N
N

N

HAL

open science

Memory-Optimization for Self-Stabilizing Distributed
Algorithms
Gabriel Le Bouder

» To cite this version:

Gabriel Le Bouder. Memory-Optimization for Self-Stabilizing Distributed Algorithms. Dis-
tributed, Parallel, and Cluster Computing [cs.DC]. Sorbonne Université, 2023. English. NNT:

2023SORUS002 . tel-04065663

HAL Id: tel-04065663
https://theses.hal.science/tel-04065663

Submitted on 12 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-04065663
https://hal.archives-ouvertes.fr

"\ SORBONNE

S UNIVERSITE

THESE

PRESENTEE A

SORBONNE UNIVERSITE

ECOLE DOCTORALE INFORMATIQUE,
TELECOMMUNICATIONS ET ELECTRONIQUE

Par Gabriel Le Bouder
POUR OBTENIR LE GRADE DE

DOCTEUR
SPECIALITE : INFORMATIQUE

Optimisation de la Mémoire pour les Algorithmes
Distribués Auto-Stabilisants

These dirigée par Lélia BLIN et Franck PETIT préparée au Laboratoire d’Informatique de

Paris 6 (LIP6), équipe DELYS, soutenue publiquement le 6 janvier 2023.

apres avis des rapporteurs :

Stéphane DEVISMES — Professeur, Université de Picardie Jules Verne, France
Christian SCHEIDELER — Professeur, Université de Paderborn, Allemagne

et devant le jury composé de :

Rapporteur Stéphane DEVISMES

Professeur, Université de Picardie Jules Verne, France

Rapporteur Christian SCHEIDELER — Professeur, Université de Paderborn, Allemagne

Ezaminateur Nicolas HANUSSE — Directeur de Recherche, CNRS, LaBRi, France

Examinateur Alessia MILANI — Professeure, Aix-Marseille Université, France

Examinateur Sébastien TIXEUIL — Professeur, Sorbonne Université, France

Directrice Lélia BLIN — Maitresse de conférence HDR, LIP6, Université d’Evry, France
Directeur Franck PETIT — Professeur, Sorbonne Université, France

- 2023 -

Memory-Optimization for

Self-Stabilizing Distributed Algorithms

Referees

Committee

GABRIEL LE BOUDER

in fulfillment of the requirements for the degree of
Doctor in the subject of
Computer Science

January 6th, 2023

Stéphane DEVISMES Professor - University of Picardie Jules Verne, France
Christian SCHEIDELER Professor - Paderborn University, Germany

Stéphane DEVISMES Professor - University of Picardie Jules Verne, France.
Christian SCHEIDELER Professor - Paderborn University, Germany.

Nicolas HANUSSE Research Director - CNRS, LaBRI, France.

Alessia MILANI Professor - Aix-Marseille Université, France.

Sébastien TIXEUIL Professor - Sorbonne Université, France.

Lélia BLIN Associate Professor HDR - LIP6, Université d’Evry, France.
Franck PETIT Professor - Sorbonne Université, France.

CREATEURS DE FUTURS
DEPUIS 1257

"\ SORBONNE
b UNIVERSITE

Referee
Referee
Examinor
Examinor
Examinor
Director
Director

Résumé

L’auto-stabilisation est un paradigme adapté aux systemes distribués, particulierement sus-
ceptibles de subir des fautes transitoires. Des erreurs de corruption de mémoire, de mes-
sages, la rupture d’un lien de communication peuvent plonger le systeme dans un état
incohérent. Un protocole est auto-stabilisant si, quel que soit 1’état initial du systeme, il
garantit un retour a un fonctionnement normal en temps fini.

Plusieurs contraintes s’appliquent aux algorithmes congus pour les systémes distribués.
L’asynchronie en est un exemple emblématique. Avec le développement de réseaux d’objets
connectés, censés étre autonomes, il devient également central de concevoir des algorithmes
ayant un faible cofit en termes de consommation énergétique et peu exigeants en termes de
ressources.

Une des manieres d’appréhender ces problémes est de chercher a réduire la taille des
messages échangés entre les différents nceuds du réseau. Cette theése se concentre sur
I'optimisation de la mémoire nécessaire a la communication pour les algorithmes distribués
auto-stabilisants.

Nous établissons dans cette theése plusieurs résultats négatifs, démontrant I'impossibilité
de résoudre certains problémes sans une certaine taille minimale pour les messages échangés,
en établissant une impossibilité d’utiliser jusqu’au bout 'existence d’identifiants uniques
dans le réseau en dessous de cette taille minimale. Ces résultats sont génériques et peuvent
s’appliquer a de nombreux problémes distribués. Dans un second temps, nous proposons
des algorithmes particulierement efficaces en mémoire pour la résolution de deux prob-
lemes fondamentaux des systemes distribués: la détection de terminaison, et la circulation
perpétuelle de jeton.

Abstract

Self-stabilization is a suitable paradigm for distributed systems, particularly prone to tran-
sient faults. Errors such as memory or messages corruption, break of a communication link,
can put the system in an inconsistent state. A protocol is self-stabilizing if, whatever the
initial state of the system, it guarantees that it will return a normal behavior in finite time.

Several constraints concern algorithms designed for distributed systems. Asynchrony
is one emblematic example. With the development of networks of connected, autonomous
devices, it also becomes crucial to design algorithms with a low energy consumption, and
not requiring much in terms of resources.

One way to address these problems is to aim at reducing the size of the messages ex-
changed between the nodes of the network. This thesis focuses on the memory optimization
of the communication for self-stabilizing distributed algorithms.

We establish in this thesis several negative results, which prove the impossibility to
solve some problems under a certain limit on the size of the exchanged messages, by show-
ing an impossibility to fully use the presence of unique identifiers in the network below
that minimal size. Those results are generic, and may apply to numerous distributed prob-
lems. Secondly, we propose particularly efficient algorithms in terms of memory for two
fundamental problems in distributed systems: the termination detection, and the token
circulation.

Acknowledgments

Bien que signée de ma main seule, cette these n’a été menée a son terme que grace a
I’implication de bien des personnes autour de moi.

Je remercie en premier lieu mes encadrants Lélia et Franck, qui m’ont transmis leur
intérét pour la recherche, m’ont accompagné sur les plans scientifique et moral dans cette
longue et difficile tache, toujours avec la préoccupation de maintenir une ambiance de travail
saine et respectueuse.

Je tiens également a remercier toutes les autres personnes avec qui j’ai collaboré durant
ces trois ans, et notamment Swan, Laurent et Colette.

Merci aussi a ceux qui, dans mon équipe, ont fait de notre couloir un lieu de vie riche
d’échanges, de débats et de vie, Aymeric, Baptiste, Célia, Etienne, Francis, Ilyas, Jonhatan,
Jonhatan, Julien, Reda, Saalik, et Vincent.

Une these requiert un investissement qui déborde des portes du bureau. Je remercie
Carmen qui m’a aidé, supporté, accompagné, dans les bons et les mauvais moments, et
sans qui ces trois ans auraient été bien plus difficiles.

Je remercie aussi les copaines de Bordeaux, de Cachan, d’Ivry, de Vitry et d’ailleurs,
qui m’ont permis de respirer quand j’en avais besoin.

Je tiens également a remercier ma famille, et en particulier mon pére, qui m’a soutenu
dans les moments les plus compliqués.

Enfin, je ne peux ne pas citer ma mere, qui a participé a faire de moi ce que je suis
aujourd’hui.

Contents

1 Introduction

2 Model
2.1 Preliminaries
2.2 Distributed System
2.2.1 Characteristics of Distributed Systems
2.2.2 Model of Distributed Systems:
2.2.3 Local Knowledge
2.2.4 Knowledge about the Topology of the System
2.2.5 Common Topologies
2.3 Communication Model, Algorithm .
231 Memory
2.3.2 Communication
2.3.3 Deterministic Algorithm . . .
2.4 Scheduler
2.4.1 Asynchrony
2.4.2 Schedules and Schedulers . .
2.4.3 Common Schedulers
2.4.4 Relation Between Schedulers
2.5 Problems Specification
2.5.1 Specification
2.5.2 Examples of Problems
2.5.3 Classes of Problems
2.6 Stabilization.
2.7 Efficiency of an Algorithm
2.7.1 Comparison Functions
2.7.2 Spatial Complexity
2.7.3 Time Complexity
3 Lower Bound for Spatial Complexity
3.1 Imtroduction.
3.1.1 Motivation
3.1.2 Related Work
3.1.3 Contributions
32 Model
3.2.1 Indistinguishability
3.2.2 Degree-limited
3.2.3 Model for Sections 3.4 and 3.5
3.2.4 Model for Section 3.6
3.2.5 Leader Election Problem . . .
3.3 Intuition of the proofs
3.3.1 Challenge of lower bounds for non-silent algorithms

Networks

Contents

3.3.2 Intuition on a minimal example 29

3.4 Equivalence with Anonymous Networks 30
3.4.1 Statement of the Theorem 30
3.4.2 Proof in Spy on uniform networks 30
3.4.3 Generalization to Spk and to semi-uniform networks 32

3.5 Equivalence with Homonymous Networks 33
3.5.1 Statement of the Theorem 33
3.5.2 Proof when k dividesn, 33
3.5.3 Proofforanymn 35

3.6 Lower Bound for £LE 36
3.6.1 Statement of the Theorem 36
3.6.2 Limits of Theorems 3.2 and 3.3 37
3.6.2.1 k-Homonymy 37

3.6.2.2 Indistinguishability 0. 37

3.6.3 Proof 38

3.7 Conclusion e e 40
Silent Anonymous Snap-Stabilizing Termination Detection 41
4.1 Introduction e 42
4.1.1 Motivation L 42
4.1.2 Related Worko 43
4.1.3 Contribution e 44

4.2 Model e 45
4.2.1 Computational Hypothesis 45
4.2.2 Unison Algorithms 45
4.2.3 Termination Detection Algorithms 46
4.2.4 Algorithm-Specific Notations 48

4.3 Properties of Unison Algorithms 48
4.3.1 Preliminaries: Silent Unison Algorithms 48
4.3.2 Rules of Unison Algorithms 48
4.3.3 Tools on Executions of Unison Algorithms 49
4.3.4 Properties of Unison Algorithms 51

4.4 Algorithm 52
4.4.1 Scheme of Algorithm T 53
4.4.2 Variables 53
4.4.3 Overview of the algorithm 53
4.4.4 Predicates e 59
4.4.5 Actions 55

4.5 Correctness of Algorithm 7 L 55
4.5.1 Simulation properties of 7 56
4.5.2 Termination of T 58
4.5.3 Snap-stabilizationo L o o 59
4.5.4 Time complexity 65

4.6 Conclusion 65
Optimal Self-stabilizing Token Circulation in DODAGs 67
5.1 Imtroduction 68
5.1.1 Motivation 68

5.1.2 Related Worko 69
5.1.3 Contributions L 70

5.2 Model and Definitions 71

5.2.1 General Model 71

Contents xi

5.2.2 DODAGSs e 71
5.2.3 Bit-by-Bit Communication of Identifier 74
5.2.4 Well-Founded Sets 74
5.2.5 Token Circulation, 75
53 Algorithm 7
5.3.1 Issues Relative to the Communication Model and Partial Solutions . 77
5.3.2 General Ideas of our Algorithm 78
5.3.3 First Tools for the Algorithm 80
5.3.3.1 Variables 80
5.3.3.2 Common Sets 83
5.3.4 Rules of the Algorithm 83
5.3.4.1 Error 84
5.3.4.2 End of the Negotiation Phase 84
5.3.4.3 Negotiation Identifier-Based 87
5.3.4.4 Operations Post-Negotiation 90
5.3.4.5 Reception of the Token from a Child. 92
5.3.4.6 End of the Circulation. 92
5.3.4.7 Complete Algorithm 95
5.4 Proof of the Correctness of our Algorithm 95
5.4.1 Liveness e e e e e 97
5.4.2 Progress 106
5.4.2.1 Difficulties to Overcome, Circulation DODAG 107
5.4.2.2 Circulation DODAGs 108
5.4.2.3 Introduction to the potential functionWw 111
5.4.2.4 First component of W: We, future children of v 114
5.4.2.5 Second component of W: Wg, errors descending from v . . . 120
5.4.2.6 Third component of W: W¢irc, circulation of variable tok . . 124

5.4.2.7 Fourth component of W: Wpy.y, circulation of variable play
onchildren 130

5.4.2.8 Fifth component of W: Wyego Negotiation between one parent
and its children 135
5.4.29 Conclusions e 149
5.4.3 Convergence e 153
5.4.4 Space Optimality of our Algorithm 160
5.5 Conclusion e 162
6 Conclusion 163

Bibliography 165

List of Figures

2.1

3.1

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29

Common topologies L
Two computing steps which do not break symmetry

Diagram forreq, L L
Causal Pyramid Scheme o
Rules of R, depending on the enabled rules for Aand U
Final Descent e

A destination-oriented directed acyclic graph (D°).o
Example of a DODAG under an anchor, and of a sub-DODAG of G
Scheme of the circulation of a token from top to bottom in a triangle
Scheme of the return of a token to the right parent in a triangle
Increase of the area in which the token circulates starting from an arbitrary
configuration L
Process of the designation of one child to give the token to
Transition diagram for variable tok,.
Cleaning children before sending up the token
Node with several parents indicating a token
Execution of rules for returning the token back to one child
Execution of rules for returning the token back to one parent
Chain of the states taken by a node during the execution of the agorithm
Chain of execution of the different rules on one node
Proof of Lemma 5.1 L
Proof of Lemma 5.2
Proof of Lemma 5.3, part. 1.
Proof of Lemma 5.3, part. 2
Proof of Lemma 5.4
Proof of Lemma 5.5
Proof of Lemma 5.6
Proof of Lemma 5.7
Example of CD?’s o
Dedicated weight function for each rule
Evolution of the state of a child of a node holding the token
Weight associated to a child of a node holding the token
Example of the definition of Wez onaD®.
Value of Wgir. depending on the variable tok,..
Diagram of variable play,.
Bi-branch D° By, e

T

CHAPTER 1

Introduction

The Matrix is everywhere. It is all around us. Even
now, in this very room. You can see it when you look
out your window or when you turn on your television.
You can feel it when you go to work... when you go to
church... when you pay your taxes.

Morpheus

The continuous development of communication technologies has deeply changed every
aspect of our society. Most users see this evolution through the increasing role and size of
Internet, social networks, instant messaging, etc. It also brought ruptures in the core of the
economy. Six out of the eight biggest companies in the world, in terms of capitalization,
are directly linked to computing technology, produce both devices and services, the stock
market itself also relies on those technologies.

Communication technology is in constant change, and already widely diverse. Data
collection from connected objects relies on the structure of the Internet of Things (IoT),
GPS technology relies on a very precise synchronization in satellite networks, phone internet
is based on Wi-Fi networks.

With the development of communication protocols involving small, autonomous devices
which communicate via WiF1i, it is crucial to design algorithms which are efficient in terms
of energy, memory, CPU...

All these communication technologies can be described as distributed systems. A dis-
tributed system, which we also call network, is a system composed of several autonomous
computing units, and of communication links between those units. Each device computes
autonomously, depending on the information it has, and can send and receive informa-
tion to other devices through the communication links. Each unit is directly linked to a
non-empty subset of the other units, its neighbors, such that there exists a communication
path between any two computing units. This definition includes computer networks, sensor
networks, swarm robots, parallel computers. ...

Although very diverse, distributed systems share some characteristics which differenti-
ate them from central systems. In distributed systems, the different computing units of a
distributed system do not necessarily compute at the same speed, may run different compu-
tations which do not take the same time, may run on different materials which do not have
the same performances. This results in an asynchrony inherent to distributed systems.
In particular, the individual clocks of each device may desynchronize, which invalidates the
possibility to rely on a global notion of time.

We must also consider that the communication between devices takes place through
communication links of various qualities, length, with different speeds. This makes it im-
possible to define a reliable order on the operations made by separate devices: an execution
on one system may not be linearizable. Therefore, one cannot expect any synchroniza-
tion between the different devices of a distributed system. This asynchrony has, as a direct
consequence, non-determinism on the evolution of the system. Even if the algorithm con-

2 Chapter 1. Introduction

sidered is deterministic, the order in which the nodes compute, send and receive messages
may be different in two separate executions.

Distributed systems are more prone to faults than centralized systems. Such systems
cover a huge quantity of diverse devices and depend on a large variety of communication
technologies, which make the existence of communication or unit errors very likely within
time. Therefore, algorithms for distributed systems should be fault-resilient.

In distributed systems, the computing units are autonomous, which means that they
all execute their own code, and update their own variables. By definition, nodes have no
global view on the state of the system. Therefore, the computations and decisions
made by the individual devices in order to make the system behave correctly only depend
on the local memory of the device, and on the messages it received from its direct neighbors.
Due to asynchrony, this information may be outdated, and due to faults, they can even be
€rroneous.

Wireless networks are simpler to deploy than wired networks, and therefore are more
and more spread, and larger and larger within time. The IoT, sensor networks, or swarm
robots are research and technological areas in constant development. All those networks
share some properties which make it a specific challenge to design algorithms for them. In
wired networks, the messages are exchanged through physical, wired, communication links.
Due to commutation technology, everything behaves like if any communication link was
shared by exactly two devices. In such situations, identifying the communication link, the
port on which it is physically connected, allows devices to know which of their neighbors
sent them some message. Reciprocally, devices can without difficulty send a message to
exactly one of their neighbors.

Things are very different for wireless networks. In such networks, any message sent by
one device is identically received by all of its neighbors, through wireless communication
(WiFi, Bluetooth, radio...). Therefore, sending a message to one specific neighbor is
impossible, and addressing a message to one specific neighbor is a challenge, since
the same message will be received by all the other nodes in the neighborhood. Not only
does this complicate the resolution of some tasks, but in addition this can lead to an
increase in the number of sent messages in the network, and even to loops of propagation
of information.

One way to solve this issue is to rely on unique identifiers possessed by nodes, such
as MAC addresses, or IP addresses. If all nodes share their unique identifier to all of
their neighbors, then it becomes possible to address a message to one specific neighbor
by prefixing the message with the recipient identifier. This technique has several flaws.
The first one is that it does not apply to networks in which nodes do not have a unique,
permanent, identifier. Such networks are said anonymous. A lot of operations are much
more complicated to achieve in anonymous networks. Even in networks in which devices
have a globally unique identifier, it might be desirable to avoid such solutions. Indeed, this
solution requires the transmission if identifiers, by WiFi, to the entire neighborhood, which
rises privacy and/or security issues. Finally, prefixing all messages by the identifier of
the recipient has a non-negligible cost in terms of size of the message communicated by
the devices.

Sensor networks, robot networks, also have in common the fact that the devices involved
may be distant from any source of energy for a pretty long period of time. In order to keep
them able to perform their task, algorithms for such networks should be as little talkative
as possible. Indeed, in distributed systems, devices constantly exchange information to
check local consistency, and perform the task they are designed for. To save battery, and
extend the life expectancy of the devices, it becomes crucial to make the messages as short
as possible. For this reason, designing algorithms which do not require the exchange of the
node identifiers is an interesting challenge. One other interest of such algorithms is that

they do not require a lot of memory, since nodes do not have to store the identifiers of
their neighbors, and thus are suitable for networks in which the devices have a low storage
capacity.

Problems addressed in the field of distributed computing can be very diverse.

Structure construction problems designate all the problems which aim at providing
the network a structure which satisfies an intended property. This structure can be spanning
the whole network (maximal independent set, tree, ...), involving only one node (leader
election). Building structures is often a first step to solve a more complicated problem.

Mutual exclusion problems designate all the problems which aim at assuring that one
or several resources in the network (a printer, a computing server, a database...) is not
accessed by several users at the same time. This exclusion can be local: no two neighbors
can access the resource at the same time, or global: no two devices of the networks can
access the resource at the same time.

Global observation problems designate all the problems which aim at gathering on
one or several nodes information relative to the global state of the system. The particular
information can be the termination of a computation as well as detecting some property on
the topology of the network, or the presence of a deadlock.

Nowadays distributed systems involve more and more components, and more and more
non-reliable components (watches, fridges, printers...). With this increase of the number
of devices, the probability that faults occur increase as well. These faults can be caused
by the environment, by attacks, or even by the device itself which may be poorly coded, or
unadapted to the conditions in which it operates. Furthermore, the effects of such faults
are also pretty diverse. It can lead to a temporary or permanent disappearing of one node,
or of some communication links. I can also be simply the transmission of some erroneous
messages. In the worst case, an attacker takes permanent control of one or several nodes,
which hinder a normal behavior of the system.

Two main paradigms are suitable for faulty distributed systems.

Robustness [GLM06, CDPR20] is a paradigm which focuses on the nature of the
solution. A solution is robust if, even when some node, or some communication links crash,
the solution remains valid. Designing robust solutions to problems allows ignoring the
future faults in the system. Such solutions are generally expensive, and hard to build when
they exist, which is not always the case. They are mainly used for critical systems, such as
nuclear plants, passenger transport (planes, autonomous cars), etc.

Self-stabilization, introduced by Dijkstra [Dij74], is a more general paradigm, which
focuses on the ability to autonomously recover a correct configuration after some faults
occur. This paradigm is suitable for transient faults, which happen rarely enough for the
system to have enough time to converge between faults. An algorithm is self-stabilizing if,
whatever the initial configuration of the system, it returns to a correct behavior in finite
time. Several variants of self-stabilization are presented in the literature.

In this thesis, we focus on the space complexity of some distributed problems in the
framework of self-stabilization for wireless networks. Small space complexity is desirable
for distributed algorithms in general, and especially for wireless distributed systems. We
address the question of lower bounds for the space complexity of some problems, an un-
derdeveloped field of research. We consider both anonymous and identified networks, and
introduce memory efficient self-stabilizing algorithms in both environments.

In Chapter 2 we detail the computational model used in this thesis. We formally define
distributed systems, algorithms, distributed problems, and stabilization hypotheses.

In Chapter 3, we present results from [BFB21]. We study the cost of using the presence
identifiers in identified networks. Most algorithms requiring unique identifiers use Q(logn)

4 Chapter 1. Introduction

bits per node, to store and send the identifiers to their neighbors. Recently, algorithms
solving problems which require unique identifiers were presented, and only use O(loglogn)
bits per node. We prove that this complexity is asymptotically optimal, in the sense that
under O(loglogn) bits per node, algorithms cannot use the presence of unique identifiers
in the network, and behave as if the network was anonymous. It is a very general result:
it applies to all distributed algorithms, stabilizing or not, in various specific models. We
apply this result to obtain lower bounds on the space complexity of actual problems, by
establishing a Q(loglogn) lower bound for the Leader Election problem, one of the most
studied problems in the field of self-stabilization. Our lower bound is established on one
very simple, and widely studied, class of graphs: non-prime rings.

These results have been awarded Best Student Paper at [BFB21], and extended abstracts
were also presented in [BFB19, BFB22].

In Chapter 4, we present results from [BJBP22b]. We address one fundamental problem
of distributed systems: the Termination Detection problem. We design a snap-stabilizing
solution for this problem, with very low requirements on the network. It works in anonymous
settings, is adapted to wireless networks, and works on any topology. Furthermore, our
solution only requires ©(log D) bits per node, which is the lowest complexity achieved so
far, and had never been achieved by any snap-stabilizing algorithm before. To design our
algorithm, we rely on an unspecified unison algorithm. To be so generic, we established
a theoretical analysis of properties of unison algorithms, from the specification of Unison
problem itself.

A French-language version of these results was also presented in [BJBP22a].

In Chapter 5, we address the problem of fair token circulation. We design a self-
stabilizing algorithm which solves this problem on a generic class of graphs, Destination
Oriented Acyclic Graphs, and is also adapted to wireless networks. Finally, this solution
requires ©(loglogn) bits per node, which is asymptotically optimal, and works under the
weaker assumption on the synchrony of the network.

This result will soon be submitted to an international conference.

In the last chapter we summarize our contributions, and broaden their scope by opening
directions in which our techniques and results might be extended.

CHAPTER 2

Model

Each of these lives is the right one!

Every path is the right path.

Everything could have been anything else and it would
have just as much meaning.

Nemo Nobody

Contents
2.1 Preliminaries Lo e 5
2.2 Distributed System 6
2.2.1 Characteristics of Distributed Systems 6
2.2.2 Model of Distributed Systems: Networks 6
2.2.3 Local Knowledge 7
2.2.4 Knowledge about the Topology of the System 8
2.2.5 Common Topologies 8
2.3 Communication Model, Algorithm 10
2.3.1 Memory 10
2.3.2 Communication Lo 11
2.3.3 Deterministic Algorithm 0. 12
2.4 Scheduler 13
2.4.1 Asynchrony e 13
2.4.2 Schedules and Schedulers. 13
2.4.3 Common Schedulers L. 13
2.4.4 Relation Between Schedulers 14
2.5 Problems Specificationo L o 14
2.5.1 Specificationo L 14
2.5.2 Examples of Problems 0. 15
2.5.3 Classesof Problems 16
2.6 Stabilization 16
2.7 Efficiency of an Algorithm 17
2.7.1 Comparison Functions 18
2.7.2 Spatial Complexity oo 18
2.7.3 Time Complexity L 18

In this chapter we introduce the formal framework in which this thesis lies. We introduce
the computational model, the communication model, and other objects that are considered
all along this thesis.

2.1 Preliminaries

In this section we define some mathematical objects and properties that will be useful later.

6 Chapter 2. Model

Relation Let V be a set. A binary relation R on V is a subset of V x V. We write
uRv as an equivalent of (u,v) € R. A binary relation is reflexive if Vv € V,vRv. A binary
relation is transitive if Yu,v,w € V,uRv AvRw = uRw. The transitive closure of a relation
R, denoted R7 is the smallest transitive relation which contains R. We have

uR v <= Jk>0,Fvg,...,0p: (u=v9 Av =1 AVi € [0,k —1],v; Rviy1).

The reflexive transitive closure of a relation R, denoted R* is the smallest reflexive and
transitive relation which contains R. We have

uR*y <= 3k >0,Jvg,...,v5: (u=vg Av=v, AVi € [0,k —1],v;Rv;y1)
— (uR™v)V (u=wv).

A binary relation R is acyclic if Vu € V,=(uRTu). A binary relation R is rooted if 3r € V :
Yu € V,uR*r. Remark that if a binary relation R is both rooted and acyclic, then there
exists one unique r € V : Vu € V,uR*r. This element r is said the root of R.

Order A binary relation R is antisymmetric if Vu,v € V,uRv AvRu = u = v. A binary
relation R is an order if it is reflexive, transitive, and antisymmetric. In the following, orders
are denoted with the symbols <, or <. Consider an order <, we define the strict order
associated to <, and denote <, the relation such that Vu,v € V,u <v <= u <vAu#v.

An order < is well-founded if there does not exist any infinite sequence vgvy ... such
that Vi € N, v;41 < v;. If < is a well-founded order, then (V, <) is a well-founded set.

2.2 Distributed System

A distributed system is a set of autonomous computing units, which can communicate with
each other in order to complete a global task. Computing units can be computers, network
devices, a core of a multicore process, etc. We suppose a fully decentralized system, where
the different computing units do not share any resource.

2.2.1 Characteristics of Distributed Systems

No Global Time Usually, the speed of computation as well as the latency of the different
communication links are not homogeneous in distributed systems. Since the processes
cannot rely on a global clock, then we cannot suppose any synchronization between distant
processes.

No Global Knowledge There also does not exist any shared memory through which
nodes could safely and centrally communicate. The computation is local to each node, and
is made without any global knowledge of the state of the system. Nodes can only exchange
pieces of information through the existing communication links, point to point. Due to
asynchrony, it might be non-trivial to maintain consistency in this communication model.
Note that communication links are symmetric: if one process can communicate with one
other process, then the opposite is true as well.

2.2.2 Model of Distributed Systems: Networks

Networks A distributed system, or network, is a non-oriented connected graph G =
(V, E). The processes of the distributed system are represented by the nodes of G, which

2.2. Distributed System 7

are the elements of V. The communication links of the distributed system are represented
by the (non-oriented) edges of G, which are the elements of E C P2(V) (pairs of elements
of V).

There exist works focusing on oriented, or directed, networks. In oriented networks, the
communication links are not necessarily symmetric: it might happen that one node can send
information to one of its neighbor, without reciprocity. This is modeled by oriented edges,
elements of £ C V x V. In this thesis we always consider bi-directional communication
links, but sometimes refer to results established in oriented networks.

We call size of G and denote by n the number of nodes in the network. Two nodes u and
v are neighbors in G if and only if {u,v} is an edge of G. The set of all the neighbors of v is
denoted N,. We also denote by Nv] the set of extended neighbors of v, N[v] = N, U {v}.

Graphs Properties We call degree of a node v and denote A, the number of neighbors
of v. We call degree of G and denote A(G), or simply A if no confusion can be made, the
maximum degree of the nodes of G.

A path of G is a sequence p = (v1,v2,...,v;) of nodes of G such that Vi € [1,k —
1],{vi,vi41} € E. We call source of p the node vy, end of p the node vy, and length of
p the number of edges in p, here k — 1. A path p = (v1,vq,...,v;) of G is elementary if
Vi # j € [1,k],v; # v;. If the source and the end of a path p are equal, then p is also said
a cycle. A cycle ¢ = (v1,v9,...,v;) is an elementary cycle if the path p = (v, ve, ..., V1)
is elementary.

The distance between two nodes u and v in G is the length of the shortest path of G
with source u and end v. We denote by dist(u,v) the distance between u and v. We call
diameter of G, and denote D(G), or simply D if no confusion can be made, the maximal
distance between two nodes of G.

2.2.3 Local Knowledge

Port Numbering In distributed systems, nodes receive information from several neigh-
bors, each neighbor corresponds to one specific communication link. Although one con-
nected device does not necessarily know which entity is located at the endpoint of each
communication link, it can nevertheless distinguish the different communication links from
another. Practically, this distinction is made by identifying the port number associated to
the communication, the frequency used by the device, etc. We do not suppose any global
consistency in the attribution of the port numbers in the network.

In our model, a node v has access to locally unique port numbers associated with its
adjacent edges. We denote by port, (u) the port number associated by v to the edge leading
to its neighbor u. Typically, port,(u) is an integer in [1, A,].

Identifiers, Semi-Uniform In some distributed networks, devices come with a globally
unique identifier, which can be a MAC address, an IP address, etc. This unicity can be
useful to solve problems that require symmetry breaking, for example. Due to NATing, or to
false MAC-addresses, it might happen that some, but few, devices share the same identifier.
In most cases, this homonymy does not cause any problem, but in some situations, this can
lead to, sometimes unsolvable, issues.

Although most distributed systems are based on devices with unique identifiers, several
reasons justify the interest to design distributed algorithms that do not require such iden-
tifiers. For privacy reasons, it might be crucial to design algorithms that are not based on
sharing unique identifiers in the entire network. Furthermore, for this precise reason, there

8 Chapter 2. Model

exist actual networks where identifiers do exist, but do not have any consistency through
time due to the use of VPN for example.

Independently of the presence of identifiers, there sometime exists one particular device
in the network that has a specific role. This specific device can be the DHCP server, for
a local network, or a master DNS, in one DNS zone. Some problems are easier to address
if the network has a distinguished device, that can perform tasks that the other devices
cannot.

A network G is identified if Vv € V', v has a local constant, its identifier, denoted by
ID,, such that Yu # v € V,ID, # ID,. For all k € N* G is k-homonymous if Yv € Vv
has a local constant, its identifier, denoted by ID,,, and such that at least & nodes have the
same identifier. Remark that according to this definition, any k-homonymous network is
also k’-homonymous, for any k' < k. A network G is anonymous if all nodes have the same
identifier or, equivalently, if there is no identifier at all. Remark that anonymous networks
may be seen as n-homonymous networks.

Given a graph G, an integer k € N*| and a set of identifiers Stp, we use the following
notations:

o G"[Spp] represents any identified network with topology G' and with unique identifiers
taken in SID.

o G*[Spp] represents any k-homonymous network with topology G and with identifiers
taken in Stp

o G™[ID] represents the anonymous network with topology G in which all nodes have
identifier ID.

A network is semi-uniform if Vv € V, v has a local constant distinguish, such that
Jw € V : distinguish, = 1 and Vu # w,distinguish, = 0. Otherwise, the network is
uniform.

2.2.4 Knowledge about the Topology of the System

Depending on the distributed system, some global characteristics (and especially its size,
diameter, and degree) can be persistent through time. Although this does not apply to
mobile networks, for example, this can be a relevant hypothesis for sensor networks, which
contain devices that are not meant to be moved. In such situations, the knowledge of the
values of those parameters can be helpful to efficiently solve tasks in the system. Depending
on the application, the exact value of the parameter is not always necessary: an approxi-
mation or an upper bound can be sufficient. For example, an upper bound on the diameter
of the network is enough to guarantee the propagation of information through the entire
network.

In some cases, the nodes of the network have a local constant that stores n, A, D, or
a combination of those parameters. In such case, the parameter is said given. If only an
upper bound or an approximation of the value is given to the nodes, then the parameter is
said approximated.

2.2.5 Common Topologies

In the general case, distributed systems have very diverse topologies. Thus, we aim to
design distributed algorithms which behave correctly on any topology. If no precision is
made, saying that a distributed algorithm completes a certain task means that it completes
this task on all topologies.

2.2. Distributed System 9

Yet, it might be interesting to reason on specific, simpler topologies for at least two
reasons. The first one is that some distributed systems actually respect some specific
topologies, and it might be possible to find more efficient algorithms by supposing some
specific topology. The other reason is that some problems can be difficult to address in
the first place, and working on a simpler case can be an option to find a way to a generic
solution.

We call topology a class of all the networks that respect a particular property. Here we
give some common topologies that will be used in our thesis. We present examples of graph
for each topology in Figure 2.1.

e G is a ring if there exists an elementary cycle of length n in G.

Rings are a typical example of a tool-topology. Although it is one very simple topol-
ogy, numerous problems of distributed computing (the presence of cycles, symmetric
configurations) can be tackled in this simple topology at first.

e G is a tree if there is no elementary cycle in G.

Trees are both a simple topology, suited to first address some problems, and a real-
world topology. Indeed, minimizing the number of communication links in distributed
systems is pretty useful to reduce the number of messages exchanged, to avoid con-
flicts. ..

e G is a star if there exists one node r such that all the other nodes have only r as a
neighbor.

Stars are a particular case of trees, which corresponds to highly centralized networks.
e (is a complete graph if there exists an edge between any pair of nodes.

o We also consider Directed Acyclic Graphs (DAG) and Destination Oriented Directed
Acyclic Graph (DODAG), which are both particular cases of oriented graphs. Recall
that we consider non-oriented networks, in the sense that the communication is always
bi-directional. The orientation we are talking about is therefore more a hierarchy re-
lation between neighbors than an orientation of the communication links. In practice,
devices have a local table that allows them to know whether one specific neighbor is
a parent or a child of theirs in the network. Similarly, we rely on port numbers to
grant an orientation to the network.

Suppose that the space of port numbers can be split into two disjoint sets port™ and
port~. Let us denote by u — v the relation port, (v) € port™.

G is a Directed Acyclic Graph (DAG) if the relation — is acyclic. Note that this
implies: port,(v) € portt <= port, (u) € port™.
DAGs corresponds to hierarchical distributed systems, where devices have initiators,

and followers.

G is a Destination Oriented Directed Acyclic Graph (DODAG, or D°) if the relation
— is acyclic and rooted. We call root of the D° the root of the relation —.

DODAGs are DAGs with only exactly one node that has no ancestor, which is a
common ancestor of all the other nodes. It corresponds to centralized, hierarchical
networks, such as DNSs networks.

10 Chapter 2. Model

kX
o

Figure 2.1: Common topologies, from left to right starting from the first row: complete
graph, ring, star, tree, DAG, DODAD

2.3 Communication Model, Algorithm

2.3.1 Memory

During the execution of a distributed algorithm, the devices of the system exchange informa-
tion through the communication links. Every time one device receives some information, it
can update its variables, depending on its personal information, and on the one it received.
After that, the device can send an updated information to its neighbors, that depends on
its new state and on other local information. Thus, a device possesses two distinct types
of information. The information that is inherent to its material, persistent, and the infor-
mation it received from the other devices of the system, that is meant to be updated, and
transmitted.

In our model, nodes have two types of memory: the immutable memory and the mu-
table memory. The immutable memory is not corruptible, and cannot be updated by the
node itself. It typically contains the code of the algorithm, the identifier of the node, its
port numbers, and constant distinguish. The mutable memory, also called register, is
corruptible, and can be updated by the node itself. It typically contains the variables of
the algorithm that is executed in the network.

The set of all variables in the registers of node v is called the state of v, and is denoted
state,. We also denote by local, the set of all local constants of node v, stored in its
immutable memory: its identifier, port numbers, distinguish...

We call a configuration of G the set of all the states of the nodes of V. Configurations
are denoted by the letter v. We also denote by I the set of all possible configurations of G.
The value of variable var on node v in configuration ~ is denoted var).

2.3. Communication Model, Algorithm 11

We call execution, and denote by the letter €, any non-empty sequence of configurations:
E=% =71

2.3.2 Communication

State Model The communication between the devices of a distributed system highly
depends on the material, of the network, and can be studied at each layer of the OSI
model (ADSL/Bluetooth, Wi-Fi/Ethernet, IPv4/IPv6, TCP/UDP, etc). For the sake of
genericity, we model communication between nodes by abstracting the sending of messages.

We consider the state model, denoted S, introduced by Dijkstra [Dij74]. In the state
model, each node v has read/write access to its register, and has a read-only access to the
registers of its neighbors. Thus, to transmit information to its neighbors, a node simply
writes that information in its mutable memory.

Knowledge of the Port Numbers In wired distributed systems, the communication
between neighbors is made through physical links, each link connecting exactly two devices.
In such systems, one node can naturally send different information to its neighbors. On the
other hand, in wireless networks, such as sensor networks or Wi-Fi antennas, communication
is multidirectional: any information emitted by one device is identically received by all of
its neighbors. In such networks, it can be pretty difficult to send information to one, and
only one, neighbor.

In our model, the different communication links are identified by port numbers. To
embrace that diversity in the capacity to communicate, two variants of the state model are
studied in the literature: the port-known state model and the port-unknown state model.

In the port-known state model, denoted Spk, nodes know the port number it is assigned
by its different neighbors. Namely, v has a table that contains the value port,, (v) for each
of its neighbors u. Thus, if one neighbor u of v wants to send information to one of its
neighbors, it can prefix this information with the port number it assigned to that neighbor.
Since all of its neighbors know their assigned port number, they can decide whether the
information is intended to them or not. The model Spk corresponds to wired distributed
systems.

In the port-unknown state model, denoted Spy, nodes do not have any knowledge a
priori on which port number they were assigned by their different neighbors. This makes
it non-trivial to send information to one specific neighbor. If necessary, then this difficulty
must be overcome by the algorithm. The model Spy corresponds to wireless distributed
systems.

The positive results and algorithms presented in Chapters 4 and 5 are all valid in the
most challenging model: the port-unknown state model Spy. The negative results (lower
bound and impossibility results), presented in Chapter 3 are all valid in the least challenging
model: the port-known state model Spk.

In Chapter 5, the problem we address requires that nodes communicate information
to exactly one of their neighbors. Let us give an idea on how this difficulty might be
overcome. If the network is identified, then sending information to one neighbor can be
done by prefixing the information by the identifier of the designated neighbor. This requires
that each node permanently writes its identifier in its mutable memory, so that its neighbors
have access to it (recall that the local constants of v, such as ID,, are not readable by the
neighbors of v). This technique has one flaw: it has a non-negligible cost in terms of memory
used, since storing the identifier in the mutable memory requires at least O(logn) bits on
each node. In Chapter 5 we exponentially reduce the size of the memory.

12 Chapter 2. Model

Note that in anonymous networks, sending information to one specific neighbor is gen-
erally unfeasible in Spy.

2.3.3 Deterministic Algorithm

Rules A distributed algorithm consists of a set of rules of the following form:
< label > : < guard > — < action >

where

e < label > is the name of the rule,

e < guard > is a predicate that involves the variables of the node and of its neighbors,
and the local constants of the node (its identifier, port numbers...),

e < action > is a set of deterministic instructions that modify the state of the node.

If at least one action involves randomization, then the algorithm is said non-deterministic,
or randomized. In this work, we only consider deterministic algorithms.

We denote by R4 the set of the rules of A. If the guard of a rule is evaluated to true on
node v, then this rule is said enabled on v. An action can be executed by node v only if the
rule in which it appears is enabled. A node is enabled if one of its rules is enabled, and is
disabled otherwise. We denote by A°(7y) the set of the enabled nodes in v. A configuration
~v is terminal if no node is enabled in v, i.e. if A°(y) = 0.

Network-Specificities of Algorithms If at least one rule of an algorithm A refers to
the local constant distinguish, then it is designed to be efficient on semi-uniform networks.
Algorithm A is said semi-uniform. Otherwise, it is said uniform. If no rule of an algorithm
A refers to the local identifier of the node, then it is designed to be efficient on anonymous
networks. Algorithm A is said anonymous. Otherwise, it is said ID-based.

Computation When activated, an enabled node v atomically executes the three following
actions.

o It reads the state of all of its neighbors v € N,

e It executes the action of one of the rules it is enabled, according to the state of its
neighbors, its own state, and its local constants.

e It writes in its mutable memory its new state.

If several nodes are activated at the same moment, they all atomically execute those three
actions.

Permanent Communication As defined above, it might seem that nodes read the state
of their neighbors only when activated. This is actually misleading. In a distributed system,
the devices constantly exchange information, in order to detect any update, any breaking
in the system. In our model, this is true as well, but hidden by the notion of enabled nodes.

A node is activated only if it enabled, which depends on the state of its neighbors.
Thus, to be able to know whether it is enabled or not, a node necessarily has to constantly
read the state of its neighbors, and evaluate all the guards of its rules with the updated
information it read.

2.4. Scheduler 13

2.4 Scheduler

2.4.1 Asynchrony

Although devices constantly exchange information, there is no guarantee that all the nodes
compute and communicate at the same speed. Most certainly, some devices are more
reactive than others, some communication links are more congested than others, etc. Thus,
it would be a huge simplification supposing that enabled nodes are immediately activated:
distributed systems are inherently asynchronous.

This asynchrony is modeled by the existence of an adversary, called daemon or scheduler.
At each step, the scheduler selects a subset of the enabled nodes, and activates all of them.
Each activated node updates its state according to the action of one of its enabled rules.
If several rules are enabled on the same activated node, then it non-deterministically pick
one of them.

Formally, a schedule is a map D that takes as input a non-empty sequence of configu-
rations (Yo, 71,-.-,7) and a subset of the nodes of the graph V¢ C V| which represents
the set of enabled nodes. D(v9,71,---,%V, V¢) = 0 if and only if V¢ = (. If V¢ # (), then
D(v0,71,---,7k, V) is a non-empty subset of V.

Let us denote by v — ' a computing step of algorithm A, where ' is obtained from ~
A

after the activation of one or several enabled nodes and the simultaneous execution of their
action.

Given a schedule D, an ezecution of A under D, is a finite or infinite execution € = vy —
v1 — -+ - such that Vi, the set of activated nodes between ~; and ;41 is D(v0,71, - - -, Vi> .AeA(%)).
An féxecution is maximal if it is infinite, or if it is finite and the last configuration of € is
terminal. If € = 7 7 Y1 7 -+ is an execution, then Vi > 0, ¢ = ; 7 Yit1 7 --- isa
sub execution of €. A sub execution can be both finite or infinite. The first configuration
of an execution, 7y, is called the initial configuration.

2.4.2 Schedules and Schedulers

In practice, we don’t know the precise schedule that will determine the execution of our
algorithm. Furthermore, it would be very restrictive to design an algorithm for one partic-
ular schedule. What we actually do is suppose that the execution respects some properties
of fairness, for example. We call scheduler a class of schedules which all share common
properties. Since we do not use in practice the notion of schedule, we also denote by D the
schedulers. Saying that an algorithm A respects some property on a certain scheduler D
means that it respects that property on every schedule of D.

2.4.3 Common Schedulers

Dubois and al. in [DT11] presented a vast overview of schedulers. In this section, we only
present the schedulers that are invoked in this thesis. Let us consider a schedule D and a
infinite sequence of configurations vy, 71, - . ..

e The schedule D is strongly fair if the following is true for any sequence of configura-
tions g, 71, -, for any ¢ > 0 and for any node v € V: if v is enabled in an infinite
number of configurations v; with j > ¢ then v is eventually activated by D. More
formally, if there exists an infinite number of sets V; > v with j > 4, then there exists
kE>i:v€DMo, V1, Vks Vi)

14 Chapter 2. Model

e The schedule D is weakly fair if the following is true for any sequence of configurations
0,71, - -, for any ¢ > 0 and for any node v € V: if v is enabled in all the configurations
VisVit+1s-- -, then v is eventually activated by D. More formally, if Vj > i,v € V,
then there exists k >4 : v € D(Y0,71, - - Vs Vi)-

e The schedule D is central if it activates only one of the enabled nodes at each comput-
ing step. In other words, if for any ¢ > 0, for any V¢ C V., |D(v0,71,---,%, V)| < 1.

e The schedule D is synchronous if it activates all the enabled nodes at each computing
step. Remark the there exists exactly one synchronous schedule, and that it is strongly
fair.

Remark that if D is strongly fair, then it is also weakly fair. By commodity, we say that
all schedules are unfair. By commodity, we also say that all schedules are distributed, by
opposition to central schedules.

Those properties of schedules directly transfer to schedulers. For example, we can
consider the central strongly fair scheduler, which contains all the schedules that are both
central and strongly fair.

2.4.4 Relation Between Schedulers

A scheduler D is stronger (resp. weaker) than a scheduler Dy if D; can simulate Dy (resp.
if Dy can be simulated by D3). More formally, if D; D Dy (resp. if D1 C Ds). Intuitively,
the more possible executions there are, the stronger the adversary.

Note that not all schedulers can be compared. For example, the synchronous scheduler
and the central scheduler, both weaker than the distributed scheduler, cannot be compared
with each other.

2.5 Problems Specification

2.5.1 Specification

Let R and @ be two boolean predicates over configurations. We note v € R when R
is evaluated to true in 7, and v ¢ R otherwise. We denote by true the predicate that
always evaluates to true. Given an algorithm A, the predicate R is closed for A if for
every computing step -~y - v', such that v € R, then ' € R. Algorithm A converges to

predicate) from predicate R under the scheduler D if @ is closed and if for any execution
€= (Yo — 71 — ---) under D such that y9 € R, there exists i > 0 such that v; € Q. This
A A

is noted R>4p Q. If no confusion can be made, we simply write R>4 @ or even R> Q. We
say that R is an attractor if truer> R. When it is clear in the context, we indifferently use
a predicate and the set of configurations it describes. For example, we can write I" instead
of true.

The specification S Pp of a problem P is a predicate over the executions and the network,
which describes a specific behavior of the system. An algorithm A solves a problem P under
a certain scheduler if every execution of A under that scheduler satisfies the specification
of P.

The specification of a problem might be described through the use of local predicates.
Intuitively, a local predicate is a boolean function evaluated by one node, with the same
information as when the node evaluates the code of the algorithm: its own local constants,
its own state, and the states of its neighbors.

2.5. Problems Specification 15

Definition 2.1 (Local Predicate)

We call local predicate any boolean predicate which takes as inputs a set of local
constants, and a set of one or several states of nodes.
If P is a local predicate and v € V', we denote PY(v) = P(local,, state?v[v]).

2.5.2 Examples of Problems

We shortly present some common problems, and especially those that are studied in this
thesis.

e The Leader Election problem, denoted L&, is a fundamental problem that consists in
determining one single, elected, node in the network. Solving this problem is basically
making semi-uniform a uniform network, and simplify dealing with the issues related
to concurrency, by allowing only one node to make critical decisions. We specifically
address L& in Chapter 3.

e The Spanning Tree Construction problem, denoted ST, consists in building a span-
ning tree structure in the network. Having a spanning tree structure in the network
is particularly useful for minimizing the number of exchanged messages when propa-
gating information in the whole network.

e The Vertex Coloring problem, or simply Coloring problem, denoted A — C, consists
in associating to each node a color, usually an integer between 1 and A, such that no
two neighbors have the same color. Coloring a graph is a suitable tool to simulate Spk
in Spy with an additional cost of Q(A) bits of memory per node. Indeed, nodes of a
vertex-colored network can address information to one of their neighbors by prefixing
the message by the color of the intended neighbor. Coloring a network also captures
a local mutual exclusion problem, which corresponds to situations where neighbors
share a resource or a service which cannot be used by several devices at a time, to
the allocation of frequency bands for WiFi antennas. . .

e The Mazimal Independent Set problem, denoted MZS, consists in selecting a subset
of all the nodes, such that no two neighbors are selected, and such that the obtained
subset is maximal: all the nodes that are not selected have at least one neighbor
which is. A maximal independent set is a structure that is notably adapted to time-
varying graphs, since it is relatively simple to maintain, and offers a lite but complete
coverage.

e The Unison problem, denoted U, requires the presence of a variable clock on each node,
and consists in increasing all of these variables infinitely often, while maintaining each
pairs of neighboring clocks with a difference at most one. Unison guarantees a minimal
form of synchrony in an asynchronous network. Notably, a correct unison guarantees
that even under an unfair scheduler, all nodes are regularly activated. We specifically
address U in Chapter 4 and especially in Section 4.3.

e The Termination Detection problem, denoted 7D, consists in detecting when another
algorithm executed on the same network has converged. In numerous situations,
network protocols are built as a pile of interacting algorithms. If one of the layers is
critical, then it might be necessary to be able to guarantee that the service it provides
is actually satisfied before using it. This problem boils down to checking whether
the algorithm of the critical layer has terminated. We specifically address 7D in
Chapter 4.

16 Chapter 2. Model

e The Token Circulation problem (or Fair Token Circulation problem), denoted TC,
is a fundamental problem that consists in guaranteeing that a unique token travels
the network perpetually, visiting every node repeatedly. This problem models the
objective of perpetually and fairly allocating a resource or a service to the devices of
a distributed system, while insuring global mutual-exclusion. We specifically address
TC in Chapter 5.

2.5.3 Classes of Problems

Terminating and Non-Terminating Problems Some problems such as 7C, or U,
require a perpetual execution of the algorithm. In particular, no finite execution can satisfy
the specification of such problems. Those problems are said non-terminating.

On the contrary, there are problems, such as L&, ST, or MZS which only aim to
provide the network a particular configuration. For those problems, the specification is of
the form SPp(e) = Vv € ¢, P(7y), where P is a predicate over the configurations and the
network. Those problems are said terminating. Note that some algorithms may require
infinite executions to solve terminating problems.

Request/Answer Problems Some problems, such as 7D, depend on an external acti-
vation, a request. When the request is made, then the algorithm starts an execution, which
ends when an answer is emitted, as a response to the request. Those problems generally
suppose that one variable of the algorithm is shared by another application. This variable is
dedicated to the communication of the request and the answer between the two algorithms.
Such problems are called request/answer problems, or request-based problems.

2.6 Stabilization

Distributed systems are prone to transient faults. Most commonly, some messages can be
lost, or corrupted. If such a failure occurs, the system may reach an incorrect configuration.
Therefore, algorithms designed to perform in such environments must be fault-tolerant.
Several paradigms were introduced in the literature to capture that notion. We only present
the variants that we use in this work.

Distributed Algorithms Some distributed algorithms are not effective in faulty envi-
ronments. Namely, they suppose that the initial configuration of the system is non faulty,
typically that the variables of the nodes are properly initiated to a blank value. Such
algorithms converge from this initial configuration, but not necessarily from a faulty, in-
consistent configuration. Those algorithms, with no fault-recovering properties, are simply
called distributed algorithms. In this thesis, we only consider algorithms which can handle
faults, but we sometime compare ourselves to the simpler case of distributed algorithms.

Silent Self-stabilization There exist problems, such as the leader election or the span-
ning tree construction, for which the specification tolerates constant executions. Indeed,
as soon as one single leader is elected, there is no a priori need to keep computing. An
algorithm A is silent [DGS99] for problem P under scheduler D if every maximal execution
of A is finite. Silent self-stabilization is a paradigm particularly adapted to terminating
problems.

Definition 2.2 (Silent)
A distributed algorithm A is silent if all the maximal executions of A are finite.

2.7. Efficiency of an Algorithm 17

Self-stabilization For most situations, the concept of self-stabilization introduced by
Dijkstra [Dij74] is a suitable paradigm. An algorithm A is self-stabilizing for one problem
P under scheduler D if there exists a predicate R such that I'>4p R and such that any
execution of A under D starting from a configuration v € R satisfies SPp. In other
words, a self-stabilizing algorithm converges to a legitimate execution whatever the initial
configuration of the system. Self-stabilization is a paradigm suited to distributed systems
prone to relatively rare transient failures.

Definition 2.3 (Self-stabilization)

Algorithm A is a self-stabilizing algorithm for problem P under a certain scheduler D if
there exists a predicate R such that I'>4p R and such that any execution of A starting
from a configuration v € R satisfies SPp.

An execution of A has stabilized once R is valid. The stabilization time of A is the
maximal number of rounds in executions of A starting from any configuration, before

A stabilized.

Snap-stabilization Although self-stabilization is a suitable paradigm in most situations,
there exist problems for which this condition is not sufficient. If we consider problems that
depend on an output, typically observation problems, then self-stabilization is not adapted.
Indeed, self-stabilization ensures that execution ultimately converges to one predicate R
from which executions are correct. Yet, nothing guarantees that no incorrect output is
provided before the convergence to R. Such incorrect outputs might be detrimental to
the system, which makes self-stabilization non-suitable in this situation. An algorithm A
is snap-stabilizing [BDPV07] for one problem P under scheduler D if any execution of A
under D satisfies SPp. In other words, if as soon as there are no more faults, then the
system immediately behaves correctly. Snap-stabilization is a paradigm especially suitable
for request-based problems.

Definition 2.4 (Snap-Stabilization)

A distributed algorithm A is snap-stabilizing for a specification SP if any maximal
execution of A starting from any configuration satisfies SP.

2.7 Efficiency of an Algorithm

We have already seen above that numerous criteria can be studied to discuss the genericity of
an algorithm. Those criteria are the presence of (unique or not) identifiers, the uniformity
of the network, the (precise or bounded) knowledge of some parameters of the network
(size, degree, diameter. ..), the topologies on which the algorithm works (rings, trees, all
graphs. . .), the knowledge of nodes of the port number affected to them by their neighbors
(Spy or Spk), the determinism of the algorithm, the hypothesis made on the scheduler
(fairness, centrality. ..), and the capacity to handle transient faults.

In addition to those criteria, the complexity of the execution of an algorithm is one
other crucial parameter to take into account. Algorithms executed on a central system are
evaluated based on two criteria: the memory required and the convergence time. Algorithms
executed on distributed systems are also evaluated on these criteria.

In most cases, the limiting parameters do not come from the computing units, but
from the communication links of the network, bandwidth, latency, etc. Thus, the relevant
quantities of a distributed algorithm are not the complexity of the algorithm on one node,
but the global complexity of the execution of the algorithm in the network. Although

18 Chapter 2. Model

this does not bring much trouble when examining the spatial complexity, it requires some
nuance when we come to time complexity.

Spatial and time complexities are expressed as functions, whose parameters are param-
eters of the network. The most common parameters of complexity functions are the size,
diameter, and degree of the network (n, D, and A).

2.7.1 Comparison Functions

What is interesting when studying spatial and time complexities is their asymptotic behav-
ior. To express this, we use the following standard notations:

f@) € o(g(z)) = limy o £ =0

flz) € O(g(x)) <= limy_eo J;E; 4 00

f(x) € Q(g(gj)) = limg o0 5(;) #0 — _‘(f(x) € O(Q(x)))

f(z) €wlg(z)) = lim, o 8 =00 = (f(z) € O(g(x)))

f(z) €0(g(z)) = 0<lim, o 28 <00 = f(z) € O(g(x)) A f(2) € Ag(x))

2.7.2 Spatial Complexity

The relevant quantity for the spatial efficiency of an algorithm executed on a distributed
system is the size of the messages necessary to complete the task. In the state model, the
messages are abstracted by the ability for nodes to directly read the mutable memory of
their neighbors. Thus, the size unit of the messages which are exchanged on the network
is the size of the mutable memory the algorithm requires, on each node. Note that the
identifier of the node is part of the immutable memory, and thus its size is not taken into
account in spatial complexity, unless the algorithm explicitly writes it into the mutable
memory to share it with the neighborhood.

We call spatial complexity of an algorithm A, and denote S_4, the number of bits of
mutable memory required by A on each node.

2.7.3 Time Complexity

To estimate the time efficiency of a distributed algorithm, focusing on the time complexity of
the execution of one action on one node is not relevant for two reasons. The first one is that
this time is most often negligible when compared to the communication time between the
devices of the system. The second is that what takes time in the execution of a distributed
algorithm is the number of communications necessary for the convergence of the system.
We define the time complexity of an algorithm A4, denoted T 4, as the number of time units
it requires before resolving the problem.

Time Units Due to asynchrony, some nodes whose action is necessary for the algorithm,
can be inactivated during a long time, and block the execution of the algorithm. To embrace
such situations, there are two definitions of what a time unit is.

The notion of step corresponds to the number of separated activation of nodes by the
scheduler: the number of computing steps.

On the other hand, the notion of round [BDPVO0T7] captures the execution rate of the
slowest processor. Let us state this more formally. A node v is neutralized in the computing
step v — ~' if v is enabled in v and not enabled in 7/, but does not execute any action

A

between these two configurations. Neutralization occurs when some neighbors of v changed

2.7. Efficiency of an Algorithm 19

their state between v and +’, and this change makes the guards of all actions of v false. Let
€ be an execution.

The first round of an execution €, noted €, is the minimal prefix of € in which every node
that is enabled in the initial configuration either executes an action or becomes neutralized.
Let ¢’ be the suffix of € starting from the last configuration of ¢’. The second round of ¢ is
the first round of €, and so forth.

Time of Resolution The notion of resolving a problem depends on the stabilization
paradigm considered.

If we consider self-stabilization, then the resolution corresponds to the convergence of
the algorithm: the moment where the specification of the problem is satisfied. We call this
quantity the time of convergence.

If we consider silent self-stabilization, then the resolution corresponds to the termination
of the system: when it reaches a terminal configuration. We call this quantity the time of
termination.

Snap-stabilizing algorithms are, by definition, self-stabilizing algorithms whose time of
convergence is 0, which makes this quantity non-relevant. In most cases, snap-stabilizing
algorithms are designed to solve request/answer problems. In such situations, a suitable
parameter is the time of response, which is the number of time units between the moment
a request is made, and the moment the algorithm answers to this request. This notion can
be refined depending on the problem considered.

CHAPTER 3

Lower Bound for Spatial
Complexity

You don’t have any concept of what it is to hit the

bottom
Tyler
Contents

3.1 Introduction 22
3.1.1 Motivation 22

3.1.2 Related Work 23

3.1.3 Contributions 24

3.2 Model e 25
3.2.1 Indistinguishability oL 25

3.2.2 Degree-limited Lo 26

3.2.3 Model for Sections 3.4and 3.5 26

3.2.4 Model for Section 3.6 26

3.2.5 Leader Election Problem 27

3.3 Intuition of the proofs 28
3.3.1 Challenge of lower bounds for non-silent algorithms 28

3.3.2 Intuition on a minimal exampleo 29

3.4 Equivalence with Anonymous Networks 30
3.4.1 Statement of the Theorem 30

3.4.2 Proof in Spy on uniform networks 30

3.4.3 Generalization to Spk and to semi-uniform networks 32

3.5 Equivalence with Homonymous Networks 33
3.5.1 Statement of the Theorem 33

3.5.2 Proof when kdividesn 33

3.5.3 Proofforanyn Lo 35

3.6 Lower Bound for LE 36
3.6.1 Statement of the Theorem 36

3.6.2 Limits of Theorems 3.2 and 3.3 37
3.6.2.1 k-Homonymy 37

3.6.2.2 Indistinguishability 37

3.6.3 Proof 38

3.7 Conclusion L e 40

In this chapter, we introduce a generic O(loglogn) lower bound for the space complexity
of distributed, deterministic algorithms, and especially for the leader election problem.

A preliminary version of these works was presented in [BFB21].

22 Chapter 3. Lower Bound for Spatial Complexity

3.1 Introduction

It is known that the presence of unique identifiers at the nodes of a network is very helpful,
and sometimes necessary, to break symmetric configurations. Some fundamental problems,
such as Leader Election or Spanning Tree Construction, are known to be unsolvable by
deterministic algorithms in generic anonymous networks [Ang80, Dij82]. On the other hand,
numerous distributed, deterministic, self-stabilizing algorithms exist for those problems in
identified networks [BGJ99, DGS99, DLV1la, DLV11b, BT18]. Although it is known that
identifiers are required to solve such problems, the question of how compact the use of those
identifiers can be made remains. Most algorithms for identified networks are such that nodes
directly share their identifier with their neighbors by writing it into their mutable memory,
and thus have a spatial complexity in Q(logn) bits per node. Recently, a self-stabilizing
algorithm was presented to address Leader Election, which requires only O(loglog n+log A)
bits per node [BT20]. This indicates that O(loglogn + log A) bits per node are sufficient
to use the identifiers. On the other hand, it is known that Leader Election cannot be
solved with constant space complexity [BGJ99]. This indicates that one cannot fully use
the power proper to identified networks with O(1) bits per node. However, the question of
how many memory is necessary for algorithms to use the identifiers was still open. We prove
a Q(loglogn) bits per node lower bound for that problem. More precisely, on identified,
bounded-degree graphs, algorithms that use o(loglogn) bits of memory per nodes behave
exactly the same way as if they were executed on anonymous networks. Since a large variety
of problems, and especially Leader Election, are unsolvable in bounded-degree anonymous
networks, we can conclude a (loglogn) bits per node lower bound for Leader Election.

3.1.1 Motivation

During the execution of a self-stabilizing algorithm, the nodes exchange information along
the links of the network, and this information is stored locally at every node. Specifically,
processes in a distributed system have two types of memory: the persistent memory, and
the mutable memory. The persistent memory is used to store the identity of the process
(e.g., its IP address), its port numbers, and the code of the algorithm executed on the
process. Importantly, this section of the memory is not write enabled during the execution
of the algorithm. As a consequence it is less likely to be corruptible, and most work in self-
stabilization assumes that this part of the memory is not subject to failures. The mutable
memory is used to store the variables used by the algorithm, and is subject to failures, that
is, to the corruption of these variables. The space complexity of a self-stabilizing algorithm
is the total size of all the variables used by the algorithm.

Preserving small space complexity is very much desirable, for several reasons. First, it
is expected that self-stabilizing algorithms offer some form of universality, in the sense that
they are executable on several types of networks. Networks of sensors as used in IoT, as well
as networks of robots as used in swarm robotics, have the property to involve nodes with
limited memory capacity, and distributed algorithms of large space complexity may not be
executable on these types of networks. Second, a small space complexity is the guarantee to
consume a small bandwidth when nodes exchange information, thus reducing the overhead
due to link congestion [ANT12]. In fact, a self-stabilizing algorithm is never terminating,
in the sense that it keeps running in the background in case a failure occurs, for helping the
system to return to a correct configuration. Therefore, nodes may be perpetually exchanging
information, even after stabilization, and even when no faults occur. Limiting the amount
exchanged information, and thus, in particular, the size of the variables, is therefore of the
utmost importance for optimizing time, and even energy. Last but not least, increasing
robustness against variable corruption can be achieved by data replication [HP00]. This

3.1. Introduction 23

is, however, doable only if the variables are reasonably small. Said otherwise, for a given
memory capacity, the smaller the space complexity the larger the robustness thanks to data
replication.

3.1.2 Related Work

Space complexity of self-stabilizing algorithms has been extensively studied for silent algo-
rithms, that is, algorithms that guarantee that the content of the variables of every node
does not change once the algorithm has reached a correct configuration. For silent algo-
rithms, Dolev and al. [DGS99], proved that finding the centers of a graph, electing a leader,
and constructing a spanning tree require registers of {2(logn) bits per node. Silent algo-
rithms have later been related to a concept known as proof-labeling scheme (PLS) [KKP10].
Any lower bound on the size of the proofs in a PLS for a predicate P on graphs implies
a lower bound on the size of the registers for silent self-stabilizing algorithms solving P.
A typical example is the Q(log2 n)-bit lower bound on the size of any PLS for minimum-
weight spanning trees (MST) [KKO07] , which implies the same bound for constructing an
MST in a silent self-stabilizing manner [BF15]. Thanks to the tight connection between
silent self-stabilizing algorithms and proof-labeling schemes, the space complexity of a vast
collection of problems is known, for silent algorithms. (See [FF16] for more information on
proof-labeling schemes.)

On the other hand, to our knowledge, the only lower bound on the space complexity
for general self-stabilizing algorithms (without the requirement of being silent) that corre-
sponds to our setting has been established by Beauquier, Gradinariu and Johnen [BGJ99]
who proved that registers of constant size are not sufficient for leader election algorithms.
Interestingly, the same paper also contains several other space complexity lower bounds for
models different from ours — e.g., anonymous networks, or harsher forms of asynchrony.
Although there are very few lower bounds for the model we consider, there exist several
impossibility results for specific topologies. In the case of anonymous networks, where
nodes do not have a unique identifier, Angluin [Ang80] proved that there does not exist any
self-stabilizing algorithm for strict leader election (i.e. such that there is never more than
one leader), even under a central scheduler and even allowing randomization, due to the
general impossibility to break symmetry in such networks. Later, Dijkstra [Dij82] proved
that there does not exist any self-stabilizing algorithm for leader election on the anonymous
ring, unless the size of the ring is a prime number. A slightly more powerful model than
anonymous networks is homonymous networks, where identifiers may be shared by several
nodes. In [FKK*04], the authors investigate the problem on solving leader election on
homonymous rings. They prove that leader election is feasible if and only if there is no
non-trivial symmetry in the distribution of the identifiers around the ring. In [DGFTT14]
the authors propose a necessary and sufficient condition on the number of distinct labels
in bidirectional homonymous rings to solve terminating leader election. They show that
there is a solution if and only if the number of distinct identifiers is greater than the highest
divisor of n. Later, [ADD"20] generalizes the previous by establishing impossibility results
for leader election in some unidirectional homonymous rings. Note that the impossibility
results of [DGFTT14] and [ADD'20] are established for general distributed algorithms,
without any self-stabilization requirements.

The literature dealing with upper bounds is far richer. In particular, [BT18] recently
presented a self-stabilizing leader election algorithm using registers of O(loglogn) bits per
node in n-node rings. This algorithm was later generalized to networks with maximum
degree A, using registers of O(loglogn + log A) bits per node [BT20]. It is worth notic-
ing that spanning tree construction and (A 4+ 1)-coloring have the same space complexity
O(loglogn +1log A) bits per node [BT20]. Prior to these works, the best upper bound was

24 Chapter 3. Lower Bound for Spatial Complexity

a space complexity O(logn) bits per node [BT18], and it has then been conjectured that, by
some iteration of the technique enabling to reduce the space complexity from O(logn) bits
per node to O(loglogn) bits per node, one could go all the way down to a space complexity
of O(log" n) bits per node. Arguments in favor of this conjecture were that such successive
exponential improvements have been observed several times in distributed computing. A
prominent example is the time complexity of minimum spanning tree construction in the
congested clique model [LPPP05, HPP*15, GP16, JN18]. Complexities O(log*n) are not
unknown in the self-stabilizing framework [AO94], and it seemed at first that the technique
in [DGS99] could indeed be iterated (in a similar fashion as in [BKN17]). Our result shows
that this is not the case, and somewhat closes the question of the space complexity of leader
election.

3.1.3 Contributions

In this chapter, we establish several lower bounds of 2(log logn) bits per node for the space
complexity of deterministic distributed algorithms that require unique identifiers. Namely,
we establish a link between executions of algorithms in identified networks, and executions
of algorithms in weaker types of networks.

We first show that, as soon as identifiers are taken in a polynomial range [1,n¢], with
¢ € R, ¢ > 1, then algorithms that use o(loglogn) bits per node are not more powerful than
anonymous algorithms. More precisely, let A be an algorithm in a network with unique
node identifiers, and let us assume that A has space complexity o(loglogn) bits per node.
We show that there exist graphs and assignments of identifiers to the nodes of these graphs
such that, in these graphs and for these identifier-assignments, A has the same behavior as
an algorithm executed in these graphs but where all nodes share the same identifier (i.e. in
the anonymous version of these graphs).

Be aware that a space complexity in o(logn) does not prevent A from exchanging
identifiers between nodes, but they must be transferred as a series of smaller pieces of
information that are pipelined along a link, each of size o(logn) bits. Yet, a node cannot
store the identifier of even just one of its neighbors.

We then slightly modify our proof to obtain a second, similar, theorem. We show that,
for any & € N,k > 2, as soon as identifiers are taken in a linear range [1,n x ¢|, with
¢ € R ¢ > 1, then algorithms that use o(loglogn) bits per node are not more powerful
than k-homonymous algorithms. More precisely, let A be an algorithm in a network with
unique node identifiers, and let us assume that A has space complexity o(loglogn) bits per
node. We show that, with spacial complexity o(loglogn) bits per node, there exist graphs
and assignments of identifiers to the nodes of these graphs such that, in these graphs and
for these identifier-assignments, A has the same behavior as an algorithm executed in these
graphs but where identifiers can be shared by several nodes (i.e. in the k-homonymous
version of these graphs).

Both results have a very broad scope of application. Indeed, we make almost no hy-
pothesis on the model in which A is executed. We do not make any assumption on the
communication model (Spy or Spk), neither on the knowledge of the topology (precise or
bounded knowledge of n, A, D), neither on uniformity of the network, neither on the sched-
uler under which it is executed, and a weak assumption is made on the topology on which
the algorithm is executed. Practically, one can fix any parametrization for the model, our
theorem guarantees an equivalence between executions of A in identified and anonymous
or homonymous networks, under the same chosen model.

What our result is really about is the power of identifiers in a scenario where very little

space/communication is used. Remember that the Naor-Stockmeyer order-invariance theo-
rem [NS95] states that in the LOCAL model, for local problems, constant-time algorithms

3.2. Model 25

that use the exact values of the identifiers are not more powerful than the order-invariant
algorithm that only uses the relative ordering of the identifiers. In some sense our paper
and [NS95] have the same take-home message, in two different contexts: if you do not have
enough resources, you cannot use the (full) power of the identifiers.

Note that both previous results establish an equivalence between executions on identified
networks, and executions on weaker networks. Yet it is unclear whether this extends to the
resolution of some problems. Indeed, although we prove that the behavior of the algorithm
cannot fully use the power of identifiers, it may be that the specification predicates uses
the identifiers. In such a case, it could be that in an identified network, the specification
is valid thanks to the identifier, while in the exact same configuration of an anonymous,
or k-homonymous, network, it is not. Fortunately, in most cases, the specification of the
problem is simple enough for this issue to be easily overcome.

As a third result, we show how the previous can be adapted to prove lower bound of
Q(loglogn) bits per node for a problem, by addressing the Leader Election problem. This
improves the only lower bound known so far (see [BGJ99]), which states that leader election
has non-constant space complexity, i.e., complexity w(1). More importantly, our bound
matches the best known upper bound on the space complexity of leader election, which is
O(loglogn) bits per node in bounded degree networks [BT20], and in particular invalidates
the folklore conjecture stating that leader election is solvable using only O(log* n) bits of
mutable memory per node.

The technique used to adapt the previous results to prove a lower bound for LE is very
generic, and works for basically any problem that requires minimal symmetry breaking.
In Chapter 5 we reuse the previous to prove the space-optimality of our token-circulation
algorithm.

Chapter Outline The remainder of this chapter is organized as follows. We first for-
mally describe the particular models in which we work, provide some definition, and the
specification of the leader election problem in Section 3.2. Then, in Section 3.3 we show on
a simple example the reasoning used in our proofs. Finally, in Sections 3.4, 3.5, and 3.6 we
formally prove our three theorems.

3.2 Model

3.2.1 Indistinguishability

The proofs of Sections 3.4, 3.5 and 3.6 are based on the notion of indistinguishability. In
this work, we only consider indistinguishability for networks that have the same underlying
graph. Two networks that have the same underlying graph are indistinguishable for an
algorithm A if the computing steps of A are exactly the same on both networks.

Definition 3.1 (Indistinguishability)

Let G; and G2 be two networks with identical topology, i.e. whose underlying graph is
the same, and let A be a distributed algorithm.

G1 and G5 are indistinguishable for A if for any two configurations v and ', v — '
is a valid computing step of A on G if and only if it is a valid computing step of A on
Gs.

Remark that, by transitivity, if G; and G2 are indistinguishable for A then, for any
scheduler D, the executions of A on G under D are the same than the executions of A on
Go under D.

26 Chapter 3. Lower Bound for Spatial Complexity

3.2.2 Degree-limited

The proofs of Sections 3.4 and 3.5 are only effective on graphs with relatively small degree.
Let us give a proper definition of how to asymptotically define this notion of small degree:

Definition 3.2 (A-limited)

Let G = (G;)ien be a class of graphs which contains graphs of arbitrary large size. Let
us call Ag(n) the function that associates to each integer m, the maximal degree of
graphs of size n in G. If no graph of size n exists in G we define Ag(n) = 0. If there is
no bound on the degree of graphs of size n in G we define Ag(n) = 0.

We say that G is A-limited by function f if Ag(n) € o(f(n)).

3.2.3 Model for Sections 3.4 and 3.5

Our two first results are highly generic, in the sense that they can be adapted to a large
variety of situations. We prove that whatever are the precise state model Spy or Spk, the
scheduler, the knowledge of the parameters of the network, the uniformity of the network,
or the presence of faults, executions of some deterministic algorithm with small memory
on large, identified networks are also executions of the same algorithm on an anonymous
or homonymous network. We only make 2 hypothesis, on the range in which are taken the
identifiers, and on the degree of the networks that are involved.

Range for identifiers We need to consider identifiers between 1 and n X ¢, for ¢ > 1, at
least. This is not an artifact of our proofs: it is actually necessary for the results to hold.
Indeed, if the identifier range is [1, n], then an algorithm can attribute specific rules to each
node of the network, and being certain that no set of rules will be missing. For example,
even in a uniform network, an algorithm may use the node with identifier 1 as a designated
node, and thus making the network semi-uniform-like. This operation could not be done
in the anonymous version of the network. Since semi-uniform algorithms can achieve space
complexity below our lower bound [DJPV00, Joh97], this excludes the possibility to extend
our results to identifier range [1,n]. Even without the possibility of having a trivially
designated node, one can take advantage of small identifier range: there actually exists a
leader election algorithm for the ring which requires constant memory if the identifiers are
taken in [1,7n + ¢] for a constant ¢ [BGJ99]. As soon as the identifiers are taken in a linear
range [1,n X ¢], no such trick can be made to attribute a specific role to one node.

Limited-degree graphs Our proofs only apply on networks with relatively small degree.
Namely, it works with graphs with degree o(logn). This may seem very restrictive, but
practically it is not. Indeed, most problems that cannot be solved on general anonymous
networks can neither be solved on anonymous networks with small degree. Therefore,
proving an equivalence between the executions of algorithms on identified and anonymous,
small-degree, networks, is generally sufficient to prove that some problem cannot be solved
with o(loglogn) bits per node.

3.2.4 Model for Section 3.6

In Section 3.6 we prove the following theorem:

Theorem 3.1

Let c € R,c > 1. Every deterministic distributed algorithm solving leader election in the

3.2. Model 27

state model under a central strongly fair scheduler or under the synchronous scheduler
requires registers of size at least Q(loglogn) bits per node in n-node composite uniform
rings with unique identifiers in [1,n X c|.

Our lower bound is actually optimal not only in terms of size, but also in terms of the
assumptions we make on the setting. More precisely, our theorem has four restrictions: it
works for deterministic algorithms only, on rings with a non prime number of nodes, rings
that are uniform, and with identifiers in a large enough range. In particular, we do not
make any real assumption on the scheduler, since the central strongly fair scheduler and the
synchronous scheduler are the weakest schedulers in the literature, nor on the knowledge
on the topology, nor on the variant of the state model.

We will now discuss why those four limitations are actually necessary.

Determinism Randomization is a common tool for symmetry breaking, and our problem
is one example. Namely, [I[L94] proved that using randomization, one can solve leader
election using constant memory, which implies that our result cannot be generalized in that
direction.

Topology Our proof is established on composite rings, i.e. rings whose size n is not a
prime number. Therefore, it applies to any algorithm that solves Leader Election on, at
least, composite rings. Note that our result does not invalidate the possibility to design
constant-size algorithms for Leader Election in some particular topologies. In stars, exactly
one node has more than one neighbor. Therefore, stars can be seen as particular semi-
uniform networks: the center of the star is a trivial designated leader. More interestingly,
our result does not apply to algorithms that solve leader election on prime rings, i.e. rings
whose size n is a prime number. There is no hope to extend our result in that direction,
since [ILS95] builds a constant memory algorithm for leader election on anonymous prime
rings, under a central scheduler.

Remark that proving an impossibility result for the sub-class of composite rings is partic-
ularly interesting since a large number of works have focused on solving the problem of the
leader election in rings [ILS95, BGJ99, DGFTT14, BT18, ADDT20]. We prove that even
under that pretty simple topology, one cannot design an algorithm that uses o(loglogn)
bits per node.

Identifier Range Since Leader Election is impossible in general homonymous networks,
the equivalence result of Section 3.5 is sufficient to establish our lower bound. Thus, we
only need to suppose that identifiers are taken in a linear range, [1,n X ¢|, for c € R,¢ > 1
to obtain our impossibility result. Due to [BGJ99] constant-memory algorithm for Leader
Election when identifiers are taken in [1,n + ¢], for ¢ € N, there is no hope to extend our
theorem to asymptotically smaller range of identifiers.

Uniformity Our proof is only valid in uniform networks. There is no hope to extend our
results to semi-uniform networks since L& is trivial in anonymous, semi-uniform networks.
Indeed, the distinguished node of the network is a trivial designated leader.

3.2.5 Leader Election Problem

In Section 3.6, we focus on one of the arguably most important problems in the context of
distributed computing, namely leader election. The objective is to maintain a unique leader

28 Chapter 3. Lower Bound for Spatial Complexity

in the network, and to enable the network to return to a configuration with a unique leader
in case there are either zero or more than one leader.

One first step to define the specification of LE is to express what being a leader means.
Some papers suppose a variable leader, on each node v, that can only take two values, 1
and 0, 1 being the value for the leader and 0 for the others. In this case, solving LE boils
down to reaching a configuration where exactly one node v has its variable leader, set to
1.

Although pretty intuitive, this definition is a bit restrictive. Indeed, it could be that
nodes do not store in a variable the information whether they are the leader or not. A more
general possibility is that each time it is necessary, nodes compute a value which indicates
whether they are the leader or not. This computation may depend on their local variables,
their state, and the state of their neighbors, according to the state model. To be as generic
as possible, we consider the second option, which implies the use of a local predicate.

We can now define the specification of LE by referring to the unicity of the leader. A
configuration v € I' is a correct configuration for the leader election problem if one single
node is elected, and an execution satisfies the specification of £E if any configuration it
contains is a correct configuration for the leader election problem. More formally:

Specification 3.1 (Leader Election)

LE (Leader Election) in G = (V, E) is specified by the existence of a local predicate
Ere.
A configuration +y is correct if

Pre(v)=3w eV : Elg(v) = true.
An execution € = vy — - -+ Is correct if all the configurations ~y; are correct:

SPre(e) = Vi>0,Pre(vi)

Vi > 0,3l eV : Ef(v) = true.

Remark that, once again, our definition is extremely general. Notably, we do not suppose
that the leader remains leader during the entire execution, the leadership can switch from
one node to another.

Since we prove a lower bound for L&, being as permissive as possible only strengthens
our result.

3.3 Intuition of the proofs

3.3.1 Challenge of lower bounds for non-silent algorithms

Almost all lower bounds for self-stabilization are for silent algorithms, which are required to
stay in the same configuration once they have stabilized. These lower bounds are then about
a static data structure, the stabilized solution. The question boils down to establishing how
much memory is needed to locally certify the global correctness of the solution, and this is
well-studied [Feul9].

When we do not require that the algorithm should converge to one correct configuration,
and stay there, there is no static structure on which we can reason. It is then unclear how we
can establish lower bounds. One way is to think about invariants. Consider a property that
we can assume to hold in the initial configuration, and that is preserved by the computation

3.3. Intuition of the proofs 29

(if it follows some memory requirement hypothesis). If no correct output configuration has
this property, then we can never reach a correct output configuration.

In our proof, the property that will be preserved is that every configuration is symmetric.
This can clearly be assumed for the original configuration, and we show that basically if
the memory is limited then this is preserved at each step. As the specification we use for
leader election is that the leader should output 1, and the other nodes should output 0,
then it is not possible that a proper output configuration is symmetric.

3.3.2 Intuition on a minimal example

Equivalence with anonymous and homonymous networks Let us now give some
intuition about why algorithms for identified networks with small memory are effective in
k-homonymous or anonymous networks as well. The code of an algorithm A for identified
networks may refer to the identifier of the node that is running it. For example, a rule of
the algorithm could be:

o if the states of the current node and of its left and right neighbors are respectively =z,
y, and z, then: if the identifier is odd the new state is a, otherwise it is b.

Now suppose you have fixed an identifier, and you look at the rules for this fixed identifier.
In our example, if the identifier is 7, the rule becomes:

o if the states of the current node and of its left and right neighbors are respectively =z,
y, and z, then: the new state is a.

This transformation can be done for any rule, thus, for an identifier 7, we can get an
algorithm A; specific to this identifier. When we run A on every node, we can consider
that every node, with some identifier 4 is running A;. Note that A; does not refer to the
identifier in its code.

The key observation is the following. If the amount of memory an algorithm can use
is very limited, then there is very limited number of different behaviors a node can have,
especially if the code does not refer to the identifier. Let us illustrate this point by studying
an extreme example: a ring on which states have only one bit. In this case the number of
input configurations for a node is the set of views (x,y, z) as above, with z,y,z € {0,1}.
That is there are 23 = 8 different inputs, thus the algorithm can be described with 8
different rules. Since the output of the function is the new state, the output is also a single
bit. Therefore, there are at most 28 = 256 different sets of rules, that is 256 different
possible behaviors for a node. In other words, in this extreme case, each specific algorithm
A; is equal to one of the behaviors of this list of 256 elements. This implies that, if we take
a ring with 257 nodes, there exist two nodes with two distinct identifiers ¢ and j, such that
the specific algorithms A; and A; are equal.

But the idea above can be strengthened to get our theorem. The key is to use the
hypothesis that the identifiers are taken from a large enough range. As we have a pretty
large palette of identifiers, we can always find, not only 2, but n distinct identifiers in
[1,n x c] that can be grouped such that the specific algorithm of all the nodes of the same
group correspond to the exact same behavior. In this case, it is as if the network was
k-homonymous, where k is the size of each group. If the identifiers are taken in [1,n¢], we
can even find n distinct identifiers, such that all the specific algorithms A; correspond to
the exact same behavior. In this case it is as if the network was anonymous.

Application: Lower Bound for £E As soon as the network is homonymous-like, we
can start an execution from a symmetric configuration. If the scheduler always activates

30 Chapter 3. Lower Bound for Spatial Complexity

all homonymous nodes consecutively, then the execution contains an infinity of symmetric
configurations, and thus never stabilizes to a proper leader election execution. This is
presented in Figure 3.1.

Figure 3.1: Example of two computing steps, with n = 6, k = 2, and A;p,) = Arp(u)>
ArD(us) = ArD(us)» ArD(us) = ArbD(ug)- 1dentical states are represented by identical shades
of gray. If the states of the nodes are symmetric in the initial configuration, and if the
behavior functions are symmetrically placed around the ring, then an execution can contain
an infinity of symmetric configurations.

Note that the larger the memory is, the more different behaviors there are, and the
smaller the set of identical specific algorithms we can find. This trade-off implies that the
construction works as long as the memory is in o(loglogn).

3.4 Equivalence with Anonymous Networks

3.4.1 Statement of the Theorem

In this section, we prove the following theorem:

Theorem 3.2

Let ¢ € R,c > 1. Let us consider G = (G;);en a class of graphs which contains graphs
of arbitrary large size, such that G is A-limited by logn.

Let A be a distributed algorithm that uses registers of size o(logl%) on all identified
networks G9[1,n¢], i.e. on all graphs G; with unique identifiers in [1,n].

For any large-enough graph G; € G, there exist n identifiers ID1,IDs,...,ID, in
[1,n¢] such that G?[IDy, IDs,...,ID,] and G?[ID] are indistinguishable for A.

In other words, there exist n identifiers in [1,n°] such that in G;, A cannot distinguish
those identifiers: it runs exactly as if the network was anonymous.

3.4.2 Proof in Spy on uniform networks

In this section we prove a weaker version of Theorem 3.2: we only consider the port-
unknown state model and uniform networks. We show in Section 3.4.3 how this proof can
be generalized to Spk and to semi-uniform networks.

Consider a graph G; with maximal degree A, and an algorithm for identified networks
using f(n) bits of memory per node on graphs of G. An algorithm can be seen as the
function that describes the behavior of the algorithm. In the state model, the predicates of
the different rules may consider the identifier of the node itself, its state, the degree of the

3.4. Equivalence with Anonymous Networks 31

node, and the states of the neighbors of the node. The degree can actually be a parameter
on which the algorithm relies. Algorithms, especially in anonymous networks, may have
different behavior depending on the degree of the node. Depending on the value of the
different parameters, an action will be executed, which produces an update of the state of
the node.

Consequently, we model an algorithm by a function, which takes as an input, an identi-
fier, a state for the node, the degree of the node, and a state for all of the neighbors of the
node. This function produces as an output a new state for the node. Formally:

A e x {0,1F® x (Al x ({0, 1™ S fo,1}f™
(ID state , degree A states) — new-state

The idea is that, to get its output, node v will first feed its identifier ID,, its own state
S(v), then its own degree A, and finally the states of its A, first neighbors as the A, next
fields. The other fields are left blank. The output of the function is the output of the
algorithm: the new state of the node.

Note that this corresponds to the port-unknown state model: the function does not have
any information that allows distinguishing the actions taken by one node that is pointed
by its port-number, and one node that is not pointed by its port number, both having the
same neighboring.

Now we can consider that for every identifier ¢, we have an algorithm of the form:

A {0,1F™ Al x ({0,11™)% 5 {011/ ™
(state , degree A states) +— new-state

Thus a specific algorithm A4; boils down to a function of the form:
Ai s ({0,172 s [A] = {0, 11/,

Let us call such a function a behavior, and let B,, be the set of all behaviors.

Lemma 3.1 counts the maximum number of distinct behaviors that can exist.

Lemma 3.1

2(A+1) f(n) A
B < (27)

Proof: The inputs are basically an integer between 1 and A, and binary strings of length
f(n), and there are up to A + 1 such strings. There are at most 2(A+DF () possibilities for

the strings, and A possibilities for the degree. Similarly the number of possible outputs is
(A+1)f(n)
2/ Thus the number of functions in B, is at most (2“’”)2 A. |

Lemma 3.1 implies that the smaller f, the fewer different behaviors. Let us make this
more concrete with Lemma 3.2.

Lemma 3.2
If f(n) € o(*BRE™) then for every large enough n, n°~' > |B,|.

Proof: Consider the expressions of n°~" and |B,,| after applying the logarithm twice:

loglogn®™' = log((c —1)logn)
=log(c — 1) + loglogn

~ loglogn

32 Chapter 3. Lower Bound for Spatial Complexity

(A+1)f(n)
loglog|Bn| < loglog (Zf("))2 4

< log [f(n)Q(A+1)f(n)A:|

< (A+1)f(n) +log f(n) +log A
€ o(loglogn)

As the dominating term in the second expression is of order f(n) € o(loglogn), asymp-
totically the first expression is larger. As loglog(-) is an increasing positive function for
large values, this implies that asymptotically n°~! > |B,|. |

Recall that our goal is to find n different identifiers that all correspond to the same
behavior function. The next lemma shows that this is feasible as soon as n°~! = o(|B,|).

Lemma 3.3

If n°~1 > |B,| then there exist n distinct identifiers IDy, IDy,. .., ID,, in [1,n] that all
have the same behavior, i.e. such that Amp, = A, =+ = A,

Proof: Let ¢ : [n°] — B, be the function that associates to each identifier its corresponding
behavior function: ¢(ID) = Amp. The number of pre-images a behavior function A; has is

o™ (AL

Remark that since ¢ is a function defined on a set of n® elements, we have:
D> e A =0t
A;€Bp,

Let us count the average number of pre-image a behavior function has by ¢, which is the
total number of pre-images divided by the total number of behavior functions. Therefore,

this number is: 1 1
o > e A =
P> 5.1

By hypothesis, this average number is greater than n, and thus by pigeonhole principle
there must exist at least one behavior function .4; that has at least n pre-image by .

In other words, there exist n distinct identifiers ID;, IDo,...,ID, such that Ap, =
Aw, = = Amn,,.]

Let us now consider a large enough graph G; € G. By Lemmas 3.2 and 3.3, there
are n identifiers ID;,IDg,...,ID, such that Amp, = Amp, = --- = Amp,. Consequently
GY[IDy, IDy, ..., ID, and G?[ID;] are indistinguishable by A. This completes the proof of
Theorem 3.2.

3.4.3 Generalization to Spk and to semi-uniform networks

Generalization to Spx In the previous section, we supposed the model Spy. If we now
consider the model Spk, then nodes know which port was assigned to them by each of their
neighbors. Namely, each node v has, as a local variable, a table that associates to each of its
A, neighbors which port it was assigned. This table, with length A, and entries between
1 and A should be part of the inputs of the function that models .A.

There are two options to deal with this situation. The first one is to slightly modify
the hypothesis that G is A-limited by logn. If we suppose that G is A-limited by (logm) -
(loglogn) then adding a field AlogA in the parameters of A does not invalidate all the
math we made, especially the proof of Lemma 3.2.

The other option is to remark that the port number assignment can be chosen sym-

metrically. In such circumstances, all nodes have the same table as an input, and it then
becomes irrelevant as a parameter of the function that models A.

3.5. Equivalence with Homonymous Networks 33

Generalization to semi-uniform networks In the previous section, we supposed uni-
form networks. If we suppose now that the network is semi-uniform, then variable distinguish
may be used by the algorithm, and thus should be a parameter of the function that models

A.

But actually, to prove indistinguishability with anonymous, semi-uniform, networks, it
is sufficient to find n—1 distinct identifiers that all correspond to the same behavior function
and to map them to the n — 1 undistinguished nodes. Indeed, an anonymous, semi-uniform,
network permits that the distinguished node has a behavior different from the other nodes.
Thus, we can simply reason on the n — 1 nodes with variable distinguish set to 0, and
exactly as before, variable distinguish becomes irrelevant as a parameter of the function
that models A.

3.5 Equivalence with Homonymous Networks

3.5.1 Statement of the Theorem

In this section, we prove the following theorem:

Theorem 3.3

Let c € R,e¢ > 1 and let k € N,k > 2. Let us consider G = (G;);en a class of graphs
which contains graphs of arbitrary large size, such that G is A-limited by logn.

Let A be a distributed algorithm that uses registers of size 0(%) on all identified
networks G9[1,n x c|, i.e. on all graphs G; with unique identifiers in [1,n x c|.

For any large-enough graph G; € G, there exist n identifiers ID1,IDs,...,ID, in
[1,nxc] such that GY[ID;, IDs, ..., ID,] and G¥[ID;, IDs, ..., 1D, 1] are indistinguishable
for A.

In other words, there exist n identifiers in [1,n x ¢] such that in G;, A cannot distinguish
those identifiers: it runs exactly as if the network was homonymous.

3.5.2 Proof when k divides n

Similarly to how we proceeded in Section 3.4, we suppose in this section the Spy model
and uniform graphs. The remarks made in Section 3.4.3 apply without any difficulty to the
following proof to establish the general version of Theorem 3.3.

In this section we prove a weaker version of Theorem 3.3: we suppose that the size of
the networks we consider are divisible by the integer k. We show in Section 3.5.3 how this
proof can be generalized to all networks.

The proof of Theorem 3.3 is basically the same as the proof of Theorem 3.2, and follows
the same scheme. The major difference is that since the range in which the identifiers are
taken is smaller, it is harder to find distinct identifiers that cannot be distinguished by A.
Actually, we cannot guarantee to find n such identifiers anymore. Fortunately, we can find
n distinct identifiers that can be grouped k£ by k so that in each group all the identifiers
have the same corresponding behavior function, and thus we obtain the equivalence with
homonymous networks.

Consider a graph G; with maximal degree A, and an algorithm for identified networks
using f(n) bits of memory per node on graphs of G. Once again, the algorithm can be seen
as the function which takes as an input, an identifier, a state for the node, the degree of

34 Chapter 3. Lower Bound for Spatial Complexity

the node, and a state for all of the neighbors of the node:

A Inxd x {0,110 x (Al x ({0,102 S {0,110
(ID state , degree | A states) +— new-state

We can still consider that for every identifier ¢, we have an algorithm of the form:

A {0,110 %Al x ({0,125 {0, 11/
(state , degree A states) +— new-state

Lemma 3.1 remains valid:
oA+ f(n) A

B < (2/)
Since there are fewer identifiers than there were in the previous, we must be tighter
when dominating |B,,| by a function of n than we were in Lemma 3.2.

Lemma 3.4

If f(n) € o(logl%), then for every n large enough, we have % > |B,|.

Proof: Consider the expressions of % and |B,| after applying the logarithm twice:
log log % = log(logn + log(c — 1) — log(k — 1))
~ loglogn

And similarly to what was established for Lemma 3.2:
loglog |Bn| € o(loglogn)

As loglog(+) is an increasing positive function for large values, this completes the proof
of the lemma. |

Recall that our goal is to find n different identifiers that can be grouped by sets of size
k such that, in every group, all the identifiers have the same corresponding behavior. If we
consider ¢ the function that associates each identifier to the corresponding behavior, then
it boils down to finding n distinct identifiers that can be grouped by k, such that in each
group, all the identifiers have the same image by ¢. For example, if k = 2, if the identifiers
are taken in {1,2,3,4,5,6,7}, and if there are three behaviors B = {b1, b2, b3}, we can have
o(1) = ©(2) = ¢(3) = by, ©(4) = ba, and ¢(5) = ¢(6) = ¢(7) = bs. In that case, we can
form two sets of size k = 2 such that all the elements of one set have the same image by .
We can for example consider {1,3} and {6,7}.

Let us give a definition that formalizes that.

Definition 3.3 (k-group number of a function)

Let ¢ : A — B be a function, and let k € N. We define the k-group number of
@, and denote ty(p) the maximum number of disjoint sets of size k of elements of A,
51,52, -+, 84,.(p) such that all the elements of the same set S; have the same image by

@Y.

The precise value of t;(p) depends on the specificities of ¢. Nevertheless, we can have
a pretty good estimation of ¢x(p) by comparing the respective sizes of A and B. Indeed,
the larger A is, the more chances we have to find sets of elements of A that satisfy some
property. On the contrary, the larger B is, the more possible images there are, and the
harder it is to find elements of A that are mapped to the same element of B.

Lemma 3.5 establishes a generic lower bound on k().

3.5. Equivalence with Homonymous Networks 35

Lemma 3.5

Let ¢ : A — B be a function, and let k € N*. We have ty(¢) > w.

Proof: Let us first consider b € B, and denote % () the number of disjoint sets of size k of

—1
elements of A with image b that can be formed. Intuitively, we have t}(p) = LWJ‘ By
definition, we also have

(o) = Stk = (20

beB beB

Recall the inequality, true for any integer m: [+] > W Thus, we deduce:

e

(@) > 3 217 O (k-1) > £ 3 (o7)= (k= 1)) > 2 (3l O~ (k- 1)1B))

beB beB beB

Since ¢ is a function from A to B we have ZbeB(\tp_l(b)D = |A| and thus we conclude
te(y) > IA*(kkfl)IBI. [

The next lemma shows that, if % > | B,,|, we can find n/k disjoint sets of k identifiers
taken in [1,n X c] such that all the identifiers of each set have the same corresponding

behavior.

Lemma 3.6

Let ¢, : [1,n X ¢] — B, be the function that associates each identifier ID to its
corresponding behavior Arp. If % > |B,|, then ti(p,) > n/k.

Proof: According to Lemma 3.5 we have tx(pn) > £ (nc — (k — 1)|Bal|), and by hypothesis
this means that tx(pn) > 1 (nc — n(c — 1)), and thus tx(pn) > n/k. ||

Let us now consider a large enough graph G; € G. By Lemmas 3.4 and 3.6 we can
consider Si,S2,...,Sy/, disjoint sets of k identifiers, such that all the identifiers of the
same set have the same image by ,,. For each set 5;, let us pick one specific identifier, ID;.

Consider now G¥[IDy,...,ID, /k] & k-homonymous network with topology G and k oc-
currences of each ID;, on the first hand, and G?[S; U Sy U --- U Si] an identified network
similar to G},, where for each i, occurrences of identifier ID; are substituted by one of each
value of S;. By construction, algorithm A cannot distinguish identifiers from the same set
S;, and thus G¥[IDy, ..., 1D, ;) and GY[S1USyU---U S| are indistinguishable for .A. This
completes the proof of Theorem 3.3.

3.5.3 Proof for any n

In the previous section, we supposed that n was a multiple of k, which simplifies the
distribution of groups of k identifiers to the n nodes of the network.

If this hypothesis falls, then for a fixed value k we can still find n/k disjoint sets of k
identifiers such that in each set, all the identifiers have the same corresponding behavior.
Yet this does not cover all the nodes anymore, there are still n mod k nodes that do not
have an identifier this way.

Finding one new set of k identifiers that all correspond to the same behavior, and
associating some of them to the nodes that do not have an identifier will not work, since a

36 Chapter 3. Lower Bound for Spatial Complexity

k-homonymous network must have at least k nodes with the same identifier, and n mod k
is less than k.

To solve that issue, let us rather prove that there are at least n mod & (in practice, at
least k — 1) disjoint sets of k + 1 identifiers such that in each set, all the identifiers have
the same corresponding function. This way, we can construct a k-homonymous network, in
which all identifiers are shared by at least k, sometimes k + 1, nodes.

One problem may arise: it might be that some of those sets of k+ 1 identifiers intersects
2 of the sets of size k that we have. Indeed, suppose that 2k identifiers correspond to the
same behavior. This allows us to define 2 sets of size k, but if & + 1 such identifiers are
taken by one of the new sets, then we cannot finish the identifier assignments. Hopefully,
we cannot lose more that 2 sets of size k due to a set of size k + 1. If this happens, we can
reorganize the different incomplete sets to form new ones.

To avoid such situation, it is sufficient to find not n/k, but n/k + k sets of size k. Thus,
even if we lose 2 sets of size k for every set of size k 4+ 1, we end with k sets of size k + 1,
and (n/k — k) sets of size k, which is sufficient to assign a unique identifier to each node of
the graph. Since n is supposed large enough, this additional k will be negligible.

Similarly to Lemma 3.4, we can prove that for any large enough n, we have |B,| <
2
ne=k?+1 on the first hand, and [B,| < ™= on the other hand.

Now, similarly to Lemma 3.6, we use these inequalities to prove that for any large
enough n, tx41(0,) > k — 1, on the first hand, and #x(p,) > % + k, on the other hand.

Finally, we can consider S, S5, ...,5, mod & disjoint sets of k+1 identifiers such that all
the identifiers of the same set have the same image by ¢,,, and 51,80, S[n/kj—(n mod k)
disjoint sets, disjoint from the .S;, such that all the identifiers of the same set have the same
image by ¢y,.

The elements of these [n/k] jointly contain (n mod k)(k+1)+k(|n/k]—(n mod k)) =
n mod k + k|n/k] = n elements. Thus, similarly to how we concluded the proof of The-
orem 3.3, we can consider a large enough graph G € G on the one hand, and one specific
identifier ID; for each set on the other hand. By construction, G*[ID, ..., ID|p k)] 18 k-
homonymous, and is indistinguishable from the identified network G°[S; U---U S, moa x U
SiU---U S[n/kjf(n mod k)], Which completes the proof.

3.6 Lower Bound for L&

3.6.1 Statement of the Theorem

In this section we establish a lower bound of Q(loglogn) bits per node for the space com-
plexity of distributed algorithms that solve leader election in composite, uniform, rings.

Theorem 3.1

Let ¢ € R,c > 1. Every deterministic distributed algorithm solving leader election in the
state model under a central strongly fair scheduler or under the synchronous scheduler
requires registers of size at least Q(loglogn) bits per node in n-node composite uniform
rings with unique identifiers in [1,n X c].

This bound improves the only lower bound known so far [BGJ99], from w(1) to 2(log logn),
and it is tight, as it matches the upper bound of [BT18], obtained in the same model and
under a more challenging scheduler, the weakly fair distributed scheduler. In particular,
it invalidates the folklore conjecture stating that the aforementioned problems are solvable
using only O(log*n) memory.

3.6. Lower Bound for L& 37

Link with Dijkstra’s impossibility result In a celebrated paper [Dij82], Dijkstra es-
tablished, among other things, that one cannot break symmetry within anonymous compos-
ite rings. This result holds under a central strongly fair scheduler. Theorem 3.1 follows the
same idea as Dijkstra’s. The core of the proof, and the statement of Theorem 3.2 is about
proving that an algorithm with too little memory cannot fully use the power of identifiers.
The second part of the proof of Theorem 3.1 is basically a generalization of [Dij82]: we
prove that one cannot break symmetry in homonymous composite rings.

Recall that assuming that the ring is composite is essential, due to the constant memory
algorithm on anonymous prime rings of [ILS95].

3.6.2 Limits of Theorems 3.2 and 3.3

It is known that £& cannot be solved in general, homonymous rings [DGFTT14, ADD*20].
Therefore, the proof of Theorem 3.1 will rely on Theorem 3.3 and on its proof. Yet, there
are two issues that must be overcome to adapt Theorem 3.3 to the impossibility to solve
LE on composite rings.

3.6.2.1 k-Homonymy

In the previous section, we supposed that k& was a fixed integer, independent of n. In this
section, in order to prove the impossibility of solving £E, we must make sure to have a
symmetric network. This is feasible only if k is a divisor of n. In the worst case, we have
k = \/n. We will have to adapt some of our proofs so that everything remain valid.

3.6.2.2 Indistinguishability

We proved in Section 3.5 that for any algorithm A which uses few memory, there exist
identified and homonymous networks that are indistinguishable for A. It is very tempting
to conclude that any problem that cannot be solved in homonymous networks, can neither
be solved with few memory. Since it is known that £E cannot be solved in homonymous
networks, we would conclude immediately. Unfortunately, things are not that straightfor-
ward.

Indeed, we only proved that networks were indistinguishable for A. We did not prove
that they were indistinguishable for SPg¢. It could be that two identical executions, one
in an identical network, and one in a homonymous network, do not have the same status
from the specification point of view, and that the execution in the identified network solves
LE, while it does not in the homonym network.

Let us give one example. Suppose that each node has in its memory a string of bits,
and that this string of bits corresponds to the identifier of one of the node. In a homony-
mous network, this does not help to solve LE. However, in the identified network, L& is
now trivially solved, although all nodes are in the exact same state. This is because the
specification of the L&, and especially E ¢, can rely on the identifiers.

The example above requires that each node stores an identifier, which requires at least
log n bits, and thus, it is contradictory with the hypothesis on the memory. This is actually
not a coincidence: with few memory, one predicate, not more than one algorithm, can fully
use the uniqueness of the identifiers.

We will follow that idea to prove that the reasoning we made on A in Sections 3.4
and 3.5 can be extended to the predicate that determines LE.

38 Chapter 3. Lower Bound for Spatial Complexity

3.6.3 Proof

In this section we prove Theorem 3.1 by focusing on the case were the scheduler is a central
strongly fair scheduler. Although the synchronous scheduler cannot be said stronger than
the central strongly fair scheduler, the construction we propose fits for the synchronous
scheduler too.

Consider a ring of size n, and an algorithm for identified networks A using f(n) bits of
memory per node to solve leader election in composite rings.

Similarly to what we did in the previous sections, we can consider the function that
describes the behavior of the algorithm. Since all nodes have exactly two neighbors, the
expression of A as a function is much simpler than in the previous section:

A: [nxd x {0,130 x {013/« {013/ 0 {01}/
(ID state , left-state , right-state) > new-state

Note that in general, we consider non-directed rings thus the nodes do not have a consistent
global definition for right and left. As we are dealing with a lower bound with a worst-
case on the port numbering, assuming such a consistent orientation only makes the result
stronger.

Unfortunately, as explained above, this will not be sufficient to establish Theorem 3.1.

Let us suppose that A solves £LE. By definition there exists a boolean predicate E,¢
associated to A, that characterizes how A solves the specification of LE. By definition,
this predicate takes the same input as A: the local variables of the node on which it is
evaluated, and the state of the node itself and of its neighbors. Therefore, we can consider
the function (A, Ez¢), which takes the same inputs as A, or Ez¢, and returns a tuple, the
result computed by A, which is a new state for the node, and the result computed by E.¢,
which is a boolean value that indicates whether the node is elected or not. Formally:

(A, Ere): [nxd x {0,1}/™ x {01}/ x {0,1}/™ — {0,1}/™) x {0,1}
(ID state , left-state , right-state) ~— (new-state,elected)

Now, we can consider that for every identifier ¢, we have a tuple of the form:

(A, Ere)i = {0,130 » 0,1}/ x {0,1}/™ = {0,1}/™ x {0,1}
(state , left-state , right-state) — (new-state,elected)

Thus a specific tuple (A, Ez¢); boils down to a function of the form: {0,1}3/(") —
{0,137+ Let us call such a function a behavior, and let B, be the set of all behaviors.

Similarly to what was done in Lemma 3.1 we can count how many distinct behaviors

can exist:
|B,| = 2(f(mF1)x2/(

Remark that from now on, the issue coming from the non-indistinguishability for the
predicate is basically solved: behaviors now include the predicate, and the increase in
number is negligible in front of what we tolerate for the algorithm.

However, the issue coming from which the possibility for k£ to grow with n has not been
addressed yet. Recall that our goal is to find n different identifiers which can be grouped by
sets of size k (k being a divisor of n), such that in every group, all the identifiers have the
same corresponding behavior. In the worst case, all rings have size p? where p is prime. To
build a symmetric configuration in this case, and formally establish impossibility, we need
to find p disjoint sets of p identifiers that all have the same corresponding behavior, where
p is the square root of the size of the network. Therefore, k cannot be supposed a constant
anymore.

Let us establish a variant of Lemma 3.4:

3.6. Lower Bound for L& 39

Lemma 3.7

If f(n) € o(loglogn), then for every n large enough, for every k < /n, we have
n(c—1)
=== > |B,|.

k—1

Proof: Remark first that % > /n(c—1). Now consider the expressions of y/n(c—1) and
|Br.| after applying the logarithm twice:

loglog(yv/n(c—1)) = log(3logn + log(c— 1))
~ loglogn

loglog(|Ba]) = log ((f(n) +1) x 2*7W) =log(f(n) + 1) + 3f(n)
€ o(loglogn)
As loglog(+) is an increasing positive function for large values, this completes the proof
of the lemma.]

The next lemma shows that if % > |B,|, then for every k < \/n we can find n/k
disjoint sets of k identifiers taken in [1,n X ¢| such that all the identifiers of each set have
the same corresponding behavior.

Lemma 3.8

Let ¢, : [1,n x ¢] — B, be the function that associates each identifier i to its corre-
sponding behavior A;, and let k < \/n. If % > |B,|, then ti(pn) > n/k.

Proof: According to Lemma 3.5 we have tx(¢n) > % (nc — (k — 1)|Bx|), and by hypothesis

this means that tx(pn) > 1 (nc —n(c — 1)), and thus tx(pn) > n/k. ||

Combining the three lemmas we get that, if f(n) € o(loglogn), then for any large
enough n, for any k < /n, we can find n different identifiers in [1,n X ¢|, which can be
grouped in sets of size k such that all identifiers of the same set have the exact same
behavior.

Now, consider a large enough composite ring of size n, and let k£ be a divisor of n such
that 1 < k < +/n. Let us consider n identifiers which can be grouped as explained above,
and let us place those identifiers on the ring such that the identifiers of the same set are
placed each n/k node, similarly to what is presented on Figure 3.1.

For our proof, we need to start in a symmetric configuration, where all nodes with their
identifier taken in the same set have the same state. Since our theorem does not suppose
a faulty environment, we must consider as an initial configuration, a correctly initialized
configuration, where all nodes have the same, clean, state. This perfectly fits what is
required for the proof.

Let o be the initial, correctly initialized, configuration of the system. We cannot have
Pre(v0)- Indeed, the predicate E,¢ has the same behavior on all the nodes with identifiers
taken in the same set. Therefore, the number of nodes v such that E)%(v) = 1 is a multiple
of k.

Since 7y does not satisfy Prg, at least one node is enabled. Note that all nodes with
identifiers from the same set see the same states for themselves, and for both their neighbors.
Thus, since all of them have the same behavior, if one is enabled, then the others are too,
and if activated they will execute the same rule.

Now, the central scheduler activates one of them, and for the k—1 next steps, it activates

each of the others. Since those nodes are placed at a distance at least 2 from each other, the
action executed by one node has no incidence on the state of the other nodes, nor on the

40 Chapter 3. Lower Bound for Spatial Complexity

states of their neighbors, and thus the other nodes take the exact same step as the first one.
Thus, after those & computing steps, the ring is once again in a symmetric configuration
k. One again, we have = Prg (k).

We can iterate this argument forever, as long as the scheduler consecutively activates
nodes from the same set, which a central strongly fair scheduler can do. In other words, there
exists an execution of A such that the system is infinitely often in symmetric configurations,
which do not satisfy Pre. Therefore, the network never stabilizes in an execution that
satisfies leader election. This proves Theorem 3.1.

If we now consider an execution under the synchronous scheduler, where all the enabled
nodes are atomically activated at each computing step, then all the k computing steps
happen at once, and therefore all the configurations are symmetric, which also invalidates
the specification of LE.

Generalization of Theorem 3.3 Theorem 3.3 establishes an equivalence between al-
gorithms with small memory, and algorithms for k-homonymous networks, for any fixed
value of k € N. On the other hand, the technique used in the proof of Theorem 3.1 guaran-
tees that for any k& < y/n, we can build a k-homonymous network on which the algorithm
behaves exactly the same way as in an identified network.

The second is more general, since k can depend on n. Since the proofs of Theorem 3.1
and 3.3 are basically the same, we can adapt the given proof of Theorem 3.3 to make the
result a bit more general.

We state the new theorem as a corollary of Theorem 3.3 and of the proof of Theorem 3.1.

Corollary 3.1

Let c € R,c¢ > 1. Let us consider G = (G;);en a class of graphs which contains graphs
of arbitrary large size, such that G is A-limited by logn.

Let A be a distributed algorithm that uses registers of size o(bgl%) on all identified
networks G9[1,n x c|, i.e. on all graphs G; with unique identifiers in [1,n x c|.

For any large-enough graph G; € G, for any divisor k of m such that k < /n,
there exist n identifiers IDq, IDs, ..., ID, in [1,n X ¢] such that GY[IDy, IDs, ..., ID,] and
G¥[1Dy, 1Dy, .. ., 1D, /1| are indistinguishable for A.

3.7 Conclusion

In this chapter, we establish two generic results that establish a strong link between al-
gorithms that use o(loglogn) bits per node, and algorithms executed in anonymous or
homonymous networks. Since various problems are unsolvable in anonymous, or homony-
mous networks, these theorems are a powerful tool to establish sub-logarithmic lower
bounds.

However, the specification of the problem must be taken into account too, to conclude
an impossibility result from an indistinguishability result. We showed in Section 3.6 how
this logical link can be done, by addressing the leader election problem. Specifically, we
prove a Q(loglogn) bits per node lower bound for the leader election problem on the ring.

This bound matches the upper-bound O(loglogn) bits per node on rings [BT18]. Yet,
for arbitrary graphs, [BT20] requires an additional space in O(logA) bits per node. An
interesting problem would be to find whether this additional term in O(log A) is necessary
for graphs where the degree is not bounded.

CHAPTER 4

Silent Anonymous
Snap-Stabilizing Termination
Detection

You are terminated

Terminator
Contents
4.1 Introduction 42
4.1.1 Motivation e 42
4.1.2 Related Work 43
4.1.3 Contribution 44
4.2 Model 45
4.2.1 Computational Hypothesis 45
4.2.2 Unison Algorithms L. 45
4.2.3 Termination Detection Algorithms 46
4.2.4 Algorithm-Specific Notations 48
4.3 Properties of Unison Algorithms, 48
4.3.1 Preliminaries: Silent Unison Algorithms 48
4.3.2 Rules of Unison Algorithms 48
4.3.3 Tools on Executions of Unison Algorithms 49
4.3.4 Properties of Unison Algorithms. 51
4.4 Algorithm e 52
4.4.1 Scheme of Algorithm 7~ 53
4.4.2 Variables e 53
4.4.3 Overview of the algorithm 53
4.4.4 Predicates Lo e 55
4.45 Actions. 55
4.5 Correctness of Algorithm 7 55
4.5.1 Simulation properties of 7 56
4.5.2 Termination of 7 L 58
4.5.3 Snap-stabilization L L 59
4.5.4 Time complexity o 65
4.6 Conclusion 65

A preliminary version of these works was presented in [BJBP22b].

42 Chapter 4. Silent Anonymous Snap-Stabilizing Termination Detection

4.1 Introduction

Termination Detection [Fra80] is a fundamental and widely studied problem of distributed
systems. It belongs to the category of global system observation mechanisms that processes
of the distributed system may need in the accomplishment of a global computation, for
example, detecting the presence of a deadlock, taking a snapshot of the global system state,
or maintaining a logical distributed clock. The distributed nature of systems makes these
problems difficult to solve. They are subject to specific distributed algorithms dedicated
to control the global state of other distributed algorithms. Regarding the termination
detection (TD, for short) problem, any node of the distributed system may need to detect
whether a computation has globally terminated. More precisely, upon a (local) request (for
instance, from an application) a node initiates an instance of TD over the whole system to
find out whether another distributed algorithm is terminated.

4.1.1 Motivation

It is known that TD cannot be achieved in the context of self-stabilization, except in the
specific case where the TD algorithm is snap-stabilizing. Indeed, with the self- but not
snap-stabilizing approach, assume an application where nodes decide to use local variables
(supposed to be updated by a global detection mechanism) whether the stabilization phase
is over or not. Then it is always possible to build an arbitrary configuration in which the
same nodes have access to exactly the same local information. As a consequence, the two
situations are indistinguishable, leading to a wrong decision in the second one.

Nevertheless, a self-stabilizing algorithm (at least) guarantees that by repeating global
detection instances, the variables provide the correct answer at some, but in an unpre-
dictable time. Indeed, let ssTD be a self-stabilizing TD algorithm. By initiating ssTD,
it is possible that ssTD returns a wrong answer during the stabilization phase, e.g., ssTD
returns “yes” (meaning that an observed algorithm A terminated), while A actually did not
terminate. In other words, ssTD can compute incorrect (or unsafe) answers several (but a
finite number of) times before at the end computing true/correct answers. Self-stabilization
ensures that by repeating instances of ssTD, the answer is eventually correct forever.

In [CDD™16], it is shown that the termination detection can be achieved using only one
detection instance i.e., at the very first request to know whether an observed algorithm is
terminated or not, the returned answer is correct, even if the request was initiated during
the stabilization phase. This corresponds to the paradigm of snap-stabilization.

It is important to notice that snap-stabilizing algorithms do not hide better the effects of
transient faults than the self-stabilizing algorithms that do not respect this property. How-
ever, while a self-stabilizing algorithm guarantees only a finite, yet generally unbounded,
number of incorrect answers after the faults cease, a snap-stabilizing algorithm offers correct
answers from the first request (after the faults cease).

Note that the snap-stabilizing solutions in [CDD*16] assume an identified network,
where each node has a unique identifier. Even if most of existing distributed systems are
identified, developing algorithms that do not use process identifiers definitely makes sense
in several aspects. Such algorithms are said to be anonymous algorithms—or, algorithms
for anonymous systems.

Anonymity often makes the resolution of some problems harder by far. That makes
anonymous approaches interesting from a computational point of view. As presented in
the previous chapter, Leader Election is an iconic example of that difficulty. Although
the problem is quite trivial to solve deterministically by using the total order provided
by process identifiers—just choose the maximum or minimum identifier as the leader, it

4.1. Introduction 43

cannot be solved at all in systems lacking properties (as process identifiers) that break
possible symmetries [Ang80, Dij82].

Also, anonymous solutions a priori require less memory. Notably, they do not need
process identifiers, and thus do not require any register to store the information related
to the identifiers. Anonymous approaches are also very attractive from a practical point
of view. Indeed, they provide solutions that preserve user privacy, they work for systems
with homonyms, where nodes can change their names or be replaced during the algorithm
lifetime. They are also very suitable for networks made of units with weak capabilities such
as wireless sensor networks, body-area networks, etc.

4.1.2 Related Work

The question of detecting the stability of a self-stabilizing algorithm in an anonymous
system was first addressed in [LS92]. In this paper, the authors introduce the notion of
observer: a local node that can detect correctness of a given algorithm, but cannot influence
it.

Assuming the central scheduler, where only one node takes a step at each time and a
prime-size uniform ring, the authors propose a deterministic distributed algorithm for the
observer that detects stability in ©(n?) steps from the time the ring is stabilized. Located
at each node, the proposed observer is not subject to any type of corruption ¢.e., it is not
self-stabilizing. In [BPRO5], the authors also propose a non-self-stabilizing observer. They
propose an observer for synchronous rooted systems, where all enabled nodes take steps
simultaneously and a unique node is distinguished from the others. In a synchronous and
non-self-stabilizing system, the same authors remove the constraint of having a distinguished
node by introducing randomization [BPROG6].

The first deterministic algorithm that solves the problem addressed in [LS92] that is also
self-stabilizing is proposed in [CDD'16]. By contrast with the above results [LS92, BPRO5,
BPRO6] that are not self-stabilizing, the results in [CDD"16] show the necessity to achieve
snap-stabilization and not only self-stabilization. Indeed, only snap-stabilization offers the
desirable property of returning the right answer to the request of knowing whether a self-
stabilizing algorithm achieved stability, even during the stabilization phase of the observed
algorithm. As mentioned earlier, the solution in [CDD™16] requires a named network.

In anonymous networks of arbitrary size, unison [CFG92, BPV04, DJ19, EK21] offers
a nice support to implement deterministic solutions [BLP0S]. The asynchronous unison
consists in maintaining a local logical clock (sometimes referred to as counter), one for each
node, such that: (7) the clock value of each node does not differ by more than 1 with any
of its neighbors, and (i) the clock value of each node is increased by 1 infinitely often.
The unison principle is a strong tool to synchronize the whole system by implementing a
synchronization barrier. To the best of our knowledge, this principle forms the basis of
all known deterministic solutions for anonymous networks, even non-self-stabilizing, which
solve global (a.k.a., total [Tel88]) problems, i.e. problems involving all nodes of the network
before a decision can be taken. TD obviously belongs to this class of algorithms. The phase
algorithm in [Tel88] and the TD algorithm in [SSP85] are typical examples of algorithms
that use an underlying unison mechanism. Both algorithms require that nodes know (an
upper bound on) the network diameter D, i.e. the maximum distance between two nodes
of the network. As far as we know, the question of the necessity of this knowledge to be
able to deterministically solve total problems remains open.

In [God19], the author proposes a snap-stabilizing TD algorithm to characterize tasks
that are solvable with snap-stabilizing algorithms in anonymous networks. This algorithm
combines the synchronization technique in [SSP85] and the self-stabilizing enumeration
algorithm in [God02]. The former actually uses a unison mechanism and requires that

44 Chapter 4. Silent Anonymous Snap-Stabilizing Termination Detection

nodes know (an upper bound of) D. The latter works on a particular class of graphs (so
called, non-ambiguous graphs [Maz97]) and implements a renaming mechanism that uses
an a priori exponential memory size.

Many self-stabilizing algorithms aim at being silent, i.e., after some calculations, the
communication registers used by the algorithm remain fixed as long as no request is
made [DGS99, GH99]. By communication variable, we mean variables shared between
neighboring nodes. Silence is trivially a desired property with algorithms that terminate
by building distributed fixed structures—e.g., spanning trees, coloring, Maximal Indepen-
dent Set, ete. It is also very desirable for so-called “long-lived” algorithms—e.g., mutual
exclusion, unison, routing, etc.—to reduce communication operations and bandwidth. For
instance, it is quite easy to design a self-stabilizing silent unison [GH99, BPV04] by modi-
fying the above Condition (i) as follows: (ii') the clock value of each node is increased by
1, provided that at least one node decides to do it.

4.1.3 Contribution

In this chapter, we address asynchronous anonymous networks. We focus on terminating
and silent self-stabilizing algorithms i.e., self-stabilizing algorithms that converge in finite
time to a desired global configuration from which no values of the communication vari-
ables are changed thereafter. We present a generic, deterministic, silent algorithm that
detects whether an observed terminating silent self-stabilizing algorithm has converged to
a configuration that satisfies an intended predicate. Our solution uses similar techniques
as in [BLPO8] to achieve snap-stabilization, namely it is based on an underlying unison
algorithm. However, in this chapter, the latter can be any (asynchronous) unison in the
literature, e.g., [CFG92, BPV04, DJ19, EK21].

As all existing deterministic anonymous total algorithms in the literature (e.g., [SSP85,
Tel88, BLP08, God19]), our algorithm requires that nodes know (an upper bound on) the
diameter D of the network. It works under the weakest scheduling assumptions a.k.a, the
unfair scheduler. Built over any asynchronous self-stabilizing underlying unison U, our
solution adds only O(log D) bits per node, where D is the diameter of the network. Since
there exists no unison algorithm with better space complexity — the best space complexity
for the asynchronous unison is obtained in [EK21] with O(log D) bits —, the extra space
of our solution is negligible w.r.t. the space complexity of the underlying unison algorithm.

Time complexities are given in terms of rounds that captures the execution rate of
the slowest node in any computation [CDD*16, Dol00]. The response time computes the
number of rounds between the time when a request is triggered and the time when the
answer to that request is returned. The response time of our solution is in O(max(k, k', D))
rounds, where k and k' are the stabilization time complexities of A and U, respectively. In
other words, once both A and U are stabilized, our solution provides an answer in optimal
time, i.e., O(D) rounds.

Chapter Outline The remainder of the chapter is organized as follows. We first formally
describe specific notations and definitions. Then, in Section 4.3, we formally define the
unison problem, and establish some properties of self-stabilizing unison algorithms. In
Section 4.4, we present and formally describe our snap-stabilizing algorithm for termination
detection. Section 4.5 contains the proofs of our claims and theorems, and in particular we
establish that our algorithm is snap-stabilizing for the termination detection problem. We
make some concluding remarks in Section 4.6.

4.2. Model 45

4.2 Model

4.2.1 Computational Hypothesis

In this chapter, we consider the port-unknown state model Spy, where nodes do not know
the port number they were assigned by their neighbors. We also consider anonymous,
uniform networks. The conjugation of these three parameters is the weakest assumption
one can make on the network.

Nevertheless, we suppose that nodes all know an upper bound on the diameter of the
network D. We do not suppose that all nodes have the exact same lower-bound. However,
the time and space complexity of our algorithm depend on the highest value of that lower-
bound in the network. To avoid unnecessary complications, we suppose in the following
that all nodes have the same value D as an upper bound on the diameter of the network.

Our algorithm for termination detection relies on a self-stabilizing unison algorithm
U. This algorithm is used as a black box, we only require that it eventually stabilizes
in an execution satisfying the Unison requirements. On the other hand, the termination
detection itself must be snap-stabilizing: it must not provide any incorrect output if no fault
occurs during its execution. Classically, our algorithm can only detect the termination of a
terminating, and thus silent, algorithm. The termination detection algorithm is itself silent
too.

Finally, our termination detection algorithm works under any scheduler. Hence, it
nevertheless requires that the observed algorithm terminates, which may be possible only
under some specific scheduling assumptions.

4.2.2 Unison Algorithms

Algorithms solving Unison guarantee that all the nodes in the system have a variable clock
that increases infinitely often, and such that any pair of neighboring nodes have a difference
of at most one between their clocks. Let us denote by C the set of values that clock can
take.

Since we consider nodes with finite memory, C must be finite. Therefore, to be infinitely
increased, it is necessary that after some increase, the clock of some node reaches some
value it has already taken. Therefore, in a valid execution, the values taken by clock must
cycle.

Without loss of generality, we suppose that the values taken by clock contain some set
Z/mZ, the modulo-m integer, for some value of m (which may depend on some parameters
of the network).

To achieve maximal genericity, we consider that C can contain other values than the
classical values in Z/mZ. Typically, C can contain control values such as 1, nil, etc.
Notice that if the value of clock € Z/mZ, then the usual arithmetic operations on clock are
modulo—m operations. In the following, we consider the operations made on clock, specific
to each algorithm, only when clock € Z/mZ.

Let us formalize this in the following specification:

46 Chapter 4. Silent Anonymous Snap-Stabilizing Termination Detection

Specification 4.1 (Unison)

U (Unison) in G = (V, E) is specified by the existence of a variable clock, on each node
v € V which takes values in C 2 Z/mZ, for some integer m.
A node v is non-faulty in ~y if

Vu € N[v],clock] € Z/mZ
Piv)=<¢ A
clock] € {clock] — 1, clock], clock? + 1}

A configuration +y is correct if all nodes are non-faulty:
P =YveV,P(v)

An execution € = vy — -+ is correct if all the configurations v; are correct (safety
property) and if all the nodes have their variable clock increased infinitely many times
(liveness property):

Vi >0, P
SPy(e) =< A
Yo € V,Vi > 0,35 > i: clock]? = clock]’ +1

An algorithm U is a self-stabilizing algorithm for Unison if I'byy Py and if any execution
that starts in P, satisfies SPy.

4.2.3 Termination Detection Algorithms

Request-Based Algorithm A request-based algorithm RB is an algorithm that inter-
acts with an external application App, typically an external user or another algorithm.
This interaction takes place through one shared variable, req, that can be updated by the
application. The variable req has four values: idl,on, wk, off. The value idl means that no
request is in progress on node v for the application. Node v is then said idle. Value on
means that a request is initiated, but the computation is not launched. Once the requested
computation is running, req is set to wk. The fourth value, off indicates that the requested
computation is done, but the result has not been communicated to the application yet.
Variable req is updated through four methods. Two of them, ask and get, are part of App.
The two others, Rytqrt and Ryyop, are part of RB—see Figure 4.1.

RB: Rsta'rt
on | vak
App: ask RB: Rstop
idl | [off
App: get

Figure 4.1: Diagram for req,

Snap-stabilization is a suitable paradigm for request-based algorithms. Indeed, a snap-
stabilizing request-based algorithm ensures that if the application executes ask on one node
v, then the following execution of get on the same node v will mark the end of a correct
computation. We define the response time of a request-based algorithm as the maximal

4.2. Model 47

number of rounds between any computing step in which the application executes ask on
any node v, and the following computing step in which the same node v updates req, to
off.

Simulation Strictly speaking, a termination detection algorithm 7 runs on the same
network as A the algorithm it observes. T has a read-only access to the variables of A, and
A is executed exactly the same way as if it was not observed. To model this behavior in
a didactic way, we reverse this paradigm. Rather than having 7 observe an independent
execution, and to define triggers for each action taken by A, We consider that 7 is in charge
of the execution of A. Both points of view are equivalent, and only differ in the writing
conventions.

Yet, since T executes the code of A, we must assure that the behavior of A executed
by T actually corresponds to real executions of A. We introduce the notion of simulation
to formalize that constraint:

Definition 4.1 (Simulation)

An algorithm T is said to simulate an algorithm A if the variables of A are a subset
of the variable of T, and if any (possibly infinite) execution of T, e = (yg — v1 —)
T T

corresponds to a legitimate execution of A, €4 = (o4 — Y1j4 — ---) on the subset of
T T

the variables of A, with possibly empty computing steps v;j4 = Yit1]A4-
€ is called a simulation of A.

The possible empty computing steps correspond to the fact that 7 might execute actions
without any activation of rules of A.

Remark that our algorithm 7 will not only simulate A, but the unison algorithm U as
well.

Termination Detection In this chapter, we consider the Snap-Stabilizing Termination
Detection problem. An algorithm solves the termination detection problem on A if it
simulates A, and if when a request is emitted on some node u, (req is set from idl to on),
then u ultimately answers (i.e., req is set to off), and when it answers, algorithm A has
terminated.

Let us state that more formally:

Specification 4.2 (Termination Detection)

TD (Termination Detection) of a silent distributed algorithm A in G = (V,E) is
specified by the presence of a variable req, € {on,wk,off,idl} on each node v € V.
An execution € = vy — - - is correct if:

1. € is a simulation of A,
2. A terminates in €
3.Vt > 0,Yv € V, if req)t = on then

3-1 3t >t : req, = off, and
3-ii Vt' >t : req, = off, A has terminated in ;.

Remark that according to Definition 4.1, an execution that does not take any computing
step of A is considered as a simulation of 4. This does not fit our requirements, since we

48 Chapter 4. Silent Anonymous Snap-Stabilizing Termination Detection

need that A terminates in any execution of 7. For that reason, we add another requirement
which forces A to terminate in executions of 7T .

4.2.4 Algorithm-Specific Notations

In the following, we will simultaneously consider three algorithms: the observed algorithm
A, a unison algorithm U, and a termination detection algorithm 7. To avoid confusions,
we specify the algorithm to which our notations correspond by the following: The set of
rules of algorithm X is denoted by Rx. The subset of the variables of one node v specific
to one algorithm X is denoted by state,x.

4.3 Properties of Unison Algorithms

4.3.1 Preliminaries: Silent Unison Algorithms

The termination algorithm that we propose is silent. Yet, it simulates a unison algorithm,
whose liveness property is the opposite of silence. Let us explain how to combine those two
properties.

Any self-stabilizing unison algorithm can be made silent, with as consequence the loss
of the liveness property. To do so, we can prevent the clock to increase if there is no request
for it and the safety property is achieved. Essentially, if P(v) and Yu € N,,clock, €
{clock, — 1,clock,}, then v is not enabled. If the initial configuration of the system is
correct (i.e. if P}°), then the system reaches a terminal configuration as soon as all the
clock reach the highest initial value.

Yet, one may want to keep a silent self-stabilizing unison algorithm running as long as
some external condition is not satisfied. This request notion may be extended with the
concept of local request [BPV04]. Silent self-stabilizing unison algorithms are equipped
with one additional predicate LocReq(v) that depends on external parameters. When this
predicate is evaluated to true on one node, then it takes precedence over the termination
condition, and forces the system to keep running with respect to Py;. In the following, we
consider a silent self-stabilizing unison algorithm.

4.3.2 Rules of Unison Algorithms

In this section, we aim at proving global properties of unison algorithms. Since those
properties must be true for any unison algorithm, the only tool on which we can reason is
the specification of U, SP,. The main tool on which we reason is the fact that the predicate
Py is closed. This means that once a correct configuration is reached, the system never
becomes incorrect.

But individual nodes do not have any information on the global correctness of the
system. Before taking an action or not, the only information on which one node can rely is
its local correctness. In other words, the specification of unison guarantees that a node v
such that P(v) never executes an action that, isolated, could invalidate the correctness of
the whole system. Let us first recall the definition of P(v):

Vu € N[v],clock, € Z/mZ
Plv)=< A
clock,, € {clock, — 1, clock,, clock, + 1}

Let us consider a unison algorithm /. It will be useful for us to separate the rules of
U into three distinct sets, depending on their guards. Let Ry, be the set of the rules of U.

4.3. Properties of Unison Algorithms 49

Let us define the following predicates:

Pt(v)= P(v) AVu € N,,clock, # clock, — 1
P~ (v)= P(v)A3Ju€ N, : clock, = clock, — 1.

Note that PT(v) and P~(v) are mutually exclusive, and, joined, equate P(v). We
suppose without loss of generality that the guard of all the rules in Ry, contains =P (v),
P*(v), or P~ (v). If not, we make three copies of each rule, and add —=P(v) to the guard of
the first copy, P™(v) to the guard of the second copy, and P~ (v) to the guard of the third
copy.

Since U is a self-stabilizing algorithm, any rule that includes P(v) in its guard guarantees
that its action will not invalidate P(v). Thus, actions that include P*(v) either increment
clock, by one or do not update it. In the same way, actions that include P~ (v) cannot
update clock,, for it could lead to a difference of 2 between v and its neighbor u such that
clock, = clock, — 1.

Among all the rules that include P*(v), we denote by Ry, , and call the normal rules the
rules whose action increases by 1 the variable clock,. These are the rules by which ¢/ makes
progress. We denote by Ry, and call the transparent rules all the other rules that include
P(v) (either P~ (v) or P™(v)), which do not update clock,, by definition. Transparent rules
do not necessarily exist in all unison algorithms, but cannot be avoided a priori. Finally, we
denote by Ry, and call the convergence rules all the other rules of Ry, rules that include
—P(v), and that enable convergence. By definition, i has stabilized if and only if no rule
of Ry, is enabled.

We define the sluggishness of U, and denote S(U) as the maximal number of consecutive
transparent rules a node can execute between two executions of normal rules, after stabiliza-
tion. Sluggishness depicts how much the transparent rules might slow down clock increment.
Sluggishness of unison algorithms presented in [CFG92, BPV04, BPV08, DJ19, EK21] is 0.

4.3.3 Tools on Executions of Unison Algorithms

In this subsection we introduce logical tools that will be useful to reason on generic unison
algorithms. Definitions 4.2 to 4.5 were introduced in [BLPO08]. Definition 4.6 is original
work and was designed specifically for our proof.

Our goal, in this section, is to prove that following the combination of the safety property
and of the liveness property of the unison specification. Our goal, in this section, is to prove
that, due to the combination of the safety property and of the liveness property of the unison
specification, the activations of nodes during the execution of a unison algorithm reflect,
somehow, long-distance interactions between nodes.

To illustrate this idea, assume that one node v, anywhere in the network, is blocked,
i.e. never increases its clock. Therefore, its neighbors will eventually be blocked at 1 over
the value of clock,. But then, the neighbors of v’s neighbors will eventually be blocked at
2 over the value of clock,. Step by step, we can see that the entire network will eventually
be blocked, which means that one node may have an influence in the entire network. If at
some point, v restarts increasing its clock, then its neighbors will be able to increase their
own variable too. And after that, the neighbors of v’s neighbors, and so on.

In order to formalize this notion of interactions, we must provide some definitions.
An event corresponds to a computing step in which one node executed a particular rule.
Definition 4.2 (Event)

Let € = (70 — 71 -+) be a finite or infinite execution.
u

50 Chapter 4. Silent Anonymous Snap-Stabilizing Termination Detection

An event is a pair (v,t + 1) such that v is activated in v — v411. We say that v
u

executes a rule at time t + 1. By convention, (v,0) is an event for all v € V.

An event (v,t) is said to be external if the guard of the executed rule by v depends
on at least one shared register of a neighbor of v.

An event (v,t) is a normal (resp. transparent, resp. convergence) event if v executes
a normal (resp. transparent, resp. convergence) rule at time t.

The causal relation ~+ allows us to causally link two events that are not necessarily
globally consecutive in an execution, due to activation of distant nodes, buy that are locally
consecutive.

Definition 4.3 (Causal relation ~)

The causal relation is the smallest relation ~» on the set of events such that the following
two conditions hold:

1. Let (v,t) and (v,t") be two events such that t' is the greatest integer such that
t' < t. Then (v,t') ~ (v,t);

2. Let (v,t) and (w,t’) be two events such that (v,t) is an external event, w € N,,
t' is the greatest integer such that t' < t. Then (w,t') ~ (v,t).

The dependence relation ~+ allows us to formalize the notion that a node increases its
clock immediately after one other node increased its variable clock. Note that any activation
of a convergence rule on the node that increased its clock first beaks the dependence relation.

We also denote by <N the transitive closure of ~»%.
Definition 4.4 (Dependence Relation ~T)

Let (v,tg) and (w,t") be two events.

We say that (w,t') normally depends on (v,tg), and denote (v,ty) ~~ (w,t') if
there exists k > 0 and ty, ...t such that (v,tg) ~ (v,t1) ~ -+~ (v,tg) ~ (w,t') and
Vi > 0, (v,t;) is a transparent event, and (w,t') is a normal event.

We denote (v,t) <N (w,t') if there is a path w.r.t to ~" from (v,t) to (w,t').

An N-sequence corresponds to consecutive clock increase on one node, without any
execution of a convergence rule.

Definition 4.5 (N -sequence)

When a node v consecutively executes k normal rules, possibly intercut with transparent
rules,
WN (Uato) WN (U,tl) M-)N e WN ('U,tk_l)

it executes an N-sequence of length k.

A causal pyramid is the extension of the notion of dependence relation to interconnected
interactions of neighbors to neighbors. Intuitively, if one node v executes numerous, say NV,
normal actions, then its neighbors will necessarily execute at least N — 2 normal actions
between the first and last action of v, and the neighbors of v’s neighbors at least N — 4
during the first and last action of their common neighbor with v, and so on. Once again, we
consider that any execution of a convergence rule breaks the pyramid. A causal pyramid
scheme is presented on Figure 4.2

We denote (7, j) the set of all integers k such that i < k < j.

4.3. Properties of Unison Algorithms 51

Definition 4.6 (Causal pyramid)

Let p = vgvy ... v be a path of length k in G, and let us consider d > 2k + 1. We say
that p is a causal pyramid of length d and of origin t3 if

Vi € [0,k],Vj € [i,(d — 1) —i], 3t} such that

. A i1 i1 .
e Vi, we have t; < t;1, and tzdil)f(iﬂ) <tlgo1)—i
e Vi, v; does not execute rules of Ry, in (tﬁj, tédfil)f(iil))

e Vi, v; executes an N-sequence
N iy N j N N j
(03, 85) T (g) T T (Ui E g g)

v : no Ryc vy : no Ryc
2 2
v1 : no Ryc 2 2k—2 v1 : no Ryc
WN @ WN @ WN o WN @ WN @
1 1 1 1
t iy tor—2 top—1
WN WN @ WN WN o WN WN WN @
0 0 0 0 0 0
to t 12 tok—2 Lok—1 t

Figure 4.2: Causal Pyramid Scheme: vguivs is a causal pyramid of length 2k + 1 and of
origin #)

Notice that if p is a causal pyramid, then (vo,t]) <N (vi,t3) =V oo <V (v, tF) <N
(Ukat](cd_l)_k) jN jN (v07t271)'

4.3.4 Properties of Unison Algorithms

In this section, we extend and adapt some of the results of [BLP08] to any unison algorithm,
and establish Theorem 4.1 that will allow us to establish synchronization properties of our
termination detection algorithm 7.

Lemma 4.1

Let v and w be two neighbors. Suppose that v is a causal pyramid of length 3 and of
origin to, and that in (to,t2), w does not execute rules of Ry,. Then vw is a causal
pyramid of length 3 and of origin t,.

Proof: Let us denote by p the value of clock, at time to —1. Since v executes three consecutive
normal actions, at time %o, t1, and t2, it increases its clock by three. Furthermore, since v
executes a normal action at to, we have P (v) at to — 1 and thus clock,, is equal to p or
p+1.

If w does not execute any normal action between to and t2, then when v executes its
third normal action, at t> — 1, we have clock,, € {p,p + 1} and clock, = p + 2, so =P*(v),
which is contradictory.

52 Chapter 4. Silent Anonymous Snap-Stabilizing Termination Detection

The following lemma directly follows by induction of Lemma 4.1 on the length of an
N-sequence.

Lemma 4.2

Let v and w be two neighbors. Suppose that v is a causal pyramid of length d+1,d > 2
and of origin ty, and that in (to,tq), w does not execute rules of Ry, . Then vw is a
causal pyramid of length d + 1 and of origin tg.

Proof: Let us denote by p the value of clock, at time to —1. Since v executes d+ 1 consecutive
normal actions, at time to,t1,...,tq, its clock in incremented d + 1 times. Furthermore,
since for any i € [0,d], v executes a normal action at time t;, then we have P (v) at t; — 1,
for any ¢ € [0, d].

Therefore, for any 4, we have at t; — 1, clock, € {clock,clock, + 1}. In other words,
for any i € [0,d], we have at t; — 1, clocky, € {p+4,p+ i+ 1}. Since w does not execute
any convergence action during (to,tq), this is possible only if w increases d — 1 times its
clock during (to, tq). This means that w executes an N-sequence of length d — 1 during the
N-sequence of v.

This corresponds to the definition of vw being a causal pyramid of length d + 1. |

Lemma 4.2 establishes a link between the behavior of two neighbors. By induction on
the distance between v and any other process, Theorem 4.1 follows.
Theorem 4.1

Let vy and vy, be two nodes, and let p = vgvy - - - v be a path. Suppose that vg ... vg_1

is a causal pyramid of length d > 2k + 1, and that in (tij,t’;;_ll)_(k_l)), v, does not
execute rules of Ry, . Then vy - -- v is a causal pyramid of length 2k + 1.

Proof: We simply apply Lemma 4.2 to viy—1, which is a causal pyramid of length d—2(k—1) > 3

and of origin ti:; This implies that vy executes a N-sequence of length at least d — 2k
k—1 jk—1
t

during (t373, 800) k—1)

), and thus vo - - - vi is a causal pyramid of length 2k + 1. |

Corollary 4.1

Let vy and v, be two nodes, and let p = vgvy -+ - v, be a path. Suppose that vy is a
causal pyramid of length 2k+1, and that Vi, v; does not execute rules of Ry, in (to, ta).
Then vg - - - vy, is a causal pyramid of length 2k + 1.

Proof: We iterate Theorem 4.1 on vg, then on vgv1, and so on. |

4.4 Algorithm

Let us consider a silent self-stabilizing algorithm A that solves a problem P under the unfair
distributed scheduler. We introduce a generic mechanism that builds an anonymous silent
snap-stabilizing request-based algorithm 7 that solves the Termination Detection of A.

Based on an anonymous self-stabilizing unison algorithm U, it follows the request-based
mechanism described in Section 4.2.3. More specifically, for each node v, the algorithm
communicates with the application App by means of req,—refer to Figure 4.1. To know
whether A has terminated or not, App triggers a request to 7 by executing App: ask on
some idle nodes vy, va, . .., vx of the system, setting the value of req,, , for i € [1, k], from idl

4.4. Algorithm 53

to on. Next, T answers to the request only after algorithm 4 has terminated, by setting
req, to off. Then, App may execute App: get that sets req, to idl.

4.4.1 Scheme of Algorithm 7T

The main idea of our algorithm is that each node has a variable dedicated to detect the
activity of algorithm A. When one node sees an activation of a rule of A (in our model,
when one node simulates a rule of A), it sets its variable to its maximal value, and then
decrease it by one at each activation. This variable is also used to propagate the information
that A has been activated to the neighbors of the nodes. Namely, nodes increase their own
variable if one of their neighbors has a non-zero value.

When a request is emitted on one node, this node sets another countdown to its maximal
value, and decrease it at each computing step. If when this countdown reaches 0, it has not
detected any activation of A from its neighbors, then it can answer that 4 has terminated.

This works only if the decrease of both variables is relatively synchronized on the nodes
of the system. This is why we need a unison algorithm. Both variables are synchronized
with the clock of the unison algorithm. Therefore, thanks the properties established in
Section 4.3, we can transfer properties of unison algorithms to our termination detection
algorithm.

4.4.2 Variables

The variables of node v in algorithm 7 are:

o state,| 4 the set of all variables of node v in algorithm A.
o state,y the set of all variables of node v in algorithm ¥/, including clock,.

e da, € [0,2D + 2], for detection of activity. This variable is used to store the number
of steps since the last time a convergence rule (for A or U) was executed by node v.
Variable da propagates through the whole system with the following rule: if the
maximum value of da among the neighbors of v is p, then v cannot set da, under

p— 1.

o dt, € [0,2D +1], for detection of termination, is a countdown to 0, initiated at 2D+ 1
when the application asks for the termination.

o req, € {on,wk,off,idl}, for request, is the interface between App and T. req, may be
updated according to Figure 4.1.

The space complexity of the variables of T is O(log D) bits per node, where D is an upper
bound of the diameter of the graph. Consequently, the space complexity of the whole system
is O(S(A) + S(U) + log D) bits per node, where S(A) (resp. S(U)) is the space complexity
of algorithm A (resp. of algorithm U) in bits per node.

4.4.3 Overview of the algorithm

The detail of the rules of algorithm 7 is presented in Algorithm 1. Algorithm 7T simulates
both algorithms A and U, independently. When an enabled node v is activated, v atomically
executes the rule of A for which it is enabled, if such rule exists, the rule of ¢ for which it
is enabled, if such rule exists, and updates the proper variables of algorithm 7.

54 Chapter 4. Silent Anonymous Snap-Stabilizing Termination Detection

Since algorithm 7 performs two distinct and independent tasks: the simulation of A
and U, on the one hand, the detection of termination, on the other hand, it is natural to

divide the set of the rules of T, Ry, in two disjoint sets: R, and Rgroper. A node is
enabled for T if it enabled for at least one rule of RS or Rgroper. If an enabled node is

activated, then it atomically executes the rule of RS

rule exists, and the rule of RS

proper
R .. contains the rules which simulate algorithms A and U, and also updates the

variable da. To facilitate reasoning, we distinguish several cases depending on which rules
are enabled for A and U. Figure 4.3 recaps the different possible situations, and the name
of the corresponding rule of RS

simul*

S mu for which it is enabled, if such a
for which it is enabled, if such a rule exists.

If the activated node v has not yet converged for both A and U, then it executes a
convergence rule for at least one of those algorithms and sets its variable da, to 2D +
2. The set of all convergence rules is denoted R.,4, and it contains the following rules:
RUc RY ,RZA,. Those rules differ by the precise rules of A and U they simulate. Be aware
that the rules of R.,4 are not necessarily convergence rules in the sense of unison algorithms.
More precisely, R, , contains the convergence rules relative to U, but also the convergence

rules relative to A.

Otherwise, if w is only enabled for a transparent rule of U, then it executes Rypqns €

RE .. and nothing else.

Finally, if v is only enabled for a normal rule of i then v executes the rule R+ € Rfimul,
which sets da, to one less than the maximum value of da of the closed neighbors of v. As
a consequence, as long as one node v has not converged for A, variable da is maintained at
2D + 2 on v. When activated, the neighbors of v set their variable da to 2D +1 (or 2D + 2
if one rule of R, is activated). After that, if one neighbor of a neighbor of v is activated,
then it sets its variable da to at least 2D, and so on. Thus, if one node is enabled for a
convergence rule, then the variable da will propagate at high value along the graph. Yet,

this property requires that all the nodes are activated, in a specific order.

Ruo | Rur | Ruy | ~Ru
Ri |RYc | RA [RY_ | RX

cvg cvg cvg
U
_'R.A Rclfg Rtrans Rwait

Figure 4.3: Rules of Rfimul depending on the enabled rules for A and I/. Rules of R, are
convergence rules for U or A.

For T, convergence (resp. transparent, resp. normal) rules are rules simulating a conver-
gence (resp. transparent, resp. normal) rule of . We extend that definition to R 4> Which
is a transparent rule.

Fortunately, since U is a unison algorithm, no node, and no subset of nodes, may compute
independently of the rest of the system, and decrease its variable da down to 0 regardless of
what happens in the whole system. This guarantees that, starting from any configuration,
after a node v executes 2D + 1 computing steps, the variable da, is under the influence of
all the other nodes of the system. Consequently, after 2D 4 1 computing steps of node v,
the variable da, cannot be 0 unless all the nodes in the graph have converged for both A
and U. This property allows us to design our procedure thanks to the variable dt.

Whenever App asks one node v for the termination of the algorithm, v executes rule
Rgiart, it sets its variable dt, to 2D +1 and updates its variable req, from on to wk. Variable
dt, is decreased by one each time a normal rule of / is executed, by rule R, and is updated

4.5. Correctness of Algorithm 7T 55

to 2D + 1 as soon as da, # 0 by rule R.,4. Since U is a unison algorithm, in a legitimate
execution dt, reaches 0 (and therefore an answer is produces through rule Ry,,,) only after
all nodes have converged for A. As a desired consequence, algorithm 7T is snap-stabilizing
for the detection of termination for algorithm A.

4.4.4 Predicates

Let RS € R4, Ru, Ru, Ru,, Ru, be the set of the rules of one algorithm, and let v be a
node. Act(RS,v) returns true if and only if node w is enabled by a rule of RS.

Act(RS,v) = v is enabled by one rule of RS (4.1)

As described in Section 4.3.1, we consider a silent self-stabilizing unison algorithm .
In 7, the normal rules of U, denoted Ry, , are not enabled on node v unless the following
predicate LocReq(v) is evaluated to true.

(3u € N, : clock, = clock,, + 1)
Act(R4,v
LocReq(v) = \/ (dai ;éAO)) (4.2)

(req, € {on,wk})

When both algorithm A and U have converged on node v, the only simulation rules that
v may execute are the normal rules of algorithm U/, which permit the liveness of ¢. This
situation is described by the predicate UnisonOnly.

UnisonOnly(v) = —Act(R4,v) A Act(Ryy , v) (4.3)

4.4.5 Actions

Let RS € Ra, Ry, Ru., Ruy, Ruy be the set of the rules of one algorithm, and let v be
a node. Let SimulR(RS,v) be a procedure that executes the enabled rule in RS on node
v if such rule exists and which does nothing otherwise. Procedure Simul(v) sequentially
executes one rule of Algorithm A if possible, then one rule of Algorithm I/, again if possible.
Formally:

v updates its state executing the enabled rules in RS if Act(RS,v)
v does nothing otherwise
(4.4)

SimulR(RS, v) = {

Simul(v) = SimulR(R 4, v); SimulR(Ry,, v) (4.5)

Procedure Propagate_da(v) updates the variable da, to one less than the maximal value
of da of the closed neighbors of v:

Propagate_da(v) = da, := max(0, mﬁ(](dau -1)) (4.6)
ueN|v

4.5 Correctness of Algorithm 7T

In this section, we establish that 7 is a snap-stabilizing procedure for the detection of the
termination of Algorithm A. This proof is divided in four subsections.

56 Chapter 4. Silent Anonymous Snap-Stabilizing Termination Detection

Algorithm 1: Algorithm 7T

During a step, if a rule of set RS, and a rule of set R
executes these 2 rules.

S

proper ar€ enabled then v

RS, :: rules to update da

simul

RYC : Act(Ryg,v) — Simul(v); day := 2D + 2 € Ry,
RA, ¢ Act(Ra,v) A ~(Act(Ryg,v) V Act(Ryy,v)) — Simul(v);da, :=2D+2 € Ry,
Rirans @ —Act(Ra,v) A Act(Ry,,,v) — Simul(v) € Ry,
RY, : Act(Ra,v) A Act(Ruy ,v) — Simul(v); day := 2D + 2 € Rty
Ruyait @ UnisonOnly(v) — Simul(v); Propagate_da(v) € Ry,

Rgroper :: rules to update dt and req

Rstart : req, =on — req, = wk;dt, :=2D +1
Rstop . req, = wk A UnisonOnly(v) Adty, =0Ada, =0 — req, = off

Rept : req, = wk A UnisonOnly(v) Adt, #0Ada, =0 —>dt, :=dt, — 1

Rend : req, = wk A UnisonOnly(v) A da, # 0 — dty :=2D + 1

In Subsection 4.5.1, we prove that 7T satisfies both Conditions 1 and 2 of Specifica-
tion 4.2.

In Subsection 4.5.2, we prove that 7 satisfies Condition 3 — i of Specification 4.2.

Finally, in Subsection 4.5.3, we prove that 7T satisfies Condition 3 — ii of Specifica-
tion 4.2.

We also prove in Subsection 4.5.4 the time complexity of our algorithm.

4.5.1 Simulation properties of T

In this section, we establish Theorem 4.2, which ensures that 7 satisfies Condition 1 and
Condition 2 of Specification 4.2.

Theorem 4.2
T is a simulation of both A and U, and in any execution of T, both A and U ultimately

converge.

Theorem 4.2 is a consequence of Lemmas 4.4, 4.6, and 4.7.

Before anything else, let us establish Lemma 4.3, that characterizes the terminal config-
urations of 7. These configurations are the one in which U converged, and in which on all
the nodes v of the system, LocReq(v) is not verified (this includes the termination of A).

Lemma 4.3

The terminal configurations of T are the configurations such that Vv € V :

—Act(Ry, v) A —LocReq(v)

Proof: Let v be a terminal configuration of 7. If Ju € V : Act(R.4,v) V Act(Ruy,v), then one
rule of RS is enabled on node v, so Vv € V,=Act(Ra,v) A ~Act(Ry,v). Furthermore,
since U is a self-stabilizing algorithm, it satisfies the liveness property. Thus, unless all the
nodes v € V satisfy —LocReq(v), there exist enabled nodes in the system. Consequently,
Vv € V, (VYu € Ny, clock, € {clock, —1,clocky}) A =Act(Ra,v) Ada, = 0A(req, € {off,idl}).

Conversely, such configurations are terminal configurations. The rules of RS, are
not enabled because Yv € V,=Act(Ra,v) A ~Act(Ry,v), and the rules of Rgmper are not
enabled because Vv € V, req,, € {off,idl}. |

4.5. Correctness of Algorithm 7T 57

By the definition of the actions of T, any execution of 7 simulates both Algorithm A
and Algorithm ¢{. This is stated in Lemma 4.4.

Lemma 4.4
Any execution of T is a simulation of both A and U.

Proof: The only action that updates the variables of state,| 4 (resp. of state,) is SimulR(R4,v)
(resp. SimulR(Ry,v)). It is applied only if the activated nodes are enabled for A (resp. for
U). Thus, the execution of 7T is a simulation of A (resp. of U). ||

Since A is a silent self-stabilizing algorithm, there do not exist infinite executions of A.
Since executions of T are simulations of executions of A, then the number of computing
steps of an execution of 7 that execute a rule of A is finite. This is stated in Lemma 4.5,
and will be useful to prove the convergence of U.

Lemma 4.5
In any execution of T, a finite number of computing steps execute rules of A.

Proof: Let ¢ = (o — 1 — ---) be an execution of 7. Suppose there exists an infinite
T T
number of computing steps of € that execute rules of A. Then, e4 = (Y04 — Y1j4 —)
T T
is an infinite execution of A. Since A is a silent self-stabilizing algorithm under the unfair

scheduler, it converges in finite time in any execution of A. Thus, such infinite execution
does not exist. |

Since A is activated only a finite number of times, and since U is a self-stabilizing
algorithm, it indeed ultimately converges in any execution of 7. This is stated in Lemma 4.6.

Lemma 4.6
U converges in any maximal execution of T .

Proof: Let e = (yo — 71 — -+) be a maximal execution of 7. According to Lemma 4.5, we
T T

can assume without loss of generality that in €, no rule of Algorithm A is executed. Let us
reason by contradiction and suppose U does not converge in €. According to Lemma 4.3, ¢
cannot contain any terminal configuration, so € is an infinite execution. Since U is a self-
stabilizing algorithm under the unfair scheduler, it converges in finite time in any execution
of U. If € contains an infinite number of computing steps that execute rules of U, then U
converges. Consequently, there only exists a finite number of such computing steps. We
now consider an infinite suffix € of € that does not contain any rule of &/ nor of A. All the
rules of Rfimul induce a rule of U or A. Furthermore, the predicates of Rsiop, Rept, and
Rena all include UnisonOnly which is the guard of Ryqei¢. The only rule executed in € is
Rstart, but it cannot be executed twice on a node v without v executes the rule Ryop (and
several times R¢p¢) in the meantime. This is contradictory. Consequently, U converges in
€. |

Finally, since & is a unison algorithm, all the nodes are regularly activated in any
execution, and since A is a self-stabilizing algorithm, this implies that the convergence of
A ultimately occurs in any maximal execution of 7. This is stated in Lemma 4.7.

Lemma 4.7
A converges in any maximal execution of T .

58 Chapter 4. Silent Anonymous Snap-Stabilizing Termination Detection

Proof: Let us consider € = (y¢ — 71 — ---) a maximal execution of 7. According to
T T

Lemma 4.6, we can assume without loss of generality that in 7o, ¢/ has already converged.
Since U is a unison algorithm and since Act(R.4,v) is included in LocReq(v), the correctness
of U ensures that as long as A has not converged, all the nodes are regularly activated. Since

A is a self-stabilizing algorithm for the unfair scheduler, this guarantees that A converges. Bl

This completes the proof of Theorem 4.2.
Remark 4.1

Since T is a simulation of U, we can extend the results of Section 4.3.4 to the executions
of T. To do this, we extend to T the concepts of normal, transparent, and convergence
rule, normal dependence relation, and N-sequence. T has one convergence rule RYS | two

cvg’

transparent rules RA 9

Theorem 4.1 and Corollary 4.1 remain valid on T .

cvg

4.5.2 Termination of T

and Ryyqns, and two normal rules RY —and Ryqi:. Specifically,

In this section, we establish that maximal executions of T satisfy Condition 3 — ¢ of Speci-

fication 4.2 (Theorem 4.4).

We define I'c,y C I' the set of configurations in which 4 has stabilized and U has
converged, and 'y, the set of configurations in which, in addition, Vv,da, = 0. Lemma 4.8

states that 'y, is an attractor.

Definition 4.7
Let I'y; CT'eyg C T be
Fevg: Yo €V, (mAct(R4,v) A -Act(Ry,,v))
Tga: Vv €V, (mAct(Ra,v) A -Act(Ry,,v) Ada, =0)

Lemma 4.8

r b1 chg > T4a

Proof: T is closed since A and U are self-stabilizing algorithms. Theorem 4.2 ensures
Iy >7 chg.
Let us prove that Iy, is closed. Let ¥ — ~' be a computing step such that v € Iy,.
T

Since v € T'wyg which is closed, 7' € T'evg. In 7, no rule of R, is enabled, so only Ry may
update da. But since Vv € V,da] = 0, then Propagate_da(v) has no effect. Thus, 7' € Tcyg.

Let us now prove that 7 converges to I'qa from I'cyg. Let 70 € T'evg be a configuration,
and let us consider a maximal execution € = (y9 — 1 — ---). According to Lemma 4.3,
T T

if € is finite, then the terminal configuration belongs to I'ya. We suppose now that this
execution is infinite. Since I'cyg is closed, we are only interested in the value of da.

Let us consider C; = maxyey daji. If Co = 0, then vy € T'qo. Otherwise, since e
is infinite, and U is a unison algorithm, and Rﬁ,g is not enabled in I'c,g, all the nodes
execute Rygqir infinitely many times. Let i1 such that before reaching ~;,, all the nodes
have executed Ryqit. We have C;; < Cy. By induction, there exists a time t such that
C: =0, so we obtain ¢ € Tga.

Finally, we define I'j, where v € V, as the set of the configurations of I'y, such that
req, € {off,idl}. Theorem 4.3 states that any execution that starts in I'q, eventually reaches

a configuration of I'y,.

4.5. Correctness of Algorithm 7T 59

Definition 4.8
Let v e V. Let I'§, C I'qa be the set of configurations such that, Yu € V:

(mAct(R4, u) A ~Act(Ryy.,u) A da, =0) Areq, € {off,idl}

Theorem 4.3
Let v € V be a node and € = (yo — v1 — --+) be a maximal execution such that
T T

Yo € I'qa. There exists i > 0:~; € I'g,.

Proof: Suppose vy ¢ I'g,, i.e. req® € {on, wk}.

Case 1: req;® = wk.

Since I'q, is closed, the only rules of Rgmper enableds on v are Ry¢op and Repe. As long as
req, € {on,wk}, LocReq(v) is satisfied, and since U is a unison algorithm, it makes progress,
which means that Ryqi: is regularly activated on all nodes. Thus, as long as dt, # 0, Rept is
regularly activated by v. Since each activation of Rep: by v decreases dt, by 1, it ultimately
reaches 0, after what Rs0p is activated by v, and then, the system has reached T'g,.

Case 2: req® = on.

Then the previous guarantees as well that node w will eventually be activated, through
rule Rg¢ar¢, after which req,, = wk, which is the case above. |

Lemma 4.8 and Theorem 4.3 basically prove that, whatever the initial configuration,
the system globally converges to I'q;, and each node is infinitely often in an availability
state for the app. This proves that 7 satisfies Condition 3-i of Specification 4.2. Let us
now formally prove Theorem 4.4:

Theorem 4.4
Let € = v9 — --- be a maximal execution such that Jv € V,t > 0 : req)* = on.
T

There exists t' > t such that reqyt’ = off

Proof: Let us consider the subexecution ¢, = 4 — - --. According to Lemma 4.8, there exists
T

tq > t such that -y, € I'qa. Let us consider ¢, = 7, — ---. According to Theorem 4.3,
T

there exists tq > t, such that reqztd € {off,idl}.
Since req)t = on and reqyd € {off,idl}, there exists t’ > ¢ such that req,!’ = off. [|

4.5.3 Snap-stabilization

In this section, we establish that maximal executions of T satisfy Condition 3 — i of Spec-
ification 4.2 (Theorem 4.7).

The activation of Ry:et by v corresponds to the request by v to detect the termination of
Algorithm A. The activation of Ry, by v corresponds to the detection of the termination
of Algorithm A by wv.

Lemma 4.9 states that v will eventually execute the rule Ry, along any execution
starting by a termination detection request by v (i.e. the activation of Rgtere by v). This
lemma allows us to define, for a maximal execution starting by a termination detection
request by v, the response time to v’s request: f, the time of the first computing step in
which v executes the rule Ry,. This is stated in Definition 4.9.

60 Chapter 4. Silent Anonymous Snap-Stabilizing Termination Detection

Lemma 4.9
Let v € V and let ¢ = (y — v — 71 — --+) be a maximal execution such that v
T T T

executes Rgiqre in v — 9. 3¢ > 0 such that in v;—1 — 7;, v executes Ryzop.
T T

Proof: This is a direct corollary of Theorem 4.4 |

Definition 4.9 (Time of Response)
Let v eV and let € = (v — v — 71 — ---) be a maximal execution such that v
T T T
executes Ryiqrt in v — 0.
-

We denote by f(v,€), or simply f the time of response of v in €, which is the smallest
1 > 0 such that during v;—1 — 74, v executes Rgop.
T

To prove that T satisfies Condition 3-ii of Specification 4.2, we only have to prove that
A has terminated in ;.

Before an answer is provided by 7, a lot of computations can be required. Notably, v can
execute R.,4 numerous times, which resets dt, up to its maximal value. In our reasoning,
we will focus on the subexecution that follows the last time v resets dt,, which is the part
where v does not see any activity from A during a sufficiently long period of time for it to
answer. This is presented in Figure 4.4.

Let us define that subexecution:

Definition 4.10 (Final Descent)
Let v € V and let € = (v - % = --+) be a maximal execution such that v
executes Rgyyqre in 7y ? Yo, and let f be the time of response of v in €. Let us consider
=0 == 2 v-)

If v executes R.yq along €5 then let us define csg = 51 7) vs, the latest computing

step of €7 in which v executes R¢pq.
Otherwise we set s = 0 and cs; = v — Yo.
T
Remark that cs, is the latest computing step of €; in which v executes a rule that
sets dt, at 2D + 1.
We denote by € the final descent of v in €, €5 = Vs — Ys41 —> -+ — Yf-1.
T T T :

In the sequel of this section, we study the properties of €5. We establish in Theorem 4.6
that vs € I'eyg. As I'cyg is closed, we also have vy € T'eq: a terminal configuration of A is
reached when the answer is provided. Basically, the scheme of the following is:

Proposition 4.1
To prove that in 7., A has terminated, we must prove that if A had not, then:

1. a rule of A would be executed on one node u, and
2. this action would have been transmitted to node v before f, postponing ~s.

For the sake of the proof, we aim at finding one early such activation of a rule of A.

We prove the first part of Proposition 4.1 in Theorem 4.5, and the second part in the
proof of Theorem 4.6 (which is a proof by contradiction, so the statement of Theorem 4.6
concludes that A has terminated in ;).

4.5. Correctness of Algorithm 7T 61

dt,
2D +1

(] Vs f
IRszﬁart IRend IRend final descent € IRstop

Figure 4.4: Example of Final Descent on node v, progression indicated by the decrease of
dt,

To prove that nodes are necessarily activated, and that nodes influence themselves
through the network, we need the properties of Unison algorithms established in Sec-
tion 4.3.4, which apply to 7 as noted in Remark 4.1.

Lemma 4.10 allows us to use Corollary 4.1.

Lemma 4.10
Let v be a node and let e = (y — 79 — 71 — - -+) be a maximal execution such that
T T T
v executes Rgpqrt In v — Yp.
T

Then v does not execute any rule of R, in €5, and v executes an N-sequence of
length at least 2D + 1 in e,.

Proof: By contradiction, suppose v executes a rule of Reyg in cs; = ;-1 — 7; a computing
step of €. T
Then, da)* = 2D + 2. By construction, v executes Rsiop in vf—1 — 5. According to
the algorithm and guard definitions, v also executes Ruqit in y5—1 ——>T7f. Let us consider
cs; = 7j—1 — 7, the first computing step of v — -+ — y5_1 — ')7/;: in which v executes
Ry T T T T
We have daj? = 2D + 2, and only Ry can decrease da,, so da’~' = 2D + 2. Since
v executes Ryqit in ¢s;j, we also have UnisonOnly”i=1(v). By construction of Algorithm 1,

v executes Reng in cs;, which is contradictory with the definition of s. Thus, v does not
execute any rule of Reyg in €.

Let us now prove that v executes an N-sequence of length at least 2D + 1 in €;. The
only rule of ’Rgmper executed by v along €; is Rep¢, because req, = wk and because, by
definition, Rstop and Renq are not executed.

During the e-subexecution €5, v executes Rep exactly 2D + 1 times, since dt}® = 2D +1
and dt,’~* = 0. By definition of the algorithm and guards, in a step where v executes Repr,
v also executes Ry,qi¢t. Hence v also executes Ryqit at least 2D + 1 times during e5. Since

time

62 Chapter 4. Silent Anonymous Snap-Stabilizing Termination Detection

v does not execute any rule of R¢yg in €, those 2D + 1 executions of Ry,qs¢ constitute an
N-sequence of length at least 2D + 1. |

Let us introduce anchors, that are nodes which execute a convergence action (and thus
reset da at its maximal value) at their first activation during some execution. Anchors are
natural candidates to prove point 1 of Proposition 4.1.

Definition 4.11 (Anchor of an execution)
Let w € V and let ¢ = (v — 9 — -+) be an execution. We say that u is an anchor
T T

of € if during €, u executes a rule that is not Ry, and if the first rule different from
Ryiare executed by u is a rule of Reyg.

We now introduce Theorem 4.5 that establishes that if an execution does not respect
Condition 3-ii of Specification 4.2 then there exists an anchor of that execution.

Theorem 4.5 is a direct consequence of Lemmas 4.12 and 4.13.

Theorem 4.5
Let v be a node and let e = (y — 79 — 71 — - -+) be a maximal execution such that
T T T
v executes Rgpqre in v — Yo. If 75 & Devg, then there exists a node w that is an anchor
T

of €.

We first establish by contradiction that, if € is an execution that starts in a configuration
where A or U has not stabilized, and such that all nodes are activated, then at least one
node executes a convergence rule for A of U during e. This is formally stated in Lemma 4.11.

Lemma 4.11
Let € = v9 — v1 — --- be a finite or infinite execution such that all the nodes of V'
T T

execute at least once a rule that is not Rgiar¢ in €. If vy ¢ I'cyg, then there exists u € V
that executes a rule of R.,q in €.

Proof: Since 7o ¢ Levg, then Ju € V : Act™ (R4, u) V Act” (Ruyy , u).

Case 1: Act” (R4, u).

Let csy = Y. — 7., be the first computing step of € in which u is activated. If in
CSu, U executes a r7t—ﬂe of Recyg then our proof is complete. Otherwise, it means that in
Yu, "Act(R4,u). This is possible only if one neighbor v’ of u updates state, 4 before .,
and thus «’ executes a rule of Reyy in €.

Case 2: Act” (Ry,,,u).

This means that =P (u). Thus there exists v’ € N, such that clock)? ¢ {clocky® —
1,clocky®, clock® + 1}. Let ¢sy = vu — 74 be the first computing step of € in which u
executes a rule that is not Rstare. ’

If in ¢sy, u executes a rule of R.y4 then our proof is complete. Otherwise, it means that

in P7“(u). This is possible only if before v., u’ executes a rule that updates state,/ .

Let ¢sys = 4 — 7, be the first activation of v’ that updates state,s,. By construction,
T

=P (u') since the clocks of u and u’ are unsynchronized. Consequently, in cs,/, u’ executes
a rule of Reyg. ||

We now establish that if an execution does not respect Condition 3-ii of Specification 4.2
then there exists a node that executes a convergence rule for A of U during a final descent
€s. Once again, we reason by contradiction, and observe that we can use Lemma 4.10 and
Corollary 4.1. This is stated in Lemma 4.12.

4.5. Correctness of Algorithm 7T 63

Lemma 4.12

Let v be a node and let e = (v — 9 — 71 — --+) be a maximal execution such that
T T T

v executes Rgyqre in v — vo. If s ¢ T'evg, then there exists a node u that executes a
T

rule of Reyq in €.

Proof: Let us reason by contradiction and suppose that no node execute any rule of R.,g in
€s. Let us prove that under such circumstances, all nodes execute a rule that is not Rgiart
in €s. Let us consider any w € V, and let us consider (v = vo)v1 - - - vk—1(vkx = w) a path of
length k£ < D.

According to Lemma 4.10, v executes an N-sequence of length at least 2D + 1 in e,
which means that v is a causal pyramid of length 2D + 1. Since we supposed that no node
executed rules of Reyg in €5, we can apply Corollary 4.1: vouy - - - vg—10k is a causal pyramid
of length 2D + 1. In particular, vy executes Ryqit in €s.

We can therefore apply Lemma 4.11, which ensures that there exists a node u that
executes a rule of Reyg in €. ||

Finally, we prove that if there exists a node that executes a convergence rule for A of
U during a final descent €, there exists an anchor of that execution. Indeed, consider cs,
the first computing step of €5, where a node executes a convergence rule, and consider u a
node that executes a convergence rule during cs,. Then, necessarily, the first activation of
u during €5 happens at c¢s,. This is formally stated in Lemma 4.13.

Lemma 4.13
Let € =9 — 1 — -+ be a finite or infinite execution such that there exists one node
T T

w that executes a rule of R, in €. Then there exists u € V' that is an anchor of e.

Proof: Case 1: in ¢, w executes a rule of Reyy that updates state,)|.a.
Let us consider cs, = 7o — 7, the first computing step of € in which one node u
T
executes a rule that updates state, 4, and let us consider one such u. By definition,
Vv € V, state,| 4 remains constant during €, = 0 — 71 — -+ — .. As a consequence,
T T T
Act(R .4, u) remains constant during €, too, and thus is evaluated to true all along €, since
in csq, u updates state, 4. Thus, any activation of u during e, implies that u updates
statey|a- This means that cs, is the first activation of w in e.
Case 2: in €, w executes a rule of R,y that simulates a rule of Ry, .
Let cs = v, — 7, be the first computing step of € in which one node u executes a
T
rule of Reyy that simulates a rule of Ry, and let us consider one such u. In 74, =P(u).
Recall that normal and transparent rules cannot invalidate P(v), on any node v € V. Thus,
since before 74, no node executes rules of Ry, and in vq, 7P (u), we have =P(u) all along
€a =70 — Y1 — +++ — Ya. Therefore, the first activation of u different from Rs;q.¢ during
T T T

€q is a rule of Reyg. ||

The combination of that last result and of the previous one terminates the proof of
Theorem 4.5.

Theorem 4.6 is a consequence of Theorem 4.5. We show that if there exists an anchor
of €, then a contradiction is raised, thus the premisses of Theorem 4.5 do not hold. In the
proof, we consider a causal pyramid of maximal length with origin v that ends near a node
u, such that u executes a convergence rule before the action of the last node of the pyramid.
We then prove that variable da spreads down the pyramid from u to v, which leads to the
conclusion that v executes R, 4 during €, raising a contradiction.

64 Chapter 4. Silent Anonymous Snap-Stabilizing Termination Detection

Theorem 4.6
Let v be a node, and let e = (y — 79 — 71 — ---) be a maximal execution such that
T T T

v executes Rgiqre In v — 9. We have: 75 € I'eyg.
T

Proof: Let us reason by contradiction and suppose that vs ¢ I'cyg. According to Theorem 4.5,
there exists a node u such that in €, u executes a rule of Re,g before any execution of Ryqit.
Let us consider a path p of length £ < D between v and u: p = (v = vov1 - -vE = u).
According to Lemma 4.10, vo is a causal pyramid of length 2D + 1.

Case 1: vov1 - - - v, is not a causal pyramid of length 2D+1. Let ¢ be such that vov; - - - vq
is a causal pyramid of length 2D + 1 and vov1 - - - v4vg41 is not a causal pyramid of length
2D +1. According to Theorem 4.1, vg+1 executes levcg during (tZ, ¢). Furthermore,

o Y2p—(g-1)
by definition there exists (vq,t5,) <N <N (g, 19p).

Case 2: vgvy - - - v is a causal pyramid of length 2D + 1. Let ¢ = kK — 1. By definition
there exists (vmt](ch)_k) <N =N (0, 3p).

In both cases, we have (vg,t3,_,) <N .. <N (vo,19p) and wvgy1 executes a rule of
Revg before (vq,thfq). We will now prove that there is a contradiction. The fact that
one node near the pyramid executes a convergence rule before a dependance relation path
<™ necessarily implies that v will receive a non-zero value for da before the end of its
N-sequence, which will force it to execute Repnq. This is contradictory with the definition
of final descent.

Let us consider Ve, -T—> %:Hl the first computing step in which v441 execute a rule of
Revg in €5. Remark that in %;H,davq+1 =2D + 2.

Let us now define, t;, Vi < g, such that Ty 'Yz/g is the first computing step of %QH -

- in which v; executes Ryqit. Such integers exist since (”k:tsz)—k) <N ..oV (vo,th)
exists, and we have Vi, t, < th, ..

Let us remark that da,; can decrease only when v; executes Ryqit, and that according
to Lemma 4.1, a node cannot execute more than twice Rqyqit or Rf:\;g before its neighbors
execute Ryqit Or]Ri\;g. Thus, in Vil day,,, > 2D, so in 'y;;, day, > 2D — 1. By induction,
we obtain that Vi, in 'yé;,daui >2D—1—-2(q—1). Sinceq<k—1<D-—1,in 'yéé,dav >
2D —1—-2¢>1.

Let us now consider the first rule executed by v at time ¢ > t). As dag’™' =0, t < f.

Y4t
This rule does not belong to Rcy,y according to Lemma 4.10. As reqvt’“ = wk, this rule
cannot be Ryiqre. Therefore, v executes Ruyqir at time ¢, and since dajt # 0 and req]? = wk,
v also executes Repq at time ¢. There is a contradiction with the definition of . |

We can now use Theorem 4.6 to prove that maximal executions of T satisfy the last
condition of Specification 4.2: Condition 3-ii

Theorem 4.7
Let € = 9 — - -+ be a maximal execution such that Jv € V,t > 0 : req)* = on, and let
T

t' > t such that req,’ = off.
Then A has terminated in ~yy .

Proof: Let us first make the same reasoning as in the proof of Theorem 4.4: according to
Lemma 4.6, and since U/ is a unison algorithm, v is activated at least once after v, and
when first activated it executes Rstqrt. Let us call yget — Yact+1 that computing step.

T

Let us now consider the subexecution € = vt ? Yact+1 ? .

By definition, ¢’ occurs after v+ in €, since req, = on as long as v does not execute
Rstars. More precisely, the first ¢’ such that reqyt = off is Vs

4.6. Conclusion 65

The execution € satisfies the premises of Theorem 4.6 and thus we have Ys € Ievg. In
particular, A has terminated in 7. Since -, occurs after s, and since termination of A is
a closed property, this guarantees that A has terminated in 7. |

4.5.4 Time complexity

Definition 4.12 (Full Round)

Recall that the sluggishness of U is the maximal number of transparent rules a node
can execute between two normal rules, in a stabilized execution. A full round of an
execution is defined as 1 + S(U) rounds.

The notion of full round is the suitable notion to evaluate the time of response of our
snap-stabilizing algorithm, since Algorithm i/ is for us a black box. Recall that, for unison
algorithms presented in [CFG92, BPV04, DJ19, EK21], the notion of full round is identical
to the more classical notion of round.

Theorem 4.8
Let v be a node, and let ¢ = (y — 9 — - - -) be a maximal execution such that vy € T'cyg
T T

and in v — 7y, v executes Rgpqre. Then f occurs in O(D) full rounds after .
T

Proof: Theorem 4.2 guarantees that all the rounds are finite.

During one full round, all nodes u such that Vw € N, clock, € {clocks, clock, + 1} are
activated and execute rule Ryq:¢. These activations imply that min,ecv clock,, increases by
at least one each full round. Since, at any moment, the maximal difference between the
clocks of two nodes is D, we obtain that Vk € N, during D + k full rounds all the nodes
are activated at least k times. After D + 1 full rounds, all the nodes are activated, and the
following property holds for any node u in any configuration: da, = max,cv da, A da, >
0 = UnisonOnly(w). In other words, the nodes with maximal value of da are enabled for the
rule Ry qi:. This implies that the maximal value of da decreases by at least one in each full
round. This ensures that after at most 3D + 3 full rounds, the system is in ['4,. Moreover
after D + 2D + 2 more full rounds, all the nodes are activated at least 2D + 2 times, so v
executes Rep: 2D + 1 times, after which it executes rule Rgtop.

We established that f occurs in at most 6D +5 = O(D) full rounds after the execution
of]Rstart by V. .

4.6 Conclusion

In this chapter, we introduced a generic, deterministic, snap-stabilizing, silent algorithm
that solves Termination Detection in asynchronous networks. Our solution works assuming
an unfair scheduler. It has the nice feature of working in anonymous networks, but requires
that each node knows (an upper bound on) the network diameter D. The space complexity
of our solution is O(log D) bits per node, and provides an answer in O(max(k,k’, D))
rounds, where k and k' are the stabilization time complexities of the observed and the unison
algorithms, respectively. We have endeavored to provide a generic algorithm that works with
any self-stabilizing unison algorithm in the literature, e.g., [CFG92, BPV04, DJ19, EK21].

CHAPTER 5

Optimal Self-stabilizing Token

Circulation in DODAGs

It is a love based on giving and receiving

As well as having and sharing

And the love that they give and have is shared and
received

And through this having and giving and sharing and
receiving

We too can share and love and have and receive

Reverend Tribbiani

Contents

5.1 Introduction 68
5.1.1 Motivation 68

5.1.2 Related Work 69

5.1.3 Contributionso 70

5.2 Model and Definitions L 71
5.2.1 General Model 71

522 DODAGSs