

Découverte de nouveaux clusters thermoélectriques assistée par machine learning

Isaac Chantrenne

▶ To cite this version:

Isaac Chantrenne. Découverte de nouveaux clusters thermoélectriques assistée par machine learning. Autre. Université de Rennes, 2022. Français. NNT: 2022REN1S089 . tel-04062429

HAL Id: tel-04062429 https://theses.hal.science/tel-04062429

Submitted on 7 Apr 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THESE DE DOCTORAT DE

L'UNIVERSITE DE RENNES 1

ECOLE DOCTORALE N° 596 *Matière, Molécules, Matériaux* Spécialité : Chimie Théorique

Par

Isaac CHANTRENNE

Découverte de nouveaux clusters thermoélectriques assistée par *machine learning*

Thèse présentée et soutenue à Rennes, le 16 décembre 2022 Unité de recherche : Institut des Sciences Chimiques de Rennes (n°6226)

Rapporteurs avant soutenance :

Sylvie HÉBERTDirecJean-Claude CRIVELLOCharg

Directrice de recherche, CNRS, CRISMAT, Caen Chargé de recherche, CNRS, ICMPE, Paris

Composition du Jury :

Examinateurs : Jean-François HALET Guillaume LAMBARD Claudine KATAN Dir. de thèse : Fabien GRASSET Co-dir. de thèse : Stéphane CORDIER David BERTHEBAUD

Directeur de recherche, CNRS, LINK, Tsukuba, Japon Senior researcher, NIMS, Tsukuba, Japon Directrice de recherche, CNRS, ISCR, Rennes

Directeur de recherche, CNRS, ISCR, Rennes

Directeur de recherche, CNRS, ISCR, Rennes Chargé de recherche, CNRS, LINK, Tsukuba, Japon

Remerciements

Les travaux présentés dans ce manuscrit ont été réalisés entre l'Institut des Sciences Chimiques de Rennes (équipes CTI et CSM) et le National Institute for Materials Science de Tsukuba, au Japon (équipe MaDIS). Je tiens à remercier Boris Le Guennic, Stéphane Cordier et Keitaro Sodeyama, dirigeants respectifs de ces trois équipes, ainsi que Régis Gautier, directeur de l'École Nationale Supérieure de Chimie de Rennes dont j'ai occupé les locaux, pour m'avoir chaleureusement accueilli et permis de travailler dans les meilleures conditions possibles.

J'exprime également mes remerciements à Claudine Katan, qui m'a fait l'honneur de présider mon jury de thèse, ainsi qu'à Jean-Claude Crivello et Sylvie Hébert qui ont accepté de se pencher sur mes travaux et d'en être les rapporteurs, pour toutes leurs remarques pertinentes et les riches discussions qui s'en sont suivies.

Un grand merci également aux autres membres du jury, qui ont idéalement assuré mon encadrement pendant ces trois ans malgré des conditions souvent difficiles. Merci tout d'abord à mon directeur de thèse Fabien Grasset, qui m'a accompagné au quotidien, m'a prodigué de précieux conseils et a tout fait pour permettre mon départ au Japon. Merci également à Stéphane Cordier, toujours disponible et accueillant durant tout mon séjour à Rennes. Je tiens également à remercier David Berthebaud et Guillaume Lambard, que je n'ai pu rencontrer que tardivement mais dont l'aide et les conseils furent des plus précieux durant la rédaction de ce manuscrit, et sans lesquels ce projet aurait été beaucoup moins ambitieux qu'en l'état. Je tiens enfin à exprimer mes remerciements les plus sincères à Jean-François Halet, qui a cru en moi quand je n'y croyais plus moi-même et qui a toujours su trouver les mots justes, au travail comme en-dehors.

Je n'oublie pas les membres de l'équipe CTI avec qui j'ai eu la chance et le plaisir de collaborer bien avant le début de ce projet de thèse. J'ai une pensée particulière pour Samia Kahlal et Xavier Rocquefelte dont les enseignements, d'une grande qualité, ont naturellement orienté ma curiosité vers la chimie théorique, ainsi que pour Arnaud Fihey et Jean-Yves Saillard, qui m'ont aidé à matérialiser cette curiosité en acceptant de me former par la suite. Un grand merci également à l'ensemble de l'équipe CTI pour leurs précieux conseils et les discussions quotidiennes, scientifiques ou non, qui vont me manquer. J'exprime également mes remerciements à tous ceux que j'ai côtoyé durant mes quelques mois passés à Tsukuba, dont je ne citerai pas les noms par souci de longueur et par certitude d'en oublier, mais à qui j'assure que je n'oublierai jamais tous ces moments précieux qui m'ont aidé à affronter le difficile moment de la rédaction de ce manuscrit.

Je ne peux pas finaliser ces remerciements sans une attention particulière pour la docteure Marie Barale, binôme, partenaire de thèse et surtout amie de longue date sans qui j'aurais abandonné avant d'avoir obtenu le moindre diplôme. Je n'aurais pas la place pour exprimer toute ma gratitude mais merci pour ces innombrables moments passés ensemble ; pour ta patience, ton aide et tes conseils lors des mauvais, et bien sûr pour ta gentillesse, ta spontainéité et ton humour lors des bons !

Enfin, je tiens à remercier mes proches pour leur soutien pendant ces huit ans. Merci à ceux qui sont arrivés en cours de route et à ceux qui sont partis avant l'heure. Merci à mes parents.

Table des matières

Introduction Générale	1
Chapitre 1 : Étude des propriétés structurales et électroniques des phases à clusters condensés de molybdène	5
1. Introduction	7
1.1. Les phases de Chevrel	7
1.1.1. Description structurale	7
1.1.2. Propriétés des phases de Chevrel	9
1.2. Les phases à clusters condensés dérivées des phases de Chevrel	11
2. Étude des structures cristalline et électronique des phases expérimentales à un s motif Mo _n X _{n+2}	eul 14
2.1. Composés de formule générale A _y B _z Mo ₉ X ₁₁	14
2.1.1. Description structurale	14
2.1.2. Propriétés électroniques	22
2.2. Composés de formule générale A _x B _y Mo ₁₂ X ₁₄	27
2.2.1. Description structurale	
2.2.2. Proprietes electroniques	
2.3. Composes de formule generale A ₃ MO ₁₅ X ₁₇	
2.3.2. Propriétés électroniques	
2.4. Composés de formule générale $A_4Mo_{18}X_{20}$	41
2.4.1. Description structurale	41
2.4.2. Propriétés électroniques	43
2.5. Étude du composé Cs5Mo21Se23	46
2.5.1. Description structurale	46
2.5.2. Propriétés électroniques	48
2.6. Étude du composé Cs ₆ Mo ₂₄ Te ₂₆	51
2.6.1. Description structurale	
2.6.2. Proprietes electroniques	
2.7.1 Description structurale	
2.7.2. Propriétés électroniques	
2.8. Composés de formule générale A _v In _z Mo ₆ X ₆	61
2.8.1. Description structurale	61
2.8.2. Propriétés électroniques	63
3. Étude des structures cristalline et électronique des phases expérimentales à deux Mo _n X _{n+2}	د motifs 66
3.1. Étude du composé Ag _{2,54} Tl ₂ Mo ₁₂ Se ₁₅ à motifs Mo ₆ Se ₈ et Mo ₉ Se ₁₁	66
3.1.1. Description structurale	66
3.1.2. Propriétés électroniques	72
3.2. Composés de formule générale $A_yB_zMo_{15}X_{19}$ à motifs Mo_6X_8 et Mo_9X_{11}	76

3.2.1. Description structurale	76
3.2.2. Propriétés électroniques	81
3.3. Composés de formule générale $A_2Mo_9X_{11}$ à motifs Mo_6X_8 et $Mo_{12}X_{14}$	84
3.3.1. Description structurale	84
3.3.2. Propriétés électroniques	85
3.4. Composés de formule générale A ₄ Mo ₂₁ S ₂₅ à motifs Mo ₉ X ₁₁ et Mo ₁₂ X ₁₄	87
3.4.1. Description structurale	87
3.4.2. Propriétés électroniques	89
3.5. Composés de formule générale $A_6Mo_{27}S_{31}$ à motifs Mo_9X_{11} et $Mo_{18}X_{20}$	92
3.5.1. Description structurale	92
3.5.2. Propriétés électroniques	94
3.6. Étude du composé Rb ₈ Mo ₃₃ S ₃₇ à motifs Mo ₉ S ₁₁ et Mo ₂₄ S ₂₆	97
3.6.1. Description structurale	97
3.6.2. Propriétés électroniques	99
3.7. Étude du composé $Rb_{10}Mo_{39}S_{43}$ à motifs Mo_9S_{11} et $Mo_{30}S_{32}$	101
3.7.1. Description structurale	
3.7.2. Propriétés électroniques	103
3.8. Étude du composé Rb ₄ Mo ₂₁ Se ₂₄ à motifs Mo ₁₂ Se ₁₄ et Mo ₁₅ Se ₁₇	106
3.8.1. Description structurale	
3.8.2. Propriétés électroniques	109
3.9. Étude du composé Rb ₅ Mo ₂₇ Se ₃₁ à motifs Mo ₁₂ Se ₁₄ et Mo ₁₅ Se ₁₇	111
3.9.1. Description structurale	
3.8.2. Propriétés électroniques	
3.8.2. Propriétés électroniques	
3.8.2. Propriétés électroniques 4. Conclusion 5. Détails des calculs	
3.8.2. Propriétés électroniques 4. Conclusion 5. Détails des calculs 6. Bibliographie	113 115 117 118
 3.8.2. Propriétés électroniques	113 115 117 118 s de
 3.8.2. Propriétés électroniques	
 3.8.2. Propriétés électroniques. 4. Conclusion. 5. Détails des calculs. 6. Bibliographie Chapitre 2 : Étude des propriétés thermoélectriques des phases à clusters condensé molybdène. 1. Rappels de thermoélectricité	
 3.8.2. Propriétés électroniques. 4. Conclusion	113 115 117 118 s de 123 125 125 125 127 130 130 131 134 137 141
 3.8.2. Propriétés électroniques	
 3.8.2. Propriétés électroniques	113 115 117 118 s de 123 125 125 125 125 127 130 130 131 132 134 137 141 141
 3.8.2. Propriétés électroniques	
 3.8.2. Proprietés électroniques	113 115 117 118 s de 125 125 125 125 125 125 127 130 130 131 132 134 137 141 141 141 142 142

3.1.5. Coefficient de Seebeck S	
3.1.6. Processus de calcul	144
3.2. Reproduction de résultats expérimentaux	
3.2.2. Calcul des coefficients de Seebeck	
4 Prospections	150
4.1. Différentes formules et différents types structuraux	
4.2. Substitution du molybdène dans le motif Mo ₉ X ₁₁	
4.3. Substitution cationique	
5. Conclusion	158
6. Bibliographie	160
Chanitre 3 · Prédiction des propriétés thermoélectriques de pouveaux composés par	
apprentissage automatique (machine learning)	165
1. Introduction	167
1.1. Le machine learning appliqué à la chimie des matériaux	167
1.2. Processus détaillé d'une étude de <i>machine learning</i>	168
1.2.1. Collecte de données	
1.2.2. Préparation au <i>machine learning</i>	
1.2.3. Prédiction de la propriété ciblée	
2. Création d'une base de dennées seleulées	175
2. Creation d'une base de données calculees	175
2.1. Choix des formules à calculer	173
2.2. Coefficient de Seebeck des 62 formules de la base initiale	1/7
2.3.1. Influence du type de ligand	
2.3.2. Influence du type structural	
2.3.3. Influence du contre-cation	
3. Génération de descripteurs intrinsèques	187
3.1. Génération de descripteurs à l'aide de Matminer	187
3.2. Création de descripteurs spécifiques à nos systèmes	189
4. Première extension de la base initiale par débiaisage	191
4.1. Génération de nouvelles formules quaternaires	191
4.2. Enrichissement informationnel de la base de données	193
5. Modèles de <i>machine learning</i> sur la base étendue	196
5.1. Évaluation des modèles prédictifs	196
5.2. Importance des descripteurs dans la prédiction	200
6. Recherche de nouvelles formules hypothétiques à coefficients de Seebeck amélie	orés 204
6.1. Prédiction du coefficient de Seebeck des formules hypothétiques	204
6.2. Calcul de formules supplémentaires pour évaluer le modèle	206
7. Conclusion	

8. Bibliographie	
Conclusion générale	
Annexes	
1. Base de données initiale	223
2. Choix d'un modèle de type structural pour les différentes stœchiométries de [M _n] ⁴⁺ [Mo ₉ X ₁₁] ^{4–}	
3. Formules quaternaires hypothétiques générées par SMACT	
4. Coefficients de Seebeck prédits des formules générées par SMACT	

Introduction Générale

La thermoélectricité désigne le phénomène physique reliant le flux de chaleur et le courant électrique au sein de certains matériaux. Cette propriété est exploitée dans de nombreux dispositifs dont les applications principales sont la réfrigération (par exploitation de l'effet Peltier, qui transforme un courant électrique en flux de chaleur), la thermométrie, et la génération d'électricité (ces deux dernières utilisant l'effet Seebeck, par lequel la chaleur est convertie en courant électrique). Dans le cadre actuel de la transition énergétique, optimiser le rendement énergétique est un enjeu majeur : en effet, la majorité de l'énergie produite par des sources primaires (combustion, nucléaire, éolienne, solaire, *etc.*) est perdue sous forme de chaleur (figure 1).

Un dispositif thermoélectrique performant permettrait d'en recycler une partie. Cependant, les générateurs thermoélectriques sont pour le moment peu efficaces. Les applications actuelles de ces générateurs tirent parti de leurs avantages pratiques tels que l'absence de pièces mobiles, de leur petite taille et de leur faible besoin d'entretien, les rendant fiables et durables. On peut notamment citer l'alimentation des sondes spatiales, les générateurs de secours, et plus récemment la récupération de chaleur dégagée par les véhicules. La plupart de ces générateurs sont basés sur Bi₂Te₃, et leur rendement est compris entre 5 et 10% [1]. De ce fait, il est nécessaire de poursuivre la recherche de nouveaux matériaux thermoélectriques performants.

Figure 1 : Efficacité de la production d'énergie par des sources primaires (adapté de [2]).

À l'origine de ce projet, des études récentes portant sur les phases à clusters condensés de molybdène ont montré qu'il s'agissait d'une famille de composés prometteurs pour la création de dispositifs thermoélectriques exploitables à haute température, notamment du fait de leur conductivité thermique remarquablement faible [3]. Cette thèse présente une étude prospective ayant pour objectif la découverte de nouvelles phases à clusters condensés de molybdène intéressantes pour la thermoélectricité, par le biais d'une étude théorique combinant les calculs DFT et le *machine learning* (ou apprentissage automatique).

Ces études s'inscrivent dans le cadre d'une thèse financée par le CNRS impliquant l'Institut des Sciences Chimiques de Rennes (ISCR) et l'Unité Mixte Internationale 3629 (Laboratory for Innovative Key Materials and Structures (LINK)) NIMS/CNRS/Saint-Gobain, basée au NIMS, au Japon.

Dans le premier chapitre, les phases à clusters condensés de molybdène (au nombre de 129) sont tout d'abord répertoriées et triées selon leur type structural. Le cœur de ce chapitre porte sur l'étude détaillée des 23 types structuraux adoptés par ces phases, qui permet de mettre en lumière les relations entre leurs structures cristallines et électroniques, en lien avec leurs propriétés thermoélectriques qui sont l'objet du chapitre 2.

Le second chapitre s'ouvre sur une introduction générale à la thermoélectricité, traitant notamment de différentes approches permettant d'obtenir de meilleurs matériaux thermoélectriques. Nos phases s'inscrivent dans l'approche PGEC (*phonon glass electron crystal*), stipulant qu'un bon matériau thermoélectrique doit posséder la conductivité thermique faible d'un verre et la conductivité électrique élevée d'un cristal. La suite du chapitre porte sur le recensement des propriétés thermoélectriques mesurées dans nos phases. Enfin, le processus de calculs DFT nous permettant d'estimer le coefficient de Seebeck de nos composés est présenté, menant à l'étude prospective de *machine learning* détaillée dans le chapitre 3.

Dans le troisième et dernier chapitre, nous commençons par survoler les différentes méthodes de *machine learning* appliquées à la science des matériaux, puis détaillons le processus utilisé pour notre étude, basé sur la méthode *random forest* (arbres décisionnels). Cette méthode a été choisie, car adaptée à notre base de données, cette dernière ayant pour

3

particularité d'être petite (~100 composés) car intégralement basée sur nos calculs. La construction de cette base de données et son exploitation au travers d'études de régression constituent la seconde partie de ce chapitre. L'étude prospective se conclut sur la prédiction du coefficient de Seebeck de près de 1000 formules de phases hypothétiques à clusters condensés de molybdène. Cela a permis de dégager des tendances générales, à partir desquelles sont proposées des formules candidates à de futures études de synthèse.

Bibliographie

- [1]N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi, M. Ismail, *Energy Rep.*, 2020, 6, 7, 264–287.
- [2]B. M. Mahlahela, C. Liu, K. Li, Y. Zhu, 44th Workshop on Geothermal Reservoir Engineering,2019, Stanford University, Stanford, California.
- [3](a) P. Gougeon, P. Gall, R. Al Rahal Al Orabi, B. Boucher, B. Fontaine, R. Gautier, A. Dauscher,
 C. Candolfi, B. Lenoir, *Inorg. Chem.*, **2019**, *58*, 9, 5533–5542 ; (b) P. Gougeon, P. Gall, O.
 Merdrignac-Conanec, L. Aranda, A. Dauscher, C. Candolfi, B. Lenoir, *Inorg. Chem.*, **2017**, *16*, 9684–9692.

Chapitre 1 :

Étude des propriétés structurales et électroniques des

phases à clusters condensés de molybdène

1. Introduction

1.1. Les phases de Chevrel

1.1.1. Description structurale

Les phases ou composés à clusters condensés de formule générale A_yMo₆X₈ dans lesquels A est un cation (bloc s, métal de transition, terre rare, etc.) et X un chalcogène (S, Se, Te), communément appelés *phases de Chevrel*, ont été découverts à Rennes par R. Chevrel, M. Sergent et J.-Y. Prigent en 1971 [1]. Ils sont généralement préparés à partir de poudre ou de copeaux de molybdène et de chalcogène, ou bien de précurseurs binaires comme MoS₂, Mo₂Se₃ ou Mo₂Te₃, auxquels est ajouté l'élément métallique A en copeaux. La réaction a lieu en creuset de molybdène ou d'alumine, ou en tube de silice, entre 800 et 1000 °C. Les produits formés sont des poudres ou des cristaux stables à l'air [2].

Le motif structural « Mo₆X₈ » commun à toutes ces phases est composé d'un cluster octaédrique Mo₆ entouré de 14 ligands X, dont certains sont partagés entre deux motifs comme expliqué ci-après. En effet, parmi ces 14 ligands, selon la notation de Schäfer [3], 6 ligands inner-apicaux (*i*–*a*) et 2 ligands inner (*i*) forment un cube et coiffent chacun une face triangulaire de l'octaèdre Mo₆, tandis que les 6 ligands apicaux-inner (*a*–*i*) restants sont liés chacun à un atome Mo de façon terminale et forment un octaèdre. Les ligands *i*–*a* et *a*–*i* étant partagés entre deux motifs à clusters, Mo₆X₈ correspond à la contraction de la formule développée Mo₆Xⁱ₂ X^{i-a}_{6/2} X^{a-i}_{6/2} (figure 1.1, a). C'est cette formule contractée que nous utiliserons par la suite, par simplification. L'ensemble X₈ formé par les ligands *i* et *i*–*a* peut donc être visualisé comme un cube dans lequel s'inscrit le cluster Mo₆. Les motifs à cluster Mo₆X₈ s'assemblent de façon à former un réseau tridimensionnel qui maximalise les interactions Mo–X inter-motifs et entraîne la création de larges cavités où viennent s'insérer les cations A. Ces cations forment à leur tour des cubes A₈ plus grand dans lesquels s'inscrivent les cubes X₈, après avoir subi une rotation selon l'axe de la diagonale du cube A₈. Cette rotation est d'environ 25° dans le cas du composé à cluster PbMo₆S₈, représenté sur la figure 1.1, b [4]. La structure tridimensionnelle du composé PbMo₆S₈ est représentée sur la figure 1.2.

Figure 1.1 : (a) Motif $Mo_6X_2^i X_{6/2}^{i-a} X_{6/2}^{a-i}$ et (b) motif Mo_6X_8 inscrit dans un cube A_8 dans le cas de PbMo₆S₈.

Figure 1.2 : Structure cristalline de PbMo₆S₈ ($R\overline{3}$ H) [1].

1.1.2. Propriétés des phases de Chevrel

Les phases de Chevrel ont été largement étudiées pour leurs propriétés physicochimiques intéressantes et variées, que nous décrirons brièvement ci-dessous [5]. Ces composés ont tout d'abord été étudiés pour leurs propriétés de supraconductivité, comme dans le cas de PbMo₆S₈ qui montre une température T_c aux environs de 15 K et un champ magnétique critique H_{C2} élevé [6].

Les phases de Chevrel montrent également des propriétés particulièrement favorables pour la catalyse, présentant une grande stabilité thermique, un degré d'oxydation de Mo variable et contrôlable, un cœur de motif à cluster Mo₆ riche en électrons, des sites cationiques accessibles favorisant l'intercalation et deux sites Mo et X pouvant interagir avec les molécules réactives [7]. De ce fait, les phases de Chevrel possèdent un potentiel catalytique intéressant connu depuis les années 1980 [7]. Elles se révèlent notamment plus performantes que MoS₂ pour catalyser par exemple des réactions d'hydrodésulfurisation, de déhydrogénation, de cracking du MTBE, de conversion du méthanol et peuvent catalyser d'autres réactions comme la réduction de O₂ par électrocatalyse [7].

Les phases de Chevrel à cluster Mo₆S₈ sont également de bons candidats pour servir de cathodes dans les batteries rechargeables au magnésium Mg_xMo₆S₈. Ce type de batteries, encore au stade du développement, seraient moins toxiques que les batteries au nickelcadmium et au plomb, moins chères que les batteries nickel-métal-hydrure et utiliseraient le magnésium, plus abondant que le lithium que l'on retrouve dans les batteries lithium-ion les plus utilisées à ce jour [8, 9]. Cependant, l'ion Mg²⁺ est difficile à insérer de façon réversible du fait de sa densité de charge élevée et de sa mobilité relativement faible [9, 10].

Certaines phases de Chevrel possèdent également de bonnes propriétés thermoélectriques. Ceci est principalement lié à leur conductivité thermique remarquablement faible – autour de 1 W.m⁻¹.K⁻¹ [11, 12] – du fait de la présence de cations entre les motifs Mo₆X₈. La phase de Chevrel possédant les meilleures propriétés thermoélectriques est Cu₂FeMo₆Se₈, avec une figure de mérite *ZT* de 0,6 à 1150 K [13]. Le fait que ces phases soient stables à haute température [14] laisse envisager des applications dans le domaine aérospatial, par exemple [13].

Les propriétés physico-chimiques remarquables des phases de Chevrel sont dues à leur structure électronique particulière. À partir du diagramme d'orbitales moléculaires (OM) du modèle $[Mo_6S_8]^{4-}$ obtenu par la méthode de Hückel étendue, Hughbanks et Hoffmann ont montré dès 1983 [4] que le compte « idéal » d'électrons métalliques de valence, ou VEC (Valence Electrons Concentration), devait être de 24 pour que le composé devienne semiconducteur (figure 1.3). De façon intéressante, le VEC rencontré expérimentalement peut varier de 20 à 24, conduisant à divers composés semi-conducteurs (VEC = 20 ou 24) par exemple intéressants pour la thermoélectricité, ou conducteurs électriques, voire supraconducteurs (VEC = 21-23).

Figure 1.3 : Diagramme d'orbitales moléculaires du motif à cluster isolé $[Mo_6S_8]^{4-}$ (O_h , VEC = 24) (adapté de [4]).

Le VEC peut être déterminé directement à partir de la formule chimique du composé en supposant un modèle ionique. Il est calculé selon la formule suivante :

$$\sum_{i=1}^{N} e(A/Mo_i) - \sum_{j=1}^{M} v(X_j)$$

avec *e* le nombre d'électrons de valence des cations A_i et Mo_i, et *v* la valence des anions X_j, soit le nombre de trous qui nécessitent d'être remplis pour atteindre la configuration du gaz rare le plus proche (règle de l'octet). Tous les composés présentés dans cette étude ont pour seuls anions S^{2–}, Se^{2–} et Te^{2–}, les ligands des motifs, possédant une valence de deux. À titre d'exemple, le VEC de PbMo₆S₈ (Pb²⁺[Mo₆S₈]^{2–}) est :

VEC =
$$2 e$$
 (Pb) x 1 + $6 e$ (Mo) x $6 - 2 v$ (S) x $8 = 22$.

1.2. Les phases à clusters condensés dérivées des phases de Chevrel

Dans les années 1980-1990, les composés à clusters octaédriques condensés de molybdène ont fait l'objet d'un regain d'intérêt. De nouvelles phases, dérivées des phases de Chevrel, ont été découvertes par P. Gougeon et collaborateurs, contenant des motifs condensés dans lesquels les triangles Mo₃ s'empilent de façon uniaxiale, formant des motifs avec une nucléarité allant de Mo₉ à Mo₃₆ [15, 16]. Ces phases se divisent en deux familles : l'une rassemble les composés dont les structures sont construites à partir d'un seul type de motif à cluster, de Mo₉X₁₁ à Mo₃₆X₃₈ (figure 1.4, a), et l'autre englobe les composés dont les structures sont construites à clusters, comme Mo₆X₈ et Mo₁₂X₁₄, ou encore Mo₉X₁₁ et Mo₃₀X₃₂ (figure 1.4, b).

Ces phases condensées sont généralement préparées de façon analogue aux phases de Chevrel : le molybdène est souvent ajouté en poudre et les ligands chalcogènes sont amenés via des précurseurs comme MoS_2 [17], $MoSe_2$ [18], ou Mo_6Te_8 [19]. Les éléments métalliques interstitiels peuvent être ajoutés sous forme de poudre [17, 18], via des précurseurs synthétisés au préalable comme TISe, Na_2S ou M_2MoS_4 (M = K, Rb, Cs) [17, 18, 20] ou à l'aide de phases à chaînes infinies $M_2Mo_6X_6$ (M = Rb, Cs) [21, 22]. Les composés ternaires sont généralement synthétisés en tube de silice, entre 800 et 1000 °C. Les composés quaternaires comprenant un élément alcalin et un métal de transition sont synthétisés à partir du ternaire alcalin par réaction d'oxydoréduction en présence du métal à ajouter, en tube de silice, entre 750 et 1200 °C [17, 21].

Ces phases condensées possèdent des propriétés de physiques intéressantes. Certaines sont, comme les phases de Chevrel dont elles dérivent, supraconductrices à basse température [16, 23]. D'autres montrent de bonnes propriétés thermoélectriques [24]. Ceci a fait l'objet principal de ma thèse, et sera détaillé dans le chapitre 2.

(a) (a) $Ag_{2,61}RbMo_9Se_{11}; P6_3/m$ a = 10,04 Å c = 11,99 Å(b) $Cs_3Mo_{15}Se_{17}; P6_3/m$ a = 9,62 Å c = 20,90 Å(c) $Cs_3Mo_{15}Se_{17}; P6_3/m$ a = 9,10 Åc = 77,37 Å

Figure 1.4 : Exemples des structures cristallines de composés contenant un seul type de cluster (de nucléarité croissante) (a) et de structures cristallines de composés contenant deux types de motifs (de nucléarité croissante) (b).

Étude des structures cristalline et électronique des phases expérimentales à un seul motif Mo_nX_{n+2}

Il existe environ 130 composés à clusters condensés de molybdène, la plupart synthétisés à Rennes, dont une soixantaine ne comportant qu'un seul type de motif Mo_6X_6 ou Mo_nX_{n+2} . Les propriétés structurales et distances interatomiques mesurées expérimentalement au sein de ces derniers sont reportées dans le tableau 1.1.

2.1. Composés de formule générale AyBzMo9X11

2.1.1. Description structurale

Le motif à cluster Mo₉X₁₁ rencontré dans les composés A_yB_zMo₉X₁₁ peut être vu comme la condensation de deux motifs à cluster octaédriques Mo₆X₈ selon une face triangulaire, ou bien comme l'empilement de trois faces Mo₃X₃ en configuration décalée. Les six ligands appartenant aux deux faces extérieures sont des ligands *i*–*a* partagés avec les motifs à cluster voisins, tandis que les trois ligands de la face du milieu sont notés *i*. À ces faces Mo₃X₃, on ajoute un ligand *a*–*i* coiffant chacun des six Mo des deux faces extérieures, et deux autres ligands *i* venant coiffer directement chacune de ces deux faces extérieures (figure 1.5, a). Le motif Mo₉X₁₁ est donc, en réalité, formulé Mo₉Xⁱ₅ X^{i-a}_{6/2} X^{a-i}_{6/2}. Les motifs Mo₉X₁₁ sont reliés entre eux via une jonction carrée Mo₂X₂ : les ligands *i*–*a* sont les ligands *a*–*i* du cluster voisin (figure 1.5, b). La coordination intermotif est de 12 (six jonctions carrées).

Figure 1.5 : Motif $Mo_9X_5^i X_{6/2}^{i-a} X_{6/2}^{a-i}$ (a) et jonction entre deux motifs $A_yB_zMo_9X_{11}$ (b)

Composé	G. S. ^a	Ζ	a (Å)	b (Å)	<i>c</i> (Å)	V (Å ³) ^b	Mo–Mo (Å)	Mo–X (Å)	VEC	Réf.
<i>o</i> -Mo ₉ Se ₁₁	Стст	4	11,97(2)	13,09(2)	11,05(2)	1731,39	2,65–2,80	2,44–2,61	32	[25]
$Ag_{3,60}Mo_9Se_{11}$	Стст	4	11,910(3)	13,614(4)	11,679(3)	1893,67	2,63–2,75	2,55–2,67	35,6	[15]
Na _{2,54} Cs _{1,14} Mo ₉ S ₁₁	P6₃/m	2	9,8888(2)	9,8888(2)	11,6398(3)	985,74	2,62–2,70	2,42–2,63	35,7	[20]
$Ag_{1,91}Cs_{1,16}Mo_9S_{11}$	P6₃/m	2	9,6366(1)	9,6366(1)	11,6119(3)	933,86	2,64-2,72	2,42-2,58	35,1	[26]
<i>h</i> -Mo ₉ Se ₁₁	P6₃/m	2	9,4204(2)	9,4204(2)	12,1226(2)	931,68	2,68–2,80	2,52–2,70	32	[21]
Ag _{2,61} RbMo ₉ Se ₁₁	P6₃/m	2	10,0384(2)	10,0384(2)	11,9930(2)	1046,61	2,62–2,74	2,55–2,71	35,6	[22]
Ag _{2,57} CsMo ₉ Se ₁₁	P6₃/m	2	10,0472	10,0472	11,9548	1045,11	2,61–2,76	2,56–2,76	35,6	[21]
$K_{1,80}Mo_9S_{11}$	<i>R</i> 3с Н	6	9,2801(8)	9,2801(8)	35,833(7)	2672,51	2,65–2,78	2,40–2,62	33,8	[17]
α -K ₂ Mo ₉ S ₁₁	<i>R</i> 3 <i>с</i> Н	6	9,271(1)	9,271(1)	35,985(9)	2678,58	2,65–2,78	2,39–2,62	34	[17]
$Rb_2Mo_9S_{11}$	<i>R</i> 3 <i>с</i> Н	6	9,356(2)	9,356(2)	35,935(9)	2724,14	2,65–2,77	2,38–2,50	34	[17]
α -Tl ₂ Mo ₉ S ₁₁	<i>R</i> 3 <i>с</i> Н	6	9,30(1)	9,30(1)	35,37(1)	2649,30	2,65–2,76	2,37–2,59	34	[27]
$Cu_2K_{1,80}Mo_9S_{11}$	<i>R</i> 3 <i>с</i> Н	6	9,4215(4)	9,4215(4)	35,4439(20)	2724,66	2,61–2,73	2,43–2,52	35,8	[17]
Ag _{2,25} Tl _{1,75} Mo ₉ Se ₁₁	<i>R</i> 3 <i>с</i> Н	6	10,0180(4)	10,0180(4)	35,5923(16)	3093,49	2,62–2,73	2,56–2,67	36	[18]
$Rb_2Mo_{12}Se_{14}$	<i>R</i> 3 H	3	9,538(2)	9,538(2)	24,660(1)	1942,85	2,65–2,80	2,52–2,68	46	[19]
$Cs_2Mo_{12}Se_{14}$	<i>R</i> 3 R	1	9,905(3)	9,905(3)	9,905(3)	661,66	2,66–2,80	2,52–2,68	46	[28]
$Cs_2Cu_{1,3}Mo_{12}Se_{14}$	<i>R</i> 3 H	3	9,8952(4)	9,8952(4)	24,4248(10)	2071,14	2,62–2,73	2,52–2,69	47,3	[28]
$Cs_2Mo_{12}Te_{14}$	<i>R</i> 3 H	3	10,251(1)	10,251(1)	25,442(3)	2315,34	2,69–2,77	2,71–2,85	46	[19]
KM0 ₁₂ S ₁₄	P31c	2	9,0797(9)	9,0797(9)	16,412(6)	1171,75	2,63–2,84	2,39–2,61	45	[29]
K _{2,12} Mo ₁₂ S ₁₄	P31c	2	9,1476(4)	9,1476(4)	16,421(1)	1189,99	2,65–2,82	2,39–2,62	46,1	[29]
$K_{2,30}Mo_{12}S_{14}$	P31c	2	9,1720(7)	9,1720(7)	16,403(4)	1195,04	2,65–2,81	2,39–2,58	46,3	[29]

Tableau 1.1 : Compilation des données cristallographiques des phases à clusters condensés de molybdène à un seul motif Mo_nX_{n+2}. Les angles α , β et γ n'y figurent pas dans un souci de lisibilité.

$K_{2,57}Mo_{12}S_{14}$	P31c	2	9,1990(4)	9,1990(4)	16,426(4)	1203,77	2,64–2,80	2,39–2,60	46,6	[29]
$Rb_{1,07}Mo_{12}S_{14}$	P31c	2	9,1080(6)	9,1080(6)	16,490(5)	1184,67	2,65–2,84	2,38–2,61	45,1	[30]
$Rb_{2,65}Mo_{12}S_{14}$	P31c	2	9,2828(6)	9,2828(6)	16,446(5)	1227,29	2,64–2,79	2,38–2,60	46,5	[30]
Na _{2,90} KMo ₁₂ S ₁₄	P31c	2	9,3664(1)	9,3664(1)	16,2981(2)	1238,26	2,63–2,78	2,38–2,59	47,9	[31]
Hg _{2,82} KMo ₁₂ S ₁₄	P31c	2	9,2374(1)	9,2374(1)	16,3302(1)	1206,76	2,64–2,80	2,39–2,60	45	[32]
$Rb_3Mo_{15}Se_{17}$	P6 ₃ /m	2	9,4842(8)	9,4842(8)	21,006(7)	1636,35	2,66–2,77	2,53–2,69	59	[33]
$Cs_3Mo_{15}Se_{17}$	P6 ₃ /m	2	9,624(2)	9,624(2)	20,898(8)	1676,28	2,66–2,77	2,53–2,69	59	[34]
Cs ₃ Mo ₁₅ Te ₁₇	P6₃/m	2	10,194(1)	10,194(1)	21,622(1)	1945,88	2,66–2,79	2,72–2,86	59	[19]
$Rb_4Mo_{18}Se_{20}$	<i>R</i> 3 R	1	13,912(5)	13,912(5)	13,912(5)	998,91	2,64–2,78	2,52–2,70	72	[35]
$Cs_4Mo_{18}Te_{20}$	<i>R</i> 3 H	3	10,196(1)	10,196(1)	39,32(1)	3540,00	2,65–2,79	2,77–2,86	72	[19]
$Cs_5Mo_{21}Se_{23}$	P6₃/m	2	9,6513(7)	9,6513(7)	29,939(6)	2415,12	2,65–2,77	2,53–2,70	85	[36]
Cs ₆ Mo ₂₄ Te ₂₆	<i>R</i> 3 H	3	10,180(2)	10,180(2)	53,130(2)	4768,33	2,65–2,79	2,75–2,86	98	[19]
$Rb_{10}Mo_{36}S_{38}$	<i>R</i> 3 H	3	9,0968(7)	9,0968(7)	77,378(12)	5544,59	2,64–2,74	2,39–2,61	154	[16]
$K_2Mo_6S_6$	P6 ₃ /m	1	8,7203(6)	8,7203(6)	4,4076(4)	290,27	2,63-2,68	2,44-2,56	26	[37,38]
$Rb_2Mo_6S_6$	P6 ₃ /m	1	8,9589(13)	8,9589(13)	4,4114(10)	306,63	2,62–2,68	2,47–2,60	26	[37,38]
$Cs_2Mo_6S_6$	P6₃/m	1	9,2698(9)	9,2698(9)	4,4191(9)	328,86	2,64–2,69	2,53–2,62	26	[37,38]
$Li_2Mo_6Se_6$	P6₃/m	1	8,513	8,513	4,48	281,30	2,37–2,63	2,40–2,68	26	[39–41]
$Na_2Mo_6Se_6$	P6₃/m	1	8,629	8,629	4,479	288,82	2,41–2,64	2,46–2,69	26	[37,38,42]
$K_2Mo_6Se_6$	P6₃/m	1	9,01(1)	9,01(1)	4,50(1)	316,37	2,64–2,71	2,58–2,74	26	[37,38]
$Rb_2Mo_6Se_6$	P6₃/m	1	9,26	9,26	4,49	333,43	2,75–2,76	2,59–2,65	26	[37,43]
$Cs_2Mo_6Se_6$	P6₃/m	1	9,533	9,533	4,484	352,90	2,66–2,72	2,76–2,83	26	[37,42]
$Ag_2Mo_6Se_6$	P6₃/m	1	8,56	8,56	4,50	286	2,55–2,69	2,47–2,64	26	[37]
$In_2Mo_6Se_6$	P6₃/m	1	8,85	8,85	4,50	305,23	2,66–2,72	2,60–2,69	26	[37,38,43,44]
$TI_2Mo_6Se_6$	P6₃/m	1	8,94	8,94	4,50	311,47	2,70–2,72	2,60–2,69	26	[37,38,42,43,45]
$Na_2Mo_6Te_6$	P6₃/m	1	9,23	9,23	4,60	339,38	2,62–2,75	2,67–2,82	26	[37]

$K_2Mo_6Te_6$	P6₃/m	1	9,60	9,60	4,60	367,14	2,67–2,77	2,85–2,88	26	[37]
Rb ₂ Mo ₆ Te ₆	P6₃/m	1	9,76	9,76	4,60	379,48	2,71–2,78	2,77–2,88	26	[37]
$Cs_2Mo_6Te_6$	P6₃/m	1	10,09	10,09	4,60	405,4	2,81–2,82	2,79–2,91	26	[37]
BaMo ₆ Te ₆	P6₃/m	1	9,3941(2)	9,3941(2)	4,5848(1)	350,40	2,66–2,76	2,80–2,86	26	[46]
In ₂ Mo ₆ Te ₆	P6₃/m	1	9,35	9,35	4,59	347,51	2,64–2,78	2,72–2,83	26	[37,38,44]
$TI_2Mo_6Te_6$	P6₃/m	1	9,44	9,44	4,59	354,23	2,62–2,75	2,73–2,85	26	[37,38,44]
InLiMo ₆ Te ₆	P6₃/m	1	9,26	9,26	4,60	341,59	2,76–2,80	2,69–2,78	26	[39]
InNaMo ₆ Te ₆	P6₃/m	1	9,294	9,294	4,60	344,11	2,72–2,78	2,66–2,82	26	[39]
InKMo ₆ Te ₆	P6₃/m	1	9,488	9,488	4,895	381,62	2,78–2,93	2,71–2,92	26	[39]
InRbMo ₆ Te ₆	P6₃/m	1	9,615	9,615	4,593	367,73	2,81	2,74–2,83	26	[39]
AgMo ₆ Te ₆	C2/m	2	17,450(9)	4,585(2)	9,129(2)	640,36	2,66–2,77	2,77–2,87	25	[47]

^aGroupe spatial. ^bVolume.

Les composés de formule générale $A_yB_zMo_9X_{11}$, avec A = Na, Cu, Ag ; B = K, Rb, Cs, Cu, Tl ; $y + z \le 4$; X = S, Se, existent dans trois types structuraux différents décrits ci-dessous.

2.1.1.a. Type structural Cmcm de AyMo₉X₁₁

Le premier type structural auquel nous allons nous intéresser est celui rencontré dans le composé Ag_{3,6}Mo₉Se₁₁, qui cristallise dans le groupe d'espace orthorhombique *Cmcm*. Il s'agit du premier composé A_yB_zMo₉X₁₁ obtenu en 1984 par Gougeon *et al.* [15]. Dans ce composé, l'arrangement tridimensionnel des motifs à clusters Mo₉Se₁₁ conduit à la présence de quatre sites interstitiels où viennent s'insérer les atomes d'argent avec une occupation partielle. Ces quatre sites Ag1, Ag2, Ag3 et Ag4 occupent des positions de Wyckoff 8f (Ag1, Ag2 et Ag3) et 16h (Ag4), avec *Z* = 4. Si ces quatre sites étaient occupés à un taux de 100%, le composé aurait la formule Ag₁₀Mo₉Se₁₁. En l'occurrence, les sites Ag1 et Ag2, distants de 1,13 Å, ne peuvent pas être occupés simultanément et possèdent, dans Ag_{3,6}Mo₉Se₁₁, des taux d'occupation respectifs d'environ 80% et 20%. De même, le site Ag3 est délocalisé sur deux sites de part et d'autre d'un plan-miroir, distants seulement de 0,91 Å, et est occupé à 50%. Enfin, l'atome Ag4 est partiellement distribué sur deux positions distantes de 0,72 Å, avec une occupation de 14%.

Chaque atome Ag1 s'insère dans un octaèdre déformé composé de ligands Se, avec Ag1– Se = 2,66–3,37 Å. Ces octaèdres de Se s'empilent deux à deux selon une face triangulaire (figure 1.6, a). Quant à l'atome Ag2, il est entouré d'un triangle de ligands Se, avec Ag2–Se = 2,46–2,62 Å (figure 1.6, b). Chacun des atomes Ag3 est inscrit dans un octaèdre déformé de Se, avec Ag3–Se = 2,81–3,83 Å (figure 1.6, c). Enfin, Ag4 est également inscrit dans un octaèdre déformé de Se, avec Ag4–Se = 2,63–3,41 Å. Ces octaèdres sont associés entre eux par groupe de quatre. Dans chaque groupe, deux octaèdres sont liés par un sommet, deux par une arête (figure 1.6, d).

Ag1-Se (6) = 2,66-3,37 Å Ag2-Se (3) = 2,46-2,62 Å Ag3-Se (6) = 2,81-3,83 Å Ag4-Se (6) = 2,63-3,41 Å

Figure 1.6 : Environnements des sites Ag1 (a), Ag2 (b), Ag3 (c) et Ag4 (d) dans le composé Ag_{3,6}Mo₉Se₁₁.

2.1.1.b. Type structural $P6_3/m$ de $A_yB_zMo_9X_{11}$

Le second type structural $P6_3/m$ adopté par les phases $A_yB_zMo_9X_{11}$ est rencontré dans cinq composés reportés dans le tableau 1.1. Nous allons le décrire en prenant l'exemple du composé $Ag_{2,61}RbMo_9Se_{11}$ [22]. Dans ce composé, les atomes d'argent se placent sur des positions de Wyckoff 6h (Z = 2), occupées à 87%. Notons que si ce site était occupé à 100%, la formule du composé serait $Ag_3RbMo_9Se_{11}$. Les atomes d'argent, distants entre eux de 4,10 Å, forment un triangle Ag_3 qui s'intercale entre deux motifs Mo_9Se_{11} selon c. Rb est délocalisé le long de l'axe c sur trois positions de Wyckoff 2a, 2b et 4e, dont la position spéciale (0, 0, 0), de multiplicité 2 (la position b), est occupée à 72%. La somme de l'occupation de ces 3 positions vaut 100%. La structure du composé $Ag_{2,61}RbMo_9Se_{11}$ est représentée sur la figure 1.7.

Figure 1.7 : Structure cristalline du composé $Ag_{2,61}RbMo_9Se_{11}$ ($P6_3/m$) [22]. Dans un souci de clarté, l'atome Rb est fixé sur sa position spéciale (0, 0, 0), avec une occupation de 100 %.

Chacun des atomes d'Ag s'inscrit dans un octaèdre déformé composé de ligands Se, avec Ag–Se = 2,64–3,63 Å (figure 1.8, a). Quant à Rb, il est à la fois inscrit dans un octaèdre très déformé de Se (Rb–Se = 3,41 Å) et dans un octaèdre plus grand de Ag (Rb–Ag = 4,64 Å), qui, combinés, forment un polyèdre à douze sommets (figure 1.8, b) qui peut être considéré comme un canal d'insertion de Rb selon l'axe *c*, de forme cylindrique (figure 1.8, c).

Figure 1.8 : Environnement de Ag (a), polyèdres formant l'environnement de Rb (b) et projection de $Ag_{2,61}RbMo_9Se_{11}$ selon l'axe *c* (c).

2.1.1.c. Type structural R3c de AyBzMo9X11

Le troisième et dernier type structural dans lequel on retrouve des motifs Mo₉X₁₁ est rencontré dans six composés reportés dans le tableau 1.1, qui cristallisent dans le groupe d'espace rhomboédrique $R\overline{3}c$. C'est le cas du composé Ag_{2,25}Tl_{1,75}Mo₉Se₁₁ [18]. Les atomes d'argent occupent deux sites Ag1 et Ag2 différents, occupant respectivement des positions de Wyckoff 18e et 36f (Z = 6). Ag2 est situé de part et d'autre d'un plan-miroir. Les deux sites, distants de 0,43 Å, ne peuvent donc pas être occupés en même temps, et présentent donc des occupations partielles respectives de 12% et 32%. Les atomes Tl1 et Tl2, occupant des positions de Wyckoff respectives 36f et 6b, se placent, eux aussi, sur deux sites différents distants de 1,69 Å. Ces derniers ne pouvant pas être occupés simultanément, ils présentent des occupations partielles respectives de 24% et 32%.

Pour étudier la nature des sites cationiques et leur coordination, nous avons considéré uniquement les sites Ag1 et Tl2, localisés sur des positions spéciales dans la structure cristalline – les environnements des sites Ag2 et Tl1 sont similaires. Les positions Ag1, distantes entre elles de 5,10 Å, forment des triangles Ag3 intercalés entre un motif à cluster Mo₉Se₁₁ et un atome Tl2. Ces triangles sont en configuration décalée selon l'axe *c*, avec Tl2 au centre. Les positions Tl2 occupent la position spéciale (0, 0, 0) et sont localisées entre deux motifs à clusters Mo₉Se₁₁ le long de l'axe *c*. La structure est représentée sur la figure 1.9.

Figure 1.9 : Structure cristalline du composé $Ag_{2,25}TI_{1,75}Mo_9Se_{11}$ (*R* $\overline{3}c$ H) [18].

Chaque atome Tl2 s'inscrit dans un octaèdre de Se très déformé (figure 1.10, a), avec Tl–Se = 3,40 Å. Ag s'inscrit dans une pyramide à base carrée de Se, avec Ag–Se = 2,57–3,37 Å (figure 1.10, b).

Figure 1.10 : Environnements de TI (a) et de Ag (b) dans le composé Ag_{2,25}TI_{1,75}Mo₉Se₁₁.

2.1.2. Propriétés électroniques

Gautier *et al.* [48] en 1997 ont montré à l'aide de calculs théoriques réalisés par la méthode de la fonctionnelle de la densité (DFT) que les phases à clusters condensés de molybdène possèdent, comme les phases de Chevrel, un VEC « idéal » pour lequel le composé est attendu semi-conducteur. Les résultats confirmaient ceux proposés précédemment par Hughbanks et Hoffmann à partir de calculs effectués par la méthode de Hückel étendue [4]. Nous avons décidé de reconsidérer ces calculs et de les étendre à tous les types de motifs isolés présents dans les nouvelles phases condensées découvertes depuis, c'est-à-dire du motif à cluster octaédrique Mo₆X₈ jusqu'au plus gros motif rencontré jusqu'à présent, Mo₃₆X₃₈ [16].

Pour ce faire, nous avons considéré des modèles de motifs à clusters isolés de formule générale $[Mo_nX_{n+2}]^{4-}$ (la charge formelle de 4– a été choisie de façon arbitraire afin d'éviter des problèmes de convergence pour les motifs les plus gros). Bien que les motifs à clusters « isolés » soient formellement de formule générale « Mo_nX_{n+8} » (figure 1.4, a), nous avons choisi de ne pas considérer les six ligands *a–i* et de calculer les motifs Mo_nX_{n+2} , estimant qu'ils jouent un rôle négligeable dans les OM à caractère métallique prédominant [4]. Les calculs « moléculaires » ont été effectués à l'aide du programme ADF (voir détails des calculs en fin de chapitre).

Pour vérifier que la structure du modèle de motif à cluster isolé est correcte, nous avons commencé par comparer les distances Mo–Mo et Mo–Se de ce modèle optimisé par la DFT avec celles du composé expérimental Ag_{3,6}Mo₉Se₁₁ (voir tableau 1.2). Les distances Mo–Se sont proches des valeurs retrouvées dans le composé expérimental, avec des différences comprises entre 0 et 2%. Les distances Mo–Mo sont également proches des valeurs expérimentales avec une erreur comprise entre 0 et 1%, à l'exception de la distance Mo1–Mo1 qui est plus courte de 4%. Cette erreur peut être expliquée par le fait que les ligands *a–i* liés à Mo1 sont absents de notre modèle Mo₉Se₁₁ isolé.

22

Tableau 1.2 : Comparaison des distances interatomiques mesurées expérimentalement dans le composé $Ag_{3,6}Mo_9Se_{11}$ (VEC = 36) [15] avec celles calculées pour le motif à cluster isolé $[Mo_9Se_{11}]^{4-}$ (VEC = 36). La numérotation des atomes est indiquée à droite.

Distance	Exp. (Å)	Calc. (Å)	👷 Se1
Mo1–Mo1	2,63–2,66	2,55	Mol
Mo2–Mo2	2,75	2,77	Sez
Mo1–Mo2	2,67–2,73	2,70	
Mo1–Se1	2,55	2,59	Mo2
Mo1–Se2	2,59	2,61	
Mo1–Se3	2,67	2,69	
Mo2–Se2	2,64	2,66	
Mo2–Se3	2,61	2,61	8

Le diagramme d'orbitales moléculaires (OM) du motif à cluster isolé $[Mo_9Se_{11}]^{4-}$ est représenté sur la figure 1.11. Un écart HO–BV (écarts entre les orbitales moléculaires la plus Haute Occupée et la plus Basse Vacante) de 1,36 eV est observé pour un VEC de 36. En estimant que les interactions entre motifs doivent être faibles dans le composé solide, un tel écart énergétique devrait conduire à des composés $A_yB_zMo_9X_{11}$ semi-conducteurs, comme prévu par Hughbanks et Hoffmann [4] d'une part et par Gautier *et al.* [48] ainsi que Picard *et al.* [17] d'autre part. La charge « idéale » totale des contre-cations pour obtenir de tels composés est donc $[A_yB_z]^{4+}$ pour compenser la charge cluster isolé $[Mo_9Se_{11}]^{4-}$.

Figure 1.11 : Diagramme d'orbitales moléculaires du motif à cluster isolé [Mo₉Se₁₁]^{4–} (*D*_{3h}, VEC = 36).

Le comportement semi-conducteur attendu des composés contenant des motifs à clusters formellement chargés [Mo₉Se₁₁]^{4–} a été vérifié par la suite par Al Rahal Al Orabi *et al.* [49] à partir de calculs DFT périodiques sur le composé modèle Ag₄Mo₉Se₁₁, créé à partir de la structure expérimentale de Ag_{3,6}Mo₉Se₁₁. Comme dit précédemment, si tous les sites Ag étaient occupés à 100%, la formule du composé serait Ag₁₀Mo₉Se₁₁. Certains de ces sites sont décalés sur des positions voisines de plus faible multiplicité, ce qui conduit à un nouveau modèle de formule Ag₆Mo₉Se₁₁ (voir figure 1.12). Pour arriver à la formule Ag₄Mo₉Se₁₁ ([Ag⁺]₄[Mo₉Se₁₁]^{4–}) tout en conservant la symétrie et ainsi un temps de calcul raisonnable, trois modèles ont été envisagés (figure 1.13). Le modèle A est obtenu en occupant les sites Ag1, Ag2 et Ag3 ; le modèle B en occupant les sites Ag1 et Ag4 ; enfin, le modèle C est obtenu en occupant les sites Ag2, Ag3 et Ag4. L'arrangement structural de ces trois modèles a été optimisé par DFT et leurs énergies libres totales comparées entre elles [49].

Figure 1.12 : Structure expérimentale de $Ag_{3,6}Mo_9Se_{11}$ (à gauche) [15] et structure du modèle « $Ag_6Mo_9Se_{11}$ » (à droite) correspondant à des taux d'occupation des sites Ag de 100%.

Figure 1.13 : Représentation structurale et énergie relative des trois modèles calculés A, B et C de Ag₄Mo₉Se₁₁.

Nous avons nous-mêmes calculé la courbe de densité d'états (DOS) du modèle B, le plus stable énergétiquement (figure 1.14), qui confirme que ce modèle de composé est semiconducteur avec une bande interdite de 0,73 eV. Ce résultat, similaire à celui obtenu par Al Rahal Al Orabi *et al.* [49], confirme le caractère semi-conducteur des composés contenant des motifs à clusters Mo₉X₁₁ et possédant un VEC de 36.

Figure 1.14 : Densité d'états du composé Ag₄Mo₉Se₁₁ (VEC = 36). E_F est l'énergie du niveau de Fermi.

Nous avons également effectué des calculs périodiques sur une partie des composés rapportés expérimentalement et sur des composés modèles (VEC = 36) (voir détails des calculs en fin de chapitre). Nos résultats, reportés dans le tableau 1.3, confirment que les composés avec un VEC de 36 sont tous semi-conducteurs. Des résultats très similaires avaient été observés par le passé pour les structures électroniques de Ag₂Tl₂Mo₉Se₁₁ et Ag₃CsMo₉Se₁₁ par Gautier et collaborateurs [18, 21]. Les autres composés (VEC = 32, 34) sont attendus être conducteurs métalliques.

Composé	Groupe spatial	VEC	VEC idéal	Bande interdite (eV)
o-Mo ₉ Se ₁₁	Стст	32	36	0
$Ag_4Mo_9Se_{11} (m)^a$	Стст	36	36	0,80
h-Mo ₉ Se ₁₁	P6₃/m	32	36	0
Na ₃ CsMo ₉ S ₁₁ (m) ^b	P6₃/m	36	36	0,97
Ag₃RbMo₅Se₁₁ (m) ^c	P6₃/m	36	36	0,92
$Ag_3CsMo_9Se_{11}$ (m) ^d	P6₃/m	36	36	0,95
K ₂ Mo ₉ S ₁₁	R3c	34	36	0
$Rb_2Mo_9S_{11}$	R3c	34	36	0
$TI_2Mo_9S_{11}$	R3c	34	36	0
Cu ₂ K ₂ Mo ₉ S ₁₁ (m) ^e	P3c1	36	36	0,41
Ag ₂ Tl ₂ Mo ₉ Se ₁₁ (m) ^f	P3c1	36	36	0,71

Tableau 1.3 : Propriétés électroniques calculées pour les composés à motifs Mo₉X₁₁.

Modèles crées à partir de : ${}^{a}Ag_{3,60}Mo_{9}Se_{11}$ (*Cmcm*) ; ${}^{b}Na_{2,54}Cs_{1.14}Mo_{9}S_{11}$ (*P*6₃/*m*) ; ${}^{c}Ag_{2,61}RbMo_{9}Se_{11}$ (*P*6₃/*m*) ; ${}^{a}Ag_{2,57}CsMo_{9}Se_{11}$ (*P*6₃/*m*) ; ${}^{e}Cu_{2}K_{1,80}Mo_{9}S_{11}$ (*R*3*c* H) ; ${}^{f}Ag_{2,25}TI_{1,75}Mo_{9}Se_{11}$ (*R*3*c* H).

2.2. Composés de formule générale A_xB_yMo₁₂X₁₄

2.2.1. Description structurale

Les composés de formule générale $A_x B_Y Mo_{12} X_{14}$ contiennent des motifs à clusters $Mo_{12}X_{14}$ qui peuvent être vus comme la condensation de trois motifs à clusters octaédriques Mo_6X_8 selon une face triangulaire, ou bien comme l'empilement de quatre faces Mo_3X_3 en configuration décalée. Les six ligands appartenant aux deux faces extérieures sont des ligands *i–a* partagés avec les motifs voisins, tandis que les six ligands des faces du milieu sont notés *i*. À ces faces Mo_3Se_3 , on ajoute un ligand *a–i* coiffant chacun des six Mo des deux faces extérieures, et deux autres ligands *i* venant coiffer directement chacune de ces deux faces extérieures (figure 1.15). Le motif $Mo_{12}X_{14}$ correspond à la contraction de la formule développée $Mo_{12}X_8^i X_{6/2}^{i-a} X_{6/2}^{a-i}$.

Figure 1.15 : Motif $Mo_{12}X_8^i X_{6/2}^{i-a} X_{6/2}^{a-i}$ rencontré dans les composés $A_x B_Y Mo_{12}X_{14}$.

Les composés de formule générale $A_yB_zMo_{12}X_{14}$, avec A = K, Rb, Cs ; B = Na, Cu, Zn, Hg ; y = 1–2,90 ; z = 0–2 ; X = S, Se, Te, existent dans deux types structuraux différents qui vont maintenant être décrits.

2.2.1.a. Type structural R3 de A₂B_yMo₁₂X₁₄

Le premier type structural auquel nous nous intéressons est celui adopté par le composé $Cs_2Cu_{1,3}Mo_{12}Se_{14}$ [28] et trois autres composés reportés dans le tableau 1.1, qui cristallisent dans le groupe d'espace trigonal $R\overline{3}$. Dans ce type structural, les ions alcalins occupent des positions de Wyckoff 6c (Z = 3) et forment des paires selon l'axe c (Cs-Cs = 5,72 Å dans $Cs_2Cu_{1,3}Mo_{12}Se_{14}$), qui s'intercalent entre deux motifs $Mo_{12}Se_{14}$ (figure 1.16). Chaque ion alcalin s'inscrit dans un polyèdre de Se à sept sommets (Cs-Se = 3,65-3,91 Å dans $Cs_2Cu_{1,3}Mo_{12}Se_{14}$) (figure 1.17, a). Dans $Cs_2Cu_{1,3}Mo_{12}Se_{14}$, des atomes de cuivre viennent s'ajouter dans des sites interstitiels 18f occupés à 22%, formant des triangles Cu_3 intercalés entre un cluster $Mo_{12}X_{14}$ et un Cs, avec Cu-Cu = 3,41 Å (figure 1.16). Cu s'inscrit dans une pyramide de Se à base carrée, avec Cu-Se = 2,08-3,64 Å (figure 1.17, b). Ces pyramides sont liées trois à trois, mettant en commun une arête du polyèdre (figure 1.17, c).

Figure 1.16 : Structure cristalline du composé Cs₂Cu_{1,3}Mo₁₂Se₁₄ (R3 H) [28].

Figure 1.17 : Environnement de Cs (a), environnement de Cu (b) et coordination des polyèdres Cu–Se (c) dans le composé $Cs_2Cu_{1,3}Mo_{12}Se_{14}$.

2.2.1.b. Type structural P31c de A₂B_yMo₁₂S₁₄

L'autre type structural $P\overline{3}1c$ contenant des motifs $Mo_{12}X_{14}$ est adopté par huit composés du tableau 1.1. Pour le décrire, nous nous intéressons au composé $Hg_{2.82}KMo_{12}S_{14}$ [32]. Les atomes de mercure occupent les deux sites distincts Hg1 et Hg2 (positions de Wyckoff 2b et 4e, Z = 2) situées le long de l'axe c et occupées partiellement à 94%. Un atome Hg1 est suivi de deux atomes Hg2, avec Hg1–Hg2 = 2,73 Å et Hg2–Hg2 = 2,70 Å. Cette distance courte indique la formation de liaisons covalentes, le rayon covalent de Hg étant de 1,49 Å (https://www.elementschimiques.fr/?fr/elements/z/80). Une chaîne infinie d'atomes Hg liés $[Hg_{\infty}]^0$ se propage donc le long de l'axe *c*, n'apportant formellement aucun électron supplémentaire au VEC du cluster. Les atomes K, quant à eux, occupent la position 2c, et sont intercalés entre deux motifs à clusters Mo₁₂S₁₄ selon l'axe *c*.

La structure de ce composé est représentée sur la figure 1.18. Hg1 est inscrit dans un octaèdre déformé de S, avec Hg1–S = 3,19 Å (figure 1.19, a). Quant à Hg2, il s'insère dans un octaèdre déformé de S avec Hg2–S = 3,24–3,55 Å. Son insertion est imparfaite ; il peut être vu comme voisin d'un autre octaèdre Hg2 en configuration décalée (figure 1.19, b), ou bien comme inscrit dans un polyèdre de S à 12 sommets, partagé entre deux Hg2 qui mettent en commun six sommets, avec Hg2–S = 3,24–4,09 Å (figure 1.19, c). L'empilement des polyèdres de Hg1 et Hg2 le long de *c* peut être vu comme un canal d'insertion, de forme quasi cylindrique (figure 1.20). Enfin, K est inscrit dans un octaèdre déformé et bicoiffé de S, avec K–S = 2,96–3,35 Å (figure 1.19, d).

Figure 1.18 : Structure cristalline du composé Hg_{2,82}KMo₁₂S₁₄ (P31c) [32].

Figure 1.19 : Environnements de Hg1 (a), de Hg2 inscrit dans un octaèdre déformé (b) ou un polyèdre combiné (c) et de K (d) dans le composé Hg_{2,82}KMo₁₂S₁₄.

Figure 1.20 : Projection des canaux d'insertion de Hg1 et Hg2 selon l'axe c dans le composé Hg_{2,82}KMo₁₂S₁₄.

2.2.2. Propriétés électroniques

Commençons par étudier la structure électronique d'un motif à clusters isolé $[Mo_{12}Se_{14}]^{4-}$ (VEC = 48) de symétrie D_{3d} . Les distances Mo–Mo et Mo–Se de ce modèle optimisé par DFT sont reportées dans le tableau 1.4 et comparées à celles mesurées expérimentalement dans le composé $Cs_2Cu_{1,3}Mo_{12}Se_{14}$ [28]. Les distances Mo–Se calculées sont proches de celles du composé expérimental (VEC = 47,3), avec des écarts faibles : entre 0 et 2%. Les distances Mo–Mo sont également similaires aux valeurs du composé expérimental, avec un écart entre 0 et 1%, à l'exception de la distance Mo1–Mo1, plus courte

de 3%. Comme observé précédemment pour le motif isolé $[Mo_9Se_{11}]^{4-}$, cette différence peut être expliquée par le fait que les ligands *a–i* liés à Mo1 n'ont pas été considérés dans notre modèle « Mo₁₂Se₁₄ isolé ».

Tableau 1.4 : Comparaison des distances interatomiques mesurées expérimentalement dans le composé $Cs_2Cu_{1,3}Mo_{12}Se_{14}$ (VEC = 47,3) [28] avec celles calculées pour le motif isolé $[Mo_{12}Se_{14}]^{4-}$ (VEC = 48). La numérotation des atomes est indiquée à droite.

Distance	Exp. (Å)	Calc. (Å)	🔵 Se1
Mo1–Mo1	2,62	2,54	Mol
Mo2–Mo2	2,69	2,72	Se2
Mo2–Mo2'	2,69	2,71	
Mo1–Mo2	2,72–2,75	2,72	Mo2 Se3
Mo1–Se1	2,56	2,58	
Mo1–Se2	2,60–2,65	2,61	Se3'
Mo1–Se3	2,69	2,64	MIOZ
Mo2–Se2	2,62	2,67	
Mo2–Se3	2,61	2,62	
Mo2–Se3'	2,67	2,73	<u> </u>

Le diagramme d'OM du motif isolé $[Mo_{12}Se_{14}]^{4-}$ est représenté sur la figure 1.21. On observe deux écarts HO–BV significatifs de 0,66 eV et de 1,03 eV pour des VEC respectifs de 48 et 50. De tels écarts énergétiques devraient conduire à des composés A_yB_zMo₁₂X₁₄ semiconducteurs, avec une bande interdite probablement plus importante pour un VEC de 50, comme montré précédemment [4, 48]. La charge « idéale » des contre-cations est donc $[A_2B_y]^{4+}$ ou $[A_2B_y]^{6+}$.

Figure 1.21 : Diagramme d'orbitales moléculaires du motif à clusters isolé $[Mo_{12}Se_{14}]^{4-}$ (D_{3d} , VEC = 48).

Nous avons ensuite effectué des calculs périodiques sur l'ensemble des composés rapportés expérimentalement (voir détails des calculs en fin de chapitre). Nos résultats, reportés dans le tableau 1.5, confirment que les composés avec un VEC de 48 ou 50 sont semiconducteurs. Les autres (VEC = 46) sont attendus conducteurs métalliques.

Tableau 1.5 : Propriétés électroniques calculées pour les composés de l'état solide à motifsMo12X14.

Composé	Groupe spatial	VEC	VEC idéal	Bande interdite (eV)
$Rb_2Mo_{12}Se_{14}$	R3	46	48/50	0
$Cs_2Mo_{12}Se_{14}$	R3	46	48/50	0
$Cs_2Mo_{12}Te_{14}$	R3	46	48/50	0
$Cs_2Cu_2Mo_{12}Se_{14} (m)^a$	P1	48	48/50	0,07
Cs ₂ Zn ₂ Mo ₁₂ Se ₁₄ (m) ^a	<i>P</i> 1	50	48/50	1,00

^aModèle créé à partir de Cs₂Cu_{1.3}Mo₁₂Se₁₄.

Les courbes de DOS des modèles $Cs_2Cu_2Mo_{12}Se_{14}$ (VEC = 48) et $Cs_2Zn_2Mo_{12}Se_{14}$ (VEC = 50) – dont l'existence est brièvement rapportée dans [48] – sont tracées sur la figure 1.22. On y voit que $Cs_2Cu_2Mo_{12}Se_{14}$ est un composé semi-conducteur avec une bande interdite faible (0,07 eV) et qu'une seconde bande interdite de 1,02 eV se trouve un peu au-delà du niveau de Fermi, qui correspondrait à un VEC de 50. Le composé $Cs_2Zn_2Mo_{12}Se_{14}$ (VEC = 50) est prédit semi-conducteur avec une bande interdite de 1,00 eV.

Figure 1.22 : Densités d'états des composés $Cs_2Cu_2Mo_{12}Se_{14}$ (VEC = 48) (a) et $Cs_2Zn_2Mo_{12}Se_{14}$ (VEC = 50) (b). E_F est l'énergie du niveau de Fermi.

2.3. Composés de formule générale A₃Mo₁₅X₁₇

2.3.1. Description structurale

Trois composés de formule générale A₃Mo₁₅X₁₇, avec A = Rb, Cs et X = Se, Te, ont été rapportés à ce jour, et sont reportés dans le tableau 1.1. Ils cristallisent tous dans le groupe d'espace hexagonal $P6_3/m$. Ils contiennent des motifs à clusters Mo₁₅X₁₇ pouvant être vus comme la condensation de quatre motifs à cluster octaédriques Mo₆X₈ selon une face triangulaire, ou bien comme l'empilement de cinq faces Mo₃X₃ en configuration décalée. Les six ligands appartenant aux deux faces extérieures sont des ligands *i*–*a* partagés avec les motifs voisins, tandis que les neuf ligands des faces du milieu sont notés *i*. À ces faces Mo₃X₃, on ajoute un ligand *a*–*i* coiffant chacun des six Mo des deux faces extérieures tandis que deux autres ligands *i* viennent coiffer directement chacune de ces deux faces extérieures (figure 1.23). Le motif Mo₁₅X₁₇ correspond à la contraction de la formule développée Mo₁₅Xⁱ₁₁ X^{i-a}_{6/2}.

Figure 1.23 : Motif $Mo_{15}X_{11}^{i}X_{6/2}^{i-a}X_{6/2}^{a-i}$ rencontré dans les composés A₃Mo₁₅X₁₇.

Dans $Cs_3Mo_{15}Se_{17}$ par exemple, les atomes alcalins Cs occupent deux positions différentes (Cs1 et Cs2). Cs1 est localisé le long de l'axe *c*, sur la position spéciale 4e (*Z* = 2). Cs2 est positionné sur la position générale 2*c*, située entre deux motifs à clusters Mo₁₅Se₁₇. La structure du composé est représentée sur la figure 1.24. Les atomes Cs1 s'inscrivent dans des

polyèdres de Se à neuf sommets, avec Cs–Se = 3,59–3,83 Å. Ces polyèdres s'empilent deux à deux en mettant en commun une face Se3, le long de l'axe *c* (figure 1.25, a). Cs2 s'inscrit, quant à lui, dans un polyèdre de Se à onze sommets, avec Cs–Se = 3,59–3,92 Å ; il s'agit du même polyèdre que Cs1 auquel s'ajoutent deux Se qui viennent coiffer les faces triangulaires selon *c* (figure 1.25, b). Cs1 forme un polyèdre combiné de Mo et Se, avec Cs–Mo = 4,20–4,99 Å. L'empilement de ces polyèdres de Cs1 forme des canaux d'insertion sous forme de prismes triangulaires, empilés deux à deux en configuration décalée (figure 1.26).

Figure 1.24: Structure cristalline du composé Cs₃Mo₁₅Se₁₇ (P6₃/m) [34].

Figure 1.25 : Environnements de Cs1 (a) et de Cs2 (b) dans le composé Cs₃Mo₁₅Se₁₇.

Figure 1.26 : Projection des canaux d'insertion de Cs1 dans Cs₃Mo₁₅Se₁₇ selon l'axe c.

2.3.2. Propriétés électroniques

Un modèle de motif à clusters isolé $[Mo_{15}Se_{17}]^{4-}$ (VEC = 60) de symétrie D_{3h} a été optimisé par la DFT. Les distances Mo–Mo et Mo–Se optimisées sont comparées à celles rencontrées dans le composé expérimental Cs₃Mo₁₅Se₁₇ (VEC = 59) dans le tableau 1.6. Les distances Mo–Se sont proches de celles du composé expérimental, avec des écarts allant de 0 à 4%. Les distances Mo–Mo sont également très similaires aux valeurs du composé expérimental, avec un écart entre 0 et 1%, à l'exception de la distance Mo1–Mo1, plus courte de 3%. Cette erreur peut être expliquée par le fait que les ligands *a–i* liés à Mo1 n'ont pas été pris en compte dans notre modèle « Mo₁₅Se₁₇ isolé ». .

Tableau 1.6 : Comparaison entre les distances interatomiques du composé $Cs_3Mo_{15}Se_{17}$ (VEC = 59) [34] et celles du modèle de motif à clusters isolé $[Mo_{15}Se_{17}]^{4-}$ (VEC = 60) optimisé par DFT. La numérotation des atomes est indiquée à droite.

Distance	Exp. (Å)	Calc. (Å)	Se1
Mo1–Mo1	2,66	2,54	Mo1
Mo2–Mo2	2,67	2,71	Se2 C
Mo3–Mo3	2,67	2,67	
Mo1–Mo2	2,74–2,77	2,72	Mo2 Se3
Mo2–Mo3	2,71–2,72	2,72	Maa
Mo1–Se1	2,53	2,58	Se4
Mo1–Se2	2,59–2,60	2,60	
Mo1–Se3	2,68	2,64	
Mo2–Se2	2,56	2,67	
Mo2–Se3	2,58–2,60	2,62	
Mo2–Se4	2,68	2,67	
Mo3–Se3	2,69	2,77	8
Mo3–Se4	2,60–2,62	2,63	_

Le diagramme d'OM du motif à clusters isolé optimisé $[Mo_{15}Se_{17}]^{4-}$ est représenté sur la figure 1.27. Trois écarts HO–BV sont observés pour des VEC de 60, 62 et 64, dont deux écarts significatifs pour des VEC « idéaux » de 62 (1,15 eV) et 64 (0,41 eV), c'est-à-dire pour un motif $[Mo_{15}Se_{17}]^{6-/8-}$ [48]. De tels écarts énergétiques devraient conduire à des composés A₃Mo₁₅X₁₇ semi-conducteurs. La charge « idéale » des contre-cations est de $[A_3]^{6+}$ ou $[A_3]^{8+}$; le premier cas nécessite donc des cations divalents, et le second plusieurs types de cations ou bien une valence mixte.

Figure 1.27 : Diagramme d'orbitales moléculaires du motif à clusters isolé $[Mo_{15}Se_{17}]^{4-}$ (D_{3h} , VEC = 60).

Nous avons ensuite effectué des calculs périodiques sur $Cs_3Mo_{15}Se_{17}$ (VEC = 59) ainsi que sur le modèle $Ba_3Mo_{15}Se_{17}$ hypothétique (VEC = 62) (voir détails des calculs en fin de chapitre), dans lequel le baryum divalent remplace le césium univalent. Les courbes de DOS de ces composés sont tracées sur la figure 1.28. Ces courbes montrent que $Cs_3Mo_{15}Se_{17}$ est métallique, mais une bande interdite de 0,58 eV est observée un peu au-delà du niveau de Fermi. En revanche, comme attendu, une bande interdite de 0,54 eV est calculée dans le cas de $Ba_3Mo_{15}Se_{17}$.

Figure 1.28 : Densités d'états des composés Cs₃Mo₁₅Se₁₇ (VEC = 59) (a) et de Ba₃Mo₁₅Se₁₇ (VEC = 62) (b). E_F est l'énergie du niveau de Fermi.

2.4. Composés de formule générale A₄Mo₁₈X₂₀

2.4.1. Description structurale

Les deux composés de formule générale A₄Mo₁₈X₂₀, avec A = Rb, Cs et X = Se, Te rapportés dans le tableau 1.1 cristallisent dans le groupe d'espace trigonal $R\overline{3}$. Ils contiennent des motifs à clusters Mo₁₈X₂₀ qui peuvent être vus comme résultant de la condensation de cinq motifs Mo₆X₈ selon une face triangulaire, ou bien comme l'empilement de six faces Mo₃X₃ en configuration décalée. Les six ligands appartenant aux deux faces extérieures sont des ligands *i–a* partagés avec les motifs voisins, tandis que les douze ligands des faces du milieu sont notés *i*. À ces faces Mo₃Se₃, on ajoute un ligand *a–i* coiffant chacun des six Mo des deux faces extérieures et deux autres ligands *i* venant coiffer directement chacune de ces deux faces extérieures (figure 1.29). Le motif Mo₁₈X₂₀ correspond à la contraction de la formule développée Mo₁₈Xⁱ₁₄ X^{i-a}_{6/2} X^{a-i}_{6/2}.

Figure 1.29 : Motif $Mo_{18}X_{14}^{i}X_{6/2}^{i-a}X_{6/2}^{a-i}$ rencontré dans les composés $A_4Mo_{18}X_{20}$.

La structure du composé $Cs_4Mo_{18}Te_{20}$ est représentée sur la figure 1.30. Deux motifs à clusters $Mo_{18}Te_{20}$ sont séparés par quatre atomes Cs alignés selon l'axe *c*. Les ions alcalins

occupent deux positions de Wyckoff distinctes 6c (Z = 3), Cs1 et Cs2, formant des chaînettes Cs₄. Cs1, aux extrémités, est entouré d'un cluster et d'un atome Cs2 (Cs1–Cs2 = 4,81 Å), tandis que Cs2 est entouré d'un côté par un atome Cs1 et de l'autre par un autre atome Cs2 (Cs2–Cs2 = 6,00 Å). Cs1 s'inscrit dans un polyèdre de Te à 10 sommets, avec Cs1–Te = 3,76–4,01 Å. Cs2 s'inscrit dans un polyèdre à neuf sommets (Cs2–Te = 3,76–4,01 Å). En fait, le polyèdre dans lequel s'inscrit Cs2 est le même que celui dans lequel s'inscrit Cs1, auquel s'ajoute un atome Te qui vient coiffer la face triangulaire du côté du cluster voisin selon l'axe *c*. Les polyèdres Cs1 et Cs2, représentés sur la figure 1.31, s'empilent deux à deux ; deux empilements voisins selon l'axe *c* sont en configuration décalée l'un par rapport à l'autre.

Figure 1.30 : Structure cristalline du composé Cs₄Mo₁₈Te₂₀ (R3 H) [19].

Figure 1.31 : Environnements de Cs1 (a) et de Cs2 (b) dans le composé Cs₄Mo₁₈Te₂₀.

2.4.2. Propriétés électroniques

Un modèle de motifs à clusters isolé $[Mo_{18}Te_{20}]^{4-}$ (VEC = 72) de symétrie D_{3d} , a tout d'abord été optimisé par la DFT. Commençons par comparer les distances Mo–Mo et Mo–Te de ce modèle avec celles rencontrées dans le composé expérimental Cs₄Mo₁₈Te₂₀ (VEC = 72). Ces distances sont reportées dans le tableau 1.7. Les distances Mo–Te sont proches de celles du composé expérimental, avec des écarts qui varient entre 0 et 3%. Les distances Mo–Mo sont également similaires aux valeurs du composé expérimental, avec un écart entre 0 et 2%, à l'exception de la distance Mo1–Mo1, plus courte de 3%. Comme dans le cas des composés présentés précédemment, cette différence peut être expliquée par le fait que les ligands *a–i* liés à Mo1 ne sont pas pris en compte dans notre modèle Mo₁₈Se₂₀ isolé.

Tableau 1.7 : Comparaison des distances interatomiques mesurées expérimentalement dans le composé $C_{s_4}Mo_{18}Te_{20}$ (VEC = 72) [19] avec celles calculées pour le motif à clusters isolé $[Mo_{18}Te_{20}]^{4-}$ (VEC = 72). La numérotation des atomes est indiquée à droite.

Distance	Exp. (Å)	Calc. (Å)	👷 Те1
Mo1–Mo1	2,65	2,58	
Mo2–Mo2	2,68	2,68	Te2 Contraction Mo1
Mo3–Mo3	2,65	2,62	
Mo3–Mo3'	2,79	2,74	Mo2
Mo1–Mo2	2,76–2,79	2,73	
Mo2–Mo3	2,73–2,75	2,73	Te4
Mo1–Te1	2,71	2,80	IVI03
Mo1–Te2	2,80–2,81	2,81	Mo3'
Mo1–Te3	2,82	2,84	le4
Mo2–Te2	2,76	2,86	
Mo2–Te3	2,77–2,79	2,83	
Mo2–Te4	2,86	2,86	
Mo3–Te3	2,85	2,90	
Mo3–Te4	2,80–2,82	2,84	
Mo3–Te4'	2,86	2,87	8

Le diagramme d'OM du motif isolé $[Mo_{18}Te_{20}]^{4-}$ est représenté sur la figure 1.32. On observe trois écarts HO–BV importants pour des VEC respectifs de 72, 74 et 76, correspondant à un cluster $[Mo_{18}Te_{20}]^{4-/6-/8-}$. Si les interactions motif–motif dans les composés solides sont relativement faibles, de tels écarts énergétiques devraient conduire à des composés A₄Mo₉X₁₁ semi-conducteurs. La charge « idéale » des contre-cations serait donc $[A_4]^{4+}$, $[A_4]^{6+}$ ou $[A_4]^{8+}$, nécessitant des cations univalents (4+), divalents (8+) ou bien un mélange de cations univalents et divalents (6+), en supposant qu'un composé possédant deux types de cations puisse exister et conserver ce type structural.

Figure 1.32 : Diagramme d'orbitales moléculaires du motif à clusters isolé $[Mo_{18}Te_{20}]^{4-}$ (D_{3d} , VEC = 72).

Nous avons ensuite effectué des calculs périodiques sur Cs₄Mo₁₈Te₂₀ (VEC = 72) et sur le composé hypothétique Ba₄Mo₁₈Te₂₀ (VEC = 76) (voir détails des calculs en fin de chapitre). Les courbes de DOS de ces deux composés sont tracées sur la figure 1.33. Ces courbes montrent que Cs₄Mo₁₈Te₂₀ est métallique malgré son VEC de 72, mais une première bande interdite de 0,11 eV se trouve près du niveau de Fermi (E_F), correspondant probablement au VEC de 74. Une seconde bande interdite plus importante de 0,57 eV se trouve un peu au-delà. Ces deux bandes interdites doivent correspondre aux deux écarts HO–BV prévus pour les VEC respectivement de 74 et 76, à partir des calculs moléculaires (figure 1.32). Comme attendu, une bande interdite (0,48 eV) est observée pour dans Ba₄Mo₁₈Te₂₀ (VEC = 76).

Figure 1.33 : Densités d'états du composé $Cs_4Mo_{18}Te_{20}$ (VEC = 72) (a) et du modèle $Ba_4Mo_{18}Te_{20}$ (VEC = 76) (b). E_F est l'énergie du niveau de Fermi.

2.5. Étude du composé Cs₅Mo₂₁Se₂₃

2.5.1. Description structurale

Le composé Cs₅Mo₂₁Se₂₃ est le seul exemple connu dont la structure est basée sur des motifs à clusters Mo₂₁X₂₃. Il cristallise dans le groupe d'espace hexagonal *P*6₃/*m* [36]. Les motifs Mo₂₁Se₂₃ rencontrés dans ce composé peuvent être vus comme résultant de la condensation de six motifs Mo₆Se₈ selon une face triangulaire, ou bien comme l'empilement de sept faces Mo₃Se₃ en configuration décalée. Les six ligands appartenant aux deux faces extérieures sont des ligands *i*–*a* partagés avec les motifs voisins, tandis que les 15 ligands des faces du milieu sont notés *i*. À ces faces Mo₃Se₃, on ajoute un ligand *a*–*i* coiffant chacun des six Mo des deux faces extérieures et deux autres ligands *i* venant coiffer directement chacune de ces deux faces extérieures (figure 1.34). Le motif Mo₂₁Se₂₃ correspond à la contraction de la formule développée Mo₂₁Seⁱ₁₇ Se^{i-a}_{6/2} Se^{a-i}_{6/2}.

Figure 1.34 : Motif $Mo_{21}Se_{17}^{i} Se_{6/2}^{i-a} Se_{6/2}^{a-i}$ rencontré dans le composé $Cs_5Mo_{21}Se_{23}$.

Dans Cs₅Mo₂₁Se₂₃, les atomes Cs occupent trois positions distinctes. Les atomes du site Cs1, situés sur des positions de Wyckoff 4f (Z = 2), s'intercalent par paires entre deux motifs à clusters Mo₂₁Se₂₃ selon l'axe c, avec Cs1–Cs1 = 4,92 Å. Les atomes des sites Cs2 et Cs3, sur les positions respectives 2a et 4e, sont tous deux situés sur l'axe c. Cs2 et Cs3 forment des chaînettes linéaires Cs3 (Cs2–Cs3–Cs2), avec Cs2–Cs3 = 4,65 Å et Cs2–Cs2 = 5,67 Å. Ces chaînettes s'alignent le long de c pour former des canaux infinis d'insertion cationiques. La structure du composé est représentée sur la figure 1.35.

Cs1 s'insère dans un polyèdre de Se à 10 sommets, avec Cs1–Se = 3,64–3,90 Å. Ces polyèdres sont empilés par deux selon *c* (figure 1.36, a). Cs2 et Cs3 s'insèrent dans un polyèdre de Se à neuf sommets, avec Cs2–Se = 3,65–3,77 Å et Cs3–Se = 3,61–3,88 Å. Ces polyèdres s'empilent par groupes de trois (figure 1.36, b). Enfin, Cs2 et Cs3 forment un polyèdre combiné de Mo et Se avec Cs2–Mo = 4,22–5,04 Å et Cs3–Mo = 4,21–4,97 Å. L'empilement de ces polyèdres combinés forme des canaux d'insertion sous forme de prismes triangulaires empilés trois à trois, ces blocs de trois étant eux-mêmes empilés en configuration décalée (figure 1.36, c).

Figure 1.35 : Structure cristalline du composé $Cs_5Mo_{21}Se_{23}$ ($P6_3/m$) [36].

Figure 1.36 : Environnements de Cs1 (a), Cs2 et Cs3 (b) et projection des canaux d'insertion de Cs2 et Cs3 selon l'axe c (c) dans le composé Cs₅Mo₂₁Se₂₃.

2.5.2. Propriétés électroniques

Un modèle de motif à clusters isolé $[Mo_{21}Se_{23}]^{4-}$ (VEC = 84) de symétrie D_{3h} a été optimisé par la DFT. Les distances Mo–Mo et Mo–Se calculées sont comparées avec celles du composé expérimental Cs₅Mo₂₁Se₂₃ (VEC = 85) dans le tableau 1.8. Les distances Mo–Se sont proches de celles du composé expérimental, avec des écarts allant de 0 à 3%. Les distances Mo–Mo sont également similaires aux valeurs mesurées dans le composé expérimental, avec un écart entre 0 et 2%, à l'exception de la distance Mo1–Mo1, plus courte de 3%. Cette différence, comme précédemment, peut être expliquée par le fait que les ligands *a–i* liés à Mo1 sont n'ont pas été prix en compté dans notre modèle « Mo₂₁Se₂₃ isolé ».

Tableau 1.8: Comparaison des distances interatomiques mesurées expérimentalement dans le composé $Cs_5Mo_{21}Se_{23}$ (VEC = 85) [36] avec celles calculées pour le motif à clusters isolé $[Mo_{21}Se_{23}]^{4-}$ (VEC = 84).

Distance	Exp. (Å)	Calc. (Å)	Se1
Mo1-Mo1	2,65	2,56	
Mo2–Mo2	2,67	2,72	Se2 Contractor Mol
Mo3–Mo3	2,67	2,70	
Mo4-Mo4	2,66	2,69	Mo2
Mo1–Mo2	2,74-2,77	2,71	
Mo2–Mo3	2,70-2,72	2,68	Se4
Mo3-Mo4	2,72-2,73	2,72	WI03
Mo1–Se1	2,53	2,59	Mo4
Mo1–Se2	2,60-2,61	2,61	
Mo1–Se3	2,69	2,65	
Mo2–Se2	2,57	2,65	
Mo2–Se3	2,59-2,60	2,62	
Mo2–Se4	2,69	2,67	
Mo3–Se3	2,69	2,70	
Mo3–Se4	2,60-2,63	2,64	
Mo3-Se5	2,70	2,69	8
Mo4-Se4	2,69	2,66	
Mo4-Se5	2,61-2,64	2,64	_

Le diagramme d'OM du motif isolé $[Mo_{21}Se_{23}]^{4-}$ est représenté sur la figure 1.37. Trois écarts HO–BV significatifs sont observés pour des VEC respectifs de 86, 88 et 90. Les calculs précédents ont montré que des écarts aussi faibles que 0,36 eV (VEC = 86 et 90) dans un modèle isolé ne conduisaient pas nécessairement à l'apparition d'une bande interdite. Par contre, un écart plus important de 0,80 eV est observé pour un VEC de 88, correspondant à un motif $[Mo_{21}Se_{23}]^{8-}$. Un tel écart énergétique HO–BV devrait conduire à des composés A₅Mo₂₁X₂₃ semi-conducteurs. La charge « idéale » des contre-cations serait alors $[A_5]^{8+}$.

Figure 1.37 : Diagramme d'orbitales moléculaires du motif à clusters isolé $[Mo_{21}Se_{23}]^{4-}$ (D_{3h} , VEC = 84).

Nous avons ensuite effectué des calculs périodiques sur le composé Cs₅Mo₂₁Se₂₃ (voir détails des calculs en fin de chapitre). Nos résultats confirment que le composé est métallique, comme prévu par nos calculs moléculaires. La courbe de DOS de ce composé est tracée sur la figure 1.38. Une bande interdite de 0,52 eV est observée un peu au-delà du niveau de Fermi. Ceci montre que si une réduction par dopage des motifs est possible (VEC = 88), le composé peut devenir semi-conducteur.

Figure 1.38 : Densité d'états du composé Cs₅Mo₂₁Se₂₃ (VEC = 85). E_F est l'énergie du niveau de Fermi.

2.6. Étude du composé Cs₆Mo₂₄Te₂₆

2.6.1. Description structurale

Le composé Cs₆Mo₂₄Te₂₆, qui cristallise dans le groupe d'espace trigonal $R\overline{3}$ [19], est le seul exemple connu de composé dont la structure est basée sur des motifs à clusters Mo₂₄X₂₆. Ces motifs peuvent être vus comme la condensation de sept motifs Mo₆Te₈ selon une face triangulaire, ou bien comme l'empilement de huit faces Mo₃Te₃ en configuration décalée. Les six ligands appartenant aux deux faces extérieures sont des ligands *i–a* partagés avec les motifs voisins, tandis que les 18 ligands des faces du milieu sont notés *i*. À ces faces Mo₃Te₃, on ajoute un ligand *a–i* coiffant chacun des six Mo des deux faces extérieures et deux autres ligands *i* venant coiffer directement chacune de ces deux faces extérieures (figure 1.39). Le motif Mo₂₄Te₂₆ correspond à la contraction de la formule développée Mo₂₄Teⁱ₂₀ Te^{i-a}_{6/2} Te^{a-i}_{6/2}.

Figure 1.39 : Motif $Mo_{24}Te_{20}^{i} Te_{6/2}^{i-a} Te_{6/2}^{a-i}$ rencontré dans le composé $Cs_6Mo_{24}Te_{26}$.

Dans Cs₆Mo₂₄Te₂₆, les atomes Cs occupent trois positions de Wyckoff 12c distinctes, Cs1, Cs2 et Cs3 (*Z* = 6). Ils forment des chaînettes Cs₆ (Cs1–Cs2-Cs3–Cs3–Cs2–Cs1) qui s'intercalent entre deux motifs à clusters Mo₂₄Te₂₆ selon l'axe *c*. Cs1 occupe la position entre le motif et Cs2, avec Cs1–Cs2 = 4,71 Å. Cs2 est situé entre Cs1 et Cs3, avec Cs2–Cs3 = 4,68 Å. Enfin, Cs3 est situé entre Cs2 et un autre atome Cs3, avec Cs3–Cs3 = 6,05 Å. La structure du composé est représentée sur la figure 1.40, a. Cs1 s'insère dans un polyèdre de Te à 10 sommets avec Cs1– Te = 3,80–3,97 Å. Cs2 et Cs3, quant à eux, s'insèrent dans un polyèdre de Te à neuf sommets, de même forme, avec Cs2–Te = 3,81–3,92 Å et Cs3–Te = 3,76–3,98 Å. Ces trois polyèdres sont empilés à la suite et sont en configuration décalée par rapport au groupe de trois polyèdres voisins selon l'axe *c* (figure 1.40, b).

Figure 1.40 : Structure cristalline du composé $Cs_6Mo_{24}Te_{26}$ ($R\overline{3}$ H) [19] (a) et environnements des différents sites de Cs et empilement des polyèdres dans le composé $Cs_6Mo_{24}Te_{26}$.

2.6.2. Propriétés électroniques

À nouveau, afin de mieux comprendre la structure électronique de Cs₆Mo₂₄Te₂₆, nous avons commencé par étudier la structure électronique d'un modèle de motif à clusters isolé $[Mo_{24}Te_{26}]^{4-}$ (VEC = 96) de symétrie D_{3d} . Les distances Mo–Mo et Mo–Te calculées sont comparées à celles du composé expérimental Cs₆Mo₂₄Te₂₆ (VEC = 98) dans le tableau 1.9. Les distances Mo–Te sont proches de celles du composé expérimental, avec des écarts qui varient entre 0 et 3%. Les distances Mo–Mo sont également similaires aux valeurs du composé expérimental, avec un écart entre 0 et 2%, à l'exception toutefois de la distance Mo1–Mo1, plus courte de 3%. Ceci est dû au fait que les ligands *a–i* liés à Mo1 sont absents de notre modèle Mo₂₄Te₂₆ isolé.

Tableau 1.9: Comparaison des distances interatomiques mesurées expérimentalement dans le composé $Cs_6Mo_{24}Te_{26}$ (VEC = 96) [19] avec celles calculées pour le motif à clusters isolé $[Mo_{24}Te_{26}]^{4-}$ (VEC = 98). La numérotation des atomes est indiquée à droite.

Distance	Exp. (Å)	Calc. (Å)	O Te1
Mo1–Mo1	2,65	2,57	
Mo2–Mo2	2,69	2,68	Te2 Mol
Mo3–Mo3	2,66	2,63	
Mo4-Mo4	2,66	2,63	
Mo4-Mo4'	2,74	2,74	Te3
Mo1–Mo2	2,75-2,78	2,73	
Mo2–Mo3	2,74-2,77	2,73	Te4 Mo3
Mo3-Mo4	2,78-2,79	2,74	
Mo1–Te1	2,71	2,80	Mo4 Te5
Mo1–Te2	2,80-2,82	2,81	
Mo1–Te3	2,83	2,84	Te5' Mo4'
Mo2–Te2	2,75	2,86	
Mo2–Te3	2,77-2,79	2,83	
Mo2–Te4	2,86	2,87	
Mo3–Te3	2,85	2,90	
Mo3–Te4	2,81-2,82	2,84	
Mo3-Te5	2,86	2,89	
Mo4-Te4	2,86	2,86	
Mo4-Te5	2,81	2,83	-
Mo4-Te5'	2,86	2,88	

Le diagramme d'OM du motif isolé $[Mo_{24}Te_{26}]^{4-}$ est représenté sur la figure 1.41. Il est caractérisé par trois écarts HO–BV non négligeables pour des VEC de 96, 100 et 102. Deux sont significatifs : le premier vaut 0,49 eV pour un VEC de 100 et le second vaut 0,39 eV pour un VEC de 102, conduisant à un motif $[Mo_{24}Te_{26}]^{6-/8-}$. En supposant des interactions motif-motif faibles dans les composés solides, de tels écarts énergétiques devraient conduire à des composés A₆Mo₂₄X₂₆ semi-conducteurs, soit avec des charges « idéales » cationiques $[A_6]^{8+}$ ou $[A_6]^{10+}$. Ceci nécessiterait d'avoir un mélange de cations univalents et divalents, en admettant qu'un composé possédant deux types de cations puisse exister et conserver ce type structural.

Figure 1.41 : Diagramme d'orbitales moléculaires du motif à clusters isolé $[Mo_{24}Te_{26}]^{4-}$ (D_{3d} , VEC = 96).

Nous avons ensuite effectué des calculs périodiques sur le composé Cs₆Mo₂₄Te₂₆ (VEC = 98) (voir détails des calculs en fin de chapitre). Nos résultats confirment que le composé devrait être conducteur métallique, comme prévu par nos calculs sur le cluster isolé. La courbe de DOS, tracée sur la figure 1.42, est quelque peu complexe. Un creux est observé juste audessous du niveau de Fermi. Un peu au-delà du niveau de Fermi, la courbe montre une petite bande interdite de 0,19 eV puis une seconde plus importante de 0,35 eV. Ces deux bandes interdites doivent correspondre aux deux VEC « idéaux » prédits par nos calculs moléculaires. Là encore, il devrait être possible d'observer des composés semi-conducteurs A_xMo₂₄X₂₆.

Figure 1.42 : Densité d'états du composé $Cs_6Mo_{24}Te_{26}$ (VEC = 98). E_F est l'énergie du niveau de Fermi.

2.7. Étude du composé Rb₁₀Mo₃₆S₃₈

2.7.1. Description structurale

Selon l'état de l'art, le motif à clusters Mo₃₆S₃₈ est rencontré dans l'unique composé Rb₁₀Mo₃₆S₃₈ [16], qui cristallise dans le groupe d'espace trigonal *R* $\overline{3}$. Il s'agit du plus grand motif isolé trouvé dans ces phases condensées. Il peut être vu comme le résultat de la condensation de 11 motifs Mo₆S₈ selon une face triangulaire, ou bien comme l'empilement de 12 faces Mo₃S₃ en configuration décalée. Les six ligands appartenant aux deux faces extérieures sont des ligands *i–a* partagés avec les motifs voisins, tandis que les 32 ligands des faces du milieu sont notés *i*. À ces faces Mo₃S₃, on ajoute un ligand *a–i* coiffant chacun des six Mo des deux faces extérieures, et deux autres ligands *i* venant coiffer directement chacune de ces deux faces extérieures (figure 1.43). Le motif Mo₃₆S₃₈ correspond à la contraction de la formule développée Mo₃₆Sⁱ₃₂ S^{i-a}_{6/2} S^{a-i}_{6/2}.

Figure 1.43 : Motif $Mo_{36}S_{32}^{i}S_{6/2}^{i-a}$ rencontré dans le composé $Rb_{10}Mo_{36}S_{38}$.

Dans Rb₁₀Mo₃₆S₃₈, les atomes Rb occupent les positions de Wyckoff 12c selon cinq sites distincts, avec *Z* = 6. Ils s'intercalent 10 par 10 entre deux motifs Mo₃₆S₃₈ selon l'axe *c*, avec les distances suivantes : Rb1–Rb2 = 4,53 Å, Rb1–Rb3 = 4,51 Å, Rb2–Rb5 = 4,81 Å, Rb3–Rb4 = 4,57 Å et Rb4–Rb4 = 5,43 Å. Le détail de ces positions ainsi que la structure générale du composé sont représentés sur la figure 1.44, a. Les atomes Rb appartenant à ces différents sites s'insèrent dans des polyèdres de S à neuf sommets (figure 1.44, b), à l'exception de Rb5 qui s'insère dans un polyèdre de S à 10 sommets (figure 1.44, c), qui correspond au même polyèdre coiffé d'un atome de soufre supplémentaire. Les distances au sein des polyèdres sont les suivantes : Rb1–S = 3,46–3,58 Å ; Rb2–S = 3,45–3,64 Å ; Rb3–S = 3,43–3,64 Å ; Rb4–S = 3,36–3,77 Å et Rb5–S = 3,48–3,94 Å. Ces derniers forment des chaînettes de cinq polyèdres selon l'axe *c* qui s'empilent deux par deux en configuration décalée (figure 1.44, d).

Figure 1.44 : Structure cristalline du composé $Rb_{10}Mo_{36}S_{38}$ ($R\overline{3}$ H) [16] (a), environnements de Rb1–4 (b), Rb5 (c) et empilement des polyèdres (d) dans ce même composé.

2.7.2. Propriétés électroniques

Le motif à cluster isolé $[Mo_{36}S_{38}]^{4-}$ (VEC = 148), de symétrie D_{3d} , n'ayant pas pu être optimisé par DFT (problème de convergence SCF), nous avons décidé d'utiliser à la place le modèle $[Mo_{36}S_{38}]^{6-}$ (VEC = 150) qui, lui, a convergé. Les distances Mo–Mo et Mo–S de ce modèle optimisé sont reportées dans le tableau 1.10 et comparées à celles mesurées expérimentalement dans le composé Rb₁₀Mo₃₆S₃₈ ($R\overline{3}$ H) [16]. Les distances Mo–S calculées sont proches de celles du composé expérimental (VEC = 154), avec des écarts compris entre 0 et 3%. Les distances Mo–Mo sont également similaires aux valeurs du composé expérimental,

avec un écart entre 0 et 3%. Ces écarts sont légèrement plus élevés que ceux observés dans les modèles précédents, ce qui peut s'expliquer par le fait que le composé expérimental possède formellement quatre électrons de plus que le modèle. Les écarts restent néanmoins raisonnables.

Tableau 1.10 : Comparaison des distances interatomiques mesurées expérimentalement dans le composé $Rb_{10}Mo_{36}S_{38}$ (VEC = 154) [16] avec celles calculées pour le motif à clusters isolé $[Mo_{36}S_{38}]^{6-}$ (VEC = 150). La numérotation des atomes est indiquée à droite.

	<u>, e</u> ,	e 1 (⁸)	
Distance	Exp. (Å)	Calc. (Å)	\mathcal{R}^{S1}
Mo1–Mo1	2,64	2,55	IVIOL
Mo2–Mo2	2,66	2,73	X X X X X X X X X X
Mo3–Mo3	2,66	2,71	S3 Contraction Mo2
Mo4-Mo4	2,66	2,71	
Mo5-Mo5	2,66	2,71	Mo3 👍 😪 S4
Mo6-Mo6	2,66	2,67	
Mo1–Mo2	2,73–2,74	2,68	55 Mo 4
Mo2–Mo3	2,66–2,69	2,67	Mos
Mo3-Mo4	2,69–2,70	2,71	10103
Mo4-Mo5	2,67–2,68	2,67	S7 ST MOG
Mo5-Mo6	2,70	2,68	
Mo6-Mo6'	2,67	2,70	Mo6' 2 57'
Mo1–S1	2,39	2,47	
Mo1–S2	2,45–2,47	2,48	
Mo1–S3	2,61	2,55	
Mo2–S2	2,44	2,53	× · · · · · · · · · · · · · · · · · · ·
Mo2–S3	2,47	2,50	
Mo2–S4	2,59	2,57	
Mo3–S3	2,57	2,59	
Mo3–S4	2,48–2,50	2,52	
Mo3-S5	2,59	2,57	
Mo4-S4	2,57	2,54	
Mo4-S5	2,48–2,50	2,52	· · · · · · · · · · · · · · · · · · ·
Mo4-S6	2,59	2,55	
Mo5-S5	2,57	2,56	
Mo5-S6	2,49–2,51	2,51	
Mo5-S7	2,59	2,57	
Mo6-S6	2,58	2,57	
Mo6-S7	2,48–2,51	2,51	
Mo6-S7'	2.59	2.58	

Le diagramme d'OM du motif à clusters isolé $[Mo_{36}S_{38}]^{6-}$ est représenté sur la figure 1.45. Il est caractérisé par deux écarts HO–BV importants pour des VEC de 156 (0,51 eV) et 158 (0,57 eV). Ces VEC correspondent à la formule $[Mo_{36}S_{38}]^{12-/14-}$. En supposant des interactions motifmotif faibles dans les composés solides, de tels écarts énergétiques devraient conduire à des composés A₁₀Mo₃₆X₃₈ semi-conducteurs, soit avec des charges « idéales » cationiques $[A_{10}]^{12+}$ ou $[A_{10}]^{14+}$. Ceci nécessiterait d'avoir un mélange de cations univalents et divalents, en supposant qu'un composé possédant deux types de cations puisse exister et conserver ce type structural.

Figure 1.45 : Diagramme d'orbitales moléculaires du motif à clusters isolé $[Mo_{36}S_{38}]^{6-}$ (D_{3d} , VEC = 150).

Par la suite, nous avons effectué des calculs périodiques sur Rb₁₀Mo₃₆S₃₈ (VEC = 154). La courbe de DOS, tracée sur la figure 1.46, montre que le composé doit être conducteur métallique, comme prévu par la détermination de ses VEC « idéaux ». Deux bandes interdites sont observées au-delà du niveau de Fermi, respectivement de 0,16 et 0,44 eV, qui doivent correspondre aux deux VEC « idéaux » de 156 et 158 prévus par les calculs moléculaires

présentés ci-dessus. Ceci montre que le composé peut devenir semi-conducteur si la réduction des motifs par dopage est possible.

Figure 1.46 : Densité d'états du composé $Rb_{10}Mo_{36}S_{38}$ (VEC = 154). E_F est l'énergie du niveau de Fermi.

2.8. Composés de formule générale A_yIn_zMo₆X₆

2.8.1. Description structurale

Les motifs à clusters Mo₆X₈, Mo₉X₁₁, Mo₁₂X₁₄, etc. forment une progression qui conduit à la chaîne unidimensionnelle infinie comme étape ultime de la condensation des motifs selon une direction de l'espace, de stœchiométrie [Mo₃X₃] $_{\infty}$. Un nombre assez important de composés de formule générale A_yIn_zMo₆X₆, avec A = Li, Na, K, Rb, Cs, Ba, Ag, In, Tl ; B = In ; X = S, Se, Te ; y = 1-2 et z = 0-1, contenant ce type de chaîne infinie ont été rapportés dans deux types structuraux différents décrits ci-après (tableau 1.1).

2.8.1.a. Type structural $P6_3/m$ de $A_y \ln_z Mo_6 X_6$

Le premier type structural auquel nous nous intéressons est rencontré dans 22 des composés reportés dans le tableau 1.1. Pour le décrire, nous allons prendre l'exemple du composé K₂Mo₆S₆ [37, 38], dont la structure est représentée sur la figure 1.47, a. Dans ce composé, les atomes K occupent des positions de Wyckoff 2d (Z = 1), positionnées entre trois chaînes infinies [Mo₃S₃]. Ils s'insèrent dans des polyèdres de S à neuf sommets, avec K–S = 3,36–3,41 Å (figure 1.47, b). Ces polyèdres sont liés à trois polyèdres voisins via une arête et forment un enchevêtrement complexe s'étirant à l'infini selon le plan cristallographique (001) (figure 1.47, c). Ils s'empilent également à l'infini selon l'axe *c* (figure 1.47, d). Notons que dans les composés pour lesquels *y* = 1, ce site est occupé à 50%, et dans le cas des composés A₁In₁, l'occupation de ce site est partagée entre les deux cations, à 50%.

Figure 1.47 : Structure cristalline du composé $K_2Mo_6S_6$ [37, 38] (a), environnement de K dans ce composé (b), projection des polyèdres de K dans le plan cristallographique (001) (c) et projection du composé selon l'axe *c* (d).

2.8.1.b. Type structural P2/m de AyMo₆X₆

Le composé AgMo₆Te₆ [47] dont la structure cristalline est représentée sur la figure 1.48, a, est le seul représentant du second type structural P2/m adopté par les phases ternaires A_yMo₆X₆. Les atomes Ag y occupent des positions de Wyckoff 2a (Z = 2), et s'insèrent dans un octaèdre déformé de Te (Ag–Te = 2,88–3,09 Å). Ceux-ci s'empilent selon l'axe *b* en mettant en commun une arête (figure 1.48, b). Ils se placent entre deux chaînes infinies [Mo₃Te₃]_∞, laissant des canaux vacants entre celles-ci (figure 1.48, c).

Figure 1.48 : Structure cristalline de AgMo₆Te₆ [47] (a), environnement de Ag dans ce composé (b) et projection selon l'axe *b* avec les canaux vacants entre les chaînes [Mo₃Te₃] $_{\infty}$ (c).

2.8.2. Propriétés électroniques

En 1983, Hughbanks et Hoffmann [4] ont calculé le diagramme d'OM du fragment Mo_3S_3 (reproduit sur la figure 1.49). Ils ont montré que le VEC « idéal » de composés à chaînes infinies Mo_3X_3 était de 13 (soit 26 pour Mo_6X_6). Les composés possédant un tel VEC devraient être semi-conducteurs à première vue, bien que l'écart HO–BV soit relativement faible.

Figure 1.49 : Diagramme d'orbitales moléculaires du motif à cluster isolé Mo_3S_3 (D_{3h} , VEC = 12) (adapté de [4]).

Nous avons effectué des calculs de DFT périodiques sur les composés AgMo₆Te₆ (VEC = 25) et K₂Mo₆S₆ (VEC = 26). Les courbes de DOS correspondantes sont reportées sur la figure 1.50. Le composé AgMo₆Te₆ est conducteur métallique, comme attendu avec son VEC de 25, mais présente une bande interdite de 0,04 eV un peu au-delà du niveau de Fermi, qui doit correspondre à un VEC de 26. Ce résultat est confirmé par des travaux de Gougeon *et al.* [47], qui ont réalisé une mesure de résistivité électrique sur ce composé, confirmant qu'il est conducteur métallique. Quant à K₂Mo₆S₆, il est prédit semi-conducteur, comme prévu par le diagramme d'OM, avec une bande interdite de 0,44 eV.

Figure 1.50 : Densités d'états des composés $AgMo_6Te_6$ (VEC = 25) (a) et $K_2Mo_6S_6$ (VEC = 26) (b). E_F est l'énergie du niveau de Fermi.

3. Étude des structures cristalline et électronique des phases expérimentales à deux motifs Mo_nX_{n+2}

Après avoir passé en revue les différentes phases à clusters condensés de molybdène possédant un type de motifs Mo_nX_{n+2}, notons qu'il existe d'autres phases similaires dans lesquelles on retrouve, cette fois, deux types de motifs différents, allant de l'octaèdre Mo₆X₈ au polyèdre Mo₃₀X₃₂. Ces phases à deux types de motifs présentent des propriétés structurales, des compositions chimiques et des propriétés de structure électronique intéressantes que nous allons étudier maintenant. La liste non exhaustive de ces composés ainsi que leurs propriétés structurales et distances interatomiques mesurées expérimentalement sont reportées dans le tableau 1.11.

3.1. Étude du composé Ag_{2,54}Tl₂Mo₁₂Se₁₅ à motifs Mo₆Se₈ et Mo₉Se₁₁

3.1.1. Description structurale

Le composé Ag_{2,54}Tl₂Mo₁₂Se₁₅ cristallise dans le groupe d'espace trigonal $P\overline{3}$ [50] et sa structure est basée sur deux types de motifs Mo_nSe_{n+2}, à savoir Mo₆Se₈ et Mo₉Se₁₁, avec un rapport un pour deux. Ces deux motifs ont été décrits précédemment (voir figures 1.1, a, 1.5, a et 1.51). La formule Mo₁₂Se₁₅ résulte donc en réalité de 1/2 (Mo₆Se₈ + 2 x Mo₉Se₁₁). Les motifs de même type s'empilent par couches selon *c* : une couche de Mo₆Se₈ est suivie de deux couches de Mo₉Se₁₁. De ce fait, les motifs à cluster Mo₆Se₈ sont liés à six motifs Mo₉Se₁₁ (trois au-dessus et trois en dessous selon *c*), tandis que ces derniers sont liés à trois Mo₆Se₈ et trois Mo₉Se₁₁. Les motifs à clusters sont liés via une jonction carrée Mo₂Se₂ décrite sur la figure 1.5, b avec une coordination de 12 (six jonctions carrées).

Composé	Motifs	G.S. ^a	Ζ	<i>a</i> (Å)	b (Å)	<i>c</i> (Å)	V (Å ³) ^b	Mo–Mo (Å)	Mo–X (Å)	VEC	Réf.
$Ag_{2,54}TI_2Mo_{12}Se_{15}$	(Mo ₆ X ₈ + 2 Mo ₉ X ₁₁) /2	РЗ	2	10,00	10,00	15,54	1344	2,62–2,75	2,55–2,65	46,5	[50]
K ₂ Mo ₁₅ S ₁₉	Mo ₆ X ₈ + Mo ₉ X ₁₁	<i>R</i> 3с Н	6	9,3857(9)	9,3857(9)	56,261(9)	4292,12	2,67–2,79	2,41–2,62	54	[51,52]
$Rb_2Mo_{15}S_{19}$	Mo ₆ X ₈ + Mo ₉ X ₁₁	<i>R</i> 3с Н	6	9,4326(8)	9,4326(8)	56,27(1)	4335,81	2,68–2,78	2,42–2,62	54	[53]
$Cs_2Mo_{15}S_{19}$	Mo ₆ X ₈ + Mo ₉ X ₁₁	<i>R</i> 3 <i>с</i> Н	6	9,5012(1)	9,5012(1)	56,4199(6)	4410,83	2,68–2,78	2,42–2,62	54	[54]
$TI_2Mo_{15}S_{19}$	Mo ₆ X ₈ + Mo ₉ X ₁₁	<i>R</i> 3 <i>с</i> Н	6	9,3562(9)	9,3562(9)	56,206(9)	4261,0	2,68–2,78	2,42–2,62	54	[55]
$Ag_{3}TI_{2}Mo_{15}S_{19}$	Mo ₆ X ₈ + Mo ₉ X ₁₁	<i>R</i> 3 <i>с</i> Н	6	9,6407(1)	9,6407(1)	55,6492(9)	4479,26	2,65–2,75	2,41–2,58	57	[55]
$Li_2Mo_{15}Se_{19}$	Mo ₆ X ₈ + Mo ₉ X ₁₁	<i>R</i> 3 <i>с</i> Н	6	9,637(2)	9,637(2)	58,16(3)	4677,77	2,66–2,79	2,55–2,70	54	[56]
$Na_2Mo_{15}Se_{19}$	Mo ₆ X ₈ + Mo ₉ X ₁₁	<i>R</i> 3 <i>с</i> Н	6	9,611(2)	9,611(2)	58,51(3)	4680,56	2,66–2,80	2,56–2,71	54	[56]
$K_2Mo_{15}Se_{19}$	Mo ₆ X ₈ + Mo ₉ X ₁₁	<i>R</i> 3 <i>с</i> Н	6	9,74	9,74	58,16	4778,29	2,62–2,79	2,55–2,71	54	[23,52,57]
$Rb_2Mo_{15}Se_{19}$	Mo ₆ X ₈ + Mo ₉ X ₁₁	<i>R</i> 3 <i>с</i> Н	6	9,7618(1)	9,7618(1)	58,2540(11)	4807,46	2,67–2,80	2,54–2,71	54	[58]
$Ba_2Mo_{15}Se_{19}$	Mo ₆ X ₈ + Mo ₉ X ₁₁	<i>R</i> 3 <i>с</i> Н	6	9,88	9,88	57,60	4869,31	2,66–2,78	2,55–2,71	56	[52]
$Cd_2Mo_{15}Se_{19}$	Mo ₆ X ₈ + Mo ₉ X ₁₁	<i>R</i> 3 <i>с</i> Н	6	10,030(1)	10,030(1)	56,89(3)	4956,42	2,68–2,79	2,55–2,70	56	[56]
$In_2Mo_{15}Se_{19}$	Mo ₆ X ₈ + Mo ₉ X ₁₁	<i>R</i> 3 <i>с</i> Н	6	9,687	9,687	58,15(2)	4725,62	2,68–2,78	2,53–2,68	54	[52]
$TI_2Mo_{15}Se_{19}$	Mo ₆ X ₈ + Mo ₉ X ₁₁	<i>R</i> 3 <i>с</i> Н	6	9,80	9,80	58,23	4843,17	2,67–2,79	2,50–2,73	54	[52]
$Sn_2Mo_{15}Se_{19}$	$Mo_6X_8 + Mo_9X_{11}$	<i>R</i> 3 <i>с</i> Н	6	9,676(2)	9,676(2)	57,98(2)	4701,11	2,60–2,81	2,50–2,70	56	[56]
$Pb_2Mo_{15}Se_{19}$	$Mo_6X_8 + Mo_9X_{11}$	<i>R</i> 3 <i>с</i> Н	6	9,683(2)	9,683(2)	57,78(2)	4691,68	2,60–2,77	2,53–2,69	56	[56]
$Sc_{0,43}Rb_2Mo_{15}S_{19}$	$Mo_6X_8 + Mo_9X_{11}$	<i>R</i> 3 <i>с</i> Н	6	9,5173(1)	9,5173(1)	56,0061(9)	4393,33	2,68–2,77	2,42–2,61	55,2	[59]
$Ag_{2,20}K_2Mo_{15}Se_{19}$	$Mo_6X_8 + Mo_9X_{11}$	<i>R</i> 3 <i>с</i> Н	6	9,9615(1)	9,9615(1)	57,5198(9)	4943,08	2,64–2,72	2,53–2,70	56,2	[57]
$Ag_{3}In_{2}Mo_{15}Se_{19}$	$Mo_6X_8 + Mo_9X_{11}$	<i>R</i> 3 <i>с</i> Н	6	9,9755(1)	9,9755(1)	57,2943(9)	4937,55	2,65–2,78	2,57–2,69	57	[60]
$Ag_{2,57}TI_{1,96}Mo_{15}Se_{19}$	$Mo_6X_8 + Mo_9X_{11}$	<i>R</i> 3 <i>с</i> Н	6	9,9601(1)	9,9601(1)	57,3025(8)	4923,02	2,65–2,78	2,57–2,69	56,6	[61]
Mo ₁₅ S ₁₉	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,1838(2)	9,1838(2)	19,0483(5)	1391,33	2,69–2,85	2,42–2,62	52	[62]

Tableau 1.11: Compilation des données cristallographiques des phases à clusters condensés de molybdène à deux motifs Mo_nX_{n+2}. Les angles

 α, β et γ n'y figurent pas dans un souci de lisibilité.

									÷		
$Li_5Mo_{15}S_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,555(0)	9,555(0)	18,44(3)	1457,98	2,54–2,68	2,40–2,60	57	[63]
$Na_{3,40}Mo_{15}S_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,509(3)	9,509(3)	19,102(9)	1495,82	2,68–2,78	2,36–2,65	55,4	[63]
$Na_{4,25}Mo_{15}S_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,5340(1)	9,5340(1)	18,9803(3)	1494,11	2,68–2,75	2,44–2,60	56,3	[64]
$Zn_{2,90}Mo_{15}S_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,470(0)	9,470(0)	18,807(8)	1460,66	2,67–2,75	2,40–2,60	54,9	[63]
$Cd_{2,90}Mo_{15}S_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,668(0)	9,668(0)	18,903(6)	1530,15	2,49–2,67	2,46–2,60	54,9	[63]
$Hg_{4,15}Mo_{15}S_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,5368(1)	9,5368(1)	18,5673(3)	1462,46	2,69–2,75	2,41–2,58	56,3	[65]
$In_{0,10}Mo_{15}S_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,1999(1)	9,1999(1)	19,0596(4)	1397,05	2,69–2,85	2,42–2,62	52,1	[62]
$In_{0,21}Mo_{15}S_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,2163(1)	9,2163(1)	19,0501(2)	1401,33	2,69–2,84	2,40–2,62	52,2	[62]
$In_{0,37}Mo_{15}S_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,2390(2)	9,2390(2)	19,0289(3)	1406,68	2,70–2,82	2,41–2,62	52,4	[62]
In _{0,48} Mo ₁₅ S ₁₉	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,2551(2)	9,2551(2)	19,0135(3)	1410,44	2,70–2,82	2,41–2,62	52,5	[62]
$In_{0,71}Mo_{15}S_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,2947(2)	9,2947(2)	18,9884(4)	1420,66	2,71–2,81	2,41–2,62	52,7	[62]
$In_{1,15}Mo_{15}S_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,3380(1)	9,3380(1)	18,9520(2)	1431,18	2,68–2,79	2,43–2,63	53,2	[62]
In _{1,78} Mo ₁₅ S ₁₉	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,374(0)	9,374(0)	18,890(7)	1437,52	2,64–2,75	2,43–2,60	53,8	[63]
In _{2,40} Mo ₁₅ S ₁₉	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,398(0)	9,398(0)	18,899(8)	1445,57	2,65–2,75	2,40–2,60	54,4	[63]
In _{2,90} Mo ₁₅ S ₁₉	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,4236(1)	9,4236(1)	18,8955(2)	1453,19	2,68–2,78	2,43–2,62	54,9	[62]
In _{3,40} Mo ₁₅ S ₁₉	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,406(0)	9,406(0)	18,915(3)	1449,26	2,62–2,75	2,40–2,61	55,4	[63]
In _{3,70} Mo ₁₅ S ₁₉	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,4293(1)	9,4293(1)	18,9529(2)	1459,37	2,65–2,75	2,40–2,59	55,7	[66]
$TI_{2,50}Mo_{15}S_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,376	9,376	18,381	1399,38	2,64–2,73	2,39–2,55	54,5	[63]
$Sn_2Mo_{15}S_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,336(0)	9,336(0)	18,698(8)	1411,39	2,61–2,70	2,40–2,59	56	[63]
$InK_{2,40}Mo_{15}S_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,423(0)	9,423(0)	19,015(7)	1462,20	2,65–2,76	2,41–2,62	55,4	[63]
$In_{1,60}Rb_2Mo_{15}S_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,5597(1)	9,5597(1)	18,9349(2)	1498,59	2,64–2,77	2,40–2,60	55,6	[66]
$In_{2,20}CsMo_{15}S_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,5446(1)	9,5446(1)	18,8625(2)	1488,15	2,64–2,76	2,41–2,60	55,2	[66]
$ScTI_2Mo_{15}S_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,4497(1)	9,4497(1)	18,7862(2)	1452,80	2,65–2,73	2,44–2,61	57	[66]
In _{4,07} Mo ₁₅ (S _{11,87} Se _{7,13})	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,5974(2)	9,5974(2)	19,1668(5)	1528,93	2,64–2,77	2,48–2,67	56	[67]
Mo ₁₅ Se ₁₉	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,450(2)	9,450(2)	19,600(2)	1515,83	2,68–2,84	2,52–2,70	52	[56 <i>,</i> 68]

$Li_3Mo_{15}Se_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,724(4)	9,724(4)	19,47(1)	1594,36	2,60–2,76	2,49–2,69	55	[56]
$Na_3Mo_{15}Se_{19}$	Mo ₆ X ₈ + Mo ₉ X ₁₁	P6₃/m	2	9,712(3)	9,712(3)	19,68(2)	1607,52	2,60–2,78	2,51–2,71	55	[56]
Na _{3,88} Mo ₁₅ Se ₁₉	Mo ₆ X ₈ + Mo ₉ X ₁₁	P6₃/m	2	9,8747(1)	9,8747(1)	19,5957(3)	1651,43	2,63–2,75	2,52–2,72	55,9	[69]
$In_{2,90}Mo_{15}Se_{19}$	Mo ₆ X ₈ + Mo ₉ X ₁₁	P6₃/m	2	9,804(5)	9 <i>,</i> 804(5)	19,49(1)	1622,37	2,65–2,77	2,56–2,69	54,9	[70]
$In_{3}Mo_{15}Se_{19}$	Mo ₆ X ₈ + Mo ₉ X ₁₁	P6₃/m	2	9,793(3)	9,793(3)	19,44	1614,58	2,64–2,77	2,52–2,70	55	[56]
$In_{3,30}Mo_{15}Se_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,830(5)	9 <i>,</i> 830(5)	19,40(1)	1623,45	2,66–2,77	2,55–2,69	55,3	[70]
$TI_3Mo_{15}Se_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,853(1)	9,853(1)	19,41(1)	1631,90	2,64–2,77	2,53–2,70	55	[56]
Hg _{4,28} Mo ₁₅ Se ₁₉	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,8856(2)	9,8856(2)	19,2059(3)	1625,44	2,67–2,77	2,53–2,67	56,6	[65]
$Sn_3Mo_{15}Se_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,890(1)	9,890(1)	19,57(1)	1657,73	2,66–2,79	2,54–2,72	58	[56]
$Pb_2Mo_{15}Se_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,611(1)	9,611(1)	19,59(1)	1567,12	2,68–2,82	2,49–2,70	56	[56]
$Pb_{3}Mo_{15}Se_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,62	9,62	19,61	1572,66	2,58–2,77	2,53–2,70	58	[27]
$K_2 In_{0,88} Mo_{15} Se_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,8076(1)	9,8076(1)	19,6036(3)	1633,02	2,64–2,77	2,52–2,70	54,9	[71]
$K_2 In Mo_{15} Se_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,790(2)	9,790(2)	19,59(1)	1626,04	2,62–2,78	2,51–2,71	55	[56]
$V_{1,42} In_{1,83} Mo_{15} Se_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,7361(1)	9,7361(1)	19,3090(4)	1585,11	2,65–2,76	2,55–2,70	55,8	[72]
$Ho_{0,76}In_{1,68}Mo_{15}Se_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P6₃/m	2	9,7969(1)	9,7969(1)	19,3973(4)	1612,31	2,65–2,76	2,55–2,69	56	[73]
$Cr_{1,45}TI_{1,87}Mo_{15}Se_{19}$	$Mo_6X_8 + Mo_9X_{11}$	P21/m	2	9,7347(1)	19,2639(3)	9,7987(1)	1608,22	2,64–2,73	2,54–2,69	58,2	[74]
β -K ₂ Mo ₉ S ₁₁	$Mo_6X_8 + Mo_{12}X_{14}$	<i>R</i> 3 R	2	13,13(1)	13,13(1)	13,13(1)	892,4	/	/	34	[75]
β -Tl ₂ Mo ₉ S ₁₁	$Mo_6X_8 + Mo_{12}X_{14}$	<i>R</i> 3 R	2	12,95(1)	12,95(1)	12,95(1)	883,3	2,66–2,78	2,40–2,59	34	[75,76]
$TI_2Mo_9Se_{11}$	$Mo_6X_8 + Mo_{12}X_{14}$	<i>R</i> 3 H	6	9,6212(1)	9,6212(1)	36,3316(7)	2912,55	2,64–2,79	2,51–2,70	34	[77]
$Rb_4Mo_{21}S_{25}$	Mo ₉ X ₁₁ + Mo ₁₂ X ₁₄	<i>R</i> 3 <i>с</i> Н	6	9,3352(6)	9,3352(6)	83,64(1)	6312,36	2,63–2,79	2,40–2,63	80	[53]
$Cs_4Mo_{21}S_{25}$	Mo ₉ X ₁₁ + Mo ₁₂ X ₁₄	<i>R</i> 3 <i>с</i> Н	6	9,4543(5)	9,4543(5)	83,20(1)	6640,40	2,64–2,78	2,40–2,62	80	[78]
$Rb_6Mo_{27}S_{31}$	Mo ₉ X ₁₁ + Mo ₁₈ X ₂₀	<i>R</i> 3 <i>с</i> Н	6	9,2801(5)	9,2801(5)	110,50(2)	8241,35	2,62–2,78	2,39–2,63	106	[53]
$Cs_6Mo_{27}S_{31}$	Mo ₉ X ₁₁ + Mo ₁₈ X ₂₀	<i>R</i> 3 <i>с</i> Н	6	9,4424(5)	9,4424(5)	110,0790(7)	8499,63	2,63–2,78	2,40–2,63	106	[79]
Rb ₈ Mo ₃₃ S ₃₇	Mo ₉ X ₁₁ + Mo ₂₄ X ₂₆	<i>R</i> 3 <i>с</i> Н	6	9,2372(7)	9,2372(7)	137,28(2)	10144,22	2,62–2,79	2,39–2,63	132	[53]
$Rb_{10}Mo_{39}S_{43}$	Mo ₉ X ₁₁ + Mo ₃₀ X ₃₂	<i>R</i> 3 <i>с</i> Н	6	9,2056(1)	9,2056(1)	163,9654(14)	12033,36	2,62–2,78	2,39–2,63	158	[80]

Rb ₄ Mo ₂₁ Se ₂₄	(Mo ₁₂ X ₁₄ + 2 Mo ₁₅ X ₁₇) /2	<i>R</i> 3 H	6	9,5078(2)	9,5078(2)	87,797(2)	6873,38	2,65–2,81	2,52–2,69	82	[81]
$Rb_5Mo_{27}Se_{31}$	Mo ₁₂ X ₁₄ + Mo ₁₅ X ₁₇	P6₃/m	2	9,5208(1)	9,5208(1)	37,51129(50)	2944,69	2,65–2,80	2,53–2,69	105	[82]

^aGroupe spatial. ^bVolume.

 $Mo_{12}Se_{15} = 1/2 (Mo_6Se_8 + 2 Mo_9Se_{11})$

Figure 1.51 : Motifs Mo₆Se₈ et Mo₉Se₁₁ rencontrés dans le composé Ag_{2,54}Tl₂Mo₁₂Se₁₅.

Dans le composé Ag_{2,54}Tl₂Mo₁₂Se₁₅, les atomes Ag occupent des positions de Wyckoff 6g (*Z* = 2), occupées à 85%. Ils forment des triangles Ag₃ s'intercalant entre un atome de thallium (Tl1) et un cluster Mo₉Se₁₁, avec Ag–Ag = 4,49 Å dans les triangles et Ag–Tl1 = 3,49 Å. Les atomes Tl occupent, quant à eux, les deux positions 2c et 2d. Tl1 s'insère entre un motif à clusters Mo₉X₁₁ et un triangle Ag₃. Les atomes Tl2 forment des paires le long de l'axe *c*, avec Tl2–Tl2 = 3,28 Å. Il s'agit d'une distance relativement courte quand on sait que le rayon covalent de l'élément est de 1,48 Å (https://www.elementschimiques.fr/?fr/elements/z/81). La structure du composé est représentée sur la figure 1.52.

Ag se trouve dans un polyèdre de Se à six sommets, qui peut être apparenté à une pyramide à base carrée dont l'une des faces triangulaires est coiffée, avec Ag–Se = 2,68–3,74 Å (figure 1.53, a). Ces polyèdres sont liés trois à trois, mettant une arête en commun (figure 1.53, b). Tl1 s'inscrit dans un polyèdre de Se à huit sommets avec Tl1–Se = 2,90–3,75 Å (figure 1.53, c). Quant à Tl2, il s'inscrit dans un polyèdre de Se à sept sommets, avec Tl2–Se = 3,07–3,89 Å. Ces polyèdres s'empilent par paires le long de l'axe *c*, en configuration décalée (figure 1.53, d).

Figure 1.52 : Structure cristalline du composé Ag_{2,54}Tl₂Mo₁₂Se₁₅ (P3) [50].

Figure 1.53 : Environnement de Ag (a), coordination des polyèdres Ag–Se (b), environnement de Tl1 (c) et de Tl2 (d) dans le composé $Ag_{2,54}Tl_2Mo_{12}Se_{15}$.

3.1.2. Propriétés électroniques

Le diagramme d'orbitales moléculaires du modèle de motif à cluster isolé $[Mo_6S_8]^{4-}$ a été calculé en 1983 par Hughbanks et Hoffmann [4] et reporté sur la figure 1.3 plus tôt dans ce chapitre. Ils ont montré que le VEC « idéal » pour qu'un composé à motif à cluster Mo_6S_8

devienne semi-conducteur était de 24. Dans un souci d'homogénéité, nous avons calculé par la méthode DFT un modèle de motif à cluster isolé [Mo₆Se₈]^{4–} (VEC = 24) de symétrie *O*_h (voir détails des calculs en fin de chapitre). Commençons par comparer les distances Mo–Mo et Mo–Se optimisées de ce modèle avec celles rencontrées dans les motifs à cluster Mo₆Se₈ du composé expérimental Ag_{2,54}Tl₂Mo₁₂Se₁₅, reportées dans le tableau 1.12. Les sites Se1 et Se2 sont différenciés par le fait que Se1 est un ligand *i–a* et Se2 un ligand *i*. Les distances Mo–Se sont proches de celles du composé expérimental, avec des écarts qui varient entre 0 et 3%. La distance Mo–Mo présente un écart de 1%.

Tableau 1.12 : Comparaison des distances interatomiques mesurées expérimentalement dansles motifs Mo_6Se_8 au sein du composé $Ag_{2,54}Tl_2Mo_{12}Se_{15}$ [48] avec celles calculées pour le motifà cluster isolé $[Mo_6Se_8]^{4-}$ (VEC = 24). La numérotation des atomes est indiquée à droite.

Distance	Exp. (Å)	Calc. (Å)			
Mo1–Mo1	2,69–2,70	2,65			
Mo1–Se1	2,59–2,62	2,63			
Mo1–Se2	2,55	2,63			

Le diagramme d'OM du cluster isolé $[Mo_6Se_8]^{4-}$ est représenté sur la figure 1.54. Il est caractérisé par deux écarts HO–BV significatifs, comme attendu d'après les calculs EHT de Hughbanks et Hoffmann [4]. Le premier vaut 0,50 eV pour un VEC de 20 et le second vaut 1,27 eV pour un VEC de 24. Le diagramme d'OM du motif à cluster isolé $[Mo_9Se_{11}]^{4-}$ discuté plus tôt dans ce même chapitre (figure 1.11), montre un VEC « idéal » de 36. Dans les deux cas, le degré d'oxydation du molybdène est de 2. Le VEC « idéal » d'un composé contenant un motif Mo_6Se_8 pour deux Mo_9Se_{11} est donc de $(24 + 2 \times 36)/2$, soit 48. Un tel VEC doit conduire à des composés semi-conducteurs. Notons que le VEC du composé $Ag_{2,54}Tl_2Mo_{12}Se_{15}$ est d'environ 46,5.

Figure 1.54 : Diagramme d'orbitales moléculaires du motif à cluster isolé [Mo₆Se₈]^{4–} (*O*_h, VEC = 24).

Nous avons ensuite effectué des calculs périodiques sur le modèle Ag₃Tl₂Mo₁₂Se₁₅ (VEC = 47) – basé sur la structure de Ag_{2,54}Tl₂Mo₁₂Se₁₅ dans laquelle les sites Ag sont occupés à 100% au lieu de 85% – et sur le composé hypothétique quinaire Ag₃TlPbMo₁₂Se₁₅ (VEC = 48) dans lequel un atome de thallium univalent a été substitué par un atome de plomb divalent. Les courbes de DOS de ces deux composés, tracées sur la figure 1.55, confirment que le composé avec un VEC de 47 est conducteur métallique, tandis que celui à 48 est semi-conducteur avec une bande interdite de 0,37 eV.

Afin de proposer un VEC pour chacun des deux types de motifs dans ces composés expérimental et hypothétique, nous avons projeté les états molybdène pour les motifs à clusters Mo₆Se₈ et Mo₉Se₁₁. Les courbes de DOS totales et projetées sont similaires dans les deux composés avec un pic de densité d'états isolé proche du niveau de Fermi à caractère Mo₆ largement prédominant. Ayant en mémoire les diagrammes « moléculaires » des motifs [Mo₆Se₈]^{4–} et [Mo₉Se₁₁]^{4–} (respectivement figures 1.54 et 1.11), on en déduit que ce pic de

DOS dérive du niveau e_g du cluster Mo₆. Il s'ensuit que dans le composé Ag₃Tl₂Mo₁₂Se₁₅ (VEC = 47), les motifs Mo₆Se₈ et Mo₉Se₁₁ ont des VEC respectifs de 22 (Mo^{2,333+}), comme dans PbMo₆Se₈ (supraconducteur) [6], et 36 (Mo²⁺), comme dans Ag₄Mo₉Se₁₁ (semi-conducteur) [49]. En revanche, des comptes respectifs de 24 et 36 peuvent être proposés pour le modèle semi-conducteur Ag₃TlPbMo₁₂Se₁₅ (VEC = 48).

Figure 1.55 : Densités d'états des composés $Ag_3TI_2Mo_{12}Se_{15}$ (VEC = 47) (a) et $Ag_3TIPbMo_{12}Se_{15}$ (VEC = 48) (b), avec projection des états molybdène dans les clusters Mo_6 et Mo_{12} .

3.2. Composés de formule générale $A_yB_zMo_{15}X_{19}$ à motifs Mo_6X_8 et Mo_9X_{11}

3.2.1. Description structurale

Les nombreux composés de formule générale $A_yB_zMo_{15}X_{19}$, avec A, B = Li, Na, K, Rb, Cs, Sc, V, Cr, Ag, Zn, Cd, Hg, In, Tl, Sn ; $y + z \le 5$; X = S, Se, contiennent également des motifs Mo_6X_8 et Mo_9X_{11} , cette fois-ci dans un rapport un pour un. Les motifs Mo_6X_8 et Mo_9X_{11} sont liés via une jonction carrée Mo_2X_2 décrite sur la figure 1.5, b, avec une coordination de 12 (six jonctions carrées). Les motifs du même type ne sont pas liés entre eux. La formule $Mo_{15}X_{19}$ est le résultat de $Mo_6X_8 + Mo_9X_{11}$ (voir figure 1.56). Ces composés cristallisent dans trois groupes d'espace différents à savoir $R\overline{3}c$, $P6_3/m$ et $P2_1/m$. Nous allons maintenant décrire ces trois types structuraux.

Figure 1.56 : Motifs Mo₆X₈ et Mo₁₂X₁₄ rencontrés dans les composés A_yB_zMo₁₅X₁₉.

3.2.1.a. Type structural R3c de AyBzMO15X19

Le premier type structural *R*3*c* auquel nous nous intéressons est rencontré dans 18 des composés reportés dans le tableau 1.11. Pour le décrire, prenons l'exemple de Ag₃In₂Mo₁₅Se₁₉ [60]. Les atomes In, qui occupent des positions de Wyckoff 12c (*Z* = 6), viennent s'intercaler entre un motif Mo₆Se₈ et un Mo₉Se₁₁ selon l'axe *c*. Quant aux atomes d'argent, ils occupent la position 36f, occupée à 50%, dont la position est dédoublée par un plan-miroir (Ag–Ag = 1,04 Å). Ce modèle peut être « simplifié » en positionnant Ag sur le plan-miroir et en considérant

le site occupé à 100%, comme représenté sur la figure 1.57. On observe alors des triangles Ag₃ positionnés de part et d'autre de Mo₆Se₈ selon l'axe *c*, entre In et le motif, avec Ag–Ag = 5,19 Å. In s'insère dans un polyèdre de Se à huit sommets avec In–Se = 2,99–3,90 Å (figure 1.58, a). Les atomes Ag, eux, sont inscrits dans un polyèdre de Se à sept sommets, avec Ag–Se = 2,47–3,72 Å (figure 1.58, b). Ces polyèdres d'argent mettent en commun une arête et forment un enchevêtrement complexe s'étirant à l'infini dans le plan cristallographique (001) (figure 1.58, c). Notons que le composé $Sc_{0,43}Rb_2Mo_{15}S_{19}$ [59] fait figure d'exception. Les atomes Sc, positionnés sur les sites Ag, forment des triangles Sc₃ de part et d'autre de Mo₉Se₁₁, et non de Mo₆Se₈.

Figure 1.57 : Structure cristalline du composé Ag₃In₂Mo₁₅Se₁₉ (*R*3*c* H) [60].

Figure 1.58 : Environnements de In (a), Ag (b) et projection des polyèdres de Ag dans le plan cristallographique (001) (c) dans le composé Ag₃In₂Mo₁₅Se₁₉.

3.2.1.b. Type structural P6₃/m de AyB_zMo₁₅X₁₉

Le second type structural rencontré dans les phases $A_yB_zMo_{15}X_{19}$ est adopté par 41 composés du tableau 1.11, qui cristallisent dans le groupe d'espace PG_3/m . Décrivons ce type structural en prenant l'exemple du composé ternaire $Hg_{4,15}Mo_{15}S_{19}$ [65]. Dans ce composé, Hg occupe trois sites différents. Hg1 et Hg2, occupant des positions de Wyckoff respectives 2c et 4f (avec Z = 2), forment des chaînettes Hg3 (Hg2–Hg1–Hg2) qui viennent se placer entre deux motifs Mo_9S_{11} selon l'axe *c*. Les contacts Hg1–Hg2 y sont courts (2,64 Å), indiquant la formation de liaisons covalentes (le rayon covalent de Hg est de 1,49 Å (https://www.elementschimiques.fr/?fr/elements/z/80)). Ceci conduit à des chaînettes formellement chargées 2+ ([Hg3]²⁺, isoélectronique à [H₃]⁻ linéaire). Notons que le site occupé par Hg1 n'est occupé que dans deux autres composés de ce type structural, on retrouve des paires formées de deux atomes occupant le site Hg2, non liés.

Enfin, les atomes Hg3 occupent des positions de Wyckoff 6h, occupées à 38%, formant un triangle Hg₃ avec les positions des mailles voisines. Au vu de cette occupation partielle, on peut simplifier le modèle en transformant le triangle en une seule position spéciale occupée à 100% et située le long de l'axe *c*. En résumé, Hg1 et Hg2 forment un trimère cationique [Hg₃]²⁺ tandis que Hg3 est sous forme de Hg²⁺. La charge totale formelle des cations est donc (2 + 2 x 1,15), soit +4,30, dans le composé Hg_{4,15}Mo₁₅S₁₉ conférant un VEC de 56,3 pour le motif Mo₁₅S₁₉. Notons que dans les composés quaternaires appartenant à ce type structural (voir tableau 1.11), le plus petit cation occupe le site Hg3 et le plus gros Hg2. La structure du composé est représentée sur la figure 1.59. Hg1 s'insère dans un polyèdre de S à 9 sommets, avec Hg1–S = 3,51–3,79 Å (figure 1.60, a). Hg2 est inscrit dans un octaèdre déformé de S orné d'une coiffe, avec Hg2–Se = 2,56–3,32 Å (figure 1.60, b). Enfin, Hg3 s'insère dans un octaèdre de S, avec Hg3–S = 2,73–3,27 Å (figure 1.60, c). Les polyèdres de Hg2 et Hg3 partagent chacun une face triangulaire avec celui de Hg1 (figure 1.60, d).

Figure 1.59 : Structure cristalline du composé $Hg_{4,15}Mo_{15}S_{19}$ (*P*6₃/*m*) [65] avec le détail des positions Hg.

Figure 1.60 : Environnements de Hg1 (a), Hg2 (b), Hg3 (c) et empilement des polyèdres de Hg (d) dans le composé Hg_{4,15}Mo₁₅S₁₉.

3.2.1.b. Type structural P2₁/m de A_yB_zMo₁₅X₁₉

Le troisième et dernier type structural adopté par ces phases est celui de $Cr_{1,45}Tl_{1,87}Mo_{15}Se_{19}$ [74], qui cristallise dans le groupe d'espace $P2_1/m$ (Z = 2). Dans ce composé, Cr occupe quatre sites distincts correspondant à des positions de Wyckoff 2e (Cr1, Cr2 et Cr3) et 2b (Cr4). Cr1 est occupé à 62%, Cr2 à 31%, Cr3 à 13% et Cr4 à 40%. Les positions Cr1, Cr2 et Cr3 forment un triangle Cr₃ selon le plan cristallographique (*ab*), avec Cr–Cr = 3,22–3,23 Å. Notons que la somme des occupations partielles de Cr1, Cr2 et Cr3 dépasse légèrement les 100%, mais nous allons simplifier ce modèle en réduisant le triangle Cr₃ à une seule position de Cr occupée à 100% et située au centre du triangle (correspondant à la moyenne des coordonnées des trois sites).

Les atomes Tl n'occupent qu'un site : la position 4f, occupée à 94%. Ils forment des paires Tl–Tl situées entre deux motifs Mo₉Se₁₁, avec Tl–Tl = 4,21 Å. La structure de ce composé est représentée sur la figure 1.61. Les quatre atomes Cr distincts sont inscrits dans un octaèdre déformé de Se, avec Cr1–Se = 2,52–2,85 Å, Cr2–Se = 2,52–2,80 Å, Cr3–Se = 2,50–2,89 Å et Cr4–Se = 2,31–2,96 Å (figure 1.62, a). Les octaèdres de Cr1, Cr2 et Cr3 partagent deux faces triangulaires tandis que chaque Cr2 partage un sommet avec deux octaèdres Cr4 distincts (figure 1.62, b). Tous les atomes de chrome étant dans un environnement octaédrique, on en déduit que leur état d'oxydation doit être formellement de +III (Cr³⁺, comme dans Cr₂O₃). Enfin, Tl s'insère dans un polyèdre de Se à 10 faces, avec Tl–Se = 3,11–4,22 Å. Ces polyèdres de Tl s'empilent par paires le long de l'axe *b*, mettant une face triangulaire en commun (figure 1.62, c). Avec des cations Cr³⁺ et Tl⁺, le VEC formel du composé Cr_{1,45}Tl_{1,87}Mo₁₅Se₁₉ est donc de 15 x 6 (Mo) + 1,87 x 1 (Tl) + 1,45 x 3 (Cr) – 19 x 2 (Se) = 58,2.

Figure 1.61 : Structure cristalline du composé $Cr_{1,45}TI_{1,87}Mo_{15}Se_{19}$ (P2₁/m) [74].

Figure 1.62 : Environnement des quatre sites Cr (a), empilement des polyèdres de Cr (b) et environnement de Tl (c) dans le composé Cr_{1,45}Tl_{1,87}Mo₁₅Se₁₉.

3.2.2. Propriétés électroniques

Pour étudier la structure électronique des composés de formule générale $A_yB_zMo_{15}X_{19}$, il faut commencer par étudier individuellement celle des deux types de motifs les composant.

Les diagrammes d'orbitales moléculaires des modèles de motifs isolés $[Mo_6Se_8]^{4-}$ et $[Mo_9Se_{11}]^{4-}$ ont été étudiés précédemment (voir respectivement figures 1.54 et 1.11). Ces motifs isolés ont des VEC « idéaux » de 20 et 24 pour $[Mo_6Se_8]^{0/4-}$ et 36 pour $[Mo_9Se_{11}]^{4-}$. La combinaison 24 + 36 = 60 doit donc être le VEC « idéal » pour qu'un composé A_yB_zMo₁₅X₁₉ soit semi-conducteur avec des atomes Mo formellement chargés 2+.

Des calculs périodiques ont été effectués sur Ag₃In₂Mo₁₅Se₁₉ (VEC = 57) ainsi que sur le composé hypothétique Zn₃In₂Mo₁₅Se₁₉ (VEC = 60), dans lequel l'argent univalent est substitué par le zinc divalent (voir détails des calculs en fin de chapitre). Les courbes de DOS de ces deux composés sont tracées sur la figure 1.63. Ag₃In₂Mo₁₅Se₁₉ est bien conducteur métallique, et sa DOS est similaire à celle calculée par Al Rahal Al Orabi et collaborateurs [60]. Quant à Zn₃In₂Mo₁₅Se₁₉, il est semi-conducteur comme attendu, avec une bande interdite de 0,26 eV.

Afin d'attribuer un VEC aux motifs Mo₆Se₈ et Mo₉Se₁₁, les états molybdène de chacun ont été projetés. Dans le composé hypothétique Zn₃ln₂Mo₁₅Se₁₉, le VEC de 60 correspond à des VEC « idéaux » maximaux pour les deux motifs, soit 24 pour [Mo₆Se₈]^{4–} (Mo²⁺) et 36 pour [Mo₉Se₁₁]^{4–} (Mo²⁺). Dans le composé expérimental Ag₃In₂Mo₁₅Se₁₉, un pic apparaît au-delà du niveau de Fermi. Il correspond à un état à caractère Mo₆ prédominant. Néanmoins, la contribution de Mo₉ est trop importante pour l'attribuer uniquement à l'interaction entre les deux motifs à clusters. Nous pouvons en déduire qu'aucun des motifs n'a atteint son VEC « idéal » maximal. Il est donc raisonnable de supposer que dans Ag₃In₂Mo₁₅Se₁₉ (VEC = 57), les motifs Mo₆Se₈ et Mo₉Se₁₁ présentent des comptes d'électrons formels respectifs de 22 (Mo^{2,333+}), comme dans PbMo₆Se₈ [6] et de 35 (Mo^{2,111+}), proche du VEC de Ag_{1,91}Cs_{1,16}Mo₉S₁₁ [26].

Figure 1.63 : Densités d'états des composés $Ag_3In_2Mo_{15}Se_{19}$ (VEC = 57) (a) et $Zn_3In_2Mo_{15}Se_{19}$ (VEC = 60) (b), avec projection des états molybdène des motifs à clusters Mo_6Se_8 et Mo_9Se_{11} .

3.3. Composés de formule générale $A_2Mo_9X_{11}$ à motifs Mo_6X_8 et $Mo_{12}X_{14}$

3.3.1. Description structurale

Les trois composés de formule générale $A_2Mo_9X_{11}$ représentent le seul type structural connu contenant à la fois des motifs Mo_6X_8 et $Mo_{12}X_{14}$ dans un rapport un pour un (tableau 1.11). Les deux types de motifs Mo_6X_8 et $Mo_{12}X_{14}$ ont été décrits précédemment et ils ont représentés sur les figures 1.1, a et 1.15. Ils sont liés via une jonction carrée Mo_2X_2 décrite sur la figure 1.5, b, avec une coordination de 12 (six jonctions carrées). Les motifs du même type ne sont pas liés entre eux. La formule Mo_9X_{11} correspond en réalité à 1/2 ($Mo_6X_8 + Mo_{12}X_{14}$), comme détaillée sur la figure 1.64. Ces composés, reportés dans le tableau 1.11, cristallisent dans le groupe d'espace trigonal $R\overline{3}c$ (Z = 6). Nous allons maintenant décrire leur type structural en prenant l'exemple du composé $Tl_2Mo_9Se_{11}$ [77].

Figure 1.64 : Motifs Mo₆X₈ et Mo₁₂X₁₄ rencontrés dans les composés A₂Mo₉X₁₁.

Dans Tl₂Mo₉Se₁₁, les atomes Tl occupent des positions de Wyckoff 6c (Z = 6) selon deux sites distincts, formant des paires Tl1–Tl2 selon l'axe c (Tl–Tl = 3,52 Å). Ces paires s'insèrent entre les motifs à clusters Mo₆Se₈ et Mo₁₂Se₁₄ selon l'axe c, les sites Tl1 et Tl2 étant respectivement adjacents à ces derniers. La structure cristalline du composé est représentée sur la figure 1.65, a. Tl1 et Tl2 s'insèrent tous deux dans des octaèdres déformés de Se unicoiffés, formant des polyèdres à sept sommets qui se succèdent en configuration décalée selon l'axe *c*, comme représenté sur la figure 1.65, b.

Figure 1.65 : Structure cristalline du composé $Tl_2Mo_9Se_{11}$ (*R* $\overline{3}c$ *H*) [77] (a) et environnement des sites Tl1 et Tl2 dans le composé $Tl_2Mo_9Se_{11}$ (b).

3.3.2. Propriétés électroniques

Les diagrammes d'orbitales moléculaires des modèles de motifs isolés $[Mo_6Se_8]^{4-}$ et $[Mo_{12}Se_{14}]^{4-}$ ont été discutés précédemment, respectivement sur les figures 1.54 et 1.21. Chacun de ces motifs à clusters isolés possède deux VEC « idéaux » pour lesquels on observe un écart HO–BV substantiel : 20 et 24 pour $[Mo_6Se_8]^{0/4-}$, et 48 et 50 pour $[Mo_{12}Se_{14}]^{4-/6-}$. Les combinaisons de VEC « idéaux » (24 + 48)/2 ou (24 + 50)/2, c'est-à-dire des VEC de 36 ou 37, devraient donc conduire à des composés A₂Mo₉X₁₁ semi-conducteurs.

Nous avons ensuite effectué des calculs périodiques sur $TI_2Mo_9Se_{11}$ (VEC = 34) et sur le composé hypothétique $Pb_2Mo_9Se_{11}$ (VEC = 36), dans lequel on a substitué le thallium univalent par le plomb divalent (voir détails des calculs en fin de chapitre). Les courbes de DOS de ces

composés, assez voisines, montrent que les deux sont métalliques (figure 1.66), mais qu'ils présentent une bande interdite relativement importante (de 0,93 eV pour Tl₂Mo₉Se₁₁ et 0,58 eV pour Pb₂Mo₉Se₁₁) un peu au-delà du niveau de Fermi (*gapped metals* ou métaux à bande interdite [83]) qui doit correspondre à un VEC de 37. Notons que la DOS totale de Tl₂Mo₉Se₁₁ rappelle quelque peu celle calculée pour le composé modèle Cs₂Cu₂Mo₁₂Se₁₄ (VEC = 48) à motifs Mo₁₂Se₁₄, présentée plus tôt dans ce chapitre (figure 1.22, a).

Afin de tenter d'attribuer un VEC à chacun des motifs Mo₆Se₈ et Mo₁₂Se₁₄, nous avons projeté les états molybdène de chacun d'entre eux. Les pics de DOS près du niveau de Fermi étant distribués à la fois sur les clusters Mo₆ et Mo₁₂, il semble qu'une répartition formelle de VEC déficitaires par rapport aux comptes « idéaux » (22 électrons pour les premiers, soit Mo^{2,333+}, comme dans PbMo₆Se₈ et 46 pour les seconds, comme pour Cs₂Mo₁₂Se₁₄, soit Mo^{2,167+}) soit adéquate pour Tl₂Mo₉Se₁₁ (VEC = 34). Des comptes formels de 23 (Mo^{2,333+}), comme dans LaMo₆Se₈ [84] et de 49 (Mo²⁺) électrons, assez proche du VEC de Na_{2,90}KMo₁₂S₁₄ (47,9) [32], peuvent être proposés pour Pb₂Mo₉Se₁₁ (VEC = 36) d'après les projections de Mo₆ et Mo₁₂, qui montrent qu'aucun des deux types de motif n'a atteint son VEC « idéal » (figure 1.66).

Figure 1.66 : Densité d'états totale des composés $Tl_2Mo_9Se_{11}$ (VEC = 34) (a) et Pb₂Mo₉Se₁₁ (VEC = 36) (b), et projection des états molybdène des motifs Mo₆Se₈ et Mo₁₂Se₁₄.

3.4. Composés de formule générale $A_4Mo_{21}S_{25}$ à motifs Mo_9X_{11} et $Mo_{12}X_{14}$

3.4.1. Description structurale

Deux composés de formule générale $A_4Mo_{21}S_{25}$, avec A = Rb, Cs, ont été rapportés (tableau 1.11). Ils cristallisent dans le groupe d'espace trigonal $R\overline{3}c$ (Z = 6) [53, 78] et contiennent des motifs Mo_9S_{11} et $Mo_{12}S_{14}$, dans un rapport un pour un. Ces deux motifs ont été décrits précédemment dans ce chapitre (voir figures 1.5, a et 1.15). La formule $Mo_{21}S_{25}$ est le résultat de la somme $Mo_9S_{11} + Mo_{12}S_{14}$ (figure 1.67). Mo_9S_{11} et $Mo_{12}S_{14}$ sont liés via une jonction carrée Mo_2X_2 décrite sur la figure 1.5, b, avec une coordination de 12 (six jonctions carrées). Les motifs du même type ne sont pas liés entre eux.

Figure 1.67 : Motifs Mo₉S₁₁ et Mo₁₂S₁₄ rencontrés dans les composés A₄Mo₂₁S₂₅

Prenons l'exemple du composé Rb₄Mo₂₁S₂₅ [53] pour décrire le type structural de ces deux composés reportés dans le tableau 1.11. Dans ce composé, Rb occupe des positions de Wyckoff 12*c*, selon deux sites distincts Rb1 et Rb2. Des paires Rb1–Rb2 s'insèrent selon l'axe *c* entre un motif Mo₉S₁₁ (dont Rb2 est adjacent) et un motif Mo₁₂S₁₄ (dont Rb1 est adjacent), avec Rb1–Rb2 = 4,91 Å. La structure complète du composé est représentée sur la figure 1.68, a. Rb1 et Rb2 sont tous deux inscrits dans des polyèdres de soufre à 10 sommets, empilés en partageant une face triangulaire selon l'axe *c*, avec Rb1–S = 3,43–3,95 Å et Rb2–S = 3,21–3,80 Å (figure 1.68, b).

Figure 1.68 : Structure cristalline du composé Rb₄Mo₂₁S₂₅ ($R\overline{3}c$ H) [53] (a) et environnement de Rb dans ce même composé (b).

3.4.2. Propriétés électroniques

Les diagrammes d'OM des deux motifs isolés formant les composés A₄Mo₂₁S₂₅, à savoir Mo₉S₁₁ et Mo₁₂S₁₄, sont représentés sur la figure 1.69. Le premier possède un VEC « idéal » de 36 pour une charge de 4– pour lequel on observe un écart HO–BV important (1,29 eV), tandis que le second en présente deux : 48 (0,58 eV) et 50 (1,13 eV) pour des charges respectives de 4– et de 6–. Notons que ce sont les mêmes VEC « idéaux » que l'on retrouve pour les modèles isolés [Mo₉Se₁₁]^{4–} et [Mo₁₂Se₁₄]^{4–/6–} calculés précédemment (voir figures 1.11 et 1.21). Les combinaisons 36 + 48 et 36 + 50, donnant des VEC de 84 et 86, devraient conduire à des composés A₄Mo₂₁S₂₅ semi-conducteurs.

Figure 1.69 : Diagrammes d'orbitales moléculaires des motifs à clusters isolés $[Mo_9S_{11}]^{4-}$ (D_{3h} , VEC = 36) (a) et $[Mo_{12}S_{14}]^{4-}$ (D_{3d} , VEC = 48) (b).

Nous avons ensuite effectué des calculs périodiques sur le composé expérimental Rb₄Mo₂₁S₂₅ (VEC = 80) et sur le composé hypothétique Sr₄Mo₂₁S₂₅ (VEC = 84), dans lequel on a remplacé le rubidium univalent par le strontium divalent (voir détails des calculs en fin de chapitre). Les courbes de DOS de ces deux composés sont tracées sur la figure 1.70. Rb₄Mo₂₁S₂₅ est conducteur métallique, et sa DOS est similaire à celle calculée par Huguenot et collaborateurs [80], avec deux bandes interdites au-delà du niveau de Fermi, la première autour de +0,5 eV. Saillard et collaborateurs [53] prédisent trois bandes interdites par un calcul utilisant la méthode de Hückel étendue, mais cette dernière est attendue moins précise.

Quant à $Sr_4Mo_{21}S_{25}$, il est également conducteur métallique, alors même qu'il atteint l'un des deux VEC « idéaux » supposés pour $A_4Mo_{21}S_{25}$, à savoir 36 + 48 = 84. Or, le composé $Cs_2Cu_2Mo_{12}Se_{14}$ étudié précédemment présente une valeur de bande interdite de 0,07 eV pour un VEC de 48 (figure 1.22, a). Il est vraisemblable que dans $Sr_4Mo_{21}S_{25}$, cette petite bande interdite attribuée à $Mo_{12}S_{14}$ soit fermée, expliquant la nature de conducteur métallique du composé. Les niveaux molybdène des motifs Mo₉S₁₁ et Mo₁₂S₁₄ ont été projetés, afin d'essayer d'attribuer un VEC à chacun dans ces composés. Dans Rb₄Mo₂₁S₂₅, il manque trop d'électrons pour attribuer un VEC « idéal » aux motifs à clusters. On peut cependant équilibrer les degrés d'oxydation du molybdène entre les deux motifs pour arriver à des VEC respectifs de 34 (Mo^{2,222+}) et 46 (Mo^{2,167+}) pour Mo₉S₁₁ et Mo₁₂S₁₄ analogues à ceux trouvés dans les composés expérimentaux à un seul motif Rb₂Mo₉S₁₁ [17] et Rb₂Mo₁₂Se₁₄ [19]. Dans Sr₄Mo₂₁S₂₅, la DOS ne s'annule pas au niveau de Fermi et on observe un pic attribué majoritairement à Mo₁₂ juste au-delà. Des VEC respectifs de 36 (Mo²⁺) et 48 (Mo²⁺) peuvent être attribués à Mo₉S₁₁ et Mo₁₂S₁₄.

Figure 1.70 : Densités d'états des composés $Rb_4Mo_{21}S_{25}$ (VEC = 80) (a) et $Sr_4Mo_{21}S_{35}$ (VEC = 84) (b), avec projection des états molybdène des motifs à clusters Mo_9S_{11} et $Mo_{12}S_{14}$.

3.5. Composés de formule générale $A_6Mo_{27}S_{31}$ à motifs Mo_9X_{11} et $Mo_{18}X_{20}$

3.5.1. Description structurale

Les deux composés de formule générale $A_6Mo_{27}S_{31}$, avec A = Rb, Cs, contiennent des motifs Mo_9S_{11} et $Mo_{18}S_{20}$, dans un rapport un pour un. Ces composés cristallisent dans le groupe d'espace trigonal $R\overline{3}c$ (Z = 6) [53, 79]. Les deux motifs ont été décrits précédemment (figures 1.5, a et 1.29). La formule $Mo_{27}S_{31}$ est le résultat de la somme $Mo_9S_{11} + Mo_{18}S_{20}$ (figure 1.71). Mo_9S_{11} et $Mo_{18}S_{20}$ sont liés via une jonction carrée Mo_2X_2 décrite sur la figure 1.5, b, avec une coordination de 12 (six jonctions carrées). Les motifs du même type ne sont pas liés entre eux.

Figure 1.71 : Motifs Mo₉S₁₁ et Mo₁₈S₂₀ rencontrés dans les composés A₆Mo₂₇S₃₁.

Les propriétés structurales de ces composés sont reportées dans le tableau 1.11. Le type structural qu'ils adoptent peut, par exemple, être décrit à partir du composé $Cs_6Mo_{27}S_{31}$ [79]. Dans ce composé, Cs occupe des positions de Wyckoff 12c (*Z* = 6), selon trois sites distincts. On observe la formation de chaînettes Cs₃ (Cs1–Cs2–Cs3) selon l'axe *c* ; celles-ci s'insèrent entre un cluster Mo₉S₁₁ (adjacent à Cs3) et un cluster Mo₁₈S₂₀ (adjacent à Cs1), avec Cs1–Cs2 = 4,40 Å et Cs2–Cs3 = 4,72 Å. La structure cristalline de Cs₆Mo₂₇S₃₁ est représentée sur la figure 1.72, a. Cs1 et Cs3 s'insèrent dans un polyèdre de S à 10 sommets, avec Cs1–S = 3,28–3,78 Å et Cs3–S = 3,55–3,99 Å. Cs2, quant à lui, est inscrit dans un polyèdre de S à neuf sommets, avec Cs2–S = 3,54–3,73 Å. Ces trois polyèdres sont empilés selon l'axe *c* en mettant en commun une face triangulaire (voir figure 1.72, b).

Figure 1.72 : Structure cristalline du composé $Cs_6Mo_{27}S_{31}$ ($R\overline{3}c$ H) [79] (a) et environnement de Cs dans ce même composé (b).

3.5.2. Propriétés électroniques

Afin d'étudier la structure électronique des composés $A_6Mo_{27}S_{31}$, il faut s'intéresser aux deux types de motifs à clusters qui les composent. Le diagramme d'OM du modèle isolé $[Mo_9S_{11}]^{4-}$ a été discuté précédemment (figure 1.69, a) et présente un VEC « idéal » de 36. Le diagramme de $Mo_{18}S_{20}$ est reporté sur la figure 1.73. Ce type de motif possède deux VEC « idéaux » pour lesquels un écart HO–BV significatif est observé : 74 (0,48 eV, soit $[Mo_{18}S_{20}]^{6-}$

) et 76 (0,99 eV, soit $[Mo_{18}S_{20}]^{8-}$), soit les mêmes que pour $Mo_{18}Te_{20}$ reporté sur la figure 1.32. Les combinaisons 36 + 74 et 36 + 76, donnant des VEC « idéaux » respectifs de 110 et 112, devraient sans doute conduire à des composés $A_6Mo_{27}S_{31}$ semi-conducteurs.

Nous avons ensuite effectué des calculs périodiques sur Rb₆Mo₂₇S₃₁ (VEC = 106) et sur le composé hypothétique Ba₆Mo₂₇S₃₁ (VEC = 112), dans lequel le baryum divalent substitue le rubidium univalent (voir détails des calculs en fin de chapitre). Les courbes de DOS de ces deux composés, tracées sur la figure 1.74, confirment que le composé avec un VEC de 112 est semiconducteur avec une bande interdite de 0,63 eV. Le composé expérimental, avec un VEC de seulement 106, est prédit conducteur métallique, comme attendu. Sa courbe de DOS est similaire à celle calculée par Huguenot et collaborateurs à l'aide de la méthode LMTO-ASA [80].

Figure 1.73 : Diagramme d'orbitales moléculaires du motif à clusters isolé $[Mo_{18}S_{20}]^{4-}$ (D_{3d} , VEC = 72).

Nous avons également projeté les états du molybdène dans les motifs Mo_9S_{11} et $Mo_{18}S_{20}$, afin de tenter d'attribuer un VEC pour chacun des deux types de motifs. Dans le composé hypothétique $Ba_6Mo_{27}S_{31}$, le VEC de 112 suggère que les deux motifs ont atteint leur VEC « idéal » maximal, soit 36 pour $[Mo_9S_{11}]^{4-}$ (Mo^{2+}) et 76 pour $[Mo_{18}S_{20}]^{8-}$ ($Mo^{1,777+}$).

Dans le composé expérimental Rb₆Mo₂₇S₃₁, le déficit d'électrons est trop important pour que l'un des deux motifs isolés atteigne son VEC « idéal ». Ceci est confirmé par la projection des atomes molybdène des clusters Mo₉ et Mo₁₈, qui montre des niveaux vacants appartenant aux deux types de motifs en haut de la bande de valence. Au vu des diagrammes d'OM de Mo₉S₁₁ et Mo₁₈S₂₀ (figures 1.69, a et 1.73), on suppose que Mo₉S₁₁ a un VEC de 34 (Mo^{2,222+}) comme dans Rb₂Mo₉S₁₁ [17], et Mo₁₈S₂₀ un VEC de 72 (Mo²⁺) comme dans Cs₄Mo₁₈Te₂₀ [19].

Figure 1.74 : Densités d'états des composés $Rb_6Mo_{27}S_{31}$ (VEC = 106) (a) et $Ba_6Mo_{27}S_{31}$ (VEC = 112) (b), avec projection des états molybdène des motifs Mo_9S_{11} et $Mo_{18}S_{20}$.

3.6. Étude du composé Rb₈Mo₃₃S₃₇ à motifs Mo₉S₁₁ et Mo₂₄S₂₆

3.6.1. Description structurale

Le composé Rb₈Mo₃₃S₃₇, le seul de sa famille, cristallise dans le groupe d'espace trigonal $R\overline{3}c$ [53] (Z = 6). Il contient des motifs Mo₉S₁₁ et Mo₂₄S₂₆, dans un rapport un pour un. Tous deux ont été décrits précédemment dans ce chapitre sur les figures 1.5, a et 1.39. La formule Mo₃₃S₃₇ résulte de Mo₉S₁₁ + Mo₂₄S₂₆ (voir figure 1.75). Les motifs Mo₉S₁₁ et Mo₂₄S₂₆ sont liés via une jonction carrée Mo₂X₂ représentée sur la figure 1.5, b, avec une coordination de 12 (six jonctions carrées). Les motifs du même type ne sont pas liés entre eux.

Figure 1.75 : Motifs Mo₉S₁₁ et Mo₂₄S₂₆ rencontrés dans le composé Rb₈Mo₃₃S₃₇.

Dans le composé Rb₈Mo₃₃S₃₇, les atomes Rb occupent des positions de Wyckoff 12c (*Z* = 6), selon quatre sites distincts. Ils forment des chaînettes Rb₄ (Rb1–Rb2–Rb3–Rb4), positionnées entre un cluster Mo₉S₁₁ (adjacent à Rb1) et un cluster Mo₂₄S₂₆ (adjacent à Rb4) selon l'axe *c*. Les distances au sein de ces chaînettes sont Rb1–Rb2 = 4,53 Å, Rb2–Rb3 = 4,54 Å et Rb3–Rb4 = 4,85 Å. La structure cristalline du composé est représentée sur la figure 1.76, a. Rb1 et Rb4 s'insèrent dans des polyèdres de S à 10 sommets, avec Rb1–S = 3,19–3,83 Å et Rb4–S = 3,42–4,00 Å. Les atomes Rb2 et Rb3, quant à eux, sont inscrits dans des polyèdres de S à neuf sommets, avec Rb2–S = 3,44–3,68 Å et Rb3–S = 3,49–3,72 Å. Ces polyèdres partagent une face triangulaire avec le polyèdre voisin et sont ainsi empilés tous les quatre selon l'axe *c*, tel que représenté sur la figure 1.76, b.

Figure 1.76 : Structure cristalline du composé $Rb_8Mo_{33}S_{37}$ ($R\overline{3}c$ H) [53] (a) et environnement de Rb dans ce même composé.

3.6.2. Propriétés électroniques

Le diagramme d'OM de $[Mo_9S_{11}]^{4-}$ a été reporté auparavant sur la figure 1.69, a, et présente un VEC « idéal » de 36. Le modèle de motif isolé correspondant au second motif présent dans Rb₈Mo₃₃S₃₇, à savoir Mo₂₄S₂₆, n'a pas pu être optimisé par DFT pour la charge –
4. En revanche, le modèle a convergé avec une charge –6. Nous avons donc utilisé le modèle $[Mo_{24}S_{26}]^{6-}$, dont le diagramme d'OM est tracé sur la figure 1.77. On y observe trois écarts HO–BV non négligeables, pour des VEC de 98, 100 et 102. Les deux plus significatifs, pour des VEC de 100 et 102, présentent des écarts HO–BV respectifs de 0,59 (correspondant à $[Mo_{24}S_{26}]^{8-}$) et 0,79 eV (correspondant à $[Mo_{24}S_{26}]^{10-}$). Notons qu'en raison du changement S vs. Te et de la charge –6 vs. –4, les diagrammes d'OM de $[Mo_{24}S_{26}]^{6-}$ et de $[Mo_{24}Te_{26}]^{4-}$ (figure 1.41) diffèrent quelque peu, mais on observe dans les deux cas des écarts HO–BV significatifs pour des VEC de 100 et 102. Les combinaisons (36 + 100)/2 et (36 + 102), soient des VEC de 136 et 138, devraient conduire à des composés semi-conducteurs.

Figure 1.77 : Diagramme d'orbitales moléculaires du motif isolé [Mo₂₄S₂₆]^{6–} (*O*_h, VEC = 98).

Ensuite, nous avons effectué des calculs périodiques sur Rb₈Mo₃₃S₃₇ (VEC = 132). La courbe de DOS de ce composé montre qu'il est conducteur métallique comme attendu (figure 1.78) et comme prédit également par Huguenot et collaborateurs à partir de calculs LMTO-ASA [78]. Outre un creux de densité d'états aux alentours de 0,4 eV qui doit correspondre au compte « idéal » de 136, le composé présente deux bandes interdites au-delà du niveau de

Fermi, de 0,24 et 0,36 eV, dont la première correspond au compte « idéal » de 138. Cette hypothèse s'appuie sur la projection des niveaux molybdène dans les motifs Mo_9S_{11} et $Mo_{24}S_{26}$: le pic situé juste avant la première bande interdite autour de 0,5 eV est très majoritairement attribué à Mo_{24} et doit correspondre au niveau a_{2g} du modèle isolé $[Mo_{24}S_{26}]^{6-}$. Le pic centré autour de 0,75 eV présente un fort caractère Mo_9Se_{11} . Son remplissage correspondrait à un VEC de 38 pour le cluster Mo_9Se_{11} , compte qui n'a jamais été observé expérimentalement. Compte tenu de ces projections, des comptes respectifs de 34 ($Mo^{2,222+}$) et 98 ($Mo^{1,917+}$) pour Mo_9S_{11} et $Mo_{24}S_{26}$ peuvent être proposés pour $Rb_8Mo_{33}S_{37}$ (VEC = 132). De façon intéressante, ces comptes sont ceux des composés expérimentaux $Rb_2Mo_9S_{11}$ [17] et $Cs_6Mo_{24}Te_{26}$ [19].

Figure 1.78 : Densités d'états du composé $Rb_8Mo_{33}S_{37}$ (VEC = 132), avec projection des états molybdène des motifs Mo_9S_{11} et $Mo_{24}S_{26}$.

3.7. Étude du composé Rb₁₀Mo₃₉S₄₃ à motifs Mo₉S₁₁ et Mo₃₀S₃₂

3.7.1. Description structurale

Le composé Rb₁₀Mo₃₉S₄₃, le seul de sa catégorie, cristallise dans le groupe d'espace trigonal $R\overline{3}c$ (Z = 6) [80]. Il contient des motifs Mo₉S₁₁ et Mo₃₀S₃₂, dans un rapport un pour un. Le cluster Mo₉X₁₁ a été décrit précédemment dans ce chapitre sur la figure 1.5, a. Quant au cluster Mo₃₀S₃₂, il n'est rencontré, selon l'état de l'art, que dans ce composé [80]. Il peut être vu comme le résultat de la condensation de neuf motifs octaédriques Mo₆S₈ selon une face triangulaire, ou bien comme l'empilement de 10 faces Mo₃S₃ en configuration décalée. Les six ligands appartenant aux deux faces extérieures sont des ligands *i–a* partagés avec les motifs voisins, tandis que les 26 ligands des faces du milieu sont notés *i*. À ces faces Mo₃S₃, on ajoute un ligand *a–i* coiffant chacun des six Mo des deux faces extérieures, et deux autres ligands *i* venant coiffer directement chacune de ces deux faces extérieures. Le motif Mo₃₀S₃₂ correspond à la contraction de la formule développée Mo₃₀Sⁱ₂₆ S^{i-a}_{6/2} S^{a-i}_{6/2}. Enfin, la formule Mo₃₃S₃₇ résulte de Mo₉S₁₁ + Mo₃₀S₃₂ (figure 1.79). Les motifs Mo₉S₁₁ et Mo₃₀S₃₂ sont liés via une jonction carrée Mo₂X₂ représentée sur la figure 1.5, b, avec une coordination de 12 (six jonctions carrées). Les motifs du même type ne sont pas liés entre eux.

Figure 1.79 : Motifs Mo₉S₁₁ et Mo₃₀S₃₂ rencontrés dans le composé Rb₁₀Mo₃₉S₄₃.

Dans le composé Rb₁₀Mo₃₉S₄₃, les atomes Rb occupent des positions de Wyckoff 12c (*Z* = 6), et présentent cinq sites distincts. On observe la formation de chaînettes Rb₅ (Rb1–Rb2– Rb3–Rb4–Rb5) qui viennent se placer entre un cluster Mo₉S₁₁ (adjacent à Rb1) et un cluster Mo₃₀S₃₂ (adjacent à Rb5), selon l'axe *c*. Les distances Rb–Rb dans ces chaînettes sont longues : Rb1–Rb2 = 4,52 Å, Rb2–Rb3 = 4,46 Å, Rb3–Rb4 = 4,56 Å et Rb4–Rb5 = 4,83 Å et ne témoignent d'aucune interaction covalente. La structure cristalline du composé est représentée sur la figure 1.80, a. Rb1 et Rb5 s'insèrent dans des polyèdres de S à 10 sommets, avec Rb1–S = 3,18– 3,84 Å et Rb5–S = 3,40–3,99 Å. Les atomes Rb2, Rb3 et Rb4, sont inscrits dans des polyèdres de S à neuf sommets, avec Rb2–S = 3,43–3,69 Å, Rb3–S = 3,49–3,64 Å et Rb4–S = 3,50–3,70. Ces polyèdres partagent une face triangulaire avec le polyèdre voisin et sont ainsi empilés tous les cinq selon l'axe *c*, tel que représenté sur la figure 1.80, b.

Figure 1.80 : Structure cristalline du composé $Rb_{10}Mo_{39}S_{43}$ ($R\overline{3}c$ H) [80] (a) et environnement de Rb dans ce même composé (b).

3.7.2. Propriétés électroniques

Le composé $Rb_{10}Mo_{39}S_{43}$ est composé de deux types de motifs : Mo_9S_{11} et $Mo_{30}S_{32}$. Un modèle de motif isolé $[Mo_{30}S_{32}]^{4-}$ (VEC = 120) de symétrie D_{3d} a été optimisé par la DFT. Pour vérifier que la structure du modèle isolé est correcte, les distances Mo–Mo et Mo–S de ce

modèle optimisé sont comparées avec celles du motif Mo₃₀S₃₂ dans le composé Rb₁₀Mo₃₉S₄₃ et reportées dans le tableau 1.13. Les distances Mo–S calculées sont proches de celles du composé expérimental, avec des écarts compris entre 0 et 2%. Les distances Mo–Mo sont également reproduites avec une précision correcte, avec une erreur comprise entre 0 et 3%. Ces écarts, légèrement plus élevés que ceux observés dans la plupart des modèles présentés jusqu'ici, restent raisonnables.

Tableau 1.13 : Comparaison des distances interatomiques mesurées expérimentalement pour le cluster $Mo_{30}S_{32}$ dans le composé $Rb_{10}Mo_{39}S_{43}$ [80] avec celles calculées pour le motif à clusters isolé $[Mo_{30}S_{32}]^{4-}$ (VEC = 120).

Distance	Exp. (Å)	Calc. (Å)	O S1
Mo1–Mo1	2,62	2,55	
Mo2–Mo2	2,67	2,74	IVIOI
Mo3–Mo3	2,66	2,73	
Mo4-Mo4	2,66	2,70	S3 CHARTER Mo2
Mo5-Mo5	2,66	2,70	
Mo1–Mo2	2,70	2,69	Mo3
Mo2–Mo3	2,67	2,66	34
Mo3-Mo4	2,70	2,70	
Mo4-Mo5	2,67	2,69	
Mo5-Mo5'	2,70	2,67	Mo5
Mo1–S1	2,39	2,46	S6
Mo1–S2	2,47	2,48	
Mo1–S3	2,60	2,55	S6'
Mo2–S2	2,47	2,50	
Mo2–S3	2,48	2,50	
Mo2–S4	2,59	2,55	
Mo3–S3	2,58	2,58	
Mo3–S4	2,49	2,52	
Mo3-S5	2,59	2,57	
Mo4-S4	2,58	2,53	
Mo4-S5	2,50	2,52	
Mo4-S6	2,59	2,55	
Mo5-S5	2,58	2,56	8
Mo5-S6	2,51	2,51	
Mo5-S6'	2,59	2,56	

Le diagramme d'OM de $[Mo_{30}S_{32}]^{4-}$ est représenté sur la figure 1.81. Deux écarts HO–BV importants sont observés pour des VEC de 126 (0,56 eV) et 128 (0,66 eV), qui correspondent

formellement à $[Mo_{30}S_{32}]^{10-}$ et $[Mo_{30}S_{32}]^{12-}$. Sachant que $[Mo_9S_{11}]^{4-}$ montre un VEC « idéal » de 36 (figure 1.69, a), les combinaisons (36 + 126) et (36 + 128) donnent des VEC « idéaux » totaux respectifs de 162 et 164, lesquels doivent conduire à des composés A_xMo₃₉X₄₃ semiconducteurs.

Figure 1.81 : Diagramme d'orbitales moléculaires du motif à clusters isolé $[Mo_{30}S_{32}]^{4-}$ (D_{3d} , VEC = 120).

Enfin, nous avons fait des calculs périodiques sur Rb₁₀Mo₃₉S₄₃ (VEC = 158). La DOS, tracée sur la figure 1.82, montre que le composé est métallique comme attendu et confirme des calculs LMTO-ASA précédents effectués par Huguenot et collaborateurs [80]. Un creux de densité d'états est observé autour de 0,3 eV qui doit correspondre au compte « idéal » de 162. Ensuite, deux bandes interdites de 0,12 et 0,27 eV sont observées un peu au-delà du niveau de Fermi, respectivement à 0,5 et 0,75 eV. Le remplissage de la première correspondrait vraisemblablement au compte « idéal » de 164.

La projection des niveaux de molybdène nous indique que le pic situé avant la première bande interdite est majoritairement attribué à Mo₃₀, et doit dériver du niveau a_{1u} du modèle isolé [Mo₃₀S₃₂]^{4–}. Enfin, le pic situé avant la seconde bande interdite, majoritairement attribué à Mo₉, comme pour Rb₈Mo₃₃S₃₇, doit correspondre à un VEC de 38 pour le motif Mo₉Se₁₁, un compte jamais été observé expérimentalement. Enfin, ces projections nous permettent d'attribuer des comptes respectifs de 34 (Mo^{2,222+}) et 124 (Mo^{1,867+}) pour Mo₉S₁₁ et Mo₃₀S₃₂ dans le composé Rb₁₀Mo₃₉S₄₃ (VEC = 158).

Figure 1.82 : Densités d'états du composé $Rb_{10}Mo_{39}S_{43}$ (VEC = 158), avec projection des états molybdène des motifs Mo_9S_{11} et $Mo_{30}S_{32}$.

3.8. Étude du composé Rb4Mo21Se24 à motifs Mo12Se14 et Mo15Se17

3.8.1. Description structurale

Le composé Rb₄Mo₂₁S₂₄, lui aussi seul exemple rapporté dans sa famille, cristallise dans le groupe d'espace trigonal $R\overline{3}$ (Z = 6) [81]. Il contient des motifs Mo₁₂Se₁₄ et Mo₁₅Se₁₇, dans un rapport un pour deux. Tous deux ont été décrits précédemment dans ce chapitre, sur les figures 1.15 et 1.23. La formule Mo₂₁Se₂₄ résulte de 1/2 (Mo₁₂Se₁₄ + 2 Mo₁₅Se₁₇) (figure 1.83). Les motifs de même type s'empilent par couches selon *c* : une couche Mo₁₂Se₁₄ est suivie de deux couches Mo₁₅Se₁₇. De ce fait, les motifs Mo₁₂Se₁₄ sont liés à six motifs Mo₁₅Se₁₇ (trois audessus et trois en dessous selon *c*), tandis que ces derniers sont liés à trois motifs Mo₁₂Se₁₄ et trois motifs Mo₁₅Se₁₇. Ils sont liés via une jonction carrée Mo₂X₂ décrite sur la figure 1.5, b avec une coordination de 12 (six jonctions carrées).

Figure 1.83 : Motifs Mo₁₂Se₁₄ et Mo₁₅Se₁₇ rencontrés dans le composé Rb₄Mo₂₁Se₂₄.

Dans le composé Rb₄Mo₂₁Se₂₄, les atomes Rb occupent des positions de Wyckoff 6c (*Z* = 6), selon quatre sites distincts. Rb1, Rb2 et Rb3 forment des chaînettes Rb₆ (Rb1–Rb2–Rb3–Rb3–Rb2–Rb1) s'insérant entre deux motifs Mo₁₅Se₁₇ selon l'axe *c*, tandis que Rb4 s'insère seul entre un cluster Mo₁₅Se₁₇ et un cluster Mo₁₂Se₁₄, également selon l'axe *c*. La structure cristalline du composé est représentée sur la figure 1.84. Rb1 s'insère dans un polyèdre de Se à 10 sommets, avec Rb1–Se = 3,51–3,79 Å. Rb2 et Rb3 sont tous deux inscrits dans des polyèdres de Se à neuf sommets, avec Rb2–Se = 3,52–3,80 Å et Rb3–Se = 3,52–3,79 Å. Les polyèdres de Rb2 et Rb3 s'empilent en mettant en commun une face triangulaire le long de l'axe *c*. Les empilements consécutifs Rb2–Rb3 sont en configuration décalée. L'enchaînement des polyèdres de la chaînette Rb₆ est représenté sur la figure 1.85, a. Enfin, Rb4 s'insère dans un polyèdre dass un polyèdre de Se à 11 sommets, avec Rb4–Se = 3,52–3,98 Å (figure 1.85, b).

Figure 1.84 : Structure cristalline du composé Rb₄Mo₂₁Se₂₄ (R3 H) [81].

Figure 1.85 : Empilement des polyèdres de Rb1, Rb2 et Rb3 selon l'axe c (a) et environnement de Rb4 dans le composé Rb₄Mo₂₁Se₂₄.

3.8.2. Propriétés électroniques

Les structures électroniques des deux types de motifs retrouvés dans Rb₄Mo₂₁Se₂₄, à savoir Mo₁₂Se₁₄ et Mo₁₅Se₁₇, ont été étudiées précédemment. Leurs diagrammes d'orbitales moléculaires respectifs avec une charge de 4– sont reportés sur les figures 1.21 et 1.32. $[Mo_{12}Se_{14}]^{4-}$ présente deux écarts HO–BV conséquents pour des VEC de 48 et 50 (soit $[Mo_{12}Se_{14}]^{4-/6-}$), tandis que $[Mo_{15}Se_{17}]^{4-}$ n'en montre qu'un, pour un VEC de 62 (soit $[Mo_{15}Se_{17}]^{6-}$). Les combinaisons (48 + 2 x 62)/2 et (50 + 2 x 62)/2, c'est-à-dire 86 et 87, doivent conduire à des composés semi-conducteurs.

Pour vérifier cette hypothèse, nous avons réalisé des calculs périodiques sur le composé Rb₄Mo₂₁Se₂₄ (VEC = 82) et sur le composé hypothétique Sr₄Mo₂₁Se₂₄ (VEC = 86), dans lequel le rubidium univalent est substitué par le strontium divalent. Les courbes de DOS de ces deux composés sont tracées sur la figure 1.86 et montrent que ces deux composés sont métalliques, avec une bande interdite au-delà du niveau de Fermi (0,53 eV pour Rb₄Mo₂₁Se₂₄ et 0,54 eV pour Sr₄Mo₂₁Se₂₄) qui doit correspondre à un VEC de 87. Comme observé dans Pb₂Mo₉Se₁₁ (figure 1.66) et Sr₄Mo₂₁S₂₅ (figure 1.70), le caractère métallique de Sr₄Mo₂₁Se₂₄ doit s'expliquer par la fermeture de la petite bande interdite du cluster Mo₁₂Se₁₄ pour un VEC de 48.

Enfin, les niveaux molybdène des motifs $Mo_{12}Se_{14}$ et $Mo_{15}Se_{17}$ ont été projetés, pour leur attribuer un VEC dans chacun des deux composés. Dans $Rb_4Mo_{21}Se_{24}$ (VEC = 82), on observe qu'il reste plusieurs niveaux vacants pour chacun des clusters, et les projections des niveaux des deux clusters Mo_{15} sont identiques ; ils ont donc le même VEC. En supposant des degrés d'oxydation proches pour Mo dans les deux types de clusters, on peut supposer des VEC de 46 pour $Mo_{12}Se_{14}$ ($Mo^{2,167+}$) et de 59 pour $Mo_{15}Se_{17}$ ($Mo^{2,067+}$), comme dans les composés expérimentaux $Rb_2Mo_{12}Se_{14}$ [19] et $Rb_3Mo_{15}Se_{17}$ [33]. Quant à $Sr_4Mo_{21}Se_{24}$, la projection montre qu'un seul niveau vacant se trouve entre E_F et la bande interdite, et qu'il s'agit d'un niveau majoritairement attribué à Mo_{12} . On en déduit que le motif $Mo_{15}Se_{17}$ a atteint son VEC idéal de 62 ($Mo^{1,867+}$), tandis que $Mo_{12}Se_{14}$ a un VEC de 48 (Mo^{2+}).

Figure 1.86 : Densités d'états des composés $Rb_4Mo_{21}Se_{24}$ (VEC = 82) (a) et $Sr_4Mo_{21}Se_{24}$ (VEC = 86) (b), avec projection des états molybdène dans les clusters Mo_{12} et Mo_{15} .

3.9. Étude du composé Rb₅Mo₂₇Se₃₁ à motifs Mo₁₂Se₁₄ et Mo₁₅Se₁₇

3.9.1. Description structurale

Le composé Rb₅Mo₂₇Se₃₁ cristallise dans le groupe d'espace hexagonal $P6_3/m$ (Z = 2) [82]. Comme précédemment pour Rb₄Mo₂₁S₂₄, il contient les types de motifs Mo₁₂Se₁₄ et Mo₁₅Se₁₇, dans un rapport un pour un. Les deux ont été décrits précédemment sur les figures 1.23 et 1.29. La formule Mo₂₇Se₃₁ résulte de Mo₁₂Se₁₄ + Mo₁₅Se₁₇ (figure 1.87). Mo₁₂Se₁₄ et Mo₁₅Se₁₇ sont liés via une jonction carrée Mo₂X₂ décrite sur la figure 1.5, b, avec une coordination de 12 (six jonctions carrées). Les motifs du même type ne sont pas liés entre eux.

Figure 1.87 : Motifs Mo₁₂Se₁₄ et Mo₁₅Se₁₇ rencontrés dans le composé Rb₅Mo₂₇Se₃₁.

Dans le composé Rb₅Mo₂₇Se₃₁ [82], les atomes Rb sont répartis selon les trois sites distincts Rb1, Rb2 et Rb3 : le premier occupe des positions de Wyckoff 2a, les deux autres des positions 4f (Z = 2). Les atomes Rb1 s'insèrent entre deux motifs Mo₁₂Se₁₄ le long de l'axe c, tandis que Rb2 et Rb3 forment des chaînettes Rb₄ (Rb2–Rb3–Rb3–Rb2) venant se positionner entre deux motifs Mo₁₅Se₁₇ selon l'axe c. La structure cristalline du composé est représentée sur la figure 1.88, a. Rb1 s'insère dans un polyèdre de Se à 11 sommets, avec Rb1–Se = 3,53–

3,95 Å. L'atome Rb2, lui, est inscrit dans un polyèdre de Se à 10 sommets, avec Rb2–Se = 3,52– 3,79 Å. Enfin, Rb3 s'insère dans un polyèdre de Se à 9 sommets, avec Rb3–Se = 3,52–3,81 Å. Les polyèdres de Rb3 s'empilent par deux selon une face triangulaire, tandis que trois polyèdres Rb1 viennent entourer un empilement de deux polyèdres Rb3 en y mettant trois sommets en commun. Cet empilement, ainsi que la position des polyèdres de Rb2 par rapport aux autres, est représenté sur la figure 1.88, b.

Figure 1.88 : Structure cristalline du composé $Rb_5Mo_{27}Se_{31}$ ($P6_3/m$) [82] (a) et environnement de Rb dans ce même composé (b).

3.8.2. Propriétés électroniques

Les modèles moléculaires $[Mo_{12}Se_{14}]^{4-}$ et $[Mo_{15}Se_{17}]^{4-}$ étudiés précédemment (figures 1.21 et 1.32) présentent respectivement des écarts HO–BV conséquents pour des VEC de 48 ou 50 et de 62. Les combinaisons (48 + 62) et (50 + 62)/2, c'est-à-dire 110 et 112, doivent être les VEC « idéaux » de Mo₂₇X₃₁ et conduire à des composés semi-conducteurs.

Nous avons effectué des calculs périodiques sur Rb₅Mo₂₇Se₃₁ (VEC = 105) et sur le composé hypothétique Sr₅Mo₂₇Se₃₁ (VEC = 110), dans lequel on substitue le rubidium univalent par le strontium divalent. Ces deux courbes de DOS tracées sur la figure 1.89 montrent que les deux composés sont conducteurs métalliques. Pourtant, d'après les diagrammes d'OM des motifs isolés, Sr₅Mo₂₇Se₃₁ atteint l'un des VEC « idéaux » supposés pour Mo₂₇X₃₁ (VEC = 110) correspondant à des VEC respectifs de 48 et 62 pour Mo₁₂Se₁₄ et Mo₁₅Se₁₇. Cependant, comme dans Sr₄Mo₂₁S₂₅, la « bande interdite » correspondant au compte de 48 pour Mo₁₂Se₁₄ s'est refermée.

Enfin, les niveaux de Mo dans Mo₁₂Se₁₄ et Mo₁₅Se₁₇ ont été projetés, afin d'attribuer un VEC à chaque type de motif. Malheureusement, le composé Rb₅Mo₂₇Se₃₁ est trop déficitaire en électrons pour attribuer un VEC précis à chaque cluster. Néanmoins, il y a au moins deux niveaux à caractère Mo₁₂ inoccupés au-delà du niveau de Fermi. Ceci permet de supposer un VEC de 46 pour Mo₁₂Se₁₄. En supposant des degrés d'oxydation de Mo proches dans les deux types de clusters, le VEC de 46 pour Mo₁₂Se₁₄ (Mo^{2,167+}) amène à un VEC de 59 pour Mo₁₅Se₁₇ (Mo^{2,067+}), comme dans les composés expérimentaux Rb₂Mo₁₂Se₁₄ [19] et Rb₃Mo₁₅Se₁₇ [33], discutés précédemment. Quant au modèle hypothétique Sr₅Mo₂₇Se₃₁, son niveau de Fermi est situé dans un creux de DOS, très proche d'un pic inoccupé largement à caractère Mo₁₂, permettant d'attribuer aux motifs Mo₁₂Se₁₄ [28] – et de 62 (Mo^{1,867+}).

113

Figure 1.89 : Densités d'états des composés $Rb_5Mo_{27}Se_{31}$ (VEC = 105) (a) et $Sr_5Mo_{27}Se_{31}$ (VEC = 110) (b), avec projection des états molybdène des clusters Mo_{12} et Mo_{15} .

4. Conclusion

Dans ce chapitre, nous avons discuté des propriétés structurales et électroniques des composés à clusters condensés de molybdène dérivés des phases de Chevrel. Les structures cristallines de 129 composés ont été rapportées à ce jour, appartenant à 23 types structuraux différents. Ces types structuraux peuvent être catégorisés selon le fait qu'ils comportent un ou deux types de motifs Mo_nX_{n+2} , à l'exception des composés à chaîne infinie Mo_6X_6 . La première catégorie rassemble 56 composés appartenant à 12 types structuraux différents, avec n = 6-36. La seconde catégorie en regroupe 73, cristallisant dans 12 types structuraux différents, avec n = 6-30. Divers cations peuvent y être insérés, parmi lesquels des alcalins, métaux de transition et métaux du groupe principal, notamment dans les composés à clusters condensés de petite taille. En présence de motifs plus gros que $Mo_{12}X_{14}$, seuls le rubidium et le césium sont retrouvés en insertion. Ceci est lié au fait que la taille des sites d'insertion cationiques augmente avec la taille des motifs. Enfin, les ligands X sont, le plus souvent, le soufre ou le sélénium. Quelques composés au tellure ont été rapportés, la plupart avec une chaîne infinie Mo_6X_6 ; les autres sont une série de quatre composés ternaires au césium.

La structure électronique de ces composés est intimement liée à leurs propriétés structurales. En effet, chaque type de motif isolé possède un ou plusieurs comptes d'électrons métalliques de valence (ou VEC, pour Valence Electron Concentration), dits « idéaux », pour lequel le composé devrait être semi-conducteur. Ces comptes idéaux sont modulés par la nature des contre-cations, qui sont la seule source extérieure d'électrons des motifs. La plupart des composés à chaîne infinie Mo₆X₆ sont attendus semi-conducteurs (22 sur 25). Concernant les 106 autres composés rapportés, deux seulement atteignent réellement leur VEC « idéal » de 36 : Ag₃RbMo₉Se₁₁ et Ag₂Tl₂Mo₉Se₁₁. Ils sont expérimentalement semi-conducteurs [18, 22]. Cinq autres composés, nommément Cu_{1,8}K₂Mo₉Se₁₁ (VEC = 35,8/36), Ag_{2,6}CsMo₉Se₁₁ (35,6/36), Cs₂Mo₁₂Se₁₄ (VEC = 46/50), K_{2,3}Mo₁₂Sl₄ (VEC = 46,3/50) et Rb_{2,65}Mo₁₂Sl₄ (VEC = 46,7/50), n'atteignent pas leur VEC « idéal », mais présentent cependant un comportement semi-conducteur d'après des mesures expérimentales [17, 21, 28, 29, 30]. Notons enfin que Cs₂Cu₂Mo₁₂Se₁₄ (VEC = 48/50) [28] présente un comportement semi-métallique d'après une étude expérimentale. Les autres composés sont des métaux à bande interdite (*gapped metals*) [81], présentant un comportement conducteur métallique, mais

avec une ou plusieurs bandes interdites au-delà du niveau de Fermi, potentiellement accessibles en augmentant le VEC par dopage (voir chapitre 2).

Les composés dont la structure est construite à partir de deux types de motifs Mo_nX_{n+2} adoptent un comportement métallique. D'une manière générale, il sera plus difficile d'atteindre un VEC « idéal » (donc un état semi-conducteur) par dopage, puisqu'il faudra saturer en électrons les deux types de motifs. Par exemple, le composé Tl₂Mo₉Se₁₁ [77] contient des motifs Mo₆Se₈ et Mo₁₂Se₁₄ avec des VEC déficitaires respectifs de 22 et 46, assez éloignés des comptes « idéaux » de 24 et 50.

Le but de ce chapitre était de faire l'état de l'art sur les composés à clusters condensés de molybdène chalcogènes et leurs propriétés électroniques, afin de voir lesquels sont semiconducteurs. Le chapitre suivant discute de leur application potentielle en thermoélectricité.

5. Détails des calculs

Les calculs d'optimisation géométrique sur les modèles moléculaires de motifs isolés ont été réalisés par la méthode de la fonctionnelle de la densité (DFT), en utilisant le code Amsterdam Density Functional ADF2019 [85]. Un jeu de fonctions slatériennes double- ζ avec une fonction de polarisation pour S et Se (STO-DZP) [86], couplé à la fonctionnelle GGA PBE [87], ont été utilisés. Une charge formelle de –4 a été fixée pour tous les motifs isolés, à l'exception des modèles isolés [Mo₂₄S₂₆]^{6–} et [Mo₃₆S₃₈]^{6–} qui ont convergé avec une charge formelle de –6.

Les calculs sur les composés à l'état solide ont été réalisés sur des structures cristallines extraites de la base ICSD (Inorganic Crystal Structure Database [88]), en utilisant le code DFT Vienna Ab initio Simulation Package (VASP) [89] avec la fonctionnelle PBE [85]. Les électrons de cœur ont été modélisés en utilisant la méthode PAW (Projector Augmented) [90] avec une énergie de troncature de 400 eV, correspondant à environ 1,3 fois la valeur maximale recommandée les pseudopotentiels utilisés parmi tous (https://www.vasp.at/wiki/index.php/Available_PAW_potentials). De façon générale, les grilles de points k dans les zones de Brillouin ont été générées par la méthode de Monkhorst (non centrées en Γ). Des maillages 3 x 3 x 3 ou 3 x 3 x 1 pour l'optimisation géométrique, et 9 x 9 x 9 ou 9 x 9 x 3 pour les calculs de DOS, en fonction de la taille des mailles élémentaires, ont été utilisés. L'optimisation géométrique des structures cristallines a été faite en trois étapes, avec groupe d'espace fixe : la relaxation des positions atomiques, la relaxation des paramètres de maille, puis la relaxation des deux à la fois. Les critères de convergence utilisés étaient de 10⁻⁵ eV pour les cycles électroniques SCF (champ autocohérent) et 10⁻³ eV/Å pour les forces au sein de la maille, excepté pour le composé Rb₁₀Mo₃₉S₄₃, pour lequel des critères moins exigeants de 10⁻⁴ eV (cycles SCF) et 10⁻² eV/Å (optimisation des forces) ont été retenus afin de faciliter les calculs en raison de sa très grande maille. La densité de charges est recalculée à la suite de l'optimisation géométrique et utilisée pour le calcul de densités d'états (DOS). Pour le tracé des courbes de DOS et des structures de bandes, le niveau de Fermi a été arbitrairement déplacé à 0 eV.

6. Bibliographie

- [1]R. Chevrel, M. Sergent, J.-Y. Prigent, J. Solid State Chem., 1971, 3, 515–519.
- [2]R. Chevrel, M. Sergent, in: Ø. Fischer, M. B. Maple (Eds.), *Top. Curr. Phys.*, Springer, Berlin, Heidelberg, **1982**, *32*, 25–86.
- [3]H. Schäfer, H. G. Von Schnering, Angew. Chem., 1964, 20, 833–868.
- [4]T. Hughbanks, R. Hoffmann, J. Am. Chem. Soc., 1983, 105, 1150–1162.
- [5]O. Peña, Phys. C. Supercond. Appl., 2015, 514, 95–112.
- [6]Ø. Fischer, Appl. Phys., **1978**, 16, 1–28.
- [7]J. Strachan, A. F. Masters, T. Maschmeyer, *Mat. Res. Bull.*, **2021**, *139*, 111286–111293.
- [8]D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, *Nature*, 2000, 407, 724–727.
- [9]Y.-P. Gao, J. Xu, K.-J. Huang, H. Lu, Y.-X. Pang, G. Li, *CrystEngComm*, **2021**, *23*, 7546–7564.
- [10] P. Novák, R. Imhof, O. Haas, *Electrochim. Acta*, **1999**, *45*, 1–2, 351–367.
- [11]T. Tsubota, M. Ohtaki, K. Eguchi, J. Ceram. Soc. Jpn., 1999, 8, 697–701.
- [12]T. Caillat, J.-P. Fleurial, J. Phys. Chem. Solids, 1998, 59, 1139–1144.
- [13]T. Caillat, J.-P. Fleurial, G. Snyder, Solid State Sci., 1999, 1, 535–544.
- [14]M. Ohta, H. Obara, A. Yamamoto, Mater. Trans., 2009, 60, 2129–2133.
- [15]P. Gougeon, J. Padiou, J.Y. Le Marouille, M. Potel, M. Sergent, J. Solid State Chem., 1984, 51, 2, 218–226.
- [16]S. Picard, M. Potel, P. Gougeon, Angew. Chem. Int. Ed., 1999, 38, 13–14, 2034–2036.
- [17]S. Picard, J.-F. Halet, P. Gougeon, M. Potel, Inorg. Chem., 1999, 38, 20, 4422–4429.
- [18]R. Al Rahal Al Orabi, P. Gougeon, P. Gall, B. Fontaine, R. Gautier, M. Colin, C. Candolfi, A. Dauscher, J. Hejtmanek, B. Malaman, B. Lenoir, *Inorg. Chem.*, 2014, 53, 21, 11699–11709.
- [19]C. Thomas, S. Picard, R. Gautier, P. Gougeon, M. Potel, J. Alloys Compd., 1997, 262–263, 305–310.
- [20] D. Salloum, P. Gougeon, M. Potel, Acta Cryst., 2006, 62, 35–37.
- [21] P. Gougeon, M. Potel, R. Gautier, Inorg. Chem., 2004, 43, 4, 1257–1263.
- [22]P. Gougeon, P. Gall, O. Merdrignac-Conanec, L. Aranda, A. Dauscher, C. Candolfi, B. Lenoir, *Inorg. Chem.*, 2017, 16, 9684–9692.

- [23]C. Candolfi, M. Míšek, P. Gougeon, R. Al Rahal Al Orabi, P. Gall, R. Gautier, S. Migot, J. Ghanbaja, J. Kaštil, P. Levinský, J. Hejtmánek, A. Dauscher, B. Malaman, B. Lenoir, *Phys. Rev. B*, **2020**, *101*, 134521–134531.
- [24]C. Candolfi, P. Gougeon, P. Gall, M. Potel, A. Dauscher, B. Lenoir, in : J.-F. Halet, D. M. P Mingos (Eds.), *Struct. Bond.*, Springer, **2019**, *180*, 129–141.
- [25]P. Gougeon, M. Potel, J. Padiou, M. Sergent, C. Boulanger, J.M. Lecuire, J. Solid State Chem., 1987, 71, 2, 543–551.
- [26]D. Salloum, P. Gougeon, M. Potel, Acta Cryst., 2005, E61, i213–215.
- [27]M. Potel, P. Gougeon, R. Chevrel, M. Sergent, Rev. Chim. Minér., 1984, 21, 4, 509–536.
- [28]R. Al Rahal Al Orabi, B. Fontaine, R. Gautier, P. Gougeon, P. Gall, Y. Bouyrie, A. Dauscher,C. Candolfi, B. Lenoir, *Inorg. Chem.*, **2016**, *55*, 13, 6616–6624.
- [29]S. Picard, P. Gougeon, M. Potel, Inorg. Chem., 2006, 45, 4, 1611–1616.
- [30] P. Gougeon, P. Gall, J. Alloys Compd., 2021, 872, 159595–159603.
- [31] P. Gougeon, P. Gall, D. Salloum, Acta Cryst., 2013, E69, i38.
- [32] P. Gougeon, P. Gall, Inorg. Chem., 2017, 56, 6, 3440–3446.
- [33] P. Gougeon, M. Potel, M. Sergent, Acta Cryst., 1989, 45, 182–185.
- [34] P. Gougeon, M. Potel, M. Sergent, Acta Cryst., 1989, 45, 1413–1415.
- [35] P. Gougeon, M. Potel, J. Padiou, M. Sergent, Mater. Res. Bull., 1988, 23, 3, 453–460.
- [36] P. Gougeon, M. Potel, M. Sergent, Acta Cryst., **1990**, 46, 2284–2287.
- [37]R. Chevrel, P. Gougeon, M. Potel, M. Sergent, J. Solid State Chem., 1985, 57, 25–33.
- [38]M. Potel, R. Chevrel, M. Sergent, J.-C. Armici, M. Decroux, Ø. Fischer, J. Solid State Chem.,
 1980, 35, 2, 286–290.
- [39]J.-M. Tarascon, G. Hull, Mat. Res. Bull., 1984, 19, 915–924.
- [40]X. Qi, F. E. Osterloh, J. Am. Chem. Soc., 2005, 127, 21, 7666-7667.
- [41]J. Jeon, S. Oh, K. H. Choi, S. Chae, C. Woo, X. Dong, G. Asghar, J. Ahn, T. Y. Kim, J. Ali, H. K.
 Yu, J.-Y. Choi, *Ceram. Int.*, **2021**, *47*, 23, 33606–33610.
- [42]M. Bencharif, K. V. Krishna Rao, J. Mater. Sci., 1986, 21, 3425–3429.
- [43]A. P. Petrović, R. Lortz, G. Santi, M. Decroux, H. Monnard, Ø. Fischer, L. Boeri, O. K. Andersen, J. Kortus, D. Salloum, P. Gougeon, M. Potel, *Phys. Rev. B*, **2010**, *82*, 23, 235128–235142.
- [44]W. Hönle, H.G. Von Schnering, A. Lipka, K. Yvon, J. Less-Common Met., 1980, 71, 1, 135– 145.

- [45]R. Lepetit, P. Monceau, P. Gougeon, M. Sergent, J. Low Temp. Phys., 1984, 56, 219–235.
- [46] P. Gall, T. Guizouarn, M. Potel, P. Gougeon, J. Solid State Chem., 2014, 220, 213–216.
- [47] P. Gougeon, M. Potel, J. Padiou, M. Sergent, J. Solid State Chem., 1987, 68, 1, 137–142.
- [48]R. Gautier, P. Gougeon, J.-F. Halet, M. Potel, J.-Y. Saillard, J. Alloys Compd., 1997, 262–263, 311–315.
- [49]R. Al Rahal Al Orabi, B. Boucher, B. Fontaine, P. Gall, C. Candolfi, B. Lenoir, P. Gougeon, J.-F. Halet, R. Gautier, J. Mater. Chem. C, 2017, 5, 12097–12104.
- [50] P. Gougeon, P. Gall, R. Gautier, M. Potel, Acta cryst., 2010, C66, i67–70.
- [51]S. Picard, P. Gougeon, M. Potel, *Acta Cryst.*, **2002**, *E58*, i12–i14.
- [52]R. Chevrel, M. Potel, M. Sergent, M. Decroux, Ø. Fischer, Mater. Res. Bull., 1980, 15, 7, 867–674.
- [53]S. Picard, J.-Y. Saillard, P. Gougeon, H. Noël, M. Potel, J. Solid State Chem., 2000, 155, 417–
 426.
- [54]S. Picard, D. Salloum, P. Gougeon, M. Potel, Acta Cryst., 2004, C60, i61–i62.
- [55]P. Gougeon, P. Gall, S. Misra, A. Dauscher, C. Candolfi, B. Lenoir, *Mater. Res. Bull.*, **2021**, 163, 111152–111160.
- [56]J.M. Tarascon, G.W. Hull, J.V. Waszczak, *Mater. Res. Bull.*, **1985**, *20*, 8, 935–946.
- [57]G. Daigre, P. Gougeon, P. Gall, O. Merdrignac-Conanec, R. Al Rahal Al Orabi, R. Gautier, A. Dauscher, C. Candolfi, B. Lenoir, ACS Appl. Energy Mater., 2020, 3, 2646–2855.
- [58]G. Daigre, P. Gougeon, P. Gall, R. Gautier, O. Guillou, J.-B. Vaney, C. Candolfi, A. Dauscher,B. Lenoir, J. Solid State Chem., 2016, 237, 1–6.
- [59] P. Gougeon, R. Al Rahal Al Orabi, R. Gautier, M. Potel, Acta Cryst., 2012, C68, i25–i28.
- [60]P. Gougeon, P. Gall, R. Al Rahal Al Orabi, B. Fontaine, R. Gautier, M. Potel, T. Zhou, B. Lenoir, M. Colin, C. Candolfi, A. Dauscher, *Chem. Mater.*, **2012**, *24*, 15, 2899–2908.
- [61]P. Gougeon, P. Gall, R. Al Rahal Al Orabi, B. Boucher, B. Fontaine, R. Gautier, A. Dauscher,C. Candolfi, B. Lenoir, *Inorg. Chem.*, **2019**, *58*, 9, 5533–5542.
- [62]D. Salloum, R. Gautier, P. Gougeon, M. Potel, J. Solid State Chem., 2004, 177, 4–5, 1672–
 1680.
- [63] J.-M. Tarascon, G.W. Hull, Mater. Res. Bull., 1986, 21, 7, 859-869.
- [64] D. Salloum, P. Gougeon, P. Gall, Acta Cryst., 2014, E70, i30.
- [65]D. Salloum, P. Gougeon, M. Potel, R. Gautier, C. R. Chim., 2005, 8, 11–12, 1743–1749.
- [66] D. Salloum, P. Gougeon, T. Roisnel, M. Potel, J. Alloys Compd., 2004, 383, 1–2, 57–62.

- [67]Y.-S. Lee, S.K. Kang, Acta Cryst., 2009, E65, i26.
- [68] B.D. Davis, W.R. Robinson, J. Solid State Chem., 1990, 85, 2, 332–336.
- [69]D. Salloum, P. Gougeon, P. Gall, Acta Cryst., 2013, E69, i67–i68.
- [70]A. Grüttner, K. Yvon, R. Chevrel, M. Potel, M. Sergent, B. Seeber, Acta Cryst., 1979, B35, 285–292.
- [71]D. Salloum, P. Gougeon, M. Potel, Acta Cryst., 2007, E63, i8–i10.
- [72] P. Gougeon, P. Gall, D. Salloum, M. Potel, Acta Cryst., 2010, E66, i73.
- [73]D. Salloum, P. Gougeon, M. Potel, Acta Cryst., 2006, E62, i83-i85.
- [74] P. Gougeon, D. Salloum, M. Potel, Acta Cryst., 2009, C65, i87–i90.
- [75]R. Chevrel, M. Potel, M. Sergent, M. Decroux, Ø. Fischer, J. Solid State Chem., 1980, 34, 2, 247–251.
- [76] M. Potel, R. Chevrel, M. Sergent, Acta Cryst., 1980, B36, 1319–1322.
- [77] P. Gougeon, P. Gall, M. Potel, Acta Cryst., 2010, E66, i56.
- [78] P. Gougeon, M. Potel, Acta Cryst., 1993, C49, 427–430.
- [79]S. Picard, D. Salloum, P. Gougeon, M. Potel, Acta Cryst., 2003, C59, i112–i114.
- [80]P. Gougeon, P. Gall, A. Huguenot, R. Al Rahal Al Orabi, R. Gautier, *Inorg. Chem.*, **2019**, *58*, 22, 15236–15245.
- [81]S. Picard, P. Gougeon, M. Potel, Acta Cryst., 2001, C57, 335–336.
- [82]S. Picard, P. Gougeon, M. Potel, Acta Cryst., 2001, C57, 663–664.
- [83]F. Ricci, A. Dunn, A. Jain, G.-M. Rignanese, G. Hautier, J. Mater. Chem. A, 2020, 8, 17579– 17594.
- [84] D. C. Johnson, J.-M. Tarascon, M. J. Sienko, Inorg. Chem., 1983, 22, 25, 3773–3776.
- [85](a) G. te Velde, F. M. Bickelhaupt, S. J. A. van Gisbergen, C. F. Guerra, E. J. Baerends, J. G. Snijders, T. Ziegler, *J. Comput. Chem.*, 2001, 22, 931–967; (b) ADF 2019.3, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
- [86]E. van Lenthe , E.J. Baerends, J. Comput. Chem., 2003, 24, 1142–1156.
- [87]J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3685–3689.
- [88]G. Bergerhoff, J. Chem. Inf. Comput. Sci., 1983, 23, 66-69.
- [89]G. Kresse, J. Furthmuller, Phys. Rev. B, 1996, 54, 11169–11186.
- [90](a) I. G. Kresse, D. Joubert, *Phys. Rev. B*, **1999**, *59*, 1758–1775 ; (b) P. E. Blöchl, *Phys. Rev. B*, **1994**, *50*, 17953–17979.

Chapitre 2 :

Étude des propriétés thermoélectriques des phases à

clusters condensés de molybdène

1. Rappels de thermoélectricité

Après quelques rappels généraux sur la thermoélectricité, ce chapitre aura pour but de recenser les propriétés thermoélectriques mesurées expérimentalement dans les phases à clusters condensés de molybdène, puis de tenter de reproduire certaines données à l'aide de calculs DFT. Le but est ici de délimiter un espace de composés chimiques d'intérêt visant à créer une petite base de données de propriétés thermoélectriques calculées qui servira pour effectuer un apprentissage machine (*machine learning*), lequel sera l'objet du chapitre 3.

1.1. Les trois effets thermoélectriques

Le phénomène de thermoélectricité désigne l'apparition d'un gradient de température au sein d'un matériau traversé par un courant électrique, et inversement. Ce phénomène est décrit par les trois effets Peltier, Seebeck et Thomson décrits ci-après.

Tout d'abord, il est possible de convertir l'énergie électrique en énergie calorifique en utilisant l'effet Peltier, découvert par le physicien français éponyme en 1834. Considérons un système composé de deux matériaux semi-conducteurs différents, l'un de type n (dans lequel les électrons sont les porteurs de charges majoritaires) et l'autre de type p (les trous y sont porteurs majoritaires), liés entre eux par deux jonctions. En appliquant un courant dans ce système, l'une des jonctions va libérer de la chaleur, l'autre va l'absorber (voir figure 2.1, a). Cet effet est exploité au sein de modules Peltier, qui sont utilisés pour le refroidissement thermoélectrique [1]. La performance d'un module Peltier, composé de deux matériaux n et p, est définie par le coefficient de Peltier Π (exprimé en V), proportionnel à la quantité de chaleur échangée Q (en W) et à l'intensité du courant l (en A), tel que :

$$\Pi_{np} = \frac{Q}{I}$$

À l'inverse, l'énergie calorifique peut être convertie en énergie électrique par effet Seebeck, nommé d'après le physicien allemand à l'origine de sa découverte en 1821. Si on considère un système similaire au précédent auquel aucun courant n'est appliqué, mais dont une des extrémités est chaude, on observe l'apparition d'un courant du côté de la partie froide (voir figure 2.1., b). Cet effet est exploité afin de recycler la chaleur (perdue) sous forme de courant dans des générateurs thermoélectriques, permettant par exemple d'alimenter les sondes spatiales quand l'énergie solaire n'est plus exploitable ; dans ce cas, la chaleur est générée par un matériau radioactif [2]. L'effet Seebeck est néanmoins majoritairement exploité dans les thermocouples utilisés en thermométrie, ces derniers étant peu coûteux et utilisables dans une vaste gamme de températures, au détriment de la précision de la mesure (https://www.microlink.co.uk/tctable.html). Cet effet est associé au coefficient de Seebeck *S*, aussi nommé α (exprimé en V.K⁻¹) et parfois appelé pouvoir thermoélectrique. Le coefficient de Seebeck est défini comme étant la différence de potentiel ΔV (en V) mesurée à la jonction de matériaux *n* et *p* soumis à une différence de température ΔT (en K), tel que :

$$S_{np} = \frac{\Delta V}{\Delta T}.$$

Figure 2.1 : Représentation des effets thermoélectriques dans un réfrigérateur Peltier (a) et dans un générateur thermoélectrique (b) (adapté de [3]).

Le dernier effet thermoélectrique a été prédit puis observé en 1854 par W. Thomson, physicien britannique, plus tard connu sous le nom de Lord Kelvin. L'effet Thomson relie les effets Peltier et Seebeck entre eux, postulant que tout matériau traversé par un gradient de température et un courant électrique échange de la chaleur avec le milieu extérieur – qu'il en absorbe ou en émette dépend du matériau. L'effet Thomson est mesurable sur un matériau seul, contrairement aux effets Peltier et Seebeck dont les coefficients associés sont relatifs à un couple de matériaux. La chaleur *Q* (exprimée en W) échangée par effet Thomson au sein d'un fil de longueur *x* et de conductivité électrique homogène est définie comme suit :

$$Q = \rho J^2 - \tau J \frac{dT(x)}{dx}$$

avec ρ la résistivité électrique du matériau (en Ω .m⁻¹), J la densité de courant traversant le matériau (en A.m⁻²), τ le coefficient de Thomson (en V.K⁻¹) et dT/dx le gradient de température traversant le fil.

Ces trois coefficients de Peltier, Seebeck et Thomson sont reliés par les deux relations de Kelvin reportées ci-dessous (avec *T* la température absolue, en K) :

$$\tau = T \frac{dS}{dT}$$

et

 $\Pi = ST.$

1.2. La figure de mérite thermoélectrique *zT*

L'efficacité d'un matériau thermoélectrique est quantifiée par sa figure de mérite *zT* (sans unité), définie par l'équation suivante :

$$zT = \frac{S^2 \sigma T}{\kappa}$$

avec *S* le coefficient de Seebeck (en V.K⁻¹), σ la conductivité électrique (en S.m⁻¹), *T* la température absolue (en K) et κ la conductivité thermique totale du matériau (en W.m⁻¹.K⁻¹),

somme des conductivités thermiques dues aux phonons du réseau (κ_{latt}) et aux électrons (κ_{e}). Notons que le terme $S^2 \sigma$ est aussi appelé facteur de puissance (ou PF pour *power factor*).

Plus la valeur *zT* d'un matériau est élevée, meilleures seront ses propriétés thermoélectriques. Il faut donc un coefficient de Seebeck élevé (en valeur absolue) et une conductivité thermique faible – deux propriétés que l'on retrouve généralement dans des composés non métalliques – ainsi qu'une conductivité électrique élevée, plutôt caractéristique des composés métalliques. Certains de ces paramètres sont interdépendants, comme le montre la figure 2.2.

Figure 2.2 : Schéma décrivant les relations d'interdépendance existant entre différentes propriétés thermoélectriques fondamentales (adapté de [4]).

Ces relations d'interdépendance existant entre les paramètres thermoélectriques font apparaître des effets antagonistes quand on cherche à les optimiser. Tout d'abord, la conductivité thermique due aux électrons (κ_e) et la conductivité électrique σ sont reliées par la loi de Wiedemann-Franz [5] :

 $\kappa_e = L\sigma T$

avec *L* étant le facteur de Lorenz. D'après cette équation, σ et κ_e évoluent dans le même sens. Or, d'après la formule *zT* donnée plus haut, pour maximiser *zT*, il faudrait minimiser κ_e et maximiser σ .

Le coefficient de Seebeck d'un composé métallique ou semi-conducteur peut être exprimé comme suit :

$$S = \frac{8\pi^2 k_B^2 m^* T}{3eh^2} \left(\frac{\pi}{3n}\right)^{2/3}$$

avec k_B , m^* , e, h et n étant respectivement, la constante de Boltzmann, la masse effective des porteurs de charge, la charge élémentaire, la constante de Planck et la concentration de porteurs de charges. Cette dernière est également reliée à la conductivité électrique par l'équation suivante :

σ = ne μ

avec μ la mobilité des porteurs de charge. De ces deux équations, on conclut que la concentration de porteurs de charges *n* est proportionnelle à la conductivité électrique, mais inversement proportionnelle au coefficient de Seebeck ; or, d'après la formule *zT*, les deux doivent idéalement être à leur valeur maximale. Enfin, la mobilité des porteurs de charge μ est reliée à leur masse effective *m** par une relation de proportionnalité [6] telle que :

$$\mu \alpha \frac{1}{m^{*^{5/2}}}$$

Cette relation montre que la masse effective des porteurs de charge, m^* , est inversement proportionnelle à leur mobilité et donc à la conductivité électrique, tandis que les équations précédentes montrent que m^* est proportionnelle au coefficient de Seebeck. Ces trois effets antagonistes témoignent des relations complexes reliant le coefficient de Seebeck et les conductivités électrique et thermique, les rendant difficiles à optimiser en même temps. Le meilleur compromis pour obtenir une figure de mérite *zT* la plus élevée possible est d'optimiser la concentration de porteurs de charges, *n*, dont on considère généralement qu'elle doit être idéalement comprise entre 10^{19} et 10^{20} cm⁻³ (figure 2.3). Ce sont des valeurs que l'on retrouve généralement dans les composés semi-conducteurs.

129

Figure 2.3 : Comparaison de l'évolution des paramètres thermoélectriques en fonction de la concentration de porteurs de charges dans un matériau semi-conducteur (adapté de [7]).

1.3. Matériaux thermoélectriques

1.3.1. Matériaux usuels

Bien que les effets Peltier et Seebeck aient été découverts dans la première moitié du XIX^e siècle, les premières applications concrètes de la thermoélectricité ne concernaient que la thermométrie. C'est dans les années 1920 que le physicien soviétique A. F. loffe a théorisé la semi-conductivité comme une propriété physique à part entière, alors que jusqu'alors, la définition englobait les matériaux dont la conductivité électrique se situe entre celles des métaux et des isolants [8]. Suite à la découverte des bonnes propriétés thermoélectriques de ces matériaux semi-conducteurs, de nombreux composés ont fait l'objet d'un regain d'intérêt. La plupart des premiers matériaux thermoélectriques à usage industriel sont le fruit de ces recherches précoces ; on les appelle composés thermoélectriques matériaux découverts plus récemment – est reportée sur la figure 2.4. On y observe notamment que les meilleurs matériaux à basse température (jusqu'à 500 K) sont toujours Bi₂Te₃ et ses dérivés, tandis que les dérivés de PbTe restent les meilleurs semi-conducteurs de type *n* à moyenne température (jusqu'à 800 K), de même que les alliages Si–Ge à haute température.

Figure 2.4 : Figure de mérite thermoélectrique *zT* (en fonction de *T*) de quelques matériaux conventionnels de type *n* et *p*. Adapté de [1].

La plupart des composés utilisés à l'échelle industrielle ont donc été découverts avant les années 1980. Cependant, de nouvelles approches expérimentales et théoriques, dont certaines vont être discutées ci-après, ont été conceptualisées, visant à développer des matériaux thermoélectriques plus performants [9, 10].

1.3.2. Nano-structuration

Parmi les approches visant à améliorer les propriétés thermoélectriques d'un composé, il y a les différentes techniques de nano-structuration, qui peuvent être classées en deux catégories. La première approche consiste à réduire la dimensionnalité d'un matériau afin de faire émerger des propriétés de confinement quantique, et ainsi d'améliorer les propriétés de transport anisotropes sans modifier la conductivité thermique électronique. Citons notamment les comportements de puits quantique, fil quantique et boîte quantique, observés respectivement dans des structures bidimensionnelles (couches minces), unidimensionnelles (nanofils ou nanotubes) et adimensionnelles [11]. La seconde approche consiste à réduire la conductivité thermique en créant des défauts structuraux qui vont favoriser la diffusion de certains phonons. Ces défauts peuvent être générés à l'échelle atomique (défauts ponctuels), nanométrique (nanoparticules) ou mésoscopique (joints de grains), et vont respectivement aider à la diffusion des phonons de hautes [12], moyennes-basses [13-14] et basses [15-17] fréquences. Il est possible de cumuler ces trois effets afin de diffuser les phonons d'une large plage énergétique, diminuant drastiquement la conductivité thermique [18-19].

1.3.3. Ingénierie de bandes

Les techniques d'ingénierie de bandes (band engineering) visent à modifier la structure de bandes d'un matériau par dopage, en particulier au niveau de Fermi, dans le but de décorréler sa conductivité électrique de son coefficient de Seebeck – qui sont interdépendants et entraînent des effets antagonistes, comme on l'a vu auparavant – afin de maximiser PF, le facteur de puissance. Citons notamment le recouvrement des vallées de bandes, une approche dans laquelle des bandes électroniques différentes se recouvrent autour du niveau de Fermi, leurs énergies étant proches. Ainsi, la masse effective des porteurs de charges m* augmente (et par voie de conséquence le coefficient de Seebeck) sans diminuer leur mobilité μ_{r} du fait que les bandes qui se recouvrent ne se trouvent pas dans la même région de l'espace des vecteurs k du réseau réciproque (figure 2.5, a). Ainsi, une dégénérescence élevée améliore grandement le facteur de puissance d'un matériau. À titre d'exemple, une valeur de zT de 1,8 (à 850 K) a été obtenue pour un alliage PbTe_{1-x}Se_x (ici, de type p) dans lequel on observe une dégénérescence de 12 bandes dans la bande de valence [20]. Une approche dérivée, nommée nidification de bandes, consiste également à augmenter la dégénérescence des bandes, mais cette fois-ci, dans la même région dans l'espace des vecteurs k [21] (figure 2.5, b). Ces effets sont connus pour augmenter le facteur de puissance à haute température.

Une autre approche possible consiste à créer des niveaux d'énergie résonants près du niveau de Fermi (là aussi via un dopant), augmentant ainsi la masse effective des porteurs de charges m^* sans modifier leur concentration et ainsi contribuer à une augmentation du coefficient de Seebeck. Cependant, contrairement à l'effet précédent de recouvrement des vallées de bandes, les états résonants dus au dopant peuvent participer à la diffusion des porteurs de charge et ainsi dégrader la conductivité électrique. Néanmoins, cette approche

peut se montrer efficace pour augmenter la valeur *zT* sur une vaste plage de températures si l'augmentation du coefficient de Seebeck compense largement la détérioration de la conductivité électrique. Par exemple, In_{0,02}Ge_{0,98}Te a une valeur de *zT* moyenne supérieure à celui de GeTe dans l'intervalle 300–750 K [22] (figure 2.6), à hauteur de 70%. Contrairement au recouvrement des vallées de bandes, la création de niveaux résonants augmente plutôt le facteur de puissance autour de la température ambiante.

Figure 2.5: Recouvrement des vallées de bandes par dopage dans Sn_{1,03}Te (adapté de [23]) (a) et nidification de bandes dans Te (adapté de [21]) (b).

Figure 2.6 : DOS comparées de InGe₆₃Te₆₄ et GeTe, montrant l'apparition d'états résonants près du niveau de Fermi, attribués au dopage à l'indium (adapté de [22]).

D'autres paramètres sont à prendre en compte quand on s'intéresse à la structure de bandes d'un matériau thermoélectrique, comme l'apparition d'un couplage phononsélectrons augmentant la mobilité des électrons par rapport à celle des trous (par exemple dans PbSe [24]). Il faut également tenir compte de la recombinaison électrons-trous venant dégrader le coefficient de Seebeck dans le cas de composés à faible bande interdite – notamment à haute température – du fait que les porteurs de charge peuvent se déplacer dans une bande voisine à hauteur de k_BT (0,025 eV à température ambiante), avec k_B la constante de Boltzmann. Une étude théorique menée sur ce phénomène a conclu à une valeur de bande interdite idéale comprise entre 6 et 10 k_BT pour optimiser la valeur de zT [25].

1.3.4. Modèle PGEC

Développé par G. A. Slack en 1995 [26], le modèle PGEC (*phonon glass electron crystal*) prévoit qu'un très bon matériau thermoélectrique possède une conductivité thermique de réseau très faible comme celle d'un verre [27], dont la structure amorphe diffuse efficacement les phonons, tout en gardant les bonnes propriétés de conductivité électrique d'un cristal. Certains matériaux peuvent remplir ces deux critères, du fait de leurs structures complexes dans lesquelles cohabitent à la fois des atomes formant des architectures covalentes avec une conductivité électrique élevée et des ions situés dans des sites leur conférant un degré de mouvement important (*rattlers*), leur permettant de vibrer et de diffuser efficacement les phonons et ainsi d'abaisser la conductivité thermique de réseau (κ_{latt}).

Parmi les familles de composés thermoélectriques où le modèle PGEC semble s'appliquer, il y a notamment les phases de Zintl, découvertes dans les années 1930 par le chimiste allemand éponyme, caractérisées par la présence de cations (métaux alcalins, alcalino-terreux, terres rares) considérés comme purement ioniques, fournissant aux anions (métaux pauvres, dits de post-transition) les électrons de valence nécessaires à la formation d'un réseau covalent chargé négativement, comme dans $SrZn_2Sb_2$ (figure 2.7). Ce réseau covalent confère aux phases de Zintl une bonne conductivité électrique, tandis que les cations quelque peu désordonnés servent de *rattlers*, minimisant la conductivité thermique de réseau κ_{latt} . Les meilleurs composés Zintl thermoélectriques sont actuellement Yb₁₄Mn_{0.2}Al_{0.8}Sb₁₁

134

(type *n*), avec une valeur de *zT* de 1,3 mesurée à 1223 K [28], et Mg₃Sb_{1,5}Bi_{0,5} (type *p*), avec une valeur de *zT* de 1,78 à 700 K [29].

Figure 2.7 : Structure cristalline de $SrZn_2Sb_2$ ($P\overline{3}m1$) [30].

Il y a également les composés clathrates, qui sont des composés d'inclusion dans lesquels des cages forment un réseau tridimensionnel pouvant adopter divers types structuraux (figure 2.8) [31]. Ces cages servent de réseau hôte à l'espèce emprisonnée, laquelle peut être une molécule, un atome ou un ion [32]. Dans le cas des clathrates étudiés pour la thermoélectricité, l'espèce incluse est généralement un ion servant de *rattler* du fait de sa faible interaction avec le réseau hôte, conférant une faible conductivité thermique au composé. Bien que possédant une faible mobilité de porteurs de charges μ_h (mobilité par les trous) [10], les clathrates ont une structure électronique modulable par la nature des ions insérés. Les meilleurs clathrates rapportés à ce jour pour la thermoélectricité possèdent un réseau-hôte d'étain, de germanium ou de silicium pour des applications respectives à basse, moyenne et haute températures [10].

Une autre famille, les skuttérudites, sont des composés qui tirent leur nom des mines norvégiennes de Skutterud, d'où a été extrait CoAs₃, qui en est le premier représentant. Elles sont de formule générale $G_y M_4 X_{12}$, avec M un métal de transition formant un réseau cubique à faces centrées au sein duquel X (un pnictogène) s'insère sous forme de carrés X_4 (figure 2.9). Cet enchevêtrement complexe laisse des espaces icosaédriques vacants, au sein desquels un
ion *rattler* (*G*) s'insère, expliquant la faible valeur de κ_{latt} au sein de ces composés. C'est la valeur de *y* – la quantité d'ions *G* insérée – qui permet de jouer sur la concentration de porteurs de charges et donc de moduler le facteur de puissance des skuttérudites. Les meilleurs composés rapportés sont CeFe_{3,85}Mn_{0,15}Sb₁₂ (type *p*), possédant une valeur *zT* de 1 à 800 K [33] et Ba_{0,08}La_{0,05}Yb_{0,04}Co₄Sb₁₂ (type *n*), avec une valeur *zT* de 1,7 à 850 K [34].

Figure 2.8 : Structures cristallines de diverses familles de clathrates (adapté de [31]).

Figure 2.9 : Structure cristalline d'une skuttérudite $G_y M_4 X_{12}$ (adapté de [35]).

Enfin, le modèle PGEC semble aussi s'appliquer à nos phases à clusters condensés de molybdène, décrites dans le chapitre précédent. Leur arrangement structural est tel que le

réseau des clusters Mo_nX_{n+2} assure une bonne conductivité électrique, tandis que les cations insérés servant de *rattlers* assurent une faible conductivité thermique de réseau κ_{latt} . La conductivité thermique totale ne dépasse parfois pas 0,5 W.m⁻¹.K⁻¹ à haute température (environ 800 K) [36-37]. Nous avons vu dans le chapitre précédent que ces phases à clusters condensés possèdent une concentration en électrons de valence (VEC) que l'on peut faire varier par la nature et le nombre de cations insérés, permettant de moduler les propriétés de structure électronique dont va dépendre le facteur de puissance. D'après leurs structures de bandes discutées précédemment, ces phases peuvent être de bons composés semiconducteurs de type *p* [38] pour la thermoélectricité. Le composé thermoélectrique le plus performant connu à ce jour est Ag_{3,90}Mo₉Se₁₁ avec une valeur *zT* rapportée de 0,65 à 800 K [39], dépassant de peu Ag₂Tl₂Mo₉Se₁₁ dont la valeur *zT* est de 0,60 à 800 K [40]. Dans la suite de ce chapitre, nous allons répertorier les mesures expérimentales des propriétés thermoélectriques de ces composés, et les discuter.

2. Propriétés thermoélectriques des phases à clusters condensés de molybdène

À ce jour, les propriétés thermoélectriques de 19 composés à clusters condensés ont été mesurées expérimentalement, dont huit appartiennent à la seule famille $Ag_xCu_yMo_9Se_{11}$ (x = 3,40-3,90; y = 0-0,4). À ces mesures s'ajoutent celles de la conductivité électrique à température ambiante de 23 autres composés. Toutes ces propriétés sont reportées dans le tableau 2.1.

Tableau 2.1 : Compilation des propriétés thermoélectriques mesurées des phases à clusters condensés de molybdène à 300 K (noir) et à T_{max} (bleu), la température la plus élevée à laquelle ont été mesurées les propriétés thermoélectriques.

Composé	Т	VEC	VEC	S	ρ	σ	PF^a	К	zT	Réf.
	(K)	obs.	idéal	(µV/K)	(μΩ.m)	(S.m⁻¹)	(mW.m⁻¹.K⁻²)	(W.m ⁻¹ .K ⁻¹)		
Ag _{3,40} Mo ₉ Se ₁₁	800	35,4	36	140	32	3,1x10 ⁴	0,61	1,1	0,45	[39]
	300	35,4	36	60	17	5,9x10 ⁴	0,21	1,2	0,05	
Ag _{3,50} Mo ₉ Se ₁₁	800	35,5	36	140	32	3,1x10 ⁴	0,61	1,1	0,50	[39]

	300	35,5	36	60	17	5,9x10 ⁴	0,21	1,2	0,05	
Ag _{3,60} Mo ₉ Se ₁₁	830	35,6	36	140	37	2,7x10 ⁴	0,53	0,9	0,45	[41]
	300	35,6	36	50	16	6,3x10 ⁴	0,16	1,1	0,05	
$Ag_{3,70}Mo_9Se_{11}$	800	35,7	36	160	32	3,1x10 ⁴	0,79	1,1	0,50	[39]
	300	35,7	36	65	17	5,9x10 ⁴	0,25	1,2	0,05	
Ag _{3,80} Mo ₉ Se ₁₁	800	35,8	36	175	50	2,0x10 ⁴	0,61	0,8	0,65	[39]
	300	35,8	36	80	25	4,0x10 ⁴	0,26	0,9	0,08	
Ag _{3,90} Mo ₉ Se ₁₁	800	35,9	36	190	64	1,6x10 ⁴	0,58	0,8	0,65	[39]
	300	35,9	36	80	30	3,3x10 ⁴	0,21	0,9	0,08	
$Ag_{3,60}Cu_{0,20}Mo_9Se_{11}$	830	35,8	36	140	30	3,3x10 ⁴	0,65	0,9	0,58	[41]
	300	35,8	36	50	16	6,3x10 ⁴	0,16	1,0	0,05	
$Ag_{3,60}Cu_{0,40}Mo_9Se_{11}$	830	36	36	180	60	1,7x10 ⁴	0,55	0,7	0,62	[41]
	300	36	36	60	26	5,9x10 ⁴	0,14	0,9	0,05	
$Ag_3RbMo_9Se_{11}$	800	36	36	150	60	1,7x10 ⁴	0,38	0,8	0,40	[37]
	300	36	36	65	225	4,4x10 ³	0,02	0,7	<0,01	
$Ag_{2,60}CsMo_9Se_{11}$	300	35,6	36		200	5,0x10 ³				[42]
$Ag_{4,10}CIMo_9Se_{11}$	300	35,1	36		25	4,0x10 ⁴				[42]
$K_{1,80}Mo_9Se_{11}$	300	33,8	36		5	2,0x10 ⁵				[43]
$Cu_2K_{1,80}Mo_9Se_{11}$	300	35,8	36		25	4,0x10 ⁴				[43]
$Ag_{2}TI_{2}Mo_{9}Se_{11}$	800	36	36	180	65	1,5x10 ⁴	0,49	0,6	0,60	[40]
	300	36	36	50	140	7,1x10 ³	0,18	0,6	0,08	
$Rb_2Mo_{12}Se_{14}$	300	46	50		30	3,3x10 ⁴				[44]
$Cs_2Mo_{12}Se_{14}$	623	46	50	10	200	5,0x10 ³	<0,01	0,7	<0,01	[45]
	300	46	50	-20	500	2,0x10 ³	<0,01	0,8	<0,01	
$Cs_2Mo_{12}Te_{14}$	300	46	50		4	2,5x10 ⁵				[44]
$Cu_2Cs_2Mo_{12}Se_{14}$	623	48	50	40	50	2,0x10 ⁴	0,03	1,1	0,02	[45]
	300	48	50	5	90	1,1x10 ⁴	<0,01	1,3	<0,01	
KM0 ₁₂ S ₁₄	300	45	50		4	2,5x10 ⁵				[46]
$K_{2,30}Mo_{12}S_{14}$	300	46,3	50		24	4,3x10 ⁴				[46]
$Rb_{1,08}Mo_{12}S_{14}$	300	45,1	50		6	1,7x10 ⁵				[47]
$Rb_{2,65}Mo_{12}S_{14}$	300	46,7	50		12	8,3x10 ⁴				[47]
$Hg_{2,82}Mo_{12}S_{14}$	300	45	50		15	6,7x10 ⁴				[48]
$Rb_4Mo_{18}Se_{20}$	300	72	76		66	1,5x10 ⁴				[49]
$K_2Mo_{15}Se_{19}$	800	54	60	35	25	4,0x10 ⁴	0,05	2,0	0,02	[50]
	300	54	60	10	22	4,5x10 ⁴	<0,01	1,3	<0,01	
$Ag_3K_2Mo_{15}Se_{19}$	800	57	60	78	17	5,9x10 ⁴	0,36	1,6	0,18	[50]

	300	57	60	42	13	7,7x10 ⁴	0,14	1,0	0,05	
$Rb_2Mo_{15}Se_{19}$	700	54	60	35	75	1,3x10 ⁴	0,02	2,0	<0,01	[51]
	300	54	60	22	18	5,5x10 ⁴	0,03	1,5	<0,01	
$TI_2Mo_{15}S_{19}$	300	54	60		6	1,7x10 ⁵				[52]
$Ag_{3}TI_{2}Mo_{15}S_{19}$	800	57	60	65	16	6,3x10 ⁴	0,27	1,5	0,15	[52]
	300	57	60	30	15	6,7x10 ⁴	0,06	1,0	0,02	
$Ag_{3}TI_{2}Mo_{15}Se_{19}$	800	57	60	75	16	6,3x10 ⁴	0,35	1,3	0,19	[52]
	300	57	60	45	16	6,3x10 ⁴	0,13	0,8	0,05	
$Ag_{3}In_{2}Mo_{15}Se_{19}$	800	57	60	80	18	5,5x10 ⁴	0,35	1,3	0,20	[36]
	300	57	60	50	17	5,9x10 ⁴	0,15	0,9	0,05	
$Rb_2Mo_{15}S_{19}$	300	54	60		50	2,0x10 ⁴				[53]
$Rb_4Mo_{21}S_{25}$	300	80	86		200	5,0x10 ³				[53]
$Rb_6Mo_{27}S_{31}$	300	106	112		100	1,0x10 ⁴				[53]
$Rb_8Mo_{33}S_{37}$	300	132	138		100	1,0x10 ⁴				[53]
$Rb_{10}Mo_{39}S_{43}$	300	158	164		25	4,0x10 ⁴				[54]
$Rb_2Mo_6Se_6$	300	26	26		0,2	5,0x10 ⁶				[55]
$In_2Mo_6Se_6$	300	26	26	-5	2,2	4,6x10 ⁵	0,01			[56]
$TI_2Mo_6Se_6$	300	26	26	-40	0,5	2,0x10 ⁶	3,20	12	0,08	[57]
$Rb_2Mo_6Te_6$	300	26	26		0,1	1,0x10 ⁵				[55]
Cs ₂ Mo ₆ Te ₆	300	26	26		0,2	5,0x10 ⁶				[55]
AgMo ₆ Te ₆	300	25	26		1,6	6,3x10 ⁵				[58]

^{*a*}Facteur de puissance thermoélectrique.

Tout d'abord, notons que tous ces composés ont une conductivité thermique totale κ très faible, inférieure à 2 W.m⁻¹.K⁻¹, à l'exception du composé Tl₂Mo₆Se₆ où elle vaut 12 W.m⁻¹.K⁻¹, mais dont la structure est quelque peu différente des autres phases à clusters condensés (voir chapitre 1). De façon intéressante, ces valeurs sont du même ordre de grandeur que celles des autres familles de matériaux qui suivent le modèle PGEC décrit précédemment. En effet, les meilleurs clathrates (zT > 1) possèdent des valeurs de κ similaires ($0,5 < \kappa < 2$ W.m⁻¹.K⁻¹), tandis qu'elles sont légèrement plus faibles dans les phases de Zintl les plus performantes ($0,5 < \kappa < 1$ W.m⁻¹.K⁻¹) et généralement bien plus élevées dans les meilleures skuttérudites (parfois < 2, mais généralement comprises entre 3 et 5 W.m⁻¹.K⁻¹) [10]. Les composés à clusters condensés de molybdène font donc partie des matériaux possédant la conductivité thermique la plus faible, approchant celles des systèmes amorphes [59].

Quant au transport électrique, notons tout d'abord que la conductivité électrique σ est comprise entre 2x10⁴ et 6x10⁴ S.m⁻¹ pour les mesures réalisées au-delà de la température ambiante (623–830 K). Cette valeur est proche de celles observées pour les meilleurs clathrates et phases de Zintl [10]. Elle est néanmoins plus faible que celle des skuttérudites les plus performantes, généralement comprises entre 1x10⁵ et 3x10⁵ S.m⁻¹ [10].

Enfin, le coefficient de Seebeck de nos composés est compris entre 10 et 190 μ V.K⁻¹, avec les composés à motifs Mo₉X₁₁ montrant les valeurs les plus élevées, supérieures à 140 μ V.K⁻¹. Le signe positif des valeurs de *S* confirme que ces composés sont de type *p*, comme montré dans le premier chapitre. Les meilleures skuttérudites de type *p* possèdent un coefficient de Seebeck très comparable, compris entre 120 et 190 μ V.K⁻¹, tandis que celui des phases de Zintl les plus performantes est généralement plus élevé, entre 180 et 280 μ V.K⁻¹ [10]. Enfin, les valeurs de *S* des meilleurs clathrates de type *p* rapportés sont comprises entre 170 et 230 μ V.K⁻¹ [10], des valeurs supérieures à celles retrouvées dans les phases à clusters condensés. Ces dernières possèdent donc généralement un coefficient de Seebeck plus faible que celui des meilleurs matériaux PGEC.

Certains composés possèdent une bonne conductivité électrique à 300 K, comme Tl₂Mo₁₅S₁₉, mais elle est attendue plus faible à haute température du fait de leur caractère métallique. C'est aussi le cas des composés à motifs Mo₆X₆, pour lesquels un VEC « idéal » de 26 est pourtant observé. Ils sont, de ce fait, attendus semi-conducteurs. Cependant, ce VEC correspond en fait à l'apparition d'une bande interdite due à une distorsion de Peierls, et cette propriété n'est présente qu'à basse température et disparaît avant 300 K [55-57], les composés devenant alors métalliques.

Les valeurs de *zT* les plus élevées – de 0,40 à 0,65 – sont toutes observées pour des composés à motifs Mo₉X₁₁, ce qui est en partie expliqué par le fait que ce sont les seuls atteignant ou approchant leur VEC « idéal », leur conférant des propriétés de semi-conductivité.

En résumé, les phases à clusters condensés de molybdène possèdent des propriétés thermoélectriques analogues à celles des clathrates et des phases de Zintl, mais moindres que celles des skuttérudites (celles-ci étant également apparentées au modèle PGEC) qui ont un

meilleur facteur de puissance que vient compenser une conductivité thermique plus élevée [10]. Ce qui différencie nos phases à clusters condensés de molybdène des meilleurs clathrates et phases de Zintl, possédant des valeurs de zT > 1, est leur coefficient de Seebeck plus faible. Notons tout de même que certaines phases de Chevrel, comme (Cu/Fe)Mo₆Se₈, possèdent elles-mêmes de très bonnes performances thermoélectriques à très haute température (zT = 0,60 à 1150 K) [60]. On peut supposer que ce soit également le cas des phases à clusters condensés.

3. Calcul de propriétés thermoélectriques

Maintenant que les propriétés thermoélectriques des phases à clusters condensés de molybdène ont été reportées, il faut vérifier qu'elles soient reproductibles par le calcul. Pour ce faire, les méthodes de calcul des propriétés de transport électrique et thermique seront brièvement introduites, ainsi que les différentes approximations qu'elles impliquent. Enfin, un modèle homogène d'évaluation du coefficient de Seebeck sera mis en place et comparé à quelques valeurs expérimentales.

3.1. Méthodes de calcul

Le calcul théorique des propriétés de transport électrique d'un composé implique de résoudre l'équation de transport de Boltzmann, via une approche semi-classique dans laquelle les mouvements et collisions de particules sont modélisés à l'aide d'équations de mécanique classique et les tenseurs de transport sont calculés de façon quantique à partir de la structure de bandes électroniques. C'est ce que fait le code *BoltzTraP* [61], interfacé avec le code DFT *Wien2k*. Il convient tout d'abord d'introduire les modèles de transport menant à l'équation de transport de Boltzmann.

3.1.1. Modèles de transport

Pour expliquer le modèle de transport électrique utilisé par le code *BoltzTraP*, il faut d'abord introduire le modèle initial de Drude, qui est une adaptation de la théorie cinétique des gaz de Thomson [62-63], mais appliquée aux électrons d'un métal, qui est alors considéré

comme un gaz d'électrons. Dans ce modèle, un solide massif est composé de noyaux rattlers entourés d'une « mer » d'électrons, le tout formant un ensemble électriquement neutre. La probabilité de collision d'un électron et d'un noyau dans un intervalle de temps dt vaut dt/τ , τ étant le temps de relaxation auquel la conductivité électrique σ est proportionnelle.

Ce modèle a par la suite, été corrigé par Sommerfeld [64]. Dans le modèle de Drude, les électrons sont distribués au sein des niveaux d'énergie d'un système selon la statistique de Maxwell-Boltzmann, tirée de la mécanique classique, tandis que le modèle de Sommerfeld, dit *modèle de l'électron libre*, décrit la distribution des électrons par une distribution de Fermi-Dirac, issue de la mécanique quantique, qui prend cette fois en compte le principe d'exclusion de Pauli. Les électrons sont donc traités comme des particules identiques et indifférenciables occupant les différents niveaux d'énergie du système.

3.1.2. Équation de Boltzmann

L'équation de transport de Boltzmann est définie comme suit :

$$\partial f/\partial t + v \cdot \nabla_{\mathbf{r}} f + \alpha \cdot \nabla_{v} f = dt (\partial f/\partial t)_{coll}$$

avec v la vélocité des électrons, α leur accélération, r les coordonnées de l'espace cartésien considéré, et f la fonction de distribution des électrons. Quant au terme de collision, il peut être exprimé en fonction de τ comme :

$$dt(\partial f/\partial t)_{coll.} = -(f - f_0)/\tau$$

avec f_0 étant la fonction d'équilibre local. Il est alors possible d'exprimer l'équation de transport de Boltzmann en fonction du temps de relaxation :

$$\partial f / \partial t + v \cdot \nabla_{\mathbf{r}} f + \alpha \cdot \nabla_{\mathbf{v}} f = -(f - f_0) / \tau.$$

3.1.3. Conductivité électrique σ

À partir de cette équation, il est alors possible d'extraire le tenseur de conductivité :

$$\sigma_{\alpha,\beta}(i,k) = e^2 \tau_{i,k} v_{\alpha}(i,k) v_{\beta}(i,k)$$

avec α et β les directions spatiales respectives de la densité de courant j^{α} et du champ électrique E^{β} traversant le matériau, k le vecteur d'onde et i l'indice des énergies des bandes électroniques. La conductivité électrique, σ , est donc indissociable du temps de relaxation, τ , qui décrit tous les processus de diffusion impliqués dans le transport électronique. Le temps de relaxation dépend également de i et k; autrement dit, il est anisotrope et dépend de l'énergie cinétique des électrons (qui varie avec la température selon le produit $k_{\rm B}T$, $k_{\rm B}$ étant la constante de Boltzmann). Il est également possible d'exprimer ce tenseur à partir d'une somme sur toute la structure de bandes et tous les points k de la zone de Brillouin, en fonction de l'énergie, tel que :

$$\sigma_{\alpha\beta}(\varepsilon) = \frac{1}{N} \sum_{i,k} \sigma_{\alpha\beta} (i,k) \delta(\varepsilon - \varepsilon_{i,k}) / \delta \varepsilon.$$

avec N le nombre de points k, i le nombre de bandes et ε l'énergie des bandes i.

Par défaut, le code *BoltzTraP* calcule la valeur de $\frac{\sigma}{\tau}$, en faisant l'approximation d'une valeur fixe pour τ , et en le considérant isotrope. La valeur du temps de relaxation de nos phases à clusters condensés est difficile à estimer. De ce fait, nous ne nous sommes pas intéressés au calcul de la conductivité σ .

3.1.4. Conductivité thermique *k*

La conductivité thermique, κ , comprend deux composantes, la conductivité thermique de réseau κ_{latt} et la conductivité thermique électronique κ_{e} . Cette dernière peut être exprimée par un tenseur de transport issu de l'équation de Boltzmann et de la structure de bandes, en fonction de la température *T* et du potentiel chimique μ , comme suit :

$$\kappa^{0}_{\alpha\beta}(T;\mu) = \frac{1}{e^{2}T\Omega} \int \sigma_{\alpha\beta} \left(\varepsilon\right) (\varepsilon-\mu)^{2} \left[-\frac{\delta f_{\mu}(T;\varepsilon)}{\delta\varepsilon}\right] d\varepsilon$$

avec f_{μ} la fonction de distribution de Fermi et Ω le volume de la maille primitive. Puisque κ est composée de κ_{latt} et de κ_{e} , et qu'il n'est pas envisageable de calculer κ_{latt} , comme nous allons le voir par la suite, nous ne nous sommes pas intéressés au calcul de κ_{e} .

En effet, pour calculer κ_{latt} , il est possible d'utiliser l'approche DFPT (*Density Functional Perturbation Theory*, ou théorie de la fonctionnelle de la densité perturbative). Dans cette approche, il est possible de calculer avec précision la variation d'énergie totale d'un système subissant une perturbation telle qu'un déplacement atomique. La dérivée seconde de l'énergie permet d'accéder aux forces des interactions phonon-phonon, permettant alors de calculer κ_{latt} . Cette approche nécessite d'utiliser des critères de convergence très précis et d'utiliser des supermailles (multiplication de la maille élémentaire dans une ou plusieurs directions de l'espace), limitant son application à de petits systèmes [65]. Nos phases à clusters condensés présentent des mailles trop volumineuses pour envisager de calculer κ_{latt} .

3.1.5. Coefficient de Seebeck S

Enfin, le coefficient de Seebeck est exprimé par un autre tenseur de transport issu de la résolution de l'équation de Boltzmann et de la structure de bandes :

$$S_{ij} = E_i (\nabla_j T)^{-1} = (\sigma^{-1})_{\alpha i} v_{\alpha j}$$

En faisant l'approximation que τ est indépendant de k (anisotrope), S peut être exprimé indépendamment de τ . En tenant compte des approximations exposées précédemment et de nos moyens de calcul, le coefficient de Seebeck est la seule propriété thermoélectrique qu'il est envisageable de calculer relativement facilement pour un nombre élevé de composés. Nous allons maintenant voir par quel processus nous arrivons au coefficient de Seebeck par DFT.

3.1.6. Processus de calcul

Le processus permettant de calculer le coefficient de Seebeck d'un composé est résumé sur la figure 2.10 ci-après. Tout d'abord, la structure cristalline du composé à calculer est extraite d'une banque de données cristallographique en ligne, telle que la base ICSD (*Inorganic Crystal Structure Database*) ou la base CCDC (*Cambridge Cristallographic Data Center*). Cette structure cristalline est ensuite optimisée à l'aide du code DFT *VASP*, particulièrement efficace pour l'optimisation de structures [66], en utilisant la méthode détaillée dans le chapitre 1, partie 5 (détails des calculs).

Le logiciel *Endeavour* [67] est ensuite utilisé pour reconnaître la symétrie de la structure optimisée utilisée par la suite par le logiciel WIEN2k [68]. Ce dernier, utilisant la méthode LAPW (*Linearized Augmented Plane Wave method*), est ensuite utilisé pour calculer la structure de bandes électroniques du composé. Cette méthode est plus précise que la méthode PAW utilisée dans *VASP*, car elle n'utilise pas de pseudo-potentiels pour traiter les électrons de cœur, mais des fonctions de base. Les niveaux de cœur et de valence sont cependant séparés, des fonctions de base différentes étant utilisées pour chaque. Comme cette approche est coûteuse en temps de calcul, les structures géométriques optimisées par le code *VASP* sont utilisées.

Figure 2.10 : Vue d'ensemble du processus permettant de calculer le coefficient de Seebeck d'un composé à partir de sa structure cristalline expérimentale.

Pour les calculs SCF, les énergies et charges totales du système sont convergentes selon des critères respectifs de 10⁻⁵ Ry (\approx 1,36 x 10⁻⁴ eV) et 10⁻⁴ (charge élémentaire). Une grille de points *k* très fine est utilisée (3000 points réductibles), afin d'assurer une reconstitution précise de la structure de bandes pour le calcul des propriétés de transport. La fonctionnelle utilisée est PBE [69]. Le facteur de distance est fixé à 2, signifiant que les liaisons interatomiques sont modélisées jusqu'à 2 x *d*_{NN}, la distance séparant un atome de son voisin le plus proche. Le potentiel d'échange-corrélation utilisé est compris entre 6 et 7 Ry (\approx 81–95 eV) selon les atomes, la valeur de 7 étant utilisée pour certains atomes étant sujets au « coreleakage », c'est-à-dire quand certains électrons de cœur sont partiellement considérés comme électrons de valence. Le nombre de fonctions de base utilisées, définissant la précision du calcul, est déterminé par le produit R_{MT} x *K*_{max}, le premier terme correspondant au rayon atomique du plus petit atome du système et le second au vecteur *K* maximal déterminant l'étendue des fonctions d'ondes planes. Dans notre cas, une valeur de R*K*_{max} standard de 7 a été utilisée. La densité de charges a été étendue par transformée de Fourier jusqu'à *G*_{max} = 23 Å⁻¹.

Enfin, une fois le calcul de la structure fine des bandes électroniques effectué, le logiciel BoltzTraP est utilisé pour reconstituer la structure de bandes permettant de déterminer le coefficient de Seebeck du système en fonction du potentiel chimique, selon l'approche semiclassique définie précédemment.

3.2. Reproduction de résultats expérimentaux

3.2.1. Optimisation géométrique

Avant d'évaluer la qualité du calcul du coefficient de Seebeck à partir de structures optimisées, il faut tout d'abord vérifier que l'optimisation géométrique de nos composés est correcte (voir détails des calculs en fin de chapitre). Pour ce faire, nous avons comparé les distances au sein des structures cristallines (ou des modèles, voir chapitre 1) et optimisées d'un composé de chaque type structural pour lequel au moins une valeur de *zT* a été rapportée, à savoir les trois types structuraux contenant des motifs Mo₉X₁₁ (voir chapitre 1), ainsi que l'un des deux types structuraux existant pour les composés à motifs Mo₁₂X₁₄, Mo₆X₆

Composé	G. S. ^{<i>a</i>}	a (Å)	b (Å)	<i>c</i> (Å)	V (ų) ^b	Mo–Mo (Å)	Mo–Se (Å)	A–Se (Å)	B–Se (Å)
Ag4Mo9Se11 (modèle)	Стст	11,91	13,61	11,68	1894	2,63–2,75	2,55–2,67	2,63–3,41	
Ag4Mo9Se11 (calc.)	Стст	12,22	13,90	11,76	1997 (+5%)	2,58–2,73	2,59–2,75	2,80–3,39	
Ag ₃ RbMo ₉ Se ₁₁ (modèle)	P6₃/m	10,04	10,04	11,99	1047	2,62–2,74	2,55–2,71	2,64–3,63	3,41
Ag ₃ RbMo ₉ Se ₁₁ (calc.)	P6₃/m	10,17	10,17	12,11	1085 (+4%)	2,61–2,76	2,57–2,75	2,70–3,55	3,50
Ag ₂ Tl ₂ Mo ₉ Se ₁₁ (modèle)	R3c H	10,02	10,02	35,59	3093	2,62–2,73	2,56–2,67	2,57–3,37	2,56–3,65
Ag ₂ Tl ₂ Mo ₉ Se ₁₁ (calc.)	R3c H	10,11	10,11	36,30	3211 (+4%)	2,62–2,77	2,58–2,73	2,63–3,58	3,07–3,81
Cs ₂ Cu ₂ Mo ₁₂ Se ₁₄ (modèle)	R3 H	9,90	9,90	24,43	2071	2,62–2,73	2,52–2,69	3,65–3,91	2,08–3,64
Cs ₂ Cu ₂ Mo ₁₂ Se ₁₄ (calc.)	P1	10,17	10,15	24,56	2203 (+6%)	2,60–2,75	2,55–2,83	3,67–3,98	2,34–3,83
Ag ₃ In ₂ Mo ₁₅ Se ₁₉ (exp.)	R3c H	9,98	9,98	57,29	4938	2,65–2,78	2,57–2,69	2,59–3,62	2,99–3,90
Ag ₃ In ₂ Mo ₁₅ Se ₁₉ (calc.)	R3c H	10,03	10,03	58,04	5058 (+2%)	2,63–2,78	2,58–2,70	2,62–3,67	3,02–3,97
Tl ₂ Mo ₆ Se ₆ (exp.)	P6₃/m	8,94	8,94	4,50	311	2,66–2,72	2,61–2,69	3,40–3,44	
$Tl_2Mo_6Se_6$ (calc.)	P6₃/m	9,21	9,21	4,51	332 (+7%)	2,66–2,73	2,63–2,71	3,50–3,57	

Tableau 2.2 : Comparaison des distances interatomiques expérimentales et calculées dans des composés de chaque type structural pour lequel une valeur de *zT* est rapportée.

^aGroupe spatial. ^bVolume.

et Mo₁₅X₁₉. Ces résultats sont reportés dans le tableau 2.2. Globalement, le volume de maille de l'ensemble des composés étudiés est bien reproduit après optimisation (écarts <7%), avec des écarts inférieurs à 2% pour les distances Mo–Mo et 3% pour les distances Mo–Se.

3.2.2. Calcul des coefficients de Seebeck

L'objectif de cette étude est de proposer de nouvelles phases à clusters condensés de molybdène possédant des propriétés thermoélectriques comparables, voire meilleures que celles mesurées expérimentalement. Au regard de ce qui a été dit précédemment dans ce chapitre, nous cherchons donc des composés qui sont, avant tout, semi-conducteurs. De ce fait, nous allons nous focaliser sur les deux composés atteignant leur VEC « idéal », à savoir Ag₃RbMo₉Se₁₁ et Ag₂Tl₂Mo₉Se₁₁, ainsi qu'au composé Ag_{3,90}Mo₉Se₁₁ qui est le plus proche de la stœchiométrie du modèle Ag₄Mo₉Se₁₁ atteignant également son VEC « idéal ».

Calculer le coefficient de Seebeck d'un matériau nécessite de connaître *n*, sa concentration de porteurs de charge. Cette valeur a été rapportée expérimentalement pour trois composés à clusters condensés de molybdène, à savoir Ag_{3,60}Mo₉Se₁₁, Cs₂Cu_{1,3}Mo₁₂Se₁₄ et Ag₃In₂Mo₁₅Se₁₉, dans lesquels *n* vaut respectivement $1,9x10^{20}$ [41], $9,0x10^{20}$ [45] et $3,0x10^{21}$ [36] charges.cm⁻³, des valeurs correspondant plutôt à des composés métalliques. Le premier possède un VEC presque « idéal » de 35,6. On peut s'attendre à ce que *n* soit légèrement plus faible dans un composé entièrement « saturé » en électrons. Étant donné qu'il s'agit d'un paramètre très dépendant de la composition, il est difficile de prédire une valeur de coefficient de Seebeck à partir d'une seule valeur de *n*. Nous avons donc décidé de prédire la valeur de *S* dans un intervalle entre 10^{20} et 10^{21} charges.cm⁻³, qui sont des valeurs « classiques » de *n* dans les composés semi-conducteurs, voire faiblement métalliques (voir figure 2.3).

Les coefficients de Seebeck mesurés et calculés de 300 à 800 K des trois composés Ag_{3,90}Mo₉Se₁₁ (comparé au modèle Ag₄Mo₉Se₁₁), Ag₃RbMo₉Se₁₁ et Ag₂Tl₂Mo₉Se₁₁ sont respectivement représentés sur les figures 2.10, a, b et c. Le comportement de Ag_{3,90}Mo₉Se₁₁ est bien reproduit, tous les points de la courbe expérimentale se trouvant dans l'intervalle calculé. Cependant, la concentration de porteurs de charges dans Ag_{3,60}Mo₉Se₁₁ étant de 1,9x10²⁰charges.cm⁻³, on pourrait s'attendre à ce que la courbe expérimentale soit plus proche

Figure 2.10 : Coefficients de Seebeck mesurés expérimentalement (trait pointillé) et calculés avec $n = 10^{20}$ (trait plein bleu) et $n = 10^{21}$ (trait plein violet) pour les composés Ag_{3,90}/Ag₄Mo₉Se₁₁ (a), Ag₃RbMo₉Se₁₁ (b) et Ag₂Tl₂Mo₉Se₁₁ (c) (adapté de [41, 37, 40]).

de la borne haute ($n = 10^{20}$ charges.cm⁻³). Les coefficients de Seebeck des deux autres composés sortent de l'intervalle calculé, bien que Ag₂Tl₂Mo₉Se₁₁ y soit ponctuellement compris (entre 500 et 600 K). Le coefficient de Seebeck de ce dernier subit un changement de pente à 500 K, et Ag₃RbMo₉Se₁₁ de même à 600 K. Ce changement dégrade le coefficient de Seebeck, et n'est pas reproduit dans nos calculs. Dans les deux cas, ce changement intervient sans doute au niveau de la structure de bandes, puisque Ag₃RbMo₉Se₁₁ ne subit aucun changement de phase jusqu'à 800 K [37], et qu'une mesure de l'effet Hall dans Ag₂Tl₂Mo₉Se₁₁ attribue le changement de pente à une concurrence entre électrons et trous, réduisant la valeur du coefficient de Seebeck [40]. Notons qu'en l'absence de ces changements de pente, le coefficient de Seebeck à 800 K des deux composés serait vraisemblablement compris dans l'intervalle considéré, et probablement supérieur à celui de Ag₄Mo₉Se₁₁. D'une manière générale, nous pouvons dire le coefficient de Seebeck, dans l'intervalle de *n* que nous avons choisi, est surestimé, mais que cette conclusion est à relativiser par le faible nombre de mesures considérées, ainsi que par des changements de comportement en fonction de *T* qui semblent à première vue difficiles à expliquer.

Notons que cette surestimation peut également s'expliquer par le fait que la fonctionnelle utilisée, à savoir PBE [70], est basée sur une méthode d'approximation du gradient généralisé (*GGA*), qui a tendance à sous-estimer la valeur de la bande interdite dans les composés semi-conducteurs et isolants [71]. Une fonctionnelle telle que mBJ [72] qui utilise la dérivée seconde (le laplacien) de la densité électronique, permet généralement une meilleure estimation, mais cette méthode est plus coûteuse et plus difficilement applicable dans le cadre de la création d'une base de données calculées en DFT.

4. Prospections

À la vue des résultats qui viennent d'être discutés plus haut, nous avons décidé de calculer le coefficient de Seebeck pour une série de nouvelles phases à clusters condensés en prenant les valeurs de porteurs de charge $n = 10^{20}$ et 10^{21} cm⁻³. Nous allons d'abord déterminer quels types structuraux sont les plus pertinents à étudier. Nous allons ensuite nous attarder sur deux approches permettant de trouver de nouvelles phases semi-conductrices à clusters

condensés. Cette étude sera suivie, dans le chapitre 3, de la définition d'un espace chimique dans lequel nous allons rechercher de nouvelles formules et à partir duquel nous allons construire une base de données utilisée par la suite pour l'apprentissage machine.

4.1. Différentes formules et différents types structuraux

Comme énoncé précédemment, les composés à motifs Mo₆X₆ pouvaient sembler intéressants selon plusieurs aspects. Tout d'abord, certains composés de cette famille atteignent leur VEC « idéal » (26) les rendant semi-conducteurs. De plus, les composés appartenant à cette famille présentent une grande diversité de composition. Neuf cations différents y sont retrouvés, de même que les trois types de ligands S, Se et Te. Cependant, comme expliqué précédemment, le caractère semi-conducteur est ici dû à l'apparition d'une distorsion de Peierls, qui disparaît avant 300 K. Ces composés sont donc peu intéressants audelà de la température ambiante. Or, les phases à clusters condensés de molybdène n'ont de bonnes propriétés thermoélectriques qu'à haute température. Enfin, la conductivité thermique des composés à motifs Mo₆X₆ est trop élevée (12 W.m⁻¹.K⁻¹ dans Tl₂Mo₆Se₆ par exemple [57]) pour envisager de bonnes valeurs de *zT*. Cette famille de composés est donc peu prometteuse pour y chercher de nouveaux composés thermoélectriques.

C'est parmi les composés à motifs Mo₉X₁₁ que se trouvent les phases à clusters condensés possédant les meilleures propriétés thermoélectriques à ce jour. En effet, comme dit plus haut, les trois meilleures valeurs de *zT* à 800 K ont été rapportées pour les composés Ag_{3,90}Mo₉Se₁₁ (0,65 [41]), Ag₂Tl₂Mo₉Se₁₁ (0,62 [40]) et Ag₃RbMo₉Se₁₁ (0,40 [37]). De plus, leur composition chimique est variée avec sept cations différents et la présence de ligands S ou Se. Enfin, leur VEC est relativement aisé à saturer, avec un déficit initial de quatre électrons par rapport à leur VEC « idéal » de 36. Les composés de cette famille nous ont donc semblé être un point de départ idéal pour rechercher de nouveaux composés thermoélectriques.

Les composés à motifs Mo₁₂X₁₄ sont nombreux et variés en composition (12 structures cristallines rapportées et 6 cations différents). De plus, ils ne sont initialement déficitaires, au maximum, que de cinq électrons par rapport à leur VEC « idéal » de 50. L'existence de Zn₂CsMo₁₂Se₁₄, supposément semi-conducteur avec un VEC de 50, est d'ailleurs brièvement

rapportée dans [73], bien que ses propriétés thermoélectriques n'aient pas été mesurées. Le principal frein à l'étude approfondie de cette famille de composés est le peu de mesures de propriétés thermoélectriques réalisées. En effet, les propriétés des seuls composés Cs₂Mo₁₂Se₁₄ et Cu₂Cs₂Mo₁₂Se₁₄ ont été rapportées [45]. Les valeurs de *zT* à 623 K sont très faibles, plus faibles notamment que ceux de certains composés à motifs Mo₁₅X₁₉ qui sont également déficitaires en électrons [36, 50, 52], du fait de leur facteur de puissance plus faible.

La famille de composés la plus représentée est celle des composés à motifs Mo₁₅X₁₉, avec 60 structures cristallines rapportées et une grande variété en composition, avec 18 cations différents, soit tous les éléments existant dans les autres familles de clusters condensés à l'exception du cuivre. Cependant, le fait que leur structure cristalline soit basée sur deux types de motifs Mo_nX_{n+2} rend leur VEC « idéal » difficile à atteindre : les cations doivent apporter huit électrons au total. Aucun des 60 composés rapportés n'atteint son VEC « idéal » de 60, même si ceux qui s'en approchent possèdent de bonnes propriétés thermoélectriques, comme Ag₃In₂Mo₁₅Se₁₉ qui montre une valeur de *zT* de 0,20 à 800 K [36]. Enfin, ces composés cristallisent dans de très grandes malles élémentaires. Les calculs DFT associés sont donc longs et coûteux. Cet aspect rend cette famille de composés difficile à explorer outre mesure.

Enfin, les neuf autres familles de composés dont la structure est basée sur des motifs Mo₁₅X₁₇ ou plus grands, partageant des propriétés similaires, peuvent être rassemblées dans le même groupe. Ces composés sont tous très déficitaires en électrons par rapport à leur VEC « idéal », et leur composition est peu variée : les seuls cations que l'on y retrouve sont Rb et Cs. Au vu du nombre relativement élevé de composés rapportés, il est peu probable qu'on puisse y insérer d'autres types de cations. De plus, comme les composés à motifs Mo₁₅X₁₉ évoqués ci-dessus, la taille des mailles élémentaires de ces composés les rend difficiles à étudier par une approche DFT.

Pour la suite de cette étude, nous avons donc décidé de rechercher de nouvelles formules de composés semi-conducteurs prometteurs pour la thermoélectricité en nous focalisant sur les composés contenant le seul motif Mo₉X₁₁.

4.2. Substitution du molybdène dans le motif Mo₉X₁₁

Cette approche consiste à substituer un ou plusieurs atomes de molybdène dans le motif Mo₉X₁₁ afin de moduler son VEC, comme cela a déjà été fait expérimentalement par le passé dans les phases de Chevrel avec le rhénium (Mo₂Re₄S₈, Mo₂Re₄Se₈ et Mo₄Re₂Te₈ [74-75]), le ruthénium (Mo₄Ru₂Se₈ et Mo₄Ru₂Te₈ [76]) ou encore le rhodium (Mo_{4,66}Rh_{1,33}Te₈ [77]). Les motifs Mo₆X₈ de ces six composés possèdent un VEC « idéal » de 24 et sont attendus semiconducteurs. Cependant, Mo₄Ru₂Te₈ et Mo_{4,66}Rh_{1,33}Te₈ sont rapportés comme étant métalliques [76].

Par ailleurs, les propriétés thermoélectriques de deux échantillons du composé $Mo_2Re_4Se_8$ ont été mesurées [74]. Il est intéressant de noter que l'un des échantillons montre une conductivité de type *n*, et l'autre de type *p*. C'est ce dernier qui présente les meilleures propriétés thermoélectriques, mais sa valeur de *zT* reste inférieure à 0,01 à 300 K, notamment car il s'agit d'un composé pseudo-binaire dans lequel il n'y a pas de cation *rattler* pour abaisser κ_{latt} , la conductivité thermique de réseau. C'est d'ailleurs le frein principal au développement de matériaux thermoélectriques via cette approche : aucune substitution du molybdène au sein d'un cluster n'a été réalisée expérimentalement dans un composé autre que binaire.

Malgré l'absence d'exemples expérimentaux contenant des motifs hétérométalliques $Mo_{9-x}M_xX_{11}$, nous avons effectué des calculs sur les trois modèles de composés hypothétiques $Ag_2Mo_7Re_2Se_{11}$, $AgRbMo_7Re_2Se_{11}$ et $Tl_2Mo_7Re_2Se_{11}$, créés respectivement à partir du modèle $Ag_4Mo_9Se_{11}$ dérivant lui-même de $Ag_{3,60}Mo_9Se_{11}$ [41] (voir chapitre 1) et des deux composés $Ag_3RbMo_9Se_{11}$ [37] et $Ag_2Tl_2Mo_9Se_{11}$ [40]. Ces modèles hypothétiques ont été créés en remplaçant un Mo par un Re sur les faces Mo_3 extérieures des clusters Mo_9Se_{11} . Dans $AgRbMo_7Re_2Se_{11}$, la position choisie pour Ag est centrée sur la moyenne des trois positions formant un triangle dans $Ag_3RbMo_9Se_{11}$ (voir chapitre 1). Le modèle $Ag_2Mo_7Re_2Se_{11}$ a été créé en conservant la moitié des sites Ag du modèle $Ag_4Mo_9Se_{11}$. Enfin, les sites d'argent dans $Ag_2Tl_2Mo_9Se_{11}$ ont été supprimés pour créer le modèle $Tl_2Mo_7Re_2Se_{11}$, très similaire à $Tl_2Mo_9S_{11}$ [77]. Les coefficients de Seebeck calculés pour ces trois modèles hypothétiques $Ag_2Mo_7Re_2Se_{11}$, $AgRbMo_7Re_2Se_{11}$ et $Tl_2Mo_7Re_2Se_{11}$ sont respectivement représentés sur les figures 2.11, a, b et c, dans les mêmes intervalles de T et n que précédemment.

Figure 2.11 : Coefficients de Seebeck calculés pour les modèles hypothétiques $Ag_2Mo_7Re_2Se_{11}$ (a), $AgRbMo_7Re_2Se_{11}$ (b) et $Tl_2Mo_7Re_2Se_{11}$ (c) (trait plein) et pour les modèles de composés réels dont ils sont tirés (trait pointillé), avec $n = 10^{20}$ (bleu) et $n = 10^{21}$ (violet).

Les trois modèles hypothétiques sont caractérisés par des coefficients de Seebeck très similaires à ceux des composés dont ils dérivent. Ag₂Mo₇Re₂Se₁₁ par exemple, a un coefficient de Seebeck légèrement supérieur à celui de Ag₄Mo₉Se₁₁ pour les deux valeurs de *n* choisies, et bien que les courbes diffèrent pour $n = 10^{20}$ charges.cm⁻³, elles deviennent proches à partir de 500 K. Nous pouvons faire un constat similaire pour AgRbMo₇Re₂Se₁₁ comparé à Ag₃RbMo₉Se₁₁, à savoir que les deux courbes présentent la même tendance cette fois-ci en tout point de *T*. Cependant, dans ce cas, c'est le composé obtenu expérimentalement qui présente des valeurs de *S* plus élevées. Enfin, Tl₂Mo₇Re₂Se₁₁ et Ag₂Tl₂Mo₉Se₁₁ présentent des valeurs de *S* très proches en tout point de *T*, malgré quelques changements de pente. C'est Ag₂Tl₂Mo₉Se₁₁ qui présente le meilleur coefficient de Seebeck.

À première vue donc, il semble que dans les phases à clusters condensés semiconductrices contenant des motifs *M*₉Se₁₁, la substitution d'atomes de molybdène par d'autres atomes de transition plus riches en électrons n'améliore en rien le coefficient de Seebeck. Cependant, l'avantage de la substitution est d'augmenter le nombre d'électrons pour d'atteindre le VEC « idéal » du motif *M*₉Se₁₁, afin d'obtenir des formules de composés semi-conducteurs. Notons, de plus, que cette substitution entraîne une diminution de symétrie. Par exemple, les modèles Ag₂Mo₇Re₂Se₁₁ et Tl₂Mo₇Re₂Se₁₁ sont de symétrie *P*1 (contre, respectivement, *Cmcm* et *R*3*c* pour les composés obtenus expérimentalement), tandis que le modèle AgRbMo₇Re₂Se₁₁ est de symétrie *P*2₁/*m* (contre *P*6₃/*m* pour le composé expérimental). Cette baisse de symétrie a pour effet d'augmenter drastiquement les temps de calcul des propriétés de transport de ces composés, rendant cette approche difficile à approfondir via des calculs DFT.

4.3. Substitution cationique

Une autre approche vise à jouer sur la nature des contre-cations présents dans ces phases. La substitution cationique regroupe deux approches différentes. La première consiste à substituer un cation à un autre plus riche en électrons, mais de taille similaire, dans le cas d'un composé n'atteignant pas son VEC « idéal », par exemple en substituant Cu par Zn dans Cs₂Cu₂Mo₁₂Se₁₄ [73]. Dans ce cas, le VEC du composé passe de 48 à 50 (voir chapitre 1). Dans la seconde approche, il s'agit de substituer un métal à un autre métal isovalent dans un

composé ayant atteint son VEC « idéal », comme remplacer Ag par Cu dans Ag₄Mo₉Se₁₁. Dans le cas présent, nous allons uniquement employer la seconde approche, puisque les composés expérimentaux nous servant d'exemples – à savoir Ag₄Mo₉Se₁₁, Ag₃RbMo₉Se₁₁ et Ag₂Tl₂Mo₉Se₁₁ – ont tous trois atteint leur VEC « idéal » de 36.

Trois modèles hypothétiques ont été créés à cet effet. Le premier, Na₄Mo₉Se₁₁, dérive du modèle Ag₄Mo₉Se₁₁ (voir chapitre 1), tandis que les deux autres, Ag₃CsMo₉Se₁₁ et Cu₂Tl₂Mo₉Se₁₁, ont été créés à partir des structures des composés respectifs Ag₃RbMo₉Se₁₁ [37] et Ag₂Tl₂Mo₉Se₁₁ [40]. Les coefficients de Seebeck calculés pour ces trois modèles hypothétiques sont respectivement représentés sur les figures 2.12, a, b et c, en considérant les mêmes intervalles de *T* et les mêmes valeurs de *n* que dans l'étude précédente. Dans ce cas, les valeurs de *S* de ces nouveaux modèles sont comparées aux valeurs calculées pour les composés dont ils dérivent.

Figure 2.12 : Coefficients de Seebeck calculés pour les modèles hypothétiques Na₄Mo₉Se₁₁ (a), Ag₃CsMo₉Se₁₁ (b) et Cu₂Tl₂Mo₉Se₁₁ (c) (trait plein) et des modèles de composés réels dont ils sont tirés (trait pointillé) avec $n = 10^{20}$ (bleu) et $n = 10^{21}$ (violet).

Le coefficient de Seebeck de Na₄Mo₉Se₁₁ est plus élevé que celui de Ag₄Mo₉Se₁₁ à haute température, pour les deux valeurs de *n*. Cependant, les tendances sont diverses : pour *n* = 10^{20} , les deux courbes ont une pente similaire, tandis que pour *n* = 10^{21} , elles sont proches à basse température, mais la courbe du composé au sodium augmente plus rapidement ensuite. Remplacer Ag⁺ par Na⁺ a donc un effet non négligeable sur le coefficient de Seebeck, bien que ces ions possèdent un rayon ionique similaire (1,02 Å pour Na⁺ contre 1,15 Å pour Ag⁺, selon Shannon [78]). Concernant Ag₃CsMo₉Se₁₁, son coefficient de Seebeck est très proche de celui de Ag₃RbMo₉Se₁₁, pour tout le domaine de température entre 300 et 800 K. Ce résultat peut s'expliquer par le fait que les cations intervertis ont une taille similaire (1,52 Å pour Rb⁺ contre 1,67 Å pour Cs⁺ [78]) et sont tous deux des métaux alcalins. Notons tout de même que le coefficient de Seebeck du composé hypothétique est légèrement plus élevé que celui du composé expérimental. Enfin, les coefficients de Seebeck de Cu₂Tl₂Mo₉Se₁₁ et Ag₂Tl₂Mo₉Se₁₁ présentent quelques divergences. La pente des courbes de Cu₂Tl₂Mo₉Se₁₁ est plus faible que celles des courbes de Ag₂Tl₂Mo₉Se₁₁, si bien que le premier possède un coefficient de Seebeck plus élevé jusqu'à 800 K, où le second le dépasse, et ce pour les deux valeurs de *n* considérées.

Pour conclure, la substitution cationique semble, dans notre cas, un choix plus pertinent que celle du molybdène par un autre métal dans le cluster, à la fois parce que les propriétés des composés hypothétiques semblent varier de façon plus importante de celles du composé de départ, et parce que la substitution cationique est plus simple à mettre en œuvre d'un point de vue calculatoire. Elle semble également l'être expérimentalement.

5. Conclusion

Ce second chapitre s'ouvre sur de brefs rappels de thermoélectricité qui ont permis de mettre en évidence la difficulté d'optimiser les propriétés thermoélectriques d'un matériau, du fait de leur forte interdépendance et de la présence d'effets antagonistes. Ces rappels ont également permis de classer nos composés à clusters condensés parmi les familles de composés thermoélectriques qui suivent le modèle PGEC (*phonon glass electron crystal*). Ce modèle stipule que les meilleurs matériaux thermoélectriques possèdent la conductivité thermique d'un composé amorphe (comme le verre) et donc très basse, et les propriétés de conductivité électrique d'un cristal de façon à diffuser les phonons efficacement, tout en gardant une bonne conductivité électrique.

L'un des objectifs de ce chapitre était le recensement des propriétés thermoélectriques mesurées des phases à clusters condensés, dont les structures cristalline et électronique ont déjà été discutées dans le chapitre 1. À haute température (800 K), les meilleurs composés thermoélectriques présentent une conductivité thermique totale κ très faible, proche de 1 W.m⁻¹.K⁻¹, et leurs propriétés de transport électrique sont les suivantes : une conductivité

électrique comprise entre 2x10⁴ et 6x10⁴ S.m⁻¹ et un coefficient de Seebeck entre 140 et 190 μ V.K⁻¹. Ces valeurs confirment que les composés à clusters condensés suivent le modèle PGEC, et les rapprochent particulièrement des clathrates et phases de Zintl. La différence principale entre nos phases et les composés PGEC possédant un *zT* > 1 est que ces derniers sont généralement caractérisés par un coefficient de Seebeck plus élevé. Notons enfin que les composés à clusters condensés ayant les meilleures propriétés thermoélectriques possèdent des motifs Mo₉X₁₁.

Par la suite, une étude théorique concernant le calcul DFT de propriétés thermoélectriques a mis en lumière le fait que dans le cas des composés à clusters condensés et au regard des approximations possibles et des coûts de calcul, le coefficient de Seebeck était la propriété thermoélectrique qu'il était envisageable de prédire le plus facilement par le calcul. Prédire des valeurs précises s'avérant difficile du fait du peu de données expérimentales concernant *n*, la concentration de porteurs de charges, il a été décidé de prédire *S* pour deux valeurs de *n* généralement mesurées pour des composés faiblement métalliques ou semi-conducteurs. Cette prédiction semble avoir tendance à surestimer le coefficient de Seebeck, mais l'intérêt est de trouver les tendances régissant cette propriété. Ayant montré dans la partie précédente que les phases à clusters condensés différaient des meilleurs composés PGEC par leur coefficient de Seebeck plus faible, chercher de nouveaux matériaux avec des propriétés thermoélectriques améliorées en optimisant la valeur de *S* semble être une approche pertinente dans ce cas.

Enfin, une rapide étude prospective a été menée dans le but d'orienter cette recherche de nouveaux composés. Il a été décidé de se concentrer sur les composés à motifs Mo_9X_{11} , du fait de leurs bonnes propriétés thermoélectriques mesurées, de la facilité relative de les saturer en électrons jusqu'au VEC « idéal » de 36, de la variété chimique présente dans les différentes compositions rapportées, et enfin de la relative petite taille de leur maille élémentaire, permettant de réduire le coût des calculs. Parmi les deux approches considérées pour générer de nouvelles formules semi-conductrices, la substitution cationique a été jugée plus pertinente que celle du molybdène dans les clusters, du fait de son influence plus importante sur *S* et de sa simplicité de mise en œuvre.

Ce second chapitre avait pour but d'ouvrir de nouvelles perspectives de recherche de composés thermoélectriques ; le troisième et ultime chapitre portera sur la détermination et l'application d'un protocole de *machine learning* qui devra aboutir à la proposition de nouvelles formules hypothétiques possédant des propriétés thermoélectriques améliorées.

6. Bibliographie

- [1]B. Lenoir, J. P. Michenaud, A. Dauscher, *Techniques de l'ingénieur*, **2010**.
- [2]C. Candolfi, S. El Oualid, D. Ibrahim, S. Misra, O. El Hamouli, A. Léon, A. Dauscher, P. Masschelein, P. Gall, P.Gougeon, C. Semprimoschnig, B. Lenoir, CEAS Space J., 2021, 13, 325–340.
- [3]R. Freer, A. V. Powell, J. Mater. Chem. C, 2020, 8, 441–463.
- [4]J. J. Urban, A. K. Menon, Z. Tian, A. Jain, K. Hippalgaonkar, J. Appl. Phys., 2019, 125, 180902– 180912.
- [5]A. H. Wilson, *The Theory of Metals (Second edition)*, Cambridge University Press, **1953**.
- [6]H. J. Goldsmid, *Thermoelectric Refrigeration* in *The International Cryogenics Monograph Series*, Plenum, **1964**.
- [7]G. J. Snyder, E. S. Toberer, *Nat. Mater.*, **2008**, *7*, 106–114.
- [8]M. K. Vedernikov, E. K. Iordanishvili, 17th International Conference on Thermoelectrics, 1998, 37–42.
- [9]X.-L. Shi, J. Zou, Z.-G. Chen, Chem. Rev., 2020, 120, 7399–7515.
- [10]R. Freer, D. Ekren, T. Ghosh, K. Biswas, P. Qiu, S. Wan, L. Chen, S. Han, C. Fu, T. Zhu, A. K.
 M. A. Shawon, A. Zevalkink, K. Imasato, G. J. Snyder, M. Ozen, K. Saglik, U. Aydemir, R.
 Cardoso-Gil, E. Svanidze, R. Funahashi, A. V. Powell, S. Mukherjee, S. Tippireddy, .P
 Vaqueiro, F. Gascoin, T. Kyratsi, P. Sauerschnig, T. Mori, *J. Phys. Energy*, **2022**, *4*, 022002.
- [11]M. S. Dresselhaus, G. Chen, M; Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J.-P. Fleurial, P. Gogna, Adv. Mater., 2007, 19, 8, 1043–1053.
- [12]B. Abeles, D. S. Beers, G. D. Cody, J. P. Dismukes, Phys. Rev., 1962, 125, 1, 44-46.
- [13]B. A. Cook, M. Kramer, J. L. Harringa, M.-K. Han, D.-Y. Chung, M. G. Kanatzidis, Adv. Func. Mater., 2009, 19, 8, 1254–1259.

- [14]K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, M. G. Kanatzidis, *Nature*, **2012**, 489, 414–418.
- [15]Z. Tian, K. Esfarjani, G. Chen, *Phys. Rev. B*, **2012**, *86*, 23, 235304–235310.
- [16]K. Esfarjani, G. Chen, H. T. Stokes, *Phys. Rev. B*, **2011**, *84*, 8, 085204–085214.
- [17]D. L. Medlin, G. J. Snyder, Curr. Opin. Colloid Interface Sci., 2009, 14, 4, 226–235.
- [18]L.-D. Zhao, V. P. Dravid, M. G. Kanatzidis, *Energy Environ. Sci.*, **2014**, *7*, 251–268.
- [19]X. Zhou, Y. Yan, X. Lu, H. Zhu, X. Han, G. Chen, Z. Ren, *Mater. Today*, **2018**, *21*, 9, 974–988.
- [20]Y. Pei, X. Shi, A. D. LaLonde, H. Weng, L. Chen, G. J. Snyder, *Nature*, **2011**, 473, 66–69.
- [21]S. Lin, Z. Chen, J. Shen, B. Ge, Y. Pei, 2016, Nature Comm., 2016, 7, 10287–10293.
- [22]L. Wu, X. Li, S. Wang, T. Zhang, J. Yang, W. Zhang, L. Chen, J. Yang, NPG Asia Mater., 2017, 9, e343.
- [23]A. Banik, S. Shenoy, S. Anand, U. V. Waghmare, K. Biswas, *Chem. Mater.*, **2015**, *27*, 2, 581–587.
- [24]H. Wang, A. D. LaLonde, G. J. Snyder, Proc. Natl. Acad. Sci. U.S.A., 2012, 109, 25, 9705– 9709.
- [25]J. O. Sofo, G. D. Mahan, Phys. Rev. B, 1994, 49, 7, 4565–4570.
- [26]G. A. Slack in: D.M. Rowe (Eds.), *Thermoelectric Handbook*, CRC, Boca Raton, FL, **1995**, 407–440.
- [27]M. Beekman, D. T. Morelli, G. S. Nolas, Nature Mater., 2015, 14, 1182–1185.
- [28]E. S. Toberer, C. A. Cox, S. R. Brown, T. Ikeda, A. F. May, S. M. Kauzlarich, G. J. Snyder, Adv. Funct. Mater., 2008, 18, 18, 2795–2800.
- [29]X. Chen, H. Wu, J. Cui, Y. Xiao, Y. Zhang, J. He, Y. Chen, J. Cao, W. Cai, S, J. Pennycook, Z.
 Liu, L.-D. Zhao and J. Sui, *Nano Energy*, **2018**, *52*, 246–255.
- [30] A. Mewis, Z. Naturforsch. B, **1978**, 33, 382–384.
- [31] T. Takabatake, K. Suekuni, T. Nakayama, E. Kaneshita, *Rev. Mod. Phys.*, **2014**, *86*, 669–716.
- [32]G. S. Nolas, *The Physics and Chemistry of Inorganic Clathrates* in *Springer Series in Materials Science*, Berlin, Springer, **2014**, 199, 332p.
- [33]R. Liu, P. Qiu, X. Chen, X. Huang, L. Chen, J. Mater. Res., 2011, 26, 1813–1819.
- [34]X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen, J. Am. Chem. Soc., 2011, 133, 20, 7837–7846.
- [35]J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, Angew. Chem. Int. Ed., 2009, 48, 46, 8616– 8639.

- [36]P. Gougeon, P. Gall, R. Al Rahal Al Orabi, B. Boucher, B. Fontaine, R. Gautier, A. Dauscher,C. Candolfi, B. Lenoir, *Inorg. Chem.*, **2019**, *58*, 9, 5533–5542.
- [37]P. Gougeon, P. Gall, O. Merdrignac-Conanec, L. Aranda, A. Dauscher, C. Candolfi, B. Lenoir, *Inorg. Chem.*, 2017, 16, 9684–9692.
- [38]T. Hughbanks, R. Hoffmann, J. Am. Chem. Soc., 1983, 105, 1150–1162.
- [39]T. Zhou, B. Lenoir, M. Colin, A. Dauscher, R. Al Rahal Al Orabi, P. Gougeon, M. Potel, E. Guilmeau, Appl. Phys. Lett., 2011, 98, 162106–162108.
- [40]R. Al Rahal Al Orabi, P. Gougeon, P. Gall, B. Fontaine, R. Gautier, M. Colin, C. Candolfi, A. Dauscher, J. Hejtmanek, B. Malaman, B. Lenoir, *Inorg. Chem.*, **2014**, *53*, 21, 11699–11709.
- [41]M. Colin, T. Zhou, B. Lenoir, A. Dauscher, R. Al Rahal Al Orabi, P. Gougeon, M. Potel, P. Baranek, C. Semprimoschnig, J. Electron. Mater., 2012, 41, 6, 1360-1364.
- [42] P. Gougeon, M. Potel, R. Gautier, Inorg. Chem., 2004, 43, 4, 1257-1263.
- [43]S. Picard, J.-F. Halet, P. Gougeon, M. Potel, Inorg. Chem., 1999, 38, 20, 4422-4429.
- [44]C. Thomas, S. Picard, R. Gautier, P. Gougeon, M. Potel, J. Alloys Compd., 1997, 262-263, 305-310.
- [45]R. Al Rahal Al Orabi, B. Fontaine, R. Gautier, P. Gougeon, P. Gall, Y. Bouyrie, A. Dauscher,C. Candolfi, B. Lenoir, *Inorg. Chem.*, **2016**, *55*, 13, 6616-6624.
- [46]S. Picard, P. Gougeon, M. Potel, Inorg. Chem., 2006, 45, 4, 1611–1616.
- [47] P. Gougeon, P. Gall, J. Alloys Compd., 2021, 872, 159595–159603.
- [48] P. Gougeon, P. Gall, Inorg. Chem., 2017, 56, 6, 3440–3446.
- [49] P. Gougeon, M. Potel, J. Padiou, M. Sergent, Mater. Res. Bull., 1988, 23, 3, 453–460.
- [50]G. Daigre, P. Gougeon, P. Gall, O. Merdrignac-Conanec, R. Al Rahal Al Orabi, R. Gautier, A. Dauscher, C. Candolfi, B. Lenoir, ACS Appl. Energy Mater., 2020, 3, 2646-2855.
- [51]G. Daigre, P. Gougeon, P. Gall, R. Gautier, O. Guillou, J.-B. Vaney, C. Candolfi, A. Dauscher,B. Lenoir, J. Solid State Chem., 2016, 237, 1-6.
- [52]P. Gougeon, P. Gall, R. Al Rahal Al Orabi, B. Fontaine, R. Gautier, M. Potel, T. Zhou, B. Lenoir, M. Colin, C. Candolfi, A. Dauscher, *Chem. Mater.*, **2012**, *24*, 15, 2899-2908.
- [53]S. Picard, J.-Y. Saillard, P. Gougeon, H. Noël, M. Potel, J. Solid State Chem., 2000, 155, 417-426.
- [54] P. Gougeon, P. Gall, A. Huguenot, R. Al Rahal Al Orabi, R. Gautier, *Inorg. Chem.*, 2019, 58, 22, 15236–15245.
- [55]J.-M. Tarascon, F. J. DiSalvo, J. V. Waszczak, Solid State Commun., 1992, 52, 3, 227–231.

- [56]T. Mori, Y. Yokogawa, A. Kobayashi, Y. Sasaki, H. Kobayashi, Solid State Commun., 1984, 49, 3, 249–252.
- [57] D. T. Verebelyi, J. E. Payne, G. X. Tessema, E. Mengistu, MRS Proc., 1997, 478, 157–159.

[58] P. Gougeon, M. Potel, J. Padiou, M. Sergent, J. Solid State Chem., 1987, 68, 1, 137-142.

- [59]G. A. Slack, D. W. Oliver, F. H. Horn, *Phys. Rev. B*, **1971**, *4*, 1714–1720.
- [60]T. Caillat, J.-P. Fleurial, G. Snyder, Solid State Sci., 1999, 1, 535–544.
- [61]G. K. H. Madsen, D. J. Singh, Comput. Phys. Comm., 2006, 175, 1, 67–71.
- [62]P. Drude, Ann. Phys., **1900**, 369–402.
- [63] P. Drude, Ann. Phys., **1900**, 566–613.
- [64]A. Sommerfeld, Z. Phys., **1928**, 47, 1–32.
- [65]A. Togo, I. Tanaka, Scr. Mater., 2015, 108, 1–5.
- [66]G. Kresse and J. Furthmuller, Phys. Rev. B, 1996, 54, 11169–11186.
- [67]Crystal Impact Dr. H. Putz & Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany, https://www.crystalimpact.de/endeavour.
- [68]P. Blaha, K. Schwarz, F. Tran, G. K. H. Madsen, L. D. Marks, J. Chem. Phys., 2020, 152, 074101–074130.
- [69](a) I. G. Kresse and D. Joubert, *Phys. Rev. B*, **1999**, *59*, 1758–1775 ; (b) P. E. Blöchl, *Phys. Rev. B*, **1994**, *50*, 17953–17979.
- [70]G. te Velde, F. M. Bickelhaupt, S. J. A. van Gisbergen, C. F. Guerra, E. J. Baerends, J. G. Snijders, T. Ziegler, *J. Comput. Chem.*, **2001**, *22*, 931–967.
- [71]J. Heyd, J. E. Peralta, G. E. Scuseria, R. L. Martin, J. Chem. Phys., 2005, 123, 174101– 174108.
- [72]F. Tran, P. Blaha, Phys. Rev. Lett., 2009, 102, 22, 226401–226404.
- [73]R. Gautier, P. Gougeon, J.-F. Halet, M. Potel, J.-Y. Saillard, J. Alloys Compd., 1997, 262–263, 311–315.
- [74] T. Caillat, J.-P. Fleurial, J. Phys. Chem. Solids, 1998, 59, 6–7, 1139–1144.
- [75]A. Perrin, M. Sergent, Ø. Fischer, Mater. Res. Bull., 1978, 13, 4, 259–264.

[76]A. Perrin, R. Chevrel, M. Sergent, Ø. Fischer, J. Solid State Chem., 1980, 33, 1, 43-47.

[77] M. Potel, P. Gougeon, R. Chevrel, M. Sergent, Rev. Chim. Minér., 1984, 21, 4, 509–536.

[78]R. D. Shannon, Acta Cryst., **1976**, A32, 751–767.

Chapitre 3 :

Prédiction des propriétés thermoélectriques de nouveaux composés par apprentissage automatique (*machine learning*)

1. Introduction

1.1. Le *machine learning* appliqué à la chimie des matériaux

Le machine learning, ou apprentissage automatique, désigne un domaine de l'intelligence artificielle ayant pour but d'« enseigner » à un ordinateur la résolution de tâches de régression ou classification diverses, à l'aide d'outils mathématiques et statistiques. Ces approches ont mené à des avancées significatives dans des domaines aussi variés que la reconnaissance d'images [1], la résolution de jeux de société [2] ou encore la recherche médicale [3–4]. Bien que connaissant un développement plus récent [5], le machine learning appliqué à la science des matériaux peut contribuer à résoudre des problématiques diverses selon l'approche employée.

Il est possible de diviser le *machine learning* en trois catégories : l'apprentissage supervisé, non supervisé, et de renforcement. Ce dernier – que l'on peut décrire comme l'exploration des interactions dans le but d'optimiser une fonction de récompense – connaît peu d'applications en sciences des matériaux, au-delà de quelques cas ponctuels [6–7]. De ce fait, nous n'allons pas l'évoquer par la suite.

En apprentissage supervisé, un modèle prédictif de régression (visant à prédire la valeur d'une variable) ou de classification (ayant pour but d'attribuer une classe à un point de données) est créé à partir de données étiquetées, c'est-à-dire dont la valeur ou la classe est connue. Une fois entraîné, ce modèle prédictif doit pouvoir prédire la valeur ou la classe de points de données non étiqueté (n'ayant pas servi à construire le modèle prédictif).

L'application principale des modèles de régression, en sciences des matériaux, est la prédiction de propriétés. Quelques exemples d'études de ce genre portent sur la prédiction

de propriétés variées, telles que l'énergie de formation de pérovskites [8], la température critique T_c d'oxydes supraconducteurs, [9–10], la température de fusion de solides [11], les propriétés adhésives de polymères [12] ou encore la valeur de bande interdite de composés binaires [13]. Citons enfin les travaux de Singstock *et al.* [14] ayant mené à la synthèse de nouvelles phases de Chevrel à partir de la prédiction de leur enthalpie de décomposition, relançant l'intérêt pour le sujet.

Quant aux modèles de classification, ils visent, de façon triviale, à attribuer une classe à un point de données. L'un des enjeux majeurs de ces méthodes – et de la chimie des matériaux en général – est celui de la prédiction de la structure cristalline à partir d'une formule, à la manière du facteur de Goldschmidt [15] pour prédire la structure des perovskites. Le *machine learning* a justement permis d'améliorer la précision de ces modèles empiriques [16], et même de les adapter à la classification de composés binaires [17, 18]. D'une manière générale, ces approches de classification sont plus efficaces quand elles s'appuient sur des bases de données très vastes [5].

1.2. Processus détaillé d'une étude de machine learning

Nous allons décrire ici le processus d'une étude de *machine learning* comme celle qui va être réalisée dans ce chapitre, de la collecte de données à l'optimisation d'une propriété visée. Le processus suivi dans notre étude est tout d'abord décrit sur la figure 3.1 ci-dessous, et les différentes étapes seront détaillées par la suite.

Figure 3.1. : Vue d'ensemble du processus de machine learning envisagé pour nos systèmes.

1.2.1. Collecte de données

Les études de *machine learning* dans le domaine des matériaux visent à décrire le comportement d'une propriété visée à partir d'observations statistiques, souvent à grande échelle. Pour collecter les données nécessaires, il existe plusieurs solutions. La première est d'utiliser des bibliothèques de données en ligne, qui sont de plus en plus nombreuses et de plus en plus complètes [19]. De nombreuses bibliothèques en ligne rassemblent des propriétés utiles en sciences des matériaux, comme AFLOW (*Automatic FLOW Framework for Materials Discovery* [20]), OQMD (*Open Quantum Materials Database* [21]) ou encore Materials Project [22], combinant des données expérimentales et calculées par DFT. Certaines d'entre elles concernent spécifiquement les propriétés de composés thermoélectriques,

comme la base de données de l'université de Santa Barbara (*UCSB* [23]), ou plus récemment SIMD (*System-Identified Material Representation for Data-Driven Discovery* [24]).

Utiliser une bibliothèque de données en ligne présente des avantages majeurs, tels que la facilité d'accès et le grand nombre de données disponibles. Cependant, la recherche de nouveaux matériaux thermoélectriques peut s'avérer difficile en utilisant cette approche. En effet, les bonnes propriétés thermoélectriques de certaines familles de composés sont dues à leur arrangement structural très particulier, dont la spécificité n'est pas reproductible par des bases de données à grande échelle. C'est le cas des composés créés selon le modèle PGEC (voir chapitre 2), dont font partie les phases à clusters condensés qui font l'objet de notre étude. En effet, nos composés présentent des propriétés de structure électronique spécifiques directement liées à leur structure cristalline, comme exposé dans le chapitre 1.

L'alternative à l'utilisation de bibliothèques de données en ligne est la création d'une base de données réduite, par le calcul ou par l'expérience. Cette méthode est plus longue à mettre en place, du fait du temps nécessaire à réaliser les calculs ou expériences, mais elle présente l'avantage d'être construite de façon homogène selon une méthode contrôlée. Nous allons donc créer une base de données de taille réduite, utilisant des résultats calculés via l'approche DFT détaillée dans le chapitre 2.

1.2.2. Préparation au machine learning

Afin de convertir les données initiales en base de données, il est nécessaire de définir des descripteurs, qui sont des propriétés physiques calculées de façon homogène pour chaque point de données de la base (dans notre cas, chaque formule chimique), ayant pour but de décrire au mieux le système étudié.

Il existe justement des outils permettant de générer un certain nombre de descripteurs liés à des propriétés physiques du système. Il existe notamment de nombreuses méthodes pour décrire des structures bidimensionnelles (molécules) [25] ou tridimensionnelles [5] à l'aide de descripteurs numériques. Cependant, dans notre cas, nous recherchons à prédire le coefficient de Seebeck de nouvelles formules hypothétiques. Nos descripteurs doivent donc être calculés à partir de cette seule formule chimique. Pour ce faire, nous utilisons *Matminer* [26], une bibliothèque développée sous *Python* permettant de générer des descripteurs intrinsèques à partir de la moyenne des propriétés des éléments isolés d'une formule chimique, en tenant compte de la stœchiométrie.

Il est également possible de calculer manuellement certains descripteurs décrivant des propriétés communes et spécifiques aux systèmes étudiés. Par exemple, dans nos composés, les éléments S, Se ou Te ne peuvent être que les ligands des clusters au molybdène. De ce fait, le type de ligand peut être un descripteur, sans que l'on ait besoin de connaître la structure associée à une formule chimique.

Il faut, enfin, définir une propriété ciblée à optimiser. Dans notre cas, comme détaillé dans le chapitre 2, nous allons chercher à prédire la valeur du coefficient de Seebeck.

1.2.3. Prédiction de la propriété ciblée

Après avoir défini la base de données, nous allons optimiser la propriété ciblée à l'aide d'un algorithme de *machine learning*. Il existe deux types d'études : la classification et la régression. Dans le premier cas, on cherche à classer la propriété ciblée dans une sous-famille. En prenant l'exemple de nos composés expérimentaux (voir partie 2 du chapitre 2), on peut imaginer classer nos composés selon l'intervalle dans laquelle se trouve leur coefficient de Seebeck mesuré à 800 K, comme [50-100], [100-150] et [150-200] (en μ V/k). L'algorithme utilisé aurait alors pour but de classer les formules hypothétiques dans l'une de ces trois sousfamilles. Quant à la régression, il s'agit de prédire directement la valeur numérique du coefficient de Seebeck.

Dans notre cas, nous allons faire une étude de régression. Parmi les méthodes fréquemment utilisées, on peut citer les différentes combinaisons de régressions linéaires, polynomiales et gaussiennes. La méthode que nous avons choisi d'utiliser, *Random Forest* [27], dérive de la méthode des arbres décisionnels [28]. Le schéma de fonctionnement d'un arbre décisionnel est schématisé sur la figure 3.2 ci-après.

Figure 3.2 : Schéma d'un arbre décisionnel de profondeur 2, à trois descripteurs.

Dans un arbre décisionnel de régression, un descripteur est choisi au hasard dans la base de données. L'algorithme va lui attribuer une valeur de coupure (*c*) puis va séparer le jeu de données en deux branches (inférieur à *c*, ou supérieur à *c*). Cette valeur de coupure est choisie pour que la réduction de la variance soit maximale (la variance étant ici mesurée par l'indice de Gini [29], qui mesure la répartition d'une variable au sein d'un jeu de données en le divisant par tranches). Autrement dit, l'algorithme sépare le jeu de données en deux branches les plus homogènes possibles.

À la suite de cette coupure, chaque branche est séparée par un nouveau descripteur choisi aléatoirement dans la base de données, jusqu'à atteindre la profondeur maximale, soit le nombre de branches que l'on autorise jusqu'en bas de l'arbre. Sur la figure 3.2 ci-dessus, l'arbre représenté est de profondeur 2. Si cette valeur est trop élevée, il y a un risque de surajustement (*overfitting*), puisque plus l'arbre est grand, plus le modèle est précis (si les descripteurs sont suffisamment pertinents), mais moins il est généralisable.

Pour prédire la valeur de la propriété ciblée d'un point, on va alors suivre chaque branche de l'arbre jusqu'en bas, en suivant le « chemin » formé par les descripteurs séparant les branches. Chaque nœud final de l'arbre est appelé feuille. La valeur de la propriété ciblée pour un point à prédire est la moyenne des valeurs des points du modèle d'entraînement se trouvant sur la même feuille que lui.

L'un des inconvénients de la méthode des arbres décisionnels est que le résultat est très dépendant des descripteurs sélectionnés le long de l'arbre. La méthode *Random Forest* y remédie : il s'agit, tout simplement, de la combinaison de *n* arbres décisionnels, chaque arbre correspondant à une combinaison différente de descripteurs. La valeur de la propriété ciblée correspond alors à la moyenne de la valeur prédite par les *n* arbres. Il s'agit donc d'une méthode d'apprentissage ensembliste.

Enfin, il reste à définir comment les données sont échantillonnées au départ, c'est-àdire lesquelles sont connues (et servent à créer un modèle d'entraînement) et lesquelles sont prédites par les arbres décisionnels (modèle de validation). Nous utilisons pour cela une méthode de validation croisée. La plus simple est la méthode à k blocs, dans laquelle la base de données est mélangée aléatoirement puis divisée en k échantillons de taille équivalente. Un ensemble de k-1 blocs est utilisé comme modèle d'apprentissage (les valeurs sont connues), et le dernier bloc comme modèle de test, dont les valeurs sont prédites. L'opération est répétée k fois, de sorte que tous les échantillons soient prédits. La méthode la plus coûteuse est la méthode croisée d'un-contre-tous (*leave-one-out*) ; dans ce cas, la base de données contenant n points est divisée en n échantillons, chaque formule individuelle servant de modèle de test, et les n-1 formules restantes de modèle d'apprentissage.

Notons que le choix de la méthode de validation croisée, le nombre d'arbres décisionnels calculés et la profondeur maximale des arbres, soient les variables intrinsèques à *Random Forest*, sont appelés les hyperparamètres de l'algorithme.

Les avantages des algorithmes de type *Random Forest* sont qu'en utilisant de nombreux arbres décisionnels, on réduit le risque de surajustement, comme toutes les méthodes d'apprentissage ensemblistes. De plus, il est moins sensible aux valeurs aberrantes (*outliers*) que les méthodes de régression linéaires ou polynomiales. Enfin, il présente l'avantage de pouvoir interpréter des descripteurs aux valeurs continues (par exemple la valeur de bande interdite) et discrètes (comme le type de ligands). Notons cependant que cette méthode présente l'inconvénient de ne pas pouvoir prédire de valeurs qui sortent de la fenêtre initiale.

173

Nous allons maintenant discuter de comment évaluer les performances de l'algorithme *Random Forest* pour la prédiction de la propriété ciblée.

1.2.4. Évaluation du modèle

Différents indicateurs statistiques permettent d'évaluer la précision d'un modèle de régression. Tout d'abord, l'erreur moyenne absolue, ou MAE (pour *Mean Absolute Error*), permet de quantifier la valeur absolue de l'erreur moyenne sur une prédiction, qu'elle soit positive ou négative. Elle est définie comme suit :

$$\mathsf{MAE} = \frac{\sum_{i=1}^{n} |e_i|}{n}$$

, avec *n* la taille de l'échantillon considéré, et l'erreur absolue, |e| = |y-x|, y la valeur prédite, et x la valeur réelle (calculée, dans notre cas). Nous utiliserons également la MAPE (*Mean Root Percentage Error*), qui correspond à la MAE rapportée à la moyenne de la valeur sur la série, permettant d'estimer un pourcentage moyen d'écart à la valeur moyenne.

Un autre indicateur fréquemment utilisé est le coefficient de détermination, R², défini comme suit :

$$R^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \bar{x})^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

, avec \bar{x} la moyenne des valeurs réelles. On peut voir R2, compris entre 0 et 1, comme la proportion de variation par rapport à la ligne de régression linéaire du modèle évalué.

Enfin, il est possible de calculer la racine de l'erreur quadratique, ou RMSE (pour *Root Mean-Square Error*), définie comme suit :

$$\mathsf{RMSE} = \sqrt{\frac{\sum_{i=1}^{n} |e_i|^2}{n}}$$

Si toutes les erreurs individuelles sont égales, la RMSE est strictement égale à la MAE. Cependant, la RMSE est plus grande s'il y a plus d'erreurs très éloignées de la valeur calculée. Autrement dit, la RMSE est plus élevée que la MAE si, à somme des erreurs égale, un jeu de données comporte plus de valeurs aberrantes (*outliers*). Ces trois indicateurs sont les principaux utilisés pour évaluer la précision d'un modèle de régression.

Dans le cadre de notre étude, nous avons tout d'abord étudié la MAE et la MAPE. Nous n'avons pas considéré la RMSE ni le R² dans un premier temps, et ne l'avons pas fait ensuite par manque de temps, mais il s'agit de l'une des perspectives à considérer pour la suite.

2. Création d'une base de données calculées

Dans le chapitre 2, une méthode de calcul pour estimer le coefficient de Seebeck, *S*, au sein d'un intervalle de concentration de porteurs de charges a été décrite, et il a été établi que la famille de composés la plus intéressante à étudier était celle des composés à motifs Mo₉X₁₁. Ensuite, deux méthodes permettant de trouver de nouvelles formules de composés semiconducteurs ont été décrites et comparées pour conclure que, dans le cadre d'une étude réalisée par des calculs de DFT, la substitution cationique était la plus simple à mettre en place. Ces considérations suffisent à envisager la création d'une base de données initiale composée de formules hypothétiques semi-conductrices à motifs Mo₉X₁₁ dont les détails sont donnés ciaprès.

2.1. Choix des formules à calculer

Dans un premier temps, nous avons cherché à trouver de nouvelles formules ternaires dérivant du modèle Ag₄Mo₉Se₁₁ (voir chapitre 1). Ce modèle a lui-même été créé à partir de la structure cristalline de Ag_{3,90}Mo₉Se₁₁ [30], qui est le composé possédant les meilleures propriétés thermoélectriques parmi les phases à clusters condensés. Pour ce faire, nous avons listé les cations univalents que l'on peut envisager de trouver dans des composés à clusters condensés de molybdène, conduisant à des formules [A₄]⁴⁺[Mo₉X₁₁]⁴⁻ possédant un VEC « idéal » de 36. Dans les composés à motifs Mo₉X₁₁ sont retrouvés les métaux alcalins Na, K et Rb, les métaux du groupe 11 Cu et Ag, ainsi que Tl du groupe 13 et qui est, ici, univalent. Nous avons donc choisi d'étendre la sélection à A = Na, K, Rb et Cs (Li étant exclu, car trop petit pour minimiser la conductivité thermique de réseau κ_{latt}) pour les alcalins, Cu, Ag et Au pour les

métaux du groupe 11, et Ga, In et TI pour les métaux du groupe 13 (B étant exclu, car trop petit), soit 10 cations. Rappelons que les métaux du groupe 13 sont ici considérés univalents car In et TI le sont dans les composés expérimentaux.

Nous avons également choisi d'étudier des formules ternaires hypothétiques avec des cations divalents, de formule générale $[A_2]^{4+}[Mo_9X_{11}]^{4-}$. Nous avons choisi neuf cations divalents, à savoir A = Mg, Ca, Sr et Ba pour les métaux alcalino-terreux (Be étant exclu du fait de sa taille), Zn et Cd dans le groupe 12 (Hg étant exclu, car il forme des liaisons covalentes dans les phases à clusters condensés (voir chapitre 1)), et Ge, Sn et Pb dans le groupe 14 (C et Si étant exclus, car trop petit et attendu tétravalent, respectivement).

Nous avons cependant choisi de ne pas étudier les modèles $[A]^{4+}[Mo_9X_{11}]^{4-}$ avec un cation tétravalent, car au regard des types structuraux existants, il semble difficilement envisageable qu'un cation n'occupant qu'un site puisse échanger ses électrons équitablement entre tous les motifs Mo₉X₁₁.

En considérant les trois ligands X = S, Se et Te, cela donne un total de 30 formules $A_4Mo_9X_{11}$ et 27 formules $A_2Mo_9X_{11}$ avec un VEC de 36. Au total, nous avons donc 57 formules de composés ternaires attendus semi-conducteurs.

Certains des meilleurs composés thermoélectriques de notre étude sont des composés quaternaires possédant deux types de cations différents [31, 32]. Le fait d'inclure deux cations présente le double avantage d'augmenter considérablement le nombre de formules hypothétiques envisageables, et d'aider à réduire la conductivité thermique de réseau, *κ*_{latt}, du fait de l'apparition de nouveaux modes de vibration. De ce fait, en plus des composés ternaires, quelques formules quaternaires ont également été calculées. Leurs formules ont été dérivées des composés Ag₃RbMo₉Se₁₁ [31] et Ag₂Tl₂Mo₉Se₁₁ [32]. Dans le premier cas, nous avons substitué Ag, Rb ou les deux par des éléments univalents de rayon ionique similaire : Na et Cu dans le cas de Ag, et K, Tl et Cs dans le cas de Ag₂Tl₂Mo₉Se₁₁, nous avons repris une étude réalisée par Huguenot [33], dans laquelle Cu peut substituer Ag et In peut substituer Tl dans le composé de départ, soit, par combinaison, 12 formules en comptant le composé expérimental et en considérant les trois types de ligands.

Au total, la base de données initiale comprend donc 57 formules ternaires basées sur Ag₄Mo₉Se₁₁, et 25 formules quaternaires dont 13 sont basées sur Ag₃RbMo₉Se₁₁ et les 12 autres sur Ag₂Tl₂Mo₉Se₁₁. Les coefficients de Seebeck de ces 82 formules (calculés en suivant le protocole défini dans le chapitre 2) sont reportés dans la partie annexe 1, de même que le choix du modèle de type structural pour le calcul des formules hypothétiques (en annexe 2).

2.2. Coefficient de Seebeck des 82 formules de la base initiale

Pour rappel, le choix de se concentrer sur le coefficient de Seebeck, *S*, se justifie par le fait que la conductivité thermique, κ , de ces composés est faible (autour de 1 W.m⁻¹.k⁻¹) et difficile à calculer, et que déterminer leur conductivité électrique σ nécessite de faire une approximation de la valeur du temps de relaxation, τ , pour lequel nous n'avons aucune donnée expérimentale. En revanche, il existe quelques données concernant la concentration de porteurs de charges, *n*, pour laquelle il est possible de fixer deux bornes afin de prédire *S* dans un intervalle. Enfin, contrairement aux conductivités thermiques et électriques, le coefficient de Seebeck est peu dépendant des propriétés micro/nanostructurales tels que les défauts ponctuels, les impuretés, ou les joints de grain [34, 35]. De ce fait, la reproductibilité expérimentale de *S* est plus fiable, et il est donc plus intéressant de chercher à optimiser cette propriété à l'aide d'un modèle de *machine learning* si les résultats fournis par ce dernier sont suivis d'une application expérimentale.

Les coefficients de Seebeck de ces 82 formules sont ici représentés à 800 K et à 300 K pour les deux valeurs de $n = 10^{20}$ et 10^{21} charges.cm⁻³, que nous allons appeler respectivement n_1 et n_2 . Ils sont reportés sur les figures 3.3 (800 K) et 3.4 (300 K). La valeur moyenne de *S* entre n_1 et n_2 (qui est différente de la valeur de *S* pour un n moyen), qui sera notée n_{moy} par la suite, a été calculée et les formules triées selon elle. Cette valeur à n_{moy} ne correspond pas à une réalité physique, mais permet de commenter plus facilement les tendances de la base de données que l'on se propose d'étudier par la suite. La figure 3.4 indique l'évolution du classement entre 800 et 300 K.

177

L'évolution de ce classement montre que quelques formules sont comparativement bien mieux classées à T = 300 qu'à 800 K, comme les trois ternaires avec A = Sn, ainsi que Cu₂Tl₂Mo₉Te₁₁, Cu₂Tl₂Mo₉S₁₁, Cu₂In₂Mo₉Se₁₁ et Cu₂Tl₂Mo₉Se₁₁, ces deux derniers possédant les valeurs de *S* les plus élevées à cette température. Il semblerait ainsi que le coefficient de Seebeck des formules contenant Sn et Cu se dégrade quand *T* augmente. À l'inverse, les formules avec A = In, Ag et Cd sont comparativement mieux classés à 800 qu'à 300 K. Il doit s'agir de différences de structure de bandes. Le niveau de Fermi étant dépendant de *T* (l'énergie cinétique des électrons étant dépendante du produit *k*_B x T), il est par exemple possible que des bandes dégénérées à 300 K dans les formules avec Cu ne le soient plus à 800 K, diminuant comparativement le coefficient de Seebeck, et on peut imaginer la situation inverse avec In ou Cd. Cependant, cette hypothèse est difficile à vérifier, car les structures de bandes de nos composés sont calculées à 0 K. De plus, nous savons que les clusters à phases condensées ne possèdent pas de bonnes propriétés thermoélectriques à température ambiante (voir chapitre 2, partie 2). De ce fait, nous allons nous contenter de commenter les premières tendances à 800 K au sein de cette base de données initiale.

Concernant les composés expérimentaux, $Ag_3RbMo_9Se_{11}$ et $Ag_2Tl_2Mo_9Se_{11}$ font partie des formules avec les valeurs de *S* calculées les plus élevées. Or, expérimentalement, ils sont légèrement moins bons que $Ag_{3,90}/Ag_4Mo_9Se_{11}$, dont la valeur de *S* calculée est classée autour de la moyenne. Cependant, cela peut s'expliquer par la dégradation du *S* mesuré quand *T* augmente dans le cas des deux composés quaternaires, comme expliqué dans le chapitre 2.

Figure 3.3 : Coefficients de Seebeck calculés des 82 formules hypothétiques constituant la base de données initiale, à T = 800 K, à n_1 (bleu), n_2 (jaune) et n_{moy} (orange), classés dans l'ordre croissant de n_{moy} . Les valeurs expérimentales sont également reportées (vert).

Cu₄Mo∍Te₁₁ (-1) Zn₂Mo∍Te₁₁ (+1) Cu4Mo9S11 (-2) Ge₂Mo₉S₁₁ (0) Rb₄Mo₉Te₁₁ (-1) In₄Mo₉Se₁₁ (-10) K₄Mo₉Te₁₁ (-2) Au₄Mo₉Te₁₁ (+5) Ga₄Mo₉Se₁₁ (-1) Cd2Mo9Te11 (+2) Zn₂Mo₉S₁₁ (+4) Ag₄Mo 9Te11 (-7) Mg2Mo9S11 (-2) Zn2Mo9Se11 (+3) Cu₄Mo₉Se₁₁ (-2) Cs₄Mo₉Te₁₁ (+4) Na₄Mo₉Te₁₁ (-3) Ag₄Mo₉S₁₁ (-8) Mg₂Mo₉Se₁₁ (-8) Cs4Mo9Se11 (+7) Mg2M09Te 11 (-3) Cd₂Mo₉S₁₁ (-13) Ga₄Mo₉Te₁₁ (0) Rb₄Mo₉Se₁₁ (+3) Ga₄Mo₉S₁₁(0) Sr₂Mo₉Te₁₁ (-7) Ge₂Mo₉Te₁₁ (+13) Sn₂Mo₉Te₁₁ (+10) K₄Mo₉Se₁₁ (+7) Ge₂Mo₉Se₁₁ (0) Ba₂Mo₉Te₁₁ (-6) Pb2Mo9Te11 (0) Tl₄Mo₉Te₁₁ (-1) Au₄Mo₉S₁₁ (+6) In₄Mo₉Te₁₁ (-1) Cu₃RbMo₉S₁₁ (-11) Ca₂Mo₉S₁₁ (-6) Ag_Mo_Se_11 (-8) In4Mo9S11 (-3) Ba2Mo9S11 (+2) Ca2Mo9Te11 (+1) Sn₂Mo₉Se₁₁ (+11) Tl₄Mo₉S₁₁ (-6) Sr₂Mo₉Se₁₁ (-1) Sn₂Mo₉S₁₁ (+16) Cs₄Mo₉S₁₁ (+7) Cu₃TIMo₉Se₁₁ (-20) Na₃RbMo₉S₁₁ (-23) Au₄Mo₉Se₁₁ (+8) Pb₂Mo₉S₁₁ (+6) Pb₂Mo₉Se₁₁ (+3) Na₃CsMo₉S₁₁ (-21) Ag₂Tl₂Mo₉S₁₁ (+2) Na₄Mo₉S₁₁ (-12) Ba2Mo9Se11 (+5) Cd₂Mo₉Se₁₁ (-2) Ag₃InMo₉S₁₁ (-6) Cu₃KMo₉Se₁₁ (-12) Ca2Mo9Se11 (+4) $Na_4Mo_9Se_{11}$ (+6) $Ag_2In_2Mo_9S_{11}$ (+4) Sr₂Mo₉S₁₁ (+3) Cu₂In 2Mo₉Te₁₁(+11) Na₃InMo₉Te₁₁ (-8) KaMo₉S₁₁ (+4) Ag₃TIMo₉Te₁₁(+1) Rb₄Mo₉S₁₁ (+3) Ag₃KMo₉Te₁₁ (0) Ag₂Tl₂Mo₉Te₁₁ (+7) Tl₄Mo₉Se₁₁ (+10) $Cu_2 ln_2 Mo_9 S_{11} (+15)$ $Ag_2 ln_2 Mo_9 Te_{11} (+3)$ Cu₂Tl₂Mo₉S₁₁ (+20) Cu₃CsMo₉Se₁₁ (-1) Na₃TIMo₉Se₁₁ (-2) Ag2TI2M09Se11 (-6) Ag₂In ₂Mo₉Se₁₁ (-3) Ag_RbMo_Se_11 (+2) Ag₃CsMo₉Se₁₁ (0) Cu2Tl2Mo9Te11 (+6) Cu₂Tl₂Mo₉Se₁₁ (+3)

T = 300 K

n1

Figure 3.4 : Coefficients de Seebeck calculés des 82 formules hypothétiques constituant la base de données initiale, à T = 300 K, à n_1 (bleu), n_2 (jaune) et n_{moy} (orange), classés dans l'ordre croissant de n_{moy}. Les valeurs expérimentales sont également reportées (vert).

2.3. Premières tendances observées sur la base initiale

2.3.1. Influence du type de ligand

Il semble pertinent de commencer par étudier l'influence du type de ligand sur le coefficient de Seebeck. Sur les 82 formules, 27 possèdent des ligands S, contre 29 pour Se et 26 pour Te. Les trois séries ont été triées dans l'ordre croissant de leur valeur de S à n_{moy} , dont les valeurs à T = 800 K sont représentées sur la figure 3.5.

Figure 3.5 : Coefficients de Seebeck classés dans leur ordre croissant à T = 800 K et n_{moy} des 82 formules hypothétiques, triées selon chaque type de ligand (S en jaune, Se en bleu, Te en rouge).

Ces figures montrent que pour les valeurs de *S* les plus faibles de chaque type de ligand, les courbes X = S et X = Se sont proches, tandis que X = Te présente des valeurs plus basses. En revanche, pour les valeurs de coefficient de Seebeck les plus élevées, Te est légèrement supérieur à S. Mais les huit coefficients de Seebeck les plus élevés pour X = Se sont nettement plus élevés que tous les autres. D'après les données existantes, Se est donc le meilleur choix de ligand pour obtenir de nouvelles formules maximisant *S*. Notons qu'expérimentalement, les meilleures phases à clusters condensés pour la thermoélectricité sont avec X = Se (voir chapitre 2). L'une des hypothèses permettant d'expliquer cette tendance est la valeur de la bande interdite, que l'on attend telle que ΔE_i (S) > ΔE_i (Se) > ΔE_i (Te), du fait de leur différence d'électronégativité. On s'intéresse tout d'abord aux huit formules possédant le coefficient de Seebeck le plus élevé pour chaque type de ligands (puisque c'est là que les différences sont les plus notables entre les ligands ; voir ci-dessus), soit 24 formules au total. Les valeurs moyennes de ΔE_i des séries X = S, X = Se et X = Te valent respectivement 0,91, 0,80 et 0,65 eV, suivant la tendance attendue. Le coefficient de Seebeck à 800 K et n_{moy} des 82 formules, avec les 24 discutées ci-dessus mises en valeur, est représenté en fonction de la valeur de la bande interdite sur la figure 3.6.

Figure 3.6 : Coefficient de Seebeck à T = 800 K et n_{moy} en fonction de la valeur de la bande interdite des 82 formules hypothétiques. Les huit valeurs de *S* les plus élevées de chaque type de ligand sont représentées en jaune (S), bleu (Se) et rouge (Te). Les autres formules sont représentées en gris.

Sur cette étude, on voit tout d'abord que les coefficients de Seebeck des 24 composés retenus sont compris entre 0,5 et 1,1 eV. Cependant, même si les moyennes diffèrent, les valeurs de chaque série sont dispersées. Les formules avec un *S* maximal ne semblent pas appartenir à une gamme de ΔE_i particulière. Au regard de ces données, la valeur de bande interdite n'explique pas pourquoi Se semble être le meilleur ligand pour maximiser *S*, bien que

ce soit difficilement comparable, car les cations sont différents dans chaque cas. Cette tendance générale pourrait s'expliquer par une différence dans la structure de bandes de ces composés. Afin de vérifier cette hypothèse, nous avons calculé la structure de bandes de Cd₂Mo₉S₁₁, Cd₂Mo₉Se₁₁ et Cd₂Mo₉Te₁₁ (de symétrie *Cmcm*) choisis car possédant des valeurs de *S* dispersées (voir figures 3.7, b, c et d, respectivement pour Cd₂Mo₉S₁₁, Cd₂Mo₉Se₁₁ et Cd₂Mo₉Se₁₁ et Cd₂Mo₉Te₁₁).

Figure 3.7 : Structures de bandes des modèles hypothétiques $Cd_2Mo_9S_{11}$ (b), $Cd_2Mo_9Se_{11}$ (c) et $Cd_2Mo_9Te_{11}$ (d) de symétrie *Cmcm*. Les coordonnées des points de haute symétrie sont : Γ (0, 0, 0), Z (0, 0, 1/2), T (1/2, 1/2, 1/2), Y (1/2, 1/2, 0), S (0, 1/2, 0) et R (0, 1/2, 1/2) (voir zone de Brillouin correspondante en (a)). L'énergie de Fermi, décalée à 0 eV, est en pointillés.

Ces structures de bandes présentent d'importantes différences entre elles, notamment dans le haut de la bande de valence. En effet, $Cd_2Mo_9S_{11}$ et $Cd_2Mo_9Se_{11}$ possèdent la même valeur de bande interdite (0,58 eV, avec un gap direct à Γ). Cependant, le composé au sélénium possède un coefficient de Seebeck un peu plus élevé : 219 µV/K contre 181 µV/K pour le composé au soufre (valeurs à T = 800 K et $n_{moy.}$). Cela peut s'expliquer par le fait qu'au point Γ , $Cd_2Mo_9Se_{11}$ présente une multiplicité de bandes plus importante près du haut de la bande de valence, avec notamment trois bandes dans un intervalle de 0,1 eV environ, contre seulement deux dans $Cd_2Mo_9S_{11}$. Cet effet de nidification (voir chapitre 2) peut expliquer la valeur de *S* plus importante pour le composé au sélénium.

Cd₂Mo₉Te₁₁, quant à lui, présente un coefficient de Seebeck de 122 μ V/K (mêmes conditions de *n* et *T*). Cette valeur plus faible peut s'expliquer par la plus faible valeur de bande interdite (gap indirect de 0,18 eV seulement, entre Y et Γ) qui n'est pas dans l'intervalle optimal compris entre 0,4 et 0,7 eV à 800 K [36], et par la faible multiplicité des bandes près du haut de la bande de valence. Ces observations confirment que les différences dans les valeurs de *S* en fonction du type de ligand peuvent être dues à la valeur de la bande interdite, mais aussi à des effets d'ingénierie des bandes tels que la nidification. Afin de confirmer ou d'infirmer ces hypothèses, il conviendrait d'étendre cette étude à d'autres exemples.

2.3.2. Influence du type structural

Par la suite, nous avons étudié l'influence du type structural sur le coefficient de Seebeck. Quatre types structuraux existent dans la base initiale : $A_2Mo_9X_{11}$ et $A_4Mo_9X_{11}$, dont les modèles ont été créés, là encore, à partir de la structure d'un composé de groupe d'espace *Cmcm*, $A_3BMo_9X_{11}$ dont le modèle de départ est un composé de symétrie $P6_3/m$, et $A_2B_2Mo_9X_{11}$, dont le modèle est un composé appartenant au groupe spatial $R\overline{3}c$. Leurs coefficients de Seebeck à T = 800 K et n_{moy} sont représentés sur la figure 3.8.

Figure 3.8 : Coefficients de Seebeck classés dans l'ordre croissant à T = 800 K et n_{moy} des 82 formules hypothétiques, triées selon leur type structural.

D'une manière générale, la première observation est que les formules quaternaires possèdent des valeurs de *S* plus élevées que les formules ternaires. En effet, les 16 valeurs de *S* les plus élevées sont pour des formules quaternaires, et les 46 formules avec le *S* le plus faible sont ternaires. Si on compare les deux types structuraux ternaires entre eux, on observe que leurs valeurs de *S* sont assez similaires, avec des coefficients de Seebeck moyens de 166 μ V/K pour A₄Mo₉X₁₁ contre 169 μ V/K pour A₂Mo₉X₁₁. Quant aux formules quaternaires, les coefficients de Seebeck les plus élevés appartiennent au type structural A₂B₂Mo₉X₁₁. Cependant, comparer les types structuraux quaternaires entre eux est peu pertinent du fait de la faible variété chimique présente dans ces formules hypothétiques.

2.3.3. Influence du contre-cation

Enfin, nous avons cherché à dégager les premières tendances concernant le choix des cations. Pour ce faire, nous n'avons considéré que les formules ternaires, que nous avons triées selon leur groupe dans le tableau périodique, à savoir 1, 2, 11, 12, 13 et 14. Leurs coefficients de Seebeck moyens à 800 K sont représentés sur la figure 3.9.

Figure 3.9 : Coefficients de Seebeck à T = 800 K et n_{moy} des 57 formules hypothétiques ternaires en fonction du groupe du contre-cation. La moyenne de chaque groupe est représentée par un tiret noir, et la médiane par un point blanc cerclé de la couleur correspondant à sa série.

Ces figures montrent que les formules ternaires avec un métal *d* (groupes 11 et 12) possèdent, en moyenne, les coefficients de Seebeck les plus bas. C'est assez surprenant dans la mesure où Ag_{3,90}Mo₉Se₁₁ est le composé possédant la meilleure valeur de *S* mesurée à 800 K [e] (190 μ V/K). Cependant, la dispersion est très élevée au sein des groupes 11 et 12 : l'écart-type y vaut respectivement 42 et 61 μ V/K. Ces écarts-types ne sont comparables qu'avec ceux observés dans le groupe 1, et sont dus aux minimas très faibles attribués aux formules avec Cu et Zn. Les faibles coefficients de Seebeck de ces formules sont probablement attribués à leur faible valeur de bande interdite. Au regard des valeurs moyennes et médianes, les groupes 2 et 13 possèdent les valeurs de *S* les plus élevées. En valeur absolue, le groupe 1 possède les deux *S* les plus élevés. Notons également que la nature univalente ou divalente du cation joue peu sur la valeur de *S*. Pour conclure, il est difficile de dégager une tendance concernant l'influence de la nature du cation sur le coefficient de Seebeck. Cette étude est également à mettre en perspective par le nombre de formules considérées : 12 pour les groupes 1 et 2, neuf pour les groupes 11, 13 et 14 et seulement six pour le groupe 12.

Pour conclure cette étude préliminaire permettant de dégager quelques tendances de notre base de données initiale, nous pouvons dire que pour maximiser le coefficient de Seebeck, un composé à motifs Mo_9X_{11} doit être quaternaire avec pour ligand le sélénium et pour contre-cation, des métaux *s* et *p* (selon l'étude sur les ternaires).

3. Génération de descripteurs intrinsèques

Maintenant que nous avons une base de données initiale qui permet d'envisager l'utilisation du *machine learning* à plus grande échelle, il faut lui attribuer des descripteurs, qui sont des paramètres intrinsèques calculés ou déterminés de façon homogène pour chaque formule de la base de données, et ne dépendant que de cette dernière. Nous n'allons pas créer de descripteurs basés sur des données dépendant du calcul ou de l'expérience, puisque le but est de prédire les propriétés de formules hypothétiques. Le *machine learning* a pour but de trouver des corrélations entre ces descripteurs et le paramètre que l'on veut optimiser – ici, le coefficient de Seebeck – afin de prédire ce dernier sans passer par l'expérience ou le calcul.

3.1. Génération de descripteurs à l'aide de Matminer

Nous utilisons *Matminer* [26], une bibliothèque développée sous *Python*, pour générer des descripteurs intrinsèques décrivant certaines propriétés physiques de nos formules à partir de celles des éléments les constituant, de manière homogène, et en tenant compte de la stœchiométrie. 150 descripteurs intrinsèques ont été retenus dans cette optique, dont la plupart proviennent de *Magpie* (Materials AGnostic Platfom for Informatics and Exploration), une bibliothèque conçue pour l'étude des matériaux inorganiques [37].

La moyenne, l'écart-type, le mode (la valeur la plus souvent retrouvée), le minimum, le maximum et l'étendue (la différence entre min. et max.) sont considérés pour chacune des 22 propriétés décrites ci-après, à l'exception des normes stœchiométriques, de l'occupation des orbitales de valence, de l'énergie du centre des bandes et des attributs ioniques.

Les 22 propriétés reportées pour chaque élément isolé d'une formule sont :

- le numéro atomique

 le nombre de Mendeleïev : une numérotation du tableau périodique ordonnée par colonne et non par ligne, tel que décrit dans [38]

- la masse atomique

- la température de fusion

- la ligne du tableau périodique

- la colonne du tableau périodique
- le rayon de covalence
- l'électronégativité (selon Pauling)

- le nombre d'électrons de valence dans les couches s, p, d et f et leur somme cumulée

- le nombre de niveaux s, p, d et f vides dans les orbitales de valence et leur somme cumulée

- le volume spécifique (l'inverse de la masse volumique), calculé en DFT à l'état fondamental

à 0 K (extrait de la base de données en ligne OQMD [21])

- la valeur de la bande interdite, calculée en DFT à l'état fondamental à 0 K (extrait de la base de données en ligne OQMD)

- le moment magnétique, calculé en DFT à l'état fondamental à 0 K (extrait de la base de données en ligne OQMD)

- le groupe d'espace à l'état fondamental à 0 K (extrait de la base de données en ligne OQMD)

Les normes stœchiométriques ne dépendent pas de la nature des éléments constituant une formule donnée, mais de leurs proportions respectives. Les normes L^P de Ag₃RbMo₉Se₁₁ sont par exemple formulées comme suit :

$$\|\mathbf{x}\|_{\mathsf{P}} = \left(\left(\frac{3}{24}\right)^{\mathsf{P}} + \left(\frac{1}{24}\right)^{\mathsf{P}} + \left(\frac{9}{24}\right)^{\mathsf{P}} + \left(\frac{11}{24}\right)^{\mathsf{P}}\right)^{\frac{1}{\mathsf{P}}}$$

les normes considérées étant P = 0, 2, 3, 5, 7 et 10, soit six descripteurs supplémentaires.

L'occupation des orbitales de valence comprend la fraction et le nombre moyen d'électrons *s*, *p*, *d* ou *f* d'une formule, soit huit descripteurs différents. Par exemple, la fraction d'électrons de valence *d* dans $Ag_3RbMo_9Se_{11}$ est définie comme :

$$F_{d} = \frac{\frac{3}{24}(10) + \frac{1}{24}(0) + \frac{9}{24}(5) + \frac{11}{24}(10)}{\frac{3}{24}(11) + \frac{1}{24}(1) + \frac{9}{24}(6) + \frac{11}{24}(16)} \approx 0,714$$

soit la somme du nombre d'électrons de valence *d* de chaque élément pondéré par sa fraction dans la formule, divisé par le nombre total d'électrons de valence. Pour obtenir le nombre moyen d'électrons de valence *d* dans cette composition, il suffit de diviser le nombre total d'électrons *d* (ici, 25) par la stœchiométrie totale (24).

Les attributs ioniques regroupent trois descripteurs. Le premier est un booléen (variable à deux états : vrai ou faux) qui détermine s'il est possible ou non de former un composé de charge neutre à partir des degrés d'oxydation communément adoptés par les éléments d'une formule – Ward *et al.* ne précisent pas lesquels [37]. Les deux autres concernent le caractère ionique d'une paire d'éléments, défini par la formule suivante :

$$I(\chi_{A},\chi_{B}) = 1 - \exp(-0.25(\chi_{A} - \chi_{B})^{2})$$

le premier descripteur étant la valeur maximale de *I* entre n'importe quelle paire d'éléments de la formule, et le second la valeur moyenne de *I* entre toutes les paires d'éléments considérées.

Enfin, l'énergie du centre des bandes est extrapolée en utilisant la moyenne de l'électronégativité.

3.2. Création de descripteurs spécifiques à nos systèmes

Les 150 descripteurs décrits ci-dessus sont supposés décrire les propriétés physiques moyennes d'une formule donnée, pondérées par la stœchiométrie. Cependant, par définition, ils ne sont pas spécifiques : ils ne tiennent par exemple pas compte de la structure des composés ni de la coordination particulière présente au sein des clusters. Pour y remédier, nous avons imaginé des descripteurs spécifiques, permettant d'espérer une meilleure description des propriétés particulières de nos systèmes. Nous avons sélectionné trois propriétés calculables à la main dans nos systèmes, qui sont en lien avec les premières tendances exposées dans la partie 2.3 : le type de ligand (S = 1, Se = 2, Te = 3), la stœchiométrie ($A_4Mo_9X_{11} = 1$, $A_2Mo_9X_{11} = 2$, $A_3BMo_9X_{11} = 3$, $A_2B_2Mo_9X_{11} = 4$, $ABMo_9X_{11} = 5$, $A_2BMo_9X_{11} = 6$), ainsi que le rayon ionique des cations A et B, divisés en quatre valeurs, un pour chaque site. Les minimum, maximum, moyenne, écart-type et étendue du rayon ionique des quatre sites sont calculés, formant six nouveaux descripteurs. Le mode est exclu, car il adopte plusieurs valeurs dans nos formules de stœchiométrie $A_2B_2Mo_9X_{11}$. Nous avons donc, en tout, sept nouveaux descripteurs permettant de décrire nos systèmes. Les rayons ioniques pris en compte sont tels que définis par Shannon [39], reportés dans le tableau 3.1. Les types structuraux 5 et 6 et les rayons ioniques des cations trivalents ne correspondent à aucune des 82 formules de la base initiale, mais ils sont définis à cet endroit pour être utilisés dans la partie 4 de ce même chapitre.

Cati	ons univalents	Cat	ions divalents	Cations trivalents			
Élément	Rayon ionique (Å)	Élément	Rayon ionique (Å)	Élément	Rayon ionique (Å)		
Na	1,02	Mg	0,72	Sc	0,75		
К	1,38	Ca	1,00	Y	0,90		
Rb	1,52	Sr	1,18	Al	0,54		
Cs	1,67	Ва	1,35	Ga	0,62		
Cu	0,77	Zn	0,74	Sb	0,76		
Ag	1,15	Cd	0,95	Bi	1,03		
Au	1,37	Ge	0,73				
Ga	1,03	Sn	0,96				
In	1,22	Pb	1,19				
TI	1,50						

Tableau 3.1 : Rayons ioniques de Shannon des cations considérés dans nos formules hypothétiques. Les valeurs extrapolées sont indiquées en bleu.

Les rayons ioniques de Ga⁺, In⁺ et Sn²⁺, indiqués en bleu dans le tableau, sont extrapolés. Le rayon ionique de Sn²⁺ est égal à la moyenne des rayons ioniques de Ge²⁺ et Pb²⁺ qui l'entourent dans le groupe 14 du tableau périodique, soit r (Sn²⁺) = (0,73 + 1,19) / 2 = 0,96 Å. Cette approximation est renforcée par le fait que le rayon atomique de Sn (1,45 Å) est proche de la moyenne de ceux de Ge et Pb (1,52 Å). Quant à Ga⁺ et In⁺, ils sont approximés à partir de la contraction M / M³⁺ dans la série Ga–In–Tl (égale à 1 – rayon covalent/rayon ionique), qui vaut 52% pour Ga, 48% pour In et 53% pour Tl. Cette contraction étant du même ordre de grandeur, on peut estimer que la contraction M / M⁺ l'est également. Elle vaut 21% pour Tl, ce qui nous conduit à r (Ga⁺) = 0,79 x r (Ga) = 1,03 Å, et r (In⁺) = 0,79 x r (In) = 1,22 Å.

Nous avons donc, au total, 157 descripteurs, dont 150 ont été générés par Matminer et 7 sont spécifiques à nos systèmes et calculés « à la main ».

4. Première extension de la base initiale par débiaisage

Après avoir créé une base de données initiale de composés à clusters condensés de molybdène, il faut étendre le champ de recherches à toutes les formules à motifs Mo₉X₁₁ possédant un VEC de 36 et dont la composition est envisageable. Si l'intégralité des formules ternaires a été explorée dans la base préliminaire, il existe beaucoup de possibilités de formules quaternaires, et le choix de se restreindre aux cations présents dans les formules déjà connues biaise les conclusions tirées de la base de données préliminaires, à laquelle il faut apporter plus de variété chimique. Pour cela, il faut commencer par énumérer toutes les formules quaternaires hypothétiques dans un espace chimique défini.

4.1. Génération de nouvelles formules quaternaires

Pour ce faire, nous utilisons SMACT [40] (Semiconducting Materials from Analogy and Chemical Theory), un outil développé sous Python permettant de générer des formules chimiques, filtrées selon deux critères :

- $\sum_{i=1}^{n} D.O.(c_i) + \sum_{j=1}^{m} D.O.(a_j) = 0$, avec *D.O.* le degré d'oxydation des cations *c* et anions *a*, permettant de générer des formules électriquement neutres.

- χ (anions) > χ (cations), selon l'échelle d'électronégativité χ de Pauling, avec une tolérance de ±0,10 (car $\chi_{Mo} > \chi_{Te}$).

Nous avons intégré cet outil dans un script Python, auquel nous avons ajouté trois autres filtres. Le premier permet de ne générer que des formules quaternaires, puisque toutes les formules ternaires sont calculées dans la base initiale. Le second impose la présence de $[Mo_9X_{11}]^{4-}$; de ce fait, les deux éléments restants doivent être tels que $[A_xB_y]^{4+}$. On peut alors envisager quatre stœchiométries différentes pour les formules quaternaires : les deux rapportées expérimentalement, $A_2B_2Mo_9X_{11}$ et $A_3BMo_9X_{11}$, ainsi que deux stœchiométries hypothétiques, $A_2BMo_9X_{11}$ et $ABMo_9X_{11}$, cette dernière pouvant inclure deux cations divalents ou bien un cation univalent et un cation trivalent. La sélection des types structuraux des stœchiométries hypothétiques est détaillée dans la partie annexe 2.

Le dernier filtre concerne le choix des éléments A et B. Les éléments univalents et divalents ont été sélectionnés précédemment, mais la stœchiométrie ABMo₉X₁₁ peut inclure des cations trivalents. Nous avons donc choisi les cations ternaires Sc, Y, Al, Ga, In, Tl, Sb et Bi. Les éléments du bloc *f* ont été volontairement exclus ; en effet, bien qu'on en retrouve dans certaines phases de Chevrel, ils sont absents des phases à clusters condensés étudiés dans cette thèse. En plus de cela, certains éléments ont été exclus du fait de leur radioactivité ou toxicité, de leur taille, du fait qu'ils soient trop riches en électrons, ou à caractère anionique. Le détail des éléments inclus et exclus se trouve sur la figure 3.10.

1 H Hydrogen 1.008			Taille					Anion	s									Helium 4.003
3 Lithium 6.94	Gaz rares Toxique / radioactif / autre						5 Boron 10.81	6 C Carbon 12.011	7 N Nitrogen 14.007	8 O Oxygen 15.999	9 F Fluorine 18.998	10 Neon 20.180						
Na Sodium 22.990	12 Mg Mg Auritum Mg Mg							18 Argon 39.948										
19 K Potassium 39.098	20 Ca Cakium 40.078		21 SC Scandium 44.956	22 Ti Titanium 47.867	23 V Vanadium 50.942	24 Cr Chromium 51.996	25 Mn Manganes e 54.938	26 Fe Iron 55.845	27 CO cobait 58.933	28 Ni Nickel 58.693	29 Cu _{Copper} 63.546	30 Zn _{Zinc} 65.38	31 Ga Gallum 69.723	32 Ge Gemanium 72.630	33 As Arsenic 74.922	34 See Selenium 78.97	35 Br Bromine 79.904	36 Kr ^{Krypton} 83.798
37 Rb Rubidium 85.468	38 Sr strontium 87.62		39 Y Yttrium 88.906	40 Zr ^{Zirconium} 91.224	41 Nb Niobium 92.906	42 Mo Molybdenum 95.95	43 Technetium [97]	44 Ru Ruthenium 101.07	45 Rh Rhadium 102.906	46 Pd Palladium 106.42	47 Ag silver 107.868	48 Cd Cadmium 112.414	49 In Indium 114.818	50 Sn 118.710	51 Sb Antimony 121.760	53 Tellurium 127.60	53 lodine 126.904	54 Xenon 131.293
55 CS cesium 132.905	56 Ba Barium 137.327	* 57 - 70	71 LU Lutetium 174.967	72 Hf _{Hafnium} 178.49	73 Tantalum 180.948	74 W Tungsten 183.84	75 Re Rhenium 186.207	76 OS _{Osmium} 190.23	78 r Irdium 192.217	79 Pt Platinum 195.084	80 Au _{Gold} 196.997	81 Hg Mercury 200.592	81 TI Thalium 204.38	82 Pb Lead 207.2	83 Bi Bis muth 208.980	84 PO Polonium [209]	85 At Astatine [210]	86 Rn Radon [222]
87 Fr Francium [223]	88 Ra Radium [226]	** 89-102																
		57 La Lanthanum	58 Cecium	59 Pr Praseodymium	60 Nd Necodymium	61 Pm Promethium	62 Sm samarium	63 Eu Europium	64 Gd Gadolinium	65 Tb Terbium	66 Dysprosium	67 HO Holmium	68 Erbium	69 Tm Thulium	70 Yb Ytterbium			
		89 AC Actinium [227]	90 Th 232.038	91 Pa Protactinium 231.036	92 Uranium 238.029	93 Np Neptunium [237]	94 PU Plutonium [244]	95 Am [243]	96 Cm [247]	97 Bk Berkelium [247]	98 Cf Californium [251]	99 ES Einsteinium [252]	100 Fm [257]	101 Md Mendelevium [258]	102 No Nobelium [259]			

Figure 3.10 : Tableau périodique des éléments représentant l'espace chimique choisi. Les éléments exclus sont coloriés en fonction de la raison de leur exclusion. Les éléments retenus pour la génération de nouvelles formules quaternaires hypothétiques figurent dans les cases laissées blanches.

Quant aux degrés d'oxydation, les éléments des groupes 1 et 11 sont $[A]^+$, ceux des groupes 2, 12 et 14 sont $[A]^{2+}$, et ceux des groupes 3 et 15 sont $[A]^{3+}$. Enfin, les éléments du groupe 13 peuvent être $[A]^+$ ou $[A]^{3+}$, à l'exception de l'aluminium qui est exclusivement $[AI]^{3+}$. En prenant en compte tous ces filtres, SMACT génère un total de 918 formules hypothétiques, dont 320 avec X = S, 320 avec X = Se et 278 avec X = Te. Cette différence s'explique par le fait que Au, bien plus électronégatif que Te, est donc exclu dans ce cas. Ces 918 formules hypothétiques sont reportées dans la partie annexe 3.

4.2. Enrichissement informationnel de la base de données

Pour faciliter la sélection de quelques formules à calculer parmi les 918 formules précédemment générées, nous utilisons UMAP (Uniform Manifold Approximation Projection for Dimension Reduction [41]), un outil de réduction de dimensionnalité projetant les 150 descripteurs intrinsèques définis précédemment sur un espace à 2 dimensions (cette étude a été réalisée avant la création des descripteurs spécifiques). Il s'agit d'un algorithme basé sur la construction de graphes pondérés reliant les descripteurs entre eux, la pondération étant indexée sur la méthode des *k* plus proches voisins [42] permettant de reproduire au mieux les propriétés locales des formules considérées dans un espace de représentation réduit.

Autrement dit, c'est une méthode pertinente pour faciliter le regroupement de formules chimiques possédant des propriétés similaires. En effet, il est ensuite possible de diviser la projection bidimensionnelle obtenue en plusieurs « îlots » regroupant des formules aux propriétés similaires. Effectuer des calculs sur des formules de chaque « îlot » permet d'assurer une meilleure représentativité de la diversité chimique dans la base de données, et doit améliorer la qualité des prédictions effectuées par la suite. Nous avons choisi de scinder cet espace en 10 îlots (une contrainte computationnelle) et de déterminer la formule la plus proche du barycentre de chacun d'entre eux. Ce sont ces 10 formules que nous avons choisi de calculer par DFT afin d'enrichir la diversité chimique de la base de données au mieux tout en limitant le nombre de composés à calculer.

L'espace bidimensionnel généré à partir de la combinaison des 150 descripteurs de chacune des 918 formules hypothétiques est représenté sur la figure 3.11. Les 10 barycentres

193

et les 25 formules calculées dans la base de données initiale sont également représentés. Notons que la projection est sans unité, et que la distance relative entre les îlots, ainsi que leur forme, n'a pas de sens physique, la géodésie de l'espace de représentation n'étant pas connue.

Figure 3.11 : Espace bidimensionnel généré par UMAP représentant la projection des 150 descripteurs pour les 918 formules hypothétiques générées. Les 10 îlots sont représentés par des couleurs différentes. Sont également représentés les barycentres de ces îlots (blanc cerclé de rouge) et les 25 formules déjà calculées dans la base initiale (blanc cerclé de bleu).

Les barycentres des îlots, numérotés sur la figure 3.11, correspondent aux 10 formules suivantes : Cu₃CsMo₉Se₁₁ (1), Ag₂Cu₂Mo₉Se₁₁ (2), AuYMo₉Se₁₁ (3), Na₃AuMo₉S₁₁ (4), KYMo₉S₁₁ (5), Ag₃NaMo₉S₁₁ (6), Na₃GaMo₉Te₁₁ (7), K₃RbMo₉Te₁₁ (8), PbSnMo₉Te₁₁ (9) et CaZnMo₉Te₁₁ (10). Il est intéressant de noter que certains îlots ne comportent aucune formule préalablement calculée dans la base initiale (îlots 7 et 10). De plus, les cations Au, Ga, Y, Pb, Sn, Ca et Zn n'étaient pas représentés dans les formules quaternaires calculées au préalable, dans la base initiale. Cela laisse espérer un enrichissement efficace de la base initiale à partir de ces 10 nouvelles formules. Enfin, les ligands jouent un rôle important dans la séparation des îlots. En effet, les îlots 1, 2 et 3 contiennent toutes les formules avec X = Se, les îlots 4, 5 et 6 les formules avec X = S et les îlots 7, 8, 9 et 10 les formules avec X = Te. Ce résultat était néanmoins prévisible, étant donné que les descripteurs intrinsèques sont pondérés par la stœchiométrie et que les ligands X ont toujours le poids le plus important dans celle-ci.

Pour chacune d'entre elles, nous avons créé un modèle dont nous avons optimisé la géométrie et calculé le coefficient de Seebeck, selon la procédure décrite dans le chapitre 2. Les valeurs de *S* et de la bande interdite de ces modèles sont reportées dans le tableau 3.2.

	<i>S,</i> 800 К, <i>n</i> 1	Classement	S, 800 К, n₂	Classement	ΔE_i
Formule	(μV/K)	(<i>n</i> ₁)	(μV/K)	(<i>n</i> ₂)	(eV)
Cu ₃ CsMo ₉ Se ₁₁ (1)	367	8/92	171	10/92	0,74
$Ag_{2}Cu_{2}Mo_{9}Se_{11}$ (2)	243	71/92	78	68/92	0,56
AuYMo ₉ Se ₁₁ (3)	278	50/92	97	53/92	0,61
Na ₃ AuMo ₉ S ₁₁ (4)	315	27/92	123	30/92	0,77
KYMo ₉ S ₁₁ (5)	313	29/92	105	40/92	0,82
Ag ₃ NaMo ₉ S ₁₁ (6)	276	54/92	98	51/92	0,68
Na ₃ GaMo ₉ Te ₁₁ (7)	326	17/92	139	18/92	0,70
K ₃ RbMo ₉ Te ₁₁ (8)	359	11/92	152	14/92	0,95
PbSnMo ₉ Te ₁₁ (9)	225	77/92	63	78/92	0,43
CaZnMo ₉ Te ₁₁ (10)	240	72/92	103	45/92	0,24

Tableau 3.2 : Coefficient de Seebeck à T = 800 K et valeur de bande interdite calculés des 10 nouvelles formules correspondant aux barycentres des îlots générés par UMAP.

Ce tableau montre que ces nouvelles formules sont bien distribuées dans le classement des meilleures valeurs de *S*, avec trois représentants dans les 20 valeurs les plus élevées et deux dans les 20 valeurs les plus faibles. De manière intéressante, les quatre formules les mieux classées sont de stœchiométrie AB₃Mo₉X₁₁. Quant aux ligands, dans ce cas, les composés avec X = Se ou Te semblent présenter un meilleur coefficient de Seebeck, bien que toutes ces tendances ne soient pas significatives, car observées sur un échantillon de 10 points. Notons enfin que ces 10 formules sont toutes calculées « semi-conductrices » comme prévu, avec une valeur de bande interdite ΔE_i elle aussi bien distribuée, entre 0,24 et 0,95 eV.

5. Modèles de machine learning sur la base étendue

5.1. Évaluation des modèles prédictifs

Des modèles de *machine learning* utilisant un algorithme de régression de type *Random Forest* [27] ont été créés à partir de la base de données étendue constituée des 92 formules hypothétiques et les 157 descripteurs précédemment décrits. Pour le moment, il s'agit donc de modèles d'entraînement sur un jeu de données étiquetées (la valeur de *S* étant connue), visant à reproduire au mieux les valeurs calculées.

L'algorithme *Random Forest* que nous utilisons correspond à la combinaison de 100 arbres décisionnels, et nous utilisons une méthode de validation croisée à k blocs (avec k = 10). Ces deux hyperparamètres sont expliqués en détail dans l'introduction.

Nous avons choisi de prédire la valeur de *S* à n_1 et n_2 , et à *T* = 300 et 800 K, soit quatre modèles au total. Ces modèles sont représentés sur la figure 3.12 ci-dessous. La qualité de la prédiction est évaluée grâce à l'erreur absolue moyenne (ou MAE, pour *mean absolute error*), et l'erreur absolue moyenne en pourcentage (ou MAPE, pour *mean absolute percentage error*), toutes deux définies plus en détail dans l'introduction de ce chapitre.

Figure 3.12 : Comparaison des coefficients de Seebeck calculés par DFT et prédits par *Random Forest* pour les quatre modèles prédictifs. La MAE, son écart-type et la MAPE sont indiqués.

Commençons par comparer les prédictions en fonction de la température. À *n* constant, les MAE sont proches, pour les deux valeurs de *T*. Cependant, la MAPE des modèles à 300 K est beaucoup plus importante que celles de leurs équivalents à 800 K. En particulier, le modèle à 300 K et n_2 présente une MAPE de 39%, une valeur largement supérieure aux trois autres modèles. Bien qu'il soit difficile de comparer les modèles entre eux puisque les valeurs de *S* sont très différentes dans chaque cas, les modèles à 800 K semblent plus fiables. Enfin, à température égale, la MAE est plus élevée à n_1 qu'à n_2 en valeur absolue, mais la MAPE est plus faible, du fait de l'écart des moyennes respectives.

Nous observons la présence de quelques « *outliers* », ou valeurs aberrantes, c'est-à-dire des points isolés dont les valeurs calculées et prédites sont très éloignées. Nous avons choisi les points dont l'erreur sur la prédiction est à la fois supérieure à 30% de la valeur calculée et à deux fois la MAPE. Ils sont représentés sur la figure 3.13, et le détail des formules dans le tableau 3.3.

Cela nous donne un total de 32 points : sept sur le modèle à 300 K et n_1 , 14 sur le modèle à 300 K et n_2 , quatre sur le modèle à 800 K et n_1 , et sept sur le modèle à 800 K et n_2 . Tout d'abord, un certain nombre de formules sont communes à plusieurs modèles, telles que Ag₂Cu₂Mo₉Se₁₁ qui est outlier dans les quatre modèles, ou encore Au₄Mo₉Te₁₁ et Zn₂Mo₉Te₁₁, qui le sont dans trois modèles. La formule $Zn_2Mo_9Te_{11}$ est la seule des 92 formules de la base de données à être prédite métallique (bande interdite = 0 eV, voir Annexes 1), ce qui explique que sa prédiction soit mauvaise, car cela dégrade beaucoup la valeur de *S*.

Ces formules communes font qu'en réalité, les 32 points ne correspondent qu'à 20 formules uniques. Parmi ces 20 formules, sept sont quaternaires, et dans les modèles à 800 K, il n'y en a même qu'une seule. Il semblerait que les formules quaternaires soient mieux prédites que les ternaires. Quant aux ligands, les formules avec X = S sont quasi absentes des valeurs aberrantes : Ba₂Mo₉S₁₁, dans le modèle à 300 K et n_2 , en est le seul représentant. Enfin, il est intéressant de noter que la plupart des prédictions aberrantes surestiment la valeur du coefficient de Seebeck : c'est le cas de 28 de ces 32 points. De plus, la plupart des prédictions absurdes concernent des composés dont la valeur de *S* est en dessous de la moyenne de leur série : c'est également le cas de 28 points sur 32.

Ces observations montrent que le modèle prédit plus difficilement les formules aux valeurs de *S* les plus faibles, en ayant tendance à surestimer leur coefficient de Seebeck, en particulier pour les composés avec X = Se, Te. Cependant, le fait que les valeurs aberrantes concernent les valeurs faibles veut dire que les formules possédant les valeurs de *S* les plus élevées sont mieux prédites, et ce sont ces dernières que nous recherchons. Maintenant que nous avons évalué la qualité des modèles prédictifs, nous allons essayer de comprendre quels descripteurs régissent ces prédictions, et voir s'il est possible de fournir une explication physique aux tendances observées.

Figure 3.13 : Comparaison des coefficients de Seebeck calculés par DFT et prédits par *Random Forest* pour les quatre modèles prédictifs, en ne représentant que les points *outliers*.

Tableau 3.3 : Détail des formules et coefficients de Seebeck calculés des points *outliers*. Les formules en bleu sont des *outliers* dans plusieurs des quatre modèles prédictifs. La valeur moyenne de *S* dans chaque série est indiquée.

Outliers, 300 K, n ₁	S calculé	S prédit	Écart	Écart
S _{moy} = 190	(μV/K)	(μV/K)	(%)	(μV/K)
$Ag_2Cu_2Mo_9Se_{11}$	119	246	106	127
$In_4Mo_9Se_{11}$	119	192	61	73
$Cu_3TIMo_9Se_{11}$	183	285	56	102
Au ₄ Mo ₉ Te ₁₁	114	177	55	63
$Cd_2Mo_9Se_{11}$	189	116	-39	-73
AuYMo ₉ Se ₁₁	161	224	39	63
CaZnMo ₉ Te ₁₁	123	185	51	62
Outliers, 300 K, n ₂	S calculé	S prédit	Écart	Écart
S _{moy} = 43	(μV/K)	(μV/K)	(%)	(μV/K)
$Ag_2Cu_2Mo_9Se_{11}$	28	90	220	62
$In_4Mo_9Se_{11}$	-4	39	-1066	43
$Cu_3TIMo_9Se_{11}$	57	119	109	62
$Zn_2Mo_9Te_{11}$	10	23	130	13
$Cs_4Mo_9Se_{11}$	-10	11	-208	21
PbSnMo ₉ Te ₁₁	1	41	4020	40
Cu ₄ Mo ₉ Te ₁₁	2	15	648	13
Ga4Mo9Se11	5	25	408	20
$Ba_2Mo_9S_{11}$	15	45	203	30
$Sr_2Mo_9Se_{11}$	18	40	123	22

$Ag_2TI_2Mo_9S_{11}$	32	62	93	30
$Ag_2TI_2Mo_9Te_{11}$	51	92	81	41
K ₄ Mo ₉ Te ₁₁	-20	1	-105	21
Rb ₄ Mo ₉ Se ₁₁	-4	10	-345	14
Outliers, 800 K, <i>n</i> 1	S calculé	S prédit	Écart	Écart
S _{moy} = 280	(μV/K)	(μV/K)	(%)	(μV/K)
$Zn_2Mo_9Te_{11}$	34	184	440	150
Au ₄ Mo ₉ Te ₁₁	164	255	56	91
$Ag_2Cu_2Mo_9Se_{11}$	243	357	47	114
Mg ₂ Mo ₉ Te ₁₁	250	146	-42	-104
Outliers, 800 K. n ₂	S calculé	S prédit	Écart	Écart
•••••••••••••••••••••••••••••••••••••••				
S _{moy} = 107	(μV/K)	(μV/K)	(%)	(μV/K)
$S_{moy} = 107$ Cs4Mo ₉ Se ₁₁	(μV/K) 35	(μV/K) 81	(%) 131	(μV/K) 46
$S_{moy} = 107$ $C_{54}Mo_9Se_{11}$ $Au_4Mo_9Te_{11}$	(μV/K) 35 42	(μV/K) 81 75	(%) 131 79	(μV/K) 46 33
$S_{moy} = 107$ $C_{s_4}Mo_9Se_{11}$ $Au_4Mo_9Te_{11}$ $Zn_2Mo_9Te_{11}$	(μV/K) 35 42 46	(μV/K) 81 75 79	(%) 131 79 73	(μV/K) 46 33 33
$S_{moy} = 107$ $C_{S4}Mo_9Se_{11}$ $Au_4Mo_9Te_{11}$ $Zn_2Mo_9Te_{11}$ $In_4Mo_9Se_{11}$	(μV/K) 35 42 46 59	(μV/K) 81 75 79 94	(%) 131 79 73 59	(μV/K) 46 33 33 35
$S_{moy} = 107$ $Cs_4Mo_9Se_{11}$ $Au_4Mo_9Te_{11}$ $Zn_2Mo_9Te_{11}$ $In_4Mo_9Se_{11}$ $Ag_2Cu_2Mo_9Se_{11}$	(μV/K) 35 42 46 59 78	(μV/K) 81 75 79 94 166	(%) 131 79 73 59 113	(μV/K) 46 33 33 35 88
$S_{moy} = 107$ $Cs_4Mo_9Se_{11}$ $Au_4Mo_9Te_{11}$ $Zn_2Mo_9Te_{11}$ $In_4Mo_9Se_{11}$ $Ag_2Cu_2Mo_9Se_{11}$ $Na_4Mo_9Se_{11}$	(μV/K) 35 42 46 59 78 118	(μV/K) 81 75 79 94 166 78	(%) 131 79 73 59 113 -34	(μV/K) 46 33 33 35 88 -40

5.2. Importance des descripteurs dans la prédiction

Après avoir évalué la qualité des modèles prédictifs créés, il est intéressant de se pencher sur le poids relatif des descripteurs (nommé importance des variables) dans cette prédiction. L'importance des variables est mesurée par l'indice de Gini, qui rend compte de la variance apportée par une variable sur la prédiction de la valeur de la propriété ciblée. La somme de l'importance de tous les descripteurs vaut 1. Les 20 descripteurs les plus importants de chacun des quatre modèles à 300 K (n_1 et n_2) et 800 K (n_1 et n_2), ainsi que leur importance et son écart-type sont représentés sur les figures 3.14 a, b, c et d, respectivement. Dans cette partie, ces 4 modèles seront respectivement renommés modèles 1, 2, 3 et 4.

Tout d'abord, il apparaît que les normes L^P stœchiométriques sont, de loin, les variables les plus importantes pour les deux modèles. La somme cumulée de L⁰, L², L³, L⁵, L⁷ et L¹⁰ représente 28%, 40%, 31% et 56% du poids total des descripteurs dans les modèles respectifs 1, 2, 3 et 4. Ces normes sont plusieurs façons de représenter la différence entre les différentes stœchiométries au sein de la base de données. Ce résultat était attendu, car nous avons vu, dans la partie 1, que le type structural avait une grande influence sur la valeur de *S*, notamment la différence entre formules ternaires et quaternaires. Le descripteur stœchiométrie – que l'on retrouve également en 16ème, 8ème et 18ème positions des modèles respectifs 1, 2 et 3 – peut être vu comme une autre façon d'écrire la norme.

201

Figure 3.14 : Représentation des 20 variables à l'importance moyenne la plus élevée dans la prédiction du coefficient de Seebeck par les modèles *Random Forest* 1 (a), 2 (b), 3 (c) et 4 (d). Les barres d'erreur sont représentatives de la dispersion observée de l'importance des variables selon le modèle de *Random Forest* étudié, déterminée par la validation croisée à 10 blocs. Les descripteurs spécifiques à nos systèmes sont représentés en rouge.

Le rayon ionique maximal est le second descripteur spécifique faisant partie des plus importants dans les quatre modèles, et dans les modèles 1 et 3 il s'agit même du plus important. Son écart-type est cependant très élevé, bien plus que celui de tous les autres descripteurs dans ces deux modèles. Cela témoigne tout de même de l'importance de la taille des cations sur la prédiction de la valeur de *S*.

Les variantes *minimum, moyenne, écart-type* et *étendue* du rayon ionique sont moins importantes que le maximum, et sont absentes des 20 variables les plus importantes. C'est peut-être car le rayon ionique *maximum* est le seul à ne jamais contenir la valeur 0, un rayon ionique étant considéré nul quand un des quatre sites ioniques est vide. Ce cas de figure apparaît dans les formules de stœchiométrie A₂Mo₉X₁₁, A₂BMo₉X₁₁ et ABMo₉X₁₁. En perspectives de cette étude, il serait intéressant de créer des descripteurs s'affranchissant de la valeur 0 du rayon ionique, afin de vérifier cette hypothèse.

De façon intéressante, on constate la présence de descripteurs généralement associés à des propriétés macroscopiques, tels que le volume spécifique ou la température de fusion. Enfin, le seul descripteur associé à la structure électronique est l'écart-type du nombre total d'électrons de valence, présent dans les quatre modèles.

En conclusion, ces premiers modèles sont prometteurs. Trois d'entre eux présentent des valeurs de MAPE inférieures à 20% sur la prédiction du coefficient de Seebeck, et l'importance des descripteurs servant à la création de ces modèles est en grande partie explicable par des considérations physiques. Concernant l'importance des variables, il serait intéressant d'avoir accès au signe de la corrélation (un descripteur est qualifié de « corrélé » avec la propriété ciblée quand augmenter sa valeur fait augmenter la propriété, et d'« anti-corrélé » quand c'est l'inverse) au travers de modèles de *machine learning* linéaires (par exemple, une régression linéaire), au détriment de la précision de la prédiction.

203

6. Recherche de nouvelles formules hypothétiques à coefficients de Seebeck améliorés

Nous allons maintenant prédire le coefficient de Seebeck des 918 formules hypothétiques générées par SMACT, et tester la valeur de ces prédictions avec quelques exemples servant de *testing set*.

6.1. Prédiction du coefficient de Seebeck des formules hypothétiques

Quatre modèles prédictifs, créés avec un algorithme *Random Forest*, ont été décrits dans la partie précédente. Ces modèles ont été entraînés sur la base de données étendue (reportée en Annexes 1) pour prédire la valeur du coefficient de Seebeck à 300 et 800 K, pour des concentrations de porteurs de charges $n_1 = 10^{20}$ charges.cm⁻³ et $n_2 = 10^{21}$ charges.cm⁻³. Ces modèles ont été utilisés pour prédire la valeur de *S* des 918 formules hypothétiques générées par SMACT (les valeurs prédites sont reportées en Annexes 4). Afin d'évaluer la consistance des prédictions, les coefficients de Seebeck à n_1 et n_2 sont triés selon leur valeur à n_1 , et représentés sur les figures 3.15a (à 300 K) et 3.15b (à 800 K).

Figure 3.15 : Coefficients de Seebeck prédits des 918 formules hypothétiques, triés selon la valeur croissante de n_1 à 300 K (a) et 800 K (b), avec leurs barres d'erreur indiquant l'écart-type sur la prédiction.

À 300 K, la comparaison des deux courbes permet de constater que les allures des deux courbes sont similaires. Il n'y a que très peu de points pour lesquels la valeur de S à n_2 est beaucoup mieux ou beaucoup moins bien classée qu'à n_1 . Nous faisons le même constat à 800 K, auquel cas l'allure des courbes est encore plus similaire. Cela peut s'expliquer par le fait que le modèle à 300 K et n_2 était celui montrant l'erreur la plus élevée des quatre, comme détaillé dans la partie précédente. De ce fait, il n'est pas surprenant que la dispersion soit plus élevée à 300 K qu'à 800. D'une manière générale, on peut dire qu'une même formule va avoir un classement similaire aux deux valeurs de n.

Quant aux incertitudes, les formules pour lesquelles elles sont les plus élevées incluent un des éléments Zn, Cu, Au ou Ag à n_1 , et Cu, Ag ou Tl à n_2 (les éléments sont les mêmes aux deux valeurs de *T*). Il semblerait donc que les cations Cu et Ag soient les plus générateurs d'incertitudes dans nos modèles. Cela peut notamment s'expliquer par le fait que ces cations soient retrouvés à la fois dans des modèles ternaires ayant des valeurs de coefficient de Seebeck comparativement faibles (voir figure 3.9, partie 2) et dans les modèles quaternaires $A_2B_2Mo_9X_{11}$ possédant des valeurs de *S* parmi les meilleures calculées (voir figure 3.8). Pour conclure, il semblerait que nos modèles présentent des biais notamment liés à l'incertitude apportée par certains éléments, mais les prédictions sont-prometteuses. Pour le vérifier, nous allons maintenant calculer quelques formules supplémentaires possédant des valeurs de *S* diverses.

6.2. Calcul de formules supplémentaires pour évaluer le modèle

Afin d'évaluer la validité de ce modèle, nous avons calculé le coefficient de Seebeck de quelques formules supplémentaires, avec X = S, Se. Nous avons choisi d'éliminer Te car des calculs extérieurs à cette étude ont montré que certaines formules étaient prédites métalliques avec X = Te, dégradant grandement le coefficient de Seebeck.

En plus de celui que l'on vient d'énoncer concernant le choix du ligand, les formules ont été choisies selon deux critères : apporter un maximum de variété dans le choix des cations, et répartir les formules dans toute la gamme de valeurs du coefficient de Seebeck. Pour ce faire, nous avons défini un classement.

Afin de trouver le meilleur compromis entre les quatre modèles pour maximiser le coefficient de Seebeck, nous avons classé les quatre séries de valeurs individuellement, de la formule possédant la valeur la plus élevée (1) à la plus faible (918). Puis nous avons additionné les quatre classements, en considérant la somme la plus faible comme représentant la formule possédant la valeur de *S* la plus élevée sur les quatre configurations étudiées.

Nous avons donc calculé le coefficient de Seebeck de 17 formules possédant des valeurs de *S* variées dans ce classement, ainsi que cinq formules supplémentaires parmi les 5% les mieux classées. Leurs coefficients de Seebeck calculés et prédits sont représentés sur la figure 3.16.

206

Figure 3.16 : Comparaison des coefficients de Seebeck calculés par DFT et prédits par *Random Forest* des 22 nouvelles formules calculées, pour les quatre modèles prédictifs. La MAE, son écart-type et la MAPE sont indiqués.

Les MAE observées sur ces 22 nouvelles formules sont globalement plus élevées que sur les 92 formules de départ, notamment à n_1 . C'était néanmoins un résultat attendu, puisqu'il s'agit d'un jeu de données non étiquetées. Et si l'on compare les MAPE sur la base étendue à celles calculées sur ces 22 formules, à n et T identiques, elles sont très similaires.

Le détail des coefficients de Seebeck comparés de ces 22 formules se trouve dans le tableau 3.4. Si on regarde le détail des points les moins bien prédits, les compositions sont
variées. Certaines formules, comme SrAg₂Mo₉S₁₁, Cu₂GeMo₉S₁₁ ou MgGeMo₉S₁₁ comprennent des éléments pas (Sr) ou peu (Mg, Ge) représentés dans la base de données étendue, pouvant expliquer la qualité de leur prédiction. Pour d'autres, comme Cu₂GeMo₉S₁₁ et In₃CuMo₉Se₁₁, cela s'explique par une faible valeur de bande interdite dont on sait qu'elle dégrade le coefficient de Seebeck.

Concernant les cinq formules faisant partie des mieux classées, à savoir In₃CsMo₉Se₁₁, Tl₃GaMo₉Se₁₁, In₃CuMo₉Se₁₁, Ga₂Tl₂Mo₉Se₁₁ et Tl₃InMo₉Se₁₁, leurs coefficients de Seebeck prédits sont légèrement surestimés, hormis à 300 K, *n*₁. Ils présentent tout de même des valeurs proches des meilleures calculées parmi les 92 composés de la base étendue. Il est possible que la présence de Tl dans les sites A₃ du type structural A₃BMo₉X₁₁ dégrade le coefficient de Seebeck : celui-ci est bien plus gros qu'Ag et Na, qui occupent habituellement ce site dans les composés expérimentaux. Quant à In, il est d'une taille similaire à Ag, cette explication n'est alors plus valide.

Cependant, il est très intéressant de noter que certaines formules possèdent un coefficient de Seebeck calculé plus élevé que celui des meilleures formules de la base étendue. C'est le cas de Ga₂Ag₂Mo₉Se₁₁ et Na₃TlMo₉S₁₁, dont les deux valeurs à 800 K dépassent celles de Ag₂Tl₂Mo₉Se₁₁. De plus, Ga₂Ag₂Mo₉Se₁₁ fait partie des 10% de formules les mieux classées. Ce n'est pas le cas de Na₃TlMo₉S₁₁, mais cette formule n'est néanmoins pas aussi prometteuse que l'autre, puisqu'elle possède une valeur de bande interdite de 1,01 eV. Cette valeur est supérieure à la gamme idéale à 800 K définie précédemment, d'autant plus en sachant que la DFT a tendance à sous-estimer Δ Ei [42–44]. De plus, un composé possédant un telle valeur de bande interdite peut être considéré comme un isolant, possédant donc de mauvaises propriétés thermoélectriques globales.

Les modèles prédictifs que nous avons entraînés gagneraient donc à être perfectionnés, notamment en les entraînant sur les éléments chimiques peu observés dans la base de données étendue. De plus, en perspectives de cette étude, il serait pertinent de se pencher sur l'optimisation de Δ Ei en parallèle du coefficient de Seebeck, puisque ce dernier a une grande influence sur les propriétés thermoélectriques. S'il est trop faible, le composé aura un mauvais coefficient de Seebeck, et s'il est trop important, le composé risque d'être isolant et de présenter une mauvaise conductivité électrique. Pour conclure, ces modèles basés sur un algorithme *Random Forest* permettent déjà d'orienter de futures études de synthèse. D'une manière générale, il a été observé que les formules quaternaires possédaient des coefficients de Seebeck plus élevés que les ternaires. Les composés avec *X* = Se possèdent également les meilleurs coefficients de Seebeck calculés, et c'est aussi ce qu'on observe expérimentalement (voir chapitre 2). Enfin, concernant le choix des cations, combiner des éléments des groupes 11 (Cu, Ag, Au) et 13 (Ga, In, Tl), ou bien des groupes 1 (Rb, Cs) et 13, semble être de bonnes pistes pour obtenir de nouveaux composés avec un coefficient de Seebeck élevé.

Formule	Classement	300 K, <i>n</i> 1 (DFT)	300 K, n ₁ (ML)	300 K <i>, n</i> 2 (DFT)	300 K <i>, n</i> ₂ (ML)	800 K <i>, n</i> 1 (DFT)	800 K <i>, n</i> 1 (ML)	800 K, n ₂ (DFT)	800 K <i>, n</i> ₂ (ML)	ΔEi (eV)
$In_3CsMo_9Se_{11}$	3/918	289	276 (-5%)	104	106 (+2%)	365	374 (+3%)	169	187 (+10%)	0,64
Tl ₃ GaMo ₉ Se ₁₁	10/918	294	282 (-4%)	90	99 (+10%)	323	374 (+16%)	173	196 (+13%)	0,59
In ₃ CuMo ₉ Se ₁₁	13/918	254	284 (+12%)	70	104 (+48%)	259	367 (+42%)	140	191 (+36%)	0,31
$Ga_2TI_2Mo_9Se_{11}$	16/918	293	291 (-1%)	91	105 (+15%)	274	363 (+33%)	148	188 (+27%)	0,46
$TI_3InMo_9Se_{11}$	31/918	263	280 (+6%)	86	102 (+19%)	323	362 (+12%)	150	187 (+25%)	0,52
$Ga_2Ag_2Mo_9Se_{11}$	70/918	301	263 (-13%)	109	97 (-11%)	407	347 (-15%)	221	178 (-19%)	0,75
Au ₃ KMo ₉ Se ₁₁	83/918	238	257 (+8%)	92	97 (+6%)	361	358 (-1%)	170	165 (-3%)	0,80
Ag ₃ KMo ₉ Se ₁₁	106/918	276	245 (-11%)	129	92 (-29%)	389	363 (-7%)	191	164 (-14%)	0,99
$Cs_2Na_2Mo_9S_{11}$	233/918	275	216 (-21%)	44	62 (+41%)	275	340 (+24%)	161	152 (-6%)	0,55
$Cs_2Ga_2Mo_9S_{11}$	255/918	297	226 (-24%)	103	60 (-42%)	358	332 (-7%)	154	146 (-5%)	0,68
$Na_3TIMo_9S_{11}$	323/918	285	207 (-27%)	121	61 (-49%)	413	316 (-23%)	219	128 (-41%)	1,01
RbYMo ₉ S ₁₁	336/918	272	221 (-19%)	73	50 (-31%)	329	300 (-9%)	143	107 (-25%)	0,60
$BaNa_2Mo_9S_{11}$	359/918	190	211 (+11%)	61	50 (-19%)	321	302 (-6%)	132	107 (-19%)	0,89
CaPbMo ₉ Se ₁₁	434/918	214	212 (-1%)	39	41 (+6%)	294	295 (+0%)	102	102 (+0%)	0,68
$SrAg_2Mo_9S_{11}$	470/918	129	205 (+59%)	34	42 (+25%)	259	289 (+11%)	83	101 (+21%)	0,67
$BaAg_2Mo_9Se_{11}$	474/918	186	205 (+10%)	64	41 (-35%)	309	292 (-5%)	121	100 (-18%)	0,73
Ag ₂ GeMo ₉ Se ₁₁	609/918	129	158 (+23%)	42	47 (+13%)	260	271 (+4%)	102	93 (-9%)	0,48
MgPbMo ₉ S ₁₁	615/918	138	182 (+32%)	47	38 (-19%)	266	272 (+2%)	97	97 (+0%)	0,49
ScCuMo ₉ Se ₁₁	702/918	231	140 (-39%)	58	42 (-28%)	171	232 (+36%)	110	91 (-17%)	0,29
MgGeMo ₉ S ₁₁	840/918	289	128 (-56%)	72	36 (-51%)	186	236 (+27%)	74	76 (+3%)	0,34
$Cu_2GeMo_9S_{11}$	893/918	58	106 (+84%)	26	35 (+33%)	142	198 (+39%)	65	70 (+7%)	0,17

Tableau 3.4. : Coefficients de Seebeck calculés et prédits pour les quatre configurations étudiées, ainsi que leur classement et leur valeur de ΔEi.

7. Conclusion

Ce troisième et dernier chapitre s'ouvre par un bref état de l'art des méthodes de *machine learning* utilisées en sciences des matériaux. Par la suite, nous avons décrit en détail le processus de l'étude de *Machine Learning* qui a fait l'objet de ce chapitre. Nous avons tout d'abord présenté les différentes façons d'extraire ou de créer une base de données exploitable – laquelle est composée de descripteurs qui doivent être calculés de façon homogène – et défini une propriété ciblée à optimiser, le coefficient de Seebeck. Nous avons ensuite brièvement présenté l'algorithme de régression utilisé dans cette étude – à savoir *Random Forest* – et les outils mathématiques permettant d'en évaluer les performances.

La première partie de ce chapitre était consacrée à la création d'une base de données calculées par DFT, comprenant initialement 82 formules hypothétiques à motifs Mo_9X_{11} , dont 57 ternaires et 25 quaternaires. L'étude de premières tendances sur cette base initiale nous a permis de conclure que pour maximiser le coefficient de Seebeck, la formule idéale est quaternaire, avec X = Se et des contre-cations étant des métaux *s* et *p*. Cette base de données a ensuite été caractérisée par des descripteurs, dont la majorité a été générée à partir de la seule formule chimique. D'autres descripteurs propres à nos systèmes ont été calculés manuellement, dont le rayon ionique des contre-cations ou encore le type de ligand.

Nous avons ensuite défini un espace chimique dans lequel l'outil SMACT a généré plus de 900 nouvelles formules quaternaires hypothétiques. Celles-ci sont en partie définies par de nouvelles stœchiométries hypothétiques et de nouveaux cations absents de la base de données initiale. Pour remédier à ce biais, nous avons utilisé UMAP, un outil de réduction de dimensionnalité, qui nous a permis de déterminer 10 nouvelles formules à calculer par DFT et qui, ajoutées aux 82 précédentes, forment la base de données étendue sur laquelle nous avons mené une étude de *machine learning*.

Cette étude se base sur de premiers modèles prédictifs utilisant un algorithme *Random Forest*, lesquels se sont montrés performants pour reproduire le coefficient de Seebeck des 92 composés de la base étendue. L'étude du poids des descripteurs dans la prédiction nous a permis de conclure que les descripteurs calculés manuellement offraient une description pertinente de nos composés.

211

Enfin, ces modèles entraînés sur la base étendue ont été utilisés pour prédire le coefficient de Seebeck des 918 formules hypothétiques générées précédemment. Certaines d'entre elles ont ensuite été calculées par DFT, afin de tenter de confirmer ou d'infirmer les tendances prédites. Le calcul de ces formules supplémentaires présente des différences notables avec la prédiction, notamment pour les composés dont les éléments constitutifs sont peu représentés dans la base étendue, mais aussi pour les quelques formules prédites parmi celles présentant les valeurs de *S* les plus élevées.

Cependant, cette étude, dans sa globalité, a permis d'orienter de potentielles futures études de synthèse, pour lesquelles rechercher de nouvelles formules quaternaires avec X = Se et combinant des contre-cations des groupes 1 et 13 ou bien 11 et 13 semble pertinent.

8. Bibliographie

- [1]H. Fujiyoshi, T. Hirakawa, T. Yamashita, IATSS Research, 2019, 43, 4, 244–252.
- [2]D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
 I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis,
 Nature, **2016**, *529*, 484–489.

[3]M. H. S. Segler, T. Kogej, C. Tyrchan, M. P. Waller, ACS Cent. Sci., 2018, 4, 1, 120–131.

- [4]P. Ruamviboonsuk, J. Krause, P. Chotcomwongse, R. Sayres, R. Raman, K. Widner, B. J. L. Campana, S. Phene, K. Hemarat, M. Tadarati, S. Silpa-Archa, J. Limwattanayingyong, C. Rao, O. Kuruvilla, J. Jung, J. Tan, S. Orprayoon, C. Kangwanwongpaisan, R. Sukumalpaiboon, C. Luengchaichawang, J. Fuangkaew, P. Kongsap, L. Chualinpha, S. Saree, S. Kawinpanitan, K. Mitvongsa, S. Lawanasakol, C. Thepchatri, L. Wongpichedchai, G. S. Corrado, L. Peng, D. R. Webster, *NPJ Digit. Med.*, **2019**, *2*, 1.
- [5]J. Schmidt, M. R. G. Marques, S. Botti, M. A. L. Marques, NPJ Comput. Mater., 2019, 5, 83.
- [6]F. Sui, R. Guo, Z. Zhang, G. X. Gu, L. Lin, ACS Mater. Lett., **2021**, *3*, 10, 1433–1439.
- [7]S. A. Meldgaard, H. L. Mortensen, M. S. Jørgensen, B. Hammer, J. Phys. Condens. Matter.,
 2020, 32, 404005–404014.
- [8]W. Ye, C. Chen, Z. Wang, I.-H. Chu, Nat. Commun., 2018, 9, 3800.

- [9]V. Stanev, C. Oses, A. G. Kusne, E. Rodriguez, J. Paglione, S. Curtarolo, I. Takeuchi, *NPJ Comput. Mater.*, **2018**, *4*, 29.
- [10]B. Meredig, E. Antono, C. Church, M. Hutchinson, J. Ling, S. Paradiso, B. Blaiszik, I. Foster,
 B. Gibbons, J. Hattrick-Simpers, A. Mehta, L. Ward, *Mol. Sys. Des. Eng.*, **2018**, *3*, 819–825.
- [11]A. Mannodi-Kanakkithodi, G. Pilania, T. D. Huan, T. Lookman, R. Ramprasad, Sci. Rep.,2016, 6, 20952.
- [12]S. Wu, Y. Kondo, M. Kakimoto, B. Yang, H. Yamada, I. Kuwajima, G. Lambard, K. Hongo, Y. Xu, J. Shiomi, C. Schick, J. Morikawa, R. Yoshida, NPJ Comput. Mater., 2019, 5, 66.
- [13]J. Lee, A. Seko, K. Shitara, K. Nakayama, I. Tanaka, Phys. Rev. B, 2016, 93, 115104–115115.
- [14]N. R. Singstock, J. C. Ortiz-Rodríguez, J. T. Perryman, C. Sutoon, J. M. Velázquez, C. B. Musgrave, J. Am. Chem. Soc., 2021, 143, 9113–9122.
- [15]V. M. Goldschmidt, *Die Nat.*, **1926**, *14*, 477–485.
- [16]G. Pilania, P. V. Balachandran, A. A. Emery, J. E. Gubernatis, T. Lookman, C. Wolverton, A. Zunger, Phys. Rev. Mat., 2018, 2, 4, 043802–043819.
- [17]G. Pilania, J. E. Gubernatis, T. Lookman, Sci. Rep., 2015, 5, 17504.
- [18]A. O. Oliynyk, L. A. Adutwum, J. J. Harynuk, A. Mar, *Chem. Mater.*, **2016**, *28*, 6672–6681.
- [19]R. K. Vasudevan, K. Choudhary, A. Mehta, R. Smith, G. Kusne, F. Tavazza, L. Vlcek, M. Ziatdinov, S. V. Kalinin, J. Hattrick-Simpers, *MRS Comm.*, **2019**, *9*, 821–838.
- [20]S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. J. Mehl, H. T. Stokes, D. O. Demchenko, D. Morgan, *Comput. Mater. Sci.*, 2012, 58, 218–226.
- [21]S. Kirklin, J. E. Saal, B. Meredig, A. Thompson, J. W. Doak, M. Aykol, S. Rühl, C. Wolverton, *NPJ Comput. Mater.*, **2015**, *1*, 15010.
- [22]A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, APL Mater., 2013, 1, 011002-0110012.
- [23]M. W. Gaultois, T. D. Sparks, C. K. H. Borg, R. Seshadri, W. D. Bonificio, D. R. Clarke, *Chem. Mater.*, **2013**, 25, 2911–2920?
- [24]G. S. Na, H. Chang, NPJ Comput. Mater., 2022, 8, 214.
- [25]D. Weininger, J. Chem. Inf. Comput. Sci., 1988, 28, 1, 31-36.
- [26]L. Ward, A. Dunn, A. Faghaninia, N. E. R. Zimmermann, S. Bajaj, Q. Wang, J. Montoya, J. Chen, K. Bystrom, M. Dylla, K. Chard, M. Asta, K. A. Persson, G. J. Snyder, I. Foster, A. Jain, *Comput. Mater. Sci.*, **2018**, *152*, 60–69.

- [27]T. K. Ho in : Proceedings of 3rd international conference on document analysis and recognition, **1995**, 1, 278–282.
- [28]J. R. Quinlan, Int. J. Man-Mach. Stud., 1987, 27, 3, 221–234.
- [29]C. Gini, Econ. J., **1921**, 31, 121, 124–126.
- [30]T. Zhou, B. Lenoir, M. Colin, A. Dauscher, R. Al Rahal Al Orabi, P. Gougeon, M. Potel, E. Guilmeau, Appl. Phys. Lett., 2011, 98, 162106–162108.
- [31]P. Gougeon, P. Gall, O. Merdrignac-Conanec, L. Aranda, A. Dauscher, C. Candolfi, B. Lenoir, *Inorg. Chem.*, 2017, 16, 9684–9692.
- [32]R. Al Rahal Al Orabi, P. Gougeon, P. Gall, B. Fontaine, R. Gautier, M. Colin, C. Candolfi, A. Dauscher, J. Hejtmanek, B. Malaman, B. Lenoir, *Inorg. Chem.*, **2014**, *53*, 21, 11699–11709.
- [33]A. Huguenot, Nouveaux matériaux sulfures à structures complexes : application à la thermoélectricité, **2020**, PhD thesis, Université de Rennes 1.
- [34]J. He, M. G. Kanatzidis, V. P. Dravid, *Mater. Today.*, **2013**, *16*, 5, 166–176.
- [35]X. Zhou, Y. Yan, X. Lu, H. Zhu, X. Han, G. Chen, Z. Ren, *Mater. Today.*, **2018**, *21*, 9, 974–988.
- [36]J. O. Sofo, G. D. Mahan, Phys. Rev. B, **1994**, 49, 7, 4565–4570.
- [37]L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, Npj Comput. Mater., 2016, 2, 16028.
- [38]P. Villars, K. Cenzual, J. Daams, Y. Chen, S. Iwata, J. Alloys Compd., 2004, 367, 1–2, 167– 175.
- [39]R. D. Shannon, Acta Cryst., **1976**, 132, 751–767.
- [40]D. W. Davies, K. T. Butler, A. J. Jackson, J. M. Skelton, K. Morita, A. Walsh, *JOSS*, **2019**, *4*, 38, 1361–1363.
- [41]L. McInnes, J. Healy, J. Melville, ArXiv e-prints, 2018.
- [42] A. Mucherino, P. J. Papajorji, P. M. Pardalos in: *Data Mining in Agriculture*, **2009**, 83–106.
- [42]J. P. Perdew, M. Levy, *Phys. Rev. Lett.*, **1983**, *51*, 1887–1887.
- [43]L. J. Sham, M. Schlüter, Phys. Rev. Lett., 1983, 51, 1888–1891.
- [44]J. P. Perdew, Int. J. Quantum Chem., 1985, 28, 19, 497–523.

Conclusion générale

La genèse de ce projet de thèse découle de plusieurs études récentes rapportant la synthèse et la caractérisation de nouvelles phases à clusters condensés de molybdène dérivant des phases de Chevrel, et présentant des propriétés thermoélectriques intéressantes à haute température. Le nombre de ces nouveaux composés est restreint (~130), mais on y observe une variété chimique intéressante. Il était alors envisageable qu'une étude théorique, couplée à une approche de *machine learning*, puisse faire apparaître des tendances intéressantes au sein d'un vaste espace chimique, et puisse mener à la synthèse de nouveaux composés thermoélectriques possédant des propriétés améliorées.

Dans le premier chapitre, nous avons étudié les relations entre structures cristalline et électronique de ces phases à clusters condensés de molybdène. Elles sont de formules générales ABMo_nX_{n+2} ou ABMo_nX_{n+4} (X = S, Se, Te ; A, B = métaux *s*, *p* ou *d*), sont au nombre de 129 et existent dans 23 types structuraux différents. Pour chacun de ces types structuraux, il existe un ou plusieurs comptes d'électrons de valence (VEC) dits « idéaux », pour lesquels le composé devrait être semi-conducteur. Or, nos composés doivent l'être, ou s'en approcher très fortement, pour posséder de bonnes propriétés thermoélectriques. Cette étude nous a permis de filtrer certaines phases n'étant pas intéressantes pour la thermoélectricité, que nous n'allons pas retenir pour la suite de l'étude prospective. C'est le cas des composés à deux types de motifs (car leur VEC « idéal » est plus difficile à atteindre, du fait de devoir saturer les deux motifs), et des composés possédant des motifs de grande taille (car leur VEC est également difficile à saturer et qu'ils présentent une variété chimique très limitée).

Le second chapitre avait pour but de recenser les propriétés thermoélectriques des phases à clusters condensés de molybdène, et d'orienter la recherche de nouveaux composés à partir de ces observations. Il s'ouvre sur de brefs rappels de thermoélectricité, qui ont permis de classer nos phases à clusters condensés parmi les composés qui suivent le modèle PGEC (*phonon glass electron crystal*), qui stipule que les meilleurs matériaux thermoélectriques doivent posséder la conductivité thermique (très faible) d'un verre et la conductivité électrique (très élevée) d'un cristal. La suite du chapitre porte sur le recensement des propriétés thermoélectriques mesurées dans nos phases. Nous avons constaté qu'ils se démarquent par leur faible conductivité thermique, κ , et par des propriétés de transport les rapprochant particulièrement des phases de Zintl et des clathrates. Une étude théorique a

ensuite conclu que le coefficient de Seebeck (*S*) était la seule propriété thermoélectrique qu'il était envisageable de calculer au vu des données à notre disposition, puis nous avons proposé un processus permettant d'en faire une estimation par des calculs DFT. Ces prospections expérimentales et théoriques nous ont permis de conclure le chapitre en orientant la recherche sur les composés à motifs Mo₉X₁₁, car ils possèdent les meilleures propriétés thermoélectriques, une grande variété chimique, et qu'ils sont d'une taille réduite permettant d'envisager la création d'une petite base de données de coefficients de Seebeck calculés.

Dans le troisième et dernier chapitre, l'objectif était la création d'un algorithme de *machine learning* prédisant le coefficient de Seebeck de formules hypothétiques à motifs Mo₉X₁₁ possédant des propriétés thermoélectriques améliorées, soit, au vu des observations précédentes, un coefficient de Seebeck plus élevé. Nous avons commencé par cibler un processus de *machine learning* applicable à une base de données de taille réduite (<100 composés), lequel utilise un algorithme de type *random forest*, dérivant de la méthode des arbres décisionnels. Par la suite, nous avons créé une base de données initiale, comprenant 82 formules hypothétiques à motifs Mo₉X₁₁ dont nous avons calculé le coefficient de Seebeck. Cette base a ensuite été caractérisée par des descripteurs extraits de la seule formule chimique, certains ayant été calculés manuellement, d'autres générés automatiquement.

Dans la seconde partie du troisième chapitre, nous avons défini un espace chimique dans lequel ont été générées 918 nouvelles formules hypothétiques, possédant pour certaines de nouveaux cations et types structuraux absents de la base initiale. Afin de « débiaiser » cette base initiale, nous l'avons étendue en l'enrichissant de 10 nouvelles formules issues d'une étude de réduction de dimensionnalité, sensées présenter une variété chimique maximale. À partir de cette base de données étendue, nous avons entraîné des modèles de régression qui ont permis de prédire la valeur du coefficient de Seebeck des 918 formules générées précédemment. Le calcul de quelques-unes d'entre elles a permis de conclure que les formules possédant le coefficient de Seebeck le plus élevé étaient probablement des formules quaternaires avec X = Se et comprenant des combinaisons de cations des groupes 1 et 13 ou bien 11 et 13.

218

En perspectives de cette thèse, il serait tout d'abord intéressant de pouvoir calculer la valeur de la figure de mérite thermoélectrique, *zT*. En effet, il est intéressant d'optimiser la valeur du coefficient de Seebeck, mais nous avons vu, dans le chapitre 2, qu'il était lié à la conductivité électrique σ , et qu'il est difficile de maximiser les deux à la fois. Pour avoir accès à *zT*, il faudrait d'abord faire une approximation sur la conductivité thermique κ , ce qui est envisageable puisqu'elle est très faible dans nos composés. Il faudrait également faire une approximation sur le temps de relaxation, τ , afin d'avoir accès à σ .

De plus, il serait intéressant d'améliorer les modèles de *machine learning* entraînés dans le chapitre 3. Il serait tout d'abord pertinent de considérer la création d'autres descripteurs décrivant mieux les propriétés chimiques de nos phases à clusters condensés. On peut penser aux diagrammes de Mooser-Pearson (permettant d'évaluer l'ionicité relative d'une structure), ou à la description de la stabilité relative des différentes formules hypothétiques via, par exemple, le calcul de l'énergie de l'enveloppe convexe, permettant de savoir où l'on se trouve sur la surface de potentiel. Annexes

1. Base de données initiale

Tableau 1 : Base de données initiale, contenant la valeur de la bande interdite et les coefficients de Seebeck calculés des 82 formules hypothétiques, à 300 et 800 K, et aux concentrations de charges n_1 (10^{20} charges.cm⁻³), n_2 (10^{21} charges.cm⁻³) ainsi qu'à la valeur moyenne entre n_1 et n_2 .

	<i>S</i> , 300 K, <i>n</i> ₁	<i>S,</i> 800 К, <i>n</i> 1	S, 300 K, n ₂	S, 800 K, n ₂	S, 300 K, n _{moy.}	<i>S,</i> 800 К, <i>п</i> _{тоу.}	Bande interdite
Formule	(μV/K)	(µV/K)	(µ∨/K)	(μV/K)	(μV/K)	(μV/K)	(eV)
Na ₄ Mo ₉ S ₁₁	192	322	66	134	129	228	0,89
Na ₄ Mo ₉ Se ₁₁	230	312	44	118	137	215	0,97
Na ₄ Mo ₉ Te ₁₁	153	248	1	61	77	155	0,80
$K_4Mo_9S_{11}$	242	320	57	121	150	221	1,08
$K_4Mo_9Se_{11}$	181	259	5	60	93	160	1,09
K ₄ Mo ₉ Te ₁₁	135	214	-20	32	58	123	0,92
$Rb_4Mo_9S_{11}$	237	323	63	127	150	225	1,11
$Rb_4Mo_9Se_{11}$	174	254	-4	56	85	155	1,08
Rb ₄ Mo ₉ Te ₁₁	134	207	-21	30	57	119	0,92
$Cs_4Mo_9S_{11}$	214	290	24	90	119	190	1,18
Cs ₄ Mo ₉ Se ₁₁	171	243	-10	35	81	139	1,21
$Cs_4Mo_9Te_{11}$	151	237	-4	40	74	139	1,27
$Mg_2Mo_9S_{11}$	107	216	27	67	67	142	0,53
Mg ₂ Mo ₉ Se ₁₁	126	253	30	87	78	170	0,73
Mg ₂ Mo ₉ Te ₁₁	143	250	19	82	81	166	0,57
$Ca_2Mo_9S_{11}$	170	287	40	102	105	195	0,77
$Ca_2Mo_9Se_{11}$	232	315	40	119	136	217	0,90
Ca ₂ Mo ₉ Te ₁₁	196	284	24	97	110	191	0,72

$Sr_2Mo_9S_{11}$	238	318	47	119	143	219	0,89
Sr ₂ Mo ₉ Se ₁₁	217	294	18	99	118	197	0,93
Sr ₂ Mo ₉ Te ₁₁	169	270	12	87	91	179	0,81
$Ba_2Mo_9S_{11}$	202	286	15	94	109	190	0,91
$Ba_2Mo_9Se_{11}$	220	306	38	109	129	208	1,00
$Ba_2Mo_9Te_{11}$	166	277	27	96	97	187	0,87
$Cu_4Mo_9S_{11}$	73	169	28	62	51	116	0,26
$Cu_4Mo_9Se_{11}$	108	224	30	70	69	147	0,38
Cu ₄ Mo ₉ Te ₁₁	73	106	2	39	38	73	0,12
$Ag_4Mo_9S_{11}$	109	248	47	92	78	170	0,63
Ag ₄ Mo ₉ Se ₁₁	166	290	51	104	109	197	0,80
Ag ₄ Mo ₉ Te ₁₁	124	233	8	70	66	152	0,45
$Au_4Mo_9S_{11}$	147	240	55	104	101	172	0,31
$Au_4Mo_9Se_{11}$	201	276	50	106	126	191	0,42
Au ₄ Mo ₉ Te ₁₁	114	164	2	42	58	103	0,21
$Zn_2Mo_9S_{11}$	98	173	28	66	63	120	0,25
$Zn_2Mo_9Se_{11}$	96	196	38	76	67	136	0,24
$Zn_2Mo_9Te_{11}$	75	34	10	46	43	40	0,00
$Cd_2Mo_9S_{11}$	104	259	60	102	82	181	0,58
$Cd_2Mo_9Se_{11}$	189	313	71	124	130	219	0,58
$Cd_2Mo_9Te_{11}$	107	170	18	74	63	122	0,13
$Ga_4Mo_9S_{11}$	140	255	36	83	88	169	0,47
$Ga_4Mo_9Se_{11}$	119	215	5	51	62	133	0,57
$Ga_4Mo_9Te_{11}$	131	243	33	86	82	165	0,50
In ₄ Mo ₉ S ₁₁	173	287	44	99	109	193	0,79
In ₄ Mo ₉ Se ₁₁	119	230	-4	59	58	145	0,77
In ₄ Mo ₉ Te ₁₁	184	277	20	90	102	184	0,69

$TI_4Mo_9S_{11}$	202	298	33	103	118	201	0,98
$TI_4Mo_9Se_{11}$	241	319	63	118	152	219	1,04
Tl ₄ Mo ₉ Te ₁₁	166	269	33	91	100	180	0,84
$Ge_2Mo_9S_{11}$	88	172	22	56	55	114	0,26
$Ge_2Mo_9Se_{11}$	157	261	34	86	96	174	0,43
Ge ₂ Mo ₉ Te ₁₁	174	192	9	90	92	141	0,30
$Sn_2Mo_9S_{11}$	206	270	29	75	118	173	0,45
$Sn_2Mo_9Se_{11}$	203	273	25	76	114	175	0,55
$Sn_2Mo_9Te_{11}$	176	219	7	78	92	149	0,40
$Pb_2Mo_9S_{11}$	225	289	27	102	126	196	0,65
Pb ₂ Mo ₉ Se ₁₁	226	296	27	104	127	200	0,69
Pb ₂ Mo ₉ Te ₁₁	190	262	5	88	98	175	0,54
Na ₃ RbMo ₉ S ₁₁	191	344	52	150	122	247	0,96
Na ₃ CsMo ₉ S ₁₁	197	346	56	159	127	253	0,97
Cu ₃ RbMo ₉ S ₁₁	169	292	40	106	105	199	0,67
$Ag_{3}InMo_{9}S_{11}$	234	316	30	133	132	225	0,76
Na ₃ TlMo ₉ Se ₁₁	284	378	96	182	190	280	1,08
Cu ₃ KMo ₉ Se ₁₁	188	331	78	146	133	239	0,78
Cu ₃ CsMo ₉ Se ₁₁	268	373	83	181	176	277	0,79
Cu ₃ TlMo ₉ Se ₁₁	183	320	57	138	120	229	0,73
Ag ₃ RbMo ₉ Se ₁₁	286	377	111	178	199	278	0,92
Ag ₃ CsMo ₉ Se ₁₁	285	386	123	188	204	287	0,95
Na ₃ InMo ₉ Te ₁₁	205	342	85	155	145	249	0,89
Ag ₃ KMo ₉ Te ₁₁	227	327	73	133	150	230	0,73
Ag ₃ TIMo ₉ Te ₁₁	225	324	74	131	150	228	0,66
$Cu_2In_2Mo_9S_{11}$	253	303	55	131	154	217	0,51
Cu ₂ Tl ₂ Mo ₉ S ₁₁	266	303	62	124	164	214	0,49

$Ag_2In_2Mo_9S_{11}$	239	310	44	125	142	218	0,59
$Ag_2TI_2Mo_9S_{11}$	223	305	32	118	128	212	0,58
$Cu_2In_2Mo_9Se_{11}$	339	383	141	209	240	296	0,64
$Cu_2Tl_2Mo_9Se_{11}$	336	366	142	196	239	281	0,61
$Ag_2In_2Mo_9Se_{11}$	295	387	98	199	197	293	0,73
$Ag_2TI_2Mo_9Se_{11}$	291	396	91	210	191	303	0,71
Cu ₂ In ₂ Mo ₉ Te ₁₁	235	297	53	129	144	213	0,49
$Cu_2Tl_2Mo_9Te_{11}$	323	360	128	182	226	271	0,61
$Ag_2In_2Mo_9Te_{11}$	257	312	55	155	156	234	0,55
$Ag_2TI_2Mo_9Te_{11}$	251	305	51	143	151	224	0,55

2. Choix d'un modèle de type structural pour les différentes stœchiométries de $[M_n]^{4+}[Mo_9X_{11}]^{4-}$

La base de données initiale contient des formules possédant quatre stœchiométries différentes : A₄Mo₉X₁₁, A₃BMo₉X₁₁ et A₂B₂Mo₉X₁₁ qui sont adoptées par des composés expérimentaux, et A₂Mo₉X₁₁, une stœchiométrie hypothétique. Par la suite, les 918 formules quaternaires générées par SMACT peuvent adopter deux autres stœchiométries hypothétiques (en plus de celles précédemment citées) : A₂BMo₉X₁₁ et ABMo₉X₁₁.

Pour attribuer un type structural à chacune de ces stœchiométries, nous sommes partis des modèles créés dans le chapitre 1 à partir de composés reportés expérimentalement : Ag₄Mo₉Se₁₁ (*Cmcm*), Ag₃RbMo₉Se₁₁ (*P*6₃/*m*) et Ag₂Tl₂Mo₉Se₁₁ ($R\overline{3}c$). Pour chaque stœchiométrie, tous les modèles possibles ont été considérés avec pour seul critère de conserver la symétrie, soit 26 modèles au total. Étant donné leur nombre, nous n'avons choisi qu'une seule formule à calculer pour chaque stœchiométrie, comme suit :

- Ag₄Mo₉Se₁₁ pour A₄Mo₉X₁₁
- Ag₃RbMo₉Se₁₁ pour A₃BMo₉X₁₁
- $Ag_2TI_2Mo_9Se_{11}$ pour $A_2B_2Mo_9X_{11}$
- $Zn_2Mo_9Se_{11}$ pour $A_2Mo_9X_{11}$
- $Ga_2ZnMo_9Se_{11}$ pour $A_2BMo_9X_{11}$
- ZnSnMo₉Se₁₁ pour ABMo₉X₁₁ (avec deux cations divalents)
- CuBiMo₉Se₁₁ pour ABMo₉X₁₁ (avec deux cations univalent et trivalent)

Pour les trois stœchiométries expérimentales, nous avons choisi la formule du composé réel dont elles sont tirées. Les autres formules choisies sont les premières à avoir été calculées pour chaque stœchiométrie, dans un but de gain de temps. Une étude de stabilité relative, dans laquelle sont comparées les énergies libres totales de ces différents modèles après optimisation géométrique, est rapportée dans le tableau 2. **Tableau 2 :** Nombre de modèles possibles et leur stabilité relative par motif pour chaque stœchiométrie étudiée. Les modèles les plus stables sont en vert. La différence d'énergie indiquée entre parenthèses est celle du modèle le plus stable, quand il y en a plusieurs.

Stœchio.	$A_4Mo_9X_{11}$	$A_2B_2Mo_9X_{11}$	$A_3BMo_9X_{11}$	$A_2BMo_9X_{11}$	$A_2Mo_9X_{11}$	ABMo ₉ X ₁₁ (1)	ABMo ₉ X ₁₁ (2)
Composé	$Ag_4Mo_9Se_{11}$	$Ag_2TI_2Mo_9Se_{11}\\$	$Ag_3RbMo_9Se_{11}$	$ZnGa_2Mo_9Se_{11}$	$Zn_2Mo_9Se_{11}$	CuBiMo ₉ Se ₁₁	ZnSnMo ₉ Se ₁₁
Стст	3	3 (+1,31 eV)	2 (+1,88 eV)	4	3	1	1
P6₃/m	1 (+0,21 eV)	0	1	0	1 (+2,06 eV)	1 (+1,17 eV)	1 (+1,34 eV)
<i>R</i> ∃̃c H	1 (+0,14 eV)	1	0	1 (+0,76 eV)	2 (+0,24 eV)	0	0
Total	5	4	3	5	5	2	2

Tout d'abord, notons que le modèle le plus stable pour les trois composés expérimentaux est, comme attendu, celui basé sur leur structure cristalline. Le modèle le plus stable des quatre stœchiométries hypothétiques est toujours basé sur Ag₄Mo₉Se₁₁, de groupe d'espace *Cmcm*. Notons également que les différences d'énergies libres sont assez importantes (>0,5 eV par motif) dans toutes les stœchiométries quaternaires. Dans les stœchiométries ternaires, d'autres modèles sont parfois proches en énergie. Pour aller plus loin, il aurait été possible de renforcer cette étude de stabilité relative en calculant d'autres formules, par exemple en créant des modèles avec différentes combinaisons de petits et gros cations. Pour la suite, nous n'allons néanmoins retenir que les modèles les plus stables présentés dans ce tableau.

3. Formules quaternaires hypothétiques générées par SMACT

Formule	Stochio	Formula	Stochio	Formula	Stochio	Formula	Stochio	Formule	Storchio
	1		1		2		2		
NaAlivio9511	L	CSBINIOA2611	1	112PDIVI09511	Ζ	C23IN9INI09211	3	KCU3IMIO9TETT	3
NaScMo9S11	1	BaPbMo9Se11	1	Na2MgMo9Se11	2	CsNa3Mo9S11	3	K3CuMo9Te11	3
NaGaMo9S11	1	BiAuMo9Se11	1	Na2CaMo9Se11	2	NaAu3Mo9S11	3	KGa3Mo9Te11	3
NaYMo9S11	1	TlBiMo9Se11	1	Na2ZnMo9Se11	2	NaTl3Mo9S11	3	K3GaMo9Te11	3
NaSbMo9S11	1	NaAlMo9Te11	1	Na2GeMo9Se11	2	Na3TIMo9S11	3	KRb3Mo9Te11	3
Na3AuMo9S11	1	NaScMo9Te11	1	Na2SrMo9Se11	2	KCu3Mo9S11	3	K3RbMo9Te11	3
NaBiMo9S11	1	NaGaMo9Te11	1	Na2CdMo9Se11	2	K3CuMo9S11	3	KAg3Mo9Te11	3
CaMgMo9S11	1	NaYMo9Te11	1	Na2SnMo9Se11	2	KGa3Mo9S11	3	K3AgMo9Te11	3
MgZnMo9S11	1	NaSbMo9Te11	1	BaNa2Mo9Se11	2	K3GaMo9S11	3	KIn3Mo9Te11	3
MgGeMo9S11	1	Na2PbMo9Te11	1	Na2PbMo9Se11	2	KRb3Mo9S11	3	K3InMo9Te11	3
SrMgMo9S11	1	NaBiMo9Te11	1	K2MgMo9Se11	2	K3RbMo9S11	3	Cs3KMo9Te11	3
MgCdMo9S11	1	CaMgMo9Te11	1	MgCu2Mo9Se11	2	KAg3Mo9S11	3	CsK3Mo9Te11	3
MgSnMo9S11	1	MgZnMo9Te11	1	MgGa2Mo9Se11	2	K3AgMo9S11	3	KTl3Mo9Te11	3
BaMgMo9S11	1	MgGeMo9Te11	1	Rb2MgMo9Se11	2	KIn3Mo9S11	3	K3TlMo9Te11	3
MgPbMo9S11	1	SrMgMo9Te11	1	MgAg2Mo9Se11	2	K3InMo9S11	3	Ga3CuMo9Te11	3
KAlMo9S11	1	MgCdMo9Te11	1	MgIn2Mo9Se11	2	Cs3KMo9S11	3	GaCu3Mo9Te11	3
AlCuMo9S11	1	MgSnMo9Te11	1	Cs2MgMo9Se11	2	CsK3Mo9S11	3	Rb3CuMo9Te11	3
AlGaMo9S11	1	BaMgMo9Te11	1	MgAu2Mo9Se11	2	KAu3Mo9S11	3	RbCu3Mo9Te11	3
RbAlMo9S11	1	MgPbMo9Te11	1	MgTl2Mo9Se11	2	K3AuMo9S11	3	CuAg3Mo9Te11	3
AlAgMo9S11	1	KAIMo9Te11	1	K2CaMo9Se11	2	KTI3Mo9S11	3	Cu3AgMo9Te11	3

Tableau 3 : Détail des 918 formules quaternaires hypothétiques à motifs Mo₉X₁₁ possédant un VEC « idéal » de 36, triées par leur stœchiométrie

 $(1 = ABMo_9X_{11}, 2 = A_2BMo_9X_{11}, 3 = A_3BMo_9X_{11}, 4 = A_2B_2Mo_9X_{11}).$

								•	
AllnMo9S11	1	AlCuMo9Te11	1	K2ZnMo9Se11	2	K3TIMo9S11	3	In3CuMo9Te11	3
CsAlMo9S11	1	AlGaMo9Te11	1	K2GeMo9Se11	2	Ga3CuMo9S11	3	InCu3Mo9Te11	3
AlAuMo9S11	1	RbAlMo9Te11	1	K2SrMo9Se11	2	GaCu3Mo9S11	3	Cs3CuMo9Te11	3
AlTIMo9S11	1	AlAgMo9Te11	1	K2CdMo9Se11	2	Rb3CuMo9S11	3	CsCu3Mo9Te11	3
KScMo9S11	1	AlInMo9Te11	1	K2SnMo9Se11	2	RbCu3Mo9S11	3	Tl3CuMo9Te11	3
KGaMo9S11	1	CsAlMo9Te11	1	K2BaMo9Se11	2	CuAg3Mo9S11	3	TlCu3Mo9Te11	3
KYMo9S11	1	AlTIMo9Te11	1	K2PbMo9Se11	2	Cu3AgMo9S11	3	Rb3GaMo9Te11	3
KSbMo9S11	1	KScMo9Te11	1	CaCu2Mo9Se11	2	In3CuMo9S11	3	RbGa3Mo9Te11	3
KBiMo9S11	1	KGaMo9Te11	1	CaGa2Mo9Se11	2	InCu3Mo9S11	3	GaAg3Mo9Te11	3
CaZnMo9S11	1	KYMo9Te11	1	Rb2CaMo9Se11	2	Cs3CuMo9S11	3	Ga3AgMo9Te11	3
CaGeMo9S11	1	KSbMo9Te11	1	CaAg2Mo9Se11	2	CsCu3Mo9S11	3	In3GaMo9Te11	3
SrCaMo9S11	1	KBiMo9Te11	1	Caln2Mo9Se11	2	CuAu3Mo9S11	3	InGa3Mo9Te11	3
CaCdMo9S11	1	CaZnMo9Te11	1	Cs2CaMo9Se11	2	Cu3AuMo9S11	3	Cs3GaMo9Te11	3
CaSnMo9S11	1	CaGeMo9Te11	1	CaAu2Mo9Se11	2	TI3CuMo9S11	3	CsGa3Mo9Te11	3
BaCaMo9S11	1	SrCaMo9Te11	1	CaTl2Mo9Se11	2	TICu3Mo9S11	3	Tl3GaMo9Te11	3
CaPbMo9S11	1	CaCdMo9Te11	1	ZnCu2Mo9Se11	2	Rb3GaMo9S11	3	TlGa3Mo9Te11	3
ScCuMo9S11	1	CaSnMo9Te11	1	Cu2GeMo9Se11	2	RbGa3Mo9S11	3	RbAg3Mo9Te11	3
ScGaMo9S11	1	BaCaMo9Te11	1	SrCu2Mo9Se11	2	GaAg3Mo9S11	3	Rb3AgMo9Te11	3
RbScMo9S11	1	CaPbMo9Te11	1	CdCu2Mo9Se11	2	Ga3AgMo9S11	3	RbIn3Mo9Te11	3
ScAgMo9S11	1	ScCuMo9Te11	1	Cu2SnMo9Se11	2	In3GaMo9S11	3	Rb3InMo9Te11	3
ScInMo9S11	1	ScGaMo9Te11	1	BaCu2Mo9Se11	2	InGa3Mo9S11	3	Cs3RbMo9Te11	3
CsScMo9S11	1	RbScMo9Te11	1	Cu2PbMo9Se11	2	Cs3GaMo9S11	3	CsRb3Mo9Te11	3
ScAuMo9S11	1	ScAgMo9Te11	1	ZnGa2Mo9Se11	2	CsGa3Mo9S11	3	RbTl3Mo9Te11	3
ScTIMo9S11	1	ScInMo9Te11	1	Rb2ZnMo9Se11	2	GaAu3Mo9S11	3	Rb3TlMo9Te11	3
GaCuMo9S11	1	CsScMo9Te11	1	ZnAg2Mo9Se11	2	Ga3AuMo9S11	3	In3AgMo9Te11	3
YCuMo9S11	1	ScTIMo9Te11	1	ZnIn2Mo9Se11	2	TI3GaMo9S11	3	InAg3Mo9Te11	3
CuSbMo9S11	1	GaCuMo9Te11	1	Cs2ZnMo9Se11	2	TlGa3Mo9S11	3	Cs3AgMo9Te11	3

CuBiMo9S11	1	YCuMo9Te11	1	ZnAu2Mo9Se11	2	RbAg3Mo9S11	3	CsAg3Mo9Te11	3
ZnGeMo9S11	1	CuSbMo9Te11	1	Tl2ZnMo9Se11	2	Rb3AgMo9S11	3	Tl3AgMo9Te11	3
SrZnMo9S11	1	CuBiMo9Te11	1	Ga2GeMo9Se11	2	RbIn3Mo9S11	3	TlAg3Mo9Te11	3
ZnCdMo9S11	1	ZnGeMo9Te11	1	SrGa2Mo9Se11	2	Rb3InMo9S11	3	Cs3InMo9Te11	3
ZnSnMo9S11	1	SrZnMo9Te11	1	CdGa2Mo9Se11	2	Cs3RbMo9S11	3	CsIn3Mo9Te11	3
BaZnMo9S11	1	ZnCdMo9Te11	1	Ga2SnMo9Se11	2	CsRb3Mo9S11	3	Tl3InMo9Te11	3
ZnPbMo9S11	1	ZnSnMo9Te11	1	BaGa2Mo9Se11	2	RbAu3Mo9S11	3	Tlln3Mo9Te11	3
RbGaMo9S11	1	BaZnMo9Te11	1	Ga2PbMo9Se11	2	Rb3AuMo9S11	3	CsTI3Mo9Te11	3
YGaMo9S11	1	ZnPbMo9Te11	1	Rb2GeMo9Se11	2	RbTl3Mo9S11	3	Cs3TIMo9Te11	3
GaAgMo9S11	1	RbGaMo9Te11	1	Ag2GeMo9Se11	2	Rb3TlMo9S11	3	Na2Au2Mo9S11	4
InGaMo9S11	1	YGaMo9Te11	1	In2GeMo9Se11	2	In3AgMo9S11	3	K2Na2Mo9S11	4
GaSbMo9S11	1	GaAgMo9Te11	1	Cs2GeMo9Se11	2	InAg3Mo9S11	3	Na2Cu2Mo9S11	4
CsGaMo9S11	1	InGaMo9Te11	1	GeAu2Mo9Se11	2	Cs3AgMo9S11	3	Na2Ga2Mo9S11	4
GaAuMo9S11	1	GaSbMo9Te11	1	Tl2GeMo9Se11	2	CsAg3Mo9S11	3	Rb2Na2Mo9S11	4
TlGaMo9S11	1	CsGaMo9Te11	1	Rb2SrMo9Se11	2	AgAu3Mo9S11	3	Na2Ag2Mo9S11	4
GaBiMo9S11	1	TlGaMo9Te11	1	Rb2CdMo9Se11	2	Ag3AuMo9S11	3	Na2In2Mo9S11	4
SrGeMo9S11	1	GaBiMo9Te11	1	Rb2SnMo9Se11	2	TI3AgMo9S11	3	Cs2Na2Mo9S11	4
CdGeMo9S11	1	SrGeMo9Te11	1	Rb2BaMo9Se11	2	TIAg3Mo9S11	3	Na2Tl2Mo9S11	4
SnGeMo9S11	1	CdGeMo9Te11	1	Rb2PbMo9Se11	2	Cs3InMo9S11	3	K2Cu2Mo9S11	4
BaGeMo9S11	1	SnGeMo9Te11	1	SrAg2Mo9Se11	2	CsIn3Mo9S11	3	K2Ga2Mo9S11	4
GePbMo9S11	1	BaGeMo9Te11	1	SrIn2Mo9Se11	2	InAu3Mo9S11	3	K2Rb2Mo9S11	4
RbYMo9S11	1	GePbMo9Te11	1	Cs2SrMo9Se11	2	In3AuMo9S11	3	K2Ag2Mo9S11	4
RbSbMo9S11	1	RbYMo9Te11	1	SrAu2Mo9Se11	2	Tl3InMo9S11	3	K2In2Mo9S11	4
RbBiMo9S11	1	RbSbMo9Te11	1	SrTl2Mo9Se11	2	Tlln3Mo9S11	3	Cs2K2Mo9S11	4
SrCdMo9S11	1	RbBiMo9Te11	1	CdAg2Mo9Se11	2	CsAu3Mo9S11	3	K2Au2Mo9S11	4
SrSnMo9S11	1	SrCdMo9Te11	1	Ag2SnMo9Se11	2	Cs3AuMo9S11	3	K2Tl2Mo9S11	4
BaSrMo9S11	1	SrSnMo9Te11	1	BaAg2Mo9Se11	2	CsTl3Mo9S11	3	Ga2Cu2Mo9S11	4

SrPbMo9S11	1	BaSrMo9Te11	1	Ag2PbMo9Se11	2	Cs3TIMo9S11	3	Rb2Cu2Mo9S11	4
YAgMo9S11	1	SrPbMo9Te11	1	CdIn2Mo9Se11	2	TI3AuMo9S11	3	Cu2Ag2Mo9S11	4
YInMo9S11	1	YAgMo9Te11	1	Cs2CdMo9Se11	2	TIAu3Mo9S11	3	In2Cu2Mo9S11	4
CsYMo9S11	1	YInMo9Te11	1	CdAu2Mo9Se11	2	K3NaMo9Se11	3	Cs2Cu2Mo9S11	4
YAuMo9S11	1	CsYMo9Te11	1	In2SnMo9Se11	2	KNa3Mo9Se11	3	Cu2Au2Mo9S11	4
YTIMo9S11	1	YTIMo9Te11	1	Baln2Mo9Se11	2	NaCu3Mo9Se11	3	Tl2Cu2Mo9S11	4
AgSbMo9S11	1	AgSbMo9Te11	1	In2PbMo9Se11	2	Na3CuMo9Se11	3	Rb2Ga2Mo9S11	4
AgBiMo9S11	1	AgBiMo9Te11	1	Cs2SnMo9Se11	2	NaGa3Mo9Se11	3	Ga2Ag2Mo9S11	4
CdSnMo9S11	1	CdSnMo9Te11	1	SnAu2Mo9Se11	2	Na3GaMo9Se11	3	In2Ga2Mo9S11	4
BaCdMo9S11	1	BaCdMo9Te11	1	Tl2SnMo9Se11	2	Rb3NaMo9Se11	3	Cs2Ga2Mo9S11	4
Tl2CdMo9S11	1	CdPbMo9Te11	1	Cs2BaMo9Se11	2	RbNa3Mo9Se11	3	Ga2Au2Mo9S11	4
CdPbMo9S11	1	InSbMo9Te11	1	Cs2PbMo9Se11	2	NaAg3Mo9Se11	3	Tl2Ga2Mo9S11	4
InSbMo9S11	1	InBiMo9Te11	1	BaAu2Mo9Se11	2	Na3AgMo9Se11	3	Rb2Ag2Mo9S11	4
InBiMo9S11	1	BaSnMo9Te11	1	BaTl2Mo9Se11	2	Naln3Mo9Se11	3	Rb2In2Mo9S11	4
BaSnMo9S11	1	SnPbMo9Te11	1	PbAu2Mo9Se11	2	Na3InMo9Se11	3	Cs2Rb2Mo9S11	4
SnPbMo9S11	1	CsSbMo9Te11	1	Tl2PbMo9Se11	2	Cs3NaMo9Se11	3	Rb2Au2Mo9S11	4
CsSbMo9S11	1	TISbMo9Te11	1	Na2MgMo9Te11	2	CsNa3Mo9Se11	3	Rb2Tl2Mo9S11	4
SbAuMo9S11	1	CsBiMo9Te11	1	Na2CaMo9Te11	2	NaAu3Mo9Se11	3	In2Ag2Mo9S11	4
TISbMo9S11	1	BaPbMo9Te11	1	Na2ZnMo9Te11	2	Na3AuMo9Se11	3	Cs2Ag2Mo9S11	4
CsBiMo9S11	1	TlBiMo9Te11	1	Na2GeMo9Te11	2	NaTl3Mo9Se11	3	Ag2Au2Mo9S11	4
BaPbMo9S11	1	Na2MgMo9S11	2	Na2SrMo9Te11	2	Na3TlMo9Se11	3	Tl2Ag2Mo9S11	4
BiAuMo9S11	1	Na2CaMo9S11	2	Na2CdMo9Te11	2	KCu3Mo9Se11	3	Cs2In2Mo9S11	4
TlBiMo9S11	1	Na2ZnMo9S11	2	Na2SnMo9Te11	2	K3CuMo9Se11	3	In2Au2Mo9S11	4
NaAlMo9Se11	1	Na2GeMo9S11	2	BaNa2Mo9Te11	2	KGa3Mo9Se11	3	Tl2In2Mo9S11	4
NaScMo9Se11	1	Na2SrMo9S11	2	K2MgMo9Te11	2	K3GaMo9Se11	3	Cs2Au2Mo9S11	4
NaGaMo9Se11	1	Na2CdMo9S11	2	MgCu2Mo9Te11	2	KRb3Mo9Se11	3	Cs2Tl2Mo9S11	4
NaYMo9Se11	1	Na2SnMo9S11	2	MgGa2Mo9Te11	2	K3RbMo9Se11	3	Tl2Au2Mo9S11	4

NaSbMo9Se11	1	BaNa2Mo9S11	2	Rb2MgMo9Te11	2	KAg3Mo9Se11	3	K2Na2Mo9Se11	4
NaBiMo9Se11	1	Na2PbMo9S11	2	MgAg2Mo9Te11	2	K3AgMo9Se11	3	Na2Cu2Mo9Se11	4
CaMgMo9Se11	1	K2MgMo9S11	2	MgIn2Mo9Te11	2	KIn3Mo9Se11	3	Na2Ga2Mo9Se11	4
MgZnMo9Se11	1	MgCu2Mo9S11	2	Cs2MgMo9Te11	2	K3InMo9Se11	3	Rb2Na2Mo9Se11	4
MgGeMo9Se11	1	MgGa2Mo9S11	2	MgTl2Mo9Te11	2	Cs3KMo9Se11	3	Na2Ag2Mo9Se11	4
SrMgMo9Se11	1	Rb2MgMo9S11	2	K2CaMo9Te11	2	CsK3Mo9Se11	3	Na2In2Mo9Se11	4
MgCdMo9Se11	1	MgAg2Mo9S11	2	K2ZnMo9Te11	2	KAu3Mo9Se11	3	Cs2Na2Mo9Se11	4
MgSnMo9Se11	1	MgIn2Mo9S11	2	K2GeMo9Te11	2	K3AuMo9Se11	3	Na2Au2Mo9Se11	4
BaMgMo9Se11	1	Cs2MgMo9S11	2	K2SrMo9Te11	2	KTI3Mo9Se11	3	Na2Tl2Mo9Se11	4
MgPbMo9Se11	1	MgAu2Mo9S11	2	K2CdMo9Te11	2	K3TIMo9Se11	3	K2Cu2Mo9Se11	4
KAlMo9Se11	1	MgTl2Mo9S11	2	K2SnMo9Te11	2	Ga3CuMo9Se11	3	K2Ga2Mo9Se11	4
AlCuMo9Se11	1	K2CaMo9S11	2	K2BaMo9Te11	2	GaCu3Mo9Se11	3	K2Rb2Mo9Se11	4
AlGaMo9Se11	1	K2ZnMo9S11	2	K2PbMo9Te11	2	Rb3CuMo9Se11	3	K2Ag2Mo9Se11	4
RbAlMo9Se11	1	K2GeMo9S11	2	CaCu2Mo9Te11	2	RbCu3Mo9Se11	3	K2In2Mo9Se11	4
AlAgMo9Se11	1	K2SrMo9S11	2	CaGa2Mo9Te11	2	CuAg3Mo9Se11	3	Cs2K2Mo9Se11	4
AllnMo9Se11	1	K2CdMo9S11	2	Rb2CaMo9Te11	2	Cu3AgMo9Se11	3	K2Au2Mo9Se11	4
CsAlMo9Se11	1	K2SnMo9S11	2	CaAg2Mo9Te11	2	In3CuMo9Se11	3	K2Tl2Mo9Se11	4
AlAuMo9Se11	1	K2BaMo9S11	2	Caln2Mo9Te11	2	InCu3Mo9Se11	3	Ga2Cu2Mo9Se11	4
AlTIMo9Se11	1	K2PbMo9S11	2	Cs2CaMo9Te11	2	Cs3CuMo9Se11	3	Rb2Cu2Mo9Se11	4
KScMo9Se11	1	CaCu2Mo9S11	2	CaTl2Mo9Te11	2	CsCu3Mo9Se11	3	Cu2Ag2Mo9Se11	4
KGaMo9Se11	1	CaGa2Mo9S11	2	ZnCu2Mo9Te11	2	CuAu3Mo9Se11	3	In2Cu2Mo9Se11	4
KYMo9Se11	1	Rb2CaMo9S11	2	Cu2GeMo9Te11	2	Cu3AuMo9Se11	3	Cs2Cu2Mo9Se11	4
KSbMo9Se11	1	CaAg2Mo9S11	2	SrCu2Mo9Te11	2	Tl3CuMo9Se11	3	Cu2Au2Mo9Se11	4
KBiMo9Se11	1	Caln2Mo9S11	2	CdCu2Mo9Te11	2	TlCu3Mo9Se11	3	Tl2Cu2Mo9Se11	4
CaZnMo9Se11	1	Cs2CaMo9S11	2	Cu2SnMo9Te11	2	Rb3GaMo9Se11	3	Rb2Ga2Mo9Se11	4
CaGeMo9Se11	1	CaAu2Mo9S11	2	BaCu2Mo9Te11	2	RbGa3Mo9Se11	3	Ga2Ag2Mo9Se11	4
SrCaMo9Se11	1	CaTl2Mo9S11	2	Cu2PbMo9Te11	2	GaAg3Mo9Se11	3	In2Ga2Mo9Se11	4

CaCdMo9Se11	1	ZnCu2Mo9S11	2	ZnGa2Mo9Te11	2	Ga3AgMo9Se11	3	Cs2Ga2Mo9Se11	4
CaSnMo9Se11	1	Cu2GeMo9S11	2	Rb2ZnMo9Te11	2	In3GaMo9Se11	3	Ga2Au2Mo9Se11	4
BaCaMo9Se11	1	SrCu2Mo9S11	2	ZnAg2Mo9Te11	2	InGa3Mo9Se11	3	Tl2Ga2Mo9Se11	4
CaPbMo9Se11	1	CdCu2Mo9S11	2	ZnIn2Mo9Te11	2	Cs3GaMo9Se11	3	Rb2Ag2Mo9Se11	4
ScCuMo9Se11	1	Cu2SnMo9S11	2	Cs2ZnMo9Te11	2	CsGa3Mo9Se11	3	Rb2In2Mo9Se11	4
ScGaMo9Se11	1	BaCu2Mo9S11	2	Tl2ZnMo9Te11	2	GaAu3Mo9Se11	3	Cs2Rb2Mo9Se11	4
RbScMo9Se11	1	Cu2PbMo9S11	2	Ga2GeMo9Te11	2	Ga3AuMo9Se11	3	Rb2Au2Mo9Se11	4
ScAgMo9Se11	1	ZnGa2Mo9S11	2	SrGa2Mo9Te11	2	Tl3GaMo9Se11	3	Rb2Tl2Mo9Se11	4
ScInMo9Se11	1	Rb2ZnMo9S11	2	CdGa2Mo9Te11	2	TlGa3Mo9Se11	3	In2Ag2Mo9Se11	4
CsScMo9Se11	1	ZnAg2Mo9S11	2	Ga2SnMo9Te11	2	RbAg3Mo9Se11	3	Cs2Ag2Mo9Se11	4
ScAuMo9Se11	1	ZnIn2Mo9S11	2	BaGa2Mo9Te11	2	Rb3AgMo9Se11	3	Ag2Au2Mo9Se11	4
ScTIMo9Se11	1	Cs2ZnMo9S11	2	Ga2PbMo9Te11	2	RbIn3Mo9Se11	3	Tl2Ag2Mo9Se11	4
GaCuMo9Se11	1	ZnAu2Mo9S11	2	Rb2GeMo9Te11	2	Rb3InMo9Se11	3	Cs2In2Mo9Se11	4
YCuMo9Se11	1	Tl2ZnMo9S11	2	Ag2GeMo9Te11	2	Cs3RbMo9Se11	3	In2Au2Mo9Se11	4
CuSbMo9Se11	1	Ga2GeMo9S11	2	In2GeMo9Te11	2	CsRb3Mo9Se11	3	Tl2In2Mo9Se11	4
CuBiMo9Se11	1	SrGa2Mo9S11	2	Cs2GeMo9Te11	2	RbAu3Mo9Se11	3	Cs2Au2Mo9Se11	4
ZnGeMo9Se11	1	CdGa2Mo9S11	2	Tl2GeMo9Te11	2	Rb3AuMo9Se11	3	Cs2Tl2Mo9Se11	4
SrZnMo9Se11	1	Ga2SnMo9S11	2	Rb2SrMo9Te11	2	RbTl3Mo9Se11	3	Tl2Au2Mo9Se11	4
ZnCdMo9Se11	1	BaGa2Mo9S11	2	Rb2CdMo9Te11	2	Rb3TlMo9Se11	3	K2Na2Mo9Te11	4
ZnSnMo9Se11	1	Ga2PbMo9S11	2	Rb2SnMo9Te11	2	In3AgMo9Se11	3	Na2Cu2Mo9Te11	4
BaZnMo9Se11	1	Rb2GeMo9S11	2	Rb2BaMo9Te11	2	InAg3Mo9Se11	3	Na2Ga2Mo9Te11	4
ZnPbMo9Se11	1	Ag2GeMo9S11	2	Rb2PbMo9Te11	2	Cs3AgMo9Se11	3	Rb2Na2Mo9Te11	4
RbGaMo9Se11	1	In2GeMo9S11	2	SrAg2Mo9Te11	2	CsAg3Mo9Se11	3	Na2Ag2Mo9Te11	4
YGaMo9Se11	1	Cs2GeMo9S11	2	SrIn2Mo9Te11	2	AgAu3Mo9Se11	3	Na2In2Mo9Te11	4
GaAgMo9Se11	1	GeAu2Mo9S11	2	Cs2SrMo9Te11	2	Ag3AuMo9Se11	3	Cs2Na2Mo9Te11	4
InGaMo9Se11	1	Tl2GeMo9S11	2	SrTl2Mo9Te11	2	TI3AgMo9Se11	3	Na2Tl2Mo9Te11	4
GaSbMo9Se11	1	Rb2SrMo9S11	2	CdAg2Mo9Te11	2	TIAg3Mo9Se11	3	K2Cu2Mo9Te11	4

CsGaMo9Se11	1	Rb2CdMo9S11	2	Ag2SnMo9Te11	2	Cs3InMo9Se11	3	K2Ga2Mo9Te11	4
GaAuMo9Se11	1	Rb2SnMo9S11	2	BaAg2Mo9Te11	2	CsIn3Mo9Se11	3	K2Rb2Mo9Te11	4
TlGaMo9Se11	1	Rb2BaMo9S11	2	Ag2PbMo9Te11	2	InAu3Mo9Se11	3	K2Ag2Mo9Te11	4
GaBiMo9Se11	1	Rb2PbMo9S11	2	CdIn2Mo9Te11	2	Tl3InMo9Se11	3	K2In2Mo9Te11	4
SrGeMo9Se11	1	SrAg2Mo9S11	2	Cs2CdMo9Te11	2	Tlln3Mo9Se11	3	Cs2K2Mo9Te11	4
CdGeMo9Se11	1	SrIn2Mo9S11	2	Tl2CdMo9Te11	2	CsAu3Mo9Se11	3	K2Tl2Mo9Te11	4
SnGeMo9Se11	1	Cs2SrMo9S11	2	In2SnMo9Te11	2	Cs3AuMo9Se11	3	Ga2Cu2Mo9Te11	4
BaGeMo9Se11	1	SrAu2Mo9S11	2	Baln2Mo9Te11	2	CsTI3Mo9Se11	3	Rb2Cu2Mo9Te11	4
GePbMo9Se11	1	SrTI2Mo9S11	2	In2PbMo9Te11	2	Cs3TlMo9Se11	3	Cu2Ag2Mo9Te11	4
RbYMo9Se11	1	CdAg2Mo9S11	2	Cs2SnMo9Te11	2	Tl3AuMo9Se11	3	In2Cu2Mo9Te11	4
RbSbMo9Se11	1	Ag2SnMo9S11	2	Tl2SnMo9Te11	2	TIAu3Mo9Se11	3	Cs2Cu2Mo9Te11	4
RbBiMo9Se11	1	BaAg2Mo9S11	2	Cs2BaMo9Te11	2	K3NaMo9Te11	3	Tl2Cu2Mo9Te11	4
SrCdMo9Se11	1	Ag2PbMo9S11	2	Cs2PbMo9Te11	2	KNa3Mo9Te11	3	Rb2Ga2Mo9Te11	4
SrSnMo9Se11	1	CdIn2Mo9S11	2	BaTl2Mo9Te11	2	NaCu3Mo9Te11	3	Ga2Ag2Mo9Te11	4
BaSrMo9Se11	1	Cs2CdMo9S11	2	Tl2PbMo9Te11	2	Na3CuMo9Te11	3	In2Ga2Mo9Te11	4
SrPbMo9Se11	1	CdAu2Mo9S11	2	K3NaMo9S11	3	NaGa3Mo9Te11	3	Cs2Ga2Mo9Te11	4
YAgMo9Se11	1	In2SnMo9S11	2	KNa3Mo9S11	3	Na3GaMo9Te11	3	Tl2Ga2Mo9Te11	4
YInMo9Se11	1	Baln2Mo9S11	2	NaCu3Mo9S11	3	Rb3NaMo9Te11	3	Rb2Ag2Mo9Te11	4
CsYMo9Se11	1	In2PbMo9S11	2	Na3CuMo9S11	3	RbNa3Mo9Te11	3	Rb2In2Mo9Te11	4
YAuMo9Se11	1	Cs2SnMo9S11	2	NaGa3Mo9S11	3	NaAg3Mo9Te11	3	Cs2Rb2Mo9Te11	4
YTIMo9Se11	1	SnAu2Mo9S11	2	Na3GaMo9S11	3	Na3AgMo9Te11	3	Rb2Tl2Mo9Te11	4
AgSbMo9Se11	1	Tl2SnMo9S11	2	Rb3NaMo9S11	3	Naln3Mo9Te11	3	In2Ag2Mo9Te11	4
AgBiMo9Se11	1	Cs2BaMo9S11	2	RbNa3Mo9S11	3	Na3InMo9Te11	3	Cs2Ag2Mo9Te11	4
CdSnMo9Se11	1	Cs2PbMo9S11	2	NaAg3Mo9S11	3	Cs3NaMo9Te11	3	Tl2Ag2Mo9Te11	4
BaCdMo9Se11	1	BaAu2Mo9S11	2	Na3AgMo9S11	3	CsNa3Mo9Te11	3	Cs2In2Mo9Te11	4
Tl2CdMo9Se11	1	BaTl2Mo9S11	2	Naln3Mo9S11	3	NaTl3Mo9Te11	3	Tl2In2Mo9Te11	4
CdPbMo9Se11	1	PbAu2Mo9S11	2	Na3InMo9S11	3	Na3TlMo9Te11	3	Cs2Tl2Mo9Te11	4

InSbMo9Se11	1				
In3AuMo9Se11	1				
InBiMo9Se11	1				
BaSnMo9Se11	1				
SnPbMo9Se11	1				
CsSbMo9Se11	1				
SbAuMo9Se11	1				

4. Coefficients de Seebeck prédits des formules générées par SMACT

Tableau 4 : Coefficients de Seebeck prédits des 918 formules générées par SMACT, pour les quatre configurations de *n* et *T* étudiées. Le classement de ces formules est également indiqué. Les 35 formules calculées dans la base de données étendue sont indiquées en vert, et les 22 formules supplémentaires calculées pour évaluer la validité du modèle sont indiquées en bleu.

Formule	300К, n ₁ (µV/К)	300К, n ₂ (µV/К)	800K, n1 (µV/K)	800K, n ₂ (µV/K)	Classement
Tl2In2Mo9Se11	291	103	376	197	1
Tl2Ag2Mo9Se11	293	100	380	199	2
CsIn3Mo9Se11	276	106	374	187	3
Rb2Tl2Mo9Se11	283	105	373	186	4
Tl3CuMo9Se11	286	105	368	193	5
Tlln3Mo9Se11	278	100	375	194	6
Rb2In2Mo9Se11	280	105	372	184	7
Cs2Tl2Mo9Se11	280	105	371	184	8
RbTl3Mo9Se11	278	102	372	187	9
Tl3InMo9Se11	282	99	374	196	10
CsAg3Mo9Se11	276	111	378	181	11

Cs2In2Mo9Se11	276	104	372	185	12
Tl3GaMo9Se11	284	104	367	191	13
RbIn3Mo9Se11	278	102	374	185	14
CsTl3Mo9Se11	276	102	371	187	15
Tl2Ga2Mo9Se11	291	105	363	188	16
Tl3AuMo9Se11	283	98	373	195	17
Tl2Cu2Mo9Se11	309	119	362	187	18
Tl3AgMo9Se11	280	98	374	196	19
Cs2Ga2Mo9Se11	277	103	369	185	20
K2Tl2Mo9Se11	277	106	366	182	21
In2Cu2Mo9Se11	296	109	359	186	22
In3AgMo9Se11	277	98	371	192	23
Cs2Au2Mo9Se11	267	105	371	178	24
KTl3Mo9Se11	276	102	368	184	25
In2Ag2Mo9Se11	289	96	370	192	26
NaTl3Mo9Se11	271	100	369	186	27
In2Au2Mo9Se11	290	101	361	188	28
CsGa3Mo9Se11	269	99	370	186	29
Rb2Au2Mo9Se11	269	103	372	175	30
In3CuMo9Se11	280	102	362	187	31
Na2Tl2Mo9Se11	273	100	368	184	32
Cs2Ag2Mo9Se11	263	103	372	175	33
Ga2Au2Mo9Se11	292	107	353	184	34
Cs2Rb2Mo9Se11	263	104	370	174	35
Rb3InMo9Se11	264	100	369	178	36
Cs3InMo9Se11	263	101	369	180	37
Rb2Ga2Mo9Se11	260	103	368	182	38

Cs3GaMo9Se11 263 100 368 180 40 RbAg3Mo9Se11 261 105 371 171 41 K2In2Mo9Se11 271 99 366 181 42 TIGa3Mo9Se11 272 99 361 184 43 In3AuMo9Se11 273 98 361 186 44 Kin3Mo9Se11 268 97 368 182 45 In3GaMo9Se11 269 96 362 187 46 Rb3AuMo9Se11 260 100 369 174 48 X2Au2Mo9Se11 264 103 364 171 49 Cs3AgMo9Se11 257 101 369 173 50 Cs3RbMo9Se11 257 102 369 174 54 CsAgMo9Se11 257 103 369 174 54 CsAgMo9Se11 261 98 369 174 54 CsAu3Mo9Se11 261	Tl2Au2Mo9Se11	288	98	361	187	39
RbAg3Mo9Se1126110537117141K2ln2Mo9Se112719936618142TGa3Mo9Se112729936118443In3AuMo9Se112739836118644Kin3Mo9Se112689736818245In3GaMo9Se112699636218746Rb3auMo9Se112619936917247Cs3AuMo9Se1126010036917448K2Au2Mo9Se1126410336417149Cs3AgMo9Se1125710136917350Cs3RbMo9Se1125710236917252Na2In2Mo9Se1125710336917252Na2In2Mo9Se112659536818353Cs3TIMo9Se112619836917454CsAu3Mo9Se112629736917355Cs2U2Mo9Se112639836617456Rb3TMo9Se112629736917357Ga3AuMo9Se112699935318158RbG3Mo9Se1125310036518159Naln3Mo9Se112619436918360In2Ga2Mo9Se1125310236817062Rba3Mo9Se112569836617163CsCuMo9Se112569836617264R	Cs3GaMo9Se11	263	100	368	180	40
K2In2Mo9Se112719936618142TIGa3Mo9Se112729936118443In3AuMo9Se112739836118644Kin3Mo9Se112689736818245In3GaMo9Se112699636218746Rb3AuMo9Se1126010036917247Cs3AuMo9Se1126010036917448K2Au2Mo9Se1126410336417149Cs3AgMo9Se1125710136917350Cs3RbMo9Se1125710236917252Na2In2Mo9Se1125710336917454CsRbMo9Se1125710336917454CsAgMo9Se112659536818353Cs3TIMo9Se112619836617454CsAu3Mo9Se112639836617456Rb3TIMo9Se112629736917357Ga3AuMo9Se112699935318158RbGa3Mo9Se112619436918360In2Ga2Mo9Se1125310036518159NaIn3Mo9Se112619436918360In2Ga2Mo9Se1125310236817062RbAu3Mo9Se112679736417163RbAu3Mo9Se112569836617264<	RbAg3Mo9Se11	261	105	371	171	41
TIGa3Mo9Se112729936118443In3AuMo9Se112739836118644Kin3Mo9Se112689736818245In3GaMo9Se112699636218746Rb3AuMo9Se112619936917247Cs3AuMo9Se1126010036917448K2Au2Mo9Se1126410336417149Cs3AgMo9Se1125710136917350Cs3RbMo9Se1125710236917252Na2In2Mo9Se1125710336917252Na2In2Mo9Se112659536818353CsAuMo9Se112619836517355CsAu3Mo9Se112619836617454CsAu3Mo9Se112699836517355CsCu2Mo9Se112639836617456Rb3TIMo9Se112699935318158RbG3Mo9Se112639436918360In2Ga2Mo9Se112639436918360In2Ga2Mo9Se1125310036518159Nah3Mo9Se112619436918360In2Ga2Mo9Se1125310236817062Rb2agMo9Se1125310236817163Rb2agMo9Se1125310236617163 <trr< td=""><td>K2In2Mo9Se11</td><td>271</td><td>99</td><td>366</td><td>181</td><td>42</td></trr<>	K2In2Mo9Se11	271	99	366	181	42
In3AuMo9Se112739836118644Kin3Mo9Se112689736818245In3GaMo9Se112699636218746Rb3AuMo9Se112619936917247Cs3AuMo9Se1126010036917448K2Au2Mo9Se1126410336417149Cs3AgMo9Se1125710136917350Cs3AgMo9Se1125710236917351Cs3RbMo9Se1125710336917252Na2In2Mo9Se112659536818353Cs3TlMo9Se112619836517355Cs2Cu2Mo9Se112639836617456Rb3TlMo9Se112699935318158RbGa3Mo9Se112699935318159Naln3Mo9Se112619436918360In2Ga2Mo9Se1125310036518159Naln3Mo9Se112619436918360In2Ga2Mo9Se1125310236417163Rb2agMo9Se1125310236417163Rb2agMo9Se112569836617264Rb2agMo9Se112569836617264Rb2agMo9Se112569836617765	TlGa3Mo9Se11	272	99	361	184	43
Kln3Mo9Se112689736818245In3GaMo9Se112699636218746Rb3AuMo9Se112619936917247Cs3AuMo9Se1126010036917448K2Au2Mo9Se1126410336417149Cs3AgMo9Se1125710136917350Cs3RbMo9Se1125710236917351CsRbMo9Se1125710336917252Na2In2Mo9Se1125710336917454CsAu3Mo9Se112659536818353Cs3TIMo9Se112619836517355Cs2Cu2Mo9Se112639836617456Rb3TIMo9Se112629736917357Ga3AuMo9Se112699935318158RbGa3Mo9Se1126310036518159Naln3Mo9Se112619436917357Ga3AuMo9Se112639736417163RbCa3Mo9Se112799535718461Rb2Ag2Mo9Se112679736417163Cs3CuMo9Se112679736417163Cs3CuMo9Se112679736417163Cs3CuMo9Se112679736417163Cs3CuMo9Se112679736617264 <t< td=""><td>In3AuMo9Se11</td><td>273</td><td>98</td><td>361</td><td>186</td><td>44</td></t<>	In3AuMo9Se11	273	98	361	186	44
In3GaMo9Se112699636218746Rb3AuMo9Se112619936917247Cs3AuMo9Se1126010036917448K2Au2Mo9Se1126410336417149Cs3AgMo9Se1125710136917350Cs3RbMo9Se1125710236917351CsRbMo9Se1125710236917252Na2In2Mo9Se112659536818353Cs3TIMo9Se112619836917454CsAu3Mo9Se112699836517355Cs2Cu2Mo9Se112639836617456Rb3TIMo9Se112629736917357Ga3AuMo9Se112699935318158RbGa3Mo9Se112639535617357Ga3AuMo9Se112639935318159Naln3Mo9Se112639736917360In2Ga2Mo9Se1125310036518159Naln3Mo9Se1125310236817062RbAu3Mo9Se112679736417163Cs2CuMo9Se112569836617264Rb2Ag2Mo9Se112569836617264	KIn3Mo9Se11	268	97	368	182	45
Rb3AuMo9Se112619936917247Cs3AuMo9Se1126010036917448K2Au2Mo9Se1126410336417149Cs3AgMo9Se1125710136917350Cs3RbMo9Se1125710236917351CsRb3Mo9Se1125710336917252Na2In2Mo9Se112659536818353Cs3TIMo9Se112619836917454CsAu3Mo9Se112639836517355Cs2Cu2Mo9Se112639836617456Rb3TIMo9Se112629736917357Ga3AuMo9Se112699935318158RbGa3Mo9Se112619436918360In2Ga2Mo9Se112619436918360In2Ga2Mo9Se1125310236817062RbAu3Mo9Se112679736417163Cs3CuMo9Se112569836617264RbAu3Mo9Se112569836617264Rb3GaMo9Se1124810036617765	In3GaMo9Se11	269	96	362	187	46
Cs3AuMo9Se1126010036917448K2Au2Mo9Se1126410336417149Cs3AgMo9Se1125710136917350Cs3RbMo9Se1125710236917351CsRb3Mo9Se1125710336917252Na2In2Mo9Se112659536818353Cs3TIMo9Se112619836917454CsAu3Mo9Se112699836517355Cs2Cu2Mo9Se112639836617456Rb3TIMo9Se112629736917357Ga3AuMo9Se112699935318158RbGa3Mo9Se112619436918360In2Ga2Mo9Se112619436918360In2Ga2Mo9Se1125310236817062Rb2Ag2Mo9Se1125310236817062Rb2Ag2Mo9Se112569836617264Rb3GaMo9Se112679736417163Cs3CuMo9Se112569836617264Rb3GaMo9Se112569836617765	Rb3AuMo9Se11	261	99	369	172	47
K2Au2Mo9Se1126410336417149Cs3AgMo9Se1125710136917350Cs3RbMo9Se1125710236917351CsRb3Mo9Se1125710336917252Na2In2Mo9Se112659536818353CsAu3Mo9Se112619836917454CsAu3Mo9Se112699836517355Cs2Cu2Mo9Se112639836617456Rb3TIMo9Se112629736917357Ga3AuMo9Se112699935318158RbGa3Mo9Se112619436918360In2Ga2Mo9Se112619436918360In2Ga2Mo9Se1125310236817062Rb2Ag2Mo9Se112569836617264RbAu3Mo9Se112679736417163RbAu3Mo9Se112569836617264RbAu3Mo9Se112569836617264RbAu3Mo9Se112569836617765	Cs3AuMo9Se11	260	100	369	174	48
Cs3AgMo9Se1125710136917350Cs3RbMo9Se1125710236917351CsRb3Mo9Se1125710336917252Na2In2Mo9Se112659536818353Cs3TIMo9Se112619836917454CsAu3Mo9Se112699836517355Cs2Cu2Mo9Se112639836617456Rb3TIMo9Se112629736917357Ga3AuMo9Se112699935318158RbGa3Mo9Se112619436918360In2Ga2Mo9Se112619436918360In2Ga2Mo9Se112619436918360RbGa3Mo9Se112619436918360In2Ga2Mo9Se112799535718461Rb2Ag2Mo9Se1125310236817062RbAu3Mo9Se112679736417163Cs3CuMo9Se112569836617264Rb3GaMo9Se112569836617765	K2Au2Mo9Se11	264	103	364	171	49
Cs3RbMo9Se1125710236917351CsRb3Mo9Se1125710336917252Na2In2Mo9Se112659536818353Cs3TIMo9Se112619836917454CsAu3Mo9Se112699836517355Cs2Cu2Mo9Se112639836617456Rb3TIMo9Se112629736917357Ga3AuMo9Se112699935318158RbGa3Mo9Se112699935360174In2Ga2Mo9Se112619436918360NaIn3Mo9Se112619436918360In2Ga2Mo9Se112799535718461Rb2Ag2Mo9Se1125310236817062RbAu3Mo9Se112679736417163Cs3CuMo9Se112569836617264Rb3GaMo9Se1124810036617765	Cs3AgMo9Se11	257	101	369	173	50
CsRb3Mo9Se1125710336917252Na2In2Mo9Se112659536818353Cs3TIMo9Se112619836917454CsAu3Mo9Se112699836517355Cs2Cu2Mo9Se112639836617456Rb3TIMo9Se112629736917357Ga3AuMo9Se112699935318158RbGa3Mo9Se1125310036518159Naln3Mo9Se112619436918360In2Ga2Mo9Se1125310236817062Rb2Ag2Mo9Se1125310236617163Cs3CuMo9Se112679736417163RbAu3Mo9Se112569836617264Rb3GaMo9Se1124810036617765	Cs3RbMo9Se11	257	102	369	173	51
Na2ln2Mo9Se112659536818353Cs3TIMo9Se112619836917454CsAu3Mo9Se112699836517355Cs2Cu2Mo9Se112639836617456Rb3TIMo9Se112629736917357Ga3AuMo9Se112699935318158RbGa3Mo9Se112699935318159Naln3Mo9Se112619436918360In2Ga2Mo9Se112799535718461Rb2Ag2Mo9Se1125310236817062RbAu3Mo9Se112679736417163Cs3CuMo9Se112569836617264Rb3GaMo9Se1124810036617765	CsRb3Mo9Se11	257	103	369	172	52
Cs3TIMo9Se112619836917454CsAu3Mo9Se112699836517355Cs2Cu2Mo9Se112639836617456Rb3TIMo9Se112629736917357Ga3AuMo9Se112699935318158RbGa3Mo9Se1125310036518159NaIn3Mo9Se112619436918360In2Ga2Mo9Se112799535718461Rb2Ag2Mo9Se1125310236817062RbAu3Mo9Se112679736417163Cs3CuMo9Se112569836617264Rb3GaMo9Se1124810036617765	Na2In2Mo9Se11	265	95	368	183	53
CsAu3Mo9Se112699836517355Cs2Cu2Mo9Se112639836617456Rb3TIMo9Se112629736917357Ga3AuMo9Se112699935318158RbGa3Mo9Se1125310036518159NaIn3Mo9Se112619436918360In2Ga2Mo9Se112799535718461Rb2Ag2Mo9Se1125310236817062RbAu3Mo9Se112679736417163Cs3CuMo9Se112569836617264Rb3GaMo9Se1124810036617765	Cs3TlMo9Se11	261	98	369	174	54
Cs2Cu2Mo9Se112639836617456Rb3TIMo9Se112629736917357Ga3AuMo9Se112699935318158RbGa3Mo9Se1125310036518159NaIn3Mo9Se112619436918360In2Ga2Mo9Se112799535718461Rb2Ag2Mo9Se1125310236817062RbAu3Mo9Se112679736417163Cs3CuMo9Se112569836617264Rb3GaMo9Se1124810036617765	CsAu3Mo9Se11	269	98	365	173	55
Rb3TIMo9Se112629736917357Ga3AuMo9Se112699935318158RbGa3Mo9Se1125310036518159Naln3Mo9Se112619436918360In2Ga2Mo9Se112799535718461Rb2Ag2Mo9Se1125310236817062RbAu3Mo9Se112679736417163Cs3CuMo9Se112569836617264Rb3GaMo9Se1124810036617765	Cs2Cu2Mo9Se11	263	98	366	174	56
Ga3AuMo9Se112699935318158RbGa3Mo9Se1125310036518159Naln3Mo9Se112619436918360In2Ga2Mo9Se112799535718461Rb2Ag2Mo9Se1125310236817062RbAu3Mo9Se112679736417163Cs3CuMo9Se112569836617264Rb3GaMo9Se1124810036617765	Rb3TlMo9Se11	262	97	369	173	57
RbGa3Mo9Se1125310036518159Naln3Mo9Se112619436918360In2Ga2Mo9Se112799535718461Rb2Ag2Mo9Se1125310236817062RbAu3Mo9Se112679736417163Cs3CuMo9Se112569836617264Rb3GaMo9Se1124810036617765	Ga3AuMo9Se11	269	99	353	181	58
Naln3Mo9Se112619436918360In2Ga2Mo9Se112799535718461Rb2Ag2Mo9Se1125310236817062RbAu3Mo9Se112679736417163Cs3CuMo9Se112569836617264Rb3GaMo9Se1124810036617765	RbGa3Mo9Se11	253	100	365	181	59
In2Ga2Mo9Se112799535718461Rb2Ag2Mo9Se1125310236817062RbAu3Mo9Se112679736417163Cs3CuMo9Se112569836617264Rb3GaMo9Se1124810036617765	Naln3Mo9Se11	261	94	369	183	60
Rb2Ag2Mo9Se1125310236817062RbAu3Mo9Se112679736417163Cs3CuMo9Se112569836617264Rb3GaMo9Se1124810036617765	In2Ga2Mo9Se11	279	95	357	184	61
RbAu3Mo9Se112679736417163Cs3CuMo9Se112569836617264Rb3GaMo9Se1124810036617765	Rb2Ag2Mo9Se11	253	102	368	170	62
Cs3CuMo9Se112569836617264Rb3GaMo9Se1124810036617765	RbAu3Mo9Se11	267	97	364	171	63
Rb3GaMo9Se11 248 100 366 177 65	Cs3CuMo9Se11	256	98	366	172	64
	Rb3GaMo9Se11	248	100	366	177	65

Cs3KMo9Se1125399365170K3TIMo9Se1126095364171Cs2K2Mo9Se1125598364170Ga2Ag2Mo9Se1126397347178InGa3Mo9Se1126694353180K2Ga2Mo9Se1125199358176InAg3Mo9Se1126090361183K3AuMo9Se1125597362170Na3InMo9Se1125292365178Rb3AgMo9Se11245100366166Na2Ga2Mo9Se1124895364181Na3TIMo9Se1125693365172	67
K3TIMo9Se1126095364171Cs2K2Mo9Se1125598364170Ga2Ag2Mo9Se1126397347178InGa3Mo9Se1126694353180K2Ga2Mo9Se1125199358176InAg3Mo9Se1126090361183K3AuMo9Se1125597362170Na3InMo9Se1125292365178Rb3AgMo9Se11245100366166Na2Ga2Mo9Se1124895364181Na3TIMo9Se1125693365172	
Cs2K2Mo9Se1125598364170Ga2Ag2Mo9Se1126397347178InGa3Mo9Se1126694353180K2Ga2Mo9Se1125199358176InAg3Mo9Se1126090361183K3AuMo9Se1125597362170Na3InMo9Se1125292365178Rb3AgMo9Se11245100366166Na2Ga2Mo9Se1124895364181Na3TIMo9Se1125693365172	68
Ga2Ag2Mo9Se1126397347178InGa3Mo9Se1126694353180K2Ga2Mo9Se1125199358176InAg3Mo9Se1126090361183K3AuMo9Se1125597362170Na3InMo9Se1125292365178Rb3AgMo9Se11245100366166Na2Ga2Mo9Se1124895364181Na3TIMo9Se1125693365172	69
InGa3Mo9Se1126694353180K2Ga2Mo9Se1125199358176InAg3Mo9Se1126090361183K3AuMo9Se1125597362170Na3InMo9Se1125292365178Rb3AgMo9Se11245100366166Na2Ga2Mo9Se1124895364181Na3TIMo9Se1125693365172	70
K2Ga2Mo9Se1125199358176InAg3Mo9Se1126090361183K3AuMo9Se1125597362170Na3InMo9Se1125292365178Rb3AgMo9Se11245100366166Na2Ga2Mo9Se1124895364181Na3TIMo9Se1125693365172	71
InAg3Mo9Se1126090361183K3AuMo9Se1125597362170Na3InMo9Se1125292365178Rb3AgMo9Se11245100366166Na2Ga2Mo9Se1124895364181Na3TIMo9Se1125693365172	72
K3AuMo9Se11 255 97 362 170 Na3InMo9Se11 252 92 365 178 Rb3AgMo9Se11 245 100 366 166 Na2Ga2Mo9Se11 248 95 364 181 Na3TIMo9Se11 256 93 365 172	73
Na3InMo9Se11 252 92 365 178 Rb3AgMo9Se11 245 100 366 166 Na2Ga2Mo9Se11 248 95 364 181 Na3TIMo9Se11 256 93 365 172	74
Rb3AgMo9Se11 245 100 366 166 Na2Ga2Mo9Se11 248 95 364 181 Na3TIMo9Se11 256 93 365 172	75
Na2Ga2Mo9Se11 248 95 364 181 Na3TIMo9Se11 256 93 365 172	76
Na3TIMo9Se11 256 93 365 172	77
	78
Cs3NaMo9Se11 248 98 364 170	79
GaAu3Mo9Se11 262 96 345 177	80
K3InMo9Se11 256 95 360 174	81
TI2Cu2Mo9Te11 286 101 334 163	82
KAu3Mo9Se11 257 97 358 165	83
Rb2Cu2Mo9Se11 244 100 364 168	84
Cs2Na2Mo9Se11 250 96 364 170	85
Ga2Cu2Mo9Se11 255 102 340 173	86
Cs2K2Mo9Te11 259 99 350 157	87
Ga3AgMo9Se11 250 97 347 176	88
CsK3Mo9Se11 247 97 363 169	89
CsK3Mo9Te11 256 99 350 157	90
KGa3Mo9Se11 244 96 360 176	01
InAu3Mo9Se11 260 90 346 177	91

Ga3CuMo9Se11	249	99	343	174	93
Na3AuMo9Se11	250	93	362	168	94
Cs3RbMo9Te11	250	99	350	157	95
Na2Au2Mo9Se11	245	96	362	168	96
Cs2Na2Mo9Te11	252	98	349	156	97
K3GaMo9Se11	241	97	358	173	98
CsNa3Mo9Se11	242	96	362	170	99
Rb3CuMo9Se11	237	99	363	165	100
Na3GaMo9Se11	240	92	363	177	101
K3RbMo9Te11	257	98	349	152	102
Cs2Tl2Mo9Te11	267	94	342	157	103
TIAg3Mo9Se11	246	86	365	174	104
Cs3KMo9Te11	250	97	350	156	105
KAg3Mo9Se11	245	92	363	164	106
Cs2Ga2Mo9Te11	263	92	343	157	107
Cs2Rb2Mo9Te11	252	96	349	156	108
Cs3TlMo9Te11	253	94	347	158	109
NaGa3Mo9Se11	239	95	354	173	110
NaAu3Mo9Se11	248	92	357	163	111
K2Rb2Mo9Se11	236	97	361	164	112
KRb3Mo9Se11	235	98	362	163	113
K2Ag2Mo9Se11	240	94	360	166	114
Cs3InMo9Te11	250	95	346	157	115
K2Rb2Mo9Te11	257	94	348	153	116
CsRb3Mo9Te11	249	96	349	156	117
Cs3NaMo9Te11	247	97	349	156	118
Rb3NaMo9Se11	234	96	362	164	119

Rb2Na2Mo9Te11	251	96	346	153	120
GaAg3Mo9Se11	238	94	349	176	121
Cs2In2Mo9Te11	260	89	342	155	122
Rb2Na2Mo9Se11	234	96	360	165	123
Cs3GaMo9Te11	250	92	346	158	124
Rb2Tl2Mo9Te11	263	90	340	154	125
Rb3NaMo9Te11	247	95	348	153	126
KRb3Mo9Te11	250	93	348	152	127
CsTl3Mo9Te11	260	91	336	156	128
Tl2Ga2Mo9Te11	273	87	332	160	129
RbTl3Mo9Te11	260	92	336	154	130
K3RbMo9Se11	231	97	358	162	131
RbCu3Mo9Se11	234	93	360	164	132
RbNa3Mo9Se11	230	95	360	165	133
Rb3TlMo9Te11	251	91	345	154	134
K2Cu2Mo9Se11	232	96	353	162	135
Rb2Ga2Mo9Te11	259	89	341	152	136
K2Tl2Mo9Te11	258	90	336	155	137
Tl3GaMo9Te11	266	87	331	159	138
K3AgMo9Se11	235	93	356	162	139
Tl3CuMo9Te11	269	89	328	160	140
CsGa3Mo9Te11	256	89	338	155	141
K2Na2Mo9Se11	231	93	357	164	142
KNa3Mo9Se11	228	94	358	164	143
TIAu3Mo9Se11	248	83	343	165	144
TlGa3Mo9Te11	261	87	332	157	145
Cs3AgMo9Te11	247	90	342	155	146

Rb3InMo9Te11	247	91	344	153	147
KTI3Mo9Te11	254	90	334	155	148
Cs3CuMo9Te11	247	89	341	156	149
K3CuMo9Se11	228	94	353	160	150
K3NaMo9Se11	227	93	357	162	151
Na2Ag2Mo9Se11	233	88	358	162	152
Rb2In2Mo9Te11	258	88	338	152	153
CsNa3Mo9Te11	239	92	346	155	154
K2Ga2Mo9Te11	258	89	338	149	155
Cs2Cu2Mo9Te11	252	86	338	154	156
NaAg3Mo9Se11	228	90	359	158	157
Rb3GaMo9Te11	245	89	344	152	158
K3TlMo9Te11	244	89	341	155	159
RbGa3Mo9Te11	254	89	337	151	160
Na3AgMo9Se11	228	89	357	161	161
RbNa3Mo9Te11	236	93	345	152	162
Na3CuMo9Se11	226	89	355	160	163
Na2Cu2Mo9Se11	221	91	354	160	164
K3InMo9Te11	244	89	341	150	165
K2Na2Mo9Te11	238	90	343	151	166
K3GaMo9Te11	244	89	341	150	167
Cs2Ag2Mo9Te11	249	84	338	152	168
CsIn3Mo9Te11	249	84	336	153	169
K3NaMo9Te11	235	91	344	151	170
Tl3AgMo9Te11	260	80	328	153	171
InCu3Mo9Se11	237	84	332	165	172
Rb3AgMo9Te11	242	86	340	151	173

Na2Tl2Mo9Te11	247	84	332	153	174
NaTl3Mo9Te11	246	85	332	154	175
Tl3InMo9Te11	258	80	326	153	176
CsCu3Mo9Te11	249	87	330	151	177
KGa3Mo9Te11	249	86	335	148	178
RbIn3Mo9Te11	248	83	336	150	179
KNa3Mo9Te11	231	88	344	152	180
Rb3CuMo9Te11	241	84	339	150	181
Na2Ga2Mo9Te11	248	83	333	149	182
Ag3AuMo9Se11	232	83	337	157	183
K3CuMo9Te11	240	87	338	149	184
K3AgMo9Te11	241	86	338	148	185
Na3TlMo9Te11	230	84	340	155	186
K2In2Mo9Te11	248	81	334	148	187
Rb2Ag2Mo9Te11	246	82	334	148	188
Tl2In2Mo9Te11	257	71	325	151	189
NaGa3Mo9Te11	244	84	333	150	190
Ag2Au2Mo9Se11	241	84	329	152	191
Tl2Ag2Mo9Te11	261	70	319	150	192
CsAg3Mo9Te11	243	83	335	148	193
Rb2Cu2Mo9Te11	246	80	333	148	194
Na2In2Mo9Te11	243	81	333	150	195
K2Cu2Mo9Te11	245	84	333	146	196
GaCu3Mo9Se11	219	88	330	164	197
TlCu3Mo9Te11	246	88	315	151	198
TICu3Mo9Se11	224	79	336	156	199
AgAu3Mo9Se11	236	86	328	151	200
CsTI3Mo9S11	231	82	332	154	201
---------------	-----	----	-----	-----	-----
KCu3Mo9Se11	214	85	345	155	202
InGa3Mo9Te11	250	75	318	150	203
RbAg3Mo9Te11	242	82	334	145	204
RbCu3Mo9Te11	245	84	328	146	205
In2Ga2Mo9Te11	254	69	317	149	206
Na2Cu2Mo9Te11	238	83	332	146	207
Na3InMo9Te11	221	82	338	152	208
Tlln3Mo9Te11	245	72	328	149	209
KIn3Mo9Te11	240	79	332	146	210
NaCu3Mo9Te11	237	86	327	146	211
Na3GaMo9Te11	231	76	335	148	212
Naln3Mo9Te11	235	78	331	148	213
CsRb3Mo9S11	222	62	340	152	214
Cs2Rb2Mo9S11	223	62	340	152	215
Tl2Au2Mo9S11	250	73	325	143	216
Na3CuMo9Te11	228	78	333	149	217
CsK3Mo9S11	221	62	341	152	218
Cs2K2Mo9S11	222	62	340	151	219
TI3AuMo9S11	243	75	327	144	220
In3GaMo9Te11	243	68	318	149	221
Na3AgMo9Te11	225	79	333	148	222
KCu3Mo9Te11	240	83	326	143	223
Cs3KMo9S11	222	62	340	151	224
K2Ag2Mo9Te11	237	77	331	144	225
Cs3RbMo9S11	222	61	340	151	226
Na2Ag2Mo9Te11	234	78	331	145	227

RbTl3Mo9S11	230	81	330	146	228
Ga2Cu2Mo9Te11	259	73	299	147	229
Cs3NaMo9S11	218	62	340	151	230
In2Ag2Mo9Te11	252	62	308	147	231
Tl3GaMo9S11	239	74	327	143	232
Cs2Na2Mo9S11	216	62	340	152	233
Tl3CuMo9S11	240	78	325	142	234
CuAu3Mo9Se11	225	88	319	147	235
Ga3CuMo9Te11	248	72	307	147	236
Cu2Au2Mo9Se11	230	88	317	146	237
Tl3InMo9S11	238	74	327	143	238
Ga3AgMo9Te11	246	70	310	145	239
NaAg3Mo9Te11	231	79	330	142	240
KTI3Mo9S11	229	81	328	145	241
Cs3TlMo9S11	227	67	332	147	242
NaCu3Mo9Se11	210	87	341	150	243
Cs2Tl2Mo9S11	235	67	324	147	244
KAg3Mo9Te11	234	78	330	140	245
Cs3GaMo9S11	226	60	337	146	246
TI3AgMo9S11	237	73	327	142	247
Cs3AuMo9S11	223	68	330	147	248
In3AgMo9Te11	241	61	312	147	249
TlAu3Mo9S11	237	72	325	141	250
In3CuMo9Te11	240	63	309	147	251
Rb3TlMo9S11	227	66	330	146	252
Ga2Ag2Mo9Te11	249	65	305	144	253
Rb2Tl2Mo9S11	234	66	323	144	254

Cs2Ga2Mo9S11	226	60	332	146	255
In2Cu2Mo9Te11	250	65	305	142	256
Rb3AuMo9S11	222	68	329	146	257
Cs3InMo9S11	228	60	330	144	258
InAu3Mo9S11	232	71	324	140	259
NaTl3Mo9S11	223	77	327	142	260
TIAg3Mo9Te11	231	73	318	141	261
GaAu3Mo9S11	223	71	327	142	262
K3TlMo9S11	219	66	329	145	263
GaAg3Mo9Te11	231	68	311	142	264
Cs3AgMo9S11	220	61	331	144	265
Rb3InMo9S11	228	59	328	143	266
Cs2In2Mo9S11	230	60	322	143	267
Cs3CuMo9S11	219	61	330	144	268
InAg3Mo9Te11	231	67	312	140	269
Cs2Au2Mo9S11	218	65	325	145	270
InCu3Mo9Te11	236	74	300	144	271
KRb3Mo9S11	212	60	337	146	272
K3RbMo9S11	212	60	337	146	273
GaCu3Mo9Te11	236	73	297	144	274
K2Tl2Mo9S11	228	63	314	138	275
K2Rb2Mo9S11	211	60	337	146	276
Tl2Cu2Mo9S11	251	57	304	125	277
Rb2In2Mo9S11	229	57	319	138	278
CsNa3Mo9S11	204	59	340	152	279
K3InMo9S11	218	59	327	142	280
TlGa3Mo9S11	238	54	310	130	281

K3AuMo9S11	212	67	327	144	282
Tl2Ga2Mo9S11	243	54	308	128	283
Rb3NaMo9S11	207	60	336	146	284
Rb2Au2Mo9S11	214	63	319	138	285
CsIn3Mo9S11	222	55	315	137	286
In2Ga2Mo9S11	241	49	307	130	287
Tl2In2Mo9S11	239	52	309	126	288
Cu3AuMo9Se11	211	79	314	141	289
Na2Tl2Mo9S11	222	60	311	128	290
Cs2Ag2Mo9S11	214	59	322	141	291
Tlln3Mo9S11	233	52	310	127	292
In2Cu2Mo9S11	244	50	304	128	293
CsGa3Mo9S11	219	55	315	136	294
K2In2Mo9S11	221	55	312	135	295
RbIn3Mo9S11	222	54	314	131	296
Ga2Au2Mo9S11	233	50	311	128	297
Rb3GaMo9S11	210	58	333	141	298
In3GaMo9S11	233	49	310	130	299
Cs2Cu2Mo9S11	212	59	321	142	300
In3AuMo9S11	235	50	309	126	301
Rb2Na2Mo9S11	200	59	336	146	302
KIn3Mo9S11	220	54	312	130	303
InGa3Mo9S11	232	49	308	130	304
In2Au2Mo9S11	241	49	306	124	305
Ga3AuMo9S11	231	52	307	129	306
In3CuMo9S11	235	49	307	129	307
Rb3AgMo9S11	211	59	324	140	308

K3NaMo9S11	199	59	335	145	309
K3GaMo9S11	207	57	331	139	310
In3AgMo9S11	232	46	309	127	311
In2Ag2Mo9S11	238	44	308	126	312
AgAu3Mo9S11	212	63	309	131	313
K2Au2Mo9S11	210	61	313	135	314
K2Na2Mo9S11	195	56	334	145	315
Rb2Ga2Mo9S11	210	56	321	134	316
Tl2Ag2Mo9S11	236	45	307	123	317
TlCu3Mo9S11	222	51	305	126	318
Rb3CuMo9S11	206	58	323	139	319
K2SrMo9S11	222	49	310	109	320
Rb2SrMo9S11	224	49	310	108	321
Na2In2Mo9S11	214	53	309	125	322
Na3TIMo9S11	207	61	316	128	323
Rb2CaMo9S11	223	49	309	108	324
RbNa3Mo9S11	192	55	334	142	325
K3AgMo9S11	202	59	323	139	326
Naln3Mo9S11	212	51	310	126	327
CsAu3Mo9S11	211	53	309	125	328
K2CaMo9S11	219	48	308	109	329
K2Ga2Mo9S11	205	53	318	130	330
CuAu3Mo9S11	205	64	306	131	331
Na3AuMo9S11	199	65	318	127	332
Rb2Ag2Mo9S11	202	57	317	135	333
KYMo9S11	221	52	300	106	334
K3CuMo9S11	198	58	322	138	335

RbYMo9S11	221	50	300	107	336
RbGa3Mo9S11	207	53	311	128	337
Na3InMo9S11	206	53	314	127	338
TlAg3Mo9S11	224	42	309	123	339
KNa3Mo9S11	192	55	328	136	340
KGa3Mo9S11	206	53	310	127	341
Ga2Ag2Mo9S11	214	46	309	125	342
RbScMo9S11	219	50	299	105	343
K2BaMo9S11	217	48	305	105	344
InCu3Mo9S11	215	44	303	125	345
Ga3AgMo9S11	213	48	302	124	346
RbAu3Mo9S11	208	53	308	123	347
Na2Au2Mo9S11	201	60	309	123	348
Rb2BaMo9S11	217	47	304	104	349
Na2Ga2Mo9S11	202	52	316	125	350
Rb2MgMo9S11	217	48	300	105	351
Rb2Cu2Mo9S11	194	54	309	130	352
K2GeMo9S11	218	44	302	105	353
Na3GaMo9S11	196	52	318	125	354
SrCaMo9S11	216	44	302	108	355
KAu3Mo9S11	205	53	306	122	356
Na2SrMo9S11	207	52	307	110	357
Na2PbMo9Se11	222	43	301	103	358
BaNa2Mo9S11	211	50	302	107	359
CsAg3Mo9S11	204	49	308	126	360
Na2CaMo9S11	207	51	306	111	361
K2Ag2Mo9S11	195	53	307	129	362

	202	51	207	125	262
	203	31	207	123	264
	210	49	298	123	364
Call2Mo9Se11	220	43	301	104	365
NaGa3Mo9S11	201	52	307	124	366
Rb2GeMo9S11	221	43	303	103	367
K2PbMo9S11	218	43	300	104	368
Na2PbMo9S11	213	47	298	104	369
BaTl2Mo9Se11	222	42	300	104	370
Na3AgMo9S11	188	55	310	121	371
Na2GeMo9Se11	214	44	299	105	372
Cu2Ag2Mo9Te11	216	58	270	129	373
Na3CuMo9S11	188	55	309	122	374
NaYMo9Se11	213	44	300	105	375
Ga2Cu2Mo9S11	206	46	303	122	376
SrTl2Mo9Se11	222	41	300	103	377
InAg3Mo9S11	223	37	309	127	378
Cu3AgMo9Te11	213	60	269	130	379
KScMo9S11	209	51	297	105	380
K2Cu2Mo9S11	193	53	306	123	381
K2CdMo9S11	211	47	296	105	382
K2MgMo9S11	207	49	298	107	383
RbGaMo9S11	216	45	295	102	384
Na2MgMo9Se11	214	43	298	103	385
NaAu3Mo9S11	200	48	303	119	386
Na2CaMo9Se11	213	43	298	104	387
KBiMo9S11	215	45	294	101	388
BaCaMo9S11	215	41	300	107	389
	L		I	I	L

Na2GeMo9S11	206	48	298	107	390
Na2SrMo9Se11	214	43	297	104	391
CuAg3Mo9Te11	209	58	276	129	392
Rb2CdMo9S11	211	46	296	102	393
Na2SnMo9Se11	214	42	299	102	394
Cs2CaMo9S11	215	44	297	100	395
Na2Cu2Mo9S11	186	53	301	119	396
Na2Ag2Mo9S11	186	53	302	118	397
CsScMo9S11	212	45	293	102	398
BaNa2Mo9Se11	215	42	296	103	399
Na2MgMo9S11	198	52	296	108	400
Ag2Au2Mo9S11	206	44	296	117	401
KAIMo9S11	210	46	295	102	402
Cs2SrMo9S11	215	44	297	99	403
Rb2PbMo9S11	218	42	298	100	404
Na2CdMo9Se11	211	44	298	102	405
CuAg3Mo9Se11	181	55	296	124	406
NaBiMo9S11	212	46	293	101	407
KAlMo9Se11	215	43	296	101	408
RbAg3Mo9S11	190	47	302	119	409
KScMo9Se11	214	42	294	103	410
RbAlMo9Se11	217	42	297	100	411
K2SnMo9S11	211	45	291	104	412
Cu2Au2Mo9S11	203	49	291	117	413
SrCaMo9Se11	217	38	300	105	414
NaScMo9Se11	205	44	298	104	415
NaYMo9S11	202	51	293	104	416

CsYMo9S11	212	44	292	101	417
KAg3Mo9S11	187	47	300	117	418
BaCaMo9Se11	216	38	301	105	419
Tl2PbMo9Se11	212	44	293	101	420
RbAlMo9S11	209	44	296	101	421
Cu3AuMo9S11	198	49	292	119	422
BaPbMo9Se11	218	40	295	103	423
Cs2BaMo9S11	214	43	296	99	424
BaSrMo9Se11	216	38	302	105	425
Ag3AuMo9S11	201	43	297	118	426
KYMo9Se11	213	41	296	102	427
KGaMo9S11	209	47	291	101	428
GaCu3Mo9S11	190	43	301	120	429
RbBiMo9S11	214	43	293	100	430
RbCu3Mo9S11	181	46	300	117	431
KCu3Mo9S11	181	47	299	116	432
BaMgMo9Se11	214	40	297	103	433
CaPbMo9Se11	212	41	295	102	434
NaBiMo9Se11	217	41	296	99	435
BaCdMo9Se11	211	41	295	103	436
NaScMo9S11	195	51	291	104	437
GaAg3Mo9S11	200	39	309	123	438
Na2CdMo9S11	197	50	290	105	439
BaSrMo9S11	214	38	299	104	440
K2PbMo9Se11	219	38	297	101	441
SrPbMo9Se11	215	40	293	102	442
Rb2SnMo9S11	211	44	291	100	443

Cs2MgMo9S11	211	44	291	99	444
BaSnMo9Se11	210	41	293	102	445
KBiMo9Se11	215	41	295	98	446
SrMgMo9Se11	210	40	297	102	447
NaCu3Mo9S11	176	48	294	114	448
CsGaMo9S11	213	41	291	100	449
Tl2CdMo9Se11	204	44	292	101	450
BaGeMo9Se11	212	40	293	102	451
Baln2Mo9Se11	214	40	295	100	452
Na2SnMo9S11	200	48	287	103	453
Cu2Ag2Mo9Se11	178	54	287	116	454
NaAlMo9Se11	201	43	293	101	455
RbSbMo9Se11	211	43	292	99	456
CaMgMo9Se11	205	40	298	102	457
SrGeMo9S11	210	40	294	103	458
KSbMo9S11	206	46	286	100	459
Cs2PbMo9S11	217	39	295	99	460
BaAu2Mo9Se11	208	43	290	100	461
Tl2GeMo9Se11	205	44	287	101	462
SrCdMo9S11	206	41	289	102	463
SrCdMo9Se11	208	40	293	101	464
NaSbMo9Se11	207	44	289	99	465
NaAg3Mo9S11	176	43	293	110	466
Cs2GeMo9S11	214	39	294	98	467
CsAlMo9Se11	217	38	293	98	468
Cu3AgMo9Se11	171	53	283	113	469
SrAg2Mo9S11	205	42	289	101	470

SrPbMo9S11 212 38 291 101 472 RbScMo9Se11 212 39 292 99 473 BaAg2Mo9Se11 205 41 292 99 473 CsAlMo9S11 213 40 292 99 476 CsAlMo9Se11 211 40 293 99 476 CaAu2Mo9Se11 196 44 280 100 477 RbSbMo9S11 206 44 285 99 478 NaAlMo9S11 192 46 285 101 479 CsBiMo9S11 210 42 289 99 480 Tl2snMo9Se11 207 40 290 101 483 SrGa2Mo9S11 207 40 289 99 485 NaGaMo9S11 205 43 289 99 485 NaGaMo9S11 197 43 290 100 486 CdPbMo9Se11 197 43	Caln2Mo9Se11	208	41	294	99	471
RbscMo9Se11 212 39 292 99 473 BaAg2Mo9Se11 205 41 292 100 474 CsAlMo9S11 213 40 292 99 475 Srin2Mo9Se11 213 40 292 99 476 CaAu2Mo9Se11 196 44 290 100 477 RbsbMo9S11 206 44 285 99 478 NaAlMo9S11 192 46 285 101 479 CsBiMo9S11 210 42 289 99 480 T2SnMo9Se11 210 42 289 99 481 KbMo9Se11 209 41 289 100 484 SraMo9Se11 207 40 289 100 484 Srda2Mo9Se11 209 41 289 100 486 Cda2Mo9Se11 197 43 280 100 486 Cadwo9Se11 197 43	SrPbMo9S11	212	38	291	101	472
BaAg2Mo9Se11 205 41 292 100 474 CsAlMo9S11 213 40 292 99 475 Srin2Mo9Se11 211 40 293 99 476 CaAu2Mo9Se11 196 44 290 100 477 RbSbM09S11 206 44 285 99 478 NaAlMo9S11 192 46 285 101 479 CsBiM09S11 214 39 291 99 480 Tl2snMo9Se11 210 42 289 99 481 KSbM09Se11 207 40 290 101 483 SrSnM09Se11 209 41 289 100 484 SrdaMo9S11 195 47 283 100 485 NaGaMo9S11 195 47 283 100 486 CdPbM09Se11 197 43 290 100 487 CadMo9Se11 197 43 <td>RbScMo9Se11</td> <td>212</td> <td>39</td> <td>292</td> <td>99</td> <td>473</td>	RbScMo9Se11	212	39	292	99	473
CsAlMo9S11 213 40 292 99 475 Srln2Mo9Se11 211 40 293 99 476 CaAu2Mo9Se11 196 44 290 100 477 RbSMo9S11 206 44 285 99 478 NaAlMo9S11 192 46 285 101 479 CsBiMo9S11 214 39 291 99 480 T2SnMo9Se11 210 42 289 99 481 KSbMo9Se11 209 43 290 98 482 SrSnMo9Se11 207 40 290 101 483 SrGa2Mo9S11 209 41 289 100 484 SrGa2Mo9S11 195 47 283 100 486 CdPhMo9Se11 195 47 283 100 486 Cu2Ag2Mo9S11 181 43 287 113 488 CaCdMo9Se11 203 40 <td>BaAg2Mo9Se11</td> <td>205</td> <td>41</td> <td>292</td> <td>100</td> <td>474</td>	BaAg2Mo9Se11	205	41	292	100	474
Srin2Mo9Se11 211 40 293 99 476 CaAu2Mo9Se11 196 44 290 100 477 RbSbMo9S11 206 44 285 99 478 NaAlMo9S11 192 46 285 101 479 CsBiMo9S11 214 39 291 99 480 TlSnMo9Se11 210 42 289 99 481 KSbMo9Se11 209 43 290 98 482 SrSnMo9Se11 207 40 290 101 483 SrGa2Mo9S11 209 41 289 100 484 SrAu2Mo9Se11 205 43 289 99 485 NaGaMo9S11 195 47 283 100 486 CdPbMo9Se11 197 43 290 100 487 Ca2Mo9S11 181 43 287 113 488 CaCdMo9Se11 212 38	CsAlMo9S11	213	40	292	99	475
CaAu2Mo9Se11 196 44 290 100 477 RbSbM09S11 206 44 285 99 478 NaAlMo9S11 192 46 285 101 479 CsBiM09S11 214 39 291 99 480 Tl2nM09Se11 210 42 289 99 481 KbM09Se11 209 43 290 98 482 SrSnM09Se11 207 40 290 101 483 SrGa2M09S11 209 41 289 100 484 SrAu2M09Se11 205 43 289 99 485 NaGaM09S11 195 47 283 100 486 CdPbM09Se11 197 43 290 100 487 Ca2dM09Se11 197 43 291 101 489 Ca2dM09Se11 1203 40 291 101 489 CaScM09Se11 212 38 <td>SrIn2Mo9Se11</td> <td>211</td> <td>40</td> <td>293</td> <td>99</td> <td>476</td>	SrIn2Mo9Se11	211	40	293	99	476
RbSbMo9S11 206 44 285 99 478 NaAlMo9S11 192 46 285 101 479 CsBiMo9S11 214 39 291 99 480 Tl2snMo9Se11 210 42 289 99 481 KSbMo9Se11 209 43 290 98 482 Sr5nMo9Se11 207 40 290 101 483 SrGa2Mo9S11 209 41 289 100 484 SrGa2Mo9Se11 205 43 289 99 485 SrGa2Mo9Se11 205 43 289 99 485 NaGaMo9Se11 195 47 283 100 486 CdPbMo9Se11 197 43 290 100 487 Cu2Ag2Mo9S11 181 43 287 113 488 CaCdMo9Se11 212 38 293 99 490 KScMo9Se11 215 38 <td>CaAu2Mo9Se11</td> <td>196</td> <td>44</td> <td>290</td> <td>100</td> <td>477</td>	CaAu2Mo9Se11	196	44	290	100	477
NaAlMo9S11 192 46 285 101 479 CsBiMo9S11 214 39 291 99 480 Tl2snMo9Se11 210 42 289 99 481 KSbMo9Se11 209 43 290 98 482 SrSnMo9Se11 207 40 290 101 483 SrGa2Mo9S11 209 41 289 100 484 SrGa2Mo9Se11 205 43 289 99 485 NaGaMo9Se11 195 47 283 100 486 CdPbMo9Se11 197 43 290 100 487 Cu2Ag2Mo9S11 181 43 287 113 488 CaCdMo9Se11 203 40 291 101 489 CsScMo9Se11 212 38 293 99 490 MgTl2Mo9Se11 215 38 293 97 491 MgTl2Mo9Se11 213 3	RbSbMo9S11	206	44	285	99	478
CSBIMO9S11 214 39 291 99 480 TI2snMo9Se11 210 42 289 99 481 KSbM09Se11 209 43 290 98 482 SrSnM09Se11 207 40 290 101 483 SrGa2M09S11 209 41 289 100 484 SrAu2M09Se11 205 43 289 99 485 NaGaM09S11 195 47 283 100 486 CdPbM09Se11 197 43 290 100 487 Cu2Ag2M09S11 181 43 287 113 488 CadM09Se11 203 40 291 101 489 CscM09Se11 212 38 293 99 490 RbBiM09Se11 212 38 293 97 491 MgTl2M09Se11 204 41 291 100 492 RbYM09Se11 213 38 <td>NaAlMo9S11</td> <td>192</td> <td>46</td> <td>285</td> <td>101</td> <td>479</td>	NaAlMo9S11	192	46	285	101	479
T12snMo9Se112104228999481KSbMo9Se112094329098482SrSnMo9Se1120740290101483SrGa2Mo9S1120941289100484SrAu2Mo9Se112054328999485NaGaMo9S1119547283100486CdPbMo9Se1119743290100487Cu2Ag2Mo9S1118143287113488CaCdMo9Se1120340291101489CsScMo9Se112123829399490RbBiMo9Se112123829397491MgT12Mo9Se1120441291100492RbYMo9Se112133829399493K2GeMo9Se112084228898495YTIMo9Se1120042287100496CaCdMo9S1119741287102497	CsBiMo9S11	214	39	291	99	480
KSbMo9Se11 209 43 290 98 482 SrSnMo9Se11 207 40 290 101 483 SrGa2Mo9S11 209 41 289 100 484 SrAu2Mo9Se11 205 43 289 99 485 NaGaMo9S11 195 47 283 100 486 CdPbMo9Se11 197 43 290 100 487 Cu2Ag2Mo9S11 181 43 287 113 488 CadMo9Se11 203 40 291 101 489 CsScMo9Se11 212 38 293 99 490 RbBiMo9Se11 215 38 293 97 491 MgTl2Mo9Se11 204 41 291 100 492 RbYMo9Se11 213 38 293 99 493 K2GeMo9Se11 213 38 290 99 494 Cs2CdMo9S11 208 42 </td <td>Tl2SnMo9Se11</td> <td>210</td> <td>42</td> <td>289</td> <td>99</td> <td>481</td>	Tl2SnMo9Se11	210	42	289	99	481
SrSnMo9Se11 207 40 290 101 483 SrGa2Mo9S11 209 41 289 100 484 SrAu2Mo9Se11 205 43 289 99 485 NaGaMo9S11 195 47 283 100 486 CdPbMo9Se11 197 43 290 100 487 Cu2Ag2Mo9S11 181 43 287 113 488 CaCMo9Se11 203 40 291 101 489 CsScMo9Se11 212 38 293 99 490 RbBiMo9Se11 215 38 293 97 491 MgTl2Mo9Se11 204 41 291 100 492 RbYMo9Se11 213 38 293 99 493 K2GeMo9Se11 213 38 293 99 493 K2GeMo9Se11 213 38 290 99 494 Cs2CdMo9S11 208 42<	KSbMo9Se11	209	43	290	98	482
SrGa2Mo9S1120941289100484SrAu2Mo9Se112054328999485NaGaMo9S1119547283100486CdPbMo9Se1119743290100487Cu2Ag2Mo9S1118143287113488CaCdMo9Se1120340291101489CsScMo9Se112123829399490RbBiMo9Se1120441291100492RbYMo9Se112123829399493K2GeMo9Se112133829399493K2GeMo9Se112084228898495YTIMo9Se1120042287100496Cs2CdMo9S1119741287102497	SrSnMo9Se11	207	40	290	101	483
SrAu2Mo9Se11 205 43 289 99 485 NaGaMo9S11 195 47 283 100 486 CdPbMo9Se11 197 43 290 100 487 Cu2Ag2Mo9S11 181 43 287 113 488 CaCdMo9Se11 203 40 291 101 489 CsScMo9Se11 212 38 293 99 490 RbBiMo9Se11 215 38 293 97 491 MgTl2Mo9Se11 204 41 291 100 492 RbYMo9Se11 212 38 293 99 493 K2GeMo9Se11 204 41 291 100 492 RbYMo9Se11 213 38 290 99 493 K2GeMo9Se11 208 42 288 98 495 YTIMo9Se11 200 42 287 100 496 CaCdMo9S11 197 41 <td>SrGa2Mo9S11</td> <td>209</td> <td>41</td> <td>289</td> <td>100</td> <td>484</td>	SrGa2Mo9S11	209	41	289	100	484
NaGaMo9S11 195 47 283 100 486 CdPbMo9Se11 197 43 290 100 487 Cu2Ag2Mo9S11 181 43 287 113 488 CaCdMo9Se11 203 40 291 101 489 CsCMo9Se11 212 38 293 99 490 RbBiMo9Se11 215 38 293 97 491 MgTl2Mo9Se11 204 41 291 100 492 RbYMo9Se11 212 38 293 99 493 K2GeMo9Se11 204 41 291 100 492 RbYMo9Se11 212 38 293 99 493 K2GeMo9Se11 213 38 290 99 493 Cs2CdMo9S11 208 42 288 98 495 YTIMo9Se11 200 42 287 100 496 CacdMo9S11 197 41	SrAu2Mo9Se11	205	43	289	99	485
CdPbMo9Se11 197 43 290 100 487 Cu2Ag2Mo9S11 181 43 287 113 488 CaCdMo9Se11 203 40 291 101 489 CsScMo9Se11 212 38 293 99 490 RbBiMo9Se11 215 38 293 97 491 MgTl2Mo9Se11 204 41 291 100 492 RbYMo9Se11 212 38 293 99 493 K2GeMo9Se11 212 38 293 99 493 K2GeMo9Se11 212 38 293 99 493 K2GeMo9Se11 213 38 290 99 494 Cs2CdMo9S11 208 42 288 98 495 YTIMo9Se11 200 42 287 100 496 CaCdMo9S11 197 41 287 102 497	NaGaMo9S11	195	47	283	100	486
Cu2Ag2Mo9S1118143287113488CaCdMo9Se1120340291101489CsScMo9Se112123829399490RbBiMo9Se112153829397491MgTl2Mo9Se1120441291100492RbYMo9Se112123829399493K2GeMo9Se112133829099494Cs2CdMo9S112084228898495YTIMo9Se1120042287100496CaCdMo9S1119741287102497	CdPbMo9Se11	197	43	290	100	487
CaCdMo9Se1120340291101489CsScMo9Se112123829399490RbBiMo9Se112153829397491MgTl2Mo9Se1120441291100492RbYMo9Se112123829399493K2GeMo9Se112133829099494Cs2CdMo9S112084228898495YTIMo9Se1120042287100496CaCdMo9S1119741287102497	Cu2Ag2Mo9S11	181	43	287	113	488
CsScMo9Se112123829399490RbBiMo9Se112153829397491MgTl2Mo9Se1120441291100492RbYMo9Se112123829399493K2GeMo9Se112133829099494Cs2CdMo9S112084228898495YTIMo9Se1120042287100496CaCdMo9S1119741287102497	CaCdMo9Se11	203	40	291	101	489
RbBiMo9Se112153829397491MgTl2Mo9Se1120441291100492RbYMo9Se112123829399493K2GeMo9Se112133829099494Cs2CdMo9S112084228898495YTIMo9Se1120042287100497	CsScMo9Se11	212	38	293	99	490
MgTl2Mo9Se1120441291100492RbYMo9Se112123829399493K2GeMo9Se112133829099494Cs2CdMo9S112084228898495YTIMo9Se1120042287100496CaCdMo9S1119741287102497	RbBiMo9Se11	215	38	293	97	491
RbYMo9Se112123829399493K2GeMo9Se112133829099494Cs2CdMo9S112084228898495YTIMo9Se1120042287100496CaCdMo9S1119741287102497	MgTl2Mo9Se11	204	41	291	100	492
K2GeMo9Se112133829099494Cs2CdMo9S112084228898495YTIMo9Se1120042287100496CaCdMo9S1119741287102497	RbYMo9Se11	212	38	293	99	493
Cs2CdMo9S11 208 42 288 98 495 YTIMo9Se11 200 42 287 100 496 CaCdMo9S11 197 41 287 102 497	K2GeMo9Se11	213	38	290	99	494
YTIMo9Se1120042287100496CaCdMo9S1119741287102497	Cs2CdMo9S11	208	42	288	98	495
CaCdMo9S11 197 41 287 102 497	YTIMo9Se11	200	42	287	100	496
	CaCdMo9S11	197	41	287	102	497

Cu3AgMo9S11	175	43	287	113	498
NaGaMo9Se11	201	41	294	98	499
CsSbMo9Se11	210	40	290	98	500
ScTIMo9Se11	190	43	287	101	501
SrIn2Mo9S11	204	41	286	100	502
SrTl2Mo9S11	208	39	288	101	503
CaAg2Mo9S11	189	43	286	101	504
Caln2Mo9S11	200	42	285	100	505
CaPbMo9S11	208	39	290	100	506
K2SnMo9Se11	213	37	295	97	507
K2MgMo9Se11	210	38	293	99	508
BaGeMo9S11	208	37	292	101	509
K2CdMo9Se11	211	37	294	97	510
NaSbMo9S11	199	46	281	98	511
SrMgMo9S11	200	40	288	101	512
BaGa2Mo9S11	207	39	288	100	513
CaTl2Mo9S11	204	39	287	101	514
BaTl2Mo9S11	209	37	289	101	515
CsBiMo9Se11	216	35	292	96	516
CsGaMo9Se11	213	37	292	97	517
SrSnMo9S11	205	40	285	100	518
KGaMo9Se11	211	40	291	95	519
BaPbMo9S11	211	36	290	100	520
ScAuMo9Se11	173	47	281	100	521
TlBiMo9Se11	215	35	291	98	522
SrAu2Mo9S11	198	41	284	100	523
CaAg2Mo9Se11	189	41	290	100	524

CsYMo9Se11	211	33	293	99	525
PbMo9Au2Se11	192	45	277	98	526
CaSnMo9Se11	202	39	288	100	527
SrAg2Mo9Se11	199	41	290	98	528
BaGa2Mo9Se11	213	35	293	96	529
CuAg3Mo9S11	177	39	289	114	530
CaGeMo9Se11	201	40	288	99	531
K2ZnMo9S11	192	45	250	101	532
CaMgMo9S11	194	40	285	101	533
CdAu2Mo9Se11	178	48	276	99	534
Na2ZnMo9S11	177	49	248	104	535
YAuMo9Se11	180	43	284	99	536
Cs2SnMo9S11	208	40	285	96	537
CaAu2Mo9S11	186	41	282	100	538
AlAuMo9Se11	183	46	279	98	539
CaSnMo9S11	198	40	283	99	540
MgPbMo9Se11	196	40	285	99	541
BaAg2Mo9S11	203	39	287	99	542
CaGeMo9S11	195	39	286	100	543
BaAu2Mo9S11	201	39	285	99	544
Rb2GeMo9Se11	213	35	290	93	545
GeAu2Mo9Se11	180	47	273	98	546
BaMgMo9S11	204	36	287	100	547
CsSbMo9S11	206	39	283	97	548
BaCdMo9S11	203	37	286	100	549
RbGaMo9Se11	210	37	289	93	550
Na2ZnMo9Se11	186	43	258	100	551

CaGa2Mo9S11	196	40	283	98	552
YAgMo9Se11	176	42	282	99	553
TISbMo9Se11	205	39	283	96	554
YTIMo9S11	198	38	281	100	555
YInMo9S11	189	41	276	99	556
Baln2Mo9S11	204	37	285	99	557
Rb2PbMo9Se11	218	19	296	89	558
Ag2PbMo9Se11	183	43	279	96	559
MgAu2Mo9Se11	174	46	275	96	560
Rb2ZnMo9S11	194	45	248	99	561
TlBiMo9S11	209	37	282	97	562
SrGeMo9Se11	206	36	286	97	563
YAgMo9S11	173	42	275	99	564
SnPbMo9Se11	208	38	285	92	565
Cs2GeMo9Se11	215	22	291	90	566
Cs2PbMo9Se11	218	20	294	87	567
In2PbMo9Se11	200	40	283	93	568
Rb2SnMo9Se11	213	21	294	90	569
ScTIMo9S11	187	39	278	100	570
BaZnMo9Se11	190	41	254	100	571
TI2PbMo9S11	194	38	281	99	572
SnAu2Mo9Se11	184	43	275	94	573
YAuMo9S11	182	40	273	99	574
Rb2CdMo9Se11	212	22	295	87	575
YGaMo9S11	181	41	274	99	576
BaSnMo9S11	203	36	283	98	577
AlTIMo9Se11	190	40	281	97	578

Tl2CdMo9S11	186	39	279	99	579
AlAgMo9Se11	169	44	276	95	580
InBiMo9Se11	209	33	286	92	581
Rb2MgMo9Se11	212	21	291	91	582
PbMo9Au2S11	176	42	267	98	583
ScAuMo9S11	162	44	265	100	584
CdAg2Mo9Se11	160	47	280	96	585
MgTl2Mo9S11	189	39	278	99	586
InBiMo9S11	202	37	277	95	587
Cs2CdMo9Se11	211	21	293	87	588
CdPbMo9S11	181	40	274	98	589
ScAgMo9Se11	161	43	276	99	590
AlInMo9Se11	171	42	276	94	591
K2CaMo9Se11	210	21	289	93	592
Rb2CaMo9Se11	212	20	291	89	593
BiAuMo9Se11	202	36	280	93	594
TlGaMo9Se11	191	38	283	94	595
SbAuMo9Se11	191	40	274	92	596
AgSbMo9Se11	185	41	274	90	597
GePbMo9Se11	202	36	279	94	598
K2BaMo9Se11	210	21	290	90	599
Tl2SnMo9S11	194	36	281	98	600
SrZnMo9S11	188	40	246	100	601
AgBiMo9S11	193	38	276	95	602
Cs2SnMo9Se11	212	20	292	86	603
YInMo9Se11	191	36	283	97	604
In2PbMo9S11	189	37	277	96	605

K2SrMo9Se11	211	20	291	88	606
MgCdMo9Se11	162	42	275	97	607
Rb2BaMo9Se11	210	20	290	88	608
Ag2GeMo9Se11	158	47	271	93	609
SrGa2Mo9Se11	205	32	284	90	610
CdSnMo9Se11	186	38	283	92	611
GaAuMo9Se11	179	41	270	91	612
ScAgMo9S11	151	44	265	99	613
Cs2ZnMo9S11	188	42	244	96	614
MgPbMo9S11	182	38	272	97	615
Ag2SnMo9Se11	166	43	274	90	616
CaGa2Mo9Se11	199	34	283	91	617
Cs2CaMo9Se11	212	20	288	87	618
Ag2PbMo9S11	174	40	267	96	619
MgAg2Mo9Se11	158	43	275	96	620
CdGeMo9Se11	166	41	271	93	621
CdAu2Mo9S11	153	44	258	98	622
In2SnMo9S11	181	39	273	93	623
SnPbMo9S11	201	35	271	92	624
AgBiMo9Se11	197	35	280	91	625
BaCu2Mo9Se11	183	40	251	96	626
CaZnMo9Se11	177	40	250	97	627
GaBiMo9Se11	201	32	280	88	628
Cs2MgMo9Se11	209	20	286	86	629
Rb2SrMo9Se11	209	19	287	86	630
Tl2ZnMo9Se11	172	42	245	95	631
Cs2SrMo9Se11	209	20	286	85	632

BiAuMo9S11	194	36	273	89	633
TISbMo9S11	199	34	272	90	634
K2ZnMo9Se11	190	37	252	94	635
ScInMo9S11	155	41	263	97	636
MgAu2Mo9S11	155	43	258	95	637
Tl2GeMo9S11	186	37	273	89	638
MgSnMo9Se11	186	34	277	91	639
MgAg2Mo9S11	142	43	259	96	640
CdAg2Mo9S11	135	44	257	96	641
SrCu2Mo9S11	177	40	243	96	642
Cs2BaMo9Se11	208	19	285	86	643
Ga2PbMo9Se11	187	34	279	88	644
SrZnMo9Se11	185	38	249	94	645
BaZnMo9S11	185	37	246	98	646
TlGaMo9S11	176	39	263	88	647
SnGeMo9Se11	188	36	270	89	648
ScInMo9Se11	170	36	273	95	649
YGaMo9Se11	182	34	273	91	650
CdSnMo9S11	171	40	265	87	651
InSbMo9Se11	195	33	275	86	652
BaCu2Mo9S11	178	39	243	97	653
GaBiMo9S11	197	35	270	86	654
CdIn2Mo9S11	152	41	265	93	655
ZnAu2Mo9Se11	152	46	239	94	656
GePbMo9S11	191	32	267	86	657
AITIMo9S11	179	37	265	87	658
MgIn2Mo9S11	158	40	265	92	659

AlAuMo9S11	161	41	260	87	660
CaZnMo9S11	170	39	240	96	661
Ga2PbMo9S11	176	38	261	86	662
ScGaMo9Se11	164	37	267	92	663
In2GeMo9Se11	160	41	267	84	664
Rb2ZnMo9Se11	191	35	249	89	665
ScGaMo9S11	146	41	251	94	666
SrCu2Mo9Se11	176	38	246	91	667
GaAuMo9S11	162	40	257	87	668
GaSbMo9Se11	184	33	273	84	669
InSbMo9S11	188	34	266	84	670
SnAu2Mo9S11	168	38	258	87	671
In2SnMo9Se11	179	34	274	84	672
GaAgMo9Se11	158	41	263	86	673
SbAuMo9S11	180	36	259	85	674
AlGaMo9Se11	160	38	273	88	675
ZnPbMo9Se11	163	41	239	92	676
MgGeMo9Se11	153	38	268	91	677
CaCu2Mo9Se11	165	39	245	92	678
Ag2SnMo9S11	159	38	258	90	679
CaCu2Mo9S11	161	40	237	94	680
GeAu2Mo9S11	154	41	251	88	681
AgSbMo9S11	171	37	259	84	682
CaTl2Mo9Te11	172	27	252	91	683
MgCdMo9S11	137	41	247	91	684
ZnAg2Mo9Se11	129	45	238	91	685
MgIn2Mo9Se11	164	35	269	88	686

CaGeMo9Te11	171	27	249	92	687
Ga2SnMo9S11	169	38	257	84	688
Cu2PbMo9Se11	155	43	236	88	689
ZnCdMo9Se11	130	46	230	91	690
CdIn2Mo9Se11	158	36	270	89	691
Caln2Mo9Te11	169	26	257	89	692
CaPbMo9Te11	175	21	254	90	693
BaCaMo9Te11	171	25	262	87	694
InGaMo9Se11	167	35	270	84	695
MgSnMo9S11	172	36	258	82	696
GaAgMo9S11	141	41	255	83	697
SrCaMo9Te11	172	25	262	87	698
CaMgMo9Te11	162	29	253	92	699
InGaMo9S11	149	41	251	84	700
Cs2ZnMo9Se11	193	22	249	86	701
ScCuMo9Se11	140	42	232	91	702
SrTl2Mo9Te11	171	26	251	89	703
CaSnMo9Te11	168	25	251	90	704
GaSbMo9S11	174	34	258	81	705
CaGa2Mo9Te11	166	28	254	88	706
BaSrMo9Te11	170	25	262	86	707
SnGeMo9S11	179	32	256	81	708
NaYMo9Te11	166	23	254	91	709
SrIn2Mo9Te11	170	24	256	87	710
YCuMo9S11	146	41	226	93	711
AlAgMo9S11	145	41	248	83	712
AlCuMo9Se11	139	41	236	88	713

BaMgMo9Te11	163	28	252	88	714
NaScMo9Te11	164	23	252	90	715
YCuMo9Se11	149	40	236	91	716
Baln2Mo9Te11	170	26	257	83	717
NaAlMo9Te11	166	21	254	88	718
MgTl2Mo9Te11	169	27	249	86	719
MgZnMo9Se11	138	40	238	90	720
BaSnMo9Te11	168	26	252	85	721
Ga2SnMo9Se11	169	31	270	78	722
CdGeMo9S11	132	41	249	84	723
In2GeMo9S11	151	38	259	82	724
Ag2GeMo9S11	133	40	253	83	725
BaGeMo9Te11	170	25	248	86	726
CaCdMo9Te11	157	28	249	92	727
SrMgMo9Te11	162	28	251	87	728
YGaMo9Te11	164	25	249	88	729
YTIMo9Te11	169	23	245	90	730
BaPbMo9Te11	173	21	253	84	731
SrPbMo9Te11	173	20	251	85	732
CdGa2Mo9S11	137	41	248	82	733
NaBiMo9Te11	171	20	253	87	734
CdCu2Mo9Se11	126	43	230	85	735
SrGeMo9Te11	169	25	246	86	736
AllnMo9S11	150	40	245	83	737
YInMo9Te11	164	23	248	89	738
ScTlMo9Te11	169	23	243	89	739
BaTl2Mo9Te11	170	26	247	85	740

BaGa2Mo9Te11	165	27	253	82	741
CdGa2Mo9Se11	151	37	262	81	742
SrSnMo9Te11	168	23	249	84	743
NaGaMo9Te11	164	21	249	87	744
MgGa2Mo9Se11	150	35	262	83	745
Tl2ZnMo9S11	157	37	233	89	746
ScGaMo9Te11	162	26	245	87	747
CuBiMo9Se11	163	36	234	86	748
ScCuMo9S11	132	40	217	90	749
Tl2GeMo9Te11	171	24	240	85	750
SrGa2Mo9Te11	163	26	252	81	751
Tl2CdMo9Te11	168	25	243	84	752
BaCdMo9Te11	159	28	247	86	753
Na2SnMo9Te11	167	18	254	84	754
KAlMo9Te11	167	21	251	82	755
KScMo9Te11	164	22	248	84	756
YAgMo9Te11	160	23	242	89	757
Tl2SnMo9Te11	170	23	243	83	758
CsAlMo9Te11	169	20	251	81	759
RbAlMo9Te11	168	20	250	82	760
ScInMo9Te11	161	24	242	87	761
ZnAu2Mo9S11	134	40	221	85	762
MgCu2Mo9Se11	131	39	236	86	763
KBiMo9Te11	171	19	248	82	764
MgIn2Mo9Te11	160	26	249	83	765
ZnGeMo9Se11	134	40	225	84	766
CuSbMo9Se11	150	39	227	82	767

CsScMo9Te11	164	21	248	82	768
NaSbMo9Te11	162	19	245	87	769
ZnSnMo9Se11	149	36	237	86	770
ZnPbMo9S11	152	38	225	84	771
KGaMo9Te11	167	20	247	81	772
RbBiMo9Te11	173	17	248	81	773
SrCdMo9Te11	157	26	245	85	774
ZnCu2Mo9Se11	121	41	225	81	775
TlBiMo9Te11	183	15	245	80	776
ZnIn2Mo9S11	136	39	226	83	777
Cu2SnMo9Se11	134	41	225	79	778
MgGa2Mo9Te11	158	27	249	80	779
AlGaMo9S11	140	39	242	80	780
CsBiMo9Te11	172	17	249	79	781
KYMo9Te11	162	20	247	84	782
Cu2GeMo9Se11	125	42	221	78	783
MgPbMo9Te11	167	19	239	85	784
Tl2PbMo9Te11	170	21	240	81	785
ZnAg2Mo9S11	114	40	220	84	786
ZnIn2Mo9Se11	138	37	234	85	787
CsYMo9Te11	163	20	248	81	788
CuBiMo9S11	160	36	228	82	789
AlTIMo9Te11	166	21	239	82	790
RbScMo9Te11	161	20	246	83	791
GePbMo9Te11	183	14	233	82	792
K2PbMo9Te11	175	15	255	62	793
Na2GeMo9Te11	166	19	254	72	794

CaAg2Mo9Te11	162	24	245	79	795
Na2PbMo9Te11	169	17	253	70	796
Na2CdMo9Te11	158	20	248	83	797
CsGaMo9Te11	164	19	247	79	798
RbYMo9Te11	162	19	246	82	799
Na2MgMo9Te11	160	18	249	82	800
Ga2GeMo9Se11	144	34	249	75	801
CaZnMo9Te11	137	31	208	90	802
Cu2PbMo9S11	144	38	224	81	803
ZnCdMo9S11	119	40	216	82	804
K2SnMo9Te11	165	16	250	76	805
Rb2PbMo9Te11	175	10	253	60	806
RbGaMo9Te11	163	19	245	80	807
In2PbMo9Te11	173	15	243	77	808
Cs2PbMo9Te11	175	9	253	55	809
InBiMo9Te11	180	12	239	76	810
MgCdMo9Te11	152	26	234	82	811
MgSnMo9Te11	161	23	235	81	812
ZnSnMo9S11	141	37	218	80	813
TlGaMo9Te11	171	16	236	78	814
MgGa2Mo9S11	135	37	237	76	815
SrAg2Mo9Te11	162	22	243	75	816
ScAgMo9Te11	155	22	226	84	817
GaBiMo9Te11	176	15	234	77	818
GaCuMo9Se11	132	39	222	77	819
AgBiMo9Te11	174	14	235	78	820

BaAg2Mo9Te11	162	24	243	66	822
SnPbMo9Te11	181	11	234	74	823
Cs2SnMo9Te11	167	11	250	70	824
CdCu2Mo9S11	114	39	214	79	825
MgGeMo9Te11	160	23	223	82	826
AllnMo9Te11	163	21	229	78	827
SnGeMo9Te11	174	15	224	78	828
CuSbMo9S11	143	37	214	76	829
KSbMo9Te11	160	18	237	82	830
TISbMo9Te11	171	15	229	78	831
K2GeMo9Te11	164	17	249	61	832
Ga2GeMo9Te11	149	29	228	79	833
Na2CaMo9Te11	162	15	251	67	834
Ga2PbMo9Te11	166	17	234	77	835
CsSbMo9Te11	161	17	238	80	836
InSbMo9Te11	169	15	230	78	837
Rb2SnMo9Te11	164	11	246	74	838
CdIn2Mo9Te11	153	21	237	79	839
MgGeMo9S11	128	36	236	76	840
BaZnMo9Te11	137	29	198	83	841
CdPbMo9Te11	166	16	230	78	842
BaNa2Mo9Te11	161	16	250	64	843
MgAg2Mo9Te11	146	24	232	79	844
RbSbMo9Te11	160	16	236	81	845
Na2SrMo9Te11	161	15	250	67	846
Cs2GeMo9Te11	166	12	249	56	847
AlGaMo9Te11	159	21	226	76	848

Cu2SnMo9S11	131	37	210	75	849
GaShMo9Te11	166	16	210	76	850
Sr7nMo9Te11	136	28	196	82	851
ZnGa2Mo9S11	130	37	207	75	852
YCuMo9Te11	137	25	193	83	853
Tl27nMo9Te11	143	28	180	80	854
AlAgMo9Te11	162	19	223	77	855
In2SnMo9Te11	161	16	234	77	856
K2CdMo9Te11	157	17	241	76	857
ZnGa2Mo9Se11	132	34	221	76	858
In2GeMo9Te11	160	17	234	78	859
Rb2GeMo9Te11	162	14	246	60	860
AlCuMo9S11	118	37	209	75	861
Na2ZnMo9Te11	141	22	215	82	862
MgZnMo9S11	121	36	212	77	863
MgCu2Mo9S11	115	37	211	75	864
Cs2CaMo9Te11	163	8	246	53	865
Cs2BaMo9Te11	162	8	246	53	866
Ag2PbMo9Te11	163	13	230	73	867
Cs2SrMo9Te11	162	7	245	53	868
GaCuMo9S11	119	36	207	72	869
K2MgMo9Te11	156	15	242	74	870
K2BaMo9Te11	161	9	246	55	871
ScCuMo9Te11	135	24	181	80	872
MgZnMo9Te11	131	28	184	78	873
ZnCu2Mo9S11	107	36	198	74	874
ZnGeMo9S11	118	35	203	74	875

AgSbMo9Te11	161	14	218	78	876
Rb2MgMo9Te11	158	12	242	73	877
K2CaMo9Te11	159	13	246	57	878
K2SrMo9Te11	160	10	246	57	879
Cs2MgMo9Te11	160	10	242	68	880
Cs2CdMo9Te11	160	12	240	68	881
CdGeMo9Te11	152	18	215	78	882
CaCu2Mo9Te11	140	26	196	73	883
InGaMo9Te11	156	16	230	75	884
CdGa2Mo9Te11	145	20	228	72	885
Rb2CdMo9Te11	157	12	237	73	886
Ga2SnMo9Te11	149	17	226	75	887
CdSnMo9Te11	153	17	218	76	888
Rb2CaMo9Te11	159	6	244	53	889
BaCu2Mo9Te11	141	25	200	63	890
ZnGa2Mo9Te11	125	32	178	72	891
SrCu2Mo9Te11	139	24	196	71	892
Cu2GeMo9S11	106	35	198	70	893
Rb2BaMo9Te11	159	6	243	53	894
Rb2SrMo9Te11	158	5	241	52	895
Ag2SnMo9Te11	150	15	224	74	896
GaAgMo9Te11	150	16	224	73	897
MgCu2Mo9Te11	127	25	182	72	898
K2ZnMo9Te11	139	19	206	74	899
CdAg2Mo9Te11	137	18	216	74	900
ZnIn2Mo9Te11	122	23	174	72	901
ZnPbMo9Te11	138	18	169	75	902

Ag2GeMo9Te11	147	14	212	71	903
CuBiMo9Te11	147	15	170	73	904
Rb2ZnMo9Te11	139	17	203	71	905
AlCuMo9Te11	136	20	160	70	906
Cu2PbMo9Te11	139	16	163	67	907
Cs2ZnMo9Te11	141	14	204	67	908
ZnGeMo9Te11	123	19	150	72	909
ZnCdMo9Te11	110	21	138	66	910
ZnCu2Mo9Te11	107	21	140	62	911
ZnSnMo9Te11	126	18	157	69	912
ZnAg2Mo9Te11	111	19	151	67	913
GaCuMo9Te11	127	16	159	66	914
CuSbMo9Te11	133	14	153	71	915
CdCu2Mo9Te11	108	18	143	63	916
Cu2GeMo9Te11	119	15	150	63	917
Cu2SnMo9Te11	119	14	151	62	918

Titre : Découverte de nouveaux clusters thermoélectriques assistée par machine learning

Mots clés : DFT, thermoélectricité, clusters, coefficient de Seebeck, machine learning

Résumé : L'objectif de cette thèse est la conception de nouvelles phases à clusters condensés de molybdène, dérivées des phases Chevrel. possédant propriétés de des thermoélectriques améliorées. L'approche employée combine le calcul théorique (DFT) et le machine learning, une méthode d'intelligence artificielle qui sera utilisée pour prédire les propriétés des nouveaux composés, à plus grande échelle. L'objet du premier chapitre est de faire le lien entre les structures cristalline et phases électronique de ces à clusters condensés, lesquelles possèdent un VEC (concentration d'électrons de valence) « idéal » pour leguel elles deviennent semi-conductrices. Le second chapitre recense les propriétés thermoélectriques rapportées de ces phases.

Ces propriétés sont prometteuses en vue d'applications à haute température, notamment du fait de la très faible conductivité thermique de ces phases. Enfin, une méthode de calcul du coefficient de Seebeck par DFT y est détaillée. Le troisième chapitre commence par la création d'une base de données, composée du coefficient de Seebeck calculé de 92 formules hypothétiques semi-conductrices. Enfin, un modèle de machine learning, basé sur un algorithme de régression utilisant des arbres décisionnels, est entraîné pour prédire le coefficient de Seebeck de plus de 900 formules hypothétiques. Celles dont on pense qu'elles présentent des propriétés thermoélectriques améliorées sont proposées comme candidates à la synthèse.

Title : Machine-learning-assisted discovery of new thermoelectric clusters

Keywords : DFT, thermoelectricity, clusters, Seebeck coefficient, machine learning

Abstract : The aim of this PhD is the conception of new condensed molybdenum cluster phases, which derive of Chevrel phases, with enhanced thermoelectric properties. The chosen approach combines theoretical calculations (at a DFT level) and machine learning, an artificial intelligence method that will be used to predict the properties of the new compounds, on a larger scale. The objective of the first chapter is to make the link between the crystalline and electronic structures of these condensed clusters phases, which possess an « ideal » VEC (Valence Electrons which Concentration) for thev display semiconducting properties. The second chapter lists the reported thermoelectric properties of these phases.

Those properties are promising for high temperature thermoelectric applications, especially because of the very low thermal conductivity of those phases. Finally, a DFT calculation process of the Seebeck coefficient is detailed in chapter 2. The third chapter begins with the creation of a database, composed of the computed Seebeck coefficient of 92 hypothetical, semiconducting formulas. Finally, a machine learning model, based on regression algorithms using decisional trees, is trained to predict the Seebeck coefficient of more than 900 hypothetical formulas. Some of those formulas. that we think may display enhanced thermoelectric properties, are proposed as candidates for synthesis.