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1 Introduction

Earth is experiencing its 6th mass extinction: experts estimate that 20% to 50% of living
species may go extinct during the 21st century [Mil05]. In this context, understanding
ecosystems and their dynamics is crucial to be able to take conservation actions. Ecosys-
tems follow trajectories that can be abstracted into a state-transition graph mapping ev-
ery possible pathway, just like a road map in which the ecosystem'’s course can be tracked.
For example, a savanna can branch off towards alternative futures, such as getting en-
croached by bushes, turning into a forest, or drying out into a desert. These changes may
be reversible, cyclic or irreversible, i.e. resulting in the ecosystem being trapped in some
dead-end configuration. How an ecosystem moves along these trajectories is a question
that remains not entirely understood. Yet, human societies want to impact the ecosys-
tem’s course, for example to restore a degraded ecosystem or to sustain agricultural pro-
duction, all the more in the context of global warming that affects the ecosystem’s path-
ways. Methods to analyse such branching trajectories have been developed for decades
in computer science to verify automated systems, but remain largely unknown to ecol-
ogists. In this thesis, we showcase how this mathematical framework originating from
computer science can be adapted to fit ecology needs, we illustrate the insights it can
produce and discuss the new challenges that arise from it.

A state-transition graph (STG) describes the behaviour of a dynamical system, for example
an ecosystem, as a graph whose nodes are the discrete states of the system and whose
edges represent the transitions between these states. An STG is a kind of road map in
which the ecosystem travels following pathways that may branch off into distinct direc-
tions, converge together, be cyclic, etc. An example STG describing vegetation pathways
in Ethiopia is given in Figure 1.1. STGs are widespread in ecology, but they must not be
confused with interaction graphs such as the iconic trophic networks. The former repre-
sent the temporal trajectories of a system while the latter represent the processes taking
place between the entities composing a system.

In ecology, STGs typically represent community pathways, i.e. changes in the set of species
or populations of an ecosystem through time. Ecological STGs are often designed as user-
friendly tools enabling participatory model development and collaborative management
of ecosystems. As a graphical representation of the behaviour of the ecosystem, STGs
assist managers and scientists in collectively proposing policies driving the ecosystem
through desired pathways while avoiding others. Ecology encompasses a wide variety
of STGs whose analysis is mainly restricted to visual examination, yet recently an interest
in automated tools has arisen [Lar+12; WW20; SA21].

In computer science, STGs model the executions of automated systems. Computer scien-
tists design automated tools called model-checkers to ensure the absence of bugs during
software executions [Cla+18b]. Model-checkers verify whether the pathways within an
STG satisfy a given property, for example that a desired state is reached or that harm-
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Figure 1.1: State-transition graph. The states are embodied by illustrated boxes and the
transitions by arrows labelled with their main driving processes (& for fire, ¥ for plant recruit-
ment, and & for intensive grazing). Adapted from [LC18].
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ful behaviour is always avoided. Given a system description that can be computed into
an STG and a dynamical property written as a temporal logic formula, a model-checker
outputs whether the STG satisfies the property or not.

One main feature contributing to the success of model-checking is the design of symbolic
model-checking algorithms [Bur+92] that mitigate the combinatorial explosion problem (i.e.
the exponential growth of the number of states with the number of variables). Instead
of explicitly enumerating the individual states, a symbolic algorithm computes its output
by gathering sets of states into compact data structures [Bur+92; Cou+02]. In this thesis,
we propose to arrange these symbolic sets of states inside a component graph that is a
concise and graphical representation of a partition of the states of an STG.

Outline In this thesis, we argue that model-checking and component graphs are fitted
for the analysis of ecological STGs. More precisely:

» Theremainder of Chapter 1 gives some background for the concepts and case stud-
ies presented in this thesis.

» Chapter 2 gives formal definitions of state-transition graphs (STGs), component
graphs, and CTL model-checking.

» Chapter 3 presents ecco, a software that provides modelling and analysis tools for
ecological STGs.

» Chapter 4 presents two case studies using ecco: the vegetation successions of the
Ethiopian region of Borana, and the laboratory assembly of protists communities.

» Chapter 5 extends the temporal logic ARCTL [PRO7] with fairness, resulting in
FARCTL, and provides a symbolic model-checking algorithm for FARCTL.

» Chapter 6 illustrates the insights that FARCTL can bring to the analysis of ecological
STGs by applying it to the two case studies.

» Chapter 7 discusses the implementation choices and the perspectives.
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» Chapter 8 proposes a short logbook about working on an interdisciplinary research
subject.

An interdisciplinary thesis / How to read This thesis deals with an interdisciplinary
topic mixing computer science and ecology. It was done between two laboratories, IBISC
(Université Paris-Saclay, Univ Evry) for computer science and AMAP (INRAE) for ecology.
This manuscript reflects this interdisciplinarity. It was written with the aim of being intelli-
gible by both computer scientists and ecologists, explaining most technical concepts. The
remarks directed at computer scientists are putinside light orange boxes titled “Technical
remark”, while the remarks directed at ecologists are put inside green boxes titled “Ecol-
ogy". Readers interested in the computer science aspects of this work can skim through
Chapter 4 and Chapter 6 which detail the ecological case studies. On the other hand,
readers interested in the ecology aspects can skip the end of Chapter 5 which details the
FARCTL symbolic algorithm.

1.1 State-transition graphs in ecology

1.1.1 A new concept?

Although the word “state-transition graph” is unusual in ecology, ecologists have drawn
STGs for decades to represent the pathways between the discrete states of an ecosys-
tem. Indeed one can draw STGs without having a formal definition in mind. Many eco-
logical STGs were designed more as graphical summaries of the knowledge about the
dynamics of the studied system rather than as actual data. Thus, STGs have been reg-
ularly drawn in ecology under various names , for example “behaviour graph” [Pat71],
“kinematic graph” [Lon74], or “pattern” [Ber+14].

The lack of a unifying concept for STGs in ecology can be explained by the fact that STGs
are found in historically isolated research fields. In ecology, the state of an ecosystem is
often discretely abstracted by its community (i.e. restricted to its set of species or pop-
ulations). Subsequently, STGs are found in a wide variety of studies focusing on the dy-
namics of ecological communities. But the dynamics of plant communities (community
succession) and of animal communities (community assembly) were historically studied in
isolation from one another [YCHO1; CH16].

The intuitive nature of STGs and the isolation of their application fields resulted in the
lack of a formal unifying concept encompassing every STG instance found in ecology. In
this thesis, we propose the term “state-transition graph” (STG) to fill this conceptual gap.
This term has a straightforward meaning, is already used in systems biology to represent
the same concept [Abo+16], and is broad enough to encompass the particular features
of existing STGs. Moreover, it is in lexical proximity to the existing “state-and-transition
models” (STMs) which are a particular kind of ecological STGs, thus we hope that it will
sound intuitive to most ecologists.

Regrouping the numerous existing ecological STGs inside a uniting conceptual framework



1 Introduction

enables comparing their particular features and the design of common analysis tools. For
example, this conceptual framework can be linked to the existing toolboxes designed in
computer science and in systems biology [BCS13; BL16] to analyse such graphs. More-
over, the once isolated fields of community succession and community assembly are
nowadays more and more integrated together in ecological studies [YCHO1; CH16], thus
the study of their STGs should also be integrated inside a common framework.

Therefore, “state-transition graph”is not a new conceptin ecology, but rather a new name
integrating existing objects and providing a common framework to think and to analyse
them.

1.1.2 Background

The history of ecological STGs can be traced back to the vegetation successions described
by Clements at the beginning of the 20th century [Cle16]. Clements described how an
ecological community (i.e. a group of species) changes following a disturbance or the
initial colonization of the habitat. To that end, he drew STGs whose states were called
“seral stages”, whose most transitions were deterministic (i.e. with at most one outgo-
ing transition for each state) and converged toward an end state called “climax commu-
nity” [WWN89; YCHO1]. Clements compared ecological successions with organism devel-
opment, in his view an ecosystem develops itself toward the climax community that acts
like a fixed phenotype. The theory of Clements was highly influential until the 1960s.

Modern theories describe much less deterministic ecological successions, with alternative
pathways and multiple end states (or even no end state at all) [YCHO1]. Chance and his-
torical contingency are thought to play essential roles in ecological successions, which are
thus considered less predictable. This evolution of the theory of ecological successions is
reflected in the drawn STGs, as depicted in Figure 1.2.

Most STGs found in ecological succession studies (historically focusing on vegetation com-
munities) are drawn from observations and thus have a relatively small size (a few dozen
states at most). For example [CP02; Ber+14] depict the vegetation successions in boreal
forests, and [Lon74] the successions of dune slack vegetation. In addition, vegetation
succession studies also produced models outputting STGs, such as the “replacement se-
quences” of [NS77; Cat+79].

Other research fields in ecology, such as community assembly, produced STGs in-
dependently of the community succession field. For example, several studies out-
putted STGs from a wide diversity of modelling formalisms, such as boolean net-
works [Cam+11; RM16], timed automata [Lar+12; CLZ14], Petri nets [GP19], or qualitative
reasoning [SB06].

We will now detail two actively studied STG formalisms: “state-and-transition models”
stemming from community succession, and “assembly graphs” stemming from commu-
nity assembly.
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Figure 1.2: STGs reflecting the evolution of the vegetation succession theory. (a) Vegeta-
tion succession of Lake Michigan from [Cle16, Fig.8 p.218], this STG converges toward a climax
state (bottom-most state), showing primarily deterministic pathways. (b) Vegetation succes-
sion of Californian grasslands from [JBO2, Fig.2], this STG shows alternative pathways without
an end state.

State-and-transition models (STMs)

The most active research area using STGs and stemming from vegetation succession is
the empirical state-and-transition models (STMs). STMs are derived from observations and
are designed to cope with the non-deterministic and irreversible nature of observed dy-
namics [WWN89]. An STM consists of both: (1) a catalogue of possible alternative states
of the system; and (2) a catalogue of possible transitions between these states. STMs
are not theoretical models of vegetation dynamics, but on the contrary are designed as
an organisation of the empirical information suitable to the ecosystem management per-
spective [WWN89].

STMs aim to assist managers and scientists in collectively proposing policies driving the
ecosystem through some desired pathways while avoiding others. In order to remain
user-friendly [Bes+17], STMs' sizes usually do not exceed a few dozen states. While STMs
originally stem from rangeland management [WWNZ89], they are now used in many fields
such as natural park management [Cau13] (see for example the “EDIT” database housing
a large catalogue of STMs [Bes+16]), geomorphology [PV17], or agroecology [Tit20].


https://edit.jornada.nmsu.edu/
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Assembly graphs

The STGs stemming from the community assembly research field are called assembly
graphs [HP93; SA21]. Compared to community succession, community assembly focuses
on how a community assembles from a pool of species and on the short-term conse-
quences of invasion events. In an assembly graph, every state is a stable community (i.e.
a set of species), and every edge is an invasion by a species absent from the source state.
Contrarily to STMs, most studies involving assembly graphs are theoretical [LM93; SFS21],
yet a few are experimental [WLWO3]. Indeed assembly graphs are used to answer theo-
retical questions about community assembly, while STMs are used to answer empirical
questions about real-world ecosystem management.

1.2 Symbolic methods and model-checking

1.2.1 Background in computer science

Model-checking is an automated method for analysing any dynamical system that can be
modelled by states and transitions [CHV18]. As depicted in Figure 1.3, its goal is to check
that an automated system (hardware or software), given as a description that can be com-
puted into an STG ¢, satisfies a given dynamical property, usually written as a temporal
logic formula p. Amodel-checker is a software performing this operation, returning a yes/no
output depending on whether the STG G satisfies the property ¢ or not, generally with a
counterexample pathway for negative output. Most of the time, the queried property
models a bug in the system’s execution, thus the primary purpose of model-checking is
to ensure that an automated system is bug-free.

System description System dynamical properties
l Computation l Translation
State-transition graph G Temporal logic formula ¥

\/

Model-checker
checks whether G satisfies ¥ : yes/no

Figure 1.3: The model-checking methodology. Adapted from [CHV18].

Symbolic model-checking algorithms [Thi16] compute their output without explicitly ex-
ploring the state-transition graph. Instead of exploring the states one by one, symbolic
algorithms operate on sets of states gathered into compact data structures such as binary
decision diagrams [Bur+92]. Model-checking can thus be performed in a set-based setting,
returning the set of states satisfying the queried property. The main benefit of symbolic
model-checking algorithms is the mitigation of the combinatorial explosion problem (i.e.
the exponential growth of the number of states with the number of variables) thanks to
the compact data structures representing sets of states.
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1.2.2 Background in biology

Although model-checking was developed to hunt bugs in software, it can analyse all kinds
of STGs. In systems biology, STGs are outputted by models of reaction networks or reg-
ulatory networks [WSA12]. Model-checking is extensively used to analyse these mod-
els [BCS13; BL16], proving its suitability for studying biological systems. For example,
model-checking helped to validate models of nutritional stress response of Escherichia
coli [Bat+05], T-helper cell reprogramming [Abo+15], mammalian cell cycle [Tra+16] or
BRAF inhibition pathways in two different cancers [Béa+21].

Yet, model-checking has been very scarcely used in ecology. So far, most formal analy-
ses of STGs in ecology have been limited to graph measures [Phi11] and topology anal-
yses [Cam+11; RM16; GP19]. We identified only a few precursory applications of model-
checking in ecology [Lar+12; CLZ14; Bar+15]. These studies introduce a specific imple-
mentation of the model-checking methodology based on timed automata or P systems
to model and analyse the dynamics of ecosystems, such as coral reef fisheries.

1.3 Case studies

Along this thesis, we will use two running examples taken from both STM and assembly
graph literature, because they are the most active modern research fields using STGs. In
this section, we present the ecological background behind these examples. These exam-
ples will then be modelled and analysed in Chapter 4 Case studies and Chapter 6 Applica-
tions of FARCTL.

1.3.1 Borana STMs

The STMs developed by Liao and Clark [LC18; LCD18; Lia+20; Lia16], see Figure 1.4, de-
scribe the vegetation pathways of the Borana Zone in southern Ethiopia. Open canopy
woodland (a savanna-like vegetation class encompassing a grass layer with sparse trees)
was historically the most prominent vegetation class in Borana [LCD18]. But since gov-
ernment banned the use of fire in the 1970s, the region has been undergoing a rapid
increase in the density of woody plants (known as bush encroachment). As local people
predominantly practice pastoralism, the reduction in herbaceous cover threatens their
livelihood. Hence understanding the vegetation pathways is critical to help pastoralists
and policymakers to mitigate bush encroachment [Lia+20].

The STMs' states represent vegetation classes [LCD18], the STMs' transitions are labelled
by their main drivers, as is often the case in the STM framework. The STMs of Figure 1.4
showcase non-deterministic behaviour, i.e. some states have more than one outgoing
transition, as it is often the case in ecological successions. Moreover, the STM represent-
ing bush encroachment (Figure 1.4b) exhibits irreversible pathways, i.e. one-way only, for
example grasslands cannot be reached from any encroached state (dense scrubland or
closed canopy woodland).
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Figure 1.4: State-and-transition models of the Borana vegetation pathways. Taken
from [LC18, Fig.5]. (a) Before pastoralism, fire was the main driver of the rangeland dynamics.
The combination of fire, wildlife herbivory and vegetation recruitment maintained the entire
system in a loop between open canopy woodland and grassland. (b) The presence of cattle
and the fire ban gave a competitive advantage to woody plants, inducing an irreversible bush
encroachment. Concurrently, wildlife increasingly avoided the Borana zone because of the
denser human and livestock populations.

Accordingly to the STM perspective, the STMs of Figure 1.4 compare various ecosystem
management policies in order to help maintaining herbaceous cover. They are drawn
from empirical observations, and their sizes are limited to remain user-friendly. They
were designed for the purpose of answering questions such as:

» Which management policies prevent bush encroachment?
» Is bush encroachment reversible without changing management policy?

» Can a change in management policy reverse the bush encroachment induced by the pre-
ceding one?

1.3.2 Protist assembly graph

The two laboratory experiments performed by Law, Warren and Weatherby [WWL98;
WLWO03] studied how microcosms assemble through time from a pool of 6 protist species
(microscopic unicellular eukaryotes) feeding on a bacterial mixture. The first experi-
ment [WWL98] studied how each combination of species (i.e. community), taken from the
2° possible ones, behaved through time. For each possible community, the authors made
6 replicates and observed whether the community persisted or collapsed, i.e. whether the
community is stable or not. The outcomes differed between replicates for some commu-
nities, as depicted in Figure 1.5.

The second experiment [WLWO03] studied how each stable community, found in the first
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Figure 1.5: Community pathways from the first protist experiment. Each state represents
a community (i.e. a set of species), labelled with the initials of the present species between
brackets. Each transition represents an observed community change. This STG depicts the
community pathways observed from the {A, P,T} community. Taken from [Her+22, Fig.2].

Figure 1.6: Assembly graph from the second protist experiment. Each state represents
a community (i.e. a set of species), labelled with the initials of the present species between
brackets. Black states were found stable in the first experiment, and thus were subjected to
the invasion experiment; while grey states were found stable after invasion but not in the first
experiment, and thus were not subjected to invasion. The transitions represent either invasion
events (plain or dashed arrows labelled by the initial of the invading species), or collapses of
the community without any invasion (dotted arrows without label). Taken from [WLWO03, Fig.3].

experiment, responds to an invasion by another species from the pool [LWWO0O]. For each
stable community and invading species, between 4 and 6 replicates were made depending
on experimental constraints. As with the first experiment, the outcomes sometimes dif-
fered between replicates, resulting in branching arrows in the assembly graph depicted in
Figure 1.6. To our knowledge, these experiments are unique in being the only replicated
analysis which systematically explores the fate of all possible communities that can be
built from a pool of species.

These experiments were designed for the purpose of answering questions such as:
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» From how many initial states are each of the stable communities obtained? [WWL98]
» What are the impacts of individual species on community collapse? [WWL98]

» Are there catalytic species, that invade, change the community, and then go ex-
tinct? [WLWO03]

1.4 Contributions

This thesis presents formal methods based on model-checking for the modelling and the
analysis of ecological state-transition graphs. First, we introduce the concept of ecologi-
cal state-transition graph that, while being a novelty, captures a long history of disparate
representations of the dynamics of an ecosystem as a graph [Tho+22]. Then, we pro-
pose an analysis methodology based on the partitioning of the states of an STG using
model-checking, which results in component graphs. This methodology is implemented
inside ecco [PTG22a], a Python toolbox developed by Cédric Gaucherel and Franck Pom-
mereau for the formal modelling and the analysis of ecosystems. This approach is ex-
emplified in two case studies: (1) vegetation changes of the Borana Zone in Ethiopia un-
der diverse management scenarios [LC18; LCD18; Lia+20; Lia16], and (2) protists com-
munity assembly [WWL98; WLWO03]. We model and analyse the Borana vegetation dy-
namics [Tho+22], while Mathieu de Goér de Herve modelled and analysed the protists
experiments [Her+22] (the analysis has been redone and extended in the symbolic per-
spective presented in this thesis). Both case studies are limited by the fact that we would
want some specific events, for example changes in management scenarios or species
invasions, to occur only in a controlled manner. This limitation can be overcome using
Action-Restricted CTL (ARCTL) [PRO7], an extension of CTL that allows to restrict the set of
enabled actions along a formula. We extend ARCTL with fairness constraints, i.e. “realism”
constraints upon order and happening rate of events along a path, resulting in Fair ARCTL
(FARCTL). For this new temporal logic, we provide a symbolic model-checking algorithm,
that we implemented inside ecco. Finally, we apply FARCTL to both case studies, to in-
vestigate the consequences of shifting between management scenarios, and to look for
specific invasion behaviours.
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[ Summary

This chapter provides the formal definitions of the main concepts used throughout
the thesis. First, we define state-transition graphs and maximal paths within them.
Then we define component graphs, that is graphs representing partitions of the states
of an STG. Lastly, we define the model-checking problem and the CTL temporal logic,
in terms of both individual states (explicit perspective) and sets of states (symbolic
perspective). We also provide a catalogue of query patterns translated into CTL, in-
tending to ease the design of CTL formulas describing the system'’s behaviour.

2.1 State-transition graph

First, we give a definition of State-Transition Graphs (STGs) encompassing labelled transi-
tions. This definition is very comprehensive in order to cover every case, even if particular
instances may lack some features (although every instance presents at least a set of states
and a transition relation). Various examples of ecological STGs are given throughout this
thesis.

Definition 2.1 (STG G). Given a set of atomic state properties Ps and a set of atomic
action properties P4, a state-transition graph (STG) is a tuple G = (S, So, A, —, Vs, V),
where:

» Sis afinite set of states

» Sp C S asetof initial states

» Ais afinite set of actions

» —-C S x A x Sisatransition relation

» Vs : S — 2Ps maps every state to its atomic properties

» V4 : A 2PA maps every action to its atomic properties

% Ecology

Graphs are widespread in ecology, but STGs must be discriminated from interaction
networks such as the iconic trophic networks [May06; Pil+17]. Indeed, the former
grasp the temporal behaviour of an ecological system, while the latter grasp the pro-
cesses taking place between its components. A node (resp. an edge) of an STG is
a temporal stage (resp. an event, i.e. a state transition) of the system dynamics.
Whereas a node (resp. an edge) of an interaction network is an entity (resp. a flux) of
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the system. The methods presented in this thesis deal with the temporal changes of
a discrete-event system and thus are designed to analyse STGs specifically.

Note also that despite their orthographic proximity, “STG” and “STM” shall not be
mixed up. While STGs refer to a general mathematical concept, STMs are special
instances of STGs linked to a particular research field with particular features and
purposes (see Section 1.1.2).

We note s % s’ the fact that (s, a, s') €—. A state without outgoing transition is called a
dead-end, and we note s - the fact that #(s, a, s') €—.

Example 2.1. Not every STG found in ecology literature matches exactly definition 2.1.
For example, in the STG of Figure 2.1, we can naturally consider that:

» S = {Grassland, Sparse Scrubland, Open canopy woodland, .. .}.
> Py= {Q”, ‘I’,m}.
But for the other features:

» Spis not defined, thus we can take every subset of S as initial states, for example
we can take Sp = S.

» Ps is not clearly defined, and consequently Vs is not defined either, yet states
have various properties such as the presence of trees.

» A is not clearly defined but we can use the transition labels A = {&, ¥, Y&n},
and define V4 and — accordingly.

Grassland

"
Y
Sparse scrubland Dense scrubland
& Y D -
A &
| e v &
\ 4

Open canopy woodland

Y YRR
gl gy

Figure 2.1: Example state-transition graph. Adapted from [LC18].

In computer science, the state and transition description of the system is most of the
time defined as a Kripke structure (KS) or as a labelled transition system (LTS) [Cla+18b],
depending if either its states or its transitions are labelled. Our STG definition is equivalent
to mixed transition system [PRO7], combining both state and action labels. As in systems
biology [Abo+16; Tra+16], we will keep calling it state-transition graph (STG) for clarity.
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©2 Technical remark

Of course, an STG G can always be projected to a KS sub-structure (S, Sy, —', Vs) by
considering —'= {(s,s") | (s,a,s’) €=}, or to a LTS sub-structure (S, Sp, A, —,VA)
by forgetting the state labels. Conversely, any KS or LTS can also be extended into an
STG by adding empty state or action labels. Thus the methods developed for these
descriptions can also be applied to STGs, and vice versa. In the following, G is always
an STG combining state and action labels, unless specified otherwise.

Most questions about STGs focus on their induced pathways. A path 7 is a finite or infinite
sequence of states and transitions: sqp — 51 —2 s5 — .. .. The length of a path , noted
by |x], is its number of transitions. A path 7 of length || = 0 is restricted to a single state
so, @ path m of length |7| = oo is an infinite sequence of states and transitions. For i < ||
and ¢ € N, the i-th state of 7 is noted 7[i|s, and its i-th action is noted =[i] 4. We note
s —* s’ the fact that there is a path from s to s/, and s —* s’ the fact that there is a path
of length > 1 from s to s'.

Definition 2.2 (I1). A maximal path 7 is an infinite sequence of states and transitions,
or a finite sequence ending in a dead-end s . The set of all maximal paths starting
from a state s € S is noted I1(s), the set of all maximal paths of G is noted II(G).

% Ecology

In this thesis, we use the words “path”, “pathway” or “trajectory” interchangeably to
designate arbitrary sequences of state and transitions. Indeed, all these names are
used informally in ecology to represent this concept. Conversely, “maximal path” is a
formal concept that refers to paths that cannot be further extended. Maximal paths
are atthe very heart of the model-checking framework. In a maximal path, the system
cannot remain indefinitely in a state if there is an available transition: the maximal
path must be extended and so the system must move on. Note that any arbitrary
path can always be extended into one or many maximal paths. Thus, we can use
model-checking to investigate the properties of arbitrary paths by investigating the
properties of the beginning of maximal paths.

Example 2.2. If s is a dead-end s +, then II(s) consists of a single path of length O:
II(s) = {s »}.

We define two simple dynamical properties of STGs:

Definition 2.3. An STG G = (S, S0, A, —, Vs, V4) is deterministic if each state has at
most one outgoing transition:

Vs €S thereis at most one (s,a,s’) €—

Every state of a deterministic STG is the start of a single maximal path, thus the behaviour
of the system is also deterministic.

13
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©2 Technical remark

In other words, an STG is deterministic if its projection to a KS substructure is deter-
ministic. An other definition of determinism could be that an STG is .A-deterministic
if Va € A each state has at most one outgoing a-transition: Vs € S there is at most
one (s,a,s’) €—.

Definition 2.4 (SCC). An STG G = (S, 80, A, —, Vs, V4) is strongly connected if every
state is reachable from every other state:

Vs#£s €S s—14

In a strongly connected STG, for every pathway leading from s to s/, there is also a pathway
leading from s’ to s. Thus every state change can be reversed.

Example 2.3. Figure 2.2 presents two STGs derived from Figure 1.4. The STG of Fig-
ure 2.2a is strongly connected, i.e. every state can be reached from every other
state. Consequently, every path can be reversed and thus every state change can
be undone. Note that the reversed pathway may not be a simple backtracking of
the original one. For example, Open canopy woodland — Grassland cannot be sim-
ply backtracked: Grassland -+ Open canopy woodland, but a reverse pathway exists:
Grassland — Sparse scrubland — Open canopy woodland. Conversely, in an STG that
is not strongly connected, such as the one of Figure 2.2b, some state change cannot
be undone. For example, the pathway representing bush encroachment Grassland —
Sparse scrubland — Closed canopy woodland cannot be reversed.

Grassland Grassland

ol e i g
A A
Y Y
) Sparse scrubland Sparse scrubland Dense scrubland
v YED
3 ‘% L “iﬁ .% L
A A >
| | ) L4 LY %
Y

Open canopy woodland Open canopy woodland

(a) Strongly connected (b) Not strongly connected

Figure 2.2: Example of strongly connected or not strongly connected STGs. Adapted
from [LC18]. (a) The STG is strongly connected, thus every path can be reversed. (b) The STG is
not strongly connected, thus some path cannot be reversed.

14
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2.2 Component graph

The larger an STG is, the more difficult it is to analyse. In this thesis, we propose to build
component graphs that partitions S into components according to some chosen proper-
ties of interest. Instead of representing each state s € S individually, a component graph
only represents the partition of S and is thus a condensed representation of G according
the chosen properties.

Definition 2.5 (C). A partition C of a set § is a set of subsets of S such that every
element of S is included in exactly one element of C:

Uc:S and Vey,c0€C ci#co=ciNeg =10
ceC

For s € S, we note (s)¢ the element of C such that s € (s)c¢.

In the following, we partition the set of states S of an STG G, and we call components the
elements of this partition. Given a partition C of S, the states belonging to the same com-
ponent can be merged into a single state, resulting in a compact representation of C:

Definition 2.6 (G/¢). Given an STG G = (S, 80, A,—, Vs, V1) and a partition C of S
into components, the component graph G/¢ is the quotient STG G/¢ = (C,Co, A, —¢
, Ve, Va) where:

> Co={(i)c|i€So}
> —c={((s)c,a,(s)c) | (s,0,5") €= and (s)c # (s')c}

» Vo : C — 2Ps maps every component c to the atomic properties that are true for
every state s € ¢, i.e. Vg : ¢ = Ny, Vs(s).

&2 Technical remark

Labelling the components is not straightforward, as a component can embrace si-
multaneously states labelled with and states labelled without any given label. Thus
we could give various definitions of the component labelling function V¢, for example
labelling the components if all states are labelled accordingly as in the definition, or
labelling the components if at least one state is labelled accordingly.

Example 2.4. The simplest component graph has a single component: C = {S}, and
the most detailed component graph has only singleton components: C = {{s} | s €
S} which is equivalent to the STG itself. Yet, ecologists are primarily interested in
something in between with sufficiently few components to remain human-readable,
but with enough details to exhibit critical aspects of the dynamics.

Example 2.5. In existing ecological STGs, the states are sometimes already partitioned
according to some properties. For example, in Figure 2.3a the states are partitioned
according to vegetation types into 3 components: Coastal Prairie, Coast Range Grass-
land and Valley Grassland. The states belonging to the same component can be merged
into a single node, resulting in a component graph, see Figure 2.3b. Note that every

15
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path in the STG matches an equivalent path in the component graph, but every path
in the component graph does not necessarily correspond to a path in the STG. For
example there is no path from a state of the Coastal Prairie component toward a state
of the Valley Grassland component.

¥ 1
Daca.Hyra Daca.Hype ':‘Hyra.Elymus Cyec.Ruac

Coastal Prairie

Taca.Trifol ’:‘ Taca.Cyec kyec.Elymu Brho.Cyec
Coastal Prairie
X Ceso.Mepo
Taca ‘ Aica H Brdi ‘
K
Ceso.Vulpia
‘ Coast Range Grassland ‘
‘ Erbo Trifolium
Lomu.Lubi
Coast Range Grassland

‘ Valley Grassland |

—>|
Lowr.Erci
—

J

A,
‘ Lowr.Vulpia Brma.Lowr ' Erci

Valley Grassland

Brma.Vulpia Erci.Vulpia

il

¥

Il

Erci.Amte ‘

(a) Jackson and Bartolome 2002 (b) Component graph

Figure 2.3: Example component graph. (a) Vegetation successions of Californian grasslands
from [JBO2, Fig.2]. The partition of the states into three components is displayed by the colour
of the states and background. (b) The corresponding component graph where each component
is merged into a single node.

In a component graph, every node is a component, and every transition between two
components represents a transition between two states belonging to either components.
Each component can be represented symbolically, i.e. by a compact data structure that
does not enumerate individual states but represents a set of states (for example binary
decision diagrams). Thus a component graph is an hybrid object: combining symbolic
sets (the components) with their explicit relations (the transitions). Such hybrid objects
can provide efficient representations of large STGs [Bér+13; PTG22a].

2.3 CTL model checking

Model-checking is an automated method for analysing any dynamical system that can be
modelled by states and transitions [CHV18]. A model-checker checks that an STG g, satis-
fies a given dynamical property, usually written as a temporal logic formula ¢, as depicted
in Figure 2.4.

16
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System description System dynamical properties
l Computation l Translation
State-transition graph G Temporal logic formula ¥

\/

Model-checker
checks whether G satisfies ¥ : yes/no

Figure 2.4: The model-checking methodology. Adapted from [CHV18].

% Ecology

The system description, i.e. the mathematical model from which the STG G is com-
puted, see Figure 2.4, is not mandatory in the model-checking methodology. Indeed,
an STG G can simply be given as input to a model-checker. Complex ecological STGs
can be found directly inside empirical studies [WLWO03; Bar+18], without being com-
puted from any underlying mathematical description. Hence, model-checking is not
only a tool for the analysis of mathematical models, but can also assist the automated
investigation of empirical data.

Symbolic model-checking algorithms [Thi16] operate on sets of states without explicitly ex-
ploring the state-transition graph (hence the adjective “symbolic” as opposed to “explicit”).
These algorithms use compact data structures such as binary decision diagrams [Bur+92]
to gather a set of states without explicitly enumerating them, and use fixed point calcula-
tion to compute their results. Model-checking of state-based temporal logics can thus be
performed in a set-based setting, returning the set of states satisfying the queried prop-
erty. The main benefit of symbolic model-checking algorithms is the mitigation of the
combinatorial explosion problem (i.e. the exponential growth of the number of states
with the number of variables). In this thesis, we will also use the symbolic perspective of
model-checking to partition the states into components, as discussed above.

2.3.1 Computation Tree Logic (CTL)

Computation Tree Logic (CTL) is one of the most popular temporal logics [Cla+18b], be-
cause it is particularly fitted to express properties of branching dynamics with alternative
pathways. In this thesis, we focus on CTL (and some of its extensions in Chapter 5) be-
cause ecological STGs often involve such alternative pathways. Moreover, CTL is easily
expressed using sets of states under the symbolic perspective [Bur+92]. A CTL formula
describes a property over computation trees, noted CTs as at the beginning of CTL. A CT
is rooted at a given state s € S of the STG, and its branches are the alternative maxi-
mal paths Il(s) starting from s, see Figure 2.5). In computer science, an STG represents
the behaviours of an automated software system, thus every branch of a CT represents
an alternative software computation, hence the name “computation tree”. A CTL model-
checker checks whether the CT rooted in each state satisfies a CTL formula or not. Thus, a

17
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(a) STG (b) Computation tree rooted in the top state

Figure 2.5: Computation tree example. (b) The STG of Figure 1.4a. (a) The computation tree
rooted at the state depicted with a double border in the STG.

CTL model-checker can discriminate between the states whose CT satisfies a given prop-
erty and these whose CT does not.

CTL formulas are built by combining state properties, logical operators (such as —, A, V)
and temporal operators (such as VX or 3G). Temporal operators define properties of
the computation tree. For example, VX¢ means that all successor states of the CT's root
satisfy ¢, while 3Gy means at least one branch of the CT satisfies ¢ all along. Temporal
operators always combine a quantifier (3 or V) dealing with path branching, and a modality
(X, F, G, or U) specifying path properties.

First, we give the syntax of CTL, i.e. how state properties and operators (logical or tempo-
ral) can be combined into a formula.

Definition 2.7 (CTL syntax). The syntax of CTL is given by the following grammar over
state and path formulas:

» state formulas: god:efT |pE€Ps|—pl|prApa|Iy]|Vy

» path formulas: v def X | Fo | Go | ¢1Upe

A CTL formula is a state formula .

Now let us give the semantics of CTL, i.e. the formulas’ meaning. For s € S and ¢ a
state formula, we note s = ¢, the fact that the computation tree rooted at s satisfies .
Similarly, we note 7 |= v the fact that a maximal path 7 satisfies a path formula .

Definition 2.8 (CTL semantics). Given an STG G = (5,80, A, —,Vs,V4), lets € S a
state:

> sE=T
» s Epiffp e Vs(s)
> sEpiffs e e
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> s @1 Apaiff s =@ and s = g9
> s @1 Ve iffsk= @ ors g
» s | Jviff 3r € II(s) such that 7 = v
> s = Vyiff Vo € II(s) we have 7 =
Let 7 € II(G) a maximal path:
» 7= Xpiff|r] > 1land n[l]s = ¢
» 7 = Fpiff 3i € Nsuch thati < |7| and 7[i]s = ¢
» T = Gpiff Vi < |r|wehavei e N= 7li]s = ¢
» T = p1Upqiff 3i € Nsuchthati < || 7lils Ep2andV0<j <i 7[jls E¢1

A state property p € Ps is a Boolean property mapping over states, s |= piff sis labelled by
p. Complex state descriptions are built by combining state properties using the Boolean
logical operators: not (—), and (A), or (V). Other Boolean logical operators can be built on
top of the three ones above, such as the implication (=) defined as p = ¢ is equivalent to

(—=p) Vq.

The temporal operators of CTL are always the combination of two types of operators: first
a quantifier (3 or V) dealing with branching by quantifying over the paths starting from
a given state, second a modality (X, F, G, or U) specifying the order of properties along
a path, see Figure 2.6. Modality X species that the property is true in the neXt state of
the path. Modality F specifies that the property Finally becomes true at one step of the
path. Modality G specifies that the property is Globally true all along the path. Modality
U specifies that the left-hand-side property remains true along the path Until the right-
hand-side property finally becomes true. Indeed the syntax of CTL enforces that state
and path formulas must alternate when nested.

black @—>O—>O—0O—>0O0—>0O>

X black O—@—>0O—>0O0—>0—0O>
Folack O—0O—0O0—@—0O0—0O>

G black @—@—@—0—0—0 >
grey U black  O—O—>O0—>0—@—>O—>

Figure 2.6: Semantics of the temporal modalities. Adapted from [BKOS].

Temporal operators can be separated between existential and universal operators. Ex-
istential operators (3X, 3F, 3G, or 3U) specify that their modality has to be verified by at
least one branch of the CT (thus by at least one pathway of the STG starting from its root
state). Universal operators (VX, VF, VG, or YU) specify that their modality has to be verified
by every branch of the CT (thus by every pathway of the STG starting from its root state).
Examples of computation trees satisfying basic CTL formulas are given in Figure 2.7.
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FXF Y F Y FXF Y F Y FAXFC Y F Y
3F black 3G black 3 (grey U black)
FANF Y PO Y FAXF Y KO Y FAF Y KAy
V F black V G black Y (grey U black)

Figure 2.7: Example of computation trees satisfying basic CTL formulas. Adapted
from [BKO0S8].

Example 2.6. The two CTs of Figure 2.8 have distinct properties:

» the CTL formula “3F =" specifies that at least one state without trees is reach-
able from the root of the CT, which is satisfied in Figure 2.8b but not in Fig-
ure 2.8d;

» the CTL formula“3G Y” specifies that trees are always present along at least one
branch of the CT, which is satisfied for the left-most branch in Figure 2.8b but
not for its other branches, thus this CTL property is satisfied in both Figure 2.8b
and Figure 2.8d;

» the CTL formula “vG Y specifies that trees are always present all along every

branch of the CT, which is satisfied in Figure 2.8d, but not in Figure 2.8b.

Lastly, CTL operators can be nested to express even subtler temporal behaviour. For ex-
ample, VG(3F =) specifies that: all along every path (vG), the path can always branch off
to reach a future state (3F) without trees (=Y). While YG(3F =) holds in Figure 2.8b, the
simpler property VF =Y does not because trees never disappear in the left-most branch
of the CT.

&2 Technical remark

We defined CTL over finite and infinite maximal paths, whereas usual defini-
tions [BKOS8; Cla+18b] deal only with infinite maximal paths. Indeed STGs with
dead-ends, and thus finite maximal paths, are commonplace in ecology. Our def-
inition considers finite maximal paths as infinite paths staying indefinitely in the

dead-end. Thus in a dead-end s », s | 3Gy iff s = ¢. In contrast, we can define

3G*°¢p that holds only for infinite maximal paths: 3G*¢ e 3G(p A IXT). Note that
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(a) Before livestock (b) Computation tree rooted at the savanna state
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T T P L L 3
I ettt men up

e
.Y 2L
Ta.

T
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Figure 2.8: Borana computation trees for various scenarios. The two STGs (a,c) represent
the Borana vegetation pathways under two distinct management scenarios, see Figure 1.4 for
details. The two CTs (b,d) are rooted at the savanna states (open canopy woodland) of the
corresponding STGs, depicted with a double border. As the maximal paths are finite in the
STG (c), the branches of the CT (d) are also finite.

our definition of CTL and the classical one are strictly equivalent for infinite maximal
paths.

Note also that in a dead-end s -, there is only a single maximal path I1(s) = {s -»}.
As the length of this path is zero, neither 3X¢ nor VX—¢ are satisfied. Therefore,
contrarily to the classical semantics of CTL for infinite maximal paths, YX—¢ # =3Xp.

Theorem 2.1. For any ¢ € CTL and any state s € S, one and only one of 3X¢p, YX—¢
and —3XT holds in s. Thus they can be rewritten into one another:

IXep = (VX vV ~3XT)
VX=p = —(IXp vV —-3XT)
—IXT = (3K V ¥X—p)

Proof. If sis a dead-end s », thenIl(s) = {s »} but s »#F XT because |s » | =0,
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consequently s = 3XT, i.e. s = =3XT. Otherwise, either s = 3Xyp, or s = VX-¢p
because Vi € II(s) |n| > 1. O

In computer science, model-checking is used either to test that specifications are met or
to look for the presence of bugs. G represents the automated system being tested, and
¢ describes specifications or bugs. The model-checking problem consists in determining
whether all paths in G meet the specifications, or whether at least one path in G presents a
buggy behaviour (or said differently that all paths G do not present a buggy behaviour).

Definition 2.9. Given an STG G and a CTL formula ¢, the CTL model-checking problem
consists in determining whether Vsy € Sy so = ¢, noted G = .

% Ecology

Model-checking is a multipurpose tool that can be used both to investigate the tempo-
ral behaviour of STGs (representing empirical data or resulting from modelling) and
to validate models outputting STGs. Since model-checking is automated, it can pro-
cess STGs too large to be examined by hand. For example, CTL model-checking was
applied in systems biology to STG models made up of hundreds of variables [CFO3].

Human work is then limited to the design of temporal logic formulas, which beneficial
by removing ambiguity in definitions. Thus model-checking provides an adequate and
rigorous conceptual framework for thinking about the dynamical properties of STGs.
For example, CTL allows to represent the stability concept with invariance patterns.

Translating a dynamical property (i.e. a description of the system behaviour) written
in English into a CTL formula can turn out to be a delicate exercise for non-expert
users [DAC99]. One possible way to simplify this task is to provide users with a cata-
logue mapping query patterns to their translations in CTL, see Table 2.1 [Mon+08; Lar+12;
Tho+22]. In order to create even more complex queries, these patterns can be nested by
replacing x or y with any other pattern.

2.3.2 Symbolic CTL

The CTL syntax and semantics presented above are called the explicit perspective of CTL
because they deal with states and paths taken individually, i.e. explicitly. In this section, we
present the symbolic perspective of CTL that conversely deals with sets of states. While the
explicit perspective provides a more accessible intuition to the meaning of CTL formulas,
the symbolic perspective is computationally more efficient.

Until now, we considered CTL formulas as boolean functions over states:

p: § — B
T ifskEe
s {J_ if s -
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English description of the pattern CTL formula ¢
Reachability pattern
An z state can be reached IF(x)
An x state cannot be reached —3F(x)
Consequence pattern
If an z state is reached, then it is possibly followed by an y VG(z = JF(y))
state
If an z state is reached, then it is necessarily followed by an VG(z = YF(y))
y state
Sequence pattern
An y state is reachable and is possibly preceded at some time IF(z A 3F(y))
by an z state
An y state is reachable and is possibly preceded all the time I(zUy)
by an z state
An y state is reachable and is necessarily preceded at some IF(y) A =3(—zUy)
time by an z state
An y state is reachable and is necessarily preceded all the IF(y) AVG(—x = VG(—y))

time by an z state
Invariance pattern

x states can persist forever 3AG(z)
x states must persist forever VG(x)
x states possibly remain forever reachable 3AG(3F(x))
x states necessarily remain forever reachable VG(IF(x))
x states are necessarily reached infinitely often VG(VF(z))
Reachability & Invariance pattern
Itis possible to reach a state from which z states can persist IF(3G(x))
forever
It is possible to reach a state from which x states must per- IF(VG(x))

sist forever

Table 2.1: Catalogue mapping query patterns to their translations in CTL. x and y are
place-holders for state properties. Adapted in [Tho+22] from [Mon+08].

This perspective was explicit, meaning that the semantics of ¢ was defined element by
element of S. But the semantics of ¢ can also be defined under a symbolic perspective as
a subset of S:

p={seS|skeptcS

Under the symbolic perspective, state properties p € Ps and logical operators are defined
as:

» T=S§

> p={seS|peVs(s)}

» A= isthe setintersection

» V=U isthe setunion

» : ZCS—S\Z isthesetcomplement

From now on, we only consider CTL state formulas, i.e. we only consider temporal oper-
ators resulting from the combination of quantifiers (3, V) and modalities (X, F, G, U), and
overlook isolated modalities related to CTL path formulas. Under the symbolic perspec-
tive, the temporal operators of CTL (3X, VX, 3F,VF, 3U, VU, ...) are functions over set of
states: 7 : P(S) — P(S). The temporal operators of CTL can be defined as iterative com-
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binations of the predecessor function Pred : Z € P(S) —~ {se€ S |3 € Z s — s} e
P(S), logical operators and state properties.

| Proposition 2.1. 3X¢ = Pred(y), we thus use 3X for Pred in the following.

Proof. The states that have a successor in ¢, i.e. 9X¢, are the predecessors of ¢, i.e.
Pred(p). 0O

If we combine Proposition 2.1 with Theorem 2.1, we have a symbolic definition of both
IX and ¥X.

Example 2.7. The CTL formula dFp (the set of states that start a path leading to p)
can be computed iteratively from p using the set union and the predecessor function.
Starting from p, we can add the predecessors of p using the set union. Then we can add
the predecessors of this set using the set union (i.e. the predecessors of p from a path
of length two). We can keep adding predecessors which are more and more remote
from p, until we add the most remote predecessors (as S is finite, predecessors cannot
be infinitely remote). At this point, adding predecessors does not enlarge the set, i.e. a
fixed point is reached, which is our stopping criteria. This procedure computes 9Fp in
a finite number of iterative steps (that is the distance of the most remote predecessor
of p).

Example 2.8. We give a more formal description of the iterative procedure computing
dFpusing T : Z € P(S) — (pV IXZ) € P(S):

» the set () = p v IX(D) = pis the set of states that are in p

» theset72(()) = pv3X(p) is the set of states that are in p or which have a successor
inp

» the set 73(0) = p v IX(p vV 3X(p)) is the set of states that are in p, or which have
a successor in p, or which have a successor that have a successor in p

» the set 7%(()) is the set of states which have a path of length at most k — 1 leading
top

The sequence (7¢(0));en is increasing (for the set inclusion C). Because S is finite it
reaches a maximum, i.e. a fixed point is reached, in a finite number n < |S| of steps
(or more precisely n < the diameter of G, i.e. the length of the longest path visiting
distinct states). 7(0) is the set of states that are the start of a path leading to p. Thus
we have an iterative and set-based way of computing 3Fp.

Every remaining CTL operator can be decomposed into two sub-properties: one that in-
volves only the current state, and another that involves the successor states (3X or VX)
recursively:

dFe = ¢ Vv IX(IFyp) VFp = ¢ VVX(VFyp)
3Gy = o A (IX(3Gp) v =3XT) VG = o A (VX(VGy) V ~3XT)
F(p1Up2) = @2 V (1 A IX(3(p1Ugp2))) V(p1Upa) = w2V (o1 AYX(V(p1Up2)))

Then, the recursive part of this decomposition can be addressed using a fixed point, i.e.
the recursion is repeated until a fixed point is reached.



2.3 CTL model checking

Definition 2.10. Let 7 : P(S) — P(S) a function, a fixed point of 7 is any Z € P(S)
suchthat(Z) = Z.

Theorem 2.2 ([McM93]). If S is finite, and if 7 is monotonic (S C S’ = 7(S) C 7(5")),
then 7 has a least fixed point noted p Z.7(Z) (the smallest for the set inclusion) and a
greatest fixed point noted v Z.7(Z) (the largest for the set inclusion).

Moreover 3n € N such that u Z.7(Z) = 7™(0) and v Z.7(Z) = 7™(S).

Starting from (), 7(0), 72(0), 73(0), . . . forms an increasing sequence of sets, thus  Z.7(2)
can be built by adding states iteratively. Intuitively, “u means finite looping” [BSO7b] be-
cause each state in p Z.7(Z) has been added at some step, depending on a finite chain of
iterations. Conversely, starting from the whole S, 7(S), 7%(S), 73(S), . . . forms a decreas-
ing sequence of sets, thus v Z.7(Z) can be built by removing states iteratively. Intuitively,
“v means infinite looping” because each state not in v Z.7(Z) has been removed at some
step, depending on a finite chain of iterations. Thus, for the states remaining in v Z.7(2)
we can iterate the removal condition indefinitely without removing them.

This intuition matches the definition of CTL temporal operators as fixed points, see Ta-
ble 2.2 and proofs in Annex A.1. For example, 3Fy is defined as u Z.p v 3XZ, correspond-
ing to the states that have a path along which we can finitely travel before reaching .
Similarly, 3Gy is defined as v Z.po A (IXZ vV =3XT), corresponding to the states that have
a path along which we can infinitely travel while satisfying ¢.

3 v
X IXp = Pred(y) VX =3XT A -3IX=p
F Jro=pZeoVvIXZ VFo =pnZ.o VvV VXZ
G AGp =v Z.p A (IXZ vV =3XT) VG =v Z.p A (YXZ Vv —3XT)
U (p1Up2) = Z.pa V (p1 A IXZ) V(p1Upa) = uZ.pa V (91 ANVXZ)

Table 2.2: Fixed point definitions of CTL operators.
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3 ecco: a modelling and analysis toolbox

A Summary

This chapter presents ecco, a Python toolbox for the design and the analysis of formal
models of ecosystems that is used in the case studies throughout the thesis. Models
in ecco result in STGs, whose states are based upon Boolean variables, and whose
transitions are derived from if-then rules. The model analysis in ecco is performed
by interactively refining a partition of the state space, using either topological or CTL
state properties. Thus, a component graph is incrementally built during the analysis,
highlighting some particular behaviours of the system defined by the chosen state
properties.

ecco [PTG22a] is a Python [Pyt] library aimed at providing tools for the formal modelling
and analysis of ecosystems. ecco consists of both: (1) a modelling language called Re-
action Rules (RR) computing into STGs; and (2) an interactive analysis toolbox based on
component graphs. In this thesis, we use ecco in the case studies of Chapter 4 and
Chapter 6 to compute STGs and to analyse them. ecco has been developed and used
for years to model and analyse varied ecosystems [GP19; Di +20; Gau+21; Mao+21;
Cos+22; PTG22b]. ecco is available as a free software released under the GNU LGPL,
hosted athttp://github.com/fpom/ecco, andisintended to be used within Jupyter note-
books [Per18].

Each state of an RR model consists of a vector of Boolean variables representing the func-
tional presence or absence of the components of the system. The transitions are gener-
ated from the execution of if-then rules (if the condition is fulfilled, then the consequence
may arise). A similar a methodology had been previously proposed [Ryk89; Sta90] to
model expert knowledge about ecosystem dynamics. Starting from a set of initial states,
the full STG is computed by the cascading applications of rules. This modelling approach
is exemplified in Figure 3.1.

Instead of analysing the STG explicitly (by considering every state and transition individ-
ually), ecco proposes to incrementally build a component graph representing critical fea-
tures of the dynamics in a human-readable way. Starting from the simplest component
graph (composed of a single component: C = {S}), the modeller incrementally and inter-
actively refines the partition by splitting components with regard to user-chosen proper-
ties. Throughout the various component splits, the modeller deepens their understanding
of the system dynamics, enabling them to formalise new questions to split the component
graph further. The global question resulting in the final component graph often could not
have been raised without these incremental steps, because the modeller does not know in
advance how the system behaves. Moreover, this interactive and incremental workflow
provides a user-friendly interface to ecologists unfamiliar with formal analysis. Indeed,
whereas the explicit STG can often be overwhelming for the modeller because of its size
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Figure 3.1: Toy example of RR modelling. Modelling of the STM of Figure 1.4a [LC18]. (left)
into an RR model (middle: system description) from which an STG can be computed (right).

and the complexity of its dynamics, this workflow starts with the simplest representation
of the STG and incrementally complexifies it at each splitting step. Thus the complex-
ity of the component graph (the refinement of the partition) can be finely tuned by the
modeller. The global question resulting from these incremental steps may be much more
complex than what the modeller would be able to formalise a priori.

3.1 A modelling language : Reaction Rules (RR)

The RR modelling language used in ecco involves variables and rules [GP19; PTG22b]. Vari-
ables are the biotic, abiotic and anthropic entities of the ecosystem, modelled as Boolean
variables (on/off, noted as +/-). Rules define how variable values may evolve by apply-
ing an effect (assignment of variable values) depending on a guard (condition on variable
values).

3.1.1 Syntax

This section describes how to write an RR model. Figure 3.2 shows a toy version of the Bo-
rana model that will be presented in Chapter 4. Variables are declared first by giving each
of them a name, an initial state (“+" for on, “"-" for off, or “x” to allow either initial values),
and a textual description. For instance, variable Gr is declared initially on and models the
presence of grasses in the ecosystem. A variable is considered functionally present if its
presence has an observable influence on the system, and functionally absent otherwise.
Variables influencing the system without being influenced in turn are called controls, for
example climatic conditions or management policies. Controls remain constant along the
dynamics, thus two states with distinct control values are out of reach from one another.
The initial state of a control is often undefined, for example Fbx, in order to model distinct
scenarios: both Fb+ and Fb- are considered as initial states of the system. Variable dec-
larations are organised into arbitrarily chosen categories (except for “rules”, which is a
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reserved keyword). For instance, variable Gr is declared within category variables while
variable Fb is declared within category controls. These categories are for information
purposes only and have no consequence on the semantics.

variables:
Gr+: Grasses
Sh-: Shrubs
Tr-: Trees

controls:
Fbx: Fire ban

rules:
[high fire] Fb-, Gr+ >> Sh-, Tr-
[low fire] Fb-, Gr+ >> Sh-
[browsing] Sh+ >> Sh-
[grazing + recruitment] Gr+ >> Sh+, Tr+

Figure 3.2: RR toy model of the Borana vegetation pathways. Rules are named for refer-
ence using a comment at the end of lines.

Rules are listed after variable declarations and consist of two sides separated by “>>": the
left-hand side is the guard, that is, the condition for the execution of the rule; the right-
hand side is the effect, that is, the variables assignment that takes place upon execution
of the rule.

For instance, rule R1 specifies that if fire is not banned (Fb-) and grasses are present (Gr+)
then high fire may occur, resulting in the disappearance of both shrubs and trees (Sh- and
Tr-). Rules may be prefixed by arbitrary tags enclosed into square brackets, like “[high
fire]”in rule R1, that can be referred to during analysis. Comments, like “ ", play no
role in the semantics.

K1 Limitation

RR could easily be extended with multivalued variables, representing different thresh-
olds having distinct effects. The possible values would be defined during variable
declaration and used in the guards and effects of the rules. For the time being, ecco
is limited to Boolean variables in order to keep models as abstract as possible, and
because in practice data is often lacking about thresholds’ existence or ordering.

3.1.2 Semantics

This section describes how an STG is computed from an RR model. The execution of an
RR system is defined in terms of operational rules involving states, i.e. valuation of its
variables, and transitions, that are executions (called firings) of the rules allowing to build
new states from existing ones:

» The initial states are defined from the declaration of the variables, either they are
initially on/off, or both values are considered (like Fb* in Figure 3.2).
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» Aruleis enabled when its guard is satisfied by the state and its effect is not already
realised.

» If noruleis enabled at a state, then this state is a dead-end.

» Firing arule R enabled at a state s is made by applying the effect of R onto s, yielding
a new state s’ # s, which is a transition noted by s — '

» The states obtained by firing rules from a given state are called its successors.

If we note a state by the set of variables it valuates to on, the model defined in Figure 3.2
has two initial states: {Fb, Gr} and {Gr}. Rule R4 is enabled in both states because we have
Gr+ (condition) but not Sh+ nor Tr+ (effect). So it may fire and we have two transitions
{Fb,Gr} X% {Fb,Gr,Sh,Tr} and {Gr} 2% {Gr,sh,Tr}. In the initial states, rule R3 is not
enabled because its guard is not satisfied. Rules R1 and R2 are not enabled from the
initial states either because in {Fb, Gr}, even if the guard is satisfied, the effect is already
realised, and in {Gr} the guard is not satisfied.

An STG is generated from an RR model by repeatedly applying the firing rules from the
initial states and all newly obtained successor states. The STG obtained from our toy
model is depicted in Figure 3.3 and is computed as follows:

» We start from the initial states {Fb,Gr} and {Gr} (drawn at the top).

» The possible transitions are:
- {Fb,Gr} X% {Fb,Gr,Sh, Tr}

- {6r} ¥ {Gr,sh,Tr}
which yields two new states (drawn in the middle).

» Then, the possible transitions are:
» {Fb,Gr, Sh, Tr} 2 {Fb,Gr, Tr}

» {Gr,sh, Tr} 2% {Gr}
- {Gr,sh, Tr} 2% {Gr,Tr}
« {Gr,sh,Tr} & {Gr, Tr}
which yields only two new states (drawn at the bottom), one of which being obtained
twice, and the state {Gr} already existing.
» Then, the possible transitions are:
« {Fb,Gr, Tr} =% {Fb,Gr, Sh, Tr}
. {Gr,Tr} 2 {61}
- {Gr,Tr} * {Gr,sh,Tr}
which does not yield any new state, so the computation stops.

The STG resulting from this computation exhibits two disjoint subgraphs corresponding
to the two initial values of control Fb.

©2 Technical remark

In this thesis, we give an operational semantics of RR models, i.e. describing how the
computation of an RR model takes place step by step. The semantics of RR models
can also be given in terms of Petri Nets, see [PTG22b].
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Figure 3.3: STG computed from the RR toy model of Figure 3.2.

Moreover, instead of a list of variables and rules (Figure 3.2), an RR model can be
represented as a hypergraph (each variable is a node and each rule is a hyperedge)
where the relationships between the variables are made visual, see [PTG22a].

3.2 An interactive analysis interface based on component graphs

The STG computed from an RR model is represented in ecco as a component graph. Start-
ing from the simplest component graph consisting of a single node (i.e. the partition is
restricted to a single component S enclosing all the states), the user incrementally and
interactively refines the partition by splitting or merging components. In doing so, a large
STG may be represented efficiently by a small component graph that can be seen as a
hybrid object mixing symbolic components with explicit information about their relation-
ship. The size of the component graph can be finely tuned as every incremental splitting or
merging step only add or remove a limited number of components. As the user incremen-
tally refines the partition step by step, they are able to fully understand the component
graph even when the partition ends up being quite complex.

3.2.1 Splitting with respect to state properties

State properties, such as the value of the variables, can be taken as a splitting criterion.
For example, a component can be split between the states where a chosen variable is on
and the states where this variable is off. More generally, a component can be split with
respect to any Boolean formula over the variables (built with —, A, V), separating the states
whose variables satisfy the formula from these that do not.

Similarly, the set of initial states Sp may be split apart, as being an initial state is a state
property. Indeed, initial states were chosen by the modeller because they are an inter-

esting starting point for the investigation of the system'’s behaviour.

Finally, as the semantics of CTL formulas is defined upon states, satisfying a CTL formula
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@ is a state property. It can be taken as a splitting criterion, just like in the symbolic per-
spective of CTL:

p={seSlskE¢rCS

Thus by intersecting a component with ¢, we can splitit between the states that satisfy the
formula and the states that do not. Any other temporal logic whose semantics is defined
upon states could be used as a splitting criterion in the same way (such as the extensions
of CTL that will be presented in Chapter 5).

3.2.2 Splitting with respect to topology

Considering an STG, we can partition its set of states S into its topological components:

» Astrongly connected component (SCC) is a maximal set SCC' C S of states such that
Vs # s € SCC : s = §. Intuitively, an SCC represents a set of states within
which the system may stay in the long term, which corresponds to a stability (or a
multistability, as systems biology calls it) of the system.

» The convex hull of the SCCs is the smallest set H C S that contains all the SCCs
and such that Vs # s’ € H if 3s” such that s —* s” and s —* ' then s” € H.
Intuitively H is the union of the SCCs plus the states between them. Our experience
shows that, at a first attempt, the SCC hull H makes a better component choice than
the individual SCCs themselves, which are often too numerous to build a human-
readable component graph.

» The dead-ends are the states with no successors {s € S | s »}.

©2 Technical remark

Note that in contrast with the usual definition, we exclude trivial SCCs consisting of
only one state, because they do not represent a long-term behaviour (contrarily to
multi-state SCC within which the system can remain trapped indefinitely long). More-
over, splitting with respect to trivial SCCs could lead to a large component graph with
many singleton components, which conflicts with our readability goals.

A topological decomposition splits apart some topological components chosen among
SCCs, SCCs hull, and dead-ends. Afterwards, the remaining states can be split into the
basins leading to these chosen components. Given a set {C1,...,Cy} of components,
two states s, s’ ¢ {C1,...,Cy} are in the same basin iff they allow to reach exactly the
same C;s [Bér+13]. For a cleaner presentation, the dead-end component may be merged
with the basin leading solely to it. Such a decomposition can be applied to the full STG, or
to any arbitrary component.

3.2.3 Implementation

ecco can berun or installed as a Docker & image [Boe15] to ease its use. The distribution
includes a script that can be the single installed element and that takes care of starting
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3.2 An interactive analysis interface based on component graphs

Docker with the appropriate options. For instance, with this script and Docker installed,
starting ecco just requires running “ecco -mount=." from the command line. This re-
trieves online the Docker image for the latest version of ecco, starts it with access to the
files in the current directory, and opens Jupyter in the default web browser. The Docker
image also features JupyterHub that is a multi-user server for Jupyter notebooks [Per18].
Thus, ecco is readily configured to support multiple users with separated accounts.

The library ecco mainly consists of (1) a Cython module that interfaces with ITS-tools
and 1ibDDD [Thi15] to provide a symbolic STG class that is used by (2) a frontend that
provides a component graph class to compute and split hybrid component graphs from
symbolic STG objects. ecco gathers set of states into a compact data structure (based on
Data Decision Diagram, DDD [Cou+02]) from which the set of successor (or predecessor)
states can be efficiently computed [Bry18]. The CTL model-checker integrated into ecco is
symbolic as well and based on the fixed points of Table 2.2. It computes as a DDD the set
of states of the STG satisfying a query formula, and a yes/no answer can be obtained by
intersecting this set with the set of initial states. As sets of states are symbolically stored,
the computation remains efficient even for huge models, and thus the analysis can remain
interactive.

A typical ecco session is organised as follows:
1. An RR model is loaded.

2. An STG object is built by translating the RR source file into a GAL source file [Thi15,
Sec. 5]. The GAL is then loaded by ITS-tools to provide the symbolic transition
relations of the STG object. From a set of initial states, the set of reachable states S
is computed using the symbolic transition relations.

3. The user builds component graphs from the STG by splitting or merging compo-
nents.

Examples of ecco sessions are given in the next chapter.

Each component graph is an immutable object, and the components are numbered con-
sistently across all component graphs. A component graph object also comes with tabular
representations of its nodes and edges stored as Pandas dataframes [McK11]. The nodes
table has the following columns displaying information about each component:

» node: the component number.

» size: the number of states in the component.

v

on: the variables that are on for every state within the component.

off: the variables that are off for every state within the component.

v

topo: the topological properties of the component, has_init means that the compo-
nent has initial states, is_init that it has all the initial states, etc.

v

» hasno, has, contains, isin, equals: the relationships between the component and the
temporal logic formulas that have been tested against it, as illustrated in Figure 3.4.

The edges table is simpler and straightforward. Both tables may be augmented by the
user with arbitrary columns. The columns' content may be used to tune the graphical
presentation of the component graph, e.g. the nodes’ colours or labels.
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C
C C ¥ C=y
P ) ¥ C
hasno has contains isin equals

Figure 3.4: The possible relationships between a component C and the set of states that satisfy
a property ¢ [PTG22a].

A critical aspect of the nodes table is that its “relationship” columns (hasno to equals) are
updated each time a formula is checked against some components. This information is
then inherited by any new component graph obtained through further splits so that the
nodes table keeps track of how a component graph has been obtained through successive

splits. Altogether, the shape of a component graph and its nodes and edges tables exhibit
the understanding built incrementally by the user.



4 Case studies

[ Summary

This chapter presents two case studies exemplifying the concepts and tools presented
in the previous chapters. First, we model the vegetation changes of the Borana Zone
in Ethiopia, taking into account diverse management scenarios. Using CTL formulas,
we build a component graph representing bush encroachment, and find manage-
ment policies preventing it or making it reversible. Second, we model protists com-
munity assembly based on the results of laboratory experiments. We build a compo-
nent graph partitioning the states with respect to the stable communities they lead
to using topological properties. Then we compare two versions of this component
graph, fixing a specific species as initially present or absent, to investigate the impact
of this species on the behaviour of the system.

The ecco notebooks encompassing the case studies presented in this chapter can be
found in [Tho22]. Both the RR model file and the python analysis notebook are given
for each case study, along with a static html preview of the notebook. Computing all the
results took only a few seconds on a modern laptop (Linux 5.4 Mint/Ubuntu, 32G RAM,
CPU Intel Core i7-7820HQ 2.9GHz).

4.1 Borana vegetation model

The vegetation of Borana Zone in southern Ethiopia, see Figure 4.1, is undergoing bush
encroachment, that is the proliferation of woody plants resulting in impenetrable thickets
where grasses are absent. The lack of grasses threatens local people’s livelihood, which
predominantly relies upon cattle herding. Bush encroachment results from a change in
ecosystem management policies, such as the fire ban by the government from the 1970s
towards the 2000s, or the increase in grazing intensity resulting from sedentarization.
Borana Zone has historically and spatially experienced various management policies, for
example the crop cultivation ban until the 1950s’ or the grazing ban in some forest areas
for conservation purposes, resulting in different vegetation pathways. Changes in veg-
etation pathways cannot always be reversed, for example traditional pastoralism using
fire can prevent bush encroachment but cannot reverse it, because both fire and graz-
ing need a minimal herbaceous cover. Local people and policymakers are interested in
finding management policies (historical ones or new recommendations) achieving par-
ticular goals, for example preventing or reversing bush encroachment while maintaining
livelihood.

Liao et al. described the vegetation pathways of the Borana Zone in terms of states and
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Figure 4.1: Pictures of Borana Zone. Taken from Workshop in Borana, Ethiopia, 2012 (flickr)
authored by Anton Eitzinger, Climate Change, Agriculture and Food Security under (CC BY-NC-SA

2.0).

transitions. First, they drew historical vegetation pathways as State-and-Transition Mod-
els, see Figure 4.2, using plant survey and cattle tracking [LC18]. Second, they defined
states as vegetation classes, and recorded the transitions among vegetation classes be-
tween 2003 and 2013 using satellite imagery [LCD18]. Finally, they discussed existing and

recommended management policies to mitigate bush encroachment [Lia+20].
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Figure 4.2: State-and-transition models of the Borana vegetation pathways. Bush en-
croachment is prevented in the “before livestock introduction” scenario and in the “with live-
stock and fire” scenario, but always occurs in the “with livestock and fire ban” scenario. Taken

from [LC18, Fig.5].
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“A big opportunity lies in applying the STM framework to forecasting future ecosys-
tems under novel conditions. [...] Exploring the future in an STM framework can
build a constructive ecology where novel ecosystems can be imagined, but in a
disciplined way, restricted by well founded knowledge about processes and transi-
tions.” [WWZ20]
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4.1 Borana vegetation model

Based on the literature [Lia16; LCD18; LC18; Lia+20], we built an RR description of the Bo-
rana vegetation pathways [Tho+22], called “Borana model" in the following, from which an
STG can be computed using ecco [PTG22a]. While most STGs found in ecology are directly
drawn from observations, we want to show that a complex STG can be computed from a
compact mathematical system description. This enables the construction of models not
only based on past observations but also forecasting novel behaviours, which is a current
challenge in the STM framework [WW20]. While each STM of Figure 4.2 represents an
observed scenario, the Borana model embraces the same historical scenarios as well as
other recommended management scenarios to foresee their cascading effects.

The complete Borana model consists of 15 variables, including seven controls, see Fig-
ure 4.3), and 19 rules, see Figure 4.4. The variables represent plants, animals or man-
agement scenarios, while the rules are built from the description of recorded transitions
available in the literature. For example, rule R2 embodies the following description: “High
intensity fire could change the landscape into a grass-dominated system.” [LC18] Justifications
of the modelling choices assumed by the Borana model are given in Annex A.2. Each val-
uation of the variables describes a state of the Borana ecosystem, that can be classified
into vegetation classes [LCD18], see Table 4.1. Each valuation of the controls defines a
specific scenario for the management of the Borana Zone, i.e. a combination of altitude
and management policies, inspired by historical management and recommendations to
limit encroachment [Lia+20]. The control variables never change in consequence of the
rules, see Figure 4.4, hence they influence the system without being influenced by it.

variables: controls:
Gr+: Grasses Alt*: Altitude
Sh-: Shrubs Fb*: Fire ban
Tr-: Savanna trees Cb*: Crop ban
Sa-: Tree saplings Wlx: Wildlife
Cr-: Crops Ps*: Pastoralism
Lv-: Livestock (cattle) Ig*: Intensive grazing
Gz-: Wild grazers BLv*: Browsing livestock

Bw-: Wild browsers

Figure 4.3: Variables of the Borana model.

Vegetation Class State property

Closed Canopy Woodland Gr-, Sh-, Tr+, Sax, Cr—
Dense Scrubland Gr-, Sh+, Tr+, Sa*, Cr—
Bushland Gr-, Sh+, Tr-, Sa*, Cr—
Open Canopy Woodland Gr+, Sh—, Tr+, Sa*, Cr—
Sparse Scrubland Gr+, Sh+, Tr*, Sa*, Cr—
Cultivated Land Gr-, Sh-, Tr*, Sa-, Cr+
Grassland Gr+, Sh-, Tr-, Sa-, Cr—

Sparsely Vegetated Land Gr-, Sh-, Tr-, Sa—, Cr-

Table 4.1: Borana vegetation classes [LCD18] as state properties. These vegetation classes
form a partition of the states. Note that grasses are considered functionally present (Gr+) in the
Sparse Scrubland class although covering only between 10% and 30% of the surface [LCD18],
indeed both fire and grazing occur in Sparse Scrubland [Lia+20].

The Borana model has 27 = 128 initial states, one for each scenario, i.e. one for each val-
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rules:
[Low fire] Fb-, Gr+ >> Sh-, Sa-, Lv-, Gz-, Bw-
[High fire] Fb-, Gr+ >> Sh-, Tr-, Sa-, Lv-, Gz-, Bw-
[Trees] Sa+ >> Tr+
[Grass] Sh-, Tr-, Sa-, Cr- >> Gr+
[ccw] Alt+, Fb+, Gr-, Sa+ >> Sh-, Tr+
[Bushland] Alt-, Sh+, Tr- >> Sa-
[Grazers] Wl+, Gr+, Lv- >> Gz+
[Browsers] Wl+, Sh+, Lv- >> Bu+
[Browsers] Wl+, Sa+, Lv- >> Bu+
[Livestock] Ps+, Gr+ >> Lv+, Gz-, Bw-
[Livestock] Ps+, BLv+, Sh+ >> Lv+, Gz—, Buw-
[Livestock] Ps+, BLv+, Sa+ >> Lv+, Gz-, Buw-
[Grazing] Gr+, Lv+ >> Sh+, Sa+
[Grazing] Gr+, Gz+ >> Sh+, Sa+
[Intens. graz.] Ig+, Lv+ >> Gr-, Lv-
[Browsing] Bw+ >> Gr+, Sh-, Sa-, Bw-
[Browsing] BLv+, Lv+ >> Gr+, Sh-, Sa-, Bw-
[Crops] Alt+, Cb-, Tr+ >> Gr-, Sh-, Sa-, Cr+, Lv-, Gz-, Bw-
[Crops] Cr+ >> Gr+, Cr-

Figure 4.4: Ruleset of the Borana model.

uation of the 7 control variables. All initial states correspond to the grassland vegetation
class [LC18]: only grasses are present, see Figure 4.3 and Table 4.1. A subgraph is gener-
ated from each initial state by the cascading applications of the rules. These subgraphs
are disconnected (no rule changes the controls) and form together the full STG of 1185
states computed from the Borana model. The largest scenario subgraph has 26 states.

The subgraph corresponding to the scenario before livestock introduction at high altitude
is given in Figure 4.5 as an example. This subgraph can be partitioned with respect to
vegetation classes (Table 4.1), resulting in a component graph that will be compared in
the following with the corresponding STM.

©2 Technical remark

For clarity, we depicted the states s € S of an STG G as ellipses, while the components
¢ € C of a component graph G/¢ are depicted as rectangles with rounded corners.

The three available STMs [LC18] drawn from observations, see Figure 4.2, were compared
to the component graphs computed from the Borana model for the corresponding sce-
narios (each component graph encompasses two subgraphs, one for each altitude level).
The first STM describes the vegetation pathways under wildlife herbivory and fire. It is
almost identical to its corresponding component graph, see Figure 4.6. Their only differ-
enceis thatin the component graph, the transition from Sparse Scrubland to Grassland
is additionally labelled by Low intensity fire and Browsing, which is correct because
these events may happen in Sparse Scrubland before the establishment of trees.
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Figure 4.5: Scenario subgraph partitioned between vegetation classes. This scenario cor-
responds to the STM before livestock introduction, see Figure 4.2a, at low altitude. It was com-
puted using the following initial control values: A1t+, Fb-, Cb+, W1+, Ps-, Ig-, BLv-. The states
of the STG are depicted as white ellipses labelled with the variables valuated on. The vegetation
classes are depicted as colored rounded rectangles. The vegetation classes form a component
graph whose edges are labelled with the tags of the corresponding rules.
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Figure 4.6: Component graph vs. STM for wildlife herbivory and fire. The component graph
was computed using the following initial control values: A1t*, Fb-, Cb+, W1+, Ps—, Ig-, BLv-.

The second STM describes the vegetation pathways under extensive grazing and fire. It
is also almost identical to its corresponding component graph, except for the additional

labels mentioned above, see Figure 4.7.

The third STM describes the vegetation pathways under intensive grazing and fire ban. It
presents more differences from its corresponding component graph, see Figure 4.8. Yet
the additional vegetation classes and most of the additional transitions in the component
graph were empirically observed [LCD18], such as the transition from Dense Scrubland
to Closed Canopy Woodland. In particular Sparse Scrubland is described as a transi-
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Figure 4.7: Component graph vs. STM for extensive grazing and fire. The component graph
was computed using the following initial control values: A1t*, Fb-, Cb+, W1-, Ps+, Ig-, BLv-.

tory state between Grassland and Dense Scrubland [LCD18], and acts as such in the
component graph. The additional unobserved transitions in the component graph re-
volve around the transitory nature of Sparse Scrubland and Dense Scrubland. Thislack
of observation may be caused by the ten years of delay between the observations, that
may be a too long time period to notice such brief changes. Moreover, the component
graph showcases the main features of the STM: encroachment is not reversible, and Open
Canopy Woodland is not reachable from Grassland.
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Figure 4.8: Component graph vs. STM for intensive grazing and fire ban. The component
graph was computed using the following initial control values: Alt*, Fb+, Cb+, W1l-, Ps+, Ig+,
BLv-. Additionally we set Trx initially because both Grassland and Open Canopy Woodland
are initial states in the STM.
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4.1.2 Results

In this section, we progressively build a component graph aiming to provide answers to
the following questions:

» Which management policies prevent bush encroachment?
» Is bush encroachment reversible without changing management policy?

Starting from the whole state space S of the Borana model, we incrementally refine a
partition answering both questions. The first step is to split S between the states that
are encroached, and these that are not. To do so, we define bush encroachment as
the state property sJ¥ = (Sh+ V Tr+) A Gr- A Cr-, which corresponds to the vegetation
classes with shrubs or trees but without grass nor crop (Closed Canopy Woodland, Dense
Scrubland, and Bushland, see Table 4.1). Using this state property, we can partition S be-
tween the states that satisfy it (component #2) and these that do not (component #1), see
Figure 4.9.

2

_

Browsing, Crops
_— T
~— Buizeis anisusiu] —

o

N

Figure 4.9: First splitting step.

The second step is to split the components depending on whether bush encroachment
can happen or not. To do so, we define the CTL formula 3F(sw), a reachability pattern
stating that an encroached state is reachable. Using this formula, we can partition com-
ponent #1 of Figure 4.9 between the states that satisfy the formula (component #3) and
these that do not (component #4), see Figure 4.10.

-3F(sYe) IF(Ne)
4

w

Browsing, Crops
— 8 P —
N Suzess omsuoy —

Figure 4.10: Second splitting step.
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©2 Technical remark

Each component is numbered in the bottom right corner. When several components
of distinct component graphs encompass the exact same set of states, they are all
given the same number and the same colour across all component graphs. Thus, if
a split does not divide a component, then it keeps the same number and the same
colour before and after the split. For example the two components numbered #2 in
Figure 4.9 and in Figure 4.10 embody exactly the same set of states.

Some states prevent bush encroachment, that is the states of component #4 labelled
—-3F(sYw). Hence why component #4 is disconnected from the rest of the component
graph. Bush encroachment is reachable in the other states, but may be reversible as indi-
cated by the transition from component #2 sYv to component #3 3F (). The third step of
the partition refinement is to split the components #2 and #3 where bush encroachment
can happen depending on whether bush encroachment can be reversed or not. To do so,
we define the CTL formula 3F (Xv A HF(WYW)), a sequence pattern stating that bush en-
croachment can be reversed. Using this formula, we can partition components #2 and #3
of Figure 4.10 between the states that satisfy the formula (components #5 and #7) and
these that do not (components #6 and #8), see Figure 4.11. Although components #7
and #8 differ by the formulas they satisfy, we labelled them equally by sY¥ to ease the
interpretation of the component graph.

—-3F(Ye) IF (e A IF(—sY)) -3F (Y A IF(—Tr))

| Browsing, Cro
-~
Suizes

Figure 4.11: Third splitting step.

Some states of the STG can lead to an irreversible bush encroachment, that is the states
of the component #6 —3F (Xv A HF(WYW)). Bush encroachment is at least sometimes

reversible for others, that is the states of the component #5 3F (& A HF(ﬂXW)). Note

that the encroached states sJw are split as well, as some may be reversed (component #7)
and others may not (component #8). The fourth and final step is to split component #5,
where bush encroachment is sometimes reversible, between the states where bush en-
croachment is always reversible, and the states where bush encroachment is sometimes
irreversible. To do so we define the CTL formula VG(sY¥ = 3F(—sJ¥)), an invariance pat-
tern stating that bush encroachment is always reversible. Using this formula, we can
partition components #5 and #7 of Figure 4.11 between the states that satisfy the for-
mula (component #9 and #11) and these that do not (components #10 and #12), see
Figure 4.12.



4.1 Borana vegetation model

—3F(Yw) VG(Ye = IF(-aw)) IF(Ne A IF(—=Yz)) —-3F (¥w A IF(—Yz))

T
I
Browsing —__
— Buizeis anisusu| /,_.
&

| Browsing, Crops
[ 3uizess anisuoru

% =,
11

Figure 4.12: Final component graph.

Ps-V Ig- Ps+ A Ig+ A Alt+ A Cb- Ps+ A Ig+ A (WLt V. BLu#) A (Alt- V Cb+) W1- APs+ A Igt ABLu- A (Cb+V Alt-)

6

S
Browsing, Crops
— T
Browsing —
—
o

N Buzess snsue —
(o)
N Suizess snsuery — |

e

11

.4— Buizess snisusiu

Figure 4.13: Final component graph with control values.

The component graph of Figure 4.12 answers both questions. Indeed, the management
policies that prevent bush encroachment are these of component #4 —3F(sJw). Bush
encroachment is always reversible under the management policies of component #9
VG(Ye = IF(—sYw)), sometime reversible under the management policies of compo-

nent #10 3F (m/\ HF(ﬁXV)), and never reversible under the management policies of

component #6 —3F (m A HF(WXV)). To get the specific management policies of a com-
ponent, we extract exclusively the control variables from its decision diagram to get a
Boolean formula that we transform into canonical form using SymPy [Meu+17]. A version
of the component graph whose components are labelled with their control valuations is
given in Figure 4.13.

We give an ecological interpretation of this result alongside other results exhibiting how
the model-checking methodology could help better understand the Borana vegetation
pathways and choose adequate management policies. We designed six CTL queries cov-
ering all five pattern types introduced in Table 2.1 and including the formulas used to
partition the component graph. These queries are built upon the following state proper-
ties:

» Bush encroachment as defined previously:
Encroachment = (Sh+ V Tr+) A Gr- A Cr-
» Closed canopy woodland is a vegetation class, see Table 4.1:

ClosedCanopyWoodland = Gr— A Sh—- A Tr+ A Cr-
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» Subsistence production [Wha69] corresponds to the states with crops or livestock:
Subsistence = Cr+ V Lv+

We use model-checking to select the control valuations, i.e. scenarios, satisfying each
query. For each query and scenario, the model-checker tests whether the initial state
of the scenario exhibits the temporal behaviour specified by the query or not, return-
ing a yes/no output. We selected the valuations of the controls for which the associated
model-checking outputis yes. The omitted controls have no impact on the model-checking
output. Computing all the model-checking results took only a few seconds on a modern
laptop (Linux 5.4 Mint/Ubuntu, 32G RAM, CPU Intel Core i7-7820HQ 2.9GHz).

The first two queries select the scenarios enabling bush encroachment. The answer to the
first query shows that intensive grazing is the necessary condition for encroachment, as
can be seen on the label of component #4 —=3F (sYw) in Figure 4.13. This may seem counter-
intuitive because fire seems to prevent bush encroachment in Figure 4.2, yet bush en-
croachment has continued in Borana despite the lift of the fire ban in the 2000s [LCD18;
Lia+20]. The answer to the second query shows that at least one of the following controls
is additionally needed to reach closed canopy woodland: Alt+, Fb-, W1+, or BLv+. Each
of these controls enables one of the rules that removes shrubs without changing grasses
nor trees (R5, R1, R16, or R17 respectively, see Figure 4.4). Thus, when combined with in-
tensive grazing (R15), grasses and shrubs are removed without removing trees, resulting
in closed canopy woodland.

The third and fourth queries select the scenarios making bush encroachment reversible.
The third query selects the scenarios where encroachment is always reversible (from any
encroached state, there is a pathway toward an unencroached state), i.e. component #9
VG(Yw = 3IF(—sJw)) of the component graph. The answer to the third query shows
that crop cultivation at high altitude (A1t+ A Cb- corresponding to R18, R19) is the only
management policy making bush encroachment always reversible. Although this phe-
nomenon has been observed [LCD18], it is thought to be unfeasible at a large scale in
the long term [Lia+20] due to the cost of the required inputs and the tensions between
herders and farmers. The fourth query selects the scenarios where at least some en-
croachment pathways are reversible (from some encroached states, there is a pathway
toward an unencroached state), i.e. component#5 3F (% A HF(WYY)) of the component
graph of Figure 4.11. The answer to the fourth query shows that in addition to crop culti-
vation at high altitude (A1t+ A Cb-), two management policies make some encroachment
pathways reversible: the presence of wildlife W1+ or browsing livestock BLv+. Indeed, pas-
toralists in Borana have increased their holding of browsing livestock (goats and camels)
to mitigate bush encroachment [LC18; Lia+20].

The fifth and sixth queries select the scenarios enabling subsistence. The fifth query se-
lects the scenarios resulting in chronic subsistence (food is always reachable, thus can be
reached regularly). The answer to the fifth query shows that three management policies
result in chronic subsistence: (1) extensive pastoralism (Ps+ A Ig-), (2) pastoralism with
crop cultivation at high altitude (A1t+ A Cb- A Ps+), and (3) crop cultivation with wildlife at
high altitude (A1t+ACb-AW1+). The first management policy corresponds to the traditional
management policy in the Borana zone (nomadic pastoralism [Lia+20]), while the second
policy corresponds to one of the current management policies (mixed crop-livestock sys-
tems [Lia+20]), the third management policy correspond to crop cultivation with fallow
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1)

2)

3)

4)

5)

6)

Reachability pattern:

JF Encroachment

An encroached state can be reached.

Ps+ A Ig+

Encroachment can only happen under the scenarios encompassing pastoralism Ps+ with inten-
sive grazing Ig+.

Reachability pattern:

JF ClosedCanopyWoodland

Closed Canopy Woodland can be reached.

Ps+ A Ig+ A (Alt+V Fb- V W1+ V BLv+)

Closed Canopy Woodland can only happen under pastoralism Ps+ with intensive grazing Ig+
and with at least one of the following factors: high altitude A1t+, no fire ban Fb-, presence of
wildlife W1+, browsing livestock BLv+.

Reachability + Consequence pattern:

(3F Encroachment) A (VG(Encroachment = 3F —Encroachment))

An encroached state is reachable, and whenever such state is reached, it is possibly fol-
lowed by an unencroached state.

Ps+ A Ig+ A Alt+ A Cb-

If an encroached state is reachable (see output Ps+ A Ig+ from query 1) and if the system is at
high altitude Alt+ with crops allowed Cb-, then whenever an encroached state is reached it is
possibly followed by an unencroached state, i.e. bush encroachment is always reversible.

Sequence pattern:

3F (Encroachment A 3F —Encroachment)

An unencroached state is reachable and is possibly preceded at some time by an en-
croached state, i.e. at least some encroachment pathways are reversible.

Ps+ A Ig+ A (BLv+ V W1+ V (Alt+ A Cb-))

If an encroached state is reachable (Ps+ A Ig+, see query 1), there are three set of scenarios
where at least some encroachment pathways are reversible: (1) with browsing livestock BLv+,
(2) with wildlife w1+, (3) at high altitude Alt+ with crops allowed Cb-.

Invariance pattern:

VG(3JF Subsistence)

Subsistence states necessarily remain forever reachable.

(Ps+ A Ig-)V (Alt+ A Cb- APs+)V (Alt+ A Cb- A W1+)

There are three sets of scenarios where subsistence remains reachable whatever happens : (1)
under pastoralism Ps+ without intensive grazing Ig-, (2) at high altitude Alt+ with crops al-
lowed Cb- and with pastoralism Ps+, or (3) at high altitude A1t+ with crops allowed Cb- and
with wildlife W1+.

Reachability & Invariance pattern:

JF(3G Subsistence)

It is possible to reach a state from which the subsistence can persist forever.

(Ps+ ABLv+) V (Alt- A Ps+) V (Fb+ A Cb+ A Ps+ A Ig-)

There are three sets of scenarios where it is possible to reach a state from which subsistence can
persist forever: (1) under pastoralism Ps+ with browsing livestock BLv+, (2) at low altitude A1t~
with pastoralism Ps+, or (3) with fire banned Fb+ as well as crops Cb+ and with pastoralism Ps+
but without intensive grazing Ig-.

Table 4.2: Scenario selection by model-checking. For each of the six queries we show: (1) its
pattern type, (2) its CTL formula, (3) its translation into English, (4) [¥] the scenario selection (i.e.
control valuations) for which the associated model-checking output of the query is yes, (5) an
English interpretation of this scenario selection.
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periods (which is thought to be unfeasible in the long term in drylands [Lia+20]). The
sixth query selects the scenarios enabling continuous subsistence (there is a maximal
path along which food is constantly available). The answer to the sixth query shows that
three management policies enable continuous subsistence: (1) pastoralism with brows-
ing livestock (Ps+ A BLv+), (2) pastoralism at low altitude (A1t- A Ps+), and (3) extensive
pastoralism without crop nor fire (Fb+ A Cb+ APs+ A Ig-). This last result should be consid-
ered with caution as continuous subsistence may be restricted to a single maximal path,
yet uncontrolled events may prevent humans to fully enforce this desired trajectory in a
real system.

4.2 Protists assembly model

Protists are microscopic unicellular eukaryotes, see Figure 4.14, that are neither plant, ani-
mal nor fungi. From a pool of six protists species: Amoeba proteus, Blepharisma japonicum,
Colpidium striatum, Euplotes patella, Paramecium caudatum and Tetrahymena pyriformis
(namedhere A, B,C, E, P,T), Law, Warren and Weatherby studied in laboratory how they
can assemble to form a microcosm. In a first experiment [WWL98], they recorded the fate
of each of the 28 possible combination of species (i.e. community), with six replicates for
each combination. In a second experiment [WLWO03], they recorded how each stable com-
munity, found in the first experiment, responds to an invasion by another species from the
pool. Data were recorded from monthly censuses of the replicated communities, docu-
menting the changes in species composition as communities moved along their pathways
towards the final persistent communities. This involved systematically scanning the en-
tire microcosm with a microscope and recording the presence/absence of each species.
These time series contain useful information about the order in which species were lost,
including random variation across replicates. To our knowledge, these experiments are
unique in being the only replicated analysis which systematically explores the fate of all
possible communities that can be built from a pool of species.

(a) Amoeba proteus (b) Euplotes patella (c) Tetrahymena pyriformis

Figure 4.14: Pictures of protist species. (a) taken from Wikipedia authored by SmallRex under
(CC BY-SA 4.0). (b) taken from Wikipedia authored by Picturepest under (CC BY 2.0). (c) taken
from Wikipedia authored by Picturepest under (CC BY 2.0).

Experimental communities were constructed from combinations of the six species of pro-
tists from the pool plus a mixed bacterial flora feeding them. For each combination, ap-
proximately 100 individuals of each species were introduced into the microcosm, along
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4.2 Protists assembly model

with a mixture of bacteria. Protist species were chosen to exhibit a range of sizes and
trophic strategies, and on the basis that they were all able to persist when grown under
the same environmental and nutrient medium conditions in the laboratory. The inter-
action network of these species (trophic and competition relations), see Figure 4.15, was
inferred by [Her+22] from the trophic network of [WWL98, Fig.1] and from the outcomes
of the single species and two-species replicates of the first experiment [WWL98].
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Figure 4.15: Protists interaction network. Solid blue arrows are predations (dashed if the
predator cannot sustain by feeding only on this prey, and thus need other prey to survive). Dot-
ted red arrows are competitions. Species in a striped borderless circle are unable to survive
alone by feeding only on bacteria. Trophic links, i.e. predations, were inferred from the out-
come of the two-species replicates and from the trophic network of [WWL98, Fig.1]. Trophic link
are dashed if the predator disappeared before its prey in some replicates. Competition links
were inferred from the remaining outcomes of the two-species replicates once the predation
links had been inferred. Species unable to survive alone were inferred from the outcome of
single species replicates. Taken from [Her+22].

4.2.1 Modelling

“Can the behaviour of the system be characterized by a simple set of rules? To what
extent does knowledge of the results from the pairwise species combinations allow
prediction of the outcomes of the more species-rich sets?” [WWL98]

Based on the protists pairwise interaction network, see Figure 4.15, we built an RR descrip-
tion of the protists’ community pathways recorded in the first experiment [Her+22]. The
protists model consists of 6 variables (one for each protist species) and 15 rules, see Fig-
ure 4.16. The protists model’s ruleset was derived from the protists interaction network
upon the following scheme:

» Predation: if P predates N (solid blue arrow from P to N), then we add the rule:
[predation] P+>>N-.

» Predation: if P predates secondarily N, (dashed blue arrow from P to N;) and if
P predates Ny, ..., N (solid blue arrows from P to N1,..., Nk), then we add the
rule: [predation]P+ Ni-,... Nk->>Ns-.

» Starvation: if P predates Ny, ..., Ni (solid blue arrows from P to Ny, ..., Ni) and if
P cannot survive by feeding on bacteria (P in a striped borderless circle), then we
add the rule: [starvation]N1i-,..., Nk->>P-.

» Starvation: if P does not predate any prey (no solid blue arrow from P) and if P
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cannot survive by feeding on bacteria (P in a striped borderless circle), then we add
the rule: [starvation] P+>>P-.

» Competition: if C; competes with (5 (dotted red arrow from C to (3), then we add
the rule: [competition]C1+>>C2-

Each state of the protists model represents a community (i.e. a combination of species).
Like in the first experiment [WWL98], every possible community is taken as an initial state,
hence the * initial value of the variables. In the first experiment, species can only go
extinct, the rules therefore define the conditions in which they can disappear.

variables: rules:
Ax: Amoeba proteus [predation] A+ >> P-
B*: Blepharisma japonicum [predation] B+ >> C-
C*: Colpidium striatum [predation] B+ >> T-
Ex: Euplotes patella [predation] A+, P- >> B-
P*: Paramecium caudatum [predation] A+, P- >> C-
T+: Tetrahymena pyriformis [predation] A+, P- >> T-

[predation] A+, P- >> E-
[predation] E+ >> T-
[starvation] P- >> A-
[starvation] E+ >> E-
[starvation] C+ >> C-
[competition] P+ >> C-
[competition] P+ >> T-
[competition] C+ >> T-
[competition] T+ >> C-

Figure 4.16: RR protists model.

The STG computed from the protists model using ecco [PTG22a], see Figure 4.17, has
2% = 64 states and 135 transitions, 71 of them (53%) were recorded in the first experi-
ment [WWL98]. The protists model predicts all experimentally recorded transitions, which
is @ necessary condition for validating the model. Note that this STG consists of three
disconnected subgraphs, meaning that the system cannot shift from one subgraph to
another without species invasion.

Two facts may explain why some of the predicted transitions were never recorded in the
first experiment. First, transitions with very low probabilities may not be observed due to
the finite number of replicates. In particular, as the states with many initial species always
collapse towards states with fewer species; transitions concerning the latter are there-
fore observed more often. For example, the state {A, B} was recorded 77 times along
the community pathways of the first experiment. Starting from this state, the transition
{A,B} — {B} was observed 73 times and the transition {4, B} — {A} was observed
only 3 times. Such an infrequent transition would probably not have been recorded if
{A, B} had been recorded only 6 times like {A, B,C, E, P,T} for example. Secondly,
some transitions were too brief to be recorded in the experiment. For example, all repli-
cates starting from {A, B,C, E, P, T} had only 4 species left at the first census. The tran-
sitions to the 5-species states were therefore not recorded even if they must have hap-
pened (assuming that two species do not disappear exactly at the same time).
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Figure 4.17: Protists model STG. The states represent the 64 protist communities, labelled
by the initials of the present species between brackets. Black transitions were recorded during
the first experiment [WWL98], while grey transitions were predicted by the model but were not
observed in the first experiment. Adapted from [Her+22].
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The STG of the protists model, see Figure 4.17, has 5 dead-ends denoting stable commu-
nities: {}, {B}, {P}, {T'} and {B, P}. The first experiment [WWL98] found 3 additional
stable communities: {C}, {C, P} and {P,T'}. Indeed {C} -» was often experimentally
observed, yet in some other replicates {C} — {}. Similarly in some replicates {C, P} »
or {P,T} -, yetin others {C,P} — {P} or {P,T} — {P} was observed. Thus {C},
{C, P} and {P, T} should not be considered as dead-ends in the protists model STG, yet
we would like to be able to represent the fact that the system can stop in these states for
some maximal paths. We will discuss in Chapter 7 how we could achieve this goal.

A model of the second experiment need to have rules representing invasions:
[invasion] X->>X+. Seeing the STG of the protists model (Figure 4.17) as a kind of
“assembly pinball” in which the ball/community is put in an initial state before rolling
down toward one of the bottom states, invasion rules are the flippers making the ball
bounce up toward the top of the STG. But the use of such “flippers” need to be restricted,
otherwise they would create paths from any state to many upper states, blurring the as-
sembly dynamics. We will see in the next chapter how to properly manage such “flippers”
such that the occurrences of invasion events are controlled along the dynamics.

4.2.2 Results

In this section, we progressively build a component graph aiming to provide an answer to
two questions proposed by [WWL98]:

» From how many initial states are each of the stable communities obtained?
» What are the impacts of individual species on community collapse?

These two questions have already been answered experimentally in [WWL98]. Our goal
is to show how formal modelling and analysis are fitted to answer the questions raised by
community assembly graphs, and could complement experimental studies with a mod-
elling framework able to forecast the results of a particular community assembly from an
interaction network.

Starting from the whole state space S of the protists model, we incrementally refine a
partition answering the first question. The first step is to split the stable communities
apart, i.e. the dead-ends s . To do so, we use the topological property “dead-end”, or
equivalently the CTL formula —3XT. Using this property, we can partition S between the
states that are dead-ends (component #2) and these that are not (component #1), see
Figure 4.18. We see that the system can move from component #1 to component #2 (and
as expected, not the other way around because the system cannot escape a dead-end).

We are interested in each stable community individually. To highlight the disparities be-
tween the stable communities, we explicit component #2 dead-end, i.e. we split its states
individually, see Figure 4.19. The resulting component graph has 5 new components cor-
responding to the 5 dead-ends of the system: {}, { B}, {P}, {T'} and { B, P}.

The final step is to partition the states of component #1 —dead-end with respect to the
stable communities they lead to. To do so, we split component #1 —~dead-end into the
topological basins of the 5 dead-ends: {}, {B}, {P}, {T'} and {B, P}, and merge each
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Figure 4.18: First splitting step.
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Figure 4.19: Second splitting step.

dead-end with the basin leading solely to it. This procedure results in the final component
graph of the protists model [Her+22], see Figure 4.20.

AVASE

6 7 8

Figure 4.20: Final component graph. Each component is labelled with the species presentin
every state of the component. Adapted from [Her+22].

This final component graph answers the first question: “From how many initial states are
each of the stable communities obtained?", because the number of initial states leading to
each stable community is exactly the size of the components leading to the corresponding
dead-ends. Indeed, each dead-end is merged with the states leading solely to it, so for
example the states leading solely to the dead-end {B} are the states of component #8
labelled B. When a state can lead to distinct dead-ends, then it is merged with the other
states leading exactly to the same dead-ends, for example the states leading exactly to
the dead-ends {} and { B} are the states of component #5 labelled A, B. While the states
leading toward dead-end { P} or the states leading toward dead-end { B, P} cannot lead
to any other dead-end, i.e. the end point of their dynamics is deterministic, the states of
component #3 labelled A, B, T can lead to either dead-ends {}, { B} or {T'}. A version of
the protists model STG where each state is coloured with the colour of the component
it belongs to in the component graph is given in Figure 4.22. The component graph of
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Figure 4.20 can be seen as a condensed version of this STG where the information about
the dead-ends reachability has been summed up.

In order to answer the second question: “What are the impacts of individual species on
community collapse?”, we can compare two component graphs built following the same
steps as earlier but from two versions of the protists model where a focused species is
either always present or always absent initially. For example, as A is the top predator, it
should strongly influence the system’s dynamics. Thus focusing on A we can build two
versions of the protists model where A is either always present initially A+ or always ab-
sent initially A-, and build two component graphs following the same step as earlier, see
Figure 4.21. When A is always present initially, see Figure 4.21a, the branching dynamics is
rediscovered where the reached stable community is not determined initially, i.e. in com-
ponents #3, #4 and #5. Conversely, when A is always absent initially, see Figure 4.21b, the
reached stable community is mainly determined initially, except in component #11. Thus
A seems to influence the community collapse by adding non-determinism to the reached
stable community.

A B T

S T
AN /A .

B
6 7 8 6 12 8

(a) A always present initially (b) A always absent initially

Figure 4.21: Component graphs for which A is either initially present or absent. Each
component is labelled with the species present in every state of the component. Recall that
when several components of distinct component graphs encompass the exact same set of
states, they are all given the same number and the same colour across all component graphs.
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5 Symbolic model-checking of Fair ARCTL

3 Summary

This chapter presents the Action-Restricted Computation Tree Logic (ARCTL), an ex-
tension of CTL allowing to restrict the maximal paths to a subset of enabled actions
along each quantifier of a formula, i.e. 3 or V. We then extend ARCTL with fairness re-
strictions on quantifiers, i.e. “realism” constraints upon order and occurrence rate of
events along a path, resulting in Fair ARCTL (FARCTL). Consequently, FARCTL quanti-
fiers allow to restrict maximal paths with respect to both enabled actions and fairness
constraints. Such double restrictions can be used to model ecosystem management
scenarios for example. FARCTL can thus be used to to shift between them in a con-
trolled manner at the level of its quantifiers. Finally, we provide a symbolic model-
checking algorithm for FARCTL that is implemented inside ecco.

In the previous chapter, we saw that in ecological applications, we often want to restrict
the set of maximal paths to represent particular scenarios (for example, ecosystem man-
agement policies or invasion events). Scenarios consist mainly of: (1) a list of enabled
events, and (2) a list of disabled events; for example intensive grazing with fire banned.
One way to achieve this is to build disconnected STGs with distinct sets of maximal paths
(as we did in the Borana model in Chapter 4). The drawbacks of this method are that it
increases the size of the state space S (because large portions of the disconnected STGs
are just replicated between them), and more importantly that the system cannot shift be-
tween scenarios along the dynamics. Another way is to create a single STG encompassing
all the scenarios, that is then restricted to particular scenarios by disabling some actions.
This method does not duplicate the state space, and more importantly the restriction can
change along the dynamics as the system shifts between scenarios.

Definition 5.1 (G|, II|,). Given an action formula a : 2PA +— B and an STG G =
(8,80, A, —, Vs, V), the a-restriction of G is the STG G|, = (S,S0, A, — |as Vs, VA),
where:

= a d:ef{(s,a, sYe—=]akal

The set of maximal a-restricted paths of G is noted I1|,(G) = II(G|a).

Example 5.1. Examples of a-restrictions are given in Figure 5.1. Note that Figure 5.1b
is exactly the STM before livestock introduction (Figure 1.4a), and Figure 5.1c is ex-
actly the STM with livestock and fire ban (Figure 1.4b). Figure 5.1b and Figure 5.1c are
a-restrictions of Figure 5.1a, thus there is no replication and they all share the same
states. By changing the a-restriction along the dynamics, we can for example test if a
path travelled in one a-restriction can be reversed in another o’-restriction. For exam-
ple, we can test if the encroachment reached with intensive grazing can be reversed
by enabling fire.
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Figure 5.1: Examples of a-restrictions. Adapted from [LC18].

Ecological scenarios sometimes also encompass the concept of fairness [BK08]. For exam-
ple, we may want to enforce that a path cannot infinitely carry on without fire happening.
In this case, we say that the path is fair with respect to fire, meaning that fire happens
infinitely often if the path if infinite. Thus, we may also want to restrict the set of maximal
paths to fair paths.

In this chapter, we first present the extension of CTL using the concept of a-restriction:
Action-Restricted CTL (ARCTL) [PR0O7], and then we extend it with the concept of fairness:
Fair ARCTL (FARCTL). In FARCTL, a restriction upon actions and fairness is added to each
quantifier (3, V), enabling the system to shift between scenarios along the formula. Lastly,
we provide a symbolic algorithm to compute the set of states satisfying an FARCTL for-
mula, that is implemented inside ecco. FARCTL model-checking will be applied in Chap-
ter 6 to the case studies of Chapter 4.

5.1 ARCTL

Action-Restricted Computation Tree Logic (ARCTL) [PRO7] is the extension of CTL dealing with
a-restrictions. The quantifiers of CTL (4, V) are extended with a restriction upon actions,
meaning that they quantify over the maximal paths of G|, and not of G. Thus the a-
restriction can change along the formula, corresponding to shifts between scenarios dur-
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ing the dynamics. ARCTL has been used in systems biology, for example to assess lym-
phocyte differentiation pathways [Abo+15], but to our knowledge, it has never been used
for ecological applications.

5.1.1 Syntax and semantics

The syntax of ARCTL extends the syntax of CTL with action formulas, i.e. Boolean formulas
over action properties, and action restrictions on quantifiers.

Definition 5.2 (ARCTL syntax). The syntax of ARCTL is given by the following grammar
over state, action and path formulas:

» state formulas (ARCTLs): ¢ def Tslps€Ps|—o|wiNp2| @1V | day| Vay
» action formulas (ARCTL 4): o def TAlpa EPAl naar ANag | a1 Vas

» path formulas (ARCTLy): v dof X | p1Upa | Fo | G
An ARCTL formula is a state formula ¢ € ARCTLs.

The semantics of ARCTL extends the semantics of CTL by quantifying over maximal a-
restricted paths instead of just maximal paths.

Definition 5.3 (ARCTL semantics). Let s € S a state:
> sETs
> s = psiff ps € Vs(s)
> skEpiffsE e
> s o1 Apeiff s =1 and s = o

> s o1 Vpeiff s =@ ors k=g
» s = doy iff 3 € 1|4 (s) such that 7 =~

> s = Vo iff Vo € 1], (s) we have 7 |= v
Let a € A an action:
aE=T
a = paiffpa € Va(a)
a | -aiffara
afFEa Nayiffal=apanda = ao

vV v.v. vy

aEoVaiffalEaoral= o
Let 7 € I1],(G) a maximal path:
» T = Xpiff|r| > 1and n[l|s = ¢
7 = Fyiff 3i € Nsuch thati < |7| and 7[i]s = ¢
7= Gy iff Vi < |7 we havei € N = 7fi|s E ¢
7 = ¢1Ugpy iff 3i € Nsuch thati < |n| 7[ils Ep2andV0 < j<i 7[jls E ¢1

v vy
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Note that the ARCTL formulas 3++ and Vr+ are strictly equivalent to the CTL formulas
Iy and Vv~ respectively. Hence why ARCTL is an extension of CTL. In the following we will
write 3 for 37+, and Vv for V1+, when convenient.

Definition 5.4. Given an STG G and an ARCTL formula ¢, the ARCTL model-checking
problem consists in determining if Sp C {s € S | s = ¢}, noted G = ¢.

Example 5.2. For example in the STG of Figure 5.1, using the invariance pattern
VG(3Fz), i.e. x states necessarily remain forever reachable:

» Inthe (—FN) A (Y V®) scenario, a state without tree remains reachable whatever
happens : G = V(- ve) G (I —mynrve) F -Y).

» It is not the case in the ¥ Vv ’d scenario: G [~ Ve G(3vvmF -Y). Indeed, in
G|y, Dense scrubland and Closed canopy woodland can be reached from which
there is no path removing trees.

» Itis still not the case even if we allow to switch from ¥ V & to (=) A (Y V &)
in order to try to reach a state without tree: G = V,-va(El(ﬁm)A(‘-W,)FﬁY).
Indeed, in G|vvmm, Dense scrubland or Closed canopy woodland can be reached
from which there is no path in G| g xve) removing trees. Thus the (=) A
(Y V @) scenario can remove trees, but it cannot revert the tree encroachment
caused by the ¥ Vv &N scenario.

©2 Technical remark

Note that 3,Gy holds in particular if there is a finite maximal a-path where ¢ holds.
In that regard, an a-dead-end s -+ |, is considered a self-loop, i.e. an infinite
path remaining in the same state (s =2 s =% s =4, ), just like we did for

CTL. In contrast, we can define 3,G>¢ that holds only for infinite maximal a-paths:

3,6%p ¥ 3,G(p A T XT).

Note also that we could have added a real | 4-labelled self-loop to each dead-end of
G beforehand to make every maximal path of G infinite. But this procedure cannot
be extended to ARCTL as each a-restriction along the formula may produce new a-
dead-ends that cannot be complemented with | 4-labelled self-loops beforehand.
For that reason, we chose to define these self-loops semantically, i.e. without adding
real transitions to the STG, both for CTL and ARCTL.

5.1.2 ARCTL symbolic model-checking

Like with CTL, there is a symbolic perspective with ARCTL. Instead of defining the seman-
tics of ARCTL formulas over states and paths individually, it can be given over sets of
states:

p={scS|sFp;CS

Like CTL operators, ARCTL operators can be defined using state properties, set operations,
fixed points and a-restrictions of the predecessor function Pred,:

Predy : Z € P(S)—{s€S|3secZ s55}eP(S)



5.2 Fairness and FARCTL

The symbolic semantics of ARCTL is the symbolic semantics of CTL in G|,, thus the defi-
nitions of its operators are exactly the same as the symbolic semantics of CTL operators
(Table 2.2). This set-based perspective provides a symbolic algorithm to compute the set
of states satisfying an ARCTL formula, see Table 5.1. Just like with CTL, component graphs
can be built by partitioning the state space S using ARCTL formulas.

o Vo
X JoXp = Predqy(p) VaX@ = o XT A 23, X
U Ja(p1Upa) = Z.pa V (o1 A JoXZ) Va(e1Upe) = uZ.pa V (01 AVoXZ)
F JaFp=pZ.oV 3 XZ VoFo =puZ.o VvV XZ
G oG =v Z.p A (FoXZ V =3, XT) VoG =v Z.p N (VoXZ V 23, XT)

Table 5.1: Fixed point definitions of ARCTL operators.

5.2 Fairness and FARCTL

In this section, we extend ARCTL with the notion of fairness, meaning that we restrict the
set of maximal paths to these considered realistic. A path is considered realistic if some
given events happen regularly, such a path is then called fair towards these events. From a
set of fairness constraints concerning distinct events, we build a fairness assumption that
merges all these constraints. The set of maximal paths can then be restricted with respect
to this fairness assumption. Finally, we extend ARCTL quantifiers (3,V) to make use of
the restricted set of maximal fair paths, resulting in Fair ARCTL. FARCTL thus provides
restrictions of the set of maximal paths based both upon action constraints and fairness
constraints.

5.2.1 Fairness constraint

Afair pathis characterized by the fact that various fairness constraints are fullfilled [BK08].
Fairness constraints deal with the order and occurrence rate of certain events, i.e. states
properties (e.g. Y, 3IF-Y, etc...) or actions properties (e.g. ®, ¥V, etc...), along maximal
paths. Fairness constraints are classically divided into three classes:

» Unconditional fairness: “event e happens infinitely often (with arbitrary long breaks
between occurrences)”

» Weak fairness (justice): “if event e; happens continuously (i.e. without breaks) from
a certain time on, then event es happens infinitely often”

» Strong fairness (compassion): “if event e; happens infinitely often, then event e
happens infinitely often”
Example 5.3. Examples of fairness constraints:

» Unconditional fairness: “fire happens infinitely often”.
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» Weak fairness: “if cattle are present continuously, then events related to inten-
sive grazing happen infinitely often”.

» Strong fairness “if herbaceous fuel is present infinitely often, then fires happen
infinitely often”.

Maximal fair paths are classically defined to be infinite. We extend this notion to finite
maximal fair paths. Note that a-restrictions can produce a-dead-ends, i.e. s € S where
s # |, Noted s %, and thus finite maximal a-restricted paths. As for the 3,G operator,
we consider dead-ends as self-loops, i.e. infinite paths remaining in the same state (s L4,
s TAy s T4 .) without any action happening (hence the 1 4 labelling the transitions).
Thus a finite maximal path 7 is unconditionally fair iff event e happens infinitely often
along the self-loop. Similarly a finite maximal path 7 is weakly (resp. strongly) fair iff
event e; does not happen continuously (resp. infinitely often) along the self-loop, or event
es happens infinitely often along the self-loop. Note that action-events cannot happen
continuously, nor infinitely often, along a self-loop. Indeed no action happens at all along
a self-loop (hence the 1 4 labelling the transitions). Based on this idea, we now give a
formal definition of events and fairness constraints.

Definition 5.5. A state-event es is an ARCTL state formula es € ARCTLg representing

a set of states. An action-event e 4 is an ARCTL action formula ey € ARCTL 4 repre-

senting a set of actions.

&2 Technical remark

A standard way of handling action-events is by adding the last action into the cur-
rent state [BKO8; PRO7], i.e. s % s’ becomes (s,*) — (s',a). The STG G is trans-
formed into a Kripke Structure by transforming S into 8’ = (S x A), and — into
—'={((a,s),(d,d)) | (s,a’,s") €=}. This transformation leads to a blow-up of the
size of the state space by the size of the set of actions. We will avoid this blow-up

by handling directly the 2 transition relations, as in the ARCTL semantics (s = s’ iff

s' = 3aX({s})).

We define two operators, 030 and Ovo meaning that an event happens either “infinitely often”
or “continuously from a certain time on” along a maximal path. Their semantics is defined
to consider dead-ends as self-loops, with subtle differences between state-events that can
happen infinitely often or continuously along self-loops, and action-events that cannot.

Definition 5.6 (Oﬂo, Ovo). Let 7 be a maximal path and es € ARCTLs a state-event:
b 7T esiffVi €N i <|r| = 3j € Nsuchthati < j < || and 7[j]s | es
> T ):Ovo esiff i € Nsuchthati < |r|andVj e N i< j<|n|=nljls Fes

Let 7 be a maximal path and e4 € ARCTL 4 an action-event:

b 73 eqiff|r] =ocoandVie N 3j > isuchthat w[jl4 = ea

> T ):ovo eq iff || =ocoand 3i € NsuchthatVj > i 7[jla Eea

We can now give a concise formal definition of fairness constraints encompassing either
state-events, action-events, or mixing them.
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Definition 5.7 (i, Fy, Fs). Let eq, e be state-events or action-events, and 7 a maxi-
mal path. Fairness constraints are divided into three classes of path properties:

» Unconditional fairness: 7 = Fy(eq) iff w ):OHO el

» Weak fairness: = = Fyy (e, e2) iff (7r ):Ovo 61> = <7r %Oﬂo 62)

» Strong fairness: = = Fs(eq, e9) iff <7r lzoﬂo el> = <7r Foﬂo 62)

Proposition 5.1.
fU(el) = ]:5(62, 61) = fw(eg, 61)

Proof.

> Fu(er) = Fs(ea, e1):

a = bmeans —a V b thus Fg(ez,e1) = = <7r ):030 62) V Fu(e1)

| 2 fs(@g, 61) = .Fw(eg, 61)2

= <7r |:OE<|> 62> = - <7r |:i‘v<’) 62>

O

Example 5.4. If we restrict fairness constraints to CTL state-events and infinite max-
imal paths, then the presented semantics is equivalent to the classical semantics of
CTL fairness [BKO8, chap. 6.5] that can be expressed as LTL formulas:

» Unconditional fairness: Fy;(e1) = GF(e1)
» Weak fairness: Fyy(e1,e2) = FG(e1) = GF(e2)
» Strong fairness: Fg(ei,e2) = GF(e1) = GF(e2)

Example 5.5. Classical action-based fairness [BK08, chap. 3.5] can also be expressed
by mixing state-events (4, XT, i.e. an a-action is enabled) and action-events:
» Unconditional fairness: Fy(«) i.e. “a-actions happen infinitely often”
» Weak fairness: Fy (3.XT, ) i.e. “if a-actions are enabled continuously, then
a-actions happen infinitely often”

» Strong fairness: Fs(3,XT, ) i.e. “if a-actions are enabled infinitely often, then
a-actions happen infinitely often”

5.2.2 Fairness assumption

Fair paths are often defined by several independent fairness constraints. Fairness is then
defined by a fairness assumption F gathering these various fairness constraints [BK08].
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| Definition 5.8 (F). A fairness assumption is a set F of fairness constraints.

Definition 5.9 (I1|”). Given a fairness assumption F, maximal fair paths are these that
satisfy every fairness constraint in F. The set of all maximal fair paths starting from a
state s € Sisnoted I1|7 (s) = {7 € II(s) | Vf € F 7 |= f}, the set of all maximal fair
paths of G is noted I1|” (G).

Definition 5.10 (G|”). Given a fairness assumption F and an STG G, the restriction of
G by Fisthe STG G|¥ = (S|7, A, —, Vs, V4), where:

SI7 ={s eS| (s) # 0}

| Proposition 5.2. 1117 (G) = I|F(G|7) # I1(G|7)

Proof. TII7(G) = U IIJ(s) = U I (s)= U T (s) =7 (G7)
seS sES | T|F (s)#£0 seS|F
But TI(G|”) = U| I(s) # 117 (9) 0
seS|F

A fairness assumption F restricts directly the set of maximal path II|* (G), resulting in a
restricted STG G|© whose states without fair paths have been removed. Conversely an
a-restriction acts on the STG itself G|, resulting in a restriction of its set of maximal paths
1|, (G). We now combine both restrictions to extend ARCTL with fairness assumptions.

Definition 5.11 (I1|). Given a fairness assumption F, an action formula o, and an STG
g, a-restricted maximal fair paths of G are the maximal paths of G|, that satisfy every
fairness constraint in F. The set of all a-restricted maximal fair paths starting from a
state s € Sisnoted |7 (s) = {m € H|,(s) | Vf € F 7 |= f}, the set of all a-restricted
maximal fair paths of G is noted 1| (G).

Definition 5.12(G|/). Given a fairness assumption F, an action formula a, and an STG
G, the restriction of G by a and F is the STG G|Z = (S|Z, A, = |a, Vs, V4), Where:

Sk ={s eS| (s) # 0}

&2 Technical remark

1I|Z (s) cannot be defined by starting from II|* (s) because the a-restriction may pro-
duce new dead-ends, and thus add fair paths. Therefore, the a-restriction must be
enforced first and, in a second step, the fairness constraints can be enforced on the
maximal paths of the a-restricted model G|,.
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5.2.3 Fair ARCTL

In the literature [Cla+18a, chap. 2.2], the fairness assumption F is classically defined at the
level of the STG G. Here, we define the fairness assumption at the level of the quantifiers
(3,V) of an ARCTL formula, as it had already been proposed for CTL [Hau+20]. Thus the
fairness assumption may change along an FARCTL formula. Of course, a fairness assump-
tion defined at the level of the model can be applied recursively upon every quantifier,
resulting in the same semantics.

The syntax and semantics of Fair ARCTL (FARCTL) extend these of ARCTL with fairness re-
strictions on quantifiers that now quantify over maximal a-restricted fair paths:

Definition 5.13 (Syntax). The syntax of FARCTL is given by the following grammar over
state, action and path formulas (with new fairness restrictions on quantifiers):

def
» state formulas: ¢ = Ts | ps € Ps | ¢ | o1 Ao | o1 Voo | 3 [ Vy
» action formulas: ozd:efTA|pA EPAl-a|larNag | a1 Vas

» path formulas: v % Xy | p1Ups | Fo | G

An ARCTL formula is a state formula.

Definition 5.14 (Semantics). The semantics of FARCTL is the same as the semantics of
ARCTL without fairness, except for the quantifiers. Let s € S| a state:

» s =3 ~iff 37 € 1|7 (s) such that = v
» s =V yiff v € 1|7 (s) we have 7 |= v

Example 5.6. In the STG of Figure 5.1, using the invariance pattern 3G(3Fz), i.e. =
states possibly remain forever reachable. We have G |= 3G(3F-Y), indeed the system
can loop between Grassland, Sparse scrubland and Open canopy woodland, which all
allow reaching a state without trees. But G (= 375 G(3F-T) because the fairness
constraint Fg (") forces the system to reach Dense scrubland or Closed canopy wood-
land from which there is no path removing trees.

5.3 Symbolic model-checking algorithm for FARCTL

In this section, we provide a symbolic algorithm computing the set of states satisfying
an FARCTL formula. Similarly to the symbolic algorithms for CTL with fairness [McM93;
Hau+20], this algorithm relies on the HfG case. Indeed fairness relates to the infinite
suffix of a path, and thus to the temporal modality G. Let us first define some functions
over sets of states that will help us define the algorithm for 37 G.

Definition 5.15. Let es € ARCTLgs a state-event, eq4 € ARCTL 4 an action-event, and
Z CS:

> 3aXies(Z2) = es A (3aXZ V =3,XT)
> 3aXikes(Z) = —es A (3aXZ V =3,XT)
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FoR e (Z) = aneuXZ
> 3aXiee (Z) = anae XZ V =3 XT

Intuitively, 3,X_. (Z) is the set of states allowing to start either: (1) an a-path toward Z,
or (2) a self-loop induced by the a-restriction; along which event e happens during either
the first state or the first action, depending if e is a state-event or an action-event. Thus,
JaX=e (Z) implements for 3,X the semantics of a-dead-ends as self-loops of L 4 actions,
hence the -» on top of the X. Similarly, Ela?b&e(Z) is the set of states allowing to start
either: (1) an a-path toward Z, or (2) a self-loop induced by the a-restriction; along which
event e does not happen during either the first state or the first action, dependingife is a
state-event or an action-event.

Proposition 5.3.
FaXptes(Z) = FaXpes (Z)

But:
Ha?%eA(Z) = HQY,:TA(Z) V = do  XT # Haﬂx*,:ﬁeA(Z)

Which matches the intuition because no action happens along self-loops: L 4 [~ —e4.

We can now provide an algorithm to compute 3/ G for each kind of fairness constraint.

5.3.1 Strong fairness

Definition 5.16 (775). Let Fs = {Fs(e1,e2) | e1 € ARCTLs} a fairness assump-
tion composed exclusively of strong fairness constraints whose first events are state-
events e; € ARCTLs. We define 775 as:

752 = N (BeFpa(2)VIa(ZUZ A TR, (2)))
Fs(e1,e2)EFs

Intuitively, s € v Z.775(Z) means that from s we can reach either an a-dead-end satisfying
every fairness constraints, or a strongly connected component such that V.Fs (e, e2) € Fg
if event e; happens in the SCC then event ez happens as well. In such SCC, when event e;
happens, we can always extend the path in the SCC to reach e,, thus satisfying the strong
fairness constraint.

Lemma 5.1. (s evZ(pA Tng(Z))) = (s E HfSG(go))

Proof. We give here the sketch of the proof, the fully detailed proof is given in An-
nex A.3.

Let S’ = v Z.(pATLS(Z)). For every state s € S, we have s |= p and VFs(e1, e2) € Fs
at least one of the following is true:

1. s = JaXje., (5'), meaning that s is either (1) the beginning in S’ of a maximal
a-path, or (2) of a self-loop induced by the a-restriction; along which e; does
not happen during the first state/transition.
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2. 5 = 3a(S'US" AJaX e, (S")), meaning that s allows to a-reach either (1) the be-
ginning in S’ of a maximal a-path, or (2) a self-loop induced by the a-restriction;
along which e, happens during the first state/transition.

Thus from any s € S, one can build a maximal a-path in S’ satisfying continuously
v and either: (1) ending in a dead-end satisfying every strong fairness constraint, or
(2) infinitely carrying on while VFgs(e1,e2) € Fg, if e; happens then it is eventually
followed by e,, thus if e; happens infinitely often then es happens infinitely often as
well. Hence s |= 375G(p). O

&2 Technical remark

Note that we restricted the first event of each strong fairness constraint to be a state-
event: VFs(ej,e2) € Fs e; € ARCTLgs. Indeed, we need to check that if e; happens,
then it can be followed by e;. Thus, if e; does not happen (34X 4., (Z)) we can carry
on without checking for e,. But, when several strong fairness constraints have action-
events as e;, then we must synchronize the action chosen in the several Ha?%el(z).
Indeed, we can carry on without checking for any es iff we can choose an action where
neither e; happens for every strong fairness constraint. Similarly, if only some ¢;
happen during the chosen action, then we must check that their respective e; can be
reached. Thus, 775 does not produce the correct result when more than one strong
fairness constraint have action-events as e;.

We chose to restrict e; to state-events because we did not find applications where
action-events were needed as first events of strong fairness constraints. But note that
the lemma is still true if only a single strong fairness constraint has an action-event as
e1. Moreover, the algorithm could be adapted to several first action-events by check-
ing, for every combination of these action-events, if an action can be taken where
neither e; of the combination happens and that allows reaching every es not in the
combination. Instead of enumerating over fairness constraints, we would enumerate
over combinations of fairness constraints, thus increasing greatly the complexity of
the algorithm. Another adaptation of the algorithm could be to add the last action
taken in the states themselves in order to synchronize the chosen action in the sev-
eral Ela?b&el (Z). Yet, this approach would increase the complexity of the algorithm as
well by increasing the size of the state space.

The preceding lemma is one-way only, in fact the opposite direction is false in general.
Indeed v Z.(p A 775 (Z)) requires that every occurrence of e; is able to a-reach an occur-
rence of es. But this requirement is too strong: e; is allowed to happen a finite number
of times along a maximal a-restricted fair path without requiring the occurrence of es. To
take this fact into account, we add the operator 3,(...U...) to append the finite prefixes
where e; happens only a finite number of times.

| Theorem 5.1. 375G(p) = 3, (eUr Z.(p A 715 (2)))

Proof. We give here the sketch of the proof, the fully detailed proof is given in An-
nex A.3.
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Let us prove that 3,(eUv Z.(p A 7L (2))) € 3L G(p). Let s € o(pUv Z.(¢ A 77 (2)))
and take m € II|4(s) such that 7 = (oUv Z.(p A 77 (Z))). Thus 3i € N such that
mlils Ev Z.(eATS(Z)) and V) < i,7[j]s | . Now use Lemma 5.1 to extend 7 from
7[i]s into @ maximal a-restricted fair path satisfying .

Let us prove that 3/5G(p) C 3, (pUr Z.(p A TF5(2))). Let s € FL5G(p) and take 7 €

|75 (s) such that m = Gy. We will use the fact that v Z.7(2) o U{SCS|SCr(9)}
[BS07a] to show that s € 3,(pUv Z.(p A 7I5(Z))).

1. If |7| € N, then we prove that s’ = 7[|r||s, the a-dead-end ending , is in the
greatest fixed point of p A 77, i.e. that {s'} C o A 775({s'}). Indeed s’ |= ¢
because 7 |= Gp. As 7 is fair, for every Fg(e1, e2) € F, either es happens along
the self-loop, or e; does not happen, thus:

SE A GeFeade) VIS, {s) S ()

Fs(e1,e2)EFs

Consequently s € 3,(oUv Z.(p A 715 (2))).

2. If|r| = cothentake 7[i .. .] the longest infinite suffix of 7 such that V.Fs(e1, e2) €
F,ife; only happen a finite number of times along 7, then i is strictly bigger than
the last occurrence of e;. Thus along 7[i...], either ex happens infinitely often
or e; does not happen at all. Let us prove that the states «[i...]s of this suffix
are in the greatest fixed point of o A 775, i.e. that 7[i...]s C @ ATIS(x[i. . ]s).
As m = Gy we have 7[i...|s C ¢. For every Fs(ey, e2) € Fg, either e2 happens
infinitely often along 7[i . ..] or e; does not happen at all, thus Vj > i:

s A (R @i Js) v Aa(wli - JsUnli. s
Fs(e1,e2)EFs

ARy (nli - 1s)))

Thus 7fi...Js C @ AT (nfi...]s), and consequently s € 3,(oUr Z.(o AT (2))).
O

We gave here intuitive proofs of Lemma 5.1 and Theorem 5.1, exposing the structure of
the proofs and their main arguments. Detailed proofs, based on the formal definitions
of the fairness constraints and breaking down the cases depending on whether e, are
state-events or action-events, are given in Annex A.3.

Example 5.7. If we restrict the semantics to CTL state-events and infinite maximal
paths, we can recognize the fixed point algorithm for CTL strong fairness [Hau+20]:

3Gy =13 (g&UV Z.p N /\ (me1 A IXZ) Vv IX(E3(ZUZ A 62)))
Fs(e1,e2)EF

Note the absence of =3XT because of the restriction to infinite maximal paths, and the
order inversion between 93X and 3U in the e; case in order to be consistent between
state-events and action-events. Indeed swapping 3X and U is irrelevant along infinite




5.3 Symbolic model-checking algorithm for FARCTL

looping v because we only need to check that we move forward in Z at some point,
i.e. 3XZ, but checking action-events requires to nest 3X inside JU.

5.3.2 Unconditional fairness

The algorithm to compute 37v G for the unconditional fairness can be derived from the
algorithm of the strong fairness. Indeed unconditional fairness can be considered as a
special case of strong fairness.

| Lemma 5.2. For all maximal paths 7, 7 ):030 Ts.

Proof. Recall that = hoao Tsiff Vi € N,i < |r| = 3j € Nsuchthati < j < || and
7[jls E Ts. Forall maximal path 7 and for all i < || take j =i, we havei < j, j < |7

and 7[i]s = Ts. Thus for all maximal paths 7, 7 #Oﬂo Ts. O

| Corollary 5.1. Let e be a state-event or an action-event, Fys(e) = Fs(Ts, €).

Proof
Fs(Ts,e) iff <7r =5 Ts) = (77 =3 e)
iff (T) = <7r =3 e>
iff <7r =3 e>
iff Fu(e)

O

Corollary 5.2. Let 7y a fairness assumption composed exclusively of unconditional
fairness constraints, we define 77U as:

T2 = N (Ba(Z2UZ A3 (2)))
Fw(e)eFw

Then: 32U G(p) = v Z.(p ATIV(Z))

PFOOf. HQQ%TS(Z) =-TgsA (HQXZ vV —E|ax—|—) =_lg

Moreover nesting v Z.(o A 77U (Z)) inside 3,(¢U . ..) is not required. Indeed T s can-
not happen only finitely often along a maximal a-path, as it happensin every state. O
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Example 5.8. If we restrict the semantics to CTL state-events and infinite maxi-
mal paths, then we recognize the fixed point algorithm for CTL unconditional fair-
ness [McM93] can be recognized:

FGo=vZondX N 3ZUZne)
]'-U(E)E]:

As for the strong fairness case, note the absence of =3XT because of the restriction
to infinite maximal paths, and the order inversion between 3X and 3U.

5.3.3 Weak fairness

The algorithm to compute 37w G for the weak fairness is inspired from the algorithm of
the unconditional fairness.

Lemma 5.3. Let 7 a maximal path, es € ARCTLs a state-event, and e4 € ARCTL 4
an action-event:

T béovo es iffw }:OET —es
T Y e iff || # coor m =3 e

Proof.

m Y es iff Vi € N,i < |r| = 35 > i such that 7[j]s } es
iff r =3 —es

T b&ovo e iff || # oo orVi € N,3j > i such that 7[j]a [~ ea

iff || # oo or m ):oﬂo —eq

Corollary 5.3. Let 7 a maximal path, and e; a state-event or an action-event:

» Lete; astate-event, m = Fyy (e, eg) iff (77 ):030 —eilorm |:O3o 62>

» Lete; an action-event, 7 = Fyy(eq, eo) iff <|7r\ #o000rm |:030 —ej orm ):Ozol e2>

Proof
& Fuvlen, ea) iff <7r e 61> N <7r =3 e2>
iff - (71' =Y 61> v (71' =3 eg>

i <7r v 61> v <7r =3 62>
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O

Example 5.9. If we restrict the semantics to state-events and infinite maximal paths,
then a weak fairness constraint can be expressed as an LTL formula [BKO8, chap. 6.5]
and reformulated into an unconditional fairness constraint:

FGe; = GFey = (—\FGel) V (GF€2> = (GF—|€1) V (GFeg) = GF(—|61 V 62)

The algorithm for the weak fairness is based upon this resemblance with unconditional
fairness:

Theorem 5.2. Let Fy a fairness assumption composed exclusively of weak fairness
constraints, we define 77w as:

T2 = N (BalZUZ A BaFipe, (2) V i, (2))
Fw (e1,e2)€F

Then: W G(p) =v Z.(p ATIW (2))

A detailed proof is given in Annex A.3.

5.3.4 Complete symbolic algorithm for FARCTL model-checking

The complete algorithm for the symbolic model-checking of FARCTL relies on the algo-
rithm for 37 G that merges the three algorithms defined previously.

Theorem 5.3. Let F a fairness assumption composed of a set of strong fairness con-
straints Fg, a set of unconditional fairness constraints F;; and, a set of weak fairness
constraints Fyy:

32 G(p) = FaleUr Z.(o NS (2) NTIVET(Z) NTIVET(2)))

Proof. Maximal a-restricted fair paths are stable by finite prefix concatenation, thus
evenif3(pU...)is not required for unconditional and weak fairness, it has the correct
semantics. O

37 GTs selects the states with at least one fair maximal path, i.e. 3ZGTs = {s € S |
|7 (s) # 0} = S|Z. Similarly to CTL with fairness [McM93], the FARCTL operators dealing
with prefixes can be rewritten using 3/ G T s:

> I X =3 X(pAILGCTs)

> VI Xp =3I XTs A=F X9 AFGTs
» IFp =3,F(pAFLGTs)

> 3 o1Ups = Jal(p1U(p2 AFLGTs))
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©2 Technical remark

Under an action restriction «, every state s € S has at least one maximal path (the
path m = s % of length 0 if s *%). But under a fairness restriction F, some states may
not have any fair path at all, i.e. s ¢ 37 GTg, thus II|Z (s) = (. Removing such a state
does not change the semantics, as it cannot be part of any maximal a-restricted fair
path 7 (otherwise the suffix of 7 starting from s would be a maximal a-restricted fair
path and thus TI|Z (s) # 0). Note that this is exactly how we defined S|Z = {s € S |

1|7 (s) # 0}.

Once we restrict S to S|Z = 37 GTgs, the FARCTL operators dealing with prefixes are
exactly the same as for ARCTL:

> I Xp =T Xp
> VX = Vo X
» 3Fp=3,Fp
» 3 p1Ups = Jap1Up:

The FARCTL operators dealing with suffixes are derived using the usual dual equiva-
lences:

> VFp=-32Gp
> V‘O};GQO = —aa}—F—!go
> VL p1Ups = =(3F ~paU—p1 A —pg) A =37 Gpo

This symbolic FARCTL model-checking algorithm is implemented inside ecco.
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[ Summary

In this chapter, we apply FARCTL to the two case studies presented in Chapter 4. First,
we exemplify on the Borana model how ecosystem management scenarios can be
modelled by action and fairness restrictions. FARCTL is used to investigate the conse-
guences of shifting between scenarios during the model exploration, and to describe
realistic paths using fairness constraints. Second, we exemplify on the protists model
how two distinct kinds of dynamics can be combined in a controlled manner using
FARCTL. We use action-restrictions to separate invasions from the rest of the dynam-
ics, and alternate between them using an ARCTL formula to look for specific invasion
behaviours.

The ecco notebooks encompassing the case studies presented in this chapter can be
found in [Tho22]. Both the RR model file and the python analysis notebook are given
for each case study, along with a static html preview of the notebook. Computing all the
results took only a few seconds on a modern laptop (Linux 5.4 Mint/Ubuntu, 32G RAM,
CPU Intel Core i7-7820HQ 2.9GHz).

6.1 Borana vegetation model

Chapter 4 presented the Borana model representing the vegetation dynamics of the Bo-
rana Zone in Ethiopia [LC18; LCD18; Lia+20]. CTL model-checking was used both to build
a component graph representing the differences of bush encroachment behaviours de-
pending upon fixed management scenarios, and to extract the scenarios making en-
croachment reversible. In this chapter, we explore with FARCTL how shifts between man-
agement scenarios impact the system dynamics. First, the Borana model is revised with
action labels, then the question “Can a change in management policy reverse the bush en-
croachment induced by the preceding one?” is answered using FARCTL, and finally fairness
is embedded into scenarios to get a more fitting model.

6.1.1 Modelling

The Borana model is revised to make use of FARCTL, see Figure 6.1. Controls, apart from
altitude, are removed from the variables declaration and converted into action labels, i.e.
controls are moved from the condition of the rules towards their label. Altitude remains
a control, as it cannot be reasonably changed during the dynamics (we assume that the
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altitude of the studied ecosystem cannot shift, but note that global warming could pro-
duce a similar effect). Instead of being an initial value of the control variables, a scenario is
now an action restriction. For example, the scenarios where fire is banned are no longer
defined as the subset of the STG where Fb+, but as action-restrictions of the STG where
the actions labelled by [Fb-] are disabled. Thus there are no longer distinct and dis-
connected STGs for distinct scenarios, but two disconnected STGs, corresponding to the
system at low or at high altitude, with distinct action-restrictions corresponding to distinct
scenarios.

variables:
Gr+: Grasses
Sh-: Shrubs

Tr-: Savanna trees

Sa-: Tree saplings

Cr-: Crops

Lv-: Livestock (cattle)
Gz-: Wild grazers

Bw-: Wild browsers

controls:
Altx: Altitude

rules:
[Fb-] Gr+ >> Sh-, Sa-, Lv-, Gz-, Bw-
[Fb-] Gr+ >> Sh-, Tr-, Sa-, Lv-, Gz-, Bw-
Sa+ >> Tr+
Sh-, Tr-, Sa-, Cr- >> Gr+
[Fb+] Alt+, Gr-, Sa+ >> Sh-, Tr+
Alt-, Sh+, Tr- >> Sa-
[W1+] Gr+, Lv- >> Gz+
[W1+] Sh+, Lv- >> Bw+
[W1+] Sa+, Lv- >> Bu+
[Ps+] Gr+ >> Lv+, Gz-, Bw-
[Ps+, BLv+] Sh+ >> Lv+, Gz—-, Buw-
[Ps+, BLv+] Sa+ >> Lv+, Gz-, Bu-
Gr+, Lv+ >> Sh+, Sa+
Gr+, Gz+ >> Sh+, Sa+
[Ig+] Lv+ >> Gr-, Lv-
Bw+ >> Gr+, Sh-, Sa-, Bw-
[BLv+] Lv+ >> Gr+, Sh-, Sa-, Bw-
[Cb-] Alt+, Tr+ >> Gr-, Sh-, Sa-, Cr+, Lv-, Gz—, Buw-
Cr+ >> Gr+, Cr-

Figure 6.1: Revised Borana model.

The STG computed from the revised Borana model has only 50 states, way less than the
1185 states spread over the 128 disconnected subgraphs of its initial version. The com-
ponent graphs corresponding to the partition between vegetation classes of the STGs at
low and at high altitudes are depicted in Figure 6.2. Note that some rules should not be
enabled together in the same scenario, for example R1 and R5 have conflicting labels:
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[Fb-] and [Fb+]. This fact has to be ensured at the level of the action-restrictions defin-
ing the scenarios, thus some paths in the unrestricted STG may involve conflicting rules
that implicitly involve a scenario shift in between their occurrences.

Sparsely __— R4 —
Vegetated Grassland <—— R16,R17

Land TT—Rs—
o

&
& Sparse Dense
= Scrubland Scrubland

Bushland

—

T ryey —
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2]

Y]

Cropland

\ Rig
g \
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N vrwey —
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—

S yonyty —

7 RBRU

Open Closed
Canopy R15 —» Canopy
Woodland Woodland

(b) At low altitude A1t~

Figure 6.2: Component graphs of the revised Borana model partitioned by vegetation

classes.

&2 Technical remark

Note that we cannot design an action-restriction defining a set of scenarios. In-
deed, we could build an action-restriction « as the logical or (V) of the distinct action-
restrictions corresponding to each element of a set of scenarios. Nevertheless, the
paths resulting from « are not the union of the paths resulting from each action-
restriction, but the paths shifting arbitrarily often between these action-restrictions.
Thus when doing 3, we are not exploring the maximal paths of the various scenar-
ios of the set, but the maximal paths shifting arbitrarily often between these scenar-
ios. Although such action-restriction « can be useful, there is no way to explore the
maximal paths of a set of scenarios without either explicitly building distinct action-
restrictions linked to distinct quantifiers, or representing the scenarios as control vari-

ables.

6.1.2 Results

The benefits of analysing the Borana model with FARCTL are outlined using the state prop-
erty bush encroachment oY = (Sh+VTr+)AGr-ACr-, and the following action-restrictions

corresponding to the 3 STMs of Liao, see Figure 4.2:

» WildScenario = —([Fb+]V[Cb-]V [W1-]V [Ps+]V [Ig+]V [BLv+])correspondingto
the wild scenario of the Borana zone: wildlife with fire but without livestock nor crop,
see Figure 4.2a (A1t*, Fb-, Cb+, W1+ Ps-, Ig-, BLv- in the original Borana model),

» TraditionalScenario = —([Fb+] V [Cb-] V [Wl+] V [Ps-] V [Ig+] V [BLv+])
corresponding to the traditional management policy of the Borana zone:
extensive grazing with fire but without wildlife nor crop, see Figure 4.2b
(Alt*,Fb-, Cb+,Wl-,Ps+ Ig-, BLv- in the original Borana model);
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» CurrentScenario = —([Fb-1V [Cb-]1V [W1+]V [Ps-]V [Ig-1V [BLv+]) correspond-
ing to the current management policy of the Borana zone: intensive grazing without
fire nor wildlife nor crops, see Figure 4.2¢ (Alt*, Fb+, Cb+, Wl-, Ps+, Ig+, BLv- in the
original Borana model).

First, we can retrieve the fact, established in Chapter 4, that intensive grazing is required
for bush encroachment. To do so, we check that bush encroachment can only happen in
the CurrentScenario:

> 80 bé EiWildScenarioF(m>
> SO l?é EITraditionalScenarioF(’qm)

> SO }Z EICurrentScenarioF(&ﬁ?’)

The only satisfied formula is indeed the one restricting the actions to the
CurrentScenario. Next, we show how to provide an answer to the following ques-
tion: “Can a change in management policy reverse the bush encroachment induced by the
preceding one?" To do so, we adapt to FARCTL the sequence and invariance patterns used
in Chapter 4. Let us check if at least some bush encroachment is reversible by a change
in management policy:

SO ’: 3CurrentScenario F(m A 3WildScenario F(—'Xv))

> 80 bé ElCurrentScenario F(m A E|T:fadi1:ionalScenarioF(_"m'))

Thus the bush encroachment induced in the Borana zone by the current management
policy cannot be reversed by shifting back toward the traditional management policy.
However, at least some bush encroachment is reversible by letting the ecosystem shift
back to its wild behaviour. Let us check if all bush encroachment is reversible by a change
in management policy:

> SO ’: vCurrentScenarioG(’ﬁgvy = E|W:‘leScenarioI:(_"yyiv))

> SO bé vCurrentScenarioG(?my = 3T:fadit:‘LonalScenario F(_‘&’»

The traditional management policy cannot reverse all bush encroachment induced by
the current management policy, as expected because we just saw that it could not even
reverse it partially. However, all bush encroachment induced by the current manage-
ment policy can be reversed by letting the ecosystem shift back to its wild behaviour. The
factthat the TraditionalScenario prevents encroachment but cannot reverse it (at least
when induced by the CurrentScenario) in the Borana model may seem counter-intuitive.
Yet, such behaviour has been reported before [LCD18; Lia+20] and was one of the moti-
vations behind the STM framework [WWN89].

We could test other scenarios, both inducing encroachment or trying to reverse it, but we
limit ourselves here to the scenarios of Liao’s STMs in order to validate the model. Note
that if we change the scenario inducing encroachment, then the reachable encroached
state may change as well, thus encroachment may not be reversible by the WildScenario
anymore. In addition, we could design more complex formulas, shifting between more
than two scenarios for example.

Finally, we outline the use of fairness assumptions in FARCTL formulas to characterize
realistic paths using the following action fairness constraint:

» Fw(lIg+]) = Fw(3rg«1 XT, [Ig+]) meaning that if rules related to intensive graz-
ing are enabled continuously, then they must happen infinitely often
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» Fs([Fb-1) = Fs(Ire-1XT, [Fb-1) meaning that if rules related to fire are enabled
infinitely often, then they must happen infinitely often

In the CurrentScenario, grasses do not always disappear: Sy [~ VeurrentscenarioF (GT-).
We can wonder what would happen if we force the intensive grazing rule R15 to happen
if it is continuously enabled, i.e. if we assume that the continuous presence of livestock
under the intensive grazing policy shall trigger the intensive grazing rule infinitely often.
Indeed, the continuous presence of livestock without consequence is not realistic. To
do so, we use the fairness constraint Fy([Ig+]) and get a new model-checking result:

So = vﬁ;ﬁjjﬁ;ignmoF(cr—). Thus grasses always disappear in the CurrentScenario with

weak fairness on the intensive grazing rule R15, indeed R15 is the only rule removing Gr
enabled in the CurrentScenario.

We got a similar result in the WildScenario, where shrubs and saplings do not always
disappear: Sy [~ VuildscenarioF (Sh—ASa-). We can wonder what would happen if we force
the fire rulesR1 and R2 to happen if they are enabled infinitely often, i.e. if we assume that
if herbaceous fuel is present infinitely often then the fire rules shall trigger infinitely often
as well. To do so, we use the fairness constraint Fg( [Fb-]1) and get a new model-checking

result: Sy = v stFe-l) F(Sh- A Sa-). Thus shrubs and saplings always disappear in the

WildScenario

WildScenario with strong fairness on the fire rules R1 and R2.

6.2 Protists model

Chapter 4 presented the protists model representing the first protists experi-
ment [WWL98] studying the fate of species combinations. A component graph was built
representing the various collapsing behaviours leading to stable communities. In this
chapter, we show how to model with FARCTL the second protists experiment [WLWO03]
studying the invasion of stable communities. First, the protists model is revised with
invasion rules and action labels, then the question “Are there catalytic species, i.e. that
invade, change the community, and then go extinct?” is answered using FARCTL.

6.2.1 Modelling

The protists modelis revised to make use of ARCTL, see Figure 6.3. While the variables sec-
tion remains unchanged, 6 new rules were added modelling the invasion by each species.
Rules are labelled by their related process [process] asin the original protists model, and
in addition by their affecting species [sp:1] (appearing positively on the left-hand side of
the rule) as well as by their affected species [sp:r] (appearing on the right-hand side of
the rule). Thus an [invasion] rule is also labelled by the invading species [sp:r], and
the other rules are also labelled by both the acting species [sp:1] and the disappearing
species [sp:r].

The STG computed from the revised Protists model has 64 states, just like its initial version.

But it has additional transitions representing the invasions that blur the dynamics. We will
restrict the occurrences of these additional transitions using action-restrictions.
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variables:
Ax: Amoeba proteus
Bx: Blepharisma japonicum
Cx: Colpidium striatum
Ex: Euplotes patella
P*x: Paramecium caudatum
T*x: Tetrahymena pyriformis

rules:
[predation, A:1, P:r] A+ >> P-
[predation, B:1, C:r] B+ >> C-
[predation, B:1, T:r] B+ >> T-
[predation, A:1, B:r] A+, P- >> B-
[predation, A:1, C:r] A+, P- >> C-
[predation, A:1, T:r] A+, P- >> T-
[predation, A:1, E:r] A+, P- >> E-
[predation, E:1, T:r] E+ >> T-

[starvation, A:r] P- >> A-
[starvation, E:1, E:r] E+ >> E-
[starvation, C:1, C:r] C+ >> C-
[competition, P:1, C:r] P+ >> C-
[competition, P:1, T:r] P+ >> T-
[competition, C:1, T:r] C+ >> T-
[competition, T:1, C:r] T+ >> C-
[invasion, A:r] A- >> A+

[invasion, B:r] B- >> B+
[invasion, C:r] C- >> C+
[invasion, E:r] E- >> E+
[invasion, P:r] P- >> P+
[invasion, T:r] T- >> T+

Figure 6.3: Revised protists model.
6.2.2 Results

In this secction, we answer the following question taken from the second protists ex-
periment article [WLWO3]: “Are there catalytic species, i.e. that invade, change the commu-
nity, and then go extinct?". To do so, we design an FARCTL formula checking if species
sp € {A,B,C,E,P,T} is catalytic (with [inv.] for [invasion]):

EII:inv.]/\[sp:r]>((E|—|[inv.:| F(Elﬂ [inv.]/\[sp:l]/\—\[sp:r]x(zl—'[inv.] F(EI—'[inv.]/\[sp:r] XT))))
—_— N——

sp invades dynamics sp change the community dynamics sp goes extinct
goes on goes on

For each species sp € {A,B,C,E,P,T}, this formula is satisfied by some states of the STG.
Thus every species is classified as catalytic. In [WLWO03], only A, B, E and T were found
catalytic experimentally. But in the second experiment, invasion was only tested in so-

called “persistent communities”. When checking the satisfaction of the formula only on
these persistent communities, we find that P is not catalytic anymore, which is more in
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line with the experimental result. The additional catalytic species found by the model may
arise from the additional transitions predicted by the model, see Figure 4.17, or from the
factthat invasions were not always successful in the experiment [LWWO0O0] while the model

assumes that every species can always invade.
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7.1 Conclusion

In this thesis, we presented formal methods based on model-checking for the modelling
and the analysis of ecological state-transition graphs. First, we introduced the concept of
ecological state-transition graph (STG) that, while being a novelty, captures a long history of
disparate representations of the dynamics of an ecosystem as a graph. Computer science
has developed a wide range of methods for analysing such graphs, some of which have
been used in systems biology. In this thesis, we focused on methods based on model-
checking, which checks whether an STG satisfies a dynamical property given as a temporal
logic formula. We presented the Computation Tree Logic (CTL) that expresses properties
about branching dynamics with alternative pathways, a feature often found in ecological
STGs. CTL model-checking can be used to partition the state space of the STG depending
on the satisfaction of a given set of CTL formulas. Such partition can be depicted as a
graph, called a component graph, that offers a visual representation of whether the STG
dynamics fulfills or not the behaviour described by the given formulas.

This approach was implemented in ecco [PTG22a], a Python toolbox for the formal mod-
elling and analysis of ecosystems. Models in ecco compute into STGs, whose states are
defined by Boolean variables and whose transitions are derived from if-then rules. The
model analysis in ecco is performed by interactively refining a partition of the state space,
using either topological or CTL state properties, that is depicted as a component graph.
We used ecco on two case studies exemplifying this approach. In the first instance, we
modelled the vegetation changes in the Borana Zone in Ethiopia under diverse manage-
ment scenarios [Tho+22]. We then built a component graph representing bush encroach-
ment using CTL formulas, and selected management policies preventing it or making it
reversible. In the second instance, we modelled protists community assembly based on
the results of laboratory experiments [Her+22]. We then built a component graph parti-
tioning the states with respect to the stable communities they lead to using topological
properties.

Both case studies were limited by the fact that we want some specific events to occur but
only in a controlled manner, for example changes of management scenarios or species in-
vasion. To overcome these limitations, we presented Action-Restricted CTL (ARCTL) [PRO71],
an extension of CTL that allows to restrict the set of enabled actions along a formula.
We then extended ARCTL with fairness constraints, i.e. “realism” constraints upon the or-
der and happening rate of events along a path. This resulted in Fair ARCTL (FARCTL), for
which we provided a symbolic model-checking algorithm that is implemented inside ecco.
FARCTL quantifiers allow to restrict maximal paths with respect to both enabled actions
and fairness constraints, for example to model ecosystem management scenarios. An
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FARCTL formula can thus shift between them in a controlled manner at the level of its
quantifiers. Finally, we applied FARCTL to both case studies. In the first instance, we de-
fined management scenarios as action and fairness restrictions, and we used FARCTL to
investigate the consequences of shifting between scenarios. In the second instance, we
used action-restrictions to separate invasions from the rest of the dynamics, and alter-
nated between them using a FARCTL formula to look for specific invasion behaviours.

7.2 Implementation choices

The approach presented in this thesis is primarily independent of the presented imple-
mentation based on ecco. Indeed, as long as the ecosystem dynamics can be represented
as an STG, the methods we presented, such as component graphs or FARCTL, can be ap-
plied. In this section, we discuss the implementation choices made in this thesis, namely
Reaction Rules for modelling and (FAR)CTL for analysis, and give some perspective on en-
visioned improvements. Furthermore, we also list some other possible implementations,
along with example studies in biology operating them.

7.2.1 Reaction Rules as modelling language

In this thesis, we computed STGs from Reaction Rules (RR) models [GP19; PTG22a], i.e.
system descriptions based upon Boolean variables and if-then rules. We chose this com-
putational model to cope with one particular specificity of ecological data: observations
of ecosystems are very sparse. For example, the protist experiments [WWL98; WLWO03]
may seem quite limited (only 6 species in a microcosm with very few quantitative record-
ings). Yet, to our knowledge, they are the most advanced laboratory experiments ever
performed to record community assembly exhaustively. In ecosystems of bigger scale,
data is even sparser, studies may use conflicting variables (for example, species, genre
or functional groups), and the influence of a variable on another is often studied in ab-
straction from the rest of the system. Indeed quantitatively recording the behaviour of an
ecosystem is incredibly costly, and often cannot be replicated. Boolean variables can cap-
ture very sparse information about the system [Cos22], and if-then rules are expressive
enough to encode every qualitative knowledge about the system’s behaviour.

Indeed, the knowledge about the dynamics of an ecosystem can often be summarized
by sentences such as “if x happens then y may happen” which is precisely the semantics of
if-then rules. For example, most rules of the Borana model encode this kind of sentences
found in the literature [LCD18; LC18; Lia+20; Lia16], see Annex A.2. If-then rules also have
the benefit of being user-friendly, thanks to their similarity with everyday language even
people unfamiliar with modelling are able to understand and employ them. For example,
local stakeholders often have a deep understanding of the ecosystem dynamics that can
be used to mitigate the data sparsity problem. But only if they are able to take part in
the modelling process. Indeed, one of the main assets of the STM framework is that it
enables collaborative modelling between scientists and local stakeholders [Bes+17]. If-
then rule modelling with qualitative variables had already been proposed before to model
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ecosystem dynamics precisely for its ability to capture sparse information and for its user-
friendliness [Ryk89; Sta90].

In addition, RR is expressive enough to encode any existing STG. Most STGs found in ecol-
ogy are directly drawn from empirical observations (e.g. field studies or laboratory exper-
iments), for example the Borana STMs [LC18] or the protists assembly graph [WLWO03],
and not computed from a formal model. Yet, analysis of such empirical STGs would still
benefit from the methods presented in this thesis. To this end, they need to be encoded
as a computational model coupled with an analysis toolbox. Any STG can be elementarily
encoded as an RR model by creating a variable for every state s € S, and creating a rule
[a]ls+>>s’+, s-for every (s, a,s’) €—. Any state label p € Ps can additionally be encoded
as a state formula: p = V scs)pevs(s)} - Thus ecco can be used not only as a modelling
framework, but also as an analysis toolbox for empirical STGs.

Future extensions of RR

The most immediate extension of RR is undoubtedly to use multivalued qualitative vari-
ables. Such variables are typically used in biology to model phenomena where a reactant
regulates distinct reactions that occur at distinct thresholds. Although data is sparse in
ecology, such information is often available for at least some variables or processes, and
thus could be included in the modelling. For example in the Borana ecosystem, fire israre
when woody plant cover is above a threshold of 40% [Arc+09; Lia+20], thus trees could be
more precisely described as multivalued rather than as Boolean: Tr € {none, low,high}
corresponding respectively to 0%, < 40% and > 40%. In RR, the multiple values of a vari-
able and their potential order would be defined during variable declaration along with its
initial value(s). If the values of a variable are ordered, rules guards could use this ordering
with expressions such as Tr > low.

Priority rules is a feature that was included in previous presentations of RR [Cos+22;
PTG22a], but that is missing in this thesis. The semantics of priority rules is that low-
priority rules can only be fired if no high-priority rule is enabled, thus high-priority rules
are always preferred over low-priority ones. High-priority rules are typically used to model
cascading effects that need to be resolved before any other low-priority transition is fired.
For example, priority rules could be used in the Borana model to split the removal of ani-
mals from the removal of their food in the rules. To do so, new priority rules of the form
“food- >> animal-" should be added, and animal- should be removed from the effect
of the already existing rules causing food-. Priority rules make the semantics more con-
voluted, for example it is unclear what is the semantics of a cycle of high-priority rules,
especially as modellers often want to hide high-priority transitions in the STG. Yet, when
high-priority rules cannot cycle, they can be incorporated inside low-priority rules, that
may have to be duplicated if high-priority rules imply branching, by chaining their effects.
Moreover, neither the Borana model nor the protists model has any priority rule. Hence,
we chose to skip priority rules in this thesis, but the methods we presented could be ex-
tended to include them.
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Other modelling formalisms

Computer science provides with a large range of modelling formalisms computing
STGs [BCS13; Nal+15; BL16], each fitted to specific features. Most of the methods pre-
sented in this thesis are independent of the modelling formalism, as long as it computes
an STG, and thus may be used with other modelling languages than RR. As an exhaustive
inventory of these modelling formalisms would be tedious, we limit ourselves to features
found in existing ecology studies.

In ecology, STGs are often computed from interaction networks, such as differential
equations [SA21] or Boolean networks [Cam+11; LaB+13], with possible bridges between
them [RM16]. Modelling frameworks based on biological interaction networks have been
designed in the field of systems biology [CGR12; Nal+15], for example GINsim [CNT12]
handling Boolean networks. An example of this implementation in systems biology is
given in [Abo+15], modelling the differentiation of T-helper cells and analysing the model
through a partition of the state space based on ARCTL. As the protists model is based
on such an interaction network, modelling it with a Boolean network may help to build a
bridge between ecology and the formal toolbox developed in systems biology.

When the duration of the transitions between states are available, for example through
life history characteristics [Cat+79], they can be incorporated into the STG as transition la-
bels. Timed automata [Pet99; AD94] is a modelling formalism computing such STGs, that
can be implemented with the software Uppaal [BDLO4] incorporating a model-checker. A
concrete example of this implementation in ecology is given in [Lar+12], modelling sce-
narios of a coral reef ecosystem with timed automata.

Lastly, when the probabilities of the transitions between states are available, they can also
be incorporated into the STG as transition labels. Markov chain is a modelling formalism
able to produce such STGs. A concrete example of probabilistic STG in ecology can be
found in the State-and-Transition Simulation Models [Dan+16], a distinctive approach of
the STM framework [Bes+21] focusing on simulation.

7.2.2 FARCTL as temporal logic

In this thesis, we used Computation Tree Logic (CTL) [Cla+18b], and its extensions Action-
Restricted Computation Tree Logic (ARCTL) [PRO7] and Fair ARCTL (FARCTL), both (1) to com-
pute sets of states satisfying some properties and (2) to partition the STG with respect
to these properties. CTL and (F)ARCTL are state-based temporal logics that can be easily
expressed in terms of sets of states in the symbolic perspective [Bur+92; PR0O7; Thi16],
a feature required to build component graphs efficiently. (FAR)CTL expresses properties
about branching dynamics between alternative pathways, a feature often found in eco-
logical STGs as illustrated by the Borana and protists examples. Nevertheless, designing
(FAR)CTL formulas often turns out to be a difficult exercise for non-expert users [DAC99].
In order to ease this task, we proposed a catalogue of patterns[Mon+08; Lar+12; Tho+22],
mapping properties written in English to their CTL translation, see Table 2.1. Defining such
a catalogue for FARCTL would be useful future work.


http://ginsim.org/home
https://uppaal.org/
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Yet, if ecologists got acquainted with formal definitions such as temporal logics, we be-
lieve that it would help them clarify and compare various concepts used in the fields of
ecology. Indeed, many STGs found in ecology were drawn as graphical summaries of the
knowledge about the dynamics of the studied system [Ber+14; LC18], rather than as ac-
tual data [Lon74; WLWO03; LCD18], without having a formal definition in mind. However, if
STGs can be found repeatedly in so many separate fields of ecology along its history, then
they must be a relevant representation of ecosystem behaviour. Such representation cer-
tainly deserves a formal conceptual framework, such as the one developed in computer
science to analyse Kripke structures and labelled transition systems [BK08; Cla+18b].

The fairness concept was an early request from ecologists during this thesis. The auto-
mated systems studied in computer science can be trapped in cycles where only a small
portion of the system takes action, and finding such cycles may be the goal of the analysis
when looking for bugs. On the contrary, it is often supposed in ecology that all parts of
the ecosystem are able to take action in turn more or less fairly. For example, if a model
represents seasonal change, we want to exclude from the analysis the maximal paths
trapped in a single climatic season, i.e. the maximal paths that are not fair with seasonal
change events. Recurring events are commonplace in ecosystems, for example seasonal
changes, fires, tides, invasions, or even anthropogenic events such as harvests or taxes.
A fairness assumption can encompass multiple distinct fairness constraints [BK08], for
example restricting the maximal paths to the ones that are fair toward multiple distinct
events. Thus a modelling framework for ecological STGs should let the modeller define a
fairness assumption alongside the system description.

ARCTL [PRO7] allows to restrict the dynamics of the system to a delimited subset of its ac-
tions. Asillustrated by the Borana example, the objective behind STMs [Bes+17] is often to
find an ecosystem management policy achieving some goal, in this case preventing bush
encroachment to preserve livelihood. Such management policies can be represented as
action-restrictions, i.e. subsets of enabled actions, or in other words subsets of disabled
ones. Instead of building distinct STGs representing distinct management scenarios, we
can build a single more intricate STG encompassing every scenario, that we can then re-
strict to a specific scenario using an action-restriction. Instead of replicating the states
between the distinct STGs representing the several scenarios, every state makes a unique
appearance in the single STG encompassing every scenario. In addition to the shrinkage
of the state-space, ARCTL also has the benefit that we can easily shift between scenarios
by changing the action-restriction. Yet, as mentioned in Chapter 6, ARCTL does not enable
to select scenarios satisfying some property without enumerating them explicitly.

We could have added directly the transitions allowing to navigate between the distinct
STGs representing the distinct management scenarios, i.e. transition changing the sce-
narios. But then the system would be able to shift between the scenarios uncontrollably,
the worst case being that the system is only bumping between scenarios without per-
forming any action. It would blur the dynamics just like uncontrolled invasion transitions
blur the dynamics of the protists model. ARCTL solves this issue by specifying the action-
restriction at the level of quantifiers. For example in the case studies of Chapter 6, it is
the quantifiers of the formulas that are shifting in a controlled manner between scenar-
ios, or that are enabling invasions temporarily. Thus, we can specify in the formula itself
if and when the system shifts between scenarios, or if and when invasions happen. As a
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consequence, we can check for example if a scenario can reverse the effect of another by
shifting between them along the formula.

Fair ARCTL pushes a little further this definition of scenario by appending a fairness re-
striction to it. A scenario therefore delimits not only a set of enabled actions, but also a
set of fairness constraints shaping the maximal paths. Indeed while some fairness con-
straints may be global across all scenarios, such as the changing seasons, others may be
related to particular scenarios, such as fire happening infinitely often in ecosystems not
managed by humans. As a fairness assumption can be specified in a formula at the level of
the quantifiers, just like with action-restriction, we can still shift between scenarios along
a formula.

An FARCTL model-checker has been implemented inside ecco, using the symbolic algo-
rithm presented in Chapter 5. This algorithm computes the set of states satisfying a given
FARCTL formula in the symbolic perspective, thus we can use it to efficiently partition the
state-space in order to build component graphs. All three fairness categories, namely un-
conditional, weak, and strong, are available, using both state-events or action-events, apart
from strong fairness constraints with an action-event as first event. Indeed this specific
case involves a jump in algorithmic complexity, because it requires checking these action-
events in a synchronized way when taking a transition. Nevertheless, most usual fairness
constraints are available, for example the traditional action fairness [BK08, chap. 3.5] only
involves action-events as second events, and our applications did not require these prob-
lematic fairness constraints so far.

Perspectives

As noted just above, the FARCTL symbolic model-checking algorithm presented in Chap-
ter 5 does not manage strong fairness constraints with action-event as first event. But, as
mentioned in Chapter 5, the algorithm could already handle a single strong fairness with
action-event as first event. If an application requires multiple such fairness constraints,
then the algorithm would need to be revised. For example, if only a few of such fairness
constraints are needed, a straightforward enumeration of the combination of synchro-
nized action-events may provide a solution with a tractable complexity.

On another topic, we mentioned in the protists case studies of Chapter 4 that the model
was not able to handle states that are nondeterministically stable, i.e. that are stable
in some maximal paths but not in others. Indeed, the following axiom of temporal log-
ics may be perturbing for ecologists: the maximal paths must always move forward if
at least one transition is available. Yet, it is not always the case in ecosystem dynam-
ics: the ecosystem may remain forever in a given state even though some transitions are
available. For example, in the first protists experiment [WWL98], in half of the replicates
starting from {P, C} there is a transition towards { P}, while in the other half {P,C} is
stable. In a similar fashion, the STM framework [WWNB89] distinguishes “transient states”
in which the ecosystem cannot persist indefinitely from “persistent states” where it can
persist, even though some particular events may bring the system out of these persistent
states. This behaviour could be modelled with fair actions and an alternative semantics
of maximal paths. Suppose that the actions are partitioned between unfair and fair ac-
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tions [BKOS, chap. 3.5], i.e. we can partition the actions between these that can happen
and these that will happen. Then, we can redefine maximal paths as infinite paths satisfy-
ing every fairness constraints, or finite paths ending in a any state s whose self-loop, i.e.
the infinite path s L4, ¢ T4, satisfies every fairness constraints. Thus, if there are
no unconditionally fair actions, a state where only actions that can happen are available
will be considered stable for some maximal paths, even though other maximal paths that
move forward from this state are also considered. Note that this approach is more subtle
than just adding self-loops in these new potentially stable states, because it also ensures
that all infinite maximal paths are fair. The symbolic algorithm for FARCTL presented in
Chapter 5 can easily be adapted to this new semantics by expanding the finite case of
JaX=e(Z) and 3, X (Z) to the states where only actions that can happen are available:
_‘Ela/\mustx—l—~

If the STG includes transition durations or probabilities, then these features can be lever-
aged using appropriate CTL extensions. Timed CTL [ACD93] extends CTL with duration
restrictions on modalities F, G, U. An example of the use of TCTL to analyze the scenar-
ios of a coral reef fishery is given in [Lar+12] alongside a catalogue of pattern mapping
properties in English with TCTL formulas. Note also that fairness can be seen as a form
of qualitative temporality. In contrast to the crisp quantitative temporal properties speci-
fied by TCTL, FARCTL can express looser temporal properties about pathways such as the
infinite occurrence of an event. On the other hand, Probabilistic CTL [H]94] extends CTL
with quantifiers allowing to query about the probability of some paths. An example of the
use of PCTL to analyze the stability of frog populations is given in [Bar+15].

Another temporal logic worth considering is Alternating-time Temporal Logic
(ATL) [AHKO2] that expresses properties of an STG that describes a game between
players, for example, one or several ecosystem managers and the environment. In such
an STG, every state is a state of the ecosystem, and every transition is a possible move
in the game between the players. ATL quantifiers allow querying if a given player (or set
of players) has a strategy to enforce/prevent a certain behaviour of the system. The ATL
symbolic model-checking algorithm [AHKO02] is similar to the FARCTL symbolic model-
checking algorithm presented in Chapter 5. ATL seems particularly fitted to the STM
framework, as exemplified by the following citation taken from the STM foundational
article:

“Under the state-and-transition model, [ecosystem] management would not see
itself as establishing a permanent equilibrium. Rather, it would see itself as en-
gaged in a continuing game, the object of which is to seize opportunities and to
evade hazards, so far as possible. [...] Transitions between states are triggered by
natural ‘events’ (e.g., weather, fire) or by management ‘actions’ (change in stocking
rate, burning, destruction or introduction of plant populations, fertilization). Very
often a combination of the two may be needed.” [WWN89]

Yet, in order to make use of ATL, the system description has to be formulated as a game
between players. Thus the RR modelling language would need to be extended to describe
the players and their moves, for example by tagging the rules with the players that can
perform the associated move.
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7.3 Interactive component graphs with ecco

At the inception of this thesis, ecco was based upon explicit STGs [GP19; Mao+21; Cos+22;
Her+22], i.e. enumerating the states individually, that users would compact using topolog-
ical components such as strongly connected components or dead-ends. For example, the
states forming a strongly connected component could be merged into a single node rep-
resenting the SCC as a whole. As ecco’s models often yielded huge STGs, from hundreds
of states [Cos+22] to thousands [Mao+21] or even millions in unpublished exploratory
work, users were often overwhelmed by the explicit STGs (when ecco managed to display
them, which was not always easy for the biggest models). Starting from a large explicit STG
and incrementally compacting it proved to be troublesome, for example merging every
SCCs sometimes produced a graph enclosing still hundreds of nodes representing each
a distinct SCC. Users were often lost in front of the complexity of their model's STG, see
Figure 7.1, and confined themselves to looking for dead-ends or global properties of the
STG such as strong connectivity or freedom of dead-ends.

Figure 7.1: Example explicit STG built with ecco. 482 nodes and 2640 transitions,
from [Cos+22].

Component graphs [PTG22a] take the opposite view compared to explicit STGs: instead of
increasingly compacting the STG they propose to increasingly refine a partition. Starting
from the simplest partition composed of a single enclosing component (C = {S}), the
user incrementally splits the components with respect to some properties, see the ex-
amples of Chapter 4. As a consequence the number of components can be controlled as
every individual split only divide a component into two sub-components. Instead of being
overwhelmed by a huge number of individual states and transitions, the user progres-
sively sharpens their understanding of the system at each split, new questions arising as
the partition is refined. ecco proposes to interactively explore the information collected
about each component, helping the user to design further questions and splits. The user
has incrementally refined the partition from the start, and thus is able to fully understand
it even if it ends up being quite complex. The partitioning of a given STG can be refined
in many distinct ways, resulting in distinct component graphs answering distinct ques-
tions. We hope that this workflow is intuitive for ecologists, indeed it seems to match the
following citation taken from the STM foundational article:

“As a general rule, one would distinguish two states only if the difference between
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them represented an important change in the land from the point of view of man-
agement. [...] It follows that a given [ecosystem] could be described in terms of a
greater or lesser number of states and transitions, depending on the nature and
objectives of management and on the state of existing knowledge. There would not
be a single correct description.” [WWN89]

The first use of ecco’'s component graph workflow by ecologists is promising [Cos22]. Al-
though explicit STGs are easier to understand thanks to their proximity to the semantics,
and although temporal logics form a difficult learning step, ecologist users were able to
articulate more complex questions and to produce more refined analyses using the com-
ponent graph workflow. Yet we believe that the explicit perspective and the component
graph perspective are complementary. Indeed explicit STGs are a better introduction to
formal analysis and may provide interesting information about moderate-size STGs such
as the protists model, see Figure 4.22.

7.3.1 Perspectives

The most immediate extension of ecco’'s component graph perspective would be to dis-
play the successive splits hierarchically. When splitting a component into two parts, in
addition to drawing these two new sub-components, we could also draw the initial com-
ponents as a box enclosing them, see Figure 7.2. Thus the component graph would fully
display the history of the partition refinement, i.e. the successive splitting steps. This may
help the interactive exploration of the system’s dynamics by making the interpretation
of the component graph more straightforward. It may also help ecologists to grasp the
component graph perspective faster by making it more self-explanatory.

—IF(Ye) ﬁ(gv) FYe)
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. — —
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(=
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Figure 7.2: Hierarchical component graph. The component #1 has been split into com-
ponents #3 and #4, and is drawn as a box enclosing both sub-components. Adapted from
Figure 4.10.

Another extension of ecco’s component graph perspective would be to allow to restrict
its transition relation: —¢ |,. Indeed, when using FARCTL to split components, the com-
ponent graph may be confusing as we used a restricted transition relation to explore the
system'’s behaviour, yet the unrestricted transition relation is displayed in the component
graph. The restriction of the component graph's transition relation needs to be user tuned
as a single FARCTL formula may use several distinct action-restrictions. Thus, in such a
case, there is no obvious restriction for the component graph's transition relation itself.
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Using simultaneously distinct restricted transition relations in the component graph may
also prove valuable. For example, in the protists model we could display simultaneously
on the one hand the invasions and on the other hand the rest of the transitions as distinct
restricted transition relations, see Figure 7.3. In addition, the component graph's transi-
tions could be defined by FARCTL formulas, as in [Abo+15, Fig.3] where the transitions are
defined by S1 N 59 iff 51 li HQF(SQ /\VaGSQ).

Figure 7.3: Component graph with distinct restricted transition relations. The invasion
transitions are displayed with red arrows, while the rest of the transitions are displayed with
black arrows. Adapted from Figure 4.20.

Furthermore, component graphs can sometimes be misleading because every path in a
component graph does not always match a path in the STG. For example, if a component
incorporates disconnected portions of the STG, then a path going through this compo-
nent may not match a real path in the STG, see Figure 7.4. To ensure that the component
graph is not misleading, we would like to provide splitting blueprints ensuring that some
properties are preserved in the component graph, for example that any path in the com-
ponent graph matches a path in the STG.

Instead of being user-driven, the partition refinement could be an automatic procedure
driven by an equivalence relation between states acting as a splitting blueprint and result-
ing in a quotient graph. For example, Figure 7.5a shows such splitting blueprint [Ver22],
partitioning any STG with respect to the reachability of a stable state property ¢, i.e. such
that ¢ = VGp meaning that the property that cannot be left once reached. This blueprint
goes exhaustively through all possible cases, for example that we will always reach ¢ (com-
ponent #5) or that we cannot reach ¢ at all (component #2). When using this blueprint
to partition a given STG, some components may be empty because no state in the STG
satisfies the corresponding case, resulting in a quotient graph that is a subgraph of the
blueprint, see Figure 7.5b. Because we have the blueprint, we know which components
are missing in the quotient graph and we can display this information, see Figure 7.5.
Knowing which behaviours are missing in the quotient graph can prove to be valuable
information for the understanding of the system dynamics. Conversely, if we had built
Figure 7.5b incrementally without the blueprint, we would not have known which cases
were missing in the component graph. For example, equivalent component graphs were
built without the blueprint in [Cos22] and in [PTG22a, Fig.9]. Such blueprints can also
ensure properties between the STG and the component graph, like path equivalence or
bisimilarity [Ver22]. For example, the splitting blueprint of Figure 7.5 ensures that every
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Figure 7.4: Example of a component graph’s path not matching any path in the STG.
Vegetation succession of Californian grasslands from [JB02, Fig.2]. The path of the component
graph: Coastal Prairie — Coast Range Grassland — Valley Grassland does not match any path in
the STG.

path of the quotient graph matches a path of the STG. This method could be general-
ized into a catalogue mapping questions, such as the reachability of stable property, to
splitting blueprints, such as Figure 7.5a, ensuring properties between the STG and the
component graph built from the blueprint.

A comparable method would be to build the hybrid product of an STG and a Biichi automa-
ton [Dur+11], resulting in an automaton whose nodes include sets of the STG's states.
Building the product of an STG and a Bulichi automaton is a classical procedure for the
model-checking of LTL formulas [Cla+18b], a very popular temporal logic expressing prop-
erties of individual maximal paths. Such a hybrid product automaton is very similar to a
component graph, as it is a hybrid structure mixing symbolic sets of states and explicit
transitions between them. In contrast with component graphs, the “components” of a
hybrid product automaton do not form a partition of S in general. Indeed, the same state
of the STG may be found in distinct nodes of the hybrid product automaton. In addi-
tion, each “component” of a hybrid product automaton includes a node of the original
automaton, and the hybrid product automaton itself includes an acceptance condition.
All this information can be used to interpret the hybrid product automaton. For example,
an LTL formula can be translated into a generalized Buchi automaton using the tableau
method [Dur11], resulting in an Blchi automaton whose nodes and edges can be labelled
by the section of the formula they check, see Figure 7.6. Such a Blchi automaton can be
seen as another kind of splitting blueprint, not resulting in a quotient graph butin a hybrid
product automaton.

These various kinds of splitting blueprints may be gathered inside a catalogue map-
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(a) Splitting blueprint (b) Example quotient graph

Figure 7.5: Example splitting blueprint and quotient graph. Component #5 consists of the
states satisfying ¢ and of the states that necessarily lead to ¢, i.e. satisfying VFy. Component
#2 consists of the states that cannot lead to ¢, i.e. satisfying YG—y. Component #4 consists
of the states that lead to ¢, but that can delay infinitely reaching it. Component #3 consists
of the states that lead to components #2, #4 and #5 but that cannot delay infinitely reaching
them. Component #1 consists of the states that lead to all other components, and that can
delay infinitely reaching them. Missing components and transitions in the example quotient
graph are displayed striped and dashed. Adapted from [Ver22].

FGa

Figure 7.6: Generalized Buichi automaton built with the tableau method.

ping question patterns to splitting blueprints (equivalence relation if the question can
be phrased in CTL or Buchi automaton if the question can be phrased in LTL). These split-
ting blueprints could be explained in detail as they form generic patterns for the analysis
of STGs. Properties, such as path equivalence or bisimilarity between the STG and the
component graphs could also be ensured directly by splitting blueprints themselves. We
believe that such a catalogue of generic analyses could help ecologists getting familiar
with the component graph framework.
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7.4 Case studies in ecology

We presented two case studies based on ecology research: the vegetation successions of
the Borana zone in Ethiopia and the laboratory assembly of protists communities. Even
though both case studies produce STGs, they differ in many aspects. For example, the
Borana model was built from observed transitions, while the protists model was built upon
an interaction network inferred from the experiment. The questions answered also differ
between both case studies. The questions asked by the Borana study deal with practical
management problems (focusing on special variable values, such as bush encroachment),
while the protists study asks theoretical questions about the presence of generic patterns
in the dynamics (independently of the variables instantiating them).

Yet, both studies can be gathered inside the same modelling framework, using the same
formal tools to analyse them. Indeed, the two case studies represent two sides of the
same problem: “how does an ecosystem behave through time?" The Borana study is on
the more practical side, while the protists study is on the more theoretical side. These
two sides come from historically separated fields in ecology, community succession and
community assembly, which have been increasingly integrated together in recent times
but still differ in some aspects because of their legacy [YCHO1]. We believe that the logical
modelling framework presented in this thesis, and developed in computer science and
systems biology, can help join together these two sides that still too often tend to overlook
each other.

7.4.1 Borana vegetation community successions

The Borana model [Tho+22] is built upon the STMs developed by Liao et al. [LC18; LCD18;
Lia+20; Lia16] using plant survey, cattle tracking and classification of satellite imagery.
From the description of the vegetation states and the description of the transitions be-
tween them, we extracted a set of variables and a set of if-then rules driving the Borana
vegetation successions. The complete modelling methodology is described in Annex A.2.
The STM framework promotes participatory workshops between ecosystem managers
and scientists to build models collectively. Our proposed modelling methodology shares
this concern of remaining as user-friendly as possible, so that ecology experts or profes-
sionals untrained in computer science can manage to build their own model [Mao+21;
Cos22]. Indeed, if-then rules are easily understood even by inexperienced users and
match the available data in ecology that often remains sparse and/or qualitative, espe-
cially in practical studies. As demonstrated by the Borana model, modelling tools like ecco
are able both to encode experimentally observed behaviours (such as the transitions ob-
served by satellite imagery) and to forecast novel behaviours based upon well founded
knowledge about processes and transitions [WW20] (such as the incorporation of brows-
ing livestock in the model).

The questions raised by STMs are often down-to-earth. They can mostly be summarised
as "how can we enforce/prevent this particular behaviour of the ecosystem?”. This question
is very close to the search for new drugs in systems biology [Flo+15; Bia18], except that
management policies translate into action-restrictions while drugs translate into variable
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forcing. The methods designed in systems biology could surely be adapted to look for
ecosystem management policies. Ecologists and managers need to be able to discuss the
analysis results in order to choose which particular policy they want to implement. Visual
results, for example in the form of component graphs, can be user-friendly enough to
be understood even by untrained users. The visual and intuitive aspect of STMs is one of
their mostimportant assets, and it should be keptin mind when designing a mathematical
framework embracing them.

The STM framework is increasingly used, for example by the USA administration to cat-
alogue its ecosystems [Cau13], yet a mathematical setting to compare the behaviours of
several STMs is still lacking [Bes+16; WW20]. Computer science could provide such a for-
mal framework, for example by comparing component graphs that are abstractions of
such STMs in a unifying description setting. Another way of comparing the behaviours
of several STMs is to use model-checking to test some dynamical properties of interest.
FARCTL fit with STM analysis as it allows the management policy to shift between scenar-
ios during the dynamics, which underlies many of the ecosystem management questions.
Another good candidate temporal logic would be the Alternating Time Logic (ATL) [AHKO02]
that represents the system'’s behaviour as the result of a game between players, for ex-
ample as a game between one or several managers and the environment.

7.4.2 Protists community assembly

The protists model [Her+22] is built upon the interaction network inferred from the pro-
tists experiments [WWL98; WLWO03]. Each variable represents a protist species, and in-
teractions are translated into if-then rules. One of the most interesting questions raised
by the protists case study is model synthesis, i.e. the automatic design of a model based
upon knowledge about the system'’s structure and behaviour. Indeed, 47% of the tran-
sitions predicted by the protists model were not recorded during the experiment. We
can wonder if we could have designed a model more fitted to the observations, i.e. with
less unobserved transitions, but based on the same knowledge about the system's struc-
ture, i.e. its interaction network. Note that this problem was already raised in [WWL98]
in the form of two questions: “can the behaviour of the system be characterized by a sim-
ple set of rules?” and “to what extent does knowledge of the results from the pairwise species
combinations allow prediction of the outcomes of the more species-rich sets?". This prob-
lem is an active question in computer science, see for example [Che+19] for the model
synthesis of a Boolean network based upon biological constraints. From the community
assembly perspective, the goal would be to automatically design assembly models based
on interaction networks. This would enable in silico assembly experiments based upon
the knowledge about the interaction network [SA21], a knowledge way cheaper to obtain
than performing a replicated laboratory experiment such as the protists ones [WWL98;
WLWO03].

The questions raised by assembly graphs are often theoretical, not focusing on specific
species but on the presence or absence of generic patterns in the dynamics. These ques-
tions may be answered by iterating upon the possible instances of these patterns, as we
performed in our case studies. Yet some questions are tedious to solve this way, for ex-
ample: “Are there stable communities that cannot be put back together by sequential assembly
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using just the species they contain?" [WLWO3]. This question would require iterating over all
stable communities and then nesting an iteration upon every possible invasion sequence
for every stable community. These kinds of questions cannot directly be formulated in
FARCTL or other temporal logic. An appropriate language to do so remained to be de-
fined (or identified if one already exists).

93






8 Logbook of a journey across disciplinary
borders

During the elaboration of this thesis, | moved back and forth between computer science
and ecology. It was sometimes confusing; for example, many separate concepts of state-
transition graphs exist in ecology, as presented in Chapter 1, but they were not gathered
inside a unifying framework. Once gathered inside the STG framework, these ecologi-
cal graphs can be compared to the similar concepts of Kripke structure or labelled tran-
sition system in computer science. Yet, the meaning of these concepts slightly differs
between the two disciplines. For example, every maximal path of a Kripke structure is
a concrete execution of an automated system, even degenerated paths that cycle in a
minor subpart of the graph. But conversely, every maximal path of an STG does not al-
ways match a realistic trajectory of an ecosystem, because of implicit realism constraints
such as the seasonal cycle. The concept of infinite maximal path proved to be particularly
puzzling for ecologists because of these implicit realism constraints. The introduction of
fairness in Chapter 5 aims at providing a formal framework to articulate these realism
constraints. Defining precisely the realism constraints may help ecologists produce more
deliberate modelling. For example, we could relax the constraint on seasonal change
if some area has a micro-climate without seasonal change, as it sometimes happens in
coastal regions.

Similarly, model-checking techniques can be applied to both Kripke structures modelling
automated systems and STGs modelling ecosystems. Yet, the goals and questions slightly
differ between the two disciplines. In computer science, model-checking aims at proving
that an automated system is bug-free, thus the main question is: “is there any bug?”, and
the desired output is “no”. In ecology, the main question is: “does that behaviour happen
? can it be enforced or prevented?” and the expected output is: “it can happen / be en-
forced / be prevented only in these specific cases”. In computer science, the outcome of a
model-checking process is the modification of the automated system to remove faulty
behaviours. In ecology, the desired outcome is the differentiation between the trajec-
tories satisfying the targeted behaviour and these that do not, as well as the branching
between them. Indeed, the ecosystem cannot be modified drastically. But, as humans
are often part of it, they may influence it from inside in order to enforce or prevent tar-
geted behaviours. In systems biology, which already uses model-checking techniques,
the perspective also differs slightly from either computer science or ecology because the
system is perceived as an unalterable chemical machine that can only be influenced using
external forces such as drugs.

These divergent perspectives on the same concepts and techniques can cause misun-
derstandings between computer scientists and ecologists. We are forced to articulate
these perspectives that otherwise often remain implicit. Once the ecological perspective
about STG and model-checking techniques is made explicit, it can raise new questions for
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computer scientists. For example, ecologists would like a visual output representing the
partition between the maximal paths satisfying or not satisfying targeted behaviours, as
well as the branching between them. | tried to tackle this challenge in this thesis using
component graphs, but much work is still to be done on this subject.

Most existing ecological STGs have a limited size, often a few dozen of states at most, and
thus may not require automated analysis. Yet, | believe that fact is likely due to the lack of
or unawareness about existing automated analysis tools. For example, satellite imagery
can produce massive empirical STGs, just like the Borana vegetation classification [LCD18]
but with finer classes. However, even in the case of small STGs, a formal framework is
lacking for the often handmade analysis of the dynamics. Computer science may provide
such a formal framework, and the existing concepts for ecological STGs could thus be
formally defined, compared, and investigated.

In conclusion, | believe there would be much to learn for both fields if computer science
and ecology worked collaboratively. Making computer science concepts and techniques
understandable for ecologists, and conversely, is challenging yet rewarding work because
both fields must make an effort to understand the other side’s perspective. It is the part
of this thesis that interested me the most and that | am the proudest of. | hope that |
achieved to draft a bridge between these two fields that too often overlook each other.
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A Appendix

A.1 Proof of the symbolic CTL algorithm

In this section, we prove the definitions of CTL operators as single fixed points presented
in Table 2.2. We also provides fixed points definitions for additional temporal opera-
tors [BKO8] that are implemented inside ecco: W “weak until”, R “release” and M “strong
release” . Starting from the canonical definition of 3U as a fixed point [BK08; Cla+18al:

Hp1Up2) = uZ.p2 V (p1 A IXZ)

From the definition of YU as a fixed point for finite and infinite maximal path given
in [PRO7]:

V(p1Upa) = = (1 Z.(—p2 A (1 V 23IXT)) V (e AIXZ)) A (v Z.ompa A IXZ)

From the following canonical rewriting of CTL operators [BKO8; Cla+18a]:
» JFp =3(TUyp) and VFp = V(T Up)
» 3Gy = ~VF—p and VGp = —3F—p
» Jo1Wepo = Jp1Ups V 3Gp; and Vo1 Wy = =F—=paU=(p1 V ¢2)
> Jp1Rpa = JpaWer A 2 and Vo1 Rpg = Vipa Wi A o
» Jdo1Mps = JpaUp1 A g and Vo1 Mps = YpaUpr A o

And using the following theorems:

Theorem 2.1. For any ¢ € CTL and any state s € S, one and only one of 93X, YX—p
and —3XT holds in s. Thus they can be rewritten into one another:

IXp = (VX Vv =3XT)
VX=p = —(IXe vV -3XT)
SIXT = =(3Kp V ¥X—p)

Theorem 2.2 ([McM93]). If S is finite, and if 7 is monotonic (S C S" = 7(S) C 7(S5")),
then 7 has a least fixed point noted p Z.7(Z) (the smallest for the set inclusion) and a
greatest fixed point noted v Z.7(Z) (the largest for the set inclusion).

Moreover In € Nsuch that u Z.7(Z) = m(0) and v Z.7(Z) = 7"(S).

| Theorem A.1 (u/v duality [BSO07al). u Z.7(Z) = —v Z.—71(=Z)
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Theorem A.2. Let 7 = Az.f(z) V¢  with ¢ a formula without occurrence of z, and f
a function conserving the union: f(AU B) = f(A) U f(B). Then if the state space S is
finite:

vZ.1(Z)=WwZ.f(Z2)V (uZ71(Z))

Proof. Let us prove by recurrence oni > 1 that 74(S) = f4(S) U 7¢(0):
> 7(S)=f(S)Up=f(SUDUp=FfS)Uf)Up=f(S)uT(0)
» suppose that 7%(S) = fi(S) U r¢(0) then:

78 =71

(7(S)
=7(fY(S) U T"(0)) by recurrence
= f(f{(S)ur (@) Ue
, = (1) Uf(FM)Ue because f(AU B) = f(A) U f(B)
THl(S) — f@+1 (5) U it (@)

Sisfinite, thus by Theorem 2.2, 3n € Nsuchthatv Z.7(Z) = 7(S), v Z.f(Z) = f™(S)
and u Z.7(Z) = m™(0) (in fact there is a n for each fixed point and we take the max of
them). We have 7*(S) = f*(S)U () thusv Z.7(Z) = W Z.f(Z))V (u Z.7(Z)). O

In particular Theorem A.2 can be applied to f = 3X as it conserves the union:

IX(AUB) ={seS|3Jsy € A such that s = s4 or dsp € B such that s — sp}

={s€ S| 3ss € Asuch that s > sa} U{s € S|3Isp € B such that s — sp}
IX(AUB) = 3X(A) U 3X(B)

We can now define the CTL operators as fixed points:

V(p1Up2) = =(nZ.(mpa A (=1 V =3XT)) V (mp2 A IXZ)) A= (v Zo—p2 A IXZ)
= (2.2 A (51 V =IXT)) V (=2 ATIXZ)) V (v Zomip A IXZ))
= Z.(—\(pg A (1 V —\HXT)) V (mp2 A IXZ)
=-wZ.op2 A (mp1 VIXZ V-3IXT)
=-wZ-(p2V (p1 A ~IXZ Vv IXT))
=puZ.paV (p1 A=IX=Z A 3IXT)

V(p1Upa) = puZ.paV (p1 AYXZ)

IFp =3(TUp)=pZ.pVvIXZ
VFe =VY(TUyp)=uZ.pVvVXZ
Gy = VF-p

= V(TU=p)
=-puZ.~pVVXZ
=vZ.~(-pVVX-Z)

=vZpA\-VX-Z
Gy =vZ.e A (3XZV-3XT)
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VGp = -IF-p
= ﬂH(TUﬁ(p)
=-uZ.~pVIXZ
=vZ.~(-pVIX-Z)
=vZ.pA-3IXZ

VGp =vZ.pA((VXZV-3IXT)

E|(p1W(p2 = Ekpl U(pz V E|Gg01
= (u Z.pa V (p1 AIXZ) ) (yz o1 A (IXZ V ﬂXT))

= (nZp2V (21 NIXZ)) V (v Zop1 AIXZ)V
(u Z.(p1 AIXZ)V (o1 A ﬂXT))

= (u Z.pa V(1 A—=3IXT)V (1 A EIXZ)) Y (V Z.p1 A EIXZ)

v Z.pa V (p1 A =3XT) V (1 A IXZ)
Jo1Wepa =v Z.pa V (g1 A (—3IXT Vv 3XZ))

VoiWepo = =3-paU (1 V @2)
=uZ.(p1V p2) V (mp2 A IXZ)
=uZ.~(p1 V)V (mpa A VX=Z A3XT)
=21 Z.2((p1V p2) A (2 V 23XT V ¥XZ))
=vZ.(p1V 2) A(p2 V—-3IXT VVXZ)
VoirWes =vZ.pa V(o1 A (23IXT VYXZ))

Jp1Rp2 = FpaWer A o
vZ.(o1 AN p2) V (g2 A (23XT v 3XZ))
Jp1Rpy =v Z.pa A (1 vV -3IXT vV IXZ)

Vo1Rps = VpaWepr A o
=vZ.(p1 Np2) V (w2 A (=3XT VVXZ))
Vo1Rps =vZ.pa A (@1 V -3IXT VVXZ)

Jp1Mps = JpaUp1 A 2
=pZ.(p1 Np2) V (p2 AIXZ)
1Mo = uZ.pa A (1 vV 3IXZ)

Vo1Mps = YpaUpr A @
= pZ.(p1 Np2) V (p2 ANVXZ)
VoiMps = puZ.pa A (@1 VVXZ)

The whole fixed point semantics of CTL on finite and infinite paths is summarised in Ta-
ble A.1.

@2 Technical remark

Note that Theorem A.2 does not stand if f does not conserve U, for example f = VX.
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If you take:
V(e1Wes) =v Z.pa V (o1 AVXZ)
# W Z.p1 NNXZ)V (uZ.p2 V (p1 NVXZ))
# VGip1 V V(p1Up2)
3 v
X IXp = Pred(p) VX = IXT A =FX-p
u p1Up2) = p Z.pa V (o1 A IXZ) V(p1Up2) = uZ.pa V (p1 AVXZ)
w (1 Wepa) = V(p1Wep2) =
v Zapa V (1 A (23XT v 3XZ)) v Z.pa V (91 A (3XT V VX Z))

R | 3(¢1Ryp2) = v Z.pa A (1 V-IXTVIXZ) | Y(p1Rp2) = v Z.pa A (p1 V-IXT VVXZ)
M A(p1Mp2) = p Z.pa A (1 V IXZ) V(e1Mya) = u Z.pa A (01 V VXZ)
F Jro=pZpvIXZ VFEp =puZ.oVVXZ
G Gy =v Z.p A (IXZ VvV =3XT) VG =v Z.p A (YXZV -3XT)

Table A.1: Fixed points definitions of CTL operators on finite and infinite maximal paths.
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A.2 Justification of the Borana model

A.2.1 Modelling methodology

The Borana model is based on the following studies about the vegetation dynamics of the
Borana Zone in Ethiopia: [Lia16; LCD18; LC18; Lia+20].

“The complexity of rangeland vegetation dynamics can be interpreted by the state-
and-transition model, in which rangeland dynamics are described as a set of dis-
crete “states” of vegetation at a specific site and changes between states that occur
as discrete “transitions”.” [LCD18, p.2]

“Transitions from one state to another often require a combination of climatic cir-
cumstances and management actions (e.g., fire or grazing) to bring them about.”
[Lia+20, p.7]

The Borana model represents the discrete vegetation states by a set of Boolean variables,
other Boolean variables called controls also cover management actions and climatic cir-
cumstances. The transitions between states are described by if-then rules linking a condi-
tion (on the values of the variables) with a consequence (an update of the variables).

“Therefore, spatial knowledge of current vegetation states plus understanding of
past and future transition pathways is needed to properly prescribe and apply
efforts to mitigate undesirable processes such as bush encroachment.

The goal of this study was to provide pastoralists, rangeland managers, and policy
makers with a spatial understanding of the past, current, and potential rangeland
vegetation states in Borana” [LCD18, p.2]

In order to foresee the future transition pathways, the Borana model is not limited to
a description of the observed transition pathways (the STGs available in [LCD18; LC18;
Lia+20]). From a set of initial states, the Borana model computes every state reachable by
the cascading applications of if-then rules. Thus the Borana model outputs unobserved
transition pathways, assuming that the vegetation dynamics can be deduced from the
description of the discrete transitions (i.e. the set of if-then rules). In consequence, this
methodology can be used to foresee the effects of new ecosystem management policies,
as long as they result into discrete transitions.

A.2.2 Variables

We chose five vegetation variables (Gr, Sh, Tr, Sa, Cr, see Figure 4.3) to represent the eight
vegetation classes (Table 4.1) forming the states of the Borana STMs [LCD18]. We then
added three variables representing the presence of grazers or browsers (Lv, Gz, Bw, see
Figure 4.3).
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“While climatic and edaphic factors primarily determine broad-scale vegetation
distribution, complex patches of open and closed canopy rangelands can exist
within a single climate zone, suggesting that controls such as fire and herbivory
are important at a finer spatial scale.” [LCD18, p.3]

“Mean annual rainfall ranges from 300mm in the lowlands to 1,000mm in the
highlands. [...] Generally, annual precipitation is positively correlated with eleva-
tion.” [LCD18, p.2]

“The government prohibited grazing in such forested areas for conservation pur-
poses” [LCD18, p.8]

“Until the 1950s, crop cultivation throughout the Borana Zone was banned by in-
digenous rules. [...] In recent years, commercial farming has become more preva-
lent.” [LCD18, p.8]

“Adding more goats and camels while reducing the number of cattle in the herds
could be crucial. [...] Rather than simply living with bush encroachment, pastoral-
ists can actively contribute to its mitigation by changing their livestock portfolios.”
[LCD18, p.8-9]

We defined seven control variables (Figure 4.3), representing climate/altitude (Alt), fire
ban (Fb), crop ban (Cb), or herbivory (W1, Ps, Ig, BLv). Controls influence the system but
cannot change along the dynamics (see the ruleset Figure 4.4), thus each valuation of the
controls represents a specific scenario.

A.2.3 Initial states

“Since the 1970s, fire has been banned, leaving livestock grazing as major local-
level disturbance factor. The last high-intensity fire set the rangeland state as grass-
land.” [LC18, p.7]

The initial states represent the grassland vegetation class (grasses are the only present
vegetation) after the last high-intensity fire (no animals). Hence the only variable initially
valuated on is Gr+ (Figure 4.3). There is a single initial state per scenario (i.e. control
valuation), thus there are 27 = 128 initial states.

A.2.4 Rules

Fire rules: R1, R2

“Since the 1970s, fire has been banned.” [LC18, p.7]

Hence Fb- in the condition of R1, R2.
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“Low intensity fires would periodically burn grasses, shrubs, and tree saplings on
sparse scrubland, but would leave adult trees undamaged.” [LC18, p.7]

Hence Sh-, Sa- in the consequence of R1.

“High intensity but low frequency fire could change the landscape into a grass-
dominated system.” [LC18, p.7]

Hence Sh-, Tr-, Sa- in the consequence of R2.

“Although bush burning ban has been lifted since the 2000s, herbaceous biomass
in the understory was minimal, and fuel loads would not build up and could not
set the stage for fires to properly thin the woody layer.” [LC18, p.7]

Hence Gr+ in the condition of R1, R2.
“Grasses and other herbs usually established themselves first after fire” [LC18, p.7]

Hence we did not set Gr- in the consequence of R1 and R2. Thus, as Gr+ is in the condition
of R1 and R2, it is still present after their application.

Finally, animals are not mentioned during fire descriptions [LC18; Lia+20], we assumed
that they flee. Hence Lv-, Gz-, Bw- in the consequence of R1 and R2.

Trees recruitment: R3

“Given favorable environmental conditions, tree seedlings could grow into mature
trees and gradually close the canopy.” [Lia16, p.43]

Grass recruitment: R4

“Grasses and other herbs usually established themselves first after fire” [LC18, p.7]

We assumed that grasses established themselves first after any perturbation clearing the
vegetation cover.

Closed Canopy Woodland transition: R5

“In the highlands [...] given higher precipitation and absence of fire, tree seedlings
in dense scrubland could grow into mature trees and gradually close the canopy.”
[LCD18, p.8]
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Hence Alt+ (“in the highlands”), Fb+ (“absence of fire”), and Gr- (“in dense scrubland”) in
condition.

Bushland transition: R6

“(Bushland) at the higher end of the (elevation) range is shifting into dense scrub-
land. [...] In the relatively dry lowlands of the Borana Zone, the primary vegetation
transition is from grassland to bushland.” [LCD18, p.8]

We chose to represent this fact by the competitive exclusion of tree saplings Sa by shrubs
Sh at low altitude Alt-.

Grazers: R7

We assumed that the presence of wild grazers Gz+ is conditioned by the presence of
grasses Gr+ and by the absence of livestock Lv-.

Browsers: R8, R9

We assumed that the presence of wild browsers Bu+ is conditioned by the presence of
shrubs Sh+ (R8) or saplings Sa+ (R9), and by the absence of livestock Lv-.

Livestock: R10, R11, R12

We assumed that the presence of livestock Lv+ is conditioned by the presence of grasses
Gr+ (R10), or under browsing livestock policies BLv+ by the presence of shrubs Sh+ (R11)
or saplings Sa+ (R12). We also assumed that livestock Lv+ excludes both wild grazers Gz-
and wild browsers Bw-.

Grazing: R13, R14

“With woody plant recruitment and wildlife grazing, the grassland could gradually
shift into a sparse scrubland state. [...] Light to moderate grazing reduced under-
story cover of grassland, and the system shifted into sparse scrubland given plant
recruitment. [...] Similarly, on the open canopy woodland, woody plants would also
become denser given moderate grazing pressure, gradually shifting the rangeland
into the sparse scrubland state.” [LC18, p.7]
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Intensive grazing: R15

“Heavy grazing on the sparse scrubland could diminish forage in the understory
within a short time period, thus leaving the scattered woody plants free from com-
petition.” [LC18, p.7]

“As pastoralists sedentarize and herd livestock near and around their settlements
in response to external sedentarization initiatives, rangelands can shift into bare
ground or shrublands with minimal grazing value.” [Lia+20, p.2]

Browsing: R16, R17

“Wildlife browsing could keep the re-sprouting woody species in check.” [LC18, p.7]

“Increasing browsing pressure by goats and camels can thin the woody plant layer
and suppress the growth of shrubs and trees, which can indirectly facilitate the
growth of herbs on the ground.” [LCD18, p.8]

We chose to represent this fact by enabling browsers (wild Bw+ or domestic BLv+ A Lv+) to
remove shrubs Sh- and saplings Sa-. Grasses Gr+ are supposed to establish themselves
first in the cleared space.

Crops: R18, R19

“Dense scrublands, along with other minor classes such as closed and open canopy
woodlands, that are situated at above 1,200m are being converted to cultivated
areas, which allows the practice of rain-fed agriculture.” [LCD18, p.8]

“Cropland expansion [...] accelerate rangeland degradation and wildlife habitat
loss, and discourage mobile livestock herding” [Lia+20, p.2]

We chose to represent dense scrublands, closed and open canopy woodland by the pres-
ence of trees (see Table 4.1). Hence the condition of R18: high altitude A1t+, crops being
allowed Cb- and trees Tr+. The consequence of R18 includes the replacement of grasses
Gr-, shrubs Sh- and saplings Sa- by cultivated species Cr+, and the disappearance of both
livestock Lv- and wild life Gz-, Bu-.

“During the 2003-2013 decade, 355km? of cropland transitioned backed to dense
scrublands and 124km? back to open canopy woodlands.” [LCD18, p.7]

We assumed grasses establish themselves first after crops are abandoned (R19).
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A.2.5 Improvements

Here we list some worth considering improvements, unfortunately unavailable data
would be required in order to implement them:

» Add a variable representing bare soil. Indeed the definition of the vegetation

classes [LCD18, Tab.1] is based on vegetation cover, which does not always sum
up to 100%. Thus the percentage of bare soil is a part of the vegetation classes de-
scription. Nevertheless, bare soil is almost never mentioned in the sources, so we
chose to not include it in the variables.

Represent species instead of plant functional types. Indeed the vegetation
classes [LCD18, Tab.1] do not encompass the same species of grasses, shrubs
nor trees. Unfortunately, data on the species dynamics is lacking for the Borana
zone.

Desynchronise shrubs and saplings browsing. The browsing rules (R16, R17) re-
move saplings and shrubs simultaneously, but it may not be the case in reality (be-
cause of foraging preferences for example). Without more precise data, we chose
to synchronise both removals.
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A.3 Proof of the symbolic FARCTL algorithm

In this section, we provide in-depth proofs of the fixed points definitions of FARCTL oper-
ators 375G(p) and 37" G(p) given in Lemma 5.1, Theorem 5.1 and Theorem 5.2.

A.3.1 Detailed proof of Lemma 5.1 and Theorem 5.1

Recall the following definitions used in Lemma 5.1 and Theorem 5.1:

Definition 5.6 (030, Ovo). Let 7 be a maximal path and es € ARCTLg a state-event:
b 73 egiffi €N i < |r| = 3j € Nsuchthati < j < || and 7[j]s = es
b 7Y egiff3i € Nsuchthati < |r|andVj € N i <j < || = nj]s = es
Let 7 be a maximal path and e4 € ARCTL 4 an action-event:
> T ):030 eq iff 7| =occand Vi e N Jj > isuchthatn[jl4 = ea

> T ):Ovo eq iff || =occand 3i € NsuchthatVj > i 7[jla Eea

Definition 5.15. Let es € ARCTLgs a state-event, e4 € ARCTL 4 an action-event, and

Z CS.
> Ha?':eS(Z) =es A (ElaXZ \Y ﬂﬂaXT)
> JaXizes(Z) = mes A (FaXZ V=30 XT)
> HO(YEEA(Z) = Jane  XZ
> 0¥z (Z) = Fan-e XZV =3 XT

Definition 5.16 (775). Let Fs = {Fs(e1,e2) | e1 € ARCTLs} a fairness assump-
tion composed exclusively of strong fairness constraints whose first events are state-
events e; € ARCTLs. We define 775 as:

72 = A (Be¥pa(2)VIa(ZUZ A 33, (2)))
Fs(e1,e2)EFs

Lemma 5.1. (3 € l/Z.((p/\Ta‘FS(Z))) = (s = 3§SG(<P))

Proof. The proof follows the same structure as the proof of the main text, but both:
(1) details the cases depending on whether ey are state-events or action-events, and
(2) uses the formal semantics of the strong fairness instead of its intuitive one.

Let S’ = v Z.(pATLS(Z)). For every state s € S, we have s |= p and VFs(e1, e2) € Fs
at least one of the following is true:

1. s | JaXiee, (), i.e. because e is a state-event we have: s = —es1 A (3o XS’V
—3,XT). Thus either s is an a-dead-end not satisfying e;, or s does not satisfy
e1 and has an a-successor in S’. Thus when building a maximal path 7 within
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S’, one can pass by s and either be trapped in a dead-end without e; happening
(thus 7 béo;]o e1 and consequently r is fair), or extend 7 in S” without e; happen-
ing.

2. 5 | 3a(S'US" A oK, (S7)), meaning that there is a state s’ € S’ which is a-
reachable from s within S’ such that s’ = 3,X.,(S’). There are two cases,
depending on whether e, is a state-event or an action-event:

2. If e € ARCTLs is a state-event. Then s’ = esa A (FoXS' V =3, XT).
Thus either s’ is an a-dead-end satisfying es, or s’ satisfies es and has an
a-successor in S'.

2.ii. If e € ARCTL 4 is an action-event. Then s’ = J,ae,XS’. Thus s’ has an
(v A eg)-successor in S'.

Thusiif s = 3,(S'US AJaX e, (5")), then when building a maximal path 7 within

S’, one can pass by s and extend 7 within S’ to reach a state s’ that either is an

a-dead-end with ey happening (thus © #Oﬂo es and consequently 7 is fair), or
where 7 can be further extended with e3 happening.

Thus from any s € S/, one can build a maximal path = within S’ satisfying continu-
ously ¢ and either ending in a dead-end satisfying every strong fairness constraint,
or infinitely carrying on while V.Fgs(e1, e2) € Fg, if e; happens then it is eventually fol-
lowed by es. If several distinct e; happens infinitely often along the construction of
7, then we can extend 7 to reach infinitely often every associated ey by alternating
between them. Thus if e; happens infinitely often along 7 then ey happens infinitely

often as well: (7r =3 61) = (w =3 62). Hence s = 325G(p). O

| Theorem 5.1. 375G() = 3o (pUr Z.(p A T75(2)))

Proof. The proof follows the same structure as the proof of the main text, but both:
(1) details the cases depending on whether ey are state-events or action-events, and
(2) uses the formal semantics of the strong fairness instead of its intuitive one.

The proof of 3, (eUv Z.(p A 775(2))) C 325G(¢p) is the same as in the main text.

Let us prove that 375G(p) € Jo(0Uv Z.(p A 7I5(Z))). Let s € 325G(p) and take 7 €
11|75 (s) such that  |= Ge. We will use the fact that v Z.7(2) e U{SCS|SC7(9)}
[BS07a] to show that s € 3,(pUv Z.(¢ A 775(Z))). Indeed 775 is monotonic (i.e. if
S C S'then 775(S) C 775(9')) as one can see when instantiating 7.7s:

7255152 (7y = (megy A (FaXZ V ~3oXT)) V I0(ZUZ A esa A (FaXZ V —3oXT))
ras(estead 7y = (megy A (FoXZ V 23oXT)) V 3a(ZUZ A Fane 15X Z)

There are two cases, depending on whether = is finite or infinite:

1. If |7] € N, then take s’ = 7[|n|]s the a-dead-end ending 7. We will prove that
{s'} € p A775({s'}). Indeed s’ € ¢ because m = Gyp. Let us prove that
s’ € 775({s'}). For all Fs(ey,e2) € Fs we will prove that s’ € oK., ({s'}) v
JaXze, ({8'}) € FaKpe, ({5} VIa(ZUZ AT K, ({s'})) because s’ is an a-dead-
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end (i.e. s E -3, XT)and m = Fg(er,ez) = <7T I#OEIO 61> Vv (71' ):OEO 62>. There
are two cases, depending on whether e, are state-events or action-events:
1.0. Ife;,ea € ARCTLs. If ’:oET ez then s’ |=ex and thus s |= 30X, ({s'}) =

ea A (FoX{s'} V =3,XT). Conversely if = béoao e1 then s’ £ e; and thus
s' | JaXjee, ({'}) = mer A (FoaX{s'} V =FoXT).

1.ii. Ife; € ARCTLsand e; € ARCTL 4. Thenw %030 e9 because || # co. Thus
7 -3 1 meaning that s’ b er. Thus &' = JaXpee, ({5'}) = —e1 A (FuX{s'} v
~3uXT)..

Thus s’ €C 775({s'}). Then s’ € v Z.(p AT5(Z)), and finally s € 3, (pUr Z.(o A

35(2))).

2. If |1| = oo. Leti € N be the minimal index such that: V.Fgs(ej,e2) € Fg if
T b&oﬂo eg, then V5 > i, 7[j] £ e1. Such i exists because V.Fg(ei,e2) € Fg,
<7r béoao 61> Y% <7r ):030 62), meaning that if e; happens only finitely often along

7, then e; happens only finitely often along 7 as well. Take 7[i...] the infinite
suffix of = starting from its i-th state (i.e. 7[i]s KiGZN i + 1]s mlit2a, ),
that is the suffix of = such that V.Fg(e1, e2) € Fg, if eo does not happen infinitely
often then e; does not happen at all. Take «[i.. .|s the states of this suffix, let
us prove that fi...|s C o AT (n[i...]s). 7[i...]s C p because 7 = Gp. Vj > i
and VFg(e1,e2) € Fg, let us prove that 7[jls € JaXe, (nfi...]s) V Ja(ZUZ A
JaXpze, (7[i. . ]s)). There are two cases, depending on whether e, are state-
events or action-events:
2.0 If €1,€62 € ARCTLS. If ﬂ[j]s ): el then 3k > ] such that ’/T[k]s ): €9,
and thus 7[j]s = Ja(wfi.. JsUn[i...]s Aea A (FaX(7[i. . ]s) V 73 XT)).
Otherwise 7[j]s F~ e1, and thus 7[jls € —e1 A (o X(7[i .. ]s) V =3 XT).

2.i. If ey € ARCTLs and ea € ARCTL. If w[jls = e1 then 3k > j such
that w[k]a | e2, thus 7[jls E Ja(n]i.. JsUr[i..]s A Tane X(7[i- . ]s)).
Otherwise 7[j]s F~ e1, and thus 7[jls € —e1 A (o X(7[i .. ]s) V 23 XT).

Thus7fi...Js CeATIS(n[i..]s). Thenn[i...]s € v Z.(p ATL5(Z)), and finally

5 € Aa(oUv Z.(p ATIS(2))).

O

A.3.2 Detailed proof of Theorem 5.2

Recall the following definitions used in Theorem 5.2:

Lemma 5.3. Let 7 a maximal path, es € ARCTLg a state-event, andeyq € ARCTL 4
an action-event:

s I;éovo es iff }:Oﬂo —es
s béivo eq iff || # oo or o |:oE|O —ey

119



A Appendix

120

Corollary 5.3. Let 7 a maximal path, and e, a state-event or an action-event:

» Lete; astate-event, m = Fyy(eq, eg) iff (w ):030 —e1 O Foﬂo eg>

» Lete; an action-event, 7 |= Fyy(e1, e2) iff <|7r| #ooorm Poﬂo —ep Or m ):030 62)

Theorem 5.2. Let Fy a fairness assumption composed exclusively of weak fairness
constraints, we define 77w as:

T2 = N (BalZUZ A BaFie, (2) Ve, (2))
fw(eheg)e}—

Then: W G(p) = v Z.(p ATIW(2))

Proof. Let us prove that v Z.(p A 77w (Z)) C I WG(p). Let 8" = v Z.(p A TIW(Z)).
For every state s € S/, we have s = ¢ and V. (e1, e2) € Fi we have s = 3, (S'US’ A
(FaKize, (8') V JaX e, (5))). Thus from s there is a finite path « in S’ of length || =
i € Nending in a state 7[i]s € 5" such that i]s = (FaXjee, (S7) V FaX e, (S7)). Thus
if w[i]s |= JaXize, (S), there are two cases:
1. Ife; € ARCTLg is a state-event. Then 7ils = —e1 A (o XS’V =3, XT), meaning
that 7[i]s [~ e1 and either 7[i|s is an a-dead-end or 7 can be a-extended within
S,
2. Ife; € ARCTL 4 is an action-event. Then 7[i]ls = Jan—e; XSV =3, XT, meaning
that either 7[i]s is an a-dead-end or 7 can be a-extended within S’ such that

w[i + 1] 4 P~ e1.
Likewise if 7[i]s = JaX =, (S"), there are also two cases:

1. If e € ARCTLs is a state-event. Then [i]s = e1 A (3o XS’ V =3, XT), meaning
that 7[i]s = e; and either 7[i|s is an a-dead-end or 7 can be a-extended within
S,

2. Ifea € ARCTL 4 is an action-event. Then 7[i]s = Jane, XS, meaning that = can
be a-extended within S’ such that 7[i + 1]4 = ea.

Let us prove that from s € S’, we can build a maximal path = € II|,(s) such that
VFw (e, e2) € Fiy we have 7 = Fyy(e1, e2). There are two cases:

1. If e € ARCTLgs is a state-event. Recall Corollary 5.3: 7 = Fy(e1,eq) iff
<7r #Oﬂo —eporm FOHO 62>. At least one of the following is true:

1.i. 7[ils = e1 and 7[i]s is an a-dead-end, thus 7 ):030 —e;.

1.ii. 7[i]s = e1 and 7 can be a-extended within S’.

1.ili. eo € ARCTLg is a state-event and 7[i|s is an a-dead-end thus 7 Foﬂo es.
1.iv. eg € ARCTLg is a state-event and 7 can be a-extended within 5.

1.v. e € ARCTL 4 is an action-event and 7 can be a-extended within S’ such
that i + 1]4 = ea.
Thus by induction over s either = ends in an a-dead-end satisfying Fyy (eq, e2),
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or can be infinitely a-extended within S’ while satisfying at least one of (eq, e2)
infinitely often. Thus m = Fy (e, e2).

2. If e, € ARCTL 4 is an action-event. Recall Corollary 5.3: # = Fy(e1,ez) iff
<|7r #ooo0rm Foﬂo —ey or 7w #oﬂo €2>. At least one of the following is true:
2.i. wli]s is an a-dead-end.

2.ii. w can be a-extended within S’ such that 7 [i + 1] 4 £ e;.

2.iii. e € ARCTLg is a state-event and 7[i]s is an a-dead-end thus = |:030 €.
2.iv. e € ARCTLg is a state-event and 7 can be a-extended within S’.

2.V. es € ARCTL 4 is an action-event and 7 can be a-extended within S’ such
that 7[i + 14 = ea.

Thus by induction over s either m ends in an a-dead-end (i.e. |7| # o), or can be

infinitely a-extended within S’ while satisfying at least one of (e, e2) infinitely

often. Thus 7 = F (e, e2).

To conclude Vs € vZ.(p A 7w (Z)) 3m € M|u(s) such that 7 = 3,Gp and
VFw (e1,e2) € Fiy we have m = Fyy(e1,e2). Thus v Z.(o A 72w (Z)) C 32w G(p).

Now let us prove that 3ZWG(p) C v Z.(p A 727 (2Z)). Let s € FLWG(yp), thus Ir €
I1],(s) such that 7 = Gy and VFy(e1,e2) € Fiw we have m |= Fy(er,e2). Let us

prove that the states of m, noted 7[. . .|s, arein v Z.(¢ A7IW (7[.. ]s)). We will use the

factthat v Z.7(2) e U{S C S|S C 7(S)} [BSO7a]. Indeed 77w is monotonic (i.e. if

S C S"then 77w (S) C 77w (S')) as one can see when instantiating 77 :

rIwleses2) 7y = 3 (ZUZ A (mes1 V =es2) A (3aXZ V =3uXT))

Ta Weaes) 7y — 3 (ZUZ A (Fanoe s XZ V ~3aXT V (€52 A TaX2)))

wa(em:e/u) ZY =3 (ZUZ A ((me<1 A (3 XZ VvV =3.XT)) Vv 3 XZ
( ) a( (( S1 ( a a )) aleq2 ))

raw(eaLea) 7y = 3 (ZUZ A (Bapoen, XZ V =3XT V Jane s, X2))

7[...]s € ¢ because © | Gp. VFw(e1,ea) € Fyw and Vs’ € x...]s, there are two
cases:

1. If e € ARCTLs is a state-event. Recall Corollary 5.3: 7 | Fy(e1,es) iff
(w %OET —ep orm |:030 62). At least one of the following is true:

1i. 7w boao —e1, thus either = ends in an a-dead-end satisfying —e; meaning
that s’ = Ja(x[.. . JsUn[...]Js A me1 A =3, XT), or —e; happens infinitely
often along = meaning that s’ = 3, (n[.. .JsU7]...]s A me1 A o X7].. ]s).

1.ii. eo € ARCTLgs is a state-event and = \:OHO es. Thus either 7 ends
in an a-dead-end satisfying e meaning that s’ = J,(x[...]sUn[...]s A
ea A =3, XT), or ex happens infinitely often along = meaning that s’ =
Jo(7[. . JsUr[. . Js A ea A o X7r[. . ]s).

1.iii. eo € ARCTL 4 is an action-event and 7 |:030 e2. Thus e2 happens infinitely
often along = meaning that s’ = 3, (7[.. .JsU7].. .]s A Jare, X7 . ]s).
Thus by induction over s, we have 71[.. .Js € ¢ ATIW (7[.. ]s).
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2. If e; € ARCTL4 is an action-event. Recall Corollary 5.3: 7 | Fw(e1,eq) iff
(\n # 0o or 7 %oﬂo —ep or m |:030 62). At least one of the following is true:
2. || # oo, thus ¢’ = Fo (7] . JsUn[. . .Js A =T XT)

2.i. Foﬂo —e1, thus —e; happens infinitely often along = meaning that s’ =
Ha(ﬂ'[. . .]SUTF[. . .]5 N Ha/\—\qXW[- . ]5)

2.ii. e € ARCTLg is a state-event and = |:O3O es. Thus either 7 ends
in an a-dead-end satisfying e; meaning that s’ = J,(x[...]sUn[...]s A
ea A =3, XT), or es happens infinitely often along = meaning that s’ =
Jo(7[. . JsUr[. . .]Js A ea A o X7[. . ]s).

2.iv. e € ARCTL 4 is an action-event and « |:030 e2. Thus es happens infinitely
often along = meaning that s’ = 3, (7[.. .JsU7].. .]s A Jare, X7 . ]s).
Thus by induction over s, we have 71[.. .Js C ¢ AT2W (7[.. ]s).

To conclude Vs € 3 WG(p), we have 37 € TI|,(s) such that s € 7[...]s C ¢ A
7w (n[...]s). Thus s € v Z.(¢ AW (Z)) and LW G(p) C v Z.(p ATIW (2)). O
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Syntheése

Cette these est a l'interface entre informatique et écologie, elle présente des méthodes
formelles pour la modélisation et l'analyse de la dynamique d'un écosysteme sous la
forme d’'un graphe état-transition a l'aide de techniques de model-checking. Tout d’abord,
nous introduisons le concept de graphe état-transition d'écosysteme qui, bien qu'étant
original, capture une longue histoire de représentations disparates de la dynamique d'un
écosysteme sous la forme d'un graphe. Un graphe état-transition décrit le comporte-
ment d'un systéme comme un graphe dont les noeuds sont les états du systeme et les
arrétes sont les transitions entre ces états. Un graphe état-transition est donc une carte
représentant les différentes trajectoires qu'un écosysteme peut emprunter. La gestion
d’'un écosysteme revient alors a diriger la trajectoire que celui-ci suit dans le graphe, par
exemple pour restaurer un milieu dégradé.

En informatique, un graphe état-transition représente les différentes exécutions possi-
bles d'un logiciel. Le model-checking est une méthode automatique d'analyse utilisée
pour s'assurer de l'absence de bug durant I'exécution d'un logiciel. Un outil de model-
checking vérifie que les trajectoires du graphe état-transition satisfont une propriété
d'intérét décrite par une formule de logique temporelle, par exemple qu'un comporte-
ment nuisible est toujours évité. Dans la perspective de la gestion d'un écosystéme, le
model-checking pourrait par exemple étre utilisé pour vérifier que les trajectoires de
I'écosystéme conservent une espéce d'intérét. En informatique, le model-checking est
utilisé itérativement: tant que le model-checking trouve un bug, on modifie le logiciel, ce
qui modifie le graphe état-transition de ses exécutions, et on teste ce nouveau graphe
état-transition avec I'outil de model-checking. Cette procédure ne peut étre appliquée
directement a la gestion d'un écosysteme en remplacant le logiciel par I'écosysteme, en
effet on ne peut/veut pas modifier directement I'écosystéeme mais on veut influencer sur
son comportement.

C'est pourquoi nous proposons dans cette these une méthode d'analyse basée sur le par-
titionnement des états entre ceux dont les trajectoires vérifient une propriété d'intérét
et ceux dont les trajectoires ne la vérifient pas. Ainsi le but n'est pas de modifier
I'écosystéme, mais de sélectionner les états ou les transitions permettant d'influencer son
comportement. Cette méthode, dérivée du model-checking CTL, résulte en une représen-
tation hybride explicite/symbolique, c'est a dire en un graphe dont chaque noeud est un
sous-ensemble de noeuds du graphe état-transition initial. Cette méthodologie est im-
plémentée dans ecco, une boite a outil développée en Python pour la modélisation et
I'analyse d'écosystemes. Cette approche est illustrée par deux études de cas: les change-
ments de végétation de la région du Borana en Ethiopie et 'assemblage de communautés
de protistes. Dans le premier cas, on sélectionne les scénarios de gestion empéchant
I'embuissonnement ou le rendant réversible, dans le second cas on partitionne les états
par rapport aux communautés stables auxquelles ils ménent. Ces deux études de cas sont
limitées par le fait que I'on voudrait que certains événements, par exemple les change-



ments de scénarios de gestion ou les invasions d'espéces, ne se produisent pas arbitraire-
ment mais de maniére controlée.

Cette limitation peut étre surmontée grace a ARCTL, une extension de CTL qui permet
de restreindre les transitions autorisées au cours de la formule. Nous étendons ARCTL
avec la notion d'équité, c'est a dire de contrainte de réalisme sur le l'ordre et le taux
d'occurrence d'événements le long des trajectoires, ce qui résulte en FARCTL. Nous four-
nissons un algorithme symbolique pour le model-checking de FARCTL qui est implémenté
dans ecco. Enfin, nous appliquons FARCTL aux deux études de cas: pour examiner les
conséquences des changements de scénarios de gestion sur la dynamique de végétation
du Borana et les conséquences d'invasions d'espéces dans I'assemblage de communautés
de protistes.
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