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Résumé : Au cours de la dernière décennie, l’ap-
prentissage profond a été à l’origine de percées
dans de nombreux domaines différents, tels que le
traitement du langage naturel, la vision par ordina-
teur et la reconnaissance vocale. Cependant, il est
désormais connu que les modèles basés sur l’ap-
prentissage profond sont extrêmement sensibles
aux perturbations, en particulier lorsque la pertur-
bation est bien conçue et générée par un agent
malveillant. Cette faiblesse des réseaux neuronaux
profonds tend à empêcher leur utilisation dans
des applications critiques, où des informations sen-
sibles sont disponibles, ou lorsque le système inter-
agit directement avec la vie quotidienne des gens.
Dans cette thèse, nous nous concentrons sur la pro-
tection des réseaux neuronaux profonds contre les
agents malveillants de deux manières principales.

La première méthode vise à protéger un modèle
des attaques en augmentant sa robustesse, c’est-
à-dire la capacité du modèle à prédire la bonne
classe même en cas d’attaques. Nous observons
que la sortie d’un réseau neuronal profond forme
une variété statistique et que la décision est prise
sur cette variété. Nous exploitons cette connais-
sance en utilisant la mesure de Fisher-Rao, qui cal-
cule la distance géodésique entre deux distributions
de probabilité sur la variété statistique auquel elles
appartiennent. Nous utilisons la mesure de Fisher-
Rao pour régulariser la fonction coût utilisée lors

de l’apprentissage et augmenter la robustesse du
modèle. Nous adaptons ensuite cette méthode à
une autre application critique: les réseaux intelli-
gents (Smart Grids), qui, en raison de divers be-
soins de la surveillance et de service, reposent sur
des composants cybernétiques, tels qu’un estima-
teur d’état, ce qui les rend sensibles aux attaques.
Nous construisons donc des estimateurs d’état ro-
bustes en utilisant des autoencodeurs variationnels
et l’extension de notre méthode proposée au cas de
la régression.

La deuxième méthode sur laquelle nous nous
concentrons et qui vise à protéger les modèles
basés sur l’apprentissage profond est la détection
d’échantillons adverses. En ajoutant un détecteur
au modèle, il est possible d’augmenter la fiabilité
des décisions prises par les réseaux neuronaux pro-
fonds. De multiples méthodes de détection sont
disponibles aujourd’hui, mais elles reposent sou-
vent sur un entraînement lourd et des heuristiques
ad-hoc. Dans notre travail, nous utilisons des outils
statistiques simples appelés les profondeur de don-
nées (data-depth) pour construire des méthodes de
détection efficaces supervisées (c’est-à-dire que les
attaques sont fournies pendant l’entraînement du
détecteur) et non supervisées (c’est-à-dire que l’en-
traînement ne peut s’appuyer que sur des échan-
tillons propres).
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Abstract: Over the last decade, Deep Learning has
been the source of breakthroughs in many different
fields, such as Natural Language Processing, Com-
puter Vision, and Speech Recognition. However,
Deep Learning-based models have now been reco-
gnized to be extremely sensitive to perturbations,
especially when the perturbation is well-designed
and generated by a malicious agent. This weakness
of Deep Neural Networks tends to prevent their use
in critical applications, where sensitive information
is available, or when the system interacts directly
with people’s everyday life. In this thesis, we fo-
cus on protecting Deep Neural Networks against
malicious agents in two main ways.

The first method aims at protecting a model
from attacks by increasing its robustness, i.e., the
ability of the model to predict the right class even
under threats. We observe that the output of a
Deep Neural Network forms a statistical manifold
and that the decision is taken on this manifold. We
leverage this knowledge by using the Fisher-Rao
measure, which computes the geodesic distance
between two probability distributions on the sta-

tistical manifold to which they belong. We exploit
the Fisher-Rao measure to regularize the training
loss to increase the model robustness. We then
adapt this method to another critical application:
the Smart Grids, which, due to monitoring and va-
rious service needs, rely on cyber components, such
as a state estimator, making them sensitive to at-
tacks. We, therefore, build robust state estimators
using Variational AutoEncoders and the extension
of our proposed method to the regression case.

The second method we focus on that intends
to protect Deep-Learning-based models is the de-
tection of adversarial samples. By augmenting the
model with a detector, it is possible to increase the
reliability of decisions made by Deep Neural Net-
works. Multiple detection methods are available
nowadays but often rely on heavy training and ad-
hoc heuristics. In our work, we make use of a simple
statistical tool called the data-depth to build effi-
cient supervised (i.e., attacks are provided during
training) and unsupervised (i.e., training can only
rely on clean samples) detection methods.
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Abstract

Over the last decade, Deep Learning has been the source of breakthroughs in many

different fields, such as Natural Language Processing, Computer Vision, and Speech

Recognition. However, Deep Learning-based models have now been recognized to

be extremely sensitive to perturbations, especially when the perturbation is well-

designed and generated by a malicious agent. This weakness of Deep Neural Net-

works tends to prevent their use in critical applications, where sensitive information

is available, or when the system interacts directly with people’s everyday life. In this

thesis, we focus on protecting Deep Neural Networks against malicious agents in two

main ways.

The first method aims at protecting a model from attacks by increasing its robust-

ness, i.e., the ability of the model to predict the right class even under threats. We

observe that the output of a Deep Neural Network forms a statistical manifold and

that the decision is taken on this manifold. We leverage this knowledge by using the

Fisher-Rao measure, which computes the geodesic distance between two probability

distributions on the statistical manifold to which they belong. We exploit the Fisher-

Rao measure to regularize the training loss to increase the model robustness. We

then adapt this method to another critical application: the Smart Grids, which, due

to monitoring and various service needs, rely on cyber components, such as a state

estimator, making them sensitive to attacks. We, therefore, build robust state estima-

tors using Variational AutoEncoders and the extension of our proposed method to

the regression case.

The second method we focus on that intends to protect Deep-Learning-based

models is the detection of adversarial samples. By augmenting the model with a

detector, it is possible to increase the reliability of decisions made by Deep Neural

Networks. Multiple detection methods are available nowadays but often rely on

heavy training and ad-hoc heuristics. In our work, we make use of a simple statistical

tool called the data-depth to build efficient supervised (i.e., attacks are provided

during training) and unsupervised (i.e., training can only rely on clean samples)

detection methods.
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Résumé

Au cours de la dernière décennie, l’apprentissage profond a été à l’origine de percées

dans de nombreux domaines différents, tels que le traitement du langage naturel, la

vision par ordinateur et la reconnaissance vocale. Cependant, il est désormais connu

que les modèles basés sur l’apprentissage profond sont extrêmement sensibles aux

perturbations, en particulier lorsque la perturbation est bien conçue et générée

par un agent malveillant. Cette faiblesse des réseaux neuronaux profonds tend

à empêcher leur utilisation dans des applications critiques, où des informations

sensibles sont disponibles, ou lorsque le système interagit directement avec la vie

quotidienne des gens. Dans cette thèse, nous nous concentrons sur la protection

des réseaux neuronaux profonds contre les agents malveillants de deux manières

principales.

La première méthode vise à protéger un modèle des attaques en augmentant sa

robustesse, c’est-à-dire la capacité du modèle à prédire la bonne classe même en

cas d’attaques. Nous observons que la sortie d’un réseau neuronal profond forme

une variété statistique et que la décision est prise sur cette variété. Nous exploitons

cette connaissance en utilisant la mesure de Fisher-Rao, qui calcule la distance

géodésique entre deux distributions de probabilité sur la variété statistique auquel

elles appartiennent. Nous utilisons la mesure de Fisher-Rao pour régulariser la

fonction coût utilisée lors de l’apprentissage et augmenter la robustesse du modèle.

Nous adaptons ensuite cette méthode à une autre application critique : les réseaux

intelligents (Smart Grids), qui, en raison de divers besoins de la surveillance et de

service, reposent sur des composants cybernétiques, tels qu’un estimateur d’état,

ce qui les rend sensibles aux attaques. Nous construisons donc des estimateurs

d’état robustes en utilisant des autoencodeurs variationnels et l’extension de notre

méthode proposée au cas de la régression.

La deuxième méthode sur laquelle nous nous concentrons et qui vise à protéger

les modèles basés sur l’apprentissage profond est la détection d’échantillons ad-

verses. En ajoutant un détecteur au modèle, il est possible d’augmenter la fiabilité

des décisions prises par les réseaux neuronaux profonds. De multiples méthodes de

détection sont disponibles aujourd’hui, mais elles reposent souvent sur un entraîne-

ment lourd et des heuristiques ad-hoc. Dans notre travail, nous utilisons des outils

statistiques simples appelés les profondeur de données (data-depth) pour construire
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des méthodes de détection efficaces supervisées (c’est-à-dire que les attaques sont

fournies pendant l’entraînement du détecteur) et non supervisées (c’est-à-dire que

l’entraînement ne peut s’appuyer que sur des échantillons propres).
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CHAPTER 1. INTRODUCTION

1.1 General Context

1.1.1 Deep Neural Networks: powerful tools with loopholes

Deep Neural Networks have allowed impressive breakthroughs in different fields,

such as Natural Language Processing (NLP) or Computer Vision (CV). Deep Learning

(DL)-based systems are more and more used in many applicative domains, as in

medicine [IQBAL and collab., 2021], autonomous cars [MOZAFFARI and collab., 2020],

bots [LOHOKARE and collab., 2020], or ad recommendations [DU and collab., 2021]

among others. Such Artificial Intelligence (AI)-based systems can access critical

and personal data about individuals, such as their medical history or credit card

information, and their decision can impact our society or directly affect individuals’

lives (for example, the autonomous car crashing with passengers inside).

In this context, many concerns about the potential failures of large neural net-

works, which are not trustworthy enough, limit their adoption. They are due to the

poor understanding of the behavior of large neural networks, which are often seen as

black boxes. An essential line of research with high industrial and societal impacts

consists in designing tools to make them more reliable. These tools are crucial to

ensure the wide adoption of DL-based systems. Among the problems of high interest,

the undertaken research is expected to take into consideration the following aspects:

• Ensure that no transmission of data to an unauthorized recipient (data leakage)

is possible, i.e., increasing the global system security.

• If it is impossible, at least ensure that the potentially leaked data does not

contain sensitive information, i.e., increasing data privacy.

• Increase the reliability of the deep neural network’s decision process, i.e.,

finding ways to determine whether the user can trust the decision process.

The primary focus of this thesis is on security aspects. These topics are extensively

studied in the research community, as illustrated by the continuous growth in the

number of research works addressing security aspects the machine learning which

have been published in top-tier AI conferences. In what follows, we provide the

reader an overview of some of the main issues that should be addressed to develop

safe and trustworthy DL-based systems.

1.1.2 How to ensure no private information leakage

In the privacy-related domain, the main goal is to ensure that no sensitive informa-

tion is available, even if malicious agents retrieve data. Many different techniques

have been studied, and can be summarized in three main categories, each acting
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on one of the phase on the DL-based system deployment: modifying the data [ER-

LINGSSON and collab., 2014; GOLDWASSER and MICALI, 1984; HUANG and collab.,

2017; SWEENEY, 2002], acting on the training phase [HESAMIFARD and collab., 2017;

IYENGAR and collab., 2019; MOHASSEL and ZHANG, 2017], or using the inference out-

puts [GILAD-BACHRACH and collab., 2016; MIRESHGHALLAH and collab., 2020a; RIAZI

and collab., 2018; WANG and collab., 2018]. We refer the reader to [MIRESHGHAL-

LAH and collab., 2020b] for a more extensive survey about the threats and defensive

techniques regarding privacy.

1.1.3 How to increase our trust on DL-based results

Another security-related problem includes measuring and ensuring the reliability

of DNNs’ decisions. In this field, the goal is to find ways to increase our trust in

the final decision made by a DNN. This problem is particularly interesting as large

neural networks often perform well when limited to input data whose probability

distribution is close to the training dataset on which the models were trained. This

can be an essential source of dysfunction in real-world contexts. Indeed, data char-

acteristics are constantly evolving and particularly subject to distributional shifts.

At test time, two main scenarios can be distinguished, depending on the source of

the input. In the first scenario, we cannot be sure whether the test sample is from

the original data source or whether it comes from another environment. We usually

call it the out-of-distribution (OOD) scenario. In contrast, in the second scenario,

we are sure that the input sample is from the original data distribution . However,

we do not know how much we can trust the system’s decision. We usually call it the

in-distribution scenario.

How to ensure trust in the environment. Let us consider the case where the

system is deployed in a potentially altered environment, i.e., out-of-distribution

samples can be fed to the system. Most methods in the OOD literature, to ensure

that the input of a deep neural model comes from the original environment, focus

on deploying a detector that distinguishes between samples that originate from the

original environment and samples that do not. As in the privacy-related fields, OOD

detectors can affect different phases of the classifier’s deployment procedure. First,

the detection method can retrain a classifier for which distinguishing between natural

and OOD samples is easier, using techniques from contrastive training [HENDRYCKS

and collab., 2019; WINKENS and collab., 2020], regularization [HEIN and collab., 2019;

LEE and collab., 2021; NANDY and collab., 2021], generative learning [REN and collab.,

2019; SCHLEGL and collab., 2017; VERNEKAR and collab., 2019; XIAO and collab.,

2020; ZHANG and collab., 2021] or ensemble learning [CHOI and JANG, 2018; VYAS

and collab., 2018]). It is also possible for the OOD detection method to only interact

with the model outputs. It can be directly at the output layer [HENDRYCKS and
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GIMPEL, 2017; HSU and collab., 2020; LIANG and collab., 2018; LIU and collab., 2020],

or at different feature levels [GOMES and collab., 2022; KIRICHENKO and collab.,

2020; LEE and collab., 2018; QUINTANILHA and collab., 2019; SASTRY and OORE, 2020;

ZISSELMAN and TAMAR, 2020].

How to ensure trust in the actual decision. There exists another interesting

domain where the goal is to determine whether, in perfect conditions (the system

is working in its training environment), we can trust the model to make adequate

decisions. One straightforward method is to directly rely on the confidence of the DL

model [HENDRYCKS and GIMPEL, 2016], i.e., the higher the confidence is, the lower

the uncertainty and the better we can trust the prediction. Since then, different works

have tried to develop tools that better catch the relationship between uncertainty

and confidence (MC-dropout [GAL and GHAHRAMANI, 2016], Laplace Approximation

[DAXBERGER and collab., 2021], SWAG [MADDOX and collab., 2019], Deep Ensembles

[LAKSHMINARAYANAN and collab., 2017], DUQ [VAN AMERSFOORT and collab., 2020],

DOCTOR [GRANESE and collab., 2021]), or define new confidence scores using auxil-

iary models (TrustScore [JIANG and collab., 2018], ConfidNet [CORBIÈRE and collab.,

2019]).

1.1.4 How to protect against malicious agents

A third scenario actually exists: what happens if a malicious agent interacts with

the system? As a matter of fact, all computational-based systems face the threat of

malicious agents that try to disrupt their normal functioning, and cyber-security

is a growing field in many communities. It is particularly true in DL as DNNs have

been proven to be extremely sensitive to even the slightest well-designed disturbance

[SZEGEDY and collab., 2014]. This phenomenon has been shown to be a feature of

Deep Neural Networks [ILYAS and collab., 2019]. It is, therefore, crucial to develop

techniques to protect the systems against them.

How to handle threats. Tampering with the input can be achieved in multiple

ways. One can, for example, add a specific transformation to the input to disrupt a

model’s behavior. If the transformation is chosen randomly, we talk about corruption

[HENDRYCKS and DIETTERICH, 2018; SCHNEIDER and collab., 2020]. However, if the

tampering is done according to a specific model, under a specific environment, we

talk about adversarial attacks. Multiple threat methods have been presented over the

years [CARLINI and WAGNER, 2017; MADRY and collab., 2018; PAPERNOT and collab.,

2016c; SZEGEDY and collab., 2014]. They are extremely powerful at fooling a DNN,

and protecting against them has been a hot topic since 2018. Systems deployed

without any defense against those kinds of attacks are bound to fail, which could

cause massive issues if the system is used in critical conditions. For example, in 2022,

XIE and collab. [2022] successfully attacked a stock prediction model.
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1.1.5 Focus of this manuscript

All of the aforementioned issues are of extreme importance if we want to develop

trustworthy AI systems.

However, although protecting a system from OOD samples and improving its

privacy could be enough in some cases, in other cases, especially in critical systems,

the vulnerability of DL-based systems to adversarial attacks would prevent their

use. In addition, improving the resilience of deep neural networks against attacks

can be seen as a worst-case scenario and, therefore, is the most challenging and

demanding task. Finally, studying the effect of attacks on DNNs decisions gives

us theoretical insights into their weaknesses, and understanding why a DL-based

system is fooled can help us understand how a model learns, which is a necessary

step towards Artificial General Intelligence (AGI). For all those reasons, we have

decided to focus on protecting DL-based systems against malicious agents.

While a plethora of very efficient and relatively easy methods to craft attacks have

been developed over the years, the matter of defending against them is an arduous

task, and adequate protection methods are not easily found. We, therefore, decided

to focus our work on how to protect DL-based decision processes in the presence of

adversarial attacks.

In the following, we will present the general threats’ goal and the motivation

behind our work.

1.2 Interacting with Malicious Agents: Attacking and

Defending

1.2.1 Global Context

As previously mentioned, AI-based systems all face the issue of handling action from

malicious agents. In this setup, there exist two types of scenarios of interest. The

first scenario deals with the generation of threats to fool Deep Neural Networks,

i.e. behaving as the malicious agent. The second scenario consists in acting as a

defender.

The case of attacking neural networks has been widely studied, ending up with

many very effective methods that cause DNN-based systems to completely collapse

[CARLINI and WAGNER, 2017; CROCE and HEIN, 2020; MOOSAVI-DEZFOOLI and collab.,

2016].

However, while many methods have also been presented in the defender role,

very few techniques are acknowledged to be truly efficient at handling malicious

agents [CARLINI and WAGNER, 2017; TRAMER and collab., 2020]. The role of the

defender is to make the attacker’s role harder. A good defense is resilient to attackers
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until the capacity, knowledge, or time required for the attacker to break the defense

is beyond reasonable.

Given a set of assumptions (for example, the maximal allowed perturbation), it is

possible to build defenses that will not collapse [CARMON and collab., 2019; MADRY

and collab., 2018; ZHANG and collab., 2019], but there is still margin for improvement,

as the performances are not perfect.

We, therefore, have chosen to focus this thesis on crafting new defenses to counter

the action of malicious agents.

1.2.2 Notations and problem definition

Adversarial attacks are known to fool any type of DNN-based systems, as attacks for

image segmentation [HENDRIK METZEN and collab., 2017; XIE and collab., 2017],

object recognition [XIE and collab., 2017], speech recognition [CISSE and collab.,

2017], recurrent neural networks [PAPERNOT and collab., 2016a], reinforcement learn-

ing [LIN and collab., 2017], generative models [KOS and collab., 2018], variational

autoencoder [TABACOF and collab., 2016], language classification [ALZANTOT and col-

lab., 2018; LI and collab., 2020] have been created. Indeed, there exist plenty of

applications sensitive to perturbed inputs. Still, techniques developed for image clas-

sification can be applied to any sort of application, such as NLP, image segmentation,

or signal processing. In addition, the literature on attacking image classifiers is the

most developed among all the possible applications. Therefore, we decided to focus

mostly on defending against attacks in the image classification setting.

In what follows, we formalize the problem of image classification.

The goal of an image classifier is to predict to which class a given input belongs

among a certain number of known classes (see Section 2.1 for a quick overview of

the Deep Learning methodology).

Notations. First, let us define two spaces: an input space X ⊂Rd and a label space

Y = {1, . . . ,C}. In the classical supervised learning problem, data are composed of a

pair (x, y) ∈X ×Y , where x is an image, and y is its associated label. The unknown

joint data distribution is denoted by p(x, y).

Let us also define the L-layer classifier fθ parametrized by θ ∈Θ. Let f l
θ

: X →Rdl

with l ∈ {1, . . . ,L}, denote the output of the l-th layer of the classifier, where dl is the

dimension of the latent space induced by the l-th layer. The class prediction, i.e.,

the final decision of the classifier, is obtained from the L-th layer softmax output as

follows:

fθ(x) = f L
θ (x)≜ arg max

c∈Y

qθ (c|x) with qθ (·|x) = softmax( f L−1
θ (x)).
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1.2.3 Attacking a neural network

Context. As mentioned earlier, this thesis focuses on defending against adver-

sarial attacks. We will start by defining the threat objective to better understand key

challenges.

A brief history. Adversarial samples are well-designed modifications of a given

input that aims at disrupting the functioning of a DNN-based system. In 2014,

SZEGEDY and collab. [2014] found that this kind of perturbation, already known in

the ML community, also disrupted neural networks. Since then, a variety of methods

to generate potent attacks have been developed [CARLINI and WAGNER, 2017; CROCE

and HEIN, 2020; GOODFELLOW and collab., 2015; MADRY and collab., 2018; MOOSAVI-

DEZFOOLI and collab., 2016; PAPERNOT and collab., 2016c; SZEGEDY and collab.,

2014].

Problem Formulation. The adversarial generation problem has been defined as

follows [SZEGEDY and collab., 2014]. For a given input x with associated label y , we

want to find an adversarial example x′ according to:

x′ = argmin
x′

∥x′−x∥p

s.t. fθ(x′) = t (1.1)

x′ ∈ [0,1]d ,

where t can be a specific class, i.e., targeted attacks, or any class other than y , i.e.,

untargeted attacks. The condition x′ ∈ [0,1]d enforces that the new created sample is

still an image.

Having this weakness exposed, researchers started to try to develop defenses

to protect deep neural networks. These defenses can be separated into two main

groups: robust models, where the goal is to preserve the decision integrity, and

detection methods, where the goal is to ensure that the input is clean.

1.2.4 Defense 1: protecting DNNs’ decision integrity against threats

Context. Following the emergence of the threat domain, researchers started

to focus on how to defend against these attacks. The first method that caught the

community’s eye is crafting robust models, i.e., models which make the right decision

even under attack.

A brief history. While presenting the generalization of adversarial samples to

DNN models, SZEGEDY and collab. [2014] is also the first to mention that back-feeding

malicious samples to train a model can help with dealing with them. GOODFELLOW

and collab. [2015] is the first to mention Adversarial Training. Since then, a wide

variety of defense mechanisms to increase robustness has been proposed [CARMON
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and collab., 2019; MADRY and collab., 2018; PAPERNOT and collab., 2016b; WANG

and collab., 2019; ZHANG and collab., 2019], some of which have been proven ineffi-

cient [CARLINI and WAGNER, 2017].

Problem Formulation. Adversarial training [GOODFELLOW and collab., 2015] is

the most commonly used defense and was the first to be recognized as truly effective.

The idea behind this method is as follows. To classify adversarial examples correctly,

it is possible to train a classifier on this specific task. At each training iteration,

perturbations are generated, and the model learns to classify them with their true

associated label, i.e., the label of the original image.

The classifier, therefore, tries to solve the following optimization problem:

min
θ∈Θ

L(θ), (1.2)

where L(θ) is the risk function used to train the model.

Any risk function can be used to train the model. In their original paper, GOODFEL-

LOW and collab. [2015] proposed to regularize the natural loss with another computed

on the Fast-Gradient-Sign-Method attack. However, using this method has been

shown to be inefficient. Later, MADRY and collab. [2018] chose to use the expectation

of the classical cross-entropy but applied it to the adversarial sample instead of the

natural one, i.e.,

L(θ) = Ep(x,y)
[

max
x′:∥x′−x∥p≤ε

− log qθ(y |x′)
]
. (1.3)

This method is the first one that has been proven efficient. Further improve-

ments of the original method have been proposed [CARMON and collab., 2019; WANG

and collab., 2019; ZHANG and collab., 2019]. One of them ([ZHANG and collab., 2019])

defines a new risk function based on the trade-off between correctly classifying the

clean samples and ensuring natural and adversarial samples are similarly classified.

The first part is ensured through the minimization of the classical cross-entropy risk.

The second is through the minimization of the Kullback-Leibler divergence between

natural and adversarial predictions. The trade-off is controlled using λ, which is a

hyperparameter. To summarize,

L(θ) = Ep(x,y)
[− log qθ(y |x)

]+λEp(x)
[

max
x′:∥x′−x∥p≤ε

KL(qθ(·|x)||qθ(·|x′))
]
, (1.4)

where KL(qθ(·|x)||qθ(·|x′)) = Eqθ(y |x)
[ qθ(y |x)

qθ(y |x′)
]

is the Kullback-Leibler (KL) divergence

between the clean and the disturbed predictions.

The Kullback-Leibler divergence between two probability distributions p and q

is a statistical measure measuring how the two probability distributions differ from

one another. In other words, it can be seen as how much uncertainty we can expect

from q if we know p.
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In the case of adversarial learning, finding the disturbance that maximizes the

KL divergence between the natural and the perturbed samples will tend to create

samples whose predictions are independent of the clean predictions, while mini-

mizing it will force the model to learn how to find a prediction function keeping the

information shared between the clean and the attacked samples.

Given a fixed model (i.e., fixed θ), the family {qθ(·|x) : x ∈X } forms a statistical

manifold. DL-based systems’ output space therefore forms a manifold and the final

decision of this given model is taken on it. Therefore, we can wonder: How can we

use the internal structure of DNN’s output space to improve its robustness ?

1.2.5 Defense 2: ensuring DNNs’ input integrity

Context. The second main type of defense consists in ensuring that the input

of the DNN is valid (i.e., is not corrupted). To do so, it is possible to craft detection

methods to deploy on top of the model to protect.

A brief history. One of the first methods to detect adversarial samples is BENDALE

and BOULT [2016], that only uses the output of the penultimate layer to protect their

network. Since then, methods have started to use different mechanisms to detect

adversarial samples, from the study of input statistics [KHERCHOUCHE and collab.,

2020], to the use of different model outputs [LI and LI, 2017; MA and collab., 2018],

to the training of ad-hoc models [GONG and collab., 2017; GROSSE and collab., 2017;

MENG and CHEN, 2017], to the analysis of the changes in output when the input is

modified [HU and collab., 2019; XU and collab., 2018].

Problem Formulation. Crafting a detector is equivalent to finding a function g :

Rd → {0,1} that will associate to the normal behavior the class 0 and the abnormal

one the class 1. In practice, we want to find a dissimilarity function s : Rd →R, that

will output an abnormality score. The higher the score, the more likely the input is

corrupted. Using a thresholding step, we can link g and s for a given input x and a

given threshold γ, thanks to:

g (x) =1s(x)>γ =
0 if s(x) ≤ γ

1 if s(x) > γ.
(1.5)

Finding an appropriate scoring function to detect adversarial attacks is still an

open question.

Depending on the paradigm, the detection methods can be either supervised, i.e.,

at training time, the detector has information about the attacker, or unsupervised,

i.e., the detector only has access to the natural training samples. In both cases,

detection methods tend to rely on ad-hoc heuristics [FEINMAN and collab., 2017;

KHERCHOUCHE and collab., 2020; XU and collab., 2018], or on heavy training [MA
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and collab., 2018; MENG and CHEN, 2017; RAGHURAM and collab., 2021].

To bypass these limitations, we tried to answer a simple research question: How

can we craft an efficient and effective detection method based on simple tools ?

1.3 Contribution and Outlines

During this Ph.D., as mentioned in Section 1.2, we addressed two distinct questions.

• Q1: How can we use the internal structure of DNN’s output space to improve

its robustness?

• Q2: How can we craft an efficient and effective detection method based on

simple tools?

1.3.1 How can we use the internal structure of DNN’s output space

to improve its robustness ?

In order to address Q1, we studied the impact of a new information-geometric

measure to improve the robustness of neural networks: the Fisher-Rao measure.

We investigate the problem of optimizing the trade-off between accuracy and

robustness. We derive an explicit characterization of the Fisher-Rao Distance (FRD)

based on the information-geometric properties of the soft predictions induced space

of the neural classifier and propose a new formulation of adversarial defense, called

FIsher-rao REgularizer (FIRE).

In addition, we apply a similar method to another practical domain: the state

estimation of Smart Grid systems. Indeed, to ensure the appropriate functioning of

the electrical grid, monitoring its behavior is crucial. To perform that, we usually

estimate the states of the network thanks to the measurable physical quantities

available by using a state estimator [ABUR and EXPOSITO, 2004]. However, this cyber

component of the power grid makes it highly vulnerable to attacks, such as False Data

Injection Attacks (FDIAs) [LIU and collab., 2011], like in Ukraine in 2015 [ALDERSON

and DI PIETRO, 2016] when a cyberattack in the electrical network caused a blackout

for several hours. We, therefore, extended FIRE method to craft state estimator robust

to attacks.

1.3.2 How can we craft an efficient and effective detection method

based on simple tools?

In order to address Q2, we first had to find a simple tool that allows us to distinguish

between natural and attacked behaviors.
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In the statistical community, there exists a simple tool called the data-depth,

first introduced by TUKEY [1975], that computes a center-outward ordering of a new

sample with respect to a given probability distribution. This can be seen as how close

is this new sample to the examples of a known probability distribution? Since then,

multiple definitions of data-depths have been proposed, including halfspace depth

[TUKEY, 1975], the simplicial depth [LIU, 1990], the projection depth [LIU, 1992] or

the zonoid depth [KOSHEVOY and MOSLER, 1997]. We refer the reader to [STAERMAN,

2022] for an in-depth explanation of the data-depths.

In our work, we decided to use the data-depths to create new methods to detect

adversarial examples, depending on the available setting. We studied the detection

capabilities of our proposed method under different threat scenarios and provided

insights into why our proposed method outperforms others.

1.3.3 Outlines

The rest of this manuscript is organized as follows.

In Chapter 2, we present the different state-of-the-art methods to craft, defend

against and detect adversarial examples.

Next, we present our solutions to increase the trade-off between natural perfor-

mances and robustness in Part I. It is divided as follows.

• In Chapter 3, we present the Fisher-Rao distance in the case of classification,

define the new robust risk based on this information-geometric distance, and

experimentally compare it to previously used ones.

• In Chapter 4 and Chapter 5, we extended the method presented in Chapter 3 to

the Smart Grid problem. After presenting the state estimation problem, we give

a quick review of the available techniques to attack and defend against attacks.

Finally, we present our proposed method to defend against attack using the

Fisher-Rao distance, first under linear approximation, then in the general case.

In in Part II, we present our proposed data-depths detection methods. It is

organized as follows.

• In Chapter 6, we describe our data-depth method in the case of supervised

adversarial detection. In this case, the defender can access full or partial knowl-

edge about the threats it will encounter. We show that thanks to particular

characteristics of the data-depths, our method can remain efficient against

attackers with full knowledge about the deployed defense mechanism.

• In Chapter 7, we propose a fully unsupervised detection method. In this case,

the defender has no knowledge whatsoever about whether it will be attacked.
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We also show that our approach remains partially efficient against attackers

with complete knowledge about the deployed defense mechanism.

Finally, in Chapter 8, we present our concluding remarks, the limitations of our

work, and the interesting future work that could be done based on our work.
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Chapter 2

Preliminaries

Chapter 2 Abstract

This thesis explores the use of statistical and information-geometric tools to

improve Deep Neural Networks security when facing threats. This chapter

aims to provide the reader with the necessary background to apprehend the

different contributions of this thesis. In this chapter, after a quick review of the

Deep Learning background, we present an overview of the current methods

to (i) attack neural networks, (ii) protect the neural network’s decisions and

(iii) detect attacks. We will present in more detail the various methods used to

either attack our proposed defenses or to compare ourselves. We first focus on

images, and then present the Smart Grid case. Finally, we quickly present the

two main tools we use throught this thesis: the Fisher-Rao distance and the

data-depths.
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2.1 Deep Learning Background

General supervised models. Let us first recall the previous notations. Let us consider

an input space X ⊂ Rd , where d is the dimension of the input, and output space

Y .We define as p(x, y) the true joint data distribution.

Let us define a deep neural model fθ parametrized by θ ∈Θ with L layers. The

output of each layer l is denoted by f l
θ

(·) and belongs in Rdl where dl is the output

dimension of the layer. Therefore, we have:

fθ(x) = f L
θ (x). (2.1)

Classification. In the case of supervised classification, the input space X ⊂Rd ,

and the output space Y = {0, . . . ,C}. In that case, the (L-1)th-layer is called the logits

layer, and the Lth layer output the predicted class of a given input. The final decision

of the classifier fθ can be written as follows for a given input x:

f L
θ (x) = argmax

c∈Y
qθ(c|x) (2.2)
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where qθ(·|x) = softmax( f L−1
θ

(x)) can be seen as soft-probabilities, i.e., each compo-

nent can be seen as the probability of the input belonging to this specific class.

Specificities of the Computer Vision problem. In the case of CV, the inputs are

three-dimensional images, and therefore the input space X ⊂Rw×h×c where w and

h are the width and the height of the input image, and c is the number of channels (1

for gray-scaled images, 3 for RGB images).

Regression. In the case of supervised regression, the input space X ⊂ Rd , and

the output space Y ⊂Rm . The main goal of regressors is to estimate a continuous

quantity y ∈Y using observations x.

Architectures.

Multi-Layer Perceptron (MLP). One of the first and most classical neural network

architectures is what we call the Multi-Layer Perceptron [HAYKIN, 1994]. It is a feed-

forward model, where the information goes only in one way (i.e., from the input to

the output). It is composed of at least three layers of aggregated neurons. A layer,

composed of multiple neurons, each connected to each neuron of the previous and

the next layer, is called a fully-connected layer. Each neuron k in each layer l is char-

acterized by its learnable weights wl ,k ∈ Rdl−1 and biases bl ,k ∈ R. The relationship

between the input of the neuron k in each layer l and its output can be summarized

as follows:

f l ,k
θ

(x) =σ(wl ,k · f l−1
θ (x)+bl ,k ), (2.3)

whereσ is a non-linear function called the activation function (for example, the ReLU

function [NAIR and HINTON, 2010]). The global structure of an MLP is presented in

Figure 2.1. The output of each layer is then the aggregation of the output of each

neuron, i.e., f l
θ

(x) = [ f l ,1
θ

(x), f l ,2
θ

(x), . . . , f l ,dl−1
θ

(x), f l ,dl
θ

(x)].

This type of architecture requires 1-dimensional inputs. To use it in image clas-

sification, it would therefore be necessary to transform images into 1-dimensional

variables. However, the spatial dependencies of the images would be lost, and for

complicated CV tasks, losing such important information could lead to poor results.

This is one of the reasons why Convolutional Neural Networks (CNNs) have been

considered.

Convolutional Neural Networks. One of the main characteristic of Convolutional

Neural Networks (CNNs) [LECUN and collab., 1989] is that they keep spatial depen-

dencies of inputs. They are composed of two main parts. The first one extracts

the important features of the input, and the second learns a good way to predict
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Figure 2.2: CNN structure. More specifically, LeNet’s [LECUN and collab., 1989] structure.
Source

Figure 2.3: Representation of a ResNet residual block, source: [HE and collab., 2016], Fig.2

the input’s class from those features. While the second part is composed of fully-

connected layers, the first one is composed of convolutional layers (see Figure 2.2

for an illustration of CNN’s structure). A convolutional layer l is characterized by

the filters {wl ,k }k∈{1,...,K} that compose it, their size and number K. The parameters

of each filter are learnable, and the output of the layer is the convolution between

its input and each of the filters of the layer. We can write the convolutional layer l ’s

operation as:

f l
θ(x) = ( f l−1

θ ∗wl ,k )(x) (2.4)

CNNs have gained much importance following the introduction of AlexNet

[KRIZHEVSKY and collab., 2012], the first model to vastly outperform previous models

on the ImageNet dataset. A few years later the ResNet architecture [HE and collab.,

2016] was introduced to overcome some of the issue that extremely deep CNN could

face during training (vanishing gradients, for example).

ResNets. The ResNet architecture [HE and collab., 2016] is one of today’s most

commonly used architecture for image classification tasks. They introduce a new
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Figure 2.4: Representation of the Vision Transformer’s structure. Source: [DOSOVITSKIY

and collab., 2020], Fig.1

type of layer called the Residual Block (see Figure 2.3), which not only considers the

representation of the input after a few layers but also the original input. Using such

architecture allows us to train deeper networks and requires fewer deep parameters

than the previous architecture to achieve similar performances.

Transformers. To further improve the image classification results on complicated

tasks, the Vision Transformer (ViT) has been introduced. Transformers were initially

used in Natural Language Processing applications (NLP) [DEVLIN and collab., 2019].

Transformers were originally introduced for neural machine translation [VASWANI

and collab., 2017]. They are composed of multiple transformer cells. The transformer

cell is based on self-attention [LIN and collab., 2017] and can be easily parallelized,

contrarily to previous used recurrent cells (e.g., LSTM [HOCHREITER and SCHMID-

HUBER, 1997], GRU [CHUNG and collab., 2014]) in seq2seq models [CHO and collab.,

2014]. The input of a transformer in NLP applications is a sentence, where each

word is one of its basic units. In CV applications, the basic unit is the pixel. However,

applying the transformer using the pixel as a basic unit is too time and computa-

tionally expensive. The first successfully trained Vision Transformer [DOSOVITSKIY

and collab., 2020] considered a patch of the input as the basic unit instead of the pixel.

They separated their images into 16x16 patches to feed to the model. An overview of

the structure of a ViT is presented in Figure 2.4.

Overall, ViTs work as follows. After patching the input image, a linear embedding

of each patch is performed, and a position embedding is added. The transformed

patches and positions are later fed to the transformer encoder, which is composed

of L transformers cells (left side of Figure 2.4 for a detailed presentation of the struc-

ture of a transformer cell), which extract the features of the embeddings. After the

encoder, as in MLP or CNNs, fully-connected layers are then used to extract useful

classification information and output the soft-probabilities qθ(·|x).
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Since their first successful use, ViTs have become the state-of-the-art architecture

in classification tasks.

Other architectures. Even though our work mainly focuses on supervised vision

classification, we would also like to mention a special case of unsupervised archi-

tectures: the AutoEncoders (AE) [BOURLARD and KAMP, 1988]. AE aims at finding

a meaningful representation z of an input x without supervision. To do so, it will

first learn an encoder function fθ1 , where z = fθ1 (x) then try to reconstruct x from z

through the training of a decoder function fθ2 , where x̂ = fθ2 (z). A good AutoEncoder

will output as x̂ a good approximation of x (i.e., fθ2 ( fθ1 (x)) ≈ x) and as z a meaning-

ful representation of x. The quality of the reconstruction will be controlled by the

minimization of a reconstruction loss, while the quality of the representation will be

controlled by the minimization of a regularization term. This type of structure is used

in many fields, such as data compression [CHENG and collab., 2018; THEIS and collab.,

2017], feature extraction [GOGNA and MAJUMDAR, 2019], image denoising [VINCENT

and collab., 2008; YASENKO and collab., 2020], for examples.

Variational AutoEncoders [REZENDE and collab., 2014]. Variational AutoEncoder

(VAE) is a particular case of AutoEncoders where instead of learning directly the

representation z of x, the model learns the parameters of the probability distribution

of the representations. The representation is then sampled from the distributions,

and the decoder tries to reconstruct x from the sampled representation.

The training procedure is key to having reasonably good performing models,

whether for classification or regression tasks. The following will present the classical

training losses, evaluation metrics, optimizers, and regularization methods used in

classical DL problems.

Training procedures. We will first focus on the classical training losses and risks

(i.e., the training risk is the expectation over the data of the training loss), which are

highly related to the evaluation metrics.

The goals of classifiers and regressors are widely different, therefore, their evalu-

ation metrics are as well. In regression tasks, the goal is to approximate a quantity,

usually continuous. An Lp -norm difference between the estimated and the true

quantity works well to quantify the performances of a regressor. Depending on

the specificities of the problem, L1 or L2-norms are usually employed. Defined

and differentiable almost everywhere (not at 0 for the L1-norm), their expectations

over the data are both suitable risks to train regression models and evaluate their

performances.

Defining suitable training losses and risks is more challenging in classification

tasks. The natural way to assess the performances of a given classifier is by counting

the number of times it predicts the right class for given inputs. This metric is called
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the accuracy (acc.) and can be computed as follows:

acc. = 1

nsamples

∑
i=1,··· ,nsamples

1{ fθ(xi )=yi }, (2.5)

where yi is the true label of the input xi . Yet, this quantity is not suitable as a training

risk due to its non-differentiability. The cross-entropy risk has been chosen as a

differentiable surrogate of the accuracy. It works efficiently in classification tasks and

has interesting connections to other information theory measures. The cross-entropy

(CE) risk is defined as, for a given input classifier fθ with soft-probability distribution

qθ:

CE(θ) = Ep(x,y)
[− log qθ(y |x)

]
. (2.6)

Once the training risk is chosen, the DL models are trained using classical op-

timizers, such as the Stochastic Gradient Descent (SGD) optimizer, the Adaptive

Gradient Descent (AdaGrad), the Adaptive Momentum (Adam), or the Root Mean

Square Propagation (RMS Prop.) optimizer, chosen depending on the specificities

of the problem. To avoid overly fitting the training data and generalizing poorly

on new incoming input (i.e., overfitting), a variety of techniques can be used. The

most widely-spread ones are Dropout (randomly putting input’s components, along

with some weights, to 0 to force the model to minimize its dependence on specific

components) and weight-decay (forcing the weight of each layer to remain small).

Now that we have discussed deploying Deep Neural Networks, we will focus on

how to attack them.

2.2 Attacking Neural Networks

Global adversarial problem. SZEGEDY and collab. [2014a] define the adversarial

problem as:

argmin
x′

∥x′−x∥p

s.t. fθ(x′) = t (2.7)

x′ ∈ [0,1]d ,

where t is either the target class (equivalent to targeted attacks) or any class different

from the original label y (untargeted attacks). The condition x′ ∈ [0,1]d means that

we want the adversarial example to represent an image still. In Figure 2.5, the effect

of an adversarial example on ImageNet, where the targeted classifier is a GoogLeNet,

is represented. This problem is challenging to solve. Therefore, different relaxations
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Figure 2.5: Example of the effect of an adversarial sample on ImageNet using a GoogLeNet as
the targeted model. Source: [GOODFELLOW and collab., 2015], Fig.1

have been used to derive different methods of adversarial examples generation.

Common relaxation. In their original paper, SZEGEDY and collab. [2014a] proposes

the following relaxation.

argmin
x′

c · ∥x′−x∥p +L (x,x′, t ;θ) (2.8)

s.t. x′ ∈ [0,1]d ,

where L (x,x′, t ;θ) is the objective of the attacker, and c > 0 is to find. It should be

carefully chosen so that minimizing L (x,x′, t ;θ) will imply that fθ(x′) = t .

Another common relaxation was proposed by MADRY and collab. [2018]:

arg max
x′:∥x′−x∥p<ε

L (x,x′, t ;θ). (2.9)

In this case, we no longer try to minimize the Lp -norm of the difference between

natural and adversarial sample, but we define a maximal allowed perturbation ε

given a specific Lp -norm.

Since then, different methods have tried to solve the original problem, choosing

a (sometimes modified) version of these relaxations.

Whitebox vs blackbox attacks. Depending on the knowledge about the targeted

model the attacker has, we can categorize the adversarial generation methods into

two main categories: whitebox and blackbox attacks. In the whitebox setting, the

attackers have perfect knowledge about the model. It has access to the training

data, the weights and biases, the gradients, and the testing data. However, in the

blackbox setting, the attacker has only access to the testing data, sometimes the

training dataset, and the final decision of the targeted model. This final decision

54



CHAPTER 2. PRELIMINARIES

can be, for example, the logits, the predictions, or a binary variable stating if the

adversarial sample is successful or not.

Many different methods to generate adversarial examples has been proposed

since SZEGEDY and collab. [2014b] first acknowledge the problem. Given the huge

amount of proposed methods, in whats follows, we will only focus and present the

methods to generate adversarial samples we used during this Ph.D to evaluate our

proposed methods.

2.2.1 Whitebox attacks

Fast Gradient Sign Method (FGSM). One of the first and simplest method to gener-

ate adversarial examples is the Fast Gradient Sign Method (FGSM) [GOODFELLOW

and collab., 2015]. The adversarial example x′ is generated thanks to:

x′ = x−α sgn∇xL (x,x′, t ;θ), (targeted), (2.10)

x′ = x+α sgn∇xL (x,x′, y ;θ), (untargeted), (2.11)

where α≤ ε is the amplitude of the perturbation, and sgn is the sign function.

This attack scheme is designed to be fast but not necessarily potent.

Projected Gradient Descent. An iterative version of FGSM, called Projected

Gradient Descent (PGD) [MADRY and collab., 2018], has been designed such that:

x′(0) = x+n, n ∼ Unif([−ε;ε]), (2.12)

and

x′(i+1) = x′(i ) −α sgn∇x′(i )L (x,x′(i ), t ;θ), (targeted), (2.13)

x′(i+1) = x′(i ) +α sgn∇x′(i )L (x,x′(i ), y ;θ), (untargeted). (2.14)

At each step of the algorithm, the condition x′ ∈ [0,1]d is enforced using clipping.

The PGD method has been proven to be both faster and more efficient than the

FGSM method. It, therefore, has been widely used. However, PGD has a few issues

that can lead to underperforming attacks, as explained in [CROCE and HEIN, 2020b].

Basic Iterative Method. As PGD, the Basic Iterative Method (BIM) [KURAKIN

and collab., 2018] is an iterative extension of FGSM. The main difference is that

contrary to the initialization of the PGD algorithm, the BIM method starts at the

natural sample.

Auto-PGD. According to CROCE and HEIN [2020b], PGD has three main flaws:
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Figure 2.6: DF method for a linear binary classifier. Source: [MOOSAVI-DEZFOOLI and collab.,
2016], Fig.2

• The step size is fixed.

• It is agnostic of the budget, i.e., the algorithm does not know how many steps it

can perform.

• It is unaware of the trend, i.e., it does not know if the direction it is taking is

actually improving the attack objective.

To overcome those issues, they introduced a variant of the PGD algorithm called

Auto-PGD (APGD).

It is composed of two phases: one exploration phase, where the algorithm

searches for good initial points, and one exploitation phase, where the algorithm

tries to maximize the attack strength according to the knowledge accumulated so far.

The APGD method falls to being the PGD algorithm with two main differences.

The first one is the computation of the perturbation at each step i :

x̃′(i+1) = x′(i ) +η(i )∇x′(i )L (x,x′(i ), y ;θ), (2.15)

x′(i+1) = x(i ) +α∗ (x̃′(i+1) −x′(i ))+ (1−α)∗ (x′(i ) −x′(i−1)), (2.16)

where η(i ) corresponds the learned step size at step i . Equation 2.15 is the PGD

algorithm, and Equation 2.16 incorporates a momentum with α controlling the

influence of the past.

The second difference is that the step size η(i ) is learnt and no longer fixed. To

ensure that the algorithm creates stronger attacks, events are defined during which,

if the previous iterations did not improve the attacker objective, the step size is

modified, with a restart to the best previous point.

These two modifications of the PGD algorithm tend to create more potent attacks

in a similar amount of time.

DeepFool. DeepFool (DF) is a method introduced by MOOSAVI-DEZFOOLI and col-

lab. [2016]. It is an untargeted iterative method based on the gradient of a loss with
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Figure 2.7: FAB method for a linear binary classifier. In blue is the distance between the
original example xorig and the projection of the current iteration x(i ) onto the hyperplane, in
green is the impact of the step towards the original sample, and in red is the new distance.
The left figure represents the FAB algorithm using projections onto the hyperplane, while
the right one represents the FAB algorithm using projections on the hyperplane plus an
extrapolation step (to go over the boundary). Source: [CROCE and HEIN, 2020a], Fig.1

respect to the input. The basic principle of the DF method is presented in Figure 2.6

for a binary classifier.

At each step, until an actual adversarial example is found, they search for the

closest decision hyperplane, find the minimal perturbation to add to the sample to

project it onto this hyperplane (denoted by ∆(x0; f ) in Figure 2.6, and add it to the ex-

ample, creating the new sample (denoted by r∗(x). If the new sample is misclassified,

then the search stops. Otherwise, another iteration is done.

Fast Adaptive Boundary. Fast Adaptive Boundary (FAB) was introduced by CROCE

and HEIN [2020a]. It is an extension of the DF method, where, in addition to the

projection onto the closest hyperplane, they take a step towards the original sample

to reduce the needed distortion. An illustration of FAB behavior is available in Fig-

ure 2.7. At iteration (i), they compute the distance between the original example xorig

and the projection of the example at the current iteration x(i ) (in blue in Figure 2.7).

Then, they compute a step towards the original point (in green in Figure 2.7) to get

the new sample x(i+1). The distance between xorig and x(i+1) is represented in red.

Carlini and Wagner’s attack. The Carlini and Wagner’s attack (C&W) was intro-

duced by CARLINI and WAGNER [2017]. It can be either a targeted or an untargeted

attack. They try to solve the original optimization problem (cf. Equation 2.7).

To that extend, they introduce a function g such that fθ(x′) = t if and only if

g (x′) ≤ 0. Since the condition can be seen as a minimization problem, we can rewrite

the problem as:

min
x′

∥x′−x∥p + c g (x′) s.t. x′ ∈ [0,1]d , (2.17)

where c ≥ 0 is an hyperparameter.
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In their paper, the authors introduce multiple g functions, but the one they

recommend for the untargeted case under L∞-norm constraint is:

g (x) = (zy − [max
i ̸=y

zi )])+, (2.18)

where z = f L−1
θ

(x), (z)+ = max(0,z), zi is the i th component of z, and zy is the compo-

nent of z corresponding to the true class of x. To remove the condition on the norm

constraint for p > 1, they use the change-of-variable approach with a hyperbolic

tangent transformation.

Despite creating potent attacks, the C&W algorithm tends to be highly computa-

tionally expensive.

Jacobian-based Saliency Mapping Attack The Jacobian-based Saliency Map

Attack (JSMA) was introduced by PAPERNOT and collab. [2016b]. It is a targeted attack.

They propose to compute the gradient of each class with respect to each component

of the input to extract the sensitivity direction. Then, a saliency map is computed

to select the main directions, i.e., the directions in which modifying the pixel will

impact the classification the most. The saliency map can be written as:

S(x, t )[i ] =
{

0, if ∂zt
∂xi

(x) < 0 or
∑

j ̸=t
∂z j

∂xi
(x) > 0,

∂zt
∂xi

(x)|∑ j ̸=t
∂z j

∂xi
(x)|, otherwise,

where z = f L−1
θ

(x) is the logit of x according to the specific model parametrized by

θ, xi is the i th component of x, z j its j th component of z and zt the component of z

corresponding to the targeted class t .

JSMA has been extended to become a blackbox attack [PAPERNOT and collab.,

2017] where, instead of crafting the samples on the targeted model, they train a

substitute model to attack and use the transferability of neural networks to attack

the targeted system.

2.2.2 Blackbox attacks

As previously mentioned, whitebox attackers can create an extremely harmful attack.

However, they require much knowledge about the targeted system: they need not

only the output of the model but also access to the entire model and its gradients.

To bypass this necessity, it is possible to craft attackers that rely on less information.

They are called blackbox attackers.

Square Attack. Square Attack (SA) is a blackbox attack introduced by

ANDRIUSHCHENKO and collab. [2020]. It is a powerful and rather fast method to gen-

erate adversarial samples based only on queries. It is based on randomly selecting
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perturbations and adding them to the sample if it decreases the attacker’s objec-

tive. In this attack, instead of defining pixel-wise perturbations, the attack modifies

squares of pixels at the time, whose height decreases over time. The way to sample

the perturbation squares differs depending on the Lp -norm constraint considered.

The attacker’s objective chosen is the difference between the logits of the true

label y and the most likely classes different from y , i.e.,

L (x,x′, y ;θ) = qθ(y |x′)− max
c∈Y :c ̸=y

qθ(c|x′). (2.19)

Minimizing such an objective will tend to create samples that are close to the

decision boundary.

SA only needs the model’s output to run, and it creates highly potent attacks,

sometimes even stronger than whitebox attacks.

Spatial Transformation Attack. Spatial Transformation Attack (STA) [ENGSTROM

and collab., 2019] is a blackbox attack that relies on finding satisfactory rotations and

translations to apply to an input to fool a classifier. Formally, the goal of STA is:

max
δu,δv,φ

L (x,x′, y ;θ) with x′ = T(x;δu,δv,φ), (2.20)

where T(x;δu,δv,φ) is the transformation applied to x. The transformation can be

written, for a given pixel position (u, v) of the image x, the adversarial new position

(u′, v ′) is: [
u′

v ′

]
=

[
cosφ −sinφ

sinφ cosφ

][
u

v

]
+

[
δu

δv

]
. (2.21)

Hop Skip Jump The Hop Skip Jump attack (HOP) [CHEN and collab., 2020] is a

blackbox attack based on gradient estimation. In this case, the attack has only access

to whether the sample is rightfully or wrongfully classified. The method is iterative,

and each iteration i can be divided into four steps:

• Binary search to approach the decision boundary.

• Estimation of the gradient at the decision boundary and computation of the

direction of the gradient v(i ).

• Computation of the minimum step size η(i ).

• x′(i+1) = x′(i ) +η(i ) ∗v(i ).

HOP is the attack presented here that requires the least amount of knowledge

about the targeted system to attack.
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All of the aforementioned methods are only a small subset of all the possible

methods to create adversarial examples. Given the wide variety of choices, how can

we have a common method to evaluate and compare defensive methods ?

2.2.3 AutoAttack

When the community began to have a huge interest in defensive methods, the ques-

tion of how to evaluate and compare the methods arose. To answer this question

CROCE and HEIN [2020b] introduced AutoAttack.

AutoAttack is a collection of 4 attacks based on the principle of the worst-case

scenario.

The four chosen attacks are as follows. First, they use two versions of the APGD

algorithm. One where the attacker’s objective is the adversarial cross-entropy, and

another using the Difference of Logits Ratio (DLR) objective defined as:

L (x,x′, t ;θ) = DLR(x′, t ) =−
z′y −z′t

z′π1
− (z′π3

+z′π4
)/2

, (2.22)

where z′ = f L−1
θ

(x′) are the logits of x′, z′t is the logit of the targeted class, z′y is the

logit of the original class, and π represents the ordering of the components of z′ in

decreasing order. The goal is to push the classification of x′ to t rather than y .

The two final attacks are FAB and SA.

To aggregate the influence of the four attacks, CROCE and HEIN [2020b] proceed

as follows. An adversarial example is deemed successful if at least one of the four

considered attacks is successful. In other words, the defense is deemed successful for

a specific clean input x if none of the four methods can find a successful adversarial

sample based on x that fools the defense.

Since its introduction in 2020, AutoAttack has become the reference to compare

robust methods. A year later, CROCE and collab. [2020] introduced RobustBench to

rank the different defensive schemes according to their performances when evalu-

ated using AutoAttack.

It is clear from all of this that there exist plenty of different methods to attack

neural networks and that protecting against them is not straightforward. In the

following, we will see the main techniques to create defenses to protect DL-based

systems against threats.

2.3 Protecting Neural Network’s Decisions

Recently, several works focused on improving the robustness of neural networks by

investigating various defense mechanisms.
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2.3.1 Robustness: different defense mechanisms

Adversarial robustness can be based on plenty of different mechanisms.

Randomness. To build efficient defenses, some papers proposed to leverage

randomness. Randomness could be applied at different levels of the system. It is

possible to add randomness at the input level [XIE and collab., 2017], at the output of

each hidden layer [LIU and collab., 2018a], or directly to the parameters of the model

using a Bayesian Neural Network [LIU and collab., 2018b].

Distillation. We could also mention distillation, initially introduced in [HINTON

and collab., 2015], and further studied in [PAPERNOT and collab., 2016a] to increase

a model’s robustness. The idea of distillation is to use a large DNN (the teacher) to

train a smaller one (the student), which can perform with similar accuracy while

utilizing a temperature parameter to reduce sensitivity to input variations. The

resulting defense strategy may be efficient for some attacks but can be defeated with

the standard C&W attack.

Adversarial Training. Finally, we want to mention Adversarial Training. Adver-

sarial training (AT) was first introduced by GOODFELLOW and collab. [2015]. It is

based on augmenting the original data with attacked samples. It is today one of the

only defenses that have been proven efficient against adversarial attacks [ATHALYE

and collab., 2018]. We will therefore focus on this particular defensive scheme, which

is the most popular strategy for enhancing robustness.

Note that, to overcome the lack of guarantees on the task performance beyond

standard evaluation metrics, a new line of work called Certified Robustness has

emerged. The certified defenses aim at training classifiers whose predictions at any

input feature will remain constant within a set of neighborhoods around the origi-

nal input, through different mechanisms: randomized smoothing [CAO and GONG,

2017; COHEN and collab., 2019; LECUYER and collab., 2019; LIU and collab., 2018a],

relaxation and duality [RAGHUNATHAN and collab., 2018b; WONG and collab., 2018],

constraining the global [CISSE and collab., 2017; GOUK and collab., 2021] or local

[HEIN and ANDRIUSHCHENKO, 2017] Lipschitz constant of the model, mixed integer

linear programming [BUNEL and collab., 2018; LOMUSCIO and MAGANTI, 2017], or

adding complementary certification mechanisms to robust training [RAGHUNATHAN

and collab., 2018a; WONG and KOLTER, 2020]. Although these methods are promising,

they either do not scale to high-dimensional datasets and models or do not achieve

SOTA yet.

2.3.2 Adversarial training

As previously mentioned, Adversarial Training has been introduced by GOODFELLOW

and collab. [2015]. It is based on an attack-defense scheme. The attacker aims

at creating perturbed inputs by maximizing a loss to fool the classifier, while the
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defender’s goal is to classify those attacked inputs correctly.

The robust optimization problem solved can be written as follows.

min
θ

Ep(x,y)

[
max

x′:∥x′−x∥p≤ε
ℓ(x′, y ;θ)

]
, (2.23)

where ε denotes the maximal distortion allowed in the adversarial examples accord-

ing to the Lp -norm, and ℓ(x,x′, y ;θ) is the training loss. Since the exact solution to

the above inner max problem is generally intractable, a relaxation is proposed by

generating an adversarial example.

The inner attacker design is vital to AT since it has to create meaningful attacks.

The chosen mechanism to craft an adversarial sample was the FGSM attack. However,

it w quickly shown that, although it provided some successes, it was possible to defeat

this defense with stronger attackers [TRAMÈR and collab., 2017].

Later, MADRY and collab. [2018] improved the Adversarial Training framework by

modifying the attack to craft adversarial samples. They proposed to no longer use the

single-step algorithm FGSM but to use its iterative version, i.e., the PGD algorithm.

An essential choice of the defense mechanism is the robust loss used to attack

and defend the network. While GOODFELLOW and collab. [2015] proposed to use a

trade-off between the original cross entropy and its adversarial version, i.e., when

the input is a perturbed version of the clean one, MADRY and collab. [2018] decided

to only use the adversarial cross-entropy, i.e., the cross-entropy between the original

label and the corrupted sample.

Considering all the made choices, it is possible to write the optimization problem

as the authors in [MADRY and collab., 2018] solved:

min
θ

ACE(θ), (2.24)

where ACE is the Adversarial Cross-Entropy risk,

ACE(θ)
.= Ep(x,y)

[
max

x′:∥x′−x∥p≤ε
− log qθ(y |x′)

]
. (2.25)

However, it was shown that one way to improve adversarial training is through

the choice of this loss.

Improvement based on the loss.

TRADES. ZHANG and collab. [2019] introduces a robustness regularizer based

on the Kullback-Leibler divergence. They defined a new risk optimizing a trade-off

between natural and adversarial performances, controlled through a hyperparameter

λ. The resulting risk is the addition of the natural cross-entropy and the Kullback-
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Leibler (KL) divergence between natural and adversarial probability distributions:

LTRADES(θ)
.= Ep(x,y)

[− log qθ(y |x)
]+λ Ep(x)

[
max

x′:∥x′−x∥p≤ε
KL(qθ(·|x)∥qθ(·|x′))

]
, (2.26)

where

KL(qθ(·|x)∥qθ(·|x′))
.= Eqθ(y |x)

[
log

qθ(y |x)

qθ(y |x′)

]
. (2.27)

MART. WANG and collab. [2019] uses a robustness regularizer that considers the

misclassified inputs and boosted losses. They consider two sets: the set where the

original input is rightfully classified and the set where it is misclassified. For each

set, they propose a regularizer, equal to 1{ fθ(x′) ̸= y}+1{ fθ(x′) ̸= fθ(x)}, meaning

that we want, at the same time, the adversarial example to be rightfully classified,

and the natural and adversarial examples to be classified in the same way. Given

that, for rightfully classified clean examples, 1{ fθ(x′) ̸= y} = 1{ fθ(x′) ̸= fθ(x)}, the total

considered risk is:

LMART(θ) = Ep(x,y)
[
1{ fθ(x′) ̸= y}+λ1{ fθ(x) ̸= y} ·1{ fθ(x′) ̸= fθ(x)}

]
, (2.28)

where λ is a hyperparameter controlling the trade-off between rightfully classifying

the adversarial examples and classifying the natural and adversarial examples in the

same way.

Since the indicator’s function is not differentiable, they relax the three terms

as follows. The first one - 1{ fθ(x′) ̸= y} - is approximated as the boosted cross-

entropy(BCE), which is equal to:

BCE(x′, y ;θ) =− log qθ(y |x′)− log(1−max
c ̸=y

qθ(c|x′)). (2.29)

The second term - 1{ fθ(x′) ̸= fθ(x)} - is approximated as the Kullback-Leibler

divergence (Eq. (2.27)), i.e. 1{ fθ(x′) ̸= fθ(x)} ≈ KL(qθ(·|x)∥qθ(·|x′)).

Finally, 1{ fθ(x) ̸= y} is approximated by 1−qθ(y |x), since it will be large for mis-

classified inputs and small for rightfully classified inputs.

So, the MART risk can be written as:

LMART(θ) = Ep(x,y)[ max
x′:∥x′−x∥p≤ε

BCE(x′, y ;θ)+λ (1−qθ(y |x)) ·KL(qθ(·|x)∥qθ(·|x′))].

(2.30)

Improvement based on additional data.

Whether it is Madry’s version of Adversarial Training, TRADES, or MART, they all

have been improved in different ways. One of the most successful improvements

uses unlabeled data to enhance generalization [ALAYRAC and collab., 2019; CARMON

and collab., 2019]. The theoretical argument of this data augmentation is that ad-
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versarial generalization requires more examples than natural generalization, i.e., it

requires a larger dataset at training time.

To improve robustness, CARMON and collab. [2019] proposes the use of additional

data when training on CIFAR-10. Specifically, they use 500k additional images from

80M-TI 1. Those images have been selected such that their L2-distance to images

from CIFAR-10 are below a fixed threshold. They then use a classifier to predict the

pseudo-label of each new image before adding them to the dataset. Finally, they use

this augmented dataset to perform adversarial training using the TRADES loss.

ALAYRAC and collab. [2019] propose two methods. The first one is similar to

Carmon et al.’s method, but they consider the sum of natural and Adversarial Cross-

Entropy weighted by a hyperparameter λ as the loss. The other method does not use

pseudo labels. For unlabeled data, only the smoothness of the loss with respect to

the adversarial examples is considered. In other words, they consider a natural loss

computed only on natural - labeled - examples from the original CIFAR dataset, and

for all examples - both labeled and unlabeled - the considered loss is the Kullback-

Leibler divergence between natural and adversarial probability distributions, i.e.,

KL(qθ(·|x)∥qθ(·|x′)). The total sum is a weighted sum of the natural and the adversar-

ial losses.

Other improvements

Other types of improvement have been studied in recent years. Pretraining

[HENDRYCKS and collab., 2019], early stopping [RICE and collab., 2020], curriculum

learning [ATZMON and collab., 2019], adaptative models [HUANG and collab., 2020],

or additional perturbations on the model weights [WU and collab., 2020] are a few

examples of these improvements.

It should be noted that the main disadvantage of adversarial training-based

methods remains the required computational expenses.

2.4 Ensuring the Input’s Integrity

Inspired by the concept of rejection channels [CHOW, 1957], which was proposed over

70 years ago for the character recognition problem, another way to protect against

adversarial attacks is to construct a detector-based rejection strategy. Its objective

is to discriminate malicious samples from clean ones, which implies discarding

samples detected as adversarial. Research in this area focuses on both supervised

and unsupervised approaches [ALDAHDOOH and collab., 2021b].

Supervised Detection. The supervised approaches rely on features from natu-

1Images available at https://github.com/yaircarmon/semisup-adv
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ral and attacked examples generated according to one or more attacks [FEINMAN

and collab., 2017; KHERCHOUCHE and collab., 2020; MA and collab., 2018]. The

extracted features can be computed either directly on the images [KHERCHOUCHE

and collab., 2020] or extracted at the targeted network’s layer [CARRARA and collab.,

2018; LEE and collab., 2018; LU and collab., 2017; METZEN and collab., 2017]. The

supervised detection methods can rely on statistical characteristics linking them to

in-training or out-of-training distributions/manifolds [FEINMAN and collab., 2017;

GROSSE and collab., 2017; LI and LI, 2017; MA and collab., 2018]). All these methods

depend on the defender’s knowledge of the threats it will face.

Unsupervised Detection. Knowledge about the attacker is not always available to

the defender. To overcome this lack of information, unsupervised detection methods

do not rely on prior knowledge of attacks and only learn from clean data at the time of

training [MENG and CHEN, 2017; XU and collab., 2018]. Different techniques are used

to extract meaningful features. LIANG and collab. [2021]; XU and collab. [2018] rely

on feature squeezing, MENG and CHEN [2017] relies on the training of an denoising

autoencoder, MA and collab. [2019] relies on a network invariance, while ZHENG and

HONG [2018] uses an auxiliary model.

Novel training procedure. While all the aforementioned methods are deployed

on top of an existing model to protect, it is also possible to develop novel training

procedures, as reverse cross-entropy [PANG and collab., 2018] or the rejection option

[ALDAHDOOH and collab., 2021a; SOTGIU and collab., 2020].

In our work, we decided to focus on methods that do not modify the underlying

classifier to protect. In the following, we will present the detection methods we will

compare our work with in more details.

2.4.1 Supervised detection methods

As previously mentioned, supervised detection methods rely on the knowledge and

availability of adversarial samples. They can be separated into two categories: the

attack-aware methods, where one detector is trained per specific attack, and the

blind-to-attack methods, where a single detector is trained to detect all the threats.

Local Intrinsic Dimensionality (LID). The Local Intrinsic Dimensionality method

(LID) [MA and collab., 2018] is based on the intuition that adversarial examples lie

outside of the clean data manifold. By computing the Local Intrinsic Dimensionality,

it is possible to check whether the new point is close to the original data manifold

or from another one. The estimation of LID is computed as the inverse of the mean

of the log of the distance between a given point to its k nearest neighbors. If a given

point is similar to the training distribution, then its distance to either of its k nearest

neighbors will always be quite close, and the LID approximate will therefore be close

to 0. However, if a sample is not quite similar to the training distribution, its distance
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Figure 2.8: Natural Scene Statistics extraction on a natural sample, and various adversarial
ones. Source: [KHERCHOUCHE and collab., 2020], Fig.1a

.

to at least one of its nearest neighbors will likely be big, and the LID approximate will

increase.

Following this idea, in practice, three versions of each natural sample are used:

the clean one, a noisy version, and an attacked one. The LID approximate for each of

those points to the clean distribution will be computed at the output of each layer.

Those variables will then be used to train a detector that will distinguish between

adversarial and normal samples (either clean or noisy samples).

Each strategy to craft adversarial samples can have very different LID character-

istics, a detector per type of threat is therefore necessary. LID therefore lies in the

attack-aware category.

Kernel Density and Bayesian Uncertainty (KD-BU). The Kernel Density and

Bayesian Uncertainty (KD-BU) method [FEINMAN and collab., 2017] also relies on the

idea that adversarial samples lie off the original data manifold. To detect adversarial

samples, they first perform a kernel density estimate at the last hidden layer level

to detect samples that are far from the original manifold. Then, a bayesian uncer-

tainty estimate is computed to detect when points lie in low-confidence regions of

the input space. Both of those characteristics are later used to train a detector that

distinguishes between natural and adversarial examples. Once again, the kernel

density estimates and the bayesian uncertainty values for different types of attacks

can differ a lot, therefore, this method has been created to be attack-aware.

Natural Scene Statistics (NSS). The Natural Scene Statistics method

[KHERCHOUCHE and collab., 2020] relies on the extraction of the natural scene statis-

tics at the image level. Natural scene statistics are statistics that will be very different
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for natural and attacked images. Indeed, applying the natural scene statistics will

output an image with meaning for clean images. However, for attacked samples, the

output image will have no meaning. In Figure 2.8 is presented an example of the

extraction of natural scene statistics on a natural sample and various adversarial

ones, where we clearly see that, while the NSS image still represents a leopard, the

ones for the adversarial examples do not. The Natural Scene Statistics extraction is

then used to train a detector to distinguish between natural and attacked samples.

To overcome the need to have a specific detector per attack, NSS decided to train

their detector using the natural scene statistics of various attacks. It therefore lies in

the blind-to-attack category.

2.4.2 Unsupervised detection methods

Feature Squeezing (FS) [XU and collab., 2018]. The key idea of the Feature Squeez-

ing (FS) method is to compare the model’s prediction of the original sample with

its prediction of the sample after multiple squeezing. The further away they are,

the more likely the input is adversarial. In practice, four versions of the input are

needed: the original input, a low-precision version, a median-filtered version, and a

denoising-filtered version. One inference on the model is required for each of the

four inputs. Later, the maximal L1 difference between the original prediction and

each of the other three is picked. FS is, therefore, parameter-free and does not require

training.

MagNet [MENG and CHEN, 2017]. MagNet is based on the idea that adversarial

examples do not lie on the data manifold. It uses a detector and a reformer to detect

adversarial examples. The detector, an autoencoder trained to reconstruct rightfully

natural samples, will try to reject examples that are far from the natural manifold.

For a new input, they look at the reconstruction error. If it is small, then the example

is clean, else it is adversarial.

The reformer, also an autoencoder, will, given an input, try to find an approxima-

tion of it that is on or close to the original manifold. This projection is then fed to the

underlying classifier to estimate the class.

The training of the two necessary autoencoders makes this method rather long

and computationally and memory expensive to deploy but extremely fast to test.

2.5 Review of the Smart Grid Case

In 2015, the United Nation organization edited 17 goals to change our world. Amongst

those goals, goal 7 aims at ensuring access to affordable, reliable, sustainable and

modern energy for all. We would need to widely modify our grid’s structure to include
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Figure 2.9: Our current grid’ structure needs to change to fulfill UN goals to change our world.
Source: [HEINRICH, 2018], p.33.

more sustainable energy. Smart Grids are a therefore a crucial tool to achieve this

goal.

However, smart grid systems can be sensitive to attacks, and more specifically to

False Data Injection Attacks (FDIAs) [LIU and collab., 2011].

In the following, we will provide a quick review of Smart Grid systems, and more

specifically of the state estimation problem, how to attack it and how to protect it

against attacks.

2.5.1 The state estimation problem

Let x = |x|ei argx ∈Cn be the state vector (latent variables) of the power grid, assumed

to be random with a prior probability density function (pdf) p(x), and y = |y|ei argy ∈
Cm the measurement vector. In general, these are related through the following

nonlinear equation:

y = h(x)+z, (2.31)

where h is the measurement function (dependent on the grid topology, line impedances,

etc.) and z ∈Cm is additive noise. This is called the AC model in the literature [ABUR

and EXPOSITO, 2004; GIANNAKIS and collab., 2013].

Usually, under certain assumptions about the grid and its operating point, the
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problem can be linearized as follows:

y = Hx+z, (2.32)

where H ∈Cm×n is the linearized Jacobian measurement matrix. This is called the

DC model.

We define a state estimator as a function fφ :Cm →Cn such that x̂ = fφ(y).

State estimators are crucial components for the functioning of smart grid systems,

but they are known to be sensitive to faulty samples. Bad data detectors are usually

implemented to overcome this issue. They are a-posteriori detectors based on the

lp -norm (where typically p = 2) of the residual vector

r = y−h(x̂). (2.33)

Concretely, the sample is detected as faulty when the ∥r∥p > τ, where τ is a threshold

chosen appropriately to control the trade-off between missed and false detections.

Nevertheless, bad data detectors are insufficient to overcome the problem of well-

designed attacks. In particular, a theoretical bound on the maximal number of meters

that one can attack in order to remain undetected is derived in JIN and collab. [2018].

2.5.2 Attacking and defending state estimator

One of the most critical types of cyber-attacks are FDIAs. In LIU and collab. [2011],

the authors present various methods to generate such corrupted samples to bypass

the bad data detector under the DC assumption. Let us consider

ya = y+a, (2.34)

where a is the attack vector and ya the attacked observation. It has been showed that,

to remain undetected, the a should be a combination of the column vectors of H,

i.e., a = Hc, for all c. The specific values for the vector c is imposed by the considered

scenario, i.e. the goal of the attack.

Most of the research has been done according to the DC model assumption [DÁN

and SANDBERG, 2010; KOSUT and collab., 2010; LIU and collab., 2011; PASQUALETTI

and collab., 2011; SANDBERG and collab., 2010; XIE and collab., 2010; YUAN and collab.,

2011], which leads to a simple linear model for the measurements as a function of

the state. LIANG and collab. [2016] present a comprehensive review of the security

problem under the DC-model assumption.

Crafting an FDIA under the AC model (Equation 2.31) is a more complex problem.

A few works have focused on it, as [HUG and GIAMPAPA, 2012; JIN and collab., 2018;

KEKATOS and collab., 2017; LIANG and collab., 2014; TEIXEIRA and collab., 2015; ZHU
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and GIANNAKIS, 2012], which considers the nonlinear relation between the state and

the measurements. Joint cyber and physical attacks have also been studied [SOLTAN

and collab., 2016], leading to the study of detection and recovery of information from

line failure under DC and AC assumption [SOLTAN and collab., 2018; SOLTAN and

ZUSSMAN, 2018].

JIN and collab. [2018] presented the attacker’s optimization problem as:

max
xa,a

g (xa)

s.t. h(xa)+z = y+a = ya (2.35)

∥a∥0 ≤ c,

where xa is the corrupted state, a is the attack vector, ya is the attacked observation,

and g (·) is the objective of the attacker. The condition on the l0-norm of the attacked

vector allows the attacker to bypass the bad data detector by attacking only a subset

of sensors.

Notice that the attacker objective can be different based on its specific goal, for

example:

• Target state attack, where g (xa) = ∥xa −xtarget∥2
2, which will put the corrupted

state to the targeted value xtarget.

• Voltage collapse attack, where g (xa) = ∥xa∥2
2, which will lead the estimator to

believe that the voltage is low.

• State deviation attack, where g (xa) =−∥xa − x̂∥2
2, which will force the corrupted

state to be different from the original predicted one.

Three main types of defense strategies have been developed in the literature.

The first one is the detection of the FDIAs [KOSUT and collab., 2010; PASQUALETTI

and collab., 2011], which can be used to discard the compromised measurements.

The second one focuses on protecting the communication channel between the

meters and the control center using encryption, authentication and key management

[DÁN and SANDBERG, 2010; TEIXEIRA and collab., 2015; WANG and LU, 2013]. Finally,

Robust State Estimation (RSE) has been created to develop state estimations that

are robust against bad data. CELIK and ABUR [1992]; KOTIUGA and VIDYASAGAR

[1982]; MILI and collab. [1994]; ZHU and GIANNAKIS [2012] focused on the DC model

while ZHANG and collab. [2017] investigated a AC-based solution that requires many

relaxations.
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2.6 The Fisher-Rao measure, and the data-depths

In the following, we will mathematically define the two objects we used during this

Ph.D.

2.6.1 The Fisher-Rao distance (FRD)

Consider the family of probability distributions over the classes C
.= {

qθ(·|x) : x ∈X
}

parametrized by x. Assume that the following regularity conditions hold [ATKINSON

and MITCHELL, 1981]:

(i) ∇x qθ(y |x) exists for all x, y and θ ∈Θ;

(ii)
∑

y∈Y ∇x qθ(y |x) = 0 for all x and θ ∈Θ;

(iii) G(x) = EY∼qθ(·|x)
[∇x log qθ(Y|x)∇⊺

x log qθ(Y|x)
]

is positive definite for any x and

θ ∈Θ.

The variance of the differential form ∇⊺
x log qθ(Y|x)dx can then be interpreted as

the square of a differential arc length d s2 in the space C , which yields

d s2 = 〈dx,dx〉G(x) = dx⊺G(x)dx. (2.36)

Thus, G, which is the Fisher Information Matrix (FIM), can be adopted as a metric

tensor. We now consider a curve γ : [0,1] → X in the input space connecting two

arbitrary points x and x′, i.e., such that γ(0) = x and γ(1) = x′. Notice that this curve

induces the following curve in the space C : qθ(·|γ(t)) for t ∈ [0,1]. The Fisher-Rao

distance between the distributions qθ = qθ(·|x) and q ′
θ
= qθ(·|x′) will be denoted as

dR,C (qθ, q ′
θ

) and is formally defined as:

dR,C (qθ, q ′
θ)

.= inf
γ

∫ 1

0

√
dγ⊺(t )

d t
G(γ(t ))

dγ(t )

d t
, (2.37)

where the infimum is taken over all piecewise smooth curves. This means that the

FRD is the length of the geodesic between points x and x′ using the FIM as the

metric tensor. Several examples for simple families of distributions can be found in

ATKINSON and MITCHELL [1981].

2.6.2 The data-depths

A data depth function, formally defined as:

D : Rd ×P (Rd ) −→ [0,1] ,

(x,P) 7−→ D(x,P),
(2.38)
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where P (Rd ) denotes the space of all probability distributions on Rd , measures the

centrality of any element in x ∈ Rd w.r.t. a probability distribution P (respectively,

a data set). It provides a center-outward ordering of points in the support of P and

can be straightforwardly used to extend the notions of rank or order statistics to

multivariate data. The higher D(x,P), the deeper x is in P.

Since data depth naturally way defines a non-parametric pre-order on Rd w.r.t.

a probability distribution, it can be seen as a centrality-based alternative to the

cumulative distribution function for multivariate data. Many different definition

of data-depths, respecting Equation 2.38, has been proposed CHEN and collab.

[2015]; CUEVAS and collab. [2007]; KOSHEVOY and MOSLER [1997]; LIU [1990]; RAMSAY

and collab. [2019]; STAERMAN and collab. [2021]; ZUO [2003], each presenting its own

theoretical and practical properties.

However, several axioms have been developed throughout the recent decades

a “good” depth function should satisfy DYCKERHOFF [2004]; LIU [1990]; ZUO and

SERFLING [2000]:

(D1) (AFFINE INVARIANCE) Denoting by PX the distribution of any r.v. X taking its

values in Rd , we have:

∀x ∈Rd , D(Ax+b,PAX+b) = D(x,PX),

for any d ×d nonsingular matrix A with real entries and any vector b in Rd .

(D2) (MAXIMALITY AT CENTER) For any P ∈P (Rd ) that has a symmetry center x∗ (in

a sense to be specified), the depth function D(.,P) takes its maximum value at

it:

D(x∗,P) = sup
x∈Rd

D(x,P).

(D3) (MONOTONICITY RELATIVE TO DEEPEST POINT ) For any P ∈P (Rd ) with deepest

point x∗, the depth at any point x in Rd decreases as one moves away from x∗

along any ray passing through it:

∀ξ ∈ [0,1], D(x∗,P) ≥ D(x∗+ξ(x−xP),P).

(D4) ( VANISHING AT INFINITY ) For any P ∈P (Rd ), the depth function D vanishes at

infinity:

D(x,P) → 0, as ||x||→∞.
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Chapter 2 Conclusion

This chapter first presented an overview of the Deep Learning background.

Then, we introduced the current state-of-the-art methods to attack neural

networks. Later, we reviewed the existing methods to increase the models’

robustness against adversarial threats. This will be useful to appreciate better

the contribution of Part I. Then, we presented existing detection mechanisms

we will compare against in Part II. Then, we presented quickly the state esti-

mation problem for Smart Grids. Finally, we provided a quick definition of the

two main tools we used during this thesis. Now that we have presented what

exists in the literature, we will present our first contribution on leveraging the

knowledge about the models’ output space to increase their robustness.
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Part I Abstract

This part is dedicated to our proposed answer to the first question asked in

Chapter 1: How can we use the internal structure of DNN’s output space to

improve its robustness ? This part is split into three chapters consisting of

three different contributions.

• In Chapter 3, we provide our solution to improve adversarial robustness

through the use of a regularizer based on an information-geometric

measure: the Fisher-Rao measure. The output space of a neural network

forms a statistical manifold, and the decision is taken on it. To leverage

this knowledge, we decided to use a measure that captures the distance

between two outputs following the shape of the statistical manifold at

hand: the Fisher-Rao distance. We derived a close-form of the Fisher-

Rao distance in the case of a binary classification as well as for the

multi-class scenario. On a toy example, we show that it is possible to

achieve Pareto-optimum points unachievable using other regularizers.

The experimental results show that our regularizer consistently enhances

the robustness of neural networks.

• In Chapter 4, we apply our method to the state estimation study in

Smart Grids applications. Due to monitoring and service needs, Smart

Grid systems include a cyber component that makes them vulnerable to

potential threats. In this work, we made use of a Variational AutoEncoder

and the physical knowledge of the grid to train an unsupervised state

estimator. We design a defensive scheme similar to a min-max problem

to craft a robust state estimator using a similar method as the one used

in Chapter 3. We experimentally show that it is possible to train robust

state estimators for multiple electrical systems in the linearized case.

• In Chapter 4, we assume that the system in linear. Since this assumption

might not be realistic for all the bus systems, we propose an extension

of the previously introduced framework in Chapter 5. This extension

to the non-linear case (i.e., under the AC model assumption) of the

state estimation problem is a more general scenario given that all power

systems are intrinsically non-linear.

87



88



Chapter 3

Adversarial Robustness via Fisher-Rao

Regularization

Chapter 3 Abstract

This chapter addresses the first research question dedicated to increasing

adversarial robustness. We present our first contribution to the scope of image

data. One way to ensure that an image classifier remains trustworthy under

threats is to force the model to classify similarly clean and attacked inputs. To

do so, a successful line of work is to use a modified training procedure that will

take into account perturbed samples via a custom risk. The output of a neural

network forms a statistical manifold, and the decision mechanisms depend on

this manifold. To leverage this knowledge, we decided to use an information-

geometric distance, i.e., the Fisher-Rao distance, that measures the distance

between two possible outputs and to use it to train a robust classifier. In this

work, we derived the closed form of the Fisher-Rao distance on both deep

binary classifiers and multi-class deep classifiers. We later used this formula

of the Fisher-Rao distance to define a regularizer that, when minimized, will

force the resulting deep classifier to estimate the natural and attacked input

in a similar manner. We experimentally showed that using this regularizer

will allow the resulting model to achieve Pareto-optimum points impossible

to reach when using SOTA regularizers. We also experimentally showed that

using Fisher-Rao as a robust regularizer allowed us to increase the robustness

of neural networks.
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Abstract

Adversarial robustness has become a topic of growing interest in machine

learning since it was observed that neural networks tend to be brittle. We

propose an information-geometric formulation of adversarial defense and in-

troduce FIRE, a new Fisher-Rao regularization for the categorical cross-entropy

loss, which is based on the geodesic distance between the softmax outputs cor-

responding to natural and perturbed input features. Based on the information-

geometric properties of the class of softmax distributions, we derive an explicit

characterization of the Fisher-Rao Distance (FRD) for the binary and multiclass

cases, and draw some interesting properties as well as connections with stan-

dard regularization metrics. Furthermore, we verify on a simple linear and Gaus-

sian model, that all Pareto-optimal points in the accuracy-robustness region

can be reached by FIRE while other state-of-the-art methods fail. Empirically,

we evaluate the performance of various classifiers trained with the proposed

loss on standard datasets, showing up to a simultaneous 1% of improvement
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in terms of clean and robust performances while reducing the training time by

20% over the best-performing methods.

3.1 Introduction

Deep Neural Networks (DNNs) have achieved several breakthroughs in different

fields such as computer vision, speech recognition, and Natural Language Processing

(NLP). Nevertheless, it is well-known that these systems are extremely sensitive to

small perturbations on the inputs [SZEGEDY and collab., 2014], known as adversarial

examples. Formally, an adversarial example represents a corrupted input, character-

ized by a bounded optimal perturbation from the original vector, designed to fool a

specified neural networks’ task. Adversarial examples have already proven threatful

in several domains, including vision and NLP [ALZANTOT and collab.], hence leading

to the emergence of the rich area of adversarial machine learning [VOROBEYCHIK

and collab., 2018]. The effectiveness of adversarial examples has been attributed to

the linear regime of DNNs [GOODFELLOW and collab., 2015] and the data manifold ge-

ometrical structure itself [GILMER and collab., 2018], among other hypotheses. More

recently, it has been related to the existence of valuable features for classification but

meaningless for humans [ILYAS and collab., 2019].

In this paper, we focus on the so-called white-box attacks, for which the attacker

has full access to the model. However, it should be noted that black-box attacks,

in which the attacker can only query predictions from the model without access to

further information, are also feasible [PAPERNOT and collab., 2017]. The literature

on adversarial machine learning is extensive and can be divided into three overlap-

ping groups, studying the generation, detection, and defense aspects. The simplest

method to generate adversarial examples is the Fast Gradient Sign Method (FGSM)

[GOODFELLOW and collab., 2015], including its iterative variant called Projected Gra-

dient Descent (PGD) [MADRY and collab., 2018]. Although widely used, PGD has a

few issues that can lead to overestimating the robustness of a model. AutoAttack

[CROCE and HEIN, 2020] has been recently developed to overcome those problems,

enabling an effective way to test and compare the different defensive schemes.

A simple approach to cope with corrupted examples is to detect and discard

them before classification. For instance, FEINMAN and collab. [2017], ZHENG and

HONG [2018], and GROSSE and collab. [2017] present different methods to detect

corrupted inputs. Although these ideas can be useful to ensure robustness to outliers

(i.e., inputs with large deviations with respect to clean examples), they do not seem to

be satisfactory solutions for mild adversarial perturbations. In addition, adversarial

detection can generally be bypassed by sophisticated attack methods [CARLINI and

WAGNER, 2017].

Recently, several works focused on improving the robustness of neural networks
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by investigating various defense mechanisms. For instance, certified defense mech-

anisms addressed the need for more guarantees on the task performance beyond

standard evaluation metrics [COHEN and collab., 2019; CROCE and collab., 2019;

GOWAL and collab., 2019; LECUYER and collab., 2019; LI and collab., 2019; MIRMAN

and collab., 2018; WONG and collab., 2018; ZHANG and collab., 2020]. These meth-

ods aim at training classifiers whose predictions at any input feature will remain

constant within a set of neighborhoods around the original input. However, these

algorithms do not achieve state-of-the-art performance yet. Also, some approaches

tend to rely on convex relaxations of the original problem [RAGHUNATHAN and collab.,

2018; WONG and KOLTER, 2018] since directly solving the adversarial problem is not

tractable. Although these solutions are promising, it is still not possible to scale them

to high-dimensional datasets. Finally, we could mention distillation, initially intro-

duced in HINTON and collab. [2015], and further studied in PAPERNOT and collab.

[2016]. The idea of distillation is to use a large DNN (the teacher) to train a smaller

one (the student), which can perform with similar accuracy while utilizing a tem-

perature parameter to reduce sensitivity to input variations. The resulting defense

strategy may be efficient for some attacks but can be defeated with the standard

Carlini-Wagner attack.

In this work, we will focus on the most popular strategy for enhancing robustness,

which is based on adversarial training, i.e., learning with an augmented training set

containing adversarial examples [GOODFELLOW and collab., 2015].

3.1.1 Summary of contributions

Our work investigates the problem of optimizing the trade-off between accuracy and

robustness and advances state-of-the-art methods in very different ways.

• We derive an explicit characterization of the Fisher-Rao Distance (FRD) based

on the information-geometric properties of the soft-predictions of the neural

classifier. That leads to closed-form expressions of the FRD for the binary and

multiclass cases (Theorem 1 and Theorem 2, respectively). We further relate them

to well-known regularization metrics (presented in Proposition 1).

• We propose a new formulation of adversarial defense, called FIsher-rao REgu-

larizer (FIRE). It consists of optimizing a regularized loss, which encourages the

predictions of natural and perturbed samples to be close to each other, according

to the manifold of the softmax distributions induced by the neural network. Our

loss in Equation 3.7 consists of two terms: the categorical cross-entropy, which

favors natural accuracy, and a Fisher-Rao regularization term, which increases

adversarial robustness. Furthermore, we prove for a simple logistic regression and

Gaussian model that all Pareto-optimal points in the accuracy-robustness region
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can be reached by FIRE, while state-of-the-art methods fail (cf. Section 3.4 and

Proposition 2).

• Experimentally, on standard benchmarks, we found that FIRE provides an im-

provement up to roughly 2% of robust accuracy compared to the widely used

Kullback-Leibler regularizer [ZHANG and collab., 2019]. We also observed signifi-

cant improvements over other state-of-the-art methods. In addition, our method

typically requires, on average, less computation time (measured by the training

runtime on the same GPU cluster) than state-of-the-art methods.

3.1.2 Related work

Adversarial training. Adversarial training (AT) [GOODFELLOW and collab., 2015] is

one of the few defenses that has not been broken so far. Indeed, different variations

of this method have been proposed. It is based on an attack-defense scheme where

the attacker’s goal is to create perturbated inputs by maximizing a loss to fool the

classifier, while the defender’s goal is to classify those attacked inputs rightfully.

Inner attack generation. The inner attacker design is vital to AT since it has to

create meaningful attacks. One of the most popular algorithms to generate adversar-

ial examples is Projected Gradient Descent (PGD) [MADRY and collab., 2018], which

is an iterative attack: the output at each step is the addition of the previous output

and the sign of the loss gradient modulated by a fixed step size. The loss maximized

in PGD is often the same loss that is minimized for the defense.

Robust defense loss. An essential choice of the defense mechanism is the ro-

bust loss used to attack and defend the network. Initially, GOODFELLOW and collab.

[2015]; MADRY and collab. [2018] used the adversarial cross-entropy. However, it was

shown that one way to improve adversarial training is through the choice of this loss.

TRADES [ZHANG and collab., 2019] introduces a robustness regularizer based on

the Kullback-Leibler divergence. MART [WANG and collab., 2019] uses a robustness

regularizer that considers the misclassified inputs and boosted losses.

Additional improvement. Whether it is AT, TRADES or MART, they all have

been improved in recent years. Those improvements can either rely on pretraining

[HENDRYCKS and collab., 2019], early stopping [RICE and collab., 2020], curricu-

lum learning [ATZMON and collab., 2019], adaptative models [HUANG and collab.,

2020], unlabeled data to improve generalization [ALAYRAC and collab., 2019; CARMON

and collab., 2019] or additional perturbations on the model weights [WU and collab.,

2020].

It should be noted that the main disadvantage of adversarial training-based

methods remains the required computational expenses. Nevertheless, as will be

shown in Section 3.5, FIRE can significantly reduce them.
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3.2 Background

We consider a standard supervised learning framework where x ∈X ⊆Rn denotes the

input vector on the space X and y ∈Y the class variable, where Y := {1, . . . ,M}. The

unknown data distribution is denoted by p(x, y) = p(x)p(y |x). We define a classifier to

be a parametric soft-probability model of p(y |x), denoted as qθ(y |x), where θ ∈Θ are

the parameters. This can be readily used to induce a hard decision: fθ : X →Y with

fθ(x) := argmax
y∈Y

qθ(y |x). Adversarial examples are denoted as x′ = x+δ ∈X , where

∥δ∥ ≤ ε for an arbitrary norm ∥ ·∥. Loss functions are denoted as ℓ(x,x′, y,θ) and the

corresponding risk functions by L(θ). We also define the natural missclassification

probability as Pe (θ)
.=P( fθ(X) ̸= Y), the adversarial missclassification probability as

P′
e (θ)

.=P( fθ(X′) ̸= Y).

3.2.1 Adversarial learning

We provide some background on adversarial learning, focusing on adversarial de-

fense’s most popular proposed loss functions. Adversarial examples are slightly

modified inputs that can fool a target classifier. Concretely, SZEGEDY and collab.

[2014] define the adversarial generation problem as:

x′ = arg min
x′ :∥x′−x∥≤ε

∥x′−x∥ s.t. fθ(x′) ̸= y, (3.1)

where y is the true label (supervision) associated to the sample x. This formulation

shows that the vulnerable points of a classifier are the ones close to its decision

boundaries. Since this problem is difficult to tackle, it is commonly relaxed as fol-

lows [MADRY and collab., 2018]:

x′ = arg max
x′ :∥x′−x∥≤ε

ℓ(x,x′, y,θ). (3.2)

Once adversarial examples are obtained, they can be used to learn a robust classifier

as discussed next.

The adversarial problem has been presented in MADRY and collab. [2018] as

follows:

min
θ

Ep(x,y)

[
max

x′:∥x′−x∥p≤ε
ℓ(x,x′, y,θ)

]
, (3.3)

where ε denotes the maximal distortion allowed in the adversarial examples accord-

ing to the lp -norm. Since the exact solution to the above inner max problem is

generally intractable, a relaxation is proposed by generating an adversarial example

using an iterative algorithm such as PGD.
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Adversarial Cross-Entropy (ACE)

If we take the loss to be the Cross-Entropy (CE), i.e., ℓ(x,x′, y,θ) =− log qθ(y |x′), we

obtain the ACE risk:

LACE(θ)
.= Ep(x,y)

[
max

x′:∥x′−x∥≤ε
− log qθ(y |x′)

]
. (3.4)

TRADES

Later ZHANG and collab. [2019] defined a new risk based on a trade-off between

natural and adversarial performances, controlled through an hyperparameter λ. The

resulting risk is the addition of the natural cross-entropy and the Kullback-Leibler

(KL) divergence between natural and adversarial probability distributions:

LTRADES(θ)
.= Ep(x,y)

[
max

x′:∥x′−x∥≤ε
− log qθ(y |x)+λ KL(qθ(·|x)∥qθ(·|x′))

]
, (3.5)

where

KL(qθ(·|x)∥qθ(·|x′))
.= Eqθ(y |x)

[
log

qθ(y |x)

qθ(y |x′)

]
. (3.6)

3.3 Adversarial Robustness with Fisher-Rao Regulariza-

tion

3.3.1 Information geometry and statistical manifold

Statistics on manifolds and information geometry are two different ways in which

differential geometry meets statistics. A statistical manifold can be defined as a

parameterized family of probability distributions (or density functions) of interest.

It is worth to mention that the concept of statistics on manifolds is very different

from manifold learning which is a branch of machine learning where the goal is

to learn a latent manifold from valued data. In this paper, we are interested in the

statistical manifold obtained when fixing the parameters θ of a DNN and changing

its feature input. We consider the following statistical manifold: C
.= {

qθ(·|x) : x ∈X
}

.

In particular, the focus is on changes in a neighborhood of a particular sample in

an adversarial manner (i.e., considering a worst-case perturbation). Please notice

that the statistical manifold is different from the loss landscape. The loss landscape

is defined as the changes of the risk function with respect to changes in the model

parameters (i.e., L(θ) vs θ), while the statistical manifold refers to the changes of the

soft-probabilities of the classifier with respect to changes in the input (i.e., qθ(y |x)

vs x). In order to understand the effect of a perturbation on the input, we first need

to be able to capture the distance over the statistical manifold between different

probability distributions, i.e., between two different feature inputs. That is precisely
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Figure 3.1: Illustration of FRD between two distributions qθ = qθ(·|x) and q ′
θ
= qθ(·|x′) over

the statistical manifold C . ©2022 IEEE.

what the FRD computes, as illustrated by the red curve in Figure 3.1. It is worth to

mention that FRD can be very much different from the euclidean distance since

the later does not depend on the shape of the manifold. For a formal mathematical

definition of FRD and a short review of basic concepts in information geometry, we

refer the reader to Subsection 3.6.1.

As discussed in Section 3.2, the robustness of a classifier is related to the distance

between natural examples and the decision boundaries (i.e., points x such that

qθ(y |x) ≈ qθ(y ′|x) for y ̸= y ′). In fact, if a natural example is far from the decision

boundaries, a norm-constrained attack will clearly fail (in this case, the optimization

problem in Equation 3.1 will be infeasible). Since the decision boundaries are given

by the soft-probabilities qθ(y |x), this can be equivalently studied by analyzing the

shape of the statistical manifold C (which should not be confused with the loss

landscape). In fact, if qθ(y |x) is relatively flat (i.e., does not change much) with

respect to perturbations of x around x0, it is clear that adversarial perturbations will

not modify the classifier decision at this point. In contrast, if qθ(y |x) changes sharply

with perturbations of x around x0, an adversarial can easily leverage this vulnerability

to fool the classifier. This notion of robustness is related to the Lipschitz constant

of the network, as discussed in various works (e.g., CISSE and collab. [2017]). To

illustrate these ideas clearly, let us consider the logistic regression model qθ(y |x) =
1/[1+ exp(−y θ⊺x)], where n = 2 and Y = {−1,1}, as a simple example. One way

to visualize the statistical manifold C is to plot qθ(1|x) as a function of x (since

qθ(−1|x) = 1− qθ(1|x), this completely characterizes the manifold). This is shown

in Figure 3.2a for the value of θ which minimizes the natural missclassification

probability Pe under a conditional Gaussian model for the input x (see Section 3.4

for details). As can be seen, the manifold is quite sharp around a particular region of

X . This region corresponds to the neighborhood of the points for which θ⊺x ≈ 0 as

x is perturbed in the direction of θ. Therefore, we can say that this model is clearly

non-robust, as its output can be significantly changed by small perturbations on the

input. Consider now the same model but with the values of θ obtained by minimizing
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(a) θ= [−6.4290,25.7487]⊺. (b) θ= [−0.9364,0.3509]⊺.

Figure 3.2: Visualization of statistical manifold C defined by the model qθ(y |x) = 1/[1+
exp(−y θ⊺x)] with different values of θ: (a) Parameters minimizing the natural misclassifica-
tion error probability Pe , (b) Parameters minimizing the adversarial misclassification error
probability P′

e . ©2022 IEEE.

(a) θ= [−6.4290,25.7487]⊺. (b) θ= [−0.9364,0.3509]⊺.

Figure 3.3: FRD between the distributions qθ(·|x) and qθ(·|x′) as a function of δ using the
logistic model with different values of θ: (a) Parameters minimizing the natural misclassifica-
tion error probability Pe , (b) Parameters minimizing the adversarial misclassification error
probability P′

e . ©2022 IEEE.

the adversarial missclassification probability P′
e . As can be seen in Figure 3.2b, the

statistical manifold is much flatter than in Figure 3.2a, which means that the model is

less sensitive to adversarial perturbations on the input. Therefore, it is more robust.

Let us now consider the FRD of the two models around the point x = 0, which

gives a point that lies in the decision boundary, by letting δ= x′−x vary in the ℓ∞ ball

B∞,ε = {δ : ∥δ∥∞ ≤ ε}, with ε= 0.1. Figure 3.3a displays the FRD for the parameters

θ which minimize the misclassification error probability Pe , and Figure 3.3b shows

the FRD for the parameters θ which minimize the adversarial misclassification error

probability P′
e . Clearly, the abrupt transition of qθ(1|x) in Figure 3.2a corresponds

to a sharp increase on the FRD as ∥δ∥∞ increases. On the contrary, for a flatter

manifold as in Figure 3.2b, the FRD increases much more slowly as ∥δ∥∞ increases.

This example shows how FRD reflects the shape of the statistical manifold C .

Our goal in this work is to use the FRD to control the shape of the statistical

manifold by regularizing the misclassification risk.

The rest of this section is organized as follows. We begin by introducing the FIRE

risk function, which is our main theoretical proposal to improve the robustness

of neural networks. We continue with the evaluation of the FRD given by Equa-

tion 3.26 for the binary and multiclass classification frameworks and provide some
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(a) λ= 0. (b) λ= 3.8957.

(c) λ= 98.1730.

Figure 3.4: Visualization of statistical manifold C defined by the model qθ(y |x) = 1/[1+
exp(−y θ⊺x)] when minimizing the FIRE risk function for different values of λ: (a) No adver-
sarial FRD regularization, (b) Medium adversarial FRD regularization, (c) High adversarial
FRD regularization. ©2022 IEEE.

exciting properties and connections with other standard distances and well-known

information divergences.

3.3.2 The FIRE risk function

The main proposal of this paper is the FIRE risk function, defined as follows:

LFIRE(θ)
.= Ep(x,y)

[
max

x′:∥x′−x∥≤ε
− log qθ(y |x)+λ ·d 2

R,C (qθ
( · |x), qθ(·|x′)

)]
, (3.7)

where λ> 0 controls the trade-off between natural accuracy and robustness to the

adversary.

In Figure 3.4, we show the shape of the statistical manifold C as λ is varied for

the logistic regression model discussed in Subsection 3.3.1 (see also Section 3.4).

Notice that when no FRD regularization is used, the manifold in Figure 3.4a is very

similar to the one in Figure 3.2a. As the value of λ increases, the weight of the

FRD regularization term also increases. As a consequence, the statistical manifold

is flattened as expected which is illustrated in Figure 3.4b. However, as shown in

Figure 3.4c, setting λ to a very high value causes the statistical manifold to become

extremely flat. This means that the model is basically independent of the input, and

the classification performance will be poor. Notice the similarities between Figure 3.2

and Figure 3.4.

In what follows, we derive closed-form expressions of the FRD for general classi-

fication problems. However, for the sake of clarity, we begin with the binary case.
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(a) Fisher-Rao distance. (b) Euclidean distance.

Figure 3.5: Comparison between FRD and Euclidean distance. ©2022 IEEE.

3.3.3 FRD for the case of binary classification

Let us first consider the binary classification setting, in which X ⊆Rn and Y = {−1,1}

are input and label spaces, respectively. Consider an arbitrary given model:

qθ(y |x) = 1

1+e−hθ(x)y
. (3.8)

Here hθ(x) represents an arbitrary parametric representation or latent code of the

input x. As a matter of fact, we only need to assume that hθ is a smooth function.

The FRD for this model can be computed in closed-form, as shown in the following

result. The proof is relegated to Subsection 3.6.2.

Theorem 1 (FRD for binary classifier). The FRD between soft-predictions qθ ≡ qθ(·|x)

and q ′
θ
≡ qθ(·|x′), according to Equation 3.8 and corresponding to inputs x and x′, is

given by

dR,C (qθ, q ′
θ) = 2

∣∣∣arctan(ehθ(x′)/2)−arctan(ehθ(x)/2)
∣∣∣. (3.9)

For illustration purposes, Figure 3.5a shows the behavior of the FRD with respect

to changes in the latent code compared with the Euclidean distance. It can be

observed that the resulting FRD is rather sensitive to variations in the latent space

when hθ(x) ≈ 0 while being close to zero for the region in which |hθ(x)| is large and

|hθ(x′)| ≪ |hθ(x)|. This asymmetric behavior is in sharp contrast with the one of

the Euclidean distance. However, these quantities are related as shown by the next

proposition.

Proposition 1 (FRD vs. Euclidean distance). The Fisher-Rao distance can be bounded

as follows:

dR,C (qθ, q ′
θ) ≤ 1

2

∣∣hθ(x′)−hθ(x)
∣∣, (3.10)

for any pair of inputs x,x′ ∈X .

The proof of this proposition is relegated to Subsection A.3.1.
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Logistic regression:

A particular case of significant importance is that of logistic regression: hθ(x) = θ⊺x.

In this case, the FRD reduces to:

dR,C (qθ, q ′
θ) = 2

∣∣∣arctan(eθ
⊺x′/2)−arctan(eθ

⊺x/2)
∣∣∣ . (3.11)

A first-order Taylor approximation in the variable δ= x′−x and maximization over δ

such that ∥δ∥ ≤ ε yields

dR,C (qθ, q ′
θ) ≈ 1

2cosh(θ⊺x/2)
ε∥θ∥∗, (3.12)

where ∥ · ∥∗ is the dual norm of ∥ · ∥, which is defined as ∥z∥∗ .= sup{|z⊺w| : ∥w∥ ≤ 1}.

Therefore, in this case, we obtain a weighted dual norm regularization on θ, with the

weighting being large when θ⊺x is close to zero (i.e., points with large uncertainty

in the class assignment), and being small when |θ⊺x| is large (i.e., points with low

uncertainty in the class assignment). An even more direct connection between the

FRD and the dual norm regularization on θ can be obtained from Proposition 1,

which leads to

dR,C (qθ, q ′
θ) ≤ 1

2
|δ⊺θ| ≤ 1

2
ε∥θ∥∗. (3.13)

Equation 3.13 formalizes our intuitive idea that ℓp -regularized classifiers tend to be

more robust. This is in agreement with other results, e.g., TORKAMANI and LOWD

[2014].

3.3.4 FRD for the case of multiclass classification

Consider the general M-classification problem in which Y = {1, . . . ,M}, and let

qθ(y |x) = ehy (x,θ)∑
y ′∈Y ehy ′ (x,θ)

, (3.14)

be a standard softmax output, where h : X ×Θ→RM is a parametric representation

function and zy denotes the y-th component of the vector z. The FRD for this

model can also be obtained in closed-form as summarized below. The proof is given

in Subsection 3.6.3.

Theorem 2 (FRD multiclass classifier). The FRD between soft-predictions qθ ≡ qθ(·|x)

and q ′
θ
≡ qθ(·|x′), according to Equation 3.14 and corresponding to inputs x and x′, is
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given by

dR,C (qθ, q ′
θ) = 2arccos

( ∑
y∈Y

√
qθ(y |x)qθ(y |x′)

)
. (3.15)

Remark. Although not obvious, the FRD for the multiclass case (Equation 3.15) is

indeed consistent with the FRD for the binary case (Equation 3.9), i.e., they are equal

for the case M = 2 (for further details the reader is referred to Subsection 3.6.3).

3.3.5 Comparison between FRD and KL divergence

The Fisher-Rao distance (Equation 3.15) has some interesting connections with other

distances and information divergences. We are particularly interested in its relation

with the KL divergence, which is the adversarial regularization mechanism used in

the TRADES method [ZHANG and collab., 2019]. The next theorem summarizes the

mathematical connection between these quantities. The proof of this theorem is

relegated to Subsection A.3.2.

Theorem 3 (Relation between FRD and KL divergence). The FRD between soft-

predictions qθ = qθ(·|x) and q ′
θ
= qθ(·|x′), given by Equation 3.15 is related to the KL

divergence through the inequality:

1−cos

(
dR,C (qθ, q ′

θ
)

2

)
≤ 1

2
KL(qθ, q ′

θ), (3.16)

which means that the KL divergence is a surrogate of the FRD. In addition, it can also

be shown that the KL divergence is a second-order approximation of the FRD, i.e.,

KL(qθ∥q ′
θ) = 1

2
d 2

R,C (qθ, q ′
θ)+O (d 3

R,C (qθ, q ′
θ)), (3.17)

where O (·) denotes big-O notation.

The above result shows that the KL is a weak approximation of the FRD in the

sense that it gives an upper bound and a second-order approximation of the geodesic

distance. However, in general, we are interested in distances over arbitrarily distinct

softmax distributions, so it is clear that the KL divergence and the FRD can behave

very differently. In fact, only the latter measures the actual distance on the statistical

manifold C
.= {

qθ(·|x) : x ∈ X
}

(for further details, the reader is referred to Subsec-

tion 3.6.1). In the next section, we show that this has an important consequence

on the set of solutions obtained by minimizing the respective empirical risks while

varying λ.
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Figure 3.6: Plot of all the possible points (1−Pe (θ),1−P′
e (θ)) for the Gaussian model with

ε= 0.1, µ= [−0.0218;0.0425] and Σ= [0.0212,0.0036;0.0036,0.0042] shown in blue. In red,
we show the Pareto-optimal points (Figure 3.6a). In black, we show the solutions obtained
by minimizing the risk LTRADES(θ) in Equation 3.5 ( Figure 3.6b), and the risk LFIRE(θ) in
Equation 3.7 (Figure 3.6c).©2022 IEEE.

3.4 Accuracy-Robustness Trade-offs and Learning in the

Gaussian Model

To illustrate the FIRE loss and the role of the Fisher-Rao distance to encourage robust-

ness, we study the natural-adversarial accuracy trade-off for a simple logistic regres-

sion and Gaussian model and compare the performance of the predictor trained on

the FIRE loss with those of ACE and TRADES losses, in Equation 3.4 and Equation 3.5,

respectively.

3.4.1 Accuracy-robustness trade-offs

Consider a binary example with a simplified logistic regression model. Therefore, in

this section we assume that Y = {−1,1} and the softmax probability

qθ(y |x) = 1

1+exp(−y θ⊺x)
, (3.18)

We choose the standard adversary obtained by maximizing the cross-entropy loss,

i.e.,

x′∗ = argmax
x′:∥x′−x∥≤ε

− log qθ(y |x′). (3.19)

For simplicity1, in this section we assume that the adversary uses the 2-norm (i.e,

∥ ·∥ = ∥ ·∥2). In such case, x′∗ can be written as x′∗ = x−ε y θ/∥θ∥2.

We also assume that the classes are equally likely and that the conditional inputs

given the class are Gaussian distributions with the particular form x|y ∼N (y,µ,Σ).

In this case, we can write the natural and adversarial misclassification probabilities

1The analysis can be extended to an arbitrary norm but it is somewhat simplified for the 2-norm
case.
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as:

Pe (θ)
.=P( fθ(X) ̸= Y) =Φ

( −θ⊺µp
θ⊺Σθ

)
, (3.20)

P′
e (θ)

.=P( fθ(X′∗) ̸= Y) =Φ
(
ε∥θ∥2 −θ⊺µp

θ⊺Σθ

)
, (3.21)

where Φ denotes the cumulative distribution function of the standard normal ran-

dom variable. The following result provides lower and upper bounds for P′
e (θ) in

terms of ε and the eigenvalues of Σ. Notice that the bounds get sharper as ε or the

spread of Σ decreases and are tight if Σ=σ2I.

Proposition 2 (Accuracy-robustness trade-offs). The adversarial misclassification

probability P′
e (θ) satisfies the inequalities:

Φ

(
ε

λ1/2
max(Σ)

+Φ−1(Pe (θ))

)
≤ P′

e (θ), (3.22)

Φ

(
ε

λ1/2
min(Σ)

+Φ−1(Pe (θ))

)
≥ P′

e (θ). (3.23)

The proof of this proposition is relegated to Subsection 3.6.4.

3.4.2 Learning

Let us consider the 2-dimensional case, i.e., n = 2. From Equation 3.20 and Equa-

tion 3.21, it can be noticed that both Pe (θ) and P′
e (θ) are independent of the 2-norm

of θ. Therefore, we can parameterize θ as θ= [cos(α),sin(α)]⊺ with α ∈ [0,2π) without

any loss of generality. Thus, (1−Pe (θ),1−P′
e (θ)) for all values of α gives a curve that

represents all the possible values of the natural and adversarial accuracies for this

setting. Figure 3.6a shows this curve for a particular choice2 of ε, µ, and Σ. As can be

observed, the solution which maximizes the natural accuracy gives poor adversarial

accuracy and viceversa3. The set of Pareto-optimal points (i.e., the set of points for

which there is no possible improvement in terms of both natural and adversarial

accuracy or, equivalently, the set {maxθ β(1−Pe (θ))+ (1−β)(1−P′
e (θ)) : 0 ≤ β ≤ 1})

are also shown in Figure 3.6a. In particular, this set contains the Maximum Average

Accuracy (MAA) given by

MAA
.= max
θ∈Θ

(
1− Pe (θ)+P′

e (θ)

2

)
. (3.24)

2In this experiment, we obtained the components in µ by sampling N (0,1/400). We also defined a
matrix A with samples of the same distribution and constructed Σ as Σ= AA⊺.

3The (normalized) value of θ that maximizes 1−Pe (θ) is θ∗nat =Σ−1µ/∥Σ−1µ∥2 (see, for instance,
BISHOP [2006]) and corresponds to α∗nat ≈ 1.814, giving 1−Pe (θ) ≈ 0.784 and 1−P′

e (θ) ≈ 0.183. The
value of θ that maximizes 1−P′

e (θ) is α∗adv ≈ 2.783, giving 1−Pe (θ) ≈ 0.608 and 1−P′
e (θ) ≈ 0.309.
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Table 3.1: Comparison between KL and Fisher-Rao based regularizer under white-box l∞
threat model. Note that we do not use the same hyperparameters as presented in ZHANG

and collab. [2019] for the TRADES method. ©2022 IEEE.

Defense Dataset ε Structure Natural AutoAttack Avg. Acc. RunTime

TRADES CNN 99.27 ± 0.03 94.27 ± 0.18 96.77 ± 0.09 2h22
FIRE

MNIST 0.3
CNN 99.22 ± 0.02 94.44 ± 0.14 96.83 ± 0.10 2h06

TRADES WRN-34-10 85.84 ± 0.31 50.47 ± 0.36 68.15 ± 0.23 13h49
FIRE

CIFAR-10 8/255
WRN-34-10 85.98 ± 0.09 51.45 ± 0.32 68.72 ± 0.22 11h00

TRADES WRN-34-10 59.62 ± 0.42 25.89 ± 0.26 42.76 ± 0.26 13h49
FIRE

CIFAR-100 8/255
WRN-34-10 61.03 ± 0.21 26.42 ± 0.21 43.73 ± 0.12 11h10

This is a metric of particular importance, which combines with equal weights both

natural and adversarial accuracies.

In addition, we present the solution of the (local) Empirical Risk Minimization

(ERM)4 for the TRADES risk function as defined in Equation 3.5 for different values

of λ in Figure 3.6b. As can be seen, the curve obtained in the (1−Pe (θ),1−P′
e (θ))

space covers a large part of the Pareto-optimal points expect for a segment for which

the solution does not behave well. Finally, in Figure 3.6c we present the result

for the proposed FIRE risk function in Equation 3.7 for different values of λ. In

this case, we observed that the curve of solutions in the (1−Pe (θ),1−P′
e (θ)) space

covers all the Pareto-optimal points. Moreover, we have observed that, for some

λ, the θ which minimizes the FIRE risk matches the θ which achieves the MAA

defined in Equation 3.24, while TRADES method fails in achieving this particularly

relevant point. It should be added that none of the methods cover exactly the set of

Pareto-optimal points, which is expected, since all loss functions can be considered

surrogates for the quantity βPe (θ)+ (1−β)P′
e (θ), where 0 ≤ β≤ 1. We performed a

similar comparison between FRD and KL using standard datasets. The results are

reported in Appendix Section A.1

4For experiments, we used 104 samples for each different class and a BFGS Quasi-Newton method
for optimization. The initial value of θ is zero for both TRADES and FIRE. We do not report the result
using ACE risk in Equation 3.4 because in this setting we would obtain the trivial solution θ= 0, which
is a minimizer of LACE(θ).
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Table 3.2: Test robustness on different datasets under white-box l∞ attack. We ran all
methods on 5 different tries and reported the mean and standard deviation. The codes for
UAT and Atzmon et al. are not publicly available. Note that retraining the SOTA methods
modifies slightly the experimental results. ©2022 IEEE.

Defense Dataset ε Structure Natural AutoAttack Avg. Acc. Runtime

Without Additional Data

Madry et al. [MADRY and collab., 2018]

MNIST 0.3

CNN 98.53 ± 0.06 88.62 ± 0.23 93.58 ± 0.14 2h03
Atzmon et al.[ATZMON and collab., 2019] CNN 99.35 90.85 95.10 -

TRADES [ZHANG and collab., 2019] CNN 99.27 ± 0.03 94.27 ± 0.18 96.77 ± 0.09 2h22
FIRE CNN 99.22 ± 0.02 94.44 ± 0.14 96.83 ± 0.10 2h06

Madry et al. [MADRY and collab., 2018] WRN-34-10 87.56± 0.09 44.07 ± 0.27 65.82 ± 0.15 10h51
Self Adaptive[HUANG and collab., 2020] WRN-34-10 83.39 ± 0.19 53.11 ± 0.29 68.25 ± 0.14 13h57

TRADES [ZHANG and collab., 2019] WRN-34-10 84.79 ± 0.24 52.12± 0.28 68.45 ± 0.12 17h49
FIRE + Self Adaptive WRN-34-10 83.70 ± 0.36 53.26 ± 0.19 68.48 ± 0.13 11h12

Overfitting [RICE and collab., 2020] WRN-34-10 85.64 ± 0.55 51.72 ± 0.56 68.68 ± 0.44 42h01
FIRE

CIFAR-10 8/255

WRN-34-10 85.98 ± 0.09 51.45 ± 0.32 68.72 ± 0.22 11h00

Overfitting [RICE and collab., 2020] RN-18 53.83 18.95 36.39 -
Overfitting [RICE and collab., 2020] WRN-34-10 59.22 ± 0.61 25.99 ± 0.51 42.61 ± 0.28 42h08

FIRE
CIFAR-100 8/255

WRN-34-10 61.03 ± 0.21 26.42 ± 0.21 43.73 ± 0.12 11h10

With Additional Data Using 80M-TI

Pre-training[HENDRYCKS and collab., 2019]

CIFAR-10 8/255

WRN-28-10 86.93 ± 0.79 53.35 ± 0.81 70.14 ± 0.54 40h00 + 0h20
UAT [ALAYRAC and collab., 2019] WRN-106-8 86.46 56.03 71.24 -
MART [WANG and collab., 2019] WRN-28-10 87.39 ± 0.12 56.69 ± 0.28 72.04 ± 0.15 13h53

RST-adv [CARMON and collab., 2019] WRN-28-10 89.49 ± 0.41 59.69 ± 0.26 74.59 ± 0.27 22h12
FIRE WRN-28-10 89.73 ± 0.04 59.97 ± 0.11 74.86 ± 0.05 18h30

3.5 Experimental Results

In this section, we assess our proposed FIRE loss’ effectiveness to improve neural

networks’ robustness.5

3.5.1 Setup

Datasets: We resort to standard benchmarks. First, we use MNIST [LECUN and col-

lab., 2010], composed of 60,000 black and white images of size 28×28 - 50,000 for

training, and 10,000 for testing - divided into 10 different classes. Then, we test on

CIFAR-10, and CIFAR-100 [KRIZHEVSKY, 2009], composed of 60,000 color images of

size 32×32×3 - 50,000 for training and 10,000 for testing - divided into 10 and 100

classes, respectively. Finally, we also test on CIFAR-10 with additional data thanks

to 80 Million Tiny Images [TORRALBA and collab., 2008], an experiment that will be

detailed later.

Architectures: In order to provide fair comparisons, we use standard model

architectures. For the MNIST simulations, we use the 7-layer CNN as in ZHANG

and collab. [2019]. For CIFAR-10 and CIFAR-100, we use a WideResNet (WRN) with

34 layers, and a widen factor of 10 (shortened as WRN-34-10) as in MADRY and collab.

[2018]; WU and collab. [2020]; ZHANG and collab. [2019]. For the simulations with

additional data, we use a WRN-28-10 as in CARMON and collab. [2019].

Training procedure: For all standard experiments (without additional data), we

use a Stochastic Gradient Descent (SGD) optimizer with a momentum of 0.9, a weight

decay of 5 ·10−4 and Nesterov momentum. We train our models on 100 epochs with

a batch size equal to 256. The initial learning rate is set to 0.01 for MNIST and 0.1

5Codes are available on GitHub at https://github.com/MarinePICOT/

Adversarial-Robustness-via-Fisher-Rao-Regularization
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for CIFAR-10 and CIFAR-100. Following ZHANG and collab. [2019], the learning rate

is divided by 10 at epochs 75 and 90. For our experiments with additional data, we

follow the protocol introduced by CARMON and collab. [2019], using a cosine decay

[LOSHCHILOV and HUTTER, 2017], and training on 200 epochs.

Generation of adversarial samples: For all experiments, we use PGD [MADRY

and collab., 2018] to generate the adversarial examples during training. The loss

which is maximized during the PGD algorithm is the Fisher-Rao distance (FRD) for

our experiments, and the Kullback-Leibler divergence for the TRADES method. For

MNIST, we use 40 steps and 10 steps for the rest. The step size is set to 0.01 for MNIST

and 0.007 for the others. The maximal distortion in l∞-norm ε allowed is 0.031 for

CIFAR-10 and CIFAR-100, and 0.3 for MNIST. This setting is used in most methods,

such as CARMON and collab. [2019]; GOODFELLOW and collab. [2015].

Additional data: To improve performance, CARMON and collab. [2019] propose

the use of additional data when training on CIFAR-10. Specifically, CARMON and col-

lab. [2019] use 500k additional images from 80M-TI 6. Those images have been

selected such that their l2-distance to images from CIFAR-10 are below a threshold.

Hyperparameters: The Rao regularizer used to improve the robustness of neural

networks introduces a hyperparameter λ to balance natural accuracy and adversarial

robustness. We select λ = 12 from the CIFAR-10 simulations and use this value for all

the other datasets. Further study on the effect of λ is provided in Section 3.5.2.

Test metrics: First, we provide the accuracy of the model on clean samples af-

ter adversarial training (Natural). Second, we test our models using the recently

introduced AutoAttack [CROCE and HEIN, 2020], keeping the same hyperparame-

ters as the ones used in the original paper and code7. AutoAttack tests the model

under a comprehensive series of attacks and provides a more reliable assessment of

robustness than the traditionally used PGD-based evaluation. Given that we care

equally about natural and adversarial accuracies, we also compute the average sum

of the two, i.e., the Average Accuracy ( Avg. Acc.). This is an empirical version of the

Maximum Average Accuracy (MAA) defined in Equation 3.24. Finally, we report the

runtime of each method as the time required to complete the adversarial training. To

provide fair comparisons between runtimes, we run the official code of each method

on the same 4 NvidiaV100 GPUs (for further details, see Section 3.5.2).

3.5.2 Experimental results

Kullback-Leibler versus Fisher-Rao regularizer:

To disentangle the influence of different regularizers, we compare the Fisher-Rao-

based regularizer to the Kullback-Leibler-based regularizer used in TRADES with

6Images available at https://github.com/yaircarmon/semisup-adv
7The AutoAttack code is available on https://github.com/fra31/auto-attack
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the exact same model and hyperparameters (as detailed previously) on CIFAR-10,

CIFAR-100, and MNIST datasets. We used λ= 6 to train the TRADES method, since it

is the value presented in the original paper [ZHANG and collab., 2019]. The results

are averaged over 5 tries and summarized in Table 3.1. Those results confirm the

superiority of the proposed regularizer. Specifically, the natural and adversarial

accuracies increase up to 1% each under AutoAttack, improving the trade-off up to

1%.

Comparison with state-of-the-art

We compare FIRE with the state-of-the-art methods using adversarial training under

l∞-norm attacks. Due to its effectiveness on adversarial performances, we use

the self-adaptive scheme from HUANG and collab. [2020] along with the FIRE loss

to smooth the one-hot labels on CIFAR-10, and report the results under FIRE +

Self Adaptive. We do not include the Adversarial Weight Perturbation (AWP) [WU

and collab., 2020] method since it leverages two networks to increase the robustness

of the model. We trained all methods from the state-of-the art on 5 tries and report

the mean the standard variance of the results in Table 3.2. Note that the codes for

UAT and Atzmon et al. are not publicly available, therefore we reported the results

available on RobustBench [CROCE and collab., 2020].

Average Accuracy (Avg. Acc.): Overall, FIRE exhibits the best Avg. Acc. among

compared methods in all settings. On CIFAR-10, at equivalent method, our FIRE

method outperforms HUANG and collab. [2020]. The gain on natural examples is

close to 0.3% and 0.15% in adversarial performances, giving an improvemnt of 0.23%

of Avg. Acc. Moreover, our FIRE method performs slightly better (0.04%) than RICE

and collab. [2020] but, given that their method requires four times FIRE’s runtime to

complete its training, the gain of our method appears to be more significant. Besides,

FIRE outperforms RICE and collab. [2020] on the more challenging CIFAR-100 in both

Avg. Acc., with more significant gain (1.12%) and runtime. Taking all metrics into

account, FIRE appears to be the best overall method.

Runtimes: Interestingly, our method exhibits a significant advantage over previ-

ous state-of-the-art methods using similar backbones. Our method outruns methods

with similar performances by 20% on average. We presume that the difference

between the different runtimes comes from the fact that our proposed FIRE loss

comprises 5 different operations. In contrast, the KL divergence, proposed in ZHANG

and collab. [2019], is composed of 6 operations.

Ablation studies

Influence of λ: We study the influence of the hyperparameter λ on the performances

of the FIRE method. Figure 3.7 clearly shows the trade-off between natural and ad-
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Figure 3.7: Influence of the hyperparameter λ on the natural and adversarial accuracies for
FIRE regularizer on CIFAR-10. ©2022 IEEE.

versarial accuracy under AutoAttack [CROCE and HEIN, 2020]. When increasing λ,

we emphasize our robust regularizer, consequently decreasing the performance on

clean samples. Such phenomenon properly aligns with intuition and is also observed

in ZHANG and collab. [2019]. Even though several values of λ lead to reasonable per-

formances, we chose λ= 12 to have a natural accuracy close to the natural accuracy

under the TRADES method en CIFAR-10. This ensures a fair comparison.

3.6 Proofs of Theorems and Propositions

3.6.1 Review of Fisher-Rao Distance (FRD)

Consider the family of probability distributions over the classes8 C
.= {

qθ(·|x) : x ∈X
}

.

Assume that the following regularity conditions hold [ATKINSON and MITCHELL,

1981]:

(i) ∇x qθ(y |x) exists for all x, y and θ ∈Θ;

(ii)
∑

y∈Y ∇x qθ(y |x) = 0 for all x and θ ∈Θ;

(iii) G(x) = EY∼qθ(·|x)
[∇x log qθ(Y|x)∇⊺

x log qθ(Y|x)
]

is positive definite for any x and

θ ∈Θ.

Notice that if (i) holds, (ii) also holds immediately for discrete distributions over finite

spaces (assuming that
∑

y∈Y and ∇x are interchangeable operations) as in our case.

When (i)-(iii) are met, the variance of the differential form ∇⊺
x log qθ(Y|x)dx can be

interpreted as the square of a differential arc length d s2 in the space C , which yields

d s2 = 〈dx,dx〉G(x) = dx⊺G(x)dx. (3.25)

8Since we are interested in the dependence of qθ(·|x) with changes in input x and, particularly, its
robustness to adversarial perturbations, we consider x as the “parameters” of the model over which
the regularity conditions must be imposed.
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Thus, G, which is the Fisher Information Matrix (FIM), can be adopted as a metric

tensor. We now consider a curve γ : [0,1] → X in the input space connecting two

arbitrary points x and x′, i.e., such that γ(0) = x and γ(1) = x′. Notice that this curve

induces the following curve in the space C : qθ(·|γ(t)) for t ∈ [0,1]. The Fisher-Rao

distance between the distributions qθ = qθ(·|x) and q ′
θ
= qθ(·|x′) will be denoted as

dR,C (qθ, q ′
θ

) and is formally defined by

dR,C (qθ, q ′
θ)

.= inf
γ

∫ 1

0

√
dγ⊺(t )

d t
G(γ(t ))

dγ(t )

d t
, (3.26)

where the infimum is taken over all piecewise smooth curves. This means that

the FRD is the length of the geodesic between points x and x′ using the FIM as

the metric tensor. In general, the minimization of the functional in Equation 3.26

is a problem that can be solved using the well-known Euler-Lagrange differential

equations. Several examples for simple families of distributions can be found in

ATKINSON and MITCHELL [1981].

3.6.2 Proof of Theorem 1

To compute the FRD, we first need to compute the FIM of the family C with qθ(y |x)

given in Equation 3.8. A direct calculation gives:

G(x) = ehθ(x)(
1+ehθ(x)

)2∇xhθ(x)∇⊺
x hθ(x). (3.27)

It is clear from this expression that the FIM of this model is of rank one and therefore

singular. This matches the fact that qθ(y |x) has a single degree of freedom given by

hθ(x). Therefore, the statistical manifold C has dimension 1.

To proceed, we consider the following model:

qθ(y |u) = 1

1+e−uy
, (3.28)

where we have defined u = hθ(x). This effectively removes the model ambiguities

because q(y |u) ̸= q(y |u′) if and only if u ̸= u′. Note that qθ(y |u), for fixed θ, can be

interpreted as a one-dimensional parametric model with parameter u. Its FIM is a

scalar that can be readily obtained, yielding:

G(u) = eu

(1+eu)2
. (3.29)

Clearly, the FIM G(u) is non-singular for any u (i.e., G(u) > 0 for any u) as required.

Let D = {qθ(·|u) : u ∈ U }, where U = hθ(X ) and consider two distributions in D:

qθ = qθ(·|u) and q ′
θ
= qθ(·|u′). Then, the FRD can be evaluated directly as follows

109



CHAPTER 3. ADVERSARIAL ROBUSTNESS VIA FISHER-RAO REGULARIZATION

[ATKINSON and MITCHELL, 1981][Eq. (3.13)]:

dR,D(qθ, q ′
θ) =

∣∣∣∣∣
∫ u′

u
G1/2(v)d v

∣∣∣∣∣
= 2

∣∣∣arctan
(
eu′/2

)
−arctan

(
eu/2)∣∣∣. (3.30)

Therefore, the FRD between the distributions qθ = qθ(·|x) and q ′
θ
= qθ(·|x′) can be

directly obtained by substituting u = hθ(x) and u′ = hθ(x′) in Equation 3.30, yielding

the final result in Equation 3.9.

3.6.3 Proof of Theorem 2

As in the binary case developed in Subsection 3.3.3, the FIM of the family C with

qθ(y |x) given in Equation 3.14 is singular. To shows this, we first notice that qθ(y |x)

can be written as

qθ(y |x) = eg y (x,θ)∑
y ′∈Y eg y ′ (x,θ)

, (3.31)

where g y (x,θ) = hy (x,θ)−h1(x,θ). Since g1(x,θ) = 0, this shows that C has M−1

degrees of freedom: g2(x,θ), . . . , gM(x,θ). A direct calculation of the FIM gives

G(x) =
M∑

y=2
qθ(y |x)∇xg y (x,θ)∇⊺

x g y (x,θ) (3.32)

−
M∑

y,y ′=2

qθ(y |x)qθ(y ′|x)∇xg y (x,θ)∇xg⊺
y ′(x,θ).

Let v ∈X be an arbitrary vector and define βy
.=∇⊺

x g y (x,θ)v for y = [2 : M]. Notice

that

G(x)v =
M∑

y=2
qθ(y |x)βy∇xg y (x,θ)

−
M∑

y=2

(
M∑

y ′=2

qθ(y ′|x)βy ′

)
qθ(y |x)∇xg y (x,θ). (3.33)

Therefore, the range of G(x) is a subset of the span of the set {∇xg2(x,θ), . . . ,∇xgM(x,θ)}.

Thus, it follows that rank(G(x)) ≤ M−1, which implies that it is singular.

The singularity issue can be overcome by embedding C into the probability

simplex P defined as follows:

P =
{

q : Y → [0,1]M :
∑

y∈Y

q(y) = 1
}

. (3.34)

To proceed, we follow CALIN and UDRIŞTE [2014][Section 2.8] and consider the
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following parameterization for any distribution q ∈P :

q(y |z) =
z2

y

4
, y ∈ {1, . . . ,M}. (3.35)

We then consider the following statistical manifold:

D =
{

q(·|z) : ∥z∥2 = 4, zy ≥ 0, ∀y ∈Y
}

. (3.36)

Notice that the parameter vector z belongs to the positive portion of a sphere of

radius 2 and centered at the origin in RM. As a consequence, the FIM follows by

G(z) = ∑
y∈Y

z2
y

4

(
2

zy
ey

)(
2

zy
e⊺y

)
= I, (3.37)

where {ey } are the canonical basis vectors in RM and I is the identity matrix. From

Equation 3.37 we can conclude that the Fisher metric is equal to the Euclidean metric.

Since the parameter vector lies on a sphere, the FRD between the distributions

q = q(·|z) and q ′ = q(·|z′) can be written as the radius of the sphere times the angle

between the vectors z and z′. This leads to

dR,D(q, q ′) = 2arccos

(
z⊺z′

4

)
= 2arccos

( ∑
y∈Y

√
q(y |z)q(y |z′)

)
. (3.38)

Finally, we can compute the FRD for distributions in C using:

dR,C (qθ, q ′
θ) = 2arccos

( ∑
y∈Y

√
qθ(y |x)qθ(y |x′)

)
. (3.39)

Notice that 0 ≤ dR,C (qθ, q ′
θ

) ≤π, ∀ x,x′ ∈X , being zero if qθ(·|x) = qθ(·|x′) and πwhen

[qθ(1|x), . . . , qθ(M|x)] and [qθ(1|x′), . . . , qθ(M|x′)] are orthogonal vectors.

Proof the consistency between Theorem 1 and Theorem 2. This consists in

showing the equivalence between the FRD for the binary case, given by Equation 3.9,

and the multiclass case, given by Equation 3.15, for M = 2. First, notice that the

models Equation 3.8 and Equation 3.14 coincide if we consider the following corre-

spondence: hθ(x) = h2(x,θ)−h1(x,θ), y = 1 ↔ y =−1 and y = 2 ↔ y = 1. Then, using
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standard trigonometric identities, we rewrite the FRD for the multiclass case:

dR,C (qθ, q ′
θ) = 2arccos

(√
1

1+ehθ(x)

√
1

1+ehθ(x′)

+
√

1

1+e−hθ(x)

√
1

1+e−hθ(x′)

)
= 2arccos

[
cos(arctan(ehθ(x)/2))cos(arctan(ehθ(x′)/2))

+sin(arctan(ehθ(x)/2))sin(arctan(ehθ(x′)/2))
]

= 2arccos
[

cos
(
arctan(ehθ(x)/2)−arctan(ehθ(x′)/2)

)]
= 2

∣∣∣arctan(ehθ(x′)/2)−arctan(ehθ(x)/2)
∣∣∣ , (3.40)

where the last step follows by |arctan(α)| ≤π/2, ∀α ∈R, so the argument of the cosine

function belongs to [−π,π] and arccos(cos(α)) = |α| for |α| ≤π, which completes the

proof.

3.6.4 Proof of Proposition 2

For completeness, we first present the derivation of the misclassification probabilities

Equation 3.20 and Equation 3.21:

Pe (θ) =P( fθ(X) ̸= Y) =Φ
(
− θ⊺µp

θ⊺Σθ

)
, (3.41)

P′
e (θ) =P( fθ(X′∗) ̸= Y) =Φ

(
ε∥θ∥2 −θ⊺µp

θ⊺Σθ

)
. (3.42)

Notice that Φ, i.e., the cumulative distribution function of the standard normal

random variable, is a monotonic increasing function and ε∥θ∥2/
p
θ⊺Σθ≥ 0, so we

have P′
e (θ) ≥ Pe (θ), as expected. Furthermore, observe also that Φ is invertible so we

can write P′
e (θ) explicitly as a function of Pe (θ):

P′
e (θ) =Φ

(
ε∥θ∥2p
θ⊺Σθ

+Φ−1(Pe )

)
. (3.43)

We now proceed to the proof of the proposition. Notice that by the Rayleigh theorem

[HORN and JOHNSON, 2013][Theorem 4.2.2], we have that

λmin(Σ)∥θ∥2
2 ≤ θ⊺Σθ≤ λmax(Σ)∥θ∥2

2, (3.44)

where λmin(Σ) and λmax(Σ) are the minimum and maximum eigenvalues of Σ, re-

spectively. Therefore, we can bound ε∥θ∥2/
p
θ⊺Σθ as follows:

ε

λ1/2
max(Σ)

≤ ε∥θ∥2p
θ⊺Σθ

≤ ε

λ1/2
min(Σ)

. (3.45)
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Using this fact together with the monotonicity of Φ in Equation 3.43, we obtain the

desired result.

3.7 Summary and Concluding Remarks

We introduced FIRE, a new robustness regularizer-based method on the geodesic

distance of softmax probabilities using concepts from information geometry. The

main innovation is to employ Fisher-Rao Distance (FRD) to encourage invariant

softmax probabilities for both natural and adversarial examples while maintaining

high performances on natural samples. Our empirical results showed that FIRE

consistently enhances the robustness of neural networks using various architectures,

settings, and datasets. Compared to the state-of-the-art methods for adversarial

defenses, FIRE increases the Average Accuracy (Avg. Acc.). Besides, it succeeds in

doing so with a 20% reduction in terms of the training time.

Interestingly, FRD has rich connections with Hellinger distance, the Kullback-

Leibler divergence, and even other standard regularization terms. Moreover, as

illustrated via our simple logistic regression and Gaussian model, the optimization

based on FIRE is well-behaved and gives all the desired Pareto-optimal points in

the natural-adversarial region. This observation contrasts with the results of other

state-of-the-art adversarial learning approaches. Further theoretical explanation of

this change in behaviour is worth exploring in a future work.

Chapter 3 Conclusion

In this chapter, we addressed the problem of leveraging the knowledge about

the output space to increase an image classifier’s robustness. We introduced

a new robustness regularizer-based method on the Fisher-Rao distance. The

Fisher-Rao Distance (FRD) is the geodesic distance of softmax probabilities

using concepts from information-geometry that will encourage invariant soft-

max probabilities for both natural and adversarial examples while maintaining

high performances on natural samples. Our empirical results showed that

using the Fisher-Rao distance consistently enhances the robustness of neural

networks using various architectures, settings, and datasets.

Our framework is powerful and generic enough to be adapted to various appli-

cations. In what follows, we rely on the same idea to increase the safety of the

cyber-components of Smart Grid systems. We focused on the protection of the

state estimator, a component necessary to monitor the grid in real-time that is

highly sensitive to attacks. In Chapter 4, we restrict ourselves to the linearized

case, while in Chapter 5, we extend it in the non-linear setting.
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Chapter 4

Robust Autoencoder-based State

Estimation in Power Systems

Chapter 4 Abstract

In this chapter, we still address the first research question dedicated to in-

creasing adversarial robustness. We present our second contribution, which

falls the scope of smart grid systems. We follow the same idea as in Chapter 3,

and we modify the training of the state estimator to ensure that it remains

trustworthy under threats.

This chapter adapts the information-geometric regularizer previously intro-

duced to build a robust state estimator in Smart Grid Systems. Due to their

cyber component, such systems are highly vulnerable to threats. It is, therefore,

crucial to enhancing their capability to face attacks. Indeed, through their

interaction with citizens’ lives, Smart Grid systems are critical systems.

In the following, we will present the state estimator problem in the linearized

case, i.e., the DC model, and present our solution to build robust state estima-

tors. It is worth noting that this work is among the first to rely on deep neural

networks (i.e., variational autoencoders in our case) in the field of robust

state estimators for smart grid systems. Our extensive numerical experiments

prove that our method is able to construct state estimators that are robust to

state-of-the-art attacks in the case of multiple bus systems.
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Abstract

Smart Grids are critical cyber-physical systems where monitoring is crucial,

especially the process of state estimation. Since this task strongly depends on

the reliability of power grid meters and their communication channels, it is

vulnerable to cyber-attacks and, particularly, false data injection attacks (FDIAs),

which are modifications on the meter readings that are often hard to detect. In

this paper, we propose a method to construct a robust state estimator based on a

variational autoencoder trained on the Fisher-Rao distance, which is a measure

of dissimilarity between probability distributions. Then, we introduce a novel

method to generate FDIAs that exploits knowledge of the state estimator and its

learning procedure, for which we show effectiveness. Finally, numerical results

and comparison with state-of-the-art methods confirm that our approach can

archive similar estimation errors for clean and noisy (attacked) measurements.

4.1 Introduction

Smart Grids are complex systems composed of a physical layer, including genera-

tion, transmission, and distribution of electrical power, and a communication layer

encompassing sensors and communication systems. Monitoring the network is es-

sential to ensure self-healing, maintenance, interaction with the consumer while pro-

viding various target services [ABUR and EXPOSITO, 2004]. Consequently, power grid

This work was supported by the Natural Sciences and Engineering Research Council of Canada
and McGill University in the framework of the NSERC/Hydro-Quebec Industrial Research Chair in
Interactive Information Infrastructure for the Power Grid (IRCPJ406021-14).
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systems surveillance requires strategic meters to measure different quantities, such

as bus voltages, active or reactive power injections. These data are then processed at

control centers, where general grid supervision is performed through accurate state

estimations. This computational aspect of the Smart Grid management makes them

vulnerable to unreliable data.

A bad data detector is usually implemented [MONTICELLI and GARCIA, 1983] to

secure the system. However, it is not difficult to bypass this defense. For instance,

attackers can alter the reliability of state estimation by constructing malicious (noisy)

samples without being uncovered. The impact of attacks on power systems has

been studied in SGOURAS and collab. [2014] and RICE and ALMAJALI [2014]. One

potentially dangerous type of cyber-attacks that has gained attention over the last

decade is known as False Data Injection Attacks (FDIAs) [LIU and collab., 2011].

FDIAs introduce attacks that are based on the actual power flow of the targeted

grid. This knowledge allows the attacker to construct malicious manipulations of a

subset of collected measurements across the grid. The main goal of an FDIA is, for

instance, to disrupt the expected behavior or operation of the Smart Grids. In 2015,

for example, a malicious attack was launched against a Ukrainian power plant. It

deprived hundreds of thousands of houses of electricity for several hours [ALDERSON

and DI PIETRO, 2016].

FDIAs can either be random, e.g., the goal is only to disrupt the state estimator,

or targeted, e.g., the goal is to fool the estimator by inducing specific (target) values

to the states. Stealth attacks [DÁN and SANDBERG, 2010; SUN and collab., 2019] are

FDIAs designed so that their detection by the control center is made complex or

even infeasible. Indeed, the issue of preventing cyber-attacks from disturbing the

whole power system has recently been studied. Defense mechanisms are based on

detecting FDIAs [ZONOUZ and collab., 2012], or introducing robustness against the

loss of meters [ASHOK and collab., 2016]. The method investigated in HU and collab.

[2017] estimates the error vectors to denoise the measurements before performing

state estimation.

This paper introduces novel methods to generate attacks assuming full knowledge

of both the state estimator and its learning procedure, and to defend against those

powerful attacks. Our contributions are summarized as follow:

• We present a defensive scheme to prevent attacks from fooling the state esti-

mator.

• We propose a method to create FDIAs using knowledge about the estimator’s

structure and learning procedure.

• Experimentally, we show that our attacks are highly efficient at disrupting state

estimators.
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• Finally, we design a robust estimator for various well-known electrical networks:

IEEE 14/57/118-bus system and test it on state-of-the-art attack.

The rest of this article is organized as follows. In Section 4.2, we present an

overview of the standard state estimation components, FDIAs, and MILP attack. We

derive the defensive and attack schemes in Section 4.3. Experimental results are rele-

gated to Section 4.4 where we prove the efficiency of the considered attack/defense

mechanisms.

4.2 Background on State Estimation and Attacks

4.2.1 Bayesian approach for power state estimation

In general, the state is related to the measurement vector Y ∈Rm through the follow-

ing nonlinear equation:

Y = h(X)+Z, (4.1)

where h is the measurement function and Z ∈Rm is additive noise. This is called the

AC model in the literature [ABUR and EXPOSITO, 2004; GIANNAKIS and collab., 2013].

Usually, under certain assumptions about the grid and its operating point, the

problem can be linearized as follows:

Y = HX+Z, (4.2)

where H ∈ Rm×n is the linearized Jacobian measurement matrix. This is called the

DC model, and we will adopt it for the remainder of the paper.

State estimators are crucial components for the functioning of Smart Grids sys-

tems, but they are known to be sensitive to faulty samples. Bad data detectors are

usually implemented to overcome this issue. They are a-posteriori detectors based

on the lp -norm (where typically p = 2) of the residual ∥Y −HX̂∥p , where X̂ is the

estimated state. The sample is detected as faulty when the lp -norm of the residual is

greater than a threshold τ. Nevertheless, as we discuss next, bad data detectors are

insufficient to overcome the problem of well-designed attacks.

4.2.2 False data injection attack

One of the most critical types of cyber-attacks are FDIAs. In LIU and collab. [2011],

the authors present various methods to generate such corrupted samples to bypass

the bad data detector under the DC assumption. Let us consider YA to be the attacked

sample. We consider that

YA = Y+A, (4.3)
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where A is the attack vector. It has been showed that, not to be identified as faulty by

the bad data detector, the attack should be a combination of the column vectors of

H, i.e., A = Hc , for all c .

There exist different scenarios where the attacker can, for example, only tamper

with a certain number of measurements either of its choosing or imposed by the

system. The attack can also be random or targeted. All these scenarios impose

specific values for the vector c . Intuitively, knowledge about the state estimator

should give more power to the attacker. In the following, we present an attack

method that uses that knowledge.

4.2.3 Review of the MILP Attack

The authors of KHEZRIMOTLAGH and collab. [2019] proposed an algorithm to create

an undetected attack using the knowledge about the state estimator.

Their algorithm is composed of two parts. The first minimization problem allows

the attacker to select which lines to overflow under the constraints that the generators’

active powers are not modified, and the power flow behavior is respected.

The second minimization problem tries to minimize the attack vector’s norm

under the condition that perturbed lines (selected according to the resolution of

the first minimization problem) are overflowed, meaning that their power flows

are at most 20% above their maximum values. The attack vector should respect

some conditions in order not to be detected. The power flow equations should be

respected, and each component of the attack should not be too different from the

value of the original observation. Finally, the total norm of the attack vector must be

zero to satisfy the condition of zero-sum of all active power in the power system is

met.

It is pretty easy to generate FDIAs that disrupt state estimation. Since state

estimation is critical to ensure the proper functioning of Smart Grid systems, it is

essential to ensure the reliability of the power system state estimator. Given that

attacks are designed to remain undetected by the bad data detector, it appears to

be fundamentally essential to improve the robustness of state estimators against all

kinds of attacks, especially the most powerful ones. The following section aims at

further developing this approach.

123



CHAPTER 4. ROBUST AUTOENCODER-BASED STATE ESTIMATION IN POWER
SYSTEMS

4.3 Defense Against False Data Injection Attacks

4.3.1 A Variational Autoencoder-based state estimator

We introduce a Variational Autoencoder (VAE) [KINGMA and WELLING, 2014] to build

a robust state estimator. Our network is expected to solve Equation 4.2 by learning

X̂ ∼ qφ(X|Y) (4.4)

from the measurements Y in an unsupervised way, where φ are the parameters of

the encoder, and Ŷ is built from the estimate X̂ using the physical knowledge of H

and of the noise Z ∼N (0,ΣZZ):

Ŷ ∼ p(Ŷ|X̂) =N (Ŷ;HX̂,ΣZZ). (4.5)

The conditional pdf of X|Y will be modeled as Gaussian,

qφ(X|Y) =N (X;µφ(Y),Σφ(Y)), (4.6)

where the mappings µφ and Σφ are learnt through a deep neural network encoder.

To increase the robustness of a state estimator against FDIAs, we need to ensure

that the estimator makes similar predictions for clean and attacked samples. To this

end, we build on our recent work [PICOT and collab., 2021] using tools from infor-

mation geometry to introduce a training regularizer based on Fisher-Rao distance

(FRD) [ATKINSON and MITCHELL, 1981] from which our robust VAE-based estimator

is derived.

4.3.2 A new metric improving robustness against attacks

To obtain an estimator that is robust to corrupted samples, µφ andΣφ, the learned au-

toencoder (see Subsection 4.2.1) has to perform similar on clean and noisy (attacked)

measurements. Therefore, the defender must pursue two different goals:

• Correctly reconstruct the measurement vector from the estimated states. The

estimator minimizes a reconstruction loss L (Y,H fφ(Y)), where X̂ = fφ(Y) is

the estimated state vector and fφ(Y) is the sampling of qφ(·|Y).

• Provide similar results through the mappings µφ andΣφ for both clean and cor-

rupted measurement vectors, respectively Y and YA, through the minimization

of the distance between the natural and corrupted distributions.

As we mentioned, one natural distance to consider is the FRD [ATKINSON and

MITCHELL, 1981], which captures the distance between pdfs over the underlying
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statistical manifold. Consider an attack mechanism p(YA|Y). For a given measure-

ment vector Y and a sample of attacked measurements YA, we can compare the pdfs

qφ(X|Y) and qφ(X|YA).

If we assume that the problem is uni-dimensional and that qφ(X|Y) ∼ N (µ,σ)

and qφ(X|YA) ∼N (µ̃, σ̃), the Fisher-Rao distance can be written as follows [ATKINSON

and MITCHELL, 1981]:

dF(qφ(·|Y), qφ(·|YA)) =p
2log

∥( µp
2

,σ)− ( µ̃p
2

,−σ̃)∥+∥( µp
2

,σi )− ( µ̃p
2

, σ̃)∥
∥( µp

2
,σ)− ( µ̃p

2
,−σ̃)∥−∥( µp

2
,σi )− ( µ̃p

2
, σ̃)∥

, (4.7)

where µ and σ are the mean and variance of the clean estimated states, respectively,

and µ̃ and σ̃ are the corresponding attacked states ones.

For any dimension d ≥ 2, if we assume thatΣφ is diagonal, the FRD can be written

as follows:

dR
(
qφ(·|Y), qφ(·|YA)

)=√∑
∀ i

(
dF(q i

φ(·|Y), q i
φ(·|YA)

)2, (4.8)

where q i
φ indicates the i -th component of qφ.

The defender’s objective then becomes:

φ∗ = argmin
φ
E[L (Y,H fφ(Y)]+β E[

dR(qφ(·|Y), qφ(·|YA))
]

, (4.9)

where L (·, ·) is the reconstruction loss, and β is a hyperparameter controlling the

trade-off between clean and attacked performances. It remains to define a defensive

scheme using the above objective to learn a robust state estimator.

In order to train a state estimator as robust as possible, being able to generate the

most powerful attacks is extremely important. The best possible method is to give

the attacker full knowledge about the underlying training procedure.

4.3.3 Novel attacks exploiting the state-estimator knowledge

Knowledge about the state estimator is required to generate harmful attacks. In this

setting, where the attackers have access to the state-estimator function and parame-

ters φ, the attacker wants to maximize the expected error between the clean (non-

corrupted) estimated state X̂ and the corrupted estimated state X̂A, i.e. E[ℓ(X̂, X̂A)].

While at the same time, the attacker must guarantee that the bad data detector will

not detect the corrupted samples (based on the generated noise), i.e., the attackers

should minimize ∥YA −HX̂A∥p . Hence, the attacker’s objective can be written as

follows:

Y∗
A = argmax

YA
ℓ( fφ(Y), fφ(YA))−λ∥YA −H fφ(YA)∥p , (4.10)
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Figure 4.1: Error between natural and noisy samples using the state estimator-aware attack.
©2022 IEEE.

where fφ(·) is the state estimator and λ is an hyperparameter controlling the trade-off

between the power of the attack and the detection of this attack. In order to build

such attack, we can use an arbitrary fidelity measure ℓ(·, ·), e.g. an lp -norm.

In order to create the attacks that will be the most harmful to a state estimator

that defends according to Equation 4.9, the attacker should choose the Fisher-Rao

distance between clean and attacked probability distributions as its fidelity measure.

4.3.4 General defensive framework

Algorithm 1 Review of the PGD Algorithm

INPUT: Define the step δ and the number of iterations n
INPUT: Y

YA ← Y
for i = 1..n do

YA ← YA +δ sgn(∇YA (g (Y,YA))), where
g (Y,YA) =L ( fφ(Y), fφ(YA))−λ∥YA −H fφ(YA)∥p and sgn is the sign function.

end for
OUTPUT: YA

Given that the parameters φ of a state estimator evolve during training, it is

theoretically possible to attack the network at each training step. Therefore, the

defender should generate attacked samples at each training step and then defend

against them to ensure robustness. Two different steps are needed to train a robust

state estimator:

• First, corrupted samples are generated using the proposed attack method in

Equation 4.10. Since the underlying maximization problem Equation 4.10 is

untractable, we generate noisy samples using the Projected Gradient Descent

method (PGD) [MADRY and collab., 2018] (for further details, see Algorithm 1).
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Figure 4.2: Errors between natural and corrupted performances as a function of the percent-
age of perturbed meters, for λ = 10 and without defense. ©2022 IEEE.

• Then, the defender updates its parameters φ by approximately solving Equa-

tion 4.9.

From this methodology, we derive an approximate solution to a min-max problem

which yields our robust estimator.

4.4 Numerical Results

In this section, we assess our proposed attack method’s strength and evaluate the

robust estimator’s effectiveness on both our proposed attack and the MILP attack

defined in KHEZRIMOTLAGH and collab. [2019].

4.4.1 Experimental set-up

Power network: We begin by considering the IEEE 14 bus system. The state vector is

composed of the bus angles α. Later we present results on bigger IEEE bus systems

(i.e., IEEE 57/118 bus systems), typically used as benchmarks. For each dataset, we

define a training set (8000 samples used to train the model), a validation set (2000

samples used for the hyperparameters choices), and a testing set (1000 samples used

for testing the resulting model).

Considered Meters: We use the active power P at each bus as the meters.

Autoencoder model:

• Since the DC model is linear, we employ a linear neural network to build the

encoder, composed of a single layer using the measurement and the state size

as input and output sizes.

• We use a physical knowledge-based decoder, defined by the Kirchhoff and

Ohm laws.
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Figure 4.3: Estimated-angles mean errors and portions of detected samples for a robust
estimator as a function of the β parameter. The natural errors are in plain lines, while the
attacked ones are in dashes. ©2022 IEEE.

• To train the robust VAE model, we need to choose the fidelity measure ℓ(·, ·) in

Equation 4.9 and the reconstruction loss L (·, ·) in Equation 4.10. For the latter,

we have to ensure that the chosen network–along with its loss–can predict the

states accurately. Hence, we chose L (·, ·) as the l1-norm between the ground-

true measurement vector and the estimated one since it gives us the best state

estimation results. Consequently, we also consider the l1-norm for the bad

data detector and the attacker. Then, we choose the FRD (see Equation 4.8)

as the fidelity measure ℓ(·, ·) to ensure that the attack/defense scheme is as

balanced as possible.

Optimization set-up. We train for 200 epochs, using the Adam optimizer with a

learning rate of 10−4 for the first 3/4 of learning and 10−5 afterward, and a weight

decay of 5.10−4.

Generation of the attack. We apply the formula in Equation 4.10, with the PGD

method described in Algorithm 1. We set the step parameter δ to 0.03 and the

number of iterations n to 10. In the final simulation, we consider the MILP attack

presented in Subsection 4.2.3 which also has access to the knowledge of the state

estimator.

4.4.2 Performance of the proposed attack

We aim at assessing the strength of the attack mechanism. To this end, we train a

defenseless state estimator for the IEEE 14 bus system, where the mean angle clean

error is equal to 0.0867 degrees. We generate the noisy (attacked) samples using the

method presented in Subsection 4.3.3, and report the attack-induced mean angle

error and the percentage of detected samples in Figure 4.1. Please observe that the

impact of the λ hyperparameter (Equation 4.10) that controls the trade-off between

the power of the attack and its detection is apparent in Figure 4.1. The bigger λ is,
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the smaller attack-induced mean error and the number of detected samples are.

For λ = 100, the number of detected samples is equal to 0. At the same time, the

state estimation error caused by the attack based on the state estimator equals 1.08.

Experimentally, it confirms that maximizing the Fisher-Rao distance between the

original and the corrupted state attack is effective and can be undetected.

4.4.3 Influence of the number of attacked meters

It is reasonable to assume that the attacker often can only affect a subset among all

meters in real-world scenarios. We, therefore, propose investigating the influence of

the portion of attacked meters in the measurement vector. Once again, the attack-

induced mean angle error and the percentage of detected samples are reported

in Figure 4.2. We set λ= 10 to have a powerful attack and highlight the number of

meter’s influence on the power and the detection of the attack. We select the meters

so that only the c most influential meters are kept, i.e., the l0 of the attack vector is

below c, with c ∈ [0,1].

As expected, the larger the portion of meters the attacker can affect, the more

degrees of freedom it has, and thus, the more powerful the attack becomes. Never-

theless, the percentage of detected samples increases as well. Since a detected attack

cannot be considered successful, the best trade-off between attack detection and

power seems to be around 50% of corrupted meters. In the remaining, we assume

that the attacks use λ = 10, and the attacker will affect 50% of the meters for each

measurement vector.

Now, we focus on the defensive aspect of the state estimator.

4.4.4 Defensive performances

On the 14-bus net

We train a robust state estimator, using the method detailed in Subsection 4.3.4.

First, we need to study the influence of the hyperparameter β that controls the trade-

off between natural and attacked performances. The mean angle errors and the

percentage of noisy detected samples are reported in Figure 4.3.

The trade-off between clean and attacked performances is visible. While increas-

ing the β hyperparameter provides better performances on attacked samples, it also

worsens the clean ones. For β ≥ 1, the VAE starts to give more importance to esti-

mating the attacked and clean natural samples in the same way and no longer tries

to predict the clean measurements correctly. The best trade-off between clean and

attacked performances was found for β= 0.1.
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Table 4.1: Clean and Attacked Mean Error for Defenseless and Robust Estimator for different
Bus Systems. ©2022 IEEE.

Bus System 14buses 57buses 118buses

Defenseless Clean Error 0.0867 0.1171 0.0969
Estimator Attacked Error 1.37 7.4910 2.1568

MILP Attack 0.4412 0.1248 0.1149

Robust Clean Error 0.0989 0.1527 0.1028
Estimator Attacked Error 0.1021 0.1535 0.1020

MILP Attack 0.0982 0.1531 0.0994

On other classical power networks

We choose to follow the classical IEEE bus systems with three different numbers of

buses, namely: small (14 buses), medium (57 buses), and large (118 buses). We train

a defenseless and a robust estimator for λ= 10 and 50% of corrupted meters. The

optimal β value is 0.1 for all cases. We then test both estimators on clean observations,

attacked observation using our proposed method, and attacked observation using

the MILP attack [KHEZRIMOTLAGH and collab., 2019].

We report the mean absolute state error on clean and attacked observations for

both a defenseless and a robust state estimator for all considered power networks in

Table 4.1. The clean and attacked errors are pretty similar for all networks and for

both considered attacks (our attack and the MILP attack) when a robust estimator

is trained, while the amount of natural performances lost by the robust training

is between 0 and 0.04 degrees. Therefore, it is possible to construct a robust state

estimator that improves robustness against state estimator-aware attacks while not

decreasing the performance significantly on clean samples.

4.5 Conclusion

In this paper, we introduced a novel method to generate powerful stealth false data

injection attacks based on the structure and training procedure of the state estimator

that the attacker aims at fooling. We have experimentally proven that this new

generation of attacks introduces state estimation error.

We also introduced a method to learn a robust state estimator using a geomet-

ric information distance, known as the Fisher-Rao distance, based on a min-max

game between the estimator and the attacker. On multiple benchmarks of power

networks, we have experimentally proven that it is possible to train a state estimator

that improves its robustness against attacks while not decreasing the performance

significantly on clean samples.

Finally, it is worth mentioning that our results are based on the DC model as-

sumption. However, we plan to generalize the proposed method to the more general
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AC model setup.

Chapter 4 Conclusion

In this chapter, we addressed the problem of leveraging the knowledge about

the output space to increase a state estimator’s robustness. We modified our

regularizer-based method on the Fisher-Rao distance to apply it to smart grid

systems.

We are among the first to use deep models to train a state estimator, based

on Variational AutoEncoders, that estimates the appropriate state even under

threat. In this work, we restricted ourselves to the linearized case. However, this

hypothesis is not necessarily realistic for every bus system. In the next chapter,

we will extend our work to be applicable to non-linear state estimators.

In reference to IEEE copyrighted material which is used with permission in

this thesis, the IEEE does not endorse any of Université Paris-Saclay’s or McGill

University’s products or services. Internal or personal use of this material is per-

mitted. If interested in reprinting/republishing IEEE copyrighted material for ad-

vertising or promotional purposes or for creating new collective works for resale

or redistribution, please go to http://www.ieee.org/publications_standards/

publications/rights/rights_link.html to learn how to obtain a License from

RightsLink. If applicable, University Microfilms and/or ProQuest Library, or the

Archives of Canada may supply single copies of the dissertation.
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Chapter 5

Robust State Estimation Against

Adversarial Noise

Chapter 5 Abstract

This chapter represents the final part of our answer to the first research ques-

tion dedicated to increasing adversarial robustness. We present our third and

final contribution. In the previous chapter, we present the extension of the

framework presented in Chapter 3 to the state estimator’s problem in smart

grid systems. To build our robust state estimator in Chapter 4, we made the

DC model assumption, i.e., that the state estimation problem was linear.

However, this linear assumption does not always hold.

In the following, we will present the state estimator problem in the non-

linearized case, i.e., the AC model, which is the realistic case since all electrical

systems are actually always non-linear. We present our solution to build robust

non-linear state estimators. Our extensive numerical experiments prove that

our method is able to construct state estimators that are robust to state-of-the-

art attacks in the case of multiple bus systems.

Abstract

Smart Grids are critical systems where state estimation is critical due to

monitoring purposes. Through this computational aspect, Smart Grids are

vulnerable to cyber-attacks, and in particular, to False Data Injection Attacks

(FDIAs). In this paper, we begin by introducing two novel methods to generate

FDIAs that exploit knowledge of the state estimator: a deterministic process,

creating undetectable attack for each observation vector, and a random process,

learning a probability distribution depending on the observations. Then, we

present a method to construct a robust state estimator based on a variational

autoencoder trained using ideas from adversarial deep learning to improve its

robustness capabilities. Finally, we test our robust estimator for three different
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power systems: the IEEE 14/57/118 buses systems. The results show that our

approach can provide similar estimation errors for clean and noisy (attacked)

measurements, also showing that the estimator is not sensitive to the attacker

strategy.

5.1 Introduction

5.1.1 Motivation

Smart Grids are cyber-physical electrical systems where monitoring is an essential

task. Real-time analysis of the network is made possible through the strategic deploy-

ment of meters on the grid. These meters are then processed to assess the state of

the grid through accurate state estimation. This computational aspect, while allow-

ing self-healing, maintenance, and interaction with the consumer while providing

various services [ABUR and EXPOSITO, 2004], also increases the vulnerability of smart

grids to unreliable data and malicious agents.

To prevent unreliable data from disrupting the normal operation of a smart grid,

bad data detectors are usually implemented and included in the state estimation

process. However, it is well-known that malicious agents can bypass this protection

using well-crafted attacks and alter the reliability of state estimation without being

uncovered. In these cyber-attacks, known as False Data Injection Attacks (FDIAs)

[LIU and collab., 2011], the attacker makes use of the knowledge about the power

grid and the monitoring system to craft the attack. FDIAs attempt to disrupt the

state estimation process through the manipulation of specific measurements. The

attacks can either be random, e.g., the goal is only to disrupt the state estimator, or

targeted, e.g., the goal is to induce specific (targeted) values to the states. Stealth

attacks [DÁN and SANDBERG, 2010; SUN and collab., 2019] are FDIAs designed so that

their detection by the control center is made complex or even infeasible. The problem

of defense against FDIAs is of critical importance in practice. For instance, in 2015, a

malicious attack was successfully launched against a Ukrainian power plant. This

deprived hundreds of thousands of houses of electricity for several hours [ALDERSON

and DI PIETRO, 2016].

5.1.2 Related work

FDIAs have been widely studied since their introduction by LIU and collab. [2011].

Power system vulnerability studies have been conducted by developing strategies to

efficiently design attack schemes [HUG and GIAMPAPA, 2012; KOSUT and collab., 2010;

LIU and collab., 2011; RAHMAN and MOHSENIAN-RAD, 2013; YUAN and collab., 2011].

The vulnerability has been defined as the minimum number of compromised meters
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required to successfully disrupt the state estimation [SANDBERG and collab., 2010].

Unfortunately this is a complex cardinality minimization problem which is hard to

solve, particularly for large grids with several meters installed. In fact, the authors in

HENDRICKX and collab. [2014] showed that this problem is an NP-hard problem and

presented a relaxation hypothesis to solve it efficiently. A similar approach has been

considered by the authors in SOU and collab. [2013]. The impact caused by FDIAs

has been studied from different perspectives such as the energy deceiving aspect

[LIANG and collab., 2016] or the economic losses [LIANG and collab., 2016; TAJER,

2017; XIE and collab., 2010].

Most of the research has been done according to the DC model assumption [DÁN

and SANDBERG, 2010; KOSUT and collab., 2010; LIU and collab., 2011; PASQUALETTI

and collab., 2011; SANDBERG and collab., 2010; XIE and collab., 2010; YUAN and collab.,

2011], which leads to a simple linear model for the measurements as a function of

the state. These works show precisely how FDIAs can bypass bad data detectors. A

comprehensive review of the security problem under the DC-model assumption

can be found in LIANG and collab. [2016]. A few works have focused on AC-based

FDIAs [HUG and GIAMPAPA, 2012; JIN and collab., 2018; KEKATOS and collab., 2017;

LIANG and collab., 2014; TEIXEIRA and collab., 2015; ZHU and GIANNAKIS, 2012],

which considers the nonlinear relation between the state and the measurements.

On the other hand, joint cyber and physical attacks have also been studied [SOLTAN

and collab., 2016], leading to the study of detection and recovery of information from

line failure under DC and AC assumption [SOLTAN and collab., 2018; SOLTAN and

ZUSSMAN, 2018].

Three main types of defense strategies have been developed in the literature.

The first one is the detection of the FDIAs [KOSUT and collab., 2010; PASQUALETTI

and collab., 2011], which can be used to discarding the compromised measurements.

The second one is based on encryption, authentication and key management [DÁN

and SANDBERG, 2010; TEIXEIRA and collab., 2015; WANG and LU, 2013] in order to

protect the communication channel between the meters and the control center.

Finally, Robust State Estimation (RSE) under the DC assumption has been created to

develop state estimations that are robust against bad data [CELIK and ABUR, 1992;

KOTIUGA and VIDYASAGAR, 1982; MILI and collab., 1994; ZHU and GIANNAKIS, 2012].

An AC-based solution to the RSE problem has been investigated by ZHANG and collab.

[2017], but it requires many relaxation assumptions. It should be noted that these

defense strategies are complementary to each other and can be used simultaneously

in practice. In this work, we focus on the latter approach to protect the grid against

FDIAs.
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5.1.3 Contributions

In this paper, we propose a novel method to craft robust state estimators based on a

game between the estimator and a simulated attacker using a deep learning approach.

The main idea is that if the simulated attacker and the estimator are trained jointly,

the estimator will become robust in the process. Our idea is inspired by the field of

adversarial machine learning [VOROBEYCHIK and KANTARCIOGLU, 2018].

Our contributions can be summarized as follows:

• We present a scheme to train a robust state estimator to prevent attacks from

disrupting the state estimator based on an adversarial training approach.

• We propose two frameworks to generate attacks: a deterministic framework,

where the attack vector is constructed using the gradients of the loss function

with respect to the input, and a random gaussian framework, where the mean

and the standard variation both depend on the measurements. The latter

attack can be seen as a generalization of the gaussian attacks presented in SUN

and collab. [2019].

• We compare the deterministic and random attacks on the IEEE 14 bus sys-

tem and find that random attacks seem better suited to train a robust state

estimator.

• Finally, we test our defense scheme against several attacks on the IEEE 14/57/118

bus systems and compare its performance with a state-of-the-art method. We

find that our approach yields a more robust estimator.

The rest of the paper is organized as follows. In Section 5.2, we present a review of

the state estimation problem, followed by an overview of false data injection attacks.

In particular, we review a state-of-the-art defense mechanism and an attack method

to later use as our benchmark. In Section 5.3, we present our defensive framework

along with the proposed attacks. Finally, in Section 5.4, we experimentally show the

effectiveness of our robust state estimator.

5.2 Background on State Estimation and Attacks

5.2.1 Bayesian approach for power state estimation

Let x = |x|ei argx ∈Cn be the state vector (latent variables) of the power grid, assumed

to be random with a prior probability density function (pdf) p(x), and y = |y|ei argy ∈
Cm the measurement vector. In general, these are related through the following

nonlinear equation:

y = h(x)+z, (5.1)
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where h is the measurement function (dependent on the grid topology, line impedances,

etc.) and z ∈Cm is additive noise. This is called the AC model in the literature [ABUR

and EXPOSITO, 2004; GIANNAKIS and collab., 2013].

We define a (parametric) state estimator as a function fφ : Cm → Cn such that

x̂ = fφ(y). The parameters φ can be obtained by minimizing a risk function (see

Section 5.3).

State estimators are crucial components for the functioning of smart grid systems,

but they are known to be sensitive to faulty samples. Bad data detectors are usually

implemented to overcome this issue. They are a-posteriori detectors based on the

lp -norm (where typically p = 2) of the residual vector

r = y−h(x̂). (5.2)

Concretely, the sample is detected as faulty when the ∥r∥p > τ, where τ is a threshold

chosen appropriately to control the trade-off between missed and false detections.

Nevertheless, bad data detectors are insufficient to overcome the problem of well-

designed attacks. In particular, a theoretical bound on the maximal number of meters

that one can attack in order to remain undetected is derived in JIN and collab. [2018].

5.2.2 False Data Injection Attacks

In order to craft an FDIA under the AC model (Equation 5.1), the attacker can solve

the following optimization problem [JIN and collab., 2018]:

max
xa,a

g (xa)

s.t. h(xa)+z = y+a = ya (5.3)

∥a∥0 ≤ c,

where xa is the corrupted state, a is the attack vector, ya = y + a is the attacked

observation, and g (·) is the objective of the attacker. The condition on the l0-norm of

the attacked vector allows the attacker to bypass the bad data detector by attacking

only a subset of sensors. Since the minimization problem in Equation 5.3 is widely

non-convex, different relaxations are proposed in JIN and collab. [2018] to solve

Equation 5.3.

Notice that the attacker objective can be different based on its specific goal, for

example:

• Target state attack, where g (xa) = ∥xa −xtarget∥2
2, which will put the corrupted

state to the targeted value xtarget.

• Voltage collapse attack, where g (xa) = ∥xa∥2
2, which will lead the estimator to

believe that the voltage is low.
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• State deviation attack, where g (xa) =−∥xa − x̂∥2
2, which will force the corrupted

state to be different from the original predicted one.

The optimization problem in Equation 5.3 requires to solve precisely the state

estimation problem for each attack vector a in order to obtain xa. If we assume

that the attacker knows the structure of the state estimator fφ, it is reasonable and

convenient to replace xa with fφ(y+a). This leads to the following problem for the

attack design:

max
a

g ( fφ(y+a))

s.t. ∥a∥0 ≤ c, (5.4)

We focus on this formulation for the remaining of the paper.

A variety of attacks has recently been proposed to attack AC State Estimator.

While some try to attack without any knowledge about the grid to attack, we focus on

attacks with full knowledge about it. This can be considered as a worst-case scenario,

which is a reasonable criterion to study the vulnerability of critical systems such as

smart grids.

JIN and collab. [2017] presented a semi-definite relaxation to create a convex

attack optimization to create powerful and sparse attacks. The sparsity constraint is

relaxed as an l1-norm constraint on the additive noise. While their method has been

presented for targeted attacks, it can be easily extended to any of the three attacker’s

objectives presented in Subsection 5.2.2.

While crafting attacks that disrupt the state estimator’s functioning is relatively

easy, building efficient defenses against said attacks is a more challenging task.

5.2.3 Review of the LASSO robust state estimators

There exists in the literature a few works that focus on crafting robust state estimators

[JIN and collab., 2019; ZHANG and collab., 2017]. We decided to focus on the LASSO

solution proposed in JIN and collab. [2019]. First, they introduce a new basis for the

state estimation problem, where the AC problem is, in fact, linear. On this new basis,

the state is no longer directly optimized. Instead, the new state is a combination of

the original one. In order to obtain the robust state estimator, two steps are needed.

The first one is the optimization of a lasso regression, where the l2 reconstruction

error is regularized by the l1 norm of the noise. The second step consists of the

retrieval of the original state from the new basis one.
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5.3 Proposed Robust State Estimator

5.3.1 A Variational AutoEncoder based state estimator

We propose to use a Variational AutoEncoder (VAE) [KINGMA and WELLING, 2014] to

build a robust state estimator. Our network is expected to provide a state estimator

by learning a conditional distribution qφ(x|y) such that x̂ = fφ(y) ∼ qφ(x|y) from the

measurements y in an unsupervised way. Here, φ are the parameters of the encoder.

Notice that we can then reconstruct the estimate observation ŷ from the estimate x̂

using the physical knowledge of the grid (to obtain h) and of the noise distribution z

(more specifically, its covariance matrix Σz). The equivalent minimization problem

is:

φ∗ = argmin
φ

L(φ), (5.5)

where L(φ) is the risk of the state estimator. To obtain an estimator that is robust to

corrupted samples, we need to ensure similar performance for clean and attacked

measurements. Therefore, the risk should be defined based on two goals:

1. Correctly estimate the states from the observations y.

2. Provide similar results for both clean and corrupted measurement vectors,

respectively y and ya.

To ensure both goals are met, we propose the following risk:

L(φ) = Lclean(φ)+βLattacked(φ), (5.6)

where minimizing Lclean(φ) will ensure that the clean states are rightfully estimated,

while minimizing Lattacked(φ) will ensure clean and attacked mapping are similar. β

is a fixed hyperparameter controlling the trade-off between the goals.

To rightfully estimate the clean states, we consider:

Lclean(φ) = E[L (y,h(x̂)], (5.7)

where L (·, ·) is the reconstruction loss. In general, this optimization problem is

highly non-convex and has an infinite of solutions. To force the state estimator

to find the solution we expect, we impose the condition that the amplitude of the

predicted state x̂ has to be within 10% of 1 p.u. The new risk therefore becomes:

Lclean(φ) = E[
L (y,h(x̂))+ c · ||1−|x̂| ||1

]
, (5.8)

141



CHAPTER 5. ROBUST STATE ESTIMATION AGAINST ADVERSARIAL NOISE

where

c =
1, if ||1−|x̂| ||1 > 0.1

0, otherwise.
(5.9)

The conditional distribution p(x|y) will be modeled as Gaussian, i.e., qφ(x|y) =
N (x;µφ(y),Σφ(y)) where the mappings µφ and Σφ are learnt through a deep neural

network encoder. Notice that the decoder is fixed (i.e., it is not required to learn it)

since p(y|x) =N (y;h(x),Σz).

The question now is how we should choose Lattacked(φ) to ensure that clean

and attacked states are similar. To answer this question, we build on our recent

work [PICOT and collab., 2021] using tools from information geometry to introduce a

risk function based on Fisher-Rao distance (FRD) [ATKINSON and MITCHELL, 1981;

PINELE and collab., 2020] between two distributions. We now develop this idea to

define Lattacked(φ) for our robust VAE-based state estimator.

5.3.2 A new metric to improve robustness against attacks

As previously mentioned, the choice of the risk to ensure that clean and attacked

states are similarly estimated is important. The output of the variational autoen-

coder being a probability distribution, one natural distance to consider is the FRD

[ATKINSON and MITCHELL, 1981; PINELE and collab., 2020], which captures the dis-

tance between distributions over the underlying statistical manifold (defined by the

encoder neural network in this case).

Consider an attack mechanism that outputs an attack observation ya given a

clean one y. We can compare the predicted distributions qφ(x|y) and qφ(x|ya). If we

first assume that the problem is one-dimensional and that qφ(x|y) =N (x;µ,σ2) and

qφ(x|ya) =N (x; µ̃, σ̃2), the Fisher-Rao distance can be written as follows [ATKINSON

and MITCHELL, 1981]:

dF(qφ(·|y), qφ(·|ya)) =p
2log

∥( µp
2

,σ)− ( µ̃p
2

,−σ̃)∥+∥( µp
2

,σ)− ( µ̃p
2

, σ̃)∥
∥( µp

2
,σ)− ( µ̃p

2
,−σ̃)∥−∥( µp

2
,σ)− ( µ̃p

2
, σ̃)∥

. (5.10)

Now, if we assume that Σφ is diagonal for simplicity, the FRD can be written as

follows:

dR
(
qφ(·|y), qφ(·|ya)

)=√
n∑

i=1

(
dF(q i

φ(·|y), q i
φ(·|ya)

)2, (5.11)

where q i
φ is the i -th component of qφ.

A natural choice for Lattacked(φ), using FRD, is:

Lattacked(φ) = E[dR(qφ(·|y), qφ(·|ya)]. (5.12)
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The remaining question is how to generate powerful attacks ya on which to train

our robust state estimator. In the following, we will present two attack mechanisms

that make use of the full knowledge about the targeted state estimator.

Algorithm 2 Deterministic attack generation (PGD Algorithm)

INPUT: Define the step δ and the number of iterations nPGD

INPUT: y
ya ← y+a with a ∼ Unif([−0.01,0.01])
for i = 1..nPGD do

Compute l (y,ya;φ) from Equation 5.13.
a ← δ · sgn(∇y(l (y,ya;φ))), where sgn is the element-wise sign function.
ya ← ya +a

end for
OUTPUT: ya

5.3.3 Attack mechanisms using full knowledge about the state esti-

mator

The attacker’s goal is to disrupt the regular operation of the state estimator. We

assume that its goal is to maximize the expected error between the original predicted

state values x̂ and the state estimation of the attacked observation x̂a , corresponding

to the 3rd case of the objectives in Subsection 5.2.2.

In the setting where full access to the state estimator to attack is available, the

attacker wants to maximize, for each observation y, the error between the clean (non-

corrupted) estimated state x̂ and the corrupted estimated state x̂a, i.e. ℓ(x̂, x̂a;φ),

where ℓ(·, ·; ·) is an error loss. At the same time, the attacker must guarantee that the

generated sample will remain undetected by the bad data detector, i.e., the attacker

should minimize ∥ya −h(x̂a)∥p . The attacker’s objective can therefore be written as:

l (y,ya;φ) = ℓ(x̂, x̂a;φ)−λ∥ya −h(x̂a)∥p , (5.13)

where λ is a hyperparameter controlling the trade-off between the power of the attack

and its capability to remain undetected.

The attacker’s objective can be optimized in two ways, either in a deterministic

way or following a random process. In the deterministic case, the attacker maximizes

its objective for each observation, i.e., for a given observation y,

y∗
a = argmax

ya
l (y,ya;φ). (5.14)

The attacker can also generate random attacks following:
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y∗
a ∼ q∗(ya|y) = argmax

q(ya|y): ya∼q(ya|y)
E[l (y,ya;φ)], (5.15)

It should be mentioned that this attacker’s objective is similar to the one in SUN

and collab. [2019] if we set ℓ to be the mutual information between the attacked

observation and the state.

In the following, we will present two algorithms to generate deterministic and

random attacks according to the optimization problems in Equation 5.14 and Equa-

tion 5.15, respectively.

Deterministic attack mechanism

Since the problem in Equation 5.14 is extremely non-convex and hence widely in-

tractable, we consider a simple approach to approximate its solution. Concretely,

we consider a Projected Gradient Descent (PGD) method to generate the attacked

measurements. This method was introduced in the field of adversarial machine

learning to generate adversarial examples for computer vision problems [MADRY

and collab., 2018]. It is an iterative method based on the sign of the gradient of the

objective to maximize. The procedure is explained in detail in Algorithm 2. Notice

that each attack is independent of the others and the computation of the attack

vector a must be done from scratch for each measurement vector y.

Algorithm 3 Random attack generation (noisy channel optimization)

INPUT: Define the learning rate αc and the number of steps nc

INPUT: input data {y1, ..,ym}
Initialize the parameters θ, and fix φ
n = 0
while n < nc do

Draw a minibatch {yπ1 , ..,yπk }
for all y ∈ {yπ1 , ..,yπk } do

Compute µθ(y),Σθ(y).
Sample ya from N (y;µθ(y),Σθ(y)).

end for
Compute L(θ) = E[

l (y,ya;φ)
]

using the minibatch samples and the correspond-
ing attacks.

θ← θ+αc∇θ(L(θ))
n ← n +1

end while
OUTPUT: θ
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Random attack mechanism

Another possible way to generate harmful attacks is to create them thanks to a para-

metric model, called a noisy channel, that will learn the perturbation distribution. If

we consider a gaussian noisy channel, we have that ya ∼ qθ(ya|y) =N (y;µθ(y),Σθ(y)).

The problem in Equation 5.15 then becomes:

θ∗ = argmax
θ:ya∼qθ(·|y)

E
[
l (y,ya;φ)

]
. (5.16)

The optimization process is explained in Algorithm 3.

The idea behind this method is that we can model the noisy conditional distri-

bution pya|y as the product of independent normal distributions, where the mean

and variance of each component of ya depend on the observation y. This can be

seen as the generalization of gaussian attacks presented in SUN and collab. [2019] to

conditional gaussian attacks. It should be noted that conditional gaussian attacks

are much more powerful than gaussian attacks, thus allowing to create more harmful

attacks. On the other hand, training and using a parametric model as the noisy

channel will allow the attacker to use and share knowledge among all observation

samples. We believe sharing this knowledge will enable the attacker to create more

potent and less detectable corrupted samples.

5.3.4 Training of robust state estimator

Given that the parameters φ of a state estimator evolve during training, it is possible

to attack the network at each training step. Therefore, to ensure the state estimator is

robust, it is convenient to generate attacked samples at each training step and use

them to optimize the loss.

Two different steps are needed to train a robust state estimator:

• First, corrupted samples are generated using either the deterministic attack

method proposed in Algorithm 2, or the random attack method described in

Algorithm 3.

• Then, the defender updates its parameters φ by approximately solving Equa-

tion 5.6.

It should be noted that this process can be repeated until convergence. Using this

methodology, we derive an approximate solution to problem in Equation 5.5 leading

to our robust estimator. The robust state estimator training is described in Algo-

rithm 4.
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Algorithm 4 Training of robust state estimator

INPUT: Define the learning rate αr and the number of steps ns

INPUT: input data {y1, ..,ym}
Initialize the parameters φ
n = 0
while n < ns do

Draw a minibatch {yπ1 , ..,yπk }
Generate attacked samples ya either according to Algorithm 2 or by performing

1 step of Algorithm 3.
Compute L(φ) from Equation 5.6.
φ←φ+αr .∇φ(L(φ)).
n ← n +1.

end while
OUTPUT: φ

5.4 Experiments

First, we consider a small well-known system - the IEEE 14-bus system - to assess

the strength of our proposed attack/defense scheme and to choose all their related

hyperparameters. Later, we test our robust state estimator on two additional systems,

the IEEE 57 and 118 bus systems.

5.4.1 Set-up

AutoEncoder:

• Encoder: We use an encoder composed of 3 dense layers, with ReLU as activa-

tion functions.

• Decoder: We use a physical knowledge-based decoder, defined using Kirchhoff

and Ohm laws.

• Considered losses: We need to choose 3 different losses: the attacker’s objective

ℓ(·, ·; ·), the state estimator reconstruction loss L (·, ·), and the lp -norm of the

bad data detector. We chose the l1 error as L (·, ·) since it gave us the best l2-

reconstruction error. Therefore, we also use it for the bad data detector. To have

the attacker-defender problems as symmetrical as possible, we use the Fisher-

Rao distance as the attacker’s objective, i.e., ℓ(x̂, x̂a;φ) = dR
(
qφ(·|y), qφ(·|ya)

)
.

Optimization set-up: The Stochastic Gradient Descent optimizer is chosen to

optimize our VAEs, with a learning rate of 10−2, decayed by 10 after 1/100th of the

training and by 100 after 1/3 of the training; and a weight decay of 10−5.

Generation of the attacks:

• Deterministic attack: We use the method detailed in Algorithm 2 to corrupt

samples, using δ= 0.1 and n = 10.
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(a) Deterministic Attack
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(b) Random Attack

Figure 5.1: Averaged angle and tension attack-induced errors, and percentage of detected
noisy samples under (a) the deterministic attack, (b) the random attack with no defense, as a
function of λ, the attack hyperparameter.

• Random attack: We use a 5-dense-layer model, with input and output sizes for

each layer equal to the number of meters. The chosen optimizer is a Stochastic

Gradient Descent optimizer with a learning rate of 10−4 and a weight decay of

5.10−4. We perform 1 step of the channel before doing one step of the state

estimator during the training phase and reinitialize it at the end of each epoch.

We train another channel from scratch for one epoch and discard the detected

samples for testing.

5.4.2 Performance of attacks

First, we want to assess the strength of the different attack mechanisms. We attack a

defenseless state estimator, trained using the set-up presented in Subsection 5.4.1,

using both attacks and plot the angle and voltage attack-induced errors along with

the percentage of detected samples.

1) Deterministic attack using PGD method

The results for the deterministic attack generation method are presented in

Figure 5.1a. For small values of λ, the hyperparameter that controls the trade-off

between effectiveness and detection of the attack, the attacks are widely detected,

which is uninteresting. For big values ofλ, the attacks are undetected but significantly

less powerful. A good trade-off between the two phenomena seems to be for λ= 103

since the attack creates a 7 degree and 0.8 P.U. error, while only 45% of the attacks are

detected.

2) Random attack using a noisy channel

The results for the random attack generation method are presented in Figure 5.1b.

The same behavior as for the deterministic attack is visible in the results. A good

trade-off seems to be for λ = 10, for which the attacks create a 4-degree and 0.4-P.U.

error while 47% of the attacks are detected.
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(a) Deterministic attack; λ= 103
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(b) Random attack; λ= 10

Figure 5.2: Influence of the percentage of attacked meters on the angle and tension attack-
induced errors and percentage of detected samples under (a) the deterministic attack with λ
= 1000, (b) the random attack with λ = 10 with no defense.

In real-life scenarios, the attacker does not necessarily have access to all the

meters. In the following, we will investigate the effect of the number of attacked

meters on the attacks.

5.4.3 Influence of the number of attacked meters

In Figure 5.2a and Figure 5.2b, we present the influence of the percentage of attacked

meters on our two attack mechanisms, using the λ value chosen previously. The

attacker can attack the n% of meters with the highest l1-norm ∥a∥_1.

In this case, the two attack mechanisms behave similarly. Indeed, the more

meters we can attack, the more powerful the attack is, but the more detectable it is. A

good trade-off for both the deterministic and the random attack is 25% of attackable

meters.

5.4.4 Effect of β on estimation performance

Now we study the influence of the β parameter to increase the robustness of the state

estimator to corrupted observations.

1) Deterministic attack using PGD method: We now train a robust state estimator,

using the method detailed in Subsection 5.3.4 using the PGD method to generate

attacks. The natural and corrupted angle and voltage errors are presented in Fig-

ure 5.3a.

As expected, the β hyperparameter controls the trade-off between natural and at-

tacked performances. For small values of β, the state estimator focuses on estimating

the natural performances and does not significantly impact the noisy performances.

On the opposite, for large values of β, the state estimator focuses on approximating

the natural and noisy samples in the same way but no longer tries to estimate the

natural observations correctly. Therefore, there exists an optimal β value. In this
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particular case, the optimal value of β is equal to 0.03, for which the mean errors

are similar for natural and corrupted samples, and their values are 0.27 degrees and

0.015 P.U. on clean samples and 0.016 P.U. on attacked ones, respectively.

2) Random attack using a noisy channel: We perform the same simulations as

before, now considering the corrupted samples from the noisy channel’s training.

The natural and corrupted angle and voltage errors are presented in Figure 5.3b.

The same phenomena as the ones described before are happening in this case.

The optimal β value here is also equal to 0.03, which is not surprising since the

same defender’s objective will be the same no matter how the corrupted samples

are generated. When training a defender based on the random attack, we can find a

robust VAE for which the mean errors are similar for natural and corrupted samples,

and their values are 0.26 degrees and 0.014 P.U. on clean samples, and 0.016 P.U. on

attacked ones, respectively.

From all these simulations, we can conclude that using either method to generate

attacks, it is possible to create robust state estimators that will have similar state

predictions for both natural and attacked samples.

5.4.5 Comparison between the two attack schemes

Finally, to finish comparing the two attack mechanisms, we decided to attack the

robust estimator trained with a method using the other. When we attack the robust

estimator trained on the PGD method, the robust performances increases to 0.39

degrees as the mean angle error and 0.032 as the mean voltage error. For the other

way around, i.e., testing PGD on the estimator trained with the noisy channel, the

results are 0.17 degrees and 0.035 P.U., respectively. The two defenses are quite similar.

However, training a robust classifier on the noisy channel attack takes approximately

three times less time than training a robust classifier on the PGD method. This

phenomenon is because it is possible to train the random attacker once per estimator

step while we have to complete 10 steps of PGD for every estimator step. In order to

increase the power of the deterministic attack, we would have to increase the number

of PGD steps, which will be even more computationally costly.

Therefore, we choose the noisy channel attack as the best attack since, while

having equivalent performances, it requires a lot less training time.

5.4.6 Comparison between state estimation methods

We now test our method on widely known and used power networks: the IEEE

14/57/118 bus systems. We trained a defenseless, a robust, and a LASSO state esti-

mator following the method presented in Subsection 5.2.3 for each of the datasets

and reported the results for natural, random attacked and state-of-the-art (SOTA)
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(a) Deterministic attack; λ= 103
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(b) Random attack; λ= 10

Figure 5.3: Natural and attacked angle and tension estimation errors averaged over the buses
and the samples for (a) the deterministic attack with λ = 1000 and 25% of attacked meters, (b)
the random attack with λ = 10 and 25% of attacked meters. Natural values are in plain line,
attacked ones are in dashes.

attacked performances presented in Subsection 5.2.2 on Table 5.1. It is clear from this

table that our proposed defense mechanism is able to protect our VAE against attack

by rightfully estimating the states from both the clean and the noisy observations,

whether they are created using our method or the state-of-the-art one. However, the

state-of-the-art defense mechanism, using all the hyperparameters defined in the

original paper, has more difficulty estimating the clean states and is more sensitive to

attacks (i.e., they exhibit a difference of 7 degrees under attacks) than our proposed

method.

To conclude, our method seems to be well-suited to craft robust state estimators,

for which the state is estimated similarly for clean and attacked samples.

5.5 Conclusion

In this paper, we introduced novel methods to generate powerful false data injection

attacks based on the knowledge of the estimator’s training procedures. We have

experimentally proven that these methods introduce significant state estimation

errors. We also introduced a method to learn a robust state estimator using a geo-

metric information distance, known as the Fisher-Rao distance, based on a min-max

game between the estimator and the attacker. On multiple benchmarks of power

networks, we have experimentally proven that it is possible to train a state estimator

that improves its robustness against attacks while not significantly decreasing the

performance on clean samples.
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Table 5.1: Natural and Attacked Mean Error for Defenseless, Robust and LASSO state estima-
tors for different Bus Systems

Estimator
14buses 57buses 118buses

Angle Voltage Angle Voltage Angle Voltage

Natural 0.11 0.006 0.12 0.007 0.30 0.003
Defenseless Random Attack 2.01 0.17 0.87 0.09 1.34 0.04

SOTA Attack 2.39 0.21 0.71 0.07 0.41 0.07

Natural 0.26 0.014 0.21 0.009 0.26 0.003
Robust Random Attack 0.26 0.016 0.21 0.013 0.26 0.009

SOTA Attack 0.26 0.014 0.21 0.013 0.28 0.01

Natural 30.2 0.050 60.4 0.052 87.4 0.044
LASSO Random Attack - - - - - -

SOTA Attack 37.4 0.050 69.5 0.054 93.1 0.043

Chapter 5 Conclusion

In this chapter, we addressed the problem of leveraging the knowledge

about the output space to increase a state estimator’s robustness in the non-

linearized case. We presented two procedures to create powerful stealth attack,

one deterministic and one random. We compared our two attack frameworks

and showed that they were indeed powerful. We used this attacks to craft

robust state estimators and experimentally showed that they were efficient

against attacks.
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Part I Conclusion

Part I focused on the first research question: how can we leverage the in-

formation about the internal structure of DNN’s output space to improve

its robustness? This research question has been addressed for two different

applications:

1. For image data. We tackled the problem of crafting deep classifiers that

are robust to adversarial attackers. We decided to use the Fisher-Rao

distance, an information-geometric distance that measures the geodesic

between two probability distributions on a statistical manifold. We use

this distance as a regularizer to force a given deep classifier to predict

natural and adversarial inputs in similar ways. Using the Fisher-Rao

distance as a regularizer builds stronger classifiers than using previously

introduced regularizers.

2. For state estimation in Smart Grid systems. In the critical case of smart

grids, where protecting against attacks is crucial to ensure the grid’s

reliability, we proposed a new framework to build a robust state esti-

mator. We used a similar framework than in Chapter 3 to show that

it was possible to construct robust estimators, both under linear and

non-linear assumptions. Our contribution is among the first to make

use of a deep neural network (i.e., a variational autoencoder in our case)

to build defenses against stealth attacks.

Part I was dedicated to increasing our trust in the deep models’ decision

process by increasing their robustness against attacks.

As previously said, an alternative way to increase our trust in the models is

to rely on detecting methods. The detector is an additional module that can

be plugged on top of the neural network to protect against malicious agents.

Given an input, the detector chooses to reject it based on chosen charac-

teristics. In Part II, we describe our contributions to the field of adversarial

detection applied to image data.
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On the use of Simple Statistic Tools to

Detect Attacks: Using Data-Depths to

Protect the Input’s integrity

157





Part II Abstract

This part is dedicated to our proposed answers to the second question asked

in Chapter 1: How can we craft an efficient and effective detection method

based on simple tools ? This part is split into two chapters consisting of two

different contributions.

• In Chapter 6, we present our first solution to craft a detection method.

We introduce the data-depths, statistical tools usually used in anomaly

detection in the framework of supervised detection of adversarial ex-

amples. Data-depths provide a center-outward ordering of points w.r.t.

a reference distribution. We specifically use the halfspace-mass depth

and design a detection method to leverage the relevant class-wise infor-

mation present in the different layers of a given model. We also make

use of the available knowledge about the possible threats to craft an

efficient method to discard attacked inputs. Experimentally, we vali-

date our method in different scenarios: attack-aware, blind-to-attack,

and against adaptive attacks, and show the superiority of our method

compared to other state-of-the-art detectors.

• In Chapter 7, we present our second and last detection method. In the

unsupervised setting, i.e., without any knowledge about the possible

threats, we design a detection method that leverages both the internal

structure of the Vision Transformers and the available information pro-

vided by the use of a specific data-depth: the Integrated Rank-Weighted

(IRW) depth. After explaining our different choices, we experimentally

prove that our method outperforms state-of-the-art methods and that

our method makes the adaptive attacker’s job more complicated.
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Chapter 6

A Halfspace-Mass Depth-Based

Detector for Adversarial Attack

Detection

Chapter 6 Abstract

We here present our first contribution concerning the second research ques-

tion. We made use of the data-depths to detect adversarial examples in a

supervised setting. We propose, in the following, a detection method that

leverages the particular class-wise information available at different layer of

the network , and the halfspace-mass depth to efficiently detect adversarial

examples trying to fool an underlying classifier. We experimentally show that

the attacks have different class-wise behavior. We compare our method with

state-of-the-art detection methods, and experimentally prove its efficiency.

Finally, we show that it is more complicated for an adaptive attacker to fool

our detection method than others.
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Abstract

Despite the widespread use of deep learning algorithms, vulnerability to

adversarial attacks is still an issue limiting their use in critical applications.

Detecting these attacks is thus crucial to build reliable algorithms and has

received increasing attention in the last few years. In this paper, we introduce the

HalfspAce Mass dePth dEtectoR (HAMPER), a new method to detect adversarial

examples by leveraging the concept of data depths, a statistical notion that

provides center-outward ordering of points with respect to (w.r.t.) a probability

distribution. In particular, the halfspace-mass (HM) depth exhibits attractive

properties such as computational efficiency, which makes it a natural candidate

for adversarial attack detection in high-dimensional spaces. Additionally, HM

is non differentiable making it harder for attackers to directly attack HAMPER

via gradient based-methods. We evaluate HAMPER in the context of supervised

adversarial attacks detection across four benchmarks datasets. Overall, we

empirically show that HAMPER consistently outperforms SOTA methods. In

particular, the gains are 13.1% (29.0%) in terms of AUROC↑ (resp. FPR↓95%) on

SVHN, 14.6% (25.7%) on CIFAR10 and 22.6% (49.0%) on CIFAR100 compared to

the best performing method.

6.1 Introduction

In most machine learning applications, deep models have achieved state-of-the-art

performance. However, an important limitation to their widespread use in critical

systems is their vulnerability to adversarial attacks [SZEGEDY and collab., 2014], i.e.,

the introduction of maliciously designed data crafted through minor adversarial
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perturbations to deceive a trained model. This phenomenon may lead to disastrous

consequences in sensitive applications such as autonomous driving, aviation safety

management, or health monitoring systems [GEIFMAN and EL-YANIV, 2019; GEIFMAN

and collab., 2019; GUO and collab., 2017; MEINKE and HEIN, 2020].

Over time, a vast literature has been produced on defense methods against ad-

versarial examples [ALDAHDOOH and collab., 2021b; ATHALYE and collab., 2018b;

CROCE and HEIN, 2020; ZHENG and collab., 2019]. On the one hand, techniques to

train models with improved robustness to upcoming attacks have been proposed

in MADRY and collab. [2018]; ZHENG and collab. [2016] or PICOT and collab. [2021].

On the other hand, effective methods to detect adversarial examples given a pre-

trained model were reported in KHERCHOUCHE and collab. [2020]; MENG and CHEN

[2017] or MA and collab. [2019]. Detection methods for adversarial examples can be

mainly grouped into two categories [ALDAHDOOH and collab., 2021b]: supervised

and unsupervised ones. In the supervised detection setting, the detector is trained

on features extracted from adversarial ex-

amples generated according to one or mul-

tiple attacks. In particular, the network

invariant model approach consists of fea-

tures that are derived from the activation

values of the network layers (cf. CARRARA

and collab., 2018; LU and collab., 2017

or METZEN and collab., 2017); in the sta-

tistical approach the features are linked

to in-training or out-of-training data dis-

tribution/manifold (e.g., maximum mean

discrepancy [GROSSE and collab., 2017],

PCA [LI and LI, 2017], kernel density esti-

mation [FEINMAN and collab., 2017], local

intrinsic dimensionality [MA and collab.,

2018], latent graph neighbors [ABUSNAINA

and collab., 2021]); in the auxiliary model

approach, the features are instead
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Figure 6.1: Average performances of our
method (i.e., HAMPER) in an attack-aware
and single detector setting, along with the
performances of state-of-the-art detection
mechanisms (i.e., NSS, LID, KD-BU), on
three classically considered datasets (i.e.,
SVHN, CIFAR10 and CIFAR100). Below the
dataset names is the accuracy of their un-
derlying classifiers. In addition to outper-
forming other methods on all three consid-
ered datasets, our method, contrary to the
others, does not lose performances as the
classifier’s accuracy decreases.

derived from monitoring clean and adversarial characteristics (e.g., model uncer-

tainty [FEINMAN and collab., 2017], natural scene statistics [KHERCHOUCHE and col-

lab., 2020]). In the unsupervised detection setting, the detector does not rely on the

prior knowledge of the attacks, and it only learns from the clean data at training

time. Different techniques are used to extract the meaningful features (e.g., feature

squeezing [LIANG and collab., 2021; XU and collab., 2018], denoiser approach [MENG

and CHEN, 2017], network invariant [MA and collab., 2019], sensitivity to noise [HU
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and collab., 2019], auxiliary model [ALDAHDOOH and collab., 2021a; SOTGIU and col-

lab., 2020; ZHENG and HONG, 2018]). Detection methods of adversarial examples

differ as well according to whether the underlying classifier is assumed to be pre-

trained or not: when further training of the classifier is allowed, the methods present

a novel training procedure (e.g., with reverse cross-entropy [PANG and collab., 2018];

with the rejection option [ALDAHDOOH and collab., 2021a; SOTGIU and collab., 2020])

and a thresholding test strategy. Finally, the learning task of the underlying net-

work also impacts the adversarial examples detection methods (e.g., detection of

adversarial examples for human recognition tasks [TAO and collab., 2018]).

Adversarial detection can be related to the anomaly detection problem. Indeed,

anomaly detection aims to identify abnormal observations without previously know-

ing them, possibly including adversarial attacks. A plethora of techniques has been

designed to address this problem ranging from machine learning algorithms such as

Isolation Forest [LIU and collab., 2008; STAERMAN and collab., 2019], Local Outlier

Factor [BREUNIG and collab., 2000] or One-Class SVM [SCHÖLKOPF and collab., 2001]

to statistical tools such as kernel density estimation [FEINMAN and collab., 2017]

or Data Depth [ZUO and SERFLING, 2000] (see CHANDOLA and collab. [2009] for an

extensive review of anomaly detection methods). In particular, data depth stands

out as a natural candidate to detect anomalies [CHEN and collab., 2009].

The idea of statistical depth has grown in popularity in multivariate data analysis

since its introduction by John Tukey [TUKEY, 1975]. For a distribution on Rd with

d > 1, by transporting the natural order on the real line to Rd , a depth function

provides a center-outward ordering of points w.r.t. the distribution. The higher the

point depth score, the deeper the point is in the distribution. In addition to anomaly

detection [CHEN and collab., 2009; SERFLING, 2006; STAERMAN and collab., 2020,

2021b], the notion of depth has been used to extend the notions of (signed) rank or

order statistics to multivariate data, which find numerous applications in statistics

and machine learning (e.g. robust inference [CUEVAS and collab., 2007], classification

[LANGE and collab., 2014], hypothesis testing [OJA, 1983], clustering [JÖRNSTEN,

2004; STAERMAN and collab., 2021a]. To the best of our knowledge, it has not been

investigated yet through the lens of adversarial attack detection. This paper aims to

leverage this overlooked notion to build an adversarial attack detector.

Contributions. Our contribution is threefold:

1. We propose applying the halfspace-mass depth notion in the context of the ad-

versarial detection problem. To the best of our knowledge, we are the first to both

explore and successfully apply data depth for adversarial detection.

2. Through an analysis of the classifier’s behavior under threat, we show how to

leverage the halfspace-mass depth to build an anomaly score. To that end, we

introduce HAMPER, a simple supervised method to detect adversarial examples given
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a trained model. Given an input sample, HAMPER relies on a linear combination of

the halfspace-mass depth score. These depth scores are computed w.r.t. a reference

distribution corresponding to the training data conditioned per-class and per-layer.

3. We extensively evaluate HAMPER’s performance across popular attack strategies

and computer vision benchmark datasets (e.g., SVHN, CIFAR10, and CIFAR100).

As shown by Figure 6.1, HAMPER largely outperforms SOTA detection methods and

consistently detects attacks that SOTA approaches fail to identify.

The paper is organized as follows. First, in Section 6.2, we describe the adversarial

detection problem and provide a detailed overview of the SOTA supervised detection

methods and the attack mechanisms considered throughout the paper. In Section 6.3,

after recalling the concept of data depth by focusing on the halfspace-mass depth,

we introduce HAMPER, our proposed supervised detector method based on the HM

depth. In Section 6.4, we provide insights on the underlying classifier’s behavior

under threats. In Section 6.5, we extensively evaluate HAMPER through numerical

experiments on benchmarks on visual datasets and compare it to SOTA methods.

Finally, concluding remarks are gathered in Section 6.6.

6.2 Background

After defining the problem formulation, we present the SOTA detection methods and

the attack mechanisms that we will consider throughout this paper.

6.2.1 Problem formulation

Let (X,Y) be a random tuple of variables valued in X ×Y with unknown data dis-

tribution pXY; X ⊂ Rd represents the feature space and Y = {1, . . . ,C} represents

the labels attached to elements in X , where C ∈ N, C ≥ 2. The training dataset

D = {(xi , yi )}n
i=1 is defined as n ≥ 1 independent identically distributed (i.i.d.) realiza-

tions of pXY. Subsets of the feature space associated with a label c ∈Y are denoted

by Sc = {xi ∈S : yi = c} with S = {xi }n
i=1.

Given a parametric model with L ≥ 1 layers; let f ℓ
θ

: X → Rdℓ with ℓ ∈ {1, . . . ,L},

denotes the output of the ℓ-th layer of the deep neural network (DNN) parametrized

by θ ∈Θ where the dimension of the latent space induced by the ℓ-th layer is dℓ. The

class prediction is obtained from the L-th layer softmax output as follows:

f L
θ (x;D)≜ arg max

c∈Y

qθ (c|x) with qθ (·|x) = softmax( f L−1
θ (x;D)).

The adversarial problem. Given x ∈X and p ≥ 1, the adversarial generation problem
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can be defined as producing x′ such as [SZEGEDY and collab., 2014]:

x′ = argmin
x′∈Rd :∥x′−x∥p<ε

∥x′−x∥ s.t. f L
θ (x′;D) ̸= y, (6.1)

where y is the true label associated to the sample x, and ∥·∥p is the p-norm operator.

Since this problem is computationally infeasible in general, it is commonly relaxed

as follows:

x′ = argmax
x′∈Rd :∥x′−x∥p<ε

L (x,x′;θ), (6.2)

where L (x,x′;θ) is the objective of the attacker, representing a surrogate of the con-

straint to fool the classifier, i.e., f L
θ

(x′;D) ̸= y . The variety of attacks differs with the

choice of the norm (e.g., p = 1,2,∞) and the value of ε.

Crafting a detector. Given a new observation x ∈Rd , detecting adversarial attacks

boils down to build a binary rule g :Rd → {0,1}. Namely: a new observation x ∈Rd

is considered as ‘normal’ (or ‘natural’, ‘clean’), i.e. generated by pXY, when g (x) = a

with a ∈ {0,1}, and x is considered as an adversarial example when g (x) = 1−a. For a

given scoring function s :Rd →R, and a threshold γ ∈R, we have

g (x) = I{s(x) > γ} =
1 if s(x) > γ,

0 if s(x) ≤ γ.
(6.3)

6.2.2 Supervised detection methods

Supervised detection methods, when the defender has access to the future threats

that it is going to face, can be separated into two main groups: attack-aware and

blind-to-attack methods.

Attack-aware methods. In the attack-aware setting, the methods are going to face

a single threat, and they have full knowledge about them. Therefore, it is possible

to train one detector per attack. In this setting fall two detection methods: KD-

BU [FEINMAN and collab., 2017] and LID [MA and collab., 2018]. KD-BU is based

on the intuition that the adversarial examples lie off the data manifold. To train

the detector, a kernel density estimation in the feature space of the last hidden

layer is performed, followed by an estimation of the bayesian uncertainty of the

input sample. LID extracts the local intrinsic dimensionality features for natural and

attacked samples for each layer of the classifier and trains a detector on them.

Blind-to-Attack setting. In the blind-to-attack setting, the defender has knowl-

edge about the fact that it is going to be attacked, but do not know exactly how. In

that case, a single detector is trained, deployed and tested against all possible threats.

NSS [KHERCHOUCHE and collab., 2020] falls into that category. It is based on the

166



CHAPTER 6. A HALFSPACE-MASS DEPTH-BASED DETECTOR FOR ADVERSARIAL
ATTACK DETECTION

extraction of the natural scene statistics from the clean and adversarial samples from

different threats models, later used to train a detector to discriminate between natu-

ral inputs and adversarial examples. Natural scene statistics are regular statistical

properties that are altered by adversarial perturbations.

6.2.3 A brief review of attack mechanisms

Multiple methods to generate adversarial examples have been developed in recent

years. The attack mechanisms can be divided into two main categories: whitebox,

where the attacker has complete knowledge about the targeted classifier, and black-

box, where the attacker does not know about the targeted classifier.

Whitebox attacks. The simplest one is Fast Gradient Sign Method (FGSM), intro-

duced by Goodfellow et al. [GOODFELLOW and collab., 2015]. It consists in modifying

the examples in the direction of the gradient of a specific objective, w.r.t. the input

on the targeted classifier. Two iterative versions of FGSM have been proposed: Basic

Iterative Method (BIM; KURAKIN and collab., 2018) and Projected Gradient Descent

(PGD; MADRY and collab., 2018). The main difference is that BIM initializes the adver-

sarial example to the natural sample while PGD initializes it to the natural example

plus random noise. Although PGD was initially created under an L∞ constraint, it is

possible to extend the method to any Lp -norm constraint. Later, Moosavi-Dezfooli et

al. [MOOSAVI-DEZFOOLI and collab., 2016] introduced DeepFool (DF), an iterative

method based, at each step, on a local linearization of the model, resulting in a

simplified problem. Finally, Carlini-Wagner [CARLINI and WAGNER, 2017] presents

the CW method to find the smallest noise solving the original adversarial problem.

They proposed a new relaxed version of the adversarial problem that optimizes an

attack objective, chosen according to a specific task.

Blackbox attacks. Without any knowledge about the targeted classifier or its gradi-

ents, blackbox attacks are expected to rely on different mechanisms. Square Attack

(SA; ANDRIUSHCHENKO and collab., 2020) employs a random search for perturba-

tions that maximize a given objective, Spatial Transformation Attack (STA; ENGSTROM

and collab., 2019) applies small translations and rotations to the original image while

Hop Skip Jump (HOP; CHEN and collab., 2020) estimates the gradient-based direction

to perturb through a query on the targeted classifier.

Adaptive attacks. There exists a third type of attacks called Adaptive Attacks [ATHA-

LYE and collab., 2018a; CARLINI and WAGNER, 2017; TRAMER and collab., 2020; YAO

and collab., 2021]. Adaptive attacks have full knowledge about not only the under-

lying classifier to attack, but also the defense mechanisms one may have deployed.
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To build efficient adaptive attacks, it is therefore crucial to understand the mecha-

nisms involved into the defense, and finding ways to bypass them. For examples,

the Backward-Pass Differentiable Attack (BPDA; ATHALYE and collab., 2018a) has

been developed to overcome the non-differentiability of the defense mechanisms by

finding a suitable surrogate to the non-differential parts of them.

6.3 A Depth-Based Detector

After presenting the data depth in Subsection 6.3.1, with an emphasis on the halfspace-

mass depth, we introduce our depth-based detector in Subsection 6.3.2.

6.3.1 Background on data-depth

A data depth function D(·,P) :Rd → [0,1] measures the centrality of any element in

x ∈Rd w.r.t. a probability distribution P (respectively, a data set). It provides a center-

outward ordering of points in the support of P and can be straightforwardly used to

extend the notions of rank or order statistics to multivariate data. The higher D(x,P),

the deeper x ∈Rd is in P. The earliest proposal is the halfspace depth introduced by

John Tukey in 1975 [TUKEY, 1975]. This depth is very popular due to its appealing

properties and ease of interpretation. Assume that P is defined on an arbitrary subset

K ⊂Rd and denote by P(H)≜ P(H∩K ) the probability mass of the closed halfspace

H. The halfspace depth of a point x ∈ Rd with respect to a probability distribution

P on Rd is defined as the smallest probability mass that can be contained in every

closed halfspaces containing x:

DH(x,P) = inf
H∈H (x)

P (H), (6.4)

where H (x) is the set of all closed halfspaces containing x.

However, the halfspace depth suffers from three critical issues: (i ) finding the

direction achieving the minimum to assign it a score induces a significant sensitivity

to noisy directions, (i i ) assigning the zero score to each new data point located on

the outside of the convex hull of the support of P makes the score of these points

indistinguishable, and (i i i ) as the dimension of data increases, an increasing per-

centage of points will appear at the edge of the convex hull covering the data set

leading to have low scores to every points.

To remedy those drawbacks, alternative depth functions have been independently

introduced in CHEN and collab. [2015] and RAMSAY and collab. [2019]. In this regard,

the extension of Tukey’s halfspace depth, recently introduced and referred to as the

halfspace-mass (HM) depth [CHEN and collab., 2015] (see also RAMSAY and collab.,

2019 and STAERMAN and collab., 2021b), offers many advantages.
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Authors proposed to replace the infimum by an expectation over all possible

closed halfspaces containing x, following in the footsteps of CUEVAS and FRAIMAN

[2009]. More precisely, given a random variable X following a distribution P and a

probability measure Q on H (x), it is defined as follows:

DHM(x,P) = EH∼Q [P(H)] . (6.5)

In addition to basic properties a depth function should satisfy, the halfspace-mass

depth possesses robustness properties: it has a unique (depth-induced) median with

an optimal breakdown point equal to 0.5 [CHEN and collab., 2015] which means

that the halfspace-mass depth provides a stable ordering of the ‘normal’ data even

when polluted data belong to the training set. In addition, it has been successfully

applied to anomaly detection in CHEN and collab. [2015] making it a natural choice

to adversarial attack detection. When a training set {xi , . . . ,xn} is given, Equation 6.5

boils down to:

DHM(x,Pn) = EQ

[
1

n

n∑
i=1

I{xi ∈ H}

]
, (6.6)

where Pn is the empirical measure defined by 1
n

∑n
i=1δxi . The expectation can be

conveniently approximated with a Monte-Carlo scheme in contrast to several depth

functions that are defined as solutions of optimization problems, possibly unfeasible

in high dimension. The aim is then to approximate Equation 6.6 by drawing a finite

number of closed halfspaces containing x (see Section B.1 for the approximation

algorithm for training and testing).

6.3.2 Our Depth-Based Detector

The methodology we propose here is based on the halfspace-mass depth that exhibits

attractive mathematical and computational properties, as described in the previous

section.

Our depth-based detector, HAMPER, relies on the information available in a subset

Λ of DNNs’ layers, i.e., the mapped data zℓ,i = f ℓ
θ

(xi ;D), ℓ ∈ Λ ⊂ {1, . . . ,L− 1}. We

denote by S̃ ℓ = {
zℓ,i

}n
i=1 and S̃ ℓ

c =
{

zℓ,i ∈ S̃ ℓ : yi = c
}

, the ℓ-th and the ℓ-th class-

conditionally representations of the training dataset, respectively. Our approach

aims to construct a score function s : Rd → [0,1] providing a confidence level to a

new observation x indicating its degree of abnormality w.r.t. to the training dataset.

HAMPER leverages appealing properties of the HM depth detailed in Subsection 6.3.1

and can be summarized into two distinct steps. The function s is built by first con-

structing |Λ|×C intermediate scoring functions sℓ,c :Rdℓ → [0,1] designed for each

considered layer and each class. The map sℓ,c assigns a value to any element of the
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embedded space of the ℓ-th layer represented somehow its ‘distance’ to the class c

of the mapped training set. Thereafter, an aggregation is performed between scores

using a small validation dataset composed of both ‘normal’ and ‘adversarial’ samples.

These two parts of the proposed approach are detailed below.

Intermediate score functions. Given a new observed image x ∈Rd mapped into |Λ|
representations {zℓ}ℓ∈Λ such that zℓ = f ℓ

θ
(x;D), we propose to use the HM depth as

intermediate scoring functions sℓ,c . Precisely, we compute DHM(zℓ,S̃ ℓ
c ), for each con-

sidered layer ℓ and each class c , i.e., the HM depth between zℓ = f ℓ
θ

(x;D) and the class-

conditionally probability distribution of the training dataset S̃ ℓ
c = { f ℓ

θ
(xi ;D) : xi ∈Sc }.

Following the approximation algorithm of the HM introduced in CHEN and collab.

[2015], we use an efficient training/testing procedure in order to compute DHM

(summarized in Algorithm 5 and Algorithm 6 in Section B.1). These algorithms are

repeated for each class c and each considered layer ℓ leading to |Λ|×C scoring func-

tions. Three parameters with low sensitivity are involved: K which is the number

of sampled halfspaces in order to approximate the expectation of Equation 6.5; the

size ns of the sub-sample drawn at each projection step; and the λ hyperparameter

which controls the extent of the choice of the hyperplane. In this paper, we follow

the advice given in CHEN and collab. [2015] by choosing the following parameters

K = 10000, ns = 32 and λ= 0.5 offering a good compromise between performance

and computational efficiency.

Aggregation procedure. Following the supervised setting scenario, as in FEINMAN

and collab. [2017]; KHERCHOUCHE and collab. [2020] or MA and collab. [2018], the

score is obtained through an aggregation which is performed between halfspace-

mass scores using a small validation dataset composed of ‘normal’ and ‘adversarial’

samples. Our scoring function is then formally defined as:

s(x) = ∑
ℓ∈Λ

C∑
c=1

αℓ,c DHM(zℓ,S̃
ℓ

c ), (6.7)

where the weights αℓ,c are obtained through the training of a linear regressor in a

supervised manner. It is worth noting that the anomaly score s from Equation 6.7

results from both class and layer dependent linear combination. The class depen-

dency of s is motivated by (1) the per class behavior classifier which is highlighted in

Subsection 6.4.2 and by (2) the monotonicity relative to deepest point property of the

halfspace-mass depth and depth functions in general (see e.g. property (D3) in Sec-

tion B.2 of the Appendix or STAERMAN [2022]; ZUO and SERFLING [2000]). The layer

dependency of s is motivated by the per layer behavior classifier which is displayed

in Subsection 6.4.3.

Referring to the problem formulation notations (see Subsection 6.2.1), given a
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threshold γ, and supposing a = 1, the detector is provided by the Equation 6.3. The

overview of HAMPER can be summarized in Algorithm 7 in Section B.1.

6.3.3 Comparison to state-of-the-art detection methods.

We benchmark our approach with three supervised detection methods: LID, KD-BU,

and NSS. We chose these baselines because they are supervised and do not modify

the model to protect. We could consider ABUSNAINA and collab. [2021] but the codes

are not publically available.

Local Intrinsic Dimensionality (LID). LID is based on the intuition that adversar-

ial examples lie outside of the clean data manifold. By computing the Local Intrinsic

Dimensionality, it is possible to check whether the new point is close to the original

data manifold. Following this idea, three version of each natural samples are used.

The clean one, a noisy version of it, and an attacked one. The LID approximate for

each of those points to the clean distribution will be computed at the output of each

layers. Those variables will then be used to train a detector that will distinguish

between adversarial samples, and normal ones (normal samples are either clean

or noisy samples). Each of the strategy to craft adversarial samples can have very

different LID characteristics, a detector per type of threats is therefore necessary. LID

therefore lies in the attack-aware category.

Kernel Density and Bayesian Uncertainty (KD-BU). KD-BU also relies on the idea

that adversarial samples lie off the original data manifold. To detect adversarial

samples, they first perform a kernel density estimate at the last hidden layer level to

detect samples that are far from the original manifold. Then, a bayesian uncertainty

estimate is computed to detect when points lie in low-confidence regions of the input

space. Both of those characteristics are later used to train a detector that distinguish

between natural and adversarial examples. Once again, the kernel density estimates

and the bayesian uncertainty values for different types of attacks can differ a lot,

therefore this method have been created to be attack-aware.

Natural Scene Statistics (NSS). NSS relies on the extraction of the natural scene

statistics at the image level. Natural scene statistics are statistics that will be very

different for natural and attacked images. Indeed, for clean image, applying the

natural scene statistics will output an image with meaning, however, for attacked

samples, the resulting image will have no meaning. The Natural Scene Statistics

extraction is then used to train a detector to distinguish between natural and attacked

samples. To overcome the need to have a specific detector per attack, the authors

of NSS decided to train their detector using the natural scene statistics of various

attacks. It therefore lies in the blind-to-attack category.

HAMPER. Our proposed HAMPER detector is computing, thanks to the halfspace-

mass depth, the distance of a given x to a reference training distribution. In the

171



CHAPTER 6. A HALFSPACE-MASS DEPTH-BASED DETECTOR FOR ADVERSARIAL
ATTACK DETECTION

sense that it compares between a novel point and a reference, our method is close to

the LID method, however, as explained in the previous section, we do not compute

our anomality score (i.e., the HM depth) at each layer’s output, but we only use a

subset of layers Λ. In addition, it is possible to use our proposed detector under both

scenarios, i.e., the attack-aware and the blind-to-attack scenarios.

6.4 Analyzing Statistical Information of the Networks’

Behavior under Threats

In this section, we provide insights into the attackers’ and defenses’ behavior from

the classifier’s perspective. This section aims to provide justification and insights

on the choice of making the linear weights of Equation 6.7 dependant on both the

class and the layer. In particular, we analyze the behavior of the classifier on attacks

in Subsection 6.4.2, while in Subsection 6.4.3 we explore which subset of layers of the

classifier carries the relevant information to build an efficient supervised data-depth

based detector.

6.4.1 Experimental setting
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Figure 6.3: Calibrating the maximal allowed
perturbation ε on CIFAR100. Accuracy on
adversarial examples created using PGD1 for
the SVHN, CIFAR10 and CIFAR100 classifiers.
On CIFAR100, to ensure high successes of the
attacks, one must allow the attacker to have
larger values of ε, compared to the CIFAR10
and SVHN ones.

Datasets and classifiers. We run our

experiments on three image datasets:

SVHN [NETZER and collab., 2011], CI-

FAR10 and CIFAR100 [KRIZHEVSKY, 2009].

We train a classifier that aims at rightfully

classifying natural examples for each of

those datasets. For SVHN and CIFAR10

we use a ResNet-18 trained for 100 epochs,

using an SGD optimizer with a learning

rate of 0.1, weight decay of 10−5, and a mo-

mentum of 0.9; for CIFAR100 we chose a

ResNet-110 pre-trained using an SGD op-

timizer with a learning rate of 0.1, weight

decay of 10−5, and a momentum of 0.9.

Once trained, all classifiers are frozen.

Attacks & choice of the maximal allowed perturbation ε. To have a wide range

of attacks to test, we use all the methods mentioned in Subsection 6.2.3. For FGSM,

BIM and PGD, we consider the L∞-norm, with multiple ε in {0.0315, 0.0625, 0.125,

0.25, 0.3125, 0.5}. We also generate perturbed examples using PGD under the L1-

https://github.com/bearpaw/pytorch-classification
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Figure 6.2: Per class behavior analysis. Average number of adversarial examples per class on
each of the considered datasets.

norm constraint with ε varying in {5, 10, 15, 20, 25, 30, 40}, for CIFAR10 and SVHN,

and in {40, 500, 1000, 1500, 2000, 2500, 5000} for CIFAR100. Moreover, we generate

perturbed examples using PGD under the L2-norm constraint with ε varying in {0.125,

0.25, 0.3125, 0.5, 1, 1.5, 2}, for CIFAR10 and SVHN, and in {5, 10, 15, 20, 30, 40, 50}

for CIFAR100. In order to attack with PGD (L1 and L2 norm) the classifier trained on

CIFAR100, we chose different epsilon values than those used for CIFAR10 and SVHN

since the attacks generated with those epsilons were not able to fool the network

(see Figure 6.3). CW attacks are generated under the L∞ and L2 constraint, with ε

equals to 0.3125 and 0.01 respectively. Finally, we perturb samples using DF which is

an L2 attack without any constraint on ε. Concerning blackbox attack, SA is an L∞-

norm attack ε= 0.125, HOP is an L2 attack with ε= 0.1. Finally, STA is not concerned

by a norm constraint nor a maximal perturbation, the attacker strength is limited in

rotation (maximum of 30o) and in translation (maximum of 8 pixels).

6.4.2 Analyzing the networks’ per class behavior under threats

In this section, we investigate the per-class behavior of the image classifier to mo-

tivate and justify the choice of the class dependency of the proposed aggregation

procedure (see Equation 6.7).

Simulation. We examine the distribution of the adversarial examples w.r.t. the

class predicted by the classifier. For this purpose, in Figure 6.2, we plot the dis-

tribution of adversarial samples per predicted class (Nc ) as a function of the class

(c).

Analysis. In SVHN, CIFAR10 and CIFAR100 natural images are balanced. However,

on these datasets, the per-class distribution of the adversary is not uniform over the

classes: in both SVHN (Figure 6.2a) and CIFAR10 (Figure 6.2b), classes 3 and 4 are

overly represented on average, on the contrary of class 1 and 8 for SVHN and CIFAR10

respectively. Similarly, in CIFAR100 (Figure 6.2c), the classes 11, 24, 45, 68, 80, 81, and

97 are the overrepresented whilst the classes 37, 59, 65, 67, 76 and 98 are the most

underrepresented on average. Note that the diamond points in the plots denote the
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outliers, i.e., adversarial examples behaving differently from the others.

Takeaways. The variability of the per-class behavior of the classifier under threats

suggests that class is an important characteristic and should be leveraged to detect

adversaries. This observation further motivates the per-class computation of the

halfspace-mass depths and then the class dependency of the linear regressor of

Equation 6.7.

6.4.3 Analyzing the networks’ per layer behavior under threats

In this section, we investigate the per-layer behavior of the image classifier to moti-

vate and justify the choice of the layer behavior of the proposed aggregation procedure

(see Equation 6.7).

0 5 10 15 20 25 30 35 40
2
0
2
4
6 1.0

10.0
100.0
1000.0

Figure 6.4: Per layer behavior analysis. Evo-
lution of ᾱℓ = 1

C

∑
c αℓ,c the average and the

standard deviation over the classes of the re-
gressor weight as a function of the layer, for
different value of the regularization parame-
ter.

Simulation. We investigate each

layer’s roll on HAMPER ’s decision process

to better understand each layer impor-

tance. In particular, we focus on CIFAR10

with ResNet-18 and we train a linear least

squares regressor with L2 regularization

(see e.g. HASTIE and collab., 2009) on

the depth features extracted from all the

layers, Λ ∈ {1, . . . ,L − 1}, of the classifier.

In Figure 6.4, we report the weights asso-

ciated with each layer ℓ ∈Λ of the under-

lying classifier, averaged over the classes,

when changing the values of the L2 weight

constraint (the values are reported in the

legend).

Analysis. From Figure 6.4, we observe of the decision of the detector is based on

several layers. This a-posteriori analysis justifies the layer dependency of the linear

regressor weights. As the L2 weight regularization increases, the last layers receive

more weights, suggesting they are good candidates to build a detector. Although it is

possible to rely on the whole set of layers, motivated by efficiency and Figure 6.4, we

select the 11 final layers of the classifier, i.e., we base our experiments on the subset

Λ= {L−12, . . . ,L−1}.

Takeaways. Through Figure 6.4, we have motivated both the per-layer computa-

tion of the halfspace-mass depths and then the per-layer dependency of the linear

regressor of Equation 6.7.
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6.5 Experiments

In this section, we assess the effectiveness of our proposed depth-based detection

method. The code will be made available at github.com. This section is organized

as follows: we first describe the experimental setting in Subsection 6.5.1 and then we

provide a detailed discussion of the results in Subsection 6.5.2.

6.5.1 Experimental setting

We refer to Subsection 6.5.1 for the datasets, the classifiers and the attacks we consid-

ered for our evaluation.

Evaluation metrics. For each threat scenario, the performance is measured in

terms of two metrics:

AUROC↑ (higher is better): the Area Under the Receiver Operating Characteristic

curve (ROC; DAVIS and GOADRICH, 2006) represents the relation between True Posi-

tive Rate (TPR) - i.e. adversarial examples detected as adversarial - and False Positive

Rate (FPR) - i.e. natural samples detected as adversarial. As can be checked from

elementary computations the AUROC↑ corresponds to the probability that an natural

example has higher score than an adversary sample.

FPR at 95% TPR↓ or FPR↓95% (lower is better): represents the percentage of nat-

ural examples detected as adversarial when 95% of the adversarial examples are

detected. The FPR↓95% is of high interest in practical applications.

Remark. The ideal classifier would reach 100% of AUROC↑ and 0% of FPR↓95%.

6.5.2 Detecting adversarial examples

We recall from Subsection 6.2.2 that we distinguish between two settings in the super-

vised context: the attack-aware scenario and the blind-to-attack scenario. Therefore,

we conduct two sets of experiments. In the attack-aware scenario, for each attack we

train a detector on a validation set - composed of the first 1000 samples of the testing

set - and tested on the remaining samples. We refer here to HAMPER-Attack-Aware

(HAMPERAA) and we compare it with LID and KD-BU. In the blind-to-attack scenario,

we train a unique detector and we test it on all the possible attacks. We refer here

to HAMPER-Blind-to-Attack (HAMPERBA) and we compare it with NSS. Note that, while

our competitors assign to each input sample the probability of being adversarial, i.e.,

adversarial samples are labeled as 1, in HAMPER the detector outputs the depth score.

This means that a high score corresponds to a deep sample, i.e., a natural one, hence

clean samples are labeled as 1.
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Table 6.1: Attack-aware performances on the three considered datasets - SVHN, CIFAR10 and
CIFAR100 - of HAMPERAA detector together with the results of the SOTA detection methods:
LID, and KD-BU, averaged over the Lp -norm constraint. The best results among the detectors
are shown in bold. The results are presented as AUROC↑ ±FPR ↓95% % and in terms of mean (µ)
and standard deviation (σ).

LID KD-BU HAMPERAA

SVHN CIFAR10 CIFAR100 SVHN CIFAR10 CIFAR100 SVHN CIFAR10 CIFAR100

Norm L1
µ 64.9 ±90.1 57.9 ±87.7 77.6 ±47.4 84.7 ±58.7 71.0 ±68.3 69.5 ±71.2 100 ±0.0 100 ±0.0 100 ±0.0

σ 9.2 ±5.7 11.3 ±8.6 23.4 ±35.7 7.0 ±16.5 24.1 ±33.4 21.1 ±31.1 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0

Norm L2
µ 78.3 ±73.7 66.7 ±77.3 66.5 ±65.5 84.3 ±42.3 70.5 ±62.2 56.2 ±87.6 100 ±0.0 100 ±0.0 100 ±0.0

σ 10.0 ±16.9 15.0 ±22.3 24.7 ±32.8 16.2 ±31.3 26.9 ±40.9 17.0 ±10.3 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0

Norm L∞
µ 97.5 ±9.9 94.2 ±21.2 66.9 ±79.1 87.3 ±21.9 93.1 ±20.3 67.1 ±80.3 100 ±0.0 100 ±0.0 100 ±0.0

σ 3.7 ±14.0 7.6 ±24.0 17.3 ±17.3 27.4 ±29.9 16.8 ±32.6 15.4 ±11.3 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0

No Norm
µ 99.1 ±4.4 91.7 ±36.6 98.4 ±4.2 92.8 ±21.9 81.4 ±76.2 76.1 ±61.3 100 ±0.0 100 ±0.0 100 ±0.0

σ 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0

Average
µ 86.5 ±41.3 79.7 ±48.6 77.4 ±49.0 86.2 ±34.1 82.8 ±41.6 64.9 ±80.1 100 ±0.0 100 ±0.0 100 ±0.0

σ 14.8 ±38.2 18.7 ±36.6 21.4 ±30.4 21.8 ±31.5 23.8 ±41.5 17.7 ±17.7 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0

Global
µ 81.2 ±46.3 78.0 ±51.9 100 ±0.0

σ 19.7 ±37.0 23.2 ±37.6 0.0 ±0.0

Attack-aware scenario

Here, we study the performance of the different detectors in the attack-aware sce-

nario and show that HAMPERAA outperforms existing detectors.

Global analysis. We present the attack-aware evaluation of HAMPERAA together

with LID and KD-BU on SVHN, CIFAR10 and CIFAR100. In Table 6.1, we group the

results from Table B.1 (that we relegate to Section B.3 due to space constriction)

according to the attack-norm (e.g., L1, L2, L∞, No norm), and we express them in

terms of the mean on the AUROC↑ and the mean on the FPR↓95%. We also report the

average performances per dataset (Average) and over the datasets (Global).

In general, HAMPERAA outperforms the SOTA detectors by maintaining perfor-

mance close to 100% AUROC↑ and 0% FPR↓95% on all the four datasets regardless of

the attack-norm considered.

Performance analysis per ε. Overall, the results in Table B.1 show that the smaller

the perturbation magnitude ε to craft the attack is, the more complex the attack

detection. For example, the worst result of LID is with PGD1 and ε= 15 for SVHN

and PGD1 with ε= 20 for CIFAR10 (AUROCs smaller than 50%). KD-BU exhibits the

same attitude but for FGSM on SVHN, where it reaches its minimum (5.9% AUROC↑
and 99.5% FPR↓95%) with ε= 0.5. Note that, the high value of the standard deviation

in Table 6.1 could implies the detector is more susceptible to the ε changes. This is

particularly true in the case of the L1-norm group since all the attacks considered

are created with the same algorithm (PGD). On this regard, KD-BU turns out to be the

detector most susceptible (e.g., on CIFAR10 its standard deviation on the FPR↓95% is

33.4 whilst the one of LID is 8.6 and the one of HAMPERAA is 0.0).

Performance analysis per type of threat. On average between the norm based
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Table 6.2: Blind-to-Attack detector performances on the three considered datasets - SVHN,
CIFAR10, and CIFAR100 - of the HAMPERBA detector together with the results of the state-of-
the-art detection methods, i.e., NSS, averaged over the Lp -norm constraint, along with the
average and global performances. The best results among the detectors are shown in bold.
The results are presented as AUROC↑% ±FPR ↓95% % and The results are presented as AUROC↑
±FPR ↓95% % and in terms of mean (µ) and standard deviation (σ).

NSS HAMPERBA

SVHN CIFAR10 CIFAR100 SVHN CIFAR10 CIFAR100

Norm L1
µ 69.2 ±78.6 66.7 ±80.1 69.7 ±78.2 94.9 ±24.9 94.7 ±22.8 99.9 ±0.2

σ 15.7 ±24.3 10.3 ±12.0 16.3 ±32.0 3.1 ±11.7 4.7 ±19.6 0.0 ±0.1

Norm L2
µ 71.5 ±65.8 68.0 ±72.8 62.5 ±90.2 94.2 ±22.8 92.3 ±30.2 99.9 ±0.3

σ 19.5 ±36.7 15.7 ±26.8 9.4 ±6.3 3.4 ±12.6 7.2 ±23.9 0.1 ±0.2

Norm L∞
µ 93.6 ±28.9 92.3 ±15.5 69.1 ±82.0 98.4 ±7.3 98.7 ±6.3 99.9 ±0.3

σ 10.4 ±43.5 20.1 ±29.2 12.4 ±13.6 2.4 ±9.8 2.3 ±10.7 0.0 ±0.2

No Norm
µ 99.8 ±0.4 93.8 ±20.2 92.9 ±24.7 98.5 ±6.4 80.3 ±57.1 100 ±0.0

σ 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0

Average
µ 83.5 ±46.3 81.2 ±42.3 68.1 ±81.9 96.6 ±14.6 95.8 ±17.0 99.9 ±0.3

σ 18.4 ±43.6 21.2 ±39.2 13.4 ±20.1 3.4 ±13.6 5.9 ±20.9 0.1 ±0.2

Global
µ 77.6 ±56.8 97.4 ±10.6

σ 19.2 ±40.0 4.3 ±16.2

attacks, LID and KD-BU more easily detects the L∞-norm attacks. Interestingly, with

L∞ both LID and KD-BU have the best performance on CIFAR10 whilst on SVHN and

CIFAR100 the detectors have the best performance in the no norm case (cf. Table 6.1).

Consistently over the datasets, KD-BU poorly behaves on CW2 as the AUROCs do not

reach 50% (cf. Table B.1).

Summary. Table 6.1 suggests LID and KD-BU have similar behaviors on SVHN,

whilst KD-BU improves on CIFAR10. A closer look at Table B.1 also suggests KD-BU

has higher variance in the results w.r.t. LID on all the three datasets. Thus KD-BU

performances are most affected by the perturbation magnitude to craft the adversar-

ial examples. HAMPERAA, on the other side, is hereby confirmed as the best detector

since it does not change its performances no matter the perturbation or the norm

considered in the attacks.

Blind-to-attack scenario

Here, we study the performance of the different detectors in the blind-to-attack

scenario and show that HAMPERBA outperforms existing detectors.

Global analysis. We present the blind-to-attack evaluation of HAMPERBA together

with NSS on SVHN, CIFAR10, CIFAR100. As in Section 6.5.2, in Table 6.2, we group

the results from Table B.2 according to the attack-norm and we express them in terms

of mean / standard deviation on the AUROC↑ and mean / standard deviation on the

FPR↓95%. Moreover we report the average performances per dataset (Average) and

over all the dataset (Global). On average, HAMPERBA outperforms NSS by 13.1(31.7) on
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SVHN, 14.6(25.3) on CIFAR10 and 31.8(81.6) on CIFAR100 in terms of AUROC↑(FPR↓95%).

Under L1, L2 and L∞-norm constraints, HAMPERBA outperforms NSS on all considered

datasets. The increase goes up to 30.2(78.0) in L1-norm, 37.4(89.9) in L2-norm and

30.8(81.7) in L∞-norm in terms of in AUROC↑(FPR↓95%).

Performance analysis per ε. Overall, the results in Table B.2 show that, in contrast

to HAMPERBA, NSS’ performances are increasing with the value of maximal allowed

perturbation ϵ. As a matter of fact, the performances of HAMPERBA on L1 and L2-

norm constraints first decrease as ε increases (ε ∈ [5,15] for L1-norm constraint,

and ε ∈ [0.125,0.3125] for L2-norm constraint), until it starts increasing. On L∞-

norm constraint, our method follows the expected behavior, i.e., the performances

increases with ε.

Performance analysis per type of threat. Table 6.2 suggests that both HAMPERBA

and NSS are globally better at detecting attacks with L∞-norm constraints, particu-

larly those created with PGD and BIM as an attack strategy. However, on SVHN NSS

finds more difficult to spot the FGSM-based attacks. SA and DeepFool threats are

the thoughest to detect for NSS. On the contrary, while HAMPERBA consistently detect

SA-based attack, it shows a slight drop in performance for DeepFool-based attacks

on CIFAR10. Finally, NSS presents poor performances at detecting CW2 attacks, while

it is not the case for our proposed method.

Summary. While NSS’s performances vary with the dataset, the ε and the norm

used to construct the attacks, HAMPERBA consistently detect them. In particular, we

note that HAMPERBA is well suited to larger datasets (e.g., CIFAR100). Conversely, NSS’

performance highly decreases when passing from the datasets with 10 classes to the

one with 100.

6.5.3 Attacking HAMPER using adaptive adversary

The importance of attacking defenses with adaptive attacks has increased recently

[ABUSNAINA and collab., 2021; RAGHURAM and collab., 2021]. As mentionned in Sub-

section 6.2.3, the Backward-Pass Differentiable Attack (BPDA; ATHALYE and collab.,

2018a) is based on the possibility to find a suitable surrogate to the non-differentiable

parts of any defense. However, deriving a suitable differentiable surrogate of the

halfspace-mass depth remains a open research question which has never been tack-

led. As a matter of fact, the only attempts to approximate a non-differentiable depth

was performed on the Tuckey depth in SHE and collab. [2021], with very poor results

[DYCKERHOFF and collab., 2021]. Finding a differentiable suitable surrogate to attack

HAMPER would, therefore, require a substantial effort and should be rigorously han-

dled. As a consequence, we have to rely on adaptive blackbox attackers, as suggested

in TRAMER and collab. [2020], to attack HAMPER.

Experimental Setting. We designed a blackbox adaptive attacker by using SA,
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Table 6.3: Detector performances and Attack’s success under adaptive blackbox attacks for
NSS and HAMPERBA on CIFAR10. We present the results as: AUROC↑% ±FPR ↓95% % for the detector
performances.

Adaptive Attacks

CIFAR10

NSS HAMPERBA

Detector
Performances

Attack
Success (%)

Detector
Performances

Attack
Success (%)

α= 10−3 9.4 ±100 95.82 79.3 ±67.5 98.93
α= 10−2 7.2 ±100 96.12 95.4 ±26.5 99.36
α= 10−1 5.5 ±100 93.60 74.6 ±65.8 99.32

α= 1 7.8 ±100 95.88 85.5 ±66.1 98.77
α= 101 3.2 ±100 93.28 63.6 ±87.1 95.83
α= 102 3.5 ±100 93.83 68.0 ±75.6 42.42
α= 103 3.7 ±100 93.44 47.7 ±86.1 25.06

which is both effective and computationally efficient [ENGSTROM and collab., 2019].

To extend SA into an adaptive attack, we modified the success criterion to not only

fool the classifier but also the detector, and the loss, which becomes a trade-off

between minimizing the difference between the logits of the two most probable

classes and maximizing the detector’s prediction. In Table 6.3, we present the results

of the adaptive SA attack on CIFAR10 for both NSS and HAMPERBA.

Analysis. On Table 6.3, we varied the value of the parameter α controlling the

trade-off between the classifier and the detector performances. As α increases, the

performance of the attack on the classifier decreases while the detector has more and

more trouble detecting them, as one can expect. On the considered adaptive attacks,

it is clear that it is easy for the attacker to find powerful and undetected samples to

attack NSS. However, it is more difficult to fool our proposed method. To decrease the

AUROC↑ to a value below 50 (which is equivalent to a random detector), the attacker

is only able to fool the classifier 25% of the time.

Takeaways. HAMPERBA is more robust to adaptive attacks than NSS.

6.5.4 Further analysis of the detector behaviors

In this section, we first investigate the per-class behavior of the detectors to further

asses the effectiveness of the proposed method (cf. Section 6.5.4). Then, we study the

AUROC↑/FPR↓95% trade-off (cf. Section 6.5.4) and the time and resource constraints

(cf. Section 6.5.4) for each of the considered methods.

Analyzing the detectors’ per-class behavior

Subsection 6.4.2 identifies a class-dependant behavior of the attack mechanisms that

could translate in a class-dependant behavior of the different detection methods. In
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(a) SVHN (b) CIFAR10

(c) CIFAR100 - 10 most-populated classes (d) CIFAR100 - 10 least-populated classes

Figure 6.5: Accuracies of the detectors per predicted classifier class. For visualization
reasons, we restrict the plot to the 10-most/least populated classes for CIFAR100.

this experiment, we study the performance distribution per class.

Simulation. In Figure 6.5, we examine the accuracy of the detectors on the testing

samples (natural and adversarial) w.r.t. the class predicted by the classifier. Note that,

for visualization purposes, we select the 10-most/least populated classes in the case

of CIFAR100. For this simulation, we select the threshold γ for which TPR is at 95%.

Analysis. HAMPER performances are not affected either by the class nor by the

dataset and they consistently outperform the competitors. However, the competitor’s

performance are class-dependant: they tend to better distinguish between natural

and attacked samples for classes with the highest number of adversarial examples.

This is demonstrated by Figure 6.5a where NSS, KD-BU and LID obtain the highest

accuracy in class 4 on SVHN, which is also the most populated class (cf. Figure 6.2a).

A similar behavior is observable in CIFAR10 (cf. classes 3 and 4 in Figure 6.5b

and Figure 6.2b). Moreover, Figure 6.5 suggests that, in terms of accuracy per class,

the SOTA methods show similar performances on SVHN; on the contrary, on CIFAR10

the detector performing the best is NSS while on CIFAR100 it is LID.

Takeaways. Differently from the competitors, the HAMPER detectors are not af-

fected by the per-class distribution of the samples. In particular, and regardless of

the dataset, the proposed detectors show a uniform behavior overall the classes.

Further confirmation is given from the plots in Figure 6.5c and Figure 6.5d where the

accuracies of the detectors remain constant even when focusing on only the most

and the least-populated classes respectively.

Studying the AUROC↑-FPR↓95% relationship

As commonly done in anomaly detection, we measure the detection performances

in terms of AUROC↑ and FPR↓95%. However, to a large AUROC↑ does not necessarily
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Figure 6.6: FPR↓95% as a function of the AUROC↑ for all five considered methods, (a) on SVHN,
(b) on CIFAR10, and (c) on CIFAR100.

correspond a low FPR↓95%. In this experiment, we study the trade-off between

AUROC↑ and FPR↓95% performances for each considered detection method.

Simulation. In Figure 7.5, we analyze the trade-off between AUROC↑ and FPR↓95%.

We translate on the Cartesian planes the results presented in Table B.1 and in Ta-

ble B.2. The perfect detector will have the points in (100, 0).

Analysis. Interestingly, the HAMPER detectors behave closely to the perfect de-

tector for all the considered attacks. This is particularly true for HAMPERAA. For NSS,

KD-BU and LID, a large AUROC↑ does not necessarily correspond a low FPR↓95%. In

SVHN (Figure 6.6a), five of the NSS points are exhibiting high AUROC↑ (between 70%

and 92%) while presenting extremely high FPR↓95% (between 81% and 99.6%). A

similar behavior is presented in CIFAR10 with LID.

Takeaways. Contrary to other detection method, which can exhibit high FPR↓95%

for high AUROC↑, our proposed detectors behave similarly to the perfect detector for

both attack-aware and blind-to-attack scenarios.

Time and resources constraints

For some applications, time and resource necessity can be critical. We, therefore,

decided to measure the constraints of each considered method.
Simulations. In Table 6.4, We report the

time and resource constraints needed for

each method.

Analysis. All methods have quite compa-

rable training time. However, LID, due to

the extraction of the LID parameters to all

layers, takes a lot more time to test than

the others.

Table 6.4: Time and computational con-
straints to train and test each detection
method.

Method GPUs Training Time Testing Time

NSS V100-16G 00m30s 00m55s

KD-BU V100-16G 00m30s 02m00s

LID V100-16G 04m00s 35m00s

HAMPERAA V100-16G 02m00s 02m00s

HAMPERBA V100-16G 02m00s 02m00s

Takeaways. HAMPER’s deployment requires comparable time and resources to the

other considered detectors.
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6.6 Concluding Remarks and Future Work

In this paper, we introduced HAMPER, a simple and effective method to detect adver-

sarial attacks. One of the keys of HAMPER is to rely on the halfspace-mass depth, a

statistical tool that remains overlooked by the machine learning community. Through

our extensive experiments based on two scenarios, attack-aware, and blind-to-attack,

we demonstrate that HAMPER achieves state-of-the-art performances. On average,

it outperforms the existing best detector by 13.1% (29.0%) in terms of AUROC↑
(resp. FPR↓95%) on SVHN, 14.6% (25.7%) on CIFAR10, and 22.6% (49.0%) on CI-

FAR100. Interestingly, HAMPER exhibits class-independence, and less dependence

on the norm-attack and the threat scenarios than other adversarial attack detection

methods.

Like all the supervised adversarial detection methods in the literature, HAMPER

requires knowledge of the kind of attack evaluated at testing time, meaning that they

are generally validated by assuming a single implicitly known attack strategy, which

does not necessarily account for real-life threats. In future work, we will investigate

how HAMPER and its main competitors perform when facing samples crafted through

multiple unknown attack strategies at test time. We will mainly make an effort

to understand whether the notion of depth is well suited to better generalize the

detection of adversarial examples to attacks that are not involved in the supervised

framework.

Broader Impact Statement

Many concerns have been raised about the potential failures of Deep Learning: large

neural networks are not trustworthy enough, limiting their adoption in high-risk

applications. This paper’s main contribution aims at improving the reliability of

Deep Learning by designing a tool to prevent a malicious agent from disrupting the

functioning of the system. Thus we believe our work will have a positive impact on

society.
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Chapter 6 Conclusion

In this work, we presented an efficient supervised detection method designed

to defend DNNs against adversarial attacks. Given that attackers have different

behavior with respect to the predicted class, we leverage this knowledge by con-

structing a class-wise detection method. In addition, we observed that using

only the output of the final layers of the network to protect was enabling us to

design an efficient detection method. We experimentally proved its efficiency

compared to other state-of-the-art method on two scenario: attack-aware

and blind-to-attack. Finally, we showed that our method was toughening the

adaptive attacker’s goal to fool both the network and the defense, compared to

other detection methods.

In this work, we set ourselves in the supervised setting. In what follows, we

will present our proposed framework to detect adversarial examples in the

unsupervised case, focusing on protecting a widely overlooked classifier archi-

tecture: the Vision Transformers.
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Chapter 7

A Simple Unsupervised Data

Depth-based Method to Detect

Adversarial Images

Chapter 7 Abstract

We here present our final contribution. In the previous chapter, we made use

of data-depths to detect adversarial examples in a supervised setting. In this

work, we wanted to free our method from the necessity to gather knowledge

about the possible attacker. In addition, we observed that, no other previous

work focused on developing detection methods on Vision Transformer, in

spite of it being the SOTA architecture to classify images. We therefore propose

a detection method that leverages the particular structure of Vision Trans-

formers, and the data-depths (more precisely the Integrated-Rank-Weighted

depth) to efficiently detect adversarial examples. We experimentally show the

advantages of our method compared to previous state-of-the-art unsupervised

method. Moreover, we show that directly attacking our proposed detector is far

from being straightforward and that our method makes the adaptive attacker’s

job more complicated.
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Abstract

Deep neural networks suffer from critical vulnerabilities regarding robust-

ness, which limits their exploitation in many real-world applications. In partic-

ular, a serious concern is their inability to defend against adversarial attacks.

Although the research community has developed a large amount of effective

attacks, the detection problem has received little attention. Existing detection

methods either rely on additional training or on specific heuristics at the risk of

overfitting. Moreover, they have mainly focused on ResNet architectures while

transformers, which are state-of-the-art for vision tasks, have not been properly

investigated. In this paper, we overcome these limitations by introducing AP-

PROVED, a simple unsupervised detection method for transformer architectures.

It leverages the information available in the logit layer and computes a similarity

score with respect to the training distribution. This is accomplished using a data

depth that is: (i) computationally efficient; and (ii) non-differentiable, making it

harder for gradient-based adversaries to craft malicious samples. Our extensive

experiments show that APPROVED consistently outperforms previous detectors

on CIFAR10, CIFAR100 and Tiny ImageNet.

7.1 Introduction

Recent years have seen a rapid development of Deep Neural Networks (DNNs), which

have led to a significant improvement over previous state-of-the-art methods (SOTA)

in numerous decision-making tasks. However, together with this growth, concerns

have been raised about the potential failures of deep learning systems, which limit

their large-scale adoption [ALVES and collab., 2018; JOHNSON, 2018; SUBBASWAMY and
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SARIA, 2020]. In Computer Vision, a particular source of concern is the existence of

adversarial attacks [SZEGEDY and collab., 2014], which are samples created by adding

to the original (clean) image a well-designed additive perturbation, imperceptible

to human eyes, with the goal of fooling a given classifier. The vulnerability of DNNs

to such kinds of attacks limits their deployment in safety-critical systems as in avia-

tion safety management [ALI and collab., 2020], health monitoring systems [LEIBIG

and collab., 2017; MEINKE and HEIN, 2020]) or in autonomous driving [BOJARSKI

and collab., 2016; GUO and collab., 2017]. Therefore, it is crucial to deploy a proper

strategy to defend against adversarial attacks [AMODEI and collab., 2016].

In this context, the task of distinguishing adversarial samples from clean ones is

becoming increasingly challenging as developing new attacks is getting more atten-

tion from the community [CROCE and HEIN, 2020; DENG and KARAM, 2020a,b; DONG

and collab., 2019; DUAN and collab., 2020; GAO and collab., 2021; JIA and collab.,

2020; LIN and collab., 2019; NASEER and collab., 2021; WANG and collab., 2021a;

WU and collab., 2020b; ZHAO and collab., 2020]. Inspired by the concept of rejec-

tion channels [CHOW, 1957], which was proposed over 60 years ago for the character

recognition problem, one way to address adversarial attacks is to construct a detector-

based rejection strategy. Its objective is to discriminate malicious samples from clean

ones, which implies discarding samples detected as adversarial. Research in this

area focuses on both supervised and unsupervised approaches [ALDAHDOOH and col-

lab., 2021c]. The supervised approaches rely on features extracted from adversarial

examples generated according to one or more attacks [FEINMAN and collab., 2017;

KHERCHOUCHE and collab., 2020; MA and collab., 2018]; the unsupervised ones,

instead, do not rely on prior knowledge of attacks and, in general, only learn from

clean data at the time of training [MENG and CHEN, 2017; XU and collab., 2018].

In this work, we focus on the unsupervised scenario, which is often a reasonable

approach to real-world use-cases. We model the adversarial detection problem as an

anomaly detection framework [BREUNIG and collab., 2000; CHANDOLA and collab.,

2009; LIU and collab., 2008; SCHÖLKOPF and collab., 2001; STAERMAN and collab.,

2019, 2020], where the aim is to identify abnormal observations without seeing them

during training. Statistical tools called data depths are natural similarity score in

this context. Data depths have a simple geometric interpretation as they provide

center-outward ordering of points with respect to a probability distribution [TUKEY,

1975; ZUO and SERFLING, 2000]. Geometrically speaking, the data depths measure

how deep a sample is in a given distribution. Although data depths have received

attention from the statistical community, they remain overlooked by the machine

learning community.

Contributions. Our contributions can be summarized as follows:

1. Building on novel tools: data depths. Our first contribution is to introduce AP-
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PROVED, A simPle unsuPeRvised method fOr adVersarial imagE Detection. Given an

input, APPROVED considers its embedding in the last layer of the pre-trained classifier

and computes the depth of the sample w.r.t the training probability distribution. The

deeper it is, the less likely it is to be adversarial. Contrarily to existing methods that in-

volve additional networks training [MENG and CHEN, 2017] or heavily rely on opaque

feature engineering [XU and collab., 2018], APPROVED is computationally efficient and

has a simple geometrical interpretation. Moreover, data depths non-differentiability

making it harder for to gradient-based attackers to target APPROVED.

2. A truly upgraded experimental setting. Motivated by practical considerations

which are different from previous works [FEINMAN and collab., 2017; KHERCHOUCHE

and collab., 2020; MA and collab., 2018; MENG and CHEN, 2017; XU and collab., 2018]

focusing on ResNets [HE and collab., 2016], we choose to benchmark APPROVED on

vision transformers models [CHEN and collab., 2021; DOSOVITSKIY and collab., 2021;

STEINER and collab., 2021; TOLSTIKHIN and collab., 2021; ZHAI and collab., 2022].

Indeed, such networks achieve state-of-the-art results on several visual tasks, includ-

ing object detection [HE and collab., 2021], image classification [WANG and collab.,

2021b] and generation [PARMAR and collab., 2018], largely outperforming ResNets.

Interestingly enough, we empirically observe that transformers behave differently

from ResNets, which justifies the need to develop detection techniques such as AP-

PROVED, that leverage the specific features of transformers’ architectures. Moreover,

to avoid overfitting on a specific attack, we test our detection method on a wide range

of attack mechanisms.

3. Ensuring reproducibility. We provide the open-source code of our method, at-

tacks, and baseline to ensure reproducibility and reduce future research computation

and coding overhead.

Organization of the paper. The paper is organized as follows. In Section 7.2,

we review detection methods along with attack mechanisms. In Section 7.3, we

introduce our detector APPROVED and focus on the description of the data depth on

which it relies. In Section 7.4, we study the performance of adversarial attacks on

vision transformers and give insights on models’ behavior under threat. In Section 7.5,

we evaluate APPROVED through numerical experiments and concluding remarks are

relegated to Section 7.6.

7.2 Background and Related Work

Notations. Let us consider the classical supervised learning problem where x ∈
X ⊆Rd denotes the input sample in the space X , and y ∈Y = {1, . . . ,C} denotes its

associated label. The unknown data distribution is denoted by pXY. The training

194



CHAPTER 7. A SIMPLE UNSUPERVISED DATA DEPTH-BASED METHOD TO
DETECT ADVERSARIAL IMAGES

dataset D = {(xi , yi )}n
i=1 is defined as n ≥ 1 independent identically distributed (i.i.d.)

realizations of pXY. Consider Dc = {(xi , yi ) ∈D : yi = c}, the training data for a given

class c ∈ Y . We define the empirical training distribution for the class c at layer

ℓ as pℓ
c = 1

|Dc |
∑

x∈Dc δ f ℓ
θ

(x) where δu is the dirac mass at point u. Let f ℓ
θ

: X → Rdℓ

with ℓ ∈ {1, . . . ,L}, denote the output of the ℓ-th layer of the DNN, where dℓ is the

dimension of the latent space induced by the ℓ-th layer. The class prediction is

obtained from the L-th layer softmax output as follows:

f L
θ (x)≜ arg max

c∈Y

qθ (c|x) with qθ (·|x) = softmax( f L−1
θ (x)).

7.2.1 Review of attack mechanisms

The existence of adversarial examples and their capability to lure a deep neural

network have been first introduced in SZEGEDY and collab. [2014]. The authors

define the adversarial generation problem as:

x′ = arg min
x′∈Rd :∥x′−x∥p<ε

∥x′−x∥p s.t. f L
θ (x′) ̸= y, (7.1)

where y is the true label associated to a natural sample x ∈X being modified, ∥·∥p is

the Lp -norm operator, and ε is the maximal allowed perturbation.

Multiple techniques have since been crafted to solve this problem. They can be

divided into two main groups of attack mechanisms depending on the knowledge

they have of the DNN model: whitebox and blackbox attacks. The former has full

access to the model, its weights, and gradients, while the latter can only rely on

queries.

Carlini & Wagner’s (CW) [CARLINI and WAGNER, 2017] attack is among the strongest

whitebox attacks developed yet. It attempts to solve the adversarial problem in Equa-

tion 7.1 by regularizing the minimization of the perturbation norm by a surrogate

of the misclassification constraint. DeepFool (DF) [MOOSAVI-DEZFOOLI and collab.,

2016] is an iterative method that solves a locally linearized version of the adversarial

problem and takes a step in that direction.

The authors of GOODFELLOW and collab. [2014] relax the problem as follows:

x′ = arg max
x′∈Rd :∥x′−x∥p<ε

L (x,x′;θ), (7.2)

where L (x,x′;θ) is the objective of the attacker, which is a surrogate of the mis-

classification constraint, and propose the Fast Gradient Sign Method (FGSM) that

approximates the solution of the relaxed problem in Equation 7.2 by taking one step

in the direction of the sign of the gradient of the attacker’s objective w.r.t. the input.

Basic Iterative Method (BIM) [KURAKIN and collab., 2018] and Projected Gradient
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Descent (PGD) [MADRY and collab., 2018] are two iterative extensions of the FGSM

algorithm. Their main difference relies on the initialization of the attack algorithm,

i.e., while BIM initializes the adversarial examples to the original samples PGD adds a

random uniform noise on it. Although created for L∞-norm constraints, these three

methods can be extended to any Lp -norm constraint.

To overcome the absence of knowledge about the model to attack, Hop Skip Jump

(HOP) [CHEN and collab., 2020] tries to estimate the model’s gradient through queries.

Square Attack (SA) [ANDRIUSHCHENKO and collab., 2020] is based on random searches

for a perturbation. If the perturbation doesn’t increase the attacker’s objective, it

is discarded. Finally, Spatial Transformation Attack (STA) [ENGSTROM and collab.,

2019] rotates and translates the original samples to fool the model.

7.2.2 Review of detection methods

Defending methods against adversarial attacks have been widely studied for classical

CNNs [ALAYRAC and collab., 2019; ATZMON and collab., 2019; CARMON and collab.,

2019; HENDRYCKS and collab., 2019; HUANG and collab., 2020; MADRY and collab.,

2018; RICE and collab., 2020; WANG and collab., 2019; WU and collab., 2020a; ZHANG

and collab., 2019]. Whereas a few works have focused on studying the robustness of

vision transformers to adversarial samples [ALDAHDOOH and collab., 2021a; BENZ

and collab., 2021; MAHMOOD and collab., 2021]. Meanwhile, to protect adversarial

attacks from disrupting DNNs’ functioning, it is possible to craft detectors to ensure

that the sample can be trusted.

Building a detector falls down to finding a scoring function s : Rd → R and a

threshold γ ∈R to build a binary rule g :Rd → {0,1}. For a given test sample x ∈Rd ,

g (x) = I{s(x) > γ} =
1 if s(x) > γ,

0 if s(x) ≤ γ.
(7.3)

If s is an anomaly score, g (x) = 0 implies that x is considered as ‘natural’, i.e., sampled

from pXY, and g (x) = 1 implies that x is considered as ‘adversarial’, i.e., perturbed,

and if s is a similarity score, the opposite decision is made.

A detection method can act on the model to be protected by modifying its training

procedure using tools such as reverse cross-entropy [PANG and collab., 2018] or the

rejection option [ALDAHDOOH and collab., 2021b; SOTGIU and collab., 2020]. In

that case, both detector and model are trained jointly. Those methods are usually

vulnerable to changes in attack mechanisms, and thus, they need global re-training

if a modification of the detector is introduced. On the other hand, it is also possible

to craft detectors on top of a fixed trained model. Those methods can be divided into

two main categories: supervised methods, where the detector knows the attack that
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will be perpetrated, and unsupervised methods, where the detector can only rely on

clean samples, which is not desired in practice.

Generally, supervised methods use simple machine learning algorithms (e.g.,

SVM or a logistic regressor) to distinguish between natural and adversarial examples.

The effectiveness of such methods heavily relies on natural and adversarial feature

extraction. They can be extracted directly from the network’s layers [CARRARA

and collab., 2018; LU and collab., 2017; METZEN and collab., 2017], or using statistical

tools (e.g., maximum mean discrepancy [GROSSE and collab., 2017], PCA [LI and

LI, 2017], kernel density estimation [FEINMAN and collab., 2017], local intrinsic

dimensionality [MA and collab., 2018], model uncertainty [FEINMAN and collab.,

2017] or natural scene statistics [KHERCHOUCHE and collab., 2020]). Supervised

methods, which heavily depend on the knowledge about the perpetrated attack, tend

to overfit to that attack mechanism and usually generalize poorly.

Unsupervised methods do not assume any knowledge of the attacker. Indeed,

new attack mechanisms are crafted every year, and it is unrealistic to assume knowl-

edge about the attacker. To overcome that absence of prior knowledge about the

attacker, unsupervised methods can only rely on natural samples. The features ex-

traction rely on different techniques, such feature squeezing [XU and collab., 2018],

adaptive noise, [LIANG and collab., 2021], using denoising autoencoders [MENG

and CHEN, 2017], network invariant [MA and collab., 2019] or training an auxiliary

model [ALDAHDOOH and collab., 2021b; SOTGIU and collab., 2020; ZHENG and HONG,

2018]. RAGHURAM and collab. [2021] uses dimension reduction, kNN and layer aggre-

gation to distinguish between natural and adversarial samples. In this paper, we only

focus on unsupervised methods that cannot act on the model to be protected.

7.3 Our Proposed Detector

7.3.1 Background on data depth

The notion of data depth goes back to John Tukey in 1975, who introduced the

halfspace depth [TUKEY, 1975]. Data depth functions are useful nonparametric

statistics allowing to rank elements of a multivariate space Rd w.r.t. a probability

distribution (or a dataset). Given a random variable Z which follows the distribution

pZ, a data depth can be defined as:

D : Rd ×P (Rd ) −→ [0,1] ,

(z, pZ) 7−→ D(z, pZ).
(7.4)

The higher the value of the depth function, the deeper the element is in the

reference distribution. Various data depths have been introduced over the year
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(see Chapter 2 of STAERMAN [2022] for a survey), including halfspace depth [TUKEY,

1975], the simplicial depth [LIU, 1990], the projection depth [LIU, 1992] or the zonoid

depth [KOSHEVOY and MOSLER, 1997]. Despite their applications in statistics and ma-

chine learning (e.g., regression [HALLIN and collab., 2010; ROUSSEEUW and HUBERT,

1999], classification [MOZHAROVSKYI and collab., 2015], automatic text evaluation

[STAERMAN and collab., 2021b] or anomaly detection [ROUSSEEUW and HUBERT,

2018; SERFLING, 2006; STAERMAN and collab., 2022, 2020]) the use of data depth with

representation models, and more generally to deep learning, remains overlooked by

the community. The halfspace depth is the first and the most studied depth in the

literature probably due to its appealing properties [DONOHO and GASKO, 1992; ZUO

and SERFLING, 2000] as well as its connections with univariate quantiles. However, it

suffers from computational burden in practice [DYCKERHOFF and MOZHAROVSKYI,

2016; ROUSSEEUW and STRUYF, 1998]. Indeed, it requires solving an optimization

problem over the unit hypersphere of a non-differentiable quantity. To remedy this

drawback, [RAMSAY and collab., 2019] introduced the Integrated Rank-Weighted

(IRW) depth (see also CHEN and collab. [2015]; STAERMAN and collab. [2021a]), which

involves an expectation as an alternative to the infimum over the unit hypersphere

of the halfspace depth, making it easier to compute. The IRW depth is scale and

translation invariant and has been successfully applied to anomaly detection [CHEN

and collab., 2015; STAERMAN and collab., 2021a] making it a good candidate for our

purposes. Formally, the IRW depth is defined as:

DIRW(z, pZ) =
∫
Sd−1

min {Fu (〈u,z〉) ,1−Fu (〈u,z〉)} du, (7.5)

where the unit hypersphere is denoted as Sd−1 and Fu(t) = P(〈u,Z〉 ≤ t). A Monte-

Carlo scheme is used to approximate the integral by an empirical mean. Given a

training dataset Sn = {z1, . . . ,zn} following pZ and uk ∈ Sd−1∀k ∈ {1, · · · ,nproj},the

empirical version of the IRW depth, which can be computed in O (nprojnd) and is

then linear in all of its parameters, is defined as:

D̃MC
IRW(z,Sn) = 1

nproj

nproj∑
k=1

min

{
1

n

n∑
i=1

I {〈uk ,zi −z〉 ≤ 0} ,
1

n

n∑
i=1

I {〈uk ,zi −z〉 > 0}

}
, (7.6)

7.3.2 APPROVED: Our depth-based detector

Intuition. Our detector tries to answer this simple question: can we find a metric that

will be able to distinguish between natural and arbitrary adversarial samples? At the

logit layer, we want to compare the new input to the training samples of its predicted

class to measure whether the new sample is behaving as expected. Data depths,

particularly the IRW depth, are serious candidates as they measure the ‘distance’
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between a given new input to the training probability distribution.

APPROVED in a nutshell. To detect whether a given model fθ can trust a new input

x, APPROVED will perform three steps:

1. Logits computation. For an new input x, APPROVED first require to extract the

logits (i.e., f L−1
θ

(x)) from the pretrained classifier.

2. Similarity score computation. APPROVED relies on the IRW depth score

DIRW( f L−1
θ

(x), pL−1
ŷ ), between pL−1

ŷ , the training distribution of the predicted

class ŷ = f L
θ

(x) at the logit layer, and f L−1
θ

(x), using Algorithm 8 in Section C.2

to evaluate (7.6).

3. Thresholding. For a given threshold γ, the test input sample x is detected

as clean if DIRW( f L−1
θ

(x), pL−1
ŷ ) > γ, otherwise, it is considered as adversarial.

A classical way to select γ it by selecting an amount of training samples the

detector can wrongfully detect.

7.3.3 Comparison with existing detectors

We benchmark our approach with two unsupervised detection methods: FS and

MagNet. We chose these baselines because they are unsupervised and do not modify

the model to protect. We could consider NIC [MA and LIU, 2019] but extracting

features at each layer is computationally expensive.

The Feature Squeezing method (FS; [XU and collab., 2018]). It computes the

feature squeezing of the input, extracts its prediction, and compares it to the original

prediction. The further away they are, the more likely the input is adversarial. In

practice, four versions of the input are needed: the original input, a low-precision

version, a median-filtered version, and a denoising-filtered version. One inference

on the model is required for each of the four inputs. Later, the maximal L1 difference

between the original prediction and each of the other three is picked. FS is, therefore,

parameter-free and does not require training. However, the necessary time to extract

the essential features and the memory needed to store all the input modifications

and their prediction are quite high.

MagNet [MENG and CHEN, 2017]. It is based on the training of two components:

first, a detector that detects if a sample x is clean or not, then, a reformer that tries

to find an approximation of the input closer to the training manifold. In practice,

each of those components is an autoencoder that must be trained on clean samples

before testing new inputs. MagNet requires three inferences at testing time, one

on the detector, one on the reformer, and one on the original model to protect.

Therefore, even though, at inference time, little time is necessary to output the

prediction, MagNet requires careful training, which is time-consuming, and storing

two autoencoders, which is highly memory-consuming.
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APPROVED, similarly to FS and contrary to MagNet, does not require training

time and is parameter-free. Contrary to FS, it only requires one inference on the

model to extract the logits of the input. It is, therefore, less computationally and

time-consuming. The summary of computational time and resources needed to

deploy each detection method is provided in Section C.3. Finally, since data depths

are non-differentiable, it is not straightforward for gradient-based attacks that have

full access to the detection method to attack APPROVED.

7.4 Adversarial Attacks on Vision Transformers (ViT)

In the following, we provide insights on the behavior of vision transformers under the

threat of adversarial attacks, along with a comparison to the classically used ResNets

models.

7.4.1 Set-up

Datasets and classifiers. We conducted our study on pre-

trained Vision Transformers. We rely on three widely used

vision datasets: CIFAR10 [KRIZHEVSKY, 2009], CIFAR100

and TinyImageNet (Tiny) JIAO and collab. [2019]. Training

details can be found in Section C.1.

Performance measures. We use two different metrics to

compare the different detection methods:

Model Dataset Acc (%)

ViT CIFAR10 98.7

CIFAR100 92.4

Tiny ImageNet 86.4

Table 7.1: ViT accuracy
for each dataset

AUROC↑: Area Under the Receiver Operating Characteristic curve [DAVIS and

GOADRICH, 2006]. It represents the relation between True Positive Rates (TPR), i.e.,

the percentage of perturbed samples detected as adversarial, and False Positive Rates

(FPR), i.e., the percentage of clean samples detected as adversarial. The higher the

AUROC↑ is, the better the detector’s performances are.

FPR↓90%: False Positive Rate at 90% True Positive Rate. It represents the number

of natural samples detected as adversarial when 90% of the attacked samples are

detected. Lower is better.

Remark. We discard the perturbed samples that do not fool the underlying

classifier. Indeed, detecting a sample that does not perturb the classifier’s functioning

as either natural or adversarial is a valid answer.

Attacks. For the experiments, we will evaluate the different detection methods

on the attacks presented in Subsection 7.2.1. Under L1-norm constraint, we craft

attacks following PGD1 scheme. For the L2-norm constraint, we consider PGD2, DF

and HOP. Under L∞-norm constraint, we study PGD∞, BIM and FGSM attacks, CW∞

and SA. Finally, we create STA attacks, which are not subject to a norm constraint.

The values of the maximal allowed perturbation are discussed in the next section.
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7.4.2 Adversarial attack calibration
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Figure 7.1: Percentage of successful attacks depending on the Lp -norm constraint, the
maximal perturbation ε and the attack algorithm on ResNet18 (green) and ViT (orange).

Given that the variety of attacks comes from choosing the Lp -norm constraint

and the maximal allowed Lp -norm perturbation ε, it is crucial to select them carefully.

Adversarial attacks and defense mechanisms have been widely studied for classical

convolutional networks, particularly for ResNets [GOODFELLOW and collab., 2014;

MADRY and collab., 2018; MENG and CHEN, 2017; MOOSAVI-DEZFOOLI and collab.,

2016; XU and collab., 2018; ZHANG and collab., 2019]. Hence, choosing the maximally

allowed perturbation ε for ViT comes naturally from comparing the success attack

rates between attacks on ResNets and ViTs.

In Figure 7.1, we present the success rates for attacks on Resnet18 (resp. on

ViT) in blue (resp. in orange), for different attack mechanisms, different Lp -norms

and different maximal perturbation ε (the results for FGSM and BIM are relegated

to Section C.4). Attacks behave differently on ResNets and on ViTs: on L∞-norm

constraints, at equal ε, the attacks are more potent on the ViT than on ResNet18.

Indeed, the input of a ViT has more pixels than the input of a ResNet (32×32×3 for

ResNet and 224×224×3 for ViT). Limiting the perturbation by an L∞-norm constraint,

i.e., controlling the maximal perturbation pixel-wise without controlling the number

of modified pixels, will create samples further away from the original sample if it

has more pixels. On the contrary, under L1 and L2-norm constraints, the opposite

behavior is observable: at fixed ε, the attack are more potent on ResNets than on

ViTs. This can be explained by the fact that limiting L1 or L2-norm perturbations

controls the average perturbations on the whole input sample. The modifications

are therefore smaller pixel-wise if the image is bigger. While on ResNets, the classical

values of ε are lower than 40 on L1-norm constraints and 2 on L2-norm-constraints,

we had to increase the maximum ε studied for those Lp -norm constraint to have

successful enough attacks. Finally, Spatial Transformation Attacks (STA) disturb

ResNets’ functioning more easily than ViTs’.

Summary. To sum up, in the remaining of the paper, under L1-norm constraint,

we craft PGD1 attacks with maximum norm constraint ε ∈ {50,60,70,80,90,100,500

,1000,5000}. For the L2-norm, we consider PGD2 with ε ∈ {0.125,0.25,0.5,5,10}, DF
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with no ε, and HOP attacks with 3 restarts and ε = 0.1. Under L∞-norm constraint,

we consider PGD∞, BIM and FGSM attacks with ε ∈ {0.03125,0.0625,0.125,0.25,0.5},

CW∞ with ε = 0.3125 and SA with ε = 0.125. Finally, STA attacks, which are not subject

to a norm constraint, can rotate the input up to 60◦, and translate it up to 10 pixels.

7.4.3 Locating the relevant information

In the previous section, we saw that the

attacks behave differently w.r.t. the clas-

sifier on which they are perpetrated. We

now continue this investigation by looking

at the differences between the two mod-

els from the depth scores’ perspective. In

this framework, we define the layer to have

relevant information when the difference

between the depth score on the naturals

and the depth score on the adversarial is

significant. Indeed, the higher the differ-
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Figure 7.2: Difference between natural and
adversarial IRW depth values as a function
of the layer on ViT (top) and on ResNet18
(bottom), averaged over the attacks.

ence, the more evident the shift between the distributions of the natural and the

adversarial induced by the depth score will be, and hence the easier it will be to

find a threshold that distinguishes natural from adversarial samples. We start by

computing layer per layer the differences between the IRW depth on the natural

samples (DIRW( f ℓ
θ

(x); pℓ
ŷ )) and on the adversarial samples (DIRW( f ℓ

θ
(x′); pℓ

ŷ )) both for

ViT and for ResNet18. In Figure 7.2, we plot the mean and standard deviation for each

layer and each network.The diamond points represent the outliers. Figure 7.2 shows

that the information about whether a sample is natural or adversarial, based on the

study of the IRW depth, is significantly spread across the ResNet18 model: in each

layer, the values range between 0 and 0.06. On the contrary, on ViT, this information

is concentrated in the logit layer, where the values range between 0.05 and 0.2 while

the values range from 0 to 0.05 for the other layers. To summarize, while relevant

Table 7.2: Averaged results over the different attacks for each considered Lp -Norm constraints
for APPROVED, FS and MagNet, along with the Averaged results over the norms. The results
are presented as mean ±st and ar d_devi ati on. The best results are presented in bold.

APPROVED FS MagNet

CIFAR10 CIFAR100 Tiny CIFAR10 CIFAR100 Tiny CIFAR10 CIFAR100 Tiny

AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90%

L1 94.0 ±5.2 13.2 ±13.5 78.3 ±7.6 46.4 ±13.1 75.2 ±1.3 59.2 ±2.7 79.5 ±3.3 34.9 ±8.3 71.1 ±5.1 55.5 ±8.0 54.2 ±14.0 75.1 ±11.0 51.3 ±1.1 91.1 ±0.9 50.1 ±0.2 90.2 ±0.2 49.4 ±0.9 90.0 ±1.4

L2 94.1 ±3.7 14.6 ±13.5 80.5 ±4.9 44.0 ±11.3 76.8 ±4.6 53.8 ±10.1 77.3 ±1.8 37.2 ±8.6 68.2 ±5.1 58.9 ±10.5 61.8 ±12.0 72.4 ±10.6 51.0 ±1.2 89.8 ±2.7 50.6 ±0.7 89.3 ±2.0 49.9 ±1.4 89.0 ±2.5

L∞ 95.3 ±6.5 13.4 ±20.9 86.7 ±0.4 29.9 ±19.3 91.8 ±8.8 19.1 ±19.6 73.0 ±3.5 53.4 ±18.3 62.6 ±6.8 67.3 ±11.6 74.6 ±17.8 61.2 ±23.9 56.2 ±9.7 80.0 ±17.4 55.0 ±8.7 81.3 ±15.8 50.9 ±2.6 88.3 ±4.3

no Norm 94.9 ±0.0 10.5 ±0.0 87.4 ±0.0 32.1 ±0.0 80.2 ±0.0 42.5 ±0.0 78.8 ±0.0 37.5 ±0.0 65.4 ±0.0 50.0 ±0.0 53.0 ±0.0 77.5 ±0.0 39.4 ±0.0 93.5 ±0.0 38.3 ±0.0 92.8 ±0.0 34.9 ±0.0 95.6 ±0.0

Average 94.7 ±5.6 13.5 ±17.5 83.2 ±8.9 37.2 ±17.8 83.9 ±10.3 37.7 ±23.8 75.8 ±4.2 44.2 ±16.4 66.1 ±7.0 62.0 ±11.8 65.8 ±18.0 67.7 ±19.6 53.3 ±7.7 85.3 ±13.5 52.3 ±7.0 85.7 ±12.0 49.8 ±3.4 89.2 ±3.6

information to distinguish between natural and adversary samples is diffused in

the ResNet18 model, which has small and similar values for all the layers, the most

valuable information is instead concentrated at the logit layer for the ViT network,

which experiences larger values only for that particular layer. It seems, therefore,
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Table 7.3: Averaged results over the different types of attack mechanism for APPROVED, FS,
and MagNet, along with the averaged results over the norms. The results are presented as
mean ±st and ar d_devi ati on. The best results are presented in bold. Dashed values (–) corresponds
to attacks that take more than 48 hours to run on V100 GPUs.

APPROVED FS MagNet

CIFAR10 CIFAR100 Tiny CIFAR10 CIFAR100 Tiny CIFAR10 CIFAR100 Tiny

AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90%

PGD 95.5 ±4.3 9.6 ±10.8 81.3 ±7.8 41.2 ±14.6 81.0 ±10.2 45.0 ±24.1 77.2 ±3.8 44.4 ±14.2 70.1 ±4.9 62.5 ±11.1 65.6 ±19.0 66.2 ±22.5 51.5 ±1.4 89.7 ±2.7 62.4 ±13.3 68.1 ±24.1 49.5 ±0.7 90.0 ±1.1

BIM 96.8 ±4.4 7.1 ±10.1 82.1 ±13.1 37.9 ±26.2 95.0 ±7.4 11.8 ±16.6 71.2 ±1.5 69.6 ±2.9 64.3 ±1.9 77.8 ±3.4 86.5 ±2.2 60.4 ±19.2 52.6 ±2.2 86.0 ±3.5 51.8 ±1.6 86.9 ±2.7 49.9 ±0.2 89.7 ±0.3

FGSM 90.5 ±8.8 29.7 ±29.4 90.4 ±6.4 23.9 ±15.8 85.6 ±7.2 33.5 ±14.6 73.7 ±4.3 32.7 ±5.0 54.8 ±6.2 56.0 ±5.4 52.8 ±3.3 75.1 ±2.3 62.6 ±11.1 65.2 ±26.4 62.4 ±13.3 68.1 ±24.1 52.9 ±4.0 85.4 ±6.8

HOP 98.3 ±0.0 3.3 ±0.0 89.1 ±0.0 24.8 ±0.0 87.1 ±0.0 31.8 ±0.0 74.5 ±0.0 25.0 ±0.0 62.7 ±0.0 50.0 ±0.0 59.1 ±0.0 76.3 ±0.0 53.4 ±0.0 83.6 ±0.0 50.0 ±0.0 89.9 ±0.0 52.7 ±0.0 83.8 ±0.0

DeepFool 86.5 ±0.0 45.4 ±0.0 75.5 ±0.0 59.9 ±0.0 – – 79.7 ±0.0 31.2 ±0.0 62.2 ±0.0 50.0 ±0.0 – – 50.3 ±0.0 89.7 ±0.0 50.0 ±0.0 89.9 ±0.0 – –
SA 98.2 ±0.0 3.3 ±0.0 89.6 ±0.0 26.0 ±0.0 77.0 ±0.0 49.1 ±0.0 72.0 ±0.0 25.0 ±0.0 63.3 ±0.0 50.0 ±0.0 48.7 ±0.0 78.5 ±0.0 55.1 ±0.0 82.4 ±0.0 54.9 ±0.0 82.6 ±0.0 50.6 ±0.0 89.4 ±0.0

CW 90.4 ±0.0 30.6 ±0.0 81.7 ±0.0 42.2 ±0.0 – – 78.8 ±0.0 37.5 ±0.0 67.0 ±0.0 50.0 ±0.0 – – 50.6 ±0.0 89.3 ±0.0 50.0 ±0.0 89.8 ±0.0 – –
STA 94.9 ±0.0 10.5 ±0.0 87.4 ±0.0 32.1 ±0.0 80.2 ±0.0 42.5 ±0.0 78.8 ±0.0 37.5 ±0.0 65.4 ±0.0 50.0 ±0.0 53.0 ±0.0 77.5 ±0.0 39.4 ±0.0 93.5 ±0.0 38.3 ±0.0 92.8 ±0.0 34.9 ±0.0 95.6 ±0.0

relevant to build a detector specific for vision transformers based only on the output

of the logit layer.
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Figure 7.3: APPROVED’s AUROC↑ and
FPR↓90% per class, averaged over CI-
FAR10.
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7.5 Experiments

7.5.1 Results

Performances of APPROVED compared to other unsupervised detection methods.

In Table C.3, Table C.4, and Table C.5 relegated to Section C.5 , we report the detailed

results for each considered detection method under the threat of each attack mecha-

nism, Lp -norm constraint and maximum perturbation ε. In Table 7.2, we report the

averaged AUROC↑ and FPR↓90% on each of the considered Lp -norm, along with the

global average for each detector, on CIFAR10, CIFAR100, and Tiny ImageNet. Overall,

APPROVED shows better results than the SOTA detection methods. On CIFAR10, AP-

PROVED creates an increase of AUROC↑ of 18.9% and a decrease of FPR↓90% of 30.7%

compared to the best performing state-of-the-art detector, i.e., FS. On CIFAR100, the

improvements are 17.1% and 24.8%, respectively, while they are 18.0% and 29.9% on

Tiny ImageNet. In addition, FS and APPROVED have similar dispersions. Moreover,

under specific Lp -norm constraints, our method consistently outperforms SOTA

methods, especially under the L∞-norm constraint where APPROVED outperforms FS

(resp. MagNet) by 22.3% (resp. 39.1%) in terms of AUROC↑ and 40.0% (resp. 66.6%)
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in terms of FPR↓90% on CIFAR10. Finally, by looking at the detailed results presented

in Table C.3 and Table C.4, we can deduce that FS and APPROVED have opposite be-

haviors: when the performances of FS decrease, APPROVED’s performances tend to

improve. For example, under the L∞-norm constraint, APPROVED has more trouble

detecting attacks with small perturbations, while FS has more difficulty detecting

attacks with large perturbations. Indeed, since APPROVED measures the depth of a

sample within a distribution, it will be able to recognize the strongest attacks well.

Performances per attack. In Table 7.3 we give the overall idea of the results on

all three datasets per attack mechanism by showing them in terms of mean and

standard deviation (std) on the AUROC↑ and on the FPR↓90%. APPROVED turns out to

consistently outperform the state-of-the-art detectors forall datasets. In particular,

we notice that the FGSM attacks that are the easiest to generate are the ones that

present the highest diversity among the results in the methods examined. Indeed,

by looking at Table 7.3, we can find larger values of the standard deviation in cor-

respondence to that attack. Moreover, APPROVED is capable of recognizing attacks

that are more difficult for the competitors (e.g., STA for MagNet or FGSM for FS). We

also observe that for APPROVED the most challenging task is to distinguish natural

and adversarial samples when they are crafted with DeepFool. However, it is the best

choice even in this case as it reaches better performances than the other detectors.

7.5.2 Adaptive attacks

In this experiment, we evaluate APPROVED against adaptive attacks, which has knowl-

edge about the defense [ATHALYE and collab., 2018; CARLINI and WAGNER, 2017;

TRAMER and collab., 2020]. Two scenarios can be considered with adaptive attacks:

whitebox and blackbox. Whitebox attacks (e.g. BPDA [ATHALYE and collab., 2018])

are not straightforward to adapt in our case since finding a differentiable surrogate of

IRW remains a very challenging open research question in the statistical community,

which has never been tackled. As a matter of fact, the only attempts to approximate

a non-differentiable depth was performed not on the IRW depth but on the Tuckey

depth in DYCKERHOFF and collab. [2021], with very poor results as pointed out in SHE

and collab. [2021]. Thus, in this experiment, we rely on blackbox attacks and present

the results in Figure 7.4. We attacked both APPROVED and FS using a modified version

of SA [ENGSTROM and collab., 2019], for which the attack objective has been modified

to allow the attacker to fool both the detection method as well as the classifier. We

rely on an hyperparameter α that weights the relative importance of the two parts of

the objective. It is straightforward (cf. Figure 7.4) that APPROVED is less sensitive to

adaptive attacks than FS. This results further validates the use of the IRW depth to

craft detection method and further assesses the superiority of APPROVED.
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7.5.3 Finer analysis

Per class analysis. As explained in Subsection 7.3.2, APPROVED is based on the IRW

depth, which computes the depth score of the sample w.r.t. the original distribu-

tion by class. Figure 7.3 shows the per-class performances averaged over the dif-

ferent attacks on CIFAR10, while Figure C.2, relegated to Section C.6 due to space

constraints, shows the performances on CIFAR100. It is clear from Figure 7.3 that

APPROVED does not have equal performances on every class. In particular, some

classes present extremely high mean average AUROC↑ (i.e., class 7), others exhibit

very low FPR↓90% (i.e., class 6), while some others have their adversarial and clean

samples tough to distinguish (i.e., class 3 and 5). The same behavior is observable of

CIFAR100 (see Figure C.2).

AUROC↑ vs FPR↓90%. We conclude our analysis by looking at the trade-off be-

tween AUROC↑and FPR↓90%(see Figure 7.5). The ideal method would concentrate

the results on the upper left of the figure, which cor-

responds to high AUROC↑ and low FPR↓90%, while

a poor detector would concentrate them in the bot-

tom right corner of the figure, which corresponds

to low AUROC↑ and high FPR↓90%.

We observe that on CIFAR10, the APPROVED points

are more concentrated in the upper left corner,

while the FS points are concentrated in the cen-

ter of the figure and MagNet’s in the lower right
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Figure 7.5: AUROC↑ as a func-
tion of FPR↓90% for APPROVED,
FS, and MagNet on all consid-
ered datasets.

corner. On CIFAR100 and Tiny ImageNet, the results for our method are slightly

more spread out in the top left and center of the figure, while for FS and MagNet,

they are still in the center and bottom right, respectively. Note that FS has a different

behavior than expected, i.e., the line connecting the top left corner with the bottom

right corner. This behavior change can be observed for FPR↓90% between 25%-35%

on CIFAR10 and between 50%-75% on CIFAR100 and Tiny ImageNet. On CIFAR10, FS

presents a lower AUROC↑ for a fixed FPR↓90% than expected, whereas, on CIFAR100,

it presents a lower AUROC↑ (for FPR↓90% values between 50%-60%) or higher (for

FPR↓90% values around 75%) than expected.

7.6 Conclusions and Limitations

We introduced APPROVED, an efficient unsupervised detection method designed to de-

fend against adversarial attacks. In contrast with previous detection methods, which

were built for ResNet architectures, APPROVED is well suited for vision transformers

which nowadays represent the state-of-the-art. While the relevant information about

the discrepancy between clean and adversarial samples is distributed across all layers
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of ResNets, for the transformers, it was empirically shown to be concentrated in the

logit layer. This motivated us to build APPROVED on top of this logit layer by comput-

ing a similarity score between an input sample and the training distribution based on

the statistical notion of data depth. We chose to use the Integrated Rank-Weighted

depth, which lends itself to fast inference computations and is non-differentiable,

making it harder for gradient-based adversarial methods to craft malicious samples.

We conduct extensive numerical experiments and prove that APPROVED outperforms

the other state-of-the-art methods significantly.

Future Research. We think our method paves the way for future research efforts.

Indeed, there is still room for improvement: even if the AUROC↑ performances are

good, the FPR↓90% are also fairly high. We believe the idea of leveraging information

contained in layers of transformers through data depths can be fruitful in improving

defense mechanisms against adversarial attacks. Our research is expected to have a

positive societal impact by protecting the integrity of AI systems, especially necessary

in critical systems such as autonomous cars [MORGULIS and collab., 2019] or stock

predictions [XIE and collab., 2022].

Chapter 7 Conclusion

In this work, we presented an efficient unsupervised detection method de-

signed to defend Vision Transformers from adversarial attacks. While dis-

tributed across all layers of ResNets, the information about the difference

between natural and attacked samples is concentrated in the logit layer for

the transformers. This motivated us to build a detection method on top of

this layer by computing a similarity score between an input sample and the

training distribution based on the statistical notion of data depth. We chose to

use the Integrated Rank-Weighted depth, which lends itself to fast inference

computations and is non-differentiable, making it harder for gradient-based

adversarial methods to craft malicious samples. Experimentally, we proved

that APPROVED outperforms the other state-of-the-art methods significantly.
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Part II Conclusion

Part II focused on the second research question: how can we craft an efficient

and effective detection method based on simple tools? This research question

has been addressed in two different ways:

1. In the supervised case. We tackled the problem of crafting a detection

method to distinguish between natural and attacked samples. We de-

cided to use the data-depths, simple statistical tools providing a center-

outward ordering of points w.r.t. to a reference distribution. We lever-

aged the class-wise information present in the model’s different layers to

protect and the knowledge about the potential threats to craft an efficient

detector. We experimentally showed the superiority of our proposed

method.

2. In the unsupervised scenario. We also proposed a method to discard at-

tacks in the case where no information about the threats is available. We

made use of the information extracted by the data-depths as well as the

internal structure of the Vision Transformer, which behaves differently

than the classically used ResNet, to construct an efficient method to

detect adversarial examples. Experimentally, we proved that our method

outperforms other state-of-the-art detectors and complicates the at-

tacker’s job.

Part II was dedicated to increasing our trust in the deep models’ inputs by

ensuring they come from a clean environment.

In Section 7.6, we will provide the reader with concluding remarks about the

work we produced during the last four years. We will also put our contributions

into perspective and discuss some of the limitations as well as the perspectives

of the different parts of our work.
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provide some concluding remarks.
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8.1 Discussion of Findings

8.1.1 Research problem

In this thesis, the work presented focused on two central axes.

In the first axis, we focused on answering the following research question: (Q1)

“How can we use the internal structure of DNN’s output space to improve its robust-

ness?".

In the second axis, we focused on providing answers to the following research

question: (Q2) “How can we craft an efficient and effective detection method based

on simple tools".

In the following, we will briefly summarize our key results.

8.1.2 Key results

Our proposed solution for (Q1).

In Part I, we present our solution to the first research question for two differ-

ent applications: computer vision and Smart Grid systems. We proposed a method

based on the regularization of the training loss by an information-geometric measure,

namely the Fisher-Rao distance, which computes the geodesic distance between two

probability distributions on the underlying probabilistic manifold that the outputs

of a DNN form. We connected it to standard metrics and experimentally verified that

using the Fisher-Rao distance as a regularizer achieved more Pareto-optimum points

than the standard regularization measure. On image data, we experimentally proved

that our method consistently improved the DNNs robustness to adversarial attacks.

We later adapted our method in the context of the Smart Grids. Due to monitoring

and service necessity, intelligent power grids must rely on cyber-component, mak-

ing them vulnerable to cyber-attacks. State estimators, necessary components to

monitor the grid, are known to be particularly sensitive to stealth attacks. During

this work, we presented a DNN-based, more specifically a Variational AutoEncoder-

based, solution to improve the robustness of state estimators in the context of Smart

Grid systems to stealth attacks.

Our proposed solution for (Q2).

In Part II, we presented two solutions to try and answer the second research

question suited to two different scenarios: the supervised and unsupervised cases.

In both cases, we used the data-depths, simple statistical tools that provide a center-

outward ordering of a point with respect to a reference distribution. For a given new

input, the data-depth will measure how deep it is in the reference distribution. In the

supervised case, we used a specific depth, the halfspace-mass depth, and leveraged

the class-wise information contained in the different layers of a given model, to
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craft an efficient detection method. We experimentally showed that our method

consistently improved the state-of-the-art method on different kinds of attacks. In the

unsupervised case, we used another data-depth, called the Integrated Rank-Weighted

depth, and leveraged the particular structure of Vision Transformers to build an

efficient method to detect adversarial samples. Experimentally, in addition to proving

the superiority of our approach compared to other state-of-the-art methods, we

showed that using our method would toughen the attacker’s job at attacking both

the targeted classifier and the defense.

8.1.3 Comparison between our work and previous state-of-the-art

methods.

Globally, our proposed methods show an improvement compared to previous state-

of-the-art methods.

Using the Fisher-Rao distance to improve defenses. Regarding robustness as a

defense against adversarial attacks, theoretically, we have shown that the Kullback-

Leibler divergence is a surrogate of the Fisher-Rao distance. In addition, compared

to the use of the Kullback-Leibler divergence [ZHANG and collab., 2019] as a robust

regularizer, using the Fisher-Rao distance to force clean and adversarial predictions

to be similar experimentally suggests that it is possible to achieve better trade-offs

between natural and adversarial accuracies, both on simple data and on more realis-

tic ones. Finally, as for the Kullback-Leibler divergence, combining the Fisher-Rao

regularizer with other methods to improve robustness is possible.

Protecting against False Data Injection Attacks in Smart Grid systems. In the

case of building robust state estimators to enhance the protection of Smart Grids

systems, using a Variational AutoEncoder, combined with the online generation of

false data injection attacks (FDIAs) [LIU and collab., 2011] and our proposed robust

loss, is allowing us to build strong state estimators, with good robust qualities. In

the case of DC assumptions, our method can rightfully estimate the state even in the

case of an attack. In the case of AC assumptions, our method clearly outperforms the

LASSO solution proposed by JIN and collab. [2019], which is one the most recently

proposed method to improve state estimators’ defenses against FDIAs.

Using data-depths to detect adversarial examples. Contrary to other state-of-

the-art methods, which are based on heavy ad-hoc or training, we decided to use

a simple statistical tool named the data-depth to build detection methods. Data-

depths have three main advantages compared to other methods: they are fast to

compute, have a simple geometric interpretation since they provide a center-outward
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ordering of a new input compared to a reference probability distribution, and are

non-differentiable, making the attacker’s job more difficult. In the case of supervised

methods, where the defense has either complete or partial knowledge about the

threats it is going to face, we proposed HAMPER, a supervised method that leverages

the halfspace-mass depth score at different layer levels. We presented two versions

of our solution, one where complete knowledge about the attacker is available and

another where only partial knowledge is available. Our method is somehow similar to

the Local Intrinsic Dimensionality method as we compare a new point to a reference.

However, we only compute our anomality score on a subset of layers and not all of

them. Experimentally, our proposed detection method significantly and consistently

outperforms previous state-of-the-art methods in all considered scenarios, namely

the attack-aware scenario, the blind-to-attack scenario, or under adaptive attacks.

In terms of computational time, our method is comparable to the fastest methods,

namely the Natural Scene Statistics method [KHERCHOUCHE and collab., 2020] and

the Kernel Density and Bayesian Uncertainty method [FEINMAN and collab., 2017].

In the unsupervised case, where the defense does not have any knowledge about

the possible threats it is going to face, our proposed data-depth method named

APPROVED significantly outperforms other state-of-the-art methods, both in terms of

performances under classical and adaptive attacks, and in terms of computational

requirements. While there are still improvements to provide in all cases, our different

experiments suggest that data-depths are valuable tools to distinguish between

natural and attacked samples.

8.2 Limitations and Potential Future Works

This section will put our work in perspective and mention some potential future

work.

8.2.1 Limitations of our proposed methods

Using the Fisher-Rao distance to improve defenses. While the Fisher-Rao distance

has a simple geometric interpretation, and its use over the Kullback-Leibler diver-

gence as a regularizer improves the trade-off between natural and robust perfor-

mances of deep classifiers, we do not have theoretical guarantees over the perfor-

mances. In addition, while deeply connected, our experiments suggest that the

Fisher-Rao distance and the Kullback-Leibler divergence behave differently. A theo-

retical explanation of this behavior change could be interesting.

Protecting state estimators in Smart Grid systems. We proposed methods to

protect state estimators against attacks. While our results suggest that our method is
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efficient, we could not test it on real-world data since they were unavailable.

Building strong detection methods. While significantly improving the state-of-

the-art results on multiple threats, the proposed methods are not perfect. Adversarial

attacks, while representing the worst-case scenario, are not the only possible alter-

ation of the input. However, we do not know if our proposed methods can detect all

potential threats in all possible scenarios, as we focused solely on protecting deep

classifiers against adversarial attacks.

8.2.2 Potential future work related to: How can we use the internal

structure of DNN’s output space to improve its robustness?

• Extention of our method to multimodal models. The will of the community

to build multimodal systems, which learn from more than one type of modality,

typically combining text and image data, has gained importance over the last

few months [ALAYRAC and collab., 2022; GARCIA and collab., 2019; RADFORD

and collab., 2021; RAMESH and collab., 2022, 2021]. Recently, methods to attack

such systems have been developed [EVTIMOV and collab., 2020; YI and collab.,

2021; ZHANG and collab., 2022]. Protecting those networks will therefore be

necessary when these models are deployed in practical scenarios. However,

protecting such systems is not trivial, as textual data is discrete and based

on a dictionary while image data is not, therefore, we need to ensure that all

modalities are taken into account and protected.

• Protecting Vision Transformers. Vision Transformers (ViTs) are achieving

state-of-the-art performances on multiple vision tasks today [bey; FAYYAZ

and collab., 2021; GRAHAM and collab., 2021; HEO and collab., 2021; LEE and col-

lab., 2021; LI and collab., 2021, 2022; MEHTA and RASTEGARI, 2021; RENGGLI

and collab., 2022; SANDLER and collab., 2022; TOUVRON and collab., 2022, 2021;

TU and collab., 2022; YANG and collab., 2022]. However, it has been widely

overlooked by the robustness community, just a few works have been studying

whether ViT where, by design, more robust than classic convolutional networks

[ALDAHDOOH and collab., 2021a; BENZ and collab., 2021; MAHMOOD and col-

lab., 2021]. It would therefore be interesting to adapt our method to improve

the robustness of Vision Transformers on multiple vision tasks. This task in

not trivial as Vision Transformers are a huge amount of parameters and their

training on natural samples is already heavy.

• Additional theoretical comparison between Fisher-Rao distance and other

metrics. We have shown, in Chapter 3 using a toy example, that the optimiza-

tion based on FIRE is well-behaved and gives all the desired Pareto-optimal
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points in the natural-adversarial region. This observation contrasts with the

results of other state-of-the-art adversarial learning approaches. Further theo-

retical explanations of this behavior change would be worth exploring.

8.2.3 Potential future work related to: How can we craft an efficient

and effective detection method based on simple tools?

• Extention to different underlying tasks. Our proposed methods can be ex-

tended to any underlying tasks. Attacks have started to be designed for a wide

range of vision tasks, such as image segmentation [HENDRIK METZEN and col-

lab., 2017; XIE and collab., 2017], object recognition [XIE and collab., 2017],

speech recognition [CISSE and collab., 2017]. It, therefore, would be interesting

to try to protect these underlying tasks. Moreover, other fields have protection

necessities such as securing textual pre-trained models [CHAPUIS and collab.,

2020; COLOMBO and collab., 2021a; DEVLIN and collab., 2018; DINKAR and col-

lab., 2020; YANG and collab., 2019], which remains in its infancy. In NLP, many

opportunities exist where attacks could help quantify model robustness. Fields

of interest include sequence generation task COLOMBO and collab. [2021c,

2022d]; COLOMBO* and collab. [2019]; COLOMBO and collab. [2021e]; JALALZAI*

and collab. [2020], translation models COLOMBO and collab. [2021a]; GUER-

REIRO and collab. [2023], multimodal emotion analysis COLOMBO and collab.

[2022d]; GARCIA and collab. [2019], and sentence similarity CHHUN and collab.

[2022]; COLOMBO and collab. [2021b, 2022a,c, 2021d]; STAERMAN and collab.

[2021] as they are widely used and often deployed in real-world scenarios. As

each architecture and each application presents its specificities, adapting our

proposed methods to other tasks is not straightforward.

• Using information tools to protect systems. As shown in Part II, the data-

depth is an interesting tool to distinguish between normal and modified inputs.

However, other metrics could be well suited for this task COLOMBO [2021a];

COLOMBO and collab. [2022b]; PICHLER and collab. [2022]. Information mea-

sures compute the resemblance between two probability distributions and are

gaining attention in the deep learning community. It would be interesting to

find out if such measures can help protect our systems.

• Combining detection methods. We know that the different state-of-the-art

methods and our methods capture different characteristics of clean and ad-

versarial inputs, as they tend to behave differently depending on the type of

threats they face. It would be interesting to find a simple method to combine

the scores provided by different methods to leverage the different characteris-

tics of natural and adversarial input instead of focusing on only one.
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• Real time detector. To deploy detection methods in real-world scenarios, we

believe they need to meet three separate requirements.

(R1) Black-box scenario. Systems already deployed in production are gener-

ally opaque to the end user, who only has access to the softmax predic-

tions of the networks.

(R2) Low resources / computation time. In many real-world applications, AI

systems are making real-time predictions at a high frequency (e.g. face

recognition for airport security). As a result, any relevant detector should

have a low inference time and require low computation resources.

(R3) No oracle on the nature of the attackers. Any relevant detector should

be unsupervized, meaning it should not require any training phase with

access to attack examples. Indeed, the landscape of existing attackers is

moving fast, making the availability of adversarial examples not realistic

in practice.

Existing detection methods tend to fail at meeting at least one of those require-

ments.

Supervised methods – not satisfying (R3). Supervised methods usually con-

sist in training simple machine learning algorithms, such as SVMs or logistic

regressions, to discriminate adversarial examples from natural ones, using

examples from both classes. The features used for training these machine

learning models can be extracted from the network’s layers using the samples

directly [CARRARA and collab., 2018; COLOMBO, 2021b; LU and collab., 2017;

METZEN and collab., 2017], or pre-process them using kernel density estima-

tion or uncertainty measure [FEINMAN and collab., 2017], computer vision

specific characteristics such as natural scene statistics [KHERCHOUCHE and col-

lab., 2020], PCA [LI and LI, 2017] or also local intrinsic dimensionality [MA

and collab., 2018]. Regarding (R2), one can arguably say that these methods

are satisfying as the inference time of simple machine learning models is fast.

However, as they do not satisfy (R3), these methods need to make some as-

sumptions on the nature of adversarial attacks to generate malicious samples

at the risk of overfitting and misgeneralizing. Moreover, most of these methods

rely on the hidden layers of the networks, which makes them unrealistic for

practical black-box applications (R1) where only softmax are available.

Unsupersived methods – satisfying (R3). Unsupervised methods only rely

on clean samples to build a detector, making them very attractive for real-life

applications. Let us explore existing works in light of requirements (R1) and

(R2). Some detectors require access to intermediate layers representation [AL-

DAHDOOH and collab., 2021b; MA and collab., 2019; SOTGIU and collab., 2020;
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ZHENG and HONG, 2018], which makes them unsuitable for use in the context

of (R1). Two methods satisfy (R1) but are arguably less effective regarding (R2):

the Feature Squeezing (FS) of XU

and collab. [2018] and the Mag-

Net detector of MENG and CHEN

[2017] which relies on a denois-

ing autoencoder. Let us also men-

tion JTLA [RAGHURAM and col-

lab., 2021], a refinement of FS

which unfortunately does not sat-

isfy (R1).

Table 8.1: Summary of Detector’s requirements
meets

Detector (R1) (R2) (R3)

MA and collab. [2019] % % "

SOTGIU and collab. [2020] % % "

ZHENG and HONG [2018] % % "

ALDAHDOOH and collab. [2021b] % % "

XU and collab. [2018] " % "

MENG and CHEN [2017] " % "

RAGHURAM and collab. [2021] % % "

Out-Of-Distribution detection methods. As adversarial attack detection can

be considered an extreme case of the out-of-distribution (OOD) detection prob-

lem, it would be interesting to extend ODD methods to adversarial detection.

In particular, a line of OOD methods is based on extracting relevant informa-

tion from the softmax probabilities, making them very attractive as they meet

all the requirements. This line of work has been launched by the seminal work

of DARRIN and collab. [2023a,b]; GOMES and collab.; HENDRYCKS and GIMPEL

[2016], who proposed to focus on the Maximum Softmax Probability (MSP)

to discriminate between in- and out-of-distribution samples. The underlying

idea of MSP is that the more spiky the probabilities, the more confident the net-

work is and, therefore, the cleaner the input. Let us also mention the DOCTOR

detector, recently introduced by GRANESE and collab. [2021], which computes

the Gini coefficient of the softmax probabilities. Both methods satisfy the three

requirements (R1) - (R2) - (R3), but fail at detecting some attacks.

8.2.4 Global research directions

Adapting the adversarial problem to the real world. The adversarial problem rep-

resents a worst-case scenario and is an exciting problem to solve. However, this

scenario is not necessarily representative of what could happen in real-world ap-

plications. For example, providing full knowledge about a system to an attacker is

probably too ambitious. In addition, defenses can be combined, i.e., it is possible

to craft a detector on top of a robust network. Finally, defending directly on the

neural network to protect is not the only type of defense that exists. For example, one

can monitor the activities of its users to ensure that no strange behavior is happen-

ing, such as an abnormal number of queries in a short amount of time. While the

developed tools for the adversarial problem are powerful and interesting and give

us insights into the functioning of neural networks, there is still a lot to do to craft

efficient defensive methods that can be applied to the industry in more practical

224



CHAPTER 8. DISCUSSION OF FINDINGS, LIMITATIONS, POTENTIAL FUTURE
WORKS AND GLOBAL SUMMARY

cases.

Are the attack and defense problems underspecified? Recently, the problem of

underspecification and its implications has been formalized by D’AMOUR and collab.

[2020]; TENEY and collab. [2022]. A problem is considered underspecified if there

exist many different solutions that solve it without any change of results on the main

task but exhibiting widely different characteristics. Most DL problems are, in fact,

underspecified, and it could cause problems with the reliability of machine learning,

as every solution can behave differently when deployed in real-world applications

where the main task can slightly vary from the training one. We believe the attack

problem is, in fact, underspecified, as attacking two different models trained on

the same task can result in vastly different attacked samples. Moreover, we also

believe the defense problem is underspecified, as the performances of the defenses

on attacks that have never been seen before can widely change depending on the

chosen defense [D’AMOUR and collab., 2020][Section 5]. We, therefore, believe it

would be interesting to test attack and defense mechanisms under the scope of

underspecification.
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Figure A.1: Plots of all the possible points (1−Pe (θ),1−P′
e (θ)) for ResNet-18 model on CIFAR-

10. ©2022 IEEE.

233



APPENDIX A. APPENDIX OF CHAPTER 3

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

(a) Pareto-optimal points.
©2022 IEEE.

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

(b) Hellinger

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

(c) FIRE

Figure A.2: Plots of all the possible points (1−Pe (θ),1−P′
e (θ)) for the Gaussian model with

ε= 0.1, µ= [−0.0218;0.0425] and Σ= [0.0212,0.0036;0.0036,0.0042] shown in blue. In red,
we show the Pareto-optimal points (Figure A.2a). In black, we show the solutions obtained by
minimizing the risk LHel(θ) in Equation A.3 (Figure A.2b), the risk LFIRE(θ) in Equation 3.7
(Figure A.2c).©2022 IEEE.

A.1 Comparison between the Fisher-Rao distance and

the KL divergence on real data

In order to confirm on real data the difference between the Kullback-Leibler di-

vergence and the Fisher-Rao distance, we reproduce the simulation presented on

Figure 3.6 based on the CIFAR-10 dataset. We trained multiple classifier using both

TRADES and FIRE methods, varying λ ∈ [0,50]. We use the dataset CIFAR-10 with a

ResNet-18 for the model, and train the models for 100 epochs. The optimizer is the

Stochastic Gradient Descent (SGD) with a learning rate of 0.01, with a decay of 0.1 at

epoch 75, 90 and 100. We also use a weight decay of 5.10−4, a momentum of 0.9. The

results are averaged over 2 tries.

We present the results on Figure A.1. On the left figure, we observe the entire

curve, and on the right we zoomed on the zone of interest. We can see that Fisher-

Rao distance presents a better trade-off between natural and adversairal accuracies

than the Kullback-Leibler divergence on real data, confirming the improvements

presented on Figure 3.6. For natural accuracies below 80%, the Fisher-Rao distance

and the Kullback-Leibler divergence seem to behave quite similarly. For natural

accuracies above 80%, which is actually the zone of interest, the improvement caused

by the use of the Fisher-Rao distance seem to be quite consistent among all the

training points. At fixed adversarial accuracies, the Fisher-Rao distance can increase

the results by up to 1% of natural accuracies. Note that, in this simulation the

Kullback-Leibler divergence can achieve a better adversarial accuracy that the Fisher-

Rao distance (44.21% compared to 43.57%), but with a cost of sighly more than 2.5%

for natural accuracies (78.69% compared to 81.23%). The Fisher-Rao divergence

therefore achieves a better trade-off between natural and adversarial accuracies than

the Kullback-Leibler divergence.
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Table A.1: Comparison between Hellinger and Fisher-Rao based regularizer under white-box
l∞ threat model.

Defense Dataset ε Structure Natural AutoAttack Avg. Acc. RunTime

Hellinger CNN 99.31 ± 0.03 94.03 ± 0.24 96.67 ± 0.07 2h06
FIRE

MNIST 0.3
CNN 99.22 ± 0.02 94.44 ± 0.14 96.83 ± 0.10 2h06

Hellinger WRN-34-10 85.96 ± 0.28 50.52 ± 0.31 68.24 ± 0.15 11h02
FIRE

CIFAR-10 8/255
WRN-34-10 85.98 ± 0.09 51.45 ± 0.32 68.72 ± 0.22 11h00

Hellinger WRN-34-10 60.79 ± 0.88 25.58 ± 0.27 43.18 ± 0.54 11h12
FIRE

CIFAR-100 8/255
WRN-34-10 61.03 ± 0.21 26.42 ± 0.21 43.73 ± 0.12 11h10

A.2 Comparison between Fisher-Rao and Hellinger dis-

tances

A.2.1 Theoretical relation

The Hellinger distance between two distributions q and q ′ on Y is defined as follows:

H(q, q ′) .=p
2

(
1− ∑

y∈Y

√
q(y)q(y)′

)1/2

. (A.1)

Using Equation 3.15, we readily obtain the following relation between the Hellinger

distance and the Fisher-Rao distance.

Theorem 4 (Relation between FRD and Hellinger distance). The FRD between soft-

predictions qθ = qθ(·|x) and q ′
θ
= qθ(·|x′), given by Equation 3.15 is related to the

Hellinger distance through the relation

H2(qθ, q ′
θ) = 2

[
1−cos

(
dR,C (qθ, q ′

θ
)

2

)]
. (A.2)

Since 0 ≤ dR,C (qθ, q ′
θ

) ≤ π, it is clear that H2(qθ, q ′
θ

) is a monotonically increasing

function of dR,C (qθ, q ′
θ

).

We conclude from this result that the FRD and the Hellinger distance are theoreti-

cally equivalent regularization mechanisms. However, it is clear that the empirical

optimization of these distances may be different. This is further explored and con-

firmed in the following.

Experimental comparison

Since the Hellinger distance and the Fisher-Rao distance are theoretically equiva-

lent metrics (see Subsection A.2.1), we investigate the empirical difference between

those two distances. First, we perform the same simulations as those presented in

Figure 3.6 but using the Hellinger distance as a robust regulatizer. Then, we perform

comparison between Hellinger and FRD on real datasets (similar to the simulations

given in Section 3.5.2).
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Accuracy-Robustness trade-offs in the Gaussian case

As we defined the FIRE risk, it is possible to define the Hellinger risk as :

LHEL(θ)
.= Ep(x,y)

[
max

x′:∥x′−x∥p≤ε
− log qθ(y |x)

+λH2(qθ(·|x), qθ(·|x′)))
]

, (A.3)

where H(qθ, q ′
θ

) is defined in Equation A.1. In Figure 3.6b, we present the solution

of the (local) Empirical Risk Minimization (ERM) for the Hellinger risk function as

defined in Equation A.3 for different values of λ. As can be observed, the curve

obtained for all pairs of (1−Pe (θ),1−P′
e (θ)) covers about half of the Pareto-optimal

points while the curve of all solutions for (1−Pe (θ),1−P′
e (θ)) corresponding to FIRE

risk (see Equation 3.7) covers all the Pareto-optimal points. This simulation shows

that even if the Hellinger distance and the Fisher-Rao distance are theoretically

equivalent, their dynamics in training are actually quite different. In addition, FRD

seems to be better suited for training in the Gaussian case.

A.2.2 Comparison based on real data

We now study the empirical difference between those two distances on real datasets.

We therefore perform the same simulations as those provided in Section 3.5.2 using

the squared Hellinger distance between the natural and the adversarial predictions

as the robustness regularizer. The results are summarized in Table A.1. Even though

using the Hellinger distance as a robust regularizer performs better than using the

Kullback-Leibler divergence, it still performs worse that the Fisher-Rao distance. In

the case of real data, FRD appears to be better suited for training than the Hellinger

distance.

In conclusion, FRD provides a better regularization objective than the Hellinger

distance.

A.3 Proof of Proposition 1 and Theorem 3

A.3.1 Proof of Proposition 1

Notice that the FRD in Equation 3.9 can be written as follows:

dR,C (qθ, q ′
θ) = 2

∣∣∣ f (hθ(x′))− f (hθ(x))
∣∣∣, (A.4)
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where we have defined the function f :R→R as f (z)
.= arctan(ez/2). Notice that f is

a smooth function. Using the mean value theorem, we have

dR,C (qθ, q ′
θ) = 2| f ′(c)| · ∣∣hθ(x′)−hθ(x)

∣∣, (A.5)

where f ′(z) = ez/2/(2ez +2) is the derivative of f and c is a point in the (open) interval

with endpoints hθ(x) and hθ(x′). Notice that 0 ≤ f ′(z) ≤ 1/4 for any z. Then, we have

dR,C (qθ, q ′
θ) ≤ sup

c
2| f ′(c)| · ∣∣hθ(x′)−hθ(x)

∣∣ (A.6)

= 1

2

∣∣hθ(x′)−hθ(x)
∣∣. (A.7)

A.3.2 Proof of Theorem 3

Consider first the Hellinger distance between two distributions q and q ′ over Y ,

defined as follows:

H(q, q ′) .=p
2

(
1− ∑

y∈Y

√
q(y)q(y)′

)1/2

.

Using Equation 3.15, we readily obtain the following relation:

H(q, q ′) =p
2

[
1−cos

(
dR,C (q, q ′)

2

)]1/2

. (A.8)

We now use the following inequality relating the Hellinger distance and the KL diver-

gence [TSYBAKOV, 2008, Lemma 2.4]:

H2(q, q ′) ≤ KL(q, q ′). (A.9)

Using the relation Equation A.8, we obtain the desired bound in Equation 3.16. The

second-order approximation (cf. Equation 3.17) follows directly from CALIN and

UDRIŞTE [2014][Theorem 4.4.5].

A.4 References

CALIN, O. and C. UDRIŞTE. 2014, Geometric modeling in probability and statistics,

Springer. 237

TSYBAKOV, A. B. 2008, Introduction to nonparametric estimation, Springer Science &

Business Media. 237
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B.1 Approximation algorithms

In this part, we present algorithms, originally proposed in CHEN and collab. [2015]

and adapted to our problem, that are used in steps 3 and 4 in HAMPER (see Algorithm

Algorithm 5 for the training and Algorithm Algorithm 6 for the testing). Algorithm 7

shows the different steps to compute the scores for our HAMPER method
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Algorithm 5 Training algorithm for the approximation of DHM.

INPUT: : sample S̃ ℓ
c = {zℓ,i ∈ S̃ ℓ : yi = c}.

INPUT: : Number of halfspaces K; sub-sample size ns ; hyperparameter λ.
1: for k = 1, . . . ,K do

2: Draw S̃ ℓ
c,ns

, a sub-sample of S̃ ℓ
c with size ns without replacement.

3: Draw randomly and uniformly a direction uk in Sd−1.

4: Compute 〈uk ,zℓ,i 〉 for every zℓ,i ∈ S̃ ℓ
c,ns

such that pk,i ≜ 〈uk ,zℓ,i 〉.
5: Set midk = (

max
i

pk,i +min
i

pk,i
)
/2 and rangek = max

i
pk,i −min

i
pk,i .

6: Randomly and uniformly select κk in
[
midk − λ

2 rangek , midk + λ
2 rangek

]
.

7: Set mleft
k = |{zℓ,i ∈ S̃ ℓ

c,ns
: pk,i < κk }|

ns
and mright

k = |{zℓ,i ∈ S̃ ℓ
c,ns

: pk,i ≥ κk }|
ns

.

8: end for
OUTPUT: : {uk ,κk ,mleft

k ,mright
k }K

k=1.

Algorithm 6 Testing algorithm for the approximation of DHM.

INPUT: : test observation zℓ; {uk ,κk ,mleft
k ,mright

k }K
k=1.

INPUT: : HM=0.
1: for k = 1, . . . ,K do

2: Project zℓ onto uk and such that pℓ
k = 〈zℓ,uk〉.

3: HM = HM + mleft
k 1{pℓ

k < κk } + mright
k 1{pℓ

k ≥ κk }.

4: end for
OUTPUT: : DHM(zℓ,S̃ ℓ

c ) = HM/K.

Algorithm 7 HAMPER

INPUT: : test representations {zℓ}L−1
ℓ=1 ; sample representations S̃ ℓ

c = {zℓ,i ∈ S̃ ℓ : yi =
c}.

INPUT: Number of closed halfspaces K; sub-sample size ns ; hyperparameter λ.
1: for ℓ= 1, . . . ,L−1 do
2: for c = 1, . . . ,C do

3: Draw K closed halfspaces containing zℓ using Algorithm 5.

4: Compute DHM(zℓ,S̃ ℓ
c ) using Algorithm 6.

5: end for
6: end for

7: Perform a linear regression to find weights αℓ,c such that s(x) =∑L−1
ℓ=1

∑C
c=1αℓ,c DHM(zℓ,S̃ ℓ

c ).

OUTPUT: the score function s.
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B.2 Formal description of essential properties of Data

Depths

Formally, a data depth function is defined as follows:

D : Rd ×P (Rd ) −→ [0,1] ,

(x,P) 7−→ D(x,P),
(B.1)

where P (Rd ) denotes the space of all probability distributions on Rd . The higher

D(x,P), the deeper x is in P. The depth-induced median of P is then defined by the

set attaining supx∈Rd D(x,P) in the case where it exists. Since data depth naturally

and in a nonparametric way defines a pre-order on Rd w.r.t. a probability distribu-

tion, it can be seen as a centrality-based alternative to the cumulative distribution

function for multivariate data. Clearly, Equation B.1 opens the door to a variety of

existing definitions CHEN and collab. [2015]; CUEVAS and collab. [2007]; KOSHEVOY

and MOSLER [1997]; LIU [1990]; RAMSAY and collab. [2019]; STAERMAN and collab.

[2021]; ZUO [2003]. While these differ in theoretical and practically related proper-

ties such as robustness or computational complexity, several postulates have been

developed throughout the recent decades the “good” depth function should satisfy.

Such properties have been thoroughly investigated in LIU [1990]; ZUO and SERFLING

[2000] and DYCKERHOFF [2004] with slightly different sets of axioms (or postulates)

to be satisfied by a depth function. They are recalled below.

(D1) (AFFINE INVARIANCE) Denoting by PX the distribution of any r.v. X taking its

values in Rd , we have:

∀x ∈Rd , D(Ax+b,PAX+b) = D(x,PX),

for any d ×d nonsingular matrix A with real entries and any vector b in Rd .

(D2) (MAXIMALITY AT CENTER) For any P ∈P (Rd ) that has a symmetry center x∗ (in

a sense to be specified), the depth function D(.,P) takes its maximum value at

it:

D(x∗,P) = sup
x∈Rd

D(x,P).

(D3) (MONOTONICITY RELATIVE TO DEEPEST POINT ) For any P ∈P (Rd ) with deepest

point x∗, the depth at any point x in Rd decreases as one moves away from x∗

along any ray passing through it:

∀ξ ∈ [0,1], D(x∗,P) ≥ D(x∗+ξ(x−xP),P).
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(D4) ( VANISHING AT INFINITY ) For any P ∈P (Rd ), the depth function D vanishes at

infinity:

D(x,P) → 0, as ||x||→∞.

These properties introduced in ZUO and SERFLING [2000] lead to the following defini-

tion of a data depth function.

Definition B.2.1. A function D :Rd ×P (Rd ) −→ [0,1] is a statistical depth function if

it satisfies (D1 −D4).

Discussion on properties. The affine invariance property includes common trans-

formations such as orthogonal, translation or scaling, and is useful in applications

providing independence w.r.t. measurement units and coordinate system. For dis-

tributions having a uniquely defined center (e.g. symmetry center x∗), data depths

should be maximized at this center, as stated by (D2). The property (D3) is a conse-

quence of the center-outward ordering construction of data depth. When a point

x ∈ Rd moves away from the set of elements that reach the maximum value of the

depth function (potentially reduced to a single element, e.g. for symmetric distribu-

tions defined above), D(x,P) should decrease monotonically.
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B.3 Detailed Results on Perfect Knowledge about the

attacker

Table B.1: Performances on the three considered datasets SVHN, CIFAR10, and CIFAR100- of
the HAMPERAA detector together with the results of the state-of-the-art detection methods:
LID, and KD-BU, on multiple threat scenarios with multiple maximal perturbations ε. The
best results among the detectors are shown in bold. The results are presented as: AUROC↑
±FPR ↓95% %. ∗ stipulates the non-gradient based attacks.

Norm L1
LID KD-BU HAMPERAA

SVHN CIFAR10 CIFAR100 SVHN CIFAR10 CIFAR100 SVHN CIFAR10 CIFAR100

PGD1

ε = 5 (ε⋆ = 40) 78.6 ±76.9 63.5 ±84.3 49.6 ±94.1 81.6 ±57.8 32.2 ±98.4 40.5 ±96.3 100 ±0.0 100 ±0.0 100 ±0.0

ε = 10 (ε⋆ = 500) 66.6 ±89.1 52.2 ±92.9 36.0 ±97.1 75.0 ±70.0 41.1 ±96.9 40.2 ±98.6 100 ±0.0 100 ±0.0 100 ±0.0

ε = 15 (ε⋆ = 1000) 47.2 ±94.8 48.9 ±93.7 76.2 ±66.2 76.7 ±83.6 64.9 ±91.4 64.9 ±84.6 100 ±0.0 100 ±0.0 100 ±0.0

ε = 20 (ε⋆ = 1500) 61.6 ±92.7 46.8 ±95.0 90.1 ±35.0 84.3 ±64.1 77.9 ±83.7 72.3 ±80.7 100 ±0.0 100 ±0.0 100 ±0.0

ε = 25 (ε⋆ = 2000) 65.7 ±92.0 47.0 ±95.0 95.4 ±22.2 88.8 ±55.2 87.8 ±70.5 80.9 ±74.0 100 ±0.0 100 ±0.0 100 ±0.0

ε = 30 (ε⋆ = 2500) 61.6 ±94.1 68.9 ±82.5 96.4 ±17.1 91.2 ±54.6 94.2 ±32.0 88.1 ±64.0 100 ±0.0 100 ±0.0 100 ±0.0

ε = 40 (ε⋆ = 5000) 73.2 ±91.3 77.7 ±70.2 99.8 ±0.1 95.3 ±25.5 98.7 ±5.0 99.7 ±0.2 100 ±0.0 100 ±0.0 100 ±0.0

Norm L2 SVHN CIFAR10 CIFAR100 SVHN CIFAR10 CIFAR100 SVHN CIFAR10 CIFAR100

PGD2

ε = 0.125 (ε⋆ = 5) 80.8 ±76.0 63.6 ±84.3 45.3 ±95.2 84.8 ±48.5 30.3 ±98.6 40.9 ±96.0 100 ±0.0 100 ±0.0 100 ±0.0

ε = 0.25 (ε⋆ = 10) 74.8 ±79.1 59.0 ±86.3 39.7 ±96.5 76.6 ±66.6 40.6 ±98.6 41.3 ±96.2 100 ±0.0 100 ±0.0 100 ±0.0

ε = 0.3125 (ε⋆ = 15) 68.9 ±84.3 51.2 ±93.2 35.5 ±97.0 76.9 ±68.3 39.2 ±97.8 40.9 ±97.8 100 ±0.0 100 ±0.0 100 ±0.0

ε = 0.5 (ε⋆ = 20) 64.3 ±89.3 47.7 ±95.1 76.6 ±66.1 80.2 ±83.5 78.2 ±83.1 39.4 ±99.9 100 ±0.0 100 ±0.0 100 ±0.0

ε = 1 (ε⋆ = 30) 79.1 ±79.6 69.3 ±87.2 83.8 ±50.0 95.4 ±28.9 98.8 ±3.6 65.9 ±84.2 100 ±0.0 100 ±0.0 100 ±0.0

ε = 1.5 (ε⋆ = 40) 84.7 ±70.7 89.2 ±45.9 92.5 ±27.8 98.2 ±5.7 99.9 ±0.0 73.1 ±79.2 100 ±0.0 100 ±0.0 100 ±0.0

ε = 2 (ε⋆ = 50) 87.3 ±72.0 95.0 ±23.9 94.9 ±23.3 99.2 ±0.0 99.9 ±0.0 82.6 ±72.2 100 ±0.0 100 ±0.0 100 ±0.0

DeepFool∗

No ε 93.2 ±29.4 71.4 ±81.1 96.2 ±12.2 95.0 ±15.9 85.7 ±73.5 70.9 ±72.5 100 ±0.0 100 ±0.0 100 ±0.0

CW2
∗

ε = 0.01 61.9 ±92.8 51.0 ±94.0 31.7 ±98.9 42.7 ±88.8 45.5 ±93.4 35.9 ±96.8 100 ±0.0 100 ±0.0 100 ±0.0

HOP

ε = 0.1 87.8 ±64.3 69.3 ±82.3 68.7 ±88.2 94.3 ±16.8 87.1 ±73.5 71.2 ±81.7 100 ±0.0 100 ±0.0 100 ±0.0

Norm L∞ SVHN CIFAR10 CIFAR100 SVHN CIFAR10 CIFAR100 SVHN CIFAR10 CIFAR100

PGD∞

ε = 0.03125 93.7 ±25.5 86.1 ±47.1 47.4 ±95.2 95.6 ±27.3 99.0 ±3.5 58.6 ±88.1 100 ±0.0 100 ±0.0 100 ±0.0

ε = 0.0625 98.7 ±3.7 94.6 ±25.2 48.8 ±93.9 99.6 ±0.0 100 ±0.0 61.3 ±86.3 100 ±0.0 100 ±0.0 100 ±0.0

ε = 0.125 99.7 ±0.8 97.7 ±11.2 50.3 ±92.5 100 ±0.0 100 ±0.0 68.3 ±83.5 100 ±0.0 100 ±0.0 100 ±0.0

ε = 0.25 99.6 ±2.0 99.0 ±3.7 74.5 ±77.0 100 ±0.0 100 ±0.0 79.4 ±76.1 100 ±0.0 100 ±0.0 100 ±0.0

ε = 0.3125 99.4 ±3.2 99.1 ±3.5 77.9 ±75.6 100 ±0.0 100 ±0.0 83.3 ±72.5 100 ±0.0 100 ±0.0 100 ±0.0

ε = 0.5 98.7 ±6.2 99.6 ±1.1 87.2 ±56.3 100 ±0.0 100 ±0.0 90.8 ±56.1 100 ±0.0 100 ±0.0 100 ±0.0

BIM

ε = 0.03125 91.5 ±32.6 79.7 ±63.3 47.4 ±95.2 92.2 ±40.4 95.8 ±22.0 58.7 ±88.4 100 ±0.0 100 ±0.0 100 ±0.0

ε = 0.0625 98.5 ±6.3 89.2 ±42.8 48.6 ±94.0 99.2 ±0.6 100 ±0.0 60.7 ±86.8 100 ±0.0 100 ±0.0 100 ±0.0

ε = 0.125 99.6 ±1.6 95.8 ±21.4 49.9 ±92.8 99.9 ±0.0 100 ±0.0 67.1 ±83.6 100 ±0.0 100 ±0.0 100 ±0.0

ε = 0.25 99.7 ±1.2 98.6 ±4.7 74.3 ±78.3 100 ±0.0 100 ±0.0 78.8 ±76.5 100 ±0.0 100 ±0.0 100 ±0.0

ε = 0.3125 99.4 ±3.2 99.1 ±3.5 78.3 ±73.8 100 ±0.0 100 ±0.0 83.4 ±72.8 100 ±0.0 100 ±0.0 100 ±0.0

ε = 0.5 99.2 ±4.3 99.7 ±1.0 85.4 ±64.1 100 ±0.0 100 ±0.0 91.6 ±53.6 100 ±0.0 100 ±0.0 100 ±0.0

FGSM

ε = 0.03125 95.4 ±19.4 86.6 ±49.0 48.9 ±94.4 87.8 ±44.0 24.9 ±99.7 40.0 ±96.5 100 ±0.0 100 ±0.0 100 ±0.0

ε = 0.0625 99.2 ±3.8 97.3 ±12.7 47.3 ±94.2 90.7 ±31.3 81.4 ±75.4 38.5 ±96.9 100 ±0.0 100 ±0.0 100 ±0.0

ε = 0.125 99.7 ±0.2 99.4 ±2.9 47.2 ±92.0 92.7 ±22.6 93.0 ±46.3 36.0 ±97.9 100 ±0.0 100 ±0.0 100 ±0.0

ε = 0.25 99.8 ±0.0 98.4 ±3.5 82.3 ±64.2 93.6 ±18.0 98.8 ±5.0 67.1 ±80.6 100 ±0.0 100 ±0.0 100 ±0.0

ε = 0.3125 99.4 ±0.0 99.1 ±1.8 86.7 ±54.3 6.2 ±99.5 99.2 ±3.2 69.3 ±77.9 100 ±0.0 100 ±0.0 100 ±0.0

ε = 0.5 99.9 ±0.0 100 ±0.0 93.7 ±30.2 5.8 ±99.5 99.6 ±1.6 73.3 ±73.9 100 ±0.0 100 ±0.0 100 ±0.0

CW∞∗

ε = 0.3125 85.9 ±51.3 71.5 ±80.5 78.1 ±81.3 90.0 ±32.7 79.5 ±76.0 67.7 ±79.7 100 ±0.0 100 ±0.0 100 ±0.0

SA

ε= 0.125 92.3 ±31.8 93.1 ±45.6 84.6 ±82.0 93.0 ±22.5 90.0 ±73.4 68.9 ±78,4 100 ±0.0 100 ±0.0 100 ±0.0

No norm SVHN CIFAR10 CIFAR100 SVHN CIFAR10 CIFAR100 SVHN CIFAR10 CIFAR100

No ε 99.1 ±4.4 91.7 ±36.6 98.4 ±4.2 92.8 ±21.9 81.4 ±76.2 76.1 ±61.3 100 ±0.0 100 ±0.0 100 ±0.0
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B.4 Detailed Results on No Knowledge about the attacker

Table B.2: Performances on the three considered datasets - SVHN, CIFAR10, and CIFAR100 -
of the HAMPERBA detector together with the results of the state-of-the-art detection method:
NSS, on multiple threat scenarios with multiple maximal perturbations ε. The best results
among the detectors are shown in bold. The results are presented as: AUROC↑ ±FPR ↓95% %. ∗

stipulates the non-gradient based attacks.

Norm L1 NSS HAMPERBA

SVHN CIFAR10 CIFAR100⋆ SVHN CIFAR10 CIFAR100⋆

PGD1

ε = 5 (ε⋆ = 40) 48.6 ±95.1 50.1 ±94.3 51.6 ±94.3 95.7 ±20.4 88.4 ±47.5 99.9 ±0.4

ε = 10 (ε⋆ = 500) 51.5 ±94.6 56.7 ±90.0 53.1 ±94.2 87.6 ±51.0 90.4 ±38.8 99.9 ±0.3

ε = 15 (ε⋆ = 1000) 59.4 ±91.7 62.5 ±85.2 58.3 ±93.3 95.1 ±23.5 89.2 ±49.0 99.9 ±0.2

ε = 20 (ε⋆ = 1500) 69.2 ±85.1 67.7 ±80.3 66.5 ±91.8 96.0 ±21.8 98.3 ±8.5 99.9 ±0.2

ε = 25 (ε⋆ = 2000) 78.1 ±71.7 72.0 ±74.5 75.5 ±89.2 96.4 ±19.8 98.3 ±8.2 99.9 ±0.2

ε = 30 (ε⋆ = 2500) 84.8 ±55.5 75.9 ±68.6 83.7 ±84.4 95.7 ±27.5 98.8 ±5.4 100 ±0.1

ε = 40 (ε⋆ = 5000) 92.9 ±24.3 82.1 ±57.1 99.4 ±0.2 97.9 ±10.1 99.3 ±2.5 100 ±0.0

Norm L2 SVHN CIFAR10 CIFAR100⋆ SVHN CIFAR10 CIFAR100⋆

PGD2

ε = 0.125 (ε⋆ = 5) 49.2 ±95.0 49.7 ±94.2 51.5 ±94.3 93.0 ±27.7 94.6 ±26.1 99.9 ±0.6

ε = 0.25 (ε⋆ = 10) 49.6 ±94.9 55.7 ±90.5 51.7 ±94.0 90.4 ±37.7 89.6 ±45.1 99.9 ±0.3

ε = 0.3125 (ε⋆ = 15) 52.5 ±94.1 59.0 ±88.2 52.8 ±94.2 91.9 ±34.0 79.9 ±69.9 99.8 ±0.8

ε = 0.5 (ε⋆ = 20) 66.4 ±87.4 67.5 ±79.9 54.4 ±94.4 94.0 ±30.7 94.7 ±30.6 99.9 ±0.2

ε = 1 (ε⋆ = 30) 92.1 ±29.6 83.1 ±54.4 59.1 ±93.6 98.8 ±6.5 99.4 ±3.3 100 ±0.1

ε = 1.5 (ε⋆ = 40) 98.0 ±5.9 91.7 ±32.8 67.2 ±92.4 98.9 ±4.4 100 ±0.0 99.9 ±0.2

ε = 2 (ε⋆ = 50) 99.4 ±1.6 96.2 ±16.1 77.5 ±88.4 99.5 ±2.4 100 ±0.0 100 ±0.1

DeepFool∗

No ε 58.2 ±93.4 55.9 ±92.3 73.0 ±72.6 90.8 ±29.0 79.7 ±62.5 100 ±0.0

CW2
∗

ε = 0.01 61.8 ±92.0 56.0 ±91.2 64.6 ±90.0 92.7 ±30.9 89.2 ±44.6 99.9 ±0.1

HOP

ε = 0.1 87.6 ±64.0 65.4 ±87.9 73.2 ±87.9 93.8 ±22.5 95.6 ±19.6 99.8 ±0.5

Norm L∞ SVHN CIFAR10 CIFAR100 SVHN CIFAR10 CIFAR100

PGD∞

ε = 0.03125 99.3 ±1.7 91.3 ±34.2 53.1 ±93.2 97.4 ±13.8 99.4 ±2.3 99.9 ±0.4

ε = 0.0625 99.9 ±0.2 99.0 ±4.4 55.9 ±91.8 99.5 ±2.0 99.3 ±3.6 100 ±0.1

ε = 0.125 99.9 ±0.2 99.9 ±0.3 61.5 ±89.9 99.9 ±0.3 99.8 ±0.7 99.9 ±0.4

ε = 0.25 99.9 ±0.2 99.9 ±0.1 71.3 ±84.9 99.7 ±1.7 100 ±0.0 99.9 ±0.4

ε = 0.3125 99.9 ±0.2 99.9 ±0.1 75.4 ±81.3 100 ±0.1 99.8 ±0.8 99.8 ±0.8

ε = 0.5 99.9 ±0.2 99.9 ±0.1 84.7 ±67.6 100 ±0.2 100 ±0.1 99.8 ±0.5

BIM

ε = 0.03125 99.0 ±3.0 89.3 ±41.4 53.0 ±93.3 96.7 ±21.2 96.8 ±14.4 99.9 ±0.3

ε = 0.0625 99.8 ±0.3 97.9 ±9.2 55.8 ±91.9 99.2 ±3.8 99.8 ±0.8 99.9 ±0.2

ε = 0.125 99.9 ±0.2 99.7 ±0.9 61.4 ±90.3 99.9 ±0.7 99.8 ±1.1 99.9 ±0.4

ε = 0.25 99.9 ±0.2 99.9 ±0.1 71.2 ±85.1 100 ±0.0 99.9 ±0.4 99.9 ±0.4

ε = 0.3125 99.9 ±0.2 99.9 ±0.1 75.3 ±81.0 99.9 ±0.6 99.8 ±1.0 99.9 ±0.4

ε = 0.5 99.9 ±0.2 99.9 ±0.1 84.9 ±67.7 99.9 ±0.2 99.7 ±1.4 99.9 ±0.1

FGSM

ε = 0.03125 99.6 ±0.9 93.6 ±28.2 53.1 ±93.6 94.3 ±26.2 96.9 ±15.7 99.8 ±0.6

ε = 0.0625 98.7 ±0.2 99.6 ±1.5 57.1 ±90.9 95.5 ±20.3 94.6 ±27.0 99.9 ±0.2

ε = 0.125 82.0 ±100 99.9 ±0.1 67.2 ±87.0 98.6 ±6.5 99.7 ±1.1 99.9 ±0.1

ε = 0.25 70.5 ±100 99.9 ±0.1 82.1 ±74.0 99.4 ±3.2 99.9 ±0.5 99.9 ±0.4

ε = 0.3125 76.1 ±100 99.9 ±0.1 86.9 ±64.5 98.5 ±7.2 100 ±0.1 99.9 ±0.4

ε = 0.5 88.7 ±97.6 99.9 ±0.1 94.1 ±36.9 99.8 ±0.7 100 ±0.0 99.9 ±0.2

CW∞∗

ε = 0.3125 67.9 ±90.9 64.6 ±89.9 70.0 ±85.3 90.5 ±33.0 90.5 ±40.9 99.9 ±0.1

SA

ε= 0.125 91.3 ±82.3 11.6 ±99.9 67.4 ±89.3 99.0 ±4.9 97.9 ±12.7 99.9 ±0.2

No norm SVHN CIFAR10 CIFAR100 SVHN CIFAR10 CIFAR100

No ε 99.8 ±6.4 93.8 ±20.2 92.9 ±24.7 98.5 ±0.4 80.3 ±57.1 100 ±0.0
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C.1 Training Details

We compare the different detection methods on three vision datasets: CIFAR10,

CIFAR100 [KRIZHEVSKY and collab.] and Tiny ImageNet [JIAO and collab., 2019] for

which we use the ViT models presented in Subsection 7.4.1 to build a classifier.

We trained two different models: a ViT, and a ResNet18. The ResNet18 has been

trained on 100 epochs, with a Stochastic Gradient Descent (SGD) optimizer, with

a learning rate of 0.1, a momentum of 0.9, and a weight decay of 10−5. We use the

base model with 16 layers (85.8 million of parameters) from https://github.com/

jeonsworld/ViT-pytorch trained on ImageNet [DENG and collab., 2009] as our ViT

classifier for CIFAR10 and CIFAR100. To train it we set the batch size to 512. The learn-

ing rate of SGD [RUDER, 2016] is set to 3×10−2 and we use 500 warming steps with

no gradient accumulation [VASWANI and collab., 2017]. For Tiny ImageNet, we used
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as the underlying classifier a ViT with 16 layers, trained by HUYNH [2022] and avail-

able at https://github.com/ehuynh1106/TinyImageNet-Transformers. Note

that we only use the class token to output the layer-wise input’s representations.

Remark. We compare our proposed APPROVED method with FS and MagNet,

recalled in Subsection 7.2.2. We train MagNet according to its original training

procedure, while FS and our APPROVED, presented in Subsection 7.3.2, do not require

any training.

C.2 Approximation Algorithm

In this appendix, we display the algorithm used to compute the IRW depth (see

Algorithm 8).

Algorithm 8 Approximation of the IRW depth

Initialization: test sample x, nproj, X = [x1, . . . ,xn]⊤.

1: Construct U ∈Rd×nproj by sampling uniformly nproj vectors U1, . . . ,Unproj in Sd−1

2: Compute M = XU and x⊤U

3: Compute the rank value σ( j ), the rank of x⊤U in M:, j for every j ≤ nproj

4: Set D = 1
nproj

∑nproj

j=1 σ( j )

5: Output: D̃MC
IRW(x,X) = D

Complexity. The complexity of the algorithm is detailed as follows. Line 1 requires

sampling nproj Gaussian samples and normalizing them in order to define unit sphere

directions and can be computed in O(nprojd). Line 2 requires O(nprojdn) to project

data on the nproj unit sphere Monte-Carlo directions. Line 3 requires computing the

sorting operation on nproj columns of the matrix M and then leads to a complexity

of O(nprojn). Line 4 requires the computation of the mean and can be done in nproj

operations. Finally, the total complexity of the algorithm is then in O(nprojdn) which

is linear in all of its parameters.

Remarks. Given that the algorithm is linear in all its parameters, computing

the IRW depth can be scaled to any datasets. Note that the IRW data depth makes

no assumption on the training distribution. In line 3 of Algorithm 8, “rank values"

consists in ranking the elements of the projection of each input on U. This is achieved

by a sorting algorithm. This step allows us to define an ordering of the projected

inputs, which is used to compute the final depth score.
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C.3 Time and Computational Requirements

C.3.1 To generate attacks

We here present the computational requirements to generate the attacks on the

transformer, along with the required time to generate them. We use the Adversarial-

Robustness Toolbox (ART) [NICOLAE and collab., 2018] to generate the attacks.

Table C.1: Resources and time needed to generate different types of attack on CIFAR10

Attack GPUs CPUs Time
FGSM V100-32G 20G 0h25
BIM V100-32G 20G 3h13
PGD V100-32G 20G 4h30
DF V100-32G 20G 1h54
HOP V100-32G 20G 47h39
CW∞ V100-32G 30G 2h48
SA V100-32G 20G 5h04
STA V100-32G 20G 1h25

C.3.2 To deploy detectors

This section presents the computational requirements, along with the time needed

to deploy each of the studied detection methods on CIFAR10. For FS and MagNet, we

use the codes available at https://github.com/aldahdooh/detectors_review.

Table C.2: Resources and time needed to train and test each detection method

Method GPUs CPUs
Training Testing

Time Time
APPROVED V100-32G 40G N/A 0h11

FS V100-32G 80G N/A 0h53
MagNet V100-32G 180G 3h01 0h13

C.4 Success Rates of Attacks on CIFAR10

We here report the success rate per attack for all the different threat mechanisms (i.e.,

PGD1, PGD2, PGD∞, BIM, FGSM, CW∞, SA, STA, DF and HOP). In orange are the

attack performances on ViT while the ones on ResNet are in green (see Section 7.4

for a detailed analysis).
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Figure C.1: Percentage of successful attacks depending on the Lp -norm constraint, the
maximal perturbation ε and the attack algorithm on ResNet18 (orange) and ViT (blue).

C.5 Detailed results for CIFAR10, CIFAR100, and Tiny

ImageNet

C.5.1 Detailed Tables

In Table C.3, Table C.4 and Table C.5, we present the detailed results for CIFAR10,

CIFAR100 and Tiny ImageNet under multiple threats. From Table C.3, Table C.4 and

Table C.5, it is straightforward to conclude that APPROVED significantly outperforms

FS, and MagNet.
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Table C.3: AUROC↑ and FPR↓90% for each considered attack mechanism, Lp -norm constraint
and ε on CIFAR10 for APPROVED, FS, and MagNet. The best result for each attack is shown in
bold.

CIFAR10

Norm L1
APPROVED FS MagNet

AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90%

PGD1

ε = 50 97.2 5.0 77.6 37.5 53.3 90.1
ε = 60 97.0 5.7 77.4 37.5 51.6 92.1
ε = 70 96.4 6.8 78.0 31.2 51.9 92.0
ε = 80 95.7 8.6 78.1 31.2 51.3 91.9
ε = 90 94.8 11.1 78.7 31.2 52.0 91.6
ε = 100 93.9 13.9 79.0 37.5 51.6 91.6
ε = 500 80.1 50.1 86.8 25.0 49.6 90.5
ε = 1000 93.0 14.2 83.7 37.5 49.9 90.0
ε = 5000 98.0 3.6 76.0 55.2 50.1 89.9

Norm L2
APPROVED FS MagNet

AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90%

PGD2

ε = 0.125 97.1 4.5 75.5 37.5 50.6 92.1
ε = 0.25 97.1 5.5 77.2 37.5 52.2 91.7
ε = 0.5 92.6 18.1 79.8 31.2 50.6 91.6
ε = 5 93.3 13.6 77.0 45.9 50.0 89.8
ε = 10 94.1 11.5 76.8 52.1 50.1 89.8
HOP
ε = 0.1 98.3 3.3 74.5 25.0 53.4 83.6
DeepFool

No ε 86.5 45.4 79.7 31.2 50.3 89.7

Norm L∞
APPROVED FS MagNet

AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90%

PGD∞

ε = 0.03125 96.5 6.4 78.7 42.9 50.3 89.6
ε = 0.0625 99.1 2.1 73.4 64.7 51.0 88.4
ε = 0.125 99.7 0.8 71.8 68.6 52.9 85.5
ε = 0.25 99.8 0.5 70.9 70.0 54.3 83.4
ε = 0.5 99.8 0.5 70.8 70.1 54.4 83.3
BIM
ε = 0.03125 88.3 27.0 74.0 64.5 50.3 89.6
ε = 0.0625 97.1 5.4 70.2 72.3 50.7 88.9
ε = 0.125 99.0 2.2 70.0 72.2 51.8 87.2
ε = 0.25 99.7 0.7 70.7 70.5 53.6 84.4
ε = 0.5 99.9 0.2 71.2 68.4 56.4 80.1
FGSM
ε = 0.03125 78.1 69.5 75.2 38.8 51.9 88.1
ε = 0.0625 82.4 60.2 77.2 37.5 53.0 86.1
ε = 0.125 93.1 16.6 78.9 31.2 57.3 79.2
ε = 0.25 99.1 1.6 69.6 25.0 70.6 54.8
ε = 0.5 99.7 0.6 67.7 31.2 80.4 18.0
SA
ε = 0.125 98.2 3.3 72.0 25.0 55.1 82.4
CW∞

ε = 0.3125 90.4 30.6 78.8 37.5 50.6 89.3

No Norm
APPROVED FS MagNet

AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90%

STA
No ε 94.9 10.5 78.8 37.5 39.4 93.5
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Table C.4: AUROC↑ and FPR↓90% for each considered attack mechanism, Lp -norm constraint
and ε on CIFAR100 for APPROVED, FS and MagNet. The best result for each attack is shown in
bold.

CIFAR100

Norm L1
APPROVED FS MagNet

AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90%

PGD1

ε = 50 83.5 39.3 65.5 56.2 50.5 90.5
ε = 60 82.4 41.0 66.6 56.2 50.5 90.3
ε = 70 81.2 45.3 67.4 50.0 50.0 90.4
ε = 80 79.8 47.8 68.3 50.0 50.0 90.4
ε = 90 78.4 50.0 69.2 50.0 50.2 90.3
ε = 100 77.0 54.0 70.1 50.0 50.1 90.4
ε = 500 58.1 75.5 79.3 50.0 50.0 90.0
ε = 1000 78.3 44.9 80.0 62.5 50.0 89.9
ε = 5000 86.1 29.4 74.0 75.0 50.0 89.8

Norm L2
APPROVED FS MagNet

AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90%

PGD2

ε = 0.125 84.3 38.3 64.6 56.2 50.8 90.8
ε = 0.25 82.7 41.4 66.2 56.2 50.8 90.1
ε = 0.5 73.9 59.1 72.0 50.0 50.3 90.0
ε = 5 78.6 43.5 75.1 75.0 50.0 89.9
ε = 10 79.4 41.0 74.4 75.0 50.0 89.9
HOP
ε = 0.1 89.1 24.8 62.7 50.0 52.1 84.5
DeepFool

No ε 75.5 59.9 62.2 50.0 50.0 89.9

Norm L∞
APPROVED FS MagNet

AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90%

PGD∞

ε = 0.03125 75.4 51.5 76.0 74.8 50.2 89.7
ε = 0.0625 88.1 26.0 68.9 75.0 50.6 88.9
ε = 0.125 93.3 14.9 65.5 75.0 52.1 86.5
ε = 0.25 94.4 12.8 64.3 75.0 53.0 84.9
ε = 0.5 89.7 26.4 64.2 75.0 53.1 84.8
BIM
ε = 0.03125 63.1 72.9 67.6 75.0 50.2 89.7
ε = 0.0625 70.5 64.8 63.0 81.1 50.5 89.2
ε = 0.125 87.2 28.1 62.1 82.7 51.3 87.8
ε = 0.25 93.2 15.4 63.7 75.4 52.5 85.7
ε = 0.5 96.5 8.3 65.3 75.0 54.6 82.2
FGSM
ε = 0.03125 80.8 48.1 61.9 62.5 51.0 88.8
ε = 0.0625 86.5 33.0 61.3 61.4 52.1 86.8
ε = 0.125 90.4 24.0 54.8 50.0 55.8 80.2
ε = 0.25 95.7 10.3 49.6 50.0 66.4 60.4
ε = 0.5 98.6 4.1 46.2 56.2 86.6 24.2
SA
ε = 0.125 89.6 26.0 63.3 50.0 54.9 82.6
CW∞

ε = 0.3125 81.7 42.2 67.0 50.0 50.0 89.8

No Norm
APPROVED FS MagNet

AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90%

STA
No ε 87.4 32.1 65.4 50.0 38.3 92.8
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Table C.5: AUROC↑ and FPR↓90% for each considered attack mechanism, Lp -norm constraint
and ε on Tiny ImageNet for APPROVEDand FS. The best result for each attack is shown in bold.

Tiny ImageNet

Norm L1
APPROVED FS MagNet

AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90%

PGD1

ε = 50 74.2 61.1 44.8 81.6 50.4 88.9
ε = 60 74.3 60.7 45.0 81.8 50.3 88.9
ε = 70 74.8 60.7 45.1 82.0 50.0 89.0
ε = 80 74.7 60.5 45.1 82.3 49.6 88.9
ε = 90 74.9 59.8 45.0 82.2 49.7 89.3
ε = 100 74.6 59.4 44.9 82.0 49.6 89.0
ε = 500 76.5 59.7 60.7 71.7 48.0 93.1
ε = 1000 74.2 59.4 73.7 62.4 47.6 92.0
ε = 5000 78.2 51.8 83.2 50.0 49.1 90.3

Norm L2
APPROVED FS MagNet

AUROC↑ FPR↓90% AUROC↑ FPR↓90% AUROC↑ FPR↓90%

PGD2

ε = 0.125 74.2 60.2 45.2 81.4 50.2 88.7
ε = 0.25 75.0 57.2 45.2 81.8 49.3 89.7
ε = 0.5 75.7 53.4 47.1 79.5 49.6 91.0
ε = 5 74.3 60.6 77.9 57.5 48.7 91.0
ε = 10 74.4 59.7 78.1 57.7 48.8 90.9
HOP
ε = 0.1 87.1 31.8 59.1 76.3 52.7 83.8

Norm L∞
APPROVED FS MagNet

AUROC FPR AUROC FPR AUROC FPR

PGD∞

ε = 0.03125 89.6 28.8 96.0 8.2 49.7 90.0
ε = 0.0625 99.1 1.9 93.8 11.9 49.8 89.9
ε = 0.125 99.9 0.0 89.2 47.1 49.9 89.6
ε = 0.25 99.9 0.0 85.5 73.6 50.0 89.5
ε = 0.5 99.9 0.0 83.6 82.2 50.1 89.4
BIM
ε = 0.03125 80.7 43.1 86.0 44.8 49.5 90.1
ε = 0.0625 95.1 15.1 90.3 33.4 49.9 89.9
ε = 0.125 99.6 1.0 87.4 61.4 49.9 89.8
ε = 0.25 99.9 0.0 84.9 79.9 50.0 89.5
ε = 0.5 99.9 0.0 83.9 82.5 50.2 89.1
FGSM
ε = 0.03125 74.5 55.9 56.3 75.5 49.7 90.2
ε = 0.0625 80.8 43.5 58.0 71.8 50.4 89.6
ε = 0.125 87.1 30.4 53.6 75.1 50.9 88.7
ε = 0.25 91.1 22.3 48.1 78.8 52.6 86.2
ε = 0.5 94.4 15.2 50.9 74.2 60.7 72.1
SA
ε = 0.125 77.0 49.1 48.7 78.5 50.6 89.4

No Norm
APPROVED FS MagNet

AUROC FPR AUROC FPR AUROC FPR

STA
No ε 80.2 42.5 53.0 77.5 34.9 95.6

C.6 Per Class Analysis

As for CIFAR10 (see Section 3.5), the detector performances depend on the predicted

class. Some classes are easy to detect (i.e., classes 0, 21, 53, 75, and 94), others are

more difficult (i.e., classes 3, 10, 33, 47, 60, 74, and 93). Some have low variance (i.e.,

0, 1, 24, 34, 75, 82 and, 94) while others have an extremely large dispersion (i.e., 11,

35,47, 52, 96, and 98).
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Figure C.2: APPROVED’s AUROC↑ and FPR↓90% per class, averaged over the attacks on CI-
FAR100.
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Appendix D

Résumé Étendu

Au cours de la dernière décennie, l’apprentissage profond a été à l’origine de percées

dans de nombreux domaines différents, tels que le traitement du langage naturel, la

vision par ordinateur et la reconnaissance vocale. Cependant, il est désormais connu

que les modèles basés sur l’apprentissage profond sont extrêmement sensibles aux

perturbations, en particulier lorsque la perturbation est bien conçue et générée par

un agent malveillant. Cette faiblesse des réseaux neuronaux profonds tend à em-

pêcher leur utilisation dans des applications critiques, où des informations sensibles

sont disponibles, ou lorsque le système interagit directement avec la vie quotidienne

des gens. Dans cette thèse, nous nous concentrons sur la protection des réseaux

neuronaux profonds contre les agents malveillants de deux manières principales.

La première méthode vise à protéger un modèle des attaques en augmentant sa

robustesse, c’est-à-dire la capacité du modèle à prédire la bonne classe même en

cas d’attaques. Nous observons que la sortie d’un réseau neuronal profond forme

une variété statistique et que la décision est prise sur cette variété. Nous exploitons

cette connaissance en utilisant la mesure de Fisher-Rao, qui calcule la distance

géodésique entre deux distributions de probabilité sur la variété statistique auquel

elles appartiennent.

Dans un premier temps, nous développons une méthode pour le cas de la clas-

sification d’images. Nous derivons la formule explicite de la mesure de Fisher-Rao

dans deux cas différents: pour la classification binaire résultant d’un modèle paramé-

tique, et pour la classification multi-classe résultant d’un modèle paramétrique.

Nous présentons ensuite les connexions entre cette mesure, et des mesures plus

connues, comme la divergence de Kullback-Leibler, ou la divergence d’Hellinger.

Nous présentons ensuite notre méthode pour utiliser la mesure de Fisher-Rao pour

régulariser la fonction coût utilisée lors de l’apprentissage et augmenter la robustesse

du modèle. Finalement, expérimentalement parlant, nous montrons les avantages

de l’utilisation de la mesure de Fisher-Rao comparé à l’utilisation d’autres métriques.
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Dans un second temps, nous adaptons cette méthode à une autre application

critique: les réseaux intelligents (Smart Grids), qui, en raison de divers besoins

de la surveillance et de service, reposent sur des composants cybernétiques, tels

qu’un estimateur d’état, ce qui les rend sensibles aux attaques. Nous construisons

donc des estimateurs d’état robustes en utilisant des autoencodeurs variationnels et

l’extension de notre méthode proposée au cas de la régression. Que ce soit dans le

cas des hypothèses linéraire (appelé modèle DC) ou sans hypothèses (appelé modèle

AC), nous montrons qu’il est possible de créer des estimateurs d’états robustes aux

attaques ayant une connaissance parfaite du réseau électrique à attaquer, surpassant

significativement les méthodes de protection présentées précédemment.

La deuxième méthode sur laquelle nous nous concentrons et qui vise à protéger

les modèles basés sur l’apprentissage profond est la détection d’échantillons ad-

verses. Inspiré par le concept des canaux de réjection, il est possible d’augmenter

la fiabilité des décisions prises par les réseaux neuronaux profonds en ajoutant un

détecteur au modèle initial. De multiples méthodes de détection sont disponibles au-

jourd’hui, mais elles reposent souvent sur un entraînement lourd et des heuristiques

ad-hoc. Dans notre travail, nous utilisons des outils statistiques simples appelés

les profondeurs de données (data-depth) pour construire des méthodes de détec-

tion efficaces. Les profondeurs de données nous fournissent un ordonnancement

des points vis-à-vis du "centre" d’un distribution référence. En d’autre termes, cal-

culer les profondeurs de données permet de déterminer à quel point un point est

"profond" dans une distribution référence, i.e., est similaire à la référence. Nous de-

veloppons deux méthodes distinctes de détections, dans deux cas spécifiques: le cas

dit "supervisé", c’est-à-dire que les attaques sont fournies pendant l’entraînement

du détecteur, et le cas "non supervisées", c’est-à-dire que l’entraînement ne peut

s’appuyer que sur des échantillons propres.

Dans le cas supervisé, nous présentons HAMPER, méthode basée sur l’utilisation

de la profondeur de masse du demi-espace (Halfspace-Mass depth) et la connais-

sance des attaques qui seront perpétrées afin de construire un détecteur d’attaques

adverses. Nous présentons dans ce travail deux scénarios distincts: le scénario con-

naissant parfaitement l’attaque perpétrée, et le scénario aveugle aux attaques. Dans

le deux cas, notre méthode permet de mieux détecter les exemples adverses, tout

en necessitant un temps et des ressources similaires aux autres attaques. De plus,

dans le cas d’attaques ayant un connaissance parfaite du modèle à attaquer et de la

défense choisie, les performances de notre détecteur surpassent les performances

des méthodes état-de-l’art.

Dans le cas non-supervisé, nous présentons APPROVED, méthode basée unique-

ment sur l’utlisation de la profondeur intégrée pondérée par le rang (Integrated

Rank-Weighted depth) appliqué à la sortie d’un classifieur profond (c’est-à-dire aux
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logits). La méthode que nous proposons présente plusieurs avantages: elle est rapide,

efficace, et surpasse les autres méthodes état-de-l’art en terme de performances. De

plus, elle présente, comme toutes les depths, l’avantages de ne pas être dérivable, ce

qui rend plus compliqué le travail des agents malveillants dont la méthode de généra-

tion d’images est basée sur l’utilisation des gradients et la totale la connaissance de

la défense. Finalement, dans le cas d’attaquant ayant la connaissance parfaite de la

défense, et non basée sur les gradients, notre méthode surpasse les autres méthodes

état-de-l’art.

En résumé, au cours de cette thèse, nous avons développé différentes méthodes

de protection d’un modèle basé sur l’apprentissage profond face à de potentiels

agents malveillants, basées sur des outils provenant de la Géométrie de l’Information

et des statistiques. Nous avons proposé une méthode qui améliore la robustesse

d’un modèle basée sur l’utilsation de la mesure de Fisher-Rao, dans le cas de la

classification d’images, et dans le cas de la régression nécessaire au développement

des estimateurs d’états pour les Smart Grids. Nous avons également proposé deux

méthodes de détection des attaques adverses. Bien que différentes pour chaque

méthode, elles sont toutes deux basées sur les profondeurs de données (data-depths),

et chacune s’applique à l’un de ces deux cas d’étude: le cas supervisé, où la défense a

une connaissance partielle ou totale de l’attaque qu’il va subir, et le cas non-supervisé,

où la défense n’a aucune connaissance sur l’agent malveillant.

259



APPENDIX D. RÉSUMÉ ÉTENDU

260


	Contents
	List of Figures
	List of Tables
	Introduction
	General Context
	Interacting with Malicious Agents: Attacking and Defending
	Contribution and Outlines
	List of Publications
	References

	Preliminaries
	Deep Learning Background
	Attacking Neural Networks
	Protecting Neural Network's Decisions
	Ensuring the Input's Integrity
	Review of the Smart Grid Case
	The Fisher-Rao measure, and the data-depths
	References

	I PART 1: Information-Geometric Methods for Adversarial Robustness and its Applications to Smart Grids
	Adversarial Robustness via Fisher-Rao Regularization
	Introduction
	Background
	Adversarial Robustness with Fisher-Rao Regularization
	Accuracy-Robustness Trade-offs and Learning in the Gaussian Model
	Experimental Results
	Proofs of Theorems and Propositions
	Summary and Concluding Remarks
	References

	Robust Autoencoder-based State Estimation in Power Systems
	Introduction
	Background on State Estimation and Attacks
	Defense Against False Data Injection Attacks
	Numerical Results
	Conclusion
	References

	Robust State Estimation Against Adversarial Noise
	Introduction
	Background on State Estimation and Attacks
	Proposed Robust State Estimator
	Experiments
	Conclusion
	References


	II On the use of Simple Statistic Tools to Detect Attacks: Using Data-Depths to Protect the Input's integrity
	A Halfspace-Mass Depth-Based Detector for Adversarial Attack Detection
	Introduction
	Background
	A Depth-Based Detector
	Analyzing Statistical Information of the Networks' Behavior under Threats
	Experiments
	Concluding Remarks and Future Work
	References

	A Simple Unsupervised Data Depth-based Method to Detect Adversarial Images
	Introduction
	Background and Related Work
	Our Proposed Detector
	Adversarial Attacks on Vision Transformers (ViT)
	Experiments
	Conclusions and Limitations
	References

	Discussion of Findings, Limitations, Potential Future Works and Global Summary
	Discussion of Findings
	Limitations and Potential Future Works
	References

	Appendix of Chapter 3
	Comparison between the Fisher-Rao distance and the KL divergence on real data
	Comparison between Fisher-Rao and Hellinger distances
	Proof of Proposition 1 and Theorem 3
	References

	Appendix of Chapter 6
	Approximation algorithms
	Formal description of essential properties of Data Depths
	Detailed Results on Perfect Knowledge about the attacker
	Detailed Results on No Knowledge about the attacker
	References

	Appendix of Chapter 7
	Training Details
	Approximation Algorithm
	Time and Computational Requirements 
	Success Rates of Attacks on CIFAR10
	Detailed results for CIFAR10, CIFAR100, and Tiny ImageNet
	Per Class Analysis
	References

	Résumé Étendu


