
HAL Id: tel-04065482
https://theses.hal.science/tel-04065482

Submitted on 11 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of state-transition graphs of ecosystems using
model-checking

Colin Thomas

To cite this version:
Colin Thomas. Analysis of state-transition graphs of ecosystems using model-checking. Formal Lan-
guages and Automata Theory [cs.FL]. Université Paris-Saclay, 2022. English. �NNT : 2022UPASG087�.
�tel-04065482�

https://theses.hal.science/tel-04065482
https://hal.archives-ouvertes.fr


THE
SE

DE
DO

CTO
RAT

NN
T:2

020
UPA

SG0
87

Analysis of state-transition graphs of ecosystems
using model-checking

Analyse de graphes état-transition d’écosystèmes
à l’aide de model-checking

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 580, Sciences et technologies de l’information
et de la communication (STIC)

Spécialité de doctorat: Informatique
Graduate School : Informatique et sciences du numérique

Référent : Université d’Évry Val d’Essonne

Thèse préparée dans les unités de recherche IBISC (Université Paris-Saclay,
Univ Evry) et UMR AMAP (INRAE), sous la direction de Franck POMMEREAU,

professeur, et de Cédric GAUCHEREL, directeur de recherche à INRAE

Thèse soutenue à Evry, le 12 décembre 2022, par

Colin THOMAS

Composition du jury
Hanna KLAUDEL Présidente
Professeure des universités, IBISC, Université
d’Evry Val d’Essonne, Université Paris- Saclay
Christine LARGOUËT Rapporteure & Examinatrice
Maîtresse de conférences, Institut Agro Rennes-
Angers, Université de Rennes 1
Yann THIERRY-MIEG Rapporteur & Examinateur
Maître de conférences, LIP6, Paris Sorbonne Uni-
versités
Isabelle BOULANGEAT Examinatrice
Chargée de recherche, LESSEM, Université Greno-
ble Alpes
Serenella CERITTO Examinatrice
Professeure des universités, IBISC, Université
d’Evry Val d’Essonne, Université Paris- Saclay
Loïc PAULEVÉ Examinateur
Chargé de recherche, CNRS, Université de Bor-
deaux
Franck POMMEREAU Directeur de thèse
Professeur des universités, IBISC, Université
d’Evry val d’Essonne, Université Paris- Saclay





Contents

1 Introduction 11.1 State-transition graphs in ecology . . . . . . . . . . . . . . . . . . . . . . . . 31.1.1 A new concept? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2 Symbolic methods and model-checking . . . . . . . . . . . . . . . . . . . . . 61.2.1 Background in computer science . . . . . . . . . . . . . . . . . . . . 61.2.2 Background in biology . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.3 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.3.1 Borana STMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.3.2 Protist assembly graph . . . . . . . . . . . . . . . . . . . . . . . . . . 81.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Definitions 112.1 State-transition graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.2 Component graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.3 CTL model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.3.1 Computation Tree Logic (CTL) . . . . . . . . . . . . . . . . . . . . . . 172.3.2 Symbolic CTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 ecco: a modelling and analysis toolbox 273.1 A modelling language : Reaction Rules (RR) . . . . . . . . . . . . . . . . . . . 283.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293.2 An interactive analysis interface based on component graphs . . . . . . . . 313.2.1 Splitting with respect to state properties . . . . . . . . . . . . . . . . 313.2.2 Splitting with respect to topology . . . . . . . . . . . . . . . . . . . . 323.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4 Case studies 354.1 Borana vegetation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354.1.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414.2 Protists assembly model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464.2.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5 Symbolic model-checking of Fair ARCTL 555.1 ARCTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565.1.1 Syntax and semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 575.1.2 ARCTL symbolic model-checking . . . . . . . . . . . . . . . . . . . . . 585.2 Fairness and FARCTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595.2.1 Fairness constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

i



Contents

5.2.2 Fairness assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615.2.3 Fair ARCTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635.3 Symbolic model-checking algorithm for FARCTL . . . . . . . . . . . . . . . . 635.3.1 Strong fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645.3.2 Unconditional fairness . . . . . . . . . . . . . . . . . . . . . . . . . . 675.3.3 Weak fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685.3.4 Complete symbolic algorithm for FARCTL model-checking . . . . . . 69
6 Applications of FARCTL 716.1 Borana vegetation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716.1.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736.2 Protists model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756.2.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7 Conclusion and discussion 797.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797.2 Implementation choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807.2.1 Reaction Rules as modelling language . . . . . . . . . . . . . . . . . . 807.2.2 FARCTL as temporal logic . . . . . . . . . . . . . . . . . . . . . . . . . 827.3 Interactive component graphs with ecco . . . . . . . . . . . . . . . . . . . . 867.3.1 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877.4 Case studies in ecology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917.4.1 Borana vegetation community successions . . . . . . . . . . . . . . . 917.4.2 Protists community assembly . . . . . . . . . . . . . . . . . . . . . . 92
8 Logbook of a journey across disciplinary borders 95

Bibliography 97

A Appendix 107A.1 Proof of the symbolic CTL algorithm . . . . . . . . . . . . . . . . . . . . . . . 107A.2 Justification of the Borana model . . . . . . . . . . . . . . . . . . . . . . . . . 111A.3 Proof of the symbolic FARCTL algorithm . . . . . . . . . . . . . . . . . . . . 117
Remerciements 123

Synthèse 125

ii



1 Introduction

Earth is experiencing its 6th mass extinction: experts estimate that 20% to 50% of livingspecies may go extinct during the 21st century [Mil05]. In this context, understandingecosystems and their dynamics is crucial to be able to take conservation actions. Ecosys-tems follow trajectories that can be abstracted into a state-transition graph mapping ev-ery possible pathway, just like a roadmap inwhich the ecosystem’s course can be tracked.For example, a savanna can branch off towards alternative futures, such as getting en-croached by bushes, turning into a forest, or drying out into a desert. These changes maybe reversible, cyclic or irreversible, i.e. resulting in the ecosystem being trapped in somedead-end configuration. How an ecosystem moves along these trajectories is a questionthat remains not entirely understood. Yet, human societies want to impact the ecosys-tem’s course, for example to restore a degraded ecosystem or to sustain agricultural pro-duction, all the more in the context of global warming that affects the ecosystem’s path-ways. Methods to analyse such branching trajectories have been developed for decadesin computer science to verify automated systems, but remain largely unknown to ecol-ogists. In this thesis, we showcase how this mathematical framework originating fromcomputer science can be adapted to fit ecology needs, we illustrate the insights it canproduce and discuss the new challenges that arise from it.
A state-transition graph (STG) describes the behaviour of a dynamical system, for examplean ecosystem, as a graph whose nodes are the discrete states of the system and whoseedges represent the transitions between these states. An STG is a kind of road map inwhich the ecosystem travels following pathways that may branch off into distinct direc-tions, converge together, be cyclic, etc. An example STG describing vegetation pathwaysin Ethiopia is given in Figure 1.1. STGs are widespread in ecology, but they must not beconfused with interaction graphs such as the iconic trophic networks. The former repre-sent the temporal trajectories of a system while the latter represent the processes takingplace between the entities composing a system.
In ecology, STGs typically represent community pathways, i.e. changes in the set of speciesor populations of an ecosystem through time. Ecological STGs are often designed as user-friendly tools enabling participatory model development and collaborative managementof ecosystems. As a graphical representation of the behaviour of the ecosystem, STGsassist managers and scientists in collectively proposing policies driving the ecosystemthrough desired pathways while avoiding others. Ecology encompasses a wide varietyof STGs whose analysis is mainly restricted to visual examination, yet recently an interestin automated tools has arisen [Lar+12; WW20; SA21].
In computer science, STGs model the executions of automated systems. Computer scien-tists design automated tools called model-checkers to ensure the absence of bugs duringsoftware executions [Cla+18b]. Model-checkers verify whether the pathways within anSTG satisfy a given property, for example that a desired state is reached or that harm-

1



1 Introduction

Sparse scrubland

Open canopy woodland

Grassland

Dense scrubland

Closed canopy woodland

Figure 1.1: State-transition graph. The states are embodied by illustrated boxes and thetransitions by arrows labelled with their main driving processes ( for fire, for plant recruit-ment, and for intensive grazing). Adapted from [LC18].

ful behaviour is always avoided. Given a system description that can be computed intoan STG and a dynamical property written as a temporal logic formula, a model-checkeroutputs whether the STG satisfies the property or not.
One main feature contributing to the success of model-checking is the design of symbolicmodel-checking algorithms [Bur+92] thatmitigate the combinatorial explosion problem (i.e.the exponential growth of the number of states with the number of variables). Insteadof explicitly enumerating the individual states, a symbolic algorithm computes its outputby gathering sets of states into compact data structures [Bur+92; Cou+02]. In this thesis,we propose to arrange these symbolic sets of states inside a component graph that is aconcise and graphical representation of a partition of the states of an STG.

Outline In this thesis, we argue that model-checking and component graphs are fittedfor the analysis of ecological STGs. More precisely:
▶ The remainder of Chapter 1 gives some background for the concepts and case stud-ies presented in this thesis.
▶ Chapter 2 gives formal definitions of state-transition graphs (STGs), componentgraphs, and CTL model-checking.
▶ Chapter 3 presents ecco, a software that provides modelling and analysis tools forecological STGs.
▶ Chapter 4 presents two case studies using ecco: the vegetation successions of theEthiopian region of Borana, and the laboratory assembly of protists communities.
▶ Chapter 5 extends the temporal logic ARCTL [PR07] with fairness, resulting inFARCTL, and provides a symbolic model-checking algorithm for FARCTL.
▶ Chapter 6 illustrates the insights that FARCTL can bring to the analysis of ecologicalSTGs by applying it to the two case studies.
▶ Chapter 7 discusses the implementation choices and the perspectives.
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1.1 State-transition graphs in ecology

▶ Chapter 8 proposes a short logbook about working on an interdisciplinary researchsubject.

An interdisciplinary thesis / How to read This thesis deals with an interdisciplinarytopic mixing computer science and ecology. It was done between two laboratories, IBISC(Université Paris-Saclay, Univ Evry) for computer science and AMAP (INRAE) for ecology.This manuscript reflects this interdisciplinarity. It was written with the aim of being intelli-gible by both computer scientists and ecologists, explaining most technical concepts. Theremarks directed at computer scientists are put inside light orange boxes titled “Technicalremark”, while the remarks directed at ecologists are put inside green boxes titled “Ecol-ogy”. Readers interested in the computer science aspects of this work can skim throughChapter 4 and Chapter 6 which detail the ecological case studies. On the other hand,readers interested in the ecology aspects can skip the end of Chapter 5 which details theFARCTL symbolic algorithm.

1.1 State-transition graphs in ecology

1.1.1 A new concept?

Although the word “state-transition graph” is unusual in ecology, ecologists have drawnSTGs for decades to represent the pathways between the discrete states of an ecosys-tem. Indeed one can draw STGs without having a formal definition in mind. Many eco-logical STGs were designed more as graphical summaries of the knowledge about thedynamics of the studied system rather than as actual data. Thus, STGs have been reg-ularly drawn in ecology under various names , for example “behaviour graph” [Pat71],“kinematic graph” [Lon74], or “pattern” [Ber+14].
The lack of a unifying concept for STGs in ecology can be explained by the fact that STGsare found in historically isolated research fields. In ecology, the state of an ecosystem isoften discretely abstracted by its community (i.e. restricted to its set of species or pop-ulations). Subsequently, STGs are found in a wide variety of studies focusing on the dy-namics of ecological communities. But the dynamics of plant communities (community
succession) and of animal communities (community assembly) were historically studied inisolation from one another [YCH01; CH16].
The intuitive nature of STGs and the isolation of their application fields resulted in thelack of a formal unifying concept encompassing every STG instance found in ecology. Inthis thesis, we propose the term “state-transition graph” (STG) to fill this conceptual gap.This term has a straightforward meaning, is already used in systems biology to representthe same concept [Abo+16], and is broad enough to encompass the particular featuresof existing STGs. Moreover, it is in lexical proximity to the existing “state-and-transitionmodels” (STMs) which are a particular kind of ecological STGs, thus we hope that it willsound intuitive to most ecologists.
Regrouping the numerous existing ecological STGs inside a uniting conceptual framework

3



1 Introduction

enables comparing their particular features and the design of common analysis tools. Forexample, this conceptual framework can be linked to the existing toolboxes designed incomputer science and in systems biology [BČŠ13; BL16] to analyse such graphs. More-over, the once isolated fields of community succession and community assembly arenowadays more and more integrated together in ecological studies [YCH01; CH16], thusthe study of their STGs should also be integrated inside a common framework.
Therefore, “state-transition graph” is not a new concept in ecology, but rather a new nameintegrating existing objects and providing a common framework to think and to analysethem.

1.1.2 Background

The history of ecological STGs can be traced back to the vegetation successions describedby Clements at the beginning of the 20th century [Cle16]. Clements described how anecological community (i.e. a group of species) changes following a disturbance or theinitial colonization of the habitat. To that end, he drew STGs whose states were called“seral stages”, whose most transitions were deterministic (i.e. with at most one outgo-ing transition for each state) and converged toward an end state called “climax commu-nity” [WWN89; YCH01]. Clements compared ecological successions with organism devel-opment, in his view an ecosystem develops itself toward the climax community that actslike a fixed phenotype. The theory of Clements was highly influential until the 1960s.
Modern theories describemuch less deterministic ecological successions, with alternativepathways and multiple end states (or even no end state at all) [YCH01]. Chance and his-torical contingency are thought to play essential roles in ecological successions, which arethus considered less predictable. This evolution of the theory of ecological successions isreflected in the drawn STGs, as depicted in Figure 1.2.
Most STGs found in ecological succession studies (historically focusing on vegetation com-munities) are drawn from observations and thus have a relatively small size (a few dozenstates at most). For example [CP02; Ber+14] depict the vegetation successions in borealforests, and [Lon74] the successions of dune slack vegetation. In addition, vegetationsuccession studies also produced models outputting STGs, such as the “replacement se-quences” of [NS77; Cat+79].
Other research fields in ecology, such as community assembly, produced STGs in-dependently of the community succession field. For example, several studies out-putted STGs from a wide diversity of modelling formalisms, such as boolean net-works [Cam+11; RM16], timed automata [Lar+12; CLZ14], Petri nets [GP19], or qualitativereasoning [SB06].
We will now detail two actively studied STG formalisms: “state-and-transition models”stemming from community succession, and “assembly graphs” stemming from commu-nity assembly.

4



1.1 State-transition graphs in ecology

(a) Clements 1916 (b) Jackson and Bartolome 2002
Figure 1.2: STGs reflecting the evolution of the vegetation succession theory. (a) Vegeta-tion succession of Lake Michigan from [Cle16, Fig.8 p.218], this STG converges toward a climaxstate (bottom-most state), showing primarily deterministic pathways. (b) Vegetation succes-sion of Californian grasslands from [JB02, Fig.2], this STG shows alternative pathways withoutan end state.

State-and-transition models (STMs)

The most active research area using STGs and stemming from vegetation succession isthe empirical state-and-transition models (STMs). STMs are derived from observations andare designed to cope with the non-deterministic and irreversible nature of observed dy-namics [WWN89]. An STM consists of both: (1) a catalogue of possible alternative statesof the system; and (2) a catalogue of possible transitions between these states. STMsare not theoretical models of vegetation dynamics, but on the contrary are designed asan organisation of the empirical information suitable to the ecosystemmanagement per-spective [WWN89].
STMs aim to assist managers and scientists in collectively proposing policies driving theecosystem through some desired pathways while avoiding others. In order to remainuser-friendly [Bes+17], STMs’ sizes usually do not exceed a few dozen states. While STMsoriginally stem from rangeland management [WWN89], they are now used in many fieldssuch as natural park management [Cau13] (see for example the “EDIT” database housinga large catalogue of STMs [Bes+16]), geomorphology [PV17], or agroecology [Tit20].

5
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1 Introduction

Assembly graphs

The STGs stemming from the community assembly research field are called assembly
graphs [HP93; SA21]. Compared to community succession, community assembly focuseson how a community assembles from a pool of species and on the short-term conse-quences of invasion events. In an assembly graph, every state is a stable community (i.e.a set of species), and every edge is an invasion by a species absent from the source state.Contrarily to STMs, most studies involving assembly graphs are theoretical [LM93; SFS21],yet a few are experimental [WLW03]. Indeed assembly graphs are used to answer theo-retical questions about community assembly, while STMs are used to answer empiricalquestions about real-world ecosystem management.

1.2 Symbolic methods and model-checking

1.2.1 Background in computer science

Model-checking is an automated method for analysing any dynamical system that can bemodelled by states and transitions [CHV18]. As depicted in Figure 1.3, its goal is to checkthat an automated system (hardware or software), given as a description that can be com-puted into an STG G, satisfies a given dynamical property, usually written as a temporal
logic formulaφ. Amodel-checker is a software performing this operation, returning a yes/nooutput depending on whether the STG G satisfies the property φ or not, generally with acounterexample pathway for negative output. Most of the time, the queried propertymodels a bug in the system’s execution, thus the primary purpose of model-checking isto ensure that an automated system is bug-free.

Temporal logic formula

Computation Translation

System description System dynamical properties

State-transition graph

Model-checker
checks whether      satisfies     : yes/no

Figure 1.3: The model-checking methodology. Adapted from [CHV18].
Symbolic model-checking algorithms [Thi16] compute their output without explicitly ex-ploring the state-transition graph. Instead of exploring the states one by one, symbolicalgorithms operate on sets of states gathered into compact data structures such as binary
decision diagrams [Bur+92]. Model-checking can thus be performed in a set-based setting,returning the set of states satisfying the queried property. The main benefit of symbolicmodel-checking algorithms is the mitigation of the combinatorial explosion problem (i.e.the exponential growth of the number of states with the number of variables) thanks tothe compact data structures representing sets of states.
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1.3 Case studies

1.2.2 Background in biology

Althoughmodel-checking was developed to hunt bugs in software, it can analyse all kindsof STGs. In systems biology, STGs are outputted by models of reaction networks or reg-ulatory networks [WSA12]. Model-checking is extensively used to analyse these mod-els [BČŠ13; BL16], proving its suitability for studying biological systems. For example,model-checking helped to validate models of nutritional stress response of Escherichia
coli [Bat+05], T-helper cell reprogramming [Abo+15], mammalian cell cycle [Tra+16] orBRAF inhibition pathways in two different cancers [Béa+21].
Yet, model-checking has been very scarcely used in ecology. So far, most formal analy-ses of STGs in ecology have been limited to graph measures [Phi11] and topology anal-yses [Cam+11; RM16; GP19]. We identified only a few precursory applications of model-checking in ecology [Lar+12; CLZ14; Bar+15]. These studies introduce a specific imple-mentation of the model-checking methodology based on timed automata or P systemsto model and analyse the dynamics of ecosystems, such as coral reef fisheries.

1.3 Case studies

Along this thesis, we will use two running examples taken from both STM and assemblygraph literature, because they are the most active modern research fields using STGs. Inthis section, we present the ecological background behind these examples. These exam-ples will then be modelled and analysed in Chapter 4 Case studies and Chapter 6 Applica-
tions of FARCTL.

1.3.1 Borana STMs

The STMs developed by Liao and Clark [LC18; LCD18; Lia+20; Lia16], see Figure 1.4, de-scribe the vegetation pathways of the Borana Zone in southern Ethiopia. Open canopywoodland (a savanna-like vegetation class encompassing a grass layer with sparse trees)was historically the most prominent vegetation class in Borana [LCD18]. But since gov-ernment banned the use of fire in the 1970s, the region has been undergoing a rapidincrease in the density of woody plants (known as bush encroachment). As local peoplepredominantly practice pastoralism, the reduction in herbaceous cover threatens theirlivelihood. Hence understanding the vegetation pathways is critical to help pastoralistsand policymakers to mitigate bush encroachment [Lia+20].
The STMs’ states represent vegetation classes [LCD18], the STMs’ transitions are labelledby their main drivers, as is often the case in the STM framework. The STMs of Figure 1.4showcase non-deterministic behaviour, i.e. some states have more than one outgoingtransition, as it is often the case in ecological successions. Moreover, the STM represent-ing bush encroachment (Figure 1.4b) exhibits irreversible pathways, i.e. one-way only, forexample grasslands cannot be reached from any encroached state (dense scrubland orclosed canopy woodland).
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Wildlife grazing
Recruitment

Wildlife grazing
Recruitment

Low intensity fire
Wildlife Browsing

High intensity fire

Grassland

Sparse scrubland

Open canopy woodland

(a) Before livestock introduction

Sparse scrubland

Open canopy woodland

Dense scrubland

Closed canopy woodland

Continued grazing
Recruitment

Moderate grazing
Recruitment

Moderate grazing
Recruitment

Continued grazing
Recruitment

Continued grazing

Recruitment

Grassland

(b) With livestock and fire ban
Figure 1.4: State-and-transition models of the Borana vegetation pathways. Takenfrom [LC18, Fig.5]. (a) Before pastoralism, fire was the main driver of the rangeland dynamics.The combination of fire, wildlife herbivory and vegetation recruitment maintained the entiresystem in a loop between open canopy woodland and grassland. (b) The presence of cattleand the fire ban gave a competitive advantage to woody plants, inducing an irreversible bushencroachment. Concurrently, wildlife increasingly avoided the Borana zone because of thedenser human and livestock populations.

Accordingly to the STM perspective, the STMs of Figure 1.4 compare various ecosystemmanagement policies in order to help maintaining herbaceous cover. They are drawnfrom empirical observations, and their sizes are limited to remain user-friendly. Theywere designed for the purpose of answering questions such as:
▶ Which management policies prevent bush encroachment?
▶ Is bush encroachment reversible without changing management policy?
▶ Can a change in management policy reverse the bush encroachment induced by the pre-

ceding one?

1.3.2 Protist assembly graph

The two laboratory experiments performed by Law, Warren and Weatherby [WWL98;WLW03] studied howmicrocosms assemble through time from a pool of 6 protist species(microscopic unicellular eukaryotes) feeding on a bacterial mixture. The first experi-ment [WWL98] studied how each combination of species (i.e. community), taken from the26 possible ones, behaved through time. For each possible community, the authorsmade6 replicates and observedwhether the community persisted or collapsed, i.e. whether thecommunity is stable or not. The outcomes differed between replicates for some commu-nities, as depicted in Figure 1.5.
The second experiment [WLW03] studied how each stable community, found in the first
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{A,P,T }

{A,P } {A,T }

{A } {T }

{ }

Figure 1.5: Community pathways from the first protist experiment. Each state representsa community (i.e. a set of species), labelled with the initials of the present species betweenbrackets. Each transition represents an observed community change. This STG depicts thecommunity pathways observed from the {A, P, T} community. Taken from [Her+22, Fig.2].

Figure 1.6: Assembly graph from the second protist experiment. Each state representsa community (i.e. a set of species), labelled with the initials of the present species betweenbrackets. Black states were found stable in the first experiment, and thus were subjected tothe invasion experiment; while grey states were found stable after invasion but not in the firstexperiment, and thus were not subjected to invasion. The transitions represent either invasionevents (plain or dashed arrows labelled by the initial of the invading species), or collapses ofthe community without any invasion (dotted arrows without label). Taken from [WLW03, Fig.3].

experiment, responds to an invasion by another species from the pool [LWW00]. For eachstable community and invading species, between4 and6 replicatesweremadedependingon experimental constraints. As with the first experiment, the outcomes sometimes dif-fered between replicates, resulting in branching arrows in the assembly graph depicted inFigure 1.6. To our knowledge, these experiments are unique in being the only replicatedanalysis which systematically explores the fate of all possible communities that can bebuilt from a pool of species.
These experiments were designed for the purpose of answering questions such as:
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▶ From how many initial states are each of the stable communities obtained? [WWL98]
▶ What are the impacts of individual species on community collapse? [WWL98]
▶ Are there catalytic species, that invade, change the community, and then go ex-

tinct? [WLW03]

1.4 Contributions

This thesis presents formal methods based on model-checking for the modelling and theanalysis of ecological state-transition graphs. First, we introduce the concept of ecologi-cal state-transition graph that, while being a novelty, captures a long history of disparaterepresentations of the dynamics of an ecosystem as a graph [Tho+22]. Then, we pro-pose an analysis methodology based on the partitioning of the states of an STG usingmodel-checking, which results in component graphs. This methodology is implementedinside ecco [PTG22a], a Python toolbox developed by Cédric Gaucherel and Franck Pom-mereau for the formal modelling and the analysis of ecosystems. This approach is ex-emplified in two case studies: (1) vegetation changes of the Borana Zone in Ethiopia un-der diverse management scenarios [LC18; LCD18; Lia+20; Lia16], and (2) protists com-munity assembly [WWL98; WLW03]. We model and analyse the Borana vegetation dy-namics [Tho+22], while Mathieu de Goër de Herve modelled and analysed the protistsexperiments [Her+22] (the analysis has been redone and extended in the symbolic per-spective presented in this thesis). Both case studies are limited by the fact that we wouldwant some specific events, for example changes in management scenarios or speciesinvasions, to occur only in a controlled manner. This limitation can be overcome usingAction-Restricted CTL (ARCTL) [PR07], an extension of CTL that allows to restrict the set ofenabled actions along a formula. We extend ARCTLwith fairness constraints, i.e. “realism”constraints upon order and happening rate of events along a path, resulting in Fair ARCTL(FARCTL). For this new temporal logic, we provide a symbolic model-checking algorithm,that we implemented inside ecco. Finally, we apply FARCTL to both case studies, to in-vestigate the consequences of shifting between management scenarios, and to look forspecific invasion behaviours.
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A Summary

This chapter provides the formal definitions of the main concepts used throughoutthe thesis. First, we define state-transition graphs and maximal paths within them.Thenwedefine component graphs, that is graphs representing partitions of the statesof an STG. Lastly, we define the model-checking problem and the CTL temporal logic,in terms of both individual states (explicit perspective) and sets of states (symbolicperspective). We also provide a catalogue of query patterns translated into CTL, in-tending to ease the design of CTL formulas describing the system’s behaviour.

2.1 State-transition graph

First, we give a definition of State-Transition Graphs (STGs) encompassing labelled transi-tions. This definition is very comprehensive in order to cover every case, even if particularinstancesmay lack some features (although every instance presents at least a set of statesand a transition relation). Various examples of ecological STGs are given throughout thisthesis.
Definition 2.1 (STG G). Given a set of atomic state properties PS and a set of atomicaction properties PA, a state-transition graph (STG) is a tuple G = (S, S0, A, −→, VS , VA),where:

▶ S is a finite set of states
▶ S0 ⊆ S a set of initial states
▶ A is a finite set of actions
▶ −→⊆ S × A × S is a transition relation
▶ VS : S 7→ 2PS maps every state to its atomic properties
▶ VA : A 7→ 2PA maps every action to its atomic properties

à Ecology

Graphs are widespread in ecology, but STGs must be discriminated from interaction
networks such as the iconic trophic networks [May06; Pil+17]. Indeed, the formergrasp the temporal behaviour of an ecological system, while the latter grasp the pro-cesses taking place between its components. A node (resp. an edge) of an STG isa temporal stage (resp. an event, i.e. a state transition) of the system dynamics.Whereas a node (resp. an edge) of an interaction network is an entity (resp. a flux) of
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the system. The methods presented in this thesis deal with the temporal changes ofa discrete-event system and thus are designed to analyse STGs specifically.
Note also that despite their orthographic proximity, “STG” and “STM” shall not bemixed up. While STGs refer to a general mathematical concept, STMs are specialinstances of STGs linked to a particular research field with particular features andpurposes (see Section 1.1.2).

We note s
a−→ s′ the fact that (s, a, s′) ∈−→. A state without outgoing transition is called a

dead-end, and we note s −→− the fact that ∄(s, a, s′) ∈−→.
Example 2.1. Not every STG found in ecology literaturematches exactly definition 2.1.For example, in the STG of Figure 2.1, we can naturally consider that:

▶ S = {Grassland, Sparse Scrubland,Open canopy woodland, . . .}.
▶ PA = { , , }.

But for the other features:
▶ S0 is not defined, thus we can take every subset of S as initial states, for examplewe can take S0 = S.
▶ PS is not clearly defined, and consequently VS is not defined either, yet stateshave various properties such as the presence of trees.
▶ A is not clearly defined but we can use the transition labels A = { , , },and define VA and −→ accordingly.

Sparse scrubland

Open canopy woodland

Grassland

Dense scrubland

Closed canopy woodland

Figure 2.1: Example state-transition graph. Adapted from [LC18].
In computer science, the state and transition description of the system is most of thetime defined as a Kripke structure (KS) or as a labelled transition system (LTS) [Cla+18b],depending if either its states or its transitions are labelled. Our STGdefinition is equivalentto mixed transition system [PR07], combining both state and action labels. As in systemsbiology [Abo+16; Tra+16], we will keep calling it state-transition graph (STG) for clarity.
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Ô Technical remark

Of course, an STG G can always be projected to a KS sub-structure (S, S0, −→′, VS) byconsidering −→′= {(s, s′) | (s, a, s′) ∈−→}, or to a LTS sub-structure (S, S0, A, −→, VA)by forgetting the state labels. Conversely, any KS or LTS can also be extended into anSTG by adding empty state or action labels. Thus the methods developed for thesedescriptions can also be applied to STGs, and vice versa. In the following, G is alwaysan STG combining state and action labels, unless specified otherwise.

Most questions about STGs focus on their induced pathways. A path π is a finite or infinitesequence of states and transitions: s0
a1−→ s1

a2−→ s2
a3−→ . . .. The length of a path π, notedby |π|, is its number of transitions. A path π of length |π| = 0 is restricted to a single state

s0, a path π of length |π| = ∞ is an infinite sequence of states and transitions. For i ⩽ |π|and i ∈ N, the i-th state of π is noted π[i]S , and its i-th action is noted π[i]A. We note
s −→∗ s′ the fact that there is a path from s to s′, and s −→+ s′ the fact that there is a pathof length ⩾ 1 from s to s′.
Definition 2.2 (Π). A maximal path π is an infinite sequence of states and transitions,or a finite sequence ending in a dead-end s −→− . The set of all maximal paths startingfrom a state s ∈ S is noted Π(s), the set of all maximal paths of G is noted Π(G).

à Ecology

In this thesis, we use the words “path”, “pathway” or “trajectory” interchangeably todesignate arbitrary sequences of state and transitions. Indeed, all these names areused informally in ecology to represent this concept. Conversely, “maximal path” is aformal concept that refers to paths that cannot be further extended. Maximal pathsare at the very heart of themodel-checking framework. In amaximal path, the systemcannot remain indefinitely in a state if there is an available transition: the maximalpath must be extended and so the system must move on. Note that any arbitrarypath can always be extended into one or many maximal paths. Thus, we can usemodel-checking to investigate the properties of arbitrary paths by investigating theproperties of the beginning of maximal paths.

Example 2.2. If s is a dead-end s −→− , then Π(s) consists of a single path of length 0:
Π(s) = {s −→− }.

We define two simple dynamical properties of STGs:
Definition 2.3. An STG G = (S, S0, A, −→, VS , VA) is deterministic if each state has atmost one outgoing transition:

∀s ∈ S there is at most one (s, a, s′) ∈−→

Every state of a deterministic STG is the start of a single maximal path, thus the behaviourof the system is also deterministic.
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Ô Technical remark

In other words, an STG is deterministic if its projection to a KS substructure is deter-ministic. An other definition of determinism could be that an STG is A-deterministicif ∀a ∈ A each state has at most one outgoing a-transition: ∀s ∈ S there is at mostone (s, a, s′) ∈−→.

Definition 2.4 (SCC). An STG G = (S, S0, A, −→, VS , VA) is strongly connected if everystate is reachable from every other state:
∀s ̸= s′ ∈ S s −→+ s′

In a strongly connected STG, for every pathway leading from s to s′, there is also a pathwayleading from s′ to s. Thus every state change can be reversed.
Example 2.3. Figure 2.2 presents two STGs derived from Figure 1.4. The STG of Fig-ure 2.2a is strongly connected, i.e. every state can be reached from every otherstate. Consequently, every path can be reversed and thus every state change canbe undone. Note that the reversed pathway may not be a simple backtracking ofthe original one. For example, Open canopy woodland −→ Grassland cannot be sim-ply backtracked: Grassland −→− Open canopy woodland, but a reverse pathway exists:
Grassland −→ Sparse scrubland −→ Open canopy woodland. Conversely, in an STG thatis not strongly connected, such as the one of Figure 2.2b, some state change cannotbe undone. For example, the pathway representing bush encroachment Grassland −→
Sparse scrubland −→ Closed canopy woodland cannot be reversed.

Sparse scrubland

Open canopy woodland

Grassland

(a) Strongly connected

Sparse scrubland

Open canopy woodland

Grassland

Dense scrubland

Closed canopy woodland

(b) Not strongly connected
Figure 2.2: Example of strongly connected or not strongly connected STGs. Adaptedfrom [LC18]. (a) The STG is strongly connected, thus every path can be reversed. (b) The STG isnot strongly connected, thus some path cannot be reversed.
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2.2 Component graph

The larger an STG is, the more difficult it is to analyse. In this thesis, we propose to buildcomponent graphs that partitions S into components according to some chosen proper-ties of interest. Instead of representing each state s ∈ S individually, a component graphonly represents the partition of S and is thus a condensed representation of G accordingthe chosen properties.
Definition 2.5 (C). A partition C of a set S is a set of subsets of S such that everyelement of S is included in exactly one element of C:⋃

c∈C
c = S and ∀c1, c2 ∈ C c1 ̸= c2 ⇒ c1 ∩ c2 = ∅

For s ∈ S , we note ⟨s⟩C the element of C such that s ∈ ⟨s⟩C .

In the following, we partition the set of states S of an STG G, and we call components theelements of this partition. Given a partition C of S , the states belonging to the same com-ponent can be merged into a single state, resulting in a compact representation of C:
Definition 2.6 ( G/C ). Given an STG G = (S, S0, A, −→, VS , VA) and a partition C of Sinto components, the component graph G/C is the quotient STG G/C = (C, C0, A, −→C
, VC , VA) where:

▶ C0 = {⟨i⟩C | i ∈ S0}
▶ −→C= {(⟨s⟩C , a, ⟨s′⟩C) | (s, a, s′) ∈−→ and ⟨s⟩C ̸= ⟨s′⟩C}
▶ VC : C 7→ 2PS maps every component c to the atomic properties that are true forevery state s ∈ c, i.e. VC : c 7→

⋂
s∈c VS(s).

Ô Technical remark

Labelling the components is not straightforward, as a component can embrace si-multaneously states labelled with and states labelled without any given label. Thuswe could give various definitions of the component labelling function VC , for examplelabelling the components if all states are labelled accordingly as in the definition, orlabelling the components if at least one state is labelled accordingly.
Example 2.4. The simplest component graph has a single component: C = {S}, andthe most detailed component graph has only singleton components: C = {{s} | s ∈
S} which is equivalent to the STG itself. Yet, ecologists are primarily interested insomething in between with sufficiently few components to remain human-readable,but with enough details to exhibit critical aspects of the dynamics.
Example 2.5. In existing ecological STGs, the states are sometimes already partitionedaccording to some properties. For example, in Figure 2.3a the states are partitionedaccording to vegetation types into 3 components: Coastal Prairie, Coast Range Grass-
land and Valley Grassland. The states belonging to the same component can bemergedinto a single node, resulting in a component graph, see Figure 2.3b. Note that every
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path in the STG matches an equivalent path in the component graph, but every pathin the component graph does not necessarily correspond to a path in the STG. Forexample there is no path from a state of the Coastal Prairie component toward a stateof the Valley Grassland component.

(a) Jackson and Bartolome 2002 (b) Component graph
Figure 2.3: Example component graph. (a) Vegetation successions of Californian grasslandsfrom [JB02, Fig.2]. The partition of the states into three components is displayed by the colourof the states andbackground. (b) The corresponding component graphwhere each componentis merged into a single node.

In a component graph, every node is a component, and every transition between twocomponents represents a transition between two states belonging to either components.Each component can be represented symbolically, i.e. by a compact data structure thatdoes not enumerate individual states but represents a set of states (for example binarydecision diagrams). Thus a component graph is an hybrid object: combining symbolicsets (the components) with their explicit relations (the transitions). Such hybrid objectscan provide efficient representations of large STGs [Bér+13; PTG22a].

2.3 CTL model checking

Model-checking is an automated method for analysing any dynamical system that can bemodelled by states and transitions [CHV18]. A model-checker checks that an STG G, satis-fies a given dynamical property, usually written as a temporal logic formula φ, as depictedin Figure 2.4.
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Temporal logic formula

Computation Translation

System description System dynamical properties

State-transition graph

Model-checker
checks whether      satisfies     : yes/no

Figure 2.4: The model-checking methodology. Adapted from [CHV18].

à Ecology

The system description, i.e. the mathematical model from which the STG G is com-puted, see Figure 2.4, is not mandatory in the model-checking methodology. Indeed,an STG G can simply be given as input to a model-checker. Complex ecological STGscan be found directly inside empirical studies [WLW03; Bar+18], without being com-puted from any underlying mathematical description. Hence, model-checking is notonly a tool for the analysis ofmathematical models, but can also assist the automatedinvestigation of empirical data.

Symbolicmodel-checking algorithms [Thi16] operate on sets of stateswithout explicitly ex-ploring the state-transition graph (hence the adjective “symbolic” as opposed to “explicit”).These algorithms use compact data structures such as binary decision diagrams [Bur+92]to gather a set of states without explicitly enumerating them, and use fixed point calcula-tion to compute their results. Model-checking of state-based temporal logics can thus beperformed in a set-based setting, returning the set of states satisfying the queried prop-erty. The main benefit of symbolic model-checking algorithms is the mitigation of thecombinatorial explosion problem (i.e. the exponential growth of the number of stateswith the number of variables). In this thesis, we will also use the symbolic perspective ofmodel-checking to partition the states into components, as discussed above.

2.3.1 Computation Tree Logic (CTL)

Computation Tree Logic (CTL) is one of the most popular temporal logics [Cla+18b], be-cause it is particularly fitted to express properties of branching dynamics with alternativepathways. In this thesis, we focus on CTL (and some of its extensions in Chapter 5) be-cause ecological STGs often involve such alternative pathways. Moreover, CTL is easilyexpressed using sets of states under the symbolic perspective [Bur+92]. A CTL formuladescribes a property over computation trees, noted CTs as at the beginning of CTL. A CTis rooted at a given state s ∈ S of the STG, and its branches are the alternative maxi-mal paths Π(s) starting from s, see Figure 2.5). In computer science, an STG representsthe behaviours of an automated software system, thus every branch of a CT representsan alternative software computation, hence the name “computation tree”. A CTL model-checker checks whether the CT rooted in each state satisfies a CTL formula or not. Thus, a
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(a) STG (b) Computation tree rooted in the top state
Figure 2.5: Computation tree example. (b) The STG of Figure 1.4a. (a) The computation treerooted at the state depicted with a double border in the STG.

CTL model-checker can discriminate between the states whose CT satisfies a given prop-erty and these whose CT does not.
CTL formulas are built by combining state properties, logical operators (such as ¬, ∧, ∨)and temporal operators (such as ∀X or ∃G). Temporal operators define properties ofthe computation tree. For example, ∀Xφ means that all successor states of the CT’s rootsatisfy φ, while ∃Gφ means at least one branch of the CT satisfies φ all along. Temporaloperators always combine a quantifier (∃ or ∀) dealing with path branching, and amodality(X, F, G, or U) specifying path properties.
First, we give the syntax of CTL, i.e. how state properties and operators (logical or tempo-ral) can be combined into a formula.
Definition 2.7 (CTL syntax). The syntax of CTL is given by the following grammar overstate and path formulas:

▶ state formulas: φ
def= ⊤ | p ∈ PS | ¬φ | φ1 ∧ φ2 | ∃γ | ∀γ

▶ path formulas: γ
def= Xφ | Fφ | Gφ | φ1Uφ2

A CTL formula is a state formula φ.

Now let us give the semantics of CTL, i.e. the formulas’ meaning. For s ∈ S and φ astate formula, we note s |= φ, the fact that the computation tree rooted at s satisfies φ.Similarly, we note π |= γ the fact that a maximal path π satisfies a path formula γ.
Definition 2.8 (CTL semantics). Given an STG G = (S, S0, A, −→, VS , VA), let s ∈ S astate:

▶ s |= ⊤
▶ s |= p iff p ∈ VS(s)
▶ s |= ¬φ iff s ̸|= φ
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▶ s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

▶ s |= φ1 ∨ φ2 iff s |= φ1 or s |= φ2

▶ s |= ∃γ iff ∃π ∈ Π(s) such that π |= γ

▶ s |= ∀γ iff ∀π ∈ Π(s) we have π |= γ

Let π ∈ Π(G) a maximal path:
▶ π |= Xφ iff |π| ⩾ 1 and π[1]S |= φ

▶ π |= Fφ iff ∃i ∈ N such that i ⩽ |π| and π[i]S |= φ

▶ π |= Gφ iff ∀i ⩽ |π| we have i ∈ N ⇒ π[i]S |= φ

▶ π |= φ1Uφ2 iff ∃i ∈ N such that i ⩽ |π| π[i]S |= φ2 and ∀0 ⩽ j < i π[j]S |= φ1

A state property p ∈ PS is a Boolean property mapping over states, s |= p iff s is labelled by
p. Complex state descriptions are built by combining state properties using the Boolean
logical operators: not (¬), and (∧), or (∨). Other Boolean logical operators can be built ontop of the three ones above, such as the implication (⇒) defined as p ⇒ q is equivalent to
(¬p) ∨ q.
The temporal operators of CTL are always the combination of two types of operators: firsta quantifier (∃ or ∀) dealing with branching by quantifying over the paths starting froma given state, second a modality (X, F, G, or U) specifying the order of properties alonga path, see Figure 2.6. Modality X species that the property is true in the neXt state ofthe path. Modality F specifies that the property Finally becomes true at one step of thepath. Modality G specifies that the property is Globally true all along the path. Modality
U specifies that the left-hand-side property remains true along the path Until the right-hand-side property finally becomes true. Indeed the syntax of CTL enforces that stateand path formulas must alternate when nested.

F black

black

X black

G black

grey U black

Figure 2.6: Semantics of the temporal modalities. Adapted from [BK08].
Temporal operators can be separated between existential and universal operators. Ex-
istential operators (∃X, ∃F, ∃G, or ∃U) specify that their modality has to be verified by at
least one branch of the CT (thus by at least one pathway of the STG starting from its rootstate). Universal operators (∀X, ∀F, ∀G, or ∀U) specify that their modality has to be verifiedby every branch of the CT (thus by every pathway of the STG starting from its root state).Examples of computation trees satisfying basic CTL formulas are given in Figure 2.7.
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F black G black (grey U black)

F black (grey U black)G black

Figure 2.7: Example of computation trees satisfying basic CTL formulas. Adaptedfrom [BK08].

Example 2.6. The two CTs of Figure 2.8 have distinct properties:
▶ the CTL formula “∃F ¬ ” specifies that at least one state without trees is reach-able from the root of the CT, which is satisfied in Figure 2.8b but not in Fig-ure 2.8d;
▶ the CTL formula “∃G ” specifies that trees are always present along at least onebranch of the CT, which is satisfied for the left-most branch in Figure 2.8b butnot for its other branches, thus this CTL property is satisfied in both Figure 2.8band Figure 2.8d;
▶ the CTL formula “∀G ” specifies that trees are always present all along everybranch of the CT, which is satisfied in Figure 2.8d, but not in Figure 2.8b.

Lastly, CTL operators can be nested to express even subtler temporal behaviour. For ex-ample, ∀G(∃F ¬ ) specifies that: all along every path (∀G), the path can always branch offto reach a future state (∃F) without trees (¬ ). While ∀G(∃F ¬ ) holds in Figure 2.8b, thesimpler property ∀F ¬ does not because trees never disappear in the left-most branchof the CT.
Ô Technical remark

We defined CTL over finite and infinite maximal paths, whereas usual defini-tions [BK08; Cla+18b] deal only with infinite maximal paths. Indeed STGs withdead-ends, and thus finite maximal paths, are commonplace in ecology. Our def-inition considers finite maximal paths as infinite paths staying indefinitely in thedead-end. Thus in a dead-end s −→− , s |= ∃Gφ iff s |= φ. In contrast, we can define
∃G∞φ that holds only for infinite maximal paths: ∃G∞φ

def= ∃G(φ ∧ ∃X⊤). Note that
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(a) Before livestockintroduction [LC18]. (b) Computation tree rooted at the savanna state

(c) With livestock and fire ban [LC18]. (d) Computation tree rooted at the savanna state
Figure 2.8: Borana computation trees for various scenarios. The two STGs (a,c) representthe Borana vegetation pathways under two distinct management scenarios, see Figure 1.4 fordetails. The two CTs (b,d) are rooted at the savanna states (open canopy woodland) of thecorresponding STGs, depicted with a double border. As the maximal paths are finite in theSTG (c), the branches of the CT (d) are also finite.

our definition of CTL and the classical one are strictly equivalent for infinite maximalpaths.
Note also that in a dead-end s −→− , there is only a single maximal path Π(s) = {s −→− }.As the length of this path is zero, neither ∃Xφ nor ∀X¬φ are satisfied. Therefore,contrarily to the classical semantics of CTL for infinite maximal paths, ∀X¬φ ̸= ¬∃Xφ.

Theorem 2.1. For any φ ∈ CTL and any state s ∈ S , one and only one of ∃Xφ, ∀X¬φand ¬∃X⊤ holds in s. Thus they can be rewritten into one another:
∃Xφ = ¬(∀X¬φ ∨ ¬∃X⊤)

∀X¬φ = ¬(∃Xφ ∨ ¬∃X⊤)
¬∃X⊤ = ¬(∃Xφ ∨ ∀X¬φ)

Proof. If s is a dead-end s −→− , then Π(s) = {s −→− } but s −→− ̸|= X⊤ because |s −→− | = 0,
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consequently s ̸|= ∃X⊤, i.e. s |= ¬∃X⊤. Otherwise, either s |= ∃Xφ, or s |= ∀X¬φbecause ∀π ∈ Π(s) |π| ⩾ 1.

In computer science, model-checking is used either to test that specifications are met orto look for the presence of bugs. G represents the automated system being tested, and
φ describes specifications or bugs. The model-checking problem consists in determiningwhether all paths in G meet the specifications, or whether at least one path in G presents abuggy behaviour (or said differently that all paths G do not present a buggy behaviour).
Definition 2.9. Given an STG G and a CTL formula φ, the CTL model-checking problemconsists in determining whether ∀s0 ∈ S0 s0 |= φ, noted G |= φ.

à Ecology

Model-checking is amultipurpose tool that can be used both to investigate the tempo-ral behaviour of STGs (representing empirical data or resulting from modelling) andto validate models outputting STGs. Since model-checking is automated, it can pro-cess STGs too large to be examined by hand. For example, CTL model-checking wasapplied in systems biology to STG models made up of hundreds of variables [CF03].
Humanwork is then limited to the design of temporal logic formulas, which beneficialby removing ambiguity in definitions. Thusmodel-checking provides an adequate andrigorous conceptual framework for thinking about the dynamical properties of STGs.For example, CTL allows to represent the stability concept with invariance patterns.

Translating a dynamical property (i.e. a description of the system behaviour) writtenin English into a CTL formula can turn out to be a delicate exercise for non-expertusers [DAC99]. One possible way to simplify this task is to provide users with a cata-loguemapping query patterns to their translations in CTL, see Table 2.1 [Mon+08; Lar+12;Tho+22]. In order to create even more complex queries, these patterns can be nested byreplacing x or y with any other pattern.

2.3.2 Symbolic CTL

The CTL syntax and semantics presented above are called the explicit perspective of CTLbecause they dealwith states andpaths taken individually, i.e. explicitly. In this section, wepresent the symbolic perspective of CTL that conversely deals with sets of states. While theexplicit perspective provides a more accessible intuition to the meaning of CTL formulas,the symbolic perspective is computationally more efficient.
Until now, we considered CTL formulas as boolean functions over states:

φ : S −→ B

s 7−→
{

⊤ if s |= φ
⊥ if s ̸|= φ
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English description of the pattern CTL formula φ

Reachability patternAn x state can be reached ∃F(x)An x state cannot be reached ¬∃F(x)
Consequence patternIf an x state is reached, then it is possibly followed by an ystate ∀G(x ⇒ ∃F(y))

If an x state is reached, then it is necessarily followed by an
y state ∀G(x ⇒ ∀F(y))

Sequence patternAn y state is reachable and is possibly preceded at some timeby an x state ∃F(x ∧ ∃F(y))

An y state is reachable and is possibly preceded all the timeby an x state ∃(xUy)

An y state is reachable and is necessarily preceded at some
time by an x state ∃F(y) ∧ ¬∃(¬xUy)

An y state is reachable and is necessarily preceded all the
time by an x state ∃F(y) ∧ ∀G(¬x ⇒ ∀G(¬y))

Invariance pattern
x states can persist forever ∃G(x)
x statesmust persist forever ∀G(x)
x states possibly remain forever reachable ∃G(∃F(x))
x states necessarily remain forever reachable ∀G(∃F(x))
x states are necessarily reached infinitely often ∀G(∀F(x))

Reachability & Invariance patternIt is possible to reach a state from which x states can persistforever ∃F(∃G(x))

It is possible to reach a state from which x states must per-sist forever ∃F(∀G(x))

Table 2.1: Catalogue mapping query patterns to their translations in CTL. x and y areplace-holders for state properties. Adapted in [Tho+22] from [Mon+08].

This perspective was explicit, meaning that the semantics of φ was defined element byelement of S. But the semantics of φ can also be defined under a symbolic perspective asa subset of S:
φ = {s ∈ S | s |= φ} ⊆ S

Under the symbolic perspective, state properties p ∈ PS and logical operators are definedas:
▶ ⊤ = S
▶ p = {s ∈ S | p ∈ VS(s)}
▶ ∧ = ∩ is the set intersection
▶ ∨ = ∪ is the set union
▶ ¬ : Z ⊆ S 7→ S \ Z is the set complement

From now on, we only consider CTL state formulas, i.e. we only consider temporal oper-ators resulting from the combination of quantifiers (∃, ∀) and modalities (X, F, G, U), andoverlook isolated modalities related to CTL path formulas. Under the symbolic perspec-tive, the temporal operators of CTL (∃X, ∀X, ∃F, ∀F, ∃U, ∀U, . . .) are functions over set ofstates: τ : P(S) → P(S). The temporal operators of CTL can be defined as iterative com-
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2 Definitions

binations of the predecessor function Pred : Z ∈ P(S) 7→ {s ∈ S | ∃s′ ∈ Z s −→ s′} ∈
P(S), logical operators and state properties.
Proposition 2.1. ∃Xφ = Pred(φ), we thus use ∃X for Pred in the following.
Proof. The states that have a successor in φ, i.e. ∃Xφ, are the predecessors of φ, i.e.
Pred(φ).

If we combine Proposition 2.1 with Theorem 2.1, we have a symbolic definition of both
∃X and ∀X.
Example 2.7. The CTL formula ∃Fp (the set of states that start a path leading to p)can be computed iteratively from p using the set union and the predecessor function.Starting from p, we can add the predecessors of p using the set union. Thenwe can addthe predecessors of this set using the set union (i.e. the predecessors of p from a pathof length two). We can keep adding predecessors which are more and more remotefrom p, until we add themost remote predecessors (as S is finite, predecessors cannotbe infinitely remote). At this point, adding predecessors does not enlarge the set, i.e. afixed point is reached, which is our stopping criteria. This procedure computes ∃Fp ina finite number of iterative steps (that is the distance of the most remote predecessorof p).
Example 2.8.We give amore formal description of the iterative procedure computing
∃Fp using τ : Z ∈ P(S) 7→ (p ∨ ∃XZ) ∈ P(S):

▶ the set τ(∅) = p ∨ ∃X(∅) = p is the set of states that are in p

▶ the set τ2(∅) = p∨∃X(p) is the set of states that are in p orwhich have a successorin p

▶ the set τ3(∅) = p ∨ ∃X(p ∨ ∃X(p)) is the set of states that are in p, or which havea successor in p, or which have a successor that have a successor in p

▶ the set τk(∅) is the set of states which have a path of length at most k −1 leadingto p

The sequence (τ i(∅))i∈N is increasing (for the set inclusion ⊆). Because S is finite itreaches a maximum, i.e. a fixed point is reached, in a finite number n ≤ |S| of steps(or more precisely n ≤ the diameter of G, i.e. the length of the longest path visitingdistinct states). τn(∅) is the set of states that are the start of a path leading to p. Thuswe have an iterative and set-based way of computing ∃Fp.

Every remaining CTL operator can be decomposed into two sub-properties: one that in-volves only the current state, and another that involves the successor states (∃X or ∀X)recursively:
∃Fφ = φ ∨ ∃X(∃Fφ)
∃Gφ = φ ∧ (∃X(∃Gφ) ∨ ¬∃X⊤)
∃(φ1Uφ2) = φ2 ∨ (φ1 ∧ ∃X(∃(φ1Uφ2)))

∀Fφ = φ ∨ ∀X(∀Fφ)
∀Gφ = φ ∧ (∀X(∀Gφ) ∨ ¬∃X⊤)
∀(φ1Uφ2) = φ2 ∨ (φ1 ∧ ∀X(∀(φ1Uφ2)))

Then, the recursive part of this decomposition can be addressed using a fixed point, i.e.the recursion is repeated until a fixed point is reached.
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2.3 CTL model checking

Definition 2.10. Let τ : P(S) → P(S) a function, a fixed point of τ is any Z ∈ P(S)such that τ(Z) = Z.
Theorem 2.2 ([McM93]). If S is finite, and if τ is monotonic (S ⊆ S′ ⇒ τ(S) ⊆ τ(S′)),then τ has a least fixed point noted µ Z.τ(Z) (the smallest for the set inclusion) and a
greatest fixed point noted ν Z.τ(Z) (the largest for the set inclusion).
Moreover ∃n ∈ N such that µ Z.τ(Z) = τn(∅) and ν Z.τ(Z) = τn(S).

Starting from ∅, τ(∅), τ2(∅), τ3(∅), . . . forms an increasing sequence of sets, thus µ Z.τ(Z)can be built by adding states iteratively. Intuitively, “µ means finite looping” [BS07b] be-cause each state in µ Z.τ(Z) has been added at some step, depending on a finite chain ofiterations. Conversely, starting from the whole S , τ(S), τ2(S), τ3(S), . . . forms a decreas-ing sequence of sets, thus ν Z.τ(Z) can be built by removing states iteratively. Intuitively,“ν means infinite looping” because each state not in ν Z.τ(Z) has been removed at somestep, depending on a finite chain of iterations. Thus, for the states remaining in ν Z.τ(Z)we can iterate the removal condition indefinitely without removing them.
This intuition matches the definition of CTL temporal operators as fixed points, see Ta-ble 2.2 and proofs in Annex A.1. For example, ∃Fφ is defined as µ Z.φ ∨ ∃XZ , correspond-ing to the states that have a path along which we can finitely travel before reaching φ.Similarly, ∃Gφ is defined as ν Z.φ ∧ (∃XZ ∨ ¬∃X⊤), corresponding to the states that havea path along which we can infinitely travel while satisfying φ.

∃ ∀

X ∃Xφ = Pred(φ) ∀Xφ = ∃X⊤ ∧ ¬∃X¬φ

F ∃Fφ = µ Z.φ ∨ ∃XZ ∀Fφ = µ Z.φ ∨ ∀XZ

G ∃Gφ = ν Z.φ ∧ (∃XZ ∨ ¬∃X⊤) ∀Gφ = ν Z.φ ∧ (∀XZ ∨ ¬∃X⊤)

U ∃(φ1Uφ2) = µ Z.φ2 ∨ (φ1 ∧ ∃XZ) ∀(φ1Uφ2) = µ Z.φ2 ∨ (φ1 ∧ ∀XZ)

Table 2.2: Fixed point definitions of CTL operators.
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3 ecco: a modelling and analysis toolbox

A Summary

This chapter presents ecco, a Python toolbox for the design and the analysis of formalmodels of ecosystems that is used in the case studies throughout the thesis. Modelsin ecco result in STGs, whose states are based upon Boolean variables, and whosetransitions are derived from if-then rules. The model analysis in ecco is performedby interactively refining a partition of the state space, using either topological or CTLstate properties. Thus, a component graph is incrementally built during the analysis,highlighting some particular behaviours of the system defined by the chosen stateproperties.

ecco [PTG22a] is a Python [Pyt] library aimed at providing tools for the formal modellingand analysis of ecosystems. ecco consists of both: (1) a modelling language called Re-action Rules (RR) computing into STGs; and (2) an interactive analysis toolbox based oncomponent graphs. In this thesis, we use ecco in the case studies of Chapter 4 andChapter 6 to compute STGs and to analyse them. ecco has been developed and usedfor years to model and analyse varied ecosystems [GP19; Di +20; Gau+21; Mao+21;Cos+22; PTG22b]. ecco is available as a free software released under the GNU LGPL,hosted at http://github.com/fpom/ecco, and is intended to be usedwithin Jupyter note-books [Per18].
Each state of an RRmodel consists of a vector of Boolean variables representing the func-
tional presence or absence of the components of the system. The transitions are gener-ated from the execution of if-then rules (if the condition is fulfilled, then the consequencemay arise). A similar a methodology had been previously proposed [Ryk89; Sta90] tomodel expert knowledge about ecosystem dynamics. Starting from a set of initial states,the full STG is computed by the cascading applications of rules. This modelling approachis exemplified in Figure 3.1.
Instead of analysing the STG explicitly (by considering every state and transition individ-ually), ecco proposes to incrementally build a component graph representing critical fea-tures of the dynamics in a human-readable way. Starting from the simplest componentgraph (composed of a single component: C = {S}), the modeller incrementally and inter-actively refines the partition by splitting components with regard to user-chosen proper-ties. Throughout the various component splits, themodeller deepens their understandingof the systemdynamics, enabling them to formalise newquestions to split the componentgraph further. The global question resulting in the final component graph often could nothave been raisedwithout these incremental steps, because themodeller does not know inadvance how the system behaves. Moreover, this interactive and incremental workflowprovides a user-friendly interface to ecologists unfamiliar with formal analysis. Indeed,whereas the explicit STG can often be overwhelming for the modeller because of its size
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3 ecco: a modelling and analysis toolbox
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R2 R3 R4

R1
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Gr+ Sh- Tr+

System description

variables:
 Gr+: Grasses
 Sh-: Shrubs
 Tr-: Trees

rules:
 # R1 [High fire]
   Gr+ >> Sh-, Tr-
 # R2 [Low fire]
   Gr+ >> Sh-
 # R3 [Browsing]
   Sh+ >> Sh-
 # R4 [Grazing + Recruitment]
   Gr+ >> Sh+, Tr+

ComputationModelling

init

Figure 3.1: Toy example of RR modelling. Modelling of the STM of Figure 1.4a [LC18]. (left)into an RR model (middle: system description) from which an STG can be computed (right).

and the complexity of its dynamics, this workflow starts with the simplest representationof the STG and incrementally complexifies it at each splitting step. Thus the complex-ity of the component graph (the refinement of the partition) can be finely tuned by themodeller. The global question resulting from these incremental stepsmay bemuchmorecomplex than what the modeller would be able to formalise a priori.

3.1 A modelling language : Reaction Rules (RR)

The RRmodelling language used in ecco involves variables and rules [GP19; PTG22b]. Vari-ables are the biotic, abiotic and anthropic entities of the ecosystem, modelled as Booleanvariables (on/off, noted as +/-). Rules define how variable values may evolve by apply-ing an effect (assignment of variable values) depending on a guard (condition on variablevalues).

3.1.1 Syntax

This section describes how to write an RRmodel. Figure 3.2 shows a toy version of the Bo-
rana model that will be presented in Chapter 4. Variables are declared first by giving eachof them a name, an initial state (“+” for on, “-” for off, or “*” to allow either initial values),and a textual description. For instance, variable Gr is declared initially on and models thepresence of grasses in the ecosystem. A variable is considered functionally present if itspresence has an observable influence on the system, and functionally absent otherwise.Variables influencing the system without being influenced in turn are called controls, forexample climatic conditions or management policies. Controls remain constant along thedynamics, thus two states with distinct control values are out of reach from one another.The initial state of a control is often undefined, for example Fb*, in order tomodel distinctscenarios: both Fb+ and Fb- are considered as initial states of the system. Variable dec-larations are organised into arbitrarily chosen categories (except for “rules”, which is a
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3.1 A modelling language : Reaction Rules (RR)

reserved keyword). For instance, variable Gr is declared within category variables whilevariable Fb is declared within category controls. These categories are for informationpurposes only and have no consequence on the semantics.
variables:

Gr+: Grasses
Sh-: Shrubs
Tr-: Trees

controls:
Fb*: Fire ban

rules:
[high fire] Fb-, Gr+ >> Sh-, Tr- # R1
[low fire] Fb-, Gr+ >> Sh- # R2
[browsing] Sh+ >> Sh- # R3
[grazing + recruitment] Gr+ >> Sh+, Tr+ # R4

Figure 3.2: RR toy model of the Borana vegetation pathways. Rules are named for refer-ence using a comment at the end of lines.
Rules are listed after variable declarations and consist of two sides separated by “>>”: theleft-hand side is the guard, that is, the condition for the execution of the rule; the right-hand side is the effect, that is, the variables assignment that takes place upon executionof the rule.
For instance, rule R1 specifies that if fire is not banned (Fb-) and grasses are present (Gr+)then high firemay occur, resulting in the disappearance of both shrubs and trees (Sh- and
Tr-). Rules may be prefixed by arbitrary tags enclosed into square brackets, like “[high
fire]” in rule R1, that can be referred to during analysis. Comments, like “# R1”, play norole in the semantics.
� Limitation

RR could easily be extendedwithmultivalued variables, representing different thresh-olds having distinct effects. The possible values would be defined during variabledeclaration and used in the guards and effects of the rules. For the time being, eccois limited to Boolean variables in order to keep models as abstract as possible, andbecause in practice data is often lacking about thresholds’ existence or ordering.

3.1.2 Semantics

This section describes how an STG is computed from an RR model. The execution of anRR system is defined in terms of operational rules involving states, i.e. valuation of itsvariables, and transitions, that are executions (called firings) of the rules allowing to buildnew states from existing ones:
▶ The initial states are defined from the declaration of the variables, either they areinitially on/off, or both values are considered (like Fb* in Figure 3.2).
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3 ecco: a modelling and analysis toolbox

▶ A rule is enabled when its guard is satisfied by the state and its effect is not alreadyrealised.
▶ If no rule is enabled at a state, then this state is a dead-end.
▶ Firing a rule R enabled at a state s is made by applying the effect of R onto s, yieldinga new state s′ ̸= s, which is a transition noted by s

R−→ s′.
▶ The states obtained by firing rules from a given state are called its successors.

If we note a state by the set of variables it valuates to on, the model defined in Figure 3.2has two initial states: {Fb, Gr} and {Gr}. Rule R4 is enabled in both states becausewe have
Gr+ (condition) but not Sh+ nor Tr+ (effect). So it may fire and we have two transitions
{Fb, Gr} R4−→ {Fb, Gr, Sh, Tr} and {Gr} R4−→ {Gr, Sh, Tr}. In the initial states, rule R3 is notenabled because its guard is not satisfied. Rules R1 and R2 are not enabled from theinitial states either because in {Fb, Gr}, even if the guard is satisfied, the effect is alreadyrealised, and in {Gr} the guard is not satisfied.
An STG is generated from an RR model by repeatedly applying the firing rules from theinitial states and all newly obtained successor states. The STG obtained from our toymodel is depicted in Figure 3.3 and is computed as follows:

▶ We start from the initial states {Fb, Gr} and {Gr} (drawn at the top).
▶ The possible transitions are:• {Fb, Gr} R4−→ {Fb, Gr, Sh, Tr}

• {Gr} R4−→ {Gr, Sh, Tr}which yields two new states (drawn in the middle).
▶ Then, the possible transitions are:• {Fb, Gr, Sh, Tr} R3−→ {Fb, Gr, Tr}

• {Gr, Sh, Tr} R1−→ {Gr}
• {Gr, Sh, Tr} R2−→ {Gr, Tr}
• {Gr, Sh, Tr} R3−→ {Gr, Tr}which yields only two new states (drawn at the bottom), one of which being obtainedtwice, and the state {Gr} already existing.

▶ Then, the possible transitions are:• {Fb, Gr, Tr} R4−→ {Fb, Gr, Sh, Tr}
• {Gr, Tr} R1−→ {Gr}
• {Gr, Tr} R4−→ {Gr, Sh, Tr}which does not yield any new state, so the computation stops.

The STG resulting from this computation exhibits two disjoint subgraphs correspondingto the two initial values of control Fb.
Ô Technical remark

In this thesis, we give an operational semantics of RR models, i.e. describing how thecomputation of an RR model takes place step by step. The semantics of RR modelscan also be given in terms of Petri Nets, see [PTG22b].
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R1
Figure 3.3: STG computed from the RR toy model of Figure 3.2.

Moreover, instead of a list of variables and rules (Figure 3.2), an RR model can berepresented as a hypergraph (each variable is a node and each rule is a hyperedge)where the relationships between the variables are made visual, see [PTG22a].

3.2 An interactive analysis interface based on component graphs

The STG computed from an RRmodel is represented in ecco as a component graph. Start-ing from the simplest component graph consisting of a single node (i.e. the partition isrestricted to a single component S enclosing all the states), the user incrementally andinteractively refines the partition by splitting or merging components. In doing so, a largeSTG may be represented efficiently by a small component graph that can be seen as ahybrid object mixing symbolic components with explicit information about their relation-ship. The size of the component graph canbe finely tuned as every incremental splitting ormerging step only add or remove a limited number of components. As the user incremen-tally refines the partition step by step, they are able to fully understand the componentgraph even when the partition ends up being quite complex.

3.2.1 Splitting with respect to state properties

State properties, such as the value of the variables, can be taken as a splitting criterion.For example, a component can be split between the states where a chosen variable is onand the states where this variable is off. More generally, a component can be split withrespect to any Boolean formula over the variables (built with¬, ∧, ∨), separating the stateswhose variables satisfy the formula from these that do not.
Similarly, the set of initial states S0 may be split apart, as being an initial state is a stateproperty. Indeed, initial states were chosen by the modeller because they are an inter-esting starting point for the investigation of the system’s behaviour.
Finally, as the semantics of CTL formulas is defined upon states, satisfying a CTL formula
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3 ecco: a modelling and analysis toolbox

φ is a state property. It can be taken as a splitting criterion, just like in the symbolic per-spective of CTL:
φ = {s ∈ S | s |= φ} ⊆ S

Thus by intersecting a component withφ, we can split it between the states that satisfy theformula and the states that do not. Any other temporal logic whose semantics is definedupon states could be used as a splitting criterion in the same way (such as the extensionsof CTL that will be presented in Chapter 5).

3.2.2 Splitting with respect to topology

Considering an STG, we can partition its set of states S into its topological components:
▶ A strongly connected component (SCC) is a maximal set SCC ⊆ S of states such that

∀s ̸= s′ ∈ SCC : s −→+ s′. Intuitively, an SCC represents a set of states withinwhich the system may stay in the long term, which corresponds to a stability (or amultistability, as systems biology calls it) of the system.
▶ The convex hull of the SCCs is the smallest set H ⊆ S that contains all the SCCsand such that ∀s ̸= s′ ∈ H if ∃s′′ such that s −→+ s′′ and s′′ −→+ s′ then s′′ ∈ H .Intuitively H is the union of the SCCs plus the states between them. Our experienceshows that, at a first attempt, the SCC hullH makes a better component choice thanthe individual SCCs themselves, which are often too numerous to build a human-readable component graph.
▶ The dead-ends are the states with no successors {s ∈ S | s −→− }.
Ô Technical remark

Note that in contrast with the usual definition, we exclude trivial SCCs consisting ofonly one state, because they do not represent a long-term behaviour (contrarily tomulti-state SCC within which the system can remain trapped indefinitely long). More-over, splitting with respect to trivial SCCs could lead to a large component graph withmany singleton components, which conflicts with our readability goals.

A topological decomposition splits apart some topological components chosen amongSCCs, SCCs hull, and dead-ends. Afterwards, the remaining states can be split into the
basins leading to these chosen components. Given a set {C1, . . . , Ck} of components,two states s, s′ ̸∈ {C1, . . . , Ck} are in the same basin iff they allow to reach exactly thesame Cis [Bér+13]. For a cleaner presentation, the dead-end component may be mergedwith the basin leading solely to it. Such a decomposition can be applied to the full STG, orto any arbitrary component.

3.2.3 Implementation

ecco can be run or installed as a Dockero image [Boe15] to ease its use. The distributionincludes a script that can be the single installed element and that takes care of starting
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Docker with the appropriate options. For instance, with this script and Docker installed,starting ecco just requires running “ecco –mount=.” from the command line. This re-trieves online the Docker image for the latest version of ecco, starts it with access to thefiles in the current directory, and opens Jupyter in the default web browser. The Dockerimage also features JupyterHub that is a multi-user server for Jupyter notebooks [Per18].Thus, ecco is readily configured to support multiple users with separated accounts.
The library ecco mainly consists of (1) a Cython module that interfaces with ITS-toolsand libDDD [Thi15] to provide a symbolic STG class that is used by (2) a frontend thatprovides a component graph class to compute and split hybrid component graphs fromsymbolic STG objects. ecco gathers set of states into a compact data structure (based on
Data Decision Diagram, DDD [Cou+02]) from which the set of successor (or predecessor)states can be efficiently computed [Bry18]. The CTLmodel-checker integrated into ecco issymbolic as well and based on the fixed points of Table 2.2. It computes as a DDD the setof states of the STG satisfying a query formula, and a yes/no answer can be obtained byintersecting this set with the set of initial states. As sets of states are symbolically stored,the computation remains efficient even for hugemodels, and thus the analysis can remaininteractive.
A typical ecco session is organised as follows:

1. An RR model is loaded.
2. An STG object is built by translating the RR source file into a GAL source file [Thi15,Sec. 5]. The GAL is then loaded by ITS-tools to provide the symbolic transitionrelations of the STG object. From a set of initial states, the set of reachable states Sis computed using the symbolic transition relations.
3. The user builds component graphs from the STG by splitting or merging compo-nents.

Examples of ecco sessions are given in the next chapter.
Each component graph is an immutable object, and the components are numbered con-sistently across all component graphs. A component graph object also comeswith tabularrepresentations of its nodes and edges stored as Pandas dataframes [McK11]. The nodestable has the following columns displaying information about each component:

▶ node: the component number.
▶ size: the number of states in the component.
▶ on: the variables that are on for every state within the component.
▶ off: the variables that are off for every state within the component.
▶ topo: the topological properties of the component, has_init means that the compo-nent has initial states, is_init that it has all the initial states, etc.
▶ hasno, has, contains, isin, equals: the relationships between the component and thetemporal logic formulas that have been tested against it, as illustrated in Figure 3.4.

The edges table is simpler and straightforward. Both tables may be augmented by theuser with arbitrary columns. The columns’ content may be used to tune the graphicalpresentation of the component graph, e.g. the nodes’ colours or labels.
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Figure 3.4: The possible relationships between a componentC and the set of states that satisfya property φ [PTG22a].

A critical aspect of the nodes table is that its “relationship” columns (hasno to equals) areupdated each time a formula is checked against some components. This information isthen inherited by any new component graph obtained through further splits so that thenodes table keeps track of howa component graph has been obtained through successivesplits. Altogether, the shape of a component graph and its nodes and edges tables exhibitthe understanding built incrementally by the user.
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4 Case studies

A Summary

This chapter presents two case studies exemplifying the concepts and tools presentedin the previous chapters. First, we model the vegetation changes of the Borana Zonein Ethiopia, taking into account diverse management scenarios. Using CTL formulas,we build a component graph representing bush encroachment, and find manage-ment policies preventing it or making it reversible. Second, we model protists com-munity assembly based on the results of laboratory experiments. We build a compo-nent graph partitioning the states with respect to the stable communities they leadto using topological properties. Then we compare two versions of this componentgraph, fixing a specific species as initially present or absent, to investigate the impactof this species on the behaviour of the system.

The ecco notebooks encompassing the case studies presented in this chapter can befound in [Tho22]. Both the RR model file and the python analysis notebook are givenfor each case study, along with a static html preview of the notebook. Computing all theresults took only a few seconds on a modern laptop (Linux 5.4 Mint/Ubuntu, 32G RAM,CPU Intel Core i7–7820HQ 2.9GHz).

4.1 Borana vegetation model

The vegetation of Borana Zone in southern Ethiopia, see Figure 4.1, is undergoing bushencroachment, that is the proliferation of woody plants resulting in impenetrable thicketswhere grasses are absent. The lack of grasses threatens local people’s livelihood, whichpredominantly relies upon cattle herding. Bush encroachment results from a change inecosystemmanagement policies, such as the fire ban by the government from the 1970stowards the 2000s, or the increase in grazing intensity resulting from sedentarization.Borana Zone has historically and spatially experienced various management policies, forexample the crop cultivation ban until the 1950s’ or the grazing ban in some forest areasfor conservation purposes, resulting in different vegetation pathways. Changes in veg-etation pathways cannot always be reversed, for example traditional pastoralism usingfire can prevent bush encroachment but cannot reverse it, because both fire and graz-ing need a minimal herbaceous cover. Local people and policymakers are interested infinding management policies (historical ones or new recommendations) achieving par-ticular goals, for example preventing or reversing bush encroachment while maintaininglivelihood.
Liao et al. described the vegetation pathways of the Borana Zone in terms of states and
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Figure 4.1: Pictures of Borana Zone. Taken from Workshop in Borana, Ethiopia, 2012 (flickr)authored by Anton Eitzinger, Climate Change, Agriculture and Food Security under (CC BY-NC-SA2.0).

transitions. First, they drew historical vegetation pathways as State-and-Transition Mod-els, see Figure 4.2, using plant survey and cattle tracking [LC18]. Second, they definedstates as vegetation classes, and recorded the transitions among vegetation classes be-tween 2003 and 2013 using satellite imagery [LCD18]. Finally, they discussed existing andrecommended management policies to mitigate bush encroachment [Lia+20].
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Figure 4.2: State-and-transition models of the Borana vegetation pathways. Bush en-croachment is prevented in the “before livestock introduction” scenario and in the “with live-stock and fire” scenario, but always occurs in the “with livestock and fire ban” scenario. Takenfrom [LC18, Fig.5].

4.1.1 Modelling

“A big opportunity lies in applying the STM framework to forecasting future ecosys-
tems under novel conditions. [...] Exploring the future in an STM framework can
build a constructive ecology where novel ecosystems can be imagined, but in a
disciplined way, restricted by well founded knowledge about processes and transi-
tions.” [WW20]
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4.1 Borana vegetation model

Based on the literature [Lia16; LCD18; LC18; Lia+20], we built an RR description of the Bo-rana vegetation pathways [Tho+22], called “Borana model” in the following, fromwhich anSTG can be computed using ecco [PTG22a]. Whilemost STGs found in ecology are directlydrawn from observations, we want to show that a complex STG can be computed from acompact mathematical system description. This enables the construction of models notonly based on past observations but also forecasting novel behaviours, which is a currentchallenge in the STM framework [WW20]. While each STM of Figure 4.2 represents anobserved scenario, the Borana model embraces the same historical scenarios as well asother recommended management scenarios to foresee their cascading effects.
The complete Borana model consists of 15 variables, including seven controls, see Fig-ure 4.3), and 19 rules, see Figure 4.4. The variables represent plants, animals or man-agement scenarios, while the rules are built from the description of recorded transitionsavailable in the literature. For example, rule R2 embodies the following description: “High
intensity fire could change the landscape into a grass-dominated system.” [LC18] Justificationsof the modelling choices assumed by the Borana model are given in Annex A.2. Each val-uation of the variables describes a state of the Borana ecosystem, that can be classifiedinto vegetation classes [LCD18], see Table 4.1. Each valuation of the controls defines aspecific scenario for the management of the Borana Zone, i.e. a combination of altitudeand management policies, inspired by historical management and recommendations tolimit encroachment [Lia+20]. The control variables never change in consequence of therules, see Figure 4.4, hence they influence the system without being influenced by it.
variables:

Gr+: Grasses
Sh-: Shrubs
Tr-: Savanna trees
Sa-: Tree saplings
Cr-: Crops
Lv-: Livestock (cattle)
Gz-: Wild grazers
Bw-: Wild browsers

controls:
Alt*: Altitude
Fb*: Fire ban
Cb*: Crop ban
Wl*: Wildlife
Ps*: Pastoralism
Ig*: Intensive grazing
BLv*: Browsing livestock

Figure 4.3: Variables of the Borana model.

Vegetation Class State property
Closed Canopy Woodland Gr-, Sh-, Tr+, Sa*, Cr-
Dense Scrubland Gr-, Sh+, Tr+, Sa*, Cr-
Bushland Gr-, Sh+, Tr-, Sa*, Cr-
Open Canopy Woodland Gr+, Sh-, Tr+, Sa*, Cr-
Sparse Scrubland Gr+, Sh+, Tr*, Sa*, Cr-
Cultivated Land Gr-, Sh-, Tr*, Sa-, Cr+
Grassland Gr+, Sh-, Tr-, Sa-, Cr-
Sparsely Vegetated Land Gr-, Sh-, Tr-, Sa-, Cr-

Table 4.1: Borana vegetation classes [LCD18] as state properties. These vegetation classesform a partition of the states. Note that grasses are considered functionally present (Gr+) in the
Sparse Scrubland class although covering only between 10% and 30% of the surface [LCD18],indeed both fire and grazing occur in Sparse Scrubland [Lia+20].

The Borana model has 27 = 128 initial states, one for each scenario, i.e. one for each val-
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rules:
[Low fire] Fb-, Gr+ >> Sh-, Sa-, Lv-, Gz-, Bw- # R1
[High fire] Fb-, Gr+ >> Sh-, Tr-, Sa-, Lv-, Gz-, Bw- # R2
[Trees] Sa+ >> Tr+ # R3
[Grass] Sh-, Tr-, Sa-, Cr- >> Gr+ # R4
[CCW] Alt+, Fb+, Gr-, Sa+ >> Sh-, Tr+ # R5
[Bushland] Alt-, Sh+, Tr- >> Sa- # R6
[Grazers] Wl+, Gr+, Lv- >> Gz+ # R7
[Browsers] Wl+, Sh+, Lv- >> Bw+ # R8
[Browsers] Wl+, Sa+, Lv- >> Bw+ # R9
[Livestock] Ps+, Gr+ >> Lv+, Gz-, Bw- # R10
[Livestock] Ps+, BLv+, Sh+ >> Lv+, Gz-, Bw- # R11
[Livestock] Ps+, BLv+, Sa+ >> Lv+, Gz-, Bw- # R12
[Grazing] Gr+, Lv+ >> Sh+, Sa+ # R13
[Grazing] Gr+, Gz+ >> Sh+, Sa+ # R14
[Intens. graz.] Ig+, Lv+ >> Gr-, Lv- # R15
[Browsing] Bw+ >> Gr+, Sh-, Sa-, Bw- # R16
[Browsing] BLv+, Lv+ >> Gr+, Sh-, Sa-, Bw- # R17
[Crops] Alt+, Cb-, Tr+ >> Gr-, Sh-, Sa-, Cr+, Lv-, Gz-, Bw- # R18
[Crops] Cr+ >> Gr+, Cr- # R19

Figure 4.4: Ruleset of the Borana model.

uation of the 7 control variables. All initial states correspond to the grassland vegetationclass [LC18]: only grasses are present, see Figure 4.3 and Table 4.1. A subgraph is gener-ated from each initial state by the cascading applications of the rules. These subgraphsare disconnected (no rule changes the controls) and form together the full STG of 1185states computed from the Borana model. The largest scenario subgraph has 26 states.
The subgraph corresponding to the scenario before livestock introduction at high altitudeis given in Figure 4.5 as an example. This subgraph can be partitioned with respect tovegetation classes (Table 4.1), resulting in a component graph that will be compared inthe following with the corresponding STM.
Ô Technical remark

For clarity, we depicted the states s ∈ S of an STG G as ellipses, while the components
c ∈ C of a component graph G/C are depicted as rectangles with rounded corners.

The three available STMs [LC18] drawn from observations, see Figure 4.2, were comparedto the component graphs computed from the Borana model for the corresponding sce-narios (each component graph encompasses two subgraphs, one for each altitude level).The first STM describes the vegetation pathways under wildlife herbivory and fire. It isalmost identical to its corresponding component graph, see Figure 4.6. Their only differ-ence is that in the component graph, the transition from Sparse Scrubland to Grasslandis additionally labelled by Low intensity fire and Browsing, which is correct becausethese events may happen in Sparse Scrubland before the establishment of trees.
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Figure 4.6: Component graph vs. STM forwildlife herbivory andfire. The component graphwas computed using the following initial control values: Alt*, Fb-, Cb+, Wl+, Ps-, Ig-, BLv-.

The second STM describes the vegetation pathways under extensive grazing and fire. Itis also almost identical to its corresponding component graph, except for the additionallabels mentioned above, see Figure 4.7.
The third STM describes the vegetation pathways under intensive grazing and fire ban. Itpresents more differences from its corresponding component graph, see Figure 4.8. Yetthe additional vegetation classes andmost of the additional transitions in the componentgraph were empirically observed [LCD18], such as the transition from Dense Scrublandto Closed Canopy Woodland. In particular Sparse Scrubland is described as a transi-
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tory state between Grassland and Dense Scrubland [LCD18], and acts as such in thecomponent graph. The additional unobserved transitions in the component graph re-volve around the transitory nature of Sparse Scrubland and Dense Scrubland. This lackof observation may be caused by the ten years of delay between the observations, thatmay be a too long time period to notice such brief changes. Moreover, the componentgraph showcases the main features of the STM: encroachment is not reversible, and Open
Canopy Woodland is not reachable from Grassland.
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4.1.2 Results

In this section, we progressively build a component graph aiming to provide answers tothe following questions:
▶ Which management policies prevent bush encroachment?
▶ Is bush encroachment reversible without changing management policy?

Starting from the whole state space S of the Borana model, we incrementally refine apartition answering both questions. The first step is to split S between the states thatare encroached, and these that are not. To do so, we define bush encroachment asthe state property = (Sh+ ∨ Tr+) ∧ Gr- ∧ Cr-, which corresponds to the vegetationclasses with shrubs or trees but without grass nor crop (Closed Canopy Woodland, Dense
Scrubland, and Bushland, see Table 4.1). Using this state property, we can partition S be-tween the states that satisfy it (component #2) and these that do not (component #1), seeFigure 4.9.
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Figure 4.9: First splitting step.

The second step is to split the components depending on whether bush encroachmentcan happen or not. To do so, we define the CTL formula ∃F( ), a reachability patternstating that an encroached state is reachable. Using this formula, we can partition com-ponent #1 of Figure 4.9 between the states that satisfy the formula (component #3) andthese that do not (component #4), see Figure 4.10.
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Figure 4.10: Second splitting step.
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Ô Technical remark

Each component is numbered in the bottom right corner. When several componentsof distinct component graphs encompass the exact same set of states, they are allgiven the same number and the same colour across all component graphs. Thus, ifa split does not divide a component, then it keeps the same number and the samecolour before and after the split. For example the two components numbered #2 inFigure 4.9 and in Figure 4.10 embody exactly the same set of states.

Some states prevent bush encroachment, that is the states of component #4 labelled
¬∃F( ). Hence why component #4 is disconnected from the rest of the componentgraph. Bush encroachment is reachable in the other states, but may be reversible as indi-cated by the transition from component #2 to component #3 ∃F( ). The third step ofthe partition refinement is to split the components #2 and #3 where bush encroachmentcan happen depending on whether bush encroachment can be reversed or not. To do so,
we define the CTL formula ∃F

(
∧ ∃F(¬ )

), a sequence pattern stating that bush en-
croachment can be reversed. Using this formula, we can partition components #2 and #3of Figure 4.10 between the states that satisfy the formula (components #5 and #7) andthese that do not (components #6 and #8), see Figure 4.11. Although components #7and #8 differ by the formulas they satisfy, we labelled them equally by to ease theinterpretation of the component graph.
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Figure 4.11: Third splitting step.

Some states of the STG can lead to an irreversible bush encroachment, that is the statesof the component #6 ¬∃F
(

∧ ∃F(¬ )
). Bush encroachment is at least sometimes

reversible for others, that is the states of the component #5 ∃F
(

∧ ∃F(¬ )
). Note

that the encroached states are split as well, as somemay be reversed (component #7)and others may not (component #8). The fourth and final step is to split component #5,where bush encroachment is sometimes reversible, between the states where bush en-croachment is always reversible, and the states where bush encroachment is sometimesirreversible. To do so we define the CTL formula ∀G( ⇒ ∃F(¬ )), an invariance pat-tern stating that bush encroachment is always reversible. Using this formula, we canpartition components #5 and #7 of Figure 4.11 between the states that satisfy the for-mula (component #9 and #11) and these that do not (components #10 and #12), seeFigure 4.12.
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Figure 4.13: Final component graph with control values.

The component graph of Figure 4.12 answers both questions. Indeed, the managementpolicies that prevent bush encroachment are these of component #4 ¬∃F( ). Bushencroachment is always reversible under the management policies of component #9
∀G( ⇒ ∃F(¬ )), sometime reversible under the management policies of compo-
nent #10 ∃F

(
∧ ∃F(¬ )

), and never reversible under the management policies of
component #6 ¬∃F

(
∧ ∃F(¬ )

). To get the specific management policies of a com-
ponent, we extract exclusively the control variables from its decision diagram to get aBoolean formula that we transform into canonical form using SymPy [Meu+17]. A versionof the component graph whose components are labelled with their control valuations isgiven in Figure 4.13.
We give an ecological interpretation of this result alongside other results exhibiting howthe model-checking methodology could help better understand the Borana vegetationpathways and choose adequate management policies. We designed six CTL queries cov-ering all five pattern types introduced in Table 2.1 and including the formulas used topartition the component graph. These queries are built upon the following state proper-ties:

▶ Bush encroachment as defined previously:
Encroachment = (Sh+ ∨ Tr+) ∧ Gr- ∧ Cr-

▶ Closed canopy woodland is a vegetation class, see Table 4.1:
ClosedCanopyWoodland = Gr- ∧ Sh- ∧ Tr+ ∧ Cr-
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▶ Subsistence production [Wha69] corresponds to the states with crops or livestock:
Subsistence = Cr+ ∨ Lv+

We use model-checking to select the control valuations, i.e. scenarios, satisfying eachquery. For each query and scenario, the model-checker tests whether the initial stateof the scenario exhibits the temporal behaviour specified by the query or not, return-ing a yes/no output. We selected the valuations of the controls for which the associatedmodel-checking output is yes. The omitted controls have no impact on themodel-checkingoutput. Computing all the model-checking results took only a few seconds on a modernlaptop (Linux 5.4 Mint/Ubuntu, 32G RAM, CPU Intel Core i7-7820HQ 2.9GHz).
The first two queries select the scenarios enabling bush encroachment. The answer to thefirst query shows that intensive grazing is the necessary condition for encroachment, ascanbe seenon the label of component #4¬∃F( ) in Figure 4.13. Thismay seemcounter-intuitive because fire seems to prevent bush encroachment in Figure 4.2, yet bush en-croachment has continued in Borana despite the lift of the fire ban in the 2000s [LCD18;Lia+20]. The answer to the second query shows that at least one of the following controlsis additionally needed to reach closed canopy woodland: Alt+, Fb-, Wl+, or BLv+. Eachof these controls enables one of the rules that removes shrubs without changing grassesnor trees (R5, R1, R16, or R17 respectively, see Figure 4.4). Thus, when combined with in-tensive grazing (R15), grasses and shrubs are removed without removing trees, resultingin closed canopy woodland.
The third and fourth queries select the scenarios making bush encroachment reversible.The third query selects the scenarios where encroachment is always reversible (from anyencroached state, there is a pathway toward an unencroached state), i.e. component #9
∀G( ⇒ ∃F(¬ )) of the component graph. The answer to the third query showsthat crop cultivation at high altitude (Alt+ ∧ Cb- corresponding to R18, R19) is the onlymanagement policy making bush encroachment always reversible. Although this phe-nomenon has been observed [LCD18], it is thought to be unfeasible at a large scale inthe long term [Lia+20] due to the cost of the required inputs and the tensions betweenherders and farmers. The fourth query selects the scenarios where at least some en-croachment pathways are reversible (from some encroached states, there is a pathway
toward anunencroached state), i.e. component #5 ∃F

(
∧ ∃F(¬ )

)of the component
graph of Figure 4.11. The answer to the fourth query shows that in addition to crop culti-vation at high altitude (Alt+ ∧ Cb-), two management policies make some encroachmentpathways reversible: the presence of wildlife Wl+ or browsing livestock BLv+. Indeed, pas-toralists in Borana have increased their holding of browsing livestock (goats and camels)to mitigate bush encroachment [LC18; Lia+20].
The fifth and sixth queries select the scenarios enabling subsistence. The fifth query se-lects the scenarios resulting in chronic subsistence (food is always reachable, thus can bereached regularly). The answer to the fifth query shows that three management policiesresult in chronic subsistence: (1) extensive pastoralism (Ps+ ∧ Ig-), (2) pastoralism withcrop cultivation at high altitude (Alt+ ∧ Cb- ∧ Ps+), and (3) crop cultivation with wildlife athigh altitude (Alt+∧Cb-∧Wl+). The firstmanagement policy corresponds to the traditionalmanagement policy in the Borana zone (nomadic pastoralism [Lia+20]), while the secondpolicy corresponds to one of the current management policies (mixed crop-livestock sys-tems [Lia+20]), the third management policy correspond to crop cultivation with fallow
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1) Reachability pattern:
∃F EncroachmentAn encroached state can be reached.
§ Ps+ ∧ Ig+
Encroachment can only happen under the scenarios encompassing pastoralism Ps+ with inten-
sive grazing Ig+.

2) Reachability pattern:
∃F ClosedCanopyWoodlandClosed Canopy Woodland can be reached.
§ Ps+ ∧ Ig+ ∧ (Alt+ ∨ Fb- ∨ Wl+ ∨ BLv+)
Closed Canopy Woodland can only happen under pastoralism Ps+ with intensive grazing Ig+
and with at least one of the following factors: high altitude Alt+, no fire ban Fb-, presence of
wildlife Wl+, browsing livestock BLv+.

3) Reachability + Consequence pattern:
(∃F Encroachment) ∧ (∀G(Encroachment ⇒ ∃F ¬Encroachment))An encroached state is reachable, and whenever such state is reached, it is possibly fol-lowed by an unencroached state.
§ Ps+ ∧ Ig+ ∧ Alt+ ∧ Cb-
If an encroached state is reachable (see output Ps+ ∧ Ig+ from query 1) and if the system is at
high altitude Alt+ with crops allowed Cb-, then whenever an encroached state is reached it is
possibly followed by an unencroached state, i.e. bush encroachment is always reversible.

4) Sequence pattern:
∃F (Encroachment ∧ ∃F ¬Encroachment)An unencroached state is reachable and is possibly preceded at some time by an en-croached state, i.e. at least some encroachment pathways are reversible.
§ Ps+ ∧ Ig+ ∧ (BLv+ ∨ Wl+ ∨ (Alt+ ∧ Cb-))
If an encroached state is reachable (Ps+ ∧ Ig+, see query 1), there are three set of scenarios
where at least some encroachment pathways are reversible: (1) with browsing livestock BLv+,
(2) with wildlife Wl+, (3) at high altitude Alt+ with crops allowed Cb-.

5) Invariance pattern:
∀G(∃F Subsistence)Subsistence states necessarily remain forever reachable.
§ (Ps+ ∧ Ig-) ∨ (Alt+ ∧ Cb- ∧ Ps+) ∨ (Alt+ ∧ Cb- ∧ Wl+)
There are three sets of scenarios where subsistence remains reachable whatever happens : (1)
under pastoralism Ps+ without intensive grazing Ig-, (2) at high altitude Alt+ with crops al-
lowed Cb- and with pastoralism Ps+ , or (3) at high altitude Alt+ with crops allowed Cb- and
with wildlife Wl+.

6) Reachability & Invariance pattern:
∃F(∃G Subsistence)It is possible to reach a state from which the subsistence can persist forever.
§ (Ps+ ∧ BLv+) ∨ (Alt- ∧ Ps+) ∨ (Fb+ ∧ Cb+ ∧ Ps+ ∧ Ig-)
There are three sets of scenarios where it is possible to reach a state from which subsistence can
persist forever: (1) under pastoralism Ps+ with browsing livestock BLv+, (2) at low altitude Alt-
with pastoralism Ps+, or (3) with fire banned Fb+ as well as crops Cb+ and with pastoralism Ps+
but without intensive grazing Ig-.

Table 4.2: Scenario selection bymodel-checking. For each of the six queries we show: (1) itspattern type, (2) its CTL formula, (3) its translation into English, (4)§ the scenario selection (i.e.control valuations) for which the associated model-checking output of the query is yes, (5) anEnglish interpretation of this scenario selection.
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periods (which is thought to be unfeasible in the long term in drylands [Lia+20]). Thesixth query selects the scenarios enabling continuous subsistence (there is a maximalpath along which food is constantly available). The answer to the sixth query shows thatthree management policies enable continuous subsistence: (1) pastoralism with brows-ing livestock (Ps+ ∧ BLv+), (2) pastoralism at low altitude (Alt- ∧ Ps+), and (3) extensivepastoralism without crop nor fire (Fb+∧Cb+∧Ps+∧Ig-). This last result should be consid-ered with caution as continuous subsistence may be restricted to a single maximal path,yet uncontrolled events may prevent humans to fully enforce this desired trajectory in areal system.

4.2 Protists assembly model

Protists aremicroscopic unicellular eukaryotes, see Figure 4.14, that are neither plant, ani-mal nor fungi. From a pool of six protists species: Amoeba proteus, Blepharisma japonicum,
Colpidium striatum, Euplotes patella, Paramecium caudatum and Tetrahymena pyriformis(namedhereA, B, C, E, P, T ), Law,Warren andWeatherby studied in laboratory how theycan assemble to form amicrocosm. In a first experiment [WWL98], they recorded the fateof each of the 26 possible combination of species (i.e. community), with six replicates foreach combination. In a second experiment [WLW03], they recorded how each stable com-munity, found in the first experiment, responds to an invasionby another species from thepool. Data were recorded from monthly censuses of the replicated communities, docu-menting the changes in species composition as communitiesmoved along their pathwaystowards the final persistent communities. This involved systematically scanning the en-tire microcosm with a microscope and recording the presence/absence of each species.These time series contain useful information about the order in which species were lost,including random variation across replicates. To our knowledge, these experiments areunique in being the only replicated analysis which systematically explores the fate of allpossible communities that can be built from a pool of species.

(a) Amoeba proteus (b) Euplotes patella (c) Tetrahymena pyriformis

Figure 4.14: Pictures of protist species. (a) taken fromWikipedia authored by SmallRex under(CC BY-SA 4.0). (b) taken from Wikipedia authored by Picturepest under (CC BY 2.0). (c) takenfrom Wikipedia authored by Picturepest under (CC BY 2.0).
Experimental communities were constructed from combinations of the six species of pro-tists from the pool plus a mixed bacterial flora feeding them. For each combination, ap-proximately 100 individuals of each species were introduced into the microcosm, along
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4.2 Protists assembly model

with a mixture of bacteria. Protist species were chosen to exhibit a range of sizes andtrophic strategies, and on the basis that they were all able to persist when grown underthe same environmental and nutrient medium conditions in the laboratory. The inter-action network of these species (trophic and competition relations), see Figure 4.15, wasinferred by [Her+22] from the trophic network of [WWL98, Fig.1] and from the outcomesof the single species and two-species replicates of the first experiment [WWL98].
A

B E

P C T

Figure 4.15: Protists interaction network. Solid blue arrows are predations (dashed if thepredator cannot sustain by feeding only on this prey, and thus need other prey to survive). Dot-ted red arrows are competitions. Species in a striped borderless circle are unable to survivealone by feeding only on bacteria. Trophic links, i.e. predations, were inferred from the out-comeof the two-species replicates and from the trophic network of [WWL98, Fig.1]. Trophic linkare dashed if the predator disappeared before its prey in some replicates. Competition linkswere inferred from the remaining outcomes of the two-species replicates once the predationlinks had been inferred. Species unable to survive alone were inferred from the outcome ofsingle species replicates. Taken from [Her+22].

4.2.1 Modelling

“Can the behaviour of the system be characterized by a simple set of rules? To what
extent does knowledge of the results from the pairwise species combinations allow
prediction of the outcomes of the more species-rich sets?” [WWL98]

Based on the protists pairwise interaction network, see Figure 4.15, we built an RR descrip-tion of the protists’ community pathways recorded in the first experiment [Her+22]. Theprotists model consists of 6 variables (one for each protist species) and 15 rules, see Fig-ure 4.16. The protists model’s ruleset was derived from the protists interaction networkupon the following scheme:
▶ Predation: if P predates N (solid blue arrow from P to N ), then we add the rule:

[predation]P+>>N-.
▶ Predation: if P predates secondarily Ns (dashed blue arrow from P to Ns) and if

P predates N1, . . . , Nk (solid blue arrows from P to N1, . . . , Nk), then we add therule: [predation]P+, N1-, . . . , Nk->>Ns-.
▶ Starvation: if P predates N1, . . . , Nk (solid blue arrows from P to N1, . . . , Nk) and if

P cannot survive by feeding on bacteria (P in a striped borderless circle), then weadd the rule: [starvation]N1-, . . . , Nk->>P-.
▶ Starvation: if P does not predate any prey (no solid blue arrow from P ) and if P
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cannot survive by feeding on bacteria (P in a striped borderless circle), then we addthe rule: [starvation]P+>>P-.
▶ Competition: if C1 competes with C2 (dotted red arrow from C1 to C2), then we addthe rule: [competition]C1+>>C2-.

Each state of the protists model represents a community (i.e. a combination of species).Like in the first experiment [WWL98], every possible community is taken as an initial state,hence the * initial value of the variables. In the first experiment, species can only goextinct, the rules therefore define the conditions in which they can disappear.
variables:

A*: Amoeba proteus
B*: Blepharisma japonicum
C*: Colpidium striatum
E*: Euplotes patella
P*: Paramecium caudatum
T*: Tetrahymena pyriformis

rules:
[predation] A+ >> P- # R1
[predation] B+ >> C- # R2
[predation] B+ >> T- # R3
[predation] A+, P- >> B- # R4
[predation] A+, P- >> C- # R5
[predation] A+, P- >> T- # R6
[predation] A+, P- >> E- # R7
[predation] E+ >> T- # R8
[starvation] P- >> A- # R9
[starvation] E+ >> E- # R10
[starvation] C+ >> C- # R11
[competition] P+ >> C- # R12
[competition] P+ >> T- # R13
[competition] C+ >> T- # R14
[competition] T+ >> C- # R15

Figure 4.16: RR protists model.

The STG computed from the protists model using ecco [PTG22a], see Figure 4.17, has26 = 64 states and 135 transitions, 71 of them (53%) were recorded in the first experi-ment [WWL98]. The protistsmodel predicts all experimentally recorded transitions, whichis a necessary condition for validating the model. Note that this STG consists of threedisconnected subgraphs, meaning that the system cannot shift from one subgraph toanother without species invasion.
Two facts may explain why some of the predicted transitions were never recorded in thefirst experiment. First, transitions with very low probabilities may not be observed due tothe finite number of replicates. In particular, as the states withmany initial species alwayscollapse towards states with fewer species; transitions concerning the latter are there-fore observed more often. For example, the state {A, B} was recorded 77 times alongthe community pathways of the first experiment. Starting from this state, the transition
{A, B} −→ {B} was observed 73 times and the transition {A, B} −→ {A} was observedonly 3 times. Such an infrequent transition would probably not have been recorded if
{A, B} had been recorded only 6 times like {A, B, C, E, P, T} for example. Secondly,some transitions were too brief to be recorded in the experiment. For example, all repli-cates starting from {A, B, C, E, P, T} had only 4 species left at the first census. The tran-sitions to the 5-species states were therefore not recorded even if they must have hap-pened (assuming that two species do not disappear exactly at the same time).
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Figure 4.17: Protists model STG. The states represent the 64 protist communities, labelledby the initials of the present species between brackets. Black transitions were recorded duringthe first experiment [WWL98], while grey transitions were predicted by themodel but were notobserved in the first experiment. Adapted from [Her+22].
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The STG of the protists model, see Figure 4.17, has 5 dead-ends denoting stable commu-nities: {}, {B}, {P}, {T} and {B, P}. The first experiment [WWL98] found 3 additionalstable communities: {C}, {C, P} and {P, T}. Indeed {C} −→− was often experimentallyobserved, yet in some other replicates {C} −→ {}. Similarly in some replicates {C, P} −→−or {P, T} −→− , yet in others {C, P} −→ {P} or {P, T} −→ {P} was observed. Thus {C},
{C, P} and {P, T} should not be considered as dead-ends in the protists model STG, yetwe would like to be able to represent the fact that the system can stop in these states forsome maximal paths. We will discuss in Chapter 7 how we could achieve this goal.
A model of the second experiment need to have rules representing invasions:
[invasion]X->>X+. Seeing the STG of the protists model (Figure 4.17) as a kind of“assembly pinball” in which the ball/community is put in an initial state before rollingdown toward one of the bottom states, invasion rules are the flippers making the ballbounce up toward the top of the STG. But the use of such “flippers” need to be restricted,otherwise they would create paths from any state to many upper states, blurring the as-sembly dynamics. We will see in the next chapter how to properly manage such “flippers”such that the occurrences of invasion events are controlled along the dynamics.

4.2.2 Results

In this section, we progressively build a component graph aiming to provide an answer totwo questions proposed by [WWL98]:
▶ From how many initial states are each of the stable communities obtained?
▶ What are the impacts of individual species on community collapse?

These two questions have already been answered experimentally in [WWL98]. Our goalis to show how formal modelling and analysis are fitted to answer the questions raised bycommunity assembly graphs, and could complement experimental studies with a mod-elling framework able to forecast the results of a particular community assembly from aninteraction network.
Starting from the whole state space S of the protists model, we incrementally refine apartition answering the first question. The first step is to split the stable communitiesapart, i.e. the dead-ends s −→− . To do so, we use the topological property “dead-end”, orequivalently the CTL formula ¬∃X⊤. Using this property, we can partition S between thestates that are dead-ends (component #2) and these that are not (component #1), seeFigure 4.18. We see that the system canmove from component #1 to component #2 (andas expected, not the other way around because the system cannot escape a dead-end).
We are interested in each stable community individually. To highlight the disparities be-tween the stable communities, we explicit component #2 dead-end, i.e. we split its statesindividually, see Figure 4.19. The resulting component graph has 5 new components cor-responding to the 5 dead-ends of the system: {}, {B}, {P}, {T} and {B, P}.
The final step is to partition the states of component #1 ¬dead-end with respect to thestable communities they lead to. To do so, we split component #1 ¬dead-end into thetopological basins of the 5 dead-ends: {}, {B}, {P}, {T} and {B, P}, and merge each
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dead-end

2

¬ dead-end

1

Figure 4.18: First splitting step.

¬ dead-end

1

{} {B} {P} {T} {B,P}

Figure 4.19: Second splitting step.

dead-end with the basin leading solely to it. This procedure results in the final componentgraph of the protists model [Her+22], see Figure 4.20.

T
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A, B
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A, B, T

3

7

P

10

B

8

B, P

9

Figure 4.20: Final component graph. Each component is labelled with the species present inevery state of the component. Adapted from [Her+22].
This final component graph answers the first question: “From how many initial states are
each of the stable communities obtained?”, because the number of initial states leading toeach stable community is exactly the size of the components leading to the correspondingdead-ends. Indeed, each dead-end is merged with the states leading solely to it, so forexample the states leading solely to the dead-end {B} are the states of component #8labelled B. When a state can lead to distinct dead-ends, then it is merged with the otherstates leading exactly to the same dead-ends, for example the states leading exactly tothe dead-ends {} and {B} are the states of component #5 labelled A, B. While the statesleading toward dead-end {P} or the states leading toward dead-end {B, P} cannot leadto any other dead-end, i.e. the end point of their dynamics is deterministic, the states ofcomponent #3 labelled A, B, T can lead to either dead-ends {}, {B} or {T}. A version ofthe protists model STG where each state is coloured with the colour of the componentit belongs to in the component graph is given in Figure 4.22. The component graph of
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Figure 4.20 can be seen as a condensed version of this STG where the information aboutthe dead-ends reachability has been summed up.
In order to answer the second question: “What are the impacts of individual species on
community collapse?”, we can compare two component graphs built following the samesteps as earlier but from two versions of the protists model where a focused species iseither always present or always absent initially. For example, as A is the top predator, itshould strongly influence the system’s dynamics. Thus focusing on A we can build twoversions of the protists model where A is either always present initially A+ or always ab-sent initially A-, and build two component graphs following the same step as earlier, seeFigure 4.21. WhenA is always present initially, see Figure 4.21a, the branching dynamics isrediscovered where the reached stable community is not determined initially, i.e. in com-ponents #3, #4 and #5. Conversely, whenA is always absent initially, see Figure 4.21b, thereached stable community is mainly determined initially, except in component #11. Thus
A seems to influence the community collapse by adding non-determinism to the reachedstable community.
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(a) A always present initially
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(b) A always absent initially
Figure 4.21: Component graphs for which A is either initially present or absent. Eachcomponent is labelled with the species present in every state of the component. Recall thatwhen several components of distinct component graphs encompass the exact same set ofstates, they are all given the same number and the same colour across all component graphs.
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Figure 4.22: Protists model STG colored by component. Adapted from [Her+22].
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A Summary

This chapter presents the Action-Restricted Computation Tree Logic (ARCTL), an ex-tension of CTL allowing to restrict the maximal paths to a subset of enabled actionsalong each quantifier of a formula, i.e. ∃ or ∀. We then extend ARCTL with fairness re-strictions on quantifiers, i.e. “realism” constraints upon order and occurrence rate ofevents along a path, resulting in Fair ARCTL (FARCTL). Consequently, FARCTL quanti-fiers allow to restrict maximal paths with respect to both enabled actions and fairnessconstraints. Such double restrictions can be used to model ecosystem managementscenarios for example. FARCTL can thus be used to to shift between them in a con-trolled manner at the level of its quantifiers. Finally, we provide a symbolic model-checking algorithm for FARCTL that is implemented inside ecco.

In the previous chapter, we saw that in ecological applications, we often want to restrictthe set of maximal paths to represent particular scenarios (for example, ecosystemman-agement policies or invasion events). Scenarios consist mainly of: (1) a list of enabledevents, and (2) a list of disabled events; for example intensive grazing with fire banned.One way to achieve this is to build disconnected STGs with distinct sets of maximal paths(as we did in the Borana model in Chapter 4). The drawbacks of this method are that itincreases the size of the state space S (because large portions of the disconnected STGsare just replicated between them), andmore importantly that the system cannot shift be-tween scenarios along the dynamics. Another way is to create a single STG encompassingall the scenarios, that is then restricted to particular scenarios by disabling some actions.This method does not duplicate the state space, andmore importantly the restriction canchange along the dynamics as the system shifts between scenarios.
Definition 5.1 (G|α, Π|α). Given an action formula α : 2PA 7→ B and an STG G =
(S, S0, A, −→, VS , VA), the α-restriction of G is the STG G|α = (S, S0, A, −→ |α, VS , VA),where:

−→ |α
def= {(s, a, s′) ∈−→ | a |= α}

The set of maximal α-restricted paths of G is noted Π|α(G) = Π(G|α).
Example 5.1. Examples of α-restrictions are given in Figure 5.1. Note that Figure 5.1bis exactly the STM before livestock introduction (Figure 1.4a), and Figure 5.1c is ex-actly the STM with livestock and fire ban (Figure 1.4b). Figure 5.1b and Figure 5.1c are
α-restrictions of Figure 5.1a, thus there is no replication and they all share the samestates. By changing the α-restriction along the dynamics, we can for example test if apath travelled in one α-restriction can be reversed in another α′-restriction. For exam-ple, we can test if the encroachment reached with intensive grazing can be reversedby enabling fire.
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(a) G

Sparse scrubland

Open canopy woodland
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(b) G|(¬ )∧( ∨ )

Sparse scrubland

Open canopy woodland
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Closed canopy woodland

init

(c) G| ∨

Figure 5.1: Examples of α-restrictions. Adapted from [LC18].

Ecological scenarios sometimes also encompass the concept of fairness [BK08]. For exam-ple, we may want to enforce that a path cannot infinitely carry on without fire happening.In this case, we say that the path is fair with respect to fire, meaning that fire happensinfinitely often if the path if infinite. Thus, we may also want to restrict the set of maximalpaths to fair paths.
In this chapter, we first present the extension of CTL using the concept of α-restriction:Action-Restricted CTL (ARCTL) [PR07], and then we extend it with the concept of fairness:Fair ARCTL (FARCTL). In FARCTL, a restriction upon actions and fairness is added to eachquantifier (∃, ∀), enabling the system to shift between scenarios along the formula. Lastly,we provide a symbolic algorithm to compute the set of states satisfying an FARCTL for-mula, that is implemented inside ecco. FARCTL model-checking will be applied in Chap-ter 6 to the case studies of Chapter 4.

5.1 ARCTL

Action-Restricted Computation Tree Logic (ARCTL) [PR07] is the extension of CTL dealing with
α-restrictions. The quantifiers of CTL (∃, ∀) are extended with a restriction upon actions,meaning that they quantify over the maximal paths of G|α and not of G. Thus the α-restriction can change along the formula, corresponding to shifts between scenarios dur-
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ing the dynamics. ARCTL has been used in systems biology, for example to assess lym-phocyte differentiation pathways [Abo+15], but to our knowledge, it has never been usedfor ecological applications.

5.1.1 Syntax and semantics

The syntax of ARCTL extends the syntax of CTLwith action formulas, i.e. Boolean formulasover action properties, and action restrictions on quantifiers.
Definition 5.2 (ARCTL syntax). The syntax of ARCTL is given by the following grammarover state, action and path formulas:

▶ state formulas (ARCTLS ): φ
def= ⊤S | pS ∈ PS | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃αγ | ∀αγ

▶ action formulas (ARCTLA): α
def= ⊤A | pA ∈ PA | ¬α | α1 ∧ α2 | α1 ∨ α2

▶ path formulas (ARCTLΠ): γ
def= Xφ | φ1Uφ2 | Fφ | Gφ

An ARCTL formula is a state formula φ ∈ ARCTLS .

The semantics of ARCTL extends the semantics of CTL by quantifying over maximal α-restricted paths instead of just maximal paths.
Definition 5.3 (ARCTL semantics). Let s ∈ S a state:

▶ s |= ⊤S

▶ s |= pS iff pS ∈ VS(s)
▶ s |= ¬φ iff s ̸|= φ

▶ s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

▶ s |= φ1 ∨ φ2 iff s |= φ1 or s |= φ2

▶ s |= ∃αγ iff ∃π ∈ Π|α(s) such that π |= γ

▶ s |= ∀αγ iff ∀π ∈ Π|α(s) we have π |= γ

Let a ∈ A an action:
▶ a |= ⊤
▶ a |= pA iff pA ∈ VA(a)
▶ a |= ¬α iff a ̸|= α

▶ a |= α1 ∧ α2 iff a |= α1 and a |= α2

▶ a |= α1 ∨ α2 iff a |= α1 or a |= α2

Let π ∈ Π|α(G) a maximal path:
▶ π |= Xφ iff |π| ⩾ 1 and π[1]S |= φ

▶ π |= Fφ iff ∃i ∈ N such that i ⩽ |π| and π[i]S |= φ

▶ π |= Gφ iff ∀i ⩽ |π| we have i ∈ N ⇒ π[i]S |= φ

▶ π |= φ1Uφ2 iff ∃i ∈ N such that i ⩽ |π| π[i]S |= φ2 and ∀0 ⩽ j < i π[j]S |= φ1
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Note that the ARCTL formulas ∃⊤γ and ∀⊤γ are strictly equivalent to the CTL formulas
∃γ and ∀γ respectively. Hence why ARCTL is an extension of CTL. In the following we willwrite ∃γ for ∃⊤γ, and ∀γ for ∀⊤γ, when convenient.
Definition 5.4. Given an STG G and an ARCTL formula φ, the ARCTL model-checking
problem consists in determining if S0 ⊆ {s ∈ S | s |= φ}, noted G |= φ.
Example 5.2. For example in the STG of Figure 5.1, using the invariance pattern
∀G(∃Fx), i.e. x states necessarily remain forever reachable:

▶ In the (¬ )∧( ∨ ) scenario, a state without tree remains reachable whateverhappens : G |= ∀(¬ )∧( ∨ )G(∃(¬ )∧( ∨ )F ¬ ).
▶ It is not the case in the ∨ scenario: G ̸|= ∀ ∨ G(∃ ∨ F ¬ ). Indeed, in

G| ∨ , Dense scrubland and Closed canopy woodland can be reached fromwhichthere is no path removing trees.
▶ It is still not the case even if we allow to switch from ∨ to (¬ ) ∧ ( ∨ )in order to try to reach a state without tree: G |= ∀ ∨ G(∃(¬ )∧( ∨ )F ¬ ).Indeed, in G| ∨ , Dense scrubland or Closed canopy woodland can be reachedfrom which there is no path in G|(¬ )∧( ∨ ) removing trees. Thus the (¬ ) ∧

( ∨ ) scenario can remove trees, but it cannot revert the tree encroachmentcaused by the ∨ scenario.

Ô Technical remark

Note that ∃αGφ holds in particular if there is a finite maximal α-path where φ holds.In that regard, an α-dead-end s −→− |α is considered a self-loop, i.e. an infinitepath remaining in the same state (s ⊥A−−→ s
⊥A−−→ s

⊥A−−→ . . .), just like we did forCTL. In contrast, we can define ∃αG∞φ that holds only for infinite maximal α-paths:
∃αG∞φ

def= ∃αG(φ ∧ ∃αX⊤).
Note also that we could have added a real ⊥A-labelled self-loop to each dead-end of
G beforehand to make every maximal path of G infinite. But this procedure cannotbe extended to ARCTL as each α-restriction along the formula may produce new α-dead-ends that cannot be complemented with ⊥A-labelled self-loops beforehand.For that reason, we chose to define these self-loops semantically, i.e. without addingreal transitions to the STG, both for CTL and ARCTL.

5.1.2 ARCTL symbolic model-checking

Like with CTL, there is a symbolic perspective with ARCTL. Instead of defining the seman-tics of ARCTL formulas over states and paths individually, it can be given over sets ofstates:
φ = {s ∈ S | s |= φ} ⊆ S

Like CTL operators, ARCTL operators canbedefinedusing state properties, set operations,fixed points and α-restrictions of the predecessor function Predα:
Predα : Z ∈ P(S) 7→ {s ∈ S | ∃s′ ∈ Z s

α−→ s′} ∈ P(S)
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The symbolic semantics of ARCTL is the symbolic semantics of CTL in G|α, thus the defi-nitions of its operators are exactly the same as the symbolic semantics of CTL operators(Table 2.2). This set-based perspective provides a symbolic algorithm to compute the setof states satisfying an ARCTL formula, see Table 5.1. Just like with CTL, component graphscan be built by partitioning the state space S using ARCTL formulas.
∃α ∀α

X ∃αXφ = Predα(φ) ∀αXφ = ∃αX⊤ ∧ ¬∃αX¬φ

U ∃α(φ1Uφ2) = µ Z.φ2 ∨ (φ1 ∧ ∃αXZ) ∀α(φ1Uφ2) = µ Z.φ2 ∨ (φ1 ∧ ∀αXZ)

F ∃αFφ = µ Z.φ ∨ ∃αXZ ∀αFφ = µ Z.φ ∨ ∀αXZ

G ∃αGφ = ν Z.φ ∧ (∃αXZ ∨ ¬∃αX⊤) ∀αGφ = ν Z.φ ∧ (∀αXZ ∨ ¬∃αX⊤)

Table 5.1: Fixed point definitions of ARCTL operators.

5.2 Fairness and FARCTL

In this section, we extend ARCTL with the notion of fairness, meaning that we restrict theset of maximal paths to these considered realistic. A path is considered realistic if somegiven events happen regularly, such a path is then called fair towards these events. Fromaset of fairness constraints concerning distinct events, we build a fairness assumption thatmerges all these constraints. The set ofmaximal paths can then be restricted with respectto this fairness assumption. Finally, we extend ARCTL quantifiers (∃, ∀) to make use ofthe restricted set of maximal fair paths, resulting in Fair ARCTL. FARCTL thus providesrestrictions of the set of maximal paths based both upon action constraints and fairnessconstraints.

5.2.1 Fairness constraint

A fair path is characterized by the fact that various fairness constraints are fullfilled [BK08].Fairness constraints deal with the order and occurrence rate of certain events, i.e. statesproperties (e.g. , ∃F¬ , etc...) or actions properties (e.g. , ∨ , etc...), alongmaximalpaths. Fairness constraints are classically divided into three classes:
▶ Unconditional fairness: “event e happens infinitely often (with arbitrary long breaksbetween occurrences)”
▶ Weak fairness (justice): “if event e1 happens continuously (i.e. without breaks) froma certain time on, then event e2 happens infinitely often”
▶ Strong fairness (compassion): “if event e1 happens infinitely often, then event e2happens infinitely often”

Example 5.3. Examples of fairness constraints:
▶ Unconditional fairness: “fire happens infinitely often”.
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▶ Weak fairness: “if cattle are present continuously, then events related to inten-sive grazing happen infinitely often”.
▶ Strong fairness “if herbaceous fuel is present infinitely often, then fires happeninfinitely often”.

Maximal fair paths are classically defined to be infinite. We extend this notion to finitemaximal fair paths. Note that α-restrictions can produce α-dead-ends, i.e. s ∈ S where
s −→− |α noted s

α−→− , and thus finite maximal α-restricted paths. As for the ∃αG operator,we consider dead-ends as self-loops, i.e. infinite paths remaining in the same state (s ⊥A−−→
s

⊥A−−→ s
⊥A−−→ . . .) without any action happening (hence the ⊥A labelling the transitions).Thus a finite maximal path π is unconditionally fair iff event e happens infinitely oftenalong the self-loop. Similarly a finite maximal path π is weakly (resp. strongly) fair iffevent e1 does not happen continuously (resp. infinitely often) along the self-loop, or event

e2 happens infinitely often along the self-loop. Note that action-events cannot happencontinuously, nor infinitely often, along a self-loop. Indeed no action happens at all alonga self-loop (hence the ⊥A labelling the transitions). Based on this idea, we now give aformal definition of events and fairness constraints.
Definition 5.5. A state-event eS is an ARCTL state formula eS ∈ ARCTLS representinga set of states. An action-event eA is an ARCTL action formula eA ∈ ARCTLA repre-senting a set of actions.

Ô Technical remark

A standard way of handling action-events is by adding the last action into the cur-rent state [BK08; PR07], i.e. s
a−→ s′ becomes (s, ∗) −→ (s′, a). The STG G is trans-formed into a Kripke Structure by transforming S into S ′ = (S × A), and −→ into

−→′= {((a, s), (a′, s′)) | (s, a′, s′) ∈−→}. This transformation leads to a blow-up of thesize of the state space by the size of the set of actions. We will avoid this blow-upby handling directly the a−→ transition relations, as in the ARCTL semantics (s α−→ s′ iff
s′ |= ∃αX({s})).

We define two operators, ∞
∃ and∞

∀ , meaning that an event happens either “infinitely often”or “continuously from a certain time on” along amaximal path. Their semantics is definedto consider dead-ends as self-loops, with subtle differences between state-events that canhappen infinitely often or continuously along self-loops, and action-events that cannot.
Definition 5.6 (∞∃ ,

∞
∀ ). Let π be a maximal path and eS ∈ ARCTLS a state-event:

▶ π |=
∞
∃ eS iff ∀i ∈ N i ⩽ |π| ⇒ ∃j ∈ N such that i ⩽ j ⩽ |π| and π[j]S |= eS

▶ π |=
∞
∀ eS iff ∃i ∈ N such that i ⩽ |π| and ∀j ∈ N i ⩽ j ⩽ |π| ⇒ π[j]S |= eS

Let π be a maximal path and eA ∈ ARCTLA an action-event:
▶ π |=

∞
∃ eA iff |π| = ∞ and ∀i ∈ N ∃j ⩾ i such that π[j]A |= eA

▶ π |=
∞
∀ eA iff |π| = ∞ and ∃i ∈ N such that ∀j ⩾ i π[j]A |= eA

We can now give a concise formal definition of fairness constraints encompassing eitherstate-events, action-events, or mixing them.
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Definition 5.7 (FU , FW , FS ). Let e1, e2 be state-events or action-events, and π a maxi-mal path. Fairness constraints are divided into three classes of path properties:
▶ Unconditional fairness: π |= FU (e1) iff π |=

∞
∃ e1

▶ Weak fairness: π |= FW (e1, e2) iff
(

π |=
∞
∀ e1

)
⇒

(
π |=

∞
∃ e2

)
▶ Strong fairness: π |= FS(e1, e2) iff

(
π |=

∞
∃ e1

)
⇒

(
π |=

∞
∃ e2

)

Proposition 5.1.
FU (e1) ⇒ FS(e2, e1) ⇒ FW (e2, e1)

Proof.

▶ FU (e1) ⇒ FS(e2, e1):
a ⇒ b means ¬a ∨ b thus FS(e2, e1) = ¬

(
π |=

∞
∃ e2

)
∨ FU (e1)

▶ FS(e2, e1) ⇒ FW (e2, e1):
¬

(
π |=

∞
∃ e2

)
⇒ ¬

(
π |=

∞
∀ e2

)

Example 5.4. If we restrict fairness constraints to CTL state-events and infinite max-imal paths, then the presented semantics is equivalent to the classical semantics ofCTL fairness [BK08, chap. 6.5] that can be expressed as LTL formulas:
▶ Unconditional fairness: FU (e1) = GF(e1)
▶ Weak fairness: FW (e1, e2) = FG(e1) ⇒ GF(e2)
▶ Strong fairness: FS(e1, e2) = GF(e1) ⇒ GF(e2)

Example 5.5. Classical action-based fairness [BK08, chap. 3.5] can also be expressedby mixing state-events (∃αX⊤, i.e. an α-action is enabled) and action-events:
▶ Unconditional fairness: FU (α) i.e. “α-actions happen infinitely often”
▶ Weak fairness: FW (∃αX⊤, α) i.e. “if α-actions are enabled continuously, then

α-actions happen infinitely often”
▶ Strong fairness: FS(∃αX⊤, α) i.e. “if α-actions are enabled infinitely often, then

α-actions happen infinitely often”

5.2.2 Fairness assumption

Fair paths are often defined by several independent fairness constraints. Fairness is thendefined by a fairness assumptionF gathering these various fairness constraints [BK08].
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5 Symbolic model-checking of Fair ARCTL

Definition 5.8 (F ). A fairness assumption is a set F of fairness constraints.
Definition 5.9 (Π|F ). Given a fairness assumption F ,maximal fair paths are these thatsatisfy every fairness constraint in F . The set of all maximal fair paths starting from astate s ∈ S is noted Π|F (s) = {π ∈ Π(s) | ∀f ∈ F π |= f}, the set of all maximal fairpaths of G is noted Π|F (G).
Definition 5.10 (G|F ). Given a fairness assumption F and an STG G, the restriction of
G by F is the STG G|F = (S|F , A, −→, VS , VA), where:

S|F = {s ∈ S | Π|F (s) ̸= ∅}

Proposition 5.2. Π|F (G) = Π|F (G|F ) ̸= Π(G|F )

Proof. Π|F (G) =
⋃

s∈S
Π|F (s) =

⋃
s∈S | Π|F (s)̸=∅

Π|F (s) =
⋃

s∈S|F
Π|F (s) = Π|F (G|F )

But Π(G|F ) =
⋃

s∈S|F
Π(s) ̸= Π|F (G)

A fairness assumption F restricts directly the set of maximal path Π|F (G), resulting in arestricted STG G|F whose states without fair paths have been removed. Conversely an
α-restriction acts on the STG itself G|α, resulting in a restriction of its set of maximal paths
Π|α(G). We now combine both restrictions to extend ARCTL with fairness assumptions.
Definition 5.11 (Π|Fα ). Given a fairness assumptionF , an action formulaα, and an STG
G, α-restricted maximal fair paths of G are the maximal paths of G|α that satisfy everyfairness constraint in F . The set of all α-restricted maximal fair paths starting from astate s ∈ S is noted Π|Fα (s) = {π ∈ Π|α(s) | ∀f ∈ F π |= f}, the set of all α-restrictedmaximal fair paths of G is noted Π|Fα (G).
Definition 5.12 (G|Fα ). Given a fairness assumptionF , an action formula α, and an STG
G, the restriction of G by α and F is the STG G|Fα = (S|Fα , A, −→ |α, VS , VA), where:

S|Fα = {s ∈ S | Π|Fα (s) ̸= ∅}

Ô Technical remark

Π|Fα (s) cannot be defined by starting from Π|F (s) because the α-restriction may pro-duce new dead-ends, and thus add fair paths. Therefore, the α-restriction must beenforced first and, in a second step, the fairness constraints can be enforced on themaximal paths of the α-restricted model G|α.
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5.2.3 Fair ARCTL

In the literature [Cla+18a, chap. 2.2], the fairness assumptionF is classically defined at thelevel of the STG G. Here, we define the fairness assumption at the level of the quantifiers(∃, ∀) of an ARCTL formula, as it had already been proposed for CTL [Hau+20]. Thus thefairness assumptionmay change along an FARCTL formula. Of course, a fairness assump-tion defined at the level of the model can be applied recursively upon every quantifier,resulting in the same semantics.
The syntax and semantics of Fair ARCTL (FARCTL) extend these of ARCTL with fairness re-strictions on quantifiers that now quantify over maximal α-restricted fair paths:
Definition 5.13 (Syntax). The syntax of FARCTL is given by the following grammar overstate, action and path formulas (with new fairness restrictions on quantifiers):

▶ state formulas: φ
def= ⊤S | pS ∈ PS | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃F

α γ | ∀F
α γ

▶ action formulas: α
def= ⊤A | pA ∈ PA | ¬α | α1 ∧ α2 | α1 ∨ α2

▶ path formulas: γ
def= Xφ | φ1Uφ2 | Fφ | Gφ

An ARCTL formula is a state formula.
Definition 5.14 (Semantics). The semantics of FARCTL is the same as the semantics ofARCTL without fairness, except for the quantifiers. Let s ∈ S|Fα a state:

▶ s |= ∃F
α γ iff ∃π ∈ Π|Fα (s) such that π |= γ

▶ s |= ∀F
α γ iff ∀π ∈ Π|Fα (s) we have π |= γ

Example 5.6. In the STG of Figure 5.1, using the invariance pattern ∃G(∃Fx), i.e. x
states possibly remain forever reachable. We have G |= ∃G(∃F¬ ), indeed the systemcan loop between Grassland, Sparse scrubland and Open canopy woodland, which allallow reaching a state without trees. But G ̸|= ∃FS( )G(∃F¬ ) because the fairnessconstraint FS( ) forces the system to reach Dense scrubland or Closed canopy wood-
land from which there is no path removing trees.

5.3 Symbolic model-checking algorithm for FARCTL

In this section, we provide a symbolic algorithm computing the set of states satisfyingan FARCTL formula. Similarly to the symbolic algorithms for CTL with fairness [McM93;Hau+20], this algorithm relies on the ∃F
α G case. Indeed fairness relates to the infinitesuffix of a path, and thus to the temporal modality G. Let us first define some functionsover sets of states that will help us define the algorithm for ∃F

α G.
Definition 5.15. Let eS ∈ ARCTLS a state-event, eA ∈ ARCTLA an action-event, and
Z ⊆ S:

▶ ∃α
−→−X |=eS (Z) = eS ∧ (∃αXZ ∨ ¬∃αX⊤)

▶ ∃α
−→−X ̸|=eS (Z) = ¬eS ∧ (∃αXZ ∨ ¬∃αX⊤)
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5 Symbolic model-checking of Fair ARCTL

▶ ∃α
−→−X |=eA(Z) = ∃α∧eAXZ

▶ ∃α
−→−X ̸|=eA(Z) = ∃α∧¬eAXZ ∨ ¬∃αX⊤

Intuitively, ∃α
−→−X |=e(Z) is the set of states allowing to start either: (1) an α-path toward Z ,or (2) a self-loop induced by the α-restriction; along which event e happens during eitherthe first state or the first action, depending if e is a state-event or an action-event. Thus,

∃α
−→−X |=e(Z) implements for ∃αX the semantics of α-dead-ends as self-loops of ⊥A actions,hence the −→− on top of the X. Similarly, ∃α

−→−X ̸|=e(Z) is the set of states allowing to starteither: (1) an α-path toward Z , or (2) a self-loop induced by the α-restriction; along whichevent e does not happen during either the first state or the first action, depending if e is astate-event or an action-event.
Proposition 5.3.

∃α
−→−X ̸|=eS (Z) = ∃α

−→−X |=¬eS (Z)

But:
∃α

−→−X ̸|=eA(Z) = ∃α
−→−X |=¬eA(Z) ∨ ¬∃αX⊤ ≠ ∃α

−→−X |=¬eA(Z)

Which matches the intuition because no action happens along self-loops: ⊥A ̸|= ¬eA.

We can now provide an algorithm to compute ∃F
α G for each kind of fairness constraint.

5.3.1 Strong fairness

Definition 5.16 (τFS
α ). Let FS = {FS(e1, e2) | e1 ∈ ARCTLS} a fairness assump-tion composed exclusively of strong fairness constraints whose first events are state-events e1 ∈ ARCTLS . We define τFS

α as:
τFS

α (Z) =
∧

FS(e1,e2)∈FS

(
∃α

−→−X ̸|=e1(Z) ∨ ∃α(ZUZ ∧ ∃α
−→−X |=e2(Z))

)

Intuitively, s ∈ ν Z.τFS
α (Z)means that from swe can reach either anα-dead-end satisfyingevery fairness constraints, or a strongly connected component such that ∀FS(e1, e2) ∈ FSif event e1 happens in the SCC then event e2 happens as well. In such SCC, when event e1happens, we can always extend the path in the SCC to reach e2, thus satisfying the strongfairness constraint.

Lemma 5.1.
(
s ∈ ν Z.(φ ∧ τFS

α (Z))
)

⇒
(
s |= ∃FS

α G(φ)
)

Proof. We give here the sketch of the proof, the fully detailed proof is given in An-nex A.3.
Let S′ = ν Z.(φ∧τFS

α (Z)). For every state s ∈ S′, we have s |= φ and ∀FS(e1, e2) ∈ FSat least one of the following is true:
1. s |= ∃α

−→−X ̸|=e1(S′), meaning that s is either (1) the beginning in S′ of a maximal
α-path, or (2) of a self-loop induced by the α-restriction; along which e1 doesnot happen during the first state/transition.
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2. s |= ∃α(S′US′ ∧ ∃α
−→−X |=e2(S′)), meaning that s allows to α-reach either (1) the be-ginning in S′ of a maximal α-path, or (2) a self-loop induced by the α-restriction;along which e2 happens during the first state/transition.

Thus from any s ∈ S′, one can build a maximal α-path in S′ satisfying continuously
φ and either: (1) ending in a dead-end satisfying every strong fairness constraint, or(2) infinitely carrying on while ∀FS(e1, e2) ∈ FS , if e1 happens then it is eventuallyfollowed by e2, thus if e1 happens infinitely often then e2 happens infinitely often aswell. Hence s |= ∃FS

α G(φ).

Ô Technical remark

Note that we restricted the first event of each strong fairness constraint to be a state-event: ∀FS(e1, e2) ∈ FS e1 ∈ ARCTLS . Indeed, we need to check that if e1 happens,then it can be followed by e2. Thus, if e1 does not happen (∃α
−→−X ̸|=e1(Z)) we can carryon without checking for e2. But, when several strong fairness constraints have action-events as e1, then we must synchronize the action chosen in the several ∃α

−→−X ̸|=e1(Z).Indeed, we can carry onwithout checking for any e2 iff we can choose an action whereneither e1 happens for every strong fairness constraint. Similarly, if only some e1happen during the chosen action, then we must check that their respective e2 can bereached. Thus, τFS
α does not produce the correct result when more than one strongfairness constraint have action-events as e1.

We chose to restrict e1 to state-events because we did not find applications whereaction-events were needed as first events of strong fairness constraints. But note thatthe lemma is still true if only a single strong fairness constraint has an action-event as
e1. Moreover, the algorithm could be adapted to several first action-events by check-ing, for every combination of these action-events, if an action can be taken whereneither e1 of the combination happens and that allows reaching every e2 not in thecombination. Instead of enumerating over fairness constraints, we would enumerateover combinations of fairness constraints, thus increasing greatly the complexity ofthe algorithm. Another adaptation of the algorithm could be to add the last actiontaken in the states themselves in order to synchronize the chosen action in the sev-eral ∃α

−→−X ̸|=e1(Z). Yet, this approach would increase the complexity of the algorithm aswell by increasing the size of the state space.

The preceding lemma is one-way only, in fact the opposite direction is false in general.Indeed ν Z.(φ ∧ τFS
α (Z)) requires that every occurrence of e1 is able to α-reach an occur-rence of e2. But this requirement is too strong: e1 is allowed to happen a finite numberof times along a maximal α-restricted fair path without requiring the occurrence of e2. Totake this fact into account, we add the operator ∃α(. . . U . . .) to append the finite prefixeswhere e1 happens only a finite number of times.

Theorem 5.1. ∃FS
α G(φ) = ∃α(φUν Z.(φ ∧ τFS

α (Z)))

Proof. We give here the sketch of the proof, the fully detailed proof is given in An-nex A.3.
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Let us prove that ∃α(φUν Z.(φ ∧ τF
α (Z))) ⊆ ∃F

α G(φ). Let s ∈ ∃α(φUν Z.(φ ∧ τF
α (Z)))and take π ∈ Π|α(s) such that π |= (φUν Z.(φ ∧ τF

α (Z))). Thus ∃i ∈ N such that
π[i]S |= ν Z.(φ ∧ τF

α (Z)) and ∀j < i, π[j]S |= φ. Now use Lemma 5.1 to extend π from
π[i]S into a maximal α-restricted fair path satisfying φ.
Let us prove that ∃FS

α G(φ) ⊆ ∃α(φUν Z.(φ ∧ τFS
α (Z))). Let s ∈ ∃FS

α G(φ) and take π ∈
Π|FS

α (s) such that π |= Gφ. We will use the fact that ν Z.τ(Z) def= ∪{S ⊆ S | S ⊆ τ(S)}[BS07a] to show that s ∈ ∃α(φUν Z.(φ ∧ τFS
α (Z))).

1. If |π| ∈ N, then we prove that s′ = π[|π|]S , the α-dead-end ending π, is in thegreatest fixed point of φ ∧ τF
α , i.e. that {s′} ⊆ φ ∧ τFS

α ({s′}). Indeed s′ |= φbecause π |= Gφ. As π is fair, for every FS(e1, e2) ∈ F , either e2 happens alongthe self-loop, or e1 does not happen, thus:
s′ |=

∧
FS(e1,e2)∈FS

(
∃α

−→−X ̸|=e1({s′}) ∨ ∃α
−→−X |=e2({s′})

)
⊆ τFS

α ({s′})

Consequently s ∈ ∃α(φUν Z.(φ ∧ τFS
α (Z))).

2. If |π| = ∞ then take π[i . . .] the longest infinite suffix of π such that ∀FS(e1, e2) ∈
F , if e1 only happen a finite number of times along π, then i is strictly bigger thanthe last occurrence of e1. Thus along π[i . . .], either e2 happens infinitely oftenor e1 does not happen at all. Let us prove that the states π[i . . .]S of this suffixare in the greatest fixed point of φ ∧ τFS

α , i.e. that π[i . . .]S ⊆ φ ∧ τFS
α (π[i . . .]S).As π |= Gφ we have π[i . . .]S ⊆ φ. For every FS(e1, e2) ∈ FS , either e2 happensinfinitely often along π[i . . .] or e1 does not happen at all, thus ∀j ⩾ i:

π[j]S |=
∧

FS(e1,e2)∈FS

(
∃α

−→−X ̸|=e1(π[i . . .]S) ∨ ∃α(π[i . . .]SUπ[i . . .]S

∧∃α
−→−X |=e2(π[i . . .]S))

)
Thus π[i . . .]S ⊆ φ ∧ τF

α (π[i . . .]S), and consequently s ∈ ∃α(φUν Z.(φ ∧ τF
α (Z))).

We gave here intuitive proofs of Lemma 5.1 and Theorem 5.1, exposing the structure ofthe proofs and their main arguments. Detailed proofs, based on the formal definitionsof the fairness constraints and breaking down the cases depending on whether e2 arestate-events or action-events, are given in Annex A.3.
Example 5.7. If we restrict the semantics to CTL state-events and infinite maximalpaths, we can recognize the fixed point algorithm for CTL strong fairness [Hau+20]:

∃FGφ = ∃

φUν Z.φ ∧
∧

FS(e1,e2)∈F
(¬e1 ∧ ∃XZ) ∨ ∃X(∃(ZUZ ∧ e2))


Note the absence of¬∃X⊤because of the restriction to infinitemaximal paths, and theorder inversion between ∃X and ∃U in the e2 case in order to be consistent betweenstate-events and action-events. Indeed swapping ∃X and ∃U is irrelevant along infinite

66
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looping ν because we only need to check that we move forward in Z at some point,i.e. ∃XZ , but checking action-events requires to nest ∃X inside ∃U.

5.3.2 Unconditional fairness

The algorithm to compute ∃FU
α G for the unconditional fairness can be derived from thealgorithm of the strong fairness. Indeed unconditional fairness can be considered as aspecial case of strong fairness.

Lemma 5.2. For all maximal paths π, π |=
∞
∃ ⊤S .

Proof. Recall that π |=
∞
∃ ⊤S iff ∀i ∈ N, i ⩽ |π| ⇒ ∃j ∈ N such that i ⩽ j ⩽ |π| and

π[j]S |= ⊤S . For all maximal path π and for all i ⩽ |π| take j = i, we have i ⩽ j, j ⩽ |π|
and π[i]S |= ⊤S . Thus for all maximal paths π, π |=

∞
∃ ⊤S .

Corollary 5.1. Let e be a state-event or an action-event, FU (e) = FS(⊤S , e).
Proof.

FS(⊤S , e) iff
(

π |=
∞
∃ ⊤S

)
⇒

(
π |=

∞
∃ e

)
iff (⊤) ⇒

(
π |=

∞
∃ e

)
iff

(
π |=

∞
∃ e

)
iff FU (e)

Corollary 5.2. Let FU a fairness assumption composed exclusively of unconditionalfairness constraints, we define τFU
α as:

τFU
α (Z) =

∧
FW (e)∈FW

(
∃α(ZUZ ∧ ∃α

−→−X |=e(Z))
)

Then: ∃FU
α G(φ) = ν Z.(φ ∧ τFU

α (Z))

Proof. ∃α
−→−X ̸|=⊤S (Z) = ¬⊤S ∧ (∃αXZ ∨ ¬∃αX⊤) = ⊥S

Moreover nesting ν Z.(φ ∧ τFU
α (Z)) inside ∃α(φU . . .) is not required. Indeed ⊤S can-not happenonly finitely often along amaximalα-path, as it happens in every state.
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Example 5.8. If we restrict the semantics to CTL state-events and infinite maxi-mal paths, then we recognize the fixed point algorithm for CTL unconditional fair-ness [McM93] can be recognized:
∃FGφ = ν Z.φ ∧ ∃X

∧
FU (e)∈F

∃(ZUZ ∧ e)

As for the strong fairness case, note the absence of ¬∃X⊤ because of the restrictionto infinite maximal paths, and the order inversion between ∃X and ∃U.

5.3.3 Weak fairness

The algorithm to compute ∃FW
α G for the weak fairness is inspired from the algorithm ofthe unconditional fairness.

Lemma 5.3. Let π a maximal path, eS ∈ ARCTLS a state-event, and eA ∈ ARCTLAan action-event:
π ̸|=

∞
∀ eS iff π |=

∞
∃ ¬eS

π ̸|=
∞
∀ eA iff |π| ≠ ∞ or π |=

∞
∃ ¬eA

Proof.

π ̸|=
∞
∀ eS iff ∀i ∈ N, i ⩽ |π| ⇒ ∃j ⩾ i such that π[j]S ̸|= eS

iff π |=
∞
∃ ¬eS

π ̸|=
∞
∀ eA iff |π| ≠ ∞ or ∀i ∈ N, ∃j ⩾ i such that π[j]A ̸|= eA

iff |π| ≠ ∞ or π |=
∞
∃ ¬eA

Corollary 5.3. Let π a maximal path, and e2 a state-event or an action-event:
▶ Let e1 a state-event, π |= FW (e1, e2) iff

(
π |=

∞
∃ ¬e1 or π |=

∞
∃ e2

)
▶ Let e1 an action-event, π |= FW (e1, e2) iff

(
|π| ≠ ∞ or π |=

∞
∃ ¬e1 or π |=

∞
∃ e2

)

Proof.

π |= FW (e1, e2) iff
(

π |=
∞
∀ e1

)
⇒

(
π |=

∞
∃ e2

)
iff ¬

(
π |=

∞
∀ e1

)
∨

(
π |=

∞
∃ e2

)
iff

(
π ̸|=

∞
∀ e1

)
∨

(
π |=

∞
∃ e2

)
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Example 5.9. If we restrict the semantics to state-events and infinite maximal paths,then a weak fairness constraint can be expressed as an LTL formula [BK08, chap. 6.5]and reformulated into an unconditional fairness constraint:
FGe1 ⇒ GFe2 = (¬FGe1) ∨ (GFe2) = (GF¬e1) ∨ (GFe2) = GF(¬e1 ∨ e2)

The algorithm for the weak fairness is based upon this resemblance with unconditionalfairness:
Theorem 5.2. Let FW a fairness assumption composed exclusively of weak fairnessconstraints, we define τFW

α as:
τFW

α (Z) =
∧

FW (e1,e2)∈F

(
∃α(ZUZ ∧ (∃α

−→−X ̸|=e1(Z) ∨ ∃α
−→−X |=e2(Z)))

)

Then: ∃FW
α G(φ) = ν Z.(φ ∧ τFW

α (Z))

A detailed proof is given in Annex A.3.

5.3.4 Complete symbolic algorithm for FARCTL model-checking

The complete algorithm for the symbolic model-checking of FARCTL relies on the algo-rithm for ∃F
α G that merges the three algorithms defined previously.

Theorem 5.3. Let F a fairness assumption composed of a set of strong fairness con-straints FS , a set of unconditional fairness constraints FU and, a set of weak fairnessconstraints FW :
∃F

α G(φ) = ∃α(φUν Z.(φ ∧ τFS⊆F
α (Z) ∧ τFU ⊆F

α (Z) ∧ τFW ⊆F
α (Z)))

Proof. Maximal α-restricted fair paths are stable by finite prefix concatenation, thuseven if ∃(φU . . .) is not required for unconditional andweak fairness, it has the correctsemantics.

∃F
α G⊤S selects the states with at least one fair maximal path, i.e. ∃F

α G⊤S = {s ∈ S |
Π|Fα (s) ̸= ∅} = S|Fα . Similarly to CTL with fairness [McM93], the FARCTL operators dealingwith prefixes can be rewritten using ∃F

α G⊤S :
▶ ∃F

α Xφ = ∃αX(φ ∧ ∃F
α G⊤S)

▶ ∀F
α Xφ = ∃αX⊤S ∧ ¬∃αX¬φ ∧ ∃F

α G⊤S

▶ ∃F
α Fφ = ∃αF(φ ∧ ∃F

α G⊤S)
▶ ∃F

α φ1Uφ2 = ∃α(φ1U(φ2 ∧ ∃F
α G⊤S))
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Ô Technical remark

Under an action restriction α, every state s ∈ S has at least one maximal path (thepath π = s
α−→− of length 0 if s

α−→− ). But under a fairness restriction F , some states maynot have any fair path at all, i.e. s /∈ ∃F
α G⊤S , thus Π|Fα (s) = ∅. Removing such a statedoes not change the semantics, as it cannot be part of any maximal α-restricted fairpath π (otherwise the suffix of π starting from s would be a maximal α-restricted fairpath and thus Π|Fα (s) ̸= ∅). Note that this is exactly how we defined S|Fα = {s ∈ S |

Π|Fα (s) ̸= ∅}.

Once we restrict S to S|Fα = ∃F
α G⊤S , the FARCTL operators dealing with prefixes areexactly the same as for ARCTL:

▶ ∃F
α Xφ = ∃αXφ

▶ ∀F
α Xφ = ∀αXφ

▶ ∃F
α Fφ = ∃αFφ

▶ ∃F
α φ1Uφ2 = ∃αφ1Uφ2

The FARCTL operators dealing with suffixes are derived using the usual dual equiva-lences:
▶ ∀F

α Fφ = ¬∃F
α G¬φ

▶ ∀F
α Gφ = ¬∃F

α F¬φ

▶ ∀F
α φ1Uφ2 = ¬(∃F

α ¬φ2U¬φ1 ∧ ¬φ2) ∧ ¬∃F
α G¬φ2

This symbolic FARCTL model-checking algorithm is implemented inside ecco.
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A Summary

In this chapter, we apply FARCTL to the two case studies presented in Chapter 4. First,we exemplify on the Borana model how ecosystem management scenarios can bemodelled by action and fairness restrictions. FARCTL is used to investigate the conse-quences of shifting between scenarios during the model exploration, and to describerealistic paths using fairness constraints. Second, we exemplify on the protists modelhow two distinct kinds of dynamics can be combined in a controlled manner usingFARCTL. We use action-restrictions to separate invasions from the rest of the dynam-ics, and alternate between them using an ARCTL formula to look for specific invasionbehaviours.

The ecco notebooks encompassing the case studies presented in this chapter can befound in [Tho22]. Both the RR model file and the python analysis notebook are givenfor each case study, along with a static html preview of the notebook. Computing all theresults took only a few seconds on a modern laptop (Linux 5.4 Mint/Ubuntu, 32G RAM,CPU Intel Core i7–7820HQ 2.9GHz).

6.1 Borana vegetation model

Chapter 4 presented the Borana model representing the vegetation dynamics of the Bo-rana Zone in Ethiopia [LC18; LCD18; Lia+20]. CTL model-checking was used both to builda component graph representing the differences of bush encroachment behaviours de-pending upon fixed management scenarios, and to extract the scenarios making en-croachment reversible. In this chapter, we explore with FARCTL how shifts between man-agement scenarios impact the system dynamics. First, the Borana model is revised withaction labels, then the question “Can a change in management policy reverse the bush en-
croachment induced by the preceding one?” is answered using FARCTL, and finally fairnessis embedded into scenarios to get a more fitting model.

6.1.1 Modelling

The Borana model is revised to make use of FARCTL, see Figure 6.1. Controls, apart fromaltitude, are removed from the variables declaration and converted into action labels, i.e.controls are moved from the condition of the rules towards their label. Altitude remainsa control, as it cannot be reasonably changed during the dynamics (we assume that the
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altitude of the studied ecosystem cannot shift, but note that global warming could pro-duce a similar effect). Instead of being an initial value of the control variables, a scenario isnow an action restriction. For example, the scenarios where fire is banned are no longerdefined as the subset of the STG where Fb+, but as action-restrictions of the STG wherethe actions labelled by [Fb-] are disabled. Thus there are no longer distinct and dis-connected STGs for distinct scenarios, but two disconnected STGs, corresponding to thesystem at low or at high altitude, with distinct action-restrictions corresponding to distinctscenarios.
variables:

Gr+: Grasses
Sh-: Shrubs
Tr-: Savanna trees
Sa-: Tree saplings
Cr-: Crops
Lv-: Livestock (cattle)
Gz-: Wild grazers
Bw-: Wild browsers

controls:
Alt*: Altitude

rules:
[Fb-] Gr+ >> Sh-, Sa-, Lv-, Gz-, Bw- # R1
[Fb-] Gr+ >> Sh-, Tr-, Sa-, Lv-, Gz-, Bw- # R2
Sa+ >> Tr+ # R3
Sh-, Tr-, Sa-, Cr- >> Gr+ # R4
[Fb+] Alt+, Gr-, Sa+ >> Sh-, Tr+ # R5
Alt-, Sh+, Tr- >> Sa- # R6
[Wl+] Gr+, Lv- >> Gz+ # R7
[Wl+] Sh+, Lv- >> Bw+ # R8
[Wl+] Sa+, Lv- >> Bw+ # R9
[Ps+] Gr+ >> Lv+, Gz-, Bw- # R10
[Ps+, BLv+] Sh+ >> Lv+, Gz-, Bw- # R11
[Ps+, BLv+] Sa+ >> Lv+, Gz-, Bw- # R12
Gr+, Lv+ >> Sh+, Sa+ # R13
Gr+, Gz+ >> Sh+, Sa+ # R14
[Ig+] Lv+ >> Gr-, Lv- # R15
Bw+ >> Gr+, Sh-, Sa-, Bw- # R16
[BLv+] Lv+ >> Gr+, Sh-, Sa-, Bw- # R17
[Cb-] Alt+, Tr+ >> Gr-, Sh-, Sa-, Cr+, Lv-, Gz-, Bw- # R18
Cr+ >> Gr+, Cr- # R19

Figure 6.1: Revised Borana model.

The STG computed from the revised Borana model has only 50 states, way less than the1185 states spread over the 128 disconnected subgraphs of its initial version. The com-ponent graphs corresponding to the partition between vegetation classes of the STGs atlow and at high altitudes are depicted in Figure 6.2. Note that some rules should not beenabled together in the same scenario, for example R1 and R5 have conflicting labels:
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[Fb-] and [Fb+]. This fact has to be ensured at the level of the action-restrictions defin-ing the scenarios, thus some paths in the unrestricted STG may involve conflicting rulesthat implicitly involve a scenario shift in between their occurrences.
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Figure 6.2: Component graphs of the revised Borana model partitioned by vegetation
classes.

Ô Technical remark

Note that we cannot design an action-restriction defining a set of scenarios. In-deed, we could build an action-restriction α as the logical or (∨) of the distinct action-restrictions corresponding to each element of a set of scenarios. Nevertheless, thepaths resulting from α are not the union of the paths resulting from each action-restriction, but the paths shifting arbitrarily often between these action-restrictions.Thus when doing ∃α we are not exploring the maximal paths of the various scenar-ios of the set, but the maximal paths shifting arbitrarily often between these scenar-ios. Although such action-restriction α can be useful, there is no way to explore themaximal paths of a set of scenarios without either explicitly building distinct action-restrictions linked to distinct quantifiers, or representing the scenarios as control vari-ables.

6.1.2 Results

The benefits of analysing the Boranamodelwith FARCTL are outlined using the state prop-erty bush encroachment = (Sh+∨Tr+)∧Gr-∧Cr-, and the following action-restrictionscorresponding to the 3 STMs of Liao, see Figure 4.2:
▶ WildScenario = ¬([Fb+]∨[Cb-]∨[Wl-]∨[Ps+]∨[Ig+]∨[BLv+]) corresponding tothewild scenario of the Borana zone: wildlife with fire butwithout livestock nor crop,see Figure 4.2a (Alt*, Fb-, Cb+, Wl+, Ps-, Ig-, BLv- in the original Borana model);
▶ TraditionalScenario = ¬([Fb+] ∨ [Cb-] ∨ [Wl+] ∨ [Ps-] ∨ [Ig+] ∨ [BLv+])corresponding to the traditional management policy of the Borana zone:extensive grazing with fire but without wildlife nor crop, see Figure 4.2b(Alt*, Fb-, Cb+, Wl-, Ps+, Ig-, BLv- in the original Borana model);
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▶ CurrentScenario = ¬([Fb-]∨[Cb-]∨[Wl+]∨[Ps-]∨[Ig-]∨[BLv+]) correspond-ing to the current management policy of the Borana zone: intensive grazing withoutfire nor wildlife nor crops, see Figure 4.2c (Alt*, Fb+, Cb+, Wl-, Ps+, Ig+, BLv- in theoriginal Borana model).
First, we can retrieve the fact, established in Chapter 4, that intensive grazing is requiredfor bush encroachment. To do so, we check that bush encroachment can only happen inthe CurrentScenario:

▶ S0 ̸|= ∃WildScenarioF( )
▶ S0 ̸|= ∃TraditionalScenarioF( )
▶ S0 |= ∃CurrentScenarioF( )

The only satisfied formula is indeed the one restricting the actions to the
CurrentScenario. Next, we show how to provide an answer to the following ques-tion: “Can a change in management policy reverse the bush encroachment induced by the
preceding one?” To do so, we adapt to FARCTL the sequence and invariance patterns usedin Chapter 4. Let us check if at least some bush encroachment is reversible by a changein management policy:

▶ S0 |= ∃CurrentScenarioF( ∧ ∃WildScenarioF(¬ ))
▶ S0 ̸|= ∃CurrentScenarioF( ∧ ∃TraditionalScenarioF(¬ ))

Thus the bush encroachment induced in the Borana zone by the current managementpolicy cannot be reversed by shifting back toward the traditional management policy.However, at least some bush encroachment is reversible by letting the ecosystem shiftback to its wild behaviour. Let us check if all bush encroachment is reversible by a changein management policy:
▶ S0 |= ∀CurrentScenarioG( ⇒ ∃WildScenarioF(¬ ))
▶ S0 ̸|= ∀CurrentScenarioG( ⇒ ∃TraditionalScenarioF(¬ ))

The traditional management policy cannot reverse all bush encroachment induced bythe current management policy, as expected because we just saw that it could not evenreverse it partially. However, all bush encroachment induced by the current manage-ment policy can be reversed by letting the ecosystem shift back to its wild behaviour. Thefact that the TraditionalScenario prevents encroachment but cannot reverse it (at leastwhen induced by the CurrentScenario) in the Borana modelmay seem counter-intuitive.Yet, such behaviour has been reported before [LCD18; Lia+20] and was one of the moti-vations behind the STM framework [WWN89].
We could test other scenarios, both inducing encroachment or trying to reverse it, but welimit ourselves here to the scenarios of Liao’s STMs in order to validate the model. Notethat if we change the scenario inducing encroachment, then the reachable encroachedstate may change as well, thus encroachment may not be reversible by the WildScenarioanymore. In addition, we could design more complex formulas, shifting between morethan two scenarios for example.
Finally, we outline the use of fairness assumptions in FARCTL formulas to characterizerealistic paths using the following action fairness constraint:

▶ FW ([Ig+]) = FW (∃[Ig+]X⊤, [Ig+]) meaning that if rules related to intensive graz-ing are enabled continuously, then they must happen infinitely often
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▶ FS([Fb-]) = FS(∃[Fb-]X⊤, [Fb-]) meaning that if rules related to fire are enabledinfinitely often, then they must happen infinitely often
In the CurrentScenario, grasses do not always disappear: S0 ̸|= ∀CurrentScenarioF(Gr-).We can wonder what would happen if we force the intensive grazing rule R15 to happenif it is continuously enabled, i.e. if we assume that the continuous presence of livestockunder the intensive grazing policy shall trigger the intensive grazing rule infinitely often.Indeed, the continuous presence of livestock without consequence is not realistic. Todo so, we use the fairness constraint FW ([Ig+]) and get a new model-checking result:
S0 |= ∀FW ([Ig+])

CurrentScenarioF(Gr-). Thus grasses always disappear in the CurrentScenario withweak fairness on the intensive grazing rule R15, indeed R15 is the only rule removing Grenabled in the CurrentScenario.
We got a similar result in the WildScenario, where shrubs and saplings do not alwaysdisappear: S0 ̸|= ∀WildScenarioF(Sh-∧Sa-). We can wonder what would happen if we forcethe fire rules R1 and R2 to happen if they are enabled infinitely often, i.e. if we assume thatif herbaceous fuel is present infinitely often then the fire rules shall trigger infinitely oftenas well. To do so, we use the fairness constraintFS([Fb-]) and get a newmodel-checking
result: S0 |= ∀FS([Fb-])

WildScenarioF(Sh- ∧ Sa-). Thus shrubs and saplings always disappear in the
WildScenario with strong fairness on the fire rules R1 and R2.

6.2 Protists model

Chapter 4 presented the protists model representing the first protists experi-ment [WWL98] studying the fate of species combinations. A component graph was builtrepresenting the various collapsing behaviours leading to stable communities. In thischapter, we show how to model with FARCTL the second protists experiment [WLW03]studying the invasion of stable communities. First, the protists model is revised withinvasion rules and action labels, then the question “Are there catalytic species, i.e. that
invade, change the community, and then go extinct?” is answered using FARCTL.

6.2.1 Modelling

The protistsmodel is revised tomake use of ARCTL, see Figure 6.3. While the variables sec-tion remains unchanged, 6 new rules were addedmodelling the invasion by each species.Rules are labelled by their related process [process] as in the original protistsmodel, andin addition by their affecting species [sp:l] (appearing positively on the left-hand side ofthe rule) as well as by their affected species [sp:r] (appearing on the right-hand side ofthe rule). Thus an [invasion] rule is also labelled by the invading species [sp:r], andthe other rules are also labelled by both the acting species [sp:l] and the disappearingspecies [sp:r].
The STG computed from the revised Protistsmodel has 64 states, just like its initial version.But it has additional transitions representing the invasions that blur the dynamics. Wewillrestrict the occurrences of these additional transitions using action-restrictions.
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variables:
A*: Amoeba proteus
B*: Blepharisma japonicum
C*: Colpidium striatum
E*: Euplotes patella
P*: Paramecium caudatum
T*: Tetrahymena pyriformis

rules:
[predation, A:l, P:r] A+ >> P- # R1
[predation, B:l, C:r] B+ >> C- # R2
[predation, B:l, T:r] B+ >> T- # R3
[predation, A:l, B:r] A+, P- >> B- # R4
[predation, A:l, C:r] A+, P- >> C- # R5
[predation, A:l, T:r] A+, P- >> T- # R6
[predation, A:l, E:r] A+, P- >> E- # R7
[predation, E:l, T:r] E+ >> T- # R8
[starvation, A:r] P- >> A- # R9
[starvation, E:l, E:r] E+ >> E- # R10
[starvation, C:l, C:r] C+ >> C- # R11
[competition, P:l, C:r] P+ >> C- # R12
[competition, P:l, T:r] P+ >> T- # R13
[competition, C:l, T:r] C+ >> T- # R14
[competition, T:l, C:r] T+ >> C- # R15
[invasion, A:r] A- >> A+ # R16
[invasion, B:r] B- >> B+ # R17
[invasion, C:r] C- >> C+ # R18
[invasion, E:r] E- >> E+ # R19
[invasion, P:r] P- >> P+ # R20
[invasion, T:r] T- >> T+ # R21

Figure 6.3: Revised protists model.

6.2.2 Results

In this secction, we answer the following question taken from the second protists ex-periment article [WLW03]: “Are there catalytic species, i.e. that invade, change the commu-
nity, and then go extinct?”. To do so, we design an FARCTL formula checking if species
sp ∈ {A,B,C,E,P,T} is catalytic (with [inv.] for [invasion]):

∃[inv.]∧[sp:r]X︸ ︷︷ ︸
sp invades

(∃¬[inv.]F︸ ︷︷ ︸
dynamicsgoes on

(∃¬[inv.]∧[sp:l]∧¬[sp:r]X︸ ︷︷ ︸
sp change the community

(∃¬[inv.]F︸ ︷︷ ︸
dynamicsgoes on

(∃¬[inv.]∧[sp:r]X⊤︸ ︷︷ ︸
sp goes extinct

))))

For each species sp ∈ {A,B,C,E,P,T}, this formula is satisfied by some states of the STG.Thus every species is classified as catalytic. In [WLW03], only A, B, E and T were foundcatalytic experimentally. But in the second experiment, invasion was only tested in so-called “persistent communities”. When checking the satisfaction of the formula only onthese persistent communities, we find that P is not catalytic anymore, which is more in
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line with the experimental result. The additional catalytic species found by themodelmayarise from the additional transitions predicted by the model, see Figure 4.17, or from thefact that invasionswere not always successful in the experiment [LWW00]while themodelassumes that every species can always invade.
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7.1 Conclusion

In this thesis, we presented formal methods based on model-checking for the modellingand the analysis of ecological state-transition graphs. First, we introduced the concept ofecological state-transition graph (STG) that, while being a novelty, captures a long history ofdisparate representations of the dynamics of an ecosystem as a graph. Computer sciencehas developed a wide range of methods for analysing such graphs, some of which havebeen used in systems biology. In this thesis, we focused on methods based on model-
checking, which checks whether an STG satisfies a dynamical property given as a temporal
logic formula. We presented the Computation Tree Logic (CTL) that expresses propertiesabout branching dynamics with alternative pathways, a feature often found in ecologicalSTGs. CTL model-checking can be used to partition the state space of the STG dependingon the satisfaction of a given set of CTL formulas. Such partition can be depicted as agraph, called a component graph, that offers a visual representation of whether the STGdynamics fulfills or not the behaviour described by the given formulas.
This approach was implemented in ecco [PTG22a], a Python toolbox for the formal mod-elling and analysis of ecosystems. Models in ecco compute into STGs, whose states aredefined by Boolean variables and whose transitions are derived from if-then rules. Themodel analysis in ecco is performed by interactively refining a partition of the state space,using either topological or CTL state properties, that is depicted as a component graph.We used ecco on two case studies exemplifying this approach. In the first instance, wemodelled the vegetation changes in the Borana Zone in Ethiopia under diverse manage-ment scenarios [Tho+22]. We then built a component graph representing bush encroach-ment using CTL formulas, and selected management policies preventing it or making itreversible. In the second instance, we modelled protists community assembly based onthe results of laboratory experiments [Her+22]. We then built a component graph parti-tioning the states with respect to the stable communities they lead to using topologicalproperties.
Both case studies were limited by the fact that we want some specific events to occur butonly in a controlledmanner, for example changes ofmanagement scenarios or species in-vasion. To overcome these limitations, we presented Action-Restricted CTL (ARCTL) [PR07],an extension of CTL that allows to restrict the set of enabled actions along a formula.We then extended ARCTL with fairness constraints, i.e. “realism” constraints upon the or-der and happening rate of events along a path. This resulted in Fair ARCTL (FARCTL), forwhichwe provided a symbolicmodel-checking algorithm that is implemented inside ecco.FARCTL quantifiers allow to restrict maximal paths with respect to both enabled actionsand fairness constraints, for example to model ecosystem management scenarios. An
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FARCTL formula can thus shift between them in a controlled manner at the level of itsquantifiers. Finally, we applied FARCTL to both case studies. In the first instance, we de-fined management scenarios as action and fairness restrictions, and we used FARCTL toinvestigate the consequences of shifting between scenarios. In the second instance, weused action-restrictions to separate invasions from the rest of the dynamics, and alter-nated between them using a FARCTL formula to look for specific invasion behaviours.

7.2 Implementation choices

The approach presented in this thesis is primarily independent of the presented imple-mentation based on ecco. Indeed, as long as the ecosystemdynamics can be representedas an STG, the methods we presented, such as component graphs or FARCTL, can be ap-plied. In this section, we discuss the implementation choices made in this thesis, namelyReaction Rules for modelling and (FAR)CTL for analysis, and give some perspective on en-visioned improvements. Furthermore, we also list some other possible implementations,along with example studies in biology operating them.

7.2.1 Reaction Rules as modelling language

In this thesis, we computed STGs from Reaction Rules (RR) models [GP19; PTG22a], i.e.system descriptions based upon Boolean variables and if-then rules. We chose this com-putational model to cope with one particular specificity of ecological data: observationsof ecosystems are very sparse. For example, the protist experiments [WWL98; WLW03]may seem quite limited (only 6 species in a microcosm with very few quantitative record-ings). Yet, to our knowledge, they are the most advanced laboratory experiments everperformed to record community assembly exhaustively. In ecosystems of bigger scale,data is even sparser, studies may use conflicting variables (for example, species, genreor functional groups), and the influence of a variable on another is often studied in ab-straction from the rest of the system. Indeed quantitatively recording the behaviour of anecosystem is incredibly costly, and often cannot be replicated. Boolean variables can cap-ture very sparse information about the system [Cos22], and if-then rules are expressiveenough to encode every qualitative knowledge about the system’s behaviour.
Indeed, the knowledge about the dynamics of an ecosystem can often be summarizedby sentences such as “if x happens then y may happen” which is precisely the semantics ofif-then rules. For example, most rules of the Borana model encode this kind of sentencesfound in the literature [LCD18; LC18; Lia+20; Lia16], see Annex A.2. If-then rules also havethe benefit of being user-friendly, thanks to their similarity with everyday language evenpeople unfamiliar with modelling are able to understand and employ them. For example,local stakeholders often have a deep understanding of the ecosystem dynamics that canbe used to mitigate the data sparsity problem. But only if they are able to take part inthe modelling process. Indeed, one of the main assets of the STM framework is that itenables collaborative modelling between scientists and local stakeholders [Bes+17]. If-then rulemodellingwith qualitative variables had already been proposed before tomodel
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ecosystemdynamics precisely for its ability to capture sparse information and for its user-friendliness [Ryk89; Sta90].
In addition, RR is expressive enough to encode any existing STG. Most STGs found in ecol-ogy are directly drawn from empirical observations (e.g. field studies or laboratory exper-iments), for example the Borana STMs [LC18] or the protists assembly graph [WLW03],and not computed from a formal model. Yet, analysis of such empirical STGs would stillbenefit from the methods presented in this thesis. To this end, they need to be encodedas a computational model coupled with an analysis toolbox. Any STG can be elementarilyencoded as an RR model by creating a variable for every state s ∈ S , and creating a rule
[a]s+>>s’+, s- for every (s, a, s′) ∈−→. Any state label p ∈ PS can additionally be encodedas a state formula: p =

∨
{s∈S|p∈VS(s)} s. Thus ecco can be used not only as a modellingframework, but also as an analysis toolbox for empirical STGs.

Future extensions of RR

The most immediate extension of RR is undoubtedly to use multivalued qualitative vari-
ables. Such variables are typically used in biology to model phenomena where a reactantregulates distinct reactions that occur at distinct thresholds. Although data is sparse inecology, such information is often available for at least some variables or processes, andthus could be included in themodelling. For example in the Borana ecosystem, fire is rarewhen woody plant cover is above a threshold of 40% [Arc+09; Lia+20], thus trees could bemore precisely described as multivalued rather than as Boolean: Tr ∈ {none, low, high}corresponding respectively to 0%, < 40% and ⩾ 40%. In RR, the multiple values of a vari-able and their potential order would be defined during variable declaration along with itsinitial value(s). If the values of a variable are ordered, rules guards could use this orderingwith expressions such as Tr ⩾ low.
Priority rules is a feature that was included in previous presentations of RR [Cos+22;PTG22a], but that is missing in this thesis. The semantics of priority rules is that low-priority rules can only be fired if no high-priority rule is enabled, thus high-priority rulesare always preferred over low-priority ones. High-priority rules are typically used tomodelcascading effects that need to be resolved before any other low-priority transition is fired.For example, priority rules could be used in the Borana model to split the removal of ani-mals from the removal of their food in the rules. To do so, new priority rules of the form“food- >> animal-” should be added, and animal- should be removed from the effectof the already existing rules causing food-. Priority rules make the semantics more con-voluted, for example it is unclear what is the semantics of a cycle of high-priority rules,especially as modellers often want to hide high-priority transitions in the STG. Yet, whenhigh-priority rules cannot cycle, they can be incorporated inside low-priority rules, thatmay have to be duplicated if high-priority rules imply branching, by chaining their effects.Moreover, neither the Borana model nor the protists model has any priority rule. Hence,we chose to skip priority rules in this thesis, but the methods we presented could be ex-tended to include them.
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Other modelling formalisms

Computer science provides with a large range of modelling formalisms computingSTGs [BČŠ13; Nal+15; BL16], each fitted to specific features. Most of the methods pre-sented in this thesis are independent of the modelling formalism, as long as it computesan STG, and thus may be used with other modelling languages than RR. As an exhaustiveinventory of these modelling formalisms would be tedious, we limit ourselves to featuresfound in existing ecology studies.
In ecology, STGs are often computed from interaction networks, such as differentialequations [SA21] or Boolean networks [Cam+11; LaB+13], with possible bridges betweenthem [RM16]. Modelling frameworks based on biological interaction networks have beendesigned in the field of systems biology [CGR12; Nal+15], for example GINsim [CNT12]handling Boolean networks. An example of this implementation in systems biology isgiven in [Abo+15], modelling the differentiation of T-helper cells and analysing the modelthrough a partition of the state space based on ARCTL. As the protists model is basedon such an interaction network, modelling it with a Boolean network may help to build abridge between ecology and the formal toolbox developed in systems biology.
When the duration of the transitions between states are available, for example throughlife history characteristics [Cat+79], they can be incorporated into the STG as transition la-bels. Timed automata [Pet99; AD94] is a modelling formalism computing such STGs, thatcan be implemented with the software Uppaal [BDL04] incorporating a model-checker. Aconcrete example of this implementation in ecology is given in [Lar+12], modelling sce-narios of a coral reef ecosystem with timed automata.
Lastly, when the probabilities of the transitions between states are available, they can alsobe incorporated into the STG as transition labels. Markov chain is a modelling formalismable to produce such STGs. A concrete example of probabilistic STG in ecology can befound in the State-and-Transition Simulation Models [Dan+16], a distinctive approach ofthe STM framework [Bes+21] focusing on simulation.

7.2.2 FARCTL as temporal logic

In this thesis, we used Computation Tree Logic (CTL) [Cla+18b], and its extensions Action-
Restricted Computation Tree Logic (ARCTL) [PR07] and Fair ARCTL (FARCTL), both (1) to com-pute sets of states satisfying some properties and (2) to partition the STG with respectto these properties. CTL and (F)ARCTL are state-based temporal logics that can be easilyexpressed in terms of sets of states in the symbolic perspective [Bur+92; PR07; Thi16],a feature required to build component graphs efficiently. (FAR)CTL expresses propertiesabout branching dynamics between alternative pathways, a feature often found in eco-logical STGs as illustrated by the Borana and protists examples. Nevertheless, designing(FAR)CTL formulas often turns out to be a difficult exercise for non-expert users [DAC99].In order to ease this task, we proposed a catalogue of patterns[Mon+08; Lar+12; Tho+22],mapping propertieswritten in English to their CTL translation, see Table 2.1. Defining sucha catalogue for FARCTL would be useful future work.
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Yet, if ecologists got acquainted with formal definitions such as temporal logics, we be-lieve that it would help them clarify and compare various concepts used in the fields ofecology. Indeed, many STGs found in ecology were drawn as graphical summaries of theknowledge about the dynamics of the studied system [Ber+14; LC18], rather than as ac-tual data [Lon74; WLW03; LCD18], without having a formal definition in mind. However, ifSTGs can be found repeatedly in somany separate fields of ecology along its history, thentheymust be a relevant representation of ecosystem behaviour. Such representation cer-tainly deserves a formal conceptual framework, such as the one developed in computerscience to analyse Kripke structures and labelled transition systems [BK08; Cla+18b].
The fairness concept was an early request from ecologists during this thesis. The auto-mated systems studied in computer science can be trapped in cycles where only a smallportion of the system takes action, and finding such cycles may be the goal of the analysiswhen looking for bugs. On the contrary, it is often supposed in ecology that all parts ofthe ecosystem are able to take action in turn more or less fairly. For example, if a modelrepresents seasonal change, we want to exclude from the analysis the maximal pathstrapped in a single climatic season, i.e. the maximal paths that are not fair with seasonalchange events. Recurring events are commonplace in ecosystems, for example seasonalchanges, fires, tides, invasions, or even anthropogenic events such as harvests or taxes.A fairness assumption can encompass multiple distinct fairness constraints [BK08], forexample restricting the maximal paths to the ones that are fair toward multiple distinctevents. Thus a modelling framework for ecological STGs should let the modeller define afairness assumption alongside the system description.
ARCTL [PR07] allows to restrict the dynamics of the system to a delimited subset of its ac-tions. As illustrated by the Borana example, the objective behind STMs [Bes+17] is often tofind an ecosystem management policy achieving some goal, in this case preventing bushencroachment to preserve livelihood. Such management policies can be represented asaction-restrictions, i.e. subsets of enabled actions, or in other words subsets of disabledones. Instead of building distinct STGs representing distinct management scenarios, wecan build a single more intricate STG encompassing every scenario, that we can then re-strict to a specific scenario using an action-restriction. Instead of replicating the statesbetween the distinct STGs representing the several scenarios, every statemakes a uniqueappearance in the single STG encompassing every scenario. In addition to the shrinkageof the state-space, ARCTL also has the benefit that we can easily shift between scenariosby changing the action-restriction. Yet, asmentioned in Chapter 6, ARCTL does not enableto select scenarios satisfying some property without enumerating them explicitly.
We could have added directly the transitions allowing to navigate between the distinctSTGs representing the distinct management scenarios, i.e. transition changing the sce-narios. But then the system would be able to shift between the scenarios uncontrollably,the worst case being that the system is only bumping between scenarios without per-forming any action. It would blur the dynamics just like uncontrolled invasion transitionsblur the dynamics of the protists model. ARCTL solves this issue by specifying the action-restriction at the level of quantifiers. For example in the case studies of Chapter 6, it isthe quantifiers of the formulas that are shifting in a controlled manner between scenar-ios, or that are enabling invasions temporarily. Thus, we can specify in the formula itselfif and when the system shifts between scenarios, or if and when invasions happen. As a
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consequence, we can check for example if a scenario can reverse the effect of another byshifting between them along the formula.
Fair ARCTL pushes a little further this definition of scenario by appending a fairness re-striction to it. A scenario therefore delimits not only a set of enabled actions, but also aset of fairness constraints shaping the maximal paths. Indeed while some fairness con-straints may be global across all scenarios, such as the changing seasons, others may berelated to particular scenarios, such as fire happening infinitely often in ecosystems notmanaged by humans. As a fairness assumption can be specified in a formula at the level ofthe quantifiers, just like with action-restriction, we can still shift between scenarios alonga formula.
An FARCTL model-checker has been implemented inside ecco, using the symbolic algo-rithm presented in Chapter 5. This algorithm computes the set of states satisfying a givenFARCTL formula in the symbolic perspective, thus we can use it to efficiently partition thestate-space in order to build component graphs. All three fairness categories, namely un-
conditional,weak, and strong, are available, using both state-events or action-events, apartfrom strong fairness constraints with an action-event as first event. Indeed this specificcase involves a jump in algorithmic complexity, because it requires checking these action-events in a synchronized way when taking a transition. Nevertheless, most usual fairnessconstraints are available, for example the traditional action fairness [BK08, chap. 3.5] onlyinvolves action-events as second events, and our applications did not require these prob-lematic fairness constraints so far.

Perspectives

As noted just above, the FARCTL symbolic model-checking algorithm presented in Chap-ter 5 does not manage strong fairness constraints with action-event as first event. But, asmentioned in Chapter 5, the algorithm could already handle a single strong fairness withaction-event as first event. If an application requires multiple such fairness constraints,then the algorithm would need to be revised. For example, if only a few of such fairnessconstraints are needed, a straightforward enumeration of the combination of synchro-nized action-events may provide a solution with a tractable complexity.
On another topic, we mentioned in the protists case studies of Chapter 4 that the modelwas not able to handle states that are nondeterministically stable, i.e. that are stablein some maximal paths but not in others. Indeed, the following axiom of temporal log-ics may be perturbing for ecologists: the maximal paths must always move forward ifat least one transition is available. Yet, it is not always the case in ecosystem dynam-ics: the ecosystem may remain forever in a given state even though some transitions areavailable. For example, in the first protists experiment [WWL98], in half of the replicatesstarting from {P, C} there is a transition towards {P}, while in the other half {P, C} isstable. In a similar fashion, the STM framework [WWN89] distinguishes ”transient states”in which the ecosystem cannot persist indefinitely from ”persistent states” where it canpersist, even though some particular events may bring the system out of these persistentstates. This behaviour could be modelled with fair actions and an alternative semanticsof maximal paths. Suppose that the actions are partitioned between unfair and fair ac-
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tions [BK08, chap. 3.5], i.e. we can partition the actions between these that can happenand these that will happen. Then, we can redefinemaximal paths as infinite paths satisfy-ing every fairness constraints, or finite paths ending in a any state s whose self-loop, i.e.the infinite path s
⊥A−−→ s

⊥A−−→ . . ., satisfies every fairness constraints. Thus, if there areno unconditionally fair actions, a state where only actions that can happen are availablewill be considered stable for somemaximal paths, even though other maximal paths thatmove forward from this state are also considered. Note that this approach is more subtlethan just adding self-loops in these new potentially stable states, because it also ensuresthat all infinite maximal paths are fair. The symbolic algorithm for FARCTL presented inChapter 5 can easily be adapted to this new semantics by expanding the finite case of
∃α

−→−X |=e(Z) and ∃α
−→−X ̸|=e(Z) to the states where only actions that can happen are available:

¬∃α∧mustX⊤.
If the STG includes transition durations or probabilities, then these features can be lever-aged using appropriate CTL extensions. Timed CTL [ACD93] extends CTL with durationrestrictions on modalities F, G, U. An example of the use of TCTL to analyze the scenar-ios of a coral reef fishery is given in [Lar+12] alongside a catalogue of pattern mappingproperties in English with TCTL formulas. Note also that fairness can be seen as a formof qualitative temporality. In contrast to the crisp quantitative temporal properties speci-fied by TCTL, FARCTL can express looser temporal properties about pathways such as theinfinite occurrence of an event. On the other hand, Probabilistic CTL [HJ94] extends CTLwith quantifiers allowing to query about the probability of some paths. An example of theuse of PCTL to analyze the stability of frog populations is given in [Bar+15].
Another temporal logic worth considering is Alternating-time Temporal Logic(ATL) [AHK02] that expresses properties of an STG that describes a game betweenplayers, for example, one or several ecosystem managers and the environment. In suchan STG, every state is a state of the ecosystem, and every transition is a possible movein the game between the players. ATL quantifiers allow querying if a given player (or setof players) has a strategy to enforce/prevent a certain behaviour of the system. The ATLsymbolic model-checking algorithm [AHK02] is similar to the FARCTL symbolic model-checking algorithm presented in Chapter 5. ATL seems particularly fitted to the STMframework, as exemplified by the following citation taken from the STM foundationalarticle:

“Under the state-and-transition model, [ecosystem] management would not see
itself as establishing a permanent equilibrium. Rather, it would see itself as en-
gaged in a continuing game, the object of which is to seize opportunities and to
evade hazards, so far as possible. [...] Transitions between states are triggered by
natural ‘events’ (e.g., weather, fire) or by management ‘actions’ (change in stocking
rate, burning, destruction or introduction of plant populations, fertilization). Very
often a combination of the two may be needed.” [WWN89]

Yet, in order to make use of ATL, the system description has to be formulated as a gamebetween players. Thus the RRmodelling language would need to be extended to describethe players and their moves, for example by tagging the rules with the players that canperform the associated move.
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7.3 Interactive component graphs with ecco

At the inception of this thesis, ecco was based upon explicit STGs [GP19; Mao+21; Cos+22;Her+22], i.e. enumerating the states individually, that userswould compact using topolog-ical components such as strongly connected components or dead-ends. For example, thestates forming a strongly connected component could be merged into a single node rep-resenting the SCC as a whole. As ecco’s models often yielded huge STGs, from hundredsof states [Cos+22] to thousands [Mao+21] or even millions in unpublished exploratorywork, users were often overwhelmed by the explicit STGs (when eccomanaged to displaythem, whichwas not always easy for the biggestmodels). Starting froma large explicit STGand incrementally compacting it proved to be troublesome, for example merging everySCCs sometimes produced a graph enclosing still hundreds of nodes representing eacha distinct SCC. Users were often lost in front of the complexity of their model’s STG, seeFigure 7.1, and confined themselves to looking for dead-ends or global properties of theSTG such as strong connectivity or freedom of dead-ends.

Figure 7.1: Example explicit STG built with ecco. 482 nodes and 2640 transitions,from [Cos+22].
Component graphs [PTG22a] take the opposite view compared to explicit STGs: instead ofincreasingly compacting the STG they propose to increasingly refine a partition. Startingfrom the simplest partition composed of a single enclosing component (C = {S}), theuser incrementally splits the components with respect to some properties, see the ex-amples of Chapter 4. As a consequence the number of components can be controlled asevery individual split only divide a component into two sub-components. Instead of beingoverwhelmed by a huge number of individual states and transitions, the user progres-sively sharpens their understanding of the system at each split, new questions arising asthe partition is refined. ecco proposes to interactively explore the information collectedabout each component, helping the user to design further questions and splits. The userhas incrementally refined the partition from the start, and thus is able to fully understandit even if it ends up being quite complex. The partitioning of a given STG can be refinedin many distinct ways, resulting in distinct component graphs answering distinct ques-tions. We hope that this workflow is intuitive for ecologists, indeed it seems to match thefollowing citation taken from the STM foundational article:

“As a general rule, one would distinguish two states only if the difference between
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them represented an important change in the land from the point of view of man-
agement. [...] It follows that a given [ecosystem] could be described in terms of a
greater or lesser number of states and transitions, depending on the nature and
objectives of management and on the state of existing knowledge. There would not
be a single correct description.” [WWN89]

The first use of ecco’s component graph workflow by ecologists is promising [Cos22]. Al-though explicit STGs are easier to understand thanks to their proximity to the semantics,and although temporal logics form a difficult learning step, ecologist users were able toarticulate more complex questions and to produce more refined analyses using the com-ponent graph workflow. Yet we believe that the explicit perspective and the componentgraph perspective are complementary. Indeed explicit STGs are a better introduction toformal analysis and may provide interesting information about moderate-size STGs suchas the protists model, see Figure 4.22.

7.3.1 Perspectives

The most immediate extension of ecco’s component graph perspective would be to dis-play the successive splits hierarchically. When splitting a component into two parts, inaddition to drawing these two new sub-components, we could also draw the initial com-ponents as a box enclosing them, see Figure 7.2. Thus the component graph would fullydisplay the history of the partition refinement, i.e. the successive splitting steps. This mayhelp the interactive exploration of the system’s dynamics by making the interpretationof the component graph more straightforward. It may also help ecologists to grasp thecomponent graph perspective faster by making it more self-explanatory.
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Figure 7.2: Hierarchical component graph. The component #1 has been split into com-ponents #3 and #4, and is drawn as a box enclosing both sub-components. Adapted fromFigure 4.10.
Another extension of ecco’s component graph perspective would be to allow to restrictits transition relation: −→C |α. Indeed, when using FARCTL to split components, the com-ponent graph may be confusing as we used a restricted transition relation to explore thesystem’s behaviour, yet the unrestricted transition relation is displayed in the componentgraph. The restriction of the component graph’s transition relation needs to be user tunedas a single FARCTL formula may use several distinct action-restrictions. Thus, in such acase, there is no obvious restriction for the component graph’s transition relation itself.
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Using simultaneously distinct restricted transition relations in the component graph mayalso prove valuable. For example, in the protists model we could display simultaneouslyon the one hand the invasions and on the other hand the rest of the transitions as distinctrestricted transition relations, see Figure 7.3. In addition, the component graph’s transi-tions could be defined by FARCTL formulas, as in [Abo+15, Fig.3] where the transitions aredefined by s1
α−→ s2 iff s1 |= ∃αF(s2 ∧ ∀αGs2).
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Figure 7.3: Component graph with distinct restricted transition relations. The invasiontransitions are displayed with red arrows, while the rest of the transitions are displayed withblack arrows. Adapted from Figure 4.20.
Furthermore, component graphs can sometimes be misleading because every path in acomponent graph does not always match a path in the STG. For example, if a componentincorporates disconnected portions of the STG, then a path going through this compo-nent may not match a real path in the STG, see Figure 7.4. To ensure that the componentgraph is not misleading, we would like to provide splitting blueprints ensuring that someproperties are preserved in the component graph, for example that any path in the com-ponent graph matches a path in the STG.
Instead of being user-driven, the partition refinement could be an automatic proceduredriven by an equivalence relation between states acting as a splitting blueprint and result-ing in a quotient graph. For example, Figure 7.5a shows such splitting blueprint [Ver22],partitioning any STG with respect to the reachability of a stable state property φ, i.e. suchthat φ ⇒ ∀Gφ meaning that the property that cannot be left once reached. This blueprintgoes exhaustively through all possible cases, for example thatwewill always reachφ (com-ponent #5) or that we cannot reach φ at all (component #2). When using this blueprintto partition a given STG, some components may be empty because no state in the STGsatisfies the corresponding case, resulting in a quotient graph that is a subgraph of theblueprint, see Figure 7.5b. Because we have the blueprint, we know which componentsare missing in the quotient graph and we can display this information, see Figure 7.5.Knowing which behaviours are missing in the quotient graph can prove to be valuableinformation for the understanding of the system dynamics. Conversely, if we had builtFigure 7.5b incrementally without the blueprint, we would not have known which caseswere missing in the component graph. For example, equivalent component graphs werebuilt without the blueprint in [Cos22] and in [PTG22a, Fig.9]. Such blueprints can alsoensure properties between the STG and the component graph, like path equivalence orbisimilarity [Ver22]. For example, the splitting blueprint of Figure 7.5 ensures that every

88



7.3 Interactive component graphs with ecco

(a) STG (b) Component graph
Figure 7.4: Example of a component graph’s path not matching any path in the STG.Vegetation succession of Californian grasslands from [JB02, Fig.2]. The path of the componentgraph: Coastal Prairie −→ Coast Range Grassland −→ Valley Grassland does not match any path inthe STG.

path of the quotient graph matches a path of the STG. This method could be general-ized into a catalogue mapping questions, such as the reachability of stable property, tosplitting blueprints, such as Figure 7.5a, ensuring properties between the STG and thecomponent graph built from the blueprint.
A comparable method would be to build the hybrid product of an STG and a Büchi automa-
ton [Dur+11], resulting in an automaton whose nodes include sets of the STG’s states.Building the product of an STG and a Büchi automaton is a classical procedure for themodel-checking of LTL formulas [Cla+18b], a very popular temporal logic expressing prop-erties of individual maximal paths. Such a hybrid product automaton is very similar to acomponent graph, as it is a hybrid structure mixing symbolic sets of states and explicittransitions between them. In contrast with component graphs, the “components” of ahybrid product automaton do not form a partition of S in general. Indeed, the same stateof the STG may be found in distinct nodes of the hybrid product automaton. In addi-tion, each “component” of a hybrid product automaton includes a node of the originalautomaton, and the hybrid product automaton itself includes an acceptance condition.All this information can be used to interpret the hybrid product automaton. For example,an LTL formula can be translated into a generalized Büchi automaton using the tableaumethod [Dur11], resulting in an Büchi automaton whose nodes and edges can be labelledby the section of the formula they check, see Figure 7.6. Such a Büchi automaton can beseen as another kind of splitting blueprint, not resulting in a quotient graph but in a hybridproduct automaton.
These various kinds of splitting blueprints may be gathered inside a catalogue map-
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Figure 7.5: Example splitting blueprint and quotient graph. Component #5 consists of thestates satisfying φ and of the states that necessarily lead to φ, i.e. satisfying ∀Fφ. Component#2 consists of the states that cannot lead to φ, i.e. satisfying ∀G¬φ. Component #4 consistsof the states that lead to φ, but that can delay infinitely reaching it. Component #3 consistsof the states that lead to components #2, #4 and #5 but that cannot delay infinitely reachingthem. Component #1 consists of the states that lead to all other components, and that candelay infinitely reaching them. Missing components and transitions in the example quotientgraph are displayed striped and dashed. Adapted from [Ver22].
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Figure 7.6: Generalized Büchi automaton built with the tableau method.

ping question patterns to splitting blueprints (equivalence relation if the question canbe phrased in CTL or Büchi automaton if the question can be phrased in LTL). These split-ting blueprints could be explained in detail as they form generic patterns for the analysisof STGs. Properties, such as path equivalence or bisimilarity between the STG and thecomponent graphs could also be ensured directly by splitting blueprints themselves. Webelieve that such a catalogue of generic analyses could help ecologists getting familiarwith the component graph framework.
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7.4 Case studies in ecology

We presented two case studies based on ecology research: the vegetation successions ofthe Borana zone in Ethiopia and the laboratory assembly of protists communities. Eventhough both case studies produce STGs, they differ in many aspects. For example, the
Boranamodelwas built fromobserved transitions, while the protistsmodel was built uponan interaction network inferred from the experiment. The questions answered also differbetween both case studies. The questions asked by the Borana study deal with practicalmanagement problems (focusing on special variable values, such as bush encroachment),while the protists study asks theoretical questions about the presence of generic patternsin the dynamics (independently of the variables instantiating them).
Yet, both studies can be gathered inside the same modelling framework, using the sameformal tools to analyse them. Indeed, the two case studies represent two sides of thesame problem: “how does an ecosystem behave through time?” The Borana study is onthe more practical side, while the protists study is on the more theoretical side. Thesetwo sides come from historically separated fields in ecology, community succession andcommunity assembly, which have been increasingly integrated together in recent timesbut still differ in some aspects because of their legacy [YCH01]. We believe that the logicalmodelling framework presented in this thesis, and developed in computer science andsystems biology, can help join together these two sides that still too often tend to overlookeach other.

7.4.1 Borana vegetation community successions

The Borana model [Tho+22] is built upon the STMs developed by Liao et al. [LC18; LCD18;Lia+20; Lia16] using plant survey, cattle tracking and classification of satellite imagery.From the description of the vegetation states and the description of the transitions be-tween them, we extracted a set of variables and a set of if-then rules driving the Boranavegetation successions. The complete modelling methodology is described in Annex A.2.The STM framework promotes participatory workshops between ecosystem managersand scientists to build models collectively. Our proposed modelling methodology sharesthis concern of remaining as user-friendly as possible, so that ecology experts or profes-sionals untrained in computer science can manage to build their own model [Mao+21;Cos22]. Indeed, if-then rules are easily understood even by inexperienced users andmatch the available data in ecology that often remains sparse and/or qualitative, espe-cially in practical studies. As demonstrated by the Borana model, modelling tools like eccoare able both to encode experimentally observed behaviours (such as the transitions ob-served by satellite imagery) and to forecast novel behaviours based upon well foundedknowledge about processes and transitions [WW20] (such as the incorporation of brows-ing livestock in the model).
The questions raised by STMs are often down-to-earth. They can mostly be summarisedas “how can we enforce/prevent this particular behaviour of the ecosystem?”. This questionis very close to the search for new drugs in systems biology [Flo+15; Bia18], except thatmanagement policies translate into action-restrictions while drugs translate into variable
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forcing. The methods designed in systems biology could surely be adapted to look forecosystemmanagement policies. Ecologists andmanagers need to be able to discuss theanalysis results in order to choose which particular policy they want to implement. Visualresults, for example in the form of component graphs, can be user-friendly enough tobe understood even by untrained users. The visual and intuitive aspect of STMs is one oftheirmost important assets, and it should be kept inmindwhen designing amathematicalframework embracing them.
The STM framework is increasingly used, for example by the USA administration to cat-alogue its ecosystems [Cau13], yet a mathematical setting to compare the behaviours ofseveral STMs is still lacking [Bes+16; WW20]. Computer science could provide such a for-mal framework, for example by comparing component graphs that are abstractions ofsuch STMs in a unifying description setting. Another way of comparing the behavioursof several STMs is to use model-checking to test some dynamical properties of interest.FARCTL fit with STM analysis as it allows the management policy to shift between scenar-ios during the dynamics, which underliesmany of the ecosystemmanagement questions.Another good candidate temporal logic would be the Alternating Time Logic (ATL) [AHK02]that represents the system’s behaviour as the result of a game between players, for ex-ample as a game between one or several managers and the environment.

7.4.2 Protists community assembly

The protists model [Her+22] is built upon the interaction network inferred from the pro-tists experiments [WWL98; WLW03]. Each variable represents a protist species, and in-teractions are translated into if-then rules. One of the most interesting questions raisedby the protists case study is model synthesis, i.e. the automatic design of a model basedupon knowledge about the system’s structure and behaviour. Indeed, 47% of the tran-sitions predicted by the protists model were not recorded during the experiment. Wecan wonder if we could have designed a model more fitted to the observations, i.e. withless unobserved transitions, but based on the same knowledge about the system’s struc-ture, i.e. its interaction network. Note that this problem was already raised in [WWL98]in the form of two questions: “can the behaviour of the system be characterized by a sim-
ple set of rules?” and “to what extent does knowledge of the results from the pairwise species
combinations allow prediction of the outcomes of the more species-rich sets?”. This prob-lem is an active question in computer science, see for example [Che+19] for the modelsynthesis of a Boolean network based upon biological constraints. From the communityassembly perspective, the goal would be to automatically design assembly models basedon interaction networks. This would enable in silico assembly experiments based uponthe knowledge about the interaction network [SA21], a knowledge way cheaper to obtainthan performing a replicated laboratory experiment such as the protists ones [WWL98;WLW03].
The questions raised by assembly graphs are often theoretical, not focusing on specificspecies but on the presence or absence of generic patterns in the dynamics. These ques-tions may be answered by iterating upon the possible instances of these patterns, as weperformed in our case studies. Yet some questions are tedious to solve this way, for ex-ample: “Are there stable communities that cannot be put back together by sequential assembly
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using just the species they contain?” [WLW03]. This question would require iterating over allstable communities and then nesting an iteration upon every possible invasion sequencefor every stable community. These kinds of questions cannot directly be formulated inFARCTL or other temporal logic. An appropriate language to do so remained to be de-fined (or identified if one already exists).
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During the elaboration of this thesis, I moved back and forth between computer scienceand ecology. It was sometimes confusing; for example, many separate concepts of state-transition graphs exist in ecology, as presented in Chapter 1, but they were not gatheredinside a unifying framework. Once gathered inside the STG framework, these ecologi-cal graphs can be compared to the similar concepts of Kripke structure or labelled tran-sition system in computer science. Yet, the meaning of these concepts slightly differsbetween the two disciplines. For example, every maximal path of a Kripke structure isa concrete execution of an automated system, even degenerated paths that cycle in aminor subpart of the graph. But conversely, every maximal path of an STG does not al-ways match a realistic trajectory of an ecosystem, because of implicit realism constraintssuch as the seasonal cycle. The concept of infinite maximal path proved to be particularlypuzzling for ecologists because of these implicit realism constraints. The introduction offairness in Chapter 5 aims at providing a formal framework to articulate these realismconstraints. Defining precisely the realism constraints may help ecologists produce moredeliberate modelling. For example, we could relax the constraint on seasonal changeif some area has a micro-climate without seasonal change, as it sometimes happens incoastal regions.
Similarly, model-checking techniques can be applied to both Kripke structures modellingautomated systems and STGsmodelling ecosystems. Yet, the goals and questions slightlydiffer between the two disciplines. In computer science, model-checking aims at provingthat an automated system is bug-free, thus the main question is: “is there any bug?”, andthe desired output is “no”. In ecology, the main question is: “does that behaviour happen
? can it be enforced or prevented?” and the expected output is: “it can happen / be en-
forced / be prevented only in these specific cases”. In computer science, the outcome of amodel-checking process is the modification of the automated system to remove faultybehaviours. In ecology, the desired outcome is the differentiation between the trajec-tories satisfying the targeted behaviour and these that do not, as well as the branchingbetween them. Indeed, the ecosystem cannot be modified drastically. But, as humansare often part of it, they may influence it from inside in order to enforce or prevent tar-geted behaviours. In systems biology, which already uses model-checking techniques,the perspective also differs slightly from either computer science or ecology because thesystem is perceived as an unalterable chemical machine that can only be influenced usingexternal forces such as drugs.
These divergent perspectives on the same concepts and techniques can cause misun-derstandings between computer scientists and ecologists. We are forced to articulatethese perspectives that otherwise often remain implicit. Once the ecological perspectiveabout STG andmodel-checking techniques is made explicit, it can raise new questions for
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computer scientists. For example, ecologists would like a visual output representing thepartition between the maximal paths satisfying or not satisfying targeted behaviours, aswell as the branching between them. I tried to tackle this challenge in this thesis usingcomponent graphs, but much work is still to be done on this subject.
Most existing ecological STGs have a limited size, often a few dozen of states at most, andthus may not require automated analysis. Yet, I believe that fact is likely due to the lack ofor unawareness about existing automated analysis tools. For example, satellite imagerycan producemassive empirical STGs, just like the Borana vegetation classification [LCD18]but with finer classes. However, even in the case of small STGs, a formal framework islacking for the often handmade analysis of the dynamics. Computer science may providesuch a formal framework, and the existing concepts for ecological STGs could thus beformally defined, compared, and investigated.
In conclusion, I believe there would be much to learn for both fields if computer scienceand ecology worked collaboratively. Making computer science concepts and techniquesunderstandable for ecologists, and conversely, is challenging yet rewarding work becauseboth fields must make an effort to understand the other side’s perspective. It is the partof this thesis that interested me the most and that I am the proudest of. I hope that Iachieved to draft a bridge between these two fields that too often overlook each other.
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A Appendix

A.1 Proof of the symbolic CTL algorithm

In this section, we prove the definitions of CTL operators as single fixed points presentedin Table 2.2. We also provides fixed points definitions for additional temporal opera-tors [BK08] that are implemented inside ecco: W “weak until”, R “release” and M “strong
release” . Starting from the canonical definition of ∃U as a fixed point [BK08; Cla+18a]:

∃(φ1Uφ2) = µ Z.φ2 ∨ (φ1 ∧ ∃XZ)

From the definition of ∀U as a fixed point for finite and infinite maximal path givenin [PR07]:
∀(φ1Uφ2) = ¬

(
µ Z.(¬φ2 ∧ (¬φ1 ∨ ¬∃X⊤)) ∨ (¬φ2 ∧ ∃XZ)

)
∧ ¬

(
ν Z.¬φ2 ∧ ∃XZ

)
From the following canonical rewriting of CTL operators [BK08; Cla+18a]:

▶ ∃Fφ = ∃(⊤Uφ) and ∀Fφ = ∀(⊤Uφ)
▶ ∃Gφ = ¬∀F¬φ and ∀Gφ = ¬∃F¬φ

▶ ∃φ1Wφ2 = ∃φ1Uφ2 ∨ ∃Gφ1 and ∀φ1Wφ2 = ¬∃¬φ2U¬(φ1 ∨ φ2)
▶ ∃φ1Rφ2 = ∃φ2Wφ1 ∧ φ2 and ∀φ1Rφ2 = ∀φ2Wφ1 ∧ φ2

▶ ∃φ1Mφ2 = ∃φ2Uφ1 ∧ φ2 and ∀φ1Mφ2 = ∀φ2Uφ1 ∧ φ2

And using the following theorems:
Theorem 2.1. For any φ ∈ CTL and any state s ∈ S , one and only one of ∃Xφ, ∀X¬φand ¬∃X⊤ holds in s. Thus they can be rewritten into one another:

∃Xφ = ¬(∀X¬φ ∨ ¬∃X⊤)
∀X¬φ = ¬(∃Xφ ∨ ¬∃X⊤)
¬∃X⊤ = ¬(∃Xφ ∨ ∀X¬φ)

Theorem 2.2 ([McM93]). If S is finite, and if τ is monotonic (S ⊆ S′ ⇒ τ(S) ⊆ τ(S′)),then τ has a least fixed point noted µ Z.τ(Z) (the smallest for the set inclusion) and a
greatest fixed point noted ν Z.τ(Z) (the largest for the set inclusion).
Moreover ∃n ∈ N such that µ Z.τ(Z) = τn(∅) and ν Z.τ(Z) = τn(S).
Theorem A.1 (µ/ν duality [BS07a]). µ Z.τ(Z) = ¬ν Z.¬τ(¬Z)
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Theorem A.2. Let τ = λ x.f(x) ∨ φ with φ a formula without occurrence of x, and fa function conserving the union: f(A ∪ B) = f(A) ∪ f(B). Then if the state space S isfinite:
ν Z.τ(Z) = (ν Z.f(Z)) ∨ (µ Z.τ(Z))

Proof. Let us prove by recurrence on i ≥ 1 that τ i(S) = f i(S) ∪ τ i(∅):
▶ τ(S) = f(S) ∪ φ = f(S ∪ ∅) ∪ φ = f(S) ∪ f(∅) ∪ φ = f(S) ∪ τ(∅)
▶ suppose that τ i(S) = f i(S) ∪ τ i(∅) then:

τ i+1(S) = τ
(
τ i(S)

)
= τ

(
f i(S) ∪ τ i(∅)

) by recurrence
= f(f i

(
S) ∪ τ i(∅)

)
∪ φ

= f
(
f i(S)

)
∪ f

(
τ i(∅)

)
∪ φ because f(A ∪ B) = f(A) ∪ f(B)

τ i+1(S) = f i+1(S) ∪ τ i+1(∅)

S is finite, thus by Theorem 2.2, ∃n ∈ N such that ν Z.τ(Z) = τn(S), ν Z.f(Z) = fn(S)and µ Z.τ(Z) = τn(∅) (in fact there is a n for each fixed point and we take the max ofthem). We have τn(S) = fn(S) ∪ τn(∅) thus ν Z.τ(Z) = (ν Z.f(Z)) ∨ (µ Z.τ(Z)).

In particular Theorem A.2 can be applied to f = ∃X as it conserves the union:
∃X(A ∪ B) = {s ∈ S | ∃sA ∈ A such that s −→ sA or ∃sB ∈ B such that s −→ sB}

= {s ∈ S | ∃sA ∈ A such that s −→ sA} ∪ {s ∈ S | ∃sB ∈ B such that s −→ sB}
∃X(A ∪ B) = ∃X(A) ∪ ∃X(B)

We can now define the CTL operators as fixed points:
∀(φ1Uφ2) = ¬

(
µ Z.(¬φ2 ∧ (¬φ1 ∨ ¬∃X⊤)) ∨ (¬φ2 ∧ ∃XZ)

)
∧ ¬

(
ν Z.¬φ2 ∧ ∃XZ

)
= ¬

((
µ Z.(¬φ2 ∧ (¬φ1 ∨ ¬∃X⊤)) ∨ (¬φ2 ∧ ∃XZ)

)
∨

(
ν Z.¬φ2 ∧ ∃XZ

))
= ¬ν Z.

(
¬φ2 ∧ (¬φ1 ∨ ¬∃X⊤)

)
∨ (¬φ2 ∧ ∃XZ)

= ¬ν Z.¬φ2 ∧ (¬φ1 ∨ ∃XZ ∨ ¬∃X⊤)
= ¬ν Z.¬

(
φ2 ∨ (φ1 ∧ ¬∃XZ ∨ ∃X⊤)

)
= µ Z.φ2 ∨ (φ1 ∧ ¬∃X¬Z ∧ ∃X⊤)

∀(φ1Uφ2) = µ Z.φ2 ∨ (φ1 ∧ ∀XZ)

∃Fφ = ∃(⊤Uφ) = µ Z.φ ∨ ∃XZ

∀Fφ = ∀(⊤Uφ) = µ Z.φ ∨ ∀XZ

∃Gφ = ¬∀F¬φ
= ¬∀(⊤U¬φ)
= ¬µ Z.¬φ ∨ ∀XZ
= ν Z.¬(¬φ ∨ ∀X¬Z)
= ν Z.φ ∧ ¬∀X¬Z

∃Gφ = ν Z.φ ∧ (∃XZ ∨ ¬∃X⊤)
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∀Gφ = ¬∃F¬φ
= ¬∃(⊤U¬φ)
= ¬µ Z.¬φ ∨ ∃XZ
= ν Z.¬(¬φ ∨ ∃X¬Z)
= ν Z.φ ∧ ¬∃X¬Z

∀Gφ = ν Z.φ ∧ (∀XZ ∨ ¬∃X⊤)

∃φ1Wφ2 = ∃φ1Uφ2 ∨ ∃Gφ1

=
(
µ Z.φ2 ∨ (φ1 ∧ ∃XZ)

)
∨

(
ν Z.φ1 ∧ (∃XZ ∨ ¬∃X⊤)

)
=

(
µ Z.φ2 ∨ (φ1 ∧ ∃XZ)

)
∨

(
ν Z.φ1 ∧ ∃XZ

)
∨(

µ Z.(φ1 ∧ ∃XZ) ∨ (φ1 ∧ ¬∃X⊤)
)

=
(
µ Z.φ2 ∨ (φ1 ∧ ¬∃X⊤) ∨ (φ1 ∧ ∃XZ)

)
∨

(
ν Z.φ1 ∧ ∃XZ

)
= ν Z.φ2 ∨ (φ1 ∧ ¬∃X⊤) ∨ (φ1 ∧ ∃XZ)

∃φ1Wφ2 = ν Z.φ2 ∨ (φ1 ∧ (¬∃X⊤ ∨ ∃XZ))

∀φ1Wφ2 = ¬∃¬φ2U¬(φ1 ∨ φ2)
= ¬µ Z.¬(φ1 ∨ φ2) ∨ (¬φ2 ∧ ∃XZ)
= ¬µ Z.¬(φ1 ∨ φ2) ∨ (¬φ2 ∧ ¬∀X¬Z ∧ ∃X⊤)
= ¬µ Z.¬

(
(φ1 ∨ φ2) ∧ (φ2 ∨ ¬∃X⊤ ∨ ∀X¬Z)

)
= ν Z.(φ1 ∨ φ2) ∧ (φ2 ∨ ¬∃X⊤ ∨ ∀XZ)

∀φ1Wφ2 = ν Z.φ2 ∨ (φ1 ∧ (¬∃X⊤ ∨ ∀XZ))

∃φ1Rφ2 = ∃φ2Wφ1 ∧ φ2
= ν Z.(φ1 ∧ φ2) ∨

(
φ2 ∧ (¬∃X⊤ ∨ ∃XZ)

)
∃φ1Rφ2 = ν Z.φ2 ∧ (φ1 ∨ ¬∃X⊤ ∨ ∃XZ)

∀φ1Rφ2 = ∀φ2Wφ1 ∧ φ2
= ν Z.(φ1 ∧ φ2) ∨

(
φ2 ∧ (¬∃X⊤ ∨ ∀XZ)

)
∀φ1Rφ2 = ν Z.φ2 ∧ (φ1 ∨ ¬∃X⊤ ∨ ∀XZ)

∃φ1Mφ2 = ∃φ2Uφ1 ∧ φ2
= µ Z.(φ1 ∧ φ2) ∨ (φ2 ∧ ∃XZ)

∃φ1Mφ2 = µ Z.φ2 ∧ (φ1 ∨ ∃XZ)

∀φ1Mφ2 = ∀φ2Uφ1 ∧ φ2
= µ Z.(φ1 ∧ φ2) ∨ (φ2 ∧ ∀XZ)

∀φ1Mφ2 = µ Z.φ2 ∧ (φ1 ∨ ∀XZ)

The whole fixed point semantics of CTL on finite and infinite paths is summarised in Ta-ble A.1.
Ô Technical remark

Note that Theorem A.2 does not stand if f does not conserve ∪, for example f = ∀X.
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If you take:
∀(φ1Wφ2) = ν Z.φ2 ∨ (φ1 ∧ ∀XZ)

̸= (ν Z.φ1 ∧ ∀XZ) ∨ (µ Z.φ2 ∨ (φ1 ∧ ∀XZ))
̸= ∀Gφ1 ∨ ∀(φ1Uφ2)

∃ ∀

X ∃Xφ = Pred(φ) ∀Xφ = ∃X⊤ ∧ ¬∃X¬φ

U ∃(φ1Uφ2) = µ Z.φ2 ∨ (φ1 ∧ ∃XZ) ∀(φ1Uφ2) = µ Z.φ2 ∨ (φ1 ∧ ∀XZ)

W ∃(φ1Wφ2) =
ν Z.φ2 ∨ (φ1 ∧ (¬∃X⊤ ∨ ∃XZ))

∀(φ1Wφ2) =
ν Z.φ2 ∨ (φ1 ∧ (¬∃X⊤ ∨ ∀XZ))

R ∃(φ1Rφ2) = ν Z.φ2 ∧(φ1 ∨¬∃X⊤∨∃XZ) ∀(φ1Rφ2) = ν Z.φ2 ∧(φ1 ∨¬∃X⊤∨∀XZ)

M ∃(φ1Mφ2) = µ Z.φ2 ∧ (φ1 ∨ ∃XZ) ∀(φ1Mφ2) = µ Z.φ2 ∧ (φ1 ∨ ∀XZ)

F ∃Fφ = µ Z.φ ∨ ∃XZ ∀Fφ = µ Z.φ ∨ ∀XZ

G ∃Gφ = ν Z.φ ∧ (∃XZ ∨ ¬∃X⊤) ∀Gφ = ν Z.φ ∧ (∀XZ ∨ ¬∃X⊤)

Table A.1: Fixed points definitions of CTL operators on finite and infinite maximal paths.
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A.2 Justification of the Borana model

A.2.1 Modelling methodology

The Borana model is based on the following studies about the vegetation dynamics of theBorana Zone in Ethiopia: [Lia16; LCD18; LC18; Lia+20].
“The complexity of rangeland vegetation dynamics can be interpreted by the state-
and-transition model, in which rangeland dynamics are described as a set of dis-
crete “states” of vegetation at a specific site and changes between states that occur
as discrete “transitions”.” [LCD18, p.2]

“Transitions from one state to another often require a combination of climatic cir-
cumstances and management actions (e.g., fire or grazing) to bring them about.”
[Lia+20, p.7]

The Borana model represents the discrete vegetation states by a set of Boolean variables,other Boolean variables called controls also cover management actions and climatic cir-cumstances. The transitions between states are described by if-then rules linking a condi-
tion (on the values of the variables) with a consequence (an update of the variables).

“Therefore, spatial knowledge of current vegetation states plus understanding of
past and future transition pathways is needed to properly prescribe and apply
efforts to mitigate undesirable processes such as bush encroachment.
The goal of this study was to provide pastoralists, rangeland managers, and policy
makers with a spatial understanding of the past, current, and potential rangeland
vegetation states in Borana” [LCD18, p.2]

In order to foresee the future transition pathways, the Borana model is not limited toa description of the observed transition pathways (the STGs available in [LCD18; LC18;Lia+20]). From a set of initial states, the Borana model computes every state reachable bythe cascading applications of if-then rules. Thus the Borana model outputs unobservedtransition pathways, assuming that the vegetation dynamics can be deduced from thedescription of the discrete transitions (i.e. the set of if-then rules). In consequence, thismethodology can be used to foresee the effects of new ecosystemmanagement policies,as long as they result into discrete transitions.

A.2.2 Variables

We chose five vegetation variables (Gr, Sh, Tr, Sa, Cr, see Figure 4.3) to represent the eightvegetation classes (Table 4.1) forming the states of the Borana STMs [LCD18]. We thenadded three variables representing the presence of grazers or browsers (Lv, Gz, Bw, seeFigure 4.3).
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“While climatic and edaphic factors primarily determine broad-scale vegetation
distribution, complex patches of open and closed canopy rangelands can exist
within a single climate zone, suggesting that controls such as fire and herbivory
are important at a finer spatial scale.” [LCD18, p.3]

“Mean annual rainfall ranges from 300mm in the lowlands to 1, 000mm in the
highlands. [...] Generally, annual precipitation is positively correlated with eleva-
tion.” [LCD18, p.2]

“The government prohibited grazing in such forested areas for conservation pur-
poses” [LCD18, p.8]

“Until the 1950s, crop cultivation throughout the Borana Zone was banned by in-
digenous rules. [...] In recent years, commercial farming has become more preva-
lent.” [LCD18, p.8]

“Adding more goats and camels while reducing the number of cattle in the herds
could be crucial. [...] Rather than simply living with bush encroachment, pastoral-
ists can actively contribute to its mitigation by changing their livestock portfolios.”
[LCD18, p.8-9]

We defined seven control variables (Figure 4.3), representing climate/altitude (Alt), fireban (Fb), crop ban (Cb), or herbivory (Wl, Ps, Ig, BLv). Controls influence the system butcannot change along the dynamics (see the ruleset Figure 4.4), thus each valuation of thecontrols represents a specific scenario.

A.2.3 Initial states

“Since the 1970s, fire has been banned, leaving livestock grazing as major local-
level disturbance factor. The last high-intensity fire set the rangeland state as grass-
land.” [LC18, p.7]

The initial states represent the grassland vegetation class (grasses are the only presentvegetation) after the last high-intensity fire (no animals). Hence the only variable initiallyvaluated on is Gr+ (Figure 4.3). There is a single initial state per scenario (i.e. controlvaluation), thus there are 27 = 128 initial states.

A.2.4 Rules

Fire rules: R1, R2

“Since the 1970s, fire has been banned.” [LC18, p.7]

Hence Fb- in the condition of R1, R2.
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“Low intensity fires would periodically burn grasses, shrubs, and tree saplings on
sparse scrubland, but would leave adult trees undamaged.” [LC18, p.7]

Hence Sh-, Sa- in the consequence of R1.
“High intensity but low frequency fire could change the landscape into a grass-
dominated system.” [LC18, p.7]

Hence Sh-, Tr-, Sa- in the consequence of R2.
“Although bush burning ban has been lifted since the 2000s, herbaceous biomass
in the understory was minimal, and fuel loads would not build up and could not
set the stage for fires to properly thin the woody layer.” [LC18, p.7]

Hence Gr+ in the condition of R1, R2.
“Grasses and other herbs usually established themselves first after fire” [LC18, p.7]

Hence we did not set Gr- in the consequence of R1 and R2. Thus, as Gr+ is in the conditionof R1 and R2, it is still present after their application.
Finally, animals are not mentioned during fire descriptions [LC18; Lia+20], we assumedthat they flee. Hence Lv-, Gz-, Bw- in the consequence of R1 and R2.

Trees recruitment: R3

“Given favorable environmental conditions, tree seedlings could grow into mature
trees and gradually close the canopy.” [Lia16, p.43]

Grass recruitment: R4

“Grasses and other herbs usually established themselves first after fire” [LC18, p.7]

We assumed that grasses established themselves first after any perturbation clearing thevegetation cover.

Closed Canopy Woodland transition: R5

“In the highlands [...] given higher precipitation and absence of fire, tree seedlings
in dense scrubland could grow into mature trees and gradually close the canopy.”
[LCD18, p.8]
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Hence Alt+ (“in the highlands”), Fb+ (“absence of fire”), and Gr- (“in dense scrubland”) incondition.

Bushland transition: R6

“(Bushland) at the higher end of the (elevation) range is shifting into dense scrub-
land. [...] In the relatively dry lowlands of the Borana Zone, the primary vegetation
transition is from grassland to bushland.” [LCD18, p.8]

We chose to represent this fact by the competitive exclusion of tree saplings Sa by shrubs
Sh at low altitude Alt-.

Grazers: R7

We assumed that the presence of wild grazers Gz+ is conditioned by the presence ofgrasses Gr+ and by the absence of livestock Lv-.

Browsers: R8, R9

We assumed that the presence of wild browsers Bw+ is conditioned by the presence ofshrubs Sh+ (R8) or saplings Sa+ (R9), and by the absence of livestock Lv-.

Livestock: R10, R11, R12

We assumed that the presence of livestock Lv+ is conditioned by the presence of grasses
Gr+ (R10), or under browsing livestock policies BLv+ by the presence of shrubs Sh+ (R11)or saplings Sa+ (R12). We also assumed that livestock Lv+ excludes both wild grazers Gz-and wild browsers Bw-.

Grazing: R13, R14

“With woody plant recruitment and wildlife grazing, the grassland could gradually
shift into a sparse scrubland state. [...] Light to moderate grazing reduced under-
story cover of grassland, and the system shifted into sparse scrubland given plant
recruitment. [...] Similarly, on the open canopy woodland, woody plants would also
become denser given moderate grazing pressure, gradually shifting the rangeland
into the sparse scrubland state.” [LC18, p.7]
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Intensive grazing: R15

“Heavy grazing on the sparse scrubland could diminish forage in the understory
within a short time period, thus leaving the scattered woody plants free from com-
petition.” [LC18, p.7]

“As pastoralists sedentarize and herd livestock near and around their settlements
in response to external sedentarization initiatives, rangelands can shift into bare
ground or shrublands with minimal grazing value.” [Lia+20, p.2]

Browsing: R16, R17

“Wildlife browsing could keep the re-sprouting woody species in check.” [LC18, p.7]

“Increasing browsing pressure by goats and camels can thin the woody plant layer
and suppress the growth of shrubs and trees, which can indirectly facilitate the
growth of herbs on the ground.” [LCD18, p.8]

We chose to represent this fact by enabling browsers (wild Bw+ or domestic BLv+∧Lv+) toremove shrubs Sh- and saplings Sa-. Grasses Gr+ are supposed to establish themselvesfirst in the cleared space.

Crops: R18, R19

“Dense scrublands, along with other minor classes such as closed and open canopy
woodlands, that are situated at above 1, 200m are being converted to cultivated
areas, which allows the practice of rain-fed agriculture.” [LCD18, p.8]

“Cropland expansion [...] accelerate rangeland degradation and wildlife habitat
loss, and discourage mobile livestock herding” [Lia+20, p.2]

We chose to represent dense scrublands, closed and open canopy woodland by the pres-ence of trees (see Table 4.1). Hence the condition of R18: high altitude Alt+, crops beingallowed Cb- and trees Tr+. The consequence of R18 includes the replacement of grasses
Gr-, shrubs Sh- and saplings Sa- by cultivated species Cr+, and the disappearance of bothlivestock Lv- and wild life Gz-, Bw-.

“During the 2003–2013 decade, 355km2 of cropland transitioned backed to dense
scrublands and 124km2 back to open canopy woodlands.” [LCD18, p.7]

We assumed grasses establish themselves first after crops are abandoned (R19).
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A.2.5 Improvements

Here we list some worth considering improvements, unfortunately unavailable datawould be required in order to implement them:
▶ Add a variable representing bare soil. Indeed the definition of the vegetationclasses [LCD18, Tab.1] is based on vegetation cover, which does not always sumup to 100%. Thus the percentage of bare soil is a part of the vegetation classes de-scription. Nevertheless, bare soil is almost never mentioned in the sources, so wechose to not include it in the variables.
▶ Represent species instead of plant functional types. Indeed the vegetationclasses [LCD18, Tab.1] do not encompass the same species of grasses, shrubsnor trees. Unfortunately, data on the species dynamics is lacking for the Boranazone.
▶ Desynchronise shrubs and saplings browsing. The browsing rules (R16, R17) re-move saplings and shrubs simultaneously, but it may not be the case in reality (be-cause of foraging preferences for example). Without more precise data, we choseto synchronise both removals.
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A.3 Proof of the symbolic FARCTL algorithm

In this section, we provide in-depth proofs of the fixed points definitions of FARCTL oper-ators ∃FS
α G(φ) and ∃FW

α G(φ) given in Lemma 5.1, Theorem 5.1 and Theorem 5.2.

A.3.1 Detailed proof of Lemma 5.1 and Theorem 5.1

Recall the following definitions used in Lemma 5.1 and Theorem 5.1:
Definition 5.6 (∞∃ ,

∞
∀ ). Let π be a maximal path and eS ∈ ARCTLS a state-event:

▶ π |=
∞
∃ eS iff ∀i ∈ N i ⩽ |π| ⇒ ∃j ∈ N such that i ⩽ j ⩽ |π| and π[j]S |= eS

▶ π |=
∞
∀ eS iff ∃i ∈ N such that i ⩽ |π| and ∀j ∈ N i ⩽ j ⩽ |π| ⇒ π[j]S |= eS

Let π be a maximal path and eA ∈ ARCTLA an action-event:
▶ π |=

∞
∃ eA iff |π| = ∞ and ∀i ∈ N ∃j ⩾ i such that π[j]A |= eA

▶ π |=
∞
∀ eA iff |π| = ∞ and ∃i ∈ N such that ∀j ⩾ i π[j]A |= eA

Definition 5.15. Let eS ∈ ARCTLS a state-event, eA ∈ ARCTLA an action-event, and
Z ⊆ S:

▶ ∃α
−→−X |=eS (Z) = eS ∧ (∃αXZ ∨ ¬∃αX⊤)

▶ ∃α
−→−X ̸|=eS (Z) = ¬eS ∧ (∃αXZ ∨ ¬∃αX⊤)

▶ ∃α
−→−X |=eA(Z) = ∃α∧eAXZ

▶ ∃α
−→−X ̸|=eA(Z) = ∃α∧¬eAXZ ∨ ¬∃αX⊤

Definition 5.16 (τFS
α ). Let FS = {FS(e1, e2) | e1 ∈ ARCTLS} a fairness assump-tion composed exclusively of strong fairness constraints whose first events are state-events e1 ∈ ARCTLS . We define τFS

α as:
τFS

α (Z) =
∧

FS(e1,e2)∈FS

(
∃α

−→−X ̸|=e1(Z) ∨ ∃α(ZUZ ∧ ∃α
−→−X |=e2(Z))

)

Lemma 5.1.
(
s ∈ ν Z.(φ ∧ τFS

α (Z))
)

⇒
(
s |= ∃FS

α G(φ)
)

Proof. The proof follows the same structure as the proof of the main text, but both:(1) details the cases depending on whether e2 are state-events or action-events, and(2) uses the formal semantics of the strong fairness instead of its intuitive one.
Let S′ = ν Z.(φ∧τFS

α (Z)). For every state s ∈ S′, we have s |= φ and ∀FS(e1, e2) ∈ FSat least one of the following is true:
1. s |= ∃α

−→−X ̸|=e1(S′), i.e. because e1 is a state-event we have: s |= ¬eS1 ∧ (∃αXS′ ∨
¬∃αX⊤). Thus either s is an α-dead-end not satisfying e1, or s does not satisfy
e1 and has an α-successor in S′. Thus when building a maximal path π within
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S′, one can pass by s and either be trapped in a dead-end without e1 happening
(thus π ̸|=

∞
∃ e1 and consequently π is fair), or extend π in S′ without e1 happen-ing.

2. s |= ∃α(S′US′ ∧ ∃α
−→−X |=e2(S′)), meaning that there is a state s′ ∈ S′ which is α-reachable from s within S′ such that s′ |= ∃α

−→−X |=e2(S′). There are two cases,depending on whether e2 is a state-event or an action-event:2.i. If e2 ∈ ARCTLS is a state-event. Then s′ |= eS2 ∧ (∃αXS′ ∨ ¬∃αX⊤).Thus either s′ is an α-dead-end satisfying e2, or s′ satisfies e2 and has an
α-successor in S′.

2.ii. If e2 ∈ ARCTLA is an action-event. Then s′ |= ∃α∧e2XS′. Thus s′ has an
(α ∧ e2)-successor in S′.Thus if s |= ∃α(S′US′ ∧∃α

−→−X |=e2(S′)), then when building amaximal path π within
S′, one can pass by s and extend π within S′ to reach a state s′ that either is an
α-dead-end with e2 happening (thus π |=

∞
∃ e2 and consequently π is fair), orwhere π can be further extended with e2 happening.

Thus from any s ∈ S′, one can build a maximal path π within S′ satisfying continu-ously φ and either ending in a dead-end satisfying every strong fairness constraint,or infinitely carrying on while ∀FS(e1, e2) ∈ FS , if e1 happens then it is eventually fol-lowed by e2. If several distinct e1 happens infinitely often along the construction of
π, then we can extend π to reach infinitely often every associated e2 by alternatingbetween them. Thus if e1 happens infinitely often along π then e2 happens infinitely
often as well:

(
π |=

∞
∃ e1

)
⇒

(
π |=

∞
∃ e2

)
. Hence s |= ∃FS

α G(φ).

Theorem 5.1. ∃FS
α G(φ) = ∃α(φUν Z.(φ ∧ τFS

α (Z)))

Proof. The proof follows the same structure as the proof of the main text, but both:(1) details the cases depending on whether e2 are state-events or action-events, and(2) uses the formal semantics of the strong fairness instead of its intuitive one.
The proof of ∃α(φUν Z.(φ ∧ τFS

α (Z))) ⊆ ∃FS
α G(φ) is the same as in the main text.

Let us prove that ∃FS
α G(φ) ⊆ ∃α(φUν Z.(φ ∧ τFS

α (Z))). Let s ∈ ∃FS
α G(φ) and take π ∈

Π|FS
α (s) such that π |= Gφ. We will use the fact that ν Z.τ(Z) def= ∪{S ⊆ S | S ⊆ τ(S)}[BS07a] to show that s ∈ ∃α(φUν Z.(φ ∧ τFS

α (Z))). Indeed τFS
α is monotonic (i.e. if

S ⊆ S′ then τFS
α (S) ⊆ τFS

α (S′)) as one can see when instantiating τFS
α :

τ
FS(eS1,eS2)
α (Z) = (¬eS1 ∧ (∃αXZ ∨ ¬∃αX⊤)) ∨ ∃α(ZUZ ∧ eS2 ∧ (∃αXZ ∨ ¬∃αX⊤))

τ
FS(eS1,eA2)
α (Z) = (¬eS1 ∧ (∃αXZ ∨ ¬∃αX⊤)) ∨ ∃α(ZUZ ∧ ∃α∧eA2XZ)

There are two cases, depending on whether π is finite or infinite:
1. If |π| ∈ N, then take s′ = π[|π|]S the α-dead-end ending π. We will prove that

{s′} ⊆ φ ∧ τFS
α ({s′}). Indeed s′ ∈ φ because π |= Gφ. Let us prove that

s′ ∈ τFS
α ({s′}). For all FS(e1, e2) ∈ FS we will prove that s′ ∈ ∃α

−→−X ̸|=e1({s′}) ∨
∃α

−→−X |=e2({s′}) ⊆ ∃α
−→−X ̸|=e1({s′})∨∃α(ZUZ∧∃α

−→−X |=e2({s′})) because s′ is anα-dead-
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end (i.e. s′ |= ¬∃αX⊤) and π |= FS(e1, e2) =
(

π ̸|=
∞
∃ e1

)
∨

(
π |=

∞
∃ e2

)
. There

are two cases, depending on whether e2 are state-events or action-events:
1.i. If e1, e2 ∈ ARCTLS . If π |=

∞
∃ e2 then s′ |= e2 and thus s′ |= ∃α

−→−X |=e2({s′}) =
e2 ∧ (∃αX{s′} ∨ ¬∃αX⊤). Conversely if π ̸|=

∞
∃ e1 then s′ ̸|= e1 and thus

s′ |= ∃α
−→−X ̸|=e1({s′}) = ¬e1 ∧ (∃αX{s′} ∨ ¬∃αX⊤).

1.ii. If e1 ∈ ARCTLS and e2 ∈ ARCTLA. Then π ̸|=
∞
∃ e2 because |π| ≠ ∞. Thus

π ̸|=
∞
∃ e1 meaning that s′ ̸|= e1. Thus s′ |= ∃α

−→−X ̸|=e1({s′}) = ¬e1 ∧ (∃αX{s′} ∨
¬∃αX⊤)..Thus s′ ∈⊆ τFS

α ({s′}). Then s′ ∈ ν Z.(φ∧ τFS
α (Z)), and finally s ∈ ∃α(φUν Z.(φ∧

τFS
α (Z))).

2. If |π| = ∞. Let i ∈ N be the minimal index such that: ∀FS(e1, e2) ∈ FS if
π ̸|=

∞
∃ e2, then ∀j ⩾ i, π[j] ̸|= e1. Such i exists because ∀FS(e1, e2) ∈ FS ,(

π ̸|=
∞
∃ e1

)
∨

(
π |=

∞
∃ e2

)
, meaning that if e2 happens only finitely often along

π, then e1 happens only finitely often along π as well. Take π[i . . .] the infinitesuffix of π starting from its i-th state (i.e. π[i]S
π[i+1]A−−−−−→ π[i + 1]S

π[i+2]A−−−−−→ . . .),that is the suffix of π such that ∀FS(e1, e2) ∈ FS , if e2 does not happen infinitelyoften then e1 does not happen at all. Take π[i . . .]S the states of this suffix, letus prove that π[i . . .]S ⊆ φ ∧ τF
α (π[i . . .]S). π[i . . .]S ⊆ φ because π |= Gφ. ∀j ⩾ iand ∀FS(e1, e2) ∈ FS , let us prove that π[j]S ∈ ∃α

−→−X ̸|=e1(π[i . . .]S) ∨ ∃α(ZUZ ∧
∃α

−→−X |=e2(π[i . . .]S)). There are two cases, depending on whether e2 are state-events or action-events:2.i. If e1, e2 ∈ ARCTLS . If π[j]S |= e1 then ∃k > j such that π[k]S |= e2,and thus π[j]S |= ∃α(π[i . . .]SUπ[i . . .]S ∧ e2 ∧ (∃αX(π[i . . .]S) ∨ ¬∃αX⊤)).Otherwise π[j]S ̸|= e1, and thus π[j]S ∈ ¬e1 ∧ (∃αX(π[i . . .]S) ∨ ¬∃αX⊤).
2.ii. If e1 ∈ ARCTLS and e2 ∈ ARCTLA. If π[j]S |= e1 then ∃k > j suchthat π[k]A |= e2, thus π[j]S |= ∃α(π[i . . .]SUπ[i . . .]S ∧ ∃α∧e2X(π[i . . .]S)).Otherwise π[j]S ̸|= e1, and thus π[j]S ∈ ¬e1 ∧ (∃αX(π[i . . .]S) ∨ ¬∃αX⊤).Thus π[i . . .]S ⊆ φ ∧ τFS

α (π[i . . .]S). Then π[i . . .]S ∈ ν Z.(φ ∧ τFS
α (Z)), and finally

s ∈ ∃α(φUν Z.(φ ∧ τFS
α (Z))).

A.3.2 Detailed proof of Theorem 5.2

Recall the following definitions used in Theorem 5.2:
Lemma 5.3. Let π a maximal path, eS ∈ ARCTLS a state-event, and eA ∈ ARCTLAan action-event:

π ̸|=
∞
∀ eS iff π |=

∞
∃ ¬eS

π ̸|=
∞
∀ eA iff |π| ≠ ∞ or π |=

∞
∃ ¬eA
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Corollary 5.3. Let π a maximal path, and e2 a state-event or an action-event:
▶ Let e1 a state-event, π |= FW (e1, e2) iff

(
π |=

∞
∃ ¬e1 or π |=

∞
∃ e2

)
▶ Let e1 an action-event, π |= FW (e1, e2) iff

(
|π| ≠ ∞ or π |=

∞
∃ ¬e1 or π |=

∞
∃ e2

)

Theorem 5.2. Let FW a fairness assumption composed exclusively of weak fairnessconstraints, we define τFW
α as:

τFW
α (Z) =

∧
FW (e1,e2)∈F

(
∃α(ZUZ ∧ (∃α

−→−X ̸|=e1(Z) ∨ ∃α
−→−X |=e2(Z)))

)

Then: ∃FW
α G(φ) = ν Z.(φ ∧ τFW

α (Z))

Proof. Let us prove that ν Z.(φ ∧ τFW
α (Z)) ⊆ ∃FW

α G(φ). Let S′ = ν Z.(φ ∧ τFW
α (Z)).For every state s ∈ S′, we have s |= φ and ∀FW (e1, e2) ∈ FW we have s |= ∃α(S′US′ ∧

(∃α
−→−X ̸|=e1(S′) ∨ ∃α

−→−X |=e2(S′))). Thus from s there is a finite path π in S′ of length |π| =
i ∈ N ending in a state π[i]S ∈ S′ such that π[i]S |= (∃α

−→−X ̸|=e1(S′) ∨ ∃α
−→−X |=e2(S′)). Thusif π[i]S |= ∃α

−→−X ̸|=e1(S′), there are two cases:
1. If e1 ∈ ARCTLS is a state-event. Then π[i]S |= ¬e1 ∧(∃αXS′ ∨¬∃αX⊤), meaningthat π[i]S ̸|= e1 and either π[i]S is an α-dead-end or π can be α-extended within

S′.
2. If e1 ∈ ARCTLA is an action-event. Then π[i]S |= ∃α∧¬e1XS′ ∨ ¬∃αX⊤, meaningthat either π[i]S is an α-dead-end or π can be α-extended within S′ such that

π[i + 1]A ̸|= e1.
Likewise if π[i]S |= ∃α

−→−X |=e2(S′), there are also two cases:
1. If e2 ∈ ARCTLS is a state-event. Then π[i]S |= e1 ∧ (∃αXS′ ∨ ¬∃αX⊤), meaningthat π[i]S |= e1 and either π[i]S is an α-dead-end or π can be α-extended within

S′.
2. If e2 ∈ ARCTLA is an action-event. Then π[i]S |= ∃α∧e2XS′, meaning that π canbe α-extended within S′ such that π[i + 1]A |= e2.

Let us prove that from s ∈ S′, we can build a maximal path π ∈ Π|α(s) such that
∀FW (e1, e2) ∈ FW we have π |= FW (e1, e2). There are two cases:

1. If e1 ∈ ARCTLS is a state-event. Recall Corollary 5.3: π |= FW (e1, e2) iff(
π |=

∞
∃ ¬e1 or π |=

∞
∃ e2

)
. At least one of the following is true:

1.i. π[i]S |= e1 and π[i]S is an α-dead-end, thus π |=
∞
∃ ¬e1.

1.ii. π[i]S |= e1 and π can be α-extended within S′.
1.iii. e2 ∈ ARCTLS is a state-event and π[i]S is an α-dead-end thus π |=

∞
∃ e2.

1.iv. e2 ∈ ARCTLS is a state-event and π can be α-extended within S′.
1.v. e2 ∈ ARCTLA is an action-event and π can be α-extended within S′ suchthat π[i + 1]A |= e2.Thus by induction over s either π ends in an α-dead-end satisfying FW (e1, e2),
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or can be infinitely α-extended within S′ while satisfying at least one of (e1, e2)infinitely often. Thus π |= FW (e1, e2).
2. If e1 ∈ ARCTLA is an action-event. Recall Corollary 5.3: π |= FW (e1, e2) iff(

|π| ≠ ∞ or π |=
∞
∃ ¬e1 or π |=

∞
∃ e2

)
. At least one of the following is true:

2.i. π[i]S is an α-dead-end.
2.ii. π can be α-extended within S′ such that π[i + 1]A ̸|= e1.
2.iii. e2 ∈ ARCTLS is a state-event and π[i]S is an α-dead-end thus π |=

∞
∃ e2.

2.iv. e2 ∈ ARCTLS is a state-event and π can be α-extended within S′.
2.v. e2 ∈ ARCTLA is an action-event and π can be α-extended within S′ suchthat π[i + 1]A |= e2.Thus by induction over s either π ends in an α-dead-end (i.e. |π| ≠ ∞), or can beinfinitely α-extended within S′ while satisfying at least one of (e1, e2) infinitelyoften. Thus π |= FW (e1, e2).

To conclude ∀s ∈ ν Z.(φ ∧ τFW
α (Z)) ∃π ∈ Π|α(s) such that π |= ∃αGφ and

∀FW (e1, e2) ∈ FW we have π |= FW (e1, e2). Thus ν Z.(φ ∧ τFW
α (Z)) ⊆ ∃FW

α G(φ).
Now let us prove that ∃FW

α G(φ) ⊆ ν Z.(φ ∧ τFW
α (Z)). Let s ∈ ∃FW

α G(φ), thus ∃π ∈
Π|α(s) such that π |= Gφ and ∀FW (e1, e2) ∈ FW we have π |= FW (e1, e2). Let usprove that the states of π, noted π[. . .]S , are in ν Z.(φ ∧ τFW

α (π[. . .]S)). We will use the
fact that ν Z.τ(Z) def= ∪{S ⊆ S|S ⊆ τ(S)} [BS07a]. Indeed τFW

α is monotonic (i.e. if
S ⊆ S′ then τFW

α (S) ⊆ τFW
α (S′)) as one can see when instantiating τFW

α :
τ

FW (eS1,eS2)
α (Z) = ∃α(ZUZ ∧ (¬eS1 ∨ ¬eS2) ∧ (∃αXZ ∨ ¬∃αX⊤))

τ
FW (eA1,eS2)
α (Z) = ∃α(ZUZ ∧ (∃α∧¬eA1XZ ∨ ¬∃αX⊤ ∨ (eS2 ∧ ∃αXZ)))

τ
FW (eS1,eA2)
α (Z) = ∃α(ZUZ ∧ ((¬eS1 ∧ (∃αXZ ∨ ¬∃αX⊤)) ∨ ∃α∧eA2XZ))

τ
FW (eA1,eA2)
α (Z) = ∃α(ZUZ ∧ (∃α∧¬eA1XZ ∨ ¬∃αX⊤ ∨ ∃α∧eA2XZ))

π[. . .]S ⊆ φ because π |= Gφ. ∀FW (e1, e2) ∈ FW and ∀s′ ∈ π[. . .]S , there are twocases:
1. If e1 ∈ ARCTLS is a state-event. Recall Corollary 5.3: π |= FW (e1, e2) iff(

π |=
∞
∃ ¬e1 or π |=

∞
∃ e2

)
. At least one of the following is true:

1.i. π |=
∞
∃ ¬e1, thus either π ends in an α-dead-end satisfying ¬e1 meaningthat s′ |= ∃α(π[. . .]SUπ[. . .]S ∧ ¬e1 ∧ ¬∃αX⊤), or ¬e1 happens infinitelyoften along π meaning that s′ |= ∃α(π[. . .]SUπ[. . .]S ∧ ¬e1 ∧ ∃αXπ[. . .]S).

1.ii. e2 ∈ ARCTLS is a state-event and π |=
∞
∃ e2. Thus either π endsin an α-dead-end satisfying e2 meaning that s′ |= ∃α(π[. . .]SUπ[. . .]S ∧

e2 ∧ ¬∃αX⊤), or e2 happens infinitely often along π meaning that s′ |=
∃α(π[. . .]SUπ[. . .]S ∧ e2 ∧ ∃αXπ[. . .]S).

1.iii. e2 ∈ ARCTLA is an action-event and π |=
∞
∃ e2. Thus e2 happens infinitelyoften along π meaning that s′ |= ∃α(π[. . .]SUπ[. . .]S ∧ ∃α∧e2Xπ[. . .]S).Thus by induction over s′, we have π[. . .]S ⊆ φ ∧ τFW

α (π[. . .]S).
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2. If e1 ∈ ARCTLA is an action-event. Recall Corollary 5.3: π |= FW (e1, e2) iff(
|π| ≠ ∞ or π |=

∞
∃ ¬e1 or π |=

∞
∃ e2

)
. At least one of the following is true:

2.i. |π| ≠ ∞, thus s′ |= ∃α(π[. . .]SUπ[. . .]S ∧ ¬∃αX⊤)

2.ii. π |=
∞
∃ ¬e1, thus ¬e1 happens infinitely often along π meaning that s′ |=

∃α(π[. . .]SUπ[. . .]S ∧ ∃α∧¬e1Xπ[. . .]S).
2.iii. e2 ∈ ARCTLS is a state-event and π |=

∞
∃ e2. Thus either π endsin an α-dead-end satisfying e2 meaning that s′ |= ∃α(π[. . .]SUπ[. . .]S ∧

e2 ∧ ¬∃αX⊤), or e2 happens infinitely often along π meaning that s′ |=
∃α(π[. . .]SUπ[. . .]S ∧ e2 ∧ ∃αXπ[. . .]S).

2.iv. e2 ∈ ARCTLA is an action-event and π |=
∞
∃ e2. Thus e2 happens infinitelyoften along π meaning that s′ |= ∃α(π[. . .]SUπ[. . .]S ∧ ∃α∧e2Xπ[. . .]S).Thus by induction over s′, we have π[. . .]S ⊆ φ ∧ τFW

α (π[. . .]S).
To conclude ∀s ∈ ∃FW

α G(φ), we have ∃π ∈ Π|α(s) such that s ∈ π[. . .]S ⊆ φ ∧
τFW

α (π[. . .]S). Thus s ∈ ν Z.(φ ∧ τFW
α (Z)) and ∃FW

α G(φ) ⊆ ν Z.(φ ∧ τFW
α (Z)).
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Synthèse

Cette thèse est à l’interface entre informatique et écologie, elle présente des méthodesformelles pour la modélisation et l’analyse de la dynamique d’un écosystème sous laforme d’un graphe état-transition à l’aide de techniques demodel-checking. Tout d’abord,nous introduisons le concept de graphe état-transition d’écosystème qui, bien qu’étantoriginal, capture une longue histoire de représentations disparates de la dynamique d’unécosystème sous la forme d’un graphe. Un graphe état-transition décrit le comporte-ment d’un système comme un graphe dont les noeuds sont les états du système et lesarrêtes sont les transitions entre ces états. Un graphe état-transition est donc une cartereprésentant les différentes trajectoires qu’un écosystème peut emprunter. La gestiond’un écosystème revient alors à diriger la trajectoire que celui-ci suit dans le graphe, parexemple pour restaurer un milieu dégradé.
En informatique, un graphe état-transition représente les différentes exécutions possi-bles d’un logiciel. Le model-checking est une méthode automatique d’analyse utiliséepour s’assurer de l’absence de bug durant l’exécution d’un logiciel. Un outil de model-checking vérifie que les trajectoires du graphe état-transition satisfont une propriétéd’intérêt décrite par une formule de logique temporelle, par exemple qu’un comporte-ment nuisible est toujours évité. Dans la perspective de la gestion d’un écosystème, lemodel-checking pourrait par exemple être utilisé pour vérifier que les trajectoires del’écosystème conservent une espèce d’intérêt. En informatique, le model-checking estutilisé itérativement: tant que le model-checking trouve un bug, on modifie le logiciel, cequi modifie le graphe état-transition de ses exécutions, et on teste ce nouveau grapheétat-transition avec l’outil de model-checking. Cette procédure ne peut être appliquéedirectement à la gestion d’un écosystème en remplaçant le logiciel par l’écosystème, eneffet on ne peut/veut pas modifier directement l’écosystème mais on veut influencer surson comportement.
C’est pourquoi nous proposons dans cette thèse uneméthode d’analyse basée sur le par-titionnement des états entre ceux dont les trajectoires vérifient une propriété d’intérêtet ceux dont les trajectoires ne la vérifient pas. Ainsi le but n’est pas de modifierl’écosystème, mais de sélectionner les états ou les transitions permettant d’influencer soncomportement. Cetteméthode, dérivée dumodel-checking CTL, résulte en une représen-tation hybride explicite/symbolique, c’est à dire en un graphe dont chaque noeud est unsous-ensemble de noeuds du graphe état-transition initial. Cette méthodologie est im-plémentée dans ecco, une boite à outil développée en Python pour la modélisation etl’analyse d’écosystèmes. Cette approche est illustrée par deux études de cas: les change-ments de végétation de la région du Borana en Éthiopie et l’assemblage de communautésde protistes. Dans le premier cas, on sélectionne les scénarios de gestion empêchantl’embuissonnement ou le rendant réversible, dans le second cas on partitionne les étatspar rapport aux communautés stables auxquelles ilsmènent. Ces deux études de cas sontlimitées par le fait que l’on voudrait que certains événements, par exemple les change-



ments de scénarios de gestion ou les invasions d’espèces, ne se produisent pas arbitraire-ment mais de manière contrôlée.
Cette limitation peut être surmontée grâce à ARCTL, une extension de CTL qui permetde restreindre les transitions autorisées au cours de la formule. Nous étendons ARCTLavec la notion d’équité, c’est à dire de contrainte de réalisme sur le l’ordre et le tauxd’occurrence d’événements le long des trajectoires, ce qui résulte en FARCTL. Nous four-nissons un algorithme symbolique pour lemodel-checking de FARCTL qui est implémentédans ecco. Enfin, nous appliquons FARCTL aux deux études de cas: pour examiner lesconséquences des changements de scénarios de gestion sur la dynamique de végétationduBorana et les conséquences d’invasions d’espèces dans l’assemblage de communautésde protistes.





Titre: Analyse de graphes état-transition d’écosystèmes à l’aide de model-checking

Mots clés: graphes état-transition, écosystèmes, model-checking, ARCTL, équité

Résumé: Cette thèse présente des méthodes formelles pour la modélisation d’écosystèmes et l’analyse des
graphes état-transition résultants à l’aide de model-checking. Tout d’abord, nous introduisons le concept de
graphe état-transition d’écosystème qui, bien qu’étant nouveau, capture une longue histoire de représenta-
tions disparates de la dynamique d’écosystèmes sous forme de graphes. Ensuite, nous proposons une méthode
d’analyse basée sur le partitionnement des états grâce au model-checking, qui résulte en une représentation
hybride explicite/symbolique appelée graphe de composantes. Cette méthodologie est implémentée dans ecco,
une boite à outil développée en Python pour la modélisation et l’analyse formelle d’écosystèmes. Cette ap-
proche est illustrée par deux études de cas: les changements de végétation de la région du Borana en Éthiopie,
et l’assemblage de communautés de protistes. Ces deux études de cas sont limitées par le fait que l’on voudrait
que certains événements, par exemple des changements de scénarios de gestion ou des invasions d’espèces, ne se
produisent que d’une manière contrôlée. Cette limitation peut être surmontée grâce à ARCTL, une extension de
CTL qui permet de restreindre les actions autorisées au cours de la formule. Nous étendons ARCTL avec la no-
tion d’équité, ce qui résulte en FARCTL, et nous fournissons un algorithme symbolique pour le model-checking
de FARCTL qui est implémenté dans ecco. Enfin, nous appliquons FARCTL aux deux études de cas, pour
examiner les conséquences des changements de scénarios de gestions, et les conséquences d’invasions d’espèces.

Title: Analysis of state-transition graphs of ecosystems using model-checking

Keywords: state-transition graphs, ecosystems, model-checking, ARCTL, fairness

Abstract: This thesis presents formal methods for the modelling of ecosystems and the analysis of their state-
transition graphs using model-checking. First, we introduce the concept state-transition of ecosystems graph
that, while being a novelty, captures a long history of disparate representations of the dynamics of an ecosystem
as a graph. Then, we propose an analysis methodology based on the partitioning of the states using model-
checking, which results in hybrid explicit/symbolic representation called component graph. This methodology is
implemented inside ecco, a Python toolbox developed for the formal modelling and the analysis of ecosystems.
This approach is exemplified in two case studies: vegetation changes of the Borana Zone in Ethiopia under
diverse management scenarios, and protists community assembly. Both case studies are limited by the fact that
we would want some specific events, for example changes in management scenarios or species invasions, to occur
only in a controlled manner. This limitation can be overcome using ARCTL, an extension of CTL that allows
to restrict the set of enabled actions along a formula. We extend ARCTL with fairness constraints resulting
in FARCTL, and provide a symbolic model-checking algorithm for FARCTL that we implemented inside ecco.
Finally, we apply FARCTL to both case studies, to investigate the consequences of shifting between management
scenarios, and to look for specific invasion behaviours.
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