
HAL Id: tel-04062587
https://theses.hal.science/tel-04062587

Submitted on 7 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Learning for 3D Shape Modelling
Roman Klokov

To cite this version:
Roman Klokov. Deep Learning for 3D Shape Modelling. Modeling and Simulation. Université Greno-
ble Alpes [2020-..], 2021. English. �NNT : 2021GRALM060�. �tel-04062587�

https://theses.hal.science/tel-04062587
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
Spécialité : Mathématiques et Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Roman KLOKOV

Thèse dirigée par Edmond BOYER
et codirigée par Jakob VERBEEK, Université Grenoble Alpes

préparée au sein du Laboratoire Laboratoire Jean Kuntzmann
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Deep Learning pour la Modélisation de
Formes 3D

Deep Learning for 3D Shape Modelling

Thèse soutenue publiquement le 3 décembre 2021,
devant le jury composé de :

Monsieur EDMOND BOYER
DIRECTEUR DE RECHERCHE, INRIA CENTRE GRENOBLE-RHONE-
ALPES, Directeur de thèse
Monsieur JAKOB VERBEEK
INGENIEUR HDR, Facebook, Co-directeur de thèse
Monsieur VINCENT LEPETIT
PROFESSEUR, ECOLE NATIONALE DES PONTS ET CHAUSSEES,
Rapporteur
Monsieur MAKS OVSJANIKOV
PROFESSEUR, ECOLE POLYTECHNIQUE, Rapporteur
Madame ANGELA DAI
PROFESSEUR ASSISTANT, Technische Universität München,
Examinatrice
Monsieur RADU HORAUD
DIRECTEUR DE RECHERCHE, INRIA CENTRE GRENOBLE-RHONE-
ALPES, Examinateur

Abstract

Application of deep learning to geometric 3D data poses various challenges for researchers.
The complex nature of geometric 3D data allows to represent it in different forms: occupancy
grids, point clouds, meshes, implicit functions, etc. Each of those representations has already
spawned streams of deep neural network models, capable of processing and predicting according
data samples for further use in various data recognition, generation, and modification tasks.
Modern deep learning models force researchers to make various design choices, associated
with their architectures, learning algorithms and other specific aspects of chosen applications.
Often, these choices are made with the help of various heuristics and best practice methods
discovered through numerous costly experimental evaluations. Probabilistic modeling provides
an alternative to these methods that allows to formalize machine learning tasks in a meaningful
manner and develop probability-based training objectives. This thesis explores combinations of
deep learning based methods and probabilistic modeling in application to geometric 3D data.
The first contribution explores how probabilistic modeling could be applied in the context of a
single-view 3D shape inference task. We propose a family of probabilistic models, Probabilistic
Reconstruction Networks (PRNs), which treats the task as image conditioned generation
and introduces a global latent variable, encoding shape geometry information. We explore
different image conditioning options, and two different training objectives based on Monte
Carlo and variational approximations of the model likelihood. Parameters of every distribution
are predicted by multi-layered convolutional and fully-connected neural networks from the input
images. All the options in the family of models are evaluated in the single-view 3D occupancy
grid inference task on synthetic shapes and according image renderings from randomized
viewpoints. We show that conditioning the latent variable prior on the input images is sufficient
to achieve competitive and state-of-the-art single-view 3D shape inference performance for
point cloud based and voxel based metrics, respectively. We additionally demonstrate that
probabilistic objective based on variational approximation of the likelihood allows the model to
obtain better results compared to Monte Carlo based approximation.
The second contribution proposes a probabilistic model for 3D point cloud generation. It treats
point clouds as distributions over exchangeable variables and use de Finetti’s representation
theorem to define a global latent variable model with conditionally independent distributions
for coordinates of each point. To model these point distributions a novel type of conditional
normalizing flows is proposed, based on discrete coupling of point coordinate dimensions.
These flows update the coordinates of each point sample multiple times by dividing them in
two groups and inferring the updates for one group of coordinates from another group and,
additionally, global latent variable sample. We also extend our Discrete Point Flow Networks
(DPFNs) from generation to single-view inference task by conditioning the global latent
variable prior in a manner similar to PRNs from the first contribution. Resulting generative
performance demonstrates that DPFNs produce sets of samples of similar quality and diversity
compared to state of the art based on continuous normalizing flows, but are approximately 30

i

times faster both in training and sampling. Results in autoencoding and single-view inference
tasks show competitive and state-of-the-art performance for Chamfer distance, F-score and
earth mover’s distance similarity metrics for point clouds.

ii

Résumé

L’application des stratégies d’apprentissage profond, aux données de formes 3D pose divers défis
aux chercheurs. La nature complexe de ces données 3D autorise différentes représentations,
par exemples les grilles d’occupation, les nuages de points, les maillages ou les fonctions
implicites. Chacune de ces représentations a vu apparaitre des familles de réseaux de neurones
profonds capables de traiter et prédire en fonction d’échantillons, cela pour diverses tâches de
reconnaissance, de génération et de modification de données.
Les modèles d’apprentissage profond modernes obligent les chercheurs à effectuer divers choix
de conception associés à leurs architectures, aux algorithmes d’apprentissage et à d’autres
aspects plus spécifiques des applications choisies. Ces choix sont souvent faits sur la base
d’heuristiques, ou de manière empirique au travers de nombreuses évaluations expérimentales
coûteuses. La modélisation probabiliste offre une alternative à cela et permet de formaliser
les tâches d’apprentissage automatique de manière rigoureuse et de développer des objectifs
d’entrainement qui reposent sur les probabilités. Cette thèse explore la combinaison de
l’apprentissage profond avec la modélisation probabiliste dans le cadre applicatif des données
3D de formes géométriques.
La première contribution porte sur l’inférence d’une forme 3D à partir d’une seule vue et
explore comment la modélisation probabiliste pourrait être appliquée dans ce contexte. Nous
proposons pour cela un ensemble de modèles probabilistes, les réseaux de reconstruction
probabilistes (PRN), qui traitent la tâche comme une génération conditionnée par l’image et
introduisent une variable latente globale qui encode les informations de géométrie des formes.
Nous expérimentons différents conditionnements par l’image et deux objectifs d’entraînement
différents basés pour l’un sur la méthode de Monte Carlo et pour l’autre sur l’approximation
variationnel de la vraisemblance du modèle. Les modèles PRN sont évalués avec l’inférence de
grilles d’occupation 3D à partir d’une seule vue, sur des formes synthétiques observées à partir
de points de vue aléatoires. Nous montrons que le conditionnement, par l’image observée,
de la distribution a priori de la variable latente est suffisant pour obtenir des performances
compétitives pour les métriques basées sur les nuages de points et état de l’art pour les
métriques basées sur les voxels. Nous démontrons en outre que l’objectif probabiliste basé sur
l’approximation variationnelle de la vraisemblance permet au modèle d’obtenir de meilleurs
résultats que l’approximation basée sur Monte Carlo.
La deuxième contribution est un modèle probabiliste pour la génération de nuages de points
3D. Ces nuages de points sont vus comme des distributions sur des variables échangeables
et utilise le théorème de Finetti pour définir un modèle global de variables latentes avec des
distributions conditionnellement indépendantes pour les coordonnées de chaque point. Pour
modéliser ces distributions ponctuelles, un nouveau type de flux de normalisation conditionnelle
est proposé, basé sur un couplage discret des dimensions des coordonnées ponctuelles. Nous
étendons également nos réseaux de flux ponctuels discrets (DPFN) de la génération à la tâche
d’inférence à vue unique en conditionnant la variable latente globale a priori d’une manière

iii

similaire aux PRN de la première contribution. Les performances génératives résultantes
démontrent que les DPFN produisent des échantillons de qualité et de diversité similaires à
l’état de l’art basé sur des flux de normalisation continus, mais sont environ 30 fois plus rapides
que ces derniers, à la fois dans la formation et l’échantillonnage. Les résultats des tâches
d’encodage automatique et d’inférence à vue unique montrent des performances compétitives
et état de l’art avec les métriques de distance de chanfrein, de F-score et de distance de
Wasserstein pour les nuages de points.

iv

Acknowledgements

First of all, I want to thank my wife, who has always been my closest friend and best support
during my PhD studies. This work would not have been possible without your patience and
attention in all our fruitful work-related discussions and your care and cheerfulness in our
everyday life.
Secondly, I want to thank my collaborators for all the discussions, provided expertise and
advice you gave me, for your dedication during submission deadline periods. It was a great
pleasure working with you.
Finally, I would like to thank my colleagues in the office and especially the room mates for all
the relaxing breaks and some interesting and helpful talks.

v

About the Author

Roman Klokov completed a BSc in Applied Mathematics and Physics at the Moscow Institute
of Physics and Technology and a MSc in Data Science at the Skolkovo Institute of Science
and Technology before joining UGA and Inria in September 2017. His main research interests
include deep learning and probabilistic modeling primarily in application to 3D data. In Skoltech
he worked with professor V. Lempitsky on a point cloud recognition model and presented the
results in the International Conference on Computer Vision in 2017 in a spotlight presentation.
During his PhD studies Roman presented his research in probabilistic models for single-view
inference and generation of 3D shapes in the British Machine Vision Conference in 2019
and European Conference on Computer Vision in 2020. The work presented orally in BMVC
received a “Best Science Paper Honorable Mention“ award.

vi

List of Collaborators and Publications

The publications which constitute this thesis were produced in collaboration with Jakob Verbeek
and Edmond Boyer.
Klokov, R., Verbeek, J., and Boyer, E. (2019). Probabilistic reconstruction networks for 3D
shape inference from a single image. In BMVC

Klokov, R., Boyer, E., and Verbeek, J. (2020). Discrete point flow networks for efficient point
cloud generation. In ECCV

vii

Table of Contents

Abstract i

Résumé iii

Acknowledgements v

About the Author vi

List of Collaborators and Publications vii

Table of Contents ix

List of Figures x

List of Tables x

1 Introduction 1
1.1 Context and Motivation . 2
1.2 Contributions . 12
1.3 Thesis Structure . 13

2 Deep Learning for 3D Shape Processing 15
2.1 Recognition Models . 15
2.2 Generative Models . 19
2.3 Single-View Reconstruction Models . 23

3 Probabilistic Reconstruction Networks for 3D Shape Inference 27
3.1 Introduction . 27
3.2 Probabilistic Framework for 3D Shape Reconstruction 29
3.3 Related Work . 32
3.4 Experiments . 34
3.5 Conclusion . 39

4 Discrete Point Flow Networks for Efficient Point Cloud Generation 41
4.1 Introduction . 41
4.2 Related work . 43
4.3 Discrete Point Flow Networks . 45
4.4 Experiments . 47
4.5 Conclusion . 58

ix

5 Conclusion 61
5.1 Future Work . 62

Bibliography 65

List of Figures

1.1 Examples of machine learning tasks with their inputs and outputs. 3
1.2 Examples of 3D shape geometries represented by various data types. 6
1.3 Samples from common and recent 3D datasets. 10

2.1 Architecture of the 3D ShapeNets CNN for shape recognition. 16
2.2 Architectures of PointNet for classification and semantic segmentation tasks. . 17
2.3 Single level of the Octree Generation Network. 20
2.4 Schematic overview of the PointFlow generative model for point clouds. 21
2.5 Schematic overview of MarrNet. 24
2.6 Neural network architecture of Pixel2Mesh. 25
2.7 Overview of the BSP-Net. 25

3.1 Probabilistic Reconstruction Networks for 3D shape inference from a single image. 28
3.2 Histogram of IoU values on the ShapeNetAll test set. 36
3.3 Qualitative reconstruction results for three variants of PRNs. 38
3.4 Randomly sampled reconstructions with three variants of PRNs. 40

4.1 Sampled point clouds from generative application of DPF-Nets. 42
4.2 Architecture of our conditional affine coupling layer. 46
4.3 Overview of DPF-Net. 48
4.4 Random samples generated by PointFlow and DPF-Network. 52
4.5 Generated samples from latent space interpolations with DPF-Nets. 53
4.6 Evolution of points in reconstructed samples across different layers of the flow in

DPF-Nets. 54
4.7 Qualitative comparison of the autoencoding results with sparse inputs. 56
4.8 Qualitative comparison of the autoencoding results with dense inputs. 57
4.9 Qualitative comparison for single-view reconstruction task. 59

List of Tables

3.1 Overview of the related work. 34

x

3.2 Evaluation results for variations of PRN. 35
3.3 Comparison of PRN to the state-of-the-art. 37

4.1 Efficiency comparison for DPF-Nets and PointFlow generative models. 50
4.2 Generative modeling results. 51
4.3 Autoencoding results. 55
4.4 Single-view reconstruction results. 58

xi

CHAPTER 1
Introduction

As the human world continues to rapidly move towards storing and using various kinds of
information in digital formats, the demand for proper and useful instruments allowing to view,
edit, and analyse digital data will only continue to increase. This is particularly relevant for
visual information. The complex nature of the physical world captured by human vision was
previously expressed by artists in forms of paintings and sculpture, now is almost perfectly
captured and digitized by the means of photography and geometry reconstruction techniques.

Today we take for granted the tools which allow us to view and edit pictures, since almost
every mobile phone has cameras and powerful tools for image editing. The same is true
for geometry of 3D objects for computers. Computer software is used to create, view, and
modify 3D objects for various purposes, e.g . 3D design of mechanical objects and their parts in
engineering, reconstruction of bones and organs from CT scans and other types of non-invasive
body reconstructions for medical purposes, 3D design of living space by decorators, 3D design
of models and objects used in computer graphics in entertainment industry.

Together with the development of image and 3D capturing technologies, these digital kinds of
human activity led to appearance of large scale databases and collections of various types of
visual information. The bigger these databases grow and the more it becomes infeasible for
people to perform analytical tasks on that data manually, the more obvious rises the need for
automatic tools capable of solving these tasks. Modern information search engines, mobile
cameras and photo enhancement software, rendering engines used in computer graphics, and
lots of other technologies all benefit from recently developed powerful data-driven analytical
tools based on the concept of deep neural networks.

This thesis is an addition to the development of these tools. It proposes two distinct
contributions to the field of 3D shape modeling using deep learning and probabilistic modeling.
The remainder of the introductory chapter is organized as follows: in Section 1.1 the general
scientific context of the work is presented and used to properly motivate and place the proposed
contributions within this context; Section 1.2 formulates the tasks considered in the main
chapters and briefly underlines the contributions; Section 1.3 describes the overall structure of
the rest of the thesis.

1

1. Introduction

1.1 Context and Motivation
In order to properly formulate and motivate the contributions of this work it is essential to
introduce several concepts, outlining the overall scientific context of considered tasks. To
achieve that, this section briefly describes the concept of deep learning and reviews its different
aspects influencing final design choices for deep neural network models (DNNs), including the
choice of the final application and the variability of considered tasks, the type of the input
data and desired output. Moreover, it describes the difference between visual 3D data and 2D
images to properly motivate consideration of tasks defined on 3D data.

1.1.1 Deep Learning and its Applications
Due to high variability in possible designs and choices of applications, it is hard to give a
comprehensive formal definition for deep neural networks and deep learning. Generally DNN
is a special type of machine learning algorithm, which considers some data modality as an
input, has a set of adjustable parameters (weights) and mathematical operations defined for
these parameters and input data, and produces some form of an output. Pairs of adjustable
weights and corresponding mathematical operations are usually called as layers of the network.
Architectures of modern deep neural networks typically contain from dozens to thousands of
layers, applied to inputs in a sequential manner before producing the final result. Layered
pipeline of deep neural networks is not arbitrary and was inspired by the studies of brain
structures. The main idea behind it is to allow the DNN model to progressively find its own
understanding of the input data. Thus, after training, each layer of the network sequentially
produces a new representation of the input data, which hopefully will allow to solve the final
task more effectively.

The final application purpose of the model usually has the most influence on the architectures
of DNNs, it defines the data modality of the required input and output and restricts the pool
of suitable mathematical objectives which formalize the task. The adjustment of the model
weights is called training and is achieved by stochastic optimization of these objectives called
loss functions. During each training step some input data samples are fed to the network to
compute the outputs and compare them with the real samples from the output data in the loss
function. Then, a gradient of the loss function is computed with respect to trainable weights,
which is used to update the weights to minimize the loss function. For further comprehensive
introductory reading on the subject of deep learning, please refer to (Goodfellow et al., 2016).

As it was stated above, the final task for which a DNN is developed greatly influence the
choices of different components of the model. Researchers have already considered vast variety
of applications for DNNs and every year new challenging tasks are proposed for further study.
In order to properly relate this work to concurrent deep learning research it is important to
differentiate between separate categories of machine learning tasks: recognition, generation,
and modification/inference tasks.

Recognition tasks are focused on allowing machines to semantically distinguish and relate
considered inputs or their parts. Classification of the input 3D shapes into separate categories
(e.g . airplanes, cars, chairs), detection in images returning tight bounds of the desired objects
(e.g . face detection in digital cameras), and search of semantically relevant data with respect
to a query in search engines, are all examples of the recognition tasks. The main purpose
of developing solutions to these tasks is to allow automation of data understanding. As
mentioned, it is essential for modern public and private organizations to have large scale data

2

1.1. Context and Motivation

Super
resolution

Single view
reconstruction

Generation

Generative task Inference tasks

Classification

Segmentation

Recognition tasks

Figure 1.1: Examples of machine learning tasks with their inputs and outputs. Left column
show 3D shape classification and semantic segmentation of images as examples of recognition
tasks. Central column considers point cloud generation from input noise as an examples of
generative tasks. For modification and inference tasks we show image super resolution and 3D
point cloud reconstruction from a single image in the right column.

processing automation tools in an era of digital data if they want to efficiently analyze it and
avoid tedious and often infeasible manual labour.

Generative tasks do not just aim at extracting features, relevant for semantic understanding
of the data, they pose a more challenging problem of realistic imitation or, in other words,
modeling of data. Rather than learning some categorization or relevance degrees, they learn
to produce synthetic data samples. In a broader sense, it is a generalization of the recognition
tasks, since in that case, models do not just extract information to make predictions about
distinct data features, but rather try to completely capture all the data features to be able to
reproduce them. This idea is supported by a nowadays standard experiment in the literature
(e.g . for 3D shape classification refer to (Girdhar et al., 2016)), which shows that the features
learned by generative models directly from data samples without any semantic annotations
could be successfully used to solve recognition tasks and be on par with the features from
recognition models which used semantic annotations during training. This, in particular, is a
strong argument in favour of further research and improvement of generative models, since
data annotation is generally expensive and is not always a feasible option on a large scale.

Content generation is still one of the most challenging tasks scientifically but is not the only
possible and presumably even not the most promising application for generative models at the
moment. Besides providing discriminative features suitable for recognition tasks, generative
data modeling is closely tied to data modification or data inference tasks. These tasks are very
close and generally consider two different modalities of the same data as inputs and outputs
of the model. The difference between them lies in, what can be called, the distance between
input and output modalities. For example, noisy and clean images in the image denoising

3

1. Introduction

task are both two different domains of the same image modality and are generally close, while
an input image and output 3D shape in a single image 3D shape reconstruction task both
represent the same object, but come from different and possibly not very well connected data
modalities.

This set of tasks is closely linked to generation, because they share the type of the desired
model output: plausible data samples. This results in the use of the same network components
for prediction. Moreover, these tasks can be viewed as conditional generation of target data
samples given samples from the input data, which brings them even closer and allow for a
full transfer of techniques from one category of tasks to another. As the result, both data
modification tasks (image denoising, colorization, super-resolution, etc .) and data inference
tasks (image and 3D shape completion, 3D shape reconstruction from a single image, text
to image generation, etc .) can benefit greatly from advances in generative modeling. Other
works on interpretability of modern generative models (Bau et al., 2020) propose a framework,
that allow to realistically modify parts of images using semantic labels, e.g . change the shape
of the windows on the house from a square to a circle. These advances in data modification
tasks which are achieved by the use of generative models and their components are leading
to their future use in the automation of the various content design processes and tools. We
demonstrate several examples of tasks considered by modern DNNs in Figure 1.1.

1.1.2 Data Influence on Design Choices in DNNs
Input and output data modalities have a direct effect on the architectures of DNNs. In fact,
most of essential types of layers present in modern architectures were developed specifically
for particular data types. 2D/3D convolutional layers for images/voxelized volumes, graph
convolutions for graph data, shared fully-connected layers for sets of points, etc. all rely
on distinctive intrinsic features associated with their target input data types. Convolutions
for 2D/3D inputs rely on regular grid structures of images and voxel occupancy grids, as
well as on the presence of the local correlations (patters) in such data. Graph data is not
regular, so a non-trivial adaptation of regular convolutions that uses graph spectral analysis
was developed. Video data is an instance of ordered sets of images data type. The sequential
nature of such data inclines to the appearance of the temporal contextual modules such as
long short-term memory (LSTM) modules (Ng et al., 2015), which are capable to progressively
update extracted features given next frames. All these examples demonstrate that the type
of the input data and its associated features restricts some mathematical operations and
promotes others.

This particular influence of the input choice is further amplified by the existence of different
representations of the same data. A perfect case to show it is the 3D shape classification task.
In that task models are trained to predict semantic labels for any input 3D shape. The nuance
is that, in fact, 3D shapes can be numerically represented in different ways with the help of
various data types: voxel occupancy grids, point clouds, meshes or graphs, multi-view image
sets, etc . While the task stays the same for all these options, the architectures of the DNNs
suitable for each representation are drastically different, and it is not clear beforehand if some
particular combination of input representation and a DNN designed for it will be superior.

Finally, the application purpose usually dictates particular type of output from a DNN. The
same task can be solved differently, so the output data format depends on the mathematical
formulation of the task and the chosen loss function. In generative and inference tasks the
choice of the output data type is even less definite. Since in that case plausible data samples

4

1.1. Context and Motivation

are the desired output of a model, similar architectural variations occur compared to options
allowed by differences in the possible model inputs. Most data types require careful design of
appropriate DNN components capable of outputting them. Unlike recognition models that are
designed to output low-dimensional (compared to inputs) vectors of features or probabilities,
generative models need to output high-dimensional data samples that preferably preserve
sharp details. The variability of the output representations, combined with the desire to
preserve sharp features in generated samples, resulted in the appearance of rich families of
DNN architectures corresponding to each data type.

1.1.3 3D Data
The initial success of convolutional neural networks applied to large scale image datasets
(LeCun et al., 1998; Krizhevsky et al., 2012) ignited a live interest in application of deep learning
methods to other data domains, including 3D data. 3D data is a complex data type which, in
fact, combines several modalities: geometry, appearance, and shading. Geometry captures
the spatial configuration of surfaces of shapes or scenes and can be represented in different
formats, e.g . points, sets of polygons, implicit functions. Appearance provides corresponding
colors at every point of surfaces by the means of textures represented as images, and texture
coordinates which define for every geometric primitive where the related color information is
situated in the corresponding textures. Shading information is the intensity of the color at
a given surface point associated with the geometry of shapes (normal to the surface of the
object at a given point), their physical properties (for example reflectance), and light sources
configuration present in the scene. The combination of geometry, appearance and shading
data modalities contains sufficient information to render images of 3D objects and scenes from
arbitrary viewpoints. In that sense, visual 3D data is a generalization of commonly used 2D
image data, which is always partial because of the often present uncertainties, associated with
object cropping, self-occlusions, and shading issues (overly dark or bright scenes). Therefore,
in order to reach comprehensive autonomous machine understanding of visual information it is
required to consider geometry and illumination present in scenes.

Machine understanding of the geometric component of 3D data is a unique task which plays a
crucial part in a variety of applications. Automatized understanding of the spatial configurations
and dimensions of objects and scenes is essential for effective simultaneous localization and
mapping (SLAM) and navigation solutions used in robotics and self-driving cars. Generation
of geometry samples could potentially improve 3D content creation tools used by designers
and engineers. The advances in inference tasks could bring direct improvement to 3D shape
reconstruction, completion and other related applications.

However, application of DNN methods to the geometric part of 3D data, especially in
generative/inference tasks, poses numerous challenges among which the most striking are:

• the choice of the representation for 3D geometry, and the influence of this choice on
architectures of DNNs;

• the choice of suitable metrics and evaluations protocols;

• the choice of mathematical formulation of considered tasks providing a final loss function;

• problems with existing synthetic data and lack of real world datasets.

5

1. Introduction

Multi-view images Voxel occupancy grids Point clouds Meshes

Figure 1.2: Examples of 3D shape geometries represented by various data types. From left to
right: sets of images taken from different viewpoints; 3D regular occupancy grids indicating
the interior of a shape; set of points randomly sampled from the surface of a shape; collection
of polygons, approximating the surface of a shape in a piece-wise manner.

3D Shape Representations

Geometry of 3D shapes can be represented in vastly different ways. Classical reconstruction
approaches and some recognition DNNs use sets of images or renderings as an input rep-
resentation of 3D shapes. Most synthetic datasets of 3D geometries are represented with
meshes: collections of polygons (often triangles) sharing vertices and edges that approximate
shape surface with planes in a piece-wise manner. Datasets, coming from distance measuring
equipment, e.g . LiDAR, naturally use point cloud representation. It assumes, that every
point in a cloud is situated on surfaces of objects in the scene, and assigns coordinates to
it. Contrary to the previously listed options, the voxel grid representation considers regular
discrete partitions of volumes containing shapes and uses binary occupancy for every cell of
these grids to define if it is inside or outside of the object. Implicit function representation is a
generalization of voxel grid representation for continuous locations. It considers continuous
coordinate values as inputs and returns either an indicator value showing if this point is outside
or inside the object, or the signed shortest distance to the object surface. Zero level set of this
function represents the surface of an object. See Figure 1.2 for visualizations of 3D shapes
using different representations.

All these options use different underlying data types. Images and voxel grids are regular
structures defined over the whole volume and its 2D projections, point clouds are unordered
sets, meshes are graph data, implicit function is a parametrization of a surface with a function.
In the absence of universal approaches capable of working with any option, and with the
desire to improve existing solutions, researchers spawned separate streams of works devoted to
designing appropriate DNNs capable of extracting features from and outputting each of those
representation. These related works will be reviewed in detail in the next chapter.

Evaluation of 3D Shape DNNs

Evaluation for recognition models working with 3D data is standard and similar to evaluation
methods used for 2D image data models, since the choice of input representation does not
usually restrict the use of final recognition metrics. However, the case is entirely different for
3D geometry inference and generative tasks, where the goal is to evaluate similarity between
ground truth and generated or reconstructed samples. In case of inference or reconstruction,
where ground truth is available during evaluation, problems mostly stem from differences in

6

1.1. Context and Motivation

representations. Since representations use different data types, they have to rely of differently
defined similarity measures.
For voxel grids similarity is measured with intersection-over-union metric, proposed for this
context in the work of (Choy et al., 2016):

IoU =
∑
c S

p
c ∧ Stc∑

c S
p
c ∨ Stc

, (1.1)

where Sp and St are predicted and ground truth binary occupancy grids, c is a voxel grid cell
index, ∧ is a logical and, ∨ is a logical or operator. It considers a ratio of the number of
occupied cells in the intersection of the predicted and ground truth grids to the number of
occupied cells in the union of these grids. While this metric is natural and convenient for the
voxel grid representation it is highly sensitive to the resolution of the grid.
Results obtained with other representations, however, are mostly evaluated using point clouds
sampled from them. Point clouds are sampled uniformly from meshes, while implicit functions
firstly are converted to meshes with the help of dense occupancy probing in regular volumetric
grids and application of the marching cubes algorithm (Lewiner et al., 2003). It is also possible
to obtain point clouds from volumetric occupancy predictions by the application of the same
marching cubes algorithm. Several similarity metrics were proposed to evaluate resulting point
clouds sampled or reconstructed from DNN models, including Chamfer’s distance and earth
mover’s distance first used in the pioneering 3D shape reconstruction from a single image
paper (Fan et al., 2017), as well as an F-score, proposed for reconstruction by (Knapitsch
et al., 2017).
Chamfer’s distance is defined as follows:

CD =
∑
x∈Sp

min
y∈St
‖x− y‖2

2 +
∑
y∈St

min
x∈Sp
‖x− y‖2

2, (1.2)

where x and y are points in predicted and ground truth point clouds Sp and St. For each point
in one set it finds the closest point in another set and sums obtained squared distances, the
same is done symmetrically for points in the opposite set. Some works e.g . (Sun et al., 2018)
studied how the human perception of output point clouds correlates with different evaluation
metrics for point clouds and advocated for the use of Chamfer’s distance since it showed
best results. Others (Tatarchenko et al., 2019) demonstrated that the metric is sensitive to
outliers. From the definition it is clear that a) several points from one set can be matched to
a single point from another set, b) the metric do not take into account varying local densities
in both sets. As the result, CD is not sensitive to sampling irregularities, as demonstrated in
experiments performed by (Wang et al., 2020). Despite these problems, it remains one of the
most used evaluation metrics for DNN models working with 3D geometry data.
The earth mover’s distance is defined for equally sized point clouds as:

EMD = min
φ:Sp→St

∑
x∈Sp
‖x− φ(x)‖2, (1.3)

where φ(·) is a bijection. In principle, EMD should assign pairs of points from different sets
in an optimal way by solving optimization problem. In practice, however, exact solutions are
computationally prohibitive and, approximations are used instead. Unlike CD, EMD establishes
unique per point correspondences between points in predicted and ground truth sets, which
means it is sensitive to sampling irregularities and differences between the considered sets,

7

1. Introduction

which was studied by (Wang et al., 2020). Introduced approximations, however, inject noise in
the metric values, since they do not necessarily produce the same bijections in different runs.

The F-score is defined in a classical way as a harmonic mean of precision and recall:

F (τ) = 2P (τ)R(τ)
P (τ) +R(τ) , (1.4)

where precision and recall are calculated as functions of threshold τ :

P (τ) = 100
|Sp|

∑
x∈Sp

[
min
y∈St
‖x− y‖ < τ

]
, (1.5)

R(τ) = 100
|St|

∑
y∈St

[
min
x∈Sp
‖x− y‖ < τ

]
, (1.6)

where |·| denotes the cardinality of point sets, and [·] is the Iverson bracket. Thus, precision
and recall counts numbers of points in one set that lie within threshold distance from points
in other set. By construction, this metric is sensitive to both quality of reconstructed details
and completeness of the reconstruction, however it requires a proper choice of the threshold
value since some values can be over permissive or restrictive.

Since every representation can be used to obtain point cloud predictions it is tempting to
establish a unified evaluation protocol and compare them through their proxy point cloud results.
This approach, however, has underlying issues. In principle, each 3D geometry representation is
an approximation of exact true surfaces of shapes. Since these approximations are usually done
with different levels of granularity for each representation, their direct comparison may not be
strictly fair, unless it is verified that every compared option approximates ground truth with
similar granularity. Moreover, it is possible, that learned representations may perform differently
depending on the chosen granularity of the ground truth shape approximation, making some
of them suitable for crude and others for precise reconstructions. Besides the precision, the
scalability of representations and according methods also varies, so, given particular memory
or computational limitations, some representations may be favourable over the others.

Additional difficulties in evaluation rise for generative models. A general problem for generative
models outputting any data is the absence of corresponding ground truth per every generated
sample. To overcome this, researchers (Lopez-Paz and Oquab, 2017; Achlioptas et al., 2018)
proposed to use aggregate metrics calculated over entire sets of ground truth and generated
data samples, evaluating both diversity of the generated set and similarity between these sets.
These will be discussed further in Chapter 4.

Geometry Learning Approaches

The choice of the suitable learning method providing the loss function for model parameters
optimization is one of the principal decisions to be made when designing a DNN model for
generation and inference tasks. Several conceptually different approaches were developed or
adapted from DNNs working with other data domains in application to 3D geometry data:

• optimization of a chosen similarity metric between generated/inferred and ground truth
samples;

• likelihood maximization in a probabilistic model of target data distribution;

8

1.1. Context and Motivation

• learning a rich support set of the target data distribution in an adversarial manner.

The most straightforward way to enable training in autoencoding and inference models is
to directly optimize one of the similarity metrics used for evaluation as a loss function. In
that case, it is required that the chosen metric can be efficiently differentiated through
to pass gradients during backpropagation. This is not always the case for all the metrics
mentioned earlier. IoU and F-score are not differentiable, EMD is calculated with the help
of approximations so the same holds for its gradients, only CD can be differentiated through
efficiently. Naturally, such an approach inherits the drawbacks of the optimized metrics. For
example, in case of autoencoding models for point clouds optimized with CD, learned shapes
often tend to concentrate produced points near dense regions of ground truth rather then
spreading them evenly over the surface. Moreover, in case of metric optimization, resulting
models are susceptible to overfitting to chosen metrics to the detriment of others.

Another approach involves the use of probabilistic modeling that strictly defines predicted
data distributions and optimize the likelihood of ground truth data samples calculated within
these models. Various adaptations of variational autoencoders, firstly introduced for images
by (Kingma and Welling, 2014), are one of the most commonly used approaches involving
probabilistic modeling for generative tasks. These adaptations model target data distribution
with the help of additional low-dimensional latent variable. The posterior distribution of the
latent variable encodes global information about particular data samples and is regularized to be
close to unconditional prior distribution of the latent variable. Inference in the model is enabled
by the variational approximation of the model likelihood providing the loss function, and
reparametrization trick enabling sampling from the latent variable posterior in a differentiable
manner. After training, samples from the latent variable prior can be decoded into plausible
data samples. The same approach can be successfully applied to inference tasks, which will be
discussed in Chapter 3.

Since this approach avoids direct metric optimization, models trained by it avoid drawbacks
associated with the optimized metrics. Unfortunately, it has its own difficulties, which include:
1) the necessity to introduce probabilistic models for each representation, which is rarely trivial
due to the fact that each representation use a unique data type; 2) inference in such models
is often non-trivial and requires different approximations instead of exact computations; 3)
data distributions of various 3D geometries have complex nature, are problematic to model
and usually require long training times to be captured by DNNs.

Generative adversarial networks were also originally proposed for image data by (Goodfellow
et al., 2014) and introduced a special training algorithm for generative models based on the
competition between two networks. According to this method, generator network learns to
produce data samples from input noise samples, while discriminator network takes both ground
truth and generated data samples and is trained to distinguish them by the means of binary
classification. Thus, during training, these networks compete with each other: the generator
learns to produce samples indistinguishable from real ones and the discriminator learns to find
even the slightest differences between them to classify them properly. Similarly to probabilistic
modeling, this approach also avoids direct specified metric optimization and instead relies
on an implicit similarity through the real/fake classification. Unlike probabilistic solutions, it
avoids explicit modeling of target data distributions and learns to produce a support set of
this distribution. In practice, it often leads to generation of more realistic samples containing
more sharp features. However, adversarial approaches are notably hard to setup for effective
training in terms of tuning various model hyperparameters. Even the slightest changes in the

9

1. Introduction

ShapeNet ScanNet 3D-FUTURE CO3D

Figure 1.3: Samples from common and recent 3D datasets. From left to right: point cloud and
rendered image samples from ShapeNet (Chang et al., 2015); ground truth meshes and scans
from ScanNet (Dai et al., 2017); colored point clouds and image renderings from 3D-FUTURE
(Fu et al., 2020); frames from ground truth videos and corresponding ground truth point
clouds from CO3D (Reizenstein et al., 2021)
.

setup could lead to degenerate model behavior, known as mode collapse. In mode collapse,
the model learns to produce a small support set of very similar samples that can efficiently
fool the discriminator, even if they do not look realistic in terms of human standards.

We provide both qualitative and quantitative comparison of 3D shape autoencoding recon-
structions produced by various generative models based on all the principles described above
in Chapter 4.

3D Datasets for Geometry Learning

To this day, a limited number of synthetic and real datasets are used for 3D geometry learning
in generative and inference tasks. The most popular synthetic datasets are ModelNet (Wu
et al., 2015) and ShapeNet (Chang et al., 2015). Both datasets are collections of 3D shapes
with textures, represented as meshes and labeled into semantic categories: cars, planes, chairs,
tables, etc. It is hard to overstate the importance of these datasets for current progress in
both recognition and generative/inference tasks. Nowadays they are used as a standard for
evaluation of most of the new models. However, samples are often not ideal in these datasets
for geometry learning purposes. There is a significant number of non-watertight shapes, which
have errors or missing parts in their mesh topology resulting in holes. These erroneous samples
create confusion for models during training resulting in fuzzy predictions in the most uncertain
regions. In case of single class subsets, there are extreme variations in the level of the details
captured by the ground truth meshes, e.g . for cars category there are samples that only have
a mesh of the outer car surface and samples with meshes capturing the surfaces of the interior

10

1.1. Context and Motivation

of the car or the interior under the car’s hood. It is possible to argue that these aspects of
these datasets might be even beneficial for recognition models since the recognition results are
usually confident and this variance provides additional challenges for models. However, such
extreme variance in data samples is not ideal for generative and reconstruction models since
including it means that models will learn to produce erroneous samples which contradicts the
intended behaviour of such models.
Other datasets of synthetic shapes, including Thingi10K (Zhou and Jacobson, 2016), and ABC
(Koch et al., 2019) provide collections of 3D shapes gathered from existing online platforms
dedicated to sharing 3D model designs of various objects suitable for 3D printing and other
applications. Although both datasets are also not perfect in terms of containing only clean
shapes without various errors, the authors evaluated geometric quality characteristics and
ensured that the data in these datasets is cleaner compared to ShapeNet. The increased
quality and semantic variability of samples make them better candidates for pure geometry
learning tasks, especially surface reconstruction from input point clouds. On the other hand,
this variability and the lack of distinct categorisation of samples into classes compared to
ShapeNet make these datasets extremely challenging for generative models. Even though the
data quality is better, to our knowledge, there are still no evaluations of generative models
on these datasets. Recently, a new large dataset of synthetic furniture shapes rendered in
various realistic room interiors was released (Fu et al., 2020). Although both the shapes and
the backgrounds used for rendering are synthetic, the advantage of this dataset is the curated
nature of data, since it was provided by professional designers.
The choice among the real 3D shape datasets is limited at the moment. Pix3D dataset
(Sun et al., 2018) is a collection of CAD models of different furniture, which are paired with
collections of real images of according furniture pieces in realistic environments. Such data
can be used for realistic evaluations of 3D shape inference from a single image task, unlike
synthetic shape dataset for which the images are produced by rendering shapes and using
either random or synthetic backgrounds. Unfortunately though, there are not enough samples
to use this dataset for training. Other real datasets, like ScanNet (Dai et al., 2017) provide
RGB-D scans of real room environments with according reconstructions and per-instance
semantic annotations. Compared to synthetic environments and shapes such data contains
features specific to the real data acquisition process, such as non-uniform density regions,
holes, noise and other artifacts. Thus, such data is better suited for models developed for real
data applications. Another type of the real data suitable for 3D deep learning is the motion
scans of real humans, e.g . FAUST dataset (Bogo et al., 2014). Although the overall geometry
variance in such data is limited to representing different human body compositions and poses,
it provides other challenges, associated with the non-rigid nature of human body geometry
and the temporal component, available in that data. These aspects make this data particularly
suitable for the task of dense correspondence prediction between different time states of the
same or different people.
Recently, another collection of real 3D data was proposed by (Reizenstein et al., 2021). The
dataset consists of the videos of approximately 19K objects from 50 MS-COCO (Lin et al.,
2014) categories. Every video was put through multi-view dense point cloud reconstruction
pipeline to obtain corresponding ground truth 3D data. The quality and the increased size of
this dataset make it a promising option for future research in various DNNs applications for
3D data.
Researchers often tend to focus on the importance of the real data evaluations for all the
freshly proposed 3D data DNN models and judge the absence of such experiments negatively.

11

1. Introduction

Due to this, it is important to underline that all these datasets better suit different applications.
For example, if the target purpose of the designed 3D data model is the query similarity search
in a database of CAD models it does not make sense to train and evaluate such model on real
scans containing various artifacts, so CAD models should be used instead. On the other hand,
if the purpose of the model is to provide surface predictions from input noisy point clouds, real
scans would be more relevant for that purpose. Both recognition and generative/reconstruction
tasks could be relevant for both synthetic and real data regardless of the other type of data,
thus new improved feature extraction and data sample generation/reconstruction DNNs are
always valid regardless of the type of data they were evaluated on.

1.2 Contributions
This work builds upon earlier work involving the development of DNN models in application to
3D data. It mainly considers generative and inference applications, with a particular focus on
the development of principled probabilistic variants of models suitable for these applications.
It is based on two distinct contributions:

1. The first contribution considers the task of 3D shape inference from a single image. It
proposes to use probabilistic modeling framework and describes a family of latent variable
probabilistic models, Probabilistic Reconstruction Networks (PRNs), which formalizes
the task of learning the distribution of the ground truth 3D shapes conditioned on
input images. PRNs compare various possible image conditioning options in different
components of the model, e.g . in the prior and posterior distributions of the latent
variable, in the 3D shape decoder. Two different likelihood approximations are considered
for maximization to train models. Additionally, a specific variant in the proposed family
of models links the single-view 3D shape inference task with the generation task and
allows joint training for both of these tasks with a single model and objective. Moreover,
the proposed formalization of the task allowed to clearly categorize existing approaches
in terms of how they treat such aspects of the task as image conditioning mechanism
and training procedures.
In practice, we implement the resulting family of models with deep convolutional neural
networks for voxel grid 3D shape representation and evaluate them on the subset of
the ShapeNet dataset designed for single and multi-view reconstruction introduced
in the work of (Choy et al., 2016). We show that conditioning the latent variable
prior on the input images is sufficient to achieve competitive and state-of-the-art
single-view 3D shape inference performance for point cloud based and voxel based
metrics, respectively. We additionally demonstrate that the probabilistic objective
based on variational approximation of the likelihood allows the model to obtain better
results compared to Monte Carlo based approximation and either of the deterministic
counterparts.
This work was published and presented orally in the British Machine Vision Conference
in 2019, where it received the "Best Science Paper Honourable Mention" award. The
implementation of PRNs was made public and is available online1.

2. The second contribution presents a novel generative model for 3D point clouds. This
work applies probabilistic modeling to the point cloud generation task and proposes a
latent variable model which treats each point cloud as a distribution of points on the

1https://github.com/Regenerator/prns

12

https://github.com/Regenerator/prns

1.3. Thesis Structure

object’s surface. In contrast to most related work, the model allows to model point clouds
of arbitrary sizes and makes use of a novel variant of conditional coupling normalizing
flows designed to model point cloud data distributions given latent variable samples
as inputs. The invertible nature of normalizing flows allows for efficient calculation of
conditional likelihood. Additionally, we propose an extension to our Discrete Point Flow
Networks (DPFNs) that allows application to the single-view shape inference task.
Evaluations on point clouds sampled from ShapeNet CAD models are performed for
generation, autoencoding and single-view inference tasks. Generative results show that
DPFNs are approximately 30 times faster both in training and inference compared to
a similar model based on continuous normalizing flows, PointFlow (Yang et al., 2019),
while being able to obtain similar or better results in terms of quality and diversity of
generated samples. Autoencoding and single-view inference evaluations demonstrate
state-of-the-art and competitive performance in terms of the EMD and other point cloud
similarity metrics respectively. Additionally, two different ground truth data normalization
and scaling options are compared to show that per-object normalization and scaling
results in improved performance.
The work was published in the European Conference on Computer Vision in 2020. The
code for DPFNs is available online2.

1.3 Thesis Structure
The remainder of this thesis is organised as follows:

• Chapter 2 contains an overview of existing DNN methods developed for 3D data
processing. They are categorised into three groups, depending on the type of tasks they
consider: recognition, generative and inference tasks.

• Chapter 3 presents the first contribution of the thesis, which includes the probabilistic
framework for single-view 3D shape inference task, its implementation by the means of
DNNs called Probabilistic Reconstruction Networks, and experimental results obtained
with them for single-view 3D shape inference task.

• Chapter 4 presents the second contribution, which includes the probabilistic model for
3D point cloud generation, the architecture of conditional coupling flows suitable for
point clouds, DNN implementation of the model called Discrete Point Flow Networks,
and experimental results obtained with the model in generation, autoencoding and
single-view 3D shape inference tasks.

• Chapter 5 underlines the importance of the presented contributions and discusses
possibilities for further research in related tasks.

2https://github.com/Regenerator/dpf-nets

13

https://github.com/Regenerator/dpf-nets

CHAPTER 2
Deep Learning for 3D Shape Processing

The following chapter aims to give a comprehensive overview of existing deep learning methods
applied specifically to various modalities of 3D data. It categorises related work according to
the type of the final application: recognition, generation, modification/inference, and reviews
numerous important works in each section.

2.1 Recognition Models
Prior to deep methods numerous global and local 3D shape descriptors were proposed, based
on rendered views, probability distributions, geometric properties of shape surfaces and many
more. For a comprehensive review of these methods consider reading the work of (Kazmi
et al., 2013).

Recognition models played a significant role in the initial rise of the deep learning methods
applied to 3D data. Since they mostly focus on the feature extraction aspect of the task,
it is natural that deep recognition approaches introduced first neural network architectures
suitable for processing of different input 3D geometry representations into corresponding low-
dimensional feature vectors. These network and layer architectures now could be considered as
the most basic and essential building blocks for all the other models, applications, and input
representations, since feature extraction is required for almost any imaginable task. Moreover,
these architectures often gave inspiration or directly provided applicable network components
to the models designed for autoencoding, generative and inference tasks.

Since this thesis is mostly centered around generative and reconstruction applications, in this
section we review selected existing works categorized according to the type of the encoded
representations and give preference to approaches that inspired corresponding decoding
components.

2.1.1 Recognition of Occupancy Grids
3D ShapeNets (Wu et al., 2015) was one of the first deep learning models for 3D data in
general and voxel grids in particular. It proposed to use voxel grids of occupancy probabilities to
represent 3D shapes for recognition and generative tasks and to apply 3D convolutional layers
to extract features from such inputs. Complete architecture was based on the idea of Deep
Belief Networks (Hinton et al., 2006) and was encumbered by its per-layer training algorithm.

15

2. Deep Learning for 3D Shape Processing

VoxNet developed by (Maturana and Scherer, 2015), used similar 3D CNN architectures for
feature extraction but used a now standard end-to-end training approach: stochastic gradient
descend paired with backpropagation for proper simultaneous calculations of gradients with
respect to each layer’s weights. The classification model of (Brock et al., 2016) significantly
increased the complexity of the baseline 3D CNN architecture by introduction of multiple
network components and design features which have already proven their effectiveness for 2D
CNNs including batch normalization (Ioffe and Szegedy, 2015), residual connections (He et al.,
2016a) and inception-based modules (Szegedy et al., 2017). Resulting combined architecture
and especially the ensemble of such architectures provided performance that is still close to
present state of the art.

Figure 2.1: Architecture of the
3D ShapeNets CNN for shape
recognition. Visualization is
taken from (Wu et al., 2015).

The regular structure of voxel grids allows to directly transfer
suitable techniques from more popular and, thus, further de-
veloped 2D CNNs designed for images. However, since voxel
occupancy grids and 3D convolutions scale cubically with
respect to the grid resolution, this quickly becomes problem-
atic for higher resolutions. To improve this OctNet (Riegler
et al., 2017) exploits the inherent sparsity of the voxel grid
representation and proposes a custom data structure for
voxel grid based on shallow octrees. Further, the authors
formulate principal neural network layers, required to com-
pose a 3D convolutional DNN, in a way compatible with this
data structure. Resulting OctNet not only demonstrates
state-of-the-art performance among voxel-based models but
also is capable of processing high resolution grids while be-
ing faster and more memory efficient compared to standard
3D convolutional DNNs.

2.1.2 Recognition of Point Clouds
Because of the issue of the high computational complexity
of voxel-based 3D data models, researchers explored other
more scalable representations. Point clouds are one of the
most natural options for such a substitute, since they are
commonly used, and allow for processing methods with
linear scalability with respect to the number of input points.
To achieve that, however, a special type of neural network
architectures had to be developed. These architectures
should treat point clouds as unordered sets of points and
propose according neural network layers capable of being
expressive enough to solve desired tasks but, at the same
time, treating all the points equally in a mathematical sense,
since the results should be invariant to permutation of input
points in a cloud.
These properties desired for DNNs working with point clouds were achieved for the first time in
the PointNet architecture (Qi et al., 2017a). To produce features PointNet uses fully-connected
layers shared for all the points in a cloud. Thus, every per-point feature vector is produced in
an independent manner. Additionally, PointNet proposes to predict extra transformations for
input and intermediate point features by small subnetworks conditioned on the transformed

16

2.1. Recognition Models

Figure 2.2: Architectures of PointNet for classification and semantic segmentation tasks.
Shared MLPs are used to extract per-point features which are aggregated to obtain global
features by a max pooling operation over all the points. Resulting vector is used for classification
or concatenated with individual point features for segmentation. Picture is taken from (Qi
et al., 2017a).

target inputs or features. The authors argue that such a transformation aligns data and
allows to achieve invariance to transformations of input point clouds. To produce global
features PointNet uses maximum or average feature pooling over all the individual points.
For classification these global features are fed to an MLP to produce class probabilities; for
semantic segmentation global features are duplicated and concatenated with individual point
features prior to prediction of the shape part class probabilities. Resulting PointNet produces
results surpassing the performance of the most of voxel-based methods. A more principled
formulation of NN architectures, supporting the processing of point clouds is described in the
work of (Zaheer et al., 2017).

Original PointNet do not have any inherent hierarchical feature aggregation mechanisms,
which could be restrictive for better shape parts understanding. To tackle this problem several
works propose different improvements over PointNet that make use of various data structures
over point clouds, introducing hierarchical partitions over them. The approach of (Klokov and
Lempitsky, 2017), improved in (Yi et al., 2017), proposes 1) to use binary spatial partition trees,
namely kd-trees and pd-trees, to precompute a hierarchy of points; 2) to share parameters of
MLPs only among the points corresponding to a particular configuration of the current tree
node; 3) to hierarchically pool point features corresponding to the children of a particular tree
node. Thus, instead of the per-point features, Kd-Networks produce features per every tree
node. Alternatively, a direct continuation of PointNet (Qi et al., 2017b) uses prefixed radii
ball query trees to build corresponding hierarchies for feature calculation and aggregation.

The irregular nature of point clouds prevent models from direct use of standard convolutional
layers. Nevertheless, special type of convolutions are proposed specifically for point clouds in the
work of (Li et al., 2018b). Similarly to hierarchical feature aggregation approaches, PointCNNs
define a nearest neighbour structure based around downsampled subclouds, calculate features
and combine them, in this case, by standard 1D convolution. Standard convolutions are
sensitive to point permutations, so, trainable feature projections are applied before them to
enable partial robustness to possible permutations.

Dynamic Graph CNNs (Wang et al., 2019b), again, uses a tree of kNN structures to define

17

2. Deep Learning for 3D Shape Processing

aggregation graphs, but define graph convolution with symmetric aggregation operation to
inherently obtain invariance to point permutations. DGCNNs also recompute the nearest
neighbour graph for further feature calculations directly using intermediate features, contrary
to complete precomputation of full trees performed in the prior work.
Recently, the authors of (Liu et al., 2019) argued that both voxel and point cloud representations
are not ideal for DNN processing because of the cubic scaling with increasing grid resolutions
and discontinuous storing in memory of neighbouring points. To overcome this, they propose
point-voxel convolution which combines methods for both representations by using MLPs to
extract per-point features, similarly to PointNet, but, at the same time, to convert point clouds
in low-dimensional grids, extract 3D convolutional features from them for improved locality
(compared to other point feature aggregation approaches), and to extract per-point features
from resulting grids with trilinear interpolation. The authors show, that such a combination is
effective in terms of being competitive with state-of-the-art recognition methods and being
more efficient in terms of required computations.

2.1.3 Recognition of Meshes
Initial methods for mesh recognition proposed generalization of regular convolutions to graph
data. The first work on graph convolutions (Bruna et al., 2013) proposes two possible
constructions for them: one based on hierarchical clustering of graphs in the graph feature
space, and another based on moving to the spectral domain of graphs and defining convolutions
similarly to the spectral interpretation of standard convolutions. This work shows that that
graph CNNs defined in both feature and spectral domains could be similarly effective. A series
of follow-up works (Henaff et al., 2015; Defferrard et al., 2016; Kipf and Welling, 2016) based
on the idea of performing graph convolutions in the spectral domain consider different forms
of filters in spectral convolutions for improved performance and computational efficiency.
If a target mesh dataset is close to ideal in terms of geometry properties (does not contain
holes and any other artifacts), graph interpretation of meshes could be further restricted to
manifold interpretation. It is rarely the case, that real data only consists of true manifolds,
however, there is a stream of works, exploring a principled extensions of CNNs to manifold
data. The work of (Masci et al., 2015) introduces geodesic convolutions defined on manifolds
similarly to local charting procedures. It first maps features to local patches with polar local
coordinate systems and then defined convolution as matching of templates to patches for all
possible angle variations in template rotations. Another work (Boscaini et al., 2016) considers
the anisotropic diffusion equation on manifolds with heat kernel solutions. They allow to
define local charting on manifolds in a different manner and obtain better results. Unlike graph
CNN, both these methods perform convolutions in the features domain instead of the spectral
domain. The work of (Monti et al., 2017) contributes a unified framework for convolution
definition on non-Eucledean domains.
The approach of (Verma et al., 2018) proposes another generalization of convolutions to
non-regular domains operating in the feature space. For each mesh vertex it considers a
neighborhood of vertices connected to it by an edge. Then, in contrast to regular convolutions,
it performs soft assignment of convolutional filters to neighbors of a given mesh vertex by
means of trainable subnetwork performing softmax over a linear transformation of feature
vectors corresponding to mesh vertices.
The division into separate approaches for recognition of 3D shapes using point clouds and
meshes is becoming less strict at the moment. Almost every recent recognition model working

18

2.2. Generative Models

with point clouds constructs an auxiliary hierarchical structure on top of input point clouds
(e.g . partition trees, query ball trees, trees based on nearest neighbors). These structures
are used to establish hierarchical local-to-global feature calculation and aggregation schemes,
which could be interpreted as graphs in feature space. At the same time, meshes are instances
of graphs as well, with vertices and edges of polygons in a mesh corresponding to vertices
and edges of graphs. Although, considered graphs in both cases are constructed in different
domains (feature domain for point clouds, data domain for meshes), some graph-based feature
extraction methods have already shown efficiency in application to both types of graphs, e.g .
the work of (Monti et al., 2017) for graphs and manifolds and the model of (Wang et al.,
2019b) for point clouds.

2.2 Generative Models
Recognition models laid the groundwork for future generative models with development of
architectures suitable for processing of different 3D geometry representations and enabling
effective feature extraction from them. However, feature extraction is not sufficient for
generative modeling. Most of generative models based on both variational autoencoders
(Kingma and Welling, 2014) and generative adversarial networks (Goodfellow et al., 2014)
have two essential components: an encoder targeted at extracting low-dimensional features
from target data samples, and a decoder which takes a sample from a low-dimensional space
and produces a viable sample from the target data domain. In VAEs encoders are used to
model approximate posterior distributions of latent variables, in GANs - to provide features for
discriminators. Since encoders are conditioned on the target data, they usually exploit any
structure in it for improved feature extraction, as it was discussed for 3D data recognition
methods in the previous section. Decoders are aimed at solving the inverse task. They do not
have any structured input and only can assume the type of the output before generation.

In encoding architectures, feature aggregation mechanisms rely the most on the inherent
structural relations inside the data (max pooling for local convolutional features, feature
pooling according to nearest neighbour trees for point clouds and meshes). Analogously,
inversion of pooling operations is required for hierarchical decoding architectures. Thus, most
of the works concentrate their effort around development of proper decoding components with
effective feature unpooling mechanisms. Similarly to recognition section, we review generative
models according to their choice of 3D geometry representations.

2.2.1 Generation of Occupancy Grids
Since occupancy grids rely on regular structure of data and the use of 3D CNNs, their adaptation
for generative purposes is the most straightforward among 3D shape representations. The
approach of (Brock et al., 2016) uses the variational autoencoding framework to model
distributions of voxel occupancies. Similarly to lots of generative 2D CNNs, the decoder is
implemented with transposed 3D convolutions. They allow to progressively expand the spatial
resolution of output feature maps until a desired resolution is achieved. The model is optimized
by minimizing the sum of cross entropy of individual per-cell Bernoulli distributions. Similar
convolutional architectures for decoders are explored in the work of (Wu et al., 2016) but the
resulting model is trained in an adversarial manner.

The 3D convolutional decoding architectures suitable for generation are, in fact, usually
mirrored from encoding architectures with a substitution of pooling layers with unpooling

19

2. Deep Learning for 3D Shape Processing

Figure 2.3: Single level of the Octree Generation Network. Spacial resolution is increased with
a convolution at the locations of the cells with a mixed occupancy status. Then, a classifier
decides from the new voxel which cells have an empty, filled, or mixed status. Picture is taken
from (Tatarchenko et al., 2017).

analogues. That means that they suffer from the same drawbacks, namely, the limited scaling
capabilities with respect to the target voxel grid resolution. To deal with this, the model
of (Tatarchenko et al., 2017) proposes a 3D convolutional decoder predicting the octree
corresponding to the target voxel grid instead of the explicit per-voxel occupancies. At every
level of an octree each cell is classified to be empty, filled, or mixed, see Figure 2.3. Then,
at the next level the same classification is performed only for the mixed cells to exploit the
sparsity of the occupancy grid data.

2.2.2 Generation of Point Clouds
Generation of unordered sets is a much less explored topic compared to generation of regular
grids. The work of (Achlioptas et al., 2018) starts research in this topic by application of
GANs to the task. It experiments with two options: 1) direct sampling of point clouds from a
GAN, 2) learning an autoencoder with similarity metric optimization first, and learning a GAN
capable of sampling in the latent space of this autoencoder. A network with fully-connected
layers is used to reconstruct point clouds of fixed cardinality by a final layer predicting 2048× 3
features that are restructured into 2048 3D points. By construction, that limits the approach
to generation of fixed-size point clouds.

The point cloud GAN model of (Li et al., 2018a) argues that simple application of Deep Sets
architectures (Zaheer et al., 2017) in the decoding part of generative models is not sufficient
for effective generation. Instead, the authors propose a hierarchical GAN with global per-shape
and local per-point sampling procedures and suitable optimization objectives. Unlike the
model of (Achlioptas et al., 2018), the decoding part of that approach uses a PointNet-like
architecture conditioned on both samples from global and local noise for decoder. This allows
to sample point clouds of arbitrary size.

The same underlying probabilistic model for hierarchical point cloud generation is explored in

20

2.2. Generative Models

Figure 2.4: Schematic overview of the PointFlow generative model for point clouds. During
training (left image): 1) point cloud encoder provides the posterior Qφ(z|X) for the latent
variable z, 2) a latent variable sample from the posterior is used to condition the continuous
normalizing flow Gθ that is traversed in the reverse direction to obtain base flow distribution
samples, 3) latent variable samples are also fed to a latent variable prior, implemented by an
additional flow Fψ. During sampling (right image), a sample from latent variable prior is taken
and used to condition the point flow transforming samples from the base flow distribution into
target surface point samples. Picture is taken from (Yang et al., 2019).

the work of (Yang et al., 2019). In this model, a global latent variable conditions a continuous
normalizing flow (Chen et al., 2018) that is used to capture point cloud densities in the
decoder. This flow, takes global sample and samples from the base flow distribution and
transforms them to sample points from 3D shape surfaces. The networks involved in the
flow use PointNet-like layers, which allows the architecture to be able to model point cloud
of various sizes. Unlike PCGAN of (Li et al., 2018a), this approach explicitly implements
the probabilistic model for point cloud generation, so it is trained by maximization of the
variational likelihood approximation. The computational flow of the model during training and
sampling can be found in Figure 2.4.

The recent work of (Cai et al., 2020) reimagines the probabilistic approach for the task. It
argues that modeling exact surface distributions in 3D space is problematic, relaxes it by
Gaussian smoothing to avoid discontinuity and prevent the distribution from having zero
support over the 3D space containing the surface. Then, instead of learning this distribution
explicitly, the model is trained to predict the gradient of the log density for given continuous
locations. After training, the model can be used in an iterative procedure that moves input
points to high probability locations in 3D space, corresponding to a particular 3D shape surface.

Another recent model, proposed by (Zhou et al., 2021), uses a novel probabilistic model for
point cloud generation based on inversion of a diffusion process. The generation is presented as
a denoising procedure with multiple intermediate latent variables conditioning each other in a
sequential manner. The model is designed in a way that every posterior and prior distributions
for intermediate diffusion and its inversion states have explicit Gaussian form. The complete
model is trained with approximate likelihood maximization using variational lower bound for
every intermediate variable. The DNN implementation of the model is based on the point-voxel
convolutional layers, reviewed earlier.

21

2. Deep Learning for 3D Shape Processing

2.2.3 Generation of Meshes
Early approaches for mesh generation avoided explicit mesh modeling. Instead, the mesh
autoencoder of (Tan et al., 2018) models the space of deformations of densely corresponding
meshes (human shapes in case of this work). A special compact representation for these
deformations (Gao et al., 2016) is captured instead of full shape geometries. The fully-
connected architecture of resulting autoencoder is trained by optimization of squared distances
between predicted and ground truth features and a KL-divergence term between prior and
posterior for the latent variable.
The deformation approach was further explored in the work of (Gao et al., 2019). The model
works with meshes that contain part annotations and develops a hierarchical part-to-shape
generation process. During training, each part is encoded by several parameters, indicating the
existence, relation to other parts, position, symmetry and extracted features encoding explicit
deformations of a template mesh. All the part descriptors are concatenated and autoencoded
by a VAE to enable generation. Additional information encoded in the part feature vectors
helps to aggregate and further improve generation results.
The probabilistic model of (Nash et al., 2020) is one of the first works, exploring explicit mesh
modeling. It views mesh generation as joint generation of vertices and faces, and factorizes
the according model into separate unconditional autoregressive generation of vertices and
autoregressive generation of faces conditioned on vertices. Coordinates of vertices are also
modeled autoregressively with a NN architecture based on transformers (Vaswani et al., 2017),
powerful attention-based NN layers. Face generation is performed by autoregressive pointer
networks (Vinyals et al., 2015). At each step the autoregressive network produces a pointer
which is compared to embeddings of the input set of vertices to produce per-vertex probabilities
defining the next chosen vertex in a face. Similarly to text generation autoregressive models,
it also compares the pointer to tokens indicating the end of current face and the end of the
overall shape mesh. The resulting model is able to produces realistic meshes but requires
significant computational resources.

2.2.4 Generation of Implicit Functions
Occupancy grid representation turned out to be problematic in terms of scaling to higher
grid resolutions. Point clouds, on the other hand, do not provide explicit geometry, often
desired from generative and reconstruction approaches. Implicit function representations were
proposed to overcome those difficulties. Two works (Chen and Zhang, 2019; Mescheder
et al., 2019) simultaneously proposed to use PointNet-like MLPs to predict occupancy for
continuous input 3D locations. To make occupancy predictions shape dependent, both models
concatenate latent variable samples to the coordinates of query points prior to processing it
with the MLPs. To enable generation, the first approach uses the adversarial framework, while
the second one uses VAEs. Isosurface extraction is the one drawback of the implicit function
representation that requires special attention. The work of (Chen and Zhang, 2019) proposes
a naive solution: the occupancy is sampled densely over a regular grid and the Marching
Cubes algorithm is applied to extract a meshed representation of the isosurface. Mescheder
et al. (2019) propose an improved algorithm, based on coarse-to-fine occupancy sampling and
simultaneous construction of the octree over the filled parts of the whole grid volume.
Concurrent work of (Park et al., 2019) proposes to infer signed distance function values with
the same PointNet-like MLPs. Similarly to previously mentioned models, DeepSDF takes
continuous point coordinates concatenated to a global latent variable sample, but predicts

22

2.3. Single-View Reconstruction Models

the signed distance to the shape surface. Marching cubes is used to extract zero level sets
explicitly representing the output geometry.

2.3 Single-View Reconstruction Models
Multiple inference applications were explored for 3D shapes including normal prediction
(Guerrero et al., 2018), surface reconstruction (Erler et al., 2020), shape completion (Han
et al., 2017), etc . However, since this thesis contributes particularly to the single-view 3D shape
reconstruction (SVR) task, in this section we focus our review around selected contributions
to this task.
Initial works use 3D convolutional networks to predict occupancy grids. TL-Networks (Girdhar
et al., 2016) proposes a two-step training process for the task: 1) a 3D convolutional
deterministic autoencoder is trained to extract low-dimensional shape space, 2) a 2D CNN
image encoder is trained to infer samples from the shape space of the autoencoder. Concurrent
work of (Choy et al., 2016) does not use a 3D CNN encoding component and directly trains
a similar hourglass shaped architecture with 2D CNN image encoder and 3D CNN shape
decoder to output occupancy grids. Additionally, the authors consider a multi-view case and
propose a variation of LSTMs to fuse features extracted from different view images. Octree
generation networks (Tatarchenko et al., 2017), discussed in the previous section, also propose
a modification for the SVR task using 2D CNN image encoder and their OGN occupancy
decoder.
The method of (Richter and Roth, 2018) proposes another compact representation for
occupancy grids, that overcomes the scaling issues associated with increasing grid resolutions.
Each grid is represented by shape layers: six depth maps corresponding to parallel projections
to both sides along each axis. One shape layer is not sufficient to capture occluded parts of a
shape, instead, several collections of depth maps are predicted and combined by unions and
subtractions to capture complex geometry. Standard 2D CNNs are used in the decoders of
the model to capture the shape layers.
Similar idea was explored for 3D human shapes represented as point clouds in the work
of (Gabeur et al., 2019). For every ground truth pair of image and shape it considers a
combination of visible and hidden depth maps obtained by ray casting from the camera to pixel
locations. The visible map corresponds to the closest intersections of each ray with a surface,
while the hidden map - to the farthest intersections. A hourglass shaped DNN architecture is
used to infer the depth maps from an input image. The model is trained with minimization of
L1 distance between predicted and ground truth depth maps and, an additional adversarial
objective, discriminating between real and fake visible and hidden depth maps.
Given camera parameters, 3D geometry of a shape can partially explain images produced
by this camera: it defines a silhouette of a shape in the image and can also explain color
intensity variations, since it contains shading information as well. The approach of (Yan
et al., 2016) explored a possibility to use silhouette projections obtained from occupancy grid
reconstructions in a differentiable manner. The overall architecture of their DNN reminds
other image-to-voxel architectures, but adds a differentiable projection layer conditioned on
the given camera parameters corresponding to the input image. Such projections can be used
for training even in the absence of the ground truth 3D geometry information.
This idea is further developed in the work of (Tulsiani et al., 2017), where the authors present
a probabilistic framework for differentiable ray consistency used for model training. In this

23

2. Deep Learning for 3D Shape Processing

Figure 2.5: Schematic overview of MarrNet. Input images are used to extract intermediate
2.5D shape representation consisting of silhouette, depth, and normal maps. This 2.5D
representation is fed to a encoder-decoder network to produce 3D occupancy grid which is
used to establish consistency between the intermediate representation and final 3D shape
reconstruction. Picture is taken from (Wu et al., 2017).

framework each image is interpreted as a collection of intersections of 3D shape and rays cast
from the camera position. Given a grid of occupancy probabilities it is possible to calculate
the probability of an intersection for every considered ray. Given these probabilities and the
ground truth occupancy a cost for any incorrect intersection can be defined. Resulting loss
is based on minimization of the expectation of that cost over all intersection probabilities.
Similarly to the previous method, such an approach allows to reconstruct 3D shapes even
without 3D geometry supervision from silhouettes and depth maps.
MarrNet (Wu et al., 2017) proposes to predict occupancy grids through an intermediate 2.5D
representation. The method first learns to predict silhouettes, depth, and normal maps from
input images, and then use a standard encoder-decoder architecture predicting occupancy
from the intermediate representations. The resulting intermediate 2.5D representation and 3D
occupancy grids are used to define consistency between depth and normal maps with occupancy
grids. As the rest of the consistency based methods, this one also allows for training without
ground truth 3D geometry data. Overall structure of the model is depicted in Figure 2.5.
Other works consider point cloud representation for 3D outputs of the SVR task. Point
set generation networks (Su et al., 2017) construct a complex hourglass-shaped 2D CNN
architecture which combines points predicted from two separate streams: 1) a fully-connected
stream which outputs a fixed-size set of points, 2) a convolutional branch outputting additional
set of points. The resulting model is trained by similarity metrics optimization (CD and EMD),
which were, in fact, first proposed in this work prior to pure generative and autoencoding
models.
Another approach is developed for point cloud reconstruction in the work of (Kurenkov et al.,
2018). It proposes a two-step SVR method where, first, point clouds relevant for an input
image are retrieved from the ground truth training samples; secondly, retrieved point clouds
are voxelized and fed to a convolutional network together with the image to produce a regular
grid of deformations. This grid is used to produce final per-point deformations for every point
in the retrieved cloud. The resulting deformed clouds are compared to target shapes with
similarity measures that are used for model training.
In order to improve the expressivity of the point cloud-based methods for SVR the authors

24

2.3. Single-View Reconstruction Models

Figure 2.6: Neural network architecture of Pixel2Mesh. Image encoder extracts convolutional
features from inputs and pools them locally given intrinsic camera parameters to condition
mesh deformations which transform an ellipsoid mesh template into the target 3D shape.
Picture is taken from (Wang et al., 2018).

of (Groueix et al., 2018) develop a patch-based prediction for point clouds. AtlasNet defines
several 2D plane primitives and uses the same number of MLPs corresponding to the planes,
which take samples from 2D primitives concatenated to extracted image features and produce
target points in a cloud. As a result, the initial primitives are transformed into localized surface
patches in 3D. The model is optimized with metric optimization as well.

Figure 2.7: Overview of the BSP-Net. Visual-
ization is taken from (Chen et al., 2020).

The model of (Wang et al., 2018) applies the
deformation framework to the output mesh
representation. Initial low poly mesh ellip-
soid templates are altered with deformations
predicted from the input images. The defor-
mations are interleaved with special graph
unpooling operations which properly increase
the complexity of the deformed mesh to ob-
tain detailed reconstructions, see Figure 2.6.
Although such an approach is effective in
terms of producing smooth 3D shape mesh
reconstructions, especially when trained with
additional surface regularization terms, it also
lacks expressivity in terms of representing var-
ious mesh topologies similarly to other meth-
ods based on template deformation.

Recently, an SVR approach working with
meshes was proposed in the work of (Chen
et al., 2020). Similarly to implicit function
methods, BSP-Net learns to predict occu-
pancy status for input continuous locations.
However, it defines the occupancy indicator
function in an explainable manner using sets
of predicted polygons, constructed from predicted planes. The indicator function is constructed
as follows: 1) image features are used to predict 3D planes through the parameters of implicit
functions defining the planes; 2) query point coordinates are fed to the plane functions to
obtain signed distances; 3) signed distances are combined by a binary matrix, which at the
same time encodes combinations of resulting planes forming a set of polygons; 4) the resulting

25

2. Deep Learning for 3D Shape Processing

per-polygon occupancy indicators are aggregated by a min-pooling or weighted sum operation
into the final shape occupancy indicator function. After training, the learned planes and
connectivity can be extracted and used as an explicit mesh representation of the target shape.
A schematic overview of the model can be found in Figure 2.7.
In this chapter we reviewed a number of selected recognition, generation and single-view 3D
shape inference methods working with various 3D shape representations. The diversity of
architecture structures and training methods of the single-view 3D shape inference methods
encouraged us to propose a principled probabilistic model for the task in Chapter 3. It enabled
us to analyse and compare existing design choices for SVR models and to propose our effective
variant for occupancy grid representation. Our work on the probabilistic generative model
for point clouds, presented in Chapter 4 was inspired by the lack of approaches working with
arbitrary-size point clouds. It started prior to the release of PointFlow, the closest concurrent
work of (Yang et al., 2019), so over the course of the project we decided to refocus our
contributions at direct comparison and improvements over PointFlow.

26

CHAPTER 3
Probabilistic Reconstruction Networks

for 3D Shape Inference

Various end-to-end learning strategies for 3D shape inference from images have been in-
vestigated that explore different shape representations and suitable learning architectures.
In this chapter, we focus instead on the underlying probabilistic mechanisms involved and
contribute a more principled probabilistic inference-based reconstruction framework, which we
coin Probabilistic Reconstruction Networks. This framework expresses image conditioned 3D
shape inference through a family of latent variable models, and naturally decouples the choice
of shape representations from the inference itself. Moreover, it suggests different options
for the image conditioning and allows training in two regimes, using either Monte Carlo or
variational approximation of the marginal likelihood. Using our Probabilistic Reconstruction
Networks we obtained single image 3D reconstruction results that set a new state of the art
on the ShapeNet dataset in terms of the intersection over union and earth mover’s distance
evaluation metrics at the time of the publication. Interestingly, we obtained these results using
a basic voxel grid representation, improving over recent work based on finer point cloud or
mesh based representations.

This chapter is based on the following publication:

Klokov, R., Verbeek, J., and Boyer, E. (2019). Probabilistic reconstruction networks for 3D
shape inference from a single image. In BMVC,

that was distinguished by oral presentation and received "Best Science Paper Honourable
Mention" award at the conference.

3.1 Introduction
The overwhelming success of convolutional neural networks on image data (LeCun et al.,
1998; Krizhevsky et al., 2012) instigated the exploration of CNNs for other problems, in
particular in 3D visual computing. 3D CNNs for shapes represented with uniform voxel grids
have been investigated for recognition (Wu et al., 2015; Maturana and Scherer, 2015) and
generative modelling tasks (Brock et al., 2016; Wu et al., 2016). For 3D shape inference,
initial works (Girdhar et al., 2016; Choy et al., 2016) successfully demonstrated the ability
of 3D CNNs to produce coherent voxelized shapes given single images. This task has since

27

3. Probabilistic Reconstruction Networks for 3D Shape Inference

Training Testing

𝑝! 𝐳 𝐢
2DCNN

FiLM

𝑞" 𝐳 𝐬, 𝐢
3DCNN

𝑝# 𝐬 𝐳, 𝐢
3DCNN

𝑝$ 𝐳

FiLM

z
shape
space

Figure 3.1: Probabilistic Reconstruction Networks for 3D shape inference from a single image.
Arrows show the computational flow through the model, dotted arrows show optional image
conditioning. Conditioning between 2D and 3D tensors is achieved by means of FiLM (Perez
et al., 2018) layers. The inference network qψ is only used during training for variational
inference.

gained a significant attention, as a result of its vast application field and despite its challenging
ill-posed nature.

Further exploring CNNs in this context, recent works have investigated beyond straightforward
adaptions of 2D CNNs to 3D voxel grids, notably to overcome the cubic complexity in time and
memory associated with it. For instance, sparse representations of large voxel grid have been
proposed to reduce complexity while allowing for finer shape details (Tatarchenko et al., 2017;
Graham et al., 2018). Other, more scalable shape representations suitable for recognition and
generation tasks have been investigated, including rendered images (Su et al., 2015), geometry
images (Sinha et al., 2016), 2D depth maps (Soltani et al., 2017), point clouds (Qi et al.,
2017a; Klokov and Lempitsky, 2017; Qi et al., 2017b), and graphs (Monti et al., 2017; Verma
et al., 2018). Importantly, these representations come with specific network architectures and
loss functions suited to the corresponding data structures.

The variety of approaches complicates comparisons and identification of the sources of improved
performance. In particular, most works do not decouple the problems inherent to the task,
and mix new shape representations, along with the associated network architectures and loss
functions, with different image conditioning schemes, different probabilistic formulations of
the shape prediction task, and in some cases the use of additional training data. This leads
to possibly difficult or even unfair comparisons, due to the inability to confidently determine
the source of improvements in new models, and emphasizes the need for a more systematic
approach.

In this chapter we look at the single image 3D shape inference through the prism of a family
of generic probabilistic latent variable models, which we term Probabilistic Reconstruction
Networks (PRN), see Figure 3.1. The formalism encompassing these models naturally decouples
different aspects of the problem including the shape representation, the image conditioning, and

28

3.2. Probabilistic Framework for 3D Shape Reconstruction

the usage of latent shape space for the shape prediction. It also allows to categorize previous
models for this task by their structural properties. Without loss of generality, we use voxel
grids as shape representations and focus our attention on other aspects. We systematically
analyze the impact of several design choices: (i) the dependency structure between the input
image, the latent shape variable and the output variables; (ii) the effectiveness of training the
model using Monte Carlo sampling or variational inference to approximate the log-likelihood;
(iii) the effectiveness of a deterministic version of the model that suppresses any uncertainty
associated with the latent variable; (iv) the effect of jointly learning the shape reconstruction
model along with a generative shape model, which share their latent shape space.
For our experiments we use the ShapeNet dataset for the single image 3D shape reconstruction.
We obtain excellent single image 3D reconstruction results with our Probabilistic Reconstruction
Networks, setting new state-of-the-art results in terms of the IoU and EMD performance
metrics. Interestingly, our results improve over works based on point-cloud and mesh-based
shape representations.
In summary, our contributions are:

• a generic latent variable model for the single image 3D shape reconstruction;
• exploration of modeling options in a systematic and comparable manner;
• new state-of-the-art single image reconstruction results on the ShapeNet dataset.

In the rest of this chapter we first introduce our generic latent variable model in Section 3.2,
which is then used to review and categorize previous work on shape inference from a single
image in Section 3.3. We then present our experimental results and comparisons in Section 3.4.

3.2 Probabilistic Framework for 3D Shape
Reconstruction

Below we present our generic latent variable model in Section 3.2.1, and describe the network
architectures used for our experiments in Section 3.2.2. Although the proposed probabilistic
model is agnostic to the underlying shape representation, we present it using a voxel grid
representation in accordance to our experimental setup.

3.2.1 Latent Variable Model for Single Image 3D Shape Inference
Probabilistic model. We consider a shape s as a uniform voxel occupancy grid of a predefined
resolution. Our task is to predict the shape s given an input image i, i.e. to model p (s|i).
While images and occupancy grids live in different spaces, both are representations of an
underlying object that has a 3D shape and an appearance. Using this observation, we assume
that an observed shape s has a latent parametrization z within a latent shape space of lower
dimension, that captures shape variations. We then define our latent variable model for single
image 3D shape reconstruction as:

p(s|i) =
∫
z
pθ(s|z, i) pφ(z|i) dz, (3.1)

where φ and θ are parameters of the model. This model consists of two modules: an image
informed latent variable prior pφ(z|i), and a decoder pθ(s|z, i) that predicts the shape s given
the image and the latent variables. Being a generic latent variable model, it allows us to
decouple and study different aspects of the single image 3D shape reconstruction task.

29

3. Probabilistic Reconstruction Networks for 3D Shape Inference

Image Conditioning Options. In Equation (3.1) both latent variable prior and decoder are
conditioned on the input image. If we drop the dependence on i from any module, we maintain
dependence of the shape s on the image i, and obtain two alternative models:

p(s|i) =
∫
z
pθ(s|z) pφ(z|i) dz, (3.2)

p (s|i) =
∫
z
pθ(s|z, i) pφ(z) dz. (3.3)

In the first case, we omit the image conditioning in the decoder pθ(s|z) and assume that the
image conditioned prior pφ(z|i) is sufficient to obtain a valid reconstruction by the decoder.
This dependency structure corresponds to an assumption of conditional independence of i and
s given z. In the second case, we leave the image dependence in the decoder pθ(s|z, i) but
use an unconditional prior for the latent variable pφ(z). This corresponds to an assumption
that i and z are a-priori independent. If we drop the image conditioning in both components,
the model becomes a purely generative latent variable shape model:

p(s) =
∫
pθ(s|z) pκ(z) dz. (3.4)

Latent Variable Sampling during Training. Due to the non-linear dependencies in the
integral in the models defined in equations (3.1)–(3.3), exact computation of the log-likelihood
and its gradient is intractable. We consider two alternative approaches to overcome this
difficulty. The first is to use a Monte Carlo approximation for Equation (3.1), as e.g . in
(Gordon et al., 2019):

ln p(s|i) ≈ ln 1
M

M∑
m=1

pθ(s|zm, i), zm ∼ pφ(z|i), (3.5)

where we make use of the re-parametrization trick (Kingma and Welling, 2014; Rezende et al.,
2014) to back-propagate the gradient of the log-likelihood w.r.t. φ through the sampling from
pφ(z|i).
Alternatively, we can use the variational inference framework (Kingma and Welling, 2014;
Rezende et al., 2014) to obtain a training signal based on more informed samples from the
latent variable. We introduce a variational approximate posterior qψ(z|s, i), which is learned
jointly with the prior and decoder by the maximization of the variational lower bound on the
log-likelihood for Equation (3.1):

L(φ, ψ, θ, s, i) = IEqψ(z|s,i)[log pθ(s|z, i)]−DKL(qψ(z|s, i) || pφ(z|i)) ≤ ln p(s|i). (3.6)

To evaluate this bound and its gradient, we sample from qψ(z|s, i), relying again on the
re-parametrization trick to ensure back-propagation. Since the samples are conditioned on the
shape, unlike the Monte Carlo approximation case, we expect this approach to be more sample
efficient. On the one hand, image conditioning in the posterior may be omitted, since the
posterior is already conditioned on the shape information. On the other hand, conditioning on
the image may in principle further improve the accuracy of the approximate posterior, as it is
based on more input information and more model parameters.
Deterministic Shape Model. We can obtain deterministic versions of the presented models
by considering z as a function of φ and, if required, i. Although this simplifies the models, it
also discards an important property. Typically, p(s|z) is factorized, with each voxel occupancy

30

3.2. Probabilistic Framework for 3D Shape Reconstruction

being modelled as an independent Bernoulli, e.g . (Choy et al., 2016; Girdhar et al., 2016). For
any deterministic latent shape vector it returns a fixed set of cell occupancy probabilities. In
case of z being a function of i, every input image produces a single possible set of occupancy
probabilities. However, any single image of a 3D object does not contain enough information
to deterministically define a single output shape, since it does not account for any possible
variations in shape geometry, associated with self-occlusion. Thus a distribution of a latent
variable that conditions the factorized data distribution can be used to induce dependencies
among the voxel occupancies to reflect the structured ambiguity resulting from partially
observed shapes. Or, in other words, different samples from an image-conditioned latent shape
distribution can correspond to different configurations of the occluded geometry of predicted
shapes.
In case of the variational training it is also possible to use a deterministic version of approximate
posterior, and substitute the KL-divergence in Equation (3.6) with a suitable similarity measure.
For example, the L2-norm of the difference between the output of image encoder pφ and the
approximate posterior qψ. If the prior and approximate posterior distributions are modelled
with factored Gaussians in probabilistic case, that corresponds to the distance between the
means of these Gaussians.
Merging Unconditional Generation with Reconstruction. The models presented above
can be trained along with a generative shape model, that may be of interest on its own, or
used to regularize the conditional model. To achieve this, we consider a variational bound on
the log-likelihood of an unconditional generative model:

L(κ, ψ, θ, s) = IEqψ(z|s)[log pθ(s|z)]−DKL(qψ(z|s) || pκ(z)) ≤ ln p(s), (3.7)

where p(s) =
∫
pθ(s|z)pκ(z)dz. Looking at Equation (3.6) and Equation (3.7), we observe that

if we omit image conditioning from the decoder and the approximate posterior in Equation (3.6),
and share their parameters in both conditional and unconditional models, we can obtain a
unified training objective:

L(κ, φ, ψ, θ, s, i) = IEqψ(z|s)[log pθ(s|z)]−
1
2DKL(qψ(z|s) || pκ(z))

− 1
2DKL(qψ(z|s) || pφ(z|i)),

(3.8)

which is the average of the lower bounds on the marginal likelihood on the shape s with and
without conditioning on the image. The term corresponding to the unconditional likelihood
can be viewed as a regularization that encourages z from the entire latent space to correspond
to realistic shapes, instead of just the z in the support of the conditional distributions p(z|i)
on latent coordinates given an input image. Note that in the generative model neither the
decoder pθ(s|z) nor the encoder qψ(z|s) are conditioned on the image. These can thus be
shared with the single image reconstruction model if the latter is not conditioned on the image
in these components.

3.2.2 Network Architectures
Although our probabilistic model is not representation specific, we focus on the voxel grid
shape representation, and leave the comparison to alternative representations for the future
work. Thus, we implement the different conditional distributions in our model as 2D and 3D
CNNs that output the parameters of distributions on the latent variable z, or on the voxel
occupancies. In particular,

31

3. Probabilistic Reconstruction Networks for 3D Shape Inference

• The unconditional Gaussian latent prior pκ(z) is characterized by κ that consists of
means and variances for all latent dimensions implemented as trainable parameters.

• The image conditioned prior pφ(z|i) is a 2D CNN, consisting of six blocks of pairs of
convolutions: a standard and a strided one, interleaved with batch normalization and
point-wise non-linearities, followed by two fully-connected layers. It processes input
images into the means and variances of a factored Gaussian on z.

• The shape conditioned variational posterior qψ(z|s, i) is a 3D CNN consisting of an initial
3D convolution and a series of four modified residual blocks (He et al., 2016a,b), each
using an additional 1×1×1 convolution instead of identity and feature map concatenation
instead of summation and each followed by 2×2×2 spatial average pooling. The final
convolutional features are fed to two additional fully-connected layers. This encoder
processes input shapes into the means and variances of a factored Gaussian on z. Image
conditioning in this and the next module is discussed further below.

• The 3D deconvolutional decoder pθ(s|z, i) is mirrored from the approximate posterior qψ,
with the pooling being substituted by the 2×2×2 upscaling by trilinear interpolations,
producing the parameters of Bernoulli distributions on the voxel occupancies from a
latent variable input.

Image conditioning in the two latter modules is inspired by the FiLM conditioning mecha-
nism (Perez et al., 2018). Intermediate 2D feature maps from the first five convolutional
blocks of the image encoder pφ(z|i) are averaged spatially, transformed by two additional
fully-connected layers into weights and biases, that are used to scale the outputs of each
corresponding batch-normalized collection of 3D feature maps resulting in one scaling operation
per each 3D residual convolutional network block in the shape encoder, the latent variable
decoder, or both. Instead of affine transformation used in FiLM, we use non-negative scaling
weights by predicting them in logarithmic scale, in our experiments this resulted in more stable
training and slightly better results. See Figure 3.1 for a schematic overview of the model
architecture.

To ensure fair comparison between the variations of the model we use identical architectures
for every component concurring in different models, except for additional fully-connected layers
associated with the different image conditioning options. When we include an unconditional
generative shape model and optimize Equation (3.8), we share the decoder pθ(s|z) and
the variational posterior qψ(z|s) between the conditional and unconditional models. Exact
architectures, training procedures and their hyperparameters are available on the implementation
code page.1

3.3 Related Work
In this section we review related work on single image 3D shape reconstruction, and relate it
to our generic latent variable model presented in the previous section.

Representations for 3D Shape Inference. The majority of works studying the inference-
based single image 3D shape reconstruction introduce new shape representations and suitable
neural network architectures. The seminal works (Choy et al., 2016; Girdhar et al., 2016)
used 3D CNNs to predict voxel occupancy grids. To reduce the computational complexity
of the voxel grid representation an architecture to process octrees computed on top of the
voxel grids was proposed in (Tatarchenko et al., 2017). The authors of (Richter and Roth,

1https://github.com/Regenerator/prns

32

https://github.com/Regenerator/prns

3.3. Related Work

2018) proposed to use a set of six depth maps to represent voxel grids and to combine a
series of such sets in a nested manner to model non-trivial shapes. 2D CNNs were combined
with fully-connected networks to output point clouds in (Su et al., 2017). These point clouds
were learned by optimizing Chamfer distance or differentiable approximation of earth mover’s
distance. In (Wang et al., 2018) the authors applied graph-convolutional networks (Bronstein
et al., 2017) to the mesh-based shape representation. Other work (Shin et al., 2018) proposed
to predict multiple depth maps and corresponding silhouettes and fuse them into meshes by
post-processing with Poisson reconstruction algorithm.
Although related in their overall goals, these approaches are difficult to compare since they
use target shapes approximated to different degrees. Ideally, a fair comparison across shape
representations should be performed while maintaining the same level of granularity across
representations, and for different levels, since it is possible that some representations work
better for rough shape reconstruction, while other are best for detailed reconstruction.
Image-Shape Consistency and Additional Data. Another significant stream of works
originates from the idea of ensuring consistency between input data and target shapes. Initial
work (Yan et al., 2016) introduced the consistency between 3D shapes and their silhouettes
produced by different viewpoints in a form of a loss function. Similar ideas were investigated
in (Wiles and Zisserman, 2017). This approach was expanded in (Tulsiani et al., 2017) by
the use of differentiable ray tracing in the loss function, ensuring correspondence of inferred
voxelized shapes to foreground segmentation masks and depth images. In (Wu et al., 2017)
the idea was developed even further and introduced a two-step reconstruction framework. The
first part of the model is trained to infer 2.5D shape sketches (unions of segmentation, depth
and normal maps) from images, while the second is separately trained to predict shapes from
2.5D sketches. Both components are then fine-tuned, using reprojection consistency.
A probabilistic framework for image generation conditioned on a latent shape variable and
an additional latent variable for the shape pose was proposed in (Henderson and Ferrari,
2018). This framework was used to train an underlying 3D mesh generator with the help of
differentiable rendering of 3D meshes into images. Differentiable point clouds (Insafutdinov
and Dosovitskiy, 2018) closed the consistency loop between inferred point clouds and input
images, by rendering point clouds as images and minimizing loss between such renderings and
input images.
Similarly to the previous class of models, these methods also enrich available training data
by considering different forms of additional data: camera information, 2.5D sketches, etc.
This, again, makes comparison problematic, since it is not always clear what the impact of the
additional training data is.
Relations to Our Framework. In addition to the work discussed above, given similarities
between VAEs and GANs (Hu et al., 2018), our work is also related to adversarial approaches
involving shape discriminators (Wu et al., 2016; Smith and Meger, 2017; Wu et al., 2018).
In Table 3.1 we organize related work in terms of how it fits into our generic probabilistic
reconstruction framework, abstracting away from implementations of various components.
Firstly, we group existing works with respect to the different image conditioning options.
Most works condition the latent variable. That usually corresponds to having a convolutional
image encoder inferring a latent vector or distribution. Others directly condition the target
data distribution. In that case, features from image encoders are somehow fused with
the intermediate features of 3D shape decoding subparts of networks. Besides the general
image conditioning structure, models differ in several other important properties: if they use

33

3. Probabilistic Reconstruction Networks for 3D Shape Inference

Dependencies Sampling Det. Disc. References

p(s|z)p(z|i) p(z|i)
3

7

(Choy et al., 2016; Yan et al., 2016; Wu et al., 2017)
(Tulsiani et al., 2017; Wiles and Zisserman, 2017)

(Tatarchenko et al., 2017; Shin et al., 2018)
(Richter and Roth, 2018; Insafutdinov and Dosovitskiy, 2018)

3 (Wu et al., 2018)

7
7 (Henderson and Ferrari, 2018)
3 (Wu et al., 2016; Smith and Meger, 2017)

p(s|z, i)p(z) p(z) 3
7

(Wang et al., 2018)
7 (Su et al., 2017)

p(s|z)p(z|i) q(z|s) 3
7

(Girdhar et al., 2016)
7 (Mandikal et al., 2018)

Table 3.1: Overview of how related work fits into our probabilistic reconstruction framework.
The first column indicates which components of corresponding models are conditioned by
input images; the second - how the latent variable is sampled/inferred during training; the
third - if a deterministic or probabilistic objective was used during training; the fourth - if
adversarial training is used with the help of a discriminator.

variational inference with the approximate shape conditional posterior of the latent variable
(that corresponds to using additional 3D shape encoder during training); if the variables of
the model are inferred deterministically from input images or are sampled from predicted
distributions (that also influences the choice of the loss functions during training); if the
adversarial training approach is used either instead or in combination with other training
procedures with the help of real/fake 3D shape discriminator.

We see that most previous works use a dependency structure where the latent variable is
inferred from the image, and the shape decoder only depends on the latent variable and not
on the image. Moreover, most works rely on deterministic models, except for GAN-based
approaches of (Wu et al., 2016; Smith and Meger, 2017), the point cloud based approaches
of (Su et al., 2017; Mandikal et al., 2018), and the mesh based method of (Henderson and
Ferrari, 2018). Finally, only TL-Networks (Girdhar et al., 2016) and 3D-LMNet (Mandikal
et al., 2018) make use of the variational inference (or its deterministic analogue) for shape
modelling.

3.4 Experiments
In this section we present the experimental setup, our quantitative and qualitative evaluation
results, as well as our analysis of these results.

3.4.1 Dataset, evaluation metrics, and experimental details
Dataset. We evaluate PRNs on a subset of the ShapeNet dataset (Chang et al., 2015)
introduced in (Choy et al., 2016). It contains about 44k 3D shapes from 13 major categories
of ShapeNet dataset represented as voxel grids of resolution 323, as well as renderings from 24

34

3.4. Experiments

Dependencies Sampling Deterministic Shape model IoU↑ (0.5) IoU↑ (0.4)
p(s|z)p(z|i) p(z|i) 63.7 65.0
p(s|z, i)p(z|i) p(z|i) 64.6 65.6
p(s|z, i)p(z) p(z) 64.0 65.0
p(s|z)p(z|i) q(z|s) 65.9 66.2
p(s|z, i)p(z|i) q(z|s) 64.8 65.3
p(s|z)p(z|i) q(z|s, i) 65.4 65.8

p(s|z)p(z|i) q(z|s) ! 63.4 63.7
p(s|z)p(z|i) q(z|s) ! 65.6 66.1

Table 3.2: Evaluation results for variations of PRN. Monte Carlo training uses samples from
the unconditional or image-informed prior, while variational training relies on samples from
the shape-conditioned approximate posterior. We report IoU under two occupancy probability
thresholds τ .

different randomized viewpoints as 1372 images. Following Choy et al ., we use 80% of the
shapes from each category for training and remaining shapes for testing.
Evaluation Metrics. We evaluate using the standard intersection-over-union metric defined
in Equation (1.1), which averages the per-category IoU metric between the inferred shape and
the ground-truth voxel representation (Choy et al., 2016). In addition, to allow comparison to
recent work based on point-cloud and mesh based representations, we also report the Chamfer
distance and earth mover’s distance, defined in Equation (1.2) and Equation (1.3), computed
using the code of (Sun et al., 2018), where we removed the square root from the distance
computations in CD to make it comparable to the related work. In particular, each ground
truth and predicted voxel grid is mapped to a point cloud by sampling the surface induced
using the marching cubes algorithm (Lewiner et al., 2003). We then compute the CD and
EMD on the resulting point clouds.
Training and Evaluating. When using either Monte Carlo approximation or a variational
objective function, we always use a single sample to compute the gradients during training. A
unified training protocol is used for all the models: all components are trained simultaneously
(contrary to (Girdhar et al., 2016; Wu et al., 2018; Mandikal et al., 2018)), with the AMS-
Grad (Reddi et al., 2018) optimizer with decoupled weight decay regularization (Loshchilov
and Hutter, 2019) with step-like scheduling for learning rate and weight decay parameter, and
restarts of gradient moments accumulation at the beginning of each step.
During testing, we use a deterministic approach. In particular, we take the means of the
conditional distributions rather than samples from them. We found this to significantly improve
the reconstruction quality, compared to sampling.

3.4.2 Experimental results
Evaluation of PRN Variants. To explore the various possibilities of our general latent
variable model, we consider three options to condition on the image: (i) using the latent
space to carry all image information: p(s|z)p(z|i), (ii) using additional conditioning of the
decoder on the image: p(s|z, i)p(z|i), and (iii) using an uninformed prior on the latent variable:

35

3. Probabilistic Reconstruction Networks for 3D Shape Inference

0 20 40 60 80 100
Intersection-over-Union

0

5000

10000

15000

20000

25000

30000

35000

40000

Im
ag

es
Monte Carlo
Variational
Deterministic

Figure 3.2: Histogram of IoU values on the ShapeNetAll test set for the Monte Carlo, variational,
and deterministic models. See text for details. Bins of size 10 from 0 to 10, then 10 to 20,
etc .

p(s|z, i)p(z). To train the models we either approximate the integral in Equation (3.1) directly
with Monte Carlo samples from the prior on z, or with a variational lower bound and samples
from the variational posterior. We also test a deterministic model, where the distribution on
the latent variable is replaced by a deterministic function. Finally, we consider the option to
train the model jointly with an an unconditional generative model. In Table 3.2 we present
the results, using two thresholds τ on the voxel occupancy probability: the neutral 0.5, and
following (Choy et al., 2016) the looser 0.4 which overall leads to improved IoU scores.
In case of the Monte Carlo approximation (top three rows), additional image conditioning in
the decoder improves the results. Conditioning both the latent variable prior and the decoder
on the image achieves best results, suggesting that these different pathways to use the image
are complementary.
The use of variational training consistently improves the results over the Monte Carlo ap-
proximation. In this case, the additional image conditioning of the decoder or the variational
posterior, see line five and six, is not effective and even somewhat reduces the performance.
This is contrary to the results obtained with Monte Carlo sampling; in the latter case the
sampling inefficiency is probably partially compensated by the additional conditioning pathway.
Variational inference leads to more accurate samples, which obviates the need for the additional
image conditioning (at least for the chosen mechanism of the additional image conditioning).
We also consider a deterministic variant of our best performing model, which resembles the
TL-network of (Girdhar et al., 2016). The results show that probabilistic handling of the
latent variable reduces overfitting in the model and leads to IoU of 2.5 points higher. Finally,
we also tested the training with a joint generative shape model, which TL-Networks used as
pre-training. Although we did not observe a significant effect due to the joint training with a

36

3.4. Experiments

generative shape model, it does offer additional functionality by being able to sample shapes,
or compute their likelihoods under the model.
In Figure 3.2 we provide a histogram of the IoU scores obtained across the shapes in the
ShapeNet test set using three of the model evaluated in Table 3.2:

• Using p(v|z)p(z|i), with Monte Carlo training (Table 3.2, row 1).

• Using p(v|z)p(z|i), with variational training (Table 3.2, row 4).

• Using p(v|z)p(z|i), with deterministic training (Table 3.2, row 7).

For each shape in the test set there are 24 views, giving a total of about 210k shape inferences.
The histograms show that the variational learning approach leads to more accurate reconstruc-
tions, leading to the largest number of reconstructed shapes in the last three bins for shape
with > 70% IoU. For all other bins of less accurate results, the variational method has the
smallest number of shapes. Compared to the deterministic model, Monte Carlo training leads
to more accurate reconstructions, but also to more very poor reconstructions.
Comparison to the State of the Art. In Table 3.3 we compare to earlier state-of-the-
art approaches. All methods use the same input images, but use slightly different image
preprocessing: 3D-R2N2 uses random cropping, 3D-LMNet central cropping, AtlasNet crops
and resizes, while PSGN and Pixel2Mesh resize the image. As OGN, we use original images,
but also add a grey-scale version of each image as a fourth input channel.
In Table 3.3 we report Chamfer distance and earth mover’s distance computed for two numbers
of both predicted and ground truth points and two different data normalization scales. We do
it for the ease of comparison with different groups of related works. We, firstly, compute the
metrics for 1024 ground truth and predicted points and rescale point clouds so that the original
3D shapes fit into unit cubes, which corresponds to the evaluation setup of (Mandikal et al.,
2018). Secondly, we evaluate for 2500 ground truth and predicted points and rescale clouds
so that the original 3D shapes fit into unit radius spheres to properly compare to AtlasNet
and Pixel2Mesh. The second scale is approximately two times larger compared to the first

Model Image res. Output IoU↑ CD↓ EMD↓
3D-R2N2 (Choy et al., 2016) 1272 voxels 323 56.0 — —
OGN (Tatarchenko et al., 2017) 1372 voxel octrees 323 59.6 — —
PSGN (Su et al., 2017) 1282 points 1024 64.0 5.62 7.75
3D-LMNet (Mandikal et al., 2018) 1282 points 1024 — 5.40 7.00
PRN∗ 1372 voxels 323 66.2 4.42 6.32
AtlasNet (Groueix et al., 2018) 2242 points 2500 — 53.4 12.54
Pixel2Mesh (Wang et al., 2018) 2242 meshes 2466 — 59.1 13.80
PRN† 1372 voxels 323 66.2 75.6 11.00

Table 3.3: Comparison of PRN to the state-of-the-art. CD and EMD are multiplied by 100.
For proper comparison PRN results are presented for two different data normalization: ∗ -
point clouds obtained from ground truth and reconstructed voxel grids are scaled to fit into
unit cubes, † - point clouds are scaled to fit into unit radius spheres.

37

3. Probabilistic Reconstruction Networks for 3D Shape Inference

image input ground truth PRN MC PRN var. PRN var. det.

12.8 74.0 45.5

7.8 68.5 17.3

72.7 87.6 30.4

48.9 43.9 47.2

85.4 86.9 23.0

Figure 3.3: Qualitative reconstruction results for three variants of PRNs. The IoU metric is
stated near each reconstruction.

one, which translates into approximately two times larger distances between points d. Given
that CD is proportional to 2d2 and EMD to d, such a difference in the second scale should
increase the metric values approximately eight and two times accordingly.
It is important to underline that both CD and EMD depend on the number of predicted and
ground truth points used for evaluation. Larger numbers of points decrease the distances
between closest points and result into lower metric values. For the reference, we recomputed CD
using 1024 predicted and 16384 ground truth points and obtained a better value: 3.90. That
underlines the need for unified evaluation protocol among different models when evaluating
for these metrics.
Our PRN obtains excellent results, and significantly improves over previous state-of-the-
art results in terms of IoU and EMD, including methods based on point cloud and mesh
representations. Point-based approaches, such as AtlasNet, use loss functions based on the
Chamfer distance, and so naturally perform well in terms of this metric, but this does not per se
transfer to better performance in the other metrics. In our case, we do not explicitly optimize
for either of these metrics, relying on the binary cross-entropy for the voxel occupancies instead,
and yet obtain best results in two of the three metrics.
Qualitative Reconstruction Results. In Figure 3.3 we provide a selection of qualitative
reconstruction results. We show results for the models in rows one, four and seven in Table 3.2,

38

3.5. Conclusion

i.e. with the p(s|z)p(z|i) dependency structure, using Monte Carlo (PRN MC) and variational
(PRN var.) training, and the deterministic version of the latter (PRN var. det.). We show
four examples where the variationally trained model is the best, and one case where it is the
worst. Overall, the variational model output fewer failed reconstructions, as well as more
detailed reconstructions, compared to more failures and over simplified reconstructions from
the model trained with Monte Carlo. For reference, the average IoU score of the variationally
trained model is 66.2 (median 69.9), which corresponds to a fairly accurate reconstruction
level, in particular given the challenging nature of the task. We also provide randomly sampled
examples of reconstructions in Figure 3.4.

3.5 Conclusion
In this chapter we presented Probabilistic Reconstruction Networks, a generic probabilistic
framework for 3D shape inference from single image. This framework naturally decouples
different aspects of the problem, including the shape representation, the image conditioning
structure, and the use of the latent shape space. In our experiments with voxel-grid representa-
tions, we systematically explored the impact of image conditioning, Monte Carlo vs. variational
likelihood approximation for training, the stochastic nature of the latent variable, and joint
training with a generative shape model. We obtained single image shape reconstruction results
that surpass the previous state of the art in terms of the IoU and EMD performance metrics,
and outperform recent work based on point-cloud and mesh-based representations.
Given the interpretation of the inference-based reconstruction as an instance of conditional
generation, future work might include further adaptation of the generative modelling approaches
to the task, as well as the investigation of different shape representations within the proposed
framework.

39

3. Probabilistic Reconstruction Networks for 3D Shape Inference

input image ground truth PRN MC PRN var. PRN var. det

95.9 90.5 91.8

56.4 50.5 45.2

98.1 83.4 73.3

72.3 66.9 68.0

56.0 57.7 49.5

55.1 44.0 51.4

88.1 90.0 81.9

52.2 99.7 93.7

59.0 79.5 65.3

85.9 93.2 96.0

Figure 3.4: Randomly sampled reconstructions with three variants of PRNs. The IoU metric is
stated near each reconstruction.

40

CHAPTER 4
Discrete Point Flow Networks for
Efficient Point Cloud Generation

Generative models have proven effective at modeling 3D shapes and their statistical variations.
In this chapter we investigate their application to point clouds, a 3D shape representation
widely used in computer vision for which, however, only few generative models have yet
been proposed. We introduce a latent variable model that builds on normalizing flows with
affine coupling layers to generate 3D point clouds of an arbitrary size given a latent shape
representation. To evaluate its benefits for shape modeling we apply this model for generation,
autoencoding, and single-view shape reconstruction tasks. We improve over recent GAN-based
models in terms of most metrics that assess generation and autoencoding. Compared to recent
work based on continuous flows, our model offers a significant speedup in both training and
inference times for similar or better performance. For single-view shape reconstruction we also
obtain results on par with state-of-the-art voxel, point cloud, and mesh-based methods.
This chapter is based on the following publication:
Klokov, R., Boyer, E., and Verbeek, J. (2020). Discrete point flow networks for efficient point
cloud generation. In ECCV.

4.1 Introduction
Generative shape models are used in numerous computer vision applications where they allow
to encode 3D shape variations with respect to different attributes, such as shape classes or
shape deformations, as well as to infer shapes from partial observations, for instance from a
single or a few images. Central to shape models is the representation chosen for shapes that
can be extrinsic, for example the ubiquitous voxels and octrees, or intrinsic as with meshes and
point clouds. While extrinsic representations enable relatively straightforward extensions of 2D
deep learning techniques to 3D, they suffer from their inherent trade-off between precision and
complexity. This is why 3D shapes are often represented using intrinsic models, among which
point clouds are a natural and versatile solution, serving as a basis for many 3D capturing
methods, including most multi-view stereo and range sensing methods, e.g . kinect (Zhang,
2012).
Following the success of CNNs for 2D computer vision problems, many deep learning models
have been proposed that can handle 3D data. This includes works on voxel grids (Maturana

41

4. Discrete Point Flow Networks for Efficient Point Cloud Generation

Figure 4.1: Top: Point clouds sampled from DPF-Net for the ShapeNet classes airplane, car,
and chair. Middle: Latent space interpolation between two point clouds from the test set.
Bottom: Deformation of points across the flow steps.

and Scherer, 2015; Wu et al., 2015; Choy et al., 2016; Girdhar et al., 2016; Brock et al.,
2016; Wu et al., 2016; Graham et al., 2018; Klokov et al., 2019), octrees (Riegler et al., 2017;
Tatarchenko et al., 2017), meshes (Monti et al., 2017; Verma et al., 2018; Wang et al., 2018;
Henderson and Ferrari, 2018), point clouds (Qi et al., 2017a; Fan et al., 2017; Klokov and
Lempitsky, 2017; Qi et al., 2017b; Insafutdinov and Dosovitskiy, 2018; Mandikal et al., 2018;
Wang et al., 2019a), and implicit functions (Michalkiewicz et al., 2019; Park et al., 2019).
While they provide effective tools to build predictive models of 3D shapes, e.g . from a single
image, we investigate in this paper the less extensively explored and more generic problem of
probabilistic generative 3D shape modeling.

Significant advances have been made in generative modeling of natural images using deep
neural networks with convolutional architectures. These models have been extensively studied
to model natural images, using convolutional network architectures. Consequently, they can
easily be adapted to generative shape models which are based on extrinsic representations,
using regular 3D convolutional layers (Wu et al., 2016; Brock et al., 2016; Klokov et al., 2019).
On the other hand, their extensions to intrinsic representations, such as point clouds and
meshes, are less obvious and, to the best of our knowledge, so far, only Yang et al . (Yang
et al., 2019) have studied generative models from which arbitrary size point clouds can be
sampled without any conditioning information.

We explore a hierarchical latent variable model that treats the points as exchangeable variables,
which allows us to model and sample point clouds of an arbitrary size. Within this framework,
each point cloud is considered as a sample from a shape-specific distribution over the 3D
surface of the object, and these distributions are embedded in a latent space. To sample
a point cloud, first, a vector is sampled in the latent shape space, and then, any desired
number of 3D points can be sampled i.i.d. conditioned on the latent shape representation.
Our model shares the high-level structure with PointFlow (Yang et al., 2019), but differs in
the underlying network architectures, reducing the training and sampling time by more than
an order of magnitude. In particular, our model builds on discrete normalizing flows with
affine coupling layers (Dinh et al., 2017) rather than continuous flows, and FiLM conditioning
layers (Perez et al., 2018) to construct a flexible density on 3D points given the latent shape
representation. In Figure 4.1 we illustrate diverse point clouds sampled from our class-specific
models, interpolation between point clouds in the learned latent shape space, and the sequential

42

4.2. Related work

process by which the discrete normalizing flow warps the points to obtain the final shape.
We evaluate generative and autoencoding capabilities of our model, as well as its use for single-
view shape reconstruction. We obtain similar or better performance compared to GAN-based
models in terms of metrics that assess generation and autoencoding. Compared to recent
work based on continuous flows, our model offers a significant speedup, for similar or better
performance. For single view reconstruction our model performs on par with state-of-the-art
methods, yet allows to reconstruct with arbitrarily large point clouds. Moreover, we analyze
various design choices regarding data splitting and normalization.

4.2 Related work
Generative Models. Deep neural networks have sparked significant progress in generative
modeling. The most widely adopted models are variational autoencoders (VAEs) (Kingma
and Welling, 2014; Rezende et al., 2014), generative adversarial networks (GANs) (Goodfellow
et al., 2014; Karras et al., 2018), and normalizing flows (Deco and Brauer, 1995; Dinh et al.,
2017). All three approaches share the basic principle of defining a latent variable z with a
simple prior, e.g . unit Gaussian, and construct a complex conditional p(x|z) on data x by
means of deep neural networks. Maximum likelihood training of the resulting marginal p(x) is
generally intractable due to the non-linearities. To train the model, VAEs rely on an amortized
inference network that produces a variational posterior q(z|x). GANs, on the other hand, use a
discriminator network to distinguish training examples and model samples, and use it as a signal
to train the generative model. Alternatively to previous approaches, normalizing flow models
rely on invertible neural network architectures to avoid the intractability of the marginalization
altogether. In this case, the likelihood can be computed exactly by the means of the change
of variable formula, and latent variables can be inferred deterministically. A variety of different
normalizing flows has recently been proposed, see e.g . (Rezende and Mohamed, 2015; Kingma
et al., 2016; Dinh et al., 2017; Chen et al., 2018; Kingma and Dhariwal, 2018; Behrmann
et al., 2019; Grathwohl et al., 2019). See (Kobyzev et al., 2019; Papamakarios et al., 2019)
for recent comprehensive reviews on normalizing flows.
Affine coupling layers (Dinh et al., 2017) allow for a computation of the inverse in a closed
form that is as efficient to compute as the function itself. Within this approach, the activations
A` in layer ` are partitioned in two groups, A`1 and A`2. The first group is unchanged, and used
to update the other group by scaling and translation, i.e. A`+1

2 = A`2�s(A`1)+ t(A`1), where �
denotes element-wise multiplication, and s(·) and t(·) can be arbitrary (non-invertible) neural
networks. The inverse is trivially obtained by subtraction and division, since A`+1

1 = A`1. Many
coupling layers with changing variable partitioning can be stacked to construct a complex
invertible flow. Training and sampling the model require to compute the flow reverse directions,
and since affine coupling layers are equally efficient in both directions, it means that both
processes are fast. This is in contrast to some other normalizing flows, such as invertible
ResNets (Chen et al., 2018; Behrmann et al., 2019), or planar and radial flows (Rezende and
Mohamed, 2015), for which the inverse flow exists, but does not have a closed form.
Neural ordinary differential equations were recently proposed as a generalization of deep residual
networks (ResNets, (He et al., 2016a,b)) in the limit of infinite depth (Chen et al., 2018).
In a ResNet the activations A`+1 in a layer ` + 1 are defined as the sum of the activations
A` of the previous layer plus a residual: A`+1 = A` + f`(A`), where f`(·) consists of a few
non-linear layers. In the Neural-ODE the residual is interpreted as a continuous time dynamic
∂A`/(∂`) = f(A`, `). Standard ODE solvers can be used to perform the propagation both

43

4. Discrete Point Flow Networks for Efficient Point Cloud Generation

forwards and backwards in time. The authors of (Chen et al., 2018) demonstrated that Neural
ODEs can be used to define normalizing flow, which are referred to as “continuous normalizing
flows”.
Several conditional flow-based models have recently been proposed for vision tasks. In (Lu
and Huang, 2020) flows conditioned on an input image are used for image segmentation,
inpainting, denoising, and depth refinement. Their model is trained directly via maximum
likelihood estimation, as their model does not include a global latent variable. Similarly, C-
Flow (Pumarola et al., 2020) does not involve a global latent variable, and rather than treating
point clouds as sets, it sorts the points to a regular pixel grid, and applies 2D normalizing flows
for single image point cloud reconstruction. A conditional VAE model, where flow is used to
define a flexible distribution on the latent variable given the conditioning data was introduced
by (Bhattacharyya et al., 2019). This is similar in structure to our model for single view
reconstruction. Their experiments, however, concern the prediction of point trajectories in 2D
for hand-written digits, and traffic participants such as pedestrians and cars. The generative
image model of (Lucas et al., 2019) is related to ours, as a VAE model with a flow-based
decoder. The application contexts, RGB images vs. point clouds, and resulting architectures
are, however, quite different.
Point Cloud Generating Networks. Deep learning models for point cloud processing have
received significant attention in recent years, see e.g . (Qi et al., 2017a; Klokov and Lempitsky,
2017; Qi et al., 2017b; Zaheer et al., 2017; Achlioptas et al., 2018; Groueix et al., 2018; Su
et al., 2018; Li et al., 2018a; Yang et al., 2019). The PointNet architecture (Qi et al., 2017a)
was the first to propose a deep network for recognition of point clouds. The points are first
processed in an identical and independent manner by an MLP, and global max-pooling is used
to aggregate the per-point information. The global features are further processed by a second
MLP, and either directly used for classification, or appended to the local features for semantic
segmentation. KD-Net (Klokov and Lempitsky, 2017) and PointNet++ (Qi et al., 2017b)
add a notion of spatial proximity to the architecture, replacing global max-pooling with local
aggregation. While these models can interpret point clouds, they cannot generate them.
Early point cloud generating networks (Fan et al., 2017; Achlioptas et al., 2018) produce
point clouds with a fixed number of points n, by using a network with n × 3 outputs.
AtlasNet (Groueix et al., 2018) mitigates this limitation by using a set of k square 2D patches,
and deforming each of these non-linearly by using k patch-specific MLPs that takes as input
2D patch coordinates as well as a global shape representation. By sampling more points from
the 2D patches, a denser 3D point cloud is obtained. The shape vector is obtained from a
point cloud encoder network (for autoencoding), or from a CNN trained for single-view image
reconstruction. The point cloud GAN (PC-GAN, (Li et al., 2018a)) is related, but uses a single
generator that takes a global shape vector as input together with (arbitrarily many) samples
from a unit Gaussian. Similarly to (Fan et al., 2017), AtlasNet is a conditional model, that
generates point clouds given another point cloud or an image. In contrast, PC-GAN includes
a second generator that models a distribution on the latent shape space, so it can generate
point clouds in an unconditional manner.
The high-level hierarchical latent variable structure of PointFlow (Yang et al., 2019) is similar
to PC-GAN. Rather than using adversarial training, however, they train the model using a
VAE-like approach in which an inference network produces an approximate posterior on the
latent shape representation. Moreover, they use continuous normalizing flows (Chen et al.,
2018) to define a prior on the shape space, and a conditional distribution on 3D points given
a latent shape representation. Our work is based on the same high-level VAE-like structure as

44

4.3. Discrete Point Flow Networks

PointFlow, but differs in the design of the network components. Most importantly, we make
use of efficient “discrete” affine coupling layers, avoiding the use of computationally expensive
ODE solvers for training and generation needed for the “continuous” flows, resulting in a
significant speed-up to train and sample from the model. We describe our “Discrete Point
Flow Networks” in the next section.

Despite their mathematical elegance, it is not clear whether continuous normalizing flows are to
be preferred over their discrete counterparts in terms of computational efficiency and modeling
capabilities. We explore a model similar to PointFlow, but build upon computationally much
more efficient discrete normalizing flows with affine coupling layers.

4.3 Discrete Point Flow Networks
In this section we first present the high-level hierarchical latent variable model, followed by a
more detailed description of the model components in Section 4.3.2.

4.3.1 Hierarchical Latent Variable Model for Point Cloud
Generation

Our goal is to define a generative model over point clouds of variable size that represent 3D
shapes. The defining characteristics of point clouds are that the number of points may vary
from one cloud to another, and that there is no inherent ordering among the points.

Let X = {x1, . . . , xn} be a point cloud with xi ∈ IRd, where d = 3 for point clouds for
3D shapes. The dimension d may be larger in some cases, e.g . d = 6 when modeling 3D
points equipped with surface normals. An exchangeable distribution is one that is invariant to
permutations of the data, i.e.

p(x1, . . . , xn) = p(xπ1 , . . . , xπn), (4.1)

where π is a permutation of the integers 1, . . . , n. Note that independence implies exchange-
ability, but the reverse does not hold.

De Finetti’s representation theorem (Finetti, 1937) states that any exchangeable distribution
can be written as a factored distribution, conditioned on a latent variable:

p(X) =
∫
pψ(z)

∏
x∈X

pθ(x|z)dz. (4.2)

In the case of 3D point cloud modeling, the latent variable z can be thought of as an element
in an abstract shape space, sampled from a prior pψ(z). This construction allows for point
clouds of different cardinality, since conditioned on the shape representation z, the elements
of the point cloud are sampled i.i.d. Given this general framework, also adopted in (Li et al.,
2018a; Yang et al., 2019), the challenge is to:

1. Design a flexible model so that the conditional distribution pθ(x|z) concentrates around
the surface of the object represented by z.

2. Mitigate the intractability of the integral in Equation (4.2) during training when using,
e.g ., deep neural networks to construct pθ(x|z).

45

4. Discrete Point Flow Networks for Efficient Point Cloud Generation

w finf b

Latent Shape
Variable

y2

y1

y3

Inflation
MLP

Conditioning
MLP

Deflation
MLP

y2

y1

y3

Figure 4.2: Architecture of our conditional affine coupling layer applied to a single 3D point,
with red dimension of the point being updated given the blue ones.

Before we consider the design of pθ(x|z) and pψ(z) in Section 4.3.2, we describe how to deal
with the integral in Equation (4.2) using the VAE framework (Kingma and Welling, 2014).

We efficiently approximate the intractable posterior p(z|X) with an amortized inference network
qφ(z|X). The approximate posterior allows us to define a variational bound on the likelihood
in Equation (4.2) using Jensen’s inequality (Bishop, 2006):

ln p(X) ≥
∑
x∈X

IEqφ(z|X)[ln pθ(x|z)]−DKL(qφ(z|X)||pψ(z)) ≡ −F . (4.3)

The first term aims to reconstruct the points x ∈ X using shape representations sampled from
qφ(z|X), whereas the second term ensures that the approximate posterior cannot arbitrarily
deviate from the prior. Following (Kingma and Welling, 2014; Rezende et al., 2014) we use
Monte Carlo sampling and the reparametrization trick to jointly minimize the loss F over θ,
ψ and φ using stochastic gradient descent. The distributions qφ(z|X), pθ(x|z), and pψ(z)
and the underlying network architectures that make up the loss are detailed in the following
section.

4.3.2 Design of Model Components
Shape-conditional Point Distribution. The density on points for a given latent shape,
pθ(x|z), needs to be flexible enough to concentrate its support around the surface of the
3D shape. To this end we construct a conditional form of normalizing flows based on affine
coupling layers (Dinh et al., 2017).

Let y ∈ IR3 denote a latent variable for each 3D point x, with a Gaussian conditional distribution
given by pθ(y|z) = N (y; νθ(z), diag (ωθ(z))), where νθ(z) and ωθ(z) are non-linear functions
of z. In the affine coupling layer, we partition the coordinates of y in two groups, yc and yu,
and update yu by affine transformation conditioned on yc and the latent shape representation
z, i.e. xu = yu � sθ(yc, z) + tθ(yc, z), while leaving the conditioning coordinates unchanged,
i.e. xc = yc. To achieve the desired expressivity, we stack many affine coupling layers, cycling
through the six possible partitionings of the three coordinates. Each coupling layer in the
resulting flow fθ(x; z) is conditioned on the latent shape representation z by the means of the
FiLM conditioning mechanism (Perez et al., 2018) in the scaling and translation functions.

In practice, the scaling and translation functions are implemented by MLPs, which inflate the
dimensionality of yc to Dinf, and then deflate it to the dimensionality of yu. Simultaneously, a
separate MLP takes the latent variable z and outputs conditioning coefficients of size Dinf, with

46

4.4. Experiments

which we multiply and shift the inflated hidden units in the scaling and translation functions.
In Figure 4.2 we provide an overview of the architecture of our conditional coupling layers.
Using fθ(x; z) to denote the invertible flow network that maps x to y, the change of variable
formula allows to write the density of 3D points x given z as:

pθ(x|z) = N (fθ(x; z); νθ(z), diag (ωθ(z)))
∣∣∣∣∣det

(
∂fθ(x; z)
∂x>

)∣∣∣∣∣ , (4.4)

which enters into the loss defined in Equation (4.3).
Amortized Inference Network. The amortized inference network qφ(z|X) takes a point
cloud and produces a distribution on the latent shape representation. We use a permutation
invariant design based on the PointNet architecture for shape classification (Qi et al., 2017a).
As an output, the model produces the mean and diagonal covariance matrix of a Gaussian on
z ∈ IRD, i.e. qφ(z|X) = N (z;µφ(X), diag (σφ(X))).
Latent Shape Prior. Rather than using a unit Gaussian prior in the latent space, as is
common in deep generative models, we learn a more expressive prior pψ(z) by means of another
normalizing flow gψ(z) based on affine coupling layers, similar to (Chen et al., 2017; Yang
et al., 2019). In our experiments it reduces the KL divergence in Equation (4.3) by adapting
the prior to fit the marginal posterior ∑X qφ(z|X), rather than forcing the inference network
to induce a unit Gaussian marginal posterior, resulting in improved generative performance.
Using this construction, we obtain the KL divergence as:

DKL(qφ(z|X)||pψ(z)) = IEqφ(z|X)[ln pψ(z)]−H(qφ(z|X)) (4.5)

= IEqφ(z|X)

[
lnN (gψ(z); η, diag (κ)) + ln

∣∣∣∣∣det
(
∂gψ(z)
∂z>

)∣∣∣∣∣
]
− 1> ln σφ(X), (4.6)

where we use Monte Carlo sampling to approximate the expectation.
Single-View Reconstruction Architecture. For single-view reconstruction, we follow (Klokov
et al., 2019) and define the model as:

p(X|v) =
∫
pψ(z|v)

∏
x∈X

pθ(x|z)dz, (4.7)

where we replaced the latent shape prior pψ(z) with an image conditioned one, pψ(z|v). In this
case, the latent shape flow gψ does not deform a parametric Gaussian, but rather a Gaussian
whose mean and variance are computed from an image v by a CNN encoder. We train the
model by optimizing a variational bound similar to Equation (4.3), and using the PointNet
inference network to obtain an approximate posterior. Figure 4.3 provides an overview of the
data flow between the model components for training and point cloud generation.

4.4 Experiments
We first describe our experimental setup in Section 4.4.1, and then present our experimental
results for point cloud autoencoding, generation, and single-view reconstruction.

4.4.1 Data and Metrics
Datasets. In order to provide a comparison with prior academic studies on shape generation,
we perform experiments on subsets of ShapeNet (Chang et al., 2015) dataset. For autoencoding

47

4. Discrete Point Flow Networks for Efficient Point Cloud Generation

Point cloud
X

3D points
x

Latent shape
z

Shape flow
g(z) Gaussian prior

Point flow
f(x)Gaussian prior

Inference net
PointNet encoder

Image
v

CNN image
encoder

Figure 4.3: Overview of DPF-Net: arrows indicate data flow to sample new point clouds (blue)
and point cloud autoencoding (red), black arrows are used in both processes. During training
flow modules are traversed in the reverse direction. For single-view reconstruction the shape
prior is conditioned on the image (dashed).

we use the ShapeNetCore.v2, containing roughly 55k meshes from 55 classes. In the generative
setting, following (Yang et al., 2019), we use single class subsets (airplanes, cars, and chairs)
from the same dataset. For the single-view reconstruction task we used a subset of 13 major
classes of ShapeNetCore.v1 from (Choy et al., 2016), which comes with rendered 137× 137
images from 24 randomized viewpoints per shape. We substitute the voxel grids provided by
Choy et al . with the original meshes to sample point clouds for training and evaluation.
Data Split. For autoencoding we use a random split of the data, distributed across train,
validation, and test sets in a 70/10/20 proportion per class. In the generative setting, we
use single class subsets from the same random split. By using a random data split per class
we intentionally deviate from the official ShapeNet data split, used in (Yang et al., 2019),
which splits into significantly different data subsets per class. For example, in case of airplanes,
training and validation sets mostly contain regular passenger aircraft, while the test set is
populated with fighter jets and spaceships. While such a split could be useful in the context
of autoencoding to assess out-of-distribution generalization, a significant mismatch between
training and test set is undesirable for evaluation of generative models which are supposed to
fit the training distribution. For single-view reconstruction we use the train/test split from
Choy et al. (2016).
Normalization. The original meshes in the ShapeNet are not normalized for position and
scale which negatively affects the reconstruction quality. We therefore, additionally use a
normalized version of the dataset, where we preprocess each mesh separately so that the
sampled point clouds are (approximately) zero mean, and tightly fit in a unit diameter sphere.
For generative experiments we use models trained and evaluated on normalized data. In case of
the autoencoding, we report results for two separate DPF-Nets trained either on non-normalized
or normalized data, where in the latter case we rescale point clouds to original scales before
evaluation for comparability with the rest of the models. While using non-normalized data,
similarly to (Yang et al., 2019), we perform global normalization across all shapes by translation
to the aggregate center of all the training shapes, but do not rescale to unit global variance.
For single-view reconstruction we compare models trained on normalized data, but evaluate
them in the unit radius sphere scale for comparability with related work.
Point clouds are uniformly sampled from the meshes by sampling polygons with a probability
proportional to their area, and then uniformly sampling a point per each selected polygon.
Unlike previous works using precomputed point clouds, we perform this procedure on the fly,

48

4.4. Experiments

thus obtaining a different random point cloud each time we process a 3D shape. During both
training and evaluation we sample two point clouds for each shape: one is used as input to
the inference network, the other for optimization or evaluation of the decoder. We use 2, 048,
2, 048, and 2, 500 points for training and quantitative evaluation for generative, autoencoding,
and single-view reconstruction tasks accordingly.

Evaluation Metrics. We follow the standard protocol (Achlioptas et al., 2018; Fan et al.,
2017; Yang et al., 2019) and use Chamfer distance (CD) and earth mover’s distance (EMD) to
assess point cloud reconstructions. To measure the generative properties we follow (Achlioptas
et al., 2018; Yang et al., 2019), and use metrics to compare equally sized sets of generated
and reference point clouds:

• The Jensen-Shannon divergence (JSD) compares the marginal distributions obtained
by taking the union of all generated (or reference) point clouds, and quantizing the
distributions to a voxel grid.

• The Minimum matching distance (MMD) computes the average distance of reference
point clouds to their nearest (in CD/EMD) generated point cloud.

• Coverage (COV) is the fraction of reference point clouds matched by minimum CD/EMD
distance by at least one generated point cloud.

• 1-nearest neighbour accuracy (1-NNA) classifies generated and reference point clouds as
belonging to either of these two sets using a leave-one-out 1-nearest neighbor classifier
(using CD/EMD). Ideal accuracy is 50%.

For single-view reconstruction we additionally report F1-score. For more detailed descriptions
of these metrics we refer to (Achlioptas et al., 2018; Yang et al., 2019).

4.4.2 Experimental Setup
Inference Network. We use a PointNet encoder (Qi et al., 2017a) with the number of
features progressing over layers as 3− 64− 128− 256− 512, followed by a max-pooling across
points, and two fully-connected layers of sizes 512 and D, where D is the size of the latent
space. We use D = 512 in the autoencoding and single-view reconstruction experiments, and
D = 128 for generative modeling.

Latent Shape Prior. We use 14 affine coupling layers to construct the latent space prior.
In the coupling layers, we alternate between two orthogonal partitioning schemes: odd and
even dimensions are split in different groups; the first D/2 dimension go in one group, and
the remaining in the other. For single-view reconstruction we use ResNet18 image encoder,
similarly to (Groueix et al., 2018; Wang et al., 2018, 2019a).

Point Decoder. The point decoder p(x|z) starts with a three-dimensional Gaussian with
mean and variances computed from z by an MLP with two hidden layers. This Gaussian
is transformed by 63 of our conditioned affine coupling layers, each consisting of (i) two
fully-connected layers that map z to the FiLM conditioning coefficients, each of size 64,
(ii) two fully-connected layers that inflate input dimensionality to 64 hidden units (at which
point the FiLM conditioning is performed), (iii) a final fully-connected layer that deflate the
dimensionality to compute the scaling and translation functions.

49

4. Discrete Point Flow Networks for Efficient Point Cloud Generation

Model Nr. params., Mem. footprint, tr. time, total tr. time, gen. time,
106 Mb/sample ms/sample days ms/sample

PointFlow (Yang et al., 2019) 1.63 470 500 80 150
DPF-Net (Ours) 3.76 370 16 1.1 4

Table 4.1: Efficiency comparison for DPF-Nets and PointFlow generative models.

Baselines. We retrained AtlasNet (Groueix et al., 2018), l-GAN-CD/EMD (Achlioptas et al.,
2018), PointFlow (Yang et al., 2019), and DCG (Wang et al., 2019a) with our split of the
ShapeNet dataset, using the implementation provided by the authors and our data processing
pipeline. For improved comparability we also modified the point cloud encoders in all models
to match each other (except for l-GANs, since it significantly worsened their results). To
match other approaches, we used 2, 048 points per cloud for AtlasNet in the autoencoding
task and consequently set the number of learned primitives to 16 to keep the property of
sampling the equal number of points from every primitive, (originally it uses 25 primitives and
samples 2, 500 points and we kept these settings for single-view reconstruction evaluations).
Oracles. For all the tasks we also provide an “oracle” to assess the best possible performance
values. For autoencoding and single-view reconstruction, the oracle samples a second point
cloud from the ground truth mesh, rather than generating a point cloud. For generative
modeling, the oracle uses the point clouds from the training set, instead of sampling point
clouds from the model.
Training Details. All the models were trained with AMSGrad optimizer (Reddi et al., 2018)
with decoupled weight decay regularization (Loshchilov and Hutter, 2019) with step-like
schedule for the learning rate. All the hyperparameters for all the experiments can be found
on our project webpage.1

4.4.3 Generative Modeling Evaluation
Efficiency Comparison with PointFlow. We compare our DPF-Networks in terms of
computational efficiency and memory footprint to PointFlow (Yang et al., 2019). We train
both models for point cloud generation, and report the number of parameters and total training
time. To compute the training memory footprint, training time, and generation time per
sample (point cloud), we divided total GPU memory occupied during training, batch iteration
time, and batch generation time, respectively, by the batch size.
Both models were run on a single TITAN RTX GPU. We estimate the total training time
for PointFlow after the initial 100 epochs of training, which took 2 days, and assume that
the full training procedure requires 4, 000 epochs, as reported by the authors of PointFlow.
We observed that the training procedure slowed down over the course of training, because
ODE-solver gradually increases the number of iterations to meet the required tolerance. Thus,
all timings in Table 4.1 for PointFlow should be understood as lower bounds.
From the results in Table 4.1 we see that even though DPF-Networks have more parameters,
the associated training memory footprint is lower and, our model is approximately 30 times
faster both in training and inference iterations, and can be trained in a single day.
Quantitative Results. We compare to l-GANs and PointFlow models and report oracle
performance as a reference. Given the prohibitive computation cost of complete PointFlow

1https://github.com/Regenerator/dpf-nets

50

https://github.com/Regenerator/dpf-nets

4.4. Experiments

JSD↓ MMD↓ COV↑, % 1-NNA↓, %
Category Model CD EMD CD EMD CD EMD

l-GAN-CD [1] 2.76 ± 0.16 5.69 ± 0.04 5.16 ± 0.02 39.5 ± 0.8 17.1 ± 0.6 72.9 ± 0.8 92.1 ± 0.6
l-GAN-EMD [1] 1.77 ± 0.13 6.05 ± 0.04 4.15 ± 0.02 39.7 ± 1.4 40.4 ± 1.2 75.7 ± 0.6 73.0 ± 1.2

Airplane PointFlow [2] 1.42 ± 0.12 6.05 ± 0.05 4.32 ± 0.01 44.7 ± 1.2 48.4 ± 1.0 70.9 ± 1.0 68.4 ± 1.0
DPF-Nets 0.94 ± 0.11 6.07 ± 0.04 4.26 ± 0.02 46.8 ± 1.2 48.4 ± 0.9 70.6 ± 1.0 67.0 ± 1.2
Oracle 0.50 ± 0.04 5.97 ± 0.09 3.98 ± 0.01 51.4 ± 1.0 52.7 ± 1.3 49.8 ± 1.3 48.2 ± 1.1
l-GAN-CD [1] 2.65 ± 0.07 8.83 ± 0.06 5.36 ± 0.01 41.3 ± 0.8 15.9 ± 1.3 62.6 ± 0.6 92.7 ± 0.4
l-GAN-EMD [1] 1.31 ± 0.10 9.00 ± 0.08 4.40 ± 0.01 38.3 ± 1.2 32.9 ± 0.7 65.2 ± 0.4 63.2 ± 1.0

Car PointFlow [2] 0.59 ± 0.02 9.53 ± 0.06 4.71 ± 0.01 42.3 ± 1.0 35.8 ± 1.3 70.1 ± 0.9 74.2 ± 0.6
DPF-Nets 0.45 ± 0.02 9.59 ± 0.04 4.61 ± 0.01 43.4 ± 0.9 45.8 ± 1.0 70.3 ± 0.6 64.3 ± 1.5
Oracle 0.37 ± 0.03 9.24 ± 0.06 4.56 ± 0.01 52.8 ± 1.1 52.7 ± 0.9 50.9 ± 1.1 50.5 ± 1.2
l-GAN-CD [1] 3.65 ± 0.09 16.66 ± 0.08 7.91 ± 0.02 42.3 ± 0.5 17.1 ± 0.5 68.5 ± 0.5 96.5 ± 0.1
l-GAN-EMD [1] 1.27 ± 0.06 16.78 ± 0.07 5.75 ± 0.01 44.3 ± 0.9 43.8 ± 1.0 66.6 ± 0.6 67.8 ± 0.7

Chair PointFlow [2] 1.51 ± 0.11 17.15 ± 0.10 6.20 ± 0.01 43.3 ± 0.8 46.5 ± 1.0 67.0 ± 0.3 70.4 ± 0.6
DPF-Nets 1.01 ± 0.06 17.08 ± 0.11 6.14 ± 0.01 46.9 ± 0.8 48.5 ± 1.1 63.5 ± 1.3 64.8 ± 0.7
Oracle 0.49 ± 0.01 16.39 ± 0.07 5.71 ± 0.01 52.8 ± 0.8 53.4 ± 1.1 49.7 ± 0.7 49.6 ± 0.9

Table 4.2: Generative modeling results. Oracle results are underlined when they are not the
best. JSD and MMD-EMD are multiplied by 102, MMD-CD by 104.

training, we provide results obtained after training for four days, which is four times the full
training time of DPF-Net in the same setting. In order to account for random sampling every
model is evaluated using ten different sets of generated objects, each of the size of the test
set. Thus, for each metric we report mean values and standard deviations calculated over ten
runs. In addition to the best values, in Table 4.2 we also write in bold results that are within
two standard deviations of the best result.

Overall, DPF-Networks yield the best results in terms of JSD, COV-CD/EMD and 1-NNA-
CD/EMD, except for the 1-NNA-CD for car. This confirms that our DPF-Network is capable
of generating more realistic and diverse sets of point clouds, for random samples from our
model see Figure 4.1.

L-GAN-CD experiences mode collapses, and generates objects with good CD values, but with
very poor coverage and 1-NNA in terms of the EMD metric. PointFlow shows performance
similar to ours, except for JSD, while being significantly slower in both training and sampling.
In contrast to the evaluations performed in (Yang et al., 2019), based on the official split, in
our experiments the oracle obtains the best performances for all metrics, except for MMD (see
underlined results). We believe that this highlights the fact the MMD metric does not favor
diversity in the generated point clouds, but instead favors point clouds with low CD/EMD
distances to all the reference shapes. If the generated point clouds contain a subset of high
quality modes from the test subset, the metric can yield good results, even better than the
oracle. DPF-Nets and PointFlow yield qualitatively similar point cloud samples, we provide a
comparison of samples in Figure 4.4.

Qualitative Results. We additionally conducted several experiments to qualitatively evaluate
DPF-Networks. We provide a qualitative comparison of our per-class generative models with
the corresponding PointFlow models in Figure 4.4. Both models are able to generate various
detailed class-specific samples, however, the probabilistic nature of both models encourages
them to produce increased amounts of noise in the parts where they are least confident with
predictions.

In Figure 4.5 we provide latent space interpolations from the models trained for the Airplane,
Car, and Chair classes. We sample two shapes from the test data (left- and right-most in the

51

4. Discrete Point Flow Networks for Efficient Point Cloud Generation

PointFlow∗ DPF-Network
Figure 4.4: Random samples generated by PointFlow (Columns 1—3) and DPF-Network
(Columns 4—6). For each sample we generated 32, 768 points.

52

4.4. Experiments

Figure 4.5: Generated samples from latent space interpolations between two ground truth
samples obtained with DPF-Networks. Left and rightmost columns are ground truth samples,
each shape between them is a reconstruction from a latent shape obtained as a differently
weighted mean of corresponding latent shapes. For each sample we generated 32, 768 points.

53

4. Discrete Point Flow Networks for Efficient Point Cloud Generation

Initial Gaussian Layer 32 Layer 48 Layer 56 Layer 60 Layer 62 Layer 63

Figure 4.6: Evolution of points in reconstructed samples across different layers of the flow in
DPF-Networks. For each sample we generated 32, 768 points.

54

4.4. Experiments

Metric CD ×104 EMD ×102

l-GAN-CD (Achlioptas et al., 2018) 7.07 7.70
l-GAN-EMD (Achlioptas et al., 2018) 9.18 5.30
AtlasNet (Groueix et al., 2018) 5.66 5.81
PointFlow† (Yang et al., 2019) 7.54 5.18
PointFlow∗ 10.22 6.58
DPF-Net, orig. 6.85 5.06
DPF-Net, norm. 6.17 4.37
Oracle 3.10 3.13

Table 4.3: Autoencoding results. † - results from (Yang et al., 2019) on the official split, ∗ -
results for equal training time as DPF-Net on the random split.

figure), and interpolate between corresponding latent variable samples to obtain a path in the
shape space. The model is able to produce sensible smooth samples from the interpolated
latent codes, which demonstrates that it is able to learn a rich latent shape space, capturing
various shape geometry features.

In Figure 4.6 we provide examples of the generating flow for sampled point clouds from the
class-specific DPF-Networks. We sample a shape from data, obtain initial Gaussian from
the corresponding latent variable, sample 32, 768 points by the flow, and then visualize the
evolution of the point cloud across the initial Gaussian and layers 32, 48, 56, 60, 62, 63 of the
generative flow network.

4.4.4 Autoencoding Evaluation
We compare DPF-networks with other models in terms of autoencoding performance in
Table 4.3. Similarly to generative experiments, we restricted the training time of PointFlow,
this time, to match the training time of our approach which was approximately a week. Among
models trained on non-normalized data, DPF-Net (orig.) achieve the best results in the EMD
metric and second best in the CD metric, outperformed only by the non-generative AtlasNet
which is trained by optimization of the CD metric. The DPF-Net outperforms both l-GANs
which were specifically optimized for the CD/EMD metrics, while being trained by optimization
of the likelihood lower bound. Importantly DPF-Nets outperform PointFlow in both metrics
under the same and extended computational budget.

When our model is trained on normalized data, results significantly improve, achieving state-of-
the-art among generative models for both metrics. This underlines the importance of proper
data normalization for shape modeling.

In Figure 4.7 and Figure 4.8 we qualitatively compare our autoencoding results to l-GANs,
AtlasNet, and PointFlow. All approaches can work with arbitrary size inputs, but only AtlasNet,
PointFlow, and DPF-Nets can reconstruct with arbitrary density. In this comparison we use
512 and 32, 768 points as sparse and dense inputs, while reconstructing fixed 2, 048 points
for l-GANs and 32, 768 point for AtlasNet, PointFlow and DPF-Nets. Models with better CD
values (l-GAN-CD, AtlasNet) tend to concentrate points in some regions of reconstructed
shapes, while models with better EMD values (l-GAN-EMD, DPF-Nets) distribute points more
evenly. While AtlasNet achieves best CD, its reconstructions contain sharp plane-like artifacts.

55

4. Discrete Point Flow Networks for Efficient Point Cloud Generation

Input lGAN-CD lGAN-EMD AtlasNet PointFlow* DPF DPF norm.

Figure 4.7: Qualitative comparison of the models from Table 4.3 for the autoencoding task
with sparse (512 points) inputs.

56

4.4. Experiments

Input lGAN-CD lGAN-EMD AtlasNet PointFlow* DPF DPF norm.

Figure 4.8: Qualitative comparison of the models from Table 4.3 for the autoencoding task
with dense (32, 768 points) inputs.

57

4. Discrete Point Flow Networks for Efficient Point Cloud Generation

Model CD↓, ×103 EMD↓, ×102 F1↑, τ = 0.001,%
PRN (Klokov et al., 2019) 7.56 11.00 53.1
AtlasNet (Groueix et al., 2018) 5.34 12.54 52.2
DCG (Wang et al., 2019a) 6.35 18.94 45.7
Pixel2Mesh† (Wang et al., 2018) 5.91 13.80 -
DPF-Nets 5.51 10.95 52.4
Oracle 1.10 5.70 84.0

Table 4.4: Single-view reconstruction results. †: results taken from (Wang et al., 2018).

Our DPF-Nets produce overall smoother reconstructions, but, on the other hand, suffer from
more noise.

4.4.5 Single-View Reconstruction
In this section we test DPF-Nets on the inference of 3D point clouds from single images. The
architecture used for this specific task is depicted in Figure 4.3 and detailed in Section 4.3.2.
We compare our results to recent state-of-the-art methods in the field. This includes: the
voxel-based PRN (Klokov et al., 2019), point cloud-based approaches of AtlasNet (Groueix
et al., 2018) and DCG (Wang et al., 2019a), and the mesh-based Pixel2Mesh (Wang et al.,
2018).
Although convenient, in general, comparison to voxel-based approaches should be taken with
a grain of salt, since it is biased. To compute the proposed metrics either ground truth or
reconstructed voxelized shapes are fed to the marching cubes algorithm to obtain final meshes
which are used to sample point clouds. Resulting ground truth meshes in that case are crude
approximations of the original meshes, used in the evaluation of the point cloud and mesh-based
approaches. Moreover, there are cases both in voxelized data and reconstructions, when the
marching cubes algorithm fails to output meshes. We removed such samples (approximately
0.5% of samples) from the final metric calculations for the voxel based model.
The results in Table 4.4 show that DPF-Net clearly outperforms earlier works in terms of
the EMD metric. It also achieves best results in terms of the F1-score among point cloud
and mesh-based models. In terms of CD, similarly to autoencoding it is outperformed only
by AtlasNet with a small margin. This validates the ability of normalizing flows to capture
complex distributions in 3D and to model shape surfaces.
Qualitative single-view reconstruction results can be found in Figure 4.9. Note that a single
reconstruction model has been trained across all 13 classes for both AtlasNet and DPF-Net.
Similarly to the autoencoding task, compared to AtlasNet our approach produces more evenly
distributed point clouds without sharp dense clusters, but introduces more noise.

4.5 Conclusion
We presented DPF-Networks, a generative model for point clouds of arbitrary size. DPF-Nets
are based on a latent variable model and use normalizing flows with affine coupling layers to
construct a flexible, yet tractable, shape conditional density on 3D points, and an expressive
latent shape space prior. They are trained akin to VAEs, using a permutation invariant point
cloud encoder as approximate posterior distribution over the latent shape space.

58

4.5. Conclusion

Input AtlasNet DPF-Net gr. truth Input AtlasNet DPF-Net gr. truth

Figure 4.9: Qualitative comparison for single-view reconstruction task.

The evaluation on the ShapeNet dataset demonstrates that DPF-nets improve generative
performance metrics over previous work in most metrics and classes. Compared to PointFlow
which is based on continuous normalizing flows, our model is between one and two orders
of magnitude faster to train and sample from. Applied to single view reconstruction, DPF-
Nets outperform state-of-the-art methods, hence showing promising capabilities in 3D shape
modeling.

59

CHAPTER 5
Conclusion

The work presented in this thesis focuses on 3D shape modeling. It proposes contributions to
both pure generative and image conditioned 3D shape inference models for various 3D shape
representations. To achieve this, this work combines the use of deep neural networks suitable
for considered 3D shape representations and corresponding probabilistic models providing
principled training objectives for the presented DNNs. As the result, two separate models were
proposed: a probabilistic model, which formalizes the single-view 3D shape inference task,
and another efficient probabilistic model for 3D point cloud generation, based on conditional
coupling normalizing flows. We now summarize the impact of the presented works.

Probabilistic Reconstruction Networks

We propose a family of latent variable models that provides a meaningful probability-based
interpretation of the single-view 3D shape inference task. It extensively describes all image
conditioning options in all the model components, abstracting away from target 3D shape
representation and particular implementations of image conditioning mechanisms. Moreover,
different approximations of model likelihood provide a link to different model training regimes:
straightforward inference from images by the means of image encoder and 3D shape decoder,
or additional use of 3D shape encoding component for improved training. Such formalization
allows to effectively decouple the impact of mentioned model components and design choices
on the final quality of reconstruction. Proper categorisation of prior work with respect to
these attributes helps to identify potential underexamined combinations and can help to focus
further research efforts.

Experimental results obtained for voxelized shapes from the ShapeNet dataset show that
variational training, allowed by the approximate posterior of the latent variable implemented
by additional 3D shape encoder, improves the single-view 3D shape inference performance
compared to training with more common objective based on sampling from latent variable
prior. We also show that probabilistic objectives perform better compared to deterministic
counterparts. This evidence supports the idea that it is beneficial to model conditional
generation in a probabilistic manner in case when the condition defines the output very loosely
(3D shape inference from a single image). Evaluation of common point cloud metrics calculated
from voxel occupancy grids showed that despite the low grid resolution, our results can be
competitive with point cloud based models.

61

5. Conclusion

Discrete Point Flow Networks

In case of point cloud modeling, probabilistic approaches have even more benefits compared
to deterministic options. The occupancy grids, studied in our first contribution are regular and
stable in a sense that for a given shape the fixed resolution occupancy grid is deterministic. It
is not the case for point clouds, since any shape can be represented by an infinite number of
point clouds sampled from the shape surface. Our probabilistic model for point clouds allows
to capture this by means of learning and sampling distributions of points from shape surfaces.
Thus, our approach for point cloud modeling naturally supports varying cardinality of point
sets and accounts for variability in different point cloud samples representing the same 3D
geometry.

Our Discrete Point Flow Networks are structurally similar to the prior work of (Yang et al.,
2019). However, we adapt discrete invertible normalizing flows to the framework and propose a
novel modification of coupling flows, which 1) includes a conditioning mechanism; 2) is designed
for application to unstructured multidimensional set data, unlike original unconditional coupling
flows proposed for multidimensional vector data. To further strengthen our contribution, we
transformed the proposed generative model into a single-view reconstruction model using a
variational approach with image-conditioned global latent variable prior, inspired from our first
contribution.

In practice, the development of our conditional point cloud coupling flows allowed us to
achieve significant speedups both in training and sampling without compromising for worse
quality or diversity of samples, all compared to related model of (Yang et al., 2019) using
continuous flows. Without direct optimization of the considered metrics our approach achieves
state-of-the-art autoencoding and single-view reconstruction performance in EMD, which
corresponds to sampling of more balanced point clouds distributed evenly over the target
shape surfaces.

5.1 Future Work
Based on the expertise developed over the course of my work summarized in this thesis and
personal interests, in the following, I describe a number of directions for future work.

Other Options for Point Cloud Modeling

PointFlow and our DPF-Net implementations of the probabilistic model for point cloud
generation greatly rely on the use of normalizing flows in the conditional decoder pθ(x|z).
According to the model, every point is conditioned only by the same latent variable sample.
This makes every predicted point indistinguishable from other points in terms of correspondence
to ground truth points.

Invertability of normalizing flows, used in PointFlow and our DPF-Net, allows training without
correspondence between ground truth and sampled point clouds. These models do not sample
points during training. Instead, inverse flow calculations transform ground truth surface points
into samples from a flow base Gaussian distribution. As the result, the complex likelihood of
ground truth point clouds is expressed through the trivially calculable likelihood of the said
samples from the Gaussian, as discussed in Chapter 4. Such a training method could not be
possible without the invertability of the flow decoder.

62

5.1. Future Work

In order to fully utilize all the developed advances in DNN architectures for point cloud
representation, other less restrictive probabilistic models could be developed that do not require
invertability from its decoding components.

One of the most straightforward extensions of the considered model could be obtained by
introduction of additional set of local per point latent variables {l}Ni=1:

p(X) =
∫ N∏

i=1
p(xi|li, z)p(li|z)p(z)dlidz. (5.1)

In such a model, a variational approximation of the likelihood is possible with approximate
posteriors for both global q(z|X) and local q(li|X, z) per-point distributions. If these local
posteriors are conditioned on individual ground truth points xi during training, this will
automatically provide correspondence between pairs of sampled and ground truth points. This
allows to implement point decoder by generic DNN architectures for point clouds, developed
in numerous related approaches.

Unfortunately, this model reintroduces the same correspondence issue for local latent vari-
able priors and posteriors, unless all the local priors are the same distribution (all-to-one
correspondence is automatic in that case). Our initial experiments with simple united local
latent variable prior showed that such a model is not effective in a generative setting. Other,
more expressive types of local priors could be considered to solve this issue, otherwise the
probabilistic model should be modified further to completely exclude this problem in the first
place.

Besides modeling with only the invertible decoding components, there are other limitations of
considered probabilistic models, that could be lifted. The models presented in this work all
rely on the ability of a sole latent global variable to capture not only the variation in shape
topologies but all the intricacies of 3D shape geometric detail. Hierarchical models similar to
the one stated earlier could help to relax this requirement from the global variable and have
recently shown success for image generation task (Vahdat and Kautz, 2020). It could be a
challenging and rewarding task to establish effective hierarchical models for various 3D data
representations, including point clouds.

Probabilistic Models for Mesh Representations

The mesh representation of 3D shapes remains to be the most challenging among explicit 3D
geometry representations for probabilistic modeling. At the same time, it is often a desired
output of a 3D shape reconstruction model, since it is explicit, expressive, fully represents
shape geometry (unlike e.g . point clouds), and could be used in numerous further applications.
The main difficulty with it lies in the requirement to model not only the positions of the
vertices, that is similar to point cloud modeling, but also to model connectivity between the
vertices. In the worst case, with brute pairwise consideration of all the vertices, connectivity
modeling leads to quadratic complexity over the number of vertices.

The main reason to consider probabilistic models for mesh representation is their potential to
overcome a common problem with existing mesh-based solutions for generative and inference
tasks: their inability to capture various topologies. This problem stems from the deformation-
based framework that is often used with mesh representation, e.g . (Tan et al., 2018; Wang
et al., 2018; Gao et al., 2019). In this framework, an initial fixed topology mesh prototype
or template is locally deformed to fit its surface geometry to the ground truth without any

63

5. Conclusion

changes in the initial topology. Explicit modeling of mesh connectivity with probabilistic
approaches is capable of overcoming these topological restrictions in mesh reconstructions.
To our knowledge, only the work of (Nash et al., 2020) presents an autoregressive probabilistic
model for meshes that model connectivity explicitly. Although it solves the task, the proposed
model is based on autoregressive transformer networks which usually are demanding both in
terms of memory and training/inference times. The recent approach of (Chen et al., 2020)
is also capable of producing meshes as collections of convex primitives, however it uses a
deterministic model and considers only inference tasks. Probabilistic reformulation of such
an approach could extend this model to generative applications, introduce accountability for
variation in reconstructed 3D shapes and may bring further improvements in the reconstruction
quality.

Going beyond Pure Geometry Learning

As described in Chapter 1, the geometric aspect of 3D data does not fully describe it. Besides
the geometry, there are color, reflectance and, possibly, extended shading information, which
is required for proper visual representation of 3D data. The use of all the modalities of 3D
data for realistic visualization was and still it the main topic of computer graphics. However,
principled image rendering techniques, creating the best results are computationally demanding
and may require tremendous amounts of resources. Recently, the success in the data-driven
super-resolution and reflection rendering tasks have already found use in computer graphics
applications and solutions, such as NVIDIA’s deep learning super sampling and ray tracing
technologies used for computer game graphics.
Joint data-driven modeling of all the modalities of 3D data is a challenging task, that can
enable multiple generative and inference applications. Success has already been shown for
normal inference from point coordinates (Guerrero et al., 2018), which may improve the
surface reconstruction and enhance realistic shading during rendering for ill-defined 3D shapes
(such as point clouds). The work of (Mildenhall et al., 2020) on the data-driven novel view
synthesis have potential to provide an effective and efficient alternative to standard rendering
for image editing, animation and robotic spacial understanding end applications. Similarly to
purely geometric approaches, advances in joint 3D data modeling could enable various content
creation applications: generation or inference from partial inputs of complete 3D shapes and
scenes including geometry, appearance, and shading; geometric and appearance enhancement
of 3D data, similar to super resolution; realistic inference-based insertion of 3D shapes into real
images with correct shading and reflections (without the use of explicit rendering techniques)
and other image modification tasks.

64

Bibliography

Achlioptas, P., Diamanti, O., Mitliagkas, I., and Guibas, L. (2018). Learning representations
and generative models for 3D point clouds. In ICML.

Bau, D., Zhu, J.-Y., Strobelt, H., Lapedriza, A., Zhou, B., and Torralba, A. (2020). Under-
standing the role of individual units in a deep neural network. Proceedings of the National
Academy of Sciences, 117(48):30071–30078.

Behrmann, J., Grathwohl, W., Chen, R., Duvenaud, D., and Jacobsen, J.-H. (2019). Invertible
residual networks. In ICML.

Bhattacharyya, A., Hanselmann, M., Fritz, M., Schiele, B., and Straehle, C.-N. (2019).
Conditional flow variational autoencoders for structured sequence prediction. In NeurIPS
Workshop on Machine Learning for Autonomous Driving.

Bishop, C. (2006). Pattern recognition and machine learning. Spinger-Verlag.

Bogo, F., Romero, J., Loper, M., and Black, M. J. (2014). FAUST: Dataset and evaluation
for 3D mesh registration. In CVPR.

Boscaini, D., Masci, J., Rodolà, E., and Bronstein, M. (2016). Learning shape correspondence
with anisotropic convolutional neural networks. In NeurIPS.

Brock, A., Lim, T., Ritchie, J., and Weston, N. (2016). Generative and discriminative voxel
modeling with convolutional neural networks. In NeurIPS 3D deep learning workshop.

Bronstein, M., Bruna, J., Szlam, A., LeCun, Y., and Vandergyst, P. (2017). Geometric deep
learning: going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):18–42.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2013). Spectral networks and locally
connected networks on graphs. arXiv preprint.

Cai, R., Yang, G., Averbuch-Elor, H., Hao, Z., Belongie, S., Snavely, N., and Hariharan, B.
(2020). Learning gradient fields for shape generation. In ECCV.

Chang, A., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva,
M., Song, S., Su, H., Xiao, J., Yi, L., and Yu, F. (2015). ShapeNet: An information-rich
3D model repository. arXiv preprint.

Chen, T., Rubanova, Y., Bettencourt, J., and Duvenaud, D. (2018). Neural ordinary differential
equations. In NeurIPS.

Chen, X., Kingma, D., Salimans, T., Duan, Y., Dhariwal, P., Schulman, J., Sutskever, I., and
Abbeel, P. (2017). Variational lossy autoencoder. In ICLR.

65

Chen, Z., Tagliasacchi, A., and Zhang, H. (2020). Bsp-net: Generating compact meshes via
binary space partitioning. In CVPR.

Chen, Z. and Zhang, H. (2019). Learning implicit fields for generative shape modeling. In
CVPR.

Choy, C., Xu, D., Gwak, J.-Y., Chen, K., and Savarese, S. (2016). 3D-R2N2: A unified
approach for single and multi-view 3d object reconstruction. In ECCV.

Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T., and Nießner, M. (2017).
Scannet: Richly-annotated 3d reconstructions of indoor scenes. In CVPR.

Deco, G. and Brauer, W. (1995). Higher order statistical decorrelation without information
loss. In NeurIPS.

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural networks on
graphs with fast localized spectral filtering. In NeurIPS.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density estimation using Real NVP. In
ICLR.

Erler, P., Guerrero, P., Ohrhallinger, S., Mitra, N. J., and Wimmer, M. (2020). Points2surf
learning implicit surfaces from point clouds. In ECCV.

Fan, H., Su, H., and Guibas, L. (2017). A point set generation network for 3D object
reconstruction from a single image. In CVPR.

Finetti, B. D. (1937). La prévision : ses lois logiques, ses sources subjectives. In Annales de
l’institut Henri Poincaré.

Fu, H., Jia, R., Gao, L., Gong, M., Zhao, B., Maybank, S., and Tao, D. (2020). 3d-future: 3d
furniture shape with texture. arXiv preprint.

Gabeur, V., Franco, J.-S., Martin, X., Schmid, C., and Rogez, G. (2019). Moulding humans:
Non-parametric 3d human shape estimation from single images. In ICCV.

Gao, L., Lai, Y.-K., Liang, D., Chen, S.-Y., and Xia, S. (2016). Efficient and flexible deformation
representation for data-driven surface modeling. ACM Transactions on Graphics.

Gao, L., Yang, J., Wu, T., Yuan, Y.-J., Fu, H., Lai, Y.-K., and Zhang, H. (2019). Sdm-net:
Deep generative network for structured deformable mesh. ACM Transactions on Graphics.

Girdhar, R., Fouhey, D., Rodriguez, M., and Gupta, A. (2016). Learning a predictable and
generative vector representation for objects. In ECCV.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http:
//www.deeplearningbook.org.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., and Bengio, Y. (2014). Generative adversarial nets. In NeurIPS.

Gordon, J., Bronskill, J., Bauer, M., Nowozin, S., and Turner, R. (2019). Meta-learning
probabilistic inference for prediction. In ICLR.

66

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Graham, B., Engelcke, M., and van der Maaten, L. (2018). 3D semantic segmentation with
submanifold sparse convolutional networks. In CVPR.

Grathwohl, W., Chen, R., Bettencourt, J., Sutskever, I., and Duvenaud, D. (2019). FFJORD:
Free-form continuous dynamics for scalable reversible generative models. In ICLR.

Groueix, T., Fisher, M., Kim, V., Russell, B., and Aubry, M. (2018). A papier-mâché approach
to learning 3D surface generation. In CVPR.

Guerrero, P., Kleiman, Y., Ovsjanikov, M., and Mitra, N. J. (2018). Pcpnet learning local
shape properties from raw point clouds. In Computer Graphics Forum.

Han, X., Li, Z., Huang, H., Kalogerakis, E., and Yu, Y. (2017). High-resolution shape
completion using deep neural networks for global structure and local geometry inference. In
ICCV.

He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep residual learning for image recognition.
In CVPR.

He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Identity mappings in deep residual networks.
In ECCV.

Henaff, M., Bruna, J., and LeCun, Y. (2015). Deep convolutional networks on graph-structured
data. arXiv preprint.

Henderson, P. and Ferrari, V. (2018). Learning to generate and reconstruct 3d meshes with
only 2d supervision. In BMVC.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep belief
nets. Neural computation.

Hu, Z., Yang, Z., Salakhutdinov, R., and Xing, E. P. (2018). On unifying deep generative
models. In ICLR.

Insafutdinov, E. and Dosovitskiy, A. (2018). Unsupervised learning of shape and pose with
differentiable point clouds. In NeurIPS.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018). Progressive growing of GANSs for
improved quality, stability, and variation. In ICLR.

Kazmi, I. K., You, L., and Zhang, J. (2013). A survey of 2d and 3d shape descriptors.
International Conference Computer Graphics, Imaging and Visualization.

Kingma, D. and Dhariwal, P. (2018). Glow: Generative flow with invertible 1×1 convolutions.
In NeurIPS.

Kingma, D., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and Welling, M. (2016).
Improved variational inference with inverse autoregressive flow. In NeurIPS.

Kingma, D. and Welling, M. (2014). Auto-encoding variational Bayes. In ICLR.

67

Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convolutional
networks. arXiv preprint.

Klokov, R., Boyer, E., and Verbeek, J. (2020). Discrete point flow networks for efficient point
cloud generation. In ECCV.

Klokov, R. and Lempitsky, V. (2017). Escape from cells: Deep Kd-networks for the recognition
of 3D point cloud models. In ICCV.

Klokov, R., Verbeek, J., and Boyer, E. (2019). Probabilistic reconstruction networks for 3D
shape inference from a single image. In BMVC.

Knapitsch, A., Park, J., Zhou, Q., and Koltun, V. (2017). Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics, 36(4).

Kobyzev, I., Prince, S., and Brubaker, M. (2019). Normalizing flows: An introduction and
review of current methods. arXiv preprint.

Koch, S., Matveev, A., Jiang, Z., Williams, F., Artemov, A., Burnaev, E., Alexa, M., Zorin,
D., and Panozzo, D. (2019). Abc: A big cad model dataset for geometric deep learning. In
CVPR.

Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). ImageNet classification with deep
convolutional neural networks. In NeurIPS.

Kurenkov, A., Ji, J., Garg, A., Mehta, V., Gwak, J.-Y., Choy, C., and Savarese, S. (2018).
Deformnet: Free-form deformation network for 3d shape reconstruction from a single image.
In WACV.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lewiner, T., Lopes, H., Vieira, A., and Tavares, G. (2003). Efficient implementation of
marching cubes’ cases with topological guarantees. J. Graphics, GPU, & Game Tools,
8(2):1–15.

Li, C.-L., Zaheer, M., Zhang, Y., Poczos, B., and Salakhutdinov, R. (2018a). Point cloud
GAN. arXiv preprint.

Li, Y., Bu, R., Sun, M., Wu, W., Di, X., and Chen, B. (2018b). Pointcnn: Convolution on
x-transformed points. In Advances in neural information processing systems.

Lin, T., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick,
C. L. (2014). Microsoft coco: Common objects in context. In ECCV.

Liu, Z., Tang, H., Lin, Y., and Han, S. (2019). Point-voxel cnn for efficient 3d deep learning.
In NeurIPS.

Lopez-Paz, D. and Oquab, M. (2017). Revisiting classifier two-sample tests. In ICLR.

Loshchilov, I. and Hutter, F. (2019). Decoupled weight decay regularization. In ICLR.

Lu, Y. and Huang, B. (2020). Structured output learning with conditional generative flows. In
AAAI.

68

Lucas, T., Shmelkov, K., Alahari, K., Schmid, C., and Verbeek, J. (2019). Adaptive density
estimation for generative models. In NeurIPS.

Mandikal, P., Navaneet, K., Agarwal, M., and Babu, R. (2018). 3D-LMNet: Latent embedding
matching for accurate and diverse 3D point cloud reconstruction from a single image. In
BMVC.

Masci, J., Boscaini, D., Bronstein, M. M., and Vandergheynst, P. (2015). Geodesic convolu-
tional neural networks on riemannian manifolds. In ICCV Workshops.

Maturana, D. and Scherer, S. (2015). VoxNet: A 3D convolutional neural network for real-time
object recognition. In IROS.

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., and Geiger, A. (2019). Occupancy
networks: Learning 3d reconstruction in function space. In CVPR.

Michalkiewicz, M., Pontes, J., Jack, D., Baktashmotlagh, M., and Eriksson, A. (2019). Implicit
surface representations as layers in neural networks. In ICCV.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., and Ng, R.
(2020). Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV.

Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J., and Bronstein, M. (2017).
Geometric deep learning on graphs and manifolds using mixture model CNNs. In CVPR.

Nash, C., Ganin, Y., Eslami, S. M. A., and Battaglia, P. W. (2020). Polygen: An autoregressive
generative model of 3d meshes. In ICML.

Ng, J. Y.-H., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., and Toderici, G.
(2015). Beyond short snippets: Deep networks for video classification. In CVPR.

Papamakarios, G., Nalisnick, E., Rezende, D., Mohamed, S., and Lakshminarayanan, B. (2019).
Normalizing flows for probabilistic modeling and inference. arXiv preprint.

Park, J., Florence, P., Straub, J., Newcombe, R., and Lovegrove, S. (2019). DeepSDF:
Learning continuous signed distance functions for shape representation. In CVPR.

Perez, E., Strub, F., Vries, H. D., Dumoulin, V., and Courville, A. (2018). FiLM: Visual
reasoning with a general conditioning layer. In AAAI.

Pumarola, A., Popov, S., Moreno-Noguer, F., and Ferrari, V. (2020). C-Flow: Conditional
generative flow models for images and 3D point clouds. In CVPR.

Qi, C., Su, H., Mo, K., and Guibas, L. (2017a). Pointnet: Deep learning on point sets for 3D
classification and segmentation. In CVPR.

Qi, C., Yi, L., Su, H., and Guibas, L. (2017b). Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. In NeurIPS.

Reddi, S., Kale, S., and Kumar, S. (2018). On the convergence of Adam and beyond. In ICLR.

Reizenstein, J., Shapovalov, R., Henzler, P., Sbordone, L., Labatut, P., and Novotny, D.
(2021). Common objects in 3d: Large-scale learning and evaluation of real-life 3d category
reconstruction. In International Conference on Computer Vision.

69

Rezende, D. and Mohamed, S. (2015). Variational inference with normalizing flows. In ICML.

Rezende, D., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and
approximate inference in deep generative models. In ICML.

Richter, S. R. and Roth, S. (2018). Matryoshka Networks: Predicting 3d geometry via nested
shape layers. In CVPR.

Riegler, G., Ulusoy, A., and Geiger, A. (2017). OctNet: Learning deep 3D representations at
high resolutions. In CVPR.

Shin, D., Fowlkes, C. C., and Hoiem, D. (2018). Pixels, voxels, and views: A study of shape
representations for single view 3d object shape prediction. In CVPR.

Sinha, A., Bai, J., and Ramani, K. (2016). Deep learning 3D shape surfaces using geometry
images. In ECCV.

Smith, E. and Meger, D. (2017). Improved adversarial systems for 3d object generation and
reconstruction. In CoRL.

Soltani, A., Huang, H., Wu, J., Kulkarni, T., and Tenenbaum, J. (2017). Synthesizing 3D
shapes via modeling multi-view depth maps and silhouettes with deep generative networks.
In CVPR.

Su, H., Fan, H., and Guibas, L. (2017). A point set generation network for 3D object
reconstruction from a single image. In CVPR.

Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, M.-H., and Kautz, J. (2018).
SPLATNet: Sparse lattice networks for point cloud processing. In CVPR.

Su, H., Maji, S., Kalogerakis, E., and Learned-Miller, E. (2015). Multi-view convolutional
neural networks for 3D shape recognition. In ICCV.

Sun, X., Wu, J., Zhang, X., Zhang, Z., Zhang, C., Xue, T., Tenenbaum, J., and Freeman, W.
(2018). Pix3D: Dataset and methods for single-image 3D shape modeling. In CVPR.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A. (2017). Inception-v4, inception-resnet
and the impact of residual connections on learning. In AAAI.

Tan, Q., Gao, L., Lai, Y.-K., and Xia, S. (2018). Variational autoencoders for deforming 3d
mesh models. In CVPR.

Tatarchenko, M., Dosovitskiy, A., and Brox, T. (2017). Octree generating networks: Efficient
convolutional architectures for high-resolution 3D outputs. In ICCV.

Tatarchenko, M., Richter, S. R., Ranftl, R., Li, Z., Koltun, V., and Brox, T. (2019). What do
single-view 3d reconstruction networks learn? In CVPR.

Tulsiani, S., Zhou, T., Efros, A., and Malik, J. (2017). Multi-view supervision for single-view
reconstruction via differentiable ray consistency. In CVPR.

Vahdat, A. and Kautz, J. (2020). NVAE: A deep hierarchical variational autoencoder. In
NeurIPS.

70

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. (2017). Attention is all you need. In NeurIPS.

Verma, N., Boyer, E., and Verbeek, J. (2018). Feastnet: Feature-steered graph convolutions
for 3D shape analysis. In CVPR.

Vinyals, O., Fortunato, M., and Jaitly, N. (2015). Pointer networks. In NeurIPS.

Wang, H., Jiang, Z., Yi, L., Mo, K., Su, H., and Guibas, L. J. (2020). Rethinking sampling in
3d point cloud generative adversarial networks. arXiv preprint.

Wang, K., Chen, K., and Jia, K. (2019a). Deep cascade generation on point sets. In IJCAI.

Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., and Jiang, Y. (2018). Pixel2Mesh: Generating
3D mesh models from single RGB images. In ECCV.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., and Solomon, J. M. (2019b).
Dynamic graph cnn for learning on point clouds. ACM Transactions On Graphics.

Wiles, O. and Zisserman, A. (2017). SilNet: Single- and multi-view reconstruction by learning
from silhouettes. In BMVC.

Wu, J., Wang, Y., Xue, T., Sun, X., Freeman, B., and Tenenbaum, J. (2017). MarrNet: 3D
shape reconstruction via 2.5D sketches. In NeurIPS.

Wu, J., Zhang, C., Xue, T., Freeman, W., and Tenenbaum, J. (2016). Learning a probabilistic
latent space of object shapes via 3D generative-adversarial modeling. In NeurIPS.

Wu, J., Zhang, C., Zhang, X., Zhang, Z., Freeman, W., and Tenenbaum, J. (2018). Learning
shape priors for single-view 3D completion and reconstruction. In ECCV.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., and Xiao, J. (2015). 3D ShapeNets:
A deep representation for volumetric shapes. In CVPR.

Yan, X., Yang, J., Yumer, E., Guo, Y., and Lee, H. (2016). Perspective Transformer Nets:
Learning single-view 3D object reconstruction without 3D supervision. In NeurIPS.

Yang, G., Huang, X., Hao, Z., Liu, M.-Y., Belongie, S., and Hariharan, B. (2019). PointFlow:
3D point cloud generation with continuous normalizing flows. In ICCV.

Yi, L., Shao, L., Savva, M., Huang, H., Zhou, Y., Wang, Q., Graham, B., Engelcke, M., Klokov,
R., Lempitsky, V., et al. (2017). Large-scale 3d shape reconstruction and segmentation
from shapenet core55. arXiv preprint.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R., and Smola, A. (2017).
Deep sets. In NeurIPS.

Zhang, Z. (2012). Microsoft kinect sensor and its effect. IEEE multimedia.

Zhou, L., Du, Y., and Wu, J. (2021). 3d shape generation and completion through point-voxel
diffusion. In ICCV.

Zhou, Q. and Jacobson, A. (2016). Thingi10k: A dataset of 10,000 3d-printing models. arXiv
preprint.

71

	Abstract
	Résumé
	Acknowledgements
	About the Author
	List of Collaborators and Publications
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Context and Motivation
	Contributions
	Thesis Structure

	Deep Learning for 3D Shape Processing
	Recognition Models
	Generative Models
	Single-View Reconstruction Models

	Probabilistic Reconstruction Networks for 3D Shape Inference
	Introduction
	Probabilistic Framework for 3D Shape Reconstruction
	Related Work
	Experiments
	Conclusion

	Discrete Point Flow Networks for Efficient Point Cloud Generation
	Introduction
	Related work
	Discrete Point Flow Networks
	Experiments
	Conclusion

	Conclusion
	Future Work

	Bibliography

