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Introduction

In recent years, the development of sustainable urban mobility has become criti-
cally important. Sustainability and quality of life in cities are greatly influenced by
transport. Above all, urban areas are confronted with transport-related air pollu-
tion, noise, congestion, occupation of public space by traffic, and increased morbidity
and mortality rates caused by traffic accidents and pollution (Anenberg et al., 2019;
Br̊uhová Foltýnová et al., 2020; Christodoulou & Christidis, 2020). The harmful ef-
fects of urban transport are extended by the use of fossil fuels in Internal Combustion
Engines (ICEs) that contribute to global climate change; emission levels are growing
rapidly and, in the absence of ambitious steps towards decarbonization, the 2016
EU Reference Scenario highlights that by 2050 road transport could account for the
largest share of CO2 emissions (Capros et al., 2016). Road transport is currently the
second largest source of CO2 emissions in the European Union (EU), accounting for
around a quarter of total emissions (EEA, 2013).

The main promising technologies that could help to solve these problems include
autonomous vehicles (AVs), electric vehicles (EVs) and the integration of shared
mobility services (Miskolczi et al., 2021). Currently, shared mobility is identified
as one of the most promising solutions in urban mobility in order to reduce negative
externalities and to raise user satisfaction (Miskolczi et al., 2021). Other ways of
reducing negative impacts of urban mobility could be a shift towards low and zero-
emission modes, enhancing the role of EVs, and moderating travel demand. Reducing
the burden on the environment may be achieved by minimizing travel needs and
reorganizing the capacities of on-demand transportation services (Commission, 2011).

Autonomous Vehicle technology aims to reduce crashes, energy consumption,
pollution, and congestion while at the same time increasing transport accessibility
(Bagloee et al., 2016). In Manyika et al., 2013 vehicle automation is included on
the list of the top ten disruptive technologies of the future. The forecast is that AVs
are expected to constitute around 50% of vehicle sales, 30% of vehicles, and 40% of
all vehicle travel by 2040 (Litman, 2017). The AV is associated with a variety of
positive societal impacts such as a safer transport system, a lower cost of transport
as well as enabling a modicum of mobility to the non-ambulatory and disabled as well
as to those in lower income households (Bagloee et al., 2016; Hancock et al., 2019).

x
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Such positive impacts are the driving forces behind the emergence of AV technology,
making it a viable, economic model in the near future and beyond.

Electric Vehicles are a promising technology for drastically reducing the environ-
mental burden of road transport. More than a decade ago and also more recently,
they were advocated by various actors as an important element in reducing emissions
of CO2, air pollutants and noise of particularly passenger cars and light commercial
vehicles (van Essen & Kampman, 2011). The use of electric vehicles has heavily in-
creased in the last years. In June 2022, the European Parliament approved a ban on
the sale of all vehicles with Internal Combustion Engines (ICEs) from 2035 (ENVI,
2022). In reality, the measure approved by the Parliament aims to sell only CO2
emissions-free vehicles from 2035, but the lack of widely available alternatives means
that the market for new cars will be dominated by Battery Electric Vehicles (BEVs)
(McKinsey, 2022). The expansion of the electric vehicle charging network presents
some critical issues. According to the McKinsey Center for Future Mobility, Europe
will have to build an estimated 24 new battery giga-factories to supply EV battery
demand. With more than 70 million EVs on the road by 2030, the industry will need
to install a large number of public chargers and provide maintenance operations for
them. Renewable electricity production needs to increase by 5% to meet EV charging
demand (McKinsey, 2022).

The potential advantages that autonomous and electric vehicles offer, in relation
to the urban mobility problems described above, have prompted us to investigate new
Pickup and Delivery problems in which autonomous and electric vehicles are used.
Pickup and delivery problems are optimization problems defined on graph structures.
In this kind of problems there is a fleet of vehicles that serve transportation requests
between different nodes of the graph. Each transportation request i requires trans-
porting a load qi from a pickup node to a delivery node. Time windows are associated
with the requests. The objective of these problems is to serve all transportation re-
quests within their respective time windows by minimizing a given objective function,
such as the total distance traveled by vehicles. The main contribution of this thesis
is the introduction of new Pickup and Delivery problems motivated by new mobility
systems that emerge with autonomous and electric vehicles. In particular, the first
part of the thesis introduces a new class of Pickup and Delivery problems defined
on circular graphs. Each of the problems in this class differs in fleet composition,
the presence of time windows, and the objective function to be optimized. These
problems find application in the context of autonomous vehicles. Indeed, operating
autonomous vehicles on separate infrastructures such as rails, guide-ways, or elevated
lanes, reduces interactions with pedestrians, human-driven vehicles, and other obsta-
cles (Kaspi et al., 2022). Such infrastructures often have special topologies such as
circuits. The second part of the thesis introduces a new Pickup and Delivery prob-
lem where the fleet is composed of Battery Electric Vehicles (BEVs) which swap their
used batteries at a solar-powered Battery Swapping Stations (BSS). The innovative

Introduction xi



Pickup and delivery problems with autonomous and electric vehicles

aspect of this problem is the optimal management of the energy used by the vehicles.
In fact, the surplus energy is sold, and the objective is to serve all transportation
requests by maximizing the profit made from selling the surplus energy.

In Chapter 1, an important and introductory background on the concepts ex-
ploited throughout this dissertation is provided. In Chapter 2, Pickup and Delivery
problems on rings are introduced. A classification scheme is proposed, together with
complexity studies and Integer Linear Programming (ILP) formulations. Chapter 3
contains the proof of NP-hardness of problem V, 1|sd, u|CLT (introduced in Chapter
2) as the proof is too long. Chapter 4 focuses on Pickup and Delivery problems on
rings with total completion time objective function. The complexity of all problem
variants in this class is studied and an ILP formulation is proposed. In Chapter
5, Pickup and Delivery problems on rings are studied where vehicles are allowed to
travel clockwise and counter-clockwise on the ring. A new algorithm is proposed for
the simplest variant in this class of problems. In Chapter 6, the Electric Vehicle
Pickup and Delivery Problem with Energy Management is introduced. The main
features of this problem are three:

1. Electric vehicles are used to serve transportation requests;

2. The energy used to recharge electric vehicle batteries is produced in a photo-
voltaic power plant which is adjacent to the vehicle depot;

3. The energy can be either used to recharge the batteries or sold to the electric
grid. In case the energy produced is not enough to recharge the batteries, it
can also be purchased.

The problem asks for vehicle route planning and optimal energy management,
with the global objective of maximizing the profit made from the sale of surplus
energy.

The abstracts of the various chapters of the thesis are given below.
Abstract of Chapter 2: In this chapter a new class of Pickup and Delivery

problems on circles (or rings) are introduced. These problems arise in the field of
public transportation systems where autonomous (i.e. driverless) vehicles travel on
circular networks. A set of stations arranged in a circle and a set of transportation
requests are considered. Each request asks for the transportation of a certain quantity
from a pickup station to a delivery station. A fleet of capacitated vehicles is available
at the depot. In the first part of the chapter a classification scheme for these problems
is proposed. In the second part, the variants in which the vehicles are allowed to move
in a single direction of the circle (either clockwise or counterclockwise) are addresses,
where the objective is to minimize the number of tours on the ring while serving all the
requests. A complexity analysis for this class of problems is provided. Polynomial
time algorithms for the variants that are polynomially solvable are proposed and
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proofs of NP-hardness for the variants that are NP-hard are developed. In addition,
for the latter, mathematical formulations are provided and computational tests that
show the effectiveness of these formulations are performed. Finally, optimal solutions
are compared with those obtained using a straightforward greedy algorithm.

Abstract of Chapter 3: This chapter contains the proof of NP-hardness of
problem V, 1|sd, u|CLT , introduced in Chapter 2, as the proof is too long.

Abstract of Chapter 4: This chapter studies Pickup and Delivery Problems
on Rings (PDP-R). PDP-R are defined on a circular network. A set of transportation
requests has to be served. A fleet of vehicles is available at the depot. The objective
is to assign requests to vehicles and define the service sequence for each vehicle, while
minimizing the total completion time of requests. The problem is proved NP-hard.
An ILP formulation is proposed and exhaustive computational tests are performed
to show its effectiveness, comparing it with a straightforward greedy algorithm. Fur-
thermore, a relax-and-repair heuristic based on a surrogate relaxation of the ILP
formulation is proposed and compared with the greedy algorithm.

Abstract of Chapter 5: Pickup and Delivery problems on rings (PDP-R) are
a class of problems defined on cycle graphs. This chapter is devoted to the variants
in which the vehicles are allowed to travel along both directions on the ring and the
objective is to minimize the time at which the last vehicle comes back to the depot
with all requests served. The simplest variant of this class of problems is polynomial-
time solvable and is known in the literature as the Stacker Crane Problem on circles.
In this chapter, we focus on this variant. Several algorithms have been proposed in
the literature. We propose a new, easier, algorithm. Other variants are left for future
works.

Abstract of Chapter 6: In this chapter a problem in which a set of capacitated
Battery Electric Vehicles (BEVs) carry out pickup and delivery operations with time
windows constraints is studied. The energy needed to recharge the batteries of these
vehicles is produced in a Battery Swapping Station (BSS) that is also the depot
of the vehicles. Additional batteries are available at the depot, where vehicles can
go and swap their batteries. Pickup and delivery operations must be planned over
a time horizon divided into periods. In each period it must be decided how much
energy to give to the batteries that are at the production unit. Also, if the energy
produced is in excess of that required by the batteries, this excess can be sold to
the general network at a profit. If the energy required by the batteries is greater
than the energy produced, an unlimited amount of energy can be bought from the
general network. The objective of the problem is to plan vehicle routes to meet all
pickup and delivery demands while maximizing the net profit that is made from the
energy sold and bought over the time horizon. An MILP formulation of the problem
is is proposed and a matheuristic approach is developed. The matheuristic approach
consists of three steps: in the first one a subset of feasible trips is generated by using a
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Randomized Construction Heuristic, in the second step the formulation is solved over
this set of trips, and in the third one a repair procedure is performed on the obtained
solution, in order to avoid more than one trip visiting the same node. Computational
tests on modified Li and Lim’s benchmark instances for the PDPTW are performed
and the impact of the parameters on the hardness of these instances is studied.

The work done in the first part of the thesis resulted in the publication of the
paper Trotta et al., 2022 and in the technical paper Trotta et al., 2021. Some results
of the first part of the thesis were also presented at conferences Odysseus 2021, the
Eight International Workshop on Freight Transportation and Logistics, May 2022,
Tangier, Morocco and 21st annual congress of the Société Française de Recherche
Opérationnelle et d’Aide à la Décision (ROADEF 2020), University of Montpellier,
Feb 2020, Montpellier, France.

The work done in the second part of the thesis was presented at conferences 11th
Triennial Symposium on Transportation Analysis conference (TRISTAN XI) June
19-25, 2022, Mauritius Island and 23rd annual congress of the Société Française de
Recherche Opérationnelle et d’Aide à la Décision (ROADEF 2022), INSA Lyon, Feb
2022, Villeurbanne - Lyon, France.
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Chapter 1

Preliminaries and notation

This chapter introduces some preliminary definitions, notations and basics that will
make reading this manuscript easier.

1.1 Graph Theory

The content of this section is based on Berge, 1985, Murty and Bondy, 2008 and
Wahlström, 2018.

Graphs, vertices and edges. A graph is an ordered pair G = (V, E), where V
is a non-empty set of objects whose elements are called vertices, and E is a multiset
of unordered pairs of (not necessarily distinct) vertices, called edges. Throughout this
manuscript V and E are finite sets. An edge of the form (u, u) is called a loop.

Incidence, adjacency and degree. If e = (u, v) is an edge then e is said to
join u and v, and the vertices u and v are called the endpoints of e. If the direction
of the edge e = (u, v) is specified, then u is called the initial endpoint and v is
called the terminal endpoint, and e is called arc. The endpoints of an edge are said
to be incident with the edge, and vice versa. Two vertices which are incident with
a common edge are adjacent, as are two edges which are incident with a common
vertex. If a vertex u is the initial endpoint of an arc e = (u, v) which is not a loop,
the arc e is said to be incident out of vertex u. The number of arcs in graph G that
are incident out of u plus the number of loops attached to u is denoted by d+

G(u) and
is called the outer degree of u. The inner degree of a vertex v is denoted by d−

G(v)
and it is defined similarly. The degree of a vertex v ∈ V is the number of arcs with v
as endpoint, each loop being counted twice. It is denoted by dG(v) = d+

G(u) + d−
G(v).

Directed graphs, undirected graphs and simple graphs. If set E is com-
posed of unordered pairs of vertices, the graph is said to be undirected or a multigraph.
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If instead E is composed of ordered pairs of vertices, the graph is said to be directed.
A multigraph is simple if it has no loops or parallel edges. Graphs with loops are
simply called graphs if it is clear from context.

Paths, cycles and circuits. A path p = (u1, . . . , uq) is a sequence of arcs of G
such that the terminal endpoint of arc ui is the initial endpoint of arc ui+1 for all
i < q. The length of a path is the number of arcs in the sequence. A path that does
not encounter the same vertex twice is called elementary. A path that does not use
the same arc twice is called simple. A cycle or circuit is a simple path c = (u1, . . . , uq)
where the initial endpoint of the path corresponds to its final endpoint 1.

Acyclic graphs. A graph is acyclic if it does not contain any cycle. A directed
acyclic graph admits at least an ordering v1, v2, . . . , vn of its vertices such that for
every directed arc uv from vertex u to vertex v, u comes before v in the ordering.
This ordering is called acyclic ordering or topological ordering.

Subgraphs. The subgraph of G generated by X ⊂ V is the graph with X as its
vertex set and with all the arcs in G that have both endpoints in X.

Connectivity. A connected graph is a graph that contains a path between each
pair (u, v) of distinct vertices. A connected component is a maximally connected
subgraph of G. In other words, if X ⊂ V is the vertex set of the subgraph, for every
vertex v ∈ V \X, the subgraph generated by X ∪ {v} is not connected. Connected
components in directed graphs are called strongly connected components.

Eulerian and semi-Eulerian graphs. An Eulerian cycle in graph G is a cycle
that uses each edge of the graph exactly once. A graph is said to be Eulerian if and
only if it contains an Eulerian cycle. If a graph contains a path from a vertex u to
a vertex v that uses each arc exactly once, then it is said to be semi-Eulerian. In
Wahlström, 2018, semi-Eulerian directed graphs are called balanced.

Vertex coloring. A vertex-coloring of a graph is a function f : V → N that
assigns natural numbers (or colors) to its vertices and is such that if f(u) ̸= f(v) for
every u ̸= v ∈ V . If a graph admits a coloring it is said to be colorable. A k-coloring
of a graph is a coloring that uses exactly k colors.

Intersection graphs, interval graphs and circular-arc graphs. A set system
is an ordered pair (V,F) where V is a set of elements and F is a family of subsets
of V . With each set system (V,F) one may associate its intersection graph. This is
the graph whose vertex set is F , two sets in F being adjacent if their intersection
is non-empty. When V = R and F is a set of closed intervals of R, the intersection
graph of (V,F) is called an interval graph. A graph is called a circular-arc graph if it
is the intersection graph of a family of arcs on a circle. Circular-arc graphs generalize
interval graphs.

1Berge, 1985 defines cycles and circuits slightly differently, but in this manuscript they are used
as synonyms.
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1.2 Algorithms and Computational Complexity The-
ory

The content of this section is based on Ausiello et al., 1999 and Arora and Barak,
2009.

Computational problems. A computational problem can be expressed in terms
of some relation P ⊆ I × S, where I is the set of problem instances and S is the set
of problem solutions. If (x, y) ∈ P we say that y is a solution for instance x.

Decision problems, search problems and optimization problems. A de-
cision problem asks to determine if an instance x satisfies a given condition. In this
case relation P reduces to a function f : I → S where S is the set {yes, no}. A search
problem asks to find, for any instance x ∈ I, a solution y ∈ S such that (x, y) ∈ P
is verified. An optimization problem, given an instance x ∈ I, consists in finding the
best solution y∗ - according to some measure - among all solutions y ∈ S such that
(x, y) ∈ P is verified.

Computational models and cost measures. In computational complexity
theory, a computational model is generally chosen as a reference. In this thesis, no
assumption is made about the computational model since it seems that all physically
realizable computational models can be simulated by a single abstract computational
model such as Turing machines Arora and Barak, 2009. However, to measure the
time it takes an algorithm to calculate the solution to a problem (known as running
time), the uniform cost measure will be employed, which consists of determining the
total number of elementary instructions executed by an algorithm before halting. It
assumes that any elementary operation can be executed in constant time on operands
of any size.

Asymptotic complexity and worst case analysis. In this thesis, measures
of algorithm efficiency (such as running time) do not specify the exact time it takes
an algorithm to compute the solution to a given instance of a problem, but rather
the behavior of running time as a function of instance size. That is, the efficiency of
an algorithm can be measured by a function f from the set N of natural numbers to
itself such that f(n) is equal to the maximum number of basic operations that the
algorithm performs on inputs of length n. This kind of behavior of an algorithm is
known as asymptotic complexity. However, instances of the same size can have very
different running times. Therefore, the cost of an algorithm is defined as the running
time of the algorithm on the worst case instance, i.e., the instance that causes the
highest running time. The instance size (or input size) is assumed to be the number
of digits needed to represent the instance of the problem.

The big-O notation. If f, g are two functions from N to N, then we say that
f = O(g) if there exists a constant c and a natural number n0 such that f(n) ≤ cg(n)
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for all n ≥ n0. If the number of basic operations of an algorithm is 3n2 + 4 log(n) on
an instance of size n, we say that its running time is O(n2).

Upper bound on the complexity of a problem. Given a problem P we say
that the time complexity upper bound of P is O(f(n)) if there exists an algorithm
that solves all instances of P and whose running time is O(f(n)).

P and NP complexity classes. A complexity class is a set of problems that can
be solved withing given resource bounds. For any function f(n), let TIME(f(n)) be
the collection of decision problems that have time complexity O(f(n). The complexity
class P is the class of all problems solvable in time proportional to a polynomial of
the input size. Formally, P = ⋃∞

k=0 TIME(nk). A nondeterministic algorithm is an
algorithm that can execute instructions of the type ”guess y ∈ {0, 1}”. Essentially, a
nondeterministic algorithm has the additional option of ”guessing” a value. For any
function f(n), let NTIME(f(n)) be the collection of decision problems that can be
solved by a nondeterministic algorithm in time complexity O(f(n). The complexity
class NP is the class of all decision problems that can be solved in time proportional
to a polynomial of the input size by a nondeterministic algorithm. Formally, NP =⋃∞

k=0 NTIME(nk).
Karp-reducibility and polynomial time reductions. A problem P is a

decision problem if the set IP of all instances of P can be partitioned into a set
YP of positive instances and a set NP of negative instances and the problems asks,
for any instance x ∈ IP , to verify if x ∈ YP . A decision problem P1 is said to be
Karp-reducible to a decision problem P2 if there exists an algorithm R that, given
any instance x of P1, transforms it into an instance y of P2 in such a way that
x ∈ YP1 if and only if y ∈ YP2 . In such a case, R is said to be a Karp-reduction
from P1 to P2. As a consequence, if a decision problem P1 is Karp-reducible to a
decision problem P2, then for any instance x of P1, x is a positive instance if and
only if the transformed instance y is a positive instance for P2. A special case of
Karp-reducibility is the polynomial-time Karp-reducibility. A decision problem P1
is polynomially Karp-reducible to a decision problem P2 if and only if it is Karp-
reducible and the corresponding reduction R has polynomial-time complexity. In
this manuscript, all reductions used in the complexity analyses of the problems are
polynomial-time Karp-reductions.

Hardness and completeness of decision problems. For any complexity class
C, a decision problem P is said to be C-hard with respect to a reducibility ≤r if, for
any decision problem P ′ ∈ C, P ′ ≤r P . If P is C-hard and P ∈ C, P is said to be
C − complete. A decision problem P is said to be NP-hard if it is hard in NP with
respect to the polynomial-time Karp-reducibility, that is, for any decision problem
P ′ ∈ NP , P ′ ≤p

m P . A decision problem P is said to be NP -complete if it is NP -
hard and P ∈ NP . By the definition of NP-hardness and by the transitive property
of polynomial-time Karp-reductions, any decision problem P can be proved to be
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NP -hard by providing a polynomial-time Karp-reduction from some other problem
P ′ - already known to be NP -hard - to P . This technique is used in almost all proofs
of NP -hardness in this thesis.

Complexity of optimization problems. Any optimization problem P has an
associated decision problem PD. In the case that P is a minimization problem, PD

asks, given an instance x and a positive integer K, for the existence of a feasible
solution y with value ≤ K. Similarly, if P is a maximization problem, the associated
decision problem asks, given a positive integer K, for the existence of a feasible
solution y with value ≥ K. For any optimization problem P , the corresponding
decision problem PD is not harder than P . In fact, to solve PD on an instance x it
is sufficient to run some algorithm for P to obtain the optimal solution y∗ and its
optimal value z∗; then, it is sufficient to check if z∗ ≤ K in the minimization case
(z∗ ≥ K in the maximization case). For this reason, almost all proofs of NP-hardness
in this thesis use decision versions of optimization problems.

1.3 Linear and Integer Programming

Let Rn denote the set of real-valued vectors of dimension n. A linear program (LP)
consists in finding a vector x ∈ Rn that minimizes (or maximizes) a linear function
f(x) over a finite set of linear inequalities ax ≤ b, where A ∈ Rm×n and b ∈ Rm.
Therefore, a linear optimization problem can be stated as

min{f(x) = cT x such that Ax ≤ b}

where cT is an n-dimensional real-valued row vector. A vector x ∈ Rn is a feasible
solution for the system of linear inequalities Ax ≤ b if it satisfies all inequalities in
Ax ≤ b. If the system of inequalities does not admit any feasible solution, the problem
is said to be infeasible. The linear function cT x is called the objective function. A
feasible solution x that minimizes (or maximizes) the objective function is called an
optimal solution. If a problem has a feasible solution but does not have an optimal
solution, it is said to be unbounded. An integer linear program (ILP) is a linear
program with the additional restriction that vector x can assume only integer values.
The formulation of an ILP can thus be stated as

min{f(x) = cT x such that Ax ≤ b, x ∈ Zn}

If only some decision variables are constrained to assume integer values, the problem
is called a mixed-integer linear program (MILP) and can be stated as

min{f(x, y) = cT x + hT y such that Ax + Gy ≤ b, x ∈ Zn, y ∈ Rp}

Given an ILP max{f(x) = cT x such that Ax ≤ b, x ∈ Zn}, its linear relaxation is the
LP max{f(x) = cT x such that Ax ≤ b, x ∈ Rn} obtained by removing the integrality
constraints.
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Chapter 2

Pickup and Delivery problems
with autonomous vehicles on rings

This chapter is based on the article:

• Trotta, M., Archetti, C., Feillet, D. and Quilliot, A. (2022). “Pickup
and delivery problems with autonomous vehicles on rings”. In: European
Journal of Operational Research 300 (1), pp. 221–236.

In this chapter a new class of Pickup and Delivery problems on circles (or rings)
is introduced. These problems arise in the field of public transportation systems
where autonomous (i.e. driverless) vehicles travel on circular networks. A set of
stations arranged in a circle and a set of transportation requests are considered.
Each request asks for the transportation of a certain quantity from a pickup station
to a delivery station. A fleet of capacitated vehicles is available at the depot. In the
first part of the chapter a classification scheme for these problems is proposed. In
the second part, the variants in which the vehicles are allowed to move in a single
direction of the circle (either clockwise or counterclockwise) are addresses, where
the objective is to minimize the number of tours on the ring while serving all the
requests. A complexity analysis for this class of problems is provided. Polynomial
time algorithms for the variants that are polynomially solvable are proposed and
proofs of NP-hardness for the variants that are NP-hard are developed. In addition,
for the latter, mathematical formulations are provided and computational tests that
show the effectiveness of these formulations are performed. Finally, optimal solutions
are compared with those obtained using a straightforward greedy algorithm.
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2.1 Introduction

It is a matter of fact that urban mobility, by means of public transport or personal
cars, has become a key factor in people’s everyday life. More and more people
commute on urban areas on a daily basis. This clearly causes a number of issues
like traffic congestion and concentration of polluting emissions, and public entities
are struggling to find ways and policies that help in facing the ever growing demand of
mobility services. For an overview of the main challenges transport is facing both at
the EU-level and in Member States, see “Transport in the European Union: Current
Trends and Issues”, 2019. Among the different solutions proposed in recent years,
this chapter focuses on autonomous vehicles like cars, minibuses and shuttles. The
use of these vehicles raises legal, ethical, economic and safety issues. Due to these
problems it is not likely that autonomous vehicles will totally replace normal vehicles
soon. However, they will probably first be authorized for collective transportation.

There already exist a few cases where fully autonomous (i.e. driverless) vehi-
cles are used in public transportation. In May 2019 Groupe Renault, the Transdev
Group, IRT SystemX, Institut VEDECOM and the University of Paris-Saclay initi-
ated a new project called Paris-Saclay Autonomous Lab (“Paris-Saclay Autonomous
Lab: new autonomous, electric and shared mobility services”, 2019). Its purpose
was to develop new autonomous mobility services using dedicated lanes and pub-
lic streets to supplement the existing Saclay Plateau transportation system. An
overnight public transportation service using an autonomous Transdev-Lohr i-Cristal
shuttle was designed to serve the Saclay Plateau neighborhoods from the Massy sta-
tion. On December 2018, Keolis and the European Metropolis of Lille launched an
electric autonomous shuttle service at the University of Lille in Villeneuve d’Ascq,
with a population of 20,000 students and 1,600 researchers (“Keolis deploys electric
autonomous shuttles at two university campuses in France”, 2018). The service at
Lille university had employed two Navya electric autonomous shuttles for a period of
one year with four dedicated stops on a 1.4 km circle route, and had provided connec-
tions to two metro stations. More recently, in Lyon a project has been launched to
study the use of electric autonomous shuttles for urban mobility (“Projet AVENUE
: Navettes autonomes en milieu urbain”, 2020).

In Antonialli, 2019 a worldwide benchmark on the use of Autonomous Shuttles
for Collective Transport (ASCT) has been performed. By the time this research was
carried out, a total of 92 experiments were identified, spread over 32 countries around
the world and enabled by 20 different autonomous shuttle manufacturers. Results
showed a European lead on both the number of experiments and manufacturers,
with highlights to the French startups Navya and EasyMile. Regarding the road
environment, two distinct scenarios were observed. In the first, shuttles circulate
in closed/controlled areas (such as university campuses, parks, hospitals, resorts,
airports, and other designated roads); this kind of deployment accounted for 52.17%
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of the projects. In the second scenario (47.83%), shuttles were able to circulate among
mixed traffic – for these cases the routes were mainly predetermined in city-centers or
areas with a slow-speed circulation for regular vehicles. By analyzing the prevailing
business models, the author observed that the vast majority of experiments tackled
public transport schemes (96.55%) with daily commuters as the main revenue source
for the transport operator. Systems with regular lines accounted for the vast majority
of models among the sampled projects (91.21%) while demand-responsive transport
answered to only 4.40% and a mixed approach comprising both operation models was
present in the other 4.40%. Notwithstanding, as more countries and cities begin to
allow testing and circulation of autonomous vehicles, the percentage of on-demand
autonomous mobility is likely to increase.

In this work, on-demand transportation services carried out using autonomous
vehicles on circular networks are investigated. Circular networks are typical in the
closed/controlled areas mentioned above. These problems belong to the class of Ve-
hicle Routing Problems with Pickups and Deliveries (VRPPD). Pickup and delivery
problems are a class of vehicle routing problems in which objects or people have
to be transported from origins to destinations while minimizing a given objective
function. Usually this kind of problems are modelled using directed graphs where
nodes represent locations/customers and arcs represent links among them. The aim
of this chapter is to introduce and study a new class of pickup and delivery problems
where the underlying graph is a circle. In particular, a setting where a set of stations
are arranged in a circle and a set of transportation requests have to be satisfied is
considered. Each request asks for the transportation of a certain quantity from a
pickup station to a delivery station. A fleet of capacitated vehicles is available at the
depot. The objective is to serve all transportation requests while optimizing a given
objective function.

For an overview on the VRPPD the reader is referred to Desaulniers et al., 2002.
For a survey on pickup and delivery problems the reader is referred to Parragh et
al., 2008a, 2008b, where the problems are classified as Pickup and Delivery Vehicle
Routing Problem (PDVRP), where pickup and delivery points are unpaired, the
Pickup and Delivery Problem (PDP), where pickup and delivery points are paired,
and the Dial-A-Ride Problem (DARP) which deals with passenger transportation
between paired pickup and delivery points. The research on Pickup and Delivery
problems is still very active (Wu et al., 2019), (Rüther & Rieck, 2020). The reader
is referred to Berbeglia et al., 2007; Berbeglia et al., 2010 for surveys on static and
dynamic Pickup and Delivery problems. Toth et al., 2014 contains two chapters on
the PDP, respectively the PDP for goods transportation (Battarra et al., 2014) and
for people transportation (Doerner & Salazar-González, 2014). For a review article
on the DARP the reader is referred to Cordeau and Laporte, 2007. For more recent
surveys on dial-a-ride problems, see Ho et al., 2018 and Molenbruch et al., 2017.
For a high-level classification of dial-a-ride problems, the reader is referred to Gökay
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et al., 2019.
Concerning problems defined on circles, the existing literature is limited. In

Guan, 1998 the multiple capacity nonpreemptive vehicle routing problem on cycles
is studied. Gendreau et al., 1999 developed a linear time exact algorithm for the
Single-Vehicle Pickup and Delivery Problem defined on a cycle graph. Tzoreff et al.,
2002 studied the Vehicle Routing Problem with Pickup and Delivery on some special
graphs. They developed an optimal algorithm that runs in polynomial time for cycle
graphs.

Ilani et al., 2015 presented some optimal polynomial-time algorithms for two
variants of the Fixed Route DARP with a circular route. The first one considers a
fleet of infinite capacity vehicles, while the second one considers the more general case
of vehicles with heterogeneous capacities. Dial-a-Ride problems with autonomous
vehicles have also been studied in Pimenta et al., 2017a and Bäıou et al., 2018.

A number of related problems arise in the field of industrial automation. Atal-
lah and Kosaraju, 1988 were probably the first to study the problem of efficiently
rearranging parts in the plane with a centrally placed gripper that can rotate. This
problem is known as the Stacker Crane Problem (SCP), and they proposed a polyno-
mial time algorithm for the SCP on a circle. Anily and Pfeffer, 2013 studied a similar
problem, the Uncapacitated Swapping Problem, on a line and on a circle, where the
objective is to rearrange objects of different types on a circular graph using an un-
capacitated vehicle. It can be seen as a generalization of the SCP. They proposed a
polynomial time algorithm for both cases of a line and a circle.

The contributions of this chapter can be summarized as follows. A new class of
problems, the Pickup and Delivery Problems on Rings (PDP-R ), is introduced. A
classification scheme for these problems is proposed which resembles the classification
used for scheduling problems. In this class, a subclass where vehicles all travel in the
same direction along the circle is investigated, where the objective is to minimize
the time at which the last vehicle returns to the depot. The peculiarity of these
problems is that they do not involve any routing decision: the vehicles repeatedly
turn around the circle until all pickup and delivery services have been carried out.
The optimization comes from assigning delivery services to vehicles in such a way
that a given objective function is optimized. The computational complexity for all
variants of this subclass is determined. Each variant is obtained with a different com-
bination of the following parameters: number of vehicles, vehicle capacity, direction
of movement along the ring, presence of release and due dates, objective function.
Polynomial time algorithms for the problems that are polynomially solvable are de-
veloped and proofs of NP-hardness for the others are proposed. In addition, for the
latter, efficient mathematical formulations are provided that allow solving large-size
instances quickly. Finally, optimal solutions are compared with those obtained using
a straightforward greedy algorithm, that could be easily implemented by practition-
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ers.
The rest of the chapter is organized as follows. In Section 2.2, the notation is

introduced together with some basic definitions, and the classification scheme is pre-
sented. Section 2.3 is dedicated to problems with unitary requests and no release/due
dates. Section 2.4 is devoted to problems with unitary requests and release/due dates.
Section 2.5 deals with problems having non-unitary requests. Computational exper-
iments and the greedy algorithm are presented in Section 2.6. In Section 2.7, the
results are summarized and some perspectives of this work are presented.

2.2 Problem description, classification and scope
of the chapter

In this section, a general description of the PDP-R is first provided. Then, a clas-
sification scheme is introduced. Finally, the variants addressed in this chapter are
presented.

2.2.1 General problem description

The setting of the PDP-R is the following. The ring is represented by a directed
graph whose set of nodes includes m stations numbered from 0 to m− 1. To simplify
further notation, station 0 is indifferently denoted as 0 or m. The set of arcs consists
of 2×m links (j, j + 1) and (j + 1, j) between consecutive stations (0 ≤ j ≤ m− 1)
(see Figure 2.1). Travel times δj,j+1 and δj+1,j are defined between two consecutive
stations (j = 0, ..., m− 1). These travel times are not necessarily symmetric.

Figure 2.1: PDP-R with four stations (station 0 is the depot)

A multiset R of n transportation requests is considered. In the more general
case, each request i ∈ R is defined by: a pickup station si and a target station
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ti (si, ti = 0, ..., m− 1, si ̸= ti), a quantity qi to be transported, a release date ri and
a due date di. The release date indicates the earliest time for the pickup operation,
the due date is the latest time for the delivery. R is defined as a multiset instead of
a set because it can contain identical requests.

The requests are served by a fleet of vehicles that can travel along the ring in
either one or both directions. The vehicles are capacitated, so the load they can
transport at the same time cannot exceed their capacity. Station 0 is the depot,
i.e., a station where the vehicles are located before starting the service and have to
return after having served all the requests. Without loss of generality, travel times
are assumed to be equal to distances, and therefore the words time and distance are
interchangeable.

2.2.2 A classification scheme

One of the objectives of this work is to propose a classification scheme for PDP-R
problems. It has been inspired by the three-field classification introduced in Graham
et al., 1979 for scheduling problems. It is composed of three fields - α, β and γ -
separated by a vertical bar. Each field may be a comma separated list of words that
describes one or more features of the problem.

The α field contains information on the vehicles, separated by a comma:

• number of available vehicles: 1 or V (with V > 1);

• capacity of the vehicles: 1 or Q (with Q > 1) or Qv (if vehicles have different
capacities).

The β field reports the direction of movement (mandatory) and 3 optional constraints.
The direction of movement can have 3 different values:

• sd (single direction): vehicles all follow the same direction, fixed from the be-
ginning (clockwise or counterclockwise);

• md (mixed single-direction): each vehicle follows a single direction, fixed from
the beginning, that can be either clockwise or counterclockwise;

• bd (both directions): each vehicle can follow both directions.

The optional constraints, separated by a comma, are:

• ri: pickups are subject to release dates;

• di: deliveries are subject to due dates;
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• u: demands are unitary.

Finally, field γ indicates the objective function:

• Cmax: makespan, i.e., the completion time of the last request scheduled among
all the vehicles;

• ∑
Ci: total completion time, i.e., the sum of completion times over all vehicles;

• CLT : closing time, i.e., time at which the last vehicle comes back to the depot
when all requests are served.

For example, the PDP-R with one vehicle of unit capacity rotating clockwise with
no release dates and due dates whose objective is the minimization of the maximum
completion time is denoted by 1, 1|sd, u|Cmax.

Among the papers cited in Section 2.1, two of them describe problems defined
on cycle graphs that belong to the classification scheme proposed in this chapter.
The first is Guan, 1998 and concerns pickup and delivery problems on paths, cycles
and trees. One of the problems described in this chapter is the multiple capacity
nonpreemptive vehicle routing problem on cycles that is shown to be NP-complete.
The corresponding problem in our classification is 1, Q|bd|CLT . The second is the
Stacker Crane Problem (SCP) on a circle described in Atallah and Kosaraju, 1988.
The corresponding problem in our classification scheme is 1, 1|bd, u|CLT .

As for the other problems defined on cycle graphs, they do not belong to our
classification scheme for the reasons developed below:

• Gendreau et al., 1999: the closest problem in our classification is 1, Q|bd|CLT
where stations represent customers. However, there are some important differ-
ences. In the former:

– in any feasible solution the vehicle leaves the depot with a load equal to
the sum of delivery demands and gets back to the depot with a load equal
to the sum of pickup demands

– if a customer requires both pickup and delivery, the two operations must
be serviced at the same time

– the sum of pickup demands, as well as the sum of delivery demands, is
smaller than Q

The consequence is that any feasible solution has an optimal value not greater
than 2L (with L the length of the ring).
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• Tzoreff et al., 2002: in this paper the authors study the same problem studied
in Gendreau et al., 1999 but with possibly two depots on some special graphs,
including cycle graphs. They also make similar hypotheses.

• Ilani et al., 2015: in this paper the problem aims at minimizing the average
waiting time for customers in a mono-directional setting with a mixed fleet of
vehicles. Vehicles are therefore allowed to wait, and it makes a big difference
The objective function and the fact that vehicles are allowed to wait are not
considered in our classification.

• Pimenta et al., 2017b and Bäıou et al., 2018: in these papers the authors study
the Stop Number Minimization Problem (SNMP), where the objective is to
minimize the number of stops of the vehicles in a mono-directional setting.
Since the objective function is different from the ones taken into consideration,
the SNMP does not belong to the classification scheme introduced above.

2.2.3 Scope of the chapter and related definitions

This chapter contains theoretical results and computational experiments concerning
all the problem variants where the vehicles are allowed to move on the ring in a
single direction (sd) and the objective function is the minimization of the closing
time (CLT ). Without loss of generality, all vehicles are assumed to move clockwise.

Due to the circular layout, to go from j1 to j2, vehicles must pass through all
intermediate stations between j1 and j2, that is: stations j1 + 1, . . . , j2− 1 if j1 < j2,
stations j1 +1, . . . , m−1, 0, . . . , j2−1 otherwise. This allows us to define the distance
between two stations from distances between consecutive stations:

δj1,j2 =

∑j2−1

k=j1 δk,k+1 if j1 < j2∑m−1
k=j1 δk,k+1 +∑j2−1

k=0 δk,k+1 otherwise
(2.1)

Note that distances δj1,j2 satisfy the triangle inequality. We call L the length of a
complete tour, starting from the depot and returning back to the depot.

To ease the readability in the remainder of the chapter, a few definitions are
introduced.

Definition 1. We say that a request i ∈ R covers a segment [j, j + 1] if stations j
and j + 1 are within stations si and ti when going clockwise. Equivalently, it means
that a vehicle needs to traverse arc (j, j + 1) in order to serve i.

Definition 2. We say that a request i ∈ R covers a station j if it covers both segments
[j − 1, j] and [j, j + 1].

In particular, a request i covers the depot when 0 < ti < si.
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Definition 3. We say that two requests i1, i2 ∈ R overlap if at least one segment
[j, j + 1] of the ring is covered by both requests (j = 0, ..., m− 1).

Definition 4. If two requests do not overlap they are said to be compatible. Other-
wise, they are said to be in conflict (or conflicting).

Figure 2.2 shows an example with four stations and three requests identified by
their pair (si, ti): (3, 1), (1, 2), (1, 0). Requests (3, 1) and (1, 2) are compatible, while
requests {(1, 2), (1, 0)} or {(1, 0), (3, 1)} are in conflict (requests overlap in both pairs).

Figure 2.2: An example of compatible and overlapping requests

Definition 5. A tour is a complete rotation of a vehicle around the ring, starting
from station 0, passing through all stations j (j = 1, ..., m− 1) and getting back to 0.

Definition 6. A schedule is an assignment of the requests to the vehicles that speci-
fies, for each vehicle, the tour in which the requests are executed. A schedule is also
a solution for the problem.

Definition 7. A request is said active at a given time when the service of this request
is started but not finished, i.e., the request has been picked up at station si but not
yet delivered to station ti.
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2.3 Problems with unitary requests and no release/-
due dates

In this section, problem 1, 1|sd, u|CLT is proven to be polynomially solvable. In this
case, the fleet is limited to a single vehicle of unit capacity and requests have unitary
demands. No release dates nor due dates are considered.

Then, other classes of problems with unitary demands and no release/due dates
are investigated. Remember that, as all other problems addressed in this chapter,
vehicles are subject to the sd constraint (single-direction) and that the objective is
CLT (closing time). These problems are proven NP-hard (Section 2.3.2) and an
Integer Linear Programming formulation is proposed (Section 2.3.3).

2.3.1 Problem 1, 1|sd, u|CLT

A single vehicle of capacity one has to serve the multiset R of n unitary requests. It
is constrained to travel clockwise. The objective is to serve all requests and return
to the depot as early as possible. Equivalently, it consists in minimizing the number
of tours traveled by the vehicle to serve all requests.

Note that if there is no request that covers the depot, the problem reduces to the
coloring of an interval graph, where requests represent intervals and tour numbers
represent colors. This problem is known to be polynomial. With requests that cover
the depot, this structure is lost: colors cannot be matched to tour numbers anymore.
For example a simple instance with a single request covering the depot requires two
tours and a single color.

A polynomial-time algorithm based on a completely different idea is proposed.
The principle is to construct a graph whose vertices represent the stations and whose
arcs represent the requests, and to transform this graph into an Eulerian graph by
adding dummy requests that do not change the value of the optimal solution. The
Eulerian tour then provides the order in which the requests should optimally be
satisfied.

The following notation is used. Let TOP T denote the optimal number of tours.
Let z(R) denote the optimal closing time. z is expressed as a function of R be-
cause dummy requests are introduced in the algorithm, as explained later. Note that
z(R) = L × TOP T . Requests are defined by their origin and their destination; each
is represented by the pair (si, ti). Then, R = {(si, ti) : 1 ≤ i ≤ n}. For all stations j
(j = 0, ..., m− 1):

• N(j, j + 1) is the number of requests that cover segment [j, j + 1];

• N∗(j) is the number of requests that cover station j;
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• N sup = max(N(j, j + 1) : 0 ≤ j ≤ m − 1). N sup is the maximum number of
pairwise overlapping requests.

Note that N∗(j) ≤ N(j, j + 1) and, thus, also, N∗(j) ≤ N sup for j = 0, ..., m− 1.
The pseudo-code of the algorithm for solving problem 1, 1|sd, u|CLT is provided

in Algorithm 1.

Algorithm 1 Solution algorithm for problem 1, 1|sd, u|CLT

1: for all j ∈ {0, . . . , m− 1} do
2: compute N(j, j + 1) and N∗(j)
3: end for
4: compute N sup

5: R(1) ← R
6: for all j ∈ {0, . . . , m− 1} do
7: add N sup −N(j, j + 1) copies of (j, j + 1) to R(1)

8: end for
9: R(2) ← R(1)

10: if N∗(0) = N sup then
11: for all j ∈ {0, . . . , m− 1} do
12: add (j, j + 1) to R(2)

13: end for
14: end if
15: G ← ({0, . . . , m− 1},R(2))
16: {(C1, ninf

1 ), ..., (CP , ninf
P )} ← decomposeEulerian(G)

17: Λ← C1
18: if P > 1 then
19: for all p ∈ {2, . . . , P} do
20: add (ninf

p−1, ninf
p ) to Λ

21: add Cp to Λ
22: end for
23: add (ninf

P , ninf
1 ) to Λ

24: end if
25: return Λ

In Lines 1 to 4, values N(j, j + 1) and N∗(j) for j = 0, . . . , m− 1 are computed.
Then, N sup is computed.

Lines 5 to 8 complete the multiset of requests so that the number of requests
covering every segment [j, j + 1] is exactly N sup. To this end, artificial requests
(j, j + 1) are added. Let R(1) denote the new multiset. We will see in Lemma 2 that
adding these requests does not change the optimal solution value: z(R(1)) = z(R).
If the number of requests covering station 0 is equal to N sup, the request multiset
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is modified again in Lines 9 to 14. The new multiset is called R(2). In addition to
R(1), it contains a request (j, j + 1) for every segment [j, j + 1]. Again, we will see in
Lemma 4 that z(R(2)) = z(R(1)).

The next step consists in introducing a directed multigraph G (Line 15). For sake
of brevity G will be referred to as a graph, although it is always a multigraph. In this
graph, the vertex set is the set of stations. An arc is added between two stations j1
and j2 for each request (j1, j2) in the extended multiset of requests. A cost δj1,j2 is
defined for each arc (j1, j2). Lemma 5 will prove that graph G is semi-Eulerian (i.e.
for every node x, the in-degree of x is equal to its out-degree).

Semi-Eulerian graphs can be decomposed into a set of edge-disjoint and vertex-
disjoint Eulerian circuits. Procedure decomposeEulerian(G) at Line 16 executes this
decomposition. It results in a set of P circuits C1 to CP . In addition, it computes
station ninf

p of minimal index in every circuit Cp. Without loss of generality, it is
assumed that ninf

1 < · · · < ninf
P .

If P = 1, that is, if graph G is Eulerian, the procedure returns the schedule
defined by circuit C1 (Lines 17 and 25). Note that the schedule corresponds to the
sequence in which requests are served which, in turn, is the sequence in which the
corresponding arcs are traversed in the Eulerian graph. Otherwise, in Lines 17 to 24,
the algorithm connects the P circuits using arcs (ninf

p , ninf
p+1) to obtain a single circuit

Λ. Then, it returns the schedule obtained from this circuit (Line 25). Theorem 1
proves that in both cases the schedules are optimal.

The intuition behind the algorithm is based on the observation that the optimal
number of tours is either N sup or N sup+1 and that adding dummy unit-length requests
does not change the optimal solution value, as long as the value of N sup does not
change. This allows to model the problem as determining an Eulerian circuit in a
graph augmented with the dummy requests.

The various lemmas that are needed to prove the main result in Theorem 1 are
now proved. In what follows, multisets R(1) and R(2), graph G and circuit Λ are those
obtained from Algorithm 1. Two illustrative examples follow.

Lemma 1. TOP T ≥ N sup.

Proof. Since a vehicle of capacity one is considered, conflicting requests must be
served in different tours. The N sup requests that cover the same segment must then
be active on N sup different tours. It follows that the number of tour in any feasible
solution is at least N sup.

Lemma 2. Multiset R(1) is such that z(R(1)) = z(R).

Proof. We call Λ∗(R) the optimal schedule when the request set is R. From Lemma
1, we know that the vehicle performs at least N sup tours in Λ∗(R). Furthermore,
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we know that every segment [j, j + 1] is covered exactly N(j, j + 1) times in request
multiset R. It means that the vehicle is not active on at least N sup − N(j, j + 1)
tours in schedule Λ∗(R) when it traverses segment [j, j + 1]. A feasible schedule for
request multiset R(1) can be constructed from Λ∗(R) by serving the new requests
(j, j +1) when the vehicle is not active. This schedule has the same cost than Λ∗(R),
that is, z(R). It follows that z(R(1)) ≤ z(R). Trivially, as R ⊆ R(1), we have that
z(R(1)) ≥ z(R). Thus, z(R(1)) = z(R).

Lemma 3. If N∗(0) = N sup then TOP T ≥ N sup + 1.

Proof. If N∗(0) = N sup, N sup requests cover the depot and have to be active at the
depot on different tours. Given a feasible solution, the first active request at the
depot cannot be finished before tour number 2, the second before tour number 3,
and, by a simple induction, active request number N sup before tour number N sup +1.
It implies TOP T ≥ N sup + 1.

Lemma 4. Multisets R(1) and R(2) are such that z(R(2)) = z(R(1)).

Proof. If N∗(0) < N sup,R(2) = R(1). Otherwise, we can follow exactly the same proof
as in Lemma 2. With request multiset R(2), we know, thanks to Lemma 3, that the
vehicle performs at least N sup + 1 tours. So, compared to R(1), an additional request
can be added for each segment [j, j + 1] without increasing the solution cost.

Lemma 5. Graph G is semi-Eulerian.

Proof. For each node j of graph G, let d+
G(j) be the number of outgoing arcs and

d−
G(j) be the number of ingoing arcs. To show that the graph is semi-Eulerian, it

suffices to prove d+
G(j) = d−

G(j) for j = 0, . . . , m − 1. We know that every segment
[j, j+1] is covered by the same number N of requests fromR(2) (N = N sup or N sup+1,
depending on whether N∗(0) < N sup or N∗(0) = N sup, respectively). On the segment
that follows j, these N requests are made up of d+

G(j) requests whose source node is
j and N∗(j) requests that cover j (and therefore cover the segment as well). On the
segment that precedes j, they include the set of d−

G(j) requests whose target node
is j and the N∗(j) requests that cover j. Therefore, for any j ∈ {0, . . . , m − 1},
d+

G(j) + N∗(j) = N = d−
G(j) + N∗(j), which proves the lemma.

Lemma 6. If N∗(0) = N sup, graph G is Eulerian.

Proof. If N∗(0) = N sup, R(2) contains at least once each request (j, j + 1) for j =
0, . . . , m − 1. These requests create a directed circuit in G containing all the nodes.
Graph G is then strongly connected. As Lemma 5 states that G is semi-Eulerian,
then G is Eulerian.

Theorem 1. Schedule Λ is optimal. Three cases can be distinguished:
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1. If N∗(0) = N sup, TOP T = N sup + 1

2. If N∗(0) < N sup and graph G is Eulerian (algorithm
decomposeEulerian(G) returns a single circuit), TOP T = N sup

3. If N∗(0) < N sup and graph G is not Eulerian (algorithm
decomposeEulerian(G) returns several circuits), TOP T = N sup + 1

Proof. The three cases are proven separately:

1. If N∗(0) = N sup, G is Eulerian. Every segment [j, j + 1] is covered exactly
N sup +1 times in R(2), so the sum of request lengths is (N sup +1)×L. Circuit Λ
contains an arc for each request in R(2). Its total length is also (N sup + 1)×L.
Thus, TOP T ≤ N sup + 1. From Lemma 1, we have TOP T ≥ N sup + 1. This
demonstrates that TOP T = N sup + 1 and that schedule Λ is optimal.

2. If N∗(0) < N sup and graph G is Eulerian, we can apply exactly the same proof,
except that every segment is now covered N sup times. We obtain TOP T = N sup

and schedule Λ is optimal.

3. If N∗(0) < N sup and graph G is not Eulerian, TOP T ≥ N sup + 1. The proof
is by contradiction. Assume TOP T ≤ N sup. From Lemma 1 it means TOP T =
N sup, that is, the optimal schedule exactly covers the arcs in G. However,
this contradicts the fact that G is not connected. Thus, TOP T ≥ N sup + 1.
Schedule Λ can now shown to be optimal. The total length of this schedule is
N sup × L + ∑

1≤p≤P −1 δninf
p ,ninf

p+1
+ δninf

P ,ninf
1

= N sup × L + L = (N sup + 1) × L.
Thus, the number of tours is N sup + 1 and it is optimal.

Using Hierholzer’s algorithm , procedure decomposeEulerian(G) can be imple-
mented with a complexity O(N sup × m) (see, for example, Jungnickel, 2013). The
different loops of the algorithm (to compute values N(j, j+1) and N∗(j), to construct
R(1) and R(2), to obtain Λ) all have either the same complexity or a lower complexity.
The overall complexity of the algorithm is thus O(N sup×m). Seeing that N sup ≤ n,
it proves that problem 1, 1|sd, u|CLT is polyniomally solvable.

The execution of the algorithm is illustrated with the following two examples.

Example 1

Let us consider a ring with m = 5 equidistant stations (numbered from 0 to 4) and
four requests: R = {(4, 2), (2, 3), (1, 3), (3, 1)} (see Figure 2.3). On this example:
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• N(0, 1) = N(1, 2) = N(2, 3) = N(4, 0) = 2, N(3, 4) = 1, N sup = 2 and
N∗(0) = 2

• R(1) = R∪ {(3, 4)} (see Figure 2.4)

• R(2) = R(1) ∪ {(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)} (see Figure 2.4)

Based on multiset R(2), we obtain graph G represented on Figure 2.5. Applying
Hierholzer’s algorithm provides a single optimal circuit (the graph is Eulerian), e.g.:
0 → 1 → 2 → 3 → 1 → 3 → 4 → 2 → 3 → 4 → 0. This circuit gives the schedule
(2, 3), (3, 1), (1, 3), (4, 2) which is completed in three tours on the ring.

Figure 2.3: Example 1: Ring and initial requests (R)

Figure 2.4: Addition of new requests. The dashed arc denotes the request added
in lines 6-8, while the dash-dotted arcs denote the requests added in lines 9-14 of
Algorithm 1.
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Figure 2.5: Graph G of Example 1

Example 2

Consider the same ring and a new request set: R = {(0, 4), (4, 0)(1, 3),
(3, 1)} (see Figure 2.6):

• N(0, 1) = N(1, 2) = N(2, 3) = N(3, 4) = N(4, 0) = 2, N sup = 2 and N∗(0) = 1

• no new requests are added: R(2) = R(1) = R

Graph G is depicted on Figure 2.7. Applying Hierholzer’s algorithm provides two
Eulerian circuits C1 = 0 → 4 → 0 and C2 = 1 → 3 → 1. These two circuits are
reconnected with arcs (0, 1) and (1, 0) to form Λ = 0 → 4 → 0 → 1 → 3 → 1 → 0.
The vehicle performs 3 tours and the schedule is (0, 4), (4, 0), (1, 3), (3, 1).

Figure 2.6: Example 2: Ring and initial requests (R)
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Figure 2.7: Graph G of Example 2

2.3.2 Problems α|sd, u|CLT , with α = V, 1 or 1, Q or V, Q or
V, Qv

In this section different generalizations of problem 1, 1|sd, u|CLT are proven NP-hard.
The problem with multiple vehicles of capacity 1 is is first shown NP-hard (prob-

lem V, 1|sd, u|CLT ). Because of the length of the proof, the proof is omitted here and
can be found in Chapter 3. Then, this problem is proven equivalent to the problem
faced when the fleet is composed of a single vehicle of non-unitary capacity (problem
1, Q|sd, u|CLT ), which demonstrates that 1, Q|sd, u|CLT is also NP-hard. These re-
sults show that V, Q|sd, u|CLT and V, Qv|sd, u|CLT , that generalize the two others,
are NP-hard.

Theorem 2. Problem V, 1|sd, u|CLT is NP-hard.

See proof in Chapter 3.
What follows is a very simple example of an instance of V, 1|sd, u|CLT where the

optimal value CLT is greater than ⌈CLT ∗

V
⌉, where CLT ∗ is the optimal value of an

instance of 1, 1|sd, u|CLT with the same set of requests. Consider an instance of
1, 1|sd, u|CLT where the set of requests R is composed of the only request (m− 1, 1)
(with m ≥ 3). The optimal value CLT ∗ is 2. Consider an instance of V, 1|sd, u|CLT
with the same request and V = 2. The optimal value CLT does not change, and
thus it holds CLT = 2 > 1 = ⌈CLT ∗

V
⌉.

Theorem 3. Problem 1, Q|sd, u|CLT is NP-hard.

Proof. Let us consider an instance of 1, Q|sd, u|CLT and the equivalent instance of
V, 1|sd, u|CLT where the vehicle of capacity Q is replaced by V vehicles of capacity
1, with V = Q. To prove that 1, Q|sd, u|CLT is NP-hard, it must be proven that
any feasible solution Λ1,Q of the former problem can be transformed to a same-cost
feasible solution ΛV,1 of the latter, and vice-versa.
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Considering a feasible schedule Λ1,Q, we assign a number vi between 1 and Q
to all requests i ∈ R, so that two requests active at the same time have different
numbers. This numbering always exists as, when a request starts, at most Q − 1
other requests are active and so, a number between 1 and Q is available. Then, we
build schedule ΛV,1 by starting all requests as in Λ1,Q and by assigning every request
to vehicle number vi. The schedule is feasible because two requests with the same
number are not active at the same time and because vi ≤ V for all requests. Both
schedules Λ1,Q and ΛV,1 are feasible for their respective problem and have the same
closing time. Starting with a feasible schedule ΛV,1, the reverse transformation can
be applied exactly the same, with the same conclusion. The two problems having the
same set of feasible solutions with equivalent costs, they have the same complexity.
It permits to conclude that problem 1, Q|sd, u|CLT is NP-hard.

2.3.3 An ILP formulation for problem V, Q|sd, u|CLT

As problem V, Q|sd, u|CLT is NP-hard, a mathematical formulation is proposed that
could allow solving it. The formulation makes use of the following notation, in addi-
tion to the one introduced in previous sections.

• K: maximum tour number at which a request should be started

• R[j, j + 1]: set of requests in R that cover segment [j, j + 1].

• cik: cost of inserting request i ∈ R if it is started in tour number k

cik =
k if si < ti

k + 1 otherwise

To calculate an upper bound for K, finding a feasible solution is enough. Re-
quests can be ordered in the increasing order of their pickup station, and started in
consecutive tours. Then, the last request would start at tour n. Therefore, K = n.

We introduce the following decision variables:

xik =
1 if request i is started in tour k

0 otherwise
CLT = closing time.

with (1 ≤ i ≤ n, 1 ≤ k ≤ K).
Note that the closing time corresponds to the maximum number of tours traversed

by each vehicle multiplied by the length of the ring L. As L is a constant, then
minimizing CLT corresponds to minimizing the maximum number of tours traversed
by each vehicle. Thus, in the following we refer to CLT as the latter number.

Chapter 2 23



Pickup and delivery problems with autonomous and electric vehicles

The integer linear program is then:

min CLT (2.2)
s.t.: ∑

{i∈R[j,j+1],si≤j}
xik +

∑
{i∈R[j,j+1],si>j+1}

xik−1 ≤ V Q (2.3)
∑
k∈K

xik = 1 (2.4)

CLT ≥
∑
k∈K

cikxik (2.5)

xik ∈ {0, 1} (2.6)
CLT ≥ 0 (2.7)

with (1 ≤ i ≤ n, 0 ≤ j ≤ m− 1, 1 ≤ k ≤ K).
The objective function minimizes the closing time, expressed in number of tours.

Constraints (2.3) make sure that the number of active requests never exceeds the
total capacity of the V vehicles. For each segment [j, j + 1] and each tour k, this
number is evaluated by counting the active requests that started in the tour before
station j and those that started in the preceding tour after station j +1. Constraints
(2.4) make sure that every request is served. Constraints (2.5) compute the maximal
tour number CLT . Constraints (2.6)-(2.7) define decision variables.

2.4 Problems with unitary requests and release/-
due dates

This section focuses on the class of problems where each request i ∈ R is unitary
and is subject to a release date ri and a due date di. Note that in the context of the
single-direction (sd) constraint, release dates and due dates can be expressed as the
smallest and the highest tour number in which the request can be served.

2.4.1 Problem 1, 1|sd, u, ri, di|CLT

This section is devoted to the problem where a single vehicle of capacity one has to
serve the requests. The problem is the same as in Section 2.3.1 with the addition of
release dates and due dates. We will see that, when having release dates and due
dates, the problem becomes NP-hard. We proceed by reduction from a variant of
the list coloring problem, called (γ, µ)-coloring problem, introduced in Bonomo et al.,
2009 and shown to be NP-hard.
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Definition 8. Given a graph G = (V , E) and functions γ, µ : V → N such that
γ(v) ≤ µ(v) for every v ∈ V, we say that G is (γ, µ)-colorable if there exists a function
f : V → N of G such that γ(v) ≤ f(v) ≤ µ(v) for every v ∈ V, and f(v) ̸= f(v′) for
every (v, v′) ∈ E.

In Bonomo et al., 2009 it is shown that this problem generalizes the graph col-
oring problem and is NP-hard, also in the case where the underlying graph is an
interval graph. An interval graph is the intersection graph of a set of intervals
over the real line. As shown later, this result is used when proving that problem
1, 1|sd, u, ri, di|CLT is NP-hard.
Theorem 4. Problem 1, 1|sd, u, ri, di|CLT is NP-hard.

Proof. The main argument in the proof is that the constraints implied by release dates
and due dates can be equivalently expressed as constraints on the lowest and largest
tour number on which a request can be started. The starting tour of a request can
then be interpreted as a color, bounded by these two limits. Given that fact, we will
see how to transform an instance of the decision version of the (γ, µ)-coloring problem
on an interval graph into an instance of the decision version of 1, 1|sd, u, ri, di|CLT .

Consider an instance Ic of the decision version of the (γ, µ)-coloring problem on
an interval graph. A = {(a1, b1), ..., (an, bn)} is a set of n intervals on a real line
with a < b for each (a, b) ∈ A. An interval graph H = (V , E) is constructed from
A by introducing a vertex vi for each interval (ai, bi) ∈ A and by adding an edge
(vi, vj) each time intervals (ai, bi) and (aj, bj) overlap. Let γ and µ be two functions
that map vertices in V into natural numbers, such that γ(v) ≤ µ(v) for each v ∈ V .
Instance Ic consists in deciding if there exists a coloring function f : V → N such
that γ(v) ≤ f(v) ≤ µ(v) for each v ∈ V and f(v) ̸= f(v′) for (v, v′) ∈ E .

We build an instance Is of the decision version of 1, 1|sd, u, ri, di|CLT as follows.
Let D denote the set of interval extremities: D = {ai, bi : i = 1, ..., n}. We sort D in
increasing order and introduce a station in the ring for every element in D, in this
order. We complete the ring with station 0. This way, the number m of stations is
at most two times the number n of intervals plus the depot (m ≤ 2n + 1). We define
unitary distances between successive stations, which gives a tour length L = |D|+ 1.
We introduce a request in R for every interval in A. Given interval (ai, bi), request
i is defined as follows: si is the station obtained from extremity ai, ti is the station
obtained from extremity bi, ri is set to L× γ(vi) and di = L× (µ(vi) + 1)). Basically,
this means that request i has to be active between the beginning of tour number
γ(vi) and the end of tour number µ(vi). Note that no request covers the depot, so
two requests will be scheduled in the same tour if and only if they do not overlap.
Note also that this construction is polynomial.

We claim that H is (γ, µ)-colorable if and only if Is admits a feasible schedule. A
feasible schedule for Is is a function f : R → N that assigns each request i ∈ R to a

Chapter 2 25



Pickup and delivery problems with autonomous and electric vehicles

tour (that is the tour in which the request is served) so that requests do not overlap
and that the tour number of request i lies between the lowest possible tour number
and highest possible tour number given by the release and due dates, that is, γ(vi)
and µ(vi). More formally, function f has to be such that:

• f(i1) = f(i2) =⇒ i1 and i2 do not overlap ∀i1, i2 ∈ R

• γ(vi) ≤ f(i) ≤ µ(vi) ∀i ∈ R

Assume first that H is (γ, µ)-colorable. This means that a function g : V → N is
a coloring for H. Let f : R → N be a function such that f(i) = g(vi), vi ∈ V . It is
easy to see that f is a feasible schedule for Is.

On the other hand, assume that Is admits a feasible schedule f . Let g : V → R
be a function such that g(vi) = f(i), (ai, bi) ∈ A. It is easy to see that g is a
coloring function for H. In fact, g(vi1) = g(vi2) means that requests i1 and i2 do
not overlap, i.e., edge (vi1 , vi2) /∈ E . In addition, from the definition of ri and di,
γ(vi) ≤ g(vi) ≤ µ(vi).

It shows that solving the (γ, µ)-coloring problem on an interval graph amounts to
finding a feasible solution to an instance of problem
1, 1|sd, u, ri, di|CLT . This proves that problem 1, 1|sd, u, ri, di|CLT is NP-hard.

Given the result of Theorem 4, it follows that all problems with release and due
dates, monodirectional and where the objective function is the minimization of CLT
are NP-Hard.

The following section contains a mathematical formulation for problem V, Q|sd, u, ri, di|CLT
which can be used to solve also problems
α|sd, u, ri, di|CLT , with α = 1, 1 or 1, Q or V, 1, and that could be easily adapted to
solve problems with heterogeneous fleet of vehicles.

2.4.2 An ILP formulation for problem V, Q|sd, u, ri, di|CLT

In addition to notation defined in previous sections, we define Ki as the set of tour
numbers in which request i can be started

Ki = {k ∈ N : (k − 1)L + δ0,si
≥ ri and (k − 1)L + δ0,si

+ δsi,ti
≤ di}

Also, we tighten K, that is, the tour number upper bound for the last started
request, by taking account of due dates:

K = max
1≤i≤n

(
⌈

di

L

⌉
)
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Decision variables are the same as in model (2.2)-(2.7). The formulation is given
by (2.2)-(2.3), (2.5)-(2.7) and the following modification of constraints (2.4):

∑
k∈Ki

xik = 1 (1 ≤ i ≤ n) (2.8)

Constraints (2.8) make sure that every request is served and that release and due
dates are respected.

2.5 Problems with non-unitary requests

This section considers the extension of previous problems to non-unitary requests.
Note that in this context, the case Q = 1 does not make sense. Remembering that
1, Q|sd, u|CLT is NP-hard (see Section 2.3.2), we can conclude that all problems
investigated in this section are NP-hard.

2.5.1 Alternative complexity proof for problem
1, Q|sd|CLT

Though theorems 2 and 3 show that problem 1, Q|sd|CLT is NP-hard, the proof
appears overly complex when requests are not necessarily unitary. In this section, a
simpler proof based on a reduction from the Bin Packing Problem (BPP) is proposed.

The BPP is defined as follows. We are given a finite set O of n objects and K
bins. Let W ∈ Z+ be the bin capacity and wo be the weight of each object o ∈ O,
with wo ≤ W . The problem consists in determining whether a partition of O in K
disjoint subsets O1, . . . ,OK exists such that the sum of item weights in each subset
Ok is at most W . This problem is NP-complete.

Theorem 5. Problem 1, Q|sd|CLT is NP-hard

Proof. We consider the decision version of problem 1, Q|sd|CLT , i.e., the problem of
determining, given an integer C, whether a feasible schedule exists with CLT ≤ C.

Let us consider an instance IB for the BPP, with a set O of objects and K bins.
We construct an instance IS for 1, Q|sd|CLT as follows. We define a ring with two
stations S = {0, 1}. For each object o ∈ O, we introduce a request i in R, with
si = 0, ti = 1 and qi = wo. The capacity Q of the vehicle is set to bin capacity W .
We finally set C = K. In instance IS, all requests overlap, hence, a schedule Λ is
feasible if and only if:
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• in each tour, the sum of the demands of the requests started in the tour is not
greater than Q,

• the schedule contains at most C tours.

We show that IB is feasible if and only if IS is. Assume first IB feasible. We build
a schedule Λ for IS by executing the requests of the K bins in K separate tours.
Conversely, let us assume IS feasible. We consider a feasible schedule Λ. We build a
solution for IB by assigning all requests starting in the same tour to the same bin.
This shows that solving the BPP can be reduced to solving the decision version of
1, Q|sd|CLT , with a polynomial reduction, which proves that 1, Q|sd|CLT is NP-
hard.

2.5.2 An ILP model

In this section, a mathematical formulation for problem
V, Q|sd, ri, di|CLT is presented. This formulation can also be used to solve problems
1, 1|sd, ri, di|CLT , 1, Q|sd, ri, di|CLT and V, 1|sd, ri, di|CLT .

This formulation extends the formulations presented in Section 2.3.3 and 2.4.2.
The notation introduced in these sections is used. Tour assignment variables takes a
third index to take into account the vehicle that serves a request:

xikv =
1 if request i is started in tour k by vehicle v

0 otherwise

Recall that qi is the demand associated with request i. The integer linear program
is then:

min CLT (2.9)
s.t.: ∑

{i∈R[j,j+1],si≤j}
qixikv +

∑
{i∈R[j,j+1],si>j+1}

qixik−1v ≤ Q (2.10)
∑

v∈{1,...,V }

∑
k∈Ki

xikv = 1 (2.11)

CLT ≥
∑

v∈{1,...,V }

∑
k∈Ki

cikxikv (2.12)

xikv ∈ {0, 1} (2.13)
CLT ≥ 0 (2.14)
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with 1 ≤ i ≤ n, 0 ≤ j ≤ m− 1, 1 ≤ k ≤ K, 1 ≤ v ≤ V .
The objective function minimizes the closing time, expressed as number of tours,

over all vehicles. Constraints (2.10) ensure that vehicle capacities are satisfied. They
disaggregate constraints (2.3) for each vehicle. Constraints (2.11) make sure that
every requests is served, at an acceptable time. Constraints (2.12) compute CLT .
Constraints (2.13)-(2.14) define variables domain.

The following are symmetry breaking constraints to strengthen formulation (2.9)–
(2.14). The first set of constraints ranks vehicles according to the number of satisfied
requests: the smallest the vehicle index, the largest the number of satisfied requests

n∑
i=1

∑
k∈Ki

xikv ≥
n∑

i=1

∑
k∈Ki

xikv+1 (1 ≤ v ≤ V − 1). (2.15)

The second set imposes that the first requests are served by the first vehicles: the i
first requests have to be assigned to vehicles in set {1, . . . , i}:∑

u∈{1,...,j}

∑
v∈{1,...,j}

∑
k∈Ki

xukv = j (1 ≤ j ≤ min(V, n)). (2.16)

Note that (2.15) and (2.16) cannot be used simultaneously.
The impact of these constraints was evaluated computationally and a slight im-

provement was noticed, in terms of computing times, over the formulation without
symmetry breaking constraints. In particular, the most effective constraints are the
ones given by inequalities (2.16). Thus, the computational results presented in the
following include these constraints.

2.6 Computational tests

It is now presented the set of experiments made in order to evaluate the efficacy of the
formulations presented above. The formulations are solved through CPLEX 12.9.0
on a computer equipped with an Intel Core i7-9700 processor and 32GB of RAM. For
all instances a time limit of 30 minutes was set. As shown in the results, all instances
were solved (either to optimality or by proving infeasibility) within this time limit.

2.6.1 Instance sets

As far as is known, the problems investigated in this chapter are new and no bench-
mark instances exist. Random instances are generated as follows. All random num-
bers are chosen from uniform distributions.
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A ring with m = 10 stations is considered. The number of requests is chosen in
the set {20, 40, 80, 160}, and 5 instances are generated for each number of requests.
The pickup station of a request is randomly taken in {0, . . . , m − 1} and the target
station in {0, . . . , m − 1} \ {si}. For each instance, distances between consecutive
stations are randomly drawn in [1, 10]. This gives a total of 20 combinations of the
parameters mentioned above.

Every instance is replicated several times with a different fleet of vehicles and
demand values. The following values for V and Q are considered: V ∈ {1, 2, 3},
Q ∈ {1, 2, 4, 8}. When demands are not unitary, they are generated in interval
[1, Q]. For each of the 20 combinations mentioned above, this gives 12 fleet/demand
compositions for unitary and non-unitary demands, respectively.

When needed, release dates and due dates are defined based on the following
observations. The expected length of a request is approximately L

2 . The expected
demand is approximately Q

2 when demands are non-unitary or exactly 1 when they
are. So, every request approximately generates an expected workload L

2 ×
Q
2 in unit-

of-distance × unit-of-demand for non-unitary demands and an expected workload L
2

otherwise. The total expected workload is thus L
2 ×

Q
2 × n or L

2 × n, respectively.
The fleet brings a total capacity CLT × V × Q in the same unit. With a capacity
fully exploited, CLT should thus approach nL

4V
when demands are not unitary, nL

2QV

otherwise. Let C denote this value.
Then:

• Release dates are randomly generated in intervals [0, 1.5C] (tight) or [0, 2C]
(wide)

• Due dates are generated in intervals [ri + L, ri + L + C] (tight) or [ri + L, ri +
L + 1.5C] (wide)

For the 20 × 24 combinations above, this gives four alternatives for release and due
dates: t-t, t-w, w-t, w-w, where t and w stand for tight and wide, respectively.

For each instance constructed this way, two variants are finally considered: the
original instance and the instance where due dates are relaxed. The reason behind the
latter is to investigate the impact of due dates on the problem tractability. Also, it
might correspond to a realistic situation where, for example, goods have to be moved
between stations to prepare the planning for the next day. In this case, goods are
ready at a given time at the pickup station (the release date) but there is no restriction
on the time at which they should be available at the delivery station. Instances are
available at https://github.com/manueltrotta/PDP-R-instances-and-results.

To calculate value K in the case with release dates and no due date, it suffices to
notice that at the beginning of tour

⌈
2C
L

⌉
+ 1 all requests are ready to be processed
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(release dates are passed). Then, the reasoning of Section 2.3.3 can be applied to set
K =

⌈
2C
L

⌉
+ n.

2.6.2 Greedy algorithm

In order to evaluate the benefits of solving the problems to optimality, the following
simple greedy algorithm is designed that is easy to implement and that would be easy
to understand for practitioners. The solutions provided by the greedy algorithm are
then compared with the optimal solutions. The greedy algorithm works as follows.

When a vehicle reaches a station that is the pickup station of at least one request
and this request can be started, it is started. If several requests can be started at the
same time, ties are broken by giving priority to requests according to the following
criteria, taken hierarchically:

• earliest due date first (due date is considered infinite if no due date is defined);

• largest demand first;

• longest distance to reach the delivery node first.

Note that, in case of instances with unit demands and no release/due dates, only
the third criterion is used.

2.6.3 Computational results for V, Q|sd, u|CLT

In Table 2.1 results for problem V, Q|sd, u|CLT are reported. All results are aver-
aged over the 5 instances with the same value of n, V and Q, considering feasible
instances only. Detailed results are available at https://github.com/manueltrotta/
PDP-R-instances-and-results. Column CPU(s) reports the solution time of the for-
mulation in Section 2.3.3, in seconds. Column feas reports the number of feasible
instances. Column greedy reports the number of instances for which the greedy al-
gorithm found a feasible solution. Column TOP T reports the value of the optimal
solution (closing time expressed in number of tours). Column gapGr gives the aver-
age percentage gap of the solutions found with the greedy algorithm with respect to
the optimal solution.
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n V Q CPU(s) feas greedy CLT gapGr(%)

20 1 1 0.1 5 5 13.0 4.5
20 1 2 0.0 5 5 6.8 5.4
20 1 4 0.0 5 5 3.8 11.7
20 1 8 0.0 5 5 2.6 20.0

20 2 1 0.1 5 5 6.8 8.7
20 2 2 0.0 5 5 3.8 11.7
20 2 4 0.0 5 5 2.6 20.0
20 2 8 0.0 5 5 2.0 0.0

20 3 1 0.1 5 5 4.8 9.0
20 3 2 0.0 5 5 3.0 6.7
20 3 4 0.0 5 5 2.2 10.0
20 3 8 0.0 5 5 2.0 0.0

40 1 1 0.3 5 5 25.4 0.7
40 1 2 0.2 5 5 13.2 6.1
40 1 4 0.1 5 5 7.0 2.9
40 1 8 0.1 5 5 4.0 10.0

40 2 1 0.4 5 5 13.2 4.7
40 2 2 0.2 5 5 7.0 9.0
40 2 4 0.1 5 5 4.0 5.0
40 2 8 0.1 5 5 2.6 20.0

40 3 1 0.4 5 5 9.0 4.2
40 3 2 0.2 5 5 5.0 8.0
40 3 4 0.1 5 5 3.0 13.3
40 3 8 0.1 5 5 2.0 10.0

n V Q CPU(s) feas greedy CLT gapGr(%)

80 1 1 2.5 5 5 46.4 1.3
80 1 2 1.2 5 5 23.4 1.6
80 1 4 0.6 5 5 12.0 1.7
80 1 8 0.2 5 5 6.4 12.9

80 2 1 2.5 5 5 23.4 1.6
80 2 2 1.3 5 5 12.0 5.0
80 2 4 0.6 5 5 6.4 6.2
80 2 8 0.4 5 5 3.4 25.0

80 3 1 3.8 5 5 15.8 3.8
80 3 2 1.7 5 5 8.2 9.7
80 3 4 0.8 5 5 4.4 19.0
80 3 8 0.3 5 5 3.0 6.7

160 1 1 17.6 5 5 87.4 0.2
160 1 2 8.2 5 5 44.2 0.9
160 1 4 5.3 5 5 22.2 2.8
160 1 8 2.0 5 5 11.4 5.5

160 2 1 30.9 5 5 44.2 0.5
160 2 2 19.9 5 5 22.2 1.9
160 2 4 6.6 5 5 11.4 5.5
160 2 8 3.3 5 5 6.0 16.7

160 3 1 39.9 5 5 29.4 2.1
160 3 2 18.8 5 5 15.0 5.4
160 3 4 9.9 5 5 7.8 10.4
160 3 8 4.3 5 5 4.0 25.0

Table 2.1: Problem V, Q|sd, u|CLT

We can observe that the formulation in Section 2.3.3 is extremely effective. In fact,
the computational time is always smaller than 40 seconds. The computational time
increases with the number of requests, as expected, and decreases with the vehicle
capacity. Also, the solution value decreases as the capacity increases, as expected.
The performance of the greedy algorithm highly depends on vehicle capacity: the
larger the capacity, the worse is the performance. This might be due to the fact that,
when increasing the capacity, the chances of making a bad choice of assignment of
requests to vehicles increases. On the other side, we see that the gap decreases with
solution values. This was expected: in fact, the relative impact of bad choices made
by the greedy algorithm decreases.

2.6.4 Computational results for V, Q|sd, u, ri, di|CLT

Tables 2.2 and 2.3 report results for problem V, Q|sd, u, ri, di|CLT . The meaning of
the column headings is the same as above. “-” indicates that either the instance is
infeasible or the greedy algorithm failed in finding a solution. In Table 2.2, three
cases are considered for release and due dates: tight-tight (t-t), tight-wide (t-w) and
tight release dates without due dates (t). The three remaining cases are reported in
Table 2.3.

The main observation from these tables is that the model remains extremely
efficient, even when release dates and due dates are considered. Even more, solution
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n V Q t-t t-w t

CPU(s) feas greedy CLT gapGr CPU(s) feas greedy CLT gapGr CPU(s) feas greedy CLT gapGr

20 1 1 0.0 3 0 17.3 - 0.0 4 1 17.0 6.7 0.0 5 5 17.4 7.0
20 1 2 0.0 5 0 9.2 - 0.0 5 0 9.2 - 0.0 5 5 9.2 8.7
20 1 4 0.0 5 0 5.0 - 0.0 5 1 4.8 20.0 0.0 5 5 5.0 12.0
20 1 8 0.0 5 0 3.0 - 0.0 5 2 2.8 25.0 0.0 5 5 3.0 26.7

20 2 1 0.0 5 0 8.6 - 0.0 5 0 9.2 - 0.0 5 5 8.6 9.4
20 2 2 0.0 5 2 4.8 22.5 0.0 5 2 4.6 20.0 0.0 5 5 4.6 22.0
20 2 4 0.0 5 0 3.0 - 0.0 5 0 3.2 - 0.0 5 5 3.0 20.0
20 2 8 0.0 5 0 2.0 - 0.0 5 0 2.0 - 0.0 5 5 2.0 50.0

20 3 1 0.0 5 2 6.2 18.3 0.0 4 2 6.5 0.0 0.0 5 5 6.2 10.7
20 3 2 0.0 5 0 3.6 - 0.0 5 2 3.6 12.5 0.0 5 5 3.6 23.3
20 3 4 0.0 5 0 2.8 - 0.0 5 1 2.8 0.0 0.0 5 5 2.8 10.0
20 3 8 0.0 5 0 2.0 - 0.0 5 0 2.0 - 0.0 5 5 2.0 30.0

40 1 1 0.0 5 0 34.2 - 0.0 5 2 31.2 1.7 0.1 5 5 34.0 3.5
40 1 2 0.0 5 0 16.4 - 0.0 5 0 16.6 - 0.0 5 5 16.4 7.4
40 1 4 0.0 5 0 9.2 - 0.0 5 1 8.6 0.0 0.0 5 5 9.0 4.7
40 1 8 0.0 5 0 5.0 - 0.0 5 0 4.8 - 0.0 5 5 5.0 8.0

40 2 1 0.0 5 0 16.6 - 0.0 5 0 16.4 - 0.1 5 5 16.6 3.8
40 2 2 0.0 5 1 9.0 0.0 0.0 5 3 8.8 7.9 0.0 5 5 9.0 2.2
40 2 4 0.0 5 0 4.8 - 0.0 5 0 5.0 - 0.0 5 5 4.8 13.0
40 2 8 0.0 5 0 3.0 - 0.0 5 0 3.0 - 0.0 5 5 3.0 33.3

40 3 1 0.0 5 0 11.0 - 0.0 5 1 11.6 8.3 0.1 5 5 11.0 7.3
40 3 2 0.0 5 0 6.2 - 0.0 5 0 5.8 - 0.1 5 5 6.2 16.2
40 3 4 0.0 5 0 4.0 - 0.0 5 0 4.0 - 0.1 5 5 4.0 0.0
40 3 8 0.0 5 0 3.0 - 0.0 5 0 3.0 - 0.1 5 5 3.0 0.0

80 1 1 0.1 5 1 61.4 3.2 0.1 4 0 62.0 - 0.2 5 5 61.4 1.3
80 1 2 0.0 5 0 31.4 - 0.0 5 0 31.6 - 0.1 5 5 31.4 2.6
80 1 4 0.0 5 1 16.6 6.3 0.0 5 1 15.6 6.3 0.1 5 5 16.6 4.9
80 1 8 0.0 5 0 9.0 - 0.0 5 1 8.8 0.0 0.1 5 5 9.0 8.9

80 2 1 0.1 5 1 31.4 0.0 0.1 5 0 31.0 - 0.3 5 5 31.4 2.6
80 2 2 0.0 5 0 15.8 - 0.0 5 1 16.2 6.3 0.2 5 5 15.8 5.1
80 2 4 0.0 5 2 8.6 6.3 0.0 5 0 8.8 - 0.2 5 5 8.6 7.2
80 2 8 0.0 5 0 5.0 - 0.0 5 0 5.0 - 0.1 5 5 5.0 16.0

80 3 1 0.1 5 1 21.4 4.8 0.2 5 1 21.4 4.5 0.4 5 5 21.4 3.8
80 3 2 0.0 5 1 11.0 0.0 0.0 5 1 11.0 9.1 0.3 5 5 11.0 7.3
80 3 4 0.0 5 0 6.0 - 0.0 5 0 6.0 - 0.2 5 5 6.0 16.7
80 3 8 0.0 5 0 4.0 - 0.0 5 0 4.0 - 0.2 5 5 4.0 15.0

160 1 1 0.6 5 0 120.6 - 0.8 4 0 121.8 - 1.9 5 5 120.6 1.5
160 1 2 0.1 5 1 61.6 1.6 0.1 5 1 61.2 1.6 0.5 5 5 61.6 1.0
160 1 4 0.0 5 1 30.8 3.3 0.1 5 0 31.0 - 0.3 5 5 30.8 2.0
160 1 8 0.0 5 0 16.0 - 0.0 5 2 16.0 3.1 0.3 5 5 16.0 5.0

160 2 1 0.7 5 0 62.2 - 0.7 5 0 61.0 - 2.2 5 5 62.2 1.0
160 2 2 0.1 5 0 31.2 - 0.2 5 1 31.6 0.0 0.9 5 5 31.2 2.6
160 2 4 0.0 5 1 16.2 6.3 0.1 5 0 16.2 - 0.7 5 5 16.2 3.8
160 2 8 0.0 5 0 9.0 - 0.0 5 0 9.0 - 0.7 5 5 9.0 4.4

160 3 1 0.5 5 0 41.6 - 0.6 5 1 40.8 2.5 2.1 5 5 41.6 0.5
160 3 2 0.1 5 1 20.8 4.8 0.2 5 1 21.2 4.8 1.5 5 5 20.8 4.8
160 3 4 0.1 5 0 11.2 - 0.1 5 1 11.0 9.1 1.2 5 5 11.2 5.5
160 3 8 0.0 5 0 6.0 - 0.0 5 0 6.0 - 1.1 5 5 6.0 16.7

Table 2.2: Problem V, Q|sd, u, ri, di|CLT (part 1)
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n V Q w-t w-w w

CPU(s) feas greedy CLT gapGr CPU(s) feas greedy CLT gapGr CPU(s) feas greedy CLT gapGr

20 1 1 0.0 5 2 20.6 5.0 0.0 5 1 19.4 5.6 0.0 5 5 20.6 4.9
20 1 2 0.0 5 1 11.2 8.3 0.0 5 1 10.6 0.0 0.0 5 5 10.8 9.3
20 1 4 0.0 5 1 5.8 16.7 0.0 5 1 5.8 16.7 0.0 5 5 5.8 14.0
20 1 8 0.0 5 0 4.0 - 0.0 5 0 4.0 - 0.0 5 5 3.8 11.7

20 2 1 0.0 5 1 10.6 10.0 0.0 5 4 10.8 7.0 0.0 5 5 10.6 4.0
20 2 2 0.0 5 1 6.0 16.7 0.0 5 3 5.8 12.2 0.0 5 5 6.0 10.0
20 2 4 0.0 5 0 4.0 - 0.0 5 0 3.8 - 0.0 5 5 4.0 10.0
20 2 8 0.0 5 0 3.0 - 0.0 5 0 2.6 - 0.0 5 5 3.0 0.0

20 3 1 0.0 5 1 7.8 0.0 0.0 5 1 8.0 0.0 0.0 5 5 7.8 7.9
20 3 2 0.0 5 0 4.4 - 0.0 5 1 4.4 0.0 0.0 5 5 4.4 20.0
20 3 4 0.0 5 0 2.6 - 0.0 5 0 3.0 - 0.0 5 5 2.6 20.0
20 3 8 0.0 5 0 2.0 - 0.0 5 0 2.0 - 0.0 5 5 2.0 50.0

40 1 1 0.0 5 0 39.2 - 0.0 5 0 41.4 - 0.0 5 5 39.2 2.5
40 1 2 0.0 5 0 20.6 - 0.0 5 1 20.8 4.8 0.0 5 5 20.6 4.9
40 1 4 0.0 5 1 11.0 9.1 0.0 5 2 10.8 5.0 0.0 5 5 11.0 3.6
40 1 8 0.0 5 0 6.0 - 0.0 5 1 6.0 16.7 0.0 5 5 6.0 13.3

40 2 1 0.0 5 1 20.8 4.8 0.0 5 1 20.4 4.8 0.1 5 5 20.8 3.9
40 2 2 0.0 5 0 10.6 - 0.0 5 2 10.6 9.5 0.0 5 5 10.6 4.0
40 2 4 0.0 5 2 6.0 8.3 0.0 5 1 6.0 0.0 0.0 5 5 6.0 13.3
40 2 8 0.0 5 0 4.0 - 0.0 5 0 4.0 - 0.0 5 5 4.0 0.0

40 3 1 0.0 5 1 14.6 0.0 0.0 5 1 14.4 0.0 0.1 5 5 14.6 2.8
40 3 2 0.0 5 0 8.0 - 0.0 5 1 7.8 12.5 0.1 5 5 8.0 2.5
40 3 4 0.0 5 0 4.4 - 0.0 5 1 4.8 0.0 0.1 5 5 4.4 10.0
40 3 8 0.0 5 0 3.0 - 0.0 5 0 3.0 - 0.1 5 5 3.0 6.7

80 1 1 0.1 5 2 80.2 0.6 0.1 5 4 80.6 1.2 0.1 5 5 80.2 0.8
80 1 2 0.0 5 1 40.4 0.0 0.0 5 4 41.0 1.2 0.1 5 5 40.4 1.5
80 1 4 0.0 5 0 20.4 - 0.0 5 1 20.8 0.0 0.1 5 5 20.4 4.9
80 1 8 0.0 5 0 10.6 - 0.0 5 1 11.0 9.1 0.1 5 5 10.6 7.6

80 2 1 0.1 5 1 41.0 4.9 0.1 5 2 40.8 1.2 0.3 5 5 41.0 2.0
80 2 2 0.0 5 1 21.0 0.0 0.0 5 2 20.8 2.5 0.2 5 5 21.0 2.9
80 2 4 0.0 5 0 10.8 - 0.0 5 0 11.0 - 0.1 5 5 10.8 7.5
80 2 8 0.0 5 0 6.0 - 0.0 5 1 6.0 16.7 0.1 5 5 6.0 16.7

80 3 1 0.1 5 0 27.6 - 0.1 5 2 28.0 1.8 0.4 5 5 27.6 2.2
80 3 2 0.0 5 1 14.8 0.0 0.0 5 2 14.6 3.6 0.2 5 5 14.8 0.0
80 3 4 0.0 5 1 7.8 12.5 0.0 5 0 8.0 - 0.2 5 5 7.8 12.9
80 3 8 0.0 5 0 5.0 - 0.0 5 0 5.0 - 0.2 5 5 5.0 4.0

160 1 1 0.3 5 1 160.2 0.0 0.3 5 2 160.6 0.9 0.6 5 5 160.2 0.5
160 1 2 0.1 5 0 80.6 - 0.1 5 1 80.8 0.0 0.4 5 5 80.6 0.7
160 1 4 0.0 5 0 40.8 - 0.1 5 3 41.0 1.6 0.3 5 5 40.8 1.0
160 1 8 0.0 5 0 20.8 - 0.0 5 1 21.0 4.8 0.3 5 5 20.8 3.9

160 2 1 0.2 5 0 81.0 - 0.3 5 2 80.2 1.3 1.2 5 5 81.0 0.7
160 2 2 0.1 5 1 41.0 0.0 0.1 5 1 40.8 0.0 0.8 5 5 41.0 1.0
160 2 4 0.0 5 1 21.0 4.8 0.0 5 0 20.4 - 0.8 5 5 21.0 2.9
160 2 8 0.0 5 0 11.0 - 0.0 5 1 11.0 9.1 0.7 5 5 11.0 7.3

160 3 1 0.2 5 0 54.6 - 0.3 5 2 54.0 1.9 1.5 5 5 54.6 0.4
160 3 2 0.1 5 0 27.8 - 0.1 5 2 28.0 1.8 1.3 5 5 27.8 1.5
160 3 4 0.0 5 0 14.8 - 0.1 5 0 15.0 - 1.1 5 5 14.8 1.4
160 3 8 0.0 5 0 8.0 - 0.0 5 0 8.0 - 1.1 5 5 8.0 5.0

Table 2.3: Problem V, Q|sd, u, ri, di|CLT (part 2)
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times are much smaller than those reported in Table 2.1, with almost all instances
solved in less than one second. This might be due to the fact that release and
due dates reduce the solution space. Still, the instances are not trivial to solve, as
witnessed by the results related to the greedy algorithm. Indeed, while almost all
instances admit feasible solutions, the greedy algorithm fails in finding the optimal
solution for most of them. In addition, the greedy algorithm has difficulties even in
finding a feasible solution, especially for the case in which release and due dates are
tight. This shows that a solution approach smarter than the simple greedy algorithm
can provide large advantages.

2.6.5 Computational results for V, Q|sd, ri, di|CLT

This section reports results for problem V, Q|sd, ri, di|CLT . The case with no release
dates and due dates is considered in Table 2.4. Tables 2.5 and 2.6 report results
for the case with release and due dates. Contrary to previous results, demands are
not forced to be unitary. Optimal solutions are the ones obtained from solving the
formulation in Section 2.5.2. Columns are the same as in the former section.

n V Q CPU(s) feas greedy CLT gapGr(%)

20 1 1 0.1 5 5 13.0 1.5
20 1 2 0.1 5 5 9.8 8.2
20 1 4 0.1 5 5 8.8 11.6
20 1 8 0.1 5 5 8.2 16.9

20 2 1 0.1 5 5 6.8 2.9
20 2 2 0.1 5 5 5.4 10.9
20 2 4 0.1 5 5 5.2 13.0
20 2 8 0.1 5 5 4.8 13.0

20 3 1 0.1 5 5 4.8 9.0
20 3 2 0.1 5 5 3.8 23.3
20 3 4 0.1 5 5 3.6 26.7
20 3 8 0.1 5 5 3.2 26.7

40 1 1 0.3 5 5 25.4 1.6
40 1 2 0.2 5 5 19.0 3.2
40 1 4 1.2 5 5 17.0 12.9
40 1 8 0.5 5 5 14.6 11.0

40 2 1 0.4 5 5 13.2 1.5
40 2 2 0.3 5 5 9.8 10.4
40 2 4 0.4 5 5 8.6 6.9
40 2 8 0.7 5 5 8.8 11.4

40 3 1 0.4 5 5 9.0 4.2
40 3 2 0.4 5 5 7.2 14.0
40 3 4 0.4 5 5 6.0 14.7
40 3 8 0.3 5 5 5.0 20.3

n V Q CPU(s) feas greedy CLT gapGr(%)

80 1 1 2.5 5 5 46.4 1.7
80 1 2 2.9 5 5 35.6 2.8
80 1 4 15.9 5 5 30.4 9.9
80 1 8 22.9 5 5 27.6 11.9

80 2 1 2.5 5 5 23.4 1.6
80 2 2 3.9 5 5 18.2 5.6
80 2 4 5.4 5 5 15.6 9.0
80 2 8 24.4 5 5 14.2 12.8

80 3 1 3.9 5 5 15.8 3.8
80 3 2 5.8 5 5 11.8 7.0
80 3 4 6.0 5 5 10.4 13.5
80 3 8 20.2 5 5 9.8 16.6

160 1 1 17.6 5 5 87.4 0.7
160 1 2 102.9 5 5 65.4 1.2
160 1 4 227.7 5 5 54.8 10.6
160 1 8 292.3 5 5 51.6 12.5

160 2 1 30.8 5 5 44.2 1.8
160 2 2 29.7 5 5 33.2 3.0
160 2 4 213.1 5 5 27.4 11.8
160 2 8 453.7 5 5 25.4 11.0

160 3 1 39.9 5 5 29.4 2.0
160 3 2 50.3 5 5 22.2 3.6
160 3 4 86.4 5 5 19.8 10.1
160 3 8 162.7 5 5 18.4 12.1

Table 2.4: Problem V, Q|sd|CLT

These tables confirm the good-quality of the formulation but also exhibit larger
computing times. Largest instances regularly require a few minutes for getting the
optimal solution, with or without release dates and due dates. The reason is re-
lated to the larger number of variables due to the disaggregated capacity constraints.
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n V Q t-t t-w t

CPU(s) feas greedy CLT gapGr CPU(s) feas greedy CLT gapGr CPU(s) feas greedy CLT gapGr

20 1 1 0.0 0 0 - - 0.0 1 0 13.0 - 0.0 5 5 13.6 7.5
20 1 2 0.0 0 0 - - 0.0 4 0 11.3 - 0.0 5 5 11.0 13.6
20 1 4 0.0 1 1 9.0 11.1 0.0 4 0 10.0 - 0.0 5 5 10.6 16.9
20 1 8 0.0 2 0 9.0 - 0.0 3 1 10.0 20.0 0.0 5 5 10.0 16.6

20 2 1 0.0 0 0 - - 0.0 1 0 8.0 - 0.0 5 5 7.0 17.9
20 2 2 0.0 1 0 6.0 - 0.0 4 0 6.0 - 0.0 5 5 5.6 21.5
20 2 4 0.0 2 0 6.0 - 0.0 3 0 5.7 - 0.0 5 5 5.8 24.7
20 2 8 0.0 4 0 5.8 - 0.0 5 0 5.0 - 0.0 5 5 5.4 26.7

20 3 1 0.0 0 0 - - 0.0 1 0 4.0 - 0.0 5 5 5.2 17.3
20 3 2 0.0 3 0 4.3 - 0.0 5 0 4.6 - 0.0 5 5 4.4 15.0
20 3 4 0.0 2 0 4.0 - 0.0 5 0 4.2 - 0.0 5 5 4.0 32.3
20 3 8 0.0 4 0 4.3 - 0.0 5 1 4.2 0.0 0.0 5 5 4.2 9.0

40 1 1 0.0 0 0 - - 0.0 1 0 24.0 - 0.2 5 5 26.8 4.8
40 1 2 0.0 1 0 21.0 - 0.1 3 0 20.7 - 0.1 5 5 20.2 9.3
40 1 4 0.0 3 0 18.7 - 0.1 3 0 19.0 - 0.2 5 5 19.2 12.4
40 1 8 0.0 4 0 17.8 - 0.0 4 0 17.8 - 0.1 5 5 18.0 14.5

40 2 1 0.0 0 0 - - 0.0 2 0 13.0 - 0.2 5 5 13.6 7.6
40 2 2 0.0 1 0 10.0 - 0.1 4 0 10.0 - 0.2 5 5 10.2 13.8
40 2 4 0.0 4 0 9.3 - 0.1 5 0 9.8 - 0.2 5 5 9.4 13.9
40 2 8 0.1 4 0 10.5 - 0.0 5 0 10.0 - 0.2 5 5 10.4 12.3

40 3 1 0.0 0 0 - - 0.0 4 0 9.0 - 0.3 5 5 9.2 13.2
40 3 2 0.0 3 0 7.3 - 0.0 4 0 8.0 - 0.2 5 5 7.4 16.4
40 3 4 0.0 4 1 6.8 16.7 0.0 4 0 7.0 - 0.1 5 5 6.8 14.9
40 3 8 0.0 4 0 6.5 - 0.0 5 0 6.4 - 0.1 5 5 6.4 22.4

80 1 1 0.0 0 0 - - 0.2 4 0 47.5 - 1.3 5 5 47.8 4.2
80 1 2 0.4 3 0 39.3 - 1.2 5 0 37.2 - 2.2 5 5 38.2 10.0
80 1 4 0.2 3 0 34.3 - 12.2 5 1 35.2 11.4 2.7 5 5 34.6 11.6
80 1 8 0.4 5 0 32.6 - 0.8 5 0 33.6 - 2.2 5 5 32.2 11.7

80 2 1 0.0 0 0 - - 0.2 3 0 24.3 - 2.0 5 5 24.0 4.2
80 2 2 0.5 5 0 19.4 - 2.0 5 0 18.8 - 2.4 5 5 18.8 14.9
80 2 4 7.4 5 0 17.2 - 1.2 5 0 17.6 - 9.2 5 5 17.0 11.7
80 2 8 0.2 5 0 17.2 - 0.8 5 0 17.2 - 1.8 5 5 17.2 6.9

80 3 1 0.1 0 0 - - 0.3 4 0 16.3 - 2.4 5 5 16.2 5.0
80 3 2 1.0 5 0 13.2 - 0.4 5 0 12.4 - 1.4 5 5 13.2 9.1
80 3 4 0.2 5 0 12.0 - 1.7 5 0 12.0 - 1.3 5 5 12.0 13.3
80 3 8 0.5 5 1 12.0 9.1 0.6 5 0 11.6 - 1.6 5 5 11.8 15.3

160 1 1 0.4 0 0 - - 7.8 5 0 88.4 - 45.6 5 5 88.6 3.8
160 1 2 179.5 5 0 69.4 - 38.5 5 0 69.2 - 346.4 5 5 69.2 6.5
160 1 4 15.3 5 0 64.8 - 22.0 5 0 63.4 - 27.2 5 5 64.6 7.1
160 1 8 18.6 5 0 63.4 - 8.6 5 0 63.4 - 17.4 5 5 63.4 7.0

160 2 1 0.3 0 0 - - 4.1 5 0 44.8 - 28.5 5 5 44.2 2.2
160 2 2 87.7 5 0 34.4 - 25.9 5 0 34.4 - 44.9 5 5 34.4 6.9
160 2 4 365.6 5 0 32.3 - 9.2 5 0 33.4 - 44.5 5 5 32.0 10.6
160 2 8 12.0 5 0 32.0 - 71.6 5 0 32.2 - 20.5 5 5 31.8 8.8

160 3 1 0.3 0 0 - - 4.0 5 0 29.6 - 49.8 5 5 29.8 6.0
160 3 2 51.5 5 0 23.2 - 17.2 5 0 23.0 - 26.5 5 5 23.2 9.5
160 3 4 20.4 5 0 22.4 - 24.8 5 0 22.0 - 362.2 5 5 22.2 10.8
160 3 8 92.8 5 0 21.8 - 5.7 5 0 21.8 - 56.4 5 5 21.8 8.3

Table 2.5: Problem V, Q|sd, ri, di|CLT (part 1)
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n V Q w-t w-w w

CPU(s) feas greedy CLT gapGr CPU(s) feas greedy CLT gapGr CPU(s) feas greedy CLT gapGr

20 1 1 0.0 0 0 - - 0.0 2 0 14.0 - 0.0 5 5 14.0 11.4
20 1 2 0.0 2 1 12.0 9.1 0.0 4 0 12.5 - 0.0 5 5 12.2 18.0
20 1 4 0.0 2 0 11.0 - 0.0 1 0 15.0 - 0.0 5 5 11.8 11.9
20 1 8 0.0 2 0 11.5 - 0.0 4 1 11.8 10.0 0.0 5 5 11.4 13.9

20 2 1 0.0 0 0 - - 0.0 3 0 7.0 - 0.0 5 5 8.4 7.9
20 2 2 0.0 4 0 7.0 - 0.0 4 1 6.5 33.3 0.0 5 5 6.4 15.9
20 2 4 0.0 2 0 7.0 - 0.0 4 1 6.8 16.7 0.0 5 5 6.6 15.4
20 2 8 0.0 5 0 6.4 - 0.0 5 0 6.2 - 0.0 5 5 6.4 12.4

20 3 1 0.0 1 0 5.0 - 0.0 2 0 5.5 - 0.0 5 5 5.6 14.0
20 3 2 0.0 3 0 4.3 - 0.0 5 0 4.6 - 0.0 5 5 4.6 18.0
20 3 4 0.0 4 0 5.0 - 0.0 5 3 4.6 15.0 0.0 5 5 5.0 22.0
20 3 8 0.0 5 1 4.4 25.0 0.0 5 0 4.8 - 0.0 5 5 4.4 23.0

40 1 1 0.0 1 0 26.0 - 0.0 2 0 26.0 - 0.1 5 5 27.0 6.2
40 1 2 0.0 4 0 22.8 - 0.0 5 0 22.6 - 0.1 5 5 21.6 7.4
40 1 4 0.0 4 0 23.5 - 0.0 5 0 23.4 - 0.1 5 5 22.0 10.1
40 1 8 0.0 5 0 21.2 - 0.0 5 0 21.8 - 0.1 5 5 20.8 10.7

40 2 1 0.0 1 0 13.0 - 0.0 3 0 13.7 - 0.2 5 5 14.0 8.8
40 2 2 0.0 4 0 11.5 - 0.0 5 0 11.4 - 0.1 5 5 11.2 10.8
40 2 4 0.0 4 0 11.8 - 0.0 5 0 11.4 - 0.1 5 5 11.6 12.3
40 2 8 0.0 4 1 11.0 10.0 0.0 5 0 11.2 - 0.1 5 5 11.0 14.6

40 3 1 0.0 1 0 9.0 - 0.0 5 0 9.6 - 0.2 5 5 9.0 13.7
40 3 2 0.0 5 0 8.4 - 0.0 5 0 8.4 - 0.1 5 5 8.2 14.7
40 3 4 0.0 5 0 8.2 - 0.0 5 0 8.0 - 0.1 5 5 8.0 12.5
40 3 8 0.0 5 0 7.8 - 0.0 5 0 8.0 - 0.1 5 5 7.8 17.9

80 1 1 0.1 2 0 47.5 - 0.2 4 0 48.8 - 0.8 5 5 48.0 7.5
80 1 2 0.1 5 0 43.6 - 0.3 5 0 42.6 - 0.4 5 5 43.4 6.5
80 1 4 0.1 5 0 41.2 - 0.2 5 0 41.8 - 0.3 5 5 41.2 6.8
80 1 8 0.1 5 0 41.8 - 0.1 5 0 41.2 - 0.3 5 5 41.8 4.7

80 2 1 0.1 4 0 24.0 - 0.3 5 0 24.8 - 1.3 5 5 23.8 7.5
80 2 2 0.1 5 0 22.2 - 0.2 5 1 22.0 4.5 0.7 5 5 22.2 5.7
80 2 4 0.1 5 1 21.4 4.5 0.1 5 0 21.4 - 0.4 5 5 21.2 5.7
80 2 8 0.1 5 0 21.4 - 0.1 5 0 21.4 - 0.4 5 5 21.4 5.6

80 3 1 0.1 2 0 16.5 - 0.2 5 0 17.0 - 1.4 5 5 16.8 8.4
80 3 2 0.1 5 0 15.0 - 0.1 5 0 14.8 - 0.5 5 5 15.0 9.3
80 3 4 0.1 5 0 15.0 - 0.1 5 0 15.2 - 0.4 5 5 15.0 5.3
80 3 8 0.1 5 0 15.0 - 0.1 5 0 14.8 - 0.5 5 5 15.0 4.0

160 1 1 2.7 5 0 91.4 - 4.5 5 0 91.2 - 17.0 5 5 91.2 6.4
160 1 2 1.7 5 0 83.6 - 3.6 5 0 83.6 - 5.0 5 5 83.6 3.3
160 1 4 0.4 5 0 81.6 - 0.5 5 0 81.4 - 1.7 5 5 81.6 2.5
160 1 8 0.3 5 0 82.0 - 0.4 5 0 81.4 - 1.4 5 5 81.8 1.7

160 2 1 1.7 5 0 46.4 - 3.5 5 0 45.8 - 12.3 5 5 46.4 5.2
160 2 2 0.8 5 0 42.4 - 2.1 5 0 41.8 - 2.6 5 5 42.2 4.3
160 2 4 0.5 5 0 42.0 - 0.9 5 0 41.8 - 2.4 5 5 42.0 3.3
160 2 8 0.4 5 0 40.8 - 0.6 5 1 41.2 2.4 3.2 5 5 40.8 3.9

160 3 1 1.7 5 0 30.2 - 2.8 5 0 30.8 - 21.1 5 5 30.0 9.3
160 3 2 0.6 5 0 27.6 - 1.2 5 0 28.6 - 4.7 5 5 27.6 5.8
160 3 4 1.0 5 0 28.2 - 0.4 5 0 28.4 - 3.3 5 5 28.2 1.4
160 3 8 0.3 5 0 27.6 - 0.4 5 1 27.8 3.7 3.4 5 5 27.6 2.9

Table 2.6: Problem V, Q|sd, ri, di|CLT (part 2)
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These instances are also specially difficult for the greedy algorithm. In fact, it fails in
finding a feasible solution for most of the instances and shows larger gaps compared
to instances with unitary demands, when feasible solution are found. The additional
complexity implied by the packing of non-unitary requests makes the greedy algo-
rithm not effective.

2.6.6 Summary of results

Figure 2.8 presents aggregated data from tables 2.1-2.6. The nine graphs are orga-
nized in a 3×3 grid. The graphs report the average values of CPU , CLT and gapGr
over instances with the same value of n, V and Q, respectively. Each graph contains
six lines, one for each problem in tables 2.1-2.6.

Figure 2.8: Average CPU , CLT and gapGr as functions of n, V and Q

Chapter 2 38



Pickup and delivery problems with autonomous and electric vehicles

The CPU graphs clearly show that the hardest problem instances are V, Q|sd|CLT
and V, Q|sd, ri|CLT with tight release dates, where the CPU depends strongly on
the value of n. For problem V, Q|sd|CLT , Q is also strongly correlated to computing
time.

As for the value of the objective function CLT , all problems show similar be-
haviour: it grows with n and decreases with V and Q. As expected, instances of
V, Q|sd, ri|CLT with wide release dates required the highest CLT .

From the last 3 graphs it is possible to see that the gap between the optimal
value and the value of the solution of the greedy algorithm is the highest for problem
V, Q|sd, ri|CLT with tight release dates, and the smallest for V, Q|sd, u, ri|CLT with
wide release dates. For all problems, the gap decreases with n and increases with
Q. If the gap is plotted as a function of V it slightly grows for four problems and it
fluctuates for two of them.

2.6.7 Additional experiments on larger instances

In these experiments the computational limits of formulation (2.9)–(2.14) are eval-
uated. Additional tests are performed by starting from the instances of problem
V, Q|sd|CLT because they were the hardest to solve (in terms of CPU time). The con-
figuration of the parameters with the biggest values was considered and 10 additional
instances were generated. 5 instances were generated by increasing all parameters by
50%, and 5 instances were generated by increasing all parameters by 50% except the
number of requests n that was kept to 160. The resulting number of stations was
m = 15. Tables 2.7 and 2.8 report the results of these new tests. In these tables,
value gapLR gives the gap between the value of the linear relaxation at the root node
(LR) and the upper bound on the solution value. It is calculated as LR−CLT

CLT
× 100.

Column gapGrOPT gives the gap between the optimal solution value and the greedy
solution value, while column gapGrUB gives the gap between the upper bound value
and the greedy solution value. They are calculated as greedy−CLT

CLT
× 100, where greedy

is the greedy solution value. Column opt reports reports the number of instances
solved to optimality. The remaining column headings have the same meaning as in
previous tables.

m n V Q CPU(s) feas greedy opt CLT gapGrOPT gapGrUB gapLR

15 240 5 12 3363.2 5 5 1 15.0 20.0 8.9 -45.5

Table 2.7: Problem V, Q|sd|CLT
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m n V Q CPU(s) feas greedy opt CLT gapGrOPT gapGrUB gapLR

15 160 5 12 275.0 5 5 5 10.6 17.1 0.0 -39.6

Table 2.8: Problem V, Q|sd|CLT

The results show that when n = 240 only 1 out of 5 instances was solved to
optimality. Instead, when n = 160, all instances were solved to optimality. This
proves that the only parameter that has an impact on the time taken to solve the
model is the number of requests n, and that all other parameters (including the
number of stations m) have little or no impact.

2.7 Conclusions and perspectives

In this chapter a new class of Pickup and Delivery problems where the stations
are located on rings was introduced. A classification scheme was proposed. It was
investigated the complexity of the variants in which the vehicles are allowed to move
in a single direction and the objective is the minimization of the maximum number
of tours. A polynomial-time algorithm for some variants was described and the NP-
hardness of the remaining variants was proved.

For the NP-hard variants, ILP formulations were proposed and computational
tests were performed to evaluate these formulations. Experiments on a large number
of instance show the impressive efficiency the proposed formulations. All instances,
with up to 160 requests, could be solved in a few minutes. Comparisons with a simple
and practically relevant greedy algorithm also confirmed the intrinsic difficulty of the
problems/instances and the usefulness of applying exact solution schemes.

Different future research directions are possible. In parallel to this work, other
variants of these problems were addresses, e.g., problems where vehicles are allowed to
move in different directions or problems with alternative objective functions. Another
interesting direction would be to consider different network topologies such as lines
or other geometric shapes that can be encountered in practice. Also, autonomous
vehicles are bound to use electric engines. A future step of our research should be
to investigate the issues implied by the limited autonomy of electric vehicles (range
anxiety, recharging policies. . . ). The proposed classification scheme could be enriched
to account for new variants where the problem of energy management is considered.

Note finally, that the transportation services investigated in this chapter can also
be interpreted as services applying on-demand transportation (the booking part) on
fixed lines, with the particularity that the first and last stations are identical (the
ring). The chapter then shows the advantages of the booking system compared to
the usual fixed lines system in which every user is allowed to enter a vehicle as long
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as a seat is available. This new angle also offers interesting perspectives.
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Chapter 3

Complexity of problem
V, 1|sd, u|CLT

This chapter contains the proof of NP-hardness of problem V, 1|sd, u|CLT , introduced
in Chapter 2, as the proof is too long.

The proof is in two steps:

1. The Eulerian Path Partition Problem (EPP) is introduced and proven NP-
complete. This is done through a polynomial-time reduction from the well-
known 3-SAT problem, which is NP-complete.

2. A polynomial-time reduction from EPP to the decision version of V, 1|sd, u|CLT
is then proposed. Given that EPP is NP-complete, this proves that V, 1|sd, u|CLT
is NP-hard.

The EPP is defined as follows.
Definition 9. Let us consider a directed acyclic graph G = (X, E), together with 2
nodes s ∈ X and p ∈ X and 2 integer numbers K and T . We suppose that, for any
node x ∈ X, a path from s to x and a path from x to p exist in G. The EPP consists
in determining if a partition of E into K arc-disjoint paths can be found, with exactly
T arcs in each path. In this case, we say that G is (K, T )− EPP .

3.1 Reduction of 3-SAT to EPP

Definition 10. Let us consider a collection C of clauses on a finite set U of Boolean
variables where every clause in C is made up by exactly three literals. 3-SAT is the
problem of deciding whether a truth assignment for U exists, i.e. , an assignment
that satisfies all clauses in C.
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We will follow an approach very similar to the construction procedure which was
proposed in Itai et al., 1982. We consider a 3-SAT instance Z = {z1, ..., zN} (variable
set) and C = {c1, ..., cS} (3-clause set), with N variables and S clauses. We suppose
that for any j = 1, ..., N , the number of occurrences of zj in C is equal to the number
of occurrences of ¬zj and we denote it by u(j). We call this assumption the Well-
Balanced Hypothesis. We know from Lemma 3.1 (Itai et al., 1982) that the resulting
restriction of 3-SAT remains NP-Complete. We set U = ∑N

j=1 u(j) and see that the
total number of literals in the clauses is 3S = 2U . In what follows, we assume that
each occurrence of zj and ¬zj is associated with a number in {1, . . . , u(j)}.

We build a graph H = (X, E) such that the 3-SAT instance is feasible if and only
if a graph which is slightly modified with respect to H is (3S + 2U, 11)-EPP . H
is acyclic and is composed of six layers. The construction is illustrated on Figures
3.1 and 3.2 for an instance with 3 variables and 2 clauses c1 = (z1 ∨ ¬z2 ∨ z3),
c2 = (¬z1 ∨ z2 ∨ ¬z3). Node set X is given by Table 3.1. Each line defines a given
category of nodes, at a given layer, and introduces both a name and a notation for
the nodes of the category. The total number of nodes in each category is reported
in the last column. All nodes are visible in Figure 3.1. One can notice that layers 3
and 4 contain exactly 2U nodes, that is, the number of literals in the clauses.

Layer Category Symbol Number
1 Source node s 1
2 Clause nodes c1, ..., cS S

Low layer variable nodes (j, u) (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}) U
3 First middle nodes (j, u, ϵ) (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}, ϵ ∈

{0, 1})
2U

4 Second middle nodes (j, u, ϵ)∗ (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}, ϵ ∈
{0, 1})

2U

5 Bottleneck node Q 1
Top layer variable nodes (j, u)* (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}) U

6 Sink node p 1

Table 3.1: Node set V

Arc set E includes clause-related and variable-related arcs. Figure 3.1 reports all
these arcs for our illustrative example.
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Figure 3.1: A Graph H = (X, E), with 2 clauses c1, c2 and 3 variables z1, z2, z3

Clause-related arcs are defined in Table 3.2 and are shown in figures 3.1 and 3.2,
with information on arc lengths on the latter. The structure of the table is similar to
that of Table 3.1, with an additional column for arc lengths. Given a clause ck and a
literal yi in this clause, notation lit(ck, i) in the table indicates a triplet composed of:
the index of the associated variable, the occurrence number of the literal, 0 or 1 if the
variable is in its negative or positive form in the literal, respectively. For example,
the three literals associated with clause c1 = (z1 ∨ ¬z2 ∨ z3) are lit(c1, 1) = (1, 1, 1),
lit(c1, 2) = (2, 1, 0), and lit(c1, 3) = (3, 1, 1). Consequently, the three c-variable arcs
for the clause are arcs (c1, (1, 1, 1)), (c1, (2, 1, 0)) and (c1, (3, 1, 1)). Note that first
middle nodes have exactly one in-going clause-related arc each. Note also that the
notation introduced in the table does not always enable to distinguish between parallel
arcs (c-default arcs, good bottleneck arcs, bad bottleneck arcs are not distinguished).
This notation is kept to ease readability. Clause-related arcs represent exactly 3S arcs
between every successive layers except between layers 3 and 4 where no clause-related
arcs are introduced (remembering that 3S = 2U).
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Layers Category Symbol Length Number
(1, 2) c-id arcs (s, ck)Id (k ∈ {1, . . . , S}) 5 S

first c-def arcs (s, ck)Def (k ∈ {1, . . . , S}) 1 S
second c-def arcs (s, ck)Def (k ∈ {1, . . . , S}) 1 S

(2, 3) first c-variable arcs (ck, (j, u, ϵ)) (k ∈ {1, . . . , S}, (j, u, ϵ) = lit(ck, 1)) 1 S
second c-variable arcs (ck, (j, u, ϵ)) (k ∈ {1, . . . , S}, (j, u, ϵ) = lit(ck, 2)) 1 S
third c-variable arcs (ck, (j, u, ϵ)) (k ∈ {1, . . . , S}, (j, u, ϵ) = lit(ck, 3)) 1 S

(4, 5) bottleneck arcs ((j, u, ϵ)∗, Q) (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}, ϵ ∈
{0, 1})

1 2U

(5, 6) good bottleneck arcs (Q, p)good S copies 3 S
bad bottleneck arcs (Q, p)bad,Id U − S copies 7 U − S
bad bottleneck arcs (Q, p)bad,Def 3S − U copies 6 3S − U

Table 3.2: Clause-related arcs in set E

Figure 3.2: Arc lengths for clause-related arcs of graph H = (X, E) of figure 3.1

Variable-related arcs are defined in Table 3.3. This table reads as Table 3.2. Arcs
can be seen on Figure 3.1 for our example. Top-second arcs induce what we call a
Saw Pattern. This pattern cannot clearly be observed on Figure 3.1 because u(j) = 1
for every variable zj. The pattern is illustrated on figure 3.3, with a variable having
three occurrences in the clauses. In the definition of these arcs, notation u + ϵ is
assumed to give value 1 when u = u(j) and ϵ = 1. The Saw Pattern is needed
to have consistency among different occurrences of the same variable. As shown in
Figure 3.1, it defines two complementary perfect matchings between the three second
middle nodes having the same value for ϵ and the three top layer variable nodes.
Similarly to clause-related arcs, variable-related arcs involve exactly 2U arcs (that
is, 3S) between every successive layers except between layers 3 and 4, with 4U arcs.
Considering the two sets of arcs, the graph contains exactly 4U arcs between every
successive layers.
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Layers Category Symbol Length Number
(1, 2) low-first-id arcs (s, (j, u))Id (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}) 7 U

low-first-def arcs (s, (j, u))Def (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}) 3 U
(2, 3) low-second arcs ((j, u)), (j, u, ϵ)) (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}, ϵ ∈

{0, 1})
1 2U

(3, 4) middle-id arcs ((j, u, ϵ), (j, u, ϵ)∗)Id (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}, ϵ ∈
{0, 1})

1 2U

middle-def arcs ((j, u, ϵ), (j, u, ϵ)∗)Def(j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}, ϵ ∈
{0, 1})

2 2U

(4, 5) top-second ((j, u, ϵ)∗, (j, u +
ϵ)∗)

(j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}, ϵ ∈
{0, 1})

1 2U

(5, 6) top-first-id arcs ((j, u)∗, p)Id (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}) 1 U
top-first-def arcs ((j, u)∗, p)Def (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}) 4 U

Table 3.3: Variable-related arcs in set E

Figure 3.3: Variable-related arcs for a given variable zj with u(j) = 3, with the Saw
Pattern between layers 4 and 5.

From graph H = (X, E), we define a second graph H∗ = (X∗, E∗) by replacing
every arc of length h > 1 with a chain of h arcs of length 1. This new graph is useful
to meet the definition of EPP in which the length of a path is given by its number of
arcs. Then, finding a partition of E∗ in K arc-disjoint paths with T arcs in each path
is equivalent to finding a partition of E in K arc-disjoint paths with length T . Note
that arc lengths are not completely arbitrary. In fact, it is possible to use infinite
combinations of arc lengths. However, their values have to be chosen in such a way
that set E∗ can be partitioned into a set of arc-disjoint paths.

We now see that 3-SAT reduces to EPP. We first see how to build a partition of
E∗ into a set of arc-disjoint paths starting from a valid truth assignment of variables
in Z. Then we see how to build a valid assignment starting from an arc-disjoint
partition of the arcs of H∗.
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Theorem 6. 3-SAT instance (Z, C) is feasible iff H∗ = (X∗, E∗) is (3S + 2U, 11)-
EPP .

Proof. Let us first assume that our 3-SAT instance is positive, that is, it admits a
feasible solution z = (ϵ1, . . . , ϵN). We see how the arcs of H∗ can be partitioned into
3S + 2U paths with 11 arcs or equivalently the arcs of H into 3S + 2U paths with
length 11. The construction is illustrated in Figures 3.4 and 3.5, pursuing with the
same two clauses c1 and c2, and considering assignment z = {1, 1, 1}. The partition
is as follows:

• It is first generated a path for every occurrence u of literal zj and a path for
every occurrence u of literal ¬zj in the clauses, for a total of 2× U paths:

– (j,u)-identifier path: s
Id−→ (j, u) −→ (j, u,¬ϵj) Id−→ (j, u,¬ϵj)∗ −→ (j, u +

(¬ϵj))∗ Id−→ p; (the red paths in fig. 3.4)

– (j,u)-default path: s
Def−−→ (j, u) −→ (j, u, ϵj)

Def−−→ (j, u, ϵj)∗ −→ (j, u +
ϵj)∗ Def−−→ p; (the green paths in fig. 3.4)

These paths cover all variable-related arcs, except middle-id arcs
((j, u, ϵj), (j, u, ϵj)∗)Id and middle-def arcs ((j, u,¬ϵj), (j, u,¬ϵj)∗)Def . They all
have a length equal to 11. Figure 3.4 shows these paths.

Figure 3.4: (j, u)−identifier and (j, u)−default paths in graph H

• Then, three paths are generated for every clause ck, for a total of 3× S paths.
A clause involves three literals that can be matched to a variable zj and an
occurrence u. Each path visits, in sequence, nodes s, ck, (j, u, ϵ), (j, u, ϵ)∗,
Q and p, where ϵ = 1 if the literal is zj and ϵ = 0 if the literal is ¬zj (see
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definition of clause-variables arcs). The arcs traversed depend on the type of
path as follows.

– c-identifier path: among the three literals, at least one confirms the
validity of the clause, i.e., its assignment is such that the clause is satisfied;
we arbitrarily choose one such literal (in case there is more than one literal
that satisfies the clause) and we generate path s

Id−→ ck −→ (j, u, ϵ) Id−→
(j, u, ϵ)∗ −→ Q

Good−−−→ p; (in red in figure 3.5)
– two c-default paths: a path is generated for every of the two remaining

literals; the literals can satisfy the clause or not; the path is s
Def−−→ ck −→

(j, u, ϵ) Id−→ (j, u, ϵ)∗ −→ Q
Bad,Id−−−−→ p if the literal satisfies the clause, s

Def−−→
ck −→ (j, u, ϵ) Def−−→ (j, u, ϵ)∗ −→ Q

Bad,Def−−−−−→ p otherwise (with the same
definition as above for ϵ). (in green in figure 3.5)

Figure 3.5 shows the c−identifier and the c−default paths.

Figure 3.5: c−identifier and c−default paths in graph H

All paths have a length equal to 11. They cover all remaining middle-id and
middle-def arcs. Indeed, an arc ((j, u, ϵ), (j, u, ϵ)∗)Id is traversed when the literal
is true in the clause, that is, when ϵ = ϵj. They also cover all clause-related
arcs. Especially, for every clause, the c-id and the two c-def arcs are covered,
as well as one good bottleneck arc and two bad bottleneck arcs. Furthermore,
thanks to the well-balanced assumption, exactly U literals satisfy their clause
and U literals do not. So, U literals cover the U bad bottlenecks arcs with cost
6, the other bottleneck arcs being covered by the other literals (S for the good
bottleneck arcs, U -S for the remaining bad bottleneck arcs).
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All together, the 3S + 2U paths partition E in paths of length 11, which proves that
H∗ is (3S + 2U, 11)-EPP .

Conversely, let us now assume that H∗ is (3S + 2U, 11)-EPP . We will see that
3-SAT is positive. Indeed, if H∗ is (3S + 2U, 11)-EPP , it means that there exists a
partition of the arcs of H into M = 3S + 2U paths with length 11, which we denote
by Γ1, ..., ΓM . Then we see that those paths, which all contain one first middle node
(j, u, ϵ), can be split into 4 categories:

1. Those who reach node (j, u, ϵ) with a sub-path s
Id−→ (j, u) −→ (j, u, ϵ) of length

8. To have a length 11, they must have the form of (j,u)-identifier paths.
Every such path contains arc ((j, u, ϵ), (j, u, ϵ)∗)Id.

2. Those who reach node (j, u, ϵ) with a sub-path s
Def−−→ (j, u) −→ (j, u, ϵ) of

length 4. They must be (j,u)-default paths. Every such path contains arc
((j, u, ϵ), (j, u, ϵ)∗)Def .

3. Those who reach node (j, u, ϵ) with a sub-path s
Id−→ ck −→ (j, u, ϵ) of length 6.

They must finish with good bottleneck arcs and be c-identifier paths.

4. Those who reach node (j, u, ϵ) with a sub-path s
Def−−→ ck −→ (j, u, ϵ) of length

2. They should finish with bad bottleneck arcs. They are c-default paths.
Furthermore, U −S of them contain bad bottleneck arcs of size 7, and, so, also
contain an arc ((j, u, ϵ), (j, u, ϵ)∗)Id.

Every node (j, u, ϵ) is traversed by two paths:

• One path Γm which is either a (j,u)-identifier path or a (j,u)-default path.
We call this path the representative path of (j, u, ϵ). We see that if the rep-
resentative path of (j, u, ϵ) is a (j,u)-default path then the representative
path of (j, u,¬ϵ) is a (j,u)-identifier path and vice-versa. Indeed, one path
starts with sequence s

Id−→ (j, u), the other with sequence s
Def−−→ (j, u).

• One path Γm∗ which is either a c-default or a c-identifier path for some clause
ck.

We can now derive from paths Γ1, ..., ΓM , an assignment of {0, 1} values to vari-
ables zj. For every clause ck, we consider the node (j, u, ϵ) traversed by the c-identifier
path. We give value ϵ to variable zj. After this first step, it is possible that not all
variables are assigned. We complete with random values for other variables. These
values are proven consistent, i.e., the resulting assignment makes 3-SAT positive.

We use the following property of the Saw Pattern that we call the Saw Pat-
tern Property. Given a variable zj, we know that paths Γ1, ..., ΓM contain u(j)

Chapter 3 49



Pickup and delivery problems with autonomous and electric vehicles

(j, u)-default paths and that each of these (j, u)-default paths reaches one of the
u(j) nodes (j, u)∗. The Saw Pattern imposes that the latter are reached from nodes
(j, u, ϵu) with all ϵu equal (using the arcs of one of the two perfect-matchings that com-
pose the Saw Pattern). This also implies that, if variable zj gets value ϵ, then all arcs
((j, u,¬ϵ), (j, u,¬ϵ)∗)Id have to be in (j, u)-identifier paths and all arcs ((j, u, ϵ), (j, u, ϵ)∗)Def

have to be in (j, u)-default paths. For example, in Figure 3.3, the first occurrence
of variable zj is negative (i.e. takes value 0), if and only if node (j, 1, 1) is reached
with a (j, u)-identifier path, that must therefore finish with arc ((j, 2)∗, p) of length
1. It means that arc ((j, 2)∗, p) of length 4 must be in a (j, u)-default path together
with arc ((j, 2, 0), (j, 2, 0)∗)Def , forcing also arc ((j, 2, 1), (j, 2, 1)∗)Id to be in a (j, u)-
identifier path and thus forcing the second occurrence of variable j to get value 0.
The same happens for the third occurrence.

Assume now that a variable zj receives two values ϵ and ϵ′ from two clauses
c and c′. It means that arcs ((j, u, ϵ), (j, u, ϵ)∗)Id and ((j, u′, ϵ′), (j, u′, ϵ′)∗)Id are in
the c-identifier path and the c′-identifier path, respectively. It implies that arcs
((j, u, ϵ), (j, u, ϵ)∗)Def and ((j, u′, ϵ′), (j, u′, ϵ′)∗)Def are in the (j, u)-default path and
(j, u′)-default paths, respectively. Equality ϵ = ϵ′ follows from the Saw Pattern
Property.

By construction, we also know that all clauses are satisfied for these values, which
concludes the proof.

3.2 Reduction of EPP to V, 1|sd, u|CLT

In this section we see that EPP can be reduced to V, 1|sd, u|CLT .

Theorem 7. EPP can be reduced to V, 1|sd, u|CLT .

Proof. Let IEP P = (G(X, E), s, p, K, T ) be a non trivial instance of EPP, i.e., the
problem of determining whether there exists K disjoint paths of length T from s to
t in G. Non trivial means that G has the following properties:

1. d−(x) = d+(x) for any node x ̸= s, p, where d−(x) denotes the in-degree of x
and d+(x) denotes its out-degree

2. d+(s) = K

3. |E| = KT

This implies that d+(s) = d−(p). It is easy to see that any instance that does not
meet these requirements is trivially not (K, T ) − EPP . Note that it is enough to
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consider non-trivial instances in the reduction because if non-trivial instances could
be solved with the reduction then all instances would be solved.

We build an instance I of V, 1|sd, u|CLT as follows. We introduce a ring with
m = |X|+ 1 stations. We first define station 0, the depot. The other stations have a
one-to-one correspondence with the vertices in X as follows. We first sort the nodes
in X in a topological order (we can do that because G is a directed acyclic graph) and
reverse this order. Node p is then the first node and node s the last. We then associate
one station with each node following this order, thus having station 1 representing
node p and station |X| representing node s. We denote stat(x) the station associated
with node x ∈ X. We define unitary distances between successive stations, which
gives a tour length L = |X| + 1. For every arc (x, y) ∈ E, we introduce a request
in R defined by si = stat(x), ti = stat(y). This request is denoted r(x, y). Since we
considered nodes in a reversed topological order, all requests cover the depot. We
complete R by adding K requests (0, stat(s)) and K requests (stat(p), 0). This way,
|R| = KT + 2K. We finally set V = K and CLT = L × (T + 1). Note that this
construction is polynomial.

This construction is illustrated with a simple example. We consider the graph G
of figure 3.6.

Figure 3.6: Graph G

The resulting ring and set of requests are shown in Figure 3.7.

Figure 3.7: Ring and requests constructed from G

Chapter 3 51



Pickup and delivery problems with autonomous and electric vehicles

Assume first that IEP P is positive. This means that set E can be partitioned
into K arc-disjoint paths Pk, each of length T . We build a feasible schedule for I
in the following way. Every vehicle k (1 ≤ k ≤ V ) starts from the depot by serving
request (0, stat(s)). Then, it serves all requests r(x, y) for (x, y) ∈ Pk, in the order
defined by this path. It finally serves request (stat(p), 0). This sequence starts from
the depot, finishes at the depot and is such that the ending station of every request
is the starting station of the next request. It thus defines a feasible schedule without
any intermediate empty traveling between requests. The schedule traverses exactly
T times the depot, once for every request r(x, y) with (x, y) ∈ Pk. So, the number
of tours is T + 1. All KT + 2K requests are covered by the V vehicles, which proves
that I is positive.

Assume now that I is feasible. This means that there exists a schedule with the
K(T + 2) requests assigned to the K vehicles, each vehicle making T + 1 tours. We
first see that vehicles never travel empty in this schedule.

Segment [0, 1] of the ring is covered by the KT requests r(x, y) with (x, y) ∈ E and
K requests (0, stat(s)), that is, K(T + 1) requests. We show that all other segments
are covered by the same number of requests. We can easily check that at every
station stat(x) exactly K requests stop, either because d−(x) = K or because x = s
and the K requests (0, stat(s)) stop (remember that d−(s) = 0 so no other request
stops). Similarly, exactly K requests start from every station stat(x), either because
d+(x) = K or because x = p and the K requests (stat(p), 0) start. This shows that
every segment is covered by exactly K(T + 1) requests which, in turn, means that
none of these segments is traveled empty in a schedule composed of K(T + 1) tours.

We now consider the schedule of a given vehicle k. It executes T + 1 tours so
it covers at most T requests r(x, y) with (x, y) ∈ E. As the KT requests r(x, y)
with (x, y) ∈ E are shared by the K vehicles, every vehicle exactly fulfills T of
these requests. Also, every vehicle starts and ends at the depot, and given that the
vehicle never travels empty, this means that it starts with a request (0, stat(s)) and
ends with a request (stat(p), 0). Given the total number K of (0, stat(s)) requests
and (stat(p), 0) requests, each vehicle exactly fulfills one request (0, stat(s)) and one
request (stat(p), 0).

One can conclude that every vehicle starts from the depot with a request (0, stat(s)),
continues with T requests r(x, y) with (x, y) ∈ E and finishes with request (stat(p), 0),
without any segment traveled empty in between. It also means that the arcs (x, y) ∈
E associated with the requests in the vehicle schedule form a path in G, starting
from s, ending at p and composed of T arcs. It proves that IEP P is positive.
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3.3 Intuitive description of the proof of NP-hardness
of EPP

In order to prove that EPP is NP-Complete, 3-SAT is reduced to EPP. We first
check that we may restrict ourselves to a 3-SAT instance (Z, C) such that for any
variable zj, j = 1, . . . , N the number u(j) of occurrences of zj in the clause collection
C = {cs, s = 1, . . . , S} is equal to the number of occurrences of ¬zj in C. It comes
that if we set U = ∑

j u(j), then we get 3S = 2N . Then we build an acyclic Eulerian
graph H∗, provided with a source s and a sink p, and do in such a way that paths
from s to p which are likely to be involved in the related EPP instance will play the
following role:

• For any clause cs = u1 ∨ u2 ∨ u3, where ui denotes a literal, that means either
some variable zj or its negation ¬zj, we shall have 3 significant paths which
start from s and pass through node cs, next traverse nodes related to variables
and literals, and end by moving from some bottleneck node Q to node p: one
of those paths, called c-identifier path, will assign the role of making cs be
equal to 1 to some literal ui, while the 2 other paths, called c-default paths,
will refuse this role to the 2 other literals. At the very end, 3S significant paths
will be related this way to clause collection C.

• For any occurrence 1, . . . , u(j) of variable zj as a literal ui inside some clause, we
shall have 2 paths which start from s and go through node (zj, i), i = 1, . . . , u(j),
next traverse nodes related to variables and literals, and end by moving from
copy node (zj, i)∗ to node p: one of these paths, called (j,u)-identifier path,
will tell us which value 0 or 1 takes zi inside clause cs, while the other one,
called (j,u)-default path, will tell us which value is discarded. At the very
end, 2N = 3S paths will be related this way the variables zj.

Deriving such a path collection from a feasible solution Z of 3-SAT will come in a
straightforward way. What will provide us with the converse, that means with the
fact that any ad hoc partition of the arcs of H∗ into admissible paths, will be a 2-sided
device:

• The choice of the integral lengths L(e) of the arcs e of graph H∗: since 6S paths
must be built, the length of any path inside an EPP partition must be equal
to L = ∑

e
L(e)
6S

. We are going to do in such a way that any path from s to p
with length L is significant in the above sense, that means may be considered
as c-identifier, c-default, (j,u)-identifier or (j,u)-default;

• A specific pattern, which we call saw pattern, which will ensure us that if some
variable zi takes the value 1 (or 0) inside some clause, then it takes the same
value in every clause inside which it is involved.
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As a matter of fact, the choice of length values L(e) will be somewhat arbitrary, in the
sense that it would be possible to choose other systems of length values, provided that
above described significant paths keep being provided with length value L = ∑

e
L(e)
6S

and that the lengths of non significant paths remain different from L.
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Chapter 4

The Cumulative Cost Pickup and
Delivery Problem on Rings

This chapter is based on the technical report:

• Trotta, M., Archetti, C., Feillet, D., and Quilliot, A. (2021). The cumu-
lative cost pickup and delivery problem on rings. Working Paper MSE
CMP-SFL 2021/10.

This chapter studies Pickup and Delivery Problems on Rings (PDP-R). PDP-R
are defined on a circular network. A set of transportation requests has to be served.
A fleet of vehicles is available at the depot. The objective is to assign requests to
vehicles and define the service sequence for each vehicle, while minimizing the total
completion time of requests. The problem is proved NP-hard. An ILP formulation is
proposed and exhaustive computational tests are performed to show its effectiveness,
comparing it with a straightforward greedy algorithm. Furthermore, a relax-and-
repair heuristic based on a surrogate relaxation of the ILP formulation is proposed
and compared with the greedy algorithm.

4.1 Introduction

Pickup and Delivery Problems on Rings (PDP-R ) are defined on circular networks
with m stations. A set of requests needs to be served, where each request consists
of transporting a given quantity from a pickup station to a delivery station. A fleet
of vehicles is available to perform the service and each vehicle route has to start and
end at station 0, the depot. The goal is to determine the best transportation plan
according to a given objective function.
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PDP-R have been introduced in Trotta et al., 2022, where the authors propose a
classification of the problem variants based on three fields α|β|γ where:

• α contains information about the number of vehicles and vehicle capacity;

• β specifies whether vehicles travel in one or both directions, whether release
and due dates are defined and whether request have unitary demands;

• γ corresponds to the objective function.

In Trotta et al., 2022 applications of PDP-R are discussed: they are mainly linked
to the use of autonomous vehicles for transportation services in concentrated areas
(campus, industrial site, hospital...), for both people and freights. In addition, PDP-
R also arise in the field of industrial automation. The reader is referred to Trotta et
al., 2022 for a detailed overview of problem applications and related literature. The
mostly related contributions are now briefly summarized, i.e., Pickup and Delivery
Problems on circular graphs. As noted in Trotta et al., 2022, the literature is limited.
In Guan, 1998 the multiple capacity nonpreemptive vehicle routing problem on cycles
is studied. Gendreau et al., 1999 and Tzoreff et al., 2002 study freight transportation
problems. Ilani et al., 2015, Pimenta et al., 2017a and Bäıou et al., 2018 consider
problems involving transportation of people, known as Dial-a-Ride problems.

In Trotta et al., 2022, the authors introduce the PDP-R, propose a classifica-
tion scheme and study the variant in which vehicles travel on a single direction and
the objective function is the minimization of the time at which the last vehicle re-
turns to the depot. They also show that the simplest problem in this class, i.e.,
the problem with a single vehicle of unitary capacity and with no release and due
date, is polynomially solvable while all others are NP-hard. In addition, they present
a mathematical formulation for all variants which is proved to be effective through
exhaustive computational tests.

Contrary to what is done in Trotta et al., 2022, this chapter focuses on the variants
in which the objective function is the minimization of the sum of completion times
of all requests. This objective is particularly relevant when people are transported
because it reflects their average waiting time, and, so, the quality of the transportation
service. It is showed that, in this case, even the simplest problem is NP-hard. In
addition, a mathematical formulation for all problem variants and a greedy algorithm
are proposed. Extensive computational tests show that the problem formulation is
extremely effective in solving all problems variants, thus reducing the need for a fast
sub-optimal (heuristic) approach. Also, the comparison with the greedy algorithm,
which mimics common practice, shows the flaws of a non-optimized approach.

The chapter is organized as follows. Section 4.2, introduces the notation and
some basic definitions. In Section 4.3 all the problems addressed in this chapter are
proven NP-hard. A mathematical formulation is given in Section 4.5. Computational
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experiments and the greedy algorithm are presented in Section 4.6. The results are
summarized in Section 4.9, and some perspectives of this work are presented.

4.2 Problem description

PDP-R have been introduced in Trotta et al., 2022 (see also Chapter 1) and can be
described as follows. The context is that of a circular layout (a ring) with m stations,
numbered from 0 to m − 1 in a clockwise direction. The distance from station j to
station j +1 is denoted as δj,j+1 and L = ∑m−2

j=0 δj,j+1 +δm−1,0 is the total length of the
ring. The problem consists in scheduling a set R of n transportation requests where
each request i ∈ R asks for the transportation of a quantity of goods (or number of
people) qi from a pickup station si to a delivery station ti. Each request specifies
also a release date ri and a due date di, that correspond, respectively, to the earliest
time for pickup and the latest time for delivery. A fleet V of V vehicles of capacity
Q is available at the depot (station 0) to serve the transportation requests. All the
vehicles start their tours from the depot and get back to it when all requests are
served. Vehicles are not allowed to wait at any station on the ring.

This chapter is focused on the study of PDP-R variants where the vehicles are
allowed to move on the ring in a single direction (sd), i.e, either clockwise or counter-
clockwise, and the objective function is the minimization of the total completion
time (∑Ci), where the completion time Ci is the time at which freight or people
from request i are delivered at station ti. According to the classification scheme
introduced in Trotta et al., 2022, it is denoted V, Q|sd, ri, di|

∑
Ci. It is shown in the

next section that even the variant with a single vehicle of capacity one and no release
dates nor due dates is NP-hard (1, 1|sd, u|∑Ci according to the classification, where
u indicates that requests are unitary). It follows, that the more general problem is
also NP-hard.

In the following, the terms ring and circle will be used indifferently to represent
the underlying network structure. Without loss of generality, we assume that all
vehicles go clockwise. We say that two requests i1, i2 ∈ R overlap if at least one
segment [j, j +1] of the ring is covered by both requests (j = 0, ..., m−1). We denote
by δj1j2 the traveled distance between two stations j1 and j2:

δj1,j2 =

∑j2−1

j=j1 δj,j+1 if j1 < j2∑m−1
j=j1 δj,j+1 +∑j2−1

j=0 δj,j+1 otherwise

In this single-direction context, it is interesting to see that completion time Ci

can be matched to the number of ring tours completed before starting serving request
i ∈ R at station si:

Ci = L× li + δ0,si
+ δsi,ti

(4.1)
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where li is a decision variable indicating this number of tours.

4.3 Complexity of problem 1, 1|sd, u|∑Ci

In this section, problem 1, 1|sd, u|∑Ci is proven NP-hard. Note that all remaining
problem variants considered in this chapter are generalizations of 1, 1|sd, u|∑Ci and
are thus also NP-hard.

Before proving the computational complexity of the problem, note that minimiz-
ing the sum of completion times corresponds to minimizing ∑i∈R li, as can be seen
in (4.1). The following proof is based on the minimization of the latter.

We proceed by reduction from the Sum Coloring Problem (SCP) that is defined
as follows:

Definition 11. Given a graph G = (V, E) with n nodes, find a coloring of the nodes
such that the sum of the colors assigned to nodes is minimum.

The decision version of SCP consists in determining whether there exists a coloring
such that the sum of the colors assigned to the nodes is smaller than or equal to a
given positive integer K. The minimum value for the sum of the colors is known as
the Chromatic Sum. In Szkaliczki, 1999 and Marx, 2005, the problem is shown to
be NP-complete also in the case where the underlying graph is an interval graph. In
the following, we see a reduction from the decision version of the SCP on an interval
graph to 1, 1|sd, u|∑Ci.

Theorem 8. Problem 1, 1|sd, u|∑Ci is NP-hard.

Proof. The main argument in the proof is that when no request covers the depot, the
circle is equivalent to an interval graph, where intervals represent requests. The tour
in which a request is served can be interpreted as a color, and so minimizing the sum
of the tour numbers is equivalent to minimizing the sum of the colors. Given that
fact, we first show how to transform an instance of the decision version of SCP on an
interval graph into an instance of 1, 1|sd, u|∑Ci.

We consider an instance Ic of the decision version of SCP on an interval graph.
A = {(a1, b1), ..., (an, bn)} is a set of n intervals on a real line with ai < bi for
i = 1, . . . , n. An interval graph H = (V , E) is constructed from A by introducing
a vertex vi for each interval (ai, bi) ∈ A and by adding an edge (vi, vj) each time
intervals (ai, bi) and (aj, bj) overlap. Instance Ic consists in deciding if, given an
integer K, there exists a coloring function f : V → N such that ∑v∈V f(v) ≤ K.

We build an instance Is of 1, 1|sd, u|∑Ci as follows. Let D denote the set of
interval extremities of A: D = {ai, bi : i = 1, ..., n}. We sort D in increasing order
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and introduce a station in the ring for every element in D, in this order. We complete
the ring with station 0, the depot. This way, the number m of stations is at most
two times the number n of intervals plus the depot (m ≤ 2n + 1). We define unitary
distances between successive stations, which gives a tour length L = |D| + 1. We
introduce a request in R for every interval in A. Given interval (ai, bi), request i
is defined as follows: si is the station obtained from extremity ai, ti is the station
obtained from extremity bi. We note that no request covers the depot, so two requests
can be scheduled in the same tour if and only if they do not overlap. Note also that
this construction is polynomial.

We claim that Ic is positive if and only if Is admits a K-feasible schedule. A
K-feasible schedule for Is is a function f : R → N that assigns each request i ∈ R
to a tour (that is the tour in which the request is served) so that requests do not
overlap and that the sum of the tour numbers of all requests is not greater than K.
More formally, function f is such that:

• f(i1) = f(i2) =⇒ i1 and i2 do not overlap ∀i1, i2 ∈ R

• ∑
i∈R f(i) ≤ K.

Assume first that Ic is positive. This means that there exists a coloring function
g : V → N for H such that ∑v∈V g(v) ≤ K. Let f : R → N be a function such that
f(i) = g(vi), vi ∈ V . It is easy to see that f is a K-feasible schedule for Is.

On the other hand, assume that Is admits a K-feasible schedule f . Let g : V → R
be a function such that g(vi) = f(i), (ai, bi) ∈ A. It is easy to see that g is a coloring
function forH such that ∑vi∈V g(vi) ≤ K. In fact, g(vi1) = g(vi2) means that requests
i1 and i2 do not overlap, i.e., edge (vi1 , vi2) /∈ E . In addition, since g(vi) = f(i) for
each i ∈ R, ∑vi∈V g(vi) = ∑

i∈R f(i) ≤ K.
Thus, solving SCP on an interval graph amounts to finding a feasible solution to

an instance of problem 1, 1|sd, u|∑Ci. This proves that problem 1, 1|sd, u|∑Ci is
NP-hard.

4.4 A simple proof of NP-completeness of CACP

The aim of this section is twofold. A simple proof of NP-completeness of the Circular
Arc Coloring Problem (CACP), that was introduced and proven to be NP-complete
in Garey et al., 1980, is presented. Furthermore, a special case of CACP is proven
NP-hard by reduction from the Arc-Disjoint Path Problem. This proves that the
CACP is NP-complete even for this special case. The proof is similar to the one
given in Marx, 2003 which was not known at the time this proof was written.

We first need some definitions in order to introduce the CACP.
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Figure 4.1: A circular-arc graph (left) and the corresponding arc model (right).

Definition 12. A circular arc graph G is a graph whose vertices can be placed in
one-to-one correspondence with a family F of arcs of a circle in such a way that two
vertices of G are joined by an edge if and only if the corresponding two arcs in F
intersect one another. It is therefore the intersection graph of intervals on a circle
(see figure 4.1).

In order for the arcs to intersect, the intersection of the points that they cover on
the circle must not be empty nor reduced to 1 point (or 2 points, in case two arcs are
one the complement of each other).

Definition 13. A family F of circular arcs is a set {A1, A2, ..., An}, where each Ai

is an ordered pair (ai, bi) of positive integers, with ai ̸= bi.

Let m denote the largest integer among all the ai’s and bi’s. Then we can regard
the circle as being divided into m parts by m equally spaced points, numbered clock-
wise as 0, 1, . . . , m − 1, and each Ai = (ai, bi) can be regarded as representing the
circular arc from point ai to point bi, again in the clockwise direction. Notice that we
might have either ai < bi or bi < ai for any Ai. The circular arc graph corresponding
to the family F is the graph G = (F, E), where {Ai, Aj} ∈ E if and only if Ai and
Aj intersect.

What follows is the definition of the Circular Arc Coloring problem.

Definition 14. Given a family F of circular arcs and a positive integer K, can F
be partitioned into K classes so that no two arcs in the same class intersect? Or,
equivalently, can the circular arc graph G = (F, E) be colored with K colors?

If yes, we say the family F or graph G are K-colorable. As mentioned at the
beginning of this section, the CACP is NP-complete (Garey et al., 1980; Marx, 2003).
It is now presented a simpler proof of NP-completeness of the CACP by proving the
NP-hardness of a special case.

We first need some definitions in order to define the special case of the CACP.
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Definition 15. The Linear Hypothesis (LH) corresponds to the case where point 0
on the circle is contained into no open interval ]ai, bi[ (see figure 4.2(a)).

Definition 16. The Fillness Hypothesis (FH) corresponds to the case where every
segment [j, j + 1] (j = 0, ..., m − 1) of the circle is covered by a constant number of
arcs. We call this constant the Fillness Coefficient (FC) see figure 4.2(b)).

Figure 4.2: Examples of circles with LH (on the left) and FH (on the right).

Property 1. If LH holds, we might open the circle which means that we split point 0
into two distinct points 0 and m, and consider any interval [ai, bi] as a sub-interval of
the interval [0, m]. In other words, the circular arc graph is equivalent to the interval
graph where point 0 is split in two points.

Property 2. If both LH and FH hold, then graph G may clearly be colored with FC
colors (see Figure 4.2 (b)).

Proof. If both LH and FH hold, graph G is an interval graph where the number
of pairwise overlapping intervals is constant and equal to FC. The problem of col-
oring interval graphs is known as the Interval Graph Coloring Problem or Interval
Partitioning Problem, and it can be optimally solved by applying a greedy algo-
rithm that uses exactly FC colors (see, for example, Kleinberg and Tardos, 2006, pp.
122-125).

We now consider the problem of coloring a circular-arc graph G where only FH
holds, i.e. the problem of finding a coloring G with exactly FC colors (also known
as FC-coloring). We call this problem the Full Circular-Arc Coloring Problem.
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We want to prove that the NP-completeness of CACP also holds for FCACP, that
is when FH is satisfied. To do so, the Arc Disjoint Path Problem (ADPP) is reduced
to the the FCACP.

The ADPP is defined as follows:

Definition 17. Let G = (X, E), be a directed acyclic graph, given together with n
origin vertices s1, ..., sn ∈ X, and n destination vertices t1, ..., tn ∈ X. The problem
asks if there exist n paths Γ1, ..., Γn, pairwise arc-disjoint, and such that, for any
j = 1, ..., n, Γj starts from sj and arrives to tj.

This problem is known as the Arc Disjoint Path problem or the weak k-LINKAGE
problem, and ah showed in Even et al., 1976 it is NP-complete even for directed acyclic
graphs if the number of paths is given as input.

FCACP can be now proven NP-Complete. The NP membership comes from the
fact that FCACP is a special case of CACP, so we just need to prove the NP-hardness
by reducing ADPP to FCACP.

We start from an instance I = (G = (X, E), s1, ..., sn, t1, .., tn) of the Arc Disjoint
Path Problem (see figure 4.3).

Figure 4.3: A positive instance of the Arc Disjoint path problem with n = 2

Then we sort the nodes in X by calculating a topological sorting (we can do it
because G is a DAG) and consider the nodes in this order. We associate each node
with an integer label H(x) from 1 to |X| on the real line by following the topological
sorting.

We then consider the interval [0, m] on the real line, where m = |X|+ 1, and we
roll up the interval by transforming it into a circle in such a way that one can ideally
walk clockwise on the circle to go from 0 to m (see figure 4.4). We merge points 0
and m into one reference point 0 and we get an oriented circle Γ. We define on Γ an
interval collection I as follows:

• For any arc (x, y) of graph G, we set Ix,y = the interval [H(x), H(y)] which we
get by going from H(x) to H(y) while following the orientation of Γ;
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• For any origin-destination pair (sj, tj), we set I∗
j = the interval

[H(tj), H(sj)] which we get by going from H(tj) to H(sj) while following the
orientation of Γ.

Figure 4.4: Oriented circle Γ and intervals corresponding to the instance of ADPP in
figure 4.3. Legend: s1 = 1, s2 = 2, B = 3, t2 = 4, t1 = 5. Intervals corresponding to
the requested paths are depicted in red, while the graph arcs are depicted in black.

Observation 1. For any origin-destination pair (sj, tj) every interval I∗
j contains

point 0.

Property 3. If we denote with Γj the path going from sj to tj in graph G and with
IΓj

the collection of consecutive intervals on the circle Γ corresponding to the arcs of
path Γj, then the collection of intervals IΓj

∪ {I∗
j } completely covers the circle.

Proof. Collection IΓj
contains by construction all and only the points on the circle

that are between sj and tj in clockwise order. Collection I∗
j contains all and only the

points on the circle that are between tj and sj in clockwise order. Their union must
therefore cover all the circle.

For any x ∈ X, we denote by d+(x) the number of intervals of the collection
I = {Ix,y, (x, y) arcs of G} ∪ {I∗

j , j = 1, ..., n} which start from x. We denote by
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d−(x) the number of intervals of the collection {Ix,y, (x, y) arcs of G} ∪ {I∗
j , j =

1, ..., n} which end into x. If d+(x) < d−(x), then we insert d−(x)− d+(x) copies Lk
x

(k = 1, ..., d−(x)− d+(x)) of the interval [H(x), 0] into I. If d+(x) > d−(x), then we
insert d+(x) − d−(x) copies L∗k

x (k = 1, ..., d+(x) − d−(x)) of the interval [0, H(x)]
into I. At the end we have that for every integer node x, d+(x) = d−(x) (see figure
4.5).

Figure 4.5: The augmented collection of intervals. The added intervals are depicted
in blue.

Lemma 7 proves that the reduction is correct (i.e. that I is an instance of FCACP)
and lemma 8 proves that ADPP reduces to FCACP.

Lemma 7. The augmented collection I = {Ix,y, (x, y) ∈ E} ∪ {I∗
j , j = 1..n} ∪ {Lk

x, x
such that d+(x) < d−(x), k = 1, ..., d−(x)−d+(x)}∪{L∗k

x , x such that d+(x) > d−(x),
k = 1, ..., d−(x)−d+(x)} satisfies FH; we denote by K the related Fillness Coefficient).

Proof. Let us consider two consecutive integer nodes x and x + 1 on the circle. The
number of intervals that cover the segment [x, x+1] is equal to the number of intervals
that start from x plus C(x) = the number of intervals that cover x. This number is
also equal to the number of intervals that end into x + 1 plus C(x + 1) = the number
of intervals that cover x + 1. So we have that d+(x) + C(x) = d−(x + 1) + C(x + 1).
Since d+(x) = d−(x) ∀x ∈ x, we have that d−(x) + C(x) = d+(x) + C(x) = d+(x +
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1) + C(x + 1). Since we made no hypotheses on x and x + 1, this holds for any x.
This means that the number of intervals between any pair of nodes is the same, and
we denote by K this quantity.

Lemma 8. The existence of n pairwise arc disjoint paths Γ1, ..., Γn in graph G, such
that for any j (j = 1, ..., n) Γj starts from sj and arrives to tj, is equivalent to the
existence of a K-coloring of the collection of intervals I.

Proof. Let Γ1, ..., Γn be n pairwise arc disjoint paths in graph G such that for any
j (j = 1, ..., n), Γj starts from sj and arrives to tj. These paths may be viewed as
disjoint collections of intervals of I, each Γj corresponding to a set of consecutive
intervals Ix1,x2 , Ix2,x3 ..., Ixr−1,xr where x1 = sj, xr = tj and two consecutive intervals
being Ixi,xi+1 , Ixi+1,xi+2 for any i = 1, ..., r−2. We denote by IΓj

the subset of intervals
of I on circle Γ that correspond to path Γj in graph G. To each augmented collection
IΓj
∪ {I∗

j }, (j = 1, . . . , n) we can assign color j because all intervals in this collection
do not overlap on the circle (for property 3). Remaining intervals are sub-intervals of
the interval [0, m] (point 0 is not contained in any of the remaining intervals because
of the way we constructed the collection) and therefore satisfy LH. This collection
satisfies also FH for lemma 7, with FC = K−n (because n colors have been already
used) and for property 2 admits a (K − n)-coloring. Thus I admits a K-coloring.

Conversely, let τ be a K-coloring of I. For property 3, we may suppose without
loss of generality that every collection IΓj

∪ {I∗
j } has color j, (j = 1, . . . , n) as they

completely cover circle Γ. Therefore each interval I∗
j has a different color τ(I∗

j ) = j,
j = 1, . . . , n. Let us consider, for any j = 1, . . . , n, intervals related to color j: they
are of the form Ix1,x2 , Ix2,x3 ..., Ixr−1,xr where x1 = sj, xr = tj and two consecutive
intervals being Ixi,xi+1 , Ixi+1,xi+2 for any i = 1, ..., r − 2. Each of them corresponds to
a path Γj from sj to tj (j = 1, ..., n) in graph G and all these paths are arc-disjoint
because all intervals I∗

j have different colors.

Theorem 9. FCACP is NP-complete.

Proof. The theorem follows from lemmas 7 and 8 and from the fact that the reduction
is polynomial.

4.5 An ILP formulation

In this section it is presented an ILP formulation for the most general variant of
the classes of problems studied in this chapter, i.e., V, Q|sd, ri, di|

∑
Ci. As already

observed, the objective can be expressed as the minimization of the sum of the number
of vehicle tours. The formulation makes use of the following notation, in addition to
the one introduced in previous sections.
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• R[j, j + 1]: set of requests in R that cover segment [j, j + 1]. A request i ∈ R
covers segment [j, j + 1] if stations j and j + 1 are within stations si and ti

when going clockwise. Equivalently, it means that a vehicle needs to traverse
arc (j, j + 1) in order to serve i.

• cik: cost of inserting request i ∈ R in tour k

cik =
k if si < ti

k + 1 otherwise

• Ki: set of tour numbers in which request i can be started

Ki = {k ∈ N : (k − 1)L + δ0,si
≥ ri and (k − 1)L + δ0,si

+ δsi,ti
≤ di}.

• K: upper bound on the tour number for the request that will be started last

K = max
1≤i≤n

(
⌈

di

L

⌉
).

We introduce the following decision variables:

xikv =
1 if request i is started in tour k by vehicle v

0 otherwise.

The integer linear program is then:

min
∑
i∈R

∑
v∈V

∑
k∈Ki

cikxikv (4.2)

s.t.: ∑
{i∈R[j,j+1],si≤j}

qixikv +
∑

{i∈R[j,j+1],si>j+1}
qixik−1v ≤ Q (4.3)

∑
v∈V

∑
k∈Ki

xikv = 1 (4.4)

xikv ∈ {0, 1} (4.5)

with 1 ≤ i ≤ n, 0 ≤ j ≤ m− 1, 1 ≤ k ≤ K, 1 ≤ v ≤ V .
The objective function minimizes the sum of completion times. Constraints (4.3)

ensure that vehicle capacities are satisfied: for each vehicle, each tour and each
interval [j, j + 1], the quantity loaded in the vehicle is not greater than Q. This
quantity is obtained by considering requests that cover [j, j + 1] and by summing

Chapter 4 66



Pickup and delivery problems with autonomous and electric vehicles

quantities qi of requests that started being served in this tour before station j and
requests that started being served in the previous tour after station j+1. Constraints
(4.4) make sure that every requests is served, at an acceptable time. Constraints (4.5)
define variable domains.

Two types of symmetry breaking constraints were tested in order to strengthen the
formulation. The first ranks vehicles according to the number of satisfied requests:
the smallest the vehicle index, the largest the number of satisfied requests∑

i∈R

∑
k∈Ki

xikv ≥
∑
i∈R

∑
k∈Ki

xikv+1 (1 ≤ v ≤ V − 1)

The second set of symmetry breaking constraints imposes that first requests are served
by first vehicles: the i first requests have to be assigned to vehicles in set {1, . . . , i}:

i∑
u=1

i∑
v=1

∑
k∈Ku

xukv = i (1 ≤ i ≤ min(V, n))

Note that the two constraint sets cannot be considered simultaneously. Their impact
was evaluated computationally and a slight improvement of computational times
was noticed on some instances. Anyway, on average, the model performs better
without the symmetry-breaking constraints, so they are not included in the following
computational tests.

4.6 Computational tests

It is now presented the set of experiments made in order to evaluate the efficacy
of formulation (4.2)–(4.5). The formulation is solved through CPLEX 12.9.0 on a
computer equipped with an Intel Core i7-9700 processor and 32GB of RAM. For all
experiments, a time limit of 30 minutes was set. All instances were solved within this
time limit.

To the best of our knowledge, the problems investigated in this chapter are new.
Thus, the computational tests have been made on instances proposed in Trotta et al.,
2022 for PDP-R with a different objective function. These instances are defined on
a circle with m = 10 stations, n = 20, 40, 80 or 160 requests, V = 1, 2 or 3 vehicles
and Q = 1, 2, 4 or 8. Pickup and delivery stations are randomly drawn, as well as
demands (in {1, . . . , Q} for the latter). When needed, release dates and due dates
are defined according to four categories: t-t, t-w, w-t, w-w, where t and w stand for
tight and wide, respectively, and the two letters concern release dates and due dates,
respectively. Five instances are generated for each combinations of parameters. The
reader is referred to Trotta et al., 2022 for more details concerning these instances.
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4.6.1 A greedy algorithm

As a comparison basis with respect to the exact solution with a solver, it was de-
signed a greedy algorithm that is easy to implement and that sounds natural for
practitioners. It works as follows.

When a vehicle reaches a station that is the pickup station of at least one request
and this request can be started, it is started. If several requests can be started at the
same time, ties are broken by giving priority to requests according to the following
criteria, taken hierarchically:

• earliest due date first (due date is considered infinite if no due date is defined)

• shortest distance to reach the delivery node first

• largest demand first

Note that, in case of instances with unit demands and no release/due dates, only
the second criterion is used.

4.6.2 Computational results for V, Q|sd, u|∑Ci

Table 4.1 reports results for problem V, Q|sd, u|∑Ci, i.e., with no release and due
dates and unitary demands. All results are averaged over the 5 instances with the
same value of n, V and Q. Column CPU reports the solution time of the formulation
in Section 4.5, in seconds. Column feas reports the number of instances for which a
feasible solution has been found. In all our experiments, infeasibility was proven each
time no feasible solution was found. For this reason this information is not reported
in the tables: instances for which no feasible solution has been found are infeasible.
Column opt reports the number of instances solved to optimality, among those that
admit a feasible solution. Column gr reports the number of instances for which the
greedy algorithm found a feasible solution. Column ∑Ci reports, with a slight abuse
of notation, the value of the best solution found within the time limit. Column gapO

reports the percentage relative gap between the solution of the greedy algorithm and
the one of the formulation, related to instances solved to optimality, while column
gapUB reports the gap related to instances for which the formulation found a feasible
(but not necessarily optimal) solution. Precisely, gapO and gapUB are calculated as
xgr−xopt

xopt
and xgr−xfeas

xfeas
respectively, where xgr, xopt and xfeas are the greedy, optimal

and feasible solution values.
Formulation (4.2)–(4.5) is extremely effective: all instances are solved to optimal-

ity, with the largest computing time being a few seconds. The greedy algorithm is
also capable of solving all instances. The gaps it provides with respect to optimal

Chapter 4 68



Pickup and delivery problems with autonomous and electric vehicles

n V Q CPU feas opt gr
∑

Ci gapGrO gapGrUB

20 1 1 0.0 5 5 5 114.4 6.3 -
20 1 2 0.0 5 5 5 66.6 5.4 -
20 1 4 0.0 5 5 5 43.4 4.2 -
20 1 8 0.0 5 5 5 33.2 1.4 -

20 2 1 0.0 5 5 5 66.6 5.4 -
20 2 2 0.0 5 5 5 43.4 4.2 -
20 2 4 0.0 5 5 5 33.2 1.4 -
20 2 8 0.0 5 5 5 28.6 0.0 -

20 3 1 0.0 5 5 5 51.0 4.7 -
20 3 2 0.0 5 5 5 36.0 1.3 -
20 3 4 0.0 5 5 5 29.4 0.0 -
20 3 8 0.0 5 5 5 28.6 0.0 -

40 1 1 0.1 5 5 5 404.0 5.6 -
40 1 2 0.0 5 5 5 216.2 5.4 -
40 1 4 0.0 5 5 5 124.6 4.0 -
40 1 8 0.0 5 5 5 81.0 1.4 -

40 2 1 0.1 5 5 5 216.2 5.4 -
40 2 2 0.0 5 5 5 124.6 4.0 -
40 2 4 0.0 5 5 5 81.0 1.4 -
40 2 8 0.0 5 5 5 61.6 0.0 -

40 3 1 0.1 5 5 5 154.8 5.2 -
40 3 2 0.0 5 5 5 94.6 3.1 -
40 3 4 0.0 5 5 5 67.4 0.3 -
40 3 8 0.0 5 5 5 56.2 0.0 -

n V Q CPU feas opt gr
∑

Ci gapGrO gapGrUB

80 1 1 0.4 5 5 5 1404.2 4.8 -
80 1 2 0.2 5 5 5 733.2 4.8 -
80 1 4 0.1 5 5 5 398.8 5.0 -
80 1 8 0.1 5 5 5 234.8 4.7 -

80 2 1 0.4 5 5 5 733.2 4.8 -
80 2 2 0.2 5 5 5 398.8 5.0 -
80 2 4 0.1 5 5 5 234.8 4.7 -
80 2 8 0.1 5 5 5 155.8 4.1 -

80 3 1 0.4 5 5 5 510.0 4.9 -
80 3 2 0.2 5 5 5 289.0 5.4 -
80 3 4 0.1 5 5 5 181.4 4.1 -
80 3 8 0.1 5 5 5 130.2 2.6 -

160 1 1 3.0 5 5 5 5014.2 1.4 -
160 1 2 1.3 5 5 5 2565.0 1.4 -
160 1 4 0.9 5 5 5 1343.2 1.8 -
160 1 8 0.3 5 5 5 737.4 2.4 -

160 2 1 3.3 5 5 5 2565.0 1.4 -
160 2 2 1.1 5 5 5 1343.2 1.8 -
160 2 4 0.9 5 5 5 737.4 2.4 -
160 2 8 0.4 5 5 5 441.2 2.7 -

160 3 1 2.4 5 5 5 1749.6 1.4 -
160 3 2 1.2 5 5 5 938.6 1.9 -
160 3 4 1.0 5 5 5 539.8 2.7 -
160 3 8 0.3 5 5 5 346.4 1.4 -

Table 4.1: Problem V, Q|sd, u|∑Ci

solutions only go up to slightly more than 6%. Furthermore, these gaps are even
smaller for large vehicle capacities: this might be due to the fact that capacity is less
binding in this case and, thus, the choice of favoring requests with shorter distance
to destination pays off.

4.6.3 Computational results for V, Q|sd, u, ri, di|
∑

Ci

Tables 4.2 and 4.3 report results for problem V, Q|sd, u, ri, di|
∑

Ci i.e., the case with
release and due dates and unitary demands. As before, each row reports the average
value over the 5 instances with the same value of n, V and Q. In Table 4.2, three
cases are considered for release and due dates: tight-tight (t-t), tight-wide (t-w) and
tight release dates without due dates (t). The three other cases are reported in Table
4.3.
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n V Q t-t t-w t

CPU feas opt gr
∑

Ci gapGrO gapGrUB CPU feas opt gr
∑

Ci gapGrO gapGrUB CPU feas opt gr
∑

Ci gapGrO gapGrUB

20 1 1 0.0 3 3 0 198.3 - - 0.0 4 4 1 193.3 9.2 - 0.0 5 5 5 196.8 8.1 -
20 1 2 0.0 5 5 0 108.0 - - 0.0 5 5 0 106.8 - - 0.0 5 5 5 107.8 13.5 -
20 1 4 0.0 5 5 0 57.2 - - 0.0 5 5 1 58.4 25.4 - 0.0 5 5 5 57.2 19.9 -
20 1 8 0.0 5 5 0 36.4 - - 0.0 5 5 2 39.4 38.1 - 0.0 5 5 5 36.4 37.9 -

20 2 1 0.0 5 5 0 97.6 - - 0.0 5 5 0 100.0 - - 0.0 5 5 5 97.4 15.2 -
20 2 2 0.0 5 5 2 57.8 20.1 - 0.0 5 5 2 55.0 29.6 - 0.0 5 5 5 57.8 20.9 -
20 2 4 0.0 5 5 0 39.0 - - 0.0 5 5 0 39.4 - - 0.0 5 5 5 39.0 31.2 -
20 2 8 0.0 5 5 0 28.6 - - 0.0 5 5 0 28.6 - - 0.0 5 5 5 28.6 40.7 -

20 3 1 0.0 5 5 2 71.8 19.4 - 0.0 4 4 2 73.0 16.9 - 0.0 5 5 5 71.6 18.6 -
20 3 2 0.0 5 5 0 46.0 - - 0.0 5 5 2 44.8 10.2 - 0.0 5 5 5 46.0 21.8 -
20 3 4 0.0 5 5 0 32.4 - - 0.0 5 5 1 33.0 46.7 - 0.0 5 5 5 32.4 30.7 -
20 3 8 0.0 5 5 0 28.6 - - 0.0 5 5 0 28.6 - - 0.0 5 5 5 28.6 31.7 -

40 1 1 0.0 5 5 0 738.8 - - 0.0 5 5 2 635.2 7.7 - 0.0 5 5 5 736.0 4.9 -
40 1 2 0.0 5 5 0 367.4 - - 0.0 5 5 0 362.0 - - 0.0 5 5 5 366.2 7.3 -
40 1 4 0.0 5 5 0 191.6 - - 0.0 5 5 1 181.2 8.7 - 0.0 5 5 5 191.6 12.7 -
40 1 8 0.0 5 5 0 112.6 - - 0.0 5 5 0 116.2 - - 0.0 5 5 5 112.6 16.3 -

40 2 1 0.0 5 5 0 353.4 - - 0.0 5 5 0 339.4 - - 0.1 5 5 5 351.0 9.1 -
40 2 2 0.0 5 5 1 197.6 10.1 - 0.0 5 5 3 190.6 12.7 - 0.0 5 5 5 197.0 11.8 -
40 2 4 0.0 5 5 0 109.0 - - 0.0 5 5 0 112.2 - - 0.0 5 5 5 109.0 19.6 -
40 2 8 0.0 5 5 0 74.0 - - 0.0 5 5 0 73.4 - - 0.0 5 5 5 74.0 30.2 -

40 3 1 0.0 5 5 0 242.4 - - 0.0 5 5 1 243.8 10.0 - 0.1 5 5 5 242.0 11.3 -
40 3 2 0.0 5 5 0 144.8 - - 0.0 5 5 0 145.8 - - 0.0 5 5 5 144.8 15.9 -
40 3 4 0.0 5 5 0 84.4 - - 0.0 5 5 0 88.0 - - 0.0 5 5 5 84.4 22.0 -
40 3 8 0.0 5 5 0 65.4 - - 0.0 5 5 0 63.4 - - 0.0 5 5 5 65.4 29.4 -

80 1 1 0.1 5 5 1 2490.6 3.2 - 0.1 4 4 0 2495.0 - - 0.1 5 5 5 2489.6 3.6 -
80 1 2 0.0 5 5 0 1303.4 - - 0.0 5 5 0 1304.8 - - 0.1 5 5 5 1302.8 4.9 -
80 1 4 0.0 5 5 1 700.2 7.9 - 0.0 5 5 1 673.8 8.6 - 0.1 5 5 5 699.8 7.2 -
80 1 8 0.0 5 5 0 367.6 - - 0.0 5 5 1 372.2 14.9 - 0.1 5 5 5 367.6 13.6 -

80 2 1 0.1 5 5 1 1260.0 4.3 - 0.1 5 5 0 1319.4 - - 0.2 5 5 5 1259.4 5.8 -
80 2 2 0.0 5 5 0 672.6 - - 0.0 5 5 1 678.6 9.9 - 0.1 5 5 5 672.4 8.5 -
80 2 4 0.0 5 5 2 382.2 13.7 - 0.0 5 5 0 361.8 - - 0.1 5 5 5 382.2 12.9 -
80 2 8 0.0 5 5 0 228.0 - - 0.0 5 5 0 222.6 - - 0.1 5 5 5 228.0 18.5 -

80 3 1 0.1 5 5 1 896.0 7.3 - 0.1 5 5 1 907.6 4.9 - 0.3 5 5 5 895.4 6.9 -
80 3 2 0.0 5 5 1 462.0 9.7 - 0.0 5 5 1 485.6 9.3 - 0.2 5 5 5 462.0 10.3 -
80 3 4 0.0 5 5 0 270.8 - - 0.0 5 5 0 266.0 - - 0.2 5 5 5 270.8 18.4 -
80 3 8 0.0 5 5 0 181.0 - - 0.0 5 5 0 177.6 - - 0.1 5 5 5 181.0 23.5 -

160 1 1 0.3 5 5 0 9889.4 - - 0.3 4 4 0 10137.8 - - 0.6 5 5 5 9886.0 1.9 -
160 1 2 0.1 5 5 1 4922.8 2.6 - 0.1 5 5 1 5122.0 2.0 - 0.3 5 5 5 4921.2 2.4 -
160 1 4 0.0 5 5 1 2521.4 4.3 - 0.1 5 5 0 2622.0 - - 0.2 5 5 5 2521.4 3.9 -
160 1 8 0.0 5 5 0 1389.0 - - 0.0 5 5 2 1356.8 5.9 - 0.2 5 5 5 1388.8 6.5 -

160 2 1 0.2 5 5 0 5042.8 - - 0.4 5 5 0 5015.4 - - 0.9 5 5 5 5042.8 2.4 -
160 2 2 0.1 5 5 0 2564.2 - - 0.1 5 5 1 2551.8 3.3 - 0.6 5 5 5 2563.6 3.6 -
160 2 4 0.0 5 5 1 1359.0 7.5 - 0.0 5 5 0 1323.0 - - 0.5 5 5 5 1359.0 6.8 -
160 2 8 0.0 5 5 0 743.0 - - 0.0 5 5 0 731.8 - - 0.5 5 5 5 743.0 10.9 -

160 3 1 0.2 5 5 0 3372.0 - - 0.3 5 5 1 3394.8 2.7 - 1.6 5 5 5 3371.0 3.1 -
160 3 2 0.1 5 5 1 1726.8 5.9 - 0.1 5 5 1 1710.2 4.5 - 0.8 5 5 5 1726.8 5.2 -
160 3 4 0.0 5 5 0 957.8 - - 0.0 5 5 1 951.8 8.3 - 0.8 5 5 5 957.8 8.9 -
160 3 8 0.0 5 5 0 548.4 - - 0.0 5 5 0 532.0 - - 0.7 5 5 5 548.4 14.8 -

Table 4.2: Problem V, Q|sd, u, ri, di|
∑

Ci (part 1)
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n V Q w-t w-w w

CPU feas opt gr
∑

Ci gapGrO gapGrUB CPU feas opt gr
∑

Ci gapGrO gapGrUB CPU feas opt gr
∑

Ci gapGrO gapGrUB

20 1 1 0.0 5 5 2 240.2 8.7 - 0.0 5 5 1 222.6 10.0 - 0.0 5 5 5 240.0 7.8 -
20 1 2 0.0 5 5 1 134.8 4.0 - 0.0 5 5 1 118.0 9.0 - 0.0 5 5 5 133.8 9.8 -
20 1 4 0.0 5 5 1 70.0 22.0 - 0.0 5 5 1 69.4 15.4 - 0.0 5 5 5 70.0 16.7 -
20 1 8 0.0 5 5 0 44.4 - - 0.0 5 5 0 45.2 - - 0.0 5 5 5 44.4 22.5 -

20 2 1 0.0 5 5 1 119.2 12.2 - 0.0 5 5 4 119.8 10.1 - 0.0 5 5 5 119.2 10.1 -
20 2 2 0.0 5 5 1 69.6 15.9 - 0.0 5 5 3 64.2 19.6 - 0.0 5 5 5 69.6 17.1 -
20 2 4 0.0 5 5 0 47.6 - - 0.0 5 5 0 47.0 - - 0.0 5 5 5 47.6 22.3 -
20 2 8 0.0 5 5 0 33.4 - - 0.0 5 5 0 32.0 - - 0.0 5 5 5 33.4 30.3 -

20 3 1 0.0 5 5 1 83.8 16.7 - 0.0 5 5 1 90.0 17.6 - 0.0 5 5 5 83.8 15.0 -
20 3 2 0.0 5 5 0 55.0 - - 0.0 5 5 1 53.2 15.8 - 0.0 5 5 5 55.0 18.5 -
20 3 4 0.0 5 5 0 35.6 - - 0.0 5 5 0 35.4 - - 0.0 5 5 5 35.6 27.8 -
20 3 8 0.0 5 5 0 28.6 - - 0.0 5 5 0 28.6 - - 0.0 5 5 5 28.6 36.1 -

40 1 1 0.0 5 5 0 775.2 - - 0.0 5 5 0 863.6 - - 0.0 5 5 5 775.2 4.2 -
40 1 2 0.0 5 5 0 461.2 - - 0.0 5 5 1 446.2 6.8 - 0.0 5 5 5 461.2 5.3 -
40 1 4 0.0 5 5 1 237.6 7.6 - 0.0 5 5 2 256.4 8.7 - 0.0 5 5 5 237.6 9.6 -
40 1 8 0.0 5 5 0 137.4 - - 0.0 5 5 1 139.0 16.1 - 0.0 5 5 5 137.4 17.0 -

40 2 1 0.0 5 5 1 436.4 4.1 - 0.0 5 5 1 432.0 4.3 - 0.1 5 5 5 436.4 5.7 -
40 2 2 0.0 5 5 0 238.4 - - 0.0 5 5 2 236.6 9.2 - 0.0 5 5 5 238.4 8.9 -
40 2 4 0.0 5 5 2 132.4 18.4 - 0.0 5 5 1 141.2 13.4 - 0.0 5 5 5 132.4 15.3 -
40 2 8 0.0 5 5 0 86.4 - - 0.0 5 5 0 88.8 - - 0.0 5 5 5 86.4 21.4 -

40 3 1 0.0 5 5 1 313.6 7.0 - 0.0 5 5 1 300.8 6.8 - 0.1 5 5 5 313.6 7.8 -
40 3 2 0.0 5 5 0 177.2 - - 0.0 5 5 1 169.8 9.6 - 0.0 5 5 5 177.2 12.3 -
40 3 4 0.0 5 5 0 104.8 - - 0.0 5 5 1 104.8 22.0 - 0.0 5 5 5 104.8 18.6 -
40 3 8 0.0 5 5 0 71.8 - - 0.0 5 5 0 71.6 - - 0.0 5 5 5 71.8 26.3 -

80 1 1 0.0 5 5 2 3113.8 2.2 - 0.1 5 5 4 3276.8 2.2 - 0.1 5 5 5 3113.2 2.1 -
80 1 2 0.0 5 5 1 1736.8 2.6 - 0.0 5 5 4 1633.4 3.3 - 0.1 5 5 5 1736.6 2.9 -
80 1 4 0.0 5 5 0 869.4 - - 0.0 5 5 1 878.8 3.6 - 0.1 5 5 5 869.4 5.4 -
80 1 8 0.0 5 5 0 462.0 - - 0.0 5 5 1 458.4 8.0 - 0.1 5 5 5 462.0 10.4 -

80 2 1 0.0 5 5 1 1769.8 3.2 - 0.1 5 5 2 1645.2 3.0 - 0.2 5 5 5 1769.8 2.9 -
80 2 2 0.0 5 5 1 892.2 6.1 - 0.0 5 5 2 841.8 5.9 - 0.1 5 5 5 892.2 5.5 -
80 2 4 0.0 5 5 0 440.4 - - 0.0 5 5 0 461.8 - - 0.1 5 5 5 440.4 11.6 -
80 2 8 0.0 5 5 0 270.8 - - 0.0 5 5 1 266.4 19.9 - 0.1 5 5 5 270.8 17.4 -

80 3 1 0.0 5 5 0 1155.6 - - 0.0 5 5 2 1158.2 4.7 - 0.3 5 5 5 1155.4 4.1 -
80 3 2 0.0 5 5 1 603.8 7.4 - 0.0 5 5 2 594.8 8.5 - 0.2 5 5 5 603.8 7.7 -
80 3 4 0.0 5 5 1 337.8 13.5 - 0.0 5 5 0 332.8 - - 0.1 5 5 5 337.8 14.0 -
80 3 8 0.0 5 5 0 216.6 - - 0.0 5 5 0 215.8 - - 0.1 5 5 5 216.6 19.5 -

160 1 1 0.2 5 5 1 12987.4 0.8 - 0.3 5 5 2 12605.8 1.0 - 0.4 5 5 5 12984.0 0.8 -
160 1 2 0.1 5 5 0 6457.4 - - 0.1 5 5 1 6535.2 1.5 - 0.3 5 5 5 6456.8 1.4 -
160 1 4 0.0 5 5 0 3294.0 - - 0.0 5 5 3 3490.6 2.3 - 0.2 5 5 5 3293.6 2.6 -
160 1 8 0.0 5 5 0 1749.0 - - 0.0 5 5 1 1737.8 5.4 - 0.2 5 5 5 1749.0 4.9 -

160 2 1 0.2 5 5 0 6649.4 - - 0.2 5 5 2 6758.0 1.5 - 0.8 5 5 5 6649.4 1.5 -
160 2 2 0.1 5 5 1 3379.4 2.3 - 0.1 5 5 1 3396.0 2.9 - 0.5 5 5 5 3379.4 2.4 -
160 2 4 0.0 5 5 1 1757.8 4.7 - 0.0 5 5 0 1776.4 - - 0.4 5 5 5 1757.8 4.7 -
160 2 8 0.0 5 5 0 937.2 - - 0.0 5 5 1 925.8 10.9 - 0.4 5 5 5 937.2 9.3 -

160 3 1 0.2 5 5 0 4274.2 - - 0.2 5 5 2 4338.4 1.9 - 1.2 5 5 5 4274.0 2.0 -
160 3 2 0.1 5 5 0 2278.8 - - 0.1 5 5 2 2376.8 3.3 - 0.8 5 5 5 2278.8 3.7 -
160 3 4 0.0 5 5 0 1232.4 - - 0.0 5 5 0 1212.4 - - 0.7 5 5 5 1232.4 7.0 -
160 3 8 0.0 5 5 0 699.0 - - 0.0 5 5 0 678.8 - - 0.7 5 5 5 699.0 11.4 -

Table 4.3: Problem V, Q|sd, u, ri, di|
∑

Ci (part 2)

The formulation is still extremely effective: all instances for which a feasible
solution exists are solved to optimality in less than one second, with few exceptions.
The greedy algorithm instead struggles in finding feasible solutions, especially for the
case t-t. Also, when a feasible solution is found, the gap with respect to the optimal

Chapter 4 71



Pickup and delivery problems with autonomous and electric vehicles

solution is high. This is due to the fact that the solution space is narrow so the
wrong choices made by the greedy algorithm have a strong impact. Anyway, given
the excellent performance of the formulation, there seems to be no need to refine the
greedy heuristic to get satisfactory solutions.

4.6.4 Computational results for V, Q|sd, ri, di|
∑

Ci

Tables 4.5 and 4.6 report results for problem V, Q|sd, ri, di|
∑

Ci, i.e, the case where
demands are not forced to be unitary. Columns are the same as in former sections.
In addition, the case with no release dates and due dates is reported in Table 4.4.

n V Q CPU feas opt gr
∑

Ci gapGrO gapGrUB

20 1 1 0.0 5 5 5 114.4 6.3 -
20 1 2 0.1 5 5 5 86.0 8.2 -
20 1 4 0.1 5 5 5 73.4 17.5 -
20 1 8 0.1 5 5 5 69.0 15.5 -

20 2 1 0.0 5 5 5 66.6 5.4 -
20 2 2 0.1 5 5 5 53.8 8.8 -
20 2 4 0.1 5 5 5 50.2 10.2 -
20 2 8 0.1 5 5 5 44.6 10.9 -

20 3 1 0.0 5 5 5 51.0 4.7 -
20 3 2 0.0 5 5 5 42.2 9.3 -
20 3 4 0.0 5 5 5 38.2 9.9 -
20 3 8 0.0 5 5 5 36.4 9.3 -

40 1 1 0.1 5 5 5 404.0 5.6 -
40 1 2 0.6 5 5 5 283.2 11.1 -
40 1 4 1.9 5 5 5 249.6 10.4 -
40 1 8 3.8 5 5 5 209.0 14.8 -

40 2 1 0.1 5 5 5 216.2 5.4 -
40 2 2 0.8 5 5 5 157.0 10.1 -
40 2 4 0.8 5 5 5 134.4 11.2 -
40 2 8 3.2 5 5 5 135.0 11.2 -

40 3 1 0.1 5 5 5 154.8 5.2 -
40 3 2 0.3 5 5 5 120.4 8.5 -
40 3 4 5.9 5 5 5 105.0 11.3 -
40 3 8 1.0 5 5 5 90.6 12.4 -

n V Q CPU feas opt gr
∑

Ci gapGrO gapGrUB

80 1 1 0.4 5 5 5 1404.2 4.8 -
80 1 2 509.9 5 4 5 987.8 10.0 5.6
80 1 4 1157.7 5 2 5 902.0 10.8 13.6
80 1 8 1801.3 5 0 5 - - 11.9

80 2 1 0.4 5 5 5 733.2 4.8 -
80 2 2 1093.1 5 2 5 527.5 10.0 8.2
80 2 4 1345.9 5 2 5 472.5 10.0 11.6
80 2 8 1801.1 5 0 5 - - 16.5

80 3 1 0.4 5 5 5 510.0 4.9 -
80 3 2 384.8 5 4 5 361.8 9.3 11.2
80 3 4 550.9 5 4 5 303.8 12.3 16.4
80 3 8 1801.4 5 0 5 - - 11.7

160 1 1 3.2 5 5 5 5014.2 1.4 -
160 1 2 1801.0 5 0 5 - - 7.0
160 1 4 1800.5 5 0 5 - - 5.6
160 1 8 1800.3 5 0 5 - - 6.2

160 2 1 3.4 5 5 5 2565.0 1.4 -
160 2 2 1448.0 5 1 5 1760.0 9.9 5.5
160 2 4 1800.4 5 0 5 - - 6.6
160 2 8 1800.5 5 0 5 - - 5.9

160 3 1 2.5 5 5 5 1749.6 1.4 -
160 3 2 1801.4 5 0 5 - - 5.8
160 3 4 1800.7 5 0 5 - - 7.0
160 3 8 1800.8 5 0 5 - - 6.5

Table 4.4: Problem V, Q|sd|∑Ci

In this case that the performance of the formulation deteriorates: the computing
time sharply increases for instances with at least 80 requests and some of them are not
solved to optimality. Thus, the variance of customer demands makes the problem
more difficult and the difficulty increases with vehicle capacity. Still, the greedy
algorithm struggles in finding good quality solutions, with the average error being
often above 10%, even on instances not solved to optimality.

A similar trend as in Table 4.4 is observed in tables 4.5 and 4.6. Computing times
decrease with respect to Table 4.4 thanks to the narrower solution space but there
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n V Q t-t t-w t

CPU feas opt gr
∑

Ci gapGrO gapGrUB CPU feas opt gr
∑

Ci gapGrO gapGrUB CPU feas opt gr
∑

Ci gapGrO gapGrUB

20 1 1 0.0 0 0 0 - - - 0.0 1 1 0 142.0 - - 0.0 5 5 5 139.6 13.4 -
20 1 2 0.0 0 0 0 - - - 0.0 4 4 0 119.0 - - 0.0 5 5 5 121.4 19.1 -
20 1 4 0.0 1 1 1 91.0 14.3 - 0.0 4 4 0 112.0 - - 0.0 5 5 5 120.8 15.5 -
20 1 8 0.0 2 2 0 109.5 - - 0.0 3 3 1 109.7 17.0 - 0.0 5 5 5 115.8 15.3 -

20 2 1 0.0 0 0 0 - - - 0.0 1 1 0 79.0 - - 0.0 5 5 5 77.4 20.5 -
20 2 2 0.0 1 1 0 68.0 - - 0.0 4 4 0 67.0 - - 0.0 5 5 5 65.2 23.5 -
20 2 4 0.0 2 2 0 70.5 - - 0.0 3 3 0 60.3 - - 0.0 5 5 5 66.2 24.1 -
20 2 8 0.0 4 4 0 65.3 - - 0.0 5 5 0 64.0 - - 0.0 5 5 5 64.6 24.6 -

20 3 1 0.0 0 0 0 - - - 0.0 1 1 0 51.0 - - 0.0 5 5 5 58.0 20.9 -
20 3 2 0.0 3 3 0 51.3 - - 0.0 5 5 0 49.2 - - 0.0 5 5 5 50.8 22.8 -
20 3 4 0.0 2 2 0 47.5 - - 0.0 5 5 0 47.4 - - 0.0 5 5 5 46.0 30.2 -
20 3 8 0.0 4 4 0 46.5 - - 0.0 5 5 1 50.4 29.5 - 0.0 5 5 5 47.4 21.3 -

40 1 1 0.0 0 0 0 - - - 0.0 1 1 0 542.0 - - 0.1 5 5 5 513.2 10.1 -
40 1 2 0.0 1 1 0 433.0 - - 0.1 3 3 0 416.0 - - 0.3 5 5 5 409.4 11.3 -
40 1 4 0.1 3 3 0 387.3 - - 0.1 3 3 0 375.3 - - 0.2 5 5 5 391.4 13.6 -
40 1 8 0.0 4 4 0 381.8 - - 0.1 4 4 0 378.8 - - 0.2 5 5 5 392.8 11.6 -

40 2 1 0.0 0 0 0 - - - 0.0 2 2 0 260.0 - - 0.1 5 5 5 267.4 11.5 -
40 2 2 0.0 1 1 0 195.0 - - 0.1 4 4 0 217.5 - - 0.2 5 5 5 218.0 15.9 -
40 2 4 0.1 4 4 0 201.5 - - 0.1 5 5 0 214.6 - - 0.3 5 5 5 200.8 14.2 -
40 2 8 0.1 4 4 0 226.5 - - 0.1 5 5 0 217.6 - - 0.2 5 5 5 226.0 13.8 -

40 3 1 0.0 0 0 0 - - - 0.0 4 4 0 185.3 - - 0.1 5 5 5 189.0 13.2 -
40 3 2 0.1 3 3 0 159.0 - - 0.1 4 4 0 160.0 - - 0.4 5 5 5 156.4 16.7 -
40 3 4 0.1 4 4 1 144.8 11.9 - 0.1 4 4 0 157.3 - - 0.2 5 5 5 148.8 18.5 -
40 3 8 0.1 4 4 0 152.5 - - 0.1 5 5 0 144.6 - - 0.3 5 5 5 150.4 16.1 -

80 1 1 0.0 0 0 0 - - - 0.2 4 4 0 1813.5 - - 0.7 5 5 5 1759.8 8.0 -
80 1 2 0.8 3 3 0 1622.7 - - 11.2 5 5 0 1500.0 - - 6.2 5 5 5 1503.0 10.8 -
80 1 4 0.5 3 3 0 1440.3 - - 4.0 5 5 1 1482.8 6.8 - 4.9 5 5 5 1420.2 9.1 -
80 1 8 0.5 5 5 0 1348.8 - - 1.2 5 5 0 1411.4 - - 3.3 5 5 5 1339.0 8.7 -

80 2 1 0.1 0 0 0 - - - 0.1 3 3 0 938.0 - - 1.0 5 5 5 893.0 9.5 -
80 2 2 1.5 5 5 0 793.4 - - 2.1 5 5 0 766.0 - - 20.4 5 5 5 775.6 12.4 -
80 2 4 7.5 5 5 0 723.0 - - 27.0 5 5 0 725.4 - - 11.3 5 5 5 714.0 12.5 -
80 2 8 1.1 5 5 0 745.0 - - 1.7 5 5 0 728.8 - - 2.4 5 5 5 739.0 12.0 -

80 3 1 0.1 0 0 0 - - - 0.2 4 4 0 636.8 - - 0.9 5 5 5 611.0 11.0 -
80 3 2 3.4 5 5 0 551.0 - - 1.6 5 5 0 521.2 - - 6.9 5 5 5 537.6 12.8 -
80 3 4 1.9 5 5 0 501.2 - - 7.2 5 5 0 504.6 - - 15.4 5 5 5 497.8 13.8 -
80 3 8 1.1 5 5 1 501.4 9.7 - 3.2 5 5 0 512.8 - - 3.6 5 5 5 498.0 12.7 -

160 1 1 0.2 0 0 0 - - - 3.5 5 5 0 6628.6 - - 8.5 5 5 5 6553.4 6.2 -
160 1 2 538.8 5 4 0 5484.0 - - 559.8 5 4 0 5547.0 - - 1028.3 5 3 5 5483.3 7.5 7.9
160 1 4 351.3 5 5 0 5284.2 - - 504.6 5 4 0 5248.8 - - 786.8 5 3 5 5407.7 5.8 5.3
160 1 8 64.1 5 5 0 5142.0 - - 131.5 5 5 0 5157.2 - - 37.7 5 5 5 5127.2 5.8 -

160 2 1 0.3 0 0 0 - - - 2.9 5 5 0 3299.8 - - 14.9 5 5 5 3177.0 6.2 -
160 2 2 1451.8 5 1 0 2708.0 - - 955.0 5 3 0 2864.3 - - 1440.5 5 2 5 2828.5 8.1 8.1
160 2 4 602.8 5 4 0 2720.3 - - 589.0 5 4 0 2648.5 - - 1094.9 5 2 5 2739.5 7.0 7.5
160 2 8 365.8 5 4 0 2711.0 - - 114.1 5 5 0 2705.0 - - 370.9 5 4 5 2701.0 5.6 7.8

160 3 1 0.3 0 0 0 - - - 4.2 5 5 0 2241.6 - - 9.2 5 5 5 2224.8 8.6 -
160 3 2 1537.2 5 1 0 1874.0 - - 790.3 5 3 0 1885.7 - - 981.5 5 3 5 1867.3 9.6 10.2
160 3 4 490.4 5 5 0 1878.2 - - 1357.4 5 2 0 1845.0 - - 513.1 5 5 5 1872.4 9.0 -
160 3 8 413.3 5 4 0 1813.3 - - 917.9 5 3 0 1835.0 - - 413.4 5 4 5 1809.5 9.1 10.9

Table 4.5: Problem V, Q|sd, ri, di|
∑

Ci (part 1)
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n V Q w-t w-w w

CPU feas opt gr
∑

Ci gapGrO gapGrUB CPU feas opt gr
∑

Ci gapGrO gapGrUB CPU feas opt gr
∑

Ci gapGrO gapGrUB

20 1 1 0.0 0 0 0 - - - 0.0 2 2 0 141.5 - - 0.0 5 5 5 145.4 18.7 -
20 1 2 0.0 2 2 1 145.5 9.9 - 0.0 4 4 0 144.8 - - 0.0 5 5 5 143.8 14.3 -
20 1 4 0.0 2 2 0 115.0 - - 0.0 1 1 0 161.0 - - 0.0 5 5 5 130.4 12.6 -
20 1 8 0.0 2 2 0 121.5 - - 0.0 4 4 1 128.8 16.5 - 0.0 5 5 5 133.4 10.6 -

20 2 1 0.0 0 0 0 - - - 0.0 3 3 0 77.3 - - 0.0 5 5 5 93.4 11.3 -
20 2 2 0.0 4 4 0 77.8 - - 0.0 4 4 1 75.3 22.5 - 0.0 5 5 5 74.4 20.2 -
20 2 4 0.0 2 2 0 73.5 - - 0.0 4 4 1 78.5 11.8 - 0.0 5 5 5 78.6 17.7 -
20 2 8 0.0 5 5 0 75.4 - - 0.0 5 5 0 70.8 - - 0.0 5 5 5 74.8 15.1 -

20 3 1 0.0 1 1 0 53.0 - - 0.0 2 2 0 63.0 - - 0.0 5 5 5 63.0 19.3 -
20 3 2 0.0 3 3 0 52.3 - - 0.0 5 5 0 55.2 - - 0.0 5 5 5 55.6 18.1 -
20 3 4 0.0 4 4 0 51.8 - - 0.0 5 5 3 51.4 23.8 - 0.0 5 5 5 54.2 23.9 -
20 3 8 0.0 5 5 1 53.0 15.4 - 0.0 5 5 0 53.8 - - 0.0 5 5 5 52.8 21.1 -

40 1 1 0.0 1 1 0 503.0 - - 0.0 2 2 0 563.5 - - 0.1 5 5 5 552.8 8.5 -
40 1 2 0.0 4 4 0 470.5 - - 0.1 5 5 0 482.0 - - 0.1 5 5 5 458.2 8.4 -
40 1 4 0.0 4 4 0 499.8 - - 0.0 5 5 0 486.4 - - 0.1 5 5 5 477.4 7.5 -
40 1 8 0.0 5 5 0 420.8 - - 0.0 5 5 0 469.6 - - 0.1 5 5 5 418.0 9.8 -

40 2 1 0.0 1 1 0 261.0 - - 0.0 3 3 0 289.3 - - 0.1 5 5 5 288.8 10.1 -
40 2 2 0.0 4 4 0 258.5 - - 0.1 5 5 0 252.8 - - 0.1 5 5 5 254.6 12.7 -
40 2 4 0.0 4 4 0 249.5 - - 0.1 5 5 0 262.2 - - 0.1 5 5 5 250.8 12.8 -
40 2 8 0.0 4 4 1 245.0 10.8 - 0.1 5 5 0 248.0 - - 0.1 5 5 5 241.2 13.3 -

40 3 1 0.0 1 1 0 198.0 - - 0.0 5 5 0 205.6 - - 0.1 5 5 5 199.0 9.8 -
40 3 2 0.0 5 5 0 193.2 - - 0.1 5 5 0 187.0 - - 0.1 5 5 5 190.2 12.8 -
40 3 4 0.1 5 5 0 179.2 - - 0.1 5 5 0 181.4 - - 0.2 5 5 5 178.6 16.7 -
40 3 8 0.0 5 5 0 180.0 - - 0.0 5 5 0 176.0 - - 0.1 5 5 5 179.6 12.8 -

80 1 1 0.1 2 2 0 1881.5 - - 0.2 4 4 0 1983.8 - - 0.3 5 5 5 1911.0 7.6 -
80 1 2 0.2 5 5 0 1794.8 - - 0.6 5 5 0 1765.6 - - 0.6 5 5 5 1780.2 6.1 -
80 1 4 0.4 5 5 0 1750.4 - - 0.3 5 5 0 1757.2 - - 0.8 5 5 5 1738.0 6.8 -
80 1 8 0.2 5 5 0 1726.8 - - 0.4 5 5 0 1773.2 - - 0.4 5 5 5 1722.4 4.7 -

80 2 1 0.1 4 4 0 976.5 - - 0.1 5 5 0 1038.8 - - 0.8 5 5 5 956.8 9.5 -
80 2 2 1.2 5 5 0 935.8 - - 0.6 5 5 1 894.0 5.0 - 1.9 5 5 5 929.8 9.5 -
80 2 4 0.3 5 5 1 908.6 4.3 - 0.4 5 5 0 880.8 - - 0.9 5 5 5 906.0 7.2 -
80 2 8 0.3 5 5 0 911.2 - - 0.2 5 5 0 901.2 - - 0.7 5 5 5 910.2 6.5 -

80 3 1 0.1 2 2 0 660.0 - - 0.1 5 5 0 700.6 - - 0.6 5 5 5 668.6 12.1 -
80 3 2 1.0 5 5 0 634.4 - - 0.5 5 5 0 634.2 - - 2.2 5 5 5 633.2 9.5 -
80 3 4 0.3 5 5 0 651.4 - - 0.3 5 5 0 646.0 - - 1.3 5 5 5 650.8 8.6 -
80 3 8 0.2 5 5 0 633.6 - - 0.2 5 5 0 645.4 - - 0.8 5 5 5 633.0 8.8 -

160 1 1 1.7 5 5 0 7328.8 - - 2.3 5 5 0 7433.8 - - 3.4 5 5 5 7261.6 6.0 -
160 1 2 5.6 5 5 0 6831.8 - - 15.0 5 5 0 6718.2 - - 12.6 5 5 5 6825.4 3.9 -
160 1 4 1.8 5 5 0 6640.8 - - 3.6 5 5 0 6537.2 - - 2.9 5 5 5 6633.0 3.2 -
160 1 8 0.8 5 5 0 6540.6 - - 1.4 5 5 0 6569.4 - - 2.1 5 5 5 6535.0 2.7 -

160 2 1 2.3 5 5 0 3719.8 - - 2.2 5 5 0 3756.0 - - 12.3 5 5 5 3697.2 6.2 -
160 2 2 2.7 5 5 0 3485.4 - - 9.9 5 5 0 3452.8 - - 4.9 5 5 5 3482.8 4.6 -
160 2 4 2.8 5 5 0 3561.0 - - 2.6 5 5 0 3459.0 - - 6.6 5 5 5 3558.4 3.7 -
160 2 8 1.6 5 5 0 3337.4 - - 2.1 5 5 1 3343.0 2.7 - 5.7 5 5 5 3336.2 3.7 -

160 3 1 2.0 5 5 0 2465.2 - - 1.3 5 5 0 2516.0 - - 12.7 5 5 5 2450.0 7.6 -
160 3 2 16.5 5 5 0 2305.4 - - 19.6 5 5 0 2409.2 - - 24.4 5 5 5 2303.0 6.5 -
160 3 4 2.2 5 5 0 2337.8 - - 2.2 5 5 0 2296.2 - - 6.4 5 5 5 2336.6 5.0 -
160 3 8 1.3 5 5 0 2297.0 - - 1.0 5 5 1 2295.6 5.3 - 6.5 5 5 5 2296.8 4.9 -

Table 4.6: Problem V, Q|sd, ri, di|
∑

Ci (part 2)
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are still instances which are not solved to optimality. However, the formulation is
always able to provide a feasible solution when it exists.

The following two sections contain some unsuccessful attempts carried out in order
to find optimal solutions for the most difficult instances. For this reason they are
presented after the computational results.

4.7 A surrogate relaxation of formulation (4.2)-(4.5)

In this section a surrogate relaxation of formulation (4.2)-(4.5) is proposed. We
introduce variables xik = ∑V

v=1 xikv and we aggregate capacity constraints (4.3) on
all the vehicles to obtain model:

min
∑
i∈R

∑
k∈Ki

cikxik (4.6)

s.t.: ∑
{i∈R[j,j+1],si≤j}

qixik +
∑

{i∈R[j,j+1],si>j+1}
qixik−1 ≤ QV (4.7)

∑
k∈Ki

xik = 1 (4.8)

xik ∈ {0, 1} (4.9)

with 1 ≤ i ≤ n, 0 ≤ j ≤ m− 1, 1 ≤ k ≤ K.
In this model, capacity constraints (4.7) ensure that the global capacity offered

by the vehicle fleet is enough to satisfy the requests assigned in each tour to interval
[j, j + 1], but they do not guarantee that these requests can be distributed between
the V vehicles, satisfying individual vehicle capacity. The value of the relaxation
provides a valid lower bound.

The potential usefulness of the relaxation relies on the ability to solve it quickly.
Unfortunately, experiments conducted on the hardest instances show that, when the
optimal solution can not be found with model (4.2)-(4.5) within the time limit, this
happens also for formulation (4.6)-(4.9).

In order to overcome this difficulty, the formulation was reinforced. LetRβ[j, j+1]
denote the set of requests that cover segment [j, j + 1] with a demand qi ≥ β, for
each 2 ≤ β ≤ Q. Then, the following inequalities hold:

∑
{i∈Rβ [j,j+1],si≤j}

xik +
∑

{i∈Rβ [j,j+1],si>j+1}
xik−1 ≤

⌊
Q

β

⌋
V (4.10)
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with 0 ≤ j ≤ m− 1, 1 ≤ k ≤ K, 2 ≤ β ≤ Q.
These inequalities easily derive from Constraints (4.3). Indeed, by dividing Con-

straints (4.3) by β, it is easy to see that∑
{i∈Rβ [j,j+1],si≤j}

xikv +
∑

{i∈Rβ [j,j+1],si>j+1}
xik−1v ≤

Q

β

with 0 ≤ j ≤ m− 1, 1 ≤ k ≤ K, 1 ≤ v ≤ V .
Then, since the left-hand side is integer, we can apply the floor operator to the

right-hand side (which keeps the inequality valid) and sum the constraints on the V
vehicles to obtain Constraints (4.10). Unfortunately, experiments did not show any
acceleration on computing times when these valid inequalities were added.

Table 4.7 reports results of the solution of formulations (4.2)-(4.5) and (4.6)-(4.9)
on the instances of problem V, Q|sd|∑Ci. The computing environment is the same
as the one used in the experiments presented in section 4.6. All results are averaged
over the 5 instances with the same value of n, V and Q. Column value and column
opt report, respectively, the value and the number of optimal solutions to formula-
tion (4.2)-(4.5). Column CPU reports the solution time of formulation (4.2)-(4.5).
Column gapsr reports the percentage gap between the solution value of formulation
(4.2)-(4.5) and the solution value of formulation (4.6)-(4.9). Column optsr reports the
number of optimal solutions calculated by solving formulation (4.6)-(4.9). Column
gapsr,vi reports the same information as column gapsr but with inequalities (4.10)
in formulation (4.6)-(4.9). Column optsr,vi reports the number of optimal solutions
calculated by solving formulation (4.6)-(4.9) with inequalities (4.10). Columns gapsr

and gapsr,vi are calculated as xor−xsr

xor
and xsr−xsr,vi

xsr
respectively, where xor denotes the

solution value of formulation (4.2)-(4.5), xsr the solution value of formulation (4.6)-
(4.9), and xsr,vi denote the solution value of formulation (4.6)-(4.9) with inequalities
(4.10). Columns CPUsr and CPUsr,vi report the solution time of formulation (4.6)-
(4.9) without and with inequalities (4.10), respectively.

Table 4.7 shows that formulation (4.6)-(4.9) is as hard to solve as formulation
(4.2)-(4.5), even with inequalities (4.10). In fact, the number of optimal solutions
calculated is almost the same, as well as the solution time.

4.7.1 Feasibility of the solutions

Tables 4.8 and 4.9 report, for every combination of the parameters, the value and
the number of solutions to formulation (4.6)-(4.9) that are feasible for problem
V, Q|sd|∑Ci. Two different limits were set in CPLEX to solve the formulation:
10 seconds and 5 minutes, which refer to tables 4.8 and 4.9, respectively.
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n V Q value opt CP U gapsr optsr CP Usr gapsr,vi optsr,vi CP Usr,vi

20 1 1 114.4 5 0.0 0.0 5 0.0 0.0 5 0.0
20 1 2 86.0 5 0.1 0.0 5 0.1 0.0 5 0.1
20 1 4 73.4 5 0.1 0.0 5 0.1 0.0 5 0.1
20 1 8 69.0 5 0.1 0.0 5 0.1 0.0 5 0.1

20 2 1 66.6 5 0.0 0.0 5 0.0 0.0 5 0.0
20 2 2 53.8 5 0.1 0.0 5 0.1 0.0 5 0.1
20 2 4 50.2 5 0.1 2.5 5 0.0 2.5 5 0.1
20 2 8 44.6 5 0.1 3.2 5 0.0 2.7 5 0.0

20 3 1 51.0 5 0.0 0.0 5 0.0 0.0 5 0.0
20 3 2 42.2 5 0.0 0.0 5 0.0 0.0 5 0.0
20 3 4 38.2 5 0.0 0.0 5 0.0 0.0 5 0.0
20 3 8 36.4 5 0.0 1.4 5 0.0 1.4 5 0.0

40 1 1 404.0 5 0.1 0.0 5 0.1 0.0 5 0.1
40 1 2 283.2 5 0.8 0.0 5 1.4 0.0 5 1.4
40 1 4 249.6 5 2.2 0.0 5 3.2 0.0 5 3.6
40 1 8 209.0 5 4.3 0.0 5 6.9 0.0 5 9.0

40 2 1 216.2 5 0.1 0.0 5 0.0 0.0 5 0.0
40 2 2 157.0 5 0.8 0.1 5 0.1 0.1 5 0.1
40 2 4 134.4 5 0.8 1.7 5 0.6 1.7 5 0.8
40 2 8 135.0 5 3.2 3.6 5 10.1 3.3 5 6.9

40 3 1 154.8 5 0.1 0.0 5 0.0 0.0 5 0.0
40 3 2 120.4 5 0.3 0.0 5 0.1 0.0 5 0.1
40 3 4 105.0 5 5.8 2.8 5 0.3 2.3 5 0.4
40 3 8 90.6 5 1.0 1.8 5 0.2 1.3 5 0.2

80 1 1 1404.2 5 0.4 0.0 5 0.5 0.0 5 0.5
80 1 2 982.2 4 509.8 0.0 3 775.3 0.0 3 775.3
80 1 4 829.2 2 1158.0 −0.2 2 1342.5 −0.3 2 1282.1
80 1 8 722.6 0 1801.2 −0.1 0 1801.3 −0.1 0 1801.3

80 2 1 733.2 5 0.4 0.0 5 0.1 0.0 5 0.1
80 2 2 531.8 2 1093.3 0.1 3 806.5 0.1 3 805.3
80 2 4 449.2 2 1343.6 2.3 1 1463.6 2.1 1 1483.5
80 2 8 395.6 0 1801.3 2.7 0 1802.0 2.3 0 1802.1

80 3 1 510.0 5 0.4 0.0 5 0.1 0.0 5 0.1
80 3 2 364.6 4 385.0 0.1 5 105.8 0.1 5 104.9
80 3 4 312.4 4 560.6 2.3 4 410.9 2.0 5 118.3
80 3 8 295.4 0 1801.6 3.3 1 1624.3 2.7 1 1475.7

160 1 1 5014.2 5 3.4 0.0 5 3.7 0.0 5 3.7
160 1 2 3469.8 0 1801.0 −0.6 0 1800.5 −0.6 0 1800.6
160 1 4 2867.6 0 1800.6 0.2 0 1800.7 0.3 0 1800.6
160 1 8 2585.8 0 1800.4 0.2 0 1800.4 −1.2 0 1801.3

160 2 1 2565.0 5 3.7 0.0 5 1.1 0.0 5 1.1
160 2 2 1794.4 1 1448.9 0.1 1 1525.0 0.1 1 1525.4
160 2 4 1480.0 0 1800.6 2.0 0 1801.8 2.6 0 1801.4
160 2 8 1320.0 0 1802.2 3.4 0 1801.7 2.3 0 1802.0

160 3 1 1749.6 5 2.7 0.0 5 0.6 0.0 5 0.6
160 3 2 1243.8 0 1801.3 0.2 0 1801.9 0.2 0 1801.9
160 3 4 1077.2 0 1800.9 3.7 0 1802.7 3.4 0 1802.2
160 3 8 983.2 0 1800.6 5.7 0 1803.0 5.1 0 1802.2

Table 4.7: Problem V, Q|sd|∑Ci
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n V Q CP U value # feasible

20 1 1 0.0 114.4 5
20 1 2 0.1 86.0 5
20 1 4 0.1 73.4 5
20 1 8 0.1 69.0 5

20 2 1 0.0 66.6 5
20 2 2 0.0 53.8 4
20 2 4 0.0 49.0 1
20 2 8 0.0 43.2 0

20 3 1 0.0 51.0 5
20 3 2 0.0 42.2 3
20 3 4 0.0 38.2 1
20 3 8 0.0 35.8 0

40 1 1 0.1 404.0 5
40 1 2 0.6 283.2 5
40 1 4 1.9 249.6 5
40 1 8 4.1 209.0 5

40 2 1 0.0 216.2 5
40 2 2 0.1 156.8 0
40 2 4 0.2 131.8 0
40 2 8 3.4 130.2 0

40 3 1 0.0 154.8 5
40 3 2 0.1 120.4 1
40 3 4 0.1 101.8 0
40 3 8 0.1 89.0 0

n V Q CP U value # feasible

80 1 1 0.4 1404.2 5
80 1 2 8.5 983.4 5
80 1 4 10.0 853.4 5
80 1 8 10.0 740.2 5

80 2 1 0.2 733.2 5
80 2 2 5.8 531.6 1
80 2 4 10.0 445.2 0
80 2 8 10.0 394.4 0

80 3 1 0.1 510.0 5
80 3 2 1.0 364.2 0
80 3 4 8.8 306.0 0
80 3 8 10.0 288.6 0

160 1 1 3.1 5014.2 5
160 1 2 10.0 3681.2 5
160 1 4 10.0 3075.0 5
160 1 8 10.0 2765.4 5

160 2 1 1.4 2565.0 5
160 2 2 8.8 1826.0 0
160 2 4 10.0 1524.2 0
160 2 8 10.0 1339.6 0

160 3 1 1.2 1749.6 5
160 3 2 10.0 1255.8 0
160 3 4 10.0 1064.2 0
160 3 8 10.0 959.0 0

Table 4.8: Problem V, Q|sd|∑Ci - 10 seconds time limit
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n V Q CP U value # feasible

20 1 1 0.0 114.4 5
20 1 2 0.1 86.0 5
20 1 4 0.1 73.4 5
20 1 8 0.1 69.0 5

20 2 1 0.0 66.6 5
20 2 2 0.0 53.8 4
20 2 4 0.0 49.0 1
20 2 8 0.0 43.2 0

20 3 1 0.0 51.0 5
20 3 2 0.0 42.2 3
20 3 4 0.0 38.2 1
20 3 8 0.0 35.8 0

40 1 1 0.1 404.0 5
40 1 2 0.6 283.2 5
40 1 4 1.9 249.6 5
40 1 8 4.0 209.0 5

40 2 1 0.0 216.2 5
40 2 2 0.1 156.8 0
40 2 4 0.2 131.8 0
40 2 8 4.4 130.2 0

40 3 1 0.0 154.8 5
40 3 2 0.1 120.4 1
40 3 4 0.1 101.8 0
40 3 8 0.1 89.0 0

n V Q CP U value # feasible

80 1 1 0.4 1404.2 5
80 1 2 141.7 982.2 5
80 1 4 248.6 833.8 5
80 1 8 300.1 728.4 5

80 2 1 0.2 733.2 5
80 2 2 63.9 531.4 0
80 2 4 250.7 439.0 0
80 2 8 300.6 386.4 0

80 3 1 0.1 510.0 5
80 3 2 1.0 364.2 0
80 3 4 73.6 305.0 0
80 3 8 255.7 285.8 0

160 1 1 3.1 5014.2 5
160 1 2 300.1 3492.0 5
160 1 4 300.2 2917.4 5
160 1 8 300.1 2660.2 5

160 2 1 1.4 2565.0 5
160 2 2 240.9 1795.6 0
160 2 4 300.1 1457.6 0
160 2 8 300.1 1285.2 0

160 3 1 1.3 1749.6 5
160 3 2 245.6 1241.4 0
160 3 4 300.3 1042.8 0
160 3 8 300.5 933.0 0

Table 4.9: Problem V, Q|sd|∑Ci - 5 minutes time limit
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4.7.2 Repairing the solutions of the surrogate relaxation

Formulation (4.6)-(4.9) provides solutions to problem V, Q|sd, ri, di|
∑

Ci that may
be infeasible when the demands are not unitary and Q, V > 1. In this section it
is addressed the problem of trying to make such solutions feasible through a greedy
heuristic and the performances of formulation (4.6)-(4.9) are compared with formu-
lation (4.2)-(4.5).

Suppose formulation (4.6)-(4.9) has scheduled the requests in K different tours.
For any tour 1 ≤ k ≤ K, we assign the requests to vehicles by solving to optimality
m Bin Packing Problems (BPP), one for each segment of the ring, where the bins are
represented by the vehicles. If in tour k the BPP fails on segment [j, j + 1], we have
to decide which requests must be assigned to tour k + 1 among the ones that have
starting station equal to j. We sort such requests according to the following criteria,
taken hierarchically:

• greatest deadline first;

• shortest distance to reach the delivery node first;

• largest demand first;

Then we shift one request at a time starting from the first one in the ordering, until
the BPP is solved.

In the BPP to be solved, every bin has a different capacity ci ≤ q. The reason is
that when a subset R′ ⊂ R of requests is assigned to vehicle v on segment [j, j + 1],
we have to record that choice and solve a BPP on segment [j + 1, j + 2] where v has
a capacity decreased by ∑i∈R′ qi.

Let u be the maximum number of available bins (vehicles) and assume that the
potential bins are numbered as 1 . . . u. Let ci denote the capacity of bin i.

We introduce two types of binary decision variables:

yi =
1 if bin i is used in the solution

0 otherwise.

xij =
1 if item j is packed into bin i

0 otherwise.

The integer linear program is then:

min
u∑

i=1
yi (4.11)
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s.t.:
n∑

j=1
wjxij ≤ ciyi (1 ≤ i ≤ u) (4.12)

u∑
i=1

xij = 1 (1 ≤ j ≤ n) (4.13)

xij ∈ {0, 1} (1 ≤ i ≤ u, 1 ≤ j ≤ n) (4.14)
yi ∈ {0, 1} (1 ≤ i ≤ u) (4.15)

What follows is the pseudocode of the algorithm:

Algorithm 2 Greedy algorithm for the repairing phase
Input: assignment of requests for each tour 1 ≤ k ≤ K

1: for all segments (j, j + 1) of the ring (j = 0, ..., m− 1) do
2: if a request i reaches its delivery station, increase the capacity of the vehicle

serving i by qi

3: try to solve a BPP with V bins each of capacity cv and with requests covering
the current segment

4: while the BPP has no solution do
5: create a list of the requests starting on segment [j, j + 1]
6: sort the requests according to the criteria described above
7: move the first request in the ordering to tour k + 1
8: end while
9: decrease the capacities of the vehicles by the sum of assigned requests

10: end for

Table 4.10 reports the results of Algorithm 2 on the instances of problem V, Q|sd|∑Ci.
Column avg value reports the average value of the solutions to formulation (4.2)-
(4.5). Column avg gap gr reports the average gap between the value of the solutions
to formulation and the solution value calculated by the greedy algorithm described
in section 4.6.1. The last four columns report the results of the solutions obtained by
solving formulation (4.6)-(4.9) and then applying the repairing phase. Note that for
problem V, Q|sd|∑Ci, the first criterion (greatest deadline first) is never used to sort
the requests to remove. In the repair phase tie-breaking criteria are applied in the
two different orders 2,3 and 3,2. Columns avg gap sdf and avg gap ldf report such
results, where sdf and ldf stand for shortest distance first and largest demand first.
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cf + repair

10 seconds 30 seconds 5 minutes

n V Q avg value avg gap gr avg gap sdf avg gap ldf avg gap sdf avg gap ldf avg gap sdf avg gap ldf

20 1 1 114.4 6.3 0.0 0.0 0.0 0.0 0.0 0.0
20 1 2 86.0 8.2 0.0 0.0 0.0 0.0 0.0 0.0
20 1 4 73.4 17.5 0.0 0.0 0.0 0.0 0.0 0.0
20 1 8 69.0 15.5 0.0 0.0 0.0 0.0 0.0 0.0

20 2 1 66.6 5.4 0.0 0.0 0.0 0.0 0.0 0.0
20 2 2 53.8 8.8 1.2 1.2 1.2 1.2 1.2 1.2
20 2 4 50.2 10.2 10.8 8.3 10.8 8.3 10.8 8.3
20 2 8 44.6 10.9 9.6 9.2 9.6 9.2 9.6 9.2

20 3 1 51.0 4.7 0.0 0.0 0.0 0.0 0.0 0.0
20 3 2 42.2 9.3 2.1 2.1 2.1 2.1 2.1 2.1
20 3 4 38.2 9.9 5.6 5.6 5.6 5.6 5.6 5.6
20 3 8 36.4 9.3 5.2 5.2 5.2 5.2 5.2 5.2

40 1 1 404.0 5.6 0.0 0.0 0.0 0.0 0.0 0.0
40 1 2 283.2 11.2 0.0 0.0 0.0 0.0 0.0 0.0
40 1 4 249.6 10.4 0.0 0.0 0.0 0.0 0.0 0.0
40 1 8 209.0 14.7 0.1 0.1 0.0 0.0 0.0 0.0

40 2 1 216.2 5.4 0.0 0.0 0.0 0.0 0.0 0.0
40 2 2 157.0 10.1 6.1 6.1 6.1 6.1 6.1 6.1
40 2 4 134.4 11.2 10.1 10.1 10.1 10.1 10.1 10.1
40 2 8 135.0 11.2 12.7 11.3 12.6 11.3 12.6 11.4

40 3 1 154.8 5.2 0.0 0.0 0.0 0.0 0.0 0.0
40 3 2 120.4 8.5 5.9 5.9 5.9 5.9 5.9 5.9
40 3 4 105.0 11.3 14.1 12.1 14.1 12.1 14.1 12.1
40 3 8 90.6 12.4 14.4 12.4 14.4 12.4 14.4 12.4

80 1 1 1404.2 4.8 0.0 0.0 0.0 0.0 0.0 0.0
80 1 2 982.2 9.1 0.1 0.2 0.0 0.1 0.0 0.0
80 1 4 829.4 12.5 5.5 5.0 2.3 3.0 0.8 0.7
80 1 8 722.6 11.9 3.4 5.3 2.1 2.6 0.9 1.0

80 2 1 733.2 4.8 0.0 0.0 0.0 0.0 0.0 0.0
80 2 2 531.6 9.0 5.8 4.6 4.4 4.4 5.8 5.8
80 2 4 449.2 11.0 16.7 15.4 15.1 15.0 15.6 14.4
80 2 8 394.6 16.8 20.4 20.4 20.0 18.7 17.4 17.8

80 3 1 510.0 4.9 0.0 0.0 0.0 0.0 0.0 0.0
80 3 2 364.6 9.7 5.7 5.7 5.7 5.7 5.7 5.7
80 3 4 312.4 13.2 16.6 14.4 15.1 15.3 16.7 15.4
80 3 8 294.4 12.1 16.6 15.4 16.5 14.5 18.6 16.5

160 1 1 5014.2 1.4 0.0 5.6 0.0 0.0 0.0 0.0
160 1 2 3469.0 7.1 15.3 15.3 1.8 3.9 0.6 0.7
160 1 4 2869.8 5.6 7.8 7.8 3.0 5.8 1.7 1.7
160 1 8 2582.4 6.1 9.6 9.6 7.1 7.1 3.0 2.8

160 2 1 2565.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0
160 2 2 1796.6 6.3 9.1 9.1 6.4 6.2 6.2 5.1
160 2 4 1481.0 6.5 17.4 17.9 16.6 19.0 16.1 15.6
160 2 8 1329.2 5.2 20.9 20.1 18.3 18.7 19.9 18.3

160 3 1 1749.6 1.4 0.0 0.0 0.0 0.0 0.0 0.0
160 3 2 1244.2 5.9 7.6 7.9 4.5 5.0 3.8 3.8
160 3 4 1080.6 6.6 15.5 14.6 12.6 13.0 14.8 15.0
160 3 8 981.2 6.5 18.4 17.2 18.4 17.6 17.4 14.8

Table 4.10: Problem V, Q|sd|∑Ci - formulation (4.6)-(4.9) + Algorithm 2

Table 4.10 shows that on easy instances (20-40 requests) Algorithm 2 performs
better than the greedy algorithm (described in section 4.6.1), and on hard instances
(80-160 requests) the greedy algorithm performs better.
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4.7.3 Adding a noise term in the objective function

To speed up the resolution of formulation (4.6)-(4.9) a symmetry-breaking mechanism
was introduced. To this end, ”noise” is added to the objective function. For every
request i served in tour k the term kϵi is added. The objective function is therefore
modified as follows:

min
∑
i∈R

∑
k∈Ki

cikxik +
∑
i∈R

∑
k∈Ki

kϵixik (4.16)

In order to solve the formulation on the instances of the problem V, Q|sd|∑Ci,
ϵ was set to 0.01. The noise is small enough to make sure that the optimal solution
with the noise would also be optimal without the noise. In fact, if every request i is
scheduled in a different tour, we have

160∑
i=1

(161− i)0.01ixik ≈ 1.6

Table 4.11 reports the results of the solution of formulation (4.6)-(4.9) with the
addition of the noise term solved on instances V, Q|sd|∑Ci.

n V Q CPU(s) solved feas optimal

20 1 1 0.0 5 5 5
20 1 2 0.1 5 5 5
20 1 4 0.1 5 5 5
20 1 8 0.1 5 5 5

20 2 1 0.0 5 5 5
20 2 2 0.1 5 5 5
20 2 4 0.1 5 5 5
20 2 8 0.1 5 5 5

20 3 1 0.0 5 5 5
20 3 2 0.0 5 5 5
20 3 4 0.0 5 5 5
20 3 8 0.0 5 5 5

40 1 1 0.1 5 5 5
40 1 2 1.3 5 5 5
40 1 4 2.8 5 5 5
40 1 8 7.2 5 5 5

40 2 1 0.0 5 5 5
40 2 2 0.2 5 5 5
40 2 4 0.7 5 5 5
40 2 8 9.0 5 5 5

40 3 1 0.0 5 5 5
40 3 2 0.1 5 5 5
40 3 4 0.3 5 5 5
40 3 8 0.2 5 5 5

n V Q CPU(s) solved feas optimal

80 1 1 0.5 5 5 5
80 1 2 788.8 5 5 3
80 1 4 1225.2 5 5 2
80 1 8 1801.4 5 5 0

80 2 1 0.2 5 5 5
80 2 2 725.4 5 5 3
80 2 4 1542.8 5 5 1
80 2 8 1802.3 5 5 0

80 3 1 0.2 5 5 5
80 3 2 49.6 5 5 5
80 3 4 414.7 5 5 4
80 3 8 1573.9 5 5 1

160 1 1 3.4 5 5 5
160 1 2 1800.5 5 5 0
160 1 4 1800.6 5 5 0
160 1 8 1800.4 5 5 0

160 2 1 1.6 5 5 5
160 2 2 1668.5 5 5 1
160 2 4 1801.7 5 5 0
160 2 8 1801.7 5 5 0

160 3 1 1.0 5 5 5
160 3 2 1802.0 5 5 0
160 3 4 1802.8 5 5 0
160 3 8 1803.0 5 5 0

Table 4.11: Problem V, Q|sd|∑Ci
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If we compare the results with table 4.4 we see that there is no big difference in
the number of instances solved to optimality between the two formulations.

4.8 A different surrogate relaxation

As an additional step, the model was further relaxed by defining a single capacity
constraint per tour: the sum of the loads of the vehicles over all intervals [j, j + 1] is
constrained to be less than QV m for each tour.

We start from formulation (4.2)-(4.5), that is reported here to ease the readability:

min
∑
i∈R

V∑
v=1

∑
k∈Ki

cikxikv (4.17)

s.t.: ∑
{i∈R[j,j+1],si≤j}

qixikv +
∑

{i∈R[j,j+1],si>j+1}
qixik−1v ≤ Q (4.18)

∑
v∈{1,...,V }

∑
k∈Ki

xikv = 1 (4.19)

xikv ∈ {0, 1} (4.20)

with 1 ≤ i ≤ n, 0 ≤ j ≤ m− 1, 1 ≤ k ≤ K, 1 ≤ v ≤ V .
By summing capacity constraints on the m stations and V vehicles, we obtain

surrogate capacity constraints:

m−1∑
j=0

V∑
v=1

 ∑
{i∈R[j,j+1],si≤j}

qixikv +
∑

{i∈R[j,j+1],si>j+1}
qixik−1v

 ≤ mV Q (4.21)

with (1 ≤ k ≤ K).
The left-hand side can be rewritten:

m−1∑
j=0

∑
{i∈R[j,j+1],si≤j}

qi

(
V∑

v=1
xikv

)
+

m−1∑
j=0

∑
{i∈R[j,j+1],si>j+1}

qi

(
V∑

v=1
xik−1v

)
(4.22)

that is,

∑
i∈R

∑
{si≤j≤m−1: i∈R[j,j+1]}

qi

(
V∑

v=1
xikv

)
+
∑
i∈R

∑
{0≤j≤si−1: i∈R[j,j+1]}

qi

(
V∑

v=1
xik−1v

)
(4.23)
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Given a request i, the first part counts qi

(∑V
v=1 xikv

)
as many times as the num-

ber of interval covered by the request in the ring after si. The second part counts
qi

(∑V
v=1 xik−1v

)
as many times as the number of intervals covered by the request in

the ring before station si (between 0 and ti). Equivalently, it can thus be rewritten:

∑
i∈R\R0

(ti − si)qi

(
V∑

v=1
xikv

)
+
∑

i∈R0

(m− si)qi

(
V∑

v=1
xikv

)
+
∑

i∈R0

tiqi

(
V∑

v=1
xik−1v

)
(4.24)

where R0 is subset of requests that overlap station 0 (i.e., ti < si). In (4.23), the first
two terms come from the first term of (4.22), the last term comes from the second
term of (4.22).

Finally, thanks to (4.19), new binary variables xik = ∑V
v=1 xikv can be introduced

and the model becomes:

min
∑
i∈R

∑
k∈Ki

cikxik (4.25)

s.t.: ∑
i∈R\R0

(ti − si)qixik +
∑

i∈R0

(m− si)qixik +
∑

i∈R0

tiqixik−1 ≤ mV Q (4.26)
∑

k∈Ki

xik = 1 (4.27)

xik ∈ {0, 1} (4.28)

with 1 ≤ i ≤ n, 1 ≤ k ≤ K.
Results for this relaxation are not reported as it did not improve over formulation

(4.6)-(4.9).

4.9 Conclusions

In this chapter new variants of the PDP-R were studied. We focused on problems in
which vehicles travel in a single direction and the objective is to minimize the sum
of completion times. All these variants were proven NP-hard.

An ILP formulation was proposed and computational tests were performed to
evaluate its performance. Results show that the formulation is extremely effective,
being able to solve to optimality almost all instances, even the largest ones with 160
requests, in a short computing time. On the most difficult variants of the problem, the
formulation is always capable of providing a feasible solution when it exists and largely
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outperforms a greedy algorithm mimicking common practice. Several techniques were
explored to tackle the hardest instances, with no success at that point. A perspective
of this work is to close these instances.
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Chapter 5

The bi-directional PDP-R

Pickup and Delivery problems on rings (PDP-R) are a class of problems defined on
cycle graphs. This chapter is devoted to the variants in which the vehicles are allowed
to travel along both directions on the ring and the objective is to minimize the time
at which the last vehicle comes back to the depot with all requests served. The
simplest variant of this class of problems is polynomial-time solvable and is known in
the literature as the Stacker Crane Problem on circles. In this chapter, we focus on
this variant. Several algorithms have been proposed in the literature. We propose a
new, easier, algorithm. Other variants are left for future works.

5.1 Introduction

Pickup and Delivery Problems on Rings (PDP-R) are defined on circular networks
connecting a set of stations. A set of requests needs to be served, where each request
consists of transporting a given quantity from a pickup station to a delivery station.
A fleet of vehicles is available to perform the service and each vehicle route has to
start and end at station 0, the depot. The goal is to determine the best transportation
plan according to a given objective function.

PDP-R have been introduced in Trotta et al., 2022, where the authors propose a
classification of the problem variants based on three fields α|β|γ where:

• α contains information about the number of vehicles and vehicle capacity;

• β specifies whether vehicles travel in one or both directions, whether release
and due dates are defined and whether request have unitary demands;

• γ corresponds to the objective function.
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In Trotta et al., 2022 applications of PDP-R are discussed: they are mainly linked
to the use of autonomous vehicles for transportation services in concentrated areas
(campus, industrial site, hospital...), for both people and freights. In addition, PDP-
R also arise in the field of industrial automation. The reader is referred to Trotta
et al., 2022 for a detailed overview of problem applications and related literature.

In Trotta et al., 2022, the authors introduce the PDP-R, propose a classifica-
tion scheme and study the variant in which vehicles travel on a single direction and
the objective function is the minimization of the time at which the last vehicle re-
turns to the depot. They also show that the simplest problem in this class, i.e.,
the problem with a single vehicle of unitary capacity and with no release and due
date, is polynomially solvable while all others are NP-hard. In addition, they present
a mathematical formulation for all variants which is proved to be effective through
exhaustive computational tests.

In Trotta et al., 2021, the authors study PDP-R with cumulative cost, i.e. prob-
lems where the objective is the minimization of the sum of completion times of re-
quests.

Contrary to what is done in Trotta et al., 2022 and Trotta et al., 2021, this
chapter focuses on the variants where the vehicles travel in both directions along
the ring and the objective function is the minimization of the closing time, i.e. the
time at which the last vehicle comes back to the depot. Among all these variants,
the problem with one vehicle of capacity one, no release dates, no due dates, is
known in the literature as the Stacker Crane Problem. In the classification scheme
proposed in Trotta et al., 2022, this problem is denoted by 1, 1|bd, u|CLT . It has
been proven to be polynomially solvable. However, the algorithms are relatively
difficult to apprehend. In this chapter we focus on this problem and propose a new
polynomial-time algorithm. The study of other variants is left for future works.

5.2 Literature review

This section reviews related contributions in the literature. The literature being
quite limited, the section considers all variants of the class, i.e., Pickup and Delivery
Problems on circular graphs in a bi-directional setting.

Guan, 1998 studies the multiple capacity non-preemptive vehicle routing problem
on cycles. The author proves that the problem is NP-complete. Gendreau et al., 1999
and Tzoreff et al., 2002 study related freight transportation problems. The following
is a list of similarities and differences between these problems and variants in the
class of problems introduced in this chapter:

• Gendreau et al., 1999: the closest problem in our classification is 1, Q|bd|CLT
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where stations represent customers. However, there are some important differ-
ences:

– in any feasible solution the vehicle leaves the depot with a load equal to
the sum of delivery demands and gets back to the depot with a load equal
to the sum of pickup demands;

– if a customer requires both pickup and delivery, the two operations must
be serviced at the same time;

– the sum of pickup demands, as well as the sum of delivery demands, is
smaller than Q.

The consequence is that any feasible solution has optimal value ≤ 2L (with L
length of the ring).

• Tzoreff et al., 2002: the authors study the same problem studied in Gendreau
et al., 1999 but with possibly two depots on some special graphs, including cycle
graphs. They also make similar hypothesis. These two papers study problems
that can be transformed into a single instance of 1, Q|bd|CLT .

A number of related problems arise in the field of industrial automation. In
Atallah and Kosaraju, 1988 the authors were probably the first to study the problem
of efficiently rearranging parts in the plane with a centrally placed gripper that can
rotate. This problem is known as the Stacker Crane Problem (SCP). In this problem,
a robot arm has the task of rearranging m objects among n stations positioned on
a circular track. Each object is initially located at one of these stations and needs
to be moved to another station. The robot arm consists of a single link that rotates
around a fixed pivot. At the end of this link lies a gripper that is capable of grasping
only one object at a time. Many objects can be located at a single station and can
be moved to the same station. The gripper must terminate at the station where
it started. It is assumed that the gripper moves only along the circumference of
this circular track and that each station is the source or the destination of at least
one object (i.e. n ≤ m). The problem asks then to minimize the total length of
the circular arcs traversed by the gripper. In their paper the authors show that an
optimal transportation can be calculated in O(m + nlogn) time.

In Frederickson, 1993 an O(m+M(n, q)) algorithm has been proposed for the same
problem, where q ≤ min{n, m} is the number of strongly connected components once
additional augmenting edges are added to the input graph to make it semi-Eulerian
and M(a, b) is the time to solve a Minimum Spanning Tree problem on a graph with
a edges and b vertices. Currently, the fastest known algorithm to solve the MST
problem has time complexity O(aα(a, b)), where α is the classical inverse Ackermann
function (Chazelle, 2000).
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In Anily and Pfeffer, 2013 a similar problem has been studied, the Uncapacitated
Swapping Problem and on a circle, where the objective is to rearrange objects of
different types on a circular graph using an uncapacitated vehicle. It can be seen as
a generalization of the SCP. In their paper the authors proposed a polynomial time
algorithm for both cases of a line and a circle.

Both algorithms proposed as solutions to the SCP on the circle are not easy to
understand. This motivated us to propose an alternative algorithm that is easier to
analyze and implement.

5.3 A simple algorithm for the Stacker Crane Prob-
lem on a circle

We start by defining the notation. We consider a bi-directional circle Γ, whose nodes
are indexed by integers 0, 1, . . . , n − 1, and a set R of m requests. Every arc a in
the circle, between two consecutive vertices has a length ca. Every request r ∈ R is
defined by an origin o(r), a destination d(r) and a unit load. We call node 0 the depot.
We also introduce node n as an alias of node 0. We impose that the vehicle starts
from the depot and comes back to the depot after having served all the requests.

Without loss of generality, we assume that, except the depot, each node of Γ is
the origin or the destination of at least 1 request. Indeed, useless stations can be
easily eliminated with a pre-processing step that takes O(m + n) time. This implies
n ≤ 2m + 1.

We introduce the directed graph G = (X, A), where X = {0, . . . , n − 1} and
A = {(o(r), d(r)) : r ∈ R}. We note δ+(x) the outdegree of vertex x in G, δ−(x) its
indegree and δ(x) = δ+(x)− δ−(x). We note ca the length of arcs in A. Note that a
request o(r), d(r) can be executed clockwise or counter-clockwise on the circle: ca is
set to the minimal value between the two lengths.

Our algorithm is based on the same idea as the algorithm presented in Atallah
and Kosaraju, 1988. The problem is modeled as a graph augmentation problem, i.e.
the augmentation of graph G to an Eulerian graph such that the total length of the
added arcs is minimum. To make the graph Eulerian, the new arcs are taken from
the arc set AΓ = {(x, x+1) : 0 ≤ x ≤ n−1}∪{(x, x−1) : 1 ≤ x ≤ n}, i.e., the arcs of
the circle (or Γ-arcs). The vehicle can carry only one object at a time. In addition, in
each optimal solution, as soon as the vehicle loads an object at the source station, it
immediately drives to the destination station. Therefore, adding one of these Γ-arcs
indicates that an empty move will be needed on the circle. Note that the same arc
might be added several times and that the new graph is actually a multigraph, but
for short we call it a graph. Any Eulerian cycle of the resulting Eulerian graph then
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gives a solution. This solution is optimal in case the total length of the new arcs is
minimized.

We call Ḡ the Eulerian graph constructed with our algorithm. To be Eulerian,
Ḡ needs to be semi-Eulerian and strongly-connected. Semi-Eulerian means that the
outdegree and the indegree are equal for all vertices. The transformation from G to
Ḡ can be seen as the computation of an integral non negative vector U , indexed on
the arcs of AΓ, that tells the number of times each arc in AΓ is added. U needs to
be defined in such a way that:

1. Ḡ is semi-Eulerian: δ(x) + U(x,x−1) + U(x,x+1) − U(x−1,x) − U(x+1,x) = 0 for 0 ≤
x ≤ n− 1, where U(0,−1) and U(−1,0) have to be read as U(0,n−1) and U(n−1,0);

2. Ḡ is strongly-connected;

3. ∑a∈AΓ caUa is minimised.

In Atallah and Kosaraju, 1988 vector U is called optimal transportation. We will now
see how to compute a vector U that satisfies properties 1-3.

The basic idea of the algorithm is to transform the SCP on the circle into the SCP
on the line. An algorithm on the line is summarily described in Atallah and Kosaraju,
1988 on pages 5-7, but neither a detailed description nor a proof of correctness are
given. Therefore, we will first see how the SCP can be solved on the line (Section
5.3.1), and then explain how this algorithm can be adapted to the SCP on the circle
(Section 5.3.2).

5.3.1 SCP on the line

The SCP on the line corresponds to the SCP on the circle described above except
that arcs (n− 1, 0) and (0, n− 1) cannot be used. It also amounts to set U(n−1,0) and
U(0,n−1) to 0. Incidentally, it also changes the cost of requests, because arcs (n− 1, 0)
and (0, n− 1) can no longer be used.

To solve the SCP on the line, we proceed in two steps. We first transform G into
a semi-Eulerian graph GSE. Then, if GSE has several connected components, Ḡ is
obtained by connecting these components. In this section, we describe the algorithm
but do not prove that it is correct nor evaluate its complexity. The proof and the
complexity analysis are left to Sections 5.4 and 5.5, respectively.

We denote USE the vector describing the Γ-arcs added to transform G into GSE.
The key point of the algorithm is that values USE

a can be computed for every pair
of arcs {(x, x + 1), (x + 1, x)} in the increasing order of x (0 ≤ x ≤ n− 2). That is,
the line graph can be balanced by iterating on the nodes in the increasing order of
x. This is illustrated with Algorithm 3.
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Algorithm 3 BALANCE LINE
Input: G

1: USE
(0,1) ← max(0,−δ(0))

2: USE
(1,0) ← max(0, δ(0))

3: for x = 1, . . . , n− 2 do
4: USE

(x,x+1) ← max(0,−δ(x)− USE
(x,x−1) + USE

(x−1,x))
5: USE

(x+1,x) ← max(0, δ(x) + USE
(x,x−1) − USE

(x−1,x))
6: end for

Output: GSE

The algorithm first initializes USE
(0,1) and USE

(1,0). Indeed, if δ(0) > 0, the only arc
available to recover a balanced degree at 0 is arc (1, 0) and we add δ(0) copies of this
arc. Conversely, if δ(0) < 0 we add −δ(0) copies of arc (0, 1). Once values USE

(0,1) and
USE

(1,0) have been fixed, the same reasoning applies to vertex 1, and so on up to vertex
n − 2. The algorithm thus progressively computes values USE

(x,x+1) and USE
(x+1,x), for

increasing values of x.
The next step is to merge the strongly connected components (s.c.c.) of graph

GSE. This is done with Algorithm 4 and with an ordered list L that has to be
precomputed: L is the list of all pairs (x, x + 1), with 0 ≤ x ≤ n − 2 sorted in the
increasing order of values c(x,x+1) + c(x+1,x).

Algorithm 4 CONNECT
Input: GSE

1: compute set C of s.c.c.’s in graph GSE; denote C(x) the s.c.c. for x ∈ X
2: U ← USE

3: for all (x, x + 1) taken in the order of L do
4: if C(x) ̸= C(x + 1) then
5: U(x,x+1) ← 1
6: U(x+1,x) ← 1
7: for all u such that C(u) = C(x + 1) do
8: C(u)← C(x)
9: end for

10: end if
11: end for
Output: Ḡ

The algorithm initially calculates the set of strongly connected components, for
example applying the algorithm described in Cormen et al., 2009, p. 617. It then
iterates over the arcs (x, x+1) in L, according to its order. At any iteration, if nodes
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x and x + 1 belong to different connected components, a pair of arcs (x, x + 1) and
(x + 1, x) is added and the corresponding s.c.c.’s are merged. Note that lines 5 and
6 actually correspond to increasing by one values U(x,x+1) and U(x+1,x), but the fact
that x and x + 1 belong to different s.c.c.’s implies U(x,x+1) = U(x+1,x) = 0.

The following is a description of the general algorithm for the SCP on the line.

Algorithm 5 SCP-LINE
Input: request graph G with n nodes and m requests

1: for all x = 0, . . . , n− 1 do
2: compute δ(x)
3: end for
4: compute ordered list L
5: GSE ← BALANCE LINE(G)
6: Ḡ← CONNECT(GSE)
7: compute an Eulerian cycle ḠE of Ḡ

Output: ḠE

5.3.2 SCP on the circle

Dealing with the circle prevents from using the algorithm defined on the line for two
reasons:

1. The initialization of Algorithm 3 is not possible because, in addition to arcs
(0, 1) and (1, 0), arcs (n−1, 0) and (0, n−1) can also help recovering a balanced
degree at node 0. Deciding which arcs should be used is not straightforward.

2. The algorithm used to connect graph GSE is not valid because it might be
better to introduce a complete circuit, clockwise or counterclockwise, instead
of introducing pairs of arcs of opposite direction as it is done in Algorithm 4.

To deal with the first difficulty, we arbitrarily set values to USE
(n−1,0) and USE

(0,n−1).
Then, given these values, Algorithm 3 can be applied. The process is repeated for
every possible pair of values that USE

(n−1,0) and USE
(0,n−1) can assume in any optimal

solution. We call ∆ this set of pairs, whose construction is explained later.
The second issue, about connectivity, does not raise a significant difficulty. Given

a pair (USE
(n−1,0), USE

(0,n−1)) ∈ ∆, the solution obtained when a clockwise (resp., counter-
clockwise) circuit is added, is actually captured in pair (USE

(n−1,0) + 1, USE
(0,n−1)) (resp.,

in pair (USE
(n−1,0), USE

(0,n−1) + 1)). So, it is important to consider this possibility in the
definition of set ∆ but then, the algorithm connecting the graph does not have to
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be modified: the possibility that the graph is connected with a complete circuit will
appear while making the graph semi-Eulerian.

These modifications translate into Algorithms 6 and 7.

Algorithm 6 BALANCE-CIRCLE
Input: G, USE

(n−1,0), USE
(0,n−1)

1: for x = 0, . . . , n− 2 do
2: USE

(x,x+1) ← max(0,−δ(x)− USE
(x,x−1) + USE

(x−1,x))
3: USE

(x+1,x) ← max(0, δ(x) + USE
(x,x−1) − USE

(x−1,x))
4: end for

Output: GSE

Algorithm 7 SCP-CIRCLE
Input: request graph G with n nodes and m requests

1: cbest ← +∞
2: for all x = 0, . . . , n− 1 do
3: compute δ(x)
4: end for
5: compute ordered list L
6: compute set ∆
7: for all pairs of values (USE

(n−1,0), USE
(0,n−1)) in ∆ do

8: GSE ← BALANCE CIRCLE(G, USE
(n−1,0), USE

(0,n−1))
9: Ḡ← CONNECT(GSE)

10: update cbest and Ḡbest if the cost of an Eulerian cycle in Ḡ is better
11: end for
12: compute an Eulerian cycle ḠE of Ḡbest

Output: ḠE

Algorithm 6 only differs from Algorithm 3 in the initialization of values USE
(0,1) and

USE
(1,0) that take into account values (USE

(n−1,0), USE
(0,n−1)). Algorithm 7 first computes

values δ(x), list L and set ∆. Then for every pair (USE
(n−1,0), USE

(0,n−1)) in ∆, it makes
the graph semi-Eulerian (thanks to Algorithm 6), connects it (thanks to Algorithm
4) and obtains an Eulerian graph Ḡ. It saves the graph with the best circuit and
compute an Eulerian cycle in this graph when all pairs in ∆ have been tried.

Set ∆ is defined with the following pairs (USE
(n−1,0), USE

(0,n−1)) :

1. (p, 0) with 1 ≤ p ≤ m + 1;

2. (0, q) with 1 ≤ q ≤ m + 1;
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3. (1, 1);

4. (0, 0).

We will see in the next section why it guarantees finding the optimal solution. Es-
pecially, we will see that larger values for p or q imply having “parallel” circuits
of Γ-arcs, which is clearly not optimal. Also, having values larger than 1 for both
USE

(n−1,0) and USE
(0,n−1) imply having a short circuit (n − 1, 0, n − 1) than can also be

removed without losing the connectivity.

5.4 Correctness of Algorithms 5 and 7.

We now show that Algorithms 5 and 7 are correct, that is, they calculate an optimal
solution for the SCP on the line and on the circle, respectively.

Remark 1. Note that the only arcs that need to be added in Algorithm 3 are the
Γ-arcs of the form (x, x + 1) or (x + 1, x). Indeed, an arc that covers i intervals
can always be broken into i Γ-arcs without increasing the total arc length and without
losing the balance in any node.

Lemma 9. Algorithm 3 makes graph G semi-Eulerian by adding a set of arcs that
necessarily appear in any optimal solution.

Proof. The proof is by induction on the number of nodes.

• Base case: x = 0. If δ(0) > 0, the only arc available to balance node 0 is arc
(1, 0) and we add δ(0) copies of this arc. If instead δ(0) < 0, the only arc that
can be used to balance node 0 is arc (0, 1) we add −δ(0) copies of arc (0, 1). In
both cases, arcs (0, 1) and (1, 0) are the only available (see Remark 1) and it is
not possible to recover a balanced degree at node 0 adding less arcs.

• Induction step: suppose the algorithm is at an iteration such that x = n′

and suppose the smallest number of mandatory arcs have been added up to
x = n′ − 1. The algorithm has to decide how many arcs of the type (n′, n′ + 1)
or (n′ + 1, n′) to add. If δ(n′) > 0, the only arc available to balance node n′

is arc (n′, n′ + 1) (by hypothesis the smallest number of arcs (n′ − 1, n′) and
(n′, n′ − 1) have already been added) and δ(n′) copies of this arc are added.
If instead δ(n′) < 0, the only arc that can be used to balance node n′ is arc
(n′ + 1, n′) (for the same reason) and −δ(n′) copies of arc (n′ + 1, n′) are added.
In both cases, arcs (n′, n′ +1) and (n′ +1, n′) are the only available (for Remark
1) and the smallest number of them is added (|δ(n′)|).
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Lemma 10. Algorithm 4 makes graph GSE Eulerian by connecting the s.c.c. with
arcs of minimum total length.

Proof. It suffices to note that the problem of connecting strongly connected com-
ponents with arcs of minimum total cost is equivalent to computing a Minimum
Spanning Tree (MST) on the undirected graph in which the nodes are the s.c.c.’s and
there is an edge (x, y) between a pair of s.c.c.’s i and j if and only if x ∈ i and y ∈ j
and x is adjacent to y (i.e. |x − y| = 1). The length of the edge (x, y) corresponds
to the sum of distances between stations x and y, that is c(x,x+1) + c(x+1,x) (note that
also the arithmetic average could be taken as a measure). If there are multiple edges
connecting two s.c.c. i and j, then the edge (x, y) of minimum length is chosen. Then,
algorithm 4 is equivalent to applying Kruskal’s algorithm to calculate an MST.

Lemma 9 proves that Algorithm 5 transforms a line graph into a semi-Eulerian
graph GSE by adding the smallest number of mandatory arcs. Lemma 10 proves
that the same algorithm transforms GSE into an Eulerian graph by adding arcs of
minimum total length. Then, it computes an Eulerian cycle on this graph, that is,
an optimal solution. As a consequence, Algorithm 5 is correct. We now prove that
algorithm 7 is also correct. We first need two simple lemmas.

Lemma 11. For all x ∈ {0, . . . , n− 1}, ∑x
i=0 δ(i) ≤ m.

Proof. ∑x
i=0 δ(i) ≤ ∑x

i=0 δ+(i) = ∑x
i=0 |{r ∈ R : o(r) = i}| ≤ |R| = m.

Lemma 12. Let x ∈ {0, . . . , n − 1}. In any optimal solution, U(x,x+1) ≥ 2 implies
U(x+1,x) = 0. Similarly, U(x+1,x) ≥ 2 implies U(x,x+1) = 0

Proof. We prove by contradiction the first part of the Lemma, the proof of the second
part is similar. Assume an optimal solution with U(x,x+1) ≥ 2 and U(x+1,x) ≥ 1. The
solution contains a circuit (x, x+1, x) composed entirely of Γ-arcs that we can remove
to obtain a Eulerian cycle of smallest total length, without losing neither the strong
connectivity nor the semi-Eulerian property. This contradicts the hypothesis that
vector U is optimal.

Lemma 13. Any optimal solution to the SCP on the circle satisfies one (and only
one) among configurations 1-4.

Proof. Consider an optimal vector U , i.e. a vector associated with an optimal solution
of the SCP on the circle. We first observe that it is impossible that U(0,n−1) ≥ 1 and
U(n−1,0) ≥ 2 (or vice-versa) thanks to Lemma 12. This proves that either one among
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U(n−1,0) and U(0,n−1) is equal to 0 (i.e. configurations 1-3) or that they are both equal
to 1 (configuration 4). It thus remain to prove:

1. U(0,n−1) = 0 =⇒ U(n−1,0) ≤ m + 1

2. U(n−1,0) = 0 =⇒ U(0,n−1) ≤ m + 1

We only prove 1, the proof of 2 is identical. The proof is by contradiction. Suppose
U(0,n−1) = 0 and U(n−1,0) ≥ m+2. We prove that the solution cannot be optimal. We
first prove by induction that, for all x ∈ {0, . . . , n− 1}, U(x,x+1) ≥ m + 2−∑x

i=0 δ(i).

• Base case (x = 0): We know that in any optimal solution, U(1,0) + U(n−1,0) +
δ−(0) = δ+(0) + U(0,1) + U(0,n−1). By hypothesis, U(0,n−1) = 0 and we know
δ+(0)− δ−(0) = δ(0). So, U(n−1,0) = δ(0) + U(0,1)−U(1,0). From the hypothesis,
we have U(n−1,0) ≥ m+2, which implies U(0,1)−U(1,0) ≥ m+2− δ(0) and, then,
U(0,1) ≥ m + 2− δ(0).

• Induction step: consider x ∈ {1, . . . , n−1} and suppose that U(x−1,x) ≥ m+2−∑x−1
i=0 δ(i). Note that using lemmas 11 and 12, it also shows that U(x−1,x) ≥ 2 and

that U(x,x−1) = 0. We know that U(x+1,x) + U(x−1,x) = δ(x) + U(x,x+1) + U(x,x−1).
So, U(x,x+1) ≥ m+2−∑x−1

i=0 δ(i)+U(x+1,x)−δ(x)−U(x,x−1). It follows U(x,x+1) ≥
m + 2−∑x

i=0 δ(i).

The induction proves that U(x,x+1) ≥ 2 for x = 0, . . . , n−1. It implies the existence of
two “parallel” clockwise circuits made only with Γ-arcs, one of which we could remove
without losing neither the strong connectivity nor the semi-Eulerian property, thus
obtaining an Eulerian cycle of smaller total length. This contradicts the fact that the
solution is optimal.

A consequence of lemma 13 is that an optimal solution to the SCP on the circle
can be found by solving |∆| instances of the SCP on the line, where each instance is
obtained for different values of vector U in set ∆. This proves Algorithm 7 is correct.

5.5 Complexity analysis

We now analyze the time complexity of Algorithms 5 and 7.

Algorithm 5

The complexity is as follows:
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• Values δ(x) in lines 1-3 can be computed in O(n + m) by initializing δ(x) to
0 for all x and, then, scanning all requests, with δ(o(r)) increased and δ(d(r))
decreased when request r is scanned;

• Ordered list L, of size n, is computed in O(n log n);

• The call to Algorithm 3 is O(n);

• The call to Algorithm 4 is O(m + nα(n)), where α is the inverse Ackermann
function:

– In line 1 of Algorithm 4, the set of s.c.c.’s can be computed in linear time
on the size of graph GSE in which parallel Γ-arcs are merged, that is, in
O(m + n), see Cormen et al., 2009, p. 617;

– If disjoint-sets (or union-find) data structures are used, lines 3-11 of Al-
gorithm 4 can be executed in O(nα(n)). In fact, a sequence of n merge
operations has time complexity of O(nα(n)), see Cormen et al., 2009, pp.
561-572.

• Finding an Eulerian cycle (line 7) can be done in O(m + t), where t is the
number of Γ-arcs in graph Ḡ.

The overall complexity of Algorithm 5 is then:

O(n + m) + O(n log n) + O(n) + O(m + nα(n)) + O(m + t)

that is,
O(n log n + nα(n) + m + t)

Algorithm 7

The complexity is as follows:

• Values δ(x) in lines 2-4 can be computed in O(n + m);

• Ordered list L, of size n, is computed in O(n log n);

• Set ∆ is computed in O(m) and has a size O(m); so, lines 8 to 10 are repeated
O(m) times:

– The call to Algorithm 6 is O(n);
– The call to Algorithm 4 is still O(m + nα(n));
– Computing the cost of an Eulerian cycle and updating the graph is O(n)

with the graph coded with vector U ;
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• Computing an Eulerian cycle is O(m + t),using notation t introduced before.

The overall complexity of Algorithm 7 is therefore:

O(n + m) + O(n log n) + O(m) + O(m(n + m + nα(n) + n)) + O(m + t)

that is,
O(n log n + mnα(n) + m2 + t)

Finally, the number of arcs added between two consecutive nodes of the cycle is O(m),
so O(t) = O(mn) and the overall complexity of Algorithm 7 is:

O(n log n + mnα(n) + m2)

It is less efficient than the algorithms proposed in Atallah and Kosaraju, 1988 and
Frederickson, 1993. However, it has the advantage of being easy to understand and
implement.

5.6 Conclusion

In this chapter a new class of Pickup and Delivery Problems on rings was introduced
and studied. In this class of problems, vehicles have the ability to move on the ring
following both directions of rotation. The simplest variant in this class of problems,
is known in the literature as the Stacker Crane Problem (SCP). Two algorithms for
SCP have already been proposed in the literature, but neither of them is easy to
understand and implement. A simple algorithm for the SCP was proposed. The
other problems in this class can be seen as generalizations of SCP.

Our work opens the way for multiple research possibilities. A first perspective
could be to to improve the complexity of Algorithm 7. Another perspective is to
study the complexity of the variants not studied in this chapter.
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Chapter 6

The Electric Vehicle Pickup and
Delivery Problem with Energy
Management

In this chapter a problem in which a set of capacitated Battery Electric Vehicles
(BEVs) carry out pickup and delivery operations with time windows constraints is
studied. The energy needed to recharge the batteries of these vehicles is produced in
a Battery Swapping Station (BSS) that is also the depot of the vehicles. Additional
batteries are available at the depot, where vehicles can go and swap their batteries.
Pickup and delivery operations must be planned over a time horizon divided into
periods. In each period it must be decided how much energy to give to the batteries
that are at the production unit. Also, if the energy produced is in excess of that
required by the batteries, this excess can be sold to the general network at a profit. If
the energy required by the batteries is greater than the energy produced, an unlimited
amount of energy can be bought from the general network. The objective of the
problem is to plan vehicle routes to meet all pickup and delivery demands while
maximizing the net profit that is made from the energy sold and bought over the
time horizon. An MILP formulation of the problem is proposed and a matheuristic
approach is developed. The matheuristic approach consists of three steps: in the
first one a subset of feasible trips is generated by using a Randomized Construction
Heuristic, in the second step the formulation is solved over this set of trips, and in
the third one a repair procedure is performed on the obtained solution, in order to
avoid more than one trip visiting the same node. Computational tests on modified Li
and Lim’s benchmark instances for the PDPTW (H. Li & Lim, 2003) are performed
and the impact of the parameters on the hardness of these instances is studied.
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6.1 Introduction

The use of electric vehicles has heavily increased in the last years. In June 2022, the
European Parliament approved a ban on the sale of all vehicles with Internal Com-
bustion Engines (ICEs) from 2035 (ENVI, 2022). In reality, the measure approved by
the Parliament aims to sell only CO2 emissions-free vehicles from 2035, but the lack
of widely available alternatives means that the market for new cars will be dominated
by Battery Electric Vehicles (BEVs) (McKinsey, 2022).

The European Automobile Manufacturers Association (ACEA), described the
plan as ambitious and called for drastic action on building the charging infrastruc-
ture. According to ACEA, the key to reaching CO2 targets is not in the industry’s
hands alone – others need to play their part too. In particular, they emphasise the
importance of the availability of the key raw materials for e-mobility and a truly
EU-wide network of charging and refuelling infrastructure (ACEA, 2022).

The expansion of the electric vehicle charging network presents some critical is-
sues. According to the McKinsey Center for Future Mobility, Europe will have to
build an estimated 24 new battery giga-factories to supply EV battery demand. With
more than 70 million EVs on the road by 2030, the industry will need to install a
large number of public chargers and provide maintenance operations for them. Re-
newable electricity production needs to increase by 5% to meet EV charging demand
(McKinsey, 2022).

Charging stations for EVS have two main disadvantages: long charging times and
high power consumption at peak times. Rapid charging stations solve the problem
of long charging times but have several battery degradation effects as consequences
(Tomaszewska et al., 2019).

An innovative way is to refuel the energy source of EVs by mechanically swap-
ping the batteries. These swapping stations are known as Battery Swapping Stations
(BSS) (see figure 6.1) where the discharged batteries are swapped with fully charged
batteries. With the use of robotic machinery, the whole battery swapping process can
be carried out within a few minutes, directly comparable to the existing refuelling
mechanism for conventional vehicles. Advantages of BSS include recharging the vehi-
cle in a shorter time and charging during off-peak periods (Ahmad et al., 2020; Ding
et al., 2022). BSS has also significant potential to work as a grid scale energy storage
(Hosseini et al., 2018; Revankar & Kalkhambkar, 2021).
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Figure 6.1: Blue Park Smart Technology’s battery swap station in China

There are many obstacles to the practical implementation of battery swapping.
Firstly, the initial cost to set up this battery swapping system is very high, involv-
ing expensive robotic machinery to swap the battery and a large number of costly
batteries for necessary operation. Secondly, due to the need to store both discharged
and fully charged batteries, the necessary space to build a battery swapping station
is much larger than that for a charging station. Thirdly, the EV batteries need to
be standardized in physical dimensions and electrical parameters before the possible
implementation of automatic battery swapping (Chau, 2014).

A solution to some of the disadvantages of BSS are solar-powered BSSs. In this
type of BSS, energy is produced on-site through the use of PhotoVoltaic (PV) panels.
The use of PV panels allows the high initial investment cost of installing BSSs to be
amortized over time. At the same time, this type of BSS offers the advantage of using
solar energy, which is a renewable energy source.

Gogoro is a Taiwanese company that developed a battery-swapping refueling plat-
form for urban electric two-wheel scooters, mopeds and motorcycles. In 2017 they
launched their first solar-powered station in the Bali district of New Taipei City,
Taiwan (Gogoro, 2017). This station is equipped with eight 2.3kw solar panels, gen-
erating up to 6.21 kwh per day, which is enough to charge up to ten batteries per
day (see figure 6.2).
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Figure 6.2: Gogoro’s solar-powered battery-swapping stations in Taiwan (Gogoro,
2017)

The current chapter focuses on the optimization of on-demand transportation
services in which battery electric vehicles are used. Specifically, in this chapter the
aim is to study pickup and delivery problems where the energy used to recharge
the batteries of electric vehicles is produced by a grid-connected photovoltaic power
station. The power plant is energy-autonomous (most of the time), depending on
the availability of the sun light. The vehicles swap their batteries at a BSS that
is also the depot. Pickup and delivery operations are associated with release and
due dates, which are respectively earliest time for pickup and the latest time for
delivery. The problem studied is a multi-period problem where the time horizon is
one day and each period corresponds to one hour. Each hour of the day is associated
with different costs for buying and selling energy. The power plant produces energy
through the use of photovoltaic panels. This energy can be either used to recharge
the batteries of electric vehicles or sold to the electricity grid. In addition, should
the electricity produced not be sufficient to recharge the batteries, additional energy
can be purchased from the electricity grid. The objective of the problem is to serve
all transport requests by maximizing the profit generated by the difference between
the sale and purchase of electricity over all periods of the time horizon.
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The rest of the chapter is organized as follows: in Section 6.2 the relevant liter-
ature is surveyed. In Section 6.3 a formal description of the problem and an MILP
formulation are presented. In Section 6.4 a 3-phase solution method is presented.
Section 6.5 contains the results of the computational tests. Finally, in Section 6.6,
the conclusions and some perspectives of this work are presented.

6.2 Literature review

The literature on routing problems with electric vehicles (EVs) is first revised. Start-
ing from 2011, several variants of the VRP have been studied, among which the most
important is the Electric VRP (E-VRP) (see, for example, Lin et al., 2016). In this
class of problems, the limitations of EVs are added to the classical constraints of
the VRP, like the limited battery capacity or the need for recharging stops. In the
last ten years a great number of papers have studied routing problems with electric
vehicles (Barco et al., 2017; T. Chen et al., 2018; Koç et al., 2019; H. Yang et al.,
2015). The reader is referred to Erdelić and Carić, 2019; Qin et al., 2021 for recent
surveys on the E-VRP and Pelletier et al., 2016 for a survey on freight distribution
problems with EVs.

EVs are generally divided into three categories: battery EVs (BEVs), hybrid elec-
tric vehicles (HEVs), and fuel cell electric vehicles (FCEVs) (Pelletier et al., 2016).
With respect to Internal Combustion Engine Vehicles (ICEVs), some advantages are
associated with BEVs: the ability to recuperate kinetic energy during the break
(known as regenerative breaking), local-free emissions, high tank-to-wheel efficiency
(approx. three times higher than ICEVs), very high acceleration. However, they
have disadvantages as well: for example, shorter distance ranges and high battery
recharging times (Helmers & Marx, 2012; Herrmann & Rothfuss, 2015). Anyway, it
is realistic to consider battery-swapping scenarios in which vehicles can swap their
batteries in a few minutes, even if battery-swapping stations have some disadvantages
like high operational costs (Ulrich, 2021). A certain number of papers address routing
problems in a battery-swapping scenario (Adler & Mirchandani, 2014; J. Chen et al.,
2016; Jie et al., 2019; J. Li et al., 2020; Mao et al., 2020; Raeesi & Zografos, 2020;
Sayarshad et al., 2020; Verma, 2018). Routing BEVs is more complex than routing
ICEVs. The reason is that the energy consumption model of electric vehicles is much
more complicated. For example, as demonstrated in Lin et al., 2016, the vehicle load
has an effect on energy consumption. Many authors propose an energy consumption
model suited for electric vehicles (Baek et al., 2019; Fiori & Marzano, 2018; Xiao
et al., 2019).

As we are interested in Pickup and Delivery problems (PDP) with EVs, the most
relevant literature in this field is briefly cited. Gonçalves et al., 2011 study pickup
and delivery problems with a mixed fleet of BEVs and ICEVs. Grandinetti et al.,
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2016 adds time windows to the PDP and study the electric Pickup and Delivery
Problem with Time Windows (E-PDPTW). In Goeke, 2019 the authors propose a
metaheuristic approach for the same problem. A similar problem is also studied in
Ghobadi et al., 2021, in which the authors introduce multiple depots and fuzzy time
windows. Pickup and Delivery problems with electric vehicles are also studied in
Barco et al., 2017; Ghobadi et al., 2021; Jung and Jayakrishnan, 2012; Lu et al.,
2018; Outalha, Abdelhak et al., 2021; Soysal et al., 2020; Wang and Cheu, 2013;
Q.-q. Yang et al., 2018.

In the context of people transportation, PDP is usually referred to as the Dial-
a-Ride problem (DARP). Since the DARP deals with people transportation, in this
problem user-maximum ride times are incorporated into classic objective functions.
The Green VRP has a corresponding version in the context of people transportation,
namely the Green Dial-a-Ride problem (G-DARP) (Abedi et al., 2019; Atahran et
al., 2014; Maggi & Faizrahnemoon, 2014; Masmoudi et al., 2019; Yu et al., 2019) in
which the problem is referred to as green ride-sharing. In Bongiovanni et al., 2019
a variant of the DARP with electric autonomous vehicles is studied (e-ADARP).
Dial-a-Ride problems with electric autonomous vehicles are also studied in Pimenta
et al., 2017b, but the authors do not take into consideration battery recharging times.
Other contributions can be found in Chabrol et al., 2008; Ma, 2021; Masmoudi et al.,
2020; Perera et al., 2018. In Masmoudi et al., 2018 the authors address the DARP
with electric vehicles and a battery swapping policy.

The second type of literature relevant for the current chapter concerns integrated
problems, i.e. interdependent problems that have to be jointly optimized. Indeed, in
the problem studied, one has to jointly optimize energy production and transportation
operations.

A relevant integrated problem is the inventory routing problem. It is a distribu-
tion problem in which each customer maintains a local inventory of a product and
consumes a certain amount of that product in each day. Every day a fleet of trucks
is dispatched over a set of routes to resupply a subset of the customers. As first
defined in Dror et al., 1985, the objective is to minimize the delivery costs, while
ensuring that no customer runs out of the product at any time. The inventory rout-
ing problem integrates two classic problems in logistics, i.e. inventory management
and transportation. For a survey on inventory routing problems, see Coelho et al.,
2014. One generalization of the IRP is the IRP with Pickups and Deliveries (IRP-
PD) (Archetti et al., 2018; Archetti et al., 2020; van Anholt et al., 2016). In this
problem, a single commodity has to be picked up from several origins and distributed
to several destinations. The commodity is made available at the supplier depot and
at the pickup customers, and it is consumed by the delivery customers. The objective
is to determine a collection and distribution plan minimizing the sum of routing and
inventory costs, satisfying inventory and capacity constraints. In Iassinovskaia et al.,
2017 a similar problem is studied, that the authors call the Pickup and Delivery
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Inventory Routing Problem with Time Windows (PDIRPTW), in which a fleet of
vehicles distributes two types of commodities from a supplier to a set of customers.
The customers also specify time windows in which they are available.

Another relevant integrated problem is the Production Routing Problem. It con-
sists in simultaneously optimizing production, distribution, inventory management.
It can therefore be considered as a generalization of the IRP. The PRP has received
a lot of attention in the research community (Absi et al., 2015; Absi et al., 2018;
Adulyasak et al., 2014). In Golsefidi and Jokar, 2020, the authors study a variant
of the PRP with simultaneous pickups and deliveries, where a supplier distributes
some products to a set of customers while at the same time collecting the defective
products. For a survey on the PRP, see Adulyasak et al., 2015.

In the context of the synchronization of energy production and vehicle routing, a
relevant paper is Bendali, Fatiha et al., 2021. In their paper, the authors address the
problem of the simultaneous management of a fleet of small electric vehicles provided
with hydrogen power cells, which perform pickup and delivery operations inside a
restricted area, and a micro-plant in charge of producing the hydrogen fuel which is
going to be periodically loaded into the vehicles. The aim is to match the pickup and
delivery activity of the vehicles with the hydrogen production/stock strategy of the
micro-plant. The authors consider only one vehicle, which is required to perform tasks
according to a pre-fixed order. This vehicle starts its route with some hydrogen fuel
load, and its tank has a limited capacity. Therefore, it must periodically go back to
the micro-plant in order to refuel. The micro-plant has a limited production/storage
capacity, which depends on solar illumination. The goal is to simultaneously schedule
both the refueling transactions of the vehicle and the production/storage activity of
the micro-plant, while minimizing production economical cost and the duration of
the vehicle tours.

There already exists a few papers on integrated problems that combine routing
decisions for electric vehicles with other types of decisions: inventory planning and
vehicle routing (Ni et al., 2021), location of charging stations and vehicle routing
(Worley et al., 2012), battery swap location and vehicle routing (Hof et al., 2017;
J. Yang & Sun, 2015).

In Widrick et al., 2018 an EV swap station allows EV owners to quickly ex-
change their depleted battery for a fully charged battery. The authors introduce the
EV-Swap Station Management Problem (EV-SSMP), which models battery charging
and discharging operations at an EV swap station facing nonstationary, stochastic
demand for battery swaps, nonstationary prices for charging depleted batteries, and
nonstationary prices for discharging fully charged batteries giving energy to the grid.
The objective of the EV-SSMP is to determine the optimal policy for charging and
discharging batteries that maximizes expected total profit over a fixed time horizon.
In Mahoor et al., 2019 the authors propose a mathematical model for uncertainty-
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constrained BSS optimal operation that not only covers the random customer de-
mands of fully charged batteries, but also leverages the available batteries to reduce
its operation cost through demand shifting and energy sellback. In Justin et al., 2020
the authors propose power optimized and power-investment optimized strategies for
electric aircraft battery swaps and recharges. Several aspects are considered: elec-
tric energy expenditures, capital expenditures, and flight schedule integrity. In Kang
et al., 2016 a novel centralized charging strategy of EVs under the battery swapping
scenario is proposed by considering optimal charging priority and charging location
(station or bus node in a power system) based on spot electric price. In Liu et al.,
2015, a charging strategy considering the service availability and self-consumption of
the PV energy is proposed to improve the operation performance of the PV-based
BSS. The charging strategy consists in a battery-swapping service model and power
distribution model. In Nurre et al., 2014 the authors consider a deterministic inte-
ger programming model for determining the optimal operations of multiple plug-in
hybrid electric vehicle (PHEV) battery exchange stations over time. The decisions
include the number of batteries to charge, discharge, and exchange at each point
in time over a set time horizon. Discharging of batteries back to the power grid is
allowed through vehicle-to-grid technology. In Cheng and Tao, 2018 a method to
optimize micro energy network integrated with bus swapping station and distributed
PV resources is proposed. The charging model is aimed at minimizing cost of electric-
ity purchasing. Based on the electrification of a bus line in a city, the charging load
characteristics and the former charging strategy are studied. The authors propose
an optimization model for EV battery swapping station considering PV consumption
bundling requirement. One day’s bus line operation is simulated.

All of the cited articles either model the demand for battery swaps as random
variables or use calculated demands based on already planned vehicle routes. In this
chapter it is addressed the problem of optimizing battery charging operations and
buying/selling the energy produced simultaneously with optimizing electric vehicle
routes. The main contributions of this chapter can be summarized as follows:

• The problem of optimizing pickup and delivery operations and managing a PV-
BSS where electric vehicles exchange their batteries is introduced. Management
of the PV-BSS includes recharging the batteries at various periods of the time
horizon and the eventual purchase or sale of the energy produced by the power
plant.

• An MILP formulation for the problem is proposed, based on the concept of a
trip: a trip is the route of a vehicle associated with a start period and an end
period. Each trip starts from the depot, serves some transportation requests
and returns to the depot. In the mathematical formulation, the routing problem
is modeled as a trip choice problem.

• The problem is solved with a matheuristic consisting of 3 steps. In the first

Chapter 6 107



Pickup and delivery problems with autonomous and electric vehicles

step a constructive heuristic is used to generate a subset of feasible trips, in
the second step the MILP is solved with CPLEX on the set of trips generated
in the first step, and in the third step a solution repair procedure is applied in
case some requests are contained in more than one trip.

• The performance of the formulation is evaluated through some preliminary com-
putational tests conducted on the modified Li and Lim’s benchmark instances
for PDPTW. In these tests it is studied the impact that the number of trips
have on the computation time of a feasible solution for the formulation.

6.3 Problem description and MILP modelling

The problem can be formally described as follows. We have a complete directed graph
G = (N ,A), where N is the set of all nodes and A = {(i, j) : i, j ∈ N , i ̸= j} is the
set of arcs connecting each pair of nodes. The set of nodes N = {0, 2n + 1} ∪ P ∪D
consists of two copies of the depot/production plant (0, 2n + 1) , the set of pickup
nodes P = {1, . . . , n} and the set of delivery nodes D = {n + 1, . . . , 2n}. Every
route begins and ends at the depot. There are n transportation requests that have
to be served over a planning horizon H of H periods {1, . . . , H}, each of duration τ .
Periods can be interpreted as hours and the time horizon can be interpreted as a day.

An arc (i, j) in set A has an associated non-negative energy cost eij and a non-
negative travel time τij. We assume that a fleet V of |V| = V homogeneous BEVs
is available at the depot, each of capacity Q. Vehicles can swap their batteries at
the depot. We assume that vehicles move at constant speed on the network. K
batteries are available, each of capacity Qe. Among them, V batteries are located on
the vehicles and K − V are located at the depot. In each period h, ph is the energy
produced, and it is available at the beginning of the period. If a battery is recharged
during a period, it is available only at the end of the period. Moreover, if a vehicle
visits the depot to swap its battery, the discharged battery can be recharged only
from the following period on. Anyway, vehicles are allowed to visit the depot and wait
for the end of the period. The recharging rate is denoted by λ, and corresponds to the
maximum quantity of energy that a battery can get in a period. The average state of
charge of batteries at the beginning of the time horizon must not be smaller than the
average state of charge at the beginning. We make this hypothesis because the idea
is to define a sustainable/domestic production and consumption of the energy that
vehicles use. In fact, the production unit can be imagined as a solar power plant.

Every transportation request specifies an origin si ∈ P , a destination ti ∈ D, a
time window [ri, di] and a demand qi, where qn+i = −qi. Each node in P ∪ D must
be visited exactly once, while the depot may be visited multiple times. The time
window to visit the depot is set to [0, L], where L is length of the planning horizon

Chapter 6 108



Pickup and delivery problems with autonomous and electric vehicles

(L = Hτ). Moreover, we assume that the number of stops that a vehicle can make to
swap its battery is unlimited. Vehicles are allowed to wait at any node in the graph.

At the beginning of each period h, the energy ph must be split among the batteries
located at the depot and the general network. If the energy is assigned to the general
network there is a profit. If in a period h the energy produced ph is not sufficient
to recharge the batteries, additional energy can be bought from the general network.
Obviously, the energy cannot be bought and sold to the general network in the same
period h. The quantity of energy that can be bought from the general network is
unlimited. The energy cost is different for each period h: αh denotes the unitary
selling cost and βh denotes the unitary purchasing cost (βh > αh for each h). The
objective is to satisfy all transportation requests at maximal revenue. The revenue
is defined as the difference between the quantity of energy sold to and the quantity
of energy bought from the general network. The side-effect is that the energy used
by the vehicles must be minimized.

We now introduce the notation used in the problem formulation. We call trip a
triple t = (r, h1, h2) where r is a path, h1 is the starting period and h2 is the ending
period of the path. All trips are made up by paths where the depot is the starting
and ending node. In what follows, we make the simplifying hypothesis that trips can
only start (end) at the beginning (at the end) of a period. We denote the set of trips
with T . Let ϵit denote a parameter that is equal to 1 if request i belongs to trip t
and δth is equal to 1 if trip t is active during period h. cth denote the cost of trip t
in period h while γk denote the state of charge of battery k at the beginning of the
time horizon. For each period h, the continuous variables sh represent the quantity
of energy sold, bh the quantity of energy bought and lkh the state of charge of battery
k at the end of period h. Let akh denote the quantity of energy given to battery k
in period h. ukh is a binary decision variable equal to 1 if battery k is at the depot
for the entire period h and xkt is a binary decision variable equal to 1 if battery k is
used in trip t. Note that if ∑k∈K xkt = 0 then trip t is not selected. The notation is
summarized in tables 6.1 and 6.2.
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Name Description
G = (N ,A) graph
N set of nodes
A set of arcs
P set of pickup nodes
D set of delivery nodes
0 depot node
2n + 1 copy of depot node
R set of requests
si starting station of request i
ti ending station of request i
qi demand of request i
[ri, di] time window of request i
H set of periods
τ period duration
T planning horizon duration
eij cost of arc (i, j)
τij travel time of arc (i, j)
V set of available vehicles
Q vehicle capacity
K set of available batteries
Qe battery capacity
ph energy produced in period h
λ battery recharging rate
γk state of charge of battery k at the beginning
αh unitary energy selling cost
βh unitary energy buying cost
T set of trips
ϵit 1 if request i belongs to trip t
δth 1 if trip t is active during period h
cth cost of trip t in period h

Table 6.1: Summary of problem parameters

Name Description
sh energy sold in period h
bh energy bought in period h
lkh state of charge of battery k
akh energy given to battery k in period h
ukh 1 if battery k is at the depot in period h
xkt 1 if battery k is used in trip t

Table 6.2: Summary of decision variables

The formulation is as follows:

max
∑
h∈H

αhsh −
∑
h∈H

βhbh (6.1)

s.t.: ∑
k∈K

akh + sh = ph + bh h ∈ H (6.2)
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akh ≤ λukh k ∈ K, h ∈ H (6.3)
lk0 = γk k ∈ K (6.4)∑
k∈K

lkH ≥
∑
k∈K

lk0 (6.5)

lkh = lkh−1 + akh −
∑
t∈T

cthδthxkt k ∈ K, h ∈ H (6.6)

lkh ≤ Qe k ∈ K, h ∈ H (6.7)∑
k∈K

(1− ukh) ≤ V h ∈ H (6.8)

ukh +
∑
t∈T

δthxkt ≤ 1 k ∈ K, h ∈ H (6.9)∑
t∈T

ϵit

∑
k∈K

xkt ≥ 1 i ∈ R (6.10)

bh, sh ≥ 0 h ∈ H (6.11)
akh ≥ 0 k ∈ K, h ∈ H (6.12)
lkh ≥ 0 k ∈ K, h ∈ H ∪ {0} (6.13)
ukh ∈ {0, 1} k ∈ K, h ∈ H (6.14)
xkt ∈ {0, 1} k ∈ K, t ∈ T (6.15)

Constraints (6.2) ensure that in each period, the energy produced is completely
split among the batteries and the general network. Constraints (6.3) impose a limit
on the amount of energy given to a battery in a period. Constraints (6.4) and (6.5)
ensure that the average state of charge at the end of the time horizon is not smaller
than the average state of charge at the beginning. Constraints (6.6) model the change
in battery charge levels over time. Constraints (6.7) specify the upper bound for the
battery charge levels. Constraints (6.8) set an upper bound on the number of active
vehicles. Constraints (6.9) ensure that batteries are either at the depot or used by
active vehicles. Constraints (6.10) ensure that each request belongs to at least one
trip. Constraints (6.11)-(6.15) define the decision variables. Note that time and
capacity constraints are taken into account when the trips are generated.

6.4 Solution method

Our problem can be seen as an integrated problem where both routing and energy
management decisions have to be made. As formulation (1)-(15) suffers from the fact
that the number of feasible trips is exponential, a heuristic algorithm is proposed
which is based on a heuristic generation of a subset of feasible trips. Specifically, the
solution method is divided into three phases:

1. generation of a subset T of feasible trips
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2. solution of formulation (6.1)-(6.15) based on T

3. repair procedure.

As for phase 1, a randomized construction heuristic is used. Let h1 and h2 denote the
starting and ending period of a trip t, respectively. For every possible pair (h1, h2) a
pool of promising trips is generated using a Greedy Randomized Sequential Cheapest
Insertion. Algorithms 8 and 9 detail the heuristic insertion procedure.

Algorithm 8 Greedy Randomized Sequential Cheapest Insertion
Input: set of requests R

1: T ← ∅
2: for all start periods h1 in H do
3: for all end periods h2 in H do
4: while number of iterations not reached do
5: BuildTrips(T , h1, h2)
6: end while
7: end for
8: end for

Output: T

Algorithm 9 BuildTrips
Input: T , h1, h2

1: while all feasible requests have been considered do
2: choose at random a feasible request and create a new trip
3: repeat
4: calculate the insertion cost of all feasible requests not inserted yet
5: choose at random among the 5 best request
6: insert the request in the current trip with probability min{1, last detour

potential detour}
7: until an insertion in the current trip is rejected
8: insert current trip in set T only if not already present
9: end while

Output: T

Algorithm BuildTrips takes as input the start and end periods (h1 and h2). Then,
only requests that can be inserted in a trip are selected (those that have release dates
smaller than h2 and due dates greater than h1). All these requests are taken into
account in the while loop (line 1 of the algorithm). A request is chosen at random and
a new trip is created (line 2). In each iteration of lines 3-7, the cheapest insertion
cost of all requests not yet in a trip is calculated and the best request is chosen
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from the top 5. The insertion of this request into the current trip is made with a
probability based on the insertion cost (called detour). In line 6 of Algorithm 9, last
detour denotes the insertion cost of the request inserted in the last iteration, and
potential detour denotes the insertion cost of the request chosen in line 5. Then, a
random number is drawn from a uniform distribution, and the request is inserted
in the current trip only if this number is smaller than the ratio between last detour
and potential detour. In line 8, as no more requests can be added in the trip, the
trip is added to set T only if not already present. Two trips t = (r, h1, h2) and
t′ = (r′, h′

1, h′
2) are equivalent if and only if r = r′, h1 = h′

1 and h2 = h′
2.

Once T is built formulation (6.1)-(6.15) is solved over set T (phase 2). Due to
constraints (6.10) multiple trips that contain the same request may be selected and
therefore a pair of nodes may be visited more than once. In such a case, solutions
are repaired as follows (phase 3). If Ti is the subset of selected trips that all con-
tain request i, i is kept in the trip that corresponds to the minimum insertion cost.
Algorithm 10 details the repair procedure.

Algorithm 10 Repair Procedure
Input: T

1: for all requests i visited more than once do
2: Ti ← subset of selected trips that contain i
3: for all trips t in Ti do
4: remove i from t
5: s(t) = c(t)− c′(t)
6: end for
7: add again i in the trip t such that s(t) is minimum
8: end for

Output: T

In line 5 c(t) and c′(t) denote, respectively, the cost of trip t with and without
request i.

6.5 Computational tests

The formulation was tested on benchmark instances introduced in H. Li and Lim, 2003
for the Pickup and Delivery Problem with Time Windows (PDPTW). The instances
were adapted by generating data on energy production and consumption, as well as on
selling and buying price for energy. Data on the amount of energy produced in each
hour of the day were generated consistently with the average irradiance of a typical
July day in Naples, Italy. Figure 6.3 shows the average solar irradiation (in W

m2 ) for
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each hour of the day for the month of July for a fixed surface having a 35° slope
and 0° azimuth. The data are long-term averages, calculated from hourly global and
diffuse irradiance values over the period 2005-2016. The graph was obtained through
the use of PVGIS software using data from the PVGIS-SARAH database (PVGIS,
2022).

Figure 6.3: Typical irradiance profile of a fixed surface on an average day of July in
Naples, Italy

A set of preliminary tests was made with the aim of understanding what are the
parameters that mostly affect the difficulty of the instances. Four classes of instances
of different size were chosen from the Li & Lim’s benchmark instances. An instance
with narrow time windows (the instances whose names end in 1) and an instance
with large time windows (the instances whose names end in 4) were selected for each
class. The number of vehicles and batteries available was set by slightly increasing
the number of vehicles from the best known solution to the PDPTW instance. The
capacity of the vehicles is set in the instance. The capacity of batteries was set, for
each instance, by taking the base value of the cost of the longest trip from the depot
to serve a single request, and increasing it by about 1.5.

The value of λ, on the other hand, was set at 118 for almost all instances. Its
value can be interpreted as the amount of charge (in minutes) that a battery can
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receive in one hour, and it is realistic to think that in one hour a battery can receive
a charge equivalent to about two hours of range. This value was kept fixed because
in real-world contexts it depends on the characteristics of the charging station. For
instances with more than 400 nodes, much larger Qe and λ values were tested to try
to eliminate difficulties related to battery charging.

For the resolution of formulation (6.1)-(6.15), CPLEX 12.9.0 was used. A time
limit of 15 minutes was set. Tests were made on a workstation equipped with an
Intel Core i7-10610U processor and 16GB of RAM.

Table 6.3 reports the results of the preliminary tests. Column ”# nodes” report
the number of nodes of the instance. Columns ”# trips” and ”time(s)” report the
number of trips generated by algorithm 8 and the time in second, respectively. Col-
umn ”V BKS” reports the number of vehicles of the best known solution for the
instance of PDPTW. Columns ”V av.” and ”K av.” report the number of available
vehicles and batteries, respectively, and columns ”V us.” and ”K us.” report the num-
ber of vehicles and batteries used, respectively. Column ”Q” reports the capacity of
the vehicles (identical for all instances). Columns ”Qe” and ”λ” report the values
of the energy-related parameters, i.e. the battery capacity and the energy recharg-
ing rate. Finally, column ”feas” shows whether CPLEX was able to find a feasible
solution within the time limit.
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instance # nodes # trips time(s) V BKS V av. K av. V us. K us. Q Qe λ feas
lc101 106 64927 12.25 10 12 12 - - 200 180 118 no
lc101 106 52131 5.6 10 12 12 12 12 200 180 118 yes
lc104 106 34440 1.1 9 12 12 - - 200 180 118 no
lc104 106 25798 0.76 9 12 12 11 11 200 180 118 yes

lc1 2 1 212 19382 0.68 20 30 30 - - 200 425 118 no
lc1 2 1 212 12819 0.34 20 30 30 30 30 200 425 118 yes
lc1 2 4 210 8888 0.32 17 20 25 - - 200 300 118 no
lc1 2 4 210 8895 0.32 17 25 25 25 25 200 300 118 yes
lc1 2 4 210 8865 0.33 17 20 20 - - 200 300 118 no
lc1 2 4 210 8860 0.3 17 25 30 - - 200 300 118 no
lc1 2 4 210 19040 0.94 17 25 25 25 25 200 300 118 yes
lc1 2 4 210 23674 1.24 17 25 25 - - 200 300 118 no
lr1 4 1 416 6440 0.31 40 60 60 - - 200 700 118 no
lr1 4 1 416 6520 0.3 40 60 60 - - 200 1000 1000 no
lr1 4 4 420 9967 3.78 15 25 25 - - 200 1000 1000 no
lr1 4 4 420 10011 3.87 15 35 35 - - 200 1000 1000 no
lr1 6 1 634 9531 0.69 59 70 70 - - 200 1000 1000 no
lr1 6 4 626 15858 6.63 28 40 40 - - 200 500 500 no

Table 6.3: Preliminary results for Li & Lim instances

The first set of tests conducted were performed to figure out how many trips it is
possible to use in solving formulation (6.1)-(6.15). For instances lc101, lc104, lc 1 2 1
and lc1 2 4, the approximate number of trips was found from which formulation (6.1)-
(6.15) fails to find a feasible solution in 15 minutes. For instances with more than
400 nodes, CPLEX was unable to find an feasible solution in the time limit, even
using a relatively small number of trips generated by Algorithm 8 (the number of
trips obtained with 1 iteration in line 4).

Another parameter affecting the difficulty of the instances is the difference between
the number of available vehicles and the number of available batteries. It is possible
to observe this in the first and fourth rows of instance lc1 2 4. For the instances
that cplex was able to solve, all available vehicles and batteries were used, except for
instance lc104.
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6.6 Conclusions

In this chapter, a new Pickup and Delivery problem with BEVs was introduced.
The energy needed to recharge the batteries is produced on-site by a solar-powered
Battery Swapping Station (BSS), and the energy management aspect is integrated
into the problem. An MILP for the problem and a 3-step resolution scheme that is
based on generating a subset of trips were proposed.

Preliminary computational tests were performed on Li & Lim instances for the
PDPTW to investigate the impact of parameters in the difficulty of solving the in-
stances. The instances were completed by generating production and energy cost
data.

Preliminary computational tests were aimed at studying the parameters of the
instances. Analysis of the results of these tests showed that the number of trips used
and the size of the instance have an impact on the computation time of a MILP-
eligible solution. Other parameters that have an impact on model resolution times
are the relative values of the number of available vehicles and batteries: in fact,
having more batteries than vehicles makes some instances more difficult to solve.

The perspectives of this work are manifold. The first goal is to complete the study
of instance parameters and confirm the results obtained through preliminary tests. In
particular, it is interesting to understand what is the impact of the number of batteries
on the solutions, as this kind of information can be useful in the infrastructure sizing
process.

The second objective is to analyze the solutions of the model as the energy pro-
duced and its cost change over the various periods.

Regarding solution methods, another goal is to propose a more efficient solving
method. A first step could be to improve the trip generation algorithm. Then
the resolution of formulation (6.1)-(6.15) could be improved by applying a Bender’s
decomposition scheme.

Chapter 6 117



Conclusions and perspectives

In Chapter 2 a new class of Pickup and Delivery problems where the stations are
located on circles (rings) was introduced. These problems arise in the field of public
transportation systems where autonomous (i.e. driverless) vehicles travel on circular
networks. These problems are defined on cycle graphs where the nodes represent the
stations and the arcs represent the links between pairs of consecutive stations. There
is a set of transportation requests, where each request asks for the transportation of
a certain quantity from a pickup station to a delivery station. A fleet of capacitated
vehicles is available at a particular station (the depot). All problems in this class
differ in fleet composition, the presence of time windows associated with the requests
and the objective function to optimize. A classification scheme is proposed. Then,
the complexity of the variants in which the vehicles are allowed to move in a single
direction on the ring and the objective is the minimization of the maximum number
of tours is investigated. A polynomial-time algorithm is proposed for some variants
and the remaining variants are proven NP-hard. For the NP-hard variants, ILP for-
mulations are proposed and the efficiency of these formulations is evaluated through
extensive computational experiments. Experiments on a large number of instances
show the efficiency of our formulations. All instances, with up to 160 requests, could
be solved in a few minutes. Comparisons with a simple and practically relevant
greedy algorithm also confirmed the intrinsic difficulty of the problems/instances and
the usefulness of applying exact solution schemes.

Chapter 3 is devoted to the proof of NP-hardness of a problem introduced in
Chapter 2. The proof is moved to separate chapter given its length.

In Chapter 4 a special class of PDP-R is studied. The focus is on problems in
which vehicles can only travel in a single direction on the ring and the objective is
to minimize the sum of the request completion times. All these variants are proven
NP-hard. An ILP formulation is proposed and computational tests are executed to
evaluate its performance. Results show that the formulation is extremely effective,
being able to solve to optimality almost all instances, even the largest ones with 160
requests, in a short computing time. On the most difficult variants of the problem, the
formulation is always capable of providing a feasible solution when it exists and largely
outperforms a greedy algorithm mimicking common practice. Several techniques to
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tackle the hardest instances were explored, with no success at that point.
In Chapter 5 a different class of Pickup and Delivery Problems on rings is studied.

In this class of problems, vehicles have the ability to move on the ring following both
directions of rotation. The simplest variant in this class of problems, is known in the
literature as the Stacker Crane Problem (SCP). Two algorithms for the SCP have
already been proposed in the literature, but neither of them is easy to understand and
implement. A new simple algorithm for the SCP is proposed. The other problems in
this class can be seen as variants of the SCP. These variants are left for future works.

Chapter 6 introduces a new Pickup and Delivery problem in which a set of capaci-
tated Battery Electric Vehicles (BEVs) carry out pickup and delivery operations with
time windows constraints. The energy needed to recharge the batteries is produced
on-site by a solar-powered Battery Swapping Station (BSS) that is also the depot
of the vehicles. Additional batteries are available at the depot, where vehicles can
go and swap their batteries. Pickup and delivery operations must be planned over
a time horizon divided into periods. In each period it must be decided how much
energy to give to the batteries that are at the production unit. Also, if the energy
produced is in excess of that required by the batteries, this excess can be sold to the
general network at a price. If the energy required by the batteries is greater than
the energy produced, an unlimited amount of energy can be bought from the general
network. The objective of the problem is to plan vehicle routes to meet all pickup
and delivery demands while maximizing the net profit that is made from the energy
sold and bought over the time horizon. An MILP formulation of the problem and
a matheuristic approach are proposed. The matheuristic approach consists of three
steps: in the first one a subset of feasible trips is generated by using a Randomized
Construction Heuristic, in the second step the formulation is solved over this set of
trips, and in the third one a repair procedure is performed on the obtained solution,
in order to avoid more than one trip visiting the same node. Preliminary compu-
tational tests are conducted on Li & Lim instances for the PDPTW to investigate
the impact of parameters in the difficulty of solving the instances. The instances
are completed by generating production and energy cost data. The analysis of the
results shows that the number of trips used and the size of the instance have an
impact on the computation time of a MILP-eligible solution. Other parameters that
have an impact on model resolution times are the relative values of the number of
available vehicles and batteries: in fact, having more batteries than vehicles makes
some instances more difficult to solve.

This thesis opens the way for multiple research possibilities. The perspectives
to which the first part of this thesis opens (i.e., Chapters 2-5) are concerned with
exploring further Pickup and Delivery problems on rings. An interesting direction
would be to consider different network topologies such as lines or other geometric
shapes that can be encountered in practice. Also, autonomous vehicles are bound
to use electric engines. A future step of this research could be to investigate the
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issues implied by the limited autonomy of electric vehicles (range anxiety, recharging
policies. . . ). The classification scheme proposed in Chapter 2 could be enriched to
account for new variants where the problem of energy management is considered.
Regarding the problems presented in Chapter 4, one perspective is to improve the
solving method described in order to solve the most difficult instances. Chapter 5
opens the way for multiple research possibilities. A first perspective is to refine the
complexity analysis of the algorithm presented in section 5.3. Another perspective
is to complete the complexity analysis of the variants in this class for which the
complexity is unknown.

A new Pickup and Delivery problem with electric vehicles is introduced in Chapter
6. The perspectives of this work are manifold. The first goal is to complete the
study of instance parameters and confirm the results obtained through preliminary
tests. In particular, it would be interesting to understand what is the impact of the
number of batteries on the solutions, as this kind of information can be useful in the
infrastructure sizing process. The second objective could be to analyze the solutions
of the model as the energy produced and its cost change over the various periods.
Regarding solution methods, another goal could be to propose a more efficient solving
method. A first step could be to improve the trip generation algorithm. Then
the resolution of formulation (6.1)-(6.15) could be improved by applying a Bender’s
decomposition scheme. The proposed scheme also naturally opens the way to an exact
method based on column generation, where new trips would be added dynamically
to the model.
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Appendix A

Detailed computational results of
Chapter 2

In section 2.6 we reported the results of the resolution of formulation (2.10)-(2.14).
Tables 2.1-2.6 were calculated by taking the average over the 5 instances with the
same value of n, V and Q. In this appendix we report the detailed results of those
experiments. In all tables, column opt reports if the calculated solution value is
optimal for the instance. All other column headings have the same meaning of tables
2.1-2.6.
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n V Q instance CPU(s) CLT opt gapGr(%)

20 1 1 1 0.1 13 yes 7.7
20 1 1 2 0.1 15 yes 6.7
20 1 1 3 0.1 12 yes 8.3
20 1 1 4 0.1 13 yes 0.0
20 1 1 5 0.0 12 yes 0.0

20 1 2 1 0.0 7 yes 14.3
20 1 2 2 0.0 8 yes 12.5
20 1 2 3 0.0 6 yes 0.0
20 1 2 4 0.1 7 yes 0.0
20 1 2 5 0.0 6 yes 0.0

20 1 4 1 0.0 4 yes 25.0
20 1 4 2 0.0 5 yes 0.0
20 1 4 3 0.0 3 yes 33.3
20 1 4 4 0.0 4 yes 0.0
20 1 4 5 0.0 3 yes 0.0

20 1 8 1 0.0 3 yes 0.0
20 1 8 2 0.0 3 yes 0.0
20 1 8 3 0.0 2 yes 50.0
20 1 8 4 0.0 3 yes 0.0
20 1 8 5 0.0 2 yes 50.0

20 2 1 1 0.1 7 yes 14.3
20 2 1 2 0.1 8 yes 12.5
20 2 1 3 0.1 6 yes 16.7
20 2 1 4 0.1 7 yes 0.0
20 2 1 5 0.0 6 yes 0.0

20 2 2 1 0.0 4 yes 25.0
20 2 2 2 0.0 5 yes 0.0
20 2 2 3 0.0 3 yes 33.3
20 2 2 4 0.0 4 yes 0.0
20 2 2 5 0.0 3 yes 0.0

20 2 4 1 0.0 3 yes 0.0
20 2 4 2 0.0 3 yes 0.0
20 2 4 3 0.0 2 yes 50.0
20 2 4 4 0.0 3 yes 0.0
20 2 4 5 0.0 2 yes 50.0

20 2 8 1 0.0 2 yes 0.0
20 2 8 2 0.0 2 yes 0.0
20 2 8 3 0.0 2 yes 0.0
20 2 8 4 0.0 2 yes 0.0
20 2 8 5 0.0 2 yes 0.0

20 3 1 1 0.1 5 yes 20.0
20 3 1 2 0.1 6 yes 0.0
20 3 1 3 0.1 4 yes 25.0
20 3 1 4 0.1 5 yes 0.0
20 3 1 5 0.0 4 yes 0.0

20 3 2 1 0.0 3 yes 33.3
20 3 2 2 0.1 4 yes 0.0
20 3 2 3 0.0 3 yes 0.0
20 3 2 4 0.0 3 yes 0.0
20 3 2 5 0.0 2 yes 0.0

20 3 4 1 0.0 2 yes 50.0
20 3 4 2 0.0 3 yes 0.0
20 3 4 3 0.0 2 yes 0.0
20 3 4 4 0.0 2 yes 0.0
20 3 4 5 0.0 2 yes 0.0

20 3 8 1 0.0 2 yes 0.0
20 3 8 2 0.0 2 yes 0.0
20 3 8 3 0.0 2 yes 0.0
20 3 8 4 0.0 2 yes 0.0
20 3 8 5 0.0 2 yes 0.0

n V Q instance CPU(s) CLT opt gapGr(%)

40 1 1 1 0.6 21 yes 0.0
40 1 1 2 0.3 25 yes 0.0
40 1 1 3 0.2 29 yes 0.0
40 1 1 4 0.2 27 yes 3.7
40 1 1 5 0.2 25 yes 0.0

40 1 2 1 0.3 11 yes 9.1
40 1 2 2 0.2 13 yes 0.0
40 1 2 3 0.1 15 yes 6.7
40 1 2 4 0.1 14 yes 7.1
40 1 2 5 0.1 13 yes 7.7

40 1 4 1 0.1 6 yes 0.0
40 1 4 2 0.1 7 yes 0.0
40 1 4 3 0.1 8 yes 0.0
40 1 4 4 0.1 7 yes 14.3
40 1 4 5 0.1 7 yes 0.0

40 1 8 1 0.1 4 yes 0.0
40 1 8 2 0.0 4 yes 0.0
40 1 8 3 0.1 4 yes 25.0
40 1 8 4 0.1 4 yes 0.0
40 1 8 5 0.1 4 yes 25.0

40 2 1 1 0.6 11 yes 9.1
40 2 1 2 0.5 13 yes 0.0
40 2 1 3 0.3 15 yes 6.7
40 2 1 4 0.2 14 yes 0.0
40 2 1 5 0.3 13 yes 7.7

40 2 2 1 0.2 6 yes 16.7
40 2 2 2 0.2 7 yes 0.0
40 2 2 3 0.2 8 yes 0.0
40 2 2 4 0.1 7 yes 14.3
40 2 2 5 0.2 7 yes 14.3

40 2 4 1 0.1 4 yes 0.0
40 2 4 2 0.1 4 yes 0.0
40 2 4 3 0.1 4 yes 25.0
40 2 4 4 0.1 4 yes 0.0
40 2 4 5 0.1 4 yes 0.0

40 2 8 1 0.1 3 yes 0.0
40 2 8 2 0.1 3 yes 0.0
40 2 8 3 0.1 3 yes 0.0
40 2 8 4 0.1 2 yes 50.0
40 2 8 5 0.1 2 yes 50.0

40 3 1 1 0.6 8 yes 0.0
40 3 1 2 0.4 9 yes 0.0
40 3 1 3 0.4 10 yes 10.0
40 3 1 4 0.3 9 yes 11.1
40 3 1 5 0.4 9 yes 0.0

40 3 2 1 0.2 5 yes 0.0
40 3 2 2 0.2 5 yes 0.0
40 3 2 3 0.2 5 yes 20.0
40 3 2 4 0.2 5 yes 20.0
40 3 2 5 0.2 5 yes 0.0

40 3 4 1 0.1 3 yes 0.0
40 3 4 2 0.1 3 yes 0.0
40 3 4 3 0.1 3 yes 33.3
40 3 4 4 0.1 3 yes 33.3
40 3 4 5 0.1 3 yes 0.0

40 3 8 1 0.1 2 yes 0.0
40 3 8 2 0.1 2 yes 0.0
40 3 8 3 0.1 2 yes 50.0
40 3 8 4 0.1 2 yes 0.0
40 3 8 5 0.0 2 yes 0.0

Table A.1: Problem V, Q|sd, u|CLT (part 1)
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n V Q instance CPU(s) CLT opt gapGr(%)

80 1 1 1 2.5 45 yes 2.2
80 1 1 2 3.3 44 yes 0.0
80 1 1 3 3.2 48 yes 2.1
80 1 1 4 2.3 49 yes 2.0
80 1 1 5 1.0 46 yes 0.0

80 1 2 1 1.7 23 yes 0.0
80 1 2 2 1.6 22 yes 0.0
80 1 2 3 0.9 24 yes 4.2
80 1 2 4 1.1 25 yes 4.0
80 1 2 5 0.6 23 yes 0.0

80 1 4 1 0.7 12 yes 0.0
80 1 4 2 0.9 11 yes 0.0
80 1 4 3 0.4 12 yes 8.3
80 1 4 4 0.4 13 yes 0.0
80 1 4 5 0.4 12 yes 0.0

80 1 8 1 0.2 6 yes 16.7
80 1 8 2 0.3 6 yes 16.7
80 1 8 3 0.2 7 yes 0.0
80 1 8 4 0.3 7 yes 14.3
80 1 8 5 0.2 6 yes 16.7

80 2 1 1 2.9 23 yes 0.0
80 2 1 2 2.8 22 yes 0.0
80 2 1 3 2.6 24 yes 4.2
80 2 1 4 2.4 25 yes 4.0
80 2 1 5 1.7 23 yes 0.0

80 2 2 1 1.5 12 yes 0.0
80 2 2 2 1.7 11 yes 9.1
80 2 2 3 1.4 12 yes 8.3
80 2 2 4 1.0 13 yes 7.7
80 2 2 5 1.0 12 yes 0.0

80 2 4 1 0.6 6 yes 0.0
80 2 4 2 0.5 6 yes 0.0
80 2 4 3 0.6 7 yes 0.0
80 2 4 4 0.7 7 yes 14.3
80 2 4 5 0.4 6 yes 16.7

80 2 8 1 0.4 3 yes 33.3
80 2 8 2 0.4 3 yes 33.3
80 2 8 3 0.2 4 yes 0.0
80 2 8 4 0.5 4 yes 25.0
80 2 8 5 0.3 3 yes 33.3

80 3 1 1 6.9 15 yes 6.7
80 3 1 2 4.7 15 yes 0.0
80 3 1 3 3.1 16 yes 6.3
80 3 1 4 2.6 17 yes 5.9
80 3 1 5 1.8 16 yes 0.0

80 3 2 1 1.8 8 yes 12.5
80 3 2 2 1.9 8 yes 0.0
80 3 2 3 1.5 8 yes 12.5
80 3 2 4 2.3 9 yes 11.1
80 3 2 5 1.2 8 yes 12.5

80 3 4 1 0.8 4 yes 25.0
80 3 4 2 0.7 4 yes 25.0
80 3 4 3 0.9 5 yes 0.0
80 3 4 4 0.8 5 yes 20.0
80 3 4 5 0.7 4 yes 25.0

80 3 8 1 0.3 3 yes 0.0
80 3 8 2 0.3 3 yes 0.0
80 3 8 3 0.3 3 yes 0.0
80 3 8 4 0.3 3 yes 33.3
80 3 8 5 0.3 3 yes 0.0

n V Q instance CPU(s) CLT opt gapGr(%)

160 1 1 1 19.2 89 yes 0.0
160 1 1 2 14.3 91 yes 0.0
160 1 1 3 22.6 83 yes 0.0
160 1 1 4 14.2 87 yes 1.1
160 1 1 5 17.5 87 yes 0.0

160 1 2 1 10.5 45 yes 0.0
160 1 2 2 5.4 46 yes 0.0
160 1 2 3 10.0 42 yes 0.0
160 1 2 4 7.7 44 yes 2.3
160 1 2 5 7.4 44 yes 2.3

160 1 4 1 9.4 23 yes 0.0
160 1 4 2 4.1 23 yes 0.0
160 1 4 3 4.2 21 yes 4.8
160 1 4 4 5.7 22 yes 4.5
160 1 4 5 3.0 22 yes 4.5

160 1 8 1 3.0 12 yes 0.0
160 1 8 2 2.6 12 yes 0.0
160 1 8 3 1.5 11 yes 9.1
160 1 8 4 1.6 11 yes 9.1
160 1 8 5 1.4 11 yes 9.1

160 2 1 1 39.8 45 yes 0.0
160 2 1 2 23.1 46 yes 0.0
160 2 1 3 31.6 42 yes 0.0
160 2 1 4 41.4 44 yes 2.3
160 2 1 5 18.5 44 yes 0.0

160 2 2 1 31.3 23 yes 0.0
160 2 2 2 18.3 23 yes 0.0
160 2 2 3 17.1 21 yes 4.8
160 2 2 4 16.8 22 yes 4.5
160 2 2 5 16.2 22 yes 0.0

160 2 4 1 8.2 12 yes 0.0
160 2 4 2 8.0 12 yes 0.0
160 2 4 3 5.0 11 yes 9.1
160 2 4 4 5.8 11 yes 9.1
160 2 4 5 6.0 11 yes 9.1

160 2 8 1 4.5 6 yes 16.7
160 2 8 2 3.3 6 yes 16.7
160 2 8 3 2.7 6 yes 16.7
160 2 8 4 3.9 6 yes 16.7
160 2 8 5 2.4 6 yes 16.7

160 3 1 1 33.5 30 yes 0.0
160 3 1 2 48.1 31 yes 0.0
160 3 1 3 45.0 28 yes 3.6
160 3 1 4 44.5 29 yes 3.4
160 3 1 5 28.5 29 yes 3.4

160 3 2 1 19.0 15 yes 6.7
160 3 2 2 14.1 16 yes 0.0
160 3 2 3 24.9 14 yes 7.1
160 3 2 4 17.6 15 yes 6.7
160 3 2 5 18.5 15 yes 6.7

160 3 4 1 15.4 8 yes 12.5
160 3 4 2 9.8 8 yes 0.0
160 3 4 3 8.7 7 yes 14.3
160 3 4 4 9.7 8 yes 12.5
160 3 4 5 5.7 8 yes 12.5

160 3 8 1 4.8 4 yes 25.0
160 3 8 2 4.7 4 yes 25.0
160 3 8 3 4.4 4 yes 25.0
160 3 8 4 4.3 4 yes 25.0
160 3 8 5 3.4 4 yes 25.0

Table A.2: Problem V, Q|sd, u|CLT (part 2)
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n V Q instance t-t t-w t

CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%)

20 1 1 1 0.0 yes yes 18 - 0.0 yes yes 18 - 0.0 yes yes 18 5.6
20 1 1 2 - no - - - 0.0 yes yes 16 - 0.0 yes yes 18 5.6
20 1 1 3 0.0 yes yes 19 - - no - - - 0.0 yes yes 19 5.3
20 1 1 4 - no - - - 0.0 yes yes 19 - 0.0 yes yes 17 11.8
20 1 1 5 0.0 yes yes 15 - 0.0 yes yes 15 6.7 0.0 yes yes 15 6.7
20 1 2 1 0.0 yes yes 9 - 0.0 yes yes 10 - 0.0 yes yes 9 11.1
20 1 2 2 0.0 yes yes 10 - 0.0 yes yes 10 - 0.0 yes yes 10 10.0
20 1 2 3 0.0 yes yes 9 - 0.0 yes yes 8 - 0.0 yes yes 9 0.0
20 1 2 4 0.0 yes yes 9 - 0.0 yes yes 9 - 0.0 yes yes 9 11.1
20 1 2 5 0.0 yes yes 9 - 0.0 yes yes 9 - 0.0 yes yes 9 11.1
20 1 4 1 0.0 yes yes 5 - 0.0 yes yes 5 - 0.0 yes yes 5 20.0
20 1 4 2 0.0 yes yes 5 - 0.0 yes yes 5 - 0.0 yes yes 5 20.0
20 1 4 3 0.0 yes yes 5 - 0.0 yes yes 4 - 0.0 yes yes 5 0.0
20 1 4 4 0.0 yes yes 5 - 0.0 yes yes 5 20.0 0.0 yes yes 5 20.0
20 1 4 5 0.0 yes yes 5 - 0.0 yes yes 5 - 0.0 yes yes 5 0.0
20 1 8 1 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 33.3
20 1 8 2 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 33.3
20 1 8 3 0.0 yes yes 3 - 0.0 yes yes 3 0.0 0.0 yes yes 3 33.3
20 1 8 4 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 33.3
20 1 8 5 0.0 yes yes 3 - 0.0 yes yes 2 50.0 0.0 yes yes 3 0.0

20 2 1 1 0.0 yes yes 8 - 0.0 yes yes 10 - 0.0 yes yes 8 12.5
20 2 1 2 0.0 yes yes 9 - 0.0 yes yes 10 - 0.0 yes yes 9 11.1
20 2 1 3 0.0 yes yes 9 - 0.0 yes yes 8 - 0.0 yes yes 9 0.0
20 2 1 4 0.0 yes yes 9 - 0.0 yes yes 10 - 0.0 yes yes 9 11.1
20 2 1 5 0.0 yes yes 8 - 0.0 yes yes 8 - 0.0 yes yes 8 12.5
20 2 2 1 0.0 yes yes 5 - 0.0 yes yes 4 - 0.0 yes yes 4 25.0
20 2 2 2 0.0 yes yes 5 - 0.0 yes yes 5 - 0.0 yes yes 5 20.0
20 2 2 3 0.0 yes yes 5 20.0 0.0 yes yes 5 20.0 0.0 yes yes 5 20.0
20 2 2 4 0.0 yes yes 5 - 0.0 yes yes 5 20.0 0.0 yes yes 5 20.0
20 2 2 5 0.0 yes yes 4 25.0 0.0 yes yes 4 - 0.0 yes yes 4 25.0
20 2 4 1 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 0.0
20 2 4 2 0.0 yes yes 3 - 0.0 yes yes 4 - 0.0 yes yes 3 33.3
20 2 4 3 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 33.3
20 2 4 4 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 33.3
20 2 4 5 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 0.0
20 2 8 1 0.0 yes yes 2 - 0.0 yes yes 2 - 0.0 yes yes 2 50.0
20 2 8 2 0.0 yes yes 2 - 0.0 yes yes 2 - 0.0 yes yes 2 50.0
20 2 8 3 0.0 yes yes 2 - 0.0 yes yes 2 - 0.0 yes yes 2 50.0
20 2 8 4 0.0 yes yes 2 - 0.0 yes yes 2 - 0.0 yes yes 2 50.0
20 2 8 5 0.0 yes yes 2 - 0.0 yes yes 2 - 0.0 yes yes 2 50.0

20 3 1 1 0.0 yes yes 7 - 0.0 yes yes 6 - 0.0 yes yes 7 0.0
20 3 1 2 0.0 yes yes 7 - 0.0 yes yes 7 0.0 0.0 yes yes 7 0.0
20 3 1 3 0.0 yes yes 6 16.7 0.0 yes yes 7 0.0 0.0 yes yes 6 16.7
20 3 1 4 0.0 yes yes 6 - - no - - - 0.0 yes yes 6 16.7
20 3 1 5 0.0 yes yes 5 20.0 0.0 yes yes 6 - 0.0 yes yes 5 20.0
20 3 2 1 0.0 yes yes 4 - 0.0 yes yes 4 0.0 0.0 yes yes 4 0.0
20 3 2 2 0.0 yes yes 4 - 0.0 yes yes 4 25.0 0.0 yes yes 4 25.0
20 3 2 3 0.0 yes yes 3 - 0.0 yes yes 4 - 0.0 yes yes 3 33.3
20 3 2 4 0.0 yes yes 4 - 0.0 yes yes 3 - 0.0 yes yes 4 25.0
20 3 2 5 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 33.3
20 3 4 1 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 0.0
20 3 4 2 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 0.0
20 3 4 3 0.0 yes yes 2 - 0.0 yes yes 3 0.0 0.0 yes yes 2 50.0
20 3 4 4 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 0.0
20 3 4 5 0.0 yes yes 3 - 0.0 yes yes 2 - 0.0 yes yes 3 0.0
20 3 8 1 0.0 yes yes 2 - 0.0 yes yes 2 - 0.0 yes yes 2 0.0
20 3 8 2 0.0 yes yes 2 - 0.0 yes yes 2 - 0.0 yes yes 2 50.0
20 3 8 3 0.0 yes yes 2 - 0.0 yes yes 2 - 0.0 yes yes 2 0.0
20 3 8 4 0.0 yes yes 2 - 0.0 yes yes 2 - 0.0 yes yes 2 50.0
20 3 8 5 0.0 yes yes 2 - 0.0 yes yes 2 - 0.0 yes yes 2 50.0

Table A.3: Problem V, Q|sd, u, ri, di|CLT (part 1)
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n V Q instance t-t t-w t

CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%)

40 1 1 1 0.0 yes yes 33 - 0.0 yes yes 30 3.3 0.0 yes yes 33 0.0
40 1 1 2 0.0 yes yes 34 - 0.0 yes yes 31 - 0.1 yes yes 33 6.1
40 1 1 3 0.0 yes yes 34 - 0.0 yes yes 32 - 0.1 yes yes 34 5.9
40 1 1 4 0.0 yes yes 35 - 0.0 yes yes 31 - 0.1 yes yes 35 5.7
40 1 1 5 0.0 yes yes 35 - 0.0 yes yes 32 0.0 0.1 yes yes 35 0.0
40 1 2 1 0.0 yes yes 16 - 0.0 yes yes 16 - 0.0 yes yes 16 6.3
40 1 2 2 0.0 yes yes 17 - 0.0 yes yes 17 - 0.0 yes yes 17 5.9
40 1 2 3 0.0 yes yes 17 - 0.0 yes yes 18 - 0.0 yes yes 17 5.9
40 1 2 4 0.0 yes yes 15 - 0.0 yes yes 16 - 0.0 yes yes 15 13.3
40 1 2 5 0.0 yes yes 17 - 0.0 yes yes 16 - 0.0 yes yes 17 5.9
40 1 4 1 0.0 yes yes 10 - 0.0 yes yes 9 - 0.0 yes yes 10 0.0
40 1 4 2 0.0 yes yes 9 - 0.0 yes yes 8 - 0.0 yes yes 9 11.1
40 1 4 3 0.0 yes yes 9 - 0.0 yes yes 8 - 0.0 yes yes 8 12.5
40 1 4 4 0.0 yes yes 9 - 0.0 yes yes 9 0.0 0.0 yes yes 9 0.0
40 1 4 5 0.0 yes yes 9 - 0.0 yes yes 9 - 0.0 yes yes 9 0.0
40 1 8 1 0.0 yes yes 5 - 0.0 yes yes 5 - 0.0 yes yes 5 0.0
40 1 8 2 0.0 yes yes 5 - 0.0 yes yes 5 - 0.0 yes yes 5 20.0
40 1 8 3 0.0 yes yes 5 - 0.0 yes yes 4 - 0.0 yes yes 5 0.0
40 1 8 4 0.0 yes yes 5 - 0.0 yes yes 5 - 0.0 yes yes 5 0.0
40 1 8 5 0.0 yes yes 5 - 0.0 yes yes 5 - 0.0 yes yes 5 20.0

40 2 1 1 0.0 yes yes 17 - 0.0 yes yes 16 - 0.1 yes yes 17 0.0
40 2 1 2 0.0 yes yes 18 - 0.0 yes yes 17 - 0.1 yes yes 18 0.0
40 2 1 3 0.0 yes yes 16 - 0.0 yes yes 17 - 0.2 yes yes 16 12.5
40 2 1 4 0.0 yes yes 16 - 0.0 yes yes 16 - 0.0 yes yes 16 0.0
40 2 1 5 0.0 yes yes 16 - 0.0 yes yes 16 - 0.1 yes yes 16 6.3
40 2 2 1 0.0 yes yes 9 - 0.0 yes yes 9 11.1 0.0 yes yes 9 0.0
40 2 2 2 0.0 yes yes 9 - 0.0 yes yes 9 0.0 0.0 yes yes 9 0.0
40 2 2 3 0.0 yes yes 9 - 0.0 yes yes 9 - 0.1 yes yes 9 11.1
40 2 2 4 0.0 yes yes 9 - 0.0 yes yes 9 - 0.0 yes yes 9 0.0
40 2 2 5 0.0 yes yes 9 0.0 0.0 yes yes 8 12.5 0.0 yes yes 9 0.0
40 2 4 1 0.0 yes yes 5 - 0.0 yes yes 5 - 0.0 yes yes 5 0.0
40 2 4 2 0.0 yes yes 5 - 0.0 yes yes 5 - 0.0 yes yes 5 20.0
40 2 4 3 0.0 yes yes 5 - 0.0 yes yes 5 - 0.0 yes yes 5 20.0
40 2 4 4 0.0 yes yes 5 - 0.0 yes yes 5 - 0.0 yes yes 5 0.0
40 2 4 5 0.0 yes yes 4 - 0.0 yes yes 5 - 0.0 yes yes 4 25.0
40 2 8 1 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 33.3
40 2 8 2 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 33.3
40 2 8 3 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 33.3
40 2 8 4 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 33.3
40 2 8 5 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 33.3

40 3 1 1 0.0 yes yes 11 - 0.0 yes yes 11 - 0.1 yes yes 11 0.0
40 3 1 2 0.0 yes yes 11 - 0.0 yes yes 12 - 0.1 yes yes 11 9.1
40 3 1 3 0.0 yes yes 11 - 0.0 yes yes 12 8.3 0.2 yes yes 11 9.1
40 3 1 4 0.0 yes yes 10 - 0.0 yes yes 11 - 0.1 yes yes 10 10.0
40 3 1 5 0.0 yes yes 12 - 0.0 yes yes 12 - 0.1 yes yes 12 8.3
40 3 2 1 0.0 yes yes 7 - 0.0 yes yes 6 - 0.1 yes yes 7 14.3
40 3 2 2 0.0 yes yes 6 - 0.0 yes yes 6 - 0.1 yes yes 6 16.7
40 3 2 3 0.0 yes yes 6 - 0.0 yes yes 6 - 0.1 yes yes 6 16.7
40 3 2 4 0.0 yes yes 6 - 0.0 yes yes 5 - 0.1 yes yes 6 33.3
40 3 2 5 0.0 yes yes 6 - 0.0 yes yes 6 - 0.0 yes yes 6 0.0
40 3 4 1 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 0.0
40 3 4 2 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 0.0
40 3 4 3 0.0 yes yes 4 - 0.0 yes yes 4 - 0.1 yes yes 4 0.0
40 3 4 4 0.0 yes yes 4 - 0.0 yes yes 4 - 0.1 yes yes 4 0.0
40 3 4 5 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 0.0
40 3 8 1 0.0 yes yes 3 - 0.1 yes yes 3 - 0.1 yes yes 3 0.0
40 3 8 2 0.0 yes yes 3 - 0.0 yes yes 3 - 0.1 yes yes 3 0.0
40 3 8 3 0.0 yes yes 3 - 0.0 yes yes 3 - 0.1 yes yes 3 0.0
40 3 8 4 0.0 yes yes 3 - 0.0 yes yes 3 - 0.1 yes yes 3 0.0
40 3 8 5 0.0 yes yes 3 - 0.0 yes yes 3 - 0.1 yes yes 3 0.0

Table A.4: Problem V, Q|sd, u, ri, di|CLT (part 2)
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n V Q instance t-t t-w t

CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%)

80 1 1 1 0.1 yes yes 62 - 0.1 yes yes 63 - 0.2 yes yes 62 1.6
80 1 1 2 0.1 yes yes 61 - 0.1 yes yes 60 - 0.2 yes yes 61 1.6
80 1 1 3 0.2 yes yes 63 3.2 0.2 yes yes 63 - 0.4 yes yes 63 1.6
80 1 1 4 0.1 yes yes 61 - - no - - - 0.1 yes yes 61 0.0
80 1 1 5 0.1 yes yes 60 - 0.1 yes yes 62 - 0.1 yes yes 60 1.7
80 1 2 1 0.0 yes yes 31 - 0.0 yes yes 32 - 0.1 yes yes 31 3.2
80 1 2 2 0.0 yes yes 31 - 0.0 yes yes 32 - 0.1 yes yes 31 3.2
80 1 2 3 0.0 yes yes 32 - 0.1 yes yes 33 - 0.1 yes yes 32 0.0
80 1 2 4 0.0 yes yes 32 - 0.0 yes yes 31 - 0.2 yes yes 32 3.1
80 1 2 5 0.0 yes yes 31 - 0.0 yes yes 30 - 0.1 yes yes 31 3.2
80 1 4 1 0.0 yes yes 17 - 0.0 yes yes 15 - 0.1 yes yes 17 5.9
80 1 4 2 0.0 yes yes 17 - 0.0 yes yes 15 - 0.1 yes yes 17 0.0
80 1 4 3 0.0 yes yes 17 - 0.0 yes yes 16 - 0.1 yes yes 17 0.0
80 1 4 4 0.0 yes yes 16 - 0.0 yes yes 16 6.3 0.1 yes yes 16 12.5
80 1 4 5 0.0 yes yes 16 6.3 0.0 yes yes 16 - 0.1 yes yes 16 6.3
80 1 8 1 0.0 yes yes 9 - 0.0 yes yes 9 - 0.1 yes yes 9 11.1
80 1 8 2 0.0 yes yes 9 - 0.0 yes yes 9 0.0 0.1 yes yes 9 11.1
80 1 8 3 0.0 yes yes 9 - 0.0 yes yes 9 - 0.1 yes yes 9 0.0
80 1 8 4 0.0 yes yes 9 - 0.0 yes yes 8 - 0.1 yes yes 9 11.1
80 1 8 5 0.0 yes yes 9 - 0.0 yes yes 9 - 0.0 yes yes 9 11.1

80 2 1 1 0.1 yes yes 31 - 0.2 yes yes 31 - 0.2 yes yes 31 3.2
80 2 1 2 0.0 yes yes 31 0.0 0.1 yes yes 31 - 0.3 yes yes 31 0.0
80 2 1 3 0.1 yes yes 32 - 0.2 yes yes 32 - 0.6 yes yes 32 3.1
80 2 1 4 0.1 yes yes 32 - 0.1 yes yes 31 - 0.3 yes yes 32 0.0
80 2 1 5 0.1 yes yes 31 - 0.1 yes yes 30 - 0.3 yes yes 31 6.5
80 2 2 1 0.0 yes yes 16 - 0.0 yes yes 16 - 0.2 yes yes 16 0.0
80 2 2 2 0.0 yes yes 16 - 0.0 yes yes 17 - 0.1 yes yes 16 6.3
80 2 2 3 0.0 yes yes 16 - 0.0 yes yes 16 - 0.3 yes yes 16 6.3
80 2 2 4 0.0 yes yes 16 - 0.0 yes yes 16 - 0.1 yes yes 16 6.3
80 2 2 5 0.0 yes yes 15 - 0.0 yes yes 16 6.3 0.2 yes yes 15 6.7
80 2 4 1 0.0 yes yes 9 - 0.0 yes yes 9 - 0.2 yes yes 9 0.0
80 2 4 2 0.0 yes yes 8 12.5 0.0 yes yes 9 - 0.2 yes yes 8 12.5
80 2 4 3 0.0 yes yes 8 - 0.0 yes yes 9 - 0.2 yes yes 8 12.5
80 2 4 4 0.0 yes yes 9 - 0.0 yes yes 9 - 0.2 yes yes 9 11.1
80 2 4 5 0.0 yes yes 9 0.0 0.0 yes yes 8 - 0.1 yes yes 9 0.0
80 2 8 1 0.0 yes yes 5 - 0.0 yes yes 5 - 0.2 yes yes 5 20.0
80 2 8 2 0.0 yes yes 5 - 0.0 yes yes 5 - 0.2 yes yes 5 0.0
80 2 8 3 0.0 yes yes 5 - 0.0 yes yes 5 - 0.2 yes yes 5 20.0
80 2 8 4 0.0 yes yes 5 - 0.0 yes yes 5 - 0.1 yes yes 5 20.0
80 2 8 5 0.0 yes yes 5 - 0.0 yes yes 5 - 0.1 yes yes 5 20.0

80 3 1 1 0.1 yes yes 21 - 0.1 yes yes 21 - 0.4 yes yes 21 4.8
80 3 1 2 0.1 yes yes 22 - 0.2 yes yes 22 4.5 0.5 yes yes 22 0.0
80 3 1 3 0.1 yes yes 22 - 0.2 yes yes 22 - 0.5 yes yes 22 0.0
80 3 1 4 0.1 yes yes 21 - 0.2 yes yes 21 - 0.5 yes yes 21 9.5
80 3 1 5 0.0 yes yes 21 4.8 0.1 yes yes 21 - 0.3 yes yes 21 4.8
80 3 2 1 0.0 yes yes 11 - 0.1 yes yes 11 - 0.3 yes yes 11 9.1
80 3 2 2 0.0 yes yes 11 - 0.0 yes yes 11 - 0.3 yes yes 11 9.1
80 3 2 3 0.0 yes yes 11 - 0.0 yes yes 11 - 0.3 yes yes 11 9.1
80 3 2 4 0.0 yes yes 11 0.0 0.1 yes yes 11 - 0.3 yes yes 11 0.0
80 3 2 5 0.0 yes yes 11 - 0.0 yes yes 11 9.1 0.2 yes yes 11 9.1
80 3 4 1 0.0 yes yes 6 - 0.0 yes yes 6 - 0.2 yes yes 6 16.7
80 3 4 2 0.0 yes yes 6 - 0.0 yes yes 6 - 0.2 yes yes 6 16.7
80 3 4 3 0.0 yes yes 6 - 0.0 yes yes 6 - 0.3 yes yes 6 16.7
80 3 4 4 0.0 yes yes 6 - 0.0 yes yes 6 - 0.2 yes yes 6 16.7
80 3 4 5 0.0 yes yes 6 - 0.0 yes yes 6 - 0.2 yes yes 6 16.7
80 3 8 1 0.0 yes yes 4 - 0.0 yes yes 4 - 0.2 yes yes 4 0.0
80 3 8 2 0.0 yes yes 4 - 0.0 yes yes 4 - 0.2 yes yes 4 25.0
80 3 8 3 0.0 yes yes 4 - 0.0 yes yes 4 - 0.2 yes yes 4 0.0
80 3 8 4 0.0 yes yes 4 - 0.0 yes yes 4 - 0.3 yes yes 4 25.0
80 3 8 5 0.0 yes yes 4 - 0.0 yes yes 4 - 0.2 yes yes 4 25.0

Table A.5: Problem V, Q|sd, u, ri, di|CLT (part 3)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance t-t t-w t

CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%)

160 1 1 1 0.7 yes yes 119 - - no - - - 0.7 yes yes 119 0.8
160 1 1 2 0.9 yes yes 122 - 0.8 yes yes 123 - 4.8 yes yes 122 1.6
160 1 1 3 0.9 yes yes 119 - 1.3 yes yes 123 - 1.9 yes yes 119 3.4
160 1 1 4 0.2 yes yes 122 - 0.8 yes yes 119 - 1.0 yes yes 122 1.6
160 1 1 5 0.4 yes yes 121 - 0.9 yes yes 122 - 0.9 yes yes 121 0.0
160 1 2 1 0.1 yes yes 61 1.6 0.3 yes yes 62 - 0.5 yes yes 61 1.6
160 1 2 2 0.1 yes yes 62 - 0.1 yes yes 61 - 0.5 yes yes 62 3.2
160 1 2 3 0.1 yes yes 61 - 0.1 yes yes 61 - 0.5 yes yes 61 0.0
160 1 2 4 0.1 yes yes 61 - 0.1 yes yes 61 1.6 0.5 yes yes 61 0.0
160 1 2 5 0.1 yes yes 63 - 0.1 yes yes 61 - 0.4 yes yes 63 0.0
160 1 4 1 0.0 yes yes 31 - 0.1 yes yes 31 - 0.3 yes yes 31 3.2
160 1 4 2 0.0 yes yes 30 3.3 0.1 yes yes 31 - 0.4 yes yes 30 3.3
160 1 4 3 0.0 yes yes 31 - 0.1 yes yes 30 - 0.4 yes yes 31 0.0
160 1 4 4 0.0 yes yes 31 - 0.1 yes yes 32 - 0.3 yes yes 31 0.0
160 1 4 5 0.0 yes yes 31 - 0.1 yes yes 31 - 0.3 yes yes 31 3.2
160 1 8 1 0.0 yes yes 16 - 0.0 yes yes 16 0.0 0.3 yes yes 16 6.3
160 1 8 2 0.0 yes yes 16 - 0.0 yes yes 16 - 0.3 yes yes 16 6.3
160 1 8 3 0.0 yes yes 16 - 0.0 yes yes 16 6.3 0.3 yes yes 16 6.3
160 1 8 4 0.0 yes yes 16 - 0.0 yes yes 16 - 0.3 yes yes 16 6.3
160 1 8 5 0.0 yes yes 16 - 0.0 yes yes 16 - 0.2 yes yes 16 0.0

160 2 1 1 0.5 yes yes 63 - 1.1 yes yes 62 - 2.3 yes yes 63 1.6
160 2 1 2 0.4 yes yes 62 - 0.8 yes yes 60 - 1.7 yes yes 62 0.0
160 2 1 3 1.2 yes yes 61 - 0.8 yes yes 61 - 1.8 yes yes 61 0.0
160 2 1 4 0.7 yes yes 64 - 0.7 yes yes 61 - 3.0 yes yes 64 1.6
160 2 1 5 0.5 yes yes 61 - 0.3 yes yes 61 - 2.1 yes yes 61 1.6
160 2 2 1 0.1 yes yes 31 - 0.3 yes yes 32 - 0.9 yes yes 31 0.0
160 2 2 2 0.1 yes yes 31 - 0.2 yes yes 31 - 0.9 yes yes 31 3.2
160 2 2 3 0.1 yes yes 32 - 0.1 yes yes 31 - 1.0 yes yes 32 0.0
160 2 2 4 0.1 yes yes 31 - 0.1 yes yes 32 0.0 1.0 yes yes 31 6.5
160 2 2 5 0.1 yes yes 31 - 0.1 yes yes 32 - 0.6 yes yes 31 3.2
160 2 4 1 0.0 yes yes 16 - 0.1 yes yes 16 - 0.7 yes yes 16 0.0
160 2 4 2 0.0 yes yes 16 6.3 0.1 yes yes 16 - 0.7 yes yes 16 6.3
160 2 4 3 0.0 yes yes 17 - 0.0 yes yes 16 - 0.8 yes yes 17 0.0
160 2 4 4 0.0 yes yes 16 - 0.1 yes yes 16 - 0.7 yes yes 16 6.3
160 2 4 5 0.0 yes yes 16 - 0.1 yes yes 17 - 0.7 yes yes 16 6.3
160 2 8 1 0.0 yes yes 9 - 0.0 yes yes 9 - 0.7 yes yes 9 11.1
160 2 8 2 0.0 yes yes 9 - 0.0 yes yes 9 - 0.7 yes yes 9 11.1
160 2 8 3 0.0 yes yes 9 - 0.0 yes yes 9 - 0.7 yes yes 9 0.0
160 2 8 4 0.0 yes yes 9 - 0.0 yes yes 9 - 0.7 yes yes 9 0.0
160 2 8 5 0.0 yes yes 9 - 0.0 yes yes 9 - 0.7 yes yes 9 0.0

160 3 1 1 0.6 yes yes 42 - 0.6 yes yes 42 - 2.1 yes yes 42 0.0
160 3 1 2 0.6 yes yes 41 - 0.8 yes yes 41 - 1.9 yes yes 41 0.0
160 3 1 3 0.4 yes yes 42 - 0.3 yes yes 40 2.5 2.2 yes yes 42 0.0
160 3 1 4 0.6 yes yes 41 - 0.8 yes yes 41 - 1.8 yes yes 41 2.4
160 3 1 5 0.3 yes yes 42 - 0.3 yes yes 40 - 2.3 yes yes 42 0.0
160 3 2 1 0.2 yes yes 21 - 0.3 yes yes 22 - 2.7 yes yes 21 4.8
160 3 2 2 0.1 yes yes 21 4.8 0.2 yes yes 21 - 1.2 yes yes 21 4.8
160 3 2 3 0.1 yes yes 20 - 0.1 yes yes 21 - 0.8 yes yes 20 5.0
160 3 2 4 0.1 yes yes 21 - 0.2 yes yes 21 4.8 1.6 yes yes 21 4.8
160 3 2 5 0.1 yes yes 21 - 0.1 yes yes 21 - 1.2 yes yes 21 4.8
160 3 4 1 0.0 yes yes 11 - 0.1 yes yes 11 - 1.1 yes yes 11 9.1
160 3 4 2 0.1 yes yes 11 - 0.1 yes yes 11 - 1.6 yes yes 11 9.1
160 3 4 3 0.0 yes yes 11 - 0.1 yes yes 11 9.1 1.1 yes yes 11 0.0
160 3 4 4 0.1 yes yes 12 - 0.1 yes yes 11 - 1.1 yes yes 12 0.0
160 3 4 5 0.1 yes yes 11 - 0.1 yes yes 11 - 1.1 yes yes 11 9.1
160 3 8 1 0.0 yes yes 6 - 0.0 yes yes 6 - 1.1 yes yes 6 16.7
160 3 8 2 0.0 yes yes 6 - 0.0 yes yes 6 - 1.1 yes yes 6 16.7
160 3 8 3 0.0 yes yes 6 - 0.0 yes yes 6 - 1.0 yes yes 6 16.7
160 3 8 4 0.0 yes yes 6 - 0.0 yes yes 6 - 1.1 yes yes 6 16.7
160 3 8 5 0.0 yes yes 6 - 0.0 yes yes 6 - 1.0 yes yes 6 16.7

Table A.6: Problem V, Q|sd, u, ri, di|CLT (part 4)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance w-t w-w w

CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%)

20 1 1 1 0.0 yes yes 22 - 0.0 yes yes 20 - 0.0 yes yes 22 4.5
20 1 1 2 0.0 yes yes 22 - 0.0 yes yes 21 - 0.0 yes yes 22 4.5
20 1 1 3 0.0 yes yes 19 - 0.0 yes yes 18 - 0.0 yes yes 19 10.5
20 1 1 4 0.0 yes yes 20 5.0 0.0 yes yes 20 - 0.0 yes yes 20 0.0
20 1 1 5 0.0 yes yes 20 5.0 0.0 yes yes 18 5.6 0.0 yes yes 20 5.0
20 1 2 1 0.0 yes yes 12 - 0.0 yes yes 11 - 0.0 yes yes 11 9.1
20 1 2 2 0.0 yes yes 12 8.3 0.0 yes yes 11 - 0.0 yes yes 12 8.3
20 1 2 3 0.0 yes yes 11 - 0.0 yes yes 11 - 0.0 yes yes 10 10.0
20 1 2 4 0.0 yes yes 11 - 0.0 yes yes 11 0.0 0.0 yes yes 11 9.1
20 1 2 5 0.0 yes yes 10 - 0.0 yes yes 9 - 0.0 yes yes 10 10.0
20 1 4 1 0.0 yes yes 6 - 0.0 yes yes 6 - 0.0 yes yes 6 0.0
20 1 4 2 0.0 yes yes 6 - 0.0 yes yes 6 16.7 0.0 yes yes 6 16.7
20 1 4 3 0.0 yes yes 5 - 0.0 yes yes 5 - 0.0 yes yes 5 20.0
20 1 4 4 0.0 yes yes 6 - 0.0 yes yes 6 - 0.0 yes yes 6 16.7
20 1 4 5 0.0 yes yes 6 16.7 0.0 yes yes 6 - 0.0 yes yes 6 16.7
20 1 8 1 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 0.0
20 1 8 2 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 25.0
20 1 8 3 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 0.0
20 1 8 4 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 3 33.3
20 1 8 5 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 0.0

20 2 1 1 0.0 yes yes 11 - 0.0 yes yes 10 10.0 0.0 yes yes 11 0.0
20 2 1 2 0.0 yes yes 11 - 0.0 yes yes 11 - 0.0 yes yes 11 0.0
20 2 1 3 0.0 yes yes 10 - 0.0 yes yes 11 0.0 0.0 yes yes 10 10.0
20 2 1 4 0.0 yes yes 11 - 0.0 yes yes 11 9.1 0.0 yes yes 11 0.0
20 2 1 5 0.0 yes yes 10 10.0 0.0 yes yes 11 9.1 0.0 yes yes 10 10.0
20 2 2 1 0.0 yes yes 6 16.7 0.0 yes yes 6 16.7 0.0 yes yes 6 16.7
20 2 2 2 0.0 yes yes 6 - 0.0 yes yes 6 - 0.0 yes yes 6 16.7
20 2 2 3 0.0 yes yes 6 - 0.0 yes yes 5 20.0 0.0 yes yes 6 16.7
20 2 2 4 0.0 yes yes 6 - 0.0 yes yes 6 0.0 0.0 yes yes 6 0.0
20 2 2 5 0.0 yes yes 6 - 0.0 yes yes 6 - 0.0 yes yes 6 0.0
20 2 4 1 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 0.0
20 2 4 2 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 25.0
20 2 4 3 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 25.0
20 2 4 4 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 0.0
20 2 4 5 0.0 yes yes 4 - 0.0 yes yes 3 - 0.0 yes yes 4 0.0
20 2 8 1 0.0 yes yes 3 - 0.0 yes yes 2 - 0.0 yes yes 3 0.0
20 2 8 2 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 0.0
20 2 8 3 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 0.0
20 2 8 4 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 0.0
20 2 8 5 0.0 yes yes 3 - 0.0 yes yes 2 - 0.0 yes yes 3 0.0

20 3 1 1 0.0 yes yes 8 - 0.0 yes yes 8 - 0.0 yes yes 8 0.0
20 3 1 2 0.0 yes yes 8 - 0.0 yes yes 8 - 0.0 yes yes 8 12.5
20 3 1 3 0.0 yes yes 8 0.0 0.0 yes yes 8 - 0.0 yes yes 8 0.0
20 3 1 4 0.0 yes yes 8 - 0.0 yes yes 8 - 0.0 yes yes 8 12.5
20 3 1 5 0.0 yes yes 7 - 0.0 yes yes 8 0.0 0.0 yes yes 7 14.3
20 3 2 1 0.0 yes yes 4 - 0.0 yes yes 5 0.0 0.0 yes yes 4 25.0
20 3 2 2 0.0 yes yes 5 - 0.0 yes yes 4 - 0.0 yes yes 5 0.0
20 3 2 3 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 50.0
20 3 2 4 0.0 yes yes 5 - 0.0 yes yes 5 - 0.0 yes yes 5 0.0
20 3 2 5 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 25.0
20 3 4 1 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 0.0
20 3 4 2 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 0.0
20 3 4 3 0.0 yes yes 2 - 0.0 yes yes 3 - 0.0 yes yes 2 50.0
20 3 4 4 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 0.0
20 3 4 5 0.0 yes yes 2 - 0.0 yes yes 3 - 0.0 yes yes 2 50.0
20 3 8 1 0.0 yes yes 2 - 0.0 yes yes 2 - 0.0 yes yes 2 50.0
20 3 8 2 0.0 yes yes 2 - 0.0 yes yes 2 - 0.0 yes yes 2 50.0
20 3 8 3 0.0 yes yes 2 - 0.0 yes yes 2 - 0.0 yes yes 2 50.0
20 3 8 4 0.0 yes yes 2 - 0.0 yes yes 2 - 0.0 yes yes 2 50.0
20 3 8 5 0.0 yes yes 2 - 0.0 yes yes 2 - 0.0 yes yes 2 50.0

Table A.7: Problem V, Q|sd, u, ri, di|CLT (part 5)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance w-t w-w w

CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%)

40 1 1 1 0.0 yes yes 39 - 0.0 yes yes 44 - 0.0 yes yes 39 2.6
40 1 1 2 0.0 yes yes 40 - 0.0 yes yes 40 - 0.0 yes yes 40 2.5
40 1 1 3 0.0 yes yes 38 - 0.0 yes yes 39 - 0.0 yes yes 38 2.6
40 1 1 4 0.0 yes yes 38 - 0.0 yes yes 44 - 0.0 yes yes 38 0.0
40 1 1 5 0.0 yes yes 41 - 0.0 yes yes 40 - 0.0 yes yes 41 4.9
40 1 2 1 0.0 yes yes 21 - 0.0 yes yes 21 - 0.0 yes yes 21 4.8
40 1 2 2 0.0 yes yes 21 - 0.0 yes yes 20 - 0.0 yes yes 21 4.8
40 1 2 3 0.0 yes yes 21 - 0.0 yes yes 21 - 0.0 yes yes 21 4.8
40 1 2 4 0.0 yes yes 20 - 0.0 yes yes 21 4.8 0.0 yes yes 20 10.0
40 1 2 5 0.0 yes yes 20 - 0.0 yes yes 21 - 0.0 yes yes 20 0.0
40 1 4 1 0.0 yes yes 11 - 0.0 yes yes 10 10.0 0.0 yes yes 11 0.0
40 1 4 2 0.0 yes yes 11 - 0.0 yes yes 11 - 0.0 yes yes 11 0.0
40 1 4 3 0.0 yes yes 11 - 0.0 yes yes 12 - 0.0 yes yes 11 9.1
40 1 4 4 0.0 yes yes 11 - 0.0 yes yes 10 - 0.0 yes yes 11 0.0
40 1 4 5 0.0 yes yes 11 9.1 0.0 yes yes 11 0.0 0.0 yes yes 11 9.1
40 1 8 1 0.0 yes yes 6 - 0.0 yes yes 6 16.7 0.0 yes yes 6 16.7
40 1 8 2 0.0 yes yes 6 - 0.0 yes yes 6 - 0.0 yes yes 6 0.0
40 1 8 3 0.0 yes yes 6 - 0.0 yes yes 6 - 0.0 yes yes 6 16.7
40 1 8 4 0.0 yes yes 6 - 0.0 yes yes 6 - 0.0 yes yes 6 16.7
40 1 8 5 0.0 yes yes 6 - 0.0 yes yes 6 - 0.0 yes yes 6 16.7

40 2 1 1 0.0 yes yes 19 - 0.0 yes yes 20 - 0.0 yes yes 19 5.3
40 2 1 2 0.0 yes yes 21 - 0.0 yes yes 21 4.8 0.1 yes yes 21 4.8
40 2 1 3 0.0 yes yes 21 4.8 0.0 yes yes 20 - 0.1 yes yes 21 4.8
40 2 1 4 0.0 yes yes 21 - 0.0 yes yes 20 - 0.0 yes yes 21 4.8
40 2 1 5 0.0 yes yes 22 - 0.0 yes yes 21 - 0.1 yes yes 22 0.0
40 2 2 1 0.0 yes yes 10 - 0.0 yes yes 11 - 0.0 yes yes 10 10.0
40 2 2 2 0.0 yes yes 11 - 0.0 yes yes 11 - 0.0 yes yes 11 0.0
40 2 2 3 0.0 yes yes 11 - 0.0 yes yes 11 9.1 0.0 yes yes 11 0.0
40 2 2 4 0.0 yes yes 10 - 0.0 yes yes 10 - 0.0 yes yes 10 10.0
40 2 2 5 0.0 yes yes 11 - 0.0 yes yes 10 10.0 0.0 yes yes 11 0.0
40 2 4 1 0.0 yes yes 6 16.7 0.0 yes yes 6 - 0.0 yes yes 6 16.7
40 2 4 2 0.0 yes yes 6 - 0.0 yes yes 6 0.0 0.0 yes yes 6 16.7
40 2 4 3 0.0 yes yes 6 - 0.0 yes yes 6 - 0.0 yes yes 6 16.7
40 2 4 4 0.0 yes yes 6 0.0 0.0 yes yes 6 - 0.0 yes yes 6 0.0
40 2 4 5 0.0 yes yes 6 - 0.0 yes yes 6 - 0.0 yes yes 6 16.7
40 2 8 1 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 0.0
40 2 8 2 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 0.0
40 2 8 3 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 0.0
40 2 8 4 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 0.0
40 2 8 5 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 0.0

40 3 1 1 0.0 yes yes 15 0.0 0.0 yes yes 15 - 0.1 yes yes 15 0.0
40 3 1 2 0.0 yes yes 15 - 0.0 yes yes 14 - 0.1 yes yes 15 0.0
40 3 1 3 0.0 yes yes 14 - 0.0 yes yes 14 0.0 0.1 yes yes 14 0.0
40 3 1 4 0.0 yes yes 14 - 0.0 yes yes 15 - 0.1 yes yes 14 7.1
40 3 1 5 0.0 yes yes 15 - 0.0 yes yes 14 - 0.1 yes yes 15 6.7
40 3 2 1 0.0 yes yes 8 - 0.0 yes yes 8 12.5 0.1 yes yes 8 12.5
40 3 2 2 0.0 yes yes 8 - 0.0 yes yes 8 - 0.0 yes yes 8 0.0
40 3 2 3 0.0 yes yes 8 - 0.0 yes yes 8 - 0.0 yes yes 8 0.0
40 3 2 4 0.0 yes yes 8 - 0.0 yes yes 7 - 0.0 yes yes 8 0.0
40 3 2 5 0.0 yes yes 8 - 0.0 yes yes 8 - 0.1 yes yes 8 0.0
40 3 4 1 0.0 yes yes 4 - 0.0 yes yes 5 - 0.1 yes yes 4 25.0
40 3 4 2 0.0 yes yes 5 - 0.0 yes yes 5 - 0.1 yes yes 5 0.0
40 3 4 3 0.0 yes yes 4 - 0.0 yes yes 5 0.0 0.0 yes yes 4 0.0
40 3 4 4 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 25.0
40 3 4 5 0.0 yes yes 5 - 0.0 yes yes 5 - 0.1 yes yes 5 0.0
40 3 8 1 0.0 yes yes 3 - 0.0 yes yes 3 - 0.1 yes yes 3 33.3
40 3 8 2 0.0 yes yes 3 - 0.0 yes yes 3 - 0.1 yes yes 3 0.0
40 3 8 3 0.0 yes yes 3 - 0.0 yes yes 3 - 0.1 yes yes 3 0.0
40 3 8 4 0.0 yes yes 3 - 0.0 yes yes 3 - 0.0 yes yes 3 0.0
40 3 8 5 0.0 yes yes 3 - 0.0 yes yes 3 - 0.1 yes yes 3 0.0

Table A.8: Problem V, Q|sd, u, ri, di|CLT (part 6)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance w-t w-w w

CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%)

80 1 1 1 0.1 yes yes 80 1.3 0.1 yes yes 82 1.2 0.1 yes yes 80 1.3
80 1 1 2 0.0 yes yes 80 - 0.1 yes yes 80 2.5 0.1 yes yes 80 0.0
80 1 1 3 0.1 yes yes 79 - 0.1 yes yes 78 0.0 0.1 yes yes 79 0.0
80 1 1 4 0.1 yes yes 80 - 0.1 yes yes 82 1.2 0.2 yes yes 80 2.5
80 1 1 5 0.0 yes yes 82 0.0 0.1 yes yes 81 - 0.1 yes yes 82 0.0
80 1 2 1 0.0 yes yes 40 - 0.0 yes yes 41 0.0 0.1 yes yes 40 0.0
80 1 2 2 0.0 yes yes 40 - 0.0 yes yes 41 0.0 0.1 yes yes 40 2.5
80 1 2 3 0.0 yes yes 41 0.0 0.0 yes yes 42 2.4 0.1 yes yes 41 0.0
80 1 2 4 0.0 yes yes 41 - 0.0 yes yes 40 2.5 0.1 yes yes 41 2.4
80 1 2 5 0.0 yes yes 40 - 0.0 yes yes 41 - 0.1 yes yes 40 2.5
80 1 4 1 0.0 yes yes 20 - 0.0 yes yes 21 - 0.1 yes yes 20 5.0
80 1 4 2 0.0 yes yes 21 - 0.0 yes yes 20 - 0.1 yes yes 21 4.8
80 1 4 3 0.0 yes yes 20 - 0.0 yes yes 22 0.0 0.1 yes yes 20 5.0
80 1 4 4 0.0 yes yes 20 - 0.0 yes yes 21 - 0.1 yes yes 20 5.0
80 1 4 5 0.0 yes yes 21 - 0.0 yes yes 20 - 0.1 yes yes 21 4.8
80 1 8 1 0.0 yes yes 11 - 0.0 yes yes 11 - 0.1 yes yes 11 0.0
80 1 8 2 0.0 yes yes 11 - 0.0 yes yes 11 - 0.1 yes yes 11 9.1
80 1 8 3 0.0 yes yes 11 - 0.0 yes yes 11 9.1 0.1 yes yes 11 9.1
80 1 8 4 0.0 yes yes 10 - 0.0 yes yes 11 - 0.0 yes yes 10 10.0
80 1 8 5 0.0 yes yes 10 - 0.0 yes yes 11 - 0.1 yes yes 10 10.0

80 2 1 1 0.0 yes yes 40 - 0.1 yes yes 41 - 0.2 yes yes 40 2.5
80 2 1 2 0.1 yes yes 42 - 0.1 yes yes 41 - 0.5 yes yes 42 2.4
80 2 1 3 0.1 yes yes 41 - 0.1 yes yes 40 - 0.4 yes yes 41 0.0
80 2 1 4 0.1 yes yes 41 - 0.1 yes yes 41 0.0 0.3 yes yes 41 2.4
80 2 1 5 0.1 yes yes 41 4.9 0.1 yes yes 41 2.4 0.3 yes yes 41 2.4
80 2 2 1 0.0 yes yes 21 - 0.0 yes yes 21 - 0.2 yes yes 21 4.8
80 2 2 2 0.0 yes yes 21 - 0.0 yes yes 21 0.0 0.2 yes yes 21 0.0
80 2 2 3 0.0 yes yes 20 - 0.0 yes yes 21 - 0.2 yes yes 20 5.0
80 2 2 4 0.0 yes yes 21 - 0.0 yes yes 21 - 0.1 yes yes 21 4.8
80 2 2 5 0.0 yes yes 22 0.0 0.0 yes yes 20 5.0 0.2 yes yes 22 0.0
80 2 4 1 0.0 yes yes 11 - 0.0 yes yes 11 - 0.1 yes yes 11 9.1
80 2 4 2 0.0 yes yes 11 - 0.0 yes yes 11 - 0.1 yes yes 11 0.0
80 2 4 3 0.0 yes yes 11 - 0.0 yes yes 11 - 0.2 yes yes 11 9.1
80 2 4 4 0.0 yes yes 10 - 0.0 yes yes 11 - 0.1 yes yes 10 10.0
80 2 4 5 0.0 yes yes 11 - 0.0 yes yes 11 - 0.1 yes yes 11 9.1
80 2 8 1 0.0 yes yes 6 - 0.0 yes yes 6 16.7 0.1 yes yes 6 16.7
80 2 8 2 0.0 yes yes 6 - 0.0 yes yes 6 - 0.1 yes yes 6 16.7
80 2 8 3 0.0 yes yes 6 - 0.0 yes yes 6 - 0.1 yes yes 6 16.7
80 2 8 4 0.0 yes yes 6 - 0.0 yes yes 6 - 0.1 yes yes 6 16.7
80 2 8 5 0.0 yes yes 6 - 0.0 yes yes 6 - 0.2 yes yes 6 16.7

80 3 1 1 0.1 yes yes 28 - 0.1 yes yes 28 - 0.4 yes yes 28 0.0
80 3 1 2 0.0 yes yes 27 - 0.1 yes yes 28 - 0.4 yes yes 27 3.7
80 3 1 3 0.1 yes yes 28 - 0.1 yes yes 28 3.6 0.3 yes yes 28 3.6
80 3 1 4 0.1 yes yes 28 - 0.0 yes yes 28 - 0.5 yes yes 28 0.0
80 3 1 5 0.0 yes yes 27 - 0.0 yes yes 28 0.0 0.3 yes yes 27 3.7
80 3 2 1 0.0 yes yes 15 - 0.0 yes yes 14 - 0.3 yes yes 15 0.0
80 3 2 2 0.0 yes yes 15 0.0 0.0 yes yes 15 0.0 0.2 yes yes 15 0.0
80 3 2 3 0.0 yes yes 15 - 0.0 yes yes 15 - 0.2 yes yes 15 0.0
80 3 2 4 0.0 yes yes 15 - 0.0 yes yes 15 - 0.2 yes yes 15 0.0
80 3 2 5 0.0 yes yes 14 - 0.0 yes yes 14 7.1 0.2 yes yes 14 0.0
80 3 4 1 0.0 yes yes 8 - 0.0 yes yes 8 - 0.2 yes yes 8 12.5
80 3 4 2 0.0 yes yes 8 12.5 0.0 yes yes 8 - 0.2 yes yes 8 12.5
80 3 4 3 0.0 yes yes 8 - 0.0 yes yes 8 - 0.2 yes yes 8 12.5
80 3 4 4 0.0 yes yes 7 - 0.0 yes yes 8 - 0.3 yes yes 7 14.3
80 3 4 5 0.0 yes yes 8 - 0.0 yes yes 8 - 0.1 yes yes 8 12.5
80 3 8 1 0.0 yes yes 5 - 0.0 yes yes 5 - 0.2 yes yes 5 0.0
80 3 8 2 0.0 yes yes 5 - 0.0 yes yes 5 - 0.2 yes yes 5 0.0
80 3 8 3 0.0 yes yes 5 - 0.0 yes yes 5 - 0.2 yes yes 5 0.0
80 3 8 4 0.0 yes yes 5 - 0.0 yes yes 5 - 0.2 yes yes 5 20.0
80 3 8 5 0.0 yes yes 5 - 0.0 yes yes 5 - 0.1 yes yes 5 0.0

Table A.9: Problem V, Q|sd, u, ri, di|CLT (part 7)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance w-t w-w w

CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%)

160 1 1 1 0.3 yes yes 158 0.0 0.3 yes yes 160 1.3 0.6 yes yes 158 0.0
160 1 1 2 0.3 yes yes 161 - 0.3 yes yes 160 0.6 0.5 yes yes 161 0.0
160 1 1 3 0.3 yes yes 161 - 0.4 yes yes 161 - 0.6 yes yes 161 0.0
160 1 1 4 0.2 yes yes 160 - 0.4 yes yes 160 - 0.7 yes yes 160 1.9
160 1 1 5 0.2 yes yes 161 - 0.2 yes yes 162 - 0.6 yes yes 161 0.6
160 1 2 1 0.1 yes yes 80 - 0.1 yes yes 80 - 0.4 yes yes 80 0.0
160 1 2 2 0.1 yes yes 81 - 0.1 yes yes 81 - 0.4 yes yes 81 1.2
160 1 2 3 0.0 yes yes 80 - 0.1 yes yes 81 0.0 0.4 yes yes 80 0.0
160 1 2 4 0.1 yes yes 81 - 0.1 yes yes 82 - 0.6 yes yes 81 2.5
160 1 2 5 0.1 yes yes 81 - 0.1 yes yes 80 - 0.4 yes yes 81 0.0
160 1 4 1 0.0 yes yes 41 - 0.0 yes yes 41 2.4 0.3 yes yes 41 2.4
160 1 4 2 0.0 yes yes 41 - 0.1 yes yes 41 - 0.4 yes yes 41 0.0
160 1 4 3 0.0 yes yes 40 - 0.1 yes yes 41 0.0 0.3 yes yes 40 0.0
160 1 4 4 0.0 yes yes 41 - 0.0 yes yes 41 2.4 0.3 yes yes 41 2.4
160 1 4 5 0.0 yes yes 41 - 0.1 yes yes 41 - 0.3 yes yes 41 0.0
160 1 8 1 0.0 yes yes 21 - 0.0 yes yes 21 - 0.3 yes yes 21 4.8
160 1 8 2 0.0 yes yes 20 - 0.0 yes yes 21 - 0.2 yes yes 20 5.0
160 1 8 3 0.0 yes yes 21 - 0.0 yes yes 21 - 0.3 yes yes 21 4.8
160 1 8 4 0.0 yes yes 21 - 0.0 yes yes 21 - 0.2 yes yes 21 0.0
160 1 8 5 0.0 yes yes 21 - 0.0 yes yes 21 4.8 0.2 yes yes 21 4.8

160 2 1 1 0.3 yes yes 81 - 0.2 yes yes 80 - 1.3 yes yes 81 1.2
160 2 1 2 0.1 yes yes 81 - 0.3 yes yes 80 - 1.1 yes yes 81 1.2
160 2 1 3 0.2 yes yes 81 - 0.2 yes yes 81 - 1.0 yes yes 81 0.0
160 2 1 4 0.2 yes yes 80 - 0.4 yes yes 79 1.3 1.3 yes yes 80 1.3
160 2 1 5 0.3 yes yes 82 - 0.3 yes yes 81 1.2 1.1 yes yes 82 0.0
160 2 2 1 0.1 yes yes 41 0.0 0.1 yes yes 41 - 0.7 yes yes 41 0.0
160 2 2 2 0.1 yes yes 41 - 0.1 yes yes 41 0.0 0.6 yes yes 41 0.0
160 2 2 3 0.1 yes yes 41 - 0.1 yes yes 40 - 0.7 yes yes 41 2.4
160 2 2 4 0.1 yes yes 41 - 0.1 yes yes 41 - 0.9 yes yes 41 2.4
160 2 2 5 0.1 yes yes 41 - 0.1 yes yes 41 - 0.9 yes yes 41 0.0
160 2 4 1 0.1 yes yes 21 4.8 0.1 yes yes 21 - 0.8 yes yes 21 4.8
160 2 4 2 0.0 yes yes 21 - 0.0 yes yes 21 - 0.8 yes yes 21 4.8
160 2 4 3 0.0 yes yes 21 - 0.0 yes yes 20 - 0.8 yes yes 21 0.0
160 2 4 4 0.0 yes yes 21 - 0.0 yes yes 20 - 0.8 yes yes 21 0.0
160 2 4 5 0.0 yes yes 21 - 0.1 yes yes 20 - 0.8 yes yes 21 4.8
160 2 8 1 0.0 yes yes 11 - 0.0 yes yes 11 - 0.7 yes yes 11 9.1
160 2 8 2 0.0 yes yes 11 - 0.0 yes yes 11 - 0.7 yes yes 11 0.0
160 2 8 3 0.0 yes yes 11 - 0.0 yes yes 11 - 0.7 yes yes 11 9.1
160 2 8 4 0.0 yes yes 11 - 0.0 yes yes 11 - 0.6 yes yes 11 9.1
160 2 8 5 0.0 yes yes 11 - 0.0 yes yes 11 9.1 0.7 yes yes 11 9.1

160 3 1 1 0.3 yes yes 55 - 0.3 yes yes 54 3.7 1.3 yes yes 55 0.0
160 3 1 2 0.2 yes yes 54 - 0.3 yes yes 54 - 1.3 yes yes 54 0.0
160 3 1 3 0.1 yes yes 54 - 0.3 yes yes 53 0.0 1.2 yes yes 54 0.0
160 3 1 4 0.2 yes yes 55 - 0.3 yes yes 55 - 1.8 yes yes 55 0.0
160 3 1 5 0.2 yes yes 55 - 0.2 yes yes 54 - 2.0 yes yes 55 1.8
160 3 2 1 0.1 yes yes 28 - 0.1 yes yes 28 3.6 1.3 yes yes 28 0.0
160 3 2 2 0.1 yes yes 28 - 0.1 yes yes 28 - 1.3 yes yes 28 0.0
160 3 2 3 0.1 yes yes 27 - 0.1 yes yes 28 - 1.3 yes yes 27 3.7
160 3 2 4 0.1 yes yes 28 - 0.1 yes yes 28 0.0 1.3 yes yes 28 3.6
160 3 2 5 0.1 yes yes 28 - 0.1 yes yes 28 - 1.3 yes yes 28 0.0
160 3 4 1 0.0 yes yes 15 - 0.1 yes yes 15 - 1.1 yes yes 15 0.0
160 3 4 2 0.0 yes yes 15 - 0.1 yes yes 15 - 1.1 yes yes 15 0.0
160 3 4 3 0.0 yes yes 15 - 0.1 yes yes 15 - 1.1 yes yes 15 0.0
160 3 4 4 0.0 yes yes 14 - 0.1 yes yes 15 - 1.1 yes yes 14 7.1
160 3 4 5 0.0 yes yes 15 - 0.1 yes yes 15 - 1.1 yes yes 15 0.0
160 3 8 1 0.0 yes yes 8 - 0.0 yes yes 8 - 1.1 yes yes 8 12.5
160 3 8 2 0.0 yes yes 8 - 0.0 yes yes 8 - 1.1 yes yes 8 0.0
160 3 8 3 0.0 yes yes 8 - 0.0 yes yes 8 - 1.0 yes yes 8 0.0
160 3 8 4 0.0 yes yes 8 - 0.0 yes yes 8 - 1.0 yes yes 8 0.0
160 3 8 5 0.0 yes yes 8 - 0.0 yes yes 8 - 1.0 yes yes 8 12.5

Table A.10: Problem V, Q|sd, u, ri, di|CLT (part 8)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance CPU(s) CLT opt gapGr(%)

20 1 1 1 0.1 13 yes 7.7
20 1 1 2 0.1 15 yes 0.0
20 1 1 3 0.1 12 yes 0.0
20 1 1 4 0.1 13 yes 0.0
20 1 1 5 0.0 12 yes 0.0

20 1 2 1 0.1 10 yes 10.0
20 1 2 2 0.1 11 yes 0.0
20 1 2 3 0.0 9 yes 11.1
20 1 2 4 0.1 10 yes 20.0
20 1 2 5 0.0 9 yes 0.0

20 1 4 1 0.1 10 yes 10.0
20 1 4 2 0.1 10 yes 10.0
20 1 4 3 0.1 9 yes 11.1
20 1 4 4 0.1 8 yes 12.5
20 1 4 5 0.0 7 yes 14.3

20 1 8 1 0.0 8 yes 12.5
20 1 8 2 0.1 9 yes 22.2
20 1 8 3 0.0 8 yes 12.5
20 1 8 4 0.1 8 yes 25.0
20 1 8 5 0.0 8 yes 12.5

20 2 1 1 0.1 7 yes 14.3
20 2 1 2 0.1 8 yes 0.0
20 2 1 3 0.1 6 yes 0.0
20 2 1 4 0.1 7 yes 0.0
20 2 1 5 0.0 6 yes 0.0

20 2 2 1 0.1 5 yes 20.0
20 2 2 2 0.1 7 yes 14.3
20 2 2 3 0.1 5 yes 0.0
20 2 2 4 0.1 5 yes 20.0
20 2 2 5 0.1 5 yes 0.0

20 2 4 1 0.1 5 yes 20.0
20 2 4 2 0.1 6 yes 0.0
20 2 4 3 0.1 4 yes 25.0
20 2 4 4 0.1 5 yes 20.0
20 2 4 5 0.0 6 yes 0.0

20 2 8 1 0.0 5 yes 20.0
20 2 8 2 0.1 5 yes 20.0
20 2 8 3 0.1 5 yes 0.0
20 2 8 4 0.1 4 yes 25.0
20 2 8 5 0.1 5 yes 0.0

20 3 1 1 0.1 5 yes 20.0
20 3 1 2 0.1 6 yes 0.0
20 3 1 3 0.1 4 yes 25.0
20 3 1 4 0.1 5 yes 0.0
20 3 1 5 0.1 4 yes 0.0

20 3 2 1 0.1 4 yes 25.0
20 3 2 2 0.1 5 yes 0.0
20 3 2 3 0.1 3 yes 33.3
20 3 2 4 0.1 4 yes 25.0
20 3 2 5 0.1 3 yes 33.3

20 3 4 1 0.1 4 yes 0.0
20 3 4 2 0.1 5 yes 0.0
20 3 4 3 0.1 3 yes 33.3
20 3 4 4 0.1 3 yes 66.7
20 3 4 5 0.1 3 yes 33.3

20 3 8 1 0.1 3 yes 33.3
20 3 8 2 0.1 4 yes 25.0
20 3 8 3 0.0 2 yes 50.0
20 3 8 4 0.1 4 yes 25.0
20 3 8 5 0.0 3 yes 0.0

n V Q instance CPU(s) CLT opt gapGr(%)

40 1 1 1 0.5 21 yes 4.8
40 1 1 2 0.3 25 yes 0.0
40 1 1 3 0.2 29 yes 3.4
40 1 1 4 0.2 27 yes 0.0
40 1 1 5 0.2 25 yes 0.0

40 1 2 1 0.2 18 yes 0.0
40 1 2 2 0.2 18 yes 5.6
40 1 2 3 0.2 20 yes 0.0
40 1 2 4 0.1 21 yes 4.8
40 1 2 5 0.3 18 yes 5.6

40 1 4 1 4.4 13 yes 23.1
40 1 4 2 0.3 16 yes 18.8
40 1 4 3 0.3 16 yes 12.5
40 1 4 4 0.2 19 yes 5.3
40 1 4 5 0.7 21 yes 4.8

40 1 8 1 0.4 13 yes 15.4
40 1 8 2 0.5 16 yes 6.3
40 1 8 3 0.9 17 yes 11.8
40 1 8 4 0.5 15 yes 13.3
40 1 8 5 0.4 12 yes 8.3

40 2 1 1 0.6 11 yes 0.0
40 2 1 2 0.6 13 yes 0.0
40 2 1 3 0.3 15 yes 0.0
40 2 1 4 0.2 14 yes 0.0
40 2 1 5 0.3 13 yes 7.7

40 2 2 1 0.3 10 yes 10.0
40 2 2 2 0.2 9 yes 22.2
40 2 2 3 0.3 10 yes 10.0
40 2 2 4 0.2 10 yes 10.0
40 2 2 5 0.4 10 yes 0.0

40 2 4 1 0.3 7 yes 14.3
40 2 4 2 0.2 8 yes 0.0
40 2 4 3 0.9 11 yes 9.1
40 2 4 4 0.2 9 yes 11.1
40 2 4 5 0.2 8 yes 0.0

40 2 8 1 1.2 9 yes 11.1
40 2 8 2 1.5 9 yes 11.1
40 2 8 3 0.4 9 yes 11.1
40 2 8 4 0.2 9 yes 11.1
40 2 8 5 0.2 8 yes 12.5

40 3 1 1 0.6 8 yes 0.0
40 3 1 2 0.4 9 yes 0.0
40 3 1 3 0.4 10 yes 10.0
40 3 1 4 0.3 9 yes 11.1
40 3 1 5 0.4 9 yes 0.0

40 3 2 1 0.6 6 yes 16.7
40 3 2 2 0.4 7 yes 14.3
40 3 2 3 0.4 8 yes 12.5
40 3 2 4 0.3 8 yes 12.5
40 3 2 5 0.2 7 yes 14.3

40 3 4 1 0.2 6 yes 16.7
40 3 4 2 0.3 5 yes 20.0
40 3 4 3 0.8 8 yes 0.0
40 3 4 4 0.2 6 yes 16.7
40 3 4 5 0.3 5 yes 20.0

40 3 8 1 0.2 5 yes 20.0
40 3 8 2 0.2 4 yes 25.0
40 3 8 3 0.3 6 yes 16.7
40 3 8 4 0.3 5 yes 20.0
40 3 8 5 0.2 5 yes 20.0

Table A.11: Problem V, Q|sd|CLT (part 1)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance CPU(s) CLT opt gapGr(%)

80 1 1 1 2.5 45 yes 2.2
80 1 1 2 3.3 44 yes 0.0
80 1 1 3 3.2 48 yes 2.1
80 1 1 4 2.3 49 yes 2.0
80 1 1 5 1.0 46 yes 2.2

80 1 2 1 2.5 36 yes 2.8
80 1 2 2 4.7 35 yes 5.7
80 1 2 3 2.6 35 yes 2.9
80 1 2 4 2.5 38 yes 2.6
80 1 2 5 2.1 34 yes 0.0

80 1 4 1 20.0 29 yes 3.4
80 1 4 2 20.8 28 yes 7.1
80 1 4 3 15.0 28 yes 17.9
80 1 4 4 15.0 35 yes 11.4
80 1 4 5 8.7 32 yes 9.4

80 1 8 1 23.4 25 yes 20.0
80 1 8 2 27.7 26 yes 15.4
80 1 8 3 14.3 29 yes 13.8
80 1 8 4 19.9 31 yes 6.5
80 1 8 5 29.5 27 yes 3.7

80 2 1 1 2.8 23 yes 0.0
80 2 1 2 2.9 22 yes 0.0
80 2 1 3 2.7 24 yes 4.2
80 2 1 4 2.4 25 yes 4.0
80 2 1 5 1.7 23 yes 0.0

80 2 2 1 5.2 17 yes 11.8
80 2 2 2 7.5 17 yes 5.9
80 2 2 3 3.2 19 yes 5.3
80 2 2 4 1.4 19 yes 5.3
80 2 2 5 2.3 19 yes 0.0

80 2 4 1 4.1 15 yes 6.7
80 2 4 2 4.0 14 yes 7.1
80 2 4 3 9.6 15 yes 13.3
80 2 4 4 6.2 18 yes 5.6
80 2 4 5 3.0 16 yes 12.5

80 2 8 1 2.2 13 yes 7.7
80 2 8 2 9.6 15 yes 6.7
80 2 8 3 6.7 13 yes 23.1
80 2 8 4 91.1 15 yes 13.3
80 2 8 5 12.1 15 yes 13.3

80 3 1 1 7.0 15 yes 6.7
80 3 1 2 4.9 15 yes 0.0
80 3 1 3 3.1 16 yes 6.3
80 3 1 4 2.7 17 yes 5.9
80 3 1 5 1.8 16 yes 0.0

80 3 2 1 5.5 13 yes 7.7
80 3 2 2 8.0 11 yes 9.1
80 3 2 3 6.6 11 yes 18.2
80 3 2 4 5.4 12 yes 0.0
80 3 2 5 3.4 12 yes 0.0

80 3 4 1 1.9 10 yes 10.0
80 3 4 2 12.0 10 yes 10.0
80 3 4 3 4.1 10 yes 20.0
80 3 4 4 8.7 11 yes 9.1
80 3 4 5 3.4 11 yes 18.2

80 3 8 1 7.8 10 yes 20.0
80 3 8 2 5.9 8 yes 25.0
80 3 8 3 6.0 11 yes 18.2
80 3 8 4 8.6 10 yes 20.0
80 3 8 5 73.0 10 yes 0.0

n V Q instance CPU(s) CLT opt gapGr(%)

160 1 1 1 19.3 89 yes 1.1
160 1 1 2 14.3 91 yes 1.1
160 1 1 3 22.6 83 yes 0.0
160 1 1 4 14.2 87 yes 1.1
160 1 1 5 17.5 87 yes 0.0

160 1 2 1 422.5 70 yes 0.0
160 1 2 2 12.7 69 yes 1.4
160 1 2 3 56.8 62 yes 1.6
160 1 2 4 15.3 63 yes 1.6
160 1 2 5 7.3 63 yes 1.6

160 1 4 1 415.7 56 yes 10.7
160 1 4 2 59.9 57 yes 10.5
160 1 4 3 300.5 52 yes 15.4
160 1 4 4 310.6 56 yes 10.7
160 1 4 5 51.6 53 yes 5.7

160 1 8 1 491.5 57 yes 12.3
160 1 8 2 587.8 50 yes 16.0
160 1 8 3 76.3 45 yes 13.3
160 1 8 4 75.0 51 yes 11.8
160 1 8 5 230.9 55 yes 9.1

160 2 1 1 39.6 45 yes 0.0
160 2 1 2 23.0 46 yes 2.2
160 2 1 3 31.7 42 yes 2.4
160 2 1 4 41.4 44 yes 2.3
160 2 1 5 18.5 44 yes 2.3

160 2 2 1 19.0 34 yes 2.9
160 2 2 2 22.9 34 yes 2.9
160 2 2 3 31.0 32 yes 3.1
160 2 2 4 45.9 33 yes 3.0
160 2 2 5 29.9 33 yes 3.0

160 2 4 1 92.9 28 yes 14.3
160 2 4 2 322.4 29 yes 6.9
160 2 4 3 320.0 26 yes 15.4
160 2 4 4 198.6 26 yes 11.5
160 2 4 5 131.7 28 yes 10.7

160 2 8 1 1800.1 31 yes 9.7
160 2 8 2 127.6 24 yes 8.3
160 2 8 3 160.4 25 yes 12.0
160 2 8 4 97.7 26 yes 15.4
160 2 8 5 82.9 21 yes 9.5

160 3 1 1 33.6 30 yes 3.3
160 3 1 2 48.2 31 yes 0.0
160 3 1 3 45.0 28 yes 0.0
160 3 1 4 44.5 29 yes 3.4
160 3 1 5 28.3 29 yes 3.4

160 3 2 1 97.5 23 yes 0.0
160 3 2 2 21.5 24 yes 4.2
160 3 2 3 76.5 22 yes 4.5
160 3 2 4 27.4 21 yes 4.8
160 3 2 5 28.4 21 yes 4.8

160 3 4 1 111.9 21 yes 14.3
160 3 4 2 48.5 21 yes 4.8
160 3 4 3 147.5 19 yes 10.5
160 3 4 4 70.8 19 yes 10.5
160 3 4 5 53.2 19 yes 10.5

160 3 8 1 172.3 17 yes 11.8
160 3 8 2 180.4 20 yes 10.0
160 3 8 3 226.3 19 yes 10.5
160 3 8 4 74.1 17 yes 17.6
160 3 8 5 160.4 19 yes 10.5

Table A.12: Problem V, Q|sd|CLT (part 2)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance t-t t-w t

CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%)

20 1 1 1 - no - - - - no - - - 0.0 yes yes 13 7.7
20 1 1 2 - no - - - - no - - - 0.0 yes yes 17 5.9
20 1 1 3 - no - - - - no - - - 0.0 yes yes 12 8.3
20 1 1 4 - no - - - - no - - - 0.0 yes yes 14 7.1
20 1 1 5 - no - - - 0.0 yes yes 13 - 0.0 yes yes 12 8.3
20 1 2 1 - no - - - 0.0 yes yes 11 - 0.0 yes yes 12 8.3
20 1 2 2 - no - - - - no - - - 0.0 yes yes 11 9.1
20 1 2 3 - no - - - 0.0 yes yes 12 - 0.0 yes yes 11 9.1
20 1 2 4 - no - - - 0.0 yes yes 12 - 0.0 yes yes 12 8.3
20 1 2 5 - no - - - 0.0 yes yes 10 - 0.0 yes yes 9 33.3
20 1 4 1 - no - - - 0.0 yes yes 11 - 0.0 yes yes 12 16.7
20 1 4 2 - no - - - - no - - - 0.0 yes yes 12 16.7
20 1 4 3 - no - - - 0.0 yes yes 9 - 0.0 yes yes 10 30.0
20 1 4 4 - no - - - 0.0 yes yes 11 - 0.0 yes yes 10 10.0
20 1 4 5 0.0 yes yes 9 11.1 0.0 yes yes 9 - 0.0 yes yes 9 11.1
20 1 8 1 0.0 yes yes 9 - 0.0 yes yes 10 - 0.0 yes yes 9 33.3
20 1 8 2 - no - - - - no - - - 0.0 yes yes 10 0.0
20 1 8 3 - no - - - 0.0 yes yes 10 - 0.0 yes yes 10 30.0
20 1 8 4 - no - - - - no - - - 0.0 yes yes 12 8.3
20 1 8 5 0.0 yes yes 9 - 0.0 yes yes 10 20.0 0.0 yes yes 9 11.1

20 2 1 1 - no - - - - no - - - 0.0 yes yes 7 14.3
20 2 1 2 - no - - - - no - - - 0.1 yes yes 8 25.0
20 2 1 3 - no - - - - no - - - 0.0 yes yes 6 33.3
20 2 1 4 - no - - - 0.0 yes yes 8 - 0.0 yes yes 8 0.0
20 2 1 5 - no - - - - no - - - 0.0 yes yes 6 16.7
20 2 2 1 - no - - - 0.0 yes yes 7 - 0.0 yes yes 5 20.0
20 2 2 2 - no - - - - no - - - 0.0 yes yes 7 14.3
20 2 2 3 - no - - - 0.0 yes yes 6 - 0.0 yes yes 5 20.0
20 2 2 4 0.0 yes yes 6 - 0.0 yes yes 6 - 0.0 yes yes 6 33.3
20 2 2 5 - no - - - 0.0 yes yes 5 - 0.0 yes yes 5 20.0
20 2 4 1 0.0 yes yes 6 - - no - - - 0.0 yes yes 5 40.0
20 2 4 2 - no - - - - no - - - 0.0 yes yes 6 16.7
20 2 4 3 0.0 yes yes 6 - 0.0 yes yes 5 - 0.0 yes yes 6 16.7
20 2 4 4 - no - - - 0.0 yes yes 6 - 0.0 yes yes 6 33.3
20 2 4 5 - no - - - 0.0 yes yes 6 - 0.0 yes yes 6 16.7
20 2 8 1 0.0 yes yes 6 - 0.0 yes yes 5 - 0.0 yes yes 5 40.0
20 2 8 2 - no - - - 0.0 yes yes 6 - 0.0 yes yes 6 16.7
20 2 8 3 0.0 yes yes 6 - 0.0 yes yes 5 - 0.0 yes yes 6 16.7
20 2 8 4 0.0 yes yes 5 - 0.0 yes yes 4 - 0.0 yes yes 5 40.0
20 2 8 5 0.0 yes yes 6 - 0.0 yes yes 5 - 0.0 yes yes 5 20.0

20 3 1 1 - no - - - - no - - - 0.0 yes yes 5 20.0
20 3 1 2 - no - - - - no - - - 0.0 yes yes 6 0.0
20 3 1 3 - no - - - - no - - - 0.0 yes yes 4 50.0
20 3 1 4 - no - - - - no - - - 0.1 yes yes 6 16.7
20 3 1 5 - no - - - 0.0 yes yes 4 - 0.0 yes yes 5 0.0
20 3 2 1 - no - - - 0.0 yes yes 5 - 0.0 yes yes 4 25.0
20 3 2 2 0.0 yes yes 5 - 0.0 yes yes 5 - 0.0 yes yes 5 0.0
20 3 2 3 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 25.0
20 3 2 4 - no - - - 0.0 yes yes 5 - 0.0 yes yes 5 0.0
20 3 2 5 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 25.0
20 3 4 1 - no - - - 0.0 yes yes 4 - 0.0 yes yes 4 25.0
20 3 4 2 - no - - - 0.0 yes yes 5 - 0.0 yes yes 5 20.0
20 3 4 3 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 25.0
20 3 4 4 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 25.0
20 3 4 5 - no - - - 0.0 yes yes 4 - 0.0 yes yes 3 66.7
20 3 8 1 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 25.0
20 3 8 2 0.0 yes yes 5 - 0.0 yes yes 5 - 0.0 yes yes 4 0.0
20 3 8 3 0.0 yes yes 4 - 0.0 yes yes 4 0.0 0.0 yes yes 4 0.0
20 3 8 4 - no - - - 0.0 yes yes 4 - 0.0 yes yes 5 20.0
20 3 8 5 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 0.0

Table A.13: Problem V, Q|sd, ri, di|CLT (part 1)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance t-t t-w t

CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%)

40 1 1 1 - no - - - 0.0 yes yes 24 - 0.1 yes yes 24 16.7
40 1 1 2 - no - - - - no - - - 0.2 yes yes 25 4.0
40 1 1 3 - no - - - - no - - - 0.2 yes yes 29 0.0
40 1 1 4 - no - - - - no - - - 0.1 yes yes 28 3.6
40 1 1 5 - no - - - - no - - - 0.1 yes yes 28 0.0
40 1 2 1 - no - - - - no - - - 0.2 yes yes 19 15.8
40 1 2 2 - no - - - - no - - - 0.1 yes yes 20 15.0
40 1 2 3 0.1 yes yes 21 - 0.1 yes yes 21 - 0.1 yes yes 21 0.0
40 1 2 4 - no - - - 0.1 yes yes 21 - 0.1 yes yes 22 0.0
40 1 2 5 - no - - - 0.1 yes yes 20 - 0.3 yes yes 19 15.8
40 1 4 1 0.0 yes yes 19 - 0.0 yes yes 18 - 0.1 yes yes 18 11.1
40 1 4 2 0.0 yes yes 19 - - no - - - 0.1 yes yes 18 11.1
40 1 4 3 0.1 yes yes 18 - 0.1 yes yes 19 - 0.3 yes yes 17 11.8
40 1 4 4 - no - - - 0.2 yes yes 20 - 0.1 yes yes 21 19.0
40 1 4 5 - no - - - - no - - - 0.3 yes yes 22 9.1
40 1 8 1 0.0 yes yes 19 - 0.0 yes yes 17 - 0.1 yes yes 19 5.3
40 1 8 2 0.0 yes yes 18 - 0.1 yes yes 19 - 0.1 yes yes 17 29.4
40 1 8 3 - no - - - - no - - - 0.3 yes yes 20 20.0
40 1 8 4 0.0 yes yes 17 - 0.1 yes yes 18 - 0.1 yes yes 17 17.6
40 1 8 5 0.0 yes yes 17 - 0.0 yes yes 17 - 0.1 yes yes 17 0.0

40 2 1 1 - no - - - 0.1 yes yes 13 - 0.3 yes yes 12 16.7
40 2 1 2 - no - - - 0.0 yes yes 13 - 0.2 yes yes 14 7.1
40 2 1 3 - no - - - - no - - - 0.4 yes yes 15 6.7
40 2 1 4 - no - - - - no - - - 0.2 yes yes 14 0.0
40 2 1 5 - no - - - - no - - - 0.2 yes yes 13 7.7
40 2 2 1 - no - - - 0.1 yes yes 10 - 0.2 yes yes 10 20.0
40 2 2 2 - no - - - 0.1 yes yes 10 - 0.2 yes yes 10 10.0
40 2 2 3 - no - - - 0.1 yes yes 10 - 0.2 yes yes 11 9.1
40 2 2 4 0.0 yes yes 10 - 0.0 yes yes 10 - 0.1 yes yes 10 20.0
40 2 2 5 - no - - - - no - - - 0.1 yes yes 10 10.0
40 2 4 1 0.0 yes yes 9 - 0.2 yes yes 10 - 0.1 yes yes 8 37.5
40 2 4 2 0.0 yes yes 9 - 0.0 yes yes 9 - 0.1 yes yes 9 11.1
40 2 4 3 - no - - - 0.1 yes yes 11 - 0.5 yes yes 11 0.0
40 2 4 4 0.0 yes yes 10 - 0.0 yes yes 10 - 0.2 yes yes 10 10.0
40 2 4 5 0.0 yes yes 9 - 0.0 yes yes 9 - 0.1 yes yes 9 11.1
40 2 8 1 0.2 yes yes 10 - 0.1 yes yes 10 - 0.3 yes yes 9 33.3
40 2 8 2 0.1 yes yes 11 - 0.0 yes yes 10 - 0.3 yes yes 11 0.0
40 2 8 3 0.0 yes yes 11 - 0.1 yes yes 11 - 0.2 yes yes 11 9.1
40 2 8 4 - no - - - 0.0 yes yes 10 - 0.1 yes yes 11 9.1
40 2 8 5 0.0 yes yes 10 - 0.0 yes yes 9 - 0.1 yes yes 10 10.0

40 3 1 1 - no - - - 0.0 yes yes 9 - 0.3 yes yes 8 25.0
40 3 1 2 - no - - - 0.0 yes yes 9 - 0.3 yes yes 9 11.1
40 3 1 3 - no - - - - no - - - 0.3 yes yes 10 10.0
40 3 1 4 - no - - - 0.0 yes yes 9 - 0.2 yes yes 10 20.0
40 3 1 5 - no - - - 0.0 yes yes 9 - 0.3 yes yes 9 0.0
40 3 2 1 0.0 yes yes 7 - 0.0 yes yes 7 - 0.2 yes yes 7 14.3
40 3 2 2 - no - - - 0.1 yes yes 8 - 0.2 yes yes 7 14.3
40 3 2 3 - no - - - 0.1 yes yes 9 - 0.4 yes yes 8 12.5
40 3 2 4 0.0 yes yes 8 - 0.0 yes yes 8 - 0.2 yes yes 8 12.5
40 3 2 5 0.0 yes yes 7 - - no - - - 0.2 yes yes 7 28.6
40 3 4 1 0.0 yes yes 6 16.7 0.0 yes yes 7 - 0.1 yes yes 6 16.7
40 3 4 2 0.0 yes yes 7 - 0.0 yes yes 6 - 0.1 yes yes 6 16.7
40 3 4 3 - no - - - - no - - - 0.2 yes yes 8 12.5
40 3 4 4 0.0 yes yes 7 - 0.0 yes yes 7 - 0.1 yes yes 7 14.3
40 3 4 5 0.0 yes yes 7 - 0.0 yes yes 8 - 0.1 yes yes 7 14.3
40 3 8 1 0.0 yes yes 7 - 0.0 yes yes 7 - 0.1 yes yes 7 14.3
40 3 8 2 0.0 yes yes 7 - 0.0 yes yes 6 - 0.1 yes yes 7 14.3
40 3 8 3 - no - - - 0.1 yes yes 7 - 0.1 yes yes 6 50.0
40 3 8 4 0.0 yes yes 6 - 0.0 yes yes 6 - 0.1 yes yes 6 16.7
40 3 8 5 0.0 yes yes 6 - 0.0 yes yes 6 - 0.1 yes yes 6 16.7

Table A.14: Problem V, Q|sd, ri, di|CLT (part 2)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance t-t t-w t

CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%)

80 1 1 1 - no - - - 0.4 yes yes 45 - 1.8 yes yes 47 4.3
80 1 1 2 - no - - - 0.2 yes yes 48 - 0.8 yes yes 47 2.1
80 1 1 3 - no - - - 0.2 yes yes 50 - 1.7 yes yes 49 4.1
80 1 1 4 - no - - - - no - - - 1.5 yes yes 49 6.1
80 1 1 5 - no - - - 0.2 yes yes 47 - 0.8 yes yes 47 4.3
80 1 2 1 0.8 yes yes 38 - 1.0 yes yes 36 - 1.5 yes yes 38 7.9
80 1 2 2 0.7 yes yes 42 - 1.4 yes yes 36 - 3.4 yes yes 41 9.8
80 1 2 3 - no - - - 2.5 yes yes 38 - 3.9 yes yes 36 13.9
80 1 2 4 - no - - - 0.8 yes yes 39 - 0.6 yes yes 38 10.5
80 1 2 5 0.2 yes yes 38 - 0.3 yes yes 37 - 1.7 yes yes 38 7.9
80 1 4 1 0.5 yes yes 34 - 1.1 yes yes 35 - 1.7 yes yes 33 12.1
80 1 4 2 0.2 yes yes 34 - 1.3 yes yes 35 11.4 1.3 yes yes 34 11.8
80 1 4 3 0.2 yes yes 35 - 0.2 yes yes 34 - 1.5 yes yes 34 17.6
80 1 4 4 - no - - - 1.9 yes yes 38 - 7.1 yes yes 37 8.1
80 1 4 5 - no - - - 56.6 yes yes 34 - 2.0 yes yes 35 8.6
80 1 8 1 0.1 yes yes 31 - 0.4 yes yes 33 - 0.2 yes yes 31 9.7
80 1 8 2 0.2 yes yes 33 - 1.1 yes yes 34 - 0.3 yes yes 33 9.1
80 1 8 3 0.3 yes yes 33 - 0.3 yes yes 33 - 2.4 yes yes 32 12.5
80 1 8 4 1.4 yes yes 35 - 2.1 yes yes 34 - 8.0 yes yes 34 17.6
80 1 8 5 0.1 yes yes 31 - 0.2 yes yes 34 - 0.2 yes yes 31 9.7

80 2 1 1 - no - - - - no - - - 1.6 yes yes 24 4.2
80 2 1 2 - no - - - - no - - - 1.9 yes yes 23 4.3
80 2 1 3 - no - - - 0.2 yes yes 25 - 3.0 yes yes 24 4.2
80 2 1 4 - no - - - 0.3 yes yes 25 - 2.1 yes yes 25 4.0
80 2 1 5 - no - - - 0.4 yes yes 23 - 1.2 yes yes 24 4.2
80 2 2 1 0.7 yes yes 18 - 1.1 yes yes 18 - 2.3 yes yes 18 16.7
80 2 2 2 0.4 yes yes 19 - 0.7 yes yes 18 - 1.4 yes yes 19 10.5
80 2 2 3 0.9 yes yes 21 - 7.2 yes yes 19 - 4.4 yes yes 19 21.1
80 2 2 4 0.6 yes yes 20 - 0.5 yes yes 20 - 3.4 yes yes 19 10.5
80 2 2 5 0.2 yes yes 19 - 0.8 yes yes 19 - 0.8 yes yes 19 15.8
80 2 4 1 0.2 yes yes 16 - 1.8 yes yes 18 - 1.4 yes yes 16 6.3
80 2 4 2 0.2 yes yes 16 - 0.2 yes yes 16 - 0.4 yes yes 16 12.5
80 2 4 3 0.2 yes yes 19 - 0.3 yes yes 18 - 2.0 yes yes 18 16.7
80 2 4 4 36.1 yes yes 18 - 3.6 yes yes 18 - 41.1 yes yes 18 11.1
80 2 4 5 0.2 yes yes 17 - 0.2 yes yes 18 - 0.8 yes yes 17 11.8
80 2 8 1 0.2 yes yes 17 - 0.4 yes yes 18 - 0.5 yes yes 17 5.9
80 2 8 2 0.3 yes yes 18 - 0.8 yes yes 18 - 1.1 yes yes 18 11.1
80 2 8 3 0.2 yes yes 17 - 0.2 yes yes 17 - 5.8 yes yes 17 5.9
80 2 8 4 0.2 yes yes 17 - 0.5 yes yes 16 - 0.9 yes yes 17 5.9
80 2 8 5 0.1 yes yes 17 - 2.3 yes yes 17 - 0.5 yes yes 17 5.9

80 3 1 1 - no - - - 0.3 yes yes 16 - 3.0 yes yes 16 6.3
80 3 1 2 - no - - - 0.5 yes yes 16 - 2.8 yes yes 15 6.7
80 3 1 3 - no - - - - no - - - 2.7 yes yes 17 5.9
80 3 1 4 - no - - - 0.2 yes yes 17 - 2.2 yes yes 17 0.0
80 3 1 5 - no - - - 0.3 yes yes 16 - 1.5 yes yes 16 6.3
80 3 2 1 4.3 yes yes 13 - 0.6 yes yes 13 - 1.7 yes yes 13 7.7
80 3 2 2 0.2 yes yes 14 - 0.3 yes yes 13 - 1.8 yes yes 14 7.1
80 3 2 3 0.2 yes yes 13 - 0.7 yes yes 12 - 1.0 yes yes 13 15.4
80 3 2 4 0.3 yes yes 13 - 0.3 yes yes 12 - 1.6 yes yes 13 7.7
80 3 2 5 0.1 yes yes 13 - 0.2 yes yes 12 - 1.0 yes yes 13 7.7
80 3 4 1 0.5 yes yes 12 - 0.1 yes yes 11 - 3.2 yes yes 12 8.3
80 3 4 2 0.1 yes yes 12 - 0.3 yes yes 12 - 0.8 yes yes 12 16.7
80 3 4 3 0.1 yes yes 12 - 6.6 yes yes 12 - 0.7 yes yes 12 8.3
80 3 4 4 0.2 yes yes 12 - 0.8 yes yes 12 - 0.3 yes yes 12 8.3
80 3 4 5 0.3 yes yes 12 - 0.8 yes yes 13 - 1.3 yes yes 12 25.0
80 3 8 1 0.3 yes yes 12 - 0.4 yes yes 12 - 2.5 yes yes 12 8.3
80 3 8 2 0.1 yes yes 11 9.1 0.1 yes yes 11 - 0.5 yes yes 11 9.1
80 3 8 3 0.4 yes yes 13 - 0.9 yes yes 12 - 3.7 yes yes 13 15.4
80 3 8 4 1.3 yes yes 11 - 1.3 yes yes 11 - 0.7 yes yes 11 27.3
80 3 8 5 0.2 yes yes 13 - 0.3 yes yes 12 - 0.6 yes yes 12 16.7

Table A.15: Problem V, Q|sd, ri, di|CLT (part 3)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance t-t t-w t

CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%)

160 1 1 1 - no - - - 15.7 yes yes 91 - 87.4 yes yes 89 5.6
160 1 1 2 - no - - - 2.4 yes yes 92 - 35.3 yes yes 94 5.3
160 1 1 3 - no - - - 9.5 yes yes 84 - 49.1 yes yes 84 3.6
160 1 1 4 - no - - - 8.4 yes yes 88 - 46.8 yes yes 88 3.4
160 1 1 5 - no - - - 3.1 yes yes 87 - 9.5 yes yes 88 1.1
160 1 2 1 339.4 yes yes 76 - 107.9 yes yes 73 - 1550.5 yes yes 75 5.3
160 1 2 2 33.6 yes yes 72 - 23.9 yes yes 72 - 61.3 yes yes 72 4.2
160 1 2 3 500.9 yes yes 65 - 16.8 yes yes 69 - 49.3 yes yes 65 6.2
160 1 2 4 9.3 yes yes 70 - 27.6 yes yes 68 - 51.3 yes yes 70 5.7
160 1 2 5 14.5 yes yes 64 - 16.5 yes yes 64 - 19.6 yes yes 64 10.9
160 1 4 1 7.6 yes yes 66 - 28.7 yes yes 62 - 52.9 yes yes 66 6.1
160 1 4 2 22.0 yes yes 65 - 18.9 yes yes 63 - 43.6 yes yes 65 9.2
160 1 4 3 6.7 yes yes 65 - 10.4 yes yes 61 - 7.4 yes yes 65 4.6
160 1 4 4 8.7 yes yes 63 - 49.0 yes yes 68 - 8.7 yes yes 63 6.3
160 1 4 5 31.4 yes yes 65 - 2.8 yes yes 63 - 23.2 yes yes 64 9.4
160 1 8 1 80.5 yes yes 65 - 20.5 yes yes 65 - 63.4 yes yes 65 9.2
160 1 8 2 6.9 yes yes 62 - 2.6 yes yes 64 - 7.8 yes yes 62 8.1
160 1 8 3 2.4 yes yes 65 - 0.8 yes yes 63 - 5.6 yes yes 65 4.6
160 1 8 4 1.4 yes yes 61 - 18.2 yes yes 62 - 4.7 yes yes 61 8.2
160 1 8 5 1.9 yes yes 64 - 1.3 yes yes 63 - 5.6 yes yes 64 4.7

160 2 1 1 - no - - - 6.0 yes yes 45 - 63.6 yes yes 45 4.4
160 2 1 2 - no - - - 2.3 yes yes 48 - 18.1 yes yes 46 2.2
160 2 1 3 - no - - - 5.7 yes yes 43 - 25.5 yes yes 42 0.0
160 2 1 4 - no - - - 4.1 yes yes 44 - 17.3 yes yes 44 2.3
160 2 1 5 - no - - - 2.5 yes yes 44 - 18.0 yes yes 44 2.3
160 2 2 1 373.7 yes yes 35 - 56.0 yes yes 34 - 101.0 yes yes 35 8.6
160 2 2 2 34.3 yes yes 35 - 40.1 yes yes 34 - 31.1 yes yes 35 8.6
160 2 2 3 20.7 yes yes 35 - 17.7 yes yes 33 - 47.4 yes yes 35 8.6
160 2 2 4 6.8 yes yes 33 - 8.1 yes yes 35 - 25.5 yes yes 33 6.1
160 2 2 5 2.9 yes yes 34 - 7.8 yes yes 36 - 19.8 yes yes 34 2.9
160 2 4 1 1800.0 yes no 32 - 13.2 yes yes 35 - 180.0 yes yes 31 16.1
160 2 4 2 11.0 yes yes 33 - 15.1 yes yes 34 - 14.2 yes yes 33 12.1
160 2 4 3 11.5 yes yes 31 - 14.3 yes yes 35 - 10.9 yes yes 31 6.5
160 2 4 4 3.2 yes yes 33 - 1.1 yes yes 31 - 11.7 yes yes 33 9.1
160 2 4 5 2.1 yes yes 32 - 2.3 yes yes 32 - 5.9 yes yes 32 9.4
160 2 8 1 54.2 yes yes 33 - 349.4 yes yes 35 - 87.4 yes yes 33 12.1
160 2 8 2 0.8 yes yes 31 - 1.6 yes yes 32 - 2.0 yes yes 31 6.5
160 2 8 3 1.1 yes yes 31 - 3.3 yes yes 31 - 2.5 yes yes 31 6.5
160 2 8 4 3.4 yes yes 33 - 3.1 yes yes 31 - 7.1 yes yes 32 9.4
160 2 8 5 0.6 yes yes 32 - 0.6 yes yes 32 - 3.7 yes yes 32 9.4

160 3 1 1 - no - - - 3.5 yes yes 30 - 90.4 yes yes 30 10.0
160 3 1 2 - no - - - 2.7 yes yes 31 - 38.9 yes yes 31 6.5
160 3 1 3 - no - - - 3.4 yes yes 28 - 40.8 yes yes 29 3.4
160 3 1 4 - no - - - 7.5 yes yes 29 - 58.2 yes yes 29 3.4
160 3 1 5 - no - - - 2.9 yes yes 30 - 20.6 yes yes 30 6.7
160 3 2 1 200.1 yes yes 24 - 42.5 yes yes 24 - 34.3 yes yes 24 12.5
160 3 2 2 9.3 yes yes 25 - 15.7 yes yes 24 - 44.0 yes yes 25 8.0
160 3 2 3 41.3 yes yes 22 - 7.5 yes yes 23 - 29.7 yes yes 22 9.1
160 3 2 4 4.5 yes yes 23 - 16.6 yes yes 22 - 14.4 yes yes 23 8.7
160 3 2 5 2.4 yes yes 22 - 3.6 yes yes 22 - 10.0 yes yes 22 9.1
160 3 4 1 22.5 yes yes 24 - 7.8 yes yes 22 - 1687.5 yes yes 24 12.5
160 3 4 2 59.5 yes yes 22 - 94.3 yes yes 22 - 72.3 yes yes 21 14.3
160 3 4 3 13.1 yes yes 21 - 6.1 yes yes 22 - 24.7 yes yes 21 9.5
160 3 4 4 4.2 yes yes 23 - 10.1 yes yes 23 - 13.1 yes yes 23 8.7
160 3 4 5 2.5 yes yes 22 - 5.8 yes yes 21 - 13.5 yes yes 22 9.1
160 3 8 1 2.9 yes yes 21 - 14.5 yes yes 21 - 6.4 yes yes 21 4.8
160 3 8 2 446.1 yes yes 22 - 6.8 yes yes 22 - 232.9 yes yes 22 13.6
160 3 8 3 12.5 yes yes 21 - 5.3 yes yes 22 - 11.3 yes yes 21 9.5
160 3 8 4 1.2 yes yes 23 - 0.9 yes yes 22 - 22.1 yes yes 23 4.3
160 3 8 5 1.4 yes yes 22 - 0.8 yes yes 22 - 9.4 yes yes 22 9.1

Table A.16: Problem V, Q|sd, ri, di|CLT (part 4)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance w-t w-w w

CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%)

20 1 1 1 - no - - - 0.0 yes yes 15 - 0.0 yes yes 15 13.3
20 1 1 2 - no - - - - no - - - 0.0 yes yes 15 13.3
20 1 1 3 - no - - - - no - - - 0.0 yes yes 13 15.4
20 1 1 4 - no - - - - no - - - 0.0 yes yes 15 6.7
20 1 1 5 - no - - - 0.0 yes yes 13 - 0.0 yes yes 12 8.3
20 1 2 1 0.0 yes yes 13 - 0.0 yes yes 13 - 0.0 yes yes 13 15.4
20 1 2 2 - no - - - 0.0 yes yes 13 - 0.0 yes yes 13 15.4
20 1 2 3 - no - - - 0.0 yes yes 12 - 0.0 yes yes 13 23.1
20 1 2 4 - no - - - - no - - - 0.0 yes yes 11 27.3
20 1 2 5 0.0 yes yes 11 9.1 0.0 yes yes 12 - 0.0 yes yes 11 9.1
20 1 4 1 - no - - - - no - - - 0.0 yes yes 12 16.7
20 1 4 2 - no - - - 0.0 yes yes 15 - 0.0 yes yes 14 7.1
20 1 4 3 0.0 yes yes 12 - - no - - - 0.0 yes yes 12 16.7
20 1 4 4 - no - - - - no - - - 0.0 yes yes 11 9.1
20 1 4 5 0.0 yes yes 10 - - no - - - 0.0 yes yes 10 10.0
20 1 8 1 - no - - - 0.0 yes yes 12 - 0.0 yes yes 11 9.1
20 1 8 2 - no - - - - no - - - 0.0 yes yes 12 16.7
20 1 8 3 0.0 yes yes 12 - 0.0 yes yes 10 10.0 0.0 yes yes 11 18.2
20 1 8 4 - no - - - 0.0 yes yes 13 - 0.0 yes yes 12 16.7
20 1 8 5 0.0 yes yes 11 - 0.0 yes yes 12 - 0.0 yes yes 11 9.1

20 2 1 1 - no - - - 0.0 yes yes 7 - 0.0 yes yes 8 12.5
20 2 1 2 - no - - - - no - - - 0.0 yes yes 10 0.0
20 2 1 3 - no - - - 0.0 yes yes 7 - 0.0 yes yes 8 12.5
20 2 1 4 - no - - - - no - - - 0.1 yes yes 9 0.0
20 2 1 5 - no - - - 0.0 yes yes 7 - 0.0 yes yes 7 14.3
20 2 2 1 0.0 yes yes 7 - 0.0 yes yes 7 - 0.0 yes yes 7 14.3
20 2 2 2 0.0 yes yes 8 - - no - - - 0.0 yes yes 7 14.3
20 2 2 3 0.0 yes yes 6 - 0.0 yes yes 6 33.3 0.0 yes yes 6 16.7
20 2 2 4 0.0 yes yes 7 - 0.0 yes yes 7 - 0.0 yes yes 7 14.3
20 2 2 5 - no - - - 0.0 yes yes 6 - 0.0 yes yes 5 20.0
20 2 4 1 - no - - - 0.0 yes yes 6 - 0.0 yes yes 8 12.5
20 2 4 2 0.0 yes yes 7 - 0.0 yes yes 8 - 0.0 yes yes 7 14.3
20 2 4 3 0.0 yes yes 7 - 0.0 yes yes 6 16.7 0.0 yes yes 6 16.7
20 2 4 4 - no - - - - no - - - 0.0 yes yes 6 33.3
20 2 4 5 - no - - - 0.0 yes yes 7 - 0.0 yes yes 6 0.0
20 2 8 1 0.0 yes yes 6 - 0.0 yes yes 6 - 0.0 yes yes 6 0.0
20 2 8 2 0.0 yes yes 7 - 0.0 yes yes 7 - 0.0 yes yes 7 14.3
20 2 8 3 0.0 yes yes 6 - 0.0 yes yes 6 - 0.0 yes yes 6 16.7
20 2 8 4 0.0 yes yes 7 - 0.0 yes yes 6 - 0.0 yes yes 7 14.3
20 2 8 5 0.0 yes yes 6 - 0.0 yes yes 6 - 0.0 yes yes 6 16.7

20 3 1 1 - no - - - - no - - - 0.0 yes yes 6 16.7
20 3 1 2 - no - - - - no - - - 0.0 yes yes 6 16.7
20 3 1 3 0.0 yes yes 5 - - no - - - 0.0 yes yes 5 0.0
20 3 1 4 - no - - - 0.0 yes yes 6 - 0.1 yes yes 6 16.7
20 3 1 5 - no - - - 0.0 yes yes 5 - 0.0 yes yes 5 20.0
20 3 2 1 - no - - - 0.0 yes yes 5 - 0.0 yes yes 5 0.0
20 3 2 2 - no - - - 0.0 yes yes 5 - 0.0 yes yes 5 20.0
20 3 2 3 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 25.0
20 3 2 4 0.0 yes yes 5 - 0.0 yes yes 5 - 0.0 yes yes 5 20.0
20 3 2 5 0.0 yes yes 4 - 0.0 yes yes 4 - 0.0 yes yes 4 25.0
20 3 4 1 0.0 yes yes 5 - 0.0 yes yes 5 0.0 0.0 yes yes 5 20.0
20 3 4 2 - no - - - 0.0 yes yes 5 - 0.0 yes yes 6 0.0
20 3 4 3 0.0 yes yes 5 - 0.0 yes yes 5 20.0 0.0 yes yes 4 50.0
20 3 4 4 0.0 yes yes 5 - 0.0 yes yes 4 - 0.0 yes yes 5 40.0
20 3 4 5 0.0 yes yes 5 - 0.0 yes yes 4 25.0 0.0 yes yes 5 0.0
20 3 8 1 0.0 yes yes 5 - 0.0 yes yes 5 - 0.0 yes yes 5 0.0
20 3 8 2 0.0 yes yes 4 - 0.0 yes yes 5 - 0.0 yes yes 4 25.0
20 3 8 3 0.0 yes yes 4 25.0 0.0 yes yes 4 - 0.0 yes yes 4 25.0
20 3 8 4 0.0 yes yes 5 - 0.0 yes yes 5 - 0.0 yes yes 5 40.0
20 3 8 5 0.0 yes yes 4 - 0.0 yes yes 5 - 0.0 yes yes 4 25.0

Table A.17: Problem V, Q|sd, ri, di|CLT (part 5)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance w-t w-w w

CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%)

40 1 1 1 - no - - - 0.1 yes yes 27 - 0.1 yes yes 24 8.3
40 1 1 2 0.0 yes yes 26 - 0.0 yes yes 25 - 0.1 yes yes 25 12.0
40 1 1 3 - no - - - - no - - - 0.1 yes yes 31 3.2
40 1 1 4 - no - - - - no - - - 0.1 yes yes 27 3.7
40 1 1 5 - no - - - - no - - - 0.1 yes yes 28 3.6
40 1 2 1 0.0 yes yes 22 - 0.0 yes yes 21 - 0.1 yes yes 21 14.3
40 1 2 2 0.0 yes yes 22 - 0.0 yes yes 22 - 0.0 yes yes 21 4.8
40 1 2 3 0.1 yes yes 23 - 0.1 yes yes 23 - 0.1 yes yes 22 9.1
40 1 2 4 0.0 yes yes 24 - 0.0 yes yes 23 - 0.1 yes yes 22 4.5
40 1 2 5 - no - - - 0.0 yes yes 24 - 0.1 yes yes 22 4.5
40 1 4 1 - no - - - 0.0 yes yes 21 - 0.1 yes yes 21 9.5
40 1 4 2 0.0 yes yes 24 - 0.0 yes yes 22 - 0.1 yes yes 22 9.1
40 1 4 3 0.0 yes yes 23 - 0.0 yes yes 24 - 0.1 yes yes 22 9.1
40 1 4 4 0.0 yes yes 22 - 0.1 yes yes 24 - 0.1 yes yes 21 14.3
40 1 4 5 0.0 yes yes 25 - 0.0 yes yes 26 - 0.1 yes yes 24 8.3
40 1 8 1 0.0 yes yes 21 - 0.0 yes yes 21 - 0.0 yes yes 21 0.0
40 1 8 2 0.0 yes yes 20 - 0.0 yes yes 21 - 0.1 yes yes 19 21.1
40 1 8 3 0.0 yes yes 23 - 0.1 yes yes 23 - 0.1 yes yes 22 18.2
40 1 8 4 0.0 yes yes 21 - 0.0 yes yes 22 - 0.0 yes yes 21 14.3
40 1 8 5 0.0 yes yes 21 - 0.0 yes yes 22 - 0.0 yes yes 21 0.0

40 2 1 1 0.0 yes yes 13 - 0.0 yes yes 13 - 0.1 yes yes 12 16.7
40 2 1 2 - no - - - - no - - - 0.2 yes yes 14 0.0
40 2 1 3 - no - - - - no - - - 0.2 yes yes 15 13.3
40 2 1 4 - no - - - 0.0 yes yes 14 - 0.1 yes yes 15 6.7
40 2 1 5 - no - - - 0.0 yes yes 14 - 0.2 yes yes 14 7.1
40 2 2 1 0.0 yes yes 12 - 0.0 yes yes 12 - 0.1 yes yes 12 8.3
40 2 2 2 - no - - - 0.0 yes yes 12 - 0.1 yes yes 11 18.2
40 2 2 3 0.0 yes yes 11 - 0.0 yes yes 11 - 0.1 yes yes 11 9.1
40 2 2 4 0.0 yes yes 11 - 0.0 yes yes 11 - 0.0 yes yes 11 9.1
40 2 2 5 0.0 yes yes 12 - 0.0 yes yes 11 - 0.1 yes yes 11 9.1
40 2 4 1 0.0 yes yes 11 - 0.0 yes yes 11 - 0.1 yes yes 11 18.2
40 2 4 2 - no - - - 0.0 yes yes 11 - 0.1 yes yes 11 9.1
40 2 4 3 0.0 yes yes 12 - 0.0 yes yes 11 - 0.1 yes yes 12 8.3
40 2 4 4 0.0 yes yes 11 - 0.0 yes yes 13 - 0.1 yes yes 11 18.2
40 2 4 5 0.0 yes yes 13 - 0.0 yes yes 11 - 0.1 yes yes 13 7.7
40 2 8 1 0.0 yes yes 11 - 0.0 yes yes 11 - 0.1 yes yes 11 18.2
40 2 8 2 0.0 yes yes 11 - 0.0 yes yes 12 - 0.1 yes yes 11 9.1
40 2 8 3 - no - - - 0.0 yes yes 11 - 0.1 yes yes 11 9.1
40 2 8 4 0.0 yes yes 12 - 0.0 yes yes 11 - 0.1 yes yes 12 16.7
40 2 8 5 0.0 yes yes 10 10.0 0.0 yes yes 11 - 0.1 yes yes 10 20.0

40 3 1 1 0.0 yes yes 9 - 0.0 yes yes 9 - 0.1 yes yes 8 25.0
40 3 1 2 - no - - - 0.0 yes yes 10 - 0.1 yes yes 9 11.1
40 3 1 3 - no - - - 0.0 yes yes 11 - 0.3 yes yes 10 10.0
40 3 1 4 - no - - - 0.1 yes yes 8 - 0.2 yes yes 9 11.1
40 3 1 5 - no - - - 0.0 yes yes 10 - 0.2 yes yes 9 11.1
40 3 2 1 0.0 yes yes 8 - 0.0 yes yes 8 - 0.1 yes yes 8 12.5
40 3 2 2 0.0 yes yes 8 - 0.0 yes yes 8 - 0.1 yes yes 8 12.5
40 3 2 3 0.0 yes yes 9 - 0.0 yes yes 9 - 0.2 yes yes 8 25.0
40 3 2 4 0.0 yes yes 8 - 0.0 yes yes 9 - 0.1 yes yes 8 12.5
40 3 2 5 0.0 yes yes 9 - 0.0 yes yes 8 - 0.1 yes yes 9 11.1
40 3 4 1 0.0 yes yes 8 - 0.0 yes yes 8 - 0.1 yes yes 8 12.5
40 3 4 2 0.0 yes yes 8 - 0.0 yes yes 8 - 0.1 yes yes 8 12.5
40 3 4 3 0.1 yes yes 9 - 0.0 yes yes 8 - 0.1 yes yes 8 25.0
40 3 4 4 0.0 yes yes 8 - 0.0 yes yes 8 - 0.1 yes yes 8 0.0
40 3 4 5 0.0 yes yes 8 - 0.0 yes yes 8 - 0.1 yes yes 8 12.5
40 3 8 1 0.0 yes yes 7 - 0.0 yes yes 8 - 0.1 yes yes 7 14.3
40 3 8 2 0.0 yes yes 8 - 0.0 yes yes 8 - 0.1 yes yes 8 12.5
40 3 8 3 0.0 yes yes 8 - 0.0 yes yes 7 - 0.1 yes yes 8 12.5
40 3 8 4 0.0 yes yes 8 - 0.0 yes yes 8 - 0.1 yes yes 8 25.0
40 3 8 5 0.0 yes yes 8 - 0.0 yes yes 9 - 0.1 yes yes 8 25.0

Table A.18: Problem V, Q|sd, ri, di|CLT (part 6)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance w-t w-w w

CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%)

80 1 1 1 - no - - - - no - - - 1.2 yes yes 46 8.7
80 1 1 2 0.1 yes yes 47 - 0.3 yes yes 46 - 0.8 yes yes 46 10.9
80 1 1 3 - no - - - 0.5 yes yes 49 - 0.8 yes yes 50 10.0
80 1 1 4 - no - - - 0.2 yes yes 52 - 0.6 yes yes 50 6.0
80 1 1 5 0.1 yes yes 48 - 0.1 yes yes 48 - 0.6 yes yes 48 2.1
80 1 2 1 0.1 yes yes 42 - 0.1 yes yes 42 - 0.4 yes yes 42 11.9
80 1 2 2 0.1 yes yes 45 - 0.4 yes yes 42 - 0.3 yes yes 45 2.2
80 1 2 3 0.2 yes yes 45 - 0.5 yes yes 45 - 0.6 yes yes 45 8.9
80 1 2 4 0.1 yes yes 44 - 0.4 yes yes 42 - 0.3 yes yes 44 4.5
80 1 2 5 0.1 yes yes 42 - 0.1 yes yes 42 - 0.2 yes yes 41 4.9
80 1 4 1 0.1 yes yes 42 - 0.3 yes yes 43 - 0.5 yes yes 42 2.4
80 1 4 2 0.1 yes yes 41 - 0.2 yes yes 40 - 0.1 yes yes 41 2.4
80 1 4 3 0.1 yes yes 41 - 0.1 yes yes 43 - 0.2 yes yes 41 0.0
80 1 4 4 0.3 yes yes 40 - 0.4 yes yes 42 - 0.3 yes yes 40 17.5
80 1 4 5 0.1 yes yes 42 - 0.1 yes yes 41 - 0.3 yes yes 42 11.9
80 1 8 1 0.1 yes yes 42 - 0.1 yes yes 41 - 0.2 yes yes 42 7.1
80 1 8 2 0.1 yes yes 42 - 0.0 yes yes 42 - 0.2 yes yes 42 2.4
80 1 8 3 0.1 yes yes 44 - 0.1 yes yes 41 - 0.5 yes yes 44 9.1
80 1 8 4 0.1 yes yes 41 - 0.2 yes yes 42 - 0.2 yes yes 41 4.9
80 1 8 5 0.0 yes yes 40 - 0.1 yes yes 40 - 0.1 yes yes 40 0.0

80 2 1 1 0.2 yes yes 23 - 0.3 yes yes 25 - 1.0 yes yes 23 4.3
80 2 1 2 0.2 yes yes 24 - 0.2 yes yes 23 - 1.7 yes yes 23 8.7
80 2 1 3 - no - - - 0.3 yes yes 26 - 2.1 yes yes 24 8.3
80 2 1 4 0.2 yes yes 25 - 0.7 yes yes 26 - 1.0 yes yes 25 8.0
80 2 1 5 0.2 yes yes 24 - 0.2 yes yes 24 - 0.9 yes yes 24 8.3
80 2 2 1 0.1 yes yes 22 - 0.2 yes yes 22 4.5 0.6 yes yes 22 0.0
80 2 2 2 0.1 yes yes 22 - 0.1 yes yes 22 - 0.5 yes yes 22 4.5
80 2 2 3 0.2 yes yes 21 - 0.2 yes yes 22 - 0.8 yes yes 21 14.3
80 2 2 4 0.3 yes yes 21 - 0.2 yes yes 22 - 0.6 yes yes 21 9.5
80 2 2 5 0.1 yes yes 25 - 0.1 yes yes 22 - 0.9 yes yes 25 0.0
80 2 4 1 0.1 yes yes 22 - 0.1 yes yes 21 - 0.3 yes yes 22 4.5
80 2 4 2 0.1 yes yes 21 - 0.1 yes yes 21 - 0.2 yes yes 21 4.8
80 2 4 3 0.1 yes yes 22 4.5 0.1 yes yes 21 - 0.4 yes yes 21 9.5
80 2 4 4 0.2 yes yes 21 - 0.1 yes yes 23 - 0.5 yes yes 21 4.8
80 2 4 5 0.1 yes yes 21 - 0.1 yes yes 21 - 0.4 yes yes 21 4.8
80 2 8 1 0.1 yes yes 21 - 0.1 yes yes 21 - 0.3 yes yes 21 9.5
80 2 8 2 0.1 yes yes 22 - 0.1 yes yes 21 - 0.4 yes yes 22 4.5
80 2 8 3 0.1 yes yes 21 - 0.2 yes yes 22 - 0.4 yes yes 21 4.8
80 2 8 4 0.1 yes yes 21 - 0.1 yes yes 21 - 0.2 yes yes 21 4.8
80 2 8 5 0.1 yes yes 22 - 0.1 yes yes 22 - 0.4 yes yes 22 4.5

80 3 1 1 - no - - - 0.4 yes yes 17 - 1.3 yes yes 16 18.8
80 3 1 2 0.1 yes yes 17 - 0.2 yes yes 16 - 1.2 yes yes 17 5.9
80 3 1 3 - no - - - 0.3 yes yes 17 - 1.9 yes yes 18 11.1
80 3 1 4 - no - - - 0.2 yes yes 19 - 1.4 yes yes 17 0.0
80 3 1 5 0.1 yes yes 16 - 0.1 yes yes 16 - 1.0 yes yes 16 6.3
80 3 2 1 0.1 yes yes 15 - 0.2 yes yes 15 - 0.7 yes yes 15 13.3
80 3 2 2 0.1 yes yes 15 - 0.1 yes yes 15 - 0.6 yes yes 15 20.0
80 3 2 3 0.1 yes yes 15 - 0.1 yes yes 14 - 0.3 yes yes 15 0.0
80 3 2 4 0.1 yes yes 14 - 0.1 yes yes 15 - 0.3 yes yes 14 7.1
80 3 2 5 0.1 yes yes 16 - 0.1 yes yes 15 - 0.4 yes yes 16 6.3
80 3 4 1 0.1 yes yes 15 - 0.1 yes yes 15 - 0.4 yes yes 15 13.3
80 3 4 2 0.0 yes yes 15 - 0.0 yes yes 15 - 0.3 yes yes 15 0.0
80 3 4 3 0.1 yes yes 15 - 0.1 yes yes 15 - 0.3 yes yes 15 0.0
80 3 4 4 0.1 yes yes 15 - 0.1 yes yes 15 - 0.3 yes yes 15 6.7
80 3 4 5 0.1 yes yes 15 - 0.2 yes yes 16 - 0.5 yes yes 15 6.7
80 3 8 1 0.1 yes yes 15 - 0.1 yes yes 15 - 0.3 yes yes 15 0.0
80 3 8 2 0.0 yes yes 15 - 0.1 yes yes 15 - 0.3 yes yes 15 0.0
80 3 8 3 0.1 yes yes 15 - 0.1 yes yes 15 - 0.5 yes yes 15 6.7
80 3 8 4 0.1 yes yes 14 - 0.1 yes yes 14 - 0.3 yes yes 14 7.1
80 3 8 5 0.1 yes yes 16 - 0.1 yes yes 15 - 1.1 yes yes 16 6.3

Table A.19: Problem V, Q|sd, ri, di|CLT (part 7)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance w-t w-w w

CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%) CPU(s) feas opt CLT gapGr(%)

160 1 1 1 6.3 yes yes 92 - 5.0 yes yes 95 - 35.4 yes yes 91 5.5
160 1 1 2 1.5 yes yes 99 - 5.8 yes yes 92 - 8.6 yes yes 99 3.0
160 1 1 3 1.5 yes yes 84 - 4.8 yes yes 87 - 11.3 yes yes 83 8.4
160 1 1 4 2.1 yes yes 92 - 2.5 yes yes 92 - 20.8 yes yes 93 9.7
160 1 1 5 2.1 yes yes 90 - 4.3 yes yes 90 - 8.9 yes yes 90 5.6
160 1 2 1 4.2 yes yes 88 - 12.4 yes yes 82 - 13.0 yes yes 88 3.4
160 1 2 2 0.7 yes yes 85 - 2.1 yes yes 86 - 2.4 yes yes 85 3.5
160 1 2 3 2.6 yes yes 82 - 0.7 yes yes 83 - 7.0 yes yes 82 6.1
160 1 2 4 1.1 yes yes 82 - 0.8 yes yes 82 - 2.3 yes yes 82 2.4
160 1 2 5 0.3 yes yes 81 - 1.8 yes yes 85 - 0.6 yes yes 81 1.2
160 1 4 1 0.3 yes yes 82 - 0.4 yes yes 82 - 1.3 yes yes 82 2.4
160 1 4 2 0.5 yes yes 83 - 0.4 yes yes 81 - 1.1 yes yes 83 1.2
160 1 4 3 0.3 yes yes 83 - 1.0 yes yes 80 - 2.0 yes yes 83 1.2
160 1 4 4 0.9 yes yes 79 - 0.4 yes yes 82 - 2.8 yes yes 79 5.1
160 1 4 5 0.3 yes yes 81 - 0.2 yes yes 82 - 1.2 yes yes 81 2.5
160 1 8 1 0.3 yes yes 83 - 0.7 yes yes 82 - 2.4 yes yes 82 3.7
160 1 8 2 0.3 yes yes 81 - 0.2 yes yes 81 - 1.2 yes yes 81 1.2
160 1 8 3 0.2 yes yes 81 - 0.3 yes yes 83 - 1.0 yes yes 81 0.0
160 1 8 4 0.3 yes yes 84 - 0.4 yes yes 81 - 1.3 yes yes 84 1.2
160 1 8 5 0.3 yes yes 81 - 0.3 yes yes 80 - 1.0 yes yes 81 2.5

160 2 1 1 4.2 yes yes 47 - 5.8 yes yes 47 - 30.4 yes yes 47 6.4
160 2 1 2 0.8 yes yes 49 - 3.1 yes yes 48 - 8.2 yes yes 49 4.1
160 2 1 3 0.8 yes yes 45 - 4.6 yes yes 43 - 5.4 yes yes 45 6.7
160 2 1 4 1.4 yes yes 47 - 2.4 yes yes 45 - 11.5 yes yes 47 4.3
160 2 1 5 1.4 yes yes 44 - 1.7 yes yes 46 - 5.8 yes yes 44 4.5
160 2 2 1 1.5 yes yes 44 - 6.8 yes yes 44 - 2.9 yes yes 44 4.5
160 2 2 2 0.8 yes yes 42 - 1.3 yes yes 42 - 3.8 yes yes 42 7.1
160 2 2 3 0.6 yes yes 42 - 1.5 yes yes 40 - 1.5 yes yes 42 2.4
160 2 2 4 0.6 yes yes 42 - 0.7 yes yes 41 - 2.8 yes yes 42 4.8
160 2 2 5 0.5 yes yes 42 - 0.4 yes yes 42 - 2.0 yes yes 41 2.4
160 2 4 1 0.7 yes yes 41 - 1.7 yes yes 43 - 2.5 yes yes 41 4.9
160 2 4 2 0.9 yes yes 43 - 0.9 yes yes 41 - 2.6 yes yes 43 2.3
160 2 4 3 0.6 yes yes 43 - 1.0 yes yes 42 - 2.8 yes yes 43 4.7
160 2 4 4 0.2 yes yes 42 - 0.5 yes yes 42 - 2.2 yes yes 42 2.4
160 2 4 5 0.3 yes yes 41 - 0.4 yes yes 41 - 2.1 yes yes 41 2.4
160 2 8 1 0.9 yes yes 41 - 1.8 yes yes 41 - 9.0 yes yes 41 7.3
160 2 8 2 0.3 yes yes 42 - 0.4 yes yes 42 - 2.7 yes yes 42 4.8
160 2 8 3 0.2 yes yes 41 - 0.3 yes yes 41 2.4 1.0 yes yes 41 0.0
160 2 8 4 0.2 yes yes 40 - 0.3 yes yes 41 - 2.2 yes yes 40 5.0
160 2 8 5 0.2 yes yes 40 - 0.3 yes yes 41 - 1.0 yes yes 40 2.5

160 3 1 1 1.9 yes yes 31 - 6.1 yes yes 31 - 28.4 yes yes 30 6.7
160 3 1 2 2.4 yes yes 31 - 3.2 yes yes 33 - 21.9 yes yes 31 9.7
160 3 1 3 1.4 yes yes 30 - 1.3 yes yes 29 - 17.7 yes yes 30 13.3
160 3 1 4 2.0 yes yes 29 - 2.3 yes yes 31 - 20.0 yes yes 29 10.3
160 3 1 5 0.7 yes yes 30 - 1.0 yes yes 30 - 17.5 yes yes 30 6.7
160 3 2 1 0.9 yes yes 28 - 2.0 yes yes 29 - 8.8 yes yes 28 7.1
160 3 2 2 0.7 yes yes 28 - 2.3 yes yes 29 - 4.1 yes yes 28 7.1
160 3 2 3 0.9 yes yes 27 - 0.5 yes yes 28 - 5.8 yes yes 27 7.4
160 3 2 4 0.5 yes yes 27 - 0.7 yes yes 28 - 3.2 yes yes 27 3.7
160 3 2 5 0.2 yes yes 28 - 0.4 yes yes 29 - 1.4 yes yes 28 3.6
160 3 4 1 0.3 yes yes 28 - 0.6 yes yes 28 - 1.6 yes yes 28 0.0
160 3 4 2 3.6 yes yes 29 - 0.6 yes yes 29 - 5.9 yes yes 29 0.0
160 3 4 3 0.5 yes yes 28 - 0.1 yes yes 28 - 3.0 yes yes 28 3.6
160 3 4 4 0.2 yes yes 28 - 0.5 yes yes 28 - 1.6 yes yes 28 0.0
160 3 4 5 0.3 yes yes 28 - 0.4 yes yes 29 - 4.5 yes yes 28 3.6
160 3 8 1 0.4 yes yes 28 - 0.4 yes yes 27 3.7 4.3 yes yes 28 3.6
160 3 8 2 0.4 yes yes 28 - 0.5 yes yes 29 - 4.7 yes yes 28 3.6
160 3 8 3 0.3 yes yes 28 - 0.3 yes yes 27 - 3.1 yes yes 28 0.0
160 3 8 4 0.3 yes yes 27 - 0.4 yes yes 28 - 3.4 yes yes 27 3.7
160 3 8 5 0.1 yes yes 27 - 0.3 yes yes 28 - 1.5 yes yes 27 3.7

Table A.20: Problem V, Q|sd, ri, di|CLT (part 8)
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Appendix B

Detailed computational results of
Chapter 4

In section 4.6 we reported the results of the resolution of formulation (4.2)-(4.5).
Tables 4.1-4.6 were calculated by taking the average over the 5 instances with the
same value of n, V and Q. In this appendix we report the detailed results of those
experiments. In all tables, column opt reports if the calculated solution value is
optimal for the instance. All other column headings have the same meaning of tables
4.2-4.5.
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance CPU(s)
∑

Ci opt gapGr(%)

20 1 1 1 0.0 117.0 yes 6.8
20 1 1 2 0.0 140.0 yes 0.0
20 1 1 3 0.0 106.0 yes 2.8
20 1 1 4 0.0 110.0 yes 13.6
20 1 1 5 0.0 99.0 yes 8.1

20 1 2 1 0.0 70.0 yes 5.7
20 1 2 2 0.0 82.0 yes 0.0
20 1 2 3 0.0 60.0 yes 5.0
20 1 2 4 0.0 65.0 yes 9.2
20 1 2 5 0.0 56.0 yes 7.1

20 1 4 1 0.0 46.0 yes 2.2
20 1 4 2 0.0 54.0 yes 0.0
20 1 4 3 0.0 39.0 yes 10.3
20 1 4 4 0.0 43.0 yes 0.0
20 1 4 5 0.0 35.0 yes 8.6

20 1 8 1 0.0 36.0 yes 0.0
20 1 8 2 0.0 40.0 yes 0.0
20 1 8 3 0.0 30.0 yes 3.3
20 1 8 4 0.0 34.0 yes 0.0
20 1 8 5 0.0 26.0 yes 3.8

20 2 1 1 0.0 70.0 yes 5.7
20 2 1 2 0.0 82.0 yes 0.0
20 2 1 3 0.0 60.0 yes 5.0
20 2 1 4 0.0 65.0 yes 9.2
20 2 1 5 0.0 56.0 yes 7.1

20 2 2 1 0.0 46.0 yes 2.2
20 2 2 2 0.0 54.0 yes 0.0
20 2 2 3 0.0 39.0 yes 10.3
20 2 2 4 0.0 43.0 yes 0.0
20 2 2 5 0.0 35.0 yes 8.6

20 2 4 1 0.0 36.0 yes 0.0
20 2 4 2 0.0 40.0 yes 0.0
20 2 4 3 0.0 30.0 yes 3.3
20 2 4 4 0.0 34.0 yes 0.0
20 2 4 5 0.0 26.0 yes 3.8

20 2 8 1 0.0 31.0 yes 0.0
20 2 8 2 0.0 33.0 yes 0.0
20 2 8 3 0.0 26.0 yes 0.0
20 2 8 4 0.0 30.0 yes 0.0
20 2 8 5 0.0 23.0 yes 0.0

20 3 1 1 0.0 54.0 yes 3.7
20 3 1 2 0.0 63.0 yes 0.0
20 3 1 3 0.0 46.0 yes 6.5
20 3 1 4 0.0 50.0 yes 6.0
20 3 1 5 0.0 42.0 yes 7.1

20 3 2 1 0.0 39.0 yes 0.0
20 3 2 2 0.0 45.0 yes 0.0
20 3 2 3 0.0 32.0 yes 3.1
20 3 2 4 0.0 36.0 yes 0.0
20 3 2 5 0.0 28.0 yes 3.6

20 3 4 1 0.0 32.0 yes 0.0
20 3 4 2 0.0 36.0 yes 0.0
20 3 4 3 0.0 26.0 yes 0.0
20 3 4 4 0.0 30.0 yes 0.0
20 3 4 5 0.0 23.0 yes 0.0

20 3 8 1 0.0 31.0 yes 0.0
20 3 8 2 0.0 33.0 yes 0.0
20 3 8 3 0.0 26.0 yes 0.0
20 3 8 4 0.0 30.0 yes 0.0
20 3 8 5 0.0 23.0 yes 0.0

n V Q instance CPU(s)
∑

Ci opt gapGr(%)

40 1 1 1 0.1 346.0 yes 4.9
40 1 1 2 0.1 379.0 yes 4.0
40 1 1 3 0.1 476.0 yes 6.7
40 1 1 4 0.1 419.0 yes 3.3
40 1 1 5 0.1 400.0 yes 9.3

40 1 2 1 0.1 191.0 yes 7.9
40 1 2 2 0.1 201.0 yes 3.0
40 1 2 3 0.0 255.0 yes 5.9
40 1 2 4 0.0 222.0 yes 3.6
40 1 2 5 0.0 212.0 yes 6.6

40 1 4 1 0.1 116.0 yes 4.3
40 1 4 2 0.0 118.0 yes 0.8
40 1 4 3 0.0 145.0 yes 8.3
40 1 4 4 0.0 125.0 yes 3.2
40 1 4 5 0.0 119.0 yes 3.4

40 1 8 1 0.0 80.0 yes 1.3
40 1 8 2 0.0 80.0 yes 1.3
40 1 8 3 0.0 91.0 yes 4.4
40 1 8 4 0.0 78.0 yes 0.0
40 1 8 5 0.0 76.0 yes 0.0

40 2 1 1 0.1 191.0 yes 7.9
40 2 1 2 0.1 201.0 yes 3.0
40 2 1 3 0.0 255.0 yes 5.9
40 2 1 4 0.0 222.0 yes 3.6
40 2 1 5 0.1 212.0 yes 6.6

40 2 2 1 0.1 116.0 yes 4.3
40 2 2 2 0.0 118.0 yes 0.8
40 2 2 3 0.0 145.0 yes 8.3
40 2 2 4 0.0 125.0 yes 3.2
40 2 2 5 0.0 119.0 yes 3.4

40 2 4 1 0.0 80.0 yes 1.3
40 2 4 2 0.0 80.0 yes 1.3
40 2 4 3 0.0 91.0 yes 4.4
40 2 4 4 0.0 78.0 yes 0.0
40 2 4 5 0.0 76.0 yes 0.0

40 2 8 1 0.0 63.0 yes 0.0
40 2 8 2 0.0 65.0 yes 0.0
40 2 8 3 0.0 66.0 yes 0.0
40 2 8 4 0.0 56.0 yes 0.0
40 2 8 5 0.0 58.0 yes 0.0

40 3 1 1 0.1 141.0 yes 7.1
40 3 1 2 0.1 145.0 yes 2.8
40 3 1 3 0.1 181.0 yes 8.3
40 3 1 4 0.1 157.0 yes 3.2
40 3 1 5 0.1 150.0 yes 4.7

40 3 2 1 0.0 91.0 yes 3.3
40 3 2 2 0.0 92.0 yes 0.0
40 3 2 3 0.0 108.0 yes 6.5
40 3 2 4 0.0 93.0 yes 2.2
40 3 2 5 0.0 89.0 yes 3.4

40 3 4 1 0.0 68.0 yes 1.5
40 3 4 2 0.0 69.0 yes 0.0
40 3 4 3 0.0 74.0 yes 0.0
40 3 4 4 0.0 63.0 yes 0.0
40 3 4 5 0.0 63.0 yes 0.0

40 3 8 1 0.0 59.0 yes 0.0
40 3 8 2 0.0 58.0 yes 0.0
40 3 8 3 0.0 58.0 yes 0.0
40 3 8 4 0.0 51.0 yes 0.0
40 3 8 5 0.0 55.0 yes 0.0

Table B.1: Problem V, Q|sd, u|∑Ci (part 1)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance CPU(s)
∑

Ci opt gapGr(%)

80 1 1 1 0.4 1345.0 yes 3.4
80 1 1 2 0.4 1304.0 yes 2.1
80 1 1 3 0.3 1453.0 yes 6.5
80 1 1 4 0.4 1559.0 yes 7.4
80 1 1 5 0.3 1360.0 yes 4.7

80 1 2 1 0.3 703.0 yes 2.8
80 1 2 2 0.3 681.0 yes 2.2
80 1 2 3 0.1 767.0 yes 6.5
80 1 2 4 0.3 809.0 yes 7.2
80 1 2 5 0.1 706.0 yes 5.1

80 1 4 1 0.1 383.0 yes 2.9
80 1 4 2 0.1 371.0 yes 3.8
80 1 4 3 0.1 425.0 yes 5.4
80 1 4 4 0.1 435.0 yes 8.0
80 1 4 5 0.1 380.0 yes 5.0

80 1 8 1 0.1 225.0 yes 4.4
80 1 8 2 0.1 223.0 yes 4.9
80 1 8 3 0.1 256.0 yes 3.5
80 1 8 4 0.1 249.0 yes 7.2
80 1 8 5 0.1 221.0 yes 3.2

80 2 1 1 0.4 703.0 yes 2.8
80 2 1 2 0.3 681.0 yes 2.2
80 2 1 3 0.4 767.0 yes 6.5
80 2 1 4 0.3 809.0 yes 7.2
80 2 1 5 0.4 706.0 yes 5.1

80 2 2 1 0.1 383.0 yes 2.9
80 2 2 2 0.3 371.0 yes 3.8
80 2 2 3 0.2 425.0 yes 5.4
80 2 2 4 0.2 435.0 yes 8.0
80 2 2 5 0.2 380.0 yes 5.0

80 2 4 1 0.1 225.0 yes 4.4
80 2 4 2 0.1 223.0 yes 4.9
80 2 4 3 0.1 256.0 yes 3.5
80 2 4 4 0.1 249.0 yes 7.2
80 2 4 5 0.1 221.0 yes 3.2

80 2 8 1 0.1 151.0 yes 6.0
80 2 8 2 0.1 154.0 yes 1.3
80 2 8 3 0.1 173.0 yes 4.6
80 2 8 4 0.1 158.0 yes 5.7
80 2 8 5 0.1 143.0 yes 2.8

80 3 1 1 0.4 489.0 yes 2.7
80 3 1 2 0.4 475.0 yes 2.3
80 3 1 3 0.3 539.0 yes 6.5
80 3 1 4 0.3 559.0 yes 7.5
80 3 1 5 0.3 488.0 yes 5.5

80 3 2 1 0.3 278.0 yes 3.2
80 3 2 2 0.2 272.0 yes 4.8
80 3 2 3 0.2 311.0 yes 6.4
80 3 2 4 0.2 311.0 yes 8.0
80 3 2 5 0.2 273.0 yes 4.4

80 3 4 1 0.1 174.0 yes 5.7
80 3 4 2 0.1 176.0 yes 2.8
80 3 4 3 0.1 201.0 yes 2.5
80 3 4 4 0.1 187.0 yes 6.4
80 3 4 5 0.1 169.0 yes 3.0

80 3 8 1 0.1 126.0 yes 3.2
80 3 8 2 0.1 129.0 yes 3.1
80 3 8 3 0.1 146.0 yes 2.7
80 3 8 4 0.1 129.0 yes 3.1
80 3 8 5 0.1 121.0 yes 0.8

n V Q instance CPU(s)
∑

Ci opt gapGr(%)

160 1 1 1 7.3 5271.0 yes 1.2
160 1 1 2 2.4 5246.0 yes 1.3
160 1 1 3 2.1 4736.0 yes 0.6
160 1 1 4 1.9 4912.0 yes 2.8
160 1 1 5 1.4 4906.0 yes 1.3

160 1 2 1 1.5 2688.0 yes 1.4
160 1 2 2 1.4 2676.0 yes 1.2
160 1 2 3 1.9 2433.0 yes 0.6
160 1 2 4 1.1 2517.0 yes 2.5
160 1 2 5 0.9 2511.0 yes 1.1

160 1 4 1 1.5 1399.0 yes 2.4
160 1 4 2 0.7 1394.0 yes 1.3
160 1 4 3 0.5 1284.0 yes 1.0
160 1 4 4 1.0 1325.0 yes 2.6
160 1 4 5 0.6 1314.0 yes 1.6

160 1 8 1 0.3 765.0 yes 3.1
160 1 8 2 0.3 756.0 yes 1.2
160 1 8 3 0.3 713.0 yes 2.0
160 1 8 4 0.2 732.0 yes 3.7
160 1 8 5 0.2 721.0 yes 1.9

160 2 1 1 3.0 2688.0 yes 1.4
160 2 1 2 6.0 2676.0 yes 1.2
160 2 1 3 3.9 2433.0 yes 0.6
160 2 1 4 1.8 2517.0 yes 2.5
160 2 1 5 1.7 2511.0 yes 1.1

160 2 2 1 1.4 1399.0 yes 2.4
160 2 2 2 1.2 1394.0 yes 1.3
160 2 2 3 1.1 1284.0 yes 1.0
160 2 2 4 1.2 1325.0 yes 2.6
160 2 2 5 0.9 1314.0 yes 1.6

160 2 4 1 1.0 765.0 yes 3.1
160 2 4 2 0.9 756.0 yes 1.2
160 2 4 3 0.9 713.0 yes 2.0
160 2 4 4 0.9 732.0 yes 3.7
160 2 4 5 0.8 721.0 yes 1.9

160 2 8 1 0.6 458.0 yes 4.1
160 2 8 2 0.6 442.0 yes 1.8
160 2 8 3 0.4 431.0 yes 1.9
160 2 8 4 0.4 442.0 yes 4.8
160 2 8 5 0.4 433.0 yes 1.2

160 3 1 1 2.6 1828.0 yes 1.6
160 3 1 2 2.2 1820.0 yes 1.3
160 3 1 3 2.9 1666.0 yes 0.8
160 3 1 4 2.5 1721.0 yes 2.3
160 3 1 5 1.8 1713.0 yes 1.1

160 3 2 1 1.7 974.0 yes 2.7
160 3 2 2 1.2 968.0 yes 1.2
160 3 2 3 1.3 903.0 yes 1.4
160 3 2 4 1.1 930.0 yes 2.4
160 3 2 5 0.9 918.0 yes 1.9

160 3 4 1 1.0 561.0 yes 3.7
160 3 4 2 1.2 548.0 yes 1.8
160 3 4 3 1.0 524.0 yes 1.9
160 3 4 4 0.8 538.0 yes 4.1
160 3 4 5 1.2 528.0 yes 1.7

160 3 8 1 0.6 359.0 yes 2.5
160 3 8 2 0.3 344.0 yes 1.5
160 3 8 3 0.2 342.0 yes 0.9
160 3 8 4 0.3 349.0 yes 1.7
160 3 8 5 0.4 338.0 yes 0.3

Table B.2: Problem V, Q|sd, u|∑Ci (part 2)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance t-t t-w t

CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%)

20 1 1 1 0.1 yes yes 205.0 - 0.0 yes yes 201.0 - 0.0 yes yes 205.0 9.8
20 1 1 2 - no - - - 0.0 yes yes 176.0 - 0.0 yes yes 204.0 4.4
20 1 1 3 0.0 yes yes 217.0 - - no - - - 0.0 yes yes 216.0 8.8
20 1 1 4 - no - - - 0.0 yes yes 223.0 - 0.0 yes yes 190.0 6.8
20 1 1 5 0.0 yes yes 173.0 - 0.0 yes yes 173.0 9.2 0.0 yes yes 169.0 10.7
20 1 2 1 0.0 yes yes 100.0 - 0.0 yes yes 127.0 - 0.0 yes yes 100.0 12.0
20 1 2 2 0.0 yes yes 126.0 - 0.0 yes yes 120.0 - 0.0 yes yes 125.0 9.6
20 1 2 3 0.0 yes yes 101.0 - 0.0 yes yes 96.0 - 0.0 yes yes 101.0 16.8
20 1 2 4 0.0 yes yes 113.0 - 0.0 yes yes 95.0 - 0.0 yes yes 113.0 15.0
20 1 2 5 0.0 yes yes 100.0 - 0.0 yes yes 96.0 - 0.0 yes yes 100.0 14.0
20 1 4 1 0.0 yes yes 65.0 - 0.0 yes yes 63.0 - 0.0 yes yes 65.0 16.9
20 1 4 2 0.0 yes yes 61.0 - 0.0 yes yes 65.0 - 0.0 yes yes 61.0 18.0
20 1 4 3 0.0 yes yes 55.0 - 0.0 yes yes 49.0 - 0.0 yes yes 55.0 16.4
20 1 4 4 0.0 yes yes 57.0 - 0.0 yes yes 59.0 25.4 0.0 yes yes 57.0 21.1
20 1 4 5 0.0 yes yes 48.0 - 0.0 yes yes 56.0 - 0.0 yes yes 48.0 27.1
20 1 8 1 0.0 yes yes 39.0 - 0.0 yes yes 41.0 - 0.0 yes yes 39.0 20.5
20 1 8 2 0.0 yes yes 41.0 - 0.0 yes yes 42.0 - 0.0 yes yes 41.0 36.6
20 1 8 3 0.0 yes yes 33.0 - 0.0 yes yes 35.0 34.3 0.0 yes yes 33.0 39.4
20 1 8 4 0.0 yes yes 38.0 - 0.0 yes yes 48.0 - 0.0 yes yes 38.0 44.7
20 1 8 5 0.0 yes yes 31.0 - 0.0 yes yes 31.0 41.9 0.0 yes yes 31.0 48.4

20 2 1 1 0.0 yes yes 97.0 - 0.0 yes yes 105.0 - 0.0 yes yes 97.0 12.4
20 2 1 2 0.0 yes yes 102.0 - 0.0 yes yes 107.0 - 0.0 yes yes 102.0 17.6
20 2 1 3 0.0 yes yes 98.0 - 0.0 yes yes 94.0 - 0.0 yes yes 98.0 12.2
20 2 1 4 0.0 yes yes 99.0 - 0.0 yes yes 112.0 - 0.0 yes yes 98.0 16.3
20 2 1 5 0.0 yes yes 92.0 - 0.0 yes yes 82.0 - 0.0 yes yes 92.0 17.4
20 2 2 1 0.0 yes yes 57.0 - 0.0 yes yes 57.0 - 0.0 yes yes 57.0 14.0
20 2 2 2 0.0 yes yes 60.0 - 0.0 yes yes 65.0 - 0.0 yes yes 60.0 16.7
20 2 2 3 0.0 yes yes 61.0 18.0 0.0 yes yes 47.0 38.3 0.0 yes yes 61.0 18.0
20 2 2 4 0.0 yes yes 57.0 - 0.0 yes yes 62.0 21.0 0.0 yes yes 57.0 33.3
20 2 2 5 0.0 yes yes 54.0 22.2 0.0 yes yes 44.0 - 0.0 yes yes 54.0 22.2
20 2 4 1 0.0 yes yes 39.0 - 0.0 yes yes 43.0 - 0.0 yes yes 39.0 15.4
20 2 4 2 0.0 yes yes 47.0 - 0.0 yes yes 45.0 - 0.0 yes yes 47.0 23.4
20 2 4 3 0.0 yes yes 38.0 - 0.0 yes yes 37.0 - 0.0 yes yes 38.0 36.8
20 2 4 4 0.0 yes yes 42.0 - 0.0 yes yes 38.0 - 0.0 yes yes 42.0 28.6
20 2 4 5 0.0 yes yes 29.0 - 0.0 yes yes 34.0 - 0.0 yes yes 29.0 51.7
20 2 8 1 0.0 yes yes 31.0 - 0.0 yes yes 31.0 - 0.0 yes yes 31.0 35.5
20 2 8 2 0.0 yes yes 33.0 - 0.0 yes yes 33.0 - 0.0 yes yes 33.0 24.2
20 2 8 3 0.0 yes yes 26.0 - 0.0 yes yes 26.0 - 0.0 yes yes 26.0 46.2
20 2 8 4 0.0 yes yes 30.0 - 0.0 yes yes 30.0 - 0.0 yes yes 30.0 36.7
20 2 8 5 0.0 yes yes 23.0 - 0.0 yes yes 23.0 - 0.0 yes yes 23.0 60.9

20 3 1 1 0.0 yes yes 75.0 - 0.0 yes yes 81.0 - 0.0 yes yes 75.0 16.0
20 3 1 2 0.0 yes yes 80.0 - 0.0 yes yes 73.0 20.5 0.0 yes yes 80.0 10.0
20 3 1 3 0.0 yes yes 73.0 15.1 0.0 yes yes 76.0 13.2 0.0 yes yes 72.0 16.7
20 3 1 4 0.0 yes yes 68.0 - - no - - - 0.0 yes yes 68.0 26.5
20 3 1 5 0.0 yes yes 63.0 23.8 0.0 yes yes 62.0 - 0.0 yes yes 63.0 23.8
20 3 2 1 0.0 yes yes 48.0 - 0.0 yes yes 49.0 8.2 0.0 yes yes 48.0 22.9
20 3 2 2 0.0 yes yes 51.0 - 0.0 yes yes 49.0 12.2 0.0 yes yes 51.0 7.8
20 3 2 3 0.0 yes yes 42.0 - 0.0 yes yes 42.0 - 0.0 yes yes 42.0 28.6
20 3 2 4 0.0 yes yes 45.0 - 0.0 yes yes 42.0 - 0.0 yes yes 45.0 24.4
20 3 2 5 0.0 yes yes 44.0 - 0.0 yes yes 42.0 - 0.0 yes yes 44.0 25.0
20 3 4 1 0.0 yes yes 35.0 - 0.0 yes yes 36.0 - 0.0 yes yes 35.0 20.0
20 3 4 2 0.0 yes yes 38.0 - 0.0 yes yes 37.0 - 0.0 yes yes 38.0 7.9
20 3 4 3 0.0 yes yes 29.0 - 0.0 yes yes 30.0 46.7 0.0 yes yes 29.0 44.8
20 3 4 4 0.0 yes yes 32.0 - 0.0 yes yes 33.0 - 0.0 yes yes 32.0 34.4
20 3 4 5 0.0 yes yes 28.0 - 0.0 yes yes 29.0 - 0.0 yes yes 28.0 46.4
20 3 8 1 0.0 yes yes 31.0 - 0.0 yes yes 31.0 - 0.0 yes yes 31.0 16.1
20 3 8 2 0.0 yes yes 33.0 - 0.0 yes yes 33.0 - 0.0 yes yes 33.0 9.1
20 3 8 3 0.0 yes yes 26.0 - 0.0 yes yes 26.0 - 0.0 yes yes 26.0 34.6
20 3 8 4 0.0 yes yes 30.0 - 0.0 yes yes 30.0 - 0.0 yes yes 30.0 33.3
20 3 8 5 0.0 yes yes 23.0 - 0.0 yes yes 23.0 - 0.0 yes yes 23.0 65.2

Table B.3: Problem V, Q|sd, u, ri, di|
∑

Ci (part 1)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance t-t t-w t

CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%)

40 1 1 1 0.0 yes yes 693.0 - 0.0 yes yes 632.0 7.9 0.0 yes yes 692.0 3.8
40 1 1 2 0.0 yes yes 693.0 - 0.0 yes yes 650.0 - 0.0 yes yes 685.0 5.0
40 1 1 3 0.0 yes yes 757.0 - 0.0 yes yes 671.0 - 0.0 yes yes 753.0 7.0
40 1 1 4 0.0 yes yes 792.0 - 0.0 yes yes 642.0 - 0.0 yes yes 792.0 6.2
40 1 1 5 0.0 yes yes 759.0 - 0.0 yes yes 581.0 7.6 0.0 yes yes 758.0 2.6
40 1 2 1 0.0 yes yes 373.0 - 0.0 yes yes 343.0 - 0.0 yes yes 370.0 5.4
40 1 2 2 0.0 yes yes 382.0 - 0.0 yes yes 373.0 - 0.0 yes yes 382.0 5.5
40 1 2 3 0.0 yes yes 346.0 - 0.0 yes yes 419.0 - 0.0 yes yes 346.0 10.4
40 1 2 4 0.0 yes yes 344.0 - 0.0 yes yes 328.0 - 0.0 yes yes 341.0 8.5
40 1 2 5 0.0 yes yes 392.0 - 0.0 yes yes 347.0 - 0.0 yes yes 392.0 6.9
40 1 4 1 0.0 yes yes 211.0 - 0.0 yes yes 191.0 - 0.0 yes yes 211.0 11.8
40 1 4 2 0.0 yes yes 214.0 - 0.0 yes yes 175.0 - 0.0 yes yes 214.0 14.0
40 1 4 3 0.0 yes yes 180.0 - 0.0 yes yes 202.0 - 0.0 yes yes 180.0 6.1
40 1 4 4 0.0 yes yes 168.0 - 0.0 yes yes 161.0 8.7 0.0 yes yes 168.0 20.2
40 1 4 5 0.0 yes yes 185.0 - 0.0 yes yes 177.0 - 0.0 yes yes 185.0 11.4
40 1 8 1 0.0 yes yes 113.0 - 0.0 yes yes 113.0 - 0.0 yes yes 113.0 14.2
40 1 8 2 0.0 yes yes 119.0 - 0.0 yes yes 113.0 - 0.0 yes yes 119.0 15.1
40 1 8 3 0.0 yes yes 118.0 - 0.0 yes yes 107.0 - 0.0 yes yes 118.0 11.9
40 1 8 4 0.0 yes yes 107.0 - 0.0 yes yes 113.0 - 0.0 yes yes 107.0 23.4
40 1 8 5 0.0 yes yes 106.0 - 0.0 yes yes 135.0 - 0.0 yes yes 106.0 17.0

40 2 1 1 0.0 yes yes 378.0 - 0.0 yes yes 308.0 - 0.1 yes yes 376.0 5.9
40 2 1 2 0.0 yes yes 398.0 - 0.0 yes yes 350.0 - 0.1 yes yes 398.0 2.5
40 2 1 3 0.0 yes yes 372.0 - 0.0 yes yes 359.0 - 0.1 yes yes 365.0 8.2
40 2 1 4 0.0 yes yes 303.0 - 0.0 yes yes 343.0 - 0.1 yes yes 300.0 15.7
40 2 1 5 0.0 yes yes 316.0 - 0.0 yes yes 337.0 - 0.1 yes yes 316.0 13.3
40 2 2 1 0.0 yes yes 178.0 - 0.0 yes yes 200.0 12.5 0.0 yes yes 178.0 10.1
40 2 2 2 0.0 yes yes 192.0 - 0.0 yes yes 190.0 12.6 0.1 yes yes 191.0 11.0
40 2 2 3 0.0 yes yes 217.0 - 0.0 yes yes 194.0 - 0.1 yes yes 216.0 8.8
40 2 2 4 0.0 yes yes 202.0 - 0.0 yes yes 192.0 - 0.0 yes yes 201.0 19.4
40 2 2 5 0.0 yes yes 199.0 10.1 0.0 yes yes 177.0 13.0 0.0 yes yes 199.0 9.5
40 2 4 1 0.0 yes yes 102.0 - 0.0 yes yes 116.0 - 0.0 yes yes 102.0 18.6
40 2 4 2 0.0 yes yes 111.0 - 0.0 yes yes 102.0 - 0.0 yes yes 111.0 15.3
40 2 4 3 0.0 yes yes 118.0 - 0.0 yes yes 115.0 - 0.0 yes yes 118.0 23.7
40 2 4 4 0.0 yes yes 113.0 - 0.0 yes yes 114.0 - 0.0 yes yes 113.0 19.5
40 2 4 5 0.0 yes yes 101.0 - 0.0 yes yes 114.0 - 0.0 yes yes 101.0 20.8
40 2 8 1 0.0 yes yes 81.0 - 0.0 yes yes 68.0 - 0.0 yes yes 81.0 24.7
40 2 8 2 0.0 yes yes 75.0 - 0.0 yes yes 80.0 - 0.0 yes yes 75.0 26.7
40 2 8 3 0.0 yes yes 73.0 - 0.0 yes yes 79.0 - 0.0 yes yes 73.0 38.4
40 2 8 4 0.0 yes yes 69.0 - 0.0 yes yes 67.0 - 0.0 yes yes 69.0 37.7
40 2 8 5 0.0 yes yes 72.0 - 0.0 yes yes 73.0 - 0.0 yes yes 72.0 23.6

40 3 1 1 0.0 yes yes 212.0 - 0.0 yes yes 229.0 - 0.1 yes yes 212.0 11.8
40 3 1 2 0.0 yes yes 248.0 - 0.0 yes yes 245.0 - 0.1 yes yes 248.0 12.1
40 3 1 3 0.0 yes yes 248.0 - 0.0 yes yes 249.0 10.0 0.1 yes yes 247.0 8.9
40 3 1 4 0.0 yes yes 222.0 - 0.0 yes yes 231.0 - 0.1 yes yes 222.0 12.6
40 3 1 5 0.0 yes yes 282.0 - 0.0 yes yes 265.0 - 0.1 yes yes 281.0 11.0
40 3 2 1 0.0 yes yes 154.0 - 0.0 yes yes 146.0 - 0.0 yes yes 154.0 11.0
40 3 2 2 0.0 yes yes 160.0 - 0.0 yes yes 149.0 - 0.0 yes yes 160.0 11.9
40 3 2 3 0.0 yes yes 153.0 - 0.0 yes yes 144.0 - 0.0 yes yes 153.0 18.3
40 3 2 4 0.0 yes yes 127.0 - 0.0 yes yes 142.0 - 0.1 yes yes 127.0 24.4
40 3 2 5 0.0 yes yes 130.0 - 0.0 yes yes 148.0 - 0.0 yes yes 130.0 13.8
40 3 4 1 0.0 yes yes 91.0 - 0.0 yes yes 90.0 - 0.0 yes yes 91.0 16.5
40 3 4 2 0.0 yes yes 87.0 - 0.0 yes yes 94.0 - 0.0 yes yes 87.0 18.4
40 3 4 3 0.0 yes yes 83.0 - 0.0 yes yes 87.0 - 0.0 yes yes 83.0 20.5
40 3 4 4 0.0 yes yes 82.0 - 0.0 yes yes 83.0 - 0.0 yes yes 82.0 29.3
40 3 4 5 0.0 yes yes 79.0 - 0.0 yes yes 86.0 - 0.0 yes yes 79.0 25.3
40 3 8 1 0.0 yes yes 70.0 - 0.0 yes yes 65.0 - 0.0 yes yes 70.0 28.6
40 3 8 2 0.0 yes yes 68.0 - 0.0 yes yes 67.0 - 0.0 yes yes 68.0 27.9
40 3 8 3 0.0 yes yes 65.0 - 0.0 yes yes 64.0 - 0.0 yes yes 65.0 29.2
40 3 8 4 0.0 yes yes 61.0 - 0.0 yes yes 60.0 - 0.1 yes yes 61.0 36.1
40 3 8 5 0.0 yes yes 63.0 - 0.0 yes yes 61.0 - 0.0 yes yes 63.0 25.4

Table B.4: Problem V, Q|sd, u, ri, di|
∑

Ci (part 2)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance t-t t-w t

CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%)

80 1 1 1 0.0 yes yes 2506.0 - 0.1 yes yes 2540.0 - 0.1 yes yes 2506.0 3.7
80 1 1 2 0.1 yes yes 2562.0 - 0.1 yes yes 2305.0 - 0.2 yes yes 2561.0 2.3
80 1 1 3 0.1 yes yes 2625.0 3.2 0.1 yes yes 2734.0 - 0.1 yes yes 2625.0 3.1
80 1 1 4 0.1 yes yes 2402.0 - - no - - - 0.1 yes yes 2402.0 4.2
80 1 1 5 0.1 yes yes 2358.0 - 0.1 yes yes 2401.0 - 0.1 yes yes 2354.0 4.7
80 1 2 1 0.0 yes yes 1246.0 - 0.0 yes yes 1317.0 - 0.1 yes yes 1245.0 4.5
80 1 2 2 0.0 yes yes 1229.0 - 0.0 yes yes 1324.0 - 0.1 yes yes 1229.0 6.5
80 1 2 3 0.1 yes yes 1377.0 - 0.0 yes yes 1306.0 - 0.1 yes yes 1377.0 2.8
80 1 2 4 0.0 yes yes 1343.0 - 0.0 yes yes 1274.0 - 0.1 yes yes 1341.0 5.3
80 1 2 5 0.0 yes yes 1322.0 - 0.0 yes yes 1303.0 - 0.1 yes yes 1322.0 5.7
80 1 4 1 0.0 yes yes 717.0 - 0.0 yes yes 681.0 - 0.1 yes yes 717.0 6.6
80 1 4 2 0.0 yes yes 735.0 - 0.0 yes yes 654.0 - 0.1 yes yes 735.0 5.0
80 1 4 3 0.0 yes yes 671.0 - 0.0 yes yes 678.0 - 0.1 yes yes 671.0 6.7
80 1 4 4 0.0 yes yes 722.0 - 0.0 yes yes 685.0 8.6 0.1 yes yes 720.0 9.7
80 1 4 5 0.0 yes yes 656.0 7.9 0.0 yes yes 671.0 - 0.1 yes yes 656.0 7.9
80 1 8 1 0.0 yes yes 391.0 - 0.0 yes yes 375.0 - 0.1 yes yes 391.0 14.8
80 1 8 2 0.0 yes yes 375.0 - 0.0 yes yes 356.0 14.9 0.0 yes yes 375.0 13.1
80 1 8 3 0.0 yes yes 361.0 - 0.0 yes yes 402.0 - 0.1 yes yes 361.0 8.0
80 1 8 4 0.0 yes yes 356.0 - 0.0 yes yes 355.0 - 0.1 yes yes 356.0 16.6
80 1 8 5 0.0 yes yes 355.0 - 0.0 yes yes 373.0 - 0.1 yes yes 355.0 15.5

80 2 1 1 0.1 yes yes 1223.0 - 0.1 yes yes 1428.0 - 0.3 yes yes 1222.0 5.8
80 2 1 2 0.1 yes yes 1273.0 4.3 0.1 yes yes 1183.0 - 0.2 yes yes 1271.0 4.7
80 2 1 3 0.0 yes yes 1373.0 - 0.1 yes yes 1404.0 - 0.2 yes yes 1373.0 4.4
80 2 1 4 0.1 yes yes 1266.0 - 0.1 yes yes 1287.0 - 0.2 yes yes 1266.0 6.2
80 2 1 5 0.1 yes yes 1165.0 - 0.1 yes yes 1295.0 - 0.2 yes yes 1165.0 8.2
80 2 2 1 0.0 yes yes 638.0 - 0.0 yes yes 680.0 - 0.1 yes yes 638.0 8.9
80 2 2 2 0.0 yes yes 649.0 - 0.0 yes yes 705.0 - 0.1 yes yes 649.0 8.2
80 2 2 3 0.0 yes yes 738.0 - 0.0 yes yes 668.0 - 0.1 yes yes 738.0 5.8
80 2 2 4 0.0 yes yes 680.0 - 0.1 yes yes 681.0 - 0.1 yes yes 680.0 10.4
80 2 2 5 0.0 yes yes 658.0 - 0.0 yes yes 659.0 9.9 0.1 yes yes 657.0 9.0
80 2 4 1 0.0 yes yes 378.0 - 0.0 yes yes 333.0 - 0.1 yes yes 378.0 12.2
80 2 4 2 0.0 yes yes 386.0 13.0 0.0 yes yes 366.0 - 0.1 yes yes 386.0 13.0
80 2 4 3 0.0 yes yes 394.0 - 0.0 yes yes 366.0 - 0.1 yes yes 394.0 10.9
80 2 4 4 0.0 yes yes 385.0 - 0.0 yes yes 369.0 - 0.1 yes yes 385.0 14.3
80 2 4 5 0.0 yes yes 368.0 14.4 0.0 yes yes 375.0 - 0.1 yes yes 368.0 14.4
80 2 8 1 0.0 yes yes 217.0 - 0.0 yes yes 216.0 - 0.1 yes yes 217.0 19.4
80 2 8 2 0.0 yes yes 222.0 - 0.0 yes yes 217.0 - 0.1 yes yes 222.0 16.2
80 2 8 3 0.0 yes yes 244.0 - 0.0 yes yes 258.0 - 0.1 yes yes 244.0 16.0
80 2 8 4 0.0 yes yes 240.0 - 0.0 yes yes 209.0 - 0.1 yes yes 240.0 18.8
80 2 8 5 0.0 yes yes 217.0 - 0.0 yes yes 213.0 - 0.1 yes yes 217.0 22.1

80 3 1 1 0.1 yes yes 834.0 - 0.1 yes yes 855.0 - 0.3 yes yes 834.0 7.7
80 3 1 2 0.1 yes yes 918.0 - 0.1 yes yes 954.0 4.9 0.3 yes yes 918.0 6.4
80 3 1 3 0.1 yes yes 949.0 - 0.1 yes yes 957.0 - 0.3 yes yes 946.0 5.1
80 3 1 4 0.1 yes yes 906.0 - 0.1 yes yes 878.0 - 0.3 yes yes 906.0 8.1
80 3 1 5 0.1 yes yes 873.0 7.3 0.1 yes yes 894.0 - 0.4 yes yes 873.0 7.2
80 3 2 1 0.0 yes yes 449.0 - 0.1 yes yes 468.0 - 0.2 yes yes 449.0 10.9
80 3 2 2 0.0 yes yes 490.0 - 0.0 yes yes 457.0 - 0.2 yes yes 490.0 10.0
80 3 2 3 0.0 yes yes 494.0 - 0.0 yes yes 527.0 - 0.2 yes yes 494.0 7.3
80 3 2 4 0.0 yes yes 442.0 9.7 0.0 yes yes 502.0 - 0.2 yes yes 442.0 10.0
80 3 2 5 0.0 yes yes 435.0 - 0.0 yes yes 474.0 9.3 0.2 yes yes 435.0 13.6
80 3 4 1 0.0 yes yes 274.0 - 0.0 yes yes 271.0 - 0.2 yes yes 274.0 17.5
80 3 4 2 0.0 yes yes 269.0 - 0.0 yes yes 275.0 - 0.2 yes yes 269.0 15.2
80 3 4 3 0.0 yes yes 291.0 - 0.0 yes yes 280.0 - 0.2 yes yes 291.0 16.2
80 3 4 4 0.0 yes yes 251.0 - 0.0 yes yes 250.0 - 0.2 yes yes 251.0 22.7
80 3 4 5 0.0 yes yes 269.0 - 0.0 yes yes 254.0 - 0.1 yes yes 269.0 20.4
80 3 8 1 0.0 yes yes 184.0 - 0.0 yes yes 169.0 - 0.2 yes yes 184.0 26.1
80 3 8 2 0.0 yes yes 187.0 - 0.0 yes yes 176.0 - 0.1 yes yes 187.0 22.5
80 3 8 3 0.0 yes yes 186.0 - 0.0 yes yes 194.0 - 0.2 yes yes 186.0 17.2
80 3 8 4 0.0 yes yes 173.0 - 0.0 yes yes 180.0 - 0.1 yes yes 173.0 25.4
80 3 8 5 0.0 yes yes 175.0 - 0.0 yes yes 169.0 - 0.1 yes yes 175.0 26.3

Table B.5: Problem V, Q|sd, u, ri, di|
∑

Ci (part 3)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance t-t t-w t

CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%)

160 1 1 1 0.2 yes yes 9245.0 - - no - - - 0.6 yes yes 9237.0 2.5
160 1 1 2 0.3 yes yes 10383.0 - 0.3 yes yes 9484.0 - 0.6 yes yes 10379.0 2.1
160 1 1 3 0.2 yes yes 10125.0 - 0.3 yes yes 10652.0 - 0.5 yes yes 10124.0 1.7
160 1 1 4 0.3 yes yes 9740.0 - 0.3 yes yes 10046.0 - 0.6 yes yes 9737.0 1.9
160 1 1 5 0.3 yes yes 9954.0 - 0.4 yes yes 10369.0 - 0.6 yes yes 9953.0 1.5
160 1 2 1 0.1 yes yes 4813.0 2.6 0.1 yes yes 5208.0 - 0.4 yes yes 4810.0 2.9
160 1 2 2 0.1 yes yes 5073.0 - 0.1 yes yes 5194.0 - 0.2 yes yes 5073.0 2.3
160 1 2 3 0.1 yes yes 4995.0 - 0.1 yes yes 5072.0 - 0.3 yes yes 4992.0 2.0
160 1 2 4 0.1 yes yes 4107.0 - 0.1 yes yes 4853.0 2.0 0.6 yes yes 4105.0 2.5
160 1 2 5 0.1 yes yes 5626.0 - 0.1 yes yes 5283.0 - 0.2 yes yes 5626.0 2.4
160 1 4 1 0.0 yes yes 2638.0 - 0.1 yes yes 2676.0 - 0.2 yes yes 2638.0 4.3
160 1 4 2 0.0 yes yes 2446.0 4.3 0.1 yes yes 2454.0 - 0.3 yes yes 2446.0 4.3
160 1 4 3 0.0 yes yes 2466.0 - 0.1 yes yes 2681.0 - 0.2 yes yes 2466.0 3.2
160 1 4 4 0.0 yes yes 2481.0 - 0.0 yes yes 2546.0 - 0.3 yes yes 2481.0 3.8
160 1 4 5 0.0 yes yes 2576.0 - 0.1 yes yes 2753.0 - 0.2 yes yes 2576.0 4.0
160 1 8 1 0.0 yes yes 1357.0 - 0.0 yes yes 1315.0 6.8 0.2 yes yes 1357.0 7.2
160 1 8 2 0.0 yes yes 1413.0 - 0.0 yes yes 1365.0 - 0.2 yes yes 1413.0 6.2
160 1 8 3 0.0 yes yes 1465.0 - 0.0 yes yes 1365.0 5.1 0.2 yes yes 1464.0 5.4
160 1 8 4 0.0 yes yes 1350.0 - 0.0 yes yes 1350.0 - 0.2 yes yes 1350.0 6.7
160 1 8 5 0.0 yes yes 1360.0 - 0.0 yes yes 1389.0 - 0.2 yes yes 1360.0 6.8

160 2 1 1 0.2 yes yes 4888.0 - 0.3 yes yes 5038.0 - 0.8 yes yes 4888.0 2.4
160 2 1 2 0.3 yes yes 4765.0 - 0.4 yes yes 4969.0 - 0.9 yes yes 4765.0 2.7
160 2 1 3 0.1 yes yes 4928.0 - 0.3 yes yes 5065.0 - 0.9 yes yes 4928.0 2.1
160 2 1 4 0.2 yes yes 5497.0 - 0.7 yes yes 4930.0 - 0.9 yes yes 5497.0 1.9
160 2 1 5 0.1 yes yes 5136.0 - 0.3 yes yes 5075.0 - 0.7 yes yes 5136.0 2.9
160 2 2 1 0.2 yes yes 2413.0 - 0.2 yes yes 2830.0 - 1.0 yes yes 2410.0 4.4
160 2 2 2 0.1 yes yes 2515.0 - 0.2 yes yes 2429.0 - 0.6 yes yes 2515.0 3.3
160 2 2 3 0.1 yes yes 2669.0 - 0.1 yes yes 2483.0 - 0.6 yes yes 2669.0 3.4
160 2 2 4 0.1 yes yes 2588.0 - 0.1 yes yes 2538.0 3.3 0.5 yes yes 2588.0 3.2
160 2 2 5 0.1 yes yes 2636.0 - 0.1 yes yes 2479.0 - 0.5 yes yes 2636.0 3.6
160 2 4 1 0.1 yes yes 1323.0 - 0.1 yes yes 1347.0 - 0.5 yes yes 1323.0 7.9
160 2 4 2 0.0 yes yes 1328.0 7.5 0.1 yes yes 1343.0 - 0.5 yes yes 1328.0 7.2
160 2 4 3 0.1 yes yes 1468.0 - 0.0 yes yes 1279.0 - 0.4 yes yes 1468.0 5.7
160 2 4 4 0.0 yes yes 1359.0 - 0.0 yes yes 1296.0 - 0.5 yes yes 1359.0 6.0
160 2 4 5 0.0 yes yes 1317.0 - 0.0 yes yes 1350.0 - 0.5 yes yes 1317.0 7.4
160 2 8 1 0.0 yes yes 791.0 - 0.0 yes yes 719.0 - 0.5 yes yes 791.0 10.9
160 2 8 2 0.0 yes yes 760.0 - 0.0 yes yes 731.0 - 0.5 yes yes 760.0 11.7
160 2 8 3 0.0 yes yes 718.0 - 0.0 yes yes 722.0 - 0.4 yes yes 718.0 8.2
160 2 8 4 0.0 yes yes 717.0 - 0.0 yes yes 743.0 - 0.4 yes yes 717.0 11.4
160 2 8 5 0.0 yes yes 729.0 - 0.0 yes yes 744.0 - 0.5 yes yes 729.0 12.3

160 3 1 1 0.2 yes yes 3412.0 - 0.3 yes yes 3325.0 - 1.6 yes yes 3411.0 2.8
160 3 1 2 0.2 yes yes 3308.0 - 0.3 yes yes 3445.0 - 1.7 yes yes 3308.0 3.9
160 3 1 3 0.2 yes yes 3374.0 - 0.2 yes yes 3287.0 2.7 1.4 yes yes 3374.0 2.9
160 3 1 4 0.3 yes yes 3473.0 - 0.4 yes yes 3525.0 - 2.1 yes yes 3469.0 2.5
160 3 1 5 0.2 yes yes 3293.0 - 0.2 yes yes 3392.0 - 1.3 yes yes 3293.0 3.5
160 3 2 1 0.1 yes yes 1798.0 - 0.1 yes yes 1633.0 - 0.7 yes yes 1798.0 5.6
160 3 2 2 0.1 yes yes 1619.0 5.9 0.1 yes yes 1710.0 - 1.0 yes yes 1619.0 5.9
160 3 2 3 0.1 yes yes 1703.0 - 0.1 yes yes 1806.0 - 0.7 yes yes 1703.0 4.6
160 3 2 4 0.1 yes yes 1768.0 - 0.1 yes yes 1742.0 4.5 0.7 yes yes 1768.0 4.8
160 3 2 5 0.1 yes yes 1746.0 - 0.1 yes yes 1660.0 - 0.8 yes yes 1746.0 5.1
160 3 4 1 0.1 yes yes 899.0 - 0.0 yes yes 940.0 - 0.9 yes yes 899.0 8.9
160 3 4 2 0.0 yes yes 1012.0 - 0.0 yes yes 981.0 - 0.7 yes yes 1012.0 9.1
160 3 4 3 0.0 yes yes 953.0 - 0.0 yes yes 936.0 8.3 0.7 yes yes 953.0 8.1
160 3 4 4 0.0 yes yes 969.0 - 0.0 yes yes 884.0 - 0.7 yes yes 969.0 8.3
160 3 4 5 0.0 yes yes 956.0 - 0.1 yes yes 1018.0 - 0.7 yes yes 956.0 10.1
160 3 8 1 0.0 yes yes 540.0 - 0.0 yes yes 531.0 - 0.7 yes yes 540.0 15.4
160 3 8 2 0.0 yes yes 563.0 - 0.0 yes yes 533.0 - 0.7 yes yes 563.0 16.3
160 3 8 3 0.0 yes yes 542.0 - 0.0 yes yes 526.0 - 0.7 yes yes 542.0 12.0
160 3 8 4 0.0 yes yes 538.0 - 0.0 yes yes 551.0 - 0.7 yes yes 538.0 15.4
160 3 8 5 0.0 yes yes 559.0 - 0.0 yes yes 519.0 - 0.7 yes yes 559.0 15.0

Table B.6: Problem V, Q|sd, u, ri, di|
∑

Ci (part 4)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance w-t w-w w

CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%)

20 1 1 1 0.0 yes yes 234.0 - 0.0 yes yes 249.0 - 0.0 yes yes 234.0 4.3
20 1 1 2 0.0 yes yes 265.0 - 0.0 yes yes 273.0 - 0.0 yes yes 265.0 6.0
20 1 1 3 0.0 yes yes 233.0 - 0.0 yes yes 184.0 - 0.0 yes yes 232.0 11.6
20 1 1 4 0.0 yes yes 233.0 9.9 0.0 yes yes 227.0 - 0.0 yes yes 233.0 9.4
20 1 1 5 0.0 yes yes 236.0 7.6 0.0 yes yes 180.0 10.0 0.0 yes yes 236.0 7.6
20 1 2 1 0.0 yes yes 152.0 - 0.0 yes yes 129.0 - 0.0 yes yes 150.0 6.7
20 1 2 2 0.0 yes yes 149.0 4.0 0.0 yes yes 114.0 - 0.0 yes yes 149.0 4.0
20 1 2 3 0.0 yes yes 121.0 - 0.0 yes yes 132.0 - 0.0 yes yes 121.0 9.9
20 1 2 4 0.0 yes yes 124.0 - 0.0 yes yes 122.0 9.0 0.0 yes yes 123.0 17.1
20 1 2 5 0.0 yes yes 128.0 - 0.0 yes yes 93.0 - 0.0 yes yes 126.0 11.1
20 1 4 1 0.0 yes yes 74.0 - 0.0 yes yes 72.0 - 0.0 yes yes 74.0 10.8
20 1 4 2 0.0 yes yes 71.0 - 0.0 yes yes 65.0 15.4 0.0 yes yes 71.0 12.7
20 1 4 3 0.0 yes yes 65.0 - 0.0 yes yes 65.0 - 0.0 yes yes 65.0 18.5
20 1 4 4 0.0 yes yes 81.0 - 0.0 yes yes 78.0 - 0.0 yes yes 81.0 19.8
20 1 4 5 0.0 yes yes 59.0 22.0 0.0 yes yes 67.0 - 0.0 yes yes 59.0 22.0
20 1 8 1 0.0 yes yes 45.0 - 0.0 yes yes 50.0 - 0.0 yes yes 45.0 13.3
20 1 8 2 0.0 yes yes 49.0 - 0.0 yes yes 50.0 - 0.0 yes yes 49.0 18.4
20 1 8 3 0.0 yes yes 43.0 - 0.0 yes yes 40.0 - 0.0 yes yes 43.0 27.9
20 1 8 4 0.0 yes yes 45.0 - 0.0 yes yes 45.0 - 0.0 yes yes 45.0 17.8
20 1 8 5 0.0 yes yes 40.0 - 0.0 yes yes 41.0 - 0.0 yes yes 40.0 35.0

20 2 1 1 0.0 yes yes 132.0 - 0.0 yes yes 101.0 9.9 0.0 yes yes 132.0 6.8
20 2 1 2 0.0 yes yes 131.0 - 0.0 yes yes 121.0 - 0.0 yes yes 131.0 9.2
20 2 1 3 0.0 yes yes 119.0 - 0.0 yes yes 118.0 10.2 0.0 yes yes 119.0 10.1
20 2 1 4 0.0 yes yes 124.0 - 0.0 yes yes 134.0 8.2 0.0 yes yes 124.0 12.1
20 2 1 5 0.0 yes yes 90.0 12.2 0.0 yes yes 125.0 12.0 0.0 yes yes 90.0 12.2
20 2 2 1 0.0 yes yes 69.0 15.9 0.0 yes yes 69.0 14.5 0.0 yes yes 69.0 15.9
20 2 2 2 0.0 yes yes 74.0 - 0.0 yes yes 70.0 - 0.0 yes yes 74.0 14.9
20 2 2 3 0.0 yes yes 65.0 - 0.0 yes yes 59.0 27.1 0.0 yes yes 65.0 21.5
20 2 2 4 0.0 yes yes 67.0 - 0.0 yes yes 64.0 17.2 0.0 yes yes 67.0 17.9
20 2 2 5 0.0 yes yes 73.0 - 0.0 yes yes 59.0 - 0.0 yes yes 73.0 15.1
20 2 4 1 0.0 yes yes 53.0 - 0.0 yes yes 52.0 - 0.0 yes yes 53.0 15.1
20 2 4 2 0.0 yes yes 58.0 - 0.0 yes yes 51.0 - 0.0 yes yes 58.0 15.5
20 2 4 3 0.0 yes yes 43.0 - 0.0 yes yes 43.0 - 0.0 yes yes 43.0 27.9
20 2 4 4 0.0 yes yes 45.0 - 0.0 yes yes 50.0 - 0.0 yes yes 45.0 22.2
20 2 4 5 0.0 yes yes 39.0 - 0.0 yes yes 39.0 - 0.0 yes yes 39.0 30.8
20 2 8 1 0.0 yes yes 38.0 - 0.0 yes yes 34.0 - 0.0 yes yes 38.0 13.2
20 2 8 2 0.0 yes yes 37.0 - 0.0 yes yes 37.0 - 0.0 yes yes 37.0 29.7
20 2 8 3 0.0 yes yes 29.0 - 0.0 yes yes 32.0 - 0.0 yes yes 29.0 41.4
20 2 8 4 0.0 yes yes 35.0 - 0.0 yes yes 32.0 - 0.0 yes yes 35.0 31.4
20 2 8 5 0.0 yes yes 28.0 - 0.0 yes yes 25.0 - 0.0 yes yes 28.0 35.7

20 3 1 1 0.0 yes yes 84.0 - 0.0 yes yes 87.0 - 0.0 yes yes 84.0 11.9
20 3 1 2 0.0 yes yes 84.0 - 0.0 yes yes 95.0 - 0.0 yes yes 84.0 10.7
20 3 1 3 0.0 yes yes 84.0 16.7 0.0 yes yes 94.0 - 0.0 yes yes 84.0 15.5
20 3 1 4 0.0 yes yes 91.0 - 0.0 yes yes 89.0 - 0.0 yes yes 91.0 18.7
20 3 1 5 0.0 yes yes 76.0 - 0.0 yes yes 85.0 17.6 0.0 yes yes 76.0 18.4
20 3 2 1 0.0 yes yes 55.0 - 0.0 yes yes 57.0 15.8 0.0 yes yes 55.0 18.2
20 3 2 2 0.0 yes yes 59.0 - 0.0 yes yes 59.0 - 0.0 yes yes 59.0 5.1
20 3 2 3 0.0 yes yes 56.0 - 0.0 yes yes 46.0 - 0.0 yes yes 56.0 21.4
20 3 2 4 0.0 yes yes 52.0 - 0.0 yes yes 56.0 - 0.0 yes yes 52.0 21.2
20 3 2 5 0.0 yes yes 53.0 - 0.0 yes yes 48.0 - 0.0 yes yes 53.0 26.4
20 3 4 1 0.0 yes yes 41.0 - 0.0 yes yes 38.0 - 0.0 yes yes 41.0 17.1
20 3 4 2 0.0 yes yes 38.0 - 0.0 yes yes 37.0 - 0.0 yes yes 38.0 15.8
20 3 4 3 0.0 yes yes 31.0 - 0.0 yes yes 32.0 - 0.0 yes yes 31.0 38.7
20 3 4 4 0.0 yes yes 34.0 - 0.0 yes yes 38.0 - 0.0 yes yes 34.0 32.4
20 3 4 5 0.0 yes yes 34.0 - 0.0 yes yes 32.0 - 0.0 yes yes 34.0 35.3
20 3 8 1 0.0 yes yes 31.0 - 0.0 yes yes 31.0 - 0.0 yes yes 31.0 29.0
20 3 8 2 0.0 yes yes 33.0 - 0.0 yes yes 33.0 - 0.0 yes yes 33.0 27.3
20 3 8 3 0.0 yes yes 26.0 - 0.0 yes yes 26.0 - 0.0 yes yes 26.0 38.5
20 3 8 4 0.0 yes yes 30.0 - 0.0 yes yes 30.0 - 0.0 yes yes 30.0 33.3
20 3 8 5 0.0 yes yes 23.0 - 0.0 yes yes 23.0 - 0.0 yes yes 23.0 52.2

Table B.7: Problem V, Q|sd, u, ri, di|
∑

Ci (part 5)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance w-t w-w w

CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%)

40 1 1 1 0.0 yes yes 809.0 - 0.0 yes yes 908.0 - 0.0 yes yes 809.0 4.0
40 1 1 2 0.0 yes yes 747.0 - 0.0 yes yes 819.0 - 0.0 yes yes 747.0 4.1
40 1 1 3 0.0 yes yes 747.0 - 0.0 yes yes 753.0 - 0.0 yes yes 747.0 4.0
40 1 1 4 0.0 yes yes 708.0 - 0.0 yes yes 945.0 - 0.0 yes yes 708.0 5.4
40 1 1 5 0.0 yes yes 865.0 - 0.0 yes yes 893.0 - 0.0 yes yes 865.0 3.4
40 1 2 1 0.0 yes yes 471.0 - 0.0 yes yes 459.0 - 0.0 yes yes 471.0 5.9
40 1 2 2 0.0 yes yes 512.0 - 0.0 yes yes 457.0 - 0.0 yes yes 512.0 4.5
40 1 2 3 0.0 yes yes 420.0 - 0.0 yes yes 449.0 - 0.0 yes yes 420.0 4.5
40 1 2 4 0.0 yes yes 505.0 - 0.0 yes yes 424.0 6.8 0.0 yes yes 505.0 4.6
40 1 2 5 0.0 yes yes 398.0 - 0.0 yes yes 442.0 - 0.0 yes yes 398.0 6.8
40 1 4 1 0.0 yes yes 216.0 - 0.0 yes yes 249.0 8.4 0.0 yes yes 216.0 12.5
40 1 4 2 0.0 yes yes 234.0 - 0.0 yes yes 266.0 - 0.0 yes yes 234.0 8.5
40 1 4 3 0.0 yes yes 273.0 - 0.0 yes yes 287.0 - 0.0 yes yes 273.0 8.4
40 1 4 4 0.0 yes yes 215.0 - 0.0 yes yes 237.0 - 0.0 yes yes 215.0 11.2
40 1 4 5 0.0 yes yes 250.0 7.6 0.0 yes yes 243.0 9.1 0.0 yes yes 250.0 7.6
40 1 8 1 0.0 yes yes 137.0 - 0.0 yes yes 143.0 16.1 0.0 yes yes 137.0 13.9
40 1 8 2 0.0 yes yes 134.0 - 0.0 yes yes 148.0 - 0.0 yes yes 134.0 18.7
40 1 8 3 0.0 yes yes 139.0 - 0.0 yes yes 145.0 - 0.0 yes yes 139.0 17.3
40 1 8 4 0.0 yes yes 125.0 - 0.0 yes yes 121.0 - 0.0 yes yes 125.0 21.6
40 1 8 5 0.0 yes yes 152.0 - 0.0 yes yes 138.0 - 0.0 yes yes 152.0 13.8

40 2 1 1 0.0 yes yes 430.0 - 0.0 yes yes 435.0 - 0.1 yes yes 430.0 5.8
40 2 1 2 0.0 yes yes 473.0 - 0.0 yes yes 415.0 4.3 0.1 yes yes 473.0 6.1
40 2 1 3 0.0 yes yes 469.0 4.1 0.0 yes yes 464.0 - 0.1 yes yes 469.0 4.1
40 2 1 4 0.0 yes yes 317.0 - 0.0 yes yes 394.0 - 0.1 yes yes 317.0 8.5
40 2 1 5 0.0 yes yes 493.0 - 0.0 yes yes 452.0 - 0.0 yes yes 493.0 3.9
40 2 2 1 0.0 yes yes 205.0 - 0.0 yes yes 231.0 - 0.0 yes yes 205.0 8.8
40 2 2 2 0.0 yes yes 223.0 - 0.0 yes yes 241.0 - 0.0 yes yes 223.0 8.5
40 2 2 3 0.0 yes yes 236.0 - 0.0 yes yes 229.0 8.7 0.0 yes yes 236.0 11.4
40 2 2 4 0.0 yes yes 252.0 - 0.0 yes yes 254.0 - 0.0 yes yes 252.0 8.3
40 2 2 5 0.0 yes yes 276.0 - 0.0 yes yes 228.0 9.6 0.0 yes yes 276.0 7.2
40 2 4 1 0.0 yes yes 150.0 12.7 0.0 yes yes 139.0 - 0.0 yes yes 150.0 12.7
40 2 4 2 0.0 yes yes 135.0 - 0.0 yes yes 142.0 13.4 0.0 yes yes 135.0 12.6
40 2 4 3 0.0 yes yes 142.0 - 0.0 yes yes 134.0 - 0.0 yes yes 142.0 11.3
40 2 4 4 0.0 yes yes 116.0 24.1 0.0 yes yes 130.0 - 0.0 yes yes 116.0 24.1
40 2 4 5 0.0 yes yes 119.0 - 0.0 yes yes 161.0 - 0.0 yes yes 119.0 16.0
40 2 8 1 0.0 yes yes 88.0 - 0.0 yes yes 88.0 - 0.0 yes yes 88.0 18.2
40 2 8 2 0.0 yes yes 84.0 - 0.0 yes yes 90.0 - 0.0 yes yes 84.0 22.6
40 2 8 3 0.0 yes yes 87.0 - 0.0 yes yes 92.0 - 0.0 yes yes 87.0 17.2
40 2 8 4 0.0 yes yes 84.0 - 0.0 yes yes 87.0 - 0.0 yes yes 84.0 28.6
40 2 8 5 0.0 yes yes 89.0 - 0.0 yes yes 87.0 - 0.0 yes yes 89.0 20.2

40 3 1 1 0.0 yes yes 314.0 7.0 0.0 yes yes 268.0 - 0.1 yes yes 314.0 7.0
40 3 1 2 0.0 yes yes 318.0 - 0.0 yes yes 316.0 - 0.1 yes yes 318.0 6.3
40 3 1 3 0.0 yes yes 325.0 - 0.0 yes yes 296.0 6.8 0.1 yes yes 325.0 7.4
40 3 1 4 0.0 yes yes 258.0 - 0.0 yes yes 310.0 - 0.1 yes yes 258.0 13.2
40 3 1 5 0.0 yes yes 353.0 - 0.0 yes yes 314.0 - 0.1 yes yes 353.0 5.4
40 3 2 1 0.0 yes yes 181.0 - 0.0 yes yes 187.0 9.6 0.0 yes yes 181.0 13.3
40 3 2 2 0.0 yes yes 162.0 - 0.0 yes yes 178.0 - 0.0 yes yes 162.0 13.0
40 3 2 3 0.0 yes yes 183.0 - 0.0 yes yes 157.0 - 0.0 yes yes 183.0 13.1
40 3 2 4 0.0 yes yes 176.0 - 0.0 yes yes 161.0 - 0.0 yes yes 176.0 11.9
40 3 2 5 0.0 yes yes 184.0 - 0.0 yes yes 166.0 - 0.0 yes yes 184.0 10.3
40 3 4 1 0.0 yes yes 105.0 - 0.0 yes yes 115.0 - 0.0 yes yes 105.0 16.2
40 3 4 2 0.0 yes yes 114.0 - 0.0 yes yes 109.0 - 0.0 yes yes 114.0 17.5
40 3 4 3 0.0 yes yes 93.0 - 0.0 yes yes 100.0 22.0 0.0 yes yes 93.0 23.7
40 3 4 4 0.0 yes yes 108.0 - 0.0 yes yes 93.0 - 0.0 yes yes 108.0 22.2
40 3 4 5 0.0 yes yes 104.0 - 0.0 yes yes 107.0 - 0.0 yes yes 104.0 13.5
40 3 8 1 0.0 yes yes 72.0 - 0.0 yes yes 76.0 - 0.0 yes yes 72.0 30.6
40 3 8 2 0.0 yes yes 74.0 - 0.0 yes yes 70.0 - 0.0 yes yes 74.0 18.9
40 3 8 3 0.0 yes yes 67.0 - 0.0 yes yes 73.0 - 0.0 yes yes 67.0 31.3
40 3 8 4 0.0 yes yes 73.0 - 0.0 yes yes 70.0 - 0.0 yes yes 73.0 24.7
40 3 8 5 0.0 yes yes 73.0 - 0.0 yes yes 69.0 - 0.0 yes yes 73.0 26.0

Table B.8: Problem V, Q|sd, u, ri, di|
∑

Ci (part 6)

Detailed computational results of Chapter 4 150



Pickup and delivery problems with autonomous and electric vehicles

n V Q instance w-t w-w w

CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%)

80 1 1 1 0.1 yes yes 2806.0 2.2 0.1 yes yes 3224.0 1.7 0.1 yes yes 2805.0 2.3
80 1 1 2 0.0 yes yes 3237.0 - 0.0 yes yes 3364.0 2.4 0.1 yes yes 3237.0 1.7
80 1 1 3 0.1 yes yes 3081.0 - 0.1 yes yes 3220.0 2.2 0.1 yes yes 3080.0 1.6
80 1 1 4 0.0 yes yes 3200.0 - 0.1 yes yes 3280.0 2.6 0.1 yes yes 3199.0 2.9
80 1 1 5 0.0 yes yes 3245.0 2.1 0.1 yes yes 3296.0 - 0.1 yes yes 3245.0 2.2
80 1 2 1 0.0 yes yes 1732.0 - 0.0 yes yes 1605.0 3.3 0.1 yes yes 1732.0 2.6
80 1 2 2 0.0 yes yes 1696.0 - 0.0 yes yes 1667.0 3.1 0.1 yes yes 1696.0 3.1
80 1 2 3 0.0 yes yes 1758.0 2.6 0.0 yes yes 1798.0 3.0 0.1 yes yes 1758.0 2.6
80 1 2 4 0.0 yes yes 1810.0 - 0.0 yes yes 1613.0 4.0 0.1 yes yes 1810.0 3.6
80 1 2 5 0.0 yes yes 1688.0 - 0.0 yes yes 1484.0 - 0.1 yes yes 1687.0 2.7
80 1 4 1 0.0 yes yes 827.0 - 0.0 yes yes 853.0 - 0.1 yes yes 827.0 5.2
80 1 4 2 0.0 yes yes 942.0 - 0.0 yes yes 910.0 - 0.1 yes yes 942.0 4.7
80 1 4 3 0.0 yes yes 881.0 - 0.0 yes yes 1016.0 3.6 0.1 yes yes 881.0 3.7
80 1 4 4 0.0 yes yes 838.0 - 0.0 yes yes 832.0 - 0.1 yes yes 838.0 7.0
80 1 4 5 0.0 yes yes 859.0 - 0.0 yes yes 783.0 - 0.0 yes yes 859.0 6.3
80 1 8 1 0.0 yes yes 481.0 - 0.0 yes yes 460.0 - 0.1 yes yes 481.0 8.9
80 1 8 2 0.0 yes yes 463.0 - 0.0 yes yes 451.0 - 0.1 yes yes 463.0 10.2
80 1 8 3 0.0 yes yes 466.0 - 0.0 yes yes 485.0 8.0 0.0 yes yes 466.0 8.2
80 1 8 4 0.0 yes yes 452.0 - 0.0 yes yes 448.0 - 0.0 yes yes 452.0 12.2
80 1 8 5 0.0 yes yes 448.0 - 0.0 yes yes 448.0 - 0.1 yes yes 448.0 12.5

80 2 1 1 0.0 yes yes 1760.0 - 0.1 yes yes 1501.0 - 0.2 yes yes 1760.0 3.1
80 2 1 2 0.0 yes yes 1823.0 - 0.1 yes yes 1770.0 - 0.2 yes yes 1823.0 3.3
80 2 1 3 0.0 yes yes 1763.0 - 0.1 yes yes 1541.0 - 0.2 yes yes 1763.0 2.0
80 2 1 4 0.0 yes yes 1744.0 - 0.1 yes yes 1722.0 3.0 0.1 yes yes 1744.0 3.0
80 2 1 5 0.0 yes yes 1759.0 3.2 0.1 yes yes 1692.0 3.1 0.2 yes yes 1759.0 3.2
80 2 2 1 0.0 yes yes 908.0 - 0.0 yes yes 882.0 - 0.1 yes yes 908.0 5.4
80 2 2 2 0.0 yes yes 914.0 - 0.0 yes yes 847.0 5.5 0.1 yes yes 914.0 4.5
80 2 2 3 0.0 yes yes 936.0 - 0.0 yes yes 796.0 - 0.1 yes yes 936.0 5.1
80 2 2 4 0.0 yes yes 817.0 - 0.0 yes yes 834.0 - 0.1 yes yes 817.0 6.2
80 2 2 5 0.0 yes yes 886.0 6.1 0.0 yes yes 850.0 6.2 0.1 yes yes 886.0 6.2
80 2 4 1 0.0 yes yes 440.0 - 0.0 yes yes 489.0 - 0.1 yes yes 440.0 11.1
80 2 4 2 0.0 yes yes 421.0 - 0.0 yes yes 468.0 - 0.1 yes yes 421.0 11.6
80 2 4 3 0.0 yes yes 494.0 - 0.0 yes yes 484.0 - 0.1 yes yes 494.0 8.3
80 2 4 4 0.0 yes yes 415.0 - 0.0 yes yes 446.0 - 0.1 yes yes 415.0 15.4
80 2 4 5 0.0 yes yes 432.0 - 0.0 yes yes 422.0 - 0.1 yes yes 432.0 11.6
80 2 8 1 0.0 yes yes 257.0 - 0.0 yes yes 241.0 19.9 0.1 yes yes 257.0 18.3
80 2 8 2 0.0 yes yes 271.0 - 0.0 yes yes 267.0 - 0.1 yes yes 271.0 17.0
80 2 8 3 0.0 yes yes 284.0 - 0.0 yes yes 277.0 - 0.1 yes yes 284.0 13.4
80 2 8 4 0.0 yes yes 271.0 - 0.0 yes yes 265.0 - 0.1 yes yes 271.0 19.6
80 2 8 5 0.0 yes yes 271.0 - 0.0 yes yes 282.0 - 0.1 yes yes 271.0 18.8

80 3 1 1 0.0 yes yes 1138.0 - 0.0 yes yes 1096.0 - 0.3 yes yes 1138.0 4.1
80 3 1 2 0.0 yes yes 1120.0 - 0.0 yes yes 1106.0 - 0.3 yes yes 1120.0 4.0
80 3 1 3 0.1 yes yes 1137.0 - 0.1 yes yes 1256.0 4.0 0.3 yes yes 1136.0 3.9
80 3 1 4 0.1 yes yes 1176.0 - 0.0 yes yes 1233.0 - 0.2 yes yes 1176.0 4.3
80 3 1 5 0.0 yes yes 1207.0 - 0.0 yes yes 1100.0 5.4 0.2 yes yes 1207.0 4.1
80 3 2 1 0.0 yes yes 560.0 - 0.0 yes yes 576.0 - 0.2 yes yes 560.0 8.2
80 3 2 2 0.0 yes yes 633.0 7.4 0.0 yes yes 563.0 7.8 0.1 yes yes 633.0 7.4
80 3 2 3 0.0 yes yes 633.0 - 0.0 yes yes 610.0 - 0.2 yes yes 633.0 6.0
80 3 2 4 0.0 yes yes 610.0 - 0.0 yes yes 624.0 - 0.2 yes yes 610.0 8.5
80 3 2 5 0.0 yes yes 583.0 - 0.0 yes yes 601.0 9.2 0.1 yes yes 583.0 8.6
80 3 4 1 0.0 yes yes 337.0 - 0.0 yes yes 329.0 - 0.1 yes yes 337.0 13.4
80 3 4 2 0.0 yes yes 363.0 13.5 0.0 yes yes 356.0 - 0.1 yes yes 363.0 13.5
80 3 4 3 0.0 yes yes 353.0 - 0.0 yes yes 317.0 - 0.2 yes yes 353.0 11.0
80 3 4 4 0.0 yes yes 304.0 - 0.0 yes yes 317.0 - 0.2 yes yes 304.0 17.1
80 3 4 5 0.0 yes yes 332.0 - 0.0 yes yes 345.0 - 0.1 yes yes 332.0 14.8
80 3 8 1 0.0 yes yes 210.0 - 0.0 yes yes 216.0 - 0.1 yes yes 210.0 20.5
80 3 8 2 0.0 yes yes 231.0 - 0.0 yes yes 219.0 - 0.1 yes yes 231.0 15.6
80 3 8 3 0.0 yes yes 232.0 - 0.0 yes yes 223.0 - 0.1 yes yes 232.0 15.9
80 3 8 4 0.0 yes yes 198.0 - 0.0 yes yes 211.0 - 0.2 yes yes 198.0 23.7
80 3 8 5 0.0 yes yes 212.0 - 0.0 yes yes 210.0 - 0.1 yes yes 212.0 21.7

Table B.9: Problem V, Q|sd, u, ri, di|
∑

Ci (part 7)
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n V Q instance w-t w-w w

CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%)

160 1 1 1 0.2 yes yes 12430.0 0.8 0.3 yes yes 12486.0 1.0 0.5 yes yes 12428.0 0.8
160 1 1 2 0.2 yes yes 12610.0 - 0.2 yes yes 12072.0 1.0 0.4 yes yes 12610.0 0.8
160 1 1 3 0.2 yes yes 13049.0 - 0.2 yes yes 12959.0 - 0.4 yes yes 13034.0 0.8
160 1 1 4 0.1 yes yes 12800.0 - 0.3 yes yes 12363.0 - 0.4 yes yes 12800.0 0.8
160 1 1 5 0.1 yes yes 14048.0 - 0.3 yes yes 13149.0 - 0.4 yes yes 14048.0 0.8
160 1 2 1 0.1 yes yes 6971.0 - 0.1 yes yes 6326.0 - 0.3 yes yes 6971.0 1.3
160 1 2 2 0.1 yes yes 6799.0 - 0.1 yes yes 6201.0 - 0.3 yes yes 6799.0 1.5
160 1 2 3 0.1 yes yes 5672.0 - 0.1 yes yes 6739.0 1.5 0.3 yes yes 5672.0 1.4
160 1 2 4 0.1 yes yes 6340.0 - 0.1 yes yes 6660.0 - 0.2 yes yes 6337.0 1.2
160 1 2 5 0.1 yes yes 6505.0 - 0.1 yes yes 6750.0 - 0.3 yes yes 6505.0 1.5
160 1 4 1 0.0 yes yes 3340.0 - 0.0 yes yes 3634.0 2.3 0.2 yes yes 3340.0 2.7
160 1 4 2 0.0 yes yes 3258.0 - 0.1 yes yes 3301.0 - 0.2 yes yes 3258.0 2.6
160 1 4 3 0.1 yes yes 3346.0 - 0.1 yes yes 3580.0 2.0 0.2 yes yes 3344.0 2.5
160 1 4 4 0.0 yes yes 3168.0 - 0.0 yes yes 3449.0 2.7 0.2 yes yes 3168.0 2.8
160 1 4 5 0.0 yes yes 3358.0 - 0.0 yes yes 3489.0 - 0.2 yes yes 3358.0 2.5
160 1 8 1 0.0 yes yes 1743.0 - 0.0 yes yes 1721.0 - 0.3 yes yes 1743.0 4.7
160 1 8 2 0.0 yes yes 1803.0 - 0.0 yes yes 1746.0 - 0.2 yes yes 1803.0 4.8
160 1 8 3 0.0 yes yes 1816.0 - 0.0 yes yes 1677.0 - 0.2 yes yes 1816.0 3.9
160 1 8 4 0.0 yes yes 1666.0 - 0.0 yes yes 1775.0 - 0.2 yes yes 1666.0 4.8
160 1 8 5 0.0 yes yes 1717.0 - 0.0 yes yes 1770.0 5.4 0.2 yes yes 1717.0 6.2

160 2 1 1 0.2 yes yes 6827.0 - 0.3 yes yes 6601.0 - 0.8 yes yes 6827.0 1.4
160 2 1 2 0.2 yes yes 6706.0 - 0.2 yes yes 6739.0 - 0.8 yes yes 6706.0 1.8
160 2 1 3 0.2 yes yes 6313.0 - 0.2 yes yes 7041.0 - 0.8 yes yes 6313.0 1.3
160 2 1 4 0.1 yes yes 6722.0 - 0.2 yes yes 6471.0 1.7 0.7 yes yes 6722.0 1.7
160 2 1 5 0.2 yes yes 6679.0 - 0.2 yes yes 6938.0 1.4 0.7 yes yes 6679.0 1.4
160 2 2 1 0.1 yes yes 3323.0 2.3 0.1 yes yes 3518.0 - 0.5 yes yes 3323.0 2.3
160 2 2 2 0.1 yes yes 3341.0 - 0.1 yes yes 3181.0 2.9 0.5 yes yes 3341.0 2.7
160 2 2 3 0.1 yes yes 3432.0 - 0.1 yes yes 3407.0 - 0.5 yes yes 3432.0 2.0
160 2 2 4 0.1 yes yes 3402.0 - 0.1 yes yes 3424.0 - 0.6 yes yes 3402.0 2.3
160 2 2 5 0.1 yes yes 3399.0 - 0.1 yes yes 3450.0 - 0.5 yes yes 3399.0 2.7
160 2 4 1 0.0 yes yes 1769.0 4.7 0.0 yes yes 1847.0 - 0.4 yes yes 1769.0 4.7
160 2 4 2 0.0 yes yes 1857.0 - 0.0 yes yes 1749.0 - 0.4 yes yes 1857.0 4.9
160 2 4 3 0.0 yes yes 1700.0 - 0.0 yes yes 1810.0 - 0.4 yes yes 1700.0 4.2
160 2 4 4 0.0 yes yes 1739.0 - 0.0 yes yes 1666.0 - 0.4 yes yes 1739.0 4.3
160 2 4 5 0.0 yes yes 1724.0 - 0.0 yes yes 1810.0 - 0.4 yes yes 1724.0 5.5
160 2 8 1 0.0 yes yes 980.0 - 0.0 yes yes 955.0 - 0.4 yes yes 980.0 9.6
160 2 8 2 0.0 yes yes 915.0 - 0.0 yes yes 906.0 - 0.4 yes yes 915.0 10.1
160 2 8 3 0.0 yes yes 925.0 - 0.0 yes yes 943.0 - 0.4 yes yes 925.0 7.7
160 2 8 4 0.0 yes yes 933.0 - 0.0 yes yes 928.0 - 0.4 yes yes 933.0 9.5
160 2 8 5 0.0 yes yes 933.0 - 0.0 yes yes 897.0 10.9 0.4 yes yes 933.0 9.9

160 3 1 1 0.2 yes yes 4428.0 - 0.2 yes yes 4362.0 2.0 1.4 yes yes 4428.0 1.9
160 3 1 2 0.1 yes yes 4268.0 - 0.2 yes yes 4340.0 - 1.1 yes yes 4268.0 2.3
160 3 1 3 0.1 yes yes 4248.0 - 0.2 yes yes 4414.0 1.7 1.0 yes yes 4247.0 1.7
160 3 1 4 0.2 yes yes 4017.0 - 0.2 yes yes 4256.0 - 1.3 yes yes 4017.0 2.4
160 3 1 5 0.2 yes yes 4410.0 - 0.2 yes yes 4320.0 - 1.2 yes yes 4410.0 1.7
160 3 2 1 0.1 yes yes 2174.0 - 0.1 yes yes 2285.0 3.5 0.7 yes yes 2174.0 3.7
160 3 2 2 0.1 yes yes 2303.0 - 0.1 yes yes 2390.0 - 1.0 yes yes 2303.0 4.4
160 3 2 3 0.1 yes yes 2368.0 - 0.1 yes yes 2307.0 - 0.7 yes yes 2368.0 3.3
160 3 2 4 0.1 yes yes 2211.0 - 0.1 yes yes 2464.0 3.1 0.7 yes yes 2211.0 3.4
160 3 2 5 0.1 yes yes 2338.0 - 0.1 yes yes 2438.0 - 0.7 yes yes 2338.0 3.5
160 3 4 1 0.0 yes yes 1249.0 - 0.0 yes yes 1246.0 - 0.7 yes yes 1249.0 6.9
160 3 4 2 0.0 yes yes 1225.0 - 0.0 yes yes 1165.0 - 0.7 yes yes 1225.0 7.7
160 3 4 3 0.0 yes yes 1212.0 - 0.0 yes yes 1153.0 - 0.7 yes yes 1212.0 6.5
160 3 4 4 0.0 yes yes 1176.0 - 0.0 yes yes 1237.0 - 0.7 yes yes 1176.0 7.1
160 3 4 5 0.0 yes yes 1300.0 - 0.0 yes yes 1261.0 - 0.7 yes yes 1300.0 7.0
160 3 8 1 0.0 yes yes 738.0 - 0.0 yes yes 694.0 - 0.7 yes yes 738.0 10.3
160 3 8 2 0.0 yes yes 731.0 - 0.0 yes yes 648.0 - 0.7 yes yes 731.0 11.1
160 3 8 3 0.0 yes yes 687.0 - 0.0 yes yes 673.0 - 0.7 yes yes 687.0 9.6
160 3 8 4 0.0 yes yes 692.0 - 0.0 yes yes 679.0 - 0.7 yes yes 692.0 11.6
160 3 8 5 0.0 yes yes 647.0 - 0.0 yes yes 700.0 - 0.7 yes yes 647.0 14.7

Table B.10: Problem V, Q|sd, u, ri, di|
∑

Ci (part 8)
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n V Q instance CPU(s)
∑

Ci opt gapGr(%)

20 1 1 1 0.0 117.0 yes 6.8
20 1 1 2 0.0 140.0 yes 0.0
20 1 1 3 0.0 106.0 yes 2.8
20 1 1 4 0.0 110.0 yes 13.6
20 1 1 5 0.0 99.0 yes 8.1

20 1 2 1 0.1 89.0 yes 10.1
20 1 2 2 0.1 99.0 yes 9.1
20 1 2 3 0.1 83.0 yes 3.6
20 1 2 4 0.1 91.0 yes 7.7
20 1 2 5 0.0 68.0 yes 10.3

20 1 4 1 0.1 80.0 yes 22.5
20 1 4 2 0.1 85.0 yes 12.9
20 1 4 3 0.1 79.0 yes 12.7
20 1 4 4 0.1 67.0 yes 16.4
20 1 4 5 0.0 56.0 yes 23.2

20 1 8 1 0.1 69.0 yes 14.5
20 1 8 2 0.1 79.0 yes 13.9
20 1 8 3 0.1 67.0 yes 9.0
20 1 8 4 0.2 73.0 yes 19.2
20 1 8 5 0.0 57.0 yes 21.1

20 2 1 1 0.0 70.0 yes 5.7
20 2 1 2 0.0 82.0 yes 0.0
20 2 1 3 0.0 60.0 yes 5.0
20 2 1 4 0.0 65.0 yes 9.2
20 2 1 5 0.0 56.0 yes 7.1

20 2 2 1 0.0 53.0 yes 7.5
20 2 2 2 0.1 70.0 yes 2.9
20 2 2 3 0.0 50.0 yes 8.0
20 2 2 4 0.1 54.0 yes 11.1
20 2 2 5 0.0 42.0 yes 14.3

20 2 4 1 0.1 54.0 yes 13.0
20 2 4 2 0.0 55.0 yes 14.5
20 2 4 3 0.1 47.0 yes 4.3
20 2 4 4 0.1 49.0 yes 8.2
20 2 4 5 0.1 46.0 yes 10.9

20 2 8 1 0.0 44.0 yes 15.9
20 2 8 2 0.1 51.0 yes 5.9
20 2 8 3 0.1 45.0 yes 13.3
20 2 8 4 0.1 44.0 yes 9.1
20 2 8 5 0.0 39.0 yes 10.3

20 3 1 1 0.0 54.0 yes 3.7
20 3 1 2 0.0 63.0 yes 0.0
20 3 1 3 0.0 46.0 yes 6.5
20 3 1 4 0.0 50.0 yes 6.0
20 3 1 5 0.0 42.0 yes 7.1

20 3 2 1 0.1 47.0 yes 4.3
20 3 2 2 0.0 52.0 yes 7.7
20 3 2 3 0.0 36.0 yes 13.9
20 3 2 4 0.0 43.0 yes 2.3
20 3 2 5 0.0 33.0 yes 18.2

20 3 4 1 0.0 39.0 yes 2.6
20 3 4 2 0.0 48.0 yes 8.3
20 3 4 3 0.0 35.0 yes 22.9
20 3 4 4 0.0 37.0 yes 0.0
20 3 4 5 0.0 32.0 yes 15.6

20 3 8 1 0.0 38.0 yes 5.3
20 3 8 2 0.0 42.0 yes 9.5
20 3 8 3 0.0 30.0 yes 16.7
20 3 8 4 0.1 43.0 yes 4.7
20 3 8 5 0.0 29.0 yes 10.3

n V Q instance CPU(s)
∑

Ci opt gapGr(%)

40 1 1 1 0.1 346.0 yes 4.9
40 1 1 2 0.1 379.0 yes 4.0
40 1 1 3 0.1 476.0 yes 6.7
40 1 1 4 0.1 419.0 yes 3.3
40 1 1 5 0.1 400.0 yes 9.3

40 1 2 1 0.9 272.0 yes 7.0
40 1 2 2 0.6 262.0 yes 11.5
40 1 2 3 0.3 307.0 yes 11.1
40 1 2 4 1.2 297.0 yes 5.7
40 1 2 5 0.2 278.0 yes 20.5

40 1 4 1 4.2 216.0 yes 15.3
40 1 4 2 0.9 228.0 yes 4.8
40 1 4 3 2.5 249.0 yes 19.3
40 1 4 4 1.7 265.0 yes 4.9
40 1 4 5 0.4 290.0 yes 7.6

40 1 8 1 8.9 199.0 yes 7.5
40 1 8 2 2.0 213.0 yes 19.2
40 1 8 3 2.1 258.0 yes 22.5
40 1 8 4 3.7 206.0 yes 15.0
40 1 8 5 2.2 169.0 yes 9.5

40 2 1 1 0.1 191.0 yes 7.9
40 2 1 2 0.1 201.0 yes 3.0
40 2 1 3 0.0 255.0 yes 5.9
40 2 1 4 0.0 222.0 yes 3.6
40 2 1 5 0.1 212.0 yes 6.6

40 2 2 1 0.5 155.0 yes 11.6
40 2 2 2 0.3 153.0 yes 9.8
40 2 2 3 0.1 165.0 yes 16.4
40 2 2 4 2.8 149.0 yes 4.7
40 2 2 5 0.3 163.0 yes 8.0

40 2 4 1 1.2 125.0 yes 8.8
40 2 4 2 0.5 119.0 yes 8.4
40 2 4 3 1.2 173.0 yes 17.3
40 2 4 4 0.5 133.0 yes 7.5
40 2 4 5 0.6 122.0 yes 13.9

40 2 8 1 7.6 147.0 yes 8.8
40 2 8 2 1.4 129.0 yes 12.4
40 2 8 3 3.8 150.0 yes 13.3
40 2 8 4 0.4 130.0 yes 13.1
40 2 8 5 2.6 119.0 yes 8.4

40 3 1 1 0.2 141.0 yes 7.1
40 3 1 2 0.1 145.0 yes 2.8
40 3 1 3 0.1 181.0 yes 8.3
40 3 1 4 0.1 157.0 yes 3.2
40 3 1 5 0.1 150.0 yes 4.7

40 3 2 1 0.4 112.0 yes 10.7
40 3 2 2 0.2 114.0 yes 8.8
40 3 2 3 0.3 141.0 yes 9.9
40 3 2 4 0.5 120.0 yes 4.2
40 3 2 5 0.2 115.0 yes 8.7

40 3 4 1 0.3 103.0 yes 17.5
40 3 4 2 1.1 98.0 yes 8.2
40 3 4 3 23.9 128.0 yes 11.7
40 3 4 4 2.1 101.0 yes 10.9
40 3 4 5 2.0 95.0 yes 8.4

40 3 8 1 1.3 97.0 yes 17.5
40 3 8 2 0.5 82.0 yes 1.2
40 3 8 3 0.5 100.0 yes 19.0
40 3 8 4 0.4 87.0 yes 10.3
40 3 8 5 2.4 87.0 yes 13.8

Table B.11: Problem V, Q|sd|∑Ci (part 1)
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n V Q instance CPU(s)
∑

Ci opt gapGr(%)

80 1 1 1 0.4 1345.0 yes 3.4
80 1 1 2 0.5 1304.0 yes 2.1
80 1 1 3 0.4 1453.0 yes 6.5
80 1 1 4 0.4 1559.0 yes 7.4
80 1 1 5 0.3 1360.0 yes 4.7

80 1 2 1 1802.6 960.0 no 5.6
80 1 2 2 2.5 945.0 yes 9.2
80 1 2 3 91.6 978.0 yes 13.7
80 1 2 4 14.2 1067.0 yes 8.8
80 1 2 5 638.8 961.0 yes 8.4

80 1 4 1 1800.1 792.0 no 12.5
80 1 4 2 1801.6 752.0 no 10.4
80 1 4 3 1801.4 799.0 no 18.0
80 1 4 4 41.8 988.0 yes 12.8
80 1 4 5 343.4 816.0 yes 8.8

80 1 8 1 1801.6 680.0 no 14.4
80 1 8 2 1801.2 680.0 no 12.9
80 1 8 3 1800.3 777.0 no 8.4
80 1 8 4 1801.5 832.0 no 10.2
80 1 8 5 1801.8 643.0 no 13.7

80 2 1 1 0.5 703.0 yes 2.8
80 2 1 2 0.4 681.0 yes 2.2
80 2 1 3 0.4 767.0 yes 6.5
80 2 1 4 0.4 809.0 yes 7.2
80 2 1 5 0.4 706.0 yes 5.1

80 2 2 1 1801.5 518.0 no 6.9
80 2 2 2 51.3 483.0 yes 7.0
80 2 2 3 1802.3 553.0 no 12.7
80 2 2 4 6.4 572.0 yes 12.9
80 2 2 5 1804.0 533.0 no 5.1

80 2 4 1 1801.0 436.0 no 12.6
80 2 4 2 1800.1 406.0 no 11.6
80 2 4 3 1800.2 459.0 no 10.7
80 2 4 4 1016.0 517.0 yes 9.9
80 2 4 5 312.2 428.0 yes 10.0

80 2 8 1 1801.1 367.0 no 15.3
80 2 8 2 1800.2 419.0 no 15.5
80 2 8 3 1801.8 385.0 no 16.9
80 2 8 4 1801.4 420.0 no 20.7
80 2 8 5 1801.2 387.0 no 14.2

80 3 1 1 0.5 489.0 yes 2.7
80 3 1 2 0.4 475.0 yes 2.3
80 3 1 3 0.4 539.0 yes 6.5
80 3 1 4 0.3 559.0 yes 7.5
80 3 1 5 0.3 488.0 yes 5.5

80 3 2 1 45.9 390.0 yes 5.9
80 3 2 2 57.3 345.0 yes 8.4
80 3 2 3 5.8 358.0 yes 9.5
80 3 2 4 1806.0 376.0 no 11.2
80 3 2 5 9.3 354.0 yes 13.3

80 3 4 1 84.3 281.0 yes 13.2
80 3 4 2 683.3 287.0 yes 13.9
80 3 4 3 90.6 327.0 yes 9.5
80 3 4 4 1800.8 347.0 no 16.4
80 3 4 5 95.4 320.0 yes 12.8

80 3 8 1 1801.6 301.0 no 11.3
80 3 8 2 1801.7 252.0 no 11.1
80 3 8 3 1801.6 331.0 no 9.1
80 3 8 4 1801.4 320.0 no 12.2
80 3 8 5 1800.8 273.0 no 15.0

n V Q instance CPU(s)
∑

Ci opt gapGr(%)

160 1 1 1 7.6 5271.0 yes 1.2
160 1 1 2 2.5 5246.0 yes 1.3
160 1 1 3 2.3 4736.0 yes 0.6
160 1 1 4 2.0 4912.0 yes 2.8
160 1 1 5 1.6 4906.0 yes 1.3

160 1 2 1 1801.6 3806.0 no 4.5
160 1 2 2 1801.4 3552.0 no 7.0
160 1 2 3 1801.3 3306.0 no 5.0
160 1 2 4 1800.3 3314.0 no 10.0
160 1 2 5 1800.2 3370.0 no 8.7

160 1 4 1 1800.2 2918.0 no 6.7
160 1 4 2 1800.4 3067.0 no 4.8
160 1 4 3 1800.3 2838.0 no 3.9
160 1 4 4 1800.2 2858.0 no 6.3
160 1 4 5 1801.4 2668.0 no 6.4

160 1 8 1 1800.4 2925.0 no 4.2
160 1 8 2 1800.3 2583.0 no 6.1
160 1 8 3 1800.3 2261.0 no 4.2
160 1 8 4 1800.4 2525.0 no 5.4
160 1 8 5 1800.1 2612.0 no 10.8

160 2 1 1 3.1 2688.0 yes 1.4
160 2 1 2 6.2 2676.0 yes 1.2
160 2 1 3 4.0 2433.0 yes 0.6
160 2 1 4 1.9 2517.0 yes 2.5
160 2 1 5 1.8 2511.0 yes 1.1

160 2 2 1 1801.5 1879.0 no 3.7
160 2 2 2 1801.6 1840.0 no 6.2
160 2 2 3 1801.4 1748.0 no 6.6
160 2 2 4 1801.8 1751.0 no 5.6
160 2 2 5 33.7 1760.0 yes 9.9

160 2 4 1 1801.4 1517.0 no 4.4
160 2 4 2 1800.2 1589.0 no 7.4
160 2 4 3 1800.1 1446.0 no 5.7
160 2 4 4 1800.1 1367.0 no 8.1
160 2 4 5 1800.3 1482.0 no 7.5

160 2 8 1 1800.3 1616.0 no 4.9
160 2 8 2 1800.3 1304.0 no 7.2
160 2 8 3 1800.2 1273.0 no 3.3
160 2 8 4 1800.5 1309.0 no 5.8
160 2 8 5 1801.2 1098.0 no 8.1

160 3 1 1 2.8 1828.0 yes 1.6
160 3 1 2 2.3 1820.0 yes 1.3
160 3 1 3 3.1 1666.0 yes 0.8
160 3 1 4 2.6 1721.0 yes 2.3
160 3 1 5 1.8 1713.0 yes 1.1

160 3 2 1 1800.3 1316.0 no 6.2
160 3 2 2 1801.7 1356.0 no 4.6
160 3 2 3 1801.5 1214.0 no 5.1
160 3 2 4 1801.3 1158.0 no 5.4
160 3 2 5 1802.1 1178.0 no 7.8

160 3 4 1 1800.3 1138.0 no 8.3
160 3 4 2 1801.2 1121.0 no 3.7
160 3 4 3 1800.3 1070.0 no 5.6
160 3 4 4 1800.4 1016.0 no 6.7
160 3 4 5 1801.2 1037.0 no 10.8

160 3 8 1 1800.3 987.0 no 5.7
160 3 8 2 1800.4 1036.0 no 6.2
160 3 8 3 1800.3 970.0 no 4.8
160 3 8 4 1802.7 935.0 no 10.1
160 3 8 5 1800.2 980.0 no 5.6

Table B.12: Problem V, Q|sd|∑Ci (part 2)
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n V Q instance t-t t-w t

CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%)

20 1 1 1 - no - - - - no - - - 0.0 yes yes 140.0 6.4
20 1 1 2 - no - - - - no - - - 0.0 yes yes 177.0 9.6
20 1 1 3 - no - - - - no - - - 0.0 yes yes 122.0 24.6
20 1 1 4 - no - - - - no - - - 0.0 yes yes 140.0 12.1
20 1 1 5 - no - - - 0.0 yes yes 142.0 - 0.0 yes yes 119.0 14.3
20 1 2 1 - no - - - 0.0 yes yes 118.0 - 0.0 yes yes 137.0 10.2
20 1 2 2 - no - - - - no - - - 0.1 yes yes 123.0 26.0
20 1 2 3 - no - - - 0.0 yes yes 123.0 - 0.0 yes yes 116.0 21.6
20 1 2 4 - no - - - 0.0 yes yes 131.0 - 0.0 yes yes 122.0 15.6
20 1 2 5 - no - - - 0.0 yes yes 104.0 - 0.0 yes yes 109.0 22.0
20 1 4 1 - no - - - 0.0 yes yes 112.0 - 0.0 yes yes 142.0 16.2
20 1 4 2 - no - - - - no - - - 0.0 yes yes 135.0 8.9
20 1 4 3 - no - - - 0.0 yes yes 105.0 - 0.0 yes yes 109.0 19.3
20 1 4 4 - no - - - 0.0 yes yes 126.0 - 0.0 yes yes 129.0 16.3
20 1 4 5 0.0 yes yes 91.0 14.3 0.0 yes yes 105.0 - 0.0 yes yes 89.0 16.9
20 1 8 1 0.0 yes yes 109.0 - 0.0 yes yes 123.0 - 0.0 yes yes 109.0 14.7
20 1 8 2 - no - - - - no - - - 0.1 yes yes 118.0 7.6
20 1 8 3 - no - - - 0.0 yes yes 100.0 - 0.0 yes yes 113.0 15.0
20 1 8 4 - no - - - - no - - - 0.1 yes yes 132.0 17.4
20 1 8 5 0.0 yes yes 110.0 - 0.0 yes yes 106.0 17.0 0.0 yes yes 107.0 21.5

20 2 1 1 - no - - - - no - - - 0.0 yes yes 75.0 9.3
20 2 1 2 - no - - - - no - - - 0.0 yes yes 94.0 22.3
20 2 1 3 - no - - - - no - - - 0.0 yes yes 71.0 28.2
20 2 1 4 - no - - - 0.0 yes yes 79.0 - 0.0 yes yes 83.0 19.3
20 2 1 5 - no - - - - no - - - 0.0 yes yes 64.0 23.4
20 2 2 1 - no - - - 0.0 yes yes 79.0 - 0.0 yes yes 66.0 12.1
20 2 2 2 - no - - - - no - - - 0.0 yes yes 81.0 17.3
20 2 2 3 - no - - - 0.0 yes yes 64.0 - 0.0 yes yes 60.0 18.3
20 2 2 4 0.0 yes yes 68.0 - 0.0 yes yes 72.0 - 0.0 yes yes 68.0 20.6
20 2 2 5 - no - - - 0.0 yes yes 53.0 - 0.0 yes yes 51.0 49.0
20 2 4 1 0.0 yes yes 67.0 - - no - - - 0.0 yes yes 67.0 22.4
20 2 4 2 - no - - - - no - - - 0.0 yes yes 70.0 20.0
20 2 4 3 0.0 yes yes 74.0 - 0.0 yes yes 55.0 - 0.0 yes yes 71.0 21.1
20 2 4 4 - no - - - 0.0 yes yes 68.0 - 0.1 yes yes 60.0 28.3
20 2 4 5 - no - - - 0.0 yes yes 58.0 - 0.0 yes yes 63.0 28.6
20 2 8 1 0.0 yes yes 69.0 - 0.0 yes yes 64.0 - 0.0 yes yes 69.0 13.0
20 2 8 2 - no - - - 0.0 yes yes 74.0 - 0.0 yes yes 67.0 20.9
20 2 8 3 0.0 yes yes 62.0 - 0.0 yes yes 63.0 - 0.0 yes yes 62.0 29.0
20 2 8 4 0.0 yes yes 71.0 - 0.0 yes yes 57.0 - 0.0 yes yes 68.0 26.5
20 2 8 5 0.0 yes yes 59.0 - 0.0 yes yes 62.0 - 0.0 yes yes 57.0 33.3

20 3 1 1 - no - - - - no - - - 0.0 yes yes 62.0 11.3
20 3 1 2 - no - - - - no - - - 0.0 yes yes 68.0 8.8
20 3 1 3 - no - - - - no - - - 0.0 yes yes 47.0 44.7
20 3 1 4 - no - - - - no - - - 0.0 yes yes 63.0 17.5
20 3 1 5 - no - - - 0.0 yes yes 51.0 - 0.0 yes yes 50.0 22.0
20 3 2 1 - no - - - 0.0 yes yes 54.0 - 0.0 yes yes 50.0 18.0
20 3 2 2 0.0 yes yes 62.0 - 0.0 yes yes 58.0 - 0.0 yes yes 58.0 8.6
20 3 2 3 0.0 yes yes 44.0 - 0.0 yes yes 45.0 - 0.0 yes yes 44.0 29.5
20 3 2 4 - no - - - 0.0 yes yes 48.0 - 0.1 yes yes 56.0 23.2
20 3 2 5 0.0 yes yes 48.0 - 0.0 yes yes 41.0 - 0.0 yes yes 46.0 34.8
20 3 4 1 - no - - - 0.0 yes yes 47.0 - 0.0 yes yes 45.0 22.2
20 3 4 2 - no - - - 0.0 yes yes 56.0 - 0.1 yes yes 55.0 21.8
20 3 4 3 0.0 yes yes 46.0 - 0.0 yes yes 45.0 - 0.0 yes yes 45.0 26.7
20 3 4 4 0.0 yes yes 49.0 - 0.0 yes yes 49.0 - 0.0 yes yes 49.0 24.5
20 3 4 5 - no - - - 0.0 yes yes 40.0 - 0.0 yes yes 36.0 55.6
20 3 8 1 0.0 yes yes 46.0 - 0.0 yes yes 54.0 - 0.0 yes yes 46.0 13.0
20 3 8 2 0.0 yes yes 52.0 - 0.0 yes yes 63.0 - 0.0 yes yes 52.0 11.5
20 3 8 3 0.0 yes yes 46.0 - 0.0 yes yes 44.0 29.5 0.0 yes yes 46.0 21.7
20 3 8 4 - no - - - 0.0 yes yes 50.0 - 0.0 yes yes 51.0 31.4
20 3 8 5 0.0 yes yes 42.0 - 0.0 yes yes 41.0 - 0.0 yes yes 42.0 28.6

Table B.13: Problem V, Q|sd, ri, di|
∑

Ci (part 1)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance t-t t-w t

CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%)

40 1 1 1 - no - - - 0.0 yes yes 542.0 - 0.0 yes yes 492.0 17.5
40 1 1 2 - no - - - - no - - - 0.1 yes yes 484.0 11.4
40 1 1 3 - no - - - - no - - - 0.0 yes yes 530.0 8.7
40 1 1 4 - no - - - - no - - - 0.0 yes yes 525.0 4.8
40 1 1 5 - no - - - - no - - - 0.2 yes yes 535.0 8.4
40 1 2 1 - no - - - - no - - - 0.2 yes yes 418.0 11.0
40 1 2 2 - no - - - - no - - - 0.1 yes yes 429.0 15.9
40 1 2 3 0.1 yes yes 433.0 - 0.1 yes yes 417.0 - 0.6 yes yes 421.0 6.7
40 1 2 4 - no - - - 0.0 yes yes 418.0 - 0.2 yes yes 381.0 9.7
40 1 2 5 - no - - - 0.1 yes yes 413.0 - 0.3 yes yes 398.0 13.3
40 1 4 1 0.0 yes yes 386.0 - 0.1 yes yes 346.0 - 0.1 yes yes 385.0 9.4
40 1 4 2 0.1 yes yes 389.0 - - no - - - 0.1 yes yes 378.0 9.5
40 1 4 3 0.1 yes yes 387.0 - 0.1 yes yes 413.0 - 0.7 yes yes 366.0 14.5
40 1 4 4 - no - - - 0.1 yes yes 367.0 - 0.1 yes yes 424.0 18.2
40 1 4 5 - no - - - - no - - - 0.2 yes yes 404.0 16.3
40 1 8 1 0.0 yes yes 390.0 - 0.1 yes yes 379.0 - 0.1 yes yes 388.0 9.8
40 1 8 2 0.0 yes yes 381.0 - 0.1 yes yes 400.0 - 0.2 yes yes 379.0 16.9
40 1 8 3 - no - - - - no - - - 0.6 yes yes 451.0 14.6
40 1 8 4 0.0 yes yes 385.0 - 0.2 yes yes 382.0 - 0.1 yes yes 385.0 9.1
40 1 8 5 0.0 yes yes 371.0 - 0.0 yes yes 354.0 - 0.1 yes yes 361.0 7.8

40 2 1 1 - no - - - 0.1 yes yes 261.0 - 0.1 yes yes 264.0 11.4
40 2 1 2 - no - - - 0.0 yes yes 259.0 - 0.1 yes yes 278.0 14.7
40 2 1 3 - no - - - - no - - - 0.1 yes yes 293.0 11.9
40 2 1 4 - no - - - - no - - - 0.1 yes yes 253.0 4.0
40 2 1 5 - no - - - - no - - - 0.1 yes yes 249.0 15.3
40 2 2 1 - no - - - 0.1 yes yes 218.0 - 0.3 yes yes 237.0 10.1
40 2 2 2 - no - - - 0.1 yes yes 220.0 - 0.3 yes yes 219.0 9.6
40 2 2 3 - no - - - 0.1 yes yes 223.0 - 0.3 yes yes 229.0 16.2
40 2 2 4 0.1 yes yes 195.0 - 0.1 yes yes 209.0 - 0.1 yes yes 193.0 23.3
40 2 2 5 - no - - - - no - - - 0.2 yes yes 212.0 20.3
40 2 4 1 0.1 yes yes 205.0 - 0.1 yes yes 220.0 - 0.2 yes yes 188.0 16.0
40 2 4 2 0.1 yes yes 192.0 - 0.1 yes yes 201.0 - 0.5 yes yes 191.0 14.1
40 2 4 3 - no - - - 0.2 yes yes 227.0 - 0.7 yes yes 225.0 10.2
40 2 4 4 0.1 yes yes 214.0 - 0.1 yes yes 221.0 - 0.1 yes yes 211.0 16.1
40 2 4 5 0.1 yes yes 195.0 - 0.1 yes yes 204.0 - 0.3 yes yes 189.0 14.8
40 2 8 1 0.2 yes yes 223.0 - 0.2 yes yes 217.0 - 0.4 yes yes 216.0 14.8
40 2 8 2 0.1 yes yes 229.0 - 0.1 yes yes 225.0 - 0.2 yes yes 227.0 7.9
40 2 8 3 0.1 yes yes 234.0 - 0.1 yes yes 235.0 - 0.2 yes yes 230.0 17.0
40 2 8 4 - no - - - 0.1 yes yes 204.0 - 0.3 yes yes 240.0 13.3
40 2 8 5 0.1 yes yes 220.0 - 0.1 yes yes 207.0 - 0.1 yes yes 217.0 16.1

40 3 1 1 - no - - - 0.0 yes yes 180.0 - 0.1 yes yes 176.0 17.0
40 3 1 2 - no - - - 0.0 yes yes 182.0 - 0.1 yes yes 182.0 12.6
40 3 1 3 - no - - - - no - - - 0.1 yes yes 208.0 6.7
40 3 1 4 - no - - - 0.0 yes yes 185.0 - 0.1 yes yes 202.0 20.3
40 3 1 5 - no - - - 0.0 yes yes 194.0 - 0.1 yes yes 177.0 9.0
40 3 2 1 0.2 yes yes 163.0 - 0.2 yes yes 139.0 - 0.3 yes yes 159.0 13.8
40 3 2 2 - no - - - 0.2 yes yes 154.0 - 0.7 yes yes 154.0 15.6
40 3 2 3 - no - - - 0.0 yes yes 196.0 - 0.5 yes yes 167.0 13.2
40 3 2 4 0.0 yes yes 163.0 - 0.0 yes yes 151.0 - 0.2 yes yes 158.0 15.2
40 3 2 5 0.1 yes yes 151.0 - - no - - - 0.2 yes yes 144.0 25.7
40 3 4 1 0.0 yes yes 143.0 11.9 0.1 yes yes 154.0 - 0.2 yes yes 142.0 14.1
40 3 4 2 0.0 yes yes 146.0 - 0.2 yes yes 145.0 - 0.2 yes yes 144.0 17.4
40 3 4 3 - no - - - - no - - - 0.4 yes yes 172.0 13.4
40 3 4 4 0.1 yes yes 148.0 - 0.1 yes yes 154.0 - 0.2 yes yes 145.0 24.8
40 3 4 5 0.0 yes yes 142.0 - 0.0 yes yes 176.0 - 0.1 yes yes 141.0 22.7
40 3 8 1 0.1 yes yes 157.0 - 0.0 yes yes 162.0 - 0.1 yes yes 157.0 14.0
40 3 8 2 0.1 yes yes 172.0 - 0.0 yes yes 147.0 - 0.2 yes yes 172.0 15.7
40 3 8 3 - no - - - 0.2 yes yes 140.0 - 0.7 yes yes 144.0 14.6
40 3 8 4 0.1 yes yes 132.0 - 0.1 yes yes 135.0 - 0.3 yes yes 132.0 23.5
40 3 8 5 0.1 yes yes 149.0 - 0.0 yes yes 139.0 - 0.2 yes yes 147.0 12.9

Table B.14: Problem V, Q|sd, ri, di|
∑

Ci (part 2)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance t-t t-w t

CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%)

80 1 1 1 - no - - - 0.2 yes yes 1754.0 - 2.2 yes yes 1782.0 6.9
80 1 1 2 - no - - - 0.1 yes yes 1833.0 - 0.3 yes yes 1763.0 8.0
80 1 1 3 - no - - - 0.2 yes yes 1886.0 - 0.3 yes yes 1815.0 7.2
80 1 1 4 - no - - - - no - - - 0.3 yes yes 1744.0 10.8
80 1 1 5 - no - - - 0.3 yes yes 1781.0 - 0.4 yes yes 1695.0 6.9
80 1 2 1 1.6 yes yes 1610.0 - 9.5 yes yes 1488.0 - 2.9 yes yes 1558.0 10.3
80 1 2 2 1.9 yes yes 1691.0 - 16.5 yes yes 1432.0 - 17.6 yes yes 1665.0 6.6
80 1 2 3 - no - - - 17.1 yes yes 1591.0 - 6.2 yes yes 1395.0 10.3
80 1 2 4 - no - - - 11.9 yes yes 1502.0 - 1.5 yes yes 1378.0 13.1
80 1 2 5 0.5 yes yes 1567.0 - 1.0 yes yes 1487.0 - 3.0 yes yes 1519.0 13.8
80 1 4 1 0.9 yes yes 1426.0 - 4.0 yes yes 1415.0 - 5.2 yes yes 1393.0 10.5
80 1 4 2 0.9 yes yes 1433.0 - 2.6 yes yes 1523.0 6.8 1.3 yes yes 1427.0 9.6
80 1 4 3 0.8 yes yes 1462.0 - 6.8 yes yes 1411.0 - 10.3 yes yes 1446.0 6.2
80 1 4 4 - no - - - 5.0 yes yes 1559.0 - 5.2 yes yes 1471.0 9.9
80 1 4 5 - no - - - 1.4 yes yes 1506.0 - 2.7 yes yes 1364.0 9.5
80 1 8 1 0.4 yes yes 1207.0 - 0.8 yes yes 1490.0 - 0.7 yes yes 1197.0 8.0
80 1 8 2 0.2 yes yes 1327.0 - 0.5 yes yes 1400.0 - 0.6 yes yes 1325.0 6.9
80 1 8 3 0.8 yes yes 1436.0 - 2.7 yes yes 1411.0 - 11.9 yes yes 1416.0 11.4
80 1 8 4 0.8 yes yes 1448.0 - 1.5 yes yes 1404.0 - 2.4 yes yes 1434.0 10.3
80 1 8 5 0.4 yes yes 1326.0 - 0.3 yes yes 1352.0 - 0.6 yes yes 1323.0 7.0

80 2 1 1 - no - - - - no - - - 1.7 yes yes 943.0 9.0
80 2 1 2 - no - - - - no - - - 1.1 yes yes 821.0 12.1
80 2 1 3 - no - - - 0.2 yes yes 1016.0 - 1.1 yes yes 900.0 7.8
80 2 1 4 - no - - - 0.2 yes yes 926.0 - 0.6 yes yes 921.0 8.8
80 2 1 5 - no - - - 0.1 yes yes 872.0 - 0.5 yes yes 880.0 10.0
80 2 2 1 3.5 yes yes 765.0 - 4.6 yes yes 757.0 - 89.4 yes yes 748.0 13.0
80 2 2 2 0.7 yes yes 788.0 - 1.2 yes yes 738.0 - 2.5 yes yes 775.0 10.7
80 2 2 3 1.6 yes yes 814.0 - 1.7 yes yes 784.0 - 4.9 yes yes 801.0 14.1
80 2 2 4 0.8 yes yes 833.0 - 2.0 yes yes 804.0 - 2.5 yes yes 802.0 12.8
80 2 2 5 0.6 yes yes 767.0 - 1.0 yes yes 747.0 - 2.9 yes yes 752.0 11.3
80 2 4 1 6.1 yes yes 695.0 - 1.3 yes yes 759.0 - 14.2 yes yes 683.0 13.5
80 2 4 2 4.6 yes yes 680.0 - 99.2 yes yes 631.0 - 14.5 yes yes 680.0 13.5
80 2 4 3 6.5 yes yes 802.0 - 16.7 yes yes 713.0 - 10.7 yes yes 794.0 10.3
80 2 4 4 18.3 yes yes 730.0 - 16.6 yes yes 765.0 - 15.9 yes yes 711.0 11.8
80 2 4 5 1.9 yes yes 708.0 - 1.0 yes yes 759.0 - 1.2 yes yes 702.0 13.4
80 2 8 1 0.5 yes yes 776.0 - 1.6 yes yes 826.0 - 1.6 yes yes 775.0 8.3
80 2 8 2 1.0 yes yes 807.0 - 2.3 yes yes 717.0 - 2.0 yes yes 801.0 13.4
80 2 8 3 0.6 yes yes 712.0 - 0.9 yes yes 649.0 - 2.7 yes yes 709.0 12.4
80 2 8 4 2.5 yes yes 701.0 - 2.7 yes yes 690.0 - 3.7 yes yes 695.0 14.8
80 2 8 5 1.1 yes yes 729.0 - 0.8 yes yes 762.0 - 1.8 yes yes 715.0 11.2

80 3 1 1 - no - - - 0.4 yes yes 613.0 - 0.8 yes yes 594.0 13.8
80 3 1 2 - no - - - 0.1 yes yes 642.0 - 1.0 yes yes 585.0 8.7
80 3 1 3 - no - - - - no - - - 1.0 yes yes 651.0 8.8
80 3 1 4 - no - - - 0.3 yes yes 675.0 - 0.8 yes yes 627.0 12.1
80 3 1 5 - no - - - 0.2 yes yes 617.0 - 0.7 yes yes 598.0 11.4
80 3 2 1 12.6 yes yes 540.0 - 2.2 yes yes 541.0 - 20.6 yes yes 515.0 13.8
80 3 2 2 0.9 yes yes 593.0 - 2.9 yes yes 525.0 - 2.4 yes yes 582.0 12.4
80 3 2 3 0.7 yes yes 538.0 - 0.9 yes yes 521.0 - 3.5 yes yes 534.0 10.5
80 3 2 4 0.5 yes yes 580.0 - 1.0 yes yes 514.0 - 4.2 yes yes 560.0 16.6
80 3 2 5 2.1 yes yes 504.0 - 1.0 yes yes 505.0 - 4.0 yes yes 497.0 10.9
80 3 4 1 4.3 yes yes 508.0 - 7.7 yes yes 475.0 - 55.1 yes yes 508.0 11.0
80 3 4 2 0.7 yes yes 508.0 - 5.0 yes yes 510.0 - 3.8 yes yes 507.0 15.2
80 3 4 3 0.9 yes yes 501.0 - 8.9 yes yes 482.0 - 2.5 yes yes 500.0 11.8
80 3 4 4 1.9 yes yes 507.0 - 8.3 yes yes 519.0 - 12.2 yes yes 493.0 14.4
80 3 4 5 1.6 yes yes 482.0 - 6.1 yes yes 537.0 - 3.3 yes yes 481.0 16.4
80 3 8 1 2.0 yes yes 503.0 - 3.1 yes yes 527.0 - 2.0 yes yes 500.0 9.0
80 3 8 2 0.3 yes yes 527.0 9.7 0.1 yes yes 503.0 - 0.8 yes yes 526.0 10.1
80 3 8 3 2.0 yes yes 523.0 - 1.6 yes yes 532.0 - 6.2 yes yes 515.0 14.4
80 3 8 4 1.1 yes yes 457.0 - 10.8 yes yes 484.0 - 8.2 yes yes 452.0 16.6
80 3 8 5 0.2 yes yes 497.0 - 0.3 yes yes 518.0 - 0.7 yes yes 497.0 13.5

Table B.15: Problem V, Q|sd, ri, di|
∑

Ci (part 3)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance t-t t-w t

CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%)

160 1 1 1 - no - - - 1.8 yes yes 7002.0 - 12.5 yes yes 6562.0 7.4
160 1 1 2 - no - - - 3.6 yes yes 6872.0 - 4.3 yes yes 6995.0 8.0
160 1 1 3 - no - - - 2.9 yes yes 6482.0 - 5.1 yes yes 6363.0 5.2
160 1 1 4 - no - - - 3.5 yes yes 6399.0 - 18.0 yes yes 6477.0 5.3
160 1 1 5 - no - - - 5.7 yes yes 6388.0 - 2.8 yes yes 6370.0 5.1
160 1 2 1 1800.8 yes no 6037.0 - 1800.1 yes no 5715.0 - 1800.3 yes no 5830.0 9.0
160 1 2 2 93.4 yes yes 5495.0 - 19.1 yes yes 5689.0 - 103.1 yes yes 5444.0 7.7
160 1 2 3 418.7 yes yes 5339.0 - 232.6 yes yes 5477.0 - 1800.2 yes no 5321.0 6.8
160 1 2 4 222.4 yes yes 5522.0 - 355.1 yes yes 5699.0 - 230.0 yes yes 5456.0 7.4
160 1 2 5 158.6 yes yes 5580.0 - 392.0 yes yes 5323.0 - 1207.9 yes yes 5550.0 7.5
160 1 4 1 1018.3 yes yes 5117.0 - 1801.3 yes no 5071.0 - 1801.6 yes no 5089.0 3.9
160 1 4 2 198.7 yes yes 5277.0 - 188.6 yes yes 5157.0 - 274.1 yes yes 5239.0 8.0
160 1 4 3 24.6 yes yes 5482.0 - 217.2 yes yes 5151.0 - 51.2 yes yes 5471.0 5.3
160 1 4 4 506.3 yes yes 5010.0 - 305.9 yes yes 5640.0 - 1801.5 yes no 4991.0 6.7
160 1 4 5 8.4 yes yes 5535.0 - 9.9 yes yes 5047.0 - 5.6 yes yes 5513.0 4.2
160 1 8 1 218.7 yes yes 5393.0 - 596.6 yes yes 4949.0 - 40.4 yes yes 5365.0 7.6
160 1 8 2 17.9 yes yes 5062.0 - 9.3 yes yes 5080.0 - 18.7 yes yes 5051.0 5.7
160 1 8 3 4.5 yes yes 5167.0 - 4.9 yes yes 5116.0 - 4.2 yes yes 5161.0 3.2
160 1 8 4 64.5 yes yes 5001.0 - 37.2 yes yes 5482.0 - 105.5 yes yes 4983.0 8.0
160 1 8 5 14.8 yes yes 5087.0 - 9.5 yes yes 5159.0 - 19.4 yes yes 5076.0 4.4

160 2 1 1 - no - - - 2.0 yes yes 3443.0 - 33.6 yes yes 3280.0 7.8
160 2 1 2 - no - - - 4.2 yes yes 3410.0 - 5.7 yes yes 3225.0 6.6
160 2 1 3 - no - - - 2.5 yes yes 3139.0 - 16.2 yes yes 3095.0 6.3
160 2 1 4 - no - - - 4.0 yes yes 3297.0 - 14.7 yes yes 3114.0 6.0
160 2 1 5 - no - - - 1.7 yes yes 3210.0 - 4.1 yes yes 3171.0 4.1
160 2 2 1 1800.9 yes no 2939.0 - 1800.8 yes no 2686.0 - 1801.2 yes no 2930.0 7.8
160 2 2 2 1800.1 yes no 3022.0 - 1800.1 yes no 2649.0 - 1681.9 yes yes 2970.0 8.9
160 2 2 3 1800.1 yes no 2841.0 - 570.7 yes yes 2709.0 - 1800.4 yes no 2825.0 8.1
160 2 2 4 1800.1 yes no 2580.0 - 258.8 yes yes 2828.0 - 1801.4 yes no 2557.0 8.5
160 2 2 5 57.9 yes yes 2708.0 - 344.5 yes yes 3056.0 - 117.7 yes yes 2687.0 7.3
160 2 4 1 1800.7 yes no 2688.0 - 482.2 yes yes 2607.0 - 1801.2 yes no 2682.0 7.4
160 2 4 2 1010.1 yes yes 2712.0 - 1801.6 yes no 2933.0 - 1801.8 yes no 2704.0 10.1
160 2 4 3 101.8 yes yes 2669.0 - 110.4 yes yes 2758.0 - 1800.5 yes no 2669.0 5.0
160 2 4 4 21.9 yes yes 2819.0 - 531.7 yes yes 2562.0 - 22.1 yes yes 2815.0 4.9
160 2 4 5 79.2 yes yes 2681.0 - 19.2 yes yes 2667.0 - 49.1 yes yes 2664.0 9.0
160 2 8 1 1800.9 yes no 2925.0 - 45.6 yes yes 2764.0 - 1801.1 yes no 2919.0 7.8
160 2 8 2 6.4 yes yes 2639.0 - 2.7 yes yes 2794.0 - 10.3 yes yes 2638.0 5.7
160 2 8 3 11.3 yes yes 2549.0 - 365.8 yes yes 2585.0 - 24.4 yes yes 2535.0 7.3
160 2 8 4 8.2 yes yes 2834.0 - 153.2 yes yes 2630.0 - 15.3 yes yes 2812.0 4.8
160 2 8 5 2.4 yes yes 2822.0 - 3.0 yes yes 2752.0 - 3.2 yes yes 2819.0 4.6

160 3 1 1 - no - - - 4.1 yes yes 2336.0 - 21.0 yes yes 2312.0 7.5
160 3 1 2 - no - - - 9.3 yes yes 2261.0 - 10.5 yes yes 2188.0 9.5
160 3 1 3 - no - - - 0.9 yes yes 2192.0 - 6.3 yes yes 2180.0 7.2
160 3 1 4 - no - - - 4.6 yes yes 2156.0 - 4.6 yes yes 2196.0 9.3
160 3 1 5 - no - - - 2.2 yes yes 2263.0 - 3.7 yes yes 2248.0 9.4
160 3 2 1 1800.2 yes no 1972.0 - 1800.8 yes no 1969.0 - 374.5 yes yes 1940.0 11.2
160 3 2 2 1800.1 yes no 2003.0 - 132.0 yes yes 1950.0 - 1800.6 yes no 1983.0 10.0
160 3 2 3 1800.1 yes no 1795.0 - 168.9 yes yes 1872.0 - 1800.5 yes no 1772.0 10.3
160 3 2 4 485.3 yes yes 1874.0 - 1800.2 yes no 1881.0 - 716.0 yes yes 1868.0 7.8
160 3 2 5 1800.3 yes no 1802.0 - 49.7 yes yes 1835.0 - 215.9 yes yes 1794.0 9.9
160 3 4 1 133.5 yes yes 1982.0 - 1102.8 yes yes 1867.0 - 69.0 yes yes 1976.0 8.0
160 3 4 2 1046.9 yes yes 1737.0 - 1801.0 yes no 1875.0 - 1614.1 yes yes 1724.0 12.2
160 3 4 3 23.9 yes yes 1858.0 - 281.6 yes yes 1823.0 - 24.9 yes yes 1852.0 8.8
160 3 4 4 1244.5 yes yes 1891.0 - 1801.4 yes no 1925.0 - 845.7 yes yes 1889.0 7.7
160 3 4 5 3.2 yes yes 1923.0 - 1800.2 yes no 1775.0 - 11.7 yes yes 1921.0 8.2
160 3 8 1 1801.2 yes no 1688.0 - 1801.3 yes no 1834.0 - 1801.4 yes no 1686.0 10.9
160 3 8 2 198.0 yes yes 1842.0 - 535.0 yes yes 1909.0 - 199.2 yes yes 1837.0 10.3
160 3 8 3 34.0 yes yes 1773.0 - 1.4 yes yes 1905.0 - 29.8 yes yes 1768.0 9.6
160 3 8 4 4.4 yes yes 1809.0 - 1801.1 yes no 1684.0 - 11.1 yes yes 1808.0 6.3
160 3 8 5 29.1 yes yes 1829.0 - 450.7 yes yes 1691.0 - 25.3 yes yes 1825.0 10.1

Table B.16: Problem V, Q|sd, ri, di|
∑

Ci (part 4)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance w-t w-w w

CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%)

20 1 1 1 - no - - - 0.0 yes yes 148.0 - 0.0 yes yes 157.0 21.7
20 1 1 2 - no - - - - no - - - 0.0 yes yes 154.0 16.2
20 1 1 3 - no - - - - no - - - 0.0 yes yes 143.0 18.9
20 1 1 4 - no - - - - no - - - 0.0 yes yes 153.0 12.4
20 1 1 5 - no - - - 0.0 yes yes 135.0 - 0.0 yes yes 120.0 24.2
20 1 2 1 0.0 yes yes 149.0 - 0.0 yes yes 144.0 - 0.0 yes yes 149.0 12.1
20 1 2 2 - no - - - 0.0 yes yes 156.0 - 0.0 yes yes 146.0 15.1
20 1 2 3 - no - - - 0.0 yes yes 144.0 - 0.0 yes yes 162.0 18.5
20 1 2 4 - no - - - - no - - - 0.0 yes yes 120.0 15.8
20 1 2 5 0.0 yes yes 142.0 9.9 0.0 yes yes 135.0 - 0.0 yes yes 142.0 9.9
20 1 4 1 - no - - - - no - - - 0.0 yes yes 146.0 9.6
20 1 4 2 - no - - - 0.0 yes yes 161.0 - 0.0 yes yes 153.0 12.4
20 1 4 3 0.0 yes yes 122.0 - - no - - - 0.0 yes yes 120.0 12.5
20 1 4 4 - no - - - - no - - - 0.0 yes yes 127.0 9.4
20 1 4 5 0.0 yes yes 108.0 - - no - - - 0.0 yes yes 106.0 18.9
20 1 8 1 - no - - - 0.0 yes yes 124.0 - 0.0 yes yes 127.0 7.1
20 1 8 2 - no - - - - no - - - 0.0 yes yes 144.0 9.7
20 1 8 3 0.0 yes yes 127.0 - 0.0 yes yes 109.0 16.5 0.0 yes yes 127.0 13.4
20 1 8 4 - no - - - 0.0 yes yes 150.0 - 0.0 yes yes 154.0 7.8
20 1 8 5 0.0 yes yes 116.0 - 0.0 yes yes 132.0 - 0.0 yes yes 115.0 14.8

20 2 1 1 - no - - - 0.0 yes yes 84.0 - 0.0 yes yes 95.0 8.4
20 2 1 2 - no - - - - no - - - 0.0 yes yes 106.0 8.5
20 2 1 3 - no - - - 0.0 yes yes 74.0 - 0.0 yes yes 91.0 15.4
20 2 1 4 - no - - - - no - - - 0.0 yes yes 100.0 8.0
20 2 1 5 - no - - - 0.0 yes yes 74.0 - 0.0 yes yes 75.0 16.0
20 2 2 1 0.0 yes yes 71.0 - 0.0 yes yes 77.0 - 0.0 yes yes 71.0 23.9
20 2 2 2 0.0 yes yes 89.0 - - no - - - 0.0 yes yes 86.0 10.5
20 2 2 3 0.0 yes yes 68.0 - 0.0 yes yes 71.0 22.5 0.0 yes yes 68.0 20.6
20 2 2 4 0.0 yes yes 83.0 - 0.0 yes yes 85.0 - 0.0 yes yes 83.0 18.1
20 2 2 5 - no - - - 0.0 yes yes 68.0 - 0.0 yes yes 64.0 28.1
20 2 4 1 - no - - - 0.0 yes yes 65.0 - 0.0 yes yes 101.0 13.9
20 2 4 2 0.0 yes yes 79.0 - 0.0 yes yes 97.0 - 0.0 yes yes 78.0 20.5
20 2 4 3 0.0 yes yes 68.0 - 0.0 yes yes 76.0 11.8 0.0 yes yes 63.0 23.8
20 2 4 4 - no - - - - no - - - 0.0 yes yes 84.0 16.7
20 2 4 5 - no - - - 0.0 yes yes 76.0 - 0.0 yes yes 67.0 13.4
20 2 8 1 0.0 yes yes 84.0 - 0.0 yes yes 78.0 - 0.0 yes yes 84.0 6.0
20 2 8 2 0.0 yes yes 79.0 - 0.0 yes yes 79.0 - 0.0 yes yes 78.0 9.0
20 2 8 3 0.0 yes yes 67.0 - 0.0 yes yes 65.0 - 0.0 yes yes 66.0 18.2
20 2 8 4 0.0 yes yes 76.0 - 0.0 yes yes 70.0 - 0.0 yes yes 75.0 20.0
20 2 8 5 0.0 yes yes 71.0 - 0.0 yes yes 62.0 - 0.0 yes yes 71.0 22.5

20 3 1 1 - no - - - - no - - - 0.0 yes yes 64.0 32.8
20 3 1 2 - no - - - - no - - - 0.0 yes yes 72.0 5.6
20 3 1 3 0.0 yes yes 53.0 - - no - - - 0.0 yes yes 52.0 25.0
20 3 1 4 - no - - - 0.0 yes yes 72.0 - 0.0 yes yes 63.0 17.5
20 3 1 5 - no - - - 0.0 yes yes 54.0 - 0.0 yes yes 64.0 15.6
20 3 2 1 - no - - - 0.0 yes yes 59.0 - 0.1 yes yes 58.0 8.6
20 3 2 2 - no - - - 0.0 yes yes 65.0 - 0.0 yes yes 65.0 4.6
20 3 2 3 0.0 yes yes 50.0 - 0.0 yes yes 49.0 - 0.0 yes yes 49.0 22.4
20 3 2 4 0.0 yes yes 60.0 - 0.0 yes yes 54.0 - 0.0 yes yes 60.0 26.7
20 3 2 5 0.0 yes yes 47.0 - 0.0 yes yes 49.0 - 0.0 yes yes 46.0 28.3
20 3 4 1 0.0 yes yes 57.0 - 0.0 yes yes 54.0 7.4 0.0 yes yes 57.0 17.5
20 3 4 2 - no - - - 0.0 yes yes 58.0 - 0.1 yes yes 64.0 15.6
20 3 4 3 0.0 yes yes 47.0 - 0.0 yes yes 53.0 28.3 0.0 yes yes 47.0 25.5
20 3 4 4 0.0 yes yes 61.0 - 0.0 yes yes 47.0 - 0.0 yes yes 61.0 18.0
20 3 4 5 0.0 yes yes 42.0 - 0.0 yes yes 45.0 35.6 0.0 yes yes 42.0 42.9
20 3 8 1 0.0 yes yes 54.0 - 0.0 yes yes 57.0 - 0.0 yes yes 54.0 13.0
20 3 8 2 0.0 yes yes 52.0 - 0.0 yes yes 49.0 - 0.0 yes yes 52.0 13.5
20 3 8 3 0.0 yes yes 52.0 15.4 0.0 yes yes 52.0 - 0.0 yes yes 51.0 17.6
20 3 8 4 0.0 yes yes 57.0 - 0.0 yes yes 61.0 - 0.0 yes yes 57.0 31.6
20 3 8 5 0.0 yes yes 50.0 - 0.0 yes yes 50.0 - 0.0 yes yes 50.0 30.0

Table B.17: Problem V, Q|sd, ri, di|
∑

Ci (part 5)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance w-t w-w w

CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%)

40 1 1 1 - no - - - 0.0 yes yes 579.0 - 0.1 yes yes 528.0 3.6
40 1 1 2 0.0 yes yes 503.0 - 0.0 yes yes 548.0 - 0.1 yes yes 483.0 15.3
40 1 1 3 - no - - - - no - - - 0.0 yes yes 633.0 8.4
40 1 1 4 - no - - - - no - - - 0.0 yes yes 535.0 8.4
40 1 1 5 - no - - - - no - - - 0.1 yes yes 585.0 7.0
40 1 2 1 0.0 yes yes 472.0 - 0.1 yes yes 444.0 - 0.1 yes yes 471.0 6.2
40 1 2 2 0.0 yes yes 459.0 - 0.0 yes yes 483.0 - 0.1 yes yes 441.0 6.3
40 1 2 3 0.0 yes yes 474.0 - 0.1 yes yes 497.0 - 0.3 yes yes 456.0 7.2
40 1 2 4 0.0 yes yes 477.0 - 0.0 yes yes 490.0 - 0.1 yes yes 472.0 8.7
40 1 2 5 - no - - - 0.0 yes yes 496.0 - 0.1 yes yes 451.0 13.5
40 1 4 1 - no - - - 0.0 yes yes 459.0 - 0.1 yes yes 429.0 9.3
40 1 4 2 0.0 yes yes 519.0 - 0.0 yes yes 449.0 - 0.1 yes yes 504.0 5.8
40 1 4 3 0.0 yes yes 497.0 - 0.0 yes yes 470.0 - 0.1 yes yes 486.0 7.6
40 1 4 4 0.0 yes yes 450.0 - 0.0 yes yes 465.0 - 0.1 yes yes 450.0 7.8
40 1 4 5 0.0 yes yes 533.0 - 0.1 yes yes 589.0 - 0.1 yes yes 518.0 6.9
40 1 8 1 0.0 yes yes 397.0 - 0.0 yes yes 441.0 - 0.1 yes yes 393.0 9.7
40 1 8 2 0.0 yes yes 435.0 - 0.0 yes yes 448.0 - 0.1 yes yes 431.0 10.9
40 1 8 3 0.0 yes yes 455.0 - 0.1 yes yes 516.0 - 0.1 yes yes 450.0 12.2
40 1 8 4 0.0 yes yes 384.0 - 0.0 yes yes 459.0 - 0.0 yes yes 384.0 10.4
40 1 8 5 0.0 yes yes 433.0 - 0.0 yes yes 484.0 - 0.1 yes yes 432.0 5.6

40 2 1 1 0.0 yes yes 261.0 - 0.0 yes yes 298.0 - 0.1 yes yes 255.0 10.6
40 2 1 2 - no - - - - no - - - 0.1 yes yes 294.0 7.1
40 2 1 3 - no - - - - no - - - 0.1 yes yes 318.0 10.4
40 2 1 4 - no - - - 0.0 yes yes 285.0 - 0.0 yes yes 291.0 10.7
40 2 1 5 - no - - - 0.0 yes yes 285.0 - 0.1 yes yes 286.0 11.9
40 2 2 1 0.0 yes yes 269.0 - 0.1 yes yes 284.0 - 0.1 yes yes 263.0 12.9
40 2 2 2 - no - - - 0.0 yes yes 268.0 - 0.1 yes yes 256.0 15.2
40 2 2 3 0.1 yes yes 268.0 - 0.1 yes yes 248.0 - 0.2 yes yes 265.0 12.5
40 2 2 4 0.0 yes yes 234.0 - 0.0 yes yes 235.0 - 0.1 yes yes 228.0 12.7
40 2 2 5 0.0 yes yes 263.0 - 0.1 yes yes 229.0 - 0.1 yes yes 261.0 10.3
40 2 4 1 0.0 yes yes 235.0 - 0.0 yes yes 271.0 - 0.1 yes yes 235.0 17.9
40 2 4 2 - no - - - 0.1 yes yes 269.0 - 0.1 yes yes 258.0 8.9
40 2 4 3 0.1 yes yes 265.0 - 0.1 yes yes 231.0 - 0.2 yes yes 263.0 14.8
40 2 4 4 0.0 yes yes 231.0 - 0.0 yes yes 277.0 - 0.1 yes yes 231.0 12.1
40 2 4 5 0.0 yes yes 267.0 - 0.1 yes yes 263.0 - 0.1 yes yes 267.0 10.5
40 2 8 1 0.0 yes yes 252.0 - 0.0 yes yes 245.0 - 0.1 yes yes 251.0 11.6
40 2 8 2 0.0 yes yes 244.0 - 0.0 yes yes 263.0 - 0.1 yes yes 240.0 11.3
40 2 8 3 - no - - - 0.2 yes yes 251.0 - 0.2 yes yes 234.0 13.7
40 2 8 4 0.0 yes yes 262.0 - 0.1 yes yes 242.0 - 0.1 yes yes 259.0 15.8
40 2 8 5 0.0 yes yes 222.0 10.8 0.0 yes yes 239.0 - 0.1 yes yes 222.0 14.0

40 3 1 1 0.0 yes yes 198.0 - 0.0 yes yes 197.0 - 0.1 yes yes 187.0 8.0
40 3 1 2 - no - - - 0.0 yes yes 213.0 - 0.1 yes yes 195.0 10.3
40 3 1 3 - no - - - 0.0 yes yes 218.0 - 0.1 yes yes 213.0 13.1
40 3 1 4 - no - - - 0.0 yes yes 188.0 - 0.1 yes yes 199.0 7.5
40 3 1 5 - no - - - 0.0 yes yes 212.0 - 0.1 yes yes 201.0 10.0
40 3 2 1 0.0 yes yes 201.0 - 0.0 yes yes 189.0 - 0.1 yes yes 199.0 9.0
40 3 2 2 0.0 yes yes 188.0 - 0.0 yes yes 169.0 - 0.1 yes yes 184.0 13.0
40 3 2 3 0.0 yes yes 191.0 - 0.2 yes yes 190.0 - 0.2 yes yes 185.0 13.5
40 3 2 4 0.0 yes yes 183.0 - 0.0 yes yes 204.0 - 0.2 yes yes 180.0 16.7
40 3 2 5 0.0 yes yes 203.0 - 0.0 yes yes 183.0 - 0.1 yes yes 203.0 11.8
40 3 4 1 0.0 yes yes 189.0 - 0.0 yes yes 192.0 - 0.2 yes yes 188.0 13.3
40 3 4 2 0.0 yes yes 167.0 - 0.0 yes yes 178.0 - 0.1 yes yes 167.0 13.2
40 3 4 3 0.1 yes yes 193.0 - 0.1 yes yes 173.0 - 0.3 yes yes 192.0 21.4
40 3 4 4 0.1 yes yes 165.0 - 0.1 yes yes 166.0 - 0.1 yes yes 165.0 18.8
40 3 4 5 0.1 yes yes 182.0 - 0.0 yes yes 198.0 - 0.1 yes yes 181.0 17.1
40 3 8 1 0.0 yes yes 157.0 - 0.0 yes yes 173.0 - 0.1 yes yes 156.0 11.5
40 3 8 2 0.0 yes yes 180.0 - 0.0 yes yes 181.0 - 0.1 yes yes 180.0 12.2
40 3 8 3 0.1 yes yes 197.0 - 0.0 yes yes 164.0 - 0.2 yes yes 197.0 7.6
40 3 8 4 0.0 yes yes 168.0 - 0.0 yes yes 163.0 - 0.1 yes yes 167.0 18.6
40 3 8 5 0.0 yes yes 198.0 - 0.0 yes yes 199.0 - 0.1 yes yes 198.0 14.1

Table B.18: Problem V, Q|sd, ri, di|
∑

Ci (part 6)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance w-t w-w w

CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%)

80 1 1 1 - no - - - - no - - - 0.3 yes yes 1821.0 7.5
80 1 1 2 0.1 yes yes 1902.0 - 0.3 yes yes 1951.0 - 0.2 yes yes 1884.0 9.8
80 1 1 3 - no - - - 0.5 yes yes 2013.0 - 0.3 yes yes 2035.0 7.6
80 1 1 4 - no - - - 0.1 yes yes 2063.0 - 0.2 yes yes 1977.0 8.6
80 1 1 5 0.2 yes yes 1861.0 - 0.2 yes yes 1908.0 - 0.5 yes yes 1838.0 4.5
80 1 2 1 0.2 yes yes 1835.0 - 0.3 yes yes 1757.0 - 0.5 yes yes 1808.0 7.6
80 1 2 2 0.1 yes yes 1762.0 - 0.8 yes yes 1825.0 - 0.6 yes yes 1737.0 4.5
80 1 2 3 0.3 yes yes 1937.0 - 1.0 yes yes 1797.0 - 0.5 yes yes 1933.0 6.2
80 1 2 4 0.3 yes yes 1764.0 - 0.4 yes yes 1759.0 - 0.7 yes yes 1756.0 7.0
80 1 2 5 0.2 yes yes 1676.0 - 0.3 yes yes 1690.0 - 0.5 yes yes 1667.0 5.1
80 1 4 1 0.2 yes yes 1784.0 - 0.4 yes yes 1850.0 - 0.3 yes yes 1779.0 4.6
80 1 4 2 0.5 yes yes 1681.0 - 0.2 yes yes 1699.0 - 0.7 yes yes 1671.0 5.7
80 1 4 3 0.1 yes yes 1732.0 - 0.1 yes yes 1753.0 - 0.4 yes yes 1726.0 4.4
80 1 4 4 0.8 yes yes 1767.0 - 0.4 yes yes 1795.0 - 2.0 yes yes 1735.0 12.9
80 1 4 5 0.2 yes yes 1788.0 - 0.1 yes yes 1689.0 - 0.7 yes yes 1779.0 6.7
80 1 8 1 0.1 yes yes 1911.0 - 0.1 yes yes 1695.0 - 0.3 yes yes 1904.0 3.4
80 1 8 2 0.5 yes yes 1694.0 - 0.1 yes yes 1876.0 - 0.4 yes yes 1687.0 4.2
80 1 8 3 0.2 yes yes 1829.0 - 0.7 yes yes 1653.0 - 0.3 yes yes 1826.0 3.2
80 1 8 4 0.2 yes yes 1567.0 - 0.7 yes yes 1871.0 - 0.6 yes yes 1566.0 6.6
80 1 8 5 0.1 yes yes 1633.0 - 0.1 yes yes 1771.0 - 0.3 yes yes 1629.0 6.0

80 2 1 1 0.2 yes yes 967.0 - 0.1 yes yes 1034.0 - 0.5 yes yes 954.0 6.8
80 2 1 2 0.2 yes yes 955.0 - 0.1 yes yes 981.0 - 1.7 yes yes 918.0 9.9
80 2 1 3 - no - - - 0.1 yes yes 1088.0 - 0.6 yes yes 959.0 6.4
80 2 1 4 0.1 yes yes 993.0 - 0.1 yes yes 1117.0 - 0.4 yes yes 977.0 9.9
80 2 1 5 0.1 yes yes 991.0 - 0.1 yes yes 974.0 - 0.7 yes yes 976.0 14.4
80 2 2 1 0.4 yes yes 909.0 - 1.1 yes yes 900.0 5.0 0.6 yes yes 901.0 10.8
80 2 2 2 0.2 yes yes 894.0 - 0.5 yes yes 820.0 - 1.2 yes yes 887.0 11.5
80 2 2 3 0.7 yes yes 944.0 - 0.7 yes yes 948.0 - 3.1 yes yes 939.0 11.2
80 2 2 4 4.8 yes yes 920.0 - 0.4 yes yes 921.0 - 3.8 yes yes 910.0 7.5
80 2 2 5 0.1 yes yes 1012.0 - 0.5 yes yes 881.0 - 0.6 yes yes 1012.0 6.8
80 2 4 1 0.1 yes yes 947.0 - 0.2 yes yes 856.0 - 0.5 yes yes 946.0 5.7
80 2 4 2 0.1 yes yes 851.0 - 0.2 yes yes 836.0 - 0.5 yes yes 850.0 7.1
80 2 4 3 0.2 yes yes 901.0 4.3 1.3 yes yes 888.0 - 0.4 yes yes 896.0 6.3
80 2 4 4 0.4 yes yes 900.0 - 0.2 yes yes 915.0 - 0.9 yes yes 896.0 11.0
80 2 4 5 0.7 yes yes 944.0 - 0.2 yes yes 909.0 - 2.1 yes yes 942.0 5.8
80 2 8 1 0.3 yes yes 894.0 - 0.1 yes yes 937.0 - 0.7 yes yes 892.0 5.6
80 2 8 2 0.3 yes yes 973.0 - 0.6 yes yes 847.0 - 0.8 yes yes 971.0 6.7
80 2 8 3 0.3 yes yes 870.0 - 0.1 yes yes 937.0 - 0.6 yes yes 870.0 6.1
80 2 8 4 0.2 yes yes 862.0 - 0.1 yes yes 907.0 - 0.6 yes yes 862.0 6.3
80 2 8 5 0.2 yes yes 957.0 - 0.1 yes yes 878.0 - 0.8 yes yes 956.0 7.9

80 3 1 1 - no - - - 0.1 yes yes 717.0 - 0.7 yes yes 643.0 14.3
80 3 1 2 0.1 yes yes 679.0 - 0.1 yes yes 655.0 - 0.4 yes yes 677.0 12.0
80 3 1 3 - no - - - 0.3 yes yes 707.0 - 0.6 yes yes 720.0 11.4
80 3 1 4 - no - - - 0.1 yes yes 742.0 - 0.7 yes yes 667.0 11.2
80 3 1 5 0.1 yes yes 641.0 - 0.1 yes yes 682.0 - 0.6 yes yes 636.0 11.6
80 3 2 1 1.4 yes yes 610.0 - 0.8 yes yes 663.0 - 6.4 yes yes 609.0 8.4
80 3 2 2 0.2 yes yes 704.0 - 0.7 yes yes 632.0 - 0.8 yes yes 703.0 8.5
80 3 2 3 3.1 yes yes 625.0 - 0.1 yes yes 606.0 - 2.2 yes yes 622.0 10.9
80 3 2 4 0.4 yes yes 588.0 - 0.3 yes yes 618.0 - 1.3 yes yes 588.0 9.9
80 3 2 5 0.1 yes yes 645.0 - 0.3 yes yes 652.0 - 0.5 yes yes 644.0 9.8
80 3 4 1 0.1 yes yes 665.0 - 0.1 yes yes 599.0 - 0.6 yes yes 665.0 7.1
80 3 4 2 0.1 yes yes 626.0 - 0.1 yes yes 595.0 - 0.6 yes yes 626.0 10.1
80 3 4 3 0.4 yes yes 638.0 - 0.1 yes yes 628.0 - 1.0 yes yes 638.0 6.9
80 3 4 4 0.8 yes yes 675.0 - 0.7 yes yes 652.0 - 3.9 yes yes 673.0 9.8
80 3 4 5 0.1 yes yes 653.0 - 0.6 yes yes 756.0 - 0.6 yes yes 652.0 9.4
80 3 8 1 0.2 yes yes 622.0 - 0.3 yes yes 674.0 - 0.9 yes yes 620.0 6.6
80 3 8 2 0.1 yes yes 558.0 - 0.1 yes yes 659.0 - 0.4 yes yes 558.0 10.2
80 3 8 3 0.1 yes yes 663.0 - 0.3 yes yes 648.0 - 0.7 yes yes 663.0 6.6
80 3 8 4 0.4 yes yes 616.0 - 0.1 yes yes 627.0 - 1.1 yes yes 616.0 13.8
80 3 8 5 0.3 yes yes 709.0 - 0.2 yes yes 619.0 - 0.8 yes yes 708.0 6.8

Table B.19: Problem V, Q|sd, ri, di|
∑

Ci (part 7)
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Pickup and delivery problems with autonomous and electric vehicles

n V Q instance w-t w-w w

CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%) CPU(s) feas opt
∑

Ci gapGr(%)

160 1 1 1 2.5 yes yes 7390.0 - 2.4 yes yes 7784.0 - 7.6 yes yes 7283.0 6.8
160 1 1 2 1.2 yes yes 7697.0 - 1.8 yes yes 7316.0 - 1.8 yes yes 7636.0 4.5
160 1 1 3 2.0 yes yes 6629.0 - 4.3 yes yes 7319.0 - 3.8 yes yes 6569.0 5.4
160 1 1 4 2.4 yes yes 7457.0 - 2.3 yes yes 7402.0 - 2.3 yes yes 7408.0 8.1
160 1 1 5 0.7 yes yes 7471.0 - 0.5 yes yes 7348.0 - 1.4 yes yes 7412.0 5.2
160 1 2 1 10.8 yes yes 7361.0 - 34.9 yes yes 6748.0 - 26.0 yes yes 7351.0 4.9
160 1 2 2 0.6 yes yes 6688.0 - 1.7 yes yes 6900.0 - 2.1 yes yes 6686.0 3.5
160 1 2 3 4.8 yes yes 6776.0 - 1.3 yes yes 6954.0 - 18.1 yes yes 6767.0 3.7
160 1 2 4 11.2 yes yes 6895.0 - 36.0 yes yes 6117.0 - 14.8 yes yes 6887.0 3.7
160 1 2 5 0.7 yes yes 6439.0 - 1.2 yes yes 6872.0 - 1.9 yes yes 6436.0 3.8
160 1 4 1 1.4 yes yes 6653.0 - 1.6 yes yes 6369.0 - 1.8 yes yes 6635.0 2.8
160 1 4 2 1.3 yes yes 6856.0 - 6.5 yes yes 6634.0 - 3.4 yes yes 6847.0 3.7
160 1 4 3 3.7 yes yes 6625.0 - 1.7 yes yes 6881.0 - 4.3 yes yes 6619.0 3.4
160 1 4 4 1.9 yes yes 6799.0 - 6.6 yes yes 6428.0 - 3.4 yes yes 6795.0 3.8
160 1 4 5 0.6 yes yes 6271.0 - 1.5 yes yes 6374.0 - 1.4 yes yes 6269.0 2.3
160 1 8 1 1.0 yes yes 6832.0 - 2.3 yes yes 6889.0 - 2.3 yes yes 6826.0 2.9
160 1 8 2 0.8 yes yes 6787.0 - 2.3 yes yes 6492.0 - 2.4 yes yes 6787.0 2.7
160 1 8 3 0.4 yes yes 6134.0 - 0.7 yes yes 6392.0 - 1.6 yes yes 6132.0 1.8
160 1 8 4 1.2 yes yes 6650.0 - 0.8 yes yes 6686.0 - 2.2 yes yes 6637.0 2.6
160 1 8 5 0.6 yes yes 6300.0 - 0.9 yes yes 6388.0 - 2.0 yes yes 6293.0 3.3

160 2 1 1 5.3 yes yes 3949.0 - 3.1 yes yes 3773.0 - 37.7 yes yes 3879.0 4.8
160 2 1 2 2.3 yes yes 3716.0 - 2.0 yes yes 3736.0 - 8.5 yes yes 3700.0 6.3
160 2 1 3 0.6 yes yes 3459.0 - 3.1 yes yes 3729.0 - 3.0 yes yes 3448.0 8.6
160 2 1 4 0.4 yes yes 3917.0 - 2.2 yes yes 3759.0 - 2.2 yes yes 3909.0 5.7
160 2 1 5 2.7 yes yes 3558.0 - 0.4 yes yes 3783.0 - 9.9 yes yes 3550.0 5.8
160 2 2 1 2.1 yes yes 3590.0 - 20.6 yes yes 3702.0 - 5.1 yes yes 3585.0 4.4
160 2 2 2 2.6 yes yes 3386.0 - 8.2 yes yes 3432.0 - 6.4 yes yes 3386.0 5.4
160 2 2 3 2.0 yes yes 3521.0 - 5.1 yes yes 3407.0 - 4.5 yes yes 3519.0 3.9
160 2 2 4 4.6 yes yes 3456.0 - 14.6 yes yes 3366.0 - 4.7 yes yes 3451.0 5.2
160 2 2 5 1.9 yes yes 3474.0 - 1.0 yes yes 3357.0 - 3.6 yes yes 3473.0 4.3
160 2 4 1 9.8 yes yes 3693.0 - 2.0 yes yes 3648.0 - 17.8 yes yes 3689.0 4.3
160 2 4 2 0.9 yes yes 3692.0 - 7.5 yes yes 3327.0 - 3.9 yes yes 3691.0 3.9
160 2 4 3 0.6 yes yes 3697.0 - 1.2 yes yes 3519.0 - 4.4 yes yes 3693.0 3.0
160 2 4 4 1.5 yes yes 3322.0 - 1.0 yes yes 3393.0 - 3.1 yes yes 3318.0 3.0
160 2 4 5 1.1 yes yes 3401.0 - 1.2 yes yes 3408.0 - 3.8 yes yes 3401.0 4.1
160 2 8 1 5.5 yes yes 3492.0 - 6.7 yes yes 3215.0 - 18.0 yes yes 3492.0 4.7
160 2 8 2 0.5 yes yes 3350.0 - 0.8 yes yes 3487.0 - 2.4 yes yes 3350.0 3.9
160 2 8 3 0.6 yes yes 3231.0 - 0.5 yes yes 3352.0 2.7 3.0 yes yes 3227.0 3.3
160 2 8 4 1.4 yes yes 3236.0 - 2.0 yes yes 3257.0 - 3.1 yes yes 3234.0 3.4
160 2 8 5 0.2 yes yes 3378.0 - 0.5 yes yes 3404.0 - 1.7 yes yes 3378.0 3.0

160 3 1 1 5.0 yes yes 2527.0 - 2.5 yes yes 2482.0 - 42.0 yes yes 2488.0 7.0
160 3 1 2 0.9 yes yes 2479.0 - 2.0 yes yes 2747.0 - 7.4 yes yes 2464.0 9.6
160 3 1 3 1.0 yes yes 2522.0 - 0.6 yes yes 2465.0 - 3.3 yes yes 2515.0 9.3
160 3 1 4 2.6 yes yes 2374.0 - 1.1 yes yes 2510.0 - 8.1 yes yes 2365.0 5.8
160 3 1 5 0.4 yes yes 2424.0 - 0.5 yes yes 2376.0 - 2.9 yes yes 2418.0 6.1
160 3 2 1 32.3 yes yes 2384.0 - 25.6 yes yes 2522.0 - 25.6 yes yes 2381.0 7.6
160 3 2 2 46.7 yes yes 2292.0 - 66.0 yes yes 2468.0 - 79.4 yes yes 2289.0 7.5
160 3 2 3 1.6 yes yes 2338.0 - 2.5 yes yes 2218.0 - 5.4 yes yes 2335.0 6.9
160 3 2 4 0.8 yes yes 2206.0 - 2.8 yes yes 2417.0 - 4.5 yes yes 2204.0 5.3
160 3 2 5 1.1 yes yes 2307.0 - 0.9 yes yes 2421.0 - 7.0 yes yes 2306.0 5.3
160 3 4 1 4.3 yes yes 2281.0 - 6.0 yes yes 2230.0 - 5.8 yes yes 2277.0 4.3
160 3 4 2 2.8 yes yes 2342.0 - 1.7 yes yes 2334.0 - 8.6 yes yes 2342.0 5.6
160 3 4 3 1.5 yes yes 2520.0 - 1.6 yes yes 2356.0 - 5.8 yes yes 2518.0 4.2
160 3 4 4 1.4 yes yes 2216.0 - 0.7 yes yes 2293.0 - 6.7 yes yes 2216.0 6.0
160 3 4 5 0.9 yes yes 2330.0 - 0.9 yes yes 2268.0 - 5.3 yes yes 2330.0 5.1
160 3 8 1 2.2 yes yes 2301.0 - 0.9 yes yes 2239.0 5.3 7.3 yes yes 2300.0 6.3
160 3 8 2 1.7 yes yes 2502.0 - 1.5 yes yes 2307.0 - 10.4 yes yes 2502.0 5.2
160 3 8 3 0.8 yes yes 2255.0 - 0.8 yes yes 2334.0 - 5.3 yes yes 2255.0 4.1
160 3 8 4 1.0 yes yes 2279.0 - 1.0 yes yes 2385.0 - 5.0 yes yes 2279.0 4.3
160 3 8 5 0.7 yes yes 2148.0 - 0.7 yes yes 2213.0 - 4.6 yes yes 2148.0 4.7

Table B.20: Problem V, Q|sd, ri, di|
∑

Ci (part 8)
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Doerner, K. F., & Salazar-González, J.-J. (2014). Chapter 7: Pickup-and-delivery
problems for people transportation. Vehicle routing: Problems, methods, and
applications, second edition (pp. 193–212). SIAM.

Dror, M., Ball, M., & Golden, B. (1985). A computational comparison of algorithms
for the inventory routing problem. Annals of Operations Research, 4, 1–23.
https://doi.org/10.1007/BF02022035

EEA. (2013). Annual european union greenhouse gas inventory 1990–2011 and inven-
tory report 2013. submission to the unfccc secretariat.

ENVI. (2022). Fit for 55: MEPs back objective of zero emissions for cars and vans in
2035 [[Online; accessed 15-July-2022]].
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