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Introduction

Cette thèse CIFRE fut l’occasion d’une collaboration entre le constructeur automobile
Stellantis et le laboratoire Lab-STICC, et plus particulièrement l’équipe BRAIn, située
à l’IMT Atlantique. L’intérêt de Stellantis pour la conduite autonome, ou pour bien
d’autres tâches d’automatisation (comme l’aide à la conduite), a amené l’entreprise à
s’intéresser à la vision par ordinateur, et donc fatalement aux solutions à l’état de l’art
depuis une décennie : les réseaux de neurones profonds, et plus particulièrement les
réseaux à convolutions.

Le succès des réseaux de neurones s’explique en bonne partie par l’augmentation des
ressources en calcul disponible, que ce soit en terme de puissance des processeurs ou
des cartes graphiques, ou en terme de super-calculateurs disponibles publiquement. En
effet, les réseaux de neurones tendent à être très coûteux en terme de calcul, et s’ils s’im-
plémentent sous forme de multiplications matricielles denses, qui s’accélèrent très bien
sur carte graphique, ce coût devient prohibitif sur des types de matériels à la puissance
limitée, tels que ce que l’on trouve dans le domaine de l’embarqué.

Les applications industrielles, telles que celles qui intéressent Stellantis, sont typique-
ment confrontées à ce genre de contraintes. Prenons l’exemple d’un véhicule auto-
nome : ce type de véhicule doit pouvoir prendre des décisions à la fois précises et
robustes – puisqu’elles sont d’un enjeu vital – avec une réactivité en temps réel – à
l’échelle de la milliseconde. Or, il n’est pas possible d’équiper chaque véhicule avec un
super-calculateur : les processeurs, conçus pour ce type d’application, sont au contraire
de puissance limitée, afin de respecter les contraintes, en terme de consommation éner-
gétique, de taille, de prix et de dégagement thermique, qui sont inhérentes à ce type de
contexte applicatif. Cela signifie que l’on est forcément limité, dans les types de réseaux
de neurone que l’on peut utiliser, d’autant plus que la complexité de ceux-ci tend à se
corréler avec leur performance : on se retrouve à devoir choisir entre précision (gros
réseaux coûteux) et latence (petits réseaux peu performants), alors que l’application
requiert d’avoir les deux en même temps.

Heureusement, la performance des réseaux de neurones n’est pas juste une question
d’augmenter leur complexité indéfiniment, et d’ensuite espérer que leur précision suive :
les réseaux se construisent par assemblage d’opérations plus élémentaires, appelées
« couches », si bien que l’on parle d’architectures de réseaux de neurones ; et différentes
architectures peuvent, pour la même complexité, donner des performances différentes.
Il y a donc une question d’efficacité des réseaux de neurones, avec l’enjeu de trouver les
architectures permettant de satisfaire les deux contraintes de latence et de performance
à la fois.

C’est la raison pour laquelle toute une partie de la littérature s’est dédiée à ce qu’on
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appelle la compression de réseaux de neurones, qui consiste à réduire le coût d’archi-
tectures existantes sans en dégrader les performances. Une méthode notable de cette
littérature est l’élagage, qui consiste à retirer des parties jugées inutiles de réseaux.
C’est sur cette méthode que s’est focalisée cette thèse, qui fut l’occasion d’en étudier
en profondeur la littérature dédiée et de proposer quelques contributions originales.

Lors de cette thèse, nous avons notamment pu explorer différentes problématiques,
plus ou moins théoriques ou pratiques, qui s’étendent des fondements mathématiques
de l’élagage – et leurs éventuels soucis – jusqu’à l’implémentation de réseaux élagués
sur matériel embarqué. C’est cette approche globale qui a permis, non seulement de
proposer des contributions, mais aussi de construire un discours original, exposant la
nécessité de répondre à certaines questions théoriques pour résoudre des problèmes
matériels, comme l’efficacité énergétique des architectures élaguées.

Ce manuscrit est alors structuré, après un chapitre introduisant des notions générales
d’apprentissage profond, autour des aspects identifiés comme clefs dans l’élagage : les
critères, les méthodes et les structures, avant de s’intéresser aux questions matérielles
et de conclure.

Vision par ordinateur, apprentissage profond et compression

La vision par ordinateur regroupe les tâches d’analyse et de traitement des images par
ordinateur ; on peut y distinguer plusieurs types de problèmes, comme la classification
d’image ou la segmentation sémantique. La classification d’image revient à attribuer à
une image, centrée sur un objet, la probabilité d’appartenir à chacune des classes d’une
liste prédéfinie – on peut voir ce problème comme une fonction, prenant une image en
entrée et renvoyant un vecteur en sortie. Les ensembles de données, que nous avons uti-
lisés pour la classification, sont ImageNet ILSVRC2012 et CIFAR-10 ; comme métriques
de performance, nous avons utilisé les précisions Top-1 et Top-5. La segmentation sé-
mantique revient à faire une classification pixel par pixel, de sorte à détourer les objets
de classes différentes, dans une image comportant plusieurs objets – on peut voir ça
comme une fonction prenant une image en entrée et renvoyant une image (ou tenseur)
en sortie. Pour la segmentation sémantique, nous avons utilisé l’ensemble de données
Cityscapes, et comme métrique la mIoU (mean Intersection over Union).

Les réseaux de neurones, utilisés pour résoudre les tâches de vision par ordinateur, sont
en majorité des réseaux à convolutions. Ce type de réseaux, à l’instar des ResNet pour la
classification ou des HRNet pour la segmentation, est composé des types d’opérations
suivants :

• Convolution : couches appliquant, à chacun des canaux d’une image d’entrée,
différents noyaux de convolution ; ces noyaux sont organisés en filtres, si bien
qu’une couche comporte autant de filtre qu’elle produit de canaux en sortie, et
chaque filtre contient autant de noyaux qu’il y a de canaux en entrée.

• Linéaire : produit matriciel entre un vecteur d’entrée et une matrice de para-
mètres, pour obtenir un vecteur de sortie ; le plus souvent utilisé à la fin d’un
réseau de classification, justement pour opérer la classification après avoir projeté
les données d’entrée dans un espace, si possible, linéairement séparable.

• Batch-normalisation : normalise chaque canal, indépendamment, afin d’obtenir
– pour l’ensemble de données entier – une distribution centrée réduite ; ensuite
une opération affine est appliquée afin d’excentrer de nouveau la distribution, de
façon spécifiquement apprise, cette fois-ci.
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• ReLU : un type de fonction d’activation très simple ; ces fonctions servent à intro-
duire des non-linéarités dans le réseau, qui sont nécessaires pour son expressivité
– sans quoi il serait simplement une fonction totalement linéaire.

• Additions : dans certains types de structures, à l’intérieur des réseaux, les sorties
de plusieurs couches différentes sont sommées ensembles ; typiquement, à la sor-
tie de chaque bloc résiduel – qui sont des éléments caractéristiques des ResNet –,
la sortie d’un bloc est sommée avec son entrée, ce que l’on appelle une connexion
résiduelle.

• Pooling : étape de réduction de la résolution d’une image/tenseur, que ce soit
en sélectionnant les valeurs les plus grandes ou en les moyennant ; on en trouve
typiquement en début de réseau, pour réduire la taille des images, et à la fin,
avant la couche linéaire de classification, pour réduire les tenseurs en vecteurs.

Ces réseaux sont entraînés à l’aide de la méthode de descente stochastique de gradient.
La descente de gradient consiste à chercher à minimiser une fonction de perte L en met-
tant à jour les paramètres w du réseau, de façon itérative, selon la valeur de leur dérivée
δL
δw . La version stochastique, de la descente de gradient, consiste à faire chaque itération
sur un sous-ensemble de l’ensemble de données sur lequel entraîner. Classiquement,
lors de l’apprentissage, on rajoute à L un terme de régularisation, appelé weight-decay,
qui applique une pénalité µ ∥w∥2 à la magnitude des paramètres.

Il y a plusieurs types de méthodes pour compresser ce type de réseaux ; par exemple :

• La quantification, qui réduit la précision à laquelle sont représentés les paramètres
du réseau, ce qui réduit leur empreinte mémoire et la complexité des opérations
dans lesquels ils sont impliqués.

• La distillation, qui améliore la performance d’un réseau plus petit en l’entraînant
à l’aide d’un réseau plus grand et performant.

• Le clustering, qui vise à trouver une représentation qui permette de reconstruire
les valeurs des paramètres d’un réseau, sans avoir à les stocker tels quels.

Celle sur laquelle cette thèse se focalise est l’élagage, qui consiste à retirer des parties
jugées inutiles d’un réseau. Trois aspects principaux sont importants dans l’élagage :

• Le critère d’élagage, qui sert à identifier les parties inutiles d’un réseau.

• La méthode d’élagage, qui définit la façon dont effectivement retirer ces parties.

• La structure d’élagage, qui définit quel type de partie, quelle granularité élaguer
dans le réseau.

Critères d’élagage

Tout d’abord, considérons comment caractériser l’importance de paramètres isolés, pour
déduire s’il est pertinent de les élaguer. La littérature a principalement proposé deux
façon de caractériser l’importance d’un paramètre. La première consiste à approximer
la différence, dans la fonction L, induite par la suppression d’un paramètre wi par la
dérivée de L en ce même paramètre, soit |Lwi=0 − L| ≈ δL

δwi
. Le problème, avec cette

métrique, est qu’elle sous-entend une condition de proximité, de sorte que la différence
∆ dans la valeur des paramètres, introduite par la mise de wi à 0, soit assimilable à
une différence infinitésimale δ ; le fait que cette approximation soit obtenue par déve-
loppement de Taylor, dans la plupart des démonstrations motivant ce critère, confirme
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d’autant plus cette condition passée sous silence.

La seconde méthode consiste à simplement retirer les paramètres les plus petits en va-
leur absolue. Ce critère est beaucoup plus trivial à justifier théoriquement : les para-
mètres les plus petits sont ceux qui, en le mettant à zéro, introduisent globalement la
moindre différence dans les valeurs des paramètres en w. La simplicité de cette mesure
– beaucoup plus simple que de devoir calculer le gradient – et la robustesse de la justifi-
cation théorique – qui, bien que simpliste, ne souffre pas de conditions cachées, rendant
le critère faux dès que l’on dépasse une certaine valeur des paramètres – explique en
grande partie la popularité de ce critère.

Utiliser ce type de critère suffit dans le cas de l’élagage de paramètres isolés ; toutefois,
dans le cas de l’élagage « structuré » d’éléments plus larges, comportant plusieurs pa-
ramètres, il faut trouver des solutions pour généraliser ces critères. Une façon simple
est de considérer la norme de la métrique sur l’ensemble de paramètres à élaguer : par
exemple, dans le cas de l’élagage d’un filtre de convolution sur la base de la magnitude
des paramètres, on peut élaguer les filtres dont la norme de l’ensemble des paramètres
est la plus petite. Le problème avec cette méthode est qu’elle ne fonctionne qu’à condi-
tion que les filtres à comparer comportent le même nombre de paramètres – ce qui n’est
plus vrai entre des couches différentes – et que la distribution des valeurs suive une
même loi – sans quoi les valeurs de leurs normes ne sont plus comparables.

C’est pourquoi un critère populaire, en élagage structuré de filtres, qui permet de ré-
soudre certains de ces problèmes, est la magnitude du coefficient multiplicatif de la
partie affine des couches de batch-normalisation. Cette technique permet de caracté-
riser l’importance d’un canal entier (filtre de convolution de la couche précédente et
noyaux de convolution dans chaque filtre de la couche suivante) sur la base de la va-
leur d’un seul paramètre ; de plus, la normalisation préalable, de chaque canal en entrée
de cette partie affine, permet de rendre les valeurs de ces paramètres plus facilement
comparables entre elles ou d’une couche à l’autre.

Enfin, le dernier aspect important des critères concerne le moment, relativement à l’en-
traînement, de les appliquer. Cela n’a, en effet, pas beaucoup de sens d’élaguer un pa-
ramètre, sur la base de sa valeur, alors que le réseau n’est pas encore entraîné ou n’a
pas fini de converger. Et pourtant, bien des méthodes implique d’élaguer au cours de
l’entraînement, ou au moins de faire un ré-entraînement post-élagage.

Ce type de problématique nous a amené à réfléchir à l’élagage sous un autre angle.
Considérons l’évolution de L selon les différentes valeurs de w possibles. Après entraî-
nement, supposons que l’on se situe à l’optimum global, atteint pour une valeur par-
ticulière de w. Mettre un paramètre à zéro revient à se déplacer en un nouveau point,
en lequel les paramètres ne sont pas garantis de demeurer, relativement, des minima
locaux : un même paramètre peut se situer à un minimum avant élagage, et ensuite
devenir, pour la même valeur, un maximum local. On se rend alors compte que, dans
l’absolu, la question de l’élagage ne devrait pas être de considérer juste les propriétés
des valeurs des paramètres à l’optimum, pour savoir lesquels élaguer ; on devrait plu-
tôt rechercher quelle est la projection de L permettant le meilleur optimum possible
(après ré-entraînement) selon la quantité de paramètres à maintenir à zéro, et ce peu
importe si, sur le moment, les paramètres à retirer sont contre-intuitifs. Bien qu’un tel
paradigme semble difficile à mettre en œuvre, cette façon de voir permet de mettre en
évidence quels sont les problèmes inhérents à l’élagage, et surtout au déplacement et à
la projection qu’il implique.
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Méthodes d’élagage

La méthode la plus classique d’élagage suit un principe très simple : le réseau est en-
traîné jusqu’à convergence, puis une portion des paramètres est élaguée, et enfin le ré-
seau reçoit quelques cycles supplémentaires d’entraînement ; ces deux dernières étapes
peuvent être itérées jusqu’à atteindre le taux d’élagage souhaité.

Bien que simple et suffisamment efficace pour demeurer compétitive encore aujour-
d’hui, cette méthode souffre de plusieurs problèmes théoriques, que notre représenta-
tion de l’élagage, sous forme de déplacement et de projection, met bien en évidence. En
effet, ce type d’élagage revient à éliminer entièrement une proportion de paramètres,
ce qui revient à se déplacer abruptement dans L, et ce, de manière définitive, de sorte
que l’on se limite sans retour possible à la projection obtenue par l’élagage.

Non seulement ce type d’altération de la trajectoire de w dans L brise les garanties
mathématiques du bon fonctionnement de la descente de gradient, mais, de plus, nous
avons déjà évoqué que baser l’élagage simplement sur les valeurs contenues dans w
amenait potentiellement à ne pas cibler les paramètres les plus pertinents. Le carac-
tère itératif de la méthode classique vise à atténuer ce problème, en élaguant moins de
paramètres à la fois – mais toujours de façon complète, ce qui ne l’élimine donc pas.

La littérature a cherché bien des moyens de palier ces problèmes : élagage graduel tout
au long de l’entraînement, système de repousse des paramètres, apprentissage auto-
matique de masques d’élagage, etc. De très nombreuses méthodes proposent des al-
ternatives pour résoudre chacun des problèmes évoqués ci-dessus. Toutefois, chacune
d’entre elles persiste à élaguer les paramètres de façon abrupte, en faisant passer leur
valeur directement à zéro. C’est pourquoi une dernière famille de méthodes a attiré
notre attention, qui consiste à relaxer l’élagage sous la forme d’une pénalité, inclue
dans la fonction de perte, sur la magnitude des paramètres, de sorte à faire décroître
progressivement leur valeur, au lieu de les élaguer manuellement.

Cela nous a conduit à proposer une méthode originale, Selective Weight Decay (alias
SWD), qui, pour n’importe quel critère et structure permettant de désigner un sous-
ensemble w∗ à élaguer, peut être définit comme l’ajout d’un troisième terme à L, de
sorte à obtenir :

L = F(N (X),Y)︸ ︷︷ ︸
Terme d’erreur

+ µ ∥w∥2︸ ︷︷ ︸
Weight Decay

+ aµ ∥w∗∥2︸ ︷︷ ︸
SWD

,

avec :

a(s) = adébut

(
afin
adébut

) s
sfinal

,

de sorte que ce coefficient d’importance croisse de façon exponentielle, passant d’une
valeur adébut en début d’entraînement à une valeur afin quand celui s’achève.

Nous avons pu tester cette méthode et obtenir des résultats prometteurs, en classi-
fication sur ImageNet ILSVRC2012 et CIFAR-10. Notamment, si toutes les méthodes
d’élagage semble étrangement converger pour les taux d’élagage les plus bas, SWD se
démarque fortement pour les taux les plus intenses, pour lesquels les méthodes de réfé-
rence semblent produire un phénomène de layer collapse, qui provoque l’effondrement
de la performance des réseaux. Nous avons également proposé une recherche par grille
des paramètres adébut et afin à choisir ; cette recherche nous a permis de confirmer que
le régime, permettant les meilleures performances finales (ainsi qu’un réel élagage par
la seule force de la pénalisation), était bien celui conforme à notre intuition : commencer
avec une valeur de a faible, pour laisser le réseau apprendre, et finir sur une valeur très
forte, afin d’écraser les paramètres ciblés.
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Structures d’élagage

La structure d’élagage a une importance déterminante sur le rapport entre nombre de
paramètres et performance – les granularités plus fines permettant, généralement, un
meilleur rapport –, ainsi que sur la facilité d’implémentation sur matériel – les granu-
larités plus grossières étant plus simples à exploiter – de même que sur les types de
coûts réduits par l’élagage. Si la littérature tend souvent à résumer la question de la
compression au rapport entre nombre de paramètres et performance, il ne s’agit pas
d’une approximation très satisfaisante, puisqu’elle ne tient compte : 1) ni d’à quel point
le taux de compression, en terme de paramètres, se répercute sur le nombre d’opéra-
tions exécutées par le processeur, ni sur l’empreinte mémoire réelle, 2) ni de l’empreinte
mémoire des représentations intermédiaires, c’est à dire des produits intermédiaires en
sortie de chacune des couches.

Passons en revue quelques exemples de structures :

• L’élagage « non-structuré » de paramètres est la granularité la plus fine et libre
possible, mais elle est difficile à exploiter sur matériel (en particulier sur carte
graphique, plus adaptées aux multiplications matricielles denses) et ne réduit pas
les dimensions des couches, ce qui ne change donc pas la taille des représenta-
tions intermédiaires. Cela signifie qu’en absence d’implémentation adaptée, ce
type d’élagage ne fait qu’introduire des zéros dans les paramètres, sans réelle-
ment réduire ni l’empreinte mémoire, ni le nombre d’opérations.

• Élaguer le même paramètre dans le même noyau de chaque filtre d’une couche
de convolution permet de tirer partie de l’algorithme im2col, fréquemment utilisé
pour executer les convolutions sous forme de multiplication matricielle : cette
méthode implique de réarranger les paramètres de la couche sous forme d’une
matrice ; or, dans cette matrice, faire ce type d’élagage peut revenir à élaguer des
colonnes de cette matrice, ce qui allège à la fois la matrice des poids et celles des
données sur lesquelles appliquer la convolution. Ce type d’élagage permet donc
de réduire l’empreinte mémoire et le nombre d’opérations.

• L’élagage « structuré » de filtres de convolution a le grand avantage de se réper-
cuter directement sur l’architecture du réseau et les dimensions de la couche : il
y a donc, sans équivoque, réduction du nombre d’opérations et de l’empreinte
mémoire des paramètres et des représentations intermédiaires, dont on réduit
le nombre de canaux. De plus, ce type d’élagage est a priori trivial à exploiter,
puisque c’est l’architecture elle-même du réseau qui est élaguée.

C’est pour cette raison que, dans nos travaux concernant le matériel embarqué, nous
avons choisi de nous consacrer à l’élagage de filtres (alias « élagage structuré »). Toute-
fois, cela nous a confronté à un problème, rarement évoqué, de ce type d’élagage : les
interdépendances dimensionnelles entre couches. En effet, si deux couches de convo-
lution se suivent, alors élaguer un filtre dans la première produit un canal de moins
en sortie, si bien que la couche suivante doit recevoir un canal de moins en entrée, ce
qui requiert d’élaguer le noyau correspondant dans chacun de ses filtres. Ne pas faire
attention à faire correspondre les dimensions des couches ne peut que l’empêcher de
fonctionner. Cet exemple est très simple à résoudre, et ne pose pas spécialement soucis.
Cependant, les blocs résiduels, que l’on trouve aussi bien dans les ResNet que dans
les HRNet, contiennent une opération d’addition qui implique que les deux tenseurs à
sommer soient élagués exactement de la même manière, sans quoi, quand bien même
ils seraient de la même dimension, l’addition sommerait ensemble des canaux qui ne
l’étaient pas auparavant. Combiné avec le principe de connexions résiduelles, ce pro-
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blème fait que les réseaux de type ResNet peuvent contenir des dépendances longue-
portée entre des couches au travers de tout le réseau. Se préoccuper à élaguer de la
même manière, de part et d’autre des additions, amène donc à sévèrement contraindre
l’élagage et à laisser très peu de degrés de liberté – c’est ce que fait la majorité de la
littérature.

Exploiter l’élagage sur matériel embarqué

Afin de se libérer des contraintes, imposées par les problèmes d’interdépendances entre
les couches que nous avons déjà évoqués, et de mesurer l’efficacité énergétique de ré-
seaux élagués bien plus librement, nous avons élaboré une solution permettant d’ex-
ploiter n’importe quelle distribution de l’élagage structuré dans les ResNet ou HRNet.
Cette solution s’appelle Dimensional Clear Out (alias DCO) et peut être divisée en deux
parties.

La première partie de DCO consiste en une méthode d’identification des indépen-
dances entre couches suite à l’élagage. En effet, du fait des interdépendances longue
portée et des additions, si les couches concernées sont élaguées différemment, alors
retrouver le schéma précis des canaux devant être additionnés, concaténés ou retirés,
demande de tenir compte de toute la combinatoire en amont ; or, ce schéma est néces-
saire, non seulement pour préserver la fonction du réseau après réduction de l’architec-
ture, mais également pour ajuster correctement les dimensions d’entrées des couches
suivantes. Afin d’effectuer cette identification de façon automatique, nous préparons
d’abord une copie du réseau à élaguer, que nous transformons en réseau entièrement
linéarisé, donc sans fonction d’activation, ni biais, ni normalisation, et dont les para-
mètres sont tous mis à une valeur de un. Ensuite, les paramètres à élaguer sont mis
à zéro, et l’on peut alors faire une inférence et calculer la dérivée du résultat obtenu.
Du fait des transformations du réseau, si un paramètre a un gradient nul, c’est qu’il
est nécessairement élagué ou déconnecté en amont ou en aval, ce qui permet alors de
réajuster, de façon fiable, les dimensions de toutes les couches du réseau.

La seconde partie de DCO consiste à remplacer les additions par un opérateur sur me-
sure, appelé « indexation-addition », qui consiste en une addition chez laquelle on peut
préciser les canaux à sommer ensemble ou à concaténer, de sorte à pouvoir être appli-
qué à des tenseurs de dimensions différentes ou ayant été élagués différemment. Pour
créer automatiquement ces opérateurs, nous insérons des couches provisoires dans le
réseau, que nous élaguons ensuite en utilisant la première partie de DCO; cela nous
permet d’obtenir automatiquement les schéma de connexions entre canaux, et ainsi de
produire immédiatement les indexations-additions adaptées. Ainsi, en assemblant les
deux parties de DCO, nous sommes à même de prendre un ResNet ou un HRNet, dont
des filtres auraient été élagués sans aucune précaution concernant les dépendances, et
tout de même de l’exploiter matériellement – au lieu de simplement laisser les para-
mètres élagués à zéro sans les retirer.

Ce sont donc des réseaux HRNet, pour la segmentation sémantique sur Cityscapes, que
nous avons élagués, en utilisant DCO, et dont on a pu mesurer la consommation éner-
gétique et la latence sur NVIDIA Jetson AGX Xavier, en utilisant TensorRT pour l’opti-
misation et l’inférence. Nous avons comparé des HRNet-48 élagués avec des HRNet-32
et 18 non-élagués ; le coefficient donne la largeur de base, en canaux, pour toutes les
couches du réseau, si bien que pour un HRNet-18 de même architecture et profondeur,
toutes les couches sont moins larges que celles de HRNet-48 par une même propor-
tion. Pour l’élagage, nous avons utilisés deux méthodes différentes (dont SWD) avec
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le même critère (coefficient de batch-normalisation) et la même structure (filtres avec
DCO).

Nos résultats se sont révélés étonnants. Lorsque l’on ne considère que le rapport entre
paramètres et performance, l’élagage semble à première vue donner de meilleures per-
formances que les références non-élaguées, pour le même nombre de paramètres ; ce-
pendant, lorsque l’on considère les opérations ou la consommation énergétique, le rap-
port s’inverse : les réseaux élagués consomment plus que les références, alors qu’ils
contiennent moins de paramètres. Après investigation, nous nous sommes rendu compte
que cela venait de la distribution de l’élagage, qui tendait à cibler des couches dans les-
quelles un même nombre de paramètres était impliqué dans moins d’opérations qu’en
moyenne – ce qui produit donc des réseaux pauvres en paramètres, mais denses en opé-
rations. L’étrangeté de la chose provient non seulement du fait qu’un tel biais n’était a
priori pas prévisible dans la définition du critère d’élagage, mais également du fait
que SWD, tout en donnant de meilleures performances que l’autre méthode, produisait
également des réseaux plus pauvres en opérations – ce qui tend à invalider l’hypothèse
selon laquelle l’élagage ciblerait les paramètres pauvres en opération parce que ce sont
ceux qui dégraderaient le moins les performances.

Conclusion

Notre présentation de l’élagage, comme l’assemblage de trois aspects relativement dis-
tincts, et nos contributions – SWD, DCO et nos mesures de consommation énergétique –
nous on permis de montrer que, non seulement l’élagage est loin d’être aussi simple que
son principe intuitif laisserait supposer, mais qu’il s’y trouve également des questions
théoriques, auxquelles il est nécessaire de répondre afin d’obtenir un élagage qui puisse
être réellement efficace.

En effet, si l’on se base sur le résultat de nos expériences, alors l’élagage est saboté
par un biais, dans le critère d’élagage, qui conduit à produire des architectures inef-
ficaces ; il est alors nécessaire de comprendre les raisons théoriques de ce biais, afin
éventuellement de le résoudre. Cet exemple est d’autant plus frappant que le problème
ne s’expose qu’une fois que l’on se confronte aux problématiques matérielles, puisqu’il
demeure insoupçonné tant qu’on ne réfléchit qu’en terme de rapport entre nombre de
paramètres non-nuls et précision d’un réseau. De même, sur un plan plus fondamental,
concevoir l’élagage comme un déplacement et une projection dans L met en évidence
les limites de l’élagage basé sur la valeurs des paramètres – donc simplement sur w et
sa stricte proximité, sans considérer L de façon globale.

Si ces observations tendent à montrer que l’élagage n’est pas garanti d’être une mé-
thode de compression viable en l’état, elles montrent également que, non seulement
il demeure énormément de pistes d’ouvertures et de choses à approfondir à l’avenir
dans la littérature, mais aussi que l’élagage touche à des aspects très fondamentaux des
réseaux de neurones et leur entraînement, ce qui en fait un sujet d’étude intéressant à
l’échelle de l’apprentissage automatique profond en général.
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Résumé

Depuis près d’une décennie, l’état de l’art en vision par ordinateur est détenu par les
réseaux de neurones profonds et, plus particulièrement, par les réseaux à convolu-
tion. Que ce soit en classification, en segmentation sémantique ou en détection d’ob-
jet, les réseaux de neurones sont désormais une référence absolue. C’est pourquoi ces
réseaux sont devenu indispensables dans de nombreuses applications industrielles,
comme la conduite autonome. De fait, de nombreuses entreprises, à l’instar de Stel-
lantis, se mettent à montrer l’ambition de faire de l’intelligence artificielle une part si-
gnificative de leur activité.

Malheureusement, la performance impressionnante de ces réseaux de neurones a un
coût : celui d’une complexité algorithmique, d’une empreinte mémoire et d’une consom-
mation énergétique qui ne sont pas viables sur matériel embarqué, tel que celui que l’on
peut trouver sur des véhicules et dont la puissance de calcul est limitée. Il n’est pas aisé
de réduire ces coûts, puisque cela signifie généralement réduire la performance des
réseaux ; c’est pourquoi une part conséquente de la littérature s’est consacrée à conce-
voir des réseaux, ou des méthodes de conception, plus efficaces et permettant un bien
meilleurs compromis entre performance, robustesse, consommation énergétique, occu-
pation mémoire, latence et dissipation thermique. C’est ce domaine du deep learning
(apprentissage profond) que l’on nomme « compression de réseaux de neurones ».

Ce champ de recherche compte plusieurs familles de méthodes, dont l’élagage, qui est
particulièrement populaire au sein de la littérature depuis 2015. Son principe de base
est de simplifier les réseaux en supprimant des parties jugées inutiles, c’est à dire que
l’on peut retirer sans affecter la performance du réseau. C’est la méthode sur laquelle
cette thèse s’est concentrée spécifiquement.

Rapidement durant cette thèse, l’élagage s’est révélé être d’une complexité surpre-
nante, que ce soit d’un point de vue théorique ou pratique. Comment prédire l’im-
portance d’un groupe de paramètres, alors qu’il y en a des millions dans un réseau?
Comment les retirer peut-il réduire les coûts du réseau, alors que les processeurs utili-
sés ne gèrent vraisemblablement pas les multiplication de matrices creuses? Comment
s’y prendre pour retirer les paramètres sans perturber l’entraînement et dégrader les
performances? Toutes ces questions, qui dans un premier temps peuvent ne pas venir
immédiatement à l’esprit, structurent en réalité toute la littérature sur l’élagage ; cha-
cune d’entre elles a un impact déterminant sur la capacité de l’élagage à produire des
réseaux de neurones effectivement plus efficaces.

Pour répondre à ces questions, nous avons décidé de structurer les chapitres de ce ma-
nuscrit autour de ce que nous avons identifié comme étant les dimensions les plus ca-
ractéristiques de l’élagage. Après un chapitre introductif et un autre présentant tout
le bagage nécessaire à la compréhension du domaines, les quatre chapitres principaux
vont respectivement traiter des critères d’élagage, des méthodes d’élimination de pa-
ramètres, des structures d’élagage et de l’implémentation des réseaux élagués sur ma-
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tériel embarqué ; ces quatre aspects répondent respectivement à ces quatre questions :
comment déterminer qu’une partie peut être retirée ; comment la retirer ; quel genres
de parties retirer et comment s’assurer que ces élagages aboutissent bien à des gains
matériels.

Critères : Nous pouvons trouver de nombreux critères différents, dans la littérature,
pour déterminer l’importance d’un paramètre dans un réseau de neurones. Deux d’entre
eux sortent du lot : la “saillance”, qui cherche à prédire la dégradation de la perfor-
mance suite à l’élagage d’un paramètre à l’aide de sa dérivée, et la magnitude de la
valeur elle-même du paramètre. Malgré les démonstrations théoriques qui, dans la lit-
térature, ont amené à l’élaboration du critère de saillance, les synthétiser dans ce ma-
nuscrit a révélé que certaines lacunes cachaient le fait que ce critère ne pouvait fonc-
tionner qu’à condition que les paramètres concernés soient proches de zéro, ce qui le
rend redondant avec le critère de magnitude.

En dehors de donner l’importance d’un paramètre seul, plusieurs autres aspects des
critères détiennent une importance cruciale ; notamment la généralisation de ces cri-
tères à des groupes de paramètres (ce qui est indispensable pour l’élagage structuré),
la distribution du taux de l’élagage entre les couches (qui a un impact sur l’efficacité
énergétique des réseaux élagués, comme nous le verrons au chapitre dédié à l’implé-
mentation sur matériel embarqué) et la pertinence des critères relativement au moment
de leur application durant l’entraînement.

Les discussions de ce chapitre nous ont finalement conduites à proposer une nouvelle
façon de présenter l’élagage, que nous n’avons jamais aperçue dans la littérature mal-
gré son évidence : l’élagage peut se résumer à un déplacement et une projection dans le
paysage de la fonction de perte L. Une telle façon de voir rend immédiatement évidents
certains comportements pourtant initialement contre-intuitifs de l’élagage, comme sa
propension à bloquer les réseaux élagués dans des minima locaux ou alors les inter-
actions entre certains paramètres dont l’inter-dépendance n’est pas évidente de prime
abord.

Méthodes : Cette façon de présenter l’élagage comme un déplacement a également le
mérite de mettre en évidence la raison pour laquelle la méthode « entraînement, éla-
gage et fine-tuning » (poursuite de l’entraînement au plus faible taux d’apprentissage)
pose problème : supprimer abruptement des paramètres équivaut à un déplacement
brusque du point w dans le paysage de L au beau milieu de l’entraînement, ce qui ne
peut que le perturber. Rendre cette transformation moins abrupte est ce qui sous-tend
tacitement toute la littérature consacrée à trouver la meilleure méthode pour supprimer
les paramètres identifiés comme dispensables par un critère d’élagage.

Dans ce chapitre, nous présentons une méthode de notre cru pour résoudre ce pro-
blème : le Selective Weight Decay [1] (SWD), qui élague des paramètres à l’aide d’une
pénalisation sélective et progressive de leur valeur tout au long de l’entraînement. Nos
expériences montrent qu’avec le bon choix d’hyperparamètres, SWD est capable d’éli-
miner les paramètres voulus d’une façon douce, ce qui permet d’atteindre des taux
d’élagage très importants sans détruire les réseaux, comme le feraient d’autres mé-
thodes plus classiques.

Structures : L’élagage non-structuré de paramètres indépendants produit des ma-
trices creuses dont beaucoup de matériels peinent à tirer parti. De plus, ce type d’éla-
gage n’est pas à même de réduire, par exemple, l’occupation mémoire des représenta-
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tions intermédiaires des données entre chaque couche, alors qu’elle peut excéder celle
des paramètres eux-même. C’est pour cette raison que la littérature a exploré d’autres
types d’éléments, de structures à élaguer ; la plus notable est le filtre de convolution
(l’équivalent d’un neurone entier pour les couches de convolution) du fait de sa simpli-
cité d’implémentation et de son efficacité pour réduire à la fois le nombre de paramètres
et d’opération et la taille des produits intermédiaires.

Toutefois, un problème qui est souvent éludé dans la littérature est celui des dépen-
dances dimensionnelles entre couches : élaguer un filtre ne signifie pas seulement pro-
duire un canal en moins dans la sortie, mais cela signifie aussi que la couche suivante
doit accueillir une entrée comportant également un canal en moins. Ce type de dépen-
dances est beaucoup plus complexe à identifier qu’il n’y paraît à première vue, ce qui a
amené toute une partie de la littérature à le contourner en contraignant la distributions
des filtres à élaguer. Malheureusement, une telle contrainte réduit les degrés de liberté
laissés à l’élagage qui, donc, est moins à même de produire des architectures réellement
efficaces.

Matériel : Après une récapitulation de ce qui, au juste, a un coût dans un réseau de
neurones du point de vue du matériel, ce chapitre présente notre étude de l’efficacité
énergétique des réseaux élagués sur GPU embarqué [2]. Au préalable, nous introdui-
sons le Dimensional Clear-Out [3] (DCO), une solution que nous avons élaborée pour
résoudre les problèmes d’interdépendance entre couches et ainsi permettre d’étudier
l’efficacité de réseaux élagués librement sans contrainte.

À notre grande surprise, notre étude a révélé un comportement inattendu, de l’élagage
global, qui dégrade cruellement l’efficacité énergétique des réseaux élagués : tandis
qu’ils contiennent effectivement peu de paramètres tout en gardant une bonne perfor-
mance, il se trouve en réalité qu’ils comportent beaucoup plus d’opérations en compa-
raison de réseaux simplement plus petits dès le départ. Cela est dû au critère d’élagage,
qui semble viser en priorité les paramètres impliqués dans moins d’opérations que la
moyenne ; la chose surprenante, c’est que ce parti-pris n’est pas intentionnel. Ce com-
portement spontané et majoritairement inexpliqué est toujours à étudier et montre que
les questions théoriques portant sur, par exemple, les critères d’élagage, ont bel et bien
un impact décisif sur l’aptitude de l’élagage à produire des architectures énergétique-
ment pertinentes.

Conclusion : Au final, ce manuscrit, par son étude thématique de l’élagage, fût l’oc-
casion de présenter un certain recul et de discuter ce qui, à l’avenir, semble avoir le plus
besoin d’être étudié en profondeur dans la littérature de l’élagage – qu’il s’agisse d’une
comparaisons méticuleuses et exhaustives de différentes méthodes ou d’une formali-
sation théorique plus rigoureuse de certains problèmes ayant tendance à être négligés.
Il est absolument nécessaire de résoudre ces problèmes, non seulement pour améliorer
l’élagage, mais surtout pour déterminer si oui ou non cette méthode est capable de pro-
duire des réseaux plus efficaces que des réseaux basiques simplement plus petits et qui
peuvent être conçus et entraînés sans recourir à l’élagage.

Malgré le caractère décevant de cette conclusion, notre travail montre surtout que, mal-
gré la popularité et l’effervescence de cette littérature ces dernières années, il y a tou-
jours une importante marge d’amélioration pour proposer des contributions dans ce
domaine à l’avenir. De plus, nous avons pu montrer une grande intersection entre cer-
taines aspects subtils de l’élagage et des sujets très fondamentaux du deep learning.
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Abstract

For the past decade, the state of the art in computer vision has been held by deep neu-
ral networks and, more particularly, convolutional neural networks. Whether it is in
classification, semantic segmentation or object detection, neural networks are now an
undisputed go-to. Therefore, they are now considered essential for many industrial ap-
plications, such as autonomous driving. This is the reason why many companies, such
as Stellantis, now show novel ambitions of making artificial intelligence a key part of
their future activities.

Unfortunately, the impressive performance of neural networks comes with a cost: that
of an algorithmic complexity, a memory footprint and an energy consumption that are
not viable on embedded hardware, such as those to be found on vehicles, whose pro-
cessing power is limited. Reducing such costs is not a trivial issue, as it usually means
reducing the performance of networks; this is why a consequent part of the literature
is dedicated to designing networks, or ways to produce them, that are more efficient
and allow for a better trade-off between performance, robustness, power consumption,
memory occupation, latency and thermal dissipation. This domain of deep learning is
called neural networks compression.

This field counts multiple families of methods, including pruning, that is especially
popular in the literature since 2015. Its basic principle is to simplify networks by re-
moving parts deemed unnecessary, i.e. that can be removed without harming the per-
formance of the network. This is the specific family of method that this thesis focused
onto.

Quickly during this thesis, pruning proved to hide a surprising complexity, both the-
oretical and practical: how to predict the actual importance of a group of parameters
while there are millions in a network? How can removing such parameters reduce the
cost of the network, while processors can possibly not be able to leverage sparse matrix
multiplication? How should we remove parameters in order not to disrupt training
and harm the performance? All these questions may not immediately come to mind
at first, but actually structure the whole literature of pruning and each of them has a
crucial impact on the ability of pruning to successfully improve the efficiency of neural
networks.

To tackle these questions, we decided to structure the chapters of this manuscript around
what we identified to be the main dimensions that characterize pruning: after an intro-
ductory chapter and another dedicated to the necessary background to understand the
context of the field, the four main chapters tackle respectively the pruning criteria, the
removal methods, the pruning structure and the implementation of pruned networks
on hardware; these four aspects respectively answers to the four questions: how to tell
that a part is unnecessary, so we can remove it; how to effectively remove it; what type
of parts to remove and how to make sure the introduced sparsity can effectively be
leveraged on hardware.
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Criteria: The literature has developed multiple criteria to tell the importance of a pa-
rameter in a neural network. Two of them stand out: the saliency criterion, that aims
at predicting the degradation of accuracy following pruning by using the value of its
derivative, and the magnitude of the value of the parameters themselves. Despite the
theoretical attention that the saliency criterion received, it appears that some oversights
eluded the fact that this criterion only works for parameters that are close to zero, which
makes it redundant with the magnitude criterion.

Besides telling the importance of a single parameter, multiple other aspects hold a cru-
cial importance, notably the generalization of criteria to groups of weights (essential
for structured pruning), the distribution of the pruning rate across layers (which has an
impact on the energetic efficiency of pruned networks, as seen in the chapter concern-
ing hardware implementation) and the relation between the relevance of criteria and
the moment, during training, when they are applied.

The discussions of this chapters finally led us to expose a way to view pruning, that
we never saw in the literature despite its simplicity: that of seeing pruning as a dis-
placement in the landscape of the loss function L and a projection. Such a presentation
immediately makes self-evident some otherwise counter-intuitive behaviors of prun-
ing, such as the tendency of pruning to get pruned networks stuck in a local minimum
or interactions between weights whose interdependence may not be obvious at first.

Methods: This way of seeing pruning as a displacement also highlights why the reg-
ular train/prune/fine-tune method is problematic: it sums up as suddenly changing
the position of the point w in the landscape of L during the training process, which
disrupts it. Making this transformation less abrupt is tacitly the motivation behind the
literature dedicated to finding the best way to remove parameters, once they have been
identified as removable by a pruning criterion.

In this chapter, we expose our own proposal to solve this issue: Selective Weight De-
cay [1] (SWD), that prunes parameters through a progressively increasing penalization
of the value of the specific weights to remove all throughout training. Our experiments
show that, with the right choice of hyper-parameters, SWD can effectively remove pa-
rameters in a smooth way that allows reaching very high pruning rates at which more
classical methods lead to the destruction of neural networks.

Structures: Pruning independently parameters in an unstructured manner produces
sparse tensors that tend to be poorly handled by many hardware. On top of that, such
a type of sparsity can hardly reduce, for example, the size of intermediate representa-
tions of data between each layer, while the memory footprint of such representations
can exceed that of parameters. This is why the literature developed multiple types of
pruning structures (i.e. the types, or the granularity, of the elements to remove from a
network), the most notable of them being convolution filters (the equivalent of whole
neurons for convolution layers) because of how simple such a pruning is to leverage
and how it successfully reduces the number of parameters and operations and the size
of intermediate representations.

However, one problem that is often eluded in the literature is the dimensional interde-
pendencies between layers: pruning a filter produces one fewer channel in the output,
but thus the following layer must take one fewer channel as an input. Such dependen-
cies are much tougher to identify than it may seem at first, which leaded the literature
to circumvent the whole problem by constraining the distribution of pruned filters. Un-
fortunately, such constraints reduce the degrees of freedom, and therefore the potential
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efficiency, of pruned network architectures.

Hardware: After a recapitulation of what, exactly, has a cost on hardware in neural
networks, this chapter shows our study of the energetic efficiency of pruned networks
on embedded GPU [2]. Beforehand, we introduce Dimensional Clear-Out [3] (DCO), a
solution we developed to tackle the problem of dimensional dependencies between lay-
ers, which allowed us to study the efficiency of networks that could be pruned without
constraints.

Unfortunately, our study highlighted a counter-intuitive behavior of global pruning,
that critically harms the energetic efficiency of pruned networks: these pruned net-
works contain very few parameters while keeping a good performance, which makes
them seem better than simply smaller networks trained from scratch, but they actually
turn out to contain many more operations than them, because the used pruning crite-
rion tended to aim at parameters involved in fewer operations on average—while such
a bias was completely unintentional. This spontaneous and mostly unexplained behav-
ior is still to investigate and show that theoretical questions surrounding, for example,
pruning criteria, have indeed a decisive impact on the ability of pruning to produce
architectures that are more efficient than simply smaller baseline networks.

Conclusion: Finally, this manuscript, through its thematic review of pruning, pro-
vided hindsight and discussions that point out multiple critical aspects to investigate
in the future, whether they are the need for a thorough comparison between a range
of different methods or that of a rigorous theoretical formalization of sometimes over-
looked problems. Solving these problems looks to be an absolute necessity, not just to
improve pruning, but to actually figure out whether or not it is able at all to produce
networks that are more efficient than trivial smaller networks, that can be designed and
trained from scratch without the need for a specific method such as pruning.

Despite this somewhat anti-climatic conclusion, our works shows above all that, de-
spite its popularity, the field of pruning still has room for progress and many contribu-
tions in the future. Moreover, we showed that these subtle aspects of pruning actually
encompass some fundamental issues that overlap with many other domains of deep
learning.
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Preamble

This manuscript is the result of a CIFRE (Convention Industrielle de Formation par la
REcherche)1 thesis realized in collaboration between the Stellantis2 multinational au-
tomotive manufactoring corporation and both the IMT Atlantique3 technological uni-
versity (Grande École) and the Lab-STICC laboratory4, more particularly the BRAIn
team5, and has been funded by the ANRT (Association Nationale Recherche Technolo-
gie)6. It birthed out of the interest of Stellantis for vehicle automation and the expertise
of IMT Atlantique in the domain of deep learning and compression of deep neural net-
works [4].

Originally intended to focus on the compression, in general, of convolutional neural
networks (CNN)—that are ubiquitous in the domain of computer vision, which is of
particular interest for vehicle automation—, this thesis quickly focused specifically on
the domain of neural networks pruning, in order to allow for a much deeper investi-
gation and more relevant hindsight encompassing from the most theoretical aspects of
pruning to the stakes of its actual implementation on embedded hardware. This chap-
ter will expose in details the motivations behind this thesis, which stakes underline its
research scope and how our work responds to its underlying questions.

1.1 Why Work on Convolutional Neural Networks?

1.1.1 Performance of CNNs
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Figure 1: Classification performance of CNNs and humans on ImageNet ILSVRC2012.
Figure directly reproduced from Alzubaidi et al. [5].

Deep learning ’s history is not one of a direct and immediate success: originally theo-

1www.enseignementsup-recherche.gouv.fr/fr/les-cifre-46510
2www.stellantis.com/fr
3www.imt-atlantique.fr/fr
4labsticc.fr/fr
5labsticc.fr/en/teams/brain
6www.anrt.asso.fr/fr

www.enseignementsup-recherche.gouv.fr/fr/les-cifre-46510
www.stellantis.com/fr
www.imt-atlantique.fr/fr
labsticc.fr/fr
labsticc.fr/en/teams/brain
www.anrt.asso.fr/fr
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rized in the 50’s [6], it had a first rise in the 80’s-90’s, with notably the birth of the first
convolutional neural networks [7]. However, the lack of computation power (as well
as perceived theoretical limitations [8]) put a stop to the development of this research
domain and lead to the drought of the 2000’s. The breakthrough of AlexNet [9] on
the ImageNet contest in 2012 put back deep learning under the spotlight and showed
that, thanks to the computing power of newly-popularized Graphics Processing Unit
(GPU), neural networks, mostly using matrix multiplications, could become big enough
to yield competitive performance while being trained under acceptable delays—largely
because stochastic gradient descent, back-propagation, batch-computing and the par-
allelization power of GPUs [10] go together well. Since then, convolutional neural net-
works managed to outclass humans at image classification [5], as illustrated in Figure 1.

Countless papers have now been published in the field and deep learning is now ubiq-
uitous in computer vision [11], audio processing [12], language processing [13], im-
age generation [14] and many other domains. Therefore, neural networks are consid-
ered a staple in such fields and, since image classification is basically the prototypical
use-case of deep learning, convolutional neural networks are especially notorious and
widespread in the literature. The fact is: many domains of deep learning, especially
compression [15], use such networks as their default test subject.

This ability of deep neural networks to solve tasks that are seemingly impossible for
humans [16] and to always push further their performance in many contests such as
ImageNet tend to bias a large part of the literature toward considering only the raw
performance of networks at solving the task (for example, Top-1 accuracy on image
classification). However, such a philosophy quickly reaches its limits in some domains.

1.1.2 In the Wake of the Race for Performance

As previously pointed out, what initially hindered and then lead to the explosive ex-
pansion of deep learning is the availability of sufficient computation power. Figure 2a
shows the increase in computation power of NVIDIA GPUs over the years—these
GPUs are omnipresent in the field, because of libraries such as CUDA7 and cuDNN [17].
Figure 2b shows the increase in the number of parameters of classification networks on
the ImageNet ILSVRC2012 [18] dataset.

In 2012, the best GPU was the GeForce GTX 680 desktop GPU with a computation
power of 3090.43 GFLOPS; in 2022, the GeForce RTX 4090 is estimated at a theoretical
power of 82.6 TFLOPS, which is roughly 26.7× the power of the best GPU in 2012. In
2012, the best network on ImageNet was AlexNet [9], with an accuracy of 63.0% and
counting 60M parameters; in 2022 it is CoCa [19], with an accuracy of 91% and 2.1G
parameters, which is 350× the size of AlexNet.

Of course, the raw power of GPUs is not the only determining factor to the size of
CNNs, because: 1) the biggest networks are often designed by companies such as
Google [19], that have access to huge clusters of dedicated Tensor Processing Units
(TPU), which most laboratories do not have unlimited or free access to and 2) between
2012 and 2022, many laboratories made investments and have equipped themselves
with GPU clusters, so that the size of the networks trained in such laboratories mostly
scale with the number of GPUs they accumulated over the years (as long as these GPUs
are not too outdated to train modern networks on them). Figure 3 shows the evolu-
tion of the computation power of supercomputers over the years: in 2012, the Titan

7developer.nvidia.com/cuda-downloads

developer.nvidia.com/cuda-downloads
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(a) Evolution of the computation power of NVIDIA GPUs over the years.
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(b) Evolution of the size and accuracy of CNNs over the years. The curve
links the network of best accuracy each year.

Figure 2: Increase of the computation power of GPUs and of the cost of CNNs
over the years. Datas were extracted from en.wikipedia.org/wiki/List_of_
Nvidia_graphics_processing_units, en.wikipedia.org/wiki/Tegra and
paperswithcode.com/sota/image-classification-on-imagenet.

en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
en.wikipedia.org/wiki/Tegra
paperswithcode.com/sota/image-classification-on-imagenet
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Figure 3: Most powerful supercomputers over years; data extracted from en.
wikipedia.org/wiki/History_of_supercomputing.

super computer has a power of 17.590 PFLOPS; in 2022, Frontier has a power of 1.102
exaFLOPS, which means 62.6× that of Titan.

This race in computation power does not involve solely the domain of deep learning—
after all, the supercomputers we mentioned are not specifically dedicated to deep neu-
ral networks—, but it is especially problematic in this field, as the ability to train high
performance networks on challenging datasets is often the key to publish in the most
influential conferences. This fracture between big companies, that have access to a huge
computation power, and more modest laboratories explains why a large portion of the
literature settled on using, for example, ResNet-50 (25M parameters) on ImageNet in-
stead of more recent and state-of-the-art networks—and yet, despite this compromise,
they often still need to resort to using public supercomputers available for researchers,
such as the Jean Zay calculator8.

Therefore, the computational cost of deep neural networks, far from being a negligi-
ble aspect, actually underlies many crucial—and even polemical—aspects of the field:
computational and academical supremacy of big companies or laboratories, ecological
impact of GPU clusters, lack of consideration for efficiency or even mere understanding
of how the performance of neural networks work—instead of indefinitely increasing
the number of parameters.

The other big concern of such a growth in the cost of CNNs, and actually the one that
motivated the launch of this thesis, is the disparity between the desktop/workstation
GPUs and those actually available for embedded devices.

8www.idris.fr/jean-zay/

en.wikipedia.org/wiki/History_of_supercomputing
en.wikipedia.org/wiki/History_of_supercomputing
www.idris.fr/jean-zay/
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1.1.3 Efficient CNNs for Limited Embedded Hardware and Industrial Ap-
plications

While the cost of training neural networks is a major concern, that of running success-
fully trained networks on less powerful devices is another in its own right. Indeed,
Figure 2a shows in different colors the power of GPUs of different types, including
desktop GPUs, on which neural networks can be trained simply, and Tegra GPUs, that
are those that fit System on Module (SoM) that include a GPU, CPU, memory, power
management, high-speed interfaces, such as the NVIDIA jetson AGX Xavier9, that are
more susceptible to be used in actual embedded industrial applications, such as au-
tonomous vehicles.

The problem is that these embedded GPUs are far less powerful than regular ones:
the most powerful Tegra GPU available—the AGX Orin 64GB GPU from 2021, with
its 5.32 FP32 TFLOPS—is roughly as powerful as a GeForce GTX TITAN Black from
2014, with its 5.12 FP32 TFLOPS: virtually, running a modern CNN on an embedded
device equates to running it on an at least 8 years old hardware. Of course, comparing
the power of devices on the sole basis of their theoretical maximum FLOPS is a rough
estimate, but it illustrates well the gap between what is possible in laboratory and what
is actually efficient in practice, in real-world application.

Fortunately, Figure 2b also shows that, at equal accuracy, the number of parameters
seems to decrease: not only do we train CNNs better and have designed more efficient
architectures (we can think of the gap between VGG [20] and ResNet [21], with the latter
having a lot fewer parameters for a better accuracy than the former), but also because
of the field of neural networks compression, that we will describe first in Section 1.3.1.

However, in industrial applications, raw performance or computation cost are not the
only variable to consider: robustness, explainability, latency or energy consumption
are metrics that can be very important too, for different reasons. These industrial con-
straints will be explained in the following section.

1.2 Industrial Context

This CIFRE thesis, initiated by Stellantis, has to be put in a particular industrial context.
To explain it, we will first review what is Stellantis, what is its interest in CNNs and
what are the problems that this thesis tackles.

1.2.1 Stellantis

Stellantis is a multinational automotive manufactoring corporation, born from the fu-
sion between Groupe PSA and Fiat Chrysler Automobiles NV (FCA) in 2021. It counts
16 brands and more than 400k employees. With the creation of an internal software
department and the intent to make from 20 to 50% of artificial-intelligence-based ser-
vices and revenues, deep learning is expected to occupy a crucial place in Stellantis in
the years to come. Between January and October 2022, the AI staff grew from 10 to 83
employees, with a goal of 500 by 2030.

However, this thesis begun before this new policy and the fusion between PSA and
FCA, so the context of the creation of this thesis was slightly different: that of a company
in which the involvement of AI was expected but still to be confirmed. More precisely,

9www.nvidia.com/fr-fr/autonomous-machines/jetson-agx-xavier/

www.nvidia.com/fr-fr/autonomous-machines/jetson-agx-xavier/
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the specific application that was envisaged was that of autonomous vehicles or, more
generally, automation in vehicles.

1.2.2 Automated Vehicles

Autonomous driving has received intense media coverage in the last years. How-
ever, one often overlooked point is that there is a gradient between traditional vehicles
and fully-autonomous ones. Indeed, there are many functionalities to automate be-
fore reaching full autonomy, and this is why, in this chapter, we will not discuss solely
autonomous vehicles but rather automation in general.

Usually, the automation rate of vehicles is divided into 5 levels (cf. SAE International
J3016)10:

0. No assistance: the human driver is fully in charge of controlling the vehicle.

1. Driver assistance (“hands on”): the driver still controls the vehicle, but some
functions help facilitating some tasks (cruise control, collision warning, automatic
emergency braking, etc.).

2. Partial automation (“hands off”): the driver still supervises (driving assist in traf-
fic jams, parking assist, etc.).

3. Conditional automation (“eyes off”): the vehicle performs most tasks, but the
driver can override it if necessary (highway autopilot, platooning, etc.).

4. High automation (“mind off”): fully automatized vehicle, but in specific circum-
stances.

5. Full automation (“steering wheel optional”): no need for any human intervention.

Of course, such vehicles, depending on their level of automation, require many sensors
(optic cameras, LiDARs, accelerometers, microphones, hydrometers, etc.) to detect any
important information (presence of obstacles or road markings, velocity of the vehi-
cle, whether the road is wet or not, etc.) and, more importantly in the scope of this
manuscript, the devices and algorithms to process them and infer a relevant decision.
It is, precisely, the ability of CNNs (or deep neural networks in general) to process data
and produce a decision that makes them especially interesting in this industry.

There are multiple types of tasks, tackled by CNNs in the literature, that are of main
interest for autonomous driving: image semantic segmentation [22] or detection [23],
sound processing [12], Simultaneous Localization And Mapping (SLAM) [24] and many
others. All of them are explored in an extensive literature, and some works have even
studied their application to autonomous driving [25].

1.2.3 Industrial Problem

In the previous sections, we mentioned that CNNs could need an important budget in
computation power to yield the best performance possible. Obviously, embedded hard-
ware in vehicles cannot afford such a power: not only car batteries cannot power up big
processors durably, but also it would be absurd to fit a vehicle with as many high-end
processors as there are functions to automatize through neural networks. Therefore,
neural networks have to be run on low-power devices with limited computation power
and possibly in a way that allows running multiple different CNNs on a same device.

10www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic

www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
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However, the raw computational power or available memory are not the only con-
straints to come with this type of application. Indeed, autonomous vehicles need to
take vital decisions in, sometimes, the span of a few milliseconds, depending on the
vehicle’s velocity. On top of that, these decisions have to be accurate and robust. The
problem is that we have vital constraints on performance, robustness and latency, while
most vehicles cannot afford embedding the complex hardware that would be powerful
enough to run big networks quickly enough. Indeed, not only would such hardware
be expensive, but also, both their high processing power and the large energetic cost of
memory accesses and management would be unmanageable for such vehicles and their
electrical/electronic (E/E) architecture—the thermal dissipation can be a problem too.
This means that every aspect of the problem is constrained and none can be sacrificed
to help the others: we need to fit the performance of cumbersome state-of-the-art net-
works onto what would be considered as outdated hardware, in another context, and
make it work in real-time; there is no way to circumvent this issue, and it is a blocking
point.

To solve this problem, we have to make either the hardware or the networks more
efficient. Some manufacturers propose dedicated accelerators, such as the R-Car Au-
tomotive System-on-Chips (SoCs) by Renesas11; however, this thesis focuses on the
other side of the problem: finding how to optimize networks for a given hardware, that
automobile constructors rarely have the occasion to design themselves. For that pur-
pose, we decided to do our studies on an embedded GPU by NVIDIA, the Jetson AGX
Xavier12.

1.3 Problem Statement

We now have all the context that is necessary to understand the initial scope of this the-
sis: CNNs, or at least those found in the literature and winners of contests, are too ex-
pensive for real-world applications, such as autonomous driving, that can only afford
embedded hardware whose computing resources, memory amount and power con-
sumption are drastically limited when compared to cloud servers. We need to make
these networks fit such devices, while keeping their performance and staying under
a strict budget in latency or energy. As we already showed in Figure 2b, the improve-
ment of the performance of neural networks came along an increase in both the required
computation power and the number of parameters: to get better networks, we would
need bigger networks on more powerful hardware, which seems contradictory with the
needs and practical constraints of industrial applications.

In order to prove this unfortunate rule wrong, the domain of neural networks com-
pression aims at reducing the cost of neural networks while keeping their performance
intact.

1.3.1 Neural Networks Compression: a Wide Domain

In Figure 2b, we saw that at equal accuracy, networks seemed to become more light-
weight over the years. This is because it is possible to find families of architectures
that are so fundamentally more efficient that the apparent trade-off curve between ac-
curacy and the number of parameters gets shifted. We illustrate this fact with Figure 4,
that compares different families of architectures. The most dramatic shift is between

11www.renesas.com/us/en/products/automotive-products/automotive-system-chips-socs
12www.nvidia.com/fr-fr/autonomous-machines/embedded-systems/

jetson-agx-xavier/

www.renesas.com/us/en/products/automotive-products/automotive-system-chips-socs
www.nvidia.com/fr-fr/autonomous-machines/embedded-systems/jetson-agx-xavier/
www.nvidia.com/fr-fr/autonomous-machines/embedded-systems/jetson-agx-xavier/
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Figure 4: Top-1 accuracy on ImageNet and number of parameters of CNNs. Each
curve is a separate family of CNN. Reported accuracy is extracted from pytorch.
org/vision/0.8/models.html and the numbers of parameters is calculated using
the Pytorch implementation of the same networks.

VGGs and ResNets: the whole tradeoff curve is shifted both towards smaller numbers
of parameters and better accuracy at the same time.

Therefore, saying that the performance of CNNs scales with their number of parameters
does not reflect the actual extent of the question: yes, for a same type of architecture,
of the same efficiency, the performance usually scales with the size of the network;
however, between architectures, this efficiency can vary drastically.

It is explicitly this efficiency that the domain of compression aims at maximizing, so
that, for a fixed budget in parameters, memory or operations, the accuracy can be
improved. To do so, multiple solutions exist: producing more efficient architectures,
which is the domain of factorization or neural architecture search; reducing the memory
occupation of parameters, through quantization or clustering; or sparsifying a network
through pruning.

Pruning, that basically involves making a network more lightweight by removing its
most unnecessary parts, has been very popular since 2015 [26]—partly because of how
intuitive its basic principle is. However, its extensive literature and the fact that some
papers raise the alarm concerning the methodological rigor of the field [27] point out
that this domain may not be as simple as expected.

1.3.2 Dwelling Deep into Pruning

Indeed, as we will see in the rest of this manuscript, pruning can be separated in mul-
tiple aspects, and that each of them raises its own questions and has, implicitly, a ded-

pytorch.org/vision/0.8/models.html
pytorch.org/vision/0.8/models.html
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icated literature. While some papers [27] warned the domain about the lack of compa-
rability between papers, because of the absence of a common standardized benchmark,
our own discussions, that we will expose all over this manuscript, point out the need
for a more meticulous comparison of pruning methods on a more conceptual level: the
important issue is not only to compare different methods on the same benchmark, but
also to tell what precisely makes them different and what is the individual benefit of
each of these differences.

While this thesis was originally intended to tackle the whole field of compression and
could have turned into a high-level comparison of the relative efficiency of each method
and of their combination, the surprising complexity of pruning and all the interesting
epistemic questionings it raised quickly led us to explore exclusively pruning, as it
appeared to us that it was not possible to provide a truly relevant hindsight about this
field without taking the time to actually explore it in depth.

1.3.3 Definitive Problem Statement

We can now formulate what is the actual scope of this manuscript. Improving the
accuracy of CNNs, to both fit the limited hardware and reach the required performance
for industrial applications such as autonomous driving, can involve many different
methods. Each method has its dedicated literature, with its questions, its problems and
its evolution over the years and the papers. It would be rather unlikely that summing
up each of them to a single archetypal method, to be compared with the others, would
give off the full extent of what each field has to offer in term of efficiency or even raw
scientific knowledge. Staying at a surface level would only sum up as doing dubious
comparisons between strawmen, without any guarantee that it makes any sense.

We think that such a superficial work would not have been of great interest for Stellan-
tis, and the implied lack of depth would have harmed the academic relevance of this
thesis. This is why we instead decided to restrain the scope of this thesis to focus on
one specific domain: pruning, that has a particularly extensive, competitive and some-
what confusing literature. Indeed, the arguable success of a blog article13, that we wrote
during this thesis, shows the appeal of a more thorough and pedagogic presentation of
the field for those who want to understand pruning—since this is not an peer-reviewed
publication, we will not mention this article again.

In this manuscript, we will describe what are the main questions and aspects that struc-
ture the whole domain of neural networks pruning. We will present the dedicated liter-
ature and our hindsight about each of them, as well as our own academic contributions
and how they fit in the field. Also, our work mostly considers the comparison between
various types of costs of the network to its performance at solving the task; since the
question of robustness or of how performance should really be measured seems to be
a very non-trivial question [28] in its own right, we decided to consider it out of our
scope.

Similarly, we restricted the scope of our study to computer vision CNNs—and more
specifically a limited array of CNNs—not only because observations made on such
networks can easily be transposed to other types of architectures, but also because it is
the same type of networks that are used in the literature. Moreover, diversifying the
types of networks on which to make the experiments would have costed too much, for
a limited methodological benefit, considering how large the domain to explore was.

13towardsdatascience.com/neural-network-pruning-101-af816aaea61

towardsdatascience.com/neural-network-pruning-101-af816aaea61
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Exploring successively each dimension of pruning, in this manuscript, will allow re-
viewing from its most theoretical aspects, that are necessary to improve the perfor-
mance of networks, to those that have a direct impact on their cost when running on
embedded devices, thus covering the two implied goals of compression: maximizing
the accuracy and reducing the cost. As we already pointed out, both aspects are equally
necessary for industrial applications.

1.4 Contributions and Outlines
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Figure 5: Graphic summary of the following chapters of this manuscript.

For this manuscript, we chose a thematic approach to structure our chapters, that will
each tackle one distinct aspect of pruning. Therefore, each chapter is more or less in-
dependent, even though there will be references between them. As illustrated in Fig-
ure 5, there is a logical progression in the order of chapters, dealing first with the most
fundamental aspects of pruning to conclude on its impact on the cost of networks on
hardware, which allows in the end to provide a thorough and fully in-depth hindsight
of the field, encompassing all the elements, in the scope, that can be of interest for the
industrial application that motivated the launch of this thesis. Chapter 2 is different
from the others, as it does not deal exclusively with pruning and instead provides all
the necessary notions, notations and explanations to correctly apprehend the rest of the
manuscript.

In Chapters 4 and 6, we will present 3 different contributions: Selective Weight De-
cay (SWD) [1], a pruning method that aims at solving some fundamental problems
with removing parts of a network during training; Dimensional Clear-Out (DCO) [3],
a method to identify and solve problems of dependencies when performing structured
pruning and finally, one final contribution [2] that presents some measurements of the
reduction of the energy consumption of CNNs through pruning, and how these mea-
surements highlight some counter-intuitive behaviors of pruning. These three contri-
butions respond to the two aspects we mentioned when stating the overall problem
tackled by this thesis in Section 1.3.3: on one hand, improving the performance of
pruned networks [2]; on the other hand, helping their implementation on embedded
hardware [3] and studying how it reduces their cost [2]. All chapters will not present
a contribution, since we review them in the chapters whose theme is the most related
to that of the contributions. However, the chapters that do not feature an academic
contribution still show our personal hindsight on their subject and the eventual—and
sometimes ignored—problems of their respective literature.
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We will now provide a short summary of the content of each chapter, highlighting our
academic or informal contributions in each one:

• Chapter 2, “Deep Learning for Computer Vision and Compression Methods”:
presentation of the tasks, datasets, layers/operations and network architectures
used in the rest of the manuscript. Also details what is the principle of training a
neural network, what is compression, what are the main compression methods in
the literature and why pruning can be separated in criteria, methods, structures
and hardware implementation.

• Chapter 3, “Pruning Criteria”: details how to tell the importance of a weight,
then how to distribute the pruning rate across layers, how to generalize crite-
ria to groups of weights or larger structures and when to measure these criteria
relatively to training. In this chapter, we also provide our hindsight concerning
both the demonstrations backing up certain criteria—and why these demonstra-
tions tend to overlook one major problem—and a new way of presenting pruning,
which explains intuitively many behaviors of pruning and provides a new way
of considering what should be pruning criteria in theory. This chapter is related
to the most theoretical side of pruning, and is necessary to maximize the perfor-
mance of pruned networks.

• Chapter 4, “Removal Methods”: presents the logic that links together the various
families of methods to remove parts of networks (i.e. the parameters to remove
after having identified them through a pruning criterion). This chapter shows
that, implicitly, all these methods aim at solving the same fundamental problem
of pruning, which is that the harsh perturbation introduced by pruning disrupts
training. This chapter also presents SWD [1], a pruning method of our own. These
methods both impact the final performance of the pruned network and the train-
ing time, which constitutes a first step towards more practical considerations.

• Chapter 5, “Pruning Structures”: explains what are the different types of struc-
tures to prune and what are their benefits, notably in term of cost at inference or
of reduction in performance. It also presents the problem of the interdependence
of layers in a network, which is a thorny issue when pruning large structures;
this problem is barely mentioned in the literature, while it clearly had a decisive
impact on some practices in the field. This chapter is closely related to Chapter 6,
and directly tackles the practical side of the problem stated in Section 1.3.3.

• Chapter 6, “Leveraging Pruning on Hardware”: finally, this chapter presents
which aspects, in neural networks, have a cost in energy, memory or latency on
embedded hardware. It also presents a solution, called DCO [3], to solve the in-
terdependence problem presented in the chapter before. Finally, using DCO, one
last contribution [2] shows the impact of pruning on the energy consumption of
networks; these experiments also show that some behaviors of pruning criteria
have a direct impact on the energetic efficiency of pruned network, which closes
the loop: the theoretical aspects of pruning finally have a direct impact on their
most practical aspects.
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This chapter will first set the context of the experiments featured in this manuscript.
We will review the considered tasks, datasets and architectures as well as the training
conditions. This will allow reviewing briefly the history and the usual practices of the
respective domains. Once these bases are properly defined, we will review the overall
domain of neural networks compression and, at last, especially that of pruning. In this
last part, we will break down what are the different key notions of pruning that will be
mobilized and developed in this manuscript.

2.1 Deep Learning for Computer Vision

Computer vision tasks are both a staple in the deep learning literature and one of the
core domains to be addressed in various industrial applications such as the one that
serves as the context of this thesis. Therefore, all experiments in this manuscript will
be performed on standard tasks, datasets and networks of the literature. Whether or
not the conclusions to be drawn from them can easily be transposed in an industrial
context will be discussed for each individual task and dataset in Section 2.1.2.

2.1.1 Tasks

The two tasks that we tackled are image classification and semantic segmentation: one
ubiquitous in the literature and the other closer to industrial constraints.

2.1.1.1 Image Classification

Being both one of the oldest [29] and most widespread [18] tasks in deep learning, im-
age classification, its datasets and its networks are almost the default canvas in which to
study neural networks. The vast majority of compression or, more specifically, pruning
publications focus mainly, or even solely, on this task.

The principle of image classification is straightforward: it involves attributing one label,
among n possible ones, to an image X, that contains c channels and have a height h and
a width w. This can be seen as a mathematical function N that takes X as an input and
outputs a vector N (X) of length n, with each element of N (X) being the probability
of X to belong to the corresponding class—the class to choose as the overall answer is
the one whose probability is the highest. Even though images are usually processed in
batches, it is simpler to consider only one image at a time in our notations—it suffices to
know that the same operations are applied to multiple images in parallel, with limited
interactions between them (apart from the computation of the batch-normalization or
of the gradient). An image classification network can be defined as:

N : Rc×h×w → Rn

X 7→ N (X)

Even though this task is extremely standard and ubiquitous, it brings some biases that
motivated the extension of our work to the task of semantic segmentation. The two
main biases are:

• Most of the time, if not always, the output space has a much reduced dimension-
ality compared to the input space, i.e. c × h × w ≫ n. Therefore, most classifica-
tion networks have the same overall design pattern of progressively reducing the
definition space of its intermediate representations, loosing strategically (mostly
spatial) information to result in a classification vector that contains no spatial in-
formation at all. This approach is not universal and many tasks do not use it,
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which has a direct impact on the cost of the network. Therefore, when studying
neural networks compression, it is important to diversify the tasks to tackle.

• Image classification assumes that the input images each involve only one object
of interest that matches only one class. This is remote from most actual use cases
in the industry since, for example, automation involves dealing with different
types of situations, including unpredictable ones. For example, automated vehi-
cles have to be able to detect different types of objects, possibly unknown ones,
and react accordingly and reliably.

2.1.1.2 Semantic Segmentation

While staying, by certain aspects, analogous to image classification, semantic segmen-
tation stays closer to actual application contexts such as autonomous driving [25]. It
involves performing a pixel-wise classification of an image. Therefore, a semantic seg-
mentation network can be defined as:

N : Rc×h×w → Rn×h×w

X 7→ N (X)

Here, N (X) is not a mere vector but a tensor that contains the probability of each pixel
to belong to each of the n classes. The actual segmentation of the input images can be
deduced by taking the argmax of N (X) to produce single-channel segmented images.

In contrast to image classification, the input and output spaces in semantic segmen-
tation are of roughly similar dimensionality—so much that most networks actually re-
duce the resolution of the output segmented images, to cut on the number of operations
to perform, and upsample them to the original shape afterward. As we will see in the
rest of this manuscript, this difference has a significant impact on how to handle the
compression of semantic segmentation networks.

We chose to stick to this simple type of segmentation without worrying about more
subtle cases such as instance-level semantic labeling tasks, that combines detection with
segmentation. We did not want to bring additional complexity to the tasks to tackle
while it would not bring a more significant hindsight on the impact of the task on the
architecture and of the architecture on the cost of neural networks.

Now that we have introduced the two tasks involved in this manuscript and justified
this choice, we will present the precise datasets that we used.

2.1.2 Datasets

Since all our experiments were conducted on supervised learning datasets, we can al-
ready notate that a dataset D is a set of pairs (X,y) with X an image and y its cor-
responding groundtruth, whether it is a classification label or a segmented image. A
given dataset contains a fixed amount N of image/label pairs.

The three datasets we used are ImageNet ILSVRC2012, CIFAR-10 and Cityscapes—two
classification datasets and one semantic segmentation one. ImageNet and CIFAR-10
are very widespread and standard in the literature; Cityscapes is a reoccurring refer-
ence when dealing with semantic segmentation, which is itself less common. CIFAR-10
is ubiquitous to tune the hyperparameters of a method but is a bit too much of a toy
problem to be relevant for industry; ImageNet is the main reference on which most
deep learning methods are tested; Cityscapes is specially dedicated to autonomous
driving and is, therefore, very relevant in the context of this thesis.
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2.1.2.1 ImageNet ILSVRC2012

Figure 6: Examples of images from ImageNet ILSVRC2012

Since the historical performance of AlexNet [9], at the ImageNet Large Scale Visual
Recognition Challenge of 2012 (ILSVRC2012) [18], that introduced deep learning as the
state of the art in computer vision, the ImageNet classification dataset became the main
reference for evaluating the performance of a method in the deep learning literature.
It contains 1,281,167 training images, 50,000 validation images and 100,000 test images,
classified in 1000 classes. Images are usually cropped into images of size 224 × 224
and all contain 3 RGB channels. Figure 6 provides some examples originating from the
dataset.

Because of the number of images and their size, this dataset tends to be the final acid
test of methods developed using smaller datasets that are faster to train on, such as
CIFAR-10. Indeed, training on ImageNet can take up to a week, depending on the
available hardware, which makes it a poor candidate for hyperparameter search.

2.1.2.2 CIFAR-10/100

There exist 2 different CIFAR [30] datasets, that are both composed of 32 × 32 RGB
images and divided into a train and a test set:

• CIFAR-10 is divided into 10 classes and counts 50k training images and 10k test
images. Classes are equally balanced and are mutually exclusive.

• CIFAR-100 is divided into 100 classes and counts also 50k training images and
10k test images. It is also equally balanced, which means that each class has
fewer images. Images are also divided into 20 superclasses that can be used as
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Figure 7: Examples of images from CIFAR-10

a coarser label, even though training on CIFAR-100 typically use exclusively the
fine labelling of the 100 mutually exclusive classes.

CIFAR-10 is very widespread as a training dataset for quick yet reliable tests and hy-
perparameters search. It is both much faster to train than ImageNet and more complex
and interesting to use than old datasets such as MNIST—even though it is still too sim-
ple to be considered consistent with industrial applications. CIFAR-100 is a bit more
rarely used because it presents a much more complicated challenge, with more classes
and a lot fewer examples per class. Figure 7 provides some examples originating from
the CIFAR-10 dataset.

2.1.2.3 Cityscapes

The Cityscapes dataset [25] contains high-resolution images of urban street scenes that
were captured from a vehicle in 50 different cities in Germany. It features various sea-
sons, times of the day, weather conditions, types of featured objects, scene layouts and
background.

The subset we used contains 2975 training images and 500 validation ones. The test set
is not annotated, so we do not count it. Images are of size 1024 × 2048, even though
they are usually cropped to 512 × 1024 during training. We use the finely annotated
groundtruth segmented images, that are labeled for 30 different classes, even though
the literature only uses 19 of them, which we do too. Figure 8 provides some examples
originating from the Cityscapes finely annotated subset.
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Figure 8: Four examples from the Cityscapes dataset. The original images and their
fine annotations are superposed.

2.1.3 Operators

Neural networks for image classification and semantic segmentation share mostly the
same types of operators. In order to expose more easily the specific architectures to be
found in the literature and, more specifically, those we used in our experiments, we will
review all the involved operators.

2.1.3.1 Linear layers

Linear layers are the original main component of neural networks and are at the heart of
perceptrons [6] and multi-layered perceptrons. Since we never see anymore networks
that contain only one layer, we will notate every layer operation as indexed by ℓ, with
ℓ ∈ {0, . . . , L− 1} with L the number of layers in the network N . The input Xℓ and
output Xℓ+1 of a linear layer Nℓ are vectors of size cℓ and cℓ+1, and its parameters are
composed of a cℓ× cℓ+1 matrix Wℓ of weights and a vector bℓ of biases of size cℓ+1. The
layer operates a matrix multiplication between Xℓ and Wℓ and sums bℓ to the result;
we notate this operation as:

Nℓ : Rcℓ → Rcℓ+1

Xℓ 7→ Xℓ ·Wℓ + bℓ

Historically, a “neuron” corresponds to the cℓ weights and the single bias that are in-
volved in the production of one value in Xℓ+1, for a total of cℓ+1 neurons. In the archi-
tectures involved in our experiments, linear layers are only found at the end of image
classification networks, where they serve as a linear classifier that takes as an input the
embedding produced by a convolutional network and returns the classification vector
N (X) described in Section 2.1.1.1

2.1.3.2 Convolution layers

In deep learning applied to computer vision, convolution layers, or more precisely 2D
convolution layers, are ubiquitous. They are designed to operate on tensors, that can
be viewed as an image containing cℓ channels called “feature maps”; these tensors are
of size cℓ × hℓ × wℓ with hℓ and wℓ being the height and width of the feature maps
that are taken as the input of the ℓ-th layer of the network. Convolution layers contain
weights Wℓ of size cℓ+1×cℓ×kh×kw, with kh and kw being the height and width of the
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convolution kernels—the “features” to extract from the input to produce the “feature
maps”. Since kernels are almost always squares, we will instead notate kw = kh = kℓ
with kℓ the size of the kernel in layer ℓ. Convolution layers also optionally contain
biases bℓ of size cℓ+1. The operation performed by the convolution layer can be written
as:

Nℓ : Rcℓ×hℓ×wℓ → Rcℓ+1×hℓ+1×wℓ+1

Xℓ 7→ Xℓ+1 : ∀i ∈ {0, . . . , cℓ+1 − 1} ,X(i)
ℓ+1 = b(i) +

cℓ−1∑
j=0

W
(i,j)
ℓ ⋆X

(j)
ℓ

With ⋆ being the 2D cross-correlation operator. Since convolution layers, in some cases,
have a “stride” hyperparameter sℓ (that we supposed to be the same for height and
width), the cross-correlation is defined as:

W
(i,j)
ℓ ⋆X

(j)
ℓ = X

(i,j)
ℓ+1 ∈ Rhℓ+1×wℓ+1 :∀(m,n) ∈ {0, . . . , hℓ+1} × {0, . . . , wℓ+1} ,

X
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kℓ−1∑
a=0

kℓ−1∑
b=0

W
(i,j,a,b)
ℓ X

(j,a−msℓ,b−nsℓ)
ℓ

Another important hyperparameter is the “padding” pℓ (that we supposed to be the
same for height and width), that impacts the resolution of the output feature maps by
adding a margin, filled with zeros, around the input feature maps. Therefore, we have:

hℓ+1 =

⌊
hℓ + 2pℓ − (kℓ − 1)− 1

sℓ

⌋
wℓ+1 =

⌊
wℓ + 2pℓ − (kℓ − 1)− 1

sℓ

⌋

To sum it up in a more informal way: the convolution (or rather cross-correlation, but
not only are the two operations almost the same, but the confusion in terminology
is ubiquitous in the literature) behaves like that: as illustrated in Figure 9, each pixel
X

(i,j,m,n)
ℓ+1 in the partial feature map X

(i,j)
ℓ+1 is the element-wise product between the ker-

nel W(i,j)
ℓ and a cropped window of size kℓ×kℓ of the input feature map X

(j)
ℓ that slides

over sℓ pixels for each new pixel in X
(i,j)
ℓ+1 . Each output feature map X

(i)
ℓ+1 is the sum of

the convolution of a different kernel for each feature map in the input Xℓ; all kernels
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Figure 10: Structure of a convolution layer: each filter contains as many kernels as there
are input feature maps (F.M.) and produces one output feature map.

involved in the production of this feature map (as well as the eventual corresponding
bias) are called a filter. A convolution layer counts cℓ+1 filters. The overall structure of
a convolution layer is illustrated in Figure 10.

Two other hyperparameters, that are not to be found in the networks we used but that
exist nonetheless, are:

• “groups”: Splits the channels in the input feature maps as well as the filters, such
that the filters of each split only operate on the feature maps of the corresponding
split in the input, which allows reducing the number of operations and parame-
ters. If there are as many groups as input feature maps, which means that every
output feature map is the product of only one cross-correlation between the corre-
sponding input channel and one kernel, then, once combined with convolutions
with kernels of size 1× 1, we get what are called “depthwise-separable convolu-
tions”.

• “dilation”: Introduces a gap between pixels in the kernels in order to operate on
a larger area in the feature maps while keeping the same number of parameters.
Dilated convolutions are also called “atrous” convolutions.

2.1.3.3 Batch-Normalization layers

The use of batch-normalization (or “BatchNorm”) layers [31] is almost systematic in
modern networks such as ResNets [21]. It comes after every layer in a network, so
that it can be considered as a part of them, especially since convolution layers rarely
contain biases anymore, that are instead included in the following batch-normalization
layer. Batch-normalization layers operate independently on each feature map of their
input and apply two operations: 1) a normalization of each feature map accordingly to
“running statistics” that are progressively updated during training (and frozen during
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inference) and 2) multiplication and addition with a learned weight and bias. Therefore,
this layer can be described as:

Nℓ : Rcℓ×hℓ×wℓ → Rcℓ×hℓ×wℓ

Xℓ 7→ Xℓ+1 : ∀i ∈ {0, . . . , cℓ − 1} ,X(i)
ℓ+1 =

X
(i)
ℓ − E

[
X

(i)
ℓ

]
√

V ar
[
X

(i)
ℓ

]
+ ϵ

∗W(i) + b(i)

The interest of batch-normalization is twofold: 1) it prevents “covariate shift”, i.e. the
tendency of the distribution of layer’s inputs to change during training, which harms
training, and 2) it prevents the case where some feature maps tend to be systematically
in a range of value that gets them nullified by the ensuing activation function, which
maximizes the network’s usage of its parameters: for example, ReLU activation func-
tions nullify all negative values; if a feature map’s distribution is normal, then at least
half of its values are expected not to be nullified.

The specificity of batch-normalization is that E
[
X

(i)
ℓ

]
and V ar

[
X

(i)
ℓ

]
are actually com-

puted on the same channel in every image of a training batch at once. This means that
training a batch-normalization layer requires a sufficient batch size to compute prop-
erly the mean and variance of each channel.

2.1.3.4 ReLU activation functions

Non-linear activation functions are necessary for functioning neural networks. Since
AlexNet [9], one of the most popular ones are Rectified Linear Units (ReLU) functions,
that are simply defined as:

ReLU : R→ R+

x 7→ max(x, 0)

This activation function has two advantages: 1) it is extremely simple and fast to com-
pute and differentiate and 2) since its derivative equals 1 in the positive domain, it does
not introduce the “vanishing gradient” problems that was encountered with previous
activation functions, whose derivative tended to be smaller than one.

2.1.3.5 Tensor Additions

Modern networks such as ResNets [21] are rarely simple straightforward networks as
were AlexNets [9] or VGGs [20]: they can contain various types of long-range con-
nections between layers, which is often performed by summing together the output
of different layers. In the networks we used in our experiments, tensor additions are
the only operators to involve multiple input feature map tensors at once and require
them to have the same dimensions. This property will prove very important later in
the manuscript.

2.1.3.6 Interpolations

Even though interpolation operations are rare in classification networks, they are com-
monplace in semantic segmentation ones, such as HRNets [22]. They serve to adapt,
and usually upsample, the resolution of feature maps. There are multiple ways to
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achieve this upsampling, while we did not measure any significant difference in per-
formance in our experiments. That is why we used only simple 2D nearest neighbor
upsampling operations, as they are the least operations-consuming.

2.1.3.7 Pooling operations

Formerly widespread in deep convolutional networks, pooling operations mostly got
replaced by strided convolutions to perform downsampling, like in ResNets [21]. Al-
though rarer, “MaxPooling” operations can still occasionally be found, for example at
the beginning of ResNets for ImageNet, that start by reducing the resolution of input
images using maxpooling. Maxpooling operations also consists in a sliding, usually
strided, window which, instead of performing a cross-correlation, selects the maximum
value in the image inside that window.

However, one type of pooling operation that is widespread in classification networks
is Global Average Pooling [32], that averages all values in a feature map to produce
one single value, whatever the resolution of the said feature maps. The interest of this
operation is threefold: 1) it is not dependent on the network’s input’s resolution, which
allows the network to be applied on any image size, 2) it fully abstracts the last em-
bedding intermediate representation into a features vector with no spatial information,
which makes classification easier and allows using only one linear layer as the final
classifier of the network, and 3) it greatly reduces the size of the said linear classifier.
These last two aspects allowed to evolve from the cumbersome multi-layered classifier
of VGGs [20], that took up most of the network’s parameters, to the much simpler one-
layer classifier of ResNets, whose cost is negligible compared to the rest of the network.

2.1.4 Architectures

Now that we have reviewed the tasks and datasets to experiment with and the opera-
tors to build networks from, we will review the classification and semantic segmenta-
tion networks that we used in our experiments. We will also briefly review the history
of classification and semantic segmentation networks to understand how the literature
came up with the solutions that we chose for our experiments.

2.1.4.1 History of Image Classification Networks

Before the introduction and expansion of deep convolutional neural networks (CNN),
classification or detection was performed by manually extracting features out of im-
ages and then applying various machine learning methods [33]. Convolution layers [7]
then changed everything by allowing learning what features to extract. Once hardware
became powerful enough to allow training large and deep neural networks, CNNs
yielded groundbreaking results, notably at the ImageNet [18] challenge in 2012 with
AlexNet [9]. Since then, different networks became popular and each brought improve-
ments in accuracy and in design practices; in chronological order:

• LeNet [7]: brought the use of convolution layers and pooling operations for image
classification and object detection.

• AlexNet [9]: brought the use of ReLU activation functions to prevent the vanish-
ing gradient problem.

• Network in Network [32]: brought the use of global average pooling to consider-
ably simplify the classifier part in now almost entirely convolutional networks.
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• VGG [20]: brought the practice of stacking convolution layers with kernels of size
3 × 3 instead of using single layers with larger kernels, as it is more efficient in
terms of parameters.

• GoogLeNet [11], [34]: brought the principle of splitting the network’s blocks into
different parallel sub-blocks that apply different operations. This was the first
instance of convolution networks that were not straightforward stacks of layers.

• ResNet [21]: brought the principle of residual connections, that are shortcuts that
sum the output of a block with its input to prevent any loss of information.

• SqueezeNet [35]: one of the first attempts at designing an efficient architecture for
image classification; actively uses 1×1 convolutions to change the dimensionality
of the input of the “fire modules” that are the building-block of SqueezeNet.

• DenseNet [36]: improves the performance by connecting the output of a layer to
all following layers in a same block.

• ResNeXt [37]: uses grouped convolutions, under the term of “cardinality”, to im-
prove the performance of ResNets.

• MobileNet [38], [39]: uses depthwise-separable convolutions to produce an effi-
cient image-classification network.

• EfficientNet [40]: uses neural architecture search (NAS) to choose the right dimen-
sions of depth/width/resolution to produce highly efficient image classification
networks.

Because of both their simplicity and efficiency, ResNets are still the standard baseline
on image classification, notably in the pruning literature. ResNet-50 on ImageNet and
ResNet-20 or ResNet-56 on CIFAR are the most common network-dataset couples to
be found in recent pruning papers. This is why the next subsection describes more
accurately the architecture of ResNets.

2.1.4.2 ResNet
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Figure 11: Architecture of ResNet-18 for ImageNet: after a head that reduces the in-
put’s resolution and increases its number of channels, the resolution is halved and the
channels are doubled for each new stage, each made of two BasicBlocks. The final em-
bedding is pooled, then classified into a vector of size 1000.
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Figure 12: The two variants of residual blocks: BasicBlock and Bottleneck. N is the in-
tended width (in number of channels) of the block. The shortcut on the right is option-
ally replaced by a few layers if there is the need to adapt the number of channels of the
input.

ResNets are composed of three different parts: 1) a small head made of a few layers, 2)
a succession of residual blocks and 3) the linear classifier.

The head depends on the dataset. For CIFAR, the head is composed of one 3×3 convo-
lution with no stride nor pooling. For ImageNet, the head is made of one 7× 7 convo-
lution layer with a stride of 2 and one maxpooling layer with a kernel of size 3× 3 and
a stride of 2. In either cases, the convolution is followed by a batch-normalization layer
and a ReLU activation function.

Whatever the dataset, the linear classifier is built the same: one global average pooling
operation and a single linear layer whose output dimension matches the number of
classes in the dataset. In Pytorch [41], the softmax function is included in the CrossEn-
tropy loss function.

The core of ResNets rely in the succession of residual blocks. These blocks are di-
vided into stages. For each new stage, the intermediate representations have twice
the number of channels. There are two families of ResNets: those with 3 stages, such as
ResNet-20 or ResNet-56 that are more adapted to CIFAR, and those with 4 stages, such
as ResNet-18 or ResNet-50 that are more adapted to ImageNet. The 2nd, 3rd (and 4th if
existing) stages operate on intermediate representations of reduced resolution; this is
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performed by introducing a stride of 2 in the first layer of each of these stages.

Each stage is made of a certain number of blocks, number that depends on the depth of
the network. There are two different sorts of blocks: BasicBlocks and Bottlenecks. The dis-
tribution of the number of blocks across stages and the type of these blocks defines the
sort of ResNet that is used: ResNet-18 is [2, 2, 2, 2] BasicBlocks and ResNet-50 is [3, 4, 6, 3]
Bottlenecks; ResNet-20 is [3, 3, 3] BasicBlocks and ResNet-56 is [9, 9, 9] BasicBlocks. The
overall structure of a ResNet-18 is illustrated in Figure 11.

A BasicBlock is made of two consecutive successions of a 3 × 3 convolution layer, a
batch-normalization layer and a ReLU activation function; in the case of the second
succession, the input of the block is summed to the output of the batch-normalization
layer before being applied the ReLU activation function.

A Bottleneck block is composed of three parts: 1) a first 1 × 1 convolution (as well as
a batch-normalization layer and a ReLU activation function) that reduces by four the
number of channels of the input (to reach the intended width of the overall block), 2) a
normal 3×3 convolution + batch-normalization + ReLU and 3) another 1×1 convolution
+ batch-normalization + ReLU that expands again the number of channels four times.
Once again, the input of the block is summed to the output of the block before the final
ReLU activation function. That reduction and expansion of four is a hyperparameter of
Bottlenecks called “expansion”.

The first block of each stage, to adapt the number of channels of the input, that is still
propagated across layers through the residual connections, has an additional 1× 1 con-
volution + batch-normalization that is applied to the input before being summed with
the output of the block. Since the width of layers is constant for each layer of each block
of a stage, and since this width is doubled for each stage, the initial width of the net-
work is another defining property of a ResNet’s architecture. ResNet-20 and ResNet-56
have usually an initial embedding of 16 feature maps, even though 64 are sometimes
used and provide better performance despite being less efficient in terms of parameters;
ResNet-18 and ResNet-50 usually have a base width of 64.

2.1.4.3 History of Semantic Segmentation Networks

Semantic segmentation started off as a modification of image classification networks.
Most of those we will review here can be summed up as a decoder design, attached to
a more or less modified version of a classification network that serves as an encoder.
Similarly to classification networks, reviewing chronologically the most influential net-
works in the literature helps understanding which logic leads to the current state of the
art. Here are some influential semantic segmentation networks:

• FCN [42]: first attempt at adapting a classification network, a VGG at the time,
for semantic segmentation. The output of each stage of the encoder, that are of
different resolutions and dimensionality, are fed to a decoder that, therefore, ag-
gregates information at various scales at once. Here, each output is individu-
ally upsampled and projected into a segmented image (with as many channels as
classes) using a convolution layer (or, more precisely, a ConvTranspose operation,
that combines upsampling and convolution); then all these transformed outputs
are summed together. Since, in the encoder, the final linear layers contain most of
the information in the network, they are modified into a convolution layer whose
output is fed to the decoder.

• DeconvNet [43]: takes a VGG as an encoder and remembers the index selected by
each of its pooling layer. It then feeds the output of the encoder to a decoder that
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applies deconvolutions and “unpooling” operations that re-expand the interme-
diate representations depending on the indexes selected in the encoder.

• U-Net [44]: improves FCNs by designing a pseudo-symmetrical decoder that pro-
gressively upsamples, applies convolution and sums together the output of each
stage from the encoder, instead of directly transforming them into segmentation
images. This network, as well as the following ones, tend to discard the linear
layers at the end of the encoder.

• SegNet [45]: Very similar to DeconvNet, but discards the linear layer of the VGG
encoder.

• Dilated frontend [46]: introduces the use of dilated or “atrous” convolutions for
semantic segmentation. Since the kernels of a dilated convolution cover a larger
area for the same number of parameters, dilating a pre-existing convolution while
removing a previous pooling or stride operation allows increasing the resolution
of an intermediate product while keeping the intended dimension of the features
extracted by convolutions. To sum up: a regular convolution on a regular image
extracts roughly the same features than the same convolution, once dilated, on the
same image, but non-downsampled. Therefore, replacing the last convolutions of
an encoder by dilated ones while removing strides or pooling operations allows
preserving the relevance of the pretrained weights while producing outputs of
higher resolutions that contain more information.

• DeepLab [47]–[49]: also uses the dilated convolutions in the same way, but mod-
ifies the last stage using “pyramid pooling” [50]: various convolutions, with dif-
ferent dilation rates, are applied to the same input and the outputs are summed
together. This principle is perfected in DeepLabV3. Then, DeepLabV3+ elabo-
rates its final decoder by introducing a U-Net-like re-injection of the encoder’s
secondary outputs.

• DANet [51]: adds a complex decoder, at the end of a dilated encoder, that uses an
attention mechanism to compute inter-pixel and inter-channel interdependence
in order to improve segmentation.

• HRNet [22], [52], [53]: instead of relying on an encoder designed for classifica-
tion, HRNet is fully built for segmentation and applies the principle of pyramid
pooling, similarly to DeepLab. However, instead of doing this using dilated con-
volutions, HRNet instead duplicates the intermediate representations at different
resolutions, processes each duplicate independently and fuses together the ob-
tained information. This design is applied all throughout the network, instead of
involving only a decoder or the end of the network, as for DeepLab. HRNet can
also be fitted with various kinds of decoders, such as HRNet-OCR [54].
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Figure 13: Overall architecture of HRNet-48. Bottleneck and BasicBlocks are described in
Section 2.1.4.2 and Figure 12. Transition modules are illustrated in Figure 14. Fusion
modules are illustrated in Figure 15.
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Figure 14: Two different transition modules: case A happens at the beginning of the
first HRNet stage, where the output of the head is splitted into two branches of different
resolutions; case B happens at the transition between the second and third stages, where
the output of the three branches are forwarded without modification and a fourth one
is created from the last of the three previous ones.

2.1.4.4 HRNet

Similarly to ResNets, HRNets are composed of three parts: 1) a head, composed of a
few ResNet-like blocks, 2) a central part composed of multiple stages and 3) a small
decoder at the end. The overall architecture is illustrated in Figure 13.

As for ResNets, the first layers of HRNet’s head reduce the resolution of the input, using
two strided convolutions. These two convolutions are then followed by four Bottleneck
blocks, with a width of 64 channels whatever the type of HRNet: 18, 32 or 48.

The central part of HRNet is composed of three stages. Each stage is composed of a
transition module (Figure 14) and a given number of “High Resolution Modules”. Each
HR-module is characterized by a number of branches and a width. Each branch oper-
ates on a different resolution and is composed of four BasicBlocks. After the branches,
the module applies a fusion module (Figure 15). The transition module is responsible
for generating the right number of inputs for the branches of the ensuing module. The
fusion modules mix information coming from all branches and inject it into the input
of each of the next module’s branches.

Each of the three available types of HRNets are designed the same way: three stages,
containing respectively one, four and three modules with two, three and four branches.
The only difference between the three models is the base width of the BasicBlocks in
their HR-modules: either 18, 32 or 48 channels.

Finally, the decoder upsamples three of the four outputs of the last stage, so that they
all have the same resolution, in this case the highest of the four. Then, it applies two 11
convolutions. The output of the last convolution contains as many channels as classes
in the dataset. Finally, the output is upsampled to the original resolution of the input.

2.1.5 Training

Now that we have all the information we need about the tasks, the datasets and the
networks, we finally need to define how to train the said networks on the said datasets.
First we will review some general information on neural networks training and then
we will review the specific hyperparameters for each specific network-dataset couple.

2.1.5.1 General Training Hyperparameters and Algorithm

To train a neural network, one needs multiple elements:
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Figure 15: Example of a fusion module, in the case of a stage with four branches. The
principle is the same for any number of branches.

• A dataset D that contains N image/label pairs (X,y), loaded by batches of b. We
notate a batch

(
X(b),y(b)

)
.

• A network N to train.

• A number of epochs E, i.e. the number of iterations over the whole dataset, the
dataset being shuffled for each new iteration; the whole training therefore lasts
during ⌊(N/b)⌋ ∗ E steps s.

• A loss function L.

• A base learning rate λ.

• A scheduling function Sch for the learning rate, depending on λ and the current
step s. Usually, the learning rate is instead updated for each new epoch e.

• An optimizer algorithm Op, with its own set of hyperparameters, to update the
weights of N depending on its gradient g and a learning rate Sch(λ, e).

Training a neural network usually involves iterating over the dataset, computing the
outputN (X(b)), then the gradient of the loss function of this input g = δL

δW (N (X(b)),y(b)),
and then updating the weights W of the network, using the optimizer depending on
g and the current learning rate Sch(λ, e). We can sum the training algorithm as Algo-
rithm 1:

The goal of training is to minimize the loss function L, which sets the objective toward
which the network should converge. Actually, this objective function can be a mix of
different functions, such as a specific criterion F , that computes the error between the
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Algorithm 1: Training of a neural network
Data: N , b, D, E, λ, Op, Sch
for e← 0 to E do

Shuffle D;
foreach

(
X(b),y(b)

)
∈ D do

g← δL
δW (N (X(b)),y(b));

W← Op(W,g, Sch(λ, e))

output N (X) and the intended label y, and various types of secondary objectives or
regularization functions.

One widespread regularization function is called weight decay [55], which can be summed
up as a L2 penalty of the magnitude of the network’s weights. The importance of this
weight decay is defined by a coefficient µ.

For a given criterion F and a weight decay µ, the objective of training can be written as
minimizing L for a given value of W, accordingly to Equation 1:

min
W
L(N (X),y),with L(N (X),y) = F(N (X),y) + µ ∥W∥2 (1)

Finally, one last terminology to know, concerning training, is the principle of “fine-
tuning”, which generally consists in additional training epochs at the lowest learning
rate used during training. For example, fine-tuning can be performed by pursuing
training without updating the scheduler. Fine-tuning is often used to improve perfor-
mance or reduce a performance degradation after a given post-training alteration of the
network, such as pruning.

2.1.5.2 ResNet for CIFAR-10

For most of the ResNets we trained on CIFAR-10, we used the following hyperparam-
eters:

• The batch-size, during training, is of 256.

• We trained during 300 epochs.

• The cross-entropy is the criterion, such as defined in the Pytorch [41] framework.

• The initial learning-rate is 0.1.

• The scheduling function follows the MultiStepLR function, configured so that the
learning rate is divided by 10 at the milestones epochs 100 and 200.

• The optimizer is the standard Stochastic Gradient Descent algorithm, defined as
SGD in Pytorch. The weight-decay is set at 5 · 10−4, the momentum at 0.9 and the
Nesterov momentum is disabled.

During training and testing, all images are normalized. During training, data augmen-
tation consists in: 1) random crop, with a padding of 4, into images of size 32 × 32;
2) random horizontal flip. Hyperparameters of this data-augmentation were chosen in
conformity with standard practice in the literature.

The standard metric to measure performance on the CIFAR datasets is the Top-1 ac-
curacy. ResNet-20, with a base width of 16, usually achieves around 92.5% in Top-1
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accuracy on CIFAR-10. With a width of 64, it achieves 95.5%. ResNet-56 with a width
of 16 achieves 94.5%.

2.1.5.3 ResNet for ImageNet ILSVRC2012

For the ResNet-50 we trained on ImageNet ILSVRC 2012, we used the following hyper-
parameters:

• Because of technical limitations, the batch-size is only of 170 to fit the available
memory of the GPUs we used during training.

• We trained during 90 epochs.

• The cross-entropy is the criterion, such as defined in the Pytorch [41] framework.

• The initial learning-rate is 0.01.

• The scheduling function follows the MultiStepLR function, configured so that the
learning rate is divided by 10 at the milestones epochs 30 and 60.

• The optimizer is the standard Stochastic Gradient Descent algorithm, defined as
SGD in Pytorch. The weight-decay is set at 1 · 10−4, the momentum at 0.9 and the
Nesterov momentum is disabled.

During training and testing, all images are normalized. During training, data augmen-
tation consists in: 1) random resized crop, with the default hyperparameters of torchvi-
sion, into images of size 224× 224; 2) random horizontal flip. Hyperparameters of this
data-augmentation were chosen in conformity with standard practice in the literature.

The standard metrics to measure performance on the ImageNet dataset are the Top-1
and Top-5 accuracy. ResNet-50, with a base width of 64, usually achieves around 76%
in Top-1 accuracy on ImageNet.

2.1.5.4 HRNet for Cityscapes

For the HRNets we trained on Cityscapes, we used the following hyperparameters:

• Because of technical limitations, the batch-size is only of 10 to fit the available
memory of the GPUs we used during training.

• We trained during 200 epochs.

• The RMI loss [56] is the criterion we used.

• The initial learning-rate is 0.01.

• The scheduling function follows the Poly policy, with an exponent of 2, which
means that the learning rate is reduced by (1− e

E )2 at each epoch.

• The optimizer is the standard Stochastic Gradient Descent algorithm, defined as
SGD in Pytorch. The weight-decay is set at 5 · 10−4, the momentum at 0.9 and the
Nesterov momentum is disabled.

During training and testing, all images are normalized. During training, data augmen-
tation consists in: 1) random resized crop: a subpart of the image is cropped, from
the whole 1024 × 2048 image to a smaller 256 × 512 one, which is then resized into a
512×1024 image; 2) random horizontal flip; 3) random Gaussian blur and 4) color jitter-
ing. Hyperparameters of this data-augmentation were chosen in conformity with state
of the art contributions in the literature of semantic segmentation on Cityscapes [22].
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The standard metric to measure performance on the Cityscapes dataset is the mean
Intersection over Union (mIoU). This metric is usually computed only on pixels that
belong to one of the 19 classes; the others are ignored. Our implementation of HRNet-
48 achieves around 77% in mIoU on Cityscapes.

2.2 Compression Methods

Section 2.1 allowed reviewing all the important notions to know about the tasks, datasets,
networks and training methods before dealing with the topic of neural networks com-
pression and the rest of this manuscript. This section will be first dedicated to expose
the general domain of compression, as well as its main methods. Pruning will then be
tackled separately in Section 2.2.2.

2.2.1 Other Compression Methods

2.2.1.1 Considerations about Compression in General

The overall goal of compression is to produce networks that are both achieving good
performance for their task and efficient enough not to exceed a certain capacity in com-
putation power, memory requirement or energy consumption. To phrase it differently:
compression involves finding the pareto optimum between various types of perfor-
mances and various types of costs; e.g. the Top-1 accuracy of a classification network
dependending on its number of parameters, the number of operations, the latency or
the energetic consumption.

This objective contains a fundamental ambiguity between minimizing the size of a per-
forming network and maximizing the performance of a cheap one. Even though the
term “compression” would more intuitively point out to the first case, this ambiguity
is still to be found in many methods.

Indeed, if neural architecture search can be seen as looking for the best available net-
work in a given search space—thus leaning for the second case—, pruning, even though
it is more explicitly a compression method, can also be seen as a form of architecture
search. Distillation, which involves using an expensive and performing network to
train another smaller one, can both be seen as transferring the knowledge of the first
one into the smaller one—which would be compression—and as improving the perfor-
mance of the second one—which is the second case.

Another aspect that adds to the confusion is the need to choose an adequate network
to compress. Indeed, it is not always guaranteed that a compressed network performs
better than a normal one that is smaller from the start [57]; therefore, compression im-
plies beforehand the search for an already optimized architecture—that are themselves
more difficult to compress.

Also, even different variants from a same family of methods can be considered as cor-
responding to either of the two cases. Indeed, as compression can be seen as a form of
constraint applied to the network and its training, it is either possible to train normally
a network and compress it afterward or to apply the said penalty during or even before
training—in which case the goal is to maximize performance under this constraint.

It therefore appears that the very notion of compressing neural networks actually leads
to tackle subjects that are way wider that simply reducing the cost of a well performing
network.
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On top of that, two more aspects complete the entanglement of the whole domain of
compression. First: not only does every method bring different types of gains, which
implies that they should be combined, but their combination can have effects that are
sometimes difficult to predict, as they can each degrade performance differently or
make the network more difficult to compress for other methods. This means that com-
bining different compression methods is not only necessary, but also highly combinato-
rial and subject to a certain trade-off, where it may not be possible to reduce every type
of cost at once.

The second aspect is that there are some theoretical links between different families of
compression methods. If pruning neurons can be seen as a form of architecture search,
pruning weights can be seen as imposing a constraint on the values of weights, alike
quantization or clustering.

Therefore, speaking solely of only one domain of compression in isolation can only be
an assumed, but arguably necessary bias for the sake of intelligibility. This is why this
thesis focused solely on neural networks pruning and on studying in depth every of its
aspects, in order to draw as much knowledge as possible out of this field. Yet, it does
not prevent acknowledging that there are countless bridges with many other domains
and that the notions that will be tackled in this manuscript can be useful for aspects of
deep learning that are very far from pruning.

2.2.1.2 Neural Architecture Search

Sections 2.1.3 and 2.1.4.1 provided an overview of the different operators and practices
involved in designing efficient and performing neural networks. However, most of the
cited networks are designed by hand and the field of Neural Architecture Search (NAS)
aims at providing methods to produce such architectures automatically.

NAS methods can be considered as the combination of three elements: a search space,
a search strategy and a performance estimation strategy [58].

The search space defines the family of architectures among which to find the best suited
for a task. NAS methods first tackled search spaces involving only simple, straightfor-
ward networks in which the only available degrees of liberty were the depth, the types
of layers and the hyperparameters of these layers [59]. They then extended the search
space to multi-branch architectures including ResNet-like or DenseNet-like residual
connections [60]. Instead of searching for whole architectures, it is also possible instead
to generate blocks, that can be repeated to produce architectures that can be scaled more
easily to fit various datasets [61].

The search strategy defines how to explore this space. The literature has tested many
different methods, such as reinforcement learning [59], neuro-evolutionary algorithms [62]
or bayesian optimization [63]. The performance estimation defines the objective to op-
timize while crawling the search space. Usually, the metric to maximize is the test ac-
curacy of the network. However, as it takes too much time to fully train a network and
get its accuracy, multiple proxies have been used, such as extrapolating accuracy from
a shorter or sub-optimal training [64] or predicting it directly from the architecture [65].
Another possibility is to consider the search space as the set of the subgraphs of a sin-
gle big network [66], which allows training only one model and testing separately its
subgraphs. This last approach is more reminiscent of pruning, especially structured
pruning.
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2.2.1.3 Quantization

The goal of quantization is to reduce the number of bits with which the weights of a
networks are represented. The interest is twofold: first, the weights occupy less mem-
ory space and require fewer memory accesses; second, they may involve simpler op-
erations, which reduces both the latency and the energy dissipation. Quantization in-
volves mainly three aspects: the number of bits to quantize weights, whether or not to
also quantize intermediate representations and whether to quantize after training or to
do a quantization-aware training.

Weights are usually encoded as float32, but it is very simple to convert them to float16
or even bfloat16 without decreasing too much performance. Fixed-point or integers
are also possible, but if the new encoding struggles too much to represent the original
data, it may be preferable to apply instead various kinds of non-uniform, asymmetric
or scaled quantization [67].

However, when aiming for low-bit precision, quantization-aware training yields better
results than post-training quantization. For example, BinaryConnect [68] produces net-
works with weights having only two possible values, -1 or 1, using the straight-through
estimator [69] to allow training directly the binarized network.

It is possible to quantize only weights, which allows reducing their memory occupa-
tion, but does not allow simplifying the operations of the network. This is why it may
be preferable to quantize also intermediate representations (or “activations”) [67], [70].

2.2.1.4 Clustering

Clustering is a more marginal compression method, that involves finding a representa-
tion that allows reconstructing an approximation of a network’s weights. Many meth-
ods [71]–[73] are based on product quantization (PQ) [74], [75], that consists in splicing
the weights’ tensor into column and performing k-means clustering on each of them,
so that an approximation of each column can be reconstructed from the centroids. In
general, clustering reduces the memory occupation of weights, but do not reduce the
number or the complexity of the operations they are involved with.

2.2.1.5 Distillation

The principle of knowledge distillation [76] is very different from the other compres-
sion methods. The basic idea of distillation is that the soft labels of a properly trained
network may actually be a better classification than the usual one-hot labels of classi-
fication datasets, since these soft labels include information about inter-class similari-
ties [77]. Therefore, the output of a “teacher” network can be used as the groundtruth
label to train a “student” network.

Because of this principle, and even though the most usual case is the one where the
student is smaller than the teacher, it is very possible for the student and the teacher to
be of the same architecture, which can bring a slight improvement in accuracy [78].

Most of the time, the teacher’s knowledge is used as a sort of regularization, conjointly
to the original one-hot labels of the labels, during training. Many contributions have
extended the principle of distillation not only to the teacher’s output, but also to its
intermediate representations [79]–[81].

Distillation has numerous uses outside of compression, for example for cross-modal
learning [12].
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2.2.2 Pruning

Now that we have reviewed the overall domain of compression, we will present the
main aspects to be aware of before delving into the details of neural network pruning.

2.2.2.1 Principle

The basic idea of pruning is to reduce various types of costs of a network by removing
some of its parts. This straightforward and intuitive principle raises three questions:

• What types of parts can be removed from the network and how does removing
them impact its cost?

• How to tell which parts are the most relevant to remove to reduce performance
the least?

• What is the best way to remove these parts?

Each of these questions leads to a different aspect of pruning, respectively: the pruning
structure, the pruning criterion and the pruning method.

2.2.2.2 Structures

The pruning structure is a very important aspect of pruning, since it defines:

• what type of cost pruning will reduce;

• how easy it will be to leverage pruning;

• what is the granularity of pruning and how easy it will be to prune a lot without
impacting performance.

Indeed, the most basic type of pruning, which also yields the best performance-to-
parameters trade-off and is very simple to implement, involves pruning weights in
a non-structured way [26]—hence the name “non-structured pruning”. However, this
type of pruning has serious drawbacks: 1) it produce sparse weights tensors that are
difficult to leverage properly [82] and 2) it does not reduce the size of weights tensors,
which means that the size of the intermediate representations is not reduced either.

This is why many papers prune whole convolution filters [83], which is called “struc-
tured pruning”—rather improperly, as it is not the only existing type of structures
that can be pruned. Even though this coarser granularity leads to a less favorable
performance-to-parameters trade-off, it has the clear advantage of: 1) actually reducing
the size of the weights tensor, which can be leveraged on any hardware and frame-
work and 2) reducing the size of the intermediate representations, which saves runtime
memory usage.

2.2.2.3 Criteria

Once the pruning structure has been chosen, the pruning criterion defines which pa-
rameters or which filters are the most relevant to prune. Usually, the underlying idea
is to remove parts that are the least useful, i.e. those that contribute the least to the
network’s accuracy. However, since manually measuring the impact of the removal of
each parameter individually is impossible for networks that count millions of parame-
ters, pruning methods instead use metrics that are meant to predict the importance of
a parameter. The two main types of pruning criteria are those based on the magnitude
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of a weight (i.e. its absolute value) [26], [84] and those based on the magnitude of its
gradient [85], [86].

The other important aspect of pruning criteria, besides the metric, is how to adapt it
to groups of weights. Mainly two tactics are used to adapt the aforementioned metrics
to filters: 1) considering the norm of the metric over the whole filter [83] or 2) using a
proxy, such as the multiplicative learned weight of the following batch-normalization
layer, whose importance we assume to be proportional to that of the corresponding
filter upstream [87].

Finally, the last aspect of pruning criteria is how to distribute pruning across the layers.
Indeed, it is possible to prune all layers the same way or to define manually the pruning
rate of each layer [83] as well as it is possible to set a global target [26]; these two
versions can be called “local” and “global” pruning. Also, because of the varying size of
filters between different layers, it is also necessary to choose a way to define the actual
pruning rate, since different papers will either consider the proportion of pruned filters
or the resulting number of remaining parameters.

2.2.2.4 Methods

The pruning method defines how to actually remove the weights or filters targeted by
the pruning criterion. Pruning method mainly combine two aspects: 1) finding the best
way to remove a weight or a filter and 2) defining when it is the best to prune relatively
to the training schedule. These two aspects cannot always be clearly separated, even
though we will for the sake of convenience.

The removal strategy involves how to actually remove a weight, whether it is definitely
or if it can regrow. Most simple methods imply setting weights definitely to zero [26]
but others either imply an explicit regrowth strategy [88], a dynamic reparameteriza-
tion of a mask [89] or even removal through a continuous and soft penalty [1].

The training schedule defines when to prune relatively to training. A basic exam-
ple would be to train a network and then iterate between pruning and fine-tuning
steps [26], but other methods prune progressively throughout training [90] or replace
fine-tuning by re-training, while reinitializing the value of weights [91] or not [92].

2.2.2.5 Contributions

Finally, this thesis has brought several contributions. Since they are sometimes used
conjointly, we will review them briefly to help understanding their principle before
their accurate description in the dedicated sections.

• Selective Weight Decay (SWD) [1]: a pruning method, that removes weights all
throughout training using a growing penalty on the targeted weights until their
value reaches 0. SWD has the advantage to be easily adaptable to any pruning
structure and criterion. Its continuous aspect, combined with its ability to adapt
its pruning target during training, allows for an efficient pruning even at very
high compression rates.

• Dimensional Clear-Out (DCO) [3]: structured pruning, by altering the input/out-
put dimensions of layers, imply many dependencies between layers. These in-
teractions can make counting the actual count of remaining parameters difficult
and can prevent inference because of some broken operations; e.g., additions in
residual blocks break when the two tensors to sum are not of the same dimensions
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anymore. To solve these problems, DCO identifies all dependencies between lay-
ers and operations, removes all the remaining weights that were disconnected in
the wake of pruning and adapts all the operations, that are susceptible to break,
in order to allow the inference of any structured pruning distribution.

• Measurement of the gains of structured pruning, using DCO, on GPU [2]. This
study highlighted how the cost metric influences the perceived efficiency of prun-
ing and how imbalance in pruning criteria may harm its performance on hard-
ware.

2.3 Recapitulation

In this chapter, we introduced all the background necessary to understand fully the
next chapters. We reviewed what are image classification and semantic segmentation
and which datasets we used in out experiments. We also showed what was a classifica-
tion or segmentation network in general, how the history of their respective literature
brought practices that are still used today and can be found in the networks we actu-
ally use in this manuscript. We also introduced all the types of layers involved in these
networks and how to train them.

Finally we reviewed the domain of neural networks compression in general, its prin-
ciple, its main methods and what is the one we focus on in this thesis: pruning. We
presented what is pruning and its main notions and we briefly presented what are the
contributions that this thesis brought.

In the following chapters, we will expand on the same aspects of pruning we men-
tioned: pruning structures, pruning criteria and pruning methods—not necessarily in
this order, but rather the one that allows the best to articulate the different contribu-
tions together. In each chapter, we will first review in depth the related works and
either discuss it or present our corresponding contribution.
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This chapter will be dedicated to pruning criteria, i.e. metrics and strategies to identify
the weights to prune in a given network. We will thematically tackle different aspects
of criteria, such as the metrics to evaluate the importance of a parameter, the strategies
to extend them to groups of parameters or the distribution of the pruning rate across
layers. Finally, we will expose another way of representing the effect of pruning on
the performance of the network, which will evidence one completely different way of
considering the question of pruning criteria.

3.1 Identifying Unimportant Weights

In this section, we will review the main types of importance metrics for individual
weights in neural networks. We will first tackle the two most widespread ones—weight
and gradient magnitude—and detail their dedicated literature, and then we will tackle
other, more exotic criteria.

3.1.1 Gradient Magnitude, a.k.a. “Saliency”

Even though the gradient magnitude criterion is not as widespread as the weight mag-
nitude one, it is useful to present this one first to better understand the other. We re-
group under the term “gradient magnitude criteria” all criteria, to be found in the liter-
ature, that somehow use the loss gradient, multiplied or not with the value of weights
themselves—in this case, the criterion is usually called “saliency”.

This type of criterion is one of the most ancient ones; Reed et al. [93] cited in 1993
already three influential works by Mozer and Smolensky [94], Le Cun et al. [85] and
Karnin [95]. Multiple works, in the following years or even some more recent ones,
built upon this basis or reused the same notations and understanding [27], [96]–[98].
We will now review these different ways of understanding the gradient magnitude
criterion, that were presented in these papers. We will then synthesise them and tackle
some eventual problems that must be discussed, in Section 3.1.1.7.

3.1.1.1 Skeletonization and SNIP

In 1988, Mozer and Smolensky presented a pruning method, called “Skeletonization”;
to our knowledge, this is the first occurrence of gradient-based estimation of weights
importance. The starting point of their reasoning is that one might want to remove
preferentially weights of least “relevance”; they mention that the magnitude of weights
is not necessarily faithful to its relevance, as the effect of these connections may cancel each
other out (direct citation)—for reasons that are made more or less obsolete now by the
use of batch-normalization [31]. This relevance ρ is defined as the difference in the net-
work’s error before and after the removal of a weight w, which can be roughly noted
(we re-adapt the original notations to be more consistent with our own): ρw = L\w−L.
Evaluating this relevance would require doing a test on the whole dataset for every
weight w in the network, which would be unfeasible; this is why they proposed a
method to evaluate a weight’s relevance.

The first step of their reasoning is to suppose the existence of coefficients α that repre-
sent the attentional strength of weights w (notation as a vector instead of tensor); in the
case of a purely linear layer with an output y, an input x and an activation function
f , we have: y = f((w ⊙ α) · x). Values α in α range from 0 (deactivated) to 1 (func-
tional). The relevance of a weight w of attentional strength α can then be redefined as
ρw = Lα=0 − Lα=1.
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Using this notation, the importance of ρw is then approximated using the derivative of
the error Lwith respect to α:

lim
γ→1

Lα=γ − Lα=1

γ − 1
=

∂L
∂α

∣∣∣∣
α=1

Assuming that this holds approximately for γ = 0, Mozer and Smolensky then notate:

Lα=0 − Lα=1

−1
≈ ∂L

∂α

∣∣∣∣
α=1

, therefore ρw ≈ −
∂L
∂α

∣∣∣∣
α=1

(2)

Then, Mozer and Smolensky state that this derivative can be computed using an error prop-
agation procedure very similar to that used in adjusting the weights with back propagation
(direct citation), and since all α are assumed to be 1, they do not need to be inserted as
real parameters—they are only for notational convenience.

Even though Mozer and Smolensky give further details on how they exactly compute
this relevance—using a linear error function instead of quadratic and accumulating
relevance across batches as an “exponentially-decaying time average” to cope with the
strong fluctuations of the derivative—, what we presented above is all we need to know
in the scope of this section.

Lee et al. [99] use almost exactly the same reasoning for their method called SNIP, sep-
arating the value of a weight and its indicator variable (that they notate c instead); Lee
et al. justify the need to separate the two with the following arguments: this formulation
(∂L/∂cj) can be viewed as perturbing the weight wj by a multiplicative factor δ and measuring
the change in loss. [. . . ] Furthermore, ∂L/∂cj is not to be confused with the gradient with re-
spect to the weights (∂L/∂wj), where the change in loss is measured with respect to an additive
change in weight wj (direct citation [99]).

3.1.1.2 Optimal Brain Damage

Starting from the same motivation as Mozer and Smolensky [94], Le Cun et al. [85] use
a slightly different approach to approximate the contribution of a parameter w to the
error function. To this mean, Le Cun et al. approximate the variation δL, consecutive to
a modification δw, using a Taylor series:

δL =
∑
i

giδwi +
1

2

∑
i

hiiδw
2
i +

1

2

∑
i ̸=j

hijδwiδwj +O(∥δw∥3) (3)

with gi =
∂L
∂wi

and hij =
∂2L

∂wi∂wj

This Equation 3 introduces two new components: the gradient tensor G and the Hes-
sian H of δL with respect to w. Because of the complexity of computing H, Le Cun et
al. propose three approximations to simplify the equation; discussing these approxima-
tions will be the focus of some papers afterwards. These are the three approximations
(mostly direct citations from the original paper [85]):

• The “diagonal” approximation: the δL caused by deleting several parameters is the sum
of the δL’s caused by deleting each parameter individually; cross terms are neglected, so
third term of the right hand side of Equation 3 is discarded. As highlighted by Hassibi
and Stork [96], this assumption, despite its convenience, is questionable; in the
case of the linear operations used in neural networks, there is no reason for cross-
terms not to be as significant as diagonal ones.
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• The “extremal” approximation: parameter deletion will be performed after training has
converged. The parameter vector is then at a (local) minimum of L and the first term of
the right hand side of Equation 3 can be neglected. Furthermore, at a local minimum, all
the hii’s are non-negative, so any perturbation of the parameters will cause L to increase
or stay the same.

• The “quadratic” approximation: the cost function is nearly quadratic so that the last term
in the equation can be neglected.

These three approximations allow simplifying Equation 3 as:

δL =
1

2

∑
i

hiiδw
2
i

Therefore, Le Cun et al. [85] define the saliency of weights as:

sk =
hkkw

2
k

2
, (4)

so that weights of least saliency can be removed. They also propose a way of quickly
computing the second derivative hkk [100], which we will not detail.

3.1.1.3 Optimal Brain Surgeon

Hassibi and Stork [96] noted that, in opposition to the diagonal approximation, Hes-
sians for every problem (they) have considered are strongly non-diagonal. Since they keep the
extremal approximations and ignore terms beyond the second order, they actually con-
sider the following equation (with a slightly rearranged notation compared to Le Cun
et al. [85]):

δL =
1

2
δwT ·H · δw, with H =

∂2L
∂w2

(5)

They then define the unit vector ek (to designate the weight to prune) and formalize
the pruning problem as:

min
k

{
min
δw

{
1

2
δwT ·H · δw

}
such that eTk · δw + wk = 0

}
From this equation, they deduce a saliency metric defined as:

sk =
1

2

w2
k

[H−1]kk
, (6)

so that this saliency gives the increase in error that results when the weight is eliminated,
which means that if this candidate error increase is much smaller than L, then the kth weight
should be deleted (direct citation [96]). Hassibi and Stork also provide a way to update
all weights w, for a given pruned k, in order to compensate the modification, using the
inverse Hessian. They also provide a method to compute the inverse Hessian. This
method is used in some modern papers [101].

3.1.1.4 Early Brain Damage

Tresp et al. [102] propose to instead question the extremal approximation, notably in
order to apply it when using early stopping. While this could sound specific, since many
pruning method apply their criterion while training (cf. Chapter 4), studying the case
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where the network has not fully converged yet is actually relevant. Tresp et al. denote
w∗ as the converged w and define the saliency:

sk =
1

2
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k
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2
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(7)

This Equation 7 approximates before convergence the saliency of Le Cun et al. [85] (cf.
Equation 4, alias “OBD”), that is computed after convergence, using the second order
derivative (similarly to OBD) Ak, the first order derivative Bk (similarly to Mozer and
Smolensky [94], cf. Equation 2), because of the absence of the extremal approximation
and finally a new term Ck. The motivation behind this term Ck is that Ak + Bk =
Lwk
− Lwk=0 while Ak + Bk + Ck = Lw∗

k
− Lwk=0. This way, the saliency defined in

Equation 7 is supposed to predict if a given weight will be relevant after convergence.

3.1.1.5 First Order Saliency

While previous presented papers dated from the 80’s or 90’s, some more recent papers
either build upon these methods or propose a new way of thinking them. Molchanov et
al. [86], [97], similarly to Le Cun et al [85], use a Taylor expansion to define the saliency
of a parameter. Let’s dwell into their reasoning.

Actually, instead of dealing with weights themselves, Molchanov et al. [86] actually
consider the output hi produced by each weight wi—which is rather equivalent, but
let’s stick to their own formalism. Their motivation is to approximate |∆L(hi)| =
|L(hi = 0)− L(hi)|, assuming that all parameters are independent. They then remind
what is the Taylor expansion of a function f(x) in the proximity of x = a:

f(x)
∣∣
x=a

=

P∑
p=0

f (p)(a)

p!
(x− a)p +Rp(x), (8)

which, at the first order, gives:

f(x)
∣∣
x=a

= f(a) +
δf(a)

δx
(x− a) +R1(x)

They then use this expansion to get:

L(hi = 0) = L(hi)−
δL
δhi

(hi)hi +R1(hi = 0),

which they finally re-inject in their definition of |∆L(hi)| to get:

|∆L(hi)| =
∣∣∣∣L(hi)− δL

δhi
(hi)hi − L(hi)

∣∣∣∣ = ∣∣∣∣ δLδhi (hi)hi
∣∣∣∣ (9)

The remainder R1(hi)
∣∣
hi=0

was ignored because it mainly involved second order deriva-
tive while the widely-used ReLU activation function encourages a smaller second order term
(direct citation [86]).

Molchanov et al. [86] then provide a justification to the use of gradient while a network,
that has converged enough, should have zero or near-zero gradient. Indeed, they af-
firm that while E

(
δL
δhi

(hi)hi

)
= 0, the absolute value involves that E

(∣∣∣ δLδhi
(hi)hi

∣∣∣) =

σ
√
2/
√
π, with σ the standard deviation. Therefore, their definition of saliency actually

measures the variance of y = δL
δhi

(hi)hi: while y tends to zero, the expectation of |y| is propor-
tional to the variance of y, a value which is empirically more informative as a pruning criterion
(direct citation [86]).
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3.1.1.6 Pruning at Initialization

Finally, the last group of papers that rely on the gradient criterion belongs to the lit-
erature of pruning at initialization (which we will tackle in Chapter 4). Tanaka et
al. [98] list multiple definitions of saliency from different papers, including those we
already mentioned, and give this list: Skeletonization [94]− ∂L

∂w⊙w, SNIP [99]
∣∣ ∂L
∂w ⊙ w

∣∣,
GraSP [103] −

(
H ∂L

∂w ⊙ w
)

(even though the actual GraSP paper does not use the sec-
ond order derivative H and explicitly cite Molchanov et al. [86] as a direct influence),
“Taylor-FO” [97]

(
∂L
∂w ⊙ w

)2 (based on Molchanov et al. [86] too) and Optimal Brain
Damage [85] diag(H)w ⊙ w.

We already studied each of these saliencies and described the theoretical reasoning be-
hind each of them. We can now say that we identify mainly three seminal and paral-
lel demonstrations for using gradient in the evaluation of the importance of a weight:
Mozer and Smolensky [94] (a.k.a. “Skeletonization”), Le Cun et al. [85] (a.k.a. “Optimal
Brain Damage” or OBD) and Molchanov et al. [86].

3.1.1.7 Synthesis and Discussion

We just reviewed multiple papers, each providing their own way of estimating the
saliency of a network; this saliency always revolves around both a weight’s magnitude
and the first or second order derivative of the error with respect to the said weight. It
is possible now to synthesize all these theoretical demonstrations to explain what seem
to be the main arguments in favor to this saliency metric and what may be its pitfalls.

The starting point of all these discussions is that the weights that we want to remove
are those whose removal induce the least difference in the network’s performance (we
do no consider cases where pruning may improve performance):

s(wi) = |∆L(wi)| = |L(w \ wi)− L(w)| (10)

The problem is that measuring empirically such a saliency would require measuring
L(w\wi) for each wi, which is prohibitive; moreover, as weights are heavily dependent,
one would have to recompute the saliency of all weights after each removal of one
weight. This is why it is absolutely necessary to instead define a criterion that is able to
reliably predict a weight’s importance.

Two strategies to approximate this ∆L(wi) co-exist:

First Strategy: We introduce an importance factor α, which is virtually binary be-
tween 0 and 1, such that we instead consider L(α⊙w). Therefore, we want to approx-
imate s(wi) = |L(αi = 0)− L(αi = 1)|. This difference is then approximated using the
derivative:

L(αi = 0)− L(αi = 1) ≈ − ∂L
∂αi

Intuitively, the derivative ∂L/∂αi can be seen as the slight variation δL induced by a
slight variation δαi. Since the other, more commonplace, strategy does not introduce
any α, and since, after all, it is expected for αi and wi to have very analogous behaviors,
let’s see more in details what this gradient actually equates to. Let’s consider f = L and
g(α) = wiαi, we have:

∂L
∂αi

= (f ◦ g)′(αi) = g′(αi) · f ′(g(αi)) = wi · f ′(g(αi)),
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and since all α equal 1, we have g(1) = wi and:

wi · f ′(g(αi))
∣∣
αi=1

= wi
∂L
∂wi

We can notice that this definition gives exactly the definition that Tanaka et al. [98] gave
of Skeletonization [94]. Now that we have defined this saliency without the use of α, it
is easier to interpret.

This whole demonstration indicates that we implicitly did this approximation:

s(wi) = |L(w \ wi)− L(w)| ≈

∣∣∣∣∣wi
∂L
∂wi

∣∣∣∣
wi

∣∣∣∣∣ ,
which supposes that, at least partially, the slight variation δL induced by a slight vari-
ation δwi evaluated at wi is a good approximation of the whole variation ∆L induced
by the variation from wi to 0. In the case of a strictly linear model, the derivative at one
point gives the slope of the whole function, so we literally have L(wi) − L(wi = 0) =
wi · δL/δwi; networks that use ReLU activation functions indeed behave as a piecewise
linear function, which means that we indeed have L(wi + δwi)−L(wi) = δwi · ∂L/∂wi.
However, as soon as δwi gets too big, L cannot be considered linear anymore and we
cannot know if the derivative at wi can be a good approximation at all.

Therefore, we can tell that:

s(wi) =

∣∣∣∣∣wi
∂L
∂wi

∣∣∣∣
wi

∣∣∣∣∣ , as long as wi < ϵ, (11)

which means that this criterion is not expected to give relevant results when the prun-
ing rate gets too high and the magnitude of weights gets too large. Reciprocally, as long
as the pruning rate stays low, since this saliency tends to favor pruning weights with
low magnitude first, it happens by luck that this definition stays true.

Another aspect that mitigates the relevance of this reasoning is that it implicitly sup-
poses that all weights are independent; as we will see when detailing the second strat-
egy, this dependence is something to discuss and that can be neglected or not.

Second Strategy: This strategy involves introducing a Taylor expansion, detailed in
Equation 8, to make some derivative appear, that could be computed using gradient
descent. In order to make all kinds of dependencies between weights appear in this
expansion, we will consider L depending on the whole weight vector w instead. We do
the Taylor expansion at the vicinity of a certain point a, and we only expand up to the
second-order derivative. Also, we do not approximate L(w) by L(a) but the reverse:

L(a)
∣∣
w=a

= L(w) +
∂L
∂w

(a−w) +
1

2
(a−w)T

∂2L
∂w2

(a−w) +R2(w = a) (12)

= L(w) +
∑
i

∂L
∂wi

(ai − wi) +
1

2

∑
i

∑
j

∂2L
∂wi∂wj

(ai − wi)(aj − wj) +R2(w = a)

When considering a = w + δw, we find back Equations 3 and 5. However, whatever
the point a we choose, we have the same problem: this expansion only works in the
vicinity of that point, which is exactly the same problem as Strategy 1.
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Therefore, let’s pose this condition: we consider a case where we want to remove
some weights wk with k ∈ K a list of indices, and these weights have a magnitude
close enough to 0 so that putting them to zero can be seen as a slight change, so that
wwk=0, k∈K = w + δw, since wk < ϵ. Thanks to this condition, we can inject this devel-
opment back into Equation 10, so that the L(w) terms cancel each other—which is only
possible because we consider w to be in the vicinity of wwk=0, k∈K . We get, for any k in
K:

∀k ∈ K, s(wk) =

∣∣∣∣∣− ∂L
∂wk

wk +
1

2

∑
i∈K

∂2L
∂wk∂wi

wkwi +R2(wi = 0, i ∈ K)

∣∣∣∣∣
We can see that, in the second-order term, only weights that are to be modified appear,
which means that if the modification only involves one weight, they are virtually inde-
pendent. If several weights are to be pruned at the same time, all possible combinations
of indices K are to be measured, which can be expensive.

However, one thing which may allow simplifying the equation is that, as we already
mentioned, ReLU networks are locally linear, which means that for a small enough δw,
second-order terms (and further) can be neglected, which gives:

s(wi) =

∣∣∣∣ ∂L∂wi
wi

∣∣∣∣ ,
that is exactly the same as Equation 11, with the same proximity condition.

Conclusion: Our two strategies, that take slightly different paths, both converge to-
ward the same metric with the same constraints for similar reasons. Indeed, approxi-
mating any ∆Lwith a δL requires proximity conditions for three reasons: 1) obviously,
it is easier to make this approximation if ∆L is actually a δL, 2) for small enough mod-
ifications, the network is linear (in the case of ReLU activations) and approximation
through gradient becomes exact and 3) for modifications that are too large, not only
this approximation is not exact anymore, but all previous guarantees become obsolete
and we cannot possibly ignore second-order (or even further) derivatives; furthermore,
Taylor expansion, by definition, is only valid in the vicinity of a point, so using it in
another context can only be dubious. All of this means that such a criterion only works
for pruning rates that are small enough to only target weights that are close to zero; be-
yond a certain threshold (that is undetermined for now), its fundamental assumptions
become false.

Another big question to answer is: what happens when the network is at the optimum,
where the gradient should be zero? Of course, it would be absurd for a zero gradient
of all weights to signify that all weights can be removed without any change in the
loss. Here two cases are possible: either the optimum is only a point and the zero
gradient is just a limit, while any non-zero change δw introduces a non-zero change
δL; or the optimum is a whole plateau that, if it includes values up to zero for some
of the weights, means that such weights can effectively be removed without moving
from the optimum. However, in this last case, the zero gradient would put the saliency
of all weights to zero, without distinction between those that are close enough for the
proximity constraint to hold true or those that are too large to expect that putting them
to zero stays in that optimum plateau. Once again, the proximity constraint is necessary
for the saliency to make sense.

However, in practice it is very rare to attain and stabilize over the absolute optimum
of the function, or even any local minimum, in such a way that the gradient stays
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zero—partly because of momentum. Nonetheless, even if the optimum of the error is
reached, two aspects prevent the gradient to be perfectly zero: 1) weight-decay forces
weights, whose non-zero value is necessary, to have a non-zero gradient to compen-
sate its penalty and 2) since the gradient is, most often, evaluated in a stochastic way,
this means that it is actually the aggregation of the gradient over an ensemble of mini-
batches, for each of which the corresponding L is likely to be slightly different, so that
the overall optimum of the problem may not exactly coincide with that of the current
batch, which therefore gives a non-zero gradient.

After this extensive study of the literature surrounding the saliency criterion, we will
review the much shorter literature on the weight magnitude criterion.

3.1.2 Weight Magnitude

The principle of the weight magnitude criterion is extremely simple: pruning weights
whose value |wi| is the smallest. This criterion is as ancient as the saliency one but
has received way less theoretical interest so that, instead of attempts to provide formal
demonstrations, we instead have to hunt evasive clues in various papers and formulate
some hypotheses.

The earliest papers to be analogous to magnitude pruning are actually those that re-
volve around the idea of weight decay to either sparsify or, at least, minimize the “en-
ergy” of layers and activations [84]. One of the core ideas is that unimportant weights
have an error gradient that is always small, so that this gradient is negligible compared
to that of weight decay, which therefore drives unnecessary weights towards zero [104].
This is why these methods mostly propose new penalties to enforce sparsity [84], [105]–
[109].

The more contemporary approach of simply pruning weights of least magnitude and
fine-tuning the network afterward, that was introduced back by Han et al. [26] in 2015,
could be found in some rare papers of this early era of pruning, such as that of Janowsky
et al. [110] in 1989. However, none of these papers seem to bring theoretical justification
to back up the magnitude criterion.

Nonetheless, an interesting work from Segee and Carter [111] does a comparison be-
tween saliency and magnitude, as soon as 1991, and find out that both are very corre-
lated, and that this correlation is very stable before and after pruning. This is consistent
with some of our observation in the previous section, where we found out that the
saliency criterion made mostly sense for weights that are already small.

Finally, mainly three arguments come to mind to justify magnitude pruning, and their
simplicity is surely a reason why many of these papers did not bother to justify their
method:

• As already mentioned, unimportant weights have a small gradient that is negli-
gible compared to weight decay. Therefore, unimportant weights become very
small, but that does not mean that all small weights are unimportant; maybe the
saliency metric could allow discriminating appart the false positives of this mag-
nitude criterion.

• More simply, providing that weights and activations all contribute the same way—
which is surely the “isotropic approximation” mentioned by Hassibi et al. [96],
that is made acceptable partly thanks to the use of batch-normalization—, the L2
norm (or “energy”, as mentioned by Chauvin et al. [84]) of output activations and
weights are directly correlated, and therefore, pruning the smallest weights first
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induces the least difference in L2 norm in both the weights and their output. This
notion of square difference before and after pruning can be found in some papers,
such as that of He et al. [112].

• Finally, the simplest reason is that the smallest weights are those for which being
put to zero can be seen as a small, possibly non-significant modification; in this
respect, this recalls the proximity constraint of saliency.

This magnitude criterion is now very widespread and almost considered as the de-
fault criterion. Blalock et al. [27] noted that magnitude-based methods tend to be, on
average, more accurate than saliency-based ones, with some exceptions, notably for
low compression rates—while performing worse wor high ones, which is consistent
with our speculation that saliency could tell apart true and false positives among small
weights.

3.1.3 Other Criteria

Even though the saliency and magnitude criteria are the two most widespread ones,
with the latter being considered a standard, many criteria have been tested in the past
decades. We will briefly review a non-exhaustive list of some notable examples here.

Pre-2015 papers:

• Sietsma and Dow [113], [114] remove “units” that either produce a constant out-
put or whose output is either redundant with another unit or not correlated enough
with the problem. Chung and Lee [115] have a rather similar approach, that in-
volves manually defining a set of rules to tell how a weight can be of least impor-
tance.

• Many papers use genetic algorithm to choose which weights to remove [62], [116]–
[118].

• Karnin [95] propose a variant around the idea of Mozer and Smolensky [94] by
not considering only the derivative of the final trained network, but instead the
accumulation of this saliency over all epochs, in order to have a more relevant
estimate of the actual landscape of L and of the individual impact of each param-
eter.

Post-2015 papers:

• Average percentage of zeros in activations, by Hu et al. [119]; such a criterion
is arguably made obsolete by the use of batch-normalization. Indeed, batch-
normalization tends to drastically reduce the probability of a neuron to repeat-
edly have activations that are entirely empty; and concerning the proportion of
zeroes in non-empty activations, it can be entirely predicted by the values of the
parameters of the post-normalization affine function in batch-normalization lay-
ers.

• Multiple papers revolve around the idea of training separate pruning agents [120],
for example using reinforcement learning [121] or attention statistics [122], [123].

• Many methods have a way to identify weights to prune that is inseparable from
the method to remove them; for this reason we will review them in Chapter 4
instead.
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• Some methods also use criteria that are pretty close to some used in the early days
of pruning. For example, Anwar et al. use evolutionary methods [124] or even
purely random masks [125]. Srinivas and Babu [126] intend to remove redundant
neurons, which is reminiscent of Sietsma and Dow.

• Luo et al. [127] removes filters one by one, measuring each time which is the filter
(among the remaining ones) that induces the least difference in the output of the
following layer.

Post-2015, most of works centered around pruning criteria focus instead on how to
generalize criteria to groups of weights for structured pruning—some of the aforemen-
tioned criteria are already intended to be applied to neurons/filters instead of weights.
This is the topic we will tackle more specifically in Section 3.2.1.

3.2 Generalizing the Use of Criteria

The previous section discussed how to tell the importance of one weight. However,
pruning almost systematically involves pruning multiple weights at once. Moreover,
we need to know when to measure these criteria, relatively to training. Therefore, in
this section, we will review the other three main aspects of pruning criteria: how to
generalize them to structured pruning, how to distribute the pruning rate across layers
and the relevance of pruning criteria throughout training.

3.2.1 Extending Criteria to Structures

As we will see in Chapter 5, many methods focus on pruning groups of weights, such
as filters/neurons. In section 3.1.3 we already mentioned some criteria specifically de-
signed to identify filters to prune, but they are rather marginal in the literature. Actu-
ally, the two most notable methods to design criteria for filters are either regrouping
the criteria of the weights to group under a certain norm or to use a gate, such as the
multiplicative weight in the affine part of batch-normalization layers, to characterize
the importance of the whole channel. We will review the dedicated literature of both
approaches in the following sections.

3.2.1.1 Norm-Based Approaches

Li et al. [83], one of the first influential works on structured pruning, already pruned
filters, within each layer, on the basis of their L1 norm (i.e. the sum of their absolute
value). Since then, many papers have evaluated the importance of a filter on the basis
of the norm of the magnitude of its weights, using either the L1 norm [83], [128] or the
L2 norm [129]–[133] (often through the use of weight-decay-like regularization). One
advantage of regularization applied to structured pruning is that it allows regrouping
weights into groups and then penalizing the norm of these groups, which has not the
same behavior than penalizing all weights separately. Structured pruning through reg-
ularization of groups is an idea to be found as soon as 2016 in works such as that of
Wen et al. [130].

Ye et al. [134] raise doubts about the relevance of norms and regularizaion to prune
filters: it has been an established practice to use tractable norm to regularize the parameters
in optimizing a model and pick the important ones by comparing their norms after training.
However, this assumption is not unconditional. By using Lasso or ridge regression to select
important predictors in linear models, one always has to first normalize each predictor variable.
Otherwise, the result might not be explanatory. [. . . ] Such normalization condition for the right
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use of regularization is often unsatisfied for nonconvex learning (direct citation). Indeed,
Ye et al. focus on the case of sparsity through regularization, and give, as examples,
cases where the sparsifying effect of regularization is nullified by simply scaling the
values of weights or using batch-normalization. However, the problem of norm-based
methods goes beyond that.

Indeed, not only do filters count varying numbers of parameters, depending on the
layer, but the average magnitude of parameters in a weight tends to depend on the
dimensions of their layer, as pointed out by Tanaka et al. [98]. This means that it is very
difficult to compare filters across layers on the basis of their norm. This difficulty to
find a relevant metric to tell the importance of a filter solely based on the value of its
weights is what led to the gate-based approaches.

3.2.1.2 Gate-Based Approaches

Gate-based methods [112], [134]–[138], instead of relying on a norm, approximate the
importance of a filter through the magnitude of a multiplicative weight applied to the
whole output of the involved filter. Either this gate is a distinct layer or directly the
multiplicative weight in the affine part of batch-normalization layers, as done by Liu et
al. [87]. Interestingly, Kruschke et al. [139] introduce “gains” as soon as 1988, to charac-
terize the importance of a whole neuron, which is very similar.

The advantage of gates is that it negates multiple problems:

• Whatever their actual size, every filter is characterized by only one gate weight.

• Especially in the case of batch-normalization weights, the distribution of data
right before this gate is supposedly following a centered-reduced Gaussian distri-
bution, so that the average magnitude of weights in the filters is not expected to
impact the range of the gate values.

• Such gates are very easy to insert anywhere, even at the end of residual blocks,
which, as we will see in Chapter 5, can be used to give the importance of the same
channel in multiple branches at once [87].

However, even though this eliminates many problems that introduced imbalance be-
tween layers, we still have no guarantee that they are perfectly comparable, especially
since the conservation law of Tanaka et al. [98] remains. Some preliminary experiments
of ours showed us that it was far easier to get a rather balanced global pruning when
using gates than when using any type of norm. To conclude, let’s mention that Kang et
al. [138] mention that only considering the multiplicative weight in batch-normalization
layers and not their bias too is problematic, while they include in their own method a
metric that consider both; indeed, if we do the link with the percentage of zeros in
activations, as we mentioned previously, both additive and multiplicative coefficients
are necessary to predict the actual distribution of values in activations after the ReLU
function.

3.2.2 Distribution of Sparsity Across Layers

We already briefly mentioned “local” or “global” pruning. This is a pretty important
notion on which some discussion can be made. Very simply, “local” pruning denotes
when each layer of a network is pruned either independently, or at least with its own
pruning rate, while “global” pruning refers to the case where all layers are pruned
using the same criterion, with a global pruning rate. A simple example to make this
distinction more obvious: it is possible to prune 50% of the smallest weights of each
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layer, which is local pruning; however, setting the same threshold for all weights in a
network, so that 50% of all weights are removed is global pruning.

Obviously, there are some cases that are somewhat in-between these two cases. For
example, many structured pruning methods struggle to find criteria that are balanced
enough to apply them globally; however, they are perfectly conscious that setting the
same pruning rate everywhere is not optimal. Therefore, some papers manually set a
different pruning rate for each layer [83], which is technically speaking local pruning,
even though it is not uniform. It is also possible to use a distinct metric to give the
pruning rate of each layer, without it being global or manually set [140].

Another interesting nuance is that some layers can be pruned globally and others lo-
cally for a same pruning method. One relevant example, that we will show more deeply
in Chapter 5, is the case where, to avoid introducing some discrepancies in the in-
put/output dimensions of layers, the last layer of each residual block in a same stage
(as well as the shortcut layer in the residual branch of the first block) are pruned exactly
the same way (which is an even stronger constraint that simply uniform pruning) while
other layers can be pruned globally [141]–[144].

One last aspect to tackle is the relevance of uniform pruning, compared to non-uniform
local or global pruning. Indeed, uniform pruning or manually-set pruning rates, es-
pecially in the case of structured pruning, makes the resulting architecture predictable
(if we do not take into account the non-trivial indexations that can be added by prun-
ing, as we will see in Chapters 5 and 6). This means that such an architecture can be
trained from scratch, without having to resort to pruning. The problem is that the abil-
ity of pruning to perform better than regular smaller baseline models is still debated.
Liu et al. [57] affirm that baselines perform better, and that the interest of pruning is
to produce non-trivial, non-predictable and more efficient architectures—which makes
it fundamentally a NAS method. However, other works point to the contrary. We can
think, notably, of the work of Renda et al. [92] which compares regular magnitude prun-
ing, lottery ticket [91] and their own way of re-training pruned networks—which we
will describe more into details in Chapter 4. To sum up what is interesting for us right
here: their experiment show that, with the right retraining, pruning performs better
than training from scratch a masked network (or, therefore, a smaller baseline), which
is the opposite conclusion than that of Liu et al. [57].

Concerning the ability of global pruning to produce efficient architectures, this time it is
our own works [2], [3], presented in Chapter 6, that raise questions. Indeed, as we will
see, because of some behaviour of global structured pruning on gates, the pruned net-
works yield a better parameters-to-accuracy ratio, but with networks that are actually
denser in term of operations. The problem is that operations are more correlated with
latency and energy consumption than the raw number of parameters, which means
that, in a technical point of view, these networks are actually less efficient than simply
narrower baseline networks.

3.2.3 Criteria Throughout Training

The final aspect to review concerning pruning criteria is when to apply them, relatively
to training. Indeed, most of the demonstrations and arguments we mentioned suppose
that the network has converged. However, as we will see in Chapter 4, many methods
prune the network during training or, sometimes, even before training [98], [99]. The
problem is that, the further the network is from convergence when the criterion is ap-
plied, the less relevant it is likely to be; in other words: weights pruned early during
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training are unlikely the right ones. We will see in Chapter 4 that many papers propose
methods to cope with this problem, while pruning during or even before training.

Obviously, the core problem of all this question is that pruning criteria consider the loss
L in the locality of w, while training involves crawling more largely the landscape of
L in order to find its global optimum. Since pruning equates putting some weights to
zero, then it involves displacing the point w, so that L is not expected to behave the
same in this new proximity, and the proximity of the post-retraining w is expected to
be also different.

We need to explore this problem more deeply, and this is what we will do in Section 3.3.

3.3 The Effect of Pruning on the Error Function

Our previous discussions concerning magnitude, gradient and training highlights the
need to investigate more carefully the actual impact of pruning on the loss L. Prun-
ing can be seen as setting weights to zero, and this is no magical transformation as it
basically sums up to displacing the point w in the definition space of L. As obvious
as it may seem, it is easy to forget this principle if one views pruning as “removing” a
parameter.

This displacement of w in the landscape of L is enough to explain many behaviors of
pruning, as well as what may be the pitfalls of current pruning criteria or even methods.
Let’s consider one toy example in Figure 16: here we consider a very simple network
counting only two weights wx and wy, so that L reaches an optimum at wx = a and
wy = b. In the case we want to prune wx, let’s study the behavior of wy: for wx = a,
wy = b is indeed at the minimum but for wx = 0 it is at a maximum, which means that,
from the point of view of the remaining wy, the optimum got displaced.

This very simple example shows something that has very strong implications on prun-
ing: the interdependence of parameters weights in a network means that the projected
Lwq=0 is not expected to behave in any way like the original function L. Therefore, the
optimum of Lwq=0 is not expected to coincide with that of L, as can be seen in Figure 16;
moreover, the value of this new optimum is unlikely the same and, by definition, is su-
perior or equal: we have min(Lwq=0) ≥ min(L). Also, because of how wildly different
L can be in different points, there is no reason to think that there is any real correla-
tion between the value or place of this minimum and any property of any weight in
the point w obtained after convergence on the original L: it seems unlikely to provide
information on the whole function L just from a single point w. The only thing that mit-
igates this problem is that, providing that L is at least locally smooth (which is sound
in the case of piecewise linear networks), then a very small displacement of w should
bring the least difference in behavior between L at w and at w+δw. Therefore, pruning
the smallest weights brings the smallest possible displacement through pruning to w,
so that w \ wq is expected to be still close to optimum in Lwq=0. This is consistent with
the explanations we brought in Section 3.1.2.

This perspective also highlights one major flaw of how pruning and fine-tuning are
usually depicted: indeed, if the displacement is not small enough to stay in the vicin-
ity of the previous optimum, then fine-tuning is not here just to slightly re-adjust the
weights but to find the whole new optimum of the function, that is not guaranteed to
coincide with the previous one at all. This also means that the difference in loss between
before and after pruning, once the displacement is too large to stay in a given proximity,
has no guarantee to coincide with that between before pruning and after fine-tuning. To
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Figure 16: Illustrative example of how pruning modifies the behavior of non-pruned
weights: at wx = a, wy is at a minimum, but at a maximum when wy = 0. Therefore,
pruning wx completely changes the behavior of wy, hence the need for retraining or
fine-tuning.



Chapter 3. Pruning Criteria 76

sum up: rigorously speaking, the goal should not be to find the best L(wwq=0), but the
best min(Lwq=0), even if the temporary degradation of performance is worse. Indeed,
it is possible to imagine counter-intuitive cases where, for example, we have wx ≤ wy

but min(Lwx=0) ≥ min(Lwy=0), in which case we should rather prune wy than wx, even
though the magnitude criterion tells the contrary.

The last aspect that needs investigation is the reasons for which pruning would pos-
sibly yield better or worse performance than retraining the same sparse architecture
from scratch. Indeed, presenting the problem as we did highlights that, whatever the
value of w, the overall landscape of L stays fundamentally the same. Therefore, un-
der the hypothesis of a perfect training method that reaches inevitably the optimum,
whether it is from some random initialization or from a pruned model wwq=0, the best
possible performance is exactly the same in both cases. Once again: there is no magical
transformation of L through pruning. Therefore, it appears that the benefit of pruning,
for the same sparse architecture, can only be of providing an initialization that is less
susceptible of getting stuck in a irrelevant local minima.

To conclude, we can now formalize what should be the two real missions of pruning:

• Let’s consider all possible subsets ω of w, of a given cardinal corresponding to
the intended pruning rate; the goal of pruning is:

min
ω

(min(Lω=0)) , (13)

which means that we want to set to zero all weights in the subset ω that allows
for the best possible existing optimum in the corresponding projection of L.

• The other goal of pruning is to produce a post-pruning initialization w \ω that is
able to reach the optimum through the chosen optimization methods.

3.4 Recapitulation

In this chapter, we reviewed and discussed the main aspects of pruning criteria: how to
define the importance of a weight or of a group of weights, how to define the pruning
rate of each layer and when to measure these criteria relatively to training.

Concerning criteria themselves, we mainly reviewed the gradient-based saliency met-
ric and weight magnitude, and gave our own hindsight about them: gradient-based
strategies suffer from a severe oversight concerning the theoretical necessity to con-
sider only weights that are very close to zero, which makes them redundant with the
weight magnitude criterion.

When reviewing the other aspects, we saw that structured pruning criteria still struggle
with both the unbalance between layers for a same criteria and the necessity to cope
with constraints due to architectures, as well as we saw that the fact that most pruning
method do not wait for full convergence to apply these criteria harms the theoretical
justifications backing most pruning criteria.

Finally, we proposed a new simple way to consider the impact of pruning, which high-
lighted what is the main problem of current criteria: extrapolating from a point the
behavior of the whole error function, while pruning is itself the combination of a dis-
placement and a projection. This allowed us to figure out what should be—at least
theoretically—the two real goals of pruning: finding the projection that allows for the
best possible minimum and providing a relevant initialization to reach it through opti-
mization methods.
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Now that we have seen how to identify the weights to prune in a neural network, we
will see how to remove them in Chapter 4.
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This chapter will be dedicated to removal methods, i.e. everything that encompasses
how and when to remove weights. We call it “removal method” to avoid the ambigu-
ity when “pruning method” refers to the whole method proposed by a paper, which
includes the choice of a criterion and of a structure.

Removing weights supposes that the criterion (Chapter 3) and the structure (Chapters 5
and 6) have already been chosen and properly defined. Therefore, except when a given
pruning method presupposes a specific criterion or structure, we will notate by default
the subset of the weights to remove by the generic notation W∗.

During this chapter, we will first review some methods in the literature, present what
stakes motivated them and, finally, show one of our contributions: Selective Weight
Decay (SWD) [1]. This will be the occasion to discuss each family of method as well as
our own result and to put them in perspective with the notion we develop in the other
chapters of this manuscript. We will also expose the shortcomings of some methods
and show the link between different papers in the literature to deconstruct some non-
trivial topics such as the lottery ticket hypothesis or the ability of pruning to produce
relevant architectures.

4.1 Basic Framework and Considerations

In 2015, the work of Han et al. [26] put pruning back under the spotlight, after the
general drought in the domain of neural networks in the 2000s and once its rebirth in
the early 2010s made it obvious that reducing their cost would be a major stake of the
following years. Its very simple method can still be considered the basics of pruning in
general, so that many methods can actually be defined by how they stray away from
this method. Therefore, presenting it in details allows highlighting many stakes that
motivated the birth of many methods afterward. This is why we will detail this method
and use it to present some general considerations on removal methods.

4.1.1 Train, Prune and Fine-Tune: the Basic Framework

The method of Han et al. [26] involves pruning isolated weights (non-structured prun-
ing) on the basis of their magnitude (weights magnitude criterion). The network N is
first trained normally, then pruned by setting weights of lowest magnitude definitely
to zero; the network is then fine-tuned. Actually, these last two steps can be iterated
while increasing the pruning rate each time.

Let t be a pruning rate and n the number of aforementioned iterations. The method can
be coarsely summed up as Algorithm 2:

Algorithm 2: Method of Han et al. [26]
Data: N , W, t, n
Train N ;
for i← 0 to n do

Increase t;
Define W∗ according to t;
Prune W∗ from N ;
Fine-tune N ;
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This train-prune-retrain framework is the basis of many pruning methods or papers in
the field. However, it already raises some questions:

• How many iterations are required and how should the pruning rate increase be-
tween each, precisely?

• Is abruptly putting weights to zero, without any possibility to recover, the best
way for the network to learn good sparse solutions?

• Is it really the best choice, to remove weights only once the network has been fully
trained without any constraint of sparsity?

In the original paper, Han et al. [26] applied five iterations, without telling how to in-
crease the pruning rate between each. We will detail the influence of iterations and how
the literature tackled these questions in the following sections.

4.1.2 The Importance of Iterations

Multiple works [26], [87] have acknowledged the importance of iterations and the gain
in performance it allowed in opposition to purely one-shot pruning. Tanaka et al. [98]
in particular have proposed an explanation of the ability of iterations to prevent layer
collapse, that is the propensity of pruning methods to prune entire layers, which tends
to destroy (or at least to harm severely) the network.

Tanaka et al. [98] propose two theorems: the neuron-wise conservation of synaptic saliency
and the network-wise conservation of synaptic saliency. To sum it up roughly: with the
saliency defined as the product between a weight value and that of the loss function
gradient depending on said weight, the sum of the saliency of all weights in a layer is
constant across layers (more detailed explanations are to be found in the original pub-
lication). This conservation, said to have been noted in other papers or literature [145]–
[150], means that the saliency of weights tends to decrease for larger layers, which im-
plies that pruning on the basis of the magnitude of this saliency tends to prune larger
layers—therefore pruning iteratively prevents this phenomenon, since the magnitude
of saliency in pruned layers therefore increases between iterations.

Tanaka et al. [98] then expands this observation to magnitude pruning, observing that
there is a correlation between the evolution of the magnitude of weights during train-
ing and said saliency, which means that said magnitude tends to observe the same type
of conservation. Therefore, iterating pruning and re-training (or fine-tuning) allows
for larger layers, whose weights are smaller and then more pruned, to re-increase the
magnitude of their remaining weights after pruning, which makes them less prone to
be pruned. Tanaka et al. [98] used methods centered around the Lottery Ticket Hypothe-
sis [91], [151] to illustrate this principle, but nothing prevents it from being generalized
to the type of iterations to be found in Han et al. [26].

4.1.3 On the Abruptness of Manual Pruning

Another interest of dividing pruning into multiple iterations is to make each pruning
step smaller, and ultimately to make pruning as smooth as possible. This effort to make
pruning smooth underlies a large portion of the literature. Even though the reason
why pruning abruptly and manually is a problem seems intuitive, it deserves being
more formally presented.

Indeed, in which way does pruning exactly disturb training? Training a network can be
roughly summed up as finding the best W to minimizeL(NW(X),Y) (cf. Section 2.1.5).
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It is possible to simplify this as finding the global minimum of the LN (W) function.
However, we showed in Chapter 3 that pruning acts as a displacement of W and a pro-
jection of L. The behavior of L in the vicinity of the point represented by the pruned W,
from the point of view of the remaining parameters, is likely not to be any similar to the
one they had before pruning. Therefore, while training tries to crawl smoothly the land-
scape of L to find its optimum, pruning throws it seemingly randomly somewhere else,
where the landscape is completely different. Moreover, the reduced dimensionality of
the pruned W may make each post-pruning training steps more difficult—although it
may be also possible to view it, on the other hand, as a type of regularization [85], [93],
[94], [152].

To sum up: each time the network is pruned, the remaining parameters have to solve a
completely different problem. Formulating all this problem as pruning being a redefi-
nition makes easier to intuit that the solution is to redefine pruning. Indeed, the overall
solution that underlies the literature on pruning methods is to make pruning a part of
the problem to solve, to redefine what is an optimization problem under the constraint
of sparsity. Mainly three ways of achieving this can be found in the literature:

• One solution is to divide pruning into as many infinitesimal steps as possible,
which implicitly assumes that, if L is smooth enough, a small modification of W
does not change too much the behavior of the remaining parameters—because
we stay in the vicinity of the previous point. This can be achieved through itera-
tions [26] or even through a progressive pruning throughout training [90], [153];
another method is to relax pruning as a penalty on weights magnitude, so that
this penalty either converges toward the hard constraint of pruning while grow-
ing in importance, or at least helps unimportant weights to be even less impor-
tant, which makes them less harmful to prune [1], [112], [128], [130], [132], [154]–
[156]. Other methods, without mentioning explicitly this topic, also split pruning
into smaller, less definitive steps by allowing some types of regrows [88], [140],
[157]–[159].

• Another solution is to make pruning derivable, in order to make it a part of the
problem to optimize. However, pruning is often formalized as a constraint on the
L0 norm of W, which is not differentiable [89]. This problem is usually either
relaxed into a smoother, differentiable penalty [1], [154] or circumvented using
the straight-through estimator [69], similarly to Binary-Connect [68], in order to
learn progressively a mask using gradient descent [89], [160]–[163].

• Finally, one last solution is, on the contrary, to completely split pruning and train-
ing into two completely different problems by first finding a relevant architecture
before training it, whether it is done using Lottery Ticket [91], [151], [164]–[167],
pruning at initialization [98], [99], [168], [169] or simply by turning fine-tuning
into a complete, proper retraining, using the previous trained weights as the new
initialization [92].

Presenting these three types of solutions already allowed to present what are the main
families of methods to be found in the literature. We will review them individually in
the following section before presenting our own work: Selective Weight Decay (SWD) [1].
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4.2 Removal Methods in the Literature

4.2.1 Progressive Pruning and Sparse Training

The most simple and straightforward way of making the basic method smoother is to
increase the number of iterations. This logic can be pushed further until the whole
training is made of infinitesimal steps. This principle is applied in the “gradual prun-
ing” method [90], that also allows for masked weight to regrow by masking weights of
smallest magnitude while letting them being updated during gradient descent, so that
masked weights can overcome the magnitude threshold; the masking rate grows dur-
ing training. This method proved to yield competitive results [153], even when facing
more sophisticated methods [89], [156].

Letting the possibility to regrow weights is a principle to be found in other methods,
that often share the property of performing pruning all throughout pruning. This is
understandable, as pruning criteria meant to work well at the end of training are not
guaranteed to be relevant before—letting weights regrow allows to compensate some
premature or abusive pruning. One way, called “soft pruning” [157] simply consists in
setting periodically weights to prune to zero, but without preventing them from being
updated afterward and without masking them.

Another family of method, based on this regrowing principle, is called “sparse train-
ing” [88]. It consists in training the network whose a portion of weights is masked from
the start at its definitive pruning rate; the initial pruning mask is random. Periodically,
a portion of non-pruned weights is pruned—for example, the smallest ones— and, on
the other hand, an equivalent portion of pruned weights is brought back. Either these
revived weights are brought back randomly [88] or using a given criterion (usually
based on momentum or gradient) [140], [159]; this revival rate can be the same for each
layer or global [158].

Even though these methods yield satisfying improvements over the original method,
the main theoretical problem is that they still abruptly put weights to zero, even though
they try putting the fewest possible weights to zero at once every time. While such a
method effectively mitigates the problem, it does not make the pruning-induced dis-
placements continuous either.

4.2.2 Pruning at Initialization

Pruning at initialization, in theory, has multiple advantages: 1) it allows to separate
pruning and training, 2) it makes training less expensive, as the networks to train are
smaller, 3) it does not require any particular process after training, while pruning dur-
ing training can bring additional complexity and the need for fine-tuning, which makes
training longer. However, as we will see, this type of pruning encounters many practi-
cal and theoretical problems. Such types of pruning can be divided into two families:
pruning at initialization per se and Lottery Ticket.

Methods such as SNIP [99], GraSP [169] or SynFlow [98] all have the same goal: to find
a criterion that functions well on a network that is not trained at all. Since weights
are generated randomly, it would not make any sense to prune them on the basis of
their magnitude before training. This is why these methods usually revolve around
criteria based on the loss gradient, or its “saliency”. Unfortunately, Frankle et al. [170]
demonstrated that these three methods each perform as well if the mask of each of their
layer is shuffled. This means that, at most, these criteria only find relevant pruning rates
for each layer, while the masks themselves could as well be perfectly random. Thus,
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the performance of these methods come from two things: 1) their ability to avoid layer
collapse and produce smaller networks that can properly be trained, and 2) the fact
that training from scratch or retraining a pruned network seems to bring improvements
compared to mere fine-tuning [92].

The other family of methods we mentioned revolves around the “Lottery Ticket Hy-
pothesis” [91], formulated by Frankle et al. as: A randomly-initialized, dense neural net-
work contains a subnetwork that is initialized such that—–when trained in isolation—–it can
match the test accuracy of the original network after training for at most the same number of
iterations (direct citation from the original publication [91]). This hypothesis was drawn
from a certain observation: when training a network, pruning it, restoring the network
to its original initialization, applying it the post-training pruning mask and retraining
it, it appears that, even at significant pruning rates, the resulting networks can reach
an accuracy similar to that of the full, non-sparse network. This observation seemed to
work well at least on CIFAR-10 and MNIST; on ImageNet, it required not rewinding at
the initialization, but at a few epochs after it [151].

This Lottery Ticket hypothesis caused a craze in the literature: it birthed a large liter-
ature concerning it directly and more or less deeply inspired an impressive number of
papers—some papers even mention the Lottery Ticket in their title while being barely
related to it. Papers of the first type studied multiple properties of Lottery Ticket, such
as:

• What makes Lottery Ticket masks relevant, under which conditions do they work
and how tightly linked to a given initialization they are [164], [171].

• When exactly should the masks be generated or to which point should the net-
work be rewinded [151], [172].

• The supermasks, i.e. the ability of pruned non-trained networks to have above
random guess performance [164], [166].

• The applicability of Lottery Ticket masks to transfer learning and their ability to
keep their performance on datasets that are different from the one used to gener-
ate it [165], [173]–[175].

• Theoretically justifying the possibility of Lottery Ticket, using the theory of dy-
namical systems [167].

However, some doubts remain about how hasty of an extrapolation the Lottery Ticket
Hypothesis may be to its experiments, whose results are nonetheless interesting. The
sometime impressive performance of methods that prune at initialization already hinted
that getting good performance from networks that are sparse from the start is not a
miracle. Moreover, most of the experiments conducted on Lottery Ticket only involve
simpler datasets, such as CIFAR-10; making it work on ImageNet requires to rewind
to a network that has already started to be trained, and is thus arguably closer to its
final state before rewinding—which would help the mask to stay relevant. Therefore, if
the possibility of obtaining good performance from a sub-network seems very plausi-
ble, attributing this good performance to some special property of a given initialization
and sub-network requires more evidence—especially since multiple works, cited previ-
ously, hint that the relationship between an initialization, a mask and the task to solve
is rather loose.

Finally, the work of Renda et al. [92] compares three methods: 1) simple magnitude
pruning, 2) the lottery ticket experiment and 3) Learning Rate Rewinding (alias LR
Rewinding or LRR) [92] that gets rid of the rewinding of the Lottery Ticket and only
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rewinds the learning rate—thus, it consists in replacing fine-tuning with a warm restart.
In these experiments, lottery ticket performed better than magnitude pruning but LRR
performed better than lottery ticket. This result would hint that, actually, the rewind-
ing principle of lottery ticket actually harms the performance and that the gains ob-
served when applying it only came from the post-pruning re-training under an in-
creased learning rate. If this hypothesis confirms to be true in the future, it would
potentially mean that the hypothetical special properties of the lottery ticket masks
were actually a red herring from the start. However, whatever what LRR may mean
for the lottery ticket hypothesis, its performance allows it to be a relevant alternative to
fine-tuning, which makes it a very useful addition to the literature of pruning methods.

One last aspect to tackle, concerning this domain, is that pruning at initialization (or
even LRR) revolves around the idea that pruning is able to produce relevant architec-
tures that perform better than simply smaller architectures. The work of Liu et al. [57]
expresses doubts about the ability of pruning either to work better than pruned net-
works trained from scratch or than smaller architectures. Notably, it seems that pro-
ducing, through pruning, the architecture of a smaller network does not work bet-
ter than training said network from scratch—which reduces drastically the interest of
structured pruning where all layers are pruned at the same rate. Therefore, the main in-
terest of, especially, structured pruning is to produce better architectures. Even though
the performance of LRR allows to put into perspective the aforementioned statement,
that pruned networks do not perform better than baselines, our own work, exposed
in Chapter 6, shows that the ability of pruning to produce relevant architectures is
not guaranteed [2]. Finally, on the topic of whether or not fine-tuned (or retrained)
networks should perform better than pruned architectures trained from scratch: we al-
ready saw in Section 3.3 that both cases try to solve the same problem and that the role
of pruning, between the two, is to provide a more relevant initialization. If both the ran-
dom initialization or the one produced through pruning are able to find the optimum,
they should perform exactly the same in the end.

4.2.3 Learning Masks Through Auxiliary Parameters

As mentioned before, one theoretical way to improve pruning would be to include it
directly within the problem to solve, i.e. in the loss function itself. However, we also
mentioned that pruning is often formalized as a penalty on the L0 norm of W, which
is not differentiable and, thus, not compatible with stochastic gradient descent. While
some methods choose to solve this problem by relaxing said L0 constraint, as can be
seen in Section 4.2.4, the methods we will review here adopt another strategy: keeping
a binary mask on parameters, mask that is itself produced using another set of auxiliary
masks.

Let M be the set of auxiliary parameters and f the function to produce the mask; infer-
ence of the network to prune is then performed using not W but W⊙f(M). Therefore,
the stake, in such methods, is to learn both W and M, providing that f is differen-
tiable. Since f(M) is supposed to be a binary mask, made only of zeros and ones, f
is not expected to be differentiable. However, such a problem is often eluded using
the straight-through estimator [69], in a way that is very similar to the Binary-Connect
method [68].

Courbariaux et al. [68] originally proposed two ways of defining f : either f is a round-
ing of a M clipped between 0 and 1 or f generates a random mask, with each element
being 0 or 1 following a Bernouilli law parameterized by the corresponding value in
M (so that these auxiliary parameters are actually the probability of masking the cor-
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responding weight in W). To sum it up, there are two variants: f(M) = ⌊M⌉ (deter-
ministic) and f(M) = B(M) (stochastic). In both cases, values of M are always clipped
between 0 and 1 after each update.

Srinivas et al. [161] directly applies this stochastic variant to pruning. Xiao et al. [162] in-
stead uses the deterministic variant; however, instead of completely integrating prun-
ing into the loss function, it instead applies an iterative (even citing Han et al. [26])
bi-level optimization [176] where L is split in two optimization processes minW L1,
trained on the training set, and minM L2, trained on the validation set (a subset of the
training set) and containing a penalty on M. Also, M is not updated solely according
to its gradient, since it is actually modified (using the gradient, values and sign of W)
before update; this modification is meant to bring some desirable properties to M.

Similarly to Srinivas et al. [161], Louizos et al. [89] uses the stochastic variant of Binary-
Connect. However, treating parameters M as probabilities of a Bernouilli function
poses problems that are solved by using a reparameterization trick [177], [178] so that
M instead parameterizes a differentiable function that is applied to a parameter-free
noise; this way, the differentiable parameters and the stochastic noise are separated.

Comparing these three methods allows to see how this literature tends to revolve around
the same idea while proposing new ways of improving it. To conclude, let’s men-
tion the work of Savarese et al. [163], that is a bit different, as it gets rid of the non-
differentiability of pruning masks—that required the use of the “Straight Through Estimator”—
by instead using a smooth approximation of the Heavyside function over M, whose
temperature rises during training until it converges toward said Heavyside function.
This type of relaxation is rather related with the underlying idea of penalty-based
method (cf. Section 4.2.4).

4.2.4 Penalty-Based Methods

Penalty-based methods all revolve around the same idea of relaxing the L0 constraint
into a differentiable penalty. Multiple variations around this idea can be found in the
literature.

The first version consists in applying to the whole network some type of penalty to
encourage sparsity. The LASSO [179] and group-LASSO [180] regression methods were
used by different pruning methods [112], [130], [132] to introduce sparsity of individual
weights or groups. Other methods, similarly, apply other types of global penalties
over the entirety of weights—which can be seen as modifying weight decay to enforce
sparsity [105], [181].

Another variation is called “Variational Dropout” [182]. Dropout [183] is originally a
regularization technique that involves multiplying activations or weights with a Bernouilli
maskB(p), with p the dropout rate; it was later found out that a Gaussian Dropout [184],
that instead adds a Gaussian noiseN (0, p

1−p), could achieve a similar behavior. Kingma
et al. [182] noticed that such a way of noising weights was very reminiscent of the
variational paradigm that can be used to train auto-encoders using variational infer-
ence [177]. This paradigm allows considering the variance α = p

1−p as a learnable pa-
rameter; therefore, each weight can even have its own variance. Molchanov et al. [156]
then noticed that the Kullback–Leibler divergence term of the variational lower bound,
to maximize during variational inference, tended to favor large values of α, and there-
fore the equivalent of a large dropout rate of parameters. When the α of a given weight
tends to infinity, then the corresponding weight can be considered as pruned. There-
fore, variational dropout can be considered as a pruning method, based on a type of
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regularization that is not weight decay but dropout. Multiple papers have then focused
on adapting this pruning method to structured pruning [185], [186].

Finally, the last family of penalty-based methods uses selective penalties, i.e. applying
a penalty only to weights susceptible to be pruned. Most of them consist in periodically
identifying weights to prune, using the magnitude [1], [136], [154], [155] or gradient (or
saliency) [103] criteria; then selected weights are penalized, mainly using a L2 penalty.
Choi et al. [155] penalizes smallest weights with an additional L2 penalty whose impor-
tance is learned during training; Ding et al. [103] removes the gradient of error from the
update of weights of smallest saliency, so that only weight decay remains and shrinks
them; Carreira-Perpiñán [154] penalizes weights under a given threshold with a L2
penalty whose importance grows toward infinity during training; our own contribu-
tion, SWD [1] generalizes this same principle to structured pruning and studies the
importance of the growth of the penalty.

One last sub-group of pruning methods using selective penalty revolves around the
Alternating Direction Method of Multipliers (ADMM) [187] to learn and optimize sep-
arately the weights, their mask and how to penalize the difference between the two.
Many papers have then used ADMM to study pruning or to generalize it to structured
pruning [82], [188]–[193].

4.3 Selective Weight Decay

In the previous sections, we presented the literature around pruning methods as the
various attempts at smoothing the displacement of W in L through pruning. Since
penalty-based methods, instead of putting in succession small batches of weights abruptly
to zero, penalize smoothly the magnitude of weight themselves, they appeared to us as
a particularly relevant direction to explore further.

In this section we will present a contribution of ours: Selective Weight Decay (SWD) [1],
a penalty-based removal method. We will present its principle and then the various
experiments that justified its paradigm and showed its performance.

4.3.1 Principle

SWD aims at pruning as smoothly as possible by applying a L2 penalty on the subset
W∗ of weights to prune from W. In Chapter 2, we already exposed the standard op-
timization problem, with weight decay, in Equation 1. We update this equation to add
Selective Weight Decay in Equation 14:

min
W
L(N (X),y),with L(N (X),y) = F(N (X),y) + µ ∥W∥2 + aµ ∥W∗∥2 (14)

This L2 penalty, whose importance is defined by the multiplier a, serves as a relaxation
of a L0 constraint. With the increase of a, this penalty should converge toward this
constraint. This principle is directly inspired by Lagrangian smoothing [194]. Figure 17
illustrates the landscape of the combined penalty of weight decay and SWD. Besides
this simple principle and motivation, two things remain to be defined: W∗ and a.

Definition of W∗ As W∗ represents the subset of weights to prune, its definition
depends on the chosen pruning structure and criterion, which is orthogonal to the def-
inition of SWD, that is a removal method. However, one important thing to notice
is that, depending on any criterion or structure, W∗ can be updated at any moment
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Figure 17: In the case of non-structured magnitude pruning, SWD behaves as such: all
weights w of W are applied a penalty P , that combines weight decay and SWD. Since
SWD is only applied to weights below a given threshold t, it is like P applies a stronger
penalty on weights below t and a smaller one above t. Another way to present this is
to consider SWD as a trap that progressively subjects weights below a certain threshold
to an increasingly strong penalty, that drives them to zero, thus pruning them.
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during training, as Equation 14 does not force W∗ to be the same all throughout train-
ing. This is why we actually update W∗ at each training step. Depending on the cost
of computing W∗, it is theoretically possible to update it less often; in another of our
contributions [2], that we present in Chapter 6, we only update W∗ at each epoch.

Definition of a The starting and final values of a are extremely important to the per-
formance of SWD. Indeed, the idea is to start training by letting the network learn
normally and to end training under a penalty that is strong enough to reduce targeted
weights to zero (or at least, close enough to zero so that their removal does not affect
the performance). However, one cannot simply make a grow indefinitely, as the gradi-
ent of a given w, from W∗, is δL

δw (N (X),y) = δF
δw (N (X),y) + 2µ(1 + a)w, which means

that, besides the supervised training term, the value of w is penalized by −2λµ(1+ a)w
(with λ the learning rate—we simplify our explanation by eluding specific properties
of optimizers and their momentum), that may actually make the value of |w| diverge if
2λµ(1 + a)w > w. This is why we control both starting and final values of a. We chose
to interpolate these two extreme values using an exponential function, as exposed in
Equation 15:

a(s) = amin

(
amax

amin

) s
sfinal

, (15)

with amin the starting value, amax the final one, s the current training step and sfinal
the total number of pruning steps during training.

We now have defined the necessary background and terms concerning SWD. We will
now present which criteria and structures we used with SWD during our experiments
and what methods we compared it to; we will also present the experimental conditions.

4.3.2 Experimental Conditions

In our publication dedicated to SWD [1], we experimented with two variants of SWD:

• Non-structured SWD: isolated weights are pruned on the basis of their magni-
tude.

• Structured SWD: channels are pruned on the basis of the magnitudes of their
weights in batch-normalization layers; an additional batch-normalization layer is
applied to the output tensor of each residual block, so that pruning it prunes the
same channels in both branches (the same trick was used by Liu et al. [87]).

In both cases, the magnitude threshold is global (the same for all layers) and defined so
that W∗ contains the needed number of parameters to reach the intended pruning rate.

We also compared SWD to other removal methods, for the same structures:

• Han et al. [26]: train, prune and fine-tune, with the last two steps iterated 5 times—
the pruning rate grows linearly between iterations.

• Liu et al. [87]: train, prune and fine-tune once, with a smooth-L1 penalty on batch-
normalization weights during training.

• Renda et al. [92]: train, prune and re-train, once, the re-training being a warm
restart. When applied to structured pruning, we keep the smooth-L1 from Liu et
al. [87].

Because of what we mentioned in Section 4.1, it would have been more rigorous to
keep the same number of iterations for every reference method—something we were



Chapter 4. Removal Methods 90

not aware of at the time these experiments were conducted. Our motivation at the
time, besides sticking to how methods were described in the original papers, was to
avoid excessive computation times, as fine-tuning and retraining have a significant cost,
especially on ImageNet.

We made experiments on three datasets, the values for hyper-parameters were chosen
empirically through preliminary experiments:

• CIFAR-10 and CIFAR-100: fine-tuning iterations last during 15 epochs, except the
last one that lasts 50 epochs. The smooth-L1 penalty is set to 10−4. For non-
structured SWD, we set amin = 10−1 and amax = 105; for structured SWD, we set
amin = 102 and amax = 107. We do no fine-tuning after training with SWD.

• ImageNet ILSVRC2012: for Han et al. [26], fine-tuning iterations last during 5
epochs, except the last one that lasts 15 epochs; for Liu et al. [87], fine-tuning
iterations last during 15 epochs, except the last one that lasts 40 epochs. The
smooth-L1 penalty is set to 10−5. For non-structured SWD, we set amin = 10−1

and amax = 105; for structured SWD, we set amin = 10 and amax = 104. In order to
get results more consistent with the state of the art, structured SWD on ImageNet
was combined with LRR [92] to maximize performance.

• Cora [195]: in order to verify that SWD could still be applied in the case of a very
different type of task, we chose to do some tests on a Graph Convolutional Net-
work from Kipf and Welling [196]. This GCN, with 16 hidden units, was trained
with the Adam optimizer, weight decay set to 5 · 10−4, a learning rate of 0.01 and
a dropout rate of 50%. In order to make training with SWD less unstable, we in-
creased the number of training steps from 200 to 2000 epochs. Fine tuning lasts
200 epochs, or 2000 for the last one. Non-structured SWD is set to amin = 0.1 and
amax = 106. We tested no structured pruning on this network.

One last aspect to mention is that we did all our experiments in a deterministic setting,
with the same random seed. Indeed, we could not afford multiplying experiments to
reach statistical significance, so we instead made sure all experiments of a same type
were conducted in the exact same settings, so that we can isolate the contribution of the
pruning rate/method and that of some random initialization or order of batches. We
now have all the necessary information to present the results of our experiments.

4.3.3 Ablation Test: the Importance of a

The first experiments we will show were conducted not only to find the best amin/amax

pairs to use for our experiments, but also to show the sensitivity of SWD to these hyper-
parameters and, ultimately, to justify the use of an increasing penalty during training.
Figure 18 shows the results of this grid-search and provides two types of information:
what is the most efficient amin/amax pair from a pruning perspective and how sufficient
SWD is at pruning weights, without manually pruning targeted weights afterward—
because if SWD is not strong enough, weights to prune may not decrease enough to
nullify their impact on the network.

From these results, we can already draw multiple interesting observations:

• Worst final performance are obtained for low astart and low aend—it is also the
range of values for which we have the most severe degradation after manual
pruning. This means that, for this range of values, SWD is not strong enough
and the final zeroing of selected values harms the network.
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Figure 18: Hyper-parameter grid-search: ResNet-20 (64 base channels) on CIFAR-10;
non-structured pruning rate of 90%. We tested several values of amin and amax (here
renamed respectively astart and aend to test decreasing cases. We report two measure-
ments: a) the final accuracy after pruning and b) the difference in accuracy between
before and after the final removal of weights (because SWD shrinks targeted weights to
values close to 0, but not perfectly zero; setting them really to zero can have an impact
on accuracy).

• Best final performance are obtained for low astart and high aend, which is consis-
tent with our initial motivation to first let the network learn without constraint
and to end with a penalization strong enough to prune weights.

• As soon as astart is big enough (above 100), SWD seems to reach sub-optimal
yet rather good performance, whatever the value of aend. In term of post-removal
accuracy drop, it seems that a threshold on both astart and aend independently and
abruptly makes SWD shift into a regime where it seems to succeed at pruning. We
do not know yet the reason for such a radical behavior. A plausible explanation
would be that crushing a weight early makes it less prone to recover, even if the
penalty is smaller further during training.

Most importantly, two capital observations can be drawn: 1) these results validate our
initial assumption on the role of the increase of a and on the choice of its initial and final
values and 2) for well chosen values of these hyper-parameters, there is no difference
before and after removing weights, which means that SWD succeeded at effectively
pruning them—which allows to say that SWD is effectively a removal method and not
just a regularization that helps pruning.



Chapter 4. Removal Methods 92

10 90 99 99.9
0

20

40

60

80

100

Target (%)

A
cc

ur
ac

y
(%

)

(a) Whole figure

10 90 98

86

87

88

89

90

91

92

93

Target (%)

A
cc

ur
ac

y
(%

)

(b) Close-up on points below 98% of pruning.
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Figure 19: ResNet-20 (16 channels) on CIFAR-10, non-structured SWD. The x-axis is the
percentage of pruned parameters and the y-axis the accuracy. Each curve corresponds
to a different amin/amax pair.
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We did other grid-searches in the original publication [1], in order to study how this
behavior depends on the architecture, dataset and pruning rate. It turned out that the
frontier, that separates regimes for which SWD functions properly or not, tends to move
slightly depending on these factors—notably, structured pruning seems much more
punitive—, but the overall behavior remains the same. Therefore we thought them
not to be especially interesting to report in this manuscript and we invite readers, if
interested, to check the original paper instead.

However, another experiment that is interesting to show is how values of amin/amax

influence the overall parameters/accuracy trade-off. Figure 19 shows these results.

Multiple observations can be drawn from Figure 19:

• Figure 19 seems to be divided into two regimes below and above 98% of pruning.
The blue curve, that looks to be consistently the best below 98% under-performs
above this threshold; respectively, the black curve, that was the worst, looks to
be the best for very high pruning rates. The difference between the two is that
the blue curve has both the smallest amin and amax while the black one has the
highest ones. However, the green curve (high amin and low amax) almost always
performs worse than the red curve (low amin and high amax). These tendencies
seem to suggest a certain rule of thumb to choose the right hyper-parameters pair
for a given pruning ratio: when the pruning rate increases, first increase amax and
then amin. This also suggests that: 1) a too strong penalty harms the network
for low pruning rate but is necessary to make pruning work for high rates and
2) increasing the initial penalty, as also suggested by Figure 18, helps enforcing
sparsity from the start, which makes pruning easier afterwards.

• Some points are visible outliers, for example 0.1/5·104 for a pruning rate of 99.8%.
This sudden drop in accuracy reveals some instability, whether it is in SWD or in
the ability of the network to handle pruning. Yet, the most plausible explanation,
that can be raised when considering some posterior works of ours [2], [3], is that
some variance in the distribution of sparsity may have produced some layer col-
lapse [98], which makes the real number of active parameters considerably drop
while we did not pay attention to such a possibility in our measurements back
then.

To summarize the overall conclusions of our experiments: with the right choice of
hyper-parameters, SWD is able to effectively prune networks, so that removing these
weights does not impact the network. Choosing the right hyper-parameters, depending
on the pruning rate, may be a bit more delicate; but is seems that it is better to increase
both amin and amax for high levels of pruning, for example above 98% for example—the
original publication also shows that structured pruning tends to require higher penalty
values too.

We will now present experiments that show the performance of SWD, compared to
some reference methods.

4.3.4 Experiments

We show results on ImageNet (Table 1), on CIFAR-10 (Figure 20 and 21) and Cora
(Figure 22). We already detailed the experimental conditions and compared methods
in Section 4.3.2.

Our motivation behind these choices of experiments is that ImageNet allows to get
at-scale results, but is very expensive to compute; CIFAR-10 allows much more fine-
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grained explorations, so we present extensive trade-off curves, first for an over param-
eterized, good performing and easy to prune network (ResNet-20, when its initial width
is of 64 channels) and one much more parsimonious and punitive to prune (ResNet-20,
when its initial width is of 16 channels); finally Cora allows to test SWD on a com-
pletely different type of task, which, in this case, is node classification. Chapter 6 also
presents results on Cityscapes (semantic segmentation in urban environment), but they
are extracted from completely different papers [2], [3].

Experiments on ImageNet ILSVRC2012
Non-structured pruning

Target (%)
Han et al. [26] +LRR [92] SWD

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

50 74.9 92.2 58.4 82.1 75.0 92.2
10 71.1 90.5 54.6 79.6 73.1 91.3
2.5 47.2 73.2 34.8 61.54 67.8 88.4

Structured pruning

Target (%)
Liu et al. [87] +LRR [92] SWD (+LRR)

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

90 74.7 92.2 56.1 80.7 74.2 91.9
75 73.4 91.6 51.1 77.1 73.5 91.5
50 63.6 85.7 40.0 66.2 69.0 88.8
20 0.1 0.5 0.1 0.5 69.0 88.7

Table 1: Non-structured and structured pruning on ResNet-50 on ImageNet
ILSVRC2012, comparison between one base method (Han et al. [15] or Liu et al. [87]), its
LRR variant [98] and SWD.

Table 1 shows performance on ImageNet, for both non-structured and structured prun-
ing. SWD shows to yield almost systematically the best performance—even though
we must mention that, for low pruning rates, the margin between the first reference
method and SWD is not very significant, even when SWD lies second. However, two
very clear tendencies can be noticed: 1) SWD performs substantially better for high
pruning rates and achieves non-trivial performance where other methods destroy the
network, and 2) LRR [92] surprisingly degrades the performance of the first reference
method (while improving that of SWD), which is not a behavior to be seen in the other
experiments. The reason why LRR under-performs in this specific situation while im-
proving SWD (or improving the reference in the other experiments) is unknown to us;
yet it would be possible to speculate on the respective ability of the reference and of
SWD to produce efficient architectures that, during retraining, have different learning
capabilities (however that would not explain why pruned and fine-tuned networks
would perform better than the same network, pruned and warm-restarted).

Figure 20 and 21 show performance on CIFAR-10, using the same set of methods (ex-
cept that SWD never uses fine-tuning or LRR here). The relative performance of each
method seems more consistent with expectations in these experiments than in the case
of ImageNet, and the more extensive number of points allows for more subtle observa-
tions:

• In the four displayed cases (non-structured/structured, 64 channels/16 chan-
nels), the same relative behavior between methods can be observed: 1) for low
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Figure 20: Non-structured and structured pruning on ResNet-20 (64 initial channels)
on CIFAR-10, comparison between one base method (Han et al. [15] or Liu et al. [87]),
its LRR variant [98] and SWD.
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Figure 21: Non-structured and structured pruning on ResNet-20 (16 initial channels)
on CIFAR-10, comparison between one base method (Han et al. [15] or Liu et al. [87]),
its LRR variant [98] and SWD.
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pruning rates, all methods tend to perform the same, with a notable under per-
formance of LRR for 16 channels; 2) for high pruning rates, SWD performs no-
tably better (with very rare exceptions), LRR lies clearly as second and magnitude
pruning as last.

• ResNet-20, with 16 channels, is clearly more difficult to prune than with 64 chan-
nels: even SWD, that manages to stay at non-trivial performance for 99.9% prun-
ing with 64 channels, falls to random-guess for the same pruning rate with 16
feature maps. Also, curves for 64 channels are much smoother, which means that
pruning with 16 channels is much more unstable and may degrade performance
in much more abrupt bursts.

• Structured pruning looks much more difficult than non-structured pruning. How-
ever, this must be put in perspective with multiple facts:

• Structured pruning is done here in one-shot, while non-structured has 5 iter-
ations; there is no doubt that structured pruning would perform better with
iterations.

• SWD also has more trouble with structured pruning, but we cannot know
how the choice of hyper-parameters (that is made more difficult because of
structured pruning) influences this aspect.

• One-shot pruning, especially in the case of structured pruning, is quick to
bring layer-collapse, which plausibly explains why networks pruned this
way are quick to reach random-guess.

• However, one last major aspect that puts all of this in perspective again is
that, because our experiments were deterministic and because structured
pruning is one-shot, points between magnitude pruning and LRR only differ
by the way they are fine-tuned or retrained: in both cases we have the same
network, with the same weights and pruned the same way. This means that,
in some cases, fine-tuning is completely unable to save networks that are
recovered through retraining, which means that they were not completely
destroyed. This observation is very interesting, since it means that retrain-
ing is not just some sort of “better fine-tuning” and that the difference be-
tween their respective behavior is deeper than that; it also raises questions
about what kind of inescapable local minima those pruned networks may
have fallen into so that fine-tuning could not recover them, while retraining
could.

• There is one point, for structured magnitude pruning on ResNet-20 with 16 chan-
nels that is a clear outlier: why does it reach non-random performance, while it
was the case of the three points right before? Let’s first assume that this point
is not an error on our part. Even though Chapters 5 and 6 will show how the
count of pruned parameters, in the case of structured pruning, can be decep-
tive, the fact that our experiments, for structured pruning, were deterministic and
one-shot guarantees that the real count of pruned parameters should decrease
monotonously with the increase in pruning rate: it is not possible for that outlier
to secretly have more parameters than points right before. Moreover, the same
point with LRR, that is pruned exactly the same way, is inserted in a much more
consistent curve. This means that this weird behavior is not due to an error in
the count of pruned parameters. Similarly, since the same pruning criterion is
used, weights pruned for points right before are still pruned for this outlier, plus
some additional ones. Considering all of these factors, we can speculate that, in
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this particular case, it is possible that pruning first got the network stuck in an
inescapable local minimum where some filters were detrimental to learning, and
these filters were those pruned in the outlier, which let the fine-tuned network
reach performance on-par with its LRR counterpart. We cannot affirm anything
without further dedicated investigations, but, once more, this highlights the un-
predictable influence of pruning relatively to the landscape of L, as mentioned in
Section 4.1.3.

• Finally, while SWD tended to out-perform other methods rather quickly on Ima-
geNet, they all separate themselves much later: the tendency looks much clearer
after 90% pruning. That separation appears a bit earlier with 16 channels or struc-
tured pruning, which seems to imply that the more difficult the problem is, the
more the removal method has a significant impact.

To sum it up: despite some questionable methodological choices, SWD clearly shows
better performance for high-pruning rates. However, the relative behaviors of fine-
tuning and retraining, while it was not the original intended focus of these experiments,
raise many interesting questions about the impact of pruning on training.
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Figure 22: Non-structured magnitude pruning [26] and SWD applied on a Graph Con-
volutional Network[196] on the Cora dataset [195].

Figure 22 provides some results on the Cora dataset [195]. Once again, for low pruning
rates, SWD and magnitude pruning seem to perform roughly the same (with SWD
looking to be a very close second) while SWD performs significantly better for high
pruning rates. Also, the two methods look clearly separated only after 99% pruning,
which is very late—and consistent with our results on ImageNet and CIFAR-10, that
seem to show that the more complex the task, the sooner methods are separated.

Finally, Table 2 shows how our results and experiments compare with the rest of the
literature. Despite our efforts to select papers, where we can find the same dataset/ar-
chitecture pairs that we used for our own experiments, we can see that not only do the
different methods differ in so many aspects that they are barely comparable, but even
the same networks, for the same datasets, yield different baseline accuracy each time.
Furthermore, papers rarely compare for the same compression rates, or rarely provide
enough data points to compare easily.
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Method Structure Dataset Network Comp. Accuracy

Liu et al. [197] Weights ImageNet AlexNet ×22.6 56.82% (+0.24%)
Zhu et al. [90] Weights ImageNet InceptionV3 ×8 74.6% (−3.5%)
Zhu et al. [90] Weights ImageNet MobileNet ×10 61.8% (−8.8%)

Xiao et al. [162] Weights ImageNet ResNet50 ×2.2 74.50% (−0.40%)
SWD (ours) * Weights ImageNet ResNet50 ×2 75.0% (−0.7%)
SWD (ours) * Weights ImageNet ResNet50 ×10 73.1% (−1.8%)
SWD (ours) * Weights ImageNet ResNet50 ×40 67.8% (−7.1%)

Liu et al. [87] * Filters ImageNet ResNet50 ×2 63.6% (−12.1%)
Luo et al. [127] Filters ImageNet ResNet50 × 2.06 72.03% (−3.27%)
Luo et al. [127] Filters ImageNet ResNet50 × 2.95 68.17% (−7.13%)
Molchanov et

al. [97]
Filters ImageNet ResNet50 ×1.59 74.5% (−1.68%)

Molchanov et
al. [97]

Filters ImageNet ResNet50 ×2.86 71.69% (−4.49%)

SWD (ours) * Filters ImageNet ResNet50 ×1.33 74.7% (−1.0%)
SWD (ours) * Filters ImageNet ResNet50 ×2 73.9% (−1.8%)

Liu et al. [87] Filters CIFAR10 DenseNet40 ×2.87 94.35% (+0.46%)
Liu et al. [87] Filters CIFAR10 ResNet164 ×1.54 94.73% (+0.15%)
Ye et al. [134] Filters CIFAR10 ResNet20−16 ×1.6 90.9% (−1.1%)
Ye et al. [134] Filters CIFAR10 ResNet20−16 ×3.1 88.8% (−3.2%)
SWD (ours) * Filters CIFAR10 ResNet20−16 ×1.42 91.22% (−1.15%)
SWD (ours) * Filters CIFAR10 ResNet20−16 ×3.33 88.93% (−3.44%)

Liu et al. [87] * Filters CIFAR10 ResNet20−64 ×2 94.92% (−0.75%)
SWD (ours) * Filters CIFAR10 ResNet20−64 ×2 94.96% (−0.71%)
SWD (ours) * Filters CIFAR10 ResNet20−64 ×50 89.07% (−6.5%)

Table 2: Comparison between results from our experiments (marked with a star) and
results indicated in the original papers. We compare both structured and unstructured
methods, for ImageNet or CIFAR-10 and various architectures, including ResNets with
an initial embedding of either 16 or 64 channels. We report the compression rate (in
term of parameters), the final Top-1 accuracy and the overall accuracy degradation.

This means that this kind of table, apart from giving an initial overview of whether or
not the results of one’s experiment are up to the standards of the literature, does not
provide much usable information. This is a problem that has already been discussed
by Blalock et. al. [27], and motivated our way to conceptually dividing pruning into
three different aspects.

Now that we have reviewed these experiments, that demonstrated the relevance of
SWD as a pruning method, we can conclude this chapter.

Recapitulation

In this chapter, we first exposed what was a removal method, what was the most basic
one in the literature and what were its problems—notably how its abruptness disturbed
training. Exposing the various ways to tackle these problems, that are related to some
fundamental aspects of how to train neural networks, allowed us to present themati-
cally what other removal methods could be found in the literature. This in turn allowed
us to present the motivations behind our own method, SWD [1].
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We then defined SWD, showed our experimental conditions and reference methods.
We then presented two sets of experiments: first, ablation tests to demonstrate the rel-
evance of the definition of SWD and to study the impact of its hyper-parameters; then,
performance tests that showed the benefits of SWD as well as some interesting behav-
iors from reference methods, which raised some more fundamental questions. Indeed,
we saw that not only do removal methods tend to actually behave the same when the
pruning rate is low—which is understandable because, in such a case, the abrupt trans-
formation, to smoothen through using a given method, is already small enough—but
also that the ability of a pruned network to recover performance through fine-tuning or
retraining is still difficult to predict and understand, which deserves further investiga-
tions.

To conclude, the literature concerning removal methods is one of the most dense and
hazy aspects of pruning. It counts many very different methods and families of meth-
ods that, unfortunately, are likely to behave mostly the same (as evidenced by works
such as that of Gale et al. [153] or even our own results, presented in this chapter). Fur-
thermore, the difficulty of comparing pruning methods, because of confusing method-
ologies (as shown by Blalock et al. [27]) or of not distinguishing the separate influence
of pruning criteria and structures or of hyper-parameters such as the number of prun-
ing iterations—which we highlighted while discussing our experiments—, could imply
that creating new methods, with the motivation of improving upon the state of the art,
may be a bit futile as long as we do not have more rigorous ways of comparing and
studying removal methods (or pruning methods in general). All the discussions in
this chapter, as well as the way we chose to present the literature, give possible hints
about which aspects to dwell into in future works, in order to help developing a more
objective way of tackling this whole topic, as well as to identify which are the most
fundamental problems to truly tackle to improve pruning.

Now that the most theoretical aspects of pruning—the criteria and the method—have
been dealt with, we will explore the more practical considerations of pruning: prun-
ing structures, in Chapter 5 and their impact on the energy consumption of pruned
networks on embedded hardware in Chapter 6.
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Pruning Structures
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This chapter will tackle the topic of pruning structures, i.e. the type of elements to
remove from a neural network to reduce its cost. The choice of the pruning structure
depends on multiple aspects: the aim of the pruning method, the type of cost to reduce
or the ability of the targeted hardware to handle sparsity. On the other hand, the type of
structure also influences the difficulty of pruning, as we saw in Chapter 4, as well as the
architectural modifications it may imply can introduce various types of discrepancies,
which means that all kinds of structured pruning or distributions of pruning may not be
possible. Thus, the topic of pruning structures involves two aspects: one more related
to hardware and implementation, the other more related to how the pruning structure
impacts the overall pruning methodology. This is why we separated the two topics:
Chapter 6 will tackle implementation-related questions while this chapter will tackle
more methodological aspects.

In this chapter, we will first review the specificity of each type of pruning structure. We
will then expose the type of discrepancies they may introduce and what are the types of
sparsity distribution, to be found in the literature, meant to avoid these discrepancies.

5.1 Types of Structures

We will review here the various types of structures to be found in the literature, from
the finest to the coarsest, starting with “non-structured” pruning. As we will see, dif-
ferent types of structures bring different types of gains, and therefore can be combined.
However, the finer the structure, the more complex the implementation tends to be,
or rather: many larger types of structures were initially explored to avoid the technical
difficulty implied by how a fine structure, by definition, impacts more elementary oper-
ations of networks and, therefore, requires more low-level and technically challenging
implementations. Even though filter pruning is a type of structured pruning that is so
widespread that it is considered as the default kind of “structured pruning”—which is
also the reason why we will mainly focus on this type in this chapter and Chapter 6—,
we will present it, in this section, the same way as the others.

5.1.1 Non-Structured Pruning

Non-structured (or sometimes “unstructured”) pruning is, as its name indicates, con-
sidered as the default type of pruning. It involves removing isolated weights [26],
which is the finest possible pruning granularity. Because of this, it generally allows a
better parameters-to-accuracy trade-off, but since it is more difficult to leverage [82],
[83], many methods instead favor structured pruning. The various strategies to be
found in the literature about how to leverage non-structured pruning will be reviewed
in Chapter 6.

Many papers still use non-structured pruning nowadays [167], [198], [199], despite
multiple works advocating in favor of structured pruning against non-structured prun-
ing [82]. One reason for this is simple: many pruning papers do not bother being ex-
ploitable on hardware and focus instead on more theoretical aspects of pruning. In such
cases, worrying about hardware or structures can be a major obstacle to some studies;
not only because structured pruning brings its own problems that non-structured prun-
ing does not encounter, cf. Section 5.2, but also because some pruning methods [156]
are so difficult to adapt to structured pruning that it may be the topic of whole distinct
contributions [185], [186].

Therefore, non-structured pruning is often used in cases where one may not want to
be encumbered by the limitations of structured pruning. This is the reason why most
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papers whose approach is more theoretical or fundamental use non-structured prun-
ing [28], [92], [98], while those that tackle the actual hardware acceleration of pruned
networks mostly use structured pruning [121], [200], [201].

Before moving on to the next section, we must anticipate a little bit on Chapter 6 and
remind that various implementation strategies of non-structured pruning exist and can
bring different types of gains—for example, some may save energy consumption while
not providing speed-up. As we will see later, each type of pruning structure can bring
its own distinct gains, and since non-structured pruning, depending on the implemen-
tation, can bring some, it can be combined with the others—even though it would be
insufficient, for example, to reduce the size of intermediate representations. We had to
clarify this point in order not to leave the impression that non-structured pruning was
just a sort of oversimplified pruning, relegated to theoretical works only.

5.1.2 Constrained Sparsity

The finest types of structured sparsity involve producing sparse tensors whose distribu-
tion of sparsity allows some optimization, while not allowing an actual rearrangement
of the weights—unlike filter shape pruning, shift layers or filter pruning. This is why
we call it “constrained sparsity”, as it involves introducing some rules in the way of
sparsifying tensors instead of really pruning larger structures.

Such types of constrained sparsity often aim at arranging non-zero elements in tensors
in a way that optimizes memory access, reutilization and cache usage [202]–[204]. No-
tably, multiple methods divide tensors into blocks that each contain a given number of
non-zero elements, whether it is constant and defined [204] or simply bounded [203];
the distribution of sparsity inside these blocks stays random. This division into blocks
has multiple advantages: 1) each block can be treated separately, which fits well the par-
allelization power of GPUs, 2) the workload of each of these parallel threads is more
predictable thanks to the constraint on the number of non-zero elements and 3) the in-
troduced regularity and parallelization helps avoiding expensive buffering operations.

Each of these papers [202]–[204] comes with its own proposal of implementation, which
indicates how little generic this approach unfortunately is. Indeed, it highly depends
on hardware and is non-standard, which means that using this approach requires a lot
of engineering and a fitting hardware to be exploitable.

5.1.3 Filter Shapes

“Filter shapes” pruning involves pruning the same weight in the same kernel of ev-
ery filter [82], [130]. The reason why such a type of sparsity can be leveraged comes
from the fact that many widespread frameworks and libraries actually transform con-
volutions into GeMM using the im2col operation [17]. This transformation involves
rearranging the weights tensor into a matrix, so that removing the same element in all
kernels of a filter removes a column of the said matrix.

This method has multiple advantages: not only is im2col sufficiently widespread for
this pruning method to be considered reasonably generic, but it also produces different
types of gains. Indeed, not only is the unfolded weights matrix smaller, which means
less memory occupation and fewer operations, but it also allows for a smaller temporar-
ily dilated input matrix, which further reduces the runtime memory occupation.

This last point deserves some explanations: to unfold a convolution into a GeMM, the
weights are simply rearranged while the input pixels are duplicated into a pseudo-



Chapter 5. Pruning Structures 104

a b

c d
Kernel 1

a’ b’

c’ d’
Kernel 2

Filter 1

α β

γ δ

α’ β’

γ’ δ’

Filter 2

⋆

1 2 3

4 5 6

7 8 9

Feature Map 1

1’ 2’ 3’

4’ 5’ 6’

7’ 8’ 9’

Feature Map 2

a b c d a’ b’ c’ d’

α β γ δ α’ β’ γ’ δ’

Weights Matrix

×=

1 2 4 5

2 3 5 6

4 5 7 8

5 6 8 9

1’ 2’ 4’ 5’

2’ 3’ 5’ 6’

4’ 5’ 7’ 8’

5’ 6’ 8’ 9’

Activations Matrix

a c d b’ c’

α γ δ β’ γ’

Pruned Weights Matrix

×=

1 2 4 5

4 5 7 8

5 6 8 9

2’ 3’ 5’ 6’

4’ 5’ 7’ 8’

Reduced Activations Matrix

Figure 23: Pruning the same weight in the same kernel of each filter of a convolution
layer allows pruning columns in the weight matrix after the im2col operation, that turns
the convolution operation into a GeMM (General Matrix Multiplication, as we will see
in Chapter 6). Removing columns in the weights matrix also allows removing rows in
the activation matrix, which helps limiting the memory overhead of the im2col opera-
tion. Therefore, filter shape pruning allows reducing the memory usage and number of
operations.
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Toeplitz matrix. This means that this method requires extra memory space to store
the dilated activations. Reducing the dimensions of the weights matrix means that
the activation can be less duplicated, which means that the gain in memory usage is
actually twofold. The principle of filter shape pruning is summed up in Figure 23.
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Figure 24: Pruning all weights but one in a convolution kernel allows transforming into
the combination of a shifting operation and of a multiplication. The shifting itself can
also be considered as a cropping.

When all parameters from a convolution layer but one in each kernel are pruned, the
convolution can be transformed into the combination of a shift operation and a 1 × 1
convolution [123], [205]. Even though the shifting requires storing the direction of the
shift, which is non negligible at such a compression rate, the resulting operation allows
for efficient implementations [206], although non-standard. The principle of shift layer
pruning is summed up in Figure 24.

5.1.5 Grouped Convolutions

Grouped convolutions already exist in multiple architectures, either to reduce the cost
of a convolution operation or to produce depth-wise separable convolutions [37], [38];
their principle is explained in Section 2.1.3. The advantage of grouped convolutions
is that they are perfectly well handled by any framework and offer another way of
reducing easily the number of weights and operations of a network, without reducing
its number of filters.
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Surprisingly, pruning a convolution layer to produce a grouped convolution layer is a
rare practice, despite its relevance [207].

5.1.6 Filter Pruning

The most common type of structured pruning involves removing whole convolution
filters (or “neurons” in the case of linear layers). This type of pruning has unique ad-
vantages which make it particularly interesting despite its apparent coarseness:

• Removing a whole filter means one can directly reduce the dimensions of the
weights tensor, without having to apply im2col beforehand; this means that any
framework can leverage this reduction.

• Therefore, removing filters allows reducing both memory occupation of the weights
and the number of operations.

• Since each filter produce one output feature map, this means that removing a filter
also reduces the dimensions of the output; this allows to significantly reduce the
memory usage of intermediate representations, which is not the case for other
types of pruning.

The principle of removing whole neurons instead of isolated weights is as old as prun-
ing itself [108], [115], [139], [208], but filter pruning has been mostly popularized by
some papers such as those by Wen et al. [130] and Li et al. [83], even though some other
papers came right before [119], [124], [126], [129]. Since then, many influential papers
focus on filter pruning [87], [97], [112], [121], [157], [209], [210]. Filter pruning, thanks
to its unique advantages and its popularity, is considered as the default “structured
pruning”—so that this term is often used to talk about filter pruning [27], even though
it could also apply to all other types.

Filter pruning can also be mentioned as “neuron pruning” (which is perfectly equiv-
alent) or “channel pruning” (which is almost perfectly equivalent but emphasizes one
subtlety that we will review in Section 5.2).

5.1.7 Whole layers

Another rare practice is to prune deliberately whole layers [130]. This is made possi-
ble thanks to residual connections, that allow removing whole blocks without destroy-
ing the network. This is the coarsest type of pruning and obviously leads to the most
gains; however it is so coarse that it can be barely exploitable; moreover, due to layer-
collapse [98], it tends to happen automatically when doing global filter pruning (i.e.
setting an overall pruning target on the network, using the same pruning criterion on
all layers, so that layers can be pruned at different rates).

5.1.8 Neural Architecture Search

In Chapter 2, we mentioned NAS as a compression method, distinct from pruning,
meant to produce efficient architectures. Actually, many of them use principles that
are so similar to that of pruning that they can be considered as just another kind of
pruning. Notably, one-shot NAS [211] involves choosing sub-graphs of a unique “su-
pernet” using various kinds of criteria, which makes this type of NAS almost perfectly
a pruning method. Some zero-shot NAS methods [212], [213] even use criteria and
methods directly borrowed from the pruning literature, such as SNIP [99], GraSP [169]
or SynFlow [98].
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Therefore, we can consider the various types of NAS search spaces as different types
of pruning structures; for example, using NAS to define a block, to repeat to produce
whole architectures, is analogous to prune the same layers in every block of the same
type in a network.

5.1.9 Conclusion on pruning structures
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Weights ✓ ✗ ✗ ? Custom

Constrained ✓ ✗ ✗ ✓ Custom

Shift Layers ✓ ✓ ✗ ✓ Custom

Filter Shapes ✓ ✓ ✗ ✓ im2col

Grouped Convolutions ✓ ✓ ✗ ✓ Standard

Filters ✓ ✓ ✓ ✓ Standard

Layers/Blocks ✓ ✓ ✓ ✓ Standard

Table 3: Summary of pruning structures: whether or not they are able to reduce the
memory occupation and movement of a) parameters, b) temporary representations of
data during the execution of a layer or c) intermediate representations of data between
layers, or to reduce the number of operations—which, in the case of weights is “?”, as
it heavily depends on the implementation and sometimes their energetic consumption
but not their number. We also remind conditions to leverage each type of sparsity.
“Standard” implementations correspond to cases where any framework, meant to run
inference of neural networks, can leverage it, as these types of sparsity do not need new
operators.

To conclude this section, Table 3 summarizes the respective gains and constraints of
each type of pruning structure we reviewed. Since filter pruning is the most widespread
type of structured pruning in the literature—and we can see now that it is because
of both its easier implementation and its interesting gains while staying reasonably
fine-grained—, this is the one type we focused onto, notably in Chapter 6 and in the
following sections.

5.2 The Problems of Filter Pruning

We mentioned that removing filters reduces the size of layers, which any framework
can leverage. Even though it is perfectly true, there are some problems that we did not
mention and that have a significant impact on how to perform structured pruning. We
will detail these problems in this section, while standard solutions will be presented in
Section 5.3.
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5.2.1 Dependencies Between Layers

The first problem of filter pruning is that the dimensions of layers in a network are inter-
dependant: if a layer contains n filters, then the output tensor contains n feature-maps
and every filter of the following layers, that take this tensor as their input, must contain
n kernels. Therefore pruning a filter requires to remove one kernel in each filter of the
following involved layers. For this reason, pruning a filter (and its bias) is equivalent to
pruning a feature map (or “channel”), which is the reason why filter pruning can also
be mentioned as “channel pruning” in the literature.

This type of dependencies is mentioned as soon as 2016 by Li et al. [83]. However, it
was only shown in the context of a straightforward VGG-like network, in which such
types of dependencies are very simple to identify. However, in the case of a ResNet-like
network, the problem gets much more difficult.

Residual connections are ubiquitous in modern networks; unfortunately they also are
the main source of problems for filter pruning. Indeed, not only do residual blocks
sum together two tensors, that must be of the exact same dimensions (which is not
guaranteed anymore after pruning), but also one of these two tensors come from a
residual connection and not from one single identifiable layer. This means that the
dimensions of this particular tensor cannot be deduced from the shape of a tensor, but
of a complex combination of all layers upstream.

C

C

C

+

CR

Addition Addition

Convolution Layer Convolution LayerConvolution Layer

Figure 25: Example of problems introduced by pruning in the presence of residual
connections.

Figures 25 illustrates the types of problem quickly encountered when pruning a net-
work with residual connections. Detailed explanations: here are three convolution lay-
ers, with each three red-green-blue filters, each with three kernels of corresponding
colors. The greyed-out filters are those that are pruned manually. Dashed arrows corre-
spond to the pruned, missing feature maps. The output of the first layer has dimensions
that match the pruning pattern of the said layer.

The second layer has greyed-out, pruned kernels to match the dimensions of its in-
put. The second layer has also pruned filters, but not the same ones as the first layer.
Indeed, the first layer had only the red channel remaining whereas the second layer
only outputs a green channel. Therefore, both layers have only one output channels,
but since they are not the same, they should not be summed together (like the default
addition operation would do) but concatenated together (hence the “C” in the circles
in the figure). This already raises two problems: first, the result of this concatenation
contains two channels instead of one, which is not trivial to predict if one only looks at
the dimensions of the layers; second, the addition operation of residual blocks would
not have the right behavior, since it would add together the two single-channel tensors
while a concatenation is needed—which already suggests that the addition operation
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should be replaced to fit pruning.

The third layer has pruned kernels to match the input’s dimensions and only one
pruned filter. First problem: we already saw that the input’s dimensions can be hard
to predict, which means that the exact dimensions and number of parameters of this
layer directly depend on one’s ability to predict the said dimensions. Second problem:
the green-blue output must be summed with the red-green input, which means that
the addition must be replaced with a more complex mix of concatenations (“C”) and
additions (“+”). Not featured in the figure: the case where the two tensors to sum do
not have the same number of channels, which a normal addition operator could not
handle at all.

To conclude, the dimensions of intermediate representations and, consequently, the in-
put dimensions of layers depend on the combination of all pruning patterns in the
network. Therefore, all dependencies and combinations must be reliably identified in
order to have the right number of parameters (by removing the right amount of kernels
in filters to accommodate the actual dimensionality of the inputs) and to get a func-
tioning network (because a mismatch between the dimensions of a layer and its input
causes a fatal error on runtime). This last error can be circumvented when pruned
parameters are put to 0 instead of being properly removed, which is sufficient when
studying only the impact of pruning on the network’s function.

5.2.2 Orphan Biases

Another problem that can occur when doing filter pruning is to forget removing bi-
ases when pruning away a filter. Indeed, if a filter is removed but not its bias, the
said bias will keep producing a constant output. This has two consequences: 1) the
resulting “orphan bias” is not trivial to implement and, because of its arguable useless-
ness, ultimately not worth the effort and 2) the produced uniform and constant channel
prevents removing the corresponding kernels in the following layers. This second con-
sequences has itself two consequences: 1) the compression rate is not as high as it could
be, because of these useless remaining weights and 2) these weights cannot be removed
because their constant contribution to the function, although useless, still impacts the
distribution of intermediate representations, which means that removing them, while
not hurting the learning capacity of the network, may still alter its performance if a
fine-tuning is not performed.

Forgetting to remove biases can sound silly at first, but there are two aspects that can
make it surprisingly commonplace:

1. Biases in convolution layers are nowadays mostly contained in the following
batch-normalization layer, which means that pruning only the convolution layer
is actually insufficient to really remove the whole filter. Preventing this issue
makes the implementation of pruning a bit less trivial, as it implies finding the
corresponding batch-normalization layer and pruning it the same way as the con-
volution layer.

2. When a whole layer is pruned, all kernels in the filters of the following layers are
removed; more concretely the whole following layer is removed too. But since
this removal is secondary, it is way more easy to forget removing the biases of
this layer. Moreover, if all types of secondary removal are overlooked (by pruning
filters but not following kernels), then the kernels do not contribute anymore to
the function (because of the empty input) but the biases do. This means that the
layer collapse [98] does not propagate properly and only the layers upstream are



Chapter 5. Pruning Structures 110

removed while the whole branched should be pruned.

All these aspects—layers interdependence and orphan biases—make pruning properly
a network much more difficult and subtle than it may appear first. In complex networks
such as HRNet, the complexity can become overwhelming, which calls for an automatic
and generic method to both identify all dependencies and replace all needed operators
in order to make pruning easier to do properly. We will present such a method in
Chapter 6.

Far from being a trivially technical question, this complexity made a wide part of the
literature think that some types of filter pruning were not possible at all, as we will
see in Section 5.3. Other papers also completely ignore this issues and therefore report
wrong compression rates (even though this fact is sometimes acknowledged by the
same papers).

5.3 Distribution Strategies

As previously mentioned, the dimensional dependencies between layers is something
acknowledged by Li et al. [83], whose work is seminal in the field of filter pruning and
whose observation is shared by many following papers.

Therefore, Li et al. [83] prune filters and their corresponding kernels in VGG-like net-
works or in the first layers in residual BasicBlocks (or the first two ones in BottleNecks).
But in the case of the last layers of residual blocks, Li et al. [83] say that it is necessary for
both branches to be pruned the same way (which eliminates the previously mentioned
problems). Because of this, the last layer of every block in a ResNet stage is pruned the
same way: the way the upstream shortcut layer is pruned (i.e. the 1× 1 convolution in-
serted in the residual connection to change the dimensions of the corresponding tensor
each time the number of channels of ResNet is increased).

Such a choice implies that, in a ResNet made of BasicBlocks, actually half the layers
in the network are completely constrained in the way they can be pruned. This type
of distribution for filter pruning is still very widespread to the point of being almost
standard, as it can be seen in many papers that propose methods meant to produce ac-
celeration [141]–[144]. This strategy corresponds to Strategy A in Figure 26, in which we
can see that it allows very few variations in the number of channels between layers—we
used BasicBlocks (cf. Chapter 2) as an example.

Another solution to eliminate the problem is to add a channel selection layer (or even
a batch-normalization layer in cases where pruned filters are simply put to zero) at the
end of the residual block, which makes the dimensional dependencies much shorter
and easier to handle [1], [87]. Pruning this channel selection layer allows to prune very
simply both branches at once, without the need to constrain the same dimensionality
on all blocks in a stage. This strategy corresponds to Strategy B in Figure 26.

Finally some works propose solutions to accommodate dimensional mismatches with
custom operators [112], [201], [214], [215], even though it often involves padding some
channels with zeros to keep the dimensional consistency between tensors to sum. This
strategy corresponds approximately to Strategy C in Figure 26.

In Chapter 6, we will present another solution, akin to Strategy C. In this chapter, we
refer to Strategies A and B as “constrained pruning”, as they limit the degrees of free-
dom allowed by Strategy C—indeed, the number of degrees of freedom, in Figure 26, is
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Figure 26: Strategies to increase the number of degrees of freedom of filter pruning in
residual blocks: A) heavily constrained to maintain dimensional consistency [83], B)
added channel select to separate blocks [87] and C) completely dissociate the dimen-
sionality of branches with custom select/scatter operations [112].
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represented by the diversity of Ns. Since the goal of the method, presented in Chapter 6
is to leverage any kind of filter pruning, without having to pay attention to constraints
required by Strategies A and B, we call it “unconstrained pruning”.

5.4 Recapitulation

In this chapter, we reviewed the different types of structures in the domain of pruning,
from the finest non-structured pruning to the the coarsest type possible, that is akin to
practices in Neural Architecture Search. We showed that all the types bring different
gains, so that they can be combined, but they also require more or less specific imple-
mentations.

We also saw that, because of numerous advantages, filter pruning is the most widespread
type of “structured” pruning (in opposition to “non-structured” weight pruning). How-
ever, we saw that using filter pruning carelessly produces many problems, such as di-
mensional discrepancies and orphan biases.

Finally, we showed which strategies could be found in the literature to tackle these
problems, which usually either involve heavily constraining pruning degrees of free-
dom or introducing custom layers or operations. Our own solution to this problem will
be presented in Chapter 6.
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Chapter 6

Leveraging Pruning on Hardware
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In Chapter 5 we saw different types of pruning structures, that each bring different
types of gains. In this chapter, we will dwell more into the details of how to implement
neural networks on embedded hardware: which issues do we encounter when imple-
menting structured pruning, what solutions did we developed to solve these problems
and how pruning effectively reduces the cost of neural networks.

6.1 General Considerations

First, let’s see what are the limits neural networks are confronted with when imple-
mented on hardware. This will allow us to see how exactly the cost of networks can be
reduced.

6.1.1 Key Metrics

Running neural networks on any hardware involves paying attention to different met-
rics that will define the overall performance of the system. Using the same definitions
as Vivienne Sze [216], we can list different metrics and design objectives. Here are a
short description of each of them (more details can be found in the original book):

• Accuracy: the ability of the network to solve the task. Measuring this perfor-
mance depends on the test task and dataset; for example, ImageNet is a more
difficult classification dataset than CIFAR-10 and semantic segmentation is more
difficult than classification. Robustness is another aspect that can be taken into
consideration. On this topic, we can cite the work of Hooker et al. [28] that high-
lights that simple Top-1 or Top-5 accuracy are rather naive metrics to describe the
actual impact of compression on networks’ performance and robustness; rather, it
seems that the impact of compression highly depends on the complexity of the in-
put and how out-of-distribution it is. This means that measuring the performance
of networks and, in particular, of compressed networks is not as trivial as it may
seem. However, this is out of our scope, and we focused on standard metrics such
as Top-1 accuracy or mIoU (cf. Chapter 2.

• Throughput/latency: respectively, the amount of data processed by unit of time
and the time spent to process each input. Both are crucial for real-time fluidity
and responsiveness. They depend not only on the number of operation the hard-
ware can execute per second, but also the number of processing units that can
be used in parallel and how much they are all utilized. Therefore, obtaining a
good throughput and latency involves not only minimizing the required num-
ber of operations, but also maximizing the utilization of processing units. Batch
processing can improve throughput while degrading latency, with a possible op-
timum between the two depending on how well the amount of data processed
maximizes the utilization.

• Power consumption: the quantity of energy dispersed to run the neural network.
Actually, energy is consumed not only for each computation operation but also
for each memory access, that are in fact way more costly than addition or multipli-
cation operations—sometimes, by a factor of hundreds [217], [218]. Also, off-chip
memory reads are even more expensive, which means that minimizing energy
consumption not only involves reducing the number of operations or the quan-
tity of data to handle, but also how memory is organized, in order to minimize
how far data have to be moved. Making sure that all data fit on the chip’s cache
and avoiding accessing it too often is a crucial aspect on low-power embedded
hardware [219].



115 6.1. General Considerations

• Hardware cost/Flexibility/Scalability: these metrics are more related to the do-
main of hardware design and are not relevant to the topic of this thesis. This is
why we will not discuss them.

6.1.2 How to reduce the cost of neural networks?

We just saw which metrics are important to consider; however, when designing neural
networks, we do not have the control over everything. Indeed, two aspects reduce our
room for maneuver:

• Because of the cost of designing ASICs, designing hardware specifically for a neu-
ral network is very rare. In the context of this thesis, we had to deal with preexist-
ing hardware—and this is the case of many papers in the literature. This means
that the amount of available processing units, the organization of memory and
the power supply are not aspects over which we have control.

• Similarly, different hardware come with their own firmware implementation or
inference frameworks. These frameworks are what will define how data and
memory are handled and how operations are dispatched or pipelined to maxi-
mize the hardware utilization.

• Finally, neural networks have to be stored under a certain format that can possibly
represent a limited array of operations. Using operations that are non-standard
means risking being poorly handled (or not handled at all) by aforementioned
frameworks. For example: the ONNX format (that became a standard in the field
as a non-framework-specific representation for neural networks) supports a lim-
ited set of operations, listed in “opsets”. Some libraries, such as ONNX-Runtime
or TensorRT, are only able to support opsets up to a certain version.

Since the topic of this thesis only involves the design of neural networks themselves,
this means that we have instead to focus on which aspects of neural networks have an
impact on the aforementioned metrics, for a given hardware, framework and format.
Here are the elements over which we have control:

• Input/Output data: Even though this is not properly a part of a neural network,
the size of the input is surely the first thing to consider to reduce the cost of a net-
work. Although the resolution of input images depends on the dataset, cropping
the input or reducing its resolution allows significantly reducing the number of
operation and the size of intermediate representations. Reducing the resolution
can degrade the performance of the network, but a certain Pareto optimum can be
reached. Moreover, if parameters are only stored once on chip, input data have
to be fetched off-chip, which involves the most energetically expensive type of
memory read. Therefore, reducing their size can be crucial to minimize energy
consumption per inference. Similarly, semantic segmentation networks are of-
ten designed to actually produce an output that is of lower resolution than the
input, which does not impact the accuracy too much while reducing the overall
cost. While this question is mostly out of the topic of compression, it is worth
mentioning because of its efficiency and convenience.

• Parameters: The parameters are generally stored into tensors. Although they are
involved in operations, which means that pruning parameters may involve prun-
ing operations, their main cost is in term of memory. Since they are stored into
tensors, putting weights to zero while not reducing the size of said tensors may
thus not reduce their memory occupation. This is mainly the topic of leveraging
unstructured pruning (Section 6.1.3) as well as the justification of the different
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types of structured pruning (Chapter 5). Optimizing the storage and fetching
of parameters depends mainly on the framework and hardware, but sometimes
some of their properties may benefit from some design constraints; e.g.: some de-
vices load convolution filters by batches, which means that some layers width are
more optimal than others concerning hardware utilization.

• Operations: The number and cost of operations depend on four elements: 1) the
size of the input, 2) the size of the parameters tensor, 3) the type of operator and
4) the precision of data representation. This last point belongs to the domain of
quantization but the first two are directly impacted by structured pruning. Con-
cerning the last two: additions tend to consume less energy than multiplications
and operations on 32 bits float numbers cost more than those on 8bits integers—
the quantization of data also directly impact the volume of data to store and move
in memory, which further reduces the energy consumption. Since we mostly use
standard operations—linear layers, convolutions, batch-normalization, etc—, we
do not have much control over the proportions between multiplications and addi-
tions, nor do we control data representation since we do not study quantization.
This means that our main degree if freedom involves the shape of the operations’
operands.

• Intermediate representations: Each layer produces its own output, called an in-
termediate representation. The size of these intermediate representations may
significantly exceed that of the input or output data of the network. When the in-
put data are already significantly big, for example in semantic segmentation, the
memory space required to store these intermediate representations may exceed
vastly that of parameters. This means that their size is actually the main limiting
factor on devices with limited available memory. Moreover, their size scales with
that of input batches. Since the only way to reduce them is to remove whole filters
or neurons, structured (or rather, filter) pruning may be essential in cases they are
more of a limiting factor than parameters, for example.

• Operators: Some types of pruning may require the implementation of custom op-
erators (for example, the shift layers mentioned in Chapter 5). We already men-
tioned that, depending on the used frameworks, some operations are more or less
well handled. Moreover, the representation format of the network may constrain
which operations can be used; e.g.: the ONNX format supports only a certain
array of operators, that depends on the operation set (or opset)—not all frame-
works support all the opset; for example: TensorRT 8.4.0 does not support the
ONNX opset 16, which had consequences we mention in Section 6.3.2. Choosing
the right operators depending on the format, the framework and the hardware
can be a whole discussion for a single custom operator.

Now that we have listed what are our options to reduce the cost of a network, we will
tackle the topic of both non-structured pruning and filter pruning. Concerning non-
structured pruning, we will present what solutions can be found in the literature to
leverage it. Since this thesis focused more on leveraging filter pruning, we will detail
the solutions we came up with, as well as the results of experiments we did on embed-
ded hardware.

6.1.3 Leveraging Non-Structured Pruning

Many papers have proposed solutions to leverage non-structured pruning or, rather,
“non-structured sparsity” as the stake is to leverage the sparse tensors produced by
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pruning. The multiple strategies developed in the literature can be divided into multi-
ple categories:

6.1.3.1 Pruning as a Simplification of Weights Values

The ability of pruning to introduce many zeros in the weights tensor can allow other
compression methods to better reduce its memory occupation. Indeed, one of the ear-
liest attempts at leveraging pruning [15] simply reduces the required memory space to
store weights by using Huffman coding, which can indeed take advantage of any kind
of redundancy in tensors, such as that introduced by zeros. Although doing such does
not reduce the number of operations, the gain in static storage can be crucial for low-
power devices, more so than the number of operations. Clustering is another compres-
sion method that can benefit from pruning [220], without reducing operations either.
As we already mentioned, even while not reducing the number of operations, reducing
the number of memory accesses can be crucial from an energetic point of view [219].

6.1.4 Operations skipping

Runtime operations skipping, or “Zero Value Clock Gating” [203], consist in skipping
an operation if one of its operands is zero or near-zero [221]–[224]. Such a method is
therefore able to leverage both pruned weights and any zero in the activations—which
fits well with ReLU activation functions. Even though this method efficiently reduces
power consumption, it has some drawbacks: 1) it is something to implement explicitly
and not to be taken as granted in any framework, hardware or implementation; 2) it
does not reduce memory usage, as zeros are still to be stored, since they are detected
dynamically and 3) it tends to reduce hardware utilization [203]. Despite its draw-
backs, this method can be used in conjunction with others, when possible, as it has the
advantage of not adding any overhead.

6.1.5 Custom Operators

Even though some papers [130], [204] use libraries such as cuSPARSE [225] to accelerate
pruned neural networks, the proposed solutions may not always be satisfying. For
example, cuSPARSE aims at accelerating multiplications of matrices with a sparsity
rate above 95%, and acceleration may only start at 91% [204]. Such sparsity rates are
rarely aimed for in most of the literature, as they tend to severely damage the accuracy
of the network. The Myrtle AU accelerator is another example of accelerator that is
optimized for sparsity rates above 93.75% [226].

This is why multiple papers have instead proposed custom implementations to lever-
age sparse convolutions or sparse GEneral Matrix Multiplication (GEMM). These im-
plementations generaly involve at least one indexing step, whether it is to collect non-
zero operands beforehand [227] or to scatter afterward the results of the outer-product
of all non-zero weights and activations [228]. Even though these methods allow a better
hardware utilization, the indexation operations tend to represent a non-negligible over-
head [203]. According to some papers, these overheads tend to make non-structured
pruning less efficient than filter pruning [82].

6.2 Solving the Problems of Filter Pruning

In Chapter 5, we mentioned that global and unconstrained filter pruning can introduce
many dimensional discrepancies between layers, that must be tackled to have a func-
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tioning network. Since we wanted to precisely tackle this type of pruning, without re-
sorting to the various types of constraints usually to be found in the literature, we devel-
oped a method to automatically identify all dependencies, remove useless parameters
and adapt operators so that our freely pruned networks could be leveraged on embed-
ded devices. This method is generic, as we tested it on different types of networks, and
simple to use, as it is implemented in Pytorch and freely available (https://github.
com/HugoTessier-lab/Neural-Network-Shrinking). Networks pruned using
this method could be converted into ONNX, which makes them exploitable on multiple
hardware and frameworks.

6.2.1 Clear-Out: Identifying Deactivated Weights

In order to have a method that could identify all disconnected weights, kernels and
filters automatically while being agnostic of the network’s architecture, we decided to
use the network function gradient—backpropagation being well handled by any train-
ing framework. This is why we first designed a method, that we called Clear-Out, that
identified as eliminated the weights whose gradient were zero whatever the input.

Justification: Let’s consider a network N and one of its parameters w

Let X ∈ X , δN
δw

(w,X) = 0 =⇒ N (w,X) = N (0,X)

In such a case, N (w,X) is constant considering w, which means that its value does not
change the output depending on X.

If the aforementioned condition is verified for any X, then w can be safely removed
from the network. Actually, since networks can have multiple outputs, this condition
must be verified for all outputs at the same time.

Problem: Clear-Out has three issues:

1. The condition that the gradient of w must be zero for any input, which cannot
be analytically deduced, implies that the input space must be sampled. Drawing
samples from the training dataset could allow approximating relevantly the do-
main of definition of the network classes. However our experiments, meant to
help figuring out exactly how many samples were needed exactly, turned out to
raise many questions, many of which are out of the scope initially intended for
Clear-Out.

2. The definition of Clear-Out means that are considered deactivated not only weights
that are disconnected because of pruning, but also those that are made inactive
because of the degradation of the network’s function. Our experiments showed
that this proportion of isolated disconnected weights can be very significant, and
leveraging their pruning is of the domain of non-structured pruning (Section 6.1.3),
which we did not tackle.

3. Clear-Out cannot solve the problem of orphan biases, since the weights down-
stream are involved in the network’s function despite their arguable uselessness.

Because of these issues, we decided that this definition of Clear-Out did not fit our
needs, that are focused solely on identifying weights that are irremediably disconnected
because of pruning and dimensional dependencies between layers. This is why we
propose a variant called Dimensional Clear-Out, that is specifically designed for filter
pruning.

https://github.com/HugoTessier-lab/Neural-Network-Shrinking
https://github.com/HugoTessier-lab/Neural-Network-Shrinking
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the modified copy to suit DCO. Explanation of the modifications: A) the input can be
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6.2.2 Dimensional Clear-Out

Since our concern only involves the architectural aspects of the network and not its
actual function, we figured out that a way to solve the aforementioned problems was
actually not to operate on the network itself, but on a modified copy that had some
specific properties.

The modifications of the network, illustrated in Figure 27, are meant to transform the
network into a purely linear network without biases—which means removing all non-
linear functions and biases. Removing biases allows circumventing the orphan biases
problem and removing non-linear functions prevents introducing unwanted zero val-
ues. Replacing the value of weights with the value of their pruning mask means that
zero values can only be introduced by pruned weights. Removing normalization makes
sure that these zero values stay zero.

Since the network is now purely linear, any weight that is involved in the network’s
function can only have a non-zero gradient as long as the network’s input is itself non-
zero. This has two consequences: 1) one single input suffices to identify reliably all
weights that are possibly involved in the network’s function and 2) weights can only
have a zero gradient if they are structurally disconnected from the rest of the network
because of structured pruning.

To conclude: the trick of using a modified network to perform the Clear-Out com-
putation allows solving all three problems of Clear-Out, which makes this variant—
Dimensional Clear-Out (DCO)— suitable for our needs while being also quick to com-
pute and reliable.

6.2.3 The Problem of Addition Operations

DCO itself allows identifying all disconnections following structured pruning and thus
allows guaranteeing the consistency of input/output dimensions of layers. However,
one last problem remains: additions at the end of residual blocks still cannot handle
tensors of different sizes. Even if, after global unconstrained filter pruning, the two
tensors happen to be of the same dimensions, there is no guarantee that the same filters
were pruned on each side, which means that summing the two together would sum
channels that are not meant to go together.

To solve this problem, we defined a more generic operator, that we called the indexation-
addition operation (that we could as well call a crossbar operation).

Definition of the Indexation-Addition Operation Let a and b be the tensors to sum,
that contain respectively na and nb channels. Let ia and ib be two lists of indices and
c the output tensor, that contains nc channels. The indexation-addition operation is
defined as such:

∀k ∈ J1;ncK, ck =

{
aiak , if iak ∈ J1;naK
∅, otherwise

+

{
bibk

, if ibk ∈ J1;nbK

∅, otherwise

If na = nb, ia = [1, 2, . . . , na] and ib =
[
1, 2, . . . , nb

]
, this indexation-addition operation is

purely equivalent to an element-wise addition.

This operation allows configuring each addition to sum together the right channels
among the two tensors to handle. This operator therefore allows leveraging any dis-
tribution of unconstrained filter pruning, as enforcing the same sparsity for the two
branches of a residual block is not a necessity anymore.
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However, this requires finding the right ia and ib, which can be done automatically by
another trick that exploits the properties of DCO.

Generating Automatically Indices The trick we used consisted in inserting two lay-
ers, one for each branch right before the addition. These layers behave like an identity—
actually they are 1×1 convolutions whose weights match an identity matrix. While not
modifying the tensor they are applied to, these layers are very useful, since, once inac-
tive channels are identified using DCO, their weight matrices give exactly the indices
ia and ib necessary to configure properly the indexation-addition operations. Figure 28
illustrates how the pruned identity layers allow generating the lists of indices.

To conclude: thanks to the combination of the DCO, of the indexation-addition opera-
tion and of the aforementioned trick to generate it automatically, we are able to make
any distribution of filter pruning functional by enforcing the consistency of input/out-
put dimensions of layers and by adapting additions so that they do not require a specific
distribution of channel sparsity to work properly. Therefore, our work finally provides
a simple way of making the study of the efficiency of such types of pruning on hard-
ware possible.

This is why the next sections will precisely tackle the topic of measuring the gain in
term of energy consumption when doing unconstrained filter pruning. We will see
under which experimental conditions we ran our experiments, what were the problems
to solve and how this study raised a whole new array of questions that call for further
investigation in the future.

6.3 Implementation on an Embedded GPU

Dimensional Clear-Out [3] was initially developed to allow measuring the decrease in
energy consumption when pruning neural networks [2]. This is why we will now focus
on said measurements. First, we have to describe under which experimental conditions
such measurements were conducted.

6.3.1 Experimental Conditions

Environment: We did our measurement on a NVIDIA Jetson AGX Xavier embedded
GPU, configured in the “30W All” mode. We installed JetPack SDK 5.0, that goes along
with CUDA 11.4.14, cuDNN 8.3.2 and TensorRT 8.4.0 EA. We also installed ONNX
Runtime 1.12.0, compatible with GPU computing and able to use the TensorRT exe-
cution provider. This allows using the optimization and inference engine of TensorRT
while having a better control of how to do the benchmarking. Energy consumption of
the GPU was measured using the tegrastat utility every second while running a large
number of inferences for each pruned network (tegrastat uses a chip on the board to
measure the power consumption of the whole board or of individual componants, such
as the CPU, the GPU or the memory—we only measure the consumption of the GPU).
All networks, designed in Pytorch, are converted into the ONNX format before being
fed to the TensorRT execution provider or trtexec utility.

Networks: All networks were trained in a standard way, as described in Section 2.1.5.
All aspects proper to pruning are described in the next paragraph. On ImageNet we
used ResNet-50 and on Cityscapes we used HRNet-18, 32 and 48.
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Figure 29: Schematic representation of our ONNX implementation of the indexation-
addition operation. The tensor creation node actually contains many different opera-
tions, but its overall cost is negligible. The transposition nodes adapt the axis order in
the input to fit the ScatterND operation, then restore the original order. The ScatterND
operations inject the content of Input 1 and Input 2, that contain respectively n1 and n2

channels, into the dynamically created empty tensor of size n3, to create two tensors of
size n3 that are then summed together.
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Pruning Methods: In our experiments, we used two different pruning methods:

• Slimming [87]: We prune filters on the basis of the magnitude of their weight in
the corresponding batch-normalization layer. Networks are pruned in three steps,
with a linearly increasing pruning rate and fine-tuning (20 epochs for HRNet,
10 epochs for ResNet). For some experiments, after the last pruning step, the
network is retrained using LR-Rewinding [92]. Following the original method,
during training, batchnorm weights are penalized by a smooth-L1 norm (λ =
10−6 for HRNet and λ = 10−5 for ResNet).

• SWD [1] (cf. Section 4.3): We only used SWD with HRNet. We chose amin = 10−1

and amax = 1010. LR-Rewinding [92] is applied after pruning.

Depending on the experiments, the pruning target was either set using DCO for an ex-
act estimation of the number of pruned parameters or using a naive estimation based on
the proportion of pruned filters, whatever their actual size. Also, whatever the method,
pruning is always performed globally and unconstrained. Therefore, we always apply
DCO at the end and shrink networks while transforming, when needed, additions into
indexation-addition operations.

6.3.2 Implementation of the indexation-addition operator

As described previously, we used the ONNX format1 to store neural networks before
feeding them to TensorRT. This format has no trouble representing all standard opera-
tions used in neural networks—convolution layers, ReLU, upsampling, etc. However,
indexation-addition operations are non-standard. Therefore, we needed to design an
ONNX implementation of this operator.

The indexation-addition mixes two aspects: 1) inserting the data of the two tensors
to sum in another tensor that does not have the same dimension and 2) effectively
summing them. We chose to perform the insertion using the ScatterND operation, that
allows scattering the content of a given tensor into another tensor. While the Scatter
operation is element-wise and therefore requires storing an index for every element of
the tensor to scatter (which makes the operator resolution-specific and very costly in
memory), ScatterND operates at the scale of a given axis, which allows only indexing
the channels themselves, which is much lighter and more generic. The only constraint
is that the behavior we wanted is only allowed for the first axis of a tensor, so that we
have to transpose the tensor before and after the ScatterND operation (the cost of these
transpositions is negligible).

In the 16th opset of ONNX, ScatterND has an argument that allows not to insert the
data but instead to sum its values to those in the destination tensor. This would have
allowed a much more optimized implementation by performing scattering and addi-
tion in one step, but unfortunately, TensorRT does not support ONNX operation sets
beyond the 15th opset. This is why we instead had to insert each of the two tensors into
a larger tensor, so that the two new tensors can be of the same dimensions and summed
together. This larger tensor has to be instantiated dynamically, which involves many
different operations; fortunately this tensor creation turned out to be of negligible cost,
compared to that of ScatterND operations. Similarly to related works in the field [112],
[201], [214], [215], this implementation involves, at least temporarily, inserting empty
feature maps.

1onnx.ai/

onnx.ai/
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This implementation, summed up in Figure 29 is the one we used in the following
experiments [2], [3], that we will now present.

6.4 Experiments

The following experiences can be found in two papers we published during this the-
sis [2], [3]. They will be presented thematically.

6.4.1 DCO as a Tool for a More Reliable Study of Pruning

The existence of dependencies between layers and the necessity of acknowledging them
for a reliable measurement of the compression rate is something that is often left am-
biguous in many papers. Blalock et al. [27] even cited this lack of consistency, in the
metrics reported to characterize the compression of a pruned network, among a large
proportion of papers in the field.
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Figure 30: Trade-off between the pruning rate and the accuracy of ResNet-50 on Im-
ageNet (left) or the mIoU of HRNet-48 on Cityscapes (right), depending on three dif-
ferent ways of estimating the pruning rate: 1) the proportion of pruned filters, 2) the
remaining parameters after pruning the filters and 3) the remaining parameters once
the pruned network is applied DCO.

This is why, when presenting our work on DCO [3], we illustrated its purpose with a
comparison of the effect of different ways of calculating the pruning rate on the appar-
ent trade-off between accuracy and pruning rate. We compare three different calcula-
tion methods:

• A very naive method, that only counts the proportion of pruned filters.

• A more relevant method, that counts the remaining parameters after pruning, but
without taking into account any dependencies between networks.

• The actual proportion of remaining parameters after DCO.

Figure 30 shows precisely this comparison. These experiments did not use LR-rewinding [92]
and networks post-DCO were not fine-tuned, so some of them encountered a small
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drop in accuracy because of the perturbation of the distribution of data in intermediate
representations, due to the removal of orphan biases. Also, the pruning target, for each
pruning iteration, was each time defined according to the proportion of pruned filters.
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(a) ResNet-50 on ImageNet
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(b) HRNet-48 on Cityscapes

Figure 31: Comparison of the evaluated compression rate between either the propor-
tion of pruned filters and post-DCO remaining parameters, or pre-DCO and post-DCO
parameters.

This figure allows to make some interesting observations:

• For low pruning rate, the proportion of filters overestimates the actual count of
parameters; but for high pruning rates it underestimates it.

• The relationship between the proportion of filters and the pre-DCO parameters
count are completely different between ResNet and HRNet.

• The gap between before and after DCO is significant, but fairly less for HRNet
than for ResNet.
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(a) ResNet-50 on ImageNet
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(b) HRNet-48 on Cityscapes

Figure 32: Energy consumption and inference time, depending on the post-DCO prun-
ing rate. For ResNet-50, results are averaged over 10k inferences after 1k runs of warm-
up, with inputs of size (1× 3× 224× 224). For HRNet-48, results are averaged over 1k
inferences after 100 runs of warm-up, with inputs of size (1× 3× 512× 1024)
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All these observations highlight the same fact: all filters in networks do not have the
same number of parameters (which is obvious) and pruning using the global crite-
rion we used seems to favor pruning first filters that contain less parameters (which is
more surprising). Indeed, at the beginning, pruning the first 10% of filters removes less
than 10% of parameters, which means that smallest-than-average filters were removed.
However, the tendency is reversed after a certain point.

Since for high pruning rates, small differences in percentage are very significant—95%
pruning means reducing by 20 while 99% pruning means reducing by 100, for only
a difference of 4%—we decided to show the comparison of compression rates too in
Figure 31. We define the compression rate as 100%

100%−pruning_rate% and compare either
between the pre-DCO and post-DCO parameters count or between the proportion of
filters and the post-DCO parameters count.

This figure highlights the huge gap in compression rate that is missed when not using
DCO. Also, it looks like the relationship between the actual compression rate and the
naive ones is rather complex and heavily depends on the architecture. This means that
one cannot simply deduce the actual compression rate from a naive one: bothering to
do the real measurement, using DCO for example, is a step that cannot be skipped.

After having illustrated the methodological interest of DCO, we illustrated how DCO
allowed producing networks that could be leveraged, despite the lack of precaution
when distributing filter sparsity. Figure 32 shows briefly some energy consumption
and latency measurement on ResNet-50 and HRNet-48. The decrease in cost proves
that we effectively reduce the cost of networks in a way that impacts both energy and
latency—that both seem very correlated for either ResNet-50 or HRNet-48. However,
the initial increase in cost for the lowest pruning rates shows that something is costly
in our implementation—which we will observe more in details in Section 6.4.2.

6.4.2 Energy Consumption Analysis

Our second contribution [2], using DCO, focused more specifically on measuring the
energy consumption of pruned HRNet semantic segmentation networks trained on
Cityscapes. In this work, we not only showed how we could reduce energy consump-
tion even with unconstrained filter pruning, but we also studied how efficient was
pruning compared to smaller baseline networks and highlighted the necessity of an
efficient implementation of custom operations such as the indexation-addition opera-
tion.

Figure 33 shows the reduction in energy consumption depending on the count of re-
maining parameters or operations after DCO. Is also indicated the corresponding mIoU,
to provide a reference. Each time we compare the pruned HRNet-48 with non-pruned
HRNet-18, 32 and 48 and we made the experiments with the Slimming [87] and SWD [1]
methods, as well as LR-Rewinding [92]. This figure already allows to draw multiple ob-
servations:

• The shape of the energy consumption curve depends on the size of the input: the
bigger it is, the smaller is the initial overhead that makes the first pruning rates
less efficient than the non-pruned initial network. As we will see, a large part of
this overhead is due to the indexation-addition operations and, more precisely,
the ScatterND operations. It seems that, for larger inputs, the cost of these opera-
tions increases less than that of convolutions, which makes the overhead appear
smaller in comparison.

• When comparing to the rate of pruned parameters, results appear much more
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(a) Input size: (1× 3× 64× 128)
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(b) Input size: (1× 3× 128× 512)
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(c) Input size: (1× 3× 256× 512)
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(d) Input size: (1× 3× 512× 1024)

Figure 33: Energy consumption, averaged over 1000 inferences (after 100 runs of
warmup), of pruned HRNet-48 and non-pruned HRNet-32 and HRNet-18, trained on
Cityscapes. Green dots provide non-pruned references. Dashed lines provide instead
the mIoU of corresponding pruned HRNet-48. For plain or dashed lines, the x-axis is
the same and corresponds to the pruning in term of post-DCO parameters or opera-
tions count. The position on the x axis of HRNet-32 and HRNet-18 reflects their count
of parameters or operations compared to HRNet-48.
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separated between the two pruning methods than when comparing to operations.
Actually, all pruned networks seem to belong to the same curve, whatever the
method. Networks were pruned to have a given number of parameters (using
DCO for an exact count), with the same pruning rates chosen for both methods—
this is why all pairs of pruning points are vertically aligned when comparing to
parameters. However, this vertical alignment is not here anymore when looking
at operations. It then appears that energy consumption is clearly correlated with
the number of operations and that the difference in energy consumption for a
same pruning rate between the two methods comes from the apparent tendency
of said methods to produce networks with a varying number of operations for a
same count of parameters. Figures 30 and 31 already highlighted that, since all
filters are not of the same size in networks, a same pruning rate in parameters
may not always impact the number of operations the same way, depending on
the distribution of sparsity.

• Whether it is when comparing to parameters or operations, non-pruned smaller
networks HRNet-32 and 18 appear to be more energetically efficient than pruned
networks for a same number of parameters or operations. We will see that most
of that gap can be explained by the overhead due to ScatterND operations. The
fact that this gap is smaller for operations than for parameters hints that pruned
networks are denser in parameters, for a same number of operations, than smaller
non-pruned networks. This comparison is made even easier by the fact that these
architectures only differ by their width and not their depth, which means that
their architecture approximately equates an HRNet-48 that would have been uni-
formly pruned at the same rate for each layer.

To sum up: these results already hint what will be the three main observations of the
following results: 1) in our case, the interest of pruning, compared to smaller baselines,
is not guaranteed, 2) the cost of ScatterND operations is not negligible at all despite
their apparent simplicity (especially when compared to convolution operations) and 3)
sparsity is not uniformly distributed in pruned networks, and this distribution does not
advantage pruned networks.

Figure 34 proposes a different perspective on these results, by comparing the mIoU to
energy, operations or parameters. It also displays some pruned HRNet-18s. This figure
brings again some new observations:

• Whether pruned networks appear more efficient or not than non-pruned smaller
networks seems to highly depend on which trade-off ones look. When consid-
ering parameters, it would seem like pruned networks achieve a better accuracy
than baselines—or, at least, they appear to be roughly located on the same Pareto
optimum. However, this is absolutely not the case when looking at operations, for
which non-pruned baselines can be far better. This confirms that, as mentioned
previously, pruning here seems to prioritize pruning weights with fewer opera-
tions, so that for a same number of parameters, pruned networks are more costly
in parameters and, ultimately, in energy. This is rather surprising, because the
pruning criterion we used—the magnitude of batchnorm weights—is not explic-
itly designed to have such a behavior. In our preparatory experiments, we already
observed that, when applied globally, filter pruning criteria tended to be unbal-
anced but we chose this one specifically because it tended to be the most balanced
one. Such a behavior is especially problematic, because not only is it completely
spontaneous and unwanted, but it arguably harms the interest of pruning. How-
ever, this allows not to conclude on the overall interest of pruning, because we
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Figure 34: mIoU accuracy of pruned HRNet-48 (curves with filled circles) and HRNet-
18 (curve with squares) and non-pruned HRNet-18, 32 and 48 (green dots), compared
to energy consumption, number of operations and number of parameters, with two
different pruning methods. The input size is (1 × 3 × 512 × 1024). For the number of
parameters or operations, the maximum bound and reference is defined by non-pruned
HRNet-48.
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still do not know if, in the case a criterion that produced networks that are poor
in operations existed, it would make pruning better than small non-pruned net-
works. Therefore, this whole topic is still open to further investigations and raises
some fundamental questions on pruning criteria.

• The inefficiency of the implementation of our pruned networks seems to exagger-
ate the relative efficiency of non-pruned networks for energy consumption.

• Pruned HRNet-18s, at least in term of operations and energy, seem to be a lot more
profitable than pruned HRNet-48s. This evokes two conflicting ideas: 1) it is more
sound to compress a network that is already closer to the final cost target and 2)
between the compressed version of a larger and better network and a smaller
baseline, the originally better network should perform the best. As we men-
tioned before, pruning is likely sabotaged by an imbalance in its criterion—after
all, when considering the trade-off between mIoU and parameters, all pruned
networks look to be on the same Pareto optimum, whether they were originally
HRNet-48 or HRNet-18. Also, the gain in mIoU for the first pruned HRNet-18
points hints that either the pruning process or LR-Rewinding brings some overall
improvements to the accuracy; it is possible that, if non-pruned networks were as
well trained as pruned ones, they would perfectly be on the same Pareto optimum
as pruned networks, when comparing to the number of parameters. Therefore,
it is not yet possible to conclude that the second idea is wrong or not. Finally,
considering the problem of imbalance and excessive density of operations, it is
normal that pruning HRNet-18 leads to more optimized networks.

• The fact that SWD [1] both produces networks with a better accuracy and, surpris-
ingly, fewer parameters and operations (as can be seen in Figure 33), further am-
plifies the gap with Slimming [87]. If the advantage of SWD was not that obvious
in Figure 33, it appears here clearly as more profitable in a very significant way.
Surprisingly, while both use the same criterion, the fact that SWD achieves both
a better mIoU and a lower density in operations seems rather counter-intuitive.
Indeed, the fact that the criterion targets weights that are involved in fewer opera-
tions could be interpreted as such weights being less important; but this behavior
of SWD hints that the relationship may actually be much more complex. Also:
when comparing mIoU to parameters, SWD and Slimming look rather close; but
when considering operations and energy, the difference is very significant. This
hints that in our case, the efficiency of SWD is mostly due to this ability to produce
networks that are poorer in operations. The fact that both methods used the ex-
act same type of pruning structure and pruning criterion shows that not only the
pruning method has a very significant impact on which weights are pruned and
on the distribution of sparsity, but also that this impact on the distribution may
actually be the main discriminating factor between methods—even more than the
actual accuracy for a given target in parameters.

In conclusion, these experiments showed, besides the necessity of finding a better im-
plementation for custom operators of pruned networks, that the pruning structure, the
pruning criterion and the pruning method have very complex interactions that each
impact the final distribution of sparsity and, thus, the efficiency of the produced archi-
tecture. These dependencies are both very important for the relevance of the field and
complex enough to create many topics of study to investigate in the future. Consider-
ing the implementation of custom operators, Section 6.4.3 will detail further what are
the problems that make it less efficient.
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6.4.3 ScatterND and TensorRT: a pair that does not go together well

Param. Op. Lat. Lat.* C. Lat. Lat. Lat.* C. Lat.
(1× 3× 64× 128) (1× 3× 512× 1024)

SWD 40.0% 48.2% 25.1ms 20.3ms 19.9ms 245.2ms 196.0ms 188.0ms
Slim. 30.0% 48.8% 22.5ms 17.9ms 17.5ms 248.1ms 199.8ms 191.9ms
HRN32 44.9% 48.4% 15.1ms 15.1ms 14.4ms 158.3ms 158.3ms 147.7ms

Table 4: Count of remaining parameters (Param.) and operations (Op.), overall latency
(Lat.), latency with the exclusion of ScatterND operations (Lat.*) and latency of convo-
lution layers only (C. Lat.), for two different sizes of inputs, of HRNet-48 pruned using
SWD (SWD) or Slimming (Slim.) and a non-pruned HRNet-32 (HRN32). For HRNet-
32, the percentage of parameters and operations gives a relative comparison to those of
non-pruned HRNet-48. Measurements and profiling were performed using the trtexec
utility. These networks were chosen to have the closest count of operation we could
find.

When we saw how big of an overhead our custom indexation-addition operation seemed
to bring, we made some measurements to quantify the cost of its operators. As de-
scribed in Section 6.3.2, the indexation-addition operation involves mainly four types
of operations:

• A tensor creation, that our preliminary tests showed to have a negligible cost.

• Transpositions, that are negligible too.

• An addition, that already exists in non-pruned network and that should cost less,
since they operate on smaller tensors.

• The ScatterND operator.

Therefore, the ScatterND is the main cause of the overhead. To study it, we used the
trtexec tool, from TensorRT, that does the optimization and some inference benchmark
on a given network. Observing the verbose execution trace of trtexec allowed some
interesting observations.

The first observation is summed up in Table 4, that isolates the cost of ScatterND oper-
ators (alias “Foreign Nodes” as we will explain after) and of convolution layers. This
table allows to see that:

• Non-ScatterND and non-convolution operators have a marginal cost.

• ScatterND operations make up for a large portion of the gap in inference time
between pruned and non-pruned networks.

• Even when considering only convolutions, despite the very similar number of
operations and the reduced number of parameters, pruned networks have a sig-
nificantly higher latency.

These results have to be put in perspective with the observation we made concerning
TensorRT itself. Indeed, this framework has a certain way of optimizing networks:

• It splits the networks into nodes, that can encompass multiple layers (for example,
performing convolutions, ReLU and additions together; BatchNorm layers were
already fused with convolutions during the conversion to ONNX).
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• Each node is then optimized separately and empirically by testing multiple strate-
gies (that imply mostly lossless compression and operation rearrangement meth-
ods) and choosing the one that gives the best inference time.

• Most standard types of layers are then run using the cuDNN [17] library, that is
specifically designed for neural networks inference on GPU.

However, we observed one things: ScatterND operations are not treated the same way
as the others. They are instead turned into “Foreign Nodes” that are not handled by
cuDNN but by Myelin, that is a part of cuBLAS. Also, dwelling into the documentation
of TensorRT revealed that Scatter-like operations are only supported since TensorRT 8.0.
All of this hints that TensorRT does not handle this operator well at all, which explains
why, despite its theoretical simplicity, ScatterND operations cost this much. Yet, the
increased inference time of convolution layers alone is still to explain.

Besides the purely technical aspect of this discussion, one thing that is interesting to
notice is that, despite what may seem theoretically optimal, what makes an implemen-
tation efficient or not ultimately depends on the ability of the framework (or hardware
in other cases) to support and handle it. A different implementation of the indexation-
addition operation could have, instead, involved concatenating the two tensors to-
gether and then summing them using a 1×1 convolution. Theoretically, such an imple-
mentation would be far less optimal, because of the number of useless operations, but
since it would involve only operations that are very standard in deep neural networks,
TensorRT would have probably handled it much better.

6.5 Recapitulation

In this chapter, we saw that the implementation of deep neural networks on embed-
ded hardware requires to bear in mind different types of metrics, such as accuracy,
latency or energy. Since the scope of this thesis does not encompass designing ded-
icated hardware or inference frameworks, we instead focus on what elements of the
networks themselves can be adapted to fit the capacity of a given hardware. We saw
that pruning could allow reducing the number of parameters and operations and the
size of intermediate representations, which helps reducing the cost of a network.

We saw that several methods to leverage non-structured pruning have been proposed
in the literature, but our work does not focus on it. Instead we tackled the topic of filter
pruning and how to leverage it in the case where pruning introduces discrepancies in
the dimensions of layers. We proposed a method, Dimensional Clear-Out (DCO), to
identify and solve all problems that can be encountered when performing filter prun-
ing.

We then presented some experiments. First, we showed how DCO can be used for a
more reliable study of how pruning can achieve a Pareto optimum between the number
of parameters and accuracy. After that, we finally showed how pruning could reduce
the cost of networks. However, these experiments, while raising doubts about the ef-
ficiency of pruning, in comparison with smaller non-pruned networks, also raises fun-
damental questions about the behavior of pruning methods and criterion regarding the
distribution of sparsity. We also highlighted that leveraging filter pruning also requires
an optimized implementation of some custom operators, which tends to be confronted
with the ability of frameworks to handle them.

To conclude: the various problems we encountered and solved in order to do these fi-
nal measurements, as well as the questions raised by these experiments, show that con-
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fronting the technical aspects of pruning is actually a crucial part of identifying what
are the most important fundamental questions to answer to get efficient pruned net-
works. The problem of inter-dependencies between layers is not something that leaps
to mind when staying in a more theoretical paradigm, where pruned weights are sim-
ply put to zero and not removed. The primordial importance of the actual distribution
of sparsity is only highlighted when comparing the energetic consumption and count
of operations of pruned networks, using different methods, and non-pruned ones. All
these questions call for further investigation in order to make sure pruning is profitable.
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In this manuscript, we reviewed the main aspects of neural networks pruning, dis-
cussed them, provided our own hindsight and finally exposed our contributions. In
this conclusion chapter, we will recapitulate briefly the main elements to remember
from each of them and explain how they answer the initial problem statement. This
will then allow us to discuss the possible perspectives and avenues of exploration in
the field and how our findings can lead to reconsider some fundamental aspects of
pruning. Finally we will conclude on the personal outcomes of this thesis.

7.1 Summary

7.1.1 Reminder: Problem Statement

Convolutional Neural Networks (CNNs), and deep neural networks in general, have
become a staple in many fields, including some that are crucial to industrial applica-
tions such as autonomous driving. However, these same industrial applications imply
the use of embedded hardware, whose computation power cannot handle networks
that are too big. Moreover, some applications such as autonomous driving also require
a real-time responsiveness along with reliable enough performance. This means that
CNNs have to be as accurate as possible while staying under a strict budget.

In order to improve this performance-to-cost trade-off, the field of neural networks
compression has developed many techniques, with each their own extensive literature,
fundamental questionings and epistemic issues. In order to provide a relevant hind-
sight, we chose to focus on one method and study it as thoroughly as possible, to finally
tell how its different aspects answer or not the initial industrial problem.

The different aspects of compression, including pruning, each relate to these two sym-
metric principles: maximizing the performance at a given cost budget and reducing the
said cost for a same performance budget. To sum it up: there is a continuity between
the more theoretical and the more practical aspects of pruning.

7.1.2 Deep Neural Networks Compression and Pruning

Different compression methods focus on different aspects of the two principles men-
tioned above: distillation just improves the accuracy of a network without changing
its architecture; quantization and clustering reduce the memory footprint of a same
number of parameters; factorization, neural architecture search and pruning focus on
producing efficient and/or sparse architectures.

Pruning involves removing parts, deemed unnecessary, of a network to reduce its cost.
It implicitly involves answering first three questions: what type of parts to remove,
how to identify the unnecessary ones and how to remove them; respectively, these
three aspects are the pruning structures, criteria and removal methods. When adding
the question “how to effectively implement these sparse networks for inference on em-
bedded hardware”, we get the four chapters of this manuscript, even though we pre-
sented them in a different order, to get a thematic progression from the most theoretical
questions to the most hardware-related ones.

7.1.3 Pruning Criteria

First, we described two different criteria to tell the importance of a parameter: the
gradient-based saliency metric and the weight magnitude criterion. The saliency metric
has been theorized to predict the difference in the error function when setting a weight
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to 0, however, when deconstructing the demonstrations backing up this argument, we
saw that it implicitly required the involved weights to be very close to 0, which makes it
redundant with the magnitude criterion. This weight magnitude criterion, for its part,
has not received as much theoretical interest in the literature, even though it can be un-
derstood intuitively—the most intuitive reason being that pruning the smallest weights
first is what, obviously, introduces the least difference in the value of the weights and,
therefore, in the output of a layer.

We then presented different ways of extending criteria to larger structures, such as us-
ing the norm of said groups or inserting gates in the network. However, we saw that
there are still no theoretical ways of ensuring that the value of such metrics can be com-
parable between layers, which harms the principle of global pruning; however, local
pruning does not fare any better, as it produces, by definition, much more predictable
architectures—especially in the case of structured pruning.

Finally, we deconstructed what was pruning fundamentally: a displacement and a
projection on the error function L, which highlights that the goal of pruning criteria
should not be to minimize the performance degradation through putting weights to
0, but rather to predict how minimal can the new global optimum be after the projec-
tion. Arguably, there is no obvious way of predicting the optimum of the projection
of a function L that is, by definition, too complicated to process analytically—because
otherwise, we would not be using machine learning to solve it at all. However, this
still shows that, in fact, there is not a real separation between crawling L during train-
ing, measuring the importance of weights and removing them—which also involves
moving in L. This also highlighted that, for a same resulting architecture, pruning or
training from scratch should, theoretically, produce the same results, because in both
cases, the same problem is solved.

The topic of pruning criteria, as we saw, mainly aims at finding the weights that, to
be removed, allow for the best performance at a given parameters budget; therefore,
it is more related to the performance/theoretical side of compression. However, in the
case of global pruning, it also has a clear impact on the distribution of sparsity across
layers, and since this sparsity does not have the same impact on the cost of the network
depending on the layers, it also has a direct influence on the hardware/practical aspect
of pruning.

7.1.4 Removal Methods and SWD

After we presented the basic train/prune/fine-tune method, we showed that all prun-
ing methods aimed at making pruning smoother: indeed, setting a lot of weights to 0 at
once equates to a huge displacement in L, which may disrupt critically the training. Af-
ter a review of each family of method, including the trendy “lottery ticket hypothesis”
about which we raised doubts, we presented our own method, Selective Weight Decay,
that showed convincing results when compared to more abrupt methods. Through ab-
lation experiments, we showed that, with the right values of hyper-parameters, it could
successfully remove parameters through a smooth penalty during training.

Our experiments showed that SWD could preserve non-random performance of net-
works even at very high pruning rates, which the other reference methods could not.
However, we also showed that for a sufficiently low pruning rate, all pruning methods
tend to behave the same, which anti-climatically questions the relevance of the whole
dedicated literature. Finally, we showed that, in the end, we need a deeper theoreti-
cal understanding of pruning methods, as well as more rigorous practices to compare
together different pruning methods in the literature.
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Of course, the removal methods influence the final performance of the network, even-
tually the distribution of its sparsity (and thus the efficiency of the architecture) and
the overall training time—because of all the possible retraining, fine-tuning, additional
epochs or of an increased computational complexity at each training step. Therefore,
removal methods are of clear theoretical interest but have some practical implications.

7.1.5 Pruning Structures

We showed that there is a wide array of different pruning structures, from weights to
filters, passing by more or less constrained forms of sparsity. Each type of structure
brings different benefits: for example, pruning filters allows reducing the number of
parameters and operations as well as the size of the intermediate products of the net-
work; however its impact on the network makes it reminiscent of neural architecture
search. Pruning isolated weights does not reduce the size of the intermediate repre-
sentations, and the actual reduction of parameters or operations depends on whether
the implementation is able to handle sparse matrix multiplications; however, such a
type of sparsity is difficult to get through the means of other methods than pruning.
Globally, pruning structures can be classified according to the type of gains they the-
oretically allow and the specificity of the implementation required to leverage them.
Therefore, they can be combined to get their respective benefits, while maximizing the
performance—because the coarsest structures are easier to leverage and produce lots
of gains, but also degrade the most the performance.

Concerning “structured” filter pruning, that we explored the most because of its effi-
ciency, we showed that it could be disturbed by a problem of interdependence between
the dimensions of layers. This problem is usually solved by heavily constraining prun-
ing, which produces more predictable and possibly less efficient architectures.

The topic of pruning structures is of major interest, as it determines how exactly the
cost of the network will be reduced and how easy it will be to leverage. Also, because
of its impact on performance and on the choice of the pruning criteria, it also raises
fundamental questions. The problem of interdependencies is crucial to solve, notably
because it directly hinders the ability of pruning to produce efficient architectures.

7.1.6 Hardware Implementation and DCO

Finally, we dealt more specifically with the topic of hardware implementation. We
saw that, when restricted only to the scope of neural networks themselves, our main
degrees of freedom lie in the parameters (number, precision, memory management),
the operations (number, complexity, hardware utilization) and the size and number of
intermediate representations—that can end up having a larger memory footprint than
parameters.

We briefly showed how the literature managed to leverage non-structured pruning
before focusing on filter pruning. We presented a method, DCO, that could identify
all the dependencies (exposed in the chapter before) and solve them—while adapting
some operations when needed. This method allows to leverage any distribution of filter
pruning, while previous methods had to rely on constraining pruning.

DCO allowed us then to study the efficiency of global filter pruning at reducing the
cost of networks on hardware. While a clear reduction was observable, we saw that,
compared to simply thinner baselines, pruned networks were energetically inefficient,
while very efficient in term of parameters. We showed that this came from an imbal-
ance in the used pruning criterion, that tended to target parameters that are responsi-
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ble for few operations, thus creating networks that are poor in parameters but dense
in operations. This showed once again that the theoretical question of pruning criteria,
because of its impact on the distribution of sparsity, is actually crucial to solve the prac-
tical problem of producing energetically efficient neural networks architectures. Also,
we showed that the removal method, because of its own impact on the distribution of
sparsity, has its importance too.

Obviously, the topic of this chapter is directly related to the hardware-related side of the
original problem statement. However, it also showed that there is not a clear separation
between theory and practice in pruning, and that even the most theoretical questions,
such as that of criteria or removal methods, actually have a decisive impact on the
efficiency of produced architectures.

7.1.7 Answer to the Problem Statement

Finally, we showed that pruning, far from being just one single method that could be
summarized easily, is actually a combination of multiple aspects that are not clearly
separated but instead interwoven, so that they all have their importance for both the
performance of the network and its cost in memory, latency or energy on embedded
hardware. Ultimately, these observations justify our choice of focusing on one method
only, as we showed that, far from being vain quibbles, such minute attentions revealed
to be necessary to get any benefit at all from pruning, and even more to produce archi-
tectures that are actually efficient.

Indeed, in the end, the best possible conclusion about pruning is to say that, for a
method that is extremely popular and supposedly efficient, we cannot say whether
or not it is able to produce better results than trivial smaller networks trained from
scratch at all. Being an entanglement of multiple theoretical or practical aspects, many
of which are still not reliably formalized, there is no way to conclude the question of
pruning before much further investigation.

Fortunately, not only does it imply that, despite the popularity of pruning, there is still
a lot of room for progress; but also, because of the many fundamental aspects of deep
learning it tackles and its many bridges with the domain of neural architecture search,
the field of pruning, even if it means undergoing major changes in the future, still yields
much interest, both from an epistemic and industrial point of view.

7.2 Perspectives in the Field

We just said that our work revealed that there was a lot of room for further investi-
gation in the field of pruning. Let’s review first what are the immediate avenues of
explorations that come to mind for each chapter:

• Concerning pruning criteria, besides the last discussion that we will tackle later:

• The most immediate topic of interest is the question of the distribution of
sparsity across layers. Indeed, we figured out that imbalance in the pruning
criteria could harm the efficiency of the produced architectures. We also saw
that this imbalance may be partly due to some conservation rules between
layers, which means that it is surely possible to look for some theoretical or
mathematical clues to understand better this imbalance problem and even-
tually solve it.
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• This problem is also related to that of criteria applied to structured pruning:
while inserting gates to prune filters is relatively easy, there is no such proxy
in the case of the other types of structured pruning. It is problematic, as we
already mentioned that pruning on the basis of the norm of groups can pose
problems. This means that we should either investigate how to use norm in
a more reliable way, or look for some more generic kind of proxy than gates.

• Finally, we need tools to compare more deeply pruning criteria, especially
since many of them, despite different theoretical backgrounds, tend to over-
lap. We should investigate the precise behavior of criteria, which weights do
they target and for which reasons, and whether or not the targeted weights
are really the most relevant to remove.

• Concerning removal methods:

• We mentioned that, for low pruning rates, all removal methods tend to be-
have the same. This calls for a thorough, rigorous and synthetic comparison
of the different families of pruning methods, from low to very high pruning
rates.

• We already mentioned that it could be worth testing different functions for
the increase of the penalty of SWD during training. More generally, studying
the impact of the pruning/penalization schedule during training could be
important, as it impacts both the relevance of the pruning criteria and the
ability of the network and the training to recover from the perturbation.

• Concerning structures:

• Few papers bother to mix together different types of structures, while we
mentioned that it could allow for a finer control over the performance and
the cost of the network. How exactly to balance such a mix is still to be
found.

• Also, since each type of structure can be more or less punitive in term of
performance, it would be interesting to study this fact more thoroughly—as
well as the difference in performance between local and global pruning, for
each type of structure, which however presupposes solving the theoretical
problems with global pruning.

• At a higher level, we mentioned that the largest possible pruning structures
made pruning very related to neural architecture search. Obviously, it would
be interesting to do a thorough synthesis of the common points between the
two fields and of what they can bring to each other.

• Concerning hardware implementation:

• We mentioned the necessity of finding a better implementation for the indexation-
addition operation; we gave the example of 1 × 1 convolutions. However,
if we replace additions with such layers, the logical continuity of this would
be to train these 1×1 convolutions and just consider this modified ResNet as
a new architecture, that replaces restrictive operations such as additions by
permissive, pruning-friendly layers. Once again, designing an architecture
that is explicitly made to be pruned is reminiscent of the supernets of neural
architecture search.

• We also mentioned the problem with the imbalance in pruning criteria be-
tween layers. Besides understanding the theoretical reasons behind such an
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imbalance, one possibility could be of designing criteria that are especially
made to bring energetic efficiency, which may not be completely equivalent
to finding the best parameters-to-accuracy ratio.

However, multiple discussions we had have a scope that is more general than one iso-
lated aspect of pruning. Here are some perspectives concerning pruning in general:

• First, the big question is whether or not pruning is able to produce architectures
(or sparse networks) that are more efficient than trivial ones trained from scratch.
This is a question that requires solving many fundamental problems with both cri-
teria and removal methods for a given pruning structure: every aspect of pruning
has to be tackled to answer this question. The fact that this essential question, that
basically tells if pruning is worth anything at all from a practical point of view,
is still unanswered and arguably impossible to answer, in the current state of our
knowledge, says a lot about the state of this literature.

• Presenting pruning as a displacement and a projection of L highlights a new way
of thinking both the criteria and the removal methods. Of course, dealing in term
of global optimums instead of locally relevant weights is difficult, as we already
said, but it also shows that the distribution of sparsity may actually be even more
important than the specific weights to prune, especially for structured pruning,
since neurons/filters are structurally interchangeable in a same layer—if we ne-
glect the (very significant) importance of initialization in training. Overall, this
avenue of exploration may lead to the fusion of the principle of criteria and of
removal methods, because both imply finding the best way to move inside the
landscape of L under a given constraint.

• Also, we saw that there is an intimate influence between theoretical questions,
such as that of criteria, and the direct practical impact on the cost of networks
on hardware. Indeed, structures have to be chosen depending on how well they
can be leveraged, the criteria depend on the structure and the methods have an
impact on the outcome of the criteria. Moreover, we showed that what is more
efficient in practice, in term of implementation, is not always what looks better
on paper (cf. using ScatterND operations for indexation-addition layers). This
means that both worlds should not be too separated, as isolating them can lead to
absurd outcomes—such as implementations that only get benefits counting from
a sparsity level of 95%, or on the other hand pruning structures that may not be
possible to leverage at all.

Finally, it is also possible to formulate expectations that may encompass beyond the
sole field of pruning:

• While non-structured pruning produces sparse networks, that are rarely obtained
through other methods than pruning, structured types of pruning are much more
akin to NAS—after all, some pruning criteria are already used in NAS. This means
that the two literature should not be too separated, since on the conceptual level,
they have a significant overlap. While this thesis did not explore NAS, we advo-
cate for a more thorough comparison of the two fields.

• Some papers, such as that of Hooker et al. [28], suggest that all compression meth-
ods do not have the same kind of impact on the robustness or performance of
networks; we can extend this reasoning on even their cost on hardware. Unfor-
tunately, such papers could only afford comparing prototypical and, therefore,
imperfect versions of each types of methods—and we saw that the overall moral
of this manuscript is that it is not always desirable to sum up a whole field with
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a single strawman. Studying in depth the relative impact of fundamentally dif-
ferent compression methods on the same metrics, and even their relative impact
on each other when applied conjointly, seems to be an essential topic of study,
especially for industrial applications.

• We considered in this manuscript pruning only as a compression method to pro-
duce efficient architectures. However, there are some fields, such as federated
learning, where pruning can be used to make networks lighter to transfer be-
tween clients (devices on which individual networks are trained on different data
sources) and servers (where networks can be fused and then sent back to clients
to update them) [229], [230].

• From a more theoretical point of view, pruning can raise interesting questions on
the relation between the contribution of each parameter and convergence when
crawling various projections of L; after all, when considering that any network
can be seen as the pruned version of a bigger one, we can consider that all the
possible architectures to train on a same problem each correspond to a different
projection of the same hypothetical super-L. Similarly, pruning, that considers
when and how to remove a parameter, implicitly raises the question of when
to add a parameter and how it will affect the relative behaviors of all the oth-
ers, while keeping in mind that all types of parameters are not expected to be-
have the same; for example, summing two different biases on the same channel
at the same time is purely redundant, while adding a new filter is much more
impactful—even though the order of these filters is not important, since channels
are interchangeable.

• We can also wonder, when considering that the goal of neural networks is to ap-
proximate functions, if, once said function is approximated, neural networks are
the best tool to keep representing such functions and if they could not be con-
verted into much less expensive kinds of algorithms. Indeed, neural networks
are renowned for their outstanding ability at converging through gradient de-
scent on extremely complex problems, but that does not mean that the solutions,
found using them, still have to be represented using a neural network. It is con-
ceivable that trying to squeeze expensive networks on unfitting hardware is a
chimera, because the answer from the start was that neural networks were not
meant to be the final product of learning.
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Titre : Élagage de réseaux de neurones convolutifs et son application 
aux systèmes embarqués de vision par ordinateur

Mots clés : Vision par ordinateur, Apprentissage profond, compression, élagage

Résumé : À l’état de l’art dans de nombreux
domaines tels  que la  vision  par  ordinateur,
les  réseaux  à  convolution  sont  devenus
indispensables  pour  de  nombreux  types
d'applications  industrielles,  comme  la
conception de véhicules autonomes – qui est
l’une des ambitions de Stellantis.  Toutefois,
les réseaux de neurones peuvent présenter
une  grande  complexité  algorithmique,
couplée  à  une  importante  empreinte
mémoire,  ce  qui  les  rend  potentiellement
inutilisables sur le type de matériel embarqué
que l’on peut trouver dans ces véhicules. Afin
de  réduire  cette  complexité,  tout  en
conservant  la  performance  d’origine  le
domaine de la  compression de réseaux de
neurones  a  proposé  plusieurs  types  de
méthodes,  comme  l’élagage  qui  vise  à
simplifier  les réseaux en retirant des parties
jugées  inutiles.  Cependant,  derrière  ce

principe  simple  se  cache  en  réalité  de
nombreuses  considérations  beaucoup
plus  subtiles  ayant  chacune  de  lourdes
implications  sur  l’efficacité  d’une  telle
méthode. Afin de mettre au clair toute la
complexité insoupçonnée de l’élagage et
de  répondre  à  la  question  de  son
efficacité  réelle,  ce  manuscrit  aborde
chaque  aspect  de  la  méthode  de  façon
thématique  et  en  discute  à  la  fois  les
fondements  théoriques  et  les
conséquences  pratiques.  Il  détaille
également  les  implications  académiques
et  industrielles de plusieurs contributions
de cette thèse, portant notamment sur la
suppression  de  paramètres,  les
interdépendances  entre  couches  et
l’efficacité  énergétique  des  réseaux
élagués.

Title : Convolutional Neural Networks Pruning and its Application to Embedded Vision Systems

Keywords : Computer Vision, Deep Learning, Compression, Pruning

Abstract  : Being  at  the  state  of  the art  in
many  domains,  such  as  computer  vision,
convolutional  neural  networks  became  a
staple for many industrial applications, such
as  autonomous  vehicles—about  which
Stellantis  have  ambitions.  However,  neural
networks  can  bear  a  great  algorithmic
complexity,  as  well  as  a  large  memory
footprint,  which  makes  them  potentially
unusable  on  embedded  hardware  such  as
those equipped on such vehicles. In order to
reduce  this  complexity,  while  keeping  the
performance  that  said  complexity  is
supposed  to  enable,  the  domain  of  neural
networks  compression  proposed  multiple
families  of  methods,  such  as  pruning  that

aims at simplifying networks by removing parts
deemed  unnecessary.  Yet,  the  apparent
simplicity of this principle actually hides many
subtle implications that have a decisive impact
on the efficiency of pruning. In order to clarify
the unsuspected complexity of this method and
to answer the question of its true efficiency, this
manuscript tackles thematically each aspect of
pruning  and  discusses  both  its  theoretical
foundations and its practical consequences. It
also  details  the  academical  and  industrial
implications of various original contributions of
this thesis about parameters supression, layers
interdependencies and the energetic efficiency
of pruned networks.
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