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“Radar sees through the fog - - the reality of things at a distance that the human eyes cannot
see.”

(wordplay on)

Corrie Ten Brown
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Abstract
High frequency (X-band) radars provide the necessary resolution to capture the

spatial-temporal variability of precipitation in mountainous terrain. A mountain-
top radar with 360◦ visibility can detect incoming systems from long range and
captures the fine-scale dynamics of convective systems over a large area. A valley-
based radar can capture local (due to beam blockage) but detailed thermodynamic
phase change (in melting layer) of falling hydrometeors in stratiform systems. The
melting layer (ML) often occurs below mountain-top altitudes in winter. The atten-
uation is significant in medium-heavy precipitation and in the ML at X-band, and
needs to be corrected for quantitative precipitation estimation (QPE) applications.
Radar positioning dilemma, attenuation and poor understanding of melting layer,
among others, make QPE in complex terrain challenging.

A unique observation system has been deployed in the French Alps (Greno-
ble), since 2016, composed of two polarimetric X-band radars, MOUC atop Mt.
Moucherotte at 1913 m asl and XPORT at UGA campus in the valley at 220m asl.
Two radar systems 11 km apart with an altitude gradient of 1700 m, offers a unique
opportunity to simultaneously identify the ML from valley based radars, and study
the propagation of electromagnetic waves within the ML using the low-elevation
scans of mountain-top radar. A K-band micro rain radar (MRR) and a disdrometer
(DSD) at UGA site along with 10 rain gauge stations at scattered around Grenoble
complete the RadAlp experiment setup.

An algorithm for ML identification is developed using valley-based radar sys-
tems: it uses the quasi vertical profiles of XPORT polarimetric measurements (hor-
izontal and vertical reflectivity, differential reflectivity, cross-polar correlation coef-
ficient), and the MRR vertical profiles of apparent falling velocity spectra and re-
flectivity. The algorithm produces time series of the altitudes and values of peaks
and inflection points of the different radar observables. A literature review links
the micro-physical processes at play during the melting process with the available
polarimetric and Doppler signatures. A study of climatology of polarimetric indica-
tors of the melting layer helps to characterize the melting layer during the stratiform
precipitation event.

Potential to exploit the dual-polarimetric capability in attenuation correction of
X-band weather radar in presence of ML is explored by studying the relationship be-
tween differential phase shift (Φdp) and path integrated attenuation (PIA) at differ-
ent stages of melting. Mountain reference technique provides direct measurements
of PIA at low elevation angles of MOUC radar. Φdp is independent of attenuation,
absolute radar calibration errors and ground clutter, and provides a robust way to
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correct attenuation. It is however obtained from noisy range profiles. A Φdp reg-
ularization algorithm is developed: it exploits the cumulative nature of Φdp and
removes noise using the iterative maximum-allowed step size approach. PIA-Φdp

relationship at X-band within the ML is established.
Dual-polarimetric capabilities of the radar is further exploited to recover multi-

moment characteristics of drop/particle size distributions of precipitation aimed at
optimizing the recovery of parameters to improve the attenuation correction algo-
rithms at X-band. Different formulations of attenuation correction are revisited to
develop a computational model. A sensitivity analysis approach with a cost func-
tion helps to optimize the parameters. The comparison of rainfall rates with the
rain-gauge provides the validation of QPE improvement.

Keywords: high mountains, weather radar, dual-polarimetric, X-band, precipi-
tation, melting layer, path integrated attenuation, differential phase shift, mountain
reference technique, attenuation correction, quantitative precipitation estimation
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Chapter 1

General Introduction

In meteorology, precipitation is a product of the condensation of atmospheric wa-
ter vapor that falls under gravity from clouds. Its main forms are drizzle, rain, sleet,
snow, ice pellets, graupel and hail. When a portion of the atmosphere becomes satu-
rated with water vapor (reaching 100% relative humidity), the water condenses and
"precipitates". Cooling of the atmosphere and the addition of water vapor, often
in tandem, result in the saturation of air. Moisture is lifted, due to evaporation, or
forced to rise over a layer of sub-freezing air at the surface. Provided there is neces-
sary and sufficient atmospheric moisture content, the moisture within the rising air
will condense into clouds, namely nimbostratus and cumulonimbus if significant
precipitation is involved. Eventually, the cloud droplets will grow large enough to
form raindrops and descend toward the Earth where they will freeze on contact with
exposed objects. The ice-crystal mechanism is dominant in continental cold-cloud
processes. Heterogeneous nucleation (between -5 and -15◦)C, the formation of ice
crystals from the collection and freezing of liquid water molecules onto foreign par-
ticles like dust and aerosols, accelerates the freezing of drops. These particles grow
by processes like vapor deposition, aggregation and riming. These frozen hydrome-
teors melt as they descend below the 0◦C layer of the atmosphere to produce liquid
rain. In mountainous areas, heavy precipitation is possible where up-slope flow is
maximized within windward sides of the terrain at elevation. Warm and dry Foehn
wind can form on the leeward side due to adiabatic compression heating; it can
result in desert climates. Approximately 505,000 cubic kilometres of water falls as
precipitation each year; 398,000 cubic kilometres of it over the oceans and 107,000
cubic kilometres over land. Given the Earth’s surface area, that means the glob-
ally averaged annual precipitation is 990 millimetres, but over land it is only 715
millimetres (The Water Cycle). Climate classification systems such as the Köppen cli-
mate classification system use average annual rainfall to help differentiate between
differing climate regimes. Precipitation is a major component of the water cycle,
and is responsible for depositing the fresh water on the planet. Despite being one of
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the most observed and recorded climate parameter, accurate estimation of precipi-
tation in complex topography is one of the most challenging fields in meteorology.
This manuscript focuses on the study of precipitation using ground based remote
sensing techniques in the French Alps.

The manuscript is divided into eight chapters. First chapter serves as a gen-
eral introduction to the study, and introduces characteristics of precipitation and
different approaches of precipitation measurement in complex terrain in the mid-
latitudes. This chapter is divided into four sections. The first section of the chapter
aims to inform readers of the importance of accurate precipitation measurements in
the mountainous areas. Second section addresses the main challenges to accurately
measure precipitation in these areas and the role of weather radars. A short intro-
duction on the development and the state of ground based radar remote sensing in
the French Alps is presented as well. Third section describes the study area con-
sidered in this study, i.e. a valley in the French Alps (Grenoble) and climatological
factors affecting the precipitation regime in the study area. Fourth section discusses
the fundamentals of radar remote sensing.

Second chapter describes the RadAlp experiment. It discusses instrument set-up
and available datasets within the scope of the study. It builds on to establish the
scientific questions that this study aims to answer.

Third is the study of melting layer of the precipitation. It elaborates on the radar
observation of the melting layer, its detection, microphysics and climatology.

The fourth chapter elaborates the application of mountain reference technique to
measure path integrated attenuation.Fifth chapter introduces differential phase shift
(Φdp) and discusses the Φdp regularization algorithm. The relationship between PIA
and Φdp at different stages of melting is investigated in chapter six.

The seventh chapter revisits the attenuation correction formulations and uses
optimized parameters to improve the QPE of MOUC radar. It exploits the dual-
polarimetric capabilities to recover multi-moment characteristics of drop size dis-
tribution. Comparison of rainfall rates from corrected reflectivity and polarimetric
technique with the raingauges in the scan volume validates the improvements.

The last (eighth) chapter discusses the important findings of this study, its suc-
cess in achieving the scientific goals discussed in the second chapter, and finally
concludes the manuscript with the future perspective of the study and its findings.
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1.1 Precipitation in High Mountains

Precipitation is a key meteorological variable and a primary recharge mechanism of
inland fresh water reserves like glaciers, lakes, aquifers and rivers. Freshwater is a
vital natural resource for sustenance of most life forms on land. Apart from sup-
porting life, precipitation, in its many forms, is important to human sustainability
in managing various agricultural, industrial and household activities. Precipitation
is often associated with extreme natural phenomena like flood, landslides, storms
and droughts which have detrimental socio-economic impacts on local and regional
scale, and at times on human health and lives as well. Precipitation characteristics
such as intensity, duration, frequency, number of/between rainy days are governed
by climatic factors at the regional and continental scales. Climatic factors are often
associated with cyclic patterns, and precipitation with seasonality (Sohoulande Dje-
bou and Singh 2016). It is well documented that precipitation is greatly affected
by climate change; it introduces non-cyclic anomalies to precipitation pattern and
makes occurrence of extreme event less predictable. For example, 1◦C temperature
increase due to global warming increases water holding capacity of the atmosphere
by ∼ 7%, and this increase in moisture in the atmosphere increases the chances of
extreme (heavy) precipitation events even in areas where overall precipitation is de-
creasing (Trenberth 2008). Hence, sufficiently accurate observation and estimation
of precipitation has an important theoretical and practical significance.

Mountainous regions, defined as areas above 1000 m asl, cover roughly 27% of
the total land surface (Ives et al. 1997; Viviroli et al. 2007). Mountains uplift the air
masses, subsequent cooling results in release of humidity in the form of precipita-
tion (solid/liquid). While liquid precipitation runs off the slopes instantly to feed
aquifers, rivers and lakes downstream, the solid precipitation often melts slowly
and trickles over time, acting as a temporary water reserve in the forms of snow-
packs, glaciers and permafrosts. Mountains are considered the “water towers” of
the world; functioning as watersheds and reservoirs, they supply almost half of
the world population with freshwater for drinking, domestic and commercial use.
Rivers originating from Hindu Kush belt in the Himalayas alone provide for 1.3 bil-
lion people downstream. In arid and semi-arid regions with high vulnerability for
seasonal and regional water shortages, mountains contribute 80 to 100% of the total
runoff of river basins. The high precipitation rates, steep topography, low evapora-
tion rates owing to low net radiation, frequent snow cover and low vegetation cov-
erage (both seasonal and spatial) often results in higher discharge rates in the moun-
tains. Rocky mountains feed the Colorado river which sustains 40 million people in
semi-arid western United States with annual economic value of almost $1.3 trillion.
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Agricultural and industrial prosperity of Peru, and 100% of the water demand of its
capital Lima is sustained by the water resources off the slopes the Andes. Mt Kenya
alone in East Africa supplies freshwater to 7 million people (Mountain Partnership
2014). In Europe, most major cities are built around navigable rivers, which often
are fed by mountainous basins.

The orography of the high mountain region has a huge impact on flow patterns
of air masses, which dramatically alters the spatio-temporal distribution of precipi-
tation (Rotunno and Houze 2007). The rapid change in the elevation profile within
a short distance plays a significant role in spatial variations on precipitation phase
(solid/liquid). While the lakes, glaciers and snowpacks in the mountains act as very
important freshwater reserves, quick runoff response due to steep slopes and lim-
ited vegetation makes the Alpine region, especially the valley dwellers, vulnerable
to natural disasters. Estimation of atmospheric precipitation (solid/liquid), often
characterized by high seasonal and spatial variability, is of paramount importance
in a mountainous region for the assessment and management of snow and water
resources for drinking water, hydropower production, agriculture and tourism (De
Jong et al. 2008). One of the most critical applications is the prediction of natural
hazards associated with intense precipitation and melting of snowpacks i.e. inun-
dations, floods, flash floods and gravitational movements, which requires a high-
resolution observation (spatial resolution ≤ 1 km2 and temporal resolution ≤ 1hr)
(Delrieu et al. 2014).

1.2 QPE in the Mountainous Terrain

Quantitative precipitation estimation (QPE) refers to the estimation of precipitation
amounts at a location or over an area with a certain temporal resolution. Man-
ual/automatic field observations (raingauge network, disdrometers), weather radar
and satellite observations are most common data sources to map the estimated pre-
cipitation amounts and types over an area for a given time span. Raingauges pro-
vide direct real-time observation, compared to other alternatives, but the point data
is unable to capture the spatial temporal variability of the rainfall regime at finer
scales. Having a network of raingauges helps map the precipitation distribution
over a domain, but the density of data points still remains a major limitation on cov-
erage and resolution (Jewell and Gaussiat 2015). Most dense raingauge networks
are concentrated on urban areas while mountainous areas have sparse population
and lack weather stations. Additionally, the space dynamics of precipitation varies
rapidly in complex terrain because of the topography, hence limiting the application
and effectiveness of traditional raingauge networks.
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QPEs from atmospheric models, i.e. numerical weather prediction (NWP) mod-
els, are limited by the model’s horizontal resolution, deficiencies in the microphys-
ical parameterization schemes, and insufficient understanding of precipitation pro-
cesses. Mountainous terrain poses challenge to NWP models mainly due to not
sufficient resolution of the underlying topography, but also due to physical param-
eterizations based on assumptions for horizontally homogeneous and flat terrain
(Goger et al. 2016).

Advances in remote sensing techniques provide promising tools in tackling the
problems related to localized measurements. Ground and satellite based remote
sensing techniques have proved to be invaluable, especially in remote areas with
scarce distribution observation stations. Precipitation products from satellite plat-
forms are observed using mainly infrared(IR) mounted on geostationary earth orbit-
ing (GEO) satellites and passive microwave sensors (PMW) mounted on low earth
orbiting (LEO) satellites (Nguyen et al. 2018; Hong et al. 2019). GEO satellites pro-
vide precipitation estimates at high temporal resolution (images every 5–30 min
in multiple spectral bands), but their spectral coverage is limited to visible and IR
wavelengths; IR-based estimates rely heavily on the cloud top temperature, a vari-
able indirectly related to surface precipitation. As not every cold cloud is a precip-
itating one and warmer cloud formations too contribute to precipitation, at short
temporal scale and specific precipitation type it can lead to erroneous estimates
(Bartsotas et al. 2018). Most IR algorithms use fixed brightness temperature thresh-
olds to discriminate between raining and non-raining clouds and the thresholds are
usually too cold for the warm orographic clouds, resulting in underestimation of
rainfall (Dinku et al. 2011). On the other hand, LEO satellites provide PMW infor-
mation about the hydrometeors, emissions of rain droplets or scattering from ice
particles present in the precipitating system, directly relevant to surface precipita-
tion rates. LEO satellites provide significantly less temporal coverage compared to
the geostationary herd, as the available passing strips do not necessarily fill the de-
sired frame and often have long revisiting periods. The rainfall signal for overland
PMW rainfall retrievals comes mainly from ice scattering at the upper parts of con-
vective clouds; as orographic rain may not produce much ice aloft, it might result
in underestimation of surface rain. Similarly, rain retrieval in mountainous areas
using PMW comes from cold surfaces and ice-covers on mountaintops, which could
be misidentified as rain. Active microwave sensors (like Ku-band radar on TRMM
satellite, W-band radar on CloudSat, Ku-/Ka- band radar on GPM core observa-
tory) can provide the more accurate estimation of rainfall and snowfall but these
spaceborne radars also have limitations of long revisiting periods.
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1.2.1 Ground radar-based QPE

Ground based weather radars provide high spatiotemporal resolution and cover-
age of the precipitation field, which makes them one of the best operational tool
for precipitation estimation, but radar QPE at ground is riddled with uncertain-
ties. Well illustrated in the literature (e.g. Brandes and Ikeda 2004; Zawadzki et al.
2005), the errors include among others the presence of ground clutter and anoma-
lous propagation, partial or total beam blockage by obstacles, partial beam filling,
beam overshooting, attenuation, spatio-temporal variation in the drop size distri-
bution (causing a varying reflectivity rainrate Z–R relationship) and variation in
vertical structure of precipitation resulting from microphysical processes and ther-
modynamic phase transformations of hydrometeors (Klaassen 1988; Bellon et al.
1997; Bringi et al. 2003; Ryzhkov et al. 2005; Kumjian 2013).

QPE with radar remote sensing in a complex terrain such as the Alps is made
challenging by the topography and the space-time structure and dynamics of pre-
cipitation systems. Radar coverage of the mountain regions brings the following
dilemma. On the one hand, installing a radar at the top of a mountain allows a
360◦ panoramic view and therefore the ability to detect precipitation systems over a
long range at the regional scale. This is particularly relevant for localized and heavy
convective systems in warm seasons. But the precipitation is likely to undergo sig-
nificant change in between detection and arrival at ground level, including a phase
change when the 0◦C isotherm is located at the level of or lower than the radar ele-
vation. Such situations are likely to be frequent during cold periods, with a strong
impact on QPE quality at ground level. On the other hand, installing a radar at the
bottom of the valley provides high resolution and quality data required for vulner-
able and densely populated Alpine valleys, but the QPEs are limited at the latter
due to beam blockage by surrounding mountains. The use of radar remote sensing
in mountainous areas represents an emerging potential in making the quantitative
precipitation estimation as accurate as possible and by best characterizing the un-
certainty associated with remote sensing.

1.2.2 Alpine Context

MeteoSwiss has a long-standing experience in operating its C-band radar network
in the Alps (Joss and Lee 1995; Germann et al. 2006, 2022) and at coping with
the associated altitude dilemma. In addition to physically-based radar data pro-
cessing aimed at determining vertical profiles of reflectivity and at taking benefit
of polarimetry, sophisticated radar-raingauge merging techniques and echo track-
ing techniques, as well as numerical prediction models outputs (Sideris et al. 2014;
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Foresti et al. 2018) are implemented to better understand and quantify the com-
plexity of precipitation distribution in such a rugged environment. More recently,
Météo-France has chosen to complement the coverage of its operational radar net-
work ARAMIS (for Application Radar à la Météorologie Infra-Synoptique) in the
Alps by means of X-Band polarimetric and Doppler radars. A first set of three
radars was installed in Southern Alps within the RHyTMME project (Risques Hy-
drométéorologiques en Territoires de Montagnes et Méditerranéens) in the period
2008-2013 at Montagne de Maurel (1770 m above sea level, asl), Mont Colombis
(1740 m asl) and Vars Mayt (2400 m asl) (Westrelin et al. 2012). This effort has been
continued in 2014-2015 with the installation of an additional X-band radar system
(MOUC radar, hereinafter) on top of Mount Moucherotte (1913 m) that dominates
the valley of Grenoble, the biggest city in the French Alps with about 500,000 in-
habitants. The choice of the X-Band frequency is challenging due to its sensitivity to
attenuation (Delrieu et al. 2000). In the past, the IGE radar team has proposed the so-
called Mountain Reference Technique (MRT) (Delrieu et al. 1997; Serrar et al. 2000;
Bouilloud et al. 2009) to take advantage of this drawback for both correcting for at-
tenuation and performing a self-calibration of the radar. The idea was to estimate
path-integrated attenuations (PIA) in some specific directions from the decrease of
mountain returns during rainy periods. Such PIA estimates were then used as con-
straints for backward or forward attenuation correction algorithms (Marzoug and
Amayenc 1994) with optimization of an effective radar calibration aerror, given a
drop size distribution (DSD) parameterization. The development of polarimetric
radar techniques (Bringi and Chandrasekar 2001; Ryzhkov et al. 2005) has allowed
a scientific breakthrough for quantitative precipitation estimation (QPE) at X-band
by exploiting the relationship which exists between the specific differential phase
on propagation (in ◦ km−1) and the specific attenuation (dB km−1). Similarly to the
MRT, the differential propagation phase Φdp(r2)−Φdp(r1) over a given path (r1, r2)
can be used to estimate PIA(r1, r2), which can be used to constrain a backward at-
tenuation correction algorithm and allow a self calibration of the radar and/or an
adjustment of the DSD parameterization (Testud et al. 2000; Ryzhkov et al. 2014).
Two major advantages of the polarimetric technique over the MRT can be formu-
lated:

1. the availability of PIA constraints for any direction with significant precipita-
tion

2. the subsequent possibility to use a backward attenuation correction algorithm,
which is known to be much stable while the forward formulation is essentially
unstable
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Accounting for their respective potential in different rain regimes (moderate to heavy),
some combined algorithms making use of various polarimetric observables (reflec-
tivity, differential reflectivity and specific differential phase) have also been pro-
posed for the X-Band frequency (Matrosov et al. 2002, 2005; Koffi et al. 2014). Al-
though the polarimetric QPE methodology is now quite well established and vali-
dated for rainy precipitation (Anagnostou et al. 2004; Matrosov et al. 2005; Diss et
al. 2009), Yu et al. 2018 point out in their first performance assessment of the RHyT-
MME radar network:

1. the need to better understand and quantify attenuation effects in the ML

2. the importance of non-uniform beam filling (NUBF) effects at medium to long
ranges in such a high-mountain context

3. the stronger impact of radome attenuation at X-band compared to S- or C-Band

1.3 Study Area: Grenoble

Grenoble is a Y-shaped alluvial valley in south-eastern France (Alps) with a mean al-
titude of about 220 m asl surrounded by three mountain ranges: Chartreuse (culmi-
nating at 2083 m asl) to the north, Belledonne (2977 m) to the south-east and Vercors
(2307 m) to the west. The valley is embedded in highly complex Alpine topography,
where the core of the city is located at the confluence of deep and steep-side valleys,
on the basin of rivers Isere and Drac. Grenoble Alpes Métropole, the urban area
comprising of 49 municipalities in and around the valley, is home to around 500,000
inhabitants. Figure 1.1 shows the location and the topography.

FIGURE 1.1: Location and topography of Grenoble and its surround-
ings

The Isère River basin (Fig 1.2), about 12000 km2 at the Rhône confluence, hosts
132 dams, 120 hydropower plants, about 400 water intakes and many kilometers
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of penstocks, contributing to the gross installed hydropower capacity of 7.6 GW in
the French Alps (total of 22 GW in France) as of 2016 (Claude et al. 2016). The flow
regime of the whole Isère river system is strongly influenced by snowmelt and rain
induced runoff, stored in large reservoirs during wintertime and springtime, then
released as per demand. Apart from the hydropower production, water resource in
Grenoble supports large swaths of agricultural farms and industries.

FIGURE 1.2: Isère Catchment (Claude et al. 2016)

1.3.1 Climatology

Orographic effect due to uneven terrain, especially from the Southern branch dic-
tates the air mass flow dynamics in the valley. Grenoble’s climate is classified as
warm and temperate. There is great deal of rainfall in Grenoble even in the driest
month. Grenoble valley receives around 900-1000 mm of rain every year.

The climate is considered to be temperate oceanic climate i.e. Cfb according to
Köppen-Geiger climate classification.
Cfb: Temperate oceanic climate; coldest month averaging above 0 ◦C (32 ◦F) (or -3◦C
(27 ◦F)), all months with average temperatures below 22 ◦C (71.6 ◦F), and at least
four months averaging above 10 ◦C (50 ◦F). No significant precipitation difference
between seasons (neither above mentioned set of conditions fulfilled).
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FIGURE 1.3: Monthly average rain and temperatures recorded at MTO
station at IGE Grenoble (220 m asl). Recorded between 2014 - 2020. Box-
plots show the average monthly rainfall. Line plots show averages of
highest (red) and lowest (green) recorded temperatures on each month.

Furthermore Électricité de France (EDF) classifies storms into 8 weather types
and 4 general circulation types. Table 1.1 shows the classification of EDF weather
patterns.

TABLE 1.1: EDF precipitation/storm classification

Weather Type Name Wind Direction General Circulation
WP1 Altantic wave NW Oceanic
WP2 Steady oceanic W Oceanic
WP3 South-West circulation SW Oceanic
WP4 South circulation SSE Mediterranean
WP5 North-East circulation Continental
WP6 East return E Mediterranean
WP7 Central depression SSW Mediterranean
WP8 Anticyclone - Anticyclonic

Analysis of rainfall data in the Isere river catchment from 1948-2019 as per EDF
weather types and circulation patterns are presented in fig 1.4 (Sodemann and Zubler
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2009; Blanchet et al. 2021). The steady oceanic circulation is most dominant(37%)
closely followed by anticyclonic conditions(29%) and southern circulation (Mediter-
ranean, 25%). Continental circulation (9%) is a rather rare situation. Regarding the
seasonality of these general circulation patterns (Figure 1.4), we can see that anticy-
clonic weather mirrors the temperature cycle with a peak in July-August, when it is
the dominant circulation. Continental circulations are marginal and make a rather
stable share. Mediterranean circulation peaks in May and again in October, while
Oceanic circulations are seen more in December-January with a small secondary
maximum in August.

FIGURE 1.4: Shares of weather types by month. Stream events refers to
storm events that produced significant discharge to be characterized as

flood/extreme event.
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1.4 Basics of radar remote sensing

1.4.1 Background

Radar stands for Radio Detection And Ranging. From detecting aircraft / flying
objects to observing weather fronts / storms, RADAR has broad military, aviation
and meteorological applications. The fundamental principles underlying all radars
was first observed in 1886 by the German physicist Heinrich Hertz. He found that
electromagnetic waves could be reflected from various objects, and even focused
into beams by appropriate reflectors. In 1904, a German engineer Hulsmeyer, pro-
posed methods of using electromagnetic waves to help ships with obstacle detection
and navigation. Dr. Hoyt and his associates in the US Naval Research Laboratory,
in 1922, while experimenting with relatively high frequency radio communications
from one side of river to another, discovered a significant loss of reception as ships
passed between the transmitter and receiver. This led them to conclude that pres-
ence of enemy ships could be detected using radio waves. Leading up to World
War II, extensive research in both continuous wave and pulsed radio signals con-
tinued. By 1930 continuous waves had practical use in detecting enemies ships and
aircrafts. Continuous waves detected targets in short ranges; in 1934 Army Sig-
nal corps suggested the possible use of pulsed energy to observe targets at longer
ranges. In 1935, Robert Watson-Watt proposed similar system in UK and was suc-
cessful in producing a functioning equipment. By 1941, with the development of
the cavity magnetron, a high-power transmitting tube, and its implementation in
radar, UK had advanced significantly in radar technology and established a land
radar network.

During WWII, it was realized that precipitation presented targets (noise) on radar
displays, and prevented full utilization of radar systems for the intended military
use. Radar observation of precipitation fields provided military meteorological of-
ficials with new tools to increase the accuracy of short-term forecast, and proved to
have a significant value in military operations. Marshal and Palmer in 1948 corre-
lated a given radar reflectivity with the rainfall rate (Z-R relationship) (Marshall and
Palmer 1948). As a secretive technology, radar did not see much civilian meteoro-
logical applications at that time. Post war, scientists and technicians in the field of
meteorology gradually understood the use and limitations of these military oriented
radars in weather-detection and slowly incorporated modification to suit them to
meteorological requirements. Since 1960s the use of radars have been widespread,
development of Doppler and polarimetric capabilities have enabled meteorologist
to study the 3D structure of precipitating systems.
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Weather radars transmit pulses of electromagnetic energy into the atmosphere,
which travel as an EM wave, and receive energy reflected by the particles in the
atmosphere (scatterers). Reflectivity (/eta) of a pulse volume is a measure of the
efficiency of the radar targets in intercepting and returning the transmitted radio
energy. It depends upon the number, size, shape, aspect, and dielectric properties
of the target. The reflectivity factor (Z) is directly proportional to reflectivity and
is often referred to as radar reflectivity. The basic operation principle of weather
radars is illustrated in Fig 1.5. During the 1970s, weather radars were standard-
ized and organized into networks. Introduction of Doppler capabilities by Doviak
et al. (1979), provided radars the ability to track relative velocities (Doppler velocity
(V) and Doppler spectrum width W) of the particles in addition to position and in-
tensity. Between 1980s and 2000s, most developed countries established their own
weather radar networks. In the United States, construction of 10 cm wavelength
Doppler radar network called NEXRAD or WSR-88D (160 radars currently) stated
in 1988. Canada national radar network was installed between 1985 and 2004, Dopp-
lerized in 1993. France (ARAMIS network) and other European countries switched
to Doppler networks by early 2000s. Droplets of falling liquid water tend to have a
larger horizontal axis due to the drag coefficient of air, causing the water molecule
dipole to be oriented in that direction. Conventionally, radar beams were polarized
horizontally in order to receive the maximal signal reflection. The radar moments
discussed so far relate to horizontal polarization (Zh, Vh and Wh).

FIGURE 1.5: Overview of Weather radar Observation
source: Japan Meteorological Agency



14 Chapter 1. General Introduction

After 2000, dual-polarization technology was integrated in the operational radars
(Doviak and Zrnić 1993; Bringi and Chandrasekar 2001). Dual-polarimetric radars
transmit and receive at two polarization (horizontal and vertical with respect to
ground) simultaneously. In addition to the former three moments in vertical po-
larization (Zv, Vv and Wv), one can gain important insights into the microphysi-
cal properties of hydrometeors by comparing the amplitudes and phases of signals
returned at two polarization (Kumjian 2013). Polarimetric radar observations are
discussed in more detail in section 1.4.4. The existing radar networks are being up-
graded with dual-polarimetric capabilities in the last decade.

TABLE 1.2: Frequency bands in electromagnetic spectrum

IEEE Standard 521-1984
Band Nominal frequency Nominal Wavelength

HF 3-30 MHz 100-10 m

VHF 30-300 MHz 10-1 m

UHF 0.3-3 GHz 1-0.1 m

L 1-2 GHz 30-15 cm

S 2-4 GHz 15-8 cm

C 4-8 GHz 8-4 cm

X 8-12 GHz 4-2.5 cm
Ku 12-18 GHz 2.5-1.7 cm

K 18-27 GHz 1.7-1.2 cm
Ka 27-40 GHz 1.2-0.75 cm

W 40-75 GHz 4.0-2.73 mm

G 75-110 GHz 2.73-0.1 mm

Most radars operate between 400 MHz to 36 GHz. Characteristics of different
frequency bands are listed in Table 1.2. The theoretical principles of radars are
the same at any frequency; however, the technical implementation is widely dif-
ferent. The best frequency to use for a radar depends upon its application. The
interaction of the EM radiation with the atmosphere (i.e. the type of targets) varies
with the frequency. Lower frequencies are sensitive to the composition of the at-
mosphere (like water vapor and molecular oxygen) whereas higher frequencies at-
tenuate significantly in presence of larger hydrometeors. The choice of frequency
involves tradeoffs among different factors like physical size, transmitted power, an-
tenna beamwidth and attenuation. The dimension hardware, in general, is propor-
tional to wavelength. At higher frequencies wavelengths are shorter, radars can
be housed in smaller packages and mounted in mobile platforms. The choice of
frequency indirectly influences the magnitude of transmitted power because of its
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impact on hardware size. Level of power a radar transmitter can handle is deter-
mined by the voltage gradient and ability to dissipate heat. Low frequency radars
(large wavelength) with bulky hardware can transmit more average power. The nar-
rower the beam, greater is the transmitted power that is concentrated in a particular
direction at a given time, and the finer the angular resolution. The width of radar’s
antenna beam is directly proportional to the ratio of wavelength to the width of an-
tenna. At low frequencies, large antennas are used to achieve acceptably narrow
beams. Radio waves passing through atmosphere are attenuated by absorption and
scattering. While the absorption is mainly due to oxygen and water vapour, scat-
tering results from hydrometeors. Both absorption and scattering increases with
frequency.

Depending on the application, weather radars are commonly operated in four
different frequency band.

• S-band radars: [Frequency:2-4 GHz, Wavelength:8-15 cm] Because of the wave-
length and frequency, S-band radar signal is not significantly attenuated. This
makes them useful for near and far range weather observation. It requires a
large antenna dish and has high transmitted power. They are deployed mostly
in tropical and temperate climate areas, e.g. where hurricanes, tornadoes, large
hail and monsoon/heavy rain are common. The NEXRAD network in the
United States is composed of 160 S-band radars.

• C-band: [Frequency: 4-8 GHz, Wavelength: 4-8 cm] GHz. Because of the wave-
length and frequency, the dish size does not need to be very large. The signal
is more easily attenuated, so this type of radar is best used for short range
weather observation. The frequency allows C-band radars to create a smaller
beam width using a smaller dish. C-band radars also do not require as much
power as S-band radar. They are deployed in climates where attenuation by in-
tervening heavy rain or hail is supposed to be a minor issue. European radar
network is mainly composed of C-band radars, except in the Mediterranean
and mountainous regions in France.

• X-band: [Frequency: 8-12 GHz, Wavelength: 2.5-4 cm] Because of the smaller
wavelength, the X-band radar is more sensitive and can detect smaller parti-
cles. These radars are used for studies on cloud development because they can
detect the tiny water particles and also used to detect light precipitation such
as snow. X-band radars also attenuate very easily, so they are used for only
short range weather observation. They are deployed mainly in shorter-range
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hydrological and meteorological applications such as urban and mountain val-
ley hydrology. Most major airplanes are equipped with X-band radar to pick
up turbulence and other weather phenomenon.

• K-band: [Frequency: 18-27 GHz, Wavelength: 1.2-1.7 cm] The range of fre-
quencies in the center of the K-band is absorbed by water vapor in the at-
mosphere due to its resonance peak at 22.24 GHz, 1.35 cm. Therefore these
frequencies experience high atmospheric attenuation and cannot be used for
long distance applications. Micro rain radar (MRR), a portable, low-cost, low-
power, frequency modulated continuous wave (FM–CW) vertically pointing
K-band Doppler radar is often used to study the microphysics of precipita-
tion and snowfall measurements. In spaceborne plotforms, due to limitation
of liftoff size and required power, high frequency radars are preferred. Ka and
Ku band radars are used in Global Precipitation Mission (GPM).

The French national radar network operated by Météo France consists of 20 C-
band radars, 5 S-band radars and 6 X-band radars (+2 at Paris and Nice airports).
The data from various individual radars in the mainland France are transmitted to
a concentrator in Toulouse which develops mosaics of precipitation zones and their
accumulation every 5 minutes. Under the Operation Program on the Exchange of
Weather Radar Information (OPERA) project, 30 European countries with more than
200 operational radars, mainly C- but some X- and S-bands, Pan-European radar
composites are produced every 15 minutes (Saltikoff et al. 2019).

1.4.2 Basic Radar Terms

It seems beneficial to introduce readers to some basic radar terms, before discussing
the theory and operating principles of weather radars in next sub-section.

• Frequency (f)
Frequency refers to the number of completed wave cycles per second. Radar
frequency is expressed in units of Hertz (Hz).

• Wavelength (λ)
Wavelength is distance from wavecrest to wavecrest (or trough to trough)
along an electromagnetic wave’s direction of travel is called wavelength. Unit
of wavelength is generally centimetre.

• Phase (δ)
Phase of an electromagnetic wave is essentially the fraction of a full wave-
length a particular point is from some reference point measured in radians or
degrees.
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• Bandwidth (BW)
Bandwidth is the frequency difference between the upper and lower frequen-
cies of electromagnetic radiation. It is expressed in units of Hertz (Hz).

• Pulse width (τ)
Pulse width is the time interval between the leading edge and trailing edge of
a pulse at a point where the amplitude is 50% of the peak value. It is expressed
in units of microseconds.

• PRF and PRT
Pulse repetition frequency is the number of peak power pulses transmitted per
second. Pulse repetition time is the time interval between two peak pulses.

• Beamwidth (θ)
beamwidth is the angle between the half-power (3 dB) points of the main lobe,
of the antenna diagram, when referenced to the peak effective radiated power
of the main lobe. Unit is degree.

1.4.3 Weather radar equation

FIGURE 1.6: Pulse Volume of a weather radar in polar coordinates.
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The fundamental equation in radar meteorology is called the weather radar equa-
tion. It expresses the backscattered power from a meteorological target centered at a
point (r0, θ0, φ0 as a function of radar and target characteristics (Doviak and Zrnić
1993).

Pr(r0, θ0, φ0) =
Pt λ2

(4π)3

∫∫∫
V

I(r, θ, φ) W0(r, θ, φ) η(r, θ, φ)

r4 dV (1.1)

where,
η: total effective backscattering surface of hydrometeors / unit volume
W0: product of the angular and radial weighing functions
I: interception factor due to obstacles (screening) and intervening gases and precip-
itation (attenuation) between radar and target
Pt: transmitted power
λ: wavelength

This formulation emphasizes on the convolution of the backscattered power by
hydrometeors with the weighing functions on one hand and the importance of the
propagation effects (screening, attenuation) on other.

The resoultion volume can be expressed as

dV = r2 dr sinθ dθ dφ (1.2)

The resolution volume is defined by cutoff levels of the weighing functions. The
product of the weighing functions can be expressed as

W0(r, θ, φ) = G2 f 4(θ − θ0, φ− φ0)|W(r0, r)|2 (1.3)

where,
G: antenna gain
f : antenna diagram
W: range weighting function

The integral of range weighting function gives the pulse width

∫ ∞

0
|W(s)|2 ds ≈ cτ

2
(1.4)

where,
c: celerity of light
τ: pulse length
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The interception factor between radar and resolution volume can be expressed
as

I(r, θ, φ) = S(r, θ, φ) AF(r, θ, φ) (1.5)

where,
S: Screening
AF: Attenuation factor
The screening by mountains can be estimated using digitalized terrain models (Del-
rieu et al. 1995).

The attenuation factor is given by

AF(r, θ, φ) = exp(−0.46
∫ r

0
A(s)ds) (1.6)

where,
A: specific attenuation

The total hydrometeor’s backscattering surface can be expressed as

η(r, θ, φ) =
∫ ∞

0
σb(D) N(D) d(D) (1.7)

where,
σb: back scattering cross section of hydrometeor of diameter D
N: drop size distribution within the unit volume (typically 1 m3)

Most formulations of the weather radar equation, consider the scattering pro-
cesses to occur in the Rayleigh regime, i.e. with raindrop diameter smaller com-
pared to the wavelength. All dipoles in the drop oscillate with same phase and the
backscattering surface σ is proportional to

σ =
D6π5|K|2

λ4 (1.8)

where,
D : drop diameter [m]

λ : wavelength [m]

|K|2 : Dielectric constant [water 0.93, solid ice 0.176]

For liquid rain drops,

σn =
π5

λ4 |Kw|2 D6 (1.9)
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where,
|Kw|2: dielectric constant of water

The dielectric constant of water is given by

Kw =
m2 − 1
m2 + 2

(1.10)

where,
m: complex radiative index of water

Radar Reflectivity (η)
The sum of all backscattering cross-sections per unit volume is referred to as radar
reflectivity. In other words,

∑
i

σi = η (1.11)

Using equation 1.8, equation 1.11 can be expressed as:

η = ∑
i

σi =
π5|K|2

λ4 ∑
i

D6
i (1.12)

Radar Reflectivity Factor (Z)
The radar reflectivity factor is defined as:

Z =
∫ ∞

0
N(D) D6 dD (1.13)

From equation 1.9 and equation 1.13

η =
π6

λ4 |Kw|2 Z (1.14)

If η is assumed to be homogenous within the resolution volume and AF inde-
pendent of θ and φ ; i.e. attenuation only along the radial beam path

Pr(r0) =
Pt λ4 G2

(4π)3

∫ ∞

0
|W(s)|2ds

∫ 2π

0

∫ π

0
f 4(θ, φ) sinθ dθ dφ

η(r0) AF(r0)

r2
0

(1.15)

The antenna diagram can be approximated by

∫ 2π

0

∫ π

0
f 4(θ, φ) sinθ dθ dφ ≈

π θ2
3dB

8 ln2
(1.16)
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where,θ3dB is the 3 dB beamwidth

Substituting eq 1.4, eq 1.16 and replacing reflectivity by reflectivity factor in eq
1.15, we obtain:

Pr(r0) =
Pt λ2 G2

(4 π)3
cτ

2
π θ2

3dB
8 ln2

π5

λ4 |Kw|2
Z(r0)AF(r0)

r2
0

or,

Pr(r0) =
Pt G2 c τ π3 θ3

3dB |KW |2

1024 ln2 λ2
Z(r0) AF(r0)

r2
0

(1.17)

where, the first part is a constant, known as radar constant (C).

Pr(r0) = C
Z(r0) AF(r0)

r2
0

(1.18)

We use in the following derivations, the concept of "measured reflectivity" de-
fined as:

Zm(r) = Z(r) AF(r) dC (1.19)

where, dC represents a possible radar calibration error i.e. a faulty estimation of the
radar constant C.

By taking all the "known" constants together, a radar constant (C) can be defined
such that equation 1.18 can be simplified into:

Pr(r) =
C
r2 Zm(r) (1.20)

The units of radar reflectivity Z on equation 1.18 is mm6 m−3. Here on-wards, Z
will be simply referred to as radar reflectivity.

Instead of using linear units [mm6m−3] the radar reflectivity is often expressed
in logarithmic units –decibels [dBZ]

dBZ = 10 log10
Z
Z0

(1.21)

with
Z0 = 1 mm6 m−3

Range of the target:
Assuming the wave travels at speed of light (c), range of a target can be calculated as:
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r = c
∆t
2

(1.22)

∆t : elapsed time interval between emission and reception pulse

1.4.4 Polarimetry

Conventional (single-polarization and non-coherent) radars operate by transmitting
pulses of electromagnetic (EM) radiation and "listening" for echoes returned from
various atmospheric targets i.e. scatterers. The energy propagates through the at-
mosphere as an EM wave with the electric field vector oscillating in the horizontal
plane parallel to the ground; therefore, these waves are said to be horizontally polar-
ized. When a horizontally polarized wave illuminates a particle in the atmosphere,
the particle behaves as a tiny antenna, emitting radiation in all directions, with the
amplitude of this "scattered" energy related to the size, shape, and orientation of the
target, as well as its physical composition (e.g., liquid or ice). The particle’s physi-
cal composition affects scattering through the complex refractive index or complex
relative permitivity , which can be thought of as how “reflective” a particle is to EM
radiation. Consider a spherical hydrometeor that is small compared to the radar
wavelength. When the particle is illuminated by a horizontally polarized radar
wave, the particle behaves like a horizontal dipole antenna that becomes excited
and scatters energy having horizontal polarization, whereas it behaves like a ver-
tical dipole antenna and scatters energy with vertical polarization when excited by
a vertically polarized radar wave (Kumjian 2013). Dual-polarization radars exploit
this fact by transmitting radiation with horizontal polarization and vertical polariza-
tion simultaneously (Bringi and Chandrasekar 2001; Fabry 2015). By comparing the
signals received from returns (amplitude and phase) at each polarization, one can
glean information about the size, shape, orientation and microphysical properties of
targets within the radar sampling volume.

Scattering Matrix

Assuming, orthogonal polarization of waves in horizontal and vertical plane, when
a horizontally polarized wave is incident upon an anisotropic (shape, dipole mo-
ment) target, the backscattering wave can have contribution in both horizontal (h)
and vertical(v) polarization. Same principle applies for the vertically polarized
wave. As the incident electromagnetic waves can be described by horizontal and
vertical components, the backscattering properties of the target can be completely
described by scattering matrix, S,
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[
Es

h
Es

v

]
=

[
Shh Shv

Svh Svv

] [
Ei

h
Ei

v

]
(1.23)

where,
i refers to incident wave
s refers to scattered wave

Scattering matrix describes the transformation of the electric field of incident
wave to the electric field of the scattered wave. The strength and polarization of the
scattered wave for arbitrary polarization of the incident wave can be computed, as
any incidient wave can be expressed in the [Ei

h, Ei
v] basis set. The four elements of

the scattering matrix are complex, can be obtained from the magnitudes and phase
measured by the four channels of a polarimetric radar. Bringi and Chandrasekar
(2001) and Fabry (2015) elaborate the scattering matrix in detail.

Reflectivity (Zh and Zv)

Zh =
4λ4

π4 |Kw|2 < |Shh|2 >

Zv =
4λ4

π4 |Kw|2 < |Svv|2 >

(1.24)

< Svv > and < Shh > are the copolar elements of the backscattering matrix averaged
over an ensemble of scatterers for the h and v polarizations.

Reflectivity is a measure of amount of energy backscattered by the target. Reflec-
tivity factors at horizontal Zh and vertical Zv polarisation are the dual-polar equiv-
alents of reflectivity (Z [dBZ]). Reflectivity is defined as a measure of the fraction
of radiation reflected by a given surface; expressed as a ratio of the radiant energy
reflected to the total amount of energy incident upon that surface. The radar reflec-
tivity factor (Z) of precipitation is dependent on the number and size of reflectors
(hydrometeors) in a pulse volume. Zh and Zv depend on the particle size distribu-
tion, the incident wavelength, temperature (through σ) and dielectric properties of
the hydrometeors.

Differential Reflectivity (Zdr)

Zdr = 10 log10
< |Shh|2 >

< |Svv|2 >
(1.25)

< Svv > and < Shh > are the copolar elements of the backscattering matrix averaged
over an ensemble of scatterers for the h and v polarizations.

The differential reflectivity (Zdr) is the logarithmic (if expressed in dB) ratio of
the reflectivity factors at H and V polarizations, and therefore is a measure of the
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reflectivity-weighted axis ratio (or shape) of the targets. Thus, for spherical targets
that return equal power at h and v polarizations, Zdr is 0 dB. Zdr is usually indepen-
dent of concentration and tends to be influenced by largest particles. Zdr is sensitive
to particle shape and size distribution. Even irregularly shaped hydrometeors can
produce low Zdr at high elevation angles as all drops look symmetrical when illumi-
nated from below. Zdr also is affected by the physical composition and/or density
of particles. For a particle of a given size and shape, Zdr is enhanced as the complex
refractive index increases. The dielectric constant of water is five times greater than
that of ice. Thus, the Zdr of an oblate water drop is larger than the Zdr of an ice pellet
of the same size and shape, which in turn is larger than the Zdr of a lower-density
ice particle (e.g., graupel or snow aggregate) of the same size and shape. Because it
is a ratio of the reflectivities at h and v polarizations, Zdr is independent of particle
concentration and is not affected by absolute miscalibration of the radar transmitter
or receiver. It is, however, affected by the difference in the H and V channels, and
therefore can be biased.

Co-polar cross-correlation coefficient (ρhv)

Co-polar cross-correlation coefficient (ρhv) measures the consistency of the h and v
returned power and phase for each pulse. This “cross correlation” looks at how the
power and phase of one channel compares to the other channel. If the consistency
is high, changes with one channel are similar to changes with the other.

ρhv =
< SvvS∗hh >√

< |Shh|2 >< |Svv|2 >
(1.26)

< Svv > and < Shh > are the copolar elements of the backscattering matrix av-
eraged over an ensemble of scatterers for the h and v polarizations; the asterisk
indicates the complex conjugate. ρhv has many applications, including hydrome-
teor classification, ground clutter and melting-layer identification, interpretation of
microphysics and the retrieval of drop size distribution.

ρhv is a measure of the diversity of how each scatterer in the sampling volume
contributes to the overall h and v polarization signals. This diversity includes any
physical characteristic of the scatterers that affects the returned signal amplitude
and phase. Thus, when there exists a large variety in the types, shapes, and orien-
tations of particles within the radar sampling volume, ρhv is decreased. Note that a
diversity of sizes does not affect ρhv unless the shape of the particles varies across the
size spectrum. In addition to reduced values with increased diversity of the phys-
ical characteristics of particles, ρhv can be significantly reduced in the presence of
non-Rayleigh scatterers, owing to variability in the backscattered differential phase
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within the sampling volume. Imperfections in the radar hardware can produce re-
ductions in ρhv as well. In contrast, more uniform scatterers tend to produce ρhv

near 1.0. Spherical particles of any size will produce ρhv = 1.0 because they each
contribute identically to the signals at H and V polarizations. ρhv varies between 0
and 1, for liquid and solid precipitation it is generally in between [0.97− 1], and it
drops significantly in the region of melting layer.

Differential Phase Shift (Φdp)

EM radiation acquires additional phase shift travelling through precipitation than
through air. In anisotropic medium, like oblate raindrops, the amount of phase
shift is different between h and v polarizations. Φdp is proportional to the number
concentration of particles and tends to increase with increasing particle size. It is
immune to attenuation, partial beam blockage, ground clutter and radar miscalibra-
tion. It is cumulative along the path. For these reasons, it is an attractive variable to
use for attenuation correction and quantitative precipitation estimation.

Specific differential phase shift (Kdp) is half the range derivative of Φdp. It gives
the differential phase shift per unit distance (usually expressed in degrees per km)
along the radial direction. It is useful for locating regions of heavy precipitation. Kdp

is hard to measure in low precipitation and in presence of non-uniform beam filling
(Ryzhkov and Zrnic 1998) and in presence of non-Reyleigh scatterers like melting
snow-aggregate and large hail.

Φdp varies (almost proportionally in rain) with the measure of the difference in
2-way attenuation for horizontal and vertical pulses in a pulse volume because both
are propagation parameters and depend on the forward functions of the scattering
matrix.

Doppler velocity Spectra and Apparent Fall Velocity (V)

A polarimetric capable radar can measure the phase shift of a received wave com-
pared to transmitted wave. The phenomenon of Doppler shift can be used to calcu-
late the radial velocities of targets. Doppler Spectrum S(v) is the power-weighted
distribution of radial velocities within the resolution volume. S(v) represents the
power returned to the radar by scatterers with radial velocity between v and v+∆v.
In terms of microphysical parameters:

S(v) =
λ4

π5|Kw|2
∫ v+∆v

v
vσb

h(v)dv (1.27)
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σb
h(v) : average horizontal backscattering coefficient of all scatters with radial veloc-

ity (v)
The average radial velocity (V) is the first moment of the normalized Doppler spec-
trum (divided by total reflectivity) and spectral width(W) is the square root of sec-
ond moment.

V =

∫
η(v)vdv∫
η(v)dv

(1.28)

W2 =

∫
η(v)(v−V)2dv∫

η(v)dv
(1.29)

v : Doppler Velocity [ms−1]
η(v) : spectral reflectivity [sm−2]
Spectrum width is a measure of dispersion of velocities within the radar sample
volume.

1.4.5 DSD formulation and polarimetric variables

The (rain) drop size distribution (DSD) is defined as the number density of raindrops
per unit size range and per unit volume. It plays a key role in the microphysics and
dynamics of raindrops while falling in the atmosphere. Thus, DSD measurements
provide important insights into the atmospheric processes of the precipitation vol-
ume. Some instruments (like disdrometer) provide a direct measurement of DSD
by detecting individual drops with optical light illumination, whereas other mea-
surements (e.g. using radar) are indirect. A generalized DSD formulation with a
dimensionless probability density function g(x) is formulated as (Yu et al. 2014):

N(D) =
Nt

Dc
g(

D
Dc

) , mm−1m−3 (1.30)

where,
Nt: total concentration in m−3

Dc: characteristic diameter in mm
Let’s denote

x =
D
Dc

(1.31)

such that, g(x) is the probability distribution function i.e.
∫ ∞

0 g(x)dx = 1.
Some of the candidate models for PDF g(x) are:

exponential:
g(x, λ) = λ exp(−λx) (1.32)
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gamma:

g(x, λ, m) =
λm+1

Γm+1 xm exp(−λx) (1.33)

generalized gamma:

g(x, λ, m, c) =
cλc(m+1)

Γm+1 xc(m+1)−1 exp(−(λx)c) (1.34)

All the radar observable and variables of interest are assumed to be proportional
to DSD moments. The kth moment of DSD (MK) can be written as:

Mk =
∫ ∞

0
N(D) Dk dD (1.35)

Liquid water content, rainfall intensity and reflectivity are considered to be pro-
portional to moment orders 3, 3.67 and 6 of the DSD, respectively in the Rayleigh
scattering regime.

1.4.6 Attenuation

Attenuation is the weakening of a radar signal amplitude as the beam travels be-
cause of some of the energy being lost to scattering (direction other than receiver)
and absorption by hydrometeors and other particles in the atmosphere. The radar
beam encounters more and more of these particles as it moves further away from
the transmitter. So, storms close to the radar are better sampled than storms far from
the radar site. The enhanced reflectivity of the melting layer of precipitation, usu-
ally known as the bright band in radar meteorology, results in increased scattering
and greater signal extinction (absorption). The bright band may thus contribute a
significant portion of the total attenuation (Bellon et al. 1997).

At high frequencies (above 5GHz), the melting snowflakes significantly attenu-
ate the radar signal. This effect is stronger at lower elevation angles, as the distance
through the melting layer is the largest. Attenuation is problematic since it leads
to a bias in the reflectivity over increasing ranges from the radar. Whereas, in the
liquid phase attenuation is well known and can be corrected, in the melting layer
it remains poorly known and estimations in the literature sometimes vary over two
orders of magnitude (Wolfensberger et al. 2016).

An additional phenomenon is attenuation due to the formation of a water film on
the radome when it rains at the radar site, the so-called radome attenuation, known
to be severe at X-band (Frasier et al. 2013; Delrieu et al. 2022). We consider both
on-site and along path attenuation with the following forulation.
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AF(r) = AF(r0) AF(r0, r)

= AF(r0) exp(−0.46
∫ r

r0

A(s) ds.)
(1.36)

or equivalently, two-way path integrated attenuation (PIA [dB]) is formulated
as:

PIA(r) = PIA(r0) + PIA(r0, r)

= PIA0 + 2
∫ r

0
A(s)ds

(1.37)

where,
A: Specific attenuation [dB km−1]
r0: is the range where the radar measurement starts to be exploitable.

The path integrated attenuation (PIA) is related to the attenuation factor through:

PIA = −10log(AF) (1.38)

AF(r0, r) = 10−
PIA
10

= exp(−0.46
∫ r

r0

A(s)ds
(1.39)

PIA0[dB] is called on-site attenuation when it accounts for both the radome at-
tenuation and the along path attenuation in the [0, r0] range.

The difference between the attenuation of the horizontal signal (Ah) and vertical
(Av) is called differential attenuation (Adr).

1.4.7 Estimation of rainfall from the radar measurables

Conventional

The value of radar QPE is computed through a nonlinear empirical relationship
between radar reflectivity (Z) and precipitation rate (R),

Z = aRb (1.40)

where a and b are two parameters to be determined.
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A simple R(Z) relationship can be obtained statistically over a climatic timescale
and then applied to the quantitative estimate of precipitation. The coefficients a
and b vary significantly on different regions and precipitation regimes, and they
are significantly affected by the characteristics of raindrop-sized spectra. Therefore,
the parameters a and b in the R(Z) relationship are affected by synoptic weather
situations, the phase of hydrometeors, geography, and so on, and thus vary with
time and space. Therefore, a fixed R(Z) relationship may not be accurate for a rainfall
event with different intensities.

Marshall-Palmer relationship is one of the most commonly used R(Z) formula-
tion. The R(Z) relationship developed by Marshall and Palmer 1948 is consistent
with an exponential drop-size distribution.

Z = 200R1.6 (1.41)

where,
Z [mm6 m-3] is the reflectivity factor
R [mm h-1] is the rainfall rate.

Polarimetic QPE

The relationship between the radar observables, reflectivity Z[dBZ], differential re-
flectivity (Zdr), specific attenuation A[dB km−1], specific differential phase shift (Kdp)
and variable of interest in QPE, rainfall intensity R[mm h−1] are of interest. Based
on many trials in the literature, power-law type R(Z,Zdr), R(Kdp), and R(A) relation-
ships are defined.

One example can be R(A) relationship:

R = aRA AbRA (1.42)

This chapter introduces the basic concepts of radar meteorology and the formu-
lation of different radar observables. We will delve into to concepts of melting layer,
microphysics of a precipitating volume, attenuation correction and QPE in the next
sections.
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Chapter 2

The RadAlp Experiment

2.1 Introduction

The RadAlp experiment aims at developing advanced methods for rainfall and
snowfall estimation using weather radar remote sensing techniques in high moun-
tain regions for improved water resource assessment and hydrological risk mitiga-
tion. A unique observation system has been deployed since 2016 in the Grenoble
region of France. It is composed of an X-band radar operated by Météo-France on
top of the Moucherotte mountain (1901 m a.s.l.; hereinafter MOUC radar). In the
Grenoble valley (220 m a.s.l.), IGE operates a research X-band radar called XPORT
and in situ sensors (weather station, raingauge and disdrometer). This unique setup
of two radar systems just 11 km apart with an altitudinal gradient of 1700 m, should
enable us to deal with the radar positioning dilemma and issues associated with the
choice of the X-band operating frequency. Figure 2.1 shows the setup of the instru-
ment cluster.

(A)
(B)

FIGURE 2.1: RadAlp Experiment: Instrument Setup. (a) The topo-
graphical map of Grenoble along with the positions of two radar sys-
tems. (b) A cross-section of the scan volume passing through XPORT

and MOUC radars.
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In this chapter, we list all the instruments available in the RadAlp setup and
look into their characteristics in Section 2.2.1. The relevant dataset utilized from the
available instruments is discussed in Section 2.2.2. The scientific objective of the
RadAlp experiment is presented in 2.3, followed by the scientific objectives of the
PhD in Section 2.4.

2.2 Instruments and dataset

2.2.1 Instruments

The IGE experimental site includes the following devices:

(i) IGE XPORT research radar (Koffi et al. 2014): X-band, dual polarized, volu-
metric scanning strategy, Table 2.1

(ii) Micro rain radar (MRR): K-Band, FMCW (Löffler-Mang et al. 1999), Table 2.2

(iii) Disdrometer (DSD)

(iv) Meteorological station (MTO) including pressure, temperature, humidity, wind
and rainfall intensity measurements

Meteo France operates an X-band, dual polarized, volume scanning radar at the
top of Mt Moucherotte. Table 2.1 shows the characteristics of two X-band radars
(XPORT, MOUC), and Table 2.2 shows the characteristics of K-band micro rain radar
(MRR). Apart from the instrument clusters at IGE, 7 additional raingauges and 2
disdrometers were installed in 2019 over a transect XPORT radar and La Croix de
Chamrousse at different altitudes for QPE validation proposes.
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TABLE 2.1: Characteristics of XPORT and MOUC radars

Parameter units XPORT radar MOUC radar
Longitude decimal degree 5.762327 5.639237
Latitude decimal degree 45.194150 45.147736
Altitude (ground) m asl 213 1901
Altitude (feedhorn) m asl 228 1917
Frequency GHz 9.400 9.420
Antenna diameter m 1.8 1.8
3− dB beamwidth ◦ 1.37 1.28
Antenna gain dB 42 42
Radome [-] no yes
Peak power (each polarization) kW 25 30
Radial bin size m 33 240
Receiver dynamic range dB >90 >90
Minimum detectable signal dBm -112 -114
Volume scanning period min ∼6 5

Volume Scanning Protocol ◦ 3.5, 7.5, 15, 0, 0.6, 1.2, 2,
(PPI elevation angles) 25, 45, 90 3, 4, 8, 14

Measured parameters Zh, Zv, Zdr, ρHV , Φdp, νr

TABLE 2.2: Characteristics of MRR-2 radar

Parameter Units Value
Frequency GHz 24
Radar type FMCW
Transmit power W 0.05
Receiver Single
Power consumption W 25
No. of gates 31
Range resolution m 10 -200
Range resolution in this study m 100
Resulting measuring range m 3000
Antenna Diameter m 0.6
Beamwidth (2-way, 6dB) degree 1.5
No. of spectral bins 64
Spectral resolution ms−1 0.19
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FMCW stands for frequency modulated continuous wave i.e system transmits
continuous wave at a certain frequency.

2.2.2 Dataset

MTO station

The IGE weather station provides continuous surface temperature and rainfall ac-
cumulation at 10 minute intervals. The database has continuous data available from
2014 till date. The rainfall data is used to identify the significant rainfall events
for further analysis in the study and to calibrate remote sensing equipment. This
dataset is used in the analysis of the melting layer in Chapter 3.

AROME model

AROME is a non-hydrostatic numerical weather prediction (NWP) model built and
run by Meteo-France.
- used mainly for the operation of XPORT radar on alert.
- contains information on vertical profiles of different meteorological indicators of
the atmosphere
- O◦C isotherm altitudes available once a day, used in chapter 3
- although very informative, the spatial resolution is not good enough (2.5 km*2.5km)
to capture the variability in precipitation fields

XPORT radar

XPORT is a research radar, maintained and operated by IGE. It is operational in
Grenoble valley since 2016. The radar observables provided by XPORT are horizon-
tal and vertical reflectivity (Zh and Zv), differential reflectivity(Zdr), co-polar cross-
correlation coefficient (ρHV) and total differential phase shift Φdp. Originally the
volume scanning time of the XPORT radar was 6 minutes. The scanning protocol
was changed in Sept 2020 to match MOUC radar time resolution of 5 minutes. With
the beamwidth of 1.37◦ and radial bin size of 33 m, XPORT provides high-resolution
observation. Beam blockage by surrounding mountains restricts the use of XPORT
data; elevation angle ≥ 15◦ are mostly clutter-free. The output is in the NC file for-
mat. 25◦ elevation angle PPI scans are used in Chapter 3 to identify and characterize
the melting layer in winter stratiform events above Grenoble.
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MRR radar

The vertically pointing K-band micro rain radar is also maintained and operated by
the IGE. It is a continuous scanning radar. Radar observables (reflectivity, Doppler
spectra and fall velocity) are averaged and recorded every 1 minute. There are only
31 range bins available, which forces us to make a trade-off between range and
spatial resolution. We operate it at 100 m bin size, i.e. detection range of 3100 m.
It is taken away for different summer campaigns, so MRR data on some events are
missing. As reflectivity in K-band is heavily attenuated, Doppler spectra and fall
velocities are the main variables of interest. Due to low density of dry snowflakes,
the velocity data can be folded in snow due updrafts, a MK12 dealiasing algorithm
(Maahn and Kollias 2012) is applied to raw data; it produces the NC type files. It
is used to identify and characterize ML in absence of XPORT data, i.e. when the
XPORT radar is taken to the field is down for maintenance.

MOUC radar

Polarimetric volume scanning X-band operational radar connected to the French
national radar network (ARAMIS) and operated by Météo France. It has time res-
olution of 5 minutes, beam width of 1.28◦ at 3 dB, and range bins of 240 m. The
0◦ elevation angle PPI scan from MOUC radar is the main dataset from Chapter 4
on-wards.

Disdrometer (PARSIVEL 2)

Disdrometer provides the drop size distribution at ground level. There are 4 dis-
drometers in the RadAlp setup, at IGE, GREENER and 2 newly installed on the
XPORT Chamrousse transect. Hydrometeor classification scheme are available for
disdrometers at IGE and GREENER. The raw DSD measurements have a time reso-
lution of 1 min. They are binned into 32 diameter classes with increasing sizes from
0.125 mm up to 6 mm. The volumetric concentration spectra as well as the DSD
parameters are computed with a 5-min resolution (matching the time resolution of
MOUC). The data is processed using CANTMAT version 1.2 (based on T-matrix
formulation (Mishchenko et al. 2004)) to calculate DSD moments related to polari-
metric radar observables / variables.
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2.3 Scientific Objectives of RadAlp experiment

Despite recent development and advancement in active/passive precipitation ob-
servation and measurement techniques, QPE over complex terrain still remains a
challenging topic. The RadAlp experiment aims to contribute toward the under-
standing of the precipitation processes in the French Alps and their radar signatures.
While the X-band radar provides the necessary resolution to quantify fine-scale pro-
cesses, attenuation remains the major limitation on radar QPE applications. The
EM propagation in the melting layer of precipitation is still poorly understood; ML
causes significant attenuation at X-band.

The main goals of the RadAlp experiment are:

• Better cope with the altitude dilemma:
To quantify the dilemma of the altitude positioning for the Mont Moucherotte
radar (MOUC radar hereafter), Figure 2.2 displays the altitudes and vertical
extents of the ML as a function of the cumulative rain amounts in the Greno-
ble valley, for all the precipitation events surpassing a cumulative amount of
5 mm during the years 2016 to 2017. For this preliminary study, the ML top
altitudes were approximated by the 0◦C isotherm altitudes predicted by the
Météo-France Numerical Weather Prediction Model (NWP) model AROME at
12:00 UTC. The ML widths were derived from the statistics presented here-
inafter (chapter 3) and the rain total amounts were derived from raingauge
measurements made at IGE, down in the Grenoble valley. The ML altitude in-
tervals are coloured as a function of their position with respect to the detection
layer of the MOUC radar at 0◦-elevation angle, up to a range of 20 km (above:
red; within: blue; below: green). From this analysis, one can keep in mind
that for a rainfall threshold of 5 mm/day, the ML is below (within, resp.) the
MOUC detection domain for 26.8 % (36.1 % respectively) of the cases, i.e. a
total of about 63% of problematic cases in terms of possible influence of the
vertical structure of precipitation on QPE. Interestingly, these figures do not
vary too much as a function of the rain threshold, e.g. for a threshold of 20
mm/day, we observe 26.9% (34.9% resp.) of green (blue respectively) cases,
i.e. a total 61.5% of potentially problematic cases.

• Better cope with attenuation at X-band frequency Delrieu et al. (1997), Yu et al.
(2018), Delrieu et al. (2020), and Delrieu et al. (2022)

• Improve the QPE in high mountain
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FIGURE 2.2: Altitude of ML wrt PPI-0◦ beam of MOUC radar (1913 m asl). Horizontal
dotted black lines show the extent of 0◦ elevation angle beam at the range of 20 km. All
the rain events in 2016 and 2017 are considered. ML top is given by the NWP-AROME.

2.4 Scientific Objectives of the PhD

This manuscript focuses on the melting layer of precipitation. The valley-based
radars are used to identify and characterize the ML and mountain top radar ob-
serves the propagation effects at stages of ML. For this purpose, we consider the
quasi-vertical profiles (QVP) of polarimetric variables (Ryzhkov et al. 2016) recorded
with the XPORT radar and vertical profiles of Doppler spectra recorded with a co-
located vertically pointing K-Band radar. We will assume attenuation and beam
broadening effects to be of limited importance for such close-range / high-elevation
angle measurements in predominantly stratiform precipitation with low intensity.
The attenuation problem, more precisely the relationship between the total differen-
tial phase and path-integrated attenuation in convective rainfall and in the melting
layer is formulated in Delrieu et al. 2020.
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• Study and characterize spatio-temporal variation and climatology of Melting
layer in the stratiform events, most of which occur on cold months i.e. ML is
closer to / lower than highest peaks. The valley based XPORT radar is capable
of high resolution observations. The study of Quasi-vertical profiles of rain
using XPORT helps to understand the micro-physics of snow-melt and local
variability on melting layer. The automated ML detection algorithm, applied
on XPORT and MRR, helps to identify the events / instances when ML are
below or at 0◦ elevation beam of the operational MOUC radar. Chapter 3 helps
to better understand the ML (radar signature and processes).

• Study of Φdp vs PIA (MRT): Φdp is very noisy so it was not used in the past
studies (at IGE). First goal is to have a robust filtering algorithm, so that this
polarimetric variable can be exploited in future studies, specially related to
attenuation correction. Second goal is to develop polarimetric method to en-
able backward attenuation correction algorithm (more stable), by exploiting
the relationships between A-Kdp. (Chapter 4-6)

• Formulation and Optimization of attenuation correction algorithms: to have
robust attenuation correction algorithm based on polarimetry to aid in reliable
QPE estimates. (chapter 7)
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Chapter 3

Melting Layer of Precipitation

3.1 Introduction

In midlatitude rainfall is mostly initiated through the ice formation process followed
by melting, and it falls as rain. The ice particles fall towards the Earth, as they cross
the 0◦ C temperature level they absorb the latent heat of fusion from the atmosphere
and melt. The cooling of the atmosphere due to melting particles in a moderate
stratiform precipitation can produce isothermal layers (Wexler et al. 1954; Willis and
Heymsfield 1989). The formation of isothermal layers can lead to a separation of the
dynamics above and below the melting layer and to the formation of a phase tran-
sition layer in between. The layer of atmosphere where hydrometeors go through
phase transition is a region of discontinuity of the radar measurement properties
(Szyrmer and Zawadzki 1999). Often in stratiform conditions, when the transition
takes place at well defined height, it appears as a layer of enhanced reflectivity, aka
"bright-band", to a centimeter wavelength radar. The primary cause of the enhance-
ment is a rapid increase in the dielectric constant of falling hydrometeors at the top
of melting layer followed by an increase in the fall velocity of the melting hydrom-
eteors towards the end of melting process (Fabry and Zawadzki 1995).

In radar QPE, melting layer has been considered a source of errors in the ground
level precipitation estimation. The effect of melting particles on EM wave propaga-
tion, especially on the signal attenuation, is substantial for cm and mm wave-length
radars (C-, X- and K-band). The advancement in dual-polarimetric capabilities of
weather radars provide new tools to understand and quantify the effects of melt-
ing layer in the EM wave propagation. ML has complex physical phenomenon in-
volving the coupling of particle melting with the dynamical and thermodynamical
processes. We still do not fully understand the physics of ML. ML properties are
affected by ambient environment such as relative humidity (Willis and Heymsfield
1989), snow microphysics above the ML such as aggregation and riming (Fabry and
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Zawadzki 1995; Zawadzki et al. 2005). The thickness of ML depends on the parti-
cal size (brightband intensity), particle fall velocity (density), precipitation rate (in-
tensity) and snow-microphysics like riming and aggregation (Fabry and Zawadzki
1995; Wolfensberger et al. 2016).

The RadAlp experiment, uses the valley based radar systems to scan the verti-
cal structure of precipitation above Grenoble. QVP from PPI 25◦ elevation scan of
XPORT and the vertical pointing MRR radar provide information on the structure
and characteristics of the ML in winter stratiform events. XPORT provides dual-
polarimetric insight into the ML from below, and the MRR uses its Doppler capa-
bilities to track the change in hydrometeor reflectivity and fall velocity. A ML iden-
tification algorithm based on inflection points of the enhancement or depreciation
within the ML of different polarimetric XPORT observations has been developed. A
similar algorithm for MRR has been developed as well. The radar observables are
then linked to the microphysical processes within and above ML with an extensive
literature review. Different characteristics defining the ML are recorded from the
long-term observations.

3.2 Datasets and Methods

The XPORT radar started recording high-resolution volumetric scan data of the
most significant rain events in 2016. Its operating protocol was made of 5 PPI scans
at elevation angles of 3.5, 7.5, 15, 25 and 45◦, during the period considered in the
present study. It systematically records five radar parameters at the radial resolu-
tion of 30 m and angular resolution of 0.5◦. The recorded parameters are: hori-
zontal reflectivity (Zh), vertical reflectivity (Zv), differential reflectivity (Zdr), cross-
polar correlation coefficient (ρhv) and cumulative differential phase (Φdp) (Bringi
and Chandrasekar 2001). In this study, we consider 42 significant rain events be-
tween November 2016 and January 2018 with total rain accumulations greater than
5 mm at IGE weather station. Due to the presence of ground clutter and beam block-
ages for the three lowest elevation angles and technical difficulties in operating the
radar at 45◦ for a considerable period of time, we will use hereinafter only the 25◦

elevation angle measurements, which have a 6-min revisit time, the PPI itself last-
ing about 1 min. From the measurements of the recorded parameters, we produced
quasi-vertical profiles (QVPs) by averaging measurements over 360◦ azimuth and
then projecting the results to the vertical (Ryzhkov et al. 2016). The ML identifi-
cation algorithm, to be described below, performed poorly in case of large spatial
variability of the 25◦ elevation angle measurements, notably when a rainy system
was entering or leaving the valley. To limit the impact of such poor identifications
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on the ML statistical analyses, we used PPI scans of ρhv to determine visually time
steps with homogeneous precipitation in the various sectors of the XPORT detection
domain. This sorting resulted in a total of 980 XPORT vertical profiles, i.e. to about
98 hr of measurements. Monthly distribution of these vertical profiles is shown in
Table 3.1. Note that the summer events are under-represented in this sample due to
their convective nature, leading to strong spatial variability and subsequently poor
identifications with the ML detection algorithm.

TABLE 3.1: Monthly distribution of ML profiles

month # of profiles alt peak ρhv

January 185 1564
February 6 1486

March 112 1303
April 119 1470
May 75 1902

September 41 2290
October 11 2715

November 224 1957
December 207 1584

The MRR allows the continuous acquisition of the vertical profiles of Doppler
Spectra of apparent fall velocities of the hydrometeors with a radial resolution of
100 m and a temporal resolution of 1 min. We applied the algorithm developed
by Maahn and Kollias (Maahn and Kollias 2012) which takes the unprocessed MRR
data and apply an unfolding routine (called MK12 hereinafter) to reduce the error
in Doppler spectra and fall velocity, especially in the solid phase precipitation, with
respect to the original algorithm by the MRR manufacturer (METEK). The MK12
pre-processing routine results in full Doppler spectra of apparent vertical velocities
of falling hydrometeors over a velocity range of 0-12 m/s and with vertical resolu-
tion of 100 m from which we deduced the vertical profiles of the average velocity
(W) and standard deviation (SW, for spectral width). Note that the MRR radar was
deployed in other field campaigns in summer, so MRR data is actually available for
only 27 out of 42 precipitation events being studied.

3.3 Automated Melting Layer Detection Algorithm

For its importance in micro-physical processes leading to precipitation phase change
and for coping with the associated artefacts (bright band, attenuation) that affect
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radar QPE, the characterization of the ML has received a long-standing interest in
radar meteorology (Stewart et al. 1984; Fabry and Zawadzki 1995) and radar hydrol-
ogy (Andrieu and Creutin 1995; Hardaker et al. 1995) communities.

Polarimetry offers unprecedented means for observing distinct ML radar signa-
tures (Fabry and Zawadzki 1995; Brandes and Ikeda 2004): increase in reflectivity
(Zh, Zv), differential reflectivity (Zdr) and differential propagation phase (Φdp), de-
crease in cross-correlation coefficient (ρhv) within the ML. Vertical profiles of Doppler
velocity spectra also bring valuable information on the hydrometeor falling veloc-
ities in stratiform precipitation (Zawadzki et al. 2005; Baldini and Gorgucci 2006).
A number of automated ML detection algorithms have been proposed to deal with
radar data collected in various configurations: vertically pointing measurements
(Rico-Ramirez and Cluckie 2007), range-height indicators (Wolfensberger et al. 2016),
PPIs at low-elevation angles (Hardaker et al. 1995; Giangrande et al. 2008), the latter
being obviously the most unfavourable (small incidence angles on vertical layers,
beam broadening effects) but also the common situation for QPE from the opera-
tional weather radars. In our context, we work with polarimetric QVPs (Ryzhkov
et al. 2016) derived from the 25◦-PPI XPORT radar measurements and with the ver-
tical profiles of Doppler spectra derived from the MRR data. We hope attenuation
and non-uniform beam filling to be of limited importance for such high-elevation
angle measurements in predominantly stratiform precipitation with low intensity.
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FIGURE 3.1: Example of automatic detection for a QVP of reflectivity in the horizontal
polarization. The quasi-vertical profiles of Zh, its 1st derivative and 2nd derivative
are shown in left, middle and right subfigures respectively. The dotted lines show the

estimated altitudes of “bright-band” top, peak and bottom.

Hereinafter, we denote upper and lower breakpoints of a given ML signature in
QVP as “top" and "bottom" (“bot” in short), distinguishing the value and altitude
coordinates of the point, e.g. Zh top altitude, Zh top value. Maxima/minima of
the QVP is denoted as "peak" (e.g. Zh peak altitude, Zh peak value). For the sake
of conciseness, a number of pseudo-variables are used in Tables and Figures; their
description is given in Appendix A.1.

The identification algorithm for Zh works as:

a. Compute quasi-vertical profile of Zh, and its first and second derivatives.

b. Find the altitude with minimum first derivative of Zh –> alt2_Zh

c. Search for altitude and value of Zh peak (maxima with first derivative close to
zero) up to 500m below alt2_Zh –> Zh peak altitude and Zh peak value

d. Search for Zh top altitude and Zh top value as max(second derivative of Zh) up
to 300 m above alt2_Zh

e. Search for Zh bot altitude and Zh bot value as max(second derivative of Zh) up
to 500 m below alt2_Zh
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The same algorithm works for Zv as well. Similarly for Zdr, we search for Zdr

peak values and altitudes up to 800 m below alt2_Zh as max(Zdr) with first deriva-
tive close to zero. We look for top and bottom of enhancement in Zdr profile up to
500 m above and below Zdr.alt.peak, as max(second derivative of Zdr). In case of
ρhv, we search for ρhv peak up to 800 m below alt2_Zh as min(ρhv) with first deriva-
tive close to zero. Then we search for ρhv top altitude as the first altitude with ρhv

< max(ρhv) - 0.02 above Zh peak. The ρhv bot altitude is determined by symmetry.
Using a single reference altitude, alt2_Zh, for identification of ML in all the radar
observables (Zh, Zv, Zdr, ρhv) helps to reduce the errors in identification due to noise
in different profiles in a given timestep, provided that the bright band in Zh is well
observed. The time series of alt2_Zh is also used to limit the allowed jumps in refer-
ence altitudes in between two successive timesteps. Furthermore, in vertical profile
of MRR derived average fall velocity (W), we look for "W top" (and "W bot") as the
maxima (and the minima) of second derivative of vertical profile of W, 500 m above
and below ρhv peak altitude.

3.4 Microphysics of the ML and the vertical profiles of

radar observables

In this section, we aim to perform a detailed analysis of ML with the help of QVPs of
Zh, Zv, Zdr, ρhv and vertical profile of W, their relationship with each other, definition
of melting layer boundaries and associated micro-physical processes. The QVPs of
Φdp are not considered here since they were found to be too noisy and hardly ex-
ploitable for a large majority of the considered events, as they have generally low
precipitation intensities. The analysis of a single timestep (e.g. 2017-03-01 17:04:18 in
Fig. 3.2) provides detailed insights into the vertical structure of rainfall and micro-
physical processes associated with the melting layer, especially the hydrometeors’
evolution with time and/or height. A stratiform rain event with 9 mm of cumula-
tive rainfall spread over 11 hours window is discussed here. At the given timestep,
rainfall intensity and temperature at MTO station were 2 mm h−1 and 7.8 ◦C respec-
tively. Top of the brightband can be observed at 1770 m ASL, a bit below the 0◦C
isotherm at 1790 m estimated by the Météo-France AROME NWP model. The quasi
vertical profiles of dual-polarimetric and vertical profiles of Doppler observations
from XPORT (left) and MRR (right) radars are displayed in Fig. 3.2. Vertical profiles
of XPORT are normalized between [0-1] to show the vertical profiles of Zh, Zdr and
ρhv in a single plot.

Zh, Zv: [15, 45] dBZ - -> [0, 1]
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Zdr: [-3, 3] dB - -> [0, 1]
ρhv: [0.65, 1] - -> [0, 1]

As falling ice particles move from −5◦ to 0◦C, they grow by aggregation, result-
ing in larger particles and in a reduction in the number of smaller particles (Heyms-
field et al. 2002), this might be an explanation for the gradual decrease (upward) in
reflectivity above the ML in Fig. 3.1 (left). When they pass through the 0◦C isotherm,
they receive latent heat of fusion from the atmosphere. Ice particles start to melt and
become wet. The latent heat required cools the air, leading to a quasi-0◦C temper-
ature layer. They continue to descend, encounter warmer air and melt completely,
eventually collapsing to rain drops much smaller than original icy hydrometeors of
same mass and higher fall velocities.

FIGURE 3.2: Representative vertical profiles. Normalized quasi-vertical profiles of
XPORT observables (Zh: blue, Zdr: red, ρhv: gold) from PPI scan at 25◦ elevation an-
gle, along with the ML identifications (dotted lines) are shown in the left. Vertically
pointing K-band MRR produced Doppler spectra and average (V: green) of hydrome-
teors’ apparent falling velocities are shown in the right. For the ease of reading, the
unscaled and color-coded values of Zh, Zdr and ρhv, for normalized values of 0, 0.2, 0.4,

0.6, 0.8 and 1, are displayed on the top of the graph.
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Textbooks (Pruppacher and Klett 2010) and articles based on in-situ observations
(Knight 1979; Matsuo and Sasyo 1981; Fujiyoshi 1986), wind-tunnelling experiments
(Mitra et al. 1990) and modelling studies (Russchenberg and Ligthart 1996; Leinonen
and Lerber 2018) on snowflake melting processes establish that the melting of indi-
vidual hydrometeor (a snowflake or an aggregate) occurs in several stages in an
atmospheric column, that we may summarize as follows:

• In the first stage, melting starts at the tips of ice branches on the entire periph-
ery, but mainly at the bottom of the snowflake.

• In the second stage, aerodynamic drag helps the meltwater to flow and surface
tension draws meltwater preferentially into concave regions, e.g. from periph-
ery to the linkages of the snow crystals comprising of aggregates, minimizing
the capillary forces and surface tension effects. The hydrometeor is not cov-
ered by meltwater in this stage, as the main ice-frame is still intact and the icy
hydrometeor has ragged surface.

• As these enclaves fill up and the edges erode due to melting, in the third
stage, liquid water flows out of the filled concave regions, merges with other
nearby liquid bodies, and melt water seeps into branches inside the snowflakes
breaking the ice lattices. Surface tension stabilizes the hydrometeor into new
equilibrium shapes and consequently the crystal mesh changes from one with
many small and sharp protrusions to one with a few smoother and larger pro-
trusions.

• Towards the end of melting process, in the fourth stage, the weak connections
of ice separating drops/ liquid water bodies become sufficiently thin to frac-
ture under aerodynamic forces or simply melt away relatively quickly. The
particle assumes a spherical shape, initially around an ice core and eventu-
ally forming a water drop. Through the melting process, hydrometeors un-
dergo change in shape and ice/ water content leading to smaller particles with
higher mass density, which results in increase of fall velocities as they also ex-
perience less air resistance.

Melting of a distribution of hydrometeors in a stratiform rainfall produces dis-
tinct signatures of radar observables on ground-based Doppler and polarimetric
radars (Fig. 3.2). Zh and Zv are sensitive to the phase (liquid, solid), concentra-
tion and size distribution of hydrometeors. Zdr is a proxy for their shape anisotropy
and variation of particle orientation. ρhv is a measure of coherence of the observa-
tions made in the horizontal and vertical polarisations, and as such, a good indicator
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of precipitation homogeneity within the resolution volume. One may note that the
polarization planes are slanted by the elevation angle, at least the horizontal one.

• With aggregation as the dominant process, from 1000 m above the ML, there
is an increase in radar reflectivity (Zh, Zv) of 6 to 7 dBZ, as observed in Figs
3.1 and 3.2, with little dependence on precipitation intensity, consistent with
(Fabry and Zawadzki 1995). Small snowflakes melt faster than the big ones,
causing some particles to fall faster than others and thus increasing probability
of aggregation and coalescence. In an atmospheric column with steady precip-
itation, assuming stationarity, this leads to an increase in the particle size (in
case of aggregation) or an increase in number density (if no aggregation) at
a layer lower than the initial level (assuming larger hydrometeors are denser
and falling faster initially). This leads to steady increase in Zh below initial
0◦C isotherm. When most big particles are at end of 3rd stage of melting, i.e.
with thin shell of meltwater with ice-core, they essentially have size of the ice-
particle and di-electric constant of water. We would like to remind that the
dielectric constant of water is 5 times that of ice, but Zh and Zv are computed
with |Kw|2 for all layers. These few large highly reflective particles, resem-
bling big raindrops to a radar, explain the maximum of the reflectivity profile;
around 10 dBZ bigger than the value at ML top for the example of Figs 3.1 and
3.2. The bright band peak is said to occur at a level where the particles have
attained the high scattering property of water drops but have not yet attained
their velocity (Atlas et al. 1953). As these big particles start to melt and gain
higher falling velocities, the number concentration at the given altitude of the
atmospheric column decreases and the size of the dominant particles starts to
decrease. This causes a gradual decrease in reflectivity in the lower portion of
ML (below the altitude of Zh peak); reflectivity remains more or less constant
below the ML. It might change with evaporation (decrease) and orographic
enhancement (increase).

• Differential reflectivity (Zdr) is positive for particles whose major axes aligns
close to horizontal, zero for spherical particles / particles with random distri-
bution of orientation, and negative for vertically oriented particles. Big rain
drops tend to flatten and orient themselves with major axes close to horizon-
tal. Pristine ice crystals have small axis ratio (horizontal to vertical) and high
bulk density, and fall with their major axes close to horizontal i.e. high Zdr.
Aggregates have large axis ratio, low bulk density and low dielectric constant
resulting in "effectively isotropic" shape, so low Zdr(∼ 0.5 dBZ) (Herzegh and
Jameson 1992; Brandes and Ikeda 2004). The vertical profile of Zdr is slightly
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different from Zh. Zdr increases as well during melting, but the maximum de-
velops at lower altitude than Zh. A peak with positive value of Zdr below Zh

peak indicates an oblate mean shape at that height, and the small values above
and upper part of ML indicates isotropic mean shape while individual ice par-
ticles can be very irregular (Russchenberg and Ligthart 1996). As the particles
smoothen due to faster melting of protrusions, Zdr decreases on the upper
part of melting layer, and just before the ice-structure crumbles in 4th stage of
melting Zdr peaks rapidly, to 1 dB during this event. This suggests maximum
anisotropy of hydrometeors occurs at lower altitude than maximum size. Sur-
face tension during 4th stage of melting (following collaspe of ice-structure)
acts much quicker compared to other melting processes. As hydrometeors as-
sume more spherical shape, Zdr decreases quickly i.e. the quasi-vertical profile
of Zdr enhancement is non-symmetric. This decrease in Zdr might also be a re-
sult of break-up of large melted aggregates (Kumjian 2013). Rain drops take
more oblate shape, as they reach terminal velocity. It is noteworthy to remind
that the elevation angle of 25◦ is used in this study, Zdr measurements within
the ML might be more pronounced at lower scanning angle.

• Co-polar cross correlation coefficient (ρhv) is sensitive to changes in shape,
size, orientation and thermodynamic phase of hydrometeors between succes-
sive pulses. It might be sensitive to elevation angles of PPI scan in mixed-
phased regions (Vivekanandan et al. 1993). Vertical profile of ρhv shows rela-
tively high values (∼ 0.99) above (in snow) and below (in rain) the ML with
a sharp decrease in the lower part of ML. Some ML detection algorithms (like
(Giangrande et al. 2008)) use ρhv < 0.97 as a threshold criterion for mixed
phase of precipitation. Decorrelation occurs if the two orthogonal backscat-
tered waves do not vary in unison, i.e. with the change in net effective backscat-
tering properties at horizontal and vertical polarization in the resolution vol-
ume. The decrease in correlation is pronounced for wet, large and irregular
hydrometeors (Zrnić et al. 1994), likely a consequence of a greater variety of
shapes and axis ratios associated with partly melted particles and introduction
of raindrops (Brandes and Ikeda 2004). ρhv minima occurs below the Zh max-
ima and slightly above the Zdr maxima (Fig. 3.2), where some large particles
are asymmetric with ice-frame still intact while some have already crumbled
under surface tension to become more spherical.

• Vertically pointing MRR provides vertical profile of hydrometeor’s apparent
fall velocity spectra (S(v)). The Doppler spectrum S(v) is the power-weighted
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distribution of radial velocities within the resolution volume, i.e. S(v) rep-
resents the power returned to the radar by scatterers with radial velocity be-
tween v and v+∆v, as shown in equation 1.29. The average radial velocity (V)
is the first moment of the normalized Doppler spectrum, and spectral width
is the square root of normalized second moment. Spectral width is a measure
of dispersion of velocities within the resolution volume. Unlike other radar
observables, average fall velocity has a monotonously decreasing vertical pro-
file (with increase in elevation) within the ML. Above ML, snow has average
fall velocity of 1-2 m/s; presence of crystalline ice, super cooled water and
air updrafts/downdrafts can affect the average fall velocity of snow. Towards
the end of 3rd stage of melting, hydrometeors smoothen causing decrease in
aerodynamic drag and slight increase in fall velocity. During the 4th stage of
melting, as hydrometeor melt fraction increases, its density increases and it as-
sumes more spherical shape (size decreases), which also aids to decrease aero-
dynamic drag and to increase fall velocity. As the largest hydrometeors melt
completely and become spherical rain drops, the average fall velocity reaches
a maximum. As the raindrops continue to fall, they might assume oblate shape
resulting in a slight decrease of the fall velocity to reach the terminal velocity
of 6-8 m/s. At low rainfall intensities raindrops are small and remain mostly
spherical and this decrease might be negligible, like in Fig. 3.2. Some ML de-
tection algorithms (like (Klaassen 1988)) use the altitude of maximum average
velocity as the bottom of ML. At the altitude of Zh peak, the average fall veloc-
ity is still close to fall velocity of snow. The Doppler velocity spectra is narrow
above and below ML, centered at terminal velocity of snow and rain respec-
tively. Within the melting layer, the spectral width broadens gradually with
decrease in ρhv, reaches maximum value at altitude with minimum ρhv, and it
contracts again with increase of ρhv.

3.5 Results

Here, we study the statistical properties of the melting layer based on the available
dataset of 42 rain events. We will seek to understand the dependence of ML pa-
rameters on altitude of the 0◦C isotherm, intensity of rainfall at ground and density
of snow. Being a standard hypothesis of 1D ML models (Hardaker et al. 1995), 1
to 1 correspondence of snowflake above ML to raindrop below ML is a question of
interest. The added value of Doppler and dual-polarimetric measurements with re-
spect to reflectivity measurements for the analysis of melting layer is also a subject
of interest in this study.
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3.5.1 ML boundaries and vertical organization of the ML

Let us first consider the altitudinal dimension of ML characteristic points. Our ex-
perience with the ML detection algorithm indicates that ρhv peak is the most con-
sistently identified signature, and we expect it to be in between altitudes of Zh peak
and Zdr peak. Figure 3.3 shows the probability distribution functions (pdf) of dif-
ferent distances between radar signatures, i.e. top, peak and bottom of Zh, Zdr and
ρhv, with respect to the ρhv peak altitude, computed over the entire dataset of 980
profiles; a number of statistics (mean, standard deviation and quantiles of these dis-
tributions) are listed in Table 3.2.

FIGURE 3.3: Pdfs of distances (binned with width of 50 m) of different radar signatures
in ML with respect to ρhv peak altitude

We note that the pdfs of Zh and Zdr peak altitudes are quite narrow. The mean
distance between ρhv peak and Zdr peak is around 30 m, while the average distance
between ρhv peak and Zh peak is around 90 m. The distributions of the altitudes of
the top and bottom are flatter compared to that of the peaks. The vertical profile
of ρhv in ML is symmetric, by construction, with top and bottom at 225 m from the
peak value. Zh top and ρhv bottom are the altitudes furthest from ρhv peak. Study
of ML microphysics in section 3.4 shows that Zh is the first radar observation to
change significantly when the particles are still in early stages of melting. So like
Fabry and Zawadzki (1995) we assume that Zh top coincides with 0◦C isotherm. We
also observe that ρhv bottom and max(W) occur at similar altitudes in Fig. 3.2, both
of which signify the end of melting process. So, in this study we will refer Zh.alt.top
as ML top and ρhv.alt.bot as ML bottom. Hence, ML width = Zh.alt.top - ρhv.alt.bot.
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In our observation (Table 3.2), the mean ML width is 609 m; Q10 and Q90 of ML
width are 450 m and 780 m respectively.

TABLE 3.2: Statistics of ML altitudes in terms of mean, standard devia-
tion and quantiles

units mean Std.Dev Q10 Q25 Q50 Q75 Q90

Zh.alt.top [m] 2041 450 1411 1621 2071 2311 2671
Zh.alt.t2p [m] 265 80 180 210 240 300 360
Zh.alt.p2b [m] 268 81 180 210 240 300 360
Zdr.alt.t2p [m] 274 87 180 210 270 330 390
Zdr.alt.p2b [m] 208 57 150 180 180 240 270
ρhv.alt.t2p [m] 254 76 180 210 240 270 330
ρhv.alt.p2b [m] 254 76 180 210 240 270 330
Zh.alt.peak - ρhv.alt.peak [m] 90.2 66.1 30 60 90 120 150
ρhv.alt.peak - Zdr.alt.peak [m] 30 48 0 30 30 30 60
ML width [m] 609 162 450 510 600 690 780

3.5.2 Statistics of ML characteristic values

Table 3.3 presents the statistics of the reflectivity and polarimetric values and Fig.
3.4 displays normalized pdfs of some of these variables. As a first guess, we con-
sidered the Marshal-Palmer relationship (R = (Zh bot / 200)1/1.6 with Zh bot in
mm6 m−3) as an estimate of rainrate (R in mm h−1) below the ML. Vsnow and Vrain
are hydrometeors’ apparent mean fall velocity in snow (60 m above ML top) and
rain (100 m below ML bottom) respectively.

TABLE 3.3: Statistics of ML characteristic values

(see Appendix A.1 for the definitions of pseudo-variables)
units mean Std.Dev Q10 Q25 Q50 Q75 Q90

Zh.val.bot [dBZ] 24.19 4.64 18.07 20.85 24.59 27.38 29.89

Zh.val.t2p [dBZ] 8.97 1.80 6.70 7.87 9.13 10.19 11.15

Zh.val.p2b [dBZ] 6.37 1.69 4.14 5.49 6.56 7.38 8.13

Zdr.val.peak [dB] 0.63 0.61 -0.08 0.2 0.57 0.99 1.49

Zdr.val.t2p [dB] 1.24 0.41 0.82 0.99 1.18 1.4 1.8

Zdr.val.p2b [dB] 1.51 0.52 0.96 1.15 1.4 1.8 2.25

ρhv.val.peak [-] 0.85 0.05 0.79 0.83 0.87 0.89 0.9

Rainrate [mm/hr] 1.45 1.04 0.48 0.72 1.24 1.85 2.66

Vsnow [m/s] 1.6 0.75 0.85 1.28 1.56 1.91 2.37

Vrain [m/s] 5.92 1.2 4.46 5.24 6.01 6.73 7.23
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Table 3.3 shows that the events considered in this study have a rather limited
range of rainrate values, 0.48 mm h−1 at 10% quantile, 2.66 mm h−1 at 90% quantile
and a maxima of 8.47 mm h−1 . This is mostly due to the difficulties in identifying
ML during convective events, often associated with high rainfall rates, as they have
high horizontal variability. Figure 3.4 shows that the variables of interest are gener-
ally monomodal with limited skewness. This is why various pdf quantiles are listed
in Table 3.3. Both the altitude and value statistics (Tables 3.2 and 3.3) are in over-
all agreement with similar X-band radar observations (Wolfensberger et al. 2016)
of ML made at Davos and Ardeche, except the mean ML width which is wider in
our observations, possibily a result of different estimation technique between two
studies.

(A) ML width [m] (B) Zh.val.bot [dBZ] (C) Zh.val.t2p [dBZ]

(D) ρhv.val.peak (E) Zdr.val.p2b [dB] (F) Mean Fall velocities [m/s]

FIGURE 3.4: Pdf plots of some ML characteristic values; dotted red lines indicated the
mean value. Limits of the plots are set at mean ± 2.5 * standard deviation

The correlation matrix of the ML descriptors is shown in Fig. 3.5. Due to the
limited skewness of their individual distributions and the likely non-linear relation-
ships between pairs of them, we have computed the Spearman’s rank correlation
coefficient, more relevant for monotonic non-linear relationships than the classical
Pearson’s linear correlation coefficient. Zh top, Zh bot, Zh peak and R show high cor-
relation with each other. The correlation coefficient of 1 between Z bot and R results
simply from the power-law transformation (deterministic and monotonic) applied.
This high level of correlation is to be expected as the size and concentration of icy
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hydrometeors above ML are the common factors controlling these variables. Inter-
estingly, the ρhv peak value correlates also significantly with Zh top, Zh bot, Zh peak
and R. We note that it correlates more with Zh peak than with Zh top or Zh bot. This
confirms that Zh peak is more sensitive to (presence of) large particles than to the
number concentration. In addition, we note that the Zdr peak value is significantly
correlated with ρhv peak value (which is also sensitive to particle orientation) and
to a lesser extent to the reflectivity and rainrate descriptors. ML width correlates
more with the reflectivity variables than with the polarimetric ones. Vsnow is es-
sentially uncorrelated to all the other variables while Vrain is more correlated with
the reflectivity and rainrate variables than with the polarimetric ones.

FIGURE 3.5: Spearman’s Correlation Coefficient

3.5.3 Evolution of ML descriptors with rainfall intensity

During the events under study, rainfall in Grenoble valley has a slightly right skewed
distribution with mean at 1.45 mm h−1 and standard deviation of 1.04 mm h−1. As
noted previously Zh top, Zh bot and Zh peak show high correlation with each other.
Inspired by Fig 10 of (Fabry and Zawadzki 1995) we examine the relationships be-
tween Zh bot and three descriptors of the reflectivity profile: Bright Band (BB) width
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(altitude difference between Zh top and Zh bot), Zh top and Zh peak in Fig. 3.6. As
observed in (Fabry and Zawadzki 1995) the BB width increases slowly till the Zh bot
of 21 dBZ, beyond which the increase is rapid. Till 21 dBZ (Table 3.4), Zh.alt.p2b is
bigger than Zh.alt.t2p, after which the former increases faster than the latter. Our
explanation is as follows: at higher rainfall intensities there is higher probability of
irregular shapes and aggregation above ML, resulting in particles with big concavi-
ties. When the ice particles start to melt, it takes longer to fill these concavities before
a thin shell of liquid water can form around the biggest particles (Zh peak), followed
by longer melting period (stage 4) for larger particles.

Another observation in Fig. 3.6 and Table 3.4 is the increase in Zh.val.t2p and
decrease in Zh.val.p2b with increase in reflectivity below the ML. It can be attributed
to increase in particle size with increase in rainfall; another possible contribution
is from microwave attenuation at higher rainfall intensities as raw data is used in
this study i.e. without attenuation correction. Most models for vertical profiles of
equivalent reflectivity (using |Kw|2 of liquid phase for whole profile), assume that
one snow particle results in one rain drop; this assumption seems to be refuted
above 21 dBZ as well.

FIGURE 3.6: Intensity effect on the "Bright Band": Mean values of Zh
top, Zh peak and Zh bot calculated for vertical profiles at Zh bot classes

of 3n dBZ. Heights of each profiles are normalized by Zh.alt.top.
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TABLE 3.4: Summary of intensity effect

(see Appendix A.1 for the definitions of pseudo-variables)
Zh

val.top

Zh

val.t2p

Zh

val.p2b

BB

width

Zh

alt.t2p

Zh

alt.p2b

[dBZ] [dBZ] [dBZ] [m] [m] [m]

15 7 7 410 194 216

18 9 7 448 219 229

21 8 7 474 228 246

24 9 7 528 267 261

27 9 6 570 284 286

30 10 6 634 334 300

33 11 5 623 345 278

36 10 5 750 405 345

As further illustrations of the correlation matrix results in Fig. 3.5 for polarimet-
ric and Doppler variables, the evolution of ρhv peak value, the differential reflectiv-
ity enhancement on top of the profile (Zdr.val.t2p) and the Doppler mean velocity
in rain (Vrain) as a function of R is displayed in Fig. 3.7. The evolution of the ML
width, a priori slightly different from the BB width, is displayed as well as a func-
tion of R. Rainrates are divided into 7 classes, and mean intensities of each class are
the X-labels. In each class, the distribution of the considered variable is presented
in the form of box plots. As expected, the relationships are essentially non-linear.
We underline that the upper two rainrate classes have low number of values, thus
diminishing the significance of the trends observed there. Let us recall that with
increase in intensity we expect increase in concentration, size, coalescence and in-
creased diversity in shape/orientation of icy hydrometeors above the ML. With in-
crease in number concentration and size of hydrometeors, we expect wider ML (Fig.
3.7d) as more latent heat is required to melt large number of ice particles. Bigger par-
ticles size also means higher fall velocity (Fig. 3.7c) and longer melting time, both
of which resulting in the ML widening. Terminal velocity of rain drops depends
on size, shape and mass of raindrops, and the density of air. At low rain intensity
(drizzle), particles are smaller, resulting in lower terminal velocity. Correlation ma-
trix [Fig. 3.5] as well shows considerably high correlation of both fall velocity and
ML width with rainrate. With increase in diversity of shape, size and orientation of
icy hydrometeors, we expect increase in Zdr.val.t2p within ML with increase in rain-
fall intensity. In Fig. 3.7b we can observe that the Zdr enhancement almost doubles
(from 1.1 dB to 1.9 dB) as rainfall intensity increases from 0.6 to 5.2 mm h−1. Fi-
nally, increase in diversity in shape, size, orientation, fall speed of melting particles
within the pulse volume results in significant decrease of ρhv peak value as rainrate
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increases (Fig. 3.7a). At low rain intensity, ρhv peak value is quite high around 0.88
for rain-rate of 0.6 mm h−1; it drops to 0.78 around rainfall intensity of 4.5 mm h−1. A
larger dataset would be necessary to determine if the non-monotonic trends visible
for ρhv peak value and ML width for the highest rainrates are significant.

(A) ρhv.val.peak vs rainfall intensity [mm h−1] (B) Zdr.val.t2p [dBZ] vs rainfall intensity
[mm h−1]

(C) Vrain [m s−1] vs rainfall intensity [mm h−1] (D) ML width [m] vs rainfall intensity
[mm h−1]

FIGURE 3.7: Box-plots of different ML descriptors as a function of the rainrate. For each
rainrate class, upper and lower hinges corresponds to 25 and 75 percentiles respectively;
black line inside the box is the median and red cross is the y-mean. The number of

observations in each interval is shown below corresponding x-label.
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3.5.4 Evolution of ML characteristic values as a function of both

rainrate and altitude of the 0◦C isotherm

In this sub-section, we detail the correlation structure of the ML descriptors as a
function of the rainrate, considered as the most natural variable for describing the
intensity of the phenomenon of interest (precipitation), and the ML top altitude, as
a proxy for the 0◦C isotherm altitude.

Selection of physical explanatory variables helps to associate different ML radar
signatures to different physical processes occurring in the ML. 0◦C altitude and rain-
fall intensity at ground are the two most trivial and easy to investigate explanatory
variables. Temperature profile is another possible explanatory variable for rates of
melting process, most probably associated with width of ρhv decrease and vertical
distance between Zh peak value and ρhv peak value. Hydrometeors types (distri-
bution and shape) are related to Zdr peak value and ρhv peak value. Hydrometeor
density can be another explanatory variable associated with Vsnow and the reflec-
tivity enhancement on top of the profile (Zh.val.t2p). In this sub-section, we limit
ourselves to study the relationship of some of the ML descriptors with the rainrate
and the 0◦C isotherm altitude, using R and ML top derived from the radar dataset
available as proxies. Investigations of other explanatory variables could be possible
and desirable, e.g. with high-resolution NWP model outputs; this will be the subject
of future research.

Using partial correlation coefficients in Fig. 3.5, we computed the total correla-
tion coefficients r1.23 (Appendix A.1.1) of different ML characteristic values as ex-
plained variables (index 1) as a function of the two explanatory variables (ML top
and R). The most interesting results are displayed in Table 3.5. First we note that
ML top is poorly correlated with R in correlation matrix 3.5 (r23 = 0.18). This is de-
sirable, as the addition of second explanatory variable promises new information,
potentially adding value in the explanation of variable of interest with respect to
the first explanatory variable. The added value can be quantified by comparing the
total correlation coefficient r1.23 with the absolute value of highest partial correla-
tion coefficient r12 or r13. We found that there is actually little or no added-value
with the second variable most of the time, e.g. for Zh.val.t2p in Table 3.5, but also
for Zh top value, Vsnow and Vrain. However, there is a significant improvement
on ρhv and Zdr observations, i.e. +6 points improvement in explanation of ρhv peak
and +12 points improvement in explanation of Zdr enhancement at the bottom of
the profile (Zdr.val.p2b), +11 points improvement in explanation of the altitude dif-
ference between the ρhv peak and the Zdr peak values. As visible in Table 3.5 and
eq A.1.1, such gains in correlation are significant when r12 and r13 are of opposite
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sign, r23 being positive. The physical interpretation of such statistics is not trivial,
but they do draw our attention towards the complex interplay of melting processes
on polarimetric radar observables.

TABLE 3.5: Spearman’s multiple regression with two explanatory vari-
ables: var 1 is the variable of interest, var2 and var3 are explanatory
variables, ML top and R, respectively. ’r’ is the Spearman’s correlation

coefficient between variables represented by subscripts

var1 var2 var3 r12 r13 r23 r1.23
Zh.val.t2p ML top R 0.13 0.52 0.18 0.52
ρhv peak ML top R 0.16 -0.58 0.18 0.64

Zdr.val.p2b ML top R -0.28 0.57 0.18 0.69
Zh.alt.peak - ρhv.alt.peak ML top R -0.24 0.43 0.18 0.54

3.5.5 Density Effect on bright band

The study (Zawadzki et al. 2005) suggests that, for comparable precipitation rates,
snow density affects the brightband intensity i.e. high density hydrometeors result
in lower reflectivity peak due higher falling velocities and smaller particle sizes.
Faster falling hydrometeors lead to lower number concentration which results in
decrease of reflectivity. Larger icy hydrometeors, when covered with thin layer of
water towards the end of second stage of melting (section 3.4), appear as large par-
ticles with high dielectric constant to a radar, effectively produces strong reflectiv-
ity signature. Conversely, smaller particles lead to smaller reflectivity peak. The
co-existence of supercooled cloud water with snow above ML, leading to riming
and change in snow densities. For stratiform precipitation with a melting layer, the
authors propose high density hydrometeors above ML can result in smaller BB en-
hancement. Faster falling hydrometeors lead to lower number concentration and a
decrease in reflectivity.

In order to check if this effect is visible in our dataset, in Figure 3.8 we examine
the effect of snow density on BB enhancement. As most of the events under study
are stratiform events with max rainfall intensity of 8.47 mm h−1, we do not have
significant number of observations at the last interval i.e. mean(Vsnow) > 2.3 m s−1

as seen in Fig. 3.8. For a small class of reflectivity values below ML, [25 - 27 dBZ], we
observe a decrease in BB enhancement of 1 dBZ with the increase in snow velocity
/ density.
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FIGURE 3.8: Density effect: BB enhancement vs Wsnow for comparable
precipitation rates. Left plot shows the density effect for Zh bot in the
[25-27 dBZ] range. X-labels show the mean value of fall velocity in
the given interval and number of observations below that. Red crosses

show the mean value of BB enhancement in each box.

3.5.6 Information Content of the ML dataset

In order to investigate more deeply the information content of the ML dataset avail-
able, we have implemented a number of statistical techniques ranging from Princi-
pal Component Analysis (PCA) to more complex clustering techniques, e.g. Koho-
nen’s self-organizing maps. Herein we simply present results from the PCA tech-
nique. We remind that PCA is a statistical procedure that uses an orthogonal trans-
formation to convert a set of observations of possibly correlated variables into a set
of values of linearly uncorrelated variables called principal components (PCs). To
perform PCA analysis we assume the variables to have quasi-normal PDFs, which
is not fully satisfied in this dataset as seen in Fig. 3.4. By ordering the principal
components, it is possible to reduce the dimensionality of the dataset if first few
PCs retain most of the variance present in all of the original dataset. Here, we have
selected 18 variables (x-labels of Fig. 3.9b), assumed to be representative of the total
variance present in vertical profiles of Zh, Zdr, ρhv and W within the ML. Figure 3.9a
shows that the first two PCs only explain about 50% of the total variance and that
we need at least 9 PCs to explain 90% of the dataset variance. Lack of dominance
of a few PCs is an indication that the dataset is quite rich and that polarimetric and
Doppler variables bring significant information with respect to reflectivity data.

This is also evidenced with a further analysis of the contribution of each vari-
able in the explanation of the total variance of the dataset. For this purpose, we
simply computed the square of the total correlation coefficient (explained variance)
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of each variable with all the (independent) PCs. Figure 3.9b shows that the top 5
variables (when ordered) explain 20-24% of the total variance of the system and that
the polarimetric variables (Zdr and ρhv) rank high. We expected Doppler informa-
tion (mean fall velocities) to rank high as well, but this is not the case, especially
for Vsnow. Maybe some other Doppler-derived variables, e.g. the velocity gradient
within the ML, should have been considered with a higher explanatory power.

(A) Total Variance: PCs Contribution (B) Total Variance: Variable Contribution

FIGURE 3.9: Principle Component Analysis: Explanation of total vari-
ance of the dataset

3.6 Discussion and Conclusions

The study presented here is an exploratory analysis within a broader project aimed
at improving rain and snow quantitative estimation over high-mountain terrains,
i.e. the study site is a large alpine valley in the French Alps. We studied the
vertical variability of precipitation in the presence of melting layer through quasi-
vertical profiles of polarimetric variables (Zh, Zv, Zdr and ρhv) and vertical profiles
of Doppler spectra with high resolution (30 m in radial for the XPORT radar; 100
m for the MRR radar). We have selected an elevation angle of 25◦ for establishing
the polarimetric QVPs of the XPORT radar. By choosing such a relatively low eleva-
tion angle, we were able to capture interesting radar signatures of the heterogeneity
of hydrometeors between their horizontal and vertical dimensions (Ryzhkov et al.
2016). On the other hand, for such an elevation angle, the horizontal variability of
precipitation certainly influences the radar measurements. This was mitigated in
our statistical analysis by discarding QVPs with high spatial variability related for
instance to the precipitation system entering or leaving the valley or to highly con-
vective situations. We used for this purpose a visual inspection of the ρhv PPI raster
plots.
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It is well established that the melting processes in the atmosphere give rise to en-
hancements in measurable radar parameters, which are precipitation and frequency
dependent (Vivekanandan et al. 1993). Efforts to understand the effects of melt-
ing particles on electromagnetic waves and consequent uncertainties in the surface-
rainfall estimation have resulted in several melting layer detection algorithms and
definitions of ML boundaries, each with their advantages and limitations. We have
built a ML detection algorithm that detects the top, peak and the bottom of the en-
hancements in vertical profiles of Zh, Zv, Zdr and ρhv, and records the concurrent
altitudes and values. We focused on stratiform events where ML occurs at rather
low altitudes, e.g. within/below the Météo-France MOUC radar elevation. After
an intensive review of the literature, we summarized the melting processes of an
individual hydrometeor within the melting layer into four distinct stages. Then,
we attributed different stages of the melting of the distribution of hydrometeors to
the enhancements of the vertical profiles of radar observations. We observed that
Zh peak occurs at higher altitude compared to ρhv peak while the Zdr peak occurs
lower; this observation is consistent with the melting processes of the largest par-
ticles, which have a major influence on the peak values. Falling icy hydrometeors
start to melt when they cross the 0 ◦C isotherm. In radar only observation, Zh top
is the closest indicator of the 0 ◦C isotherm altitude. So, we consider the altitude of
Zh top to be the ML top. At the end of the melting process, as the largest particles
melt completely; they assume the smallest possible volume due to surface tension
and they attain maximum velocity. We observe that the altitude of max(W) from
MRR corresponds well with the altitude of ρhv bottom. We have considered the alti-
tude of ρhv bottom to be ML bottom. The subsequent statistical analysis of different
ML descriptors provides results consistent with observations made in similar cli-
matological context. It also demonstrates that the polarimetric information brings a
strong added-value about the characterization of the ML processes with respect to
reflectivity measurements alone.

Although robust in its current form, the ML detection algorithm can be im-
proved: in particular, we observed that ρhv peak is the most consistently identified
parameter and we may consider this peak altitude as a reference to limit the altitude
search ranges for each variable, as well as to initiate the algorithm and control the
consistency of identifications from one time step to the next. Another area for im-
provement concerns the characterization and filtering of the variability of the quasi-
vertical profiles associated with the horizontal variability of precipitation, e.g. when
a precipitation system is entering or leaving the detection domain or in case of con-
vective precipitation. This could be achieved with sectoral identifications based on
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detection of the horizontal precipitation intermittency. Although the impact of at-
tenuation at X-band on radar observations is thought to be limited due to the short
distances, high-elevation angles and the limited rainrate range considered in the
present study, the pre-processing of radar observations for attenuation is certainly
desirable prior to the ML identification algorithm implementation.
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Chapter 4

PIA estimation using MRT

4.1 Introduction

Reliable QPE remains a challenge in the mountainous region. A well maintained
and well calibrated network of raingauges provides the most direct measurements
of precipitation intensities and accumulations in the liquid phase. It is much more
problematic for solid and melting precipitation. In orographically complex terrain,
the distribution of the raingauges is scarce while the precipitation often has high
spatial and temporal variability both in intensity and thermodynamic phase. Wind
introduces further uncertainties in gauge measurements, especially in the solid pre-
cipitation (Kochendorfer et al. 2017). Although the rain-gauge measurements are
assumed as the ground-truth, they only offer the partial sampling of the rain-field.
Weather radar are able to provide a high resolution measurements both in space and
time.

Operational weather radar networks are designed for long-range coverage through
heavy precipitation without substantial attenuation losses; conventionally they op-
erate at C- or S- band wavelengths with range of typically 200 km in Europe. The
radar QPE in mountainous regions suffers from beam blockage, ground clutter and
harsh operating conditions. It is limited by beam blockage when the radars are too
close to a mountain range and by the sampling resolution volume size when the
radars are long way away. This impedes the ability of these systems to identify and
detect rapidly changing fine-scale weather dynamics in the mountainous regions.
Arrays of shorter wavelength dual polarimetric X-band radars provide promising
solutions to these limitations and are successfully employed to fill gaps in the radar
networks (McLaughlin et al. 2009; Van de Beek et al. 2010; Lengfeld et al. 2014).
Higher frequency (∼ 10 GHz at X- compared to ∼ 3 GHz at S- and ∼ 6 GHz at C-
band) translates to smaller antenna and lower power i.e. lower cost and potentially
mobile systems. Its is also less sensitive to ground clutter. Despite its advantages,
the X-band radar suffers from significant power attenuation in heavy rain and in the
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melting layer of precipitation (Atlas and Banks 1951; Bringi et al. 1990; Delrieu et al.
2000; Willie et al. 2006) which needs to be corrected to obtain a reliable radar QPE.

The accurate estimation of precipitation at any range depends on the ability to
correct radar return signal for attenuation. Hitschfeld and Bordan (1954) and Atlas
and Ulbrich (1977) evidenced the attenuation problem early and Hitschfeld-Bordan
proposed a straightforward solution. The Hitschfeld-Bordan method, however, is
known to be unstable and very sensitive to radar calibration errors. Attenuated
frequencies (X- and K-band) were generally abandoned in 1960s for meteorological
applications. The launch of spaceborne and airborne radars 1980s renewed interest
in higher frequencies due to the constraints in the antenna size on these platforms. A
significant progress has been in radar software, signal processing and data analysis
methods in last decades. Similarly, urban hydrology applications requiring short
range high resolution observation further contributed in advancement of land based
high frequency radars (Thorndahl et al. 2017).

Experiments and theoretical studies show that the path-integrated or path-averaged
rain rates can be determined by the direct measurement of attenuation. Atlas and
Ulbrich (1977) showed that the attenuation is linearly related to rainfall rate at 0.9
cm wavelength using the direct measurements of total attenuation. Meneghini et
al. (1983) proposed the surface reference technique (SRT) for spaceborne radar con-
figuration. The SRT uses the surface scattering properties to infer path integrated
attenuation (PIA) through precipitation. It provides the estimate of PIA using the
difference in surface returns in presence and absence of rain (Meneghini et al. 1983,
2000, 2021). Delrieu et al. (1997) applied similar techniques in the ground based at-
tenuated radar systems (X-band) operating in the mountainous environment. The
siting of the radar and scan strategies provided strong mountain returns at low ele-
vation angles scans for PIA estimation, and the technique was named as "mountain
reference technique" (MRT). Furthermore, the study of PIA constraints equation pro-
vided information on parametrization of radar data processing and the comparison
of mountain return PIA to those calculated using the reflectivity profiles yielded a
correction term compensating for the combined effects of radar calibration error and
error on multiplicative coefficient of the specific attenuation vs reflectivity (A-Z) re-
lation. The accuracy of PIA estimation using MRT is further discussed in Delrieu et
al. (1999) and the use of MRT for radar self-calibration in hilly terrain are discussed
in Serrar et al. (2000).

This chapter aims to build on these previous studies on the MRT and analyse
long term stability of the mountain targets and estimated PIAs in the context of the
RadAlp experiment.
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4.2 Basic equations for PIA estimation using MRT

The measured rain reflectivity profile Zm(r)[mm6 m−3] can be derived from the backscat-
tered power profile P(r) using the radar equation:

P(r) =
C Zm(r)

r2 (4.1)

where, r is the range of observation, and C is the radar constant (Doviak and Zrnić
1993). The two common sources of error affecting the measured reflectivity are: (i) a
radar miscalibration denoted by dC, and (ii) the effect of the attenuation by rainfall.
Hence, the following relation can be written to relate the true reflectivity Z(r) and
the measured reflectivity:

Zm(r) = Z(r) AF(r) dC (4.2)

where, AF(r) is the attenuation factor at range r. For two way propagation, AF(r)
is defined as the twice the integral of A between first stable gate range (r0) and the
range(r). Marzoug and Amayenc (1994) have defined it as:

AF(r) = AF(r0) exp[−0.46
∫ r

r0

A(s) ds] (4.3)

where, A is the specific attenuation coefficient (dB km−1) that depends on the wave-
length, and size distribution and temperature of the raindrops, and AF(r0) is the
on-site attenuation factor. Onsite attenuation is composed mainly of radome atten-
uation and blind range (0, r0) attenuation. Path integrated attenuation PIA (dB) is
the dB-transformed attenuation factor, i.e

PIA(r) = −10 logAF(r) (4.4)

Note that since AF(r) ranges between 1 (no attenuation) and 0 (full attenuation),
the PIA subsequently ranges between 0 (no attenuation) to +∞ (full attenuation).

In spaceborne configuration, Meneghini et al. (1983) showed that the PIA can
be calculated as the ratios of surface returns (i) at a given location in the presence
and absence of rainfall, or (ii) at the same time within or outside the rain area. In
the present context, the spatial variability of precipitation restricts us to the former
solution. For a given mountain target at range (rM), the ratios of the measured
reflectivity in rain (Zrain

m ) and dry measured reflectivity (Zdry
m ) can be expressed using

equation 4.2 as:
Zrain

m (rM)

Zdry
m (rM)

=
Zrain(rM) AFrain(rM) dC
Zdry(rM) AFdry(rM) dC

(4.5)
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The radar calibration error dC is considered to be constant in time, i.e. transmitter-
receiver unit is assumed to be stable within the precipitation event. Similar, the
attenuation factor during the dry event is 1, and the real reflectivity from the moun-
tain return targets are considered remain constant over time i.e. assume the only
source of attenuation is the rain between the radar and the mountain target.

AF(rM) =
Zrain

m (rM)

Zdry
m (rM)

(4.6)

From 4.4 and 4.6, PIA[dB] for a mountain reference target at range rM can be written
as:

PIA(rM) = −10 log
Zrain

m (rM)

Zdry
m (rM)

PIA(rM) = 10 logZdry
m (rM)− 10 logZrain

m (rM)

The reflectivity can be expressed in dB as dBZ = 10 logZ. And, the PIA [dB] for a
mountain target at range rM can be written as:

PIA(rM)[dB] = Zdry
m (rM) [dBZ]− Zrain

m (rM) [dBZ] (4.7)

MRT gives a bulk estimation of on-site and along-path attenuation.

PIA(rM)[dB] = PIA(r0) + PIA(r0, rM)

= PIA0 + PIA(r0, rM)
(4.8)

where, PIA0 is the on-site attenuation.

4.3 Mountain return targets

The estimation of the PIA using equation 4.7 needs a reference target for which the
backscattering power can be measured in absence of precipitation i.e. dry periods.
The echoes from the mountains surrounding a weather radar in the hilly terrain,
provide stable and strong signal in the dry periods. In the RadAlp experiment, we
define the mountain targets as the returns with reflectivity Zm greater than 45 dB
in long-term observation of X-band radars (for both XPORT and MOUC) in a given
scan volume. The specific value was derived from the experience of the RadAlp
team, with the help of digital terrain maps (DEM) and long-term observation of the
radar returns. We are using the lowest elevation angle of the MOUC radar to get the
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strongest (otherwise undesired) signal from the mountains. As these mountain tar-
gets are embedded in a complex topology, the strong echo from a mountain target is
often surrounded by less strong ground clutter where the radar observables are of-
ten not the reflection of hydrometeor characteristics. We define dry-weather echoes
greater than 25 dBZ in the long-term observation to be ground clutter. Ground clut-
ter, in a range profile with precipitation, is characterized by the sudden decrease
in ρhv signal below 0.85 and significant oscillation in Ψdp signal. The choice of ρhv

threshold is based on long-term observation of ML in Grenoble, as summarized in
table 3.3. We observe that the dry periods are dominant in long-term observations.

FIGURE 4.1: Mountain echoes seen in the long-term observation of 0◦ PPI scan of MOUC
radar. Mountain targets (Zm ≥ 45) are most of the time surrounded by smaller ground
clutter (Zm ≥ 25). MOUC radar sits in the center marked by a red cross. Concentric grey
lines are placed at a 5 km radius expansion. IGE site containing XPORT and MRR radar sits
around 11km from MOUC radar in the northeast, marked by another red cross. The raster

is projected in the Extended Lambert II spatial coordinate system.

The distribution of these strong-permanent echoes at a radius of 40 km around
MOUC radar, as seen in long-term observation of 0◦ PPI scans are shown in Fig
4.1. As the radar is placed on the top of a mountain, there is no significant issues
of beam blockage from trees, buildings or towers. The plot is based on the mean
Zm map around MOUC radar obtained by aggregating all 87 days of data. Echoes
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from the Chartreuse mountains are in the northeast direction, Belledone mountains
in east, Taillefer mountains in the southeast, and Vercors mountains’ echoes are in
the southwest. Mountain targets are defined as the compact groups of gates with
dry-weather values greater than 45 dBZ. The mountain returns in successive radials
are grouped together to form a target with significant surface area, which increases
the overall stability of the PIA estimates.

Limits are introduced to the size of the targets, both in azimuth and gate, to
reduce errors from variability in the precipitation field. Large continuous targets
are broken into separate targets. The mountain returns are grouped into 20 targets,
which hereinafter will be referred to as "mountain return targets" or simply "targets".
In practice, the search of the mountain returns was limited to 30 km from MOUC
radar, to minimize the effects of beam broadening. While most ground clutter (25
- 45 dBZ) surround the mountain target, some can be seen in between radar and
the targets. For a given radial, the observations in the gates with the "in-between"
ground clutter were set to NA during data processing.

The 25 dBZ threshold used to define ground clutter is equivalent to about 1 mm h−1

of rain. The rain greater than 1 mm h−1 will not have significant impact by ground
clutter less than 25 dBZ due to the additivity of powers in Watt. Similarly, 45 dBZ,
threshold of mountain target, is equivalent to 40 - 50 mm h−1 of rain, and the rain
less than that will not impact first the reflectivity of the mountain target, and the
subsequent PIA estimation.

Figure 4.2 shows the spatial distribution of mountain targets with MOUC radar
in its center. The mountain returns are grouped together (black border) with infor-
mation about the mountain targets and surrounding ground clutter. The mountain
targets are between 40◦ and 200◦ degree azimuth, at the range of 15 to 29 km from
the MOUC radar site. The target area range from 1 km2 to 3.8 km2. Considering the
average reflectivity of 87 days dataset, all the targets have reflectivity greater that 45
dBZ, ranging form 46.6 dBZ to 51 dBZ. Target 20 is the smallest and closest target,
target 12 is the largest one, and target 1 is the furthest from MOUC radar. The char-
acteristics of the targets are detailed in Table 4.1. The range rM(MRT) is the distance
between radar and center of the target.
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TABLE 4.1: Characteristics of mountain return targets

Target ID # azimuth # gates azimuth range area Avg. Zh
mid(◦) (km) (km2) (dBZ)

1 5 13 40.25 28.6 2.00 47.44
2 6 11 43.25 24.5 1.45 49.27
3 4 11 76.25 27.0 1.60 47.34
4 5 18 78.25 26.3 2.55 47.52
5 4 11 82.25 23.7 1.40 48.66
6 6 15 84.75 22.1 1.78 48.75
7 7 27 87.75 21.9 3.18 48.68
8 5 26 90.75 22.6 3.16 48.28
9 7 28 94.25 20.9 3.15 48.67
10 7 31 98.75 19.9 3.33 48.37
11 7 18 102.25 19.1 1.85 48.13
12 9 26 106.75 23.9 3.35 50.95
13 9 25 111.25 23.9 3.22 48.82
14 10 29 116.25 24.3 3.80 50.08
15 7 24 121.25 22.4 2.90 47.54
16 5 12 124.25 22.9 1.48 48.21
17 8 21 127.75 27.9 3.15 49.05
18 5 9 137.25 24.9 1.21 47.42
19 6 14 140.25 25.0 1.88 48.13
20 5 11 199.75 15.5 0.92 46.64
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(A) Distribution of mountain return targets

(B) Focus on 20 mountain return targets

FIGURE 4.2: Mountain return targets for 0◦ PPI scan of MOUC radar. In polar coordinates,
radial lines are spaced at every 10◦ azimuth, and concentric lines are spaced at 10 gates (2.4
km). 0◦ azimuth is the geographic north. The mountain return targets are mapped in red,
and the ground clutter surrounding them in gold. Target ids are annotated in blue. Top sub-
plot shows the distribution of targets in 0◦ PPI scan of MOUC radar. The bottom sub-plot
magnifies in the sector containing 20 targets. Targets 1 and 2 are located in the Chartreuse

massif, 3-11 in the Belledone massif, 12-19 in Taillefer massif and 20 in the Vercors.
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4.4 PIA Estimation

During precipitation, the hydrometeors between the radar and a mountain target
attenuate the radar signal. Equation 4.7 shows that the dry weather signal from
the mountain target can be utilized as a reference to calculate the total attenuation,
also called path integrated attenuation. For a mountain target, PIA between the
radar and the target can be formulated as the difference in reflectivities of mountain
targets in presence (wet) and absence (dry) of precipitation.

PIA = Zdry
h − Zrain

h

where, the reflectivities are in dBZ and the PIA is in dB.
After defining the mountain targets, next step is to establish the dry-weather

baseline reflectivity Zdry
m for a given target. One possible method to estimate Zdry

m

is to utilize the long-term reflectivity averages for each target. It is however impor-
tant to note that the strength of mountain return depends on factors like vegetation,
snow cover, wetness of the rocks and also on the variations in the radar calibration.
It is possible that the strength of mountain echoes can vary between different sea-
sons and even during the event due to wetness or snow accumulation. As such, it is
preferred that the Zdry

m are recorded before and after each precipitation, i.e. in event
scale. The reference Zdry

m during precipitation is then estimated by interpolation be-
tween two dry weather periods. Finally, the difference in the measured returns (Zm)
and Zdry

m gives the estimate of PIA.
The different steps of PIA estimation using MRT is demonstrated in Fig 4.3 for

target 8 during 4-5 November 2017 event. First of all, to ensure the presence of sig-
nificant dry periods, a time series corresponding to the apparent reflectivity of the
mountain target for multiple days surrounding the events are taken from the MOUC
observation, shown in blue in the figure. 3 days of data are taken in this example. As
an indication of the presence/absence of precipitation, the mean measured reflectiv-
ity (attenuated) SZ between radar and the target is shown in grey. For example, if a
target has 4 radials and 100 range gates between radar and the target, the measured
reflectivity from all 400 gates are averaged.
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FIGURE 4.3: time series of PIA estimation: 4-5 November 2017 using MRT. Blue denotes
the apparent reflectivity Zm in the horizontal polarization of the mountain target, red line
is the "baseline" of Zdry

m . Grey line (SZ) is the path-averaged measured reflectivity between
r0 and rM i.e. a proxy of rainfall and its intensity between the radar and the target. Green
line is the PIA i.e the difference between red and blue lines. The vertical golden line marks
precipitation event for which ML data is available. SZ indicates the presence of precipitation
between radar and target, i.e. precipitation present when SZ is greater than threshold (12

dBZ) shown as dotted horizontal line.

Although based on the attenuated reflectivities, SZ provides an idea about the
strength of precipitation between radar and the mountain target. We empirically
use a threshold of SZ ≤ 12 dBZ to define a dry period. It roughly translates to
0.2 mm/hr or rainfall intensity using the Marshall-Palmer relationship (Marshall
and Palmer 1948). This threshold is shown as the dotted grey horizontal line in the
figure. Zdry

m (t) is calculated for each significant dry period as mean of that period,
red line in the figure. Standard deviation of Zdry

m time series, 1.3 dB in this example,
gives the stability of the dry echo of the mountain return target. The dotted red
envelop around the Zdry

m in dry segments is the 10th − 90th percentile range. For
other targets and events, the standard deviation ranges, mostly, between 1.25 and
1.56 dB. In between two dry periods, Zdry

m is estimated by inverse distance squared
interpolation. Zwet

m is simple the Zm during the wet period, i.e. shown in blue.
Difference of reflectivity during the dry and wet periods gives the PIA estimate,
shown in green in the figure.

Another example of PIA estimation is shown for the 3-4 January 2018. Figure 4.4
shows the characteristics of the ML for the event, observed by XPORT radar. Solid
blue and golden lines mark the altitude of ML top and bottom respectively. The
horizontal dotted black line marks the altitude of MOUC radar i.e. the center of the
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0◦ beam. In the beginning of the event, the MOUC radar is above the ML i.e in snow
regime. Between 01h00 and 04h00 the elevation of ML raises significantly and the
radar is mostly within the ML during this period. After 04:00, the ML continues to
rise slowly and the center of the MOUC 0◦ elevation angle beam is the rain regime.
The PIA estimation for target 10 of the corresponding event is shown in Fig 4.5,
vertical dotted golden lines mark the event boundaries shown in the ML time series.
Three clear dry periods used to estimate Zdry

m are marked by the envelops of dotted
red lines. In the snow regime, as expected, PIA is negligible. As the radar enters
the ML the PIA increases gradually with a peak around 03:00 which is also when
the ML width is maximum in relation the radar altitude i.e. radar is in the middle
of ML. And, as the ML continues to raise the PIA decreases slowly. In rain regime,
between 06:00 and 09:00, the PIA decreases slowly and is still significant.

FIGURE 4.4: XPORT ML time series: 3-4 January 2018. ML characteristics of the event ob-
served by XPORT radar. Regular golden and blue lines show ML bottom and top respec-
tively. Dotted gold and blue line show altitudes of ρhv peak and Zm peak respectively. Dotted
black line is the center of the 0◦ beam in a PPI scan, i.e. altitude of MOUC radar. ML layer is
below MOUC radar in the beginning of the event, between 01h00 and 05h00 the ML raises to
altitude above MOUC radar. The center of the radar beam is within the ML between 02h20

and 04h30.
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FIGURE 4.5: Another example of PIA estimation: 3-4 January 2018, a rather difficult case.
Description similar to Fig 4.3.

The ML identification for 1 May 2020 precipitation event is shown in Fig 4.6. The
characteristics of the ML has been determined with the MRR data, the XPORT radar
not being operational at this date. During this event the center of 0◦ PPI beam is
shown to be at/just above ML top. The radar beam widens with range, as most of
the targets are between 20-30 km away from the radar, so at rM, the beam (450-670
m vertical extent) is partially in the ML. Figure 4.7 shows time series for the the PIA
estimation using the Zm time series for 1-2 May 2020 for target 15. First observation
in Fig 4.7 is that there are 3 precipitation events with presence of ML within this 2
days window. This is a complex weather window with different wet periods where
the beginning and end of the dry/wet periods is difficult to separate. There is a sig-
nificant period of dry weather between second (EV2) and third (EV3) precipitation
events, and acts as a baseline of dry weather returns for all three events. Attempts
to estimate PIA at event scale could have resulted in systematic underestimation of
PIA. Another rather baffling observation is the unusually high PIAs for a radar in
snow regime, especially between events EV1 and EV2 despite having a period of
low gate averaged reflectivity (SZ). One possible explanation is the beam with in-
tegration in the vertical and the contamination by the ML, i.e. although the center
of the beam is the snow regime (at least during 1st event) closer to the radar, it gets
contaminated by the upper part of ML (located just below the beam center) as the
beam broadens further away from the radar.
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FIGURE 4.6: MRR ML time series: 1 May 2020. ML characteristics of the event observed by
MRR radar. Solid red and green lines show ML top and bottom respectively. Dotted blue
line shows altitude of the reflectivity peak. Dotted black line is the center of the 0◦ beam in
a PPI scan, i.e. altitude of MOUC radar. Throughout the event, the MOUC radar is in close

proximity of ML top.

FIGURE 4.7: PIA estimation: 1-4 May 2020. 3 ML events corresponding to 3 different wet pe-
riods are recorded by MRR radar in 2 days span, marked as EV1, EV2 and EV3. Description

similar to Fig 4.3.
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4.5 Conclusions

Mountain Reference Technique (MRT) provides a unique opportunity to have a di-
rect measurement of path integrated attenuation (PIA) using the stand alone radar
observations. In our implementation of the MRT, we have identified two main error
sources.

1. Time stability of the mountain returns
The instability may be due to (i) possible changes in the radar calibration,
(ii) modification of the mountain surface properties at long term (vegetation
changes) and shorter term (wetting of the surfaces, accumulation of snow or
melting snow on the ground). To cope with this problem we have imple-
mented a dry-weather baseline estimation technique based on estimation of
dry periods before, within and after each precipitation events. Dry weather
reference at each timestep of the wet period is obtained by inverse distance
squared interpolation of means of surrounding dry weather periods. The sta-
bility PIA is depicted by the stability of Zdry

m estimation. The probability den-
sity function (pdf) of Zdry

m , in particular the standard deviation SD(Zdry
h ), can

be used to determine the sensitivity of the PIA estimated using MRT, in other
words the minimum detectable PIA. For most events and targets the SD of Zdry

m

ranges between 1.25 and 1.56 dBZ. Setting PIA = 0 for Zdry − Zh ≤ 0 is a good
idea, similarly considering a minimal detectable PIA threshold of 1 dB is also
reasonable. The stability of PIA estimation, improves with increase in target
size (area), and the presence of significant dry weather spells before and after
the precipitation event, resulting in smaller SD(Zdry

h ).

2. Beam width integration in the vertical
For MOUC radar with a 3-dB beamwidth of 1.28◦, at 0◦ elevation angle, the
vertical extent of the beam is 223, 445 and 670 m at 10, 20 and 30 km respec-
tively. Most mountain targets are at distance of 20 to 30 km from the radar. An
example was shown with significant PIA when 0◦ elevation beam center was
just above the ML top, i.e. in snow regime, due to attenuation in the upper
part of the ML.

Delrieu et al. (1999), identified a third error source in case of the heavy rain falling
over the target itself, i.e. when the precipitation intensities exceed the dry weather
mountain returns. With the 45 dBZ threshold and stratiform events of interest, this
error source should not be significant in our study. It is also important to remind
that the MRT derived PIA estimate aggregates along path attenuation and on-site
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attenuation, the latter being essentially associated with water films over the radome.
More about the statistics of the obtained PIAs to come in chapter 6.
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Chapter 5

Differential phase shift and its
regularization

5.1 Introduction

The phase shift of electromagnetic (EM) wave depends on the dielectric constant
of the propagation medium. The dielectric constant of water is almost 80 times
higher than that of air, i.e. the wave propagates slower. EM wave travelling through
precipitation acquires larger phase shift compared to the wave travelling same dis-
tance through air. If the hydrometeor is non-spherical, like oblate rain drops which
are larger in horizontal dimension, H-polarization wave encounters more liquid
medium and slows relative to the V-polarization wave (Kumjian 2013). The result-
ing difference in phase shift between H and V polarization is known as the dif-
ferential propagation phase shift (Φdp). As such, it provides information on the
anisotropy of the hydrometeors along the beam path.

In a monostatic radar, the transmitter and receiver are co-located. The measured
differential phase shift is the cumulative difference in 2-way attenuation for hori-
zontal and vertical polarization in a pulse volume. The measured total differential
phase shift (Ψdp) is composed of backscattering and forward-scattering (or propa-
gation) components. A conceptual model of the measured differential phase shift
(Ψdp) can be expressed as

Ψdp(r0, r) = 2
∫ r

r0

Kdp(s)ds + δhv(r) = Φdp(r) + δhv(r) (5.1)

where Kdp [
◦ km−1] is the specific differential phase shift on propagation, Φdp(r0, r) [◦]

is the total propagation phase shift between the radar and target, and δhv(r) [◦] rep-
resents the local backscattering phase shift.

The propagation phase shift Φdp is cumulative along the path i.e. for two-way
propagation in monostatic radars. It is dependent on the number concentration of
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hydrometeors and tends to increase with particle size. It is not affected by atten-
uation, partial beam blockage, or radar miscalibration, and is not biased by noise
(Kumjian 2013). The one-way specific phase shift Kdp [

◦ km−1] is the half derivative
of Φdp.

The backscatter differential phase is caused by backscattering from hydromete-
ors within the radar resolution volume. It becomes significant when nonspherical
hydrometeors are large enough relative to the radar wavelength such that the scat-
tering is in the Mie regime. In the melting layer of stratiform precipitation δhv man-
ifests as non-monotonical radial profile ("bumps") of Ψdp (Trömel et al. 2013). δhv is
not cumulative but is a local parameter, most evident when the scatterers are in Mie
regime, and is independent of the length of the beam path within the melting layer.
With the increase in elevation angles, forward propagation component Φdp , a result
of anisotropy of the medium, reduces significantly, providing clean δhv (Trömel et al.
2014), mostly arising from the change in scattering regime by larger particles.

The algorithm to estimate Φdp from the measured Ψdp, often very noisy, is dis-
cussed in detail in section 5.2. In section 5.3, Φdp regularization algorithm is im-
plemented to the Ψdp data corresponding to the MRT PIAs from chapter 4. Our
experience of using the algorithm and its robustness is summarized in section 5.4.

5.2 Φdp regularization algorithm

The range profiles of measured/total differential phase shift (Ψdp) are significantly
noisy in precipitation of low intensities, and even more so in the melting layer. An
iterative approach based on two binding envelopes and maximum allowed jumps in
Φdp between successive gates is developed here. This approach efficiently exploits
the cumulative nature of range profile of Φdp. Figure 5.1 displays the organigram
of the Φdp regularization algorithm developed in this study. The main steps of al-
gorithm are discussed in detail, with the help of range profiles of Zh, ρhv and Φdp

in Fig 5.2 for a given timestep when the center of 0◦ beam is within ML for target 7.
The Φdp regulation algorithm is illustrated in the bottom subplot. Colored lines of
the sub-plot correspond to different stages of regularization process and are listed
below after the discussion of the corresponding step.

The measured Ψdp contains the initial system differential phase offset (Φdp0), its
correction is the first step in the regularization algorithm. It is dependent on the
configuration of the radar system, accumulation of hydrometeors on the radome
and climate conditions at the radar site i.e first few gates. For MOUC radar, the
Φdp0 in dry-weather conditions oscillates around 300◦. As most of the measure-
ments are done in and around melting layer in this study, the value of Φdp0 can
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vary significantly in time depending in the phase and intensity of the precipitation
at the radar site.

Box 1: For a beam/azimuth, Φdp0 is calculated as the mean of Φdp in first 5
consecutive gates with precipitation. The hydro-meteorological echos typically have
ρhv ≥ 0.85, a threshold to define these gates. For the azimuths related to a specified
target, only the profiles following a criteria on inter-percentile range, between 90th

and 10th are selected, in order to discard the outliers and maintain spatial stability in
Φdp0 values. In heavy rain, the Ψdp profile exhibit high values and might be folded
as big negative values. So, it is necessary to have an unfolding algorithm in place.

FIGURE 5.1: Organigramme of Φdp regularization algorithm. The measured differential
phase-shift (Ψdp) is simply referred to as Φdp raw for simplicity.
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Box 2: Ψdp profile oscillates significantly at the gates with ground clutter, and ex-
hibits very low co-polar correlation coefficients (ρhv < 0.85). The choice of ρhv cutoff
at 0.85 is based on the statistical analysis of the rain and ML in Grenoble (Tab 3.3 and
Khanal et al. (2019)). For high elevation angles, Giangrande et al. (2008) suggest a
ρhv threshold of 0.9 to minimize the contamination from non hydro-meteorological
scatterers. In order to avoid the noise from ground clutter, Ψdp values are set to
"NA" at the gates with ground clutter and range of Φdp correction limited to first
gate of the target with Z > 25 dBZ (gate1_25). Hubbert and Bringi (1995) proposed
a repetitive low pass filter with cutoff at 1.5 standard deviation (SD) of the mean
in their Φdp processing algorithm. Here, a single low pass filter is applied in the
gradient of the profiles with the cutoff at 87th percentile of the mean, which would
be 1.5*SD in a normal distribution according to the empirical rule. This steps makes
sure very large oscillations originating from ground clutter are discarded. At the
same time large change in values due to backscattering differential phase shift (δhv)
are discarded as well.

Box 3: After these adjustments, a median profile is calculated for each target.
Trömel et al. (2013) recommend sectoral median of Φdp profiles in-order to have a
stable signal. Here, sectors of 5◦ are taken for each target. 2.5◦ sector are taken on
each side from the azimuth at the center of the target i.e azmid± 2.5◦, this amounts to
11 radial profiles for each target. Rest of the regularization processing is performed
on this median profile. The raw median profile displayed in grey in the third subplot
of Fig 5.2.

Box 4: The "raw" median profile is subjected to some initial processing before
applying the iterative algorithm. Like in individual radials, a low pass filter is ap-
plied to the median profile, but with cutoff at 95th percentile i.e approximately 2*SD
in a normal distribution. The profile after this initial processing routine is shown in
black in the third subplot of Fig 5.2. First 5 successive gates with ρhv ≥ 0.85 indicates
the start of gates with precipitation. Similarly last 5 successive gates that contain at
least 3 gates with ρhv ≥ 0.85 indicates the end of precipitating gates. Some tar-
gets have isolated ground clutter just before ’gate1_25’ and taking 3 out of 5 stable
gates helps to capture Φdp changes between them and the target, i.e. prevents the
under-estimation of Φdp to some extent. In further regularization Φdp are allowed
to change only between these gates with precipitation.

Box 5: The median profiles are subjected to a iterative algorithm that controls
the maximum allowed jumps on the successive gates in backward and forward di-
rections. The iterations are done at maximum allowed step-sizes between 0.2 - 10
degree per gate at the interval of 0.4 degree. In a forward envelope, envelope starts
at Φdp = 0 at gate 0. When the increase in Φdp values in the next gate are within the
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allowed range, the envelop takes new increased value, else it remains the same. This
formulation is based on the cumulative i.e monotone increasing nature of the Φdp

profile. A complementary backward monotone decreasing envelope is calculated
starting from the last gate with precipitation. As there is no fixed initial value in
the backward envelope (like 0 in forward envelope) it is estimated as 25th percentile
of Ψdp in last 4 gates with precipitation. Finally the ’corrected’ Φdp profile is calcu-
lated as the average between the forward and backward envelopes in the each gate.
As forward and backward envelopes are respectively monotone increasing and de-
creasing, monotone increasing nature of the corrected profile is preserved. For each
iteration Nash-Sutcliffe model efficiency (NSE) coefficient between green and black
profiles in Fig 5.2 is calculated. Not_NA_ratio (ratio of gates with black and grey
values) is also recorded; it provides percentage of gates in Ψdp profiles populated
with physical values.

Box 6: In the end, the final and Not NA ratio values are stored as the goodness of
fit indicators for a given Φdp profile (chapter 6). NSE is the goodness of fit indicator
for the considered jump allowed between the successive gates, and Not_NA_ratio
provides the goodness of raw data.
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FIGURE 5.2: Working principle of Φdp regularization algorithm. Range profiles of Zh (top),
ρhv (mid) and Φdp (bottom) at PPI-O◦ of MOUC are shown here at the specific timestep when
the center of 0◦ beam is within ML for target 8. In the bottom graph, grey line is the raw
Phidp, corrected for Φdp0 profile. The Φdp regulation algorithm is shown in the bottom sub-
plot. Raw Φdp is shown in grey. After initial correction black profile is obtained. An average
of forward moving monotone increasing upper envelop (upper violet) and backward mov-
ing monotone decreasing lower envelope (lower violet), provides the regulated Φdp profile
(green). Nash-Sutfliffe efficiency (NSE) coefficient between green and black profiles are cal-
culated, similarly ratio of gates with black to all (grey) values (nna_ratio, i.e. not NA ratio)

is recorded.

If the regularized Φdp matches the pre-processed median Ψdp profile perfectly
with an estimation error variance equal to zero, the resulting NSE coefficient is 1.
NSE = 0 indicates that the model has the same predictive skill as the mean of the
raw profile in terms of the sum of the squared error. When a modelled profile has
an estimation error variance significantly larger than the variance of the observed
profile, the NSE becomes negative, i.e observed mean is a better predictor than mod-
elled one. Values of the NSE nearer to 1, suggest a model with more predictive skill.
In profiles with many of NAs in the pre-processed median Ψdp or regulated Φdp
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profile, the NSE criteria is not a sufficient criteria, as the comparisons are made only
in the gates with both data. Not_NA_ratio makes sure that enough gates are pop-
ulated within a given range profile, and provides additional criterion to improve
upon the results provided by NSE coefficients.

The optimal step-size is selected by maximizing the NSE coefficient and then
minimizing the step size, if two iterations produce the same NSE. The choice of al-
gorithm based on maximum allowed step size between consecutive gates exploits
monotone increasing nature of the range profile of Φdp. The forward moving mono-
tone increasing upper envelop (upper violet) and backward moving monotone de-
creasing lower envelope (lower violet), provides the regulated Φdp profile (green) in
the third subplot of Fig 5.2.

5.3 Implementation

Some examples of the application of Φdp regulation algorithm are discussed in this
section. We again go back to the 3- 4 January 2018 event shown in Fig 4.4, where the
radar is in the above ML (in snow) in the beginning of the event between 18h00 and
01h00; Fig 5.3 shows the example of the regularization at 21:40 during this period.
The ML raises quickly between 01:00 and 05:00 on 4th Jan; between 02:20 and 04:30
the radar is within the ML; Fig 5.4 shows an example of the Φdp regularization at
02:50 during this period. And towards the end of the event ML is above the radar,
i.e. beam center is in rain; Fig 5.5 shows an example of regularization at 07:20 during
this period.

The snow regime, Fig 5.3, displays relatively low PIA and ρhv is mostly greater
than 0.97. The raw profiles of Φdp, shown in grey, are not very noisy. This results
often in high NSE coefficient and high Not_NA_ratio, which signifies that the Φdp

regulation algorithm performs well in this region. There are two probable cases in
the snow regime when the raw profiles might fluctuate significantly. First such case
can be the region of aggregation, where the scatterers tend to be in the Mie scattering
regime, and this region is known to produce significant backscattering phase shift
(Trömel et al. 2013). Another case with considerable fluctuations is when the radar
is close to the ML top. As beam broadens further away from the radar, it might be
contaminated by the upper part of ML, despite the beam center located in the snow
regime.



86 Chapter 5. Differential phase shift and its regularization

FIGURE 5.3: Φdp regularization: 3 January 2018, 21:40, target 10, snow, MOUC radar, 0◦

elevation angle. Top sub-plot shows the range profile of Zh in blue; dry-weather echo of
target 8 in grey where red and blue segments show the dry and wet returns for the current
time-step. Middle sub-plot shows the range profile of ρhv with dotted horizontal at 0.85
used to identify non-meteorological returns. Bottom sub-plot shows the Φdp regularization
process; raw profiles in grey, pre-processed profile in black, envelopes in violet and the

regularized profile in green.

The ML "regime", Fig 5.4, displays relatively high PIA, high Φdp and lower ρhv,
compared to (rain and) snow regime. The ρhv value in this regime is usually between
0.95 and 0.85. In the given example, the raw profile of Φdp is not very noisy, but
in the regions of low ρhv and low Zh it fluctuates significantly; same is true when
the radar is located close to the ML boundaries. Within ML, the Φdp regularization,
often has relatively lower NSE coefficient and lower Not NA ratios. As the elevation
angle of the measurement is 0◦, the propagation effect is dominant in the range
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profiles, and the backscatter effects are localized surges in raw profile (Ψdp profile,
in grey) and filtered by the consecutive low pass and maximum allowed step-size
filters. As long as these effects do not outlast the range of regularization, limited by
the presence of mountain targets, the remaining local surges are removed by forcing
the corrected profile to be monotone increasing.

FIGURE 5.4: Φdp regularization: 3 January 2018, 02:50, target 10, ML, MOUC, 0◦ elevation
angle. Same description as in Fig 5.3

The rain regime, Fig 5.5, displays PIA and ρhv larger than snow but lower than
ML, and Φdp smaller than in ML. In rain, ρhv is often between 0.99 and 0.95. The Φdp

profile can be very noisy in low rainfall intensities. Similarly, the profiles close to
the ML bottom can be quite noisy as well due to non-uniform beam filling (NUBF).
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FIGURE 5.5: Φdp regularization: 3 January 2018, 07:20, target 10, rain, MOUC, 0◦ elevation
angle. Description same as in Fig 5.3.

The examples of Φdp regularization shown above, in snow, ML and rain for 3
January 2018, all display stable Φdp range profiles without much noise. However,
due to the low precipitation intensities, location of radar close to ML boundaries
and presence of ground clutter, the Φdp range profiles are often noisy. One such
example is shown in Fig 5.6. In this example, the radar measurements are in the
upper part of ML, just below the ML top. The range profile of Ψdp is very noisy
compared to the previous profiles. The ρhv profile regularly dips below 0.85. This
is not a reliable profile and need to be rejected. The NSE coefficient is 0.253 and
the Not_NA_ratio is 0.57, significantly lower compared to the previous examples.
NSE and Not_NA_ratio provide a quantitative measure of goodness of fit of regu-
larization and noise level in raw profile respectively. Based on observation of many
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regularized profiles, used, profiles with NSE < 0.5 or Not NA ratio < 0.4 are subject
to caution hereinafter.

FIGURE 5.6: Φdp regularization: 24 December 2019, target 13. Description same as in Fig 5.3.

A similar strategy of Φdp regularization can be applied to the quasi-vertical pro-
files (QVPs), (Ryzhkov et al. 2016) of Φdp observed by the valley-based XPORT radar
at high elevation angles, an example is shown in Fig 5.7. QVPs are produced by ag-
gregating the observation at a given elevation angle of all the azimuths and project-
ing them to the vertical axis. Scans at high elevation angles are preferred to produce
QVPs.
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FIGURE 5.7: Φdp regulation for quasi vertical profile of XPORT observation. QVP from
15◦ elevation angle XPORT observables are shown; Zdr + 10 in red, Zh in blue, ρhv ∗ 50 in
gold, measured Ψdp in grey. The backward and forward envelopes are shown in violet. The
regularized Φdp is shown in green. ML is present between 1600m and 2200m asl. Within the
lower part of the ML, a "bump" can be observed in the Ψdp profile, which is attributed to

backscatter phase shift.

In this example, PPI scans of XPORT at 15◦ elevation angles are used. All the
observables of XPORT are shown in the figure. The presence of ML is shown by
sudden changes in vertical profiles of horizontal reflectivity Zh, differential reflec-
tivity Zdr and correlation coefficient ρhv. ML top is defined as the upper inflection
point of Zh profile and ML bottom is defined as the lower inflection point of ρhv

profile (chapter 3). The Ψdp profile, in grey, is generally monotone increasing along
the range, but in the ML altitudes, there is a large bump. This localized increase
is attributed to the backscatter phase shift (δhv) (Trömel et al. 2013). The forward
and backward envelopes in the Φdp regularization algorithm, in violet, efficiently
separate this backscattering component from the propagation component, i.e Φdp,
in green. The increase in Φdp above 2800 m altitude is most probably the result of
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Mie scatters produced by aggregation of ice crystals. Collision and break-up most
probably describe the reduction of Φdp below 2800m. Above the ML there is not
much change in the regularized Φdp profile suggesting negligible attenuation for
such high elevation angle and close-range measurements. This supports the hy-
pothesis of negligible attenuation made in chapter 3.

5.4 Conclusions

The Φdp regularization algorithm performs satisfactorily well (from visual verifica-
tion of many profiles) when the radar and the pulse volume is clearly in rain or snow
regime. The noise in the profile increases significantly in presence of ground clutter,
which is identified as Zh > 25 dBZ in dry-weather observation and sudden decrease
in ρHV profile. These non-meteorological targets often have high dry weather reflec-
tivity (>25 dB) and low ρHV (<0.85). Also the local backscattering components (δhv)
of the phase shift can add noise in the Ψdp profiles especially within and around
ML. At low elevation angles, like 0◦ PPI scan, the backscattering component is not
always evident like in high elevation angle, where it manifests itself as "bumps" in
the range profile. It is however a local effect, use of low pass filters combined with
the limits in maximum step-sizes between consecutive gate are able to remove the
local surges or dips in the Ψdp range profiles. The NSE and Not NA ratio criteria
provide the quantitative measurement of the goodness of fit of regularization and
the raw profiles respectively. A threshold of NSE ≥ 0.5 and not NA ratio ≥ 0.4 is
used in the following chapters to define well regularized Φdp profiles; the profiles
not meeting either of the criteria are subject to caution. Two instances that can intro-
duce significant errors in the regulated profiles are:
i) estimation of Φdp(r0): The measurements from the first few gates are not reliable,
and also the on-site meteorological conditions can introduce significant offset in the
range-cumulative Φdp measurements.
ii) estimation of starting Φdp for the backward envelope.
We reiterate that, in order to stabilize the Φdp signal, the Φdp profiles at azimuthal
segment of 5◦, i.e. az_mid ± 2.5 degree from the azimuthal center of each target.
Furthermore, in order to stabilize the Φdp(r0) estimates, the real-time Φdp(r0) of all
the targets are compared to ensure that the azimuthal variation is within expected
limits.
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Chapter 6

PIA - Φdp relationship in the melting
layer

6.1 Introduction

The relationship between specific attenuation (A) and specific differential phase
(Kdp) is expressed as a power model:

A = aAK KbAK
dp (6.1)

In rain, Bringi et al. (1990), Matrosov et al. (1999) and Testud et al. (2000) have
shown the A − Kdp relationship to be quasilinear i.e. bAK ≈ 1, based on drop-
size distributions (DSD) derived from disdrometer measurements and calculations
based on the scattering properties of individual drops at X-band. With such hypoth-
esis, we get A = aAK Kdp and the PIA at a given range r could be related to the Φdp

profile as
PIA(r) = aAK Φdp(r) (6.2)

The PIA and Φdp estimates in Chapter 4 and 5 allows us to study the PIA-Φdp rela-
tionship within the ML under the linearity hypothesis. As different microphysical
processes are dominant in different phases of melting it is further interesting to in-
vestigate how the relationship evolves in different stages of melting.

6.2 Dataset

The 0◦ elevation PPI scan from the mountain-top MOUC radar is the primary source
of data used to estimate PIA(rM) and regulate Φ(r0, rM). The characteristics of the
melting layer is provided by XPORT and MRR radars operated in the valley. 78 days
of MOUC data between 18 November 2016 and 11 December 2021 are available. It
corresponds to 43 precipitation events for which the melting layer occurs close to the
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altitude of 0◦ elevation beam center of MOUC radar (1913 m asl). ML information
on 29 of these events are provided by XPORT and 14 by MRR. The summary of
all the events is shown in Table B.1. The temporal resolution of MOUC data is 5
minutes. For each time steps PIA(rM) and Φ(r0, rM) are available in the direction
of (up to) 20 mountain targets described in Table 4.1.

6.3 PIA vs Φdp

To put things in perspective, we first look into the general evolution of PIA(rM)

and Φdp(rM) for an event with ML close to MOUC radar altitude. Figure 6.1 visu-
alizes the time series of PIA and total Φdp from MOUC radar and ML identification
time series from XPORT radar, during an event on 4-5 November 2017. The time
series of the XPORT observation in the bottom plot shows the location of the ML,
according to the ML identification procedure described in Chapter 3, with respect to
the MOUC radar at 1913 m. The ML top is defined by the upper inflection point of
Zh and the ML bottom by the lower inflection point of ρhv (Chapter 3 and (Khanal
et al. 2019)). At the beginning of the event the MOUC radar is below the ML i.e. in
rain regime. As the event progresses the ML descends slowly, around 03:00 GMT
the MOUC radar i.e. the center of 0◦ PPI beam is within the melting layer. Towards
the end of the event, around 09:00 GMT the melting layer descends further and the
MOUC radar is above the ML i.e. in the snow regime. The top subplot shows the
time evolution of a mountain return (echo) and the corresponding PIA estimation
at range rM during this event. When the center of the 0◦ PPI beam is in rain regime,
PIA is relatively small; it increases significantly (up to 15 dB over 20 km for target
10 in Fig 6.1) when the beam center is within the ML and decreases to 0 in the snow
regime. The attenuation in the snow regime is negligible and could be an estimate
of dry period echo when data in dry periods is not available. The middle sub-plot
shows the corresponding Φdp(rM) signature at the gates close to the mountain tar-
get, also observed using the MOUC radar. The Φdp(rM) time series closely follows
the pattern of PIA(rM) and shows a significant increase within the ML.
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FIGURE 6.1: PIA, Φdp and ML time series: 4-5 November 2017, target 10, range 20 km.
Top subplot shows the application of MRT for PIA (green) estimation as a difference of
dry-weather returns Zdry

h (red) and wet-weather returns Zh (blue). Middle subplot shows
the time series of regularized Φdp at range rM of target 10. The bottom subplot shows the
characteristic altitudes of the melting layer provided by XPORT observation: ML top (con-
tinuous blue line) as a altitude of Zh top and ML bottom (continuous gold line) as altitude
of ρhv bottom. Horizontal dotted maroon line at 1913 m asl shows the altitude of center of

0◦ elevation MOUC beam.

The PIA(rM) - Φdp(rM) pairs for all available timesteps (corresponding to the 43
precipitation events) and all targets are plotted in Figure 6.2. Chapter 4 mentioned
PIA = 0 as a reasonable assumption for cases with Zdry

h − Zh < 0, similarly Chapter
5 listed NSE and Not_NA_ratio as a goodness test for Phidp regularization. As such
considering PIA ≥ 0, NSE ≥ 0 and Not_NA_ratio ≥ 0 includes all reasonable
PIA and Phidp estimates. The PIA vs Φdp scatterplot of all observations within the
ML shows no clear relationship between two variables. The 0-forced linear fit has
a slope (aAK) of 0.27, but with very large spread and low R2 of 0.46. Although the
slope of the 0-forced fit is closer to the DSD observed slope in rain, the scatter neither
converges towards the expected rain value (aAK ≈ 0.3) nor towards an expected ML
value (aAK ≈ 0.5) (Delrieu et al. 2020). It is most probably due to the fact that
hydrometeors’ characteristics vary significantly at different stages of melting. In
addition, the ML limits and widths vary significantly for different events.
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FIGURE 6.2: PIA(rM) vs Φdp(rM) scatterplot for all the events and targets together. The vio-
let line with slope of 0.5 corresponds to the expected aAK value in the melting layer (Delrieu
et al. 2020). The blue line with slope of 0.3 corresponds to the estimated aAK value in rain.
Red line is the 0-forced linear fit, and the summary of the fit is annotated towards the top of

the plot.

In order to compare the PIA - Φdp pairs in the different parts of the ML and
to account for the variations of the ML thickness we define a scaled altitude as
scaled_alt = (alt.MOUC − alt.mlbot)/ml.width. The idea is to refer, for each time
step, the altitude of the 0◦ PPI beam center of MOUC radar in relation to the ML bot-
tom, and normalize it by ML width. During these events the ML width has mean
of 676m and standard deviation of 164 m. The scaled altitude value of 0 means that
the beam center is at ML bottom altitude, and 1 means that it is at ML top altitude.
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Scaled altitudes greater than 1 means that the MOUC radar i.e. beam center is lo-
cated in snow region and values smaller than 0 signify it is in the rain region. The
scaled altitudes are grouped at class of 0.1 i.e. the group 0.5 contains the values be-
tween 0.45 and 0.55. As such, each altitude class represents different stages of the
melting process and is comparable for different events. In the later sections, scaled
altitudes ≥ 1 are referred to as the snow region, 1 < altitudes <0.5 are be referred
to as the upper melting layer, 0.5 < altitudes <0 are referred to as the lower melting
layer and altitudes < 0 as the rain region.

FIGURE 6.3: PIA vs Φdp 0-forced linear fits for all altitude class, full dataset. 0 corresponds
to ML bottom and 1 corresponds to ML top. Every subplot: corresponds to a scaled-altitude
highlighted in blue on the top; fits a 0-forced linear fit between PIA - Phidp pairs, fitted as
the red line and summary of slope, R2 and number of observations are annotated on the
top within the graph. The subplots in the 1st row show the relationship in snow, 2nd row in

upper ML, 3rd row in lower ML and 4th row in the rain.

Figure 6.3 shows the division of the PIA-Φdp pairs to different scaled altitudes.
Almost all available observations are utilized here i.e. (PIA ≥ 0, NSE ≥ 0 and Not
NA ratio ≥ 0). Looking at the slopes of the simplest correlation model (0-forced
linear relationship, i.e. aAK is estimated as the ratio of the means of the PIA and Φdp

values), one can note that the slope is comprised between 0.16 and 0.28 in snow, it is
significantly higher in the upper ML (0.43-0.51) and reduced in the lower ML (0.25-
0.38). It is between 0.28 and 0.32, the expected range of values, in the rain region.
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The evolution of the number of pairs in each class indicates that a greater number of
observations are available within the ML, as the result of the selection of the events.
The R2 coefficients are relatively low in the snow and rain regions (less than 0.6);
they consistently exceed 0.7 in the upper part of the ML (classes 0.4-0.8). Some of the
scatterplots exhibit quite a large number of outliers with too low Φdp with respect
to the PIA values (e.g. scaled altitude class 0.9) while some others present high Φdp

values for very low PIA, especially in the rain, snow and lower ML regions (e.g.
classes -0.3, 0.1 and 1.1). In order to mitigate the errors in the PIA estimation due
to the dry-weather variability of the mountain targets in one hand, and the impact
of the Ψdp measurement noise on the regularization of the Φdp profiles on the other
hand. We consider a more stringent filtration criteria with PIAM ≥ 1 dB, NSE ≥
0.5 and Not NA ratio ≥ 0.4. The standard deviation of the dry-weather mountain
returns is between 1 and 1.5 dB (Chapter 4), leading to the minimum detectable PIA
of about 1 dB considered here. The specific values of 0.5 for NSE and 0.4 for not
NA ratio were taken after visual inspection of the Φdp regularization of numerous
profiles similar to Fig 5.2 (Chapter 5).

FIGURE 6.4: PIA vs Φdp 0-forced linear after filtration criteria, PIA ≥ 1 dB, NSE ≥ 0.5,
Not_NA_ratio ≥ 0.4. Description similar to Fig 6.3

The application of the more stringent filtration criteria produces Fig. 6.4. The no-
ticeable differences are (i) an important decrease in the number of PIA-PHIdp pairs
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with variable rejection percentages in the snow region (71%), in the ML (31%) and
in the rain region (79%), (ii) the successful removal of part of the outliers (especially
those corresponding to high Φdp values for very low PIA values), and the general
improvement of the R2 criteria which become almost systematically greater than
0.7, and for most of the classes close to or better than 0.8. It is important to mention
that the rejection is essentially based on the Φdp criteria and not on the PIAm thresh-
old of 1 dB compared to 0. Before looking at the evolution of aAK as a function of
the scaled altitude for the two sets of filtration criteria, we discuss in the following
the distributions of the PIA and Φdp in the different scaled altitude classes and the
shapes of the vertical profiles as well.

FIGURE 6.5: PIA at different scaled altitudes. Boxplots on the left and density plots on the
right. In scaled altitudes 0 and 1 mark the ML top and ML bottom respectively. Dotted
horizontal blue line is the average altitude of Zh peak and the dotted horizontal gold line is

the average altitude of ρhv peak.

Vertical profiles of PIA in Fig 6.5 show the boxplots and density plots of MRT
estimated PIAs for each scaled altitude class for the most stringent filtration criteria.
There is a clear signature of the ML in such vertical profiles:

• The PIA in snow region (scaled altitude levels ≥ 1) is the smallest with rela-
tively narrow and unimodal distributions. While we expect the PIA to be close
to 0 in snow region, it averages around 2 - 4 dB with maximum values as high
as 10-12 dB for scaled altitudes classes greater or equal to 1.2. The maximum
PIA value is even 17 dB in class 1.1.
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• In the rain region, we observe mean PIA values of around 5-6 dB, maximum
values up to 15 dB and distributions more spread out than in snow, sometimes
bimodal.

• There is a significant increase in the PIA within the melting layer, with a peak
at scaled altitude class 0.5 close to the altitude of reflectivity peak (scaled alti-
tude of 0.55), as determined from below by the XPORT and MRR radars. The
mean ρhv peak, determined with the XPORT radar data only, is slightly above
the PIA peak at a scaled altitude of 0.42. Towards the center of the ML (classes
0.5, 0.6) the density plots show very spread out distributions with low ampli-
tude and high mean values. The evolution of the means are quasi-linear be-
tween classes 0.5-0.8 in the upper ML and between classes 0.2-0.5 in the lower
ML, with marked discontinuities with the mean values in the snow and rain
regions.

FIGURE 6.6: Φdp at different scaled altitudes. Boxplot on the left and density plots on the
right. Scaled altitudes, 0 and 1 mark the ML bottom and ML top, respectively. Dotted
horizontal blue line is the average scaled altitude of Zh peak and the dotted horizontal gold

line is the average scaled altitude of ρhv peak derived from the valley-based radars.

Figure 6.6 shows the vertical profiles of boxplots and density plots of Φdp. There
is also a clear signature in the ML, but it is different from that of the PIA data. The
boxplots vary at different stages of melting and peak just above the altitude of Zh
peak at the scaled altitude class 0.6 with a mean value of 25◦. There is a significant
decrease between scaled altitude classes 0.6 and 0.7 while, in the upward direction,
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the profile decreases progressively with no marked discontinuity at the top of the
ML. Mean values of about 12◦ are observed in the snow region. Small increase in
the average Φdp at scaled altitude of 1.3 might be an indication of presence of large
aggregates i.e. Mie scattering regime, unless due to statistical fluctuations. In the
downward direction, one can note that the mean values of classes 0.4 and 0.5 remain
close to the peak value of class 0.6. Then there is a break of about 5◦ between the
means of classes 0.4 and 0.3. The evolution is gradual, quasi linear, in the rest of
the lower ML and in the rain region. Again there is no marked discontinuity at the
bottom of the ML and mean values of about 12◦ are observed in the rain region, like
in snow. The spread of the distributions is particularly large for classes 0.4-0.6 while
it is reduced and comparable in the snow and rain regions, eventually with bimodal
distributions.

For both variables, the spread of the distributions is in part associated with the
fact the targets are distributed over a range of distances (between 20 and 30 km). The
sampling may play a role as well by putting together data from a limited number of
precipitation events with contrasted intensities. However, the different signatures
are likely associated with different physical processes, e.g. hydrometeor size and
phase are probably dominant factors for the PIA, while shape may be more impor-
tant for Φdp. To be more specific, we can propose the following explanations. The
Φdp profile responds to the changes in the aspect ratios of the melting hydromete-
ors. In the upper part of the melting layer, it changes gradually as the melt water
slowly fills the aggregates inside out while the ice lattice keeps intact supporting the
structure, till between the Zh and ρhv peaks where the ice lattice breaks and surface
tension dominates causing a quick change in the structure of hydrometeor, leading
consequently to a quick increase in Φdp value. The melting process causes a gradual
increase in PIA in the upper part of ML as PIA responds to the change in size and
water phase at the surface of hydrometeors. As such, the PIA reacts a bit slower
than Φdp in the upper part of the ML. In the lower part of ML, PIA decreases rela-
tively quickly as the hydrometeor is both getting smaller due to surface tension and
becoming more and more oblate due to air drag, whereas the change in aspect ratio
is quite gradual only affected by the buoyancy. As such, higher values of the ratio of
the means (as a proxy for the prefactor of the linear A-Kdp relationship) are expected
in the upper part of ML and a slightly smaller value just above the altitude of Zh

peak.
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FIGURE 6.7: Summary of PIA vs Φdp 0-forced linear fits for 2 sets of rejection criteria,(left)
PIA ≥ 0, NSE ≥ 0, Not_NA_ratio ≥ 0, (right) PIA ≥ 1, NSE ≥ 0.5, Not_NA_ratio ≥ 0.4.
The corresponding scatterplots are shown in 6.4. Red line shows the slope (aAK) of linear-fits
with confidence interval of the slope in grey. The dotted black line shows the R2 criterion of
the 0-forced linear fits. Number of observations for each altitude class are annotated in the

left. Horizontal blue line marks ML top and horizontal gold line marks ML bottom.

Figure 6.7 displays the vertical profiles of the slopes of the 0-forced linear fits
presented in Figs 6.3 and 6.4 as estimations of the prefactor of a supposedly lin-
ear A-Kdp relationship at different scaled altitudes below, within and above the ML.
The left graph based on a majority of PIA-PHIdp pairs is close to what one would
expect for the aAK coefficient both in the upper and lower parts of the ML, and in
the rain region as well. The values seem a bit high in the snow region owing to
the low values of specific attenuation in snow. As already said in the comments of
Fig. 6.3, the R2 statistics are however rather poor for all the altitude classes except
in the central and upper ML. Introducing a more stringent filtration criteria (right
graph) has a very positive impact on the R2 statistics for all altitude classes but a
detrimental one on the overall shape of the profile, again with respect to one’s ex-
pectations for an aAK estimation. The confidence interval of the slope displayed in
Fig. 6.7 depends both on the correlation between the considered variables and on
the number of pairs. As such, its variations at the different altitude classes between
the two graphs modulates to some extent the gain in the R2 criterion by the reduc-
tion of number of pairs introduced by the more stringent rejection criteria. Based
qualitatively on these confidence intervals, one may see that in spite of the R2 gain,
the confidence on the slopes has decreased in some parts of the profiles, especially
in the rain and snow regions, and in the upper part of the upper ML as well (alti-
tude classes 0.8-1.0). Within the melting layer, the shape of the profiles is essentially
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preserved with slight increases, especially for classes 0.8-1.0. From the right figure,
the value at the bottom of the ML is 0.3 and the maximum is observed for class 0.8
(0.54), slightly greater than the value for class 0.5 (reflectivity and ρhv peaks). Con-
trary to the expectations, the values above the ML decrease even more slowly than
on the left figure and they depart significantly from the 0.3 value (up to 0.44) in the
rain region.

Figure 6.8 plots all the PIA − Φdp pairs for all scaled altitudes > 1 i.e. snow
regime (left) and scaled altitudes < 0 i.e. rain regime (right), after applying the
filtration criteria. This shows the aAK ≈ 0.25 in snow and aAK ≈ 0.39 in rain, with
R2 of 0.65 and 0.77 respectively. The values in both rain and snow are quite larger
expected.

FIGURE 6.8: PIA - Φdp relationship in snow and rain, PIA ≥ 1, NSE ≥ 0.5, Not_NA_ratio ≥
0.4. PIA - Φdp pairs for scaled_altitude > 1 corresponding to snow regime plotted on the
left, and scaled_altitude < 1 corresponding to rain regime plotted on the right. 0-forced
linear fit is shown in red and its summary are annotated on the the top. Blue ab-line shows

corresponds to slope of 0.3

It is important to note that the Φdp in the upper part of melting layer changes
gradually as the melt-water slowly fills the aggregates inside-out while the ice-
lattice keeps intact supporting the structure, till just above the Zh peak where the
ice-lattice breaks and surface tension dominates causing a quick change the struc-
ture of hydrometeor and consequently a quick increase in Φdp value. The Φdp profile
respond to the changes in the aspect ratios of the melting hydrometeors. This pro-
cess causes a gradual increase in PIA in the upper part of ML as PIA responds to
the change in size, phase and intensity of dominant hydrometeors. As such, the PIA
reacts a bit slower than Φdp in the upper part of the ML. In the lower part of ML,
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PIA decreases relatively quickly as the hydrometeor is both getting smaller due to
surface tension and becoming more and more oblate due to air buoyancy, where as
the change in aspect ratio is quite gradual only affected by the buoyancy. As such,
higher values of the prefactor (aAK) are expected in the upper part of ML and a
slightly smaller value just above the altitude of Zh peak (in the upper ML).

6.4 Discussion

The goal of this section is to analyze the usability of the slope of PIA-Φdp relationship
in Fig 6.7 as a prefactor (aAK) of A − Kdp relationship in equation 6.1, assuming
a linear relationship (β ≈ 1). This relationship has been investigated well in the
rain using disdrometer data and scattering models. Bringi and Chandrasekar 2001
found aAK to be 0.233, Park et al. (2005) found the aAK to vary between 0.195 and
0.335, Schneebeli and Berne (2012) found it to vary between 0.205 to 0.245 and Yu
et al. (2018) suggest the value 0.276 at X-band.

FIGURE 6.9: Disdrometer derived Ah vs Kdp in rain

The derivation of A − Kdp relationship using disdrometer data at the IGE site
(200 m asl) are shown in Fig 6.9 (Delrieu et al. 2022). Scattering model from the
CANTMAT version 1.2 software developed by V.N. Bringi and C. Tang was used
to calculate the A and Kdp from DSD. In left subplot, least square rectangle fit on
log-log scale gives a prefactor of 0.2 and a exponent of 0.91. In the right subplot,
a 0-forced linear fit (red) on natural values gives the slope of 0.32 with the R2 =

0.98, whereas a non-linear power-law fit gives a prefactor of 0.3 and an exponent
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of 1.1. The linear approximation looks to be a sufficient approximation for low A
and low Kdp scenarios i.e. low to medium precipitation intensities, but the linear
approximation does not hold well at higher intensities. Along with the drop size
and shape characteristics, the choice of regression model introduces variability in
the estimation of coefficients as well.

In the rain regime of Fig 6.7, estimated aAK varies between 0.29 and 0.42 with an
increasing trend further away form the ML bottom. This trend is a bit counterintu-
itive as the coefficient is expected to be more or less stable, or even slightly lower as
the oblateness of raindrops increases below the ML bottom until the drops reach a
terminal velocity. Also, these values are slightly higher than the DSD modeled and
widely accepted estimations in the literature. These discrepancies may be attributed
to on-site attenuation, non-uniform beam filling and precipitation variability along
the path between radar and mountain targets.

FIGURE 6.10: Non-uniform beam filling effect, 01 January 2018, target 13. Top left sub-
plot shows the range profile of Zh in blue; dry-weather echo of target 13 in grey where red
and blue segments show the dry and wet returns at 05:40 GMT. Middle left sub-plot shows
the range profile of ρhv with dotted horizontal at 0.85 used to identify non-meteorological
returns. Bottom left sub-plot shows the Φdp regularization process; raw profiles in grey,
pre-processed profile in black, envelopes in violet and the regularized profile in green. The
right plot shows the ML characteristics of the 3-4 January 2018 event as observed by XPORT
radar: ML top in continuous blue line, ML bottom in continuous gold line, altitude of Zh
peak in dotted blue, altitude of ρhv peak in dotted gold. Horizontal dotted black line marks
the altitude of MOUC 0◦ beam center, dotted red and green lines show vertical extent of
broadened MOUC 0◦ beam at 15 and 30 km respectively. Left plots corresponds to MOUC
0◦ elevation PPI observation and right plot corresponds to QVP of XPORT 25◦ elevation PPI

observation
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An example of beam broadening and subsequent NUBF on 4 January 2018 is
shown in Fig 6.10. In the direction of target 13 at 05:40 GMT, MOUC 0◦ elevation
beam center is theoretically in the rain regime; beyond 15 km range, the top part of
the beam extends to the lower part of ML (right subplot). In the range plots of radar
observables (in left), up to 16 km (gate 60) ρhv > 0.95 shows the presence of liquid
rain with Zh ∼ 25 dBZ and very low Φdp. At 16 km, as the beam is partially in
ML, ρhv decreases and Φdp increases significantly suggesting a non-uniform beam
filling with liquid and melting hydrometeors. The sudden decrease of ρhv below
0.85 at gate 64 and beyond gate 85 is attributed to ground clutter. Another important
observation is that ground clutter (beyond gate 85) surrounding the mountain target
limits the range of Φdp regularization i.e. there is a discrepancy in the range at which
PIAm and Φdp are estimated for a given target, another possible source of error in
PIA−Φdp relationship.

On-site attenuation can be differentiated into wet radome attenuation and blind-
range attenuation related to precipitation at first few gates i.e. between radar and
range r0, where the radar observation is not reliable (Delrieu et al. 1997). PIA es-
timation using the MRT contains the on-site attenuation and needs to be removed.
Frasier et al. (2013) studied the on-site attenuation at X-band in rain in the Alps.
Radome attenuation can be significant in medium - heavy rain and the melting
layer. They used two X-band radars, one with radome and another without, with
the assumption of uniform dielectric radome and uniform layer of water coating to
estimate the wet radome attenuation when it rains at the radar site. Their result,
in dotted line, shows the 1-way radome attenuation [dB] as a function of rainrate
[mm hr−1], presented in Fig 6.11. It shows that for low rainrates on-site attenuation
is very small.

Adapting a power fit law to their result gives the following two-way radome
attenuation correction formulation:

PIAr = 0.0126 Z1.6
0 (6.3)

where Z0 is the average reflectivity (dBZ) in first few usable gates around radar. This
is in fact an implicit equation with

PIAr = 0.0126 (Z0 + PIAr)
(1.6) (6.4)

hence Zo is affected by radome attenuation as well. In practice, we define a range
of Z0 to compensate for implicit PIAr in Latin hypercube sampling of GSA (Delrieu
et al. 2022).
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FIGURE 6.11: Radome attenuation estimation in rain at X-band: Fig 6 of Frasier et al. (2013).
One-way radome attenuation as a function of rainrate R, using Marshall–Palmer (diamonds)
or WSR-88D (triangles) Z–R relationships. The dotted line is the result of their study. Other

results from the literature are as indicated.

Similarly, the on-site attenuation because of precipitation in blind range [0,r0]
can be estimated using ZPHI technique on the first few measurable gates (Testud
et al. 2000; Reinoso-Rondinel et al. 2018). Delrieu et al. (2022) propose a parameter
estimation procedure which estimates Z0 using general sensitivity analysis frame-
work. It is important to note that these methods of on-site attenuation are adapted
for the rain regime, and equivalent correction are not available for the melting layer
and the snow region. Investigation of the on-site attenuation estimations within the
melting layer is beyond the scope of this study.

6.5 Conclusion

In this study, we evaluated the relationship between PIA and Φdp estimates in the
melting layer of precipitation using X-band radars. Mountain reference technique
is used to estimate the PIA. A method to regulate the range profile of Φdp is devel-
oped and presented in the method section. The algorithm iterates on the maximum
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allowed increase of monotone Φdp profile between each range gates. The optimum
step-size produces the maximum Nash-Sutcliffe model efficiency coefficient (NSE).
The PIA and Φdp are estimated from the 0◦ elevation PPI scans of mountain-top X-
band MOUC radar. The valley based X-band XPORT radars identifies the position
of the melting layer using 25◦ elevation PPI scans. As such, the position of MOUC
0◦ beam relative to the ML bottom is known. Hence vertical profiles of PIA, Φdp and
relationship is studied at different stages of melting. It is shown that a single linear
depiction of PIA - Φdp relationship throughout the melting layer is not sufficient.
Depending on the stage of melting the prefactor (aAK) in equation 6.1 varies within
the melting layer. The upper part of ML has relatively high values of aAK compared
to the lower ML. Within the ML estimated aAK varies between 0.26 to 0.54.

The range profiles of measured differential phase are quite noisy in the vicinity
of the ML and this limits the size of usable observation. Large proportions of the
available data had to be discarded using rejection criteria to improve the correla-
tion between PIA - Φdp pairs. The on-site attenuation, both due to wet-radome and
blind-range precipitation, may be significant when the radar site is within heavy-
medium rain in the melting layer. While simplified methods to correct for on-site
attenuation in rain are available, no such schemes are available for the melting layer.
Similarly, the presence of ground clutter in the vicinity of mountain targets tends to
decrease the range of Φdp and result in under-estimation the Φdp; it is unavoidable
due to complexity of the terrain. The non-uniform beam filling due to beam broad-
ening and vertical variation of precipitation phase causes perturbation PIA and the
range profile of Φdp towards the top and bottom of the melting layer. More work
needs to be done in terms of on-site attenuation and NUBF within the melting layer.
The linearity hypothesis of PIA - Φdp relationship at each scaled altitude need to be
investigated using a generalized sensitivity analysis (GSA) approach discussed in
Chapter 7.
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Chapter 7

Attenuation correction and
Quantitative Precipitation Estimation

7.1 Introduction

The application of X-band radars has been recommended to capture the fine-scale
dynamics required for QPE in mountainous terrain and urban hydrology (Delrieu
et al. 1997; McLaughlin et al. 2009; Lengfeld et al. 2014). At X-band, while the high
resolution observation is a strength, attenuation is the major limitation (Hitschfeld
and Bordan 1954). The measured reflectivity needs to be corrected for attenuation
before QPE applications. The development of polarimetric techniques (Bringi and
Chandrasekar 2001; Ryzhkov et al. 2005) promises robust attenuation correction pro-
cedures (Testud et al. 2000; Matrosov et al. 2002, 2005; Koffi et al. 2014; Ryzhkov et al.
2014) that still need to be inproved in the high mountain context due to precipitation
phase changes (snow, melting precipitation, rain) and topography.

The classical radar QPE is based on estimation of rainfall intensities R[mm h−1] in
each range bin derived from the radar reflectivity Z[dBZ] using a emperical nonlin-
ear R-Z relationship, R = aZb, where a and b are two parameters to be determined.
The well known Marshall-Palmer relationship Z = 200R1.6 (Marshall and Palmer
1948) is often used as a standard reference before optimizing the parameters for a
specific location and precipitation types. The relationship between the radar observ-
ables, reflectivity Z[dBZ], specific attenuation A[dB km−1], and variable of interest
in QPE, rainfall intensity R[mm h−1] are assumed to be of power type. The relation-
ships will be referred to as R-Z, A-Z and R-A relationships in short.

R = aRZZbRZ (7.1)

A = aAZZbAZ (7.2)

R = aRA AbRA (7.3)
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We are also interested in the A-Kdp relationship with

A = aAK KbAK
dp (7.4)

The order used for the parameters is meaningful since the specific attenuation
profile is derived from the measured reflectivity profile, while the rainrate profile
can be derived in a second step either from the specific attenuation profile or from
the corrected reflectivity profile. We will use the R-A relationship to generate rain-
rate profiles from the specific attenuation profiles.

Delrieu et al. (2022) developed a procedure for estimating these parameters us-
ing a generalized sensitivity analysis (GSA) of attenuation formulations in convec-
tive rainfall for X-band MOUC radar, discussed in detail in section 7.3. The physical
model of the GSA is formulated in section 7.3.1. Four AZ algorithms constrained
or not by PIA(rm), and one polarimetric algorithm based on the Φdp profile be-
tween radar and a mountain target were developed. The parameter structure and
the inherent mathematical ambiguity of the system of equations make it necessary
to organize the optimization procedure in a nested way. The core of the procedure
(sections 7.3.2 - 7.3.4) consists of (i) exploring with classical sampling techniques the
space of the parameters allowed to be variable from one target to the other and from
one time step to the next, (ii) computing a cost function (CF) quantifying the prox-
imity of the simulated profiles and (iii) selecting parameters sets for which a given
CF threshold is exceeded. This core is activated for series of values of parameters
supposed to be fixed, e.g. the radar calibration error for a given event. The GSA
is performed for a set of three convective events, discussed in section 7.2, using the
0◦-elevation PPI measurements of the MOUC radar. It allows estimation of criti-
cal parameters for radar QPE using radar data alone for the given event in section
7.3.2. In addition to the radar calibration error, this includes time series of radome
attenuation and estimations of the coefficients of the power-law models relating the
specific attenuation and the reflectivity (AZ algorithm) on the one hand and the spe-
cific attenuation and the specific differential phase shift (A-Kdp relationship) on the
other hand.

Section 7.4 utilizes the parameter sets estimated and optimized using GSA to
obtain the specific attenuation profiles. DSD derived rainrate - specific attenuation
(R-A) relationship is then used to obtain range profiles of rainrate in the direction
of mountain targets (directions with PIAM). The next sections compare the rain-
rate profiles with raingauge accumulations in order to validate the GSA approach
of attenuation correction and subsequent QPE. The raingauge accumulations are
matched with the nearest available radar QPE in section 7.5. Overall performance
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of 5 QPE algorithms, the validity of optimized parameters, relevence of R-A re-
lationship and performance of radar QPE at different stations are analyzed in the
result section (7.6). We finally conclude our experience of using GSA based QPE
estimation in section 7.7.

7.2 Dataset

In this study we consider 3 convective events in July and August 2017. For all
these events the minimum altitude of ML bottom, detected using QVPs from 25◦-
elevation angle PPI measurements as described in Chapter 3, are well above the
altitude of MOUC radar (1920 m asl). The characteristics of the events are shown in
Table 7.1.

TABLE 7.1: Some characteristics of 3 convective events considered in
this study

Date
Beginning

(UTC)
End

(UTC)

Min. altitude of
ML bottom

(m asl)

Total rain
amount at IGE

(mm)

Max. rainrate
in 10 min at IGE

(mm h−1)
21st July 2017 15:00 19:00 3000 35.2 42.0

8th August 2017 08:30 15:00 3700 27.9 48.0

31st August 2017 07:30 10:30 3200 19.5 15.5

The two primary sources of rainfall data are: (i) radar QPE from MOUC and (ii)
ground observation using raingauges. The radar QPE is obtained from 0◦-elevation
PPI measurements of the X-band MOUC radar. The spatial resolution of the radar
data is 240m (radial) and the temporal resolution is 5 minutes. 22 mountain targets
are identified at 0◦-elevation PPI scan of MOUC radar. There are 10 raingauge sta-
tions in the "inner" domain, in the azimuths close to and in-between the mountain
targets. These raingauges are distributed between 30◦ to 150◦ azimuths and 6.8 km
to 32.6 km distances wrt the MOUC radar. These raingauge stations are located at
altitudes between 220m asl and 2000m asl. The time resolution of the raingauges
ranges from 1 minute to 15 minutes. Figure 7.1 shows the relative position of differ-
ent instruments and mountain targets wrt MOUC radar (at the center). Two addi-
tional mountain targets are considered in this chapter, 22 targets here compared to
20 in Chapter 4, by extending the range of detection to 40 km (from previous 30 km)
to include all available raingauges in RadAlp setup.

Additionally, a PARSIVEL2 disdrometer is installed at IGE site. The raw DSD
measurements have a time resolution of 1 minute. They are binned into 32 diam-
eter classed with increasing sizes from 0.125 mm upto 6mm. Data for 337 rainy
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days between April 2017 and March 2020 are available. Scattering Model from the
CANTMAT software version 1.20 from Colorado State University uses the T-matrix
formulation to compute the radar observables (eg Zh, Zdr, ρhv, A[dB km−1] and Kdp),
tuned to match the properties of X-band MOUC radar at incidence angle of 0◦. The
A-Z and A-Kdp relationships derived from DSD provides "initial" estimates of A-Z-
Kdp-R prefactors and exponents.

FIGURE 7.1: Relative position of mountain targets and raingauge stations wrt MOUC
radar. The polar plot has MOUC radar in the center, concentric rings denoting every 5
km range and radial lines at every 10◦ azimuth. Long term observation of dry mountain
echoes shows ground clutter with Zh ≥ 25 dB in gold and mountains with Zh ≥ 45 dB
in red. The 22 mountain targets are shown demarcated by blue boxes accompanying
numbers shows target id. Radial lines from center to targets shows the center of 0◦ PPI
beam, where R (mm h−1) profile is estimated. Green and black dots shows the location
of 10 raingauge stations, with station ID nearby. The purple arrow shows location of

radar grid matched with the corresponding raingauge station.
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7.3 Physical Model, Sensitivity Analysis and Parame-

ter Optimization

7.3.1 Physical Model

A-Z formulations

The A-Z algorithms shown in this section rely on two basic equations. The first one
is the analytical solution of equation 4.3 assuming the power-law model 7.2 perfectly
represents the A-Z relationship. By taking the derivative of AFbAZ(r0, r) with respect
to r, we obtain:

d
(

AFbAZ (r0, r)
)

/dr = AFbAZ (r0, r)
(
−0.46 aAZ bAZ Z(r)bAZ

)
(7.5)

Substituting the true reflectivity from equation 7.12 and integration between r0

and r yields:

AFbAZ (r0, r) = 1− 0.46 aAZ bAZ SZ (r0, r) / (AF (r0) dC)bAZ (7.6)

with
SZ (r0, r) =

∫ r

r0

Zm(s)bAZ ds.

The second equation is obtained by integrating equation 7.5 upto rm and by in-
troducing attenuation factor estimate available at this range, yielding:

(AF (rm) /AF (r0))
bAZ + 0.46 aAZ bAZ SZ (r0, rm) / (AF (r0) dC)bAZ = 1 (7.7)

Under the assumption of homogeneous precipitation type, the aAZ and bAZ are
constant along the propagation path. We introduce four AZ algorithm formulations;
each formulation filters out one of the four parameters AF(rm), dC, aAZ and AF(r0).
The corresponding AZ relationships will be referred to as AZhb, AZC, AZα and
AZ0 respectively. The first formulation AZhb does not take reference PIAm at rm

into account and is obtained solely based on 1st equation (7.6). For the rest, pa-
rameter to be expressed is derived from 2nd equation (7.7), then substituted in the
1st equation (7.6). The final forms of corrected reflectivity profiles are listed below,
refer to Delrieu et al. (2022) for details.
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ZAZhb(r) =
Zm(r)

{(AF(r0) dC)bAC − 0.46 aAZ bAZ SZ(r0, r)}1/bAZ
(7.8)

ZAZC(r) =
Zm(r)[AF(r0)

bAZ − AF(rm)]bAZ ]1/bAZ

{0.46 aAZ bAZ[AF(r0)bAZ SZ(r, rm) + AF(rm)bAZ SZ(r0, r)]}1/bAZ
(7.9)

ZAZα(r) =
Zm(r) SZ(r0, rm)1/bAZ

{dC [AF(r0)bAZ SZ(r, rm) + AF(rm)bAZ SZ(r0, r)]}1/bAZ
(7.10)

ZAZ0(r) =
Zm(r)

{0.46 aAZ bAZ SZ(r, rm) + (AF(rm)dC)bAZ}1/bAZ
(7.11)

The equivalent specific attenuation profiles are obtained by using the A-Z rela-
tionship. PIA profiles can then be estimated by integrating the A(r) profiles between
range r0 and r.

Assuming measured reflectivity is affected by both attenuation and radar cali-
bration error (dC), one can write:

Zm(r) = Z(r)AF(r)dC (7.12)

where Z is the true reflectivity, AF is the attenuation factor and dC is the radar
calibration error. AF ranges between 0 and 1. 0 means total attenuation and 1 means
no-attenuation. dC depends on the equipment configuration and can be considered
constant for an event.

In addition to the running range r, let us consider the range r0 corresponding
to the blind range of the radar system, eventually extended to the range where the
reflectivity measurements start to be free of spurious detection due e.g. to side lobes.
The attenuation factor AF(r) is expressed as the product of two terms:

AF(r) = AF(r0) AF(r0, r) (7.13)

where, AF(r0) is the on-site attenuation. The on-site attenuation can be attributed
primarily to the formation of the water film on the radome, combined with along-
path attenuation between radar site and range r0. AF(ro, r) is the attenuation factor
due to precipitaion occuring between range r0 and r.

As a classical formulation (Marzoug and Amayenc 1994), the two-way attenua-
tion factor can be expressed as a function of specific attenuation A[dB km−1]:

AF(r) = AF(r0) exp(−0.46
∫ r

r0

A(S)ds) (7.14)
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Let us now consider another particular range, denoted rm, where estimates of
the attenuation factor may be available. We use the following notation:

AFm(rm) = AF(rm) dAF(rm) (7.15)

where AF(rm) is the true attenuation factor at range rm and the term dAF(rm)

represents a multiplicative error term. Such direct estimates of the attenuation fac-
tor can be obtained in mountainous regions from the mountain reference technique
(Chapter 4). The mountain reference technique makes it possible to directly measure
PIA in the directions with the mountain target.

The notion of path-integrated attenuation (PIA), in units of dB, can be recalled
from equation 4.4

PIA(r) = −10 log10(AF(r))

Polarimetric formulation

It was shown in Chapter 5 that it is possible to derive the PIA range profile using
radar polarimetry, from the profile of the total differential phase shift on propagation
Φdp[

◦]. The Φdp profile is not affected by attenuation and radar calibration error.
From equation 5.1, Φdp(r) can be formulated as:

Φdp(r0, r) = 2
∫ r

r0

Kdp(s)ds (7.16)

where Kdp is the specific differential phase shift on propagation [◦km−1]. Assuming a
power-law relationship between the specific attenuation and the specific differential
phase shift on propagation with:

A = aAKKbAK
dp (7.17)

and combining equations 4.4, 7.16 and 7.17 gives:

PIAΦdp(r) = PIA0 + 2 aAK

∫ r

r0

KbAK
dp (s)ds (7.18)

where PIA0 is the on-site attenuation
This polarimetry-derived PIA can be related to the PIA profiles obtained by

integrating the specific attenuation profile obtained from solving the attenuation-
reflectivity (A-Z) algorithms.
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A 5th formulation is obtained from the polarimetric PIA equation7.18:

PIAΦdp(r) = PIA0 + 2 aAK

∫ r

r0

KbAK
dp (s)ds

The AZhb formulation is equivalent to the solution proposed early by Hitschfeld
and Bordan (1954), hence the name AZhb. It can be termed as the "forward algo-
rithm" as only measured reflectivites between r0 and r are used for correction at
range r. The negative sign in the denominator means the solution is unstable at
large SZ cumulative terms, i.e. high rainrates. It is also known to be highly sen-
sitive to calibration error, to inadequate values of AZ relationship coefficients and
to on-site attenuation. The AZ0 algorithm has the simplest mathematical expres-
sions among the three algorithms using PIA constraints. It looks like a "backward
algorithm" since the reflectivity and the specific attenuation estimated at range r de-
pends only on the measured reflectivities between range r and rm, while AZC and
AZα algorithms make use of the entire measured reflectivity profile between range
r0 and rm.

The prefactors and exponents of the Z-A-Kdp-R relationships (i.e. aAZ, bAZ, aAK

and bAK) are mutually dependent as they are determined by the shape, density and
size of hydrometeors and their electromagnetic properties, driven by their solid vs
liquid composition and temperature. They might vary significantly from one pre-
cipitation type to another. Here, we consider a homogeneous precipitation type
(convective rainfall). Because of the mathematical form of the equations and the
likely mutual dependence of the exponents and prefactors if the power-law models,
we will assume the exponents of the A-Z and the A-Kdp relationships to be constant
for all considered events while the prefactors are allowed to vary for each single
target and timestep. This assumption holds in rain, so we started with a similar
assumption in the melting layer.

The parameters dC, PIA0 and PIAm are mutually independent, and a priori in-
dependent of the coefficients of the Z-A-Kdp-R power-law models. The radar cali-
bration error is considered to be constant for a given precipitation event. The PIA0

has two components, radome attenuation and attenuation due to rain in [0, r0] range
which depends on on-site precipitation conditions. Following the findings of Frasier
et al. (2013), the measured reflectivity in radar vicinity Z0 is used as an index for the
presence of on-site attenuation. It allows defining a search range for PIA0 (refer to
Delrieu et al. (2022) for details). The PIAm is estimated using the MRT (Delrieu et al.
1999). The PIAm contains onsite attenuation, so it is necessary to correct PIAm for
PIA0 before QPE applications.
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In the physical model consisting of A-K and A-Z formulations, we have 7 pa-
rameters/unknowns that define QPE of a polarimetric radar. These are: aAZ and
bAZ from A-Z relationship, aAK and bAK from the A-K relationship, radar calibra-
tion error dC, on-site attenuation PIA0 and reference attenuation PIA(rm) at range
rm.

7.3.2 Parameter Estimation

FIGURE 7.2: A− Z relationship based on DSD-derived power law models using log10
transformation of both variables. N refers to the number of points, R2 gives the square
of the correlation coefficient of the logarithmic regression. The prefactors and exponents
of the resulting least square regressions of A vs Z (Lsq Y/X) and vice versa (Lsq X/Y);
and the least rectangle regression (LRc), which considers the two variables on an equal

footing, are shown

For the simulations the fixed parameters i.e. exponents of the A-Z-Kdp i.e. bAZ and
bAK are obtained from the DSD simulations of radar variables. For the prefactors
i.e. aAZ and aAK Latin hyper cube sampling is utilized, central values values and
ranges of variation are again based on the DSD simulations. Figure 7.2 shows the
relationship log(Ah) vs log(Zh) relationship utilizing the full dataset i.e. 337 days.
The scatterplot has high R2 fit of 0.961, and shows no curvature, i.e. it is good
fit for the power-law like model. Although the statistics from the log-log fit gives
higher importance to the data in the mid-section, the model provides a good fit
for the highest values which relate to the convective events. The least-rectangle fit
provides bAZ = 0.78 for the exponent and aAZ = 1.0 10−4 as the central value for
LHS sampling of the prefactor. It also suggests a possible range of variation of [-
5,5 dB] for the DSD-derived values. We however limit this range to [-3, 3 dB] on
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the basis that the resolution volume of the radar is much larger and the assumption
that the prefactor is constant throughout the reflectivity profile (i.e. homogeneous
precipitation type).

Figure 7.3 shows the scatter-plots of the A-Kdp relationship. The left sub-plot
once again considers the log-log transformed A-Kdp relationship. However it can be
seen that there is a slight curvature and the higher values are not fitted well. The
right sub-plot shows two different fitting techniques, 0-forced linear fit in the red
and a non-linear fit in the blue. The linear fit performs well for low and medium
values with R2 of 0.975, but underestimates A at the highest Kdps. The non-linear
power-law model (NLPL, equation 6.1) fit in blue performs better. NLPL fit in the
A-Kdp relationship provides the exponent bAK = 1.1 and central value of prefactor
aAK = 0.3 for LHS sampling.

FIGURE 7.3: A − Kdp relationship from DSD-derived power law models (a) using a
classical logarithmic of base 10 transformation of the two variables (similar to Fig. 7.2)
and (b) using natural values of the two variables. The red line in panel (b) is the zero-
forced linear regression with a slope equal to 0.32, and the blue curve is the non-linear

fit of a power law model with a prefactor of 0.30 and an exponent of 1.1.

7.3.3 Sensitivity analysis

The interdependence of Z-A-Kdp-R parameters lead the optimization procedure to
be organized in a nested way. For a series of convective events, the exponents of
the A-Z, A-Kdp relationships, i.e. bAZ and bAK, are considered to be constant. For
each event radar calibration error dC is considered to be constant. A simulation is
performed for each combination of bAZ [0.78], bAK [0.9, 1.2] by 0.1 and dC [-2, 2]
by 0.4. The simulation core is implemented for each mountain target and each time
step.
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• The Zm(r) and Φdp(r) profiles between radar and the mountain target are pre-
processed. Z0 calculated as product of 1/dC and mean reflectivity of 1st 4
gates (1 km).

• Latin Hypercube sampling (LHS) technique is used to generate N parame-
ter sets (with N=200) filling uniformly the parameter space composed of four
parameters: aAZ, aAK, AF(r0) and dAFm (multiplicative error on MRT attenu-
ation factor). Central values, intervals of variations of the parameters used in
the simulations are listed in appendix Table C.1.

• After discarding nonphysical parameter sets (leading to PIA0 > PIAm), the
five algorithms are implemented for all remaining sets. A cost function (CF) is
evaluated in order to measure the convergence of the five simulated profiles
for each set of parameters.

CF = mean(NSE(ZAZhb(r), ZAZC(r)),

NSE(ZAZC(r), ZAZα(r)),

NSE(ZAZC(r), ZAZ0(r)),

NSE(ZAZα(r), ZAZ0(r)),

NSE(PIAAZC(r), PIAΦdp(r)),

NSE(PIAAZ0(r), PIAΦdp(r)))

(7.19)

where NSE is the Nash-Sutcliffe model efficiency coefficient between two pro-
files. NSE = 1 denotes the perfect agreement between two profiles. CFi ≥ 0.8
is the thresold to consider a given set of parameter to be "optimal". The num-
ber of optimal parameter sets (NOPS) is computed for each target and timestep
and summed up for all targets and the timesteps of an event or group of events.
Maximizing the numbers of optimal parameter sets (NOPS), accumulated for
all the targets, timesteps and events, yields a measure of the overall quality of
a given simulation involving a given set of parameters (fixed and randomly
drawn from LHS sampling).

7.3.4 Parameter Optimization

The sensitivity analysis provides the basis for the optimization of the prefactors of
the A− Z and A−Kdp relationships, PIA0 values for a series of dC values (constant
for a given event), and optimal dC for any given event. The exponents of the A− Z
and A − Kdp relationships are considered to be constant for the convective events
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considered in the study. PIA derived from the MRT can provide a series of these
exponents for different precipitation types.

As described in Table 7.1, 3 convective events within a span of a month are in-
cluded in this event. For these events, Fig. 7.4 shows the estimation of optimal dC
by maximizing NOPSs, with fixed parameters bAZ = 0.8 and bAK = 1.1. It gives
the results as a function of dZ = −dC, dZ represents the dBZ value to be added to
the measured Zm to cope with calibration error. The optimal dC values for given
events, represented as dC∗ hereinafter, are estimated as 0.4 dBZ for 21st July 2017,
-1.2 dBZ for 8th August 2017 and -0.4 for 31st August 2017. The combined result for
3 events indicates no calibration error of the measured reflectivities.

FIGURE 7.4: Evolution of the total number of optimal parameter sets (NOPS) as a func-
tion of the radar calibration error for three convective events separately (dotted blue
curves) and all together (solid blue curve). The fixed parameters for these simulations

are bAZ = 0.8 and bAK = 1.1.

For the 21st July 2017 event, with dC∗ = 0.4, Fig. 7.5 presents the time series
of quantiles of the distributions of the input variables and the estimated optimal
parameters obtained for the best simulation by maximizing the cost function 7.19.
The PIA and Φdp plots indicate that the storm was intense between 15h30 and 17h00
GMT, with medians of 20 dB and 60◦ respectively. As a result of spatial distribution
of the targets and corresponding precipitation variability, the interquartile ranges of
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PIA and Φdp are quite large. The time evolution of the precipitation intensity is rep-
resented in the NOPS time series, most probably corresponding to higher counts of
range profiles with PIAm ≥ 1 dB threshold and stable signal corresponding to sig-
nificant precipitation intensities. The time series of the prefactors aAZ and aK show
a stable median value close to the central values (aAZ = 1.0 10−4 and aAK = 0.3) of
LHS sampling, and the limits of LHS sampling encompass the variability of the
estimated prefactors. This reassures the relevance of DSD-derived relationships
deduced from the microphysical measurements and scattering models to simulate
radar observations of the convective storms. The interquartile range of aAZ is signif-
icantly larger than of aK. This suggests that the mathematical ambiguity of AZ algo-
rithm alone is much larger and the introduction of the A-Kdp relationship improves
the attenuation correction significantly (Delrieu et al. 2022). The sampling strategy
making use of Z0 is considered for PIA0. The close range reflectivity measurements
are affected by radome attenuation. This may explain the significant increase in es-
timated PIA0 at 17h00 compared to 16h30 and 17h30. It is important to note that
there is also a significant increase of PIAm and Φdp(rm) at this instance.
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FIGURE 7.5: time series of the input variables and optimal parameters for the best sim-
ulation obtained for the 21 July 2017 convective event. The optimal set of fixed param-
eters for this event is dC∗ = 0.4 dB, bAZ = 0.8 and bAK = 1.1. For each of the three
considered input variables (a) Z0; (b) PIAm (red) and Φdp(rm) (purple), the median
(continuous line) and the 25 and 75% quantiles (dotted lines) of their distributions are
displayed over the 22 mountain targets. Similar representation is shown for the LHS
optimal parameters (c) PIA0; (d) aAZ; (e) aAZ, except that the distributions are estab-
lished over all optimal parameters of all targets. In (d) and (e), the dotted horizontal
lines materialize the lower and upper limits consider in the LHS of the considered pa-
rameter. The time series of the number of optimal parameter sets cumulated over all

the 22 targets (NOPS) is displayed in (f).

7.4 Radar QPE implementation

The application of 5 attenuation correction algorithms provides range profiles of cor-
rected reflectivity, specific attenuation and PIA in the direction of mountain targets
for each timestep for a given parameter set.
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FIGURE 7.6: Implementation of the five algorithms (blue: AZhb; red: AZC; orange:
AZα; green: AZ0; purple: PIAΦdp ) for mountain target "13" (7.1) during the 21 July 2017
convective event at 16h00 GMT using a near-optimal parameter set (Figs 7.4 and 7.5).
The results are displayed in terms of profiles of (a) reflectivity, (b) specific attenuation,
(c) differential phase shift on propagation and (d) path-integrated attenuation. The
grey profile in (a) is the measured reflectivity (Zm) profile; at 20 km range horizontal
black and grey lines show dry-weather and measured reflectivities, respectively. The
resulting measured PIA value of 25.2 dB is reported in grey in (d). The grey profile in (b)
is derived from the Zm. The green line in (c) is the raw Φdp profile and the grey dotted
curves are the envelope curves used in the regularization procedure and corrected Φdp

is shown in purple.

Figure 7.6 shows an example of attenuation correction using the 5 algorithms
and corresponding range profiles on 21st July 2017 at 16h00 GMT towards the direc-
tion of target 13 using a near optimal parameter set form the generalized sensitivity
analysis. The near optimal parameter set leads to a cost function (CF) value over
passing the CF threshold, but not the best one obtained for this target and time step
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so that we can visualize some difference between the solutions of the various algo-
rithms. Located at a range of 20 km in the Belledone mountain, it has Zdry = 50.9 dB,
PIAMRT = 25.9 dB, Φdp(r0, rm) = 71.5◦ and Z0 = 9.5 dB. The fixed parameter set
utilized in this event are bAZ = 0.8, bAK = 1.1 and dC∗ = −0.4. The overlapping of
the corrected reflectivity profiles from different formulations means the result corre-
sponds to the near-optimal parameter set. The set of LHS parameters for this specific
target/time step is PIA∗0 = 0.46 dB, a∗AZ = 1.0 10−4, a∗AK = 0.34 and dAF∗m = 0.99.
The figure corresponds to the simulation with CF = 0.925, while the best OPS is
0.981, and NOPS = 55. Although not the best solution, this example displays some
differences between different the solutions of different algorithms while still show-
ing convergence. For this parameter set, the solution of AZhb shows inherent in-
stability and diverges from rest of the solutions at 7 km range. This is consistent
with the previous explanations of instability of HB solution at higher precipitation
intensities. This algorithm is not considered in the formulation of CF (eqn 7.19). For
high PIAM values, remaining 3 AZ algorithms give similar results. We note that
the optimal parameterizations lead to the convergence of the AZC and AZ0 algo-
rithms near the radar and to the convergence of the AZα and AZ0 algorithms at the
other end of the profile. In the specific attenuation profiles, AZα and AZC solutions
are identical (in red) and slightly different at a long range from the AZ0 solution.
The significant increments in the Φdp profile corresponds well with the bumps in
Ah profiles. The raw Φdp profile is quite smooth without significant bumps, sug-
gesting no significant backscattering differential phase (δhv) contamination (Trömel
et al. 2013). The comparision of PIA estimation from 4 algorithms (without AZhb)
show good overall consistency. PIA from the AZα and AZC algorithms show very
good consistency with the polarimetric derivation at longer range.

The radar QPE is based on the estimation of the rainfall intensities R(mm h−1) in
each range bin using the range profiles of attenuation corrected reflectivity Z(dBZ)
or specific attenuation A(dB km−1), i.e. R-Z and R-A relationships. As proposed
in equation 7.3 the R-A relationship is expressed as R = aRA AbRA . The parameters
aRA and bRA could be estimated and optimized using additional relationships and
constraints in the core procedure of GSA approach. However, the main restriction
of this method is the requirement of ground based measurements in the direction of
each target as constraint. It is therefore beyond the scope of this study. Here, we will
utilize the R-A relationship derived using DSD observations at IGE site to obtain aRA

and bRA. We will then compare the radar QPE with the raingauge measurements
and analyse the results.
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FIGURE 7.7: Fitting of DSD-derived power law models for rainfall intensity R (mm h−1)
as a function of the specific attenuation Ah (dB km−1) using the log10 transformation of
two variables. Annotations are similar to Fig. 7.2. The left subplot utilizes all avail-
able dataset and right subplot correspond to the convective events. A threshold of 0.01
db km−1 is also introduced on the A values to mitigate the impact of low values on the

regression.

Figure 7.7 gives the fittings of R-A relationships obtained using the log10 transfor-
mation of both variables. An event is considered convective if a 5-minutes rainrate
of 10mm h−1 is exceeded at given moment. The first observation is that both log-log
scatterplots are distributed in rather linear fashion with high coefficient of deter-
mination (R2 ≥ 0.8). It suggests that the power-law type R-A relationship is well
justified. In the all event fitting (left subplot), the fitting overestimates rainfall inten-
sities at high specific attenuation observations, related to the convective events. This
is addressed in convective only fitting (right subplot). As a result of large variation
in precipitation intensities during convective events and smaller sample size, the
R2 of logarithmic regression decreases from left to right. As both variables are de-
rived using same DSD and scattering model, both variables have same importance
and reliability. As such, we rely on the least rectangle regression (LRc) to obtain the
coefficients of R-A relationship. The coefficients of R-A relationship for all events
are: aRA = 58 and bRA = 0.84. During the convective events the coefficients are:
aRA = 34.7 and bRA = 0.72. There is slight difference in the coefficients between "all
events" and "convective events" observation. We will study the dependence of QPE
in R-A relationships in section 7.6.

In the next section we will analyse the overall performance of 5 algorithms and
effects of different parameters on radar QPE, by comparing results with ground
based raingauge observations. We perform 3 simulations with different parameter
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sets to obtain rainfall intensity profiles.

• Sim001: No parameter optimization
This simulation uses the a priori information of the A− Z− Kdp − R relation-
ships one could get from the DSD. All the parameters for the A-Z and A-Kdp

relationships are estimated from the DSD data, i.e. central values for LHS sam-
pling for non-fixed parameters. In addition, on-site attenuation PIA0 = 0 and
dC is varied from -2 to 2 dB with stepsize of 0.4 (based on experience with the
dataset). The R-A relationship derived from DSD observation of all available
convective events (left sub-plot in Fig. 7.7).
aAZ = 9.9 10−5, bAZ = 0.78
aAK = 0.3, bAK = 1.1
aRA = 58, bRA = 0.84

• Sim002: Optimized parameters from GSA and all event R-A relationship
This simulation takes into account the optimal parameter sets. The calibra-
tion error dC varies from -2 to 2 dB. The fixed parameters are bAZ = 0.8 and
bAK = 1.1. Each timestep has an optimal parameter set and PIA0 similar to
one shown in Fig. 7.5 for each target. The OPS leading to the best convergence
is actually used for a given target and time step; since it was checked that the
convergence takes place over a reduced range of A(r) profiles. The R-A rela-
tionship is derived from DSD observation of all events, similar to simulation
001.
aRA = 58, bRA = 0.84

• Sim003: Optimized parameters and convective R-A relationship
The optimization criteria and parameter set are similar to Sim002, it takes into
account the parameter optimization procedure. The R-A relationship derived
from the DSD observation of convective events (right sub-plot in Fig. 7.7).
aRA = 35, bRA = 0.72 is considered owing to the poor fitting of high R− A
pairs in Fig. 7.7 left.

7.5 Radar- raingauge matching

The radar QPE procedure provides the range profiles of rainfall intensities R (mm h−1)

in the direction of 22 mountain targets as observed by 0◦ PPI observation using
MOUC radar (1920 m asl). The first radar gate is centered at 120 m; the subsequent
radar grids have spatial resolution of 0.5◦ (angular) and 240 m (radial). The time
resolution of the radar observation is 5 minutes i.e there is one PPI scan made at the
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0◦ elevation angle each 5 minute. In order to compare the radar QPE with raingauge
measurements, we will consider that radar observation at every timestep is repre-
sentative of average conditions in the last 5 minutes in the given resolution volume.
There might be some missing values (NA) in range profiles of R (mm h−1) due to
the limitations of 5 algorithms, like grids close to mountain targets for PIAΦdp(r) al-
gorithm. The rain-rates RAZC, RAZα and RAZ0 are available only when PIAM > 1 dB
(corresponding to the minimum detectable PIA using MRT). The missing RΦdp rain-
rates are replaced by RAZα whenever available, if not by RAZhb. The AZhb algorithm
is known to diverge at high PIAs, so we cap RAZhb to the ceiling of 200mm h−1.
Another rainrate estimate Rcor1 is obtained from basic algorithm with calibration
correction, without attenuation correction and using the R-Z relationship.

The mountain targets are distributed from 30◦ to 210◦ azimuth wrt MOUC radar
within the range of 40 km. This area is considered the "inner domain" for radar
QPE. There are 10 raingauge stations in this inner domain out of which 8 stations
recorded the precipitation during the 3 convective events. Figure 7.1 shows the spa-
tial distribution of different mountain targets and raingauges in the inner domain
of MOUC radar. Two main issues must be addressed before the radar QPE can be
compared with the raingauge measurements, namely matching temporal resolution
and spatial distribution. Figure 7.1 shows that in most cases the raingauges are not
located directly in the direction of the mountain targets along the black radial lines.
So, the raingauge stations need to be assigned the nearest radar grid where rainrate
profile is available. It is done in 2 steps for each station: i) locate the mountain tar-
get with closest azimuth, ii) locate the radar grid with minimum distance from the
station in this azimuth.

The details of radar - raingauge matching is given in Table 7.2. Each station is
assigned a radar grid where rainfall estimate is available; azimuth: mid azimuth
of associated target, gate: gate of station wrt target. In case of Col de Porte (CDP)
station, it can be observed from the table as well the Fig. 7.1, that station is located
within the mountains surrounded by mountain clutter and beyond the range (gate
80) where target 1 starts (gate 76). In this case, it was necessary to adjust the closest
grid from gate 80 to gate 74 where rainfall estimate is available and free of ground
clutter, at a horizontal distance of 2.37 km from the station. Similarly, there are not
mountain targets in the immediate vicinity of Theys station (THE), and the nearest
radar grid with rainfall estimates is 4.76 km horizontal distance away, and close to
ground clutter.
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TABLE 7.2: Details of radar - raingauge matching

station id azimut gate
range
(km)

associated
mountain

target

mid
azimuth of

target

start gate
of target

range of
station wrt

target
(km)

gate of
station wrt

target

distance
station
to grid
(km)

time
resolution

(min)

MOUC MOUC 0 0 0 0 0 0 0 0 0 5

COLDEPORTE CSP 31.2 79.2 18.9 1 37.5 77 19 80∗ → 74 2.37 15

GREENER GNR 39.3 32.2 7.6 2 40.5 118 7.6 32 0.16 1

IGE IGE 61.8 45.1 10.7 4 66.5 164 10.7 45 0.88 10

THEYS THE 58.2 136.2 32.6 4 66.5 164 32.9 138 4.76 6

GRE_LVD LDV 64.8 75 17.9 4 66.5 164 17.9 75 0.53 6

PIPAY PIP 65.6 133.7 32 4 66.5 164 32 134 0.50 6

REVEL REV 75.7 76.4 18.2 7 77.2 109 18.2 76 0.48 6

CHAMROUSSE CHM 95.7 78.2 18.6 11 94.5 84 18.6 78 0.39 6

LUITEL LUI 111.7 72.9 17.4 16 111.8 99 17.4 73 0.03 15

VARCES VAR 139.4 28.8 6.8 21 141.8 103 6.8 29 0.29 6

The second issue is related to the different time-resolution of different mea-
surement stations (Table 7.2). The GREENER station has the finest resolution of
1 minute, IGE has resolution of 10 minutes, Météo-France operated station have a
resolution of 6 min, EDF-CEN operated stations have resolution of 15 minutes, and
the MOUC performs 0◦ PPI scans every 5 minutes. While the radar measure is in-
stantaneous, the raingauge time resolution refers to accumulate the rainfall during
that time-period. To level the playing field, we assume the radar measurement to
represents the average situation of the storm in last 5 minutes, i.e convert rainrate
R(mm h−1) to accumulation R(mm in 5 min). Now the least common denominator
of all the measurements is 30 minutes, i.e. we aggregate all the rainrates to 30 min-
utes resolution. It will be referred as 30 minutes scale rainfall hereinafter. Similarly,
event scale aggregation is also performed for all 3 events.

7.6 Results

In this section, we compare the results of radar QPE with ground observation and
study performance of the parameter estimation procedure. The main goals are: i)
to analyse overall performance of 5 attenuation correction algorithms; ii) to under-
stand the dependence and robustness of the algorithms wrt the parametrization and
to test the relevance of DSD-derived A-R relationships.

7.6.1 Overall performance of 5 QPE algorithms

The rainfall estimated using different A(r) profiles obtained from different algo-
rithms are compared with the raingauge measurements. Rainfall estimates obtained
form AZhb, AZC, AZα, AZ0 and PIAΦdp algorithms will be denoted RAZhb, RAZC,
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RAZα, RAZ0 and RΦdp respectively, hereinafter. Rainfall estimated only using calibra-
tion correction and no attenuation correction will be referred to as Rcor1. AZC and
AZα have same formulation for A(r), hence give the same R estimates; only AZC
will be discussed here. Similarly, rainfall measured at the station will be referred
to as RG. Rainfall estimates and measurements are aggregated at 30 minutes and
event scale.

Event scale

FIGURE 7.8: Radar QPE vs raingauge station: rainfall accumulation by event, optimal
parameters and global optimal dC = 0, Sim 002. Total accumulation (mm) at different
stations during 20170721, 20170808 and 20170831 events are presented in left, middle
and right subplots respectively. Estimates of 5 different algorithms are marked by dif-
ferent color and symbols. Numbers in grey at the top of plot annotate the mountain

target matched with the station.

The characteristics of 3 convective events between 21st July 2021 and 31st August
2021 are detailed in Table 7.1. Figure 7.8 compares the rainfall accumulated at 8
stations whose measurements are available during these events and compares them
to the radar QPE estimates at event scale for simulation 002 and global optimal dC
= 0. Simulation 002 utilizes the optimal parameter set and dC is allowed to vary
from -2 to 2 dB. We can observe that estimates of Rcor1 are negative biases at every
station and every event. Similarly, RAZhb results are unreliable for the (high) PIAs
observed during these events; accumulations greater than 80 mm are capped at 81
mm ceiling. RAZC and RAZ0 provide similar results. The polarimetric estimate RΦdp

also matches closely with the RAZC and RAZ0 estimates. The rainfall at Col de Porte
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(CDP) and Pipay (PIP) stations are consistently underestimated even by RAZC, RAZ0

and RΦdp formulations. Both these stations are located in the mountainous and have
significant ground clutter around them (see Fig. 7.1). At other stations, the latter
3 algorithms seem to underestimate rainfall high accumulations, and work well for
low accumulations. Although this tendency is not very strong.

FIGURE 7.9: Radar QPE vs raingauge station: rainfall accumulation by event, optimal
parameters and event-wise optimal dC = dC∗, Sim 002. Similar explanation of the

content to Fig. 7.8.

Figure 7.9 plots the QPE estimates accumulated at event scales for Sim002 and
event optimal dC (dC∗). There is only a slight gain on all the criteria (pbias, R2 and
NSE) in radar QPEs of second event which has the largest difference in dC between
Figs 7.8 and 7.9. Changing from global optimal dC to event optimal dC∗, does not
show significant improvement in radar QPEs in event scale accumulation.

Radar - raingauge time series 30 min

Figure 7.10 shows the time series of 30 min rainfall accumulation for Sim002 and
event optimal dC (dC∗). The three best performing algorithms and raingauge mea-
surements are shown in the figure. The GREENER station is located in the valley
(220 m asl) at around 7 km from MOUC radar. All radar QPE methods overestimate
the precipitation by around 20% compared to the raingauge measurement. For spe-
cific timesteps with high rain amounts, the overestimation is very large e.g. up to
162% for 8 August 2017 at 11:15. The 30 min rainfall accumulation radar - raingauge
scatterplots have many outliers and the difficulty to find valid explanations has led
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us to focus on the event scale rainfall accuulations for further analysis of the QPE
results.

FIGURE 7.10: Radar QPE vs GREENER rain station measurements: time series of evo-
lution of 30 minutes rainfall accumulation, Sim 002, event optimal dC = dC∗. 3 events
shown in 3 subplots. Estimates of different algorithms marked in different colors. Rain-
fall (mm) in Y-axis is the rain accumulated in 30 minutes. Time steps in X-axis is the

midpoint of 30 min collection interval.

Figures 7.11 and 7.12 show the time series of evolution of 30 minutes rainfall
accumulation for the 3 events with Sim 002 at Pipay station for global optimal dC
and event optimal dC∗ respectively. The Pipay station is located in the mountains at
around 33 km from the MOUC radar and surrounded by ground clutter. Radar QPE
mostly underestimates the rainfall at Pipay station by around 35%. Similar under
estimation is observed at another station Col de Porte, also located in the mountains
(although not shown here). Comparison of summary statistics at Pipay for global
(Fig. 7.11) and event optimal dC (Fig. 7.12)shows no significant difference; there is
only a slight improvement in RΦdp using dC∗. It suggests that the calibration error
does not have significant impact on the QPE at lower precipitation intensities. The
station in the valley does not show the similar trend. At GREENER there is some
over-estimation in the periods with high precipitation intensity. Although just 26 km
apart, the storms at two stations show quite different characteristics which is typical
to convective systems. Like in the event scale accumulation, the Rcor1 consistently
underestimates the precipitation and RAZhb is unreliable (not shown here). RAZC,
RAZ0 and RΦdp perform the best and give similar QPE estimates. Pipay is one of
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the best performing stations, most probably due to less periods with high rainfall
intensities.

FIGURE 7.11: Radar QPE vs PIPAY rain station measurements: time series of evolution
of 30 min rainfall accumulation, Sim 002, global optimal dC = 0. Explanations similar

to GREENER station

FIGURE 7.12: Radar QPE vs PIPAY rain station measurements: time series of evolution
of 30 min rainfall accumulation, Sim 002, event optimal dC = dC∗. Explanations similar

to GREENER station
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7.6.2 Dependence on the parameterization and robustness of 5 QPE

algorithms

Figure 7.13 shows the radar - raingauge rainfall accumulation at the event scale us-
ing the Rcor1 formulation, which simply corrects for the calibration error and does
not take attenuation into account. For all types of parameter sets, irrespective of
parameter optimization and choice of R-A relationships, Rcor1 systematically under-
estimates the rainfall accumulation. It suggests the presence of attenuation and the
need to correct for attenuation before QPE applications.

FIGURE 7.13: Radar - raingauge scatterplot: Rcor1, event scale accumulation, all stations,
all events, all dC. GSA results for different dC shown in different colors. Grey line marks
the 1:1 line. Sim 001, Sim 002 and Sim 003 are shown in left, middle and right sub-plots
respectively. Summary statistics at dC = 0 for the corresponding simulation are shown on

the top-right of each sub-plot.

As the AZC and AZα produce identical specific attenuation profiles, i.e. same
precipitation estimate, we focus on the performance of 4 algorithms (RAZhb, RAZ0,
RAZC and RΦdp). Figure 7.14 shows the radar - raingauge (R_G) scatterplot for RAZhb

method. Sim 001 and Sim 002 correspond to the all precipitation types R-A relation-
ship (section 7.4, Fig. 7.7), Sim 003 makes use of convective R-A relationship. Sim
002 utilizes the optimal parameter set from GSA, Sim 001 only utilizes the DSD de-
rived relationships. RAZhb method is known to diverge dramatically for high PIAs
as seen in Fig. 7.14, irrespective of the choice of parametrization and the dC values.
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FIGURE 7.14: Radar - raingauge scatterplot: AZhb formulation, event scale accumulation,
all stations, all events, all dC. Radar estimated rainfall accumulation is capped at 80 mm

ceiling and accounted for in the criteria calculation. Description similar to Fig. 7.13

.

FIGURE 7.15: Radar - raingauge scatterplot: AZ0 formulation, event scale accumulation, all
stations, all events, all dC. Similar description as Fig. 7.13.
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FIGURE 7.16: Radar - raingauge scatterplot: AZC formulation, event scale accumulation, all
stations, all events, all dC. Description similar to Fig. 7.13.

FIGURE 7.17: Radar - raingauge scatterplot: PIAΦdp formulation, event scale accumulation,
all stations, all events, all dC. Description similar to Fig. 7.13.

Figures 7.15, 7.16 and 7.17 show similar analysis for RAZ0, RAZC and RΦdp for-
mulations respectively. As the convergence of A(r) profiles are ensured, except for
RAZhb algorithm, the RAZC, RAZ0 and RΦdp estimates are very similar for Sim 002
and Sim 003. Sim 001 which does not take GSA into account shows that the RAZC

and polarimetric RΦdp formulations do not depend on the calibration error. Ensur-
ing the convergence of different methods for parameter optimization means there
is some impact of dC in RAZC and RΦdp methods for Sim 002 and Sim 003. RAZ0

is most sensitive to calibration error, especially for Sim 001 parametrization, while
some compensation occurs between the GSA parameters in Sim 002 and Sim 003.
There is an overcorrection in Sim 001 of RAZC algorithm, due to PIA0 = 0 and in-
dependence from dC. It is not the case in Sim 001 of RΦdp , also independent of dC
but with PIA0 6= 0. This suggests that the on-site attenuation and radar calibration
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error are dependent on each other. As the summary statistics shown in the figures
correspond to dC = 0, in terms of R2 statistics Simulation 001, which does not use
optimal parameter set, performs slightly better than Simulation 002 and Simulation
003. Simulation 001 also shows that the RΦdp algorithm performs best in terms of
NSE statistics and RAZ0 is the best in terms of R2 statistics. It is clear that RAZ0,
RAZC and RΦdp perform much better than RAZhb algorithm, and only these 3 meth-
ods will be used for further analysis.

7.6.3 Relevance of DSD derived A-R relationship

We have 3 different simulations with 2 different DSD-derived A-R relationships for
convective events. Sim 002 utilizes the R-A relationship based on all events, while
Sim 003 utilizes the R-A relationship based on convective events. Figures 7.15, 7.16
and 7.17 all show that QPE based on convective RA relationship (Sim 003) consis-
tently underestimates the rainfall estimates by around 35% while the bias is much
less with the all-events R-A relationship. The result is a bit surprising but it shows
the limitation of the validity of implementing the DSD-based Z − A− Kdp − R re-
lationships at the radar resolution scale. It suggests the need to parametrize the
coefficients of R-A relationships by including rainrate data in GSA.

7.6.4 Calibration error dC estimation

Delrieu et al. (2022) estimated optimal dC based on GSA approach for the physical
model (described in section 7.3.1) during 3 events in discussion here. They estimated
the global optimal dC to be 0; but the event optimal dC values were estimated as 0.4,
-1.2 and -0.4 dBZ for the 20170721, 20170808 and 20170831 events respectively. It is
interesting to see if the radar - raingauge summary statistics confirm or not the GSA
results, based on the NOPS, about the optimal dC. The radar calibration error dC is
considered to be constant for an event or group of close events. Figure 7.18 attempts
to find a global (all 3 events together) optimal dC using event scale accumulation
of RAZ0, RAZC and RΦdp in Sim 002. Due to parameter compensation provided by
GSA for dC in [-1.2,0.4], the dCs have quite low NSE, with a plateau of 0.3 for dC
between [-1.2,0.4]. It is interesting to observe that NSE decreases for dC > 0 i.e.
when Zm decreases.
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FIGURE 7.18: NSE of radar QPE vs raingauge measurement regression fitting at event
scale accumulation as a function of calibration error dC for Simulation 002. Three QPE

estimation methods are considered: RAZ0 (purple), RAZC (blue) and RΦdp (red).

In conclusion, the search for optimal dC (both global and event wise) is hardly
feasible here due to consideration of 3 short rain events and poor relationship be-
tween radar and raingauge measurements at the 30 min timescale, illustrated in Figs
7.10 - 7.12 and section 7.6.5.

7.6.5 Performance of radar QPE at different stations

Figures 7.8 and 7.9 show the performance of the radar QPE formulations at differ-
ent station for event scale accumulation. Radar QPE overestimates rainfall at valley
based stations (GREENER, IGE), whereas underestimates rainfall on the mountain
based stations (CDP, PIP, CHM). At low rainfall intensity event(31 August 2018)
radar QPE at most stations fare better than in high intensity event(08 August 2017).
Pipay (PIP) station is surrounded by ground clutter, radar QPE in this station is sig-
nificantly underestimated. Similarly, Col de Porte (CDP) station is also surrounded
by ground clutter and is relatively further from nearest available radar pixel.

In complement to the comparison of the radar - raingauge estimates at the event
scale Fig. 7.19 shows the overall performance of radar QPE formulations at the 30
min scale at 3 different stations (CDP, IGE and PIP) for Sim 002 with event optimal
dC∗. In all 3 stations, RAZC and RΦdp provide the best estimates of precipitation at 30
min accumulation interval, based on large R2 and small bias. There are clearly some
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outliers that are difficult to understand. Among 3 stations, PIPAY performs the best
with R2 of 0.89 for RΦdp , while Col de Porte performs the worst (R2 of 0.17 for RΦdp).

FIGURE 7.19: Performance at different stations: Radar - raingauge scatter-plots for Sim
002, event optimal dC∗, 30 minutes accumulation of rainfall, all events. Different radar
QPE algorithm products are colour coded and shown in the legend. 3 stations are pre-
sented: Col de Porte (left), IGE (mid) and Pipay(right). Summary statistics of errors are
presented as annotation table on top of each subplot. 1:1 grey line represents the perfect

estimate.

Table 7.3 summarises the performances of RΦdp and RAZC based on bias, R2 and
NSE wrt raingauge measurements at all the stations. The statistics is for estimates
using simulation 003, with event optimal dC∗ and 30 minutes accumulation. Once
again, among all the stations, QPE estimation is the best at Pipay station, and the
worst at Col de Port and IGE stations. There is a clear trend of positive bias in
radar QPE at the stations in the valley (LDV, GREENER, IGE) and negative bias
at the stations in the mountains (CHAMROUSSE, COLDEPORTE, LUITEL, PIPAY,
REVEL). In the mountains due to ground clutter from smaller mountains close to
the targets, radar observation might not be available in immediate vicinity of the
stations, eg. at COLDEPORTE. Similarly, within a horizontal distance of 2 km the
precipitation dynamic might be completely different. A similar summary for the
global optimal dC is presented in Table C.2.
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TABLE 7.3: Performance of radar QPE at different stations.
Sim 002, 30 min accumulation, event optimal dC

AZ0 AZC ZPHI
station

PBIAS% R2 NSE PBIAS% R2 NSE PBIAS% R2 NSE
COLDEPORTE -16.5 0.08 -0.67 -18.5 0.08 -0.58 -23.1 0.08 -0.54

GREENER 21.7 0.47 -1.14 19.5 0.47 -1.07 24.4 0.46 -1.26
GRE_LVD 39.9 0.23 -1.15 39.6 0.23 -1.11 42.1 0.26 -1.12

IGE 25.2 0.15 -1.59 23.5 0.15 -1.49 24.6 0.17 -1.43
PIPAY -34.9 0.75 0.63 -35.2 0.76 0.63 -34.0 0.86 0.74
REVEL -14.8 0.46 0.06 -13.8 0.46 0.05 -14.2 0.49 0.09

CHAMROUSSE -5.9 0.49 0.17 -4.4 0.48 0.08 -10.9 0.51 0.29
LUITEL -4.5 0.22 -0.30 -5.2 0.21 -0.31 -5.2 0.23 -0.32

7.7 Discussion and Conclusion

While value of high resolution X-band radars is significant for mountain and urban
hydrology, severe attenuation limits their use in QPE. Robust attenuation correction
is difficult unless the estimates of total attenuation are available at a distance from
the radar. The mountainous regions are specially data scarce and lack complemen-
tary observation systems. Under the framework of RadAlp experiment, Delrieu et
al. (2022) proposed a more or less ’stand alone’ attenuation correction framework
for X-band radar during convective events (i.e. without the influence of the melting
layer) operating in mountainous terrain. The formulations of the physical models is
based on attenuation-reflectivity (A-Z) algorithms constrained, or not, by estimated
PIAs, and polarimetric total differential phase Φdp. A general sensitivity analysis ap-
proach is used for parameter estimation required in radar QPE, like the coefficients
of A-Z and A− Kdp relationships. This chapter briefly discussed the main compo-
nents of the said physical model, important results of the sensitivity analysis for
parameter estimation, and parameter optimization. We discussed some interesting
results of optimal radar calibration errors and prefactors of A-Z, A− Kdp relation-
ships during 3 convective events. Using the same 3 convective events we performed
a validation exercise of estimated parameters using DSD-derived R-A relationships
and estimated A(r) profiles. The rainrates were estimated in the direction of moun-
tain targets, where PIA constaints are available, and compared measurements of the
nearby raingauge stations.

From Radar - raingauge comparisions at the event scale, we found that Rcor1

underestimates precipitation accumulation i.e. there is an absolute need to correct
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for attenuation. RAZhb i.e. the algorithm unconstrained by PIAM is dramatically
unstable and useless for attenuation correction of convective rain at x-band. With
the optimized parameters (Sim 002), RAZC, RAZ0 and RΦdp provide similar results
with moderate sensitivity to the dc∗ value in the [-1.2,0.4 dB] range. This may be
related to the internal compensation of the parameters optimization in the GSA.

Suprisingly the convective R-A relationship derived from DSD measurements
leads to more biased radar - raingauge estimates than all rain types R-A relationship,
a possible indication of scaling effects between the DSD and radar measurements.
Similarly, the radar measurements are made at 1900 m asl while the disdrometer
estimation of the some parameters are made at ground level ( 200 m asl). DSD
measurements at the ground level might not be representative of the precipitation
observed by the radar due to the possibilities of collision-coalescence (growth) or
evaporation (decrease) in between. Several limitations of the study are related to (i)
the observation of numerous outliers at the 30-min time scale possibility related to
the radar - raingauge spatial matching, the presence of clutter, and inherent large
variability of convective precipitation; (ii) the small number of events considered
impacting the robustness of the statistics.
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Chapter 8

Conclusion and Perspective

8.1 Conclusion

The goal of this study was to continue improving the precipitation estimation in
complex terrain (high mountains) using weather radars. The RadAlp experiment
has unique setup of 2 dual-polarimetric X-band radar systems (MOUC: on top of
Mount Moucherotte, and XPORT: in Grenoble valley) with an altitude gradient of
1700 m and a distance of 11 km. They are complemented by another K-band ver-
tically pointing micro rain radar and disdrometer in the valley; and a network of
10 rain gauges around the valley. This setup essentially overcomes the radar posi-
tioning dilemma; able to capture both the fine-scale dynamics in convective systems
using mountain-top radar and thermodynamic phase changes at low altitudes in
winter stratiform systems using valley based radars. Attenuation is significant at
X-band; especially in the melting layer, which is still poorly understood. We aimed
to exploit the dual polarimetric capabilities of the radars, and capability to observe
horizontal and vertical cross-sections of atmosphere above the valley to further our
understanding of the micro-physical processes in the melting layer and to improve
the radar QPE. Chapter 3 investigates the vertical extent of atmosphere in presence
of melting layer using valley based radars. The permanent echoes of surrounding
mountains are used in Chapter 4 to obtain the direct measures of path integrated
attentions. A new algorithm is developed in Chapter 5 to regularize, often noisy
differential phase shift signal which is immune to attenuation, radar miscalibration
and partial beam blockage. Chapter 6, utilizes the ML characterization, PIA estima-
tion and Φdp regularization from previous chapters to study the PIA - Φdp relation-
ships within the ML. Chapter 7 explores the use of generalized sensitivity analysis
based physical model of attenuation corrections for qualitative precipitation estima-
tion during 3 convective events.
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• The long-term observation of ML using the quasi vertical profiles of 25 deg el-
evation angle PPI scans of XPORT radar utilizing different polarimetric obser-
vations enabled us to study the micro-physical processes in the melting layer
and their corresponding radar signatures. The Zh, Zdr and ρhv signals are en-
hanced in the melting layer, while the fall velocity (W) increases steadily. The
Zh peak altitude occurs at higher altitude, followed by ρhv and Zdr largely in-
fluenced by the melting process of largest hydrometeors. Zh first catches the
start of melting process at ML top as large number of small ice particles start
to melt as they cross the 0◦C isotherm, while ρhv responds longest to the end
of melting of largest hydrometeors towards the ML bottom. Zh and ρhv are
the best indicator of ML top and ML bottom in radar-only identification of
ML. In MRR, maximum(W) corresponds well with the altitude of ρhv bottom.
Long term ML characterization shows that polarimetric variables have strong
added-value in describing the ML processes. Intensity of precipitation has the
biggest (proportional) effect on the ML width. In average the ML over Greno-
ble has width of 609 m with standard deviation of 162 m.

• While a limitation due beam blockage, the mountains also provide a very sta-
ble and strong echo in dry weather. Precipitation between radar and mountain
range attenuates the mountain returns. Mountain reference technique (MRT)
utilizes this discrepancy between wet- and dry-weather mountain returns to
measure the path integrated attenuation due to precipitation between radar
and a mountain target. Typically grids with Zh ≥ 45dBZ in long-term obser-
vation are considered to be mountain targets. The stability of the targets is
given by the standard deviation of the "dry" weather returns ranges. It ranges
from 1.25 to 1.56 dBZ for MOUC 0◦ elevation angle PPI scans. It sets the min-
imum detectable PIA to 1 dB. Time stability of mountain returns, beam width
integration in the vertical and heavy rainfall over the target itself are the main
sources of error.

• The polarimetric observation differential phase shift (Φdp) is directly measur-
able and immune to attenuation, calibration error and partial beam blockage.
In chapter 5, an iterative algorithm based on maximum-allowed step size be-
tween consecutive bins was developed to regularize the range profiles of Φdp.
The algorithm works well in the rain and snow. Noise in the measured Ψdp

profiles is significant at the ML boundaries, ground clutter and in presence of
Mie-scatterers. At high elevation angle scans, in the melting layer, the back-
scatter differential phase manifests as a "bump" Φdp profiles. However, in low
elevation scans, there is no significant "bumps" in Φdp profile. Two goodness of
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fit parameters, NSE (of the final profile) and Not NA ratio (of the pre-processed
profile) allow us to quantify the quality of regularized profiles. Estimation of
initial values, Φdp(r0) for forward envelope and Φdp(rm) for the backward en-
velope are the main sources of error.

• Investigation of PIA - Φdp relationship at different stages of melting layer
yields the most important results of this study. The goal was to obtain a rela-
tionship similar to A− Kdp relationship used for robust attenuation correction
in the rain. In rain this relationship is almost linear with slope of 0.3. We were
able to study similar relationship in the melting layer, by utilizing the PIA es-
timated using MRT and Φdp in the direction of the corresponding target, using
the MOUC 0◦ elevation angle PPI scan, supported by ML identification from
the valley based radars. We created normalized vertical profiles of PIA and
Φdp by using a large dataset with ML at different altitudes close to MUOC 0◦

elevation beam center. The "vertical" profiles PIA and Φdp have clear ML sig-
nal. However unlike in rain, a single linear PIA−Φdp relationship is not able
to define the relationship in the ML. At different stages of melting there are
different linear PIA−Φdp relationships, with a maxima just above the Ml cen-
ter. The slopes of these linear relationship ranges from 0.3 to 0.58 at different
stages of melting. Vertical extent of radar beam and non-uniform beam filling
were the main limitations of this study.

• A physical model with 5 different formulations that utilizes the PIA derived
from the MRT and corresponding regulated Φdp profiles to estimate and op-
timize radar QPE parameters using generalized sensitivity analysis approach
were used to correct for attenuation correction in rain during 3 events. The 0◦

elevation PPI scans of MOUC radar were used. The physical method delivers
a ’stand-alone’ radar only attenuation correction mechanism. 8 rain gauges
were available during the events. The radar QPE overestimated the rainfall
accumulation in the valleys while underestimated them in the mountains. The
rain gauge stations surrounded by ground clutter had maximum bias. DSD
derived R− A relationships were used to estimate the rain rates. The perfor-
mance of the radar QPE algorithm was sensitive to the choice of R-A relation-
ship.
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8.2 Future Perspective

• Investigation of PIA - ΦDP relationship with a larger dataset to include more
observations in the ML boundaries and in the snow and rain regime is neces-
sary. Diversity in events and altitudes of the ML will allow investigating if the
assumption of linearity of PIA - ΦDP relationship at different ’scaled altitudes’
is reasonable. It remains to be understood if this relationship evolves with the
intensity and density effect. Also, the on-site attenuation was not corrected
before the study of the PIA - ΦDP, which might have a significant effect on the
melting layer.

• GSA style radar QPE parameter estimation/optimization for the dataset uti-
lized in Chapter 6, especially in presence of ML at MOUC 0◦ elevation angle
PPI scans is the next big step. So far, we only considered a few convective cases
for QPE application, we have a large dataset with ML (at MOUC altitude) that
needs to be explored. We assumed linear PIA - Φdp relationship at different
stages of melting in Chapter 6; optimized parameter set from GSA could look
for non-linearity in the relationship, if any, at different stages of melting. Thus,
evaluating if the assumption of linearity was reasonable.

• The RadAlp experiment has a unique setup of two X-band radars, one on the
mountaintop and another in the valley. This is rarely the case in complex ter-
rain, most operational radars are on mountaintops. A feasibility study on the
use of cheaper and portable MRRs in the valleys for ML identification to com-
plement the operational mountain-top radars is a topic of interest as well. Sim-
ilarly, microwave links provide opportunistic sensing (free of cost) of attenua-
tion at altitudes below the mountaintop radar. A comparison between XPORT,
MRR, and microwave link-derived ML identification needs to be performed.
This might open new possibilities in remote areas where the installation and
maintenance of radar are not feasible. This can be especially beneficial to de-
veloping countries and remote communities.

• A machine learning approach to assimilate and correlate multi-platform obser-
vations (radar, DSD, micro-wave link, atmospheric sounding, and meteorolog-
ical satellites) might provide new insights into the impact of melting-layer on
the EM propagation effect at different frequencies. RadAlp experiment already
has a very good instrument cluster to try innovative solutions. However, this
kind of project requires significant computational infrastructures. European
Space Agency (ESA) together with ECMWF and EUMETSAT is launching a
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project to build a digital twin of Earth’s weather and climate with a new super-
computer. This kind of study in Grenoble could be a good use case for Destina-
tion Earth (DestinE) to build a digital twin of hydrometeorological processes
in the mountainous area.

• Study of EM propagation effects in rain and ML with mountain targets in in-
tersecting resolution volumes of XPORT and MOUC could provide more in-
sights on on-site (especially radome) attenuation and impact of elevation angle
on propagation effects (eg PIA - Φdp). As we will not be looking at the ’same’
mountain target, correction for the difference in the resolution volume due to
the difference in elevation angle and range needs to be taken into account be-
fore any such study.

A better understanding of the microphysical process in the ML and its impact
on EM propagation would eventually allow us to build a physics-based "inverse"
model to recreate vertical profiles of radar observables (including ML) just using
mountaintop radar observations that provide reliable QPE at the ground level in
mountainous terrain. Similarly, these inverse models could also be fed to the nu-
merical weather prediction model (like AROME) to improve their performance in
the mountainous region. If the numerical model can be significantly improved the
QPE in mountainous terrain, it will open new avenues of hydrological risk estima-
tion and early warning systems in remote communities.
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Appendix A

Appendix: Melting Layer

A.1 Definition of Pseudo variables

Following are the definition of pseudo-variables used to characterize ML in the text,
shown to represent the horizontal reflectivity (Zh) profile. Similar definitions are
used for other variables wherever applicable.

Zh peak = Maximum value of Zh [dBZ]
Zh.alt.peak = Altitude of the Zh peak [m]
Zh.val.top = Zh value at top inflection point [dBZ]
Zh.alt.top = Altitude corresponding to Zh.val.top [m]
Zh.val.bot = Zh value at bottom inflection point [dBZ]
Zh.alt.bot = Altitude corresponding to Zh.val.bot [m]
Zh.val.t2p = |Zh.val.top - Zh.val.peak| [dBZ]; Reflectivity enhancement on top of
the profile
Zh.alt.t2p = |Zh.alt.top - Zh.alt.peak| [m]
Zh.val.p2b = |Zh.val.peak - Zh.val.bot| [dBZ]; Reflectivity enhancement on bottom
of the profile
Zh.alt.p2b = |Zh.alt.peak - Zh.val.bot| [m]

A.1.1 Correlation coefficient with 2 explanatory variables

The following formula was used to determine the total Spearman’s correlation co-
efficient of an explained variable 1 with two explanatory variables 2 and 3, denoted
r1.23, as a function of the Spearman’s partial correlation coefficients between pairs of
them (r12, r13, r23):

r2
1.23 =

r2
12 + r2

13 − 2 ∗ r12 ∗ r13 ∗ r23

1− r2
23

(A.1)
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Appendix B

Appendix: PIA vs ΦDP

TABLE B.1: Summary of ML events used in this study

event radar length [hrs] MLtop[m asl] MLbot [m asl] MOUC days

20161118-180000_20161119-060000 XPORT 12.00 2251.60 1629.89 20161118,20161119,20161120
20161122-070000_20161122-092000 XPORT 2.33 2600.54 1949.41 20161122,20161123,20161124,20161125,20161126
20161124-060000_20161124-080000 XPORT 2.00 2315.44 1652.38 20161122,20161123,20161124,20161125,20161126
20161125-070000_20161125-090000 XPORT 2.00 2084.22 1389.25 20161122,20161123,20161124,20161125,20161126
20170228-040000_20170228-060000 XPORT 2.00 1857.56 1236.31 20170228
20170301-170000_20170302-090000 XPORT 16.00 1783.83 1269.96 20170301,20170302,20170303
20170401-121000_20170401-190000 XPORT 6.83 1576.00 1131.52 20170401,20170402
20170425-190000_20170426-073000 XPORT 12.50 1893.40 1255.56 20170425,20170426,20170427
20170427-180000_20170428-073000 XPORT 13.50 830.15 401.49 20170425,20170426,20170427
20170506-080000_20170506-140000 XPORT 6.00 2389.20 1690.04 20170506,20170507
20171104-200000_20171105-120000 XPORT 16.00 2340.60 1740.40 20171104,20171105,20171106
20171111-153000_20171112-060000 XPORT 14.50 2141.31 1693.50 20171111,20171112,20171113
20171210-110000_20171210-230000 XPORT 12.00 2114.16 1480.69 20171210,20171211,20171212
20171211-090000_20171211-200000 XPORT 11.00 1877.48 1306.07 20171210,20171211,20171212
20171230-010000_20171230-200000 XPORT 19.00 1904.56 1277.49 20171230,20171231
20180103-183000_20180104-093000 XPORT 15.00 2012.54 1325.65 20180103,20180104,20180105
20180108-190000_20180108-230000 XPORT 4.00 1742.99 1139.23 20180108,20180109
20180120-110000_20180121-020000 XPORT 15.00 1940.13 1212.19 20180120,20180121,20180122,20180123
20180121-070000_20180121-140000 XPORT 7.00 1338.69 926.19 20180120,20180121,20180122,20180123
20180122-000000_20180122-100000 XPORT 10.00 2334.57 1641.59 20180120,20180121,20180122,20180123
20180122-160000_20180122-230000 XPORT 7.00 2021.20 1451.88 20180120,20180121,20180122,20180123
20180522-180000_20180522-220000 XPORT 4.00 2978.23 2149.82 20180522,20180523
20181027-090000_20181028-080000 XPORT 23.00 1634.84 1062.41 20181027,20181028,20181029,20181030
20181106-090000_20181106-150000 XPORT 6.00 2353.41 1779.66 20181106,20181107
20181121-060000_20181121-120000 XPORT 6.00 1880.37 989.93 20181121,20181122
20181206-063000_20181206-120000 XPORT 5.50 2187.41 1583.67 20181206,20181207
20181221-100000_20181222-082000 XPORT 22.33 2644.13 1844.89 20181221,20181222
20191220-100000_20191220-163000 XPORT 6.50 2044.64 1343.65 20191220,20191221
20191224-100000_20191224-150000 XPORT 5.00 2501.16 1807.88 20191224,20191225
20200117-112000_20200117-164000 MRR 5.33 1650.62 1046.00 20200117
20200302-125000_20200302-235000 MRR 11.00 1259.83 666.11 20200302,20200303,20200304,20200305
20200501-014000_20200501-051000 MRR 3.50 1877.16 1284.14 20200501,20200502
20200501-113000_20200501-221500 MRR 10.75 2519.31 1878.02 20200501,20200502
20200502-151000_20200502-200000 MRR 4.83 2762.33 2153.01 20200501,20200502
20200510-185000_20200511-013000 MRR 6.67 2965.90 2389.41 20200510,20200511
20200925-022000_20200925-030000 MRR 0.67 2381.56 1759.33 20200924,20200925,20200926
20200925-170000_20200926-040000 MRR 11.00 1479.05 895.92 20200924,20200925,20200926
20201002-215000_20201003-034000 MRR 5.83 2219.75 1609.33 20201002,20201003
20201023-162500_20201023-190500 MRR 2.67 2468.42 1824.86 20201023
20201026-013000_20201026-105000 MRR 9.33 1856.97 1230.42 20201026
20201115-194000_20201116-043500 MRR 8.92 2531.56 1909.33 20201115,20201116
20201204-090000_20201204-120000 MRR 3.00 1368.06 768.23 20201204
20201211-194000-20201211_233000 MRR 3.83 1590.13 951.00 20201211





151

Appendix C

Appendix:Radar QPE

TABLE C.1: Values and ranges of the variation of the attenuation model
parameters in the sensitivity analysis

Parameters fixed for a given simulation
Parameter Values

bAZ 0.78

bAK 1.10

dC [-2,2] with a step of 0.4 dB

Parameters taken into account in the Latin Hypercubes Sampling for a given simulation

Parameter Central value
Range of

multiplicative coefficient
of the central value (dB)

Lower and upper limit

aAZ 1.0 10−4 [-3,3 dB] [0.5 10−4, 2.0 10−4]

aAK 0.3 [-3,3 dB] [0.15, 0.6]

dAFm 1.0 [-1,1 dB] [0.79, 1.26]

AF(r0): sampling #1 0.316 [-5,5 dB]
AF(r0): [1.0, 0.1]
corresponding to
PIA0: [0,10 dB]

AF(r0): sampling #2
PIA∗0 = 0.0126 Z1.6

0

PIA∗0 [dB]; Z0 [dBZ]
AF∗(r0) = 10−PIA∗0/10

Lower limits:
PIAL

0 = 0; A(r0)
L = 1

Upper limits
PIAU

0 = n PIA∗0
A(r0)

U = 10−PIAU
0 /10

with n=3, or n=10



152 Appendix C. Appendix:Radar QPE

TABLE C.2: Performance of radar QPE at different stations.
Sim003, 30 min accumulation, global optimal dC (dC=0)

AZ0 AZC ZPHI
station

PBIAS% R2 NSE PBIAS% R2 NSE PBIAS% R2 NSE
COLDEPORTE -21.7 0.08 -0.62 -22.2 0.08 -0.60 -25.5 0.07 -0.64

GREENER 20.5 0.47 -1.03 19.7 0.48 -1.00 23.7 0.47 -1.17
GRE_LVD 38.9 0.23 -1.10 39.3 0.23 -1.11 41.6 0.25 -1.13

IGE 22.3 0.16 -1.48 21.8 0.16 -1.44 23.5 0.17 -1.44
PIPAY -36.1 0.76 0.63 -36.0 0.76 0.63 -35.2 0.84 0.71
REVEL -17.7 0.51 0.13 -14.7 0.52 0.12 -15.0 0.57 0.19

CHAMROUSSE -8.7 0.48 0.12 -8.7 0.46 0.06 -13.9 0.53 0.30
LUITEL -4.8 0.21 -0.36 -5.5 0.20 -0.37 -5.1 0.22 -0.36
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Zrnić, D. S., R. Raghavan, and V. Chandrasekar (Jan. 1994). “Observations of Copo-
lar Correlation Coefficient through a Bright Band at Vertical Incidence”. In: Jour-
nal of Applied Meteorology 33.1, pp. 45–52. ISSN: 0894-8763. DOI: 10.1175/1520-

https://hal.archives-ouvertes.fr/hal-01511157
https://hal.archives-ouvertes.fr/hal-01511157
https://www.jstor.org/stable/26241996
https://doi.org/10.1109/IGARSS.2006.683
https://doi.org/10.1175/1520-0469(1989)046<2008:SOTMLI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1989)046<2008:SOTMLI>2.0.CO;2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281989%29046%3C2008%3ASOTMLI%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281989%29046%3C2008%3ASOTMLI%3E2.0.CO%3B2
https://doi.org/10.1002/qj.2672
http://doi.wiley.com/10.1002/qj.2672
http://doi.wiley.com/10.1002/qj.2672
https://doi.org/10.1175/JAMC-D-12-0244.1
https://doi.org/10.1002/qj.3366
https://doi.org/10.1175/JAS3563.1
https://journals.ametsoc.org/doi/10.1175/JAS3563.1
https://journals.ametsoc.org/doi/10.1175/JAS3563.1
https://doi.org/10.1175/1520-0450(1994)033<0045:OOCCCT>2.0.CO;2
https://doi.org/10.1175/1520-0450(1994)033<0045:OOCCCT>2.0.CO;2
https://doi.org/10.1175/1520-0450(1994)033<0045:OOCCCT>2.0.CO;2


166 Bibliography

0450(1994)033<0045:OOCCCT>2.0.CO;2. URL: http://journals.ametsoc.org/
doi/abs/10.1175/1520-0450%281994%29033%3C0045%3AOOCCCT%3E2.0.CO%3B2.

https://doi.org/10.1175/1520-0450(1994)033<0045:OOCCCT>2.0.CO;2
https://doi.org/10.1175/1520-0450(1994)033<0045:OOCCCT>2.0.CO;2
https://doi.org/10.1175/1520-0450(1994)033<0045:OOCCCT>2.0.CO;2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281994%29033%3C0045%3AOOCCCT%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281994%29033%3C0045%3AOOCCCT%3E2.0.CO%3B2

	Abstract
	Acknowledgements
	General Introduction
	Precipitation in High Mountains
	QPE in the Mountainous Terrain
	Ground radar-based QPE
	Alpine Context

	Study Area: Grenoble
	Climatology

	Basics of radar remote sensing
	Background
	Basic Radar Terms
	Weather radar equation
	Polarimetry
	Scattering Matrix
	Reflectivity (Zh and Zv)
	Differential Reflectivity ()
	Co-polar cross-correlation coefficient ()
	Differential Phase Shift ()
	Doppler velocity Spectra and Apparent Fall Velocity ()

	DSD formulation and polarimetric variables
	Attenuation
	Estimation of rainfall from the radar measurables
	Conventional
	Polarimetic QPE



	The RadAlp Experiment
	Introduction
	Instruments and dataset
	Instruments
	Dataset
	MTO station
	AROME model
	XPORT radar
	MRR radar
	MOUC radar
	Disdrometer (PARSIVEL 2)


	Scientific Objectives of RadAlp experiment
	Scientific Objectives of the PhD

	Melting Layer of Precipitation
	Introduction
	Datasets and Methods
	Automated Melting Layer Detection Algorithm
	Microphysics of the ML and the vertical profiles of radar observables
	Results
	ML boundaries and vertical organization of the ML
	Statistics of ML characteristic values
	Evolution of ML descriptors with rainfall intensity
	Evolution of ML characteristic values as a function of both rainrate and altitude of the  isotherm
	Density Effect on bright band
	Information Content of the ML dataset

	Discussion and Conclusions

	PIA estimation using MRT
	Introduction
	Basic equations for PIA estimation using MRT
	Mountain return targets
	PIA Estimation
	Conclusions

	Differential phase shift and its regularization
	Introduction
	  regularization algorithm
	Implementation
	Conclusions

	PIA -  relationship in the melting layer
	Introduction
	Dataset
	PIA vs 
	Discussion
	Conclusion

	Attenuation correction and Quantitative Precipitation Estimation
	Introduction
	Dataset
	Physical Model, Sensitivity Analysis and Parameter Optimization
	Physical Model
	A-Z formulations
	Polarimetric formulation

	Parameter Estimation
	Sensitivity analysis
	Parameter Optimization

	Radar QPE implementation
	Radar- raingauge matching
	Results
	Overall performance of 5 QPE algorithms
	Event scale
	Radar - raingauge time series 30 min

	Dependence on the parameterization and robustness of 5 QPE algorithms
	Relevance of DSD derived A-R relationship
	Calibration error dC estimation
	Performance of radar QPE at different stations

	Discussion and Conclusion

	Conclusion and Perspective
	Conclusion
	Future Perspective

	Appendix: Melting Layer 
	Definition of Pseudo variables
	Correlation coefficient with 2 explanatory variables


	Appendix: PIA vs  
	Appendix:Radar QPE 
	Bibliography

