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Résumé

L’auto-stabilisation est un paradigme adapté aux systèmes distribués, particulièrement sus-
ceptibles de subir des fautes transitoires. Des erreurs de corruption de mémoire, de mes-
sages, la rupture d’un lien de communication peuvent plonger le système dans un état
incohérent. Un protocole est auto-stabilisant si, quel que soit l’état initial du système, il
garantit un retour à un fonctionnement normal en temps fini.

Plusieurs contraintes s’appliquent aux algorithmes conçus pour les systèmes distribués.
L’asynchronie en est un exemple emblématique. Avec le développement de réseaux d’objets
connectés, censés être autonomes, il devient également central de concevoir des algorithmes
ayant un faible coût en termes de consommation énergétique et peu exigeants en termes de
ressources.

Une des manières d’appréhender ces problèmes est de chercher à réduire la taille des
messages échangés entre les différents nœuds du réseau. Cette thèse se concentre sur
l’optimisation de la mémoire nécessaire à la communication pour les algorithmes distribués
auto-stabilisants.

Nous établissons dans cette thèse plusieurs résultats négatifs, démontrant l’impossibilité
de résoudre certains problèmes sans une certaine taille minimale pour les messages échangés,
en établissant une impossibilité d’utiliser jusqu’au bout l’existence d’identifiants uniques
dans le réseau en dessous de cette taille minimale. Ces résultats sont génériques et peuvent
s’appliquer à de nombreux problèmes distribués. Dans un second temps, nous proposons
des algorithmes particulièrement efficaces en mémoire pour la résolution de deux prob-
lèmes fondamentaux des systèmes distribués: la détection de terminaison, et la circulation
perpétuelle de jeton.





Abstract

Self-stabilization is a suitable paradigm for distributed systems, particularly prone to tran-
sient faults. Errors such as memory or messages corruption, break of a communication link,
can put the system in an inconsistent state. A protocol is self-stabilizing if, whatever the
initial state of the system, it guarantees that it will return a normal behavior in finite time.

Several constraints concern algorithms designed for distributed systems. Asynchrony
is one emblematic example. With the development of networks of connected, autonomous
devices, it also becomes crucial to design algorithms with a low energy consumption, and
not requiring much in terms of resources.

One way to address these problems is to aim at reducing the size of the messages ex-
changed between the nodes of the network. This thesis focuses on the memory optimization
of the communication for self-stabilizing distributed algorithms.

We establish in this thesis several negative results, which prove the impossibility to
solve some problems under a certain limit on the size of the exchanged messages, by show-
ing an impossibility to fully use the presence of unique identifiers in the network below
that minimal size. Those results are generic, and may apply to numerous distributed prob-
lems. Secondly, we propose particularly efficient algorithms in terms of memory for two
fundamental problems in distributed systems: the termination detection, and the token
circulation.
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Chapter 1

Introduction

The Matrix is everywhere. It is all around us. Even
now, in this very room. You can see it when you look
out your window or when you turn on your television.
You can feel it when you go to work... when you go to
church... when you pay your taxes.

Morpheus

The continuous development of communication technologies has deeply changed every
aspect of our society. Most users see this evolution through the increasing role and size of
Internet, social networks, instant messaging, etc. It also brought ruptures in the core of the
economy. Six out of the eight biggest companies in the world, in terms of capitalization,
are directly linked to computing technology, produce both devices and services, the stock
market itself also relies on those technologies.

Communication technology is in constant change, and already widely diverse. Data
collection from connected objects relies on the structure of the Internet of Things (IoT),
GPS technology relies on a very precise synchronization in satellite networks, phone internet
is based on Wi-Fi networks.

With the development of communication protocols involving small, autonomous devices
which communicate via WiFi, it is crucial to design algorithms which are efficient in terms
of energy, memory, CPU. . .

All these communication technologies can be described as distributed systems. A dis-
tributed system, which we also call network, is a system composed of several autonomous
computing units, and of communication links between those units. Each device computes
autonomously, depending on the information it has, and can send and receive informa-
tion to other devices through the communication links. Each unit is directly linked to a
non-empty subset of the other units, its neighbors, such that there exists a communication
path between any two computing units. This definition includes computer networks, sensor
networks, swarm robots, parallel computers. . . .

Although very diverse, distributed systems share some characteristics which differenti-
ate them from central systems. In distributed systems, the different computing units of a
distributed system do not necessarily compute at the same speed, may run different compu-
tations which do not take the same time, may run on different materials which do not have
the same performances. This results in an asynchrony inherent to distributed systems.
In particular, the individual clocks of each device may desynchronize, which invalidates the
possibility to rely on a global notion of time.

We must also consider that the communication between devices takes place through
communication links of various qualities, length, with different speeds. This makes it im-
possible to define a reliable order on the operations made by separate devices: an execution
on one system may not be linearizable. Therefore, one cannot expect any synchroniza-
tion between the different devices of a distributed system. This asynchrony has, as a direct
consequence, non-determinism on the evolution of the system. Even if the algorithm con-
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sidered is deterministic, the order in which the nodes compute, send and receive messages
may be different in two separate executions.

Distributed systems are more prone to faults than centralized systems. Such systems
cover a huge quantity of diverse devices and depend on a large variety of communication
technologies, which make the existence of communication or unit errors very likely within
time. Therefore, algorithms for distributed systems should be fault-resilient.

In distributed systems, the computing units are autonomous, which means that they
all execute their own code, and update their own variables. By definition, nodes have no
global view on the state of the system. Therefore, the computations and decisions
made by the individual devices in order to make the system behave correctly only depend
on the local memory of the device, and on the messages it received from its direct neighbors.
Due to asynchrony, this information may be outdated, and due to faults, they can even be
erroneous.

Wireless networks are simpler to deploy than wired networks, and therefore are more
and more spread, and larger and larger within time. The IoT, sensor networks, or swarm
robots are research and technological areas in constant development. All those networks
share some properties which make it a specific challenge to design algorithms for them. In
wired networks, the messages are exchanged through physical, wired, communication links.
Due to commutation technology, everything behaves like if any communication link was
shared by exactly two devices. In such situations, identifying the communication link, the
port on which it is physically connected, allows devices to know which of their neighbors
sent them some message. Reciprocally, devices can without difficulty send a message to
exactly one of their neighbors.

Things are very different for wireless networks. In such networks, any message sent by
one device is identically received by all of its neighbors, through wireless communication
(WiFi, Bluetooth, radio. . . ). Therefore, sending a message to one specific neighbor is
impossible, and addressing a message to one specific neighbor is a challenge, since
the same message will be received by all the other nodes in the neighborhood. Not only
does this complicate the resolution of some tasks, but in addition this can lead to an
increase in the number of sent messages in the network, and even to loops of propagation
of information.

One way to solve this issue is to rely on unique identifiers possessed by nodes, such
as MAC addresses, or IP addresses. If all nodes share their unique identifier to all of
their neighbors, then it becomes possible to address a message to one specific neighbor
by prefixing the message with the recipient identifier. This technique has several flaws.
The first one is that it does not apply to networks in which nodes do not have a unique,
permanent, identifier. Such networks are said anonymous. A lot of operations are much
more complicated to achieve in anonymous networks. Even in networks in which devices
have a globally unique identifier, it might be desirable to avoid such solutions. Indeed, this
solution requires the transmission if identifiers, by WiFi, to the entire neighborhood, which
rises privacy and/or security issues. Finally, prefixing all messages by the identifier of
the recipient has a non-negligible cost in terms of size of the message communicated by
the devices.

Sensor networks, robot networks, also have in common the fact that the devices involved
may be distant from any source of energy for a pretty long period of time. In order to keep
them able to perform their task, algorithms for such networks should be as little talkative
as possible. Indeed, in distributed systems, devices constantly exchange information to
check local consistency, and perform the task they are designed for. To save battery, and
extend the life expectancy of the devices, it becomes crucial to make the messages as short
as possible. For this reason, designing algorithms which do not require the exchange of the
node identifiers is an interesting challenge. One other interest of such algorithms is that
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they do not require a lot of memory, since nodes do not have to store the identifiers of
their neighbors, and thus are suitable for networks in which the devices have a low storage
capacity.

Problems addressed in the field of distributed computing can be very diverse.
Structure construction problems designate all the problems which aim at providing

the network a structure which satisfies an intended property. This structure can be spanning
the whole network (maximal independent set, tree, . . . ), involving only one node (leader
election). Building structures is often a first step to solve a more complicated problem.

Mutual exclusion problems designate all the problems which aim at assuring that one
or several resources in the network (a printer, a computing server, a database. . . ) is not
accessed by several users at the same time. This exclusion can be local: no two neighbors
can access the resource at the same time, or global: no two devices of the networks can
access the resource at the same time.

Global observation problems designate all the problems which aim at gathering on
one or several nodes information relative to the global state of the system. The particular
information can be the termination of a computation as well as detecting some property on
the topology of the network, or the presence of a deadlock.

Nowadays distributed systems involve more and more components, and more and more
non-reliable components (watches, fridges, printers. . . ). With this increase of the number
of devices, the probability that faults occur increase as well. These faults can be caused
by the environment, by attacks, or even by the device itself which may be poorly coded, or
unadapted to the conditions in which it operates. Furthermore, the effects of such faults
are also pretty diverse. It can lead to a temporary or permanent disappearing of one node,
or of some communication links. I can also be simply the transmission of some erroneous
messages. In the worst case, an attacker takes permanent control of one or several nodes,
which hinder a normal behavior of the system.

Two main paradigms are suitable for faulty distributed systems.
Robustness [GLM06, CDPR20] is a paradigm which focuses on the nature of the

solution. A solution is robust if, even when some node, or some communication links crash,
the solution remains valid. Designing robust solutions to problems allows ignoring the
future faults in the system. Such solutions are generally expensive, and hard to build when
they exist, which is not always the case. They are mainly used for critical systems, such as
nuclear plants, passenger transport (planes, autonomous cars), etc.

Self-stabilization, introduced by Dijkstra [Dij74], is a more general paradigm, which
focuses on the ability to autonomously recover a correct configuration after some faults
occur. This paradigm is suitable for transient faults, which happen rarely enough for the
system to have enough time to converge between faults. An algorithm is self-stabilizing if,
whatever the initial configuration of the system, it returns to a correct behavior in finite
time. Several variants of self-stabilization are presented in the literature.

In this thesis, we focus on the space complexity of some distributed problems in the
framework of self-stabilization for wireless networks. Small space complexity is desirable
for distributed algorithms in general, and especially for wireless distributed systems. We
address the question of lower bounds for the space complexity of some problems, an un-
derdeveloped field of research. We consider both anonymous and identified networks, and
introduce memory efficient self-stabilizing algorithms in both environments.

In Chapter 2 we detail the computational model used in this thesis. We formally define
distributed systems, algorithms, distributed problems, and stabilization hypotheses.

In Chapter 3, we present results from [BFB21]. We study the cost of using the presence
identifiers in identified networks. Most algorithms requiring unique identifiers use Ω(logn)
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bits per node, to store and send the identifiers to their neighbors. Recently, algorithms
solving problems which require unique identifiers were presented, and only use O(log logn)
bits per node. We prove that this complexity is asymptotically optimal, in the sense that
under O(log logn) bits per node, algorithms cannot use the presence of unique identifiers
in the network, and behave as if the network was anonymous. It is a very general result:
it applies to all distributed algorithms, stabilizing or not, in various specific models. We
apply this result to obtain lower bounds on the space complexity of actual problems, by
establishing a Ω(log logn) lower bound for the Leader Election problem, one of the most
studied problems in the field of self-stabilization. Our lower bound is established on one
very simple, and widely studied, class of graphs: non-prime rings.

These results have been awarded Best Student Paper at [BFB21], and extended abstracts
were also presented in [BFB19, BFB22].

In Chapter 4, we present results from [BJBP22b]. We address one fundamental problem
of distributed systems: the Termination Detection problem. We design a snap-stabilizing
solution for this problem, with very low requirements on the network. It works in anonymous
settings, is adapted to wireless networks, and works on any topology. Furthermore, our
solution only requires Θ(logD) bits per node, which is the lowest complexity achieved so
far, and had never been achieved by any snap-stabilizing algorithm before. To design our
algorithm, we rely on an unspecified unison algorithm. To be so generic, we established
a theoretical analysis of properties of unison algorithms, from the specification of Unison
problem itself.

A French-language version of these results was also presented in [BJBP22a].
In Chapter 5, we address the problem of fair token circulation. We design a self-

stabilizing algorithm which solves this problem on a generic class of graphs, Destination
Oriented Acyclic Graphs, and is also adapted to wireless networks. Finally, this solution
requires Θ(log logn) bits per node, which is asymptotically optimal, and works under the
weaker assumption on the synchrony of the network.

This result will soon be submitted to an international conference.
In the last chapter we summarize our contributions, and broaden their scope by opening

directions in which our techniques and results might be extended.



Chapter 2

Model

Each of these lives is the right one!
Every path is the right path.
Everything could have been anything else and it would
have just as much meaning.

Nemo Nobody
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In this chapter we introduce the formal framework in which this thesis lies. We introduce
the computational model, the communication model, and other objects that are considered
all along this thesis.

2.1 Preliminaries

In this section we define some mathematical objects and properties that will be useful later.
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Relation Let V be a set. A binary relation R on V is a subset of V × V . We write
uRv as an equivalent of (u, v) ∈ R. A binary relation is reflexive if ∀v ∈ V, vRv. A binary
relation is transitive if ∀u, v, w ∈ V, uRv∧vRw ⇒ uRw. The transitive closure of a relation
R, denoted R+ is the smallest transitive relation which contains R. We have

uR+v ⇐⇒ ∃k > 0,∃v0, . . . , vk : (u = v0 ∧ v = vk ∧ ∀i ∈ [0, k − 1], viRvi+1).

The reflexive transitive closure of a relation R, denoted R∗ is the smallest reflexive and
transitive relation which contains R. We have

uR∗v ⇐⇒ ∃k ≥ 0,∃v0, . . . , vk : (u = v0 ∧ v = vk ∧ ∀i ∈ [0, k − 1], viRvi+1)
⇐⇒ (uR+v) ∨ (u = v).

A binary relation R is acyclic if ∀u ∈ V,¬(uR+u). A binary relation R is rooted if ∃r ∈ V :
∀u ∈ V, uR∗r. Remark that if a binary relation R is both rooted and acyclic, then there
exists one unique r ∈ V : ∀u ∈ V, uR∗r. This element r is said the root of R.

Order A binary relation R is antisymmetric if ∀u, v ∈ V, uRv ∧ vRu⇒ u = v. A binary
relation R is an order if it is reflexive, transitive, and antisymmetric. In the following, orders
are denoted with the symbols �, or ≤. Consider an order �, we define the strict order
associated to �, and denote ≺, the relation such that ∀u, v ∈ V, u ≺ v ⇐⇒ u � v ∧ u 6= v.

An order � is well-founded if there does not exist any infinite sequence v0v1 . . . such
that ∀i ∈ N, vi+1 ≺ vi. If � is a well-founded order, then (V,�) is a well-founded set.

2.2 Distributed System

A distributed system is a set of autonomous computing units, which can communicate with
each other in order to complete a global task. Computing units can be computers, network
devices, a core of a multicore process, etc. We suppose a fully decentralized system, where
the different computing units do not share any resource.

2.2.1 Characteristics of Distributed Systems

No Global Time Usually, the speed of computation as well as the latency of the different
communication links are not homogeneous in distributed systems. Since the processes
cannot rely on a global clock, then we cannot suppose any synchronization between distant
processes.

No Global Knowledge There also does not exist any shared memory through which
nodes could safely and centrally communicate. The computation is local to each node, and
is made without any global knowledge of the state of the system. Nodes can only exchange
pieces of information through the existing communication links, point to point. Due to
asynchrony, it might be non-trivial to maintain consistency in this communication model.
Note that communication links are symmetric: if one process can communicate with one
other process, then the opposite is true as well.

2.2.2 Model of Distributed Systems: Networks

Networks A distributed system, or network, is a non-oriented connected graph G =
(V,E). The processes of the distributed system are represented by the nodes of G, which
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are the elements of V . The communication links of the distributed system are represented
by the (non-oriented) edges of G, which are the elements of E ⊆ P2(V ) (pairs of elements
of V ).

There exist works focusing on oriented, or directed, networks. In oriented networks, the
communication links are not necessarily symmetric: it might happen that one node can send
information to one of its neighbor, without reciprocity. This is modeled by oriented edges,
elements of E ⊆ V × V . In this thesis we always consider bi-directional communication
links, but sometimes refer to results established in oriented networks.

We call size of G and denote by n the number of nodes in the network. Two nodes u and
v are neighbors in G if and only if {u, v} is an edge of G. The set of all the neighbors of v is
denoted Nv. We also denote by N [v] the set of extended neighbors of v, N [v] = Nv ∪ {v}.

Graphs Properties We call degree of a node v and denote ∆v the number of neighbors
of v. We call degree of G and denote ∆(G), or simply ∆ if no confusion can be made, the
maximum degree of the nodes of G.

A path of G is a sequence p = (v1, v2, . . . , vk) of nodes of G such that ∀i ∈ [1, k −
1], {vi, vi+1} ∈ E. We call source of p the node v1, end of p the node vk, and length of
p the number of edges in p, here k − 1. A path p = (v1, v2, . . . , vk) of G is elementary if
∀i 6= j ∈ [1, k], vi 6= vj . If the source and the end of a path p are equal, then p is also said
a cycle. A cycle c = (v1, v2, . . . , vk) is an elementary cycle if the path p = (v1, v2, . . . , vk−1)
is elementary.

The distance between two nodes u and v in G is the length of the shortest path of G
with source u and end v. We denote by dist(u, v) the distance between u and v. We call
diameter of G, and denote D(G), or simply D if no confusion can be made, the maximal
distance between two nodes of G.

2.2.3 Local Knowledge

Port Numbering In distributed systems, nodes receive information from several neigh-
bors, each neighbor corresponds to one specific communication link. Although one con-
nected device does not necessarily know which entity is located at the endpoint of each
communication link, it can nevertheless distinguish the different communication links from
another. Practically, this distinction is made by identifying the port number associated to
the communication, the frequency used by the device, etc. We do not suppose any global
consistency in the attribution of the port numbers in the network.

In our model, a node v has access to locally unique port numbers associated with its
adjacent edges. We denote by portv(u) the port number associated by v to the edge leading
to its neighbor u. Typically, portv(u) is an integer in [1,∆v].

Identifiers, Semi-Uniform In some distributed networks, devices come with a globally
unique identifier, which can be a MAC address, an IP address, etc. This unicity can be
useful to solve problems that require symmetry breaking, for example. Due to NATing, or to
false MAC-addresses, it might happen that some, but few, devices share the same identifier.
In most cases, this homonymy does not cause any problem, but in some situations, this can
lead to, sometimes unsolvable, issues.

Although most distributed systems are based on devices with unique identifiers, several
reasons justify the interest to design distributed algorithms that do not require such iden-
tifiers. For privacy reasons, it might be crucial to design algorithms that are not based on
sharing unique identifiers in the entire network. Furthermore, for this precise reason, there
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exist actual networks where identifiers do exist, but do not have any consistency through
time due to the use of VPN for example.

Independently of the presence of identifiers, there sometime exists one particular device
in the network that has a specific role. This specific device can be the DHCP server, for
a local network, or a master DNS, in one DNS zone. Some problems are easier to address
if the network has a distinguished device, that can perform tasks that the other devices
cannot.

A network G is identified if ∀v ∈ V , v has a local constant, its identifier, denoted by
IDv, such that ∀u 6= v ∈ V, IDu 6= IDv. For all k ∈ N∗, G is k-homonymous if ∀v ∈ V , v
has a local constant, its identifier, denoted by IDv, and such that at least k nodes have the
same identifier. Remark that according to this definition, any k-homonymous network is
also k′-homonymous, for any k′ ≤ k. A network G is anonymous if all nodes have the same
identifier or, equivalently, if there is no identifier at all. Remark that anonymous networks
may be seen as n-homonymous networks.

Given a graph G, an integer k ∈ N∗, and a set of identifiers SID, we use the following
notations:

• G0[SID] represents any identified network with topology G and with unique identifiers
taken in SID.

• Gk[SID] represents any k-homonymous network with topology G and with identifiers
taken in SID

• Gn[ID] represents the anonymous network with topology G in which all nodes have
identifier ID.

A network is semi-uniform if ∀v ∈ V , v has a local constant distinguishv such that
∃w ∈ V : distinguishw = 1 and ∀u 6= w, distinguishu = 0. Otherwise, the network is
uniform.

2.2.4 Knowledge about the Topology of the System

Depending on the distributed system, some global characteristics (and especially its size,
diameter, and degree) can be persistent through time. Although this does not apply to
mobile networks, for example, this can be a relevant hypothesis for sensor networks, which
contain devices that are not meant to be moved. In such situations, the knowledge of the
values of those parameters can be helpful to efficiently solve tasks in the system. Depending
on the application, the exact value of the parameter is not always necessary: an approxi-
mation or an upper bound can be sufficient. For example, an upper bound on the diameter
of the network is enough to guarantee the propagation of information through the entire
network.

In some cases, the nodes of the network have a local constant that stores n, ∆, D, or
a combination of those parameters. In such case, the parameter is said given. If only an
upper bound or an approximation of the value is given to the nodes, then the parameter is
said approximated.

2.2.5 Common Topologies

In the general case, distributed systems have very diverse topologies. Thus, we aim to
design distributed algorithms which behave correctly on any topology. If no precision is
made, saying that a distributed algorithm completes a certain task means that it completes
this task on all topologies.
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Yet, it might be interesting to reason on specific, simpler topologies for at least two
reasons. The first one is that some distributed systems actually respect some specific
topologies, and it might be possible to find more efficient algorithms by supposing some
specific topology. The other reason is that some problems can be difficult to address in
the first place, and working on a simpler case can be an option to find a way to a generic
solution.

We call topology a class of all the networks that respect a particular property. Here we
give some common topologies that will be used in our thesis. We present examples of graph
for each topology in Figure 2.1.

• G is a ring if there exists an elementary cycle of length n in G.

Rings are a typical example of a tool-topology. Although it is one very simple topol-
ogy, numerous problems of distributed computing (the presence of cycles, symmetric
configurations) can be tackled in this simple topology at first.

• G is a tree if there is no elementary cycle in G.

Trees are both a simple topology, suited to first address some problems, and a real-
world topology. Indeed, minimizing the number of communication links in distributed
systems is pretty useful to reduce the number of messages exchanged, to avoid con-
flicts. . .

• G is a star if there exists one node r such that all the other nodes have only r as a
neighbor.

Stars are a particular case of trees, which corresponds to highly centralized networks.

• G is a complete graph if there exists an edge between any pair of nodes.

• We also consider Directed Acyclic Graphs (DAG) and Destination Oriented Directed
Acyclic Graph (DODAG), which are both particular cases of oriented graphs. Recall
that we consider non-oriented networks, in the sense that the communication is always
bi-directional. The orientation we are talking about is therefore more a hierarchy re-
lation between neighbors than an orientation of the communication links. In practice,
devices have a local table that allows them to know whether one specific neighbor is
a parent or a child of theirs in the network. Similarly, we rely on port numbers to
grant an orientation to the network.

Suppose that the space of port numbers can be split into two disjoint sets port+ and
port−. Let us denote by u→ v the relation portu(v) ∈ port+.

G is a Directed Acyclic Graph (DAG) if the relation → is acyclic. Note that this
implies: portu(v) ∈ port+ ⇐⇒ portv(u) ∈ port−.

DAGs corresponds to hierarchical distributed systems, where devices have initiators,
and followers.

G is a Destination Oriented Directed Acyclic Graph (DODAG, or Do) if the relation
→ is acyclic and rooted. We call root of the Do the root of the relation →.

DODAGs are DAGs with only exactly one node that has no ancestor, which is a
common ancestor of all the other nodes. It corresponds to centralized, hierarchical
networks, such as DNSs networks.
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Figure 2.1: Common topologies, from left to right starting from the first row: complete
graph, ring, star, tree, DAG, DODAD

2.3 Communication Model, Algorithm

2.3.1 Memory

During the execution of a distributed algorithm, the devices of the system exchange informa-
tion through the communication links. Every time one device receives some information, it
can update its variables, depending on its personal information, and on the one it received.
After that, the device can send an updated information to its neighbors, that depends on
its new state and on other local information. Thus, a device possesses two distinct types
of information. The information that is inherent to its material, persistent, and the infor-
mation it received from the other devices of the system, that is meant to be updated, and
transmitted.

In our model, nodes have two types of memory: the immutable memory and the mu-
table memory. The immutable memory is not corruptible, and cannot be updated by the
node itself. It typically contains the code of the algorithm, the identifier of the node, its
port numbers, and constant distinguish. The mutable memory, also called register, is
corruptible, and can be updated by the node itself. It typically contains the variables of
the algorithm that is executed in the network.

The set of all variables in the registers of node v is called the state of v, and is denoted
statev. We also denote by localv the set of all local constants of node v, stored in its
immutable memory: its identifier, port numbers, distinguish. . .

We call a configuration of G the set of all the states of the nodes of V . Configurations
are denoted by the letter γ. We also denote by Γ the set of all possible configurations of G.
The value of variable var on node v in configuration γ is denoted varγv .
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We call execution, and denote by the letter ε, any non-empty sequence of configurations:
ε = γ0 → γ1 → · · · .

2.3.2 Communication

State Model The communication between the devices of a distributed system highly
depends on the material, of the network, and can be studied at each layer of the OSI
model (ADSL/Bluetooth, Wi-Fi/Ethernet, IPv4/IPv6, TCP/UDP, etc). For the sake of
genericity, we model communication between nodes by abstracting the sending of messages.

We consider the state model, denoted S, introduced by Dijkstra [Dij74]. In the state
model, each node v has read/write access to its register, and has a read-only access to the
registers of its neighbors. Thus, to transmit information to its neighbors, a node simply
writes that information in its mutable memory.

Knowledge of the Port Numbers In wired distributed systems, the communication
between neighbors is made through physical links, each link connecting exactly two devices.
In such systems, one node can naturally send different information to its neighbors. On the
other hand, in wireless networks, such as sensor networks or Wi-Fi antennas, communication
is multidirectional: any information emitted by one device is identically received by all of
its neighbors. In such networks, it can be pretty difficult to send information to one, and
only one, neighbor.

In our model, the different communication links are identified by port numbers. To
embrace that diversity in the capacity to communicate, two variants of the state model are
studied in the literature: the port-known state model and the port-unknown state model.

In the port-known state model, denoted SPK, nodes know the port number it is assigned
by its different neighbors. Namely, v has a table that contains the value portu(v) for each
of its neighbors u. Thus, if one neighbor u of v wants to send information to one of its
neighbors, it can prefix this information with the port number it assigned to that neighbor.
Since all of its neighbors know their assigned port number, they can decide whether the
information is intended to them or not. The model SPK corresponds to wired distributed
systems.

In the port-unknown state model, denoted SPU, nodes do not have any knowledge a
priori on which port number they were assigned by their different neighbors. This makes
it non-trivial to send information to one specific neighbor. If necessary, then this difficulty
must be overcome by the algorithm. The model SPU corresponds to wireless distributed
systems.

The positive results and algorithms presented in Chapters 4 and 5 are all valid in the
most challenging model: the port-unknown state model SPU. The negative results (lower
bound and impossibility results), presented in Chapter 3 are all valid in the least challenging
model: the port-known state model SPK.

In Chapter 5, the problem we address requires that nodes communicate information
to exactly one of their neighbors. Let us give an idea on how this difficulty might be
overcome. If the network is identified, then sending information to one neighbor can be
done by prefixing the information by the identifier of the designated neighbor. This requires
that each node permanently writes its identifier in its mutable memory, so that its neighbors
have access to it (recall that the local constants of v, such as IDv, are not readable by the
neighbors of v). This technique has one flaw: it has a non-negligible cost in terms of memory
used, since storing the identifier in the mutable memory requires at least O(logn) bits on
each node. In Chapter 5 we exponentially reduce the size of the memory.
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Note that in anonymous networks, sending information to one specific neighbor is gen-
erally unfeasible in SPU.

2.3.3 Deterministic Algorithm

Rules A distributed algorithm consists of a set of rules of the following form:

< label > : < guard > → < action >

where

• < label > is the name of the rule,

• < guard > is a predicate that involves the variables of the node and of its neighbors,
and the local constants of the node (its identifier, port numbers...),

• < action > is a set of deterministic instructions that modify the state of the node.

If at least one action involves randomization, then the algorithm is said non-deterministic,
or randomized. In this work, we only consider deterministic algorithms.

We denote by RA the set of the rules of A. If the guard of a rule is evaluated to true on
node v, then this rule is said enabled on v. An action can be executed by node v only if the
rule in which it appears is enabled. A node is enabled if one of its rules is enabled, and is
disabled otherwise. We denote by Ae(γ) the set of the enabled nodes in γ. A configuration
γ is terminal if no node is enabled in γ, i.e. if Ae(γ) = ∅.

Network-Specificities of Algorithms If at least one rule of an algorithm A refers to
the local constant distinguish, then it is designed to be efficient on semi-uniform networks.
Algorithm A is said semi-uniform. Otherwise, it is said uniform. If no rule of an algorithm
A refers to the local identifier of the node, then it is designed to be efficient on anonymous
networks. Algorithm A is said anonymous. Otherwise, it is said ID-based.

Computation When activated, an enabled node v atomically executes the three following
actions.

• It reads the state of all of its neighbors u ∈ Nv
• It executes the action of one of the rules it is enabled, according to the state of its

neighbors, its own state, and its local constants.

• It writes in its mutable memory its new state.

If several nodes are activated at the same moment, they all atomically execute those three
actions.

Permanent Communication As defined above, it might seem that nodes read the state
of their neighbors only when activated. This is actually misleading. In a distributed system,
the devices constantly exchange information, in order to detect any update, any breaking
in the system. In our model, this is true as well, but hidden by the notion of enabled nodes.

A node is activated only if it enabled, which depends on the state of its neighbors.
Thus, to be able to know whether it is enabled or not, a node necessarily has to constantly
read the state of its neighbors, and evaluate all the guards of its rules with the updated
information it read.
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2.4 Scheduler

2.4.1 Asynchrony

Although devices constantly exchange information, there is no guarantee that all the nodes
compute and communicate at the same speed. Most certainly, some devices are more
reactive than others, some communication links are more congested than others, etc. Thus,
it would be a huge simplification supposing that enabled nodes are immediately activated:
distributed systems are inherently asynchronous.

This asynchrony is modeled by the existence of an adversary, called daemon or scheduler.
At each step, the scheduler selects a subset of the enabled nodes, and activates all of them.
Each activated node updates its state according to the action of one of its enabled rules.
If several rules are enabled on the same activated node, then it non-deterministically pick
one of them.

Formally, a schedule is a map D that takes as input a non-empty sequence of configu-
rations (γ0, γ1, . . . , γk) and a subset of the nodes of the graph V e ⊆ V , which represents
the set of enabled nodes. D(γ0, γ1, . . . , γk, V

e) = ∅ if and only if V e = ∅. If V e 6= ∅, then
D(γ0, γ1, . . . , γk, V

e) is a non-empty subset of V e.
Let us denote by γ −→

A
γ′ a computing step of algorithm A, where γ′ is obtained from γ

after the activation of one or several enabled nodes and the simultaneous execution of their
action.

Given a schedule D, an execution of A under D, is a finite or infinite execution ε = γ0 −→
A

γ1 −→
A
· · · such that ∀i, the set of activated nodes between γi and γi+1 isD(γ0, γ1, . . . , γi,Ae(γi)).

An execution is maximal if it is infinite, or if it is finite and the last configuration of ε is
terminal. If ε = γ0 −→

A
γ1 −→

A
· · · is an execution, then ∀i ≥ 0, ε′ = γi −→

A
γi+1 −→

A
· · · is a

sub execution of ε. A sub execution can be both finite or infinite. The first configuration
of an execution, γ0, is called the initial configuration.

2.4.2 Schedules and Schedulers

In practice, we don’t know the precise schedule that will determine the execution of our
algorithm. Furthermore, it would be very restrictive to design an algorithm for one partic-
ular schedule. What we actually do is suppose that the execution respects some properties
of fairness, for example. We call scheduler a class of schedules which all share common
properties. Since we do not use in practice the notion of schedule, we also denote by D the
schedulers. Saying that an algorithm A respects some property on a certain scheduler D
means that it respects that property on every schedule of D.

2.4.3 Common Schedulers

Dubois and al. in [DT11] presented a vast overview of schedulers. In this section, we only
present the schedulers that are invoked in this thesis. Let us consider a schedule D and a
infinite sequence of configurations γ0, γ1, . . . .

• The schedule D is strongly fair if the following is true for any sequence of configura-
tions γ0, γ1, · · · , for any i ≥ 0 and for any node v ∈ V : if v is enabled in an infinite
number of configurations γj with j ≥ i then v is eventually activated by D. More
formally, if there exists an infinite number of sets Vj 3 v with j ≥ i, then there exists
k ≥ i : v ∈ D(γ0, γ1, . . . , γk, Vk).
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• The schedule D is weakly fair if the following is true for any sequence of configurations
γ0, γ1, · · · , for any i ≥ 0 and for any node v ∈ V : if v is enabled in all the configurations
γi, γi+1, . . . , then v is eventually activated by D. More formally, if ∀j ≥ i, v ∈ Vj ,
then there exists k ≥ i : v ∈ D(γ0, γ1, . . . , γk, Vk).

• The schedule D is central if it activates only one of the enabled nodes at each comput-
ing step. In other words, if for any i ≥ 0, for any V e ⊆ V , |D(γ0, γ1, . . . , γi, V

e)| ≤ 1.

• The schedule D is synchronous if it activates all the enabled nodes at each computing
step. Remark the there exists exactly one synchronous schedule, and that it is strongly
fair.

Remark that if D is strongly fair, then it is also weakly fair. By commodity, we say that
all schedules are unfair. By commodity, we also say that all schedules are distributed, by
opposition to central schedules.

Those properties of schedules directly transfer to schedulers. For example, we can
consider the central strongly fair scheduler, which contains all the schedules that are both
central and strongly fair.

2.4.4 Relation Between Schedulers

A scheduler D1 is stronger (resp. weaker) than a scheduler D2 if D1 can simulate D2 (resp.
if D1 can be simulated by D2). More formally, if D1 ⊇ D2 (resp. if D1 ⊆ D2). Intuitively,
the more possible executions there are, the stronger the adversary.

Note that not all schedulers can be compared. For example, the synchronous scheduler
and the central scheduler, both weaker than the distributed scheduler, cannot be compared
with each other.

2.5 Problems Specification

2.5.1 Specification

Let R and Q be two boolean predicates over configurations. We note γ ∈ R when R
is evaluated to true in γ, and γ /∈ R otherwise. We denote by true the predicate that
always evaluates to true. Given an algorithm A, the predicate R is closed for A if for
every computing step γ −→

A
γ′, such that γ ∈ R, then γ′ ∈ R. Algorithm A converges to

predicate Q from predicate R under the scheduler D if Q is closed and if for any execution
ε = (γ0 −→

A
γ1 −→

A
· · · ) under D such that γ0 ∈ R, there exists i ≥ 0 such that γi ∈ Q. This

is noted R.AD Q. If no confusion can be made, we simply write R.AQ or even R.Q. We
say that R is an attractor if true . R. When it is clear in the context, we indifferently use
a predicate and the set of configurations it describes. For example, we can write Γ instead
of true.

The specification SPP of a problem P is a predicate over the executions and the network,
which describes a specific behavior of the system. An algorithm A solves a problem P under
a certain scheduler if every execution of A under that scheduler satisfies the specification
of P .

The specification of a problem might be described through the use of local predicates.
Intuitively, a local predicate is a boolean function evaluated by one node, with the same
information as when the node evaluates the code of the algorithm: its own local constants,
its own state, and the states of its neighbors.
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Definition 2.1 (Local Predicate)
We call local predicate any boolean predicate which takes as inputs a set of local
constants, and a set of one or several states of nodes.

If P is a local predicate and v ∈ V , we denote P γ(v) = P (localv, stateγN [v]).

2.5.2 Examples of Problems

We shortly present some common problems, and especially those that are studied in this
thesis.

• The Leader Election problem, denoted LE , is a fundamental problem that consists in
determining one single, elected, node in the network. Solving this problem is basically
making semi-uniform a uniform network, and simplify dealing with the issues related
to concurrency, by allowing only one node to make critical decisions. We specifically
address LE in Chapter 3.

• The Spanning Tree Construction problem, denoted ST , consists in building a span-
ning tree structure in the network. Having a spanning tree structure in the network
is particularly useful for minimizing the number of exchanged messages when propa-
gating information in the whole network.

• The Vertex Coloring problem, or simply Coloring problem, denoted ∆ − C, consists
in associating to each node a color, usually an integer between 1 and ∆, such that no
two neighbors have the same color. Coloring a graph is a suitable tool to simulate SPK
in SPU with an additional cost of Ω(∆) bits of memory per node. Indeed, nodes of a
vertex-colored network can address information to one of their neighbors by prefixing
the message by the color of the intended neighbor. Coloring a network also captures
a local mutual exclusion problem, which corresponds to situations where neighbors
share a resource or a service which cannot be used by several devices at a time, to
the allocation of frequency bands for WiFi antennas. . .

• The Maximal Independent Set problem, denotedMIS, consists in selecting a subset
of all the nodes, such that no two neighbors are selected, and such that the obtained
subset is maximal: all the nodes that are not selected have at least one neighbor
which is. A maximal independent set is a structure that is notably adapted to time-
varying graphs, since it is relatively simple to maintain, and offers a lite but complete
coverage.

• TheUnison problem, denoted U , requires the presence of a variable clock on each node,
and consists in increasing all of these variables infinitely often, while maintaining each
pairs of neighboring clocks with a difference at most one. Unison guarantees a minimal
form of synchrony in an asynchronous network. Notably, a correct unison guarantees
that even under an unfair scheduler, all nodes are regularly activated. We specifically
address U in Chapter 4 and especially in Section 4.3.

• The Termination Detection problem, denoted T D, consists in detecting when another
algorithm executed on the same network has converged. In numerous situations,
network protocols are built as a pile of interacting algorithms. If one of the layers is
critical, then it might be necessary to be able to guarantee that the service it provides
is actually satisfied before using it. This problem boils down to checking whether
the algorithm of the critical layer has terminated. We specifically address T D in
Chapter 4.
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• The Token Circulation problem (or Fair Token Circulation problem), denoted T C,
is a fundamental problem that consists in guaranteeing that a unique token travels
the network perpetually, visiting every node repeatedly. This problem models the
objective of perpetually and fairly allocating a resource or a service to the devices of
a distributed system, while insuring global mutual-exclusion. We specifically address
T C in Chapter 5.

2.5.3 Classes of Problems

Terminating and Non-Terminating Problems Some problems such as T C, or U ,
require a perpetual execution of the algorithm. In particular, no finite execution can satisfy
the specification of such problems. Those problems are said non-terminating.

On the contrary, there are problems, such as LE , ST , or MIS which only aim to
provide the network a particular configuration. For those problems, the specification is of
the form SPP (ε) ≡ ∀γ ∈ ε, P (γ), where P is a predicate over the configurations and the
network. Those problems are said terminating. Note that some algorithms may require
infinite executions to solve terminating problems.

Request/Answer Problems Some problems, such as T D, depend on an external acti-
vation, a request. When the request is made, then the algorithm starts an execution, which
ends when an answer is emitted, as a response to the request. Those problems generally
suppose that one variable of the algorithm is shared by another application. This variable is
dedicated to the communication of the request and the answer between the two algorithms.
Such problems are called request/answer problems, or request-based problems.

2.6 Stabilization

Distributed systems are prone to transient faults. Most commonly, some messages can be
lost, or corrupted. If such a failure occurs, the system may reach an incorrect configuration.
Therefore, algorithms designed to perform in such environments must be fault-tolerant.
Several paradigms were introduced in the literature to capture that notion. We only present
the variants that we use in this work.

Distributed Algorithms Some distributed algorithms are not effective in faulty envi-
ronments. Namely, they suppose that the initial configuration of the system is non faulty,
typically that the variables of the nodes are properly initiated to a blank value. Such
algorithms converge from this initial configuration, but not necessarily from a faulty, in-
consistent configuration. Those algorithms, with no fault-recovering properties, are simply
called distributed algorithms. In this thesis, we only consider algorithms which can handle
faults, but we sometime compare ourselves to the simpler case of distributed algorithms.

Silent Self-stabilization There exist problems, such as the leader election or the span-
ning tree construction, for which the specification tolerates constant executions. Indeed,
as soon as one single leader is elected, there is no a priori need to keep computing. An
algorithm A is silent [DGS99] for problem P under scheduler D if every maximal execution
of A is finite. Silent self-stabilization is a paradigm particularly adapted to terminating
problems.
Definition 2.2 (Silent)

A distributed algorithm A is silent if all the maximal executions of A are finite.
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Self-stabilization For most situations, the concept of self-stabilization introduced by
Dijkstra [Dij74] is a suitable paradigm. An algorithm A is self-stabilizing for one problem
P under scheduler D if there exists a predicate R such that Γ .AD R and such that any
execution of A under D starting from a configuration γ ∈ R satisfies SPP . In other
words, a self-stabilizing algorithm converges to a legitimate execution whatever the initial
configuration of the system. Self-stabilization is a paradigm suited to distributed systems
prone to relatively rare transient failures.

Definition 2.3 (Self-stabilization)
Algorithm A is a self-stabilizing algorithm for problem P under a certain scheduler D if
there exists a predicate R such that Γ .AD R and such that any execution of A starting
from a configuration γ ∈ R satisfies SPP .

An execution of A has stabilized once R is valid. The stabilization time of A is the
maximal number of rounds in executions of A starting from any configuration, before
A stabilized.

Snap-stabilization Although self-stabilization is a suitable paradigm in most situations,
there exist problems for which this condition is not sufficient. If we consider problems that
depend on an output, typically observation problems, then self-stabilization is not adapted.
Indeed, self-stabilization ensures that execution ultimately converges to one predicate R
from which executions are correct. Yet, nothing guarantees that no incorrect output is
provided before the convergence to R. Such incorrect outputs might be detrimental to
the system, which makes self-stabilization non-suitable in this situation. An algorithm A
is snap-stabilizing [BDPV07] for one problem P under scheduler D if any execution of A
under D satisfies SPP . In other words, if as soon as there are no more faults, then the
system immediately behaves correctly. Snap-stabilization is a paradigm especially suitable
for request-based problems.

Definition 2.4 (Snap-Stabilization)
A distributed algorithm A is snap-stabilizing for a specification SP if any maximal
execution of A starting from any configuration satisfies SP .

2.7 Efficiency of an Algorithm

We have already seen above that numerous criteria can be studied to discuss the genericity of
an algorithm. Those criteria are the presence of (unique or not) identifiers, the uniformity
of the network, the (precise or bounded) knowledge of some parameters of the network
(size, degree, diameter. . . ), the topologies on which the algorithm works (rings, trees, all
graphs. . . ), the knowledge of nodes of the port number affected to them by their neighbors
(SPU or SPK), the determinism of the algorithm, the hypothesis made on the scheduler
(fairness, centrality. . . ), and the capacity to handle transient faults.

In addition to those criteria, the complexity of the execution of an algorithm is one
other crucial parameter to take into account. Algorithms executed on a central system are
evaluated based on two criteria: the memory required and the convergence time. Algorithms
executed on distributed systems are also evaluated on these criteria.

In most cases, the limiting parameters do not come from the computing units, but
from the communication links of the network, bandwidth, latency, etc. Thus, the relevant
quantities of a distributed algorithm are not the complexity of the algorithm on one node,
but the global complexity of the execution of the algorithm in the network. Although
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this does not bring much trouble when examining the spatial complexity, it requires some
nuance when we come to time complexity.

Spatial and time complexities are expressed as functions, whose parameters are param-
eters of the network. The most common parameters of complexity functions are the size,
diameter, and degree of the network (n, D, and ∆).

2.7.1 Comparison Functions

What is interesting when studying spatial and time complexities is their asymptotic behav-
ior. To express this, we use the following standard notations:

f(x) ∈ o(g(x)) ⇐⇒ limx→∞
f(x)
g(x) = 0

f(x) ∈ O(g(x)) ⇐⇒ limx→∞
f(x)
g(x) 6=∞

f(x) ∈ Ω(g(x)) ⇐⇒ limx→∞
f(x)
g(x) 6= 0 ⇐⇒ ¬

(
f(x) ∈ o(g(x))

)
f(x) ∈ ω(g(x)) ⇐⇒ limx→∞

f(x)
g(x) =∞ ⇐⇒ ¬

(
f(x) ∈ O(g(x))

)
f(x) ∈ Θ(g(x)) ⇐⇒ 0 < limx→∞

f(x)
g(x) <∞ ⇐⇒ f(x) ∈ O(g(x)) ∧ f(x) ∈ Ω(g(x))

2.7.2 Spatial Complexity

The relevant quantity for the spatial efficiency of an algorithm executed on a distributed
system is the size of the messages necessary to complete the task. In the state model, the
messages are abstracted by the ability for nodes to directly read the mutable memory of
their neighbors. Thus, the size unit of the messages which are exchanged on the network
is the size of the mutable memory the algorithm requires, on each node. Note that the
identifier of the node is part of the immutable memory, and thus its size is not taken into
account in spatial complexity, unless the algorithm explicitly writes it into the mutable
memory to share it with the neighborhood.

We call spatial complexity of an algorithm A, and denote SA, the number of bits of
mutable memory required by A on each node.

2.7.3 Time Complexity

To estimate the time efficiency of a distributed algorithm, focusing on the time complexity of
the execution of one action on one node is not relevant for two reasons. The first one is that
this time is most often negligible when compared to the communication time between the
devices of the system. The second is that what takes time in the execution of a distributed
algorithm is the number of communications necessary for the convergence of the system.
We define the time complexity of an algorithm A, denoted TA, as the number of time units
it requires before resolving the problem.

Time Units Due to asynchrony, some nodes whose action is necessary for the algorithm,
can be inactivated during a long time, and block the execution of the algorithm. To embrace
such situations, there are two definitions of what a time unit is.

The notion of step corresponds to the number of separated activation of nodes by the
scheduler: the number of computing steps.

On the other hand, the notion of round [BDPV07] captures the execution rate of the
slowest processor. Let us state this more formally. A node v is neutralized in the computing
step γ −→

A
γ′ if v is enabled in γ and not enabled in γ′, but does not execute any action

between these two configurations. Neutralization occurs when some neighbors of v changed
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their state between γ and γ′, and this change makes the guards of all actions of v false. Let
ε be an execution.

The first round of an execution ε, noted ε′, is the minimal prefix of ε in which every node
that is enabled in the initial configuration either executes an action or becomes neutralized.
Let ε′′ be the suffix of ε starting from the last configuration of ε′. The second round of ε is
the first round of ε′′, and so forth.

Time of Resolution The notion of resolving a problem depends on the stabilization
paradigm considered.

If we consider self-stabilization, then the resolution corresponds to the convergence of
the algorithm: the moment where the specification of the problem is satisfied. We call this
quantity the time of convergence.

If we consider silent self-stabilization, then the resolution corresponds to the termination
of the system: when it reaches a terminal configuration. We call this quantity the time of
termination.

Snap-stabilizing algorithms are, by definition, self-stabilizing algorithms whose time of
convergence is 0, which makes this quantity non-relevant. In most cases, snap-stabilizing
algorithms are designed to solve request/answer problems. In such situations, a suitable
parameter is the time of response, which is the number of time units between the moment
a request is made, and the moment the algorithm answers to this request. This notion can
be refined depending on the problem considered.
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In this chapter, we introduce a generic O(log logn) lower bound for the space complexity
of distributed, deterministic algorithms, and especially for the leader election problem.

A preliminary version of these works was presented in [BFB21].
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3.1 Introduction

It is known that the presence of unique identifiers at the nodes of a network is very helpful,
and sometimes necessary, to break symmetric configurations. Some fundamental problems,
such as Leader Election or Spanning Tree Construction, are known to be unsolvable by
deterministic algorithms in generic anonymous networks [Ang80, Dij82]. On the other hand,
numerous distributed, deterministic, self-stabilizing algorithms exist for those problems in
identified networks [BGJ99, DGS99, DLV11a, DLV11b, BT18]. Although it is known that
identifiers are required to solve such problems, the question of how compact the use of those
identifiers can be made remains. Most algorithms for identified networks are such that nodes
directly share their identifier with their neighbors by writing it into their mutable memory,
and thus have a spatial complexity in Ω(logn) bits per node. Recently, a self-stabilizing
algorithm was presented to address Leader Election, which requires only O(log logn+log ∆)
bits per node [BT20]. This indicates that O(log logn + log ∆) bits per node are sufficient
to use the identifiers. On the other hand, it is known that Leader Election cannot be
solved with constant space complexity [BGJ99]. This indicates that one cannot fully use
the power proper to identified networks with O(1) bits per node. However, the question of
how many memory is necessary for algorithms to use the identifiers was still open. We prove
a Ω(log logn) bits per node lower bound for that problem. More precisely, on identified,
bounded-degree graphs, algorithms that use o(log logn) bits of memory per nodes behave
exactly the same way as if they were executed on anonymous networks. Since a large variety
of problems, and especially Leader Election, are unsolvable in bounded-degree anonymous
networks, we can conclude a Ω(log logn) bits per node lower bound for Leader Election.

3.1.1 Motivation

During the execution of a self-stabilizing algorithm, the nodes exchange information along
the links of the network, and this information is stored locally at every node. Specifically,
processes in a distributed system have two types of memory: the persistent memory, and
the mutable memory. The persistent memory is used to store the identity of the process
(e.g., its IP address), its port numbers, and the code of the algorithm executed on the
process. Importantly, this section of the memory is not write enabled during the execution
of the algorithm. As a consequence it is less likely to be corruptible, and most work in self-
stabilization assumes that this part of the memory is not subject to failures. The mutable
memory is used to store the variables used by the algorithm, and is subject to failures, that
is, to the corruption of these variables. The space complexity of a self-stabilizing algorithm
is the total size of all the variables used by the algorithm.

Preserving small space complexity is very much desirable, for several reasons. First, it
is expected that self-stabilizing algorithms offer some form of universality, in the sense that
they are executable on several types of networks. Networks of sensors as used in IoT, as well
as networks of robots as used in swarm robotics, have the property to involve nodes with
limited memory capacity, and distributed algorithms of large space complexity may not be
executable on these types of networks. Second, a small space complexity is the guarantee to
consume a small bandwidth when nodes exchange information, thus reducing the overhead
due to link congestion [ANT12]. In fact, a self-stabilizing algorithm is never terminating,
in the sense that it keeps running in the background in case a failure occurs, for helping the
system to return to a correct configuration. Therefore, nodes may be perpetually exchanging
information, even after stabilization, and even when no faults occur. Limiting the amount
exchanged information, and thus, in particular, the size of the variables, is therefore of the
utmost importance for optimizing time, and even energy. Last but not least, increasing
robustness against variable corruption can be achieved by data replication [HP00]. This
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is, however, doable only if the variables are reasonably small. Said otherwise, for a given
memory capacity, the smaller the space complexity the larger the robustness thanks to data
replication.

3.1.2 Related Work

Space complexity of self-stabilizing algorithms has been extensively studied for silent algo-
rithms, that is, algorithms that guarantee that the content of the variables of every node
does not change once the algorithm has reached a correct configuration. For silent algo-
rithms, Dolev and al. [DGS99], proved that finding the centers of a graph, electing a leader,
and constructing a spanning tree require registers of Ω(logn) bits per node. Silent algo-
rithms have later been related to a concept known as proof-labeling scheme (PLS) [KKP10].
Any lower bound on the size of the proofs in a PLS for a predicate P on graphs implies
a lower bound on the size of the registers for silent self-stabilizing algorithms solving P .
A typical example is the Ω(log2 n)-bit lower bound on the size of any PLS for minimum-
weight spanning trees (MST) [KK07] , which implies the same bound for constructing an
MST in a silent self-stabilizing manner [BF15]. Thanks to the tight connection between
silent self-stabilizing algorithms and proof-labeling schemes, the space complexity of a vast
collection of problems is known, for silent algorithms. (See [FF16] for more information on
proof-labeling schemes.)

On the other hand, to our knowledge, the only lower bound on the space complexity
for general self-stabilizing algorithms (without the requirement of being silent) that corre-
sponds to our setting has been established by Beauquier, Gradinariu and Johnen [BGJ99]
who proved that registers of constant size are not sufficient for leader election algorithms.
Interestingly, the same paper also contains several other space complexity lower bounds for
models different from ours – e.g., anonymous networks, or harsher forms of asynchrony.
Although there are very few lower bounds for the model we consider, there exist several
impossibility results for specific topologies. In the case of anonymous networks, where
nodes do not have a unique identifier, Angluin [Ang80] proved that there does not exist any
self-stabilizing algorithm for strict leader election (i.e. such that there is never more than
one leader), even under a central scheduler and even allowing randomization, due to the
general impossibility to break symmetry in such networks. Later, Dijkstra [Dij82] proved
that there does not exist any self-stabilizing algorithm for leader election on the anonymous
ring, unless the size of the ring is a prime number. A slightly more powerful model than
anonymous networks is homonymous networks, where identifiers may be shared by several
nodes. In [FKK+04], the authors investigate the problem on solving leader election on
homonymous rings. They prove that leader election is feasible if and only if there is no
non-trivial symmetry in the distribution of the identifiers around the ring. In [DGFTT14]
the authors propose a necessary and sufficient condition on the number of distinct labels
in bidirectional homonymous rings to solve terminating leader election. They show that
there is a solution if and only if the number of distinct identifiers is greater than the highest
divisor of n. Later, [ADD+20] generalizes the previous by establishing impossibility results
for leader election in some unidirectional homonymous rings. Note that the impossibility
results of [DGFTT14] and [ADD+20] are established for general distributed algorithms,
without any self-stabilization requirements.

The literature dealing with upper bounds is far richer. In particular, [BT18] recently
presented a self-stabilizing leader election algorithm using registers of O(log logn) bits per
node in n-node rings. This algorithm was later generalized to networks with maximum
degree ∆, using registers of O(log logn + log ∆) bits per node [BT20]. It is worth notic-
ing that spanning tree construction and (∆ + 1)-coloring have the same space complexity
O(log logn+ log ∆) bits per node [BT20]. Prior to these works, the best upper bound was
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a space complexity O(logn) bits per node [BT18], and it has then been conjectured that, by
some iteration of the technique enabling to reduce the space complexity from O(logn) bits
per node to O(log logn) bits per node, one could go all the way down to a space complexity
of O(log∗ n) bits per node. Arguments in favor of this conjecture were that such successive
exponential improvements have been observed several times in distributed computing. A
prominent example is the time complexity of minimum spanning tree construction in the
congested clique model [LPPP05, HPP+15, GP16, JN18]. Complexities O(log∗n) are not
unknown in the self-stabilizing framework [AO94], and it seemed at first that the technique
in [DGS99] could indeed be iterated (in a similar fashion as in [BKN17]). Our result shows
that this is not the case, and somewhat closes the question of the space complexity of leader
election.

3.1.3 Contributions

In this chapter, we establish several lower bounds of Ω(log logn) bits per node for the space
complexity of deterministic distributed algorithms that require unique identifiers. Namely,
we establish a link between executions of algorithms in identified networks, and executions
of algorithms in weaker types of networks.

We first show that, as soon as identifiers are taken in a polynomial range [1, nc], with
c ∈ R, c > 1, then algorithms that use o(log logn) bits per node are not more powerful than
anonymous algorithms. More precisely, let A be an algorithm in a network with unique
node identifiers, and let us assume that A has space complexity o(log logn) bits per node.
We show that there exist graphs and assignments of identifiers to the nodes of these graphs
such that, in these graphs and for these identifier-assignments, A has the same behavior as
an algorithm executed in these graphs but where all nodes share the same identifier (i.e. in
the anonymous version of these graphs).

Be aware that a space complexity in o(logn) does not prevent A from exchanging
identifiers between nodes, but they must be transferred as a series of smaller pieces of
information that are pipelined along a link, each of size o(logn) bits. Yet, a node cannot
store the identifier of even just one of its neighbors.

We then slightly modify our proof to obtain a second, similar, theorem. We show that,
for any k ∈ N, k ≥ 2, as soon as identifiers are taken in a linear range [1, n × c], with
c ∈ R, c > 1, then algorithms that use o(log logn) bits per node are not more powerful
than k-homonymous algorithms. More precisely, let A be an algorithm in a network with
unique node identifiers, and let us assume that A has space complexity o(log logn) bits per
node. We show that, with spacial complexity o(log logn) bits per node, there exist graphs
and assignments of identifiers to the nodes of these graphs such that, in these graphs and
for these identifier-assignments, A has the same behavior as an algorithm executed in these
graphs but where identifiers can be shared by several nodes (i.e. in the k-homonymous
version of these graphs).

Both results have a very broad scope of application. Indeed, we make almost no hy-
pothesis on the model in which A is executed. We do not make any assumption on the
communication model (SPU or SPK), neither on the knowledge of the topology (precise or
bounded knowledge of n, ∆, D), neither on uniformity of the network, neither on the sched-
uler under which it is executed, and a weak assumption is made on the topology on which
the algorithm is executed. Practically, one can fix any parametrization for the model, our
theorem guarantees an equivalence between executions of A in identified and anonymous
or homonymous networks, under the same chosen model.

What our result is really about is the power of identifiers in a scenario where very little
space/communication is used. Remember that the Naor-Stockmeyer order-invariance theo-
rem [NS95] states that in the LOCAL model, for local problems, constant-time algorithms
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that use the exact values of the identifiers are not more powerful than the order-invariant
algorithm that only uses the relative ordering of the identifiers. In some sense our paper
and [NS95] have the same take-home message, in two different contexts: if you do not have
enough resources, you cannot use the (full) power of the identifiers.

Note that both previous results establish an equivalence between executions on identified
networks, and executions on weaker networks. Yet it is unclear whether this extends to the
resolution of some problems. Indeed, although we prove that the behavior of the algorithm
cannot fully use the power of identifiers, it may be that the specification predicates uses
the identifiers. In such a case, it could be that in an identified network, the specification
is valid thanks to the identifier, while in the exact same configuration of an anonymous,
or k-homonymous, network, it is not. Fortunately, in most cases, the specification of the
problem is simple enough for this issue to be easily overcome.

As a third result, we show how the previous can be adapted to prove lower bound of
Ω(log logn) bits per node for a problem, by addressing the Leader Election problem. This
improves the only lower bound known so far (see [BGJ99]), which states that leader election
has non-constant space complexity, i.e., complexity ω(1). More importantly, our bound
matches the best known upper bound on the space complexity of leader election, which is
O(log logn) bits per node in bounded degree networks [BT20], and in particular invalidates
the folklore conjecture stating that leader election is solvable using only O(log∗ n) bits of
mutable memory per node.

The technique used to adapt the previous results to prove a lower bound for LE is very
generic, and works for basically any problem that requires minimal symmetry breaking.
In Chapter 5 we reuse the previous to prove the space-optimality of our token-circulation
algorithm.

Chapter Outline The remainder of this chapter is organized as follows. We first for-
mally describe the particular models in which we work, provide some definition, and the
specification of the leader election problem in Section 3.2. Then, in Section 3.3 we show on
a simple example the reasoning used in our proofs. Finally, in Sections 3.4, 3.5, and 3.6 we
formally prove our three theorems.

3.2 Model

3.2.1 Indistinguishability

The proofs of Sections 3.4, 3.5 and 3.6 are based on the notion of indistinguishability. In
this work, we only consider indistinguishability for networks that have the same underlying
graph. Two networks that have the same underlying graph are indistinguishable for an
algorithm A if the computing steps of A are exactly the same on both networks.

Definition 3.1 (Indistinguishability)
Let G1 and G2 be two networks with identical topology, i.e. whose underlying graph is
the same, and let A be a distributed algorithm.

G1 and G2 are indistinguishable for A if for any two configurations γ and γ′, γ → γ′

is a valid computing step of A on G1 if and only if it is a valid computing step of A on
G2.

Remark that, by transitivity, if G1 and G2 are indistinguishable for A then, for any
scheduler D, the executions of A on G1 under D are the same than the executions of A on
G2 under D.
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3.2.2 Degree-limited

The proofs of Sections 3.4 and 3.5 are only effective on graphs with relatively small degree.
Let us give a proper definition of how to asymptotically define this notion of small degree:

Definition 3.2 (∆-limited)
Let G = (Gi)i∈N be a class of graphs which contains graphs of arbitrary large size. Let
us call ∆G(n) the function that associates to each integer n, the maximal degree of
graphs of size n in G. If no graph of size n exists in G we define ∆G(n) = 0. If there is
no bound on the degree of graphs of size n in G we define ∆G(n) =∞.

We say that G is ∆-limited by function f if ∆G(n) ∈ o(f(n)).

3.2.3 Model for Sections 3.4 and 3.5

Our two first results are highly generic, in the sense that they can be adapted to a large
variety of situations. We prove that whatever are the precise state model SPU or SPK, the
scheduler, the knowledge of the parameters of the network, the uniformity of the network,
or the presence of faults, executions of some deterministic algorithm with small memory
on large, identified networks are also executions of the same algorithm on an anonymous
or homonymous network. We only make 2 hypothesis, on the range in which are taken the
identifiers, and on the degree of the networks that are involved.

Range for identifiers We need to consider identifiers between 1 and n× c, for c > 1, at
least. This is not an artifact of our proofs: it is actually necessary for the results to hold.
Indeed, if the identifier range is [1, n], then an algorithm can attribute specific rules to each
node of the network, and being certain that no set of rules will be missing. For example,
even in a uniform network, an algorithm may use the node with identifier 1 as a designated
node, and thus making the network semi-uniform-like. This operation could not be done
in the anonymous version of the network. Since semi-uniform algorithms can achieve space
complexity below our lower bound [DJPV00, Joh97], this excludes the possibility to extend
our results to identifier range [1, n]. Even without the possibility of having a trivially
designated node, one can take advantage of small identifier range: there actually exists a
leader election algorithm for the ring which requires constant memory if the identifiers are
taken in [1, n+ c] for a constant c [BGJ99]. As soon as the identifiers are taken in a linear
range [1, n× c], no such trick can be made to attribute a specific role to one node.

Limited-degree graphs Our proofs only apply on networks with relatively small degree.
Namely, it works with graphs with degree o(logn). This may seem very restrictive, but
practically it is not. Indeed, most problems that cannot be solved on general anonymous
networks can neither be solved on anonymous networks with small degree. Therefore,
proving an equivalence between the executions of algorithms on identified and anonymous,
small-degree, networks, is generally sufficient to prove that some problem cannot be solved
with o(log logn) bits per node.

3.2.4 Model for Section 3.6

In Section 3.6 we prove the following theorem:

Theorem 3.1
Let c ∈ R, c > 1. Every deterministic distributed algorithm solving leader election in the
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state model under a central strongly fair scheduler or under the synchronous scheduler
requires registers of size at least Ω(log logn) bits per node in n-node composite uniform
rings with unique identifiers in [1, n× c].

Our lower bound is actually optimal not only in terms of size, but also in terms of the
assumptions we make on the setting. More precisely, our theorem has four restrictions: it
works for deterministic algorithms only, on rings with a non prime number of nodes, rings
that are uniform, and with identifiers in a large enough range. In particular, we do not
make any real assumption on the scheduler, since the central strongly fair scheduler and the
synchronous scheduler are the weakest schedulers in the literature, nor on the knowledge
on the topology, nor on the variant of the state model.

We will now discuss why those four limitations are actually necessary.

Determinism Randomization is a common tool for symmetry breaking, and our problem
is one example. Namely, [IL94] proved that using randomization, one can solve leader
election using constant memory, which implies that our result cannot be generalized in that
direction.

Topology Our proof is established on composite rings, i.e. rings whose size n is not a
prime number. Therefore, it applies to any algorithm that solves Leader Election on, at
least, composite rings. Note that our result does not invalidate the possibility to design
constant-size algorithms for Leader Election in some particular topologies. In stars, exactly
one node has more than one neighbor. Therefore, stars can be seen as particular semi-
uniform networks: the center of the star is a trivial designated leader. More interestingly,
our result does not apply to algorithms that solve leader election on prime rings, i.e. rings
whose size n is a prime number. There is no hope to extend our result in that direction,
since [ILS95] builds a constant memory algorithm for leader election on anonymous prime
rings, under a central scheduler.

Remark that proving an impossibility result for the sub-class of composite rings is partic-
ularly interesting since a large number of works have focused on solving the problem of the
leader election in rings [ILS95, BGJ99, DGFTT14, BT18, ADD+20]. We prove that even
under that pretty simple topology, one cannot design an algorithm that uses o(log logn)
bits per node.

Identifier Range Since Leader Election is impossible in general homonymous networks,
the equivalence result of Section 3.5 is sufficient to establish our lower bound. Thus, we
only need to suppose that identifiers are taken in a linear range, [1, n× c], for c ∈ R, c > 1
to obtain our impossibility result. Due to [BGJ99] constant-memory algorithm for Leader
Election when identifiers are taken in [1, n + c], for c ∈ N, there is no hope to extend our
theorem to asymptotically smaller range of identifiers.

Uniformity Our proof is only valid in uniform networks. There is no hope to extend our
results to semi-uniform networks since LE is trivial in anonymous, semi-uniform networks.
Indeed, the distinguished node of the network is a trivial designated leader.

3.2.5 Leader Election Problem

In Section 3.6, we focus on one of the arguably most important problems in the context of
distributed computing, namely leader election. The objective is to maintain a unique leader
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in the network, and to enable the network to return to a configuration with a unique leader
in case there are either zero or more than one leader.

One first step to define the specification of LE is to express what being a leader means.
Some papers suppose a variable leaderv on each node v, that can only take two values, 1
and 0, 1 being the value for the leader and 0 for the others. In this case, solving LE boils
down to reaching a configuration where exactly one node v has its variable leaderv set to
1.

Although pretty intuitive, this definition is a bit restrictive. Indeed, it could be that
nodes do not store in a variable the information whether they are the leader or not. A more
general possibility is that each time it is necessary, nodes compute a value which indicates
whether they are the leader or not. This computation may depend on their local variables,
their state, and the state of their neighbors, according to the state model. To be as generic
as possible, we consider the second option, which implies the use of a local predicate.

We can now define the specification of LE by referring to the unicity of the leader. A
configuration γ ∈ Γ is a correct configuration for the leader election problem if one single
node is elected, and an execution satisfies the specification of LE if any configuration it
contains is a correct configuration for the leader election problem. More formally:

Specification 3.1 (Leader Election)
LE (Leader Election) in G = (V,E) is specified by the existence of a local predicate
ELE .

A configuration γ is correct if

PLE(γ) ≡ ∃!v ∈ V : EγLE(v) = true.

An execution ε = γ0 → · · · is correct if all the configurations γi are correct:

SPLE(ε) ≡ ∀i ≥ 0, PLE(γi)
≡ ∀i ≥ 0,∃!v ∈ V : EγiLE(v) = true.

Remark that, once again, our definition is extremely general. Notably, we do not suppose
that the leader remains leader during the entire execution, the leadership can switch from
one node to another.

Since we prove a lower bound for LE , being as permissive as possible only strengthens
our result.

3.3 Intuition of the proofs

3.3.1 Challenge of lower bounds for non-silent algorithms

Almost all lower bounds for self-stabilization are for silent algorithms, which are required to
stay in the same configuration once they have stabilized. These lower bounds are then about
a static data structure, the stabilized solution. The question boils down to establishing how
much memory is needed to locally certify the global correctness of the solution, and this is
well-studied [Feu19].

When we do not require that the algorithm should converge to one correct configuration,
and stay there, there is no static structure on which we can reason. It is then unclear how we
can establish lower bounds. One way is to think about invariants. Consider a property that
we can assume to hold in the initial configuration, and that is preserved by the computation
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(if it follows some memory requirement hypothesis). If no correct output configuration has
this property, then we can never reach a correct output configuration.

In our proof, the property that will be preserved is that every configuration is symmetric.
This can clearly be assumed for the original configuration, and we show that basically if
the memory is limited then this is preserved at each step. As the specification we use for
leader election is that the leader should output 1, and the other nodes should output 0,
then it is not possible that a proper output configuration is symmetric.

3.3.2 Intuition on a minimal example

Equivalence with anonymous and homonymous networks Let us now give some
intuition about why algorithms for identified networks with small memory are effective in
k-homonymous or anonymous networks as well. The code of an algorithm A for identified
networks may refer to the identifier of the node that is running it. For example, a rule of
the algorithm could be:

• if the states of the current node and of its left and right neighbors are respectively x,
y, and z, then: if the identifier is odd the new state is a, otherwise it is b.

Now suppose you have fixed an identifier, and you look at the rules for this fixed identifier.
In our example, if the identifier is 7, the rule becomes:

• if the states of the current node and of its left and right neighbors are respectively x,
y, and z, then: the new state is a.

This transformation can be done for any rule, thus, for an identifier i, we can get an
algorithm Ai specific to this identifier. When we run A on every node, we can consider
that every node, with some identifier i is running Ai. Note that Ai does not refer to the
identifier in its code.

The key observation is the following. If the amount of memory an algorithm can use
is very limited, then there is very limited number of different behaviors a node can have,
especially if the code does not refer to the identifier. Let us illustrate this point by studying
an extreme example: a ring on which states have only one bit. In this case the number of
input configurations for a node is the set of views (x, y, z) as above, with x, y, z ∈ {0, 1}.
That is there are 23 = 8 different inputs, thus the algorithm can be described with 8
different rules. Since the output of the function is the new state, the output is also a single
bit. Therefore, there are at most 28 = 256 different sets of rules, that is 256 different
possible behaviors for a node. In other words, in this extreme case, each specific algorithm
Ai is equal to one of the behaviors of this list of 256 elements. This implies that, if we take
a ring with 257 nodes, there exist two nodes with two distinct identifiers i and j, such that
the specific algorithms Ai and Aj are equal.

But the idea above can be strengthened to get our theorem. The key is to use the
hypothesis that the identifiers are taken from a large enough range. As we have a pretty
large palette of identifiers, we can always find, not only 2, but n distinct identifiers in
[1, n× c] that can be grouped such that the specific algorithm of all the nodes of the same
group correspond to the exact same behavior. In this case, it is as if the network was
k-homonymous, where k is the size of each group. If the identifiers are taken in [1, nc], we
can even find n distinct identifiers, such that all the specific algorithms Ai correspond to
the exact same behavior. In this case it is as if the network was anonymous.

Application: Lower Bound for LE As soon as the network is homonymous-like, we
can start an execution from a symmetric configuration. If the scheduler always activates
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all homonymous nodes consecutively, then the execution contains an infinity of symmetric
configurations, and thus never stabilizes to a proper leader election execution. This is
presented in Figure 3.1.
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Figure 3.1: Example of two computing steps, with n = 6, k = 2, and AID(u1) = AID(u4),
AID(u2) = AID(u5), AID(u3) = AID(u6). Identical states are represented by identical shades
of gray. If the states of the nodes are symmetric in the initial configuration, and if the
behavior functions are symmetrically placed around the ring, then an execution can contain
an infinity of symmetric configurations.

Note that the larger the memory is, the more different behaviors there are, and the
smaller the set of identical specific algorithms we can find. This trade-off implies that the
construction works as long as the memory is in o(log logn).

3.4 Equivalence with Anonymous Networks

3.4.1 Statement of the Theorem

In this section, we prove the following theorem:

Theorem 3.2
Let c ∈ R, c > 1. Let us consider G = (Gi)i∈N a class of graphs which contains graphs
of arbitrary large size, such that G is ∆-limited by logn.

Let A be a distributed algorithm that uses registers of size o( log logn
∆ ) on all identified

networks G0
i [1, nc], i.e. on all graphs Gi with unique identifiers in [1, nc].

For any large-enough graph Gi ∈ G, there exist n identifiers ID1, ID2, . . . , IDn in
[1, nc] such that G0

i [ID1, ID2, . . . , IDn] and Gni [ID1] are indistinguishable for A.

In other words, there exist n identifiers in [1, nc] such that in Gi, A cannot distinguish
those identifiers: it runs exactly as if the network was anonymous.

3.4.2 Proof in SPU on uniform networks

In this section we prove a weaker version of Theorem 3.2: we only consider the port-
unknown state model and uniform networks. We show in Section 3.4.3 how this proof can
be generalized to SPK and to semi-uniform networks.

Consider a graph Gi with maximal degree ∆, and an algorithm for identified networks
using f(n) bits of memory per node on graphs of G. An algorithm can be seen as the
function that describes the behavior of the algorithm. In the state model, the predicates of
the different rules may consider the identifier of the node itself, its state, the degree of the
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node, and the states of the neighbors of the node. The degree can actually be a parameter
on which the algorithm relies. Algorithms, especially in anonymous networks, may have
different behavior depending on the degree of the node. Depending on the value of the
different parameters, an action will be executed, which produces an update of the state of
the node.

Consequently, we model an algorithm by a function, which takes as an input, an identi-
fier, a state for the node, the degree of the node, and a state for all of the neighbors of the
node. This function produces as an output a new state for the node. Formally:

A : [nc] × {0, 1}f(n) × [∆] ×
(
{0, 1}f(n))∆ → {0, 1}f(n)

(ID , state , degree , ∆ states) 7→ new-state

The idea is that, to get its output, node v will first feed its identifier IDv, its own state
S(v), then its own degree ∆v and finally the states of its ∆v first neighbors as the ∆v next
fields. The other fields are left blank. The output of the function is the output of the
algorithm: the new state of the node.

Note that this corresponds to the port-unknown state model: the function does not have
any information that allows distinguishing the actions taken by one node that is pointed
by its port-number, and one node that is not pointed by its port number, both having the
same neighboring.

Now we can consider that for every identifier i, we have an algorithm of the form:

Ai : {0, 1}f(n) × [∆] ×
(
{0, 1}f(n))∆ → {0, 1}f(n)

(state , degree , ∆ states) 7→ new-state

Thus a specific algorithm Ai boils down to a function of the form:

Ai :
(
{0, 1}f(n))∆+1 × [∆]→ {0, 1}f(n).

Let us call such a function a behavior, and let Bn be the set of all behaviors.
Lemma 3.1 counts the maximum number of distinct behaviors that can exist.

Lemma 3.1

|Bn| ≤
(

2f(n)
)2(∆+1)f(n)∆

Proof : The inputs are basically an integer between 1 and ∆, and binary strings of length
f(n), and there are up to ∆ + 1 such strings. There are at most 2(∆+1)f(n) possibilities for
the strings, and ∆ possibilities for the degree. Similarly the number of possible outputs is
2f(n). Thus the number of functions in Bn is at most

(
2f(n))2(∆+1)f(n)∆.

Lemma 3.1 implies that the smaller f , the fewer different behaviors. Let us make this
more concrete with Lemma 3.2.
Lemma 3.2

If f(n) ∈ o( log logn
∆ ), then for every large enough n, nc−1 > |Bn|.

Proof : Consider the expressions of nc−1 and |Bn| after applying the logarithm twice:

log lognc−1 = log((c− 1) logn)
= log(c− 1) + log logn
∼ log logn
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log log |Bn| ≤ log log
[(

2f(n))2(∆+1)f(n)∆
]

≤ log
[
f(n)2(∆+1)f(n)∆

]
≤ (∆ + 1)f(n) + log f(n) + log ∆
∈ o(log logn)

As the dominating term in the second expression is of order f(n) ∈ o(log logn), asymp-
totically the first expression is larger. As log log(·) is an increasing positive function for
large values, this implies that asymptotically nc−1 > |Bn|.

Recall that our goal is to find n different identifiers that all correspond to the same
behavior function. The next lemma shows that this is feasible as soon as nc−1 = o(|Bn|).
Lemma 3.3

If nc−1 > |Bn| then there exist n distinct identifiers ID1, ID2, . . . , IDn in [1, nc] that all
have the same behavior, i.e. such that AID1 = AID2 = · · · = AIDn

Proof : Let ϕ : [nc] → Bn be the function that associates to each identifier its corresponding
behavior function: ϕ(ID) = AID. The number of pre-images a behavior function Ai has is
|ϕ−1(Ai)|.

Remark that since ϕ is a function defined on a set of nc elements, we have:∑
Ai∈Bn

|ϕ−1(Ai)| = nc.

Let us count the average number of pre-image a behavior function has by ϕ, which is the
total number of pre-images divided by the total number of behavior functions. Therefore,
this number is:

1
|Bn|

∑
Ai∈Bn

|ϕ−1(Ai)| = 1
|Bn|

· nc

By hypothesis, this average number is greater than n, and thus by pigeonhole principle
there must exist at least one behavior function Ai that has at least n pre-image by ϕ.

In other words, there exist n distinct identifiers ID1, ID2, . . . , IDn such that AID1 =
AID2 = · · · = AIDn .

Let us now consider a large enough graph Gi ∈ G. By Lemmas 3.2 and 3.3, there
are n identifiers ID1, ID2, . . . , IDn such that AID1 = AID2 = · · · = AIDn . Consequently
G0
i [ID1, ID2, . . . , IDn and Gni [ID1] are indistinguishable by A. This completes the proof of

Theorem 3.2.

3.4.3 Generalization to SPK and to semi-uniform networks

Generalization to SPK In the previous section, we supposed the model SPU. If we now
consider the model SPK, then nodes know which port was assigned to them by each of their
neighbors. Namely, each node v has, as a local variable, a table that associates to each of its
∆v neighbors which port it was assigned. This table, with length ∆v and entries between
1 and ∆ should be part of the inputs of the function that models A.

There are two options to deal with this situation. The first one is to slightly modify
the hypothesis that G is ∆-limited by logn. If we suppose that G is ∆-limited by (logn) ·
(log logn) then adding a field ∆ ˙log∆ in the parameters of A does not invalidate all the
math we made, especially the proof of Lemma 3.2.

The other option is to remark that the port number assignment can be chosen sym-
metrically. In such circumstances, all nodes have the same table as an input, and it then
becomes irrelevant as a parameter of the function that models A.
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Generalization to semi-uniform networks In the previous section, we supposed uni-
form networks. If we suppose now that the network is semi-uniform, then variable distinguish
may be used by the algorithm, and thus should be a parameter of the function that models
A.

But actually, to prove indistinguishability with anonymous, semi-uniform, networks, it
is sufficient to find n−1 distinct identifiers that all correspond to the same behavior function
and to map them to the n−1 undistinguished nodes. Indeed, an anonymous, semi-uniform,
network permits that the distinguished node has a behavior different from the other nodes.
Thus, we can simply reason on the n − 1 nodes with variable distinguish set to 0, and
exactly as before, variable distinguish becomes irrelevant as a parameter of the function
that models A.

3.5 Equivalence with Homonymous Networks

3.5.1 Statement of the Theorem

In this section, we prove the following theorem:

Theorem 3.3
Let c ∈ R, c > 1 and let k ∈ N, k ≥ 2. Let us consider G = (Gi)i∈N a class of graphs
which contains graphs of arbitrary large size, such that G is ∆-limited by logn.

Let A be a distributed algorithm that uses registers of size o( log logn
∆ ) on all identified

networks G0
i [1, n× c], i.e. on all graphs Gi with unique identifiers in [1, n× c].

For any large-enough graph Gi ∈ G, there exist n identifiers ID1, ID2, . . . , IDn in
[1, n×c] such thatG0

i [ID1, ID2, . . . , IDn] andGki [ID1, ID2, . . . , IDn/k] are indistinguishable
for A.

In other words, there exist n identifiers in [1, n×c] such that in Gi, A cannot distinguish
those identifiers: it runs exactly as if the network was homonymous.

3.5.2 Proof when k divides n

Similarly to how we proceeded in Section 3.4, we suppose in this section the SPU model
and uniform graphs. The remarks made in Section 3.4.3 apply without any difficulty to the
following proof to establish the general version of Theorem 3.3.

In this section we prove a weaker version of Theorem 3.3: we suppose that the size of
the networks we consider are divisible by the integer k. We show in Section 3.5.3 how this
proof can be generalized to all networks.

The proof of Theorem 3.3 is basically the same as the proof of Theorem 3.2, and follows
the same scheme. The major difference is that since the range in which the identifiers are
taken is smaller, it is harder to find distinct identifiers that cannot be distinguished by A.
Actually, we cannot guarantee to find n such identifiers anymore. Fortunately, we can find
n distinct identifiers that can be grouped k by k so that in each group all the identifiers
have the same corresponding behavior function, and thus we obtain the equivalence with
homonymous networks.

Consider a graph Gi with maximal degree ∆, and an algorithm for identified networks
using f(n) bits of memory per node on graphs of G. Once again, the algorithm can be seen
as the function which takes as an input, an identifier, a state for the node, the degree of
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the node, and a state for all of the neighbors of the node:

A : [n× c] × {0, 1}f(n) × [∆] ×
(
{0, 1}f(n))∆ → {0, 1}f(n)

(ID , state , degree , ∆ states) 7→ new-state

We can still consider that for every identifier i, we have an algorithm of the form:

Ai : {0, 1}f(n) × [∆] ×
(
{0, 1}f(n))∆ → {0, 1}f(n)

(state , degree , ∆ states) 7→ new-state

Lemma 3.1 remains valid:

|Bn| ≤
(

2f(n)
)2(∆+1)f(n)∆

Since there are fewer identifiers than there were in the previous, we must be tighter
when dominating |Bn| by a function of n than we were in Lemma 3.2.
Lemma 3.4

If f(n) ∈ o( log logn
∆ ), then for every n large enough, we have n(c−1)

k−1 > |Bn|.

Proof : Consider the expressions of n(c−1)
k−1 and |Bn| after applying the logarithm twice:

log log n(c−1)
k−1 = log(logn+ log(c− 1)− log(k − 1))

∼ log logn

And similarly to what was established for Lemma 3.2:

log log |Bn| ∈ o(log logn)

As log log(·) is an increasing positive function for large values, this completes the proof
of the lemma.

Recall that our goal is to find n different identifiers that can be grouped by sets of size
k such that, in every group, all the identifiers have the same corresponding behavior. If we
consider ϕ the function that associates each identifier to the corresponding behavior, then
it boils down to finding n distinct identifiers that can be grouped by k, such that in each
group, all the identifiers have the same image by ϕ. For example, if k = 2, if the identifiers
are taken in {1, 2, 3, 4, 5, 6, 7}, and if there are three behaviors B = {b1, b2, b3}, we can have
ϕ(1) = ϕ(2) = ϕ(3) = b1, ϕ(4) = b2, and ϕ(5) = ϕ(6) = ϕ(7) = b3. In that case, we can
form two sets of size k = 2 such that all the elements of one set have the same image by ϕ.
We can for example consider {1, 3} and {6, 7}.

Let us give a definition that formalizes that.
Definition 3.3 (k-group number of a function)

Let ϕ : A → B be a function, and let k ∈ N. We define the k-group number of
ϕ, and denote tk(ϕ) the maximum number of disjoint sets of size k of elements of A,
S1, S2, . . . , Stk(ϕ) such that all the elements of the same set Si have the same image by
ϕ.

The precise value of tk(ϕ) depends on the specificities of ϕ. Nevertheless, we can have
a pretty good estimation of tk(ϕ) by comparing the respective sizes of A and B. Indeed,
the larger A is, the more chances we have to find sets of elements of A that satisfy some
property. On the contrary, the larger B is, the more possible images there are, and the
harder it is to find elements of A that are mapped to the same element of B.

Lemma 3.5 establishes a generic lower bound on tk(ϕ).
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Lemma 3.5

Let ϕ : A→ B be a function, and let k ∈ N∗. We have tk(ϕ) ≥ |A|−(k−1)|B|
k .

Proof : Let us first consider b ∈ B, and denote tbk(ϕ) the number of disjoint sets of size k of
elements of A with image b that can be formed. Intuitively, we have tbk(ϕ) = b |ϕ−1(b)|

k
c. By

definition, we also have

tk(ϕ) =
∑
b∈B

tbk(ϕ) =
∑
b∈B
b |ϕ
−1(b)|
k

c.

Recall the inequality, true for any integer m: bm
k
c ≥ m−(k−1)

k
. Thus, we deduce:

tk(ϕ) ≥
∑
b∈B

1
k

(|ϕ−1(b)|−(k−1)) ≥ 1
k

∑
b∈B

(|ϕ−1(b)|−(k−1)) ≥ 1
k

(∑
b∈B

(|ϕ−1(b)|)−(k−1)|B|
)

Since ϕ is a function from A to B we have
∑

b∈B(|ϕ−1(b)|) = |A| and thus we conclude
tk(ϕ) ≥ |A|−(k−1)|B|

k
.

The next lemma shows that, if n(c−1)
k−1 > |Bn|, we can find n/k disjoint sets of k identifiers

taken in [1, n × c] such that all the identifiers of each set have the same corresponding
behavior.

Lemma 3.6
Let ϕn : [1, n × c] → Bn be the function that associates each identifier ID to its
corresponding behavior AID. If n(c−1)

k−1 > |Bn|, then tk(ϕn) ≥ n/k.

Proof : According to Lemma 3.5 we have tk(ϕn) ≥ 1
k

(nc − (k − 1)|Bn|), and by hypothesis
this means that tk(ϕn) ≥ 1

k
(nc− n(c− 1)), and thus tk(ϕn) ≥ n/k.

Let us now consider a large enough graph Gi ∈ G. By Lemmas 3.4 and 3.6 we can
consider S1, S2, . . . , Sn/k, disjoint sets of k identifiers, such that all the identifiers of the
same set have the same image by ϕn. For each set Si, let us pick one specific identifier, IDi.

Consider now Gki [ID1, . . . , IDn/k] a k-homonymous network with topology G and k oc-
currences of each IDi, on the first hand, and G0

i [S1 ∪ S2 ∪ · · · ∪ Sk] an identified network
similar to Gh, where for each i, occurrences of identifier IDi are substituted by one of each
value of Si. By construction, algorithm A cannot distinguish identifiers from the same set
Si, and thus Gki [ID1, . . . , IDn/k] and G0

i [S1 ∪S2 ∪ · · · ∪Sk] are indistinguishable for A. This
completes the proof of Theorem 3.3.

3.5.3 Proof for any n

In the previous section, we supposed that n was a multiple of k, which simplifies the
distribution of groups of k identifiers to the n nodes of the network.

If this hypothesis falls, then for a fixed value k we can still find n/k disjoint sets of k
identifiers such that in each set, all the identifiers have the same corresponding behavior.
Yet this does not cover all the nodes anymore, there are still n mod k nodes that do not
have an identifier this way.

Finding one new set of k identifiers that all correspond to the same behavior, and
associating some of them to the nodes that do not have an identifier will not work, since a
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k-homonymous network must have at least k nodes with the same identifier, and n mod k
is less than k.

To solve that issue, let us rather prove that there are at least n mod k (in practice, at
least k − 1) disjoint sets of k + 1 identifiers such that in each set, all the identifiers have
the same corresponding function. This way, we can construct a k-homonymous network, in
which all identifiers are shared by at least k, sometimes k + 1, nodes.

One problem may arise: it might be that some of those sets of k+1 identifiers intersects
2 of the sets of size k that we have. Indeed, suppose that 2k identifiers correspond to the
same behavior. This allows us to define 2 sets of size k, but if k + 1 such identifiers are
taken by one of the new sets, then we cannot finish the identifier assignments. Hopefully,
we cannot lose more that 2 sets of size k due to a set of size k + 1. If this happens, we can
reorganize the different incomplete sets to form new ones.

To avoid such situation, it is sufficient to find not n/k, but n/k+ k sets of size k. Thus,
even if we lose 2 sets of size k for every set of size k + 1, we end with k sets of size k + 1,
and (n/k− k) sets of size k, which is sufficient to assign a unique identifier to each node of
the graph. Since n is supposed large enough, this additional k will be negligible.

Similarly to Lemma 3.4, we can prove that for any large enough n, we have |Bn| ≤
nc−k2+1

k , on the first hand, and |Bn| ≤ n(c−1)−k2

k−1 on the other hand.
Now, similarly to Lemma 3.6, we use these inequalities to prove that for any large

enough n, tk+1(ϕn) ≥ k − 1, on the first hand, and tk(ϕn) ≥ n
k + k, on the other hand.

Finally, we can consider S1, S2, . . . , Sn mod k disjoint sets of k+1 identifiers such that all
the identifiers of the same set have the same image by ϕn, and S̃1, S̃2, . . . , S̃bn/kc−(n mod k)
disjoint sets, disjoint from the Si, such that all the identifiers of the same set have the same
image by ϕn.

The elements of these bn/kc jointly contain (n mod k)(k+1)+k(bn/kc−(n mod k)) =
n mod k + kbn/kc = n elements. Thus, similarly to how we concluded the proof of The-
orem 3.3, we can consider a large enough graph G ∈ G on the one hand, and one specific
identifier IDi for each set on the other hand. By construction, Gk[ID1, . . . , IDbn/kc] is k-
homonymous, and is indistinguishable from the identified network G0[S1 ∪ · · · ∪Sn mod k ∪
S̃1 ∪ · · · ∪ S̃bn/kc−(n mod k)], which completes the proof.

3.6 Lower Bound for LE
3.6.1 Statement of the Theorem

In this section we establish a lower bound of Ω(log logn) bits per node for the space com-
plexity of distributed algorithms that solve leader election in composite, uniform, rings.

Theorem 3.1
Let c ∈ R, c > 1. Every deterministic distributed algorithm solving leader election in the
state model under a central strongly fair scheduler or under the synchronous scheduler
requires registers of size at least Ω(log logn) bits per node in n-node composite uniform
rings with unique identifiers in [1, n× c].

This bound improves the only lower bound known so far [BGJ99], from ω(1) to Ω(log logn),
and it is tight, as it matches the upper bound of [BT18], obtained in the same model and
under a more challenging scheduler, the weakly fair distributed scheduler. In particular,
it invalidates the folklore conjecture stating that the aforementioned problems are solvable
using only O(log∗n) memory.
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Link with Dijkstra’s impossibility result In a celebrated paper [Dij82], Dijkstra es-
tablished, among other things, that one cannot break symmetry within anonymous compos-
ite rings. This result holds under a central strongly fair scheduler. Theorem 3.1 follows the
same idea as Dijkstra’s. The core of the proof, and the statement of Theorem 3.2 is about
proving that an algorithm with too little memory cannot fully use the power of identifiers.
The second part of the proof of Theorem 3.1 is basically a generalization of [Dij82]: we
prove that one cannot break symmetry in homonymous composite rings.

Recall that assuming that the ring is composite is essential, due to the constant memory
algorithm on anonymous prime rings of [ILS95].

3.6.2 Limits of Theorems 3.2 and 3.3

It is known that LE cannot be solved in general, homonymous rings [DGFTT14, ADD+20].
Therefore, the proof of Theorem 3.1 will rely on Theorem 3.3 and on its proof. Yet, there
are two issues that must be overcome to adapt Theorem 3.3 to the impossibility to solve
LE on composite rings.

3.6.2.1 k-Homonymy

In the previous section, we supposed that k was a fixed integer, independent of n. In this
section, in order to prove the impossibility of solving LE , we must make sure to have a
symmetric network. This is feasible only if k is a divisor of n. In the worst case, we have
k =
√
n. We will have to adapt some of our proofs so that everything remain valid.

3.6.2.2 Indistinguishability

We proved in Section 3.5 that for any algorithm A which uses few memory, there exist
identified and homonymous networks that are indistinguishable for A. It is very tempting
to conclude that any problem that cannot be solved in homonymous networks, can neither
be solved with few memory. Since it is known that LE cannot be solved in homonymous
networks, we would conclude immediately. Unfortunately, things are not that straightfor-
ward.

Indeed, we only proved that networks were indistinguishable for A. We did not prove
that they were indistinguishable for SPLE . It could be that two identical executions, one
in an identical network, and one in a homonymous network, do not have the same status
from the specification point of view, and that the execution in the identified network solves
LE , while it does not in the homonym network.

Let us give one example. Suppose that each node has in its memory a string of bits,
and that this string of bits corresponds to the identifier of one of the node. In a homony-
mous network, this does not help to solve LE . However, in the identified network, LE is
now trivially solved, although all nodes are in the exact same state. This is because the
specification of the LE , and especially ELE , can rely on the identifiers.

The example above requires that each node stores an identifier, which requires at least
logn bits, and thus, it is contradictory with the hypothesis on the memory. This is actually
not a coincidence: with few memory, one predicate, not more than one algorithm, can fully
use the uniqueness of the identifiers.

We will follow that idea to prove that the reasoning we made on A in Sections 3.4
and 3.5 can be extended to the predicate that determines LE .
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3.6.3 Proof

In this section we prove Theorem 3.1 by focusing on the case were the scheduler is a central
strongly fair scheduler. Although the synchronous scheduler cannot be said stronger than
the central strongly fair scheduler, the construction we propose fits for the synchronous
scheduler too.

Consider a ring of size n, and an algorithm for identified networks A using f(n) bits of
memory per node to solve leader election in composite rings.

Similarly to what we did in the previous sections, we can consider the function that
describes the behavior of the algorithm. Since all nodes have exactly two neighbors, the
expression of A as a function is much simpler than in the previous section:

A : [n× c] × {0, 1}f(n) × {0, 1}f(n) × {0, 1}f(n) → {0, 1}f(n)

(ID , state , left-state , right-state) 7→ new-state
Note that in general, we consider non-directed rings thus the nodes do not have a consistent
global definition for right and left. As we are dealing with a lower bound with a worst-
case on the port numbering, assuming such a consistent orientation only makes the result
stronger.

Unfortunately, as explained above, this will not be sufficient to establish Theorem 3.1.
Let us suppose that A solves LE . By definition there exists a boolean predicate ELE

associated to A, that characterizes how A solves the specification of LE . By definition,
this predicate takes the same input as A: the local variables of the node on which it is
evaluated, and the state of the node itself and of its neighbors. Therefore, we can consider
the function (A, ELE), which takes the same inputs as A, or ELE , and returns a tuple, the
result computed by A, which is a new state for the node, and the result computed by ELE ,
which is a boolean value that indicates whether the node is elected or not. Formally:

(A, ELE) : [n× c] × {0, 1}f(n) × {0, 1}f(n) × {0, 1}f(n) → {0, 1}f(n) × {0, 1}
(ID , state , left-state , right-state) 7→ (new-state, elected)

Now, we can consider that for every identifier i, we have a tuple of the form:

(A, ELE)i : {0, 1}f(n) × {0, 1}f(n) × {0, 1}f(n) → {0, 1}f(n) × {0, 1}
(state , left-state , right-state) 7→ (new-state, elected)

Thus a specific tuple (A, ELE)i boils down to a function of the form: {0, 1}3f(n) →
{0, 1}f(n)+1. Let us call such a function a behavior, and let Bn be the set of all behaviors.

Similarly to what was done in Lemma 3.1 we can count how many distinct behaviors
can exist:

|Bn| = 2(f(n)+1)×23f(n)

Remark that from now on, the issue coming from the non-indistinguishability for the
predicate is basically solved: behaviors now include the predicate, and the increase in
number is negligible in front of what we tolerate for the algorithm.

However, the issue coming from which the possibility for k to grow with n has not been
addressed yet. Recall that our goal is to find n different identifiers which can be grouped by
sets of size k (k being a divisor of n), such that in every group, all the identifiers have the
same corresponding behavior. In the worst case, all rings have size p2 where p is prime. To
build a symmetric configuration in this case, and formally establish impossibility, we need
to find p disjoint sets of p identifiers that all have the same corresponding behavior, where
p is the square root of the size of the network. Therefore, k cannot be supposed a constant
anymore.

Let us establish a variant of Lemma 3.4:
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Lemma 3.7
If f(n) ∈ o(log logn), then for every n large enough, for every k ≤ √n, we have
n(c−1)
k−1 > |Bn|.

Proof : Remark first that n(c−1)
k−1 ≥ √n(c− 1). Now consider the expressions of

√
n(c− 1) and

|Bn| after applying the logarithm twice:

log log(
√
n(c− 1)) = log( 1

2 logn+ log(c− 1))
∼ log logn

log log(|Bn|) = log
(
(f(n) + 1)× 23f(n)) = log(f(n) + 1) + 3f(n)

∈ o(log logn)

As log log(·) is an increasing positive function for large values, this completes the proof
of the lemma.

The next lemma shows that if n(c−1)
k−1 > |Bn|, then for every k ≤ √n we can find n/k

disjoint sets of k identifiers taken in [1, n × c] such that all the identifiers of each set have
the same corresponding behavior.

Lemma 3.8
Let ϕn : [1, n × c] → Bn be the function that associates each identifier i to its corre-
sponding behavior Ai, and let k ≤ √n. If n(c−1)

k−1 > |Bn|, then tk(ϕn) ≥ n/k.

Proof : According to Lemma 3.5 we have tk(ϕn) ≥ 1
k

(nc − (k − 1)|Bn|), and by hypothesis
this means that tk(ϕn) ≥ 1

k
(nc− n(c− 1)), and thus tk(ϕn) ≥ n/k.

Combining the three lemmas we get that, if f(n) ∈ o(log logn), then for any large
enough n, for any k ≤ √n, we can find n different identifiers in [1, n × c], which can be
grouped in sets of size k such that all identifiers of the same set have the exact same
behavior.

Now, consider a large enough composite ring of size n, and let k be a divisor of n such
that 1 < k ≤ √n. Let us consider n identifiers which can be grouped as explained above,
and let us place those identifiers on the ring such that the identifiers of the same set are
placed each n/k node, similarly to what is presented on Figure 3.1.

For our proof, we need to start in a symmetric configuration, where all nodes with their
identifier taken in the same set have the same state. Since our theorem does not suppose
a faulty environment, we must consider as an initial configuration, a correctly initialized
configuration, where all nodes have the same, clean, state. This perfectly fits what is
required for the proof.

Let γ0 be the initial, correctly initialized, configuration of the system. We cannot have
PLE(γ0). Indeed, the predicate ELE has the same behavior on all the nodes with identifiers
taken in the same set. Therefore, the number of nodes v such that Eγ0

LE(v) = 1 is a multiple
of k.

Since γ0 does not satisfy PLE , at least one node is enabled. Note that all nodes with
identifiers from the same set see the same states for themselves, and for both their neighbors.
Thus, since all of them have the same behavior, if one is enabled, then the others are too,
and if activated they will execute the same rule.

Now, the central scheduler activates one of them, and for the k−1 next steps, it activates
each of the others. Since those nodes are placed at a distance at least 2 from each other, the
action executed by one node has no incidence on the state of the other nodes, nor on the
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states of their neighbors, and thus the other nodes take the exact same step as the first one.
Thus, after those k computing steps, the ring is once again in a symmetric configuration
γk. One again, we have ¬PLE(γk).

We can iterate this argument forever, as long as the scheduler consecutively activates
nodes from the same set, which a central strongly fair scheduler can do. In other words, there
exists an execution of A such that the system is infinitely often in symmetric configurations,
which do not satisfy PLE . Therefore, the network never stabilizes in an execution that
satisfies leader election. This proves Theorem 3.1.

If we now consider an execution under the synchronous scheduler, where all the enabled
nodes are atomically activated at each computing step, then all the k computing steps
happen at once, and therefore all the configurations are symmetric, which also invalidates
the specification of LE .

Generalization of Theorem 3.3 Theorem 3.3 establishes an equivalence between al-
gorithms with small memory, and algorithms for k-homonymous networks, for any fixed
value of k ∈ N. On the other hand, the technique used in the proof of Theorem 3.1 guaran-
tees that for any k ≤ √n, we can build a k-homonymous network on which the algorithm
behaves exactly the same way as in an identified network.

The second is more general, since k can depend on n. Since the proofs of Theorem 3.1
and 3.3 are basically the same, we can adapt the given proof of Theorem 3.3 to make the
result a bit more general.

We state the new theorem as a corollary of Theorem 3.3 and of the proof of Theorem 3.1.

Corollary 3.1
Let c ∈ R, c > 1. Let us consider G = (Gi)i∈N a class of graphs which contains graphs
of arbitrary large size, such that G is ∆-limited by logn.

Let A be a distributed algorithm that uses registers of size o( log logn
∆ ) on all identified

networks G0
i [1, n× c], i.e. on all graphs Gi with unique identifiers in [1, n× c].

For any large-enough graph Gi ∈ G, for any divisor k of n such that k ≤ √n,
there exist n identifiers ID1, ID2, . . . , IDn in [1, n×c] such that G0

i [ID1, ID2, . . . , IDn] and
Gki [ID1, ID2, . . . , IDn/k] are indistinguishable for A.

3.7 Conclusion

In this chapter, we establish two generic results that establish a strong link between al-
gorithms that use o(log logn) bits per node, and algorithms executed in anonymous or
homonymous networks. Since various problems are unsolvable in anonymous, or homony-
mous networks, these theorems are a powerful tool to establish sub-logarithmic lower
bounds.

However, the specification of the problem must be taken into account too, to conclude
an impossibility result from an indistinguishability result. We showed in Section 3.6 how
this logical link can be done, by addressing the leader election problem. Specifically, we
prove a Ω(log logn) bits per node lower bound for the leader election problem on the ring.

This bound matches the upper-bound O(log logn) bits per node on rings [BT18]. Yet,
for arbitrary graphs, [BT20] requires an additional space in O(log ∆) bits per node. An
interesting problem would be to find whether this additional term in O(log ∆) is necessary
for graphs where the degree is not bounded.
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4.1 Introduction

Termination Detection [Fra80] is a fundamental and widely studied problem of distributed
systems. It belongs to the category of global system observation mechanisms that processes
of the distributed system may need in the accomplishment of a global computation, for
example, detecting the presence of a deadlock, taking a snapshot of the global system state,
or maintaining a logical distributed clock. The distributed nature of systems makes these
problems difficult to solve. They are subject to specific distributed algorithms dedicated
to control the global state of other distributed algorithms. Regarding the termination
detection (TD, for short) problem, any node of the distributed system may need to detect
whether a computation has globally terminated. More precisely, upon a (local) request (for
instance, from an application) a node initiates an instance of TD over the whole system to
find out whether another distributed algorithm is terminated.

4.1.1 Motivation

It is known that TD cannot be achieved in the context of self-stabilization, except in the
specific case where the TD algorithm is snap-stabilizing. Indeed, with the self- but not
snap-stabilizing approach, assume an application where nodes decide to use local variables
(supposed to be updated by a global detection mechanism) whether the stabilization phase
is over or not. Then it is always possible to build an arbitrary configuration in which the
same nodes have access to exactly the same local information. As a consequence, the two
situations are indistinguishable, leading to a wrong decision in the second one.

Nevertheless, a self-stabilizing algorithm (at least) guarantees that by repeating global
detection instances, the variables provide the correct answer at some, but in an unpre-
dictable time. Indeed, let ssTD be a self-stabilizing TD algorithm. By initiating ssTD,
it is possible that ssTD returns a wrong answer during the stabilization phase, e.g., ssTD
returns “yes” (meaning that an observed algorithm A terminated), while A actually did not
terminate. In other words, ssTD can compute incorrect (or unsafe) answers several (but a
finite number of) times before at the end computing true/correct answers. Self-stabilization
ensures that by repeating instances of ssTD, the answer is eventually correct forever.

In [CDD+16], it is shown that the termination detection can be achieved using only one
detection instance i.e., at the very first request to know whether an observed algorithm is
terminated or not, the returned answer is correct, even if the request was initiated during
the stabilization phase. This corresponds to the paradigm of snap-stabilization.

It is important to notice that snap-stabilizing algorithms do not hide better the effects of
transient faults than the self-stabilizing algorithms that do not respect this property. How-
ever, while a self-stabilizing algorithm guarantees only a finite, yet generally unbounded,
number of incorrect answers after the faults cease, a snap-stabilizing algorithm offers correct
answers from the first request (after the faults cease).

Note that the snap-stabilizing solutions in [CDD+16] assume an identified network,
where each node has a unique identifier. Even if most of existing distributed systems are
identified, developing algorithms that do not use process identifiers definitely makes sense
in several aspects. Such algorithms are said to be anonymous algorithms—or, algorithms
for anonymous systems.

Anonymity often makes the resolution of some problems harder by far. That makes
anonymous approaches interesting from a computational point of view. As presented in
the previous chapter, Leader Election is an iconic example of that difficulty. Although
the problem is quite trivial to solve deterministically by using the total order provided
by process identifiers—just choose the maximum or minimum identifier as the leader, it
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cannot be solved at all in systems lacking properties (as process identifiers) that break
possible symmetries [Ang80, Dij82].

Also, anonymous solutions a priori require less memory. Notably, they do not need
process identifiers, and thus do not require any register to store the information related
to the identifiers. Anonymous approaches are also very attractive from a practical point
of view. Indeed, they provide solutions that preserve user privacy, they work for systems
with homonyms, where nodes can change their names or be replaced during the algorithm
lifetime. They are also very suitable for networks made of units with weak capabilities such
as wireless sensor networks, body-area networks, etc.

4.1.2 Related Work

The question of detecting the stability of a self-stabilizing algorithm in an anonymous
system was first addressed in [LS92]. In this paper, the authors introduce the notion of
observer: a local node that can detect correctness of a given algorithm, but cannot influence
it.

Assuming the central scheduler, where only one node takes a step at each time and a
prime-size uniform ring, the authors propose a deterministic distributed algorithm for the
observer that detects stability in Θ(n2) steps from the time the ring is stabilized. Located
at each node, the proposed observer is not subject to any type of corruption i.e., it is not
self-stabilizing. In [BPR05], the authors also propose a non-self-stabilizing observer. They
propose an observer for synchronous rooted systems, where all enabled nodes take steps
simultaneously and a unique node is distinguished from the others. In a synchronous and
non-self-stabilizing system, the same authors remove the constraint of having a distinguished
node by introducing randomization [BPR06].

The first deterministic algorithm that solves the problem addressed in [LS92] that is also
self-stabilizing is proposed in [CDD+16]. By contrast with the above results [LS92, BPR05,
BPR06] that are not self-stabilizing, the results in [CDD+16] show the necessity to achieve
snap-stabilization and not only self-stabilization. Indeed, only snap-stabilization offers the
desirable property of returning the right answer to the request of knowing whether a self-
stabilizing algorithm achieved stability, even during the stabilization phase of the observed
algorithm. As mentioned earlier, the solution in [CDD+16] requires a named network.

In anonymous networks of arbitrary size, unison [CFG92, BPV04, DJ19, EK21] offers
a nice support to implement deterministic solutions [BLP08]. The asynchronous unison
consists in maintaining a local logical clock (sometimes referred to as counter), one for each
node, such that: (i) the clock value of each node does not differ by more than 1 with any
of its neighbors, and (ii) the clock value of each node is increased by 1 infinitely often.
The unison principle is a strong tool to synchronize the whole system by implementing a
synchronization barrier. To the best of our knowledge, this principle forms the basis of
all known deterministic solutions for anonymous networks, even non-self-stabilizing, which
solve global (a.k.a., total [Tel88]) problems, i.e. problems involving all nodes of the network
before a decision can be taken. TD obviously belongs to this class of algorithms. The phase
algorithm in [Tel88] and the TD algorithm in [SSP85] are typical examples of algorithms
that use an underlying unison mechanism. Both algorithms require that nodes know (an
upper bound on) the network diameter D, i.e. the maximum distance between two nodes
of the network. As far as we know, the question of the necessity of this knowledge to be
able to deterministically solve total problems remains open.

In [God19], the author proposes a snap-stabilizing TD algorithm to characterize tasks
that are solvable with snap-stabilizing algorithms in anonymous networks. This algorithm
combines the synchronization technique in [SSP85] and the self-stabilizing enumeration
algorithm in [God02]. The former actually uses a unison mechanism and requires that
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nodes know (an upper bound of) D. The latter works on a particular class of graphs (so
called, non-ambiguous graphs [Maz97]) and implements a renaming mechanism that uses
an a priori exponential memory size.

Many self-stabilizing algorithms aim at being silent, i.e., after some calculations, the
communication registers used by the algorithm remain fixed as long as no request is
made [DGS99, GH99]. By communication variable, we mean variables shared between
neighboring nodes. Silence is trivially a desired property with algorithms that terminate
by building distributed fixed structures—e.g., spanning trees, coloring, Maximal Indepen-
dent Set, etc. It is also very desirable for so-called “long-lived” algorithms—e.g., mutual
exclusion, unison, routing, etc.—to reduce communication operations and bandwidth. For
instance, it is quite easy to design a self-stabilizing silent unison [GH99, BPV04] by modi-
fying the above Condition (ii) as follows: (ii′) the clock value of each node is increased by
1, provided that at least one node decides to do it.

4.1.3 Contribution

In this chapter, we address asynchronous anonymous networks. We focus on terminating
and silent self-stabilizing algorithms i.e., self-stabilizing algorithms that converge in finite
time to a desired global configuration from which no values of the communication vari-
ables are changed thereafter. We present a generic, deterministic, silent algorithm that
detects whether an observed terminating silent self-stabilizing algorithm has converged to
a configuration that satisfies an intended predicate. Our solution uses similar techniques
as in [BLP08] to achieve snap-stabilization, namely it is based on an underlying unison
algorithm. However, in this chapter, the latter can be any (asynchronous) unison in the
literature, e.g., [CFG92, BPV04, DJ19, EK21].

As all existing deterministic anonymous total algorithms in the literature (e.g., [SSP85,
Tel88, BLP08, God19]), our algorithm requires that nodes know (an upper bound on) the
diameter D of the network. It works under the weakest scheduling assumptions a.k.a, the
unfair scheduler. Built over any asynchronous self-stabilizing underlying unison U , our
solution adds only O(logD) bits per node, where D is the diameter of the network. Since
there exists no unison algorithm with better space complexity — the best space complexity
for the asynchronous unison is obtained in [EK21] with O(logD) bits —, the extra space
of our solution is negligible w.r.t. the space complexity of the underlying unison algorithm.

Time complexities are given in terms of rounds that captures the execution rate of
the slowest node in any computation [CDD+16, Dol00]. The response time computes the
number of rounds between the time when a request is triggered and the time when the
answer to that request is returned. The response time of our solution is in O(max(k, k′, D))
rounds, where k and k′ are the stabilization time complexities of A and U , respectively. In
other words, once both A and U are stabilized, our solution provides an answer in optimal
time, i.e., O(D) rounds.

Chapter Outline The remainder of the chapter is organized as follows. We first formally
describe specific notations and definitions. Then, in Section 4.3, we formally define the
unison problem, and establish some properties of self-stabilizing unison algorithms. In
Section 4.4, we present and formally describe our snap-stabilizing algorithm for termination
detection. Section 4.5 contains the proofs of our claims and theorems, and in particular we
establish that our algorithm is snap-stabilizing for the termination detection problem. We
make some concluding remarks in Section 4.6.
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4.2 Model

4.2.1 Computational Hypothesis

In this chapter, we consider the port-unknown state model SPU, where nodes do not know
the port number they were assigned by their neighbors. We also consider anonymous,
uniform networks. The conjugation of these three parameters is the weakest assumption
one can make on the network.

Nevertheless, we suppose that nodes all know an upper bound on the diameter of the
network D. We do not suppose that all nodes have the exact same lower-bound. However,
the time and space complexity of our algorithm depend on the highest value of that lower-
bound in the network. To avoid unnecessary complications, we suppose in the following
that all nodes have the same value D as an upper bound on the diameter of the network.

Our algorithm for termination detection relies on a self-stabilizing unison algorithm
U . This algorithm is used as a black box, we only require that it eventually stabilizes
in an execution satisfying the Unison requirements. On the other hand, the termination
detection itself must be snap-stabilizing: it must not provide any incorrect output if no fault
occurs during its execution. Classically, our algorithm can only detect the termination of a
terminating, and thus silent, algorithm. The termination detection algorithm is itself silent
too.

Finally, our termination detection algorithm works under any scheduler. Hence, it
nevertheless requires that the observed algorithm terminates, which may be possible only
under some specific scheduling assumptions.

4.2.2 Unison Algorithms

Algorithms solving Unison guarantee that all the nodes in the system have a variable clock
that increases infinitely often, and such that any pair of neighboring nodes have a difference
of at most one between their clocks. Let us denote by C the set of values that clock can
take.

Since we consider nodes with finite memory, C must be finite. Therefore, to be infinitely
increased, it is necessary that after some increase, the clock of some node reaches some
value it has already taken. Therefore, in a valid execution, the values taken by clock must
cycle.

Without loss of generality, we suppose that the values taken by clock contain some set
Z/mZ, the modulo-m integer, for some value of m (which may depend on some parameters
of the network).

To achieve maximal genericity, we consider that C can contain other values than the
classical values in Z/mZ. Typically, C can contain control values such as ⊥, nil, etc.
Notice that if the value of clock ∈ Z/mZ, then the usual arithmetic operations on clock are
modulo−m operations. In the following, we consider the operations made on clock, specific
to each algorithm, only when clock ∈ Z/mZ.

Let us formalize this in the following specification:
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Specification 4.1 (Unison)
U (Unison) in G = (V,E) is specified by the existence of a variable clockv on each node
v ∈ V which takes values in C ⊇ Z/mZ, for some integer m.

A node v is non-faulty in γ if

P γ(v) ≡

 ∀u ∈ N [v], clockγu ∈ Z/mZ
∧
clockγu ∈ {clockγv − 1, clockγv , clockγv + 1}

A configuration γ is correct if all nodes are non-faulty:

P γU ≡ ∀v ∈ V, P γ(v)

An execution ε = γ0 → · · · is correct if all the configurations γi are correct (safety
property) and if all the nodes have their variable clock increased infinitely many times
(liveness property):

SPU (ε) ≡

 ∀i ≥ 0, P γiU
∧
∀v ∈ V,∀i ≥ 0,∃j > i : clockγjv = clockγiv + 1

An algorithm U is a self-stabilizing algorithm for Unison if Γ.U PU and if any execution
that starts in PU satisfies SPU .

4.2.3 Termination Detection Algorithms

Request-Based Algorithm A request-based algorithm RB is an algorithm that inter-
acts with an external application App, typically an external user or another algorithm.
This interaction takes place through one shared variable, req, that can be updated by the
application. The variable req has four values: idl, on,wk, off. The value idl means that no
request is in progress on node v for the application. Node v is then said idle. Value on
means that a request is initiated, but the computation is not launched. Once the requested
computation is running, req is set to wk. The fourth value, off indicates that the requested
computation is done, but the result has not been communicated to the application yet.
Variable req is updated through four methods. Two of them, ask and get, are part of App.
The two others, Rstart and Rstop, are part of RB—see Figure 4.1.

on wk

offidl

RB : Rstart

RB : Rstop

App : get

App : ask

Figure 4.1: Diagram for reqv

Snap-stabilization is a suitable paradigm for request-based algorithms. Indeed, a snap-
stabilizing request-based algorithm ensures that if the application executes ask on one node
v, then the following execution of get on the same node v will mark the end of a correct
computation. We define the response time of a request-based algorithm as the maximal
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number of rounds between any computing step in which the application executes ask on
any node v, and the following computing step in which the same node v updates reqv to
off.

Simulation Strictly speaking, a termination detection algorithm T runs on the same
network as A the algorithm it observes. T has a read-only access to the variables of A, and
A is executed exactly the same way as if it was not observed. To model this behavior in
a didactic way, we reverse this paradigm. Rather than having T observe an independent
execution, and to define triggers for each action taken by A, We consider that T is in charge
of the execution of A. Both points of view are equivalent, and only differ in the writing
conventions.

Yet, since T executes the code of A, we must assure that the behavior of A executed
by T actually corresponds to real executions of A. We introduce the notion of simulation
to formalize that constraint:

Definition 4.1 (Simulation)
An algorithm T is said to simulate an algorithm A if the variables of A are a subset
of the variable of T , and if any (possibly infinite) execution of T , ε = (γ0 −→

T
γ1 −→

T
· · · )

corresponds to a legitimate execution of A, εA = (γ0|A −→
T
γ1|A −→

T
· · · ) on the subset of

the variables of A, with possibly empty computing steps γi|A = γi+1|A.
ε is called a simulation of A.

The possible empty computing steps correspond to the fact that T might execute actions
without any activation of rules of A.

Remark that our algorithm T will not only simulate A, but the unison algorithm U as
well.

Termination Detection In this chapter, we consider the Snap-Stabilizing Termination
Detection problem. An algorithm solves the termination detection problem on A if it
simulates A, and if when a request is emitted on some node u, (req is set from idl to on),
then u ultimately answers (i.e., req is set to off), and when it answers, algorithm A has
terminated.

Let us state that more formally:

Specification 4.2 (Termination Detection)
T D (Termination Detection) of a silent distributed algorithm A in G = (V,E) is
specified by the presence of a variable reqv ∈ {on,wk, off, idl} on each node v ∈ V .

An execution ε = γ0 → · · · is correct if:

1. ε is a simulation of A,

2. A terminates in ε

3. ∀t ≥ 0,∀v ∈ V , if reqγtv = on then

3-i ∃t′ > t : reqv = off, and
3-ii ∀t′ > t : reqv = off,A has terminated in γt′ .

Remark that according to Definition 4.1, an execution that does not take any computing
step of A is considered as a simulation of A. This does not fit our requirements, since we
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need that A terminates in any execution of T . For that reason, we add another requirement
which forces A to terminate in executions of T .

4.2.4 Algorithm-Specific Notations

In the following, we will simultaneously consider three algorithms: the observed algorithm
A, a unison algorithm U , and a termination detection algorithm T . To avoid confusions,
we specify the algorithm to which our notations correspond by the following: The set of
rules of algorithm X is denoted by RX . The subset of the variables of one node v specific
to one algorithm X is denoted by statev|X .

4.3 Properties of Unison Algorithms

4.3.1 Preliminaries: Silent Unison Algorithms

The termination algorithm that we propose is silent. Yet, it simulates a unison algorithm,
whose liveness property is the opposite of silence. Let us explain how to combine those two
properties.

Any self-stabilizing unison algorithm can be made silent, with as consequence the loss
of the liveness property. To do so, we can prevent the clock to increase if there is no request
for it and the safety property is achieved. Essentially, if P (v) and ∀u ∈ Nv, clocku ∈
{clockv − 1, clockv}, then v is not enabled. If the initial configuration of the system is
correct (i.e. if P γ0

U ), then the system reaches a terminal configuration as soon as all the
clock reach the highest initial value.

Yet, one may want to keep a silent self-stabilizing unison algorithm running as long as
some external condition is not satisfied. This request notion may be extended with the
concept of local request [BPV04]. Silent self-stabilizing unison algorithms are equipped
with one additional predicate LocReq(v) that depends on external parameters. When this
predicate is evaluated to true on one node, then it takes precedence over the termination
condition, and forces the system to keep running with respect to PU . In the following, we
consider a silent self-stabilizing unison algorithm.

4.3.2 Rules of Unison Algorithms

In this section, we aim at proving global properties of unison algorithms. Since those
properties must be true for any unison algorithm, the only tool on which we can reason is
the specification of U , SPU . The main tool on which we reason is the fact that the predicate
PU is closed. This means that once a correct configuration is reached, the system never
becomes incorrect.

But individual nodes do not have any information on the global correctness of the
system. Before taking an action or not, the only information on which one node can rely is
its local correctness. In other words, the specification of unison guarantees that a node v
such that P (v) never executes an action that, isolated, could invalidate the correctness of
the whole system. Let us first recall the definition of P (v):

P (v) ≡

 ∀u ∈ N [v], clocku ∈ Z/mZ
∧
clocku ∈ {clockv − 1, clockv, clockv + 1}

Let us consider a unison algorithm U . It will be useful for us to separate the rules of
U into three distinct sets, depending on their guards. Let RU be the set of the rules of U .
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Let us define the following predicates:

P+(v) ≡ P (v) ∧ ∀u ∈ Nv, clocku 6= clockv − 1
P−(v) ≡ P (v) ∧ ∃u ∈ Nv : clocku = clockv − 1.

Note that P+(v) and P−(v) are mutually exclusive, and, joined, equate P (v). We
suppose without loss of generality that the guard of all the rules in RU contains ¬P (v),
P+(v), or P−(v). If not, we make three copies of each rule, and add ¬P (v) to the guard of
the first copy, P+(v) to the guard of the second copy, and P−(v) to the guard of the third
copy.

Since U is a self-stabilizing algorithm, any rule that includes P (v) in its guard guarantees
that its action will not invalidate P (v). Thus, actions that include P+(v) either increment
clockv by one or do not update it. In the same way, actions that include P−(v) cannot
update clockv, for it could lead to a difference of 2 between v and its neighbor u such that
clocku = clockv − 1.

Among all the rules that include P+(v), we denote by RUN , and call the normal rules the
rules whose action increases by 1 the variable clockv. These are the rules by which U makes
progress. We denote by RUT and call the transparent rules all the other rules that include
P (v) (either P−(v) or P+(v)), which do not update clockv by definition. Transparent rules
do not necessarily exist in all unison algorithms, but cannot be avoided a priori. Finally, we
denote by RUC and call the convergence rules all the other rules of RU , rules that include
¬P (v), and that enable convergence. By definition, U has stabilized if and only if no rule
of RUC is enabled.

We define the sluggishness of U , and denote S(U) as the maximal number of consecutive
transparent rules a node can execute between two executions of normal rules, after stabiliza-
tion. Sluggishness depicts how much the transparent rules might slow down clock increment.
Sluggishness of unison algorithms presented in [CFG92, BPV04, BPV08, DJ19, EK21] is 0.

4.3.3 Tools on Executions of Unison Algorithms

In this subsection we introduce logical tools that will be useful to reason on generic unison
algorithms. Definitions 4.2 to 4.5 were introduced in [BLP08]. Definition 4.6 is original
work and was designed specifically for our proof.

Our goal, in this section, is to prove that following the combination of the safety property
and of the liveness property of the unison specification. Our goal, in this section, is to prove
that, due to the combination of the safety property and of the liveness property of the unison
specification, the activations of nodes during the execution of a unison algorithm reflect,
somehow, long-distance interactions between nodes.

To illustrate this idea, assume that one node v, anywhere in the network, is blocked,
i.e. never increases its clock. Therefore, its neighbors will eventually be blocked at 1 over
the value of clockv. But then, the neighbors of v’s neighbors will eventually be blocked at
2 over the value of clockv. Step by step, we can see that the entire network will eventually
be blocked, which means that one node may have an influence in the entire network. If at
some point, v restarts increasing its clock, then its neighbors will be able to increase their
own variable too. And after that, the neighbors of v’s neighbors, and so on.

In order to formalize this notion of interactions, we must provide some definitions.
An event corresponds to a computing step in which one node executed a particular rule.

Definition 4.2 (Event)
Let ε = (γ0 −→

U
γ1 · · · ) be a finite or infinite execution.
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An event is a pair (v, t + 1) such that v is activated in γt −→
U
γt+1. We say that v

executes a rule at time t+ 1. By convention, (v, 0) is an event for all v ∈ V .
An event (v, t) is said to be external if the guard of the executed rule by v depends

on at least one shared register of a neighbor of v.
An event (v, t) is a normal (resp. transparent, resp. convergence) event if v executes

a normal (resp. transparent, resp. convergence) rule at time t.

The causal relation  allows us to causally link two events that are not necessarily
globally consecutive in an execution, due to activation of distant nodes, buy that are locally
consecutive.

Definition 4.3 (Causal relation  )
The causal relation is the smallest relation on the set of events such that the following
two conditions hold:

1. Let (v, t) and (v, t′) be two events such that t′ is the greatest integer such that
t′ < t. Then (v, t′) (v, t);

2. Let (v, t) and (w, t′) be two events such that (v, t) is an external event, w ∈ Nv,
t′ is the greatest integer such that t′ < t. Then (w, t′) (v, t).

The dependence relation  N allows us to formalize the notion that a node increases its
clock immediately after one other node increased its variable clock. Note that any activation
of a convergence rule on the node that increased its clock first beaks the dependence relation.

We also denote by �N the transitive closure of  N .

Definition 4.4 (Dependence Relation  N)
Let (v, t0) and (w, t′) be two events.

We say that (w, t′) normally depends on (v, t0), and denote (v, t0)  N (w, t′) if
there exists k ≥ 0 and t1, . . . tk such that (v, t0) (v, t1) · · · (v, tk) (w, t′) and
∀i > 0, (v, ti) is a transparent event, and (w, t′) is a normal event.

We denote (v, t) �N (w, t′) if there is a path w.r.t to  N from (v, t) to (w, t′).

An N -sequence corresponds to consecutive clock increase on one node, without any
execution of a convergence rule.

Definition 4.5 (N-sequence)
When a node v consecutively executes k normal rules, possibly intercut with transparent
rules,

 N (v, t0) N (v, t1) N · · · N (v, tk−1)

it executes an N -sequence of length k.

A causal pyramid is the extension of the notion of dependence relation to interconnected
interactions of neighbors to neighbors. Intuitively, if one node v executes numerous, say N ,
normal actions, then its neighbors will necessarily execute at least N − 2 normal actions
between the first and last action of v, and the neighbors of v’s neighbors at least N − 4
during the first and last action of their common neighbor with v, and so on. Once again, we
consider that any execution of a convergence rule breaks the pyramid. A causal pyramid
scheme is presented on Figure 4.2

We denote (i, j) the set of all integers k such that i < k < j.
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Definition 4.6 (Causal pyramid)
Let p = v0v1 . . . vk be a path of length k in G, and let us consider d ≥ 2k + 1. We say
that p is a causal pyramid of length d and of origin t00 if

∀i ∈ [0, k],∀j ∈ [i, (d− 1)− i],∃tij such that

• ∀i, we have tii < ti+1
i+1 and ti+1

(d−1)−(i+1) < ti(d−1)−i

• ∀i, vi does not execute rules of RUC in (ti−1
i−1, t

i−1
(d−1)−(i−1))

• ∀i, vi executes an N -sequence
 N (vi, tii) N (vi, tii+1) N · · · N (vi, ti(d−1)−i)

v0

t0
0

v0

t0
1

v0

t0
2

v0

t0
2k−2

v0

t0
2k−1

v0

t0
2k

· · · N  N  N  N  N  N  N

v1

t1
1

v1

t1
2

v1

t1
2k−2

v1

t1
2k−1

· · · N  N  N  N  N

v1 : no RUC v1 : no RUC

v2

t2
2

v2

t2
2k−2

· · · N  N  N

v2 : no RUC v2 : no RUC

Figure 4.2: Causal Pyramid Scheme: v0v1v2 is a causal pyramid of length 2k + 1 and of
origin t00

Notice that if p is a causal pyramid, then (v0, t
0
0) �N (v1, t

1
1) �N · · · �N (vk, tkk) �N

(vk, tk(d−1)−k) �N · · · �N (v0, t
0
d−1).

4.3.4 Properties of Unison Algorithms

In this section, we extend and adapt some of the results of [BLP08] to any unison algorithm,
and establish Theorem 4.1 that will allow us to establish synchronization properties of our
termination detection algorithm T .
Lemma 4.1

Let v and w be two neighbors. Suppose that v is a causal pyramid of length 3 and of
origin t0, and that in (t0, t2), w does not execute rules of RUC . Then vw is a causal
pyramid of length 3 and of origin t0.

Proof : Let us denote by p the value of clockv at time t0−1. Since v executes three consecutive
normal actions, at time t0, t1, and t2, it increases its clock by three. Furthermore, since v
executes a normal action at t0, we have P+(v) at t0 − 1 and thus clockw is equal to p or
p+ 1.

If w does not execute any normal action between t0 and t2, then when v executes its
third normal action, at t2 − 1, we have clockw ∈ {p, p+ 1} and clockv = p+ 2, so ¬P+(v),
which is contradictory.
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The following lemma directly follows by induction of Lemma 4.1 on the length of an
N -sequence.

Lemma 4.2
Let v and w be two neighbors. Suppose that v is a causal pyramid of length d+1, d ≥ 2
and of origin t0, and that in (t0, td), w does not execute rules of RUC . Then vw is a
causal pyramid of length d+ 1 and of origin t0.

Proof : Let us denote by p the value of clockv at time t0−1. Since v executes d+1 consecutive
normal actions, at time t0, t1, . . . , td, its clock in incremented d + 1 times. Furthermore,
since for any i ∈ [0, d], v executes a normal action at time ti, then we have P+(v) at ti− 1,
for any i ∈ [0, d].

Therefore, for any i, we have at ti − 1, clockw ∈ {clockv, clockv + 1}. In other words,
for any i ∈ [0, d], we have at ti − 1, clockw ∈ {p + i, p + i + 1}. Since w does not execute
any convergence action during (t0, td), this is possible only if w increases d − 1 times its
clock during (t0, td). This means that w executes an N -sequence of length d− 1 during the
N -sequence of v.

This corresponds to the definition of vw being a causal pyramid of length d+ 1.

Lemma 4.2 establishes a link between the behavior of two neighbors. By induction on
the distance between v and any other process, Theorem 4.1 follows.

Theorem 4.1
Let v0 and vk be two nodes, and let p = v0v1 · · · vk be a path. Suppose that v0 . . . vk−1
is a causal pyramid of length d ≥ 2k + 1, and that in (tk−1

k−1, t
k−1
(d−1)−(k−1)), vk does not

execute rules of RUC . Then v0 · · · vk is a causal pyramid of length 2k + 1.

Proof : We simply apply Lemma 4.2 to vk−1, which is a causal pyramid of length d−2(k−1) ≥ 3
and of origin tk−1

k−1. This implies that vk executes a N -sequence of length at least d − 2k
during (tk−1

k−1, t
k−1
(d−1)−(k−1)), and thus v0 · · · vk is a causal pyramid of length 2k + 1.

Corollary 4.1
Let v0 and vk be two nodes, and let p = v0v1 · · · vk be a path. Suppose that v0 is a
causal pyramid of length 2k+1, and that ∀i, vi does not execute rules of RUC in (t0, t2k).
Then v0 · · · vk is a causal pyramid of length 2k + 1.

Proof : We iterate Theorem 4.1 on v0, then on v0v1, and so on.

4.4 Algorithm

Let us consider a silent self-stabilizing algorithm A that solves a problem P under the unfair
distributed scheduler. We introduce a generic mechanism that builds an anonymous silent
snap-stabilizing request-based algorithm T that solves the Termination Detection of A.

Based on an anonymous self-stabilizing unison algorithm U , it follows the request-based
mechanism described in Section 4.2.3. More specifically, for each node v, the algorithm
communicates with the application App by means of reqv—refer to Figure 4.1. To know
whether A has terminated or not, App triggers a request to T by executing App : ask on
some idle nodes v1, v2, . . . , vk of the system, setting the value of reqvi , for i ∈ [1, k], from idl
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to on. Next, T answers to the request only after algorithm A has terminated, by setting
reqv to off. Then, App may execute App : get that sets reqv to idl.

4.4.1 Scheme of Algorithm T
The main idea of our algorithm is that each node has a variable dedicated to detect the
activity of algorithm A. When one node sees an activation of a rule of A (in our model,
when one node simulates a rule of A), it sets its variable to its maximal value, and then
decrease it by one at each activation. This variable is also used to propagate the information
that A has been activated to the neighbors of the nodes. Namely, nodes increase their own
variable if one of their neighbors has a non-zero value.

When a request is emitted on one node, this node sets another countdown to its maximal
value, and decrease it at each computing step. If when this countdown reaches 0, it has not
detected any activation of A from its neighbors, then it can answer that A has terminated.

This works only if the decrease of both variables is relatively synchronized on the nodes
of the system. This is why we need a unison algorithm. Both variables are synchronized
with the clock of the unison algorithm. Therefore, thanks the properties established in
Section 4.3, we can transfer properties of unison algorithms to our termination detection
algorithm.

4.4.2 Variables

The variables of node v in algorithm T are:

• statev|A the set of all variables of node v in algorithm A.

• statev|U the set of all variables of node v in algorithm U , including clockv.

• dav ∈ [0, 2D + 2], for detection of activity. This variable is used to store the number
of steps since the last time a convergence rule (for A or U) was executed by node v.
Variable da propagates through the whole system with the following rule: if the
maximum value of da among the neighbors of v is p, then v cannot set dav under
p− 1.

• dtv ∈ [0, 2D+1], for detection of termination, is a countdown to 0, initiated at 2D+1
when the application asks for the termination.

• reqv ∈ {on,wk, off, idl}, for request, is the interface between App and T . reqv may be
updated according to Figure 4.1.

The space complexity of the variables of T is O(logD) bits per node, where D is an upper
bound of the diameter of the graph. Consequently, the space complexity of the whole system
is O(S(A) + S(U) + logD) bits per node, where S(A) (resp. S(U)) is the space complexity
of algorithm A (resp. of algorithm U) in bits per node.

4.4.3 Overview of the algorithm

The detail of the rules of algorithm T is presented in Algorithm 1. Algorithm T simulates
both algorithms A and U , independently. When an enabled node v is activated, v atomically
executes the rule of A for which it is enabled, if such rule exists, the rule of U for which it
is enabled, if such rule exists, and updates the proper variables of algorithm T .
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Since algorithm T performs two distinct and independent tasks: the simulation of A
and U , on the one hand, the detection of termination, on the other hand, it is natural to
divide the set of the rules of T , RT , in two disjoint sets: RSsimul and RSproper. A node is
enabled for T if it enabled for at least one rule of RSsimul or RSproper. If an enabled node is
activated, then it atomically executes the rule of RSsimul for which it is enabled, if such a
rule exists, and the rule of RSproper for which it is enabled, if such a rule exists.
RSsimul contains the rules which simulate algorithms A and U , and also updates the

variable da. To facilitate reasoning, we distinguish several cases depending on which rules
are enabled for A and U . Figure 4.3 recaps the different possible situations, and the name
of the corresponding rule of RSsimul.

If the activated node v has not yet converged for both A and U , then it executes a
convergence rule for at least one of those algorithms and sets its variable dav to 2D +
2. The set of all convergence rules is denoted Rcvg, and it contains the following rules:
RUCcvg,RNcvg,RAcvg. Those rules differ by the precise rules of A and U they simulate. Be aware
that the rules of Rcvg are not necessarily convergence rules in the sense of unison algorithms.
More precisely, Rcvg contains the convergence rules relative to U , but also the convergence
rules relative to A.

Otherwise, if w is only enabled for a transparent rule of U , then it executes Rtrans ∈
RSsimul and nothing else.

Finally, if v is only enabled for a normal rule of U then v executes the rule Rwait ∈ RSsimul,
which sets dav to one less than the maximum value of da of the closed neighbors of v. As
a consequence, as long as one node v has not converged for A, variable da is maintained at
2D+ 2 on v. When activated, the neighbors of v set their variable da to 2D+ 1 (or 2D+ 2
if one rule of Rcvg is activated). After that, if one neighbor of a neighbor of v is activated,
then it sets its variable da to at least 2D, and so on. Thus, if one node is enabled for a
convergence rule, then the variable da will propagate at high value along the graph. Yet,
this property requires that all the nodes are activated, in a specific order.

RUC
RUT

RUN
¬RU

RA RUC
cvg RA

cvg RN
cvg RA

cvg

¬RA RUC
cvg Rtrans Rwait

Figure 4.3: Rules of RSsimul depending on the enabled rules for A and U . Rules of Rcvg are
convergence rules for U or A.
For T , convergence (resp. transparent, resp. normal) rules are rules simulating a conver-
gence (resp. transparent, resp. normal) rule of U . We extend that definition to RAcvg, which
is a transparent rule.

Fortunately, since U is a unison algorithm, no node, and no subset of nodes, may compute
independently of the rest of the system, and decrease its variable da down to 0 regardless of
what happens in the whole system. This guarantees that, starting from any configuration,
after a node v executes 2D + 1 computing steps, the variable dav is under the influence of
all the other nodes of the system. Consequently, after 2D + 1 computing steps of node v,
the variable dav cannot be 0 unless all the nodes in the graph have converged for both A
and U . This property allows us to design our procedure thanks to the variable dt.

Whenever App asks one node v for the termination of the algorithm, v executes rule
Rstart, it sets its variable dtv to 2D+1 and updates its variable reqv from on to wk. Variable
dtv is decreased by one each time a normal rule of U is executed, by rule Rcpt, and is updated
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to 2D + 1 as soon as dav 6= 0 by rule Rend. Since U is a unison algorithm, in a legitimate
execution dtv reaches 0 (and therefore an answer is produces through rule Rstop) only after
all nodes have converged for A. As a desired consequence, algorithm T is snap-stabilizing
for the detection of termination for algorithm A.

4.4.4 Predicates

Let RS ∈ RA, RU , RUC , RUT , RUN be the set of the rules of one algorithm, and let v be a
node. Act(RS, v) returns true if and only if node u is enabled by a rule of RS.

Act(RS, v) ≡ v is enabled by one rule of RS (4.1)

As described in Section 4.3.1, we consider a silent self-stabilizing unison algorithm U .
In T , the normal rules of U , denoted RUN , are not enabled on node v unless the following
predicate LocReq(v) is evaluated to true.

LocReq(v) ≡
∨ (∃u ∈ Nv : clocku = clockv + 1)

Act(RA, v)
(dav 6= 0)
(reqv ∈ {on,wk})

(4.2)

When both algorithm A and U have converged on node v, the only simulation rules that
v may execute are the normal rules of algorithm U , which permit the liveness of U . This
situation is described by the predicate UnisonOnly.

UnisonOnly(v) ≡ ¬Act(RA, v) ∧ Act(RUN , v) (4.3)

4.4.5 Actions

Let RS ∈ RA, RU , RUC , RUT , RUN be the set of the rules of one algorithm, and let v be
a node. Let SimulR(RS, v) be a procedure that executes the enabled rule in RS on node
v if such rule exists and which does nothing otherwise. Procedure Simul(v) sequentially
executes one rule of Algorithm A if possible, then one rule of Algorithm U , again if possible.
Formally:

SimulR(RS, v) ≡
{
v updates its state executing the enabled rules in RS if Act(RS, v)
v does nothing otherwise

(4.4)

Simul(v) ≡ SimulR(RA, v);SimulR(RU , v) (4.5)

Procedure Propagate_da(v) updates the variable dav to one less than the maximal value
of da of the closed neighbors of v:

Propagate_da(v) ≡ dav := max(0, max
u∈N [v]

(dau − 1)) (4.6)

4.5 Correctness of Algorithm T
In this section, we establish that T is a snap-stabilizing procedure for the detection of the
termination of Algorithm A. This proof is divided in four subsections.
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Algorithm 1: Algorithm T
During a step, if a rule of set RSsimul and a rule of set RSproper are enabled then v
executes these 2 rules.

RSsimul :: rules to update da
RUCcvg : Act(RUC , v) −→ Simul(v); dav := 2D + 2 ∈ RTC
RAcvg : Act(RA, v) ∧ ¬

(
Act(RUC , v) ∨ Act(RUN , v)

)
−→ Simul(v); dav := 2D + 2 ∈ RTT

Rtrans : ¬Act(RA, v) ∧ Act(RUT , v) −→ Simul(v) ∈ RTT
RNcvg : Act(RA, v) ∧ Act(RUN , v) −→ Simul(v); dav := 2D + 2 ∈ RTN
Rwait : UnisonOnly(v) −→ Simul(v);Propagate_da(v) ∈ RTN

RSproper :: rules to update dt and req
Rstart : reqv = on −→ reqv := wk; dtv := 2D + 1
Rstop : reqv = wk ∧ UnisonOnly(v) ∧ dtv = 0 ∧ dav = 0 −→ reqv = off
Rcpt : reqv = wk ∧ UnisonOnly(v) ∧ dtv 6= 0 ∧ dav = 0 −→ dtv := dtv − 1
Rend : reqv = wk ∧ UnisonOnly(v) ∧ dav 6= 0 −→ dtv := 2D + 1

In Subsection 4.5.1, we prove that T satisfies both Conditions 1 and 2 of Specifica-
tion 4.2.

In Subsection 4.5.2, we prove that T satisfies Condition 3− i of Specification 4.2.
Finally, in Subsection 4.5.3, we prove that T satisfies Condition 3− ii of Specifica-

tion 4.2.
We also prove in Subsection 4.5.4 the time complexity of our algorithm.

4.5.1 Simulation properties of T
In this section, we establish Theorem 4.2, which ensures that T satisfies Condition 1 and
Condition 2 of Specification 4.2.

Theorem 4.2
T is a simulation of both A and U , and in any execution of T , both A and U ultimately
converge.

Theorem 4.2 is a consequence of Lemmas 4.4, 4.6, and 4.7.
Before anything else, let us establish Lemma 4.3, that characterizes the terminal config-

urations of T . These configurations are the one in which U converged, and in which on all
the nodes v of the system, LocReq(v) is not verified (this includes the termination of A).
Lemma 4.3

The terminal configurations of T are the configurations such that ∀v ∈ V :

¬Act(RU , v) ∧ ¬LocReq(v)

Proof : Let γ be a terminal configuration of T . If ∃u ∈ V : Act(RA, v) ∨ Act(RU , v), then one
rule of RSsimul is enabled on node v, so ∀v ∈ V,¬Act(RA, v) ∧ ¬Act(RU , v). Furthermore,
since U is a self-stabilizing algorithm, it satisfies the liveness property. Thus, unless all the
nodes v ∈ V satisfy ¬LocReq(v), there exist enabled nodes in the system. Consequently,
∀v ∈ V, (∀u ∈ Nv, clocku ∈ {clockv−1, clockv})∧¬Act(RA, v)∧dav = 0∧ (reqv ∈ {off, idl}).

Conversely, such configurations are terminal configurations. The rules of RSsimul are
not enabled because ∀v ∈ V,¬Act(RA, v) ∧ ¬Act(RU , v), and the rules of RSproper are not
enabled because ∀v ∈ V, reqv ∈ {off, idl}.
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By the definition of the actions of T , any execution of T simulates both Algorithm A
and Algorithm U . This is stated in Lemma 4.4.

Lemma 4.4
Any execution of T is a simulation of both A and U .

Proof : The only action that updates the variables of statev|A (resp. of statev|U ) is SimulR(RA, v)
(resp. SimulR(RU , v)). It is applied only if the activated nodes are enabled for A (resp. for
U). Thus, the execution of T is a simulation of A (resp. of U).

Since A is a silent self-stabilizing algorithm, there do not exist infinite executions of A.
Since executions of T are simulations of executions of A, then the number of computing
steps of an execution of T that execute a rule of A is finite. This is stated in Lemma 4.5,
and will be useful to prove the convergence of U .

Lemma 4.5
In any execution of T , a finite number of computing steps execute rules of A.

Proof : Let ε = (γ0 −→
T

γ1 −→
T
· · · ) be an execution of T . Suppose there exists an infinite

number of computing steps of ε that execute rules of A. Then, εA = (γ0|A −→
T
γ1|A −→

T
· · · )

is an infinite execution of A. Since A is a silent self-stabilizing algorithm under the unfair
scheduler, it converges in finite time in any execution of A. Thus, such infinite execution
does not exist.

Since A is activated only a finite number of times, and since U is a self-stabilizing
algorithm, it indeed ultimately converges in any execution of T . This is stated in Lemma 4.6.

Lemma 4.6
U converges in any maximal execution of T .

Proof : Let ε = (γ0 −→
T
γ1 −→

T
· · · ) be a maximal execution of T . According to Lemma 4.5, we

can assume without loss of generality that in ε, no rule of Algorithm A is executed. Let us
reason by contradiction and suppose U does not converge in ε. According to Lemma 4.3, ε
cannot contain any terminal configuration, so ε is an infinite execution. Since U is a self-
stabilizing algorithm under the unfair scheduler, it converges in finite time in any execution
of U . If ε contains an infinite number of computing steps that execute rules of U , then U
converges. Consequently, there only exists a finite number of such computing steps. We
now consider an infinite suffix ε′ of ε that does not contain any rule of U nor of A. All the
rules of RSsimul induce a rule of U or A. Furthermore, the predicates of Rstop, Rcpt, and
Rend all include UnisonOnly which is the guard of Rwait. The only rule executed in ε′ is
Rstart, but it cannot be executed twice on a node v without v executes the rule Rstop (and
several times Rcpt) in the meantime. This is contradictory. Consequently, U converges in
ε.

Finally, since U is a unison algorithm, all the nodes are regularly activated in any
execution, and since A is a self-stabilizing algorithm, this implies that the convergence of
A ultimately occurs in any maximal execution of T . This is stated in Lemma 4.7.

Lemma 4.7
A converges in any maximal execution of T .



58 Chapter 4. Silent Anonymous Snap-Stabilizing Termination Detection

Proof : Let us consider ε = (γ0 −→
T

γ1 −→
T
· · · ) a maximal execution of T . According to

Lemma 4.6, we can assume without loss of generality that in γ0, U has already converged.
Since U is a unison algorithm and since Act(RA, v) is included in LocReq(v), the correctness
of U ensures that as long as A has not converged, all the nodes are regularly activated. Since
A is a self-stabilizing algorithm for the unfair scheduler, this guarantees that A converges.

This completes the proof of Theorem 4.2.

Remark 4.1
Since T is a simulation of U , we can extend the results of Section 4.3.4 to the executions
of T . To do this, we extend to T the concepts of normal, transparent, and convergence
rule, normal dependence relation, andN -sequence. T has one convergence rule RUCcvg, two
transparent rules RAcvg and Rtrans, and two normal rules RNcvg and Rwait. Specifically,
Theorem 4.1 and Corollary 4.1 remain valid on T .

4.5.2 Termination of T
In this section, we establish that maximal executions of T satisfy Condition 3− i of Speci-
fication 4.2 (Theorem 4.4).

We define Γcvg ⊂ Γ the set of configurations in which A has stabilized and U has
converged, and Γda the set of configurations in which, in addition, ∀v, dav = 0. Lemma 4.8
states that Γda is an attractor.

Definition 4.7
Let Γda ⊂ Γcvg ⊂ Γ be

Γcvg : ∀v ∈ V, (¬Act(RA, v) ∧ ¬Act(RUC , v))
Γda : ∀v ∈ V, (¬Act(RA, v) ∧ ¬Act(RUC , v) ∧ dav = 0)

Lemma 4.8
Γ .T Γcvg .T Γda

Proof : Γcvg is closed since A and U are self-stabilizing algorithms. Theorem 4.2 ensures
Γ .T Γcvg.

Let us prove that Γda is closed. Let γ −→
T

γ′ be a computing step such that γ ∈ Γda.
Since γ ∈ Γcvg which is closed, γ′ ∈ Γcvg. In γ, no rule of Rcvg is enabled, so only Rwait may
update da. But since ∀v ∈ V, daγv = 0, then Propagate_da(v) has no effect. Thus, γ′ ∈ Γcvg.

Let us now prove that T converges to Γda from Γcvg. Let γ0 ∈ Γcvg be a configuration,
and let us consider a maximal execution ε = (γ0 −→

T
γ1 −→

T
· · · ). According to Lemma 4.3,

if ε is finite, then the terminal configuration belongs to Γda. We suppose now that this
execution is infinite. Since Γcvg is closed, we are only interested in the value of da.

Let us consider Ci = maxv∈V daγiv . If C0 = 0, then γ0 ∈ Γda. Otherwise, since ε
is infinite, and U is a unison algorithm, and RAcvg is not enabled in Γcvg, all the nodes
execute Rwait infinitely many times. Let i1 such that before reaching γi1 , all the nodes
have executed Rwait. We have Ci1 < C0. By induction, there exists a time t such that
Ct = 0, so we obtain γt ∈ Γda.

Finally, we define Γvdt where v ∈ V , as the set of the configurations of Γda such that
reqv ∈ {off, idl}. Theorem 4.3 states that any execution that starts in Γda eventually reaches
a configuration of Γvdt.
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Definition 4.8
Let v ∈ V . Let Γvdt ⊂ Γda be the set of configurations such that, ∀u ∈ V :

(¬Act(RA, u) ∧ ¬Act(RUC , u) ∧ dau = 0) ∧ reqv ∈ {off, idl}

Theorem 4.3
Let v ∈ V be a node and ε = (γ0 −→

T
γ1 −→

T
· · · ) be a maximal execution such that

γ0 ∈ Γda. There exists i ≥ 0 : γi ∈ Γvdt.

Proof : Suppose γ0 /∈ Γvdt, i.e. reqγ0
v ∈ {on,wk}.

Case 1: reqγ0
v = wk.

Since Γda is closed, the only rules of RSproper enableds on v are Rstop and Rcpt. As long as
reqv ∈ {on,wk}, LocReq(v) is satisfied, and since U is a unison algorithm, it makes progress,
which means that Rwait is regularly activated on all nodes. Thus, as long as dtv 6= 0, Rcpt is
regularly activated by v. Since each activation of Rcpt by v decreases dtv by 1, it ultimately
reaches 0, after what Rstop is activated by v, and then, the system has reached Γvdt.

Case 2: reqγ0
w = on.

Then the previous guarantees as well that node w will eventually be activated, through
rule Rstart, after which reqw = wk, which is the case above.

Lemma 4.8 and Theorem 4.3 basically prove that, whatever the initial configuration,
the system globally converges to Γda, and each node is infinitely often in an availability
state for the app. This proves that T satisfies Condition 3-i of Specification 4.2. Let us
now formally prove Theorem 4.4:

Theorem 4.4
Let ε = γ0 −→

T
· · · be a maximal execution such that ∃v ∈ V, t ≥ 0 : reqγtv = on.

There exists t′ > t such that reqγt′v = off

Proof : Let us consider the subexecution εt = γt −→
T
· · · . According to Lemma 4.8, there exists

ta ≥ t such that γta ∈ Γda. Let us consider εa = γta −→
T
· · · . According to Theorem 4.3,

there exists td ≥ ta such that reqγtdv ∈ {off, idl}.
Since reqγtv = on and reqγtdv ∈ {off, idl}, there exists t′ > t such that reqγt′v = off.

4.5.3 Snap-stabilization

In this section, we establish that maximal executions of T satisfy Condition 3− ii of Spec-
ification 4.2 (Theorem 4.7).

The activation of Rstart by v corresponds to the request by v to detect the termination of
Algorithm A. The activation of Rstop by v corresponds to the detection of the termination
of Algorithm A by v.

Lemma 4.9 states that v will eventually execute the rule Rstop along any execution
starting by a termination detection request by v (i.e. the activation of Rstart by v). This
lemma allows us to define, for a maximal execution starting by a termination detection
request by v, the response time to v’s request: f , the time of the first computing step in
which v executes the rule Rstop. This is stated in Definition 4.9.
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Lemma 4.9
Let v ∈ V and let ε = (γ −→

T
γ0 −→

T
γ1 −→

T
· · · ) be a maximal execution such that v

executes Rstart in γ −→
T
γ0. ∃i > 0 such that in γi−1 −→

T
γi, v executes Rstop.

Proof : This is a direct corollary of Theorem 4.4

Definition 4.9 (Time of Response)
Let v ∈ V and let ε = (γ −→

T
γ0 −→

T
γ1 −→

T
· · · ) be a maximal execution such that v

executes Rstart in γ −→
T
γ0.

We denote by f(v, ε), or simply f the time of response of v in ε, which is the smallest
i > 0 such that during γi−1 −→

T
γi, v executes Rstop.

To prove that T satisfies Condition 3-ii of Specification 4.2, we only have to prove that
A has terminated in γf .

Before an answer is provided by T , a lot of computations can be required. Notably, v can
execute Rend numerous times, which resets dtv up to its maximal value. In our reasoning,
we will focus on the subexecution that follows the last time v resets dtv, which is the part
where v does not see any activity from A during a sufficiently long period of time for it to
answer. This is presented in Figure 4.4.

Let us define that subexecution:

Definition 4.10 (Final Descent)
Let v ∈ V and let ε = (γ −→

T
γ0 −→

T
γ1 −→

T
· · · ) be a maximal execution such that v

executes Rstart in γ −→
T
γ0, and let f be the time of response of v in ε. Let us consider

εf = (γ −→
T
γ0 −→

T
· · · −→

T
γf−1).

If v executes Rend along εf then let us define css = γs−1 −→
T
γs, the latest computing

step of εf in which v executes Rend.
Otherwise we set s = 0 and css = γ −→

T
γ0.

Remark that css is the latest computing step of εf in which v executes a rule that
sets dtv at 2D + 1.

We denote by εs the final descent of v in ε, εs = γs −→
T
γs+1 −→

T
· · · −→

T
γf−1.

In the sequel of this section, we study the properties of εs. We establish in Theorem 4.6
that γs ∈ Γcvg. As Γcvg is closed, we also have γf ∈ Γcvg: a terminal configuration of A is
reached when the answer is provided. Basically, the scheme of the following is:

Proposition 4.1
To prove that in γs, A has terminated, we must prove that if A had not, then:

1. a rule of A would be executed on one node u, and

2. this action would have been transmitted to node v before f , postponing γs.

For the sake of the proof, we aim at finding one early such activation of a rule of A.

We prove the first part of Proposition 4.1 in Theorem 4.5, and the second part in the
proof of Theorem 4.6 (which is a proof by contradiction, so the statement of Theorem 4.6
concludes that A has terminated in γs).
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2D + 1

dtv

time
γ γ0

Rstart

γ1
Rend

γs

Rend

γf

Rstopfinal descent εs

Figure 4.4: Example of Final Descent on node v, progression indicated by the decrease of
dtv

To prove that nodes are necessarily activated, and that nodes influence themselves
through the network, we need the properties of Unison algorithms established in Sec-
tion 4.3.4, which apply to T as noted in Remark 4.1.

Lemma 4.10 allows us to use Corollary 4.1.

Lemma 4.10
Let v be a node and let ε = (γ −→

T
γ0 −→

T
γ1 −→

T
· · · ) be a maximal execution such that

v executes Rstart in γ −→
T
γ0.

Then v does not execute any rule of Rcvg in εs, and v executes an N -sequence of
length at least 2D + 1 in εs.

Proof : By contradiction, suppose v executes a rule of Rcvg in csi = γi−1 −→
T
γi a computing

step of εs.
Then, daγiv = 2D + 2. By construction, v executes Rstop in γf−1 −→

T
γf . According to

the algorithm and guard definitions, v also executes Rwait in γf−1 −→
T
γf . Let us consider

csj = γj−1 −→
T
γj the first computing step of γi −→

T
· · · −→

T
γf−1 −→

T
γf in which v executes

Rwait.
We have daγiv = 2D + 2, and only Rwait can decrease dav, so daγj−1

v = 2D + 2. Since
v executes Rwait in csj , we also have UnisonOnlyγj−1(v). By construction of Algorithm 1,
v executes Rend in csj , which is contradictory with the definition of γs. Thus, v does not
execute any rule of Rcvg in εs.

Let us now prove that v executes an N -sequence of length at least 2D + 1 in εs. The
only rule of RSproper executed by v along εs is Rcpt, because reqv = wk and because, by
definition, Rstop and Rend are not executed.

During the ε-subexecution εs, v executes Rcpt exactly 2D+1 times, since dtγsv = 2D+1
and dtγf−1

v = 0. By definition of the algorithm and guards, in a step where v executes Rcpt,
v also executes Rwait. Hence v also executes Rwait at least 2D + 1 times during εs. Since
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v does not execute any rule of Rcvg in εs, those 2D + 1 executions of Rwait constitute an
N -sequence of length at least 2D + 1.

Let us introduce anchors, that are nodes which execute a convergence action (and thus
reset da at its maximal value) at their first activation during some execution. Anchors are
natural candidates to prove point 1 of Proposition 4.1.

Definition 4.11 (Anchor of an execution)
Let u ∈ V and let ε = (γ −→

T
γ0 −→

T
· · · ) be an execution. We say that u is an anchor

of ε if during ε, u executes a rule that is not Rstart, and if the first rule different from
Rstart executed by u is a rule of Rcvg.

We now introduce Theorem 4.5 that establishes that if an execution does not respect
Condition 3-ii of Specification 4.2 then there exists an anchor of that execution.

Theorem 4.5 is a direct consequence of Lemmas 4.12 and 4.13.

Theorem 4.5
Let v be a node and let ε = (γ −→

T
γ0 −→

T
γ1 −→

T
· · · ) be a maximal execution such that

v executes Rstart in γ −→
T
γ0. If γs /∈ Γcvg, then there exists a node u that is an anchor

of εs.

We first establish by contradiction that, if ε is an execution that starts in a configuration
where A or U has not stabilized, and such that all nodes are activated, then at least one
node executes a convergence rule for A of U during ε. This is formally stated in Lemma 4.11.

Lemma 4.11
Let ε = γ0 −→

T
γ1 −→

T
· · · be a finite or infinite execution such that all the nodes of V

execute at least once a rule that is not Rstart in ε. If γ0 /∈ Γcvg, then there exists u ∈ V
that executes a rule of Rcvg in ε.

Proof : Since γ0 /∈ Γcvg, then ∃u ∈ V : Actγ0(RA, u) ∨ Actγ0(RUC , u).
Case 1: Actγ0(RA, u).
Let csu = γu −→

T
γ′u be the first computing step of ε in which u is activated. If in

csu, u executes a rule of Rcvg then our proof is complete. Otherwise, it means that in
γu,¬Act(RA, u). This is possible only if one neighbor u′ of u updates stateu′|A before γu,
and thus u′ executes a rule of Rcvg in ε.

Case 2: Actγ0(RUC , u).
This means that ¬P γ0(u). Thus there exists u′ ∈ Nu such that clockγ0

u′ /∈ {clockγ0
u −

1, clockγ0
u , clockγ0

u + 1}. Let csu = γu −→
T

γ′u be the first computing step of ε in which u

executes a rule that is not Rstart.
If in csu, u executes a rule of Rcvg then our proof is complete. Otherwise, it means that

in P γu(u). This is possible only if before γu, u′ executes a rule that updates stateu′|U .
Let csu′ = γu′ −→

T
γ′u′ be the first activation of u′ that updates stateu′|U . By construction,

¬P γu′ (u′) since the clocks of u and u′ are unsynchronized. Consequently, in csu′ , u′ executes
a rule of Rcvg.

We now establish that if an execution does not respect Condition 3-ii of Specification 4.2
then there exists a node that executes a convergence rule for A of U during a final descent
εs. Once again, we reason by contradiction, and observe that we can use Lemma 4.10 and
Corollary 4.1. This is stated in Lemma 4.12.
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Lemma 4.12
Let v be a node and let ε = (γ −→

T
γ0 −→

T
γ1 −→

T
· · · ) be a maximal execution such that

v executes Rstart in γ −→
T
γ0. If γs /∈ Γcvg, then there exists a node u that executes a

rule of Rcvg in εs.

Proof : Let us reason by contradiction and suppose that no node execute any rule of Rcvg in
εs. Let us prove that under such circumstances, all nodes execute a rule that is not Rstart
in εs. Let us consider any w ∈ V , and let us consider (v = v0)v1 · · · vk−1(vk = w) a path of
length k ≤ D.

According to Lemma 4.10, v executes an N-sequence of length at least 2D + 1 in εs,
which means that v is a causal pyramid of length 2D+ 1. Since we supposed that no node
executed rules of Rcvg in εs, we can apply Corollary 4.1: v0v1 · · · vk−1vk is a causal pyramid
of length 2D + 1. In particular, vk executes Rwait in εs.

We can therefore apply Lemma 4.11, which ensures that there exists a node u that
executes a rule of Rcvg in εs.

Finally, we prove that if there exists a node that executes a convergence rule for A of
U during a final descent εs, there exists an anchor of that execution. Indeed, consider csa
the first computing step of εs where a node executes a convergence rule, and consider u a
node that executes a convergence rule during csa. Then, necessarily, the first activation of
u during εs happens at csa. This is formally stated in Lemma 4.13.

Lemma 4.13
Let ε = γ0 −→

T
γ1 −→

T
· · · be a finite or infinite execution such that there exists one node

w that executes a rule of Rcvg in ε. Then there exists u ∈ V that is an anchor of ε.

Proof : Case 1: in ε, w executes a rule of Rcvg that updates statew|A.
Let us consider csa = γa −→

T
γ′a the first computing step of ε in which one node u

executes a rule that updates stateu|A, and let us consider one such u. By definition,
∀v ∈ V, statev|A remains constant during εa = γ0 −→

T
γ1 −→

T
· · · −→

T
γa. As a consequence,

Act(RA, u) remains constant during εa too, and thus is evaluated to true all along εa since
in csa, u updates stateu|A. Thus, any activation of u during εa implies that u updates
stateu|A. This means that csa is the first activation of u in ε.

Case 2: in ε, w executes a rule of Rcvg that simulates a rule of RUC .
Let cs = γa −→

T
γ′a be the first computing step of ε in which one node u executes a

rule of Rcvg that simulates a rule of RUC , and let us consider one such u. In γa,¬P (u).
Recall that normal and transparent rules cannot invalidate P (v), on any node v ∈ V . Thus,
since before γa, no node executes rules of RUC , and in γa,¬P (u), we have ¬P (u) all along
εa = γ0 −→

T
γ1 −→

T
· · · −→

T
γa. Therefore, the first activation of u different from Rstart during

εa is a rule of Rcvg.

The combination of that last result and of the previous one terminates the proof of
Theorem 4.5.

Theorem 4.6 is a consequence of Theorem 4.5. We show that if there exists an anchor
of ε, then a contradiction is raised, thus the premisses of Theorem 4.5 do not hold. In the
proof, we consider a causal pyramid of maximal length with origin v that ends near a node
u, such that u executes a convergence rule before the action of the last node of the pyramid.
We then prove that variable da spreads down the pyramid from u to v, which leads to the
conclusion that v executes Rend during εs, raising a contradiction.
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Theorem 4.6
Let v be a node, and let ε = (γ −→

T
γ0 −→

T
γ1 −→

T
· · · ) be a maximal execution such that

v executes Rstart in γ −→
T
γ0. We have: γs ∈ Γcvg.

Proof : Let us reason by contradiction and suppose that γs /∈ Γcvg. According to Theorem 4.5,
there exists a node u such that in εs, u executes a rule of Rcvg before any execution of Rwait.
Let us consider a path p of length k ≤ D between v and u: p = (v = v0v1 · · · vk = u).
According to Lemma 4.10, v0 is a causal pyramid of length 2D + 1.

Case 1: v0v1 · · · vk is not a causal pyramid of length 2D+1. Let q be such that v0v1 · · · vq
is a causal pyramid of length 2D + 1 and v0v1 · · · vqvq+1 is not a causal pyramid of length
2D+1. According to Theorem 4.1, vq+1 executes RUCcvg during (tqq, tq2D−(q−1)). Furthermore,
by definition there exists (vq, tq2D−q) �N · · · �N (v0, t

0
2D).

Case 2: v0v1 · · · vk is a causal pyramid of length 2D + 1. Let q = k − 1. By definition
there exists (vk, tk(2D)−k) �N · · · �N (v0, t

0
2D).

In both cases, we have (vq, tq2D−q) �N · · · �N (v0, t
0
2D) and vq+1 executes a rule of

Rcvg before (vq, tq2D−q). We will now prove that there is a contradiction. The fact that
one node near the pyramid executes a convergence rule before a dependance relation path
�N necessarily implies that v will receive a non-zero value for da before the end of its
N -sequence, which will force it to execute Rend. This is contradictory with the definition
of final descent.

Let us consider γt′
q+1
−→
T
γ′t′
q+1

the first computing step in which vq+1 execute a rule of
Rcvg in εs. Remark that in γ′t′

q+1
, davq+1 = 2D + 2.

Let us now define, t′i, ∀i ≤ q, such that γt′
i
−→
T
γ′t′
i
is the first computing step of γ′t′

i+1
−→
T

· · · in which vi executes Rwait. Such integers exist since (vk, tk(2D)−k) �N · · · �N (v0, t
0
2D)

exists, and we have ∀i, t′i ≤ ti2D−i.
Let us remark that davi can decrease only when vi executes Rwait, and that according

to Lemma 4.1, a node cannot execute more than twice Rwait or RNcvg before its neighbors
execute Rwait or RNcvg. Thus, in γt′q , davq+1 ≥ 2D, so in γ′t′q , davq ≥ 2D − 1. By induction,
we obtain that ∀i, in γ′t′

i
, davi ≥ 2D − 1− 2(q − i). Since q ≤ k − 1 ≤ D − 1, in γ′t′0 , dav ≥

2D − 1− 2q ≥ 1.
Let us now consider the first rule executed by v at time t > t′0. As daγf−1

v = 0, t < f .
This rule does not belong to Rcvg according to Lemma 4.10. As req

γt′
k

v = wk, this rule
cannot be Rstart. Therefore, v executes Rwait at time t, and since daγtv 6= 0 and reqγtv = wk,
v also executes Rend at time t. There is a contradiction with the definition of γs.

We can now use Theorem 4.6 to prove that maximal executions of T satisfy the last
condition of Specification 4.2: Condition 3-ii

Theorem 4.7
Let ε = γ0 −→

T
· · · be a maximal execution such that ∃v ∈ V, t ≥ 0 : reqγtv = on, and let

t′ > t such that reqγt′v = off.
Then A has terminated in γt′ .

Proof : Let us first make the same reasoning as in the proof of Theorem 4.4: according to
Lemma 4.6, and since U is a unison algorithm, v is activated at least once after γt, and
when first activated it executes Rstart. Let us call γact −→

T
γact+1 that computing step.

Let us now consider the subexecution ε′ = γact −→
T
γact+1 −→

T
· · · .

By definition, t′ occurs after γact in ε, since reqv = on as long as v does not execute
Rstart. More precisely, the first t′ such that reqγt′v = off is γf .
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The execution ε′ satisfies the premises of Theorem 4.6 and thus we have γs ∈ Γcvg. In
particular, A has terminated in γs. Since γt′ occurs after γs, and since termination of A is
a closed property, this guarantees that A has terminated in γt′ .

4.5.4 Time complexity

Definition 4.12 (Full Round)
Recall that the sluggishness of U is the maximal number of transparent rules a node
can execute between two normal rules, in a stabilized execution. A full round of an
execution is defined as 1 + S(U) rounds.

The notion of full round is the suitable notion to evaluate the time of response of our
snap-stabilizing algorithm, since Algorithm U is for us a black box. Recall that, for unison
algorithms presented in [CFG92, BPV04, DJ19, EK21], the notion of full round is identical
to the more classical notion of round.

Theorem 4.8
Let v be a node, and let ε = (γ −→

T
γ0 −→

T
· · · ) be a maximal execution such that γ ∈ Γcvg

and in γ −→
T
γ0, v executes Rstart. Then f occurs in O(D) full rounds after γ.

Proof : Theorem 4.2 guarantees that all the rounds are finite.
During one full round, all nodes u such that ∀w ∈ Nu, clockw ∈ {clocku, clocku + 1} are

activated and execute rule Rwait. These activations imply that minw∈V clockw increases by
at least one each full round. Since, at any moment, the maximal difference between the
clocks of two nodes is D, we obtain that ∀k ∈ N, during D + k full rounds all the nodes
are activated at least k times. After D+ 1 full rounds, all the nodes are activated, and the
following property holds for any node u in any configuration: dau = maxw∈V daw ∧ dau >
0⇒ UnisonOnly(w). In other words, the nodes with maximal value of da are enabled for the
rule Rwait. This implies that the maximal value of da decreases by at least one in each full
round. This ensures that after at most 3D + 3 full rounds, the system is in Γda. Moreover
after D + 2D + 2 more full rounds, all the nodes are activated at least 2D + 2 times, so v
executes Rcpt 2D + 1 times, after which it executes rule Rstop.

We established that f occurs in at most 6D+ 5 = O(D) full rounds after the execution
of Rstart by v.

4.6 Conclusion

In this chapter, we introduced a generic, deterministic, snap-stabilizing, silent algorithm
that solves Termination Detection in asynchronous networks. Our solution works assuming
an unfair scheduler. It has the nice feature of working in anonymous networks, but requires
that each node knows (an upper bound on) the network diameter D. The space complexity
of our solution is O(logD) bits per node, and provides an answer in O(max(k, k′, D))
rounds, where k and k′ are the stabilization time complexities of the observed and the unison
algorithms, respectively. We have endeavored to provide a generic algorithm that works with
any self-stabilizing unison algorithm in the literature, e.g., [CFG92, BPV04, DJ19, EK21].





Chapter 5

Optimal Self-stabilizing Token
Circulation in DODAGs

It is a love based on giving and receiving
As well as having and sharing
And the love that they give and have is shared and
received
And through this having and giving and sharing and
receiving
We too can share and love and have and receive

Reverend Tribbiani
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5.1 Introduction

In this chapter, we are interested in the problem of Token Circulation in a distributed
system. The objective is to maintain one single token circulating in the network, from one
node to another, the token fairly visiting every node infinitely often. It is one very common
way to achieve global mutual exclusion, a fundamental problem in distributed systems.
This problem inherently requires that the token holder can designate a unique neighboring
node to pass the token to. This single task is actually, challenging as soon as we consider
wireless networks, in which each transmitted message is identically received by all of the
transmitter’s neighbors.

The contribution of this chapter is fourfold. First, we present the first token circula-
tion algorithm for rooted wireless networks that uses only O(log logn) bits per node for
communications. This is an exponential improvement compared to the classical addressing.
Second, our algorithm assumes a Destination-Oriented Directed Acyclic Graph (DODAG)
spanning the network. DODAGs are very desirable in wireless networks because, conversely
to rooted spanning trees, they allow multiple communication paths and do not require that
nodes distinguish one unique parent. Third, our algorithm has the very desirable property
of being self-stabilizing, i.e., starting from a configuration where zero or more than one
token circulate in the network, the system is guaranteed to eventually behave correctly, i.e.
a unique token eventually fairly visits every node infinitely often. Finally, we show that our
algorithm is optimal in terms of space complexity. Meaning that, for every n-node wireless
network, no token circulation algorithm can use less than Ω(log logn) bits of memory per
node, even given a rooted spanning tree and even without considering self-stabilization.

5.1.1 Motivation

Token Circulation, also referred to as token passing is a fundamental problem that consists
in guaranteeing that a single token circulates from one node to another, the token fairly
visiting every node infinitely often. It captures the objective of perpetually and fairly
allocating a resource to the nodes of a distributed system, while insuring mutual exclusion.
We are interested in self-stabilizing [Dij74] token circulation in distributed systems. A
typical example of such systems is the celebrated Dijkstra’s stabilizing token ring algorithm,
which guarantees that a unique token is circulating among the n nodes of a ring-shaped
network.
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A self-stabilizing algorithm must return the system to a correct behavior whatever its
initial configuration. In the context of token circulation, examples of initial arbitrary system
configurations are scenarios in which no token exists in the network, or several tokens exist in
the network. To satisfy the requirement of self-stabilization, a distributed token circulation
algorithm must return in finite time the system in a configuration that contains exactly
one token. It must actually do more than that, as the presence of a unique token is not
sufficient. Indeed, the algorithm must also guarantee that, eventually, this unique token is
circulating fairly among the nodes. Following the seminal work of Dijkstra [Dij74], token
circulation has been widely investigated deterministically in the context of self-stabilization,
on rings [BP89, GH96], on acyclic networks [BGW89, Gho93, PV07], and on arbitrary
shaped networks [HC93, DIM93, JB95, DJPV00, CDPV06, PV07, CDV09], to quote only
a few.

All the above algorithms were written in the state model [Dij74], where the communi-
cations between the nodes are modeled by the ability for a node to atomically read the
content of its neighbors registers, and update its own registers. Hence, they all assume
wired distributed systems, i.e. the port-known state model SPK in which nodes can address
a message to exactly one of their neighbors. This hypothesis is particularly helpful for the
problem of Token Circulation, where sending the token to exactly one neighbor is crucial
to maintain the unicity of the token.

In recent years wireless network technology has gained tremendous importance. It not
only more and more replaces so far ’wired’ network installations, but also gives rise to new
applications and with them, new tech and soft stacks enabling specific communications.
Wireless networks often involve devices with small memory and/or battery. Therefore,
designing memory efficient algorithms for token circulation in wireless networks is essential.

5.1.2 Related Work

The port-known state model SPK has the desirable advantage to achieve algorithm design
that does not necessarily need global information and to facilitate maintaining a global
covering structure, as tree networks (by maintaining a pointer parent and, if necessary,
some pointers descendants). Since Dijkstra’s seminal work on ring-shape networks, this
model has been widely used for various problems. Refer to [Dol00, ADDP19] for more
algorithms.

Note that some of the token circulation algorithms written in SPK are interested in
optimizing the space complexity. They achieve O(log δu) bits per node (recall that δu is
the degree of u) [Dij74, BP89, GH96, BGW89, Gho93] on rings or chains, [PV07] on
trees, and [DJPV00] on arbitrary networks. Except [BP89] that assumes a uniform prime
size ring, all the above algorithms require a root node, i.e., a node with a particular local
algorithm with respect to the other nodes.

Unlike SPK, the port-unknown state model SPU introduces no local assumption for a
node to select one of its neighbors, except its identifier. This means that given a pair of
neighbors u and v, v has no way to know the port number of u that links u to v. This
model fits more to wireless networks than the first variant. By contrast with the first
variant where a node has the possibility to select a specific neighbor with the use of a
pointer, in this model, with local information only, a node has a priori no way to know
whether it is the specific recipient of a message sent by one of its neighbors. The lack of
discernment between neighbors makes the design of algorithms much more difficult, which
often require the knowledge of extra information used by each local algorithm, as the use
of node’s identifiers or the construction of an underlying vertex coloring. Token circulation
algorithms for SPU are proposed in [BDF20, BBD18, BPBRT09]. All these articles work on
tree topologies and require O(logn) bits.
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Still in SPU, it has been shown that many standard “one-shot” tasks like leader election
and spanning tree construction can be constructed in a self-stabilizing manner with memory
O(log logn + log ∆) bits in any n-node network with maximum degree ∆ [BT18, BT20].
This indicates that some tasks can be achieved in SPU with only sublogarithmic memory. As
the results established in Chapter 3 suggest, it is much harder to reach o(log logn) memory.

5.1.3 Contributions

In this chapter, we address the problem of token circulation in SPU on a particular class of
graphs, Destination-Oriented Directed Acyclic Graphs, DODAG for short [Mar65]. Recall
that DODAGs are bi-directional graphs in which each edge is given an orientation, so that
the resulting graph contains no loop, and has exactly one root: a node with only incoming
edges from its neighbors. Our interest for DODAGs is multifold. First, it provides the nodes
with a weak notion of sense-of-direction [FMS03]. Second, it relaxes the notion of rooted
spanning tree by allowing the nodes to have more than a single parent, which increases the
difficulty of token circulation. Third, DODAGs avoid loops, and provide the network with
a single sink, which fit with the standard semi-uniform model [Dol00] for self-stabilization
— every node with the same degree executes the same program, except one. Last but
not least, DODAGs are the basic structures used in practice by RPL (Routing Protocol
for Low power and lossy networks [WTB+12]), which is the standard routing protocol for
IPv6-based multi-hop wireless sensor networks [TR21].

We propose a self-stabilizing algorithm for the token circulation problem on DODAGs.
Our algorithm works under the strongest adversary, the unfair scheduler, which can ac-
tivate any subset of the enabled nodes at each step, without any fairness requirements.
Our algorithm requires only Θ(log logn) bits per node, which is similar to the complexity
of [BT18, BT20], without the dependence on the degree of the graph ∆. We prove that this
space complexity is optimal for the token circulation in SPU, even under a least challenging
scheduler, and even on simpler classes of graphs, such as trees.

To obtain such complexity, we use a similar technique than [BT18, BT20] for the commu-
nication of identifiers, which is basically bit-by-bit communication. Although it is possible
to communicate an identifier by small pieces, it remains impossible for nodes to store the
different identifiers of their neighbors, and to directly address one of them. Therefore, we
designed an additive mechanism that relies on that bit-by-bit communication to allow the
token holder to give the token to one of its children, and to somehow remember it did once,
so that when its child sends it back, it can give the token to one other child, and therefore
achieve the fairness property.

Chapter Outline The rest of the chapter is organized as follows. We first introduce
specific notations, definitions, and formal structures on which our work relies. Then in
Section 5.3 we present our token circulation algorithm. Section 5.4 contains the proofs of
the validity and optimality of our algorithm. We prove in particular that our algorithm is a
self-stabilizing algorithm for the fair token circulation problem. We make some concluding
remarks in Section 5.5.
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5.2 Model and Definitions

5.2.1 General Model

Our token circulation algorithm is designed for DODAGs (see Section 5.2.2), which are
graphs that are inherently semi-uniform. We consider the port-unknown state model SPU,
and suppose that nodes are given unique identifiers taken in [1, nc]. Our algorithm does
not require that all identifiers have the same length, but we make the reasonable hypothesis
that all identifiers have at least one bit, even a 0 bit. Finally, our algorithm works under
the most challenging adversary, the unfair distributed scheduler, which activates any subset
of the enabled nodes at each step, without any fairness requirement.

5.2.2 DODAGs

In this thesis, we only consider graphs in which the communication links are not oriented,
in the sense that the communication is bi-directional. Some networks are nevertheless
structured, sometimes hierarchically, DNS servers, routers to quote a few. This hierarchy
is materialized by the fact that nodes can distinguish messages sent by neighbors that
dominate them, from messages sent by neighbors that they dominate.

In tree networks, nodes different from the root have exactly one node which dominate
them. This hypothesis is very strong, and in particular it does not allow any redundancy,
which could be useful if faults occur. We consider structures that do not require the unicity
of the parent.

Two characteristics are desirable for such organized network, being loop-free, and being
rooted. An oriented graph is loop-free if there does not exist any path along the directed
edges from one node to itself, and it is rooted if there exists one node (necessarily unique
by loop-free property) that can reach any other node by a path along the directed edges.

Similarly as Dijkstra’s stabilizing token ring algorithm [Dij74] assumes a consistent
notion of left and right in the ring network, we assume that each edge {u, v} ∈ E is
provided with a direction, from u to v, or from v to u, so that the resulting directed graph
form a Destination-Oriented Directed Acyclic Graph [Mar65] (DODAG), i.e., a Directed
Acyclic Graph (DAG) with a unique root (see Fig. 5.1).

R

A B C

D E F

Figure 5.1: A destination-oriented directed acyclic graph (Do).

Let us be more formal:
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Definition 5.1 (Destination-Oriented Directed Acyclic Graph, DODAG)
A DODAG is a tuple D = (G,→) where G = (V,E) is a graph and → is a relation
between the nodes of G which:

• covers the edges of G: (u→ v ∨ v → u) ⇐⇒ {u, v} ∈ E,

• is acyclic: there does not exist any path from one node v to itself w.r.t. →, and

• is rooted: there exists one node r ∈ V such that ∀v ∈ V, v →∗ r.

The nodes of D are V , and the edges of D are →.
By the acyclic property, such a node r is unique, and is called the root of D. Also

by the acyclic property, for any edge {u, v} ∈ E, we have either u → v or v → u but
not both.

In practice, the relation → is implemented at the layer of the local port numbers of the
nodes. A DODAG is a graph in which the port numbers can be split into two disjoint sets
port+ and port−, and the relation → is defined by u→ v ⇐⇒ portu(v) ∈ port+.

In the latter, we often need to consider, on one node v, the set of its neighbors that
precede it, and the set of neighbors that it precedes. We call those sets the parents and the
children of the node, by analogy with the lexical field relative to trees.

Note that contrary to what is possible in trees, nodes may have several parents in
DODAGs.
Definition 5.2 (Parental Relationships in a DODAG)

Let D = (G,→) be a DODAG.
We call parents of v in D the set P(v) = {u ∈ Nv : v → u}.
We call children of v in D the set C(v) = {u ∈ Nv : u→ v}.

Remark 5.1
The information of the set of the parents of each node is equivalent to the information of
the relation →. In practice, we define a DODAG by the parental relationship it induces
more than by expliciting the relation →.

It will be useful in the latter to reason on sub-structures of the DODAG in which our
algorithm is executed. In most cases, the sub-structures considered also have the desirable
property of being DODAGs. A sub-DODAG of D is any DODAG whose nodes and edges
are a subset of those of D.
Definition 5.3 (Sub-DODAG of G, Anchor)

A tuple D′ = (G′,→′) is a sub-DODAG of D = (G,→) if

• D′ is a substructure of D: (V ′ ⊆ V ) ∧ (→′⊆→) ∧ (→⊆ V ′ × V ′).

• D′ is a DODAG

Remark that the root of D′ may not be the same than the root of D. To avoid being
misleading, we call the root of a sub-DODAG an anchor.

Remark 5.2
Following what was stated in Remark 5.1, we will not use relation →′ to define sub-
DODAGs in practice, and rather use the underlying set of parents and children, PD′
and CD′ .
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One typical example of sub-DODAG is the restriction of the DODAG to the nodes which
can reach one particular node (other than the root) in (G,→).

Definition 5.4 (Ga DODAG under a)

Let (G,→) be a DODAG, and let a ∈ V .
We denote by Va the nodes that can reach a by →: Va = {v ∈ V : v →∗ a}. We

denote by Ea and→a the restrictions of E and→ to nodes of Va: Ea = E ∩P2(Va) and
→a=→ ∩(Va × Va).

We denote by (Ga,→a), or simply Ga, and call the DODAG under a, the sub-
DODAG ((Va, Ea),→a).

a

Figure 5.2: Example of a DODAG under the anchor a in blue, and of a sub-DODAG of G
in red

Although DODAGs are the structure in which our algorithm and our proofs are estab-
lished, it is often simpler to reason on linear structures than on DODAGs. In the latter,
we will consider branches of DODAGs, which are descending paths from one node to one
of its descendants.

Definition 5.5 (Branch of a DODAG)
We call branch of a DODAG D = (G,→) a path of nodes in D (which is a path of

nodes in G w.r.t. →). For the sake of readability, we denote branches by starting at
the highest node. For example, if w → v → u is a path in D, then we say that uvw is a
branch of D.

We denote branches by the letter B.
A branch B = v0v1 . . . vk of a DODAG D is maximal if v0 is the root (or the anchor)

of D, and if vk does not have any children in D.

Given a sub-DODAG ofD, it will be interesting to consider the longest branches it shares
with D. These longest branches are called projections of the sub-DODAG on branches.

Definition 5.6 (Projection of a sub-DODAG on a Branch)
Let us consider a DODAG D, and a sub-DODAG of D with anchor a, Da. Let
B = v1v2 . . . vk be a maximal branch of Ga, the DODAG under a. In particular, v1 = a.

We denote Da(B), and call the projection of Da on B the longest branch of Da that
coincides with B:
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Da(B) = v1v2 · · · vj where ∀i < j, vi+1 ∈ CDa(vi) and vj+1 /∈ CDa(vj) (recall that
v ∈ CDa(u) ⇐⇒ v →Da′ u).

Remark 5.3 (DODAG ≡ Do)
In the latter, we consider different types of DODAGs, depending on their purpose. For
the sake of readability, we will use Do as an alias for the classical notion of DODAG,
and CDo, WDo, FDo as aliases for particular types of DODAG.

5.2.3 Bit-by-Bit Communication of Identifier

In SPU, nodes cannot communicate a message to one single neighbor without using the
fact that identifiers are, at least locally, unique (this is formally proven in Section 5.4.4).
In other words, nodes must communicate their identifier to their neighbors to achieve the
circulation of one single token. Hence, the size of an identifier is Θ(logn) bits, while we
aim at designing a sub-logarithmic algorithm.

To reach a Θ(log logn) memory, [BT18] make the nodes communicate their identifier
by smaller pieces. In this seminal paper, the authors used a function called Bitv(i), which
returns the position of the ith most significant bit equal to 1 in idv.

We use a similar technique, but for the sake of simplicity, we slightly modified this func-
tion for this work, and send the identifier bit-by-bit, which does not change the asymptotic
complexity. Essentially, nodes do not communicate their entire identifier at once, but when
asked for, they send to their neighbors the value of their i-th bit (which is 0 or 1). Although
the value of the bit is 1-bit long, we must take into account the fact that the position of
the bit which is asked, i, is now part of the message.

This position variable i takes value between 1 and the maximal length of an identifier,
which is in Θ(logn). Therefore, it is encoded on Θ(log logn) bits. To simplify, we suppose
that all nodes are given a local function Bit that associates to each position, the value of
the bit at this position in their identifier. If the position asked is bigger than the length of
their identifier, then the function simply returns ⊥. Suppose for example that node v has
identifier idv = 1011. Then we define the function Bitv by:

Bitv(i) :=


1 if i=1
0 if i=2
1 if i=3
1 if i=4
⊥ if i > 4

Nodes keep storing their own identifier in their immutable memory, but what is com-
municated to the neighbors through the immutable memory is the tuple (i, bit), which
requires Θ(log logn) bits. Remark that since the identifiers are globally unique, the differ-
ent functions Bit are also globally unique, although they can coincide for some values of
i.

5.2.4 Well-Founded Sets

Recall that an ordered set (M,�) is well-founded if there does not exist an infinite sequence
of elements of M , v0v1 . . . such that ∀i ∈ N, vi+1 ≺ vi. Such relations are very desirable
to prove termination of algorithms, or their convergence. In the latter, we consider an
arbitrary well-founded set (M,�).
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Given (M,�), we can define an order on tuples of elements of M , which is itself well-
founded when restricted to sequences of length at most k, for any k.

Definition 5.7 (Lexicographic Order)
For any k ≥ 1 we define the lexicographic order on Mk induced by �, and denote �klex,
by:

(u1, . . . , uk) ≺klex (v1, . . . , vk) ⇐⇒ ∃i ∈ [1, k] :
{

(u1, . . . , ui−1) = (v1, . . . , vi−1)
ui ≺ vi

In our proof, we are sometimes led to compare sequences of elements of M which have
variable length. We extend the definition of lexicographic order to sequences of arbitrary
length, which corresponds to the alphabetical order. The resulting order is itself well-
founded.

Definition 5.8 (Alphabetical Order)
The lexicographic order on (possibly empty) sequences of elements of M induced by �,
is denoted �α and defined by:

(u1, . . . , uk) ≺α (v1, . . . , vl) ⇐⇒

 ∃i ≤ min k, l : (u1, . . . ui) ≺ilex (v1, . . . vi)
∨
k < l ∧ (u1, . . . , uk) = (v1, . . . , vk)

5.2.5 Token Circulation

In this chapter, we consider the problem of fair token circulation, which requires that one
unique token perpetually circulates through the network.

The part of the specification of the token circulation problem which corresponds to the
existence and unicity of the token is not complicated to state, and is basically what we
made in Chapter 3 when we gave a specification for the leader election problem. It boils
down to defining a local predicate on nodes, which represents the fact that the token is held
by that node, and guaranteeing that the predicate is evaluated to true on exactly one node
in each configuration. This first predicate will be denoted by T , for token.

It is a bit harder to formally specify the fairness circulation property. For a token
circulation to be fair, one could expect that all nodes have the token at the same rate.
But the more a node has children, the more it will receive it back from its children before
sending it to its other children. We must be more specific on what fairness is. We define
a more restrictive local predicate, which represents the fact that the node has the token
and is allowed to use it to access the resource, the service,. . . This second predicate will be
denoted by R, for resource access.

Now that we have this second predicate, we only have to guarantee that, between two
configurations in which one particular node has access to the resource, then all the other
nodes also have it, and exactly once. In practice, the node that we consider to delimit
fairness is the root. A sub-execution in which the root receives the token for access, then
drops it, and then receives it back for access, is called a round, or a circulation round.

Definition 5.9 (Round according to R)
Let R be a local predicate, and let ε = γ0 → γ1 → · · · be an execution.

A sub-execution ε′ = γi → · · · → γj of ε is a round according to R if:
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• ¬Rγi−1(r)

• Rγj+1(r)

• ∃i ≤ k < j such that

– ∀t ∈ [i, k], Rγt(r)
– ∀t ∈ [k + 1, j],¬Rγt(r)

Note that by construction, circulation rounds perfectly follow each other in any execution.
We say that a circulation round is fair if for any node v, there exists exactly one con-

tinuous sequence of configurations in which v has access to the resource.

Definition 5.10 (Fair Round according to R)
Let ε = γ0 → γ1 → · · · be an execution, and let ε′ = γi → · · · → γj be a round according
to R.

ε′ is fair if for any v ∈ V , there exist i ≤ t1 < t2 ≤ j such that

• ∀t ∈ [t1, t2], Rγt(v)

• ∀t ∈ [i, j] \ [t1, t2],¬Rγt(v)

We can now formally define the specification of Fair Token Circulation:

Specification 5.1 (Token Circulation)
T C (Token Circulation) is defined by the existence of two local predicates T and R
such that ¬T ⇒ ¬R.

A configuration γ is correct if it contains one unique token

UT C(γ) ≡ ∃!v ∈ V : T γ(v)

An execution ε = γ0 → · · · is correct if

1. All its configurations are correct: ∀i ≥ 0, UT C(γi).

2. ε is infinite and can be divided into an infinite number of rounds according to R.

3. All of these rounds are fair

Definition 5.11 (Circulation Rounds)
In the context of Token Circulation, we call Circulation Round a round according to
the predicate R.
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5.3 Algorithm

The general idea of our token circulation algorithm is to implement a perpetual Depth-First
traversal from the root. The root sends the token to its child with maximum identifier, which
does the same, until a leaf is reached. Then, the leaf sends the token back to its parent,
which visits its other children, until all of them are visited, then it sends it back to its own
parent, and so on.

Nodes have to remember which of their children were already visited, in order to send
the token to unvisited children, or to send it back to a parent. Classically, we implement
that with a variable color which can take two values. Nodes only send the token to the
nodes that do not have the same color as themselves, and as soon as one node receives the
token from a parent, it changes its color, and therefore becomes visited.

5.3.1 Issues Relative to the Communication Model and Partial So-
lutions

The main difficulty to design a token circulation algorithm in SPU with Θ(log logn) bits
per node is that nodes cannot store any pointer to one neighbor.

This is yet crucial to avoid duplicating the token when sending it to one child. As ex-
plained above, the presence of unique identifiers, and the bit-by-bit communication scheme
will allow us to implement such a behavior. Figure 5.3 presents how a token may circulate
from top to bottom in what we call a triangle configuration.

a

b

c

a

b

c

a

b

c

Figure 5.3: Scheme of the circulation of a token from top to bottom in a triangle, with
idb > idc. The node holding the token is colored in blue.

But a second issue comes with the return of the token. Indeed, nodes cannot store
a pointer to the parent from which they received the token. For fairness concerns, it is
necessary that the parent that receives the token back from one node is the one that sent
it to that node. Indeed, in the scheme presented in Figure 5.3, it might be that node b
has other unvisited children after c, let us say d. If a receives the token directly from c,
then it won’t send it to b before the next circulation round, which is likely to be a simple
repetition of what we just described. Therefore, d would never receive the token. We show
on Figure 5.4 how this returning should be.

As we said previously, a node cannot remember from which of its parents it received
the token. Therefore, from c’s point of view, a and b are indistinguishable. This implies
that the responsibility to not duplicate the token belongs to a and b. The idea is that
each node that has sent the token to its children, and which has not received it back yet,
keeps that information in its variables, meaning that it is involved in a non-terminated
circulation. Considering this new information, a and b now differ in the sense that, from
b’s perspective, when c offers the token up, it does not have any other children involved in
a token circulation, while from a’s perspective, it also has b as a child which waits for the
token. Therefore, only b will take the token when c offers it.
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Figure 5.4: Scheme of the return of a token to the right parent in a triangle for fairness
concerns.

5.3.2 General Ideas of our Algorithm

Implicit Repair as much as possible One very fundamental idea of the design of our
algorithm is to repair the nodes as rarely as possible. One first reason is that the algorithm
is already highly complex, due to the numerous tasks that nodes must fulfil to achieve fair
token circulation. Any additional rule designed to repair an inconsistent situation would
complicate the understanding of both the algorithm and its proof. One second reason is
that for most cases, it in unnecessary to repair nodes, since if the algorithm is resilient
enough, then the token will circulate in the network. For most cases, the simple presence
of the token and the rules that allow fair executions will allow the network to eventually
stabilize. There are few exceptions i.e. repairing rules that are necessary for convergence.

Fairness Property: Coloring the Nodes As we said above, we use a one-bit variable,
referred to as color, to achieve the fairness requirement. The idea is that one node that has
the token considers that its children with the same color already received it. Conversely,
a node that has the same color as a parent offering the token will ignore it. Each time a
node receives the token, it switches its color and becomes visited. Once the root receives
the token from one child, and notices that all its children have its color, then it simply
switches it color, and a new circulation round starts. This guarantees that one node can
only receive the token once at each round.

In consistency with the previous paragraph, the color of the node is only checked from
the child to the parent, and not the opposite. This means that if a parent v has a child u
from the opposite color which offers the token to its ancestry, then v will accept the token,
although it does not match a regular execution.

Even if we start in a configuration where the color of the nodes is inconsistent, after
some circulation rounds, all the graph will eventually be reached by the token. Indeed,
at each round, the color of the token switches and thus nodes that were ignored for being
supposedly visited are now seen as unvisited, and therefore receive the token at once. This
is depicted in Figure 5.5.

Choice of the Child: Identifier-Based Local Election To determine which of its
children will receive the token, the parent progressively eliminates them, until only one
remains. When it has exactly one child running for the token, it can finally declare that
it gives the token. All the children that were eliminated ignore that message, and the one
winner can take the token from its parent, and therefore no duplication of the token can
occur.

The elimination process relies on the identifiers of the children, and on one additional
variable which allows unvisited nodes to declare themselves as negotiating, or as losers of
the negotiation. Step by step, the parent asks for the value of the i-th bit of the identifier of
its children, and when all have answered, it reveals the biggest value it sees. All the nodes
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Figure 5.5: Increase of the area in which the token circulates starting from an arbitrary
configuration. Shots are taken just before the root switches its color.

that have not announced this value consider themselves as eliminated until their parent
allows them to negotiate again. This moment, when the parent allows its children who lost
the election to negotiate again happens immediately after the winner of the election takes
the token.

1,1

30 13 23

11101 01101 10111

2,1

30 ��ZZ13 23

11101 10111

OK

30 ��ZZ13 ��ZZ23

OK

30 13 23

Figure 5.6: Process of the designation of one child to give the token to. The parent reveals
the biggest bit announced, then the children with small identifiers quit the negotiation, and
in the end the winner takes the token and the losers are ready to negotiate again.

Preventing Livelocks and Deadlocks due to Several Circulating Token: Coloring
is not Enough If we consider executions in which one single token is circulating in the
network, then the previous is basically enough to ensure fairness and unicity of the token.
One variable is used to remember whether the node is still negotiating for the token, and the
color of the node states whether the node has already been visited. Hence, we must design
an algorithm which achieves fair token circulation from an arbitrary initial configuration.

Things become more complicated when several tokens are circulating. Even with only
two tokens, we can design pathological configurations, and especially if the two tokens
are of different colors. What we must absolutely prevent is situations in which one node
alternatively takes a red token from one parent, sends it back later, then switches color
and takes the green token from its other parent, sends it back, and then takes the red one
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again, and so on. With two such children, we can design scenarios where the tokens are in
a livelock, and the circulation is blocked.

Note that nodes can neither simply ignore the token, for it would create a deadlock:
both tokens would be blocked.

To avoid such situations, we force a node that has received the token from one of its
parents to not being available for a new token until this parent has sent the token back
to its own parent. This requires being more subtle in how we define the election-related
variables on the children.

Non-Atomicity of Token Passing Figure 5.6 presents a simplified version of what is
actually made. Indeed, at each step of the token passing, from one node to the other,
numerous tasks must be fulfilled in order to guarantee the consistency of the network, such
as acknowledging the receipt of a token, or resetting the variables of other children, for
example. This non-atomicity reflects on the variable used to encode the token.

In a model where nodes can implement pointers to their neighbors, the token can be
implemented with only two values (present or absent). In our model, two states is not
enough, we give more details on our variable token in Section 5.3.3.1.

5.3.3 First Tools for the Algorithm

5.3.3.1 Variables

Color of the Token To achieve fair perpetual circulation, and in particular to avoid
nodes to take the token twice from two different parents, we use a variable color which
takes two values.

cv ∈ {red, green}

Only one operation is used in this variable, which is switching its value from red to
green, or from green to red. This operation is denoted by cv := ¬cv.

State of the Token To achieve atomicity of the operations required to maintain the
network in a consistent state, we need to define a variable which takes eight different
values.

tokv ∈ {⊥,F, •,�,	, ↓, ◦, ↑}

Let us give some explanations on those different values.
The state tokv = ⊥ corresponds to nodes that are away from the current token cir-

culation. For example, when the root has the token, all the other nodes are such that
tokv = ⊥. Reciprocally ⊥ is a value that cannot be taken by the root, which would mean
that no token is circulating in the network.

When a node that is not involved in the current token circulation receives the token from
its parent, it simultaneously switches it color, and switches its token value to tokv =F.
This value corresponds to the moment where one node receives the token from its
parent, which is supposed to happen exactly once in each circulation round. Therefore, this
value will be particularly interesting for the design of the predicate R which will correspond
to the implementation of Specification 5.1.

When the parent of v has finally left the token (recall that such operations are not
atomic), v can start negotiating with its children to decide to which one it will send the
token. To do that, it sets tokv = •, and keep that state until one winner is elected.



5.3. Algorithm 81

Once a winner u is elected i.e. when all nodes of a different color than v have declared
themselves losers, u excepted, v updates tokv =� to offer the token to one of its
children. After that, the child u that won the negotiation can update its own variable
toku to F.

After its child u took the token, v updates its variable to tokv =	, to let its chil-
dren which lost the negotiation reset their variable in order to be ready for the next
negotiation, when v will receive back the token from u.

When all the children of v have finished resetting their variable, v sets tokv =↓, which
indicates that it is a node involved in a token circulation, but that the token it had is
below it, to one of its descendants.

After u has finished the token circulation below it, it sets toku =↑, to send the token
back to v. If nothing wrong happened, v has only one child with a value tok 6= ⊥ at that
moment, and therefore can take the token. To do so, it updates tokv = ◦, and then waits
for u to effectively drop the token, by setting toku = ⊥.

After that, v restarts a negotiation, setting tokv = •. After some time, v has no more
children of a different color. When this happens, v offers the token to its parent w by
setting tokv =↑. Before effectively dropping the token, v waits that w acknowledges the
token by updating its variable to tokw = ◦, but it also waits for all of its children to update
their variable linked to the negotiation.

Indeed, in the current situation, all the children of v have successively won the token. As
explained above, those nodes are prevented from taking one token of another color, to avoid
livelocks. But now, the circulation of the token of v is terminated, so this becomes irrelevant.
Worse, if nodes do not reset their variable to a value that allows them to negotiate, then
they will all be ignored when a token from another color will come the next round. When
all the children of v have reset their variable, v finally drops the token, and sets tokv = ⊥.

Remark that for a node v with tokv /∈ {⊥, ↓}, there is a strong pressure on the possible
values of toku, where u is a child of v, and most combinations are actually not supposed
to occur in an execution.

Figure 5.7 represents the order between the different states taken by the variable tok.

Sub-diagram of the root

⊥ F • � 	 ↓ ◦

↑

Figure 5.7: Transition diagram for variable tokv.

Negotiation Variables: Bit-by-Bit Communication To negotiate for the token,
nodes send bit-by-bit the value of their identifier to their parent. Two variables are re-
quired for that. The first one, ph, is used to communicate the position of the bit that is
currently asked. It takes values between 1 and N , where N is the largest length of an
identifier in the network, and thus N ∈ O(logn). The second variable is b, and is used to
communicate the value of the bit that each child has, and for the parent to communicate
the highest value it has seen. The variable bv is used to communicate the values given
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by function Bitv. It takes values in {0, 1,⊥}, where ⊥ is the value that corresponds, for
children, to the absence of a bit at that position (the identifier is too short), and, for the
parent, to the request of the value of the bit. For simplicity, we denote the tuple (phv, bv)
by the notation idv.

The general scheme is the following: first the parent sets idv = (1,⊥). Then all the
children answer with the value of their first bit, by setting idu = (1, Bitu(1)). After all the
children have answered, v sets idv = (1, b) where b is 1 if v saw a 1 in its children, and
0 otherwise. Then, all the children that do not have answered (1, b) lose the negotiation.
After all losers have left the negotiation, v sets idv = (2,⊥), and so on until only one node
remains.

Negotiation Variables: State in the Negotiation Process In addition to the identi-
fier variables ph and b, we need a variable to remember where each node is in the negotiation
process. This variable is denoted by play and takes four values:

playv ∈ {P, L, W, F}

Nodes v such that playv = P are the nodes that are available for a negotiation process
with any of their parent that has a different color. They are the only nodes which can
participate in a negotiation, the others have either already won, or lost. Note that P also
stands for players.

When a node v loses the negotiation, it sets playv = L, and thus becomes a loser, and
is not involved in the current negotiation process anymore.

When a node v wins the negotiation and receives the token, it updates its color, its
variable tokv, and it also updates playv to W, to signify that it won a negotiation. After
that, and until its parent sends the token back to its own parent, v won’t negotiate with
any of its parents. This guarantees that whatever the initial configuration of the system, v
will not create oscillations between two tokens, and therefore no livelock.

We need the fourth value F to overcome a tricky situation. Recall that when a node u
sends back the token to its parent w, it first waits for its children who won the negotiation
(i.e. such that playv = W) to reset their variable playv to P, so that they will be able to
negotiate during the next circulation round. But in triangle configurations, it might be that
one such node v with playv = W has a common ancestor, with its parent u, as depicted in
Figure 5.8.

In such a situation, v should not update playv = P. Indeed if it does, then from w’s
perspective, it is exactly as if we never introduced the value W: it has one child who won
the token and is at P. In particular, we can now create a livelock at the level of w.

But v can neither keep its value at W, for it creates a deadlock with its parent u.
Therefore, v fakes resetting its variable playv, by setting it to F, which is understood by
its parent with toku =↑ as a P value, but both v and its grandparent w do recall that v has
already had the token. This requires that as soon as possible, node v update its variable
playv = W, otherwise it could miss the opportunity to eventually reset its variable at P,
notably if w sets tokw =↑.

Non-Redundancy of cv and playv = W Although the alternating between two colors
and the state playv = W share the common goal, which is to prevent a node to have several
times the token, they are relevant in totally different situations.

The alternation between two colors is built to prevent a node from receiving twice the
same token, from parents that might be totally unrelated in the Do.
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Figure 5.8: Cleaning children before sending up the token in a triangle: playv = F.

On the other hand, the value W prevents a node to oscillate between two colors, from
two different parents, which would block the circulation of the token.

5.3.3.2 Common Sets

To define the rules of our algorithm, some sets are especially useful. An important distinc-
tion that nodes almost systematically do is the difference between their parents with the
same color, and their parents with the other color.

Peq(v) = {u ∈ P(v) | cu = cv} (5.1)

Pneq(v) = {u ∈ P(v) | cu 6= cv} (5.2)

Similarly, nodes distinguish their children with the same color from their children with
the other color.

Ceq(v) = {u ∈ C(v) | cu = cv} (5.3)

Cneq(v) = {u ∈ C(v) | cu 6= cv} (5.4)

One other central set for the negotiation is the set of the nodes with whom the parent
negotiates. The parent negotiates with its children that do not have the same color, and
such that playu = P. A node that negotiates is not supposed to have any children u such
that toku 6= ⊥, and a specific rule is designed for such erroneous situations. Yet, to simplify
some reasoning, we also add as a constraint the fact that v only negotiates with its children
such that toku = ⊥. In the latter, we call these nodes the players of v.

Players(v) = {u ∈ Cneq(v) |tokv = ⊥ ∧ playu = P} (5.5)

5.3.4 Rules of the Algorithm

In this section, we present the predicates, actions, and rules of our algorithm. For the
sake of readability, we have grouped the rules according to the task they relate to. In
Section 5.3.4.1, we present the rule dedicated to deal with inconsistencies of the variable
tok. In Section 5.3.4.3, we present the negotiation process, based on the identifiers of
the children of the node holding the token. In Section 5.3.4.2 we present the rules that
make nodes quit that negotiation process. In Section 5.3.4.4 we present the rules which
reset variables of nodes to a proper value after the end of the negotiation process. In
Section 5.3.4.5 we present the rules that allow one node to receive the token back from
one of its children. In Section 5.3.4.6 we present the rules that are executed when one
circulation below a node is terminated, whether the node is the root or another node.
Finally, in Section 5.3.4.7, all the rules are gathered to allow an easy access during the
reading of the proofs.
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5.3.4.1 Error

As hinted above, some combinations of the variable tok should not occur on a node and
its children. In general, a node v that has the token, or which is very near a token, i.e.
with tokv ∈ {F, •,�,	, ◦, ↑}, should only have children u with toku = ⊥, with a few
exceptions.

Indeed, if tokv ∈ {�,	}, then v is allowed to have a child such that toku = F, the
child to which it just gave the token.

If tokv = ◦, then v is allowed to have a child such that toku =↑, the child from which
it is receiving the token.

One other exception is when tokv =↑. In this case, v is sending the token back to its
parent, which means that it is on its way to set tokv = ⊥. We do not consider any error
for such nodes, since it would not be very effective, and could create an error at the level
of its own parent.

To repair such errors, the principle is that the parent trusts its child, in the sense that
if both v and u believe they have a token, then v forgets its token, and repairs itself by
setting tokv =↓, acknowledging the fact that there is a token below it.

The illegal pairs are detected by the predicate Er(v) and the correctness of the state of
the token of node v is handled by the rule ETrustChild.

Er(v) ≡
(
tokv ∈ {•,F} ∧ ∃u ∈ C(v) : toku 6= ⊥

)
∨

(
tokv ∈ {�,	} ∧ ∃u ∈ C(v) : toku /∈ {⊥,F}

)
∨

(
tokv = ◦ ∧ ∃u ∈ C(v) : toku /∈ {⊥, ↑}

) (5.6)

ETrustChild : for all v ∈ V

Er(v) −→ tokv :=↓

All the other rules of the algorithm suppose that node v is not in such an error. For
homogeneity and readability, we constrained all rules with ¬Er(v), even rules which suppose
that tokv ∈ {⊥, ↓, ↑}.

5.3.4.2 End of the Negotiation Phase

Before showing how the negotiation phase is implemented, let us first explain how nodes
may quit this phase. In a negotiation, two types of nodes are involved, the parent v which
has the token, such that tokv = •, and the children u that are elements of Players(v).

The parent can quit the negotiation phase by two means.

Rule ROfferUp The first one is when the parent observes that all of its children in Players(v)
have been visited, which means that it ended the circulation below itself. When this hap-
pens the parent sends the token back to its own parent.

Before doing so, the parent must first be assured that it is not in a situation as depicted
in the last configuration of Figure 5.8. If v has a child u such that playu = F, then it is
a node which actually won the token, but faked being reset to P to another parent p such
that tokp =↑. If v is the last parent of u, and switches tokv =↑, then u will never be reset
to P, which breaks the fairness of the token circulation. Therefore, before executing this
action, v waits that all of its children have quit the value F.
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The predicate WaitSib corresponds to this requirement.

WaitSib(v) ≡ ∃c ∈ Ceq(v) : playc = F (5.7)

ROfferUp : for all v ∈ V

¬Er(v) ∧ tokv = • ∧ ¬WaitSib(v) ∧ (∀u ∈ Cneq(v) : playu ∈ {W, F}) −→ tokv :=↑

Note that even if the root has no parent, it may execute rule ROfferUp when it does
not have any more children to visit. Since some operations subsequent to having finished
circulation below oneself are identical for the root and the other nodes, we factorize the
rules as far as possible.

Rule RGive The second possibility for a parent to quit the negotiation is to decide to
offer the token to one of its children. This happens when node v has exactly one child in
Players(v).

But there is one other situation to which we must give attention. Suppose that due to
a wrong initialization of the network, no node belongs to Players(v), but the circulation
is not over yet, for one or several children of v are losers, i.e. playu = L. In this situation,
node v needs to reset the variable play of these children to P, and then will perform a
negotiation between them. One simple way to do that is to follow the transition diagram
of tok depicted in Figure 5.7. No child of v will take the token offered by tokv =�, but
immediately after, when tokv is set to 	, the losers will update playu = P, which will allow
a further negotiation process.

Actually, v basically executes a full round of its variable tok just to refresh its wrongly
initialized children. Note that this may only be caused by a corrupted initial configuration,
and that after convergence, this part of the rule becomes useless.

The predicate Give describes the situations in which node v ends the negotiation by
sending the token to one of its children.

Give(v) ≡ |Players(v)| = 1 ∨ (|Players(v)| = 0 ∧ ∃u ∈ Cneq(v) : playu = L) (5.8)

RGive : for all v ∈ V

¬Er(v) ∧ tokv = • ∧ Give(v) −→ tokv :=�

Let us now consider the children u ∈ Players(v). A child quits the negotiation if it
quits Players(v). It may do that by three means.

Rule RFakeWin The first situation in which a child quits the negotiation is when it has an
inconsistent parenthood. More precisely, if v has several parents that are dealing with a
token. Such parents are those whose value tokp /∈ {⊥, ↓, ↑}.

We do not consider the nodes who are not involved in a token circulation (tokp = ⊥)
neither do we consider the nodes who announce a token in their descendants (tokp =↓).
We also do not consider ↑ for the same reason that it was ignored in predicate Er: such
parent is about to drop the token to its own parent, it is therefore unnecessary to consider
it.

The parents which may force v to quit the negotiation are ParNeg:

ParNeg(v) = {p ∈ P(v) | tokp 6∈ {⊥, ↑, ↓}} (5.9)
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Let us describe the situations where v does not have to quit the negotiation due to an
inconsistent parenthood. First, if v has exactly one parent in ParNeg(v), then there is no
inconsistency. If v has no parent in ParNeg(v), there is no inconsistency either.

There is one other situation that may occur in legal execution. In a triangle configu-
ration, v has two parents and one of them is the children of the other. Then the middle
one receives the token and sets its variable tok to F, there is a moment where v has its
variable playv = P and also has two parents in ParNeg(v), since the other parent is at 	.
This is described in Figure 5.9

�

⊥, P

⊥, L

�

F

⊥, L

	

F

⊥, L

	

F

⊥, P

Figure 5.9: Node with several parents indicating a token

Formally, the situations that do not force v to interrupt the negotiation are:

OkNeg(v) ≡

 |ParNeg(v)| ≤ 1
∨
(|ParNeg(v)| = 2 ∧ {tokp | p ∈ ParNeg(v)} = {	,F})

(5.10)

When a node decides to stop negotiating with its parent for inconsistency reasons, it
fakes winning the token, in the sense that it becomes visited by switching its color, and
updates its variable play, but does not actually take the token. In most cases, switching
to W is sufficient. Hence, if before switching its color, v has a parent of the other color,
such that tokp =↑, then at the next computing step, v will update playv to F, as shown
in Figure 5.8. In order to spare one computing step, and to simplify some proofs, we set
playv at the right value at once.

The action corresponding to the rule RFakeWin is given by FakeWin:

FakeWin(v) ≡

 cv := ¬cv;

playv :=
{

W if ∀p ∈ Pneq(v), tokp 6=↑;
F if ∃p ∈ Pneq(v), tokp =↑;

(5.11)

RFakeWin : for all v ∈ V \ {r}

¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ ¬OkNeg(v) :−→ FakeWin(v)

Rule RWin The second situation in which a child quits the negotiation is when it wins
the negotiation. A node v wins the negotiation if its parents are not in an inconsistent
configuration (which is OkNeg(v)), and if it is still at playv = P when its parent offers it
the token (i.e. when tokp =�).

The predicate WinNeg is dedicated to detect such situations.

WinNeg(v) ≡ OkNeg(v) ∧ ∃p ∈ Pneq(v) : tokp =� (5.12)
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When a node v wins the negotiation, it takes the token, and switches its color. Fur-
thermore, it updates its variable playv to W. Contrary to how we did for FakeWin, we do
not have to worry about the precise value of playv right now. Indeed, since v has a value
different than ⊥ for tokv, v does not have to worry about the moment where it will be
reactivated by its parent, which happens at the end of the circulation of its parent.

Win(v) ≡

 tokv :=F;
cv := ¬cv;

playv := W;
(5.13)

RWin : for all v ∈ V \ {r}

¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ WinNeg(v) −→ Win(v)

Rule RLose The third and last situation in which a child quits the negotiation is when
it loses it. The exact condition of how a child loses the negotiation will be properly de-
fined in the following section. For now, let us just consider that there exists a predicate
LosePar(v, p), which depends on the values of idv and idp, where p ∈ Pneq(v), which
describes that v should lose the negotiation according to p.

A node loses the negotiation if its parents are not in an inconsistent configuration (which
is OkNeg(v), and if it does not win the negotiation (which is ¬WinNeg(v)).

All these conditions are grouped in the predicate LoseNeg(v):

LoseNeg(v) ≡ OkNeg(v) ∧ ¬WinNeg(v) ∧ ∃p ∈ Pneq(v) : (tokp = • ∧ LosePar(v, p)) (5.14)

When v loses the negotiation, it simply sets playv = L.

RLose : for all v ∈ V \ {r}

¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ LoseNeg(v) −→ playv := L

5.3.4.3 Negotiation Identifier-Based

In the negotiation phase, the only children which are relevant to consider, from the parent’s
perspective, are the children in Players(v). In the description of the rules, we write players
instead of children in Players(v), to facilitate the reading.

Let us first describe the general mechanism of the election, then explain some subtleties,
before presenting the rules of the bit-by-bit negotiation.

One first important idea is that the parent does not execute any action unless all of its
players have executed their rule. In particular, the parent waits for all of its players to be
at the same value of ph as it is.

Synch(v) ≡ ∀u ∈ Players(v), phu = phv (5.15)

One other general principle, which is crucial due to the asynchrony of the system, and
due to the self-stabilizing requirement, is that nodes do not correct their answer. More
precisely, if one node v (parent or child in the negotiation) is in a state that may have an
influence on the execution of a rule by one other node u, then v does not update its state.
Even if this state is inconsistent with its identifier, for a child, or with the values of idu on
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its players, for a parent, v waits that its neighbors have finished interpreting this state, and
accept the consequences of this error. Such inconsistencies are typically due to an incorrect
initialization of the system. This general principle only applies to the negotiation rules, and
does not prevent nodes to execute rules such as ETrustChild, RFakeWin, or RGive for example.

Let us recall the general scheme of how the negotiation process happens

0. Parent v asks for the value of the first bit of its players u ∈ Players(v), by setting
idv = (1,⊥).

1. Players u of v answers with their own value (1, Bitu(1)) (rule RNewBit).

2. When all its players have answered, i.e. when all have the right value phu = 1, v
announces the biggest value it sees, by setting idv = (1, b) (rule RmaxPos).

3. Players u of v which have a lower value than bv lose the negotiation (rule RLose).

4. When all of its players have phu = 1 and bu = bv, v asks for the value of the second
bit of its remaining players, by setting idv = (2,⊥) (rule RNewPh), and so on.

A particular situation is when all the players u of v answer (ph,⊥), i.e. when all the
players declare that they do not have a long-enough identifier to provide a ph-th bit. This
situation is not possible in correct executions, since all identifiers are distinct, we cannot
reach a point where several identifiers are similar and terminated. Hence, this may happen
in the early steps of an execution which starts in an inconsistent configuration. Either at
least one child has an identifier actually greater than ph, and could go further, but due to
an incorrect initialization, it has a wrong value for b, either due to an incorrect initialization
of the parent, the negotiation process did not start at ph = 1 but further, and we could
have missed the opportunity to distinct the identifiers of the nodes in Players(v).

When this happens, the parent cannot simply increase ph, since its players formulate
that they can’t even reach the current value of ph. Therefore, if all of its players answer
(ph,⊥), then the correct move for the parent is to restart at phv = 1. Only one exception to
that rule, is when it happens when phv = 1 already. In this situation, v would not change
a single bit of information by setting idv = (1,⊥). We suppose that all identifiers have at
least one bit, even if it is a single bit 0. Therefore, (1,⊥) can never be a valid answer for a
child. In consequences, without any contradiction with the previous principle stating that
no possibly valid answer can be revised, players such that idv = (1,⊥) can actually update
their state to send their actual value for Bitu(1). This is not true for other values of ph: if
idv = (ph,⊥) with ph > 1 and Bitv(ph) 6= ⊥, then to avoid confusing its parent, it does
not update its state.

Let us now treat the different rules corresponding to the scheme presented above.

Rule RNewBit Some first conditions for a node v to answer the negotiation is that its
parenthood is not inconsistent, and it is not winning the negotiation, nor losing it. This
corresponds to the partial predicate OkNeg(v) ∧ ¬WinNeg(v) ∧ ¬LoseNeg(v).

The other condition is that v is in a situation where it is its turn to answer. One first
situation in which it should answer is when it does not have the same value of ph as its
negotiating parent p. The second situation is the particular case where phv = php = 1, and
v has answered ⊥, which is never a valid answer, and the parent p is still waiting for its
players to answer. Indeed, in an poorly initialized configuration, the parent p could have
already decided which value was the highest, and thus v must not answer.
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This is synthesized in predicate AnswerPar:

AnswerPar(v, p) ≡ phv 6= php ∨


php = 1
bp = ⊥
bv = ⊥

(5.16)

We also define the predicate which excludes concurrency with RFakeWin, RWin, and RLose:

AnswerNeg(v) ≡
{

OkNeg(v) ∧ ¬WinNeg(v) ∧ ¬LoseNeg(v)∧
∃p ∈ Pneq(v) : (tokp = • ∧ AnswerPar(v, p)) (5.17)

The action which corresponds to answering the negotiation is updating variable phv to
the value of our parent, and bv according to function Bitv.

Remark that such a parent p is necessarily unique, due to OkNeg(v). To simplify the
notations, we consider that such parent p is given as an external information to the action
which corresponds to AnswerNeg, Announce:

Announce(v) ≡ idv := (php, Bitv(php)) (5.18)

RNewBit : for all v ∈ V \ {r}

¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ AnswerNeg(v) −→ Announce(v)

Rule RmaxPos One first condition for the parent to announce the maximal value it sees on
its players is that the negotiation is not over yet, i.e. there are at least two players.

One second condition is that all of those players have answered, i.e. that they have the
same value as itself for ph, which is captured by Synch(v).

One third condition is that it does not have already announced a value, i.e. bv = ⊥.
There are two more subtleties. The first one is that if we have phv = 1 then v actually

waits for all of its players to produce a non-empty answer, a value for bu which is not ⊥,
an invalid answer for ph = 1.

The second subtlety is that if, for a value of ph greater than 1, all the players of v
announce ⊥, then it is irrelevant to keep increasing phases, and actually irrelevant to answer
⊥ as well. In this situation, the correct move is to restart the negotiation from phv = 1,
which will be dealt with by rule RNewPh.

The last condition and the subtleties are described by predicate NextPlay.

NextPlay(v) ≡ bv = ⊥ ∧

 phv = 1 ∧ ∀u ∈ Players(v), bu 6= ⊥
∨

phv 6= 1 ∧ ∃u ∈ Players(v) : bu 6= ⊥
(5.19)

Once all these conditions are fulfilled, v can announce the biggest value of b it sees in
its playing childhood (classically we have ⊥ < 0 < 1). This action is denoted MaxPos.

MaxPos(v) ≡ bv := max
u∈Players(v)

bu (5.20)

RmaxPos : for all v ∈ V

¬Er(v) ∧ tokv = • ∧ |Players(v)| ≥ 2 ∧ Synch(v) ∧ NextPlay(v) −→ MaxPos(v)
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Predicate for Rule RLose In the previous section we did not explicitly give the predicate
LosePar. One node v loses the negotiation when they have the same value of ph as their
parent, and that the answer provided by their parent is different from the one they have.

LosePar(v, p) ≡ php = phv ∧ bp 6= ⊥ ∧ bp 6= bv (5.21)

Rule RNewPh The parent increases its phase only when the negotiation round is terminated,
which means that nonetheless all its players have the same value as it has, for ph, but also
that they all have the same value as is has for b.

Either this value is ⊥, and therefore all players are out of bits, and the new phase should
be 1, either it is not ⊥, and therefore all the nodes asked to lose have actually lost and are
now out of Players(v), and the new phase should be one more than the current one.

There is one particular case where this increase should not happen: when we have ph = 1
and b = ⊥ (on both the parent and its players), since it does not correspond to a valid
answer. Predicate PhComplete summarizes that.

PhComplete(v) ≡ (phv 6= 1 ∨ bv 6= ⊥) ∧ ∀u ∈ Players(v), bu = bv (5.22)

PhasePlus(v) ≡

 bv := ⊥
phv :=

{
1 if ∀u ∈ Players(v), bu = ⊥
phv + 1 if ∃u ∈ Players(v), bu 6= ⊥

(5.23)

RNewPh : for all v ∈ V

¬Er(v)∧tokv = •∧ |Players(v)| ≥ 2∧Synch(v)∧PhComplete(v) −→ PhasePlus(v)

5.3.4.4 Operations Post-Negotiation

In this section we consider actions subsequent to the executions of RGive by the parent,
and RWin by one child, which were presented in Section 5.3.4.2. The parent has its variable
tok =�, the winning player has its variable tok =F, and the other children that have not
received the token yet have their variable play = L.

Rule RNewPlay The first action that the parent takes, after its child has actually received
the token, is switching its variable tok to 	 to inform its other children that the negotiation
phase is terminated, and that they are free to negotiate again. This is necessary to ensure a
proper depth-first traversal, since some of them may also be children of the winning player.

This can be done as soon as v does not have any players. Since we classically suppose
that v is not in error, it means that its children u of the opposite color are either at
toku =F, or at playu 6= P.

RNewPlay : for all v ∈ V

¬Er(v) ∧ toku =� ∧(∀u ∈ Cneq(v) : playu 6= P ∨ toku =F) −→ tokv :=	
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Rule RReplayD When v has one parent which notifies that it can reset its value of playv to
P, v first gets sure that it is not near one other negotiation phase. Indeed, v should not join
a running negotiation phase by updating playv from L to P. In correct executions, v cannot
be close to several negotiation phases, by unicity of the token. Yet, due to an inconsistent
initialization of the network, this must be considered.

Parents that correspond to ongoing negotiation phases are those with tokp = • and
tokp =�.

ReplayL(v) ≡ ∀u ∈ Pneq(v), toku /∈ {•,�} ∧ ∃u ∈ Pneq(v), toku ∈ {	, ◦} (5.24)

Note that we also consider situations where v has a parent p with tokp = ◦. This
corresponds to a similar situation, which we will develop in Section 5.3.4.5

When this predicate is satisfied, v updates playv to P, and simultaneously resets its
variable idv to a neutral value.

Replay(v) ≡
{

playv := P;
idv := (1,⊥) (5.25)

RReplayD : for all v ∈ V \ {r}

¬Er(v) ∧ tokv = ⊥ ∧ playv = L ∧ ReplayL(v) −→ Replay(v)

Rule RDrop When all of its children have reset their variable play from L to P, node v can
finally update its variable tok to ↓, which terminates the passing of the token to the child
who won the negotiation.

To avoid deadlocks due to an inconsistent initial configuration, we must consider situa-
tions in which some child of v has the token (toku =F) but also has its variable playu at
L. Rather than creating a new rule to make u update its variable play, we chose to let v
drop the token in such situations.

RDrop : for all v ∈ V

¬Er(v) ∧ tokv =	 ∧(∀u ∈ Cneq(v) : playu 6= L ∨ toku =F) −→ tokv :=↓

Rule RNego Once the parent of the node v who won the negotiation has terminated the
previous actions, and has set its variable tok to ↓, v can finally start negotiating with its
own children, by setting tokv = • and its variables ph and b to the initial value of the
negotiating process.

StartNego(v) ≡
{

tokv := •;
idv := (1,⊥); (5.26)

RNego : for all v ∈ V

¬Er(v) ∧ tokv =F ∧ (∀p ∈ P(v) : toku 6∈ {�,	}) −→ StartNego(v)

Figure 5.11 presents the process of how a token is given to a child.
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Figure 5.10: Execution of rules for returning the token back to one child. The activated
node is the one with its line doubled

5.3.4.5 Reception of the Token from a Child

In this section we consider actions subsequent to the execution of ROfferUp (presented in
Section 5.3.4.2). We consider one node v such that tokv =↓, which has one child u that
offered the token to its parent by setting toku =↑.

Rule RReceive When node v has its child u announcing that it returns the token back,
v needs to be sure that it does not have any other children which is involved in a token
circulation, in which case it cannot take the token before its other children have terminated
their circulation. Recall that in Figure 5.4, the top node did not take the token.

If v takes the token while having another child involved in a token circulation, it becomes
in error, and thus executes ETrustChild, and sets tokv =↓, which may create a livelock.

RReceive : for all v ∈ V

¬Er(v) ∧ tokv =↓ ∧(∀u ∈ C(v), toku ∈ {⊥, ↑}) −→ tokv := ◦

Rule RReNego If node v did not have any children and took the token by setting tokv = ◦
with rule RReceive, then before starting negotiating, it waits that its child, from which it
received the token, actually drops it.

More precisely, v start negotiating only if it all of its children are such that toku = ⊥,
otherwise it would create an error by setting tokv = •. The following predicate guarantees
that one node has no children involved in a token circulation:

Leaf(v) ≡ ∀u ∈ C(v), toku = ⊥ (5.27)

Furthermore, before starting a negotiation round, v also waits that all its children which
have not won the token yet have properly reset their variable play to L. This is guaranteed
since Rule 5.3.4.4 applies to situations where the parent has its variable tok = ◦.

RReNego : for all v ∈ V

¬Er(v) ∧ tokv = ◦ ∧ Leaf(v) ∧ ∀u ∈ Cneq(v) : playu 6= L −→ StartNego(v)

5.3.4.6 End of the Circulation

In this section we also present actions subsequent to the execution of ROfferUp (presented
in Section 5.3.4.2), but from the child perspective. We consider the node which executed
ROfferUp, and its potential children.
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Rule RReturn After it has offered the token to its parent, a node v which is not the root
should eventually drop the token, and set tokv = ⊥. Before that, it must check that all
its children have correctly updated their variable W to P to assure that when a token of
the other color will come, all those nodes will be available for a negotiation phase. This
only applies to children of v which have the same color as v, since other children may be
involved in a concurrent token circulation, and we do not want to create any livelock. Also,
it only applies to nodes which are not involved in any circulation of the token, i.e. such
that toku = ⊥ (recall that since tokv =↑, v cannot be in error).

If such children u of v, with playu = W still have parents involved in a negotiation,
they will shift that value to F, faking a reset to v. Thus, v should tolerate children u with
playu = F.

On the other hand, if v has children u which have their variable playu = L, those children
might be involved in another negotiation phase, which they have lost. Those children should
not reset their variable play to P, for it would harm the negotiation process.

Thus, v checks that all of its children with the same color have a value of play different
from W before it sends the token back.

We add one more consistency check, which is that v does not have any parent in error,
i.e. parents p such that tokp ∈ {F, •,�,	}. If it has, it waits for those parents to execute
ETrustChild before returning the token to its parents. This predicate is not necessary for our
algorithm to work, but it may make convergence faster.

These predicates are combined in predicate MayDropUp.

MayDropUp(v) ≡
{

∀p ∈ P(v), tokp ∈ {⊥, ↓, ↑, ◦}
∧ ∀u ∈ Ceq(v), (toku = ⊥ ⇒ playu ∈ {P, L, F})

(5.28)

When this condition is fulfilled, v can drop the token. This includes setting tokv = ⊥
and updating playv to a correct value depending on the parents of v. As depicted in
Figure 5.8, there are situations where nodes without a token must set their variable at F
instead of W, to avoid blocking one parent which is close to execute RReturn itself.

Drop(v) ≡

 tokv := ⊥;

playv :=
{

W if ∀p ∈ Peq(v), tokp 6=↑
F if ∃p ∈ Peq(v), tokp =↑

(5.29)

RReturn : for all v ∈ V \ {r}

¬Er(v) ∧ tokv =↑ ∧MayDropUp(v) −→ Drop(v)

Rule RrNewDFS In a similar situation, where all of its children have repaired themselves,
the root does not drop the token, for it would simply destroy it. When the root is in such
a situation, it means that the current circulation round is terminated, and one other can
start.

To do that, the root resets its token value to F, which corresponds to the first time
the token is held by any node in the new circulation round, and switches its color. After
that, the root will be able to execute rule RNego and to start a negotiation process with its
children.

NewToken(r) ≡
{

cr := ¬cr
tokr :=F (5.30)
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This action can be seen as one atomic execution of the two actions Drop and Win, which
corresponds to what r would have done, non-atomically, if it were not the root.

RrNewDFS : for v = r

¬Er(v) ∧ tokv =↑ ∧MayDropUp(v) −→ NewToken(v)

Let us now consider the actions taken by children of such a node, i.e. a node v which
has one parent of the same color and its variable tok =↑.

Rule RReplayUp If node v only has parents that are sending the token higher, i.e. no other
parent which is still involved in a token circulation, then v can reset its variable playv = P
to be ready for the next circulation round.

ReplayW(v) ≡ ∃p ∈ Peq(v) : tokp =↑ ∧∀p ∈ Peq(v), tokp ∈ {⊥, ↑} (5.31)

Note that v only considers its parent with the same color, since the situation which we
want to prevent is livelock caused by the oscillation between two tokens. Therefore, v can
join a negotiation of the other color by this action.

RReplayUp : for all v ∈ V \ {r}

¬Er(v) ∧ tokv = ⊥ ∧ playv = W ∧ ReplayW(v) −→ Replay(v)

Rule RFake If v has, in addition to some parents that are sending the token higher, other
parents which have not terminated their token circulation, it must update its variable
playv = F.

FakeReplay(v) ≡ ∃p ∈ Peq(v), tokp =↑ ∧¬ReplayW(v) (5.32)

RFake : for all v ∈ V \ {r}

¬Er(v) ∧ tokv = ⊥ ∧ playv = W ∧ FakeReplay(v) −→ playv := F

Rule RReWin Finally, we must design a rule to cancel the effect of updating one’s variable
at F, to reset it at W. Without this rule, the predicate WaitSib could be infinitely false on
one parent of v, and thus the token could not be sent higher. This rule can be activated
only when the node does not have any parent with the same color such that tok =↑.

Up to this rule, all the guards of the rules require that the node is near a token. For
consistency, we also require proximity of a token for this rule, but it is not actually necessary.

StopFaking(v) ≡ ∃p ∈ Peq(v) : tokv 6= ⊥ ∧ ∀p ∈ Peq(v), tokp 6=↑ (5.33)

RReWin : for all v ∈ V \ {r}

¬Er(v) ∧ tokv = ⊥ ∧ playv = F ∧ StopFaking(v) −→ playv := W

Figure 5.10 present the process of how a token is returned to a parent.
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Figure 5.11: Execution of rules for returning the token back to one parent. The activated
node is the one with its line doubled

5.3.4.7 Complete Algorithm

Algorithm 2 presents all the rules of our algorithm.

Algorithm 2: Token Circulation algorithm

∀v ETrustChild : Er(v) −→ tokv :=↓

∀v ROfferUp : ¬Er(v) ∧ tokv = • ∧ ¬WaitSib(v) ∧ (∀u ∈ Cneq(v) : playu ∈ {W, F}) −→ tokv :=↑
∀v RGive : ¬Er(v) ∧ tokv = • ∧ Give(v) −→ tokv :=�
v 6= r RFakeWin : ¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ ¬OkNeg(v) −→ FakeWin(v)
v 6= r RWin : ¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ WinNeg(v) −→ Win(v)
v 6= r RLose : ¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ LoseNeg(v) −→ playv := L

v 6= r RNewBit : ¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ AnswerNeg(v) −→ Announce(v)
∀v RmaxPos : ¬Er(v) ∧ tokv = • ∧ |Players(v)| ≥ 2 ∧ Synch(v) ∧ NextPlay(v) −→ MaxPos(v)
∀v RNewPh : ¬Er(v) ∧ tokv = • ∧ |Players(v)| ≥ 2 ∧ Synch(v) ∧ PhComplete(v) −→ PhasePlus(v)

∀v RNewPlay : ¬Er(v) ∧ toku =� ∧(∀u ∈ Cneq(v) : playu 6= P ∨ toku = F) −→ tokv :=	
v 6= r RReplayD : ¬Er(v) ∧ tokv = ⊥ ∧ playv = L ∧ ReplayL(v) −→ Replay(v)
∀v RDrop : ¬Er(v) ∧ tokv =	 ∧(∀u ∈ Cneq(v) : playu 6= L ∨ toku = F) −→ tokv :=↓
∀v RNego : ¬Er(v) ∧ tokv = F ∧ (∀p ∈ P(v) : toku 6∈ {�,	}) −→ StartNego(v)

∀v RReceive : ¬Er(v) ∧ tokv =↓ ∧(∀u ∈ C(v), toku ∈ {⊥, ↑}) −→ tokv := ◦
∀v RReNego : ¬Er(v) ∧ tokv = ◦ ∧ Leaf(v) ∧ ∀u ∈ Cneq(v) : playu 6= L −→ StartNego(v)

v 6= r RReturn : ¬Er(v) ∧ tokv =↑ ∧MayDropUp(v) −→ Drop(v)
r RrNewDFS : ¬Er(v) ∧ tokv =↑ ∧MayDropUp(v) −→ NewToken(v)
v 6= r RReplayUp : ¬Er(v) ∧ tokv = ⊥ ∧ playv = W ∧ ReplayW(v) −→ Replay(v)
v 6= r RFake : ¬Er(v) ∧ tokv = ⊥ ∧ playv = W ∧ FakeReplay(v) −→ playv := F
v 6= r RReWin : ¬Er(v) ∧ tokv = ⊥ ∧ playv = F ∧ StopFaking(v) −→ playv := W

Figures 5.12 and 5.13 present the scheme of an execution of our algorihtm. These are
two dual visions of the same phenomenon. The first one focuses on the values of the different
variables of one node v, and the second on the executions of the rules on one node v.

5.4 Proof of the Correctness of our Algorithm

In this section, we prove that Algorithm 2 is a self-stabilizing algorithm for the token
circulation problem, as it is defined in Specification 5.1. We also prove that this algorithm
is optimal in terms of memory, i.e. that any algorithm which solves T C in SPU requires
Ω(log logn) bits per nodes, even under less general hypothesis than ours.

This section is subdivided in four subsections. In Section 5.4.1 we establish that maximal
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executions of our algorithm are infinite. Formally, we prove that in any configuration, there
is at least one enabled node. This work is static in the sense that we do not need to consider
an execution of the algorithm. It boils down to a syntactical analysis of the guards of the
rules of our algorithm (Algorithm 2).

In Section 5.4.2 we establish that no token can circulate indefinitely in the Do, unless
it regularly reaches the root and is reset by the execution of RrNewDFS. This guarantees
that a token which is not anchored at the root of the Do either vanishes, or is eventually
not activated. Using the previous, we also establish that there are an infinite number
of circulation rounds in maximal executions of our algorithm. This guarantees that our
algorithm satisfies Condition 2 of Specification 5.1.

In Section 5.4.3 we use the previous results to establish that the token anchored at the
root circulates fairly in deeper and deeper parts of the Do. Thus, even if there are other
tokens in the network, they will eventually be reached and destroyed by the legitimate token
anchored at the root. Therefore we prove in this section that, at some point, the execution
of our algorithm satisfies Conditions 1 and 3 of Specification 5.1, which means that it is a
self-stabilizing algorithm for T D.

Finally, in Section 5.4.4 we use the results of Chapter 3 to prove that the space com-
plexity of our algorithm is optimal.

In order to prove that our algorithm satisfies conditions of Specification 5.1, we must
first define the predicates T and R involved in this specification. One node v is considered
to hold the token if it has a non-empty value for its variable tokv, and if none of its children
holds the token. One node v is considered to have access to the resource if it is in the state
where it just received the token from its parent, which corresponds to tokv =F.
Definition 5.12 (Predicates for our Token Circulation Algorithm)

The resolution of T D by our algorithm will be proven under the following specification
predicates:

T (v, γ) ≡ tokγv 6= ⊥ ∧ ∀u ∈ C(v), tokγu = ⊥
R(v, γ) ≡ T (v, γ) ∧ tokγv =F

Definition 5.13 (Reset Points)
Let ε = γ0 → · · · be an execution. We say that γi is a reset point of ε if r executes
RrNewDFS during γi−1 → γi+1. We say that two reset points γi and γj are consecutive if
i < j and ∀k ∈ [i+ 1, j + 1], γk is not a reset point.

Theorem 5.1 (Circulation Rounds)
Let ε = γ0 → · · · be an execution. Let us denote by t0 ≤ t1 ≤ · · · all the reset points
of ε, such that ∀i ≥ 0, γti and γti+1 are consecutive.
∀i ≥ 0, γt1 → · · · → γti+1−1 is a circulation round.

Proof : For any computing step cs = γ → γ′, we have ¬Rγ(r)∧Rγ′(r) if and only if r executes
RrNewDFS, which is equivalent to γ′ being a reset point.

5.4.1 Liveness

Recall that we denote by Ae(γ) the set of the enabled nodes for A in configuration γ. In
this section, we prove that ∀γ ∈ Γ,Ae(γ) 6= ∅.

The proof is subdivided in several lemmas. In each lemma we work under the hypothesis
that some value for tokv, on one node v, is present in γ, and in each case we prove that
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there exists at least one enabled node, in γ. Not all the lemmas are independent: it happens
that to prove a lemma, we simply prove that there exists one node u with another value of
toku, value which has already been dealt with in a previous lemma.

One lemma is even proven by induction, the lemma which considers as a hypothesis the
presence of a node v such that tokv =↓. Such nodes can actually pretty far from the actual
token, and thus to find an enabled node, we may have to descend a branch of the Do, until
we fall on a leaf, or on a node with a different value for tokv.

More precisely, we prove that either we can find an enabled node, or there exists one
other node u such that toku =↓, but u is deeper than v in the DODAG. Since DODAGs are
finite, and acyclic, there can only be a finite number of times where the second hypothesis
is the right one, and therefore this proves that there exists at least one enabled node.

The proofs are basically reasoning by case disjunction, which forms decision trees of
variable depth. We must guarantee that at the end of each branch i.e. at each leaf, we find
one enabled node.

Since it is basically syntactical analysis, we only present the different decision trees,
which contain all the elements of the proofs, and are easier to parse than the written
version of the proofs.

In each proof, we also provide a reasoning toolbox, to remind the reader of the detail of
the predicates considered in the reasoning.
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Lemma 5.1
Let γ ∈ Γ. If there exists v ∈ V such that tokv =↑ in γ then Ae(γ) 6= ∅.

Proof : The proof is given in Figure 5.14

tokv =↑

MayDropUp(v) v : RReturn/RrNewDFS

∃p ∈ P(v) : tokp ∈ {F, •,�,	} p : ETrustChild

∃c ∈ Ceq(v) : (tokc = ⊥ ∧ playc = W)

ReplayW(c) c : RReplayUp

¬ReplayW(c) c : RFake

Figure 5.14: Proof of Lemma 5.1

Tools Lemma 5.1

∀v ETrustChild : Er(v) −→ tokv :=↓
v 6= r RReturn : ¬Er(v) ∧ tokv =↑ ∧MayDropUp(v) −→ Drop(v)
r RrNewDFS : ¬Er(v) ∧ tokv =↑ ∧MayDropUp(v) −→ NewToken(v)
v 6= r RReplayUp : ¬Er(v) ∧ tokv = ⊥ ∧ playv = W ∧ ReplayW(v) −→ Replay(v)
v 6= r RFake : ¬Er(v) ∧ tokv = ⊥ ∧ playv = W ∧ FakeReplay(v) −→ playv := F

Er(v) ≡
(

tokv ∈ {•,F} ∧ ∃u ∈ C(v) : toku 6= ⊥
)

∨
(

tokv ∈ {�,	} ∧ ∃u ∈ C(v) : toku /∈ {⊥,F}
)

∨
(

tokv = ◦ ∧ ∃u ∈ C(v) : toku /∈ {⊥, ↑}
)

−→ tokv :=↓

MayDropUp(v) ≡
{ ∀p ∈ P(v), tokp ∈ {⊥, ↓, ↑, ◦}
∧ ∀u ∈ Ceq(v), (toku = ⊥ ⇒ playu ∈ {P, L, F})

ReplayW(v) ≡ ∃p ∈ Peq(v) : tokp =↑ ∧∀p ∈ Peq(v), tokp ∈ {⊥, ↑}

FakeReplay(v) ≡ ∃p ∈ Peq(v), tokp =↑ ∧¬ReplayW(v)
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Lemma 5.2
Let γ ∈ Γ. If there exists v ∈ V such that tokv =� in γ then Ae(γ) 6= ∅.

Proof : The proof is given in Figure 5.15

tokv =�

∀c ∈ C(v) : tokc ∈ {⊥,F}

∀c ∈ Cneq(v) : playc 6= P ∨ tokc =F v : RNewPlay

∃c ∈ Cneq(v) : playc = P ∧ tokc = ⊥

OkNeg(c) c : RWin, c 6= r

¬OkNeg(c) c : RFakeWin, c 6= r∃c ∈ C(v) : tokc /∈ {⊥,F} v : ETrustChild

Figure 5.15: Proof of Lemma 5.2

Tools Lemma 5.2

∀v ETrustChild : Er(v) −→ tokv :=↓
∀v RNewPlay : ¬Er(v) ∧ toku =� ∧(∀u ∈ Cneq(v) : playu 6= P ∨ toku = F) −→ tokv :=	
∀v 6= r RWin : ¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ WinNeg(v) −→ Win(v)
∀v 6= r RFakeWin : ¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ ¬OkNeg(v) −→ FakeWin(v)

Er(v) ≡
(

tokv ∈ {•,F} ∧ ∃u ∈ C(v) : toku 6= ⊥
)

∨
(

tokv ∈ {�,	} ∧ ∃u ∈ C(v) : toku /∈ {⊥,F}
)

∨
(

tokv = ◦ ∧ ∃u ∈ C(v) : toku /∈ {⊥, ↑}
)

−→ tokv :=↓

WinNeg(v) ≡ OkNeg(v) ∧ ∃p ∈ Pneq(v) : tokp =�

OkNeg(v) ≡ |ParNeg(v)| ≤ 1 ∨ (|ParNeg(v)| = 2 ∧ {tokp | p ∈ ParNeg(v)} ∈ {{�,F}, {	,F}})

ParNeg(v) = {p ∈ P(v) | tokp 6∈ {⊥, ↑, ↓}}
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Lemma 5.3
Let γ ∈ Γ. If there exists v ∈ V such that tokv = • in γ then Ae(γ) 6= ∅.

Proof : The proof is given in Figures 5.16 and 5.17

Tools Lemma 5.3

∀v ETrustChild : Er(v) −→ tokv :=↓
∀v RmaxPos : ¬Er(v) ∧ tokv = • ∧ |Players(v)| ≥ 2 ∧ Synch(v) ∧ NextPlay(v) −→ MaxPos(v)
∀v RNewPh : ¬Er(v) ∧ tokv = • ∧ |Players(v)| ≥ 2 ∧ Synch(v) ∧ PhComplete(v) −→ PhasePlus(v)
∀v RGive : ¬Er(v) ∧ tokv = • ∧ Give(v) −→ tokv :=�
∀v ROfferUp : ¬Er(v) ∧ tokv = • ∧ ¬WaitSib(v) ∧ (∀u ∈ Cneq(v) : playu ∈ {W, F}) −→ tokv :=↑
v 6= r RNewBit : ¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ AnswerNeg(v) −→ Announce(v)
v 6= r RLose : ¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ LoseNeg(v) −→ playv := L
v 6= r RWin : ¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ WinNeg(v) −→ Win(v)
v 6= r RFakeWin : ¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ ¬OkNeg(v) −→ FakeWin(v)
v 6= r RReWin : ¬Er(v) ∧ tokv = ⊥ ∧ playv = F ∧ StopFaking(v) −→ playv := W

Er(v) ≡
(

tokv ∈ {•,F} ∧ ∃u ∈ C(v) : toku 6= ⊥
)

∨
(

tokv ∈ {�,	} ∧ ∃u ∈ C(v) : toku /∈ {⊥,F}
)

∨
(

tokv = ◦ ∧ ∃u ∈ C(v) : toku /∈ {⊥, ↑}
)

−→ tokv :=↓

AnswerPar(v, p) ≡ (phv 6= php) ∨ (php = 1 ∧ bp = ⊥ ∧ bv = ⊥)

LosePar(v, p) ≡ php = phv ∧ bp 6= ⊥ ∧ bp 6= bv

ParNeg(v) = {p ∈ P(v) | tokp 6∈ {⊥, ↑, ↓}}
OkNeg(v) ≡ |ParNeg(v)| ≤ 1 ∨ (|ParNeg(v)| = 2 ∧ {tokp | p ∈ ParNeg(v)} ∈ {{�,F}, {	,F}})

WinNeg(v) ≡ OkNeg(v) ∧ ∃p ∈ Pneq(v) : tokp =�
LoseNeg(v) ≡ OkNeg(v) ∧ ¬WinNeg(v) ∧ ∃p ∈ Pneq(v) : tokp = • ∧ LosePar(v, p)

AnswerNeg(v) ≡ OkNeg(v) ∧ ¬WinNeg(v) ∧ ¬LoseNeg(v) ∧ ∃p ∈ Pneq(v) : tokp = • ∧ AnswerPar(v, p)

Players(v) = {u ∈ Cneq(v) |tokv = ⊥ ∧ playu = P}

Synch(v) ≡ ∀u ∈ Players(v), phu = phv

NextPlay(v) ≡ bv = ⊥ ∧

{
phv = 1 ∧ ∀u ∈ Players(v), bu 6= ⊥

∨
phv 6= 1 ∧ ∃u ∈ Players(v) : bu 6= ⊥

PhComplete(v) ≡ (phv 6= 1 ∨ bv 6= ⊥) ∧ ∀u ∈ Players(v), bu = bv

Give(v) ≡ |Players(v)| = 1 ∨ (|Players(v)| = 0 ∧ ∃u ∈ Cneq(v) : playu = L)

WaitSib(v) ≡ ∃c ∈ Ceq(v) : playc = F

StopFaking(v) ≡ ∃p ∈ Peq(v) : tokv 6= ⊥ ∧ ∀p ∈ Peq(v), tokp 6=↑
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tokv = •

∀u ∈ C(v) : toku = ⊥

|Players(v)| = 0

∃c ∈ Cneq(v) : playc = L v : RGive

∀c ∈ Cneq(v), playc ∈ {W, F}

∀c ∈ Ceq(v), playc 6= F v : ROfferUp

∃c ∈ Ceq(v) : playc = F

∀p ∈ Peq(c), tokp 6=↑ c : RReWin

∃p ∈ Peq(c) : tokp =↑ p : Lemma 5.1

|Players(v)| = 1 v : RGive

|Players(v)| ≥ 2

∃c ∈ Players(v) : ¬OkNeg(c) c : RFakeWin

∀u ∈ Players(v), OkNeg(u) ∧ ∃c ∈ Players(v) : WinNeg(c) c : RWin

∀u ∈ Players(v), (OkNeg(u) ∧ ¬WinNeg(u)) ∧ ∃c ∈ Players(v) : LoseNeg(c) c : RLose

∀u ∈ Players(v), (OkNeg(u) ∧ ¬WinNeg(u) ∧ ¬LoseNeg(u)) ∧ ∃c ∈ Players(v) : phc 6= phv c : RNewBit

∀u ∈ Players(v), (OkNeg(u) ∧ ¬WinNeg(u) ∧ ¬LoseNeg(u)) ∧ Synch(v)
∃u ∈ C(v) : toku 6= ⊥ v : ETrustChild

Figure 5.16: Proof of Lemma 5.3, part. 1

Synch(v)

phv = 1

bv = ⊥

∃c ∈ Players(v) : bc = ⊥ c : RNewBit

∀c ∈ Players(v), bc 6= ⊥ v : RmaxPos

bv 6= ⊥

∃c ∈ Players(v) : bc 6= bv c : RLose

∀c ∈ Players(v), bc = bv v : RNewPh

phv 6= 1

bv = ⊥

∃c ∈ Players(v), bc 6= ⊥ v : RmaxPos

∀c ∈ Players(v), bc = ⊥ v : RNewPh

bv 6= ⊥

∃c ∈ Players(v) : bc 6= bv c : RLose

∀c ∈ Players(v), bc = bv v : RNewPh

Figure 5.17: Proof of Lemma 5.3, part. 2
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Lemma 5.4
Let γ ∈ Γ. If there exists v ∈ V such that tokv =	 in γ then Ae(γ) 6= ∅.

Proof : The proof is given in Figure 5.18

tokv =	

∀c ∈ C(v) : tokc ∈ {⊥,F}

∀c ∈ Cneq(v) : playc 6= L ∨ tokc =F v : RDrop

∃c ∈ C(v) : playc = L ∧ tokc = ⊥

∃p ∈ Pneq(c) : tokp ∈ {•,�} p : Lemma 5.3 or Lemma 5.2

∀p ∈ Pneq(c) : tokp /∈ {•,�} c : RReplayD

∃c ∈ C(v) : tokc 6∈ {⊥,F} v : ETrustChild

Figure 5.18: Proof of Lemma 5.4

Tools Lemma 5.4

∀v ETrustChild : Er(v) −→ tokv :=↓
∀v RDrop : ¬Er(v) ∧ tokv =	 ∧(∀u ∈ Cneq(v) : playu 6= L ∨ toku = F) −→ tokv :=↓
∀v 6= r RReplayD : ¬Er(v) ∧ tokv = ⊥ ∧ playv = L ∧ ReplayL(v) −→ Replay(v)

Er(v) ≡
(

tokv ∈ {•,F} ∧ ∃u ∈ C(v) : toku 6= ⊥
)

∨
(

tokv ∈ {�,	} ∧ ∃u ∈ C(v) : toku /∈ {⊥,F}
)

∨
(

tokv = ◦ ∧ ∃u ∈ C(v) : toku /∈ {⊥, ↑}
)

−→ tokv :=↓

ReplayL(v) ≡ ∀u ∈ Pneq(v), toku /∈ {•,�} ∧ ∃u ∈ Pneq(v), toku ∈ {	, ◦}
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Lemma 5.5
Let γ ∈ Γ. If there exists v ∈ V such that tokv = ◦ in γ then Ae(γ) 6= ∅.

Proof : The proof is given in Figure 5.19

tokv = ◦

∀c ∈ C(v) : tokc = ⊥

∃c ∈ Cneq(v) : playc = L

∃p ∈ Pneq(c) : tokp ∈ {•,�} p : Lemma 5.3 or Lemma 5.2

∀p ∈ Pneq(c) : tokp /∈ {•,�} c : RReplayD

∀c ∈ Cneq(v) : playc 6= L v : RReNego

∃c ∈ C(v) : tokc 6= ⊥

∃c ∈ C(v) : tokc =↑ c : Lemma 5.1

∃c ∈ C(v) : tokc /∈ {⊥, ↑} v : ETrustChild

Figure 5.19: Proof of Lemma 5.5

Tools Lemma 5.5

∀v ETrustChild : Er(v) −→ tokv :=↓
∀v RReNego : ¬Er(v) ∧ tokv = ◦ ∧ Leaf(v) ∧ ∀u ∈ Cneq(v) : playu 6= L −→ StartNego(v)
v 6= r RReplayD : ¬Er(v) ∧ tokv = ⊥ ∧ playv = L ∧ ReplayL(v) −→ playv := P

Er(v) ≡
(

tokv ∈ {•,F} ∧ ∃u ∈ C(v) : toku 6= ⊥
)

∨
(

tokv ∈ {�,	} ∧ ∃u ∈ C(v) : toku /∈ {⊥,F}
)

∨
(

tokv = ◦ ∧ ∃u ∈ C(v) : toku /∈ {⊥, ↑}
)

−→ tokv :=↓

ReplayL(v) ≡ ∀u ∈ Pneq(v), toku /∈ {•,�} ∧ ∃u ∈ Pneq(v), toku ∈ {	, ◦}



5.4. Proof of the Correctness of our Algorithm 105

Lemma 5.6
Let γ ∈ Γ. If there exists v ∈ V such that tokv =F in γ then Ae(γ) 6= ∅.

Proof : The proof is given in Figure 5.20

tokv = �

∀c ∈ C(v) : tokc = ⊥

∃p ∈ P(v) : tokp ∈ {�,	} p : Lemmas 5.2 or Lemma 5.4

∀p ∈ P(v), tokp /∈ {�,	} v : RNego

∃c ∈ C(v) : tokc 6= ⊥ v : ETrustChild

Figure 5.20: Proof of Lemma 5.6

Tools Lemma 5.6

∀v ETrustChild : Er(v) −→ tokv :=↓
v 6= r RNego : ¬Er(v) ∧ tokv = F ∧ (∀p ∈ P(v) : toku 6∈ {�,	}) −→ StartNego(v)

Er(v) ≡
(

tokv ∈ {•,F} ∧ ∃u ∈ C(v) : toku 6= ⊥
)

∨
(

tokv ∈ {�,	} ∧ ∃u ∈ C(v) : toku /∈ {⊥,F}
)

∨
(

tokv = ◦ ∧ ∃u ∈ C(v) : toku /∈ {⊥, ↑}
)

−→ tokv :=↓
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Lemma 5.7
Let γ ∈ Γ. If there exists v ∈ V such that tokv =↓ in γ then Ae(γ) 6= ∅.

Proof : The proof is given in Figure 5.21

tokv =↓

∃u ∈ C(v) : toku =↓ u : Lemma:5.7, profu < profv

∃u ∈ C(v) : toku ∈ {�, •,	, ◦,F} u : Lemma 5.2 or Lemma 5.3 or Lemma 5.4 or Lemma 5.5 or Lemma 5.6

∀u ∈ C(v) : toku ∈ {⊥, ↑} v : RReceive

Figure 5.21: Proof of Lemma 5.7

Tools Lemma 5.7

∀v ETrustChild : Er(v) −→ tokv :=↓
∀v RReceive : ¬Er(v) ∧ tokv =↓ ∧(∀u ∈ C(v), toku ∈ {⊥, ↑}) −→ tokv := ◦

Er(v) ≡
(

tokv ∈ {•,F} ∧ ∃u ∈ C(v) : toku 6= ⊥
)

∨
(

tokv ∈ {�,	} ∧ ∃u ∈ C(v) : toku /∈ {⊥,F}
)

∨
(

tokv = ◦ ∧ ∃u ∈ C(v) : toku /∈ {⊥, ↑}
)

−→ tokv :=↓

Theorem 5.2
∀γ ∈ Γ,Ae(γ) 6= ∅

Proof : Let γ ∈ Γ be a configuration. Since tokr ∈ {↑,�, •,	, ◦,F, ↓}, one of the following
lemmas applies: 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7.

5.4.2 Progress

In this section we formally establish, at once, two crucial properties for the validity of our
algorithm. The first property is that if a token is not anchored at the root of the Do (we
will give later a proper definition of the anchor of a token), then it can only circulate a
finite number of times before being blocked, or deleted. This means that no scheduler, even
unfair, can create an execution in which the token held by the root is never activated.

The second property is that circulation rounds (see Section 5.2.5) are always finite. We
actually prove that the token held by the root can only circulate a finite number of times
before it reaches the root, and the root executes RrNewDFS.

The combination of these two properties, and of the liveness established in Theorem 5.2
leads to the guarantee that there is an infinity of finite circulation rounds in any maximal
execution of our algorithm. We will prove in the next section that, eventually, the circulation
of the token is fair.
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To prove both properties, we define a potential function, which associates a positive
value (a weight) to each token in any configuration. Then, we establish that any computing
step decreases the weight of the token, unless the token is reset by an execution of RrNewDFS.
This establishes that a token cannot circulate indefinitely, since any step it takes makes a
positive quantity decrease, unless this token is anchored at the root and there are an infinity
of new circulation rounds.

In this section we provide a formal proof of these properties. Let us first have an
overview of this proof. In a corrupted initial configuration, the network may contain several
tokens, which may have common ancestors, and also have several ancestors. To deal with
the diversity of possible configurations, we define a new object to reason on, circulation
DODAGs, denoted by CDo, for each token. Then, we define a weight function, which
associates a weighted DODAG, denoted by WDo, to each CDo. We finally prove that each time
a node of a CDo is activated, the corresponding WDo decreases. According to Theorem 5.2,
there is at least one enabled node in each configuration, which guarantees that WDo’s actually
decrease in maximal executions.

In Section 5.4.2.1 we present the inherent difficulties to overcome for proving our re-
sults, and show how CDo’s and WDo’s are suitable solutions. In Section 5.4.2.2 we formally
define CDo’s and establish basic properties on them. In Section 5.4.2.3 we show how to
define the weight function we use, and introduce the concept of WDo’s. Then, in Sec-
tions 5.4.2.4, 5.4.2.5, 5.4.2.6, 5.4.2.7, and 5.4.2.8 we define the actual weight function, step
by step, and prove properties on it at each step. Finally, we establish our main theorems
in Section 5.4.2.9.

5.4.2.1 Difficulties to Overcome, Circulation DODAG

To associate a decreasing weight to a token, the main difficulty to overcome is that during
one circulation, the token shifts a lot, upward and downward alternately. Thus, the infor-
mation of whether the token is very close to the end of the circulation round, or still far, is
not local. This information strongly depends, for example, on which branches have already
been visited by the token, on the number of unvisited children the different nodes have,
on whether one error will be raised, etc. As a result, we cannot focus only on the token if
we want to succeed in estimating how many steps it still has to execute before it ends its
circulation.

One first condition for our potential function to be consistent is that it takes into account
the variables of the node holding the token, but also information relative to some ancestors
of that node. In practice, only the ancestors which are somehow pointing to this token will
be considered.

Yet, it might happen that one node in the ancestry of the token holder has several
children involved in a token circulation. If this is due to a triangle topology, i.e. if one node
has two parents, one being the parent of the other one, then considering the ascendants
of the token is sufficient. But this could also be a situation in which one node has two
independent token circulations below it. Our algorithm does not create such situations,
but they might exist due to an incorrect initial configuration. In such a situation, our
previous definition is not fully satisfactory since it does not highlight the fact that those
two token circulations are, though independent, intertwined.

To embrace that complexity, we define an ad hoc object, called a Circulation DODAG,
denoted CDo, which has a Do structure. That new object follows the same idea as the
upwards branch starting at the token, but we reverse that idea. We first look for nodes with
no ancestry (called anchor), that is to say nodes v such that tokv 6= ⊥∧∀p ∈ P(v), tokp ∈
{⊥, ↑}. Then, we go down from each anchor to all its descendants, following nodes u such
that toku 6= ⊥. Since nodes with toku =↑ can only be updated by RReturn, with effect
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toku := ⊥, we include them in our structures, but not their potential descendants: such
nodes are necessarily leaves of the CDo. Note that if the initial configuration is inconsistent,
it may contain several CDo’s. In Section 5.4.2.2 we formally define CDo’s and we establish
some basic properties on CDo’s.

Our goal is now to associate a finite positive quantity, a weight, to any CDo in any
configuration. Such an association will be called a weight function. A weight function is
said admissible if any activation of the CDo results in a decrease of the weight of the CDo.
Since there does not exist an infinite decreasing sequence of positive integers, it comes that
any CDo has a finite lifetime. Actually, since our algorithm of token circulation does not
terminate, there necessarily exists one rule that does not respect that specification. The
rule RrNewDFS is the only rule that increases the weight of a CDo, as it refreshes the token by
switching its color. Since only the root of the Do can execute RrNewDFS, we guarantee that
any other CDo, anchored at another node than the root, has a finite lifetime.

Unfortunately, associating a simple integer to a CDo does not allow to take into account
the diversity of situations that we must consider. The appropriate quantity to reason on
has itself a Do structure, which has the same topology as the CDo to which it is associate by
the weight function. Such Do’s are called weighted DODAGs and are denoted WDo.

More precisely, a WDo is a 5-tuple of Do’s. Each component of the tuple deals with one
aspect of the algorithm. The order in which the different components are set is crucial.
Indeed, it happens that some computing step makes one of the components increase. We
prove that this can be only if one component with higher priority decreases at the same
time.

• The first component of the 5-tuple evaluates the number of unvisited children of each
node of the CDo.

• The second component is dedicated to the numbers of errors in the network.

• The third component is dedicated to the updates of variable tok on each node, as
depicted in Figure 5.7.

• The fourth component is dedicated to the variable play on the children of each node
of the CDo.

• And the last component is dedicated to the negotiation process near nodes with
tok = •.

5.4.2.2 Circulation DODAGs

In this subsection, we define tools to capture the behavior of the token circulation, and
especially Circulation DODAGs, CDo’s. We prove in particular that the number of CDo’s
can never increase, which is a very desirable property to have to establish that the token is
eventually unique.

Remember that we denote by varγv the state of variable var for the node v in configu-
ration γ, and by P γ(v) the values of predicate P on node v in configuration γ.

We first define the anchors of our CDo’s. The anchors are nodes v that are involved
in a token circulation, i.e. tokv 6= ⊥, and which do not have any parent in this token
circulation. Recall that nodes u such that toku =↑ cannot be considered as parents, since
they can only execute rule RReturn, which makes them quit the circulation.

Definition 5.14 (Anchor)
Let γ ∈ Γ be a configuration. Node a ∈ V is an anchor in γ if
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• tokγa 6= ⊥, and

• ∀u ∈ P(a), tokγu ∈ {⊥, ↑}.

We denote by A(γ) the set of all anchors at γ, and by A∗(γ) the set of all anchors except
the root.

Remark 5.4
The root of G is an anchor in any configuration γ.

Now that we have defined anchors, we can define the nodes of the CDo anchored at one
particular anchor. The nodes of the CDo anchored at a are all the nodes which can reach
a by paths corresponding to a actual token circulation. In other words, we only consider
paths in which all nodes have a value tok 6= ⊥, and such that all the nodes apart from the
source have a value tok 6=↑. Indeed, nodes u such that toku =↑ are necessarily leaves of
CDo’s.
Definition 5.15 (Nodes of a Circulation DODAG)

Let us consider a configuration γ ∈ Γ and an anchor a ∈ A(γ). We define by induction
the nodes of the Circulation DODAG (CDo) anchored at a in γ, and denote by V γa as
the smallest set which contains the node a and such that:

v ∈ V γa ⇐⇒
{

tokγv 6= ⊥
∃u ∈ P(v) :

(
u ∈ V γa ∧ tokγu 6=↑

)
.

We now give a definition of CDo and we present an example with several CDo’s in one Do
in Figure 5.22.
Definition 5.16 (Circulation DODAG)

Let us consider a configuration γ ∈ Γ and an anchor a ∈ A(γ). We define the Circulation
DODAG (CDo) anchored at a in γ, and denote Dγ

a , as the Do with nodes V γa , and whose
parental relationship is defined by:

∀u, v ∈ V γa , (u ∈ CDγa (v) ⇐⇒ u ∈ CG(v) ∧ tokγv 6=↑)

Remark 5.5
We use the notation v ∈ Dγ

a as an alias for v ∈ V γa .

Remark 5.6
A CDo with anchor a is a sub-Do of Ga, the Do under a (see Definition 5.4).

Lemma 5.8 establishes that any node v such that tokv 6= ⊥ belongs to at least one CDo.
It will be useful in the latter to prove that any action taken by some node has an effect on
at least one CDo, and therefore decreases the weight of at least one CDo.
Lemma 5.8
∀v ∈ V , if tokγv 6= ⊥, then there exists an anchor a ∈ A(γ) such that v ∈ Dγ

a

Proof : Let us consider a maximal sequence v0v1 · · · vk such that v = v0 and ∀i ∈ [1, k], tokγvi /∈
{⊥ ↑} ∧ vi ∈ P(vi−1). Since the sequence is maximal, vk ∈ A(γ), and by definition we also
have ∀i, vi ∈ Dγ

vk . Consequently, v ∈ Dγ
vk .
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⊥ F

↑ �

↑

↓

↓

↓

↑ ⊥

anchor of one CDo

nodes of the CDo

Figure 5.22: Example of three CDo’s in the same graph G

Lemma 5.9 states that the set of anchors A of G is non-increasing: if one node v is not
an anchor in a configuration γ, then it will never be an anchor in a further configuration.
This lemma justifies that focusing on the decrease of the weight of CDo is sufficient, since
no CDo appears.

Lemma 5.9
Let cs = γ → γ′ be a computing step. We have A(γ′) ⊆ A(γ)

Proof : Let us prove the equivalent statement: V \ A(γ) ⊆ V \ A(γ′). Let the node v be
v /∈ A(γ), and prove that v /∈ A(γ′).

• Suppose first that tokγv = ⊥.
If tokγ

′
v = ⊥, then v /∈ A(γ′). Otherwise, we have tokγv = ⊥ and tokγ

′
v 6= ⊥, which is

possible only if v executes RWin during cs. But this is possible only if v has one parent
p such that tokγp =�. But in such a case, we necessarily have tokγ

′
p ∈ {�,	, ↓}, and

thus v /∈ A(γ′).
• Suppose now that tokγv 6= ⊥.

Since v /∈ A(γ), v has one parent p such that tokγp /∈ {⊥, ↑}. Let us prove that
tokγ

′
p /∈ {⊥, ↑}. Rule ROfferUp is the only rule whose effect might update tok from a

state that is neither ⊥ nor ↑, to a state that is ⊥ or ↑. But p can execute ROfferUp during
cs only if tokγp = •. Under such circumstances, since tokγv 6= ⊥, Erγ(p) = true, so p
cannot execute ROfferUp during cs. Thus, tokγ

′
p /∈ {⊥, ↑} and by definition, v /∈ A(γ′).

Remark 5.7
In the latter, when considering the effect of a computing step γ → γ′ on a CDo, we always
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work under the hypothesis that a ∈ A(γ′), which also implies that a ∈ A(γ) according
to Lemma 5.9.

Corollary 5.1
The number of CDo does not increase.

A CDo evolves through an execution of the algorithm, and in particular it can federate
new nodes during some computing steps, if some node close to the CDo executes RWin. To
be able to consider such situations, we introduce the notion of border of a CDo, which are
close nodes that might join the CDo.

Definition 5.17 (Border of a CDo)
Let Dγ

a be a CDo. We define the border of Dγ
a and denote B(Dγ

a) the set of nodes v ∈ V
such that tokγv = ⊥, and ∃p ∈ P(v) : p ∈ Dγ

a ∧ tokγp 6=↑.

The border of a CDo describes the nodes that can join a CDo. On the other hand, some
nodes can leave a CDo. Lemma 5.10 establishes that the only nodes susceptible to leave a
CDo during one computing step are the leaves of the CDo: the nodes v such that tokv =↑.
Lemma 5.10

Let cs = γ → γ′ be a computing step, and let a ∈ A(γ′). Let v1v2 · · · vk be a branch of
Dγ
a such that v1 = a. Then v1v2 · · · vk−1 is a branch of Dγ′

a , and if vk does not execute
RReturn during cs, then v1v2 · · · vk is a branch of Dγ′

a .

Proof : If B = v1v2 · · · vk is a branch of Dγ′
a the result is immediate. Let us rather suppose that

B is not a branch of Dγ′
a , and let us consider the highest value i such that Bi = v1v2 · · · vi

is a branch of Dγ′
a . Remark that v1 = a is necessarily a branch of Dγ′

a , so i ∈ [1, k − 1].
By definition, vi+1 ∈ CDγa (vi), so tokγvi /∈ {⊥, ↑} and tokγvi+1 6= ⊥. Let us first prove

that tokγ
′
vi /∈ {⊥, ↑}. The only possibility for the opposite would be that vi executes ROfferUp

during cs. But this implies that tokγvi = • and thus Erγ(vi) due to vi+1. Thus, if activated,
vi does not execute ROfferUp during cs but ETrustChild.

Consequently, since we have vi+1 /∈ C
D
γ′
a

(vi), we deduce that tokγ
′
vi+1 = ⊥, and thus

vi+1 executes RReturn during cs. But then, tokγvi+1 =↑ and thus vi+1 has no children in Dγ
a .

We deduce that vi+1 = vk, which means that vi = vk−1 and thus v1v2 · · · vk−1 is a
branch of Dγ′

a , and if vk does not execute RReturn then v1v2 · · · vk is a branch of Dγ′
a .

Lemma 5.11 establishes constraints on which actions might be taken by a node.

Lemma 5.11
Let cs = γ → γ′ be a computing step, and let v be a node. If v = r then v can update

cv only if tokγv =↑, and if v 6= r then v can update cv only if tokγv = ⊥.

Proof : If v = r then only RrNewDFS can update cv, and it is enabled only if tokγv =↑. If v 6= r
then only RWin and RFakeWin can update cv, and both are enabled only if tokγv = ⊥.

5.4.2.3 Introduction to the potential function W

To prove that one CDo can only be activated a finite number of times, we associate a weight
to each CDo in each configuration γ. We design this weight function (or potential function)
such that if one node is activated in the CDo or near it during the computing step γ → γ′,
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then the weight of the CDo is less in γ′ than in γ. The goal is to provide the domain of
weights with a well-founded order, so that such decreasing sequences are necessarily finite.
Recall that decreasing occurs only during periods during which no execution of RrNewDFS
resets the weight of a CDo to a high value.

Unfortunately, the structure of CDo is too complex for it can be valuated by an object
as simple as an integer. The most natural way to associate a weight to a CDo is to build a
Do, similar to the CDo considered, but whose nodes are labeled with weights. We call such
structures Weighted DODAGs, denoted WDo’s for short.

In this section, we consider (M,≤) an arbitrary well-founded set. Although our weight
function is defined on CDo’s, it is simpler to work through this section by considering arbi-
trary Do’s. Since CDo’s have a Do structure, all this work naturally applies to CDo’s.

Definition 5.18 formally introduces WDo’s: the object on which we will define a well-
founded order and that will later be considered as the weight of Do’s.
Definition 5.18 (Weighted DODAG)

A weighted Do (WDo) is a Do with labels in M : (Da, W), where Da is a Do and W ∈ MVa

is a map that associates an element of M to each node of Da.

The next step is to define an order of WDo’s. This is feasible only if the two WDo’s we
compare are based on Do’s having the same anchor a. This won’t be restrictive since in
practice, we compare the weights of the same CDo at different, consecutive, configurations
of an execution.

To compare WDo’s, the first step is to compare branches of WDo’s. Since two WDo’s that
share the same anchor do not necessarily share the same branches in their topology, the
appropriate notion to this comparison is the projection of WDo’s on the branches of the
Do under their common anchor. This is similar to what we introduced in Definition 5.6.
Definition 5.19 (Projection of a WDo on a Branch)

Let (Da, W) be a WDo, and let B = v1v2 · · · vk be a maximal branch of Ga. We call
projection of (Da, W) on B, and denote (Da, W)(B) the sequence W(v1)W(v2) · · · W(vj), where
Da(B) = v1v2 · · · vj is the projection of Da on B.

Since the branches of two WDo’s may have variable length, we compare them using the
alphabetical order (see Definition 5.8). This order is well-founded since the branches of the
WDo’s are all bounded by n, the number of nodes in the graph.

To compare WDo’s, we compare the weights of all the branches which start at a. One
WDo D1

a is less than or equal to one other WDo D2
a if, for any branch B of Ga the Do under a,

the projection of D1
a on B is less than or equal to the projection of D2

a on B.
Definition 5.20 presents a well-founded order on WDo’s.

Definition 5.20 (Order on WDo’s)
We define a partial order on WDo’s which share the same anchor by:

(D′a, W′) � (Da, W) ⇐⇒ for all maximal branch B of Ga,
(D′a, W′)(B) �α (Da, W)(B)

By construction, the resulting order is not a total order. Indeed, there exist Do’s and
branches such that (D′a, W′)(B1) ≺α (Da, W)(B1), on the one hand, and (Da, W)(B2) ≺α
(D′a, W′)(B2) on the other hand. Yet, we guarantee in the following sections that any com-
puting step makes the weight of the Do decrease (which implies that the corresponding WDo’s
are comparable).
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Lemma 5.12
Definition 5.20 defines a well-founded order.

Proof : By construction, � is reflexive, anti-symmetric, and transitive. Let us prove that
it is also well-founded. Consider an infinite sequence of WDo’s (Dn

a , Wn)n∈N such that
∀n, (Dn+1

a , Wn+1) � (Dn
a , Wn), and let us prove that there exists N ∈ N such that ∀n ≥

N, (Dn
a , Wn) = (DN

a , WN ).
Let B be a maximal branch of Ga, and let k be the length of B. By definition,

∀n, (Dn+1
a , Wn+1)(B) �α (Dn

a , Wn)(B). But �α is a well-founded order on sequences of
length at most k, and ∀n, (Dn

a , Wn)(B) is a sequence of length at most k. Consequently,
there exists NB ∈ N such that ∀n ≥ NB, (Dn+1

a , Wn+1)(B) = (Dn
a , Wn)(B).

Since there exists a finite number of maximal branches B of Ga, let us consider N =
maxB(NB). By definition, ∀n ≥ N , for all maximal branch B of Ga, (Dn

a , Wn)(B) =
(DN

a , WN )(B), and thus, ∀n ≥ N, (DN
a , WN ) � (Dn

a , Wn). Since � is an order, we have
∀n ≥ N, (Dn

a , Wn) = (DN
a , WN ).

We now show how to associate a WDo to any CDo as soon as we are given a weight function
W on nodes of G. This association is itself a weight function on CDo, induced by the weight
function on nodes. For simplicity, we also call W the induced weight function.

Contrary to what was presented in Definition 5.18, the weight function on nodes may
depend on the global configuration γ of the system, and not only on the state of nodes v.
More formally, we now consider a weight function W(v, γ) which associates an element of
M to each node in a given configuration. This does not pose any fundamental problem
since, given γ, we can still associate a WDo to any CDo Dγ

a . We can as well associate,
given γ, a weight to any projection of Dγ

a on any branch of Ga. This is formally stated in
Definition 5.21.

Definition 5.21 (Weight of a circulation DAG)
Let W : V ×Γ→M be a function that associates a weight to any node of a configuration.

For any fixed configuration γ ∈ Γ, we define W( · , γ) ∈ MVDa the function that
associates to any node v ∈ VDa the weight of v in γ: W( · , γ)(v) = W(v, γ).

Then, for all γ ∈ Γ, for all CDo Dγ
a at γ, we can consider W(Dγ

a , γ) the weight of Dγ
a

in γ, which is the WDo (Dγ
a , W( · , γ)).

We also define the weight of a branch B = v1v2 · · · vk of Dγ
a in γ, and denote

W(Dγ
a(B), γ) = W(Dγ

a , γ)(B) = (Dγ
a , W( · , γ))(B) = W(v1, γ)W(v2, γ) · · · W(vk, γ).

To deal with all the different aspects of the algorithm, we actually define several weight
functions in Sections 5.4.2.4 to 5.4.2.8, dealing with the different aspects of our algorithm.
Each of these functions defines one different WDo to the same CDo. In order to deduce global
properties on the evolution of the entire algorithm, we must combine all those functions and
to compare the different induces WDo’s all at once. To do so, we simply use the lexicographic
order on WDo’s that is induced by the order � introduced in Definition 5.20.

Definition 5.22 (Lexicographic order on WDo’s)
We denote by �k the lexicographic order on k-tuples of WDo’s which share the same
anchor, induced by the order �.
∀k ∈ N,�k is a well-founded order, as a lexicographic order induced by a well-founded

order.

Our goal is now to prove two properties. The first one is that the WDo’s associated to one
CDo never increase unless the anchor of the CDo is the root, and the root executes RrNewDFS.
The second property is that each time one node of the CDo, or near it, is activated (by a rule
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which is not RrNewDFS), the weight of the CDo decreases. A weight function which respects
the first property is said pre-admissible, and it is said admissible if it respects both.

Since the weight of a CDo is expressed as a tuple of WDo’s, the formal definitions of admis-
sibility and pre-admissibility lie on the lexicographic order introduced in Definition 5.22.
Each potential function has an even stronger weight as it appears on the first component
of the tuple.

The exact definition of admissibility actually depends on how we define what a node near
a CDo is. This definition depends on constraints which will emerge from the definitions of the
weight functions, and therefore will be provided later, in Definition 5.25 of Section 5.4.2.9.

We give here the definition of pre-admissibility.

Definition 5.23 (Pre-admissible weight-functions)
Let W1, . . . , Wk : V × Γ → M be k weight functions on nodes. We say that (W1, . . . , Wk)
is pre-admissible if for any computing step cs = γ → γ′ such that r does not execute
RrNewDFS during cs, for all CDo Dγ′

a , we have(
W1(Dγ′

a , γ
′), · · · , Wk(Dγ′

a , γ
′)
)
�k
(
W1(Dγ

a , γ), · · · , Wk(Dγ
a , γ)

)
.

Remark 5.8
In order to have relatively short and readable equations in the following, the previous
inequality will often be written:(

W1, . . . , Wk
)
(Dγ′

a , γ
′) �k

(
W1, . . . , Wk

)
(Dγ

a , γ)

In Sections 5.4.2.4 to 5.4.2.8 we define five weight functions on nodes, that belong to
V × Γ → N: which are WCh, WEr, WCirc, WPlay and WNego. Each one of those 5 functions deals
with one specific part of the algorithm, by decreasing order of importance, and is treated
separately in one of the next five sections. Thus, we define, for each configuration, 5 WDo’s
that, associated with the lexicographic order �5, will allow us to formally prove that the
token circulation terminates. Figure 5.23 summarizes the effects of the rules, and for each
of them indicates which component of W it decreases.

We prove that W = (WCh, WEr, WCirc, WPlay, WNego) is pre-admissible, by proving step by step
that all the prefixes of that 5-tuple are pre-admissible. We also establish some properties
that will allow us to prove, in Section 5.4.2.9, that (WCh, WEr, WCirc, WPlay, WNego) is admissible.

5.4.2.4 First component of W: WCh future children of v

Explanations One property which guarantees that circulation rounds are finite is that
one node can receive the token from its parent only once, as long as the parent does not
return the token to its own parent.

Indeed, once a node u receives the token from one of its parents p, it takes the same
color as that parent, and its variable play becomes W. Variable playu then cannot be set
to P before tokp is set to ↑, which implies that u cannot take the token once again from p
before p itself returns the token to its own parent.

For that reason, the first component of the weight function W should, at least, count on
each node u ∈ V the number of children of u that are susceptible to execute RWin before u
executes ROfferUp. The variables that we must consider to establish if one node is susceptible
to execute RWin are play and c. In the following we detail how we formally define this count.
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node Rule id tok c play W↘
v 6= r RWin ⊥ →F switch P→ W WCh

v 6= r RFakeWin switch P→ {W, F} WCh

∀v ∈ V ETrustChild {•,�,	, ◦,F} →↓ WEr

∀v ∈ V RGive • →� WCirc

∀v ∈ V RNewPlay �→	 WCirc

∀v ∈ V RDrop 	→↓ WCirc

∀v ∈ V RNego (1,⊥) F→ • WCirc

v 6= r ROfferUp • →↑ WCirc

∀v ∈ V RReceive ↓→ ◦ WCirc

∀v ∈ V RReNego (1,⊥) ◦ → • WCirc

v 6= r RReturn ↑→ ⊥ → {W, F} WCirc

v 6= r RLose P→ L WPlay

v 6= r RReplayD L→ P WPlay

v 6= r RReplayUp W→ P WPlay

v 6= r RFake W→ F WPlay

∀v ∈ V RmaxPos maxu∈C(v) idu WNego

∀v ∈ V RNewPh (ph + 1,⊥) WNego

v 6= r RNewBit (ph, Bit(ph)) WNego

v 6= r RReWin F→ W
r Rr

NewDFS ↑→F switch

Figure 5.23: Dedicated weight function for each rule. For readability, one color is associated
to each weight function.

Let us consider one node v and one of its children u. Remark first that if tokv ∈ {⊥, ↑},
then the weight of v can be defined as 0. Indeed, such a node cannot be involved in a
pass of the token to its children before it itself receives the token from one of its parents.
Thus, when v receives the token from its parent, its own weight increases from 0 to the
actual count of how many children susceptible to execute RWin it has. But at the same
moment, the weight of v’s parent decreases by one due to v cannot execute RWin anymore.
Consequently, due to how we defined �α on weighted chains, the weight of each branch of
a CDo that contains v and its parent decrease when v executes RWin.

We now consider one node v such that tokv /∈ {⊥, ↑} and one child u of v. In this
section, we only focus on the transmission of the token between nodes, and not on the
transitions of the variable tok on one node. Thus, we treat indifferently the different cases
when tokv ∈ {•,F,�,	, ◦, ↓}. Let us establish under which circumstances u might receive
the token from v.

• Node u can receive the token, at first, if cu 6= cv and playu ∈ {P, L}, by simply
executing RWin (or after one execution of RReplayD).

• Secondly, if cu 6= cv and playu ∈ {W, F}, then u can execute RReplayUp, and RReWin if
necessary, and then arrives in the previous situation. Therefore, we must count u as
a node that might receive the token.

• Finally, if cu = cv and playu ∈ {P, L}, then u can execute RWin or RFakeWin, and then
arrives in the previous situation.
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Note that if cu = cv and playu ∈ {W, F} then u cannot execute RWin nor RFakeWin due to
playu, and cannot execute RReplayUp since tokv ∈ {⊥, ↑}. This is described in Figure 5.24.

cu 6= cv

playu ∈ {P, L}
cu 6= cv

playu ∈ {W, F}

cu = cv

playu ∈ {P, L}
cu = cv

playu ∈ {W, F}

RWin (only if tokv =↓ )
RFakeWin

RReplayUp

RWin
RFakeWin

Figure 5.24: Evolution of the state of a child of node v with tokv /∈ {⊥, ↑}.

All the transitions presented in the diagram of Figure 5.24 bring the node that executes
the corresponding rule closer to the stable state where cu = cv ∧ playu ∈ {W, F}. We need
to fully describe the process that leads to the passing of the token to one child. Therefore,
we define WCh such that any execution of a rule that corresponds to a transition presented
in Figure 5.24 makes WCh decrease on the parent of the node that executes it.

Yet, remark that we cannot treat RReplayUp the same way as we treat RWin and RFakeWin.
Indeed, any execution of RWin or RFakeWin by one node u requires that at least one parent
v of u has its variable tokv different from {⊥, ↑}, which means that any such execution
corresponds to a transition on that diagram for that node v. On the contrary, one node u
might execute RReplayUp without any parent v such that tokv /∈ {⊥, ↑}. Thus, although we
treat some, we do not treat all possible executions of RReplayUp with WCh. This means that,
by the end of this section, we prove that any activation of RWin or RFakeWin makes W decrease,
and that some specific activation of RReplayUp makes W decrease. This piece of knowledge
will nevertheless be useful in the following sections until we prove that any activation of
RReplayUp makes W decrease. This is formally stated in Theorems 5.3 and 5.4.

Definitions Since children u of v move along the different boxes of Figure 5.24, we must
design WCh such that any transition taken by u makes WCh(v, γ′) < WCh(v, γ). Our solution is
to attribute different coefficients to the different boxes: the further node u is from the stable
configuration cu = cv ∧ playu ∈ {P, L}, the higher the coefficient. Somehow, the coefficient
represents the number of transitions needed by one node to reach the stable configuration.
The coefficients are the integers above and below the boxes in Figure 5.25.

In practice, to make the proof easier to approach, we define 3 sets on each node v, such
that any transition taken by one child u of v brings u out of one of the sets. Those sets
have a non-empty intersection, and are such that the coefficient attributed to one node is
the number of sets it belongs to.

• One set includes all the nodes that are potential candidates to receiving the token
from v, that is to say all the children u of v that are not in a stable state.

• One other set, included in the first one, includes all of those candidates that must
execute RReplayUp before they might receive the token from v.

• Finally, the last set, included in the second one, includes all of those candidates that
must execute RWin or RFakeWin before they can execute RReplayUp and receive the token
from v, that are also the candidates that are the same color as v.
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AllCand(v) ReplayCand(v) EqColCand(v)

cu 6= cv

playu ∈ {P, L}
cu 6= cv

playu ∈ {W, F}

cu = cv

playu ∈ {P, L}
cu = cv

playu ∈ {W, F}

RWin
RFakeWin

RReplayUp

RWin
RFakeWin

×1 ×2

×0
×3

Figure 5.25: Weight associated to a child of node v with tokv /∈ {⊥, ↑}.

Let us define those three sets, starting from the last, and smallest, one.

EqColCandγ(v) = {u ∈ C(v) | cγu = cγv ∧ playγu ∈ {P, L}} (5.34)

ReplayCandγ(v) = EqColCandγ(v) ∪ {u ∈ C(v) | cγu 6= cγv ∧ playγu ∈ {W, F}} (5.35)

AllCandγ(v) = ReplayCandγ(v) ∪ {u ∈ C(v) | cγu 6= cγv ∧ playγu ∈ {P, L}} (5.36)

Finally, we can define WCh(v, γ) such that the coefficients on Figure 5.25 are respected:

WCh(v, γ) =
{

0 if tokγv ∈ {⊥, ↑}∣∣AllCandγ(v)
∣∣+
∣∣ReplayCandγ(v)

∣∣+
∣∣EqColCandγ(v)

∣∣ otherwise
(5.37)

Proofs Lemmas 5.13, 5.14, and 5.15 state that ∀v ∈ V , the three sets defined previously
can only decrease during an execution, as long as tokv /∈ {⊥, ↑}. Basically, we prove that
there is no other transition than the ones we represented in Figure 5.25. These three lemmas
are one of the main arguments to establish that WCh is a pre-admissible weight function.
Lemma 5.13

Let cs = γ → γ′ be a computing step and let v ∈ V be a node. If tokγv /∈ {⊥, ↑} then
AllCandγ′(v) ⊆ AllCandγ(v).

Proof : We prove the equivalent statement:

C(v) \ AllCandγ(v) ⊆ C(v) \ AllCandγ
′
(v).

Since tokγv /∈ {⊥, ↑}, then according to Lemma 5.11, v does not update cv during cs. Let us
consider one child u of v such that u /∈ AllCandγ(v). By definition, cγu = cγv∧playγu ∈ {W, F}.
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During cs, u does not execute RWin nor RFakeWin since playγu 6= P, and does not execute RrNewDFS
since it has at least one parent. Furthermore, u does not execute RReplayUp during cs since
v ∈ Peq

γ(u)∧tokγv =↑. Thus, cγ
′
u = cγ

′
v ∧playγ

′

u ∈ {W, F}, in other words, u /∈ AllCandγ
′(v).

As a result, C(v) \ AllCandγ(v) ⊆ C(v) \ AllCandγ
′(v).

Lemma 5.14
Let cs = γ → γ′ be a computing step and let v ∈ V be a node. If tokγv /∈ {⊥, ↑} then

ReplayCandγ′(v) ⊆ ReplayCandγ(v).

Proof : We prove the equivalent statement:

C(v) \ ReplayCandγ(v) ⊆ C(v) \ ReplayCandγ
′
(v).

Since tokγv /∈ {⊥, ↑}, then according to Lemma 5.11, v does not update cv during cs. Let us
consider one child u of v such that u /∈ ReplayCandγ(v). If u /∈ AllCandγ(v) then according
to Lemma 5.13, u /∈ AllCandγ

′(v) and thus u /∈ ReplayCandγ
′(v). Let us suppose now

that u ∈ AllCandγ(v) \ ReplayCandγ(v), i.e. cγu 6= cγv ∧ playγu ∈ {P, L}. If u executes
RWin or RFakeWin during cs, then cγ

′
u = cγ

′
v ∧ playγ

′

u = W and thus u /∈ ReplayCandγ
′(v).

Otherwise, since u has at least one parent it does not execute RrNewDFS and thus does not
update cv, and it can neither update cu to W or L, and thus u /∈ ReplayCandγ

′(v). As a
result, C(v) \ ReplayCandγ(v) ⊆ C(v) \ ReplayCandγ

′(v).

Lemma 5.15
Let cs = γ → γ′ be a computing step and let v ∈ V be a node. If tokγv /∈ {⊥, ↑} then

EqColCandγ′(v) ⊆ EqColCandγ(v).

Proof : We prove the equivalent statement:

C(v) \ EqColCandγ(v) ⊆ C(v) \ EqColCandγ
′
(v).

Since tokγv /∈ {⊥, ↑}, then according to Lemma 5.11, v does not update cv during cs. Let
us consider one child u of v such that u /∈ EqColCandγ(v). If u /∈ ReplayCandγ(v) then
according to Lemma 5.14, u /∈ ReplayCandγ

′(v) and thus u /∈ EqColCandγ
′(v).

Let us suppose now that u ∈ ReplayCandγ(v) \ EqColCandγ(v), i.e. cγu 6= cγv ∧ playγu ∈
{W, F}. Since u has at least one parent, it does not execute RrNewDFS during cs, and since
playγu 6= P, u does not execute RWin nor RFakeWin during cs. Thus, we have cγ

′
u 6= cγ

′
v and

thus u /∈ EqColCand(v, γ′). As a result, C(v) \ EqColCandγ(v) ⊆ C(v) \ EqColCandγ
′(v).

Lemma 5.16 establishes that if one node executes RWin, RFakeWin, or RReplayUp, then the
weight of all its parents in any CDo decrease. Basically, we formally prove that any such
activation corresponds to one of the transitions represented in Figure 5.25, and thus that
it makes one of the three sets decrease.
Lemma 5.16

Let cs = γ → γ′ be a computing step, and let v ∈ V be a node. If v executes RWin,
RFakeWin, or RReplayUp during cs, then ∀p ∈ P(v) such that tokγp /∈ {⊥, ↑}, we have
WCh(p, γ′) < WCh(p, γ).

Proof : Let us consider p ∈ P(v) such that tokγp /∈ {⊥, ↑}. Lemma 5.11 guarantees that
cγ
′
p = cγp .

Suppose first that v executes RWin or RFakeWin during cs, which induces playγv = P and
playγ

′

v ∈ {W, F}.
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If cγv = cγp then v ∈ EqColCandγ(p). But since playγ
′

v ∈ {W, F}, v /∈ EqColCandγ
′(p),

which according to Lemma 5.15 means that EqColCandγ
′(p) ( EqColCandγ(p). According

to Lemmas 5.13 and 5.14, we obtain WCh(p, γ′) < WCh(p, γ).
Otherwise, cγv 6= cγp . Since playγv = P, we have v ∈ AllCandγ(p), and since playγv ∈

{W, F} and v switches its color during cs, we also have v /∈ AllCandγ
′(p). According to

Lemma 5.13, AllCandγ
′(p) ( AllCandγ(p), and according to Lemmas 5.14 and 5.15, we

obtain WCh(p, γ′) < WCh(p, γ).
Let us now suppose that v executes RReplayUp during cs. Since tokγp /∈ {⊥, ↑}, pred-

icate ReplayWγ(v) implies that cγp 6= cγv . Since v execute RReplayUp during cs, we have
playγv = W, and thus v ∈ ReplayCandγ(p), and we also know that v updates playv to P
and that it does not update its variable cv which implies that cγ

′
v 6= cγ

′
p ∧ playγ

′

v = P.
Thus, v /∈ ReplayCandγ

′(p) so according to Lemma 5.14 means that ReplayCandγ
′(p) (

ReplayCandγ(p). According to Lemmas 5.13 and 5.15, we obtain WCh(p, γ′) < WCh(p, γ).

Lemma 5.17 establishes that the function WCh is adapted to Definitions 5.8 and 5.20.
Indeed, it might happen that one node sees its weight increase, but only if all of its parents
see their weight decrease.

Lemma 5.17
Let cs = γ → γ′ be a computing step and let v ∈ V such that v does not execute
RrNewDFS during cs. If WCh(v, γ′) > WCh(v, γ) then ∀p ∈ P(v) such that tokγp /∈ {⊥, ↑}, we
have WCh(p, γ′) < WCh(p, γ), and there exists at least one such p.

Proof : According to Lemmas 5.13, 5.14, and 5.15, if tokγv ∈ {•,F,�,	, ↓, ◦}, then WCh(v, γ′) ≤
WCh(v, γ). Furthermore, if tokγv =↑, then tokγ

′
v ∈ {↑,⊥} and thus WCh(v, γ′) = WCh(v, γ).

Finally, if tokγv = ⊥, then WCh(v, γ′) > WCh(v, γ) is possible only if v executes RWin
during cs, and thus Lemma 5.16 states that ∀p ∈ P(v) such that tokγp /∈ {⊥, ↑}, we have
WCh(p, γ′) < WCh(p, γ).

Theorem 5.3 establishes that WCh is pre-admissible.

Theorem 5.3
Let cs = γ → γ′ be a computing step, and let a be an anchor at γ′, and suppose that
a does not execute RrNewDFS during cs. We have WCh(Dγ′

a , γ
′) � WCh(Dγ

a , γ).

Proof : Let B = v1v2 · · · vk be a maximal branch of Ga, and let v1v2 · · · vj = Dγ′
a (B) be the

projection of Dγ′
a on B. Let us consider the following cases:

• If v1v2 · · · vj is a branch of Dγ
a(B) and ∀i ∈ [1, j], WCh(vi, γ′) = WCh(vi, γ).

Then we have WCh(v1, γ
′)WCh(v2, γ

′) · · · WCh(vj , γ′) = WCh(v1, γ)WCh(v2, γ) · · · WCh(vj , γ) and
thus WCh(Dγ′

a (B), γ′) �α WCh(Dγ
a(B), γ).

• If v1v2 · · · vj is a branch of Dγ
a(B) and ∃i ∈ [1, j] : WCh(vi, γ′) 6= WCh(vi, γ).

Let us consider the smallest i such that WCh(vi, γ′) 6= WCh(vi, γ). According to Lemma 5.17,
WCh(vi, γ′) < WCh(vi, γ), and as a consequence, WCh(v1, γ

′)WCh(v2, γ
′) · · · WCh(vj , γ′) ≺

WCh(v1, γ)WCh(v2, γ) · · · WCh(vj , γ). Thus, we have WCh(Dγ′
a (B), γ′) ≺α WCh(Dγ

a(B), γ).
• If v1v2 · · · vj is not a branch of Dγ

a .
Let us consider v1v2 · · · vl = Dγ

a(B) the projection of Dγ
a on B. Since v1v2 · · · vj is not

a branch of Dγ
a we have 1 ≤ l < j, and thus l+1 ≤ j. Remark first that since (vl, vl+1)

is an edge in Dγ′
a , we have tokγ

′
vl /∈ {↑,⊥}, and thus tokγvl 6=↑. But vl+1 /∈ Dγ

a , so
tokγvl+1 = ⊥, and since vl+1 ∈ Dγ′

a , tokγ
′
vl+1 6= ⊥ so vl+1 executes RWin during cs.

Thus, Lemma 5.16 applies, and as a consequence WCh(vl, γ′) < WCh(vl, γ).
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Let us consider the smallest i ≤ l such that WCh(vi, γ′) 6= WCh(vi, γ). According to
Lemma 5.17, WCh(vi, γ′) < WCh(vi, γ), and as a consequence,

WCh(v1, γ
′)WCh(v2, γ

′) · · · WCh(vj , γ′) ≺ WCh(v1, γ)WCh(v2, γ) · · · WCh(vl, γ).

Thus, we have WCh(Dγ′
a (B), γ′) ≺α WCh(Dγ

a(B), γ).

We prove that for any maximal branch v1v2 · · · vk of Gt, WCh(Dγ′
a (B), γ′) �α WCh(Dγ

a(B), γ).
By definition, we have WCh(Dγ′

a , γ
′) � WCh(Dγ

a , γ).

Theorem 5.4 and Lemma 5.18 prove that under certain circumstances, we are certain
that the weight of one CDo decreases. The first theorem focuses on the application of rules
RWin and RFakeWin, and will be useful to prove that W is an admissible weight function, but
also to prove that the other, longer, prefixes of W are pre-admissible. Indeed, if in any
computing step, one node executes RWin or RFakeWin, we do not need to look beyond the
first component to be assured that the weight does not increase, since �k is a lexicographic
order. The second lemma focuses on the length of the branches of a CDo, and is useful for
us to write proofs in the following. Just as we explained before, we can now suppose in the
following proofs of pre-admissibility that branches of CDo’s never increase, since it would
make the first component of W decrease.

Theorem 5.4
Let cs = γ → γ′ be a computing step, and let a be an anchor at γ′, and suppose that a
does not execute RrNewDFS during cs. If ∃v ∈ B(Dγ

a) such that v executes RWin, RFakeWin,
or RReplayUp during cs, we have WCh(Dγ′

a , γ
′) ≺ WCh(Dγ

a , γ).

Proof : Let us consider one node v ∈ B(Dγ
a) that executes RWin, RFakeWin, or RReplayUp during

cs. By definition, ∃p ∈ P(v) : p ∈ Dγ
a ∧ tokγv 6=↑. Let us consider B = v1v2 · · · vk a branch

of Dγ
a such that vk = p. According to Lemma 5.10, B is a branch of Dγ′

a .
According to Lemma 5.16, WCh(p, γ′) < WCh(p, γ), and according to Theorem 5.3, WCh(Dγ′

a (B), γ′) �α
WCh(Dγ

a(B), γ). Consequently, WCh(Dγ′
a (B), γ′) ≺α WCh(Dγ

a(B), γ), and thus according to The-
orem 5.3, WCh(Dγ′

a , γ
′) ≺ WCh(Dγ

a , γ).

Lemma 5.18
Let cs = γ → γ′ be a computing step, and let a be an anchor at γ′, and suppose that a
does not execute RrNewDFS during cs. If there exists B = v1v2 · · · vk a branch of Ga such
that Dγ′

a (B) is longer than Dγ
a(B), then WCh(Dγ′

a , γ
′) ≺ WCh(Dγ

a , γ).

Proof : Let us consider v1v2 · · · vj = Dγ
a(B). Let us prove that v = vj+1 satisfies the conditions

of Theorem 5.4.
Remark first that tokγvi 6=↑. Indeed, if tokγvi =↑ then tokγ

′
vi ∈ {↑,⊥}, which is contra-

dictory since v ∈ C
D
γ′
a

(vi). Then, we have tokγv = ⊥ which implies v ∈ B(Dγ
a), otherwise

we would have v ∈ CDγa (vi). But since v ∈ Dγ′
a , we have tokγ

′
v 6= ⊥, which is possible only

if v executes RWin during cs.
We can apply Theorem 5.4 to our situation, and consequently WCh(Dγ′

a , γ
′) ≺ WCh(Dγ

a , γ).

5.4.2.5 Second component of W: WEr errors descending from v

Explanations One major quantity in our algorithm that should decrease during an ex-
ecution is the number of nodes v such that Er(v). Indeed, we expect that after some
convergence time, no node will execute ETrustChild, and that our CDo will have the expected
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shape. Although that last sentence will be proven true in the following, the number of nodes
v such that Er(v) might occasionally increases. Indeed when a node executes ETrustChild,
it might happen that it creates an error in some of its parents. For example, if node v has
p as a parent, and tokγv = F, tokγp =�. We have ¬Erγ(p), but if in γ → γ′, v executes
ETrustChild, then tokγ′v =↓ and thus Erγ′(p). In the described case, the number of nodes in
error does not increase, but if node v has several parents p with tokγp ∈ {�,	} then that
number will actually increase.

One first idea to prevent this from happening is that each node counts the number of
descendants it has that are in error. This almost works, but not totally. Indeed, suppose
v has two parents p, that both have the same parent a, and we have tokγv =F, tokγp =�,
tokγa =↓. In γ, a only has one descendant in error, but has two once v executes ETrustChild.
The fact that errors can split through several branches forces us to design WEr such that it
counts a descendant in error as many times as there exist paths to that node.

Fortunately, we can stop the count in our descendants as soon as we reach a node v
such that tokv ∈ {⊥, ↑, ↓}. Indeed, such nodes cannot execute ETrustChild, which implies
that errors cannot ride up through such nodes.

There exists another situation that increases the number of nodes in error. Suppose
one node v executes RWin during γ → γ′. We have WEr(v, γ) = 0 by definition. Yet, it
might happen that one child u of v is such that tokγ′u 6= ⊥. It might even happen that
WEr(u, γ′) > 0, with an arbitrary value. In such a situation, the weight of v, and thus
WEr(Dγ

a) can increase arbitrarily. Hopefully, we proved in the previous section that at the
same moment, WCh(Dγ

a) decreases, and thus no problem is raised.

Definition According to what precedes, we define WEr the second component of our weight
function by 0 on nodes v such that tokv ∈ {↓, ↑,⊥}, and by the number of nodes in error
they can see within range, themselves included, otherwise.

WEr(v, γ) =


0 if tokγv ∈ {↓, ↑,⊥}∑
u∈C(v) WEr(u, γ) + 1 if Erγ(v)∑
u∈C(v) WEr(u, γ) otherwise

(5.38)

Proofs Lemma 5.19 describes under which conditions one node that is not in error before
a computing step can become in error after that computing step. It states that either it
makes WCh decrease, either it comes from the fact that one child of that node executed
ETrustChild, which does not lead to any increase of WEr. This lemma is the main argument
to establish that (WCh, WEr) is a pre-admissible weight function.

Lemma 5.19

Let v ∈ V be a node and let cs = γ → γ′ be a computing step. If ¬Erγ(v) and Erγ′(v),
then WCh(v, γ′) < WCh(v, γ) or v executes RWin during cs or ∃u ∈ C(v) such that u executes
ETrustChild during cs.

Proof : We prove the equivalent statement: if ¬Erγ(v) then ¬Erγ
′(v) or WCh(v, γ′) < WCh(v, γ)

or, during cs, v executes RWin or ∃u ∈ C(v) such that u executes ETrustChild.
Since ¬Erγ(v), only few cases must be considered.

1. If tokγv = ⊥ then either v executes RWin during cs, either it does not, but then
tokγ

′
v = ⊥ and thus ¬Erγ

′(v).

2. If tokγv =↑ then tokγ
′
v ∈ {↑,⊥} and thus ¬Erγ

′(v).
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Figure 5.26: Example of the definition of WEr on a Do.

3. If tokγv =↓ then if v does not execute RReceive during cs, tokγ
′
v =↓ and thus ¬Erγ

′(v).
Otherwise, v executes RReceive during cs and then ∀u ∈ C(v), tokγu ∈ {⊥, ↑}. Either
one child u of v executes RWin, and then WCh(v, γ′) < WCh(v, γ) according to Lemma 5.16,
either no one does, but then ∀u ∈ C(v), tokγ

′
u ∈ {⊥, ↑}, and since tokγ

′
v = ◦, we have

¬Erγ
′(v).

4. If tokγv = F ∧ ∀u ∈ C(v), tokγu = ⊥ then either one child u of v executes RWin, and
then WCh(v, γ′) < WCh(v, γ) according to Lemma 5.16, either no one does, but then
∀u ∈ C(v), tokγ

′
u = ⊥ which means that ¬Erγ

′(v).
5. If tokγv = • ∧ ∀u ∈ C(v), tokγu = ⊥ then children u of v cannot execute RWin during

cs: either u has one other parent p such that tokγp =�, and then ¬OkNegγ(u), either
it has not, and thus it cannot execute RWin either. Thus, ∀u ∈ C(v), tokγ

′
u = ⊥, so

¬Erγ
′(v).

6. If tokγv =� ∧∀u ∈ C(v), tokγu ∈ {⊥,F} then children u of v cannot execute RNego since
they have one parent v with tokγv =�. If no children u of v executes ETrustChild during
cs, then ∀u ∈ C(v), tokγ

′
u ∈ {⊥,F}. Furthermore, tokγ

′
v ∈ {�,	} since ¬Erγ(v).

Thus, if no children u of v executes ETrustChild during cs, ¬Erγ
′(v).

7. If tokγv =	 ∧∀u ∈ C(v), tokγu ∈ {⊥,F} then children u of v cannot execute RNego
since they have one parent v with tokγv =	. If no children u of v executes ETrustChild
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during cs, then ∀u ∈ C(v), tokγ
′
u ∈ {⊥,F}. Furthermore, tokγ

′
v ∈ {	, ↓}. Thus, if no

children u of v executes ETrustChild during cs, ¬Erγ
′(v).

8. If tokγv = ◦∧∀u ∈ C(v), tokγu ∈ {⊥, ↑} then children u of v cannot execute RWin during
cs: either u has one other parent p such that tokγp =�, and then ¬OkNegγ(u), either it
has not, and thus it cannot execute RWin either. This implies that ∀u ∈ C(v), tokγ

′
u ∈

{⊥, ↑} and thus ¬Erγ
′(v).

Theorem 5.5 establishes that (WCh, WEr) is pre-admissible.

Theorem 5.5
Let cs = γ → γ′ be a computing step, and let a be an anchor at γ′, and suppose that
a does not execute RrNewDFS during cs.

We have (WCh, WEr)(Dγ′

a , γ
′) �2 (WCh, WEr)(Dγ

a , γ).

Proof : According to Theorem 5.3, we already have WCh(Dγ′
a , γ

′) � WCh(Dγ
a , γ). Consequently,

by definition of the lexicographic order, we only have to establish that if WEr(Dγ
a , γ) ≺

WEr(Dγ′
a , γ

′) then WCh(Dγ′
a , γ

′) ≺ WCh(Dγ
a , γ).

Let us first remark that if there exists B a branch of Ga such that Dγ′
a (B) is longer than

Dγ
a(B) then according to Lemma 5.18, WCh(Dγ′

a , γ
′) ≺ WCh(Dγ

a , γ).
We suppose now that for any branch B of Ga, Dγ′

a (B) is not longer than Dγ
a(B). Let

us establish that ∀v ∈ Dγ′
a , WEr(v, γ′) ≤ WEr(v, γ), or WCh(Dγ′

a , γ
′) ≺ WCh(Dγ

a , γ). Since the
branches of Dγ′

a are included in the branches of Dγ
a , this becomes WEr(Dγ′

a , γ
′) � WEr(Dγ

a , γ)
or WCh(Dγ′

a , γ
′) ≺ WCh(Dγ

a , γ), and thus this actually proves the theorem.
Let us prove that if ∃v ∈ Dγ′

a : WEr(v, γ′) > WEr(v, γ) then WCh(Dγ′
a , γ

′) ≺ WCh(Dγ
a , γ),

and let us consider one such v with highest depth. Let us first prove that tokγv /∈ {⊥, ↑, ↓}.
Since v ∈ Dγ

a , tokγv 6= ⊥. If tokγv =↑ then tokγ
′
v ∈ {↑,⊥}, and thus WEr(v, γ′) = 0 which is

contradictory with our hypothesis, so tokγv 6=↑. Finally, if tokγv =↓ then WEr(v, γ′) > 0 is
possible only if v executes RReceive during cs, which implies that ∀u ∈ C(v), tokγu ∈ {⊥, ↑}.
None of these children executes RWin during cs, because if one u does then the edge (v, u)
belongs to Dγ′

a (because tokγ
′
v = ◦) while it does not belong to Dγ

a , which is contradictory
with our hypothesis on branches. Consequently, ∀u ∈ C(v), tokγ

′
u ∈ {⊥, ↑}, and thus

¬Erγ
′(v), and WEr(v, γ′) = 0. Thus, we can indeed assume that tokγv /∈ {⊥, ↑, ↓}.

Since all branches of Dγ′
a are also branches of Dγ

a , and since v is one deepest node of Dγ′
a

such that WEr(v, γ′) > WEr(v, γ), we have ∀u ∈ C(v), WEr(u, γ′) ≤ WEr(u, γ). As a consequence,
WEr(v, γ′) > WEr(v, γ) becomes possible only if ¬Erγ(v) and Erγ

′(v).
According to Lemma 5.19, this is possible only if during cs, v executes RWin, which

cannot happen since tokγv 6= ⊥, or if WCh(v, γ′) < WCh(v, γ) which implies that WCh(Dγ′
a , γ

′) ≺
WCh(Dγ

a , γ), or if ∃u ∈ C(v) such that u executes ETrustChild during cs. In that last case, we
have Erγ(u) so WEr(u, γ) ≥ 1, and tokγ

′
u =↓ and so WEr(u, γ′) = 0. Since we took v one deep-

est node such that WEr(v, γ′) > WEr(v, γ), we have ∀u ∈ C(v), WEr(u, γ′) ≤ WEr(u, γ), so, by con-
sidering the child that executes ETrustChild, we have

∑
u∈C(v) WEr(u, γ′) <

∑
u∈C(v) WEr(u, γ),

and thus WEr(v, γ′) ≤ WEr(v, γ).

Theorem 5.6 proves that under certain circumstances, we are certain that the weight of
one CDo decreases. It will be useful to prove that W is an admissible function, but also to
prove that the other, longer, prefixes of W are pre-admissible. Indeed, if in any computing
step one node executes ETrustChild then we do not need to look beyond the second component
to be assured that the weight does not increase, since �k is a lexicographic order.

Theorem 5.6
Let cs = γ → γ′ be a computing step, and let a be an anchor at γ′, and suppose that a
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does not execute RrNewDFS during cs. If ∃v ∈ Dγ
a such that v executes ETrustChild during

cs, then (WCh, WEr)(Dγ′

a , γ
′) ≺2 (WCh, WEr)(Dγ

a , γ).

Proof : Let us consider one such node v ∈ Dγ
a , and one branch B of Ga such that v ∈ Dγ

a(B). If
v /∈ Dγ′

a (B), then according to Lemma 5.18, we have (WCh, WEr)(Dγ′
a , γ

′) ≺2 (WCh, WEr)(Dγ
a , γ).

Else, remark that WEr(v, γ) > 1 since Erγ(v), and WEr(v, γ′) = 0 since tokγv =↓. Thus,
WEr(v, γ′) < WEr(v, γ), and so WEr(Dγ′

a (B), γ′) ≺α WEr(Dγ
a(B), γ) since v ∈ Dγ′

a (B). Since
(WCh, WEr)(Dγ′

a , γ
′) �2 (WCh, WEr)(Dγ

a , γ), we conclude (WCh, WEr)(Dγ′
a , γ

′) ≺2 (WCh, WEr)(Dγ
a , γ).

5.4.2.6 Third component of W: WCirc, circulation of variable tok

Explanations Now that we have considered the cases where nodes execute ETrustChild,
we can consider that variable tok is updated in accordance with Figure 5.7. The third
component of the weight function should treat all the transitions of variable tok depicted
in this diagram. We could think at first sight that since the diagram is circular, we will have
difficulty defining a weight function that decreases along the diagram. Yet, if the algorithm
behaves correctly, when a node v is updated from • to �, one child of v is supposed to
execute RWin in the next computing steps, and then WCh will decrease on the observed CDo.
Since WCh has higher priority in the lexicographic order than WCirc, we are going to design
WCirc so that it increases exactly when WCh decreases. Therefore, we can cycle as many
times as necessary through the transition diagram of Figure 5.7 and having the 3-tuple
(WCh, WEr, WCirc) decrease at each step.

To do this, we must associate a different weight to a node v with tokv =� depending on
whether it still has one child that is going to execute RWin (or RFakeWin) in the next computing
steps. More precisely, if there still exists one child u of v that belongs to Players(v), we
associate a lower weight to v that if such child u does not exist. When v executes RWin or
RFakeWin, WCirc increases on v, but WCh decreases at the same time.

But since we work in the framework of self-stabilization, it might happen that registers
are incorrectly initialized, and that when node v executes RGive, and updates tokv from •
to �, v immediately has no children susceptible to execute RWin. Indeed, if in the initial
configuration, idv is inconsistent with the id of its children, it might happen that after some
computations, all the children u of v such that playu = P eventually lose the negotiation. In
such a situation, after v executes RGive, we arrive in a configuration in which WCirc(v, γ′) is
already at its high value. But this high value is precisely designed to be the highest assigned
value of the diagram. To overcome that issue, we add one possible value for WCirc(v, γ)
when tokγv = •, higher than the high value for nodes with tokγv =�. This value is taken by
WCirc(v, γ) only if we detect that after few computations, we fall into a situation where no
children of v can execute RWin. It is crucial that this situation cannot happen consecutively
to an execution of RReNego, otherwise we should also design two possible outcomes for the
weight of some node v with tokv = ◦. The predicate FullRound achieves that detection for
node v such that tokv = •.

For the other values that tokv might take, we only associate integers that decrease
along the classical scheme depicted in Figure 5.7. The definition of WCirc is summarized in
Figure 5.27

Definitions The weight of one node v such that tokv =� depends on if it has children
susceptible to take the token. If it has, then we set its weight to one low value, so that when
the child takes the token, WCh decreases on v at the same time that we make WCirc increases
on v. If it has not, then it must be a high value so that the weight of v can decrease through
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⊥ F • � 	 ↓ ◦

↑

0 8 2
(7)

1→ 6 5 4 3

1

Figure 5.27: Value of WCirc depending on the variable tokv.

the transitions of Figure 5.27.

W�
Circ(v, γ) =

{
6 if Playersγ(v) = ∅
1 if Playersγ(v) 6= ∅ (5.39)

Let us now define the weight of one node v such that tokv = •. The weight of such a
node can also be taken between two values that are 2 and 7, so that it can easily be bigger
than W�

Circ. We must design W•Circ such that, if after v executes RGive we have W�
Circ(v, γ′) = 6

then we have W•Circ(v, γ) = 7 just before, otherwise the weight would increase. But we also
require that we never have W•Circ(v, γ) = 2 ∧ W•Circ(v, γ′) = 7. In other words, if W�

Circ is set
to 6 immediately after the execution of RGive, it must be detected at the very beginning of
the execution (or as soon as tokv is set to •).

The situation described just above happens if before v executes RGive, all the nodes
u ∈ Playersγ(v) execute RLose. In such a situation, no children u of v wins the negotiation,
and v executes a full cycle of the cycle of Figure 5.27, which indeed forces us to attribute
7 to the weight of v. Hopefully, the design of our algorithm guarantees that this can only
happen if the values of idv and/or idu are inconsistent. In other words, as soon as v
executes one action, we guarantee that this situation cannot occur anymore, this will be
proven in Lemma 5.23. Thus, we only have to deduce if u ∈ Players(v) will execute RLose
before any action of v, from the values of idv and idu. This strongly depends on the value
of bγv .

If bγv 6= ⊥ then v announces one value that defines the partial winners of that turn of
the negotiation. It the configuration is inconsistent, it is very possible that no children
u ∈ Playersγ(v) has produced, neither will produce that answer. All of the nodes that
have announced a different value than bγv , or that will announce a different value than bγv
will execute RLose, immediately for the first ones, and after one execution of RNewBit for the
second ones

Losersγ¬⊥(v) = {u ∈ Playersγ(v),
{

phγu = phγv
bγu 6= bγv

∨
{

phγu 6= phγv
Bitu(phγv) 6= bγv

} (5.40)

If bγv = ⊥ then v is waiting for all of its children u ∈ Playersγ(v) to announce Bitu(phγv).
Therefore, no children u ∈ Playersγ(v) can execute RLose before an action of v. We define
the set Losers(v) that depends on the value of bv.

Losersγ(v) =
{

Losersγ¬⊥(v) if bγv 6= ⊥
∅ if bγv = ⊥ (5.41)

We are now tempted to say that WγCirc(v) = 7 if and only if Losersγ(v) = Playersγ(v).
Yet, one subtlety must be treated before. Indeed, when all the children u of v have received
the token, then u will not execute RGive but ROfferUp, and thus we do not have to reason
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based on the constraint of W�
Circ. Moreover, in that situation, we must not attribute a weight

of 7 to v since it would be an increase when v executes RReNego, and updates tokv from
◦ to •. This situation cannot happen as long as there remains players, because after the
execution of StartNego(v), we have Losers(v) = ∅. The only case to consider is therefore
when no node children of v is susceptible to receive the token, and in that situation we
force W•Circ(v, γ) to be 2.

In order to make the proof easier to approach, we first define the set Candidates(v) that
contains all the nodes that still have to negotiate and win the token before the circulation
from v is over. This set reminds one of the different cases depicted in Figure 5.24.

Candidatesγ(v) = {u ∈ Cneq
γ(v) : tokγu = ⊥ ∧ playγu ∈ {P, L}} (5.42)

We can now define the main predicate if that section, FullRound, which decides whether
v has to execute one full cycle before any of its children receives the token.

FullRoundγ(v) ≡ (Losersγ(v) = Playersγ(v)) ∧ (Candidatesγ(v) 6= ∅) (5.43)

We deduce function W•Circ that allows us to define WCirc.

W•Circ(v, γ) =
{

7 if FullRoundγ(v)
2 otherwise (5.44)

WCirc(v, γ) =



0 if tokγv = ⊥
8 if tokγv =F
W•Circ(v, γ) if tokγv = •
W�

Circ(v, γ) if tokγv =�
5 if tokγv =	
4 if tokγv =↓
3 if tokγv = ◦
1 if tokγv =↑

(5.45)

Proofs Lemma 5.20 establishes that actions that make the negotiation progress are non
simultaneous on the parent and on its children.
Lemma 5.20

Let γ be a configuration and let v ∈ V be a node such that Synchγ(v)∧(PhCompleteγ(v)∨
NextPlayγ(v)).

Then ∀u ∈ Playersγ(v),¬LoseParγ(u, v) ∧ ¬AnswerParγ(u, v)

Proof : Since we are only interested in properties at γ, no confusion can be made, and thus
we do not precise the configuration in which the predicates and sets are evaluated in that
proof.

By definition of Synch(v), we have phu = phv. Consequently, we have:

LosePar(u, v) ≡ bv 6= bu ∧ bv 6= ⊥, and

AnswerPar(u, v) ≡ phv = 1 ∧ bv = ⊥ ∧ bu = ⊥.
Let us first suppose that PhComplete(v). Then by definition, bu = bv, and thus

¬LosePar(u, v). Furthermore, we also have phv 6= 1 ∨ bv 6= ⊥, which can be rewritten
¬(phv = 1 ∧ bv = ⊥) and thus ¬AnswerPar(u, v).

Let us now suppose that NextPlay(v). We deduce that bv = ⊥, and thus ¬LosePar(u, v).
Furthermore, we have AnswerPar(u, v) only if phv = 1 ∧ bu = ⊥. But if phv = 1 then
NextPlay(v) requires that bu 6= ⊥, which is contradictory. Thus, ¬AnswerPar(u, v).
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Lemmas 5.21 and 5.22 prove that the definition of predicate Losers is adapted to the
algorithm. We prove that all the nodes that execute RLose were actually counted in the set
Losers, and that execution of RNewBit does not bring any new node in the set Losers.

Lemma 5.21
Let cs = γ → γ′ be a computing step, and let v ∈ V be a node such that tokγv = •.
∀u ∈ Playersγ(v), if u executes RLose during cs, then u ∈ Losersγ(v)

Proof : Let u be one such node. Since u executes RLose during cs, OkNegγ(u) = true which
means that v is the only parent of u such that tokv = •.

Thus, we have phγv = phγu ∧ bγv 6= bγu ∧ bγv 6= ⊥. Then u ∈ Losersγ¬⊥(v) = Losersγ(v).

Lemma 5.22
Let cs = γ → γ′ be a computing step, and let v ∈ V be a node such that tokγv = • and
such that v is not activated during cs.

Let u ∈ Playersγ(v) be a node that executes RNewBit during cs. If u ∈ Losersγ′(v)
then u ∈ Losersγ(v).

Proof : Since u executes RNewBit during cs, OkNegγ(v) = true so v is the only parent of u such
that tokpvγ = •. Thus, the execution of Announce produces phγ

′

u = phγv = phγ
′

v (because
v is not activated during cs). Since u ∈ Losersγ

′(v), we necessarily have bγ
′
v 6= ⊥ and

bγ
′
u 6= bγ

′
v .

Since v is not activated during cs, this means that bγv 6= ⊥ and that bγ
′
u 6= bγv . But by

definition of Announce, we have bγ
′
u = Bitu(phγv), and then we conclude that Bitu(phγv) 6=

bγv ∧ phγu 6= phγv ∧ bγv 6= ⊥ which means that u ∈ Losersγ(v).

Lemma 5.23 proves that the definition of FullRound is adapted to our algorithm. Indeed,
we establish that one node v such that tokv = • both before and after a computing step
does not see its weight by WCirc increase, unless it makes decrease one higher component of
W at the same time.

Lemma 5.23
Let cs = γ → γ′ be a computing step, and let v ∈ V be a node such that tokγv =

tokγ′v = •. Suppose that ¬FullRoundγ(v). Then ¬FullRoundγ′(v) or there exists one
child u of v that executes RWin, RFakeWin, RReplayUp, or ETrustChild during cs.

Proof : Let us first remark that by hypothesis, v does not execute ETrustChild, RGive, or ROfferUp,
since it would update tokv.

Suppose first that Losersγ(v) 6= Playersγ(v), and let us consider the different cases
depending on which rule v executes during cs.

• If v is not activated during cs, then let us consider one node u ∈ Playersγ(v) \
Losersγ(v). If u executes RWin or RFakeWin or ETrustChild, then we obtain the theorem.
Lemma 5.21 states that u does not execute RLose during cs. Lemma 5.22 states that
if u execute RNewBit during cs, then u ∈ Playersγ

′(v) \ Losersγ
′(v), and the same

happens if u is not activated during cs. Thus, either u executes RWin or RFakeWin or
ETrustChild, either Losersγ

′(v) 6= Playersγ
′(v), and then ¬FullRoundγ

′(v).
• If v executes RmaxPos or RNewPh during cs then according to Lemma 5.20, nodes u ∈

Playersγ(v) do not execute RLose nor RNewBit. If one such node executes RWin or RFakeWin
or ETrustChild, then we obtain the theorem. Thus, we can now suppose that ∀u ∈
Playersγ(v), u is not activated during cs. As a corollary, we have Playersγ

′(v) =
Playersγ(v).
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• If v executes RmaxPos during cs then MaxPos(v) updates bv to the maximal value of
bu where u ∈ Playersγ(v). Let u be one node with maximal value of b among
Playersγ(v). Since u ∈ Playersγ

′(v) and phγ
′

u = phγ
′

v ∧ bγ
′
u = bγ

′
v , we have u ∈

Playersγ
′(v) \ Losersγ

′(v) and thus ¬FullRoundγ
′(v).

• If v executes RNewPh during cs then PhasePlus(v) updates bv to ⊥, which means that
Losersγ

′(v) = ∅. Since v executes RNewPh during cs then Playersγ(v) 6= ∅, and by
what precedes, Playersγ

′(v) 6= ∅, which implies that Playersγ
′(v) 6= Losersγ

′(v)
and thus ¬FullRoundγ

′(v).

Let us now suppose that Losersγ(v) = Playersγ(v), which implies Candidatesγ(v) = ∅.
Since Playersγ(v) ⊆ Candidatesγ(v), we have Playersγ(v) = ∅, so v cannot execute RmaxPos

or RNewPh. Thus, v is not activated during cs (recall that by hypothesis, tokγ
′
v = •). Let us

consider one node u ∈ C(v). Since Candidatesγ(v) = ∅, either cγu = cγv , either tokγu 6= ⊥,
either playγu ∈ {W, F}.

• If cγu = cγv , then either u executes RWin or RFakeWin, and then the theorem is established,
either not, and then cγ

′
u = cγ

′
v so u /∈ Candidatesγ

′(v).
• If cγu 6= cγv ∧ tokγu 6= ⊥, then u does not execute RReturn during cs since v is a parent

of u and tokγv /∈ {⊥, ↓, ↑, ◦}. Thus, tokγ
′
u 6= ⊥, and so u /∈ Candidatesγ

′(v).
• If cγu 6= cγv ∧ tokγu = ⊥ ∧ playγu ∈ {W, F} then either u executes RReplayUp and then

the theorem is established, either it does not and then playγ
′

u ∈ {W, F} so u /∈
Candidatesγ

′(v).

Thus, either one child u of v executes RWin, RFakeWin, or RReplayUp, either not but then ∀u ∈
C(v), u /∈ Candidatesγ

′(v) so Candidatesγ
′(v) = ∅ and thus ¬FullRoundγ

′(v).

Lemma 5.24 establishes under which conditions we can have an increase of WCirc on one
node v. It proves that if this happens, then we fall into the conditions of Theorem 5.4 or
of Theorem 5.6. This lemma, which largely uses Lemma 5.23, is the main argument to
establish that (WCh, WEr, WCirc) is pre-admissible.

Lemma 5.24
Let cs = γ → γ′ be a computing step, let a be an anchor at γ′, and let v ∈ Dγ

a be a
node.

If WCirc(v, γ′) > WCirc(v, γ) then WCh(v, γ′) < WCh(v, γ), or v executes RWin, ETrustChild,
or RrNewDFS during cs, or tokγv /∈ {⊥, ↑, ↓} and one child u of v executes RWin, RFakeWin,
RReplayUp or ETrustChild during cs.

Proof : Let us consider different cases depending on the value of tokγv :

• If tokγv = ⊥, then WCirc(v, γ′) > WCirc(v, γ) if and only if v executes RWin during cs.
• If tokγv = F, then WCirc(v, γ′) ≤ WCirc(v, γ).
• If tokγv = • ∧ FullRoundγ(v) then WCirc(v, γ′) ≤ WCirc(v, γ).

• If tokγv = • ∧ ¬FullRoundγ(v) ∧ tokγ
′
v = • then according to Lemma 5.23 either

¬FullRoundγ
′(v) and thus WCirc(v, γ′) = WCirc(v, γ), either there exists one child u of

v that executes RWin, RFakeWin, RReplayUp, or ETrustChild during cs.

• If tokγv = • ∧ ¬FullRoundγ(v) ∧ tokγ
′
v 6= • then either v executes ETrustChild, either v

executes ROfferUp and then WCirc(v, γ′) = 1 < WCirc(v, γ), either v executes RGive. Let
us consider that last case.
Remark first that if Candidatesγ(v) = ∅ then ¬Giveγ(v), and thus v cannot exe-
cute RGive during cs. As a consequence, we have Candidatesγ(v) 6= ∅. Then, since
¬FullRoundγ(v) we must have Losersγ(v) 6= Playersγ(v), which is possible only if
Playersγ(v) 6= ∅ (recall that Losersγ(v) ⊆ Playersγ(v)).



5.4. Proof of the Correctness of our Algorithm 129

Thus, we necessarily have Playersγ(v) 6= ∅, and actually since v executes RGive during
cs, there

∣∣Playersγ(v)
∣∣ = 1. Let u be that node in Playersγ(v). If u executes

RWin or RFakeWin, we have our result, let us now consider that it does not. Since
Losersγ(v) 6= Playersγ(v), u /∈ Losersγ(v) and thus, according to Lemma 5.21, u
does not execute RLose during cs. As a consequence, u either executes RNewBit, either
is not activated during cs. In both cases, variables tok, c, and play are not updated
on u during cs, and thus u ∈ Playersγ

′(v), so WCirc(v, γ′) = 1 < WCirc(v, γ).
• If tokγv =� ∧Playersγ(v) = ∅ then WCirc(v, γ′) ≤ WCirc(v, γ).
• If tokγv =� ∧Playersγ(v) 6= ∅ then let us consider u ∈ Playersγ(v). By definition,

u ∈ Cneq
γ(v)∧ (playγu = P∧ tokγu 6= F). As a consequence, v does not execute RNewPlay

during cs. If v executes ETrustChild during cs, then the desired property holds.
Let us now suppose that v does not execute any rule during cs. Since tokγv =�, u
cannot execute RLose or RNewBit during cs, since it requires that one other parent p of u
is such that tokγp = •, and then ¬OkNegγ(u). Thus, either u executes RWin or RFakeWin
during cs and then our property holds, either it does not, but then it is not activated
and thus u ∈ Playersγ

′(v) which means that Wγ
′

Circ = 1 = WCirc(v, γ).
• If tokγv =	, then tokγ

′
v ∈ {	, ↓} and thus WCirc(v, γ′) ≤ WCirc(v, γ).

• If tokγv =↓ then tokγ
′
v ∈ {↓, ◦} and thus WCirc(v, γ′) ≤ WCirc(v, γ).

• If tokγv = ◦, then WCirc(v, γ′) > WCirc(v, γ) only if v executes ETrustChild or RReNego
during cs. If v executes ETrustChild, then our property holds, let us now suppose that
v executes RReNego during cs.
We have ∀u ∈ Cneq

γ(v), playγu 6= L. Let us first prove that ∀u ∈ Cneq
γ′(v), playγ

′

u 6= L,
and let us consider u ∈ Cγ(v). Since v executes RReNego during cs, we have tokγu = ⊥.
If cγu = cγv then u switches its color only if it executes RWin or RFakeWin, and thus the
property holds. Otherwise if cγu = cγv then playγu 6= L and since tokγv = ◦ u cannot
execute RLose during cs, and thus playγ

′

u 6= L.
Since bγ

′
v = ⊥, we have Losersγ

′(v) = ∅. Thus, either ∃u ∈ Playersγ
′(v) and

thus Losersγ
′ 6= Playersγ

′(v) so ¬FullRoundγ
′(v), either Playersγ

′(v) = ∅ but then
according to what we established just above, we have Candidatesγ

′(v) = ∅ and once
again ¬FullRoundγ

′(v). In both cases, Wγ
′

Circ(v) = 2 < WγCirc(v).
• If tokγv =↑ then either v 6= r and thus tokγv ∈ {↑,⊥} so WCirc(v, γ′) ≤ WCirc(v, γ), either

v = r and thus, if activated, v executes RrNewDFS and the property holds.

Theorem 5.7 establishes that (WCh, WEr, WCirc) is pre-admissible.
Theorem 5.7

Let cs = γ → γ′ be a computing step, and let a be an anchor at γ′, and suppose that
a does not execute RrNewDFS during cs.

We have (WCh, WEr, WCirc)(Dγ′

a , γ
′) �3 (WCh, WEr, WCirc)(Dγ

a , γ).

Proof : According to Theorem 5.5, we already have (WCh, WEr)(Dγ′
a , γ

′) � (WCh, WEr)(Dγ
t , γ).

Consequently, we only have to prove that if WCirc(Dγ′
a , γ

′) > WCirc(Dγ
a , γ), then we have

(WCh, WEr)(Dγ′
a , γ

′) ≺2 (WCh, WEr)(Dγ
a , γ).

In the same way as we did in the proof of Theorem 5.5, we can suppose that for
any branch B of Ga, Dγ′

a (B) is not longer than Dγ
a(B). In such circumstances, we have

WCirc(Dγ′
a , γ

′) > WCirc(Dγ
a , γ) only if there exists a branch B of Ga such that ∃v ∈ Dγ

a(B) :
WCirc(v, γ′) > WCirc(v, γ). Let us now apply Lemma 5.24. If v executes RWin or ETrustChild (it
cannot execute RrNewDFS by hypothesis), then Theorem 5.3 or Theorem 5.5 guarantees that
(WCh, WEr)(Dγ′

a , γ
′) ≺2 (WCh, WEr)(Dγ

a , γ).
Otherwise, tokγv /∈ {⊥, ↑, ↓} and ∃u ∈ C(v) that executes RWin or RFakeWin or RReplayUp or

ETrustChild, and once again Theorem 5.3 or Theorem 5.5 guarantees that (WCh, WEr)(Dγ′
a , γ

′) ≺2

(WCh, WEr)(Dγ
a , γ).
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Theorem 5.8 proves that under certain circumstances, we are certain that the weight of
one CDo decreases. It will be useful to prove that W is an admissible function, but also to
prove that the other, longer, prefixes of W are pre-admissible. Indeed, if in any computing
step one node updates its variable tok then we do not need to look beyond the third
component to be assured that the weight does not increase, since �k is a lexicographic
order.

Theorem 5.8
Let cs = γ → γ′ be a computing step, and let a be an anchor at γ′, and suppose that
a does not execute RrNewDFS during cs.

If ∃v ∈ Dγ
a such that v executes one rule among RGive, RNewPlay, RDrop, RNego, ROfferUp,

RReceive, RReturn, RReNego during cs, then (WCh, WEr, WCirc)(Dγ′

a , γ
′) ≺3 (WCh, WEr, WCirc)(Dγ

a , γ).

Proof : Let us consider one such node v ∈ Dγ
a , and one branch B of Ga such that v ∈

Dγ
a(B). If v /∈ Dγ′

a (B) then according to Lemma 5.18 we have (WCh, WEr, WCirc)(Dγ′
a , γ

′) ≺3

(WCh, WEr, WCirc)(Dγ
a , γ).

Else, since any of these rules guarantee that WCirc(v, γ′) 6= WCirc(v, γ) and since we
established in Theorem 5.7 that (WCh, WEr, WCirc)(Dγ′

a , γ
′) �3 (WCh, WEr, WCirc)(Dγ

a , γ), we have
(WCh, WEr, WCirc)(Dγ′

a , γ
′) ≺3 (WCh, WEr, WCirc)(Dγ

a , γ).

5.4.2.7 Fourth component of W: WPlay, circulation of variable play on children

Explanations The three weight functions that we previously defined, WCh, WEr, and WCirc
totally embrace the rules that affect tokv and cv. Thus, we can now consider that both
these variable are constant on nodes, and focus on the two other variables that are play
and id. In this section, we only treat variable play. Remark that the rules RWin, RFakeWin,
and RReturn have an impact on variable play, but were already treated in Sections 5.4.2.4
and 5.4.2.6. Thus, although we discussed rule RReplayUp in Section 5.4.2.4, we did not treat
all the cases where this rule might be executed, and thus we must consider it in this section.
Consequently, the rules that interest us in this section are RLose, RReplayD, RReplayUp, RFake,
and RReWin.

Depending on its variable tokv, it happens that one node v is waiting for some of its
children to update their variable play, before it executes a rule that updates tokv to the
next state. For example, if tokv =�, then v does not execute RNewPlay until all of its children
u such that toku = P updates playu to L, W, or F. In order to prove that our algorithm
progresses, and that circulation might terminate, we need to prove that the number of
children u of v such that playu = P never increases, at least as long as tokv =�. Indeed,
as soon as tokv is updated, then we already know that (WCh, WEr, WCirc) decreases. Actually,
when tokv =�, children u of v such that playu = P will update playu with rule RWin
or RFakeWin, both cases have already been treated in Section 5.4.2.4, so we do not need to
elaborate any further on this case.

There exists other situations where one node v waits until its children u have some
specific values for their variable playu before v itself updates tokv. For each of those
situations, we want to define WPlay such that any time one child u of v updates its variable
playu in a sense that allows v to update tokv, WPlay decreases on v. Thus, we define WPlay
such that each node v counts the number of children it has that prevent it from updating
its variable tokv. In order to have a function that is pre-admissible, we also require that
WPlay never increases, and thus that no action taken by one node u might add u to the set
of children that prevent one of its parents v to update tokv.
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The situations where one node v waits for its children u to update playu occurs when
tokv ∈ {•,	, ◦, ↑}. Let us give some details:

• If tokv = • and bv 6= ⊥, then v waits for some of its children u to execute RLose and
update playu from P to L.
Although rule RLose could be treated in the following section that focuses on negoti-
ation, we treat it here for two reasons. First, it concerns variable play as well, and
thus it remains consistent here. Second, having already treated executions of rule
RLose will help us greatly in the section on negotiation.

• If tokv = ◦ or tokv =	, then v does not execute RDrop until all of its children u such
that toku = L execute RReplayD and update playu to P.

• If tokv =↑, then before executing RReturn, v waits for all of its children u such that
playu = W execute RReplayUp or RFake, and update playu from W to P or F, depending
on whether u still has parents in any CDo.

From what precedes, if one node u executes RLose, RReplayD, RReplayUp, or RFake, it will
make decrease the weight of the CDo’s that contain the parents v of u that have the corre-
sponding value of tokv. Indeed, all of these four rules are conditioned by the existence of
at least one parent v with the adapted value of tokv.

Remark that we did not mentioned rule RReWin. It is not difficult to define a weight
function that decreases on v each time one child u of v execute RReWin. The difficulty comes
from proving that the weight function we defined that way is pre-admissible. Indeed, RReWin
might be executed in very various situations: as soon as u has one no parent v such that
tokv =↑. Unfortunately, there exists situations in which we can give no guarantee that
there won’t be executions of RFake that cancels executions of RReWin, and thus we cannot
treat both RFake and RReWin at the same layer of W.

However, the design of the algorithm allows us design WPlay that is pre-admissible and
such that it decreases any time one node u executes RLose, RReplayD, RReplayUp, or RFake.
This is stated in Theorems 5.9 and 5.10.

Figure 5.28 summarizes the different transitions that might be taken by variable playu
on one node u.

L

P W

F

{P, L, W, F}RLose RReplayD

RWin,RFakeWin

R
FakeWin

RReplayUp

RReWinRFake

RReturn

RReturn

Figure 5.28: Diagram of variable playu.

We represented in blue the rules that have already been treated in the previous sections,
and in red the rule RReWin that is not treated in that section.
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Definitions Let us first define the different sets that contain the children u of v that we
are going to count in the different cases described above.

If tokγv = •, then we want to count children u ∈ Cneq
γ(v) that might execute RLose.

One node u can execute RLose only if playγu = P, so nodes u ∈ Cneq
γ(v) : playγu = P

must obviously be counted. Yet, we cannot count only those children of v. Indeed, it
might happen that one node u ∈ Cneq

γ(v) : playγu = W execute RReplayUp, which produces
playγ′u = P, and would make WPlay increase on v. Although it would at the same time make
WPlay decrease on one other node w such that playw =↑, since we require that W decrease
on each branch of each CDo, we must prevent this from happening. Thus, we must include
nodes u ∈ Cneq

γ(v) : playγu = W in our count for tokv = •. For the same reason, due to rule
RReWin, we must also include nodes u ∈ Cneq

γ(v) : playγu = F in that set. This leads to the
following predicate:

ChLoseγ(v) = {u ∈ Cneq
γ(v) | tokγu = ⊥ ∧ playγu 6= L} (5.46)

If tokγv =	 or tokγv = ◦, then we want to count children u ∈ Cneq
γ(v) that might execute

RReplayD. One node u can execute RReplayD only if playγu = L. Furthermore, due to predicate
OkNeg, no node u that has a parent v with tokγv ∈ {	, ◦} can execute RLose. This leads to
the following predicate:

ChReplayγ(v) = {u ∈ Cneq
γ(v) | tokγu = ⊥ ∧ playγu = L} (5.47)

If tokγv =↑ then we want to count children u ∈ Ceq
γ(v) that might execute RReplayUp or

RFake. One node might execute RReplayUp or RFake only if playγu = W. One node u might
updates its variable playu from P to W only if it executes RWin or RFakeWin, cases that have
been treated previously. Furthermore, due to predicate StopFaking, no node u that has
a parent v ∈ Peq(u) such that tokv =↑ can execute RReWin, and thus update its variable
playu from F to W. This leads to the following predicate:

ChEndγ(v) = {u ∈ Ceq
γ(v) | tokγu = ⊥ ∧ playγu = W} (5.48)

We can now define WPlay(v, γ) depending on the value of tokγv .

WPlay(v, γ) =


|ChLoseγ(v)| if tokγv = •
|ChReplayγ(v)| if tokγv ∈ {◦,	}
|ChEndγ(v)| if tokγv =↑
0 if tokv ∈ {⊥,�, ↓,F}

(5.49)

Proofs Lemmas 5.25, 5.26 and 5.27 prove that the definitions of ChLose, ChReplay, and
ChEnd are consistent with our algorithm. For ChLose(v) and ChReplay(v) we prove in
Lemmas 5.25 and 5.26 that both these sets do not increase unless it is by one node u ∈ C(v)
that executes RWin or RFakeWin, which makes decrease one more important quantity. We
cannot use the same reasoning for ChEnd(v). Indeed, since we consider one node v such
that tokv =↑, WCh(v) is not affected by any action taken by one child u ∈ C(v). Thus, we
prove in Lemmas 5.27 that ChEnd(v) never increases, as long as tokv =↑.

We also establish in these lemmas some particular cases which necessarily decrease WPlay.
Lemma 5.25

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and
tokγ′v = •.

If ∀u ∈ C(v), u does not execute RWin or RFakeWin, then ChLoseγ′(v) ⊆ ChLoseγ(v).
Furthermore, if ∃u ∈ Cneq

γ(v) that executes RLose during cs, then WPlay(v, γ′) < WPlay(v, γ).
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Proof : For the first part, we prove the equivalent statement, under the same conditions:

C(v) \ ChLoseγ(v) ⊆ C(v) \ ChLoseγ
′
(v)

Let us consider u ∈ C(v)\ChLoseγ(v). If tokγu 6= ⊥ then since tokγv = •, u does not execute
RReturn and thus tokγ

′
u 6= ⊥ so u /∈ ChLoseγ

′(v). Otherwise, tokγu = ⊥. If u ∈ Ceq
γ(v), then

since u does not execute RWin or RFakeWin, u ∈ Ceq
γ′(v) and thus u /∈ ChLoseγ

′(v). Otherwise,
u ∈ Cneq

γ(v), and thus playγu = L. Since v ∈ Pneq
γ(v) and tokv = •, ¬ReplayLγ(u) so u

does not execute RReplayD so playγ
′

u = L and thus u /∈ ChLoseγ
′(v).

Let us now prove the second part. By definition of RLose we have playγu = P∧tokγv = ⊥,
and thus, u ∈ ChLoseγ(v). But since u executes RLose during cs, playγ

′

u 6= P and thus
u /∈ ChLoseγ

′(v). Then, what precedes implies that ChLoseγ
′(v) ( ChLoseγ(v), which leads

to WPlay(v, γ′) < WPlay(v, γ).

Lemma 5.26
Let cs = γ → γ′ be a computing step and let v be a node such that tokγv ∈ {	, ◦} and

tokγ′v ∈ {	, ◦}.
If ∀u ∈ C(v), u does not execute RWin or RFakeWin, then ChReplayγ′(v) ⊆ ChReplayγ(v).

Furthermore, if ∃u ∈ Cneq
γ(v) that executes RReplayD during cs, then WPlay(v, γ′) <

WPlay(v, γ).

Proof : For the first part, we prove the equivalent statement, under the same conditions:

C(v) \ ChReplayγ(v) ⊆ C(v) \ ChReplayγ
′
(v)

Let us consider u ∈ C(v) \ ChReplayγ(v). If tokγu 6= ⊥ then since tokγv = •, u does not
execute RReturn and thus tokγ

′
u 6= ⊥ so u /∈ ChReplayγ

′(v). Otherwise, tokγu = ⊥. If
u ∈ Ceq

γ(v), then since u does not execute RWin or RFakeWin, then u ∈ Ceq
γ′(v) and thus

u /∈ ChReplayγ
′(v). Otherwise, u ∈ Cneq

γ(v), and thus playγu ∈ {P, W, F}. If playγu ∈ {W, F}
no rule can induce playγ

′

u = L. If playγu = P, then since v ∈ ParNegγ(u) ∧ tokγv 6= •, then
due to OkNeg u cannot execute RLose during cs, and thus u /∈ ChReplayγ

′(v).
Let us now prove the second part. By definition of RReplayD we have playγu = L∧tokγv =

⊥, and thus, u ∈ ChReplayγ(v). But since u executes RReplayD during cs, playγ
′

u 6= L and
thus u /∈ ChReplayγ

′(v). Then, what precedes implies that ChReplayγ
′(v) ( ChReplayγ(v),

which leads to WPlay(v, γ′) < WPlay(v, γ).

Lemma 5.27
Let cs = γ → γ′ be a computing step and let v be a node such that tokγv =↑ and

tokγ′v =↑.
We have ChEndγ′(v) ⊆ ChEndγ(v). Furthermore, if ∃u ∈ Ceq

γ(v) that executes RFake
or RReplayUp during cs, then WPlay(v, γ′) < WPlay(v, γ).

Proof : For the first part, we prove the equivalent statement:

C(v) \ ChEndγ(v) ⊆ C(v) \ ChEndγ
′
(v)

Let us consider u ∈ C(v) \ ChEndγ(v). If u ∈ Cneq
γ(v) we have u ∈ ChEndγ

′(v) only if
u executes RWin or RFakeWin to switch its color. If u executes RWin then tokγ

′
u = F so

u /∈ ChEndγ
′(v). If u executes RFakeWin then since v ∈ Pneq

γ(v) ∧ tokγv =↑, the execution of
FakeWin(v) induces playγ

′

u = F, and then u /∈ ChEndγ
′(v).

Suppose now u ∈ Ceq
γ(v). If tokγu 6= ⊥ then u ∈ ChEndγ

′(v) only if u executes RReturn
during cs, but if it does since v ∈ Peq

γ(v) ∧ tokγv =↑, the execution of Drop(v) induces
playγ

′

u = F, and then u /∈ ChEndγ
′(v).
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Suppose now tokγu = ⊥. Then we have playγu 6= W. Remark first that u cannot
execute RReturn during cs since tokγu = ⊥. If playγu = L then we cannot have playγ

′

u = W,
necessary condition to have u ∈ ChEndγ

′(v). If playγu = P, then we have playγ
′

u = W
only if u executes RWin or RFakeWin during cs, but if it does, then it switches its colorcu, so
u ∈ Cneq

γ(v) and then u /∈ ChEndγ
′(v). Finally, if playγu = F then u cannot execute RReWin

since v ∈ Peq
γ(v) ∧ tokγv =↑, we have ¬FakeWinγ(u), and thus u /∈ ChEndγ

′(v).
Let us now prove the second part. By definition of RFake and RReplayUp we have playγu =

W ∧ tokγv = ⊥, and thus, u ∈ ChEndγ(v). But since u executes RFake or RReplayUp during
cs, playγ

′

u 6= W and thus u /∈ ChEndγ
′(v). Then, what precedes implies that ChEndγ

′(v) (
ChEndγ(v), which leads to WPlay(v, γ′) < WPlay(v, γ).

Lemma 5.28 combines the results of Lemmas 5.25, 5.26 and 5.27 and proves that WPlay
can decrease on one node only if the previous components of W decrease on the CDo’s that
include that node.

Lemma 5.28
Let cs = γ → γ′ be a computing step, let a be an anchor at γ′ that does not execute
RrNewDFS during cs, and let v ∈ Dγ

a be a node.
If WPlay(v, γ′) > WPlay(v, γ) then (WCh, WEr, WCirc)(Dγ′

a , γ
′) ≺3 (WCh, WEr, WCirc)(Dγ

a , γ).

Proof : Let us first eliminate the cases in which the decrease of (WCh, WEr, WCirc) is immediate.
According to Theorem 5.4 we can assume that, if tokγv 6=↑, then ∀u ∈ C(v), u does not
execute RWin or RFakeWin. Furthermore, according to Theorems 5.6 and 5.8, we can assume
that v does not execute any rule among ETrustChild, RGive, RNewPlay, RDrop, RNego, ROfferUp,
RReceive, RReturn, and RReNego during cs.

Furthermore since v ∈ Dγ
a , it is obvious that tokγv 6= ⊥ and thus that v cannot execute

RWin or RFakeWin.
As a direct consequence, we have tokγ

′
v = tokγv and cγ

′
v = cγv . Since tokγ

′
v = tokγv we

can have WPlay(v, γ′) > WPlay(v, γ) only if tokγv ∈ {◦,	, ↑, •}. Since tokγv = tokγ
′
v and for the

cases where tokγv ∈ {•,	, ◦}, we have no children u ∈ C(v) executes RWin or RFakeWin during
cs, then we fall in the preconditions of Lemmas 5.25, 5.26, and 5.27. Whatever the value
of tokγv , the corresponding lemma guarantees that WPlay(v, γ′) ≤ WPlay(v, γ).

Theorem 5.9 establishes that (WCh, WEr, WCirc, WPlay) is pre-admissible.

Theorem 5.9
Let cs = γ → γ′ be a computing step, and let a be an anchor at γ′, and suppose that
a does not execute RrNewDFS during cs.

We have (WCh, WEr, WCirc, WPlay)(Dγ′

a , γ
′) �4 (WCh, WEr, WCirc, WPlay)(Dγ

a , γ).

Proof : Theorem 5.7 establishes (WCh, WEr, WCirc)(Dγ′
a , γ

′) �3 (WCh, WEr, WCirc)(Dγ
a , γ). Suppose

now WPlay(Dγ′
a , γ

′) > WPlay(Dγ
a , γ), and prove (WCh, WEr, WCirc)(Dγ′

a , γ
′) ≺3 (WCh, WEr, WCirc)(Dγ

a , γ).
In the same way as we did in the proof of Theorem 5.5, we can suppose that for any

branch B of Ga, Dγ′
a (B) is not longer than Dγ

a(B).
In such circumstances, we have WPlay(Dγ′

a , γ
′) > WPlay(Dγ

a , γ) only if there exists a
branch B of Ga such that ∃v ∈ Dγ

a(B) : WPlay(v, γ′) > WPlay(v, γ). But then, according
to Lemma 5.28, we have (WCh, WEr, WCirc)(Dγ′

a , γ
′) ≺3 (WCh, WEr, WCirc)(Dγ

a , γ).

Theorem 5.10 proves that under certain circumstances, we are certain that the weight
of one CDo decreases. It will be useful to prove that W is admissible, but also to prove that
it is pre-admissible.
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Theorem 5.10
Let cs = γ → γ′ be a computing step, let a be an anchor at γ′ that does not execute
RrNewDFS during cs.

If ∃v ∈ Dγ
a and u ∈ CGa(v) such that:

• tokγv = • and cγu 6= cγv and u executes RLose during cs, or

• tokγv ∈ {	, ◦} and cγu 6= cγv and u executes RReplayD during cs, or

• tokγv =↑ and cγu = cγv and u executes RFake or RReplayUp during cs,

we have (WCh, WEr, WCirc, WPlay)(Dγ′

a , γ
′) ≺4 (WCh, WEr, WCirc, WPlay)(Dγ

a , γ).

Proof : Let us consider such nodes v and u, and one branch B of Ga such that v ∈ Dγ
a(B). If

v /∈ Dγ′
a (B), or if tokγ

′
v 6= tokγv , or if tokγv ∈ {•,	, ◦} and one child u of v executes RWin or

RFakeWin, then we according to Lemma 5.18, or Theorems 5.6 and 5.8, or Theorem 5.4, we
have

(WCh, WEr, WCirc, WPlay)(Dγ′
a , γ

′) ≺4 (WCh, WEr, WCirc, WPlay)(Dγ
a , γ)

We can now suppose that v ∈ Dγ′
a (B) and tokγ

′
v = tokγv and if tokγv ∈ {•,	, ◦} then

no child of v executes RWin or RFakeWin. Depending on which of the three situations has
to be considered, Lemma 5.25, Lemma 5.26, or Lemma 5.27 applies and guarantees that
WPlay(v, γ′) < WPlay(v, γ). From Theorem 5.9 we conclude

(WCh, WEr, WCirc, WPlay)(Dγ′
a , γ

′) ≺4 (WCh, WEr, WCirc, WPlay)(Dγ
a , γ).

5.4.2.8 Fifth component of W: WNego negotiation between one parent and its
children

Explanations Only one aspect of the algorithm has not been treated yet: the negotiation
between one node v that has the token tokv = • and its children u ∈ Players(v). This
negotiation occurs only if there are several nodes in Players(v), otherwise v decides that
the negotiation is terminated, and executes RGive or ROfferUp depending on whether there
exist some candidates for the token or not. Furthermore, let us remark that if Players(v)
evolves during an execution, whether by an addition (with RReplayUp) or a deletion (with
RLose for example), then according to Theorems 5.4 and 5.10 the weight of the CDo which
contains v decreases. Thus, we can suppose in the following that we work under the following
hypothesis: Players(v) is constant, and there are at least two nodes in it.

Due to the impact of PhasePlus(v) on variable phv, we cannot guarantee at first sight
that the negotiation does not cycle. Indeed, if all the children u of v declare that they
cannot give an answer for phv, then v decides to restart from phv = 1 so it does not
eliminate all of its children. But as soon as v can restart, we must prove that it does not
restart indefinitely, what would create a livelock in the negotiation phase.

To overcome this problem, we statically determine the first value phv which, when
taken by v, will push one child u ∈ Players(v) to execute RLose. Such values exist since
we supposed that there are at least two nodes in Players(v) and that the identifiers are
globally unique. If we prove that ultimately, some node u can only execute RLose and thus
makes WPlay decrease, we prove that the negotiation is livelock-free. Unfortunately, it is
not trivial to determine the value of the first incoming value of phv which will induce an
execution of RLose. Basically, we are looking for the lowest value greater or equal to phv
which induces different answers on two children u ∈ Players(v).
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One first subtlety comes with the fact that, since we work in the framework of self-
stabilization, there might not be such greater value. Indeed, if the initial value of phv
is different from 1, and if all the values of phv which might differentiate two children
u ∈ Players(v) are less than this initial value, then the differentiation will not happen
before a reset of phv. Under such circumstances, v executes a full round of all the possible
value for ph, increasing as long as its children u produce answers different from bu = ⊥,
and when they all, at the same moment by hypothesis, cannot, v restart from phv = 1.
Then, v will increase phv until it reaches one value which differentiates two of its children
u ∈ Players(v).

One other, trickier, subtlety coming from the self-stabilizing framework, is that the
registers of the children might be incorrectly initialized. If, due to an incorrect initialization,
we miss an occasion to differentiate two children in Players(v), a similar scheme will
happen. In such situation, v increases phv until it reaches the next value which differentiates
two of its children of Players(v). It might even happen that the initial value of phv is the
only value which can differentiate any two children of Players(v). In this situation, node
v will execute a full round of all the possible value for phv, increasing as long as all of
its children produce answers different from bu = ⊥, then restarting from phv = 1 until it
reaches again the initial value which differentiates its children. On the contrary, an incorrect
initialization of the values of bu on some node u ∈ Players(v) might implies that u executes
RLose while it is not supposed to, according to its actual id. That last case will be said to
be a false positive.

Incorrect initializations of variable bu might only happen at the very beginning of the
execution, and might be taken into account only if u does not update it before any action
if its parent, i.e. if ¬AnswerPar(u, v). Then, as soon as u takes a step, either it executes
RLose, either it updates bu according to its identifier, and then we will not face any incorrect
initialization anymore. Thus, we have to consider the possibilities of wrong initializations
only in few cases, basically only for the current value of phv and only if ¬AnswerPar(u, v).
For any other situation, Bitu(ph) is the adapted value, which describes the value of bu
taken into account during the negotiation.

To summarize, we can distinguish three situations.

• The first, simplest, situation, is when the current value of phv actually differentiates
at least two children of Players(v). This situation includes false positive, when phv
is not meant to play this role regarding to identifiers, and excludes situations where
an incorrect initialization of the bu prevents the expected differentiation to actually
happen.

• The second situation is when the current value of phv does not differentiate two
children of Players(v), but there exists a value greater than phv which does. In such
a situation, we only have to wait for phv to increase until it reaches the first such
value, and we fall in the previous situation.

• The third and last situation is when neither the current value of phv, neither any value
greater than it, can differentiate two children of Players(v). This situation includes,
as an extreme case, the situation where the current value of phv is the only one which
might differentiate two children of Players(v), but an incorrect initialization of some
bu prevents the differentiation from being effective. In this third situation, we wait
for phv to increase until the value for which all children of Players(v), at the same
moment, answer ⊥. At this moment, phv is set to 1 and then we fall in one of the
previous situations.

We want to design a function dealing with as many aspects, or as many rules, of the
algorithm as possible. Thus, we intend to define WNego such that any action involving RmaxPos,
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RNewPh, or RNewBit, makes WNego decrease. It is pretty natural to treat RNewPh since it increases
(or reduces down to 1) the value of phv, and thus bring closer to the expected value. Since
any two execution of RNewPh are separated by an execution of RmaxPos, which updates bv
from ⊥ to a value different from ⊥, we will not have much trouble to use those properties
in the design of WNego. Finally, we want WNego to decrease any time one child u ∈ Players(v)
executes RNewBit. In other words, we must, in a certain way, count the number of children
of v which can execute RNewBit. But any execution of RNewPh recreates the conditions under
which all the nodes u ∈ Players(v) can execute RNewBit, and thus if we simply decrease WNego
by one for the execution of RNewPh, but it increases by |Players(v)| at the same time, we
fail. Two options are left to us. First, we can define WNego as a 2-tuple, the first component
focuses on the progress of phv, and the second one focuses on the decreasing of the number
of nodes which can execute RNewBit. The other option is to deal this in one single function,
and to give some coefficients to the different components involved. In a certain sense, it
boils down to the same as the previous option, but instead of using the lexicographic order,
we define manually high coefficients on the first component so that it all works the same
with one integer value. To avoid making this proof even more tedious, we chose the second
option.

Definitions Before properly defining WNego, let us first formally determine the three dif-
ferent situations which were described above, whether we reached the expected value for
phv, or whether not but there we will reach this value with only increasing phv, or whether
we will have to reset phv to 1 before we reach it.

Recall that to decide if the current value of phv will differentiate two children u ∈
Players(v), we cannot simply rely on the values of Bitu(phv). Indeed, we must take into
account that the register of bv and/or bu might be incorrectly initialized. If this happens,
and if the current state of one node u can be interpreted as an answer by its parent, then it
does not update it, and thus bu is the value used to decide what the future of the negotiation
is. Otherwise, u has to first execute RNewBit before anything else, and then erase its previous
state and only Bitu(phv) is relevant. Thus, we first formally define what actual value will
be taken as the answer by the parent v of u for the current step of the negotiation, which
depends for each node u on whether it will produce a new answer to its parent, or not.

Answerγ(u, v) =
{

Bitu(phγv) if AnswerParγ(u, v)
bγu otherwise (5.50)

Let us now detail the situations in which the current value of phv differentiates two
children u ∈ Playersγ(v). The first, most natural, situation is when two different nodes
will produce different values for b in response to phγv . If this happens, then after v executes
RmaxPos (or before, if we already have bγv 6= ⊥, at least one of them will be in a situation
where it must execute RLose.

TwoDifferγ(v) ≡ ∃u1, u2 ∈ Playersγ(v) : Answerγ(u1, v) 6= Answerγ(u2, v) (5.51)

The previous captures almost all the situations where one node is close to execute RLose.
There exists one other, unusual, situation, which is not described here, which is when all
the nodes u ∈ Playersγ(v) will produce the same value for phv, but due to an incorrect
initialization of variables, v has already picked a value, which is different from the common
value proposed by its children. In this situation, all the children will actually execute RLose
at very short term.

OneDiffersγ(v) ≡ bγv 6= ⊥ ∧ ∃u ∈ Playersγ(v) : Answerγ(u, v) 6= bγv (5.52)
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We can now define the first of our three cases, which corresponds to the situation where
one node u ∈ Playersγ will execute RLose before any update of phv.

Finishedγ(v) ≡ TwoDifferγ(v) ∨ OneDiffersγ(v) (5.53)

Let us now discuss the two other situations, in which the current value phγv does not
differentiate any two children of Playersγ(v). We need to determine whether v will reset
phv to 1 before we reach a value which differentiates two of its children of Playersγ(v),
or whether not. We could think, at first, that it is sufficient to determine whether there
exists one value greater than phγv which differentiates two nodes of Playersγ(v) or not.
If there is not such greater value, phv will indeed be reset to 1 before we terminate the
negotiation phase. Yet, it might happen that, although there exists such a greater value,
we are nevertheless forced to reset phv to 1 before we reach this greater value. Indeed,
it could happen that, due to an incorrect initialization of variables bu, all the children
u ∈ Playersγ(v) produce ⊥ as an answer for phγv while there exists a greater value which
would differentiate two of them. If this happens, then the execution of PhasePlus(v) will
reset phv = 1. Hopefully, this is can happen only due to incorrect initialization of variables,
and thus can only happen for the initial value of phv. Remark that if only few of the nodes
produce ⊥ as an answer for phγv then we have Finishedγ(v). Let us define the predicate
ForcedReset(v) which corresponds to configurations where an execution of RNewPh by v will
set phv to 1.

ForcedResetγ(v) ≡ ∀u ∈ Playersγ(v), Answerγ(u, v) = ⊥ (5.54)

If ForcedResetγ(v), then we are sure that v will first reset phv = 1. But if not, we
must determine whether there exists one value greater than phγv which differentiates two
nodes of Playersγ(v) or not. Let us first define Separatorsγ(v) the set of all the values
for phv which can differentiate two children u ∈ Playersγ(v). Remark that this set is
defined statically: it does not depend at all on the values of phv, bv, phu, bu, and only relies
on the values of the different identifiers of children of v in Playersγ(v). Yet, we consider
this set only if ¬Finishedγ(v), that is to say if we must execute RNewPh at least once before
reaching the value that differentiates children of v. By definition, after v executes RNewPh, we
necessarily have AnswerPar(u, v) for all children u ∈ Playersγ(v). Thus, in such situations,
Bitu is the relevant tool to decide whether some value for phv will differentiate children of v.
Remark also that Separatorsγ(v) only depends on Playersγ(v), which will be supposed
constant in the following. Consequently, we will suppose Separatorsγ(v) constant too.
Finally, since we are interested in considering the negotiation phase, v has at least two
children, and then Separatorsγ(v) contains at least one value.

Separatorsγ(v) = {ph ∈ [0, dlogne] | ∃u1, u2 ∈ Playersγ(v) : Bitu1(ph) 6= Bitu2(ph)}
(5.55)

Let us now define the two other predicates, which correspond to situations where node
v will not reset phv to 1 before it reaches a value which differentiates two of its children,
and to the situation where it will.

WontResetγ(v) ≡ ¬Finishedγ(v) ∧

 ∃i > phγv : i ∈ Separatorsγ(v)
∧
¬ForcedResetγ(v)

(5.56)

WillResetγ(v) ≡ ¬Finishedγ(v) ∧

 ∀i > phγv , i /∈ Separatorsγ(v)
∨
ForcedResetγ(v)

(5.57)
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Remark that the three predicates Finished, WontReset, and WillReset are mutually
exclusive, and that ∀γ ∈ Γ,∀v ∈ V, Finishedγ(v) ∨ WontResetγ(v) ∨ WillResetγ(v). This
justifies the use of these three predicates to distinguish cases in any situation.

Let us now define, for each of these three cases, the value of ph which, when reach by
phv, will provoke one execution of RLose on one child u ∈ Playersγ(v).

SepValγ(v) =

 phγv if Finishedγ(v)
min{i | i ∈ Separatorsγ(v) ∧ i > phγv} if WontResetγ(v)
min{i | i ∈ Separatorsγ(v)} if WillResetγ(v)

(5.58)

Finally, we are able to define one first aspect of WNego, which is the distance between
phγv and SepValγ(v), which corresponds to the number of executions of RNewPh required for
v. This definition is very simple in both situations Finishedγ(v) and WontResetγ(v). It
is slightly more difficult when WillResetγ(v) since we must determine how high phv will
reach before it is reset to 1. Two situations might occur.

If, due to an incorrect initialization of variables, all the children u of Playersγ(v)
produce ⊥ as an answer for phγv , then the next execution of RNewPh by v will set phv to 1
and then phγv is the maximal value which will be reached before phv is reset to 1.

Otherwise, there will be at least one execution of RNewPh by v before we reach the maximal
value, and thus only the functions Bitu are relevant. In this last case, the maximal value
reached before phv is reset to 1 is the lowest value such that, when reached, all the children
u of Playersγ(v) produce ⊥ as an answer.

MaxPhγ(v) =
{

phγv if ForcedResetγ(v)
min{i > phγv | ∀u ∈ Playersγ(v) : Bitu(i) = ⊥} if ¬ForcedResetγ(v)

(5.59)
Finally, the definition of SepDist(v) which is the number of executions of RNewPh v has

to make before we have phv = SepValγ(v).

SepDistγ(v) =

 0 if Finishedγ(v)
SepValγ(v)− phγv if WontResetγ(v)
SepValγ(v) + (MaxPhγ(v)− phγv) if WillResetγ(v)

(5.60)

We now formally define the weight of one node v. The goal is to count the number of
actions each node, among v and its children in Playersγ(v), can take before the execution
of RLose is necessary.

Node v will execute two actions for each increase of phv, since it must execute both
RNewPh, and RmaxPos for each step. A node u ∈ Playersγ(v) executes RLose when bv 6= ⊥,
which means immediately after one execution of RmaxPos, and not of RNewPh. Thus, v executes
a sequence of RNewPh;RmaxPos in this order, which might be preceded by one execution of
RmaxPos if necessary.

ParStepsγ(v) = 2× SepDistγ(v) +
{

1 if bγv = ⊥
0 otherwise (5.61)

One children u ∈ Playersγ(v) only executes RNewBit, by hypothesis. Every time it
executes RNewBit, u sets phu at the current value of phv, which will be updated exactly
SepDistγ(v) times. Thus, u executes RNewBit once for each updated value of phv, and
execute one more action if, in the initial configuration, u has to produce an answer for phv.

ChStepsγ(u, v) = SepDistγ(v) +
{

1 if AnswerParγ(u, v)
0 otherwise (5.62)
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We finally define WNego.

WNego(v, γ) =
{

ParStepsγ(v) +
∑
u∈Playersγ(v) ChStepsγ(u, v) if tokγv = •

0 otherwise (5.63)

Preliminaries Our overall goal is to prove that WNego behaves as expected, which is prov-
ing that associated with the four previous components, it is pre-admissible, and that in
some specific cases, it is a decreasing function. Before we formally establish this, we need
to establish some basic, yet numerous, properties which describe how the different predi-
cates and sets we defined above behave during an execution. Indeed, since the definition of
WNego strongly depends on Finished, WontReset, and WillReset, among other things. In
this preliminary, we focus on establishing properties of stability for those three predicates,
depending on the activation of node v. To achieve this, we first prove some stability prop-
erties on other, more basic, predicates, namely AnswerPar, Answer, ForcedReset. Some of
those preliminary lemmas will be reused as well in the demonstrations of the next section.

Our goal is to prove that (WCh, WEr, WCirc, WPlay, WNego) is pre-admissible. Thus, according
to Theorem 5.9, most of the proof will be done under the hypothesis that (WCh, WEr, WCirc, WPlay)
is constant. Actually, this is hypothesis is explicitly used only in the proof of Lemma 5.29,
which states that Players(v) and Separators(v) are constant. In all the other lemmas,
this hypothesis on (WCh, WEr, WCirc, WPlay) is actually used through Lemma 5.29: we suppose
Players(v) and Separators(v) are constant.

Lemma 5.29
Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and

tokγ′v = •, and suppose that (WCh, WEr, WCirc, WPlay)(v, γ′) = (WCh, WEr, WCirc, WPlay)(v, γ).
Then Playersγ′(v) = Playersγ(v) ∧ Separatorsγ′(v) = Separatorsγ(v).

Proof : Let us first remark that cγ
′
v = cγv according to the rules. Let us first consider one node

u ∈ Playersγ(v), i.e. tokγu = ⊥ ∧ cγu 6= cγv ∧ playγu = P. If u executes RLose then according
to Lemma 5.25, we have WPlay(v, γ′) < WPlay(v, γ) which cannot happen by hypothesis. If u
executes RWin or RFakeWin then according to Lemma 5.16, we have WCh(v, γ′) < WCh(v, γ) which
cannot happen by hypothesis. Thus, u can only execute RNewBit, and whatever happens,
u ∈ Playersγ

′(v).
Let us now consider one node u /∈ Playersγ(v). If cγu = cγv then we can have u ∈

Playersγ
′(v) only if cγ

′
u 6= cγ

′
v which is possible only if u executes RWin or RFakeWin but

then according to Lemma 5.16, we have WCh(v, γ′) < WCh(v, γ) which cannot happen by
hypothesis. Otherwise, if tokγu 6= ⊥ then we can have u ∈ Playersγ

′(v) only if tokγ
′
u = ⊥,

which is possible only if u executes RReturn, but then the execution of Drop(u) implies that
playγ

′

u = F and thus u /∈ Playersγ
′(v). Finally, if cγu 6= cγv and tokγu = ⊥, then playγu 6= P.

We can have u ∈ Playersγ
′(v) only if playγ

′

u = P, which is possible only if u executes
RReplayD or RReplayUp. Due to its parent v, u cannot execute RReplayD, and if it executes
RReplayD, then according to Lemma 5.16, we have WCh(v, γ′) < WCh(v, γ) which cannot happen
by hypothesis. As a consequence, in any case, u /∈ Playersγ

′(v).
We just established that u ∈ Playersγ

′(v) ⇐⇒ u ∈ Playersγ(v), which means that
Playersγ

′(v) = Playersγ(v). Since Separatorsγ(v) only depends on Playersγ(v), we can
conclude that Separatorsγ

′(v) = Separatorsγ(v) as well.

From now on, since all the following lemmas of this section are under, at least, the hy-
pothesis of Lemma 5.29, we allow ourselves to simply write Players(v) and Separators(v)
without referring to the configuration in which the set is evaluated.
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Lemma 5.30 proves that, unless node v asks for one new information, which concerns
one new value for ph, then the value which will be taken as an answer for the negotiation
does not evolve. It partly justifies the definition of Answer.

Lemma 5.30
Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and

tokγ′v = •, and suppose that (WCh, WEr, WCirc, WPlay)(v, γ′) = (WCh, WEr, WCirc, WPlay)(v, γ).
If v does not execute RNewPh during cs then ∀u ∈ Players(v), Answerγ′(u, v) =

Answerγ(u, v).

Proof : Let us consider u ∈ Players(v). If u is activated, then according to Theorems 5.4
and 5.10, u executes RNewBit. Therefore, OkNegγ(u) so v is the only parent of u with tokv /∈
{⊥, ↑, ↓}, and, on the other hand, AnswerParγ(u, v). Therefore, by definition of the action
Announce(u), Answerγ

′(u, v) = bγ
′
u = Bitu(phγv) = Answerγ(u, v). Suppose now that u is

not activated during cs. If v is not activated either, then we obviously have Answerγ
′(u, v) =

Answerγ(u, v). Let us rather suppose that v executes RmaxPos during cs.
According to Lemma 5.20, we have ¬AnswerParγ(u, v), so Answerγ(u, v) = bγu, and since

u is not activated during cs we even have bγ
′
u = bγu. By definition, we have Synchγ(v) so

phγu = phγv , which implies, according to NextPlay(v), that phγ
′

u = phγ
′

v . Since bγ
′
v 6= ⊥, we

have ¬AnswerParγ
′(u, v), so Answerγ

′(u, v) = bγ
′
u = bγu = Answerγ(u, v).

Lemma 5.32 proves that once the predicate Finished evaluates to true, then it does in
all the following configurations too. In order to prove it, we first establish Lemma 5.31 which
proves that when we have Finishedγ(v), node v cannot execute RNewPh, which justifies the
name of this predicate. Lemma 5.32 is the first fundamental lemma which will be helpful
in the next section.

Lemma 5.31
Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and

tokγ′v = •, and suppose that (WCh, WEr, WCirc, WPlay)(v, γ′) = (WCh, WEr, WCirc, WPlay)(v, γ).
Then Finishedγ(v)⇒ ¬(Synchγ(v) ∧ PhCompleteγ(v)).

Proof : Suppose that Finishedγ(v) ∧ Synchγ(v) and prove that ¬PhCompleteγ(v). Whether
we have TwoDifferγ(v) or OneDiffersγ(v), there exists u ∈ Players(v) : Answerγ(u, v) 6=
bγv . If AnswerParγ(u, v) then according to Lemma 5.20, ¬PhCompleteγ(v). Otherwise,
¬AnswerParγ(u, v) and then bγu 6= bγv and once again, ¬PhCompleteγ(v).

Lemma 5.32
Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and

tokγ′v = •, and suppose that (WCh, WEr, WCirc, WPlay)(v, γ′) = (WCh, WEr, WCirc, WPlay)(v, γ).
Then (TwoDifferγ(v)⇒ TwoDifferγ′(v)) ∧ (OneDiffersγ(v)⇒ OneDiffersγ′(v)),

and thus Finishedγ(v)⇒ Finishedγ′(v).

Proof : If TwoDifferγ(v) then Finishedγ(v) so according to Lemma 5.31, v does not execute
RNewPh during cs, and thus according to Lemma 5.30, ∀u ∈ Players(v), Answerγ

′(u, v) =
Answerγ(u, v). Thus, let us consider u1, u2 ∈ Players(v) such that Answerγ(u1, v) 6=
Answerγ(u2, v). Immediately, we have Answerγ(u1, v) 6= Answerγ(u2, v) and thus TwoDifferγ

′(v).
Similarly, if OneDiffersγ(v), then Finishedγ(v) so according to Lemma 5.31, u does

not execute RNewPh during cs, and thus ∀u ∈ Players(v), Answerγ
′(u, v) = Answerγ(u, v).

By definition of OneDiffersγ(v), we have bγv 6= ⊥, so v does not execute RmaxPos during cs,
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which implies that v is not activated during cs. Consequently, bγ
′
v = bγv 6= ⊥, and since

∀u ∈ Players(v), Answerγ
′(u, v) = Answerγ(u, v), then OneDiffersγ

′(v).
Since Finished = TwoDiffer∨OneDiffers, we deduce Finishedγ(v)⇒ Finishedγ

′(v).

The two following lemmas prove that, when v does not execute RNewPh, then the predi-
cates ForcedReset and Finished remain constant.

Lemma 5.33 proves that, as long as v does not update phv, then whether the next
execution of RNewPh will reset phv = 1 or not, ForcedReset(v) keeps the same boolean
value. It, partly, justifies the definition of ForcedReset.

Lemma 5.33
Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and

tokγ′v = •, and suppose that (WCh, WEr, WCirc, WPlay)(v, γ′) = (WCh, WEr, WCirc, WPlay)(v, γ).
If v does not execute RNewPh during cs then ForcedResetγ′(v) ⇐⇒ ForcedResetγ(v).

Proof : Since ForcedReset only depends on Answer, this is a direct consequence of Lemma 5.30

Lemma 5.34 establishes that, as long as v does not update phv, then whether we have
reached the final value for phv or not, Finished(v) keeps the same boolean value. In a
certain sense, it specifies Lemma 5.32.

Lemma 5.34
Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and

tokγ′v = •, and suppose that (WCh, WEr, WCirc, WPlay)(v, γ′) = (WCh, WEr, WCirc, WPlay)(v, γ).
If v does not execute RNewPh during cs then Finishedγ′(v) ⇐⇒ Finishedγ(v).

Proof : Since v does not execute RNewPh during cs, phγ
′

v = phγv . According to Lemma 5.30, we
have ∀u ∈ Players(v), Answerγ

′(u, v) = Answerγ(u, v).
If v is not activated during cs, then bγ

′
v = bγv and thus we have Finishedγ

′(v) ⇐⇒
Finishedγ(v). Now suppose that v executes RmaxPos during cs, which means bγv = ⊥ and
bγ
′
v 6= ⊥.

Since bγ
′
v 6= ⊥, OneDiffersγ

′(v) ≡ ∃u ∈ Players(v) : Answerγ
′(u, v) 6= bγ

′
v . But

since ∃u ∈ Players(v) : Answerγ
′(v) = bγ

′
v due to MaxPos(v), we have OneDiffersγ

′(v) ≡
∃u1, u2 ∈ Players(v) : Answerγ

′(u1, v) 6= Answerγ
′(u2, v). Thus, OneDiffersγ

′(v) ⇐⇒
TwoDifferγ

′(v). Furthermore, since ∀u ∈ Players(v), Answerγ
′(u, v) = Answerγ(u, v) we

have TwoDifferγ(v) ⇐⇒ TwoDifferγ
′(v).

Finally, since bγv = ⊥ we have ¬OneDiffersγ(v), so

Finishedγ(v) ⇐⇒ TwoDifferγ(v)
⇐⇒ TwoDifferγ

′(v)
⇐⇒ OneDiffersγ

′(v) ∨ TwoDifferγ
′(v)

⇐⇒ Finishedγ
′(v).

The four following lemmas give information on how an execution of RNewPh might alter
some of the predicates we consider here, or establish relations between them. Lemma 5.35
proves that one node v which executes RNewPh resets phv = 1 if and only if it was actually
detected by ForcedReset before its action.

Lemma 5.35
Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and
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tokγ′v = •, and suppose that (WCh, WEr, WCirc, WPlay)(v, γ′) = (WCh, WEr, WCirc, WPlay)(v, γ).
If v executes RNewPh during cs then phγ′v = 1 ⇐⇒ ForcedResetγ(v).

Proof : According to Lemma 5.20, ∀u ∈ Players(v),¬AnswerParγ(u, v). Consequently, ∀u ∈
Players(v), Answerγ(u, v) = bγu. Thus, ForcedResetγ(v) ≡ ∀u ∈ Players(v), bγu = ⊥,
which is exactly the condition which decides whether phv is set to 1 by PhasePlus(v).

Lemma 5.36 states that if node v verifies WontReset, then it will not reset phv = 1, as
we expect.
Lemma 5.36

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and
tokγ′v = •, and suppose that (WCh, WEr, WCirc, WPlay)(v, γ′) = (WCh, WEr, WCirc, WPlay)(v, γ).

If WontResetγ(v) then v does not reset phv = 1 during cs.

Proof : If v does not execute RNewPh during cs, then this result is immediate. If v executes
RNewPh during cs, then since WontResetγ(v), we have ¬ForcedResetγ(v), and thus according
to Lemma 5.35, v does not reset phv = 1 during cs.

Lemma 5.37 states that if v executes RNewPh, i.e. if it asks for one new information to
its children, then all of them will have to produce a new answer, so after this we can trust
the values of Bitu in the negotiation process. Associated to Lemma 5.30 it fully justifies
the definition of Answer.
Lemma 5.37

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and
tokγ′v = •, and suppose that (WCh, WEr, WCirc, WPlay)(v, γ′) = (WCh, WEr, WCirc, WPlay)(v, γ).

If v executes RNewPh during cs then ∀u ∈ Players(v), AnswerParγ′(u, v).

Proof : Let us consider one node u ∈ Players(v). According to Lemma 5.20, u is not activated
during cs. Furthermore, since v executes RNewPh, we deduce phγ

′

u = phγu = phγv and bγ
′
u =

bγu = bγv . Two cases must be considered.
If bγu 6= ⊥ then PhasePlus(v) updates phγ

′

v = phγv + 1 6= phγv = phγ
′

u , which reduces to
phγ

′

u 6= phγ
′

v and consequently AnswerParγ
′(u, v).

Otherwise, if bγu = ⊥, since ∀u′ ∈ Players(v), bγ
u′ = bv, we have ∀u′ ∈ Players(v), bγ

u′ =
⊥, so PhasePlus(v) sets phγ

′

v = 1 and bγ
′
v = ⊥. Since we also have bγ

′
u = ⊥, we conclude

AnswerParγ
′(u, v).

Lemma 5.38 states that if one node v executes RNewPh, then we have reached the value on
which the negotiation is finished if and only if this value belongs to the set Separators(v).
Associated with Lemmas 5.31 and 5.34 it fully specifies the situations where a computing
step leads to a configuration which satisfies Finished.
Lemma 5.38

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and
tokγ′v = •, and suppose that (WCh, WEr, WCirc, WPlay)(v, γ′) = (WCh, WEr, WCirc, WPlay)(v, γ).

If v executes RNewPh during cs then Finishedγ′(v) ⇐⇒ phγ′v ∈ Separators(v).

Proof : Remark first that bγ
′
v = ⊥, and thus ¬OneDiffersγ

′(v).
By definition ∀u ∈ Players(v), phγu = phγv ∧ bγu = bγv . According to Lemma 5.20,

children u of v are not activated during cs, so ∀u ∈ Players(v), phγ
′

u = phγv ∧ bγ
′
u = bγv .
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Furthermore, according to Lemma 5.37, ∀u ∈ Players(v), AnswerParγ
′(v). Consequently,

∀u ∈ Players(v), Answerγ
′(u, v) = Bitu(phγ

′

v ). Since ¬OneDiffersγ
′(v), we obtain:

Finishedγ
′(v) ⇐⇒ TwoDifferγ

′(v)
⇐⇒ ∃u1, u2 : Bitu1(phγ

′

v ) 6= Bitu1(phγ
′

v )
⇐⇒ phγ

′

v ∈ Separators(v).

The two following lemmas, the last of this section, and establish how situations where
¬Finished(v) can evolve.

Lemma 5.39 states that if we are in a configuration such that we will reach the terminal
value for phv without resetting phv = 1, then it remains true. Associated with Lemmas 5.34
and 5.38, it fully describes what configuration is reached after a computing step which starts
with WontReset(v).
Lemma 5.39

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and
tokγ′v = •, and suppose that (WCh, WEr, WCirc, WPlay)(v, γ′) = (WCh, WEr, WCirc, WPlay)(v, γ).

Then WontResetγ(v)⇒ WontResetγ′(v) ∨ Finishedγ′(v).

Proof : Recall that WontResetγ(v) implies ∃i > phγv : i ∈ Separators(v) and ¬ForcedResetγ(v).
Suppose first that v does not execute RNewPh during cs. According to Lemma 5.33, we

have ¬ForcedResetγ
′(v). Since phγ

′

v = phγv , we also have ∃i > phγ
′

v : i ∈ Separators(v).
Consequently, WontResetγ

′(v) ∨ Finishedγ
′(v).

Now suppose that v executes RNewPh during cs. According to Lemma 5.36, phγ
′

v = phγv+1,
and, by definition, bγ

′
v = ⊥.

If phγ
′

v ∈ Separators(v) then according to Lemma 5.38 Finishedγ
′(v) and thus we

obtain the desired result.
Let us now suppose that phγ

′

v /∈ Separators(v). By definition of WontResetγ(v), we
have ∃i > phγv : i ∈ Separators(v). Since phγ

′

v = phγv + 1 /∈ Separators(v), we deduce
∃i > phγ

′

v : i ∈ Separators(v). We now finish the proof by establishing ¬ForcedResetγ
′(v).

Since ∃i > phγ
′

v : i ∈ Separators(v), we deduce ∃u1, u2 ∈ Players(v) : Bitu1(i) 6=
Bitu2(i). At least one of them, let us say u, is such that Bitu(i) 6= ⊥. By definition of
Bitu, since phγ

′

v < i, Bitu(phγ
′

v ) 6= ⊥, and by Lemma 5.37, we deduce Answerγ
′(u, v) 6= ⊥.

Thus, ¬ForcedResetγ
′(v), and finally WontResetγ

′(v) ∨ Finishedγ
′(v).

Lemma 5.40 states that if we are in a configuration such that we need to reset phv = 1
before reaching the terminal value for phv, then this remains true after a computing step,
unless we do reset phv = 1 during this computing step. Associated with Lemmas 5.35
and 5.38, it fully describes what configuration is reached after a computing step which
starts with WillReset(v).
Lemma 5.40

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and
tokγ′v = •, and suppose that (WCh, WEr, WCirc, WPlay)(v, γ′) = (WCh, WEr, WCirc, WPlay)(v, γ).

If WillResetγ(v), we have:
¬WillResetγ′(v) ⇐⇒ v executes RNewPh during cs and phγ′v = 1.

Proof : Suppose that WillResetγ(v), i.e. ¬Finishedγ(v) ∧ (∀i > phγv , i /∈ Separators(v) ∨
ForcedResetγ(v)).

If v does not execute RNewPh during cs then according to Lemma 5.34, ¬Finishedγ
′(v),

and according to Lemma 5.33, ForcedResetγ
′(v) ⇐⇒ ForcedResetγ(v). Finally, since
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phγ
′

v = phγv , we have ∀i > phγ
′

v , i /∈ Separators(v) ⇐⇒ ∀i > phγv , i /∈ Separators(v).
Consequently, we have WillResetγ

′(v).
Suppose now that v executes RNewPh during cs. According to Lemma 5.37 ∀u ∈ Players(v), AnswerParγ

′(u, v)
which implies ∀u ∈ Players(u, v), Answerγ

′(u, v) = Bitu(phγ
′

v ).
Let us first prove that if phγ

′

v 6= 1 then WillResetγ
′(v). Remark that ¬ForcedResetγ(v).

Indeed, according to Lemma 5.20 we have ∀u ∈ Players(v),¬AnswerParγ(u, v), and thus
if ForcedResetγ(v) then ∀u ∈ Players(v), bγu = ⊥ and thus the execution of PhasePlus(v)
set phv to 1. But now, WillResetγ(v) ⇐⇒ ¬Finishedγ

′(v)∧∀i > phγv , i /∈ Separators(v).
Thus, phγ

′

v /∈ Separators(v), so according to Lemma 5.38, ¬Finishedγ
′(v). Furthermore,

we have ∀i > phγ
′

v , i /∈ Separators(v), and thus WillResetγ
′(v).

Let us now prove that if phγ
′

v = 1 then ¬WillResetγ
′(v). If 1 ∈ Separators(v)

then according to Lemma 5.38, Finishedγ
′(v) and thus ¬WillResetγ

′(v). Otherwise,
1 /∈ Separators(v), and since Separators(v) 6= ∅, ∃i > phγ

′

v : i ∈ Separators(v). Let
us now prove that ¬ForcedResetγ

′(v) to finish the proof. Since v executes RNewPh during
cs, ForcedResetγ

′(v) ⇐⇒ ∀u ∈ Players(v), Bitu(1) = ⊥, which cannot be by hypoth-
esis on the identifiers. Thus, ∃i > phγ

′

v : i ∈ Separators(v) ∧ ¬ForcedResetγ
′(v) so

Finishedγ
′(v) ∨ WontResetγ

′(v).

Proofs In this section, we finally address the function WNego, the lemmas established in
the previous section are going to be extremely useful.

One first step is to establish that what we defined as the last value for phv during the
negotiation phase, SepVal(v), is consistent through an execution. We prove in Lemma 5.42
that this value remains constant. Let us first prove Lemma 5.41 which states that unless
we reset phv = 1, then the maximum value for phv which we will reach before the reset
remains constant as well.

Lemma 5.41
Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and

tokγ′v = •, and suppose that (WCh, WEr, WCirc, WPlay)(v, γ′) = (WCh, WEr, WCirc, WPlay)(v, γ).
If v does not reset phv = 1 during cs, we have MaxPhγ′(v) = MaxPhγ(v).

Proof : If v does not execute RNewPh during cs then phγ
′

v = phγv , and according to Lemma 5.33
ForcedResetγ

′(v) ⇐⇒ ForcedResetγ(v), and thus MaxPhγ
′(v) = MaxPhγ(v).

Suppose now that v executes RNewPh during cs. By hypothesis, phv is not reset to 1 dur-
ing cs, so phγ

′

v = phγv + 1, and according to Lemma 5.35 we also have ¬ForcedResetγ(v).
Thus, we deduce MaxPhγ(v) = min{i ≥ phγv | ∀u ∈ Players(v), Bitu(i) = ⊥}. On
the other hand, since v executes RNewPh during cs, we know by Lemma 5.37 that ∀u ∈
Players(v), AnswerParγ

′(u, v), which implies ∀u ∈ Players(v), Answerγ
′(u, v) = Bitu(phγ

′

v ).
Thus, ForcedResetγ

′(v) ≡ ∀u ∈ Players(v), Bitu(phγ
′

v ) = ⊥, which is equivalent to
MaxPhγ(v) = phγ

′

v .
If ForcedResetγ

′(v) then immediately, we conclude MaxPhγ
′(v) = MaxPhγ(v). Let us

suppose ¬ForcedResetγ
′(v), which implies MaxPhγ

′(v) = min{i ≥ phγ
′

v | ∀u ∈ Players(v), Bitu(i) =
⊥}. But we also know ¬(∀u ∈ Players(v), Bitu(phγ

′

v ) = ⊥), so we deduce MaxPhγ
′(v) =

min{i ≥ phγ
′

v − 1 | ∀u ∈ Players(v), Bitu(i) = ⊥}, and as a consequence, MaxPhγ
′(v) =

MaxPhγ(v).

Lemma 5.42
Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and
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tokγ′v = •, and suppose that (WCh, WEr, WCirc, WPlay)(v, γ′) = (WCh, WEr, WCirc, WPlay)(v, γ).
Then SepValγ′(v) = SepValγ(v).

Proof : Let us distinguish three cases:

• If Finishedγ(v), then according to Lemma 5.31, v does not execute RNewPh during cs,
and thus phγ

′

v = phγv . Furthermore, according to Corollary 5.32, Finishedγ
′(v). Thus,

we have SepValγ
′(v) = phγ

′

v = phγv = SepValγ(v).
• If WontResetγ(v), two cases must be considered.

If v does not execute RNewPh during cs, then phγ
′

v = phγv , and according to Lemma 5.34,
¬Finishedγ

′(v), and according to Lemma 5.30, ∀u ∈ Players(v), Answerγ
′(u, v) =

Answerγ(u, v). Thus, we have WontResetγ
′(v), and thus SepValγ

′(v) = SepValγ(v).
If v executes RNewPh during cs, then by definition of WontResetγ(v) the execution
of PhasePlus(v) sets phγ

′

v = phγv + 1 and bγ
′
v = ⊥. According to Lemma 5.37,

∀u ∈ Players(v), AnswerParγ
′(u, v), which implies ∀u ∈ Players(v), Answerγ

′(u, v) =
Bitu(phγ

′

v ).

– If phγ
′

v ∈ Separators(v), then, by definition, SepValγ(v) = phγ
′

v . Furthermore,
according to Lemma 5.38, Finishedγ

′(v), and thus SepValγ
′(v) = phγ

′

v . This
prove SepValγ

′(v) = SepValγ(v).
– If phγ

′

v /∈ Separators(v) then according to Lemmas 5.39 and 5.38 WontResetγ
′(v).

Furthermore, since phγ
′

v = phγv + 1 /∈ Separators(v), we deduce min{i | i ∈
Separators(v) ∧ i > phγv} = min{i | i ∈ Separators(v) ∧ i > phγ

′

v }. In other
words, SepValγ

′(v) = SepValγ(v)
• If WillResetγ(v), let us consider two cases.

If v executes RNewPh and sets phγ
′

v = 1, then according to Lemma 5.40, Finishedγ
′(v)∨

WontResetγ
′(v), and according to Lemma 5.38, Finishedγ

′(v) ⇐⇒ 1 ∈ Separators(v).
Thus, if 1 ∈ Separators(v) then SepValγ(v) = 1 and SepValγ

′(v) = phγ
′

v = 1, and
thus SepValγ

′(v) = SepValγ(v). Otherwise, if 1 /∈ Separators(v), then ¬Finishedγ
′(v),

so WontResetγ
′(v). We have

SepValγ(v) = min{i | i ∈ Separators(v)}
= min{i | i ∈ (Separators(v) \ {1})}
= min{i | i ∈ Separators(v) ∧ i > phγ

′

v }
= SepValγ

′(v)

and thus SepValγ
′(v) = SepValγ(v)

Let us now suppose that v does not execute RNewPh, or that, if it does, then it does not
set phv = 1. According to Lemma 5.40, WillResetγ

′(v), and we deduce SepValγ
′(v) =

min{i | i ∈ Separators(v)} = SepValγ(v).

From now on, for all the lemmas of this section which are stated under, at least, the
hypotheses of Lemma 5.42, which by the way are the same as the hypothesis of Lemma 5.29,
we allow ourselves to simply write SepVal(v) without referring to the configuration in which
this function is evaluated.

This being established, we are going to follow the different components of WNego intro-
duced for its definition: SepDist, ParSteps, ChSteps, and finished WNego itself. For each
of those four functions, we prove that it corresponds to a non-increasing function, and for
each of them we present the cases where we can guarantee its decrease.

Lemma 5.43
Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and
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tokγ′v = •, and suppose that (WCh, WEr, WCirc, WPlay)(v, γ′) = (WCh, WEr, WCirc, WPlay)(v, γ).
Then SepDistγ′(v) ≤ SepDistγ(v).

Proof : Let us consider three cases.

• If Finishedγ(v) then according to Corollary 5.32, Finishedγ
′(v) and thus SepDistγ

′(v) =
SepDistγ(v) = 0.

• If WontResetγ(v), then SepDistγ(v) = SepVal(v)−phγv . If Finishedγ
′(v) then SepDistγ

′(v) =
0 ≤ SepDistγ(v). Otherwise, according to Lemma 5.39 WontResetγ

′(v). Furthermore,
according to Lemma 5.36, phγ

′

v ≥ phγv , so SepVal(v)− phγ
′

v ≤ SepVal(v)− phγv . Con-
sequently, we have SepDistγ

′(v) ≤ SepDistγ(v).
• If WillResetγ(v), then SepDistγ(v) = SepVal(v) + (MaxPhγ(v)− phγv).

If v does not reset phγ
′

v = 1 during cs, then according to Lemma 5.40 WillResetγ
′(v),

and according to Lemma 5.41 MaxPhγ
′(v) = MaxPhγ(v). Furthermore, by hypothesis

phγ
′

v ≥ phγv , so SepVal(v)+(MaxPhγ
′(v)−phγ

′

v ) ≤ SepVal(v)+(MaxPhγ(v)−phγv . Thus,
we deduce SepDistγ

′(v) ≤ SepDistγ(v).
Otherwise, if v executes RNewPh during cs, and sets phγ

′

v = phγv + 1, then according to
Lemma 5.40 ¬WillResetγ

′(v), and thus we deduce SepDistγ(v) ≤ SepVal(v). Since
by definition MaxPhγ(v)−phγv ≥ 0, we have SepDistγ(v) ≥ SepVal(v). By transitivity,
SepDistγ

′(v) ≤ SepDistγ(v).

Lemma 5.44
Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and

tokγ′v = •, and suppose that (WCh, WEr, WCirc, WPlay)(v, γ′) = (WCh, WEr, WCirc, WPlay)(v, γ).
If v executes RNewPh during cs we have SepDistγ′(v) < SepDistγ(v).

Proof : Let us consider three cases.

• If Finishedγ(v) then according to Lemma 5.31, v does not execute RNewPh during cs.

• If WontResetγ(v) then if Finishedγ
′(v), we have SepDistγ

′(v) = 0 < SepDistγ(v).
Indeed, since WontResetγ(v), we have SepVal(v) > phγv , and so SepDistγ(v) > 0.
Let us now suppose that ¬Finishedγ

′(v). According to Lemma 5.39 WontResetγ
′(v).

Furthermore, according to Lemma 5.36, phγ
′

v > phγv , and thus SepVal(v) − phγ
′

v <

SepVal(v)− phγv . Consequently, SepDistγ
′(v) < SepDistγ(v).

• If WillResetγ(v) then let us consider two options.
If phγ

′

v = phγv + 1 then according to Lemma 5.40 WillResetγ
′(v), and according to

Lemma 5.41 MaxPhγ
′(v) = MaxPhγ(v). Thus, we deduce SepVal(v) + (MaxPhγ

′(v) −
phγ

′

v ) < SepVal(v) + (MaxPhγ(v)− phγv , which means SepDistγ
′(v) < SepDistγ(v).

If phγ
′

v = 1 then according to Lemma 5.40 ¬WillResetγ
′(v). By definition of MaxPhγ(v),

we have MaxPhγ(v) ≥ phv, so SepDistγ(v) ≥ SepVal(v). On the other hand, whether
Finishedγ

′(v) or WontResetγ
′(v), we have SepDistγ(v) < SepVal(v). As a conse-

quence, we obtain SepDistγ
′(v) < SepDistγ(v).

Lemma 5.45
Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and

tokγ′v = •, and suppose that (WCh, WEr, WCirc, WPlay)(v, γ′) = (WCh, WEr, WCirc, WPlay)(v, γ).
Then ParStepsγ′(v) ≤ ParStepsγ(v), and if v executes RmaxPos or RNewPh during cs,

then ParStepsγ′(v) < ParStepsγ(v).



148 Chapter 5. Optimal Self-stabilizing Token Circulation in DODAGs

Proof : Remark first that if v is not activated during cs, then according to Lemma 5.43
SepDistγ

′(v) ≤ SepDistγ(v). On the other hand, bγ
′
v = bγv , so ParStepsγ

′(v) ≤ ParStepsγ(v).
If v executes RNewPh during cs then according to Lemma 5.44,

SepDistγ
′(v) + 1 ≤ SepDistγ(v)

⇒ 2× SepDistγ
′(v) + 2 ≤ 2× SepDistγ(v)

⇒ 2× SepDistγ
′(v) + 1 < 2× SepDistγ(v).

Furthermore, ParStepsγ
′(v) ≤ 2× SepDistγ

′(v) + 1 and ParStepsγ(v) ≥ 2× SepDistγ(v).
By transitivity, we deduce ParStepsγ

′(v) < ParStepsγ(v).
Finally, if v executes RmaxPos during cs, then according to Lemma 5.43 SepDistγ

′(v) ≤
SepDistγ(v). Furthermore, we have bγv = ⊥ and bγ

′
v 6= ⊥, so ParStepsγ

′(v) = 2 ×
SepDistγ

′(v) ≤ 2× SepDistγ(v) < 2× SepDistγ(v) + 1 = ParStepsγ(v), which reduces to
ParStepsγ

′(v) < ParStepsγ(v).

Lemma 5.46
Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and

tokγ′v = •, and suppose that (WCh, WEr, WCirc, WPlay)(v, γ′) = (WCh, WEr, WCirc, WPlay)(v, γ).
Let us consider u ∈ Players(v). Then ChStepsγ′(v) ≤ ChStepsγ(v), and if u

executes RNewBit during cs, then ChStepsγ′(v) < ChStepsγ(v).

Proof : Suppose first that u does not execute RNewBit.
If v is not activated, then ChStepsγ

′(v) = ChStepsγ(v).
If v executes RNewPh during cs then according to Lemma 5.44, SepDistγ

′(v) < SepDistγ(v),
and thus ChStepsγ

′(u, v) ≤ ChStepsγ(u, v).
If v executes RmaxPos during cs then no children of v is activated during cs according to

Lemma 5.20, and thus, Synchγ(v). Consequently, phγ
′

u = phγu = phγv = phγ
′

v . Furthermore,
since bγ

′
v 6= ⊥, we obtain ¬AnswerParγ

′(u, v). According to Lemma 5.43, SepDistγ
′(v) ≤

SepDistγ(v) so we deduce ChStepsγ
′(u, v) ≤ ChStepsγ(u, v).

Now suppose that u executes RNewBit during cs. According to Lemma 5.20, v is not ac-
tivated during cs. Furthermore, we have, by definition, AnswerParγ(u, v). The execution of
Announce(u) sets phγ

′

u = phγu = phγ
′

u and bγ
′
u = Bitu(phγv). If phγv = 1 then Bitu(phγv) 6= ⊥,

so ¬AnswerParγ
′(v), and if phγv 6= 1 then phγ

′

v 6= 1 and thus ¬AnswerParγ
′(v). Thus, we con-

clude ChStepsγ
′(u, v) = SepDistγ

′(v) ≤ SepDistγ(v) < SepDistγ(v) + 1 = ChStepsγ(u, v).
By transitivity, ChStepsγ

′(u, v) < ChStepsγ(u, v).

Lemma 5.47
Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and

tokγ′v = •, and suppose that (WCh, WEr, WCirc, WPlay)(v, γ′) = (WCh, WEr, WCirc, WPlay)(v, γ).
Then WNego(v, γ′) ≤ WNego(v, γ), and if v executes RNewPh or RmaxPos during cs, or if

∃u ∈ Players(v) such that u executes RNewBit during cs, then WNego(v, γ′) < WNego(v, γ).

Proof : This is a direct consequence of Lemmas 5.45 and 5.46.

Theorem 5.11 establishes that (WCh, WEr, WCirc, WPlay, WNego) is pre-admissible.

Theorem 5.11
Let cs = γ → γ′ be a computing step and let a be an anchor at γ′ such that a does not
execute RrNewDFS during cs.
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(WCh, WEr, WCirc, WPlay, WNego)(Dγ′

a , γ
′) �5 (WCh, WEr, WCirc, WPlay, WNego)(Dγ

a , γ).

Proof : According to Theorem 5.9,

(WCh, WEr, WCirc, WPlay)(Dγ′
a , γ

′) �4 (WCh, WEr, WCirc, WPlay)(Dγ
a , γ).

If (WCh, WEr, WCirc, WPlay)(Dγ′
a , γ

′) ≺4 (WCh, WEr, WCirc, WPlay)(Dγ
a , γ), then the result is trivial. Let

us now suppose that (WCh, WEr, WCirc, WPlay)(Dγ′
a , γ

′) = (WCh, WEr, WCirc, WPlay)(Dγ
a , γ), and prove

that WNego(Dγ′
a , γ

′) � WNego(Dγ
a , γ).

In the same way we did in the proof of Theorem 5.5, we can suppose that for any
branch B of Ga, Dγ′

a (B) is not longer than Dγ
a(B). In such circumstances, we have

WNego(Dγ′
a , γ

′) � WNego(Dγ
a , γ) only if there exists a branch B of Ga such that ∃v ∈ Dγ′

a (B)
such that WNego(v, γ′) > WNego(v, γ).

Let us consider one such node v ∈ Dγ′
a (B). According to Theorems 5.6 and 5.8, we have

tokγ
′
v = tokγv . If tokγv 6= •, then WNego(v, γ′) = 0 = WNego(v, γ). If tokγv = • and tokγ

′
v = •,

then we fall under the hypothesis of Lemma 5.47 and thus WNego(v, γ′) ≤ WNego(v, γ).
Thus, for any branch B of Ga, for any node v ∈ Dγ′

a (B), WNego(v, γ′) ≤ WNego(v, γ), and
thus WNego(Dγ′

a , γ
′) � WNego(Dγ

a , γ).

Theorem 5.12 establishes that under certain circumstances, we are certain that the
weight of one CDo decreases. It will we useful to prove the admissibility of W.

Theorem 5.12
Let cs = γ → γ′ be a computing step and let a be an anchor at γ′ such that a does not
execute RrNewDFS during cs.

If ∃v ∈ Dγ
a such that tokγv = • and either v executes RNewPh or RmaxPos during cs,

either ∃u ∈ Playersγ(v) such that u executes RNewBit during cs, then
(WCh, WEr, WCirc, WPlay, WNego)(Dγ′

a , γ
′) ≺5 (WCh, WEr, WCirc, WPlay, WNego)(Dγ

a , γ)

Proof : According to Theorem 5.11,

(WCh, WEr, WCirc, WPlay, WNego)(Dγ′
a , γ

′) �5 (WCh, WEr, WCirc, WPlay, WNego)(Dγ
a , γ).

If (WCh, WEr, WCirc, WPlay)(Dγ′
a , γ

′) ≺4 (WCh, WEr, WCirc, WPlay)(Dγ
a , γ), then the result is trivial. Let

us now suppose that (WCh, WEr, WCirc, WPlay)(Dγ′
a , γ

′) = (WCh, WEr, WCirc, WPlay)(Dγ
a , γ), and prove

that WNego(Dγ′
a , γ

′) ≺ WNego(Dγ
a , γ).

Let us consider v ∈ Dγ
a such that tokγv = • and either v executes RNewPh or RmaxPos

during cs, either ∃u ∈ Playersγ(v) such that u executes RNewBit during cs. According to
Theorems 5.6 and 5.8, we have tokγ

′
v = •. Thus, we fall under the hypothesis of Lemma 5.47

and we have WNego(v, γ′) ≺ WNego(v, γ). Thus, WNego(Dγ′
a , γ

′) 6= WNego(Dγ
a , γ) so according to

Theorem 5.11, we conclude that

(WCh, WEr, WCirc, WPlay, WNego)(Dγ′
a , γ

′) ≺5 (WCh, WEr, WCirc, WPlay, WNego)(Dγ
a , γ).

5.4.2.9 Conclusions

In this section we combine the results of Sections 5.4.2.4 to 5.4.2.8 to provide a suitable
definition of admissible potential function. More precisely, we provide a definition of ad-
missibility which is wide enough to include our weight function W, and tight enough to be
convenient in the following proofs.
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The final theorem of this section states that our algorithm satisfies Condition 2 of
Specification 5.1, but other intermediate theorems will be used in the following section.

From now on, to ease the reading, when we use comparison operations on 5-tuple induced
by W, we simply use the symbol ≺ rather than ≺5 to denote the lexicographic order on 5-
tuples of WDo’s.

Theorem 5.13 states that W is pre-admissible.

Theorem 5.13
Let ε = γ0 → γ1 → · · · → γm be an execution. If a is an anchor at γm, and if a does
not execute RrNewDFS during ε, then W(Dγm

a ) � W(Dγ0
a ).

Proof : By definition, ∀t ∈ [0,m−1], a does not execute RrNewDFS during γt → γt+1, so according
to Theorem 5.11, ∀t ∈ [0,m−1], W(Dγt+1

a ) � W(Dγt
a ). By transitivity, we conclude W(Dγm

a ) �
W(Dγ0

a ).

As hinted above, to define admissibility we must first interest to what an activation of
a CDo is.

Definition 5.24 (Activation of a CDo)
Let cs = γ → γ′ be a computing step, let a be an anchor at γ′, and let u ∈ V be a
node. We say that u activates Dγ

a during cs if:

• u = a and u executes RrNewDFS during cs, or

• u ∈ B(Dγ
a) and u executes RWin or RFakeWin during cs, or

• u ∈ Dγ
a and u executes ETrustChild or RGive or RNewPlay or RDrop or RNego or ROfferUp

or RReceive or RReturn or RReNego or RNewPh or RmaxPos during cs, or

• ∃v ∈ Dγ
a , v ∈ P(u), tokγv = • and u executes RLose or RNewBit during cs, or

• ∃v ∈ Dγ
a , v ∈ Pneq(u), tokγv ∈ {	, ◦} and u executes RReplayD during cs, or

• ∃v ∈ Dγ
a , v ∈ Peq(u), tokγv =↑ and u executes RFake or RReplayUp during cs.

We say that Dγ
a is activated during cs if there exists one node u ∈ V which activates

Dγ
a during cs.

We now prove that the definition of activation matches the evolution of CDo’s. Namely,
if one CDo is not activated during one computing step, either it is unchanged, either it
disappears, its anchor becoming an intern node of one other CDo.

Lemma 5.48
Let cs = γ → γ′ be a computing step, and let a ∈ A(γ) be an anchor at γ. If Dγ

a is not
activated during cs then either Dγ′

a = Dγ
a , either a /∈ A(γ′).

Proof : Let us suppose that Dγ
a is not activated during cs and that a ∈ A(γ′), and let us

prove Dγ′
a = Dγ

a . To achieve this, let us prove that for all branch B = v1 · · · vk of Ga,
Dγ′
a (B) = Dγ

a(B).
Remark first that ∀i ∈ [1, k], tokγ

′
vi = tokγvi , which implies Dγ

a(B) ⊂ Dγ′
a (B). We have

already seen in the proof of Lemma 5.18 that if Dγ′
a (B) is longer than Dγ

a(B) then there
exists v ∈ B(Dγ

a) which executes RWin during cs, which would activate Dγ
a . Consequently,

Dγ′
a (B) = Dγ

a(B).
This, being true for all branch B of Ga, proves Dγ′

a = Dγ
a .
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We now prove that the definition of activation captures almost all computing steps of
our algorithm. The only situation in which no CDo is activated is when all activated nodes
execute RReWin, rule which is not considered by W, but which cannot be responsible of livelock
only by itself.

Lemma 5.49
Let cs = γ → γ′ be a computing step. There exists an anchor a ∈ A(γ) such that Dγ

a

is activated during cs, or all nodes activated during cs execute RReWin.

Proof : Let us suppose that there exists at least one node u ∈ V such that u executes one rule
different from RReWin during cs.

• If u executes RrNewDFS during cs then u is the root, and u activates Dγ
r .

• If u executes RWin or RFakeWin during cs then ∃u ∈ P(v) : tokγp /∈ {⊥, ↑, ↓}, so according
to Lemma 5.8, ∃a ∈ A(γ) such that v ∈ Dγ

a and thus u ∈ B(Dγ
a), and u activates Dγ

a .
• If u executes ETrustChild or RGive or RNewPlay or RDrop or RNego or ROfferUp or RReceive

or RReturn or RReNego or RNewPh or RmaxPos during cs then tokγu 6= ⊥ so according to
Lemma 5.8, there exists a ∈ A(γ) such that u ∈ Dγ

a and thus u activates Dγ
a .

• If u executes RLose or RNewBit during cs then LoseNegγ(u) ∨ AnswerNegγ(u). In both
cases, ∃p ∈ P(u) : tokγp = •, so according to Lemma 5.8, there exists a ∈ A(γ) such
that v ∈ Dγ

a and thus u activates Dγ
a .

• If u executes RReplayD during cs then ReplayLγ(u) and thus ∃p ∈ Pneq(u) : tokγp ∈ {	
, ◦}. According to Lemma 5.8, there exists a ∈ A(γ) such that v ∈ Dγ

a and thus u
activates Dγ

a .
• If u executes RFake or RReplayUp during cs then ∃v ∈ Pneq

γ(u) : tokγv =↑. According to
Lemma 5.8, there exists a ∈ A(γ) such that v ∈ Dγ

a and thus u activates Dγ
a .

We can finally provide a definition of admissibility, which corresponds to our weight
function W according to Theorem 5.14.

Definition 5.25 (Admissible weight function)
Let W1, . . . , Wk : V ×Γ→M be k weight functions on nodes such that (W1, . . . , Wk) is pre-
admissible. We say that (W1, . . . , Wk) is admissible if for all computing step cs = γ → γ′,
for all CDo Dγ′

a , if Dγ
a is activated during cs and if a does not execute RrNewDFS during cs,

then
(W1, . . . , Wk)(Dγ′

a , γ
′) ≺k (W1, . . . , Wk)(Dγ

a , γ)

Theorem 5.14
W is admissible.

Proof : We established in Theorem 5.13 that W is pre-admissible. Let us now consider one
computing step γ → γ′, one CDo Dγ′

a which is activated during cs, and suppose that a does
not execute RrNewDFS during cs.

Let us consider one node u which activates Dγ
a during cs.

• If u ∈ B(Dγ
a) and u executes RWin or RFakeWin during cs, then according to Theorem 5.4,

W(Dγ′
a , γ

′) ≺ W(Dγ
a , γ).

• If u ∈ Dγ
a and u executes ETrustChild or RGive or RNewPlay or RDrop or RNego or ROfferUp

or RReceive or RReturn or RReNego or RNewPh or RmaxPos during cs, then according to Theo-
rems 5.6, 5.8, and 5.12, W(Dγ′

a , γ
′) ≺ W(Dγ

a , γ).
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• ∃v ∈ Dγ
a , v ∈ P(u), tokγv = • and u executes RLose or RNewBit during cs, then since

OkNegγ(u), we deduce v ∈ Pneq
γ(v), and thus according to Theorems 5.10 and 5.12

W(Dγ′
a , γ

′) ≺ W(Dγ
a , γ).

• ∃v ∈ Dγ
a , v ∈ Pneq(u), tokγv ∈ {	, ◦} and u executes RReplayD during cs, then according

to Theorem 5.12 W(Dγ′
a , γ

′) ≺ W(Dγ
a , γ).

• ∃v ∈ Dγ
a , v ∈ Peq(u), tokγv =↑ and u executes RFake or RReplayUp during cs, then accord-

ing to Theorem 5.12 W(Dγ′
a , γ

′) ≺ W(Dγ
a , γ).

We now prove that if the anchor of a CDo does not execute RrNewDFS, then the CDo can
only be activated a finite number of time.
Theorem 5.15

Let ε = γ0 → γ1 → · · · be an infinite execution, and let a ∈ V such that ∀t ≥ 0, a ∈
A(γt), and such that a does not execute RrNewDFS during ε.

There only exists a finite number of computing steps cst = γt → γt+1 such that Dγt
a

is activated during cst.

Proof : According to Theorem 5.14, W is admissible, so if Dγt
a is activated during cst, we have

W(Dγt+1
a , γt+1) ≺ W(Dγt

a , γt).
Let us now reason by contradiction and suppose that there exists an infinity of such

computing steps, cst0 , cst1 , . . . . We have ∀i ≥ 0, W(Dγti+1
a , γti+1) ≺ W(Dγti

a , γti). Further-
more, according to Theorem 5.13, we also have ∀i ≥ 0, W(D

γti+1
a , γti+1) � W(Dγti+1

a , γti+1).
Thus, we deduce ∀i ≥ 0, W(D

γti+1
a , γti+1) ≺ W(Dγti

a , γti).
Since ≺ is a well-founded order on WDo’s, such infinite decreasing sequence does not

exist, and thus we raised a contradiction. Consequently, there only exists a finite number
of computing steps cst = γt → γt+1 such that Dγt

a is activated during cst.

The following theorem is crucial, since it states that at some point, the CDo which are
not anchored at the root cease being activated, and cease disappearing too. It is a key
theorem to prove the last result of this section, but will also be determining in the following
section to prove the fairness of our algorithm.
Theorem 5.16

Let ε = γ0 → γ1 → · · · be an infinite execution. There exists t0 ≥ 0 such that for all
t ≥ t0,

A∗(γt) = A∗(γt0) and ∀a ∈ A∗(γt), Dγt
a is not activated during γt → γt+1.

Proof : Let us first define t0, and let us consider a ∈ A∗(γ0).
If ∃t ≥ 0 : a /∈ A∗(γt) then let us set ta = t. According to Lemma 5.9, ∀t ≥ ta, a /∈ A(γt).
Otherwise, we have ∀t ≥ 0, a ∈ A∗(γt). According to Theorem 5.15, there exists only

a finite number of computing steps cst = γt → γt+1 such that Dγt
a is activated during cst

(since a 6= r, it cannot execute RrNewDFS). Let us consider t′ the highest value of t such that
Dγt
a is activated during cst, and let us set ta = t′ + 1.
Let us now set t0 = maxa∈A∗(γ0) ta. Let us consider one anchor a ∈ A∗(γt0). We have

∀t ≥ t0, a ∈ A∗(γt), since if not, we would have ta > t0 which is contradictory with the
definition of t0. Therefore we have ∀t ≥ t0,A∗(γt0) ⊆ A∗(γt), and according to Lemma 5.9
we conclude ∀t ≥ t0,A∗(γt0) = A∗(γt).

Furthermore, since ∀t ≥ t0, a ∈ A∗(γt), ta has been defined as one more than the highest
value such that Dγt

a is activated during cst. Therefore, ∀t ≥ t0, Dγt
a is not activated during

cst.

We now formally prove that our algorithm satisfies Condition 2 of Specification 5.1.
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Theorem 5.17
Let ε = γ0 → γ1 → · · · be a maximal execution, and let r be the root of G.
ε is infinite, and can be divided into an infinite number of circulation rounds.

Proof : According to Theorem 5.1, we only have to prove that there exists an infinite number
of computing steps csi = γi → γi+1 such that r executes RrNewDFS during csi.

According to Theorem 5.16, there exists t0 ≥ 0 such that ∀a ∈ A(γt) \ {r},∀t′ ≥ t0, a ∈
A(γt′) and Dγt′

a is not activated during γt′ → γt′+1.
Let us reason by contradiction and suppose that there only exists a finite number of

computing steps csi = γi → γi+1 such that r executes RrNewDFS during csi. Then, there
exists t1 ≥ 0 such that ∀t ≥ t1, r does not execute RrNewDFS during cst. Thus, according to
Theorem 5.15, there exists t2 ≥ t1 such that ∀t ≥ t2, Dγt

r is not activated during cst.
Let us consider t3 = max(t0, t2), and the infinite execution ε3 = γt3 → γt3+1 → · · · .

By definition, no CDo is activated during ε3. Thus, during ε3, nodes only execute RReWin.
But once a node v executes RReWin, it cannot execute it again before the execution of one
other rule sets playv = F. Thus, there does not exist such execution, so we reached a
contradiction.

Consequently, there exists an infinite number of computing steps csi = γi → γi+1 such
that r executes RrNewDFS during csi.

5.4.3 Convergence

In this section, we establish that our algorithm behaves correctly, by largely using results
established in Section 5.4.2, and especially in Section 5.4.2.9. We use in particular Theo-
rems 5.16 and 5.17, that allow us to start the reasoning at a moment where the algorithm
has already partly converged. Namely, we consider executions in which the set of all the
anchors remain constant, and such that all the CDo’s which are not anchored at the root of
the Do are not activated.

Once this is considered, the proof is organized according to the following scheme. We
first establish some additional stability properties on the CDo anchored at the root of the Do.
Then, we give a formal definition of the notion of having the token, for one node. The formal
notion we use to describe the part of an execution where one node is involved in the token
circulation is circulation round, introduced in Theorem 5.1 and Definition 5.27. After that,
we prove that if one node executes a circulation round, then all of its children which might
take the token (depending on their variables play and c) actually do it too, and execute
a circulation round as well. We can thus reason by induction an prove that, starting at
the root, the token browses a part of the Do. Finally we prove that the alternation of the
color of the root, which occurs each time it executes RrNewDFS, associated to properties of the
algorithm, especially its effect on the variables play of the children of a node, guarantee
that the part of the Do which is being browsed by the token grows each time the root
executes RrNewDFS, and eventually become the entire Do.

As we said before, we consider executions which start after the value of t0 guaranteed
by Theorem 5.16. In particular, the set of anchors does not evolve during the executions
we consider, and according to Lemma 5.48, no CDo other than the one anchored at r will be
updated. Consequently, to enhance readability, we allow ourselves to simply write A (resp.
A∗) without referring to the configuration in which this set is evaluated, and to simply
write Da when a ∈ A∗ without referring to the configuration in which we consider the CDo
anchored at a.
Lemma 5.50

Let ε be a maximal execution. We have ∀t ≥ 0,∀a ∈ A∗, Dγt
r ∩Da = ∅.
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Proof : Let us reason by contradiction and suppose that ∃v ∈ Dγt
r ∩ Da. Remark first that

since v ∈ Da and a 6= r, we have v 6= r.
Since v ∈ Dγt

r , there exists B = v1 · · · vk a branch of Dγt
r such that v1 = r and

vk = v. According to Theorem 5.17, there exists t′ ≥ t such that r executes RrNewDFS during
γt′ → γt′+1. By definition, at γt′ , only r is a branch of Dγt′

r , and in particular, B is not.
Let us consider t0 the smallest value greater than t such that B is a branch of Dγt0

r and
B is not a branch of Dγt0+1

r . According to Lemma 5.10, we deduce that v executes RReturn
during γt0 → γt0+1.

By definition, we deduce that v activates Da during γt0 → γt0+1, which is contradictory.

Definition 5.26 (branch-CDo)
Let Dγ

a be a CDo. We say that Dγ
a is a branch-CDo if the vertices of Dγ

a are {v1, v2, . . . , vk}
with v1 = a and ∀i ∈ [2, k], vi ∈ CDγa (vi−1) and ∀i ∈ [2, k], cvi = ca.

We say that a branch-CDo is clean if ∀i ∈ [1, k],¬Erγ(vi), and if tokγvi =�, then
|Playersγ(vi)|+ |{u ∈ Cγ(vi) : tokγu =F}| ≤ 1.

Lemma 5.51
Let Dγ

a be a clean branch-CDo, and let us label its vertices v1, v2 . . . vk such that ∀i ∈
[2, k], vi ∈ CDγa (vi−1).
∀i ∈ [1, k − 2], tokvi =↓, and if tokvk−1 6=↓ then (tokvk−1 , tokvk) ∈ {(�,F), (	

,F), (◦, ↑)}.

Proof : This is a direct consequence of the definition of predicate Er, since nodes are not in
error and form a branch in G.

Lemma 5.52
Let ε = γ0 → γ1 → · · · be an execution such that r execute RrNewDFS during γ0 → γ1.
Then ∀t, Dγt

r is a clean branch-CDo.

Proof : We reason by induction. The base case is true since r executes RrNewDFS in γ0 → γ1, thus
tokγ0

r =↑ and thus Dγ0
r = {r}, which is a clean branch-CDo. Let us also prove that Dγ1

r is
a clean branch-CDo. We have tokγ1

r = F. Let us prove by contradiction that Dγ1
r = {r},

and suppose r has one child u with tokγ1
u 6= ⊥. Since u /∈ Dγ0

r , u is not activated during
γ0 → γ1, and thus tokγ0

u 6= ⊥. According to Lemma 5.8, ∃a ∈ A∗ : u ∈ Da. As a
consequence, u ∈ Da ∩Dγ1

r which cannot be according to Lemma 5.50, and therefore Dγ1
r

is a clean branch-CDo.
Let us now suppose that the property holds at γt, and prove it at γt+1. Remark first

that if no node u joins Dr by executing RWin, then the guards of the rules that update tok
guarantee that no error can be generated.

Furthermore, following the same idea as what was presented for Dγ1
r , a node u can

join Dr only if it has a parent v in Dr such that tokv =�, otherwise u would be in the
intersection of Dr and one other CDo.

Therefore, we only consider the different cases which imply �, the others being trivial.
Let us consider vk the last node of the clean branch-CDo Dγt

r .

• If tokγvk =� then ∀i ∈ [1, k − 1], tokvi =↓ and are not enabled. If the player of v, u,
executes RWin, then cγt+1

u = cγtv = cγt+1
r and therefore Dγt+1

r is a branch-CDo.
Furthermore, no node reaches Playersγ(vk) since RReplayUp implies an activation of
another CDo, and RReplayD is not enabled due to ¬ReplayL. Therefore,
Playersγt+1 ∪ {u ∈ C(vk) : tokγt+1

u = F} ⊆ Playersγt ∪ {u ∈ C(vk) : tokγtu = F},
and thus the branch-CDo is clean.
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• If tokγvk = F∧tokγvk−1 =� then ∀i ∈ [1, k−2], tokvi =↓, and are not enabled, neither
is vk. Furthermore, Playersγ(vk−1) = ∅ and no node reaches Playersγ(vk−1) for the
same reason as previously. Therefore, Dγt+1

r is a clean branch-CDo.
• If tokγv = • then ∀i ∈ [1, k − 1], tokvi =↓ and are not enabled. Children u of vk can

only execute rules that update playu from P to {L, W, F} and thus Playersγ
′(v) ⊆

Playersγ(v). If v executes ROfferUp then nothing has to be proven. If v executes
RGive then |Playersγt(v)|+ |{u ∈ Cγ(v) : tokγu = F}| ≤ 1, and thus Dγt+1

r is a clean
branch-CDo.

Corollary 5.2
Let ε = γ0 → γ1 → · · · be an execution such that r execute RrNewDFS during γ0 → γ1.
Then no node executes RFakeWin during ε.

Proof : Let us consider cs = γ → γ′ one computing step of ε, and let us consider one node v
such that tokγv = ⊥ and playγv = P.

Suppose first that ∀p ∈ P(v) such that tokγp /∈ {⊥, ↑} we have p ∈ Dγ
r . According to

Lemmas 5.52 and 5.51, there exists at most 2 parents of v such that tokγp 6=↓, and if there
are 2 then we have tokp1 =	 and tokp2 = F. In any case, we have OkNegγ(v) and thus v
does not execute RFakeWin during cs.

Let us now suppose that ∃p ∈ P(v) such that tokγp /∈ {⊥, ↑} and p /∈ Dγ
r . Since

tokp 6= ⊥, according to Lemma 5.8 there exists a ∈ A∗ such that p ∈ Da. But then, since
v ∈ B(Da), v does not execute RFakeWin since it would activate Da.

From now on, we suppose that the executions start after at least one RrNewDFS and thus
we suppose that no node executes RFakeWin during the executions.

We presented in Definition 5.13 and in Theorem 5.1 the notion of circulation rounds for
the root. Hence, for the sake of the proof, we also introduce the notion of circulation round
on nodes that are not the root. This will allow us to consider circulation round on any node
v ∈ V , root or not. Namely, this corresponds to the part of a circulation round in which
one particular node holds the token, or in which the token is in one of its descendants.
Definition 5.27 (Circulation Round for v 6= r)

Let ε = γ0 → · · · → γk be a finite execution.
We say that v 6= r executes a circulation round during ε if v executes RWin and

RReturn, exactly once during ε, in that order.
We call circulation round of v during ε, and denote εrt(v, ε) the subexecution of

ε : γi+1 → · · · → γj where γi → γi+1 (resp. γj → γj+1) is the computing step of ε where
r executes RWin (resp. RReturn).

Lemma 5.53
Let ε = γ0 → γ1 → · · · → γk be a circulation round of v. Then

1. ∀i ∈ [0, k], cγiv = cγ0
v

2. ∀u ∈ C(v), tokγ0
u = ⊥

3. tokγkv =↑ and MayDropUpγk(v).

Proof : Let us prove the three items separately.

1. If v = r then v updates cv only with the action of RrNewDFS, and it does not execute
RrNewDFS during ε by definition.
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If v 6= r then v updates cv only with the action of RFakeWin, which is not executed
according to Corollary 5.2, or with the action of RWin, which is not executed by v
during ε by definition.

2. Since v executes a circulation round, it is activated and thus belongs to Dr. According
to Lemma 5.52, ¬Erγ0(v). Furthermore, by definition of circulation round, we have
tokγ0

v ∈ {•,F}. Thus, ∀u ∈ C(v), tokγ0
u = ⊥.

3. By definition of a circulation round, v executes RrNewDFS or RReturn during γk → γk+1
and thus tokγkv =↑ and MayDropUpγk (v).

In the following lemma, we establish that if one node v executes a circulation round,
then its playing children also execute a circulation round. This will allow us in the latter
to reason by induction.

Lemma 5.54
Let us consider one node v ∈ V , and let ε = γ0 → γ1 → · · · → γk be a circulation round
of v. Then ∀u ∈ Candidatesγ0(v), u executes a circulation round during ε.

Proof : Let us consider u ∈ Candidatesγ0(v). According to Lemma 5.53, ∀i ∈ [0, k], cγiv = cγ0
v

Since cγ0
u 6= cγ0

v , we deduce that ∀i ∈ [0, k], cγiv 6= cγ0
u . Lemma 5.53 also assures that

tokγ0
u = ⊥ which implies that, during ε, u cannot execute RReturn before it executes RWin.

Let us first prove that u executes RWin during ε.
Whether v = r or v 6= r has no incidence on the fact that, necessarily, v executes

ROfferUp during ε. Otherwise, we would have tokγkv /∈ {⊥, ↑} which is inconsistent. Let us
name css = γs → γs+1 the computing step during which v executes ROfferUp. We deduce
that cγsu = cγsv ( 6= cγ0

u ) ∨ playγsu ∈ {W, F}. Since we consider executions where nodes do
not execute RFakeWin, RWin is the only rule whereby u can update cu, and also the only rule
whereby u can update playu from {P, L} to {W, F}. We conclude that u executes RWin during
γ0 → · · · → γs, let us say during cst = γt → γt+1.

Let us now prove that u executes RWin only once during ε. Let us reason by contradiction
and suppose there exists a second computing step cs = γ → γ′ where u executes RWin. Since
Dγ
r is a branch-CDo, then ∀w ∈ Dγ

r , cγw = cγv = cγu. Indeed, u does not change its color
between the first and the second execution of RWin by definition. But because u executes
RWin, ∃p ∈ Pneq

γ(u) : tokγp =�. This parent is necessarily in one other CDo, which is
activated by u during cs, which is contradictory.

Since v executes ROfferUp during css, we have tokγsv = • ∧ ¬Erγs(v) which implies that
tokγsu = ⊥, and because u executes RWin during γ0 → · · · → γa, it means that u executes
RReturn after having executed RWin and before γs.

Consequently, u executes one circulation round during ε.

We now introduce the notion of Free DODAG. This notion is defined only on reset points,
i.e. configuration immediately subsequent to an execution of RrNewDFS (see Definition 5.13).
A Free DODAG corresponds to all the nodes which can reach the root by a path in G, such
that no node of this path has any parent in one other CDo. It corresponds to nodes which
have the possibility to receive the token sent from the root by executing RWin (we do not
take into account the color of the nodes on this path in this definition).

Definition 5.28 (Free DODAG)
Let γ be a reset point of an execution ε. We call free DODAG in γ, and denote FDo(γ),
the smallest set that contains r and such that ∀w 6= r:

w ∈ FDo(γ) ⇐⇒ tokw = ⊥ ∧ ∃p ∈ P(w) : p ∈ FDo(γ) ∧ ∀p ∈ P(w), (p = r ∨ tokp = ⊥)
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Remark 5.9
FDo(γ) is a sub-Do of G anchored at r: ∀u, v ∈ FDo(γ), u ∈ CFDo(γ)(v) ⇐⇒ u ∈ CG(v)

Lemma 5.55
Let γ1 and γ2 be two reset points of an execution. We have FDo(γ1) = FDo(γ2).

Proof : The set of nodes v such that tokγ
1
v 6= ⊥ is the union of Dγ1

r = {r} and of all CDo’s
Dγ1
a , a ∈ A(γ1). By hypothesis, the CDo’s anchored to a node of A are not activated during

the execution, and thus the set of nodes v such that tokv 6= ⊥ is the same in γ1 as in γ2.
As a consequence, FDo(γ1) = FDo(γ2).

FDo corresponds to all the nodes that may receive the token from the root, without
considering variables c and play. In order to gain in precision, we define the set of all
nodes which will actually receive the token during the starting circulation round.
Definition 5.29 (Reachable area from r)

Let γ be a reset point. We define the reachable area from r at γ, and denote Reachr(γ):

Reachr(γ) = {vk | ∃v1 · · · vk ∈ FDo(γ) :
{
v1 = r ∧ ∀i ≥ 2, vi ∈ C(vi−1)
∀i ≥ 2, (playγvi ∈ {P, L} ∧ cγvi 6= cγr ) }

We prove in the following Lemma that nodes in the Reachable area actually receive the
token, and execute exactly one circulation round during the circulation round of the root.
Lemma 5.56

Let ε = γ0 → γ1 → · · · → γk be a circulation round of r. Then ∀u ∈ Reachr(γ), u
executes exactly one circulation round during ε.

Proof : Let us prove that lemma by induction on the depth of node u in Reachr(γ). The base
case comes immediately, since r is the only node with depth 0 and by definition, r executes
a circulation round during ε.

Let us now establish the induction step and suppose that for any node u with depth
less that d of Reachr(γ), u executes a circulation round during ε. Let us consider one node
v ∈ Reachr(γ) with depth d+ 1, and one of its ancestors u ∈ Reachr(γ) with depth d. By
hypothesis, u executes a circulation round during ε. Let us consider εrt(u, ε) = γi → · · · →
γj the circulation round of u during the circulation round of r. If v ∈ Candidatesγi(u)
then we can apply Lemma 5.54 and thus v executes a circulation round during εrt(u, ε).
If v /∈ Candidatesγi(u) then playγiv /∈ {P, L} ∨ cγiv 6= cγiu . This is possible only if, before
γi v executes RWin. According to Lemma 5.53, tokγiv = ⊥. Thus v executes at least one
circulation round during ε.

Furthermore, v cannot execute several circulation round during ε, since v cannot activate
any other CDo than Dγ

r , and after its first circulation round it has the same color as the
root, and thus the same color as any node of the branch-CDo.

The token does not only circulate through the reachable area of r indefinitely, it also
makes its reachable area increase at each circulation round. Indeed, suppose one node v has
the token, and has one child u with the same color as v. Then u is already seen as visited,
which means that it won’t receive the token, as being out of the reachable area. Yet, when
sending the token upwards to its parent, v forces u to reset playu to P, which means that
in the next circulation round, when the color of the token has switched, u will be able to
receive the token. Note that this only works if u ∈ FDo(γ), otherwise u has other parents,
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and therefore updates playu to F. Also note that if one child u does not receive the token
for its variable play is already set to W or F, but had the appropriate color to receive it,
then u will have to wait two circulation rounds before it actually receives the token. To
embrace this behavior, we define the expansion areas of r, which constitutes all nodes in
FDo(γ) which have a parent in Reachr(γ) without being in Reachr(γ) themselves.
Definition 5.30 (Expansion areas of r)

Let γ be a reset point. We define the expansion area of order 1 and of order 2 of r at
γ, and denote Exp1

r(γ) and Exp2
r(γ):

Exp1
r(γ) = {u ∈ FDo(γ) | ∃p ∈ P(u) : p ∈ Reachr(γ) ∧ cγu = cγr}

Exp2
r(γ) = {u ∈ FDo(γ) | ∃p ∈ P(u) : p ∈ Reachr(γ) ∧

{
playγu ∈ {W, F}
cγu 6= cγr

}

The following Lemma proves that the three sets defined above are jointly increasing, as
intended. This will allow us to prove that at some point, the reachable area contains the
entire FDo.
Lemma 5.57

Let γ1 and γ2 be two consecutive reset points of an execution, and let ε = γ0 → · · · → γk
be the circulation round of r between γ1 and γ2.

1. Reachr(γ1) ⊂ Reachr(γ2)

2. Exp1
r(γ1) ⊂ Reachr(γ2)

3. Exp2
r(γ1) ⊂ Exp1

r(γ2)

Proof : 1. Remark that r ∈ Reachr(γ2) by definition. Let us consider one node u ∈
Reachr(γ1), u 6= r, and prove that playγ

2
u ∈ {P, L} ∧ cγ

2
u 6= cγ

2
r .

According to Lemma 5.56, u executes one circulation round during ε. After ε, u cannot
execute RWin after, at least, tokr =� which occurs after γ2. Thus, in γ2, u still has
the color it took when reaching Dr during ε Thus, cγ

2
u = cγ

1
r 6= cγ

2
r

By definition of Reachr, ∃v ∈ P(u) such that v ∈ Reachr(γ1). According to Lemma 5.56,
v executes a circulation round during ε, and thus v executes ROfferUp during ε. Let us
consider csi = γi → γi+1 the last computing step of ε such that one parent v of u
executes ROfferUp. At γi, u terminated its circulation round. Indeed, if at γi, u has not
begun its circulation round, then cγiu 6= cγiv and playγiu ∈ {P, L} which would prevent
v to execute ROfferUp. Furthermore, since ¬Erγ(v), we have tokγiu = ⊥ so u terminated
its circulation round at γi.
Consequently, we have cγiu = cγir and since ¬WaitSibγi(v), we also have playγiu 6= F.
Furthermore, according to Lemma 5.50, we know that u has no parent such that
tokγip /∈ {⊥, ↑} apart from Dγi

r , which implies that u has only one parent such that
tokγip /∈ {⊥, ↑}, which is v. Consequently, since v is the last parent of u that executes
a circulation round, then from γi+1 to the end of ε, all the parents of u are such
that tokγp ∈ {⊥, ↑}. Thus, during that part of the execution, we have constantly
¬FakeReplay(u), and thus for that entire part of the execution, playu 6= F.
Let us now consider γj the last configuration that is part of the circulation round
of v. According to Lemma 5.53 we have MayDropUpγj (v), so playγju 6= W and thus
playγju ∈ {P, L}. Since v does not execute RWin nor RFakeWin after its first circulation
round of ε, we deduce playγ

2
u ∈ {P, L}
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Since this is true for all the nodes of Reachr(γ1), we can conclude Reachr(γ1) ⊆
Reachr(γ2)

2. Let us consider one node u ∈ Exp1
r(γ1). By definition of Exp1

r, there exists p ∈ P(v) :
p ∈ Reachr(γ1). According to what we established above, p ∈ Reachr(γ2), so we only
have to prove that cγ

2
u 6= cγ

2
r ∧ playγ

2
u ∈ {P, L} to establish that u ∈ Reachr(γ2).

By definition, we have cγ0
u = cγ0

r . Since r does not update cr during ε, and since Dr
is a branch-CDo along ε, then until u executes RWin, it has the same color as all the
nodes of Dγ

r during ε. Since, on the other hand, u cannot activate any other CDo, we
deduce that u actually does not execute RWin during ε, neither during γk → γ2 for the
same reason. Consequently, we have cγ

2
u 6= cγ

2
r .

Now, the proof we made for the previous case totally applies: we can select the last
computing step such that one parent p of u executes ROfferUp, at that moment we
have cu = cp, thus we can infer from WaitSib(v) that playu 6= F and from the non-
activation of other CDo’s that this remains true until at least γ2. FInally, we can
reason about MayDropUp as well to establish that playγ

2
u ∈ {P, L} which terminates

the proof.
3. Let us consider one node u ∈ Exp2

r(γ1). By definition of Exp2
r, there exists p ∈ P(v) :

p ∈ Reachr(γ1). According to what we established above, p ∈ Reachr(γ2), so we only
have to prove that cγ

2
u = cγ

2
r to establish that u ∈ Reachr(γ2).

By definition, we have cγ0
u 6= cγ0

r ∧ playγ0
u ∈ {W, F}. Thus, u cannot execute RWin

before it executes RReplayUp. Since u does not activate any other CDo than Dr, u
executes RReplayUp only if it has one parent p ∈ Dr such that tokp =↑ and cp = cv.
But this cannot happen in ε before u executes RWin, since according to Lemma 5.52,
all the nodes of Dr have the same color cγ0

r , which is the opposite that cu until it
executes RWin. We just found a loop of dependencies.
We prove that u cannot update cu before at least γ2, and thus u ∈ Exp1(γ2).

The two following lemmas prove that the sets of reachable and expansion areas of r
allow a permanent growth of Reach, which stops only when Reach includes all the nodes of
FDo.

Lemma 5.58
Let γ be a reset point of an execution.(

Reachr(γ) = FDo(γ)
)
∨
(
Exp1

r(γ) ∪ Exp2
r(γ) 6= ∅

)
Proof : By contradiction, suppose Reachr(γ) 6= FDo(γ), and let us consider one node u ∈

FDo(γ) \ Reachr(γ) with minimal depth.
This node has a parent in FDo(γ) ∩ Reachr(γ) (otherwise it would not be minimal in

depth). Thus, u belongs to Exp1
r(γ) ∪ Exp2

r(γ).

Lemma 5.59
There exists a reset point γf such that Reachr(γf ) = FDo(γf ).

Proof : Let us consider γ1, γ2, · · · an infinite sequence of reset points. According to Lemma 5.58,
we know that if Reachr(γi) 6= FDo(γi) then Exp1

r(γi)∪ Exp2
r(γi) 6= ∅. But then, according to

Lemma 5.57, we deduce that Reachr(γi) ( Reachr(γi+1) or Exp1
r(γi) ( Exp1

r(γi+1).
If we now suppose that ∀i, Reachr(γi) 6= FDo(γi), then we build an infinite sequence of

growing sets of nodes, which cannot happen. By contradiction, we conclude.

Since we can now apply the properties of Reach, and especially Lemma 5.56 to FDo, we
can conclude that at some point, FDo = G.
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Theorem 5.18
FDo(γf ) = G

Proof : Let us reason by contradiction and suppose there exists one node u /∈ FDo(γf ). Let us
consider one such node u with maximal height, i.e. such that ∀p ∈ P(u), p ∈ FDo(γf ). By
definition this implies that ∀p ∈ P(u), tokγp = ⊥∨p = r. Thus, u /∈ FDo(γf ) is possible only
by tokγfv 6= ⊥. Since γf is a reset point, it means that ∃a ∈ A∗ : v ∈ Da, and thus v is not
activated at all.

Let us now consider one parent p of v. According to Lemma 5.59, we have p ∈ Reachγfr ,
and according to Lemma 5.56, p executes a circulation round after γf . But thus, according
to Lemma 5.53 when p starts its circulation round we have tokv = ⊥ which is contradictory.

Corollary 5.3
Reachr(γf ) = G.

Theorem 5.19
Our algorithm is a fair self-stabilizing token circulation algorithm.

Proof : We already proved in Theorem 5.17 that our algorithm satisfies Condition 2 of Speci-
fication 5.1.

Let us consider one execution ε = γ0 → · · · , and more precisely the subexecution
εf = γf → · · ·

Remark that having FDo(γf ) = G implies that all nodes v but the root are such that
tokγfv = ⊥. Therefore, A∗(γf ) = ∅, and by Lemma 5.9, this is true in all configurations of
εf . In particular, in any configuration of εf , the set of nodes with tokv 6= ⊥ corresponds
to the clean branch-CDo Dγ

r , and by construction, we have UT C(γ). This proves that our
algorithm satisfies Condition 1 of Specification 5.1.

Furthermore, let us consider one circulation round of εf which starts at γ1, and let
us denote γ2 the reset point consecutive to γ1. According to Lemma 5.56, all nodes of
Reachr(γ1) = G execute exactly one circulation round during that circulation round. Since
∀v ∈ G \ {r}, tokγ

1
v = tokγ

2
v = ⊥, this means that there is exactly one computing step in

which v executes RWin, and thus there exists a finite, continuous, subexecution of this round
in which R(v). Therefore, this circulation round is fair.

5.4.4 Space Optimality of our Algorithm

In this section, we prove that our algorithm is asymptotically optimal in terms of memory
for the token circulation problem. Our algorithm has a space complexity S(A) ∼ log logn
bits per node.

Thus, we are going to prove that there does not exist any deterministic algorithm solving
T C in SPU using o(log logn) bits per node. We prove this lower bound under less challeng-
ing hypotheses than those under which our algorithm works. Namely, our algorithm is
self-stabilizing, it works under the unfair distributed scheduler and in any DODAG. Our
lower bound is established for general distributed algorithms (without any stabilization re-
quirements), under simpler schedulers (the synchronous scheduler and the central strongly
fair scheduler), and in a very simple class of Do: the bi-branch Do.

We basically use Theorem 3.2 established in Chapter 3 which introduces the equivalence
between executions of small-memory algorithms in identified networks, and in anonymous
networks. Specification 5.1 of T C relies on two local predicates, T and R. Similarly to how
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we proved the lower bound for leader election (Theorem 3.1), we can consider the function
(A, T,R) which has asymptotically the same space complexity as A.

Let us first define the topology used to prove our lower bound. A bi-branch Do is a Do
in which the root has two children, and all the other nodes have one child, and one parent.
Although we call it Do, it is actually a tree, with bounded degree. For simplicity, we provide
the set of edges of the bi-branch as a set of oriented edges, which matches the relation →.

Definition 5.31 (bi-branch Do Bk)
For any k ≥ 1, we define Bk the k-th bi-branch Do by Bk = (Vk, Ek) where:

• Vk = {r, u1, u2, · · · , uk, v1, v2, · · · , vk},

• Ek = {(u1, r), (u2, u1), · · · , (uk, uk−1), (v1, r), (v2, v1), · · · , (vk, vk−1)}.

r

u1 u2 uk

v1 v2 vk

Figure 5.29: Bi-branch Do Bk

Similarly to how we considered symmetric configurations on rings in Section 3.6, we
define the symmetric configurations on bi-branch Do.

Definition 5.32 (Symmetric configurations on Bk)
Let us consider k ≥ 1. A configuration of Bk, γ, is said symmetric if
∀i ∈ [1, k], stateγui = stateγvi .

Theorem 5.20 (Lower Bound for T C in SPU)
Let c > 1. Every deterministic algorithm solving T C in SPU under a central strongly
fair scheduler or under the synchronous scheduler requires registers of size Ω(log logn)
bits per node in bi-branch Do’s with unique identifiers in [1, nc].

Proof : Similarly to the proof of Theorem 3.1, we first prove the theorem under the hypothesis
of the central strongly fair scheduler, and will show later how to treat the case of the
synchronous scheduler.

Let us suppose that there exists an algorithm A solving T C in SPU under a central
strongly fair scheduler, using o(log logn) bits per nodes in bi-branch Do’s with unique iden-
tifiers in [1, nc]. By definition, there exist two local predicates T and R which specifies how
A solves T C.

The class G = (Bi)i≥1 contains graphs of arbitrary large size, and is ∆-limited by logn
since all the graphs it contains have degree 2. Therefore, we can apply Theorem 3.2. Rather
than simply applying it to A, we consider the tuple (A, T,R). Theorem 3.2 guarantees that,
for any n large-enough, there exist n distinct identifiers ID1, . . . , IDn in [1, nc] which the
tuple (A, T,R) does not distinguish.

Let us now consider one such large-enough network Bn, such that the identifiers of the
nodes are ID1, . . . , IDn. We consider the framework of distributed algorithms, where the
initial configuration is not corrupted. Therefore, we suppose a configuration γ0 such that
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the root holds the token (i.e. T γ0(r) = true), and that all the other nodes are in one unique
state. By definition, γ0 is symmetric. Let us build step by step an infinite execution such
that ∀i ∈ N, T γi(r). This is clearly contradictory with the fairness of the token circulation.

We reason by induction, building step by step an execution in such that each one or
two configuration is symmetric, and such that the root permanently holds the token. The
base case is immediate: γ0 respects both properties.

Let us suppose that γk is symmetric, and T γk (r) = true. By symmetry, we have
∀i ∈ [1, k], for all rules R of RA, R is enabled on ui if and only if it is enabled on vi. In
particular, ui is enabled if and only if vi is enabled. Since by hypothesis A solves T C, there
is at least one enabled node.

If the central strongly fair scheduler activates r in γk, then the resulting configuration
γk+1 is symmetric. Predicate T only relies on the states of the nodes, since it cannot
distinguish the identifiers by construction, and therefore T γk+1(ui) ⇐⇒ T γk+1(vi) by
symmetry. By unicity of the token, we have T γk+1(r), and the induction step is established.

Suppose now that the central strongly fair scheduler activates ui in γk. In this case, the
scheduler can activate vi in γk+1. Since there is no edge between ui and vi, the action of ui
does not have any incidence on vi, which means that vi takes the exact same step as ui. As
a result, γk+2 is symmetric, and consequently r holds the token in γk+2. Finally, we prove
that r also holds the token in γk+1. Since predicate T is local, and since only ui is activated
in γk, only neighbors of ui or ui itself may have their value on T updated between γk and
γk+1. Let w be the node such that T γk+1(w) = true, and suppose that w 6= r, i.e. w = uj
with j ∈ {i − 1, i, i + 1}. Therefore, by symmetry and since vi takes the exact same step
as ui, and is the only activated node in γk+1, T γk+2(vj) = T γk+2(uj) = true, which breaks
the unicity of the token. As a consequence, r holds the token in γk+1, and the induction
step is established.

Let us now consider the synchronous scheduler. All the enabled nodes are activated at
each step, which preserves symmetry at each step, and thus the root permanently holds the
token too.

5.5 Conclusion

In this chapter, we introduce a memory-optimal self-stabilizing algorithm for the fair token
circulation in arbitrary DODAGs. Our algorithm works under the port-unknown state
model SPU, and requires only Θ(log logn) bits per node. To our knowledge, this is the
first self-stabilizing algorithm which breaks symmetry in this model, in graphs of arbitrary
degree with this complexity.

One consequence of the combination of the communication model SPU and of this low
space complexity is that nodes cannot store a permanent pointer to any of their neighbors.
This induces many complications compared to other circulation algorithms in the literature.
We overcome these complications by the use of many precautions in the design of the rules
of the algorithm, and notably for the passing of the token from one node to another. The
resulting algorithm is relatively complex, and so is the proof of its validity.

Due to the complexity if the algorithm, we had to make a rather formal demonstration
of its validity. We use the well-known concept of potential functions to prove the finiteness
of circulation rounds, but ours is particularly elaborated, which make the proof especially
trustful.



Chapter 6

Conclusion

So long
Farewell
Aufwiedersehn
Goodbye

Von Trapp Family

This thesis focuses on low-memory self-stabilizing algorithms for networks in which
point-to-point communication is not built-in. With the recent development of networks
composed of small autonomous devices, such algorithms are more and more desirable. We
are interested in both lower and upper bounds. By lower bounds, we mean impossibility
theorems, which prove some minimal requirement in terms of memory to solve a problem.
By upper bound, we mean efficient algorithms, with better complexity than was previously
achieved.

We obtained both types of results, and in various, and general settings.
Our first contribution is an impossibility result. We prove that, whatever the actual

settings of the networks, one cannot use the algorithmic power procured by unique identifiers
with less memory than O(log logn) bits per node. We proved that under that, execution
of algorithms was the same on identified networks, and on homonymous or anonymous
networks. We obtain this result by a counting argument. We prove that, although the
behavior of an algorithm can depend on the value of the identifier, if the memory is too
small, then there are much less way to behave differently than there are identifiers. In
other words, there always exists a collection of several identifiers that the algorithm cannot
distinguish through the choices it makes.

We extend this lower bound from executions to problems, by proving as an example a
Ω(log logn) lower bound for the leader election problem. The main idea is to consider jointly
the behavior of the algorithm, and the predicate that decides whether the node is leader
or not. The boolean predicate does not significantly increase the size of the output, and
therefore the reasoning made previously remains valid. This technique can be applied to any
problem whose specification boils down to a constant number of local boolean predicates.

This lower bound of Ω(log logn) for the leader election problem is tight on graphs with
degree less than logn, since an algorithm was presented in [BT20] for the leader election
problem, with only Θ(log logn+ log ∆) bits per node required.

Our second contribution is twofold. The main part is a silent snap-stabilizing, for the
detection of termination in anonymous networks, which requires Θ(logD) bits per node.

The problem of termination detection was widely studied in the past years, but there
are very few snap-stabilizing algorithms in the literature, and this is the first such algorithm
designed for anonymous networks, and has, furthermore, a low memory requirement.

To design this algorithm, we basically use two counters, that are both synchronized with
a self-stabilizing unison algorithm. One counter is local to each node, and the other one is
synchronized between neighbors.
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Any self-stabilizing unison algorithm can be chosen for the synchronization of the two
counters of our algorithm. This genericity was achieved after a theoretical analysis of
unison algorithms, derived only from the specification of the Unison. We established strong
synchronization properties that are necessarily satisfied by any algorithm solving unison.

Our third contribution is a token circulation algorithm. It is the first sublogarithmic
token circulation algorithm for this problem in the port-unknown state-model, and we also
prove that it is optimal in memory. The combination of the communication model and
the memory requirements makes it impossible to statically designate one unique neighbors,
which highly complicates the passing of the token. Our algorithm works under the weak-
est scheduling assumptions, on any Destination-Oriented Directed Acyclic Graphs, a class
which notably contains trees.

General Perspectives

In this section, we propose general perspective as potential extensions of the presented
results.

Our termination detection algorithm only returns positive answers: no answer is given
while the observed algorithm does not effectively terminate according to its specification.
Adapting our solution to provide snap-stabilizing negative answers, without any false nega-
tive is not so easy to achieve. It seems to be dependent on stabilizing time of the unison al-
gorithm. Therefore, we should be able to achieve this goal by developing an ad-hoc solution,
but likely at the expense of genericity. Also, two other issues remain open in anonymous
settings, namely (i) the question of necessity for nodes to know (an upper bound on) the
diameter of the network (no matter the solution being self- or non-self-stabilizing), and (ii)
the optimality in both spaces and time to solve snap-stabilizing TD in anonymous networks.
More generally, is O(logD) bits per node necessary to solve global observation problems in
anonymous networks ?

Our lower Ω(log logn) bits per node lower bound applies to various problems. One
remaining question is the tightness of this bound. Indeed, the best complexity achieved so
far for the leader election problem, and the spanning tree construction is O(log logn+log ∆)
bits per node. The question whether it is possible to solve leader election or other spanning
structure construction with exactly Θ(log logn) bits per node, or whether an additional
cost is necessary, remains open.

Our self-stabilizing token circulation algorithm is providing hope that it might be possi-
ble to design self-stabilizing token circulation algorithms for arbitrary networks G, beyond
the case of Do, with space-complexity O(log logn) bits. The design of such algorithms
requires to overcome at least two problems: the presence of more than one root, and the
symmetry caused by the presence of cycles. The presence of multiple roots is an issue which
may not be too dramatic, as it may be possible to let several tokens circulate, one per root,
and to remove the tokens one by one until a single token remains. The symmetries caused
by the presence of cycles appear to cause severe difficulties, and our current knowledge is
insufficient to guarantee that a space-complexity O(log logn) bits can be achieved under
such symmetries.

Such an algorithm with complexity Θ(log logn) bits per node, solving token circulation
on arbitrary graphs would be a valuable toolbox which could be used to solve other prob-
lems, such as the leader election, the spanning tree construction, etc. Combined with our
lower bound, this would be a significant advance in the knowledge of the complexity of a
large variety of problems.
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Optimisation de la Mémoire pour les Algorithmes Distribués
Auto-Stabilisants

Résumé : L’auto-stabilisation est un paradigme adapté aux systèmes distribués, particulièrement sus-
ceptibles de subir des fautes transitoires. Des erreurs de corruption de mémoire, de messages, la rupture
d’un lien de communication peuvent plonger le système dans un état incohérent. Un protocole est auto-
stabilisant si, quel que soit l’état initial du système, il garantit un retour à un fonctionnement normal en
temps fini.

Plusieurs contraintes s’appliquent aux algorithmes conçus pour les systèmes distribués. L’asynchronie en
est un exemple emblématique. Avec le développement de réseaux d’objets connectés, censés être autonomes,
il devient également central de concevoir des algorithmes ayant un faible coût en termes de consommation
énergétique et peu exigeants en termes de ressources.

Une des manières d’appréhender ces problèmes est de chercher à réduire la taille des messages échangés
entre les différents nœuds du réseau. Cette thèse se concentre sur l’optimisation de la mémoire nécessaire
à la communication pour les algorithmes distribués auto-stabilisants.

Nous établissons dans cette thèse plusieurs résultats négatifs, démontrant l’impossibilité de résoudre
certains problèmes sans une certaine taille minimale pour les messages échangés, en établissant une impos-
sibilité d’utiliser jusqu’au bout l’existence d’identifiants uniques dans le réseau en dessous de cette taille
minimale. Ces résultats sont génériques et peuvent s’appliquer à de nombreux problèmes distribués. Dans
un second temps, nous proposons des algorithmes particulièrement efficaces en mémoire pour la résolution
de deux problèmes fondamentaux des systèmes distribués: la détection de terminaison, et la circulation
perpétuelle de jeton.

Mots clés : Algorithmes distribues, tolerance aux pannes, auto-stabilisation, anonymat, optimisation
mémoire

Memory-Optimization for Self-Stabilizing Distributed Algorithms

Abstract: Self-stabilization is a suitable paradigm for distributed systems, particularly prone to transient
faults. Errors such as memory or messages corruption, break of a communication link, can put the system in
an inconsistent state. A protocol is self-stabilizing if, whatever the initial state of the system, it guarantees
that it will return a normal behavior in finite time.

Several constraints concern algorithms designed for distributed systems. Asynchrony is one emblematic
example. With the development of networks of connected, autonomous devices, it also becomes crucial to
design algorithms with a low energy consumption, and not requiring much in terms of resources.

One way to address these problems is to aim at reducing the size of the messages exchanged between
the nodes of the network. This thesis focuses on the memory optimization of the communication for
self-stabilizing distributed algorithms.

We establish in this thesis several negative results, which prove the impossibility to solve some problems
under a certain limit on the size of the exchanged messages, by showing an impossibility to fully use the
presence of unique identifiers in the network below that minimal size. Those results are generic, and may
apply to numerous distributed problems. Secondly, we propose particularly efficient algorithms in terms of
memory for two fundamental problems in distributed systems: the termination detection, and the token
circulation.

Keywords: Distributed algorithms, fault-tolerance, self-stabilization, anonymity, memory optimization
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