering-based method to perform m-step recalculation.

Experiments were performed to demonstrate the effectiveness of the proposed
method: long-horizon NMPC has a sufficient time budget to complete the computa-
tion, which is ensured by the first term in the triggering conditions; the computation
resource is conserved by skipping m−1 recalculation steps; the incorporation of the
second term in the triggering conditions, which detects potential changes in optimal
solutions, ensures that the results remain close to those of step-by-step recalcula-
tion. In the next chapter, we will extend NMPC to head-to-head racing mode, which
involves a decision-making problem for collision avoidance between vehicles.



CHAPTER 4

Autonomous racing in head-to-head mode

In this chapter, we extend the autonomous racing problem from single-vehicle rac-
ing mode to a more general mode: head-to-head racing. Studying this racing mode
serves as the foundation for research on the multi-vehicle (more than 2 race cars)
racing problem. Additionally, it provides inspiration for the development of au-
tonomous passenger cars for scenarii such as lane switching/merging.

We concentrate on the scene in which the ego vehicle is behind the opponent
vehicle. In the case that the ego vehicle is in the leading position, it behaves the
same as in the single-vehicle mode. The blocking behavior is not considered in this
research. We suppose that when the ego vehicle falls behind, it is the responsibility
of the ego vehicle to avoid the potential collision. Moreover, we assume that the
opponent vehicle’s trajectory is calculated by the same controller as the ego vehicle,
and the trajectory is provided to the ego vehicle. In future work, algorithms for esti-
mating the trajectory of the opponent vehicle can take the place of this assumption.
We impose a lower maximum allowable speed for the opponent vehicle than the ego
vehicle in order to observe the ego vehicle’s overtaking behavior in the experiment.

4.1 Introduction: decision-making for safe and ef-
ficient overtaking maneuvers

In this dissertation, we focus on one of the most critical problems in head-to-head
racing mode: how to realize safe and efficient overtaking maneuvers. The term “safe”
means that no collisions should occur throughout the overtaking maneuver. The
term “efficient” means that the control strategy should not be overly conservative.

In order to take use of the local optimality offered by NMPC, we consider ad-
dressing this problem within the NMPC framework. The objective is to model the
overtaking maneuvers as a decision-making problem, that is, to find a series of deci-
sions for each step in the prediction horizon, enabling the overtaking behavior while

47
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preventing potential collisions. We formally define the problem in (4.1) which is an
extension of formulation (2.8).

min
ξi∈R,ui∈R,di∈Z

tN (4.1a)

s.t. ξ0 = ξ̃0, (4.1b)
ξ′
i+1 = fdyn(ξi, ui), i = 0, ..., N (4.1c)
ξi ∈ [ξ, ξ], i = 0, ..., N (4.1d)
ui ∈ [u, u], i = 0, ..., N − 1 (4.1e)

hcoll(ξi, ξopp
i , di) ≤ 0, i = 0, ..., N. (4.1f)

where the function hcoll(·) represents the collision avoidance constraints between the
ego vehicle (with state ξi) and the opponent vehicle (with state ξopp

i ). The decision
di corresponds to different relative positions between two vehicles at each prediction
step.

The NMPC formulation (4.1a-4.1e) is in the form of Nonlinear Programming
(NLP) since it is actually an optimization problem that involves minimizing an
objective function while being subject to a set of constraints, where the equality
constraints that represent the system dynamics and the inequality constraints that
represent the collision avoidance conditions are nonlinear. We will introduce later in
Section 4.3.1 that constraint (4.1f) can be rewritten in a form of hcoll(ξi, ξopp

i ) ≤ Ci·di,
where hcoll is a function for representing the relative positions between two vehicles,
Ci are constants, and di are binary variables. The introduction of binary variables
makes formulation (4.1) result in an Mixed Integer NLP (MINLP) problem (2.18).

There are 2 main difficulties related to formulation (4.1). The first one is the
need to represent the vehicle’s projected 2-dimensional shape on the ground, a.k.a.
the footprint in the context of the robotics community [104], prior to representing
collision avoidance constraints (4.1f). Since the NMPC framework is developed in
a curvilinear coordinate, the footprint should adapt to the same coordinate. The
second difficulty is how to encode decisions at each step and how to solve the resulting
decision-making problem.

We deal with the first problem in Section 4.2. Two different approaches are
proposed for addressing the second problem. The approach based on Mixed Integer
Programming (MIP) [85] catches our interest since it can naturally encode collision
avoidance constraints as a combinatorial problem. We present in Section 4.3 how
to model and solve the problem using the MIP-based method. To enable the online
execution of the controller, in Section 4.4, we propose a method to group and simplify
overtaking decisions. In Section 4.5, we introduce the potential refinement of the
vehicle’s footprint and discuss its integration into the two suggested approaches.

4.2 Representation of the vehicle’s footprint
In this section, we investigate how to approximate the vehicle’s footprint. First,
we go over the state of the art of how the vehicle’s footprint is represented in
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the Cartesian coordinate. Then, we suggest a method for approximating it in a
curvilinear coordinate.

4.2.1 State of the art: the footprint in the Cartesian coor-
dinate

Authors in [105] propose to decompose the vehicle’s footprint into several circles for
building collision avoidance constraints between the ego vehicle and the oncoming
vehicle on a structured road. Authors in [106] extend this method for enabling over-
taking behavior on large-curvature roads using the artificial potential field (APF)
method that incorporates the distance between representation circles into a cost
function. To avoid an aggressive maneuver on large curvature roads, they propose
to set “touchable constraint circles” in front of and behind the ego vehicle (in con-
trast, the circles representing the vehicle itself are not “touchable”) for planning the
overtaking trajectory as early as possible. A similar concept is developed by authors
in [107] in a more generic and theoretical way. They represent the vehicle’s footprint
by using the control barrier function (CBF) in order to encode faraway environment
information into constraints.

For unstructured environments, authors in [108] represent the moving obstacle
as an ellipse and approximate the collision region using the Minkowsky sum. For
dynamic environments with uncertainties, authors in [109] build probabilistic colli-
sion regions and linearize them to a minimal polytope as the constraint, which will
provide probabilistic guarantees on the safety of motion planning.

4.2.2 Approximation of the footprint in the curvilinear co-
ordinate

We get inspiration from the state of the art of footprint representation in the Carte-
sian coordinate and will concentrate on how to appropriately approximate the ve-
hicle’s footprint in the curvilinear coordinate, in order to further make use of it in
the time-optimal NMPC framework (4.1).

In single-vehicle racing mode, dimension-related requirements only apply to the
distance between the vehicle’s center of gravity and the boundary of the track, which
is usually set as a value more than half the length of the vehicle’s diagonal. In
head-to-head racing mode, we must take into account the vehicle dimension also for
potential collisions between vehicles. To facilitate the handling of collision avoidance
constraints, we introduce the technique for representing the geometry of the vehicle
as intervals in the curvilinear coordinate system.

As shown in Fig. 4.1, the vehicle’s length and width are L and D. For sim-
plicity, we define an approximation of the vehicle’s footprint using a single circle
in the Cartesian coordinate system. Its center locates at (s0, ey0) in the curvilinear
coordinate system. This approximation simplifies the problem by disregarding the
orientation of the vehicle but limits the operational space as a consequence. To avoid
the circle being transformed into a shape that is difficult to handle in the curvilinear
coordinate system, we over-approximate the circle into a sector in the Cartesian
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Figure 4.1: Approximation of the vehicle’s footprint. The vehicle’s shape is approx-
imated as a sector (in blue) in the Cartesian coordinate and then converted into a
rectangle in the curvilinear coordinate.

coordinate system and then project it into the curvilinear coordinate system as a
rectangle. The vehicle’s footprint is represented as:

(s, ey) ∈ [s0 − Ls, s0 + Ls]× [ey0 − Le, ey0 + Le]

with Ls = 1
κ(s) arcsin

√
L2 +D2/2

1/κ(s)− ey0
, Le =

√
L2 +D2/2

(4.2)

In Section 4.5, we will discuss how to refine the approximation by first decompos-
ing the vehicle’s shape into multiple identical parts in the Cartesian coordinate, and
then representing them in the curvilinear coordinate using rectangles. In sections
4.3 and 4.4, we will use formulation (4.2) for ease of use.

4.3 MIP-based approach for overtaking problem
In this section, we first describe how Mixed Integer Programming (MIP) is used
to encode collision avoidance constraints at each step of the prediction horizon and
how to compute the optimal overtaking strategy, taking into account the relative
positions of both vehicles (the ego vehicle situated at left, right, ahead, or behind of
the opponent vehicle). Then, we discuss the experiment result using this MIP-based
method.

4.3.1 Encode collision avoidance constraints as a MIP
In this section, we first describe how to interpolate the trajectory of the opponent
vehicle for further integration into the collision avoidance constraints. Next, we set
up collision avoidance constraints using MIP for encoding overtaking maneuvers.

A requirement for setting up collision avoidance constraints is that: at each
progress step in the prediction horizon of the ego vehicle, we should identify paired
poses of both vehicles (i.e., the position and orientation of both vehicles existing at



4.3. MIP-BASED APPROACH FOR OVERTAKING PROBLEM 51

the same time instant) to represent their relative position for building constraints
(4.1f). The difficulty is that the ego vehicle’s prediction steps are discretized in terms
of progress s, while the trajectory of the opponent vehicle is usually estimated or
communicated in terms of time t.

Suppose that the trajectory of the ego vehicle is discretized at progress step
k. Based on the previous prediction of the ego vehicle at progress step k − 1,
we initialize a first guess for the ego vehicle’s N -steps progress time series in the
new prediction horizon: t̃egoi|k = tegoi−1|k−1, i = 1, . . . , N . Using this time series, we
estimate the paired position of the opponent vehicle, say between trajectory sampling
points [sopp1 , ey

opp
1 , topp1 ] and [sopp2 , ey

opp
2 , topp2 ]. Finally, we can use a linear interpolation

method for representing the opponent vehicle’s position at each prediction step
i, i = 1, . . . , N :

s
opp
i (tegoi|k ) = sopp

2 −sopp
1

topp
2 −topp

1
· (tegoi|k − t

opp
1 ) + sopp1

ey
opp
i (tegoi|k ) = ey

opp
2 −ey

opp
1

topp
2 −topp

1
· (tegoi|k − t

opp
1 ) + ey

opp
1

(4.3)

We now study how to represent the collision-avoidance constraints (4.1f) by
using the approximation of the vehicle’s footprint for both vehicles (4.2) and the
interpolation of position for the opponent vehicle (4.3). For the ego vehicle at
progress step k, the collision-avoidance constraint for each prediction step i = 1, .., N
in the NMPC horizon is:

(A) soppi + Ls(soppi , ey
opp
i ) ≤ segoi − Ls(s

ego
i , ey

ego
i )

OR (B) segoi + Ls(segoi , ey
ego
i ) ≤ soppi − Ls(s

opp
i , ey

opp
i )

OR (C) eyoppi + Le ≤ ey
ego
i − Le

OR (D) eyegoi + Le ≤ ey
opp
i − Le

(4.4)

We name each of these constraints using functions fA, fB, fC and fD so that
constraints (4.4) become: (fA(i) ≤ 0) ∨ (fB(i) ≤ 0) ∨ (fC(i) ≤ 0) ∨ (fD(i) ≤ 0).

The above constraints correspond to the following configurations: (A) the ego
vehicle is ahead of the opponent vehicle; (B) the ego vehicle is behind the opponent
vehicle; (C) the ego vehicle is at the left of the opponent vehicle; (D) ego vehicle is
at the right of the opponent vehicle. However, there is an overlap among these 4
configurations. We refine them into 4 new non-overlapping configurations, by adding
to cases (C) and (D) the constraint that the ego vehicle is neither totally ahead of
the opponent vehicle nor totally behind the opponent vehicle. We formally write
them as:

(fA(i) ≤ 0)
∨(fB(i) ≤ 0)
∨(fC(i) ≤ 0 ∧ (fA(i) > 0 ∧ fB(i) > 0))
∨(fD(i) ≤ 0 ∧ (fA(i) > 0 ∧ fB(i) > 0))

We then use the big-M method [110] to encode this disjunction into a more
standard set of constraints:
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

fA(i) ≤ c1 ·M
fB(i) ≤ c2 ·M
fC(i) ≤ c3 ·M
−fA(i) ≤ c3 ·M
−fB(i) ≤ c3 ·M
fD(i) ≤ c4 ·M
−fA(i) ≤ c4 ·M
−fB(i) ≤ c4 ·M

(4.5)

where ck ∈ {0, 1}, k = 1, 2, 3, 4 are binary variables satisfying c1 + c2 + c3 + c4 ≤ 3,
and M is a sufficiently large positive number.

We finally use the method from [111] to reduce the number of binary variables
from 4 to 2: 

fA(i) ≤ (1 + a1 − a2) ·M
fB(i) ≤ (1− a1 + a2) ·M
fC(i) ≤ (a1 + a2) ·M
−fA(i) ≤ (a1 + a2) ·M
−fB(i) ≤ (a1 + a2) ·M
fD(i) ≤ (2− a1 − a2) ·M
−fA(i) ≤ (2− a1 − a2) ·M
−fB(i) ≤ (2− a1 − a2) ·M

(4.6)

where a1 and a2 are binary variables. If a1 = 0, a2 = 1, the first constraint is active
and other constraints are relaxed. If a1 = 1, a2 = 0, the second constraint is active.
If a1 = a2 = 0, the third group of constraints (3rd - 5th constraints) is active. If
a1 = a2 = 1, the last group of constraints (6th - 8th constraints) is active.

For each prediction step in the NMPC horizon, we introduce 2 binary vari-
ables as shown in (4.6). In total, 2 · N binary variables are introduced in the
collision-avoidance constraints (4.1f). Following the sequential resolution of MIQP
sub-problems, the NMPC problem (4.1) will be solved. Finally, a N -steps collision-
free time-optimal control strategy for the ego vehicle is generated.

4.3.2 Experiment
We use the same experiment configuration as in Section 3.3. In the code implemen-
tation 1, the NMPC framework is generated by ACADO Toolkit [74] and the MIQP
problem is solved by the GUROBI Optimizer [91]. The ego vehicle is located at 3
possible initial positions, (0, 0), (0,−0.1), and (0, 0.1), to express a certain diversity
of competition scenarii. In different test scenarii, the ego vehicle starts running when
the opponent vehicle starts from the origin point (0, 0) and reaches a progress length
of 0.1 m, 0.2 m, . . . , 0.8 m for track 1 and 0.1 m, 0.2 m, . . . , 1.5 m for track 2. The

1https://github.com/nanli42/MIP_in_NMPC

https://github.com/nanli42/MIP_in_NMPC
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Table 4.1: Simulation result for head-to-head racing using MIP.

Horizon length
N

# of cases
where

collision
happens

Average
lap time

[s]

Average
calculation time
per step before

overtaking
[s]

Track
1

15 3/24 4.942 0.247
30 0/24 4.899 0.905

Track
2

15 0/45 10.277 0.243
30 0/45 10.148 0.832

vehicles’ initial longitudinal speed is set to 1.0 m/s. The maximum allowed speed
for the ego vehicle is 1.6 m/s, whereas the opponent vehicle’s maximum permissible
speed is 1.2 m/s. This constitutes 24 and 45 scenarii respectively for track 1 and
track 2. These scenarii cover overtaking maneuvers at different positions on both
tracks.

Table 4.1 summarizes the lap time and computation time in all scenarii. As
can be expected, a longer horizon yields better lap time and higher computation
cost. The trade-off between trajectory optimality and computation time naturally
depends on the available computing resources. On the other hand, a sufficient
horizon is necessary for finding feasible trajectories. Three failed cases with N = 15
on track 1 are due to a short prediction horizon: the ego vehicle is traveling at a
high speed and is too close to the opponent vehicle to safely brake, which it has not
anticipated this situation in advance.

A typical overtaking behavior resulting from the proposed method is presented
in Fig. 4.2. It corresponds to one of the 24 scenarii that we test on track 1:
the ego vehicle is initially located at (0, 0) and starts running when the opponent
vehicle reaches 0.8 m. The figure shows the moment that the ego vehicle arrives at
s = 5.04 m. From this example, we can observe the following behavior in the ego
vehicle’s prediction horizon: the ego vehicle plans to follow the opponent vehicle
from step 1 to 10 (condition B in (4.4) is active), to overtake the opponent vehicle
at the right from step 11 to 19 (condition D in (4.4) is active), to completely be
ahead of the opponent vehicle at step 20 (condition A in (4.4) is active) and to keep
this advantage until step 26, to keep at the left of the opponent vehicle at the last
4 steps (condition C in (4.4) is active). It demonstrates that the collision-free time-
optimal trajectory generated by formulation (4.1) is capable of enabling overtaking
maneuvers.
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Figure 4.2: A typical example of predicted trajectories of the ego/opponent vehicle
on track 1. Blue/green rectangles: the ego/opponent vehicle at the actual location,
followed by predicted positions at steps 5 / 10 / 15 / 20 / 25 / 30. Dot lines:
predicted trajectories of the ego/opponent vehicle.
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4.4 Simplified decision-making approach for over-
taking problem

In Section 4.3.2, the MIP-based method is validated in the simulation for generating
collision-free overtaking-enable trajectories. However, the calculation cost of NMPC
combined with MIP is high, making it difficult to employ in real-time scenarii.

In this section, we propose a simplified control strategy to set all overtaking
decisions (4.1f) on either the left or right side to achieve overtaking maneuvers while
also maintaining fast computation. Authors in [112] proposed a similar method
for switching the overtaking side between left and right, which is based on Model
Predictive Contouring Control (MPCC) [34]. They determine which side to overtake
by using a learning-based method and only carry out the computation for the chosen
side. Our work uses a different base controller: time-optimal NMPC (2.8). In our
work, trajectories on both sides are computed, potentially in parallel, and the one
that results in the faster progress time is selected as the driving strategy.

4.4.1 Deterministic control period and short-horizon NMPC
Before introducing the simplified control strategy, we describe a slightly modified
control framework for facilitating the online execution of the controller.

In the classical control framework, monitoring of the progress s is needed to
trigger NMPC recalculations with a non-constant control frequency, which costs
additional computation resources for continuously converting the pose information
in the Cartesian coordinate into the representation in the curvilinear coordinate
which contains s. We propose to launch the recalculation at a fixed frequency.
In this way, we monitor the time t instead of s for triggering the recalculation,
which is computationally cheap and more accurate. The classical control framework
discussed in Section 3.1 is therefore modified as follows.

The NMPC is calculated in the same manner as in the classical framework. As
shown in the left of Fig. 4.3, the prediction horizon is discretized in terms of progress
distance s into N steps. The optimal control series calculated for time instant t is
u∗
i|t, i = 0, . . . , N − 1. Instead of deploying control commands with integer multiples

of steps (i.e. steps at distance s = s0 + {∆s, 2∆s, . . . , (N − 1)∆s}), we release the
control periodically using the parameter T ctrl. As shown in the right of Fig. 4.3,
the deployed control is denoted as u∗(t → t + T ctrl) = [u∗

i|t], 0 ≤ i < NT , where NT

satisfies that 1 ≤ NT ≤ N & t∗NT −1−t ≤ T ctrl & t∗NT
−t > T ctrl. During the period

t→ t+ T ctrl, we recalculate the optimal control series u∗
i|t+T ctrl , i = 0, . . . , N − 1 for

deploying at the time instant t+ T ctrl.
With the appearance of the opponent vehicle (here we assume that the exact

pose of the opponent vehicle is available, while in Chapter 5, a specific algorithm for
detecting the opponent vehicle will be introduced), we should take into account the
evolution of the system dynamics of both vehicles. In other words, the constraints
are based on the opponent vehicle’s intended trajectory, which might become invalid
as time passes and lead to functional incorrectness. For safety reasons, we enforce a
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Figure 4.3: Deployment procedure for NMPC using periodic control.

safety distance dmin that allows the ego vehicle to have sufficient braking space and
time to react. In an extreme case, the ego vehicle follows closely to the opponent
vehicle with the maximum speed, thus the required braking distance is vego

max
2/2amax.

We also take into account the factor that: before receiving the braking command
from the control update, the ego vehicle continues to move forward. The safety
distance between the front of the ego vehicle and the rear of the opponent is thus
defined as dmin = vego

max
2/2amax +vego

max ·T ddl, where T ddl refers to the control deadline,
i.e. the time between the start and completion of the task. To ensure that the
task is completed before its deadline, we should update the control signal in a time
shorter than T ddl. In other words, we specify an upper bound for the control period,
T ctrl

max = T ddl = (dmin − vego
max

2/2amax)/vego
max, to prevent potential collisions caused by

control delays.
In addition to meeting the above requirement of functional correctness, we should

also guarantee that the controller has sufficient time to finish the calculation even
in the worst case. The minimum control period should be no shorter than the
time budget: T ctrl

min = C, where time budget C = WCETper iter(N) · Nmax
iter and

WCETper iter(N) represents the worst-case execution time (WCET) of one itera-
tion in the SQP procedure for an NMPC with the prediction length N . Finally, we
have the constraint on the control period: C = T ctrl

min ≤ T ctrl ≤ T ctrl
max = T ddl, i.e.

WCETper iter(N) ·Nmax
iter ≤ T ctrl ≤ (dmin − vego

max
2/2amax)/vego

max.
In the head-to-head racing mode, a quick reaction time, i.e. a short enough con-

trol period, is needed for avoiding a potential collision with the opponent vehicle.
Also, the procedure of SQP should always be completed to ensure the satisfaction
of system constraints (especially collision-free constraints). To cut down the com-
putation time below a given time budget (or a pre-determined control period), we
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employ a short-horizon NMPC, i.e. reduce WCETper iter(N) by shortening N . In
this way, we can recalculate the NMPC with high frequency. In head-to-head com-
petition, the correctness of the result (i.e. it must be delivered within the given
time budget) is of paramount importance. We may slightly degrade the lap time
performance by using short-horizon NMPC, but it is worth making this trade-off to
guarantee functional correctness. As an example shown in Table 3.1, long-horizon
(N = 30) has only a relatively small advantage compared to short-horizon (N = 15)
in terms of lap time: 1.6% and 1.2% better on the two tracks. This lap time dif-
ference is significantly smaller compared to the amount of time needed to react to
unexpected events in the environment (e.g. emergency braking to avoid a collision
with the opponent vehicle caused by the delayed control), which shows that using
short-horizon NMPC is a suitable choice for obtaining high reacting frequency in
head-to-head racing mode.

4.4.2 LOROFO (Left-side Overtaking, Right-side Overtak-
ing, and FOllowing) algorithm

While the MIP-based method provides an optimal choice among all possible overtak-
ing strategies (which relies on the relative position of both vehicles at each prediction
step), the introduction of integer variables makes the computation costly. In some
circumstances (e.g. when the onboard calculation resource is limited), we might
prefer to sacrifice some optimal performance in order to decrease the cost of cal-
culation. In both human racing scenarii and the numerical simulation presented in
Section 4.3, we can observe that overtaking maneuvers usually occur in successive
steps and only happens on one single side (either left or right). We can simplify the
control strategy as one-side overtaking, which is one kind of “Time-step grouping” as
discussed in Section 2.6.2. The resulting overtaking strategy might be sub-optimal,
but the computation time is reduced while safety is still guaranteed by the satisfac-
tion of collision avoidance constraints. The algorithm is named LOROFO (Left-side
Overtaking, Right-side Overtaking, and FOllowing).

A formal description of LOROFO is defined in Algo. 1, in which D1 represents
the distance threshold to trigger the overtaking strategy, a larger D1 value indicates
an earlier involvement in the planning for overtaking planning; D2 is the safe distance
in terms of ey, a larger D2 value corresponds to a larger lateral safety distance when
single-side overtaking is active; dmin is the emergency braking distance that allows
the ego vehicle to have sufficient braking space and therefore enough time to react.
Line 1-3 in Algo. 1 means that, if two vehicles are far away from each other, we
use NMPC formulation (2.8) to build the controller for its forward (FW) progress,
which is the same controller used in the single-vehicle racing mode. Otherwise, in
the prediction horizon of the ego vehicle, we find the first prediction step i where
collisions with the opponent vehicle might occur (line 5). Then, starting from step
i, we set up the constraints for the next M steps (i + M ≤ N) for left and right
side overtaking (LO and RO, line 6-8) as shown in Fig. 4.4. They can be solved in
parallel and the one resulting in a better lap time performance will be selected as
the optimal overtaking strategy (line 10). To ensure that this simplified overtaking
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Figure 4.4: An illustrative example for the LOROFO algorithm.

attempt is safe, we propose the following technique for the situation where both
sides overtaking is impossible: if two vehicles still keep a safe distance, we let the
ego vehicle run at the same speed as the opponent vehicle and continuously steer
towards it, i.e. follow (FO) the opponent vehicle (line 15-18) as shown in Fig. 4.4;
otherwise, the ego vehicle brakes (line 13).

4.4.3 Experiment
In this part, we demonstrate how to choose parameters in the LOROFO algorithm
and how it performs in an overtaking scenario.

Experimental setup

In this experiment, a Robot Operating System (ROS) [113] node 2 runs on the
NVIDIA Jetson TX2 (featuring two CPUs and one GPU) as the ego vehicle’s con-
troller. The CPU frequency is set to the maximum value: 2.0 GHz. We set the code
optimization option to ‘-O3’ for compilation.

We perform the experiment with a Hardware-in-the-Loop configuration: a sim-
ulator named f1tenth_gym_ros [114] runs on the laptop and interacts with the
controller running on the Jetson TX2 via a USB cable. The simulator sends the
odometry information to the controller. And the controller sends back the vehicle
speed/steering angle as the command input. The ping test indicates that the high-
est latency is less than 1[ms], which meets our experimental requirements. We use
the vehicle dynamics (2.2) and identification parameters described in [35], which
corresponds to the F1tenth vehicle model (a 1:10 miniature race car). The race-
track used in the simulator has the same shape as in [47], but is 10 times larger to
accommodate the size of the experiment target model.

2https://github.com/nanli42/ROS_impl_F1tenth/tree/master/src/f110_nmpc

https://github.com/nanli42/ROS_impl_F1tenth/tree/master/src/f110_nmpc
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Algorithm 1 Control strategy LOROFO in head-to-head racing
Input: the position and orientation of both vehicles.
Output: the control command for the ego vehicle.

1: prepare an NMPC problem formulation FW using formulation (2.8)
by ignoring the opponent vehicle

2: if (sego
0 > sopp

0 or sopp
0 − sego

0 > D1) then
3: solve NMPC FW problem
4: else
5: find the first prediction step i, 0 ≤ i ≤ N which satisfies:

|sego
i − s

opp
i | ≤ dmin

6: set up LO: eyopp
i +D2 ≤ ey

ego
j ≤ ey

max, j = i, . . . , i+M
7: set up RO: eymin ≤ ey

ego
j ≤ ey

opp
i −D2, j = i, . . . , i+M

8: solve LO and RO problems in parallel
9: if one of these converges to a feasible solution then

10: select the one with faster progress time
11: else
12: if sego

0 < sopp
0 and sopp

0 − sego
0 ≤ dmin then

13: brake by letting: vego = 0, δego = 0
14: else
15: calculate ∆ψ difference between the ego’s yaw and

the angle towards the opponent vehicle
16: suppose that the vehicle’s path follows the kinematic model:

δego = arctan(∆ψ/T ctrl · lvehicle/vego)
17: vego = vopp

18: apply vego, δego to perform FO strategy
19: end if
20: end if
21: end if
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WCET Measurements

Figure 4.5: Histogram of “NMPC FW” per-iteration execution time.

According to results from several preliminary experiments on the testing track,
we find appropriate values for the horizon length and the maximum iteration num-
ber: N = 10, Nmax

iter = 10. We use these values as parameters to test the NMPC
controllers on 100000 random sampling scenarii. An example of WCET distribu-
tion is shown in Fig. 4.5. Detailed statistics on the execution time of the different
controller components are provided in Table 4.2. Since LO/RO/FW share the same
NMPC problem structure with only the difference in one constraint (see lines 6 and
7 in Algo. 1), their performance is close to each other. We use an optimistic esti-
mation of the WCET for NMPC: WCETper iter(10) ≈ 3.0[ms]. The FO is a simple
reactive controller that requires quite a little execution time.

Table 4.2: Controller execution time on Jetson TX2 (in [ms]).
NMPC FOLO

per iter
RO

per iter
FW

per iter
max 7.333 7.380 7.322 0.027
99%∗ 2.928 2.929 2.822 0.007
mean 1.710 1.694 1.688 0.002

∗99% means the value at the 99th percentile in the distribution

NMPC Parameters

We recall the criteria discussed in Section 4.4.1 for choosing control period:

C = T ctrl
min ≤ T ctrl ≤ T ctrl

max = T ddl,

where C = WCETper iter(N)·Nmax
iter and T ddl = (dmin−vego

max
2/2amax)/vego

max. The safety
distance between the two vehicles’ edges is set to be the same as the vehicle’s length:
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dmin = 0.58[m]. The maximum velocity is vego
max = 2[m/s] and the maximum braking

acceleration is amax = 8[m/s2]. The upper bound for the control period is calculated
as T ddl = 165[ms]. We have the lower bound for the control period, i.e. the time
budget: C = WCETper iter(10) ·10 = 30[ms]. To react to the environment as quickly
as possible, we set the control period equal to its lower bound: T ctrl = C = 30[ms].

Overtaking Behavior

Figure 4.6: A typical scenario in head-to-head competition using the LOROFO
method. The ego/opponent vehicle is shown in blue/orange. The dotted lines are
planned optimal trajectories.

Using the predetermined value of T ctrl, we test the proposed control method
LOROFO (Algo. 1) in the simulator. A typical scenario is shown in Fig. 4.6.
In the beginning, the ego vehicle is behind the opponent: sego

0 = 0.0[m], eyego
0 =

0.0[m], eψego
0 = 0.0[rad] and sopp

0 = 7.0[m], eyopp
0 = 1.0[m], eψopp

0 = −0.5[rad]. At
t = 5.8[s], neither LO nor RO strategies give a feasible solution, but the distance
between the two vehicles is still safe. The ego vehicle then follows the opponent
vehicle: as seen in the second frame of Fig. 4.6, the previously planned optimal
trajectory (blue dotted line) is no longer employed because it is invalid at this time
and the ego vehicle uses FO strategy instead. At the time t = 7.8[s], only the LO
strategy is feasible (no space for RO). At t = 12.8[s], both LO and RO strategies
are feasible, the ego vehicle decides to attempt RO at this step since the predicted
progress time is shorter than the one on the left side. At t = 14.8, 16.8, 23.0[s],
the ego vehicle alters to LO strategy and finally succeeds at t = 24.2[s]. From this
time instant, the ego vehicle becomes the leader, it is thus the opponent vehicle’s
responsibility to prevent collisions. Since the two vehicles are close enough to each
other, the emergency braking of the opponent vehicle is triggered. The opponent
vehicle’s position remains nearly unchanged between t = 24.2[s] and 24.4[s], proving
that it succeeds to brake.

In summary, as seen in the simulation: the safety (collision-free) of the system
is ensured by the emergency braking mechanism (see lines 12-13 in Algo. 1); the
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execution time is guaranteed to be under the given time budget based on the WCET
estimation; the overtaking is enabled, and we get a near-optimal control strategy by
taking into consideration the possibility of both left and right side overtaking.

4.5 Refinement for vehicle shape representation
In Section 4.2, we approximate the vehicle’s footprint by first fitting it into a circle
with a radius equal to the diagonal of the vehicle. We then fit this circle into a
sector in the Cartesian coordinate and convert it to a rectangle in the curvilinear
coordinate. In this way, the vehicle’s footprint is represented in the form of intervals
as equation (4.2). It is actually a simple but relatively rough approximation since
it represents the vehicle’s footprint conservatively.

In the following, we refine this approximation by investigating the potential
to decompose the vehicle shape into two identical parts and then generalizing it
to the case of m-decomposition. Finally, we discuss how to integrate the refined
approximation into the collision avoidance constraints (4.1f).

4.5.1 Decomposition into multiple identical parts
As shown in Fig. 4.7, we first decompose the vehicle’s occupied area into two
identical rectangles and then cover them using two circles with radii equal to the
diagonal length of each decomposed rectangle. Two circles are approximated as two
sectors in the Cartesian coordinate, which are finally transferred into rectangles in
the curvilinear coordinate.

Figure 4.7: Refined approximation of the vehicle’s footprint. The vehicle’s shape is
decomposed into two rectangles which are covered by two circles. They are further
approximated as sectors (in blue and orange) in the Cartesian coordinate and con-
verted into rectangles in the curvilinear coordinate.

We suppose the vehicle has length L and width D, with a pose (s0, ey0, eψ0) in
the curvilinear coordinate. Centers of 2 circles are (s1, ey1) and (s2, ey2). We define
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the distance between the center of the left circle and the center of the vehicle as
a1 (red solid line in Fig. 4.7), the distance between the center of the vehicle and
the local center of the racetrack curve as b1 (yellow solid line in the figure), and the
distance between the center of the left circle and the local center of the racetrack
curve as c1 (green solid line in the figure). Two angles, α1 and β1, are defined as in
Fig. 4.7. For the right circle, we accordingly define a2, b2, α2, and β2.

The radius of each circle is R =
√

(L4 )2 + (D2 )2. We have the following interme-
diate calculation results:

a1 = a2 = a = L

4
b1 = b2 = b = 1

κ(s) − ey0

c1 = sgn (b)
√
a2 + b2 − 2ab sin eψ0, c2 = sgn (b)

√
a2 + b2 + 2ab sin eψ0

α1 = arccos b
2 + c2

1 − a2

2bc1
, α2 = arccos b

2 + c2
2 − a2

2bc2

β1 = arcsin R

|c1|
, β2 = arcsin R

|c2|
.

(4.7)

According to geometric relations, we calculate the center position of both circles and
their size indicators (Ls and Le) in the curvilinear coordinate system:

s1 = s0 −
α1

|κ(s)| , ey1 = 1
κ(s) − c1

s2 = s0 + α2

|κ(s)| , ey2 = 1
κ(s) − c2

Ls,1 = β1

|κ(s)| , Ls,2 = β2

|κ(s)| , Le,1 = Le,2 = R.

(4.8)

The vehicle’s footprint is finally represented by two rectangles in the curvilinear
coordinate system: [s1 − Ls,1, s1 + Ls,1]× [ey1 − Le,1, ey1 + Le,1] and [s2 − Ls,2, s2 +
Ls,2]× [ey2 − Le,2, ey2 + Le,2].

If we generalize it to a decomposition with m circles, for each circle i, i =
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1, . . . ,m, the radius is R =
√

( L
2m)2 + (D2 )2 and we have:

ai = −L2 + (L
m
· i− L

2m)

bi = 1
κ(s) − ey0

ci = sgn (b)
√
a2
i + b2

i − 2aibi sin eψ0

αi = sgn (a) arccos b
2
i + c2

i − a2
i

2bc1

βi = arcsin R

|ci|

si = s0 + αi
|κ(s)| , eyi = 1

κ(s) − ci

Ls,i = βi
|κ(s)| , Le,i = R.

(4.9)

The circle i is approximated as a sector and finally mapped into the curvilinear
coordinate system as the rectangle i: [si − Ls,i, si + Ls,i]× [eyi − Le,i, eyi + Le,i].

4.5.2 Integration of refined footprint into constraints

We suggest an approach to further incorporate the refined approximation of the
vehicle’s footprint into collision constraints (4.1f) in order to improve the perfor-
mance of the MIP and LOROFO method. We can calculate a minimum bounding
rectangle, i.e. an envelope, for covering m resulting rectangles in the curvilinear co-
ordinate. It is actually the leftmost and rightmost components that determine this
minimum bounding rectangle. We let m → ∞ and have R = D

2 , a1 = −L
2 , am = L

2
according to (4.9). The minimum bounding rectangle is formally written as:

(s, ey) ∈ [s1 − Ls,1, sm + Ls,m]× [min(ey1, eym)−R,max(ey1, eym) +R] (4.10)

We take the MIP-based method as an example for showing how the refined
footprint (4.10) can be integrated into the constraints. We can replace the previous
footprint approximation (4.2) with the refined one (4.10). The collision avoidance
constraints for each step i = 1, .., N in the prediction horizon of NMPC are rewritten
as (4.11), instead of (4.4), by partitioning the inequality constraints that contain max
and min functions.
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(A) soppm,i + (Lm,s)oppi ≤ sego1,i − (L1,s)egoi
OR (B) segom,i + (Lm,s)egoi ≤ sopp1,i − (L1,s)oppi

OR (C) (ey1
opp
i +R ≤ ey1

ego
i −R

& eym
opp
i +R ≤ eym

ego
i −R

& ey1
opp
i +R ≤ eym

ego
i −R

& eym
opp
i +R ≤ ey1

ego
i −R)

OR (D) (ey1
ego
i +R ≤ ey1

opp
i −R

& eym
ego
i +R ≤ eym

opp
i −R

& ey1
ego
i +R ≤ eym

opp
i −R

& eym
ego
i +R ≤ ey1

opp
i −R)

(4.11)

Although (4.11) has 6·N more constraints than (4.4), it can still be classified into
4 groups: (fA(i) ≤ 0)∨(fB(i) ≤ 0)∨(fC(i) ≤ 0)∨(fD(i) ≤ 0). The required number
of binary variables remains the same as before: 2 ·N (each binary variable has 2-bit
information and represents 4 conditions in total). The rest of the problem-solving
steps is the same as in Section 4.3.1.

Table 4.3: Simulation result for head-to-head racing using MIP and the refined
approximation of the vehicle’s footprint.

Horizon length
N

# of cases
where

collision
happens

Average
lap time

[s]

Average
calculation time
per step before

overtaking
[s]

Track
1

15 3/24 4.803 0.469
30 0/24 4.736 1.843

Track
2

15 2/45 10.085 0.411
30 0/45 9.913 1.416

We use exactly the same experiment settings as in Section 4.3.2. The result is
shown in Table 4.3. By comparing it to Table 4.1, we can see that the lap time
performance is improved when using the refined approximation of the vehicle’s foot-
print. As shown in Fig. 4.8, starting from the same position and with the same
condition, the method with the refined footprint approximation allows for a closer
distance between two vehicles, while the method with the rough approximation is
more conservative and keeps a larger distance. However, using a less conservative
approximation also leads to more aggressive racing behavior, as indicated by the
higher number of collisions in Table 4.3. Additionally, the use of complicated repre-
sentation (4.9) and the inclusion of more constraints in (4.11) contribute to a longer
calculation time.
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Figure 4.8: A typical example of predicted trajectories of the ego/opponent vehi-
cle on track 2 (Left/Right: using a rough/refined approximation for the vehicle’s
footprint). Blue/green rectangles: the ego/opponent vehicle at the actual location,
followed by predicted positions at steps 5 / 10 / 15 / 20 / 25 / 30. Dot lines: pre-
dicted trajectories of the ego/opponent vehicle.

Therefore, the decision of whether or not to use a more accurate representation
of the vehicle’s footprint involves balancing the benefits of improved lap time against
the downsides of increased computational cost and potentially more aggressive driv-
ing style that it leads to.

Incorporating the refined approximation of the vehicle’s footprint into collision
constraints can also be achieved through other methods. One approach is to set
a safe relative position between each decomposed component of both vehicles as
collision avoidance constraints, i.e. the absence of footprint overlap. Taking the
MIP-based method as an example, we can replace the “4 configurations of relative
positions” (4.4) with:

(A) sopp,ji + (Ls)opp,ji ≤ sego,ki − (Ls)ego,ki

OR (B) sego,ki + (Ls)ego,ki ≤ sopp,ji − (Ls)opp,ji

OR (C) eyopp,ji + (Le)opp,ji ≤ ey
ego,k
i − (Le)ego,kj

OR (D) eyego,ki + (Le)ego,ki ≤ ey
opp,j
i − (Le)opp,ji

where j = 1, . . . ,m, k = 1, . . . ,m.

(4.12)

The rest of the procedure is the same as in Section 4.3.1. Using this approach, we
can get a more refined approximation of the vehicle’s footprint. However, it increases
the complexity of the calculation due to the increased number of constraints: instead
of using 4 · N constraints in (4.4), it needs 4 ·m2 · N constraints in total. For the
LOROFO algorithm, we should have a similar replacement for lines 6-7 in Algo. 1,
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which likewise increases the number of constraints by m2 times.
Another approach is to use a convex hull to enclose all m resulting rectangles in

the curvilinear coordinate. This requires further investigation to define the relative
positions between the convex hulls of two vehicles, which will be used to replace “4
configurations of relative position” (4.4) in the MIP-based method. Similarly, we
need to define these relative positions in the LOROFO method by replacing lines
6-7 in Algo. 1.

4.6 Conclusion
In this chapter, we presented two approaches for enabling safe and efficient over-
taking maneuvers in head-to-head racing mode. The main challenge is to efficiently
model the overtaking decisions within the time-optimal NMPC framework to obtain
optimal results.

In order to represent collision avoidance constraints in an easy-to-handle form,
we introduced a method and its refined version to appropriately define the vehicle’s
footprint in the curvilinear coordinate. Using the MIP-based method, we encode the
overtaking behavior into a series of integers within the NMPC framework. The big-
M method is used to convert the disjunction condition into a conjunction form to
facilitate the integration of decision-making into NMPC. This approach can model
intricate combinational overtaking actions and provide a reliable and effective control
strategy. To overcome the issue of the high complexity of MIP, we introduced
the LOROFO algorithm to simplify this decision-making problem. It is based on
the NMPC framework and works with a deterministic control period and a short
prediction horizon. In the experiment, the LOROFO algorithm is validated to be
online feasible and to offer a satisfactory control strategy.
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CHAPTER 5

Task execution model for autonomous racing systems

In this chapter, we first introduce a generic system architecture for the autonomous
racing problem. Then, we study a task execution model for mapping software com-
ponents in the system, which is a Directed Acyclic Graph (DAG), onto an embedded
system. The feasibility and performance of the proposed model are finally examined
using a Hardware-in-the-Loop simulation.

5.1 A generic system architecture
In this section, a generic system architecture is proposed to assist us in understanding
how different algorithms work together to form a coherent and time-sensitive system.
We first present software components of an autonomous racing system. A DAG is
then built up for representing dependencies between different components. Finally,
we compare different computation platforms for enabling the online execution of
software components in the DAG.

5.1.1 Software components
We assume that the vehicle is equipped with the Light Detection and Ranging (Li-
DAR) sensor to sense the surrounding environment, as well as odometry information
to roughly estimate its movement. They serve as input for opponent detection and
self-localization algorithms. The Algo. 1 LOROFO described in section 4.4 is used
to generate a time-optimal and collision-free control strategy. The following subsec-
tions introduce different system components in detail.

Since racetracks are usually static, the majority of localization-related research is
based on a fixed 2D map, in the form of occupancy grids or landmarks. The map can
be built either from satellite images for outdoor racetracks or by a popular method,
Simultaneous Localization and Mapping (SLAM) [115] [116] and its advanced version

69
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GraphSLAM [117], for indoors racetracks. The following work uses a pre-defined
2D occupancy grid map without losing generality.

Opponent detection

In Chapter 4, we focus on the controller design and assume that the exact pose of the
opponent vehicle is provided as the controller’s input. However, such information is
not directly available in a realistic racing scenario. In this case, we rely on sensor
information such as LiDAR data to detect the presence of the opponent vehicle
and estimate its pose. This perception information will be further provided to the
controller. LiDAR-based opponent detection is largely studied in the community of
robotics and autonomous passenger car driving, which can be separated into two
groups: first, geometric clustering, e.g. Euclidean Clustering [118], it takes into
account basic geometric features of objects to be recognized; second, learning-based
method [119], it classifies the LiDAR reflection points into different categories, such
as track boundaries and outlines of vehicles respectively in racing cases.

Figure 5.1: Examples for showing relative poses between two vehicles: ego/opponent
vehicle in blue/orange. Blue points: LiDAR points captured by the ego vehicle. Red
points: laser rays reflected from the opponent vehicle.

Opponent detection in the head-to-head racing scenario is simpler than in a
general racing case. On a given 2D map, LiDAR points can be classified into 2
types: ones corresponding to the track boundary (blue points in Fig. 5.1) will lie on
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the borderline between the drivable and non-drivable zones (grey and black areas),
while others corresponding to the opponent vehicle (red points) will lie inside the
drivable zones (grey areas). The opponent vehicle’s shape is a rectangle with a
known size. From the view of the ego vehicle, LiDAR points corresponding to the
opponent vehicle are grouped into a form of either I-shape or L-shape (first-row v.s.
second-row images in Fig. 5.1). It is thus straightforward to determine the opponent
vehicle’s pose using its simple geometric characteristics.

Algorithm 2 Opponent Detection (OD)
Input: LiDAR points captured by ego vehicle; last pose estimation of the ego vehicle

(xego, yego, ψego)′; last driving command u.
Output: If the opponent vehicle exists, return: True, its relative pose to the ego

vehicle (∆x,∆y,∆ψ), and LiDAR points corresponding to the opponent vehicle;
otherwise, return False.

1: Load the static 2D occupancy grid map.
2: Estimate the current pose of the ego vehicle (xego, yego, ψego)est, using the com-

mand u and time duration ∆t (which is between the current time instant and
the time instant when the pose is lastly estimated):
(xego, yego, ψego)est = (xego, yego, ψego)′ + u ·∆t.

3: for i← 0, N do
4: Calculate the position of LiDAR point i using (xego, yego, ψego)est and informa-

tion of the laser ray i.
5: if LiDAR point i lies inside a drivable area of the grid map then
6: Collect it into set Sopp.
7: end if
8: end for
9: if Sopp = ∅ then

10: return False (i.e. No opponent exists.)
11: else
12: Use points in Sopp to find the vertices of the rectangle that represents the

opponent’s vehicle.
13: if 3 vertexes found then
14: Fit the rectangle shape into L-shape.
15: else
16: Fit the rectangle shape into I-shape.
17: end if
18: Infer the opponent vehicle’s relative position and orientation (∆x,∆y,∆ψ).
19: return True, (∆x,∆y,∆ψ), Sopp
20: end if

In the Algo. 2, we show how the Opponent Detection (OD) algorithm is designed
in our architecture. In lines 1-2, we roughly estimate the current pose of the ego
vehicle. In lines 3-8, we analyze each laser ray and collect LiDAR points potentially
corresponding to the opponent vehicle. If there is no such point, we return “False”
for reporting the absence of the opponent vehicle. Otherwise, in lines 12-19, we fit
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LiDAR points into a rectangle shape and infer the relative pose of the opponent
vehicle.

Self-localization

Figure 5.2: Example for showing Particle Filter algorithm. Ego/opponent vehicle
in blue/orange. Small orange arrows: pose of different particles. Big green arrow:
averaged pose estimation.

In a realistic racing scenario, the ego vehicle needs to infer its pose information
using onboard sensors. Particle Filter (PF) localization [120][121] is a widely used
approach. As shown in Fig. 5.2, it consists of two important phases: motion update,
the estimation of the vehicle’s pose is updated using a dynamic model; measurement
evaluation, the captured LiDAR points are evaluated to generate a matching score
for each particle’s pose. Finally, it calculates the most probable pose by averaging
the pose of all particles in a given grid map. In comparison to other methods of
localization, PF is fairly simple to implement. Furthermore, the calculation for
each particle can be parallelized, which will be favorable for systems with multi-core
CPUs and GPUs.

In this work, we employ the PF method to localize the ego vehicle. The standard
approach usually deals with a static environment, while in head-to-head competi-
tion there is a moving opponent vehicle. One possible solution for handling the
presence of the opponent vehicle is to sample the pose-pairs of both vehicles instead
of just sampling the ego vehicle [122]. However, this combination of both vehicles’
poses adds to the algorithm’s complexity. We propose to use a simple workaround
suitable for the head-to-head racing scenario: first remove laser rays obscured by
the opponent vehicle from the LiDAR data using the information provided by Algo.
2 OD; then perform a standard PF technique for localizing the ego vehicle. This
simple method enhances localization accuracy, particularly when two vehicles are
close to one another, while not increasing the algorithm’s complexity. Note that
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the removed laser rays represent only a relatively small range of angles. For ex-
ample, by supposing that the ratio of the vehicle’s length and width is 2:1, in an
extreme case when two vehicles are closely side-by-side, the obscured angles will be
arctan(2)·2 ≈ 127◦. Modern LiDAR usually covers a large field of view (FOV) [123].
For instance, in the subsequent experiment, the used LiDAR has a FOV of 270◦. A
trustworthy result from PF can still be obtained by using the remaining laser rays.
In the case of LiDAR with a small FOV, we should consider using cameras or other
sensors to obtain extra information to make up for this deficiency.

Algorithm 3 Particle Filter (PF)
Input: LiDAR points captured by ego vehicle; last pose estimation of the ego vehicle

(xego, yego, ψego)′; last driving command u; set Sopp from Algo. 2 OD; relative
position of the opponent vehicle (∆x,∆y,∆ψ).

Output: Pose of both vehicles.
1: Filter the captured LiDAR points by removing points that belong to set Sopp.
2: Perform the “motion update” phase using (xego, yego, ψego)′ and u.
3: Perform the “measurement update” phase using the filtered LiDAR points.
4: Calculate the average pose of the ego vehicle (xego, yego, ψego) of all particles.
5: Calculate the pose of the opponent vehicle: (xopp, yopp, ψopp) = (xego, yego, ψego)+

(∆x,∆y,∆ψ).
6: return (xego, yego, ψego) and (xopp, yopp, ψopp).

Algo. 3 formally describes our proposal for the self-localization algorithm. The
first line means to preprocess the LiDAR data. Lines 2 and 3 represent a standard
PF procedure. In the PF procedure, a key component called “ray marching” can be
performed on GPU for speeding up the evaluation of the particles’ pose. Lines 4-5
calculate the pose of both vehicles as the final result.

Control

To achieve the objective of time-optimal control, we use the online algorithm, Algo.
1 LOROFO, as the race car’s controller. We should be aware that this algorithm
does not explicitly take into account the latency between receiving the LiDAR data
and releasing the control command: as a controller, it receives as input the esti-
mated pose of both vehicles from OD and PF, which is calculated using the received
LiDAR data that date ∆t1 = tOD + tPF; its output will be released after the NMPC
calculation ∆t2 = tNMPC calculation.

To compensate for the latency ∆tlatency = ∆t1 + ∆t2, there are two different
approaches. The first one is to adapt the input of Algo. 1 from the measured
state ξmeasured to a predicted state ξpredicted, i.e. integrating an ordinary differential
equation (ODE) to simulate the evolution of system dynamics under ongoing control
command ucurrent:

ξcompensation = ξpredicted = f integration
Runge Kutta(ξmeasured, ucurrent,∆tlatency).

Using this compensated state as input, the controller generates a control command
that is adjusted for the control deploying time instant.
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The second approach is that: we still use the measured state as the input for
Algo. 1, however, instead of employing the control command u∗(t → t + T ctrl) for
time instant t, we use u∗(t + ∆tlatency → t + ∆tlatency + T ctrl) as the appropriate
control command during this control period T ctrl.

The approach to take depends on which task model we use. In brief, when the
latency ∆tlatency can be determined in advance, we use the first approach because it
is more accurate; otherwise, we use the second one.

5.1.2 Directed Acyclic Graph (DAG)
The aforementioned software components are not independent. Instead, a data flow
connects them and they function as a chain. We formally model this relationship
for further analysis.

Figure 5.3: Directed Acyclic Graph (DAG) for modeling software components and
data flow in the generic system architecture for head-to-head racing mode.

As shown in Fig. 5.3, each software component is considered as a node, and
the chain with nodes is modeled as a Directed Acyclic Graph (DAG) G = (V,E).
Each node v ∈ V is represented by a vertex which is characterized by the worst-case
execution time (WCET) c. In the figure, the solid edge (v, w) ∈ E means that
the node v must be completed before the node w can start the execution. Dashed
edges reflect the system’s input and output, whereas solid edges demonstrate data
dependencies between nodes. LiDAR data, the last control command, and the last
pose estimation of the ego vehicle are inputs for the first vertex (i.e. the source)
Opponent Detection (OD) and the second vertex Particle Filter (PF). OD passes
information that is related to the opponent vehicle to PF and sends the relative
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position to the controller FO. The vertex PF performs self-localization and provides
this information to controllers, which is either NMPC controller FW in the forward
phase (when two vehicles are far away from each other), or NMPC controller LO/RO
and controller FO in the overtaking phase. The last vertex (i.e. the sink) “central
controller” (CENTRAL) represents a simple program that aggregates results from
individual controllers and sends the control signal to motors. We should mention
that, in the overtaking phase, LO, RO, and FO can be parallelized using the fork-join
method [124].

5.1.3 Hardware platforms
A variety of mainstream computing hardware, including CPUs, GPUs, field-program
-mable gate arrays (FPGAs), application-specific integrated circuits (ASICs), and
digital signal processors (DSPs), is available for autonomous vehicles to meet the
needs of various types of computing workloads [125].

CPUs are used for general-purpose computation, which is relatively easy to pro-
gram but consumes more energy and is less efficient than other devices for certain
calculation tasks. GPUs are widely used for the acceleration of Deep Neural Net-
works and parallel image processing. NVIDIA DRIVE series is one of the currently
most powerful System on Chip (SoC) containing multi-core CPUs and a many-core
GPU. Such SoC is used as the main computation platform in several autonomous
racing competitions, e.g. F1tenth competition [114] and Roborace [126]. FPGAs can
be used for accelerating specific tasks, e.g. object tracking, to deliver a better per-
watt performance [127]. ASICs can save even more energy and computational time
for certain dedicated functions. One leading ASIC-based solution for autonomous
driving is MobilEye EyeQ5. DSPs such as Texas Instruments’ TDA can be used
as programmable vision accelerators to perform pre-processing on video streams for
computer vision tasks. These DSPs are directly connected to sensors and can greatly
improve the efficiency of such tasks. The main advantage of DSP is its energy ef-
ficiency but its usage is limited to specific tasks, e.g. opponent detection, object
tracking, etc.

In this work, we select NVIDIA Jetson TX2 as the testing platform since it is
used in a quite large number of autonomous systems. It is actually an SoC that
features a 256-core NVIDIA Pascal GPU, a Dual-Core NVIDIA Denver 2 64-bit
CPU, and a Quad-Core ARM Cortex-A57 32-bit MPCore. It is less efficient than
NVIDIA DRIVE series but more affordable for lightweight systems.

According to a survey on autonomous racing [5], the middleware Robot Operat-
ing System (ROS) is commonly used to simplify the deployment of algorithms and
to leverage the existing code in the robotic community. ROS basically uses a pub-
lish/subscribe design pattern: tasks are executed on different ROS nodes that can
receive/send messages from/to topics. An incoming message from the subscribed
topic will initiate the callback function in the ROS node. Another important func-
tionality provided in ROS is the Timer, which allows us to create a periodically
triggered execution sequence. In the later experiment, we use ROS to deploy the
DAG onto the selected hardware, i.e. NVIDIA Jetson TX2.
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5.2 Task execution model

In this section, we introduce a task execution model for mapping the DAG G =
(V,E) that is proposed in section 5.1.2 onto m (m ≥ 1) identical processor(s). The
DAG is regarded as a recurrent task. Each execution instance of the DAG is called
a job. We concentrate on the overtaking phase of the DAG because it features paral-
lelizable components and is more representative of workloads in autonomous vehicle
systems, whereas the forward phase of the DAG only consists of straightforward
sequential nodes.

We define the problem as how to obtain low end-to-end latency (i.e. short time
delay between the beginning of the source vertex of the DAG and the end of the
sink vertex of the DAG) but also high control update rate (i.e. short update period)
by exploiting the full potential of available processor(s). The end-to-end latency is
noted as L. The control update rate is noted as R. We have R = 1/T , where T is
the control period. A lower L can guarantee that the controller uses the most recent
data. R determines how frequently the control command is refreshed. A higher R
can ensure that the controller responds to the changing environment more actively.

We assume that the worst-case execution time (WCET) of each node has the
following relationship: cFO + cCENTRAL ≪ cOD + cPF < cLO = cRO. This assumption
is reasonable and can be confirmed in the experiment in section 5.3. We define the
WCET of the critical path as C = cOD + cPF + cLO/RO + cFO + cCENTRAL. Without
loss of generality, we simplify the problem by assuming that the DAG consists of
only two parallelizable computation components with the WCET C. We define the
term degreeDAG that refers to the maximum number of tasks in the DAG that can be
executed in parallel on an unbounded number of processors. We define another term
degree that refers to the actual number of DAG components that are executed in
parallel. In our case, degreeDAG = 2, meaning that there are at most 2 computation
components in the DAG running in parallel. Moreover, since degree is no more than
degreeDAG: degree ∈ (1, . . . , degreeDAG), we have either degree = 1 or degree = 2.

In order to compute latency L without interference from the rest of the system,
we assume that the DAG has the highest priority in the system.

5.2.1 degreeDAG = 2 and degree = 1

With degree = 1, two computation components in one job run after one another in
order to minimize the latency as L = 2C. m jobs can be launched on m available
processors with an overlap time. When operating at maximum efficiency, we have
a uniform period T and L = mT . We calculate the control period and the control
update rate as T = 2C/m and R = m/(2C).

We conclude that: the latency is fixed as 2C, while the control period can be
shortened (i.e. the control update rate can be increased) as the available processor
number increases. Taking m = 3 as an example, we show in Fig. 5.4 that the DAG
takes the full use of all 3 available processors with the control period T = 2C/3 and
the update date rate R = 3/(2C).
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Figure 5.4: An example for degreeDAG = 2 and degree = 1, on 3 available proces-
sors. Numbers on rectangles represent the release order of jobs. DAG components
belonging to the same job are marked with the same color.

5.2.2 degreeDAG = degree = 2
With degree = 2, when the available processor number m is even, i.e. m%2 = 0,
we can execute the two computation components strictly in parallel, which means
that they have the same release time. It is actually equivalent to the execution of
a single task on m/2 processors. The latency is thus fixed as L = C. Since we can
launch multiple jobs at the same time, the control period is T = C/(m/2) = 2C/m,
and the control update rate is R = 1/T = m/(2C). An example is shown in Fig.
5.5 for the case m = 4, where T = C/2 and R = 2/C.

Figure 5.5: An example for degreeDAG = 2 and degree = 2, on 4 available proces-
sors. Numbers on rectangles represent the release order of jobs. DAG components
belonging to the same job are marked with the same color.

When the available processor number m is odd, i.e. m%2 = 1, the two compu-
tation components can not be executed strictly in parallel, otherwise, there will be
one processor idle and wasted.
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Figure 5.6: An example for degreeDAG = degree = 2, on m (m is odd) available
processors. Numbers on rectangles represent the release order of jobs. DAG com-
ponents belonging to the same job are marked with the same color.

Suppose that we assign jobs in order: assign the first job to processors 1 and 2, the
second job to processors 3 and 4, ..., and the (m−1)/2-th job to processors m−2 and
m−1. One computation component in (m+1)/2-th job will be assigned to processor
m. Since we search for optimal performance, i.e. no idle time on processors, the
second computation component in (m + 1)/2-th job should be assigned to the first
available processor. The delay between the launching time of the two components is
noted as δ. Since the DAG is periodically launched, jobs share the same execution
pattern. In other words, in every job, the two components are launched successively
with a delay of δ. As shown in Fig. 5.6, ideally, the second component in (m+1)/2-
th job should be immediately launched on processor 1 once job 1 is finished, which
requires that (m− 1)/2 · 2δ + δ = C. Therefore, we can calculate the value of δ as
δ = C/m. The latency is L = C+δ = C+C/m. The control period and the update
rate are T = 2δ = 2C/m and R = 1/T = m/(2C).

5.2.3 degreeDAG = p

Although in our case the DAG has only parallelism degrees 1 and 2, it will be
intriguing to observe how a DAG performs with more parallelizable components,
which has some practical applications. For instance, assume that there are variants
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for left/right side overtaking strategy, one being safe but conservative and the other
being unsafe but with superior performance, the number of parallelizable compo-
nents in the DAG will increase as degreeDAG = 4. Another example is that, if there
are n, n > 1 opponent vehicles, Algo. 1 LOROFO should be changed to account for
at most n+1 homotopic overtaking trajectories rather than just two-side overtaking
trajectories. It will result in degreeDAG = n+ 1.

We suppose that there exists a DAG with degreeDAG = p and the WCET for
each computation component is C. In the following, We discuss two extreme cases:
one using the minimum degree and the other using the maximum degree.

degree = 1

In this case, tasks run in sequence. We can find that the latency is the accumulated
WCET of each computation component: L = pC. Since m jobs can be executed on
m available, we have the control period T = pC/m and the update rate R = 1/T =
m/(pC).

degree = p

In this case, we assume the use of the highest degree of parallelism, i.e. degree =
degreeDAG = p, and suppose that m ≥ p.

If m%p = 0, it is equivalent to the execution of a single task on m/p processors.
Therefore, we have L = C, T = C/(m/p) = pC/m, and R = 1/T = m/(pC).

Ifm%p ̸= 0, we first define some integers asN1 = m%p, N2 = N1·p, N3 = m−N2.
After assigning N1 jobs on the first N2 processors, the (N3 + 1)-th component in
the (N1 + 1)-th job will wait for the next available processor with a delay of δ after
the launching N3-th component. The total accumulated delay from the beginning
of the 1st job is (N2 + N3) · δ. Ideally, we should have (N2 + N3) · δ = C, i.e. let
the (N3 + 1)-th component in the (N1 + 1)-th job immediately launch on processor
1 once the 1st component of the 1st job is completed.

We can calculate the value of δ as: δ = C/(N2 + N3) = C/m. The latency
is L = C + (p − 1) · δ = C + (p − 1)C/m. The control period and the update
rate are T = p · δ = pC/m and R = 1/T = m/(pC). We show in Fig. 5.7
an example, in which m = 5, degreeDAG = degree = 3, C = 10. The latency is
calculated as L = C + (p − 1)C/m = 10 + 2 · 10/5 = 14, the control period is
T = pC/m = 3 · 10/5 = 6, and the update rate is R = 1/T = 1/6. All these values
are confirmed in the figure.

To ensure real-time compliance, the response time T resp should not exceed the
deadline T ddl: T resp ≤ T ddl. As stated at the beginning of this section, the DAG has
the highest priority in the system, which indicates that the following relationship
exists in the suggested task execution model: T resp = L. According to the analysis
of the LOROFO algorithm in section 4.4.1, the deadline is estimated as T ddl =
(dmin − vego

max
2/2amax)/vego

max. In the experiment, we will use both predetermined and
measured parameter values to confirm this real-time constraint T resp ≤ T ddl.



80 CHAPTER 5 • TASK EXEC. MODEL FOR AUTO. RACING SYST.

Figure 5.7: An example for degreeDAG = degree = 3, on 5 processors, C = 10. Num-
bers on rectangles represent the release order of jobs. DAG components belonging
to the same job are marked with the same color.

5.2.4 Summary

Table 5.1: Comparison of latency/update rate under different configurations.
degree L R

1 2C m/(2C)

2 m%2 = 0 C m/(2C)
m%2 = 1 C + C/m m/(2C)

In Table 5.1, we summarize the latency L and the update rate R for the DAG
under different configurations. We can find that, in our case, degree = 2 is always
preferred since it can always deliver a shorter latency with the same control update
rate as degree = 1. For the extended case that degree = p, we observe the same
result: with the same number of m, a higher degree is preferred for reducing the
latency L.

5.3 Hardware-in-the-Loop simulation
In this section, we test the proposed task execution model in a Hardware-in-the-
Loop simulation, in which the computation of the DAG is performed on the realistic
embedded device and interacts with a simulation loop on the laptop.
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5.3.1 Hardware and software configuration
All nodes in the DAG are implemented as ROS programs in C++ and performed
on the Jetson TX2. The onboard operating system is a tailed version of Ubuntu
(JetPack SDK 4.6 + Linux 4 Tegra 32.6.1) on which we use the PREEMPT_RT
patch to enable preemptive behaviors. In order to achieve consistent performance
and to maximally benefit from full computation resources, we disable CPU fre-
quency scaling and enter the “performance” mode. The CPU and GPU frequen-
cies are fixed to the maximum values: 2.0 GHz and 1.3 GHz, respectively. Linux
system calls sched_setscheduler, sched_setaffinity, pthread_setschedparam
and pthread_setaffinity_np are used for setting threads’ priority and for assign-
ing CPU cores.

Figure 5.8: Experiment setup with a Hardware-in-the-Loop configuration.

As shown in Fig. 5.8, we run a simulator named f1tenth_gym_ros [114] on
the laptop and interacts with nodes in the DAG that run on the Jetson TX2 via a
USB cable. As a comparison, in the Hardware-in-the-Loop configuration in section
4.4.3, only the controller runs on Jetson TX2, and it is supplied with exact pose
data of both vehicles. In this configuration, all nodes in the DAG run on Jetson
TX2. The last control command and the last pose estimation of the ego vehicle,
together with LiDAR data, are provided to these nodes for self-localization and
opponent detection. To assess the online execution capability of the controller, this
experiment is carried on in a simultaneous manner, where the calculation of tasks
and the vehicle’s dynamics evolution are performed concurrently. It is different from
experiments in Chapter 3 and 4, which run in an alternate manner for isolating the
effects of the controller from other factors

For the Particle Filter, we use the following configurations: particle number -
1000; motion dispersion in x/y/ψ - 0.1[m]/0.1[m]/0.25[rad].

5.3.2 WCET measurement
We first measure the WCET of each node in the DAG over 100000 randomly gener-
ated samples on one single CPU core. The horizon length for the NMPC controller
is selected as N = 10. An example of the execution time histogram is shown in Fig.
5.9 and the whole testing result is listed in Table 5.2. We notice a slightly different
behavior on two available types of CPU on Jetson TX2: NVIDIA DENVER2 CPU
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Table 5.2: Execution time of different nodes (in [ms]).

OD PF NMPC
LO

per iter
RO

per iter
FW

per iter

ARM
A57

max 0.624 7.774 7.333 7.380 7.322
99%∗ 0.399 6.612 2.928 2.929 2.822
mean 0.331 5.643 1.710 1.694 1.688

NVIDIA
DENVER2

max 1.732 13.879 11.270 11.159 11.298
99%∗ 0.546 6.019 3.651 3.578 3.493
mean 0.374 4.691 1.770 1.694 1.758

∗99% means the value at the 99th percentile in the distribution

Figure 5.9: Histogram of particle filter’s execution time for all 100000 samples (on
an ARM A57 CPU of Jetson TX2)

core has better average performance than ARM A57 CPU core for the node vPF
while slightly worse performance for other nodes; the observed maximum execution
time on DENVER2 CPU core is, in general, higher than A57 CPU core.

In the following experiment, we decide to deploy nodes in the DAG to ARM A57
CPU (featuring 4 cores in total) to make use of its computation efficiency. For the
NMPC-related nodes, we use the 99th percentile value in the distribution to define
an optimistic WCET for allocating resources in a way that maximizes efficiency and
minimizes waste. In case the actual calculation time exceeds this optimistic WCET,
the result from the previous calculation cycle will be reused. For the convenience
of implementation, we round up the WCETs to integers in milliseconds. We have
cOD = 1ms, cPF = 8ms. The maximum iteration number for QP sub-problems is set
to Nmax

iter = 10, thus we have cNMPC LO or RO or FW = 3ms ·Nmax
iter = 30ms. Nodes vFO

and vCENTRAL are implemented with deterministic codes with an execution time of
much less than 1ms. We let cFO = cCENTRAL = 0ms.

The assumption made in section 5.2, cFO + cCENTRAL ≪ cOD + cPF < cLO = cRO,
is confirmed: 0 + 0 ≪ 1 + 8 < 30. The WCET C defined in section 5.2 can be
calculated as C = cOD + cPF + cLO or RO + cFO + cCENTRAL = 1 + 8 + 30 + 0 + 0 =
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39ms. It is necessary to confirm the real-time constraint established in section 5.2.3:
T resp ≤ T ddl. We compute it with measured value of C and the assumption m ≥ p:
T resp = C + (p − 1)C/m ≤ 2C = 78[ms]. According to the calculation in section
4.4.3, T ddl = 165[ms]. The real-time requirement T resp ≤ T ddl is thus satisfied.

5.3.3 Implementation in Robot Operating System (ROS)

Figure 5.10: Visualization of ROS nodes/topics for the proposed generic architec-
ture. Ovals: nodes. Boxes: topics. Arrows: data flow.

We present in this subsection how nodes in the DAG are implemented in Robot
Operating System (ROS) and what data dependencies exist between them. As
shown in Fig. 5.10, the simulator runs as the ROS node gym_bridge on the laptop
to provide sensing information (odometry, LiDAR scan) and to collect the driving
command from both vehicles. The implementation can be found in a code reposi-
tory1.

For the ego vehicle, the first node in the DAG is implemented as opp_detect,
using LiDAR scan/the last driving command/the last pose estimation of the ego
vehicle as input, and generating opponent-related information as output. The
second node is implemented as pf_cpp. It takes LiDAR-related information and
the last driving command as input and infers the pose of both vehicles as output.
The node nmpc_ctrl_node_ego serves as the controller, which takes the vehicles’
pose information as input to compute an optimal driving command. The node

1https://github.com/nanli42/ROS_impl_F1tenth

https://github.com/nanli42/ROS_impl_F1tenth
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central_ctrl_node collects the driving command from the ego vehicle and sends
it back to the simulator. These nodes are all performed on Jetson TX2.

For the opponent vehicle, the node nmpc_ctrl_node_opp runs on the host laptop
as the controller. We suppose that it has direct access to the pose information of
both vehicles.

Once the number of available processors m is known, we can calculate the control
period T according to the selected parallelism degree. The ROS Timer is used for
periodically launching DAG jobs on available processors with the time interval T .

5.3.4 Impact of parameters L and R

As discussed in section 5.2, a shorter latency L allows us to use more recent data
from the environment, and a higher control update rate R enables us to react more
quickly to the surroundings. We use a representative simulation example to demon-
strate this property. In this simulation, the ego vehicle starts with the pose of
(x[m], y[m], φ[rad]) = (0,−1, 0); the opponent vehicle starts at (6, 0, 0).

We decide to compare how the ego vehicle behaves under two configurations
with a large difference in L and R: configuration 1 - with degree = 1 and m = 1,
L = T = 2C = 78[ms], R = 1/T = 12.8[Hz], which is actually equivalent to the
case without scheduling; configuration 2 - with degree = degreeDAG = 2 and m = 4,
L = C = 39[ms], T = C/2 = 19.5[ms], R = 1/T = 51.2[Hz].

Figure 5.11: Screenshots of vehicles’ pose at different time instants. Blue/orange
rectangle: ego/opponent vehicle. Dot lines: planned trajectories. Green area: the
collection of a large number of arrows representing the pose of each particle in PF.
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As seen in Fig. 5.11, since the opponent vehicle is always ahead of the ego
vehicle in the 4 given time instants, it is unaffected by the ego vehicle and has
exactly the same trajectory in both configurations. Until t = 4.0s, the ego vehicle
behaves the same in both configurations. Around t = 5.0s, with configuration 1,
the ego vehicle keeps trying to right-side overtake (RO) the opponent vehicle and
finally be “blocked”. It turns to the following mode (FO) and recovers to use the
NMPC controller later. Also around t = 5.0s, with configuration 2, the ego vehicle
reacts more frequently to the opponent vehicle and realizes in advance that RO
is infeasible. It has time to switch to left-side overtaking (LO) and finally avoids
getting “blocked”. By comparing the ego vehicle’s location at time instant t = 7.0s,
we can find that shorter L and higher R are advantageous.

5.4 Conclusion
In this chapter, we first studied a generic system architecture for autonomous racing
problems, with a focus on software components and hardware platforms. A sim-
ple but efficient opponent detection algorithm was proposed. The standard particle
filter algorithm was slightly modified to adapt to the presence of the dynamic oppo-
nent vehicle. The control algorithm was also adjusted to compensate for the latency.
A DAG was set up to represent software components and the data dependencies be-
tween them. Overall, the proposed generic system architecture is representative of
the various components and considerations involved in autonomous racing problems.
While simple in design, it is also clear in structure and generic enough to be adapt-
able to numerous racing scenarii. This architecture can thus serve as a reference
for researchers and engineers to build upon and develop other similar autonomous
systems.

We addressed the challenge of efficiently mapping and scheduling tasks in a DAG
onto hardware platforms for autonomous racing systems. The DAG has multiple
degrees of parallelism, and the highest degree that may be used depends on the
number of processors available. We came up with a task execution model to deal
with different configurations for maximizing the utilization of parallelization. The
real-time constraint T resp ≤ T ddl was confirmed to be satisfied in this model. We
introduced the method for implementing the task execution model within the com-
monly used ROS framework, which serves as a guide for the development of other
similar robotic systems. Finally, we tested it in a realistic Hardware-in-the-Loop
simulation and demonstrated that, by exploring different parallelization configura-
tions in the task execution model, the racing problem benefits from lower latency
and higher control update rate.
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CHAPTER 6

Conclusion and perspectives

6.1 Conclusion
In this dissertation, we presented time-optimal NMPC-based control approaches for
the autonomous racing problem in both single-vehicle racing mode and head-to-head
racing mode.

In Chapters 1 and 2, we reviewed the development of control systems in the field
of autonomous passenger cars, based on which we discussed state-of-the-art control
techniques in the emerging field of autonomous race cars. For this study, we selected
NMPC as the base controller based on the following considerations. First of all, we
can directly set the vehicle’s progress time as the optimization objective function of
NMPC, as well as explicitly handle the vehicle’s dynamics and other potentially non-
linear constraints, which suits our needs for the racing scene. Furthermore, research
results on NMPC, as a typical representative of optimization-based controllers, can
serve as a reference for other similar control schemes. Finally, NMPC is extendable.
For example, it can be readily integrated with MIP to solve the decision-making
problem. In Chapter 2, we also discussed relevant tools and techniques, including
the modeling of racetracks, the characterization of system dynamics using the ODE
equation, and different approaches for solving NMPC, etc.

In Chapter 3, we investigated an issue caused by the high complexity of NMPC
with long prediction horizons for the single-vehicle racing mode: in the classical
NMPC framework, only the first step of the resulting optimal control series will be
deployed; the NMPC recalculation is required for generating a new optimal control
series for the next step; however, limited computation resources may prevent the
recalculation from being completed in time, i.e. it may not have finished when the
next step begins. We thus suggested a triggering-based recalculation method. To
prevent the calculations from becoming obsolete, we used the first triggering condi-
tion to ensure that the vehicle’s progress time is greater than the calculation time,
i.e. ensuring the real-time execution of NMPC. We achieved this by reusing inter-
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mediate NMPC calculation results for the entire prediction horizon, which could
degrade lap time performance. To compensate for this effect, we introduced the sec-
ond triggering condition to detect significant changes in track curvature that may
cause performance degradation and that justifies the necessity of recalculation. In
fact, the first triggering condition is related to the given time budget for guaran-
teeing the real-time feasibility of NMPC. The second triggering condition aims to
minimize the use of computation resources while still achieving a satisfactory lap
time performance. We gained inspiration from the behaviors of experienced human
race car drivers: they make significant modifications to the vehicle’s intended tra-
jectory planning only when the vehicle moves into a track segment of a different
type (e.g. from a straight segment into a curve, or in reverse). The intuition is that
the system’s computing burden can be lessened by reducing the number of NMPC
recalculations, that is, only performing one calculation when necessary and reusing
the result for multiple steps.

In Chapter 4, we explored techniques for the head-to-head racing mode, par-
ticularly those based on the time-optimal NMPC to produce optimal results, for
encoding and producing safe and efficient overtaking maneuvers of race cars. One
challenge we encountered was the necessity to depict the vehicle’s footprint in an
easy-to-handle form. We characterized the vehicle’s footprint in the curvilinear coor-
dinate system in the form of simple intervals and established the collision avoidance
constraints. Another challenge was how to encode decisions at each prediction step
and how to solve the resulting decision-making problem. We proposed an approach
to represent the overtaking behavior as a series of integers using MIP. While this
MIP-based method is effective in simulation, it is challenging to deploy in real-time
embedded systems due to the performance limitations of current MIP solvers. We
offered an alternative approach, i.e. LOROFO (Left-side Overtaking, Right-side
Overtaking, and FOllowing) algorithm, working with a deterministic control period
and a short prediction horizon, to reduce the complexity of the decision-making
problem by considering the nature of overtaking behaviors: in a short term, over-
taking typically occurs in successive steps and only on one side (either left or right).
It is simple to set up and run online. It can also be effectively parallelized thanks
to the presence of parallelizable components.

In order to enable the online execution of NMPC-based controllers with limited
computation resources, as stated above, we proposed methods in Chapters 3 and 4
for reducing the computational workload, either by skipping recalculation steps with
a triggering-based method in single-vehicle racing mode or using short prediction
horizon and reduced decision-making series in head-to-head racing mode. However,
when working on multi-core systems, we should make efficient use of abundant
computation resources and explore parallelization to decrease end-to-end latency
(i.e. allow us to use more recent data from the environment), improve the control
update rate (i.e. enable us to react more quickly to the surroundings), and ultimately
improve system performance. Therefore, we investigated in Chapter 5 how to build
a task execution model to efficiently schedule tasks on real-time embedded systems
with multi-cores. We developed a generic system architecture in the form of DAG
that consists of modules for control (LOROFO method) and perception (opponent
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detection and self-localization). This DAG has various degrees of parallelism and can
be mapped onto hardware platforms using different configurations in the proposed
task execution model. To meet the real-time requirement, the task execution model
allocates time budgets to each DAG node based on their WCET. We tested the task
execution model in a Hardware-in-the-Loop simulation, which demonstrated that
an effective task execution model can optimize the utilization of parallelization on
systems with multi-cores. This work can serve as a reference for modeling tasks and
improving performance in similar autonomous systems.

6.2 Perspectives
There are several possible extensions for future work. Some of them concern en-
hancing the solver now in use, while others involve extending the use cases.

The solver performance of NMPC and MIP is one of the bottlenecks restrict-
ing them from operating to their full potential on real-time embedded systems.
Although this thesis provided methods for realizing the online execution of NMPC-
based control algorithms, faster solvers might enable us to employ even longer pre-
diction horizons and allocate computation resources more flexibly. Given that many
modern embedded systems are equipped with multi-core CPUs and GPUs, it would
be instructive to investigate how solvers can benefit from working on such systems
to help reduce computation time. In existing works, authors in [128] exploited the
massive parallelism of GPUs to accelerate calculations of large-scale QPs (which
can serve as a sub-problem solver for NMPC). Authors in [129] studied the poten-
tial of running branch-and-bound algorithms in parallel on GPUs for accelerating
the calculation of MIP.

This thesis assumed two research scenarii: single-vehicle racing mode and head-
to-head racing mode. It would be interesting to explore the scenario with the pres-
ence of n, n ≥ 2 opponent vehicles. To model overtaking maneuvers of the ego
vehicle in this case, the MIP-based method can be naturally extended by encod-
ing trajectories of multiple opponent vehicles. However, it will become increasingly
difficult to prevent the computation complexity from exploding as the number of
opponent vehicles increases. In such a situation, the LOROFO algorithm should
also be modified to take into account at most n+ 1 potential homotopic trajectories
rather than only two-side overtaking trajectories. The resulting task chain will have
a higher degree of parallelism, which the task execution model will need to take into
account. In this dissertation, we made the assumption that the opponent vehicle
would not actively obstruct or interfere with the ego vehicle. However, further inves-
tigation into active interactions between vehicles could be valuable for understanding
realistic racing strategies. One promising research path is to take inspiration from
game theory, as previously explored in works such as [130] and [131].

Another limitation of our present work is the definition of time budget. We used
the WCET to allocate the time budget when building the task execution model.
However, as we observed in experiments, the actual execution time is usually much
shorter than the estimated WCET. One potential improvement is to assign differ-
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ent time budgets according to the criticality level of tasks. This kind of system is
called a Mixed-Criticality System [132], which guarantees that high criticality level
components always fulfill their real-time requirements, while low criticality level
components can have an adequate quality of service. For instance, the DAG dis-
cussed in this dissertation is on a high criticality level since its failure would result
in catastrophic consequences for the vehicle’s safety, while tasks such as data log-
ging, diagnostic information transmitting, and non-essential sensor processing are
considered on a lower criticality level. The WCET of high-criticality tasks can be
set as different values for different scenarii, e.g. a lower value in a normal driving
scene to conserve computation resources, and a higher value in an emergency brak-
ing scene to enable robust and reliable control. Since the consequences of missing
deadlines are less severe for low-criticality tasks, in some cases, it may be appropri-
ate to set their time budget as the average or expected execution time rather than
a conservative WCET to free up resources for tasks with higher criticality levels.



APPENDIX A

Introduction (en Français)

A.1 Motivation et contexte
La recherche d’algorithmes de contrôle sophistiqués suscite un intérêt considérable
depuis de nombreuses années. De nombreux efforts ont été déployés pour améliorer
la qualité de service des systèmes autonomes. Malgré des progrès notables, il est
encore nécessaire de poursuivre l’étude de leur application en temps réel. Cette
thèse se concentre sur le contrôle en temps réel pour la conduite autonome et plus
particulièrement la course de véhicules autonomes.

La conduite autonome est classée par la Société des ingénieurs automobiles [1]
du niveau 0 (aucune automatisation de la conduite), au niveau 1 (assistance au con-
ducteur), jusqu’au niveau 5 (automatisation complète de la conduite dans toutes
les circonstances). Les systèmes avancés d’aide à la conduite [2] (Advanced Driver-
Assistance Systems, ADAS, y compris le contrôle électronique de la stabilité, le
contrôle de la stabilité en roulis, l’alerte de franchissement de ligne, le régulateur
de vitesse adaptatif, les systèmes d’aide au stationnement, etc.) fournissent des
fonctions de niveau 1, qui aident les conducteurs humains à conduire de manière
sûre, efficace et avec une meilleure expérience utilisateur. La recherche sur l’ADAS
se poursuit depuis des décennies. Le DARPA Urban Challenge [3] est une étape
importante qui a considérablement fait évoluer le domaine de la conduite autonome.
Depuis lors, des recherches connexes ont été massivement menées dans les milieux
académiques et industriels. Bien que plusieurs entreprises aient mis sur le marché
des systèmes de conduite autonome présentant des niveaux élevés d’automatisation,
par exemple le système FSD (Full Self-Driving) de Tesla [4], la conduite de niveau 5
ne sera pas accessible au grand public avant une dizaine d’années, en raison de prob-
lèmes de réglementation et d’éthique, ainsi que de plusieurs difficultés techniques :
l’incapacité à gérer des situations extrêmes inattendues, l’absence de compréhension
sophistiquée des comportements implicites des différents acteurs impliqués dans le
trafic routier, etc.
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La course de véhicules autonomes [5] est une forme particulière de conduite
autonome, dans laquelle le véhicule de course doit parcourir un tour de circuit le plus
rapidement possible tout en évitant les collisions potentielles avec les limites de la
piste ou les véhicules adverses. Comme le véhicule de course se déplace généralement
à une vitesse élevée et nécessite des capacités de manipulation extrêmes (dérive
active, direction précise, etc.), nous devons étudier les performances du système à
ses limites physiques. Ces recherches sur les cas limites peuvent également contribuer
à faire avancer l’étude de la conduite autonome des véhicules routiers [6]. D’autres
domaines pertinents peuvent également bénéficier de l’étude de la course de véhicules
autonomes. Par exemple, le problème de contrôle en temps optimal d’un véhicule
de course, qui est soumise à des contraintes de saturation du moteur, de traction et
qui suit une trajectoire contrainte, est analogue au problème de contrôle en temps
optimal d’un bras robotisé qui se déplace sur une trajectoire sous contrainte de
saturation de l’actionneur. Dans les deux cas, afin de réaliser les comportements
désirés, le système de contrôle prend en compte les contraintes et les objectifs dans
une structure de problème similaire. Du point de vue du monde académique, la
course autonome est une plateforme de recherche idéale pour l’étude des systèmes
cyber-physiques (Cyber-Physical Systems, CPS) [7], où les installations physiques
(c’est-à-dire les véhicules de course) ont des dynamiques de système qui changent
rapidement, et où le calcul est typiquement effectué sur des systèmes embarqués.

Le contrôle prédictif à base de modèle (Model Predictive Control, MPC) est une
technique de contrôle de pointe pour commander une installation physique dans le
cadre d’un horizon fuyant afin d’atteindre un objectif spécifié tout en satisfaisant un
ensemble de contraintes. Parmi les différentes techniques de contrôle pour le prob-
lème de la course de véhicules autonomes, nous sommes particulièrement intéressés
par le MPC pour les raisons ci-dessous :

1. Le MPC est l’une des méthodes à base de modèles les plus prometteuses pour
prendre en compte des modèles dynamiques physiques précis et des contraintes
complexes. Il est logique d’appliquer le MPC aux problèmes de course puisque
le MPC peut intégrer efficacement nos connaissances préalables sur le véhicule
de course et sur les contraintes physiques.

2. MPC est un représentant typique des contrôleurs basés sur l’optimisation qui,
en général, fournissent des résultats optimaux au prix d’une complexité élevée.
En étudiant le MPC sur un véhicule de course équipé d’unités de calcul embar-
quées, nous pouvons mieux comprendre comment concevoir et déployer effi-
cacement des algorithmes basés sur l’optimisation de dispositifs aux ressources
de calcul limitées.

3. MPC est extensible pour fonctionner en conjonction avec d’autres techniques.
Par exemple, il peut coopérer avec la programmation mixte en nombres entiers
(Mixed Integer Programming, MIP) pour les problèmes de prise de décision.
Dans la littérature, il est combiné avec plusieurs autres outils pour renforcer
ses capacités et améliorer ses performances, par exemple la théorie des jeux
[8] pour permettre au MPC de réagir aux actions des adversaires, la théorie
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de la viabilité [9] pour assurer la faisabilité récursive du MPC, la théorie de
l’opérateur de Koopman [10] pour faciliter l’identification du système d’un
véhicule dont la dynamique est inconnue dans le MPC, etc.

Dans cette étude, pour capturer précisément la dynamique du véhicule, formal-
isée à l’aide d’équations différentielles ordinaires (Ordinary Differential Equations,
ODE), nous la représentons sous la forme de contraintes d’égalité non linéaires.
Dans certaines circonstances, les contraintes d’inégalité dans le MPC, telles que les
contraintes d’évitement de collision, peuvent également être non linéaires. Ce travail
se concentre donc sur le MPC non linéaire (Nonlinear MPC, NMPC).

Le NMPC doit fonctionner correctement dans deux sens. D’une part, son horizon
de prédiction doit être suffisamment long pour fournir un contrôle fiable. D’autre
part, un NMPC avec un horizon de prédiction plus long nécessite plus de ressources
de calcul. Il risque de produire un résultat obsolète, c’est-à-dire un résultat qui arrive
après la date limite et qui est considéré comme inutile et incorrect. Étant donné que
les comportements déterministes sont souhaitables dans les systèmes temps réel, le
pire cas de temps d’exécution (Worst Case Execution Time, WCET) du NMPC doit
être limité à une valeur raisonnable compte tenu des ressources limitées des systèmes
embarqués.

Les contrôleurs, dont le NMPC, collaborent avec d’autres composants logiciels,
tels que les modules de perception pour la localisation et la détection des adver-
saires. Ils fonctionnent comme une chaîne de tâches et partagent les ressources de
calcul. Différents composants de calcul peuvent être parallélisés, et les processeurs
modernes, tels que les CPU multi-cœurs et les GPU, ont la capacité de paralléliser
ces tâches. Il est donc crucial de construire un modèle d’exécution des tâches afin de
profiter au maximum des capacités de parallélisation du processeur pour diminuer la
latence et augmenter le taux de rafraîchissement des commandes, ce qui améliore les
performances du contrôleur et nous prémunit des comportements non déterministes.

A.2 Champ d’étude de la thèse
Dans cette section, nous définissons le champs d’étude de cette thèse. Ces travaux
se limitent à la course de véhicules autonomes dans 2 modes : le mode de course
à véhicule unique (similaire aux séances de qualification de Formule 1, dans lequel
un seul véhicule de course vise à réaliser le meilleur temps de tour de circuit) et le
mode de course un-contre-un (dans lequel deux véhicules de course s’affrontent sur
le même circuit pour être le premier à franchir la ligne d’arrivée).

Dans les chapitres 3 et 4, qui couvrent la conception de l’algorithme du con-
trôleur, nous supposons que le contrôleur du véhicule peut accéder à son vecteur
d’état (incluant la position) exact comme entrée de contrôle, ainsi qu’à la position
et à la trajectoire prévue du véhicule adverse. Les deux véhicules sont supposés
avoir une connaissance préalable de la courbure de la piste de course.

Dans le chapitre 5, qui concerne la conception du modèle d’exécution des tâches
au niveau du système, nous supposons que des données LiDAR servent d’entrée de
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contrôle au véhicule. Des modules de perception sont nécessaires pour la localisa-
tion du véhicule et la détection du véhicule adverse. De plus, la trajectoire prévue
du véhicule adverse n’est pas fournie. L’expérience est réalisée dans une simula-
tion « Hardware-in-the-Loop » (HiL), c’est-à-dire que les composants logiciels du
véhicule sont exécutés sur un dispositif embarqué tandis que les autres composants
de simulation sont effectués sur un ordinateur portable standard.

Dans cette thèse, nous traiterons les problèmes ci-dessous.

• Le NMPC nécessite généralement un temps de calcul relativement long, surtout
lorsque l’horizon de prédiction est lointain. En revanche, le NMPC à horizon
lointain donne généralement de meilleurs résultats. Nous cherchons à savoir
comment rendre le NMPC à horizon lointain réalisable dans un budget de
temps déterminé tout en réduisant les coûts de calcul et en ayant des perfor-
mances satisfaisantes.

• La prise de décision, par exemple la décision de dépassement, est un élément
crucial du problème de la course. La combinaison des techniques de prise de
décision avec les cadres de contrôle existants reste une question ouverte. Nous
discuterons de comment formuler le problème de dépassement sous la forme
d’un MIP et de comment créer un contrôleur de dépassement simplifié mais
réalisable en ligne.

• Un modèle d’exécution des tâches doit être correctement construit pour réduire
la latence, augmenter le taux de rafraîchissement du contrôle et garantir que
les tâches sont achevées avant leur échéance. Nous prenons en compte le
parallélisme de la tâche et la capacité de parallélisation du processeur lors de
la construction de ce modèle. Cela permet d’améliorer les performances et la
fiabilité du contrôle.

Il existe encore des sujets intéressants qui ne sont pas inclus dans le champ de
cette étude. Par exemple, la prise en compte de l’incertitude (qui peut provenir soit
de l’environnement, soit de l’inadéquation du modèle de la dynamique du système)
est significative pour le déploiement d’algorithmes sur des véhicules fonctionnant
dans des circonstances imparfaites.

A.3 Plan de la thèse
La thèse est organisée de la manière décrite ci-dessous. Nous introduisons d’abord
le contexte et l’état de l’art du problème de la course autonome. Les problèmes
mentionnés dans la section 1.2 sont ensuite traités respectivement dans les différents
chapitres.

• Chapitre 2, Autonomous race car control: state of the art, couvre les techniques
de contrôle pour le problème de la course autonome. Le modèle de piste de
course et la dynamique du véhicule sont discutés. Les principes du MPC et les
techniques de résolution associées sont présentés. Nous introduisons le NMPC
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à temps optimal qui sert de base aux chapitres suivants. Une discussion du
problème de la course à un-contre-un donne un aperçu des problèmes de prise
de décision dans le scénario de la course.

• Le chapitre 3, Autonomous racing in single-vehicle mode, se concentre sur la
complexité du NMPC et présente le problème de temps de calcul élevé en
mode course à véhicule unique. Nous proposons une solution basée sur le
déclenchement pour satisfaire la contrainte du budget de temps et réduire la
charge de calcul tout en maintenant des performances adéquates en termes de
temps de tour de circuit.

Contribution : La méthode proposée utilise deux conditions de déclenche-
ment. L’une est associée à la contrainte du budget de temps et permet
l’exécution du NMPC en temps réel. L’autre est inspirée du comportement des
conducteurs humains en course. Elle cherche à allouer les charges de calcul en
fonction de l’évolution de l’environnement, ce qui peut être considéré comme
un modèle de calcul à la demande.

• Le chapitre 4, Autonomous racing in head-to-head mode, se concentre sur le
problème de la course autonome en mode de course à un-contre-un. Nous
proposons d’encoder les contraintes d’évitement des collisions sous la forme
de MIP pour prendre des décisions de dépassement dans le cadre du NMPC
dans le système de coordonnées curvilignes. Basé sur les observations de
l’expérimentation avec la méthode MIP, une stratégie de dépassement alter-
native est proposée pour permettre l’exécution en ligne.

Contribution : Nous fournissons une technique pour représenter la géométrie
du véhicule, qui peut être utilisée pour établir des contraintes d’évitement de
collision en coordonnées curvilignes. La combinaison de NMPC et de MIP
fournit un moyen efficace de résoudre les problèmes de prise de décision dans
le problème de la course autonome. Comme méthode alternative à MIP,
l’algorithme LOROFO (Left-side Overtaking, Right-side Overtaking, and FOl-
lowing) tente efficacement de prendre des décisions de dépassement groupées.
Cet algorithme est réalisable en ligne et sert d’exemple pour montrer comment
réduire la complexité des problèmes de prise de décision.

• Le chapitre 5, Task execution model for autonomous racing systems, présente
tout d’abord une architecture système générique pour le véhicule de course
autonome, y compris les composants logiciels, la chaîne de tâches et les plate-
formes matérielles. Un modèle d’exécution des tâches est ensuite proposé pour
affecter les composants logiciels aux processeurs disponibles avec différents de-
grés de parallélisme. Ce modèle d’exécution des tâches vise à réduire la latence
et à améliorer le taux de rafraîchissement des commandes. Une simulation HiL
est réalisée pour démontrer comment le modèle d’exécution des tâches est mis
en œuvre dans le système d’exploitation du robot (Robot Operating System,
ROS) et comment il fonctionne.
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Contribution : Dans la simulation, le modèle d’exécution des tâches est
confirmé comme améliorant efficacement les performances du système dans
le scénario de course. Il fournit un aperçu pour la construction de modèles
d’exécution de tâches dans d’autres systèmes autonomes similaires.
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Titre : Contrôle temps réel et efficace pour la course autonome
Mots clés : véhicule autonome, contrôle prédictif, prise de décision, temps réel, système robotique
Résumé : Récemment, le domaine du véhicule au-
tonome a connu d’énormes progrès. En étudiant le
défi de la course autonome, une forme spéciale
de conduite autonome, nous cherchons à mieux
comprendre comment les véhicules peuvent être
contrôlés efficacement en temps réel pour gérer
des situations dynamiques et complexes. Nous
développons une approche basée sur le contrôle
prédictif de modèle non linéaire (NMPC), une tech-
nique de contrôle avancée, qui permet d’obtenir un
temps de progrès optimal du véhicule tout en tenant
compte de la dynamique non linéaire du système et
des contraintes temporelles liées aux obstacles. Pour
faire face à la présence d’un véhicule adverse, nous
combinons le contrôle prédictif NMPC avec la pro-
grammation mixte en nombres entiers (MIP) afin d’ef-
fectuer des manœuvres de dépassement sûres et ef-
ficaces. Cependant, il est difficile de mettre en œuvre
le contrôle prédictif NMPC sur des dispositifs em-
barqués en raison de sa complexité de calcul élevée.
Une des difficultés consiste à assurer l’exécution en
temps réel du contrôleur, ce qui nécessite un res-
pect strict des budgets d’exécution et des échéances
de temps. Une autre difficulté consiste à rendre le
contrôle efficace, et donc à préserver les perfor-
mances quasi-optimales du système. Pour le mode
de course à véhicule unique, nous proposons une ap-

proche de recalcul sur un horizon de plusieurs pas,
calcul qui est déclenché en fonction d’événements
spécifiques. Une des conditions de déclenchement
vise à s’assurer que les contraintes temps réel de
budget temps seront respectées. L’autre condition de
déclenchement sert à réduire le temps de calcul tout
en maintenant des performances quasi-optimales en
termes de temps de tour de circuit. Pour le mode de
course à un-contre-un, nous proposons un algorithme
compatible avec une exécution en ligne comme al-
ternative à l’encodage MIP. Il regroupe efficacement
des décisions de dépassement et les exécute à une
fréquence de contrôle déterministe pour répondre aux
exigences de temps réel. Au travers d’une architec-
ture générique, nous prenons également en compte
d’autres composants logiciels que le contrôleur, tels
que les algorithmes de détection des adversaires et
de localisation, qui constituent collectivement un gra-
phique acyclique dirigé (DAG). Un modèle d’exécution
des tâches est proposé pour affecter les composants
du DAG aux processeurs disponibles avec différents
degrés de parallélisme. Il réduit la latence, augmente
le taux d’actualisation de la commande et, finalement,
améliore la performance du système. En résumé,
cette thèse fournit un ensemble de mécanismes vi-
sant à une mise en œuvre efficace d’un contrôle en
temps réel dans des systèmes autonomes.

Title : Real-Time and Efficient Control for Autonomous Racing
Keywords : autonomous vehicle, model predictive control, decision-making, real-time, robotic system
Abstract : Recently, the autonomous driving domain
has made tremendous advancements. By investiga-
ting the challenge of autonomous racing, a special
form of autonomous driving, we seek to better un-
derstand how vehicles could be efficiently controlled
in real-time settings for handling intricate dynamic si-
tuations. We develop an approach based on Nonli-
near Model Predictive Control (NMPC), a cutting-edge
control technique, that can attain the optimal progress
time of the vehicle while accounting for nonlinear
system dynamics and obstacle-related time-varying
constraints. To deal with the presence of an opponent
vehicle, we combine NMPC with Mixed Integer Pro-
gramming (MIP) for encoding safe and efficient over-
taking maneuvers. However, it is challenging to im-
plement NMPC on embedded devices due to its high
calculation complexity. One concern is ensuring real-
time execution of the controller, which necessitates
strict adherence to the time budget restriction and ri-
gorous compliance with deadlines. Another problem
is managing to make the control efficient, which calls
for the maintenance of an adequate level of system
performance. We propose a multi-step recomputation

approach for the single-vehicle race mode, which is
triggered based on specific events. One of the trig-
gering conditions aims at ensuring that the real-time
budget constraints are respected. The other trigge-
ring condition serves for reducing computational time
while retaining quasi-optimal lap time performance.
For head-to-head racing mode, we propose an al-
gorithm as an online feasible alternative to MIP en-
coding. It efficiently aggregates overtaking decisions
and schedules them at a deterministic control fre-
quency to meet real-time requirements. In a generic
system architecture, we also take into account other
software components besides the controller, such as
opponent detection and self-localization algorithms,
which collectively constitute a Directed Acyclic Graph
(DAG). To assign DAG components to available pro-
cessors with varying degrees of parallelism, we pro-
pose a task execution model which decreases the la-
tency, increases the control update rate, and even-
tually enhances the system performance. In summary,
this thesis provides a set of mechanisms aimed at an
efficient implementation of real-time control in autono-
mous systems.

Institut Polytechnique de Paris
91120 Palaiseau, France
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