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Introduction

1. Introduction in English

1.1. Factorization homology and topological field theory

Factorization homology as developed by Lurie and Ayala—Francis [Lurl [AFT5] is a local-
to-global invariant for topological manifolds. The invariants are constructed by taking
as local input data an E,-algebra A in a (nice) higher symmetric monoidal category V,
together with a geometric input given by an n-dimensional manifold M, and producing

an object
/ AcV
M

by ‘integrating’ A over the n-manifold M in such a way that the construction is functorial
in the geometric input variable. It is a homology theory for topological manifolds satis-
fying a generalization of the Eilenberg—Steenrod axioms for homology theories of spaces
[AF15]. The notion of factorization homology dates back to the work of Beilinson—
Drinfeld [BD04] in the setting of conformal field theory. Since then, it has appeared
in many different areas of mathematics and physics. For instance, in dimension n = 1
factorization homology on S! computes Hochschild homology for E;-algebras in symmet-
ric monoidal higher categories [Lur, [AF15]. For coefficients in commutative differential
graded algebras, derived higher Hochschild chains were obtained by computing factor-
ization homology on higher dimensional spheres [GTZ14]. Factorization homology is
intimately linked to factorization algebras: evaluating factorization homology on open
subsets U C M gives a locally constant factorization algebra on M, whose global sec-
tions compute the factorization homology of M. Factorization algebras play a key role
in the work of Costello-Gwilliam [CG21] on perturbative quantum field theories, namely
they capture the structure present on quantum observables. In this thesis we will ex-
plore applications of factorization homology in an area of quantum physics known as
topological field theory.

An axiomatic approach to topological field theory (TFT) has been developed in the
late 80’s by Atiyah and Segal [Ati88] [Seg04], defining a functorial TFT as a symmetric
monoidal functor from a d-dimensional topological bordism category, the category of
‘spacetimes’, to a category of algebraic nature. Depending on the target, a TF'T may
describe the ‘time evolution’ of either the space of states of a physical system or of the
algebra of classical or quantum observables. However, in order to capture the locality of
physics it might not be enough to define the theory only on (d — 1)-dimensional ‘spatial
slices’ and d-dimensional ‘spacetimes’, but a TFT should also assign algebraic data to
lower dimensional manifolds, possibly with corners, so that one can not only propagate
in the time direction but also in spatial directions. Categorically, this leads to the notion
of a fully extended topological field theory defined as a symmetric monoidal functor from
an (oo, d)-category of d-dimensional bordisms to a higher categorical target. It is in this
context that Baez and Dolan [BD95] formulated the cobordism hypothesis stating that
fully extended (framed) TFTs are classified by the space of fully dualizable objects in the
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target category. An elaborate outline for a proof of the cobordism hypothesis is given
by Lurie [Lur09]. In the same work, Lurie indicates how factorization homology would
determine a fully extended TFT. Thereafter, Scheimbauer explicitly constructed this
fully extended TFT with target given by the Morita category Alg,, (S®) of E,-algebras
in a symmetric monoidal higher category S® [Sch14].

This thesis will focus on (n = 2)-dimensional aspects of topological field theories. As
a prominent example, we will consider Chern—-Simons gauge theory. For an oriented
surface ¥, the phase space of classical fields in Chern—Simons theory with symmetry
group GG on the product manifold ¥ x R is the space of principal G-bundles with flat
connections on Y modulo gauge equivalences. The corresponding moduli space of G-local
systems can be described by the G-character stack of X:

Char;(X) = [Hom(m1(X), G)/G]

Algebraically, this quotient stack may be studied via its category QCoh(Charg (X)) of
quasi-coherent sheaves. From a field theoretical perspective, this means that the functo-
rial TFTs we want to consider should take values in a target category of categories. One
such target is provided by the Morita 4-category of Es-algebras in a suitable symmetric
monoidal bicategory LinCat® of linear categorie It was shown by Ben-Zvi—Brochier—
Jordan that factorization homology with coefficients in A = Rep(G) computes the cat-
egory of quasi-coherent sheaves on the moduli space of G-local systems [BZB.J18al:

/ Rep(G) = QCoh(Charg (X)) € LinCat .
b

More generally, any (locally presentable) rigid balanced braided tensor category A de-
termines a local 2-dimensional oriented TFT [Schi4l [BZBJ18al:

/ A: Bordy"” — Alg,(LinCat®), M*— V.
(-) MEXR2—F

It is expected that the construction extends to define a 3-dimensional fully extended
oriented TFT with values in Alg, (LinCat™), and even to a 4-dimensional TFT for suitable
coefficients, e.g. for A a fusion category [BJS21].

In topological field theory, bordism categories can be defined for manifolds with tan-
gential structure, which amounts to a lift of the classifying map M — BGL(n) of the
tangent bundle along a prescribed map BX — BGL(n) of topological spaces. The
same is true for factorization homology: for an n-manifold with tangential structure
M — BZX, its factorization homology is computed by ‘integrating’ a BX-framed E,-
algebra over M [AF15]. One part of this thesis will consist in computing factorization
homology on surfaces with a X = D x SO(2)-tangential structure for finite groups D,
i.e. on oriented 2-manifolds equipped with principal D-bundles. From a field theoreti-
cal perspective, adding a decoration by D-bundles leads to so-called D-equivariant field
theories [Turl0]. The work in this thesis on factorization homology for surfaces with
D-bundles can be understood as exploring the 2-dimensional aspects of field theories
defined on D-decorated manifolds.

'We will be more precise later on about the exact nature of the linear categories we want to consider.
For explicit constructions of higher Morita categories of E,-algebras in an (oo, k)-categories see
[Sch14! [Haul'd, [JES17].
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Field theories may also be defined on bordism categories of manifolds with stratifi-
cations and colorings, or in a more physical language: field theories with defects. The
framework for computing factorization homology on stratified manifolds was constructed
in [AFT17]. A concrete example is categorical factorization homology on surfaces with
codimension 2 defects, or point defects, which are governed by braided module categories
over the braided tensor category describing the bulk theory [BZBJ18b]. In this thesis
we will compute factorization homology on marked surfaces for which the point defects
come from the theory of dynamical quantum groups. In particular, this will allow us to
access Poisson algebras arising in Chern—Simons theory with pointlike sources [BRO5]
and their quantization via categorical factorization homology.

1.2. Combinatorial quantization

Let ¥ = ¥, be an oriented surface of genus g with r boundary components, r > 0. For
a linear algebraic group G, the moduli space of flat G-connections on ¥ can be described
by the character variety:

Charg(X) = Hom(m1(%),G)/G .

This is the affine quotient of the representation variety Hom(m (%), G) = G291 un-
der the conjugation action by the lattice gauge group G. The algebra of functions
on the character variety is the subalgebra ((’)g,T)G of G-invariant functions, where
Oyr = O(G)®2977=1 Fock and Rosly [FR99] constructed a Poisson bracket on the
algebra (Og,r)G using a combinatorial model for ¥ by means of a ciliated ribbon graph
I' = (£, e), as sketched below for the case ¥ = 3 ,:

To each edge in I" one assigns the Poisson (G x G)-space (G, II,.) with Poisson bivector
II, defined via a classical r-matrix » € g ® g. Subsequently, one uses fusion for Poisson
spaces [LMI7] to obtain the Fock—Rosly Poisson bivector IIpg on the product space
G?9+t7=1 compatible with the diagonal G-action. The fusion procedure parallels how the
surface ¥ may be obtained by successive fusion of disks D, o With two marked intervals in
the boundary. The Fock—Rosly Poisson structure agrees with the Atiyah—Bott/Goldman
Poisson structure on the moduli space of flat G-connections [AB83], [Gol84].

A deformation quantization of the Fock—Rosly Poisson structure was defined by Alekseev—
Grosse-Schomerus [AGS95, [AGS96] and Buffenoir-Roche [BR95, BR96] who replaced
the group G by the corresponding quantum group U,(g) and classical r-matrices by
quantum R-matrices for Uy(g). The resulting quantized algebra of functions on the rep-
resentation variety is the tensor product (O,) g, = O,(G)®?97 "1 where ® is the tensor
product in Rep,(G) and each Oy(G) is a copy of the braided dual of U, (g), which is also
known as the reflection equation algebra, quantizing the Semenov-Tian-Shansky bracket
[STS94] on G. The commutation relations between the various tensor factors of (Oy)g,»
are given in terms of quantum R-matrices.

viii
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In [BZBJ18a), Ben-Zvi-Brochier-Jordan use factorization homology with coefficients
in the balanced braided tensor category Repq(G) to obtain a functorial quantization of
the moduli stack Charg(X) of G-local systems on X. Intuitively, the local-to-global prop-
erty of factorization homology allows to quantize the theory locally, which amounts to
replacing the symmetric monoidal category Rep(G) with the braided monoidal category
Rep,(G), and subsequently gluing these local quantizations via factorization homology
on Y. Upon picking a combinatorial model for the surface, the internal endomorphism
algebra of the distinguished object O € fz Rep,(G) is shown to agree with the quantized
algebra of functions on the representation variety; MRepq(G)((’)) = (Oq)g,r as algebras
in Rep,(G), recovering the algebras previously obtained by Alekseev-Grosse-Schomerus
and Buffenoir-Roche. The subalgebra of invariants of mRepq(G)(O) gives an explicit
quantization of the Fock—Rosly Poisson algebra of functions on the G-character variety,
equivariant for the action of the mapping class group of X, which follows naturally from
the topological framework of factorization homology.

In this thesis we will extend the factorization homology method for constructing func-
torial quantizations to the following generalized character varieties/stacks:

e Twisted character variety/stack:

Let ¢: m1(X) — Out(G) be a fixed Out(G)-bundle on ¥, where Out(G) is the group
of outer automorphisms of G. A flat ¢-twisted G-bundle is a flat G xOut(G)-bundle
P — ¥ together with an equivalence m, P = ¢, where 7: G x Out(G) — Out(G) is
the natural projection. Moduli spaces of twisted bundles have previously appeared
in relation with twisted group-valued moment maps in [Meil7, [Zer21], or in the
context of finite symmetries for 2-dimensional Yang-Mills theory in [MSS22]. We
may describe the moduli space of flat p-twisted G-bundles by either the p-twisted

G-character variety
Charg(X) = G126 |

which is the affine quotient with respect to the p-twisted conjugation action, or
the corresponding (-twisted character stack:

Charg () = [G*T 1 /?G]

We will show that the twisted character variety admits a Fock—Rosly type Poisson
bivector I}, defined in terms of an Out(G)-invariant classical r-matrix. We will
then define a ¢-twisted quantum character stack via factorization homology on
Out(G)-decorated surfaces, and in particular obtain a deformation quantization of
the Poisson variety (Charg ,(X), II%5).

e Dynamical character variety /stack:

Let I' = (E,V) be a ciliated ribbon graph with a collection of marked vertices
{v1,...,ux} C V. For each marked vertex v;, let h; C g be a Lie sub-bialgebra and
(L;,I11,) a smooth Poisson variety for which IIz, is induced from an action of the
double D(h;). We define the dynamical representation variety:

k
Repayn (I, {(his Li) Yi=1,.. k) = HLi x GE .
i—1

A geometric example is the framed character variety of flat G-connections on the
marked surface {v1,...,vp} C X together with a reduction of the structure group

X
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from G to a maximal torus H C G over a small loop ~; wrapping around the
marked point v;. In this case we have that for all ¢ =1,...,k, h; = b is a Cartan
subalgebra and L; = H.

Let H; be a group with Lie algebra b;. The ribbon graph I" determines an action p'
of the group Hle H; x GV\Mv1ve} on the dynamical representation variety. We
will show that given the data of classical dynamical r-matrices r(\;): L; — g®g, as
defined in [DMO5], the dynamical representation variety admits a combinatorial
Poisson structure Ilgy, which is compatible with the action pF. This Poisson
structure is a dynamical generalization of the Fock—Rosly Poisson structure on
G-character varieties. In the special case where the base spaces L; = § are Cartan
subalgebras, the Poisson structure Il4y, has previously appeared in [BR05] in the
context of Chern—Simons theory with dynamical sources.

For classical dynamical r-matrices r();) admitting quantizations by dynamical
twists J(A;), we will define braided module categories M; encoding the data of
the corresponding dynamical quantum R-matrices R(\;). We obtain a deformation
quantization of the dynamical Fock—Rosly Poisson structure on dynamical charac-
ter varieties via factorization homology on a surface with point defects described
by the M;.

We also define a dynamical character stack:

k k
Chargyn (I, {(bi, Li) }iz1,. k) = HLz' x GF/ HHz x GV \vLeveh

i=1 i=1

For L, = H C G a maximal torus, and H; = H for all i = 1,...,k, we describe
the category of quasi-coherent sheaves on the dynamical character stack via fac-
torization homology and define the corresponding dynamical quantum character
stack.

Outline

Chapter [T] establishes the context underlying the research in this thesis and covers
the necessary background material. In we recall basics about Lie bialge-
bras, Poisson-Lie groups and lattice gauge theory. We review the construction of
the Fock—Rosly Poisson structure on G-character varieties via fusion of Poisson
spaces defined in terms of classical r-matrices. In we settle notation and
conventions for quantum groups and their representations. In we recollect
background material on factorization homology for oriented manifolds and estab-
lish the categorical setup in which we will operate. To that end, we introduce
the bicategory of locally presentable enriched categories, which allows to compute
factorization homology with coefficients coming from the representation theory of
quantum groups with formal or generic parameter. The section also contains a
discussion on the factorization homology approach to categorical quantization.

Chapter [2] is based on joint work with Lukas Miiller [KM23] on the quantization
of twisted character stacks. In we define the classical moduli space of
flat twisted bundles and present a novel combinatorial formula for the Poisson
structure on the moduli space. [§ 2.2|contains background material on factorization
homology on surfaces with principal D-bundles. Moreover, we show that the
braided tensor category Rep,(G) is a coefficient system for factorization homology
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in the case that D = Out(G). In we compute factorization homology over
punctured surfaces with D-bundles decoration and use monadic reconstruction to
identify factorization homology with categories of modules over algebras defined
in purely combinatorial terms. In we prove that the algebras obtained
via factorization homology give a deformation quantization of the moduli space
of flat twisted bundles. In we discuss factorization homology for surfaces
with D-bundles that are closed and/or have point defects. In this context, we
give examples for point defects in the D-decorated setting coming from quantum
symmetric pairs.

e In Chapter (3| we discuss dynamical character varieties/stacks and their quanti-
zation via factorization homology. In we introduce fusion for dynamical
Poisson spaces defined in terms of dynamical r-matrices. As an application we
show that dynamical character varieties admit dynamical Fock—Rosly type Pois-
son brackets. In we establish the categorical setup for studying dynamical
quantum groups. We introduce the notion of a quasi-reflection datum giving rise to
point defects encoding dynamical twist quantizations (dynamical point defects).
In we compute factorization homology on surfaces with dynamical point
defects. Using monadic techniques we obtain algebras in dynamical extensions of
monoidal categories, which in particular give examples of dynamical algebras, such
as the dynamical FRT-algebra. In we show that the algebras obtained via
factorization homology give a deformation quantization of the dynamical charac-
ter varieties. We also explain how, for certain coefficients, factorization homology
with dynamical point defects defines a dynamical quantum character stack. As
an application, we discuss how our results recover a quantization of dynamical
Poisson algebras arising in Chern—Simons theory with pointlike sources.

2. Introduction en francais

2.1. Homologie a factorisation et théorie des champs topologiques

L’homologie a factorisation comme développée selon Lurie et Ayala-Francis [Lurl, [AF15]
est un invariant local-global pour les variétés topologiques. Les invariants sont con-
struits en prenant comme donnée locale une algebre E,, dans une catégorie monoidale
symétrique supérieure V, comme donnée géométrique une variété M a dimension n, et

produisant un objet
/ AeV
M

en ‘intégrant’ A sur la n-variété M telle que la construction soit fonctorielle dans la
variable géométrique. C’est une théorie d’homologie pour les variétés topologiques satis-
faisant une généralisation des axiomes d’Eilenberg—Steenrod pour les théories d’homologie
des espaces topologiques [AF15]. L’homologie a factorisation trouve son origine dans les
travaux de Beilinson—Drinfeld [BD04] dans le cadre de la théorie conforme des champs.
Depuis lors, elle est apparu dans de nombreux domaines des mathématiques et de la
physique. Par exemple, en dimension n = 1 I'homologie & factorisation sur S' calcule
I’homologie de Hochschild des algebres E; dans les catégories monoidales symétriques
supérieures [Lur, [AF15]. Pour les algebres différentielles graduées commutatives, les
complexes de Hochschild supérieure ont été obtenus en calculant 'homologie a factori-
sation sur des spheres de dimension supérieure [GTZ14]. L’homologie a factorisation est

xi
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intimement liée aux algebres a factorisation: évaluer I’homologie a factorisation sur des
ouverts U C M donne une algebre a factorisation localement constante sur M, dont les
sections globales calculent I’homologie & factorisation de M. Les algébres a factorization
jouent un role important dans les travaux de Costello-Gwilliam [CG21] sur la théorie
quantique perturbative des champs; elles capturent la structure présente sur les observ-
ables quantiques. Dans cette thése, nous explorerons les applications de I’homologie a
factorisation dans un domaine de la physique quantique connu sous le nom de théorie
des champs topologiques.

Une approche axiomatique de la théorie des champs topologiques (TFT) a été développée

a la fin des années 80 par Atiyah et Segal [Ati88] [Seg04], définissant une TFT fonctorielle
comme un foncteur monoidal symétrique d’une catégorie des bordismes topologiques de
dimension d, la catégorie des ‘espaces-temps’, vers une catégorie algébrique. Selon la
catégorie algébrique, une TFT peut décrire I’évolution temporelle soit de ’espace des
états d’un systeme physique, soit de l'algebre des observables classiques ou quantiques.
Cependant, afin d’incorporer la localité de la physique, il pourrait ne pas suffire de
définir la théorie uniquement sur des ‘tranches spatiales’ de dimension (d — 1) et sur des
‘espaces-temps’ de dimension d, mais une TFT devrait également attribuer des données
algébriques a des variétés de dimension inférieure, éventuellement a coins, de sorte que
I’on puisse non seulement se propager dans la direction du temps mais aussi dans les
directions spatiales. C’est dans ce contexte que Baez et Dolan [BD95| ont formulé
I’hypothése du cobordisme indiquant que les TFT pleinement étendues a valeurs dans C
sont classifiés par 'espace des objets completement dualisables dans la catégorie C. Une
esquisse de preuve détaillée de I’hypothese du cobordisme est donnée par Lurie [Lur(9].
Dans le méme travail, Lurie indique comment I’homologie a factorisation déterminerait
une TFT pleinement étendue. Par la suite, Scheimbauer a construit cette TFT de
maniére explicite & valeurs dans la catégorie de Morita Alg,,(S®) des algebres E,, dans
une catégorie monoidale symétrique supérieure S© [Sch14].

Cette these se concentre sur les aspects des théories des champs topologiques de
dimension n = 2. Entre autre, nous considérons la théorie de jauge de Chern—Simons
avec le groupe de symétrie G. Etant donné une surface orientée 3., ’espace des phases
pour les champs classiques dans la théorie de Chern—Simons sur la variété X x R est
donné par 'espace de modules de connexions plates de G-fibrés principaux sur 3. Cet
espace de modules peut étre décrit par le champ de caracteres donné par le champ

quotient:
Charg(X) = [Hom(m(2), G)/G]

Ce champ quotient peut étre étudié par la catégorie QCoh(Charg(X)) de faisceaux quasi-
cohérents. D’un point de vue de la théorie des champs, cela signifie que nous voulons
considérer les TFT fonctorielles a valeurs dans une catégorie de catégories. Une telle
catégorie est la 4-catégorie de Morita des algebres Es dans une bicatégorie monoidale
symétrique LinCat® de catégories linéaire Il a été démontré par Ben-Zvi-Brochier—
Jordan que I’homologie a factorisation a coefficients dans A = Rep(G) calcule la catégorie
de faisceaux quasi-cohérents sur I’espace de modules de connexions plates de G-fibrés

2Nous serons plus précis par la suite sur la nature exacte des catégories linéaires que nous voulons
considérer. Pour des constructions explicites de catégories de Morita supérieures des algebres E,,
dans une (oo, k)-catégories, voir [Schi4l Haul7l [JES17].
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principaux [BZBJ18al:
/ Rep(G) = QCoh(Charg (X)) € LinCat .
b

Plus généralement, étant donné une catégorie A (localement présentable) monoidale
tressée balancée, A définit une TFT locale orientée de dimension 2 [Schi4l [BZBJ18al:

/ A: Bordy"” — Alg,(LinCat®), M*— A .
(-) Mk xR2—F

Il est attendu que cette construction s’étende pour définir une 3-TFT locale a valeurs
dans Alg,(LinCat®), et méme & une 4-TFT pleinement étendue pour des coefficients
appropriés, par exemple pour A une catégorie de fusion [BJS21].

Dans la théorie des champs topologiques, les bordismes peuvent étre munies d’une
structure tangentielle, ¢’est-a-~dire un relevement de 1’application classifiante M — BGL(n)
du fibré tangent le long d’une application BX — BGL(n) d’espaces topologiques. On
peut également définir 'homologie a factorisation pour les variétés munies de structures
tangentielles: étant donnée une n-variété munie d’une structure tangentielle M — BX,
I’homologie a factorisation est calculée en ‘intégrant’ une algebre E, BX-structurée sur
M [AF15]. Une partie de cette these consistera a calculer ’homologie & factorisation
pour des surfaces munies d’une structure tangentielle X = D x SO(2), pour D un groupe
fini, c’est-a-dire sur les 2-variétés orientées munies des D-fibrés principaux. Du point de
vue de la théorie des champs, la décoration par des D-fibrés principaux donne lieu a des
théories des champs D-équivariantes [Turl0]. Le travail de cette these sur I'homologie a
factorisation pour les surfaces munies des D-fibrés principaux est donc une exploration
des théories des champs D-equivariantes de dimension 2.

Les théories des champs peuvent également étre définies pour des catégories de bor-
dismes stratifiés et colorés, ou dans un langage plus physique: pour les théories des
champs avec défauts. Le cadre de calcul de I’homologie a factorisation sur les variétés
stratifiées a été construit dans [AFT17]. Un exemple est donné par ’homologie & factori-
sation catégorique sur des surfaces avec des défauts de codimension 2 (défauts ponctuels)
qui sont classifiés par des catégories modules tressées sur la catégorie monoidale tressée
décrivant la théorie du bulk [BZBJI8b]|. Dans cette these nous calculons I’homologie a
factorisation sur des surfaces marquées pour lesquelles les défauts ponctuels proviennent
de la théorie des groupes quantiques dynamiques. En particulier, cela nous permettra
d’accéder aux algebres de Poisson et leur quantification issues de la théorie de Chern—
Simons avec des sources ponctuelles [BR05|.

2.2. Quantification combinatoire

Soit ¥ = ¥, une surface orientée de genre g et r composantes de bord, r > 0. Pour un
groupe algébrique linéaire GG, 'espace de modules des G-connexions plates sur ¥ peut
étre décrit par la variété de caracteres:

Charg(X) = Hom(m (2),G)/G .

C’est le quotient affine de la variété de représentations Hom(m (X), G) = G297~ sous
I’action de conjugaison par le groupe G. L’algebre des fonctions sur la variété de car-
acteres est la sous-algebre (O, )¢ des fonctions G-invariantes, avec O, ,, = O(G)®29+7-1,
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Fock et Rosly [FR99] ont construit un crochet de Poisson sur lalgebre (O, ,)¢ avec un
modele combinatoire pour X en utilisant un graphe orienté I' = (E, o) plongé sur X
muni d’un ordre linéaire sur I’ensemble des demi-arétes, comme illustré ci-dessous pour
le cas X = Xy,

A chaque aréte de T' on attache la (G x G)-variété (G,II,) munie d'un tenseur de
Poisson II,. défini par une r-matrice classique r € g ® g. Par la suite, on utilise la fusion
des espaces de Poisson [LMI7] pour obtenir le crochet de Poisson de Fock—Rosly IIpr
sur 'espace produit G2977~1 compatible avec I’action diagonale de G. La procédure de
fusion est parallele a la fagon dont la surface X peut étre obtenue par fusion successive
de disques D, o avec deux intervalles marqués dans leur bord. La structure de Poisson de
Fock—Rosly correspond a la structure de Atiyah-Bott/Goldman sur I'espace de modules
de G-connexions plates [AB83], [Gol84].

Une quantification par déformation de la structure de Poisson de Fock—Rosly a été
définie par Alekseev—Grosse—Schomerus [AGS95 [AGS96] et Buffenoir-Roche [BR95,
BRI6] en remplacant le groupe G par le groupe quantique Ug(g) et les r-matrices
classiques par des R-matrices quantiques pour U,(g). Le résultat est une algebre de
fonctions quantifiées sur la variété de représentations donnée par le produit tensoriel
(Og)gr = Og(G)®2917~1 dans Rep,(G), ot Og(G) est 'algebre quantifiant le crochet de
Semenov-Tian-Shansky [STS94] sur G. Les relations de commutation entre les facteurs
tensoriels de (Oy)4,» sont données en termes de R-matrices quantiques.

Dans [BZBJ18a], Ben-Zvi-Brochier-Jordan utilisent I’homologie & factorisation avec
des coefficients dans la catégorie Rep,(G) pour obtenir une quantification fonctorielle
du champ Charg(X) des G-fibrés plats sur X. Intuitivement, la propriété de localité de
I’homologie a factorisation permet de quantifier la théorie localement, ce qui revient a
remplacer la catégorie monoidale symétrique Rep(G) par la catégorie monoidale tressée
Repq(G), et a recoller ensuite ces quantifications locales via I’homologie a factorisation
sur X. En choisissant un modele combinatoire pour la surface, ’algebre des endomor-
phismes de P'objet distingué O € |5, Rep,(G) est equivalent a I’algebre des fonctions
quantifiées sur la variété de représentations; @Repq(G)(O) = (O4)g,r comme algebres
dans Rep,(G), retrouvant les algebres précédemment obtenues par Alekseev—Grosse—
Schomerus et Buffenoir-Roche. La sous-algebre des invariants de @Repq(G)((’)) donne
une quantification explicite de l'algebre de Poisson de Fock—Rosly sur la variété de
caracteres, équivariante pour l'action du groupe des difféotopies de X, ce qui découle
naturellement du cadre topologique de I’homologie a factorisation.

Dans cette these, nous étendons la méthode d’homologie a factorisation pour constru-
ire des quantifications fonctorielles aux variétés/champs de caracteres généralisé(e)s qui
suivent:

e Variété/Champ de caracteres tordu(e):

Soit ¢: m(X) — Out(G) un Out(G)-fibré sur X, ou Out(G) est le groupe des
automorphismes extérieurs de G. Un G-fibré plat p-tordu est un G x Out(G)-fibré
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plat P — ¥ avec une équivalence m,P = ¢, ot m: G x Out(G) — Out(G) est la
projection naturelle. Les espaces de modules de fibrés tordus sont déja apparus
en relation avec des applications moments tordues dans [Meil7, [Zer21], ou dans le
contexte des symétries finies pour la théorie de Yang—Mills en dimension 2 dans
[MSS22]. Nous pouvons décrire 'espace de modules de G-fibrés plats ¢-tordus soit
par la variété de caracteres yp-tordue

Charg ,(Z) = G*t 1 /eq |

définie comme le quotient affine par rapport a ’action de conjugaison ¢-tordue,
soit par le champ de caracteres ¢-tordu:

Charg (X)) = [G¥1771 /9G]

Nous montrerons que la variété de caracteres tordue admet un tenseur de Pois-
son II7., de type Fock-Rosly défini & laide d’une r-matrice classique Out(G)-
invariante. Nous définirons ensuite un champ de caracteres quantique ¢-tordu par
I’homologie a factorisation sur des surfaces décorées avec des Out(G)-fibrés, et en
particulier nous obtiendrons une quantification par déformation de la variété de
Poisson (Charg ,(X), II%.5).

Variété/Champ de caractéres dynamique:

Soit I' = (E,V) un graphe orienté, muni d’un ordre linéaire sur I’ensemble des
demi-arétes incident a chaque sommet, avec une collection de sommets marqués
{vi,...,ux} € V. Pour chaque sommet marqué v;, on se donne h; C g une
sous-bigebre de Lie et (L;,II,) une variété de Poisson lisse pour laquelle IIy,; est
induit par une action du double D (h;). On définit la variété de représentations
dynamique:

k
Repayn (I, {(his Li) Yi=1,.. k) = HLi x GF
i1

Un exemple géométrique est ’espace des G-connexions plates sur la surface marquée
{v1,...,u} C X avec une réduction du groupe structural G & un tore maximal
H C @ sur une petite boucle v; entourant le point marqué v; et avec une trivial-
isation du fibré au voisinage de v;. Dans ce cas on a que pour tout ¢ = 1,...,k,
h; = b est une sous-algebre de Cartan et L; = H.

Soit H; un groupe d’algebre de Lie b;. Le graphe I' détermine une action p! du
groupe Hle H; x GV My} qur la variété de représentations dynamique. Nous
montrerons que, étant donné des r-matrices dynamiques classiques r(\;): L; —
g ® g, telles que définies dans [DMO05], la variété de représentations dynamique
admet une structure de Poisson combinatoire Il4y, compatible avec 1'action pF.
Cette structure de Poisson est une généralisation dynamique de la structure de
Poisson de Fock—Rosly sur les variétés de caracteres. Dans le cas particulier ou les
espaces de base L; = b sont des sous-algebres de Cartan, la structure de Poisson
ILyy est déja apparue dans le contexte de la théorie de Chern-Simons avec des
sources dynamiques [BRO5].

Pour les r-matrices dynamiques classiques r()\;) avec des quantifications par twists
dynamiques J();), nous définirons des catégories modules tresséss M; encodant
les données des R-matrices quantiques dynamiques R()\;). On obtient une quantifi-
cation par déformation de la structure de Poisson dynamique de type Fock—Rosly
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sur les variétés de caracteres dynamiques via I’homologie a factorisation sur une
surface avec des défauts ponctuels décrits par les M;.

Nous définissons le champ de caracteres dynamique:

k k
Chargy, (I, {(bi, Li) Yiz1,..k) = HLi X GE/HHz‘ x GV \Morved

i=1 i=1

Pour L; = H C G un tore maximal, et H; = H pour tout ¢ = 1,...,k, on décrit
la catégorie des faisceaux quasi-cohérents sur le champ de caractéres dynamique
via ’homologie & factorisation et on définit le champ de charactere quantiques
dynamiques correspondant.

Résumé

Le Chapitre (1] établit le contexte sous-jacent a la recherche dans cette these et
donne le matériel de base nécessaire. Dans le nous rapellons les bases sur
les bigebres de Lie, les groupes de Poisson—Lie et la théorie de jauge sur réseau.
Nous rappelons la construction de la structure de Poisson de Fock—Rosly sur les
variétés de caracteres via la fusion d’espaces de Poisson définis en termes de r-
matrices classiques. Dans le nous établissons la notation et les conven-
tions pour les groupes quantiques et leurs représentations. Dans le nous
donnons les bases sur I’homologie a factorisation pour les variétés orientées et
établissons le cadre catégoriel dans lequel nous allons opérer. Pour cela, nous
introduisons la bicatégorie des catégories localement présentables enrichies, qui
permet de calculer 'homologie a factorisation avec des coefficients issus de la
théorie des représentations des groupes quantiques. La section contient également
une discussion sur I'approche d’homologie & factorisation pour la quantification
catégorique.

Le Chapitre [2] est basé sur une collaboration avec Lukas Miller [KM23] sur la
quantification des champs de caracteres tordus. Dans le nous définissons
I’espace de modules classique de fibrés plats tordus et présentons une nouvelle
formule combinatoire pour la structure de Poisson sur cet espace de modules. Le
contient le matériel de base sur I’homologie a factorisation sur des surfaces
munies des D-fibrés principaux. De plus, nous montrons que la catégorie monoidale
tressée Rep, () est un systeme de coefficients pour I’homologie a factorisation dans
le cas ou D = Out(G). Dans le nous calculons 'homologie & factorisation sur
des surfaces & bord munies de D-fibrés et utilisons la reconstruction monadique
pour identifier ’homologie & factorisation avec des catégories de modules sur des
algebres définies en termes purement combinatoires. Dans le nous prouvons
que les algebres obtenues via I’homologie a factorisation donnent une quantification
par déformation de I’espace de modules de fibrés plats tordus. Le concerne
I’homologie a factorisation pour les surfaces munies de D-fibrés qui sont fermées
et/ou qui ont des défauts ponctuels. Dans ce contexte, nous donnons des exemples
de défauts ponctuels dans le cadre D-décoré provenant de paires symmetriques
quantiques.

Dans le Chapitre |3, nous parlons des variétés/champs de caractéres dynamiques
et de leur quantification via I’homologie a factorisation. Dans le nous in-
troduisons la fusion pour les espaces de Poisson dynamiques définis en termes de
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r-matrices dynamiques. Comme application, nous montrons que les variétés de
caracteres dynamiques admettent des crochets de Poisson dynamiques de type
Fock-Rosly. Dans le nous établissons le cadre catégoriel pour étudier les
groupes quantiques dynamiques. Nous introduisons la notion de donnée de quasi-
reflection donnant lieu & des défauts ponctuels incorporant des quantifications par
twist dynamique (défauts ponctuels dynamiques). Dans le m nous calculons
I’homologie a factorisation sur les surfaces avec des défauts ponctuels dynamiques.
En utilisant des techniques monadiques, nous obtenons des algebres dans des ex-
tensions dynamiques de catégories monoidales, qui donnent notamment des ex-
emples d’algebres dynamiques, comme ’algebre FRT dynamique. Dans le
nous montrons que les algebres obtenues via ’homologie a factorisation donnent
une quantification par déformation des variétés de caracteres dynamiques et nous
expliquons comment ’homologie a factorisation avec des défauts ponctuels dy-
namiques définit un champ de caracteres quantique dynamique. Comme applica-
tion, nous discutons la facon dont nos résultats produisent une quantification des
algebres de Poisson dynamiques issues de la théorie de Chern—Simons avec des
sources ponctuelles.
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1. Background

1.1. Character varieties and lattice gauge theory

Let G be a semi-simple linear algebraic group over C. The G-character variety Charg(X)
of a surface X is defined as the set of equivalence classes

CharG(E) = Hom(m(E), G)/G

of group homomorphisms from the fundamental group of ¥ to G. It is well-known
that character varieties describe the moduli space of flat G-bundles on ¥ and as such
are extensively studied in the context of gauge theories, for example in Chern—Simons
on 3-manifolds of the form ¥ x [0,1]. For closed surfaces, the moduli space of flat
G-bundles is symplectic [AB83| [Gol84]. The symplectic structure was constructed in
the differential geometric setting by Atiyah-Bott [AB83] from the infinite-dimensional
symplectic manifold of all connections via symplectic reduction with respect to the
gauge group and moment map given by the curvature. The same symplectic structure
appeared in the work of Goldman [Gol84], where the construction is in terms of group
cohomology.

In this thesis we will focus on a later construction due to Fock—Rosly [FR93|, [FR99]
for surfaces with boundary. Taking advantage of the fact that the moduli space is finite-
dimensional, Fock—Rosly’s idea was to replace the gauge theory on 3 by a lattice gauge
theory, meaning that the surface is considered as a combinatorial object for which a
flat bundle is described by means of a discrete connection. In more details, for a finite
collection of marked points V' C 9% and a graph I' = (E, V) presenting the marked
surface, Fock—Rosly constructed a Poisson structure Il on the finite-dimensional space
GF of discrete flat connections, or equivalently on the moduli space of flat G-bundles
with a fixed trivialization over each marked point. The lattice gauge group G" naturally
acts by changing the trivialization. Taking the quotient, the Fock—Rosly (FR) Poisson
structure descends to the full moduli space of flat G-bundles. The latter agrees with
the Poisson structure obtained via infinite-dimensional reduction from the space of all
connections a la Atiyah-Bott [FR99, Proposition 5].

In[§ I.1.T]we provide background on Poisson-Lie groups and their infinitesimal analogs,
Lie bialgebras, which are part of the data entering the FR-construction. We recall how
classical r-matrices give rise to multiplicative Poisson structures and more general Pois-
son varieties with compatible group actions. In we give a detailed overview on
Fock—Rosly’s approach to defining Poisson structures on character varieties. We will see
that the FR-construction is an example of a Poisson structure defined via Lie bialgebra
actions and classical r-matrices. Finally, in we discuss how the same data used
in the FR-construction also defines a (0-shifted) Poisson structure on the G-character
stack.



1. Background

1.1.1. Lie bialgebras and Poisson—Lie groups

Unless otherwise stated, all groups will be semi-simple linear algebraic groups over C.
The main reference for the background material presented in this section are [KS04] and
the lecture notes [ES02al.

Lie bialgebras The tensor product g ® g is a g-module via the adjoint action
adg)(azl ® o) = ady(x1) ® k2 + 1 ® ady(z2)
for any pure tensor 1 ® x93 € g ® g.

Definition 1.1.1. A Lie bialgebra is a Lie algebra (g,[—,—]) together with an anti-
symmetric linear map d: g — g R g, called the co-bracket, satisfying

e co-Jacobi identity:

Cyc(6 ®1)d(z) =0

where Cyc: g%3 — g®3 is the linear map defined as

1 RT2 RA3H—— X1 QX2 Rx3+ T2 RXRx3Rx1 + 23X xT1 XXy
for any pure tensor 1 ® T9 ® x3 € g®3.
e ) is a 1-cocycle:
8([z,y]) = adP)5(y) — ad{?d ()
=l®z+z®1,iy)]+[0x),ley+y®l] ,
for all x,y € g.

The co-Jacobi identity for ¢ guarantees that the dual map 6*: g* ® g* — g* endows
g* with the structure of a Lie algebra. Fixing a basis (e;);er for g with dual basis (6");er
for g*, we introduce structure constants for the bracket and co-bracket

lei, ;] = fl-];ek, o(er) = cije,; ® e; (1.1)
and then we also have §*(6' ® 67) = C?Gk.
Classical r-matrices We will now focus on the case where the co-bracket § of a Lie

bialgebra g is not just a 1-cocycle as in Definition but also a 1-coboundary. More
precisely, we are asking that 6: g — g®? is a linear map of the form

d(z) = adP (r)
=z®l+1l®a,r]

for a fixed element r € g ® g. In this situation we write § = d,.. As every coboundary is
a cocylce, the cocycle condition of Definition [I.1.1]is automatically satisfied.

Definition 1.1.2. An element r € g ® g is called a classical r-matrix if

e the symmetric part r1s + r21 1S g-invariant
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e 1 satisfies the classical Yang—Baxter equation (CYBE)
CYB(r) =0
where CYB(r) = [r12,r13] + [r12, 723] + [r13,723] is the Yang—Baxter operator.

We will usually denote by w = %(Tlg — r91) the anti-symmetric part of r and by t =
%(ru + 791) its symmetric part.

In a basis (e;)ier for g the CYBE reads
rijr“b([ei, ea) ®ej Rep+ e ®lej,eq] ep+ e Qeq ® e, eb]) =0 .

Note that g-invariance of the symmetric part guarantees that the bracket 6* on g* is
anti-symmetric and the CYBE is a sufficient condition for the Jacobi identity to hold
for (g*,d*). This last point is nicely explained in [KS04, Section 2.2].

Definition 1.1.3. A Lie bialgebra (g,[—, —], ) is called quasi-triangular if its cobracket
is of the form
brig—g®e, Tr—[zR1+1z,7]

where r € g® g is a classical r-matriz.

Note that the co-bracket only depends on the anti-symmetric part w since by as-
sumption ¢ is ad-invariant. The following two propositions will be useful when defining
Poisson structures via Lie algebra actions and classical r-matrices.

Proposition 1.1.4. [KS504, Section 2.2] Forr =w+t € g® g we have that CYB(r) €
A3g and
CYB(r) = CYB(w) + CYB(#)

PI‘OpOSitiOn 1.1.5. CYB(t) = [t13, t23} = [t23,t12] = [t12,t13]
Proof. We have

CYB(t) = tijt“b([ei, ] @ej @ep e ® e, eq] Dept e ® e, @ ey, eb]>
= —t71%adP) (e; @ ) @ e + t71%e; @ €4 @ [ej, )
= t171%¢; ® e @ [e}, &)
= [t13, t23]

by ad-invariance of ¢, and similarly one can verify the remaining equalities. O

Poisson—Lie groups Similarly to how Lie algebras are considered infinitesimal coun-
terparts to groups, Lie bialgebras are infinitesimal structures associated to certain multi-
plicative Poisson structures called Poisson—Lie groupﬂ The study of Poisson—Lie groups
and their relation to Lie bialgebras was initiated by Drinfeld [Dri00].

Definition 1.1.6. A Poisson—Lie structure on a group G is a Poisson bivector llg €
N?TG which is such that the multiplication m: G x G — G is a Poisson map. We call
the pair (G,1lg) a Poisson-Lie group.

'In the algebraic setting such groups are sometimes called Poisson algebraic groups. We will however
adapt the more common terminology and refer to G as a Poisson-Lie group.
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Let g be the Lie algebra of G. If (G,Ilg) is a Poisson—Lie group, g is naturally a Lie
bialgebra: we may regard the Poisson bivector as a map Ilg: G — A2g by identifying
T,G = g. Then, (g,0) with § = dll: g — A?g is a Lie bialgebra, see for example [ES02al,
Section 2.2]. The additional structure of a Poisson bivector on G thus corresponds to
the additional structure of the co-bracket turning g into a Lie bialgebra. As for Lie
algebras, the uniqueness in passing from Lie bialgebras to Poisson—Lie groups requires
connectedness and simply-connectedness [Dri00], see also [ES02al, Theorem 2.2].

The main example for us of a multiplicative Poisson structure will be the following.

Example 1.1.7. Given a classical r-matrix r € g ® g one can define a 2-tensor by

M= R _ Ll
where the superscripts indicate that both tensor factors of r act via right-, respectively
left-invariant vector fields as defined in Equation below. Since the symmetric part
of r is ad-invariant this is a multiplicative bivector on G. One can show that the CYBE
for r guarantees that II is a Poisson bivector. The pair (G, 1I) is called a quasi-triangular
Poisson—Lie group since its tangent Lie bialgebra g is quasi-triangular with co-bracket
dr. The corresponding Poisson bracket on O(G) is called the Sklyanin bracket. A

Group actions and Poisson varieties Let M be a smooth algebraic variety with a
left G-action p: Gx M — M, (g,m) — g>m. We often refer to M simply as a G-space.
For x € g, the vector field x” encoding the infinitesimal action of G on M is

d

x> f(m) = Ztls

fleem)

where we use the symbol > to denote both the action of the group G on M and the
action of the corresponding vector field on the algebra of functions O(M). By the
above we get a Lie algebra homomorphism p,: g — I'(M,TM),  — xf, where the
Lie bracket on the algebra of vector fields I'(M, TM) is the commutator. The map p.

extends to a morphism of associative algebras from A®g to the algebra of multi-vector
fields T'(M, A*T'M) by setting

(x1 A== Axp)P(m) =zl (m) A--- Axh(m)

The group G acts on itself via right and left multiplication. The respective infinitesimal
actions are encoded in left invariant and right invariant vector fields on GG. These vector
fields act on functions via?

_4d
~dt li=0

d

flge™™), @">flg)=—| fleg) , (1.2)

(f <28 (9) =l

So that for the left G-action given by conjugation Ad: G x G — G, (g, h) — ghg™!, we
get 229 = 2 — 2L for the infinitesimal action. Note that the left invariant vector fields
act on the right, but the minus sign turns it into a left action.

Remark 1.1.8. The formulas in (1.2) make sense in the algebraic setting since for all
x € g we have that €' is a well-defined C[t]/t"-point of G for every n € N.

2Notice that here the superscripts L and R refer to left-, respectively right-, invariant vector fields and
not to the action by right, respectively left, multiplication.
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Assume now that G is a Poisson—Lie group and M a G-space equipped with a Poisson
structure {—, —}ps. The following is a compatibility condition between the action and
the Poisson structures on G and M that will allow to define a Poisson structure on
quotient spaces.

Definition 1.1.9. [LW90] Let (G,{—, —}¢) be a Poisson—Lie group and (M,{—, —}rm)
a Poisson space with a left G-action. The action p: G x M — M, p(g,m) = g>m, of
G on M s called a Poisson action if p is a Poisson map. If p is a Poisson action, we
call M a Poisson G-space.

Explicitly, for g, h € G, m € M, the action p is Poisson if

{e: ¥} (gem) = {p(=>m), d(=>m)ta(g) + {p(g> =), ¥(g> =) }a(m) -

Since for any G-invariant function ¥ € O(M)% we have
d(g>—) =1, I(—>m)=19(m)=const ,

for all m € M and g € G, the Poisson bracket on M descends to the algebra O(M)% of
G-invariant functions if the G-action is Poisson.

The following proposition gives an infinitesimal characterization of Poisson actions.
We denote by d the co-bracket on g coming from the Poisson—Lie structure on G.

Proposition 1.1.10. [LW90, Theorem 2.6] Let 1y be the Poisson bivector on M. The
action p: G X M — M is Poisson if and only if

Loo(Ilar) = psd(z)
for all z € g.

We end this section by giving an example of a Poisson G-space that will play a promi-
nent role when defining Poisson structures on character varieties in the next section. We
will use the implicit summation notation r = r! ® 72 for the classical r-matrix.

Example 1.1.11. Consider G as a left G x G-space via p: ((g1,92),h) — glhggl.
Assume that r = w + ¢t is a classical r-matrix for the Lie algebra g of G. Then, the

bivector field
R,R LL _ RR 4 whl (1.3)

on G is Poisson, due to g-invariance of t and the CYBE. Moreover, the left G x G-action
on (G,I1g) is Poisson. Indeed, the following is a classical r-matrix for g @ g:

F=(rh0)® (1%,0) - (0,r) ® (0,r")

It induces the above Poisson bivector via the G x G-action; Ilg = p.7. Now, for any
(z,y) € g ® g we can compute the Schouten bracket

[[(I, y)p’ HG]] = [[IR — yL’ vaR + wL,L]]
= ad(zQ) (w)R,R + ad?(f) (W)L’L
2
- p*adEx?y) (7)

and by Proposition [1.1.10| we conclude that the action p is Poisson. A
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(=0

Figure 1.1.: An example of a ciliated ribbon graph embedded into a punctured surface.
Every edge is divided into an outgoing half-edge (green) and an incoming half-edge
(red). The linear order of the half-edges is represented by placing a cilium at the vertex
separating the minimal and the maximal half-edge incident to that vertex.

1.1.2. Fock—Rosly Poisson structure on character varieties

The original reference for the material in this section is [FR93| [FR99]. For a more
detailed presentation of the subject we refer to the lecture notes [Aud97].

Let ¥ = Y, , be a compact oriented surface of genus g with » > 0 boundary com-
ponents and a collection V' of marked points on the boundary 0%. By a skeleton for
> we mean an embedded graph I' C X such that the set of vertices is V and I is a
deformation retract of X. Equivalently, the surface ¥ may be combinatorially described
by means of a ciliated ribbon graph, that is, a directed graph I' = (E, V), with E the
set of oriented edges and V the set of vertices, together with a linear order on the set
of ends of edges E(v) at each vertex v € V. Given a ciliated ribbon graph I', one can
fatten each edge into a ribbon and each vertex into a disk such that I' is a skeleton for
the resulting surface. An example of a ciliated ribbon graph with one vertex is pictured
in Figure

Given the choice of a skeleton for X, let IT; (X, V') be the fundamental groupoid of ¥
based at V. The representation variety is defined by

Reps (2, V) = Hom(II1 (%, V), G)

where G is regarded as a groupoid with one object and elements of G as morphisms.
Since the edges of I' constitute a system of free generators, there is a natural identification

Repg(S, V) = G

Note that G is a finite-dimensional smooth algebraic variety and independent of the
concrete form of the ciliated ribbon graph I' or topology of . However, we will see that
the FR-Poisson structure on Rep(X, V) is sensitive to the topology.

An element in Reps (2, V) is called a discrete connection. This terminology is moti-
vated by the following remark.

Remark 1.1.12. Geometrically, the representation variety is the moduli space of flat
principal G-bundles Ag(X, V') that are trivialized over each point v € V.. The identifi-
cation with the representation variety is via the holonomy map

[~—3

Ag(B,V) =GP, A [ holy(A)
yeE

where hol,, is the holonomy along the path .
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There is a natural action of the lattice gauge group GV on Reps (3, V)
GV xGF — G*
((hv)ver (g’Y)’YGE) — (ht(w)gh;é,))'yeE )

where s() is the starting and ¢(y) the target vertex of v. Taking the affine quotient of
the lattice gauge group action yields the character variety:

Charg(X) = Repg (2, V)/GY

Remark 1.1.13. The moduli space Ag(X,V') from Remark is the space of flat
G-bundles modulo gauge transformations which are trivial at the set of vertices V' of the
graph T'. Further reduction by the group GV, which acts by changing the trivialization,
then gives the space Ma(X) of flat G-bundles modulo all gauge transformations.

Let (e;)ier be a basis for g. We denote by ef*(a) and e¥(a) the right-, and left-invariant
vector fields on G¥ whose left action on a function f € O(G¥) is:

d
ef(a) > f(gl7 o 7gE) = %’t:()f(gla s 7eiteigom o 7gE) ) (14)
d
(—eH(@) > F11-.195) = S0 f(grs- - guc™. ... g) (15)

The FR-Poisson structure on Charg(X) is constructed as follows: to each vertex v € V
one assigns a classical r-matrix 7(v), such that the symmetric components of the chosen
r-matrices agree and are non-degenerate. Denote the set of half-edges incident to a
vertex v by E (v) and fix a linear ordering < on E (v). The Fock-Rosly Poisson bivector
is defined as follows [FR99) Proposition 3]:

Mpp=Y_ Y. r@7zi(av)Azj(Bv)+ Y r@)mi(e0) Awjla,v) , (1.6)

veV  a=<p acE(v)
a,B€E(v)
where
(o) —el(a), « is source half-edge at v
xi(a,v) =
‘ el (a), « is end half-edge at v .

In [FR99|, the proof that IIzg is indeed a Poisson bivector on the character vari-
ety Charg(X) is left as a computation to the reader. A more conceptual proof that
(Repg(2,V),I1pR) is a Poisson variety compatible with the action of the lattice gauge
group was given by Mouquin in [Moul7, Theorem 4.2]. In the next paragraph we will
outline Mouquin’s approach to defining the FR-Poisson structure via r-matrices and Lie
bialgebra actions. We will adopt the same strategy when defining Poisson structures on
twisted character varieties in of Chapter 2l Also, we will give a generalization of
[Moul7, Theorem 4.2] to Poisson structures defined in terms of dynamical r-matrices in
of Chapter

Lastly, we should note that the FR-Poisson algebra on the character variety is inde-
pendent of the choices of the r-matrices and the linear ordering at each vertex [FR99,
Proposition 5|, see also [Aud97, Section 2.3]. The Poisson structure only depends on
the symmetric part ¢ € Symz(g)g of the r-matrices, i.e. on a non-degenerate invariant
symmetric pairing.
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FR-construction via fusion For simplicity we consider the case where I' has only
one vertex, for the general case see [Moul, Section 4] or the proof of Proposition
As before, F is the set of half-edges of I" with a linear order <. For an edge § € E we
write s(8) € E for the source half-edge and t(§) € E for the end half-edge. The following

is a classical r-matrix for the direct product Lie algebra g”:

7 =" (1)) @ (i) — (D)s) @ (M) (1.7)
5eE

where (), is the image of x € g under the embedding of g into gE as the a-component.

One can modify the direct product r-matrix r¥ via
=B MiXE’<(T), where MiXE’<(T) = Z (r%)a A (Tl)ﬁ : (1.8)
a=<pg
a,,BEE

The resulting 2-tensor r is again a classical r-matrix for gE [LM17, Theorem 6.2]. It is

important to note that while the diagonal map

(9,6,) 22 (gF 6,r)

is an embedding of Lie bialgebras, the same is not true for the direct product Lie

bialgebra (g”, 6,5), see also Remark [1.1.15 below.

There is a natural action of GE on GF:
o GE x GF 5 GF
((ha)a€E7 (g“/)veE) — (ht(w)g'yhs_(}y))weE .
The induced 2-tensor field pL (r1') on G is a bivector field since pL (ri, +7L;) = 0 due to

ad-invariance of the symmetric part of the r-matrix. It turns out that pL (r) is actually
a Poisson bivector field, as can be deduced from the following proposition:

Proposition 1.1.14. [LMI17, Proposition 2.18] Let p: G x M — M be a G-space and
r € g®g a classical r-matriz. If per is a bivector field then it is a Poisson bivector field
and (M, p«r) is a Poisson G-space.

Proof. One has to show that the Schouten bracket [p.r, ps7] vanishes. By assumption
p«t = 0 and thus

[p«r, psr] = 2p.CYB(w)
= —2p,CYB(t) .
We denote by t: g* — g the map defined by t(n) = (t!,1)t2. By Proposition we
have p,CYB(t) = p«[t12,t13]. Hence, for every m € M and a, 8,y € T,;, M we find
p+CYB(t)(m) (e, 8,7) = (pme; [t(prmB), o) (1.9)

where pp: g = TinM, pm(x) = ps(z)(m) and p),: T M — g is the dual map. The
stabilizer subalgebra ker(p,,) C g at m is coisotropic with respect to ¢, meaning that
t(im(p},)) C ker(pm). It follows that = 0. Finally, the claim that (M, p.) is a
Poisson G-space then follows from

[p«z, puw] = P*ad:(cz) (w) = psd(x)
for all x € g and Proposition [1.1.10 O
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The above proposition thus implies that Repg(X) is a Poisson G’E—space. Finally,

since the diagonal map g diﬁ) gE is an embedding of Lie bialgebras, one concludes that

(Repg (%), ol (1)) (1.10)
is a Poisson G-space, namely the one discovered by Fock—Rosly.

Remark 1.1.15. The Poisson G-space defined in this way can be understood as the
result of fusion of the Poisson G¥-space Reps(X) = G equipped with the direct product

Poisson structure pLr¥. The necessity of fusion is due to the following observation. For
two Poisson G-spaces (Y1,1ly,) and (Ya,1ly,), their direct product Y1 X Y2 has a natural
Poisson structure Iy, + Ily, and a natural G-action coming from the diagonal map.
However, the resulting Poisson space

(Y1><}§,H§34—Ih§)

s in general not a Poisson G-space under the diagonal action. One way to resolve this
problem is to take their fusion product instead. A fusion product for Poisson spaces
was defined by Lu—Mouquin in [LM17, Definition 6.9] by means of classical r-matrices.
It agrees, up to a twist, with the fusion product of quasi-Poisson spaces introduced by
Alekseev-Kosmann-Schwarzbach—Meinrenken in [AKSMO00]. Coming back to the case of
the representation variety: given several copies of the Poisson space (G,11g), where Ilg
1s the Poisson structure from Ezample the direct product Poisson space is

(G x - x Gillg + -+ 1) = (GF, plr")
This is a Poisson GE—space under the action p'. Whereas the fusion product due to
JLMI17] is ~

(G x - x G g+ +1g — piMix"=(r))
equipped with the G-action p' o diag. In summary, the Poisson structure (1.10) on

the representation variety is a fusion product of several copies of the group G with its
G x G-Poisson structure Ilg.

We are now going to describe IT" = pl'(r) in some more details, so that it will be
easy to see that IT'' agrees with the Fock-Rosly Poisson bivector from Equation (T.6]).
To that end, decompose the bivector field as

n =31+ Y (;-r1y) ,

veE v<0
0,ve{1,...,|E|}

where H,l; s acts on the y-component of the first tensor factor and on the d-component

of the second tensor factor of GF x G¥, and 7 swaps the tensor factors of the 2-tensor
field HS 5
The components of the r-matrix contributing to the first term HS,'Y are

= (i) ® (M)e) = (7%)st) ® (1)sy + ()i A (7))
Under the pushforward pl we then get

H’y,’y — wad,ad + tR,L o tL’R , (111)



1. Background

(a) (v) (¢)

@
v/é 5/ v/6 5/

Figure 1.2.: Ciliated graphs with one vertex and two edges labeled by two ordered
elements v < 0 of the set {1,...,|E|}. We will refer to the graphs with the red labels as
positively (a) unlinked, (b) linked, (c¢) nested, and we say that the graphs with the blue
labels are negatively (a) unlinked, (b) linked, (c) nested.

where we used ad-invariance of t. The above Poisson structure was first introduced
by Semenov-Tian-Shansky (STS) [STS94] and we will accordingly denote this Poisson
bivector field by Ilgrg.

For 1L, 5, v # d, we have to distinguish the following cases, see also Figure

e 7,0 are positively unlinked: t() < s(y) < () < s(9)

3
Tontinked = — (")) @ (1) us) + (7)) © (1) s(6) + (1D sy @ (X))
+(r2)s(7) ® (Tl)s(é))
Hg,(s = 0% (Minlinked) = —ngjfad

e ,0 positively linked: () < () < s(y) < s(9)

(1.8)
Tinked = ()it @ (r)a5) + (%)) @ (1) s(3) = (s @ (1)ga)
() sty @ (M)s(s))
Hgﬁ = p}: (Tﬁ‘nked) = _T;fjfad — bR

e 7,0 positively nested: t(v) < t(d) < s(d) < s(7)

(L.8)
Thested = _((Tz)t(v) ® (Tl)t(a) + (""2)15(7) ® (7’1)8(5) - (rl)s(v) ® (7’2)t(5)
(st @ (1))
I 5 = ph (Mhestea) = —7553° — 2651 4 2¢lk

The remaining three cases depicted in Figure [1.2] can be worked out analogously.

1.1.3. Character stacks

In [Saf21b], Safronov relates multiplicative Poisson structures, such as Poisson-Lie
groups, as well as Poisson G-spaces to the notion of shifted Poisson structures for (de-
rived) Artin stacks introduced in [CPT™17]. The intuition behind the definition of a
shifted Poisson structure on a stack is the following. First recall that for a smooth
algebraic variety M, a Poisson structure is a bivector I € I'(M,A?T'M) such that
[IL,II] = 0. Now, let X be an Artin stack. For example; X = [M/G] for M a smooth
algebraic variety. Infinitesimally, an Artin stack may be studied via its tangent complex
Tx. Accordingly, the algebra of n-shifted polyvector fields is

Pol(X,n) = I(X, Sym(Tx[-n — 1])) .

10
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Then, a n-shifted Poisson structure on X is a formal power series II = Il + II3 + ...,
where each IT;, € Pol(X, n) is of weight k£ and internal degree n+2, satisfying the Maurer-
Cartan equation dII + %[[H, I1], that is, the Schouten bracket of the shifted bivector Il
is not zero on the nose but homotopic to zero in a coherent way. A precise definition of
a shifted Poisson structure on an algebraic stack can be found in |[CPTT17].

Recall that the G-character stack of 3 is defined by the quotient stack:

Charg(X) = [Rep(2)/G]

In the previous section we have seen that the representation variety (Repgs(X),IIpg) is
a Poisson G-space in the case that G is equipped with the quasi-triangular Poisson—Lie
group structure Ilg = rf —rbL We may view (Ilrg, I1g) as an object in the groupoid
QPois(Rep(X), G) whose objects are (quasi-)Poisson structures on G and compatible
(quasi-)Poisson structures on Reps(X). Morphisms in this category are induced by
twists A € A?g modifying both Il and HRep,(5)-

It was shown in [Saf21bl Proposition 2.14] that for any G-space M, there is an equiv-
alence of groupoids

Cois(p, 1) = QPois(M,G), p:[M/G] — BG ,

where on the left we have the groupoid of 1-shifted coisotropic structures on p. In
particular, Cois(p, 1) contains the information of an 0-shifted Poisson structure on [M/G]
(see for example [Saf21bl Section 1.3] for more details on the relation between shifted
coisotropic and Poisson structures).

Applying the above to the situation at hand, we find that the data (Ilpg, ) gives
rise to a O-shifted Poisson structure on the character stack Charg(X). It is expected
that factorization homology [, Rep,(G) computes a quantization of this shifted Poisson
structure. However, to our knowledge, there is so far no known formula for the shifted
Poisson structure on Charg(X).

1.2. Hopf algebras and their representations

Throughout, & is either a field K of characteristic zero or the ring K[[A]] of formal power
series. We will write ® for the (completed) tensor product in the category of (complete)
k-modules.

In this section we recall basic definitions of quasi-triangular Hopf algebra theory with
a focus on the theory of quantum groups and their representations. For a detailed
exposition on Hopf algebras we refer to Majid’s text [Maj95]. For basics on quantum
groups and their representations we mainly follow the books by Chari—Pressley [CP95]
and Kassel [Kas95].

Basic definitions and notation A Hopf algebra H is a unital k-algebra with coprod-
uct A: H - H® H, counit e: H — k and antipode S: H — H. The maps A and € are
algebra homomorphisms and ' is an anti-homomorphism. Usually we will adopt implicit
summation notation for tensors, for example we will write h = h'®- - -®@h* for an element
h € H®, We will use Sweedler’s notation for the coproduct, i.e. A(h) = h(1) ® ha), for
heH.

The Hopf algebra H is called quasi-triangular if there exists a universal R-matrix,
which is an invertible element R € H ® H satisfying

(A & id)R = R173R273, (id X A)R = R173/R1,2 ,

11



1. Background

where the notation means for example R 3 = R' ® 1 ® R? with implicit summation
notation R = R! ® R?, and

A°P(h) = RAMR™ | (1.12)

for all h € H. The opposite coproduct A°P is the composition of A and the operator 7
switching the two tensor factors. The above implies that the universal R-matrix satisfies
the quantum Yang-Baxter equation (YBE):

Ri12R13R23 = R23R13R12 -
Moreover, the following normalization condition holds

(e®dR=1®1=(d®e)R ,
and one also has

(S@idR =R, (doSYR'=R .
A quasi-triangular Hopf algebra is called ribbon, if it has an invertible, central element
v € H such that
V2 =uS(u) ,
for u = S(R?)R! and
SW)=v, )=1, AW)=(ReR) " (wov)

On a categorical level, quasi-triangular Hopf algebras give rise to rigid braided tensor
categories. Indeed, for a quasi-triangular Hopf algebra (H,R) over K, we will write
H-Mod for the category of locally—ﬁnite{ﬂ H-modules. One then defines a braiding for
H-Mod by acting with the universal R-matrix:

Bywvow) =R*>wa@R'sv, V,W € H-Mod .

This is an H-module map because of . The braid equation for § is a consequence
of the quantum YBE. Also, note that the category H-Mod is generated under filtered
colimits by finite-dimensional H-modules and is therefore rigidﬂ For a finite-dimensional
left H-module V', the dual K-vector space V* is again a left H-module using the antipode

(h» p)(v) =p(Sh)>v), veV,peV* .

The pair (V*, ») is the left dual to (V,). The right dual to V' is defined similarly using
the inverse of the antipode. If H is ribbon, there is a canonical identification of the left
and right dual.

1.2.1. Quantum groups with a formal parameter

Throughout, let g be a finite-dimensional complex semi-simple Lie algebra and A a formal
parameter. A quantized universal enveloping algebra (QUEA) Uy(g) is a formal defor-
mations of the classical universal enveloping algebra U(g), according to the definition
below.

Definition 1.2.1. A formal deformation of a Hopf algebra A with multiplication m
and coproduct A is a topological Hopf algebra Ay, which is isomorphic to A[[h]] as a
Cl[h]]-module, with multiplication my, and coproduct Ay such that

m = mymod A, A =Apmodh .

3A module V is called locally-finite if for all v € V the submodule H.v generated by v is finite-
dimensional.
We call a category rigid if the compact objects are dualizable.

12
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Drinfeld—Jimbo quantum groups In the following all tensor products are assumed
to be completed in the h-adic topology. Let g be of rank n with Cartan matrix A =
(@ij)i<ij<n. We write II = {au,..., oy} for the set of simple roots. We rescale the
pairing (—, —) coming from the Killing form such that the entries of the symmetrized
Cartan matrix DA = (d;a;j);; are (DA)i; = (ai, o).

Definition 1.2.2. Let Uy(g) be the algebra topologically generated by the 3n symbols
(HZ-,X;F,X[)Z-:LM” subjected to the following relations:

[Hi, HJ] = 0, [HZ,X]i] = :|:CL1'J')(J~i

pdinH; _ o—dihH;

[Xj’ le] = 5” edih _ o—d;hi (113)

and for i # j:
1—a;; 1 3
e I P e (114)
ed-ﬁ

(3

k=0

The deformation Up(g) of the universal enveloping algebra is again a Hopf algebra
with coproduct

AXH) =X @et™i L1 X, ANX]) =X, @1+ %Mig X~

The rest of the Hopf algebra structure can be found in [CP95]. The Hopf algebra Uy(g)
is a QUEA [CP95, Proposition 6.5.1].

Let §, be the standard Lie bialgebra structure on g with classical r-matrix r =
I3 H @ Hi+ Y pen+ X5 ® X, where the second sum runs over the set of posi-
tive roots. The cobracket uniquely extends to the universal enveloping algebra U(g)
[CP95, Proposition 6.2.3]. Then, one has

_ Ap(ap) — Azp(ah)

or(a) -

mod(h) , (1.15)

for a = ap, mod(h), meaning that Uy(g) is a quantization of the standard Lie bialgebra
structure on g.

There is a PBW-type basis for Uy(g) consisting of the generators (H;)i=1,..» and ‘root
vectors’ associated to the set of positive roots Ay. In order to define the root vectors in
the quantum case one uses the action of the braid group B4 on Uy(g), in analogy to the
classical situation where one uses the Weyl group action to define the root vectors. For
Dynkin diagrams of ADE-type the braid group has generators 13, i = 1,...,n, subjected
to the following relations

TT;T; = T;T;T; if the vertices i and j are connected

T;T; = T;yT; if the vertices i and j are not connected .

Formulas for the action of By on the generators of Up(g) can be found in [CP95,
Theorem 8.1.2]. Positive and negative root vectors for the QUEA are now defined using
the braid group action:

13
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Definition 1.2.3. Fiz a reduced decomposition wo = s;,5i, - .. 8i5 Of the longest element
wo of the Weyl group W of g. The positive/negative root vectors (X;k/_)lgng are
defined by
XV =TT, ... T, (X7
B i1t e Lo \ gy
Remark 1.2.4. There is a bijective correspondence between reduced decompositions of

the longest element of the Weyl group and normal ordem'ngsﬂ on the set of positive roots
Ay . Given a reduced composition wo = S;, Si, - . - Siy the set

,312011‘1 =< ,82281‘1(0[1‘2) < ... ‘<5N:3i13i2~-3i1v,1(ai1\])

is a normal ordering in Ay [Zhe8'|.

The universal R-matrix The QUEA Uj(g) is quasi-triangular [CP95, Theorem 8.3.9].
In order to give an explicit formula for the universal R-matrix, we fix a decomposition of
the longest element wq in the Weyl group and denote by (Xi)lgkg n the set of positive
and negative root vectors. The R-matrix admits the following multiplicative formula

Rp = exp (hzj:(Bl)ini ® Hj) 5 <£[< . XDy, ((1 — X © X@) (1.16)
5 B

=OR ,

where B = (dj_laij)i,j and the product is ordered according to the chosen normal order-
ing on the positive roots as in Remark

Representation theory For any complex vector space V', the left C[[h]]-module V[[A]]
is the set of all formal series

Z vp ", v, €V .

neN
We call V[[A]] a topologically free module. If V' is finite-dimensional, we say that V[[A]]
has finite rank. The topological tensor product ® of two topologically free modules is
again topologically free:

VIRI&W [r] = (V. W)[[H]]

d™ for the category of topologically

For a topological Hopf algebra Ay we will write Az-Mo
free Ap-modules of finite rank.

Since there are no non-trivial deformations of U(g) as an algebra, the representation
theory Up(g)-Mod is analogous to that of the Lie algebra g: for a dominant integral
weight A € PT " and highest weight module V), there exists a unique topologically free
Ur(g)-module V), such that V) /hV) = V), and every module in Up(g)-Mod is a direct
sum of modules of this form, see [Kas95l, Section XVII.2].

The category Us(g)-Mod™ is braided monoidal with braiding induced by the action
of the universal R-matrix Rj. Moreover, every object V[[h]] has a dual V*[[h]] with
Un(g)-action defined via the antipode. The topological Hopf algebra Uj(g) has a ribbon
element [Kas95, Proposition XVII.3.1]

0, = e_hpuh ,

where p € b corresponds to the half-sum of positive roots under the isomorphism h* = h
and uy = S(R3)R}, turning Uy (g)-Mod™ into a ribbon tensor category.

5An ordering < of a set of positive roots A, is called normal if for any three roots «, 3, such that
v = a+ B we have either a« < v < S or <7 < a.
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1.2.2. Quantum groups with a generic parameter

Let G be a semi-simple linear algebraic group over C and H C GG a maixmal torus with
corresponding Cartan subalgebra h C g. We denote by A = Hom(H,G,,) the weight
lattice of H. As before, DA = (d;aij)i<ij<n is the symmetrized Cartan matrix and
from the Killing form we get a pairing (—, —) on A which is such that (a;, ;) = (DA); ;
for all simple roots «;. Let ¢ € C* be a complex number which is not a root of unity.
Exponentiation gives the following pairing on the weight lattice:

AxA—C*, (A p) — g O

Set ¢; = ¢%. The algebra Uq(g) over C has generators K for A € A and Xl-jE for
i=1,...,n subjected to the relations

Ko=1, K\K,=Kxi,
KXFE =M xt KX R = g Med X
Ko, — K3}
4 —q; "
for all A\, u € A and 1 < 4,5 < n, together with the quantum Serre relations, which are

g-versions of the Equations ((1.14). The quantum group U,(g) is a Hopf algebra over C
with coproduct

(X3 X7) =0y

A(K)\) =K,® K,
AXNH =X oK +10X, AX)=X;9l+K'eoX, ,
and the rest of the Hopf algebra structure may be found in [CP95| Section 9.1]. The
Cartan part Uy(h) = C[A] is generated by the K, for A € A and we denote by

Uqy(b),Uqy(b7) C Ugy(g) the quantum Borel subalgebras generated by the K)’s and the
Xf’s, respectively by the K)’s and the X ’s.

Representation theory We will denote by Rep,(H) the full subcategory of the cat-
egory of Uy(h)-modules that are spanned by weight vectors vy, A € A, on which the
generators K, act by multiplication with ¢ The category Rep,(H) is a braided
tensor category with braiding:

B(ua ® wu) = q_()\’“)wu @ux .

The representation category Rep,(G) of the quantum group is defined as the category
of locally-finite integrable U,(g)-modules. These are modules with locally-finite U,(g)-
action, whose restriction to U,(h) lies in Rep,(H). The action of the quantum nilpotent
subalgebras U, (n) and Uy(n™) is locally nilpotent.

The category Rep,(G) is semi-simple: every object may be presented as a (possibly
infinite) direct sum of finite-dimensional irreducible highest weight modules V() for A
lying in the lattice P* of dominant integral weights. Moreover, Rep,(G) is a braided
tensor category [CP95, Section 10.1.D]. For a representation V @ W € Rep,(G), the
braiding is defined by the so-called quasi R-matrix

Ovw =ToEywRvw ,

where ﬁvﬂ/ is the g-version of R defined in in the representation V @ W. This is
well-defined since the action of the quantum nilpotent alegbras is locally nilpotent. The
operator Eyyy is defined by Eyw (vy ® w,) = gy ® wy, for all A\, p € A, and 7 flips
the two tensor factors.
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1. Background

1.3. Categorical factorization homology

In we give a short introduction to factorization homology for oriented mani-
folds. We will also discuss factorization homology on surfaces with certain stratifications,
namely with boundary conditions and with point defects. In we present the cat-
egorical set-up in which we will carry out our computations. To that end, we introduce
the bicategory of locally presentable enriched categories and show that it satisfies the
necessary technical conditions to serve as a target for computing factorization homology.
In we lay out the main ideas behind the categorical approach to quantization. In
we recall the basics about monadic reconstruction for abelian module categories
which will be used throughout the thesis to obtain an explicit algebraic presentation for
factorization homology on (decorated) surfaces.

1.3.1. Factorization homology on oriented manifolds

The algebraic input data for factorization homology on oriented n-manifolds are framed
E,-algebras in symmetric monoidal (0o, 1)-categories. Factorization homology then com-
putes functorial invariants of oriented m-manifolds by ‘averaging’ the local input data
over a given manifold. In the scope of this thesis we will only be concerned with the case
of surfaces (n = 2) and categorical framed Eg-algebras. We will nevertheless give first the
basic definitions for manifolds of any dimension before restricting to the 2-dimensional,
categorical case. References for a more in depth introduction to factorization homology
are [AF19] as well as the lecture notes |Ginl5].

Basic definitions The geometric input for factorization homology will be an object in
the following category:

Definition 1.3.1. Manf" is the (oo, 1)-category whose

e objects are oriented n-dimensional manifolds

e the space of morphisms Emb® (X,Y") is the space of oriented smooth embeddings
of X into Y equipped with the compact-open topology

The disjoint union of manifolds endows Man?" with the structure of a symmetric monoidal
(00, 1)-category.

We denote by Disk)' C Man?" the full symmetric monoidal subcategory whose objects
are Euclidean spaces and disjoint unions thereof.

We now fix a symmetric monoidal (oo, 1)-category (C,®). We will assume that C is
cocomplete and the tensor functor ® distributes over colimits in each variable. These
technical assumptions will ensure that factorization homology with coefficients in (C, ®)
as introduced in Definition [1.3.4] below is well-defined.

Definition 1.3.2. A framed E,,-algebra in C is a symmetric monoidal functor
A: Disko"" — C®

Since Disk;" is generated as a symmetric monoidal category by R", we also denote by
A the image of the generator R” under the above functor.

Example 1.3.3. In Figure[1.3| we give a sketch for n = 2 of the disk operations in Disk§"
and the corresponding algebraic structures on the framed Es-algebra A: [Diskcz’r"‘I —
ce. JAN
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~ mARA— A % ~ B:m=moo

~ o fridy = idy

Figure 1.3.: First row: Disk embeddings (or isotopies thereof) in Disk3" that give rise to
the multiplication m and the braiding 3 in A = A(R?). Here o denotes the braiding in

C. Second row: Loop in the space of disk embeddings Disks" coming from rotating the
disk by 2.

Definition 1.3.4. [AF15] Factorization homology [ =) A with coefficients in the framed
E,-algebra A is defined as the left Kan extension of the diagram
Disko™H —4 ¢®
A

~[ e f(_) A

or
Many,

The left Kan extension admits a point-wise formula: the value of factorization homol-
ogy on a manifold M is computed by the colimit

/ A= colim([Disk?Lr/M — Disk;” 4 C)
M

over all possible disk embeddings into M. The assumptions on C guarantee that the
above colimit exists and makes factorization homology into a symmetric monoidal func-
tor [AF15, Proposition 3.7]. The value of factorization homology on any manifold M is
naturally pointed by the inclusion () < M of the empty manifold:

/Aglc—>/.,4.
0 M

Remark 1.3.5. Factorization homology can be defined on manifolds with more general
tangential structures than the choice of an orientation. Recall that for a topological group
G and a homomorphism p: G — GL(n), a G-structure on a manifold M is a homotopy
lift of the classifying map of the frame bundle through Bp:

BdG

T
-~ pr

M —— BGL(n)

An example that will play a key role later in Chapter [3 is the following. For D a
T n

finite group, let G = D x SO(n) and p: D x SO(n) Frsom, SO(n) < GL(n). The

resulting tangential structure amounts to the choice of an orientation together with a

map M — BD, i.e. a principal D-bundle.
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1. Background

N

S
Mo
Figure 1.4.: Example of a collar-gluing.

®-Excision Factorization homology, being a homology theory for manifolds, satisfies a
certain gluing property called ®-excision. Excision will be the main tool for computing
factorization homology since it allows to reconstruct the value of factorization homology
from a certain decomposition of M, namely from a collar-gluing [AF15, Section 3.3]. A
collar-gluing is a decomposition M = M_ Mo M+, where My and M_ are open subsets
of M, together with a direct product structure on My = M_NM,, i.e. a diffeomorphism

0: My = N x (—1,1) of oriented manifolds. See Figure for an example.
Factorization homology [y (—1,1) A for the product manifold N x (—1,1) has a natural
E;-algebra structure coming from embeddings of open intervals, which gives rise to an

0
Ei-algebra structure on | u, A under the equivalence My = N x (—1,1). Let us fix
oriented embeddings

g1, U (=1,1) <> [=1,1) and py: (—1,1)U(=1,1] < (~1,1]

such that p_(—1) = —1 and p4 (1) = 1. Under the diffeomorphism 6 these maps lift to
embeddings

act_: M_ UMy — M_ and acty: MoU My — M,

see Figure for a sketch. The maps act_ and acty induce right-, respectively left-
module [ Mo A-module structures on the corresponding factorization homologies.

Lemma 1.3.6. [AF13, Lemma 5.18] Let M = M_{Jy, My be a collar-gluing of ori-
ented n-manifolds and let A be a framed E,-algebra in C. There is an equivalence of

categories
/ A= A ® A
M M_ fMOA My

where on the right hand side the relative tensor product is computed by the colimit of
the 2-sided bar construction:

...%M_®N®N®M+§M_®N®M+i/\4_®/\/l+ (1.17)

for M_ = [, A, ./\/l+:fM+.A andN:fMOA.

-

Figure 1.5.: The map which induces the right |’ Mo A-module structure on [,, A. Here,
the green collar depicts the product manifold N x (—1,1).
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Boundary conditions and point defects We will be interested in studying field
theories and their quantization defined on surfaces with certain defects. For example,
the Fock-Rosly Poisson algebra from arises from the G-character variety for
a surface ¥ with non-empty boundary 0¥. The algebraic data used to define a field
theory on a manifold with boundary via factorization homology is called a boundary
condition. The other type of defect we want to consider are codimension 2 defects,
that is, surfaces with marked points. Algebraically, these defects are incorporated by
so-called point defects. The latter will play an important role in Chapter [3|, where we
use factorization homology to describe moduli spaces arising in Chern—Simons theory
with point-like sources. We can understand both manifolds with boundary and marked
points as particular examples of stratified manifolds. The extension of factorization
homology to stratified manifolds is due to [AFT17] and we will spell out the details for
the two cases of interest to us.

For the case of boundary conditions, we introduce the (oo, 1)-category Mang', of ori-
ented 2-dimensional manifolds ¥ with boundary 9%. We denote by [Diskgfgthe full
subcategory with objects disjoint unions of disks R? and half disks R x R>g. We will
adopt the following terminology:

Definition 1.3.7. A boundary condition is a symmetric monoidal functor F: IDiskgréLI —
c®.

Similarly to the case of smooth manifolds, given a boundary condition F, factorization
homology with coefficients in F is defined by the left Kan extension [AFT17]:

Disky” —L— ¢®
’ 21

-

£ e F

or
D’Ianza

Remark 1.3.8. Unless otherwise stated, we will always work with trivial boundary
conditions, meaning that we use the same disk algebra for a disk with empty boundary,
as for a disk with non-empty boundary.

For the case of point defects, we define the category Man3', whose objects are oriented
2-dimensional manifolds ¥ together with a collection of marked points x1,...,x, € X.
Morphisms are embeddings of manifolds, mapping marked points bijectively onto marked
points. We denote by Disky’, the full subcategory generated under disjoint unions by
disks R? and disks R? with precisely one marked point.

Definition 1.3.9. A point defect is a symmetric monoidal functor F: Diskgfjk"' — C%.
Given a point defect F, factorization homology with coefficients in F is defined by
the left Kan extension [AFT17]:

Disk)” —F— ¢®
’ P

-

j I F

or
Mang’,
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1.3.2. The categorical case

From now on we specialize to factorization homology on 2-dimensional manifolds with
values in a suitable category of (enriched) categories. Note that in this case factorization
homology, being an (oo, 1)-functor from Mang" to the ambient category of categories, will
factor through the homotopy 2-category of oriented manifolds since the target is only
2-categorical. More precisely, from now on Man$' denotes the (2,1)-category whose
objects are oriented surfaces, 1-morphisms are oriented embeddings and 2-morphisms
are equivalence classes of isotopies between embeddings.

Categorical framed Ej-algebras By a result of Salvatore-Wahl [SW03] we have
that categorical framed Eg-algebras F: Disks” — Cat are classified by balanced braided
tensor categories. Recall that for a braided tensor category A a balancing (or twist) is
an automorphism of the identity functor : id = id so that it is compatible with the
braiding 5 of A:

Oxgy =Py xoly ®O0xofxy: XY - X®Y .

The balancing comes from the loop in the space of embeddings given by rotating a disk
about 2w, see Figure We also recall that a ribbon category is a rigid balanced
braided tensor category so that the components of the balancing satisfy 0yv = (6y)".

Example 1.3.10. Important examples of balanced braided monoidal categories come
from the representation theory of ribbon Hopf algebras (H,v). The balancing 6y : V —
V for any V' € H-Mod is induced by the action of the ribbon element v. In particular, in
we have seen that the quantum group Up(g) provides an example of a topological
ribbon Hopf algebra. A closely related example is the category Rep,(G), which is also
ribbon with balancing [CP95, Proposition 8.3.15]

Ovoy: VIA) = V(A), Oypyv) = g OANAC),
for any highest weight vector v € V(). N

We will now further specify the categorical setting in which we want to compute
factorization homology.

Locally presentable enriched categories The notion of locally presentable cate-
gories was first introduced by Gabriel-Ulmer in [GUT1]. Their extension to the enriched
setting is due to Kelly [Kel82] and was further developed in [BQR9§]. One of the main
advantages in working with locally presentable categories is that cocontinuous functors
between them admit right adjoints. This will be of great importance if we want to
obtain an explicit algebraic description of the categories computing factorization homol-
ogy. The necessary background material on enriched locally presentable categories can
be found in of the appendix.

The target for factorization homology in this thesis will be the (2, 1)-category V-Pres
of V-enriched locally presentable categories, introduced in Definition below. We
will show in Theorem[1.3.14]that for suitable V), the ambient category V-Pres satisfies the
conditions of [AF15] to compute factorization homology. When working with represen-
tation categories of quantum groups, we will be mostly interested in categories enriched

—

over V = Vectc, i.e. the case of C-linear categories, and V = C][h]]-Mod. Namely, the
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category of complete modules over the formal power series ring C[[h]] introduced in
of the appendix.

Let V be a complete and cocomplete symmetric monoidal closed category. We fix a
regular cardinal cig and assume that V is locally ap-presentable and that the subcategory
of aip-compacts is closed under the tensor product and contains the monoidal unit. When
in this situation we say that V is a locally ag-presentable base.

Definition 1.3.11. Let V be locally ag-presentable base. Fiz a reqular cardinal o > «p.
We define V-Pres to be the (2, 1)-category whose

e objects are locally a-presentable V-enriched categories
e [I-morphisms are V-enriched cocontinuous functors preserving a-compact objects

e 2-morphisms are V-enriched natural isomorphisms

For a = Ny we call V-Pres the category of locally finitely presentable enriched cate-
gories.

Tensor product and cocompleteness It will be convenient to introduce the (2,1)-
category V-Rex whose objects are small V-enriched categories having all a-small colimits,
1-morphisms are V-functors preserving a-small colimits, and 2-morphisms are natural
isomorphisms. Given a category C € V-Rex, one can take its ind-completion ind(C), also
known as free completion under a-filtered colimits, which lands in V-Pres. Conversely,
the subcategory of compact objects cmp(.A) of a locally a-presentable V-category A is
small and has all a-small colimits. These operations extend to a 2-categorical equivalence
[Kel82] Section 9:

ind : V-Rex < V-Pres : cmp . (1.18)

In [Kel05 Section 6.5], Kelly introduced a tensor product X of small V-enriched cate-
gories with a-small colimits, which is uniquely characterized by the following universal
property: for C and D two categories in V-Rex, their Kelly tensor product is an object
C KD € V-Rex such that for any £ € V-Rex there is a natural equivalence

V-Rex|C K D, £] = V-Rex|C, D; £]

between the category of functors C XD — &£ in V-Rex and the category of functors
C x D — £ that preserve a-small colimits in each variable, where X is the naive tensor
product of V-enriched categories from Appendix[A.1} Furthermore, it is shown in [Kel05]
that the Kelly tensor product endows V-Rex with the structure of a symmetric monoidal
closed (2, 1)-category.

Remark 1.3.12. In the K-linear setting, it was shown in [Fral3] that the Kelly tensor
product of two abelian categories is again abelian and coincides in this case with the
Deligne tensor product.

We can now transport the Kelly tensor product along the equivalence . The
resulting tensor product X in V-Pres admits the following description. Let C and D be
two V-enriched locally presentable categories. Their tensor product C XD € V-Pres is
defined by

CXD = V-Lex(cmp(C)°?,cmp(D)°?; V)

that is, by functors cmp(C)°P x cmp(D)°? — V preserving a-small limits in each variable
separately. The equivalence ([1.18)) extends to an equivalence of symmetric monoidal
(2, 1)-categories.
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Example 1.3.13. Given V = Vecty, we write Presy for the corresponding category of
K-linear locally finitely presentable categories. Let A, B be K-algebras. Their categories
of modules A-Mod and B-Mod are locally finitely presentable K-linear categories. Their
tensor product in Presy is identified with A-Mod X B-Mod = (A ® B)-Mod. A

In Theorem [[.3.14] below we will show that bicolimits exist in V-Pres and that the ten-
sor product X preserves them. In the V = Set case, a sketch of proof for 2-cocompleteness
of Pres can be found in |[CJEF13, Proposition 2.1.11]. The idea is to take the diagram
whose bicolimit one wants to compute, and consider the corresponding diagram in the
category Pres®?, whose objects are locally presentable categories, 1-morphisms are right
adjoints and 2-morphisms are natural isomorphisms. The claim is that the bilimit of
this diagram exists and can be computed in Cat. In the enriched case, we have the
following:

Theorem 1.3.14. V-Pres has all bicolimits and the tensor product X of locally pre-
sentable V-categories preserves them.

Proof. Before turning to the case of V-Pres, we first need to recall some basics about
computing bilimits in bi- and 2-categories. To that end, let X and B be bicategories
and W: K — Cat and D: K — B pseudo-functors. The W-weighted bilimit of D is an
object {W, D} € B together with an equivalence

Homp (X, {W, D}) = Hom(k cat),... (Ws Homgp (X, D(-)))

bicat (

pseudo-natural in X, where [K, Cat|picat is the 2-category of pseudo-functors, pseudo-
natural transformations between them and modifications. If one considers diagrams
in a 2-category C, one can use the following strictification results. The inclusion of the
category 2Cat of 2-categories and 2-functors into the the category BiCat of bicategories
and pseudo-functors has a left adjoint known as strictification

st : BiCat = 2Cat : ¢

Moreover, the components of the unit map A — st(A) are equivalences of bicategories
[GPS95, Section 4.10]. Higher categorical aspects of the strictification adjunction were
studied in [Cam19], where in particular the following universal property of strictifica-
tion is proven: for every bicategory K and 2-category C there is an isomorphism of
2-categories

[St(IC), C]pseudo = []C’C] bicat

where [st(IC), C]pseudo is the 2-category of 2-functors, pseudo-natural transformations and
modifications. So if D is a diagram in C, for any X € C we have

Hom i catlye,: (W; Home (X, D(—))) = Homgy(x),Cat] peenso (W's Home (X, D'(=))) , (1.19)

where W’ and D’ are the 2-functors corresponding to W and D under strictification.
In the above we used that in the following diagram both the left triangle and the outer
diagram commute by definition of the strictification of a pseudo-functor

X,D

st(K) W))’

ﬁ V- CatHW))Cat

1%
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But then also the right triangle commutes since the unit of the strictification adjunction
is an equivalence. From we then find that a 2-category with all pseudo-limits also
has all bilimits.

Now, consider the 2-category V-Pres®® of locally a-presentable V-enriched categories,
whose 1-morphisms are continuous functors with rank « and 2-morphisms are natural
isomorphisms. In [Bir84, Theorem 6.10] it was shown that V-Pres°® has all products,
inserters and equifiers and that they are computed in V-Cat. It then follows by [Kel89,
Proposition 5.2] that V-Pres®® has all pseudo-limits. We conclude by the previous dis-
cussion that V-Pres has all bicolimits.

For the second assertion, note that the tensor product preserves bicolimits since V-Pres
is a symmetric monoidal closed (2, 1)-category, which we may deduce from equivalence
(11.18). O

1.3.3. Quantization and factorization homology

In this section we will discuss the role of factorization homology in the quantization of
G-character varieties.

Deformation quantization of braided categories Let (A,-,{—,—}) be a Poisson
algebra. A formal deformation quantization of A is an associative algebra (Ap, x) over
the ring of formal power series C[[h]], where A, = A[[A]] as a C[[h]]-module. The product
* is such that Ay/(h) = A as commutative algebras and in the semi-classical limit one
recovers the Poisson bracket

{a’b}:a*b—b*a

- mod(h)

where a = @ mod(h) and b = b mod(h). The categorical analog to a Poisson structure
on a commutative algebra is an infinitesimal braiding on a symmetric monoidal K-linear
category. For a K-linear monoidal category (C,®) with symmetry o, an infinitesimal
braiding on C is a natural transformation

tX7yZX®Y—>X®K X, YecC

satisfying the symmetry condition ty x = oxy otxy ooy,x, such that § = oo (1 +€t)
is a braiding in the K[e]/(€?)-linear category C[e], which has the same objects as C and
whose morphisms spaces are defined by extension of scalars:

Mapepq (X, Y) = Mape (X, Y) @k Klel/(e?)

For us, the underlying symmetric monoidal category will be U(g)-Mod and ¢ € (Sym?g)®
is a symmetric g-invariant tensor. Then, U(g)-Mod is infinitesimally braided via

thy(33®y):tij€il>$®€j\>y, reX,yeyYy |,

in a basis (e;);er of g.

Naturally, the question arises if one can deformation-quantize any infinitesimally
braided category into a braided K[[%]]-linear category. The answer is affirmative [Car93].
Namely, using Drinfeld’s associator [Dri90], it has been shown in loc. cit. that any in-
finitesimally braided category (C,t) is the semi-classical limit of a braided monoidal
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K[[R]]-linear category C[[h]] with the same tensor product, associativity constraint com-
ing from the Drinfeld associator ® and braiding § = o o e/2.

For the example at hand, a quantization of (U(g)-Mod,t) is given by the Drinfeld
category U(g)®-Mod[[R]]. In this thesis, instead of working with the Drinfeld category
we shall work with categories coming from the representation theory of Drinfeld—Jimbo
algebras. Equivalence of these two categories is due to Drinfeld:

Theorem 1.3.15. [Dri89b, [Dri89d|] There exists a balanced braided tensor equivalence
between the Drinfeld category U(g)®-Mod|[[R]] and the category Rep,(G) of topologically
free Up(g)-modules of finite rank.

The category Rep;(G) is a formal deformation of Rep(G) as a braided monoidal cat-
egory. Its semi-classical limit

Rep, (G) = Rep;,(G) @y K]/ (€)?

is a K. = K[e]/(€?)-linear braided category of modules over U(g), where U,(g) = U(g) ®
K as Ke-modules. The braiding in Rep,(G) comes from the classical r-matrix 7:

Bxy(z@y)=To(r@y+erie,pr®e;>y)
This is a natural isomorphism in Rep (G) due to:
AP(=) = (1 —er)Ac(=)(I +er) ,

where A, denotes the infinitesimally deformed coproduct. The category Rep,(G) should
be understood as the categorical analog of a first order deformation of a commutative
algebra.

“Factorization homology commutes with quantization” Assume we are given
local (categorical) quantum observables Obs!°¢, by which we mean a C[[/i]]-linear braided
category such that its classical limit Obs)°®/(%) 2 Obs is symmetric monoidal. Fol-

lowing the ideas of Ben-Zvi-Brochier-Jordan [BZBJ18a], we may glue the local quan-
tizations Obs}iOC via factorization homology to obtain global quantum observables living

on a surface X:

Obsy (%) = /E Obsle® € (C[[F]|-Mod)-Cat .

Example 1.3.16. An example of a local quantum observable is the category Rep;(G).
We call its factorization homology fz Rep;(G) the quantum character stack of ¥. This
category was extensively studied by Ben-Zvi-Brochier-Jordan in the presentable, K-
linear setting [BZBJ18a). A

Let Obs}:’icE be the semi-classical limit of Obsi°®. This is a braided C.-linear category

such that Obslccice /(€) = ObslS® is symmetric monoidal. As before, we may define the
corresponding global observables Obs,; () via factorization homology.

In an ongoing collaboration with Eilind Karlsson, Lukas Miiller and Jan Pulmann
[KKMP] we will show that given a local quantization Obs)°® ~» Obs}fice, the factoriza-
tion homology Obs;(3) quantizes Obs. (X). To that end, we introduce bicategories
BDy-Cat and Py-Cat of categorical quantum- and (semi-)classical observables, respec-
tively. Roughly, objects in these bicategories are pointed C[[A]]-, respectively Cc-enriched
categories, together with the structure of a symmetric monoidal category on their clas-
sical limit & — 0, respectively € — 0. Similarly, the local quantum and (semi-)classical
observables live in bicategories Eo(BDy-Cat) = BDo-Cat and Ey(Fp-Cat) = Pr-Cat, re-

spectively. We will then show the following.
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(9e - (A

A B A % A
Figure 1.6.: Disk embedding inducing A-module structure on fz A.

Claim 1.3.17. [KKMP] There exists a ‘classical limit functor’ BD;-Cat — P;-Cat,
giwen by — @) Ce, which is such that

Obsc (2) = Obsy(X) @cn) Ce
That is, the classical limit functor commutes with factorization homology.

In this thesis we will follow a slightly different strategy, namely we will characterize the
categories Obsy(X) computed by factorization homology in terms of explicit algebraic
data, as is explained in the next section. This allows for instance to compare Obsy(3)
to previously constructed quantizations, or to show by means of a direct computation
that Obsy(X) provides a quantization of a given classical Poisson algebra of observables.

Internal endomorphism algebras In order to extract explicit algebraic data from
factorization homology, we will use the following observation due to Ben-Zvi—-Brochier—
Jordan: given local coefficients A, the categories we are interested in are the factorization
homologies fz A for surfaces 3 with boundary. As illustrated in Figure embedding
a disk along a marked interval in the boundary 0% turns fz A into a module category
over [ A= A. The A-module structure then allows to describe the categories [y, A
internal to A, as we will explain in the following.

We have seen that factorization homology is pointed via the canonical embedding
() — X. We denote the corresponding distinguished object by Oy € fz A. Acting on
the distinguished object gives a colimit preserving functor

act@E:A—>/A .
)

In the presentable setting it is guaranteed that this functor has a right adjoint actgz.
If we assume that A is rigid, the adjunction data defines a canonical algebra in A; the
internal endomorphism algebra

End 4(Ox) = actgE (actoy, (14))

As an instructive example, we will now compute the internal endomorphism algebra for
the case of the annulus > = Ann and we will see that we recover a quantization of the
FR-Poisson algebra from Examples for more general surfaces will be presented
in Chapters 2] and [3| of the thesis. The case of punctured surfaces in the K-linear setting
is content of [BZBJ18al Section 5].

Let C € V-Pres be the free cocompletion of a small V-enriched balanced braided
category C (we refer to for background on free cocompletions). To compute fac-
torization homology on the annulus we make use of excision:

/ C~CRC .
Ann CXC
The relative tensor product is computed as the colimit of the truncated 2-sided bar

construction ([1.17) in V-Pres.
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1. Background

Proposition 1.3.18. We have
ceC
Ends(Onmn) 2 TT(1) = [ cVo0c

as algebras in CA@

Proof. In Propositions[A.2.14]and [A.2.15 of the appendix we show that the right adjoint
to the tensor product functor T: CXC — C is monadic and C X C-linear. Thus, there is
an equivalence

~ ~ TR
cC=2T (16)_M0d5&(?

as right ((? X CA) module categories. Together with the fact that the excision property
is compatible with the pointing, that is, Opnn = Op Mgye Op, we find that the action
functor induced by embedding a disk along a marked interval in dAnn may be identified
with

acto,,,(a) 2 a R TH(15)

Its right adjoint is
aCtgAnn (X (b1 Mbo)) Za<(by Wby) =a®T(by Xby)
O]

Let’s now consider the case of the G-character variety for the annulus. To that end, let
Rep;,(G) be the free cocompletion of the category of topologically free Uy(g)-modules of

finite rank. By Proposition|A.2.11 Rep;(G) is a locally presentable category enriched in
complete C|[[A]]-modules. By the preceding discussion and the representation theory of
the topological quantum group (§ 1.2.1]) we find that the internal endomorphism algebra

of the pointing Opnn € [, Repp(G) is

—~V —_—
End 2, (Oam) = D VA Vi
AeP+

=~ 0K(G) .

In the above, Ox(G) is understood as its image under the restricted Yoneda embedding
of the category of topologically free and locally-finite Uh(g)—module into Rgh(\G). We
have that Oy(G) = O(G)[[A]] as C[[A]]-modules. The algebra O(G) is well-known,
it appeared for example in [DMO3| under the name of reflection equation dual to the
quantum group Ux(g).

Taking the semi-classical limit locally, i.e. Rep,(G) ~» Rep.(G), we get a first-order
deformation of the commutative algebra O(G):

MRE/M\G) (OAnn) = OE(G)

where O.(G) = O(G)[e]/(€?) as K.-modules with multiplication m, satisfying
me —m® ={—,—}srs .
The bracket on the right is the STS-Poisson bracket on the representation variety

Reps(Ann). But (O(G), m,) is precisely the semi-classical limit of the internal endomor-

phism algebra of [, Rep;(G). This observation captures the idea that “factorization
homology commutes with quantization” on the level of algebras.

See Remark [A.2.13| of the appendix for more details on the coend algebra TT%(1).
"We say that a topologically free module W [A]] is locally-finite if W is so.
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1. Background

De &

a) Internal fusion of disk with two marked (b) The annulus constructed by gluing a
pomts by gluing along the marked intervals. handle to a marked disk with two intervals.
Figure 1.7.

Combinatorial Poisson structures and their categorical quantization Recall
from Remark that the Poisson G-space (G,Ilgrg) was obtained by (internal)
fusion from the Poisson G x G-space (G, Ilg). Geometrically, for a disk with two marked
points D,  in its boundary, internal fusion can be understood as the result of a self-gluing
of the disk along two segments containing the marked points as illustrated in Figure
In factorization homology, this gluing procedure is paralleled by excision: as pictured in
Figure the marked annulus Ann, is obtained from a disk with two marked boundary
intervals and a distinguished marked point by gluing a handle along the marked intervals.
In this section we have seen that using excision in this way we indeed quantize the
Poisson variety (G, IIgpg). A similar observation can be made for more general surfaces
with boundary. Namely, upon picking a combinatorial presentation of the surface 3,
excision allows to extract an explicit deformation quantization from [;, Rep;(G) of the
Poisson structure on Charg(2) defined according to the fusion rules dictated by the
combinatorial presentation.

1.3.4. Monadic reconstruction for abelian module categories

In this section we give some more details on monadic reconstruction for the special case
of abelian module categories.

Applying monadic reconstruction techniques to module categories was first done for
fusion categories in the work of Ostrik [Ost03], and later in the setting of finite abelian
categories in [DSPS13]. Here, we will recall its further generalization to abelian cate-
gories in Presy, as developed in [BZBJ18a, Section 4].

Given a tensor category A € Presy and a right A-module category M € Presx with
cocontinuous action functor

act: MR A — M, act(im®a)=m<a ,

define for every object m € M a functor act,,: A — M by acting on the distinguished
object; act,,(a) = m < a. Since everything takes place in Presy, the functor act,, has a
right adjoint act. For objects m,n € M, define the internal homomorphisms

Hom 4(m,n) = actf(n) € A

from m to n in A. As in the previous section, the internal endomorphism algebra of m
is then defined to be the algebra

End 4 (m) = Hom 4(m, m) = act’ (act,u(14))

internal to A.
For each m € M, there is a functor

—~

acth : M — (act o act,,)-Mod 4 (1.20)
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1. Background

sending an object n € M to the internal homomorphisms Hom 4(m,n) with canonical
action act’? o act,, o act’*(n) — actZ (n) induced by the counit of the adjunction act,,
act®. The monadicity theorem, stated for the presentable K-linear setting in Theorem

1.3.20 below, then tells us when the functor (1.20)) is an equivalence. We will use the
following terminology.

Definition 1.3.19. An object m € M is called

e an A-generator if actf1 18 conservative,
e A-projective if actfg 18 colimit-preserving,
e an A-progenerator if it is both A-projective and an A-generator.

The following is an application of Beck’s monadicity theorem for module categories
in Presk.

Theorem 1.3.20 ([BZBJ18a, Theorem 4.6]). Let A € Presk be a tensor category and
M € Presx an A-module category. Assume that A is rigid. Let m € M be an A-
progenerator. Then, the functor

act?: M = End 4(m)-Mod 4 |, (1.21)
is an equivalence of A-module categories, where A acts on the right by the tensor product.

Remark 1.3.21. The rigidity assumption in the above theorem guarantees that the
composition act® o act,, is again an A-module functor, and as a consequence

act? o act,, = actf (act,,(14)) ® (=) = End 4(m) @ (=) ,
leading to the result as stated in ((1.21)).

When computing categorical factorization homology for a surface, we will make ex-
tensive use of K-excision. In particular, this means that we wish to apply monadic
reconstruction to relative tensor products M X 4N of module categories. The following
special case will be of particular interest for us. Assume that the A-module structure
on N comes from a tensor functor F': A — A and assume 1,/ is a progenerator for the
A-module structure on N induced by F. When in this setting, one has the following
base-change formula for abelian categories in Presy:

Theorem 1.3.22 ([BZBJ18a, Theorem 4.12]). Let A, M, N € Presy be abelian cate-
gories. Assume that A is rigid, M is a right A-module category with progenerator m
and that F: A — N is a tensor functor such that 1y is a progenerator for the induced
left A-module structure. Then, there is an equivalence of N -module categories:

M4 N = F(End 4(m)) -mody

The following is a slight modification of the above theorem. Again, all categories are
assumed to be abelian.

Theorem 1.3.23. Let A € Presy be a rigid tensor category and let M, N € Presy be
right and left A-module categories. Assume that M is dualizable as an object in Presy,
and that m € M is an A-progenerator. Then, we have

MKy N = End 4 (m)-Mody

where one uses the A-action on N to define the category of End 4(m)-modules in N
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Proof. Since m € M is an A-progenerator, we have that M is A-dualizable with dual
MY = Mod 4-End(m) [BJS21], Proposition 5.8], and we have

M = Homy(MY, A), m'— (=) @gnd(m) Hom(m,m')

as right A-module categories. By rigidity we have that A is dualizable over its enveloping
algebra A°P X A and since M is dualizable as an object in Presy we can apply [BJS21),
Proposition 5.3] to get an equivalence

HomA(MV,A) &ANgHomA(MV,N), F(—)&TLHF(—)DTL .

Composition with evaluation at End(m) € MV, we get a functor M X4 N — N admit-
ting a left adjoint. In more details we have:

G GF
MgAN——%N’ N——)M@AN
m' ®n — Hom(m,m')>n n—mMXn

where we used that G fits into the following commutative diagram

MRy N G¥ s N

gi Tevﬂ(m)

Hom 4 (MY, A) R4 N —— Hom4(MY, N

The right adjoint GF is colimit preserving and conservative. The latter assertion follows
exactly as in the proof of [BZBJ18a, Theorem 4.12], namely from the fact that if an
A-module functor F evaluates to zero at End(m) implies that F'is zero. But for abelian
categories this implies that the evaluation functor is conservative. Thus, by Beck’s
monadicity theorem, we find M X4 N = GF o GE-Mod s =2 End 4(m)-Mod,y. O]

Remark 1.3.24. In Theorem [1.53.23, the A-module category M is assumed to be du-
alizable in Presy. Typical examples of dualizable locally presentable categories are the
presheaf categories C = [C°P, Vecty]|, that is, the free cocompletion of a small K-linear
category C [BCJF15, Lemma 3.5]. It is shown in [Kel05, Theorem 5.26], that if a co-
complete category D has a small set DP of compact projective objectéﬂ constituting a
strong generator, then D = ﬁa’, and D is dualizable.

Another example is the following. Assume that D € Presx has a compact projective
strong generator D. Let T': D — D be a monad and assume that T preserves colimits.
Then, the forgetful functor U: T-Modp — D is cocontinuous and thus freep(z) for
x € D is compact projective. It is also a strong generator since U is conservative and
thus T-Modp is dualizable in Presy.

8 An object ¢ € C is compact projective if Map;(c, —): C — Vecty preserves all colimits.
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2. Twisted character varieties

This chapter is based on joint work with Lukas Miiller [KM23].

In this chapter we extend the work on categorical factorization homology by Ben-
Zvi-Brochier-Jordan [BZBJ18al BZBJ18b] to oriented surfaces decorated with principal
bundles with finite structure group D. In the oriented D-decorated setting, the coeffi-
cients A for computing factorization homology are balanced braided tensor categories
with a D-action via balanced braided automorphisms. For every oriented 2-dimensional
manifold > with D-bundle decoration ¢: % — BD), factorization homology assignes a
linear category

A

()
in a functorial way. For applications in mathematical physics, we will examine the
example of A = Rep,(G), where Rep,(G) is the category of integrable representations of
the quantum group U,(g) associated to a semi-simple group G, which admits a natural
action of the group of outer automorphisms Out(G). We will use these coefficients to
construct a functorial quantization of the moduli space of flat Out(G)-twisted bundles.
These moduli spaces arise naturally when studying finite symmetries in gauge theory.

Symmetries for field theories can be understood as transformations of the space of
fields preserving the classical action functional. We are interested in symmetries for
gauge theories where the space of fields is described by means of connections on principal
G-bundles. Explicitly, for an outer automorphism «: G — G of the structure group,
the symmetry lifts to the gauge fields by forming the associated G-bundle along the
group homomorphism . In [MSS22], these symmetries were studied in the context of
2-dimensional Yang—Mills theory. Here, we will study Out(G)-symmetries for the moduli
space of flat G-bundles via factorization homology. On the level of the local coefficients,
the symmetry is incorporated through the Out(G)-action on the representation category
of G via pullbacks. We will show that this action extends to the representation category
of the quantum group. Hence, factorization homology with coefficients in Repq(G) will
allow us to study Out(G)-symmetries for the corresponding quantum field theory.

Coupling of a gauge theory to background gauge fields may be realized by incorpo-
rating the symmetries as defects into the field theory. In [MSS22] it is shown that the
partition function for Yang—Mills theory in the presence of an Out(G)-defect network
on a closed oriented surface ¥ can be computed as a path integral over the space of
so-called Out(G)-twisted bundles with connections. The latter may be locally described
by transition functions taking values in G x Out(G), where the Out(G)-bundle is fixed.
In the topological setting, the moduli space of flat Out(G)-twisted bundles was studied
in [Meil7, [Zer21] and in particular it has been shown there that it carries a canonical
Atiyah—Bott like symplectic structure. Here, we realize the moduli space of flat twisted
bundles as a lattice gauge theory. We will construct a Poisson structure on the moduli
space in a combinatorial fashion a la Fock—Rosly. The value of factorization homology
on a surface decorated with Out(G)-bundles describes the coupling of the (quantum)
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2. Twisted character varieties

field theory to non-trivial Out(G)-background fields and yields a functorial quantization
of the moduli space of flat twisted bundles.

Lastly, we note that factorization homology on surfaces with principal bundles exam-
ined in this chapter is a special case of equivariant factorization homology for global
quotient orbifolds as introduced in [Weel8a], namely the case of free actions. Moreover,
when we consider surfaces with marked points, the local coefficients realizing the point
defects in the D = Zo-decorated setting are closely related to so-called Zs-braided pairs
[Weel8b], which are local coefficients for Zs-orbifold surfaces with isolated singulari-
ties. Prominent examples of Z,-braided pairs come from the representation theory of
quantum symmetric pairs. The methods developed in this chapter thus provide a step
in the direction of computing the quantum character varieties of orbifold surfaces with
isolated singularities via factorization homology on surfaces with principal bundles and
point defects.

Outline Throughout, K denotes a field of characteristic zero, usually K = C. Unless
otherwise stated, G is a semi-simple algebraic group over C.

Let ¥ be a surface with a fixed Out(G)-bundle ¢: ¥ — BOut(G). In we
define the classical moduli space Char,(X,G) of equivalence classes of @-twisted G-
representations of the fundamental group of 3. We show that the twisted representation
variety admits a Poisson structure, defined in terms of an Out(G)-invariant classical r-
matrix and a combinatorial presentation of the surface, which moreover descends to the
quotient by the twisted conjugation action. The aim of this chapter is to work towards
a functorial quantization of this Poisson variety.

In[§ 2.2 we review categorical factorization homology on 2-manifolds equipped with an
SO(2) x D tangential structure, following [AF15]. We will see that the local categorical
data for factorization homology on D-decorated surfaces is classified by balanced braided
tensor categories with a D-action 9. As our main example, we will describe an action of
Dynkin diagram automorphisms on the representation category Rep,(G) of a quantum
group. We will also explain how D-twisted module categories arise from X-excision on
decorated surfaces. We conclude the section with reconstruction results for balanced
braided tensor categories with D-action: for each group element d € D we obtain an
algebra F4 = [ Veemp(A) 1V @ 9(d=1).V which is a twisted version of Lyubashenko’s
coend algebra [Lyu95b].

In we compute factorization homology of a punctured oriented surface ¥ with
a fixed D-bundle ¢: ¥ — BD. We will use a combinatorial presentation of the surface
(X, ¢) by means of a ciliated ribbon graph I' with one vertex, whose edges are decorated
by group elements dy,...,d, € D, n = 29 + r — 1, describing the bundle ¢ up to
equivalence. This combinatorial description allows one to define an algebra adrl“'"d" =
Qi fff’“"d" internal to A, where each fji is a twisted coend algebra. For a rigid
balanced braided abelian category A € Presk, we show in Theorem [2.3.2] that there is

an equivalence of categories

A2 gt Mod 4
(Z,9)

identifying factorization homology with the category of modules over an algebra which
can be described in purely combinatorial terms. This result is an extension of [BZBJ18al,
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Theorem 5.14] to surfaces with D-bundles. We then consider the case of the D-decorated
annulus. We will see that the factorization homologies [ (S1xR,p) A for varying decoration
o assemble into a categorical algebra over the little bundles operad defined by Miiller—
Woike in [MW20]. Moreover, for each d € D we identify f(slx[R,wd) A with a twisted
version of the Drinfeld center of A.

§ 2.4] contains the main application of this chapter: the quantization of the twisted
character variety Char, (X, G) via factorization homology on the surface ¥ with Out(G)-
bundle decoration ¢ and coefficients in Rep,(G). We will first show that the category of
quasi-coherent sheaves on the classical moduli space can be computed via factorization
homology

/ Rep(G) = (X) O(G)r,-Modrep(:) = QCoh(Char,(,G))
(Z,0) i=1

where Q" ; O(G)y, is the algebra of functions on the ¢-twisted representation variety
Rep, (X, G) with the induced -twisted action by G. We then proceed to quantize
these moduli spaces by locally choosing coefficients in the representation category of the
corresponding quantum group Rep,(G) and subsequently gluing this local data together
via factorization homology over the decorated surface (X, ¢):

/ Repq(G) = a? """ H"—MOdRepq(G)
()

We then show in Theorem by means of a direct computation that the above provides
indeed a quantization of the twisted character variety.

In we discuss the case of closed surfaces with D-bundles, as well as the case of
D-decorated surfaces with point defects. For the latter, the categorical data classifying
point defects are so-called equivariant braided module categories [KM23l Proposition
3.18]. Representation theoretic examples of point defects in the equivariant setting come
from ribbon Hopf algebras equipped with an involution and their coideal subalgebras.
Such data is for example provided by quantum symmetric pairs.

2.1. Classical moduli space

Given a fixed Out(G)-bundle ¢ on a surface ¥, the moduli space of flat p-twisted bundles
on Y is the space of flat G x Out(G)-bundles together with a gauge transformation from
the induced Out(G)-bundle to ¢ [Meil7, MSS22]. This moduli space may be described
by means of twisted character varieties, which we will introduce in what follows.

Throughout ¥ = X, is a connected oriented surface with at least one boundary
component. Let I' = (E,V) be a ciliated ribbon graph model for ¥ with one vertex
V = {v} whose edges are the generators of the fundamental group m(X) = 71 (%, v).
Moreover, we decorate the surface with a principal Out(G)-bundle, which we describe
by a group homomorphism

p: (X)) — Out(G)
[yil ¥ w([yi]) = £

Definition 2.1.1. Let p: G x Out(G) — Out(G) be the natural projection. The -
twisted representation variety Repw(E, G) is the preimage of ¢ under the map

Rep(Z, G x Out(@)) £ Rep(Z, Out(G))
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More explicitly, elements in Rep, (3, G) are maps ¢: 71(3) — G, which are such that

(il o [ys]) = (lvil)si((ll))

for any pair 7;,v; of loops in 71(3). There is a natural G-action on the @-twisted
representation variety via twisted conjugation, i.e. the action of an element g € G is

(9 (7)) = gv([])ri(g) ™"

Since m(X) is a free group on E = 2g + r — 1 generators, we get an identification
Rep, (X, G) = GE. The p-twisted character variety is then defined to be the quotient

Chary (2, G) = Rep, (%, G) /G
=GP G
where the notation /¥ indicates that G acts via twisted conjugation.
Remark 2.1.2.

o There is a bijective correspondence between elements in the twisted representation
variety Rep, (X, G) and elements in the moduli space My (%, G) of isomorphism
classes of flat twisted G-bundles which are trivial over v, which is established via
the holonomy map. As in the untwisted case, the group G acts on My(X,G) by
changing the trivialization. The moduli space of flat twisted bundles is the quotient

Ay (E,G) = M, (E,G) /%G

o Let k € Out(G) and consider k' = Adg o k for some g € G. Right multiplication

R
G —% G is a map of G-spaces intertwining the k- and the k'-twisted conjugation
action. Thus, in order to study twisted character varieties it suffices to work with
outer automorphisms. The inner automorphisms correspond to gauge transforma-
tions.

We denote the algebra of functions on the twisted character variety by O(GF )g This
is the algebra of functions on G¥ which are invariant under the twisted conjugation
action, i.e. functions on the the affine quotient by the G-action. If we consider the
stacky quotient instead, we use boldface letters to denote the -twisted character stack:

Char,(%,G) = [GF/¢G]

We may study character stacks via their categories of quasi-coherent sheaves. In our
case, QCoh(Char, (X, R)) is the category of modules over O(G¥),, in Rep(G). Later on
in we will see that one can recover the category of quasi-coherent sheaves on the
twisted character stack via factorization homology on the p-decorated surface X.

2.1.1. The twisted Fock—Rosly Poisson structure

In we recalled a construction due to Mouquin [Moul7] and Lu-Mouquin [LM17],
which reformulates the Poisson structure on the character variety discovered by Fock
and Rosly in the framework of Poisson structures defined via Lie bialgebra actions
and classical r-matrices. We will pursue the same strategy here to show that twisted
character varieties are Poisson.
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2. Twisted character varieties

We fix a ribbon graph model I' for the surface ¥ together with a linear ordering <
on the set E of ends of edges of I'. We also fix an Out(G)-invariant classical r-matrix
r € g ®g. For example, the r-matrix for the standard Lie bialgebra structure on g,
i.e. the one quantized by the Drinfeld-Jimbo quantum group, is Out(G)-invariant (see
Proposition |2.2.4

2.24).

Recall from [§ 1.1.2| (Equations (1.7) and (1.8)) the definition of the r-matrix r' for
the Lie algebra r¥. Given the Out(G)-bundle decoration ¢: 71 (%) — Out(G), we define
an action

pgz GP x GE — GF
((ha) ye s (9y)veE) > (heigyhin (Rs() " rer
where s(7) is the source half-edge of ~y and t(7) is the end half-edge. The action induces

a Lie algebra homomorphism (pg)*: g? — X(GF). The ¢-twisted Fock-Rosly 2-tensor
in Equation (2.1)) below is the image of the r-matrix ' under this pushforward map.

Proposition 2.1.3. Let I' C X be a skeleton with one verter v. For a given choice
r =1 ®e; € g®g of Out(G)-invariant classical r-matriz, define the following 2-
tensor on Rep, (2, G)

07, = Z rizi(a) Axi(B Z rizi(a) Axj(a) (2.1)

a<p
where o and B run over the set of ordered half-edges, and

(@) ef(a), a is end half-edge
;) =
—(ka)seF (), « is source half-edge

where el*(a) and eF(a) are right-, respectively left-invariant vector fields on G¥ whose
action on a function f € O(GF) was described in (T.4), and ko is the automorphism
corresponding to the edge whose source half-edge is a. Then we have the following:

1. T is a Poisson bivector on Rep, (%, G).
2. (Rep, (%, G),11%,) is a Poisson G-space under the p-twisted conjugation action.

3. The Poisson bracket between G-invariant functions is independent of the chosen
ciliated ribbon graph I' C % and only depends on the symmetric part of the r-
matrix.

Proof. The 2-tensor field H}?R in ([2.1)) is the image of the r-matrix r' under the pushfor-
ward (,og)*. The symmetric part of 7 is tI' = ZagE(tl)t(a) ® (t2)t(a) — (tl)s(a) ® (t2)s(a).
Its image under (pg)* is thus:

aclE

But by assumption the r-matrix r = w4t is invariant under the action of the outer auto-
morphism group. Together with the g-invariance of the symmetric part ¢ of the classical
r-matrix we thus find that (pg)*(rr) is a bivector. We can now apply Proposition|1.1.14
to conclude that II%, is a Poisson bivector for which the action of the quasi-triangular
Poisson-Lie group G given by pg o diag is Poisson. O
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It will be convenient to rewrite the twisted FR-Poisson bivector HﬁR in the following
form: for an automorphism k € Out(G), define the bivector field

Hg’TS _ wad(/i),ad(n) + tR,L(Ii) o tL(H),R , (22)

where the superscripts indicate that the action by left-invariant vector fields is twisted
by the automorphism r, and we used the notation z24(%) = 2B — g 2L for the vector
field generated by the element x € g via the twisted adjoint action h + ghr(g~!) of G
on itself. At the identity x = e, the bivector field II¢,¢ agrees with the ST'S-Poisson
structure on G [STS94]. We then write the twisted FR-Poisson structure as follows

Mo =Y Mg+ Y. ([ap—7(ap) |
a€EFR a<f
a,Be{1,...,|E|}

where 11, g is a 2-tensor, acting on the a-component of the first factor and on the
B-component of the second factor of G x G¥, and is defined by

ad(ka),ad(kg)

—To1 , if @ and § are positively unlinked
Hap = _7”;?1(@)’3(1(%) — 2tk(ka) R , if @ and (3 are positively linked
—T;jjl(ﬁa)@d(w) — othra). 4 oL(ra),L(ks) " if o and B are positively nested

(2.3)

And for the remaining three cases we have

ad(ka),ad(kg)

19 , if @ and [ are negatively unlinked
o= Ti,d2(lia)’ad(ﬁﬁ) + 2t L(ks) , if @ and (3 are negatively linked
rig(na)’ad(w) + 2t L(sp) _ oL(ke).L(ks)  if o and J are negatively nested

(2.4)

2.2. Factorization homology on surfaces with principal bundles

Throughout we fix a finite group D. In this section we will explain how one computes
categorical factorization homology of a surface ¥ decorated with a principal D-bundle
p: % — BD. We will see that the local categorical input data for factorization homology
on a D-decorated surface are braided tensor categories with D-action. In applications to
(quantum) physics, one is mostly interested in factorization homology with coefficients
coming from the representation theory of (quantum) groups. Our main example for
local coefficients will come from an action of the outer automorphism group on the
representation category of the quantum group.

Setup We want to compute factorization homology of surfaces with D xSO(2)-tangential
structure and values in the (2, 1)-category Presk of locally finitely presentable K-linear
categories. Since the target is only 2-categorical, factorization homology with values in
Presk will factor through the following (2, 1)-category of D-decorated manifolds:

Definition 2.2.1. Man?’ is the (2,1)-category whose

e objects are pairs (X, @), where 3 is a smooth oriented surface and ¢: ¥ — BD is
a continuous map, i.e. the data of a principal D-bundle on .
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2. Twisted character varieties

e [-morphisms (X, p) k), (X', ¢") are embeddings f: ¥ — ¥/ together with a ho-

motopy h: p = f*¢'.
e 2-morphisms (f,h) RSSHN (f',h') are isotopies x: f — f', together with maps
v: 3 x A? = BD filling
f/*(p/

N
ok A
¥ Y r [T

Two such pairs (x,7v) and (X',7') are equivalent if there exists an isotopy of iso-
topies x — X', i.e. a map Q: ¥ x A? — Y filling the bottom in Diagram (2.5),
and a compatible homotopy T': ¥ x A3 — BD filling

¥

AN

h fl* (pl

h'/
o 4/ (2.5)
SO \ *
X o .

f/* SO/

where the faces are labeled with the various maps which are part of the 1-morphisms.

The category Man2’ is symmetric monoidal under the disjoint union of manifolds. We
denote by |Disk2D C Man® the full symmetric monoidal subcategory generated by disks
R? with constant maps to the base point * € BD. Note that even though the D-bundles
on disks are trivial, there are non-trivial 1-morphisms given by gauge transformations.

We can now define categorical [Diskg -algebras analogously to the undecorated case,
namely as symmetric monoidal functors A: Disk} — Presy. Factorization homology
f(_) A with coefficients in the categorical [Diskg) -algebra A is then defined as the left

Kan extension of the diagram [AF15]:

DiskZ —A, Presy
o~
j A

D
Manj

2.2.1. Local categorical data

We have seen in that the data of a categorical Disk§ ™-algebra is equivalent to that
of a balanced braided tensor category. For the D-decorated case, we intuitively have the
following: since D-bundles on a disk can be assumed to be trivial, [Disk2D -algebras are
again balanced braided tensor categories, however the D-bundle decoration adds non-
trivial automorphisms on the level of 1-morphisms as sketched in Figure 2.1} inducing a
D-action on the balanced braided tensor category. Group actions on categorical Disks'-
algebras are defined as follows:
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O5 O ~ wama
d
e\}g/

D

Figure 2.1.: Identity disk embedding in [DiskzD with homotopy d: id*(%) — * inducing an
automorphism of A for each d € D, i.e. a D-action on A.

Definition 2.2.2. Let A be a balanced braided tensor category. A D-action on A is a
2-functor

9: * //D — x//Autyp,(A)

from the category with one object and D as automorphisms to the 2-category with one ob-
ject, balanced braided automorphisms of A as 1-morphisms and natural transformations
as 2-morphisms. In more details, the action consists of a monoidal equivalences

¥(d): A— A, foreachde D

respecting the balancing and the braiding, such that for each composable pair d;,d; € D
we have a natural isomorphism c;j: Y(d;d;) = V¥(d;)V(dj) satisfying the usual associa-
tivity azxiom.

In summary, we have the following concise description of categorical [Disk2D -algebras:

Proposition 2.2.3. [Weel8d, Proposition 4.6] A categorical IDiskg—algebm s a balanced
braided tensor category equipped with a D-action.

The main example for us will be the following.

Actions of Dynkin diagram automorphisms and their quantization We assume
that G is simply-connected. In this case, the outer automorphism group Out(G) of G can
be identified with the group of Dynkin diagram automorphisms. Concretely, the non-
trivial outer automorphism groups are listed in the table below and the corresponding
Dynkin diagram automorphisms are displayed in Figure

Type A, ,n>2|D,,n>4| Dy | Eg
Out(G) Zs Zy Ss | Z2

The category Rep(G) of G-representations is a symmetric monoidal category. More-
over it is rigid and the trivial balancing turns Rep(G) into a ribbon category. The finite
group Out(G) acts naturally on the category Rep(G) by pulling back representations:

J(k): Rep(G) — Rep(G), V — (k" 1)*(V)

The goal here is to show that this symmetry extends to the representation category of
the corresponding quantum group, see Proposition below.

We will use the following notation and conventions. Let g be a finite-dimensional
semi-simple complex Lie algebra g with Cartan matrix (a;j)i<ij<n. We fix a Cartan
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2. Twisted character varieties

subalgebra ) C g and select a set of simple roots Il = {ay,...,an}. We write A
for the weight lattice and we choose a symmetric bilinear form (—,—) on A such that
(e, o) = ayj. For the rest of this paragraph we will restrict our attention to Lie algebras
with Dynkin diagrams of type A, (n > 2), D,, (n > 4), or Eg, since these are the only
cases for which we have non-trivial Dynkin diagram automorphisms.

The QUEA Uj(g) is the topological Hopf algebra over Cl[h]] with generators {H,,,
X i}aien, subjected to certain relations, see for more details. In order to define
positive and negative root vectors, we fix a reduced decomposition wg = s;, 5, . .. S; Of
the longest element wy in the Weyl group of g. The positive and negative root vectors
are then defined by
X:t

+
Xﬁr = TZ-1E2 .. -Tir,1 a;,
that is by acting on the generators with elements T; € 9B, of the braid group associated
to g. The QUEA Uy(g) is quasi-triangular with universal R-matrix defined by the

multiplicative formula

<
R=QR, Q= [ "=t R=T[Rs .
a; €11 Br

where the second product is ordered according to the normal ordering < defined by the
reduced decomposition of wp, and Rg, = exp,((1 — q_Q)XZ{T ® Xg,) for ¢ = exp(h).
It is shown in [CP95 Corollary 8.3.12] that R is independent of the chosen reduced
decomposition of wy.

We denote by Repy(G) the category of topologically free left modules over Up(g) of
finite rank. This tensor category comes with a braiding defined via the universal R-
matrix R of Ux(g).

Proposition 2.2.4. The braided tensor category Rep,(G) admits a left action of Out(G).

Proof. The outer automorphisms Out(G) can be identified with the automorphism group
Aut(II) of the Dynkin diagram of g. An element x € Aut(II) acts on the generators of
Un(g) via

Hai’—>Ha )(éi'—>)(i

r(4)? Qs (1)

The action respects the relations in Definition [1.2.2 since a Dynkin diagram automor-
phism preserves the Cartan matrix. We thus get an action p of Out(G) on the tensor
category Rep;(G) defined by pulling back a representation along the inverse automor-
phism, i.e. p(k)(X) = (s~ 1)* X, for any X € Rep;,(G). It is left to show that the action
preserves the braiding. The action of k on a positive, respectively negative, root vector
is

kX5 =Tuy - Tt X

ir=1)“ i)

Figure 2.2.: Dynkin diagrams and their automorphisms a) A,, n even b) A,, n odd, c)
Es, d) Dy, n > 4. The white nodes represent a commuting set of simple reflections, and
similarly for the black nodes.
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2. Twisted character varieties

We now make use of the following explicit expressions for wq, details can be found for
example in [Hum90l Section 3.19]. First, divide the nodes of the Dynkin diagram into
two nonempty disjoint subsets S and S’ so that each consists of nodes representing a
commuting set of simple reflections. In Figure the subsets S and S’ are distinguished
by their coloring. Let a and b be the products of the simple reflections in S and S,
respectively. For A, (n odd), D, (n > 4) and Eg we can set wy = (ab)", where h is
the respective Coxeter number. A Dynkin diagram automorphisms preserve the subsets
S and S’, see Figure and thus sends a reduced decomposition of the longest Weyl
group element wp to another reduced decomposition of wy. For A, (n even), wy can
be represented either as wy = (ab)Za or as wy = b(ab)z. For a Dynkin diagram of
this type the automorphism exchanges S and S’, see again Figure thus sending a
reduced decomposition of wy to another one. But since the R-matrix is independent of
the chosen reduced decomposition the result follows. ]

Example 2.2.5. Let g = sl3 with simple roots II = {ay,as}. There are two choices
of normal orderings on the set of positive roots A corresponding to the two reduced
decompositions wy = s15281 and wy = s25152. The positive/negative root vectors for the
two choices are

and the Dynkin diagram automorphism k({1,2}) = {2, 1} relates the two sets of root
vectors. JAN

Proposition 2.2.6. The action of Out(G) on Repy(G) is compatible with the balancing
automorphism of Repy(G).

Proof. The balancing in Rep;(G) is induced by the action of the ribbon element ¢; =
exp(hH,)uy of Us(g), see [CP95, Section 8.3.F|. Here, H, = Y " | ju;H,, with coefficients
i = 2?21 ai_jl and up = mp(Sp ® id)Ra with my and Sp the multiplication and
antipode in Uy(g) respectively. It follows from Proposition that a Dynkin diagram
automorphism x € Aut(II) preserves the element uy. So it is left to show that x preserves
the element H,. Since the Cartan matrix is invariant under the Dynking diagram
automorphism, we have y; = >0, ai_’jl =2 a;(li)ﬁ(j) = > a;:(li),j = [i,(;) and
thus x.H, = H,,. O

Let ¢ € C* be a non-zero complex number which is not a root of unity and let
U,(g) be the corresponding quantum group as defined in [CP95) Section 9]. We denote
by Rep,(G) the category of locally-finite integrable U,(g)-modules. Strictly speaking,
U,(g) is not quasi-triangular. However, it’s representation category admits a braiding
[CP95, Section 10.1.D]. On a representation V ® V' € Rep,(G), the braiding is defined
by the so-called quasi R-matrix Oy = 70 Evy/ﬁvyf, where 7 is the map swapping
the tensor factors and Ey -/ is an invertible operator on V ® V' acting on the subspace
Vy® V/j by the scalar ¢, for A\, € A. Moreover, the standard ribbon element for
Uq(g) acts on V) as the constant g~ AN=200) with p the half-sum of positive roots,
giving rise to the balancing in U,(g). Hence, we get the g-analog of Proposition m

Proposition 2.2.7. The braided balanced tensor category Rep,(G) admits a left action
of Out(G).
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2. Twisted character varieties

2.2.2. X-Excision

Similarly to the case of oriented manifolds, factorization homology with tangential D x
SO(2)-structure satisfies excision [AF15, Lemma 3.18]. For a collar gluing ¥ = ¥_ Uy,
Y1 of a D-decorated surface (X, ), together with a diffeomorphism of oriented manifolds
0: N x (—1,1) = %o, the map 0*(pls,): N x (=1,1) — BD is not required to be
constant along the interval (—1,1) of the collar, though it will always be homotopic to
the constant map. Of course, this homotopy trivializes the map only locally. Globally,
the bundles decoration induces a D-twist in the module structure coming from excision.
We will make this more precise in Example for the case of the D-decorated annulus.
The case for more general surfaces is content of Proposition below.

Example 2.2.8. Let Ann? = (Ann, v4) be an annulus decorated with a map 4: Ann —
BD which sends the free generator of m(Ann) to the group element d € D. We then
choose a collar-gluing Ann = X_ Uy, ¥ for the annulus, as sketched on the right hand
side of Figure and an equivalence in ManZ’ so that the maps to BD are constant
on ¥_\ ¥y and X4 \ ¥ and is given by the loop =4 on a fixed open interval in ¢, which
is depicted by the red interval in Figure

We denote by It = (—1,1) the open interval with positive orientation and by I~ the
same interval but with negative orientation. We have a diffeomorphism 6: (It LU T7) x

R = Yo of oriented manifolds. And we can choose the map 7/ such that its pullback
along 6 is constant in radial direction and given by ~4 on (—%, %) C I'". Even though
0* (7|5, ) is not constant along I, it will be homotopic to the constant map at the base
point * € BD. We now fix such a homotopy H: 6*(v)|s,) = #*: the homotopy H is

constant along I~ and on I it is given by

*, c> %
H:I"x[0,1] — BD, (¢,t)— S yalc+3+t3E —c), ce(-1,1) (2.6)
’yd(t)a c S _%

0.H .
as illustrated in Figure [2.3bl The equivalence ((IT LU T7) x R, *) SN (X0,7)]5,) in
ManZ induces equivalences of categories

/ A= / A= AR A 2.7)
(Zoﬂ/&lzo) ((I+|JI_)><|R,*)

for any framed Es-algebra A € Presy with D-action. For notational convenience we will
denote C'= ((IT U I7) x R, ) in the following.

’yd(t>t0)
= ———) H(s,to):O Yalto)
1 1
-1 - 3z 1

(a) Collar gluing for D-decorated annulus. (b) Sketch of the homotopy H for some fixed
to € 10,1].

Figure 2.3.
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Next, we will deduce the [, A-module structure on f(E—,vglz,) A and f(2+7’7&|2+) A.
To that end, we fix oriented embeddings:
( Y ¢ 1 Moy a3 C Yy S A
C 7 T 1 | — C 7 C 7 cT
-1 1 -1 1 -1-1 11 -1 1 -1 1 -1-1 11

Using the equivalence (6, H) we can lift these embeddings to maps act_: (X_,~}|s_)U
C — (X_,7)ls_) and acty: C'U (B4,7)ls,) = (X4,7)ls, ) of D-structured manifolds.
The non-trivial part of the homotopies for the left, respectively right, C-module struc-
tures can be deduced from Figure Explicitly, the non-trivial part of the homotopy
hy: (7)) = act’ v/, for the left action is

hy:(=1,1) x [0,1] — BD hy:(=1,1] x [0,1] — BD
(c,t) —> v; 1 (t) (m,t) — H(m,t)

and the non-trivial part of the homotopy h_: (7/,*) = act* (7/,) for the right action is

74 (@), m >3
ho:[=1,1) x[0,1] — BD, (m,t) — S yg(m+ 3 —t(3 +m)), me (-3, 3) (2.8)
*, m S _%

Note that h_ is constant along the open interval (—1,1).

Denote by ¥* and ¥% two objects in Man2’ diffeomorphic to ¥ _ and X, with collars
[-1,1) x R and (—1,1] x R, whose maps to BD are assumed to be constant. The
value of factorization homology on these manifolds naturally defines module categories
M_ and M over the tensor category [..A from (2.7). In order to obtain an explicit
description of the module structures obtained by excision, note that the homotopy H
from (2.6) can be used to construct an equivalence (64, Hy): (X7, ) =N (Zr7ls,)-
Explicitly, the homotopy H agrees with H on ¥% N (I x R) and is constant else. We

use this equivalence to identify | (Sa s, ) A = M as categories. This equivalence can
s ldl4

be promoted to an equivalence of fC A-module categories, i.e. the following diagram is
commutative

cuyx, Bl e
idu(0+,H+)l l(9+7H+)

* *

Yd
N acty o I act_
U J U UJ ‘ ( a
| idu. 1) b0, 1) | 0.1 Uid 1.1
L) L [AEA) L
) A ) T e T
(a) Left module structure (b) Right module structure

Figure 2.4.: Left- and right disk action on a disk decorated with a map to BD that
agrees with 4 on the blue interval and is constant everywhere else.
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where act’ is the map inducing the regular action on the level of the factorization
homologies

reg:(A@A)®M+—>M+, (alﬁag)@br—>m®@®b .

where M4 = A as categories.

Note that we can not use H again to obtain an equivalence of ¥_ with >* since the
homotopy H is not constant near {—1} x R on the collar. But we will use the homotopy
h_ from instead: we get an equivalence (60—, H_): (X* %) =N (X_,7)]x_), where
H_ agrees with h_ on the collar and is constant else. Then, the following diagram is
commutative in Manl’:

S L0 (act—,h_)

(0 )i ) | |-ty

M-

From the horizontal maps we deduce that the module structure relevant for excision is
obtained by twisting the regular action by the D-action:

id®(9(d~

M_R (AR A) B0, 2 AR A) A (2.9)

where again as categories we have M_ = A. In summary, we find

/ A2 My, X A
(Ann,ya) ARA

where M, is the category A with the d-twisted regular action (2.9).

Remark 2.2.9. Notice that alternatively we could have chosen a trivialization of g
which extends to X_ rather than ¥, which would have resulted in a twisting of M by
¥(d) instead. In this sense the module structures featuring in excision on D-decorated
surfaces are not unique, though the value of the relative tensor product is.

A

The following proposition is a generalization of the previous example, see also [KM23),
Example 2.11].

Proposition 2.2.10. Let (Z,¢) € Man?, X 2 ¥ _Us, X4 a collar-gluing and let §: Yo =2
N x (=1,1) be a diffeomorphism. Assume that o is such that its restriction ¢|s,_\x, as
well as p|s, \x, agree with the constant map to the base point x of BD and

%, fort ¢ (—3,3)
’Yd*l(t—i_%)? fOTtG (_ ’ )
as illustrated in Figure . Let C = f(Nx(—l,l),*) A, My = f(2+7*)¢4 and M_ =

f(27 9 A. Then, we have an equivalence

(07 p(n,t) = {

NI D=
NI N

AZM_4BAM,
(Z0) ¢

where M_ ; denotes the category M_ with d-twisted C-action:

act_g: M_RC D M me 2 ML
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N x (=1,1)

Figure 2.5.: The map ¢ on a collar-gluing.

2.2.3. Reconstruction for rigid balanced braided tensor categories with
D-action

We say that a braided tensor category A is rigid if all compact objects have duals.
For d € D, consider the right A®2-module category My, whose underlying category
is A and the action is

idid=9(d
_—

reg?: My K AR A W MRARA L My | (2.10)

where T is the iterated tensor product functor zXyXz — r®@y® 2. This is the module
structure from Example obtained via factorization homology of the d-decorated
annulus.

The internal endomorphism algebra End 4=2(14) of the monoidal unit 14 can be ex-
plicitly described by the coend

Veemp(A)
/ VVRId YV, (2.11)

where V'V is the dual of V and the colimit is taken over a generating set of compact
objects in A. In the above we used that the twisted regular action is the pre-composition
of the regular action with the automorphism id X 9(d) whose adjoint is id X 9(d~1).
Together with the coend formula for the right adjoint of the regular action.

Applying the tensor product functor T: A X A — A to the internal endomorphism
algebra End =2 (14) we get the twisted coend algebra:

y Veemp(A)
Fo = / VVedd).v . (2.12)

Using the canonical maps VV ® 9(d~1).V v, .7-"ff1 we can express the multiplication in
]:ffl by means of the following diagram

(VW)Y 9dH.(VeWw)

/

(2.13)
vV 9(d ).V wVId )W

At the identity element e € D, the coend algebra (2.12)) agrees with Lyubashenko’s
coend [VY ®@ V [Lyu95b], which in particular is a braided Hopf algebra in A. We will
discuss this special case in some more details in the following example:
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Example 2.2.11. Let H be a ribbon Hopf algebra with D-action, meaning that an
element d € D acts on H be Hopf algebra automorphisms and preserves the universal
R-matrix, R € (H ® H)”, and the ribbon element v € H”. Let H-Mod be the rigid
balanced braided tensor category of locally-finite left modules over H on which the
elements d € D act through pulling back representations along d .

Let’s first consider the coend at the identity element e € D. For every finite-
dimensional H-module V, there is a linear map

iv: VYV — H°, oQu+—¢f .

to the restricted dual H° spanned by matrix coefficients. We wrote ¢ for the linear
function on H defined by ¢ (h) = ¢(h>v) for any h € H. The linear map iy is a map
of H-modules if H® is endowed with the coadjoint H-module structure:

ad*: HR H° — H°, h®¢— (S(hy)(—)hw) -

The family of maps (VY ® V Vs H °)ver-Mogtd Satisfies the universal property of the
coend H° = [VV @V, see for example |[Lyu95a, Theorem 3.3.1] and references therein.
The multiplication endows the coend with the structure of an algebra in H-Mod,
which is called the braided dual of H, also known as the reflection equation algebra
(RE-algebra).

The RE-algebra can be obtained from the so-called Faddeev-Reshetikhin-Takhtajan
algebra (FRT-algebra) via twisting by a cocycle defined in terms of the universal R-
matrix [DMO3]. In more detail, the FRT-algebra is identified with the coend

VeH-Modfd
FERT = / VYRV € H-Mod°? X H-Mod ,

where H-Mod®? is the category with the opposite monoidal product, with multiplication
mprr induced by the canonical maps

VVRV)o(WYRW) = (VVePW)RVeW) 2 (WeV)'RWeV) L2 Frer .

Thus, for ¢,v € H° we have mprr(¢ @ ¥)(h) = ¢(h(1))¢(h(g)) for any h € H. The
RE-algebra is the image of the FRT-algebra under the composite functor

(id,0’)Kid
e

H-Mod®? ® H-Mod H-Mod ¥ H-Mod -+ H-Mod | (2.14)

where (id, o) denotes the identity functor, equipped with a non-trivial tensor structure
o=710(R>)in H-Mod.

In the decorated case, we pre-compose the functor in with the automorphism
1X¥(d). Then, for any d € D, the underlying vector space of ‘FIO-ZI-Mod is identified again
with H° via

w:VV@dV — H°, ¢@vr—— ¢(—v(d )
for any V € H-Mod™, but H® is now equipped with the twisted coadjoint action adj(h®
¥) = (S (h(1))(—)d.h)). The multiplication on the coend algebra was already defined
in . Explicitly, writing R = R! ® R? for the universal R-matrix, the product of
o, € ]-'%_Mod is

mige(6 ® ¥) = merT(9(RY(—)d.R") @ Y(S(R*)R*(-)) (2.15)

where we used primes to distinguish different copies of the R-matrix. In the language
of [DM03], we say that F¢ , . is obtained from (H°,ad}) by twisting with the cocycle
R'®dR" @ R*R?*® 1. A
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Example 2.2.12. The category of integrable finite-dimensional U,(g)-modules is a
braided tensor category via the quasi R-matrix ©. The quantized coordinate algebra
O4(G) is then defined as the algebra of matrix coefficients of finite-dimensional inte-
grable representations. Given an automorphism s € Out(G), the twisted coend algebra

(2.12)) takes the form

Sepq(G) = @ V()‘>v ® K*V(A)
V(\), AeP

where the sum runs over the irreducible highest weight modules. By a quantum version
of the Peter—Weyl theorem (see for example [KS97, Section 11]) we get an identification
Dy V(A)Y @ Kk*V(X) 2 O4(G) as algebras in Rep,(G), where Oy(G) is equipped with
the r-twisted multiplication mgg from . A

2.3. Computations on punctured surfaces with principal
bundles

In this section we will show that factorization homology on a surface with boundary
and D-bundles decoration can be computed as the category of modules over an algebra
defined in purely combinatorial terms. This result relies on K-excision of factorization
homology and monadic reconstruction techniques for abelian module categories.
Throughout we consider connected oriented surfaces with at least one boundary com-
ponent. We will pick a ciliated ribbon graph model with one vertex for the surfaces,
which in [BZBJ18a] is conveniently defined via a gluing-pattern, that is a bijection

P:{1,1,....n,n'} = {1,...,2n} ,

such that P(i) < P(i'). Here, n is the number of edges of the ribbon graph model of X.
Given a gluing pattern P, we can reconstruct > as depicted in Figure namely by
gluing n disks Dg @ with two marked intervals each to a disk gonDg with 2n 4 1 marked
intervals, thereby gluing the intervals ¢ and i’ to P(i) and P(i’), respectively.

Definition 2.3.1. A D-labeled gluing pattern is a gluing pattern P: {1,1',... n,n'} —
{1,...,2n} together with n elements dy,...,d, € D.

Since the fundamental group of a genus g surface with r boundary components is free
on n = 2g+r—1 generators, a D-labeled gluing pattern determines a principal D-bundle
on the surface constructed from the gluing pattern. Furthermore, up to equivalence all
principal D-bundles on surfaces with at least one boundary arise in this way.

For a D-labeled gluing pattern (P, d; ... d,,) we are going to define an algebra acllgl"“’d" €
A. As an object in A, it is defined by the tensor product

n
gl — ®ff( 7 (2.16)
=1

where the .Fff( are defined by the coend in Equation (2.12)). The gluing pattern can be
used to define an algebra structure on this object in complete analogy with [BZBJ18a).

To that end, we will use the following terminology: two labeled disks IDﬁi. and IDC.l{.
with ¢ < j are called
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i i | =<
P(1) P(1') P(r) P(r)) “tt P(n) | P
[Va:) (Va, ] eyl Varin] [Van_1[vd,] P((n— 1))

(a) Generators of the homotopy group 7 (X). (b) Gluing a surface from a decorated gluing pat-
tern.

Figure 2.6.
e positively (negatively) linked if P(i) < P(j) < P(i') < P(j') (P(j) < P(i) <
P(j') < P(i"))

e positively (negatively) nested if P(i) < P(j) < P(j') < P(i') (P(j) < P(i) <
P(i') < P(5))

e positively (negatively) unlinked if P(i) < P(i') < P(j) < P(j') (P(j) < P(j') <
P(i) < P(i"))

The corresponding ciliated ribbon graphs were previously sketched in Figure To
each of the above cases, we assign a crossing morphism as depicted in Figure 2.7 below.

d; d;
Fid T4

A
2%
&\ N+ _ v U+ :( / (2.17)
;
Fh FY
+—hnked +—nested +-unlinked

Figure 2.7.: Definition of crossing morphisms L™, NT,UT: ]:ff(' ® fjtj — ]:ff{ ® ]:j" for
positively linked, nested and unlinked decorated disks. Notice that we read the diagrams
from bottom to top.

Now, for each pair of indices 1 < i < j < n, the restriction of the multiplication to
Fl@ FY C ab is defined by

d; m®m

FhoFioFsoFy % rho i o Fi 0 FY MO Fh @ FY

where C' is either L*, N* or UT, depending on whether the decorated disks IDd.i. and

IDzJ;. are £-linked, +-nested or £-unlinked.

Finally, given a D-labeled gluing pattern, we wish to describe the module structure
induced by gluing the marked disks IDU.li. to the disk g2»Da as sketched in Figure
To that end, we look at the example of a sphere with three punctures ($?)3 and a
D-bundle described by the map ¢: m1((5%)3) — D sending the two generators of the
fundamental group to di and ds, respectively. The corresponding gluing pattern is
P(1,1,2,2") = (1,2,3,4), decorated by the tuple (dy,d2) € D x D. We then choose a
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2. Twisted character varieties

E

2o
Figure 2.8.: Example: D-decorated sphere with three punctures.

collar-gluing (5?)3 &2 ¥ _ Us,, X for the punctured sphere, as sketched on the right hand
side of Figure and an equivalence in D’lanQD , so that the maps to BD are constant
on ¥_\ Xp and X4 \ 3¢ and agree with the loops 74, and 74, on fixed open intervals
in g, which are depicted by the red and blue intervals in Figure We immediately
see that we are in a situation similar to Proposition the right A X A-module

structure on fDdi A, for i = 1,2, comes from the twisted regular action reg® from
nm

(2.10). The module structure for more general decorated gluing patterns can be worked
out analogously.

Theorem 2.3.2. Let A be a rigid balanced braided abelian category in Presy. Let X
be a surfaces with at least one boundary component and a marked interval in 0%. Fiz
a principal D-bundle ¢: % — BD on X and a corresponding D-labeled gluing pattern

(P,dy,...,dy). There is an equivalence of categories
/ A2 af " Mody (2.18)
(Z9)

Proof. The following is an extension of the proof of [BZBJ18a, Theorem 5.14] to surfaces
with D-bundles. We have seen that for a d-labeled disk IDC.ZJ with two marked intervals
we have f[Dd A = A as categories, with the markings inducing the structure of a right
| N |
A¥2_module category with module structure being the twisted regular action reg?. Now,
fu.[Dd,L- A =2 A®" has the structure of a right A¥?"-module category. Indeed, using the
il N |
decorated gluing pattern (P, dy,...,d,) we have an action:

regp ™ (w1 M- M) K (g K- Myzn) — (11 ® ypa) @ V(d1).ypan) ®...

X (g, ® Ypn) @ ﬁ(dn)-yP(n/))

We denote the resulting right module category by M?;l""’d".
On the other hand, we have the disk g2»Dw with 2n marked intervals to the left and
one marked interval to the right. This turns f.Qn pg A = A into a (A% A)-bimodule

via the iterated tensor product
(1 X R KyRzr— 21 @ @22, QY R 2.

We denote the resulting bimodule category by 4m2..44. Using excision, we then have

A MP " R g A
(Z.) Amzn
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2. Twisted character varieties

Let 7p: {1,...,2n} — {1,...,2n} be the bijection given by postcomposing the map
defined by 2k — 1 — k, 2k — k' with P. Notice that the map 7']31 is part of the action
reg%""’dQ. Now we use that the unit 14 is a progenerator for the right regular action
[BZBJ18a, Proposition 4.15]. Since ¥(d) is an automorphism of A, it is also a progenera-
tor for the twisted regular action. So we can apply monadic reconstruction as in Theorem
to identify M% @dn with modules over an algebra End End 4m2. (1 Axn)dl’ s qB2n
obtalned from End ;=2 (1 A) MR- KEnd =2 (1.4)% by acting with 7p. Applying Corollary

1.3.22| to the dominant tensor functor 72" : A?" — A, we thus get
/zA =~ T2 (End ymzn (1 g0 )57 )-Mod 4

as right A-module categories.
Let us write T2”(Endszn(1Axn)dl’ ~In) = Gp for brevity. We want to show that there

17“'1d

is an isomorphism of algebras ap = a}i ™. To that end, consider the subalgebras

FQ = Endy ma, g, (L)% € AP

and their images under the tensor functor ]-" 0 — TZ"(]: (i ) € A. By embedding each
.7-:(4{) into ap we get a map

ﬁlp:./—‘&l)(@- ]_-(n) P L%—)ap R

where m is the multiplication in ap. This map establishes the isomorphism on the level
of objects in A. The restriction of the multiplication to the image of one of the Fj)
agrees with the multiplication m in ]-"j('. So it is left to show that for each pair of indices
1 <14 < 7 <n the composition

FQorP o 7Y o FQ B2C9%9, 70 o 7O 0 FQ 0 FQ M2 7O @ FY) T2 Gp,

for C being L*, N* or UT, agrees with mp|

following diagram

(f,(;)@)f%))@g To that end, consider the

(]:'(”) f(j] )) T4(]:'(JJ ) ®f',(;71,))
Sij T R Sy

FeFP T4 m) TP e FY

where the label 7%4(m) on the vertical arrow means applying the tensor functor to the
multiplication in End 4z2n (1 Axn)dl’ ~In The dashed arrows, making the above diagram
commute, are described by exhibiting the tensor structure of the iterated tensor product

functor

Sij: FR @ FY = TYFY) e THFY) S 74 FL © FET)
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2. Twisted character varieties

defined by the shuffle braidinﬂ As an example, consider the gluing pattern P(1,1’,2,2") =
(1,3,4,2) describing positively nested handles. The corresponding shuffle braiding is

Si2=(101R0)o(l®c®1l), S1=(0R1x1)o(l®c®1),

and we observe that the composition S} 21 0591 agrees with the nested crossing morphism
fo 9: sz ® ]-'jl — ]-"j‘l ® .7-"12. From commutativity of the above diagram, we then get
that mp]| Fhgri = mp| Flgri o 1+ 5, which finishes the proof for the positively nested

A
case. The other five cases can be worked out analogously. O

Remark 2.3.3. The result of Theorem[2.3.9 holds in the K-linear, abelian setting. For
coefficients in the C[[h]]-linear setting we find the following. Let V = C][h]]-Mod be the
category of complete C[[h]]-modules (see[§ A.1.1) of the appendiz) and C a small balanced
braided monoidal V-enriched category with a D-action. We will assume that all objects
in C have duals. An example to have in mind is the category Rep,(G) of topologically
free Un(g)-modules of finite rank with the Out(G)-action described in Proposition [2.2.4)
Then, the free cocompletion C € V-Pres with its induced D-action is a IDistD-algebm in
V-Pres.

Given a decorated gluing pattern (P,{di,...,dn}) for a surface ¥ with D-bundle ¢

and a marked interval in 0%, we get an adjunction in V-Pres
(O IR — Ao AgLndn o R
acto,, : C= [ C &= f(z,@)C—MP CA%E;LC.actOE ,

induced by the embedding of a disk along the marked interval. As in the proof of Theorem
Mcllgl""’d" >~ CBn g plain categories and with CR2n _module structure determined by

the decorated gluing pattern. The adjunction determines a canonical algebra in 5, namely

Ends(Ox) = actgE (actoy, (1)). By the same reasoning as in the proof of Theorem
we get an isomorphism of algebras

Og) = gl |

End( or

17---7dn

where the algebra agP is defined in the same way as in the K-linear case. We thus

get a functor

R . ~ d1,--.,dn -
acty,. /(E )C_>a5,P -Mod; .
P

However, since the category C is not abelian, we can not apply the reconstruction re-
sult from to deduce if this functor is an equivalence. Extending the monadic
reconstruction results to the C[[h]]-linear setting will be content of future work.

2.3.1. The case of the D-decorated annulus

Throughout this section let A € Preskx be a ribbon category. We want to explore the
algebraic structures that arise on the collection of the factorization homologies

/ A
(S*XR.p)

!The shuffle braiding S: a1 @ -+ @ an ® b1 ® -+ R by, 500 @ - Qan @by is S =0a,b, 100
Caz®--®an,bs O Oas®---@an,b1» Where o is the braiding of A.
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2. Twisted character varieties

for varying decoration ¢: S' xR — BD. More precisely, we will see that the factorization
homologies assemble into an algebra over the little bundles operad, as defined by Miiller—
Woike [MW2(]. We then compute the components of the resulting categorical algebra
by means of twisted Drinfeld centers introduced in [FSS17].

We first recall that in the undecorated case, fsl «r A has a monoidal structure coming
from the pair of pants: evaluating factorization homology on the pair of embeddings
sketched in Figure gives rise to a diagram

AR A Late2)x A ot A (2.19)
S1xR SIxR Pants SIxR

in Presy. The composition (¢, )% o (11 LI t2)s defines an Es-algebra structure ®pants on

fSlx[R A.

Figure 2.9.: The maps inducing the monoidal structure ®pants-

In the D-decorated setting, the situation is different since the annulus may be endowed
with non-constant maps into BD. These maps induce induce an interesting algebraic
structure on the collection of factorization homologies, namely the structure of an algebra
over the operad of little D-bundles. The little D-bundles operad Eé) is colored over the

space of maps ¢: S' — BD. Its space of operations Eg((w w SDT)) may be pictured as

a bordism (S!)~" — S!, which is decorated with a map to BD whose restriction to the
ingoing boundary agrees with (¢1,...,¢,) and to the outgoing boundary with ¢ (we
refer to [MW20] for a detailed definition of the little bundles operad and its algebras).
The main result of [MW20, Theorem 4.13] identifies categorical algebras over the little
D-bundles operad with braided D-crossed categories as defined by Turaev [Turl0] and
recalled below.

Definition 2.3.4. A braided D-crossed category is a D-graded monoidal category AP =
DB cp Ad, such that @: AgR Ay — Agar, together with a D-action p on AP and a D-
braiding c. The action is such that the image of the component Ay under p(h) lies in
Apan-1. The D-braiding consists of natural isomorphisms cxy: X ® Y — d.Y ® X for
X € Ay, satisfying natural coherence conditions.

In summary, we find the following:

Proposition 2.3.5. The collection of the factorization homologies on S' x R equipped
with a decoration by D-bundles has the structure of a braided D-crossed category.

We will now describe the components f(SleR,vd) A of the D-crossed category defined
by factorization homology, where 4 denotes the map corresponding to the loop d €
m1(BD) = D and which is constant in the radial direction. To that end, recall that for
an A-bimodule category M € Presy, the bimodule trace of M is defined as the relative
tensor product

TraM) =M B A
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2. Twisted character varieties

where A°P denotes the category A with the opposite monoidal structure: z®°Py = y®=x
for z,y € A.
For an undecorated annulus, we have an equivalence

A= AR gz 00 A . (2.20)
SIxR

Thus factorization homology on the annulus computes Hochschild homology, or the
monoidal trace, of the balanced braided tensor category A. The monoidal trace
can be understood as the categorical counterpart of the co-center A/[A, A] of an asso-
ciative algebra A. On the other hand, the Drinfeld center Z(.A) of the tensor category
A is the categorical equivalent of the center Z(A) of the algebra A. If A is rigid, one
may identify [DSPSI13| Lemma 2.4.5 and Corollary 2.4.11]

Z(A) = Hom gz 400 (A, A) = 1y A R ggaor A

where [: A — A°P is the monoidal equivalence sending each compact object x € cmp(.A)
to its left dual V2 and (yA is the bimodule whose left action is pulled back along Il. But
A is a ribbon category, in particular this means that we have a natural monoidal iso-
morphism «: id 4 = [[ which allows to identify 444 = (1y(4.A4) as bimodule categories.
We thus see that the rigidity together with the pivotal structure allow to identify the
monoidal trace with the Drinfeld center.

In the decorated setting, we will need the following: for a monoidal functor F': A — A
denote by Mg, the bimodule whose right action is pulled back along F. Then, the
F-twisted Drinfeld center ZF(M) is defined to be center of the bimodule category
My, see [FSS17, Definition 2.12]. We can now relate the components of the D-crossed
category defined by factorization homology on annuli with D-bundles to twisted Drinfeld
centers:

Proposition 2.3.6. Let A be a ribbon category with D-action. For each d € D, there
s an equivalence

/ A= Tralya)A)
(SleRv’Yd)

of the factorization homology on the d-decorated annulus and the bimodule trace of A
with the d-twisted left reqular action. Furthermore, we have an identification

Tra(o@A) = 2747 (A4)
of the bimodule trace with the ¥(d~1)-twisted Drinfeld center of A.

Proof. The first assertion follows directly from Example For the second statement,
we apply the monadicity Theorem [1.3.20| to describe y(4).A internal to A X AP

(@) A = End”@ (1 4)-Mod gzga00
where End?(¥(14) is the endomorphism algebra of the monoidal unit in A X A° with
respect to the ¥(d)-twisted canonical right A4 X A°P-action.

We will denote by t: A — A°P the monoidal equivalence sending a compact object
x € cmp(A) to its right dual zV. Then, a categorical version of the Eilenberg-Watts
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2. Twisted character varieties

theorem [BJS21, Lemma 5.7] gives the first equivalence in the following sequence of
identifications:

End?@ (1 4)-Mod 4 = Hom o400 (Mod 4z 4or-End”(@ (1 4), A)
= HomAngp ((ﬁ(d*l))A@t) y .A)
=z (A)

The second equivalence is again by monadic reconstruction and the last equivalence is
[FSS17, Lemma 2.13] together with the fact that A is a ribbon category. O

2.4. Quantization of the twisted Fock—Rosly Poisson structure

We will now re-examine the moduli spaces from from the point of view of Out(G)-
structured factorization homology with coefficients in Rep(G). We explain how one
obtains a deformation quantization of the twisted Fock—Rosly Poisson structure from
gluing the local categorical quantizations, i.e. Rep,(G) with an Out(G)-action, over the
surface with its Out(G)-bundle decoration.

2.4.1. Twisted character stack

Throughout this section, ¥ is an oriented surface with boundary and a fixed Out(G)-
bundle ¢: 7(X) — Out(G). With the tools developed in the preceding sections we
can now compute the category of quasi-coherent sheaves on the twisted character stack
Char (X, G) via Out(G)-structured factorization homology:

Proposition 2.4.1. Given a decorated gluing pattern (P, k1, ..., ky) for (X,¢), there is
an isomorphism O(G29F7=1), 2 a9 of algebras in Rep(G).

Proof. To establish the isomorphism on the level of vector spaces, we use the algebraic
Peter—Weyl theorem:

oG =Pviev ,
\4

where the sum on the right hand side is over all irreducible representations of G and
O(G) is the Hopf algebra of matrix coefficients of irreducible G-representations. Next we
take into account the twist by an automorphism x € Out(G): a group element h € G acts
on ¢ € O(G), via h>¢ = ¢p(h~1(—)r(h)). As explained in Example we thus get
an isomorphism Fg_ o = D, VY ®~r*V = O(G), compatible with the G-action. [

In combination with Theorem the above result shows that [ (52,) Rep(G) agrees
with the category of quasi-coherent sheaves on the p-twisted character stack.

2.4.2. Deformation quantization

In we constructed an algebra a';l"“’””, n = 2g+r—1, from a combinatorial presen-
tation (P,dy,...,d,) of the decorated surface 3. In order to show that these algebras
provide a deformation quantization of (Char(X, G),11%.,) from Proposition we con-
sider a”7"" as an object in the category Rep,(G) of topologically-free modules over
Un(g). Explicitly, the algebra the tensor product " ; Os(G)s,, where each Op(G)x,
is a k;-twisted RE-algebra of quantized algebraic functions. The multiplication on the

tensor product is defined in terms of the crossing morphisms depicted in Figure We
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will show in Theorem below that for all elements f;* € O(G),, and g’ € On(G)x,

we have ok
w d h _ 7 Kj
0% mod(h) = (7,9}
where {—, —} is the twisted Fock-Rosly Poisson structure and f* = f; mod(h) €
O(G)y,, and similarly for ¢g"i.

Remark 2.4.2. FEquivalently, we could directly work with the algebras aglL'%‘fd P 0b-
€pPp }}

)
tained in the formal setting as described in Remark|2.3.5. Indeed, we have the following
identifications as objects in Rep,(G) (see Proposition and Remark of

the appendiz for more on coend algebras in free cocompletions):

VERep, (G)H
}—Re@)“ N / Yy @oay Xy
= B Mapy g moqnl— Vi @ VA[IA]
Vy, AeP+

= Mapy gy woa (=), €D Vi @ V3 )14
VA, >\6P+

= Mapgep, e («(-), @D VAIIRIBVAIl])
Vy, AeP+t

where 1: U(g)-Mod™® — U(g)-Mod! is the inclusion of finite-dimensional U(g)-modules

into the category of locally-finite U(g)-modules, and similarly for the categories of topologically-
free Up(g)-modules. We also used that Uy(g) = U(g)[[h]] as algebras over C[[h]]. Along

the same lines, we find that the k-twisted coend algebras admit the following description
(suppressing the restricted Yoneda embeddings from the notation)

f;e@)fdg P W& VA]

Vi, AeP+
In summary, we find that aglﬁé%’;fd is the image of alp"™ under the embedding of
€pp,

Rep, (G)f — Rep,(G)f.

Theorem 2.4.3. The algebra a?""mg“_l s a deformation quantization of the twisted
Fock-Rosly Poisson structure on Rep(X, G) = G977~ [ts subalgebra of Uy(g)-invariants
is a quantization of the induced Poisson structure on the character variety Char(3, Q)
which is independent of the chosen gluing pattern P.

Proof. First, we show that the semi-classical limit of the commutator of two quantized
functions in Oy(G), agrees with the s-twisted STS Poisson structure II§g. We recall
from Example that the multiplication in the s-twisted RE-algebra Op(G), is
related to the multiplication in the FRT-algebra via a twisting cocycle defined in terms
of R-matrices. The commutator in the (untwisted) FRT-algebra H°, H = Uy(g), can be
computed by acting with

1PHRA®1) - (RHe®RHYHR(R?eRY)

on the components VYV @°P WY KV @ W, for VW € Rep,(G), since the multiplication
in the FRT-algebra is given by the Hopf pairing (—, —) between H® and H:

(mprT(99), h) = (9@, A(h)), ¢, € H he H
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and A(—) = R™1A°P(—)R. Now we take into account the twist by &, as well as the twist-
ing cocycle R @ k. R @ R?*R?® 1, to compute the commutator in Op(G), component-
wise by acting with

(RT@PRPRY) K (kR'® 1) — Co (R*R?* @P RN K (1 ® k.R) (2.21)
where C' = ((R?)™' @? (RH ™)K (k.R? ® k.R')

on VV@P WYXV ®W. To compute the semi-classical limit of the action (2.21)),
we use that the R-matrix has the following A-expansion: R = 1 + Ar + O(h?), where
r=rl®r? c g®? is the classical r-matrix. Explicitly, the semi-classical limit of ([2.21])

1S
4
T3(k),2 T 71,2 = Ta(k),1 — 72,1 + 721 — 743 € U(g)®*

where for instance 73,2 = 1 ® r? @ k! @1 € U(g)®*. More explicitly, the first two
copies of U(g)®* act on O(G), via z — zf, for x € g, and the last two copies act

via z — —k.xl. Thus, we find that the semi-classical limit of the commutator is the

following bivector field on G:

_pL).R | RE | T;,IL(H) _ 7QZL’,lL — @d(r).ad(k) 4 4R.L(K) _ 4L(r)R

=1Ilgys -

In the above we used that rff — 7"2L7’1L = whk 4 bl

Next, we prove the claim for two positively unlinked edges o < . We recall that the
crossing morphism for two unlinked edges o < (3 is given by acting on (’);B (G)®O0r~(G)
with

Ut =T12310(R'®@1®1® ke R)(1 @ kg R @ 1 ® ke R?)
R'@1eR*21)(1® kR @R*®1)
= T12,34 © Ut

Hence, the commutator on components ¢ ® rzv € Op*(G) and ¥ ® Kjw € 0,°(G) can
be computed via

(mope (6) ® Mers ) © (1= (U)7812)(¢ @ v @191 @ ¥ @ Kjw)
Taking the semi-classical limit of this action thus amounts to
1-7(U*)
h

where this time the first and third copy in U(g)®* act via 2 +— 2® and the second and the
forth copy via x — —k.2”, so that the right hand side of (2.22)) acts on O« (G)®0"8(Q)

via —r;fjl(ﬁa)’ad(@ ), which agrees with II, 3 from Equation (2.3) as claimed. Similarly,
for two positively linked edges we have

mod () = —752(s0) — Ta(ny)2(xa) — T30 — Ta(eg)1 € U@, (2.22)

1—71 fﬂ'
h() mod(h) = Ta(a)8 = Ta(p) 2(ka) = 31 T Ta(p)1

which differs from the unlinked case by adding a term —2t=(5e):2 which agrees with the

Poisson bivector from ([2.3)). Lastly, for two positively nested edges we find

1—7 ]\7“‘
1= r(NT) mod(h) = T2(x0),3 T T2(ka)d(rs) — 73,1 — Td(kg),l >
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which differs from the linked case by adding the term 2¢L(5e):L(58) in agreement with
(2.3), which ends the proof for the positively unlinked, linked and nested case. The
remaining three cases can be worked out analogously. O

2.5. Closed and marked surfaces with D-bundles

In the preceding sections, all surfaces were assumed to have at least one boundary
component. We can close up a surface with boundary by gluing in disks. In this section
we will discuss how to compute D-structured factorization homology on the resulting
closed surfaces. We will also allow for certain stratifications on the closed surfaces,
namely point defects.

2.5.1. Closed surfaces

Let 3 be a closed surface equipped with a map ¢: ¥ — BD. We use a decomposition
of X into a surface X° with one boundary component and a disk D, see Figure We
denote ¢° = ¢|so. The bundle ¢° has trivial holonomy around the boundary 0%° since
the bundle extends to X.

Then, we can use excision to compute factorization homology on the closed decorated
surface (X, @) as the relative tensor product:

/ A= A X A . (2.23)
(Z) (Z°%°)  Jiamn, A
For a combinatorial presentation (P, dy,...,dyg) of the decorated surface ¥°, we showed

in Theorem [2.3.2] that one obtains identifications

/ A= a,;lj""’d?g—ModA, / A= F4-Mody
(Z°,p°) (Annx)

internal to the disk category [;.A = A. For the case of closed surfaces we will have to
describe the categorical factorization homology internal to the annulus category |, ann A
instead. The techniques to do so were developed in [BZBJI8b, Section 4]. In the
following paragraph we review the main results that will be used to compute factorization
homology on a closed D-decorated surface via the relative tensor product .

We first recall the notion of a quantum moment map from [Saf21al, Section 3]. We will
write 7 = F¢§ for the (untwisted) reflection equation algebra in A. For every V € A
there is a natural isomorphism, the so-called “field goal” transformation [BZBJ18b)

Section 4.2]
v F

N
viFQV —VF, 1v= N ; (2.24)
/

(D0

Figure 2.10.: The surface 3° obtained from > by removing a disk D.
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yielding a monoidal functor F-Mod4 — (F,F)-Bimod 4 by sending a left F-module to
a bimodule for which the right F-module structure is obtained via 7. Now let B be an
algebra in A. A quantum moment map is an algebra map pug: F — B in A, making the
following diagram commute

id®up

B®F — B®DB

::%B (2.25)

7B

FoB Y% BB
It is shown in [Saf2lal Proposition 3.7] that for a right (F-Mod4)-module category
M and an object m € M having an internal endomorphism algbera End 4(m) in A,
there exists a quantum moment map p: F — End 4(O). We will explain how to obtain
this quantum moment map for the situation at hand and how to use it to compute
factorization homology on closed surfaces.

Let M = f 50 .A which is naturally a right [ ann A-module category via the em-
bedding of the annulus into the boundary 0%°. Recall that the module category M
is pointed via the inclusion of the empty manifold and we denote the resulting distin-
guished object by Oso € M. We have the following weakly commuting diagram of
embeddings:

D
actp,,

[ —

ID\‘ Ann
actg, @ act

Figure 2.11.: Weakly commuting diagram of embeddings.

By the commutativity (up to homotopy) of the embeddings in Figure one gets
an algebra morphism

End,(Ose) = (actp,, ) o actg,, (14)
= (act%Am)R (actA“” )Ro acté”" o actgAnn(lA)

PR - (actoAnn)

~F

Eo actOAnn(lA)

where 7 is the unit of the adjunction induced by the embedding of the annulus into the
marked boundary component. Under the equivalence |, ann A = F-Mod 4 for the annulus
category, the functor act@?)Ann identifies with the free F-module functor freer: A —
F-Mod 4 with right adjoint given by the forgetful functor U. In particular, we have

U(Endr pod , (Os0)) = End 4 (Ose)

B

Since B is an algebra in F-Mod 4 it follows that the map p: F — End 4(Ose) given
by the image of the unit map 7: 1 — B under the forgetful functor U makes Diagram
(2.25) commute and hence is a quantum moment map.
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More generally, we have the following;:

Proposition 2.5.1. An algebra in F-Mod 4 is the same as an algebra in A with a
quantum moment map.

Proof. An algebra B € F-Mod 4 has a F-balanced multiplication
BrB—B, bt — bt |,

which is a left /-module map, as well as a right F-module map for the right module
structure defined by the half-braiding 75: F ® B — B ® F. One can easily check that
the map

w:F— B, A—A>lp

is a quantum moment map. Conversely, the pair (A, ), with A an algebra in A and
w: F — A a quantum moment map, defines an algebra in the category of (F,F)-
bimodules via

Aba=pNa, a<d=apu(N)

for A € F and a € A. Since p makes Diagram ([2.25) commute, we have A € F-Mod 4 C
(F,F)-Bimod 4. O

It then follows from the previous discussion, together with the fact that an A-
progenerator is also an || ann A-progenerator [BZBJ18b, Theorem 4.3], that there is an
equivalence

A= EndA(OZO)-MOdf A (226)
0 Ann
of [, ann A-module categories, where End 4(Ox-) is equipped with the algebra structure
coming from the quantum moment map. Under the above identification, the right action
of [,,,Aon [5, Ais given by the relative tensor product

VX +—VerX ,

where one uses the quantum moment map and the field goal transformation to form the
relative tensor product.

Applying the previous discussion to the reconstruction result from Theorem [2.3.2] we
get quantum moment maps

pyo: F — a;l;""’dQ" and pup: F — 14 (2.27)

dag

which endow ac]l;, and 14 with the structure of algebras in F-Mod 4, leading to the

following result:

Proposition 2.5.2. We have an equivalence of categories

A= (@B ™9 1 4)-Bimodsmod, (2.28)
(Z:0)

between the factorization homology for a closed decorated surface (X, ¢) and the category
di,...,

of (ap

d29, 1.4)-bimodules internal to the annulus category fAnn A.
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2. Twisted character varieties

Proof. Using the identification ([2.26)) and excision we get

A= 8929 Mod X 14-Mod .
(E,W) P fAnn'A fAnnA A fAnn‘A

Applying monadic reconstruction for relative tensor products as in [BZB.J18al Theorem
4.12] we get the equivalence stated in the proposition. ]

We end this section with an explicit example of a quantum moment map for the alge-
bras obtained via monadic reconstruction from factorization homology on D-decorated
surfaces.

Example 2.5.3. Throughout, let A = Rep,(G) and D = Out(G). Let us first consider
the undecorated case. For ¥ = Pants described by the gluing pattern P(1,1,2,2") =
(1,2,3,4), we have f[PantsA = q¢”-Mod 4 and an algebra map A: F — af = F®F which
is the coproduct of the bialgebra F defined on components by:

id®coevy ®id
_—

VeV VWeveVVeV X2 roF . (2.29)

The map A also satisfies the quantum moment map condition . It quantizes the
classical multiplicative moment map sending a discrete connection (mi,mg) € G x G to
its holonomy around the marked boundary component, i.e. u(mq,ms) = myms.

Now, we decorate P by the tuple (d,d~!) describing a D-bundle ¢ on Pants. By
Theorem [2.3.2] we find

/ Aok Mody 2 F? @ Fd-Mod 4 (2.30)
(Pants,p)
where
Xecmp(A) _ Xecmp(A)
Fl= / XVeodidt).X, Fi= / Id )XV X .

The second identification in (2.30)) comes from the AX.A-module equivalence (g (d))A =
(9(d-1)RidyA-

Proposition 2.5.4. The following defines a quantum moment map for F¢ @ F

id®coev19(d_1>'v®id

VeV VWeodHVeddH) VeV > FlegFd | (231)

Proof. In order for ([2.31)) to be an algebra map, the following has to commute

VVeVeWYeWw TR VeW)Ve(VeWw)
(id®coevﬂ(d1)®id)®gl J/id@coevﬂ(d_l)'(‘,@vv)@id

VVeoVeVVeaVeWVYeWeoWYeWw Filg Fd

(m]_.d®mﬁ)o(id®c’®ia)

where C' is the unlinked crossing morphism from Figure Commutativity of the
above diagram will follows from the observation that for any element h € U,(g) and
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2. Twisted character varieties

v € V we have

hcoevyg-1) (1) (1@ v) = hod'e; @ d* f(1 @ v)
=d. h(l) >d'e; @ d” fZ(S(d h(Q )>v)

= (d-h) () (S((d- h)(z))) >
= d.e(h)coevy(g-1y v (1)(1 @)

together with the relations (id® ) R =1® 1 = (e ® id)R, R13R12 = (id ® A)R and
Ri13R23 = (A®id)R for the universal R-matrix R. By the same relations one can also

proof that the map (2.31) makes Diagram ([2.25)) commute. O

On a classical level, multiplicative moment maps that are equivariant with respect to
twisted conjugation were studied in [Meil7, [Zer21]. Writing G* for the group G viewed as
a G-space under r-twisted conjugation, an example of such a moment map is provided
by the identity map id: G — G*. More interesting examples may be constructed
via fusion: for (G®,® = id) and (GF',® = id), their fusion product is the G-space
GF®Gr = G* x k*G*', where the notation means that the G-action on the second copy
is pulled back along &, i.e. g.(a,b) = (gar(g™1), k(g )bn /i( )™, Then, u¥ = & - &' is a
G**'-valued moment map. The moment map y from is thus a quantization of the
fusion product G* ® G* in the special case that x’ = /@‘1. A

Remark 2.5.5. The quantum moment maps in Example are defined in purely
algebraic terms. We end this section with a (informal) discussion relating them to the
quantum moment maps previously obtained via the embeddings depicted in Figure|2.11]
For simplicity we will do so only for the case of the (undecorated) pair of pants ¥ = Pants
discussed in the beginning of Example [2.5.3,

For the topological point of view on quantum moment maps it will be convenient to use
the identification of the reflection equation algebra F with the so-called internal skein
algebra of Ann [G.JS21, Proposition 2.26]. An element in the latter may be represented
by an internal skein

for Ve A a compact projective generator. Moreover, the internal skein algebra of
Pants, presented by the gluing pattern P as in Example 18 isomorphic to the
algebra a® = F @ F [G.IS21, Proposition 2.29]. The embedding of the annulus into the
marked boundary component of Pants then induces an algebra map F — a©. The image
of the internal skein depicted above under this embedding is

a
0/ 10
R
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2. Twisted character varieties

where on the right hand side we have the coevaluation K 2V oV, relating the

topological picture to the quantum moment map defined in (2.29)).
2.5.2. Point defects

For surfaces without D-bundles decoration, factorization homology on surfaces with
marked points was discussed in g 1.3.1] In the categorical setting, point defects

F: Disky’, — Presy

are classified by so-called balanced braided module categories [BZBJI8b] (see also[§ 3.2.4]
for a definition).

Including the decoration by D-bundles, the objects in the marked disk category IDiskg .
are on the one hand unmarked disks equipped with constant maps x: D — BD to the
base point and on the other hand marked disks D¢ equipped with a map

Ya: Dy \ x — BD
with holonomy d. The categorical description of the corresponding point defects
F: IDiskg* — Presy

was worked out in [KM23| Section 3.4.2] by means of a combinatorial model for the
topological operad whose envelope is the disk category IDistD, .- The result is the follow-
ing:

Proposition 2.5.6. [KM235, Definition 3.17 and Proposition 3.18] In the D-decorated
setting, point defects JF: Diskg* — Pres are classified by pairs (A, M), where A is a
balanced braided tensor category with a D-action 9 4, and M is a D-equivariant balanced
braided module category over A. The latter is a D-graded category M = @ cp Ma
together with

e a D-action Ip(d): M — M, such that the image of the component My under
ﬁM(d) lies in Mdd’d*1

e a D-equivariant A-action @: MX A — A
e natural isomorphisms
£l —B— = (-8-) o (-RIAd)(-)),  ¢'id=Im(d) |

such that for alld e D, M € My and X,Y € A we have:

55\14@)(73/ = (idy®0y , (2 v.x) © (Efy®idx) o (idRox y) (2.32)
Er xoy = (M@0 x .00 y) © (Exry@idsay x) (2.33)
o (idm®oy(g). xv) © (Em,x®idy)
ol =¢34 o (p%,®0x) (2.34)
M®X I (d). M, X O \PMOVX) .

where 0 is the balancing in A. Note that we suppressed coherence isomorphisms.

Remark 2.5.7. Given Relations (2.32) and (2.34), one can check that the remaining
Relation (2.33)) is automatically satisfied and does therefore not appear in the definition
of a D-equivariant braided module category in [KM23].
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Figure 2.12.: Identity embedding of a marked disk with homotopy d: d' — dd’'d~".

The topological origin of the D-action on the D-graded category M is sketched in
Figure 2.12] The A-action comes from embedding a unmarked disk D into a marked
disk D? for any d € D. The family of natural isomorphisms {£%}4ep and {¢?}4ep come
from the loops in the space of D-structured embeddings, dragging the disk D around
the marked point in D? and rotating the marked disk DZ about 2, respectively. See
also [KM23, Figure 12].

Having specified the local categorical data, let now Mang* be the (2,1)-category
whose objects are oriented surfaces >, together with a collection of marked points
T ={x1,...,2,} C ¥ and a continuous map ¢: X\T — BD. Morphisms are embeddings
of surfaces, mapping marked points bijectively onto marked points, which are compat-
ible with the morphisms into BD. Let M be an equivariant balanced braided module
category over A. As in the undecorated case, factorization homology f(z, o) (A, M)
is defined via left Kan extension [AFT17]. Let X° be the surface obtained from ¥ by
removing a small disk Dg, around each marked point z;, where the label d; indicates
that the holonomy of ¢ around the i-th boundary component 0;3° is determined by the
group element d; € D. Applying excision, we may express factorization homology over
the marked surface ¥ via the following relative tensor product:

/E (A’M)g/zo A X (Mdlﬁ---ﬁMdr)
(Z,0,7) (X°,l50) (f(Ann,mh) Ag'“&f(Ann,wdr) A)

We will end this section by giving a representation theoretic example for point defects
in the D-equivariant setting.

Example 2.5.8. We fix D = 7Z5. Let H be a ribbon Hopf algebra with an involution
¢: H — H, ie. a Zy-action preserving the universal R-matrix and the ribbon element.
Let A be a right coideal subalgebra of H, meaning that A C H is a subalgebra for which
A(A) C A® H. This turns A-Mod into a module category over H-Mod. Furthermore,
we assume that A is equipped with a so-called ¢-universal K-matrix. The latter was
introduced in [BK19, Definition 4.10] and [Kol19, Definition 2.7] and recalled in what
follows. We write R? = (id ® ¢)R for the ¢-twisted universal R-matrix R € H ® H.
Then, a ¢-universal K-matriz for A is an invertible element K € A ® H such that

KA(a) = (id @ ¢)A(a)K,  forallac A (2.35)
(A®id)K = R§,K13R23 (2.36)
(id ® A)K = R32K1,5RS 5K1. (2.37)

The ¢-universal K-matrix turns A-Mod into an equivariant balanced braided module
category over H-Mod. Indeed, the natural isomorphism £: — ®— = (—®—) o (id X ¢)
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is defined by acting with the universal K-matrix. This is an A-module map due to
Equation (2.35). We also see that Relation ([2.32) is satisfied due to Equation ([2.35)).
Lastly, Relation (2.33)) follows from Equation (2.37) together with the ¢-invariance of
R. A

The above example is of particular interest in the situation where the pair (H, A)
is a quantum symmetric pair (Uy(g),B,). Intuitively, quantum symmetric pairs are
quantum-analogs of Lie algebra involutions and their fixed-point subalgebras. In more
details, Uy(g) is a quantized universal enveloping algebra of a complex semi-simple Lie
algebra g with an involution #: g — g. Let g’ = {2 € g| 6(x) = 2} be the Lie subalgebra
of fixed points. Then B, = B,(f) is a coideal subalgebra of U,(g) that specializes to
U(g?) as ¢ — 1 It was shown in [Kol19, Theorem 3.11] that there exists a ¢-universal
K—matrixﬂ for the pair (U,(g), By), turning the category of representations of the coideal
subalgebra B, into a Zs-equivariant braided module category over Rep,(G).

Remark 2.5.9. The topological origin of quantum symmetric pairs was first studied
by Weelinck in [Weel8b] by means of categorical algebras over an operad of involutive
little disks, which are classified by so-called Zo-braided pairs. In the situation of Exam-
ple[2:5°8, our notion of a Zs-equivariant braided module category is very closely related
to the notion of a Za-braided pair from [Weel8b, Definition 3.1]: the latter consists of
a braided category A endowed with an anti-monoidal braided involution ®: A — A°P,
t: ®2 = id, together with a A-module category M and a family of natural isomor-
phisms —®@— = —Q®(—), satisfying certain coherence relations. As was already noted
in [Weel8b, Remark 3.6/, given a balanced braided (strict) involution ®: A — A, one
can define an anti-involution by (®,0) and the balancing provides the natural isomor-
phism ®% 22 id. In this way, a Zs-equivariant module category M over A defines a
Z5-braided pair.

2Quantum symmetric pairs usually carry multi-indices since there is a family of coideal subalgebras of
U,(g) quantizing U(g%). Since we are not going into details here, we decided to drop the multi-indices
from the notation.

3The involution ¢ depends on a chosen diagram automorphism 7, which enters the definition of §: g —
g.
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In this chapter we will compute factorization homology on surfaces with point defects
coming from the theory of dynamical quantum groups [EV98b], [Eti02]. Given a marked
surface {v1,...,vp} C X, the local coefficients describing the bulk will be representation
categories of ribbon Hopf algebras, for example (quantum) group representations, and
the point defects {v1,..., v} will be governed by dynamical twists coming from solu-
tions to the quantum dynamical Yang—Baxter equation (DYBE). We will make use of a
categorical framework established by Donin—Mudrov [DMO05] in which notions such as
the quantum dynamical Yang-Baxter equation and dynamical twists may be formulated
in terms of dynamical extensions of monoidal categories. A prominent example is the
universal fusion matrix J(\)y,w € O(H)®End(V@W), V,W € Rep,(G), introduced by
Etingof-Varchenko in [EV99], which satisfies the quantum DYBE over the base algebra
O(H) of rational functions on a maximal torus H C G. The dynamical twist J(\)
is also the unique solution to the linear Arnaudon-Buffenoir-Ragoucy-Roche (ABRR)
equation [ABRRIS]|, which in particular will allow us to consider J(\) as a point defect
in oriented factorization homology.

In [BZBJ18aj, categorical factorization homology with local coefficients in Rep,(G)
was used to construct a functorial quantization of the moduli space of flat G-connections
(see . Here, we will use factorization homology on marked surfaces to study and
quantize dynamical moduli spaces, by which we mean the following. Let {h; C g}i=1. . &
be a family of Lie sub-bialgebras and H; C G subgroups with Lie algebra b;. For each
i=1,...,k, fix a so-called Poisson h;-base space L;, which is a smooth variety endowed
with an action of the double D(h) (see for a precise definition). Let T' = (V| E)
be a ciliated ribbon graph, for which we select a subset of vertices {v1,...,vp} C V and
assign to each v; the data of a classical dynamical r-matrix r(\;): L; — g ® g. We then
define a dynamical representation variety

Repdyn(G¢F) = HLZ X GE ’

which gets a natural action of the dynamical lattice gauge group II,, H; x GV\vi} We will
show that Repyy, (G, T') admits a dynamical Fock—Rosly type Poisson structure, which
moreover descends to the dynamical moduli space, i.e. to the quotient with respect to
the dynamical lattice gauge group action. If the classical dynamical r-matrices r(\;)
admit twist quantizations, we will show that we may glue these local quantizations
via categorical factorization homology to obtain a global quantization of the dynamical
moduli space.

A geometric example is the following: let H C G be a maximal torus and consider
the moduli space of flat G-connections on the marked surface {v1,...,v;} C ¥ together
with a reduction of the structure group from G to H over each small loop v; wrapping
around the marked point v;. Assuming that 3 has at least one boundary component,
we may describe this moduli space by

Muce(E,{vi}) = Apca(S, {vi})/H* |
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3. Dynamical character varieties

where Apcg(3, {v;}) = H*F x G*29+7+k=2 i5 the space of flat connections together
with a trivialization over each marked point v;. This is an example of a dynamical
representation variety endowed with an action of the reduced lattice gauge group H*.

Another example of a dynamical moduli space has previously appeared in Chern—
Simons theory coupled to point-like sources as studied by Buffenoir-Roche in [BRO5]|.
In loc. cit., a Hamiltonian analysis is carried out for Chern—Simons theory on the product
manifold ¥ x [0,1], where ¥ has k punctures v1,...,v; corresponding to the location
of the sources. The coupling term for the sources is described by assigning a regular
semi-simple element y; € h™8 to each puncture, where h C g is a Cartan subalgebra. It
is found that the algebra of boundary-boundary holonomies along the curves

has a Poisson structure explicitly described in terms of classical dynamical r-matrices
r(X1),--.,7(Xx) defined on open subsets of the commutative base b, generalizing the
Fock—Rosly Poisson structure to the dynamical settinéﬂ The algebra of dynamical
boundary-boundary holonomies may also be understood as the algebra of functions on
the dynamical representation variety

Repyyn(G.T) = [[Ui x G**V, U; ch, i €U

%

for the graph T' = ({v1,..., vk}, E) depicted above, which carries an action of the group
H**. In [BRO5|, these Poisson algebras were quantized along the lines of the combina-
torial quantization formalism via quantum dynamical R-matrices. We will show how to
recover some of the quantization results from [BRO5| using factorization homology on
marked surfaces.

Outline Throughout, let K denote a field of characteristic zero, usually K = C. By G
we mean a semi-simple algebraic group over C.

In we recollect background material on the classical dynamical Yang—Baxter
equation formulated over Poisson base spaces. We then introduce the notion of a dynam-
ical representation variety and show that it admits a Fock—Rosly type Poisson structure
defined in terms of a decorated ribbon graph and classical dynamical r-matrices over
Poisson base spaces.

Having established the (semi-)classical setup, we review inthe categorical setting
in which the quantum dynamical Yang—Baxter equation can be formulated, following
the work of Donin-Mudrov [DMO05] and the more recent work of Kalmykov—Safronov
[KS20]. We then introduce the notion of quasi-reflection datum, encompassing the data
of a dynamical twist over a general base algebra, whose representation categories give
rise to point defects in categorical factorization homology. A prominent example of a
quasi-reflection datum arises from the linear ABRR~equation [ABRROS] satisfied by the
universal fusion matrix [EV99]. The construction of the universal fusion matrix was

"When studying Chern-Simons theory on the punctured sphere S},l
straint will have to be taken into account [BR05, Section 3.2].

vy > an additional flatness con-

,,,,,
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originally done by Etingof-Varchenko in representation theoretic terms and more re-
cently by Kalmykov—Safronov [KS20] employing a more categorical language. In
we will study the topological aspects of the construction due to Kalmykov—Safronov by
computing factorization homology on annuli with circular line defects prescribed by the
(Rep,(G), Rep,(H))-central algebra Rep,(B), that is, the representation category of a
quantum borel subalgebra U, (b) C Uy(g).

In we compute factorization homology on surfaces with marked points categor-
ically described by dynamical point defects. By this we mean point defects coming from
the theory of dynamical quantum groups. More precisely, for each marked point, the
local categorical data is given by a pair (A,Cr), where A is a balanced braided tensor
category and C, is the dynamical extension of a monoidal category C over a commu-
tative algebra £ € Z(C) in the Drinfeld center, called the base algebra. The A-module
structure on the dynamical extension comes from a dynamical twist J(A), i.e. from a
monoidal functor

FoAb ™ e 7(\xy € L&Hom(F(X) @ F(Y), F(X ®Y))

Given a oriented, connected surface ¥ = X, ., r > 0, with a collection of marked points
{v1,...,u} C X, we may combinatorially describe ¥ by means of a ciliated ribbon
graph I' = (V| E) with a collection of decorated vertices {vi,...,vx} C V describing
the marked points. Picking such a combinatorial model allows one to define an algebra
internal to the dynamical extension (Ci X - - X Cy)zx..&2,:

E .
al;lv'"v/\k = (F>\1 XX F)\k) (®'|L:|1]:(Z)) )

where the components F(*) of the tensor algebra are either given by the coend algebra
fXGACp XVXRX € AXA or the reflection equation algebra fXEAcp XV®X € A. We then
show in Theorem [3.3.3] that for suitable coefficients, factorization homology on marked
surfaces with dynamical point defects is characterized by the category of modules over
the algebra QEL--.,M:

/ (A€ iro ) = b, Mode,msmc,
(E{v1,..0k})

The equivalence is established using monadic reconstruction techniques. The algebras
al/:l’__w A provide examples of so-called dynamical associative algebras, which are quan-
tizations of Poisson dynamical algebras [DMO05]. We will also show that for certain
coefficients A, the algebras aElM A, are module algebras over quantum groupoids intro-
duced in [DMOG].

In [§ 3.4 we first show that the algebras al)?hm’ A obtained from Theorem m give
an equivariant deformation quantization of the algebra of functions on the dynamical
representation variety in the direction of the dynamical Fock—Rosly Poisson structure.
We then describe the category of quasi-coherent sheaves on the dynamical moduli stack

QCoh ([Hm X GE/HinD .V, C H,

via the factorization homologies on a covering. This allows us to construct a dynamical
quantum moduli stack via factorization homology with dynamical point defects. As
an application, we then relate our results to the classical and quantum Chern—Simons
theory with point-like sources as studied by Buffenoir-Roche [BRO5].
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3.1. Dynamical Poisson spaces

The quantum dynamical Yang-Baxter equation (DYBE) plays an important role in
various areas of mathematics and physics. It first appeared in the context of integrable
models of conformal field theory in the work of Gervais—Neveu [GN84] and was later
rediscovered by Felder [Fel95]. Similarly to how solutions to the quantum Yang—Baxter
equation are related to the theory of Hopf algebras and quantum groups, Etingof-
Varchenko [EVI8bl [EV99] and Xu [Xu0I] showed that one can interpret solutions to
the quantum DYBE in terms of Hopf algebroids and quantum groupoids. A categorical
interpretation of the Hopf algebroids arising in this way was given in [DMO6]. For an
extensive review of the literature and background on the quantum DYBE we refer to
[ES02D)].

On the classical level, the dynamical Yang—Baxter equation was first introduced by
[Fel95]. Solutions to the classical DYBE are so-called classical dynamical r-matrices,
recalled in what follows. Let [ C g be a pair of finite-dimensional Lie algebras and let
QF (g%) be the subspace of differential forms Q°*(g*) that are constant on the fibers of the
natural projection map g* — [*, i.e. we have that Q. (g*) = O(I*) ® A®g. The Schouten
bracket [—, —], together with the de Rham differential dg4p, turn Q. (g*) into a dg Lie
algebra. Then, a triangular dynamical r-matriz over [ is a Maurer—Cartan element w(\)
in (Q%(g*), [, —],dar). Note that upon fixing a basis (h;);es for [, with dual basis
(ADier, the Maurer—Cartan equation dggw(A) + 3[w(A), w(A)] = 0 reads

Zahi A a(;(:;) — [wN)12, w(N)13] + [w(N)12, w(A)2s] + [w(A)13,w(A)23] = 0

CYB(w()))

which coincides with the form of the classical DYBE as usually presented in literature.
Similarly, r(A) = w(A) +t € (O(I") @ g ® g)[, such that t € Sym?(g) is constant and
g-invariant, is called classical dynamical r-matriz if it satisfies dggr(A) —CYB(r(\)) = 0.
The classical DYBE for a pair of Lie algebras [ C g was extensively studied by Etingof,
Schiffmann and Varchenko [ES01, [EV98a, [Sch9g].

One may further generalize to consider dynamical r-matrices over Poisson—Lie groups
[FM02, [EEM04]. Let L C G be a pair of Poisson-Lie groups with Lie bialgebras [
and g respectively. Similarly to the Lie algebra case, let Q. (G*) be the space of forms
constant on the fibers of the natural projection G* — L*. Note that using a trivialization
T*G* = g x G*, we have Q7.(G*) = O(H*) ® A®g. The co-bracket § extends to a
differential §: O(L*) ® A®g — O(L*) ® A*Tlg, turning (Q3.(G*)', [, —],dar + §) into
a dg Lie algebra. The notion of a (triangular) classical dynamical r-matrix over L* can
now be formulated in complete analogy to the Lie algebra case.

In this thesis, we will work with a version of the classical (quantum) dynamical Yang—
Baxter equation formulated over Poisson base spaces (base algebras) as developed in
[DMO05], such that examples include both the case of base spaces given by Lie subalgebra
[ C g, as well as the case of Poisson—Lie dynamical r-matrices. To that end, we will
begin this section by recalling the main definitions of [DM05]. We will then use classical
dynamical r-matrices over Poisson base spaces to introduce dynamical generalizations
of Fock—Rosly type Poisson structures. The quantum picture will be addressed in the
next section.
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3.1.1. Dynamical r-matrices over Poisson base spaces

Throughout we fix a finite-dimensional complex semi-simple Lie algebra g with Lie
bialgebra structure 6. We also fix a Lie sub-bialgebra h C g. Let ©(h) = h @ bop be
the classical double of b, where hg, has opposite Lie bracket. One can extend the Lie
algebra structures on § and h* to the double, such that the natural bilinear form on
D(h) is ad-invariant:

[his hg) = fEhe,  hey ) = —cl* b — fhn®, ') = =l (3.1)

where (h;)icr is a basis for b, (n%);es its dual basis. The double has a canonical quasi-
triangular r-matrix

rowm) = (0,7') © (hi,0) € D(h)**

where the summation over repeated indices is understood. The following definition is
from [DMO5), Definition 3.14]:

Definition 3.1.1. Given a smooth algebraic variety L, we call Lo = O(L) a Poisson
h-base algebra if it is equipped with a left D(h)-action generated by the vector fields

D(h) = X(L), X X

such that the canonical invariant symmetric tensor 7o) + (ro () )21 vanishes on Lo. We
refer to L as Poisson h-base space.

The reason for the terminology is the following: L is a Poisson variety with Poisson
bivector o1

=50 Ahi=3 (T@(b) - (T@(b))m)

Moreover, I, is D (h)-invariant. As we will see later in h-base algebras have

natural quantum analogs: if U,(h) is a quantized universal enveloping algebra for U(b),

a quantization of the h-base algebra Ly will be a commutative algebra in the Drinfeld

center of Uy (h)-Mod.

(3.2)

Example 3.1.2. Assume that b is a quasi-triangular Lie bialgebra with cobracket given
by a classical r-matrix r = w +t € h ® b, where ¢ is an invariant symmetric 2-tensor.
The r-matrix defines a linear map

r:h* = b, r(n) =rin(h)h;

Furthermore, the maps r, = w +¢ and r_ = w — t are Lie-algebra morphisms h* — b.
Let H C G be a subgroup with Lie algebra hh. Then, H has a left h-action induced by
conjugation N

h— X(H), h— h =hf—hnl .

It also has a left h,-action:
hop = X(H), n— ] =ra(m)t = (" .

One can check that the induced action of the canonical symmetric tensor 5 vanishes
due to ad-invariance of ¢t and that O(H) is a Poisson h-base space whose Poisson bivector
(3.2) agrees with the STS-Poisson structure [STS94].
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3. Dynamical character varieties

The following special case will be of particular interest to us: let h C g be a Cartan
subalgebra with invariant symmetric tensor t € Sym?(h)Y coming from the Killing form
and giving an identification h* = h. In this case the left h-action is trivial and

) —
bop = X(H), ' =0 =287 .
In this case the h-base space H has trivial Poisson bracket. A
Let Alt € End(g®3) denote the linear map
T1I R RT3 > T1RTaR®T3 — X9 RT1 Q3+ T2 Q3R X1
for all x1,x9,x3 € g.
Definition 3.1.3 (Donin-Mudrov). Let L be a Poisson h-base space. A regular function
r(A):L—-g®g
18 called classical dynamical r-matrix over L if
e () is quasi h-invariant:
h@1+1@h,r(N]+ h.r(\) = 8(h)
forallh € b
o the symmetric part t = (r(A\)1,2 +r(N)2,1) is g-invariant and constant

o () satisfies the classical dynamz’cal Yang—Baxter equation

Alt(h; ®n r(A) =CYB(r(A)) (3.3)

(
where CYB(T()\)) == [T()\)12, ()\)13] +[ ( )12, ()\)25] [ ( )13, ()\)23] is the clas-
sical Yang—Baater operator, (h;)icr s a basis for b, (n');cr is its dual basis and we
used implicit summation notation.

We will often use the notation 7(A\) = "’ @ 1! ® 72 € O(L) ® g ® g for dynamical
r-matrices and denote by ¢ its symmetric part and by w()\) its antisymmetric part.

3.1.2. Poisson structures from dynamical r-matrices

Let Y be aleft G-space, p: GXY — Y, and let L be a Poisson h-base space. The action
p extends to a map

pe: O(L)@g®g— O(L) @ X(Y) ® X(Y)
a®x1®x2r—>a®x’f®x§ .

The following proposition shows how Lie algebra actions together with the data of a
dynamical r-matrix give rise to Poisson structures on L x Y. This can be understood
as an extension of Proposition |1.1.14] to the dynamical setting.

Proposition 3.1.4. Let r(\) = w(X) + ¢ be a dynamical r-matriz over the Poisson
h-base space (L,11). If pi«(t) = 0 then

—
Hr()\) = p*T(A) + (77270) N (07 hf) + 11

is a Poisson bivector on L x Y. Moreover, if the h-action on O(L) comes from a left
H-action on L, the pair (L X Y,I1,(\)) is a Poisson H-space for the diagonal H-action.
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3. Dynamical character varieties

Proof. Multi-vector fields on L x Y are bigraded: elements in X(L) are of degree (1,0)

—
and elements in X(Y) of degree (0,1). Denote © = (n*,0) A (0,hf). The Schouten
bracket then reads

[T, 5y, ]
= [, L] + [psr(A), pr(N)] + [©, O] + 2[psr(N), O] + 2[ILL, pur(N)] + 2[11L, O]

Clearly, the first term vanishes since Ilj, is a Poisson bivector on L. We have

5.7V, (V] + 200, pr (V9 = 2p,CYB(w(N)) — 2. Alt(hi @ 7' -r(3)
= —2p,CYB(t) =0

where in the last line we used the classical DYBE (3.3|) and Proposition [1.1.14] where
we showed that if p,(t) = 0, then also p,CYB(t) = 0. Next, we compute

- e i
10,61 4 2[1, 0] = 7 Antk A [has hil? + [ M A B A BE — (Ml A A D
~0 (3.4)

which is zero by Definition (3.1)) of the Lie bracket on the double ®(h). Lastly, we have
[0,0]1%? + 2L, pur(A)] +2[O, pur(N)] ) (3.5)
ik 1 AN 1 2 0,3 1 2
= [ VAR ARy = Stawe (0" A hi) A (@D)? A (@) WP A" A Ty w ] A (W7)

0 _z> I\p o 21p
+w’ AR A (w)P A [hi,w?]

_)

= ~ 1 2 ~ 1 2
= —n' Ac"™hE, ARL + 0" A by (wh)? A (W) + 0t AW ([hi,w! ] A (w?)? (3.6)

+ (wh)? A [hi, w?]?)

In the above, the ¢/ denote the structure constants for the co-bracket of the Lie

- = — —
bialgebra b and we identified the interior product ¢g,0(n* A h;) with —2(h;.w%)n® using
that O(L) is an h-base algebra. We thus see that the term vanishes due to quasi
h-invariance of the dynamical r-matrix.

Denote o the diagonal H-action on L x Y. The induced action vector field is h? =

_>
(h,0)+ (0,h?). For any basis element hj € b we have

162 (V)] = pu (R (A) + [ @ 1+ 1 ® By, (A)])
= ps0(hy)

again by quasi h-invariance of r(A\). The Lie algebra structure (3.1) on the Drinfeld
double is such that

s '] A B+ A [y hil = €2 hi N Dy

Using the above, one can show that

— i =
[he, 1] = 0(hg), [, 0] = ¢ (hi,0) A (0, hjp») .
By Proposition [1.1.10| this shows that the H-action is indeed Poisson. O
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3. Dynamical character varieties

As a first application we will give a dynamical generalization of the Poisson structure
on G from Example[l.1.11] To that end, we consider the group G as a left G x G-space
via p: (G x G) x G = G, p(g1,92.h) = grhgs .

Proposition 3.1.5. Let h1,ho C g be two Lie sub-bialgebras and let L1, Ly be Poisson
bh1-, respectively ha-base spaces. Given two dynamical r-matrices r(N\;): Li — g® g
such that their symmetric parts agree, the following defines a Poisson structure on X =
Ly x G x L2 N

o For o € O(Lg) and ¢ € O(Ly,):
{v, ¥} = dem{e, V)L, (3.7)

o For p € O(Ly), ¥ € O(Ly) and f € O(G):

— —
{o. f} = " @) (W) e f) (¥, f} = =@) D) (hi(2)" > f) (3-8)

where for k = 1,2, (h(k)i)ier is a basis for by, and (n(k)")ier its dual basis.
e For f,g € O(G):

{f.9} =)’ ® (wA)H > f) (wM)H)Frg) @1 (3.9)
+1® (W) e f) (w2)?) > g) @ w(Xs)"
= (W) +w) ) e (f @ g)

Proof. The following is a dynamical r-matrix for (g®2, by @ bha, L1 x Lo):
) = (r(M)’ @ 1)@ (r(A)',0) @ (r(M)?,0) = (1@ 7r(A2)?) @ (0,7(A2)?) @ (0,7(A2)) -

The symmetric part of 7(\) is ¢ = (,0) — (0,¢) and p.(t) = 0 due to g-invariance of ¢.
So, by Proposition @ IT5(5) is a Poisson bivector, namely the one given in Equations

B-D-B9. O

We will write (X, HdL;I’lLQ) for the dynamical Poisson space defined by ({3.7)—(3.9). For
linear Poisson h-base spaces given by the dual h*, there are closely related examples
that are very well-known. Namely, the dynamical Poisson—Lie groupoids introduced by
Etingof-Varchenko [EV98a], which we will discuss next:

Example 3.1.6. Similarly to how Poisson—Lie groups are related to the classical YBE,
The classical DYBE admits a geometric interpretation in terms of Poisson—Lie groupoids
[Wei88]. In more details, let h C g be a Cartan subalgebra, H C G a subgroup with Lie
algebra h and U C h* an open subset. Etingof—Varchenko constructed a Poisson—Lie
groupoid structure on X = U x G x U whose source and target maps are defined by the
two natural projections w1, me: U X G x U — U and the multiplication comes from the
multiplication in G: m((u1,g,u), (u,g',uz)) = (u1,9g’,uz). The group H x H acts on
the groupoid via

(Hx H)x X = X, ((h1,hs), (u1,g,u2)) — (u1, hig(ha) ™", ug) .

Given a function 7(\): U — g ® g with ad-invariant and constant symmetric part ¢ €
Sym?(g)?, r(\) satisfies the classical DYBE if and only if the following defines a Poisson—
Lie groupoid structure on X:

{f.9} = (wO)"" —wX)* )b (f@ g)
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3. Dynamical character varieties

Yy =nFor (B fy =l

for f,g € O(G) and hgl) = h; € O(Upy), h§2) = h; € O(U(y)), where Uy denotes the
first copy of U in X and U(y) the second copy and (h;)ies is a basis of h. Note that
one may replace the Cartan subalgebra h by any Lie subalgebra in g by adding the
corresponding linear Poisson brackets between the functions on h*. A

3.1.3. Fusion

Let (M,p) be a G*"-space and let hy,...,h; C g be Lie sub-bialgebras with corre-
sponding Poisson base spaces Li,...,L; for some [ < n. We will assume that the
h;-action on O(L;) comes from a left H;-action on L;. We also fix dynamical r-matrices
r(Xi): Li — g ® g together with a sign function e: {1,...,n} — {—1,1}. We define a
direct product dynamical r-matrix for g®" over Li! x --- x LlX “, where Y, ¢; = n, as
follows:

M) =3 (P @A) ) @ @A) ) — @) () @) © (B)ay) - (3.10)

i=1 a=1

The notation z(,) denotes the image of z € g under the embedding g — g%" as a-
th summand and for lighter notation we introduced the notation a; for the integer
at e

We assume that the symmetric part of the direct product dynamical r-matrix in
vanishes under the pushforward map ps, so that p*r(")()\) defines a bivector field on M,
and by Proposition the following is a Poisson bivector on HézlLfi x M:

Moy = Hper +Oper + -+ e + O + per™M(N) (3.11)

As an example, note that the Poisson spaces (L1 x Ly x G, H%ZHLQ) from Proposition
is of this type.

Given a Poisson structure as in (3.11]), will now define an operation called the dynam-
ical fusion

(LS > o X Lf X MMy y)  ~ (Lo x oo x Ly x MGTI™)

which yields a new dynamical Poisson space which is such that the respective diagonal
H;-actions are Poisson. Dynamical fusion gives a generalization of the fusion product
for Poisson spaces defined by classical r-matrices from [LMI17] to Poisson spaces defined
via dynamical classical r-matrices.

Similarly to the non-dynamical case, we will need to modify the direct product dy-
namical r-matrix (") ()\) giving rise to the Poisson structure in in order to define
a dynamical Poisson structure compatible with the diagonal H;-actions. This is done as
follows:

Proposition 3.1.7. The bivector field
I =T, + 0% 4 + g, + 0" + pr™(A) + pMix™(r(A)

where
l

Mix"(r () =S (3 000 e A Oy

i=1  1<a<b<c;
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3. Dynamical character varieties

and G(LC;) =y 773 A (hj(a)))?, where (hj) and (17) are dual bases for b; and by,
respectively, deﬁnes a Poisson structure on Ly x -+ X Ly X M which is such that for each
i=1,...,1 the diagonal H;-action is Poisson.

Proof. We will consider the following bigrading for polyvector fields: elements in X(L{* x

- x Lj") are of degree (1,0) and elements in X(M) of degree (0,1). Clearly, the de-
gree (3,0)-part of the Schouten bracket [IT', IT'"] vanishes since the II;, are Poisson
bivectors on the base spaces. The degree (2, 1)-part has contributions from the brackets

S S R A ()] + 7 A By o) A (o]

=1 a=1

The vanishing of the above is as detailed in Equation (3.4)) of the proof to Proposition
The degree (1, 2)-part has the following contributions: for each 1 <1 <]

S —
S A (hya)’s 07 A (B o)’ +2[W A (B ga)” + T, pe (W)Y ) A (@A) )]
a,b=1

+Z > 2[[77]/\ )’ 0L, pe (PO D) ) A (X)) ()]

a=11<r<s<c;

One then uses quasi h;-invariance as in (3.5)) to show that the second term cancels the
(a = b)-part of the first term and the third term cancels the (a # b)-part. Lastly, the
degree (0, 3)-terms come from the brackets

Lo ™ (), pur ™ ()] + [ Mix (r(0)), pMix" (r(A)D] + 2L ™ (), 0, Mix" ((V)]

+ Z 2[0%%, pur™(A) + pMix™(r(A))]

=1

The above vanishes due to the classical DYBE.

For lighter notation, we assume that II™S is the Poisson structure on L x M obtained
via dynamical fusion from L™ x M. The more general case from the statement in the
Proposition can be worked out in complete analogy. Denote by o the diagonal H-action

_>
on Lx M. The induced action vector field is b7 = (h,0)+ (0, (h1))?) +- - -+ (0, (hn))?)-
For any basis element hj € h we find

[7%, pMix® (r(A)]
= > (fﬁ)-ro)(r(la))”(7’(21,>)”+7’0([hk,7’1](a))”(be))p+T0(7’<1a))p([hk,r2](b))p

1<a<b<n

Z h’ (a 70) A (07 0, (hj,(b))p) )

a<b

where in the last line we used quasi h-invariance of 7(\). The other Schouten brackets
can be figured out along the same lines as in the proof of Proposition and we find
that

[h7, ] = 026 (hi)

showing that the diagonal H-action is indeed Poisson. O
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3. Dynamical character varieties

Remark 3.1.8. Let M be a G™-space. In the special case that L = % and b = 0, the
notion of a dynamical r-matriz coincides with that of an ordinary classical r-matriz.
When in this situation, the Poisson space from takes the form (M,I1 = p*r(”)),
where 7 € g" ® g" is the direct product r-matriz described in [Moul7, Section 2].
The fusion procedure described above then turns M into the Poisson G-space (M, Ifes =
IT — pMix™ (7)), which coincides with the one in [Moul7).

We will now give an instructive example of fusion for dynamical Poisson spaces that
will be generalized in the upcoming section.

Example 3.1.9. Let X = L1 x Ly x G and X’ = L) x L, x G be two dynamical Poisson

spaces as given in Proposition |3.1.5| with Poisson bivectors HdL;I’lLQ and HdL;I’lLQ. We shall
represent the dynamical Poisson spaces X and X’ by the following two graphs:

) I
T R

where the set of vertices (va)aeqi,2) and (vg)qeq1,23 represent the Poisson hs-spaces
(La)aef1,2y and the Poisson hy-spaces (L )qe(1,2} respectively. Given the two graphs
X and X’ we may obtain new graphs by identifying two of the vertices v, and v; as
illustrated in Figure where the vertex vy is now a stand-in for the common base
space Ly = L, = Lj. On the level of algebraic varieties, fusion of the graphs X and X’
corresponds to taking the pullback

Xobsx —— X

L

X —— Ly
s
b

where for a € {1,2}, m,: X = L1 X Ly x G — L, are the natural projection maps.
Given a graph I'y; as in Figure we define the following bivector on the space
X ®fu§ X/,
a, :

Iy =>" (Mg, + >

vV fEE,
s(8)VE(6)=vi

+ r()\vo)ijxi(a) Az;(B)

=|

) Ay(k)i(d) + %w()\vk)ijxi(é) A x;(0)) (3.12)

where
h(k)E(9), J is incoming at vy
—h(k)E(5), & is outgoing at vy,
and
elt(9), J is incoming at vy
—el (), & is outgoing at vy
for 6 € {a, B}, where the notation x(J) means that z € X(G) is embedded into the
d-component of X(G x G). According to Proposition this defines a dynamical

Poisson structure on the fusion product X @2“2 X', which is such that the diagonal
Hy-action is Poisson.
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3. Dynamical character varieties

Vo vy vp m () vy
M }\//; M Mﬁ
Vo Vo Vo Vo
Figure 3.1.: Graphs Ty representing the fusion of v, with vy in the dynamical Poisson
spaces X = L1 x Ly x G and X' = L} x L, x G.

3.1.4. Dynamical Fock—Rosly Poisson structure

Let I' = (E,V) be a ciliated ribbon graph. We select a subset {vi,...,vx} C V of
vertices for which we fix Lie sub-bialgebras h; C g, ¢ = 1,...,k, and corresponding
Poisson h;-base spaces L;. Let H; be a group with Lie algebra h;. Throughout we will
assume that the h;-action on O(L;) comes from a left action of H; on L;.

Given such a decorated ciliated ribbon graph I' = (V, E,{L;, b;}i=1,. 1) we define a
smooth algebraic variety called the dynamical representation variety by

Repgy, (I', G) HL x GF

Let V! =V \ {v1,...,vx}. There is a natural action of the group II,, H; x G"' on the
dynamical representation variety:

e (HH x GY) x ([T 2% 67) — [ i x G* (3.13)

((av)vGV = ((hvi)lm (gflfi)mEV’)7 (li)viv (g'y)weE) = ((hm > li)vm (at(v)gas_(}y))veE)

where s(7y) is the starting and ¢(y) the target vertex of v and > is the left H;-action on
the h;-base spaces. Note that in the special case that V/ = V| we recover the action of
the lattice gauge group GV on the ordinary representation variety Rep(I', G) = GF.

Theorem 3.1.10. Given a decorated ciliated ribbon graph (U, {b;, L;}i=1.. k), for each
m=1,...,k fix a dynamical r-matrizr(A\p,): Ly, — g®g and for each undecorated vertex
xn € V! an ordinary classical r-matriz r, € g®g. We assume that all dynamical as well
as ordinary classical T-matrices have common invariant symmetric part t € Symg(g)g.
Then, the following defines a Poisson bracket on the dynamical representation variety:

e Forp € O(Ly,) and ¢ € O(Ly,):

{SO, 1/1} - 6m,n{§07w}Lm . (314)
e For ¢ € O(Ly,) and f € O(GF):
pfh= X @) hmE@)> )+ Y ) ) (hm)(e) s 1)
s(a)=vm t(a)=vm (315)
where form = 1,...,k, (h(m);)icr is a basis for by, and (n(m)%);cs its dual basis,

and for any x € g the action of z®(a) and z*(a) on elements in O(GF) is as

defined in (1.4).
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e For f,g € O(GE):

{/f,9} =pr(A)(df A dg) (3.16)

Ten() = 30 (3 rifaio) nay(8) + 5 3 rifri(o) Aaja)

€V’ a<f
Y (O ae) Awi(8) + 5 3 rOm) i) A ()
vm€{v1,..., vt a<p a

where a, B run over the set of half-edges E based at the given vertex v € V and

_ef(), « s incoming at v
zi(a) =

—eF(a), « is outgoing at v

Moreover, the 11, H; x GV’ -action on the dynamical representation variety Repgy, (I', G)
is Poisson.

Proof. We may consider the vertices z,, € V' as decorated by the trivial Lie sub-bialgebra
b, = 0 and base space L,, = *. Note that in this case the notion of a dynamical classical
r-matrix reduces to the one of an ordinary classical r-matrix. This observation allows
us to phrase everything in terms of dynamical Poisson structures.

Recall that the combinatorial data of the ciliated ribbon graph I' allows to define a

GE—action on GE:
P GE X GP 5GP
((ha) ge i (99)vem) = (ht('y)g’yhs_(}y))"/EE :

We also use I' to define a dynamical r-matrix for the direct product Lie bialgebra gE.
To that end, let E,, be the ordered set of half-edges bases at v; € V and define

) = 3 (32 @000 ) © @00 a) = @)t © (e

Vi GV OéGEvi

where z(,,) denotes the embedding of z € g into gE at position o; = a + Z;;ll c; for

cj = |Evj] and the sign function is:

1, «is outgoing at v;

e(a) = L
—1, «isincoming at v; .

We have that pl (r§2()\) + rfl()\)) = 0 due to ad-invariance of ¢, and so by Proposition
the following is a Poisson space
(Li1 X e XL?Z XGE,HTE HTE ZHL? +@Lil "'+HLZCL +@chl +p£7’E()\) .

(A)) ’ )

We may now apply dynamical fusion to the above Poisson space, where one more time
we use the linear ordering on E to define

s = 10, 4+ 0 + - 4 pL (P () + MixBr(\)
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with R
M) = 30 (3 rA0 000 Y A (D))

Vi€V a<Beb,,

One can check that the bivector obtained from dynamical fusion agrees with the dynam-
ical Fock—Rosly bivector in f, which then by Proposition is Poisson.
Moreover, it follows from the same proposition, together with the corresponding re-
sult from [FR99] for the undecorated vertices V', that the diagonal II,, H; x GV -action
spelled out in is Poisson. ]

Remark 3.1.11. It was brought to the author’s attention that the type of dynamical
Fock-Rosly spaces described in Theorem |3.1.1(] have previously appeared in [Spi20, Sec-
tion 5.2] for Poisson base spaces given by open non-empty subsets U C b*, for h C g.

Remark 3.1.12. For dynamical r-matrices over commutative base b, the dynamical
generalization of the Fock—Rosly Poisson structure has for instance appeared in the work
of Buffenoir-Roche [BR0OS] on Chern—Simons theory with sources, as we will recall in
§ 3.4.5. The commutative case is also discussed in [Meu21l].

Dynamical character variety/stack For a lighter exposition we will now restrict
to graphs I' = (E, V) where all vertices {vi,...,vx} = V are decorated by a Lie sub-
bialgebras h; C g, i =1,...,k, and corresponding Poisson h;-base spaces L;.

We have seen inthat the Fock—Rosly Poisson structure on the (ordinary) repre-
sentation variety is compatible with the lattice gauge group action and thus descends to
the character variety, i.e. to the algebra of GV -invariant functions on Rep(I',G) = G*.
In the previous section, we have reduced the lattice gauge group to the subgroup
IIH; ¢ GV and defined a compatible Poisson structure on the dynamical represen-
tation variety. In this section we will define the corresponding dynamical character
varieties and dynamical character stacks.

Since the Poisson h;-base spaces L; are not necessarily affine, the algebra of II; H;-
invariants on the dynamical character variety might not capture accurately the geometry
of the quotient space Repyy, (%, G)/ II;H;. We will thus take the following assumptions:
each L; admits a covering by affines (U})qecs, such that each U. is H;-invariant. We
obtain an affine cover (HiUéi)ah_“?ak for the product II;L; and thus for dynamical repre-
sentation variety. The cover is II; H;-invariant for the action (3.13)). For each invariant
affine open we may form the affine quotient and then glue the resulting affines to form
the quotient

Chardyn(F, G) = Repdyn(F, G)/HlHZ y

which we will call the dynamical character variety.

Example 3.1.13. Let H C G be a maximal torus, and U C H an open subset considered
as a Poisson h-base space as in Example [3.1.3. Then, the conjugation action by H on
U is trivial, and any cover of U by affines will be invariant.

Second, we define the dynamical character stack to be the stacky quotient of the
dynamical representation variety by the reduced lattice gauge group:

Chardyn(ra G) = [Repdyn(r7 G)/Hle]

Note that in this case we do not need to impose any assumptions on the Poisson base
spaces.
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3. Dynamical character varieties

Lastly, we will discuss under which circumstances the dynamical Fock—Rosly structure
induces a Poisson structure on the IT; H;-invariant functions on GE. To that end, we
will need the following:

Proposition 3.1.14. [Donin—Mudrov] Let (M, p) be a left G-space and L x M a dy-
namical Poisson space with Poisson bracket

—
=1+ n AR +7(N\) , (3.17)

for m(\) € O(L) @ A2TM, which is such that the diagonal H-action is Poisson. Let
Ao € L be a stable point for the H-action. Then w(\g) induces a Poisson bracket on the
subalgebra of H-invariants in O(M).

Proof. Compatibility with the H-action implies:

7w (f,9) + B> (1N (f,9) = 7N (B > f.9) = 7N (£, 17 > g) = p.S(R) (. 9)
for h € h and f,g € O(M). Thus, we see that at an h-stable point Ag, the bracket =

descends to the algebra of invariant functions, i.e. h? > (7(Xo)(f,g)) = 0. Moreover, the
Schouten bracket of 7(\) is given by

-
[r(A), 7(M)] = Alt(h] @ 5’ (N))
and thus vanishes on elements of O(M)%. O

Remark 3.1.15. The function ©(\): L — A2TM, such that L x M equipped with the
bivector (3.17) is a Poisson H-space, is called a Poisson dynamical bracket.

Example 3.1.16. Let H C G be a mazimal torus and consider O(H) as an h-base
algebra with trivial Poisson bracket, as detailed in Ezample [3.1.3. FEvery point in H
is stable under the adjoint action and thus w(\) induces a bracket on the algebra of
H -invariants in O(M).
Let’s return to the combinatorial Poisson structures of the previous section. Given a
decorated ribbon graph I' = (V, E, {L;, h;}) and consider the coset space:
GF/ (U, H;)

We can now apply Proposition |3.1.14] to the dynamical Poisson structure on the repre-
sentation variety from Theorem [3.1.10

Corollary 3.1.17. Given a decorated ribbon graph model I' = (V, E,{L;,b;}), assume
that Ao € II;L; is a stable point for the II;H;-action. Then, the dynamical Fock—Rosly
Poisson bivector I pr(Xo) from ([3.9) descends to the coset space GF /(IL,, H;).

Example 3.1.18. Consider a graph I': #; = x5 as in Example We decorate the
vertex x1 with the Poisson h-base space L and fix a dynamical r-matrix r(A): L — g®g
together with an ordinary classical r-matrix r for the non-decorated vertex xo. The
dynamical representation variety Repgy, (I, G) = L x G has left H x G-action:

PP (HxG)x (LxG)—LxG, ((ha),(l,g)) (h>l,agh™)

By Theorem [3.1.10, the Poisson brackets on the dynamical representation variety are:

— .

{o.fy == o)W > ), {fig} =@+ (fog)
for ¢ € O(L) and f,g € O(G). Suppose that \g € L is an h-stable point. Then, the
bivector field w(Ag)™* 4w is a Poisson structure on the coset space G//H. Moreover,
the remaining G-action by right-invariant vector fields is Poisson. Thus, the Poisson
space (G/H,Ilpr(\o)) is an example of a Poisson homogeneous space. A
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3. Dynamical character varieties

3.2. Point defects and dynamical quantum groups

In this section we will specify the local categorical data coming from the theory of
dynamical quantum groups that will be used to compute factorization homology on
marked surfaces. To that end, we are going to present the categorical framework in which
notions such as dynamical twists and the quantum DYBE can be naturally formulated.

3.2.1. Base algebras

In the (semi-)classical setting we formulated the classical DYBE over Poisson h-base
algebras which were defined as module algebras over the Drinfeld double ©(h). A
quantization of the Lie bialgebra b is a quantization of its universal enveloping algebra
to the Hopf algbera U, (h). Accordingly, the quantum version of a Poisson h-base algebra
should be an algebra in the Drinfeld center of the category of modules over Uy (h). These
observations motivate the following definition taken from [DMO5]:

Definition 3.2.1. Let C be a monoidal category. A base algebra L in C is a commutative
algebra in the Drinfeld center Z(C), that is an algebra object (L,mp) € C together
with a family of natural isomorphisms (yx: L® X — X ® L)xec such that yxgy =
(id ® vy) o (yx ®id) and the following diagrams are commutative

Lo Lo X XSy o rer LRL — s rLoL

m£®idl lid@mg T’A %L (3.18)
L

L X X LX

We now give some explicit examples for base algebras. Their role as quantizations of
Poisson base algebras will be discussed in more details later on in

Example 3.2.2. Let A be a rigid braided monoidal category and Frg = ercmp(.A) XV®
X the reflection-equation (RE) algebra (see also Example [2.2.11)). It is a commutative
algebra in the Drinfeld center Z(.A) if endowed with the half-braiding given by the field

goal transformation:

X Fre

N
vx: FRE® X — X @ FRe, VX = N
>

FrRe X
for all X € A. A

Example 3.2.3. Let B be a Hopf algebra. As was noticed in [DMO05, Example 4.4}, a
base algebra L for the category B-Mod can be described as follows. L is a left B-module
and left B-comodule algebra such that the coaction 6: L =+ B® L, X\ — AED @ A0
satisfies

5(b>A) = byATHS (b)) @ by > A0 (3.19)

where we wrote A(b) = b(1) ® b(z) for the coproduct in B, and the multiplication of L is
such that
meA@p) == AT 5 )AO (3.20)
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3. Dynamical character varieties

for all A\, u € L. Note that a left B-module and comodule satisfying (3.19)) is called a
Yetter—Drinfeld module. We call £ a B-base algebra. The corresponding half-braiding
vx: LR X — X ® L is defined for every X € B-Mod using the coaction

yx: A@z = AT sz @20

Equation (3.19)) guarantees that this is a B-module map, and Equation (3.20) that £ is
commutative with respect to the half-braiding ~y. ¢, i.e. that the diagram on the right in
(3.18) commutes. The diagram on the left in (3.18]) is commutative since 4 is an algebra
map. Lastly, note that the left B-comodule £ admits also a right B-coaction defined
by:

L LA A= AT =)0 g g1y (3.21)

A

The following was one of the motivating examples for Donin—-Mudrov to introduce the
notion of base algebras. As we will see later on, it is related to the formulation of the
quantum DYBE over non-abelian base spaces due to Xu [Xu02].

Example 3.2.4. [DM0J, Example 3.5] Let [ C g be a Lie subalgebra, U C [* an [-stable
open subset and let O(U) be the algebra of regular functions on U. The subset U C [*
should be thought of as the open region where the dynamical r-matrices with base [*
does not have poles. The linear Poisson structure on [* admits a quantization by the
PBW star-product (O(1*)[[A]], *) [Gut83]. The latter is a U([)-module via the coadjoint
action, as well as a comodule via the map

8: f(p) = f(p+nnM), per

with f(u+hhM) = f(u)®1 —i—hzz d W @1, + O(h?), where (I;) is a basis for [ and (u?)
the induced coordinate system on [*. One can check that this turns O(U)[[h]] equipped
with the PBW star-product into a base algebra in the category U (I)-Mod][A]]. A

The main example for us will be the following:

Example 3.2.5. Let H C G be a maximal torus and h the Lie algebra of H. The
algebra O(H) is a U(h)[[h]]-comodule algebra

Sn: O(H) = Uh) @ O(H)[[A]],  ouf(e) = f(7), e H |

where

(1) K2
F(My = 1®f(e’\)+hhi®2hf>f(e’\)+3Zhihj@ahfbhfbf(&)—i—... (3.22)
i i,j

for (h;) a basis of h. The left U(h)[[h]]-module structure is the trivial one. The right
U (h)-comodule structure is

SEF(N) = F( ) = f(e ®1—hZhLl>f )@ hi + O(h2) . (3.23)

For applications we may want to work with a localization of O(H). Let S C O(H) be
a multiplicative subset and denote by O(H)g the localization at S.
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3. Dynamical character varieties

Proposition 3.2.6. The localization L = O(H)g is a U(h)[[h]]-base algebra.

Proof. We will use the universal property of localizations to show that we can extend
to a comodule map

Sfis: O(H)s = O(H)s @ U()[[A]
To that end, consider the composition

o) &5 o() & Uh)[IH] — O(H)s @ Ub)ITA] .

where O(H) — O(H)g is the map f — { We claim that every element in S is mapped
to an invertible element in O(H)g ® U(h)[[h]]. Indeed, we have 6%(S) — S® 1 = 0
(mod h) and we can thus write 67*(S) = S® 1 + >, 2; ® y; with y; € U(h)=[[A]] with

respect to the h-adic filtration. Now, we observe that 6%(S)(S™! ® 1) is invertible in
O(H)s ® U(h)[[R]] with inverse given by

101-Y zS ' @yi+ Y wS 'a S @y — ..
%

.

Hence, 6#(9) is an invertible element and we get an extension 6,{55: O(H)s — O(H)s®

U®)[[A]]- O

Quantum moment maps Let £ be a base algebra in a monoidal category C and
(A,m) an algebra object in C. In we recalled the notion of quantum moment
maps for the RE-algebra Frg in a braided monoidal category A, following [Saf21a].
The definition naturally generalizes to base algebras in monoidal categories: a quantum
moment map is an algebra map pu: £ — A, such that the following diagram commutes

LAY AxA

‘ 5, (3:24)
o

A®EW AR A

Proposition 3.2.7. An algebra in L-Mod¢ is an algebra in C equipped with a quantum
moment map.

Proof. Let A € L-Mod¢ be an algebra with left £-action 1>, right action < =>o 7;1 and
multiplication m: A®, A — A, a®b— ab. Define u: £ — A by p(A) = A>14. This is
a quantum moment map since the multiplication m is balanced and a £-module map.
Conversely, let A be an algebra in C and p: £ — A a quantum moment map. This
defines an algebra in the category of (£, £)-bimodules via

Aba=pu(Na, a<A=au(N)

for A € £ and a € B. Since u makes Diagram (3.24) commute, we have (A, pu) € Cr C
(L, L£)-Bimodc. O
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3. Dynamical character varieties

3.2.2. Dynamical twists

From a categorical point of view, solutions to the quantum YBE can be understood as
monoidal functors from a rigid braided tensor category A to the category of K-vector
spaces: for a monoidal functor F': A — Vectx we define linear maps Ry y: F(X) ®

F(Y) =SF (X) ® F(Y) of vector spaces by the following commutative diagram

TORX7Y
—

F(X)® F(Y) F(Y)® F(X)

I 1

F(X oY) 22 piy o x) |

where 7 is the permutation 7(v®w) = w®v. Intuitively, the linear map R x y measures
the failure of F' to preserve the braiding. The natural isomorphism R: F(—)® F(—) =
F(—) ® F(—) satisfies the quantum Yang-Baxter equation

RxyRx,zRyv,z = RyzRx.zRx,y

in Endg(F(X)® F(Y)® F(Z)), which is a consequence of ¢ being a braiding in A. In
the case where A is the category of modules over some Hopf algebra H, the structure
induced on H by the monoidal functor is that of a quasi-triangular Hopf algebra.
Donin-Mudrov in [DMO05], and Kalmykov-Safronov in [KS20], have extended this
categorical viewpoint to encompass solutions to the quantum DYBE. The latter no
longer takes place in the category of vector spaces, but in some dynamical extension of
a monoidal category. More precisely, for a cocomplete monoidal category C and a base
algebra £ € Z(C), we define the dynamical extension of C over L to be the category

Cr = L-Mod¢

of L£-modules internal to C.
The dynamical extension C is a monoidal category under the relative tensor product
X ®, Y defined by the colimit of the diagram

X®£®Y$§X®Y :

where X is made into a right £-module via the half-braiding vx. If C is equipped with
the relative tensor product monoidal structure, the free module functor free: C — C is
monoidal:

(>®idy)o(vz4 x ®idy)

(LoX)®L (LRY) LOXRY .

Proposition 3.2.8. Let C € Presyx. Assume that C has a strong generator consisting of
compact-projective objects. Then, Cr has a strong generator given by the free L-modules
L& X for X € CP. Moreover, the objects L@ X for X € C® are compact-projective.

Proof. The dynamical extension is equivalent to the category of algebras over the monad
L® (—): C — C. This monad preserves colimits by the assumption that C is a monoidal
category in Pres. The forgetful functor U: C; — C is thus colimit preserving and £ ® X
for X € C°P is compact-projective. The forgetful functor is also conservative and thus
the {£ ® X} xecer form a strong generator. O

83
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Remark 3.2.9. In [KS2()], the category Cr is called the category of Harish-Chandra
bimodules. We will reserve this name for the case when we work with representation
categories of groups or quantum groups. In the original reference [DMQOS], the notion of
a dynamical extension of C refers only to the full subcategory of free L-modules. Howewver,
motivated by the fact that Cr is generated under colimits by the free modules, we will
stick to the same terminology.

Now, assume that C = B-Mod for a Hopf algebra B and let (A,o) be a braided
monoidal category. Solutions to the quantum DYBE over the base algebra L are ob-
tained from monoidal functors:

AL B-Mod ™% B-Mod, .

More precisely, define R(A\)xy € L& End(F(X)®@ F(Y')) by the following commutative
diagram:
id oR(A
Lo F(X) g FY]EERIXy o p(v) @ F(X)

TWxy| O (3.25)

id.QF

LoFXaY) —20xy) | ro Py o X)
Compatibility with the B-action implies that the elements R(\)x y are B-equivariant.
Moreover, it follows from o being a braiding in A that the collection of element

(RN xy)x,yeA

satisfies the quantum DYBE

R(\v.z RSz RWxy = RWTy RW)x.z

)

RO, (3.26)

in LKEnd(F(X)® F(Y)® F(Z)), where we wrote for example R()\)[;]Z to mean that
the B-component of the right coaction 6%: £ — £ ® B acts on F(Y). We call R()\) a
dynamical R-matriz and the monoidal structure

T(Nx.y € L®Hom(F(X)® F(Y), F(X ®Y))

from Diagram is called a dynamical twist.

In the case where A = H-Mod and C = B-Mod for a pair of Hopf algebras B C H,
the monoidal functor F' is given by restricting an H-module to the Hopf subalgebra B
and the data of a dynamical twist can be expressed as follows:

Definition 3.2.10. A universal dynamical twist for the pair B C H over the base
algebra L is an invertible element J(\) = T'@J'@J?c L& H®H that satisfies the
following equations:

o B-equivariance:
by > T @by T @ bay2)T* =T ® T by ® T by
for allb e B.
o Dynamical cocycle equation:
(([d®A®id) TN) TNz = (([doide A) T\) (Foideid) T(\)  (3.27)
in Lop® H® H® H.
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e Normalization: (i(d®e®id) J(A\) =1®1®1=(d®id®€) T(N)

Remark 3.2.11. In [DM05], Donin—Mudrov define a universal dynamical twist to be a
B-equivariant element K(\) € H® H ® L satisfying
(A ®id)L(N)(id ®id @ 6)IC(N) = (id ® A)K(N)K(N)2,3 (3.28)

)

in HRQ H® H® L. This differs from Definition|3.2.10 in the following way: an element
K () satisfying Equation (3.28) is equivalent to the data of a monoidal structure on the
functor

A= C ™ Mode-£, A= H-Mod, C= B-Mod ,

into the category of right L-modules internal to C, whereas we consider the case of
left £L-modules. The two definitions are equivalent in the following way. There is a
commutative diagram

,C—Modc
freV \
A—C ﬂv (L,L)-Bimodc

freec\t /

Modc-[,

where v: L ® (=) = (=) ® L is the half-braiding for the base algebra L € C. Then,
the natural isomorphism yp—y = v o F allows to transport a monoidal structure on the
functor A — L-Mod¢ to one on A — Mod¢-L and vice versa.

Example 3.2.12. [DM05, Ezample 5.8] For a pair of Lie algebras ¢: [ C g, U C [*
an [-stable open subset and the base algebra £ = (O(U)[[R]],*) from Example a
dynamical twist is a monoidal structure on the functor

U (g)-Mod[[A]] = U (1)-Mod([1]] = (U(8)-Mod[[A]]) . -
These dynamical twists have been explicitly constructed for various classes of Lie sub-
algebras [ C g. For example, in [EVI8b, [EV99] Etingof-Varchenko constructed a dy-
namical twist for § C g being a Cartan subalgebra. Their construction was further
generalized in [DMO05] to the case where b is replaced with a Levi subalgebra [ C g.
More examples can be found in [EE05]. A

The rest of this section concerns our main example for applications in factorization
homology, namely the universal fusion matrix of Etingof-Varchenko [EV99]. This is a
dynamical twist (J(A\)v,w € End(V®W))V’W ERep,(G) depending rationally on a param-
eter A € H for H C G a maximal torus. More recently, a categorical construction of
J(A\) was done by Kalmykov-Safronov in [KS20], which we will briefly review in Exam-
ple below. In we will give an interpretation of their construction in terms
of factorization homology on stratified annuli.

Example 3.2.13. [KS2()] The dynamical twist J(\) originates in a quantization of the
bimodule category

QCoh([G/G]) ~ QCoh([B/B]) ~ QCoh([H/H]) (3.29)
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induced by the correspondence [G/G] < [B/B| — [H/H]|. The categories of quasi-
coherent sheaves on [G/G| and [H/H| are quantized by the following categories of
quantum Harish-Chandra bimodules:

HCy(G) = Uy(9)"-Modrep (¢)s  HCq(H) = Uy(h)-Modgep, (1) - (3.30)

In the above, U,(g)! is the locally-finite part of U,(g) with respect to the adjoint action.
A quantization of the bimodule category QCoh([B/B]) is given by the universal quantum
category O, which is the full subcategory Ogm“ of Uy(g)-modules internal to Rep,(H)
whose Uy(n)-action is locally finite.

Acting on the distinguished object M“""* = U,(g) ®u,(6) Ug(h) in O}I‘"w induces a lax
monoidal functor

R

ac univ . t univ 3
res: HCy(G) 2220ty gumiv 220U HE (), X o (X @, @ MM™)Ve® | (3.31)

called quantum parabolic restriction. When restricting to the locus of generic Weightﬂ7
the induced functor res&®" is strong monoidal and fits in the commutative square [KS20),
Theorem 4.35]:

free@q (@)

Repq(G) ——— > HC,(G)

i lg (3.32)

Rep, (H) HC,(H )&e"

fl’eeo(H>gen

This has the following interpretation: the monoidal structure on res*" induces a dy-
namical twist

T(Nvw € O(H)E" @ Homge, (1) (V @ W,V @ W), V,W € Rep,(G) |

which is a rational function on H which is regular on H&". The algebra O(H )&*" is a

base algebra in Rep,(H) with half-braiding (V @ O(H)8" — O(H)&" @ V)
defined by

VeRep, (H)

v fA) = fAgH) @
for any v € V of weight p and A € H&", A

Remark 3.2.14. In Example the dynamical twist J(\) is defined for quantum
groups Uy(g) with generic parameter ¢ € C*, or more precisely for their integrable
representations. We have seen that the construction involves the localization of O(H)

n(a

at the multiplicative set generated by {q(/\’o‘)Jr | | o € A,n € Z} for M) €
Hom(A,C*) = H. Since this is a set generated by infinitely many polynomials, the
resulting subset H&" C H on which the dynamical twist is regular might not again be
an algebraic variety. In contrast, when working in the formal setting, i.e. in the case
q = €" for h a formal parameter, the dynamical twist is a regular function on an open

2A weight for a U,(g)-module is a character for the Cartan part Uy (h) of Uy(g). Since Uy(h) = K[A],
the character group may be identified with Hom(A,K*) = H. For an element A € h we write the
associated elements of Hom(A, K*) as g-exponentials:

A — K™, qu(A‘”) .

Then, the weight \ is called generic if ¢ ¢ +qZ. We will write H®" C H for the subset of generic
weights and O(H)®" for the rational functions that are regular on H®".
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subset H™®& C H. More precisely, it was shown in [EEMO0J, Proposition 5.1] that the
functional part of the dynamical twist lives in a localization O(H )g[[h]], where S is the
multiplicative set generated by the finite set of polynomials {k:% —1| B € AL}, where for
any positive root B =Y i, nja; we have set kg = [[i_; eMmilai - This observation will
allow us to carry out certain constructions locally on an affine cover for H™®  which will
for instance prove useful when defining quantum dynamical character stacks in[§ 3.4.3

3.2.3. Digression - Dynamical twist from factorization homology on
stratified annulus

This section is concerned with topological aspects of constructing dynamical twists.
More precisely, we will use factorization homology on annuli with circular line defects to
quantize the bimodule which gives rise to the dynamical twist J(\) constructed
by Kalmykov—Safronov. The content of this section is still work in progress and may be
read independently from the rest of this chapter.

Line defects and decorated surfaces A surface with one-dimensional defects is an
oriented surface Y together with an oriented one-dimensional submanifold Y, such that
JY C 0¥ and T\ 9T N 9X = (). We may decorate the stratified surface ¥ as follows:
each connected component of the bulk 3 \ T carries a label from the set {G,#H}. The
labeling is such that two bulk regions meeting at a connected component Y; C YT have
to carry distinct labels. One could of course label each connected component of T by
different defect data, however we only consider the case where all T; carry the same
data.

Definition 3.2.15. Man3"*" is the (2,1)-category whose

e objects are oriented surfaces with one-dimensional defects and a {H,G}-labeling of
the bulk

e I-morphisms are embeddings respecting the decorations and stratification
e 2-morphisms are stratified isotopies

The full symmetric monoidal subcategory Disk"*"" of decorated oriented disks with

one-dimensional defects and disjoint unions thereof has three generating objects, the
decorated disks Dg and Dy and the stratified disk Dgjy:

The local categorical data governing algebras on the decorated, stratified disk category
[Diskgr’m are so-called central algebras over braided categories [BJS21]:

Definition 3.2.16. Let A and B be braided tensor categories and C a tensor category.
A (A, B)-central algebra structure on C is a braided functor

F: ARB' = Z(C) ,

into the Drinfeld center of C, where B°°P is the category B with the opposite braiding.
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Following [AFTT7), stratified factorization homology with coefficients in a given Disky"*"-
algebra F is the functor

/ F: Man™*"" — Presy
(=)

defined as the left Kan extension of F along the inclusion Disk)"*"" < Man3"*"
We will use the following local categorical data, coming from the Hopf algebra maps

e®id

—— Uq(h)

where € is the counit map. More precisely, we have tensor functors

3% Repq(G) — Repq(B), p*: Repq(H) — Repq(B)

31 Ug(b) = Uy(g), p: Ug(b) = Uyg(n) @ Uyg(h)

on the corresponding representation categories. The maps j* and p* induce a (Repq(G),
Rep,(H))-central structure on Rep,(B) as follows: for each V' € Rep,(G) and U €
Rep,(H) define a half-braiding in Rep,(B) by

7j*(V)®p*(U),X(U X u & I’) = (URepq(G)id) o (id & URepq(H))(v U 1‘) s

where ORep,(G) and ORep, (H) denote the braiding in Rep,(G) and Rep,(H) respectively.
The half-braiding is well-defined since ORep, (G) Comes from the action of the (quasi) R-
matrix of Uy(g) which lives in a completion of U, (b™)®U,(b). Also, one can easily check
that the half-braiding v is compatible with the U,(b)-action. We will write Rep, (G ~
B .~ H) for the data of the (Rep,(G), Rep,(H))-central algebra Rep,(B).

Remark 3.2.17. The Disky"*"-algebra Rep, (G ~ B «~ H) recently featured in [JLSS21]
in the construction of quantum decorated character stacks via stratified factorization ho-
mology, thereby generalizing the cluster quantization approach due to Fock—Goncharov.

Factorization homology on annuli with circular Rep, (G ~ B~ H)-defects We
will work with the following decorated surface. The annulus with a circular defect line,
with the inside of the defect labeled by Rep,(H), the outside of the defect labeled by
Rep,(G), and the defect line by Rep,(B). We also consider the two Rep,(G)-, respectively
Rep, (H )-labeled annuli without line defects:

Factorization homology on the stratified annulus with coefficients in the Ej-algebra
B = Rep,(B) admits the following descriptions:

B = Tr(Rep,(B)) = Endgorgs(15)-Mods . (3.33)

AnnB

We recall that Tr(B) = B Kpexp B and the internal endomorphism algebra of the
monoidal unit is the canonical coend algebra:

VERepq(B)fd
@BOPXB(lB) = / V\/ & V

— Fs .
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The first equivalence in ((3.33]) is due to the excision property of factorization homology,
whereas the second equivalence is due to monadic reconstruction for relative tensor
products in Presy [BZBJ18a, Theorem 4.12], where one uses that Rep,(B) is rigid and
15 is a progenerator for the natural B°P X B-action

QZBE](BOP&B)—)B, C@(blgbﬂ'—)cﬂ(blgbﬂ:bl®c®bg ,

and similarly for the left B°P X B-action . Via excision and base-change, we further get
the following equivalences for the factorization homologies on the unstratified annuli:

/A . Rep, (G) = Og(G)-Modgrep, (c) /A . Rep,(H) = O(H)-Modgep (1) (3.34)

These are equivalences of Rep,,(G), respectively Rep,(H )-module categories. To establish
the equivalences (3.34)), one uses the fact that both Rep,(G) and Rep,(H) are rigid
balanced braided tensor categories. In particular, we use the following: there is a
Rep,(G)°PXRep, (G)-module equivalence between Rep,(G) with the canonical left action
(we will abbreviate G = Rep,(G))

GPRGNRG =G, (ri1NRz)Ny—120y®@2)

and G with left G°P K G-action defined by

id,0’)Kidid
—

(GPRG)RG - GRGRG IS G, (11Rz)Hyms 010120y

where (id, o) is the identity functor with monoidal structure given by the braiding o of
G. The module equivalence is established using the braiding o. The case of Rep,(H)
follows along the same lines.

The algebra Og(G) = @ cp+ V(A)VRV(N) in is the reflection equation algebra.
Note that for G semi-simple and simply-connected this algebra is isomorphic, as a left
U,(g)-module algebra, to the locally finite part U,(g)¥ of the quantum group [Jos95)
Proposition 7.1.23], see also [VY20, Theorem 2.113]. Moreover, our conventions (see
§ 1.2.2)) are such that O(H) = U,(h). We thus get the following identifications

/ Rep,(G) = HCy(G), / Rep,(H) = HCy(H) , (3.35)
AnnG AnnH

where HC,(G) and HC,(H) are the quantum Harish-Chandra bimodules from ((3.30]
considered in [KS20].

Notation 3.2.18. To ease notation we write G = Rep,(G), H = Rep,(H) and B =
Rep,(B).

We have embeddings Annfl < Ann® and Ann® < AnnB, which on the level of factor-
ization homology give rise to the following diagram of categories

in Presy, where Dist € [, annB B is the distinguished objects coming from the inclusion
of the empty set into the B-decorated annulus and the dashed arrows denote the right
adjoints to the functors induced by the embeddings. We will now provide explicit de-
scriptions of these functors.
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Figure 3.2.: Embeddings of colored annuli Ann® and Ann? into the colored annulus Ann®
and their pullbacks along the disk embeddings D < D? and D¥ < D5,

Consider the embeddings in Figure 3.2 which constitute two weakly commuting di-
agrams. On the level of factorization homology, they induce the following diagram in
Presx with commuting left and right square:

aCtgist aCt7D-[ist
[ — B3 H
fﬂ*"f g )R f”*""TB (et ® J ”*"“TH (3.36)
g . B - H

Using (3.33) and (3.34), we may identify the vertical maps with the free module func-
tors for the corresponding monads. For instance, the functor G — [, G = O,(G)-Modg
is naturally isomorphic to the free Oy(G)-module functor freep ) (V) = Oy(G) @ V.
Similarly, B — [, =B = F-Modg is naturally isomorphic to freer,(X) = Fz> X. By
abuse of notation, we will denote the composition

~ aCtgist ~
0,(G)-Modg = G 2o, B =~ Fy-Mods
AnnB

Ann@

again by actgist and similarly for actgist. These functors admit the following explicit

description:
Proposition 3.2.19. We have the following identifications
aCtgist = ‘7:8®(j*@j*)@g0pgg(1)j*(_)v aCt?D-[ist = FB ®(p*&p*)@7{op®”(l)p*(_) - (3.37)

Proof. We will only discuss the first identification, the second one can be worked out
analogously. Let U(G) = G? K G and U(B) = B°? X B. We first note that we have an
algebra homomorphism (j* X j*)Endy;g)(1) — Endy () (1) = Fs, given by the adjoint
to the natural algebra map

Mj% « .* ok o ok
act{%gactlg(lU(g)) 4 act{%g o (j )R oj*o actlg(lU(g)) > (j* X )Ractﬁactlg(lU(B)) ,
coming from the commuting diagram (see also [BZBJ18al, Theorem 4.10])

¢ .8

aCtlgT TaCMB

G GP —— BX B°P
J Ky
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By Proposition the category Oq(G)—I\/IodRepq(G) is generated under colimits by free
O4(G)-modules. Since all functors involved are colimit-preserving, it is enough to prove
the claim for free modules. We have

F @ (jj*)Endys g, I Treeo, ) (M) = i ©(j+mj)Endy; g, (17 BJ")Endy g) > j" M
=Fprj M,

where we used that j* is a tensor functor. Finally, commutativity of the left square in
Diagram (3.36)) implies that also actgist o freep, (@) = freer, o j*(—), which shows the
claim. O

The right adjoints to the functors in (3.37)) are
(acti) ™ = Homy, 1) (Uy(a), (—)),  (actBie)™ = Homy, ) (Uy(h), (—)) = (—)Pa™

where we suppressed the restriction functors along the algebra maps (j*&;*)Endy; gy (1) —
Fp and (p*®p*)End;;(4)(1) — Fp. In summary, we find that the embeddings depicted in
Figure into the Rep,(G' ~ B v~ H)-decorated annulus induce the following functor

(actqD{ist)R o actgist: (’)q(G)—ModRepq(G) — O(H)—ModRepq(H)
s v\ UL
X —> (.FB ®(j*|xj*)mU(g)(1) Vi X) Q(n)
which we will denote by Fg~p~g. In particular, on free modules we have

Forpnn(freeo ) (M)) = (Fr j*M)%™ = (j*M @ Oy (B))Ys™ (3.38)

where Oy(B) = [ VERepy (B) /) V'V, and the second identification is established using
the half-braiding in Rep,(G).

In the next paragraph we will show (for the case of G = SLy) that when restricted to
the subcategory of free O (G)-modules in Rep,(G), the functor Fg~p~n agrees with
the parabolic restriction functor from [KS20]. This provides a first step towards
establishing a topological picture for the construction of the universal fusion matrix

TN).

Equivalence with parabolic restriction functor Making use of the equivalences
(3-35), Fo~p~m induces a functor HCo(G) — HCy(H) between the respective cate-
gories of quantum Harish-Chandra bimodules. We expect the resulting functor to be
isomorphic to the parabolic restriction functor res from , constructed in purely
categorical terms by Kalmykov—Safronov. A detailed proof of the equivalence between
the two functors and their monoidal structure will be content of future work. For the
time being, we will just give some first results for the case G = SLo.

For U,(g) = Uy(sl2), let Uy(b) and Uy(b~) be the positive and negative quantum Borel
subalgebras generated by {(K))xez, E} and {(Kx)xez, F'}, respectively. Also let Uy(n)
and Uy(n™) be the subalgebras of U,(g) generated by E and F, respectively. We recall
that there exist a unique skew-pairing of Hopf algebras (in the conventions of [KS97,
Section 6.3.1])

T: Ug(b) @ Uy(b™) = K
which for the case g = sls is determined by:
1
q—q "
See also [VY20, Section 2.8] for more details.

(Ko, Kg) = ¢~ P, 7(BE,F)=— T(F,Ky) =0=7(Ks, E) . (3.39)
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3. Dynamical character varieties

Proposition 3.2.20. The pairing (3.39) induces an isomorphism v: Ugy(b™) =N O4(B) C
Uqy(b)* of K-vector spaces.

Proof. Let ¢ = 1(YK?®) € Uy(b)* for some Y € Uy(b™)_p, b € Ng and s € Z. Then, the
pairing (3.39) is such that for any X € Uy(b),, a € Ng, we have

P(XK") =q¢ "1(X,Y)
= 6w " X) (3.40)

since 7(Y, X)) = 0 for a # b. We have to show that the set of functionals ¢ € Uy, (b)* satis-
fying agrees with the algebra of matrix coefficients of integrable finite-dimensional
Uy(b)-representations. To that end, we note that the category Rep,(B) is generated by
the finite-dimensional U, (b)-modules V (m,n) with m,n € Z and m < n, where V(m,n)
has a basis {U, Um+2, - . ., Un } of weight vectors, i.e. Kpv; = q'v;, such that Evv; = Vig2.
Then, O,4(B) is the algebra of matrix coefﬁcients of the representations V' (m,n). In more
details, the matrix coefficients cj = c 4 o m <1,j < n, are of the following form

i r qmci ( )’ it X eU, (b)b
Cipop(XK") = { 20 !

,be Ng,re”?
0, else

and ci =0if j <. Therefore, ¢t oy = (Y K™") for some Y € Uy(b™)_p. Conversely, for

any ¢ satisfying (3.40) there exists a representation V(m,n) so that ¢ = ac i 19 for
some a € K* andm§—s<—s—|—2b§n

Remark 3.2.21. Let F,;(G) be the Hopf algebra of matriz coefficients of finite-dimensional
integrable Uy(g)-representations (i.e. Fy(G) is the FRT-algebra). Let Fy(B) be the im-
age of Fy(G) under the natural projection Uy(g)* — Uy(b)*. In more details, Fy(B) =
Doy jez Ba.j with Baj = {cg | w € V(A)_j, ¢ € V(A )J 9q}s where V(X) is some inte-
grable Uy(g)-module of hzghest weight A € Ng. Note that up to rescaling, a given matriz
coefficients cg € Bg,j agrees with C:;+2a as defined above in the proof of Proposition
for some integrable Uy(b)-module V(m,n) with m < —j < —j +2a < n.

For g any finite-dimensional semi-simple Lie algebra over C, it was shown in [Jos93,
Section 9.2.12], see also [VY20, Proposition 2.106], that the Drinfeld pairing T: Uq(b) ®

~

Uy(b7) = K induces a Hopf algebra isomorphism Uy(b™) = Fy(B). Thus, we may expect
the result in Proposition |3.2.20 to hold as well in this more general context.

In [KS20], the parabolic restriction functor is defined using the left- and right action of
the quantum Harish-Chandra bimodules on the distinguished object M"Y ¢ O}I‘ni" given
by the universal Verma module M = U,(g) ®u,(v) Ug(h). By the PBW-isomorphism,
we have an identification M"Y = U, (b~), and by Proposition we thus have an
isomorphism between the distinguished objects M"™ and O,4(B) on the level of vector
spaces.

The map Uy(b~) — MV, X s X ® 1, is also an isomorphism of left U,(n)-modules
if we endow U,(b™) with the following U,(n)-module structure

b1 Ug(n) @ Ug(b7) 2 U,y (g) 222

Uy(67) © Uy (n) 55 Uy(b7)
The U, (n)-action on MV is given by left multiplication. We will also need the following:
Proposition 3.2.22. The pairing (3.39) induces an isomorphism

(Ug(67)V1™) 2= (0y(B)) s
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3. Dynamical character varieties

Proof. In Uy(b™) we have for any b € Ng and r € Z:

q—(b—l)K _ qb—lK—l s
q—q!

Ev FPK® = [p)F*! (

Using again that 7(E‘K™, F/K") = ¢~™7(E' FJ) and 7(E, F7) = 0 if i # j, we
find that ((E > F°K*) has kernel {E“KT};f?Zb_l. On the other hand, recall that the left
Uy(n)-action on Oy(B) is given

>: Uy(n) © Og(B) = Oy(B), X @ fr= f(S(X1))(=)X2) -

The Hopf algebra structure on Uy(slp) is such that A(E) = EQ K+1® E and S(E) =
—FEK~!, and we have for any b € Ng and s € Z:

Ew» (F’K?®) = —7(EK"Y(-)K,F°K?®) .
Thus, E » ((FPK®) also has kernel {E*K"}727 1 and o(E > FPK®) = oF » o(FPK®)

reZ
for some a € K*. Similarly, one can show that E" > FPK* = aE™ » ((FPK?®) for some
a € K*, and in particular the subspaces of U,(n)-invariants agree. O

Next, recall that M"Y has a left and right U,(h)-action defined by left and right
multiplication, giving rise to an integrable diagonal U, (h)-action. Similarly, U,(b™) may
be considered as an object in HC,(H) with actions

K—=X=KX, and KvX=KXSK)

for any X € Uy(b™). We also recall that Oy(B) is an object in HC,(H ) with an integrable
left U, (h)-action
K> ¢ =@(S(K)(-)K)
for any ¢ € Oy4(B), and a left O(H )-action
f=eo=(fop)xe,

for any f € O(H), where p: Uy(b) - Uy(h) and * denotes multiplication in the algebra
of matrix coefficients O,4(B).

Proposition 3.2.23. The isomorphism v: Uy(b™) 5 O4(B) from Proposition is
a map in HC,(H).

Proof. We have on the one hand
WK > FPK"™)(X) =7(X, K(F°K")K™1)
{q—bq—srT(Eb, Fb), if X = EPK*

0, else

for any s € Z. On the other hand we have
Kw» (FPK")(X) =7(K'XK, F'K")
B {q_bq_STT(Eb, FY), if X = EPK®

0, else

For the other action we find
UK —=X)=7(—KX)=7(—,K)*x17(—, X) .

which is precisely K — ¢(X). O
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Propositions [3.2.20} |3.2.22f and |3.2.23| together imply that for any X € Rep,(G) we
have an isomorphism

(X ® MuniV)Uq(n) o~ (X ® Oq(B))Uq(n)

in HC,(H) establishing the equivalence between the parabolic restriction functor ([3.31)
and Fg~p~g from when restricted to the subcategory of free modules in HC,(G).
A more in depth comparison of the two functors, as well as their (lax) monoidal struc-
tures, will be content of future work.

3.2.4. Braided modules and quasi-reflection data

In we saw that point defects in categorical factorization homology are defined
as symmetric monoidal functors Disk3’, — Pres from the category of marked disks to
the category of locally presentable categories. The categorical data required to extend
factorization homology for oriented surfaces to oriented surfaces with marked point is
given by Es-modules over braided monoidal categories:

Definition 3.2.24. [Ginl)] An Es-module for a braided monoidal category A is a right
module over the annulus category fAnn A, where the latter is equipped with the tensor
structure induced by stacking annuli.

In [BZBJ18b, Theorem 3.11] it was shown that the Ea-modules classifying point de-
fects in categorical factorization homology admit a more algebraic description in terms
of braided module categories with a balancing. Braided module categories were first
introduced in [Enr08, Brol2, Brol3] and their definition is recalled below. Through-
out A is a balanced braided tensor category with braiding ¢ and balancing 6. For
a right A-module category M, we will write ®: M X A — M for the action and

nvxy: (M@X)RY = M®(X ®Y) for the module associativity constraint.

Definition 3.2.25. A balanced braided module category over A is an A-module cate-
gory M equipped with an automorphism

£ —@— = —&—

of the action bifunctor which is such that Enrn = idy for all M € M, together with
an automorphism ¢: idyg = idag of the identity functor on M, called the balancing on
(M, E), satisfying

euex = Emx o (pu®0x) . (3.41)

The automorphism &£ has to satisfy the following two relations

8M®X,Y = 17]\_/[17X7Y(id®0;(7ly)77M7y7X (5M7y®id)?7]\_417y7x(id@J;}X)?]M’X’y (3.42)

and

Enxey = nuxy (Enx®id)ny) v ([d@o )may.x (Eny ®id)nyy 4 (idRox y)
(3.43)

Topologically, the automorphism £ is induced by the loop in the space of embeddings
Emb(D, U D,D,) coming from moving the disk around the marked point, while the
balancing on M is induced by the isotopy rotating a marked disk about 27, as illustrated
in Figure[3.3] Similarly to the unmarked case, the balancing ensures that we can compute
factorization homology on oriented surfaces.
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-1 o7
I

Figure 3.3.: Top row: Topological operations inducing the automorphism £ (on the left)
and the two balancings ¢ and 6 (on the right) in a balanced braided module category
together with the corresponding string diagrams. Bottom row: Relations in a balanced
braided module category.

Remark 3.2.26. As was noted in [BZBJ18Y, Theorem 3.12], if A is a balanced braided
tensor category and M a module category for A satisfying Relations (3.42)) and (3.43)),
then M admits a canonical balancing automorphism coming from the loop in the space

of oriented embeddings given by rotating the annulus about 27, together with the factor-
ization A — [, A — End(M) of the A-module structure on M.

Before we describe the algebraic structures relating the quantum DYBE and to braided
module categories, we can already give a first example:

Example 3.2.27. Let [ C g be a pair of finite-dimensional complex Lie algebras and
U C [* an [-stable open subset. The dynamical twists from Example turns
the dynamical extension U([)-Mod|[A]]o ) into a braided module category over the
symmetric monoidal category U(g)-Mod|[A]] with the identity natural transformation as
automorphism £. Note however that this example is not in Pres. A

Point defects from quasi-reflection data Throughout we fix the data of a quasi-
triangular Hopf algebra H with universal R-matrix R, a Hopf subalgebra B C H to-
gether with a B-base algebra L as defined in Example of the previous section.
In the following we introduce the notion of a quasi-reflection datum, which is closely
related to that of a quasi-reflection algebra from [Enr(8], see Remark below.

Definition 3.2.28. A quasi-reflection datum is a tuple (B C H, L, J(\), E())), where
J(N) is universal dynamical twist for the pair B C H over the base algebra L and
E(X\) € L® H is an invertible element satisfying the following equations:

e Octagon equation:
B @I EN) =T (N "RaaT (V21 EN)2T (M7 1RI(A) (3.44)
e Pentagon equation:

(id® A)EN) = TN (6% @ id)E(N) EQ)LT(A) " . (3.45)

e B-equivariance:
b(l) > E°® b(g)El =E'® E'% ,

for allb e B.
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Both the octagon and pentagon equations take place in Lo, @ H @ H.

Remark 3.2.29. A quasi-reflection algebra, as defined in [Enr08, Definition 4.1], is
a comodule algebra B over a quasi-triangular bialgebra H, together with invertible B-
invariant elements W € B H® H and E € B ® H subjected to a cocycle equation
for W and an octagon relation for E. Our definition of a quasi-reflection datum almost
recovers that of a quasi-reflection algebra in the special case that L = B considered as
a base algebra over itself with coaction given by the coproduct Ap, and the H-comodule
structure on B comes from the inclusion B C H. The difference is in that equation
holds in Bop ® H ® H, whereas the octagon equation in [Enr08] takes place in
B®H®H (see Remark below). Note that the pentagon equation is missing from
the definition of a quasi-reflection algebra.

As explained in[§ 3.2.2] the data of a dynamical twist gives rise to a monoidal structure
on the functor H-Mod — B-Mod — B-Mod/, turning the dynamical extension B-Mod/
into a right module category over H-Mod:

®: B-Mod; X H-Mod — B-Mod;,  M®X = M ® free(X)

The associator ny xy: (M®X)RY S M ®(X ®Y) is defined by the dynamical twist
TN

M @ freep(X) @ free,(Y)EM R, LRIX QY (3.46)
id A
MM®55®X®Y:M®£freeE(X®Y)

MRrAQrRy— mL AT QT v T2y

Remark 3.2.30. The appearance of the opposite base algebra Loy, in the Dynamical Co-
cycle Equation has to do with the fact that the dynamical extension Cp is defined
as the category of left L-modules in C. More precisely, when defining the associator n
in terms of the universal dynamical twist as in , we have to multiply with J° from
the right to get an L-module map.

If the dynamical twist is part of a quasi-reflection datum (7 (), E())), the invertible
element

EN=EN 1o
defines an automorphism & of the action functor —®— via

Enm,x

MaX 2% Myex (3.47)
mReAQr—mes N RE >

where we used the notation £(\) = £° ® £! € L ® H. This is well-defined due to
B-equivariance of E.

Proposition 3.2.31. The automorphism & from (3.47)) endows the dynamical extension
B-Mod, with the structure of a braided module category over H-Mod.

Proof. We have to check that Relations (3.42)) and (3.43|) hold. For the former, we have
that

5M®X,Y(m®£)\®$®ﬁu®y) =m®£)\®m®£,uE0®E1>y
~m @ ApEY @ (e r 0 sy .

96
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Thus, in order for Relation (3.42)) to hold, £(\) has to satisfy the following equation:
(0" @I)EN) = TN RTIT(N)22EN)2T V21 Rz1T (V)

But this is the case since £(\) = E(A\)"}(1®607!), and E()\) satisfies Equation For

the second relation, we compute

(do A)(EN a6

2 TVEMNT TN R IW21 EN)y ' TV R5 (1 @ AG) ™)

and the result follows since 6 is a ribbon element, in particular A(f) = (R21R) (0 ®
0). O

Quasi-reflection datum and the ABRR~equation In [ABRRIS], Arnaudon-Buffenoir—
Ragoucy—Roche introduce a dynamical twist J(A) living in a completion of U,(g)®? and
depending rationally on a dynamical parameter e* € H. It is the unique solution of the
form 1+ Uy(n) ® Uy(n—) to the equation

TJNB\)2 = RIQB(A\)2J(N) (ABRR)

with B(A) = ¢2M2i(C i Hillj | where (H;)a, are the simple coroots, (Cj;) is the sym-

metrized Cartan matrix and 2 = qzi(oil)iﬂ'Hi@Hj is the Cartan part of the universal

R-matrix R. The dynamical twist satisfying the linear ABRR~equation agrees with the
universal fusion matrix of Etingof-Varchenko, see for example [ES02bl Theorem 8.1].
We now set ¢ = e’ and make a change of variable A — \/A.

Proposition 3.2.32. Solutions to the ABRR-equation give rise to a quasi-reflection
datum (J (X)2,1, B(X)) for the pair Up(h) C Up(g)°P.

Proof. By Example we have (6% ®@id)(B(\)) = B(A+hhM))y. Hence, the element
B(\) satisfies the relation

(id @ A)(B(A) = @B\ 1B(N):
=B\ (6" @id)(B(V))

which agrees with Equation due to h-invariance of the dynamical twist. Moreover,
we have

T(N71RI (N)BN)2T (A) ' Ra1T (N2,
MER TN RRTIOB(2T ()T (V) Ra1T (V21
= TN @B(A)2R21T (A2,
ABRR T(N312B(N):22B(A\)1.7 (N21BN)1 !

— TN ABMN))T (N BT
= QzB(/\)z

where the last equality is again by h-invariance of the dynamical twist. This shows
that the pair (J(\)2,1, B()\)) is a quasi-reflection datum for Uy(h) C Ux(g)°P over the
base algebra O(H"8)[[h]] and Up(g)°P is the quantum universal enveloping algebra with
opposite coproduct and universal R-matrix Ro 1. O
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The element B(\) featuring in the ABRR~equation thus corresponds in the topological
picture (Figure to the loop in the space of disk embeddings Emb(D, LD, D,) coming
from moving the unmarked disk around the marked point.

Conversely, one can recover an ABRR-type equation from the categorical construction
of the dynamical twist J(\) due to Kalmykov-Safronov, as we will show in Proposi-
tion below. First, we note that the commutativity of Diagram gives a

factorization
(freeoi*, T (N))

Rep,(G) HC, (H)een
frea™ et (3.48)

HC,(G)

turning HC,(H 8" into an Ez-module over Rep,(G). The characterization of Es-modules
in terms of braided module categories implies that there is an automorphism of the action
bifunctor, that is, for any M € HC,(H)&" and X € Rep,(() an isomorphism

Envx: M@ freep(X) = M @ freep(X), L =O(HE" |

natural in M and X, satisfying Relation and .
Proposition 3.2.33. The dynamical twist from Ezample[3.2.13 satisfies the ABRR-type
equation

T NwvENy = Ry Qwv ENy' T MNwy
in O(H)8" @ End(V @ W), where E(\)w = Egw € O(H)E" @ End(W) for VW €
Repq(G).
Proof. First, we rewrite Equation in the following form

(id@oxy )xy Evaxymixy = myx (Eny@id)nyy x(doyy) ,  (3.49)

where M®@X = M ® freep(X), the associator 7 is defined by the dynamical twist J ()
as in and the braiding o is defined by the quantum R-matrix ox y = ToR>X®Y.

In [KS20), Proposition 4.37] it is shown that the dynamical twist J(A) is related to
the universal fusion matrix Jgy (\) of Etingof-Varchenko via J(\) = Jgv(A)21. The
universal fusion matrix is of the form

TevNxy(zy)=z0y+ Z“i ® b;

)

where wt(a;) < wt(z) and wt(b;) > wt(y) for all z,y in X,Y € Rep,(G). Since the quasi
R-matrix of Rep,(G) (in the conventions of [KS20]) lives in a completion of U,(b) ®
Uqy(b_), we see that in order for Equation to hold, the left- and right-hand side
have to agree with their respective weight zero parts. This yields in particular the
following equation

77M,Y,X(5M,Y®id)77;417y,x(id®0';71x) = (5M7y®id)9;/}X , (3.50)

where ) denotes the Cartan part of the quantum R-matrix R. We now specialize to the
case M = L. Equation (3.50) then implies the following:

TNy xENyI Ny xRyx = EQ)yQyk
)
TNy xENy' = RyKQEN ' T Wyx -

Thus, we recover an ABRR-type equation for the dynamical twist from the braided
module structure on HC,(H )&e". O
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Remark 3.2.34. The relationship between the ABRR-equation and braided module cat-
egories has already appeared in [Brol2], where an algebraic analog of the ABRR-equation
was used to construct a quasi-reflection algebra (U, Ey), where ¥y, € Up(h) @ Up(g)®?
is an algebraic dynamical twist (called pseudo-twist in [Enr08]), giving rise to a braided
module structure on Up(h)-Mod over Up(g)-Mod.

Dynamical point defects We will use the following terminology:

Definition 3.2.35. Let L be a base algebra in a monoidal category C and let A be a
balanced braided category. A dynamical point defect for oriented factorization homology

is the data of a functor A L, ¢ freee, Cr and a dynamical twist
TN xy € LHom(F(X)®@ F(Y),F(X®Y)), X, YeA
together with a factorization

A F C free, CE
\ /
fAnn A

In the K-linear setting, we have the following examples.

Example 3.2.36. Let H C G be a maximal torus. Let Rep,(G) and Rep,(H) the
representation categories of Uy(g) and U, (h) respectively as defined in Then, the
dynamical twist J(A)v,w € O(H)&" € End(V @ W), for V,W € Rep,(G), constructed
by Kalmykov—Safronov makes Diagram commute and thus defines a dynamical
point defect for factorization homology with values in Presy. A

Example 3.2.37. Let G be a finite group and A C G an abelian subgroup. Let A*
be the abelian group of characters, that is, A* = Map(A,K*). In [ENOI], Etingof-
Nikshych construct dynamical twists J () € Fun(A*) ® K[G] ® K[G] with values in the
group algebra of G. The algebra Fun(A*) is a base algebra in Rep(A) with half-braiding
defined by

w:fA) v o® f(A+ ), V € Rep(A)

for v € V of weight © and A € A*. Since the group algebra K[G] is trivially quasi-
triangular, the module category defined by the functor

freeFun(A*

Rep(G) — Rep(A) s Rep(A)pun(ar)

with monoidal structure J () is trivially a braided module category and thus defines a

dynamical point defect for factorization homology in Presy. A

In the V = C[mod—enriched setting we have the following example.

Example 3.2.38. Let Rep;,(G)™ be the category of topologically-free Up(g)-modules
of finite rank and let Rep,(H)f be the category of topologically-free, finite rank Uy (b)-

modules with integral weights. Let A = Rep,(G)™ and C = Rep,(H ) be their respective
free cocompletions. These are monoidal categories under the Day convolution product,
see We will denote by ¢: Rep,(H)™ — Repy,(H)" the inclusion into the category
of locally-finite, topologically-free modules. Then, the presheaf

L = Mapgep, 11y (¢(=), O(H™#)[[A]])
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is an algebra in C. Indeed, O(H'™E)[[h]] is trivial as a Up(h)-module, i.e. the action
is induced by pulling back along e: Up(h) — K[[R]]. We can thus write the Up(h)-
module O(H"™g)[[A]] as a filtered colimit colim;V;[[h]] of the finite dimensional subspaces
V; C O(H"#). With this observation we have the following

L @Day L
X,Y €Repy, (H)f N N
_ / Maprep, (myid (— X © ) & L(X) & L(Y)
X,Y €Repy, (H)f R
o / MapRepﬁ(H)fd(—,X RY) ® MapU(h)_Modlf(Xo,ColimiW)[[ﬁ]]

® Ma PU ()-Mod!f (Yo, colim; V) [[7]]

X,Y €Repy, (H)f N
= COhm(i,j)/ Mapgep, () (= X @ Y) @ Mapgep, iy (X, Vi[[7]])

@ MapReph(H)fd(Ya‘/thH)
2 Mapgep, sy (¢(—), O(H"®)[[1]] & O(H"8)[[]])
(mo (rrres)[[n))) = r
where we used that X = Xy[[h]] in Rep,(H)™ and we find that the algebra structure
is the one induced by the multiplication in O(H"®#). Similarly, we find that for any
Ve Repr(H)fd

L ®Day Yy = ,\/IapReph(H)lf (L(_)a O(Hreg)[[hﬂ ® V) €eC .

Using the above, one can show that £ is a base algebra in C through the Uj(h)-base
algebra structure on O(H"#)[[A]] from Example By abuse of notation we will
sometimes simply write O(H"8)[[A]] for the base algebra £. The braided module struc-
ture of Cz over A comes from the dynamical twist J(\) being a solution to the ABRR-
equation and the corresponding quasi-reflection datum (7 (X)21, Bi(\)) from Proposi-

tion [3.2.32 A

3.3. Factorization homology on surfaces with dynamical point
defects

In this section we compute factorization homology for surfaces with marked points and
coefficients given by dynamical point defects. We show that one can identify the re-
sulting categories with modules over algebras aElw’ A, defined in combinatorial terms
from certain decorated ribbon graph models (I', {v1,...,vt}). We will see that the al-
gebras agl’m, A, 8ive rise to examples of so-called dynamical associative algebras, which
are quantum analogs of the Poisson dynamical bracket from (see Remark .
In particular, we recover a dynamical version of the FRT-algebra via factorization ho-
mology. Lastly, we show that for certain coefficients the algebras aElym, A, are examples

of module algebras over so-called twisted quantum groupoids from [DMO06].

3.3.1. Combinatorial algebras

Let ¥ = ¥, , be a connected oriented surface of genus g with r boundary components,
r > 0, together with k& marked points {v1, ..., vt} C X. We will distinguish two cases: X
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3. Dynamical character varieties

R h 1R \ﬁ
| | | | | ! ! ! ! } }
(x3,1) (x1,P(i)2) (x,P(1);)  (x1,2n-m+1) voo (x;,1) coe (Xm,1) (x1,1) (x1,P(i);) (x3,P(1);)  (x3,2n-m+1) voo (x;,1) e (X, 1)
» » E'S » ES

|

X1=m P(i)y= X = Vi1 Xp = Vi X1= V1 P =x=V] Xn=W
(a) Surface ¥ with marked interval in its (b) Surface ¥ without marked interval in its
boundary. In the above, n =2g+r+k—1 boundary. In the above, n =2g+7r+k —2
and m=k+1. and m = k.
Figure 3.4.: Surface ¥ with k& marked points {vy,..., v} C ¥ constructed from a given

gluing pattern.

has either one or zero marked intervals in its boundary. It will be convenient to describe
such surfaces combinatorially in terms of gluing patterns with multiple basepoints in-
troduced in what follows. Note that these gluing patterns will be particular instances
of ciliated ribbon graph models for surfaces with markings.

A gluing pattern (P, {z1,...,x,}) with m basepoints is a bijections of sets

P:{1,1,2,2',... ,n,n"}
= {(21,1), (21,2),. .., (21, 2n —m + 1), (22, 1), (23, 1), . .., (xm, D},
such that, writing P(i) = (P(i)1, P(i)2), the following holds:
e P(i); =z forall 1 <i<n,
o if P(i); = P(i'); = a1 then P(i)s < P(i')s.

We will let P(i) and P(i’) denote the position of P (i) and P(i’) in the set {(x1, 1), (21, 2),
..oy (xm, 1)}. We also introduce the notation (P, m, {v1,...,v;}) for a gluing pattern with
m = k + 1 basepoints, with distinguished first basepoint.

A given gluing pattern (P,m,{vy,...,v}), or (P, {v1,...,vr}), determines a marked
surface X(P) with or without marked interval in the boundary. For the former, consider
n =29+ r+k—1 disks Dgu with two marked intervals ¢ and ¢’ each, and a disjoint
union g2n-+Dg U gDy L --- L @Dy, where the first disk has 2n — k 4+ 1 marked intervals
labeled (z1,0), (z1,1),...,(z1,2n — k) and the others are once-marked disks D, with
one labeled interval (z;,1) each. Then, glue the interval i to the interval P(i) and i’ to
P(7'), respectively. A sketch of this procedure is given in Figure For the case of the
gluing pattern (P, {v1,...,vt}) without the distinguished first basepoint, the procedure
is similar, except that we glue the n = 2g + r + k — 2 handles Dg a to a disjoint union
of once-marked disks g2n—#11Dx L gDy U - - - L gDy, see Figure

Throughout, let A € Pres be a rigid balanced braided category with a strong generator
consisting of compact-projective objects. Let T: AKX A — A be the tensor product
functor. We have the following two canonical algebras. First, the algebra F = T (14),
which admits the following colimit formula:

XeAcp
]—“:/ X'RXcANA |,

with multiplication

XVRX)o(YVRY)=X'oY'RXoY 29 Yo X' RX oY 225 F |
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3. Dynamical character varieties

Note that the algebra F is the image of the FRT-algebra Fgrt = fX XVKRX € APK A
under the tensor functor (id,o): A°® — A which is the identity on objects with tensor
structure given by the braiding in A. We will denote by F¥ () the image under the
embedding

ARA — A% gRbsaR1--- R b K- K1

fary

Second, the reflection equation (RE) algebra

XeAP
JTRE:/ XVeoXeA ,

which was already introduced in Example We will also denote by Fgre the image
of the RE-algebra under the embedding A — A®*" a®@b—a®bX1-- K 1.

Now, given a gluing pattern P with multiple basepoints {vy,..., vy}, we will define
an algebra object a”’ in A®¥™. As an object in A¥™, a” is defined by the tensor product

n FPW) if P(i); # P(i')
of — ® FPG), FPGE) (3.51)
i=1 FRE, else

Similarly to the case of gluing patterns with only one basepoint [BZBJ18al Section 5],
the algebra structure on a is specified in terms of crossing morphisms Cji: F PG4 @
FPGi) _ FPi) g FPG.I) for each pair i < j, such that the multiplication m|]_-p(i,i/)®]_-p(j7‘,-/)
is given by:

FPO) @ FPGS) @ FPOI) @ pPGS) DGO (pPi)y 92 o (FPGI)) 9

™ 2P (i,i) O 2P (5,57)

FPG) o FPGI")
For each pair 1 < i < j < n, we have to distinguish the following cases:

| |

(LP()2) < (LP()2) < (LP(2) < (LP()) (LPG)2) < (LPG)) < (LP(2) < (LP(")2) (LPG)) < (LPG)) < (LP()2) < (LP(i")2)

X1 X1 X1

) ﬁ (9) hé/ N
T < tron

X1

=
=2
A

=
bl
A

=

XI

=
=3

Figure 3.5.: List of gluing patterns for 1 < ¢ < j < n, together with the cases one obtains
by exchanging i <+ j in the pictures above.
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3. Dynamical character varieties

The crossing morphisms for cases (a)—(c) in Figure were already defined in Figure
if one specializes to the case of trivial bundles decoration. The crossing morphisms
for the remaining cases are

(d)  FrewFPOH () Fear@  (f) FeoFrW) (9) FP@)gFr("
T
VVRVeWYRW VVRVeWYRW VVRVWYRW VVWOWYRWEXRV

] KX

\ \
WYeVVeVRW QVVQVREW WYerYeVEWw WYeVVR W R V

n m

Figure 3.6.: Definition of crossing morphisms.

To each basepoint z; in the gluing pattern (P, {z1,...,z,}) we assign the categorical
data of a dynamical extension (C;)z, € Pres together with a monoidal functor

freeg

AL e T (e, Lo F(X) e F(Y) T2

T r e F(X 0AY)

given by means of a dynamical twist 7 ()\;), defining a dynamical point defect. We then
define the tensor functor

F)\ly---7>\'rn = F>\1 - F>\m: ‘A&m — (Cl)£1 XX (Cm)ﬁm s (3'52)

and the corresponding algebra object

D = Priam (@) (3.53)
in (C1)g, ®--- X (Cp)z,,. The algebras a)\ 2 €G-+ K Gy have quantum moment
maps

p: L 21K KL IR K1 228 0L (3.54)

Example 3.3.1. Consider a gluing pattern with two basepoints given by P(1,1") =
((m, 1), (v,1)). In this case we have that a’ = F. To the basepoint m we attach the
trivial dynamical extension id: A — A, i.e. the base algebra £ = 14 is given by the
monoidal unit in A. Let F\: A — C, be the dynamical data for the second basepoint
v. Then, we have:

XeAP
da= [ X mLoF()
with multiplication:

(XVRLRFX)® (YRLIFY))=X"@Y'R(LF(X)®: L F(Y))

o idX.7 (A
2 XVeYYR Lo F(X) @ F(Y) SIxry,

oxv yvKid

XVQY'RLRF(X®Y)
XeY)VRLOF(X®Y) X al, |

where for the purpose of lighter notation we wrote ® for both the monoidal product in
A and C. A
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3. Dynamical character varieties

3.3.2. Computations on surfaces with point defects

In this section we will assume that the local categorical data to compute factorization
homology in Presk on a surface with marked points {vy,..., v} is given by

e A balanced braided abelian category A which is equivalent to the free cocompletion
of a small K-linear category.

e A collection {(C1)z,,---,(Ck)c,} of abelian braided A-module categories, each
given by the dynamical extension of a category C; € Presy over a base algebra L;,
where C; is equivalent to the free cocompletion of a small K-linear category.

Example 3.3.2. The category A = Rep,(G) of integrable U,(g)-modules and C =
Rep,(H) the category of A-graded vector spaces are both of the above form. A

—

We will comment on factorization homology on marked surfaces with coefficients in
Cl[h]]-Mod-enriched categories in Remark d

Theorem 3.3.3. Given an oriented surface ¥ = X, ., r > 0, with marked points
{vi,...vx} C X together with a marked interval m € 0. Let (P,m {vy,...,v;}) be
a gluing pattern with multiple basepoints for 3. We have an equivalence of categories

/ (A7 {(C1)eys- - (Ck)['k}) = al:,)\l,...,)\k‘MOdA®C1®~~®6k
S(P,R{v1,...,u1})

If the surface ¥ has mo marked interval in its boundary, and is described by the gluing
pattern (P, {v1,...,v;}), then we have an equivalence of categories

/ (A {(C)eys- - (Ch)e,}) = ay, . x,-Mode,x...;c,
S(P{v1,...,vx})

Proof. Given a gluing pattern P with m basepoints, we have a right A*?"-action on

ARR:
regP: (bl&' . ‘&bn)®(a1®- . 'gagn) — (bl ®CLP(1) ®ap(1/))&- . -@(bn@)ap(n)@ap(n/)) ,

and we denote the resulting right module category by Mp. On the other hand, we have
a left A%?"-module AX™:

regx1,...,mm: ((Il‘Z’ X a2n) X (bl X..-X bm)
= (a1 @ - @ azn-mp1 @ b1) B (2n—mi2 @ bo) K- -- K (azp @ bn)

s dm

Composition of the resulting tensor functor T%1:%m = regf;’gmgu with the monoidal
functor F), . »,, from yields a left A¥?"-module category which we denote by AVp.
If P=(Pm{vi,...,v;}), we have Np = AK(Cy)z, K- - -K(Ck) 2, , whereas for the gluing
pattern without distinguished basepoint we have Np = (C1)z, X --- K (Cg)z,. In the
following we will simply stick to working with a general gluing pattern (P, {z1,...,Zm})
from which we can deduce the two cases of the theorem.

Using K-excision for the collar-gluing described by the gluing pattern (P, {z1,...,Zm})

(Figure and Figure [3.4b)), we find that

/EA =Mp B Np . (3.55)
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3. Dynamical character varieties

Let 7p: {1,2,...,2n} — {(z1,1),(21,2)...,(xm,1)} be the bijection given by post-
composing the map defined by 2k + 1 — k, 2k — k' with P. Since the monoidal unit is
a progenerator for the regular action ([BZBJ18al, Proposition 4.15]), we may now apply
monadic reconstruction to identify M p with modules over an algebra End yxon (1 g0 )p €
A¥2nobtained from F*" by acting with 7p.

We can apply the base-change formula from Theorem to the relative tensor

product in (3.55)) to get an equivalence

/Z AZ By, (T2 (End ygon (1) p) )-Modic,) o mm(c)e,, » (3:56)
=B

of categories.

Next, we have to show that B and a! are isomorphic as algebras in A¥™. To that
end, we follow the strategy presented in the proof of [BZBJ18a, Theorem 5.14]. First,
we define algebras F() = End ypayg ey (1a) in A¥2" where we denote by AL)
the image under the embedding A < A¥2" into the j-th tensor factor. Define F(?) =
T%1%m (}'(ivi’)). Clearly, as objects in A¥™ we have F() = FP(.i) a5 defined in (3.51)).
Consider the map

m: FO @...@ Fm « pem 5, B

where mp is the multiplication in the algebra B. The map m establishes the isomorphism
a” 22 B on the level of objects. In order to show that it is in isomorphism of algebras
in A¥™ one needs to show that M| 7)o r® = M|r@o gru) © Cji- To that end, note that
the tensor structure on 7% %™ ig

agl) R ® agiz)ferl ® bgl) R ® bgz)fm&l < a(? ® P XR...1q™ ® plm)
S

N agl) ® bgl) R ® a’gn)—m—‘rl ® bg}n)—m—s—l X...X a(m) ® b(m)

where S is the shuffle braiding given by S = 04y, .0 1b20_m © " © Taz@--®asn_mi1,b2 ©
Oas@-@azn—_mi1,br» Where o is the braiding of A. Then we consider the commutative
diagram

l L1y Tm (f(luz/) X F(ﬂvjl)) — l L1y (f(ﬂ’.]/) (%) f(zzll))
S5 =T =~ S,
1, - T== J
- ngcl ,,,,, xm(m) ——

F) g Fl) B < _FO) g FO

where the dashed arrows are the natural isomorphisms encoding the tensor structure
on T%1-*m and the label T%1 % (m) on the vertical arrow means applying the tensor
functor to the multiplication in End 4m2n(1 4= )p. As an example, consider the gluing
pattern P(1,1/,2,2") = ((x1,1), (2, 1), (21,2), (z3,1)) as in Figure [3.5| (g). We have

VAP WeA®
;<1>:/ (VW el RVEL, ]-'(2):/ QoW )R1IRW

and the corresponding shuffle braiding on components of the coend is

S1p=idRidKid, Sy1 = opv v KidKid,
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3. Dynamical character varieties

and we observe that the composition Sl_Ql o S91 agrees with the crossing morphism
in Figure (9). As a second example, consider the gluing pattern P(1,1’,2,2') =
((x1,1),(x1,2), (21,3), (x2,1)) from Figure (e). In this case we have

VeAP WeAP
;(HZ/ VWeVelKl, ]-'(2):/ 1o1eWYRW

and

S12 =idXid, S99 = (idvv ® O'W\/,V) o (O'W\/J/\/ & idv) Xid
so that 51_21 o S91 indeed agrees with the crossing morphism from Figure (e). The
other cases can be worked out analogously.

Lastly, for each ¢ = 1,...,m we have a monoidal functor free.,: C; — (C;)z, with
right adjoint given by the forgetful functor, which is colimit preserving. We then recall
that the equivalence in is established by the monadicity theorem for the monad
defined through the adjunction (X; (C;)z,) S Mp K men (X (C)z,). Since (Ci)g,

N (Cn)e, = (C1XR---KCp) w12, composition with the adjunction freeg, 0, 4 U,
where U is the forgetful functor, results in a new monadic adjunction establishing the
equivalences stated in the theorem. ]

Remark 3.3.4. As was already noted in Remark we are still missing monadic
reconstruction results for V = C[[h]]-Mod-enriched locally presentable categories that
would allow us to give an analog to Theorem i this setting. Nevertheless, given
a marked surface ¥ with boundary described by a gluing pattern (P,{vi,...,vx}) and
dynamical point defects (A,Cr) in VPres, we can still extract algebraic data as will be
described in what follows. For an example of a dynamical point defect in the formal

setting see Exzample[3.2.38

To ease notation we consider the case where all marked points are described by the
same categorical data (A,Cr). Let Os be the image of L2* under the map induced by the
embedding of k marked disks D* into (X, {v1,...,vx}). We can compute the following
algebras

EI’]CU‘E(P‘{U1 %})(A,CC)(OE) = EndAxn ® (Cp)®k <1A|Z|n X E'Zk>

..... AR2n A&Qn

= Hom ¢, yxx (Em,@ftmn(lA)P > ka)

= Hom ¢, ymx <Egk,F>\1,...,Ak (T (@AW”OA)P)»
o Hom(cﬁ)m (C&kﬂfh...,)\k(VD

=~ Hom mx (1?]6,(1{\31,..‘,%(1}))

where afl A (V) is the combinatorial algebra defined in (3.53)). In the above we used
that the right adjoint to the iterated tensor product functor is monadic (see of
the appendiz). The proof that

Py (TP (End gman (L)) = a5, (V)

as algebras in (Cg)®* is analogous to the one given as part of the proof of Theorem .
We thus get a ‘global section functor’

Hom(Osx, —): /

(A,Cc) = Homea (13%,05, 5, (1)) -Mod
Z(Pv{vlv'“vvk})

106
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3.3.3. Dynamical algebras

Let B C H be a pair of Hopf algebras over K and let £ be a B-base algebra. Following
[DMO5], we call a left B-module A" a dynamical associative algebra over the base
algebra L if it is equipped with a B-equivariant map ©®: AY? @ AY" — £ @ A" such
that the following diagram is commutative

—1 id .
Adyn RL® Adyn ’yAdyr‘@I L& Adyn ® Adyn id®O LROL® Adyn

m,®id
id®@/{ L@ Adn
) . /m£®id
Adyn ® Adyn ® Adyn M} L& Adyn ® Adyn 'm&) LRL® Adyn
where ¥ dyn : £L® AW 5 AY" @ £ is the half-braiding of the B-base algebra L.

Let F\: H-Mod X B-Mod frel> B-Mod; be a functor with monoidal structure
given by a dynamical twist J(A). If A is an associative algebra in H-Mod, then
F\(A) = L ® F(A) is an associative algebra in the dynamical extension. In particu-
lar, the multiplication in the dynamical extension restricts to a dynamical associative
algebra structure on AY® = F(A) € £ ® F(A). Following [DMO06], we will say that the
dynamical algebra AY™ over L is obtained from A by the dynamical twist J ().

We now give two examples of dynamical algebras obtained via Theorem [3.3.3] from
factorization homology on surfaces with dynamical point defects.

Example 3.3.5. Consider the disk with two marked points {v1,v2} described by the
gluing pattern P(1,1") = ((v1,1), (v2,1)). Applying Theorem we get an equiva-
lence fID* i (A,Cr) = Fa, x-Mode, e, identifying factorization homology on the marked
disk with modules over the following algebra:

XeH-Modf
f,\l,AQZ/ LOFXVWRLF(X)eCRC, .

By Proposition Fai ), 1s an algebra in € X C with quantum moment maps
i pe: LKLELRIINL®L = Fy
Multiplication in Fy, », is given by

(LOF(XV)RLIF(X)) @, (LOFY)RLRF(Y)) (3.57)
YLRIFXV)@FYV)YRL F(X)® F(Y)
TN xv yvBIN)x,y

LOF(YRX))RLIF(X®Y)

Fy(o Xid
DO, Lo F(X @ Y)Y )BLO F(X ©Y) = F, o,

Note that as a (B, B)-bimodule we may identify Fy, », with the tensor product LLRF,
where F = H° as (H, H)-bimodules. Recall that we denote by H® the restricted dual
of the Hopf algebra H given by matrix coeflicients of finite-dimensional representations
endowed with the left- and right-coregular H-action. In the language of [DMO06], the
multiplication turns F into a dynamical associative algebra FI™ over the base
L ® L obtained from F by the dynamical twist J (A1) ® J(A2).
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(a) (b)

Figure 3.7.: Framed surfaces which give rise to (a) the algebra Fy, x,, (b) the dynamical
FRT-algebra F /'\:IRL, upon applying factorization homology.

The algebra F), ), is closely related to the so-called dynamical FRT-algebra, or dual
quantum groupoid, which is a dynamical analog to the FRT-algebra H° and was pre-
viously defined in [DMOG, Section 8]. Since our conventions for the dynamical twist
differ from the one in [DMO0G] (see Remark [3.2.11)), we give a detailed definition of the
dynamical FRT-algebra in of the appendix, matching our conventions. We may
present the dynamical FRT-algebra via the following coend:

X € H-Modfd
P = / LOFXV)RL®F(X) € (C)PRC, .

Note that (Cp)°P = szp, where C°? = B°-Mod and B°P is the Hopf algebra B with
opposite coproduct. The multiplication in .7-"5512 is such that it turns the (ordinary)
FRT-algebra H° into a dynamical associative algebra (H°)®™ via the twist (A1) ®
J(N2), where K(\) = J%® S™HJT') @ S7HT?) € Lop ® H® @ HP is a universal
dynamical twist for (C.)°P. The following is proven in of the appendix:

Proposition 3.3.6. The dynamical FRT-algebra .FEEL is a left bialgebroid over the
base algebra L.

We may interpret a dynamical FRT-algebra as the quantum analog of a Poisson—Lie

groupoid (see Example |3.1.6)).

From a topological viewpoint, the category

Frixe-Mode, ze,

computes factorization homomology on the framed surface in Figure (a), whereas
the category

‘FEEL_MOd(Cﬁ)OpCﬁ
comes from a surface with framing as sketched in Figure (b). Note however that for
local coefficients given by oriented marked disk-algebras their factorization homologies

are, up to equivalence, independent of the framing and the two categories will in fact be
equivalent. A

Example 3.3.7. Let D, be the disk with one marked point v and a marked interval
in its boundary described by the gluing pattern P(1,1’) = ((m, 1), (v,1)). By Theorem
[3:3.3] we have an identification

/ (.A,Cg) = afy)\—l\/lodAch ,
Dl,v

where af y is the algebra from Example In this case, we get a dynamical associative

algebra F&™ over £, obtained from F via the dynamical twist 1® J(\). We will come
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back to this example in the next section when discussing deformation quantization of
dynamical Poisson spaces, in particular we will see that the algebra plays a role in the
quantization of Poisson homogeneous spaces. A

3.3.4. Module algebras over twisted bialgebroids

We will use the following algebraic setup. Let B C H be a pair of finite-dimensional
Hopf algebras over K. We assume that H-Mod is braided and that £ is a base algebra in
B-Mod. Let DB = B <1 By, be the double cross product as defined in [Maj95), Section
7], where Bg, is the dual of B with opposite multiplication. The category of modules
over the double DB is braided: the braiding is given by acting with the universal R-
matrix © = €’ ® e;, where (e;)icr is a basis of B and (e')ies its dual in Bj,. The
algebra £ has a natural DB-base algebra structure, see for details. In [DMO6],
Donin—Mudrov establish a connection between twists for the tensor product bialgebroid
H ® DB/, and solutions of the dynamical Yang—Baxter equation. The bialgebroid DB,
is a quantum groupoid, that is a quasi-triangular bialgebroid, defined by a quotient of
the smash product £ x DB, see In Proposition [B:2.5| of the appendix we give the
analogous results for the dynamical twists from Definition In more details, we
show that

U= (1010J'51(0?) e, (7'®0'®J%) € Ba,B (3.58)
is a twist for the tensor product bialgebroid
o = (DB2, @ H)”

The bialgebroid twist defines an automorphism of the monoidal category of %E -modules
and thus transforms a 23-module algebra into another algebra, with respect to the new
coproduct. More explicitly, in Proposition we show that for an H-module algebra
A, the tensor product £L® A is a module algebra over the bialgebroid 8. The dynamical
twist J(\) then induces a new multiplication * on £ ® A (Proposition [B.2.7):

axb=7J"@ma ((J"a)® (T*D)), Ak p=me(A® p) (3.59)
axA=0'"» A2 571(6?).q, Axa=AR®a

for all a,b € A and A\,u € L, making (£ ® A,*) a module algebra over the twisted
bialgebroid 5.

We now apply the previous discussion to the algebras obtained in Theorem Let
A = H-Mod, C; = B;-Mod for i = 1,...,k and let £; € Z(B;-Mod) be base algebras
with corresponding dynamical twists J(\;) defining dynamical point defects, see for
Example [3.2.37 In the language of module algebras over bialgebroids, we then have the
following:

Proposition 3.3.8. The algebras ai e from Theoremm are module algebras over

90

the twisted L1 ® - - - @ L-bialgebroid B with
B=2B7 @ @B
and twist defined by
U=(1010J'(M)S(0%))® @ (1eleT (\)S(03,)))
-0, ((T'(M) ©Op, @ T2 (M) ®@--- @ (T° (M) @ O, © T*(Ak)))

where Op, is the universal R-matriz of the double DB,;.
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3. Dynamical character varieties

Proof. The algebras ai,..., A, are defined as the image of the algebra a? from under
the monoidal functor Fy, . from (3.52)). In the proof of Theorem we show that
a® is an algebra object in AXF = (H®k) -Mod. By Proposition Fxi...om (a®) is
thus a module algebra over 8. The multiplication in the algebra ahm’ A, 18 of the form

(3.59) and thus a module algebra over the twisted bialgebroid B. O

Remark 3.3.9. We expect the above result to hold true even in the infinite dimensional
case when working over the ring C[[h]] of formal power series.

3.4. Quantization of dynamical Poisson spaces

We will now show that the algebras we obtained in the previous section via factorization
homology on surfaces with dynamical point defects quantize the dynamical character
varieties from To that end, we will first make precise what it means for a base
algebra Ly to deformation quantize a Poisson base space and recall how dynamical twists
over such base algebras give rise to quantum dynamical R-matrices R(\) € L, @ Up(g) ®
Un(g)-

Let h be a Lie bialgebra and Up(h) a quantum universal enveloping algebra that
quantizes b [CP95 Section 6.2]. We will say that a Up(h)-base algebra (Lp,x) (see
Example for the definition of a base algebra over a Hopf algebra) is a quantization
of the Poisson h-base algebra Ly (Definition [3.1.1)) if it is a U, (h)-equivariant deformation
quantization of Ly with multiplication

-
Ak =M+ O), Akp—pxX=h(n N (hj.u)+OH) | (3.60)

where (h;)jer is a basis for b and (17) 7 its dual basis, and left coaction L — Ux(h)®Lp,
of the form

—
5(\) =1®@ A+ hh; @ P A+ O(h?) (3.61)

for A\, p € Ly,

Assume that h C g is a Lie sub-bialgebra of a quasi-triangular Lie bialgebra g with
classical r-matrix r € g ® g. Given a universal dynamical twist J(\) over Ly, we have
seen that the element R(\) = j()\)ijJ()\) € Ly ® Uy(g)®? is a quantum dynamical
R-matrix satisfying the quantum dynamical Yang—Baxter equation

R(X)0,1,2R(N)o02,1,3R(N)o,2,3 = R(AN)o1,2,3R(N)o,1,3R(Nos 12 (3.62)
where for example R(N)o2.13 = (R(A\))) @ RO @ (RO @ R(N)2.

Proposition 3.4.1. Let the base algebra Ly, be a quantization of a Poisson h-base algebra
Lo. Assume that R()\) is of the form R(\) = 1+ hr(\) + O(h?). Then its semi-classical
limit r(\) is a classical dynamical r-matriz over L.

Proof. To first order in £, the Uy(h)-invariance of R(\) reads:

_1
" h

for all h € h. Sine Up(h) is a quantization of the Lie bialgebra (h,0) we have that
the right hand side agrees with d(h) and we recover the quasi h-equivariance for r(\).
Expanding the quantum DYBE to second order in A, together with Equation for
the coaction, implies the classical DYBE for r(\). O

BN +[h®1+10hr(\)] = ~(An(h) — A%®) mod(h) .
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3. Dynamical character varieties

Example 3.4.2. Let’s revisit the dynamical base algebra O(H)g[[h]|] from Example
3.2.5l To that end, let Ux(h) = U(h)[[A]] be the Cartan part of the formal quantum
group. The algebra O(H)[[A]] is a right Up(h)-comodule:

SF: O(H)([H] = O(E)[A]] @ Un(h),  w(f)(@1) = f( ) . (3.63)

We have seen that the comodule structure also extends to the localized algebra O(H )gs[[A]].

Recalling the expansion of f (e)‘*hh(z)) from Equation (3.23), together with the definition
of the h*-action from Example we find that

FAD) = () =B Y0 S () @ b+ OUP)

Using Relation (3.21)) between left and right comodule structure, we find that the Uy (h)-
coaction of O(H)g|[h]] is of the form (3.61)). A

3.4.1. Deformation quantization

Let g be a quasi-triangular Lie bialgebra with classical r-matrix r € g ® g. For each
i=1,...,k, let h; C g be a Lie sub-bialgebra and Up(h;) a quantum universal enveloping
algebra that quantizes b;. Let Rep,(Hp X - - - x Hy) be the category of topologically-free
modules over ®%_;Uy(h;). Throughout, all U, (h;)-base algebras L; ; are assumed to be
quantizations of Poisson h;-base spaces L;. We will consider the algebras ai,..., A from
§ 3.3, Equation , as algebra objects

P
A, € Repp(Hy x - x Hy) .

As C[[h]]-modules we have

k
Ao = Q) Lri OGP, n=2g+r+k—1 .
i=1
We let F': Rep;(G) — Repy(H;) be the forgetful functor coming from the inclusion
Un(h;) — Up(g). To ease notation, we will assume that for all ¢ = 1,...,k we have
h; = b C g and that all base algebras agree; L ; = L. The general case can be worked
out in complete analogy.

Theorem 3.4.3. The algebra a%f)\l o, Isa Uh(h)®k—equivariant deformation quantiza-

Nk
tion of the dynamical representation variety Repdyn((P, {v1,...,u}), G) in the direction

of the dynamical Fock—Rosly Poisson bracket.
Proof. We first settle some notation. We will denote E,(im) the image of L; under the
quantum moment map p("™ from ([3.54). By abuse of notation we will again write ]-"é) ®
for the image of the algebra defined in (3.51)) under the embedding into a€ Mo We
will denote by
(ceoFVVev)=roFle -0V eVl .)RIK.. K1
H},—/
(2
the components of the coend algebra fF({ié n C aﬁ)\h‘_”)\k and write
(£® FWV)RL  F(W)) ")
=LOFl® oW e - )HIK--- KL F(W)K-- K1
~~ ——_——

¢ P(i')
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3. Dynamical character varieties

for the components of fé“/) C a£A1,---,kk' Also, note that both coend algebras Fj and
Fre,; (defined in are identified as C[[A]]-modules with the quantized algebra
O1(G) of functions on G, however their respective multiplications differ and thus they
quantize two different Poisson structures.

We now compute the semi-classical limit of the commutator bracket [Xj,Y] for
X, Y, € a,ﬁ Ao An and show that it coincides with the dynamical Fock—Rosly Pois-
son structure from Theorem [3.1.10[ To that end, we have to distinguish the following
cases:

Case 1: X; € ]:;(i), Y; € fé)(j). For a fixed pair of indices 2 < ¢ < j < n we consider:
o X) € Fid Yo € FY, with P(i)y < P(i')2 < P(j)2 < P(j')2 (Figure B.5] (a)):
On the one hand we have

(e FVYeV) e (1o FWY o W) 210 F(VY o V)D) e F(WY @ W)D)

TMvvev,wYew

LOFVYQV@WY®@W) = aby,
and on the other hand

1o FWY eowW)¥ e, (1o FVY e V) 210 F(WY e W)P) e F(VY @ V)®)

TNwvew,vVev

LRF((WYoW)D g (VY eV)D)
F(Cj)=F(Rwvgw,vVvev)

LOFVYQVRWY@W) —=apy,. . -

where C}; is the crossing morphism for the positively unlinked case from Figure
Hence, the semi-classical limit of the commutator is given
(X, Y3
h

where 7(A) = —j(A)21 + 7+ j(A) and X = X;,/(h) € O(G), Y =Y;/(h) € O(G). This
agrees with the dynamical FR-bracket from Theorem [3.1.10]

mod(h) = r(M)37 e (X ®Y)

o Xi€ Fi Vi€ FIP) with P(i) < P(j)2 < P(¢')2 (Figure[3.5 (d)):

Similarly to the previous case, we can compute the commutator by acting with
T Nvvevwy = F(R™ywv o F(Rag)vvwy o (T (N21)vvavwy

on the components (1® F(VY ® V))(l) @ (1@ FIWY)R1® F(W))(”/) of the two
coend algebras. Note that F(R™1)ywv o F(Ro1)vvwv = F(Cj;), where C;; is the
crossing morphism from Figure (d), and we find that the semi-classical limit of the
commutator is

BT snoa(h) = (O + 1)) > (X 0 Y)

o X, € F' Y, € F) with P(i)y < P(j)2 (Figure 3.5 (9)):
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3. Dynamical character varieties

In this case, we can compute the commutator by acting with
TN)vvwv = (F(R21) o T(N2,1)vv wv

on the components (1 ®@ F(VY)X1® F(V))(Z}i’) ®r (1o FWY)R1® F(W))(j’j/) of
the two coend algebras. In the above F(Ro1)vv wv = F(Cj;) with Cj; the crossing
morphism from Figure (9). The semi-classical limit of the commutator is

[ X, Y] mod(h) = —T()\l)R’R >(X®Y) .

The remaining cases can be worked out analogously.

Case 2: X;, Y, € F (@1"), First, note that in Fj the following commutation relations
hold. For two elements ¢, € On(G) = F;, we have

mz, (9 ® 1) = mz, (W(S(R?)(-)(R) ™) @ p(S(R™)(-)(R*) ™) .

Then, we can compute the commutator of X; and Y, on components of the coend
algebras as follows:

1o F(VY) @ FIWY)R (1o F(V) @ F(W))™
(TA) =T A)2,0)vv wvB(T (Am) =T (Am)2,1)v,w

yLOF(VY @ WY)R (Lo F(Vew))™
id[{@F((l—Rg,l)V\/‘W\/)Xﬁd[{@F((l—Ril)V,W)

LOP(WeV))R (L F(Vew))™
mr, —mFr.
< < a)];,\l,...,,\k

where n = P(i');. The semi-classical limit of this expression is:

B oy = (= rO0 B+ rm) B o (X 0 1)

= (w) B+ o) ") e (X RY)

where X = X;/(h) € O(G) and Y =Y;/(h) € O(G). This agrees with the bracket (i3.9))
from Proposition [3.1.5} and thus also with the Poisson bracket of Theorem [3.1.10

Case 3: X;,Y; € F,gié 5+ This can be worked out in the same way as Case 2, using the
commutation relations in the RE-algebra:

mre(P(R*(-)R™) ® p(R'R™(-))) = mre(¥((-)R*R™) @ o((R*(—)R')) .

Case 4: X} € £ém),Yh € f,f(i).
o X; ¢ E%m), Y, € féi’i/) with m = P(i');:
On the one hand we have

X" e (1o FV)R1e FV)™) 210 F(V)D) B (X 21) e 1@ F(V)™
21 FVY)R(X® F(V))(m) = Qha,
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3. Dynamical character varieties

and on the other hand

1o FVV)R1e F(V)" o x™ 21 F(VV)N R (1o F(V)) 0 (X, @ 1))™
e VR (Lo FV)™ = al),

where (1 @ F(V) @ X ® 1) = Xf[io] ® X,[il} > F(V) ® 1 is the tensor structure on

the free L-module functor. By taking the semi-classical limit of the right coaction
6. L — L, @ Ux(h) on the quantized base algebra as given in (3.61)) we thus find that

(X7, Yal mod(h) = (n_j}‘X)(hjL >Y)

where X = X;/(h) € Lo and Y =Y};/(h) € O(G). This agrees with the second bracket
in (3.8) from Proposition and thus with the Poisson bracket of Theorem [3.1.10

o X; € ,Cg), Y, € ]:hi’il):

Similarly to the previous case, we compute the commmutator by acting with
Xpopid— X2 0p F(XM)0)

on the components Eg) Rc (1@ F(VY)X1® F(V)) of the coend algebras resulting in:

X0 Yol oy = (P X) (R Y)

which agrees with the first bracket in (3.8)) from Proposition and thus with the
Poisson bracket of Theorem B.1.10l

o Xpely), Ve Fd,
Similarly to the previous case, the commutator is given by the action of
Xy @pid— X% @, F((x!
h&cLl h o F((Xp )vvey)
on E%l) ®r (1® F(VY ®V)) resulting in the semi-classical limit:

[Xn, Ya)

- —
mod(h) = (/. X)(hf oY) — (1 X)(hfeY) .

Case 5: X;,,Y; € L’gm). In this case we have

XM ey™ = (Xpol) e Vo)™ and V™ eXx™ = (Vo) e (X;1))™
> (X + Y@ 1)™ - s, ~ (VX0 1) ™ - hr e

Since Ly, is a deformation quantization of £y we find by (3.60)):

XY oam) = (. X))

where X/(h) = X € Ly and Y/(h) =Y € Ly, which agrees with the Poisson bracket
on the base algebra L. O
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3. Dynamical character varieties
Corollary 3.4.4. The sub-algebra of invariants Homy, pyer (1, a;f/\l /\k) is a deforma-
tion quantization of the dynamical character variety.
We now discuss in more details the two examples from [§ 3.3.3

Example 3.4.5. The algebra Fj ), \, from Example [3.3.5 quantizes the dynamical

Poisson structure Hg}’,i on L x G x L from Proposition [3.1.5 A

Example 3.4.6. The algebra a,}; u, from Example is a Up(g) ® Up(h)-equivariant
quantization of the Poisson structure II(A) on L x G from Example On the
semi-classical level we have seen that for h-stable points A\g € L, the bivector field II(\g)
induces a Poisson G-space structure on the quotient G/H. The quantum analog to
an h-stable point \g is a Up(h)-invariant character x*° on Lj. Existence of invariant
characters for a given stable point is proven in [DMO05]. Explicitly, every h-stable point
Ao defines an invariant character by x°(¢) = ()\g) for ¢ € Lp.

Given the dynamical associative algebra F'™ = (O4(@),®) C aj, g from Example
we thus obtain a new algebra

X0 ®id
e

yn dyn © dyn dyn
Fvm g 7 2, rp @ F Fovn

quantizing the Poisson structure II(\g) on G/H. A

3.4.2. Classical and quantum dynamical character stacks

Let G be a semi-simple algebraic group and H C G a subgroup. We have a commuting
diagram

[H/H] — [G/G]
\ 1
BH —— BG

where BG = [pt/G] and BH = [pt/H], the horizontal arrows are induced by the
inclusions ¢: H C G and the vertical arrows by the projections G — pt and H — pt.
Consider the induced diagram

freep(myor™

Rep(G) —————— O(H)-Modgep(n)
freeo(G)l (364)
O(G)—MOdRep(G)

where Rep(G) = QCoh(BG), O(G)-Modgep(a) = QCoh([G/G]) and O(H )-Modgep () =
QCoh([H/H]).

For any H-invariant open subset V' C H we may further compose the above with
the colimit preserving and monoidal functor O(H)-Modgrep(rry — O(V)-Modgep(sr). In
summary, we obtain the following point defects for computing factorization homology

i* freeo(v)
Rep(G) — Rep(H) ——— Rep(H)@(V)

Given a surface ¥ = X4, with r > 0 boundary components and {vy,..., v

} C
> a collection of marked points, we may pick a decorated ribbon graph model I' =
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3. Dynamical character varieties

(E,V,{Vi,bi}i=1,. ) for 3 whose set of vertices is V' = {v1,...,v;}. The corresponding
dynamical character stack is:

Charyy, (I', G) =

Hv x GE/HH,-] . (3.65)

We will make the following assumptions: each V; admits an H;-invariant étale cover
by affines. By the latter we mean a family {U! < V;},c; of affine H;-invariant open
subsets covering V;, such that

£ Ui — v

is an H;-equivariant étale morphism. We shall write U* = I, U! and denote by U the
simplicial diagram given by the Cech nerve of the cover f. We will write a,, for a tuple
of element ay,...,a, € Jand Uy = Uy, N---NU,,.

Proposition 3.4.7. For the situation described above, the category of quasi-coherent
sheaves on the dynamical character stack (3.65) is equivalent to

QCoh(Chargy, (I', G)) (3.66)

Sp / (Rep(G), {O(U, )-Modgep(it biottt) -
(Z’{vla'"ﬂ}k}) -

where the bilimit is computed in Presy over the cosimplicial diagram coming from the
Cech nerve of the cover U' x - x UF = Vi x -+ x V.

Proof. We will need the following. Given a linear algebraic group H, a smooth variety
X with H-action and an H-invariant étale cover U = LU, — X, consider the diagram

u—=" - x

L

/a1 [(x/H]

The map f and the vertical maps are effective epimorphisms, and therefore so is f.
The vertical maps are flat and locally of finite presentation (1fp). Indeed, the projection
pr: H x X — X is flat and Ifp since it is obtained by base change from the morphism
H — Spec(K) having these properties. Moreover, the action act: H x X — X fits into
a commutative diagram

HxX %5 Hx X
K‘lpr
X

where u(h,x) = (h,act(h,z)), which has an inverse u=(h,x) = (h,act(h™!,z)). It
follows that the action morphism is flat and lfp since the projection is so. Then, by
[Sta2ll Tag 06FH]|, X — [X/H] is flat and lfp and similarly for &/ — [U{//H]. From the
above observations and [Sta21, Tag 0CIQ| we deduce that f is étale.

Given the étale cover [Us/H| — [X/H], by descent for categories of quasi-coherent
sheaves on algebraic stacks [Hol07], we have:

QCoh([X/H]) = lim QCoh([Us/H]) .
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3. Dynamical character varieties

On the right, the bilimit is computed in Presyx over the cosimplicial diagram coming
from the Cech nerve of the cover. Moreover, we have:

QCoh([u/H]) HO )-Modgep( i)

Let’s now specialize to the case where X V1 x Vi xGF, H=H x---x Hj and
U=U x - xU, x GF. By Theorem 3 we ﬁnd that for any element II; Ul in the

nerve of the cover we have an equ1valence

/ (Rep(@). {0, ) Modsepirryhi-t..
(F {v17 7vk})

k
o~ ® O(Ué%) ® O(G)®F-ModRrep(1, x--x Hy) -
=1

from which Equation ({3.66|) follows. In the above we used that Rep(H;) = O(H;)-Comod
and O(H;)-Comod X --- X O(Hy)-Comod = O(H; x - - - x Hy,)-Comod [EGNO15, Propo-
sition 1.11.2]. O

Quantum dynamical character stack Let us now restrict to the special case where
H C G is a maximal torus. Let H™® C H be the open subset where the dynamical
twist Jp(A) is regular. Note for every open subset V' C H'™E, the algebra O(V)[[R]] is
again a Uj(h)-base algebra with the Uy (h)-comodule structure from Example The
following composition

freeo (v (n)]
—

Repy,(G)'d —» Repy, () O(V)|[[H]-Mod

RePrL(H )i

with monoidal structure coming from the dynamical twist J,(\) € O(V)[[A]] ® Uy(g)®?
is thus a dynamical point defect (see Example [3.2.38)). Keeping the same notation as in
the previous section, we define the quantum dynamical character stack by:

QCOhh(Chardyn(Fv G))

= lim T, / (Repi (@), {O(W, IR Mod . Fict, .
[nlea ™ " J(EA{v1,evk})

Going forward, we would like to characterize the quantum character stack in terms of

categories of modules over the algebras afhw A defined on a cover of H™&. To that end,

we will have to develop monadic reconstruction techniques for factorization homology

in the C[[A]]-linear setting.

3.4.3. Chern—Simons theory with sources

In [BRO5|, Buffenoir-Roche study the quantization of Chern-Simons (CS) theory cou-
pled to dynamical sources. By carrying out a Hamiltonian analysis for the classical
CS-action functional coupled to a source term, Buffenoir—Roche find Poisson algebras of
dynamical holonomies expressed in terms of classical dynamical r-matrices of trigono-
metric type, leading to the appearance of dynamical quantum groups upon quantization
of the theory. The resulting quantum algebras and their representations were indepen-
dently studied in [BF96]. The goal of this section is to understand the Poisson algebras
found by Buffenoir—Roche and their quantization from a factorization homology point
of view.

117



3. Dynamical character varieties

CS-action functional with sources Let ¥ = X be the sphere with &£ punctures
v1,...,Vg. The latter represent point-like sources in the spatial slice . Let h C g be
a Cartan subalgebra of a semi-simple Lie algebra. To each v;, one assigns a regular
semi-simple element x; € h. Let M = 3 x [0,1], so that the mapping v;: [0,1] — M
may be interpreted as the world-line of the i-th particle. The action for the point-like
sources coupled to Chern—Simons theory with symmetry group G is given by

Pty
S[A, My, ..., M,] = 9/ (ANdA + 2A NANA) + Z/ (XnMi_l(i + Alg,)M;)dt
M 3 i1/t dt

where (—, —) is the Killing form of g, § € R is the coupling constant, A € Q' (M, g) is the
connection 1-form and the M;: [0,1] — G are the dynamical variables. Buffenoir-Roche
regularize the action functional S at the location of the sources, which involves removing
a small disk D; containing the puncture v; for each i = 1,..., k. We will write ¥ for
the resulting surface. We refer to [BR05, Section 3.1] for details on the regularization
procedure. Subsequently, a Hamiltonian analysis of the regularized action functional is
carried out, leading to the Poisson algebras described in what follows.

Dynamical boundary-boundary holonomies Adopting the notation of [BR05], let (M) er
be a basis of h and (ha,)jer its dual with respect to the Killing form (—,—). For each
i=1,...,k, let z; be a marked point on the boundary component 9;% = S! and fix
(k—1) paths ~; going from x1 to x;. Then, &~ = %\ D is the punctured disk as pictured
in Figure The orientation of ° induces a linear ordering < on the set of curves.
After relabeling of the marked points, one can assume that v9 < -+ < . Let U; C b
be a neighborhood of y; € h. Buffenoir—-Roche compute the Poisson brackets for the
algebra of matrix coefficients of the holonomies along the curves ~; and the coordinate
functions

<hoéj7 _>i: U; — C, 551 = <hoéj7 (%i)al)‘l> = (%i)aj )

on the U; C b assigned to the sources. The Poisson algebra of dynamical boundary-
boundary holonomies from [BR05, Section 3.2] is (the notation is adapted to match our
conventions)

V), (hays =0} = BE B VW), VD), (hay, =ik = =00 (hE > VD)
V@), V(i)} = - R e V) @ V(j), fori<j (3.67)
V6, V'@ = ("G + (@) HF) o VE) & V()

where V (i), V'(i) € O(G) are matrix coefficients for the holonomies along 7; and w?(¥)
is the anti-symmetric part of the trigonometric solution

. 1 2
Ta(X) = @ t+ Z eaNe_q (i(a)l + 1) (3.68)

aEAT € 20

to the classical DYBE over the commutative base ) with coupling constant € = %. In the
above, 4—1015 is the symmetric part of the standard solution of the ordinary Yang—Baxter
equation. Note that for each i = 1,..., k the dynamical r-matrix r(x;) is considered as a
holomorphic function on the open subsets U; C § containing the fixed elements y; € U;.
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3. Dynamical character varieties

We may regard the algebra of dynamical boundary-boundary holonomies as the algebra
of functions on the following dynamical representation variety

k
RepdyH(GggQ\[D7{'U1,...,’Uk.}) = HU’L X GXk—l ,
i=1

equipped with the Poisson bracket (3.67). We want to stress that in the work of
Buffenoir-Roche, the classical dynamical r-matrices were not part of the input data,
but appear naturally when carrying out the Hamiltonian analysis.

Dynamical bulk-boundary holonomies As before, let =° = S\ D and let 29 € 9% be a
marked interval in the new boundary component. The surface >’ may be described by a
ciliated ribbon graph with edges given by k paths 7; running from x; to the distinguished
vertex xg, see Figure Up to relabeling of the marked points, we may assume that
the linear ordering is 41 < - -+ < 7. Buffenoir—-Roche compute the Poisson brackets for
the resulting algebra of dynamical bulk-boundary holonomies given by matrix coefficients
of the holonomies along the paths 7; and the coordinate functions on the {U;}i—1
assigned to the sources. The resulting brackets are

W), (hays=)i} = b (> WD)
W i), w <>}——<5’>RR>W(>®W@>, for i < j (3.69)
{ (X

W), W' (@)} = (£ (35 + (@) "R ) o W (i) © W'(3)

where W (i), W'(i) € O(G) are matrix coefficients for the holonomies along 7; and r? =
w? + 4—19t is the standard solution to the ordinary Yang—Baxter equation, again with
coupling constant € = %.

Flatness In order to obtain the algebra Hol(S2, {vy,...,v;}) of dynamical holonomies
on the punctured sphere (52, {vy,...,v;}), an additional flatness condition has to be
imposed. This is done in [BR0O5|] by taking the Poisson algebra of dynamical boundary-
boundary holonomies and modding out the Poisson ideal generated by (T — 1),

(a) Combinatorial presentation of ¥ \ D (b) Combinatorial presentation of ¥\D used
used to compute the algebra of dynamical to compute the algebra of dynamical bulk-
boundary-boundary holonomies. boundary holonomies.

Figure 3.8.
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3. Dynamical character varieties

where )
T=c2 [[VG) e V(). XieU
j=k
The second approach laid out in [BRO5] is to start from the Poisson algebra of dynamical

bulk-boundary holonomies (3.69). To that end, it will be convenient to use the following
presentation for the dynamical bulk-boundary holonomies:

There is a natural G-action on the holonomies along 7, by left multiplication. Tak-
ing invariants with respect to this action, one obtains the algebra of dynamical
boundary-boundary holonomies. Subsequently, one imposes the flatness constraint to
recover the algebra Hol(S?, {vy, ..., v }).

Quantum algebras In [BR05], a quantization of the Poisson algebras and
is obtained by means of a quantization of the classical dynamical r-matrix defining the
Poisson brackets. Such a quantization is provided by the dynamical twist J(\) from
[ABRROS| [EV99], or more precisely by the dynamical quantum R-matrix defined by it

R(A) =T (N7 RI(N), R(\) =14 hr(\) + O(h?)

In a first step, Buffenoir—-Roche quantize the algebra of dynamical boundary-boundary
and bulk-boundary holonomies and in a second step implement the conditions of flatness
of the connection. With the framework established in this chapter, quantization of
the dynamical algebras of boundary-boundary and bulk-boundary holonomies (before
implementing the flatness constraint) can also be understood via factorization homology
on a marked surface, as stated in Proposition below. Implementing the flatness
constraint will be content of future work.

Let (X°,{m, v1,...,v;}) be the surface X° = §2\ D with k marked points v; € ¥° and
a marked interval m € 9%° in its boundary. We choose a gluing pattern as sketched in
Figure [3.10] as a combinatorial model for the marked surface.

Categorically, we describe the marked points v; by the dynamical point defects from
Example that is, to the bulk we assign the free-cocompletion of Rep;,(G)f, and
the defects are governed by the quasi-reflection datunf’| (J(\)2,1, B())) for the pair
Ur(h) C Up(g)°P. Let af’/\hm’/\k be the algebra computed via factorization homology on
(2°,{m,v1,...,v4}) as in Remark [3.3.4 We have

am,,...x, = O(H™E)[[]]*F @ Oy(G)*F

where the right hand-side should be understood as the image under the restricted Yoneda
embedding of topologically-free and locally-finite Up(h)®* ® Up(g)-modules. For each

3For the quasi-reflection datum to define a dynamical point defect, we have to define Reph(G)lcd to be
the category of Ux(g)-modules with opposite coproduct A°? and universal R-matrix (Rn)2,1
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l | | l
)

(m1) e (k) W
¥
|

P(1');=v1 P(k'); = vk

Figure 3.9.: Gluing pattern for surface $? \ D with marked points {v1, ..., v}

i1=1,...,k, let U; C b be a neighborhood of y; chosen such that the exponential map
exp: U; — exp(U;) is an isomorphism. In order to relate the formalism established in
this chapter to the quantization of the Poisson algebras described in [BR05|, we have to
work in the complex analytic setting. To that end, we consider the algebra morphisms

(coexp)*

fu.: O(H®)[[H] — O(H™®)*"[1] OW)™[IH], i=1,....k

where ¢: exp(U;) C H™8. The algebra O(U;)?"[[A]] is again a Uy(h)-algebra with coaction

R. p() — (=)™ " f(ed)
S f(eM) =) gy © b, ha,
n=0

where (\);¢7 is a basis for h and (hy, )ies its dual with respect to the Killing form (—, —).
We define the algebras

k
and, v = Q) OW)™[[H)] ® Os(G)®FH
=1

as the image of ag m),.., under the induction functor along the fy;,. With this setup,
we find the following:

Proposition 3.4.8. The algebra ag’:nUl U, s a quantization of the Poisson algebra
(13.69) of bulk-boundary holonomies.

Proof. By Theorem we have that ahP B, IS8 deformation quantization of

the dynamical Fock—Rosly Poisson structure Ilpp from Theorem on (H™&)*k x
G**. Let J()\) be the dynamical twist used to defined the dynamical point defects.
When pulled-back along the composition ¢ o exp, its semi-classical limit is J(x;) =
1+ hr(X;) + O(h?), with classical dynamical r-matrix as defined in (3.68). We claim

that the isomorphism exp ! xid: (Hi exp(U;) x GF, HFR) =N (HZ—UZ- x Gk, 1) is one
of Poisson algebras. To that end, we have to consider the following three cases.

e (ha;, —)i € O(U;) and W (i) € O(G):
By Theorem we have (see (3.15)):

{W(Z)’ <haj’ _>i © eXpil}Hi exp(U;) xGF == Z <;;'<haja _>i o eXp1> (hél > W(Z))
l
== (()\I)L > (hay, —)i 0 eprl) (hL > W (i)
l

= 5ljh£l > W(Z) )
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3. Dynamical character varieties

where we took into account that here we consider the algebra af Mo Ak defined in terms
of the opposite coproduct for Uy(g). The above agrees with the pullback of the bracket

{W(Z)7 <h04j7 _>Z} from " :
e W(i),W(j) € O(G) with i < j:
For the linear ordering 7; < 7; we find (see (3.16])):

(W), W)} = —riif e (W3E) @ W(j))

)

which agrees with the bracket from .
e W(i),W'(i) € O(Q):
We have (see (3.16)):
W), W' ()} = (wx) " + X)) > (W) @ W)

where w(X;) is the antisymmetric part of the dynamical r-matrix (3.68)), and therefore
agrees with the bracket defined in (3.69)). O

Remark 3.4.9. The case of the dynamical boundary-boundary holonomies can be worked
out analogously, starting from a marked surface (2°,{v1,...,vi}) without marked point
in the boundary.

Outlook In this chapter, we have computed factorization homology with dynamical
point defects on surfaces having at least one boundary component. If we want to imple-
ment the flatness constraint for the quantum algebras of dynamical holonomies described
in this section, we will have to extend our framework to include marked surfaces without
boundary. Most of the tools to do so have been previously developed in [BZBJ18b]. For
example, for an unmarked closed surface ¥ it was shown in [BZBJ18bl Theorem 5.4]
that there is an isomorphism

End(Oz) = HomRepq(G)(LAEO ®Oq(G) 1)

between the endomorphism algebra of the distinguished object Oy, of the surface and the
quantum Hamiltonian reduction of the algebra Ase associated to the surface ¥° = X\ D
along the canonical quantum moment map p: Oy(G) — Ase (see also .

For the situation at hand, we can present the closed marked surface {vy,...,vx} C G2
by the collar-gluing depicted in Figure[3.10] Describing the quantum algebra of dynam-
ical holonomies for the marked sphere via factorization homology will involve finding an
explicit quantum moment map p: Og(G) — A2y induced by the embedding of

o
VY 5eens Vi

the annulus into the marked boundary component.

Figure 3.10.: Collar-gluing for marked surface (52, {vy,...,v3}).
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A. Background material on enriched
presentable categories

The material presented in this appendix is part of joint work in progress with Eilind
Karlsson, Lukas Miiller and Jan Pulmann on categorical deformation quantization via
factorization homology [KKMP].

A.1. The 2-category V-Cat

Throughout V is a complete and cocomplete closed symmetric monoidal category. For
a V-enriched category C we write Mapg(c,¢’) € V for the V-object of morphisms from
¢ to ¢. Given a morphism f: 1y — Mapg(c, ) precomposition with f is the map
f*: Map(c/,d) — Mapg(c,d) in V defined by

Mape (¢, d) =+ 1y @ Map (', d) 2% Mapg(c, ) @ Mape (¢, d) <™ Mape(c,d) .

Postcomposition f, is defined in a similar way.
We denote by V-Cat the 2-category of V-enriched categories whose

e objects are V-categories

e l-morphisms are V-functors F': C — D consisting of a function Ob(C) — Ob(D)
together with morphisms

Fc,c’: MapC(C> C,) — MapD(F(C)v F(C/))
in V), satisfying the obvious compatibility with composition and units.

e 2-morphisms are V-natural transformations «.: F' = G between F,G: C — D, with
components «a.: 1y — Mapp(F(c),G(c)), for every ¢ € C, making the following
diagram commute

F.
Mapc (¢, ¢’) —— Mapp(F(c), F(c))

Gc,c’l l(ac/)*

Mapp(G(c), G(¢')) —== Mapp(F(c),G(c))
The set of V-natural transformations «: F' = G will be denoted by V-Nat(F,G).

The 2-category V-Cat admits a natural tensor product: for two V-categories C,D
define C x D to be the V-category whose

e objects are pairs (¢,d) € Ob(C) x Ob(D)
e morphisms are defined to be the following objects in V:

Mapcer((C, d)? (C,’ d/)) = MapC(Cv C,) ® MapD(d’ d/) .
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A. Background material on enriched presentable categories

In [Kel05, Section 2.3] it is shown that the 2-category V-Cat is closed under the tensor
product X, i.e. there is an equivalence of categories

Homy_cat(C x D, E) = Homy_ca(C, [D, E])
2-natural in the V-categories C, D, . In the above, [D, £] is the V-category whose

e objects are V-functors F': D — &£

e morphisms are defined by the objects
V-Nat(F,G) / Mapp(F(d), G(d) €V |
deD

where the right hand side is a V-enriched end.
Note that the set of V-natural transformations F' = G is Homy(1y, V-Nat(F, G)).

A.1.1. Example of enriching category: complete C[[/]]-modules

Let M be a left module over C[[A]]. Consider the submodules (A" M ),en and denote
M,, = M/R™M. There are canonical projections

Pn: My — My,

and (M, pn)nen is an inverse system of C[[h]]-modules. Hence, we can consider the
inverse limit

0 = fim My = {(z) € [T M | puln) = 20 }

The left C[[A]]-module M is called the h-adic completion of M.

Definition A.1.1. The C[[A]]-module M is complete if the canonical map M — M s
an isomorphism.

For lighter notation, denote K = C[[Rh]]. Let K-Mod be the category of h-adically

complete K-modules and (—) the completion functor, sending an K-module to M =
lim M /R"M.

Proposition A.1.2. [Pos17, Theorem 5.8] v: K-Mod < K-Mod is a reflective subcat-

egory, where the left adjoint to the mclusio L s given by the completion functor (—).

In particular, K-Mod is complete and cocomplete. Limits are calculated in K-Mod, and
colimits are calculated by completing the colimits in K-Mod.

Proof. Let M € K-Mod and C € K-Mod. We have the following sequence of bijections
HomK-Mod(Ma C) = {HomK-Mod (M/hnM, C/hnC)}TLZl

(*) —_
= {HomK_Mod(M/h”M, C/hnC)}n21

= Hom 7= (M, C) .

The first equivalence is due to the fact that giving a map M — C' is equivalent to
specifying a family of maps {M — C/h"C},>1, since C = C. For each n, the C[[A]]-
module map M — C/h"C factors through M — M/R"M. For (x) one uses that
WM = Ker(M — M/h"M) [Sta2ll, Lemma 10.96.3, Tag 00M9). O

In what follows, we will usually suppress ¢ from the notation.
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A. Background material on enriched presentable categories

Write ® = ®k. Let M and N be two K-modules. We define their tensor product as
the A-adic completion of M ® N:

—

® N

im(M ® N)/B"(M & N) .
0

M@N

I
<

Il
g

Proposition A.1.3. (md, ®) is a symmetric monoidal closed category.

Proof. We will first show that if C' is a h-adically complete module then Hom x_mod (M, C)
is h-adically complete. To that end, first assume that M is a finitely presented K-module.
Choose a representation K™ — K" — M — 0, applying Homg_mod(—,C) we get an
exact sequence

0— HomK_Mod(M, C) — " — " .

Since K-Mod is closed under products and kernels, Hom g_mod (M, C) is complete. More-
over, every module is a colimit over its finitely presented submodules, and so we have
that

HomK_Mod (N, C) = HomK_Mod (COlimZ’Ni, C) = liZIn HomK_Mod (Ni, C)

is complete.
By Proposition we then have for M, N,C € K-Mod

Hommd(M@)N? C) = Homg Mod(M @ N, C)
= Hom g-mod (M, Hom g_mod (IV, €))

= Hommd(M, HomK-Mod(Nv C))

A.2. Locally presentable enriched categories

The definition of locally presentable categories dates back to the work of Gabriel and
Ulmer |GUTI]. Its generalization to the enriched world was done in [Kel82] and further
developed in [BQRY§|]. Here, we will recall some of the main definitions that allow
generalizations of fundamental results for locally presentable categories to the enriched
context.

A.2.1. Basic definitions

Let ag be a regular cardinal. A symmetric monoidal closed category V is said to be a
locally cvg-presentable base category if V is locally ag-presentable as an ordinary category
and the full subcategory of ag-compact objects is closed under the monoidal product
and must contain the monoidal unit. When working over such V, there is a good theory
of locally a-presentable enriched categories for any a > ag.

Throughout we fix a locally ag-presentable base V and a regular cardinal a > «yg.
Recall that in the unenriched setting, an object ¢ € C is called a-compact if Home(c, —)
preserves a-filtered colimits. In order to define the notion of an a-compact object in the
enriched world, we will use the following:

Definition A.2.1. [BQRYIS, Definition 2.1] A weight W: D — V for a V-limit or
V-colimit is a-small when
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A. Background material on enriched presentable categories

e D has strictly less than o objects
e for all objects c,d € D, the object Mapp(c,d) € V is a-compact
e for every object d € D, the object W(d) € V is a-compact

Definition A.2.2. |[BQRIS, Definition 2.3] A a-filtered V-colimit is one that is in-
dexed by a weight W: D — V whose left Kan extension along the Yoneda embedding
LanyW: [D°P, V] — V preserves a-small V-limits, that is, limits indexed by an a-small
weight.

Let C € V-Cat and let I: D — C be a diagram. For a weight W: D°? — V we
will write W x I for the W-weighted colimit of I. Similarly, for a weight W/': D — V
we write {W’ I} for the W’-weighted limit of I. For a diagram J: D' x D — V let
Jp: D — [D',V] and Jp: D' — [D,V] be its adjoints. We say that W-weighted colimits
in ¥V commute with W’ -weighted limits if the comparison morphism

W s W' Jpr} — {W' W x Jp}
is an isomorphism.

Proposition A.2.3. In analogy to the unenriched case, a-filtered V-colimits commute
with a-small V-limits in V.

Proof. Let W be an a-filtered weight and W’ an a-small weight. We have

W« {VVI7 Jp} = Lany W ({W’, JD/})
= {WI, LanyW o JD/}
it {W/, W % JD}
where we used that W x (—) = Lany W (—) [Kel05, Section 4.1]. O

Definition A.2.4. An object ¢ € C is called a-compact (in the enriched sense) if the
functor
Mape(c,—): C — V

preserves a-filtered V-colimits. We say that ¢ € C is a-compact projective if Map,(c, —)
preserves all colimits.

We will also need the notion of a strong V-generator as defined in [Kel05l, Section 3.6]:
Definition A.2.5. Let C be a small V-category and F: A — B a V-functor. Define
F:B—[AP)V],  F(b) = Mapg(F(-),b)
We say that F' is strongly generating zfﬁ 18 conservativ.
Now, the main definition in this section is the following [Kel82, BQRIS]:

Definition A.2.6. A V-category C is locally a-presentable (as an enriched category)
if it has all V-colimits and admits a strongly V-generating family (X;)icr of a-compact
objects.

2A V-functor is said to be conservative if the underlying ordinary functor is conservative
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A. Background material on enriched presentable categories

The main example for us will be the following: set K = C|[[h]] and let K-Mod be the
category of fi-adically complete modules from the previous section.

Proposition A.2.7. The category K-Mod is locally finitely (o = Vo) presentable as a

category enriched over itself. As an ordinary category, K-Mod is locally a-presentable
for a > Ng.

Proof. By Proposition we have that the adjunction (/—\) 4 is K-Mod-enriched.

Since K-Mod < K-Mod is a reflective subcategory, weighted colimits in K-Mod are
computed by completing the ones in K-Mod.

The functor Hom g _mod (K, —) is conservative since an isomorphism in K-Mod is an
isomorphism of the underlying vector space which is compatible with the K-action. By

Proposition we have that Hom - (K, —) = Hom g mod (K, —) o ¢. Since ¢ is fully

faithful the composite is conservative and K is a strong generator in K-Mod.
Finally we need to show that K is Ng-compact in the enriched sense. Let W : DP —
K-Mod be a filtered weight and F': D — K-Mod a diagram and write W x F' for its

colimit in md. ‘We have

Map oy (B W o F) = Map e yoq (K, W F)
=« F

= (W « Mapmd(K,F))

showing that the unit K is compact in the enriched sense. However, K is only (a > Ng)-

compact if we consider K-Mod as an ordinary category. Indeed, for any a-filtered
diagram F': D — K-Mod of complete K-modules the following holds in K-Mod:

o —

colimF' = lim colimF' /A" colimF’
neN
= colim lim F'/A"F
neN

~

= colimF' .

We used that the completion functor is idempotent and that a-filtered colimits commute
with finite limits. Hence for o > Ny we have

Map ;ioq (K Cm) = Map g _mod (K, colimF)

colimF'

1

1

colimMap - (K, F')
showing that K is a-compact. O

We recall that for C, D € V-Cat, an adjoint pair F 4G isapair F: C - D, G: D - C
of V-enriched functors, such that there is a V-natural isomorphism

Mapp (F(—), —) = Map¢(—, G(-))
One important feature of working with locally presentable V-categories is the following:

Proposition A.2.8. A cocontinuous V-functor F': C — D between locally presentable
V-categories admits a right adjoint.
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A. Background material on enriched presentable categories

Proof. A locally a-presentable V-category C is equivalent to the V-category
LeXOé (Cgpv V) - [CSD) V]

of presheaves on the subcategory C, C C of a-compact objects, preserving a-small limits
[BQRI8, Theorem 6.3]. We thus have the following commuting triangle

C L D

5

Lexo (Cal, V)

1%

where the V-equivalence is induced by the restricted Yoneda embedding
C—[CP V], e Mape((—)lea.c) -

It is shown in [Kel05, Theorem 4.51] that a cocontinuous functor F': [CoP, V] — D has a
right adjoint defined by N N

F(d) = Mapp(F oY (-),d) ,
where Y: C, — [Ca¥, V)] is the Yoneda embedding. The image of FE preserve a-small
limits because F' is cocontinuous, thus factoring through Lex,(Ca’, V) as desired. O

Assume that C is tensored over V. In this case, we will often make use of the following
coend formula for the right adjoint to a cocontinuous functor F': C — D between locally
presentable V-categories:

FR(d)z/CECQ Mapp (F
o pp(F(c),d)®@c . (A1)

The above formula follows from the V-natural Yoneda isomorphism [Kel05) Section 3.1]
together with Proposition

A.2.2. Free cocompletion

Many of the locally presentable V-categories that we will encounter in this thesis are
obtained from small V-enriched categories via free cocompletion, which is defined as
follows:

Definition A.2.9. Let C be a small V-enriched category. The free cocompletion C is
the enriched functor category

~

C=1[C" V] . (A.2)
The free cocompletion has the following universal property:

Proposition A.2.10. [Kel05, Theorem 4.51] Let C be a small V-enriched category and
D a cocomplete V-category. There is an equivalence of V-categories

Cocont[C,D] = [C, D] ,

where Cocont[CA7 D] C [(?, D] is the full subcategory of colimit-preserving functors. The
equivalence sends F' € Cocont[C,D] to F oY, where Y: C — C is the enriched Yoneda
embedding. The inverse sends G: C — D to the left Kan extension LanyG of G along
Y.
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In the following we will denote the enriched Yoneda embedding by
Y:C— [CPV)], ¢ — Y. = Mape(—,¢) .

Proposition A.2.11. The free cocompletion C is locally presentable as a V-enriched
category.

Proof. Colimits in presheaf categories are computed pointwise, thus [C°P, V] has all V-
colimits. By the enriched Yoneda lemma [Kel03 Section 2.3] we have V-Nat(Ye, I) =
F(c). So for any colimit W  F' in C we have

V-Nat(Y,, W « F) = (W x F)(c)
=W x F(c)
=~ W x V-Nat(Y,, F)

showing that the representable V-functors are compact in [C°P, V]ﬂ The enriched Yoneda
embedding is strongly V-generating in [C°P, V] and therefore we conclude that [C°P,V]
is a locally presentable in the enriched sense. O

If (C,®) is a monoidal V-category, there exist a tensor product on C given by Day
convolution: for any F, G € C their tensor product is defined by

c1,c2€C
(F ®pay G)(c) = / Mape(c, c1 ® e3) @Y F(e1) @Y G(ea)

where ®V is the tensor product in V. Then, the Yoneda embedding is a strong monoidal

~

functor Y: (C,®) — (C, ®pay)-

Dualizability Not all objects in the free cocompletion C are dualizable. However, the
compact projective generators {Y.}.cc are dualizable if all objects in C are dualizable.
This follows from Y: C — C being a strong monoidal functor.
Let (C,®,0) be a small braided monoidal V-category whose objects are dualizable
and let
T:CRC—C, (F,G)— F@pay G (A.3)

be the monoidal functor given by the Day convolution product in CA, where X is the
tensor product of locally V-presentable categories defined in § 1.3.21 By Proposition
the functor T admits a right adjoint which has the following explicit formula.

Proposition A.2.12. Let C the free cocompletion of a small V-enriched braided monoidal
category C whose objects are dualizable. Then, the right adjoint to the tensor product
functor (A.3)) admits the following coend formula

ceC
TR(F) g/ (F ®Day }/cv) XY,

and in particular

ceC
TR(l)%/ Yo XY,

3Since V-Nat(Y,, —) actually preserves all weighted colimit, the representable V-functors are compact
projective in [C°P, V)]

130



A. Background material on enriched presentable categories

Proof. Since the representables are compact projective generators, Equation (A.1)) for
the right adjoint reads

(c,d)eCxC
TR(F) = / MapCA,(YC ®Day Yd,F) RY. XY,

12

(e,d)eCxC
/ Maps(Ye, F ®@pay Yav) @ Yo X Yy

deC
g/ (F @pay Yav) K Yy .

d

Remark A.2.13. We often drop the Yoneda embedding in our notation and simply
write

ceC PR
TR(l)%/ c/Rec €CRC .

The above coend is naturally an algebra since T is lax monoidal. Taking the image
under the tensor functor T we obtain Lyubashenko’s coend algebra [Lyu95b, |[Lyu95d|:

ceC N
TTR(I)%/ c/®c €C .

A.2.3. Enriched monadicity theorem

Let F: A — M be a colimit preserving functor between locally presentable V-categories
with right adjoint F'®. The adjoint pair induces a V-monad 7 = Ff o F on A. The
right adjoint F¥ is called monadic if the V-comparison functor

F/:F%: M — T-Mod 4
m o (Ff(m),e)

is an equivalence of V-categories, where € is the counit of the adjunction F 4 FF.
Monadic functors are characterized by Beck’s monadicity theorem, formulated in the
V-enriched context by Dubuc [Dub70, Theorem I1.2.1]. In the presentable setting, the
monadicity theorem guarantees that if F®: M — A is conservative and preserves certain
colimits then it is monadic.

Let (C,®) be a small V-enriched category whose objects are duahzable C its free
cocompletion and T': CXC — C the tensor product functor from . We then have
the following:

Proposition A.2.14. The right adjoint T is monadic.

Proof. For a weighted colimit W x F' in C we have
ceC
TR(W*F)%/ (W % F) ®@pay Yev XY,

ceC
=W [ (F o0, Vo) BY.

>~ W« TE(F)

131



A. Background material on enriched presentable categories

This is due to Proposition[A.2.12]and ®pay preserving weighted colimits in each variable.

Next, we show that T is conservative. Let Y: CxC— [C/>-<\C, V], F — MapC/Qj(—,F).
Then, consider the composition

Y o T = Mapgga((-), T%(-))
= Maps((—) @pay (=), (=) -
The composition is conservative since Y. ®pay Yq = Yegq, where we recall that Y, =
Mapc(—, ¢), together with the fact that the tensor product functor (— ® —) is essen-

tially surjective. It follows that T* is conservative, since conservative functors reflect
conservativity. O

The tensor product functor 7" has a natural structure of a C X C-module functor
T((Cl X CQ) < (dl X dz)) = T(Cl Rdi Neg® dg) i) T(Cl X 62) N (d1 X dg) =1 ®caRd1 Rds

defined by the braiding. The same is true for the right adjoint, which follows from the
next proposition.

Proposition A.2.15. Assume A,C,D € V-Pres are free cocompletions of V-enriched
categories whose objects are dualizable. Let F': C — D be an A-module functor in V-Pres
which preserves compact projective objects and has a colimit-preserving right adjoint
FE.D = C. Then FT has a canonical structure of an A-module functor.

Proof. We want to show that Map(c, Ff(d < a)) = Map(c, F®(d) < a) for any ¢ € C,

d € D and a € A. We may write any ¢ = colim;c;, where each ¢; is compact projective,

and similarly a = colim;a;. It then follows from the assumptions in the proposition that:
Map(c, F®(d < a)) = Map(colim;c;, F®(d < colimja;))

colim; lim Map(c;, FR(d < a;))

1%

F(Cl'), d< aj)
F(e;) < av», d)

= colim; lizm Map(
= colim; lim Map(
= colim; hm Map(F'(c; < aj; ) d)
= colim, hm Map(c; < a FR(d))
= colim; hm Map(cz,F (d) < ay)
o I\/Iap(h?l ¢, F''(d) < colimja;)

B
= Map(c, Ff(d) < a)
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B. Bialgebroids

In this appendix we recollect basics about bialgebroids. We will mainly focus on the rela-
tion between bialgebroids over base algebras (as defined in Example|3.2.3) and solutions
to the quantum DYBE, which was established in [DMO06].

B.1. Definitions and examples

Throughout, & denotes either a field K of characteristic zero or a ring K[[h]] of formal
power series.

Definition B.1.1. [Lu96] Let L be a k-algebra. A bialgebroid over base L is an asso-
ciative k-algebra B together with the following data:

e Source map: an algebra morphism s: L — B
o Target map: an algebra morphism t: Lo, — B

turning B into a L-bimodule with actions A>b = s(A\)b and b<a X = t(A)b, for all X\ € L
and b € 5.

e Coproduct: a coassociative (L, L)-bimodule map A: B — BR,B. Here, BR,B =
B RB/I, where I is the left ideal generated by t(\) @ 1 —1® s(\) for X € L. We
require that

— A factors through N(I)/I, where N(I) ={a € BB | [a,I] C I},
— A:B — N(I)/I is an algebra morphism.

e Counit: a (L, L)-bimodule map €: B — L such that e(1y) = 12 and
(e®r id%)OA:ich :(id% ®re)oA . (B.1)

and
e(a(soe€)b) = e(ab) = e(a(t o €)b) (B.2)
for all a,b € B.

We will use the notation A(a) = a(;) ® a(gy for the coproduct. The following are
examples of bialgebroids that will play a role later on:

Example B.1.2 (Tensor product bialgebroid). For i = 1,2, let B8; be a bialgebroid
over base £;. Then, the tensor product %1 ® B, is a bialgebroid over base £ ® L.
The source, target, and counit maps are s; ® s9, t1 ® to, and €; ® €2, respectively. The
coproduct for the tensor product bialgebroid is defined by

Ala®b) = (aq) @ b)) @r,0c, (@) ® b)) -
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Example B.1.3 (Bialgebras). A bialgebra over k is a bialgebroid over base k. A

Example B.1.4 (Coopposite bialgebroid). Let (B, s,t,A,¢€) be a bialgebroid over L.
Then, there is a bialgebroid B°P over L., with the same multiplication but opposite
coproduct A% (b) = b(g) @ b(1) and counit ¢ o e: BP — Lo, where 1: L — Lo is the
anti-homomorphism given by the identity map. The source and target maps are s°? = ¢
and t°P = s, respectively. A

Let H be a Hopf algebra over k. In what follows, we will assume that £ is an H-base
algebra. This means that £ is an H-module algebra H @ £ = £ and a left H-comodule
algebra 8: £ — H ® £, A — A\ @ A0 making £ a Yetter-Drinfeld module over H,
that is

3(h>A) = hayA\TVS(h)) @ by > A© (B.3)

for all h € H and A € L. Moreover, L is assumed to be a commutative algebra in the
category of Yetter—Drinfeld modules over H, that is

M= (AED )0 (B.4)

for all A\, u € L. If H is quasi-triangular with universal R-matrix R, we will assume that
the H-comodule structure on L is of the form

SN =A@ A0 = R2Zg R > A
for all A € L.

Example B.1.5 (Smash product bialgebroid). Let £ and H be as above. Consider
the associative algebra £ x H, which is £ ® H as a k-module, endowed with the smash
product multiplication

AR (@ k) = Ay ® hgk
The source and target maps are defined by
s(A\) =A®1, tAD) =R'sA®R? (B.5)
where R = R™!. The coproduct is
AA@ D) =A@ ) ®c (1®he)
where Ay (h) = h(1) ® h(2) is the coproduct for the Hopf algebra H, and the counit is
e(A®h) = Xeg(h) .
AN

Example B.1.6 (Quantum groupoid). Let H be a quasi-triangular Hopf algebra and
L x H the smash-product bialgebroid from Example Note that there are two
target maps for the bialgebroid £ x H: one was defined in (B.F]), and is related to the
coproduct §(\) = AV @ A0 = R2@ R!> A by

tA) =20 @ s TN =RIb A R? .
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But if R is a quasi-triangular structure for H, then so is ToR, giving rise to an alternative
H-base algebra structure on £ with coaction ¢’(A\) = R!' ® R?> A. The corresponding
target map is:

YN =R’ AR .

We will write (£ x H)' for the bialgebroid with target map ¢'.

In [DMO06], Donin-Mudrov introduce a bialgebroid H, which is defined as a quotient
of L x H, or equivalently of (£ x H)’, which eliminates the distinction between the two
bialgebroid structures on the smash product. In more details, the bialgebroid H, is
defined as the quotient

He=(LxH)/J=(LxH)/J

by the biidea]lﬂ J generated by R'p A ® R? — R2p A ® R! for all A € L. The resulting
bialgebroid H, is called quantum groupoid since it has a quasi-triangular structure
induced from the one on H (we refer to [DMO0G6, Definition 3.12] for the definition of a
quasi-triangular structure on a bialgebroid). A

We will also need the following:

Proposition B.1.7. If L is an H-base algebra with left H-action > and left H-coaction
0. Then, Lop s an HP-base algebra with the same action >gor = > and H°P-comodule
structure

Spror(A) = STEHAEDY @ AO)
where we used the notation 5(\) = XD @ A©),

Proof. Lop is an H°P-module algebra:

B (AP 1) = hs (1))

It is also an H°P-comodule algebra:

Spon (AP ) = S™H((uN) D) @ (u)©
= S AED S (DY @ A0 op )00
Next, we have to show that L, is a Yetter-Drinfeld module with respect to > and dgop,
which will amount to show that dger (h>A) = he3) ST ATD)S (A1) ® hzy > A0, We
have
S, (h>A) = S7H(he M) V) @ (hA)©@
= (7' @id)(hyA\ TV S(h(z)) ® hezy > AO)
= h(3 ST ATNS T (hy) @ by » A

LA L-bimodule J C B is called biideal if it is a two-sided ideal in the algebra B and A(J) C J ®, B +
B, J and (J) =0.
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where we used Equation (B.3) for the Yetter—Drinfeld module £ over H. Lastly, we
have

where we used Equation (B.4) for the base algebra £, making L, a H°P-base algebra.
O

B.1.1. Dynamical FRT-algebra

In [DMO6, Section 8], Donin—-Mudrov introduce a bialgebroid which may be interpreted
as a dynamical version of the FRT-algebra and is constructed using dynamical twists.
Since our conventions for dynamical twists differ from the one in [DMO06], we will here
redo the construction due to Donin—Mudrov using our conventions and also fill in some
details that are omitted in the original reference (see Remarkfor how our definition
of a dynamical twist compares to the one of Donin-Mudrov).

The restricted dual H® is a left H°? ® H-module via

(W @h)po=h—p=SH),
where

h— @ = (h,00)eq), ¢—h={hea)eo ;
for all h € H. We endow H° with a multiplication defined via duality with H, that is

(o h) = (@, b)) (W, )

for all ¢, € H® and h € H. The resulting algebra is called FRT-algebra [DMO3]. We
are now going to define a dynamical version of the FRT-algebra.

Let B C H a Hopfsubalgebra and £ a B-base algebra. The underlying k-module of the
dynamical FRT-algebra is the tensor product Lo, ® L& H®. Let J(\) = J'oTleJ?% e
L ® H ® H be a dynamical twist for the pair B C H over base L, as defined in
One can check that the following is a dynamical twist over the B°P-base algebra Lgp:

KN =T"0S M THe S HIT?) € Lop @ HP @ HP, JN) =TI\ .
Then, we endow Lo, ® £ ® H° with the following multiplication

ARuRp)*x(rep) (B.6)
= ) .oP [0] .op j0 MP[O]jO ® (;Cls—l(y[l]) ® jlp[l]) bo- (K2 Ty
where the map A — A% @ Al is the right H-comodule structure on the base algebra L.

The above defines an associative product on Lo, ® £ ® H®, which is a consequence of
J(A) and K(\) being dynamical twists.
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Proposition B.1.8. The algebra Lo, ® L& H® with multiplication s a bialgebroid
over base L with source and target maps defined by

S: AR 1IRA®I, A= ARI®L .
The coproduct is defined by
AARu®p) =10 n® ¢m) @ (A® 1 ¢p@))
and the counit by e(A @ p® ) = e(p)A -°P p.

Proof. We first show that the coproduct is compatible with the multiplication. On the
one hand we have

AA@p@)*(vepeY))
- (1 @ up 7o (K7 o) @ 7o) 5 o) o (K0T ‘Z’)(z))
op ,,[0] op 0 1a—1/ 1] 11 ) 2 2
®p <)\ PP K01 (KIS0 @ 7Y )w)(l) (K ®j)>¢)(1))

= (1eu70 (187 01) b e - (18 7%) b))

@ (AP @16 (K5 ) @1) b e - (K2 1) b ug)

In the above we used that for all a ® b € H°? ® H and ¢ € H° we have
A((a®b) > ) = (S(a), o)) (b p))Pe) ® ¢ 3)
= (a®1)>g0(1) ®<1®b)l>(p(2) .

On the other hand we find

(1@p®eEe) (100 Py)) @ (A2 10¢w) * (V10 ¥q))

= (K@@ (Ko 7' oM) b o) - (K20 T2) o)

@ ()\ op (0] 0p jo10 o 710 <IC’1S_1(V[1]) 2 jll) > ) (,Clz ® j/2) > 7/)(1)>
_ (j/o P 70 @ o070 g (S_l(jl) ® jlp[1]> > P - (S—l(j2) 2 jz) D¢(2))
Qr ()\ op V[O] .oP k10 R1® (IC/IS—I(V[I]) ® j/l) > @) - (IC/2 ® j/2) > 1/](1))
But for any invertible element ¢ € H and any ¢ € H® we have
(1®a)>ea)® (S7'(a) ® 1) > pe) = (a,0@) ea) @ (@ ¢3))
= (ad, 9(2)) $(1) @ P(3)
=P1) QP2
where we wrote @ = a~! and used that (1,9) = €(y), showing compatibility of the
multiplication and the coproduct.
Next we have to show that Equations (B.1)) and (B.2) hold. For the former, we
compute
(e@cid) o AN R @) =€e(1Qu® pr) @ (AD1® @)
= (P @ (A®1®¢u))
=AQu®yp ,
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where in the last step we used the source map s(p) = 1 ® p ® 1. The other equality in
(B.1) can be checked along the same lines. In order to verify Equation (B.2) we first
compute

((A@p®R)x(s0epaw) =w) (Ae ) e (18 (o)) > o)
= c(@)e ()5 0) AP (o) Py
Similarly we find
(M@ ) x(toe) (@ p®v)) = c)e (pa(p)) A (o)

The two agree since

Lastly, we compute

c(A@uep)* (Ve pey))
— (A op 3 [0] o (0] op M) . ((,@5—1(,,[1]) 2 jlpm) w) e (K2® J2) b 1)

but
e (K2 @ T%) b ) = (T 9) (T de) (W)
= €(¥)
and
€ ((’ClS_l(V[”) ® le[”) > w) = <V[”jl, </>(1>> <J1p[”, </>(3>> e(p2)
- <,,[11j1jlp[11,¢>
= <(p1/)[”, 90> ,
and thus Equation holds. ]

B.2. Twists of bialgebroids
Let (B, s,t, A, €) be a bialgebroid over L.

Definition B.2.1. [Xu01] An element ¥ = ¥' @ U? € B ®, B is called a bialgebroid
twist, or twisting cocycle, if it satisfies

ATHY @, 02 =Tl @, A(T?)T (B.7)

and (e @, id)V=1®,1=(id®,¢€)V.
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Let ¥ be a bialgebroid twist. One may equip £ with a new multiplication defined in
terms of ¥ by
Akg = (T X)) % (U2 Fp)

where F is the B-module structure on £ defined in terms of the counit and source or
target map:
b X =e(bs(N\) = e(bt(N))

for all b € B and A € L. Let Ly be the resulting algebra. Using the twist, one can
further define the following algebra morphisms

syp: Ly — B, tq,:ﬁ(&,pﬁ%
A= (T E )02 A= t(U2 2wl
The twist ¥ defines a linear map
BRr, BB, B, axb— Vlax ¥ . (B.8)

Definition B.2.2. A bialgebroid twist V is called invertible if the map (B.§)) is an
isomorphism.

Theorem B.2.3. [Xu0l] Let B be a bialgebroid over base L and ¥ € B @ B an
tnvertible bialgebroid twist. Define

Ay:B =B, B, a— T AT . (B.9)
Then, the tuple B = (B, sw, tw, Ay, €) is a bialgebroid over base Ly .

Let (A, -) be a module algebra over the bialgebroid 8. Then, a twist of the bialgebroid
induces a twist of its module algebra:

Proposition B.2.4. The algebra Ay with multiplication defined by
zyy=(Vea) (¥ry)
is a module algebra over the twisted bialgebroid PB.

Proof. Since A is a B-module algebra we have b (z - y) = (bq) > ) - (b2) ® y) for all
be B and z,y € A. Thus, we have
b (29 ) = b (U5 2) - (¥ 5 y)
= (by¥' > z) - (b2 P > y)
= (\T/lb(l)\:[fl > .’L') U (\T/zb(z)\I/2 > y) s
where U = ¥~ 1, O

B.2.1. Bialgebroid twists from dynamical twists

The relation between bialgebroid twists and dynamical ones, i.e. solutions to the quan-
tum DYBE, was previously established in [Xu01] for dynamical twists over commutative
base and in [DMO06] for dynamical twists over more general base algebras. In more de-
tails, given a pair of Hopf algebras B C H and a Bi)_a\sg algebra £, Donin—Mudrov
show that one can construct a twisted £-bialgebroid H ® DB, by means of a dynamical
twist, where DB is the double and DB, the quantum groupoid from Example
Here, we will mimic the construction of Donin—Mudrov to construct bialgebroid twists
in terms of the dynamical twists defined in
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The double Let B be a ﬁnite—dimensionaﬂ K-algebra. Assume L is a B-base algebra
with left B-action > and left B-coaction ¢. Let DB = B > B, be the double cross
product [Maj95] Section 7], where B, is the dual of B with opposite multiplication.
The double is quasi-triangular with universal R-matrix © = Y e’ ® ¢; € DB ® DB,
where (e;)ics is a basis in B and (e')ies its dual in B,

With the above assumptions, one can check that the algebra £ is also a DB-base
algebra with left BJ -module structure defined by

o A=A o)A0
and with DB-coaction given by d, expressed through the universal R-matrix:

S: A~ 020 e )\ .

The bialgebroid In [§ 3.2.2| we have defined a dynamical twist as a B-equivariant
element J(A) € L ® H ® H satisfying the dynamical cocycle equation

([d®A®id) TA)T A2 = (doid® A) J(A) (67 @id @ id) T(A) (B.10)

in Lop ® H® H ® H. The appearance of opposite base algebra L, in the dynamical

cocycle equation leads us to establish a connection between [J(A) and a twist in the
op
tensor bialgebroid B = (DBZED ®H Op) .

It will be convenient to first spell out the bialgebroid structure on (Lop X DB ® HP)°P,

which follows from combining Proposition with Examples [B.1.2] [B.1.3] [B.1.4] and
Namely, the source and target maps are

8(A) = tro,xpBer(A) ® 1 t(A) = ScopxpBer(A) ® 1y
=% A®SOY @1y =A®lpp, ® 1y .

and the coproduct is
AARL@h) =(1® B(I) & h(l)) ®r(A® B(Q) & h(g)) ,

for A € Lop, € DB°? and h € H°P. The bialgebroid ‘B is then defined as the quotient
of this bialgebroid by the biideal generated by ©2>A® 0! — 0>\ ® 02 for all A € Lo,

as in Example

The bialgebroid twist

Proposition B.2.5. Let B C H be a Hopf subalgebra and L a B-base algebra. Let
TN =T"@J'®J? € L& H®H be a dynamical twist over L satisfying Equation
(B.10). The element

U= (10175710 o (T 20 J?) (B.11)

is a bialgebroid twist for (Lop x DBP @ HOP)°P,

2The case for an infinite dimensional algebra B can be worked out analogously if one works over a ring
K[[7]] of formal power series and replaces duals with the restricted Hopf dual.
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Proof. The left hand side of Equation reads

ATV R, U

= ((1e1054)0%)) @ (10107450 ))\If@g(j(’@S( Y@ J2)

= (1010 71,6%,7"67) 0 (7" @ 5(0") © 74 04,77 0 (7' @ S(0Y) @ 7%)

where here and in what follows primes are used to distinguish different copies of the
dynamical twist or the R-matrix ©. The right hand side of Equation is

Ul A (U)W
=(1e1eJ's71(0%) e, ((1®@1 ®J1)> O (J ® Oy ® T ))
= (1e10J's7(0%) 2 (106} 2 I3, 7" (67))
92 (70 Olyyy > T © Oy ©.75,77)
— (12107570757 (©™)571(0%) 0 (106" 0 73 7" (6"))
@ (77705 7" 2 010" @ 73 T")
where we used that
O(1) © Oy ® O3 ©e° =0'©we" ©e' ®e’e"e”

since O is a universal R-matrix. Now, we use the dynamical cocycle equation to rewrite
the above as

Ul A (T T
= (1 ®1® le*l(@’Z)S*(@”?)S*l(@?)) ®c (1 ®0'® j(Zl)j”S*l(@”’Q))
S <j0 ol 70 9 e"Me" g j(22)j/2>
<1 ®1® j (@//2)5—1(@2)) R (1 20! ® ‘7(12)‘7/25—1(@/2))
Qr (jO .op j/O ® @Ill@/l ®i2)
<1 21 j j/1@//2@2> (1 ® SO @ ‘7(12)‘7/2@/2)
Qr (jO .op j/O ® 5(6/1@//1) ® j2)
<1 ® 1 ® j j/1®/2 ) ®£ (1 ® S( ) ® j j/2®/2))

@ (T°P T S(0™") @ T?)
1@1® J))035J" e ) (1®S(91)®~7(12) (3)7/2)

@ (770 0F)p T @ S(0") @ 7?)

where in the second to last line we used that

0'® e}, 26} =0'0"2e% e’ .
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and in the last line we used B-equivariance of the dynamical twist. Next, we will use
one more time that © is a universal R-matrix to obtain

Ul s AU = (1 ®18 J(ll)@g)j’l@Q) R0 (1 ® SO ® J(12>@’(22>J’2)
Qr (j[) .op @//2 > j/O ® S(@//l)s(@/l) ® j2)
=t(J%)s(J"°)(185(0")®T?)

Since the images of the source and target maps commute, we find:
Ul es A (U)W
— (1910 7,03,7"0%) e (10 5(6") & 75,0377
2e8(TT°) (1@ SO @ T?)
= (1912.7468,7"6) @ t(T") (19 S(0") & T4 6f,T?)
2c (T SO ® J?)

AW
0

™

op
The bialgebroid morphism (Lo, x DBP @ HP)P — (DBZPOP ®H Op) induces a

bialgebroid twist (7 ®,2 7) ¥ on the quotient B [DMO06, Remark 3.18]. In the following
we will be suppressing the projection 7 from the notation. In other words, we will
understand calculations in 9B as those in (Lo, X DB ® H°P)P done modulo the biideal
J defining Dszo’p.

Module algebras Let A be an H-module algebra. For any a € A and h € H we
will write h ® a — h.a for the H-action. We equip the tensor product £ ® A with the
multiplication

meega(A©@a) © (p@ b)) =meA@u)@ma(A®p)

for all A\, u € £ and a,b € A. As above, let £ be a B-base algebra. We will write > for
the induced left D B-action.

Proposition B.2.6. £L ® A is a module algebra over B = (DBZSP ®H°p>0p for the

action defined by
A®a®@h)—= (p®@a)=XP(a>p) ®ha

for anyA@aEDBzzp, he HP and p®@a € L® A.
Proof. On the one hand we have
A®a®h) = (uv@ab) = X-P (a > pv) ® h.ab
= A Pap) P ag > p@ (ha)-a) (he)b)
and on the other hand we have
meea (As (A@a®h) = (p®a) @ (v Qb))

=mrea (1@ amy @ ha) @ (A®a@) @ hg) = (L®a)® (v @ b))

=MreA ((a(l) D> p® h(l).a) ® (/\ Pag >re h(Q).b))

= (a@) &> ) (AP ag) > v) ® (hay-a) (A-b)
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O
Proposition B.2.7. Let ¥ be the bialgebroid twist from (B.11). Then, £L ® A with

multiplication

a*b:JO(X)mA(jl.a@jQ.b) Axp=mg (A p) (B.12)
a*A:@lb)\@S_l(@Q).a A*xa=)\Qa

fora,be A, A\, u € L, is a module algebra over the twisted bialgebroid B

Proof. By Propositions[B.2.6| we know that £L® A is a module algebra over the untwisted
bialgebroid B. Then, it follows from Proposition that £ ® A with the W-twisted
multiplication is a module algebra over the W-twisted bialgebroid. Explicitly, for any
a,b € A, the twisted multiplication is

axb=mega (V' = (1®a)®V? = (12D))
= mgoa (16 71571 (6%).a) @ (0! 1) 7% 72))
=me (10 J°) @ma (T'a@ J2D)
where we used that ©'>1 =€ (6'). This agrees with the formula in (B.12)). For a € A
and A € £ we have
axA=mega (V' = (1®a) @V = (A 1))
=meea (10 T'S7H0%.0) ® (0 >\ T J2.1))
=ms(1®0' > ) @ma (S7'(0%).a®l)
where this time we used that A is an H-module algebra and therefore J2.1 = ¢ (j 2),

together with J ‘e J'®e (j 2) =1® 1 ® 1 which holds for any dynamical twist. The
other cases can be worked out similarly. O
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