
HAL Id: tel-04063452
https://theses.hal.science/tel-04063452

Submitted on 9 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Teaching Predicate-based Autotelic Agents
Ahmed Akakzia

To cite this version:
Ahmed Akakzia. Teaching Predicate-based Autotelic Agents. Machine Learning [cs.LG]. Sorbonne
Université, 2022. English. �NNT : 2022SORUS415�. �tel-04063452�

https://theses.hal.science/tel-04063452
https://hal.archives-ouvertes.fr

Teaching Predicate-based
Autotelic Agents

Learning Goal Representations with a Social Caregiver for

Intrinsically Motivated Agents

by Ahmed AKAKZIA

Under the co-supervision of Olivier SIGAUD and Mohamed CHETOUANI

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

Sorbonne University
Faculty of Science and Engineering

Major in Computer Science Telecommunication and Electronics

Date of Submission: 30/09/2022
Composition of the jury:

Pr. Martin V. BUTZ Full Professor University of Tübingen Reviewer
Dr. Peter Ford DOMINEY Research Director CNRS Reviewer
Dr. Pierre-Yves OUDEYER Research Director INRIA Examiner
Pr. Ginevra CASTELLANO Full Professor Uppsala University Examiner
Pr. Stéphane DONCIEUX Full Professor Sorbonne University Examiner
Pr. Mohamed CHETOUANI Full Professor Sorbonne Université Supervisor
Pr. Olivier SIGAUD Full Professor Sorbonne Université Supervisor

i

To my family,
for making home feel right around the corner.

There wasn’t any manual in the world
that could have prepared you for dealing with my

complaints.
And yet, with love and support,
you’ve never stopped doing it.

ii

Acknowledgements

The last three years marked the beginning of my journey as a young scientist — a journey
through which I could never have made it alone. I would like to thank the following per-
sons without whom I would not have completed this research.

First and foremost, my supervisors Olivier Sigaud and Mohamed Chetouani, who be-
lieved in me, gave me freedom to explore while being my safeguards and guided me with
their insights and knowledge. They were always available to discuss ideas and give point-
ers. Thanks for reviewing all the pages I wrote since my internship up to these ones.

The Sorbonne Center for Artificial Intelligence (SCAI), for granting me the opportu-
nity to conduct a PhD. Thanks for all the events you organized, which gave me the chance
to meet other PhD candidates from many labs. You guys are inspiring, keep it up!

The AMAC team, this incredible and tasty cocktail of researchers working at the
interface between Artificial Intelligence and Neuroscience. I especially thank Stéphane
Doncieux, Benôıt Girard, Olivier Serris, Alexandre Chenu, Elisa Massi, Johann Huber,
Elias Hanna, Nicolas Fontbonne, Jeremy Fersula, Jeanne Barthélemy, Yoones Mirhosseini,
Giuseppe Paolo, Maud de Tollenaere, Matthieu Sarazin, Astrid Merckling, Thomas Pier-
rot, Nicolas Perrin-Gilbert and Pierre Fournier for the exciting scientific discussions. As
always, 310’s gang rules!

The ISIR lab, one of the best environments for a PhD. I would like to thank all the
members, and I am especially grateful to Hugo Caselles-Dupré and Ali Hammoud, with
whom I had the chance to exchange ideas about subjects related to our field of research.

All my co-authors, who were very crucial to the work I have published: Cédric Co-
las, Pierre-Yves Oudeyer, Firas Jarboui, Olivier Serris, Hugo Caselles-Dupré, Mohamed
Chetouani and Olivier Sigaud. More details about these collaborations at the end of the
introduction.

Awatef Barra and Sylvie Piumi, very helpful and always responsive whenever it comes
to administrative stuff.

I am grateful to my friends, who supported and never stopped believing in me during
these last three years. When everything seemed dark and blurry, especially during the
lockdown, they were the lighthouse that helped me keep moving forward. Thank you guys!

iii

My biggest thanks go to my family: Mom and Dad, I wish I could make you proud
as you gave me the greatest gift of all; My brother and sister, my guardian angels, I will
always look up to you; My brother and sister in law, for your inspiring love and generosity;
My three little nieces and nephew, you’re the cherry on the cake, the glue that hold us
all. Thank you 3000!

I thank every person that knows me. Crossing paths with you certainly made me the
person I am today.

“Go back? No good at all! Go sideways? Impossible! Go forward? Only
thing to do! On we go.” Bilbo Baggins, The Hobbit.

iv

Teaching Predicate-based Autotelic Agents

Learning Goal Representations with a Social Caregiver for
Intrinsically Motivated Agents

Abstract

As part of the quest for designing embodied machines that autonomously explore
their environments, discover new behaviors and acquire open-ended repertoire of
skills, artificial intelligence has been taking long looks at the inspiring fields of
developmental psychology and cognitive sciences which investigate the remarkable
continuous and unbounded learning of humans. This gave birth to the field of devel-
opmental robotics which aims at designing autonomous artificial agents capable of
self-organizing their own learning trajectories based on their intrinsic motivations.
It bakes the developmental framework of intrinsically motivated goal exploration
processes (imgep) into reinforcement learning (RL). This combination has been
recently introduced as autotelic reinforcement learning, where autotelic agents are
intrinsically motivated to self-represent, self-organize and autonomously learn about
their own goals. Naturally, such agents need to be endowed with good exploration
capabilities as they need to first physically encounter a certain goal in order to take
ownership of and learn about it. Unfortunately, discovering interesting behavior
is usually tricky, especially in hard exploration setups where the rewarding signals
are parsimonious, deceptive or adversarial. In such scenarios, the agents physical
situatedness — in the Piagetian sense of the term — seems insufficient. Luckily, re-
search in developmental psychology and education sciences have been praising the
remarkable role of socio-cultural signals in the development of human children. This
social situatedness — in the Vygotskyan sense of the term — enhances the toddlers
exploration capabilities, creativity and development. However, deep RL considers
social interactions as dictating instructions to the agents, depriving them from their
autonomy. This research introduces teachable autotelic agents, a novel family of au-
tonomous machines that can learn both alone and from external social signals. We
formalize such a family as a hybrid goal exploration process (hgeps), where autotelic
agents are endowed with an internalization mechanism to rehearse social signals and
with a goal source selector to actively query for social guidance.

The present manuscript is organized is two parts. In the first part, we focus on
the design of teachable autotelic agents and attempt to leverage the most impor-
tant properties that would later serve the social interaction. Namely, we introduce
predicate-based autotelic agents, a novel family of autotelic agents that represent
their goals using spatial binary predicates. These insights were based on the Man-
dlerian view on the prelinguistic concept acquisition suggesting that toddlers are
endowed with some innate mechanisms enabling them to translate spatio-temporal

v

information into an iconic static form. We show that the underlying semantic rep-
resentation plays a pivotal role between raw sensory inputs and language inputs,
enabling the decoupling of sensorimotor learning and language grounding. We also
investigate the design of such agents’ policies and state-action value functions, and
argue that combining Graph Neural Networks (gnns) with relational predicates
provides a light computational scheme to transfer efficiently between skills. In the
second part, we formalize social interactions as a goal exploration process. We in-
troduce Help Me Explore (hme), a novel social interaction protocol where an expert
social partner progressively guides the learning agent beyond its zone of proximal
development (zpd). The agent actively selects to query its social partner whenever
it estimates that it is not progressing enough alone. It eventually internalizes the
social signals, becomes less dependent on its social partner and maximizes its control
over its goal space.

Keywords: deep reinforcement learning, intrinsic motivations, goal-conditioned
behavior, autotelic agents, symbolic behavior, relational inductive bias, graph neural
networks, transfer learning, open-ended learning, skill acquisition.

vi

Enseigner des Agents Autotéliques basés sur des

Prédicats

Apprentissage des Représentation de buts avec un Partenaire Social
pour les Agents Intrinséquement Motivés

Résumé

Dans la quête de concevoir des machines incarnées qui explorent leurs environ-
nements en autonomie, découvrent des nouveaux comportement et apprennent des
répertoires non-bornés de compétences, l’intelligence artificielle s’est longuement in-
spirée des domaines de psychologie du développement et des sciences cognitives qui
étudient la capacité remarquable des humains à apprendre tout au long de leur vie.
Ceci a donné naissance au domaine de la robotique du développement qui a pour
but de concevoir des agents artificiels autonomes capables d’auto-organiser leurs
trajectoires d’apprentissage en se basant sur leurs motivations intrinsèques. Ce do-
maine combine les processus d’exploration de but intrinséquement motivé (imgeps)
et l’apprentissage par renforcement (RL). Cette combinaison est connue sous le nom
d’apprentissage par renforcement autotélique, où des agents autotéliques sont in-
trinséquement motivés pour représenter, organiser et apprendre leurs propres buts.
Nautrellement, ces agents doivent démontrer de bonnes capacités d’exploration
puisqu’ils ont besoin de découvrir physiquement les buts pour pouvoir les apprendre.
Malheureusement, découvrir des comportements intéressants peut être compliqué,
surtout dans les environnements d’exploration difficile où les signaux de récompenses
sont parcimonieux, déceptifs ou contradictoires. Dans ces scénarios, la situation
physique des agents semble insuffisante. Heureusement, la recherche en psycholo-
gie du développement et les sciences de l’éducation soulignent le rôle important
des signaux socio-culturels dans le développement des enfants humains. Cette sit-
uation sociale améliore les capacités d’exploration des enfants, leur créativité et
leur développement. Cependant, l’apprentissage par renforcement profond con-
sidère l’apprentissage social comme une imposition d’instructions aux agents, ce
qui les prive de leur autonomie. Dans ce document, nous introduisons les agents
autotéliques enseignables, une nouvelle famille de machines autonomes qui peuvent
apprendre à la fois toutes seules et à travers des signaux sociaux externes. Nous for-
malisons cette famille en tant que processus d’exploration de but hybride (hgeps),
où les agents autotéliques sont augmentés d’un mécanisme d’internalisation leur
permettant de rejouer les signaux sociaux et d’un selecteur de source de buts pour
demander activement de l’aide sociale.

Ce document est organisé en deux parties. Dans la première partie, nous nous
concentrons sur la conception d’agents autotéliques enseignables et nous essayons
d’implémenter des propriétés qui faciliteraient l’interaction sociale. Notamment,

vii

nous introduisons les agents autotéliques basés sur les prédicats, une nouvelle famille
d’agents autotéliques qui représentent leurs buts en utilisant des prédicats binaires
spatiaux. Nous montrons que l’espace de représentation sémantique sous-jacent
joue le rôle de pivot entre la représentation sensorimotrice et le langage, permettant
un découplage entre l’apprentissage sensorimoteur et l’ancrage du langage. Nous
étudions également la conception des politique et des fonctions valeurs état-action
et nous soutenons que la combinaison des réseaux de neurones graphiques (gnns) et
des buts en prédicats relationnels permet l’utilisation de schémas computationnels
légers qui transfèrent bien entre les tâches. Dans la deuxième partie, nous formal-
isons les interactions sociales en tant que processus d’exploration de buts. Nous
introduisons Help Me Explore (hme), un nouveau protocole d’interaction sociale
où un partenaire social expert guide progressivement l’agent au-delà de sa zone de
développement proximale (zpd). L’agent choisit activement de lancer des requêtes
à son partenaire social dès qu’il estime qu’il ne progresse plus sur les buts qu’il con-
nait déjà. Il finit éventuellement par internaliser ces signaux sociaux, devient moins
dépendant envers son partenaire social et arrive à maximiser son contrôle de son
espace de buts.

Keywords: apprentissage par renforcement profond, motivations intrinséques,
agents autotéliques, comportement symbolique, réseaux de neurones graphiques,
apprentissage non-borné.

viii

Contents

Introduction 1

I Teachable Autotelic Reinforcement Learning Agents 10

1 Reinforcement Learning Meets Open-Ended Learning 13
1.1 The Reinforcement Learning Paradigm 14

1.1.1 Motivations . 15
1.1.2 Formalization . 16
1.1.3 Taxonomy of RL Approaches 18

1.2 Delayed Geometric Discounts for Reinforcement Learning 21
1.2.1 Reinforcement Learning with Non-Geometric Discounts 22
1.2.2 Related Work . 26
1.2.3 Experiments . 28
1.2.4 Conclusion . 33

1.3 Goal-Conditioned Reinforcement Learning 33
1.3.1 Goals in Reinforcement Learning 34
1.3.2 Formalizing Multi-Goal Reinforcement Learning Problems . . 36
1.3.3 Typology of GCRL Algorithms 36

1.4 Goal Exploration Processes . 38
1.4.1 GEPs: Policy Search Perspective 39
1.4.2 GEPs: Policy Gradient Perspective 40
1.4.3 Externally Motivated Goal Exploration Processes 41
1.4.4 Intrinsically Motivated Goal Exploration Processes 41

1.5 Autotelic Reinforcement Learning . 43
1.5.1 Autotelic Learning of Goal Representations 43
1.5.2 Autotelic Discovery of Goals 44
1.5.3 Autotelic Mastery of Goals . 44

Chapter Summary . 45

2 Teachable Autotelic Agents: Developmental Perspective 46
2.1 Motivations . 47
2.2 Teaching in Humans . 51

2.2.1 Properties of Children Learners 51

ix

2.2.2 Properties of Tutors . 54
2.2.3 Properties of the Tutoring Process 56

2.3 Interactive, Autotelic and Inferential Social Agents 58
2.3.1 Reinforcement learners . 58
2.3.2 Interactive Reinforcement Learners 59
2.3.3 Autotelic Reinforcement Learners 61
2.3.4 Inferential Social Learners . 62

2.4 Conclusion . 64
Chapter Summary . 65

3 Predicate-based Goal-Conditioned Agents 66
3.1 The Mandlerian View: A Theory of Prelinguistic Concept Formation 67

3.1.1 The Image Schema Theory . 68
3.1.2 The Perceptual Meaning Analysis Mechanism 70
3.1.3 Artificial Intelligence and Perceptual Meaning Analysis 72

3.2 Formal Definition of Semantic Configurations 73
3.3 Grounding Language to Autonomously Acquired Skills Via Goal Gen-

eration . 76
3.3.1 Motivation and Contributions 76
3.3.2 Related Work . 78
3.3.3 Methods . 79
3.3.4 Experiments . 84
3.3.5 Discussion and Conclusion . 88

Chapter Summary . 90

4 Transfer and Generalization in Autotelic Agents 91
4.1 Graph Neural Networks . 92

4.1.1 Relational Inductive Bias with Graph Neural Networks 92
4.1.2 Overview on Graph Neural Networks in RL 95

4.2 Autotelic Behaviors with Graph Neural Networks 96
4.2.1 Motivations and Contributions 97
4.2.2 Related Work . 98
4.2.3 Methods . 100
4.2.4 Problem statement . 100
4.2.5 Environment and goal spaces 101
4.2.6 Graph-based autotelic learning 103
4.2.7 Experiments and Results . 105
4.2.8 Conclusion . 113

Chapter Summary . 115

Part Summary 116

x

II Teaching Autotelic Reinforcement Learning Agents 117

5 Hybrid Goal Exploration Processes 120
5.1 Motivation . 120
5.2 Related Work . 122
5.3 Methods . 123

5.3.1 Problem Statement . 123
5.3.2 Hybrid Goal Exploration Processes 124

5.4 Experimental Setup . 126
5.4.1 Environments . 126
5.4.2 Training Procedure . 127
5.4.3 Evaluation . 128
5.4.4 Results . 129

5.5 Conclusion and Discussion . 131
Chapter Summary . 133

6 Guiding Exploration in Autotelic Agents 134
6.1 Motivations . 134
6.2 Related work . 137
6.3 Methods . 139
6.4 Experimental Setup . 142

6.4.1 Environment . 143
6.4.2 Agents . 143
6.4.3 Evaluation Metrics . 144
6.4.4 How do Social Episodes affect Agents Performance ? 146
6.4.5 How do Social Episodes affect Agents Exploration ? 147
6.4.6 Can Automatic Curriculum Methods replace Social Interven-

tions ? . 148
6.4.7 How effective is hme’s Zone of Proximal Development Man-

agement ? . 148
6.4.8 How do Active Queries affect Social Interventions ? 150
6.4.9 Conclusion and Discussions 150

Chapter Summary . 153

Part Summary 154

III Discussions 155

7 Behavior Specification in RL 156

8 Towards More Teachable Agents 160

9 Spatial Predicate-based Representations 163

xi

10 Guiding Teachable Autotelic Agents 168

Conclusion 172

IV Appendices 174

A Appendix of Delayed Geometric Discounts 175

B Appendix of LGB 185

C Appendix of Autotelic Graph-based Agents 197

D Appendix of HGEP 200

E Appendix of HME 204

F References of Figure 1.9 216

xii

List of Figures

1.1 Instrumental Conditioning . 16
1.2 Agent-Environment Interaction in RL 17
1.3 Hard Exploration Corridor . 22
1.4 Optimal V with Delayed Discounts 23
1.5 Delayed Discounting Coefficients . 24
1.6 Hard Exploration Mazes . 28
1.7 Continuous Point Mazes . 29
1.8 Grid Plot on Continuous Mazes . 31
1.9 Performance on Continuous Control Benchmarks 32
1.10 Typology of gc-rl Algorithms . 38
1.11 geps under two Perspectives . 39
1.12 imgeps and emgeps . 42

2.1 Teachable Autotelic Agents . 47
2.2 Theory of Mind . 53
2.3 Social Channels . 57
2.4 Task Channels . 57

3.1 PMA Module . 71
3.2 Agents with and without PMA . 73
3.3 lgb Architecture . 78
3.4 Example of Configurations in FetchManipulateEnv 80
3.5 Skill Learning in decstr . 85

4.1 Block Stacking with Targets . 102
4.2 Graph Structure with gnns . 103
4.3 Different gnns Variants . 104
4.4 Global Performance with gnns . 107
4.5 Per Class Performance with gnns . 109
4.6 Sub-optimal Behavior . 110
4.7 Per Class Performance with gnns and Continuous Goals 110
4.8 Curriculum Ablation . 111
4.9 Non-trivial Scene Resets Ablations 111

5.1 hgeps . 125

xiii

5.2 Examples of Continuous Control Benchmarks 126
5.3 Exploration Metrics . 129
5.4 Achieved Goals Distribution in FetchPickAndPlace-v0 130

6.1 The hme Social Interaction Procol 136
6.2 Per Class Performance for Different levels on Social Sensitivity 146
6.3 Achieved Goals Barplots . 147
6.4 Global Performance on acl Baselines 148
6.5 Global Performance of Exploration Baselines 149
6.6 Achieved Goals Barplots for Exploration Baselines 149

9.1 Conditioned Goal Generation Module 165

A.1 Learned H-Close Optimal Control . 177
A.2 Learned Stationary Policy with g-sac 178
A.3 Success rate as a function of the Delay D and the discount values . . 179

B.1 Object-Centered Modular Architecture for the Policy 188
B.2 Illustration of Objects and Targets 193
B.3 Global SR of decstr and lgb-c . 194
B.4 Evolution of the Buckets Content in decstr 195
B.5 Learning Trajectories in decstr . 196

C.1 Global SR for the Self-attention Study 197

D.1 SR on externally generated goals in different environments. 201
D.2 Illustration of HandReach-v0 . 202
D.3 Evaluation Metrics on the Hand Manipulation Environment 202

E.1 Point Mazes . 205
E.2 Global SR on Maze Environments . 206
E.3 Performance of Agents on Hard Exploration Tasks 206
E.4 Performance Metrics on the Hard maze. Left: SR per cell with 0%

of social interventions; Middle: SR per cell with 1% of social inter-
ventions; Right: Coverage of the goal space computed as the ratio of
discovered goals. 207

E.5 Global SR for the Internalization Study 208
E.6 Induced Learning Trajectories . 209
E.7 Simplified example with 2 blocks in a 2D grid of the oracle tree con-

struction procedure . 210

xiv

List of Tables

1.1 Average Rewards in Discrete Mazes 30

2.1 Teachability Checklist . 50

3.1 Evaluation of the Language Grounding Phase 85
3.2 Evaluation of the Instruction Following Phase 85
3.3 Evaluation of Language Groudning with Continuous Goals 87

4.1 Evaluation Classes . 107
4.2 Global SR per Scenario . 112
4.3 Per Class SR per Scenario . 112

5.1 Success Rate on External Goals . 131

6.1 Semantic Evaluation Classes . 145
6.2 Amount of Social Intervention . 146
6.3 Coverage of Goal Spaces . 147
6.4 On the Role of Active Queries . 150

A.1 Sensorimotor learning hyperparameters used in g-sac. 181

B.1 Sensorimotor Learning Hyperparameters in decstr 189
B.2 List of Instructions in decstr . 191
B.3 lgg Hyperparameters . 192

C.1 Hyperparameters used in the gnn study 199

D.1 Hyperparameters of hgeps . 200

E.1 Amount of Social Interventions for the Internalization Study 209
E.2 The different semantic classes used in evaluation. The class Close i

regroups all semantic configurations where i pairs of blocks are close. 211
E.3 Hyperparameters used in gangstr 215

F.1 References of Figure 1.10 . 216

1

Introduction

Humans are the most remarkable learners we know to exist. From a very young
age, toddlers begin to freely interact with their surroundings, crawling around the
living room, playing with the curtains of the backyard french door or throwing the
ball under the sofa. They never stop acquiring skills as they grow older, piling up
colored blocks to construct towers, drawing sketches and playing hide-and-seek with
each other. They seem to be inherently motivated to grow a large and diversified
repertoire of skills. Actually, psychologists define the learning and development
process in human children as open-ended : children engage with non-stationary and
continuously changing environments through learner-centered activities to acquire
new capabilities of growing complexities [Piaget, 1977, Hannafin et al., 1994, Thelen
and Smith, 1996, Smith and Gasser, 2005].

Recently, the fields of robotics and artificial intelligence (ai) have been striving
to design embodied autonomous machines that interact with complex environments
and continuously learn new skills the way human infants do. Such agents are by
definition physically situated : they understand the world and respond to its signals
based on physical interactions. Reinforcement Learning (RL) has been introduced as
a conceptual and mathematical framework to train such agents [Sutton and Barto,
2018]. Motivated by Thorndike’s principle of instrumental conditioning — actions
followed by reinforcing signals such as food or praise are more likely to be repro-
duced [Thorndike, 1898, 1911] — RL represents a backbone for autonomous skill
acquisition in artificial agents. However, standard RL usually requires defining a
single reward signal for a single task. Interestingly, goal-conditioned RL (gc-rl)
was introduced as an RL-based paradigm for learning multiple skills [Schaul et al.,
2015]. Artificial agents trained within gc-rl produce actions that are conditioned
on some predefined context or goal. By training on multiple goals, such agents are
able to grow their repertoire of skills and diversify their behavior. However, the set
of goals on which these agents train are usually domain-specific and hand-engineered
a priori. This does not account for the learner-centered activities in human learners
which rely on intrinsic motivations to define their purposes and intents.

Intrinsically Motivated ai

Exploring, making sense of the surroundings, discovering and learning new skills
seems to come spontaneously in children. The role of play in infants goes beyond
giving pleasure, but marks one of the first contexts within which they use their

2

needs and incentives to act [Vygotsky, 1978b]. Actually, behavior in children, and
in humans in general, seems to be driven by intrinsic motivations that push them
towards experiencing novelty and fulfilling their curiosity to understand and control
their surroundings [Gopnik et al., 1999, Oudeyer and Kaplan, 2007, Oudeyer et al.,
2016, Rule et al., 2020].

Recently, the field of robotics has been taking inspiration from these insights to
model embodied artificial agents that use intrinsic motivations to explore and learn
about their environment [Baldassarre and Mirolli, 2013, Cangelosi and Schlesinger,
2018]. The main challenge has been to either augment or completely replace the
standard external reinforcing signals in RL with some internal motivators that the
agents construct by themselves during their lifetime [Schmidhuber, 2010, Kaplan
and Hafner, 2006]. Existing approaches in intrisincally motivated ai can be catego-
rized in two families. On the one hand, there are methods that aim at minimizing
the agents uncertainty over their surroundings. The underlying agents use proxies
such as novelty, surprise and disagreement to update their current knowledge and
expectations [Bellemare et al., 2016, Burda et al., 2018, Pathak et al., 2019, Raileanu
and Rocktäschel, 2020]. On the other hand, there are approaches where artificial
agents aim at maximizing their control of their environments. These methods use
estimations of learning progress and competence to self-organize their skills to facil-
itate their acquisition. In the next paragraph, we briefly introduce to combination
of intrinsic motivations and goal-based learning in ai.

Autotelic ai

In the quest for the autonomous acquisition of large repertoires of skills, baking these
kinds of intrinsic motivations into gc-rl agents seems promising. This combination
has been recently introduced as autotelic RL. The term autotelic first originated
from the theory of flow introduced by Csikszenmihaly [Mihaly, 2000]. It refers
to activities whose motivating purposes (telos) come from the embodied agents
themselves (auto). Recent approaches have been attempting to incorporate this
autotelic principle within ai [Steels, 2004, Colas et al., 2022b]. The underlying
agents are self-motivated, self-organized and self-developing.

In the context of gc-rl, autotelic agents have been defined as intrinsically mo-
tivated agents that spontaneously represent, set, pursue and learn about their own
goals [Colas et al., 2022a]. Such agents need to autonomously explore their environ-
ments, discover the skills they can potentially achieve and learn an optimal goal-
conditioned policy that masters them all. In these agents start with no clue about
the goals they can physically reach, they need to efficiently manage the exploration-
exploitation dilemma. In fact, as they would be continuously acquire new goals, they
ought to know when to focus on learning the already discovered ones and when to
start exploring again. Consequently, methods tackling this problem usually train
an internal goal-generator module that maximizes the coverage of the goal space,
prioritizing the exploration of sparsely achieved regions over others.

3

Notably, some environments are hard to explore in the first place. In such sce-
narios, random uninformed actions are not likely to yield interesting states for these
agents to learn from. This issue translates the effect of modelling only physical situ-
atedness traits — interacting with objects, discovering and learning only from these
interactions.

Socially-Situated ai

Back to our main source of inspiration, human children are also socially situated.
Besides from being autonomous open-ended learners, developmental psychology and
education sciences have shown that infants also benefit from external socio-cultural
signals that guide their exploration, drive their motivations and affects their de-
velopment [Wood et al., 1976, Vygotsky, 1978b, Bruner, 1990, 1991, Lindblom and
Ziemke, 2003, Tomasello, 2005, Weisberg et al., 2016, Yu et al., 2018]. Shortly after
birth, infants can imitate facial expressions such as happiness and surprise [Field
et al., 1983, Meltzoff and Moore, 1983, Meltzoff, 1988]. Besides, findings from devel-
opmental science argue that human toddlers register the equivalence between their
own actions and the actions of others even before language acquisition [Meltzoff,
2007]. This social responsiveness continues to develop as toddlers grow. They start
performing role plays together where they imitate their caregivers or some character
they watched on television, they react to their caregivers gaze, pointing and repri-
manding facial expressions. They also ask for help from their caregivers whenever
they attempt to accomplish a relatively complex task such as riding a bike, drawing
a lotus flower or constructing a double tower. They might later internalize these
external signals and manage to fulfill these task autonomously.

Combining social learning and intrinsic motivations in artificial agents has been
investigated as a promising way to help agents explore and continuously acquire new
skills without having to implement heavy exploration mechanisms [Schaal et al.,
2003, Thomaz et al., 2006, Thomaz and Breazeal, 2008b, Peters and Schaal, 2008,
Kober and Peters, 2011, Stulp and Schaal, 2011, Nguyen and Oudeyer, 2014a, Najar
et al., 2016, Fournier et al., 2017, Najar et al., 2020, Caselles-Dupré et al., 2022].
All these works argue that the social guidance provided by humans can drive the
learner to new regions of its state space, where its own random exploration alone
is usually insufficient. The agents’ own intrinsic motivations could then take the
wheel by further exploring these new areas. On the one hand, such a combination
makes use of the broader aspect of intrinsic motivations, that is exploring as many
goals as possible. On the other hand, it only profits from the specialized aspect of
social learning, that is following a specific instruction. These ideas were studied
not only in the context of learning one single skill [Schaal et al., 2003, Peters and
Schaal, 2008, Kober and Peters, 2011, Stulp and Schaal, 2011], but also in achieving
a variety of goals [Thomaz et al., 2006, Thomaz and Breazeal, 2008b, Nguyen and
Oudeyer, 2014a].

Since human intelligence is inherently symbolic, endowing artificial agents with
some symbolic systems might actually facilitate the intervention of human caregivers

4

within the training process of embodied machines. In the next paragraphs, we frame
the connectionist vs. symbolic dualism within ai.

Connectionist and Symbolic ai

A long-standing debate marking the fields of psychology and biology is the nature
versus nurture debate [Haldane, 1946, Moore, 2003, Carlson et al., 2005, Gruber,
2013, Moore, 2015, Normile, 2016]. It attempts to determine the factors responsible
for skill acquisition and development in humans: genetics (nature) or environment
(nurture). On the one hand, nature means acquiring knowledge, representing it and
reasoning about it are grounded in some programmed cognitive functions within
humans. On the other hand, nurture means that knowledge representations are
acquired from continuous interactions with the world [Gruber, 2013].

Recently, the traces of such a debate have been translated into the field of arti-
ficial intelligence, where connectionist ai has been confronted to symbolic ai. The
connectionist view suggests that designing artificial agents that generalize to many
domains should involve as little engineering as possible — that is, few to none pro-
grammed and hand-engineered functions. It is motivated by the fact that most
hard-coded features and modules would most likely be contextual — they would only
be valid in some cases but never broadly. Modern deep learning approaches adopt
a connectionist view, following an end-to-end scheme to design models which use
minimal a priori representational and computational assumptions to avoid hand-
engineering. These methods capitalize on the abundance of cheap data and compu-
tational resources, which resulted in end-to-end breakthroughs in the fields of image
classification [Redmon et al., 2016, Ren et al., 2015] and video processing [Zhang
et al., 2016] to speech recognition [Hinton et al., 2012] and neural machine trans-
lation [Luong et al., 2015, Wu et al., 2017]. This was highlighted by Sutton in his
formulation of the bitter lesson:

“The biggest lesson that can be read from 70 years of AI research is
that general methods that leverage computation are ultimately the most
effective, and by a large margin.”
Sutton [2019]

However, transferring beyond training conditions and learning from little experi-
ence remains a key challenge for these approaches. More specifically, the field of RL,
which requires artificial agents to perform online interaction with their environment,
should not require huge amounts of training steps to alleviate both economic and
ecological burdens.

By contrast, the symbolic view argues that human intelligence is inherently sym-
bolic, and thus implements symbolic systems within artificial agents would make
them intelligent [Newell and Simon, 2007]. It is mainly based on the physicaly sym-
bol system hypothesis introduced by Newell and Simon:

5

“A physical symbol system has the necessary and sufficient means for
general intelligent action.”
Newel and Simon [1976]

Methods within the symbolic ai view build models that are predefined, and en-
dow their systems with such models. This lead to several successes in problems such
as theorem proving [Newell and Simon, 1956], puzzle resolution [Newell et al., 1959]
and instruction-following [Winograd, 1972]. More recent works argued for the im-
plementation of symbolic behaviour in embodied agents [Santoro et al., 2021]. They
suggest that symbols might not be fixed, but should rather represent a background
with which agents would interact. These interactions would eventually update these
symbols, making them more suitable for the tasks they are confronted to.

Interestingly, psychologist Donald Hebb frames a rather interesting rhetorical
question on the predominance of nature or nurture: ”Which contributes more to
the area of a rectangle, its length or its width?”. This suggests that connection-
ist and symbolic ai could actually be complementary rather than competing views.
Recently, many research directions argued on the importance of combining connec-
tionism and symbolism, claiming that using them jointly yields wholes which are
greater than the sums of their parts. Among these works, neuro-symbolic approaches
have been shown to be promising in a variety of domains [Andreas et al., 2016, León
et al., 2020]. The present research aligns with these approaches.

Teachable Autotelic ai

The present research represents one of the first steps towards endowing autotelic
RL agents with the capacity to also learn from external social signals provided by
expert social partners. We introduce a new family called teachable autotelic agents
(taas). These agents are intrinsically motivated to learn about their own goals, but
they can also be taught from external caregivers. This enables such agents to be
social and autonomous at the same time: their intrinsic motivations are influenced
by their caregiver’s interventions, but they can still interact with their environment
and learn new things even if they were left alone. This suggests that the exploration
process in taas depends on both intrinsic motivations and external guidance signals
that agents could eventually internalize and take ownership of. We focus on this
issue from a goal exploration process point of view. We attempt to answer these
scientific questions:

• How can taas represent their goals to facilitate the external guidance by expert
caregivers ?

• How can we design taas’ internal models’ architecture to enable efficient trans-
fer and generalization between different skills ?

• How can we formalize the process of learning multiple goals under the assis-
tance of social caregivers ?

6

• How can we construct efficient social interaction protocols enabling caregivers
to help taas scaffold their skills and learn as much goals as possible ?

Contributions

The central purpose of the present research is to make progress towards the au-
tonomous acquisition of skills under social guidance. We build upon the related
ai approaches we outlined in the previous paragraph and introduce novel meth-
ods, frameworks and conceptualizations that form the family of socially-guided and
intrinsically motivated goal-conditioned agents, which we call Teachable Autotelic
Agents.

The first contribution in the present research is a novel family of optimization
criteria which we call the delayed geometric discounting criteria. This family gen-
eralizes the standard geometric discounts to policies with longer mixing times. Un-
derlying policies give more weight to rewards that are farther in the future, thus
yielding agents capable of sacrificing short term returns for better rewards in the
long run. We show that this family solves several hard exploration problems which
include sparse, deceptive and adversarial rewarding signals. This is presented in
Chapter 1.

The second contribution outlined in the present document is a teachability check-
list, a set of properties characterizing the teaching process in humans. We argue that
these properties should be leveraged in artificial agents to enable them to be effi-
ciently taught by external caregivers. We also investigate current works in ai and
point out the main teachability properties they lack. This is presented in Chapter 2.

The third contribution outlined in the present document is a novel family of
autotelic reinforcement learning agents that represent their goals using sets of binary
predicates based on spatial relationship.

The fourth contribution is a language goal generator which build upon the first
contribution and facilitates language grounding in the embodied agents’ sensorimo-
tor behavior. These two contributions are baked within a novel architecture which
we call Language-Goal-Behavior (lgb). In Chapter 3, we show that this architec-
ture enables autotelic agents to increase their behavioral diversity and follow natural
language-based instructions.

The fifth contribution consists in an investigation of the design of goal spaces
and policy architectures in autotelic agents. More specifically, we consider Graph
Neural Networks (gnns) as technical tools, and argue that it can be combined with
the structured predicate-based goal spaces to yield better transfer and generalization
capabilities. This is discussed in Chapter 4

The sixth contribution of the present research is a novel family of goal exploration
processes that handles multiple sources of goals. More specifically, we focus on goals
generated by external programs and goals selected by the agents autonomously,
and introduce Hybrid Goal Exploration Processes (hgeps). We show that external
goals enable agents to discover new regions of their goal spaces. This is outlined in
Chapter 5.

7

Finally, our last contribution consists in a social interaction protocol which we
call Help Me Explore (hme). hme involves an expert social partner (sp) and au-
totelic agents that are able to internalize social signals and actively select to query
their sp for help. They rely on their internal models to estimate their learning
progress, and ask for guidance whenever they estimate that they are not progress-
ing enough. The sp suggests goals based on the agents’ current exploration limits.
Their goal is to take the learning agents beyond their zone of proximal development
(zpd), which represents the space between what agents can do alone and what they
can do with the help of expert caregivers. The artificial agents eventually grow
their repertoire of skills, progressively shrinking their zpd until they become fully
independent of their sp.

All our studies are based on state-of-the-art techniques from deep reinforcement
learning, including optimization algorithms, exploration and relabeling techniques.

Document Structure

This manuscript is organized in two parts:

1. First, we introduce Teachable Autotelic Reinforcement Learning Agents, a
family of goal-conditioned embodied machines that use both their own in-
trinsic motivations and external social signals to explore their environment,
discover new skills and learn about them. We take inspiration from works
in developmental psychology and education sciences to present a teachability
checklist — a set of properties characterizing teaching in humans. We argue
that autotelic agents which represent their goals as sets of binary spatial pred-
icates and use Graph Neural Networks to model their policies exhibit a subset
of these properties.

2. Second, we investigate mechanisms for Teaching Autotelic Reinforcement Learn-
ing Agents. We introduce a novel goal exploration framework which we call
Hybrid Goal Exploration Processes (hgeps). hgeps formalize the goal discov-
ery, goals exploration and goal learning in autotelic agents that also receive
external signals in the form of external goals. We also introduce Help Me
Explore (hme), a social interaction protocol involving an expert caregiver and
autotelic agents that can internalize external signals and actively select queries.

We integrate this research into the current related works, discuss its limits as well
as future perspectives.

Collaborations

I believe that one of the most inspiring and fruitful assets of conducting a PhD
is the opportunity to establish different collaborations and collectively dig into a
particular project. The present research is the outcome of a quite hard teamwork

8

and interesting discussions with other researchers. All along these last three years,
I had the chance not only to work with my supervisors Olivier Sigaud and Mo-
hamed Chetouani, who graciously helped me refine my understanding of the different
challenges involving our research subject and guided me with their useful insights
and experience, but also with other colleagues from inside and outside of our lab.
Some of these collaborations gave birth to preprints, conference and workshop pa-
pers. Hereby, I enlist the ones whose resulting papers are used within the present
manuscript:

• I have worked with Cédric Colas and Pierre-Yves Oudeyer (INRIA) on the
study in Chapter 3. Their expertise on intrinsically motivated agents helped
me better understand many conceptual and technical features. I continued
working with Cédric Colas on the study in Chapter 6.

• I have worked with Firas Jarboui (ENS) on defining a novel family of crite-
ria that generalize the standard geometrically discounted RL in the study of
Chapter 1. His insights and expertise in the domain helped me a lot refine
the idea that the main problem with standard RL approaches is the focus on
immediate rewards, which rapidly becomes problematic in hard exploration
setups.

• I have worked with Olivier Serris (ISIR) and Hugo Caselles-Duprés (ISIR) on
designing a social interaction protocol in Chapter 6, where expert social part-
ners can help autotelic agents explore complex environments. I have learned
a lot from the discussions we had on the subject, and their insights were very
crucial to my own development.

I had many other fruitful discussions which did not result in publications but
were extremely crucial to both my personal and technical development within this
brief journey. For more details, see the Acknowledgments.

Publications

The present research includes several publications in conferences and workshops and
other pre-prints:

• Delayed Geometric Discounts: An alternative criterion for Reinforcement Learn-
ing (pre-print), Chapter 1 [Jarboui and Akakzia, 2021]

• Towards Teachable Autonomous agents (pre-print), Chapter 2 [Sigaud et al.,
2021]

• Grounding Language to Autonomously-Acquired Skills via Goal Generation
(ICLR 2021), Chapter 3 [Akakzia et al., 2021]

9

• Language-Conditioned Goal Generation: a new approach to language ground-
ing for RL (ICML 2021, LaReL workshop), Chapter 3 [Colas et al., 2020a]

• Learning Object-Centered Autotelic Behaviors with Graph Neural Networks
(CoLLAs 2022), Chapter 4 [Akakzia and Sigaud, 2022].

• Help Me Explore: Minimal Social Interventions for Graph-Based Autotelic
Agents (IMOL 2022), Chapter 6 [Akakzia et al., 2022].

Software

We open-source all the software corresponding to each of the studies conducted in
the present research. All the repositories can be found on github under the akakzia
account:

• The Eta-optimality Software: /eta optimality

• The Fetch Manipulate Software: /gym-object-manipulation

• The LGB-DECSTR Software: /decstr

• The RL-Graph Software: /rlgraph.

• The GANGSTR Software: /gangstr

• The HME Software: /help me explore

10

Part I

Teachable Autotelic
Reinforcement Learning Agents

11

Recently, Autotelic Reinforcement Learning Agents were introduced as a family
of embodied goal-conditioned agents that are intrinsically motivated to represent,
set and pursue their own goals. In the first part of this manuscript, we introduce a
novel family of goal-conditioned reinforcement learning agents which we call Teach-
able Autotelic Reinforcement Learning Agents. These agents are both autonomous
and socially situated : they are capable of learning alone, but can still benefit from
social signals provided by external human tutors, thus mimicking the process of
guided-play within human toddlers. The main objective of this part is to design
artificial agents capable of autonomously acquiring open-ended repertoires of skills
while being sensitive to external social signals that guide their exploration. We
incrementally develop this idea in three chapters:

• Chapter 1 bridges the gap between the Reinforcement Learning (RL) paradigm
and Open-Ended Learning. It highlights the fundamental concepts and compu-
tational frameworks that tackle key challenges in continuously learning skills of
increasing complexity. We first discuss the limitations of standard RL methods
in training agents to overcome hard exploration problems and simultaneously
learn multiple skills. Second, we introduce a novel family of RL algorithms
that allow artificial agents to discard short term rewards in favor of better
long term ones, thus overcoming hard exploration problems where rewards are
sparse, deceptive or adversarial. Third, we present a sub-family of RL meth-
ods called Goal-Conditioned Reinforcement Learning (gc-rl). These methods
yield artificial agents that learn contextual policies conditioned on goals, thus
allowing them to master a multitude of skills simultaneously. Finally, we fo-
cus on gc-rl methods and introduce goal exploration processes as a family of
algorithms that aim at maximizing the coverage of goal spaces.

• Chapter 2 introduces teachable autotelic agents from a developmental perspec-
tive. Its central objective is to provide a road map towards designing artificial
agents that can learn goal-directed behaviors in autonomy and with a hu-
man tutor. First, we present key works investigating the ”natural teaching of
a child” [Turing, 1948] to extract main properties found in human learners,
human teachers and in the tutoring process as a whole [Wood et al., 1976, Vy-
gotsky, 1978b, Bruner, 1985]. Then, we present an overview on works in the
field of Artificial Intelligence that attempt to leverage some of these properties,
and highlight their limitations.

• Chapter 3 introduces our first steps towards designing artificial teachable
agents. Predicate-based learning is the central concept developed in this chap-
ter. We start from a developmental perspective on the prelinguistic concept
formation in human toddlers. More specifically, we adopt the Mandlerian
view, which proposes a theory of Perceptual Meaning Analysis that builds on
primitive attention to temporal information and translates it into static spa-
tial concepts [Mandler, 2012]. Then, we formalize this idea and introduce

12

predicate-based semantic configurations as tools to represent goal spaces based
on spatial relational primitives. We argue that endowing artificial agents with
such representations accounts for the Mandlerian View. Finally, we introduce
the Language-Goal-Behavior (lgb) architecture which decouples skill learning
and language grounding. The lgb architecture uses semantic configurations
as a pivot between autotelic skill learning and social language grounding.

• Chapter 4 studies the transfer and generalization capabilities of goal-based
artificial agents. It argues that the behavioral diversity of autotelic agents is
grounded in their goal space representation and their policy design. First, we
start from a developmental point of view on the relationship between percep-
tion and conception in humans. First, we argue that humans are endowed
with intrinsic mechanisms that enable them to perceive their world in a struc-
tured fashion and to interact with it by bootstrapping primitive sub-routines.
This probably explains why humans exhibit impressive combinatorial gen-
eralization: they are able to handle new situations by efficiently combining
previously learned skills Then, we show how Graph Neural Networks (gnns)
represent promising tools for endowing artificial agents with combinatorial
generalization capabilities. Finally, we investigate the learning and transfer
capabilities of autotelic agents in multi-object manipulation scenarios using
different goal space representations and policy architecture. Namely, we study
4 graph-based architectures: full graph networks [Battaglia et al., 2018], in-
teraction networks [Battaglia et al., 2016], relation networks [Santoro et al.,
2017] and deep sets [Zaheer et al., 2017].

13

Chapter 1

Reinforcement Learning Meets
Open-Ended Learning

Open-ended learning is a key characteristic of learning and development in human
children [Piaget, 1977, Hannafin et al., 1994, Thelen and Smith, 1996, Smith and
Gasser, 2005]. It consists in interacting within an open-ended environment promot-
ing cognitive and embodied engagement through learner-centered activities [Han-
nafin et al., 1994]. Such environments are distinctively non-stationary, where new
objects might appear and sudden concept drift might occur due to unknown dynam-
ics. Children evolving in open-ended environments usually have few grounding rules
and a lot of freedom to explore within these rules. They build their own purposes
and intents while playing, for instance deciding what structure they want to build
from colored blocks, which instrument they want to play and what kindergarten
song they want to sing. This requires a sophisticated level of cognitive functioning
and the ability to acquire repertoires of behaviours of increasing difficulty [Hannafin
et al., 1994, Land, 2000, Baldassarre et al., 2014]. The continuous acquisition of
skills is usually referred to as lifelong learning [Thrun, 1998, Aspin and Chapman,
2000, Laal, 2011]. On the one hand, it is a continuous learning process where chil-
dren adapt their behavior without forgetting what they have already acquired. On
the other hand, it is an incremental learning process, where children progressively
add building bricks to their previously acquired behaviors to build more complex
ones.

In the quest for leveraging similar properties within Artificial Intelligence (ai),
the field of Reinforcement Learning (RL) represents a promising backbone for open-
ended learning in artificial agents. Originally inspired from empirical results in
Psychology [Thorndike, 1898, 1911] and Neuroscience [Olds and Milner, 1954, Mon-
tague et al., 1996], RL offers a computational framework for automating decision
making in embodied artificial agents [Sutton et al., 1998, Sutton and Barto, 2018].
Nevertheless, most ai research acknowledges the insufficiency of RL in tackling the
open-ended learning problem, which introduces two main challenges that standard
RL methods fail to circumvent.

On the one hand, acquiring open-ended repertoires of skills requires artificial

14

agents to address hard exploration and deceptive problems. While the former is
characterized by the rarity of the rewarding signal which obstructs exploration in
standard setups, the latter corresponds to situations where agents need to sacri-
fice early low rewards in order to receive higher ones that come later in their life
span. Standard RL approaches are usually based on maximizing cumulative dis-
counted reward criteria. They usually use geometric discounts, attributing higher
coefficients to earlier rewarding signals. This induces a build-in bias against policies
with longer mixing times. Hence, the underlying learning agents are likely to fall in
local minima corresponding to deceptive rewards (in deceptive problems), and strug-
gle from sample inefficiency when back-propagating the reinforcing signals to initial
states (in hard exploration problems). Some approaches use average reward criteria,
but the underlying methods are intractable and yield computational instabilities in
long-horizon scenarios.

On the other hand, the decision making module — known as the policy in RL
agents — needs to be flexible and sensitive to different purposes and goals. In fact,
open-ended learning requires mastering a multitude of tasks by definition. This sug-
gests that artificial agents need to be somehow aware of the task they are attempting
to fulfill, and take actions accordingly. Whenever another task is at hand, they need
to be able to adaptively switch their strategy. Standard RL approaches are not well
suited to design artificial agents that master multiple tasks (unless they define and
train a different policy for each task and consider the agent as an ensemble of sepa-
rate policies). In fact, an RL problem is usually mapped to a single Markov Decision
Process (mdp), which handles a single reward function that defines a single task or
goal.

In this section, we introduce computational frameworks that use RL as a back-
bone to tackle the two challenges discussed above. In Section 1.1, we formalize RL
as a paradigm for automating learning and decision making in artificial agents. In
Section 1.2, we bridge the gap between discounted and average cumulative rewards
by introducing delayed geometric discounting criteria. In Sections 1.3 and 1.4, we
present the Goal-Conditioned Reinforcement Learning paradigm. First, Section 1.3
introduces a formal definition of goals and of the multi-goal RL problem, a typology
of the existing goal representations and an overview of the existing methods. Sec-
ond, Section 1.4 presents goal-based artificial learning agents as Goal Exploration
Processes. In Section 1.5, we focus on autotelic RL, a sub-family of goal exploration
processes where agents use intrinsic motivations to represent, select and pursue their
own goals.

1.1 The Reinforcement Learning Paradigm

Reinforcement Learning (RL) is a computational approach to understanding and au-
tomating goal-directed learning and decision making. Compared to other computa-
tional approaches, RL considers embodied and situated agents: agents that directly

15

interact with their environment through autonomous actions without requiring su-
pervision or any model of the environment. In this section, we first motivate the
choice of this particular paradigm based on empirical results from psychology and
neuroscience and on early thoughts in artificial intelligence (Section 1.1.1). Then, we
present a formal definition of RL problems (Section 1.1.2). Finally, we exhibit several
categories of RL methods which are the most relevant to our work (Section 1.1.3).

1.1.1 Motivations

One of the first connections that infants establish with their environment is un-
doubtedly sensorimotor. In fact, within minutes of their birth, infants already start
waving their arms and looking about. As they grow up, infants further exercise this
connection to learn how their environment works and what to do in order to achieve
their goals. Therefore, learning from interaction is the backbone of most theories of
learning and intelligence.

The motivation behind the modern field of RL is the idea of trial-and-error which
originated from the psychology of animal learning. One of the first psychologists to
develop a comprehensive formalization of the idea of trial-and-error as a principle
of learning was Edward Thorndike. He was the first to introduce the term of instru-
mental conditioning to describe experiments in which reinforcement is contingent
upon behavior [Thorndike, 1898]. This type of conditioning is opposed the classi-
cal conditioning, where reinforcing stimulus is independent of the animal’s behavior
[Pavlov, 1904, Pavlov and Gantt, 1928].

To establish the effect of instrumental conditioning, Thorndike proposed experi-
ments where cats were placed in puzzle boxes with different escape mechanisms. In
all experiments, food was placed outside the box so that it was visible to the cats,
which had to perform a sequence of three separate actions to break out (pulling
strings, pushing bars, depressing platforms) [Thorndike, 1898], see Figure 1.1 for an
illustration. Thorndike observed that the time to escape over multiple experiences
decreased as the cat encountered successive trials. Hence, he described the cats’
behavior as follows:

“The cat that is clawing all over the box in her impulsive struggle will
probably claw the string or loop or button so as to open the door. And
gradually all the other non-successful impulses will be stamped out and
the particular impulse leading to the successful act will be stamped in by
the resulting pleasure, until, after many trials, the cat will, when put in
the box, immediately claw the button or loop in a definite way.”Thorndike
[1898]

This behavior describes the effect of reinforcing stimulus on the animals’ actions,
and thus was called by Thorndike the law of effect. Since then, this law has been
regarded as a founding principle of most influential learning theories [Hull, 1943,
1952] and experimental methods [Skinner, 1938].

16

Figure 1.1: Illustration of Thorndike instrumental conditioning experiments taken from
Pinterest

Beyond the field of animal psychology, implementing the idea of trial-and-error
to train artificial learning agents was promising. In fact, among the earliest thoughts
about the possibility of artificial intelligence was the idea of pleasure-pain system
described by Alan Turing, and which is identical in principal to the idea of the Law
of Effect:

“When a configuration is reached for which the action is undeter-
mined, a random choice for the missing data is made and the appropri-
ate entry is made in the description, tentatively, and is applied. When
a pain stimulus occurs all tentative entries are cancelled, and when a
pleasure stimulus occurs they are all made permanent.”Turing [1948]

Recently, the combination of trial-and-error and learning gave birth to RL as a
mathematical and computational framework which trains embodied agents to max-
imize future rewards in an environment. RL leverages the idea of instrumental
conditioning: agents perform sequences of actions in an environment, they observe
the consequences of these actions in the form of rewards, they learn from these
rewards, thus following the Law of Effect.

1.1.2 Formalization

Reinforcement learning problems are often formalized as Markov Decision Processes
(MDPs). They involve two main aspects. First, an evaluative aspect indicating how
good the action taken was, but not whether it was the best action possible. These
evaluations correspond exactly to the reinforcing signals, typically modeled by a
reward function. Second, an associative aspect enabling the selection of different ac-
tions for different situations. These associations describe the strategy of the agents,
more formally defined as a policy function. Note that the reward function depends
on the current situation and the action taken, while the policy function only depends
on the current situation. MDPs represent a mathematically idealized formalization

17

of sequential decision making. Since actions influence not only immediate situations
but also subsequent ones, MDPs usually require a trade off between immediate and
delayed rewards.

Environment Agent

state

reward

action

Figure 1.2: Illustration of the agent-environment interaction cycle in reinforcement learn-
ing

MDPs as Episodic Interactions. The learning from interaction framed by
MDPs involves an agent and an environment interacting together during a specific
amount of time. The interaction is usually episodic: time is discretized to a sequence
of time steps, t = 0, 1, 2, ..., T , and there is exactly one interaction by time step. T
denotes the maximum number of time steps possibly conducted, and which can
be finite or infinite. Notably, many of the ideas of MDPs can be extended to the
continuous-time case [Bertsekas and Tsitsiklis, 1996, Doya, 1996]. However, we focus
here on the discrete setting. Each interaction between the agent and the environment
at each time step involves the following cycle. First, the agent observes its current
state and takes an action with its policy function. Second, the environment returns
two values: 1) an evaluation of the action taken by the agent; 2) the new state to
which the taken action leads. The former is given by the reward function introduced
above. The latter is determined by the dynamics function of the underlying mdp.
See Figure 1.2 for an illustration.

MDPs and the Markov Property. First, we denote by S the state space.
The initial state at time step t = 0 is sampled from an initial state distribution
s0 ∼ ρ0(S) ⊂ S. Second, we denote by A the action space and R : A× S → R the
reward function. Finally, we denote T : S×A×S → [0, 1] the state-transition prob-
abilities which define the dynamics function. An mdp M is exhaustively defined
by the tuple of the quantities defined above: M = {S,A, T , ρ0,R}. By defini-
tion, the mdp makes the Markov assumption: the transition dynamics to the next
state depend only on information about the current state and action, rather than
the whole trajectory. More formally, the state-transition probabilities verify the
following Markov property:

p(st+1 | s0, a0, s1, a1, ..., st, at) = p(st+1 | st, at) (1.1)

18

Goals, Cumulative Rewards and Discounted Returns. In its classical
format, the reward signal passes from the environment to the agent and determines
the purpose of the agent. In its simplest case, the purpose of the agent, at time step
t, is to maximize the cumulative reward it receives in the long run

Gt = Rt+1 +Rt+2 + ...+RT =
T∑

i=t+1

Ri, (1.2)

where Ri denotes the reward obtained at time step i and T a finite time horizon.
Note that Gt is also called the return at time step t. Interestingly, formalizing
the idea of goals from the reward signal is one distinctive feature of RL. Consider
the example where we want an artificial agent to pick up an object and place it
at a certain position (a goal). We might want to define the reward function as
zero everywhere, and +1 when the object is at its desired position. In this case,
maximizing the cumulative reward is perfectly aligned with achieving the goal. In
other words, the reward signal should give the agent information about what must
be achieved (goal), and not about how to achieve (means). However, defining a goal
using a single reward function is insufficient if we want agents to learn diversified
behaviors — which is the case in open-ended learning. The idea of goals in RL is
further developed and formalized in Section 1.3.

In many cases, the interactions between the agent and the environment do not
break naturally into identifiable episodes but rather keep going without limit until
the agent succeeds or breaks. In this situation, the time horizon verifies T = ∞,
and the agent-environment interaction withint the mdp is not episodic anymore. As
a consequence, the cumulative reward in Equation 1.2 becomes divergent. To cir-
cumvent this convergence issue, an additional concept of discounting is introduced.
The main idea is to value the rewards that are closer in time more than the farther
ones. In practice, this is done by introducing a discounting parameter γ. To ensure
the convergence of the infinite series, this parameter is usually taken within the
interval [0, 1). In this situations, agents maximize the following discounted return

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
i=0

γiRt+i+1 ≤
M

1− γ
, (1.3)

where M is an upper bounded for the reward values.

1.1.3 Taxonomy of RL Approaches

Throughout the development of RL, many themes have developed and evolved,
resulting in the grouping of various RL algorithms into different categories. In this
section, we focus specifically on the themes that directly impact our work.

Action-Value Methods and Policy Gradient Methods. Most of RL problems
require building complex models and training them using an optimization method.

19

There are mainly two families of optimization methods for RL: value-based and
policy gradient algorithms. In the former, the idea is to perform as many actions as
possible, assess a value to each possible situation and follow the strategy that yields
the best results. In the latter, the idea is to maintain a model of policy and tweak it
progressively through gradient steps towards actions that produce the best result.

On the one hand, value-based algorithms rely on the definition of value and/or
action-value functions. Both are directly indexed by a policy. The value function of
a policy π for a state s is usually denoted Vπ(s). It estimates the expected return
from s when following π. The action-value function of a policy π for a state s and an
action a is usually denoted Qπ(s, a). It estimates the expected return from state s,
taking action a and then following the policy π. Consequently, both the value and
the action-value function quantify the fitness of being in a state (the value function)
or being in a state and performing an action (the action-value function). A recursive
decomposition of these function yields the following Bellman equations [Sutton and
Barto, 2018]:

Vπ(s) = E a∼π(s)
s′∼T (s,a)

[
R(s, a) + γVπ(s′)

]
(1.4)

Qπ(s, a) = Es′∼T (s,a)
a′∼π(s′)

[
R(s, a) + γQπ(s′, a′)

]
(1.5)

Note that the action-value function and the value function verify the following re-
lation: Vπ(s) = Ea∼π(s)Qπ(s, a). The objective of a value-based algorithm is to
determine the optimal value function and/or the optimal action-value function such
that

V ∗(s) = max
π

V ∗π (s),

Q∗(s, a) = max
π

Q∗π(s, a).

The optimal policy can easily be derived from the optimal action-value function,
by simply ensuring to take actions that always maximize the action-value function:

π∗(s) = arg max
a
Q∗(s, a). (1.6)

On the other hand, while value-based methods require spanning the entire action
space to evaluate the action-value function for a given state and take the action that
maximizes it (see Equation 1.6), policy gradient methods directly model a policy
that produces actions for a given state. This makes policy-gradient methods more
useful in continuous setups, where spanning the entire action spaces for every state

20

is usually intractable. We denote by θ ∈ Rd the parameter vector of a policy π. The
idea behind policy gradient methods is to consider some scalar performance measure
J(θ) with respect to the policy parameter. These methods aim at maximizing this
performance metric by updating the parameters at every time step t using the
gradient of the performance measure with reference to the parameters before update.
Formally:

θt+1 = θt + α ∇J(θt),

where α and ∇J(θt) correspond respectively to a learning rate and the gradient of
the performance measure. In the episodic case, the performance measure is usually
defined with reference to the true value function for the current policy starting from
an initial state. The policy gradient theorem gives a straightforward formulation of
the gradient of such a performance measure [Sutton and Barto, 2018].

A particular sub-family of policy gradient methods is called the actor-critic fam-
ily, which simultaneously learns approximations to both the policy and the value
function.

On-Policy and Off-Policy. The exploration-exploitation trade-off in reinforce-
ment learning [Sutton and Barto, 2018] poses a dilemma in the learning control
methods: even though they seek to learn action values conditional on subsequent
optimal behavior, they need to behave non-optimally in order to explore all actions
and find the optimal ones. Hence, the question here is as follows: how can the
learning control methods actually learn about the optimal policy while behaving
according to another policy? Two learning paradigms are confronted: on-policy
learning and off-policy learning.

On the one hand, on-policy methods attempt to evaluate or improve the policy
that is used to make decisions as it learns action values not for the optimal policy,
but for a near-optimal one that still explores. These methods are generally soft,
meaning that π(a|s) > 0 ∀ s ∈ S and ∀ a ∈ A, but gradually shifted closer to a
deterministic optimal policy.

On the other hand, the off-policy approach consists in using two separate poli-
cies, one that is learned about and that converges to the optimal policy — a target
policy — and one that is more exploratory and is used to generate behavior — a be-
havior policy. The data used to describe the behavior is therefore “off” the target
policy. To estimate the expected values under the target policy using samples of
trajectories generated with the behavioral policy, one can rely on the importance
sampling technique [Schulman et al., 2015, 2017, Sutton et al., 1998]. Its main idea
is to weigh the returns according to the relative probability of their trajectories
occurring under the target and behavior policies.

Model-Free and Model-Based. Depending on whether or not the algorithm
learns a model of the environment, there exist two classes: model-based and model-
free algorithms. On the one hand, model-based methods make use of knowledge

21

about the environment to improve learning. Agents evolving in such scenarios can for
example learn an estimation of the state-transition probabilities, of which they can
make use to perform planning, imagining estimated outcomes of their actions even
though they have not performed them yet. Another way of incorporating knowledge
about the environment is to incorporate some environment-based inductive bias
such as constraining the algorithm to produce only valid action or providing the
maximum length of the episode. In practice, such algorithms are used especially
in games where rules are perfectly defined and where understanding the effects of
actions and planning becomes crucial. On the other hand, model-free algorithms can
in principle be applied to any problem. They do not directly learn environmental
rules, but rather absorb them within their policies through interactions.

All the work conducted within this PhD research uses a model-free, off-policy
and policy gradient-based algorithm: Soft Actor-Critic [Haarnoja et al., 2018]. Note
that our research is orthogonal to the choice of the RL algorithm.

1.2 Delayed Geometric Discounts for Reinforce-

ment Learning

In the infinite horizon setting, and without further assumptions on the underly-
ing Markov Decision Process (mdp), available RL algorithms learn optimal policies
only in the sense of the discounted cumulative rewards presented in Equation 1.3
[Puterman, 2014]. While geometric discounting is well suited to model a termina-
tion probability or an exponentially decaying interest in the future, it is not flexible
enough to model alternative weighting of the returns. Consider for example settings
where the agent is willing to sacrifice short term rewards in favor of the long term
outcome. Clearly, for such situations, a discounted optimality criterion is limited
and does not describe the actual objective function.

This is particularly true in tasks where agents are willing to sacrifice short term
rewards to get good final ones. In such scenarios, agents should be able to tolerate
visiting states that provide them with negative rewarding signals if these states are
stepping stones to later high rewards. In other words, even if the sum of rewards
obtained within a trajectory is not the optimal one, agents would continue perform-
ing that trajectory as long as it takes them to the best rewards in the environment.
Consider for example the U-maze environment in Figure 1.3a, where the reinforce-
ment signal provides a high reward (+1) when reaching the green dot in the bottom
arm, a deceptive reward (+0.9) when reaching the blue dot in the upper arm, and
a negative reward (−1) for crossing the red corridor. If the agent is only interested
in the long term returns, then the optimal control should always lead to the green
dot. However, depending on the initial state, optimal policies in the sense of the
discounted RL problem are likely to prefer the deceptive reward due to the expo-
nentially decaying interest in the future (Figure 1.3b). This behavior can obstruct
the agent exploration in hard exploration environment, as they would stop exploring

22

the lower part of the maze whenever they start at the upper part, since the region
surrounding the adversarial reward is highly repulsive.

(a) (b)

Figure 1.3: (a) Hard exploration problem example, (b) optimal value function of
standard geometrically discounted RL with a discount factor γ = 0.99.

Naturally, higher discount factors are associated with optimal policies that also
optimize the average returns of Equation 1.2, which can solve in principle the de-
scribed hard exploration problem [Blackwell, 1962]. However, in practice, such dis-
count values can be arbitrarily close to 1 which entails severe computational insta-
bilities. In addition, and particularly in continuous settings or when tasks span over
extremely long episodes, discount-based RL approaches are sample-inefficient and
are slow at propagating interesting feedback to early states.

In this section, we generalize the geometric discount to derive a variety of alter-
native time weighting distributions and we investigate the underlying implications of
solving the associated RL problem both theoretically and practically. Our contribu-
tions in this section are twofold. First, we introduce a novel family that generalizes
the geometrically discounted criteria, which we call the delayed discounted criteria.
Second, we derive tractable solutions for optimal control for both stationary policies
using these novel criteria. Finally, we evaluate our methods on hard exploration
mazes in both discrete and continuous settings, and on continuous long-episodic
control tasks where we show that:

1. Our agents can solve the hard exploration problem in a proof of concept setup.

2. Our methods improve sample-efficiency on continuous robotics tasks compared
to Soft-Actor-Critic.

For additional theoretical derivations, proofs and experiments, we refer the reader
to Appendix A.

Figure 1.4 showcases how non-geometrically discounted criteria impacts the pro-
file of optimal value function in the U-maze example illustrated in Figure 1.3a.

1.2.1 Reinforcement Learning with Non-Geometric Discounts

In this section, we present our methods. First, we introduce a novel family of param-
eterized discounting functions that alleviate the attention on immediate rewards. We

23

Figure 1.4: Optimal value function of delayed discounted RL criteria in the U-Maze ex-
ample.

derive the underlying optimization criterion and introduce a novel algorithm that
generalizes the Soft Actor-Critic to non-geometric discounts.

Consider an infinite horizon mdp denoted by M = {S,A, T , ρ0,R, γ}, where
the state space S and the action space A are either finite or compact subsets of
respectively Rd and Rd′ , (d, d′) ∈ N2, T : S × A → ∆(S) is a state transition
kernel1, R : S ×A → R is a continuous reward function, ρ0 ∈ ∆(S) an initial state
distribution and γ ∈ [0, 1) is the discount factor. A policy π is a mapping indicating,
at each time step t ∈ N, the action at to be chosen at the current state st. The
goal of geometrically discounted reinforcement learning algorithms is to optimize
the discounted returns:

L(π,R) := Eπ,ρ0

[∞∑
t=0

γtRt

]
; Rt := R(st, at) (1.7)

where Eπ,ρ0 denotes the expectation over trajectories generated in M using the
policy π and initialized according to ρ0.

Beyond the Geometric Discount: A Delayed Discounted Criterion

Let’s first generalize the optimization criterion from Equation 1.7 to model any
discounting function Φ. More formally, we rewrite the discounted return as Gt =∑∞

t=0 Φ(t)×Rt. Note that taking Φ(t) = γt leads to retrieving exactly the geomet-
rically discounted criterion from Equation 1.7.

We propose to investigate a particular family of parametric discounting functions
defined by a sequence of different discount factors γ0, γ1, ..., γD, where D ∈ N and
the discount factors γd ∈ [0, 1) for any integer d ∈ [0, D]. We call D the delay
parameter. We consider the following parametric discounting function:

ΦD(t) :=
∑

{ad∈N}Dd=0∑
d ad=t

D∏
d=0

γadd , (1.8)

1∆(S) denotes the set of probability measures over S

24

and the underlying non-geometrically discounted criterion:

LD(π, r) := Eπ,ρ0

[∞∑
t=0

ΦD(t)Rt

]
. (1.9)

This class of optimality criteria is a generalization of the classical geometric
discount. In fact, we highlight that for D = 0, Φ0(t) = γt0 which implies that
L0(π,R) = L(π,R) for any policy π and any reward function R. In Figure 1.5, we

report the normalized distribution of the weights ΦD(t) (i.e. y(t) = ΦD(t)∑
i ΦD(i)

) over

time as we vary the delay parameter D ∈ {0, . . . , 9}. Notice that for higher values of
the delay parameter D, the mode of the probability distribution is shifted towards
future time steps. In fact, the delay parameter controls the region of time steps on
which to focus more, by putting more weights on that region rather the others.

Figure 1.5: The normalized coefficients ΦD(t) over time for different values of D

Intuitively, the proposed criterion in Equation 1.9 describes the goal of an agent
that discards short term gains in favor of long term discounted returns. In the
remainder of this section, we only focus on learning optimal stationary solutions for
the delayed discounted criterion. Appendix A is dedicated to further investigations,
where we introduce a more general problem formulation using linear combinations
of delayed losses to account for the attention over multiple regions of time steps.

Optimal Stationary Policies

In this section, we propose to learn a stationary solution using an algorithmic scheme
akin to policy-iteration. As in the classical setting, the goal is to learn an optimal
policy π∗ that maximizes the state-action value function Qπ

D defined as follows:

Qπ
D(s, a) := Eπ

[∞∑
t=0

Φd(t)R(st, at)|s0, a0 = s, a
]
. (1.10)

25

In the geometrically discounted setting, the value function is the fixed point of
the Bellman optimality operator. Luckily, this property is also valid for Qπ

D:

Proposition 1 For any discount parameters (γd)
D
d=0, the value functions Qπ

D is the
unique fixed point of the following γD-contraction:

[TDπ (q)](s, a) = Es′∼T (s,a)
a′∼π(s′)

[
R(s, a) +

D−1∑
d=0

γdQ
π
d(s′, a′)

]
︸ ︷︷ ︸

:= Rπ
D(s, a)

+γDEs′∼T (s,a)
a′∼π(s′)

[
q(s′, a′)

]
.

(1.11)

Proposition 1 suggests that the state-action value function Qπ
D with respect to

the delayed criterion LD respects the following equation:

Qπ
D(s, a) = Rπ

D(s, a) + γDEs′∼T (s,a)
a′∼π(s′)

[
Qπ
D(s′, a′)

]
. (1.12)

In other words, Qπ
D can be seen as the state-action value function using an

augmented reward signal Rπ
D(s, a) parameterized by the delay parameter D and

dependent on the policy π with reference to the γD-discounted returns. Intuitively,
the instantaneous worth of an action (the term Rπ

D) is the sum of the environments’
myopic returns (the term R(s, a)) and the long term evaluations (with lower delay
parameters (Qπ

d)d<D).
This has the beneficial side-effect of enhancing sample efficiency as it helps the

agent to rapidly back-propagate long-term feedback to early states. It reduces the
time needed to distinguish good from bad behaviors, particularly in continuous
settings where function approximations are typically used to learn policies. This is
discussed in detail in Section 1.2.3.

Similarly to standard value-based RL algorithms, we choose to model the state-
action value function and the policy with neural network approximators. On the one
hand, we parameterize Qπ

D with θD. Since the computation of the state-action value
function Qπ

D requires the evaluation of Qπ
d , where d ∈ [0, D− 1] (see Proposition 1),

we parameterize each of these functions by θd, where d ∈ [0, D − 1]. Consequently,
by contrast with standard value-based algorithms, our methods use D + 1 approx-
imators, one for each value of the delay. On the other hand, we parameterize the
policy π with φ.

As for standard value based methods, we consider a set of trajectories D =
{s, a, s′} stored in an experience replay buffer. We update the Q-values by optimizing
a performance measure JQD(θ):

JQD(θ) = E s,a,s′∼D
a′∼πφ(s′)

[1

2

(
Qθ − (R(s, a) +

D∑
d=0

γdQθ̄d(s
′, a′))2

)]
, (1.13)

26

where θ̄d denotes the parameters of the target state-action value functions. As
for the policy update step, inspired from the Soft-Actor-Critic (sac) algorithm
[Haarnoja et al., 2018], we propose to optimize an entropy regularized soft Q-value
using the following loss where α is the learning rate parameter:

JπD(φ) = −Es∼D,a∼πφ
[
QθD(s, a)− α log(πφ(a|s))

]
. (1.14)

We use Equations 1.13 and 1.14 to construct Algorithm 1, which we call the
Generalized Soft Actor-Critic algorithm (g-sac). It generalizes the sac algorithm
that approximates optimal stationary policies in the sense of LD. In practice, this
can be further improved using the double Q-network trick and the automatic tun-
ing of the regularization parameter α. This is discussed in Appendix A. Besides,
since using additional Q-networks for each delay level increases the number of pa-
rameters — which increases the update time by iteration — we share the lower layers
between all the critics and use a different head for each one. Unfortunately, unlike
the geometrically discounted setting, the policy improvement theorem is no longer
guaranteed in the sense of LD. This means that depending on the initialization pa-
rameters, Algorithm 1 can either converge to the optimal stationary control or get
stuck in a loop of sub-optimal policies. This is discussed in detail in Section 1.2.3.

Algorithm 1 Generalized Soft Actor Critic

1: Input: initial parameters (θd)
D
d=0, φ, learning rates (λd)

D
d=0, λπ, polyak parame-

ter τ
2: initialize target networks θ̄d ← θd and replay buffer D ← ∅
3: for each iteration do
4: for each environment step do
5: at ∼ πφ(st), st+1 ∼ P(st, at), D ← D ∪ {(st, at, st+1,Rt)}
6: for d ∈ [0, D] do
7: for each Qd gradient step do
8: update parameter θd ← θd − λd∇̂θdJ

Q
d (θd)

9: update target θ̄d ← τ θ̄d + (1− τ)θd

10: for each policy update do
11: update policy φ← φ− λπ∇̂φJ

π
D(φ)

12: Return: πφ, (Qθ̄d)
D
d=0

1.2.2 Related Work

Bridging the Gap Between Discounted and Average Rewards Criteria

It is well known that defining optimality with respect to the cumulative discounted
reward criterion induces a built-in bias against policies with longer mixing times.
In fact, due to the exponential decay of future returns, the contribution of the

27

behaviour from the T th observation up to infinity is scaled down by a factor of the
order of γT . In the literature, the standard approach to avoid this downfall is to
define optimality with respect to the average reward criterion L̄ defined as :

L̄(π, r) := lim
T→∞

1

T
Eπ,p0

[T∑
t=0

rt

]
. (1.15)

This setting as well as dynamic programming algorithms for finding the optimal av-
erage return policies have been long studied in the literature [Howard, 1960, Veinott,
1966, Blackwell, 1962, Puterman, 2014]. Several value based approaches [Schwartz,
1993, Abounadi et al., 2001, Wei et al., 2020] as well as policy based ones [Kakade,
2001, Baxter and Bartlett, 2001] have been investigated to solve this problem. These
approaches are limited in the sense that they require particular mdp structures to
enjoy theoretical guarantees.

Another line of research is based on the existence of a critical discount factor
γcrit < 1 such that for any discount γ ∈ (γcrit, 1) the optimal policy in the sense
of the γ-discounted criterion also optimizes the average returns [Blackwell, 1962].
Unfortunately, this critical value can be arbitrarily close to 1 which induces com-
putational instabilities in practice. For this reason, previous works attempted to
mitigate this issue by increasing the discount factor during training [Prokhorov and
Wunsch, 1997], learning higher-discount solution via learning a sequence of lower-
discount value functions [Romoff et al., 2019] or tweaking the reinforcement signal
to equivalently learn the optimal policy using lower discounts [Tessler and Mannor,
2020].

Exploration Strategies

Another line of research attempted to tackle the hard exploration problem by fur-
ther driving the exploration of agents towards interesting states. Inspired by intrinsic
motivation in psychology [Oudeyer and Kaplan, 2008], some approaches train poli-
cies with rewards composed of extrinsic and intrinsic terms. Namely, count-based
exploration methods keep track of the agents’ past experience and aim at guiding
them towards rarely visited states rather than common ones [Bellemare et al., 2016,
Colas et al., 2019]. Alternatively, prediction-based exploration defines the intrinsic
rewards with respect to the agents’ familiarity with their environment by estimating
the accuracy of a model predicting the dynamics of the environment [Stadie et al.,
2015, Pathak et al., 2019]. Other approaches maintain a memory of interesting
states [Ecoffet et al., 2019, 2021], trajectories [Guo et al., 2020] or goals [Guo and
Brunskill, 2019]. Ecoffet et al. [2019, 2021] first return to interesting states using
either a deterministic simulator or a goal-conditioned policy and start exploration
from there. [Guo et al., 2020] train a trajectory-based policy to rather prefer tra-
jectories that end with rare states. Guo and Brunskill [2019] revisit goals that have
higher uncertainty. Finally, based on the options framework [Sutton et al., 1999b],
options-based exploration aims at learning policies with termination conditions—or

28

macro-actions. Leveraging these abstract actions helps driving the agents’ explo-
ration towards behaviours of interest [Gregor et al., 2016, Achiam et al., 2017a].

1.2.3 Experiments

In this section, we present the experimental setup used to evaluate our methods.
Our goal is to investigate the impact of the delayed discounting criterion. To do so,
we focus on the following questions:

• How does optimizing the delayed discounting criterion impacts the perfor-
mance metrics of the agents in hard exploration problems where artificial
agents need to handle both deceptive and adversarial rewarding signals?

• How does the proposed g-sac algorithm impact the performance metrics of
artificial agents in classic continuous control problems with dense rewarding
signals?

To answer these questions, we first describe the environments we considered in
this study. Then, we introduce the evaluation metrics. Finally, we present the
underlying results.

Environments

To answer the scientific questions highlighted in the introduction of this section, we
consider two types of environments: hard exploration environments with deceptive,
adversarial and sparse rewarding signals and classic control environments with dense
rewarding signals.

(a) U-maze (b) T-maze (c) Random maze

Figure 1.6: Hard exploration environments

29

Hard Exploration Discrete Mazes with Deceptive and Adversarial Re-
wards. This family of environments consists of three discrete mazes illustrated
in Figure 1.6. In all these problems, the state space is discretized to correspond
to different cells of the mazes and the action space corresponds to moving in four
directions (right, left, up, down). In the U-Maze and the T-Maze environments
(Figures 1.6a and 1.6b), we use three different types of rewards: a deceptive reward
of 0.9 represented by the blue zone; an adversarial reward of -1 represented by the
red zone; a target reward of +1 represented by the green zone. In the Random Maze
environment (Figure 1.6c), we discard the adversarial reward for simplicity and only
focus on the deceptive and target rewards. In all these environments, we want the
artificial agents to sacrifice short term rewards for higher long term ones.

(a) SMaze-v0 (b) UMaze-v0

Figure 1.7: Continuous Maze Environments

Hard Exploration Continuous Mazes with Deceptive Rewards. This
family of environments consists of two continuous mazes illustrated in Figure 1.7.
In both environments, the agent is a point whose action space is 2-dimensional,
corresponding to movements along the x and y axis. The state space contains
features corresponding to the positions and the velocities of the artificial agent. In
both environments (SMaze-v0 in Figure 1.7a and Umaze-v0 in Figure 1.7b), we
consider two types of rewards: a deceptive reward of +0.8 (blue dot) and a target
reward of +1 (red dot).

Simulated Continuous Control Benchmarks. We aim at evaluating the
performance of artificial agents using the delayed discounting criterion on several
continuous control domains. To this end, we consider 5 different environments within
the mujoco physics engine [Todorov et al., 2012]: Walker2d, Hopper, HalfCheetah,
Ant and Humanoid. In all these environments, the rewarding signal is dense and
consists of a sum of control term (penalizing falling agents) and a running term
(rewarding higher speed to ensure going longer distances).

30

Evaluation Metrics

Hard Exploration Discrete Mazes. We investigate the ability of g-sac to
approximate the solution using the discounting function phiD. To this end, we
consider different values for the delay parameter D ∈ [0, 1, 3, 4, 7, 8]. For each level
d of delay, we use a discounting factor γd = 0.99− i

1000
. For each value of the delay,

we consider two different agents: ΦD-Random, where weights of the policies and
value function are randomly initialized; ΦD-Optimal, where weights are initialized
as optimal solutions of the geometrically discounted criterion (for D = 0). We
evaluate our agents by investigating their average rewards after training. Values are
averaged over 25 runs using trajectories of length 4000, where agents are uniformly
reset in any state of the mazes.

Hard Exploration Continuous Mazes. We assess the capabilities of g-sac
agents in distinguishing the target rewards from the deceptive ones. To this end, we
investigate if these agents are able to reach the target reward even though they were
initialized close to the deceptive ones. We evaluate the average rewards obtained
after training g-sac agents with a delay parameter fixed at D = 1. We discretize the
continuous mazes into different cells, initialize our agents in each cell and compute
the associated performance metrics. We confront our agents to standard ones trained
with sac (with geometrically discounted criteria). Experiments were conducted over
5 seeds

Simulated Continuous Benchmarks. For each of the considered continuous
benchmarks, we fix the delay parameter D = 1. This suggests that two discount
factors are used: γ1 and γ2. We are interested in the average rewards obtained
during training. We compare g-sac agents to standard sac agents.

Results

In the next paragraphs, we present the results and key insights for the different
environments considered in our experimental setup.

Table 1.1: Average rewards in the discrete maze environments for different values of delay
D. See Appendix A for additional results.

Delay Value (D) 0 1 3 4 7 8
Discrete U-Maze

ΦD-Random 0.92 ± 0.02 0.93 ± 0.03 0.96 ± 0.01 0.93 ± 0.04 0.6 ± 0.12 0.05 ± 0.3
ΦD-Optimal 0.92 ± 0.02 0.93 ± 0.01 0.96 ± 0.02 0.98 ± 0.01 0.87 ± 0.08 0.4 ± 0.2

Discrete T-Maze
ΦD-Random 0.92 ± 0.02 0.93 ± 0.02 0.99 ± 0.01 0.98 ± 0.01 0.7 ± 0.09 0.22 ± 0.4
ΦD-Optimal 0.92 ± 0.02 0.93 ± 0.02 0.99± 0.01 0.98 ± 0.01 0.02 ± 0.5 0.05 ± 0.4

Discrete Random-Maze
ΦD-Random 0.93 ± 0.01 0.93 ± 0.02 0.89 ± 0.04 0.35 ± 0.17 0.45 ± 0.2 0.05 ± 0.3
ΦD-Optimal 0.93 ± 0.01 0.93 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.9 ± 0.04 0.01 ± 0.2

31

Hard Exploration Discrete Mazes with Deceptive and Adversarial Re-
wards. Table 1.1 depicts the average rewards on the different discrete maze
environments for different values of the delay parameter D.

As discussed earlier, unlike the geometrically discounted setting, the policy up-
date is not guaranteed to improve performance. For this reason, depending on the
initialisation, the algorithm can either converge to the optimal stationary policy, or
get stuck in a sequence of sub-optimal policies.

A common observation is that for a depth D of 7 or higher, the algorithm is
unstable and we couldn’t learn a good stationary policy in a reliable way. However,
the learned stationary policies with even a relatively shallow depth parameter yielded
reliable policies. Notice how the baseline (D = 0, i.e. the geometrically discounted
case) always under-performs when compared to the learned policies for a depth
parameter of 3 and 4.

We also observe that the algorithm is sensitive to the used initialization. Us-
ing the optimal policy in the sense of the geometrically discounted objective (ΦD-
Optimal agents) helps stabilize the learning procedure in most cases: this is par-
ticularly true in the random maze environment where ΦD-Random yields bad per-
formance metrics even with a low depth parameter. This aligns with what was
discussed in earlier sections about the lack of guarantee of improvement through
policy updates and possible convergence to sub-optimal policies

(a) (b)

(c) (d)

Figure 1.8: Grid plot of the average rewards per cell initialization for sac within (a) the
SMaze-v0 environment, (b) the UMaze-v0 environment; g-sac within (c) the SMaze-v0
environment and (d) the UMaze-v0 environment

Hard Exploration Continuous Mazes with Deceptive Rewards. The grid
plot on Figure 1.8 highlights the average rewards obtained by the agents when

32

initialized in different cells. Depending on the cell in which they were initialized,
both agents choose to opt either for the deceptive or the true reward. However,
the g-sac agent can choose the target reward even if it was initialized close to the
deceptive one (see Figures 1.8c and 1.8d). Meanwhile, the sac agent is more myopic,
as the number of cells that leads it to the deceptive rewards are more than the ones
encountered in g-sac (see Figures 1.8a and 1.8b).

0.0 0.5 1.0 1.5 2.0 2.5
Million steps

1000

2000

3000

4000

5000

Av
er

ag
e

Re
wa

rd

Walker2d-v2

SAC GSAC

0.0 0.2 0.4 0.6 0.8 1.0
Million steps

1000

2000

3000

4000

Av
er

ag
e

Re
wa

rd

Hopper-v2

SAC GSAC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Million steps

2000

4000

6000

8000

10000

12000

Av
er

ag
e

Re
wa

rd

HalfCheetah-v2

SAC GSAC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Million steps

1000
2000
3000
4000
5000
6000
7000

Av
er

ag
e

Re
wa

rd

Ant-v2

SAC GSAC

Figure 1.9: Training curves on continuous control benchmarks. Generalized
Soft-Actor-Critic (GSAC) shows better sample efficiency across all tasks

Simulated Continuous Control Benchmarks In Figure 1.9, we report the
average rewards obtained by the different agents over time in continuous control
domains. Note that in all environments, the g-sac agents are faster in collecting
positive rewards than the SAC agents. The main reason behind this is that the
critic tends to discern good from bad actions in the g-sac agents faster than the
sac agents. In fact, on the one hand, the sac agents spend more time uncertain
about the quality of their actions for a given state, and thus need more time and
more experience to make the estimations of their critic a more accurate estimate of
the true long-term value of their actions. On the other hand, in the g-sac agents,
the fact that there is a separate critic for each level of delay (Qθ0 and Qθ1) implies
that estimations of action values get bootstrapped. Thus, g-sac agents are able to
distinguish faster the good from the bad actions, and as a result are more sample
efficient.

33

1.2.4 Conclusion

Designing intelligent autonomous agents requires — among other things — the ability
to discard short term returns in favor of long term outcomes. Unfortunately, existing
formulations of the reinforcement learning problem stand on the premise of either
discounted or average returns: both providing a monotonic weighting of the rewards
over time.

In this chapter, we have proposed a family of delayed discounted objective func-
tions that captures a wide range of non-monotonic time-preference models. We ana-
lyzed the new formulation to construct the Bellman optimality criterion of stationary
solution. The derived algorithms successfully solved tabular hard exploration prob-
lems and out-performed the sample efficiency of sac in various continuous control
problems.

The ability to sacrifice short term rewards for long term higher ones is a key
property in open-ended learning. In fact, continuously growing a repertoire of skills
requires overcoming the local minima problem, where artificial agents learn sub-
optimal policy that can maximize the optimized criterion but still does not align
with the task at hand. However, reinforcement learning alone is not sufficient for
learning policies that can simultaneously accomplish multiple tasks. In the next sec-
tion, we introduce the framework of goal-conditioned reinforcement learning, which
constructs a background for learning contextual policies. In the remaining of the
document, we use standard RL methods as a backbone for learning multiple goals.

1.3 Goal-Conditioned Reinforcement Learning

In Section 1.1, we defined Reinforcement Learning as a framework where embodied
agents interact in an environment by taking actions and receiving rewarding signals.
In this standard setup, we defined the purpose of such embodied agents — or their
goal — with reference to the rewards they receive: the goal of reinforcement learners
is to maximize the cumulative reward. In the case of sparse reward signals, where
agents only receive a positive feedback when they fulfill a particular task, maximizing
the cumulative reward should perfectly align with accomplishing the task. In other
words, the rewarding signal, engineered beforehand, pushes the agent towards a
state where the task is achieved.

This standard setup is not suitable for training artificial agents to achieve a set of
different goals, since there is usually a unique mapping between a goal and a reward
signal. A straightforward way to circumvent this issue is to define goal experts mod-
ules. This implies that an embodied agent would have a set of policies equal to the
number of potentially learnable goals. Whenever the agent attempts to reach a par-
ticular goal, it selects actions according to the policy that corresponds to this goal.
These methods defined the first attempts to solve multi-goal problems [Kaelbling,
1993, Baranes and Oudeyer, 2013a], some of which used modular representations of
the state space [Forestier and Oudeyer, 2016a]. Unfortunately, all these methods

34

present two main drawbacks. First, they all require knowing the number of goals
beforehand in order to define the number of policies to be trained. Second, they do
not leverage generalization and transfer between goals, since all the policies are by
definition independent from one another.

Recently, with the promising results leveraged by neural networks as universal
function approximators, a new framework where a single policy could learn to achieve
multiple goals has been developed. This defines the sub-family of Goal-Conditioned
Reinforcement Learning (gc-rl), which originated from results on universal value
function approximators [Schaul et al., 2015]. The main principle is simply to condi-
tion the agent’s policy not only on observations or states, but also on embeddings of
the goals to be achieved. Instead of having one policy for each goal, these methods
have a single contextual policy, where the context defines the goal [Andrychowicz
et al., 2017, Colas et al., 2019, Akakzia et al., 2020b].

Learning to master multiple goals simultaneously is not the only scenario in
which gc-rl can be used. In fact, training a goal-conditioned policy can facilitate
the acquisition of complex skills by enabling agents to decompose the long-term
goals into intermediate sub-goals that are usually easier to reach. This particular
scenario is interesting in the context of open-ended learning, where agents need to
continuously learn an unbounded set of skills. By learning to decompose hard goals,
or to bootstrap easier goals, such agents can progressively grow their repertoires of
skills. Nevertheless, the fashion by which goals are represented is crucial in order to
accomplish this endeavour.

In this section, we present basic challenges and practical solutions towards train-
ing goal-conditioned agents. First, we start with an overview of the notion of goals
in psychology and introduce a subsequent universal definition used in the field of
Artificial Intelligence. Second, we formalize the problem of learning multiple goals
as a reinforcement learning problem where standard MDPs are augmented with a
goal space, and where reward functions correspond to goal achievement functions,
which are by definition dependent on the running goal. Finally, we investigate some
of the methods that attempted to tackle the multi-goal problem and introduce a
specific typology based on the phase on which these methods focus.

1.3.1 Goals in Reinforcement Learning

As mentioned in the introduction of this section and in Section 1.1, the idea of giving
a purpose to artificial agents is strongly related to the definition of the rewarding
signal : fulfilling its purpose should align with maximizing the rewarding signal. In
standard RL, this hypothesis is known as the reward hypothesis :

“[...] all of what we mean by goals and purposes can be well thought
of as the maximization of the expected value of the cumulative sum of a
received scalar signal (called reward).” [Sutton and Barto, 2018]

35

Seen under the scope of standard RL, the reward hypothesis seems to be closely
related to what psychologists call habitual behavior : a pattern triggered by appro-
priate stimuli and then performed more-or-less automatically [Sutton and Barto,
2018]. In fact, the reward hypothesis suggests that goals should not be known dis-
tinctively when interacting with the environment. It is only the situation of the
agent at a certain time step that perfectly determines its behavior. In other words,
whenever the agent is in this situation, it would most likely take the same actions
in an habitual fashion. Psychologists qualify habits as behaviors that are controlled
by antecedent stimuli (the current state). By contrast to habitual behavior, goal-
directed behavior is purposeful and is controlled by its consequences (the next state,
a goal achievement function) [Dickenson et al., 1980, 1985].

We define a goal as a couple g = (zg, Rg), where zg denotes the goal embed-
ding and Rg corresponds to a fitting function parameterized by g that assesses the
achievement or not of the underlying goal [Forestier and Oudeyer, 2016a]. This fit-
ting function is also known as the goal achievement function [Colas et al., 2022b].
It aims at measuring the agent’s progress towards a particular goal. The set of
goal-achievement functions associated with a set of goals can be represented ei-
ther as a single goal-conditioned parameterized function (example, a neural network
conditioned by the goal), or a set of predefined goal-conditioned reward functions
(RG(.|zg) = Rg(.), where G defines the goal space.

The goal embeddings can be seen as the manner through which artificial agents
represent and reason about their goals. Depending on how these representations are
fashioned, agents are more likely to develop different behaviors. In fact, some goal
representations leverage a topology that is more structured than others, facilitating
their mapping to states and actions, promoting the transfer between different goals
and potentially enabling a more efficient scaffolding. Many approaches from the
literature considered different goal representations. Some works considered goals
as choices between multiple objectives, where the embeddings are usually one-hot
encodings of the objective to be considered [Oh et al., 2017, Mankowitz et al., 2018,
Codevilla et al., 2018]. Other approaches used specific targets of states to define
the goals [Andrychowicz et al., 2017, Nair et al., 2018, Plappert et al., 2018, Colas
et al., 2019, Fournier et al., 2019, Lanier et al., 2019, Li et al., 2019]. Another
line of research considered language instructions to define goals. In this scenario,
sentences in natural language define a specific set of constraints that need to be
verified in order for the goal to be accomplished [Bahdanau et al., 2019, Colas et al.,
2020b, Lynch and Sermanet, 2020]. Finally, some recent works modeled goals as
abstract binary problems. This approach enables the discretization of the state
representations, thus defining a finite goal space. This discretization can be based
on some semantic features based on relational predicates [Tellex et al., 2011, Alomari
et al., 2017, Bapst et al., 2019, Akakzia et al., 2020a]. For a more detailed typology
of goal representations, we refer the reader to Colas et al. [2022b].

36

1.3.2 Formalizing Multi-Goal Reinforcement Learning Prob-
lems

In this section, we formalize multi-goal reinforcement learning problems. While
standard RL uses a single mdp (see Section 1.1) and requires the agent to finish one
specific task defined by the reward function, gc-rl focuses on a more general and
more complex scenario where agents can fulfill multiple tasks simultaneously. To
tackle such a challenge, we introduce a goal space G = ZG ×RG, where ZG denotes
the space of goal embeddings and RG is the space of the corresponding reward
functions. We also introduce a tractable mapping function φ : S → ZG that
maps the state to a specific goal embedding. The term goal should be differentiated
from the term task, which refers to a particular mdp instance. Next, we need to
differentiate the notions of desired goal and achieved goal.

• Achieved Goal: An achieved goal defines the outcome of the actions con-
ducted by the agent during a rollout episode. More specifically, it is the output
of the mapping function applied at time step t on the current state of the agent:
φ(st). We denote by paG the distribution of achieved goals. Note that these
goals are exactly the goals discovered by the agent in play.

• Desired Goal: A desired goal defines the task that the agent attempts
to solve. It can be either provided externally (by a simulator or an external
instructing program) or generated intrinsically. We denote by pdG the distribu-
tion of desired goals. This distribution is predefined when the agent receives
goals from its external world, and corresponds to the distribution of achieved
goals if the agent is intrinsically motivated.

Based on these definitions, we extend RL problems to handle multiple goals
by defining an augmented mdp M = {S,A, T , ρ0,G, pdG, φ}. Consequently, the
objective of gc-rl is to learn a goal-conditioned policy π : S ×A×G → [0, 1] that
maximizes the expectation of the cumulative reward over the distribution of desired
goals:

π∗ = arg max
π

E g∼pdG , s0∼ρ0
at∼π(. | st,g)
st+1∼T (st,at)

[∑
t

γtRG(φ(st+1) | zg)
]
. (1.16)

1.3.3 Typology of GCRL Algorithms

In standard gc-rl, the agent goes through 3 main phases. First, it generates a goal
to pursue and performs a rollout in the environment. As mentioned in the previous
section, this goal is sampled from the distribution of desired goals pdG. Second, it
replays trajectories which are usually stored in a replay buffer. Third, it optimizes
its policy using the relabeled historical data. Based on these phases, we consider a

37

categorization of gc-rl algorithms. This categorization is illustrated in Figure 1.10.
We refer the reader to Liu et al. [2022] for a more detailed survey.

Goal Generation. Algorithms that investigate the goal generation process
within goal-conditioned agents mainly rely on the idea of biasing the distribution of
sampled goals in a way that either improves learning or fosters exploration. On the
one hand, a line of research focuses on designing artificial goal-conditioned agents
that automatically generate goals of intermediate difficulty. These goals are neither
too hard nor too easy, they lie in the frontier of what these agents can autonomously
accomplish. These methods rely on trained generative models [Florensa et al., 2018],
prioritizing goals that show the highest disagreement based on an ensemble of trained
Q-functions [Zhang et al., 2020], or use estimation of the learning progress to push
the goal generation towards goals where the learning progress is maximal [Colas
et al., 2019, Akakzia et al., 2020b]. On the other hand, other approaches focus on
goal diversity. In fact, the sparsity of the reward signal makes some goals harder to
reach than others. These methods focus on sampling these goals more often, which
is shown to lead to better exploration capabilities. Finally, another line of research
benefits from external signals to learn from experts. A sub-family of these methods
uses expert demonstrations to extract checkpoints within the given trajectories and
train goal-conditioned policies to chain goals [Paul et al., 2019, Chenu et al., 2022].
Another sub-family relies on socially-suggested by an external social partner whose
aim is to guide the agent exploration [Akakzia et al., 2022].

Relabeling. As opposed to goal generation methods which bias the distribution
of sampled goals, relabeling methods replace the history data in the replay buffer
before training the agent. We consider two main lines of research that use this
technique. On the one hand, hindsight relabeling uses the achieved goals in a given
trajectory to replace the desired goals [Andrychowicz et al., 2017]. This method
alleviates the sparse reward problem by focusing on learning from failures, assuming
that the learned behavior would generalize to the distribution of unseen goals. This
technique is widely used as the backbone of many related works [Fang et al., 2019,
Lanier et al., 2019, Pitis et al., 2020, Eysenbach et al., 2020, Akakzia and Sigaud,
2022]. On the other hand, foresight relabeling does not focus on the historical data
from the experience buffer, but rather performs planning based on current situations.
This technique is put in practice by learning dynamics models of the environment
and generating virtual trajectories for relabeling.

Optimization. Methods that focus on the optimization procedure within gc-rl
problems train a goal-conditioned policy on a set of goals. These methods mainly
use the universal value function approximation (uvfa) [Schaul et al., 2015], which
generalizes the standard value function to a goal-conditioned value function. A line
of research within this procedure attempts to alleviate the sparse rewards problem
by reshaping the reinforcing signal [Wu et al., 2018, Trott et al., 2019, Hartikainen

38

et al., 2019, Durugkar et al., 2021, McCarthy and Redmond, 2021]. These methods
go beyond the distance-based reshaping, which is shown to lead to additional local
minima [Liu et al., 2022]. Another sub-line of research uses the idea of self-imitation
learning, which treats any performed trajectory as a successful trial for reaching its
final achieved state. The methods learn the goal-conditioned policy by maximiz-
ing the likelihood of actions for a reached goal within a number of steps [Ghosh
et al., 2019]. Another method is to filter actions from the performed demonstrations
based on their corresponding Q-values and use a supervised auxiliary loss on the RL
objective to improve the learning efficiency.

Optimization

Generation

Relabeling

UVFA
SR
PlanGAN
AIM
I-HER
GCSL
L3P
GAP
LEXA

Skew-Fit
SoRB
GoalGAN
Sub-goal Discovery
HGG
Hindsight Planner
VDS

HER
HER with demos
CHER
G-HER
GDP
IMAGINE
MC-HER
GANGSTR

RIG
DISCERN
HVF
AMIGo
DECSTR
HME

MAPGo

DDL MEGA

Figure 1.10: Typology of Goal-Conditioned RL Algorithms adapted from Liu et al. [2022].
Our contributions are indicated in red. See Appendix F for the references of the labels.

1.4 Goal Exploration Processes

In multi-goal setups, the objective of goal-conditioned artificial agents is to simul-
taneously learn as many goals as possible. In other words, the training of such
agents should in principle yield optimal goal-conditioned policies that maximize the
coverage of the goal space. As presented in Section 1.3, this coverage is specifically
defined with reference to the distribution of desired goals. Hence, agents should be
able to efficiently explore their behavioral goal space in order to match the widest

39

possible distribution of desired goals. Goal Exploration Processes (geps) are a fam-
ily of frameworks for exploring multiple goals. For any environment — which can be
defined by a state space S, an action space A and a transition distribution T that
determines the next state given a current state and an action — a gep essentially
aims at maximizing its behavioral diversity by exploring the maximum number of
goals. We consider goals here as pairs composed of a fitness function and a goal em-
bedding, where the latter is the result of projecting the state space on a predefined
or learned goal space G using a surjective function: each goal is mapped to at least
one state.

geps were first defined in the context of intrinsically motivated population based
agents [Forestier et al., 2017]. In this section, we present geps as a general framework
regardless of the underlying motivations (which can either be external or internal).
First, we start from the policy search view on geps to derive a policy gradient
perspective for goal-conditioned RL agents. Then, depending on the source of moti-
vations, we present the sub-families: Externally Motivated and Internally Motivated
geps.

Policy Search Perspective

Bootstrapping
Phase

Search Loop

Policy parameter
space

Outcome
space

Sampling
Module

Search
Module

Noise

Initial
Population

Outcome
Extraction

Outcome
Extraction

Goal
Exploration

Process

Policy Gradient Perspective

Bootstrapping
Phase

Babbling Loop

Update
Module

Memory Buffer

Trajectories

Goal-Conditioned
Reward Function

Goal-Conditioned
Policy

Rollout
Module

Goal
Generator

Outcome
Extraction

Goal space

Set of goals arbitrarily
discovered or externally

predefined

Environment

Noise

Figure 1.11: Illustration of the two stages leveraged by the Goal Exploration Processes
(geps), as seen from the policy search perspective (left) and the goal-conditioned RL
perspective (right).

1.4.1 GEPs: Policy Search Perspective

From the policy search point of view, geps explore multiple goals starting from an
initial population of policy parameters. The process leverages two phases: a first
phase called the bootstrapping phase, which is conducted once, and a second phase

40

called the search loop, which is repeated until convergence. Both phases require an
outcome extractor, which is a predefined deterministic function that takes as input
the policy parameters and outputs the outcome of applying that particular policy
in the environment.

Concerning the bootstrapping phase, N sets of policy parameters are randomly
sampled from Θ. Each one of the sampled policies is fed the outcome extractor to
observe the corresponding outcome, which lays in an outcome space O. The pair
formed by each policy and the corresponding outcome is stored in a buffer defining
the population where the search phase will be conducted.

Concerning the search loop, the following cycle is repeated until convergence.
First, a set of outcomes is sampled from the outcome space O. Second, this sampled
outcomes are fed to the search module which looks in the available population
for the closest policy parameters that achieve the sampled outcomes (simply using
the K-nearest neighbors algorithm for instance). Third, a noise is applied to the
policy parameters picked from the previous step. This promotes behavioral diversity
and enables the potential discovery of new outcomes. In fact, the noisy policy
parameters are fed to the outcome extractor, yielding an outcome for each entry.
Finally, the obtained outcomes are appended to the initial outcome space O, while
the pairs of policy parameters and the corresponding outcomes are added to the
initial population.

1.4.2 GEPs: Policy Gradient Perspective

While the objective of geps from the policy search perspective is to maximize the
size of the explored population of < policy, outcome > pairs, the policy gradient
view presents it differently. In this perspective, the output of the process can be a
single policy and a set of goals that the policy can achieve. In the policy gradient
perspective, the policy is conditioned on the goals. The process leverages two phases:
first a bootstrapping phase to initialize the goal space, then a babbling loop to learn
and discover new goals.

During the bootstrapping phase, the goal space G is filled with either a set of
arbitrarily discovered or externally predefined goals, depending on the nature of
motivations considered within the process. More details are given in Sections 1.4.3
and 1.4.4.

During the babbling loop, the following cycle is repeated until convergence. First,
a goal generator is used to sample goals from the goal space G. Second, a rollout
module takes as input the sampled goals, the environment, a goal-conditioned reward
function, a goal conditioned policy and noise to produce trajectories. This rollout
module can be viewed as running an episode within a simulator using an arbitrary
policy with predefined noise. Third, the obtained trajectories are stored in a memory
buffer, which feeds an update module responsible for adjusting the goal-conditioned
policy so that it maximizes the reward. Finally, the new trajectories are used to
extract novel goals discovered during play. These goals are added to the initial goal

41

space.
In the remainder of the document, we adopt the policy gradient perspective.

Depending on the origins of goals obtained in the bootstrapping phase, we consider
two sub-families of geps: externally and internally motivated.

1.4.3 Externally Motivated Goal Exploration Processes

Externally Motivated Goal Exploration Processes (emgeps) is a sub-family of geps
where goals are predefined externally. Recall that a goal is a pair of a goal achieve-
ment function and a goal embedding. During the bootstrapping phase, an external
program defines the goals that will be babbled and the corresponding goal achieve-
ment functions. If goals are discrete, then all goals are given. If goals are continuous,
then both the support and the goal generator are given. See Figure 1.12 for an il-
lustration.

If the goal generation process is embedded within the simulator and not the
agent, then the corresponding gep is considered as an emgep. Standard works
that tackle the multi-goal reinforcement problem usually define a goal generation
function within the environment [Schaul et al., 2015, Andrychowicz et al., 2017,
Lanier et al., 2019, Li et al., 2019]. If goals are given by an external program, such
as an external artificial or human agent, the corresponding gep is also considered as
an emgep. In particular, instruction following agents are the most straightforward
emgeps, where agents are fully dependent on external goals in the form of natural
language instructions [Hermann et al., 2017, Bahdanau et al., 2018, Chan et al.,
2019, Cideron et al., 2019, Jiang et al., 2019, Fu et al., 2019].

1.4.4 Intrinsically Motivated Goal Exploration Processes

Intrinsically Motivated Goal Exploration Processes (imgeps) is a sub-family of geps
where goals are exclusively discovered by the exploring agents itself. In other words,
there is no external signal to provide goal embeddings nor goal achievement func-
tions. Initially, during the bootstrapping phase, imgep agents have no clue whatso-
ever on the goal space. They use an arbitrary policy performing random actions in
the environment and unlocks easy goals that are close in distribution term to the dis-
tributions of initial states. Once a sufficient set of goals is discovered, the babbling
phase kicks off. As opposed to the first phase, the babbling phase uses a goal-
conditioned policy. The exploration-exploitation dilemma is stronger in imgeps:
the exploration should be efficient enough to avoid getting stuck in a particular dis-
tribution of discovered goals, but should be smooth enough to avoid catastrophic
forgetting or getting the policy stuck in a local minimum.

For imgeps, the goal generation process is inherent to the agent. It is the agent
itself that discovers the goals that it learns about (that is, it discovers both goal
embeddings and goal achievement functions). Note that imgeps can discover a
goal space whose support is defined externally (example: 3D positions, relational

42

predicates, see Section 1.16 for more details on goal representations) [Nair et al.,
2018, Colas et al., 2019, 2020b, Akakzia et al., 2021, Akakzia and Sigaud, 2022], or a
goal space that is previously learned in an unsupervised fashion, using information
theory techniques for example [Warde-Farley et al., 2018], see Figure 1.12 for an
illustration.

Intrinsically Motivated GEP Externally Motivated GEP

Babbling Loop

Bootstrapping
Phase

Bootstrapping
Phase

Update
Module

Memory Buffer

External Goals

Trajectories

Goal-Conditioned
Reward Function

Goal-Conditioned
Policy

Rollout
Module

Goal
Generator

Outcome
Extraction

Outcome
Extraction

Goal space

Rollout
Module

Interpretation
Module

Noise

Environment

Arbitrary Policy

Environment External Program

Simulated / Natural

Figure 1.12: Illustration of the two sub-families of Goal Exploration Processes (geps):
(left) imgeps (right) emgeps. Each type has its own bootstrapping phase but both share
the same babbling loop.

43

1.5 Autotelic Reinforcement Learning

The term autotelic was first introduced by the humanistic psychologist Mihaly Csik-
szenmihaly as part of his theory of flow. The latter corresponds to a mental state
within which embodied agents are deeply involved in some complex activity without
external rewarding signals [Mihaly, 2000]. His observations was based on studying
painters, rock climbers and other persons who show full enjoyment in the process
of their activity without direct compensation. He refers at these activites as “au-
totelic”, which implies that the motivating purposes (telos) come from the embodied
agents themselves (auto).

In Artificial Intelligence, the term is used to define artificial agents that are
self-motivated, self-organized and self-developing [Steels, 2004, Colas et al., 2022a].
More formally, autotelic agents are intrinsically motivated to represent, generate,
pursue and learn about their own goals [Colas et al., 2022a]. In the context of
goal exploration processes, these agents are imgeps endowed with an internal goal
generator : the goals that are explored and learned about depend only on the agents
themselves.

In this section, we present an overview on recent autotelic reinforcement learn-
ing — autotelic agents trained with RL algorithms. We distinguish three categories,
depending on whether the goal space and the set of reachable goals is known in
advance. First, we present the case where autotelic agents do not know the goal
space representation, but need to learn it themselves in an unsupervised fashion
(Section 1.5.1). Second, we present the case where autotelic agents know the goal
space representation beforehand, but have no clue on which goals they can physically
reach (Section 1.5.2). Finally, we present the case where autotelic agents know both
the goal space representation and the set of reachable goals, but need to self-organize
their learning in order to master these goals (Section 1.5.3)

1.5.1 Autotelic Learning of Goal Representations

When the structure of the goal space is not known in advance, artificial agents need
to autonomously learn good representations by themselves. They usually rely on
information theory methods which leverage quantities such as entropy measures and
mutual information [Eysenbach et al., 2018, Pong et al., 2019]. The main idea is
to efficiently explore their state space and extract interesting features that enable
them to discover new skills, which they attempt to master afterwards. They use
generative models such as variational auto-encoders [Kingma et al., 2019] to embed
high-dimensional states into compact latent codes [Laversanne-Finot et al., 2018,
Nair et al., 2018, 2020]. The underlying latent space forms the goal space, and
generating a latent vector from these generative models corresponds to generating
a goal from the goal space. While these approaches are task-agnostic, they usually
do not leverage a sufficiently high level of abstraction. In fact, since states are
usually continuous, distinguishing two different high level features corresponding

44

to two close states is challenging (e.g. distinguishing when two blocks are close to
each other without further information). Besides, the learned goal representation is
usually tied to the training-set distribution, and thus cannot generate well to new
situations.

1.5.2 Autotelic Discovery of Goals

When artificial agents know the structure of the goal space but have no clue about
the goals that can be physically reached within this space, they need to efficiently
explore and discover skills by themselves [Ecoffet et al., 2019, Pitis et al., 2020, Colas
et al., 2020b, Akakzia et al., 2020b, Akakzia and Sigaud, 2022]. Such scenarios
become more challenging if randomly generated goals are likely to be physically
unfeasible [Akakzia et al., 2020b, Akakzia and Sigaud, 2022]. In this case, the only
goals that the agents can learn about are the ones that they have discovered through
random exploration. Consequently, such agents need to have efficient exploration
mechanisms that overcome bottlenecks and explore sparsely visited regions of their
goal space. They might also need additional features such as the ability to imagine
new goals based on previous ones [Colas et al., 2020b], or to start exploring from
specific states that maximize the discovery of new goals [Ecoffet et al., 2019, Pitis
et al., 2020, Akakzia et al., 2020b].

1.5.3 Autotelic Mastery of Goals

In some scenarios, artificial agents can know the structure of their goal space as well
as the set of goals they can physically achieve. In other words, any goal they sam-
ple using their goal generator can potentially be reached and mastered. The main
challenge for these agents is not to discover new goals, but rather to autonomously
organize their training goals in order to master as many skills as possible. This is
actually challenging, especially in environments where goals are of different com-
plexities [Lopes and Oudeyer, 2012, Bellemare et al., 2016, Burda et al., 2018, Colas
et al., 2019, Lanier et al., 2019, Li et al., 2019, Akakzia et al., 2020b]. Such agents
usually use Automatic Curriculum Learning (acl) methods, which rely on proxies
such as learning progress or novelty to generate efficient learning curricula [Lopes
and Oudeyer, 2012, Bellemare et al., 2016, Burda et al., 2018, Colas et al., 2019,
Akakzia et al., 2020b]. Besides, other works train generative adversarial networks
to produce goals of intermediate difficulty [Florensa et al., 2017], or use methods
such as asymmetric self-play to train an adversarial goal generation policy with RL
which samples interesting goals for the training agent [Sukhbaatar et al., 2017].

45

Chapter Summary

This chapter outlined the challenges faced by standard reinforcement learning (RL)
methods in the context of the autonomous acquisition of open-ended repertoires of
skills. More specifically, we focused on two challenges:

• Handling hard exploration problems including sparse, deceptive and adversarial
rewarding signals. In such scenarios, standard methods usually struggle in
propagating useful information to all the states, especially in long horizon
setups. They fail at leveraging the property of sacrificing short-term outcomes
for good long-term rewards due to the exponential decay of future returns.
This usually affects the agents exploration and increases their propensity to
fall in local minima.

• Learning a single policy that leverages multiple skills. RL methods are usually
good for solving a single task defined by a specific Markov Decision Process
(mdp). They produce a single policy that is expert on that specific task.
However, open-ended learning requires a continual learning of new skills.

First, we presented RL as a computational and algorithmic framework used to
train agents on one task predefined by its external rewarding function (Section 1.1).
Then, we argued that the RL formulation, which usually attempts to maximize the
discounted sum of rewards, struggles with policies with longer mixing times due to
the exponential decay of future returns. This affects the learning agents’ exploration,
especially in hard exploration problems where they might need to sacrifice short
rewards in order to get good ones on the long-horizon (Section 1.2). We introduced
a novel family of criteria, which we call the delayed geometric discounting criteria.
This family generalizes the standard geometric discounts, providing more attention
to rewards that are farther in the agents’ life span. After that, we presented goal-
conditioned reinforcement learning (gc-rl), a framework for training a single policy
to learn multiple goals (Section 1.3). We argued that this framework is better
suited for open-ended acquisition of skills. We presented goal exploration processes
(geps), a family of algorithms that leverage exploration in gc-rl (Section 1.4).
More specifically, we distinguished two sub-families of geps depending on where the
goals come from: externally motivated geps (emgeps) where goals are generated by
external programs and intrinsically motivated geps (imgeps) where agents generate
their goals themselves. Finally, we presented autotelic reinforcement learning agents,
a family of imgeps that are goal-conditioned and intrinsically motivated to represent,
set and pursue their own goals. The remainder of the part investigates the design
of autotelic agents that can also benefit from external teaching signals.

46

Chapter 2

Teachable Autotelic Agents:
Developmental Perspective

Children learn through play. Depending on how independent they are from their
caregivers — autonomy in setting purposes, rules and taking actions — there exist
two extreme playing contexts: free play, where children have no rules nor bound-
aries and rely only on their own motivations and objectives, and structured play,
where a third party assigns a specific purpose, instructs rules to follow and provides
motivations and learning objectives. What lies in between defines a large spectrum
of learning processes known as guided play, a combination of both extremes. Educa-
tion sciences have shown that this type of assisted play helps promote the learners
capabilities [Weisberg et al., 2016, Yu et al., 2018].

A similar distinction exists in Artificial Intelligence (ai), where these two ex-
tremes respectively map to autotelic agents — agents that are intrinsically motivated
to set, pursue and learn about their own goals using their own rewarding signals —
and interactive reinforcement learning agents — agents that exclusively rely on direct
teaching signals from external sources. As in children, in between should stand a
family of artificial agents that can learn from both internal and external teaching
signals in order to leverage prior knowledge from social partners. We call this family
Teachable Autotelic Agents (taa). taa should in principle benefit from the higher
efficiency of guided play. They are not only embodied, but also social agents. Many
developmental studies argue these are properties of human learning, and we believe
it is a prerequisite in ai in the quest for human-level intelligent agents.

This chapter presents a road-map towards the design of such agents. Building on
developmental psychology and education sciences, we identify key features of child-
tutor interactions in guided play. We then present a checklist of features that future
taas will need. This allows us to pinpoint various limitations of current AI agents.
We then highlight key open research challenges to design autonomous agents that
can be taught by ordinary people via natural pedagogy.

47

2.1 Motivations

From the etymology of the word, being autonomous means deciding by oneself (au-
tos) of its own rules (nomos). More generally, an agent can be said to be autonomous
if it sets its own purpose and determines its own sensorimotor behavior. Autonomy
matters for ai. Indeed, at first glance, intelligence seems to require some autonomy:
if we always had to tell an agent what to do at each step of a sequential decision or
control process, we would not consider such an agent as intelligent. Let us temporar-
ily consider a radical definition and call “truly autonomous” an agent which would
only decide what to do on its own, without any constraint, e.g. consideration for our
needs and expectations, without ethics. This agent would be useless, perhaps even
dangerous. At first glance, true autonomy and usefulness seem to be contradictory
requirements: if an autonomous agent decides what to do only on its own, how can
it be useful at all?

Figure 2.1: Towards Teachable Autotelic Agents. We argue that teachability and autotelic
learning are complementary components to reach human-level ai. To be fully teachable,
agents must also be capable of inferential social learning.

This apparently rhetorical question can be turned into a much more practical one:
if a truly autonomous agent decides on its own, how can we influence it to make
it useful anyways? Charkraboti et al. proposed that autonomous agents should
understand and adapt to human behavior much like humans adapt to the behavior
of other humans [Chakraborti et al., 2017]. How to obtain such an adaptation? Part
of the answer can be found in the conclusion of the seminal paper of Alan Turing
about Artificial Intelligence:

“It can also be maintained that it is best to provide the machine with
the best sense organs that money can buy, and then teach it to understand

48

and speak English. That process could follow the normal teaching of a
child.”
Turing [1950]

Even if they are not always autonomous in the common sense — they may
need caregivers to fulfill their basic living requirements — children are definitely
autonomous in the sense that we cannot fully control their behaviour. Nevertheless,
we can succeed in influencing their behavior through many ways, including “normal
teaching.”

But again, we cannot teach an agent if it is “radically autonomous” in the sense
outlined above. So, resolving the contradiction between true autonomy and useful-
ness requires a weaker notion of autonomy. In the following sections, we propose
to equate autonomy with the concept of autotelicity : the ability to set one’s own
goals and to learn to achieve them using one’s own learning signals [Steels, 2004,
Colas et al., 2020c]. Autotelic agents are equipped with forms of intrinsic moti-
vations enabling them to represent, generate and pursue their own goals. Though
autotelic agents pursue their own goals, their behavior can still be influenced by ex-
ternal signals. Such agents could be made appropriate and useful through teaching
if we can influence their goal representations or their goal sampling strategy. Thus
this chapter proposes to reach useful autonomous agents by developing teachable
autotelic agents — agents that choose their own goals but whose choice still benefits
from teaching via natural social interactions, see Figure 2.1.

According to education sciences, children can learn in three ways:

1. Direct Instruction, also known as structured play : a tutor explicitly sets the
learning goals of children step by step.

2. Unassisted Discovery, also known as free play : children are left on their
own to discover new things.

3. Assisted Discovery, also known as guided play : the tutor intervenes on the
discovery process of children to make it more fruitful [Weisberg et al., 2016,
Yu et al., 2018].

In the remaining of this chapter, we take the stance that, when transposed to
ai research, two of these developmental learning processes have their counterparts
while one of them does not. First, children learning under the strict guidance of a
caregiver (structured play) corresponds to interactive reinforcement learning artifi-
cial agents [Lin et al., 2020]. Second, learning alone by setting their own purposes
and motivations (free play) corresponds to autotelic reinforcement learning artificial
agents [Colas et al., 2022a, 2020c]. Finally, learning alone with parcimonious evalu-
ative or instructive interventions from external tutors (guided play) has no specific
counterpart in current ai research, although it is believed to be the most efficient
[Yu et al., 2018]. A major step towards endowing artificial agents with the ability
to be simultaneously autotelic and teachable consists in combining the properties

49

of interactive and autotelic reinforcement learning agents. This chapter describes
preliminary efforts in this direction. However, the chapter will show that this in-
tegration remains insufficient. One must also keep in mind that children are also
inferential social learners and that social inference mechanisms play a key role in
the extraordinary learning capabilities of children [Gweon, 2021].

In practice, ai agents will need such capabilities. When immersed in human
societies, they will need to acquire the various socio-cultural skills required in these
ecosystems — skills specific to regions or social groups. The only way to do so is by
learning them through practical interactions with social partners. For these agents,
being teachable, autonomous and capable of social inferences means being equipped
with the core capabilities to acquire such skills.

Beyond this, a deeper, more fundamental reason for endowing ai agents with
such capabilities stems from the endeavour of building a human-level ai [Lake et al.,
2017]. It might be the case, as put forward by the social situatedness vision of
researchers like Vygotsky [Vygotsky, 1978b], Bruner [Bruner, 1990, 1991, 2009],
Tomasello [Tomasello, 2005] and others [Dautenhahn, 1995, Zlatev, 2001] that, in
addition to the capability to pursue their own goals, social interactions with care-
givers, tutors and mates are themselves necessary conditions for the emergence of
sophisticated forms of intelligence in agents, see Lindblom and Ziemke [2003] for a
review. In particular, these social and cultural interactions may play a crucial role
in the acquisition of shared cognitive representations making sense for agents and
their human partners. From that perspective, to obtain useful autonomous agents
in a strong sense, we should focus on questions centered on the role of social inter-
actions in the acquisition of representational capabilities compatible with those of
social partners [Vygotsky, 1978a, Tomasello, 2005].

Our roadmap towards the design of such agents is organized as follows. In Sec-
tion 2.2, we build on the developmental psychology and education sciences literature
to extract a teachability checklist emerging from the natural teaching of children.
More precisely, we organize these properties in three categories according to whether
they involve the learning child, the tutor or the whole tutoring process. We argue
that these properties are needed to teach autotelic agents. In Section 2.3, we scru-
tinize current research in Interactive Reinforcement Learning, Autotelic Reinforce-
ment Learning and Inferential Social Learning under the light of these identified
properties. The main outcome of this chapter is Table 2.1, where we recap all the
surveyed approaches and state whether they demonstrate the properties expected
from teachable autonomous agents. In Chapter 8, we build on the table and high-
light key research directions towards the design or autonomous agents that can be
taught by ordinary people via natural pedagogy.

50

Table 2.1: The teachability check-list. The table states whether the algorithms in the
columns support the properties in the rows. x (red): no, ◦ (light green): preliminary,
• (green): yes, N/A (grey): not applicable. The column on autotelic agents considers
isolated agents, thus none of the properties related to social interactions can be applied.

Properties
Agents IRL

agents
Autotelic
Agents

Inferential
Social Agents

imagine decstr
hme +

gangstr
Learner Properties (Autotelism)

Autotelic learning N/A • ◦ • • •
Open-ended learning x • x • • •
Few shot learning x • x • • •
Hierarchical learning x ◦ x x x •

Learner Properties (Social awareness)
Sensitivity to social signals • N/A • • • •
Proficient language learning ◦ N/A x ◦ ◦ x
Recognition of pedagogical signals x N/A • x x x
Observational learning x N/A • x x x

Learner Properties (Social inference)
Modelling the tutor x N/A • x x •
Internalization x N/A x x x •
Pragmatic learning x N/A • x x x

Tutor Properties
Motivation Regulation x N/A • x x •
zpd management x N/A • ◦ ◦ •
Pedagogical demonstrations x N/A • x x x
Modelling the learner x N/A • x x •

Tutoring Process Properties
Social-based tutoring strategy • N/A • ◦ x ◦
Task-based tutoring strategy • N/A • x x x
Social communication-based transparency • N/A • x x x
Task-based transparency • N/A • • x •

51

2.2 Teaching in Humans

This section leverages observations from developmental psychology to characterize
how children learn and how tutors contribute to their learning process. First, we
extract the properties of learning children (Section 2.2.1), then those of the tutors
(Section 2.2.2) and finally, those of tutoring interactions themselves (Section 2.2.3).

2.2.1 Properties of Children Learners

In the list of properties below, the first four are related to the task learning capa-
bilities of children and the rest to their social learning capabilities.

Children are autotelic learners. Either through free or assisted play, children
engage in sensorimotor interactions with their environment and discover new things
which they might later try to reproduce. During free-play, children rely on their
intrinsic motivations to spontaneously explore their surroundings and unlock new
reachable goals [Berlyne, 1966, Gopnik et al., 1999, Chu and Schulz, 2020]. They
automatically take ownership of these discovered goals, try to build their own un-
derstanding of them and attempt to pursue them. This process is very important
for subsequent learning under the guidance of a tutor. For instance, the experiments
in Wood et al. [1976] start with a short period of free-play with the experimental
setup. This time is necessary for them to build an understanding of their surround-
ings before they can be influenced by social signals.

Children are open-ended learners. An extraordinary property of natural
learning in children is that it is open-ended: the child can solve new problems of
increasing difficulty up to becoming an adult and keeps learning during their whole
life. Given the potentially infinite set of goals that they may pursue, children have
to select some goal at all times. For that, they may attribute to potential goals a
value of interest that evolves with time, resulting in efficiently organizing their own
developmental learning trajectory [Piaget, 1977, Thelen and Smith, 1996, Smith and
Gasser, 2005]. In other words, they self-define a learning curriculum that makes
them very sample efficient: they avoid spending too much time on goals that are
either too easy or too difficult, focusing on goals that present the right level of
complexity at the right time.

Children are few shot learners. Children can transfer what they have learned
from solving one task to a novel one. This flexibility allows them to benefit from
some prior knowledge when facing a new problem that looks like the one they already
know. Consequently, children are few shot learners: they can leverage what they
learned in previous tasks to master new tasks in a few trials. Thus, these mechanisms
allow children to discover highly complex skills such as biped locomotion, block

52

stacking or tool use, which would have been extremely difficult to learn if they had
directly addressed these goals before mastering simpler skills.

Children are hierarchical learners. It is often the case that our tasks in ev-
eryday life have a hierarchical structure. For instance, the block assembly task of
Wood et al. [1976] involves several repetitions of the same basic block manipulation
movements. More generally, the idea that children are hierarchical learners is perva-
sive in the developmental psychology literature [Eppe et al., 2022]. The elementary
skills mastered by children are often stepping stones for discovering how to learn
other skills of increasing complexity. As Bruner writes:

“The acquisition of skill in the human child can be fruitfully conceived
as a hierarchical program in which component skills are combined into
‘higher skills’ by appropriate orchestration to meet new, more complex
task requirements.” Bruner [1973]

Children are social learners. Even shortly after birth, newborn infants can
imitate complex facial expressions such as happiness, sadness and surprise [Field
et al., 1983, Meltzoff and Moore, 1983, Meltzoff, 1988]. Infants can detect caregiver’s
eyes and prefer to look at pictures of direct gaze over averted gaze [Farroni et al.,
2002]. The developmental psychology literature reported several pieces of evidence
of children’s social responsiveness during interaction with caregivers [Bruner, 1973,
Vygotsky, 1978b, Tomasello, 2005]. This literature demonstrates children’s social
sensitivity, in particular when actions are directed to them such as for infant-directed
speech [Saint-Georges et al., 2013].

Children are proficient language learners. Only humans master complex
compositional and recursive language. Children’s puzzling ability to learn it so
rapidly seems to be essential to their development. Indeed, children born deaf with
no access to recursive sign language and Romanian children socially abandoned in
Ceausescu’s orphanages showed decreased abilities for abstract compositional think-
ing and mental simulation [Vyshedskiy, 2019]. The mastery of compositional lan-
guage seems to further support other cognitive functions such as creativity [Chom-
sky, 1957, Hoffmann, 2018] or analogical reasoning [Gentner and Hoyos, 2017].

Children recognize pedagogical signals. Children are able to recognize the
pedagogical stance of a tutor from the general context of the initiated interaction
and from communicative signals of the action itself [Csibra and Gergely, 2009].
Children are sensitive to ostensive cues such as gaze, pointing or gesture modulation
(“motionese” [Nagai and Rohlfing, 2007]), which are generated by the caregivers to
signal their pedagogical intent. This specific strategy of caregivers and the children’s
sensitivity to it is called natural pedagogy [Csibra and Gergely, 2009]. Children are

53

able to infer the communicative intention and correctly interpret the instrumental
intention to learn from the pedagogical caregiver.

Children are observational learners. In natural interactions, children observe
others acting in the environment even when no pedagogical intention is present, and
still extract a lot of information from these observations, a process referred to as
observational learning [Varni et al., 1979, Meltzoff, 1999].

Children construct a model of the tutor. During assisted-play, it is crucial
that children adjust their understanding of the task at hand using the available
social signals. As Wood et al. [1976] put it, “children understand goals before being
able to produce them.”

Understanding the goal from the behavior of a tutor mostly relies on inferring
the tutor’s expectations and reasoning to figure out how to meet them. Thus,
this process clearly calls upon a mental model of the tutor’s expectation. Such a
mental model derives from a more general model called a Theory of Mind (ToM),
as illustrated in Figure 2.2 and put forward in recent developmental psychology
papers [Vélez and Gweon, 2021, Gweon, 2021]. Having a ToM means being capable
of reasoning about other people’s mental states [Jara-Ettinger, 2019]. The most
common mental states these theories refer to are beliefs, desires and intentions.

Figure 2.2: Learners build and maintain a model of the tutor’s beliefs about their own
knowledge, capabilities, intentions and desires. Tutors also have a model of learners, and
maintain it to provide adapted teaching feedback.

Children internalize social signals. In Vygotsky’s theory of development,
higher-level cognitive capacities first appear as interpersonal processes before chil-
dren internalize them and turn them into intra-personal psychological tools [Vygot-
sky, 1978b]. Parents first narrate the child’s activities, orient their attention, keep
them motivated, or decompose tasks for them. As children grow, they progressively

54

internalize this social narration into private speech (outer speech for oneself) and,
eventually, inner speech. Just like we use traditional tools to augment our control on
the physical world, psychological tools augment our control on our own thoughts and
behaviors. In a wealth of studies, private speech was proved instrumental to chil-
dren’s ability to reason and solve tasks. They use it for planning [Vygotsky, 1978b,
Sokolov, 1972], and even more so when the task gets harder [Berk, 1994b]. Children
seem to internalize models of their tutors and self-generate tutor-like guidance and
judgements on their own behavior.

Children are pragmatic learners. Several striking experiments have shown
that infants use probabilistic inference guided by an intuitive understanding of how
other people think, plan and act [Gweon, 2021]. When presented with teaching
signals, they consider how the information is generated, by whom, for whom, and
why [Gweon et al., 2010]. Children also leverage a causal understanding of how
and why those behaviors came to be, that is, a generative model of other minds.
Children consider the tutor’s mental states (i.e., goals, beliefs, desires) but also their
utilities (i.e., costs and rewards). Given this evidence, they are able to efficiently
infer the intent that is communicated to them, and thus rapidly understand the task
at hand [Gweon, 2021]. All these properties make them pragmatic learners and play
a key role in their learning efficiency.

2.2.2 Properties of Tutors

Up to now, we have focused on the properties of children as efficient learners. We
now investigate the properties of tutors. Our aim is not to design an artificial
tutoring agent, but rather to extract from this perspective the properties that help
a teachable agent better respond to natural tutoring signals, coming either from a
human or another artificial agent.

Tutors regulate children’s motivation. Wood et al. [1976] outline that most
tutoring interactions are targeting motivation regulation in children. They intend to
keep them engaged in pursuing the instructed goal rather than their own goals. In
turn, children must have developed their own interests beforehand, independently
from social pressure. To illustrate this, Sobel and Sommerville [2010] oppose a
discovery condition, where free-play precedes social interaction, to a confirmation
condition, where it is the opposite: the tutor shows what to do and then leaves
children on their own. They show that freely acting on a toy beforehand allows
children to construct their own motivations, which then can be further regulated if
needed in guided play. Wood et al. [1976] also account for the discovery condition
when children are left to freely engage and get familiarized with the task before the
tutoring process kicks off. As the latter starts, the authors identify three processes
that regulate the children’s motivations. Through recruitment, the tutor should find
a way so that the child engages into the targeted goal rather than its other own goals.

55

Through direction maintenance, the tutor ensures that the child keeps committing
to that specific goal, providing incentives to make further progress towards the
goal. Finally, frustration control is meant to prevent children from giving up on the
instructed goal.

Tutors maintain children in their zone of proximal development. In
the construction domain, a scaffolding is a temporary physical structure used to
support a working crew. The term has been borrowed by education researchers
to refer to assistance provided by a tutor to support learning [Wood et al., 1976,
Vygotsky, 1978b, Winn, 1994, Benson, 1997]. The two key aspects of scaffolding are
1) helping the learner with yet unmanageable skills while 2) allowing them to do
as much as possible without help. First, in order to grasp initially hard tasks, the
tutor can, for example, break them into more manageable sub-parts or engage in a
thinking aloud process, providing guidelines on how the task should be performed
[Rosenshine et al., 1992]. Second, by leaving them unassisted as much as possible,
the tutor helps learners take responsibility over the task. This makes scaffolding a
temporary process, eventually enabling the learner to work independently.

Embedded within the scaffolding process is Vygostsky’s concept of the zone of
proximal development (zpd) [Vygotsky, 1978b]. The zpd is defined as the area
between what the learner can accomplish on its own and what can be accomplished
with the help of a tutor. Notably, the zpd is always shifting as the child learns. As a
result, tutor interventions must constantly be individualized to address this change
and ensure zpd management until children eventually internalize the information
and get exclusively self-regulated.

Tutors are modelling the tutee. To efficiently regulate the motivational sys-
tem of children and provide appropriate instructions bringing them towards their
zpd, the tutor needs to monitor a model of the knowledge, hypotheses and perfor-
mance of children as well as a model of the task itself: “The effective tutor must have
at least two theoretical models to which he must attend. One is a theory of the task
or problem and how it may be completed. The other is a theory of the performance
characteristics of his tutee.” [Wood et al., 1976]. Modelling the learner helps the
tutor interpret what children are trying to do, so as to efficiently teach them. The
authors go further and consider that this interpretation process consists in generat-
ing hypotheses about the behavior of children, something supposedly intuitive for
humans.

Tutors are pedagogical. Wood et al. [1976] provide several cues showing that
natural tutoring interactions do not rely much on demonstrations to be followed
blindly. They observe that, among the 30 children of their study, “there was not a
single instance of what might be called blind matching behaviour.” Blind matching
behavior is what would be observed if children were replaying the tutor’s trajectory
without understanding the goal. Second, the authors mention that the only acts that

56

children imitate are those they can already perform fairly well. That is, imitating
is not a way to learn how to perform the tutor’s actions, it is more a way to move
to the next problem solving step. Beyond showing what to do next, demonstrations
also play a role in learning new skills. If they are not used for blind imitation,
how do they help? “Demonstrating or ‘modelling’ solutions to a task, [...] involves
an ‘idealization’ of the act to be performed and it may involve completion or even
explication of a solution already partially executed by the tutee himself” [Wood et al.,
1976]. In fact, the tutor is ‘imitating’ in idealized form an attempted solution tried
(or assumed to have been tried) by children in the expectation that they would then
‘imitate’ it back in a more appropriate form. That is, the tutor builds on a model of
the learner’s knowledge to communicate on the problem solving steps that are still
inadequate. In other terms, the tutor shows rather than it does, which characterizes
pedagogical teaching.

2.2.3 Properties of the Tutoring Process

Finally, we extract properties of the tutoring process as interactions between tu-
tors and their tutees, building on the social learning perspective of Bandura and
McClelland [1977]. Tutoring can be conceptualized as a mutual exchange process
using two main communication channels, the social channel and the task channel,
were both partners can play alternatively the role of the emitter or the recipient,
see Figure 2.2.

Tutoring combines the social and task channels. To be successful, tutoring
should exploit and combine both the social and the task channels. On one hand,
the social channel involves instructions, feedback or gaze (Figure 2.3). It allows
learners to not only adjust their own understanding of the task through non-motor
signals, but also constructively learn to understand the tutor’s signals. On the other
hand, the task channel involves watching motor interactions with the environment
performed with the intent to teach or not (Figure 2.4). Besides, children learn to
adjust their beliefs from goal-related signals, thus fostering their proactive commu-
nication abilities.

Partners are emitters and recipients. Both participants usually alternate
the emitter and recipient roles, resulting in a mutual exchange (Figure 2.2). For ex-
ample, when learners execute a task in order to obtain feedback from the tutor, they
are first the provider and then the recipient. In more details, the tutor may emit
through the social channel when providing instructions or non-verbal feedback, and
through the task channel when performing or showing the task. We call the former
social-based tutoring strategy and the latter task-based tutoring strategy. From the
other side, the learner emits through the social channel when providing feedback on
their understanding or asking questions. We call this social communication-based
transparency. The learner emits through the task channel when imitating the tutor

57

Figure 2.3: Examples of social channel signals exchanged between a tutor and a learner.
The signals can be verbal, such as instructions or feedback, or non-verbal, such as gaze
following. These interaction signals are used to maintain the learner engaged into the
learning activity.

Figure 2.4: Examples of task channel signals exchanged between a tutor and a learner.
Here, these signals consist of the task-related behavior of the tutor, either as demonstra-
tions or as performance without a pedagogical intention.

or performing the task to display their current capabilities, we call it task-based
transparency. Note that when both the tutor and the learner are artificial agents,
since the learner has to perform the task, the presence of task-based transparency
corresponds to the fact that the tutor reacts to the behavior of the learner. Combin-
ing both channels results in various “frames” of exchanges where both participants
can use both channels and both roles. These frames of exchanges being goal-oriented,
they are called “pragmatic frames” in Vollmer et al. [2016].

58

2.3 Interactive, Autotelic and Inferential Social

Agents

After this overview of natural tutoring processes, we turn to the ai research dedicated
to the design of artificial learners. We investigate three broad classes corresponding
to the first columns of Table 2.1. We highlight how much they account for the
properties we have listed in Section 2.2.

2.3.1 Reinforcement learners

Reinforcement Learning (RL) is a process by which an agent learns to solve sequen-
tial decision problems from a reward signal [Sutton and Barto, 2018]. The learning
agent is initially ignorant of the consequences of its actions and must explore its en-
vironment to discover them. By maximizing future rewards, it progressively learns
to favor more rewarding actions while avoiding costly ones. A formal definition of
the RL paradigm is depicted in Section 1.1.

RL first appeared as a computational model of learning by trial-and-error in
rodents [Thorndike, 1911], but is also useful to explain conditioning phenomena in
monkeys [Schultz et al., 1997] and human decision making [Daw and Doya, 2006].
Thus, RL seems to be a natural framework for modelling learning to solve problems
in children. However, this framework suffers from several limitations.

First, the behavior of RL agents is fully determined by the reward. In the
standard framework, this reward is externally provided by a human designer with
some specific goal in mind. If well defined, maximizing the cumulative reward leads
to achieving the underlying goal. In the absence of this external reward, most RL
agents would learn nothing. As outlined in Section 2.2.1, this is to be contrasted
with children who can set their own goals and learn in full autonomy.

Second, RL agents optimize a predetermined reward function. Their behavior
should converge to a corresponding optimum and stop changing, which contrasts
with the open-ended learning capabilities of children. At first glance, the richer
framework of multitask RL [Caruana, 1997] and its derivatives such as meta-RL
[Finn, 2018] seem to do better but, as long as the set of tasks is bounded, the obtained
behavior should also converge to a steady optimum. To overcome these limitations,
open-ended learning approaches suggest that RL agents receive a potentially infinite
sequence of unknown tasks [Doncieux et al., 2018]. However, this framework does
not explicitly answer one of the most important questions: where should all these
tasks and reward functions come from? Practically, all existing approaches revert to
the bounded learning case: first define a (bounded) space of reward functions, then
sample from it. Indeed, it is hard to imagine and define a space of reward functions
that would encompass all activities humans are able to pursue. Even in that case,
how should we sample appropriate tasks for an agent along its lifetime? In contrast,
humans seem to generate their own goals, learn from their own reward signals and
organize their own learning trajectories in a virtually infinite space of tasks.

59

Third, RL is notoriously slow and sample inefficient [Botvinick et al., 2019]. The
groundbreaking successes that have made the field popular these last years have all
been obtained with weeks of heavily parallel computations that would correspond to
centuries of human experience. This is to be contrasted with the few shot learning
capabilities of animals [Gruber et al., 2019] and particularly humans [Csibra and
Gergely, 2009].

Finally, the standard RL framework accounts for an agent learning in isolation.
As a consequence, standard RL agents lack all the social properties linked to tutoring
interactions that we outlined in Sections 2.2.2 and 2.2.3.

Now that we have established the limitations of the standard RL framework, let
us describe three ai research lines tackling them: interactive reinforcement learning,
autotelic learning and inferential social learning.

2.3.2 Interactive Reinforcement Learners

Agents immersed in the real-world cannot be programmed beforehand to meet all
their users’ expectations. Interactive learning research tackles that fundamental
problem by enabling non-expert users to communicate or teach their preferences
and expectations in a natural way, as they would do with children [Vollmer et al.,
2016]. Thus, the field of interactive learning investigates and models the way a
human tutor guides the learning process of an agent by providing teaching signals
[Breazeal and Thomaz, 2008]. More specifically, Interactive RL research focuses on
the case where the agent is an RL agent.

From the perspective adopted in this chapter, Interactive RL can be seen as
solving several of the issues outlined above. First of all, by definition, Interactive
RL agents are social learners. Though not all Interactive RL agents are endowed
with all these capabilities, one can find works where Interactive RL agents benefit
from social-based tutoring strategy [Knox and Stone, 2010, Grizou et al., 2014,
Najar et al., 2016] or task-based tutoring strategy [Abbeel and Ng, 2004, Argall
et al., 2009] and works in which the Interactive RL agent displays some task-based
transparency [Petit et al., 2012, Wallkotter et al., 2021] and social communication-
based transparency [Boucher et al., 2012, J. and Chetouani, 2019, Wallkotter et al.,
2021].

The Interactive RL approach relies too much on the tutor to drive the learning
process and fails to account for the autonomy of children. As for their open-ended
learning properties, one may consider that a human user may specify a sequence
of increasingly more difficult tasks, for instance by specifying preferences about
outcomes [Christiano et al., 2017]. But in the absence of autonomous learning, it
is too much load for the tutor to always monitor the learning progress of an agent
and to provide new tasks along a potentially infinite learning trajectory. Thus,
Interactive RL accounts better map to the direct instruction approach to education
than to assisted discovery.

Along the same line, though teaching signals can substantially accelerate learn-

60

ing, Interactive RL research does not generally consider multitask nor hierarchical
contexts. Thus the corresponding agents do not display few shot learning nor hier-
archical learning capabilities.

In addition, Interactive RL research does not satisfactorily account for the social
interaction properties of the tutoring processes outlined in Section 2.2.3.

First, a well-known weakness of Interactive RL research is that the way naive
human users tend to teach an agent is far from meeting the expectations of the RL
framework [Thomaz and Breazeal, 2008a,b].

Second, the way Interactive RL research accounts for task-based tutoring strat-
egy is called Learning from Demonstration (LfD) [Argall et al., 2009]. In this ap-
proach, an expert first performs highly rewarded trajectories in the environment
where the task is defined. Then, data from these trajectories are collected and fed
into the replay buffer of the learning agent, a sort of episodic memory. From this
data, the agent learns an efficient policy with RL as if it was its own memories
[Hester et al., 2018, Večeŕık et al., 2017]. Rather than using RL, an alternative
approach called Behavioral Cloning (BC) consists in cloning the imitated policy
by applying standard — another kind of machine learning process — from the same
data to directly obtain a policy which behaves like the imitated one [Torabi et al.,
2018]. These methods assume the experience of the expert to be directly transferred
into the memory of the learning agent, which cannot happen yet in real life given
that both participants have different viewpoints. Besides, they assume that the
tutor and the learner share the same state space, action repertoire and dynamics
of interaction with the environment. This is unlikely in real life situations as made
obvious by works on the so called correspondence problem [Nehaniv and Dauten-
hahn, 2002]. Finally, they assume that the agent can perfectly observe the states
and actions of the demonstrator and imitate these actions, in sharp contrast with
what we outlined in Section 2.2.2. It is more likely that natural learners recognize
the goals of the partner and try on their own to reach these goals. This is known as
goal emulation [Tomasello, 1998, Ugur et al., 2011] and can be accounted for in the
RL framework through inverse RL processes [Abbeel and Ng, 2004]. Among other
things, this approach can help solving the correspondence problem.

Beyond this, in Interactive RL, teaching signals lack a communicative intent. As
outlined in Section 2.2, infants and more generally humans are sensitive to pedagogi-
cal teaching, where the teaching signals are specifically emitted to optimize learning
efficiency. This is overlooked in the Interactive RL literature, where a tutor will
provide the same demonstrations to all learners without taking their current knowl-
edge in consideration, thus failing to account for the zpd management, pedagogical
teaching and modelling the learner properties. Reciprocally, these methods expect
all learners to learn equally well from a given set of demonstrations, thus Interactive
RL agents cannot be seen as pragmatic learners.

Finally, natural teaching methods build on linguistic description of behaviors,
instructions, explanations and both verbal and nonverbal feedback. As for the lin-
guistic signals, Interactive RL agents rely on a limited set of predefined tokens,

61

which cannot be confused with a form of language proficiency. For educating agents
with the richer signals used in natural teaching, these agents must be equipped with
richer capabilities. We claim that having the capability to represent and pursue
goals, to autonomously imagine and select goals, to infer the goals of others and
to interact with them about these goals are some of the required capabilities, as
these goals can play a pivotal role at the interface between user expectations and
autonomous behavior learning.

2.3.3 Autotelic Reinforcement Learners

The extraordinary transition from the mental life of human infants to the sophis-
ticated intelligence of adults is mostly modelled in the domain of developmental
robotics and ai [Weng et al., 2001, Zlatev, 2001, Lungarella et al., 2003]. A central
line of research in this domain is interested in the design of autotelic agents [Steels,
2004, Colas et al., 2022a]. These embodied agents interact with their environment
at the sensorimotor level and are provided with the ability to represent, set their
own goals and reward themselves when they achieve them [Oudeyer et al., 2007,
Forestier et al., 2017, Colas et al., 2020c]. By definition, they are autotelic learners.

Fundamentally, these agents are problem solvers. Implementing their learning
capabilities using RL is natural, since the RL framework provides the model of choice
to account for problem solving capabilities [Sutton et al., 1998]. Most of these agents
are equipped with one or several goal spaces and rely on goal-conditioned RL [Colas
et al., 2020c] and automatic curriculum learning [Portelas et al., 2020] to learn to
achieve those goals along an open-ended developmental trajectory. This endows
autotelic agents with the capability to decide which goals to target and learn about
as a function of their current capabilities [Florensa et al., 2018, Fournier et al., 2019,
Colas et al., 2019, Racaniere et al., 2019, Stooke et al., 2021]. See Section 1.3 for
a formal definition. Thus, by contrast to Interactive RL agents, autotelic agents
are open-ended and generally few shot learners. Note however that very few works
focus on the importance of hierarchical learning in such agents [Eppe et al., 2022,
Etcheverry et al., 2020].

By contrast, there is a growing tendency to combine autotelic architectures with
language learning capabilities. Many papers combining goal-conditioned RL and
language understanding have recently flourished under the banner of instruction
following agents [Luketina et al., 2019], but the corresponding agents are not truly
autotelic in the sense that they do not set their own goals. The emergence of autotelic
agents endowed with language learning capabilities is covered in Chapter 8.

Thus, autotelic reinforcement learners are endowed with a lot of the properties
that are missing to their interactive counterparts. But symmetrically, they generally
model isolated agents, thus they miss all the interactive and social learning properties
listed in Section 2.2.

62

2.3.4 Inferential Social Learners

While Interactive RL research provides efficient ways for ai agents to learn from
demonstrations, feedback or instructions, they lack methods for implementing the
richest social interactions between a tutor and a tutee presented in Section 2.2. A
key to model these richer interactions consists in simultaneously addressing tutoring
and learning processes.

A new family of agents that we call inferential social learners have started to
implement these more elaborated types of interactions where the tutor and the
learner build a model of each other and infer the other’s beliefs, desires and intentions
using these models. These models are inspired by the inferential social learning
framework of Gweon [2021], which considers that learners recover the meaning of
underlying others’ actions by inverting intuitive causal models of the way others
think, plan and act. Such inference mechanisms are crucial for social learning,
notably to improve the efficiency of the tutoring process.

By drawing inspiration from language-based communication, inferential social
learning goes beyond literal interpretation of actions and considers pragmatic infer-
ence [Grice, 1975]. The current approach of inferential social learning mechanisms
exploits probabilistic inference over structured representations of the world, the
other and even the representations of the other. A recent work describes the ratio-
nal speech act (RSA) for pragmatic reasoning in language understanding [Goodman
and Frank, 2016]. Its approach results in probabilistic models of pragmatic speakers
and listeners able to capture the meanings of complex phenomena of linguistic inter-
action. Taking a more developmental perspective, some other works try to account
for the way parents employ “motherese” [Gleitman et al., 1984, Saint-Georges et al.,
2013] to talk to their children [Lim and Okuno, 2014], so as to endow social agents
with the roots of language proficiency.

Transposing these linguistic considerations to the domain of interactions with
objects, some works study communicative demonstrations [Ho et al., 2016]. Such
demonstrations are not just directed towards the manipulated objects, but also ac-
companied with non-verbal cues such as eye gaze and or exaggerations of the demon-
strations in the space–time dimensions used to convey the pedagogical intent. Again,
similarly to the language case, some studies have focused on “motionese,” the non-
verbal equivalent of motherese [Nagai and Rohlfing, 2007, 2009]. The corresponding
agents can partly be seen as autotelic, as they have some desires and intentions,
but as the corresponding works focus on the interaction itself, generally they do not
come with sophisticated agents capable of open-ended learning, few shot learning or
hierarchical learning.

The mechanism behind these studies always requires to have models of the other’s
beliefs, desires and intentions and to reason about them to choose the most appro-
priate way to communicate, for instance selectively choose when to provide feedback
and corrections [Ho et al., 2017].

In the Human-Robot Interaction community, similar works about agents not

63

just intending to perform the ordinary action but also to convey something about
it are using the concept of legibility [Dragan et al., 2013, Lichtenthäler and Kirsch,
2016]. The key idea is to design transparency through motion models by which a
robot communicates its intent to a human observer [Wallkotter et al., 2021]. The
main assumption is that humans will be able to infer the robot’s intention from its
motion by inverting a generative model. Thus, such works account for both forms
of transparency.

In Ho et al. [2016], the authors proposed a pedagogical model based on Bayesian
Inference to generate communicative demonstrations. They argue that this model
should help the teacher select examples to communicate a concept to the learner.
They further performed experiments involving real human instructors and showed
that the results were aligned with their proposed model. A more recent work pro-
posed a demonstration-based ZPD teaching strategy where demonstrations are not
perfect, but are adapted to the current capabilities of the agent [Seita et al., 2019].

Driven by the Interactive RL framework where agents learn from an external
reward function, some works also study how an agent can infer information about a
reward function from observed premises in the tutoring context [Reddy et al., 2020,
Bobu et al., 2020, Jeon et al., 2020]. Moving to autotelic agents, similar processes
could be transposed to infer a goal rather than a reward function. A few recent
works start addressing this issue by captioning the goal of a demonstration through
natural language and a goal generator [Zhou and Small, 2020, Nguyen et al., 2021].
We expect follow-up of such works to contribute to answering the key question
of the nature of the information conveyed by the tutor through the task channel
[MacGlashan and Littman, 2015, Ho et al., 2016, 2017].

As we noted above, social inferences require that both learners and teachers rea-
son about the beliefs and intent of each other. Thus, the corresponding agents need
to be endowed with a Theory of Mind (ToM). There has been recent attempts to
account for the acquisition of a ToM through inverse RL [Jara-Ettinger, 2019] and
in the domain of multi-agent RL [Nguyen et al., 2020], but these works generally
suffer from the same limitations as Interactive RL approaches: they do not consider
explicit goals nor social inference processes. In robotics, efficient human-robot col-
laboration seems to require ToM models [Chakraborti et al., 2017]. A recent study
investigated the combination of endowing both the learner and the social partner
with models of each other in the context of learning multiple goals [Caselles-Dupré
et al., 2022]. It qualifies the learning agents to be pragmatic whenever it attempts to
infer the goal of the social partner from a given demonstrator. Besides, it qualifies
the social partners to be pedagogical whenever they modify their demonstrations
to disambiguate goal inference. This study shows that this combination results in
faster learning and reduced goal ambiguity compared to standard methods that use
demonstrations. To summarize the whole section, Interactive RL agents usually
fall short in terms of autonomy, lacking all the properties of autotelic agents and
the inferential capabilities of inferential social learners. Reciprocally, standard au-
totelic agents are not teachable at all. This is only when combining all approaches

64

that future agents will display both capabilities to learn on their own and to be
pedagogically taught. We now turn towards preliminary attempts in this direction.

2.4 Conclusion

Many efforts have been made to endow artificial agents with the capacity to learn
from humans, in a natural and unconstrained manner. However, for now, we are still
far from achieving “normal teaching of a child,” in reference to Turing’s view. In
this chapter, by investigating the way children are taught, we claimed that autotelic
agents were a better starting point for such a research than standard RL agents.
The resulting agents would pursue their own goals, but should be endowed with an
additional capability to be taught so that they choose their goals in accordance with
the expectation of their users. We have then described some of the ongoing and
immediate future work along this line of research, and revealed some of the issues
which must be overcome to get closer to the way children are taught.

In the immediate future, the existing teachable autotelic agents could be com-
bined and integrated with inferential social learning capabilities and more natural
language learning capabilities. Some effort is also necessary so that these agents
can actually be taught by human users, rather than by other software agents as
is still the most common practice. Once this is done, given the fast progress cur-
rently observed in the design of autotelic learning agents, we expect to soon see
good enough teachable autonomous agents to use them for quantitative analyses in
developmental psychology studies and for a better design of education programs.
We also believe that this starting point is a key move towards better insertion of AI
agents in the society, with improved capabilities to communicate with and to adapt
to their human users, which is one of the central concerns of AI research.

65

Chapter Summary

This chapter introduced the concept of teachable autotelic agents (taas). It is a sub-
family of autotelic agents that can also benefit from external teaching signals that
drive their exploration and help them grow their repertoires of skills. First, we con-
ducted an overview on findings in developmental psychology and education sciences
which argued for the benefits of guided-play in children (Section 2.1). This allowed
us to extract a teachability checklist, including properties found in the learning chil-
dren, tutors and in the learning process itself (Section 2.2). Then, we argued that
this list should be leveraged by artificial agents so that they can learn autonomously
and from external teaching signals. Finally, we showed that these properties are not
exhaustively leveraged by current methods in artificial intelligence, including rein-
forcement learning (RL), interactive RL, autotelic RL and inferential social learning
(Section 2.3).

66

Chapter 3

Predicate-based Goal-Conditioned
Agents

In the previous chapter, we introduced the idea of Teachable Autotelic Agents from
a purely developmental perspective based on key insights from the tutoring process
in humans. Namely, we highlighted key properties that should exist within the
tutoring process of artificial agents: a two-way communication schema between the
learning agent and the human tutor. As discussed in Chapter 2, this communication
triggers both the task channel and the social channel. In this chapter, we focus on
the latter.

In order for the learning agent to grasp the task assigned by its teacher — which
can take the form of a specific goal that needs to be achieved — it should be able
in principle to understand it. Interestingly, humans grasp their surrounding world
in terms of structured concepts. They usually communicate through language, but
mastering natural language should not in principle be a prerequisite for the learn-
ing agent. In fact, pre-verbal toddlers engage in guided play with their caregivers
without even mastering language.

This chapter represents a first step towards artificial teachable prelinguistic agents.
We start from theories in developmental psychology on prelinguistic concept forma-
tion in humans. More specifically, we adopt the view of Jean Mandler — which
we simply denote by the Mandlerian View in the remainder of the manuscript.
Based on this particular perspective, we design predicate-based autotelic agents:
goal-conditioned agents which represent their goals as a set of relational constraints
based on semantic predicates.

The layout of this chapter respects the following sketch. First, we investigate
several theories of prelinguistic concept formation in humans, focusing on the Mand-
lerian view (Section 3.1). Second, we formalize the idea of semantic configurations as
tools to represent predicate-based goals following the Mandlerian view (Section 3.2).
Finally, we introduce an architecture, which we call lgb, and which bridges the gap
between behavior and language using semantic configurations (Section 3.3).

67

3.1 The Mandlerian View: A Theory of Prelin-

guistic Concept Formation

Toddlers are the best learners we know to exist. From a very young age, they exhibit
impressive behaviors when interacting with their surroundings. Interestingly, these
capacities are not only dependent on caregivers, but can also come from autonomous
interactions with objects. So how can an infant learn concepts on her own based only
on sensorimotor interactions with the physical world ? On this matter, research has
been mainly divided in two conceptually and factually different perspectives: the
empiricist view, suggesting that knowledge comes primarily from sensory experience,
and the nativist view, stating that certain skills and abilities are hard-wired into the
brain at birth.

Many approaches in developmental psychology attempted to reconcile between
the nativisit and the empiricist point of view by providing a minimal set of innate
prerequired cognitive processing capabilities [Spelke, 1994, Leslie, 1994, Carey, 2000,
Leslie, 2005, Carey, 2009]. Spelke [1994] proposes four innate modules to handle
physics, psychology, geometry and reasoning about numbers. Leslie [1994] suggests
primitive modules that leverage causality, animacy and theory of mind. Carey [2000]
first emphasizes the need for two innate mechanisms to handle intuitive mechanics
and intuitive intentional causality, and a third innate module is added in Carey
[2009] to handle the numerical cognitive system. However, all these works propose
a rather static and domain-specific list of primitive capacities, which do not account
for the flexibility of the continuous learning in children.

Recently, cognitive scientist Jean Mandler has proposed a new mechanism called
Perceptual Meaning Analysis (PMA), which relies on a minimal collection of prim-
itive core concepts embedded within infants [Mandler, 2012]. The Mandlerian view
recognizes the empiricist claim that concepts are learned during the humans’ lifetime,
but argues that a minimal collection of primitives needs to be considered in order
for this learning to kick off. The PMA mechanism transforms perceptual inputs
into conceptual outputs, also known in the field of cognitive linguistics as image-
schemas. The main difference that distinguishes PMA from earlier mechanisms
is that it analyzes a few kinds of spatiotemporal information from a huge amount
of information delivered by perceptual systems. This makes it a minimalistic and
domain-general mechanism.

This section is organized as follows. First, we describe the theory of image-
schemas from a developmental point of view (Section 3.1.1). Then, we focus on the
Mandlerian view on the subject and introduce the PMA mechanism (Section 3.1.2).
Finally, we argue that such a mechanism could be beneficial in artificial agents as
it helps them categorize their sensory perceptions into semantic categories (Sec-
tion 3.1.3). Our goal is not to implement image-schema extractors nor PMA mech-
anisms, but rather to extract some concepts behind these developmental theories
that can inspire and constrain our models of how agents may learn to represent

68

their environment.

3.1.1 The Image Schema Theory

To understand the meaning of image-schemas, we propose to disentangle the two
composing terms. We attempt to lay the background of our next sections by defining
the following concepts from a cognitive linguistics point of view: a schema, an image,
and image-schemas.

The Schema Theory

The term schema and its plural schemata have greek roots associated with the
terms “form” or “figure”. In the late eighteenth century, Kantian philosophy was
interested in schemas, and introduced them as means to relate percepts to concepts
[Kant, 1908]. More precisely, Kant starts from a known example to define a schema:

“The empirical conception of a plate is homogeneous with the pure
geometrical conception of a circle, in as much as the roundness which is
cogitated in the former is intuited in the latter.”Kant [1908]

Kant considers a schema as a double-sided mediating representation, where one
side is sensuous and the other is intellectual. These representations are fixed tem-
plates superimposed onto perceptions and conceptions to render meaningful repre-
sentations.

Inspired by this philosophical point of view, cognitive science recently defined
a schema as “a cognitive representation comprising a generalization over perceived
similarities among instances of usage” [Kemmer and Barlow, 2000]. This term was
actually adopted decades earlier by the swiss psychologist Jean Piaget, who speci-
cally used the french term “schème” to design a framework used to make sense of
raw perceptual information [Piaget, 1923]. The main idea is that a schema defines
a redescription of events (representation) that brings together in the same category
the ones that share some common traits (similarities) to make behavioral generaliza-
tion possible in humans. It can be viewed as a representation that allows humans to
quickly organize new situations into categories without much effort. This organiza-
tion, or schematic processing, starts at a very young age when toddlers first engage
with their surroundings.

Mental Images

Humans have the capacity the continuously generate mental images of different con-
cepts or events. This generation can be a recall from the memory of past experience,
or an imaginary construction based on their understanding of certain concepts. The
term image here should not be taken in its literal meaning. In fact, an image does
not have to be exclusively visual, but can involve a perceptual collection of auditory,

69

haptic, motoric, olfactory and gustatory experiences [Oakley, 2007]. In any case,
images are necessarily grounded in perception, providing abstractions on which an
individual could eventually add building blocks to frame new experiences. Let’s try
to better understand the concept of image with an example. Let’s consider a detailed
mental image of a pile of clothes that you may have left on your bed one morning
when you were rushing out to work. This image is specific to those particular objects
(clothes) and not to any other ones. Although this experience involves a particular
set of objects, it still serves as an imaginative base for creating a schematized mental
image of a stack of any other types of objects. In other words, the image is specific,
but can be used with some other component to generalize the concept it represents.

Image-Schemas

It was initially the field of contemporary cognitive linguistics that got interested in
combining the notions of schema and image [Arnheim, 1997, Johnson, 2013, Oakley,
2007]. Image-schemas can be viewed as mental images of abstract context-agnostic
concepts. Thus, unlike an image, an image-schema is not specific nor fixed as it rep-
resents highly preconceptual and primitive patterns that enable reasoning in many
contexts. To better understand the nuance, we consider the following example.
Think of a blue lego brick being put on a red lego brick. This is an image: it is spe-
cific and fixed. The underlying image-schema can be the OBJECT ON OBJECT: it
is not specific and not fixed. Hence, we are able to construct flexible and abstract rep-
resentations from specific images. Other examples of image-schemas PATH-GOAL,
ATTRACTION, CENTER, PERIPHERY and LINK [Geeraerts, 2006].

Most works in cognitive linguistics followed the Piagetian behaviorism point of
view suggesting that concept formation in infants does not happen until language
is acquired [Bogartz et al., 1997, Haith and Benson, 1998, Sloutsky, 2010]. How-
ever, decades of investigations on preverbal infant cognition emphasized the role
of prelinguistic conceptualization in understanding the world [Leslie, 1994, Spelke,
1994, Mandler, 1999, 2012]. Notably, some of these works suggest that language
comes later as an enrichment to these prelinguistic conceptualization, rather than
being a prerequisite [Mandler, 2012, Mandler and Cánovas, 2014]. Interestingly, the
same works argue that these prelinguistic image-schemas are strictly spatial, allow-
ing preverbal toddlers to build their foundational conceptualization capacities by
mapping spatial structure into conceptual structure [Mandler and Cánovas, 2014].
The process of formation of these image-schemas depends on some innate perceptual
information responsible for monitoring toddlers attentions, as shown in experiments
with 2 and 3 months children [Baillargeon, 1986, Hespos and Baillargeon, 2001].
Recently, a mechanism was proposed to describe the preverbal formation of spa-
tial image-scheme: the Perceptual Meaning Analysis mechanism (PMA) [Mandler,
2012].

70

3.1.2 The Perceptual Meaning Analysis Mechanism

The Perceptual Meaning Analysis (PMA) [Mandler, 2012] is a general framework
that accounts for the conceptual activity in the first years of life. It attempts to
reconcile between the empiricist and the nativist views. On the one hand, the
PMA mechanism recognizes that the concept formation in infants is learned, thus
accounting for the empricist view. On the other hand, it argues that in order for
this learning to kick off, a minimalist set of primitives need to be considered. In
this section, we introduce three main properties of the PMA mechanism which
are not leveraged by earlier approaches, thus making it more promising to handle
prelinguistic concept formation in infants.

PMA translates temporal information into an iconic spatial form

In the introduction to this section, we highlighted that PMA considers only a set of
primitives. A fair question arises: what exactly are these primitives, and how do they
make PMA more promising than other approaches? The theory of prelinguistic con-
cept formation established by PMA suggests that perception-based representation
learning is based on attended information. In fact, it starts the conceptual system
by directing the attention of infants to things moving on paths through space [Man-
dler, 2012]. A toddler sees for example the hand of her caregiver moving to grasp a
toy. It is at the moment of touching the toy (establishing the “LINK” as described
by Mandler [Mandler, 2012]) that the attention of the toddler gets focused on the
specific perception of a hand touching an object. PMA translates this temporal
information (hand moving towards the toy) to iconic spatial form (hand far from
toy, hand in contact with the toy). Based on these thoughts, what is actually innate
within infants is the attention capacity towards temporal changes, allowing them
to distinguish different situations based on the contact. That is why the earliest
concepts learned correspond to spatial relations [Mandler, 2012]. Compared to ear-
lier approaches, PMA provides a domain-general mechanism, as infants may learn
concepts in one situation (the example of the caregiver reaching the toy), and gen-
eralize it to any other situation including a physical contact between two objects.
Figure 3.1 illustrates the idea behind the PMA module.

Language supports PMA’s enrichment

The PMA mechanism comes with a minimalistic collection of primitives that allow
the acquisition of spatial image-schemas. However, PMA continues to develop as
the infant grows up. Namely, the social situatedness that characterizes the early life
of toddlers clearly affects their perceptual analysis. In particular, their confrontation
to language, as they hear their caregivers engaging with them, unleashes a growing
repertoire of new conceptualizations.

On the one hand, language enables the subdivision of global concepts. In fact,
caregivers provide language descriptions of animate or inanimate objects which di-

71

Perceptual Meaning
Analysis Module

(PMA)

Dynamic Temporal
Information

Static Iconic
Spatial Information

Attention to changes
in temporal information

(example: contact)

Figure 3.1: Illustration of the PMA module. It takes as input temporal information and
translates it into iconic spatial static form. It only requires attention to temporal physical
changes.

rect the toddlers’ attention towards features that were originally neglected within
their autonomously generated image-schemas. Experiences with 6 months infants
show that they begin to use labels provided by adults to subdivide animals [Fulk-
erson and Waxman, 2007]. Although the child may be globally familiar with a
concept, the consistent use of language-based distinctions from adults further di-
rects the child’s attentive analysis, enabling the discovery of novel properties that
were originally overlooked.

On the other hand, language promotes the expansion of the conceptual system
beyond spatial information. Recall that the PMA mechanism is initially strictly
spatial. In fact, the PMA mechanism deals better with spatial perceptual infor-
mation because they are usually structured. However, more unstructured sensory
information such as colors, tastes and emotions have no primitives within the PMA
mechanism. Although infants experience these unstructured information, there is no
evidence, to my knowledge, for their conceptualization before language. Language
labels provided by adults provide a symbolic system enabling children to map the
unstructured perceived information to discrete categories.

PMA supports Language Learning

Infants come to the language learning task with a set of image-schemas translating
their understanding on abstract concepts involving spatial primitives. Interestingly,
grammatical relations within language are also abstract, which suggests that these
same image-schemas could also play an important role in providing the relational
notions that structure sentences. In fact, research on early language acquisition
shows that children rely on notions that can be described in image-schema terms
[Tomasello, 1992]. More importantly, the first explicit grammatical particles that
appear in English-speaking toddlers are mainly prepositions such as in and on which
respectively express containment and support. This perfectly fits with the idea that
prelinguistic image-schemas which mainly involve spatial concepts support early lan-

72

guage learning. To further reinforce this claim, researchers were interested in other
languages that, unlike English, are not prepositional. For instance, some experi-
ences involved Korean, within which containment and support are rather expressed
by verbs translating a degree of fitness [Choi et al., 1999, McDonough et al., 2003].
The results showed that Korean infants too begin to acquire the common spatial
morphemes of their language at the same age as English infants.

The claim that image-schemas support learning of languages such as English and
Korean is possible because studies with these particular languages show that infants
tend to first acquire spatial words (prepositions or verbs describing spatial relations).
However, the existing variety of human languages makes the generalization of this
claim somehow unsupported. In any case, I do not think that image-schemas are
necessarily a prerequisite for language learning, even though they might potentially
facilitate it.

3.1.3 Artificial Intelligence and Perceptual Meaning Anal-
ysis

The field of Artificial Intelligence (ai) confronts two opposing currents: connection-
ist ai that aims to learn as much as possible from data in an end-to-end fashion;
symbolic ai which implements inductive biases and several hand-coded symbolic
modules. This opposition is analogous to the one between empiricism and nativism
described throughout this section (where empiricism is close to connectionist ai and
nativism to symbolic ai). We align with the variety of research believing that these
two currents are actually complementary. Recently, research has been investigating
the middle grounding between symbolic ai and connectionist ai by incorporating
symbolic representations within end-to-end computation tools such as neural net-
works. These approaches, called neuro-symbolic ai, are shown to be successful in
many domains such as control [León et al., 2020], visual question answering [Andreas
et al., 2016, Zhu et al., 2020] and theorem proving [Minervini et al., 2018].

As PMA describes a model for prelinguistic concept formation in infants, endow-
ing artificial agents with a similar mechanism seems promising. More specifically,
embodied artificial agents that are endowed with raw sensors might make use of a
conceptual PMA-like mechanism. Such agents would be able not only to perceive
their world as it is, but to build concepts and categorizations based on spatial re-
lations. In Figure 3.2, we illustrate the potential capabilities of PMA-based agents
compared with standard ones. PMA-based agents would in principle be able to
categorize their sensory perceptions into semantic categories based on the under-
lying semantic features. This might facilitate skill acquisition, facilitate language
grounding and increase behavioral diversity. All these points are discussed in the
remainder of this section.

73

With PMA

Without PMA

Perceived Situations Retrieved Concepts

Concept 1

Concept 3Concept 2

Concept 4 Concept 5

Concept 6

Retrieved Concepts

Concept 1: No contact

Concept 2: Contact

Perceived Situations

Figure 3.2: Illustration of agents’ capacities to retrieve concepts from perceived sensory
inputs (up) without a PMA module; (down) with a PMA module.

3.2 Formal Definition of Semantic Configurations

In Section 3.1, we described the Mandlerian view on prelinguistic concept formation
in human toddlers. The central component of this theory is the PMA mechanism,
an innate module encoded within children which translates the temporal informa-
tion into an iconic form based on spatial image-schemas. We also argued that
spatial relations — which represent high level concepts built upon raw perception
— are the most primitive components around which children develop their cogni-
tive capabilities, before and after language acquisition. Interestingly, other fields
such as mathematics, philosophy, linguistics and computer science were interested
in defining similar formal systems for reasoning about partitions and categorizations
[Newell, 1994, Smullyan, 1995, Hodgson, 1995, Hughes et al., 1996, Grosof et al.,
2003, Geeraerts, 2006, Mendelson, 2009]. In this section, we focus on a collection
of formal systems known as predicate logic. These systems use quantified variables
over non-logical objects, allowing to define specific relations.

74

The main objective of this section is to build the gap between our previous
survey on prelinguistic concept formation from developmental point of view and
our upcoming scientific studies on autotelic skill acquisition. We formally define
the concept of semantic configurations : a predicate-based representation inspired
from the Mandlerian view. We specifically focus on spatial binary predicates, which
represent some boolean constraints characterizing spatial relations between pairs of
physical objects. We provide formal definitions, properties and examples.

Binary predicates Consider a finite set of objects O = {o1, o2, ..., oM}. A
binary predicate p associated with a semantic relation r is an expression that takes
as input any ordered pair of objects (oi, oj) ∈ O2. p(oi, oj) is said true if and only
if “oi r oj” is verified. For simplicity, we refer to p and r interchangeably.

Examples of binary predicates. We consider the objects o1 and o2.

• The expression “o1 is close to o2” describes the predicate close evaluated on
(o1, o2).

• The expression “o2 is above o1” describes the predicate above evaluated on
(o2, o1).

Semantic mapping functions. To achieve symbol grounding into non-symbolic
sensorimotor interactions using predicates, we define a semantic mapping function
f associated with the binary predicate p as the probability that p is true given the
states of the considered objects. Formally, if we consider the objects oi, oj and their
respective states si, sj, then:

f(si, sj) = P (p(oi, oj) | si, sj).

We assume an oracle deterministic semantic mapping function, i.e. f is a Boolean
function in {0, 1}. Practically, we hard-code a function, assumed internal to the
agent, that uses predefined fixed thresholds to determine whether a predicate is true
or false given the states of the considered objects. For example, for the close predi-
cate, it outputs 1 if and only if the Euclidean distance between the two considered
objects is below a defined threshold.

Symmetry and asymmetry. Consider a finite set of objectsO = {o1, o2, ..., oM}
and a binary predicate p. The predicate p is said symmetric if and only if, for any
ordered pair of objects (oi, oj) ∈ O2, “oi r oj” and “oj r oi” are equivalent. As a
result, the corresponding semantic mapping function f needs to be symmetric, i.e.
f(oi, oj) = f(oj, oi). The predicate p is said asymmetric iff, for any ordered pair
(oi, oj) ∈ O2, “oi r oj” implies not “oj r oi”.

75

Examples. We consider the objects o1 and o2.

• close is symmetric: “o1 is close to o2”⇔ “o2 is close to o1”. The correspond-
ing semantic mapping function is based on the Euclidean distance, which is
symmetric.

• above is asymmetric: “o1 is above o2” ⇒ not “o2 is above o1”. The corre-
sponding semantic mapping function evaluates the sign of the difference of the
object Z-axis coordinates.

Effective number of predicate relations. Let’s consider a finite set of M ob-
jects O = {o1, o2, ..., oM} and a binary predicate p.

• If p is not symmetric, then the effective number of relations Kp that can be
described without redundancy is equal to the number of permutations of 2
objects among M , i.e. Kp = AM,2 = M(M − 1).

• If p is symmetric, then the effective number of relations Kp is equal to the

number of combinations of 2 objects among M , i.e. Kp =
(
M
2

)
= M(M−1)

2
.

Semantic configurations based on spatial relations. Let (pi)i∈[1..P] be a list of
P binary predicates. The concatenation of the evaluations of the semantic mapping
functions fi on the Kpi pairs of objects forms a semantic configuration. It is an
abstract representation of a scene which characterizes all relations defined by the
(pi) predicates among the M objects. This defines a binary semantic configuration
space Cp = {0, 1}Kc , where Kc =

∑P
i=1 Kpi . If any world configuration can be

mapped to Cp, not all configurations are reachable (e.g. o1 cannot be above and
below o2 at the same time).

Semantic representation space in Fetch Manipulate. In the Fetch Manip-
ulate environment, we restrict semantic representations to the use of the close and
above binary predicates applied on M = 3 objects. The resulting semantic configu-
rations are formed by:

cp = [c(o1, o2), c(o1, o3), c(o2, o3), a(o1, o2),

a(o2, o1), a(o1, o3), a(o3, o1), a(o2, o3), a(o3, o2)],

where c() and a() refer to the close and above predicates respectively and
(o1, o2, o3) are the red, green and blue blocks respectively.

76

3.3 Grounding Language to Autonomously Ac-

quired Skills Via Goal Generation

In the previous sections, we argued that artificial agents endowed with a PMA-like
mechanism are able to distinguish spatial concepts within their surroundings. Fur-
thermore, we proposed a formal definition of semantic configurations, which rely on
binary relational predicates to produce abstract spatial representations. However,
for these agents to be able to follow instructions from human teachers, we need to
bridge the gap between these spatial representations and language. In this section,
we present a novel architecture called lgb for Language-Goal-Behavior. lgb uses
semantic configurations as a pivotal representation between embodied interactions
and language instructions. On the one hand, it enables agents to learn skills by tar-
geting configurations from the semantic representation space. On the other hand,
agents can learn to generate valid semantic configurations matching the constraints
expressed by language instructions. This generation can be the backbone of be-
havioral diversity: a given sentence might correspond to a whole set of matching
configurations. This is what we propose in this chapter.

3.3.1 Motivation and Contributions

Developmental psychology investigates the interactions between learning and de-
velopmental processes that support the slow but extraordinary transition from the
behavior of infants to the sophisticated intelligence of human adults [Piaget, 1977,
Smith and Gasser, 2005]. Inspired by this line of thought, the central endeavour of
developmental robotics consists in shaping a set of machine learning processes able
to generate a similar growth of capabilities in robots [Weng et al., 2001, Lungarella
et al., 2003]. In this broad context, we are more specifically interested in designing
learning agents able to: 1) explore open-ended environments and grow repertoires
of skills in a self-supervised way and 2) learn from a tutor via language commands.

The design of intrinsically motivated agents marked a major step towards these
goals. The Intrinsically Motivated Goal Exploration Processes family (imgeps), for
example, describes embodied agents that interact with their environment at the
sensorimotor level and are endowed with the ability to represent and set their own
goals, rewarding themselves over completion [Forestier et al., 2017]. Recently, goal-
conditioned reinforcement learning (gc-rl) appeared like a viable way to implement
imgeps and target the open-ended and self-supervised acquisition of diverse skills
[Colas et al., 2022b].

Goal-conditioned RL approaches train goal-conditioned policies to target mul-
tiple goals [Kaelbling, 1993, Schaul et al., 2015]. While most gc-rl approaches
express goals as target features (e.g. target block positions [Andrychowicz et al.,
2017], agent positions in a maze [Schaul et al., 2015] or target images [Nair et al.,
2018]), recent approaches started to use language to express goals, as language can

77

express sets of constraints on the state space (e.g. open the red door) in a more
abstract and interpretable way [Luketina et al., 2019].

However, most gc-rl which represent goals as language embeddings — widely
known as Language-Conditioned Reinforcement Learning (lc-rl) — are not intrin-
sically motivated and receive external instructions and rewards. The imagine ap-
proach is one of the rare examples of intrinsically motivated lc-rl approaches [Colas
et al., 2020b]. In any case, the language conditioning suffers from three drawbacks.
1) It couples skill learning and language grounding. Thus, it cannot account for
goal-directed behaviors in pre-verbal infants [Mandler, 1999]. 2) Direct conditioning
limits the behavioral diversity associated with language input: a single instruction
leads to a low diversity of behaviors only resulting from the stochasticity of the
policy or the environment. 3) This lack of behavioral diversity prevents agents from
switching strategy after a failure.

Contributions

We present a novel conceptual RL architecture named lgb for Language-Goal-
Behavior and pictured in Figure 3.3 (right). This lgb architecture enables an agent
to decouple the intrinsically motivated acquisition of a repertoire of skills (Goals →
Behavior) from language grounding (Language → Goals), via the use of a semantic
goal representation. To our knowledge, the lgb architecture is the only one to
combine the following four features:

• It is intrinsically motivated: it selects its own (semantic) goals and generates
its own rewards,

• It decouples skill learning from language grounding, accounting for infants
learning,

• It can exhibit a diversity of behaviors for any given instruction,
• It can switch strategy in case of failures.
Besides, we introduce an instance of lgb, named decstr for DEep sets and

Curriculum with SemanTic goal Representations. Using decstr, we showcase
the advantages of the conceptual decoupling idea. In the skill learning phase, the
decstr agent evolves in a manipulation environment and leverages semantic repre-
sentations based on predicates describing spatial relations between physical objects.
These predicates are known to be used by infants from a very young age [Mandler,
2012]. decstr autonomously learns to discover and master all reachable configura-
tions in its semantic representation space. In the language grounding phase, we train
a Conditional Variational Auto-Encoder (c-vae) to generate semantic goals from
language instructions. Finally, we can evaluate the agent in an instruction-following
phase by composing the two first phases. The experimental section investigates three
questions: how does decstr perform in the three phases? How does it compare
to end-to-end lc-rl approaches? Do we need intermediate representations to be
semantic?

78

language
embedding

goal

language embedding

Policy

Langage
Encoder

Known
Semantic

Goals
inst.

state

initial state

action

Semantic Goal
Generator semantic goal

LG phase: language grounding
(language semantic goals)

LGB phase: instruction-following
(language semantic goals behavior)

GB phase: skill learning
(semantic goals behavior)

LB phase: instruction following
(language behavior)

OR

Language - Behavior (LB)
or language-conditioned RL

Language - Goal - Behavior (LGB)

Policy
state action

Langage
Encoderinst.

Figure 3.3: A standard language-conditioned RL architecture (left) and our proposed lgb
architecture (right).

3.3.2 Related Work

Standard language-conditioned RL. Most approaches from the lc-rl liter-
ature define instruction following agents that receive external instructions and re-
wards [Hermann et al., 2017, Chan et al., 2019, Bahdanau et al., 2018, Cideron
et al., 2019, Jiang et al., 2019, Fu et al., 2019], except the imagine approach which
introduced intrinsically motivated agents able to set their own goals and to imagine
new ones [Colas et al., 2020b]. In both cases, the language-condition prevents the
decoupling of language acquisition and skill learning, true behavioral diversity and
efficient strategy switching behaviors. Our approach is different, as we can decouple
language acquisition from skill learning. The language-conditioned goal generation
allows behavioral diversity and strategy switching behaviors.

Goal-conditioned RL with target coordinates for block manipulation.
Our proposed implementation of lgb, called decstr, evolves in a block manip-
ulation domain. Stacking blocks is one of the earliest benchmarks in artificial in-
telligence (e.g. Sussman [1973], Tate et al. [1975]) and has led to many simulation
and robotics studies [Deisenroth et al., 2011, Xu et al., 2018, Colas et al., 2019].
Recently, Lanier et al. [2019] and Li et al. [2019] demonstrated impressive results
by stacking up to 4 and 6 blocks respectively. However, these approaches are not
intrinsically motivated, involve hand-defined curriculum strategies and express goals
as specific target block positions. In contrast, the decstr agent is intrinsically mo-
tivated, builds its own curriculum and uses semantic goal representations (symbolic
or language-based) based on spatial relations between blocks.

Decoupling language acquisition and skill learning. Several works investi-
gate the use of semantic representations to associate meanings and skills [Alomari
et al., 2017, Tellex et al., 2011, Kulick et al., 2013]. While the two first use se-
mantic representations as an intermediate layer between language and skills, the
third one does not use language. While decstr acquires skills autonomously, pre-

79

vious approaches all use skills that are either manually generated [Alomari et al.,
2017], hand-engineered [Tellex et al., 2011] or obtained via optimal control methods
[Kulick et al., 2013]. Closer to us, Lynch and Sermanet [2020] also decouple skill
learning from language acquisition in a goal-conditioned imitation learning paradigm
by mapping both language goals and images goals to a shared representation space.
However, this approach is not intrinsically motivated as it relies on a dataset of
human tele-operated strategies. The deterministic merging of representations also
limits the emergence of behavioral diversity and efficient strategy-switching behav-
iors.

3.3.3 Methods

This section presents our proposed Language-Goal-Behavior architecture (lgb) rep-
resented in Figure 3.3 and a particular instance of the lgb architecture called dec-
str. We first present the environment it is set in, then describe the implementations
of the three modules composing any lgb architecture: 1) the semantic representa-
tion; 2) the intrinsically motivated goal-conditioned algorithm and 3) the language-
conditioned goal generator. We finally present how the three phases described in
Figure 3.3 are evaluated.

The Language-Goal-Behavior Architecture

The lgb architecture is composed of three main modules. First, the semantic rep-
resentation defines the behavioral and goal spaces of the agent. Second, the intrinsi-
cally motivated gc-rl algorithm is in charge of the skill learning phase. Third, the
language-conditioned goal generator is in charge of the language grounding phase.
Both phases can be combined in the instruction following phase. The three phases
are respectively called g→b for Goal → Behavior, l→g for Language → Goal and
l→g→b for Language → Goal → Behavior, see Figure 3.3 and Appendix B. In-
stances of the lgb architecture should demonstrate the four properties listed in the
introduction: 1) be intrinsically motivated; 2) decouple skill learning and language
grounding (by design); 3) favor behavioral diversity; 4) allow strategy switching.
We argue that any lgb algorithm should fulfill the following constraints. For lgb
to be intrinsically motivated (1), the algorithm needs to integrate the generation
and selection of semantic goals and to generate its own rewards. For lgb to demon-
strate behavioral diversity and strategy switching (3, 4), the language-conditioned
goal generator must efficiently model the distribution of semantic goals satisfying
the constraints expressed by any language input.

Environment

The decstr agent evolves in the Fetch Manipulate environment: a robotic ma-
nipulation domain based on mujoco [Todorov et al., 2012] and derived from the

80

Figure 3.4: Example configurations. Top-right: (111000100).

Fetch tasks [Plappert et al., 2018], see Figure 3.4. Actions are 4-dimensional: 3D
gripper velocities and grasping velocity. Observations include the Cartesian and
angular positions and velocities of the gripper and the three blocks. Inspired by the
framework of Zone of Proximal Development that describes how parents organize
the learning environment of their children [Vygotsky, 1978a], we let a social partner
facilitate decstr’s exploration by providing non-trivial initial configurations. Af-
ter a first period of autonomous exploration, the social partner initializes the scene
with stacks of 2 blocks 21% of times, stacks of 3 blocks 9% of times, and a block is
initially put in the agent’s gripper 50% of times. This help is not provided during
offline evaluations.

Semantic Representation

Semantic predicates define the Behavioral Space. Defining the list of se-
mantic predicates is defining the dimensions of the behavioral space explored by
the agent. It replaces the traditional definition of goal spaces and their associated
reward functions. We believe it is for the best, as it does not require the engineer to
fully predict all possible behaviors within that space, to know which behaviors can
be achieved and which ones cannot, nor to define reward functions for each of them.

Semantic predicates in DECSTR. We assume the decstr agent to have access
to innate semantic representations based on a list of predicates describing spatial
relations between pairs of objects in the scene. We consider two of the spatial predi-
cates infants demonstrate early in their development [Mandler, 2012]: the close and
the above binary predicates. These predicates are applied to all permutations of
object pairs for the 3 objects we consider: 6 permutations for the above predicate
and 3 combinations for the close predicate due to its order-invariance. A seman-
tic configuration is the concatenation of the evaluations of these 9 predicates and

81

represents spatial relations between objects in the scene. In the resulting semantic
configuration space {0, 1}9, the agent can reach 35 physically valid configurations,
including stacks of 2 or 3 blocks and pyramids, see examples in Figure 3.4. The
binary reward function directly derives from the semantic mapping: the agent re-
wards itself when its current configuration cp matches the goal configuration cp = g.
Appendix B provides formal definitions and properties of predicates and semantic
configurations.

Intrinsically Motivated Goal-Conditioned Reinforcement
Learning

This section describes the implementation of the intrinsically motivated goal-conditioned
RL module in decstr. It is powered by the Soft-Actor Critic algorithm (sac)
[Haarnoja et al., 2018] that takes as input the current state, the current semantic
configuration and the goal configuration, for both the critic and the policy. We use
Hindsight Experience Replay (her) to facilitate transfer between goals [Andrychow-
icz et al., 2017]. decstr samples goals via its curriculum strategy, collects expe-
rience in the environment, then performs policy updates via sac. This section
describes two particularities of our RL implementation: the self-generated goal se-
lection curriculum and the object-centered network architectures. Implementation
details and hyperparameters can be found in Appendix B.

Goal selection and curriculum learning. The decstr agent can only select
goals among the set of semantic configurations it already experienced. We use an
automatic curriculum strategy [Portelas et al., 2020] inspired from the curious
algorithm [Colas et al., 2019]. The decstr agent tracks aggregated estimations of
its competence (c) and learning progress (lp). Its selection of goals to target during
data collection and goals to learn about during policy updates (via her) is biased
towards goals associated with high absolute lp and low c.

Automatic bucket generation. To facilitate robust estimation, lp is usually esti-
mated on sets of goals with similar difficulty or similar dynamics [Forestier et al.,
2017, Colas et al., 2019]. While previous works leveraged expert-defined goal buck-
ets, we cluster goals based on their time of discovery, as the time of discovery is
a good proxy for goal difficulty: easier goals are discovered earlier. Buckets are
initially empty (no known configurations). When an episode ends in a new config-
uration, the Nb = 5 buckets are updated. Buckets are filled equally and the first
buckets contain the configurations discovered earlier. Thus goals change buckets as
new goals are discovered.

Tracking competence, learning progress and sampling probabilities. Regularly, the
decstr agent evaluates itself on goal configurations sampled uniformly from the set
of known ones. For each bucket, it tracks the recent history of past successes and
failures when targeting the corresponding goals (last W = 1800 self-evaluations). c
is estimated as the success rate over the most recent half of that history c = crecent.

82

lp is estimated as the difference between crecent and the one evaluated over the first
half of the history (cearlier). This is a crude estimation of the derivative of the c
curve w.r.t. time: lp = crecent - cearlier. The sampling probability pi for bucket i is:

Pi =
(1− Ci) ∗ |LPi|∑
j((1− Cj) ∗ |LPj|)

.

In addition to the usual lp bias [Colas et al., 2019], this formula favors lower c when
lp is similar. The absolute value ensures resampling buckets whose performance
decreased (e.g. forgetting).

Object-centered architecture. Instead of fully-connected or recurrent networks,
decstr uses for the policy and critic an object-centered architecture similar to the
ones used in Colas et al. [2020b], Karch et al. [2020], adapted from Deep-Sets [Za-
heer et al., 2017]. For each pair of objects, a shared network independently encodes
the concatenation of body and object features and current and target semantic con-
figurations, see Appendix Figure B. This shared network ensures efficient transfer
of skills between pairs of objects. A second inductive bias leverages the symmetry
of the behavior required to achieve above(oi, oj) and above(oj, oi). To ensure au-
tomatic transfer between the two, we present half of the features (e.g. those based
on pairs (oi, oj) where i < j) with goals containing one side of the symmetry (all
above(oi, oj) for i < j) and the other half with the goals containing the other side (all
above(oj, oi) for i < j). As a result, the above(oi, oj) predicates fall into the same
slot of the shared network inputs as their symmetric counterparts above(oj, oi), only
with different permutations of object pairs. Goals are now of size 6: 3 close and
3 above predicates, corresponding to one side of the above symmetry. Skill trans-
fer between symmetric predicates are automatically ensured. Appendix B further
describes these inductive biases and our modular architecture.

Language-Conditioned Goal Generation

The language-conditioned goal generation module (lgg) is a generative model of
semantic representations conditioned by language inputs. It is trained to generate
semantic configurations matching the agent’s initial configuration and the descrip-
tion of a change in one object-pair relation.

A training dataset is collected via interactions between a decstr agent trained
in phase g→b and a social partner. decstr generates semantic goals and pur-
sues them. For each trajectory, the social partner provides a description d of one
change in object relations from the initial configuration ci to the final one cf . The
set of possible descriptions contains 102 sentences, each describing, in a simplified
language, a positive or negative shift for one of the 9 predicates (e.g. get red above
green). This leads to a dataset D of 5000 triplets: (ci, d, cf). From this dataset, the
lgg is learned using a conditional Variational Auto-Encoder (c-vae) [Sohn et al.,
2015]. Inspired by the context-conditioned goal generator from Nair et al. [2019], we

83

add an extra condition on language instruction to improve control on goal genera-
tion. The conditioning instruction is encoded by a recurrent network that is jointly
trained with the vae via a mixture of Kullback-Leibler and cross-entropy losses.
Appendix B provides the list of sentences and implementation details. By repeat-
edly sampling the lgg, a set of goals is built for any language input. This enables
skill diversity and strategy switching : if the agent fails, it can sample another valid
goal to fulfill the instruction, effectively switching strategy. This also enables goal
combination using logical functions of instructions: and is an intersection, or is an
union and not is the complement within the known set of goals.

Evaluation of the Three lgb phases

Skill learning phase g→b: decstr explores its semantic representation space,
discovers achievable configurations and learns to reach them. Goal-specific perfor-
mance is evaluated offline across learning as the success rate (sr) over 20 repetitions
for each goal. The global performance sr is measured across either the set of 35
goals or discovery-organized buckets of goals, see Section 3.3.3.

Language grounding phase l→g: decstr trains the lgg to generate goals
matching constraints expressed via language inputs. From a given initial configura-
tion and a given instruction, the lgg should generate all compatible final configura-
tions (goals) and just these. This is the source of behavioral diversity and strategy
switching behaviors. To evaluate lgg, we construct a synthetic, oracle dataset O
of triplets (ci, d, Cf (ci, d)), where Cf (ci, d) is the set of all final configurations
compatible with (ci, d). On average, Cf in O contains 16.7 configurations, while
the training dataset D only contains 3.4 (20%). We are interested in two metrics:
1) The Precision is the probability that a goal sampled from the lgg belongs to Cf
(true positive / all positive); 2) The Recall is percentage of elements from Cf that
were found by sampling the lgg 100 times (true positive / all true). These metrics
are computed on 5 different subsets of the oracle dataset, each calling for a different
type of generalization (see full lists of instructions in Appendix B):
1. Pairs found in D, except pairs removed to form the following test sets. This

calls for the extrapolation of known initialization-effect pairs (ci, d) to new final
configurations cf (D contains only 20% of Cf on average).

2. Pairs that were removed from D, calling for a recombination of known effects d
on known ci.

3. Pairs for which the ci was entirely removed from D. This calls for the transfer
of known effects d on unknown ci.

4. Pairs for which the d was entirely removed from D. This calls for generalization
in the language space, to generalize unknown effects d from related descriptions
and transpose this to known ci.

5. Pairs for which both the ci and the d were entirely removed from D. This calls
for the generalizations 3 and 4 combined.

84

Instruction following phase l→g→b: decstr is instructed to modify an ob-
ject relation by one of the 102 sentences. Conditioned on its current configuration
and instruction, it samples a compatible goal from the lgg, then pursues it with
its goal-conditioned policy. We consider three evaluation settings: 1) performing a
single instruction; 2) performing a sequence of instructions without failure; 3) per-
forming a logical combination of instructions. The transition setup measures the
success rate of the agent when asked to perform the 102 instructions 5 times each,
resetting the environment each time. In the expression setup, the agent is evalu-
ated on 500 randomly generated logical functions of sentences, see the generation
mechanism in Appendix B. In both setups, we evaluate the performance in 1-shot
(sr1) and 5-shot (sr5) settings. In the 5-shot setting, the agent can perform strategy
switching, to sample new goals when previous attempts failed (without reset). In the
sequence setup, the agent must execute 20 sequences of random instructions with-
out reset (5-shot). We also test behavioral diversity. We ask decstr to follow each
of the 102 instructions 50 times each and report the number of different achieved
configurations.

3.3.4 Experiments

Our experimental section investigates three questions:

• How does decstr perform in the three phases?

• How does it compare to end-to-end language-conditioned approaches?

• Do we need intermediate representations to be semantic?

How does decstr perform in the three phases?

This section presents the performance of the decstr agent in the skill learning,
language grounding, and instruction following phases.

Skill learning phase g→b: Figure 3.5 shows that decstr successfully masters
all reachable configurations in its semantic representation space. Figure 3.5a shows
the evolution of sr computed per bucket. Buckets are learned in increasing order,
which confirms that the time of discovery is a good proxy for difficulty. Figure 3.5b
reports c, lp and sampling probabilities p computed online using self-evaluations
for an example agent. The agent leverages these estimations to select its goals: first
focusing on the easy goals from bucket 1, it moves on towards harder and harder
buckets as easier ones are mastered (low lp, high c). Figure 3.5c presents the results
of ablation studies. Each condition removes one component of decstr: 1) Flat re-
places our object-centered modular architectures by flat ones; 2) w/o Curr. replaces
our automatic curriculum strategy by a uniform goal selection; 3) w/o Sym. does not
use the symmetry inductive bias; 4) In w/o SP, the social partner does not provide

85

non-trivial initial configurations. In the Expert buckets condition, the curriculum
strategy is applied on expert-defined buckets, see Appendix B. The full version of
lgb performs on par with the Expert buckets oracle and outperforms significantly
all its ablations. Appendix B presents more examples of learning trajectories, and
dissects the evolution of bucket compositions along training.

0 200 400 600 800 1000 1200 1400
Episodes (x103)

0.00

0.25

0.50

0.75

1.00

S
u
cc

e
ss

 R
a
te

Bucket 1

Bucket 2

Bucket 3

Bucket 4

Bucket 5

Global

(a)

0.0

0.5

1.0

C

B1 B2 B3 B4 B5

0.00
0.05
0.10

LP

0 200 400 600 800 1000 1200 1400
Episodes (x103)

0.0

0.5

1.0
P

(b)

0 250 500 750 1000 1250
Episodes (x103)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

DECSTR
w/o Curr.

Exp. Buckets
w/o Asym.

Flat
w/o ZPD

(c)

Figure 3.5: Skill Learning: (a) SR per bucket. (b): c, lp and p estimated by a decstr
agent. (c): ablation study. Medians and interquartile ranges over 10 seeds for decstr
and 5 seeds for others in (a) and (c). Stars indicate significant differences to decstr as
reported by Welch’s t-tests with α = 0.05.

Table 3.1: l→g phase. Metrics are averaged over
10 seeds, stdev < 0.06 and 0.07 respectively.

Metrics Test 1 Test 2 Test 3 Test 4 Test 5

Precision 0.97 0.93 0.98 0.99 0.98
Recall 0.93 0.94 0.95 0.90 0.92

Table 3.2: l→g→b phase. Mean ±
stdev over 10 seeds.

Metr. Transition Expression

sr1 0.89± 0.05 0.74± 0.08
sr5 0.99± 0.01 0.94± 0.06

Language Grounding Phase l→g: The lgg demonstrates the 5 types of gen-
eralization from Table 3.1. From known configurations, agents can generate more
goals than they observed in training data (1, 2). They can do so from new initial con-
figurations (3). They can generalize to new sentences (4) and even to combinations
of new sentences and initial configurations (5). These results assert that decstr
generalizes well in a variety of contexts and shows good behavioral diversity.

Instruction Following Phase l→g→b: Table 3.2 presents the 1-shot and 5-shot
results in the transition and expression setups. In the sequence setups, decstr
succeeds in L = 14.9 ± 5.7 successive instructions (mean±stdev over 10 seeds).
These results confirm efficient language grounding. decstr can follow instructions
or sequences of instructions and generalize to their logical combinations. Strat-
egy switching improves performance (sr5 - sr1). decstr also demonstrates strong
behavioral diversity: when asked over 10 seeds to repeat 50 times the same instruc-
tion, it achieves at least 7.8 different configurations, 15.6 on average and up to 23
depending on the instruction.

86

Do we need an intermediate representation?

This section investigates the need for an intermediate semantic representation. To
this end, we introduce an end-to-end lc-rl baseline directly mapping Language
to Behavior (l→b) and compare its performance with decstr in the instruction
following phase (l→g→b).

The LB baseline. To limit the introduction of confounding factors and under-
tuning concerns, we base this implementation on the decstr code and incorporate
defining features of imagine, a state-of-the-art language conditioned RL agent [Co-
las et al., 2020b]. We keep the same her mechanism, object-centered architectures
and RL algorithm as decstr. We just replace the semantic goal space by the
102 language instructions. This baseline can be seen as an oracle version of the
imagine algorithm where the reward function is assumed perfect, but without the
imagination mechanism.

Comparison in the instruction following phase l→b vs l→g→b: After
training the lb baseline for 14K episodes, we compare its performance to decstr’s
in the instruction-following setup. In the transition evaluation setup, lb achieves
sr1 = 0.76 ± 0.001: it always manages to move blocks close to or far from each
other, but consistently fails to stack them. Adding more attempts does not help:
sr5 = 0.76 ± 0.001. The lb baseline cannot be evaluated in the expression setup
because it does not manipulate goal sets. Because it cannot stack blocks, lb only
succeeds in 3.01 ± 0.43 random instructions in a row, against 14.9 for decstr
(sequence setup). We then evaluate lb’s diversity on the set of instructions it
succeeds in. When asked to repeat 50 times the same instruction, it achieves at
least 3.0 different configurations, 4.2 on average and up to 5.2 depending on the
instruction against 7.8, 17.1, 23 on the same set of instructions for decstr. We
did not observe strategy-switching behaviors in lb, because it either always succeeds
(close/far instructions) or fails (stacks).

Conclusion. The introduction of an intermediate semantic representation helps
decstr decouple skill learning from language grounding which, in turns, facilitates
instruction-following when compared to the end-to-end language-conditioned learn-
ing of lb. This leads to improved scores in the transition and sequence setups. The
direct language-conditioning of lb prevents the generalization to logical combina-
tion and leads to a reduced diversity in the set of mastered instructions. Decoupling
thus brings significant benefits to lgb architectures.

Do we need a semantic intermediate representation?

This section investigates the need for the intermediate representation to be semantic.
To this end, we introduce the lgb-c baseline that leverages continuous goal repre-
sentations in place of semantic ones. We compare them on the two first phases.

87

The LGB-C baseline. The lgb-c baseline uses continuous goals expressing tar-
get block coordinates in place of semantic goals. The skill learning phase is thus
equivalent to traditional goal-conditioned RL setups in block manipulation tasks
[Andrychowicz et al., 2017, Colas et al., 2019, Li et al., 2019, Lanier et al., 2019].
Starting from the decstr algorithm, lgb-c adds a translation module that samples
a set of target block coordinates matching the targeted semantic configuration which
is then used as the goal input to the policy. In addition, we integrate defining fea-
tures of the state-of-the-art approach from Lanier et al. [2019]: non-binary rewards
(+1 for each well placed block) and multi-criteria her, see details in Appendix B.

Comparison in skill learning phase g→b: The lgb-c baseline successfully
learns to discover and master all 35 semantic configurations by placing the three
blocks to randomly-sampled target coordinates corresponding to these configura-
tions. It does so faster than decstr: 708 · 103 episodes to reach sr= 95%, against
1238 · 103 for decstr, see Appendix Figure B.3. This can be explained by the
denser learning signals it gets from using her on continuous targets instead of dis-
crete ones. In this phase, however, the agent only learns one parameterized skill: to
place blocks at their target position. It cannot build a repertoire of semantic skills
because it cannot discriminate between different block configurations. Looking at
the sum of the distances travelled by the blocks or the completion time, we find
that decstr performs opportunistic goal reaching: it finds simpler configurations
of the blocks which satisfy its semantic goals compared to lgb-c. Blocks move less
(∆dist = 26± 5 cm), and goals are reached faster (∆steps = 13± 4, mean±std across
goals with p-values > 1.3 · 10−5 and 3.2 · 10−19 respectively).

Table 3.3: lgb-c performance in the l→g phase. Mean over 10 seeds. Stdev < 0.003 and
0.008 respectively.

Metrics Test 1 Test 2 Test 3 Test 4 Test 5

Precision 0.66 0.78 0.39 0.0 0.0
Recall 0.05 0.02 0.06 0.0 0.0

Comparison in language grounding phase l→g: We train the lgg to gen-
erate continuous target coordinates conditioned on language inputs with a mean-
squared loss and evaluate it in the same setup as decstr’s lgg, see Table 3.3.
Although it maintains reasonable precision in the first two testing sets, the lgg
achieves low recall – i.e. diversity – on all sets. The lack of semantic representa-
tions of skills might explain the difficulty of training a language-conditioned goal
generator.

Conclusion. The skill learning phase of the lgb-c baseline is competitive with
the one of decstr. However, the poor performance in the language grounding phase

88

prevents this baseline to perform instruction following. For this reason, and because
semantic representations enable agents to perform opportunistic goal reaching and
to acquire repertoires for semantic skills, we believe the semantic representation is
an essential part of the lgb architecture.

3.3.5 Discussion and Conclusion

This section contributes lgb, a new conceptual RL architecture which introduces
an intermediate semantic representation to decouple sensorimotor learning from lan-
guage grounding. To demonstrate its benefits, we present decstr, a learning agent
that discovers and masters all reachable configurations in a manipulation domain
from a set of relational spatial primitives, before undertaking an efficient language
grounding phase. This was made possible by the use of object-centered inductive bi-
ases, a new form of automatic curriculum learning and a novel language-conditioned
goal generation module. Note that our main contribution is in the conceptual ap-
proach, decstr being only an instance to showcase its benefits. We believe that
this approach could benefit from any improvement in gc-rl (for skill learning) or
generative models (for language grounding).

Semantic Representations

Results have shown that using predicate-based representations was sufficient for
decstr to efficiently learn abstract goals in an opportunistic manner. The proposed
semantic configurations showcase promising properties: 1) they reduce the complex-
ity of block manipulation where most effective works rely on a heavy hand-crafted
curriculum [Li et al., 2019, Lanier et al., 2019] and a specific curiosity mechanism
[Li et al., 2019]; 2) they facilitate the grounding of language into skills and 3) they
enable decoupling skill learning from language grounding, as observed in infants
[Piaget, 1977]. The set of semantic predicates is, of course, domain-dependent as it
characterizes the space of behaviors that the agent can explore. However, we believe
it is easier and requires less domain knowledge to define the set of predicates, i.e.
the dimensions of the space of potential goals, than it is to craft a list of goals and
their associated reward functions.

A new approach to Language Grounding

The approach proposed here is the first simultaneously enabling to decouple skill
learning from language grounding and fostering a diversity of possible behaviors for
given instructions. Indeed, while an instruction-following agent trained on goals like
put red close to green would just push the red block towards the green one, our agent
can generate many matching goal configurations. It could build a pyramid, make a
blue-green-red pile or target a dozen other compatible configurations. This enables
it to switch strategy, to find alternative approaches to satisfy the same instruction
when first attempts failed. Our goal generation module can also generalize to new

89

sentences or transpose instructed transformations to unknown initial configurations.
Finally, with the goal generation module, the agent can deal with any logical expres-
sion made of instructions by combining generated goal sets. It would be of interest
to simultaneously perform language grounding and skill learning, which would result
in “overlapping waves” of sensorimotor and linguistic development [Siegler, 1998].

Semantic configurations of variable size

Considering a constant number of blocks and, thus, fixed-size configuration spaces
is a current limit of decstr. Future implementations of lgb may handle inputs
of variable sizes by leveraging Graph Neural Networks as in Li et al. [2019]. Cor-
responding semantic configurations could be represented as a set of vectors, each
encoding information about a predicate and the objects it applies to. These repre-
sentations could be handled by Deep Sets [Zaheer et al., 2017]. This would allow
to target partial sets of predicates that would not need to characterize all relations
between all objects, facilitating scalability.

Conclusion

In this chapter, we have shown that introducing abstract goals based on relational
predicates that are well understood by humans can serve as a pivotal representation
between skill learning and interaction with a user through language. Here, the role
of the social partner was limited to: 1) helping the agent to experience non-trivial
configurations and 2) describing the agent’s behavior in a simplified language. In
the next chapter, we consider a more challenging setup where skills are harder to
be discovered and acquired in the first place. We investigate the influence of the
goal space representation and the architecture of the agents’ internal models on the
transfer and generalization capabilities across the goal space.

90

Chapter Summary

This chapter introduced the concept of predicate-based autotelic agents, a sub-family
of autotelic agents that represent their goals as sets of relational spatial predicates.
We first investigated the nativist approach to developmental psychology which ar-
gues for the presence of innate capacities in human children. These capacities enable
toddlers to understand and reason about their world from a very young age. More
specifically, we focused on works of Jean Mandler, which we called the Mandlerian
view (Section 3.2). Her theories are based on a novel mechanism known as the per-
ceptual meaning analysis (PMA). The PMA mechanism translates raw temporal
information into iconic forms. Mandler argues that the first concepts that are formed
with the PMA mechanism are spatial concepts. We argued that endowing artificial
intelligence with such capabilities could facilitate both skill learning and language
grounding. Then, we proposed a formal definition of semantic configurations, which
are state representations based on binary spatial predicates (Section 3.2). Finally,
we introduced the language-goal-behavior (lgb) architecture which bakes these se-
mantic configurations into autotelic agents. We show that these predicate-based
representations play a pivotal role between language and behavior, and improve
their language grounding and skill learning capabilities (Section 3.3).

91

Chapter 4

Transfer and Generalization in
Autotelic Agents

Among the properties of Teachable Autotelic Agents outlined in Chapter 2, open-
ended learning and few-shot learning are crucial to develop growing repertoires of
skills. Learning agents should be able to efficiently generalize to novel situations and
transfer their learned skills. Without these properties, such agents would always
have to learn from scratch, even though they have already mastered primitive skills
that could potentially be leveraged to acquire more complex ones.

Combining primitive skills and building upon them to solve harder tasks is a key
challenge within artificial intelligence. In the context of autotelic agents, transfer
and adaptibility seem to depend on two key features: the goal space design, and
the policy architecture. On the one hand, the goal representation — whether it is
learned or predefined — should encapsulate an adequate structure that defines a
specific topology in the goal space. We already investigated a family of predicate-
based goal spaces in Chapter 3, which seem to be promising as they assess abstract
relational features between goals.

On the other hand, since the behavior of artificial agents does not only depend
on how they represent their goals, but also on how they take actions, we investigate
Graph Neural Networks (gnns) as technical tools to model policies in autotelic
agents. This choice is also motivated by developmental approaches, as research in
psychology shows that humans perceive their world in a structured fashion [Winston,
1970, Palmer, 1975, Navon, 1977, Markman, 1989, Kemp and Tenenbaum, 2008,
Tenenbaum et al., 2011, Battaglia et al., 2016, 2018, Godfrey-Smith, 2021].

This chapter is organized as follows. In Section 4.1, we start by introducing
gnns as technical tools to endow artificial agents with relational inductive biases.
Besides, we present an overview on the use of gnns in the field of RL. In Section 4.2,
we investigate the impact of both goal space choice and policy architecture design
in the context of autotelic agents in multi-object manipulation domains.

92

4.1 Graph Neural Networks

Recently, deep learning methods have been used to solve a significant amount of
problems in different domains. Ranging from image classification [Redmon et al.,
2016, Ren et al., 2015] and video processing [Zhang et al., 2016] to speech recogni-
tion [Hinton et al., 2012] and neural machine translation [Luong et al., 2015, Wu
et al., 2017], these methods use parameterized neural networks as building blocks.
Consequently, such methods are usually end-to-end, requiring few to no assump-
tions. They feed their networks with raw streams of data which are usually repre-
sented in the Euclidean Space. However, many applications rather represent data
in non-Euclidean domains and use graphs with complex relationships and inter-
dependencies. Standard usage of deep learning techniques usually struggle with this
type of unstructured representations.

Interestingly, research has been interested in leveraging graph-based information
using neural networks. Namely, Graph Neural Networks (gnns) were proposed as
computational frameworks that handle unstructured data using neural networks
that they share between nodes and edges [Wang et al., 2016b, Battaglia et al., 2016,
Santoro et al., 2017, Zaheer et al., 2017, Hamrick et al., 2017, Sanchez-Gonzalez
et al., 2018, Battaglia et al., 2018, Zambaldi et al., 2018, Wang et al., 2018, Bapst
et al., 2019, Li et al., 2019, Colas et al., 2020b, Akakzia et al., 2020b, Akakzia
and Sigaud, 2022]. Although these methods are all based on the same idea, they
use different techniques depending on how they handle computations within their
gnns’ definition. There exist several surveys that propose different taxonomies for
gnns-based methods [Bronstein et al., 2017, Hamilton et al., 2017, Battaglia et al.,
2018, Lee et al., 2018, Wu et al., 2020]. In this section, rather than presenting
an exhaustive survey of gnns, our goal is to define the building blocks including
definitions and computational schemes. Besides, we focus on applications in RL and
present a short overview of standard methods.

4.1.1 Relational Inductive Bias with Graph Neural Net-
works

First, we propose a definition for the central component of gnns: the graph.

Graph. A graph is a mathematical structure used to model pairwise relations
between objects. More formally, we denote a graph by an ordered pair G = (V,E),
where V is the set of vertices or nodes — the objects — and E is the set of edges —
the pairwise relations. We denote a single node by vi ∈ V , and an edge traveling
from node vi to node vj as eij ∈ E. We also define the neighborhood of a node vi to
be the set of nodes to which vi is connected by an edge. Formally, this set is defined
as N (vi) = {vj ∈ V | eij ∈ E}. Finally, we consider some global features which
characterize the whole graph, and we denote them by u.

93

Undirected and Directed Graphs. The definition above suggests that the
edges of a graph G are inherently directed from a source node to a recipient node.
In some special scenarios, a graph can be undirected : that is, eij = eji for each pair
of nodes vi and vj. In this case, the relation between nodes is said to be symmetric.
If the edges are distinguished from their inverted counterparts (eij 6= eji), then the
graph is said to be directed.

Graph Input

The input of a graph corresponds to the parsed input features of all its nodes, all
its edges and some other global features characterizing the whole system. Active
lines of research that are orthogonal to our work are exploring methods that enable
the extraction of such parsed features from raw sensory data [Watters et al., 2017,
Van Steenkiste et al., 2018, Li et al., 2018, Kipf et al., 2018]. To simplify our
study, we suppose the existence of a predefined feature extractor that automatically
generates input values for each node and edge. For simplicity, we respectively denote
the input features of node i, edge i→ j and global features by vi, eij and u.

Graph Output

Depending on the graph structure and the task at hand, the output of the graph
can focus on different graph levels. If the functions used to produce this output are
modeled by neural networks, then we speak about gnns.

Node-level. This level focuses on the nodes of the graph. In this scenario,
input features including node, edge and global features are used to produce a new
embedding for each node. This can be used to perform regression and classification
at the level of nodes and learn about the physical dynamics of each object [Battaglia
et al., 2016, Chang et al., 2016, Wang et al., 2018, Sanchez-Gonzalez et al., 2018].

Edge-level. This level focuses on the edges of the graph. The output of the
computational scheme in this case are the updated features of each node after prop-
agating the information between all the nodes. For instance, it can be used to make
decisions about interactions among the different objects [Kipf et al., 2018, Hamrick
et al., 2018].

Graph-level. This level focuses on the entire graph. The output corresponds to
a global embedding computed after propagating the information between all nodes
of the graph. It can be used by embodied agents to produce actions in multi-object
scenarios [Akakzia et al., 2020b, 2021], to answer questions about a visual scene
[Santoro et al., 2017] or to extract the global properties molecules in chemistry
[Gilmer et al., 2017].

94

Graph Computation

So far, we have formally defined graphs and distinguished three types of attention-
levels which define their output. Thereafter, we explain how exactly the computation
of this output is conducted. The computational scheme within gnns involves two
main properties. First, it is based on shared neural networks which are used to
compute the updated features of all the nodes and edges. Second, it uses aggre-
gation functions that pool these features in order to produce the output. These
two properties provide gnns with good combinatorial generalization capabilities. In
fact, not only it enables good transfer between different nodes and edges (based on
the shared networks), but also it leverages permutation invariance (based on the
aggregation scheme).

We denote the shared neural networks between the nodes by NNnodes, the shared
neural networks between edges by NNedges, and the readout neural network that
produces the global output of the gnn by NNreadout. Besides, we focus on graph-
level output. The full computational scheme is based on three steps: the edge updates,
the node updates and the graph readout.

The edge update step. The edge update step consists in using the input
features involving each edge i→ j to compute its updated features, which we note
e′ij. More precisely, we consider the global input feature u, the input features of the
source node vi and the input features of the recipient node vj. We use the shared
network NNedges to compute the updated features of all the edges. Formally, the
updated features e′ij of the edge i→ j are computed as follows:

e′ij = NNedges(vi, vj, eij, u).

The node update step. The node update step aims at computing the updated
features of all the nodes. We note v′i these updated features for node i. To do
so, the input features of the underlying node, the global features as well as the
aggregation of the updated features of the incoming edges to i are considered. The
incoming edges to i correspond to edges whose source nodes are necessarily in the
neighborhood of i, N (i). The shared network NNnodes is used in this computation.
Formally, the updated features v′i of the node i are obtained as follows:

v′i = NNnodes(vi, Aggi∈N (i)(e
′
ij), u).

The graph readout step. The graph readout step computes the global output
of the graph. This quantity is obtained by aggregating all the updated features of
the nodes within the graph. It uses the readout neural network NNreadout. Formally,
the output o of the gnn is computed as follows:

95

o = NNreadout(Aggi∈graph(v
′
i)).

The computational steps we described above can be used in some other order.
For example, one can first perform the node update using the input features of
edges, then perform the edge updates using the updated nodes features. This choice
usually depends on the domain and task at hand. Besides, our descriptions above
are categorized within the family of convolutional gnns [Bruna et al., 2013, Henaff
et al., 2015, Defferrard et al., 2016, Kipf and Welling, 2016a, Levie et al., 2018,
Gilmer et al., 2017, Akakzia and Sigaud, 2022], which generalize the operation of
convolution from grid data to graph data by pooling features of neighbors when
updating each node. There exist other categories of gnns, such as graph auto-
encoders [Cao et al., 2016, Wang et al., 2016a, Kipf and Welling, 2016b, Pan et al.,
2018, Li et al., 2018], spatio-temporal gnns [Yu et al., 2017, Li et al., 2017, Seo et al.,
2018, Guo et al., 2019] and recurrent gnns [Scarselli et al., 2005, Gallicchio and
Micheli, 2010, Li et al., 2015, Dai et al., 2018]. Finally, the aggregation module used
to perform node-wise pooling can be either some predefined permutation-invariant
function such as sum, max or mean, or a more sophisticated self-attention-based
function that learns attention weights for each node [Veličković et al., 2017].

4.1.2 Overview on Graph Neural Networks in RL

Recently, Graph Neural Networks have been widely used in Reinforcement Learn-
ing. In fact, they promote sample efficiency, especially in multi-object manipulation
domains, where object invariance becomes crucial for generalization. In this para-
graph, we introduce an overview over recent works in RL using gnns. We divide
the works in two categories: gnns used for model-based RL and for model-free RL.

Model-based Reinforcement Learning. The idea of using gnns in model-
based reinforcement learning settings mainly amounts to representing the perceived
world of the artificial agents with graphs. Recent papers have been using gnns to
learn prediction models by construction graph representations using the bodies and
joints of the agents [Wang et al., 2016b, Hamrick et al., 2017, Sanchez-Gonzalez
et al., 2018]. This approach is shown to be successful in prediction, system iden-
tification and planning. However, these approaches struggle when the structure of
the components and joints of the agent are different. For example, they work bet-
ter on the Swimmer environment than HalfCheetah, since the latter contains more
joints corresponding to different components (back leg, front leg, head ...). Other
approaches use Interaction Networks [Battaglia et al., 2016], which are a particular
type of gnns (which we further describe in Section 4.2) to implement transition
models of the environment which they later use for imagination-based optimization
[Hamrick et al., 2017] or planning from scratch [Wang et al., 2016b]

96

Model-free Reinforcement Learning. gnns are also used in model-free re-
inforcement learning to model the policy and / or the value function [Wang et al.,
2018, Zambaldi et al., 2018, Bapst et al., 2019, Li et al., 2019, Colas et al., 2020b,
Akakzia et al., 2021]. On the one hand, like the model-based setting, some ap-
proaches use them to represent the agent’s body and joints as a graph where the
different components interact with each other to produce an action [Wang et al.,
2018]. On the other hand, other approaches use it to represent the world in term of
separate entities and attempt to capture the relational features between them [Zam-
baldi et al., 2018, Bapst et al., 2019, Li et al., 2019, Colas et al., 2020b, Akakzia
et al., 2021].

Limitations

In spite of their generalization capacities provided by their permutation invariance,
gnns still show some limitations to solve some classes of problems such as discrim-
inating between certain non-isomorphic graphs [Kondor and Trivedi, 2018]. More-
over, notions like recursion, control flow and conditional iteration are not straight-
forward to represent with graphs, and might require some domain-specific tweaks
(for example, in interpreting abstract syntax trees). In fact, symbolic programs
using probabilistic models are shown to work better on these classes of problems
[Tenenbaum et al., 2011, Goodman et al., 2014, Lake et al., 2015]. But more impor-
tantly, a more pressing question is about the origin of the graph networks that most
of the methods work on. In fact, most approaches that use gnns use graphs with
predefined entities corresponding to structured objects. Removing this assumption,
it is still unclear how to convert sensory data into more structured graph-like repre-
sentations. Some lines of active research are exploring these issues [Watters et al.,
2017, Van Steenkiste et al., 2018, Li et al., 2018, Kipf et al., 2018].

4.2 Autotelic Behaviors with Graph Neural Net-

works

Although humans live in an open-ended world and endlessly face new challenges,
they do not have to learn from scratch each time they face the next one. Rather,
they have access to a handful of previously learned skills, which they rapidly adapt
to new situations. In artificial intelligence, autotelic agents — which are intrinsically
motivated to represent and set their own goals — exhibit promising skill adaptation
capabilities. However, these capabilities are highly constrained by their policy and
goal space representations. In this section, we propose to investigate the impact of
these representations on the learning capabilities of autotelic agents. We study differ-
ent implementations of autotelic agents using four types of Graph Neural Networks
policy representations and two types of goal spaces, either geometric or predicate-
based. We show that combining object-centered architectures that are expressive

97

enough with semantic relational goals enables an efficient transfer between skills and
promotes behavioral diversity. We also release our graph-based implementations to
encourage further research in this direction.

4.2.1 Motivations and Contributions

A central challenge in artificial intelligence (ai) consists in designing artificial agents
capable of solving an unrestricted set of tasks in a continual and open-ended skill
learning process. In principle, these processes should be domain-agnostic. Reinforce-
ment learning (RL) seems to be an adequate paradigm to solve a single sequential
decision problem from a reward signal [Sutton et al., 1999a]. Nevertheless, this signal
is usually predetermined and highly grounded to its designer’s aspirations. Thus,
the extension of the RL framework to an open-ended sequences of unpredictable
tasks raises difficult questions.

Recently, a promising line of research has been interested in the design of autotelic
agents, borrowing older ideas from [Steels, 2004]. These agents are intrinsically
motivated to represent, set and pursue their own goals. Usually, they do not depend
on any external reinforcement signal, since they autonomously reward themselves
over the completion of their own goals. Autotelic agents are known to be open-ended
learners. Through RL, they manage to acquire goal-directed behaviors which can
transfer to domains sharing similar goal spaces. However, this transfer is deeply
bound to their representational capabilities.

From that perspective, a key challenge consists in endowing autotelic agents with
appropriate inductive biases to enhance their representational power. To enable
efficient transfer, such biases should express a set of general and structured features.
On the one hand, the design of the autotelic agents’ goal spaces should

leverage the power of structured semantic representations. Namely, recent works
in AI [Akakzia et al., 2021, Alomari et al., 2017, Kulick et al., 2013, Tellex et al.,
2011] introduced symbolic high-level object-centered representations to explicitly
capture abstract spatial relations such as proximity and aboveness, where the latter
is used to refer to the quality of being directly above. By contrast, other works use
plain spatial target coordinates specific to each of the available objects [Colas et al.,
2019, Li et al., 2019, Lanier et al., 2019].

On the other hand, although neural networks are flexible tools to learn latent
representations, their raw usage is insufficient to capture disentangled representa-
tions from high-dimensional structured input. Recently, Graph Neural Networks
(gnns) have been introduced to implement relational inductive biases in neural
networks. They mainly rely on shared networks to transfer features among the in-
put components. Besides, they follow efficient computation schemes: through their
neighborhood aggregation and graph-level pooling schemes, they easily capture the
existing relationships between nodes.

98

Contributions

We provide a systematic study of the use of gnns in autotelic learning within
a multi-object manipulation domain. More specifically, we investigate 4 variants of
gnns: full graph networks, interaction networks, relation networks and deep sets.
Furthermore, we consider two different types of goal spaces: 1) semantic goals based
on binary predicates describing spatial relations between physical objects; 2) con-
tinuous goals corresponding to specific target positions for each object. Finally, we
assess the transfer capabilities of the best performing gnn-based agents by introduc-
ing three sets of held-out semantic goals defining three different scenarios: 1) transfer
to combinations of configurations (such as a stack and a pyramid); 2) transfer from
goals based on pair-wise relations to goals based on triple-wise relations (pyramids);
3) transfer to higher order stacking of objects.

Our results show that

• Semantic goal spaces induce a higher level of abstraction than continuous goal
spaces, enabling lighter gnn-based architecture to perform on par with the
ones that use the whole computational scheme.

• Performing the edge update step is sufficient for good transfer to combinations
of previously seen goals.

• Node updates promote the transfer from goals based on pair-wise relations
to goals based on triple-wise relations, as information flows not only between
pairs, but also between all the nodes.

• Relation networks outperform full graph and interaction networks in transfer-
ring to higher order stacks on objects.

These results suggest that coupling semantic goal spaces with sufficiently repre-
sentative graph-based networks helps to learn more complex goals and yields better
transfer capabilities.

4.2.2 Related Work

This investigation relies on several previous works from different areas of research
within ai. Namely, we consider recent findings in automatic curriculum learning, se-
mantic goal representations, graph neural networks and graph-based autotelic learn-
ing, and combinations of several of these aspects.

Automatic Curriculum Learning

Adaptability is a key characteristic enabling humans to display an exceptional
capacity to learn [Elman, 1993] and works in ai attempted to leverage similar auto-
matic curriculum learning (acl) schemes in artificial agents [Portelas et al., 2020].

99

Most of these approaches leverage forms of intrinsic motivations to power their ex-
ploration and learning progress (lp) [Bellemare et al., 2016, Achiam and Sastry,
2017, Nair et al., 2018, Burda et al., 2018, Pathak et al., 2019, Colas et al., 2019,
Pong et al., 2019]. In this paper, our agents borrow the lp-based curriculum learn-
ing algorithm introduced in Colas et al. [2019] when targeting continuous goals, but
we show this in not necessary when targeting semantic goals.

Semantic Goal Representations

Studies in developmental psychology suggest that notions such as proximity, an-
imacy and containment are innately grounded in the perceptual world of the infant
[Mandler, 2012]. Inspired by this line of thought, recent works in ai introduced
symbolic high-level representations to explicitly capture abstract spatial relations
[Tellex et al., 2011, Kulick et al., 2013, Alomari et al., 2017, Akakzia et al., 2021].
We borrow the semantic goal representations used in Akakzia et al. [2021] and based
on the predicates close and above. Such semantic representations are more abstract
than the classic goal-as-state representations, as they account for the underlying
relations between objects independently of their perceived states, such as their ge-
ometric positions.

Graph Neural Networks

gnns are powerful tools to implement strong inductive biases that focus on struc-
tured representations [Battaglia et al., 2018]. At the price of more computations,
they efficiently foster combinatorial generalization and improve sample efficiency
over standard architectures in different machine learning domains [Gilmer et al.,
2017, Scarselli et al., 2005, Zaheer et al., 2017, Li et al., 2019]. gnns parse the stream
of input features into several objects, called nodes. They also capture the relational
features between pairs of these objects which they store in the corresponding edges.
They usually involve three computational schemes: 1) Edge updates using the ini-
tial features of the edge and both features of the nodes involved within that edge; 2)
Node updates using the initial features of the node and the aggregated features of
the edges that enter that nodes; 3) Graph output using an aggregation of either all
the nodes or the edges features. The first two steps involve shared networks, which
enable transfer between the different nodes and edges. Depending on the order and
the nature of the computational steps, there exist many variants of gnns. In this
paper, we only consider 4 of these variants: full graph networks [Battaglia et al.,
2018], interaction networks [Battaglia et al., 2016], relation networks [Santoro et al.,
2017] and deep sets [Zaheer et al., 2017]. In general, these variants are shown to
outperform flat architectures when combined with object-centered representations.
Details about the implementations of these variants are provided in Section 4.2.6.

100

Graph-based Autotelic RL

gnns have been used to solve RL problems [Zambaldi et al., 2018, Li et al., 2019,
Colas et al., 2020b, Akakzia et al., 2021]. By contrast to Li et al. [2019], Colas et al.
[2020b], Akakzia et al. [2021] — which explicitly associate a node to each object in
an object manipulation domain — the approach in Zambaldi et al. [2018] attempts
to solve the StarCraft II mini-games [Vinyals et al., 2017] without object-centered
inductive bias. In the latter, the nodes do not correspond to specific objects, but
rather to randomly scattered boxes of pixels. In this paper, we rather join the former
group.

Structured Policies and Representations

Close to our work, [Bapst et al., 2019] study the combination of structured
representations and graph-based policies and show that it outperforms setups that
use less induced structure. On the one hand, like us, they consider both continuous
and semantic settings. In the former, while they add a node for each target goal,
we encode continuous goal features within the edges of our graphs. In the latter,
while they use an additional conversion layer to feed the policy with the converted
geometric features, we directly use binary semantic predicates as inputs to both
our critics and actors. On the other hand, by contrast to their graph computation
scheme which involves an encode-process-decode architecture [Battaglia et al., 2016],
our graphs are simpler as they do not use any form of recurrence. In fact, through
only one step of computation involving one edge update and one node update, inputs
are converted into either actions (for the actor) or q-values (for the critic). Finally,
in this paper, we consider many types of gnns which use different computation
schemes and we aim at assessing their transfer capabilities to previously held-out
goals.

4.2.3 Methods

In this section, we state the problem we address in this paper, then we introduce
the object manipulation environment and the two goal spaces that we consider
(Section 4.2.5). Finally, we present the graph-based implementations of our autotelic
agents (Section 4.2.6)

4.2.4 Problem statement

We address hard exploration problems where an agent is expected to learn a large
diversity of complex behaviors. We cast the problem into the framework of goal-
conditioned reinforcement learning [Colas et al., 2020c] and particularly consider
autotelic agents which can represent, set and pursue their own goals. These agents
learn from a sparse reward signal, i.e. they are only rewarded for reaching the
goal they have set. More formally, these sparse reward autotelic agents are facing

101

a rewardless Markov Decision Process mdp = {S,A, T} where states s ∈ S and
actions a ∈ A are continuous valued and the transition function T : S × A→ Π(S)
defines the probability of reaching any state after performing an action from a state.
Agents themselves are implemented as a goal-conditioned policy π(a|s, g) and are
rewarded with a function r(s, g) which determines whether state s satisfies goal g.
The key feature of autotelic agents is that they choose on which goal g to work at
any moment. In this paper, goals are either semantic, i.e. they are represented as
a set of binary predicates describing the features of the scene that matter for the
agent’s tasks, or continuous, i.e they directly correspond to a subset of the features
perceived by the agent.

4.2.5 Environment and goal spaces

The Fetch Manipulate Environment

All agents studied in this paper evolve in the Fetch Manipulate domain from
Akakzia et al. [2021], which is a variant of the standard Fetch domain [Plappert
et al., 2018]. We extend it to a 5-object setup: the agent is a 4-DoF robotic arm
facing 5 colored objects on a table. It perceives features of its body and of the
surrounding objects. These features include geometric positions, orientations and
velocities.

Semantic versus continuous Goals

From the perceived features, agents using semantic goals build high-level binary
representations that assert the presence (1) or absence (0) of the binary spatial
relations above and close between objects. As the latter is symmetric (close(A,
B) = close(B, A)), we only consider 10 combinations of objects for this predicate.
However, we consider all the 20 ordered pairs of objects for the above predicate.
This yields semantic goal vectors of 30 dimensions. The resulting configuration
space contains 230 elements, among which ∼ 75.000 are physically reachable. These
semantic representations are inspired by the work of Mandler [2012] on a minimal
set of spatial primitives children seem to be born with, or to develop early in life.
Initially empty, the set of discovered semantic goals gets gradually filled each time
an agent encounters new configurations.

By contrast with semantic goals, continuous goals directly use the perceived
features, i.e. goals correspond to precise target positions for each available object.
To succeed, agents have to place every object in its corresponding target position, see
Figure 4.1 for an illustration. These goal spaces are used in many works attempting
to solve multi-object manipulation problems [Colas et al., 2019, Li et al., 2019,
Lanier et al., 2019].

102

Figure 4.1: Illustration of objects, represented by colored blocks, and targets, represented
by colored spheres.

Autotelic learning

All studied agents autonomously select and attempt to master goals from the set
of discovered goals. Agents using semantic goals simply reward themselves for each
object for which all the predicates involving that object are verified. An episode
ends successfully if all predicates about all objects are verified before a time limit.
At the beginning of an episode, the blocks are procedurally placed on the table so
that they are never initially stacked.

By contrast, the autotelic learning process of agents using continuous goals is
more involved. First, we assume that these agents are initially aware that they
can construct stacks using the available objects, and that the maximum number
of objects stacked corresponds to the number of available objects. Second, at the
beginning of each episode, these agents autonomously select how many objects they
want to stack (from 0 up to 5 in this paper). Accordingly, target positions are
generated for each object. These agents reward themselves for each object placed
correctly within a range of its corresponding target position. An episode ends suc-
cessfully if all objects are placed correctly before a time limit. To further accelerate
the learning process, we consider biased initializations as part of a way to adapt the
difficulty of the task to the learner’s skills: at the beginning of each episode, and
with a probability of 0.2, blocks are arranged into a stack of up to 5 objects. We call
this non-trivial scene reset. To stabilize the learning process, we use an automatic
lp-based curriculum [Colas et al., 2019]: based on their learning progress estima-
tions, agents can choose to target goals with no stacks, a stack of 2, 3, 4 or 5 objects
where all target positions that are not involved in stacks are automatically generated
directly on the table. As shown in Appendix C, calling upon this additional acl
process is necessary for learning to work when using continuous goals.

103

4.2.6 Graph-based autotelic learning

In this section, we describe the implementation of the intrinsically motivated goal-
conditioned RL module using gnns. This module is powered by the Soft-Actor Critic
algorithm (sac) [Haarnoja et al., 2018] where both the critic and the policy networks
are gnns. We use the Multi-criteria Hindsight Experience Replay algorithm (mc-
her) to facilitate transfer between goals [Lanier et al., 2019]. mc-her extends the
Hindsight Experience Replay (her) [Andrychowicz et al., 2017] strategy to multi-
object scenarios, enabling further transfer between partial features of the goal vector.

Graph structure

(a) Input edge features as target predi-
cates where p1 =close and p2 =above.

(b) Input edge features as target geo-
metric positions.

Figure 4.2: Illustration of a single directed edge for semantic goals (a) and continuous
goals (b).

All our agents use a fully connected graph structure: every object corresponds
to a node, and all nodes are connected. First, each node holds the features of a
particular object in the scene. Second, each edge linking a source and a recipient
node holds partial features of the goal. As illustrated in Figure 4.2, for semantic
goals, these features correspond to the predicates that involve both the source and
the recipient node, while for continuous goals, they correspond to the target position
of the block corresponding to the source node. Finally, the global features correspond
either to the agent’s body state (in the case of the policy) or to a concatenation of
the agent’s body state and the action (in the case of the critic). We respectively
denote the node features, edges features and global features with X, E and U .

Graph computations

Although all our agents rely on the same graph structure, they use different
computation schemes. In this paper, we focus on four particular types of gnns: full
graph networks (gn), interaction networks (in), relation networks (rn) and deep sets
(ds). Figure 4.3 illustrates the different computation steps for each architecture.

Full Graph Network (gn). As its name suggests, this architecture uses the
whole computation scheme within a standard graph network block. See Figure 4.3
for an illustration. First, an edge update step is performed. A shared network
NNmp is used to compute the update features of each edge. It takes as input the

104

Figure 4.3: Illustration of the different computational schemes for (from left to right) gn,
in, rn and ds. E, X and U respectively correspond to the edge features, node features
and global features. Note that gn uses U to update edges features (red arrow), while in
does not and rn only updates edges features, while ds only updates nodes features.

concatenated input features of each edge (goal features), the involved source and
recipient nodes (object features) and the global features. Second, a node update step
is performed for each node using a second shared network NNnode. It takes as input
the concatenated input features of the considered node, the global features and an
aggregation of the updated features of the incoming edges. Third, the graph output
step is performed, where the updated features of the nodes are pooled, concatenated
with the global features and fed to a readout network NNout. The output quantity
corresponds to either the action (in the case of the actor) or the q-value (in the case
of the critic). In this paper, we use self-attention to compute the weighing scores
used in all the aggregation steps [Vaswani et al., 2017, Veličković et al., 2017].

Interaction Network (in). This architecture resembles the one described in
the gn architecture. The only difference is that, during the edge update step, the
global features are not used as inputs to the shared network NNmp.

Relation Network (rn). This architecture entirely bypasses the node update
step. It only performs the edge update step using the shared network NNmp, which
takes as inputs the initial node, edge and global features. The output vector is
aggregated using a self-attention module, then fed to a readout network NNout.

Deep Sets (ds). This architecture entirely bypasses the edge update step. It
only performs node updates using the shared network NNnode. The latter takes as
input the node, edge and global features, outputs a vector is later fed to a self-
attention module to compute attention scores. Finally, the aggregated vector is fed
to a readout network NNout.

105

Pseudo code

The autotelic learning mechanisms with semantic and continuous goals respec-
tively are presented in Algorithms 2 and 3. Algorithms 4 and 5 further describe how
goals are sampled and updated in Algorithm 2.

Algorithm 2 Learning Semantic Goals

1: Require Env E, number of trajecto-
ries per step n, replay function Rmcher

2: Initialize policy Π, Uniform goal sam-
pler Gsunif , buffer B.

3: Ldisc = []
4: loop
5: Lgoals ← Sample goals(Ldisc,
n)

6: Ltraj ← E.rollout(Π, g)
7: Ldisc ← Update goals(Ltraj)
8: B.update(Ltraj)
9: Dtrain ← B.sample(Rmcher)

10: Π.update(Dtrain)

11:

12: return Π

Algorithm 3 Learning Continuous
Goals

1: Require Env E, Goal classes Cg,
number of trajectories per step n, re-
play function Rmcher

2: Initialize policy Π, LP-based goal
sampler GsLP , buffer B.

3: loop
4: Lcl ← GsLP .sample classes(Cg, n)
5: Lgoals ← generate positions(Lcl)
6: Ltraj ← E.rollout(g)
7: GsLP .update(Ltraj)
8: B.update(Ltraj)
9: Dtrain ← B.sample(Rmcher)

10: Π.update(Dtrain)

11: return Π

Algorithm 4 Sample goals

1: Require discovered goals list Ldisc,
number of goal samples n,

2: Lsamples = []
3: for i in [1, .., n] do
4: if Ldisc is empty then
5: Lsamples.append(zeros)
6: else
7: g ← Ldisc.sample uniform()

8: return Lsamples

Algorithm 5 Update goals

1: Require Trajectory list Lτ , discov-
ered goals list Ldisc GsLP , buffer B.

2: for τ in Lτ do
3: (s, a, s′, gachieved, gdesired)← τ
4: Last gachieved ← gachieved[−1]
5: if Last gachieved not in Ldiscovered

then
6: Ldisc.append(Last gachieved)

7: return Ldisc

4.2.7 Experiments and Results

We first describe the experimental setup used in this paper. Then, we present the
results obtained when training autotelic agents with semantic and continuous goals.
Finally, we assess the transfer capabilities on the different architectures with three
different scenarios. Additional studies and ablations are provided in Appendix C.

106

Experimental setup

We train 4 graph-based autotelic agents in the Fetch Manipulate domain with 5
objects using the graph architectures described in Section 4.2.6. We consider both
the semantic and continuous goal spaces introduced in Section 4.2.5.

Evaluation Classes. To evaluate the agents, we define several evaluation classes
for both semantic and continuous goals. First, for semantic goals, we consider
classes of configurations where exactly i pairs of blocks are close (Ci), configurations
containing stacks of size i (Si), configurations containing pyramids of size 3 (P3)
and combinations of these. These classes are disjoint and their union does not cover
the entire semantic configuration space, but they are representative enough and
they enable fair comparisons between the agents. Second, for continuous goals, we
consider classes of configurations where there are no stacks and where there is a
stack of size i (S̃i, where the symbol ∼ is for continuous).

Evaluation Metrics. Evaluations are performed each 50 cycles. During one
cycle, the agents perform 2 rollouts of 200 timesteps with 2 goals sampled au-
tonomously. At test time, the per-class performance of the agent is computed on 24
goals of each evaluation class (264 semantic goals and 120 continuous goals). The
measure of the agent’s global success rate (SR) is the average of all the per-class
successes. Testing is conducted offline and with deterministic policies.

Baseline. For both semantic and continuous goals, we consider a flat baseline,
where all the perceived features are concatenated and directly fed to the neural
networks. We call Semantic-Flat (s-flat) and Continuous-Flat (c-flat) the flat
baseline using semantic and continuous goals respectively.

Networks Capacity. Independently of their computational scheme, we make
sure all the agents have the same network capacity in terms of number of parameters
to be optimized. As full graph networks use the highest number of parameters in
principle, we provide the other agents with a sufficient budget to match them. Con-
cretely, we add an additional node updater and edge updater for respectively deep
sets and relation networks architecture, and we make the flat networks sufficiently
deep.

Transfer Scenarios. To assert the transfer capabilities of the different agents,
we investigate how gnn-based agents with semantic goal spaces perform to reach
goal configurations used as test goals though they have never trained on them before.
To this end, we consider three different scenarios:

1. Transfer to combinations of constructions, where agents are prevented
from training on any goal including combinations of known constructions. The
corresponding set of test goals includes the classes S2&S2, P3&S2 and S2&S3.

107

2. Transfer to pyramids, where agents are prevented from training on any goal
including pyramids. The underlying set of test goals includes the classes P3,
and P3&S2.

3. Transfer to higher stacks, where agents are prevented from training on
goals including stacks of size 3 and more. The set of corresponding test goals
includes S3. See Table 4.1 for details.

Table 4.1: Testing classes and their sizes.

Scenario-Class Size
1 - S2 & S2 60
1 - S2 & S3 120
(1, 2) - P3 & S2 60
2 - P3 30
3 - S3 60

In practice, we make sure none of the testing goals are sampled during training
by simply preventing any episode where a test goal was encountered (at any time
step) from getting stored in the replay buffer. This also prevents her ’s future
strategy from selecting these goals during replay. The set of training goals for each
scenario may include all the other possibly encountered configurations.

Global performance metrics

In this section, we study the global performance of the different graph-based
autotelic agents. Figure 4.4 presents the average SR across evaluation classes for
both semantic goals (Figure 4.4a) and continuous goals (Figure 4.4b).

0 50 100 150 200 250 300 350 400
Episodes (x103)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

S-GN S-IN S-RN S-DS S-Flat

(a)

0 50 100 150 200 250 300 350 400
Episodes (x103)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

C-GN C-IN C-RN C-DS C-Flat

(b)

Figure 4.4: Global SR across training episodes with (a) Semantic (S) goals and (b) Con-
tinuous (C) goals for the considered agents. Mean ± standard deviations are computed
over 5 seeds. Stars highlight statistical differences w.r.t s-gn agents (Welch’s t-test with
null hypothesis H0: no difference in the means, α = 0.05).

108

Semantic Goals. The s-flat agents are not able to learn to reach any semantic
configuration as their global SR does not increase during training (Figure 4.4a,
purple curve). This is not surprising since simple mlp networks that take as input
high dimensional concatenations of multiple objects struggle in disentangling the
learned representations. By contrast, all the gnn-based agents are able to increase
their global SR, this is consistent with previous results showing that object-centered
graph-based architectures are better suited for multi-object manipulation domains
[Li et al., 2019]. On the one hand, the global SR of s-ds agents gets stuck at around
25% (Figure 4.4a, orange curve). This result highlights the importance of the edge
update step, as it allows one to focus on pairwise relations embedded within the
semantic relational predicates used as input features to the edges. On the other
hand, s-gn, s-in and s-rn agents have similar performance across training episodes
(Figure 4.4a, blue, red and green curves), and show statistical differences only rarely
(see stars on Figure 4.4a). This result suggests that, when dealing with semantic
relational goals, the edge update step is crucial. In fact, s-rn agents — which have
a lighter computational scheme but exclusively perform pairwise edge updates —
manage to perfectly catch with the more heavy architecture s-gn and s-in.

Continuous Goals. Similar to semantic goals, the c-flat agents fail to learn
any interesting behavior. However, interestingly, only gnn-based architectures that
use the full computational scheme — that is, c-gn and c-in — have the best perfor-
mance. On the one hand, by contrast to the semantic goals setup, c-rn agents get
stuck at around 30% of the maximum global SR (Figure 4.4b, green curve). This
suggests that the edge update step is not sufficient to capture interesting features
when geometric target goals are encoded within the input edge features. On the
other hand, c-ds agents perform better than their c-rn counterparts, with an aver-
age global SR of 50% (Figure 4.4b, orange curve). This is probably due to the fact
that the node update step — which is conducted by c-ds but not c-rn — enables
information about every target geometric goal to flow to every node in the graph,
which helps agents increase their performance. However, c-ds agents show higher
variance compared to all the other gnn-based agents. This instability is probably
explained by the role of the edge update step — which is bypassed by c-ds — in
disentangling useful pairwise features that help stabilize the learning. This is made
even more likely as agents that perform the whole computational scheme provide
the best results and the least instabilities (Figure 4.4b, blue and red curves).

Per Class Performance Metrics

The global performance metrics show that the average SR across evaluation
classes gets stuck at around 75% for both semantic and continuous agents. To
investigate this, we zoom on the per class performance metrics.

Semantic Goals. Figure 4.5 shows the per-class performance of s-gn, s-in, s-
rn and s-ds. First, and as the global performance metrics suggest, s-gn, s-in and

109

0 100 200 3000.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

S-GN

0 100 200 3000.00

0.25

0.50

0.75

1.00
S-IN

0 100 200 300
Episodes (x103)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

S-RN

0 100 200 300
Episodes (x103)

0.00

0.25

0.50

0.75

1.00
S-DS

C1
C2

C3
S2

S3
S2 & S2

S2 & S3
P3

P3 & S2
S4

S5
Global

Figure 4.5: Local SR for each class across training episodes with continuous goals. Mean
± standard deviations are computed over 5 seeds.

s-rn show very similar local performance. They are all able to master all the classes
(with at least 65% of SR) except for S4 and S5. This failure occurs because the
learned policies are sub-optimal. In fact, when rewarding themselves for each object
placed correctly, the critics would most likely be greedy : incremental rewards should
come fast, even if this means not constructing stacks in the trivial order (from base
upwards). As a result, agents would start by constructing the upper part of a stack,
then placing it on the base object. This is not a problem for S3 since robotic arms
can pick and place a stack of two blocks. However, in S4, it is impossible to pick and
place a stack of three blocks. See Figure 4.6 for an illustrative example. Second, the
s-ds agents struggle with classes that involve many constraints to be satisfied. This
is because they lack enough representational power to disentangle pairwise relations
between objects.

Continuous Goals. Figure 4.7 shows the per-class performance of c-gn, c-
in and c-ds. All agents first master the easy classes, before moving up to the
more difficult ones. This results from these agents leveraging automatic curriculum
learning, using their lp estimation as a proxy to choose goals that are at an affordable
level of complexity. However, as opposed to semantic goals, there is less interference
between classes and transfer is poorer (per-class SR increases sequentially). On the

one hand, c-ds agents show a lot of instabilities beyond the S̃2 class. This further
supports the idea that the node update step alone in deep sets does not provide
enough representational power. On the other hand, both c-gn and c-in manage
to reach goals in all the evaluation classes, from no stacks at all to stacks of 5

110

Figure 4.6: Example of sub-optimal behavior with semantic goals when targeting a goal
in S3 (up) and in S4 (down). The agent tries to pick and place a stack of three objects
and fails (down).

0 100 200 300
Episodes (x103)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

Continuous-GN

0 100 200 300
Episodes (x103)

0.00

0.25

0.50

0.75

1.00
Continuous-IN

0 100 200 300
Episodes (x103)

0.00

0.25

0.50

0.75

1.00
Continuous-DS

No Stacks ̃S2
̃S3

̃S4
̃S5 Global

Figure 4.7: Local SR for each class across training episodes with continuous goals. Mean
± standard deviations are computed over 5 seeds.

objects. However, they are both unable to maximize their per-class performance.
This suggests that learning policies that can achieve all evaluation classes at the
same time with continuous goals is difficult and requires more training budget.

Curriculum Ablation

To study the relative importance of the lp-based curriculum learning mechanism
used with continuous goals, we introduce ablations of c-gn and c-in which uniformly
sample a class of goals without any particular prioritization. We only consider
architectures based on gn and in in this ablation study since they show the best
results with reference to the global performance metrics. Figure 4.8 presents the
global performance metrics for c-gn, c-in and their ablation counterparts. Autotelic
agents using continuous goals but no curriculum clearly show an increased variance
in their global performance. Figure 4.8 zooms on the local performance on each
class for the considered agents. Compared to c-gn and c-in, the shaded areas in
the ablations are larger, suggesting that the learning process of the latter agents is
not stable. Precisely, this is true in stacks of size 3 or higher. In fact, ablations face
catastrophic forgetting as they engage with harder goals. The curriculum learning

111

0 50 100 150 200 250 300 350 400
Episodes (x103)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

C-GN C-IN C-GN w/o Curr C-IN w/o Curr

(a) Global SR. Stars highlight statistical
differences w.r.t c-gn agents.

0 100 200 300 4000.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

C-GN

0 100 200 300 4000.00

0.25

0.50

0.75

1.00
C-IN

0 100 200 300 400
Episodes (x103)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

C-GN w/o Curr

0 100 200 300 400
Episodes (x103)

0.00

0.25

0.50

0.75

1.00
C-IN w/o Curr

No Stacks ̃S2
̃S3

̃S4
̃S5 Global

(b) Per class SR.

Figure 4.8: Performance metrics for c-gn, c-in and their curriculum ablations. Mean ±
standard deviations are computed over 5 seeds.

mechanism helps stabilize the learning process by focusing on goals of moderate
level of complexity, including the ones that the agents are likely to forget during
training. Note that this issue is specific to continuous goals, which shows that they
are not well suited to transfer between different goals.

Non-Trivial Scene Resets Ablation

0 50 100 150 200 250 300 350 400
Episodes (x103)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

C-GN C-IN C-GN w/o ZPD C-IN w/o ZPD

(a) Global SR. Stars highlight statistical
differences w.r.t c-gn agents.

0 100 200 300 4000.00
0.25
0.50
0.75
1.00

Su
cc

es
s R

at
e C-GN

0 100 200 300 4000.00
0.25
0.50
0.75
1.00

C-IN

0 100 200 300 400
Episodes (x103)

0.00
0.25
0.50
0.75
1.00

Su
cc

es
s R

at
e C-GN w/o ZPD

0 100 200 300 400
Episodes (x103)

0.00
0.25
0.50
0.75
1.00

C-IN w/o ZPD

No Stacks ̃S2
̃S3

̃S4
̃S5 Global

(b) Per class SR.

Figure 4.9: Performance metrics for c-gn, c-in and their ablations where non-trivial scene
reset is removed. Mean ± standard deviations are computed over 5 seeds.

To assess the importance of the non-trivial scene reset scheme for continuous
goals, we consider the c-gn and c-in agents — the best performing gnn-based ar-
chitectures so far — and remove the biased initialization scheme: blocks are placed
without any initial stacks in the resulting ablations. Figure 4.9 shows performance
metrics for these agents. The global SR of both ablations increases slower than
that of c-gn and c-in (Figure 4.9b). Besides, it gets stuck at around 50% of the
maximal performance while their corresponding full versions manage to reach 75%.
Zooming on the per-class performance metrics shows the considerable decrease in
the capability to reach complex goals when removing the non-trivial reset scheme

112

(Figure 4.9b): the ablations struggle to transfer between easy goals (S̃2 and S̃3) and

harder ones (S̃4 and S̃5).

Transfer Capabilities

Transfer capabilities

To investigate the transfer capabilities of the gnn-based agents, we consider the best
performing architectures with semantic goal spaces: s-gn, s-in and s-rn (See the
global performance metrics). Tables 4.2 and 4.3 respectively show the global and
the per class performance metrics for the considered agents. The values presented
in these tables correspond to the evaluation of the training policies on the held-out
goals once the training is stabilized.

Table 4.2: Global SR metrics, averaged over
5 seeds.

Agents Scenario 1 Scenario 2 Scenario 3

s-gn 0.93± 0.04 0.78± 0.09 0.28± 0.14
s-in 0.89± 0.01 0.82± 0.09 0.47± 0.13
s-rn 0.89± 0.02 0.68± 0.12 0.64± 0.10

Table 4.3: Per class SR metrics, averaged
over 5 seeds.

Scenario-Class s-gn s-in s-rn

1 - S2 & S2 0.97± 0.02 0.92± 0.04 0.96± 0.03
1 - S2 & S3 0.89± 0.04 0.87± 0.01 0.82± 0.07
1 - P3 & S2 0.93± 0.05 0.88± 0.04 0.90± 0.05

2 - P3 0.80± 0.09 0.85± 0.10 0.67± 0.14
2 - P3 & S2 0.75± 0.12 0.80± 0.10 0.68± 0.11

3 - S3 0.28± 0.14 0.47± 0.13 0.64± 0.10

Transfer Scenario 1. All the considered agents are good at transferring to combi-
nations of constructions that they have encountered separately during training (Col-
umn 2 of Table 4.3). This probably results from both the representational power of
gnns and the self-attention aggregation schemes during both edge and node updates.
On the one hand, all these graph-based architectures are permutation-invariant. On
the other hand, for a goal within one of the combination classes, each construc-
tion is independent from the other. Consequently, agents would attend to one of
them, accomplish it, and then focus on the other, as they learned to construct them
separately during training.

Transfer Scenario 2. During training within this scenario, agents never en-
counter nor train on configurations involving pyramids. In other words, an object is
never placed simultaneously on top of two other objects that are close to each other.
First, we compare s-rn to both s-gn and s-in. s-rn has lower overall transfer capa-
bilities in this scenario compared to s-gn and s-rn (Column 1 of Table 4.2). They
struggle in transferring to held-out goals from both P3 and P3&S2 classes (Table 4.3).
On the one hand, s-rn agents bypass the node update step which aggregates, for a
particular node, the flowing information from the other nodes. Consequently, they
tend to focus more on pairwise relations and less on the global relations of a par-
ticular configuration. On the other hand, a pyramid involves three objects. In fact,

113

to be able to put an object i on top of j and k, the latter two need to be close to
each other. As a result, exclusive edge updates without allowing information to flow
between the different nodes is insufficient. Second, we compare s-gn to s-in. As
the former concatenates the global features to the input features of the edge update,
the size of its corresponding network would be greater. This would probably lead
to overfitting on the training data and transferring less to new situations.

Transfer Scenario 3. During training, agents never encountered a configuration
involving a stack of 3 objects. Column 3 of Table 4.2 shows that s-rn outperforms
both s-gn and s-in in this scenario. This can be explained in a threefold fashion.
First, we defined the above predicate as being directly above. Hence, a goal from the
class S3 would involve only two above predicates of the form above(i, j) and above(j,
k) — which are fed to two different edges — to be true. Second, s-rn agents focus
on pairwise relations that exist within edges. In other words, if they have learned
to stack two blocks, they are capable of sequentially performing two independent
stacks of two. Third, a stack of three objects can be constructed independently from
the order of the stacks (i.e. first B above C then A above B or first A above B then
A/B on C). By contrast s-gn and s-in tend to transfer less as they overfit more on
the training data due to their heavier computational scheme.

4.2.8 Conclusion

In this section, we studied several gnn-based goal-conditioned architectures for both
the policy and critic in multi-object manipulation domains. More specifically, we
considered four different computational schemes: full graph networks, interaction
networks, relation networks and deep sets. We evaluated our agents using two
different goal space structures: 1) continuous geometric goal spaces corresponding
to per-object target positions; 2) semantic relational goal spaces based on the binary
predicates close and above. Finally, we studied the transfer capabilities in three
different scenarios by assessing the performance of agents on different sets of held-
out semantic goals.

Semantic and Continuous Goal Spaces

Autotelic agents benefit from the abstract structured representation within semantic
goal spaces. In fact, our results show that, when dealing with continuous goals, full
graph and interaction networks, which adapt the full graph computational scheme,
are the best performing agents. For this particular type of goal space, information
about all the objects needs to flow to each node in order to learn more complex
goals. By contrast, with semantic goal spaces, performing the edge update step is
sufficient to capture useful pair-wise relations between objects. In fact, relation net-
works perform on par with full graph and interaction networks. Finally, additional

114

ingredients such as non-trivial scene resets and lp-based goal selection were neces-
sary for agents to learn complex continuous goals. However, their counterparts that
use semantic goals are more flexible as they do not need these additional ingredients.

Transfer Capabilities with Semantic Goals

Our transfer study suggests three main results. First, full graph, interaction and
relation networks are all able to transfer to combinations of previously seen goals.
Second, relation networks struggle in adapting to new goals that require reasoning
about triplets of objects, such as building pyramids. These agents bypass the node
update step, which seems to be crucial to pool information about all the nodes in
the graph. Finally, relation networks outperform the other gnn-based architecture
in transferring to goals of higher stacks. In fact, their light computational scheme
enables them to overfit less on the training data. Consequently, they are more
flexible in sequentially combining pair-wise skills.

This study helps understand the impact of key design choices towards open-ended
autotelic agents capable of efficient transfer between abstract goals. However, the
agents studied here only leverage their physical interactions with the environment.
This does not account for the extraordinary human capacities to learn from social
interactions [Vygotsky, 1978a, Bruner, 1973, Tomasello, 2005].

We believe adding social learning mechanisms as suggested in [Sigaud et al.,
2021] is a promising line of research towards more capable open-ended agents. This
is the object of the second part of the manuscript.

115

Chapter Summary

This chapter investigated the transfer and generalization capabilities in autotelic
agents. This is important because the ability to learn in open-ended environments
is a key property in teachable autotelic agents, as outlined in Chapter 2. Learning
in open-endedness requires continuously acquiring new skills, which implies that
the learning agents are flexible and their policy transfers well to new situations. We
argued that such properties depend on the definition of the goal space representation
and on the design of the agents’ internal models, including their policy. We first
introduced Graph Neural Networks (gnns), a technical tool that bakes graph-based
data into neural networks (Section 4.1). More specifically, we defined the founding
components and computational schemes in gnns, and presented an overview on their
usage in the reinforcement learning (RL) setups. Then, we tackled the autotelic
acquisition of skills using gnns (Section 4.2). We compared different combinations
of goal space representations and policy architectures in multi-object manipulation
scenarios. On the one hand, we considered two types of goal spaces: continuous
position-based goals and discrete predicate-based goals. On the other hand, we
investigated four types of gnns: full graph networks, interaction networks, relation
networks and deep sets. We showed that endowing autotelic agents with relational
inductive biases within their goal space (using the predicate-based goals) enables
them to use less computationally expensive architectures. Besides, we showed that
these architectures overfit more on the training goals than the more expensive ones,
allowing the learning agents to transfer their skills to previously unseen goals.

116

Part Summary

The central objective of this part is to investigate the design of autotelic agents
that could easily benefit from external teaching signals. We argued that such agents
should represent their goals in a way that makes social interactions easier, and that
they should use specific architectures that enable them to transfer between their
learned skills and generalize to new ones. First, we started by confronting standard
reinforcement learning (RL) to the open-ended learning challenges (Chapter 1). We
suggested that combining goal-conditioned RL (gc-rl) and intrinsic motivations
should enable agents to grow diverse repertoires of skills. Then, we introduced
teachable autotelic agents, which are goal-based agents that can learn from their
own goals and from external social interventions (Chapter 2). We outlined the
key properties such agents should leverage, and argued that they are missing in
standard RL algorithms. After that, we introduced predicate-based autotelic agents,
a sub-family of autotelic agents that represent their goals as sets of binary spatial
predicates (Chapter 3). We showed that these agents are able to efficiently learn
diverse sets of skills and to ground language into their learned behavior. Finally, we
investigated the transfer and generalization capabilities of artificial agents depending
on their goal space representation and the design of their policies (Chapter 4). We
showed that combining Graph Neural Networks (gnns) with semantic predicate-
based goal spaces allows better learning and transfer.

In the next part, we attempt to incorporate external social interventions within
the training process of predicate-based autotelic agents. In Chapter 5, we present
the autotelic exploration with external signals as hybrid goal exploration processes.
In Chapter 6, we present a novel social interaction protocol where autotelic agents
can efficiently couple their intrinsic motivations with external signals in order to
promote their exploration and grow their repertoires of skills.

117

Part II

Teaching Autotelic Reinforcement
Learning Agents

118

In the first part of the manuscript, we introduced teachable autotelic agents
(taas), a family of goal-based artificial agents that can learn goals in an autonomous
fashion or by leveraging external social signals from an expert social partners. We
showed that predicate-based autotelic agents whose policies are modeled as Graph
Neural Networks (gnns) exhibit promising teachability potential. On the one hand,
such agents benefit from the structure of goal spaces represented as sets of constraints
based on binary spatial relations. This facilitates their language grounding and
increases their behavioral diversity. On the other hand, they use object-centered
representations to model their policies, enabling them to efficiently transfer between
goals and increasing their sample-efficiency.

In the second part of the manuscript, we continue our study of taas and investi-
gate how such agents can benefit from external guiding signals when training. More
specifically, we consider autotelic exploration with social interventions as a goal ex-
ploration process, which we call Hybrid Goal Exploration Process (hgep). We argue
that such agents should be endowed with internalization mechanisms that enables
them to take ownership of externally provided goals and query mechanisms to ef-
ficiently ask for assistance when they are not progressing alone. We also argue
that social interventions should be minimal, limiting the burden on external social
partners. Besides, they should help the learning agents consolidate their previously
learned skills and progress towards their zone of proximal development (zpd). We
organize this part as follows:

• Chapter 5 formalizes hgeps as a family of algorithms for exploring and learn-
ing about multiple goals from external and internal sources. We investigate
the influence of such hybrid frameworks on the learning and exploration capa-
bilities of artificial agents. We show that exclusively relying on internal goals
might lead to poor exploration capabilities, especially in environments where
random exploration fails. Actually, exclusively relying on internal goals lim-
its the distribution of reachable goals to the distribution of discovered goals.
Hence, additional tricks and techniques to enhance exploration should be used
to avoid getting stuck in specific regions of the goal space. By contrast, includ-
ing external sources of goals enables agents to discover new regions of their
goal space, since their goal exploration process relies on goal babbling Rolf
et al. [2010].

• Chapter 6 builds on the idea of hgeps and introduces a novel family of au-
totelic agents that are able to internalize external goals and rehearse them in
the absence of their social partners. Besides, these agents can estimate their
learning progress, and use it to query the social partner for help whenever
they get stuck. Additionally, we introduce Help Me Explore, a social interac-
tion protocol where social partners build models of exploration limits of the
learners. They use such models to first propose goals that are stepping stones
towards novel goals, then continue with new goals that are easily reachable

119

from these stepping stones. This defines a zpd management scheme, where so-
cial partners progressively assist the artificial agents in discovering new regions
of their goal space and growing their repertoire of skills.

120

Chapter 5

Hybrid Goal Exploration
Processes

Autotelic agents aim at growing their repertoire of skills. This implies that they
need not only to discover as many goals as possible, but also to learn to achieve
each of these goals. When these agents evolve in environments where they have
no clue about which goals they can physically reach in the first place, it becomes
challenging to handle the exploration-exploitation dilemma. Actually these agents
are usually trained to optimize a fitness measure with reference to the distribu-
tion of goals they have physically encountered. Yet this distribution shifts as they
discover more and more goals. Consequently, such agents have to make sure they
still perform well on what they have already encountered, but continue to grow
their distribution of discovered goals. This becomes rapidly problematic in hard
exploration environments with bottlenecks and sparse rewarding signals, and agents
usually require additional tricks to overcome these exploration obstacles. Interest-
ingly, Chapter 2 presents works in developmental psychology and education sciences
highlighting the importance of guided-play in the early skill acquisition of infants.
Human caregivers help toddlers overcome their exploration limitation by assisting
them whenever it becomes necessary. Our goal is to introduce a goal exploration
framework for autotelic agents that benefit from external signals while keeping their
intrinsically motivated characteristics. This chapter introduces preliminary studies
in which we introduce Hybrid Goal Exploration Processes (hgeps), a novel family
of algorithms that handle exploration of multiple goals from internal and external
sources. We study the impact of having this type of coupled exploration on the
learning and diversity of goals in different robotics environments.

5.1 Motivation

Goal-conditioned Reinforcement Learning (gc-rl) is a framework where artificial
agents use reinforcement learning (RL) methods to learn a goal-conditioned policy
that leverages multiple skills (see Section 1.3). The main objective of agents evolving

121

within the gc-rl framework is to learn to reach as many goals as possible, thus
growing their repertoires of skills. In doing so, these agents maximize their control
over their environment, as they would be able to conduct specific series of actions
that yield to any goal they have learnt. In particular, we consider scenarios where
the goal space is known beforehand but the subset of reachable goals is unknown. In
such scenarios, works usually consider the goal sampler — the module that generates
physically reachable goals for the agents — to be either external or internal to the
agents.

On the one hand, externally motivated (em) agents are asked to pursue specific
goals. They require an external program that generates, at each episode, a physically
reachable goal for the agents to pursue. This program can simply consist in a hard-
coded function within the environment that generates target features and passes
them as target goals to the agent [Schaul et al., 2015, Andrychowicz et al., 2017,
Plappert et al., 2018, Nair et al., 2018]. Furthermore, the external program can also
be represented as a human instructor that uses language to express sets of constraints
on the state space (e.g. close the drawer) in a more abstract and interpretable way
[Luketina et al., 2019]. These agents are called instruction-following agents, and can
be conditioned or language embedding or a more abstract set of semantic predicates
as described in Section 3.3.

On the other hand, internally motivated (im) agents are endowed with an internal
goal sampler and pursue their own goals. We outlined in Section 1.5 that this family
of agents can further be decomposed into two sub-families: 1) agents that know the
set of reachable goals beforehand but organize their learning autonomously, and 2)
agents that have no clue about the set of reachable goals. The first family of im
agents exclusively aim at maximizing their control over the set of reachable goals
they already know. They organize their learning into efficient curricula, progres-
sively moving towards more complex goals. These methods are broadly known as
Automatic Currciulum Learning methods [Lanier et al., 2019, Li et al., 2019, Colas
et al., 2019, Zhang et al., 2020]. The second family of im agents aim at exploring
their goal space and controlling it. They usually start with an arbitrary distribu-
tion of reachable goals that is close the distribution of initial state representations,
and use noise-based exploration techniques to progressively cover their goal space
[Florensa et al., 2018, Colas et al., 2020b, Akakzia et al., 2021]. However, the simple
use of noise-based exploration can be insufficient, especially in hard environments
where discovering complex goals requires long sequences of actions. To circumvent
this issue, some approaches attempt to start exploring from sparsely visited regions
by resetting the environment or by keeping counts of the number of visits for each
state and returning to the least visited ones [Ecoffet et al., 2019, Pitis et al., 2020].
Other approaches, which use specific structured representations of the goal space,
leverage imagination mechanism to combine different features of their previously
visited goals and form new ones [Nair et al., 2018, Colas et al., 2020b].

Interestingly, research in psychology, philosophy and robotics have highlighted
the stimulating role of socio-cultural environments in human development [Wood

122

et al., 1976, Vygotsky, 1978b, Tomasello, 1992, Lindblom and Ziemke, 2002]. In
Chapter 2, we discussed the design of goal-conditioned agents that follow their on
im but still benefit from external teaching signals. However, in the context of gc-rl,
there is still no clear framework of how such agents would learn.

In this chapter, we introduce Hybrid Goal Exploration Processes (hgeps), a
family of algorithms that couple both competence-based intrinsic and external mo-
tivations within the learning agents. The denotation “hybrid” comes from the cross-
breed of two different goal sources. hgeps agents:

• Generate and pursue their own goals to explore their environment, discover
and grow their repertoire of skills.

• Follow external goals generated by an external program. This goal is reachable
but still not discovered by the agent.

In this chapter, we suppose the selection between following internal and external
goals is arbitrary. Our main objective is to investigate the impact of having two
different sources of goals on the agents learning and exploration capabilities. We
leave the investigation of actively selecting between goal sources to Chapter 6

5.2 Related Work

Research in gc-rl has been investigating the idea of biasing the goal exploration
process beyond the physically reachable set of goals. Mainly, many works stud-
ied goal imagination, learning from expert demonstrations and learning from expert
feedback.

Goal Imagination. The goal space — which we consider to be predefined in our
study — usually incorporates a specific structure that might in principle help extract
topological relationships between goals. For instance, if the goal space corresponds
to target positions in navigation tasks, the physically encountered goals give an
idea on the support of the goal distribution. Thus, training generative models in
this scenario can help produce new goals that are within the goal distribution’s
support but never encountered before [Florensa et al., 2018]. Similarly, approaches
handling image-based goals also train generative models of image states to model
goal distributions and support [Nair et al., 2018, Pong et al., 2019, Nair et al.,
2020]. Other approaches make use of the compositionality of language to combine
sentences and form new ones that they treat as goals [Colas et al., 2020b]. In such
scenarios, imagined goals correspond to sets of constraints on the state space that
were encountered separately before but never at the same time.

123

Learning with Expert Demonstrations. Expert demonstrations provide not
only useful guidance for reaching hard goals, but also might unlock new regions of
the goal space. In fact, decomposing a trajectory into sub-goals help show the way
to the final goal, but these sub-goals might actually be new goals as well. Such an
intuition motivates research in ai, which made use of expert trajectories to further
extract new goals that were not physically encountered beforehand [Paul et al., 2019].
Other approaches trained generative models on expert trajectories to produce new
ones, thus enabling their trained agents to overcome some hard exploration problems
including bottlenecks [Ding et al., 2019].

Learning with Expert Feedback The external signals that gc-rl agents might
receive can come in hindsight. That is, after performing a rollout where they target
a specific goal, agents can receive feedback which can help guide their exploration.
Namely, learning can be guided by hindsight instructions, preferences or external
rewards that encourage agents to visit specific states rather than others [Christiano
et al., 2017, Cideron et al., 2019, Röder et al., 2022].

5.3 Methods

We present our methods in this section. First, we state the problem of learning mul-
tiple goals in the standard scenario and extend it to the case of hgeps (Section 5.3.1).
Then, our new framework that leverages the exploration of goals coming from both
internal and external sources (Section 5.3.2).

5.3.1 Problem Statement

We consider the problem of learning multiple goals within a fixed environment. We
consider the following augmented mdpM = {S,A, T , ρ0,G, pdG, φ}, where S, A, T
and G respectively design the state space, the action space, the environment transi-
tion distribution and the goal space, ρ0 and pdG respectively design the distribution
of initial states and the distribution of desired goals, φ designs a tractable mapping
function that maps a state to a specific goal embedding. Recall that G = ZG × RG,
where ZG denotes the space of goal embeddings and RG the set of goal achievement
functions associated with the goal space G.

We define the problem of learning multiple goals within the mdpM as a Goal-
Conditioned Reinforcement Learning (gc-rl) problem: learn a goal-conditioned
policy π : S × A × G → [0, 1] that maximizes the cumulative reward over the
distribution of desired goals:

π∗ = argmax
π

E g∼pdG , s0∼ρ0
at∼π(. | st,g)
st+1∼T (st,at)

[∑
t

γtRG(φ(st+1) | zg)
]

(5.1)

124

In emgeps, the distribution of desired goals is defined beforehand. It consists
of the goals generated externally from the agent during the training. However, in
imgeps, the distribution of desired goals is not defined beforehand. It corresponds
to the goals that the agent physically discovers. Hence, this distribution changes
over time depending on the agent’s current exploration.

In this study, we suppose that the goals on which goal-based agents can train can
originate either intrinsically from the set of physically discovered goals, or externally
from a predefined set of goals. We denote by q ∈ [0, 1] the probability of a goal
being sampled from external sources. Consequently, the training goal distribution
we consider is the following:

pgoal = (1− q)× pdis + q × pext, (5.2)

where pdis and pext denote the distributions of respectively the physically discov-
ered goals and the externally predefined goals. The problem we aim to solve in this
study is to find the optimal policy of Equation 5.1 where goals are sampled under
pgoal.

5.3.2 Hybrid Goal Exploration Processes

In this section, we introduce Hybrid Goal Exploration Processes (hgeps), a frame-
work for learning multiple goals that come from both internal and external sources.
Figure 5.1 illustrates the goal exploration procedure within hgeps.

The bootstrapping phase is conducted to initialize the external and internal goal
spaces, denoted respectively by Gext and Gint. On the one hand, the definition of
Gext depends on an external program, which can be for example a simulated func-
tion within the environment, a simulated embodied agent, or a human instructor.
This external program has external goals, which can be represented in a different
way from that of the agent (for example, using language, images or a set of binary
constraints). These goals are passed through an interpretation module which trans-
lates them into a representation that is understood by the agent. On the other
hand, the initialization of Gint depends on an arbitrary policy πε, which interacts
with the environment during a fixed amount of time. These interactions produce
trajectories, which are passed to an outcome extraction module which extracts the
goals that were arbitrarily discovered. The distribution of such goals is usually close
to the distribution of goals extracted from initial states (through the probability
distribution ρ0.

The babbling loop is conducted for a sufficient amount of time to allow the agent
to cover entirely the goal space. It consists in iteratively applying the following
cycle. First, a goal space is selected via a selector. The latter controls whether the
upcoming episode would pursue an internal goal (discovered physically by the agent)
or and external goal (proposed by the external program). Although we can think
of scenarios where agents actively use the selector as an internal module to query

125

Hybrid Goal Exploration Process

Babbling Loop

Bootstrapping Phase

Update
Module

Memory Buffer

Trajectories

Goal-Conditioned
Reward Function

Goal-Conditioned
Policy

Rollout
Module

Goal
Generator

Outcome
Extraction

Selector

Noise

Environment

Rollout
Module

Outcome
Extraction

Arbitrary Policy

Environment

External Goals

Simulated / Natural

External Program

Interpretation
Module

Internal
Goal space

External
Goal space

Figure 5.1: Illustration of Hybrid Goal Exploration Processes (hgeps)

external help when needed, we focus on this study on arbitrary selectors. Once the
source of goals is selected, a goal is generated via a goal generator, and the agent
is ready to act within the environment using its goal-conditioned policy π and the
goal-conditioned reward function, which consists of the goal achievement function
associated with the selected goal. Note that noise is added to the actions in order
to push the agent towards discovering new goals. After performing a rollout, the
underlying trajectories are stored in a memory buffer. Besides, they are passed to
the outcome extractor in order to extract the new goals that the agent has discovered
during the performed rollout. Finally, transitions are sampled from the replay buffer
and used to update the agent’s internal models, typically its policy π.

126

5.4 Experimental Setup

This section is organized as follows. In Section 5.4.1, we present the multi-goal envi-
ronments that we considered in our experiments. For each environment, we describe
the training procedure, including the goal generation process. In Section 5.4.3, we
present the evaluation metrics that we use to assess the relative importance of using
hybrid goal generation sources, and we motivate our choice for each metric. Finally,
in Section 5.4.4, we present and discuss the results that we obtained. For further
details and additional results, we refer the reader to Appendix D.

5.4.1 Environments

(a) (b) (c)

Figure 5.2: Considered environments: (a) FetchPickAndPlace-v0 (E1); (b)
HandManipulateEggFull-v0 (E2); (c) HandManipulateBlockRotateXYZ-v0 (E3).

Figure 5.2 illustrates the three environments that we considered in this study.
All these environments are part of OpenAI Gym [Brockman et al., 2016] and use
the MuJoCo physics engine for fast and accurate simulation [Todorov et al., 2012].

Block Pick and Place. We consider the FetchPickAndPlace-v0 environment
(E1) (Figure 5.2a), which is part of the Fetch environments [Andrychowicz et al.,
2017]. The agent is modeled as a 7-DoF robotics arm with a two-fingered gripper.
The goal is the target position represented by its 3-dimensional Cartesian vector.
The target position describes where we want the agent to place the object. It
can be in any place that is physically reachable by the manipulated block. The
agent obtains a reward of 1 whenever it succeeds in placing the block in its target
position, and 0 otherwise. The actions that the agent can take are 4-dimensional,
describing the desired gripper movement in Cartesian coordinates (3 dimensions)
and the opening and closing of the gripper (1 dimension). The observation space
includes features of the agent’s body as well features of the manipulated object. As
for the agent’s body, position and velocity of the gripper are considered. As for the
manipulated object, the Cartesian position, the velocity and the Euler angles-based
rotation.

127

Egg Manipulation. We consider the HandManipulateEggFull-v0 environment
(E2) (Figure 5.2b), which is based on the Shadow Dexterous Hand 1. The agent
controls an anthropomorphic robotic hand with 24 degrees of freedom. An egg-
shaped object is placed on the palm of the hand. The goal is represented as a
7-dimensional vector including a target position of the egg (3 dimensions) and a
target rotation (4 dimensions). The task of the agent is to move the object to its
target position and to rotate it in order for it to match a specific target orientation.
The agent obtains a reward of 1 if the object matches the goal in terms of both
the position and the rotation, and 0 otherwise. The actions that the agent can
take are 20-dimensional for all non-coupled joints of the hand. The observation
space includes features of the hand and of the object. As for the hand, we consider
positions and velocities of all the joints. As for the object, we consider the position,
rotation and velocity. For more details, we refer the reader to the original paper
introducing the environment [Plappert et al., 2018].

Egg Manipulation. We consider the HandManipulateBlockRotateXYZ-v0 en-
vironment (E3) (Figure 5.2c). The agent is exactly identical to the one used in E2.
However, the used object is a cubic block. The goal vector is also 7-dimensional, as
in E2. However, for simplicity, the Cartesian coordinates are ignored when defining
the goal achievement function. Consequently, the task of the agent is only to rotate
the block in order to match a specific target orientation. This choice makes our
study easier, since object geometry makes a significant difference in the complexity
of the problem (manipulating a block is harder than manipulating and egg-shaped
object).

5.4.2 Training Procedure

For all the environments that we consider in our experiments, the training procedure
is the same and it follows the following scheme. First, if agents are imgeps or hgeps,
they first conduct a bootstrapping phase where they discover easy goals using an
arbitrary policy. We fix the amount of the bootstrapping steps to make sure that
agents start with a diversified set of initial goals. Concretely, we run the arbitrary
policy for 9.5k episodes, which represents 10% of the total training budget in E1
and 2.5% in E2 and E3. Second, the agents engage in a babbling loop for a fixed
amount of time (100k episodes for E1 and 350k for E2 and E3). The bubbling phase
is organized in the following cycle:

• A goal is selected to target. It can be a self-generated goal or an externally
generated one. Self-generated goals are uniformly sampled from the running
buffer of goals physically discovered by the agents. Externally generated goals
are sampled by the simulator, they are not necessarily physically encountered
but are valid goals.

1https://www.shadowrobot.com/products/dexterous-hand

128

• The agent performs rollout for each sampled goal. Actions are taken according
to the agent’s policy. For exploration, the agent performs random action with
a probability ε = 0.3. The underlying rollouts are stored in a replay buffer.

• Transitions are sampled from the replay buffer and used to update the policy
and the critic. For replay, we use the Hindsight Experience Replay (HER)
replay scheme [Andrychowicz et al., 2017]. As an RL algorithm, we use the
Deep Deterministic Policy Gradient (ddpg) algorithm. We made this choice to
decouple exploration from policy updates (instead of entropy-based methods).

Additional details about the training procedure and implementation are depicted in
Appendix D.

5.4.3 Evaluation

We are interested in assessing the learning capabilities and exploration of agents that
use hybrid goal exploration processes. To this end we define 4 variants of hgeps
which use different ratios of external goals. Namely, we denote by hgep X% the
hybrid agents that sample external goals during training with a ratio of X%. The
values of X we consider in this study are 5, 10, 20 and 50. We also consider two
baselines: the imgep baseline (similar to hgep 0%) and the emgep baseline (similar
to hgep 100%).

To evaluate the performance of these agents, we consider the following metrics.

Success Rate on External Goals (External SR). The success rate (SR)
corresponds to the average of success of the agent. It is computed over a fixed
number of episodes, where a different goal is pursued at each episode. We are
interested in the SR on the external goals: that is, goals that are defined by an
external distribution defined within the simulator. This distribution is diverse and
describes all the goals that the agent can potentially learn. It reflects the ability of
the agent to master its whole goal space.

Entropy of Discovered Goals Distribution. We are interested in measuring
the task-agnostic exploration of the agents we consider in this study. To this end, we
consider the entropy of the discovered goals distribution as a proxy. More specifically,
we consider the goals discovered by the agents as random variables generated by
an unknown distribution, and we aim at evaluating the Shannon Entropy of these
random variables [Shannon, 1948]. Since goals are high-dimensional and continuous,
we can’t compute exactly the Shannon entropy. However, we estimate its value
using the Kozachenko-Leonenko k-nearest neighbour estimator [Kozachenko and
Leonenko, 1987]. The basic idea is to consider the set of discovered goals during
training as observations, and evaluate the average distance between neighbouring

129

data points. The larger is the distance, the larger is the dispersion of data points
and this the larger is the entropy 2.

Distribution of Discovered Goals. We are interested in visualizing the dis-
tribution of the goals that are discovered by the agents. Since this is not trivial
for the hand manipulation environment, we only focus on the fetch pick and place
environment. We plot the positions in which the block was placed by the agent.

5.4.4 Results

In this section, we depict the results of our experiments on the three considered
environments. Our goal is to answer the following questions: How does hgeps
affect the distribution of discovered goals ? What does this distribution look like ?
How does hgeps affect agents’ mastery of the goal space ?

How do hgeps affect the entropy of discovered goals
distribution ?

0 20 40 60 80 100
Episodes (x103)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

En
tro

py

IMGEP
HGEP-5.0%

HGEP-10.0%
HGEP-20.0%

HGEP-50.0%
EMGEP

(a)

0 50 100 150 200 250 300 350
Episodes (x103)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

En
tro

py

IMGEP
HGEP-5.0%

HGEP-10.0%
HGEP-20.0%

HGEP-50.0%
EMGEP

(b)

0 50 100 150 200 250 300 350
Episodes (x103)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

En
tro

py

IMGEP
HGEP-5.0%

HGEP-10.0%
HGEP-20.0%

HGEP-50.0%
EMGEP

(c)

Figure 5.3: Entropy of the discovered goals distribution in the (a) E1; (b) E2; (c) E3.

2https://github.com/paulbrodersen/entropy estimators

130

To quantify the diversity of discovered goals, we consider the entropy metrics. Fig-
ure 5.3 shows the estimated entropy for each agent on each of the considered en-
vironments. The value is computed with reference to the discovered goals at each
epoch — that is every 1900 episodes. In all the considered environments, augment-
ing the ratio of external goal generation helps increase the entropy. This means
that when agents pursue goals that were provided to them externally, they are most
likely to physically encounter and discover new goals that they have not discovered
yet. Agents that do not use external goals (imgep) or use only a few portion (hgep
5% and hgep 10%) find there entropy stuck at a plateau (Figures 5.3a and 5.3b) or
decreasing (Figure 5.3c). In fact, these agents keep attending to the distribution of
goals they have physically discovered, which is narrow especially at the beginning
of the training. Besides, as training advances, policies become less stochastic and
the distribution of physically discovered goals might become even narrower, hence
the decreasing entropy in the case of E3.

How are the discovered goals distributed ?

(a) imgep (b) hgep 5% (c) hgep 10%

(d) hgep 20% (e) hgep 50% (f) emgep

Figure 5.4: Distribution of discovered goals during the last epoch of training (1900
episodes) in environment E1.

We are interested in visualizing how the physically discovered goals are distributed.
To do so, we only consider the fetch pick and place environment E1, since it is easier
to plot the 3d positions of the block in this environment. Figure 5.4 highlights the
distribution of discovered goals during the last epoch of training for the different
agents we considered in this study. These results confirm that agents which focus

131

exclusively or mostly on physically discovered goals have their discovered goal distri-
bution narrower than the others. In fact, the goals discovered by the imgep agents
are concentrated in the plane z = 0.45 (Figure 5.4a), which corresponds approxi-
mately to the height of the table in the fetch pick and place environment. As the
ratio of external goals increases, the agents discover more goals in the air.

How do hgeps affect the mastery of the goal space ?

Table 5.1: Success Rate on externally provided goals for the different agents.

imgep (SR) hgep 5 (SR) hgep 10 (SR) hgep 20 (SR) hgep 50 (SR) emgep (SR)
Environment E1

0.63 ± 0.10 0.74 ± 0.11 0.83 ± 0.12 0.89 ± 0.04 0.99 ± 0.01 0.99 ± 0.01
Environment E2

0.93 ± 0.05 0.87 ± 0.03 0.97 ± 0.03 0.92 ± 0.03 0.99 ± 0.01 0.97 ± 0.03
Environment E3

0.53 ± 0.08 0.50 ± 0.04 0.51 ± 0.12 0.53 ± 0.10 0.63 ± 0.09 0.67 ± 0.15

Table 5.1 depicts the SR on the goals that are externally generated. Recall that
these goals are sampled with a hard-coded function within the simulator that makes
sure to cover the entire space and provides diverse sets of goals. Results show that
for environments E1 and E3 (first and third row in Table 5.1), the SR increases
as the amount of external goals provided to the agents increases. In fact, agents
that perform goal babbling using new goals that they have not encountered before
are more likely to discover new ones. This increases the diversity of discovered
goals, which are the goals that the agents use to train their internal models (policy
and critics). Consequently, these agents become more successful when dealing with
external goals. Interestingly, the difference in SR metrics in E2 is not significant
(row 2 in Table 5.1). Recall that E2 corresponds to the manipulation of the egg-
shaped object. Moving the hand’s fingers arbitrarily would most likely move the
object and rotate it (contrarily to a cubic-shaped object, where rotating the object
requires more dexterous hand manipulation). As a result, the physically discovered
goals during the bootstrapping phase are already diverse enough to enable agents
to train on an master different goals.

5.5 Conclusion and Discussion

We presented a new family of algorithms for learning multiple goals called Hybrid
Goal Exploration Processes (hgeps). hgeps enable goal-based artificial agents to
learn from multiple goal sources: either from internal goals that they autonomously
generate based on their internal goal sampling module, or from external goals that
they receive from an external program. The latter can either be a hard-coded goal
generation module within the environment, which generates valid goals, or a human

132

instructor that suggests goals to the learning agents. We compared hgeps to intrin-
sically motivated goal exploration processes (imgeps) and to externally motivated
goal exploration processes (emgeps). More specifically, we were interested in assess-
ing the exploration and learning capabilities of hybrid agents compared to imgeps
and emgeps. We considered 3 control environments. Our results suggest that, de-
pending on the complexity of exploration within the environment, external goals can
help unlock new regions of the goal space, since the agents wouldn’t have babbled
these goals without external signals. This seems to be important in endowing agents
with the capacity to overcome bottlenecks, and represents a step towards leverag-
ing the exploration-exploitation trade-off in goal-conditioned reinforcement learning
(gc-rl). The goal source selection module that we considered in our experiments
was arbitrary. In other words, agents have no control whatsoever on the source
of goals from which they draw during training. We believe this deprives artificial
agents from their autonomy. Allowing artificial agents to evaluate their need for
external assistance, and to actively select queries whenever they are stuck, is an
open challenge in RL with a human in the loop. In the next chapter, we attempt to
tackle this issue.

133

Chapter Summary

The central question we wanted to tackle in this chapter is the following: How can we
formally define the interaction between a goal-conditioned artificial agent and a social
partner as a goal exploration process ? To this end, we proposed Hybrid Goal Ex-
ploration Process (hgep), a family of algorithms for exploring and learning multiple
goals. hgeps couples self-supervised goal generation and external goal generation,
which might be an important backbone for teaching autotelic agents. Actually, the
latter need to juggle between their intrinsic motivations external teaching signals.
hgeps involve a goal selection module which plays the role of a switch controlling the
source of goals. In the standard definition that we presented in this chapter, hgeps
use an arbitrary goal selection module. At the beginning of an episode, agents flip a
coin independently of their training status, they then decide whether to self-generate
a goal, or to follow an externally generated goal.

In the next chapter, we want such agents to be more intrinsically motivated
when choosing the source of goals. We propose to base the external goal proposals
on active queries based on the agents’ own estimation of their learning progress.
Besides, we want the externally proposed goals to be adequate to the agents’ current
capabilities.

134

Chapter 6

Guiding Exploration in Autotelic
Agents

In the quest for autonomous agents learning open-ended repertoires of skills, most
works take a Piagetian perspective: learning trajectories are the results of interac-
tions between developmental agents and their physical environment. The Vygotskian
perspective, on the other hand, emphasizes the centrality of the socio-cultural en-
vironment : higher cognitive functions emerge from transmissions of socio-cultural
processes internalized by the agent. In this chapter, we argue that both perspectives
could be coupled within the learning of autotelic agents to foster their skill acqui-
sition. We contribute a novel social interaction protocol called Help Me Explore
(hme), where autotelic agents can benefit from both individual and socially guided
exploration. In social episodes, a social partner suggests goals at the frontier of the
learning agent’s knowledge. In autotelic episodes, agents can self-generate internal
goals based on their own intrinsic motivations. We also endow these autotelic agents
with internalization mechanisms enabling them to take ownership of goals proposed
by the social partner regardless of whether they have physically reached them or
not. Besides, we endow these agents with internal goal source selectors, enabling
them to actively select queries to their social partners. The active query mechanism
is build upon an internal learning progress estimator : agents ask for help from their
social partners whenever they estimate that they are not progressing enough on the
set of goals they already know.

6.1 Motivations

Artificial Intelligence (ai) strives to design embodied artificial agents that grow
diverse repertoires of skills. These skills might be of distinctive complexity, ranging
from easy ones (e.g. move to the center of the playground) to more challenging ones
(e.g. construct a pyramid next to a tower using building blocks). Research in ai
have supported the potential of goal-conditioned reinforcement learning (gc-rl) in
developing such capable agents which learn a single policy to accomplish multiple

135

goals [Schaul et al., 2015, Andrychowicz et al., 2017, Liu et al., 2022]. However,
manually defining these goals before learning limits behavioral diversity and imposes
a manual engineering burden, especially in rich environments with a high number
of possible outcomes. Taking a peek at the field of developmental psychology, open-
ended learning — a process of continuously learning skills of growing difficulty —
seems to be of good inspiration. Actually, human toddlers freely engage in rich
physical environments where they rely on their intrinsic motivations to uniquely
establish their own intents and purposes.

Baking intrinsic motivations into gc-rl forms the family of autotelic artificial
agents [Steels, 2004, Colas, 2021]. These agents need to represent, select and master
self-generated goals [Colas, 2021]. Depending on whether they know their goal space
and the set of reachable goals beforehand, there exist three scenarios for autotelic
agents. First, if they know the goal space and the set of goals they can physically
reach, their challenge is to smoothly self-organize these goals to progressively max-
imize their number of skills. This process has been coined ”Automatic Curriculum
Learning” (acl) and relies on methods that use proxies such as learning progress or
novelty to generate efficient learning curricula [Lopes et al., 2012, Bellemare et al.,
2016, Burda et al., 2018, Colas et al., 2019]. Second, if they don’t know the goal
space, they need to discover skills and learn their own representations based on in-
formation theory methods [Eysenbach et al., 2018, Pong et al., 2019]. Third, if they
know the goal space but have no clue about which goals they can physically reach,
autotelic agents need to explore and discover skills by themselves [Ecoffet et al.,
2019, Colas et al., 2020b, Akakzia et al., 2020b, Akakzia and Sigaud, 2022]. Conse-
quently, the distribution of discovered goals is necessarily bound to the distribution
of physically encountered goals [Pitis et al., 2020, Campos et al., 2020]. This is why
such agents usually need additional features such as the ability to imagine new goals
based on previous ones [Colas et al., 2020b], or to start exploring from sparsely vis-
ited regions of the goal space [Ecoffet et al., 2019, Pitis et al., 2020, Akakzia et al.,
2020b]. However, imagining new goals is not always straightforward depending on
the structure of the goal space, and sparsely visited regions are not necessarily the
only stepping stones leading to new goals.

Interestingly, research in psychology, philosophy, linguistics and robotics have
insisted on the important role of rich socio-cultural environments in human develop-
ment [Wood et al., 1976, Vygotsky, 1978b, Berk, 1994a, Tomasello, 1999, Lindblom
and Ziemke, 2003, Lupyan, 2012, Colas, 2021]. Actually, human toddlers are not
only physical learners in the Piagetian sense — they learn to represent their goals
through embodied interactions with their surroundings [Piaget, 1955] — but also
benefit from their caregivers’ external social signals. These signals construct a road-
map for toddlers in their guided-play experience [Weisberg et al., 2013, Yu et al.,
2018], progressively scaffolding their previous skills to fashion new more complex
ones. Caregivers smoothly carry toddlers into their Zone of Proximal Development,
which is defined as the space between what a learner can do alone and what they
can do with guidance or collaboration with more capable peers [Vygotsky, 1978b].

136

Recently, arguments have been made on the need of incorporating guided-play char-
acteristics in the training process of artificial agents [Sigaud et al., 2021]. Actually,
teachable autotelic agents is introduced as a family of autotelic agents that are both
autonomous and can benefit from external social signals carrying their learning pro-
cess. Such agents need to exhibit several teachability properties. Namely, they need
to be endowed with some internalization mechanisms enabling them to rehearse
external signals in the absence of their social partners (sp). Besides, they need to
actively communicate with their caregivers, requesting help whenever needed.

Figure 6.1: The hme social interaction protocol and the social autotelic agent. The
autotelic agent (blue) interacts with its world and discovers new configurations (grey box,
right). Through its goal source selector (blue box, middle), the agent decides whether to
sample from its known goals (blue box, bottom left) or to query the social partner for a
social goal (pink box, top left). Socially-suggested goals are further internalized within
the agent for later use during individual episodes.

Contributions

In this paper, we present a practical framework for teachable autotelic agents. We
formulate the problem of learning multiple goals in the presence of a caregiver as a
goal exploration problem. We investigate the influence of externally proposed goals
on both the learning process and exploration capabilities of autotelic agents. Our
contributions are twofold:

• Help Me Explore (hme), a novel family of algorithms for learning multiple
goals from both internal and external sources. hme couples individual autotelic
learning and assisted social learning through goal proposals. It requires an
expert sp who knows a set of reachable goals and is able to maintain a model of
the current exploration capabilities of the learners. During social episodes, the

137

sp first suggests a stepping stone goal, which we call frontier goal. If reached,
they chain with an adjacent goal that the learner never encountered, which we
call beyond goal. During autotelic episodes, the autotelic agent autonomously
selects which goal to pursue.

• GoAl-conditioned Neural Graph with SemnaTic Representations (gangstr),
an autotelic agent based on Graph Neural Networks (gnns), endowed with an
internalization mechanism and an intrinsic goal source selector. gangstr
uses the Soft Acotr-Critic algorithm (sac, Haarnoja et al. [2018]) as a back-
bone, where both its actor and critic are implemented as Relation Networks
(rns, Santoro et al. [2017]). On the one hand, the internalization mechanism
enables gangstr to remember externally proposed goals even if they were not
physically reached. On the other hand, gangstr automatically estimates its
current learning progress and uses its intrinsic goal selector to actively query
the sp for new goals.

When following hme, gangstr internalizes the beyond goals proposed by the
sp even though it fails at reaching them. It can later autonomously rehearse these
goals during autotelic episodes. Besides, gangstr aggregates its estimation of
success over the physically discovered goals and uses it as a proxy to query the sp
for new goals whenever it is not progressing enough. Our method is illustrated in
Figure 6.1. We evaluate our approach on several mazes and block manipulation
benchmarks. We show that, for the block manipulation environment with 5 objects,
gangstr requires relatively few social interactions (0.5% of the total training time)
to efficiently explore and learn about all the possible configurations in the goal space,
including stacks of 4 objects, 5 objects and combinations of stacks and pyramids.
We denote the combination of hme and gangstr by hme-gangstr.

6.2 Related work

In this section, we position our word with reference to autotelic reinforcement learn-
ing, hard exploration problems, interactive reinforcement learning and existing ap-
proaches that combine social learning and intrinsic motivations.

Autotelic Reinforcement Learning

The quest for autotelic agents first emerged in the field of developmental robotics
[Steels, 2004, Oudeyer and Kaplan, 2007, Nguyen and Oudeyer, 2012, 2014b, Baranes
and Oudeyer, 2013b, Forestier and Oudeyer, 2016b, Forestier et al., 2017] and re-
cently converged with state-of-the-art deep reinforcement learning (RL) research
[Eysenbach et al., 2018, Warde-Farley et al., 2018, Nair et al., 2018, 2020, Pong
et al., 2019, Colas et al., 2019, 2020b,c]. Such agents rely on goal-conditioned RL
algorithms [Schaul et al., 2015, Andrychowicz et al., 2017, Colas et al., 2020c] and

138

automatic curriculum mechanisms [Portelas et al., 2020]. Following the Piagetian
tradition in psychology, most of these approaches consider individual agents inter-
acting with their physical environment and leveraging forms of intrinsic motivations
to power their exploration and learning progress [Bellemare et al., 2016, Achiam
and Sastry, 2017, Nair et al., 2018, 2020, Burda et al., 2018, Pathak et al., 2019,
Colas et al., 2019, Pong et al., 2019]. Unless all their goals are manually defined,
which usually represents an engineering burden, these approaches usually struggle
to explore rich goal spaces that include goals requiring long sequences of specific
actions to be discovered.

Hard Exploration Problems

Hard exploration problems refer to a family of domains where rewards are very
sparse, deceptive or adversarial. Standard reinforcement learning (RL) methods
usually perform poorly in such scenarios [Bellemare et al., 2016, Amodei et al.,
2016], especially since random exploration is rarely efficient to discover successful
states and obtain meaningful feedback. To circumvent this issue, a typical approach
has been intrinsic motivation, where artificial agents self-generate intrinsic rewards
to encourage exploration [Oudeyer and Kaplan, 2007, Barto, 2013, Bellemare et al.,
2016]. Another line of research handled the hard exploration problem in a sequen-
tial fashion, where they first return to infrequently visited states and then explore
from these states in search for new ones [Ecoffet et al., 2019, Pitis et al., 2020].
Other works investigate the design of evolutionary algorithms capable of discover-
ing representations with good potential to produce a diversity of new ones [Cully
and Demiris, 2017, Gajewski et al., 2019]. These representations are said to be of
high evolvability, which is the idea of finding genomes that are very likely to produce
diverse new solutions through simple mutations [Altenberg et al., 1994, Wagner and
Altenberg, 1996, Ebner et al., 2001, Reisinger et al., 2005, Lehman, 2012, Mengistu
et al., 2016]. For instance, these methods can focus their sampling procedure on
states that recently led to discovering new ones [Cully and Demiris, 2017].

Interactive Reinforcement Learning

Interactive RL is a framework where artificial agents use RL algorithms to learn
policies based on non-expert users who communicate and teach their preferences
and expectations. It investigates and models the ways human tutors can guide their
agents’ learning process [Thomaz and Breazeal, 2008b, Argall et al., 2009, Celemin
and Ruiz-del Solar, 2015, Najar et al., 2016, Christiano et al., 2017]. A category of
teaching signals requires the sp to point out sequences of actions and states using
demonstrations or preferences [Argall et al., 2009, Christiano et al., 2017, Fournier
et al., 2019]. Another category assists the development of goal-based agents by
providing them with guiding instructions [Grizou et al., 2013]. All these approaches
usually rely on direct teaching methods, which depend too much on the tutor to
drive the agent’s behavior, depriving them from their autonomy.

139

Social Learning and Intrinsic Motivations

Combining social learning and intrinsic motivations has been studied as a way to
enhance skill acquisition in artificial agents [Schaal et al., 2003, Thomaz et al., 2006,
Thomaz and Breazeal, 2008b, Peters and Schaal, 2008, Kober and Peters, 2011, Stulp
and Schaal, 2011, Nguyen and Oudeyer, 2014a]. The main motivation is that social
guidance provided by humans can drive the learner to new regions of its state space,
where its own random exploration alone is usually insufficient. Intrinsic motivations
can then be used to further explore these new areas. Such a combination profits from
both the broader aspect of intrinsic motivations (explore as many goals as possible)
and the specialized aspect of social learning (follow a specific instruction). This
was studied not only in the context of learning one single skill [Schaal et al., 2003,
Peters and Schaal, 2008, Kober and Peters, 2011, Stulp and Schaal, 2011], but also
in achieving a variety of goals [Thomaz et al., 2006, Thomaz and Breazeal, 2008b,
Nguyen and Oudeyer, 2014a]. Most of these works rely on human demonstrations
or upstream feedback as a form of social guidance.

6.3 Methods

The central objective of this paper is to study the goal exploration problem with
two different sources of goals: internal goals that are autonomously generated by
agents, and external goals that are provided by an expert sp. Besides, as part of
the internalization mechanism, our agents remember and can self-generate external
goals they failed to reach. In this section, we detail the implementation of our
family of algorithms. First, we present an overview of our methods. Second, we
state the problem we attempt to solve and provide useful definitions. Third, we
explain how our agents select to query their sps for assistance. Fourth, we present
the exploration procedure that our agents follow during their training. Fifth, we
describe which goals the sp proposes when queried by the agents. Finally, we present
the learning algorithm and the architecture used in our study. Additional details
about our methods and pseudo-codes can be found in Appendix E.

Overview

We propose to couple social learning and intrinsically motivated learning in the
context of multi-goal learning in autotelic agents. To this end, we define a social
interaction protocol, hme, which relies on an expert sp proposing specific goals that
help scaffold the learning agents’ skills. However, we want our agent, hme-gangstr,
to deliberately choose to query for assistance whenever needed. This enables them
to preserve the autonomous characteristic, and accounts for the guided-play process
in human toddlers.

Initially uninformed about which goals they can physically reach within their
goal space, hme-gangstr performs random actions and unlock easy goals. Once

140

these goals are discovered, the interaction protocol can be triggered. Agents can
follow either autotelic episodes where they autonomously select their goals from
their own goal memory, or social episodes where their sp suggest specific goals based
on the agents’ current knowledge. Actually, the sp continuously builds a model of
the agents’ current exploration limits, which enable them to propose goals within
the agents’ zpd — goals that they are not likely to achieve unless provided with
help from experts. Furthermore, hme-gangstr is endowed with an internalization
mechanism of the sp’s goals, which enables it to rehearse these goals during the
absence of the sp even though it has not physically encountered them yet.

Problem Statement

We model the problem of learning multiple goals within a fixed environment as
a goal-augmented mdp M = {S,A, T , ρ0,G, pG, φ}: S, A, T and ρ0 respectively
denote the state space, the action space, the environment transition distribution
and the distribution of initial states; G = ZG × RG denotes the training goal space,
where goals are defined by pairs of goal embeddings in ZG and goal achievement
functions in RG [Forestier et al., 2017, Colas et al., 2022b, Liu et al., 2022]; φ denotes
a tractable mapping function that maps a state to a specific goal embedding.

Standard gc-rl approaches attempt to learn a goal-conditioned policy π : S ×
A× G → [0, 1] that maximizes the discounted sum of rewards with reference to the
training goal distribution pG:

J(π) =
H∑
t=0

γt E g∼pG , s0∼ρ0
at∼π(. | st,g)
st+1∼T (st,at)

[
RG(φ(st+1) | zg)

]
, (6.1)

where H < ∞ denotes the finite time horizon and RG compares the embed-
ding of the next state (φ(st+1)) to the target goal embedding (zg) in order to assess
the achievement of the target goal. Standard gc-rl methods usually consider a
fixed training goal space G and training goal distribution pG. By contrast, autotelic
agents only train on the goals they have discovered so far in training. Consequently,
in autotelic agents, the training goal space and the training goal distribution con-
tinuously change. We define a training step as sequentially performing N rollouts
in the environments followed by M policy updates. We consider our agents as goal
exploration processes that need to continuously discover new goals at each training
step based on their previous experience and on external suggestions by their sp. The
latter understand the environment in terms of the structure of the basic achievable
goals (for example, they know one can go from a stack of two objects to a stack of
three objects by simply adding a block on top). We call the Assignment Goal Space
(ags), the subspace of basic goals the sp is aware of. Besides, the sp can construct
a model of their autotelic learner’s current exploration limits by examining their
behavior. Consequently, the distribution of the sp’s suggested goals depends on the
training step.

141

We denote by GSP and Gia respectively the ags and the discovered goal space by
an agent at training step i. Furthermore, we denote by pGia and piGSP respectively the
distributions of the agent’s goals and its sp’s suggestions at training step i. Note
that the index i in piGSP is associated with the distribution and not the goal space,
because the ags is fixed but the way the sp suggests goals depends on the agent’s
current exploration limits.

How does hme-gangstr select queries ?

hme-gangstr uses its learning progress estimation (lp) as a proxy to decide
whether it needs external assistance from its expert sp. The main principle is that,
whenever its lp is low, it is most likely that hme-gangstr is not learning nor
discovering anything new by itself. More specifically, hme-gangstr estimates its
global lp by aggregating its lp for each of the goals it has discovered so far. We
use a neural network parameterized by θ, which we note NNθ. It takes as input a
goal embedding zg and produces an estimation of the success on the corresponding
goal. We train NNθ by sampling a batch of transitions from the replay buffer and
optimizing the mean squared error loss

L(NNθ) = E{st,at,st+1,g}t<H∼D

[1

2
(NNθ(zg)−RG(φ(sH−1)|zg))2

]
, (6.2)

where D denotes the replay buffer containing online trajectories. The lp for a
single goal g at training time i is defined as lpik(g) = |NN i

θ(g)−NN i−k
θ (g)|, where

k denotes the window size [Colas et al., 2019, Akakzia et al., 2020b]. We compute
the query probability at training time i by aggregating the lp estimations of goals
in Gia ussing the following formula:

f iβ,k = e
−β 1

|Gia|

∑
g∈Gia

lpik(g)
, (6.3)

where β is a hyper-parameter defining the level of tolerance to stagnation in the
lp. Actually, for higher values of β, the lp needs to be lower in order for agents to
query the sp more often.

How does hme-gangstr explore ?

During each training step, hme-gangstr needs to select goals to pursue. First, it
uses its estimated query probability f iβ,k to choose the goal source: either its own
goals, or goals suggested by its sp. Consequently, the generated goal at training
step i depends on the distribution of the agent’s goals pGia and on the distribution
of its sp’s suggestions piGSP . Formally, a goal g is sampled according to the following
generative model:

g ∼ f iβ,k × piGSP + (1− f iβ,k)× pGia . (6.4)

142

How does a sp suggests goals ?

The sp holds a model of the learning agent current exploration capabilities. Namely,
whenever they are queried, they look at the set of goals that the agent has discovered
so far and project them into their ags. This enables them to determine which goals
that the agent know are stepping stones to new goals. Consequently, they first select
a stepping stone, which we refer to as a frontier goal, and suggest it to the learning
agent. If the latter succeeds in reaching the frontier goal, the sp partner continues
with an adjacent new goal, which we refer to as a beyond goal that the agent needs
to reach starting from the frontier goal they just reached. This procedure describes
how the sp take the agent into its zpd, guiding it to states from which they can
achieve harder goals. If the agent fails at reaching the beyond goal, they memorize
it in the same buffer containing the goals it has physically reached. In this way, they
can rehearse these goals later during autotelic episodes when the sp is absent.

How does hme-gangstr Learn ?

The goal-conditioned module in hme-gangstr is powered by the Soft Actor-Critic
algorithm (sac) [Haarnoja et al., 2018], which is a state of the art off-policy RL
algorithm. We extend it to goal-conditioned scenarios, and train a goal-conditioned
actor and two goal-conditioned critics to overcome the overestimation issues [Fuji-
moto et al., 2018]. Based on recent finds on the effectiveness of gnns in leveraging
good transfer capabilities [Akakzia and Sigaud, 2022], we model both the actor and
the critic as relation networks. Finally, we use the Multi-Criteria Hindsight Experi-
ence Replay algorithm [Lanier et al., 2019] when retrieving transitions from buffers.
This has showed to provide clear improvements to sample efficiency.

6.4 Experimental Setup

In this section, we describe the experimental setup that we consider to conduct
our study on the influence on social interactions on the learning and exploration
of autotelic agents. Our objective is to answer the following scientific questions:
How do social episodes affect the performance of agents ? How do they affect
their exploration? Can automatic curriculum learning methods (acl) replace social
interventions? How effective is the zpd management procedure in hme? How do
active queries affect the amount of social interventions?

This section is organized as follows. First, we describe the environment. Here
we focus on a 5-object manipulation environment with a rich goal space of different
levels of complexity. Evaluations of our methods on other maze-based environments
are presented in Appendix E. Second, we describe the different variants of hme-
gangstr and the baselines used for comparison. Third, we present the evaluation
metrics on which we focus. Finally, we introduce and investigate the results.

143

6.4.1 Environment

We consider the Fetch Manipulate environment with 5 colored blocks used in [Akakzia
and Sigaud, 2022]. Goal embeddings are represented by a set of constraints on the
position of the blocks using the close and above binary predicates. To achieve a sin-
gle goal, the agent — a 7-DoF robotic arm with a gripper as an end effector — needs
to manipulate all the blocks so that all pairwise relations respect the constraints
outlined in the goal definition. We also consider the unary predicate on table, which
is evaluated on each of the five blocks and assesses the presence or absence of con-
tact between an object and the table. Consequently, each configuration of objects
is represented by a single set of 35 constraints: 5 for the on table predicate, 20 for
the above predicate (one for each permutation of two objects) and 10 for the close
predicate (one for each combination of two objects). Note that the resulting goal
representation space is discrete and contains 235 configurations, which are not all
physically feasible (two objects can’t be above each other on the same time). Hence,
the agent has to discover which goals are physically reachable through sensorimotor
interactions. At the beginning of each episode, the blocks are all set on the table
without any pre-constructed stack.

6.4.2 Agents

In this section, we describe all the agents trained during this study.

Our Agents. Our agents couple autotelic and social episodes based on the query
probability defined in Equation 6.3. This quantity is parameterized by β, which
controls the level of tolerance to stagnation in lp: for lower values of β, agents are
more likely to query for social interventions even if their estimation of lp fluctuates,
while for higher values of β, these fluctuations need to be absent for queries to kick
off. We denote these agents by hme-β (to simplify hme-gangstr-β). The values
of β we consider in this study are within the list [20, 50, 100, 200].

Influence of Social Interventions. To study the influence of social interven-
tions on both the learning and exploration of artificial agents, we introduce two
baselines: the autotelic baseline (ab), which does not use any external goals but
rather exclusively rely on the self-generated ones, and the social baseline (sb), which
is an instruction-following agent that only explores and learns goals suggested by
the sp. Note that the autotelic and social baselines correspond to variants of our
agents with respectively β =∞ and β = 0.

ACL Study. We confront social interventions to acl, where both influence goal
selection during training of autotelic agents. To this end, we introduce two acl
baselines: 1)Learning Progress (lp) baseline: this baseline uses the neural network
NNθ, which predicts the success for each goal (see Section 6.3, to estimate the

144

lp for each goal. Then, the agent selects the goals with a high lp to train on
and learn about. In practice, we sample among the 50 goals with the highest lp;
2)Value Disagreement-based Sampling (vds) baseline: We train 3 Q-value networks
to evaluate the difficulty of goals. During training, at the beginning of each episode,
the agent samples 1000 goals in the list of discovered goals, evaluates their Q-values
and computes a score reflecting the uncertainty about each goal. Applying softmax
to the obtained scores yields a probability distribution that the goal sampler uses
to more often select goals presenting higher uncertainty. Additional details are
presented in Appendix E.

ZPD Management Study. The zpd management of hme is based on the
sp goals proposals. It involves proposing a goal within the frontier of the agents’
exploration limits, that is the goals that they have discovered and that are stepping
stones to new goals. However, one can think of several other definitions of frontier.
In this study, we introduce two other definitions. First, we consider the set of goals
that represent sparsely visited regions of the goal space [Ecoffet et al., 2019, Pitis
et al., 2020], which we denote by F2. Second, we consider the set of goals with
the highest lp. They represent goals that are neither too hard nor too easy for the
current agents’ policies [Baranes and Oudeyer, 2013b, Forestier and Oudeyer, 2016b,
Florensa et al., 2018, Colas et al., 2019, Akakzia et al., 2020b]. We denote this set
by F3. Based on these two definitions, we introduce two baselines F2&Random

and F3&Random, within which agents first self-generate a goal in F2 or F3, and
once there, they perform random actions. We also introduce a third baseline which
we call Unifom&Random, where agents first select a goal randmly, and once they
reach it, they continue with random actions.

Active Query Study. To assess the advantages of using progress-based active
queries, we introduce variants of our socially sensitive autotelic agents that send
random queries to the sp. Mainly, for these agents, we consider a fixed query prob-
ability all along the training episodes. We consider three values for such variants:
Pquery ∈ {0.05, 0.06, 0.07}. We chose these values best on the best performing hme-
based agents to match the same budget of social interventions.

6.4.3 Evaluation Metrics

In this section, we present the evaluation metrics that we considered in our studies.
We train our agents for a fixed budget of time (20 hours). Evaluations are con-
ducted each 50 cycles, where each cycle includes 2 episodes (100 episodes between
each evaluation). More details about the implementation and hyper-parameters are
presented in Appendix E. In all our experiments, means and standard deviations are
computed over 5 seeds. Stars highlight statistical differences with reference to the
far left agents (Welch’s t-test with null hypothesis H0: no difference in the means,
α = 0.05).

145

Class C1 C2 S2 S3 S2&S2 S2&S3 P3 P3&S2 S4 S5

Goals 10 45 20 60 60 120 30 60 120 120

Table 6.1: Semantic classes used for evaluations. The Ci class regroups all configurations
where exactly i pairs of blocks are close. The Si class contains all configurations where
exactly i blocks are stacked. The Pi class contains all configurations where i blocks form
a pyramid. The & is a logical AND. All unspecified predicates are false, thus classes
represent disjoint sets.

Manipulation Performance. The subset of the 235 expressible configurations
the agent can physically reach is hard to compute a priori. To evaluate the agents, we
hand-define 10 classes of reachable configurations, each containing between 10 and
120 configurations. This includes configurations where exactly i pairs of blocks are
considered close (Ci), configurations containing stacks of size i (Si), configurations
containing pyramids of size 3 (P3) and combinations of these. These classes are
disjoint and their union does not cover the entire semantic configuration space (e.g.
configurations S2&C2 are not contained). They do contain, however, classes that
we consider interesting ; in the sense that they can be easily described by humans
(e.g. P3&S2 could be “a tower of two and a small pyramid”. See Table 6.1 for more
details. At test time, the agent is given 20 goal configurations uniformly sampled
from each of the 10 classes (200 goals). A test episode is considered a success when
the final configuration matches the goal configuration. The measure of the agent’s
success is the global success rate (SR); the average of the 10 success rates per class.
Testing episodes are conducted without exploration noise (deterministic policy) and
are not added to the replay buffer (offline evaluations).

Exploration Performance. In order to propose social goals, the sp relies on
their own assignment goal space GSP . In our experiments, we define GSP to be a
set of 321 goal configurations including the path from no stacks at all to stacks of
5 objects for each permutation of objects. We also define the oracle Goal Space G∗,
a more broader goal space containing 12666 goal configurations. It includes more
intertwined paths, from stacks of 2 objects to stacks of two other objects for instance.
For the social baseline, we use the oracle goal space G∗ as the assignment goal space.
We give more details about the construction of such goal spaces in Appendix E.
We are interested in assessing the coverage of GSP and G∗. We consider the goals
discovered by agents at the end of training, perform the intersection of these goals
with either GSP or G∗, and report the ratio of covered goals. We also evaluate the
distribution of goals achieved by the agents during training for several evaluation
classes. Namely, we consider the classes that are more challenging to be discovered
individually: S3, S2&S3, S4 and S5. Finally, we report counts of the proposed
frontier and beyond goals by the sp. We consider the ratio beyond frontier, which
gives an idea on how well agents succeed in following the sp’s instructions.

146

6.4.4 How do Social Episodes affect Agents Performance ?

To assess the importance of social episodes in growing diverse repertoires of skills,
we compare gangstr agents evolving within hme using different values of β to the
autotelic baseline (ab) and the social baseline (sb). We focus on the global SR and
the per class SR.

Table 6.2: Amount of Social Interventions and global SR of the studied agents.

Metrics
Agents

Social hme-β = 20 hme-β = 50 hme-β = 100 hme-β = 200 Autotelic

% Social Episodes 100 51.62 ± 2.49 6.98 ± 0.58 0.5 ± 0.06 0.001 ± 0.001 0
Global SR 0.81 ± 0.01 0.92 ± 0.01 0.93 ± 0.02 0.87 ± 0.03 0.72 ± 0.03 0.75 ± 0.05

Global Performance. In Table 6.2, we report the percentage of social episodes
conducted during the training of ab, hme-gangstr and sb. We also present the
global SR for each of these agents. Note that for higher values of β, the amount of
social interventions is lower. On the one hand, ab and sb struggle in maximizing
their SR and get stuck respectively at 0.75 and 0.81 (respectively far left and far
right columns). On the other hand, hme-based agents with sufficiently low values
of β manage to further increase their SR. Namely, for β valued at 100, 50 and
20, the amount of social interventions is valued respectively at 0.5%, 6.98% and
51.62%. These agents receive enough social guidance, and by coupling autotelic and
social episodes, they manage to grow their repertoires of skills and master new goals.
Namely, for hme-β = 50, the global SR reaches its highest value of 0.93. In the
next paragraph, we zoom at which new skills get unlocked with social interventions.

0 100 200
Episodes (x103)

0.00
0.25
0.50
0.75
1.00

Su
cc

es
s R

at
e

Social

0 100 200
Episodes (x103)

0.00
0.25
0.50
0.75
1.00

HME-β=20

0 100 200
Episodes (x103)

0.00
0.25
0.50
0.75
1.00

HME-β=50

0 100 200
Episodes (x103)

0.00
0.25
0.50
0.75
1.00

HME-β=100

0 100 200
Episodes (x103)

0.00
0.25
0.50
0.75
1.00

HME-β=200

0 100 200
Episodes (x103)

0.00
0.25
0.50
0.75
1.00

Autotelic

C1 C2 S2 S3 S2 & S2 S2 & S3 P3 P3 & S2 S4 S5

Figure 6.2: Per class SR across training episodes for different ratios of social interventions.

Per-class Performance. Figure 6.2 shows the per-class performance of ab, sb
and hme-gangstr with different values of β. On the one hand, we note that ab
and hme-β = 200 agents struggle in learning the most complex goals including the
classes S4 and S5. On the other hand, sb seems to perform relatively better on these
classes. However, the sb is slow and less sample efficient than hme-β = 20, hme-
β = 50 and hme-β = 100 which manage to faster learn the more complex goals. This
suggests that social interventions are responsible for increasing the performance on
some evaluation classes, and that only 0.5% of social episodes is sufficient to learn
about more complex classes.

147

6.4.5 How do Social Episodes affect Agents Exploration ?

In this section, we study the influence of social episodes on the exploration of agents.
We investigate the effect of social episodes on 1) the coverage of the assignment
goal space and the oracle goals space; 2) the distribution of goals that the agents
encounter during training.

Table 6.3: Coverage of the Assignment and Oracle goal space.

Metrics
Agents

Social hme-β = 20 hme-β = 50 hme-β = 100 hme-β = 200 Autotelic

Coverage GSP 0.22 ± 0.04 0.99 ± 0.01 0.97 ± 0.01 0.66 ± 0.01 0.1 ± 0.001 0.10 ± 0.01
Coverage G∗ 0.36 ± 0.02 0.21 ± 0.01 0.20 ± 0.13 0.19 ± 0.01 0.18 ± 0.08 0.14 ± 0.02

Coverage of GSP and G∗. Table 6.3 depicts the coverage of the assignment goal
space GSP and the oracle goal space G∗ for ab, sb and the different hme-gangstr
agents. On the one hand, we note that hme-β = 20 and hme-β = 50 agents manage
to maximize their coverage of GSP , outperforming all the other agents. On the other
hand, sb hold the best coverage of G∗, outperforming ab and the hme-based agents.
This is not surprising, as sb uses the whole oracle goal space as an assignment goal
space when proposing goals by the sp. Interestingly, however, hme-β = 20 and
hme-β = 50 agents show better coverage of G∗ than ab.

0

250

500

750

1000
Social

0

250

500

750

1000
HME-β=20

0

250

500

750

1000
HME-β=50

0

250

500

750

1000
HME-β=100

0

250

500

750

1000
HME-β=200

0

250

500

750

1000
Autotelic

S3 S2 & S3 S4 S5

Figure 6.3: Distribution of goals achieved by the agents during training.

Distribution of Achieved Goals. Figure 6.3 presents the distribution of goals
achieved by the agents during training. We focus on the more complex goals that
are not trivial to be discovered in the first place. Namely, we consider the classes
S3, S2&S3, S4 and S5. On the one hand, we note that ab, sb and hme-β = 200 fail
to discover and achieve these goals. On the other hand, hme-β = 20, hme-β = 50,
and hme-β = 100 agents are able to relatively achieve these goals more often. Note
that hme-β = 50 actually achieves these goals many times with only 6.98% of social
episodes (see Table 6.2). In the remainder of our study, we consider these agents
and compare them to other baselines.

148

6.4.6 Can Automatic Curriculum Methods replace Social
Interventions ?

In this section, we compare hme-β = 50 to two acl methods. Namely, we are
interested in assessing the global SR of hme-based agents and the acl baselines we
considered in our study.

0 50 100 150 200 250
Episodes (x103)

0.00

0.25

0.50

0.75

0.93
1.00

Su
cc

es
s R

at
e

HME-β=50 LP Baseline VDS Baseline

Figure 6.4: Global SR for hme-β = 50, the lp baseline and the vds baseline.

Figure 6.4 presents the global SR for hme-β = 50, the lp baseline and the
vds baseline. The hme-β = 50 (blue curve) agent outperforms both acl baselines.
Actually, acl methods get stuck at a local minima and struggle to further grow
their repertoires of skills. This suggests that acl methods are unlikely to replace
social interventions. While acl methods usually focus on the goals that are the
most challenging for the learning agents’ current policy — goals that are neither too
hard nor too easy — these goals do not necessarily represent stepping stones that
unlock new ones. By contrast, the social interventions leveraged by hme-β = 50
focus on goals that are certain to yield new ones, based on the sp expertise.

6.4.7 How effective is hme’s Zone of Proximal Development
Management ?

In this section, we investigate the role of the zpd management scheme compared
to other methods of exploration. Namely, we consider the Unifom&Random,
F2&Random and F3&Random baselines. We are interested in evaluating the global
SR and the distribution of goals achieved by these agents compared to hme-based
agents.

Global SR. Figure 6.5 presents the global SR for hme-β = 50 as well the three
baselines considered in this study. Notably, hme-β = 50 outperforms all the three
baselines. This suggests that the zpd management induced by the sp within hme

149

0 50 100 150 200 250
Episodes (x103)

0.00

0.25

0.50

0.75

0.93
1.00

Su
cc

es
s R

at
e

HME-β=50 Uniform&Random F2&Random F3&Random

Figure 6.5: Global SR for different exploration techniques across training episodes.

is more efficient than randomly exploring from sparsely visited regions of the goal
space (F2&Random) and from goals of intermediate difficulty (F3&Random).

Figure 6.6: Distribution of goals achieved by the agents during training.

Distribution of Achieved Goals. Figure 6.6 presents the distribution of
achieved goals. The Unifom&Random, F2&Random and F3&Random baselines
manage to discover a few goals of stacks of three objects (blue bar). However, they
fail at discovering the other more complex configurations. The fact that they also
fail to achieve the stacks of three more often suggests that these configurations are
not sampled often enough by these baselines. In fact, these agents perfectly mas-
ter stacks of three, and focus their goal generation on other goals without realizing
that exploring from S3, even if it is perfectly mastered, would eventually lead to
discovering new goals (stacks of 4 and 5).

150

6.4.8 How do Active Queries affect Social Interventions ?

In this section, we investigate the role of the active query mechanism based on the
lp estimations used by hme-based agents to ask for the sp’s assistance. To do
so, we consider three baselines with fixed query probabilities: F-0.05, F-0.06 and F-
0.07. These values were chosen so that the underlying amount of social interventions
would be close to that of hme-β = 50.

Table 6.4: Evaluation metrics for the influence of the active query mechanism.

Metrics
Agents

hme-β = 50 F-0.05 F-0.06 F-0.07

% Social Episodes 6.98 ± 0.58 6.53 ± 0.27 7.75 ± 0.31 9.47 ± 0.09
Global SR 0.93 ± 0.02 0.91 ± 0.05 0.92 ± 0.03 0.91 ± 0.05
Beyond / # Frontier 0.25 ± 0.01 0.23 ± 0.03 0.23 ± 0.03 0.19 ± 0.03
Proposed S5 1526 ± 317 1718 ± 288 1884 ± 151 1706 ± 156
Achieved S5 106 ± 33 71 ± 12 87 ± 15 138 ± 11

Table 5.3 highlights several metrics evaluated for hme-β = 50, F-0.05, F-0.06
and F-0.07. Namely, we report the amount of social episodes (first row), the global
SR (second row), the ratio of beyond goals and frontier goals proposed by the sp
(third row), the number of goals in S5 proposed by the sp (fourth row) and the
number of times agents achieved these goals (fifth row). Unsurprisingly, all the
considered agents maximize their global SR (second row). However, the ratio of
beyond goals divided by frontier goals is relatively higher in hme-β = 50 (third
row). This suggests that the queries in hme-β = 50 are selected at a better time
than the other baselines, allowing the agent to achieve the beyond goals more often
from the first time. Besides, the sp proposed less goals from the S5 class (fourth
row), which is considered complex and the agent achieved these goals more often
than the baseline with the same amount of social interventions (fifth row). We note
that F-0.07 manages to achieve more of these goals, but this is not surprising since
they receive more social interventions (first row). These results suggest that, for the
same amount of social interventions, it’s better to actively select queries based on
lp estimation to enable agents to benefit more from these external signal.

6.4.9 Conclusion and Discussions

Recently, a lot of efforts have been made to endow artificial agents with the capacity
to learn from humans. In this chapter, we considered the skill learning of autotelic
agents immersed in a social interaction protocol as a goal exploration process : in
order to grow their repertoires of skills, autotelic agents need to efficiently explore
their goal space, using both their intrinsic motivations and their social situatedness.
On the one hand, we argued that such agents should be endowed with some inter-
nalization mechanisms that enables them to remember external goals even though

151

they have not encountered them physically yet. Besides, for such agents to still be
autonomous, they need to deliberately select when to ask their social partner for
help. To this end, we proposed to further equip them with an internal goal source
selector which they use to select queries. On the other hand, we claimed that social
interventions need to follow certain patterns such that they take the learning agent
beyond its zone of proximal development, which represents the space between what
the agent can fulfill alone and what it can fulfill with the help of expert caregivers.
In this section, we discuss some limitations of our method.

Nature of Social Interventions

In hme-gangstr, the social partner (sp) intervenes during social episodes by sug-
gesting goals whenever the agent seeks help. For simplicity, we supposed that goals
expressed by the agent and sp have the same representation, and considered this
representation to be based on predicate-based semantic configuration. In practice,
if we want to model the sp by a real human, exhaustively defining a semantic con-
figuration is not always trivial, especially if the number of objects to manipulate is
high. Actually, the sp has to specify all the binary predicates between all pairs of
objects. A more natural way to suggest goals would be to use partial goals: the sp
does not have to specify all the predicates, but rather a small subset of constraints.
For example, the sp does not have to specify that two objects would be close if they
are stacked. This inter-dependency between predicates should alleviate the burden
of specifying goals by the sp.

One of the easiest ways to suggest goals by the sp is to use natural language rather
than providing sets of binary constraints. Natural language should in principle
provide the sp with more flexibility. In fact, they do not have to specify a particular
goal (i.e. a well defined configuration of objects), but can suggest more abstract
goals by providing instructions that describe a particular arrangement of objects
without specifying their identity (for example: Build a pyramid). We can imagine
that the learning agents are endowed with a language goal generator (see Chapter 3).
They use an instruction to generate a whole set of compatible goal configurations,
from which they pick one to pursue. When achieved, the sp selects a beyond goal
depending on the frontier goal that the agent selected itself, based on the natural
language-based instruction.

Combining Social Interventions and ACL methods

acl methods rely on intrinsic motivations to regulate the goal generation process
in autotelic agents. These intrinsic motivations usually rely on the interaction data
gathered in play. By contrast, social interventions rely on the sp expertise, including
a wider knowledge of the goal space. In this chapter, we argued that acl methods
are unlikely to replace social interventions in order to explore unknown goal spaces,
especially if the goal discovery requires specific sequences of actions. We claim that

152

this is due to the fact that acl methods focus on goals which do not necessarily
represent stepping stones to new regions of the goal space. These stepping stones
might be very easy goals — which would be ignored by acl methods — but with
good potential to unlock new goals. This is particularly true when goals are not
continuous.

Social interventions and acl methods could work in a complementary fashion.
While acl methods would help the learning agent self-organize its goals, social
interventions would help it discover new ones. This can improve the sample efficiency
in autotelic agents, and improve the coverage of their goal space.

Query Selection

hme-gangstr is endowed with an internal goal source selector which enables them
to choose to either follow their own goals during autotelic episodes, or ask the
sp for new goals to pursue during social episodes. The goal source selection is
based on the estimation of a query probability: the probability to ask the sp for
help. It is high if the agent is not showing enough progress on its already known
goals. The progress on these goals is computed as the mean of progress on each
goal separately. This aggregation can rapidly become inaccurate if the size of the
discovered goals set increases. Actually, if most of the goals that the agent has
discovered are mastered, the query probability would be low even though some
other goals remain not mastered yet.

We may want to model the query probability differently to leverage small subsets
of goals where the learning progress is not high enough. A possible solution is to
compute the mean on the top N goals where the learning progress is high, where
N would be a hyper-parameter. However, this might be inaccurate at the early
stages of the training where the number of discovered goals is still low (close to or
below N). Automatically tuning this hyper-parameter, and increasing it with the
number of discovered goals might help. However, depending on the environment,
this might become more or less difficult to tune. Another solution is to incorporate
an estimation of the discovery rate to the modelling of the query probability. In
this case, selecting queries would not only depend on the learning progress, but also
on how many goals the agent is discovering. If the agent is discovering many goals,
and even though it is performing well on these newly discovered goals, it would not
ask the sp for help. Querying for social intervention would happen more often if the
agent is not discovering any new goals.

153

Chapter Summary

This chapter makes a step towards teachable autonomous agents : the cognitive de-
velopment of artificial agents must take its root in both social situatedness and the
free exploration of the physical world [Sigaud et al., 2021]. To this end, this chapter
introduces two contributions: 1) GoAl-conditioned Neural Graph with SemnaTic
Representations (gangstr), an autotelic agent endowed with an internalization
mechanism and an internal goal source selector, and 2) Help Me Explore (hme),
a social interaction protocol where the sp efficiently catalyzes the development of
the learner. gangstr embodies object-centered and relational inductive biases
(gnn). It relies on both its intrinsic motivations and on its internalized goals to
autonomously explore its goal space. When interacting within the hme interaction
protocol, a simulated social partner (sp) simply suggests goals at the frontier of the
agent’s knowledge. When these goals are reached and are good stepping stones for
further exploration, the sp goes further and suggests unknown goal configurations—
adjacent nodes just beyond that frontier. These goals represent the agent’s zone of
proximal development (zpd): the set of goals it cannot reach alone (unknown con-
figurations), but can reach with social guidance (when the sp shows the stepping
stone). Although low-level exploration remains powered by undirected noise, the
high-level exploration is extended by the suggestions of the sp. This simple ex-
ploratory curriculum unlocks the potential of the agent. With only 0.5% of social
episodes, it can discover pyramids and stacks of 3, stacks of 4 and stacks of 5.

154

Part Summary

The main scientific question we attempted to investigate in this part is the follow-
ing: How can we define social interaction protocols that allow efficient teaching of
autotelic agents with light external interventions? To this end, we first started by
formalized the open-ended skill learning in autotelic agents under the guidance of
an expert social partner (sp) as a goal exploration process augmented with a goal
source selector that enable agents to switch between pursuing self-generated goals
and goals proposed by an external program. In Chapter 5, we introduced Hybrid
Goal Exploration Processes (hgeps), a family of frameworks for exploring multiple
goals from different sources. We showed that, when autotelic agents have no clue
on what goals they can physically achieve and thus exclusively focus their intrin-
sic motivations to physically encountered goals, the external program suggests new
opportunities for exploring novel regions of the goal space. More specifically, by
targeting these external goals, autotelic agents are more likely to take new actions
that they would not necessarily take when pursuing exclusively their own goals. We
argued that synchronizing these different sources of goals could enable agents to
explore more efficiently.

In Chapter 6, we proposed a way to perform this synchronization between self-
generated and external goals. More specifically, we introduce Help Me Explore
(hme), a social interaction protocol involving a social partner with expert knowledge
on the underlying goal space and an autotelic agent, gangstr, endowed with an
internalization mechanism and an internal goal source selection module. On the one
hand, the sp intervenes by suggesting a frontier goal that the agent knows. This
is made possible since the sp incrementally builds a model of the learning agent’s
current exploration limits. If gangstr succeeds at reaching this first goal, the sp
continues with a new beyond goal that the agent does not yet know but that is
accessible from the previous frontier goal. Following this scheme, the sp guides the
agent beyond its zone of proximal development (zpd). On the other hand, gangstr
can remember the beyond goals proposed by the sp even though it has not physi-
cally encountered them yet. Then, it can rehearse these goals even in the absence
of its caregiver. Besides, gangstr actively selects when to query the sp for help
based on its estimation of its learning progress. Actually, if the agent estimates it
is not currently progressing enough on its already discovered goals, it asks for social
episodes where the sp performs the scheme described above. Otherwise, the agent
performs autotelic episodes, where it autonomously generates goals to pursue based
on its own sensorimotor experience and internalized goals.

We showed that when evolving within hme, gangstr efficiently explores and
learns about its goal space, including the most complex goals. We also showed
that the internal mechanisms of gangstr make the social interventions lighter. We
believe this is a step towards teaching autotelic agents under social guidance with
minimal involvement from the external caregiver.

155

Part III

Discussions

156

Chapter 7

Behavior Specification in RL

In Chapter 1, we introduced the reinforcement learning (RL) paradigm as a math-
ematical backbone to train artificial agents to accomplish a single task specified by
a pre-defined reward function. We argued that the RL formulation provides the
agent with information about what to do — the goal — but not necessarily about
how to do it — the behavior — especially in sparse scenarios. We then presented
a novel family of parametric criteria called delayed geometric discounting criteria
as a generalization of the standard geometric discounts. Depending on the level of
the delay, we showed that optimizing such criteria affects the agent behavior, as it
becomes ready to discard short-term rewards for longer-term ones.

In this chapter, we discuss the problem of behavior specification in RL. We present
three related methods: constrained RL (c-RL), imitation learning (IL) and learning
from human preferences (LfHP).

Aspects of RL’s Impracticality

The standard formulation in RL aims at maximizing the sum of returns obtained
during the agent’s interactions with its environment [Sutton and Barto, 2018]. This
implies that a scalar reward function specific to the desirable task needs to be
manually engineered beforehand. In addition, this reward function needs to be ex-
haustively defined if we want the learning agent to exhibit a particular behavior. A
recent paper by Silver et al. [2021] argues that reward is enough for the emergence
of sophisticated intelligence and the associated abilities. The authors suggest that
even sparse rewards could enable an agent to learn a diversity of skills without man-
ually specifying them. For example, if an agent receives a positive reward only if
it places an object in a certain position, it would potentially be able to learn other
skills such as pushing, sliding and grasping the object, even though the designer had
not specified these underlying skills beforehand. Although this might be plausible
in simple environments, it rapidly becomes challenging in more complex ones that
incorporate several constraints and require specific reasoning and actions. In these
scenarios, sparsely defined rewards would probably yield a sample-inefficient train-
ing. Consequently, the designer would need to define richer reinforcing signals, and

157

even in this case, the underlying behavior is prone to negative behavioral side effects
due to reward hacking [Amodei et al., 2016, Taylor et al., 2016, Everitt and Hutter,
2016, Krakovna et al., 2018]. A classic example of such behavior is the OpenAI’s
demo1 of an RL agent in a boat racing game endlessly going in circles and collecting
reward targets instead of actually performing the race.

Interestingly, a rebuttal paper entitled scalar reward is not enough by Vamplew
et al. [2022] was presented as a response to Silver et al. [2021]. The authors suggest
that scalar rewards could trigger some intelligent behavior in some cases, but they
are insufficient for the development of more sophisticated artificial intelligence. They
argue in favour of multi-objective models of reward maximization. We believe this
is more plausible, especially knowing that RL lacks practical ways of specifying
admissible and forbidden behaviors.

Constrained RL

The idea of c-RL first originated from the formulation of constrained MDPs, which
is a framework that extends optimality within MDPs to the cases where additional
constraints need to be satisfied in addition to the main objective [Altman, 1999].
Hence, c-RL belongs to the family of algorithms that leverage multi-objective mod-
els of reward maximization. A typical approach in c-RL is to use Lagrangian meth-
ods [Achiam and Sastry, 2017, Ray et al., 2019, Stooke et al., 2020, Zhang et al., 2020,
Roy et al., 2021]. The basic idea is to augment the main objective with a weighted
sum of the constraints. The weighting coefficients — the Lagrange multipliers — are
determined through gradient steps. The obtained solution would maximize the main
objective and satisfy the set of constraints at the same time.

Recently, c-RL methods have been investigated in several scenarios, especially in
safe RL. Research used these methods to leverage safe RL problems such as learning
via human intervention [Saunders et al., 2017], continuous control [Achiam et al.,
2017b, Dalal et al., 2018], advertising systems Wang et al. [2016b] and video games
[Roy et al., 2021]. These works train artificial agents to acquire specific behaviors
by avoiding some unwanted ones and encouraging others. However, since all these
methods need to mathematically specify constraints, it can become challenging in
complex environments. In fact, some behaviors can be recognizable (watch a be-
havior and recognize it), but not necessarily specified (extract specific features of a
particular behavior).

Imitation Learning

A natural way of specifying a particular behavior is by demonstrating it. An expert
agent provides a set of trajectories typically through tele-operation. The learning
agent then attempts to imitate the expert decisions by learning an optimal policy
that follows the given trajectories. Consequently, IL is a straightforward way to

1https://openai.com/blog/faulty-reward-functions/

158

specify desired and undesired behaviors for the agent to reproduce. We consider
three main methods for performing IL: behavioral cloning, direct-policy learning
and inverse RL.

Behavioral Cloning represents the simplest form of imitation learning. It is based
on supervised learning, and attempts to exactly replicate the demonstrated behavior
[Pomerleau, 1998, Wu et al., 2019]. Agents typically learn a parameterized policy
function that generates the same actions when it is in the same states as given in the
demonstrating trajectories. Thanks to function approximators, such agents could
eventually generalize to other states if they resemble the ones that were given in the
demonstrations. Such a method can be effective in certain applications. However,
they are not suitable for long-term planning due to the distributional shift between
training and testing states [Codevilla et al., 2019, Kirk et al., 2021].

Direct-policy learning represents an interactive version of behavioral cloning
[Ross et al., 2011]. It assumes that the learning agent has access to an interactive
demonstrator at training time. Beyond leveraging expert trajectories, this demon-
strator can evaluate the agent’s rollout trajectories, which increases the amount of
data at training time. Although these methods improve upon behavioral cloning,
getting them to transfer and generalize to unseen scenarios in complex environments
remains challenging.

Inverse RL is different from behavioral cloning and direct-policy learning in that
it typically does not use supervised learning. These methods rely on the idea of infer-
ring the reward function of the environment based on the experts’ demonstrations.
They later use RL methods to learn optimal policies that maximize the inferred
rewarding signal. These methods are shown to be very efficient when training and
to handle long-term planning [Abbeel and Ng, 2004, Syed et al., 2008, Syed and
Schapire, 2010, Ho and Ermon, 2016, Finn et al., 2016]. However, they can be diffi-
cult to train since agents need to learn the reward function jointly with the policy,
leading to potential non-stationarities.

IL enables experts to explicitly specify a desired behavior. Nevertheless, pro-
viding demonstrations is not always possible, depending on the task at hand and
on the environment. Besides, getting the agents to generalize beyond the given
demonstrations remains an open-challenge.

Learning from Human Preferences

An alternative way for an expert to specify desired behavior during training with-
out leveraging demonstrations is to provide some preferences. Actually, LfHP has
been investigated in the context of diverse skill acquisition in continuous control
setups [Wilson et al., 2012, Christiano et al., 2017]. The basic idea is to allow an
expert — typically a human expert — to evaluate the learning agent’s trajectories by
specifying binary signals indicating if a behavior is desirable or not. Using these
signals, the agent needs to fit a reward function to the human preferences. It then
trains its policy using RL techniques to maximize this inferred reward signal. Dur-
ing training, the agent can maintain an estimator of its uncertainty of the reward

159

function [Christiano et al., 2017]. If it is not sure, it can potentially query the expert
for new evaluations.

These methods have the advantage of not requiring expert trajectories. Besides,
additional techniques could be used to make sure that the expert intervention is
minimal [Christiano et al., 2017]. Yet, training models using these methods is chal-
lenging. In fact, perfectly fitting a reward function to the human preferences could
be tricky, especially if there are many constraints that the expert needs to specify.

Summary

When training artificial agents to accomplish a specific task, it might be possible
that specific behaviours are either desired or undesired to be performed meanwhile.
Such constraints could be incorporated explicitly within the reward function used to
train such agents with RL methods. Yet, exhaustively defining such a function could
be challenging in complex environments and is prone to reward hacking. Several
methods could be used for behavioural specification when training agents to perform
a task. These methods could be decomposed in two categories: methods that do
not require an expert in the training loop, and methods that require one. For the
former, Constrained RL represents a framework that extends standard RL to the
case where additional constraints need to be satisfied while optimizing the main
objective — typically the sum of returns. For the latter, imitation learning and
learning from human experts could be used to incorporate desired behaviours in the
learning process of artificial agents.

160

Chapter 8

Towards More Teachable Agents

In Chapter 2, we introduced teachable autotelic agents and discussed the design of
such agents. In Table 2.1, we enlisted properties that characterize teaching in hu-
mans, we considered several approaches in ai that leverage some of these properties
and discussed the missing ones. In this chapter, we leverage Table 2.1 to establish a
roadmap towards teachable autotelic agents. We first describe steps that can be per-
formed in the short term by just combining the properties of existing systems. Then
we outline remaining and more fundamental challenges, and turn towards research
on the longer term.

Short Term Steps towards Teachable Autotelic Agents

The imagine [Colas et al., 2020b], decstr [Chapter 3] and hme + gangstr
[Chapter 6] agents all display some of the properties one may expect from teachable
autotelic agents. They are even complementary with respect to several of these
properties. For instance, imagine and decstr are endowed with a basic capability
to interpret language, which is not the case of hme + gangstr. But the latter
implements reciprocal modelling of the tutor and the learner, by contrast with the
former methods. Thus a good deal of the limitations of the above agents could be
overcome by combining their capabilities.

Integrating all these features into a single teachable autonomous agent would
significantly increase their flexibility, making it possible to leverage a more significant
part of the vast repertoire of interaction protocols or “pragmatic frames” used in
human tutoring [Vollmer et al., 2016] and, more generally, opening the possibility to
more natural, non template-based interaction [Zhou and Small, 2020]. It would also
open the way towards new research questions, such as modelling feedback about goal
selection rather than just about action, or the need for an arbitration mechanism
between intrinsic motivations and social feedback. Besides, such an integration may
require some developmental dynamics, resulting in displaying overlapping waves of
sensorimotor and linguistic development [Siegler, 1998].

In terms of comparison between potential methods, research on teachable au-
totelic agents is still not mature enough to benefit from well established dedi-

161

cated benchmarks. But the existing frameworks can rely on any simulated envi-
ronment whose dynamics of interaction with the agent is rich enough, such as the
Fetch Manipulate environment we use in decstr and hme +gangstr, or babyAI
[Chevalier-Boisvert et al., 2018] and many others.

Longer Term Steps towards Teachable Autotelic Agents:
Integrating Social Learning Capabilities

Table 2.1 shows that the combination described above would still lack most of
the properties of inferential social agents. Thus an important direction for future
research will consist in combining the properties of the existing teachable autotelic
agents and endow them with further social inference capabilities.

However, this latter combination effort is less straightforward, as reinforcement
learning and autotelic learning from one side and inferential social learning from the
other side rely on widely different assumptions. Actually, in developmental psychol-
ogy, there is a hot debate between two extreme views, the empiricist view according
to which the infant brain is a tabula rasa which is progressively filled with knowledge
out of experience only, and the nativist view for whom the infant brain comes with
a vast repertoire of hard-wired skills that just get available as the infant develops.
Most research in reinforcement learning and autotelic learning rather adopt the em-
piricist view, but though they cannot be coined as truly nativists, the proponents
of the Inferential Social Learning framework [Gweon, 2021] assume at least that
infants are predisposed to infer other’s intentions. Building agents that account
for such predispositions in the general case raises difficult issues, as the Bayesian
inference processes proposed in [Vélez and Gweon, 2021] to account for inference
capabilities must be configured with adequate priors that are generally given by the
model designer. In other domains like intuitive physics or causality, researchers like
Tenenbaum [Xu et al., 2021] start proposing frameworks to account for such pre-
wired inference capabilities, but integrating these approaches with reinforcement
and autotelic learning still remains a challenge.

Longer Term Steps towards Teachable Autotelic Agents:
Integrating Language Proficiency

Looking more closely at Table 2.1, one can see that an agent combining the prop-
erties of imagine, decstr, hme + gangstr and inferential social learning agents
would still lack one property, which is language proficiency. In language-augmented
agents such as imagine and decstr, the template-based language learning mech-
anism does not mimic the language acquisition processes of infants. However, the
developmental processes and constraints involved in language acquisition may play
a crucial role in the more general acquisition of interaction capabilities. Thus, more
realistic models of language acquisition and learning of semantic predicates in in-
fants [Goldstein et al., 2003, Kuhl, 2004, Mandler, 2012] may be required to better

162

account for these capabilities. Besides, communication itself could be extended to
richer natural language interactions [Lynch and Sermanet, 2020] so as to increase
the teachability of these agents. The very fast progress in language learning with
large transformer models [Floridi and Chiriatti, 2020, Rae et al., 2021] creates an
opportunity in this direction. This emerging topic was recently covered in another
position paper, see Colas et al. [2022a].

Finally, in contrast with the above questions which should be answered soon
given the current pace of learning agents research, there are a few questions which
remain largely unaddressed. For instance, how can an autonomous agent learn to
determine the positive or negative valence of sophisticated feedback signals such as
attitudes or linguistic nuances? Or how can we endow agents with the capability
to generalize immediately what they have learned from an intended demonstration
to other contexts? More fundamentally, how can we extend the language grounding
capabilities of current teachable autotelic agents to solve the harder symbol ground-
ing problem [Harnad, 1990]? In short, language in decstr and imagine is more
indexical than symbolic because the language tokens do not form a system [Nieder,
2009]. The acquisition of symbolic behavior is an emerging topic [Santoro et al.,
2021] which can be of fundamental importance for future agents as, from one side,
considering a social partner is necessary to establish conventional meaning and,
from the other side, such agents may need the flexibility of symbolic behavior to
appropriately learn from natural tutors.

Summary

In this chapter, we discussed the steps that can be performed to endow autotelic
agents with teachability properties. In the immediate future, the existing teachable
autotelic agents — which exhibit some of these properties but not others — could
be combined and integrated with inferential social learning capabilities and more
natural language learning capabilities. Once this is done, given the fast progress
currently observed in the design of autotelic learning agents, we expect to soon see
good enough teachable autonomous agents to use them for quantitative analyses in
developmental psychology studies and for a better design of education programs.
We also believe that this starting point is a key move towards better insertion of ai
agents in the society, with improved capabilities to communicate with and to adapt
to their human users, which is one of the central concerns of ai research.

163

Chapter 9

Spatial Predicate-based
Representations

In Chapter 3, we introduced the concept of semantic configurations as part of an
abstract representation space based on binary spatial predicates. We argued that
such concepts — the relational spatial concepts — are rapidly leveraged by human
toddlers long before language acquisition. These insights were based on the Man-
dlerian view of prelinguistic concept acquisition, which is based on the Perceptual
Meaning Analysis (PMA) mechanism that translates temporal information per-
ceived by infants into an iconic static form. We then introduced predicate-based
autotelic agents, which represent their goal space based on semantic configurations.

In this chapter, we discuss the process of learning such abstract representations
rather than pre-defining them. The main constraint is that these representations
need to align with semantic concepts shared between humans, including spatial
relations such as proximity and stacking.

Goal Space Representations

In the context of goal-conditioned reinforcement learning (gc-rl), learning goal-
conditioned policies requires the existence of a goal space from which goal represen-
tation would be drawn. There exist two different scenarios. On the one hand, if
the goal space is already pre-defined, autotelic agents could rely on the associated
goal achievement function and reward themselves over completion of the goals (see
Section 1.3 of Chapter 1 for a formal definition of goals). The process of learning in
such agents requires generating the goals and training on them. Some approaches
use a replay-based goal generation process, which exclusively rehearses the goals that
were encountered by the agents (See Chapters 3 and 4). Other approaches consider
an external goal generation process, where the goal sampler is external and inde-
pendent of the learning agents’ experience [Schaul et al., 2015, Andrychowicz et al.,
2017, Lanier et al., 2019, Li et al., 2019]. Finally, some approaches attempt to learn
the support of valid goals based on the encountered ones, and perform automatic
goal generation based on trained generative models [Florensa et al., 2018].

164

On the other hand, if the goal space is not already predefined, it should be learned
during training together with its underlying reward function. Such approaches could
make use of an external caregiver that provides descriptions of the achieved states
enabling agents to learn embeddings of such descriptions [Colas et al., 2020b], or rely
on information theoretic methods to maximize the entropy of the discovered states
or to maximize the control [Eysenbach et al., 2018, Zhao et al., 2021]. However, the
learned representations — which exclusively rely on the agent’s sensors to categorize
the skills — usually suffer from poor semantic distinguishement. For instance, the
DIYAN [Eysenbach et al., 2018] and the MUSIC [Zhao et al., 2021] algorithms
consider picking up an object and placing it at different positions as distinguishable
skills.

Some concepts, such as proximity, cannot be defined objectively based only on
sensorimotor information. Unless these concepts are used as building blocks for
other ones (for example, two blocks are considered to be close if it is possible to
stack a third block above them an construct a pyramid), it is challenging to learn
them based only on the state space when the latter is continuous: what would be
the distance threshold between two objects to consider them to be close to each
other ? Since humans understand these concepts, it would be interesting to actually
learn them by interacting with a human. This sort of interaction aims at aligning
concepts as understood by humans with the ones learned by an embodied machine.
In such scenarios, even though the machine has some arbitrary latent code for a
particular goal, it should be able to associate this latent code to a particular semantic
representation that is interpretable by a human.

Conditioned Goal Generation

A typical method for automatically generating valid goals consists in learning the
support of the valid goal distribution using the distribution of goals encountered
during training. When generating a goal using the learned generative model, this
goal would be valid. Imagine if an agent encounters a diversity of goals, such as
configurations with stacks, pyramids, and combinations of constructions. When
automatically generating a goal, it is not straightforward how to focus on a particular
feature — for example sampling pyramids. In fact, the goal generation process in
this case does not focus on a specific region of the valid goal distributions. It would
be interesting to leverage the goal generation process so that it could be conditioned
on some hint. This hint could represent a specific feature of the desired goals —
for example configuration with pyramids. The generative model would then use
this hint to focus on a particular region of the learned goal space support. This is
illustrated in Figure 9.1

Hints could take the form of descriptions based on natural language. This is the
case of the Language Goal Generator that we introduced in Chapter 3. It takes as
input a particular instruction, such as “Construct a pyramid”, and outputs a set of
valid goals where objects are arranged to form a pyramid. In general, hints are not

165

(a) (b)

Figure 9.1: Illustration of the goal generation module in the case where it is (a) not
conditioned on anything and (b) conditioned on some external hints.

limited to language, but can be any sort of shared symbol such as binary predicates,
gestures and gaze.

Guessing Games

Guessing games (GGs) were first introduced as part of the Talking Heads Experiment
established by Steels [Steels, 2015]. It consists of a role play game involving two
agents endowed with sensors enabling them to perceive the physical world. They do
not necessarily need to be embodied — they do not need to perform actions — but
GGs could easily be extended to the case of embodied agents. The roles involved
in GGs are a speaker and a hearer. Both agents exchange these roles. Besides,
a human experimenter can, at any time, pick these roles and replace an artificial
agent.

Steels describes the rules of GGs as follows. Both the speaker and the hearer
perceive a white board on which several shapes with different colors are drawn. The
speaker focuses on one particular region of the board — the context — and draws
the hearer’s attention to that region. Then, the speaker chooses one specific object
in that region — the topic. It provides a verbal hint to the hearer. This verbal
hint consists of an expression that identifies the topic from all the other objects.
It could be for example related to its colors, the number of its edges or its shape.
Based on this verbal hint, the hearer tries to guess the topic chosen by the speaker
and communicates its choice by pointing to that object. The game succeeds —
both agents win — if the topic is identified by the hearer. Hence, this game is
not adversarial but rather cooperative. If the hearer fails, the speaker chains with
another hint, weakening its hypothesis that the hearer understood its first hint. This
gradual communication enables both the hearer and the speaker to eventually align
their understanding of concepts and the language used to describe them.

166

The idea of GGs could be extended to learning goal space representations that
are semantically distinguishable and align with relational concepts such as proximity
and stacking.

Learning Abstract Goal Representation through Guessing
Games

To learn abstract goal representations, a human expert could play GGs with an
artificial agent. Typically, the human expert would play the role of the speaker
since we suppose that it is the human’s concepts that we want to incorporate into
the artificial agent. The topic in this case could correspond to either a particular
state — in this case, it is static — or to a particular trajectory — in this case, it
is dynamic. The human speaker gives a hint about this topic, and the artificial
agent attempts to guess it. Progressively performing this scheme would eventually
enable the artificial agent to guess the topics based on the hints. It could later take
ownership of these hints and use them to train its conditioned-goal generator.

The fact that the artificial agent is endowed with a separate goal generator pro-
vides the possibility to decouple skill learning from concept grounding (See Chap-
ter 3). In this case, the training of the agent could be decomposed into two phases:

• First, the agent autonomously interacts with the environment, discovers skills,
learn to represent them and to achieve them in an unsupervised fashion. It
jointly trains its goal generator to generate goals within the support of valid
goals.

• Second, a human expert engages in a double-sided interaction with the agent.
From the one side, GGs are triggered, where the expert plays the speaker and
the agent plays the hearer. From the other side, the agent could query the
expert about the concepts about which it is the most uncertain. This could
be for example done by training an ensemble of classifiers, computing scores
based on disagreement and selecting queries corresponding to concepts with
the highest score.

The interactions with the human expert during the second phase, either through
GGs or through selecting queries, enable the artificial agent to take ownership of the
human’s hints. Besides, it progressively updates its beliefs about the meanings of
these concepts by conditioning its goal generator — the one trained in phase one —
and updating it.

Summary

In this chapter, we discussed some insights about learning abstract goal representa-
tions that align with semantic concepts such as spatial relations. In these scenarios,
learning representations in an unsupervised fashion is unlikely to provide a diversity

167

of semantically distinguishable skills. This is mainly due to the continuity of the
state space — the space which is usually used to learn goal representation in unsu-
pervised RL. We argued that interactions with human experts in the form of guess-
ing games could enable artificial agents to progressively update their autonomously
learned representations to match the ones corresponding to the semantic concepts
known by humans. We discussed the decoupling of skill learning and concept ac-
quisition and we provided some ideas about training artificial agents to efficiently
categorize their learned skills.

168

Chapter 10

Guiding Teachable Autotelic
Agents

In Chapter 6, we endowed our autotelic agents with two new ingredients: an inter-
nalization mechanism that enables them to remember and rehearse goals that they
did not physically discover yet; an internal goal source selector that enables them
to autonomously select to query an expert social partner (sp) for help. Both these
mechanisms translate two of the teachability properties outlines in Chapter 2: taking
ownership of external social signals and turning them into intra-personal psycholog-
ical tools [Vygotsky, 1994] through internalization; fulfilling social communication-
based transparency by actively requesting the caregiver’s guidance. We also intro-
duced a social interaction protocol (hme) which enables an expert sp to progressively
take the learning agent beyond their zone of proximal development (zpd).

In this chapter, we discuss these mechanisms and attempt to dig a little deeper
in the design of efficient social interaction protocols.

Role of Social Guidance

A social interaction protocol typically involves a learning agent and an expert care-
giver. Ideally, a good interaction protocol needs to be efficient for both parties. On
the one hand, the caregiver needs to be solicited as little as possible. The main
reason behind this constraint is that the intervention of an external social partner
usually comes at a cost. First, if the caregiver is a hard-coded program, modeling
expert knowledge — on which the caregiver relies to provide adequate teaching sig-
nals — usually requires hand-engineered specific functions which can rapidly become
complex depending on the environment. Second, since such interventions depend
on the learning agent’s current status, the caregiver needs to evaluate the agent’s
current progress, which could consume a significant amount of the training bud-
get. Third, multiplying social interventions could affect the agent’s autonomy if it
becomes more reliable on the social partner. This could translate in some sort of
heavy overfitting on the sp’s signals, and the agent would generalize less to new
situations when it is left alone. In Chapter 6, we managed to reduce the amount of

169

social intervention down to 0.5% of the training budget. We have shown that such
an amount is sufficient to discover and start learning the most complex goals in a
five object manipulation benchmark. However, this amount corresponds to 1200
episodes, which is still significant .

On the other hand, the learning agent needs to continue using its own intrinsically
motivated exploration rather than exclusively relying on the caregiver to discover
new goals. We don’t want to have a coupling of individual episodes and social
episodes where the former specializes in consolidating previously known skills and
the latter in discovering new ones. It would be interesting if the learning agents
learned a model of their environment while interacting with the sp. In principle,
this would enable them to imagine new goals, pursue them and learn about them
autonomously. This is the case of the imagine agent [Colas et al., 2020b], where
agents imagine new goals based on the compositionality of language.

In Chapter 6, although it is the learning agent that selects to query the sp
for helps, it has no control whatsoever on which goals are proposed. The latter
are dictated by the sp, and the learning agent needs to pursue these particular
goals during social episodes. This can be problematic if there is no synchronization
between the proposed goals and the agent’s current learning progress. It would
be interesting if the learning agent could specify what region of the goal space
it wants to query the sp about, or if it could have a choice to neglect the sp’s
propositions if it estimates that pursuing a goal proposed by the sp is irrelevant to
its learning process. This is related to the pragmatic aspect of learning in children
(see Chapter 2). Actually, we want our teachable agent to be able to efficiently infer
the intent of the sp, compare it to their own purposes and choose or not to take it
into consideration. Pragmatic learning was recently investigated in the context of
multi-goal learning in ai, where pragmatic agents are able to infer the goal of the
sp from a given demonstration [Caselles-Dupré et al., 2022].

Theory of Mind

In Chapter 6, social interventions correspond to goal proposals: the sp suggests
goals that the learning agent pursues. This process was simplified by hypothesizing
that the sp’s goals are represented in the same space — the semantic configuration
space — as the learning agent. More generally, during a social interaction, under-
standing the goal from the behavior or the instruction of a tutor is crucial. This
clearly calls upon a mental model of the other party’s expectation, which drives
from a more general model known as a theory of mind [Dennett, 1987, Gopnik and
Meltzoff, 1997]. The field of ai was interested in incorporating such models in the
learning agents, resulting in the family of inferential agents [Gweon, 2021, Caselles-
Dupré et al., 2022]. Within a social interaction protocol, both the caregiver and the
sp need to construct a model for one another. On the one hand, the sp needs to be
able to evaluate the agent’s current exploration limits in order to efficiently guide
it. In Chapter 6, this was simply done by considering the goals that the agent has

170

reached at least once. However, it does not necessarily translate the agent’s explo-
ration limits: achieving a goal once could happen by pure luck, considering that the
agent knows how to get back to that goal can be irrelevant. Consequently, the sp’s
model of the learning agent needs to take into account both its discovered goals and
its current policy. On the other hand, the learning agent needs to construct a model
of the sp in order to infer their intentions as discussed in the previous paragraph.
Besides, such a model could also be beneficial when it enables to learning agent to
simulate its sp’s intervention even if the latter is absent. We further discuss these
insights in the next paragraph.

Internalizing Social Signals

Internalizing social signals implies taking ownership of them. In other words, the
learning agents construct an internal model using external signals that go beyond
their embodied experience. We argued in Chapter 2 that this would regulate the
learning agent’s motivations, and showed in Chapter 6 that it enables autotelic
agents to autonomously sample goals that they did not physically encounter. The
internalization mechanism we proposed in Chapter 6 consists in storing the goals
proposed by the sp in the same buffer as the physically discovered ones. This could
be more or less efficient depending on the environment. Actually, as the number of
goals increases, the internalized ones would rapidly get dissolved into the physically
discovered ones. It would be interesting to build an attention mechanism that
specifically considers the sp’s goals.

An efficient internalization mechanism should go beyond the simple remember
and rehearse scheme. It should encompass the whole social intervention process:
internalizing the sp’s intentions in order to be able to simulate the sp’s interventions
in novel situations. To do so, the learning agents need to build upon the theory of
mind model of its sp. Based on the structure of the goal space, and on the frequency
and nature of social goal proposals, the learning agent could predict what goal the
sp would propose in certain situations.

Combining multiple forms of Social Guidance

In Chapter 5, we introduced Hybrid Goal Exploration Processes (hgeps) as a family
of algorithms for learning multiple goals from internal and external sources. We
highlighted that an external program — such a social partner — proposes goals in
any form and that these goals are fed to an interpretation module that translates
them into the learning agent’s representation space. The hme interaction protocol
proposed in the study of Chapter 6 simplifies this idea by supposing that the sp’s
goals and the agent’s goals are the same (the interpretation module corresponds
to the identity function). However, in general, the learning agent needs to train
a multi-headed interpretation module. Ideally, it would take as input any sort of
social intervention — demonstrations, instructions, sets of constraints, preferences —
and generate a set of compatible goals in the same representation space as the agent.

171

This idea is similar to the Language Goal Generator we introduced in Chapter 3,
which is a generative model that takes as input an instruction in natural language
and outputs a set of goals that respect the given instruction. An extension of such
a generator to a multi-headed model that handles multiple forms of external goals
could be interesting.

Summary

This chapter discusses the limits of the hme social interaction protocol proposed
in Chapter 6 to guide teachable autotelic agents. We discussed the role of social
guidance during the learning of autotelic agents, and argued that it should not
be restricted to exploration. Actually, autotelic agents should be able to continue
to explore alone even if the sp is absent. The social guidance should enable the
learning agent to gain insights about the intent and purposes of their sp. This
would allow them to build a model of their caregiver and efficiently internalize their
social signals. By doing so, teachable autotelic agents should be able to imagine
new goals that they did not encounter before by using the structure encapsulated
within the social interventions. We also discussed the combination of multiple forms
of social guidance, which provides more flexibility to the social partner when trying
to guide the learning agent.

172

Conclusion

“Don’t adventures ever have an end? I suppose not. Someone else always
has to carry on the story.” Bilbo Baggins, The Lord of the Rings.

The central purpose of the present research is to design artificial agents capable
of learning from external social signals while keeping their own motivations and
purposes. The main questions around which we wrapped our investigations were
the following:

1. What would be the most efficient fashion through which artificial agents rep-
resent their goals in order to communicate easily with social partners ?

2. What sort of biases could be induced within these agents’ internal models to
enable efficient transfer and generalization between different skills ?

3. Can we formalize learning multiple goals under the assistance of expert social
partners ?

4. How can we design light social interaction protocols that would enable artificial
agents to maximize their control over their goal space ?

Our work is built upon recent research on autotelic agents : artificial agents which
are intrinsically motivated to represent, generate, pursue and learn about their own
goals. We introduced a novel family of autotelic agents that can benefit from social
signals, which we called teachable autotelic agents. Such agents need to leverage
several teachability properties inspired from findings in developmental psychology
and education sciences on the normal teaching of children.

Our agents are predicate-based : they represent their goals as sets of constraints
based on relational spatial predicates. We showed that these semantic representa-
tions allow the decoupling of sensorimotor learning and language grounding, increase
the behavioral diversity and facilitate the communication with social partners that
use natural language.

Our agents are graph-based : they model both their policy and their state-action
value function using Graph Neural Networks (gnns). We showed that combining
gnns with predicate-based goal representations allow light computational schemes
to be efficient in transferring to held-out goals including combinations of previously
learned skills and skills of increasing complexity.

173

Our agents are socially situated : they are endowed with internalization mecha-
nisms that enable them to remember social signals even in the absence of the social
partner. We showed that this had a beneficial effect of regulating our agents’ in-
trinsic motivations as they can autonomously rehearse social signals when they are
left alone. Besides, our agents are endowed with an internal goal source selector
that enables them to deliberately choose to either self-generate their own goals or
ask their social partner for help. The query selection is based on the agents’ own
estimation of their competence: whenever they estimate that they are not progress-
ing enough on the set of skills they already know, they query the social partner for
unlocking new ones.

Beyond the design of teachable autotelic agents themselves, we introduced a novel
social interaction protocol, hme, for teaching these agents under the supervision of
an expert social partner. The latter continuously update their model of the learning
agent’s current exploration limits. They use this model to first propose a goal that
the agent has already visited at least once and that is a stepping stone to new
goals — a frontier goal — then continue with a adjacent new goal — a beyond goal.
We showed that, by doing so, the social partner smoothly takes the learning agent
beyond its zone of proximal development (zpd), which represents the area between
what the agent can achieve alone and what it can achieve with the help of an expert
partner. Little by little, the learning agent becomes less dependent on its social
partner, progressively growing its zpd until it manages to learn about its entire goal
space. We showed that a social intervention valued at 0.5% of the training budget
was sufficient for the agent to unlock the most complex goals within a five object
manipulation benchmark.

We believe that teaching embodied artificial agents with an expert human-in-
the-loop is promising, especially if the learning agents can profit as much as possible
from external social signals. They would eventually internalize them and use them
to update their own internal models, which might include some long-term planning
modules. We believe that combining these insights with the existing and inspiring
research topics such as self-imagination or inferential social learning is an exciting
idea. Resulting agents would be teachable, creative and pragmatic, which are useful
properties in the quest of the autonomous open-ended acquisition of skills.

174

Part IV

Appendices

175

Appendix A

Appendix of Delayed Geometric
Discounts

This appendix presents all additional methods, proofs, results, discussions as well
as implemented details for the Delayed Geometric Discounts study of Chapter 1.

A.1 Non-Stationary Case

In the following, we consider yet a more diverse problem formulation by using a
linear combination of the delayed losses. Let Lη be the following objective function
defined as:

Lη(π, r) := Eπ,p0

[∑
t

η(t)rt

]
such that η(t) =

D∑
d=0

wdΦd(t) (A.1)

where the depth D ∈ N and the coefficients wd ∈ R for any d ∈ [0, D] are known.
In general, the optimal control in the sense of Lη is not stationary. Here, we

propose to approximate the optimal control with a non-stationary policy over a
finite horizon followed by a stationary one.

Approximate optimal control

In the general case, the optimal control is not necessarily stationary. Consider the
problem of learning the optimal action profile a∗0:∞ which yields the following optimal
value function:

V ∗η (s) := max
a0:∞

Ea0:∞

[∞∑
t=0

η(t)rt|s0 = s
]
, (A.2)

where Ea0:∞ is the expectation over trajectories generated using the designated ac-
tion profile. In this section we propose to solve this problem by approximating the
value function from Equation A.2. This is achieved by applying the Bellman op-
timality principle in order to decompose V ∗η into a finite horizon control problem

176

(optimising a0:H with H ∈ N) and the optimal value function V ∗fH+1(η) where f is an
operator transforming the weighting distribution as follows:[

f(η)
]
(t) :=

D∑
d=0

(
γd

D∑
j=d

wj
)
Φd(t) = 〈Γ ·w,Φ(t)〉

where Γ :=

γ0 γ0 γ0 ... γ0

0 γ1 γ1 ... γ1

0 0 γ2 ... γ2
...

. . .
...

0 0 0 ... γD

 ; w :=

w0

w1

w2
...
wD

 ; Φ(t) :=

Φ0(t)
Φ1(t)
Φ2(t)

...
ΦD(t)

For the sake of simplicity, let 〈1, η〉 :=

∑D
d=0 wd and

[
fn(η)

]
(t) := 〈Γn ·w,Φ(t)〉 for

any n, t ∈ N.

Proposition 2 For any state s0 ∈ S, the following identity holds:

V ∗η (s0) = max
a0:H

{
Ea0:H

[H∑
t=0

〈1, f t(η)〉rt
]

+ Ea0,a1,..,aH
[
V ∗fH+1(η)(sH+1)

]}
(A.3)

As a consequence, the optimal policy in the sense of Lη is to execute the minimising
arguments a∗0:H of Equation A.3 and to execute the optimal policy in the sense
LfH+1(η). Unfortunately, solving LfH+1(η) is not easier than the original problem.

However, under mild assumptions, for H large enough, this criterion can be
approximated with a simpler one. In order to derive this approximation, recall that
the power iteration algorithm described by the recurrence vk+1 = Γ·vk

‖Γ·vk‖
converges to

the unit eigenvector corresponding to the largest eigenvalue of the matrix Γ whenever
that it is diagonalizable. In particular, if 0 < γD < ... < γ0 < 1 and v0 = w, then Γ
is diagonalizable, γ0 is it’s largest eigenvalue and the following holds:

lim
n→∞

vn+1 = lim
n→∞

Γn ·w∏
k≤n ‖Γ · vk‖

= [1i=0]i∈[0,D] and lim
n→∞

V ∗fn(η)(s)∏
k≤n ‖Γ · vk‖

= V ∗(s)

(A.4)

Under these premises, the right hand term of the minimisation problem in Equa-
tion A.3 can be approximated with the optimal value function in the sense of the
classical RL criterion L (which optimal policy can be computed using any standard
reinforcement learning algorithm in the literature).

Formally, we propose to approximate Equation A.3 with a proxy optimal value
function Ṽ ∗η,H(s0):

Ṽ ∗η,H(s0) = max
a0:H

{
Ea0:H

[H∑
t=0

〈1, f t(η)〉rt
]

+
(∏
k≤H

‖Γ · vk‖
)
Ea0,a1,..,aH

[
V ∗(sH+1)

]}
(A.5)

177

A direct consequence of Equation A.4 is that limH→∞ Ṽ
∗
η,H(s) = V ∗η (s) for any state

s ∈ S. In addition, for a given horizon H, the optimal decisions in the sense of the
proxy problem formulation are to execute for the first H steps the minimising ar-
guments a∗0:H of Equation A.5 (they can be computed using dynamic programming)
and then execute the optimal policy in the sense of the γ0-discounted RL (which
can be computed using any standard RL algorithm).

Optimal Control Approximation

Figure A.1: Learned H-close optimal control

In this section we investigate the performances of the policies learned using Al-
gorithm 6 as we vary the non stationarity horizon H for three depth parameters
D ∈ {5, 10, 15} (respectively the red, blue and green curves). We reported in Fig-
ure A.1 the expected returns as the average rewards using the continuous lines and
as the ΦD weighted rewards using dashed lines. As a baseline, we can observe in
each figure the performances of the optimal policy in the sense of the geometrically
discounted criterion when the non-stationarity horizon H = 0. We also reported
the performances of the best stationary policy learned using GSAC for a depth
parameter D = 5.

Algorithm 6 H-close optimal control

1: Compute π∗, V ∗ ← Policy Iteration and initialize v0 ← w
2: for t ∈ [1, H] do
3: Compute vt ← Γ · vt−1

4: Initialise VH+1(s)← V ∗(s) ·
∏

k≤H ‖Γ · vk‖
5: for t ∈ [H, 0] do
6: Solve πt(s)← arg maxa ‖vt‖ · c(s, a) + Es′∼P(s,a)

[
Vt+1(s′)

]
7: Compute Vt(s)← ‖vt‖ · c(s, πt(s)) + Es′∼P(s,πt(s))

[
Vt+1(s′)

]
8: Return: (πt)t∈[0,H], π

∗

The first notable observation is that increasing the hyper-parameter H does
indeed improve performances. In addition, we notice that the maximum possible

178

improvement is reached using a finite horizon H (i.e. the maximising argument of
both Ṽη,H and V ∗η are the same). Intuitively, the H non stationary steps enable the
agent to get to an intermediate state from which the optimal policy in the sense
of the discounted RL formulation can lead to the state with the highest rewards.
This explains the effectiveness of current hard exploration RL algorithmsEcoffet
et al. [2019], Eysenbach et al. [2019]: by learning a policy that reaches interesting
intermediate state, these methods are implicitly learning an approximate solution
of Ṽη,H .

In the case of D = 5, the obtained performances using Algorithm 6 converged
to the performances of the optimal stationary policy obtained using GSAC in both
the random and T-maze. On the other hand, unlike GSAC, the H-close algorithm is
not sensitive to initialisation: in fact, even for an arbitrarily high depth parameter
(D = 15), the learned policy ends up saturating the average and the ΦD weighted
rewards. More interestingly, increasing the depth can be beneficial as we observe
empirically that for higher depth parameters, the non-stationarity horizon required
to achieve the best possible performances decreases.

A.2 Additional Results

A.2.1 Influence of the Depth Parameter in Discrete Mazes.

Figure A.2: Learned stationary policy (g-sac) performances as the depth parameter varies

In Figure A.2, we reported the performances of GSAC as we varied the depth
hyper-parameter D using two initialisation protocols. The blue curves are associated
with randomly selected initial parameters while the red curves are associated with
experiments where the policy is initialised with the solution of the geometrically
discounted problem. The solid lines correspond to the average reward while the
dashed lines correspond to the Φd weighted loss (as computed in Ld).

In all experiments, the expectations were averaged across 25 runs of the algo-
rithm using trajectories of length 4000 initialised in all possible states (uniform p0)
. A common observation is that for a depth D higher than 6 7 the algorithm was

179

unstable and we couldn’t learn a good stationary policy in a reliable way. How-
ever, the learned stationary policies with even a relatively shallow depth parameter
yielded reliable policies that not only maximise the ΦD weighted rewards but also
improved the average returns. Notice how the baseline (D = 0, i.e. the geometri-
cally discounted case) always under-performs when compared to the learned policies
for a depth parameter around 3.

We also observe that the algorithm is sensitive to the used initialisation. Using
the optimal policy in the sense of the geometrically discounted objective (red curves)
helped stabilise the learning procedure in most cases: this is particularly true in the
random maze environment where a random initialisation of the policy yielded bad
performances even with a low depth parameter. This heuristic is not guaranteed to
produce better performances in all cases, notice how for D = 7 in the T-maze, a
random initialisation outperformed this heuristic consistently.

A.2.2 Ablation analysis (Discrete Corridor Environment)

(a) Max performance (b) Average performance

Figure A.3: Success rate as a function of the Delay D and the discount values

In this section, we consider a simple 2000 states long corridor environment with a
deceptive reward of 0.9 on one extremity, a desirable reward of 1 on the other and an
adversarial reward of −1 in the middle (states 990 to 1010). For this environment,
we consider that a policy is successful if it ends up reaching the best reward and
that it fails in any other scenario (including the case where it reaches the deceptive
reward). The success rate of a policy is consequently the proportion of states from
which it reaches the best reward.

we investigate the performances of the obtained policies using GSAC1 as we vary
the delay parameter D ∈ {0, . . . , 14} and the discounts γi≤D = γ ∈ [1 − 10−1, 1 −

1A discrete version of the algorithm with down dynamics

180

10−14]. For each couple of values, we evaluate the best (Figure A.3a) and the average
(Figure A.3b) success rate of the learned policies in 10 randomly initialised runs of
GSAC. The obtained performances are reported in Figure A.3 as heat-maps where
higher success rates (close to 1) are associated with red and lower ones with blue.

Naturally, for low discount parameter γ, the success rate is around 0.5 as states on
each side of the adversarial reward are encouraged to leave that area in the direction
of the closest positive reward. Interestingly, there is a limiting curve (continuous
yellow line in Figure A.3b) above which the best stationary policy in the sense of LD
has a success rate of 1, and a second line (dashed yellow line) above which numerical
instabilities induce poor numerical performances.

Notice that if we consider the vertical line in Figure A.3 corresponding to D =
0, we recover the Blackwell criterion: there exists a critical value of the discount
above of which agents are capable of reaching the desirable reward. Intuitively,
these observations generalize this criterion to the delayed geometrically discounted
framework: There exists a critical frontier that depends on both the delay D and
the discounts γi≤D, above of which optimal stationary policies in the sense of the
delayed criterion LD is also optimal in the sense of the average criterion

A.3 Implementation Details

This part includes details necessary to reproduce results in the continuous robotics
environments. The code will be released with the camera-ready version of the paper.

Soft Actor Critic Details. Our algorithms are based on the Soft Actor Critic
algorithm [Haarnoja et al., 2018]. Notably, we use the double Q-Networks trick to
help tackle the overestimation bias [Fujimoto et al., 2018]. In our experiments, we
do not automatically tune the entropy hyperparameter α. In fact, we found that
fixing its value to α = 0.2 is sufficient for the purpose of this paper.

Delayed Networks. As the results for the GSAC learned stationary policies show
that the performance tends to decrease for high values of delay D, we opt for D = 2
in the continuous robotics experiments. Our main objective is to study the effect of
shallow delayed geometric discounts on simulated robotics environments.

Networks Architecture. Each of the discount factors γ1 and γ2 is associated with
a different critic and target critics networks. All these networks, as well as the policy,
are 1-hidden layer networks of hidden size 256. They use ReLU activations and the
Xavier initialization. We use Adam optimizers, with learning rates 3 × 10−4. The
list of hyperparameters is provided in Table A.1.

A.4 Proofs of the Technical Results

A.4.1 Useful intermediate results

We start by introducing some useful intermediate results that will be used later
on to prove propositions 1 and 2.

181

Table A.1: Sensorimotor learning hyperparameters used in g-sac.

Hyperparam. Description Values.
lr actor Actor learning rate 3× 10−4

lr critic Critic learning rate 3× 10−4

τ Polyak coefficient for target critics smoothing 0.95
batch size Size of the batch during updates 256
hidden size Dimension of the networks’ hidden layers 256
γ0 Discount factor associated with the first delay 0.99
γ1 Discount factor associated with the second delay 0.99
delayed update ratio # of first critic updates before single second critic update 1
update per step # of networks updates loop per a single environment step 1
target update Target networks soft updates per step 1
α Entropy coefficient used in sac 0.2
automatic entropy Automatically tune the entropy coefficient False

Useful Results for Proposition 1

To derive the desired property of the value function, it is useful to derive a relation-
ship between the coefficients ΦD(t):

Lemma 1 For any integer D > 0 , the following equalities hold:

ΦD(t) =
t∑

k=0

γkDΦD−1(t− k) = ΦD−1(t) + γDΦD(t− 1) =
D∑
d=0

γdΦd(t− 1)

Now, consider the state-value function V π
d (s) defined as:

V π
D(s) := Eπ

[∞∑
t=0

ΦD(t)rt|s0 = s
]

Lemma 1 can be used to derive a relationship between the value functions (V π
d)Dd=0

for any depth parameter D ∈ N:

Proposition 3 For any state s ∈ S and for any integer D ∈ N, we have:

V π
D(s) = E a∼π(s)

s′∼P(s,a)

[
c(s, a) +

D∑
d=0

γdV
π
d (s′)

]

Useful results for Proposition 2

This proposition is proved using inductive reasoning. For this reason, we start by
consider the simpler case of H = 1:

Proposition 4 For any state s0 ∈ S, the following identity holds:

V ∗η (s0) = max
a0

{[D∑
d=0

wd
]
c(s0, a0) + Es1

[
V ∗f(η)(s1)

]}
(A.6)

182

A.4.2 Proofs

In this section we provide the proofs of the technical results
Proof of Proposition 1

Recall that:

Qπ
D(s, a) = Es′∼P(s,a)

[
V π
D(s′)

]
Then the statement from Proposition 3 can be reformulated as

Qπ
D(s, a) = Es′∼P(s,a)

a′∼π(s′)

[
c(s, a) +

D∑
d=0

γdQ
π
d(s′, a′)

]
(A.7)

Which means that Qπ
D is a fixed point of TDπ . Given that this operator is a γD

contraction with γD ∈ (0, 1), it follows that it is the unique fixed point.

Proof of Lemma 1

The proof relies on algebraic manipulations of the indices:

ΦD(t) :=
∑

{ad∈N}Di=0
such that

∑
d ad=t

D∏
d=0

γadd

=
t∑

k=0

γkD

[∑
{ad∈N}D−1

i=0
such that

∑
d ad=t−k

D−1∏
d=0

γadd

]
=

t∑
k=0

γkDΦD−1(t− k)

This concludes the proof of the first equality. Similarly, the second equality is
achieved through similar algebraic treatments:

ΦD(t) =
t∑

k=0

γkDΦD−1(t− k)

= ΦD−1(t) +
t∑

k=1

γkDΦD−1(t− k)

= ΦD−1(t) + γD

t−1∑
k=0

γkDΦD−1((t− 1)− k) = ΦD−1(t) + γDΦD(t− 1)

This concludes the proof of the second equality. The last one can be deduced
directly using induction. In fact, the induction is a direct consequence of the second
equality, and the basis case is trivially verified as:

Φ0(t) = γt0 = γ0Φ0(t− 1)

183

Proof of Proposition 3

The proof relies on some algebraic manipulation as well as the last equality from
Lemma 1.

V π
D(s) = Eπ

[∞∑
t=0

ΦD(t)c(st, at)|s0 = s
]

= Eπ

[
c(s0, a0) +

∞∑
t=1

ΦD(t)c(st, at)|s0 = s
]

= Eπ

[
c(s0, a0) +

D∑
d=0

γd

∞∑
t=1

Φd(t− 1)c(st, at)|s0 = s
]

= Eπ

[
c(s0, a0) +

D∑
d=0

γd

∞∑
t=0

Φd(t)c(st+1, at+1)|s0 = s
]

= E a∼π(s)
s′∼P(s,a)

[
c(s, a) +

D∑
d=0

γdV
π
d (s′)

]
where the last equality relies on the Markov property of MDPs.

Proof of Proposition 4

The proof relies on the linearity of the expectation as well as proposition 3. Let’s
denote in this proof with the policy π the sequence of action a0, a1, . . . , a∞ and
with the transposed policy Tπ the sequence of actions a1, a2, . . . , a∞. The following
property then holds

V π
η (s) =

D∑
d=0

wdV
π
d (s) =

D∑
d=0

wdE a∼π(s)
s′∼P(s,a)

[
c(s, a) +

d∑
i=0

γiV
Tπ
i (s′)

]
= Ea∼π(s)

[(D∑
d=0

wd
)
c(s, a)

]
+ E a∼π(s)

s′∼P(s,a)

[D∑
d=0

wd

d∑
i=0

γiV
Tπ
i (s′)

]
= Ea∼π(s)

[(D∑
d=0

wd
)
c(s, a)

]
+ E a∼π(s)

s′∼P(s,a)

[D∑
d=0

γd
(D∑
i=d

wi
)
V Tπ
d (s′)

]
= E a∼π(s)

s′∼P(s,a)

[(D∑
d=0

wd
)
c(s, a) +

D∑
d=0

γd
(D∑
i=d

wi
)
V Tπ
d (s′)

]
= E a∼π(s)

s′∼P(s,a)

[(D∑
d=0

wd
)
c(s, a) + V Tπ

f(η)(s
′)
]

184

Using this equality and the Bellman property, it follows that the maximum value
function V ∗η verifies the following:

V ∗η (s0) = max
π

V π
η (s0) = max

π
Es1∼P(s0,a0)

[(D∑
d=0

wd
)
c(s0, a0) + V Tπ

f(η)(s1)
]

= max
a0,Tπ

{(D∑
d=0

wd
)
c(s0, a0) + Es1∼P(s0,a0)

[
V Tπ
f(η)(s1)

]}
= max

a0

{(D∑
d=0

wd
)
c(s0, a0) + max

Tπ
Es1∼P(s0,a0)

[
V Tπ
f(η)(s1)

]}
= max

a0

{[D∑
d=0

wd
]
c(s0, a0) + Es1∼P(s0,a0)

[
V ∗f(η)(s1)

]}

185

Appendix B

Appendix of LGB

B.1 Pseudo-codes

Algorithms 7 and 8 present the high-level pseudo-codes of any algorithm following
the lgb architecture for each of the three phases: the skill learning phase (g→b), the
language grounding phase (l→g) and the instruction following phase (l→g→b).

Algorithm 7 lgb architecture
g→b phase

. Goal → Behavior phase
1: Require Env E
2: Initialize policy Π, goal sampler Gs,

buffer B
3: loop
4: g ← Gs.sample()
5: (s, a, s′, g, cp, c

′
p)τ ← E.rollout(g)

6: Gs.update(cTp)
7: B.update((s, a, s′, g, cp, c

′
p)τ)

8: Π.update(B)

9: return Π, Gs

10:

11:

12:

Algorithm 8 lgb architecture
l→g and l→g→b phases

. Language → Goal phase
1: Require Π, E,Gs, social partner SP
2: Initialize LGG
3: dataset ← SP .interact(E,Π, Gs)
4: LGG.update(dataset)
5: return LGG
. Language → Behavior phase

6: Require E,Π, LGG, SP
7: loop
8: instr. ← SP .listen()
9: loop . Strategy switching loop

10: g ← LGG.sample(instr., c0)
11: cTp ← E.rollout(g)
12: if g == cTp then break

B.2 The decstr algorithm

B.2.1 Intrinsically Motivated Goal-Conditioned RL

Algorithm 9 presents the detailed pseudo-code of the sensorimotor learning phase
(g→b) of decstr. It alternates between two steps:

186

• Data acquisition. A decstr agent has no prior on the set of reachable
semantic configurations. Its first goal is sampled uniformly from the semantic
configuration space. Using this goal, it starts interacting with its environment,
generating trajectories of sensory states s, actions a and configurations cp. The
last configuration cTp achieved in the episode after T time steps is considered
stable and is added to the set of reachable configurations. As it interacts with
the environment, the agent explores the configuration space, discovers reachable
configurations and selects new targets.

• Internal models updates. A decstr agent updates two models: its curricu-
lum strategy and its policy. The curriculum strategy can be seen as an active
goal sampler. It biases the selection of goals to target and goals to learn about.
The policy is the module controlling the agent’s behavior and is updated via
RL.

Algorithm 9 decstr: Sensorimotor Phase g→b.

1: Require: env E, # buckets Nb, # episodes before biased init. nunb, self-
evaluation probability pself eval, noise function σ()

2: Initialize: policy Π, buffer B, goal sampler Gs, bucket sampling probabilities
pb, language module LGG.

3: loop
4: self eval ← random() < pself eval . If True then evaluate competence
5: g ← Gs.sample(self eval, pb)
6: biased init ← epoch < nunb . Bias initialization only after nunb epochs
7: s0, c0

p ← E.reset(biased init) . c0: Initial semantic configuration
8: for t = 1 : T do
9: at ← policy(st, ct, g)

10: if not self eval then
11: at ← at + σ()

12: st+1, ct+1
p ← E.step(at)

13: episode ← (s, c, a, s′, c′)
14: Gs.update(cT)
15: B.update(episode)
16: g ← Gs.sample(pb)
17: batch ← B.sample(g)
18: Π.update(batch)
19: if self eval then
20: pb ← Gs.update LP()

Policy updates with a Goal-Conditioned Soft Actor-Critic

Readers familiar with Markov Decision Process and the use of sac and her algo-
rithms can skip this paragraph.

187

We want the decstr agent to explore a semantic configuration space and master
reachable configurations in it. We frame this problem as a goal-conditioned mdp
[Schaul et al., 2015]: M = (S,Gp,A, T ,R, γ), where the state space S is the usual
sensory space augmented with the configuration space Cp, the goal space Gp is equal
to the configuration space Gp = Cp, A is the action space, T : S ×A×S → [0, 1] is
the unknown transition probability, R : S ×A → {0, 1} is a sparse reward function
and γ ∈ [0, 1] is the discount factor.

Policy updates are performed with Soft Actor-Critic (sac) [Haarnoja et al.,
2018], a state-of-the-art off-policy actor-critic algorithm. We also use Hindsight
Experience Replay (her) [Andrychowicz et al., 2017]. This mechanism enables
agents to learn from failures by reinterpreting past trajectories in the light of goals
different from the ones originally targeted. her was designed for continuous goal
spaces, but can be directly transposed to discrete goals [Colas et al., 2019]. In our
setting, we simply replace the originally targeted goal configuration by the currently
achieved configuration in the transitions fed to sac. We also use our automatic
curriculum strategy: the lp-c-based probabilities are used to sample goals to learn
about. When a goal g is sampled, we search the experience buffer for the collection
of episodes that ended in the configuration cp = g. From these episodes, we sample
a transition uniformly. The her mechanism substitutes the original goal with one
of the configurations achieved later in the trajectory. This substitute g has high
chances of being the sampled one. At least, it is a configuration on the path towards
this goal, as it is sampled from a trajectory leading to it. The her mechanism is
thus biased towards goals sampled by the agent.

Object-Centered Inductive Biases

In the proposed Fetch Manipulate environment, the three blocks share the same set
of attributes (position, velocity, color identifier). Thus, it is natural to encode a
relational inductive bias in our architecture. The behavior with respect to a pair of
objects should be independent from the position of the objects in the inputs. The
architecture used for the policy is depicted in Figure B.1.

A shared network (NNshared) encodes the concatenation of: 1) agent’s body
features; 2) object pair features; 3) current configuration (cp) and 4) current goal g.
This is done independently for all object pairs. No matter the location of the features
of the object pair in the initial observations, this shared network ensures that the
same behavior will be performed, thus skills are transferred between object pairs. A
sum is then used to aggregate these outputs, before a final network (NNpolicy) maps
the aggregation to actions a. The critic follows the same architecture, where a final
network NNcritic maps the aggregation to an action-value Q. Parallel encoding of
each pair-specific inputs can be seen as different modules trying to reach the goal
by only seeing these pair-specific inputs. The intuition is that modules dealing with
the pair that should be acted upon to reach the goal will supersede others in the
sum aggregation.

188

NN
sharedSemantic

mapping
function

body

2obj

3obj

g

cp

1obj

body

2obj

3obj

1obj a

1
2
3
4
5

+ NN
policy

6

Figure B.1: Object-centered modular architecture for the policy.

Although in principle our architecture could work with combinations of objects
(3 modules), we found permutations to work better in practice (6 modules). With
combinations, the shared network would need to learn to put block A on block B to
achieve a predicate above(oi, oj), and would need to learn the reverse behavior (put
B on A) to achieve the symmetric predicate above(oj, oi). With permutations, the
shared network can simply learn one of these behaviors (e.g. A on B). Considering
the predicate above(oA, oB), at least one of the modules has objects organized so
that this behavior is the good one: if the permutation (oB, oA) is not the right one,
permutation (oA, oB) is. The symmetry bias is explained in Section 3.3.3. It lever-
ages the symmetry of the behaviors required to achieve the predicates above(oi, oj)
and above(oj, oi). As a result, the two goal configurations are:

g1 = [c(o1, o2), c(o1, o3), c(o2, o3), a(o1, o2), a(o1, o3), a(o2, o3)],

g2 = [c(o1, o2), c(o1, o3), c(o2, o3), a(o2, o1), a(o3, o1), a(o3, o2)],

where g1 is used in association with object permutations (oi, oj) with i < j and
g2 is used in association with object permutations (oj, oi) with i < j. As a
result, the shared network automatically ensures transfer between predicates based
on symmetric behaviors.

Implementation Details

This part includes details necessary to reproduce results. The code is available at
https://sites.google.com/view/decstr/.

Parallel implementation of sac-her. We use a parallel implementation of sac
[Haarnoja et al., 2018]. Each of the 24 parallel worker maintains its own replay

https://sites.google.com/view/decstr/

189

buffer of size 106 and performs its own updates. Updates are summed over the 24
actors and the updated network are broadcast to all workers. Each worker alternates
between 2 episodes of data collection and 30 updates with batch size 256. To form
an epoch, this cycle is repeated 50 times and followed by the offline evaluation of
the agent on each reachable goal. An epoch is thus made of 50 × 2 × 24 = 2400
episodes.

Goal sampler updates. The agent performs self-evaluations with probability
self eval = 0.1. During these runs, the agent targets uniformly sampled discovered
configurations without exploration noise. This enables the agent to self-evaluate on
each goal. Goals are organized into buckets. Main Section 3.3.3 presents our auto-
matic bucket generation mechanism. Once buckets are formed, we compute C, LP
and P , based on windows of the past W = 1800 self-evaluation interactions for
each bucket.

Modular architecture. The shared network of our modular architecture NNshared

is a 1-hidden layer network of hidden size 256. After all pair-specific inputs have
been encoded through this module, their outputs (of size 84) are summed. The sum
is then passed through a final network with a hidden layer of size 256 to compute the
final actions (policy) or action-values (critic). All networks use ReLU activations
and the Xavier initialization. We use Adam optimizers, with learning rates 10−3.
The list of hyperparameters is provided in Table B.1.

Table B.1: Sensorimotor learning hyperparameters used in decstr.

Hyperparam. Description Values.
nb mpis Number of workers 24
nb cycles Number of repeated cycles per epoch 50
nb rollouts per mpi Number of rollouts per worker 2
nb updates Number of updates per cycle 30
start bias init Epoch from which initializations are biased 100
W Curriculum window size 1800
self eval Self evaluation probability 0.1
Nb Number of buckets 5
replay strategy her replay strategy future
k replay Ratio of her data to data from normal experience 4
batch size Size of the batch during updates 256
γ Discount factor to model uncertainty about future decisions 0.98
τ Polyak coefficient for target critics smoothing 0.95
lr actor Actor learning rate 10−3

lr critic Critic learning rate 10−3

α Entropy coefficient used in sac 0.2
automatic entropy Automatically tune the entropy coefficient False

190

Computing resources

The sensorimotor learning experiments contain 8 conditions: 2 of 10 seeds and 6
of 5 seeds. Each run leverages 24 cpus (24 actors) for about 72h for a total of 9.8
cpu years. Experiments presented in this paper require machines with at least 24
cpu cores. The language grounding phase runs on a single cpu and trains in a few
minutes.

B.2.2 Language-Conditioned Goal Generator

In this section, we introduce useful details describing the language goal generator
(lgg) used in Chapter 3.

Language-Conditioned Goal Generator Training

We use a conditional Variational Auto-Encoder (c-vae) [Sohn et al., 2015]. Condi-
tioned on the initial configuration and a sentence describing the expected transfor-
mation of one object relation, it generates compatible goal configurations. After the
first phase of goal-directed sensorimotor training, the agent interacts with a hard-
coded social partner as described in Main Section 3.3.3. From these interactions, we
obtain a dataset of 5000 triplets: initial configuration, final configuration and sen-
tence describing one change of predicate from the initial to the final configuration.
The list of sentences used by the synthetic social partner is provided in Table B.2.
Note that red, green and blue refer to objects o1, o2, o3 respectively.

Content of Test Sets

We describe the 5 test sets:
1. Test set 1 is made of input pairs (ci, s) from the training set, but tests the

coverage of all compatible final configurations Cf , 80% of which are not found
in the training set. In that sense, it is partly a test set.

2. Test set 2 contains two input pairs: {[0 1 0 0 0 0 0 0 0], put blue close to
green} and {[0 0 1 0 0 0 0 0 0], put green below red} corresponding to 7 and 24
compatible final configurations respectively.

3. Test set 3 corresponds to all pairs including the initial configuration where two
pairs of blocks are close ci = [1 1 0 0 0 0 0 0 0] (29 pairs), with an average of
13 compatible final configurations.

4. Test set 4 corresponds to all pairs including one of the sentences put green
on top of red and put blue far from red, i.e. 20 pairs with an average of 9.5
compatible final configurations.

5. Test set 5 is all pairs that include both the initial configuration of test set 3
and one of the sentences of test set 4, i.e. 2 pairs with 6 and 13 compatible
goals respectively. Note that pairs of set 5 are removed from sets 3 and 4.

191

Table B.2: List of instructions. Each of them specifies a shift of one predicate, either
from false to true (0→ 1) or true to false (1→ 0). block A and block B represent two
different blocks from {red, blue, green}.

Transition type Sentences
Close 0→ 1 Put block A close to block B, Bring block A and block B together,

(×3) Get block A and block B close from each other, Get block A close to block B.
Close 1→ 0 Put block A far from block B, Get block A far from block B,

(×3) Get block A and block B far from each other, Bring block A and block B apart,
Above 0→ 1 Put block A above block B, Put block A on top of block B,

(×6) Put block B under block A, Put block B below block A.
Above 1→ 0 Remove block A from above block B, Remove block A from block B,

(×6) Remove block B from below block A, Put block B and block A on the same plane,
Put block A and block B on the same plane.

Testing on Logical Expressions of Instructions

To evaluate decstr on logical functions of instructions, we generate three types of
expressions:

1. 100 instructions of the form “A and B” where A and B are basic instructions
corresponding to shifts of the form above 0 → 1 (see Table B.2). These
intersections correspond to stacks of 3 or pyramids.

2. 200 instructions of the form “A and B” where A and B are above and close
instructions respectively. B can be replaced by “not B” with probability 0.5.

3. 200 instructions of the form “(A and B) or (C and D))”, where A, B, C, D
are basic instructions: A and C are above instructions while B and D are close
instructions. Here also, any instruction can be replaced by its negation with
probability 0.5.

Implementation Details

The encoder is a fully-connected neural network with two layers of size 128 and ReLU
activations. It takes as input the concatenation of the final binary configuration and
its two conditions: the initial binary configuration and an embedding of the nl sen-
tence. The nl sentence is embedded with an recurrent network with embedding size
100, tanh non-linearities and biases. The encoder outputs the mean and log-variance
of the latent distribution of size 27. The decoder is also a fully-connected network
with two hidden layers of size 128 and ReLU activations. It takes as input the la-
tent code z and the same conditions as the encoder. As it generates binary vectors,
the last layer uses sigmoid activations. We train the architecture with a mixture
of Kullback-Leibler divergence loss (KDloss) w.r.t a standard Gaussian prior and a
binary Cross-Entropy loss (BCEloss). The combined loss is BCEloss + β × KDloss

with β = 0.6. We use an Adam optimizer, a learning rate of 5× 10−4, a batch size
of 128 and optimize for 150 epochs. As training is fast (≈ 2 min on a single cpu),
we conducted a quick hyperparameter search over β, layer sizes, learning rates and

192

latent sizes (see Table B.3). We found robust results for various layer sizes, various
β below 1. and latent sizes above 9.

Table B.3: lgg hyperparameter search. In bold are the selected hyperparameters.

Hyperparam. Values.
β [0.5, 0.6, 0.7, 0.8, 0.9, 1.]
layers size [128, 256]
learning rate [0.01, 0.005, 0.001]
latent sizes [9, 18, 27]

B.3 Baselines and Oracle

The language-conditioned LB baseline is fully described in the main document.

B.3.1 Expert Buckets Oracle

In the Expert Buckets oracle, the automatic bucket generation of decstr
is replaced with an expert-predefined set of buckets using a priori measures of
similarity and difficulty. To define these buckets, one needs prior knowledge of the
set of unreachable configurations, which are ruled out. The 5 predefined buckets
contain all configurations characterized by:

• Bucket 1: a single close relation between a pair of objects and no above relations
(4 configurations).

• Bucket 2: 2 or 3 close relations and no above relations (4 configurations).
• Bucket 3: 1 stack of 2 blocks and a third block that is either away or close to

the base, but is not close to the top of the stack (12 configurations).
• Bucket 4: 1 stack of 2 blocks and the third block close to the stack, as well as

pyramid configurations (9 configurations).
• Bucket 5: stacks of 3 blocks (6 configurations).

These buckets are the only difference between the Expert Buckets baseline and
decstr.

B.3.2 LGB-C Baseline

The lgb-c baseline represent goals not as semantic configurations but as par-
ticular 3D targets positions for each block, as defined for example in Lanier et al.
[2019] and Li et al. [2019]. The goal vector size is also 9 and contains the 3D tar-
get coordinates of the three blocks. This baselines also implements decoupling and,
thus, can be compared to decstr in the three phases. We keep as many modules
as possible common with decstr to minimize the amount of confounding factors
and reduce the under-fitting bias. The goal selection is taken from decstr, but
converts semantic configuration into specific randomly-sampled target coordinates

193

for the blocks, see Figure B.2. The agent is not conditioned on its current semantic
configuration nor its semantic goal configuration. For this reason, we do not apply
the symmetry bias. The binary reward is positive when the maximal distance be-
tween a block and its target position is below 5 cm, i.e. the size of a block (similar to
[Andrychowicz et al., 2017]). To make this baseline competitive, we integrate meth-
ods from a state of the art block manipulation algorithm [Lanier et al., 2019]. The
agent receives positive rewards of 1, 2, 3 when the corresponding number of blocks
are well placed. We also introduce the multi-criteria her from Lanier et al. [2019].
Finally, we add an additional object-centered inductive bias by only considering, for
each Deep Sets module, the 3D target positions of the corresponding pair.That is,
for each object pair, we ignore the 3D positions of the remaining object, yielding
to a vector of size 6. Language grounding is based on a c-vae similar to the one
used by decstr. We only replace the cross-entropy loss by a mean-squared loss
due to the continuous nature of the target goal coordinates. We use the exact same
training and testing sets as with semantic goals.

Figure B.2: The lgb-c baseline samples target positions for each block (example for a
pyramid here).

B.4 Additional results

B.4.1 Comparison DECSTR - LGB-C in skill learning phase

Figure B.3 presents the average success rate over the 35 valid configurations
during the skill learning phase for decstr and the lgb-c baseline. Because lgb-c
cannot pursue semantic goals as such, we randomly sample a specific instance of
this semantic goal: target block coordinates that satisfy the constraints expressed
by it. Because lgb-c is not aware of the original semantic goal, we cannot measure
success as the ability to achieve it. Instead, success is defined as the achievement of
the corresponding specific goal: bringing blocks to their respective targets within an
error margin of 5 cm each. In short, decstr targets semantic goals and is evaluated
on its ability to reach them. lgb-c targets specific goals and is evaluated on its

194

ability to reach them. These two measures do not match exactly. Indeed, lgb-
c sometimes achieves its specific goal but, because of the error margins, does not
achieve the original semantic goal.

0 200 400 600 800 1000 1200 1400
Episodes (x103)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

DECSTR LGB-C

Figure B.3: Comparison decstr and lgb-c in the skill learning phase.

B.4.2 Automatic Bucket Generation

Figure B.4 depicts the evolution of the content of buckets along training (epochs
1, 50 and 100). Each pie chart corresponds to a reachable configuration and repre-
sents the distribution of configurations into buckets across 10 different seeds. Blue,
orange, green, yellow, purple represent buckets 1 to 5 respectively and grey are
undiscovered configurations. At each moment, the discovered configurations are
equally spread over the 5 buckets. A given configuration may thus change bucket as
new configurations are discovered, so that the ones discovered earlier are assigned
buckets with lower indexes. Goals are organized by their bucket assignments in the
Expert Buckets condition (from top to bottom).

After the first epoch (left), decstr has discovered all configurations from the
expert buckets 1 and 2, and some runs have discovered a few other configurations.
After 50 epochs, more configurations have been discovered but they are not always
the same across runs. Finally, after 100 epochs, all configurations are found. Buckets
are then steady and can be compared to expert-defined buckets. It seems that easier
goals (top-most group) are discovered first and assigned in the first-easy buckets
(blue and orange). Hardest configurations (stacks of 3, bottom-most group) seem
to be discovered last and assigned the last-hardest bucket (purple). In between,
different runs show different compositions, which are not always aligned with expert-
defined buckets. Goals from expert-defined buckets 3 and 4 (third and fourth group
from the top) seem to be attributed to different buckets in different runs. This means
that they are discovered in different orders depending on the runs. In summary,
easier and harder goals from expert buckets 1 - 2 and 5 respectively seem to be
well detected by our automatic bucket generations. Goals in medium-level expected

195

difficulty as defined by expert buckets seem not to show any significant difference in
difficulty for our agents.

Bucket 1

Expert Bucket 1

Expert Bucket 2

Expert Bucket 3

Expert Bucket 4

Expert Bucket 5

Bucket 2 Bucket 3

50 100

Bucket 4 Bucket 5 Not discovered

Automatic Buckets

1

Figure B.4: Evolution of the content of buckets from automatic bucket generation: epoch
1 (2400 episodes, left), 50 (middle) and 100 (right). Each pie chart corresponds to one of
the 35 valid configurations. It represents the distribution of the bucket attributions of that
configuration across 10 runs. Blue, orange, green, yellow, purple represent automatically
generated buckets 1 to 5 respectively (increasing order of difficulty) and grey represents
undiscovered configurations. Goals are organized according to their expert bucket attri-
butions in the Expert Buckets condition (top-bottom organization).

B.4.3 decstr Learning Trajectories

Figure B.5 shows the evolution of internal estimations of the competence c, the
learning progress lp and the associated sampling probabilities p. Note that these
metrics are computed online by decstr, as it self-evaluates on random discovered
configurations. Learning trajectories seem to be uniform across different runs, and
buckets are learned in increasing order. This confirms that the time of discovery is
a good proxy for goal difficulty. In that case, configurations discovered first end up
in the lower index buckets and are indeed learned first. Note that a failing auto-
matic bucket generation would assign goals to random buckets. This would result
in uniform measures of learning progress across different buckets, which would be
equivalent to uniform goal sampling. As Main Figure 3.5c shows, decstr performs
much better than the random goals conditions. This proves that our automatic
bucket algorithm generates useful goal clustering.

196

0.0

0.5

1.0

C

B1 B2 B3 B4 B5

0.00
0.05
0.10LP

0 200 400 600 800 1000 1200 1400
Episodes (x103)

0.0

0.5

1.0

P

0.0

0.5

1.0

C

B1 B2 B3 B4 B5

0.00

0.05

0.10

LP

0 200 400 600 800 1000 1200 1400
Episodes (x103)

0.0

0.5

1.0

P

0.0

0.5

1.0

C

B1 B2 B3 B4 B5

0.00

0.05

0.10

LP
0 200 400 600 800 1000 1200 1400

Episodes (x103)
0.0

0.5

1.0

P

0.0

0.5

1.0

C

B1 B2 B3 B4 B5

0.00

0.05

0.10

LP

0 200 400 600 800 1000 1200 1400
Episodes (x103)

0.0

0.5

1.0

P

0.0

0.5

1.0

C

B1 B2 B3 B4 B5

0.00

0.05

0.10

LP

0 200 400 600 800 1000 1200 1400
Episodes (x103)

0.0

0.5

1.0

P

0.0

0.5

1.0

C

B1 B2 B3 B4 B5

0.00
0.05
0.10

LP

0 200 400 600 800 1000 1200 1400
Episodes (x103)

0.0

0.5

1.0

P

Figure B.5: Learning trajectories of 6 decstr agents.

197

Appendix C

Appendix of Autotelic
Graph-based Agents

In this section, we present additional results and implementation details of the study
conducted in Chapter 4 about transfer and generalization in autotelic agents.

C.1 Additional results

We introduce additional results which complement the ones presented in Chapter 4.
More specifically, we study the relative importance of self-attention when using
semantic goals.

C.1.1 Self-attention ablation

0 50 100 150 200 250 300 350 400
Episodes (x103)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

S-GN S-IN S-GN w/o Att S-IN w/o Att

Figure C.1: Global SR across training episodes for s-gn, s-in and their self-attention
ablations counterparts. Mean ± standard deviations are computed over 5 seeds. Stars
highlight statistical differences w.r.t s-gn agents (Welch’s t-test with null hypothesis H0:
no difference in the means, α = 0.05.

We propose to remove the self-attention aggregation schemes from s-gn and
s-in,– the two best performing agents,– and introduce the corresponding ablations
which use an unweighted sum when performing the pooling over edges or nodes.

198

Figure C.1 presents the global SR for these agents across training episodes. The
differences only appear at the beginning of training. In fact, the global performance
metrics in the ablations increase slower than their corresponding full-versions (blue
vs green; red vs orange). However, all agents seem to behave similarly by the end
of training. This suggests that self-attention improves sample efficiency, yielding
gnn-based agents that can faster capture actionable relational features within their
graphs.

C.2 Implementation details

In this part, we present details necessary to reproduce our results. We further
open-source our code at https://github.com/akakzia/rlgraph 2.

gnn-based networks

Our four graph-based architectures use at most two shared networks, NNedge and
NNnode, respectively for computing updated edge features and node features. Both
are 1-hidden-layer networks of hidden size 256. Taking the output dimension to be
equal to 3× the input dimension for the shared networks showed better results. All
networks use ReLU activation and the Xavier initialization. For edge-wise and node-
wise aggregation, we use a one-headed self-attention module. Finally, to produce
the output, all architectures use a readout network NNout. The latter is also a
1-hidden-layer network of hidden size 256. For optimization, we use Adam with
learning rates 10−3. The list of hyperparameters is provided in Table C.1.

Parallel implementation of sac-her

All our experiments are based on a Message Passing Interface [Dalcin et al., 2011] to
exploit multiple processors. Each of the 24 parallel workers maintains its own replay
buffer of size 106 and performs its own updates. To synchronize experience between
different workers, updates are summed over the 24 actors and the updated actor
and critic networks are broadcast to all workers. Each worker alternates between 2
data collection episodes and 30 updates with batch size 256. To form an epoch, this
cycle is repeated 50 times and followed by the offline evaluation of the agent.

https://github.com/akakzia/rlgraph_2

199

Table C.1: Hyperparameters used in this study.

Hyperparam. Description Values.
nb mpis Number of workers 24
nb cycles Number of repeated cycles per epoch 50
nb rollouts per mpi Number of rollouts per worker 2
rollouts length Number of episode steps per rollout 200
nb updates Number of updates per cycle 30
replay strategy her replay strategy future
k replay Ratio of her data to data from normal experience 4
batch size Size of the batch during updates 256
γ Discount factor to model uncertainty about future decisions 0.99
τ Polyak coefficient for target critics smoothing 0.95
lr actor Actor learning rate 10−3

lr critic Critic learning rate 10−3

α Entropy coefficient used in sac 0.2
biased init Probability of following non-trivial scene reset scheme 0.2
self eval curriculum Probability to perform self evaluations 0.1
curriculum queue length Window over which lp estimations are made 1000

200

Appendix D

Appendix of HGEP

This appendix introduces additional material including implementation details, ad-
ditional results and discussions for the hgep study in Chapter 5. First, we present
the hyper-parameters used in our experiments. Then, we present additional results.
Finally, we provide a brief discussion around the additional results.

D.1 Implementation Details

We provide implementation details to reproduce our results in Table D.1. We use
the Deep Deterministic Policy Gradient (DDPG) Algorithm ([Lillicrap et al., 2015])
with Hindsight Experience Replay (HER) strategy ([Andrychowicz et al., 2017]). For
the fetch pick and place environment, we use an episode length of 50 and train the
agents for 50 epochs. For the hand manipulation environments, we use an episode
length of 100 and train agents for 200 epochs.

Table D.1: Hyperparameters used in the study on hgeps.

Hyperparam. Description Values.
Workers Number of workers 19
Cycles per epoch Number of repeated cycles per epoch 50
Rollouts Number of rollouts per worker 2
Updates Number of updates per cycle 40
Replay Strategy her replay strategy future
Replay k Ratio of her data to data from normal experience 4
Batch size Size of the batch during updates 256
γ Discount factor to model uncertainty about future decisions 0.99
τ Polyak coefficient for target critics smoothing 0.95
lr actor Actor learning rate 10−3

lr critic Critic learning rate 10−3

εrandom Probability of taking a random action during training 0.3
εnoise Exploration noise used to perturb actions taken by the policy 0.2
Action L2 Regularization Coefficient of the L2 regularization 1

201

D.2 Additional Results

We first introduce additional details on the training success rate of the agents con-
sidered in the study of Chapter 5. Then, we introduce the special case of the hand
reach environment.

D.2.1 Training Success Rate

0 20 40 60 80 100
Episodes (x103)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

IMGEP
HGEP-5.0%

HGEP-10.0%
HGEP-20.0%

HGEP-50.0%
EMGEP

(a) E1

0 50 100 150 200 250 300 350
Episodes (x103)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

IMGEP
HGEP-5.0%

HGEP-10.0%
HGEP-20.0%

HGEP-50.0%
EMGEP

(b) E2

0 50 100 150 200 250 300 350
Episodes (x103)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

IMGEP
HGEP-5.0%

HGEP-10.0%
HGEP-20.0%

HGEP-50.0%
EMGEP

(c) E3

Figure D.1: SR on externally generated goals in different environments.

Figure D.1 presents the success rate of the different agents considered in this
study during training. The success rate is computed at each epoch by averaging
19 rollouts conducted on 19 different goals randomly generated by a hard-coded
function within the environment. In all the considered environments, increasing the
ratio of externally generated goals seems to increase the SR and sample efficiency.
This is not surprising as by providing more external goals, the agent is more likely to
train on goals that are closer to the goals on which it is evaluated. However, the E2
environment seems to require less externally generated goals to increase the agents
SR. Recall that E2 corresponds to the hand manipulation of an egg-shaped object.
The underlying goal space is easier to explore, since arbitrary finger movements are
likely to move and rotate the object. As a result, such an environment does not
necessarily require external goals to increase the SR, although external goals help
increase the sample efficiency.

D.2.2 The Hand Reach Environment Case

Figure D.2 illustrates the HandReach-v0 environment. The agent is an anthro-
pomorphic robotic hand with 24 degrees of freedom, exactly as in environments
E2 and E3 (See Chapter 5). The goal is a 15-dimensional vector defining a target
position for each of the 5 fingers.

We present the evaluation metrics on the hand reach environment in Figure D.3.
• Figure D.3a presents estimations of the entropy of the distribution of discov-

ered goals during training on the hand reach environment. As opposed to the
other environments on which we evaluated our agents in the main document,

202

Figure D.2: Illustration of the HandReach-v0 (E4) environment

0 20 40 60 80 100
Episodes (x103)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

En
tro

py

IMGEP
HGEP-5.0%

HGEP-10.0%
HGEP-20.0%

HGEP-50.0%
EMGEP

(a) SR on external goals.

0 20 40 60 80 100
Episodes (x103)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

IMGEP
HGEP-5.0%

HGEP-10.0%
HGEP-20.0%

HGEP-50.0%
EMGEP

(b) Entropy estimation during training.

Figure D.3: Evaluation Metrics on environment E4.

increasing the ratio of externally generated goals decreases the diversity of the
discovered goals. The reason behind this is most likely related to the nature of
the task. In fact, in the hand reach environment, moving the finger automati-
cally changes the achieved goals. As a result, arbitrary actions are guaranteed
to discover many goals. Increasing the externally provided goals will however
constrain the distribution of discovered goals, especially since the exploration
decreases with training.

• Figure D.3b shows the SR on the external goals during training on the hand
reach environment. The imgep agent (blue curve), which only relies on phys-
ically discovered goals babbling, performs the worst. In fact, although this
agent discovers a diverse set of goals (see entropy curve), these goals seem
to be far in distribution term from those on which it is evaluated. By con-
trast, all other agents make use of the externally provided goals to adjust their
distribution of discovered goals, and thus are able to increase their success rate

D.3 Discussion

The additional results we propose in this appendix show that combining different
sources of goals is not trivial. In fact, although considering external goals seems to
help increase the diversity of discovered goals in some environments, this is not

203

true in other environments where arbitrary exploration is sufficient (for example
the hand reach environment E4). Exclusively intrinsic agents that evolve in these
environments are able by themselves to discover a sufficiently varied set of goals.
However, when we evaluate them on the goals in which we are subjectively interested
(the external goals which make sense for human designers), they are more likely to
fail. Hence, there should be an adapted combination in the hybrid goal exploration
process, where agents make use of their intrinsic motivation to discover a diverse set
of goals, but still use the externally provided ones to learn more towards goals that
make sense to human designers.

204

Appendix E

Appendix of HME

This section comes as a supplementary material for the study conducted in Chap-
ter 6.

E.1 Proof of Concept Experiments on Mazes

In our preliminary experiments, we ran the hme agent in a set of continuous mazes
that present hard exploration problems. These experiments act as a proof of concept
for the more complete experiments presented in Chapter 6.

Environments

We consider a set of three maze navigation environments generated with an existing
implementation1 based on the MuJoCo physics engine (Todorov et al. [2012], see
Figure E.1). The agent is represented as a moving point (orange point) that navi-
gates specific areas (blue areas) delimited by thick walls (grey areas). Observations
include the agent’s position, velocity and orientation (6D). Actions control the ve-
locity and orientation of the agent (3D). Goals include target positions for the agent
to achieve (2D). Rewards are sparse such that the agent receives a reinforcing signal
of +1 whenever they are within a threshold δ = 1cm from the target position.

The agent is given an extra representation function φ mapping the state to a
discrete representation corresponding to the identity of an area or cell.

Experiments

These experiments demonstrate the benefit of using the hme interaction protocol.
We use a simpler version of the hme agent that replaces the active query mechanism
with a fixed probability to query the social partner and which does not internalize
socially-suggested goals. On the one hand, we use simple flat mlp networks to model
the agent’s internal models, including its actor and critic. On the other hand, to

1https://github.com/kngwyu/mujoco-maze

205

Figure E.1: The 4 mazes considered in our study. They are of increasing difficulty in
exploration.

model the sp’s suggested goals, we construct and annotate cells from the bottom
row upwards (see Figure E.1). The goals that the sp can propose correspond to the
centers of these annotated cells. As the goal space is not known a priori, the agent
has to 1) explore to discover goals and 2) exploit to learn to reach goals. At the
beginning of each episode, the agent starts at the center of cell number 1.

We experiment with different levels of sociality: SP p% where p is the probability
to query the social partner (sp) with p ∈ {0, 1, 10, 100}%. SP 0% and SP 100%
represent the individual and social baseline respectively. We use three metrics to
evaluate the strategies: 1) the global success rate across all the goal space (known
& unknown goals), 2 the local success rates for each goal (heat maps on the mazes)
and 3) the goal space coverage (ratio of discovered goals).

Results

Figure E.2, presents the results for the first metric (global success rate across
all goal space). The results unequivocally show that the presence of the sp helps
the agent reach a better performance. With only 10% of social episodes, the agent
is able to master all goals on Corridor and Four Rooms. Increasing the number of
social episodes does not further improve performance, as the agent with 100% and
10% social episodes performs similarly. Notably, using only 1% of social episodes is
enough to show satisfying performance, further highlighting the importance of the
social partner to discover new goals.

In order to illustrate that the discovery of new goals drives performance, we
analyzed the exploration metrics across trained agents in Figures E.3 and E.4. Note
that adding as little as 1% of social episodes in all mazes drastically improves the
local success rate on goals that go beyond the first room. Indeed, thanks to the sp,
the agents are able to pass the bottleneck of the maze and discover the other rooms,
while SP 0% stays in the first room because it is not able to explore efficiently. The
ratio of discovered goals as a function of time plotted in Figures E.3 and E.4 shows
that the agents with social episodes rapidly discover most of the goals while the

206

Figure E.2: Global success rate across all the goal space (known & unknown goals) on the
four tested mazes.

agent without social episodes does not. For the Hard maze (Figure E.4, which is
considered the most complex among the set of mazes we have chosen, 1% of social
episodes enables the ratio of discovered goals to catch up with the ones with 10%
and 100% of social episodes. However, the agent is still unable to maximize its SR
on all the cells (middle part of Figure E.4).

Figure E.3: Left: Local success rates for each goal on the Bottleneck maze. Right: ratio
of discovered goals on Four Rooms and Bottleneck mazes.

E.2 Additional Results

In this section, we introduce additional evaluation metrics that accompany the
study conducted in Chapter 6.

207

Figure E.4: Performance Metrics on the Hard maze. Left: SR per cell with 0% of social
interventions; Middle: SR per cell with 1% of social interventions; Right: Coverage of the
goal space computed as the ratio of discovered goals.

E.2.1 Internalization Study

To assess the relative importance of the internalization mechanism with which
are endowed our autotelic agents, we introduce five variants of our algorithm:

• in-1: Rehearse and Generate. When these agents fail at reaching the
social beyond goals, they memorize them in a separate buffer (other than the
one they use to store their own encountered goals). They do not keep track
of the associated frontier goal. When performing autotelic episodes, they can
choose to rehearse these beyond goals. When they do so, they generate an
intermediate sub-goal that maximizes their reward estimator.

• in-2: Rehearse Pairs. When failing the social beyond goals, these agents
store both the failed goals and the associated frontier goals proposed by the
sp. During autotelic episodes, they can rehearse the stored pair of goals, as if
the sp was actually there to re-propose it.

• in-3: Rehearse Beyond. Similar to in-1. However, when performing
rehearsal of social beyond goals during autotelic episodes, these agents directly
target the selected goal (without stepping on an intermediate sub-goal).

• in-4: No attention. When these agents fail at reaching the social beyond
goals, they store them in the same buffer as their own physically encountered
goals. When performing autotelic episodes, these agents uniformly select a
goal from this shared buffer, without any particular attention to how they
were discovered.

• w/o in: No internalization. These agents simply forget their failed social
beyond goals. When performing autotelic episodes, they exclusively focus on
the goals that they have physically encountered on their own.

208

0 50 100 150 200 250 300
Episodes (x103)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

IN-1 IN-2 IN-3 IN-4 w/o IN

Figure E.5: Global SR across training episodes for different variants of the internalization
mechanism.

Internalize vs No Internalize

Agents w/o in, which immediately forget about the proposed social goals, show
the worst performance (purple curve on Figure E.5). Besides, they present the
highest statistical differences with reference the best performing agents in-1 (purple
stars). This suggests that storing the proposed social goals helps improve perfor-
mance. This is not surprising since the internalizing agents learn not only about
their physically encountered goals, but also about the socially proposed ones.

Attention vs No Attention to internalized pairs

Agents in-4 do not use any type of attention to the proposed social goals. They
only store them in the same buffer as the ones they have physically encountered.
Although this improves the performance at the end of the training budget (in-4 vs
w/o in), these agents are significantly slower than the ones that use attention by
storing social goals in a different buffer (in-1, in-2 and in-3).

Internalize Pairs vs Beyond

While the in-2 agents store both the proposed frontier and beyond goals, the
in-3 agents only internalize the beyond goals. Comparing the global performance
metrics of these agents (orange vs green curves) yields two interpretations: 1) storing
the frontier pairs is helpful in the first phase of the training (by episode 120k), since
the orange curve is above the green one; 2) once the agents acquire more skills, they
are less dependent on the proposed frontier goal.

209

Rehearse Frontier vs Use own Frontier

The in-1 agents, which generate their own intermediate known goal as a stepping
stone to an internalized beyond goals, exhibit the best global performance (blue
curve). Besides, Table E.1 shows that these agents manage to discover even more
goals than the other agents. This suggests that relying on their own generated
intermediate goals makes them less grounded in the sp’s proposals, which further
promotes their exploration of the goal space.

Table E.1: Amount of Social Interventions and Discovered Goals for the studied internal-
ization variants.

Agents in-1 in-2 in-3 in-4 w/o in
% Social Episodes 7.42± 0.08 6.98± 0.95 7.05± 0.49 8.80± 1.60 7.54± 0.91
Proposed Beyond Goals 1878± 221 1280± 114 1113± 173 951± 268 6478± 1623
Discovered Goals 5833± 26 4306± 335 4298± 130 4403.0± 331 4177± 74

E.2.2 Induced Learned Trajectories

To zoom on the effect of social goal proposals on the agents’ learning trajectories,
we consider the best performing agents β = 50. Figure E.6 presents their learning
trajectories for the classes S3, S4 and S5. We only consider these classes because
1) they are part of the assignment goal space GSP and 2) they are not trivial to
be encountered by the agent alone through random exploration. Interestingly, the
learning trajectories of the three considered agents shows a pattern: first, the sp
suggests social goals (dashed lines), then, the agent immediately starts to physically
encounter and reach the proposed goals (dotted lines) and finally, the SR of the
considered class increases (plain lines). This suggests that the role of the sp is to
help the agent encounter the least trivial goals that are hard to reach through random
exploration. Once this is done, the agent can target these goals and efficiently master
them.

0 100 200 300
Episodes (x103)

0

20

40

60

80

100

Go
al

 C
ou

nt
s

Stack 3

0 100 200 300
Episodes (x103)

Stack 4

0 100 200 300
Episodes (x103)

Stack 5

0.00

0.25

0.50

0.75

1.00

SR

SP suggestions # reached configurations Success Rate

Figure E.6: Learning trajectories with β = 50. We report the # of goals proposed by
sp (dashed), the # of times the agents encountered them (dotted) and their success rate
(plain).

210

E.3 Representing the social partner’s knowledge

Move

Move

New table

New table

New table

...
...

New table

New table

...
New table

...
Move

...Move

Choose Block Choose column
Is

configuration
new?

Move

Figure E.7: Simplified example with 2 blocks in a 2D grid of the oracle tree construction
procedure

We model the social partner (sp) by a hard-coded program endowed with the set
of goals that are potentially achievable by agent within the five-object manipulation
benchmark. We choose to represent this domain knowledge as a directed seman-
tic graph. This facilitates determining stepping stones in the agent’s capabilities.
However, it is impractical to manually enlist all the imaginable configurations and
decide whether a pair should be linked or not in a graph. Semantic configurations
can be infeasible for two reasons: 1) they are semantically impossible to obtain—e.g.
two objects cannot both be above each other 2) they are physically impossible to
achieve—e.g. in the case of inverted pyramids.

211

To avoid enlisting all semantic and physical constraints, we define two types of
the sp’s goal space:

• Oracle Goal Space: we design a 3D grid within which each cell can contain
one object. Initially, all the blocks are initialized in different columns of the
grid so that they are all far from each other (root node). From this state,
we can select one object and move it to another column. If that column
already contains another object, than the first one will be stacked above the
second. By doing one action at each step, we can extract the current semantic
configuration and link it to the previous one in the oracle graph. Iteratively
repeating this process yields a tree starting from the root node. See Figure E.7
for a 2D illustration of the described process for two blocks. The number of
nodes within the oracle goal space is valued to 12666.

• Minimal Goal Space: this represents a sub-graph of the oracle goal space
defined above. It consists of a set of goal configurations exclusively including
the path from no stacks at all to stacks of 5 objects for each permutation of
objects (No stack at all → Stack of 2 → ... → Stack of 5). The total number
of nodes within this minimal goal space is valued to 321.

In our main experiments, we use the minimal goal space to represent the sp’s
knowledge in all our agents except for the social baseline. In fact, our experiments
have shown that the oracle goal space is needed when training includes exclusively
social episodes. Note that this engineered process only serves to evaluate the capac-
ities of the agent and is not used by the agent itself in any way.

E.4 Evaluation Classes

Close 1 Close 2 Stack 2 Stack 3 Stack 2&2 Stack 2&3

Pyramid Pyr 3&Stack2 Stack 4 Stack 5

Table E.2: The different semantic classes used in evaluation. The class Close i regroups
all semantic configurations where i pairs of blocks are close.

Table E.2 illustrates the 11 evaluation classes presented in the main paper. For
the sake of simplicity here, we only represent the blocks that are concerned by the

212

underlying predicates. All the predicates associated with the other blocks have
values set to 0. We use a hard-coded function to generate a random configuration
given the identifier of the considered class. We also use a dictionary where keys are
configurations and values are identifiers of the classes to keep counts of either the
sp proposed goals or the agent’s encountered and achieved goals.

E.5 Object-centered architecture in Fetch Manip-

ulate

In the Fetch Manipulate environment with 5 blocks we use the gangstr agent
proposed in Akakzia and Sigaud [2022]. It perceives:

1. the low-level geometric states. Since the 5 objects share the same attributes
dimensions (positions, velocities, orientations), the behavior with respect to
an object should be independent from the object’s attributes.

2. the high-level semantic configurations. Since the relations between all the pairs
of objects share the same predicates (close, above), the behavior with respect
to a binary semantic relation should be independent from the considered pair.

Thus, it is natural to encode both object-centered and relational inductive biases
in our architecture. To do so, we model both the policies and critics of the agents
as message passing graph neural networks (mpgnns) [Gilmer et al., 2017]. We
consider a graph of 5 nodes, each representing a single object. All the nodes are
interconnected, yielding a compact graph of 20 directed edges. Furthermore, we
consider the agent’s body attributes as global features of the policy networks and
both the agent’s body attributes and the actions as global features of the critic
networks. A single forward pass through this graph consists in three steps:

1. Message computation is performed for each edge. The features of the con-
sidered edge are concatenated with the features of the edge’s source and target
nodes before being fed to a first shared neural network NNedge.

2. Node-wise aggregation is performed for each node. The features of the
considered node are concatenated with an aggregation of the updated features
of all the incoming edges. The resulting vectors are then concatenated with
the global features of the graph before being fed to a second shared neural
network NNnode.

3. Graph-wise aggregation is performed once for all the graph. The updated
features of all the nodes of the graph are aggregated and fed to a third neural
network NNreadout.

The aggregating function needs to be permutation-invariant. We use max pooling
for the node-wise aggregation and summation for the graph-wised aggregation. The

213

final output of NNreadout is either the action (in the case of the actor) or the Q-value
(in the case of the critic).

E.6 Pseudo code

Algorithms 10 and 11 present the high-level pseudo-code for the individual and
social learning episodes.

Algorithm 10 Individual Learning

1: Require Env E,
2: Initialize policy Π, semantic graph Gs, path estimator PE, buffer B.
3: loop
4: g ← Gs.sample node()
5: path← PE.sample path(g,Gs)
6: loop gi ∈ path
7: trajectory ← E.rollout(gi)
8: Gs.update(trajectory)
9: PE.update(trajectory)

10: B.update(trajectory)

11: Π.update(B)

12: return Π, PE,Gs

214

Algorithm 11 Social Learning

1: Require Env E, social partner SP
2: Initialize policy Π, semantic graph Gs, path estimator PE, buffer B.
3: loop
4: g ← SP .propose goal(Gs)
5: path← PE.sample path(g,Gs)
6: loop gi ∈ path
7: trajectory ← E.rollout(gi)
8: Gs.update(trajectory)
9: PE.update(trajectory)

10: B.update(trajectory)

11: if g is a stepping stone and is reached then
12: gb ← SP .propose unknown(Gs, g)
13: path← PE.sample path(gb,Gs)
14: loop gi ∈ path
15: trajectory ← E.rollout(gi)
16: Gs.update(trajectory)
17: PE.update(trajectory)
18: B.update(trajectory)

19: Π.update(B)

20: return Π, PE,Gs

E.7 Implementation Details

This part includes details necessary to reproduce the results. An anonymous ver-
sion of our code will be made available at https://anonymous.4open.science/r/gangstr-
2C4F.

gnn-based networks. Our object-centered architecture uses two shared networks,
NNedge and NNnode, respectively for the message computation and node-wise ag-
gregation. Both are 1-hidden-layer networks of hidden size 256. Taking the output
dimension to be equal to 3× the input dimension for the shared networks showed
better results. All networks use ReLU activations and the Xavier initialization.
We use Adam optimizers, with learning rates 10−3. The list of hyperparameters is
provided in Table E.3.

Parallel implementation of sac-her. Our experiments rely on a Message Passing
Interface [Dalcin et al., 2011] to exploit multiple processors. Each of the 24 parallel
workers maintains its own replay buffer of size 106 and performs its own updates.
Updates are summed over the 24 actors and the updated actor and critic networks
are broadcast to all workers. Each worker alternates between 10 episodes of data
collection and 30 updates with batch size 256. To form an epoch, this cycle is
repeated 50 times and followed by the offline evaluation of the agent.

https://anonymous.4open.science/r/gangstr-2C4F
https://anonymous.4open.science/r/gangstr-2C4F

215

Table E.3: Hyperparameters used in gangstr.

Hyperparam. Description Values.
nb mpis Number of workers 24
nb cycles Number of repeated cycles per epoch 50
nb rollouts per mpi Number of rollouts per worker 10
rollouts length Number of episode steps per rollout 40
nb updates Number of updates per cycle 30
replay strategy her replay strategy final
k replay Ratio of her data to data from normal experience 4
batch size Size of the batch during updates 256
γ Discount factor to model uncertainty about future decisions 0.99
τ Polyak coefficient for target critics smoothing 0.95
lr actor Actor learning rate 10−3

lr critic Critic learning rate 10−3

α Entropy coefficient used in sac 0.2
αEMA EMA coefficient for SR edge estimation 0.01
edge prior Default value for edges’ SR 0.5
shortestpaths Number of shortest paths to sample from 5
shortest safest ratio Ratio of alternation between shortest and safest paths 0.5

216

Appendix F

References of Figure 1.9

Table F.1: References of Figure 1.10

Label Reference
UVFA Schaul et al. [2015]
SR Trott et al. [2019]
PlanGAN Charlesworth and Montana [2020]
AIM Durugkar et al. [2021]
I-HER McCarthy and Redmond [2021]
GCSL Ghosh et al. [2019]
L3P Zhang et al. [2020]
GAP Nair et al. [2019]
LEXA Mendonca et al. [2021]
DDL Hartikainen et al. [2019]
MAPGo Zhu et al. [2021]
HER Andrychowicz et al. [2017]
HER with Demos Nair et al. [2018]
CHER Fang et al. [2019]
G-HER Bai et al. [2019]
GDP Kuang et al. [2020]
IMAGINE Colas et al. [2020b]
MC-HER Lanier et al. [2019]
GNGSTR Akakzia and Sigaud [2022]
MEGA Pitis et al. [2020]
Skew-Fit Pong et al. [2019]
SoRB Eysenbach et al. [2019]
GoalGAN Florensa et al. [2018]
Sub-goal Discovery Paul et al. [2019]
HGG Ren et al. [2019]
Hindsight Planner Lai et al. [2020]
VDS Zhang et al. [2020]
RIG Nair et al. [2018]
DISCERN Warde-Farley et al. [2018]
HVF Nair et al. [2020]
AMIGo Campero et al. [2020]
DECSTR Akakzia et al. [2021]
HME Akakzia et al. [2022]

217

Bibliography

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforce-
ment learning. In Carla E. Brodley, editor, Machine Learning, Proceedings of
the Twenty-first International Conference (ICML 2004), Banff, Alberta, Canada,
July 4-8, 2004, volume 69 of ACM International Conference Proceeding Series.
ACM, 2004. doi: 10.1145/1015330.1015430.

Jinane Abounadi, Dimitrib Bertsekas, and Vivek S Borkar. Learning algorithms
for markov decision processes with average cost. SIAM Journal on Control and
Optimization, 40(3):681–698, 2001.

Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep
reinforcement learning. arXiv preprint arXiv:1703.01732, 2017.

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational
autoencoding learning of options by reinforcement. In NIPS Deep Reinforcement
Learning Symposium, 2017a.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained pol-
icy optimization. In International conference on machine learning, pages 22–31.
PMLR, 2017b.

Ahmed Akakzia and Olivier Sigaud. Learning object-centered autotelic behaviors
with graph neural networks. arXiv preprint arXiv:2204.05141, 2022.

Ahmed Akakzia, Cédric Colas, Pierre-Yves Oudeyer, Mohamed Chetouani, and
Olivier Sigaud. DECSTR: Learning goal-directed abstract behaviors using pre-
verbal spatial predicates in intrinsically motivated agents. ArXiv preprint,
abs/2006.07185, 2020a. URL https://arxiv.org/abs/2006.07185.

Ahmed Akakzia, Cédric Colas, Pierre-Yves Oudeyer, Mohamed Chetouani, and
Olivier Sigaud. Grounding language to autonomously-acquired skills via goal
generation. arXiv preprint arXiv:2006.07185, 2020b.

Ahmed Akakzia, Cédric Colas, Pierre-Yves Oudeyer, Mohamed Chetouani, and
Olivier Sigaud. Grounding language to autonomously-acquired skills via goal
generation. In 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=chPj_I5KMHG.

https://arxiv.org/abs/2006.07185
https://openreview.net/forum?id=chPj_I5KMHG

218

Ahmed Akakzia, Olivier Serris, Olivier Sigaud, and Cédric Colas. Help me explore:
Minimal social interventions for graph-based autotelic agents. arXiv preprint
arXiv:2202.05129, 2022.

Muhannad Alomari, Paul Duckworth, David C Hogg, and Anthony G Cohn. Natural
language acquisition and grounding for embodied robotic systems. In Thirty-First
AAAI Conference on Artificial Intelligence, 2017.

Lee Altenberg et al. The evolution of evolvability in genetic programming. Advances
in genetic programming, 3:47–74, 1994.

Eitan Altman. Constrained Markov decision processes: stochastic modeling. Rout-
ledge, 1999.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and
Dan Mané. Concrete problems in ai safety. arXiv preprint arXiv:1606.06565,
2016.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Learning to com-
pose neural networks for question answering. arXiv preprint arXiv:1601.01705,
2016.

Marcin Andrychowicz, Dwight Crow, Alex Ray, Jonas Schneider, Rachel Fong, Pe-
ter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba.
Hindsight experience replay. In Isabelle Guyon, Ulrike von Luxburg, Samy Ben-
gio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 5048–5058, 2017.

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey
of robot learning from demonstration. Robotics and autonomous systems, 57(5):
469–483, 2009.

Rudolf Arnheim. Visual thinking. Univ of California Press, 1997.

David N Aspin and Judith D Chapman. Lifelong learning: concepts and conceptions.
International Journal of lifelong education, 19(1):2–19, 2000.

Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward Hughes, Arian Hosseini, Pushmeet
Kohli, and Edward Grefenstette. Learning to understand goal specifications by
modelling reward. arXiv preprint arXiv:1806.01946, 2018.

Dzmitry Bahdanau, Harm de Vries, Timothy J O’Donnell, Shikhar Murty, Philippe
Beaudoin, Yoshua Bengio, and Aaron Courville. Closure: Assessing systematic
generalization of clevr models. arXiv preprint arXiv:1912.05783, 2019.

219

Chenjia Bai, Peng Liu, Wei Zhao, and Xianglong Tang. Guided goal generation for
hindsight multi-goal reinforcement learning. Neurocomputing, 359:353–367, 2019.

Renee Baillargeon. Representing the existence and the location of hidden objects:
Object permanence in 6-and 8-month-old infants. Cognition, 23(1):21–41, 1986.

Gianluca Baldassarre and Marco Mirolli. Intrinsically motivated learning in natural
and artificial systems. Springer, 2013.

Gianluca Baldassarre, Tom Stafford, Marco Mirolli, Peter Redgrave, Richard M
Ryan, and Andrew Barto. Intrinsic motivations and open-ended development in
animals, humans, and robots: an overview. Frontiers in psychology, 5:985, 2014.

Albert Bandura and David C. McClelland. Social learning theory, volume 1. Engle-
wood cliffs Prentice Hall, 1977.

Victor Bapst, Alvaro Sanchez-Gonzalez, Carl Doersch, Kimberly Stachenfeld, Push-
meet Kohli, Peter Battaglia, and Jessica B. Hamrick. Structured agents for phys-
ical construction. In International Conference on Machine Learning, pages 464–
474. PMLR, 2019.

Adrien Baranes and Pierre-Yves Oudeyer. Active learning of inverse models with
intrinsically motivated goal exploration in robots. Robotics and Autonomous Sys-
tems, 61(1):49–73, 2013a.

Adrien Baranes and Pierre-Yves Oudeyer. Active Learning of Inverse Models with
Intrinsically Motivated Goal Exploration in Robots. Robotics and Autonomous
Systems, 61(1):49–73, 2013b. Publisher: Elsevier.

Andrew G Barto. Intrinsic motivation and reinforcement learning. In Intrinsically
motivated learning in natural and artificial systems, pages 17–47. Springer, 2013.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al.
Interaction networks for learning about objects, relations and physics. Advances
in neural information processing systems, 29, 2016.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. Relational inductive biases, deep learning, and
graph networks. arXiv preprint arXiv:1806.01261, 2018.

Jonathan Baxter and Peter L Bartlett. Infinite-horizon policy-gradient estimation.
Journal of Artificial Intelligence Research, 15:319–350, 2001.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton,
and Remi Munos. Unifying count-based exploration and intrinsic motivation.
Advances in neural information processing systems, 29:1471–1479, 2016.

220

Beth Kemp Benson. Scaffolding. English Journal, 86(7):126, 1997.

Laura E Berk. Why children talk to themselves. Scientific American, 271(5):78–83,
1994a.

Laura E Berk. Why Children Talk to Themselves. Scientific American, 271(5):
78–83, 1994b. Publisher: JSTOR.

Daniel E Berlyne. Curiosity and exploration. Science, 153(3731):25–33, 1966.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena
Scientific, 1996.

David Blackwell. Discrete dynamic programming. The Annals of Mathematical
Statistics, pages 719–726, 1962.

Andreea Bobu, Marius Wiggert, Claire Tomlin, and Anca D Dragan. Feature expan-
sive reward learning: Rethinking human input. ArXiv preprint, abs/2006.13208,
2020. URL https://arxiv.org/abs/2006.13208.

Richard S Bogartz, Jeanne L Shinskey, and Cindy J Speaker. Interpreting infant
looking: The event set× event set design. Developmental psychology, 33(3):408,
1997.

Matthew Botvinick, Sam Ritter, Jane X Wang, Zeb Kurth-Nelson, Charles Blundell,
and Demis Hassabis. Reinforcement learning, fast and slow. Trends in cognitive
sciences, 23(5):408–422, 2019.

Jean-David Boucher, Ugo Pattacini, Amelie Lelong, Gerard Bailly, Frederic Elisei,
Sascha Fagel, Peter F Dominey, and Jocelyne Ventre-Dominey. I reach faster
when i see you look: gaze effects in human–human and human–robot face-to-face
cooperation. Frontiers in neurorobotics, 6:3, 2012.

Cynthia Breazeal and Andrea L. Thomaz. Learning from human teachers with
socially guided exploration. In 2008 IEEE International Conference on Robotics
and Automation, pages 3539–3544. IEEE, 2008.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. Geometric deep learning: going beyond euclidean data. IEEE Signal
Processing Magazine, 34(4):18–42, 2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks
and locally connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

https://arxiv.org/abs/2006.13208

221

Jerome Bruner. Child’s Talk: Learning to Use Language. Child Language Teach-
ing and Therapy, 1(1):111–114, 1985. Publisher: SAGE Publications Sage UK:
London, England.

Jerome Bruner. The narrative construction of reality. Critical inquiry, 18(1):1–21,
1991.

Jerome S Bruner. Organization of early skilled action. Child development, pages
1–11, 1973.

Jerome S. Bruner. The process of education. Harvard University Press, 2009.

Jerome Seymour Bruner. Acts of meaning, volume 3. Harvard University Press,
1990.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and
Alexei A Efros. Large-scale study of curiosity-driven learning. arXiv preprint
arXiv:1808.04355, 2018.

Andres Campero, Roberta Raileanu, Heinrich Küttler, Joshua B Tenenbaum, Tim
Rocktäschel, and Edward Grefenstette. Learning with amigo: Adversarially mo-
tivated intrinsic goals. arXiv preprint arXiv:2006.12122, 2020.

Vı́ctor Campos, Alexander Trott, Caiming Xiong, Richard Socher, Xavier Giro-i
Nieto, and Jordi Torres. Explore, discover and learn: Unsupervised discovery
of state-covering skills. In International Conference on Machine Learning, pages
1317–1327. PMLR, 2020.

Angelo Cangelosi and Matthew Schlesinger. From babies to robots: the contribu-
tion of developmental robotics to developmental psychology. Child Development
Perspectives, 12(3):183–188, 2018.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning graph
representations. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 30, 2016.

Susan Carey. The origin of concepts. Journal of Cognition and Development, 1(1):
37–41, 2000.

Susan Carey. Where our number concepts come from. The Journal of philosophy,
106(4):220, 2009.

NR Carlson, W Buskist, ME Enzle, and CD Heth. Psychology: the science of
behaviour (3rd canadian ed.), 2005.

Richard Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

222

Hugo Caselles-Dupré, Olivier Sigaud, and Mohamed Chetouani. Pragmatically
learning from pedagogical demonstrations in multi-goal environments. arXiv
preprint arXiv:2206.04546, 2022.

Carlos Celemin and Javier Ruiz-del Solar. Coach: learning continuous actions from
corrective advice communicated by humans. In 2015 International Conference on
Advanced Robotics (ICAR), pages 581–586. IEEE, 2015.

Tathagata Chakraborti, Subbarao Kambhampati, Matthias Scheutz, and Yu Zhang.
Ai challenges in human-robot cognitive teaming. ArXiv preprint, abs/1707.04775,
2017. URL https://arxiv.org/abs/1707.04775.

Harris Chan, Yuhuai Wu, Jamie Kiros, Sanja Fidler, and Jimmy Ba. Actrce:
Augmenting experience via teacher’s advice for multi-goal reinforcement learn-
ing. ArXiv preprint, abs/1902.04546, 2019. URL https://arxiv.org/abs/1902.

04546.

Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum.
A compositional object-based approach to learning physical dynamics. arXiv
preprint arXiv:1612.00341, 2016.

Henry Charlesworth and Giovanni Montana. Plangan: Model-based planning with
sparse rewards and multiple goals. Advances in Neural Information Processing
Systems, 33:8532–8542, 2020.

Alexandre Chenu, Nicolas Perrin-Gilbert, and Olivier Sigaud. Divide & conquer
imitation learning. arXiv preprint arXiv:2204.07404, 2022.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems,
Chitwan Saharia, Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform
to study the sample efficiency of grounded language learning. arXiv preprint
arXiv:1810.08272, 2018.

Soonja Choi, Laraine McDonough, Melissa Bowerman, and Jean M Mandler. Early
sensitivity to language-specific spatial categories in english and korean. Cognitive
Development, 14(2):241–268, 1999.

Noam. Chomsky. Syntactic Structures. Mouton, 1957. ISBN 978-90-279-3385-0.

Paul Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario
Amodei. Deep reinforcement learning from human preferences. arXiv preprint
arXiv:1706.03741, 2017.

Junyi Chu and Laura E. Schulz. Play, curiosity, and cognition. Annual Review of
Developmental Psychology, 2:317–343, 2020.

https://arxiv.org/abs/1707.04775
https://arxiv.org/abs/1902.04546
https://arxiv.org/abs/1902.04546

223

Geoffrey Cideron, Mathieu Seurin, Florian Strub, and Olivier Pietquin. Self-
educated language agent with hindsight experience replay for instruction follow-
ing. arXiv preprint arXiv:1910.09451, 2019.

Felipe Codevilla, Matthias Müller, Antonio López, Vladlen Koltun, and Alexey
Dosovitskiy. End-to-end driving via conditional imitation learning. In 2018 IEEE
international conference on robotics and automation (ICRA), pages 4693–4700.
IEEE, 2018.

Felipe Codevilla, Eder Santana, Antonio M López, and Adrien Gaidon. Exploring
the limitations of behavior cloning for autonomous driving. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 9329–9338,
2019.

Cédric Colas, Pierre Fournier, Mohamed Chetouani, Olivier Sigaud, and Pierre-
Yves Oudeyer. Curious: intrinsically motivated modular multi-goal reinforce-
ment learning. In International conference on machine learning, pages 1331–1340.
PMLR, 2019.

Cédric Colas, Ahmed Akakzia, Pierre-Yves Oudeyer, Mohamed Chetouani, and
Olivier Sigaud. Language-conditioned goal generation: a new approach to lan-
guage grounding for rl. arXiv preprint arXiv:2006.07043, 2020a.

Cédric Colas, Tristan Karch, Nicolas Lair, Jean-Michel Dussoux, Clément Moulin-
Frier, Peter F. Dominey, and Pierre-Yves Oudeyer. Language as a cognitive tool
to imagine goals in curiosity driven exploration. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020b.

Cédric Colas, Tristan Karch, Olivier Sigaud, and Pierre-Yves Oudeyer. Intrinsi-
cally motivated goal-conditioned reinforcement learning: a short survey. ArXiv
preprint, abs/2012.09830, 2020c. URL https://arxiv.org/abs/2012.09830.

Cédric Colas, Tristan Karch, Clément Moulin-Frier, and Pierre-Yves Oudeyer. Vy-
gotskian autotelic artificial intelligence: Language and culture internalization for
human-like ai. arXiv preprint arXiv:2206.01134, 2022a.

Cédric Colas, Tristan Karch, Olivier Sigaud, and Pierre-Yves Oudeyer. Autotelic
agents with intrinsically motivated goal-conditioned reinforcement learning: a
short survey. Journal of Artificial Intelligence Research, 74:1159–1199, 2022b.

Céédric Colas. Towards Vygotskian Autotelic Agents: Learning Skills with Goals,
Language and Intrinsically Motivated Deep Reinforcement Learning. PhD thesis,
Université de Bordeaux, 2021.

https://arxiv.org/abs/2012.09830

224

Gergely Csibra and György Gergely. Natural pedagogy. Trends in cognitive sciences,
13(4):148–153, 2009.

Antoine Cully and Yiannis Demiris. Quality and diversity optimization: A unifying
modular framework. IEEE Transactions on Evolutionary Computation, 22(2):
245–259, 2017.

Hanjun Dai, Zornitsa Kozareva, Bo Dai, Alex Smola, and Le Song. Learning steady-
states of iterative algorithms over graphs. In International conference on machine
learning, pages 1106–1114. PMLR, 2018.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Padu-
raru, and Yuval Tassa. Safe exploration in continuous action spaces. arXiv preprint
arXiv:1801.08757, 2018.

Lisandro D. Dalcin, Rodrigo R. Paz, Pablo A. Kler, and Alejandro Cosimo. Parallel
distributed computing using python. Advances in Water Resources, 34(9):1124–
1139, 2011.

Kerstin Dautenhahn. Getting to know each other—artificial social intelligence for
autonomous robots. Robotics and autonomous systems, 16(2-4):333–356, 1995.

Nathaniel D Daw and Kenji Doya. The computational neurobiology of learning and
reward. Current opinion in neurobiology, 16(2):199–204, 2006.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neu-
ral networks on graphs with fast localized spectral filtering. Advances in neural
information processing systems, 29, 2016.

Marc Peter Deisenroth, Carl Edward Rasmussen, and Dieter Fox. Learning to con-
trol a low-cost manipulator using data-efficient reinforcement learning. Robotics:
Science and Systems VII, pages 57–64, 2011.

Daniel Clement Dennett. The intentional stance. MIT press, 1987.

AH Dickenson, CM Brewer, and NA Hayes. Effects of topical baclofen on c fibre-
evoked neuronal activity in the rat dorsal horn. Neuroscience, 14(2):557–562,
1985.

Anthony H Dickenson, Daniel Le Bars, and Jean Marie Besson. Diffuse noxious
inhibitory controls (dnic). effects on trigeminal nucleus caudalis neurones in the
rat. Brain Research, 200(2):293–305, 1980.

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-
conditioned imitation learning. Advances in neural information processing sys-
tems, 32, 2019.

225

Stephane Doncieux, David Filliat, Natalia Dı́az-Rodŕıguez, Timothy Hospedales,
Richard Duro, Alexandre Coninx, Diederik M. Roijers, Benôıt Girard, Nicolas
Perrin, and Olivier Sigaud. Open-ended learning: a conceptual framework based
on representational redescription. Frontiers in Robotics and AI, 12, 2018. doi:
10.3389/fnbot.2018.00059.

Kenji Doya. Efficient nonlinear control with actor-tutor architecture. Advances in
neural information processing systems, 9, 1996.

Anca D Dragan, Kenton CT Lee, and Siddhartha S Srinivasa. Legibility and pre-
dictability of robot motion. In 2013 8th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pages 301–308. IEEE, 2013.

Ishan Durugkar, Mauricio Tec, Scott Niekum, and Peter Stone. Adversarial intrinsic
motivation for reinforcement learning. Advances in Neural Information Processing
Systems, 34:8622–8636, 2021.

Marc Ebner, Mark Shackleton, and Rob Shipman. How neutral networks influence
evolvability. Complexity, 7(2):19–33, 2001.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune.
Go-explore: a new approach for hard-exploration problems. arXiv preprint
arXiv:1901.10995, 2019.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune.
First return, then explore. Nature, 590(7847):580–586, 2021.

Jeffrey L Elman. Learning and development in neural networks: The importance of
starting small. Cognition, 48(1):71–99, 1993.

Manfred Eppe, Christian Gumbsch, Matthias Kerzel, Phuong DH Nguyen, Martin V
Butz, and Stefan Wermter. Intelligent problem-solving as integrated hierarchical
reinforcement learning. Nature Machine Intelligence, pages 1–10, 2022.

Mayalen Etcheverry, Clément Moulin-Frier, and Pierre-Yves Oudeyer. Hierarchically
organized latent modules for exploratory search in morphogenetic systems. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

Tom Everitt and Marcus Hutter. Avoiding wireheading with value reinforcement
learning. In International Conference on Artificial General Intelligence, pages
12–22. Springer, 2016.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the replay
buffer: Bridging planning and reinforcement learning. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

226

Ben Eysenbach, Xinyang Geng, Sergey Levine, and Russ R Salakhutdinov. Rewrit-
ing history with inverse rl: Hindsight inference for policy improvement. Advances
in neural information processing systems, 33:14783–14795, 2020.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diver-
sity is all you need: Learning skills without a reward function. arXiv preprint
arXiv:1802.06070, 2018.

Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and Zhengyou Zhang. Curriculum-
guided hindsight experience replay. Advances in neural information processing
systems, 32, 2019.

Teresa Farroni, Gergely Csibra, Francesca Simion, and Mark H. Johnson. Eye con-
tact detection in humans from birth. Proceedings of the National Academy of
Sciences, 99(14):9602–9605, 2002. ISSN 0027-8424. doi: 10.1073/pnas.152159999.

Tiffany M Field, Robert Woodson, Debra Cohen, Reena Greenberg, Robert Garcia,
and Kerry Collins. Discrimination and imitation of facial expressions by term and
preterm neonates. Infant Behavior and Development, 6(4):485–489, 1983.

Chelsea Finn. Learning to Learn with Gradients. PhD thesis, UC Berkeley, 2018.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse
optimal control via policy optimization. In International conference on machine
learning, pages 49–58. PMLR, 2016.

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter
Abbeel. Reverse curriculum generation for reinforcement learning. arXiv preprint
arXiv:1707.05300, 2017.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal
generation for reinforcement learning agents. In Jennifer G. Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 1514–1523. PMLR,
2018.

Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and conse-
quences. Minds and Machines, 30(4):681–694, 2020.

Sébastien Forestier and Pierre-Yves Oudeyer. Modular active curiosity-driven dis-
covery of tool use. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3965–3972. IEEE, 2016a.

Sébastien Forestier, Yoan Mollard, and Pierre-Yves Oudeyer. Intrinsically motivated
goal exploration processes with automatic curriculum learning. arXiv preprint
arXiv:1708.02190, 2017.

227

Sébastien Forestier and Pierre-Yves Oudeyer. Modular Active Curiosity-Driven Dis-
covery of Tool Use. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on, pages 3965–3972. IEEE, 2016b.

Pierre Fournier, Olivier Sigaud, and Mohamed Chetouani. Combining artificial cu-
riosity and tutor guidance for environment exploration. In Workshop on Behavior
Adaptation, Interaction and Learning for Assistive Robotics at IEEE RO-MAN,
pages 1–8, Lisbon, Portugal, 2017.

Pierre Fournier, Cédric Colas, Mohamed Chetouani, and Olivier Sigaud. Clic: Cur-
riculum learning and imitation for object control in non-rewarding environments.
IEEE Transactions on Cognitive and Developmental Systems, 2019.

Justin Fu, Anoop Korattikara, Sergey Levine, and Sergio Guadarrama. From lan-
guage to goals: Inverse reinforcement learning for vision-based instruction follow-
ing. arXiv preprint arXiv:1902.07742, 2019.

Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approxi-
mation error in actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

Anne L Fulkerson and Sandra R Waxman. Words (but not tones) facilitate object
categorization: Evidence from 6-and 12-month-olds. Cognition, 105(1):218–228,
2007.

Alexander Gajewski, Jeff Clune, Kenneth O Stanley, and Joel Lehman. Evolvability
es: scalable and direct optimization of evolvability. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 107–115, 2019.

Claudio Gallicchio and Alessio Micheli. Graph echo state networks. In The 2010
international joint conference on neural networks (IJCNN), pages 1–8. IEEE,
2010.

Dirk Geeraerts. Cognitive linguistics: Basic readings, volume 34. Walter de Gruyter,
2006.

Dedre Gentner and Christian Hoyos. Analogy and Abstraction. Topics in Cognitive
Science, 9(3):672–693, July 2017. ISSN 17568757. doi: 10.1111/tops.12278.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin
Eysenbach, and Sergey Levine. Learning to reach goals via iterated supervised
learning. arXiv preprint arXiv:1912.06088, 2019.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. Neural message passing for quantum chemistry. arXiv preprint
arXiv:1704.01212, 2017.

Lila R Gleitman, Elissa L Newport, and Henry Gleitman. The current status of the
motherese hypothesis. Journal of child language, 11(1):43–79, 1984.

228

Peter Godfrey-Smith. Theory and reality. In Theory and Reality. University of
Chicago Press, 2021.

Michael H Goldstein, Andrew P King, and Meredith J West. Social interaction
shapes babbling: Testing parallels between birdsong and speech. Proceedings of
the National Academy of Sciences, 100(13):8030–8035, 2003.

Noah D. Goodman and Michael C. Frank. Pragmatic language interpretation as
probabilistic inference. Trends in Cognitive Sciences, 20(11):818–829, 2016. ISSN
1364-6613. doi: https://doi.org/10.1016/j.tics.2016.08.005.

Noah D Goodman, Joshua B Tenenbaum, and Tobias Gerstenberg. Concepts in a
probabilistic language of thought. Technical report, Center for Brains, Minds and
Machines (CBMM), 2014.

Alison Gopnik and Andrew N Meltzoff. Words, thoughts, and theories. Mit Press,
1997.

Alison Gopnik, Andrew N Meltzoff, and Patricia K Kuhl. The scientist in the crib:
Minds, brains, and how children learn. William Morrow & Co, 1999.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic
control. ArXiv preprint, abs/1611.07507, 2016. URL https://arxiv.org/abs/

1611.07507.

H. P. Grice. Logic and conversation. In Peter Cole and Jerry L. Morgan, editors,
Syntax and Semantics: Vol. 3: Speech Acts, pages 41–58. Academic Press, New
York, 1975.

Jonathan Grizou, Manuel Lopes, and Pierre-Yves Oudeyer. Robot learning simulta-
neously a task and how to interpret human instructions. In 2013 IEEE Third Joint
International Conference on Development and Learning and Epigenetic Robotics
(ICDL), pages 1–8. IEEE, 2013.

Jonathan Grizou, Iñaki Iturrate, Luis Montesano, Pierre-Yves Oudeyer, and Manuel
Lopes. Interactive learning from unlabeled instructions. In Nevin L. Zhang and Jin
Tian, editors, Proceedings of the Thirtieth Conference on Uncertainty in Artificial
Intelligence, UAI 2014, Quebec City, Quebec, Canada, July 23-27, 2014, pages
290–299. AUAI Press, 2014.

Benjamin N Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description
logic programs: Combining logic programs with description logic. In Proceedings
of the 12th international conference on World Wide Web, pages 48–57, 2003.

Romana Gruber, Martina Schiestl, Markus Boeckle, Anna Frohnwieser, Rachael
Miller, Russell D Gray, Nicola S Clayton, and Alex H Taylor. New caledonian
crows use mental representations to solve metatool problems. Current Biology, 29
(4):686–692, 2019.

https://arxiv.org/abs/1611.07507
https://arxiv.org/abs/1611.07507

229

Thomas R Gruber. Nature, nurture, and knowledge acquisition. International jour-
nal of human-computer studies, 71(2):191–194, 2013.

Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention
based spatial-temporal graph convolutional networks for traffic flow forecasting.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages
922–929, 2019.

Yijie Guo, Jongwook Choi, Marcin Moczulski, Shengyu Feng, Samy Bengio, Mo-
hammad Norouzi, and Honglak Lee. Memory based trajectory-conditioned poli-
cies for learning from sparse rewards. Advances in Neural Information Processing
Systems, 33:4333–4345, 2020.

Zhaohan Daniel Guo and Emma Brunskill. Directed exploration for reinforcement
learning. arXiv preprint arXiv:1906.07805, 2019.

Hyowon Gweon. Inferential social learning: Cognitive foundations of human social
learning and teaching. Trends in Cognitive Sciences, 25(10):896–910, 2021.

Hyowon Gweon, Joshua B Tenenbaum, and Laura E Schulz. Infants consider both
the sample and the sampling process in inductive generalization. Proceedings of
the National Academy of Sciences, 107(20):9066–9071, 2010.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor.
arXiv preprint arXiv:1801.01290, 2018.

Marshall M Haith and Janette B Benson. Infant cognition. None, 1998.

John Burdon Sanderson Haldane. The interaction of nature and nurture. Annals of
eugenics, 13(1):197–205, 1946.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on
graphs: Methods and applications. arXiv preprint arXiv:1709.05584, 2017.

Jessica B Hamrick, Andrew J Ballard, Razvan Pascanu, Oriol Vinyals, Nicolas Heess,
and Peter W Battaglia. Metacontrol for adaptive imagination-based optimization.
arXiv preprint arXiv:1705.02670, 2017.

Jessica B Hamrick, Kelsey R Allen, Victor Bapst, Tina Zhu, Kevin R McKee,
Joshua B Tenenbaum, and Peter W Battaglia. Relational inductive bias for phys-
ical construction in humans and machines. ArXiv preprint, abs/1806.01203, 2018.
URL https://arxiv.org/abs/1806.01203.

Michael J Hannafin, Craig Hall, Susan Land, and Janette Hill. Learning in open-
ended environments: Assumptions, methods, and implications. Educational Tech-
nology, 34(8):48–55, 1994.

https://arxiv.org/abs/1806.01203

230

Steve Harnad. The symbol grounding problem. Physica D, 42:335–346, 1990.

Kristian Hartikainen, Xinyang Geng, Tuomas Haarnoja, and Sergey Levine. Dy-
namical distance learning for semi-supervised and unsupervised skill discovery.
arXiv preprint arXiv:1907.08225, 2019.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on
graph-structured data. arXiv preprint arXiv:1506.05163, 2015.

Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hu-
bert Soyer, David Szepesvari, Wojciech Marian Czarnecki, Max Jaderberg, Denis
Teplyashin, et al. Grounded language learning in a simulated 3d world. arXiv
preprint arXiv:1706.06551, 2017.

Susan J Hespos and Renée Baillargeon. Reasoning about containment events in very
young infants. Cognition, 78(3):207–245, 2001.

Todd Hester, Matej Veceŕık, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot,
Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold,
John P. Agapiou, Joel Z. Leibo, and Audrunas Gruslys. Deep q-learning from
demonstrations. In Sheila A. McIlraith and Kilian Q. Weinberger, editors, Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the
8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-
18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 3223–3230. AAAI
Press, 2018.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups. IEEE Signal processing magazine, 29
(6):82–97, 2012.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Ad-
vances in neural information processing systems, 29, 2016.

Mark K. Ho, Michael L. Littman, James MacGlashan, Fiery Cushman, and
Joseph L. Austerweil. Showing versus doing: Teaching by demonstration. In
Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Ro-
man Garnett, editors, Advances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain, pages 3027–3035, 2016.

Mark K Ho, James MacGlashan, Michael L Littman, and Fiery Cushman. Social
is special: A normative framework for teaching with and learning from evaluative
feedback. Cognition, 167:91–106, 2017.

231

Dr JPE Hodgson. First order logic. Saint Joseph’s University, Philadelphia, 1995.

Thomas Hoffmann. Creativity and Construction Grammar: Cognitive and Psycho-
logical Issues. Zeitschrift für Anglistik und Amerikanistik, 66(3):259–276, 2018.
ISSN 2196-4726, 0044-2305. doi: 10.1515/zaa-2018-0024.

Ronald A Howard. Dynamic programming and markov processes. None, 1960.

George Edward Hughes, Max J Cresswell, and Mary Meyerhoff Cresswell. A new
introduction to modal logic. Psychology Press, 1996.

Clark L Hull. A behavior system; an introduction to behavior theory concerning
the individual organism. None, 1952.

Clark Leonard Hull. Principles of behavior: An introduction to behavior theory.
None, 1943.

Broekens? J. and Mohamed Chetouani. Towards transparent robot learning through
tdrl-based emotional expressions. IEEE Transactions on Affective Computing,
pages 1–1, 2019. doi: 10.1109/TAFFC.2019.2893348.

Julian Jara-Ettinger. Theory of mind as inverse reinforcement learning. Current
Opinion in Behavioral Sciences, 29:105–110, 2019.

Firas Jarboui and Ahmed Akakzia. Delayed geometric discounts: An alternative
criterion for reinforcement learning. 2021.

Hong Jun Jeon, Smitha Milli, and Anca D. Dragan. Reward-rational (im-
plicit) choice: A unifying formalism for reward learning. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

Yiding Jiang, Shixiang Shane Gu, Kevin P Murphy, and Chelsea Finn. Language
as an abstraction for hierarchical deep reinforcement learning. In Advances in
Neural Information Processing Systems, pages 9414–9426, 2019.

Mark Johnson. The body in the mind: The bodily basis of meaning, imagination,
and reason. University of Chicago press, 2013.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, pages 1094–1099, 1993.

Sham Kakade. Optimizing average reward using discounted rewards. In Interna-
tional Conference on Computational Learning Theory, pages 605–615. Springer,
2001.

232

Immanuel Kant. Critique of pure reason. 1781. Modern Classical Philosophers,
Cambridge, MA: Houghton Mifflin, pages 370–456, 1908.

Frederic Kaplan and Verena V Hafner. The challenges of joint attention. Interaction
Studies, 7(2):135–169, 2006.

Tristan Karch, Cédric Colas, Laetitia Teodorescu, Clément Moulin-Frier, and
Pierre-Yves Oudeyer. Deep sets for generalization in RL. ArXiv preprint,
abs/2003.09443, 2020. URL https://arxiv.org/abs/2003.09443.

Suzanne Kemmer and Michael Barlow. Introduction: A usage-based conception of
language. Usage-based models of language, pages 7–28, 2000.

Charles Kemp and Joshua B Tenenbaum. The discovery of structural form. Pro-
ceedings of the National Academy of Sciences, 105(31):10687–10692, 2008.

Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders.
Foundations and Trends® in Machine Learning, 12(4):307–392, 2019.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel.
Neural relational inference for interacting systems. In International Conference
on Machine Learning, pages 2688–2697. PMLR, 2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convo-
lutional networks. arXiv preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016b.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of
generalisation in deep reinforcement learning. arXiv preprint arXiv:2111.09794,
2021.

W. Bradley Knox and Peter Stone. Combining manual feedback with subsequent
mdp reward signals for reinforcement learning. In Proceedings of the 9th Inter-
national Conference on Autonomous Agents and Multiagent Systems: Volume 1,
pages 5–12. International Foundation for Autonomous Agents and Multiagent
Systems, 2010.

Jens Kober and Jan Peters. Policy search for motor primitives in robotics. Machine
learning, 84(1):171–203, 2011.

Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and
convolution in neural networks to the action of compact groups. In International
Conference on Machine Learning, pages 2747–2755. PMLR, 2018.

Lyudmyla F Kozachenko and Nikolai N Leonenko. Sample estimate of the entropy
of a random vector. Problemy Peredachi Informatsii, 23(2):9–16, 1987.

https://arxiv.org/abs/2003.09443

233

Victoria Krakovna, Laurent Orseau, Miljan Martic, and Shane Legg. Measuring and
avoiding side effects using relative reachability. arXiv preprint arXiv:1806.01186,
2018.

Yingyi Kuang, Abraham Itzhak Weinberg, George Vogiatzis, and Diego R Faria.
Goal density-based hindsight experience prioritization for multi-goal robot ma-
nipulation reinforcement learning. In 2020 29th IEEE International Conference
on Robot and Human Interactive Communication (RO-MAN), pages 432–437.
IEEE, 2020.

Patricia K Kuhl. Early language acquisition: cracking the speech code. Nature
reviews neuroscience, 5(11):831–843, 2004.

Johannes Kulick, Marc Toussaint, Tobias Lang, and Manuel Lopes. Active learning
for teaching a robot grounded relational symbols. In Twenty-Third International
Joint Conference on Artificial Intelligence, 2013.

Marjan Laal. Lifelong learning: What does it mean? Procedia-Social and Behavioral
Sciences, 28:470–474, 2011.

Yaqing Lai, Wufan Wang, Yunjie Yang, Jihong Zhu, and Minchi Kuang. Hindsight
planner. In Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, pages 690–698, 2020.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level
concept learning through probabilistic program induction. Science, 350(6266):
1332–1338, 2015.

Brenden M Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gersh-
man. Building machines that learn and think like people. Behavioral and brain
sciences, 40, 2017.

Susan M Land. Cognitive requirements for learning with open-ended learning envi-
ronments. Educational Technology Research and Development, 48(3):61–78, 2000.

John B. Lanier, Stephen McAleer, and Pierre Baldi. Curiosity-driven multi-criteria
hindsight experience replay. CoRR, abs/1906.03710, 2019.

Adrien Laversanne-Finot, Alexandre Péré, and Pierre-Yves Oudeyer. Curios-
ity driven exploration of learned disentangled goal spaces. ArXiv preprint,
abs/1807.01521, 2018. URL https://arxiv.org/abs/1807.01521.

John Boaz Lee, Ryan Rossi, and Xiangnan Kong. Graph classification using struc-
tural attention. In Proceedings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, pages 1666–1674, 2018.

Joel Lehman. Evolution through the search for novelty. ., 2012.

https://arxiv.org/abs/1807.01521

234

Borja G León, Murray Shanahan, and Francesco Belardinelli. Systematic generalisa-
tion through task temporal logic and deep reinforcement learning. arXiv preprint
arXiv:2006.08767, 2020.

Alan M Leslie. Tomm, toby, and agency: Core architecture and domain specificity.
Mapping the mind: Domain specificity in cognition and culture, 29:119–48, 1994.

Alan M Leslie. Developmental parallels in understanding minds and bodies. Trends
in cognitive sciences, 9(10):459–462, 2005.

Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. Cayleynets:
Graph convolutional neural networks with complex rational spectral filters. IEEE
Transactions on Signal Processing, 67(1):97–109, 2018.

Richard Li, Allan Jabri, Trevor Darrell, and Pulkit Agrawal. Towards practical
multi-object manipulation using relational reinforcement learning. ArXiv preprint,
abs/1912.11032, 2019. URL https://arxiv.org/abs/1912.11032.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926,
2017.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph
sequence neural networks. arXiv preprint arXiv:1511.05493, 2015.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning
deep generative models of graphs. arXiv preprint arXiv:1803.03324, 2018.

Christina Lichtenthäler and Alexandra Kirsch. Legibility of robot behavior: A lit-
erature review. https://hal.archives-ouvertes.fr/hal-01306977, 2016.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep
reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

Angelica Lim and Hiroshi G Okuno. The mei robot: towards using motherese to
develop multimodal emotional intelligence. IEEE Transactions on Autonomous
Mental Development, 6(2):126–138, 2014.

Jinying Lin, Zhen Ma, Randy Gomez, Keisuke Nakamura, Bo He, and Guangliang
Li. A review on interactive reinforcement learning from human social feedback.
IEEE Access, 8:120757–120765, 2020.

Jessica Lindblom and Tom Ziemke. Social situatedness: Vygotsky and beyond. In
Proceedings of the Second International Workshop on Epigenetic Robotics. Mod-
elling cognitive development in robotic systems, pages 71–78. Lund University
Cognitive Studies, 2002.

https://arxiv.org/abs/1912.11032

235

Jessica Lindblom and Tom Ziemke. Social situatedness of natural and artificial
intelligence: Vygotsky and beyond. Adaptive Behavior, 11(2):79–96, 2003.

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement
learning: Problems and solutions. arXiv preprint arXiv:2201.08299, 2022.

Manuel Lopes and Pierre-Yves Oudeyer. The strategic student approach for life-long
exploration and learning. In IEEE International Conference on Development and
Learning and Epigenetic Robotics, pages 1–8. IEEE, 2012.

Manuel Lopes, Tobias Lang, Marc Toussaint, and Pierre-Yves Oudeyer. Exploration
in model-based reinforcement learning by empirically estimating learning progress.
Advances in neural information processing systems, 25, 2012.

Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob An-
dreas, Edward Grefenstette, Shimon Whiteson, and Tim Rocktäschel. A sur-
vey of reinforcement learning informed by natural language. arXiv preprint
arXiv:1906.03926, 2019.

Max Lungarella, Giorgio Metta, Rolf Pfeifer, and Giulio Sandini. Developmental
robotics: a survey. Connection Science, 15(4):151–190, 2003.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches
to attention-based neural machine translation. arXiv preprint arXiv:1508.04025,
2015.

Gary Lupyan. Linguistically modulated perception and cognition: The label-
feedback hypothesis. Frontiers in psychology, 3:54, 2012.

Corey Lynch and Pierre Sermanet. Grounding language in play. arXiv preprint
arXiv:2005.07648, 2020.

James MacGlashan and Michael L. Littman. Between imitation and intention
learning. In Qiang Yang and Michael J. Wooldridge, editors, Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, July 25-31, 2015, pages 3692–3698. AAAI Press,
2015.

Jean M. Mandler. Preverbal representation and language. Language and space, page
365, 1999.

Jean M Mandler. On the spatial foundations of the conceptual system and its
enrichment. Cognitive science, 36(3):421–451, 2012.

Jean M Mandler and Cristóbal Pagán Cánovas. On defining image schemas. Lan-
guage and cognition, 6(4):510–532, 2014.

236

Daniel J Mankowitz, Augustin Ž́ıdek, André Barreto, Dan Horgan, Matteo Hes-
sel, John Quan, Junhyuk Oh, Hado van Hasselt, David Silver, and Tom Schaul.
Unicorn: Continual learning with a universal, off-policy agent. arXiv preprint
arXiv:1802.08294, 2018.

Ellen M Markman. Categorization and naming in children: Problems of induction.
mit Press, 1989.

Robert McCarthy and Stephen J Redmond. Imaginary hindsight experience re-
play: Curious model-based learning for sparse reward tasks. arXiv preprint
arXiv:2110.02414, 2021.

Laraine McDonough, Soonja Choi, and Jean M Mandler. Understanding spatial
relations: Flexible infants, lexical adults. Cognitive psychology, 46(3):229–259,
2003.

Andrew N Meltzoff. Infant imitation after a 1-week delay: long-term memory for
novel acts and multiple stimuli. Developmental psychology, 24(4):470, 1988.

Andrew N Meltzoff. Born to learn: What infants learn from watching us. The role
of early experience in infant development, pages 1–10, 1999.

Andrew N Meltzoff. ‘like me’: a foundation for social cognition. Developmental
science, 10(1):126–134, 2007.

Andrew N Meltzoff and M Keith Moore. Newborn infants imitate adult facial ges-
tures. Child development, pages 702–709, 1983.

Elliott Mendelson. Introduction to mathematical logic. Chapman and Hall/CRC,
2009.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak
Pathak. Discovering and achieving goals via world models. Advances in Neural
Information Processing Systems, 34:24379–24391, 2021.

Henok Mengistu, Joel Lehman, and Jeff Clune. Evolvability search: directly selecting
for evolvability in order to study and produce it. In Proceedings of the Genetic
and Evolutionary Computation Conference 2016, pages 141–148, 2016.

Csikszentmihalyi Mihaly. Beyond boredom and anxiety: experiencing flow in work
and play. Jossey-Bass Publishers, 2000.

Pasquale Minervini, Matko Bosnjak, Tim Rocktäschel, and Sebastian Riedel. To-
wards neural theorem proving at scale. arXiv preprint arXiv:1807.08204, 2018.

P Read Montague, Peter Dayan, and Terrence J Sejnowski. A framework for mes-
encephalic dopamine systems based on predictive hebbian learning. Journal of
neuroscience, 16(5):1936–1947, 1996.

237

David S Moore. The Dependent Gene: The Fallacy of” nature Vs. Nurture”. Macmil-
lan, 2003.

David S Moore. The developing genome: An introduction to behavioral epigenetics.
Oxford University Press, 2015.

Yugi Nagai and Katharina J. Rohlfing. Computational analysis of motionese toward
scaffolding robot action learning. IEEE Transactions on Autonomous Mental
Development, 1(1):44–54, 2009. doi: 10.1109/TAMD.2009.2021090.

Yukie Nagai and Katharina J. Rohlfing. Can motionese tell infants and robots” what
to imitate”. In Proceedings of the 4th International Symposium on Imitation in
Animals and Artifacts, pages 299–306. Citeseer, 2007.

Ashvin Nair, Shikhar Bahl, Alexander Khazatsky, Vitchyr Pong, Glen Berseth,
and Sergey Levine. Contextual imagined goals for self-supervised robotic learn-
ing. ArXiv preprint, abs/1910.11670, 2019. URL https://arxiv.org/abs/1910.

11670.

Ashvin Nair, Shikhar Bahl, Alexander Khazatsky, Vitchyr Pong, Glen Berseth, and
Sergey Levine. Contextual imagined goals for self-supervised robotic learning. In
Conference on Robot Learning, pages 530–539. PMLR, 2020.

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey
Levine. Visual reinforcement learning with imagined goals. In Advances in Neural
Information Processing Systems, pages 9191–9200, 2018.

Anis Najar, Olivier Sigaud, and Mohamed Chetouani. Training a robot with evalu-
ative feedback and unlabeled guidance signals. In 25th IEEE International Sym-
posium on Robot and Human Interactive Communication, pages 261–266. IEEE,
2016.

Anis Najar, Olivier Sigaud, and Mohamed Chetouani. Interactively shaping robot
behaviour with unlabeled human instructions. Autonomous Agents and Multi-
Agent Systems, 34:1–35, 2020.

David Navon. Forest before trees: The precedence of global features in visual per-
ception. Cognitive psychology, 9(3):353–383, 1977.

Chrystopher L. Nehaniv and Kerstin Dautenhahn. The correspondence problem.
Imitation in animals and artifacts, 41, 2002.

Allen Newel and Herbert A Simon. Computer science as empirical inquiry: Symbols
and search. Communications of the ACM, 19(3):113–126, 1976.

Allen Newell. Unified theories of cognition. Harvard University Press, 1994.

https://arxiv.org/abs/1910.11670
https://arxiv.org/abs/1910.11670

238

Allen Newell and Herbert Simon. The logic theory machine–a complex information
processing system. IRE Transactions on information theory, 2(3):61–79, 1956.

Allen Newell and Herbert A Simon. Computer science as empirical inquiry: Symbols
and search. In ACM Turing award lectures, page 1975. 2007.

Allen Newell, John C Shaw, and Herbert A Simon. Report on a general problem
solving program. In IFIP congress, volume 256, page 64. Pittsburgh, PA, 1959.

Dung Nguyen, Svetha Venkatesh, Phuoc Nguyen, and Truyen Tran. Theory of
mind with guilt aversion facilitates cooperative reinforcement learning. In Asian
Conference on Machine Learning, pages 33–48. PMLR, 2020.

Khanh Nguyen, Dipendra Misra, Robert E. Schapire, Miroslav Dud́ık, and Patrick
Shafto. Interactive learning from activity description. In Marina Meila and
Tong Zhang, editors, Proceedings of the 38th International Conference on Ma-
chine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Pro-
ceedings of Machine Learning Research, pages 8096–8108. PMLR, 2021. URL
http://proceedings.mlr.press/v139/nguyen21e.html.

Sao Mai Nguyen and Pierre-Yves Oudeyer. Active Choice of Teachers, Learning
Strategies and Goals for a Socially Guided Intrinsic Motivation Learner. Paladyn,
3(3):136–146, 2012. Publisher: Springer.

Sao Mai Nguyen and Pierre-Yves Oudeyer. Socially guided intrinsic motivation for
robot learning of motor skills. Autonomous Robots, 36(3):273–294, 2014a.

Sao Mai Nguyen and Pierre-Yves Oudeyer. Socially Guided Intrinsic Motivation
for Robot Learning of Motor Skills. Autonomous Robots, 36(3):273–294, 2014b.
Publisher: Springer.

Andreas Nieder. Prefrontal cortex and the evolution of symbolic reference. Current
opinion in neurobiology, 19(1):99–108, 2009.

Dennis Normile. Nature from nurture, 2016.

Todd Oakley. Image schemas. The Oxford handbook of cognitive linguistics, pages
214–235, 2007.

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task
generalization with multi-task deep reinforcement learning. In International Con-
ference on Machine Learning, pages 2661–2670. PMLR, 2017.

James Olds and Peter Milner. Positive reinforcement produced by electrical stimu-
lation of septal area and other regions of rat brain. Journal of comparative and
physiological psychology, 47(6):419, 1954.

http://proceedings.mlr.press/v139/nguyen21e.html

239

P-Y Oudeyer, Jacqueline Gottlieb, and Manuel Lopes. Intrinsic motivation, curios-
ity, and learning: Theory and applications in educational technologies. Progress
in brain research, 229:257–284, 2016.

Pierre-Yves Oudeyer and Frederic Kaplan. What Is Intrinsic Motivation? A Typol-
ogy of Computational Approaches. Frontiers in neurorobotics, 1:6, 2007. Pub-
lisher: Frontiers.

Pierre-Yves Oudeyer and Frederic Kaplan. How can we define intrinsic motiva-
tion? In the 8th International Conference on Epigenetic Robotics: Modeling
Cognitive Development in Robotic Systems. Lund University Cognitive Studies,
Lund: LUCS, Brighton, 2008.

Pierre-Yves Oudeyer, Frédéric Kaplan, and Verena V. Hafner. Intrinsic motivation
systems for autonomous mental development. IEEE Transactions on Evolutionary
Computation, 11(2):265–286, 2007.

Stephen E Palmer. Visual perception and world knowledge: Notes on a model of
sensory-cognitive interaction. Explorations in cognition, pages 279–307, 1975.

Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang.
Adversarially regularized graph autoencoder for graph embedding. arXiv preprint
arXiv:1802.04407, 2018.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via
disagreement. In International conference on machine learning, pages 5062–5071.
PMLR, 2019.

Sujoy Paul, Jeroen Vanbaar, and Amit Roy-Chowdhury. Learning from trajectories
via subgoal discovery. Advances in Neural Information Processing Systems, 32,
2019.

Ivan Pavlov. Physiology of digestion. In Nobel lectures: Physiology or medicine,
pages 141–155. Elsevier, 1904.

Ivan Petrovitch Pavlov and William Gantt. Lectures on conditioned reflexes:
Twenty-five years of objective study of the higher nervous activity (behaviour)
of animals. None, 1928.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy
gradients. Neural networks, 21(4):682–697, 2008.

Maxime Petit, Stéphane Lallée, Jean-David Boucher, Grégoire Pointeau, Pierrick
Cheminade, Dimitri Ognibene, Eris Chinellato, Ugo Pattacini, Ilaria Gori, Uriel
Martinez-Hernandez, et al. The coordinating role of language in real-time multi-
modal learning of cooperative tasks. IEEE Transactions on Autonomous Mental
Development, 5(1):3–17, 2012.

240

Jean Piaget. Le langage et la pensée chez l’enfant, volume 1. Delachaux and Niestlé,
1923.

Jean Piaget. The construction of reality in the child. Journal of Consulting Psy-
chology, 19(1):77, 1955.

Jean Piaget. The development of thought: Equilibration of cognitive structures.
Viking, 1977. (Trans A. Rosin).

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum
entropy gain exploration for long horizon multi-goal reinforcement learning. In
International Conference on Machine Learning, pages 7750–7761. PMLR, 2020.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker,
Glenn Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al.
Multi-goal reinforcement learning: Challenging robotics environments and request
for research. arXiv preprint arXiv:1802.09464, 2018.

D Pomerleau. An autonomous land vehicle in a neural network. Advances in Neural
Information Processing Systems, 1, 1998.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey
Levine. Skew-fit: State-covering self-supervised reinforcement learning. arXiv
preprint arXiv:1903.03698, 2019.

Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, and Pierre-Yves
Oudeyer. Automatic curriculum learning for deep RL: A short survey. arXiv
preprint arXiv:2003.04664, 2020.

Danil V Prokhorov and Donald C Wunsch. Adaptive critic designs. IEEE transac-
tions on Neural Networks, 8(5):997–1007, 1997.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic pro-
gramming. John Wiley & Sons, 2014.

Sebastien Racaniere, Andrew K Lampinen, Adam Santoro, David P Reichert, Vlad
Firoiu, and Timothy P Lillicrap. Automated curricula through setter-solver inter-
actions. ArXiv preprint, abs/1909.12892, 2019. URL https://arxiv.org/abs/

1909.12892.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann,
Francis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young,
et al. Scaling language models: Methods, analysis & insights from training go-
pher. ArXiv preprint, abs/2112.11446, 2021. URL https://arxiv.org/abs/

2112.11446.

Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration
for procedurally-generated environments. arXiv preprint arXiv:2002.12292, 2020.

https://arxiv.org/abs/1909.12892
https://arxiv.org/abs/1909.12892
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446

241

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in
deep reinforcement learning. arXiv preprint arXiv:1910.01708, 7:1, 2019.

Siddharth Reddy, Anca D. Dragan, Sergey Levine, Shane Legg, and Jan Leike.
Learning human objectives by evaluating hypothetical behavior. In Proceedings of
the 37th International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research,
pages 8020–8029. PMLR, 2020.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 779–788, 2016.

Joseph Reisinger, Kenneth O Stanley, and Risto Miikkulainen. Towards an empirical
measure of evolvability. In Proceedings of the 7th annual workshop on Genetic and
evolutionary computation, pages 257–264, 2005.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. Advances in neural
information processing systems, 28, 2015.

Zhizhou Ren, Kefan Dong, Yuan Zhou, Qiang Liu, and Jian Peng. Exploration via
hindsight goal generation. Advances in Neural Information Processing Systems,
32, 2019.

Frank Röder, Manfred Eppe, and Stefan Wermter. Grounding hindsight in-
structions in multi-goal reinforcement learning for robotics. arXiv preprint
arXiv:2204.04308, 2022.

Matthias Rolf, Jochen J Steil, and Michael Gienger. Goal babbling permits di-
rect learning of inverse kinematics. IEEE Transactions on Autonomous Mental
Development, 2(3):216–229, 2010.

Joshua Romoff, Peter Henderson, Ahmed Touati, Emma Brunskill, Joelle Pineau,
and Yann Ollivier. Separating value functions across time-scales. In International
Conference on Machine Learning, pages 5468–5477. PMLR, 2019.

Barak Rosenshine, Carla Meister, et al. The use of scaffolds for teaching higher-level
cognitive strategies. Educational leadership, 49(7):26–33, 1992.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learn-
ing and structured prediction to no-regret online learning. In Proceedings of the
fourteenth international conference on artificial intelligence and statistics, pages
627–635. JMLR Workshop and Conference Proceedings, 2011.

Julien Roy, Roger Girgis, Joshua Romoff, Pierre-Luc Bacon, and Christopher
Pal. Direct behavior specification via constrained reinforcement learning. arXiv
preprint arXiv:2112.12228, 2021.

242

Joshua S Rule, Joshua B Tenenbaum, and Steven T Piantadosi. The child as hacker.
Trends in cognitive sciences, 24(11):900–915, 2020.

Catherine Saint-Georges, Mohamed Chetouani, Raquel Cassel, Fabio Apicella, Am-
mar Mahdhaoui, Filippo Muratori, Marie-Christine Laznik, and David Cohen.
Motherese in interaction: At the cross-road of emotion and cognition? (a system-
atic review). PLOS ONE, 8(10):null, 10 2013. doi: 10.1371/journal.pone.0078103.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel,
Martin Riedmiller, Raia Hadsell, and Peter Battaglia. Graph networks as learn-
able physics engines for inference and control. In International Conference on
Machine Learning, pages 4470–4479. PMLR, 2018.

Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pas-
canu, Peter Battaglia, and Timothy Lillicrap. A simple neural network module
for relational reasoning. Advances in neural information processing systems, 30,
2017.

Adam Santoro, Andrew Lampinen, Kory Mathewson, Timothy Lillicrap, and
David Raposo. Symbolic behaviour in artificial intelligence. arXiv preprint
arXiv:2102.03406, 2021.

William Saunders, Girish Sastry, Andreas Stuhlmueller, and Owain Evans. Trial
without error: Towards safe reinforcement learning via human intervention. arXiv
preprint arXiv:1707.05173, 2017.

Franco Scarselli, Sweah Liang Yong, Marco Gori, Markus Hagenbuchner, Ah Chung
Tsoi, and Marco Maggini. Graph neural networks for ranking web pages. In The
2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05),
pages 666–672. IEEE, 2005.

Stefan Schaal, Auke Ijspeert, and Aude Billard. Computational approaches to motor
learning by imitation. Philosophical Transactions of the Royal Society of London.
Series B: Biological Sciences, 358(1431):537–547, 2003.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value func-
tion approximators. In International conference on machine learning, pages 1312–
1320. PMLR, 2015.

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation
(1990–2010). IEEE transactions on autonomous mental development, 2(3):230–
247, 2010.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter
Abbeel. Trust region policy optimization. CoRR, abs/1502.05477, 2015.

243

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

W. Schultz, P. Dayan, and P. R. Montague. A neural substrate of prediction and
reward. Science, 275(5306):1593–1599, 1997.

Anton Schwartz. A reinforcement learning method for maximizing undiscounted
rewards. In Proceedings of the tenth international conference on machine learning,
volume 298, pages 298–305, 1993.

Daniel Seita, David Chan, Roshan Rao, Chen Tang, Mandi Zhao, and John Canny.
Zpd teaching strategies for deep reinforcement learning from demonstrations.
ArXiv preprint, abs/1910.12154, 2019. URL https://arxiv.org/abs/1910.

12154.

Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson.
Structured sequence modeling with graph convolutional recurrent networks. In In-
ternational conference on neural information processing, pages 362–373. Springer,
2018.

Claude Elwood Shannon. A mathematical theory of communication. The Bell
system technical journal, 27(3):379–423, 1948.

Robert S Siegler. Emerging minds: The process of change in children’s thinking.
Oxford University Press, 1998.

Olivier Sigaud, Hugo Caselles-Dupré, Cédric Colas, Ahmed Akakzia, Pierre-Yves
Oudeyer, and Mohamed Chetouani. Towards teachable autonomous agents. arXiv
preprint arXiv:2105.11977, 2021.

David Silver, Satinder Singh, Doina Precup, and Richard S Sutton. Reward is
enough. Artificial Intelligence, 299:103535, 2021.

BF Skinner. The behavior of organisms. New York, Appleton-Century-Crofts, 1938.

Vladimir M Sloutsky. From perceptual categories to concepts: What develops?
Cognitive science, 34(7):1244–1286, 2010.

Linda Smith and Michael Gasser. The development of embodied cognition: Six
lessons from babies. Artificial life, 11(1-2):13–29, 2005.

Raymond M Smullyan. First-order logic. Courier Corporation, 1995.

David Sobel and Jessica Sommerville. The importance of discovery in children’s
causal learning from interventions. Frontiers in Psychology, 1:176, 2010.

https://arxiv.org/abs/1910.12154
https://arxiv.org/abs/1910.12154

244

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output repre-
sentation using deep conditional generative models. In Advances in neural infor-
mation processing systems, pages 3483–3491, 2015.

Aleksandr Sokolov. Inner Speech and Thought. New York: Plenum Press, 1972.

Elizabeth Spelke. Initial knowledge: Six suggestions. Cognition, 50(1-3):431–445,
1994.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in rein-
forcement learning with deep predictive models. arXiv preprint arXiv:1507.00814,
2015.

Luc Steels. The autotelic principle. In Embodied artificial intelligence, pages 231–
242. Springer, 2004.

Luc Steels. The Talking Heads experiment: Origins of words and meanings, vol-
ume 1. Language Science Press, 2015.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforce-
ment learning by pid lagrangian methods. In International Conference on Machine
Learning, pages 9133–9143. PMLR, 2020.

Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck, Jakob Bauer, Jakub
Sygnowski, Maja Trebacz, Max Jaderberg, Michael Mathieu, et al. Open-ended
learning leads to generally capable agents. ArXiv preprint, abs/2107.12808, 2021.
URL https://arxiv.org/abs/2107.12808.

Freek Stulp and Stefan Schaal. Hierarchical reinforcement learning with move-
ment primitives. In 2011 11th IEEE-RAS International Conference on Humanoid
Robots, pages 231–238. IEEE, 2011.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam,
and Rob Fergus. Intrinsic motivation and automatic curricula via asymmetric self-
play. arXiv preprint arXiv:1703.05407, 2017.

Gerald J. Sussman. A computational model of skill acquisition. Technical report,
HIT Technical Report AI TR-297, 1973.

Richard Sutton. The bitter lesson. Incomplete Ideas (blog), 13:12, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning. Journal of
Cognitive Neuroscience, 11(1):126–134, 1999a.

https://arxiv.org/abs/2107.12808

245

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-
mdps: A framework for temporal abstraction in reinforcement learning. Artificial
intelligence, 112(1-2):181–211, 1999b.

Richard S Sutton et al. Introduction to reinforcement learning. MIT Press, 1998.

Umar Syed and Robert E Schapire. A reduction from apprenticeship learning to
classification. Advances in neural information processing systems, 23, 2010.

Umar Syed, Michael Bowling, and Robert E Schapire. Apprenticeship learning
using linear programming. In Proceedings of the 25th international conference on
Machine learning, pages 1032–1039, 2008.

Austin Tate et al. Interacting goals and their use. In IJCAI, volume 10, pages
215–218, 1975.

Jessica Taylor, Eliezer Yudkowsky, Patrick LaVictoire, and Andrew Critch. Align-
ment for advanced machine learning systems. Ethics of Artificial Intelligence,
pages 342–382, 2016.

Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R Walter, Ashis Gopal
Banerjee, Seth Teller, and Nicholas Roy. Approaching the symbol grounding
problem with probabilistic graphical models. AI magazine, 32(4):64–76, 2011.

Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths, and Noah D Goodman.
How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022):
1279–1285, 2011.

Chen Tessler and Shie Mannor. Reward tweaking: Maximizing the total reward
while planning for short horizons. arXiv preprint arXiv:2002.03327, 2020.

Esther Thelen and Linda B Smith. A dynamic systems approach to the development
of cognition and action. MIT press, 1996.

Andrea L Thomaz and Cynthia Breazeal. Experiments in socially guided explo-
ration: Lessons learned in building robots that learn with and without human
teachers. Connection Science, 20(2-3):91–110, 2008a.

Andrea L Thomaz and Cynthia Breazeal. Teachable robots: Understanding human
teaching behavior to build more effective robot learners. Artificial Intelligence,
172(6-7):716–737, 2008b.

Andrea L Thomaz, Guy Hoffman, and Cynthia Breazeal. Reinforcement learn-
ing with human teachers: Understanding how people want to teach robots. In
ROMAN 2006-The 15th IEEE International Symposium on Robot and Human
Interactive Communication, pages 352–357. IEEE, 2006.

E. L. Thorndike. Animal Intelligence. MacMillan Company, New York, 1911.

246

Edward L Thorndike. Animal intelligence: An experimental study of the associative
processes in animals. The Psychological Review: Monograph Supplements, 2(4):i,
1898.

Sebastian Thrun. Lifelong learning algorithms. In Learning to learn, pages 181–209.
Springer, 1998.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5026–5033. IEEE, 2012.

Michael Tomasello. The social bases of language acquisition. Social development, 1
(1):67–87, 1992.

Michael Tomasello. Emulation learning and cultural learning. Behavioral and Brain
Sciences, 21(5):703–704, 1998.

Michael Tomasello. The human adaptation for culture. Annual review of anthropol-
ogy, 28, 1999.

Michael Tomasello. Constructing a language: A usage-based theory of language
acquisition. Harvard university press, 2005.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observa-
tion. In Jérôme Lang, editor, Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stock-
holm, Sweden, pages 4950–4957. ijcai.org, 2018. doi: 10.24963/ijcai.2018/687.

Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keeping
your distance: Solving sparse reward tasks using self-balancing shaped rewards.
Advances in Neural Information Processing Systems, 32, 2019.

Alan Turing. Intelligent machinery. B. Jack Copeland, page 395, 1948.

Alan M. Turing. Computing machinery and intelligence. Mind, 59(236):433–460,
1950.

Emre Ugur, Erhan Oztop, and Erol Sahin. Goal emulation and planning in percep-
tual space using learned affordances. Robotics and Autonomous Systems, 59(7-8):
580–595, 2011.

Peter Vamplew, Benjamin J Smith, Johan Källström, Gabriel Ramos, Roxana
Rădulescu, Diederik M Roijers, Conor F Hayes, Fredrik Heintz, Patrick Man-
nion, Pieter JK Libin, et al. Scalar reward is not enough: A response to silver,
singh, precup and sutton (2021). Autonomous Agents and Multi-Agent Systems,
36(2):1–19, 2022.

247

Sjoerd Van Steenkiste, Michael Chang, Klaus Greff, and Jürgen Schmidhuber. Re-
lational neural expectation maximization: Unsupervised discovery of objects and
their interactions. arXiv preprint arXiv:1802.10353, 2018.

James W Varni, O Ivar Lovaas, Robert L Koegel, and Nancy L Everett. An analysis
of observational learning in autistic and normal children. Journal of Abnormal
Child Psychology, 7(1):31–43, 1979.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

Matej Večeŕık, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bi-
lal Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe, and Martin Ried-
miller. Leveraging demonstrations for deep reinforcement learning on robotics
problems with sparse rewards. ArXiv preprint, abs/1707.08817, 2017. URL
https://arxiv.org/abs/1707.08817.

Arthur F Veinott. On finding optimal policies in discrete dynamic programming
with no discounting. The Annals of Mathematical Statistics, 37(5):1284–1294,
1966.

Natalia Vélez and Hyowon Gweon. Learning from other minds: An optimistic cri-
tique of reinforcement learning models of social learning. Current Opinion in
Behavioral Sciences, 38:110–115, 2021.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,
and Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903,
2017.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou,
Julian Schrittwieser, et al. Starcraft ii: A new challenge for reinforcement learning.
arXiv preprint arXiv:1708.04782, 2017.

Anna-Lisa Vollmer, Britta Wrede, Katharina J. Rohlfing, and Pierre-Yves Oudeyer.
Pragmatic frames for teaching and learning in human–robot interaction: Review
and challenges. Frontiers in neurorobotics, 10:1–10, 2016.

L. S. Vygotsky. Tool and Symbol in Child Development. In Mind in Society, chapter
Tool and Symbol in Child Development, pages 19–30. Harvard University Press,
1978a. ISBN 0674576292. doi: 10.2307/j.ctvjf9vz4.6.

L. S. Vygotsky. Tool and Symbol in Child Development. In Mind in Society, chapter
Tool and Symbol in Child Development, pages 19–30. Harvard University Press,
1978b. ISBN 0674576292. doi: 10.2307/j.ctvjf9vz4.6.

https://arxiv.org/abs/1707.08817

248

Lev S. Vygotsky. Tool and symbol in child development. The Vygotsky reader, 1994.

Andrey Vyshedskiy. Language evolution to revolution: the leap from rich-vocabulary
non-recursive communication system to recursive language 70,000 years ago was
associated with acquisition of a novel component of imagination, called prefrontal
synthesis, enabled by a mutation that slowed down the prefrontal cortex matura-
tion simultaneously in two or more children–the romulus and remus hypothesis.
Research Ideas and Outcomes, 5:e38546, 2019.

Günter P Wagner and Lee Altenberg. Perspective: complex adaptations and the
evolution of evolvability. Evolution, 50(3):967–976, 1996.

Sebastian Wallkotter, Silvia Tulli, Ginevra Castellano, Ana Paiva, and Mohamed
Chetouani. Explainable agents through social cues: A review, 2021.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1225–1234, 2016a.

Jane X. Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo,
Remi Munos, Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learn-
ing to reinforcement learn. ArXiv preprint, abs/1611.05763, 2016b. URL
https://arxiv.org/abs/1611.05763.

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning struc-
tured policy with graph neural networks. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=S1sqHMZCb.

David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven
Hansen, and Volodymyr Mnih. Unsupervised control through non-parametric
discriminative rewards. arXiv preprint arXiv:1811.11359, 2018.

Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pas-
canu, and Andrea Tacchetti. Visual interaction networks: Learning a physics
simulator from video. Advances in neural information processing systems, 30,
2017.

Chen-Yu Wei, Mehdi Jafarnia Jahromi, Haipeng Luo, Hiteshi Sharma, and Rahul
Jain. Model-free reinforcement learning in infinite-horizon average-reward markov
decision processes. In International conference on machine learning, pages 10170–
10180. PMLR, 2020.

Deena Skolnick Weisberg, Kathy Hirsh-Pasek, and Roberta Michnick Golinkoff.
Guided play: Where curricular goals meet a playful pedagogy. Mind, Brain,
and Education, 7(2):104–112, 2013.

https://arxiv.org/abs/1611.05763
https://openreview.net/forum?id=S1sqHMZCb

249

Deena Skolnick Weisberg, Kathy Hirsh-Pasek, Roberta Michnick Golinkoff, Au-
drey K Kittredge, and David Klahr. Guided play: Principles and practices.
Current Directions in Psychological Science, 25(3):177–182, 2016.

J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur, and E. The-
len. Autonomous mental development by robots and animals. Science, 291(5504):
599–600, 2001.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. A bayesian approach for policy
learning from trajectory preference queries. Advances in neural information pro-
cessing systems, 25, 2012.

Judith A Winn. Promises and challenges of scaffolded instruction. Learning Dis-
ability Quarterly, 17(1):89–104, 1994.

Terry Winograd. Understanding natural language. Cognitive psychology, 3(1):1–191,
1972.

Patrick H Winston. Learning structural descriptions from examples. None, 1970.

David Wood, Jerome S Bruner, and Gail Ross. The role of tutoring in problem
solving. Child Psychology & Psychiatry & Allied Disciplines, 1976.

Shuangzhi Wu, Dongdong Zhang, Nan Yang, Mu Li, and Ming Zhou. Sequence-to-
dependency neural machine translation. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages
698–707, 2017.

Yifan Wu, George Tucker, and Ofir Nachum. The laplacian in rl: Learning repre-
sentations with efficient approximations. arXiv preprint arXiv:1810.04586, 2018.

Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi
Sugiyama. Imitation learning from imperfect demonstration. In International
Conference on Machine Learning, pages 6818–6827. PMLR, 2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu
Philip. A comprehensive survey on graph neural networks. IEEE transactions on
neural networks and learning systems, 32(1):4–24, 2020.

Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg, Li Fei-Fei, and Sil-
vio Savarese. Neural task programming: Learning to generalize across hierarchi-
cal tasks. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 1–8. IEEE, 2018.

Kai Xu, Akash Srivastava, Dan Gutfreund, Felix Sosa, Tomer Ullman, Josh Tenen-
baum, and Charles Sutton. A bayesian-symbolic approach to reasoning and learn-
ing in intuitive physics. Advances in Neural Information Processing Systems, 34:
2478–2490, 2021.

250

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting. arXiv preprint
arXiv:1709.04875, 2017.

Yue Yu, Patrick Shafto, Elizabeth Bonawitz, Scott C-H Yang, Roberta M Golinkoff,
Kathleen H Corriveau, Kathy Hirsh-Pasek, and Fei Xu. The theoretical and
methodological opportunities afforded by guided play with young children. Fron-
tiers in psychology, 9:1152, 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R
Salakhutdinov, and Alexander J Smola. Deep sets. In Advances in neural infor-
mation processing systems, pages 3391–3401, 2017.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor
Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart,
et al. Relational deep reinforcement learning. arXiv preprint arXiv:1806.01830,
2018.

Weishan Zhang, Liang Xu, Zhongwei Li, Qinghua Lu, and Yan Liu. A deep-
intelligence framework for online video processing. IEEE Software, 33(2):44–51,
2016.

Yunzhi Zhang, Pieter Abbeel, and Lerrel Pinto. Automatic Curriculum Learning
through Value Disagreement. arXiv:2006.09641 [cs, stat], June 2020. URL http:

//arxiv.org/abs/2006.09641. arXiv: 2006.09641.

Rui Zhao, Yang Gao, Pieter Abbeel, Volker Tresp, and Wei Xu. Mutual information
state intrinsic control. arXiv preprint arXiv:2103.08107, 2021.

Li Zhou and Kevin Small. Inverse reinforcement learning with natural language
goals. ArXiv preprint, abs/2008.06924, 2020. URL https://arxiv.org/abs/

2008.06924.

Menghui Zhu, Minghuan Liu, Jian Shen, Zhicheng Zhang, Sheng Chen, Weinan
Zhang, Deheng Ye, Yong Yu, Qiang Fu, and Wei Yang. Mapgo: Model-assisted
policy optimization for goal-oriented tasks. arXiv preprint arXiv:2105.06350,
2021.

Xi Zhu, Zhendong Mao, Chunxiao Liu, Peng Zhang, Bin Wang, and Yongdong
Zhang. Overcoming language priors with self-supervised learning for visual ques-
tion answering. arXiv preprint arXiv:2012.11528, 2020.

Jordan Zlatev. The epigenesis of meaning in human beings, and possibly in robots.
Minds and Machines, 11(2):155–195, 2001.

http://arxiv.org/abs/2006.09641
http://arxiv.org/abs/2006.09641
https://arxiv.org/abs/2008.06924
https://arxiv.org/abs/2008.06924

251

	Introduction
	I Teachable Autotelic Reinforcement Learning Agents
	Reinforcement Learning Meets Open-Ended Learning
	The Reinforcement Learning Paradigm
	Motivations
	Formalization
	Taxonomy of RL Approaches

	Delayed Geometric Discounts for Reinforcement Learning
	Reinforcement Learning with Non-Geometric Discounts
	Related Work
	Experiments
	Conclusion

	Goal-Conditioned Reinforcement Learning
	Goals in Reinforcement Learning
	Formalizing Multi-Goal Reinforcement Learning Problems
	Typology of GCRL Algorithms

	Goal Exploration Processes
	GEPs: Policy Search Perspective
	GEPs: Policy Gradient Perspective
	Externally Motivated Goal Exploration Processes
	Intrinsically Motivated Goal Exploration Processes

	Autotelic Reinforcement Learning
	Autotelic Learning of Goal Representations
	Autotelic Discovery of Goals
	Autotelic Mastery of Goals

	Chapter Summary

	Teachable Autotelic Agents: Developmental Perspective
	Motivations
	Teaching in Humans
	Properties of Children Learners
	Properties of Tutors
	Properties of the Tutoring Process

	Interactive, Autotelic and Inferential Social Agents
	Reinforcement learners
	Interactive Reinforcement Learners
	Autotelic Reinforcement Learners
	Inferential Social Learners

	Conclusion
	Chapter Summary

	Predicate-based Goal-Conditioned Agents
	The Mandlerian View: A Theory of Prelinguistic Concept Formation
	The Image Schema Theory
	The Perceptual Meaning Analysis Mechanism
	Artificial Intelligence and Perceptual Meaning Analysis

	Formal Definition of Semantic Configurations
	Grounding Language to Autonomously Acquired Skills Via Goal Generation
	Motivation and Contributions
	Related Work
	Methods
	Experiments
	Discussion and Conclusion

	Chapter Summary

	Transfer and Generalization in Autotelic Agents
	Graph Neural Networks
	Relational Inductive Bias with Graph Neural Networks
	Overview on Graph Neural Networks in RL

	Autotelic Behaviors with Graph Neural Networks
	Motivations and Contributions
	Related Work
	Methods
	Problem statement
	Environment and goal spaces
	Graph-based autotelic learning
	Experiments and Results
	Conclusion

	Chapter Summary

	Part Summary

	II Teaching Autotelic Reinforcement Learning Agents
	Hybrid Goal Exploration Processes
	Motivation
	Related Work
	Methods
	Problem Statement
	Hybrid Goal Exploration Processes

	Experimental Setup
	Environments
	Training Procedure
	Evaluation
	Results

	Conclusion and Discussion
	Chapter Summary

	Guiding Exploration in Autotelic Agents
	Motivations
	Related work
	Methods
	Experimental Setup
	Environment
	Agents
	Evaluation Metrics
	How do Social Episodes affect Agents Performance ?
	How do Social Episodes affect Agents Exploration ?
	Can Automatic Curriculum Methods replace Social Interventions ?
	How effective is hme's Zone of Proximal Development Management ?
	How do Active Queries affect Social Interventions ?
	Conclusion and Discussions

	Chapter Summary

	Part Summary

	III Discussions
	Behavior Specification in RL
	Towards More Teachable Agents
	Spatial Predicate-based Representations
	Guiding Teachable Autotelic Agents
	Conclusion

	IV Appendices
	Appendix of Delayed Geometric Discounts
	Appendix of LGB
	Appendix of Autotelic Graph-based Agents
	Appendix of HGEP
	Appendix of HME
	References of Figure 1.9

