
HAL Id: tel-04065298
https://theses.hal.science/tel-04065298v1

Submitted on 4 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Query Evaluation: Enumeration, Maintenance,
Reliability

Antoine Amarilli

To cite this version:
Antoine Amarilli. Query Evaluation: Enumeration, Maintenance, Reliability. Computer Science [cs].
Institut polytechnique de Paris, 2023. �tel-04065298�

https://theses.hal.science/tel-04065298v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Query Evaluation:
Enumeration, Maintenance, Reliability

Habilitation à diriger des recherches

Institut polytechnique de Paris

Antoine Amarilli

Jury:

• Arnaud Durand, Professeur, Université Paris-Cité examinateur
• Nicole Schweikardt, Professeure, Humboldt-Universität zu Berlin examinatrice
• Thomas Schwentick, Professeur, Technische Universität Dortmund rapporteur
• Luc Segoufin, Directeur de recherches, INRIA rapporteur
• Dan Suciu, Professeur, University of Washington rapporteur
• Sophie Tison, Professeure émérite, Université de Lille examinatrice

Soutenue le 4 avril 2023 à Télécom Paris

To my friends and family, to my loved ones, three queries:
May we enumerate many more moments together;
May we maintain the bonds that connect us;
And may we always rely on each other.

Contents

1 Introduction 4

2 Preliminaries 11

3 Enumeration Algorithms for Query Evaluation 18
3.1 Introduction . 18
3.2 Structure of the Chapter . 21
3.3 Efficient Enumeration via Knowledge Compilation 22
3.4 Efficient Enumeration for MSO Queries on Trees 26
3.5 Efficient Enumeration for Document Spanners 27
3.6 Efficient Enumeration for Annotation Grammars 30
3.7 Perspectives . 33

4 Maintaining Query Results over Dynamic Data 37
4.1 Introduction . 37
4.2 Structure of the Chapter . 40
4.3 Incremental Maintenance of Enumeration Structures for MSO

Queries on Trees . 41
4.4 Dynamic Membership for Regular Languages on Words 42
4.5 Perspectives . 47

5 Query Evaluation over Probabilistic Data 51
5.1 Introduction . 51
5.2 Structure of the Chapter . 53
5.3 Intractability over Unbounded-Treewidth Families 54
5.4 Hardness for Unbounded Homomorphism-Closed Queries . . . 58
5.5 Hardness of Uniform Reliability 60
5.6 Perspectives . 63

CHAPTER 1
Introduction

This thesis focuses on the query evaluation problem of determining whether
some data satisfies some requested pattern. I study this problem from the
angle of data management, though it also occurs in many areas of computer
science: in string processing, where we want to find occurrences of a textual
pattern; in streaming algorithms, where we want to check if a sequence satisfies
a specification; in logic, where we want to test if a formula holds over a logical
structure; in graph algorithms, where we look for subgraphs of interest in an
input graph; and in many other fields.

Query evaluation can be studied from a practical angle, where the goal
is to design efficient implementations and validate them experimentally over
benchmarks; but my research concentrates on theoretical results. The goal is
then to determine the computational complexity of query evaluation: we want
to design algorithms in an abstract computation model and establish efficiency
guarantees as upper bounds on their running time; or we want to show lower
bounds on how efficient an algorithm can hope to be in such a model, often
under some hardness assumptions. The complexity of the problem is a function
which depends both on the size of the query and on the size of the data on which
we evaluate it. Often, the goal is to achieve the best possible running time as a
function of the data, called data complexity, while assuming that the query is
fixed.

The computational complexity of query evaluation has been abundantly
studied, for various kinds of queries over various types of data. Important lines
of work in this direction include the study of monadic second order queries (or
equivalently finite-state automata) over words, over trees, or over relational
instances whose treewidth is bounded by a constant; the study of first-order
queries over structurally restricted structures such as bounded-degree, bounded-

4

CHAPTER 1. INTRODUCTION 5

expansion, or nowhere-dense structures; and the study of conjunctive queries and
unions of conjunctive queries over arbitrary relational instances.

The evaluation of queries on data can be posed in several different ways. The
simplest and most common phrasing is to express it as a decision problem: given
the query and data, we must determine whether or not the query is satisfied,
i.e., a Boolean answer. However, there are more challenging questions that one
can ask, given a query and an instance: returning answers; counting answers;
highlighting how the query depends on the input data; explaining why the query
holds or does not hold; etc. These questions are motivated by practical needs,
and they can lead to theoretically relevant problems. The research presented in
this thesis focuses on three of these extended forms of query evaluation:

• Maintenance: How does the query result change when the underlying
data changes? We formalize this as a problem over dynamic data: given a
Boolean query and a relational instance, prepare auxiliary data structures
that can be used to efficiently determine the status of the query and
update it whenever the data is changed. Can we do better than naively
reprocessing the whole data after each change?

• Reliability: How confident are we that the query is true over uncertain
data? We formalize this as a weighted counting problem: given a Boolean
query and a relational instance whose facts are annotated by independent
probabilities, efficiently determine the probability that the query holds,
i.e., the total probability of the possible states of the data that satisfy it.
Can we do better than naively summing over all possible worlds?

• Enumeration: How can we efficiently compute all results of the query?
We formalize this in a specific model of enumeration algorithms: given a
query and data, first preprocess the data to prepare auxiliary structures,
and then produce a stream of all query answers, without duplicates, while
ensuring a small delay between any two consecutive answers. Can we
do better than naively testing all possible results (yielding a large delay),
or precomputing a full list of the results (yielding a large preprocessing
time)?

These three areas have each been studied on their own, and there are also
works looking at the intersection of some of them, in particular works studying
the incremental maintenance of enumeration structures. This manuscript re-
views the state of the art for each of these three problems in the field of data
management, presents my research contributions to them, and proposes some
directions for further investigation. The hope is to identify connections between
these areas, in particular through the unifying theme of circuits. Intuitively,

CHAPTER 1. INTRODUCTION 6

Enumeration (Chp. 3) Maintenance (Chp. 4) Reliability (Chp. 5)

† Conditional to a fixed proof of [Nie18]

PQE for MSO over trees:
Tractability for bounded treewidth;
Hardness for unbounded treewidth;

No OBDDs for unbounded treewidth
ICALP’15, PODS’16 – [ABS15, ABS16]

No d-SDNNFs for
unbounded treewidth
ICDT’18 – [AMS18]

PQE for unbounded
homomorphism-closed

queries is #P-hard
ICDT’20, LMCS
[AC20, AC22]

UR for unsafe
SJFCQs is #P-hard

ICDT’21, LMCS
[AK21, AK22]

Weighted counting
of matchings

for unbounded
treewidth is #P-hard
MFCS’22 – [AM22]

UR for unbounded
homomorphism-closed

queries is #P-hard
ICDT’23
[Ama23]

d-SDNNF
circuits;

MSO on trees
ICALP’17
[ABJM17]

Nondeterministic
word automata
ICDT’19, TODS

[ABMN19a,
ABMN21]

Annotation
grammars
on words
PODS’22
[AJMR22]

Tree automata with
relabeling updates

ICDT’18
[ABM18]

Nondeterministic
tree automata
with updates†

PODS’19
[ABMN19b]

Membership to
regular languages

on words
ICALP’21, subm.
[AJP21, AP21]

Figure 1: Illustration of the lines of work presented in this manuscript. We
omit technical hypotheses such as restrictions to arity-two, use of randomized
reductions, constructibility hypotheses, nature of lineage lower bounds, etc.

circuits can be used to express how the query result is computed from the data, in
a way which can be useful for all three tasks: they can efficiently recompute the
query result when the data is updated; they can count how many subinstances
of the data satisfy the query; and they can give a factorized representation of
the query results on which we can run an enumeration algorithm.

This manuscript is structured thematically along these three areas of enu-
meration (of query results), maintenance (of query results over dynamic data),
and reliability (of queries over probabilistic data). In the rest of this introduction,
I present my research contributions following a chronological perspective: I
explain how I have focused on these problems, building on some of my PhD
research, and exploring new directions in various collaborations and visits. I
also mention the conferences and journals where the results were published.
These lines of work are graphically summarized on Figure 1. In the interest of
brevity, this manuscript does not cover all the research I have undertaken since
my PhD; in particular it omits works that do not fit into one of these three main
areas.

PhD work. The first area which I studied is reliability: I investigated during
my PhD the task of query evaluation over probabilistic data or probabilistic query

CHAPTER 1. INTRODUCTION 7

evaluation (PQE). Specifically, my PhD studied the evaluation of monadic second-
order (MSO) queries over trees and bounded-treewidth relational instances. The
input probabilistic data is given in the tuple-independent database model where
facts are annotated by independent probabilities. The PQE problem for a query
asks us compute the probability that the query holds in the resulting distribution.
I showed the tractability of this task, via the so-called intensional approach:
compute a provenance circuit (intuitively describing why the data satisfies the
query), show that it falls in a tractable class of circuits studied in knowledge
compilation (specifically, d-SDNNFs), and use this to compute the probability.

As a converse result, I showed that, under some technical assumptions, this
probabilistic query evaluation task could not be solved efficiently if the treewidth
of the data was unbounded, no matter which other restrictions were imposed
on the structure of the input data instances. This was shown in two senses, both
relying on the technical tools of extracting grids from high-treewidth instance
families [CC16]. First, I showed that the intensional approach could not apply, in
the sense that there did not exist small provenance circuit representations in the
weaker tractable formalism of ordered binary decision diagrams (OBDDs). Second,
I showed that the task was intractable by showing a randomized reduction from
a #P-hard problem.

These results were a collaboration with my official PhD advisor Pierre
Senellart, together with my long-time collaborator and unofficial PhD advi-
sor Pierre Bourhis. They were presented in my PhD thesis, and were published
at ICALP’15 [ABS15] for the upper bounds, and at PODS’16 [ABS16] for the
lower bounds.

Extending my PhD results on probabilistic query evaluation. After
the end of my PhD, one first direction of research was to further extend our
intractability results on probabilistic query evaluation. This took place as part
of the PhD thesis of Mikaël Monet, whom I co-supervised during his last year
together with Pierre Senellart.

We first extended the lower bound on the intensional approach, by showing
that some queries over unbounded-treewidth data also did not admit small
provenance circuit representations in the more general formalism of d-SDNNFs
used in my tractability results. This result was presented at ICDT’18 [AMS18]
and in the PhD thesis of Mikaël.

Second, collaborating again with Mikaël some years later, we showed that
the hardness result on unbounded-treewidth instances already applied to proba-
bilistic query evaluation for a simpler query, which can be understood as the
weighted counting of the matchings of an input graph. This result was presented
at MFCS’22 [AM22].

CHAPTER 1. INTRODUCTION 8

These contributions are presented in Section 5.3, after reviewing the results
that were obtained during my PhD.

Using circuits for other tasks. A broader direction, initiated shortly after
the end of my PhD, was to extend my circuit-based tractability results on MSO
evaluation, and apply them to the area of enumeration, and later of incremental
maintenance.

First, in a collaboration with Pierre Bourhis, Louis Jachiet, and Stefan Mengel,
we studied how tractable circuit classes from knowledge compilation can be
used to enumerate query answers. In particular, combined with the intensional
methodology of computing provenance circuits, we could use this result to
re-capture the known fact [Bag06, KS13] that query enumeration over trees can
be done with linear preprocessing and output-linear delay. These results were
published at ICALP’17 [ABJM17]; they are presented in Section 3.3 (describing
the enumeration technique via circuits) and Section 3.4 (explaining how to
recapture the result for MSO evaluation).

Second, we realized that this circuit-based enumeration technique, together
with the computation of balanced tree decompositions [BH98], could be used
on dynamic data to efficiently maintain enumeration structures. Specifically, we
show that, for any fixed MSO query, given an input tree, we can preprocess it
in linear time to construct an output-linear delay enumeration structure, and
maintain the structure under relabeling updates to the tree in logarithmic time,
improving on previous results [LM14]. This was published at ICDT’18 [ABM18]
and is presented in Section 4.3.

Third, we noticed how these results could be combined with a result of
Niewerth [Nie18] on the incremental maintenance of balanced tree represen-
tations. The goal was to use this result to keep the tree balanced under more
expressive updates, namely, leaf insertion and deletion. This was presented at
PODS’19 [ABMN19b]. Unfortunately, it later appeared that the proof of the
incremental balancing result [Nie18] was flawed; the result of [ABMN19b] on in-
cremental maintenance only holds if the result of [Nie18] can be correctly proved.
A corrected proof of [Nie18] was recently announced in a preprint [KMMN22].

Enumeration for document spanners. The tools developed with Pierre,
Stefan, and Matthias for MSO enumeration turned out to be useful in the setting
of document spanners, a formalism for declarative information extraction in
database theory [FKRV15]. Regular spanners are subsumed by MSO in terms
of expressiveness, but an interesting question is whether their matches can be
tractably enumerated in combined complexity, i.e., taking also into account the
size of the spanner. It had been shown earlier [FRU+18] that the matches of

CHAPTER 1. INTRODUCTION 9

document spanners on words could be enumerated with linear preprocessing
and output-linear delay while remaining tractable in combined complexity;
however, this assumed that the input spanner was represented as a deterministic
variable-set automaton, implying an exponential blowup if the input spanner is
not already deterministic.

We accordingly showed that the same bounds can be achieved with a poly-
nomial dependency on the input variable-set automaton, even if it is non-
deterministic. In particular, this meant that the same result applies to other ways
to express regular spanners, e.g., regex-formulas. This work was published at
ICDT’19 [ABMN19a] and was featured in ACM SIGMOD Research Highlights;
it is presented in Section 3.5.

Later, I welcomed Cristian Riveros’s PhD student Martín Muñoz on a visit to
work with Louis Jachiet and myself, and we studied how these results on enumer-
ation algorithms could be extended beyond regular spanners. Specifically, we
considered a formalism inspired by context-free grammars, dubbed annotation
grammars. A slightly different extension of document spanners to context-free
languages had been investigated shortly beforehand by Peterfreund [Pet21],
with an enumeration algorithm ensuring polynomial-time preprocessing and
constant delay in data complexity. We were able to improve on these bounds,
and show enumeration with cubic preprocessing in the document and output-
linear delay. Further, we showed that the preprocessing time could be made
quadratic or even linear for some restricted classes of annotation grammars.
This work was published at PODS’22 [AJMR22] and is presented in Section 3.6.

Incremental maintenance. After studying the incremental maintenance of
enumeration structures of MSO queries on trees, I turned to the simpler question
of incremental maintenance for Boolean MSO queries (without enumeration),
on words and under relabelings. In other words, fixing a regular language,
the question is to maintain the information of whether a string belongs to the
language, under substitution updates. This was a collaboration with Charles
Paperman (who brought expertise in algebraic automata theory) and Louis
Jachiet (who brought expertise on machine models and data structure lower
bounds). We showed a conditional trichotomy over regular languages for the
complexity of this problem, improving on earlier work [SFMS97]. This was
presented at ICALP’21 [AJP21], where it received the best paper award of
ICALP’21 track B; it depends on an auxiliary article with Charles which is
currently under review [AP21]. This work is presented in Section 4.4.

Back to probabilistic databases. Some years after my PhD, I came back to
the question of probabilistic query evaluation and investigated it under new

CHAPTER 1. INTRODUCTION 10

angles. First, visiting İsmail İlkan Ceylan in Oxford, we started collaborating
on the evaluation of recursive queries over probabilistic data. Specifically, we
focused on the class of homomorphism-closed queries that are unbounded in the
sense that they are not equivalent to a union of conjunctive queries. This query
class covers in particular regular path queries and Datalog queries. We were
able to show that probabilistic query evaluation (PQE) is intractable for all such
queries, restricting for technical reasons to arity-two signatures. This work was
published at ICDT’20, where it received the best paper award; it is presented in
Section 5.4.

Second, visiting Benny Kimelfeld in Technion, we studied the problem of
uniform reliability (UR) for queries. This is a restriction of the PQE problem
where we impose that all facts of the input probabilistic databases have proba-
bility 1/2; equivalently, the task is to count how many subinstances of the input
database satisfy the query. We showed that, for conjunctive queries without
self-joins, the tractability boundary is the same as for PQE, i.e., the problem is
tractable if and only if the query is hierarchical [DS07]. We published this result
at ICDT’21 [AK21]. Inspired by this result, I then studied uniform reliability for
unbounded homomorphism-closed queries: I showed that the intractability of
PQE on arity-two signatures can be lifted to UR. This work will be published
at ICDT’23 [Ama23]. My contributions to the study of the UR problem are
presented in Section 5.5.

Structure of the manuscript. This manuscript is structured along the three
axes of enumeration, maintenance, and reliability, presented in three chapters.
Before this, I first give formal definitions of some required preliminary notions
(Chapter 2): the goal is to ensure that the manuscript can be read in a somewhat
self-contained way, so these preliminaries can be skipped by readers who are
sufficiently familiar with the concepts or only interested in the high-level picture.

I then present the areas of enumeration algorithms (Chapter 3), maintenance
over dynamic data (Chapter 4), and probabilistic query evaluation (Chapter 5).
Each of these three chapters follows the same structure. First, I start with an
introduction that surveys the main lines of research in this area, focusing on
data management and neighboring communities. I then give a short overview
of my research contributions in the area. Then, I present the contributions in
more detail in separate sections: I give their context, their prerequisites, and
their formal statement, before sketching some of the technical details. Each
chapter is concluded by giving my perspectives for further research in the area.

CHAPTER 2
Preliminaries

We give here formal definitions for some technical notions used in several places
of this manuscript.

Relational instances. A relational signature 𝜎 is a set of relation names each
associated to an arity in N>0. We call 𝜎 arity-two if the arity of every relation
is 1 or 2. A relational instance 𝐼 over 𝜎 is a set of facts of the form 𝑅(®𝑎) where
𝑅 is a relation name of 𝜎 and ®𝑎 is a tuple of constants whose arity is that
of 𝑅. Facts over one elements are called unary, and facts over two elements are
called binary. The domain dom(𝐼) of 𝐼 is the set of constants that occur in 𝐼 . A
subinstance 𝐼′ of 𝐼 , written 𝐼′ ⊆ 𝐼 , is simply a subset of the facts of 𝐼 ; we then
have dom(𝐼′) ⊆ dom(𝐼).

The Gaifman graph of 𝐼 is the undirected graph whose vertex set is the
domain of 𝐼 , and where there is an edge between two constants whenever they
co-occur in a fact of 𝐼 . We will use some standard measures on instances, such as
their treewidth, which is defined as that of their Gaifman graph. This is defined
via tree decompositions: a tree decomposition of an undirected graph 𝐺 = (𝑉, 𝐸)
is a tree 𝑇 with a function 𝜇 mapping each node 𝑛 of 𝑇 to a subset 𝜇(𝑛) of𝑉 such
that two conditions are satisfied: (i.) for any vertex 𝑣 ∈ 𝑉 of 𝐺 , its occurrences
{𝑛 ∈ 𝑇 | 𝑣 ∈ 𝜇(𝑛)} in 𝑇 form a connected subtree of 𝑇 ; and (ii.) for every edge
{𝑢, 𝑣} ∈ 𝐸 , there is a node 𝑛 of 𝑇 such that {𝑢, 𝑣} ⊆ 𝜇(𝑛). The width of 𝑇 is
the maximal cardinality of an image of 𝜇 minus 1, i.e., max𝑛∈𝑇 |𝜇(𝑛) | − 1. The
treewidth of 𝐺 is then the minimal width of a tree decomposition of 𝐺. For
details, see, e.g., [Bod94].

A homomorphism from a 𝜎-instance 𝐼 to another 𝜎-instance 𝐼′ is a function ℎ

from the domain of 𝐼 to the domain of 𝐼′ such that, for each fact 𝐹 = 𝑅(®𝑎) of 𝐼 ,

11

CHAPTER 2. PRELIMINARIES 12

the fact 𝑅(ℎ(®𝑎)) is a fact of 𝐼′, where we denote by ℎ(®𝑎) the vector obtained by
mapping each element of ®𝑎 according to ℎ.

Queries. A (Boolean) query 𝑄 over a relational signature 𝜎 is a Boolean
function on instances over 𝜎, i.e., an instance can either satisfy or violate the
query. We will use several query languages in this manuscript, in particular
conjunctive queries (CQs), unions of conjunctive queries (UCQs), first-order logic
(FO), and monadic second-order logic (MSO). We introduce them in more detail
below.

A conjunctive query (CQ) over the relational signature 𝜎 is an existentially
quantified conjunction of atoms over 𝜎. Formally, it is an expression of the form
𝑄(®𝑥) : ∃®𝑦 𝐴1∧ · · · ∧ 𝐴𝑛 where the 𝐴1, . . . , 𝐴𝑛 are atoms over 𝜎, i.e., expressions
of the form 𝑅(®𝑧) with 𝑅 a relation name of 𝜎 and ®𝑧 a tuple of variables from ®𝑥
and ®𝑦 whose arity is that of 𝑅 in 𝜎. The variables ®𝑥 are the free variables: we
call the query Boolean if it has no free variables.

A Boolean CQ 𝑄 holds on an instance 𝐼 if there is a homomorphism from 𝑄

to 𝐼 , i.e., a function from the variables used in the atoms to the constants
occurring in 𝐼 such that the image of each atom is a fact of 𝐼 . If 𝑄(®𝑥) is non-
Boolean, given a tuple ®𝑎 of constants of dom(𝐼) whose arity is that of ®𝑥, we call ®𝑎
an answer (or result) of 𝑄 on 𝐼 if 𝐼 satisfies the Boolean CQ with constants 𝑄(®𝑎)
obtained from 𝑄 by substituting the free variables by ®𝑎. In other words, ®𝑎 is an
answer if there is a homomorphism from 𝑄 to 𝐼 that maps ®𝑥 to ®𝑎.

A self-join-free CQ (SJFCQ) is a CQ that does not use the same relation name
from 𝜎 in two different atoms. A connected CQ is a CQ 𝑄 having a connected
Gaifman graph, where the Gaifman graph of 𝑄 is that of the relational instance
defined from 𝑄 by seeing variables as constants in the expected way. A CQ
with inequalities (CQ≠) is a CQ where we additionally allow inequality atoms of
the form 𝑥 ≠ 𝑥′ where 𝑥 and 𝑥′ are variables, with the requirement that every
variable occurs in an least one atom which is not an inequality atom.

A union of conjunctive queries (UCQ) is a finite disjunction of CQs that all
have the same free variables. Its set of answers on an instance 𝐼 is the union of
the answers of each of its constituent CQs on 𝐼 . The UCQ is Boolean if all its
constituent CQs are, in which case it is satisfied on an input instance if and only
one of its constituent CQs is. A connected UCQ is one where all constituent CQs
are connected. A UCQ with inequalities is defined using CQ≠ queries instead of
CQs.

Fixing a signature 𝜎, a query in first-order logic (FO), often also called an FO
formula, is an expression built from atoms over 𝜎 (in which we allow variables
and constants), using the operators of conjunction, disjunction, and existential
and universal quantification. We can in particular see CQs and UCQs as restricted

CHAPTER 2. PRELIMINARIES 13

classes of FO queries. We omit the definition of what it means for an instance 𝐼

to satisfy an FO formula; see for instance [Lib04].
Monadic second-order logic (MSO) is the logic that extends FO with quantifi-

cation over sets. MSO can express some queries that are recursive, e.g., “there
are two elements 𝑥 and 𝑦 such that the facts 𝑅(𝑥) and 𝑇 (𝑥) hold and there is a
path of 𝑆-facts from 𝑥 to 𝑦”.

Queries in FO and MSO can be Boolean, or can have free variables. In the
case of MSO queries, the free variables may all be first-order, or some may be
second-order. In the latter case we assume without loss of generality that all
free variables are second-order, as these are more expressive. Given a formula
𝜙(®𝑥) with free variables and a tuple ®𝑎 of constants whose arity is that of ®𝑥, we
denote by 𝜙(®𝑎) the Boolean query obtained by replacing the free variables by
the constants provided. We define 𝜙(®𝐴) in the same way when the free variables
of 𝜙(®𝑋) are second-order and ®𝐴 is a tuple of sets of constants.

Word, trees, automata. In addition to queries on relational structures, we
will also consider the special case of query evaluation on words and trees. We
also define the notion of finite automata on these structures as an alternative
way to express Boolean MSO queries. All automata considered are finite.

Fixing a finite alphabet Σ, a word is a finite sequence of characters of Σ. We
write Σ∗ for the set of all words over Σ. We write |𝑤 | for the length of 𝑤 ∈ Σ∗,
and write 𝜖 the empty word, with |𝜖 | = 0.

A (finite) automaton on words 𝐴 = (𝑄, Σ, 𝐼, 𝐹, 𝛿) consists of a finite set 𝑄 of
states, subsets 𝐼 ⊆ 𝑄 and 𝐹 ⊆ 𝑄 of initial states and final states, and a transition
relation 𝛿 ⊆ 𝑄×Σ×𝑄. An run of 𝐴 over a word 𝑤 = 𝑎1 . . . 𝑎𝑛 of Σ∗ is a sequence
𝑞0, . . . , 𝑞𝑛 that starts at an initial state, i.e., 𝑞0 ∈ 𝐼 , and follows transitions of the
automaton, i.e., (𝑞𝑖−1, 𝑤𝑖, 𝑞𝑖) ∈ 𝛿 for all 1 ≤ 𝑖 ≤ 𝑛. The run is accepting if it ends
at a final state, i.e., 𝑞𝑛 ∈ 𝐹: we then say that 𝑤 is accepted by 𝐴. The language
of 𝐴 is the subset of the words of Σ∗ that are accepted by 𝐴. The automaton 𝐴

is deterministic if it has one initial state, i.e., |𝐼 | = 1, and if the relation 𝛿 is a
partial function from 𝑄 × Σ to 𝑄.

Having fixed the alphabet Σ, a Σ-tree is a binary tree which is full (each node
has either 0 or 2 children) and where each node is labeled by an element of Σ. A
(bottom-up) tree automaton 𝐴 = (𝑄, Σ, 𝜄, 𝐹, 𝛿) consists of a finite set 𝑄 of states,
an initial relation 𝜄 ⊆ Σ ×𝑄 giving possible states for leaf nodes depending on
their label, a transition relation 𝛿 ⊆ 𝑄 × 𝑄 × Σ × 𝑄 giving possible states for
an internal node depending on the state of its children and on its label, and a
subset 𝐹 ⊆ 𝑄 of final states. A run of 𝐴 over a Σ-tree 𝑇 is a function 𝜌 mapping
each node of 𝑇 to a state of 𝑄 such that, for every leaf 𝑛 of 𝑇 labeled by 𝑎, we
have (𝑎, 𝜌(𝑛)) ∈ 𝜄, and for every internal node 𝑛 of 𝑇 labeled by 𝑎 with child

CHAPTER 2. PRELIMINARIES 14

nodes 𝑛1 and 𝑛2, we have (𝜌(𝑛1), 𝜌(𝑛2), 𝑎, 𝜌(𝑛)) ∈ 𝛿. The run is accepting if
the root 𝑛0 of 𝑇 is mapped to a final state, i.e., 𝜌(𝑛0) ∈ 𝐹: we then say that 𝑇 is
accepted by 𝐴, and the language of 𝐴 is again the set of Σ-trees that it accepts.
The automaton 𝐴 is deterministic if 𝜄 and 𝛿 are partial functions respectively
from Σ to 𝑄 and from 𝑄 ×𝑄 × Σ to 𝑄.

We can see automata over words and trees as Boolean queries over words
on trees, which are satisfied precisely on the words and trees that they accept.
Alternatively, we will sometimes talk of FO or MSO formulas over words or
trees on an alphabet Σ. These can be defined as formulas over a relational
signature 𝜎Σ consisting of |Σ | unary relations indicating the label in Σ of each
word position or tree node, and of a binary relation denoting the successor of
each position (for words), or the left and right child of each internal node (for
trees). We then only consider query evaluation for such formulas on relational
instances over 𝜎Σ that represent words or trees, i.e., where the relations are
interpreted in a way that actually describes a word or tree. It is then known
that Boolean MSO queries on words have the same expressive power as word
automata (by the Büchi-Elgot-Trakhtenbrot theorem), and that Boolean MSO
queries on trees have the same expressive power as tree automata [TW68].

Query evaluation. The (Boolean) query evaluation problem for a query 𝑄 over
a relational signature 𝜎 is the problem of deciding if a query holds on an instance
over 𝜎. The name of query evaluation is chosen to ensure a unified terminology,
even though it is only standard in database theory and other names are used in
other communities: e.g., the problem is typically called model checking when
the query is expressed as a logical formula, or evaluating an automaton when 𝑄

is expressed as an automaton.
Formally, query evaluation for Boolean queries is formalized by specifying a

class Q of allowed queries and a class I of allowed instances. Typical choices
for Q include: all MSO queries over Σ-trees for some alphabet Σ, all CQs over a
relational signature 𝜎, all CQs satisfying some property, etc. For the instances I,
we can allow, e.g., all relational instances over signature 𝜎, or the relational
instances having treewidth ≤ 𝑘 for some constant 𝑘 ∈ N, or all Σ-trees, or all
words over Σ, etc. An input to the query evaluation problem for Q and I then
consists of a query 𝑄 in Q and of an instance 𝐼 in I. The output is the Boolean
information of whether 𝐼 satisfies 𝑄.

The query evaluation problem can also be studied for non-Boolean queries,
in which case the task is to determine all answers of the query, i.e., all tuples ®𝑎
of values of dom(𝐼) such that 𝑄(®𝑎) holds on 𝐼 . For MSO queries with free
second-order variables, we must compute all tuples ®𝐴 of subsets of dom(𝐼) such
that the query 𝑄(®𝐴) holds.

CHAPTER 2. PRELIMINARIES 15

We can study the complexity of query evaluation in combined complexity,
where both the query and instance are given as input; or in data complexity,
where the query (and thus the signature) are fixed, and the complexity is only
measured as a function of the instance. The data complexity perspective is
somewhat reminiscent of the study of parameterized complexity [FG10]; it is
common in database theory, where it is motivated by the fact that database
instances are typically much larger than queries in practice.

Boolean circuits. Given a set 𝑋 of variables, a valuation of 𝑋 is a function
𝜈 : 𝑋 → {0, 1} mapping each variable of 𝑋 to a Boolean value. A Boolean
function over 𝑋 is a function mapping valuations over 𝑋 to a Boolean value.
We will consider three ways to represent Boolean functions: Boolean formulas,
Boolean circuits, and binary decision diagrams.

A Boolean formula over a set 𝑋 of variables is inductively defined from the
variables of 𝑋 using the Boolean operations of conjunction, disjunction, and
negation. A formula is in conjunctive normal form (CNF) if it is a conjunction of
disjunction of literals, i.e., variables or negations of variables; it is in disjunctive
normal form (DNF) if it is a disjunction of conjunction of literals. It is monotone
if it does not feature negation.

A Boolean circuit 𝐶 over 𝑋 consists of a directed acyclic graph (𝐺,𝑊) whose
vertices 𝐺 are gates and whose edges 𝑊 ⊆ 𝐺 × 𝐺 are wires, along with a
distinguished output gate 𝑔0 ∈ 𝐺 and a labeling of the gates which we now
present. The gates of 𝐺 can be variable gates labeled with a variable of 𝑋 ,
or internal gates labeled with one of the Boolean operations of conjunction,
disjunction, and negation. The inputs of a gate 𝑔 ∈ 𝐺 are the gates 𝑔′ having an
edge to 𝑔, i.e., (𝑔′, 𝑔) ∈ 𝑊 ; and the fan-in of 𝑔 is its in-degree, i.e., its number of
inputs. We require that variable gates have fan-in zero and that negation gates
have fan-in 1. A circuit is monotone if it has no negation gates.

The evaluation of a Boolean formula under a valuation 𝜈 of its variables
is defined in the expected way, by substituting the variables by their value
according to 𝜈 and evaluating the Boolean operations. The evaluation of a
Boolean circuit is defined in the same way, by considering the value of the
output gate; note that conjunction gates and disjunction gates with a fan-in
of zero always evaluate to the neutral element of their operation, i.e., 1 and 0
respectively.

We now introduce some standard restricted circuit classes from the field
of knowledge compilation [DM02]. A negation normal form circuit (NNF) is a
Boolean circuit where negation is only applied to variable gates, i.e., it can be
seen as a monotone circuit over literals. A decomposable NNF circuit (DNNF) is a
Boolean circuit in NNF where there is no variable gate 𝑔 having a directed path

CHAPTER 2. PRELIMINARIES 16

to two distinct input gates 𝑔1 and 𝑔2 of some conjunction gate 𝑔′. In other words,
for every conjunction gate 𝑔′, the subsets of variables 𝑋1, . . . , 𝑋𝑛 of 𝑋 having a
directed path to the respective inputs 𝑔1, . . . , 𝑔𝑛 of 𝑔′ are pairwise disjoint.

A v-tree over the variables 𝑋 is a rooted unranked ordered tree 𝑇 whose
leaves are in bijection with 𝑋 . A structuring mapping into 𝑇 for a circuit 𝐶
is a function 𝜆 that maps the variable and conjunction gates of 𝐶 to 𝑇 and
obeys three conditions: (i.) each variable gate 𝑔 is mapped to the leaf 𝜆(𝑔) of 𝑇
associated to the variable that labels 𝑔; (ii.) each conjunction gate is mapped to
an internal node of 𝑇 ; (iii.) the mapping is compatible with the circuit, i.e., if
a gate 𝑔 has a non-empty directed path to another gate 𝑔′ then 𝜆(𝑔) is a strict
descendant of 𝜆(𝑔′) in 𝑇 . A structured DNNF circuit (SDNNF) is an NNF circuit 𝐶
having a structuring mapping into some v-tree 𝑇 . Note that a SDNNF is a DNNF,
i.e., it is always decomposable; but some DNNFs are not SDNNFs, e.g., the circuit
corresponding to (𝑥 ∧ (𝑦 ∧ 𝑧)) ∨ ((¬𝑥 ∧ ¬𝑦) ∧ (¬𝑧)).

A deterministic DNNF circuit (d-DNNF) is a DNNF circuit 𝐶 where, for each
valuation 𝜈 of the variables, for every disjunction gate 𝑔, there is at most one
input gate of 𝑔 that evaluates to 1 under 𝜈. We will also consider deterministic
SDNNF circuits, which we call d-SDNNFs.

A binary decision diagram over a set of variables 𝑋 is a directed acyclic
graph 𝐷 with two distinguished sink nodes 0 and 1, and a distinguished starting
node. The two sink nodes have no outgoing edges, and each other node is labeled
with a variable of 𝑋 and has precisely two outgoing edges respectively labeled 0
and 1. Given a valuation 𝜈 of 𝑋 , the evaluation of 𝐷 under 𝜈 is given by the
path which begins at the starting node, ends at a sink node that gives the result
of the evaluation, and follows for each traversed non-sink node 𝑛 one of the
two outgoing edges according to the value 𝜈(𝑥) of the variable 𝑥 that labels 𝑛.

A free binary decision diagram (FBDD) is one where no path from the starting
node to a sink traverses two nodes labeled with the same variable. An ordered
binary decision diagram (OBDD) is an FBDD where there is a total order 𝑋 =

𝑥1, . . . , 𝑥𝑛 on the set 𝑋 of variables satisfying the following: for every path from
the starting node to a sink, the sequence of the node labels is a subsequence
of 𝑥1, . . . , 𝑥𝑛.

Provenance circuits. We will use the important tool of provenance of queries
over instances [GKT07]. The provenance of a Boolean query 𝑄 on an instance 𝐼

is the Boolean function 𝜙 defined on the set of variables 𝐼 (i.e., its variables are
the facts of 𝐼), with the following semantics: for every subinstance 𝐼′ ⊆ 𝐼 , letting
𝜈 be the valuation of 𝐼 that maps each fact 𝐹 ∈ 𝐼 to 0 if 𝐹 ∉ 𝐼′ and to 1 if 𝐹 ∈ 𝐼′,
then 𝜙 evaluates to 1 under 𝜈 if and only if 𝐼′ satisfies 𝑄. In other words, 𝜙
evaluates to 1 precisely on the valuations that correspond to a subinstance of 𝐼

CHAPTER 2. PRELIMINARIES 17

that satisfies 𝑄. In particular, 𝐼 satisfies 𝑄 if and only if 𝜙 evaluates to true under
the valuation mapping each fact of 𝐼 to 1.

A provenance circuit for 𝑄 on 𝐼 is then simply a Boolean circuit representing
the provenance of 𝑄 on 𝐼 . Note that the computation of provenance circuits
is a task which generalizes query evaluation, as we can use them in particular
to determine whether the query is satisfied. Further, provenance circuits can
sometimes be computed by adapting Boolean query evaluation algorithms. As
an example, given a CQ 𝑄 and relational instance 𝐼 , we can build a provenance
circuit for𝑄 on 𝐼 , more precisely as a Boolean formula in DNF, simply by writing
one disjunct for each mapping from the atoms of 𝑄 to the facts of 𝐼 . This takes
time 𝑂 (|𝐼 | |𝑄 |), i.e., it is polynomial in data complexity.

The study of provenance circuits is motivated by the practical question of
data provenance in databases [GKT07], which was originally phrased using
Boolean formulas before being extended to circuit representations [DMRT14].
It was also recently studied for logical formulas outside of the context of
databases [DGNT21], and it can be further generalized beyond the Boolean
semiring [GKT07], though we will not explore this in this manuscript. One
important question about provenance circuits is whether we can efficiently com-
pute circuits falling in the restricted classes introduced above, e.g., d-DNNFs,
OBDDs, etc.

Computational model. The complexity results presented in this manuscript
assume the abstract model of computation formalized as the random access
machine (RAM), with unit cost model. Intuitively, the memory of the machine
consists of cells that can hold integers whose size is logarithmic in the input
data; we can use them in arithmetic operations, or use them as pointers to
access memory cells. We assume that the arithmetic operations take constant
time, even though the values to which they apply are of logarithmic size; this is
motivated by the practical design of computers where arithmetic operations on
registers are typically assumed to take constant time. Further, we assume that
pointers can be dereferenced in constant time: this is again motivated by the
design of practical computers, and differs, e.g., from Turing machines.

For a recent formalization of the RAM model and of its expressive power,
see the work by Grandjean and Jachiet [GJ22]. Some of the results reviewed in
this manuscript further assume that the machine can use 2-dimensional arrays,
which may strictly extend the expressive power of the model (see [GJ22, Open
problem 1]).

CHAPTER 3
Enumeration Algorithms for

Query Evaluation

This chapter focuses on the query evaluation task of enumeration, where we
want to efficiently list the results of a non-Boolean query in a streaming fash-
ion. I present the context of enumeration algorithms, focusing on the setting
of data management, before presenting my contributions and some research
perspectives.

3.1 Introduction
Enumeration algorithms. The study of computational complexity usually
focuses on decision problems, where the answer to compute is Boolean, and the
complexity is measured as a function of the input. However, this formalism
breaks down when the output is non-Boolean and can be much larger than
the input data. For example, consider the task, given an OBDD, of listing
all its satisfying assignments. If the OBDD always evaluates to 1, there are
exponentially many assignments to return. Thus, the worst-case complexity of
an algorithm for the problem must be exponential as a function of the input.
This means that we cannot beat the naive algorithm that tests the truth value of
every possible assignment, at least not according to the metric of worst-case
complexity as a function of the input.

Hence, in such settings, we need to measure the complexity in a differ-
ent way. There are several options, e.g., considering average-case complexity,
summarizing the output (e.g., count the number of satisfying assignments),
representing the output in factorized form, etc. Our focus in this chapter is

18

CHAPTER 3. ENUMERATION ALGORITHMS FOR QUERY EVALUATION 19

on enumeration algorithms, where we produce the full output and measure the
worst-case complexity in a different way.

Enumeration algorithms are a refinement of the well-studied notion of
output-sensitive algorithms, where we measure the complexity as a function of
the input and of the output. For instance, the naive algorithm to list satisfying
assignments is not an efficient output-sensitive algorithm, as it will always
take exponential time, even if the formula is unsatisfiable and the output is
empty. However, the guarantee on output-sensitive algorithms only applies to
the running time needed to produce the entire output: if there are many results,
it may take very long before the first result is produced, or the delay between
results can sometimes be very large. Enumeration algorithms thus refine output-
sensitive algorithms to enforce stronger guarantees on the running time when
we want to produce multiple results as a sequence.

Formally, when considering a problem whose output is a set of results, an
enumeration algorithm reads the input and produces the results in succession,
one after the other, and without repetition. Its performance is measured along
two axes: the preprocessing time, which is the time taken to produce the first
result (or conclude that there are none), expressed as a function of the input;
and the delay, which is the maximal time taken to produce any given result after
having produced the previous one, expressed as a function of the input and of
the size of each result. We focus here on worst-case delay, though the notion
of average delay (in an amortized sense) has also been investigated. In terms
of memory usage, we can measure the memory size used after preprocessing,
i.e., when producing the first result; and the growth of the memory usage as the
results are enumerated. However, we will generally not consider the question
of memory usage for the results presented in this manuscript.

Enumeration algorithms for data management. The study of output-
sensitive and enumeration algorithms in computer science is not new: they
have been investigated for decades, e.g., to enumerate combinatorial struc-
tures [Val79] (see [Rus03]), or to list structures in graphs such as cliques [TIAS77]
or spanning trees [KR95]. This research forms a natural counterpart to the study
of streaming algorithms [Mut05] which studies how to consume data streams.
For a general survey of problems for which enumeration algorithms have been
studied, see for instance [Was16]. Common measures of tractability in these
works are output-polynomial running time, or polynomial preprocessing and delay.
In the latter, the first solution, and each successive solution, can be produced in
polynomial time in the input (and typically has polynomial size in the input).

In the field of data management, the study of enumeration algorithms can
sometimes aim for better bounds than polynomial preprocessing and delay.

CHAPTER 3. ENUMERATION ALGORITHMS FOR QUERY EVALUATION 20

One very stringent requirement is that of constant delay, or output-linear de-
lay [Bag06]. In this case, we require that the enumeration phase produces each
result in time linear in its size, i.e., in constant delay when the results have
constant size; which is unavoidable if the outputs must be written in full. Note
that this implies that the delay does not depend on the size of the input to the
enumeration algorithm. Also note that our notion of output-linear delay in
this manuscript is somewhat less restrictive than that of [Bag06] because we
do not bound the memory usage, unlike [Bag06]. As for the preprocessing, the
most stringent requirement is linear preprocessing (as a function of the input):
this is often unbeatable, because it is often necessary in the worst case to read
the entire input to find out if there are results to produce. We phrase these
requirements in data complexity, i.e., the query is assumed to be fixed.

Enumeration algorithms with such strong requirements have been investi-
gated in database theory for the task of query evaluation in various settings.
In particular, early works on the topic have studied the enumeration of MSO
query results over trees: see Bagan [Bag06] and Kazana and Segoufin [KS13],
who established that this could be done with linear preprocessing and output-
linear delay; and Courcelle [Cou09]. Another early line of work has focused on
conjunctive queries (CQs) on arbitrary relational instances: Bagan, Durand, and
Grandjean [BDG07] showed that enumeration could be achieved with linear
preprocessing and constant delay in data complexity for the class of acyclic
free-connex CQs, and showed (conditionally) that this was not possible for self-
join-free CQs that were not in this class. Enumeration was also studied for
first-order (FO) formulas on bounded-degree structures: it was shown by Du-
rand and Grandjean [DG07], and re-proved by Kazana and Segoufin [KS11],
that the task could be solved with linear preprocessing and constant-delay data
complexity. These early results were surveyed by Segoufin in an invited talk at
EDBT/ICDT’13 [Seg13], at STACS’14 [Seg14], and in SIGMOD Record [Seg15].

Since then, enumeration has been a very active area of research in data
management. For instance, for FO queries, Segoufin and Vigny generalized to
enumeration the results on FO model checking on databases with local bounded
expansion [SV17] and later with Schweikardt on nowhere dense graphs [SSV22].
For CQs, the tractability of enumeration for acyclic free-connex CQs [BDG07]
was extended by Berkholz and Schweikardt to CQs of bounded free-connex
submodular width [BS19] with FPT-preprocessing time (which in particular en-
sures polynomial data complexity) following the corresponding results on CQ
evaluation shown by Marx [Mar13], and generalizing similar results on free-
connex treewidth already present in Bagan, Durand, and Grandjean [BDG07].
The results about CQs were extended to UCQs first by Berkholz, Keppeler,
and Schweikardt [BKS18b], and then by Carmeli and Kröll [CK21], leaving
the picture still incomplete. Carmeli and Kröll also investigated enumeration

CHAPTER 3. ENUMERATION ALGORITHMS FOR QUERY EVALUATION 21

algorithms on database schemas featuring functional dependencies [CK20].
The activity around enumeration topics also touches on neighboring areas,

e.g., the study of enumeration complexity classes [CS19], the enumeration
of models of logical formulas [CS21], or enumeration for ontology-mediated
queries [LP22]. Two other important research directions are that of enumeration
algorithms for document spanners, which I present in more detail in Section 3.5
below; and incremental maintenance of enumeration structures on dynamic data,
which I present in the next chapter. Recent surveys on the topic of enumeration
include the one by Strozecki [Str19] or, for the task of evaluating CQs, the
tutorial by Berkholz et al. [BGS20].

3.2 Structure of the Chapter
This chapter presents my research contributions on the task of enumerating
query answers, which all rely (explicitly or implicitly) on circuit-based methods.

The first section (Section 3.3) presents our work with Pierre Bourhis, Louis
Jachiet, and Stefan Mengel, about enumeration tasks on circuit classes from
knowledge compilation [ABJM17]. We study the problem of enumerating the
satisfying assignments of circuits, in a model of set circuits in d-DNNF related
to knowledge compilation and factorized representations. We show how the
satisfying assignments of such set circuits can be enumerated with linear prepro-
cessing and delay which is output-linear, i.e., linear in the size of each produced
assignment. We further show that how Boolean circuits can be translated to set
circuits, so our algorithms can be used to enumerate the satisfying assignments
of Boolean circuits in the restricted d-SDNNF class from knowledge compilation.

The second section (Section 3.4) presents our work on enumerating the re-
sults of MSO queries on trees. We show how we can efficiently construct
d-SDNNF circuits which capture the results of such queries. Thus, apply-
ing the previous result on circuits [ABJM17], we can recapture the result by
Bagan [Bag06] and Kazana and Segoufin [KS13] that the results of MSO queries
on trees can be enumerated with linear preprocessing and output-linear delay.
These results were mentioned in [ABJM17] as an application of enumeration
via circuits.

The third section (Section 3.5) restricts from the setting of trees to that of
words, and explains how we can efficiently enumerate the results of document
spanners, a formalism for declarative information extraction. In terms of data
complexity, these results follow from those of the previous section, because
regular spanners can be expressed in MSO over words. However, we show that
we can also ensure tractable combined complexity [ABMN19a], i.e., additionally
enforce tractability in the representation of the spanner.

CHAPTER 3. ENUMERATION ALGORITHMS FOR QUERY EVALUATION 22

In the fourth section (Section 3.6), we present our recent extension [AJMR22]
of regular spanners called annotation grammars, where we replace finite au-
tomata with context-free grammars as a formalism to specify the extraction task.
We show how to efficiently enumerate the mappings of such a grammar on an
input word with cubic preprocessing and output-linear delay, improving on a
quintic algorithm for a similar formalism in [Pet21]. We also show quadratic
and even linear preprocessing for some restricted classes of grammars.

3.3 Efficient Enumeration via Knowledge
Compilation

My first contribution to the field of enumeration algorithms was to study how
to enumerate the satisfying assignments of Boolean circuits [ABJM17]. This is a
collaboration with Pierre Bourhis and Stefan Mengel, started shortly after my
PhD.

The problem of enumerating satisfying assignments had been studied previ-
ously in the context of Boolean formulas [JLSS14] and circuits [JS05], but the
motivation there was mainly practical. Indeed, from a theoretical angle, given
an arbitrary Boolean formula or circuit, it is NP-hard even to determine if some
satisfying assignment exists. Our approach in [ABJM17] was to achieve efficient
upper bounds by focusing on circuits in tractable classes from knowledge com-
pilation; in particular d-SDNNF circuits, for which the satisfiability problem is
easy to solve.

The enumeration of satisfying assignments for such circuits is a natural
question, but our motivation was also to introduce a modular approach for the
design of enumeration algorithms, also inspired by factorized representations
in databases [OZ15]. Indeed, as we reviewed in the introduction of this chapter,
there are many problems for which we can study enumeration. Instead of
devising enumeration algorithms for each problem from scratch, we believe
that it would be more convenient to proceed in three steps. First, explain how
to efficiently compute a circuit that gives a factorized representation of the
solutions to enumerate. Second, show that this representation falls in one
of the tractable classes from knowledge compilation [DM02]. Third, simply
invoke a general-purpose enumeration algorithm on such representations (e.g.,
the one we propose). We believe that this approach is promising because it
neatly decouples the techniques used for query evaluation (first step) from the
complicated bookkeeping required for efficient enumeration (third step), using
well-known circuit classes as an interface between the two (second step).

We specifically focus on the class of d-SDNNF circuits, and our work shows

CHAPTER 3. ENUMERATION ALGORITHMS FOR QUERY EVALUATION 23

that we can efficiently enumerate their satisfying assignments:

Theorem 3.3.1 ([ABJM17], Theorem 2.1). Given a d-SDNNF circuit and a v-
tree that structures it, we can enumerate its satisfying assignments with linear
preprocessing and output-linear delay.

Our result also gives a bound on the memory usage (which unfortunately
depends on the size of the input, unlike delay), and an efficient algorithm if
we want to enumerate only the assignments of a given Hamming weight. We
sketch the proof of Theorem 3.3.1 in the remainder of this section.

Proof step 1: Converting to set circuits. The first step of our proof, and in
fact the only point where we use the structuredness assumption, is to convert
the input circuit to a different formalism of set circuits, that features only implicit
negation. These are defined like Boolean circuits, but with other internal gates
and with a different semantics:

Definition 3.3.2 (adapted from [ABMN19b]). Given a set 𝑋 of variables, an
assignment is simply a subset of 𝑋 . A set circuit over 𝑋 is a circuit 𝐶 built of
variable gates (each labeled by a variable of 𝑋) and operators × (having exactly
two input gates) and ∪ (having at least one input gate). Each gate 𝑔 captures a set
S(𝑔) of assignments:

• a variable gate 𝑔 labeled with variable 𝑥 captures the singleton set S(𝑔)
containing only the assignment {𝑥};

• a product gate 𝑔 captures the relational product of its inputs 𝑔1 and 𝑔2, i.e.,
S(𝑔) = {𝑠1 ∪ 𝑠2 | 𝑠1 ∈ S(𝑔1), 𝑠2 ∈ S(𝑔2)};

• a union gate 𝑔 captures the union of its inputs 𝑔1, . . . , 𝑔𝑛, i.e., S(𝑔) =⋃
1≤𝑖≤𝑛 S(𝑔𝑖).

Note that the set captured by a gate can never be empty, and that captured sets
also cannot contain the empty assignment. The set of assignments captured by 𝐶
is S(𝑔0) where 𝑔0 is the distinguished output gate. We say that 𝐶 is in d-DNNF if:

• the input of ×-gates are always on disjoint domains, formally, there is no
variable gate 𝑔 having a path in the circuit to two gates 𝑔1 and 𝑔2 that are
the two inputs of a ×-gate;

• the unions in ∪-gates are always disjoint.

CHAPTER 3. ENUMERATION ALGORITHMS FOR QUERY EVALUATION 24

Notice that set circuits do not feature negation, but their semantics is subtly
different from that of monotone Boolean circuits. In Boolean circuits, the absence
of a variable means that it can be indifferently true or false; in set circuits, the
missing variables are implicitly required to be false. This mechanism of implicit
negation has also been studied for OBDDs where it is called the zero-suppressed
semantics [Weg00, Chapter 8].

Example 3.3.3. In a Boolean circuit 𝐶 corresponding to the Boolean formula
𝑥 ∨ (𝑦 ∧ 𝑧), any valuation that maps 𝑥 to true satisfies the formula, no matter the
value of 𝑦 and 𝑧. By contrast, in a set circuit 𝐶′ expressing 𝑥 ∪ (𝑦× 𝑧), the captured
set contains the assignments {𝑥} and {𝑦, 𝑧} but not, e.g., {𝑥, 𝑦, 𝑧}. In particular,
𝐶′ is a set circuit in d-DNNF, even though 𝐶 is not a d-DNNF Boolean circuit.

We show in [ABJM17] that d-SDNNFs, or even the more general class of
d-DNNFs having a compatible order, can be converted in linear time to set
circuits. This conversion is related to the smoothing operation on Boolean
circuits [Dar01, SdBBA19]. In our setting, the conversion introduces a new kind
of gates called range gates, intuitively expressing that a “range” of variables in
the v-tree can be assigned in an arbitrary way. The conversion must also enforce
the additional requirements that we impose on set circuits to make enumeration
simpler, e.g., the constraints on the fan-in of gates. We thus show:

Proposition 3.3.4 ([ABJM17], Propositions 3.9 and 4.3). Given a satisfiable
d-SDNNF 𝐶 with a v-tree 𝑇 , we can compute in linear time in 𝐶 and 𝑇 a set circuit
with range gates which is in d-DNNF and captures exactly the set of satisfying
assignments of 𝐶 (up to omitting the empty assignment).

Proof step 2: Enumeration for set circuits. The second step is to show the
enumeration result on set circuits in d-DNNF, namely:

Proposition 3.3.5 ([ABJM17], Theorem 5.4, Propositions 6.3 and 6.5). Given a set
circuit in d-DNNF (possibly with range gates), we can enumerate the assignments
that it captures, with linear preprocessing and delay linear in each produced
assignment.

Note that the delay is independent from the size of the input circuit. The
basic idea is simply to apply an easy recursive algorithm:

• For a variable gate 𝑔, the singleton set S(𝑔) is trivial to enumerate.

• For a range gate, we can easily enumerate all possible assignments of its
variables.

CHAPTER 3. ENUMERATION ALGORITHMS FOR QUERY EVALUATION 25

• For a ×-gate, we recursively enumerate the assignments captured by
the first input, and we combine each assignment with the assignments
obtained by recursively enumerating the second input. Thanks to decom-
posability, the unions in the relational product are disjoint.

• For a ∪-gate, we recursively enumerate the assignments captured by each
input. Thanks to determinism, the unions are disjoint.

This algorithm runs in output-linear delay if we assume, like Olteanu and Za-
vodny [OZ15], that the circuit is normal in the sense that no ∪-gate is an input to
a ∪-gate. Note that the output-linear delay bound relies on the decomposability
and determinism of the set circuit, and also uses the fact that the captured sets
are never empty and that the empty assignment is never captured. However,
the situation with non-normal circuits is more complicated, as they may have
arbitrarily large ∪-components: these are intuitively connected components of
∪-gates along with their non-∪ inputs. The algorithm sketched above intuitively
has a linear delay in the depth of ∪-components, which is not output-linear
because there can be small assignments that are arbitrarily deep.

The easy solution to this problem would be to rewrite the circuit during the
preprocessing to make it normal. However, it is unrealistic to do this in linear
time, because it amounts to a transitive closure computation. Instead, we solve
this problem by preprocessing the ∪-components with a lemma that allows
us to do the following: given any ∪-gate 𝑔 of the ∪-component, enumerate in
constant delay all non-∪ gates 𝑔′ of the component that have a directed path
to 𝑔. This uses the fact that, thanks to determinism, these directed paths are
necessarily unique, i.e., the ∪-components are in fact multitrees. Here is the
formal claim:

Lemma 3.3.6 ([ABJM17], Theorem C.1). Given a multitree 𝑇 , we can preprocess
it in linear time to answer the following queries: given any node 𝑛 of the multitree,
enumerate in constant delay the leaves to which 𝑛 has a path.

This lemma is easy to show if 𝑇 is a tree, by ordering the leaves according to
the traversal order, and precomputing the first and last reachable leaf of each
node. The proof of this lemma on multitrees uses an ad-hoc data structure: we
intuitively rewrite the multitree to annotate each node with one reachable leaf
that can be immediately enumerated.

Our enumeration result on set circuits (Proposition 3.3.5) follows directly
from the algorithm sketched above, using Lemma 3.3.6 for the case of ∪-gates.
This establishes our main result (Theorem 3.3.1).

CHAPTER 3. ENUMERATION ALGORITHMS FOR QUERY EVALUATION 26

3.4 Efficient Enumeration for MSO Queries on
Trees

We now present an application of the enumeration result on circuits presented in
the previous section. Specifically, we study the problem of enumeration for MSO
queries on trees, under the measure of data complexity. This result is reproved
in [ABJM17] by adapting the provenance circuit construction of my PhD work
for probabilistic query evaluation [Ama16] (see Section 5.3). We present the
result and proof in this section.

Formally, we fix an MSO formula 𝑄 with free variables on an alphabet Σ,
we are given a Σ-tree 𝑇 as input, and we want to enumerate the answers of 𝑄
on 𝑇 . In the general case of free second-order variables, the answers describe
the interpretation of each of the sets. Equivalently, we represent each answer as
a set of singletons of the form ⟨𝑌 : 𝑛⟩, meaning that the tree node 𝑛 belongs to
the interpretation of the free variable 𝑌 .

As pointed out in the introduction, an enumeration algorithm for this prob-
lem was given by Bagan [Bag06], and then Kazana and Segoufin [KS13] (if the
free variables are first-order):

Theorem 3.4.1 ([Bag06, KS13]). For any fixed MSO query 𝑄, given an input
tree 𝑇 , we can enumerate the answers of 𝑄 on 𝑇 with linear preprocessing in data
complexity, and output-linear delay, i.e., delay linear in the size of each produced
answer.

Note that this evaluation result for MSO extends from trees to bounded-
treewidth structures, following Courcelle’s theorem [Cou90], because a tree
decomposition for an input structure of bounded treewidth can be computed in
linear time [Bod96].

We show in this section how we can reprove Theorem 3.4.1 using the method
presented in the previous section, namely, computing a factorized represen-
tation of the answers as a circuit from a tractable class. Beyond re-proving
Theorem 3.4.1, we explain in the next chapter how this method can yield new
results for incremental maintenance.

Specifically, we show that, for any fixed MSO query 𝑄(®𝑍), given an input
tree 𝑇 , and letting 𝑋 = {⟨𝑌 : 𝑛⟩ | 𝑌 ∈ ®𝑍, 𝑛 ∈ 𝑇} be the set of possible singletons,
we can compute a d-SDNNF on variables 𝑋 that captures the answers of 𝑄 on 𝑇 :

Theorem 3.4.2 ([ABJM17]). For any fixed MSO query 𝑄, given an input tree 𝑇 ,
letting 𝑋 be the set of variables defined above, we can compute in linear data
complexity a d-SDNNF circuit 𝐶 over 𝑋 whose satisfying assignments are precisely
the answers of 𝑄 on 𝑇 .

CHAPTER 3. ENUMERATION ALGORITHMS FOR QUERY EVALUATION 27

This result is rather easy to prove, as we explain. Once we have this result,
the enumeration result for MSO on trees (Theorem 3.4.1) can simply be obtained
in a modular way by combining Theorem 3.4.2 with Theorem 3.3.1.

Proof techniques. This result uses the technique of my PhD [Ama16] to
compute d-SDNNF provenance circuits for MSO queries (see also Section 5.3).
Specifically, the technique works by expressing the MSO query as a tree au-
tomaton (which has constant data complexity), and augmenting the input tree
to add assignment facts denoting the possibilities of assigning free variables
to tree nodes, i.e., the singletons ⟨𝑌 : 𝑛⟩. We then perform a kind of product
construction between the automaton and tree, where we consider the singleton
facts as variables. The resulting circuit contains one gate for every pair of a
node 𝑛 and an automaton state 𝑞, intuitively capturing the satisfying assign-
ments corresponding to the choices of assignment facts in the subtree of 𝑇
rooted at 𝑛 for which the automaton will reach state 𝑞 at node 𝑛.

The resulting circuit is in d-DNNF if the tree automaton is deterministic (or
even unambiguous), which we can enforce again in constant data complexity.
Further, the circuit can be shown to be structured, with a v-tree that can be
derived from the input tree. This establishes Theorem 3.4.2.

3.5 Efficient Enumeration for Document
Spanners

In this section, we present how our enumeration techniques can apply in the
context of document spanners [FKRV15]. This is a declarative formalism to
specify information extraction tasks on textual documents, where the spanners
express which tuples of spans (i.e., factors of the input document) should be
be extracted. This is a collaboration with Pierre Bourhis, Stefan Mengel, and
Matthias Niewerth.

One language to express regular spanners are regex-formulas, which are
simply regular expressions extended with (well-nested) capture variables denot-
ing the factors to extract. The semantics of a regex-formula on an input word
is that we have one result for every extension of the input word accepted by
the regex-formula, where the extension can add so-called marker characters
denoting the assignments of the captured variables. The results thus obtained
are called mappings: each of them maps the variables of the regex-formula to a
span, i.e., a factor of the word (identified by its endpoints).

Example 3.5.1. The following is an example of a regex-formula:

Σ∗ 𝑥{𝑦{[ˆ]+} @ 𝑧{[ˆ]+}} Σ∗

CHAPTER 3. ENUMERATION ALGORITHMS FOR QUERY EVALUATION 28

This regex-formula describes the task of extracting email addresses from a textual
document. Here, an email address is simply a sequence of non-space characters,
surrounded by two spaces, and containing the at-sign at a position which is not the
first or last character. (Note that this example is simplistic, e.g., it does not allow
email addresses at the beginning or end of the word.) The variable 𝑥 captures each
email address, whereas the variables 𝑦 and 𝑧 capture respectively what is to the
left and right of the at-sign in the captured address.

On an input word, the regex-formula will have as many mappings as there are
distinct ways to assign the variables 𝑥, 𝑦, 𝑧 so that the result satisfies the regular
expression. For instance, on the following word:

0 1 2 3 4 5 6 7 8 9 10 11 12
a ␣ b @ c ␣ d ␣ e @ f ␣ g

there will be two mappings. In the first mapping, the variable 𝑥 will be mapped to
the factor containing characters 2–4, and the variables 𝑦 and 𝑧 will respectively be
mapped to characters 2 and 4. In the second mapping, we map 𝑥 to the characters
9–11 and 𝑦 and 𝑧 to character 9 and character 11 respectively. Ordering the variables
as 𝑥, 𝑦, 𝑧, the mappings can be written as tuples in the following way (where spans
include the left but not the right endpoint):

([2, 5⟩, [2, 3⟩, [4, 5⟩), ([8, 11⟩, [8, 9⟩, [10, 11⟩)

The notion of document spanners was originally inspired by practical busi-
ness needs at IBM [Res18], and research in database theory has focused, e.g., on
the expressiveness of spanner representations, on the evaluation of relational
algebra queries on tables defined by spanners, and on the compilation of such
queries directly into the spanner. The foundational work on the theory of docu-
ment spanners is the article of Fagin et al. [FKRV15]; see also the PhD thesis of
Peterfreund [Pet19].

More recently, the question of producing the extraction results has been
investigated from the angle of enumeration algorithms, with some works es-
tablishing polynomial delay algorithms to enumerate the mappings of spanner
representations [MRV18, FKP18]. An algorithm with linear preprocessing and
constant delay was then shown by Florenzano et al. [FRU+18]. However, this
algorithm only focuses on data complexity, and not on the complexity in the
input spanner.

Our research thus investigated how to enumerate the mapping of a regular
spanner on a word with linear preprocessing and constant delay in data com-
plexity, while also ensuring tractability as a function of the input spanner. To
formally present our enumeration result, we must introduce the formalism in
which we represent regular spanners, namely, variable-set automata (VAs):

CHAPTER 3. ENUMERATION ALGORITHMS FOR QUERY EVALUATION 29

Definition 3.5.2. Given a set 𝑋 of variables, the corresponding set of markers
M𝑋 consists of the open markers {⊢𝑥 | 𝑥 ∈ 𝑋} and close markers {⊣𝑥 | 𝑥 ∈ 𝑋}. A
variable-set automaton (VA) on an alphabet Σ and set 𝑋 of variables is simply a
finite automaton over the alphabet Σ ∪M𝑋 .

The VA is sequential if every run of the VA assigns the markers in a legal way.
Formally, for each variable 𝑥 of 𝑋 , either there is no marker for 𝑥 in the run, or
there is exactly one occurrence of the open marker ⊢𝑥 of 𝑥 followed at some later
point by exactly one occurrence of the close marker ⊣𝑥 of 𝑥.

The set of mappings produced by a sequential VA 𝐴 on a word 𝑤 ∈ Σ∗ is
defined as follows: for each word 𝑤′ of the language of 𝐴 such that removing
the markers of M𝑥 from 𝑤′ yields 𝑤, we have one result 𝜇, called a mapping,
intuitively indicating where each variable of 𝑋 was assigned in 𝑤′. Formally, the
mapping 𝜇 is a partial function from 𝑋 to the spans {[𝑖, 𝑗⟩ | 0 ≤ 𝑖 ≤ 𝑗 ≤ |𝑤 |}
of 𝑤. A variable 𝑥 has no image by 𝜇 if no marker for it occurs in 𝑤′. Otherwise,
𝑥 is mapped by 𝜇 to the span 𝜇(𝑥) = [𝑖, 𝑗⟩ of 𝑤 such that the markers ⊢𝑥 and ⊣𝑥
in 𝑤′ were at positions corresponding to the span [𝑖, 𝑗⟩ of 𝑤.

The formalism of VAs is more expressive than regex-formulas, as these
can be translated to VAs in polynomial time [MRV18]. Note that, in contrast
with regex-formulas, VAs do not need to assign their variables in a well-nested
fashion. We also allow different runs of the VA to assign different subsets of the
set of variables 𝑋 , i.e., to produce “incomplete” mappings: this is in line with the
work of Maturana et al. [MRV18] and generalizes the notions of the article of
Fagin et al. [FKRV15]. Further observe that the same mapping may be obtained
by multiple accepting runs, and also with multiple words 𝑤′ (which differ only
in the order of markers).

Thus, the problem that we study is the following: given a sequential VA 𝐴

and a word 𝑤, enumerate all the mappings of 𝐴 on 𝑤. The algorithm of [FRU+18]
can solve this problem with linear preprocessing and constant delay in data
complexity, but it first converts the VA into an equivalent deterministic repre-
sentation, incurring an exponential blowup in the VA. We show that we can
avoid this blowup by working directly with non-deterministic VAs:

Theorem 3.5.3 ([ABMN21], Theorem 1.1). There is a constant 𝑐 ∈ N such that,
given a sequential VA 𝐴 and word 𝑤, we can enumerate the mappings captured
by 𝐴 on 𝑤 with preprocessing time 𝑂 (|𝐴|𝑐 × |𝑤 |) and delay 𝑂 (|𝐴|𝑐).

The precise complexities are stated in [ABMN21], Theorem 1.1. In particular,
if the size of the mappings are assumed to be constant, then we can take 𝑐 =

𝜔 + 1 for the preprocessing and 𝑐 = 2 for the delay, where 2 ≤ 𝜔 ≤ is an
exponent for Boolean matrix multiplication (the best currently published bound
is 𝜔 < 2.3728596 [AW21]). Notice that the delay in this result is only constant

CHAPTER 3. ENUMERATION ALGORITHMS FOR QUERY EVALUATION 30

in data complexity (i.e., it does not depend on the length of the input word),
but it does depend on the automaton (in a polynomial way). This is in contrast
with Theorem 3.3.1 in Section 3.3, and Theorem 3.4.1 in Section 3.4, where the
output-linear delay does not hide any dependency in the query.

Proof techniques. The proof of this result implicitly uses a circuit represen-
tation of the results of the VA on the word, which is computed by a construction
similar to the one presented in the previous section (Section 3.4). Intuitively,
the circuit can be thought of as a kind of OBDD with disjunctions (i.e., the
non-branching analogue of structured DNNF). Note that the disjunctions are
not deterministic because the automaton is not. The challenge is to handle these
nondeterministic disjunctions while still producing each result only once.

To do this, the recursive enumeration algorithm remembers a set of possible
states at the current word position, and efficiently jumps over parts of the word
where it is not possible to assign variables (so as to ensure the constant-delay
bound). This uses a precomputed jump function on the product of the automaton
and the word, intuitively telling us for each state and position what is the next
position where it will be possible to assign a variable, and which states will
be reachable — amounting to a limited kind of transitive closure computation.
Another proof ingredient in [ABMN19a] is the use of flashlight search [SM19]
as a subroutine, to efficiently enumerate the sets of markers that can be assigned
at a given position.

3.6 Efficient Enumeration for Annotation
Grammars

This section reviews a more recent research contribution on enumeration algo-
rithms, in which we generalize from regular spanners to a new formalism of
annotation grammars. This work is part of Martín Muñoz’s PhD work, and is a
collaboration with Louis Jachiet and Cristian Riveros.

The practical motivation for annotation grammars is to express information
extraction tasks that go beyond regular languages, for instance extracting parts of
source code files if we assume that the syntax is defined by a known context-free
grammar (CFG), or parts of a structured document. An extension of document
spanners to CFGs was recently introduced by Peterfreund [Pet21]: she defines
extraction grammars and shows that, for a class of unambiguous extraction
grammars, we can enumerate the mappings of the grammar on an input word
with quintic preprocessing and constant delay. We show, via our formalism, that
the preprocessing time can be improved to cubic, and can be further improved

CHAPTER 3. ENUMERATION ALGORITHMS FOR QUERY EVALUATION 31

on some restricted classes of grammars. In particular, we identify a class that
enjoys linear preprocessing and is strictly more expressive than regular spanners
(Theorem 3.5.3).

Let us define the grammar formalism that we introduce:

Definition 3.6.1. Fixing an alphabet Σ and an alphabet Ω of annotations (in-
tuitively corresponding to variables), an annotation grammar 𝐺 is a context-free
grammar 𝐺 whose set of terminals can be letters of Σ (describing unannotated
letters), or pairs of Σ × Ω (describing annotated letters). The grammar 𝐺 thus
describes a language of (Σ ∪ Σ ×Ω)∗.

The set of mappings that 𝐺 captures on an input word 𝑤 of Σ∗ is defined, like
in the case of document spanners, by considering the words 𝑤′ of the language
of 𝐺 such that 𝑤 is the result of removing the annotations of 𝑤′, i.e., replacing
each annotated letter by its unannotated counterpart. Each such word 𝑤′ defines a
mapping, which is this time a set of singletons ⟨𝑜 : 𝑖⟩ saying that the annotation
𝑜 ∈ Ω was assigned at position 𝑖 ∈ {1, . . . , |𝑤 |} of 𝑤.

Note the difference with VAs (and with extraction grammars [Pet21]): the
annotations can be assigned to an arbitrary subset of the letters (analogously
to free second-order variables), and they directly annotate the characters (we
do not insert additional marker characters). This superficial difference makes
our formalism somewhat more general while simplifying the design of our
algorithms. In fact, as we show in [AJMR22], our data complexity results also
apply to extraction grammars.

Similarly to [Pet21], we focus on annotation grammars that are unambiguous
in the sense that, on every input word 𝑤, every mapping 𝜇 is derived at most
once, i.e., the word 𝑤′ that produces 𝜇 has only one derivation. Said differently,
the annotation grammar is unambiguous when seen as a CFG over the alphabet
Σ ∪ (Σ ×Ω). We can then show that the mappings of an annotation grammar
on an input word can be enumerated efficiently:

Theorem 3.6.2 ([AJMR22], Theorem 3). Given an unambiguous annotation
grammar 𝐺 and word 𝑤 ∈ Σ∗, we can enumerate the mappings of 𝐺 on 𝑤 with
preprocessing in 𝑂 (|𝑤 |3 × |𝐺 |) and output-linear delay (independent of 𝐺 or 𝑤).

We also introduce in [AJMR22] some classes of annotated grammars where
the complexity can be improved. We specifically study rigid annotation gram-
mars for which, on any unannotated input word 𝑤, there is intuitively only one
shape of derivation tree for all annotations of 𝑤, i.e., all derivation trees for all
annotated words 𝑤′ obtained from 𝑤 have the same skeleton. We show that the
problem for such grammars can be solved with preprocessing only quadratic in
the word 𝑤, similar to the improved bounds on parsing for unambiguous CFGs.

CHAPTER 3. ENUMERATION ALGORITHMS FOR QUERY EVALUATION 32

Last, we introduce a class of pushdown annotators (PDAnns), following
the usual connection between CFGs and pushdown automata. We then show
that the preprocessing can be made linear if the input annotation grammar is
expressed as a PDAnn which is profiled-deterministic, i.e., for any unannotated
input word 𝑤, all partial runs on annotations of prefixes of 𝑤 have the same
sequence of stack heights.

Proof techniques. The algorithm used to prove Theorem 3.6.2 can be seen as a
variant of the usual CYK parsing algorithm which runs in cubic time in the input
word. (There are parsing algorithms for general CFGs which achieve a better
asymptotic complexity, in particular following the exponent of Boolean matrix
multiplication [Val75], but we are not able to match this bound.) Specifically,
we rewrite the input grammar to an arity-two normal form [LL09]. Remember
that CYK then proceeds by dynamic programming: for every factor of the word
and every nonterminal 𝑁 of the grammar, it determines whether 𝑁 can derive
that factor. In our algorithm, instead of propagating Booleans and combining
them with Boolean operations, we construct a factorized representation of the
sets of partial mappings intuitively derivable from 𝑁 on every factor.

The operations that we use to compose these sets of annotations, instead
of Boolean operations, are the union and product operations of set circuits
(Section 3.3). The resulting circuits can be shown to be in d-DNNF form thanks
to the unambiguity requirement (establishing determinism), and thanks to the
fact that the assigned singletons can be partitioned according to their position
in the word (establishing decomposability). Hence, the captured annotations
can be enumerated with output-linear delay (Theorem 3.3.1).

To show the improved bounds on rigid grammars, we follow a similar tech-
nique, this time using an existing algorithm to solve parsing for unambiguous
CFGs in quadratic time (in the unannotated case): rigidity guarantees that there
is always at most one parse tree structure to consider. As for pushdown annota-
tors, the profiled-deterministic condition is designed to ensure that, in addition
to rigidity, the unique tree structure for parse trees on the word can be computed
deterministically, in linear time. Once the tree structure is known, enumeration
can be achieved with linear preprocessing and constant delay by reduction to the
same problem for unambiguous visibly pushdown transducers of [MR22], which
can again be equivalently phrased in the vocabulary of MSO query evaluation
over trees (Section 3.4).

CHAPTER 3. ENUMERATION ALGORITHMS FOR QUERY EVALUATION 33

3.7 Perspectives
We have presented our contributions to enumeration algorithms in the context
of data management. They follow the methodology of knowledge compilation:
we establish that d-SDNNF circuits enjoy tractable enumeration (Section 3.3,
[ABJM17]), and use this result to efficiently enumerate the results of MSO queries
on trees (Section 3.4, [ABJM17, ABMN19b]), the output mappings of spanners
(Section 3.5, [ABMN21]), and the annotations captured by annotated grammars
(Section 3.6, [AJMR22]).

We hope that the development of enumeration algorithms for data man-
agement tasks will continue to lead to interesting and challenging theoretical
questions both about databases and about enumeration algorithms. One example
of a seemingly central problem is the understanding of which UCQs can be
tractably enumerated [CK21], which appears to be very challenging already for
the case of CQs with self-joins [CS22].

The perspectives presented here follow several broad directions: some of
them are specific to my focus on MSO queries (especially on words), and others
are more general. One first question is how the enumeration results obtained so
far in database theory can be understood through the lens of factorized circuit
representations. Second, we will see how the perspective of practical applica-
tions raises several new questions for theoretical research on enumeration. A
third question is to generalize enumeration results about document spanners to
more expressive languages and automata models. Last, I present some ongoing
research directions which explore changes to the enumeration model itself, to
allow factorized inputs or to produce outputs by dynamic edits.

Understanding enumeration results through knowledge compilation.
This chapter has presented a modular methodology for the design of enumera-
tion algorithms: construct factorized representations of the results to enumerate,
argue that they belong to tractable circuit classes, and leverage enumeration
algorithms for this class. We introduced the formalism in 2017 [ABJM17], and it
has had some echo in the work of other authors since then: it can be used as a
technique to show upper bounds, or as a setting in which it is easier to show
lower bounds. See for instance the work of Toruńczyk on aggregate queries on
bounded expansion databases [Tor20], the work of Berkholz and Vinall-Smeeth
on succinct representations of homomorphisms between structures [BVS22], or
the work of Muñoz and Riveros on enumeration for visibly pushdown transduc-
ers [MR22] and on SLP-compressed documents [MR23] (presented in the very
related terminology of enumerable compact sets).

However, there are of course many works in which enumeration results
are obtained by seemingly different means. There are also general techniques

CHAPTER 3. ENUMERATION ALGORITHMS FOR QUERY EVALUATION 34

for enumeration that have no direct rephrasing as circuits, e.g., the cheater’s
lemma (Lemma 7 of [CK21]), the similar lemma of Durand and Strozecki which
assumes efficient testing (Proposition 8 of [DS11]), the technique of flashlight
search [SM19], etc. Thus, a general research question is to look for a unifying
perspective behind the recent wealth of enumeration algorithms over data, in
particular in terms of factorized representations and circuits.

Reinterpreting proofs in terms of circuit representations can be useful for
theoretical research, to make proofs more modular and more reusable. Further,
it could also hold promise for practical implementation. Indeed, it divides
the work between query evaluation (extended with circuit computation) and
between enumeration (on circuit representations). The first task can hopefully
be accomplished by modifying existing database engines, as explored by the
ProvSQL system of Senellart et al. [SJMR18]; the second task is related to the
development of efficient SAT solvers. Crucially, this modular approach would
allow both tools to be developed separately and optimized in an agnostic fashion.

Practical perspectives. We have studied enumeration algorithms with the
goal of obtaining efficient theoretical bounds. However, enumerating query
answers is of course also relevant in a practical sense: this is obviously the case
for the results of database queries, but is also true for the results of document
spanners (Section 3.5) when using them for information extraction.

To explore this, I supervised Rémi Dupré on a master’s internship aimed
at implementing our enumeration algorithm for nondeterministic document
spanners (Section 3.5). The project was continued by Matthias Niewerth, and
we published experimental results about this implementation [ABMN21]. How-
ever, it proved difficult to find or create benchmarks or datasets for the task of
enumerating all mappings of a spanner. One promising direction that has been
explored since then [BGQ+22] is to connect spanners to the area of complex event
recognition, which studies how to finding the occurrences of events patterns in a
stream of data. Benchmarks for this task are available, e.g., as part of the Grand
Challenge1 research competition of the ACM DEBS conference.

Beyond applying existing algorithms, the study of practical use cases often
suggests new directions that theoretical research on enumeration algorithms
can then explore. One such central question is that of ranked enumeration,
i.e., enumerating results in a certain order which is relevant to the user. This
problem has been investigated recently: by Deep and Koutris [DK21], Tzi-
avelis et al. [TAG+20], by Carmeli et al. [CTG+21] for CQs, and by Bourhis et
al. [BGJR21] for MSO queries. Other problems include the computation of top-𝑘

1https://debs.org/grand-challenges/

https://debs.org/grand-challenges/

CHAPTER 3. ENUMERATION ALGORITHMS FOR QUERY EVALUATION 35

results [BDD+22], or performing ranked access to results [CTG+21, CZB+22],
which subsumes in particular the task of uniformly sampling the query results.

In connection to this, an interesting question would be to produce samples
of results that are both diverse and representative, in the sense that they would
give a good approximation of the space of possible solutions. However, it is
already a challenge to find the correct way to pose this problem and to formally
define the goal. A more radical idea is to generalize the notion of enumeration
to allow the system to present factorized representations directly to the user, as
they could sometimes be more intelligible than a long stream of similar results;
however, this also raises questions of user interface design for data exploration.

Enumeration for more expressive languages. One other natural direction
for the development of enumeration algorithms is to extend them to more ex-
pressive query languages. We present some possible directions for investigation,
in the context of enumeration over words. We have first looked at regular
spanners (Section 3.5), and then annotation grammars (Section 3.6): a natural
direction for further research is to study enumeration for core spanners, i.e., span-
ners who can express equalities between captured spans, or the better-behaved
refl-spanners [SS21b].

A special case of the enumeration problem for core spanners is to enumerate
the matches of so-called patterns with variables [MS19], which are strings involv-
ing letters and (possibly repeated) variables; for instance, the pattern 𝑥𝑥 matches
square factors of the input word. This pattern language has been studied in
the field of stringology, which focuses on efficient string matching algorithms;
but the question of efficiently enumerating all matches does not seem to have
been investigated. Enumeration for core spanners and refl-spanners also seems
related to the problem of pattern matching for permutations [BBL98].

Alternatively, if we aim for tractability also in the query, we do not know
whether our results that achieve tractability in the automaton (Section 3.5) can
also extend to more general automaton representations, e.g., two-way automata,
alternating automata, automata with counters, etc. This also raises the question
of which circuit classes would correspond to these various classes of automata,
a connection which we believe would also be worth investigating.

One last intriguing question is that of enumerating the mappings of docu-
ment spanners in a unique fashion, i.e., enumerating each tuple of strings only
once. Indeed, enumeration algorithms for document spanners produce each
tuple of spans only once, but tuples achieving the same factors will be repeated
as many times as they occur. In many information extraction settings, however,
what matters is to obtain all tuples of strings (e.g., all email addresses), and
not all tuples of spans (e.g., all occurrences of the same email address). To my

CHAPTER 3. ENUMERATION ALGORITHMS FOR QUERY EVALUATION 36

knowledge, however, this problem does not seem to have been studied.

Other models for enumeration. One last direction for investigation is to
explore alternative definitions of enumeration problems, compared to the usual
model used in this chapter.

One first idea is to modify the representation of the input, for instance to
apply to strings that are compressed in some way. This was recently studied by
Schmid and Schweikardt [SS21a] on SLP-compressed documents, i.e., context-
free grammars that concisely express one single string. Their algorithm was then
improved by Muñoz and Riveros [MR23]. This follows a general line of research
on the extension of string algorithms to SLP-compressed strings [Loh12], and
hopefully brings us closer to the same problems for more practical compression
algorithms [FT98]. Another way to see these results is that they apply directly
to a factorized input: this is more compositional given that many enumeration
algorithms are producing factorized representations (implicitly or explicitly).

A second possible twist on the enumeration model, which we are investi-
gating with Mikaël Monet [AM23], is to change what it means to produce an
output: instead of writing it from scratch (which necessarily takes output-linear
time), we can produce it more efficiently by editing the previous output. In our
work [AM23], we study what are the regular languages whose words can be
efficiently enumerated in that sense, by applying edit operations to go from one
word to the next (in particular bounding the edit distance between consecu-
tive words). This study could be pursued for other tasks, e.g., enumerating the
satisfying assignments of circuits.

This notion of producing new outputs from old outputs is also intriguing in
other ways. It is related to factorized representations, given that it can be seen
as compressing the output set of results by merging common parts. Further, it
also seems linked to algorithms on dynamic data (presented in the next chapter),
as it produces the results by performing incremental modifications.

CHAPTER 4
Maintaining Query Results over

Dynamic Data

In this chapter, we move on to the study of incremental maintenance of query
results over dynamic data. The topic has some overlap with the previous chapter,
as there has been significant study of incremental maintenance algorithms for
enumeration problems, as we will review. I first present the general context,
again focusing on data management applications, and present my contributions
and perspectives for further research.

4.1 Introduction
Dynamic data is data which may be changed by applying updates. When de-
signing algorithms over such data, we must not only compute the output on
the current state of the input, but also keep it up to date whenever the data is
modified. The goal is to do so more efficiently than recomputing the results
from scratch after every update.

Dynamic data is a ubiquitous topic in computer science, in particular in
the design of efficient data structures, which are typically mutable, e.g., can
store modifiable sets or sequences of elements. Beyond data structures, the
theoretical study of efficient algorithms on dynamic data has been studied in
several communities, in particular on graphs [Hen18] and on strings [GFB94,
ABR00, GKK+18]; these results have also had some practical impact beyond
theory [HHS22, Pre17].

In addition to efficient algorithms, an important topic in theoretical research
are lower bounds. These come in two main flavors. First, one can prove uncon-

37

CHAPTER 4. MAINTAINING QUERY RESULTS OVER DYNAMIC DATA 38

ditional bounds, for instance those of Fredman and Saks [FS89] or of Pǎtraşcu
and Demaine [PD06]. Second, following the development of fine-grained com-
plexity [Bri19], we can prove conditional lower bounds on problems by reduc-
ing from other problems such as Online Boolean Matrix-Vector Multiplication
(OMv) [HKNS15], see for instance [AW14].

The question of dynamic data has also been studied in computational com-
plexity through the lens of descriptive complexity: if we want to maintain the
answer to a problem under updates (along with auxiliary relations), in which
logical language can we express how the answer and auxiliary relations must be
modified after each update? This is the focus of dynamic complexity [PI97]; see
the survey by Schwentick and Zeume [SZ16]. One landmark achievement of
this field is the result by Datta et al. [DKM+18] on reachability in graphs under
edge insertions and deletions: it is shown to be in the class DynFO, i.e., can be
maintained with changes expressed as first-order formulas [DKM+18]. However,
to our understanding, the question of logical expressiveness asked by dynamic
complexity is rather orthogonal to the question of finding efficient algorithms
in terms of running time, as indeed the evaluation of FO can take polynomial
running time.

In the context of data management, the problem of maintaining query results
has also been abundantly studied, in particular for the task of view mainte-
nance [AHV95, Chapter 22]; see, e.g., [GMS93, CY12]. These results have also
inspired practical implementations (e.g., [KAK+14]), and connect to other ques-
tions such as machine learning on dynamic data [KNOZ21]. Let us now focus on
theoretical results on the incremental maintenance of query answers, following
three main lines of research: CQs and UCQs over relational instances, FO over
restricted relational instances, and MSO over trees and words.

Maintaining CQs and UCQs. Berkholz, Keppeler, and Schweikardt initiated
a study of incremental maintenance for CQs [BKS17] that focused on three prob-
lems: maintaining the evaluation of Boolean CQs, maintaining an enumeration
structure for the query results, and maintaining the number of results. The
database can be changed by inserting and deleting facts. Their work shows (con-
ditional) dichotomies for these problems (assuming self-join-freeness for the case
of enumeration). The criterion for the tractability of queries is q-hierarchicality,
a restriction of the acyclic free-connex criterion which guaranteed tractability in
the setting without updates [BDG07]. In a similar vein, more practically-oriented
work by Idris et al [IUV17] has tried to adapt Yannakakis’s algorithm [Yan81]
to the dynamic setting.

The results on CQs in [BKS17] were later extended to UCQs by the same
authors [BKS18b]. Their work focuses on the same three problems, along with

CHAPTER 4. MAINTAINING QUERY RESULTS OVER DYNAMIC DATA 39

that of maintaining a tuple testing data structure that can efficiently test whether
any candidate tuple is a query answer. However, the lower bound result on
enumeration given in [BKS18b] was later found to be incorrect already in the
static setting [CK21, Example 2].

Following these dichotomy results, further work has tried to characterize
what were the best achievable bounds for the maintenance of the queries clas-
sified as intractable. For instance, Kara et al. have studied how to maintain
counts for the triangle query [KNN+19]: they investigate the possible trade-offs
between the time taken to recompute the query and the space used to materialize
intermediate results for faster recomputation; their work is also relevant in the
setting of dynamic graph algorithms [HHH21]. Further, some of the authors
of [KNN+19] pursued a similar methodology in [KNOZ20]: they investigate
the possible trade-offs to efficiently maintain enumeration structures for hi-
erarchical queries (not just q-hierarchical queries). More recent work by the
same authors [KNOZ22] studies the maintenance of CQs that are additionally
annotated with access patterns specifying how the relations can be accessed.

Maintaining FO queries. Going beyond CQs and UCQs, Berkholz, Keppeler,
and Schweikardt also investigated incremental maintenance for FO queries with
modulo counting quantifiers (FO+MOD). They showed [BKS18a] that updates
could be handled in constant time for the three problems mentioned above:
maintaining a constant-delay enumeration structure for the results, maintaining
the number of query results, and maintaining a constant-time tuple testing
structure. Their work assumes that, throughout the edits, the degree of the
underlying database remains bounded by a constant.

It is natural to ask whether these incremental maintenance results could be
extended to more expressive instance classes on which FO model checking and
enumeration are known to be tractable, e.g., nowhere dense graphs. However,
this question remains open as of 2022 [SSV22].

Maintaining MSO queries. The incremental maintenance problem can also
be studied for MSO queries over trees. This was first investigated in the setting
of maintaining Boolean MSO queries, i.e., the dynamic membership problem
of maintaining whether a tree belongs to a fixed regular language. For this
problem, Balmin et al. [BPV04] showed an algorithm achieving 𝑂 (log2 𝑛) time
per update, where 𝑛 is the size of the tree; and achieving 𝑂 (log 𝑛) time per
update for the same problem over words. The dynamic membership problem
on words admits in fact a finer 𝑂 (log 𝑛/log log 𝑛) upper bound when we only
allow substitution updates; see [SFMS97] and also [PI97]. This upper bound

CHAPTER 4. MAINTAINING QUERY RESULTS OVER DYNAMIC DATA 40

has a matching Ω(log 𝑛/log log 𝑛) unconditional lower bound, at least for some
Boolean MSO queries [SFMS97]: we review this in more detail in Section 4.4.

Returning to MSO queries over trees, the 𝑂 (log2 𝑛) upper bound of [BPV04]
has no known matching lower bound: the results on the marked ancestor prob-
lem of [AHR98], reviewed in [ABMN19b], also amount to a lower bound of
Ω(log 𝑛/log log 𝑛) on this problem. It appears that this complexity gap between
the upper and lower bound, which already exists for Boolean queries, had not
been investigated before our own work on enumeration [ABM18]; see Sec-
tion 4.3.

The incremental maintenance problem for Boolean MSO queries was later
extended to the problem of maintaining enumeration structures for the answers
of non-Boolean MSO queries. This problem was first studied by Losemann and
Martens [LM14]. Their article showed that the update complexity of 𝑂 (log2 𝑛)
from [BPV04] sufficed to maintain an enumeration data structure, but their
enumeration delay was worse than in the static case: it was no longer con-
stant but 𝑂 (log2 𝑛). These bounds were then refined in further work. For MSO
queries on words, Niewerth and Segoufin [NS18] showed an algorithm achiev-
ing constant-delay enumeration and 𝑂 (log 𝑛) update time. For MSO queries
on trees, an 𝑂 (log 𝑛) algorithm with 𝑂 (log 𝑛) delay on trees was claimed in
Niewerth [Nie18], though the proof was later found to be incorrect. We discuss
this in more detail, along with our own contributions, in Section 4.3.

4.2 Structure of the Chapter
This chapter presents my contributions on the task of incremental maintenance,
which all focus on MSO queries.

In the first section (Section 4.3), I present results on the incremental main-
tenance of enumeration structures for MSO queries on trees. This extends the
results on enumeration presented in the previous chapter (Section 3.4), by al-
lowing the underlying tree to be modified. As it turns out, our circuit-based
approach for enumeration is also well-suited to the support of dynamic data,
yielding new bounds on the incremental maintenance of this problem.

In the second section (Section 4.4), I present results on the incremental
maintenance of Boolean MSO queries on words, i.e., the dynamic membership
problem of a word to a fixed regular language, under substitution updates to
the word. We refine the known 𝑂 (log 𝑛/log log 𝑛) upper bound [SFMS97] by
investigating how the complexity of this problem depends on the specific regular
language that we consider. Improving on earlier work [SFMS97], we identify
three main complexity regimes: the complexity is in Θ(log 𝑛/log log 𝑛) for some
languages where the lower bound of [SFMS97] applies; there are languages

CHAPTER 4. MAINTAINING QUERY RESULTS OVER DYNAMIC DATA 41

where the problem is in 𝑂 (1); and there is an intermediate class of languages
with an 𝑂 (log log 𝑛) upper bound and a conditional lower bound.

4.3 Incremental Maintenance of Enumeration
Structures for MSO Queries on Trees

This section presents our result on maintaining enumeration structures for
MSO queries over trees. This work extends our results presented in the previous
chapter (Section 3.4), and they are joint work with Pierre Bourhis, Stefan Mengel,
and Matthias Niewerth.

In the dynamic setting that we consider, we fix an MSO query and evaluate
it over an input tree that can be modified by updates. We consider relabeling
updates, where we change the label in Σ of a node to a different value; deletion
updates where we remove a leaf; and insertion updates where we add a new leaf
as the first child of a given node or as the next sibling of a given node. When
allowing such updates, it is more natural to assume that trees are no longer
binary but unranked, i.e., each node has an ordered collection of an unbounded
number of children. We can easily extend the definitions of MSO evaluation to
work on such trees, and tree automaton formalisms can also be adapted.

Whenever the tree is modified, the results of the query on the tree may
change. If we want to enumerate the new query results, the naive solution
would be to re-run the enumeration algorithm from scratch on the new tree,
incurring a linear cost in the tree after each update because of the preprocessing.
Our goal is to improve this bound so that the enumeration data structure can be
maintained more efficiently after an update is performed. (Note that, however,
the enumeration of the query results is always restarted from scratch after an
update.)

We studied this problem in [ABM18] where we only allowed relabeling
updates on trees. In this case, we showed that it was possible to achieve an update
time of 𝑂 (log 𝑛) and a delay of 𝑂 (1), i.e., the same delay as for enumeration
on static data, and the same update complexity as for the earlier known results
on words [NS18] (but which further allows insertion and deletion updates).
Specifically, we show the following strengthening of Theorem 3.4.1:

Theorem 4.3.1. For any fixed MSO query 𝑄, given an input tree 𝑇 , we can
enumerate the answers of 𝑄 on 𝑇 with linear preprocessing in data complexity and
output-linear delay, and we can update the structure after any relabeling update
to 𝑇 in time 𝑂 (log |𝑇 |).

CHAPTER 4. MAINTAINING QUERY RESULTS OVER DYNAMIC DATA 42

Proof techniques. It is easy to prove Theorem 4.3.1 for substitution updates
with an update complexity in 𝑂 (ℎ) where ℎ is the height of the tree (which
is unchanged by the substitution operations). To do this, one simply needs
to notice that both the construction of the circuit in Theorem 3.4.2, and the
precomputation phase in Theorem 3.3.1, can be performed bottom-up on the
input tree𝑇 . Hence, whenever we perform a relabeling update on a node 𝑛 of the
tree 𝑇 , we only need to recompute the circuit and to re-do the precomputation
phase along the path from 𝑛 to the root. The rest of the enumeration structure
can be re-used, yielding an 𝑂 (ℎ) algorithm.

To achieve 𝑂 (log 𝑛) complexity, we need to argue that we can work with
balanced trees. This is easier under relabeling updates, because the structure
of the tree never changes. Specifically, we use for this the somewhat inelegant
black-box technique of computing a balanced tree decomposition of constant
width of the input tree, which can be done in linear time during the preprocessing
by the result of Bodlaender [BH98]. We can then translate the MSO query on
the original tree to an MSO query on the balanced tree encoding, and translate
relabeling updates from the original tree to the balanced representation. This
yields the bound of Theorem 4.3.1.

A stronger result was claimed in [ABMN19b], namely, that the bound of
Theorem 4.3.1 also applies if we allow insertion and deletion updates on the tree.
Unfortunately, the status of our result is currently unclear, because it depends
on a result whose proof was later found to be flawed. Specifically, our technique
in [ABMN19b] relies on a balancing scheme, where we must maintain a balanced
representation of the current tree under insertion and deletion updates, in such
a way that MSO queries on the original tree could be equivalently expressed
in MSO over the balanced representation. The existence of such a balancing
scheme was claimed in Niewerth [Nie18], but the proof of that result was later
found to be incomplete. A corrected proof of the same claim was recently posted
as a preprint by Kleest-Meißner, Marasus, and Niewerth [KMMN22]; if correct,
this will complete the proof of our result in [ABMN19b].

4.4 Dynamic Membership for Regular
Languages on Words

In this section, we present our results on the dynamic membership problem for
regular languages on words under substitution updates [AJP21]. This means that
we move back from the setting of enumeration to that of Boolean MSO queries,
we move from trees back to words, and we only allow substitution updates. In
exchange for these restrictions, we will aim for a much finer classification of

CHAPTER 4. MAINTAINING QUERY RESULTS OVER DYNAMIC DATA 43

regular languages, by showing bounds that depend on the language that we fix.
As we explained in the introduction, there is an general upper bound of

𝑂 (log 𝑛/log log 𝑛) on this problem for any fixed regular language [SFMS97],
where 𝑛 is the word length; and this bound is matched by an unconditional
Ω(log 𝑛/log log 𝑛) lower bound for some regular languages [SFMS97], which
follows from the results of Fredman and Saks [FS89]. However, the complexity
of the problem can be lower, depending on the regular language:

Example 4.4.1. Consider the language 𝑎∗ on the alphabet Σ = {𝑎, 𝑏}. The
membership of a word to this language can be maintained in constant time under
substitution updates. To do this, we simply maintain a counter of the number of
occurrences of each letter in the word, that we increment or decrement after each
update. The current word is in 𝑎∗ iff the current number of 𝑏’s is zero. (Remark
how this scheme uses our ability to perform arithmetic operations in constant time
per operation; see [SFMS97, PT07a] for results in a different model.)

Our goal is thus to characterize what is the complexity of dynamic member-
ship depending on the regular language. We identify three complexity regimes.
For some languages, the complexity is Θ(log 𝑛/log log 𝑛), as follows from the
upper and lower bounds of [SFMS97]. For all languages not covered by the
lower bound, we show an 𝑂 (log log 𝑛) algorithm, generalizing the algorithm
for star-free languages given in [SFMS97]. Further, we show an 𝑂 (1) algorithm
for a subclass of these languages. The 𝑂 (1) class contains in particular the
commutative languages like in Example 4.4.1 (their tractability was already
noticed in [SFMS97]); but it also contains some more surprising cases, e.g., the
language 𝑐∗𝑎𝑐∗𝑏𝑐∗.

When the 𝑂 (1) algorithm does not apply, we can show a conditional lower
bound based on a problem called prefix-𝑈1. This problem asks us to maintain a
word over the alphabet {0, 1} under substitution updates, and to answer queries
asking, given a prefix length 𝑖, whether the prefix contains some occurrence of
the letter 0. Equivalently, we must maintain a set of integers under insertions
and deletions, and be able to compare the current minimum of the set to any
input integer, all in constant time. We can show that this problem reduces to
the dynamic membership problem for any language covered by the 𝑂 (log log 𝑛)
algorithm but not the 𝑂 (1) algorithm. Hence, if we assume that prefix-𝑈1
cannot be solved in constant time on the RAM model, then the same is true of
the dynamic membership problem for each of these languages.

Here is the formal statement of our result, for some regular language classes
QLZG and QSG to be defined later:

CHAPTER 4. MAINTAINING QUERY RESULTS OVER DYNAMIC DATA 44

Theorem 4.4.2 ([AJP21]). Let 𝐿 be a fixed regular language, and consider the
problem of maintaining membership to 𝐿 on a word of length 𝑛 under substitution
updates:

• If 𝐿 is in QLZG, then the problem is in 𝑂 (1) per update.

• If 𝐿 is in QSG but not in QLZG, then the problem is in 𝑂 (log log 𝑛) per
update. Further, solving the problem in time 𝑂 (1) per update gives a data
structure for the prefix-𝑈1 problem in 𝑂 (1) time per operation.

• If 𝐿 is not in QSG, then the problem in in Θ(log 𝑛/log log 𝑛) per update.

Defining the regular language classes. The definition of the classes QLZG
and QSG are unfortunately somewhat technical, as they use algebraic notions
on regular languages. To define them, we first introduce the syntactic monoid of
a regular language 𝐿:

Definition 4.4.3. The syntactic equivalence relation of a language 𝐿 is the
relation on Σ∗ defined as follows: two words 𝑢 and 𝑣 are syntactically equivalent if,
for any prefix 𝑠 and suffix 𝑡, the word 𝑠𝑢𝑡 is in 𝐿 if and only if the word 𝑠𝑣𝑡 is in 𝐿.
The syntactic monoid 𝑀 of 𝐿 is the quotient of Σ∗ by the syntactic equivalence
relation.

Informally, syntactic equivalence means that two words “behave the same”
and can be substituted for one another when we are interested about membership
to the language 𝐿. The syntactic monoid is built on the equivalence classes of this
syntactic equivalence relation, with a law that corresponds to the concatenation
of words, and a neutral element corresponding to the empty word. It is well-
known that, as the language 𝐿 is regular, it has only finitely many syntactic
equivalence classes, and thus its syntactic monoid is finite. We let 𝜂 be the
syntactic morphism, i.e., the function mapping each word of Σ∗ to the element
in 𝑀 that corresponds to its equivalence class, and we consider the set of
equivalence classes corresponding to single letters, i.e., Λ B {𝜂(𝑎) | 𝑎 ∈ Σ}.

We can now define the stability index of 𝐿 as the idempotent power of Λ in
the so-called powerset monoid of the syntactic monoid 𝑀 . Formally:

Definition 4.4.4. Let 𝑀′ be the powerset monoid of the syntactic monoid 𝑀 : its
elements are the subsets of 𝑀 , its composition law is defined by 𝐸𝐹 B {𝑥𝑦 | 𝑥 ∈
𝐸, 𝑦 ∈ 𝐹} for 𝐸, 𝐹 ⊆ 𝑀 , and its neutral element is {𝑒} for 𝑒 = 𝜂(𝜖) the neutral
element of 𝑀 . Note that 𝑀′ is a finite monoid, and that Λ is an element of 𝑀′.
The stability index of the language 𝐿, denoted 𝜄, is then the idempotent power
of Λ in 𝑀′, i.e., the least positive integer 𝜄 such that Λ2𝜄 = Λ𝜄.

CHAPTER 4. MAINTAINING QUERY RESULTS OVER DYNAMIC DATA 45

Intuitively, the element Λ of the powerset monoid is the set of equivalence
classes of 𝑀 that can be achieved by single letters; the element Λ2 is the set of
equivalence classes that can be achieved by words of exactly two letters; and so
on. The stability index 𝜄 is then the idempotent power of Λ, satisfying Λ𝜄 = Λ2𝜄

so that in fact Λ𝜄 = Λ𝑛𝜄 for any 𝑛 > 0. This means that the stability index has
the following key property: any element of the syntactic monoid that can be
achieved by a word of length 𝑛𝜄 for some 𝑛 > 0 can also be achieved with a word
of length 𝜄. This intuitively means that, when considering membership to the
language 𝐿, the stability index 𝜄 is the smallest size of “blocks” of contiguous
letters such that the “effect” of any sequence of blocks can also be achieved by a
single block (and can thus be realized by a substitution update).

To formalize this intuition, we define the stable semigroup of the language 𝐿

as the subsemigroup of the syntactic monoid 𝑀 generated by the syntactic
classes of the words of length 𝜄, i.e., its set of elements is Λ𝜄 = {𝜂(𝑤) | 𝑤 ∈
Σ𝜄}. Intuitively, these elements are the equivalence classes of the syntactic
equivalence relation that can be achieved by blocks of size 𝜄. Note that the stable
semigroup is indeed a subsemigroup of 𝑀 , because the definition ensures that
the composition of two such classes can also be achieved with a single block,
hence it also belongs to the stable semigroup. However, the stable semigroup is
in general not a submonoid: it may be the case that the equivalence class 𝜂(𝜖)
of the empty word cannot be achieved with a block.

We can finally define the class QSG of regular languages for which we give
an 𝑂 (log log 𝑛) algorithm: it is the class of languages whose stable semigroup
is in the class SG of semigroups defined by the equation 𝑥𝜔+1𝑦𝑥𝜔 = 𝑥𝜔𝑦𝑥𝜔+1,
where 𝑥 and 𝑦 range over the elements of the semigroup and 𝜔 denotes the
idempotent power of elements. This class of semigroups, where SG means
“swappable groups”, had only been mentioned incidentally in [dA90]. The
equation intuitively means that elements belonging to the same subgroup of
the semigroup can be “swapped”.

The definition of the class QLZG, for which we give an 𝑂 (1) algorithm,
is slightly more involved. It is the class of regular languages whose stable
semigroup is in the class LZG of semigroups defined by requiring that all
submonoids are in a class ZG. The class ZG of monoids, introduced in [Aui00],
is in turn defined by the equation 𝑥𝜔+1𝑦 = 𝑦𝑥𝜔+1. This equation, a stronger
requirement than the SG equation, means that elements belonging to a subgroup
of the monoid are central, i.e., they commute with all other elements; hence the
same “zentral group”. To summarize, QLZG is the class of regular languages
where, in all submonoids of the stable semigroup, all subgroup elements are
central.

CHAPTER 4. MAINTAINING QUERY RESULTS OVER DYNAMIC DATA 46

Proof techniques: Monoids. The proof of Theorem 4.4.2 uses notions from
algebraic monoid theory [Pin86, Pin19] combined with algorithmic tools. In par-
ticular, to show the results on regular languages, we first consider the analogous
problem on monoids, and then on semigroups. Formally, this is the dynamic
word problem: we are given a word 𝑤 of elements of a monoid or semigroup,
and must maintain the evaluation of 𝑤 according to the monoid or semigroup
law, under substitutions on the elements of 𝑤, and measuring the worst-case
complexity per update as a function of the length of 𝑤.

The dynamic word problem for monoids had been studied by Frandsen et
al. [SFMS97]. One first observation is that the complexity of the problem is
unchanged when taking a submonoid of a monoid, a quotient of a monoid, or the
direct product of two monoids. Hence, for any asymptotic complexity regime,
the class of monoids that enjoy this complexity for the dynamic word problem
forms a variety, i.e., is closed under these operations.

To identify for which monoids the dynamic word problem is in𝑂 (1), we start
with the result of [SFMS97] which shows this for commutative monoids. For such
monoids, we can simply count the number of occurrences, as in Example 4.4.1.
We show that we can also achieve 𝑂 (1) complexity for another class of monoids
called MNil, formally the monoids obtained by adding a neutral element to
a nilpotent semigroup, covering for instance the language 𝑐∗𝑎𝑐∗𝑏𝑐∗. These
monoids are not commutative, but because of nilpotency, we can only combine
a constant number of non-neutral elements before the result is zero. We show
that the dynamic maintenance problem for such monoids can be solved in 𝑂 (1),
by storing the occurrences of non-neutral elements in unordered doubly linked
lists. We then show [AP21] that the class ZG defined above can be equivalently
characterized as the variety generated by MNil and by commutative monoids,
which implies that the dynamic word problem is in 𝑂 (1) for such monoids.

Outside of ZG, we show that the dynamic word problem is in 𝑂 (log log 𝑛)
for the monoids which satisfy the equation of SG. This includes aperiodic
monoids, for which this was already known [SFMS97], but also some other
monoids. We use the standard technique of doing an induction on J -classes of
the monoid, and inspired by [SFMS97] we use a van Emde Boas tree [vEBKZ76]
data structure to answer predecessor/successor queries in 𝑂 (log log 𝑛) and “jump
over” the elements not in the class of interest. We also use the Rees-Sushkevitch
theorem [Pin19] to understand the composition law on each J -class.

As for monoids outside of SG, they happen to be precisely the ones covered
by the Ω(log 𝑛/log log 𝑛) lower bound of [SFMS97], as can be shown from the
equation of SG. Similarly, for SG monoids which are not in ZG, the choice of
elements violating the equation of ZG can be used to design a reduction from
the prefix-𝑈1 problem.

CHAPTER 4. MAINTAINING QUERY RESULTS OVER DYNAMIC DATA 47

Proof techniques: Semigroups and languages. Having shown these results
on the complexity of the dynamic word problem for monoids, we first lift them
to semigroups, and then to dynamic membership for regular languages. For the
dynamic word problem on semigroups, from the classes SG and ZG of monoids,
we consider the class LSG of semigroups where all submonoids are in SG, and
the class LZG of semigroups where all submonoids are in ZG. Clearly, for
semigroups not in these classes, we can show complexity lower bounds by
considering only the submonoids that are not in the prescribed class; so the
challenging part is to show upper bounds.

For SG, this turns out to be easy, because the class LSG of semigroups turns
out to be precisely those satisfying the equation of SG (as semigroups), and our
upper bound directly applies to them. For ZG, this is more complicated, because
there are semigroups in LZG who do not satisfy the equation of ZG. To cover
these, we first show that our 𝑂 (1) upper bound on ZG can in fact be extended
to the variety ZG ∗D generated by semigroups that combine a ZG monoid with
a semigroup in the class D of definite semigroups via a certain semidirect product
operation. We then establish in a separate paper [AP21] that this class ZG ∗ D
is in fact equal to LZG. This is a so-called locality result, proved via Straubing’s
delay theorem on the category of idempotents [Str85].

Last, we lift the results from semigroups to regular languages. This is easily
done using the notion of the stable semigroup introduced earlier. Intuitively, we
can group letters into “blocks” without worsening the complexity, because we
can compute moduli and divisions in constant time in the RAM model. Thus,
dynamic membership to a regular language can be reduced to the dynamic word
problem for the stable semigroup of that language. Conversely, lower bounds
on the latter problem can be lifted to dynamic membership — this uses the fact
that all elements of the stable semigroup can be achieved by blocks of the same
size.

4.5 Perspectives
This chapter has presented my research on incremental maintenance for data
management, and introduced our contributions on the maintenance of MSO
queries. We have approached this problem from two angles: enumeration
structures on trees, and more precise complexity bounds for Boolean queries on
words.

We believe that these results illustrate that there is much more to understand
about the problem of query evaluation on dynamic data, and that it leads to
questions both algebraic and algorithmic, bridging areas such as formal language
theory and data structures. We now give examples of concrete directions in

CHAPTER 4. MAINTAINING QUERY RESULTS OVER DYNAMIC DATA 48

which this investigation can be pursued, as well as more open-ended questions
about incremental maintenance.

Extending to richer languages. One clear direction for future research is
to extend the results of Section 4.4 from regular languages to more general
languages. The most immediate direction is to extend to tree languages, i.e., the
maintenance of regular languages over trees under relabelings. This is a problem
for which there is a 𝑂 (log 𝑛) upper bound (as we showed in Section 4.3) and
Ω(log 𝑛/log log 𝑛) lower bounds (for the marked ancestor problem [AHR98],
and for regular word languages [SFMS97]); but of course there are also some
languages enjoying a better complexity. In contrast with the setting of words,
obtaining definitive results for the problem on trees may be out of reach, because
the algebraic theory of tree languages is not as well developed as that of word
languages. Nevertheless, we can hope that the complexity can be characterized
at least for some classes of languages.

A similar direction, looking at languages on words, is to investigate how the
algorithms for dynamic membership can be extended to support more expressive
languages, e.g., context-free languages. In this setting, some initial results were
obtained for specific languages in the nineties [FHM+95, HR98]; it may be
possible to extend results using more recent tools. The dynamic membership
problem for context-free languages also seems related to the wider area of
incremental parsing [WG98], which studies how to maintain a parse tree for a
string under updates; it can also be relevant in practice, e.g., to maintain the
structure of code as it is edited, for instance within an Integrated Development
Environment (IDE).

More ambitiously, one can ask whether some of our techniques can be
used in the wider context of maintaining properties of graphs, e.g., of bounded-
degree graphs in the spirit of [BKS18a]. The latter work shows that we can
maintain query results (indeed, even constant-delay enumeration structures)
with constant time per update for first-order logic on such structures; but we
may be able to extend this result to more general languages using some of our
methods in [AJP21].

Establishing lower bounds. Another general direction for research on in-
cremental maintenance is to show more lower bounds, already in the context of
dynamic membership for regular languages on words (Section 4.4). In particular,
we only conjecture that the problem prefix-𝑈1 can not be solved in constant
time. Proving this is a natural open question, but probably a challenging one.
Likewise, some of the 𝑂 (log log 𝑛) languages can be shown to have a match-
ing lower bound in Ω(log log 𝑛), using known results on the so-called colored

CHAPTER 4. MAINTAINING QUERY RESULTS OVER DYNAMIC DATA 49

predecessor problem [PT07b]. The impact of this is unclear, in particular we do
not know what is the subclass of the languages in QSG \ QLZG for which the
complexity is in Θ(log log 𝑛). We expect that this would not be the case of all
languages, see [AJP21].

Supporting more expressive edit operations. Our work on incremental
maintenance has focused on substitution updates. A natural question is whether
our results on dynamic membership for regular languages (Section 4.4) can
be extended to also support insertion and deletion operations. This is not
directly possible because of an Ω(log 𝑛/log log 𝑛) lower bound (see [Jac]) on the
problem of incremental maintenance of a word under insertion and deletion
updates (“insert/delete a character before/after position 𝑖”) and very simple
queries (“retrieve which character is at position 𝑖”). However, we may be able
to support insertions and deletions when assuming that the word is stored in
a doubly-linked list, with update operations given as explicit pointers to the
affected nodes. It may be possible to show results in this setting by adapting
our result on substitution updates, leveraging known data structures for the
order-maintenance problem [BFG+17].

Another question concerns the more restricted case of insertions and dele-
tions that can only be done at the beginning and end of the word, i.e., push and
pop updates. This question is related to sliding window algorithms, which read
text in streaming (by adding/removing characters at the ends of the window)
and must maintain information about the word currently in the window. For
instance, recent work by Ganardi, Jachiet, Lohrey, and Schwentick [GJLS22] has
shown (among other things) that dynamic membership to a regular language
can be maintained in constant time under such updates. It is not clear whether
this result can be combined, for instance, with substitution updates.

More ambitiously, it would be interesting to study the effect of complex
updates that affect words or trees in a more widespread way. For instance, we
could study the effect of cut-and-paste operations, i.e., of splitting and joining
strings, or trees; we are not aware of complexity bounds under such operations.
Another kind of expressive update operations are those changing several char-
acters at a time, e.g., search-and-replace. A related notion of bulk updates has
been studied in the setting of dynamic complexity, for instance in Schwentick,
Vortmeier and Zeume [SVZ18], who study changes defined as first-order queries.
It would be interesting to study similar problems under the angle of efficient
algorithms or lower bounds on the running time.

Update complexity beyond Boolean queries. One last natural direction
for future investigation is to maintain the result of more expressive queries. Our

CHAPTER 4. MAINTAINING QUERY RESULTS OVER DYNAMIC DATA 50

contributions have focused on maintaining the answers of Boolean queries (Sec-
tion 4.4), and maintaining enumeration structures (Section 4.3). In fact, for the
results of Section 4.4 on Boolean queries, it is already a natural question whether
the results can extend to, e.g., the maintenance of enumeration structures with
update complexity below 𝑂 (log 𝑛) for some languages.

However, beyond enumeration structures, there are many other informations
that one can wish to maintain. We mentioned in the introduction the problems
studied in [BKS18a, BKS18b]: maintaining the number of results, and maintain-
ing efficient tuple testing structures that can check if a candidate solution is
indeed an answer. These problems had in fact already been studied in the static
setting (i.e., without updates): for FO queries on databases with local bounded ex-
pansion [SV17], for FO queries on nowhere dense databases (for counting [GS18]
and testing [SSV22]), and for MSO queries over trees [Kaz13, KS13]. An intrigu-
ing question is which of these results can be extended to the dynamic setting,
beyond the known results [BKS18a, BKS18b, KNN+19] and what are the possi-
ble trade-offs, e.g., keeping in mind the lower bounds on the marked ancestor
problem [AHR98] for MSO queries over trees.

There is also a specific connection between incremental maintenance and
tuple testing, in the sense that testing can sometimes be implemented by modi-
fying the query and by performing updates that describe the tuple to be tested.
We use this connection in [AJP21] to show bounds on prefix, suffix, and infix
queries on dynamic data. In generally, however, it is unclear whether there is a
unifying approach that can simultaneously give algorithms for the tuple testing
problem and for the problem of incremental maintenance.

Further, on words and trees, in addition to counting and testing, there
are other kinds of natural information that one can maintain: the number of
accepting runs of a nondeterministic automaton, the probability of the current
word according to a weighted automaton, the smallest edit distance of the current
word to a word of the language [WG98], etc. All of these are promising directions
to investigate.

CHAPTER 5
Query Evaluation over

Probabilistic Data

This last chapter presents the area of query evaluation on probabilistic data. This
task has a conceptual connection to incremental maintenance, because we are
in a sense performing weighted counting over all possible modified versions
of the input data; but the techniques are in fact quite different. The chapter is
again structured as an introduction to the area, followed by the presentation of
my contributions and some directions for future research.

5.1 Introduction
When designing algorithms, there are many settings in which we do not know
what is the true state of the input data. There can be uncertainty over whether
individual data items are correct or not; or we may want to anticipate the risk
that some items no longer hold and estimate how much the computation result is
affected by these possible errors. These notions of uncertainty are a very general
topic that has been studied from the angle of logics and reasoning [Hal17], e.g.,
via fuzzy set theory, possibility theory, Dempster-Shafer theory, etc. In the
more quantitative approach of probability theory, the question of reasoning
with uncertainty has been studied in the setting of graphical models (such as
Bayes networks or Markov networks) and the task of probabilistic inference; or
in the area of probabilistic programming [DRKT07].

In the area of data management, the question of uncertainty has been im-
mediately motivated by the practical issue of data quality [Fan15]: real-world
databases contain inaccuracies, stale data, missing data, integrity constraint

51

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 52

violations, missing values (NULLs), etc. One common approach is to perform
data cleaning [RD00, CIKW16] and resolve the uncertainty; or to reason about
all possible ways to repair the data, as is done in consistent query answer-
ing [ABC99, KW21]. The other approach is to directly reason with incomplete
information; this was advocated for instance by Imieliński and Lipski [ILJ84],
and has lead among other things to a fruitful study of the problem of open-world
query answering [CLR03].

Among these lines of work, we focus specifically on the study of probabilistic
data on relational databases, where the relational model is extended to allow
facts annotated with probability values: see the book of Suciu et al. [SORK11]
which surveys this area. The simplest model for probabilistic relational data is
tuple-independent databases (TID), which are relational databases where every
fact is annotated by a probability value. We assume that each fact is present with
the indicated probability, and absent otherwise; all these probabilistic events
are further assumed to be independent. The expressiveness of the TID model is
rather limited: it does not make it possible, e.g., to express mutually exclusive
values or incompatibilities between facts (as can be done, e.g., in the block-
independent disjoint formalism [BGMP92, RS07]), uncertainty on data values,
correlations, etc.

Yet, the TID model has already proven quite challenging to understand, in
particular when evaluating queries. This task, which we call probabilistic query
evaluation (PQE), is defined as follows: we fix a Boolean query, we receive a
TID instance as input, and we must determine the probability that the query is
true, namely, the total probability of the possible states of the data where the
query holds. This problem was initially called query reliability and has been
investigated from the nineties [dR95, GGH98], inspired by earlier work on the
reliability problem in networks [Col91, Val79].

Probabilistic query evaluation can be solved by nondeterministically guess-
ing a possible state of the data (biased by its probability), checking whether
the query holds (which we assume can be done in polynomial data complex-
ity), and summing over all nondeterministic draws. This means that, up to the
polynomial-time computation needed to normalize the probability, the PQE
problem belongs to the class #P of counting problems that can be expressed as
counting the number of accepting runs of a nondeterministic polynomial-time
Turing machine. The question is then to understand if one can design better
algorithms for PQE, e.g., solve the problem in (deterministic) polynomial time.

Initial results on the complexity of PQE [GGH98] have shown that the
problem was #P-hard already for some conjunctive queries. By contrast, it is
obvious that the problem is in polynomial time for some trivial queries, e.g.,
∃𝑥 𝑅(𝑥). The natural question is then to characterize the queries for which
PQE is tractable. This was first accomplished by Dalvi and Suciu [DS07] on the

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 53

class of self-join-free conjunctive queries: they show that the hierarchical queries
enjoy tractable PQE, whereas all others are #P-hard. The dichotomy was then
extended by Dalvi and Suciu [DS13] to a much more challenging result showing
that each UCQ was either safe (PQE is in PTIME) or unsafe (PQE is #P-hard).

Other works have investigated the complexity of other query languages, e.g.,
queries that feature negation [FO16], or disequality (≠) joins [OH08], as well
as inequality (<) joins [OH09]. More recently, other works have investigated,
e.g., incremental maintenance for PQE on probabilistic databases [BM21], prob-
abilistic databases on infinite domains [CGLS21], or probabilistic databases with
uncertain numerical values [CLP23].

5.2 Structure of the Chapter
This chapter presents my work on the probabilistic query evaluation problem
(PQE), following three main research directions.

The first direction (Section 5.3), started during my PhD and pursued after-
wards, concerns restrictions on the structure of the input instances. My PhD
showed that PQE was tractable for MSO queries when the input instances are
required to have bounded treewidth. Otherwise, under some technical assump-
tions, the problem was shown to be intractable for some queries, in the sense
that PQE is computationally hard and also that there are no small tractable
provenance representations. With Mikaël Monet, during his PhD and after, we
were able to improve on these intractability results, showing that they apply to
simpler queries and to more expressive provenance formalisms.

The second direction (Section 5.4), explored with İsmail İlkan Ceylan, also
studies the PQE problem for expressive query languages, but this time without
restricting the input instances. We show [AC20] that the PQE problem is in-
tractable for any query on an arity-two signature which is homomorphism-closed
and unbounded (i.e., not equivalent to a UCQ).

The third direction (Section 5.5), studied with Benny Kimelfeld, concerns
the unweighted PQE problem, which we call uniform reliability (UR). This is
the restricted case of PQE where we require all facts of the input TIDs to have
a probability of 1/2. We show a dichotomy for the complexity of UR for CQs
without self-joins, based on the same criterion as for PQE [DS07] but with a
more involved hardness proof. Recently [Ama23], I have further extended the
study of UR to the class of queries studied in [AC20]; I show that the hardness
of PQE for such queries already holds for UR.

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 54

5.3 Intractability over Unbounded-Treewidth
Families

Our first results on probabilistic query evaluation (PQE), presented in this
chapter, investigate how the tractability of PQE depends on the structure of
input instances, specifically their treewidth. This question was one of the main
topics of my PhD [Ama16], where I had shown that bounding instance treewidth
makes PQE tractable, and that this was in a sense the only structural restriction
on instances that guaranteed tractability.

Specifically, my PhD showed an upper bound [ABS15, ABS16] establishing
that PQE was tractable for MSO queries on trees, and on bounded-treewidth
data following Courcelle’s theorem [Cou90]. This is in line with earlier re-
sults on probabilistic XML [CKS09], and with tractability results for prob-
abilistic inference on bounded-treewidth models [LS88, HD96], This upper
bound [ABS15, Ama16] was shown using the so-called intensional approach
to PQE: we first compute the provenance of the query in a tractable represen-
tation, specifically structured d-DNNF circuits (d-SDNNFs); and we then use
these circuits to tractably compute the probability. Notice that this intensional
approach is the analogue of the circuit-based modular approach presented in
Chapter 3 for the enumeration of query answers, and is in fact the origin of our
techniques in Section 3.4 for this task.

My PhD further gave lower bounds showing that, in a certain sense, the
only way to guarantee the tractability of PQE for MSO queries is to bound the
treewidth of instances. More precisely, in [ABS16, Ama16], with Pierre Bourhis
and Pierre Senellart, we showed two main intractability results on unbounded-
treewidth data, restricting to arity-two signatures for technical reasons.

The first intractability result is a lower bound on provenance representations:
we showed that there are connected UCQ≠ queries whose provenance cannot
tractably be represented by OBDDs on unbounded-treewidth instances, i.e., the
size of an OBDD that expresses the provenance of the query must be exponential
in the instance treewidth. This result implies that PQE for these queries cannot
be solved with the intensional approach if we use OBDDs as our choice of
tractable provenance representation.

The second intractability result is a hardness result: if we fix any infinite
family I of non-probabilistic arity-two instances whose treewidth is unbounded,
and where high-treewidth instances can efficiently be constructed in a certain
sense, then we show that PQE cannot be tractable even when restricted to input
instances in the family I (with arbitrary probabilities). More precisely, there
are monotone MSO queries, or non-monotone FO queries, for which PQE is
intractable on any such family I, specifically it is #P-hard under randomized re-

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 55

ductions. The result implies that, under the technical assumptions that we make,
bounding the treewidth is the only way to restrict the structure of instances
that makes PQE tractable for all FO queries, or for all monotone MSO queries.

After my PhD, and in particular during the PhD thesis of Mikaël Monet, we
continued to study the intractability of PQE on high-treewidth families. We
were able to improve both of the above results, as I now present.

Lower bound on provenance representations. The first direction was
investigated as part of the PhD thesis of Mikaël Monet, together with Pierre
Senellart. Our study focuses on the class of connected UCQ≠ queries introduced
in [ABS16], called the intricate queries. We showed [AMS18] that the lower
bound of [ABS16] on provenance representations as OBDDs for intricate queries
could be generalized to the more expressive class of d-SDNNF circuits:

Theorem 5.3.1 ([AMS18], Theorem 33). For some integer 𝑑 ∈ N, on any arity-
two signature 𝜎, considering any instance 𝐼 over 𝜎 and any connected UCQ≠ 𝑄

on 𝜎 which is intricate in the sense of [ABS16], then any d-SDNNF representation
of the provenance of 𝑄 on 𝐼 must have size 2Ω(𝑘1/𝑑) , where 𝑘 is the treewidth of 𝐼 .

This means that, for intricate queries on high-treewidth instances, we
cannot tractably solve PQE via the intensional approach using d-SDNNF cir-
cuits. This contrasts with bounded-treewidth instances, where this approach is
tractable [ABS15, Ama16]. However, Theorem 5.3.1 does not necessarily imply
that PQE cannot be solved by other approaches. For instance, there are UCQs ad-
mitting tractable provenance representations in the class of d-Ds (i.e., d-DNNFs
without the NNF restriction) but not in the class of d-SDNNFs [BS17, Mon20],
and the tractability of the safe UCQs of [DS13] is generally not known to be
explained by the intensional approach [Mon20]. This is the motivation for the
computational hardness results which we present next.

Hardness of PQE on unbounded-treewidth families. Second, together
with Mikaël Monet but after his PhD, we extended the hardness result of PQE
on unbounded-treewidth instance families, to apply to queries in less expressive
languages than MSO or FO. In fact, we could show [AM22] that the hardness
of PQE on such families already held for the class of connected UCQ≠ queries.
Our results on an arbitrary arity-two signature 𝜎 are shown with the connected
UCQ≠ 𝑄𝜎 below, where we write 𝜎2 for the set of binary relations of 𝜎:

𝑄𝜎 :

(∨
𝑅∈𝜎2

𝑅(𝑥, 𝑦) ∨ 𝑅(𝑦, 𝑥)
)
∧

(∨
𝑅∈𝜎2

𝑅(𝑥, 𝑧) ∨ 𝑅(𝑧, 𝑥)
)
∧ 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 56

Note that for brevity we write 𝑄𝜎 using nested unions, but we can easily
rewrite it as a UCQ simply using distributivity. Intuitively, 𝑄𝜎 asserts that there
are two binary facts in the instance which share exactly one element. This
query happens to be an intricate query, so it is covered by the lower bound
on d-SDNNFs presented above, but our hardness result shows that PQE for
this query is also computationally hard on any instance family I in which
high-treewidth instances can be constructed efficiently:

Definition 5.3.2. A family of instances I is treewidth-constructible if there is
a algorithm which, given a number 𝑘 , computes in polynomial time in the value
of 𝑘 an instance 𝐼 of I whose treewidth is at least 𝑘 .

Our result is then the following:

Theorem 5.3.3 (Follows from [AM22]). Let I be a treewidth-constructible family
of instances on an arity-two signature 𝜎. The PQE problem for the query 𝑄𝜎 is
#P-hard under randomized (ZPP) reductions.

Here, ZPP is the class of zero-error probabilistic polynomial time, consisting
of randomized algorithms that run in polynomial time but may fail with some
constant probability.

Proof techniques. All the results presented in this section rely on the tech-
nique of finding large grids as minors of high-treewidth graphs, specifically
the polynomial bound on the grid minor theorem shown by Chekuri and
Chuzhoy [CC16]; earlier such results had already been used in previous work
to show the intractability of logical problems [KT10, GHL+14].

We rephrase these results to the setting of topological minors. Specifically,
let us consider degree-3 undirected graphs (i.e., every vertex has at most 3
neighbors) which are planar (i.e., that can be embedded on the plane without
edge crossings). The result of [CC16] implies that any planar degree-3 graph 𝐻

with 𝑛 vertices can be found as a topological minor of any graph 𝐺 of treewidth
at least 𝑛100, i.e., some subgraph of 𝐺 is a subdivision of 𝐻. Further, given 𝐺

and 𝐻, we can find such a topological embedding in randomized polynomial
time — this use of randomization in [CC16] is why Theorem 5.3.3 uses ZPP
reductions.

Thanks to these results, and using treewidth-constructibility, we can follow
a simple idea to show the intractability of PQE on a treewidth-constructible fam-
ily I. First, given any degree-3 planar graph 𝐻, we use treewidth-computability
to find an instance 𝐼 in the fixed family I whose Gaifman graph 𝐺 has suffi-
ciently high treewidth. Second, we use [CC16] to find a subgraph 𝐺′ of 𝐺 which
is isomorphic to a subdivision of 𝐻, and eliminate the other edges by giving a

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 57

probability of 0 to the corresponding facts of 𝐼 . It now suffices to show how an
intractable problem on 𝐻 reduces to the PQE problem on the subinstance 𝐼′ of 𝐼
whose Gaifman graph is 𝐺′.

We can use this idea to show our first intractability result, namely, the
lower bound on d-SDNNF provenance representations. Indeed, we can show
that, on some family I′ of instances with planar degree-3 Gaifman graphs, the
provenance of intricate queries must have treewidth proportional to that of the
input instance, when expressed as a DNF. Up to a polynomial blowup, we can
extract instances of I′ in any sufficiently high treewidth instance, using [CC16].
We can then conclude using our result from [AMS18] which shows a lower bound
on the size of d-SDNNF representations of high-treewidth DNFs of bounded
arity and degree.

Our second intractability result is the hardness result, and it turns out to
be more challenging to prove. We reduce from the #P-hard problem [XZZ07]
of counting matchings on an input planar degree-3 graph 𝐻, and follow the
reduction idea sketched above. We use the fact that the query 𝑄𝜎 is intuitively
satisfied on instances whose Gaifman graph contains two incident edges, i.e.,
is not a matching; so PQE for 𝑄𝜎 amounts to weighted counting of matchings.
Unfortunately, there is a significant technical obstacle: our oracle for PQE cannot
be applied directly to count the matchings of the input graph 𝐻; we can only
evaluate it on the subdivision 𝐺′ extracted via the topological embedding from
the high-treewidth instance of I. Hence, we must argue that the weighted
counting of matchings on the arbitrary subdivision 𝐺′ (using our PQE oracle)
can be used to recover the number of matchings on the original graph 𝐻.

To show this, we use the interpolation method. This is a general technique in
reductions on counting problems [Gre00], where we subdivide the items that
we want to count according to some value of a parameter — intuitively ensuring
that all items having the same parameter value are easier to count together.
Here, the items to count are the subgraphs of 𝐻. We then invoke an oracle for
the target problem (here, PQE for 𝑄𝜎), on as many different inputs as there
are parameter values — intuitively, these inputs are typically obtained from the
original oracle input by varying the design of some gadget. Here, the original
oracle input is 𝐼 , and the variants are different choices of probabilities for 𝐼 . We
design these inputs to ensure that the vector of oracle results (indexed by the
possible design variants) is related by a linear equation system to the vector of
item counts that we want to recover (indexed by the possible parameter values).
If we can show that the matrix of this system is invertible, then the vector of
item counts can be obtained from the oracle answers simply by inverting the
matrix.

In our reduction, the choice of parameter distinguishes the subgraphs of 𝐻
by giving a type to the edges of 𝐻 depending on how they are subdivided in 𝐺′,

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 58

and counting the number of edges of each type. The gadget that we use in our
oracle calls on 𝐼 is simply a choice of probabilities on some edges in each path
of 𝐺′. The crucial step to apply the interpolation method is to argue that we can
choose suitable probabilities on the paths of 𝐺′ that make shorter subdivisions
intuitively “behave the same” as longer subdivisions, so that we can proceed
as if all edges of 𝐻 had been subdivided to paths of the same length. Further,
as the requisite probabilities are irrational, we show that we can approximate
them as rationals, and bound the error so as to ensure that the final result can
be recovered by rounding.

5.4 Hardness for Unbounded
Homomorphism-Closed Queries

We now move in this section to another direction of research on the PQE problem,
started after my PhD and in collaboration with İsmail İlkan Ceylan. Like in
the previous section, we restrict to arity-two signatures for technical reasons.
Moving beyond CQs and UCQs, we study recursive queries, such as Datalog or
regular path queries, on arbitrary TID instances. Our goal will be to establish
that, for any such query, probabilistic query evaluation is #P-hard when allowing
arbitrary TID instances as input. This should be contrasted with the results of
the previous section, which apply to some queries, but show intractability for
them on any restricted family of treewidth-constructible instances.

The problem of PQE for recursive queries had been previously studied in
two different contexts. First, it has been investigated in the specific case of the
reliability of probabilistic networks, in particular by Valiant [Val79]. Specifically,
the two-terminal reliability problem [Val79] takes as input an undirected graph
with two distinguished terminal vertices, where edges all have an independent
probability of failure. It asks us to compute the probability in the resulting
distribution that there is a path that connects the two terminals. This problem
is #P-hard, which implies that PQE is intractable for the specific recursive query
asserting that there exists a path connecting both terminals. Second, the research
of Jung and Carsten [JL12] has shown intractability results for ontology-mediated
query answering over probabilistic data. In this line of work, the query to evaluate
is not expressed directly, but must be rewritten via (non-probabilistic) deduction
rules expressed in a logical language from knowledge representation. Their
work again implies that PQE is intractable for some specific recursive queries
expressed in this way.

Of course, there are other recursive queries which enjoy tractable PQE,
in particular the ones that are in fact logically equivalent to a tractable non-

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 59

recursive query, e.g., a safe UCQ [DS13]. To eliminate this phenomenon, we
focus on understanding the status of PQE for what we call unbounded queries,
namely, recursive queries that are not equivalent to a UCQ, and hence are not
classified by [DS13]. We specifically study the unbounded queries that are closed
under homomorphisms: this condition is satisfied by regular path queries, by
Datalog queries (if they do not feature inequalities or negation), and by CQs
and UCQs. Formally, a query 𝑄 is closed under homomorphisms if, whenever an
instance 𝐼 satisfies 𝑄, and the instance 𝐼 has a homomorphism to an instance 𝐼′,
then 𝐼′ also satisfies 𝑄. This implies in particular that the query is monotone,
but is a stronger requirement, e.g., we cannot express inequalities.

To summarize, we study unbounded homomorphism-closed queries, i.e., queries
which are homomorphism-closed and not equivalent to a UCQ. Equivalently,
the query must have an infinite number of minimal models, i.e., models 𝐼 of
the query which are subset-minimal in the sense that no strict subinstance
of 𝐼 satisfies 𝑄. We accordingly write 𝑈𝐶𝑄∞ to denote the set of unbounded
homomorphism-closed queries, because they can be equivalently expressed as
an infinite union of CQs corresponding to their minimal models. Our result is
the following:

Theorem 5.4.1 ([AC22], Theorem 4.3). Let 𝑄 be an unbounded query closed
under homomorphisms on an arity-two signature. Then the probabilistic query
evaluation problem for 𝑄 is #P-hard.

Proof techniques. To show this result, we reduce from one of two #P-hard
problems, depending on the query. The first problem is that of counting satisfy-
ing assignments of positive partitioned 2-DNF formulas [PB83] (#PP2DNF), i.e.,
counting non-independent sets in bipartite graphs. This is also the standard
problem used to show the #P-hardness of PQE for non-hierarchical self-join-
free CQs. The second problem is the two-terminal network reliability problem
(U-ST-CON) mentioned earlier [Val79, PB83].

To design a reduction, the challenge is to understand the “behavior” of the
query 𝑄, i.e., which kind of instances satisfy 𝑄, and how can 𝑄 become false
when we modify these instances. One key way to modify instances is to perform
a so-called dissociation: take one edge of the Gaifman graph, i.e., two distinct
elements 𝑢 and 𝑣 that co-occur in some facts, and replace all such facts by two
copies, each involving just one of 𝑢 and 𝑣 (see Figure 2). We say that an instance 𝐼
satisfying 𝑄 has a tight edge if it has an edge on which the dissociation process
yields an instance which no longer satisfies 𝑄. Intuitively, a tight edge is a
part of the instance whose connection to neighboring facts is in some sense
necessary for the query to be true in that instance.

A key claim is then the following:

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 60

𝑙1

𝑙2

u v

𝑟2

𝑟1 𝑙1

𝑙2

u

𝑢′
v

𝑣′ 𝑟1

𝑟2

Figure 2: Dissociation of an edge (Figure 4 of [AC22])

Lemma 5.4.2 ([AC22], Theorem 6.6). On arity-two signatures, any query which
is unbounded and closed under homomorphisms must have a model featuring a
tight edge.

Proof sketch. We use the fact that such queries have infinitely many minimal
models; in particular, there are arbitrarily large minimal models. We take such
a minimal model 𝐼 and we repeatedly apply the dissociation process: we can
see that this must eventually terminate. If one of the dissociations has made
the query false, then we have found a tight edge. Otherwise, we have obtained
a model of the query where no dissociation is possible, so its structure is very
simple: it is intuitively a union of star-shaped patterns. We can show that such
instances are homomorphically equivalent to a small (constant-sized) subset of
facts, which we can then use to contradict the minimality of our large minimal
model 𝐼 . □

Note that this lemma is the only result using the unboundedness of the query:
our hardness result in fact applies to any homomorphism-closed query that has a
model with a tight edge, such as the non-hierarchical CQ𝑄0 : ∃𝑥 𝑦 𝑅(𝑥), 𝑆(𝑥, 𝑦),
𝑇 (𝑦).

The tight edge can then be used to design gadgets that we can use for a
reduction. The problem from which to reduce depends on whether the tight
edge is iterable, intuitively, whether the query is still satisfied if we replace the
edge by arbitrarily long “back-and-forth” paths. If the tight edge is not iterable,
we can reduce from the #PP2DNF problem, like in [JL12]; if it is iterable, then
we can reduce from U-ST-CON by using it to code the edges of a graph.

5.5 Hardness of Uniform Reliability
In this section, we review a third research direction on PQE, which studies the
impact of another restriction on input instances: we restrict which probabilities
are allowed on input TIDs. This is orthogonal to the structural restrictions
on treewidth studied in Section 5.3, as these restrictions did not limit which
probabilities were allowed on facts.

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 61

Of course, the PQE problem becomes trivially tractable when we allow only
the probabilities 0 and 1 on input facts, as it then amounts to non-probabilistic
query evaluation. However, almost all #P-hardness results on PQE mentioned
so far are shown via reductions that crucially use facts with probability 1, as
a convenient way to guarantee that the presence of the fact is certain. (The
only exception is the proof of Theorem 5.3.3, which does not use probability 1,
but uses many different probability values in the multiple oracle calls that it
makes.) This leads to the question of whether PQE could become tractable if
the probability 1 were disallowed, or more stringently if only the probability
1/2 were allowed (in addition to the probability 0, which codes the absence of a
fact).

The expected answer is that intractability should still hold under this re-
striction. However, the study of so-called symmetric model counting can cast
some doubt on these expectations. In the context of PQE, symmetric model
counting means that we require all possible facts over the domain over the input
instance to have probability 1/2, in particular we do not have facts with proba-
bility 0. The highly symmetrical nature of this problem was shown [BVdBGS15]
to make PQE tractable for some previously intractable queries, e.g., the query
𝑄0 : ∃𝑥 𝑦 𝑅(𝑥), 𝑆(𝑥, 𝑦), 𝑇 (𝑦) mentioned earlier. Given this, it becomes more
interesting to determine whether intractability really holds when all present
facts are required to have probability 1/2 (but when we still allow some facts to
be missing).

We investigated this problem with Benny Kimelfeld [AK21], focusing on
the self-join free conjunctive queries (SJFCQs) as a first step: indeed, these are
the queries on which a dichotomy on PQE was first shown [DS07]. Our result
covers in particular the case of input TIDs in which the probability of every
(present) fact must be 1/2. We call the corresponding problem uniform reliability
(UR). As it is a special case of the PQE problem, we know that the UR problem is
tractable for all queries enjoying tractable PQE. The challenging direction is to
show the converse, i.e., that UR is already intractable whenever PQE is. We show
the following dichotomy, which is the analogue of the PQE dichotomy [DS07]
and uses the same notion of hierarchical SJFCQs (see [AK21, SORK11]):

Theorem 5.5.1 ([AK21], Theorem 3.1). Let 𝑄 be a SJFCQ. If 𝑄 is hierarchical,
the PQE problem for 𝑄, hence the UR problem for 𝑄, is tractable. If 𝑄 is non-
hierarchical, the UR problem for 𝑄, hence the PQE problem for 𝑄, is #P-hard.

The tractability result follows from [DS07], so our contribution is to prove
the second part of the statement. Our results more generally show a dichotomy
on the so-called weighted uniform reliability problem, where we fix a constant
probability 𝑝𝑅 for each relation 𝑅 of the signature, and impose that the (present)

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 62

facts of relation 𝑅 must all have probability 𝑝𝑅. This extends an earlier di-
chotomy by Dalvi and Suciu [DS07] covering the setting where some relations
are required to be deterministic (i.e., all present facts have probability 1).

Independently from our work, Suciu and Kenig have investigated the UR
problem for the class of all UCQs [KS21] — they call it the model counting
problem. Their results are far more technical than ours, but their conclusions are
incomparable, as they focus on so-called type-I forbidden queries from [DS13].
In addition to UR, they also study generalized model counting, which only allows
the probabilities 0, 1, and 1/2; they argue that this problem is more symmetric
compared to UR which only allows 0 and 1/2. They show that the hardness of
PQE for all unsafe UCQs of [DS13] already applies to this generalized model
counting problem. In particular, this was already known for non-hierarchical
SJFCQs — but this does not imply our claim that the UR problem for such queries
is also intractable.

More recently, I have investigated in [Ama23] how to bridge the study of
uniform reliability with the study of unbounded homomorphism-closed queries
presented in the previous section. Specifically, I proved that Theorem 5.4.1 can
be strengthened from PQE to UR:

Theorem 5.5.2 ([Ama23], Theorem 1.3). Let𝑄 be an unbounded homomorphism-
closed query on a graph signature. Then the UR problem for 𝑄 is #P-hard.

Proof techniques. The result on uniform reliability for self-join-free CQs
(Theorem 5.5.1) is shown by first limiting the study to the case of the intractable
query 𝑄0 : ∃𝑥 𝑦 𝑅(𝑥), 𝑆(𝑥, 𝑦), 𝑇 (𝑦), using the standard methods of [DS07] to
show hardness of non-hierarchical queries. On 𝑄0, the result is shown using
the interpolation method reviewed in Section 5.3. Specifically, we do a variant
of the usual reduction from the #PP2DNF problem, but add some number of
parallel dangling edges to each vertex (intuitively controlling the number of
𝑅-facts and 𝑇-facts kept) and code 𝑆-facts by some number of parallel copies of
a back-and-forth gadget.

As for the hardness result on unbounded homomorphism-closed queries
(Theorem 5.5.2), it is a variant of the result for PQE (Theorem 5.4.1) and uses a
similar proof structure, in particular it relies on Lemma 5.4.2. However, we now
reduce from uniform variants of the #PP2DNF and U-ST-CON problems, using
in particular the hardness of uniform reliability for 𝑄0 (Theorem 5.5.2). Further,
we use a saturation technique of copying some non-unary facts a large number
of times to make them behave as if their probability were 1, and we choose the
tight edge more carefully by minimizing some notion of weight.

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 63

5.6 Perspectives
This chapter has reviewed the state of the art of the probabilistic query eval-
uation problem (PQE), and presented my contributions to its study, focusing
on three areas: lower bounds on the size of provenance representations and
hardness of the problem on unbounded-treewidth instances; #P-hardness of
PQE on arbitrary unbounded homomorphism-closed queries; and #P-hardness
of uniform reliability for the same class of queries and for non-hierarchical
self-join-free CQs. All but the latter result apply only to arity-two signatures.

There are many open questions left about the PQE problem. One question
is practical applicability: for this, the best exact approach currently available
may be to efficiently compute provenance representations for queries (using a
tool like ProvSQL [SJMR18]) and then computing the probability of query an-
swers using efficient model counting software on the provenance representation
(see [FHH21]). The question of tractable approximations of PQE also matters in
practice, as one can expect real-world data to be annotated with probabilities
that are themselves approximative (and perhaps not even normalized).

However, I believe that it is also worthwhile to pursue our study of PQE
from a theoretical angle. These results may be of limited use to practition-
ers (in particular lower bounds), but they can hopefully appeal to research
communities beyond database theory who study related topics: counting com-
plexity [For97], holographic algorithms [Val08], as well as constraint satisfaction
problems [Sch78, FV93, KZ17] and their counting variants [Bul13]. Let us ac-
cordingly review some further directions for theoretical research on the PQE
problem.

Understanding the intractability of PQE. There are many further restric-
tions of PQE for which one can conjecture intractability, and hopefully prove
it. I believe that some of these restrictions are especially interesting because
they are arguably as natural as the original problem. This is in particular the
case of uniform reliability (presented in Section 5.5): this simply asks, given
a structure (or graph), how many substructures (or subgraphs) have a specific
property (expressed as a Boolean query). In particular, studying this problem
for the class of all queries closed under homomorphisms, one could conjecture:

Conjecture 5.6.1 ([Ama23], Conjecture 1.2). Given a query 𝑄 closed under
homomorphisms, the uniform reliability problem is in PTIME if 𝑄 is equivalent to
a safe UCQ, and #P-hard otherwise.

The upper bound of this dichotomy is known, but showing the lower bound
would require two new results: the hardness of uniform reliability for unsafe

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 64

UCQs (i.e., extending the result of Kenig and Suciu [KS21] to uniform reliability
for all unsafe UCQs), and the hardness of uniform reliability for unbounded
homomorphism-closed queries of arbitrary arity (generalizing [Ama23] to higher
arity).

Going beyond queries closed under homomorphisms, it can of course be
relevant to study the problem for other query classes, following the footsteps
of initial works in this direction [FO16, OH08, OH09]. However, in this area, it
is not clear which class of queries would be a realistic next step to achieve a
dichotomy result.

Connecting PQE to provenance formalisms. One other important direc-
tion to better understand PQE is to characterize the power of the intensional
approach reviewed in Section 5.3. Remember that, in this approach, we first
compute provenance circuits for the query, and then argue that they fall in
a tractable class of circuits (e.g., d-DNNF) so we can tractably compute the
probability. Indeed, in the case of MSO query evaluation on trees and bounded-
treewidth instances (i.e., the upper bounds sketched in Section 5.3), we could
show the tractability of PQE using the intensional approach with d-SDNNF
provenance circuits. Further, in the case of hierarchical SJFCQs [JS13], it is
known that PQE can also be solved following the intensional approach using
read-once Boolean formulas to represent provenance.

Interestingly, however, the algorithm for safe UCQs in [DS13] does not
follow the intensional approach, and does not seem to be easily translatable
to this setting. This is because the algorithm intuitively does not only do
Boolean manipulations, but also uses the inclusion-exclusion formula, i.e., it
does seemingly arbitrary arithmetic combinations of probabilities (including
negative coefficients). This use of inclusion-exclusion is crucial to cover all
safe queries, in particular it is necessary to avoid computing the probability of
some subqueries that “cancel out” in the inclusion-exclusion formula. However,
such computations have no obvious meaning in Boolean terms. The intensional-
extensional conjecture thus asks whether the approach of [DS13] is strictly more
powerful than the intensional approach.

Of course, the intensional-extensional conjecture depends on which class of
provenance representations we allow. This question was studied by Jha and Su-
ciu [JS13], which characterized which safe UCQs admitted tractable provenance
representations as read-once formulas, and as OBDDs; they also achieved partial
results for FBDDs and d-DNNFs. It was further shown by Beame et al. [BLRS17]
that the class of so-called Decomposable Logic Decision Diagrams (DLDDs) could
not apply to all safe UCQs, and by Bova and Szeider [BS17] that d-SDNNFs also
did not suffice for safe UCQs. But the intensional-extensional conjecture still

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 65

stands for the more expressive class of (non-structured) d-DNNFs: that class
was conjectured in [JS13] to be too weak, but the proposed counterexample was
refuted by Monet [Mon20]. The conjecture also stands for the wider class of
d-Ds, used by Monet [Mon20] to apply the intensional approach to a restricted
class of safe UCQs: here d-Ds are simply d-DNNF circuits featuring arbitrary
negations. Note that it is in fact open whether d-Ds strictly extend the power of
the intensional approach compared to d-DNNFs, as we do not know whether
one can tractably negate d-DNNFs [DM02].

In this light, I believe that the intensional-extensional conjecture for d-DNNFs
and d-Ds is an open problem worthy of further study, in particular because of
its connections to questions about knowledge compilation classes and about the
combinatorics of the inclusion-exclusion formula.

The connection between the intensional and extensional approach is also
a question in terms of lower bounds, e.g., when contrasting the two kinds
of intractability results presented in Section 5.3 (lineage lower bounds, and
computational hardness). Is there a unified approach to show both results? Note
that, as far as we know, the two are incomparable: showing lower bounds on
the size of provenance representations does not imply that PQE is intractable
(because it may be solvable outside of the intensional approach); and conversely
it could be the case that tractable provenance representations exist but that it is
intractable to compute them and to solve PQE. A unified approach to hardness
proofs and provenance lower bounds would also be useful, e.g., to understand
if the hardness result of Section 5.4 also implies lower bounds on the size of
provenance representations.

Proving joint tractability criteria on instances and queries. We have pre-
sented many intractability results known about PQE, and there are only a few set-
tings where it is known to be tractable: safe UCQs on arbitrary instances [DS13],
MSO queries on trees and bounded-treewidth data [ABS15, Ama16], and the
case of symmetric model counting [BVdBGS15]. Neither of these results has
broad practical applicability: safe UCQs are a very limited class, real-world data
is not usually symmetric, and it also does not usually have bounded treewidth
as was shown in an experimental study [MSJ19].

In light of this, it would be interesting to identify cases where we can guar-
antee tractability, even with an unsafe query and unbounded-treewidth data,
by studying classes of queries and instances whose interaction is intuitively
tractable. One first direction for this was the study in [DS07] of SJFCQs on
(unbounded-treewidth) TIDs where some relations are required to be determin-
istic: this restriction can of course make more queries safe. Building on this
approach, it would be interesting to investigate definitions of treewidth that

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 66

depend on a query, or on a query class, ensuring that PQE is tractable whenever
this query-specific treewidth measure is bounded. Or, following the intensional
approach: which joint restrictions on queries and databases can guarantee that
we can efficiently compute tractable provenance representations? Such joint
tractability criteria for provenance computation could then be useful, beyond
PQE, for the various problems that can be addressed via provenance circuits,
i.e., possibly also for enumeration and incremental maintenance.

Bibliography

This bibliography gives the DOI for research articles when it exists, and the
publisher URL otherwise; as these link to the publisher version of articles, they
may be unavailable without a subscription. By contrast, the article titles always
link to an open-access version of the material (when one exists).

[ABC99] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. Consistent
query answers in inconsistent databases. In PODS, 1999. doi:
10.1145/303976.303983. (see page: 52)

[ABJM17] Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel.
A circuit-based approach to efficient enumeration. In ICALP, 2017.
doi:10.4230/LIPIcs.ICALP.2017.111. (see pages: 6, 8, 21,
22, 23, 24, 25, 26, and 33)

[ABM18] Antoine Amarilli, Pierre Bourhis, and Stefan Mengel. Enumera-
tion on trees under relabelings. In ICDT, 2018. doi:10.4230/
LIPIcs.ICDT.2018.5. (see pages: 6, 8, 40, and 41)

[ABMN19a] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias
Niewerth. Constant-delay enumeration for nondeterministic doc-
ument spanners. In ICDT, 2019. doi:10.4230/LIPIcs.ICDT.
2019.22. (see pages: 6, 9, 21, and 30)

[ABMN19b] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias
Niewerth. Enumeration on trees with tractable combined com-
plexity and efficient updates. In PODS, 2019. doi:10.1145/
3294052.3319702. (see pages: 6, 8, 23, 33, 40, and 42)

[ABMN21] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias
Niewerth. Constant-delay enumeration for nondeterministic doc-
ument spanners. TODS, 46(1), 2021. doi:10.1145/3436487.
(see pages: 6, 29, 33, and 34)

67

https://dl.acm.org/doi/10.1145/303976.303983
https://dl.acm.org/doi/10.1145/303976.303983
https://doi.org/10.1145/303976.303983
https://doi.org/10.1145/303976.303983
https://arxiv.org/abs/1702.05589
https://doi.org/10.4230/LIPIcs.ICALP.2017.111
https://arxiv.org/abs/1709.06185
https://arxiv.org/abs/1709.06185
https://doi.org/10.4230/LIPIcs.ICDT.2018.5
https://doi.org/10.4230/LIPIcs.ICDT.2018.5
https://arxiv.org/abs/1807.09320
https://arxiv.org/abs/1807.09320
https://doi.org/10.4230/LIPIcs.ICDT.2019.22
https://doi.org/10.4230/LIPIcs.ICDT.2019.22
https://arxiv.org/abs/1812.09519
https://arxiv.org/abs/1812.09519
https://doi.org/10.1145/3294052.3319702
https://doi.org/10.1145/3294052.3319702
https://arxiv.org/abs/2003.02576
https://arxiv.org/abs/2003.02576
https://doi.org/10.1145/3436487

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 68

[ABR00] Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Pat-
tern matching in dynamic texts. In SODA, 2000. doi:10.5555/
338219.338645. (see page: 37)

[ABS15] Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Provenance
circuits for trees and treelike instances. In ICALP, 2015. doi:10.
1007/978-3-662-47666-6_5. (see pages: 6, 7, 54, 55, and 65)

[ABS16] Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Tractable
lineages on treelike instances: Limits and extensions. In PODS,
2016. doi:10.1145/2902251.2902301. (see pages: 6, 7, 54,
and 55)

[AC20] Antoine Amarilli and İsmail İlkan Ceylan. A dichotomy for
homomorphism-closed queries on probabilistic graphs. In ICDT,
2020. doi:10.4230/LIPIcs.ICDT.2020.5. (see pages: 6, 53)

[AC22] Antoine Amarilli and İsmail İlkan Ceylan. The dichotomy of
evaluating homomorphism-closed queries on probabilistic graphs.
LMCS, 18, 2022. doi:10.46298/lmcs-18(1:2)2022. (see
pages: 6, 59, and 60)

[AHR98] Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked an-
cestor problems. In FOCS, 1998. doi:10.1109/SFCS.1998.
743504. (see pages: 40, 48, and 50)

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
databases. Addison-Wesley, 1995. ISBN: 978-0201537710. (see
page: 38)

[AJMR22] Antoine Amarilli, Louis Jachiet, Martín Muñoz, and Cristian
Riveros. Efficient enumeration for annotated grammars. In PODS,
2022. doi:10.1145/3517804.3526232. (see pages: 6, 9, 22,
31, and 33)

[AJP21] Antoine Amarilli, Louis Jachiet, and Charles Paperman. Dynamic
membership for regular languages. In ICALP, 2021. doi:10.
4230/LIPIcs.ICALP.2021.116. (see pages: 6, 9, 42, 44, 48, 49,
and 50)

[AK21] Antoine Amarilli and Benny Kimelfeld. Uniform reliability of
self-join-free conjunctive queries. In ICDT, 2021. doi:10.4230/
LIPIcs.ICDT.2021.17. (see pages: 6, 10, and 61)

https://dl.acm.org/doi/10.5555/338219.338645
https://dl.acm.org/doi/10.5555/338219.338645
https://doi.org/10.5555/338219.338645
https://doi.org/10.5555/338219.338645
https://arxiv.org/abs/1511.08723
https://arxiv.org/abs/1511.08723
https://doi.org/10.1007/978-3-662-47666-6_5
https://doi.org/10.1007/978-3-662-47666-6_5
https://arxiv.org/abs/1604.02761
https://arxiv.org/abs/1604.02761
https://doi.org/10.1145/2902251.2902301
https://drops.dagstuhl.de/opus/volltexte/2020/11929/
https://drops.dagstuhl.de/opus/volltexte/2020/11929/
https://doi.org/10.4230/LIPIcs.ICDT.2020.5
https://arxiv.org/abs/1910.02048
https://arxiv.org/abs/1910.02048
https://doi.org/10.46298/lmcs-18(1:2)2022
https://brics.dk/RS/98/7/BRICS-RS-98-7.pdf
https://brics.dk/RS/98/7/BRICS-RS-98-7.pdf
https://doi.org/10.1109/SFCS.1998.743504
https://doi.org/10.1109/SFCS.1998.743504
http://webdam.inria.fr/Alice/
http://webdam.inria.fr/Alice/
https://arxiv.org/abs/2201.00549
https://doi.org/10.1145/3517804.3526232
https://arxiv.org/abs/2102.07728
https://arxiv.org/abs/2102.07728
https://doi.org/10.4230/LIPIcs.ICALP.2021.116
https://doi.org/10.4230/LIPIcs.ICALP.2021.116
https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=13725
https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=13725
https://doi.org/10.4230/LIPIcs.ICDT.2021.17
https://doi.org/10.4230/LIPIcs.ICDT.2021.17

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 69

[AK22] Antoine Amarilli and Benny Kimelfeld. Uniform reliability of
self-join-free conjunctive queries. LMCS, 2022. doi:10.46298/
lmcs-18(4:3)2022. (see page: 6)

[AM22] Antoine Amarilli and Mikaël Monet. Weighted counting of match-
ings in unbounded-treewidth graph families. In MFCS, 2022.
doi:10.4230/LIPIcs.MFCS.2022.9. (see pages: 6, 7, 55,
and 56)

[AM23] Antoine Amarilli and Mikaël Monet. Enumerating regular lan-
guages in bounded delay. In STACS, 2023. To appear. Preprint:
arXiv:2209.14878. (see page: 36)

[Ama16] Antoine Amarilli. Leveraging the structure of uncertain data. PhD
thesis, Télécom ParisTech, 2016. (see pages: 26, 27, 54, 55, and 65)

[Ama23] Antoine Amarilli. Uniform reliability for unbounded
homomorphism-closed graph queries. In ICDT, 2023. To
appear. Preprint: arXiv:2209.11177. (see pages: 6, 10, 53, 62,
63, and 64)

[AMS18] Antoine Amarilli, Mikaël Monet, and Pierre Senellart. Connecting
width and structure in knowledge compilation. In ICDT, 2018. doi:
10.4230/LIPIcs.ICDT.2018.6. (see pages: 6, 7, 55, and 57)

[AP21] Antoine Amarilli and Charles Paperman. Locality and centrality:
The variety ZG. Under review. Preprint: arXiv:2102.07724,
2021. (see pages: 6, 9, 46, and 47)

[Aui00] Karl Auinger. Semigroups with central idempotents. In Algo-
rithmic problems in groups and semigroups. Springer, 2000. doi:
10.1007/978-1-4612-1388-8_2. (see page: 45)

[AW14] Amir Abboud and Virginia Vassilevska Williams. Popular conjec-
tures imply strong lower bounds for dynamic problems. In FOCS,
2014. doi:10.1109/FOCS.2014.53. (see page: 38)

[AW21] Josh Alman and Virginia Vassilevska Williams. A refined laser
method and faster matrix multiplication. In SODA, 2021. doi:
10.1137/1.9781611976465.32. (see page: 29)

[Bag06] Guillaume Bagan. MSO queries on tree decomposable structures
are computable with linear delay. In CSL, 2006. doi:10.1007/
11874683_11. (see pages: 8, 20, 21, and 26)

https://arxiv.org/abs/1908.07093
https://arxiv.org/abs/1908.07093
https://doi.org/10.46298/lmcs-18(4:3)2022
https://doi.org/10.46298/lmcs-18(4:3)2022
https://arxiv.org/abs/2205.00851
https://arxiv.org/abs/2205.00851
https://doi.org/10.4230/LIPIcs.MFCS.2022.9
https://arxiv.org/abs/2209.14878
https://arxiv.org/abs/2209.14878
https://arxiv.org/abs/2209.14878
https://tel.archives-ouvertes.fr/tel-01345836
https://www.telecom-paristech.fr/
https://arxiv.org/abs/2209.11177
https://arxiv.org/abs/2209.11177
https://arxiv.org/abs/2209.11177
https://arxiv.org/abs/1709.06188
https://arxiv.org/abs/1709.06188
https://doi.org/10.4230/LIPIcs.ICDT.2018.6
https://doi.org/10.4230/LIPIcs.ICDT.2018.6
https://arxiv.org/abs/2102.07724
https://arxiv.org/abs/2102.07724
https://arxiv.org/abs/2102.07724
https://doi.org/10.1007/978-1-4612-1388-8_2
https://doi.org/10.1007/978-1-4612-1388-8_2
https://arxiv.org/abs/1402.0054
https://arxiv.org/abs/1402.0054
https://doi.org/10.1109/FOCS.2014.53
https://epubs.siam.org/doi/10.1137/1.9781611976465.32
https://epubs.siam.org/doi/10.1137/1.9781611976465.32
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1007/11874683_11
https://doi.org/10.1007/11874683_11

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 70

[BBL98] Prosenjit Bose, Jonathan F. Buss, and Anna Lubiw. Pattern match-
ing for permutations. Information Processing Letters, 65(5), 1998.
doi:10.1007/3-540-57155-8_248. (see page: 35)

[BDD+22] Pierre Bourhis, Laurence Duchien, Jérémie Dusart, Emmanuel
Lonca, Pierre Marquis, and Clément Quinton. Pseudo polynomial-
time top-k algorithms for d-DNNF circuits, 2022. Preprint:
arXiv:2202.05938. (see page: 35)

[BDG07] Guillaume Bagan, Arnaud Durand, and Étienne Grandjean. On
acyclic conjunctive queries and constant delay enumeration. In
CSL, 2007. doi:10.1007/978-3-540-74915-8_18. (see
pages: 20, 38)

[BFG+17] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, Tsvi
Kopelowitz, and Pablo Montes. File maintenance: When in
doubt, change the layout! In SODA, 2017. doi:10.1137/1.
9781611974782.98. (see page: 49)

[BGJR21] Pierre Bourhis, Alejandro Grez, Louis Jachiet, and Cristian Riveros.
Ranked enumeration of MSO logic on words. In ICDT, 2021. doi:
10.4230/LIPIcs.ICDT.2021.20. (see page: 34)

[BGMP92] Daniel Barbará, Hector Garcia-Molina, and Daryl Porter. The
management of probabilistic data. TKDE, 4(5), 1992. doi:10.
1109/69.166990. (see page: 52)

[BGQ+22] Marco Bucchi, Alejandro Grez, Andrés Quintana, Cristian Riveros,
and Stijn Vansummeren. CORE: A complex event recognition
engine. PVLDB, 2022. doi:10.14778/3538598.3538615. (see
page: 34)

[BGS20] Christoph Berkholz, Fabian Gerhardt, and Nicole Schweikardt.
Constant delay enumeration for conjunctive queries: A tuto-
rial. ACM SIGLOG News, 7(1), 2020. doi:10.1145/3385634.
3385636. (see page: 21)

[BH98] Hans L. Bodlaender and Torben Hagerup. Parallel algorithms
with optimal speedup for bounded treewidth. SIAM Journal on
Computing, 27(6), 1998. doi:10.1007/3-540-60084-1_80.
(see pages: 8, 42)

[BKS17] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. An-
swering conjunctive queries under updates. In PODS, 2017.
doi:10.1145/3034786.3034789. (see page: 38)

https://doi.org/10.1007/3-540-57155-8_248
https://arxiv.org/abs/2202.05938
https://arxiv.org/abs/2202.05938
https://arxiv.org/abs/2202.05938
https://webusers.imj-prg.fr/~arnaud.durand/papers/BDGlongversion.pdf
https://webusers.imj-prg.fr/~arnaud.durand/papers/BDGlongversion.pdf
https://doi.org/10.1007/978-3-540-74915-8_18
https://epubs.siam.org/doi/10.1137/1.9781611974782.98
https://epubs.siam.org/doi/10.1137/1.9781611974782.98
https://doi.org/10.1137/1.9781611974782.98
https://doi.org/10.1137/1.9781611974782.98
https://drops.dagstuhl.de/opus/volltexte/2021/13728/
https://doi.org/10.4230/LIPIcs.ICDT.2021.20
https://doi.org/10.4230/LIPIcs.ICDT.2021.20
https://doi.org/10.1109/69.166990
https://doi.org/10.1109/69.166990
https://www.vldb.org/pvldb/vol15/p1951-riveros.pdf
https://www.vldb.org/pvldb/vol15/p1951-riveros.pdf
https://doi.org/10.14778/3538598.3538615
https://doi.org/10.1145/3385634.3385636
https://doi.org/10.1145/3385634.3385636
https://dspace.library.uu.nl/bitstream/1874/17363/1/bodlaender_95_parallel.pdf
https://dspace.library.uu.nl/bitstream/1874/17363/1/bodlaender_95_parallel.pdf
https://doi.org/10.1007/3-540-60084-1_80
https://arxiv.org/pdf/1702.06370
https://arxiv.org/pdf/1702.06370
https://doi.org/10.1145/3034786.3034789

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 71

[BKS18a] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. An-
swering FO+MOD queries under updates on bounded degree
databases. TODS, 43(2), 2018. doi:10.1145/3232056. (see
pages: 39, 48, and 50)

[BKS18b] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. An-
swering UCQs under updates and in the presence of integrity con-
straints. In ICDT, 2018. doi:10.4230/LIPIcs.ICDT.2018.8.
(see pages: 20, 38, 39, and 50)

[BLRS17] Paul Beame, Jerry Li, Sudeepa Roy, and Dan Suciu. Exact model
counting of query expressions: Limitations of propositional meth-
ods. TODS, 42(1), 2017. doi:10.1145/2984632. (see page: 64)

[BM21] Christoph Berkholz and Maximilian Merz. Probabilistic databases
under updates: Boolean query evaluation and ranked enumera-
tion. In PODS, 2021. doi:10.1145/3452021.3458326. (see
page: 53)

[Bod94] Hans L. Bodlaender. A tourist guide through treewidth. Acta cyber-
netica, 11(1-2), 1994. URL: https://cyber.bibl.u-szeged.
hu/index.php/actcybern/article/view/3417. (see
page: 11)

[Bod96] Hans L. Bodlaender. A linear-time algorithm for finding tree-
decompositions of small treewdith. SIAM Journal on Comput-
ing, 25(6), 1996. doi:10.1137/S0097539793251219. (see
page: 26)

[BPV04] Andrey Balmin, Yannis Papakonstantinou, and Victor Vianu. In-
cremental validation of XML documents. TODS, 29(4), 2004.
doi:10.1145/1042046.1042050. (see pages: 39, 40)

[Bri19] Karl Bringmann. Fine-grained complexity theory (tutorial). In
STACS, 2019. doi:10.4230/LIPIcs.STACS.2019.4. (see
page: 38)

[BS17] Simone Bova and Stefan Szeider. Circuit treewidth, sentential
decision, and query compilation. In PODS, 2017. doi:10.1145/
3034786.3034787. (see pages: 55, 64)

[BS19] Christoph Berkholz and Nicole Schweikardt. Constant delay
enumeration with FPT-preprocessing for conjunctive queries of
bounded submodular width. In MFCS, 2019. doi:10.4230/
LIPIcs.MFCS.2019.58. (see page: 20)

https://doi.org/10.1145/3232056
https://drops.dagstuhl.de/opus/volltexte/2018/8599/
https://drops.dagstuhl.de/opus/volltexte/2018/8599/
https://drops.dagstuhl.de/opus/volltexte/2018/8599/
https://doi.org/10.4230/LIPIcs.ICDT.2018.8
https://dl.acm.org/doi/10.1145/2984632
https://dl.acm.org/doi/10.1145/2984632
https://dl.acm.org/doi/10.1145/2984632
https://doi.org/10.1145/2984632
https://maximilian-merz.de/pdf/pods054-berkholzA-authorversion.pdf
https://maximilian-merz.de/pdf/pods054-berkholzA-authorversion.pdf
https://maximilian-merz.de/pdf/pods054-berkholzA-authorversion.pdf
https://doi.org/10.1145/3452021.3458326
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3417
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3417
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3417
https://dspace.library.uu.nl/bitstream/1874/16670/1/bodlaender__alineairtime.pdf
https://dspace.library.uu.nl/bitstream/1874/16670/1/bodlaender__alineairtime.pdf
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1145/1042046.1042050
https://drops.dagstuhl.de/opus/volltexte/2019/10243/
https://doi.org/10.4230/LIPIcs.STACS.2019.4
https://drops.dagstuhl.de/opus/volltexte/2019/10243/
https://drops.dagstuhl.de/opus/volltexte/2019/10243/
https://doi.org/10.1145/3034786.3034787
https://doi.org/10.1145/3034786.3034787
https://drops.dagstuhl.de/opus/volltexte/2019/11002/
https://drops.dagstuhl.de/opus/volltexte/2019/11002/
https://drops.dagstuhl.de/opus/volltexte/2019/11002/
https://doi.org/10.4230/LIPIcs.MFCS.2019.58
https://doi.org/10.4230/LIPIcs.MFCS.2019.58

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 72

[Bul13] Andrei A. Bulatov. The complexity of the counting constraint sat-
isfaction problem. JACM, 60(5), 2013. doi:10.1145/2528400.
(see page: 63)

[BVdBGS15] Paul Beame, Guy Van den Broeck, Eric Gribkoff, and Dan Suciu.
Symmetric weighted first-order model counting. In PODS, 2015.
doi:10.1145/2745754.2745760. (see pages: 61, 65)

[BVS22] Christoph Berkholz and Harry Vinall-Smeeth. A dichotomy
for succinct representations of homomorphisms, 2022. Preprint:
arXiv:2209.14662. (see page: 33)

[CC16] Chandra Chekuri and Julia Chuzhoy. Polynomial bounds for
the grid-minor theorem. JACM, 63(5), 2016. doi:10.1145/
2820609. (see pages: 7, 56, and 57)

[CGLS21] Nofar Carmeli, Martin Grohe, Peter Lindner, and Christoph
Standke. Tuple-independent representations of infinite prob-
abilistic databases. In PODS, 2021. doi:10.1145/3452021.
3458315. (see page: 53)

[CIKW16] Xu Chu, Ihab F. Ilyas, Sanjay Krishnan, and Jiannan Wang. Data
cleaning: Overview and emerging challenges. In SIGMOD, 2016.
doi:10.1145/2882903.2912574. (see page: 52)

[CK20] Nofar Carmeli and Markus Kröll. Enumeration complexity
of conjunctive queries with functional dependencies. The-
ory of Computing Systems, 64(5), 2020. doi:10.1007/
s00224-019-09937-9. (see page: 21)

[CK21] Nofar Carmeli and Markus Kröll. On the enumeration complexity
of unions of conjunctive queries. TODS, 46(2), 2021. doi:10.
1145/3450263. (see pages: 20, 33, 34, and 39)

[CKS09] Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. Running tree
automata on probabilistic XML. In PODS, 2009. doi:10.1145/
1559795.1559831. (see page: 54)

[CLP23] Marco Console, Leonid Libkin, and Liat Peterfreund. Querying
incomplete numerical data: Between certain and possible answers.
In PODS, 2023. To appear. Preprint: arXiv:2210.15395. (see
page: 53)

https://www.cs.sfu.ca/~abulatov/papers/counting-acm.pdf
https://www.cs.sfu.ca/~abulatov/papers/counting-acm.pdf
https://doi.org/10.1145/2528400
https://homes.cs.washington.edu/~beame/papers/symm-count-pods.pdf
https://doi.org/10.1145/2745754.2745760
https://arxiv.org/abs/2209.14662
https://arxiv.org/abs/2209.14662
https://arxiv.org/abs/2209.14662
https://dl.acm.org/doi/abs/10.1145/2820609
https://dl.acm.org/doi/abs/10.1145/2820609
https://doi.org/10.1145/2820609
https://doi.org/10.1145/2820609
https://dl.acm.org/doi/abs/10.1145/2820609
https://dl.acm.org/doi/abs/10.1145/2820609
https://doi.org/10.1145/3452021.3458315
https://doi.org/10.1145/3452021.3458315
https://www2.cs.sfu.ca/~jnwang/papers/sigmod2016-datacleaning-tutorial.pdf
https://www2.cs.sfu.ca/~jnwang/papers/sigmod2016-datacleaning-tutorial.pdf
https://doi.org/10.1145/2882903.2912574
https://arxiv.org/abs/1712.07880
https://arxiv.org/abs/1712.07880
https://doi.org/10.1007/s00224-019-09937-9
https://doi.org/10.1007/s00224-019-09937-9
https://arxiv.org/abs/1812.03831
https://arxiv.org/abs/1812.03831
https://doi.org/10.1145/3450263
https://doi.org/10.1145/3450263
https://www.cs.huji.ac.il/~sara/papers/running-tree-automata.pdf
https://www.cs.huji.ac.il/~sara/papers/running-tree-automata.pdf
https://doi.org/10.1145/1559795.1559831
https://doi.org/10.1145/1559795.1559831
https://arxiv.org/abs/2210.15395
https://arxiv.org/abs/2210.15395
https://arxiv.org/abs/2210.15395

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 73

[CLR03] Andrea Calì, Domenico Lembo, and Riccardo Rosati. On the decid-
ability and complexity of query answering over inconsistent and
incomplete databases. In PODS, 2003. doi:10.1145/773153.
773179. (see page: 52)

[Col91] Charles J. Colbourn. Combinatorial aspects of network reliabil-
ity. Annals of Operations Research, 33(1), 1991. doi:10.1007/
BF02061656. (see page: 52)

[Cou90] Bruno Courcelle. The monadic second-order logic of graphs. I.
Recognizable sets of finite graphs. Inf. Comput., 85(1), 1990. doi:
10.1016/0890-5401(90)90043-H. (see pages: 26, 54)

[Cou09] Bruno Courcelle. Linear delay enumeration and monadic second-
order logic. Discrete Applied Mathematics, 157(12), 2009. doi:
10.1016/j.dam.2008.08.021. (see page: 20)

[CS19] Florent Capelli and Yann Strozecki. Incremental delay enumer-
ation: Space and time. Discrete Applied Mathematics, 268, 2019.
doi:10.1016/j.dam.2018.06.038. (see page: 21)

[CS21] Florent Capelli and Yann Strozecki. Enumerating models of DNF
faster: Breaking the dependency on the formula size. Discrete
Applied Mathematics, 303, 2021. doi:10.1016/j.dam.2020.
02.014. (see page: 21)

[CS22] Nofar Carmeli and Luc Segoufin. Conjunctive queries with self-
joins, towards a fine-grained complexity analysis, 2022. Preprint:
arXiv:2206.04988. (see page: 33)

[CTG+21] Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny
Kimelfeld, and Mirek Riedewald. Tractable orders for direct access
to ranked answers of conjunctive queries. In PODS, 2021. doi:
10.1145/3452021.3458331. (see pages: 34, 35)

[CY12] Rada Chirkova and Jun Yang. Materialized views. Number 4 in
Foundations and Trends in Databases. Now Publishers, Inc., 2012.
ISBN: 978-1601986221. doi:10.1561/1900000020. (see
page: 38)

[CZB+22] Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Alessio Conte,
Benny Kimelfeld, and Nicole Schweikardt. Answering (unions
of) conjunctive queries using random access and random-order
enumeration. TODS, 47(3), 2022. URL: https://arxiv.org/
abs/1912.10704, doi:10.1145/3531055. (see page: 35)

http://www.diag.uniroma1.it/rosati/publications/Cali-Lembo-Rosati-PODS-03.pdf
http://www.diag.uniroma1.it/rosati/publications/Cali-Lembo-Rosati-PODS-03.pdf
http://www.diag.uniroma1.it/rosati/publications/Cali-Lembo-Rosati-PODS-03.pdf
https://doi.org/10.1145/773153.773179
https://doi.org/10.1145/773153.773179
https://doi.org/10.1007/BF02061656
https://doi.org/10.1007/BF02061656
https://www.sciencedirect.com/science/article/pii/089054019090043H
https://www.sciencedirect.com/science/article/pii/089054019090043H
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H
https://www.sciencedirect.com/science/article/pii/S0166218X08003363
https://www.sciencedirect.com/science/article/pii/S0166218X08003363
https://doi.org/10.1016/j.dam.2008.08.021
https://doi.org/10.1016/j.dam.2008.08.021
https://www.sciencedirect.com/science/article/pii/S0166218X08003363
https://www.sciencedirect.com/science/article/pii/S0166218X08003363
https://doi.org/10.1016/j.dam.2018.06.038
https://hal.inria.fr/hal-01891483/file/arxiv.pdf
https://hal.inria.fr/hal-01891483/file/arxiv.pdf
https://doi.org/10.1016/j.dam.2020.02.014
https://doi.org/10.1016/j.dam.2020.02.014
https://arxiv.org/abs/2206.04988
https://arxiv.org/abs/2206.04988
https://arxiv.org/abs/2206.04988
https://dl.acm.org/doi/10.1145/3452021.3458331
https://dl.acm.org/doi/10.1145/3452021.3458331
https://doi.org/10.1145/3452021.3458331
https://doi.org/10.1145/3452021.3458331
http://db.cs.duke.edu/papers/fntdb12-ChirkovaYang-mat_views.pdf
https://doi.org/10.1561/1900000020
https://arxiv.org/abs/1912.10704
https://arxiv.org/abs/1912.10704
https://arxiv.org/abs/1912.10704
https://arxiv.org/abs/1912.10704
https://arxiv.org/abs/1912.10704
https://doi.org/10.1145/3531055

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 74

[dA90] Assis de Azevedo. The join of the pseudovariety Jwith permutative
pseudovarieties. In Lattices, Semigroups, and Universal Algebra.
Springer, 1990. doi:10.1007/978-1-4899-2608-1_1. (see
page: 45)

[Dar01] Adnan Darwiche. On the tractable counting of theory models and
its application to truth maintenance and belief revision. Journal
of Applied Non-Classical Logics, 11(1-2), 2001. doi:10.3166/
jancl.11.11-34. (see page: 24)

[DG07] Arnaud Durand and Étienne Grandjean. First-order queries on
structures of bounded degree are computable with constant de-
lay. TOCL, 8(4), 2007. doi:10.1145/1276920.1276923. (see
page: 20)

[DGNT21] Katrin M. Dannert, Erich Grädel, Matthias Naaf, and Val Tannen.
Semiring provenance for fixed-point logic. In CSL, 2021. doi:
10.4230/LIPIcs.CSL.2021.17. (see page: 17)

[DK21] Shaleen Deep and Paraschos Koutris. Ranked enumeration of
conjunctive query results. In ICDT, 2021. doi:10.4230/LIPIcs.
ICDT.2021.5. (see page: 34)

[DKM+18] Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas
Schwentick, and Thomas Zeume. Reachability is in DynFO. JACM,
65(5), 2018. doi:10.1145/3212685. (see page: 38)

[DM02] Adnan Darwiche and Pierre Marquis. A knowledge compilation
map. JAIR, 17, 2002. doi:10.1613/jair.989. (see pages: 15,
22, and 65)

[DMRT14] Daniel Deutch, Tova Milo, Sudeepa Roy, and Val Tannen. Circuits
for Datalog provenance. In ICDT, volume 3, 2014. doi:10.5441/
002/icdt.2014.22. (see page: 17)

[dR95] Michel de Rougemont. The reliability of queries. In PODS, 1995.
doi:doi/10.1145/212433.212479. (see page: 52)

[DRKT07] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. ProbLog: A
probabilistic Prolog and its application in link discovery. In IJCAI,
volume 7, 2007. URL: http://ijcai.org/Proceedings/07/
Papers/396.pdf. (see page: 51)

https://doi.org/10.1007/978-1-4899-2608-1_1
https://arxiv.org/abs/cs/0003044
https://arxiv.org/abs/cs/0003044
https://doi.org/10.3166/jancl.11.11-34
https://doi.org/10.3166/jancl.11.11-34
https://webusers.imj-prg.fr/~arnaud.durand/papers/ADEGtocl.pdf
https://webusers.imj-prg.fr/~arnaud.durand/papers/ADEGtocl.pdf
https://webusers.imj-prg.fr/~arnaud.durand/papers/ADEGtocl.pdf
https://doi.org/10.1145/1276920.1276923
https://drops.dagstuhl.de/opus/volltexte/2021/13451/
https://doi.org/10.4230/LIPIcs.CSL.2021.17
https://doi.org/10.4230/LIPIcs.CSL.2021.17
https://drops.dagstuhl.de/opus/volltexte/2021/13713/
https://drops.dagstuhl.de/opus/volltexte/2021/13713/
https://doi.org/10.4230/LIPIcs.ICDT.2021.5
https://doi.org/10.4230/LIPIcs.ICDT.2021.5
https://informatik-rub.de/wp-content/uploads/2021/03/DattaKMSZ2018-reachindynfo-journal.pdf
https://doi.org/10.1145/3212685
https://jair.org/index.php/jair/article/view/10311
https://jair.org/index.php/jair/article/view/10311
https://doi.org/10.1613/jair.989
https://openproceedings.org/ICDT/2014/paper_36.pdf
https://openproceedings.org/ICDT/2014/paper_36.pdf
https://doi.org/10.5441/002/icdt.2014.22
https://doi.org/10.5441/002/icdt.2014.22
https://dl.acm.org/doi/10.1145/212433.212479
https://doi.org/doi/10.1145/212433.212479
http://ijcai.org/Proceedings/07/Papers/396.pdf
http://ijcai.org/Proceedings/07/Papers/396.pdf
http://ijcai.org/Proceedings/07/Papers/396.pdf
http://ijcai.org/Proceedings/07/Papers/396.pdf

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 75

[DS07] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on
probabilistic databases. VLDBJ, 16(4), 2007. URL: http://www.
cs.washington.edu/homes/suciu/vldbj-probdb.pdf,
doi:10.1007/s00778-006-0004-3. (see pages: 10, 52, 53,
61, 62, and 65)

[DS11] Arnaud Durand and Yann Strozecki. Enumeration complexity of
logical query problems with second-order variables. In CSL, 2011.
doi:10.4230/LIPIcs.CSL.2011.189. (see page: 34)

[DS13] Nilesh Dalvi and Dan Suciu. The dichotomy of probabilistic in-
ference for unions of conjunctive queries. JACM, 59(6), 2013.
doi:10.1145/2395116.2395119. (see pages: 53, 55, 59, 62,
64, and 65)

[Fan15] Wenfei Fan. Data quality: From theory to practice. ACM SIGMOD
Record, 44(3), 2015. doi:10.1145/2854006.2854008. (see
page: 51)

[FG10] J. Flum and M. Grohe. Parameterized complexity theory. Texts in
Theoretical Computer Science. An EATCS Series. Springer Berlin
Heidelberg, 2010. ISBN: 978-3642067570. (see page: 15)

[FHH21] Johannes K. Fichte, Markus Hecher, and Florim Hamiti. The
model counting competition 2020. JEA, 26, 2021. doi:10.1145/
3459080. (see page: 63)

[FHM+95] Gudmund Skovbjerg Frandsen, Thore Husfeldt, Peter Bro Mil-
tersen, Theis Rauhe, and Søren Skyum. Dynamic algorithms
for the Dyck languages. In Workshop on Algorithms and Data
Structures, 1995. doi:10.1007/3-540-60220-8_54. (see
page: 48)

[FKP18] Dominik D. Freydenberger, Benny Kimelfeld, and Liat Peterfreund.
Joining extractions of regular expressions. In PODS, 2018. doi:
10.1145/3196959.3196967. (see page: 28)

[FKRV15] Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansum-
meren. Document spanners: A formal approach to information
extraction. JACM, 62(2), 2015. doi:10.1145/2699442. (see
pages: 8, 27, 28, and 29)

[FO16] Robert Fink and Dan Olteanu. Dichotomies for queries with
negation in probabilistic databases. TODS, 41(1), 2016. doi:
10.1145/2877203. (see pages: 53, 64)

https://homes.cs.washington.edu/~suciu/vldbj-probdb.pdf
https://homes.cs.washington.edu/~suciu/vldbj-probdb.pdf
http://www.cs.washington.edu/homes/suciu/vldbj-probdb.pdf
http://www.cs.washington.edu/homes/suciu/vldbj-probdb.pdf
https://doi.org/10.1007/s00778-006-0004-3
https://drops.dagstuhl.de/opus/volltexte/2011/3231/
https://drops.dagstuhl.de/opus/volltexte/2011/3231/
https://doi.org/10.4230/LIPIcs.CSL.2011.189
http://www.cs.washington.edu/homes/suciu/dichotomyUCQ-with-acm-cls.pdf
http://www.cs.washington.edu/homes/suciu/dichotomyUCQ-with-acm-cls.pdf
https://doi.org/10.1145/2395116.2395119
https://www.pure.ed.ac.uk/ws/files/24353651/sigmodRecord15.pdf
https://doi.org/10.1145/2854006.2854008
https://arxiv.org/abs/2012.01323
https://arxiv.org/abs/2012.01323
https://doi.org/10.1145/3459080
https://doi.org/10.1145/3459080
https://brics.dk/RS/95/1/BRICS-RS-95-1.pdf
https://brics.dk/RS/95/1/BRICS-RS-95-1.pdf
https://doi.org/10.1007/3-540-60220-8_54
https://arxiv.org/abs/1703.10350
https://doi.org/10.1145/3196959.3196967
https://doi.org/10.1145/3196959.3196967
https://s3.us.cloud-object-storage.appdomain.cloud/res-files/500-jacm15.pdf
https://s3.us.cloud-object-storage.appdomain.cloud/res-files/500-jacm15.pdf
https://doi.org/10.1145/2699442
http://www.cs.ox.ac.uk/people/Dan.Olteanu/papers/fo-tods16.pdf
http://www.cs.ox.ac.uk/people/Dan.Olteanu/papers/fo-tods16.pdf
https://doi.org/10.1145/2877203
https://doi.org/10.1145/2877203

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 76

[For97] Lance Fortnow. Counting complexity. Complexity theory retro-
spective II, 1997. URL: https://people.cs.uchicago.edu/
~fortnow/papers/counting.pdf. (see page: 63)

[FRU+18] Fernando Florenzano, Cristian Riveros, Martín Ugarte, Stijn Van-
summeren, and Domagoj Vrgoc. Constant delay algorithms for
regular document spanners. In PODS, 2018. doi:10.1145/
3196959.3196987. (see pages: 8, 28, and 29)

[FS89] Michael Fredman and Michael Saks. The cell probe complexity of
dynamic data structures. In STOC, 1989. doi:10.1145/73007.
73040. (see pages: 38, 43)

[FT98] Martin Farach and Mikkel Thorup. String matching in Lempel-Ziv
compressed strings. Algorithmica, 20(4), 1998. doi:10.1007/
PL00009202. (see page: 36)

[FV93] Tomás Feder and Moshe Y. Vardi. Monotone monadic SNP and
constraint satisfaction. In STOC, 1993. doi:10.1145/167088.
167245. (see page: 63)

[GFB94] Ming Gu, Martin Farach, and Richard Beigel. An efficient algorithm
for dynamic text indexing. In SODA, 1994. URL: https://dl.
acm.org/doi/10.5555/314464.314675. (see page: 37)

[GGH98] Erich Grädel, Yuri Gurevich, and Colin Hirsch. The complexity
of query reliability. In PODS, 1998. doi:10.1145/275487.
295124. (see page: 52)

[GHL+14] Robert Ganian, Petr Hliněnỳ, Alexander Langer, Jan Obdržálek,
Peter Rossmanith, and Somnath Sikdar. Lower bounds on the
complexity of MSO1 model-checking. JCSS, 1(80), 2014. doi:
10.1016/j.jcss.2013.07.005. (see page: 56)

[GJ22] Étienne Grandjean and Louis Jachiet. Which arithmetic opera-
tions can be performed in constant time in the RAM model with
addition?, 2022. Preprint: arXiv:2206.13851. (see page: 17)

[GJLS22] Moses Ganardi, Louis Jachiet, Markus Lohrey, and Thomas
Schwentick. Low-latency sliding window algorithms for for-
mal languages. In FSTTCS, 2022. To appear. Preprint:
arXiv:2209.14835. (see page: 49)

https://people.cs.uchicago.edu/~fortnow/papers/counting.pdf
https://people.cs.uchicago.edu/~fortnow/papers/counting.pdf
https://people.cs.uchicago.edu/~fortnow/papers/counting.pdf
https://arxiv.org/abs/1803.05277
https://arxiv.org/abs/1803.05277
https://doi.org/10.1145/3196959.3196987
https://doi.org/10.1145/3196959.3196987
https://dl.acm.org/doi/10.1145/73007.73040
https://dl.acm.org/doi/10.1145/73007.73040
https://doi.org/10.1145/73007.73040
https://doi.org/10.1145/73007.73040
https://www.researchgate.net/profile/Martin-Farach-Colton/publication/227013771_String_Matching_in_Lempel-Ziv_Compressed_Strings/links/0f3175371335dbc022000000/String-Matching-in-Lempel-Ziv-Compressed-Strings.pdf
https://www.researchgate.net/profile/Martin-Farach-Colton/publication/227013771_String_Matching_in_Lempel-Ziv_Compressed_Strings/links/0f3175371335dbc022000000/String-Matching-in-Lempel-Ziv-Compressed-Strings.pdf
https://doi.org/10.1007/PL00009202
https://doi.org/10.1007/PL00009202
https://dl.acm.org/doi/10.1145/167088.167245
https://dl.acm.org/doi/10.1145/167088.167245
https://doi.org/10.1145/167088.167245
https://doi.org/10.1145/167088.167245
https://dl.acm.org/doi/10.5555/314464.314675
https://dl.acm.org/doi/10.5555/314464.314675
https://dl.acm.org/doi/10.5555/314464.314675
https://dl.acm.org/doi/10.5555/314464.314675
https://dl.acm.org/doi/10.1145/275487.295124
https://dl.acm.org/doi/10.1145/275487.295124
https://doi.org/10.1145/275487.295124
https://doi.org/10.1145/275487.295124
https://www.sciencedirect.com/science/article/pii/S0022000013001438
https://www.sciencedirect.com/science/article/pii/S0022000013001438
https://doi.org/10.1016/j.jcss.2013.07.005
https://doi.org/10.1016/j.jcss.2013.07.005
https://arxiv.org/abs/2206.13851
https://arxiv.org/abs/2206.13851
https://arxiv.org/abs/2206.13851
https://arxiv.org/abs/2206.13851
https://arxiv.org/abs/2209.14835
https://arxiv.org/abs/2209.14835
https://arxiv.org/abs/2209.14835

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 77

[GKK+18] Paweł Gawrychowski, Adam Karczmarz, Tomasz Kociumaka,
Jakub Łącki, and Piotr Sankowski. Optimal dynamic strings.
In SODA, 2018. doi:10.1137/1.9781611975031.99. (see
page: 37)

[GKT07] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Prove-
nance semirings. In PODS, 2007. doi:10.1145/1265530.
1265535. (see pages: 16, 17)

[GMS93] Ashish Gupta, Inderpal Singh Mumick, and Venkatramanan Siva
Subrahmanian. Maintaining views incrementally. ACM SIGMOD
Record, 22(2), 1993. doi:10.1145/170036.170066. (see
page: 38)

[Gre00] Catherine Greenhill. The complexity of counting colourings and
independent sets in sparse graphs and hypergraphs. Computa-
tional Complexity, 9(1), 2000. doi:10.1007/PL00001601. (see
page: 57)

[GS18] Martin Grohe and Nicole Schweikardt. First-order query evalu-
ation with cardinality conditions. In PODS, 2018. URL: https:
//arxiv.org/abs/1707.05945, doi:10.1145/3196959.
3196970. (see page: 50)

[Hal17] Joseph Y. Halpern. Reasoning about uncertainty. MIT press, 2017.
ISBN: 978-0262582599. (see page: 51)

[HD96] Cecil Huang and Adnan Darwiche. Inference in belief networks:
A procedural guide. International journal of approximate reasoning,
15(3), 1996. doi:10.1016/S0888-613X(96)00069-2. (see
page: 54)

[Hen18] Monika Henzinger. The state of the art in dynamic graph
algorithms. In International Conference on Current Trends
in Theory and Practice of Informatics, 2018. doi:10.1007/
978-3-319-73117-9_3. (see page: 37)

[HHH21] Kathrin Hanauer, Monika Henzinger, and Qi Cheng Hua.
Fully dynamic four-vertex subgraph counting, 2021. Preprint:
arXiv:2106.15524. (see page: 39)

[HHS22] Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Recent
advances in fully dynamic graph algorithms–A quick reference
guide. JEA, 2022. doi:10.1145/3555806. (see page: 37)

https://epubs.siam.org/doi/10.1137/1.9781611975031.99
https://doi.org/10.1137/1.9781611975031.99
https://web.cs.ucdavis.edu/~green/papers/pods07.pdf
https://web.cs.ucdavis.edu/~green/papers/pods07.pdf
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/1265530.1265535
https://dl.acm.org/doi/10.1145/170036.170066
https://doi.org/10.1145/170036.170066
https://web.maths.unsw.edu.au/~csg/papers/complexity.pdf
https://web.maths.unsw.edu.au/~csg/papers/complexity.pdf
https://doi.org/10.1007/PL00001601
https://arxiv.org/abs/1707.05945
https://arxiv.org/abs/1707.05945
https://arxiv.org/abs/1707.05945
https://arxiv.org/abs/1707.05945
https://doi.org/10.1145/3196959.3196970
https://doi.org/10.1145/3196959.3196970
https://www.sciencedirect.com/science/article/pii/S0888613X96000692
https://www.sciencedirect.com/science/article/pii/S0888613X96000692
https://doi.org/10.1016/S0888-613X(96)00069-2
https://doi.org/10.1007/978-3-319-73117-9_3
https://doi.org/10.1007/978-3-319-73117-9_3
https://arxiv.org/abs/2106.15524
https://arxiv.org/abs/2106.15524
https://dl.acm.org/doi/10.1145/3555806
https://dl.acm.org/doi/10.1145/3555806
https://dl.acm.org/doi/10.1145/3555806
https://doi.org/10.1145/3555806

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 78

[HKNS15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai,
and Thatchaphol Saranurak. Unifying and strengthening hardness
for dynamic problems via the online matrix-vector multiplication
conjecture. In STOC, 2015. doi:10.1145/2746539.2746609.
(see page: 38)

[HR98] Thore Husfeldt and Theis Rauhe. Hardness results for dynamic
problems by extensions of Fredman and Saks’ chronogram method.
In International Colloquium on Automata, Languages, and Program-
ming, 1998. doi:10.1007/BFb0055041. (see page: 48)

[ILJ84] Tomasz Imieliński and Witold Lipski Jr. Incomplete information
in relational databases. JACM, 31(4), 1984. doi:10.1145/1634.
1886. (see page: 52)

[IUV17] Muhammad Idris, Martín Ugarte, and Stijn Vansummeren. The dy-
namic yannakakis algorithm: Compact and efficient query process-
ing under updates. In SIGMOD, 2017. doi:10.1145/3035918.
3064027. (see page: 38)

[Jac] Louis Jachiet. On the complexity of a “list” datastructure
in the RAM model. Theoretical Computer Science Stack Ex-
change. URL: https://cstheory.stackexchange.com/q/
46746 (version: 2020-05-01). (see page: 49)

[JL12] Jean Christoph Jung and Carsten Lutz. Ontology-based access to
probabilistic data with OWL QL. In ISWC, 2012. doi:10.1007/
978-3-642-35176-1_12. (see pages: 58, 60)

[JLSS14] Said Jabbour, Jerry Lonlac, Lakhdar Sais, and Yakoub Salhi. Ex-
tending modern SAT solvers for models enumeration. In IRI, 2014.
doi:10.1109/IRI.2014.7051971. (see page: 22)

[JS05] HoonSang Jin and Fabio Somenzi. Prime clauses for fast enumera-
tion of satisfying assignments to boolean circuits. In DAC, 2005.
doi:10.1145/1065579.1065775. (see page: 22)

[JS13] Abhay Jha and Dan Suciu. Knowledge compilation meets database
theory: Compiling queries to decision diagrams. Theory of Comput-
ing Systems, 52(3), 2013. doi:10.1007/s00224-012-9392-5.
(see pages: 64, 65)

[KAK+14] Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic,
Andres Nötzli, Daniel Lupei, and Amir Shaikhha. DBToaster:

https://dl.acm.org/doi/10.1145/3555806
https://dl.acm.org/doi/10.1145/3555806
https://dl.acm.org/doi/10.1145/3555806
https://doi.org/10.1145/2746539.2746609
https://fileadmin.cs.lth.se/cs/Personal/Thore_Husfeldt/papers/harddyn.pdf
https://fileadmin.cs.lth.se/cs/Personal/Thore_Husfeldt/papers/harddyn.pdf
https://doi.org/10.1007/BFb0055041
https://dl.acm.org/doi/10.1145/1634.1886
https://dl.acm.org/doi/10.1145/1634.1886
https://doi.org/10.1145/1634.1886
https://doi.org/10.1145/1634.1886
https://martinugarte.com/media/pdfs/main_pDxeVno.pdf
https://martinugarte.com/media/pdfs/main_pDxeVno.pdf
https://martinugarte.com/media/pdfs/main_pDxeVno.pdf
https://doi.org/10.1145/3035918.3064027
https://doi.org/10.1145/3035918.3064027
https://cstheory.stackexchange.com/q/46746
https://cstheory.stackexchange.com/q/46746
https://cstheory.stackexchange.com/q/46746
https://cstheory.stackexchange.com/q/46746
http://www.informatik.uni-bremen.de/tdki/research/papers/2012/JuLu-2012.pdf
http://www.informatik.uni-bremen.de/tdki/research/papers/2012/JuLu-2012.pdf
https://doi.org/10.1007/978-3-642-35176-1_12
https://doi.org/10.1007/978-3-642-35176-1_12
https://doi.org/10.1109/IRI.2014.7051971
https://doi.org/10.1145/1065579.1065775
https://doi.org/10.1007/s00224-012-9392-5
https://dbtoaster.github.io/papers/2013-dbtoaster-report.pdf
https://dbtoaster.github.io/papers/2013-dbtoaster-report.pdf

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 79

higher-order delta processing for dynamic, frequently fresh views.
VLDBJ, 23(2), 2014. doi:10.1007/s00778-013-0348-4. (see
page: 38)

[Kaz13] Wojciech Kazana. Query evaluation with constant delay. PhD
thesis, École normale supérieure de Cachan-ENS Cachan, 2013.
(see page: 50)

[KMMN22] Sarah Kleest-Meißner, Jonas Marasus, and Matthias Niewerth.
MSO queries on trees: Enumerating answers under updates using
forest algebras, 2022. doi:10.1145/3209108.3209144. (see
pages: 8, 42)

[KNN+19] Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and
Haozhe Zhang. Counting triangles under updates in worst-case op-
timal time. In ICDT, 2019. doi:10.4230/LIPIcs.ICDT.2019.
4. (see pages: 39, 50)

[KNOZ20] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang.
Trade-offs in static and dynamic evaluation of hierarchical queries.
In PODS, 2020. doi:10.1145/3375395.3387646. (see
page: 39)

[KNOZ21] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang.
Machine learning over static and dynamic relational data. In
DEBS, 2021. doi:10.1145/3465480.3467843. (see page: 38)

[KNOZ22] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang.
Conjunctive queries with output access patterns under updates,
2022. Preprint: arXiv:2206.09032. (see page: 39)

[KR95] Sanjiv Kapoor and Hariharan Ramesh. Algorithms for enu-
merating all spanning trees of undirected and weighted graphs.
SIAM Journal on Computing, 24(2), 1995. doi:10.1137/
S009753979225030X. (see page: 19)

[KS11] Wojciech Kazana and Luc Segoufin. First-order query evalua-
tion on structures of bounded degree. Logical Methods in Com-
puter Science, 7, 2011. doi:10.2168/LMCS-7(2:20)2011. (see
page: 20)

[KS13] Wojciech Kazana and Luc Segoufin. Enumeration of monadic
second-order queries on trees. TOCL, 14(4), 2013. doi:10.1145/
2528928. (see pages: 8, 20, 21, 26, and 50)

https://dbtoaster.github.io/papers/2013-dbtoaster-report.pdf
https://dbtoaster.github.io/papers/2013-dbtoaster-report.pdf
https://dbtoaster.github.io/papers/2013-dbtoaster-report.pdf
https://doi.org/10.1007/s00778-013-0348-4
https://theses.hal.science/tel-00919786
https://arxiv.org/abs/2208.04180
https://arxiv.org/abs/2208.04180
https://doi.org/10.1145/3209108.3209144
https://drops.dagstuhl.de/opus/volltexte/2019/10306/
https://drops.dagstuhl.de/opus/volltexte/2019/10306/
https://doi.org/10.4230/LIPIcs.ICDT.2019.4
https://doi.org/10.4230/LIPIcs.ICDT.2019.4
https://arxiv.org/abs/1907.01988
https://doi.org/10.1145/3375395.3387646
https://arxiv.org/abs/2107.13923
https://doi.org/10.1145/3465480.3467843
https://arxiv.org/abs/2206.09032
https://arxiv.org/abs/2206.09032
https://www.researchgate.net/profile/Ramesh-Hariharan-2/publication/262318561_Algorithms_for_Enumerating_All_Spanning_Trees_ofUndirected_and_Weighted_Graphs/links/55a5f82a08ae81aec9138258/Algorithms-for-Enumerating-All-Spanning-Trees-ofUndirected-and-Weighted-Graphs.pdf
https://www.researchgate.net/profile/Ramesh-Hariharan-2/publication/262318561_Algorithms_for_Enumerating_All_Spanning_Trees_ofUndirected_and_Weighted_Graphs/links/55a5f82a08ae81aec9138258/Algorithms-for-Enumerating-All-Spanning-Trees-ofUndirected-and-Weighted-Graphs.pdf
https://doi.org/10.1137/S009753979225030X
https://doi.org/10.1137/S009753979225030X
https://lmcs.episciences.org/903
https://lmcs.episciences.org/903
https://doi.org/10.2168/LMCS-7(2:20)2011
https://hal.inria.fr/hal-00916400/file/enummso.pdf
https://hal.inria.fr/hal-00916400/file/enummso.pdf
https://doi.org/10.1145/2528928
https://doi.org/10.1145/2528928

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 80

[KS21] Batya Kenig and Dan Suciu. A dichotomy for the generalized
model counting problem for unions of conjunctive queries. In
PODS, 2021. doi:10.1145/3452021.3458313. (see pages: 62,
64)

[KT10] Stephan Kreutzer and Siamak Tazari. Lower bounds for the
complexity of monadic second-order logic. In LICS, 2010. doi:
10.1109/LICS.2010.39. (see page: 56)

[KW21] Paraschos Koutris and Jef Wijsen. Consistent query answering
for primary keys in Datalog. Theory of Computing Systems, 65(1),
2021. doi:10.1007/s00224-020-09985-6. (see page: 52)

[KZ17] Andrei Krokhin and Stanislav Zivny. The constraint satisfaction
problem: Complexity and approximability, volume 7. Schloss
Dagstuhl, 2017. ISBN: 978-3959770033. (see page: 63)

[Lib04] Leonid Libkin. Elements of finite model theory. Springer, 2004. ISBN:
978-3540212027. doi:10.1007/978-3-662-07003-1.
(see page: 13)

[LL09] Martin Lange and Hans Leiß. To CNF or not to CNF?
An efficient yet presentable version of the CYK al-
gorithm. Informatica Didactica, 8(2009), 2009. URL:
https://www.informaticadidactica.de/uploads/
Artikel/LangeLeiss2009/LangeLeiss2009.pdf. (see
page: 32)

[LM14] Katja Losemann and Wim Martens. MSO queries on trees: Enu-
merating answers under updates. In CSL–LICS, 2014. doi:
10.1145/2603088.2603137. (see pages: 8, 40)

[Loh12] Markus Lohrey. Algorithmics on SLP-compressed strings: A sur-
vey. Groups-Complexity-Cryptology, 4(2), 2012. doi:10.1515/
gcc-2012-0016. (see page: 36)

[LP22] Carsten Lutz and Marcin Przybylko. Efficiently enumerating an-
swers to ontology-mediated queries. In PODS, 2022. URL: https:
//arxiv.org/abs/2203.09288, doi:10.1145/3517804.
3524166. (see page: 21)

[LS88] Steffen L. Lauritzen and David J. Spiegelhalter. Local computations
with probabilities on graphical structures and their application
to expert systems. Journal of the Royal Statistical Society: Series

https://arxiv.org/abs/2008.00896
https://arxiv.org/abs/2008.00896
https://doi.org/10.1145/3452021.3458313
10.1109/LICS.2010.39
10.1109/LICS.2010.39
https://doi.org/10.1109/LICS.2010.39
https://doi.org/10.1109/LICS.2010.39
https://docnum.umons.ac.be/Access/WebOpenAccess/GetDocument.aspx?GuidTicket=338f3254-2c79-4b14-83d0-a271822da01a&Filename=Koutris-Wijsen2020_Article_ConsistentQueryAnsweringForPri.pdf
https://docnum.umons.ac.be/Access/WebOpenAccess/GetDocument.aspx?GuidTicket=338f3254-2c79-4b14-83d0-a271822da01a&Filename=Koutris-Wijsen2020_Article_ConsistentQueryAnsweringForPri.pdf
https://doi.org/10.1007/s00224-020-09985-6
https://drops.dagstuhl.de/opus/portals/dfu/index.php?semnr=16027
https://drops.dagstuhl.de/opus/portals/dfu/index.php?semnr=16027
https://homepages.inf.ed.ac.uk/libkin/fmt/fmt.pdf
https://doi.org/10.1007/978-3-662-07003-1
https://www.informaticadidactica.de/uploads/Artikel/LangeLeiss2009/LangeLeiss2009.pdf
https://www.informaticadidactica.de/uploads/Artikel/LangeLeiss2009/LangeLeiss2009.pdf
https://www.informaticadidactica.de/uploads/Artikel/LangeLeiss2009/LangeLeiss2009.pdf
https://www.informaticadidactica.de/uploads/Artikel/LangeLeiss2009/LangeLeiss2009.pdf
https://www.informaticadidactica.de/uploads/Artikel/LangeLeiss2009/LangeLeiss2009.pdf
https://www.theoinf.uni-bayreuth.de/pool/documents/Paper2011-15/Paper2014/MSO_Queries_on_Trees_Enumerating_Answers_under_Updates_preprint.pdf
https://www.theoinf.uni-bayreuth.de/pool/documents/Paper2011-15/Paper2014/MSO_Queries_on_Trees_Enumerating_Answers_under_Updates_preprint.pdf
https://doi.org/10.1145/2603088.2603137
https://doi.org/10.1145/2603088.2603137
https://www.informatik.uni-leipzig.de/~lohrey/12-SURVEY.pdf
https://www.informatik.uni-leipzig.de/~lohrey/12-SURVEY.pdf
https://doi.org/10.1515/gcc-2012-0016
https://doi.org/10.1515/gcc-2012-0016
https://arxiv.org/abs/2203.09288
https://arxiv.org/abs/2203.09288
https://arxiv.org/abs/2203.09288
https://arxiv.org/abs/2203.09288
https://doi.org/10.1145/3517804.3524166
https://doi.org/10.1145/3517804.3524166
https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1988.tb01721.x
https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1988.tb01721.x
https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1988.tb01721.x

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 81

B (Methodological), 50(2), 1988. doi:10.1111/j.2517-6161.
1988.tb01721.x. (see page: 54)

[Mar13] Dániel Marx. Tractable hypergraph properties for constraint
satisfaction and conjunctive queries. JACM, 60(6), 2013. doi:
10.1145/2535926. (see page: 20)

[Mon20] Mikaël Monet. Solving a special case of the intensional vs ex-
tensional conjecture in probabilistic databases. In PODS, 2020.
doi:10.1145/3375395.3387642. (see pages: 55, 65)

[MR22] Martín Muñoz and Cristian Riveros. Streaming enumeration on
nested documents. In ICDT, 2022. doi:10.4230/LIPIcs.ICDT.
2022.19. (see pages: 32, 33)

[MR23] Martín Muñoz and Cristian Riveros. Constant-delay enumeration
for SLP-compressed documents. In ICDT, 2023. To appear. Preprint:
arXiv:2209.12301. (see pages: 33, 36)

[MRV18] Francisco Maturana, Cristian Riveros, and Domagoj Vrgoc. Docu-
ment spanners for extracting incomplete information: Expressive-
ness and complexity. In PODS, 2018. doi:10.1145/3196959.
3196968. (see pages: 28, 29)

[MS19] Florin Manea and Markus L. Schmid. Matching patterns with
variables. In International Conference on Combinatorics on Words.
Springer, 2019. doi:10.1007/978-3-030-28796-2_1. (see
page: 35)

[MSJ19] Silviu Maniu, Pierre Senellart, and Suraj Jog. An experimental
study of the treewidth of real-world graph data. In ICDT, 2019.
doi:10.4230/LIPIcs.ICDT.2019.12. (see page: 65)

[Mut05] Shanmugavelayutham Muthukrishnan. Data streams: Algorithms
and applications, volume 1. Now Publishers, Inc., 2005. ISBN:
978-1933019147. (see page: 19)

[Nie18] Matthias Niewerth. MSO queries on trees: Enumerating answers
under updates using forest algebras. In LICS, 2018. doi:10.
1145/3209108.3209144. (see pages: 6, 8, 40, and 42)

[NS18] Matthias Niewerth and Luc Segoufin. Enumeration of MSO queries
on strings with constant delay and logarithmic updates. In PODS,
2018. doi:10.1145/3196959.3196961. (see pages: 40, 41)

https://doi.org/10.1111/j.2517-6161.1988.tb01721.x
https://doi.org/10.1111/j.2517-6161.1988.tb01721.x
http://www.cs.bme.hu/~dmarx/papers/marx-submodular.pdf
http://www.cs.bme.hu/~dmarx/papers/marx-submodular.pdf
https://doi.org/10.1145/2535926
https://doi.org/10.1145/2535926
https://arxiv.org/abs/1912.11864
https://arxiv.org/abs/1912.11864
https://doi.org/10.1145/3375395.3387642
https://drops.dagstuhl.de/opus/volltexte/2022/15893/
https://drops.dagstuhl.de/opus/volltexte/2022/15893/
https://doi.org/10.4230/LIPIcs.ICDT.2022.19
https://doi.org/10.4230/LIPIcs.ICDT.2022.19
https://arxiv.org/abs/2209.12301
https://arxiv.org/abs/2209.12301
https://arxiv.org/abs/2209.12301
http://criveros.sitios.ing.uc.cl/papers/pods18a.pdf
http://criveros.sitios.ing.uc.cl/papers/pods18a.pdf
http://criveros.sitios.ing.uc.cl/papers/pods18a.pdf
https://doi.org/10.1145/3196959.3196968
https://doi.org/10.1145/3196959.3196968
https://arxiv.org/abs/1906.06965
https://arxiv.org/abs/1906.06965
https://doi.org/10.1007/978-3-030-28796-2_1
https://drops.dagstuhl.de/opus/volltexte/2019/10314/
https://drops.dagstuhl.de/opus/volltexte/2019/10314/
https://doi.org/10.4230/LIPIcs.ICDT.2019.12
https://doi.org/10.1145/3209108.3209144
https://doi.org/10.1145/3209108.3209144
https://hal.inria.fr/hal-01895796/file/enum-update-words.pdf
https://hal.inria.fr/hal-01895796/file/enum-update-words.pdf
https://doi.org/10.1145/3196959.3196961

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 82

[OH08] Dan Olteanu and Jiewen Huang. Using OBDDs for efficient query
evaluation on probabilistic databases. In SUM, volume 5291, 2008.
doi:10.1007/978-3-540-87993-0_26. (see pages: 53, 64)

[OH09] Dan Olteanu and Jiewen Huang. Secondary-storage confidence
computation for conjunctive queries with inequalities. In SIGMOD,
2009. doi:10.1145/1559845.1559887. (see pages: 53, 64)

[OZ15] Dan Olteanu and Jakub Závodnỳ. Size bounds for factorised rep-
resentations of query results. TODS, 40(1), 2015. doi:10.1145/
2656335. (see pages: 22, 25)

[PB83] J. Scott Provan and Michael O. Ball. The complexity of count-
ing cuts and of computing the probability that a graph is con-
nected. SIAM Journal on Computing, 12(4), 1983. doi:10.1137/
0212053. (see page: 59)

[PD06] Mihai Pǎtraşcu and Erik D. Demaine. Logarithmic lower bounds
in the cell-probe model. SIAM Journal on Computing, 35(4), 2006.
doi:10.1137/S0097539705447256. (see page: 38)

[Pet19] Liat Peterfreund. The complexity of relational queries over extrac-
tions from text. PhD thesis, Technion, 2019. (see page: 28)

[Pet21] Liat Peterfreund. Grammars for document spanners. In ICDT,
2021. doi:10.4230/LIPIcs.ICDT.2021.7. (see pages: 9, 22,
30, and 31)

[PI97] Sushant Patnaik and Neil Immerman. Dyn-FO: A parallel, dynamic
complexity class. JCSS, 55(2), 1997. doi:10.1006/jcss.1997.
1520. (see pages: 38, 39)

[Pin86] Jean-Éric Pin. Varieties of formal languages. Foundations of Com-
puter Science. Plenum Publishing Corp., New York, 1986. ISBN:
978-0946536122. doi:10.1007/978-1-4613-2215-3.
(see page: 46)

[Pin19] Jean-Éric Pin. Mathematical foundations of automata theory.
2019. URL: https://www.irif.fr/~jep/PDF/MPRI/MPRI.
pdf. (see page: 46)

[Pre17] Nicola Prezza. A framework of dynamic data structures for string
processing. In SEA, 2017. doi:10.4230/LIPIcs.SEA.2017.
11. (see page: 37)

https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sum08.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sum08.pdf
https://doi.org/10.1007/978-3-540-87993-0_26
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sigmod09.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sigmod09.pdf
https://doi.org/10.1145/1559845.1559887
https://www.cs.ox.ac.uk/dan.olteanu/papers/oz-tods15.pdf
https://www.cs.ox.ac.uk/dan.olteanu/papers/oz-tods15.pdf
https://doi.org/10.1145/2656335
https://doi.org/10.1145/2656335
https://doi.org/10.1137/0212053
https://doi.org/10.1137/0212053
https://arxiv.org/abs/cs/0502041
https://arxiv.org/abs/cs/0502041
https://doi.org/10.1137/S0097539705447256
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2019/PHD/PHD-2019-10.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2019/PHD/PHD-2019-10.pdf
https://drops.dagstuhl.de/opus/volltexte/2021/13715/
https://doi.org/10.4230/LIPIcs.ICDT.2021.7
https://www.sciencedirect.com/science/article/pii/S0022000097915208
https://www.sciencedirect.com/science/article/pii/S0022000097915208
https://doi.org/10.1006/jcss.1997.1520
https://doi.org/10.1006/jcss.1997.1520
https://doi.org/10.1007/978-1-4613-2215-3
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://drops.dagstuhl.de/opus/volltexte/2017/7602/
https://drops.dagstuhl.de/opus/volltexte/2017/7602/
https://doi.org/10.4230/LIPIcs.SEA.2017.11
https://doi.org/10.4230/LIPIcs.SEA.2017.11

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 83

[PT07a] Mihai Pǎtraşcu and Corina E. Tarniţǎ. On dynamic bit-probe
complexity. Theoretical Computer Science, 380(1-2), 2007. doi:
10.1016/j.tcs.2007.02.058. (see page: 43)

[PT07b] Mihai Pǎtraşcu and Mikkel Thorup. Randomization does
not help searching predecessors. In SODA, volume 7,
2007. URL: http://people.csail.mit.edu/mip/papers/
randpred/randpred.pdf. (see page: 49)

[RD00] Erhard Rahm and Hong Hai Do. Data cleaning: Problems and
current approaches. IEEE Data Eng. Bull., 23(4), 2000. URL: http:
//sites.computer.org/debull/A00dec/rahm.ps. (see
page: 52)

[Res18] IBM Research. SystemT, 2018. URL: https://researcher.
watson.ibm.com/researcher/view_group.php?id=
1264. (see page: 28)

[RS07] Christopher Re and Dan Suciu. Materialized views in proba-
bilistic databases: For information exchange and query optimiza-
tion. PVLDB, 2007. URL: https://vldb.org/conf/2007/
papers/research/p51-re.pdf. (see page: 52)

[Rus03] Frank Ruskey. Combinatorial generation, volume 11. Uni-
versity of Victoria, Victoria, BC, Canada, 2003. Prelimi-
nary working draft. URL: https://page.math.tu-berlin.
de/~felsner/SemWS17-18/Ruskey-Comb-Gen.pdf. (see
page: 19)

[Sch78] Thomas J. Schaefer. The complexity of satisfiability problems. In
STOC, 1978. doi:10.1145/800133.804350. (see page: 63)

[SdBBA19] Andy Shih, Guy Van den Broeck, Paul Beame, and Antoine
Amarilli. Smoothing structured decomposable circuits. In
NeurIPS, 2019. URL: https://papers.nips.cc/paper/
9318-smoothing-structured-decomposable-circuits.
(see page: 24)

[Seg13] Luc Segoufin. Enumerating with constant delay the answers to a
query. In ICDT, 2013. doi:10.1145/2448496.2448498. (see
page: 20)

[Seg14] Luc Segoufin. A glimpse on constant delay enumeration. In STACS,
2014. doi:10.4230/LIPIcs.STACS.2014.13. (see page: 20)

https://www.sciencedirect.com/science/article/pii/S0304397507001624
https://www.sciencedirect.com/science/article/pii/S0304397507001624
https://doi.org/10.1016/j.tcs.2007.02.058
https://doi.org/10.1016/j.tcs.2007.02.058
http://people.csail.mit.edu/mip/papers/randpred/randpred.pdf
http://people.csail.mit.edu/mip/papers/randpred/randpred.pdf
http://people.csail.mit.edu/mip/papers/randpred/randpred.pdf
http://people.csail.mit.edu/mip/papers/randpred/randpred.pdf
http://sites.computer.org/debull/A00dec/rahm.ps
http://sites.computer.org/debull/A00dec/rahm.ps
http://sites.computer.org/debull/A00dec/rahm.ps
http://sites.computer.org/debull/A00dec/rahm.ps
https://researcher.watson.ibm.com/researcher/view_group.php?id=1264
https://researcher.watson.ibm.com/researcher/view_group.php?id=1264
https://researcher.watson.ibm.com/researcher/view_group.php?id=1264
https://vldb.org/conf/2007/papers/research/p51-re.pdf
https://vldb.org/conf/2007/papers/research/p51-re.pdf
https://vldb.org/conf/2007/papers/research/p51-re.pdf
https://vldb.org/conf/2007/papers/research/p51-re.pdf
https://vldb.org/conf/2007/papers/research/p51-re.pdf
https://page.math.tu-berlin.de/~felsner/SemWS17-18/Ruskey-Comb-Gen.pdf
https://page.math.tu-berlin.de/~felsner/SemWS17-18/Ruskey-Comb-Gen.pdf
https://page.math.tu-berlin.de/~felsner/SemWS17-18/Ruskey-Comb-Gen.pdf
https://dl.acm.org/doi/10.1145/800133.804350
https://doi.org/10.1145/800133.804350
https://arxiv.org/abs/1906.00311
https://nips.cc/Conferences/2019
https://papers.nips.cc/paper/9318-smoothing-structured-decomposable-circuits
https://papers.nips.cc/paper/9318-smoothing-structured-decomposable-circuits
https://hal.inria.fr/hal-00907085/file/cdlin-survey.pdf
https://hal.inria.fr/hal-00907085/file/cdlin-survey.pdf
https://doi.org/10.1145/2448496.2448498
https://drops.dagstuhl.de/opus/volltexte/2014/4500/
https://doi.org/10.4230/LIPIcs.STACS.2014.13

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 84

[Seg15] Luc Segoufin. Constant delay enumeration for conjunctive queries.
ACM SIGMOD Record, 44(1), 2015. doi:10.1145/2783888.
2783894. (see page: 20)

[SFMS97] Gudmund Skovbjerg Frandsen, Peter Bro Miltersen, and Sven
Skyum. Dynamic word problems. JACM, 44(2), 1997. doi:10.
1145/256303.256309. (see pages: 9, 39, 40, 43, 46, and 48)

[SJMR18] Pierre Senellart, Louis Jachiet, Silviu Maniu, and Yann Ramusat.
ProvSQL: Provenance and probability management in PostgreSQL.
PVLDB, 11(12), 2018. doi:10.14778/3229863.3236253. (see
pages: 34, 63)

[SM19] Yann Strozecki and Arnaud Mary. Efficient enumeration of
solutions produced by closure operations. DMTCS, 21, 2019.
doi:10.23638/DMTCS-21-3-22. (see pages: 30, 34)

[SORK11] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch.
Probabilistic databases. Synthesis lectures on data management,
3(2), 2011. ISBN: 978-1608456802. (see pages: 52, 61)

[SS21a] Markus L. Schmid and Nicole Schweikardt. Spanner evaluation
over SLP-compressed documents. In PODS, 2021. doi:10.1145/
3452021.3458325. (see page: 36)

[SS21b] Markus L. Schmid and Nicole Schweikardt. A purely regular
approach to non-regular core spanners. In ICDT, 2021. doi:
10.4230/LIPIcs.ICDT.2021.4. (see page: 35)

[SSV22] Nicole Schweikardt, Luc Segoufin, and Alexandre Vigny. Enumer-
ation for FO queries over nowhere dense graphs. JACM, 69(3),
2022. doi:10.1145/3517035. (see pages: 20, 39, and 50)

[Str85] Howard Straubing. Finite semigroup varieties of the form V*D.
Journal of Pure and Applied Algebra, 36, 1985. doi:10.1016/
0022-4049(85)90062-3. (see page: 47)

[Str19] Yann Strozecki. Enumeration complexity. Bulletin of EATCS,
3(129), 2019. URL: http://bulletin.eatcs.org/index.
php/beatcs/article/view/596/605. (see page: 21)

[SV17] Luc Segoufin and Alexandre Vigny. Constant delay enumera-
tion for FO queries over databases with local bounded expansion.
In ICDT, 2017. doi:10.4230/LIPIcs.ICDT.2017.20. (see
pages: 20, 50)

https://sigmodrecord.org/2015/03/27/constant-delay-enumeration-for-conjunctive-queries/
https://doi.org/10.1145/2783888.2783894
https://doi.org/10.1145/2783888.2783894
https://tildeweb.au.dk/au82897/Documents/jacm-44-1997-257.pdf
https://doi.org/10.1145/256303.256309
https://doi.org/10.1145/256303.256309
http://www.vldb.org/pvldb/vol11/p2034-senellart.pdf
https://doi.org/10.14778/3229863.3236253
https://dmtcs.episciences.org/5549
https://dmtcs.episciences.org/5549
https://doi.org/10.23638/DMTCS-21-3-22
10.4230/LIPIcs.ICDT.2021.4
10.4230/LIPIcs.ICDT.2021.4
https://doi.org/10.1145/3452021.3458325
https://doi.org/10.1145/3452021.3458325
https://drops.dagstuhl.de/opus/volltexte/2021/13712/
https://drops.dagstuhl.de/opus/volltexte/2021/13712/
https://doi.org/10.4230/LIPIcs.ICDT.2021.4
https://doi.org/10.4230/LIPIcs.ICDT.2021.4
https://www.di.ens.fr/~segoufin/Papers/Mypapers/enum-nowheredense.pdf
https://www.di.ens.fr/~segoufin/Papers/Mypapers/enum-nowheredense.pdf
https://doi.org/10.1145/3517035
https://www.sciencedirect.com/science/article/pii/0022404985900623
https://doi.org/10.1016/0022-4049(85)90062-3
https://doi.org/10.1016/0022-4049(85)90062-3
http://bulletin.eatcs.org/index.php/beatcs/article/view/596/605
http://bulletin.eatcs.org/index.php/beatcs/article/view/596/605
http://bulletin.eatcs.org/index.php/beatcs/article/view/596/605
https://drops.dagstuhl.de/opus/volltexte/2017/7060/
https://drops.dagstuhl.de/opus/volltexte/2017/7060/
https://doi.org/10.4230/LIPIcs.ICDT.2017.20

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 85

[SVZ18] Thomas Schwentick, Nils Vortmeier, and Thomas Zeume. Dynamic
complexity under definable changes. TODS, 43(3), 2018. doi:
10.1145/3241040. (see page: 49)

[SZ16] Thomas Schwentick and Thomas Zeume. Dynamic complexity:
Recent updates. ACM SIGLOG News, 3(2), 2016. doi:10.1145/
2948896.2948899. (see page: 38)

[TAG+20] Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek
Riedewald, and Xiaofeng Yang. Optimal algorithms for ranked
enumeration of answers to full conjunctive queries. PVLDB, 13(9),
2020. doi:10.14778/3397230.3397250. (see page: 34)

[TIAS77] Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa.
A new algorithm for generating all the maximal independent sets.
SIAM Journal on Computing, 6(3), 1977. doi:10.1137/0206036.
(see page: 19)

[Tor20] Szymon Toruńczyk. Aggregate queries on sparse databases. In
PODS, 2020. doi:10.1145/3375395.3387660. (see page: 33)

[TW68] James W. Thatcher and Jesse B. Wright. Generalized finite au-
tomata theory with an application to a decision problem of
second-order logic. Mathematical systems theory, 2(1), 1968.
doi:10.1007/BF01691346. (see page: 14)

[Val75] Leslie G. Valiant. General context-free recognition in less than
cubic time. JCSS, 10(2), 1975. doi:10.1016/S0022-0000(75)
80046-8. (see page: 32)

[Val79] Leslie G. Valiant. The complexity of enumeration and reliability
problems. SIAM Journal on Computing, 8(3), 1979. doi:10.1137/
0208032. (see pages: 19, 52, 58, and 59)

[Val08] Leslie G. Valiant. Holographic algorithms. SIAM Journal on Com-
puting, 37(5), 2008. doi:10.1137/070682575. (see page: 63)

[vEBKZ76] Peter van Emde Boas, Robert Kaas, and Erik Zijlstra. Design
and implementation of an efficient priority queue. Mathematical
systems theory, 10(1), 1976. doi:10.1007/BF01683268. (see
page: 46)

[Was16] Kunihiro Wasa. Enumeration of enumeration algorithms, 2016.
(see page: 19)

https://informatik-rub.de/wp-content/uploads/2021/03/SchwentickVZ2018-complex-journal.pdf
https://informatik-rub.de/wp-content/uploads/2021/03/SchwentickVZ2018-complex-journal.pdf
https://doi.org/10.1145/3241040
https://doi.org/10.1145/3241040
https://informatik-rub.de/wp-content/uploads/2021/03/SchwentickZ2016-siglog1.pdf
https://informatik-rub.de/wp-content/uploads/2021/03/SchwentickZ2016-siglog1.pdf
https://doi.org/10.1145/2948896.2948899
https://doi.org/10.1145/2948896.2948899
http://www.vldb.org/pvldb/vol13/p1582-tziavelis.pdf
http://www.vldb.org/pvldb/vol13/p1582-tziavelis.pdf
https://doi.org/10.14778/3397230.3397250
https://doi.org/10.1137/0206036
https://arxiv.org/abs/1912.12338
https://doi.org/10.1145/3375395.3387660
https://doi.org/10.1007/BF01691346
https://www.sciencedirect.com/science/article/pii/S0022000075800468
https://www.sciencedirect.com/science/article/pii/S0022000075800468
https://doi.org/10.1016/S0022-0000(75)80046-8
https://doi.org/10.1016/S0022-0000(75)80046-8
https://doi.org/10.1137/0208032
https://doi.org/10.1137/0208032
http://people-aws.seas.harvard.edu/~valiant/holographic11-07.pdf
https://doi.org/10.1137/070682575
https://doi.org/10.1007/BF01683268
https://arxiv.org/abs/1605.05102

CHAPTER 5. QUERY EVALUATION OVER PROBABILISTIC DATA 86

[Weg00] Ingo Wegener. Branching programs and binary decision diagrams.
SIAM, 2000. ISBN: 978-0898714586. (see page: 24)

[WG98] Tim A. Wagner and Susan L. Graham. Efficient and flexible incre-
mental parsing. TOPLAS, 20(5), 1998. doi:10.1145/293677.
293678. (see pages: 48, 50)

[XZZ07] Mingji Xia, Peng Zhang, and Wenbo Zhao. Computational com-
plexity of counting problems on 3-regular planar graphs. Theoreti-
cal Computer Science, 384(1), 2007. doi:10.1016/j.tcs.2007.
05.023. (see page: 57)

[Yan81] Mihalis Yannakakis. Algorithms for acyclic database schemes. In
VLDB, volume 81, 1981. URL: https://dl.acm.org/doi/10.
5555/1286831.1286840. (see page: 38)

https://dl.acm.org/doi/10.1145/293677.293678
https://dl.acm.org/doi/10.1145/293677.293678
https://doi.org/10.1145/293677.293678
https://doi.org/10.1145/293677.293678
https://www.sciencedirect.com/science/article/pii/S0304397507004653
https://www.sciencedirect.com/science/article/pii/S0304397507004653
https://doi.org/10.1016/j.tcs.2007.05.023
https://doi.org/10.1016/j.tcs.2007.05.023
https://www.researchgate.net/profile/Mihalis-Yannakakis/publication/200034379_Algorithms_for_Acyclic_Database_Schemes/links/5745c2a708ae9f741b430b62/Algorithms-for-Acyclic-Database-Schemes.pdf
https://dl.acm.org/doi/10.5555/1286831.1286840
https://dl.acm.org/doi/10.5555/1286831.1286840

	Introduction
	Preliminaries
	Enumeration Algorithms for Query Evaluation
	Introduction
	Structure of the Chapter
	Efficient Enumeration via Knowledge Compilation
	Efficient Enumeration for MSO Queries on Trees
	Efficient Enumeration for Document Spanners
	Efficient Enumeration for Annotation Grammars
	Perspectives

	Maintaining Query Results over Dynamic Data
	Introduction
	Structure of the Chapter
	Incremental Maintenance of Enumeration Structures for MSO Queries on Trees
	Dynamic Membership for Regular Languages on Words
	Perspectives

	Query Evaluation over Probabilistic Data
	Introduction
	Structure of the Chapter
	Intractability over Unbounded-Treewidth Families
	Hardness for Unbounded Homomorphism-Closed Queries
	Hardness of Uniform Reliability
	Perspectives

