With the advent of Next Generation Sequencing (NGS) technologies, the amount of sequencing data has started to exponentially grow year by year. This data deluge has made the development of new computationally efficient methods a priority in the big-data era of bioinformatics. Dealing with such huge amount of information can be done in two orthogonal ways: by compressing the input of current tools, or by providing specialized algorithms with better scaling capabilities. In practice, these two approaches are often combined in order to take advantage of their respective strenghts.

This thesis proposes new methods exploring these ideas. To this end, we first provide two approaches for the efficient storage and retrieval of static k-mer count information. k-mer counting is a well-known problem in bioinformatics for which many tools have been proposed over the last decade. However, such approaches usually focus on construction speed, without further optimizing for query efficiency nor space. Count information is usually stored using fixed-width representations, potentially wasting a lot of space when small count values are involved.

Both our methods take advantage of the characteristic power-law distribution of kmer counts to dramatically improve space while providing fully queryable data structures. The first one is Set-Min sketch, a variation of the well-known Count-Min sketch. Unlike Count-Min, Set-Min sketch provides better error-space tradeoffs by bounding the expected cumulative error by a fraction of the total number of k-mers in the data set. This is in stark contrast to Count-Min where the same bound holds for point-query errors only.

A further development toward optimized data structures for k-mer counts is represented by our family of data structures that we call locom. We demonstate how grouping similar counts together using minimizers as a bucketing technique helps in boosting overall compressibility. One of the ingredients of locom are Bloom-enhanced Compressed Static Functions (BCSFs), improved versions of the sole Compressed Static Function implementation available at the time of writing. Finally, the combinination of LSH and BCSFs produces a new family of data structures potentially able to represent counters in less space than their empirical zero-order entropy. To the best of our knowledge, no previous method was able to achieve such compression factors.

, sketches capable of retrieving the symmetric difference of two sets using space proportional to the difference, and not on the number of elements in each set. We combine IBLTs with syncmers-based sampling for further space reductions. This choice is experimentally justified by showing how, compared to minimizers, syncmers lead to unbiased estimations of Jaccard similarity. Moreover, since IBLTs are able to retrieve differences exactly we also explore the application of retrieving super-sets of the symmetric difference of whole k-mer sets.
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Résumé

Avec l'introduction des technologies de séquençage à haut débit (en anglais: High Throughput Sequencing aussi connues sous le nom de Next Generation Sequencing), la quantité de données biologiques produites chaque année a vu une croissance exponentielle. Cette surcharge d'information a rendu prioritaire le développement de nouvelles méthodes plus adaptées pour faire face à cette âge de la bioinformatique où les données massives jouent un rôle fondamental. L'objectif peut être atteint de deux façons différentes et pas mutuellement exclusives: avec compression de données ou avec des algorithmes qui passent à l'échelle.

Cette thèse présente de nouvelles méthodes qui explorent ces idées. Tout d'abord, nous proposons deux approches différentes pour stocker et récupérer les compteurs associés aux k-mers. Le comptage de k-mer est un problème bien connu en bioinformatique pour lequel plusieurs outils ont été proposés. Cependant, ces approches sont habituellement focalisées sur la vitesse du comptage, sans tenir en compte l'efficacité des requêtes ou l'espace occupé par les représentations en sortie. En plus, plusieurs outils emploient des compteurs de taille fixe, ce qui résulte en un gaspillage de plusieurs bits en cas de petites valeurs.

Nos méthodes exploitent le fait que les compteurs de k-mers suivent une distribution dite "power-law", ce qui nous permet d'obtenir des structures plus compactes tout en supportant des requêtes efficaces. Notre première structure s'appelle Set-Min, une esquisse de compteurs de k-mers, variante de la bien connue esquisse Count-Min. Contrairement à Count-Min, où les erreurs de chaque estimation sont bornées par une fraction du nombre de k-mers totales présentes dans l'ensemble d'origine, Set-Min borne la somme totale attendue des erreurs. En pratique, cette différence fait que les estimations renvoyées par Set-Min soient beaucoup plus précises que celles obtenues avec une esquisse Count-Min de taille identique.

Dans la deuxième partie de cette thèse nous développons davantage ces idées dans le logiciel locom. Nous démontrons comment les minimizers peuvent également être employées pour regrouper les compteurs de k-mers similaires. Cette considération est suivie de l'introduction de nos "Bloom-enhanced Compressed Static Functions" (BCSFs), une amélioration de la seule implantation de Fonctions Statiques Compressées ("Compressed Static Functions") disponible au moment de rédiger ces lignes. Finalement, avec une combinaison de LSH et BCSFs nous obtenons dans le même algorithme une nouvelle famille de structures de données capables de stocker des comptages en un nombre de bits inférieur à leur entropie d'ordre zéro. À notre connaissance, aucune méthode précédente n'avait réussi à atteindre une telle efficacité.

Avec le dernier sujet de cette thèse nous abordons le problème d'estimation de la similarité entre séquences très similaires. L'esquissage avec MinHash n'est pas adapté à ce type de situation car, pour avoir une probabilité acceptable d'échantillonner des différences, les esquisses se trouvent à devoir avoir des tailles considérables, avec une conséquente perte d'efficacité. Pour cette raison, nous cherchons de contourner cette limitation en utilisant les Invertible Bloom Lookup Tables (IBLTs), des esquisses capables de trouver la différence symétrique de deux ensembles avec espace qui dépend de la taille de la différence, et non pas de la taille des ensembles. Par ailleurs, nous démontrons comment combiner l'échantillonage basé sur les syncmers avec les IBLTs pour réduire davantage la taille de nos esquisses tout en évitant le biais propre aux estimateurs de la similarité de Jaccard basés sur les minimizers. Enfin, puisque les IBLTs sont capables de récupérer les différences exactes nous explorons la possibilité de calculer efficacement des super-ensembles de différences entre ensembles de k-mers complets. (2,[START_REF] Altschul | Basic local alignment search tool[END_REF]. In case of collisions in all cells of the sketch, taking the minimum minimizes error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.3

Using a Bloom filter with three hash functions to represent set x, y, z. Bits at positions given by the r = 3 independent hash functions are set to 1. At query, element v is correctly recognized as not present in the Bloom filter but w (in red) results in a false positive since all its bits are set to 1. . . .

Example of insertions in an

IBLT with m = 6 and r = 3. The binary representation of each k-mer is inserted into payload field P of r = 3 non-necessarily distinct buckets given by hash functions h j (•), j = 1, 2, 3. The resulting table is not peelable, since all buckets contain more than one element (all counts are different from 1 (or -1)). Note however that IBLTs support deletions and the sketch might return to be peelable again if enough inserted elements are removed. . . . . . . . . . . . . . . . . . . .

5.5

The reported example represents the difference between the k-mer set from Figure 5.4 and a modified version of itself, where k-mer CAC has been mutated into CGC (1). Once sketched, the difference (top left of ( 2)) has two buckets containing one element each (C = -1), and two buckets with two elements each (first and last rows). Despite having C = 0, the first row contains something (H and P fields are different from 0x00) while the last one is subject to a collision of two copies of the same element (C = 2 and H = P = 0x00). Peeling starts by first finding any eligible bucket whose counter is 1 or -1 and whose hash field H is equal to h e (P ). This is the case for the bucket containing 0x19 (top left). Value 0x19 (corresponding to CGC) is then subtracted from all its buckets, leading to a new peelable bucket (first bucket of the second sketch in the top right corner of ( 2)).

Peeling this new item (0x11 = CAC) empties the sketch and terminates the process. The retrieved symmetric difference is thus CGC, CAC with CAC coming from the set depicted in As before, unassembled datasets and small values of k prove to be the most difficult situations. On the other hand, for very skewed distributions Set-Min sketches perform as well as BBHash MPHFs.

11.1 High correlation between neighboring k-mer counts can be due to their high skewed distribution without any particular relation between k-mers.

In the reported case k = 7 with all k-mers unique. . . . . . . . . . . . . . . 11.2 Example of count correlation due to repetitions. Substring TGG repeats 3 times generating a block of relatively high counts very similar to one another. Non-consecutive duplications have the same effect. . . . . . . . . 11. 3 Example showing the effect of a single mutation when coverage is > 1.

The first sequence is the original one, of coverage 20. One of its 20 copies contain a single mutated letter (highlighted in red) which generates a block of 4 additional unique 4-mers in the mutated sequence and a block of 4 4mers of frequency 19 from the original sequence. Since the affected count values in both sequences are somehow linked to some particular k-mers, LSH techniques looking at k-mer composition are a viable option to bucket counts together. However, collisions between different count values are possible, and should be dealt with. . . . . . . . . . . . . . . . . . . . . . . 11.4 Example of minimizers used as k-mer fingerprints. The same minimizer is likely to be shared by multiple neighboring k-mers. In the example above k = 12 and m = 4. Column h(•) indicate the hash value of each substring of length 4. The minimizer of two successive 12-mers is highlighted in red.

11.5 Graphical representation of Algorithm 2. Construction starts with histogram computation (1) in order to divide the given table into two sets K 0 and K 1 = K \ K 0 (the latter highlighted as a gray area). A Bloom filter is then built over K 1 (2) and false positives from K 0 are extracted (3) Finally, a CSF storing counters for both K 1 and the set of false positives is built (4) The final BCSF is the combination of the Bloom filter (if any) and the CSF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6 Depiction of AMB's construction algorithm for a table containing 3-mers, minimizer length m = 2 and δ = 0. Counts are first bucketed using minimizers (1) Non-ambiguous buckets are reduced to their single value while ambiguous buckets are marked with the special value 0 (2) k-mers inside ambiguous buckets are then filtered (3) Both the array of representatives and the filtered table are then stored using BCSFs (steps (4) and ( 5)). Extension to the multi-layered case can be easily achieved by re-applying the same procedure on the filtered table with a bigger m ′ > m as long as m ′ ≤ k. 11.7 Similarly to AMB the construction of FIL data structures starts by bucketing counts (1) However, this time representatives are chosen by majority rule (2) so that the special value 0 is not required. The output table is obtained from the one in input by performing differences between counters and their representatives (3) instead of propagating ambiguous k-mers. The array of representatives and the new values are stored using BCSFs (4) [START_REF] Ames | Scalable metagenomic taxonomy classification using a reference genome database[END_REF] Note that the updated count table contains a large number of 0s, and it is thus more compressible than the original one. . . . . . . . . . . . . . . . . 11.8 Multi-layered AMB queries. Thanks to the special value 0 each query stops as soon as a suitable value is found. Increasing minimizer lengths are used to gradually solve collisions in successive layers. . . . . . . . . . . . . . . . 11.9 Results for the Sakai dataset for big values of k. For presentation purposes, H 0 is represented as an additional red column in each subgroup. . . . . . . 11.10Results when compressing the reference genome of C.Elegans . . . . . . . 11.11Compressed space usage for the high entropy df dataset. . . . . . . . . . . 11.12Compressed space usage for the high entropy SRR dataset. . . . . . . . . . 11.13Compressed space usage for the low entropy df dataset. . . . . . . . . . . . 11.14Space usage for the Sakai dataset with small k when using AMB (FIL is slightly worse and was omitted). Minimizer lengths vary between 1 and 5 indicating that the best option is to use a simple (B)CSF. . . . . . . . . . 11.15Space usage when using the approximated version of AMB. Entropy (red columns) and CSF (blue columns) are reported for comparison. Unlike Figure 11.14, AMB is able to break the empirical entropy lower bound when small errors are acceptable. . . . . . . . . . . . . . . . . . . . . . . . 11.16Average query time for AMB with 2 and 3 layers and FIL with 2 layers. . . 14.4 Minimizers present a non-negligible bias as opposed to syncmers and random sampling which are unbiased (and overlap in the plot). Each measurement was repeated 500 times on random sequences of length L = 10K with k = 15, w = 11 (for minimizers) and z = 4 (for syncmers). Sampling rate is given by 1/ν = 2/(k -z + 1) = 1/6. . . . . . . . . . . . . . . . . . 14.5 Space taken by IBLTs depends on the similarity between stored sets. For very similar sequences (mutation rate p m = 0.001, Figure 14.5a), IBLTs are more efficient than KMC. Their advantage appears reduced for increased p m and large sequences (Figure 14.5b). . . . . . . . . . . . . . . . . . . . . 14.6 Comparison between IBLTs and MinHash for computing pairwise Jaccard on the covid dataset. The x-axis reports the amount of space allocated for each sketch while the y-axis reports the average absolute error. k = 15 and z = 4 in all tests. Sketch size for MinHash and table size for IBLTs are chosen to fit the allocated memory. . . . . . . . . . . . . . . . . . . . 14.7 Comparison between IBLTs and MinHash for computing pairwise Jaccard on the spneu dataset with the same setting as Figure 14.6. . . . . . . . . . 14.8 Effect of sampling syncmers before IBLT insertion on the average absolute error. 1/ν is the compression rate used for sampling syncmer sets before IBLT insertion. ν = 1 means no sampling (full syncmer sets). . . . . . . . 14.9 IBLT size when using syncmers (k = 15, z = 4) combined with sampling.

Additional sampling helps in reducing IBLT space at the cost of additional errors as seen in Figure 14.8. However, not storing hash filed H imply diminishing returns for compression ratios > 4 since recognizing spurious buckets becomes harder (as described in Section 14.2.2). . . . . . . . . . .
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8. 1 Data sheet for the data sets used in our study. Columns T k and D k report the total number of k-mers and the number of distinct k-mers (in millions), respectively. D c reports the number of distinct k-mer counts. C k reports the number (in millions) of distinct k-mers with a count value different from the most common one (which is 1 in all reported cases). . . . . . . . 8.2 Set-Min compared to Count-Min. T is the reference upper bound on the sum of errors equal to ε∥a∥ 1 (right-hand side of (8.5)). E s and E c are the sum of errors for Set-Min and Count-Min respectively. N s and N c are the percentages (rounded to integers) of distinct k-mers producing an error, for Set-Min and Count-Min, respectively. A s and A c are respective average errors, with average taken over the number of distinct k-mers resulting in an error in the respective sketch. . . . . . . . . . . . . . . . . . . . . . . . 8.3 Set-Min compared to Max-Min sketch. Columns E c , N c , A c are replaced by E m , N m , A m with the same meaning as their Table 8.2 counterparts. . 8.4 Set-Min (ϵ = 0.01) compared to KMC and BBHash (run with γ = 1). All memory is reported in bytes. Column M kmc , M s , M bball are the memory taken by a fully functional map between k-mers and their frequencies when applying KMC, Set-Min sketch and BBHash, respectively. M bbhash is the memory of the hash function produced by BBHash without the external array of frequencies. . . Other works not included in this thesis Historiquement, les algorithmes classiques d'alignement sont liés à la définition de distance d'édition de chaînes de caractères. La similarité est alors calculée en base aux opérations fondamentales requises pour transformer une chaîne dans l'autre. À noter que, à différence de la similarité entre chaînes quelconques, la comparaison entre séquences d'ADN, ou d'autres molécules biologiques (p.e. ARN), requiert d'assigner des "scores" adaptés aux couples de caractères alignés, pour mieux capturer leur signification biologique. Utiliser la similarité d'édition dans sa forme base, où les mutations sont vues comme indépendantes et toujours de pèse unitaire, peut porter à des conclusions erronées. En général, ces algorithmes utilisent des approches de programmation dynamique afin d'obtenir une solution optimale par rapport au système de score choisi. Les premiers algorithmes d'alignement [START_REF] Saul | A general method applicable to the search for similarities in the amino acid sequence of two proteins[END_REF][START_REF] Smith | Identification of common molecular subsequences[END_REF][START_REF] Gotoh | An improved algorithm for matching biological sequences[END_REF] ont été proposés il y a plusieurs décennies, mais ils continuent à jouer un rôle de première importance même aujourd'hui.

Cependant, avec l'accumulation de données produites par les technologies de séquençage de première génération (séquençage de Sanger [START_REF] Sanger | A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase[END_REF]), la simple programmation dynamique commençait à s'avérer trop lente. Ainsi, pour répondre à ces limitations, de nouvelles approches heuristiques ont été proposées en complément de leurs prédécesseurs. L'hypothèse à la base de ces heuristiques est le fait que, si deux séquences sont suffisamment similaires, alors elles doivent forcément partager au moins une région bien conservée. Les outils de la famille de BLAST [START_REF] Pearson | Improved tools for biological sequence comparison[END_REF][START_REF] Wilbur | Rapid similarity searches of nucleic acid and protein data banks[END_REF][START_REF] Altschul | Basic local alignment search tool[END_REF] cherchent ces régions en construisant des indices de sous-chaînes chevauchées de longueur constante k appelées "k-mers". Les parties potentiellement homologues sont alors individuées grâce aux k-mers en commun (graines). Le résultat final est obtenu avec de la programmation dynamique classique limitée aux alentours des blocs trouvés par les indices, ce qui permet une majeure efficacité.

L'introduction de séquenceurs de deuxième génération en 2006 avec un plus haut débit mit à nouveau en difficulté les algorithmes présents à l'époque. Une nouvelle famille d'algorithmes d'alignement prit alors place. À la place de construire des indices de kmers, outils comme BWA [START_REF] Li | Fast and accurate short read alignment with Burrows-Wheeler transform[END_REF] et similaires [START_REF] Langmead | Fast gapped-read alignment with Bowtie 2[END_REF][START_REF] Li | SOAP2: an improved ultrafast tool for short read alignment[END_REF] emploient de méthodes d'indexation compressée comme les suffix trees/arrays [START_REF] Ukkonen | On-line construction of suffix trees[END_REF][START_REF] Manber | Suffix Arrays: A New Method for On-Line String Searches[END_REF], la BWT [START_REF] Burrows | Technical report 124[END_REF] ou bien des FM-Index [START_REF] Ferragina | Opportunistic data structures with applications[END_REF]. La nature succincte de ces indices permet de réduire considérablement l'espace de stockage. Un autre avantage de ce type de structures est que la recherche de régions conservées n'est plus limitée au graines de longueur k alors qu'elle se peut étendre sans limite. Les indices compressés restent les meilleures méthodes d'alignement de reads affectées par petites erreurs, ce qui est le cas pour la deuxième génération de séquenceurs. En revanche, les reads produites par la troisième génération de séquenceurs sont plus longues mais aussi plus imprécises. La majeure longueur est avantageuse pour la détection de mutations à large échelle (comme de longues délétions, insertions ou bougement de bases) mais l'augmentation de la probabilité d'erreur, avec conséquente diminution de régions conservées, rend l'indexation compressée presque inutile. Les nouvelles techniques heuristiques pour la troisième génération reprennent alors le concept d'indexation de kmers en le combinant avec de l'échantillonnage, afin de diminuer les ressources computationnelles requises pour la recherche de graines. Plusieurs méthodes d'echantillionnage existent, parmi elles les bien connues "minimizers" [START_REF] Schleimer | Winnowing: local algorithms for document fingerprinting[END_REF][START_REF] Roberts | Reducing storage requirements for biological sequence comparison[END_REF][START_REF] Li | Minimap2: pairwise alignment for nucleotide sequences[END_REF][START_REF] Jain | High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries[END_REF][START_REF] Jain | Long-read mapping to repetitive reference sequences using Winnowmap2[END_REF] (mais aussi les "syncmers" [START_REF] Edgar | Syncmers are more sensitive than minimizers for selecting conserved k-mers in biological sequences[END_REF]).

L'alignement n'est guère la seule méthode pour estimer la similarité entre séquences. En effet, une autre possibilité consiste en obtenir une indication de ressemblance depuis la composition des séquences sans chercher d'aligner leurs bases. Cette idée est le fondement de techniques dites "alignment-free" (lit. sans alignement) où les comparaisons sont basées sur des indicateurs de similarité alternatifs, comme, par exemple, la longueur de sous-chaîne partagées ("Average Common Subsequence" [START_REF] Ulitsky | The Average Common Substring Approach to Phylogenomic Reconstruction[END_REF]) ou le degré de compressibilité d'une chaîne par rapport à l'autre [START_REF] Vinga | Information theory applications for biological sequence analysis[END_REF][START_REF] Li | The Similarity Metric[END_REF]. Parmi les dizaines de méthodes sans alignement pour l'estimation de la similarité, les techniques qui utilisent les k-mer ont eu le plus de succès grâce à leur versatilité [START_REF] Bernard | Alignment-free microbial phylogenomics under scenarios of sequence divergence, genome rearrangement and lateral genetic transfer[END_REF][START_REF] Jun | Wholeproteome phylogeny of prokaryotes by feature frequency profiles: An alignment-free method with optimal feature resolution[END_REF][START_REF] Sims | Alignment-free genome comparison with feature frequency profiles (FFP) and optimal resolutions[END_REF][START_REF] Leimeister | Fast and accurate phylogeny reconstruction using filtered spaced-word matches[END_REF][START_REF] Fan | An assembly and alignment-free method of phylogeny reconstruction from next-generation sequencing data[END_REF][START_REF] Gardner | When Whole-Genome Alignments Just Won't Work: kSNP v2 Software for Alignment-Free SNP Discovery and Phylogenetics of Hundreds of Microbial Genomes[END_REF][START_REF] Shea | kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome: Table 1[END_REF][START_REF] Derrick | Kraken: ultrafast metagenomic sequence classification using exact alignments[END_REF][START_REF] Ames | Scalable metagenomic taxonomy classification using a reference genome database[END_REF][START_REF] Shajii | Fast genotyping of known SNPs through approximate k -mer matching[END_REF][START_REF] Sun | Toward fast and accurate SNP genotyping from whole genome sequencing data for bedside diagnostics[END_REF][START_REF] Denti | MALVA: Genotyping by Mapping-free ALlele Detection of Known VAriants[END_REF][START_REF] Khorsand | Nebula: ultra-efficient mapping-free structural variant genotyper[END_REF][START_REF] Bray | Near-optimal probabilistic RNA-seq quantification[END_REF][START_REF] Patro | Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms[END_REF]. Dans ce cadre, les séquences sont représentées comme ensembles (pesés ou pas) de k-mers. Malgré la grande disponibilité de mesures de distance qui peuvent être calculées sur des ensembles, la plupart d'elles n'ont pas de bases biologiques [START_REF] Zielezinski | Alignment-free sequence comparison: benefits, applications, and tools[END_REF]. Seulement récemment une mesure de distance biologiquement vraisemblable a été introduite par [START_REF] Fan | An assembly and alignment-free method of phylogeny reconstruction from next-generation sequencing data[END_REF], où la fréquence de mutation est estimée à partir de la similarité de Jaccard [START_REF] Murphy | The Finley Affair: A Signal Event in the History of Forecast Verification[END_REF].

Il y a quelques années, même les algorithmes sans alignement ont commencé à montrer leurs limitations à cause de la croissance exponentielle du rendement des moderns séquenceurs. Encore une fois, il a donc fallu adapter de nouvelles techniques à l'analyse des séquences. Le 2016 a signé le début en bioinformatique des algorithmes de "sketching" (esquissage) avec l'introduction de l'outil Mash [START_REF] Ondov | Mash Screen: highthroughput sequence containment estimation for genome discovery[END_REF]. L'esquissage consiste à transformer les séquences en représentations réduites qui peuvent être ensuite comparées directement afin de donner une estimation de la grandeur pour laquelle elles ont été conçues. À différence des algorithmes sans alignement classiques, les esquisses contiennent beaucoup moins d'information par rapport aux séquences originelles mais leurs estimations ont une qualité comparable à celle de méthodes plus complètes. En particulier, Mash est une implantation de la technique MinHash [START_REF] Broder | On the resemblance and containment of documents[END_REF] visée à la similarité de Jaccard. Plusieurs implantations de MinHash ont suivi Mash [START_REF] Brown | sourmash: a library for MinHash sketching of DNA[END_REF][START_REF] Zhao | BinDash, software for fast genome distance estimation on a typical personal laptop[END_REF][START_REF] William | HyperMinHash: MinHash in LogLog space[END_REF][START_REF] Daniel | Dashing: fast and accurate genomic distances with HyperLogLog[END_REF][START_REF] Ertl | SuperMinHash -A New Minwise Hashing Algorithm for Jaccard Similarity Estimation[END_REF] ainsi que de nouvelles applications [START_REF] Sarmashghi | Skmer: assembly-free and alignment-free sample identification using genome skims[END_REF][START_REF] Koslicki | Improving MinHash via the containment index with applications to metagenomic analysis[END_REF][START_REF] Ondov | Mash Screen: highthroughput sequence containment estimation for genome discovery[END_REF][START_REF] Katz | Mashtree: a rapid comparison of whole genome sequence files[END_REF]. Un des résultats de cette thèse (Partie IV) est l'introduction d'une méthode d'esquissage alternative pour la similarité de Jaccard, dans le cadre de séquences très similaires. Nous utilisons des "Invertible Bloom Lookup Tables" [START_REF] Eppstein | Straggler identification in round-trip data streams via Newton's identities and invertible Bloom filters[END_REF][START_REF] Michael | Invertible Bloom lookup tables[END_REF] pour atteindre l'objectif. Par ailleurs, nous montrons d'autres applications des IBLTs liées à leur capacité de récupérer exactement la différence symétrique de deux ensembles. En plus, nous démontrons expérimentalement comment l'échantillonnage de syncmers donne des estimations de la similarité de Jaccard qui ne sont pas biaisées, à différence de l'échantillonnage basé sur les minimizers.

Un autre objectif de notre travail est l'exploration de représentations efficaces pour les fréquences de k-mers. Les fréquences des k-mers sont utiles dans plusieurs analyses [START_REF] Fan | An assembly and alignment-free method of phylogeny reconstruction from next-generation sequencing data[END_REF][START_REF] Gardner | When Whole-Genome Alignments Just Won't Work: kSNP v2 Software for Alignment-Free SNP Discovery and Phylogenetics of Hundreds of Microbial Genomes[END_REF][START_REF] Shea | kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome: Table 1[END_REF][START_REF] Leimeister | Fast and accurate phylogeny reconstruction using filtered spaced-word matches[END_REF][START_REF] Derrick | Kraken: ultrafast metagenomic sequence classification using exact alignments[END_REF][START_REF] Ames | Scalable metagenomic taxonomy classification using a reference genome database[END_REF][START_REF] Shajii | Fast genotyping of known SNPs through approximate k -mer matching[END_REF][START_REF] Sun | Toward fast and accurate SNP genotyping from whole genome sequencing data for bedside diagnostics[END_REF][START_REF] Denti | MALVA: Genotyping by Mapping-free ALlele Detection of Known VAriants[END_REF][START_REF] Khorsand | Nebula: ultra-efficient mapping-free structural variant genotyper[END_REF][START_REF] Bray | Near-optimal probabilistic RNA-seq quantification[END_REF][START_REF] Patro | Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms[END_REF] mais leurs techniques d'esquissages n'ont pas bénéficié du même succès de MinHash ou d'autres méthodes réservées aux k-mers. À ce propos, nous proposons dans la Partie II une technique d'esquissage adaptée aux compteurs de k-mer. Notre algorithme d'esquissage, inspiré aux bien connues CountSketch [START_REF] Charikar | Finding frequent items in data streams[END_REF] et Count-Min sketch [START_REF] Cormode | An improved data stream summary: the count-min sketch and its applications[END_REF], résulte plus adapté aux distributions de k-mers typique pour des données biologiques, afin de réduire les erreurs qui affectent les estimations ponctuelles.

En revanche, dans la Partie III nous proposons plusieurs façons de compresser exactement les fréquences de k-mers. Nous apportons des améliorations à la seule implantation de "Compressed Static Functions" (CSFs) [START_REF] Genuzio | Fast scalable construction of ([compressed] static | minimal perfect hash) functions[END_REF] disponible au moment de l'écriture de cette thèse afin de créer des Bloom-enhanced Compressed Static Functions (BCSFs). La combinaison de BCSFs et le groupage de k-mers avec les minimizers donne de représentations succinctes dont espace dépend de l'entropie de l'ensemble des compteurs. À notre connaissance, nos algorithmes ont été les premiers à produire des structures de données plus petites de l'entropie des pèses y stockés dedans.

Esquissage de compteurs

Compter les nombre d'occurrences de k-mers est une des opérations primordiales en bioinformatique. Cette information est utile pour plusieurs tâches, comme le garnissage de reads [START_REF] Liu | Musket: a multistage kmer spectrum-based error corrector for Illumina sequence data[END_REF] ou la détection de variants (sans alignement) [START_REF] Rahman | Association mapping from sequencing reads using k-mers[END_REF][START_REF] Khorsand | Nebula: ultra-efficient mapping-free structural variant genotyper[END_REF]. Des nombreaux outils pour le comptage ont été proposés dans la littérature, comme Jellyfish [START_REF] Marçais | A fast, lock-free approach for efficient parallel counting of occurrences of k-mers[END_REF], DSK [START_REF] Rizk | DSK: k-mer counting with very low memory usage[END_REF] ou bien KMC [START_REF] Kokot | KMC 3: counting and manipulating k-mer statistics[END_REF]. Chaque compteur a ses avantages et désavantages afin de balancer vitesse et mémoire. Par exemple, Jellyfish favorise la vitesse alors que DSK ou KMC tendent à être moins exigeants en termes de mémoire (RAM). Les sorties de tous ces outils sont des tables où chaque k-mer est associé à sa fréquence. En général, ce genre de structures associatives peuvent avoir besoin de beaucoup d'espace, surtout s'elles stockent de longues k-mers. Pour donner une idée, il suffit de savoir que le comptage d'un génome humain par KMC donne en sortie une table d'environ 28 Go, pour k = 32.

Une technique utilisée dans la pratique est de sauvegarder seulement les compteurs et ignorer les k-mers. Cette idée est supportée par le fait que l'ensemble de k-mers en plusieurs applications est fixe et il ne peut pas changer. Exemples sont la lecture de kmers depuis des reads partiellement assemblées ou depuis des représentations succinctes d'ensembles de k-mers (comme de graphes de de Bruijn colorés [START_REF] Holley | Bifrost: highly parallel construction and indexing of colored and compacted de Bruijn graphs[END_REF] ou de "spectrumpreserving string sets" [START_REF] Břinda | Simplitigs as an efficient and scalable representation of de Bruijn graphs[END_REF][START_REF] Rahman | Representation of k-mer sets using spectrumpreserving string sets[END_REF]). L'idée de stocker seulement les compteurs sans leurs k-mers est supportée aussi par le fait que, en général, le nombre de valeurs de comptage est relativement petit par rapport au nombre de k-mers totales.

En effet, pour grandes valeurs de k, les spectres de k-mers obtenus en listant leur nombre en fonction de leurs fréquences suivent une distribution dite "power-law" [START_REF] Csűrös | Reconsidering the significance of genomic word frequencies[END_REF][START_REF] Chor | Genomic dna k-mer spectra: models and modalities[END_REF]. Ce sont des distributions très asymétriques où un grand nombre de k-mers a de très petites fréquences, alors que seulement une minorité est très répétitive. Pour k croissant, on s'attend à une diminution du nombre de fréquences distinctes, avec pour cas limite la situation où toutes les k-mers sont uniques.

Utiliser des compteurs de taille fixe peut alors gaspiller beaucoup d'espace car seulement une petite fraction de valeurs a réellement besoin d'un grand nombre de bits. Dans les deux sections qui suivent, nous proposons deux techniques alternatives pour représenter les comptages de manière efficace.

Esquisse Set-Min

La Partie II de cette thèse introduit l'esquisse Set-Min, une variante de la bien connue esquisse Count-Min [START_REF] Cormode | An improved data stream summary: the count-min sketch and its applications[END_REF] (elle-même variante de CountSketch [START_REF] Charikar | Finding frequent items in data streams[END_REF]). Pour rappel, l'esquisse Count-Min est une matrice A de compteurs de B colonnes et R lignes chacune avec sa propre fonction d'haçage h i (•). À l'arrivée d'un nouveau pair (clé, valeur) (p, ℓ), l'insertion consiste à exécuter A(i, h i (p)) = A(i, h i (p)) + ℓ pour chaque ligne i. Les mises à jour sont donc additives ce qui donne des estimations (â(p) = min i {h i (p)}) toujours biaisées par des quantités positives ou nulles. Si Count-Min est dimensionnée avec R = ⌈ln( 1 δ )⌉ et B = ⌈ e ε ⌉ pour n'importe quelle valeur de 0 < ε ≤ 1 et 0 < δ ≤ 1, alors ses estimations sont affectées par une erreur au plus ε∥a∥ 1 avec une probabilité 1 -δ, où ∥a∥ 1 est la norme L 1 de a. Des erreurs d'une magnitude si potentiellement élevée (une fraction du nombre total de k-mers) sur chaque estimation peuvent s'avérer incompatibles avec la bioinformatique.

Cependant, nous démontrons comment Set-Min permet de borner l'erreur cumulative totale, calculée comme la somme des erreurs de toutes les k-mers. Il suffit tout simplement de remplacer les compteurs d'une matrice Count-Min avec des ensembles de fréquences. En effet, grâce à la représentation par ensembles, il devient possible de réutiliser un même compteur pour plusieurs k-mers qui tombent dans la même cellule. Puisque les multiplicités des k-mers doivent maintenant être connues avant insertion, Set-Min perd la capacité d'esquisser de séries de mises à jour partielles, comme c'était le cas pour Count-Min. Nous proposons un algorithme heuristique pour le dimensionnement de nos esquisses.

Nos résultats montrent que Set-Min est plus précise d'une esquisse Count-Min de dimensions comparables. Ce résultat est possible grâce à l'exploitation de la distribution asymétrique typique pour les spectres de k-mers. En plus, pour k suffisamment grand et génomes assemblés, Set-Min peut être un ordre de magnitude plus petite par rapport à de solutions basée sur Minimal Perfect Hashing.

Représentation efficace pour les tables de comptage des k-mers

Dans certains cas, il est préférable de n'avoir aucune erreur d'estimation. Par exemple, trouver exactement l'ensemble de k-mers uniques avec une esquisse Set-Min n'est pas, en général, possible, car, même si les estimations sont beaucoup plus précises de celles de Count-Min, elles sont toujours affectées par des erreurs. Avec le grand nombre d'applications qui font usage de fréquences [START_REF] Sims | Alignment-free genome comparison with feature frequency profiles (FFP) and optimal resolutions[END_REF][START_REF] Rahman | Association mapping from sequencing reads using k-mers[END_REF][START_REF] Khorsand | Nebula: ultra-efficient mapping-free structural variant genotyper[END_REF][START_REF] Marchet | REINDEER: efficient indexing of k-mer presence and abundance in sequencing datasets[END_REF][START_REF] Karasikov | MetaGraph: Indexing and Analysing Nucleotide Archives at Petabase-scale[END_REF][START_REF] Karasikov | Sparse Binary Relation Representations for Genome Graph Annotation[END_REF][START_REF] Mustafa | Metannot: A succinct data structure for compression of colors in dynamic de Bruijn graphs[END_REF], il est alors indispensable de pouvoir disposer d'une structure exacte.

À part l'exactitude, le but de cette partie de la thèse reste inchangé par rapport à la précédente: concevoir une structure qui permet de récupérer de fréquences de k-mers. Seulement les compteurs doivent être traités, avec les k-mers elles mêmes supposées connues. La solution classique à ce problème est d'utiliser des "Minimal Perfect Hash Functions" (MPHFs) [START_REF] Müller | Retrieval and Perfect Hashing Using Fingerprinting[END_REF][START_REF] Yu | Memoryefficient and Ultra-fast Network Lookup and Forwarding using Othello Hashing[END_REF][START_REF] Esposito | RecSplit: Minimal Perfect Hashing via Recursive Splitting[END_REF][START_REF] Limasset | Fast and scalable minimal perfect hashing for massive key sets[END_REF][START_REF] Ermanno | PTHash: Revisiting FCH Minimal Perfect Hashing[END_REF]. Les MPHFs assignent bijectivement chaque objet d'un ensemble S de dimension |S| une position dans l'intervalle [0, |S| -1]. En utilisant l'ordre imposé par une MPHF pour indexer un tableau, il devient alors possible d'assigner n'importe quelle information supplémentaire aux k-mers. Cependant, cette solution n'est pas optimale: les MPHFs ont besoin de mémoire supplémentaire aux compteurs stockés dans les tableaux.

À ce propos, très récemment, [START_REF] Genuzio | Fast scalable construction of ([compressed] static | minimal perfect hash) functions[END_REF] a proposé une implantation pratique de Compressed Static Functions (CSFs). La caractéristique qui distingue les CSFs de MPHFs est que le les premières sont de structures monolithiques dont l'espace dépend de l'entropie des valeurs qui contiennent. Les CSFs n'ont pas ainsi besoin d'un tableau extérieur et, théoriquement, elles peuvent remplacer les MPHFs dans toutes les applications. Toutefois, la solution de [START_REF] Genuzio | Fast scalable construction of ([compressed] static | minimal perfect hash) functions[END_REF] comporte une limitation technique qui limite son efficacité à 1 bit/clé. Cette contrainte se révèle particulièrement désavantageuse pour les k-mers, à cause de leur entropie qui est souvent < 1 en raison de leur distribution asymétrique. Notre premier résultat est alors une amélioration de [START_REF] Genuzio | Fast scalable construction of ([compressed] static | minimal perfect hash) functions[END_REF] pour distributions d'entropies inférieures à 1.

Pour ce faire, nous utilisons de filtres de Bloom pour éviter de sauvegarder explicitement la plupart de copies du compteur le plus commun, en nous focalisant sur les valeurs les plus rares. La structure résultante, que nous appelons "Bloom-enhanced Compressed Static Function" (BCSF) est ensuite employée comme élément de base pour la suite de nos travaux. En effet, nous démontrons également comment utiliser les minimizers [START_REF] Schleimer | Winnowing: local algorithms for document fingerprinting[END_REF][START_REF] Roberts | Reducing storage requirements for biological sequence comparison[END_REF] pour regrouper de mêmes compteurs ensemble afin de gagner encore plus d'espace. Le fait que les k-mers voisines tendent à partager leur fréquence a été observée par [START_REF] Marchet | REINDEER: efficient indexing of k-mer presence and abundance in sequencing datasets[END_REF]. Ce constat est combiné avec des BCSFs en deux techniques que nous appelons AMB et FIL.

BCSFs, AMB et FIL sont comparés entre eux et avec BBHash [START_REF] Limasset | Fast and scalable minimal perfect hashing for massive key sets[END_REF], une implantation de MPHF bien connue en bioinformatique. Avec un choix adéquat de k, AMB et FIL produisent de structures plus petites de l'entropie des fréquences qui contiennent. À notre connaissance, nos algorithmes ont été les premiers à atteindre cet objectif.

Computation efficace de différences entre ensembles de k-mers avec les "Invertible Bloom Lookup Tables"

Nous nous éloignons des tables de comptage dans la Partie IV de cette thèse. À leur place nous nous concentrons sur le problème de comment esquisser efficacement la similarité de Jaccard pour des séquences (ensembles de k-mers) très similaires. Pour mieux comprendre le problème il faut savoir que la similarité de Jaccard entre deux ensembles A et B est définie comme le nombre d'éléments partagés divisé par le nombre total d'éléments distincts. En termes mathématiques:

J = |A ∩ B|/|A ∪ B|.
MinHash est la technique d'esquissage de la similarité de Jaccard [START_REF] Broder | On the resemblance and containment of documents[END_REF]. Dans ce cadre, les ensembles sont réduits en esquisses de taille fixe s. Si s est trop petite et A et B ont une similarité élevée, |A ∩ B| pourrait contenir pas suffisamment de k-mers pour que MinHash puisse les échantillonner. La similarité de Jaccard résulterait alors égale à 1 même pour des ensembles différents. Pour cette raison, nous remplaçons MinHash avec une technique d'esquissage appelée "Invertible Bloom Lookup Table " (IBLT) [START_REF] Michael | Invertible Bloom lookup tables[END_REF][START_REF] Eppstein | Straggler identification in round-trip data streams via Newton's identities and invertible Bloom filters[END_REF], initialement conçue pour le problème de réconciliation d'ensembles. Les IBLTs permettent de récupérer la différence exacte entre deux ensembles, ce qui les différencie des esquisses MinHash. Étant donné que la similarité de Jaccard peut être réécrite en termes du nombre d'éléments dans chaque différence (A \ B et B \ A), il devient alors possible d'utiliser des IBLTs à la place de MinHash quand la similarité entre séquence est attendue être élevée. La procédure de récupération est basée sur le pelage de graphes [START_REF] Dietzfelbinger | Tight thresholds for cuckoo hashing via xorsat[END_REF].

L'implantation originelle d'IBLTs décrite en [START_REF] Michael | Invertible Bloom lookup tables[END_REF] est un tableau de cellules, chacune composée d'un compteur C, un champ H et un champ dédié à la somme de clés. Les insertions fonctionnent de manière similaire aux filtres de Bloom classiques, avec r fonctions de hachage qui assignent r indices à chaque clé. Le compteur C compte le nombre de clés contenues dans les cellules, tandis que le champ P stocke leur somme binaire obtenue avec l'opérateur XOR. Les champs H servent à vérifier s'il y a de collisions, ce qui pourrait empêcher la réussite de l'opération de pelage. Ici, nous montrons comment ce dernier contrôle peut être aussi réalisé sans champ H, en regardant seulement les positions données par les r fonctions d'haçage. En plus, inspiré par [START_REF] Porat | Improved sketching of hamming distance with error correcting[END_REF], et à différence de toute méthode antérieure faisant usage d'IBLTs, nous calculons la différence entre deux IBLTs directement, sans avoir besoin d'un de deux ensembles de départ. Pour cette raison, notre méthodologie devient plus proche à MinHash, où les esquisses sont les seules données utilisées durant les comparaisons. Nous appelons notre implantation "km-peeler". Ensuite, nous combinons l'echantillionnage par syncmers avec notre implantation d'IBLT (c-à-d: nous insérons dans les IBLTs des ensembles de syncmers à la place d'ensembles de k-mers). Les syncmers n'introduisent pas de biais dans les estimations de similarité de Jaccard, à différence des minimizers. Avec des esquisses de taille comparable, notre technique résulte en des estimations plus précises de celles produites par MinHash.

Même si les IBLTs peuvent porter à des esquisses efficaces pour la similarité de Jaccard, elles ont été conçues pour récupérer efficacement les différences de façon exacte. Afin de mieux démontrer la pleine puissance d'IBLTs, nous les appliquons au problème d'approximation de différences d'ensembles de k-mers. À la place d'échantillonner les syncmers comme contre-mesure au fait que chaque mutation peut comporter jusqu'à k nouvelles k-mers dans la différence, ici nous les utilisons pour regrouper ensemble plusieurs k-mers, afin de calculer leurs différences avec des IBLTs. Les groupements récupérés depuis les différences entre IBLTs sont après décomposés dans les k-mers qui les constituent. L'approximation dérive du fait que les ensembles de k-mers finaux sont en général de super-ensembles des vraies différences.

Introduction

Similarity estimation is a fundamental task in bioinformatics. Classical approaches to this problem consist in aligning sequences and estimating similarity as a function of mutations. Multiple sequence alignment is used to precisely compute similarities of multiple sequences, but finding the best solution is a hard problem. Instead, most tools divide the multiple sequence alignment into multiple pairwise comparisons, which are later combined to give the final result [START_REF] D J Lipman | A tool for multiple sequence alignment[END_REF][START_REF] Higgins | CLUSTAL: a package for performing multiple sequence alignment on a microcomputer[END_REF][START_REF] Notredame | T-coffee: a novel method for fast and accurate multiple sequence alignment11Edited by J. Thornton[END_REF][START_REF] Edgar | MUSCLE: multiple sequence alignment with high accuracy and high throughput[END_REF]. Similarity between two strings can then be estimated from the alignments listing the elemental operations (substitutions, insertions and deletions) needed to transform one sequence into the other. The dynamic programming algorithms computing alignments [START_REF] Saul | A general method applicable to the search for similarities in the amino acid sequence of two proteins[END_REF][START_REF] Smith | Identification of common molecular subsequences[END_REF][START_REF] Gotoh | An improved algorithm for matching biological sequences[END_REF] are the backbone of many tools still in use nowadays [START_REF] Li | Fast and accurate short read alignment with Burrows-Wheeler transform[END_REF][START_REF] Li | Minimap2: pairwise alignment for nucleotide sequences[END_REF]. Such algorithms are very precise at the price of being computationally demanding, and they are not very well suited to deal with long sequences. Further improvements to the topic of (pairwise) sequence comparison came with the tool BLAST in which seeding heuristics were incorporated to classical dynamic programming algorithms as a mean to speed-up homology detection. Seeding refers to the idea of indexing one of the sequences using so-called "seeds", i.e. fixed-length overlapping substrings of the sequence (in the literature also known as k-mers or q-mers). Storing such seeds inside hash tables along with their position in the sequence makes it possible to quickly discover potential sites of similarity. Full alignments/edit-distance computations can then be limited to such regions with a considerable advantage in terms of time. However, such efficiency improvements were quickly outpaced around 2006 with the introduction of Next-Generation Sequencing technologies characterized by much higher throughputs. In order to deal with the increasing amounts of data generated each year, the dawn of the big-data era of bioinformatics spurred interest in finding more memory-efficient replacements of hash tables. This led to the development of new aligners [START_REF] Li | Fast and accurate short read alignment with Burrows-Wheeler transform[END_REF][START_REF] Li | SOAP2: an improved ultrafast tool for short read alignment[END_REF][START_REF] Langmead | Fast gapped-read alignment with Bowtie 2[END_REF] based on compressed representations supporting a wide range of operations (substring search, count). Examples of such structures are suffix trees/arrays [START_REF] Weiner | Linear pattern matching algorithms[END_REF][START_REF] Ukkonen | On-line construction of suffix trees[END_REF], BWT [START_REF] Burrows | Technical report 124[END_REF] and FM-Index [START_REF] Ferragina | Opportunistic data structures with applications[END_REF].

Further disruptions of the bioinformatics landscape came with the introduction of Long-Read sequencers (also known as Third-Generation sequencers). Note that Long-Read sequencers are not yet meant as replacements for the previous generation (which was retroactively renamed Second-Generation). Rather, they complement short, almost errorfree reads with longer and noisier ones. Long reads are advantageous in applications where their increased lengths allow detection of structural variations. On the other hand, higher error rates lead to slower searches in succinct indexes, since each mismatched character has to be dealt with during exact searches [START_REF] Li | Fast and accurate short read alignment with Burrows-Wheeler transform[END_REF].To solve this issue, the Third-Generation sequencing era has seen the revival of k-mer-based indexes [START_REF] Li | Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences[END_REF][START_REF] Li | Minimap2: pairwise alignment for nucleotide sequences[END_REF]. Unlike full k-mer indexes, new hash table-based dictionaries keep space usage under control by sampling k-mers. Many sampling techniques designed for k-mers have been proposed in recent years, e.g. minimizers [START_REF] Schleimer | Winnowing: local algorithms for document fingerprinting[END_REF][START_REF] Roberts | Reducing storage requirements for biological sequence comparison[END_REF] or syncmers [START_REF] Edgar | Syncmers are more sensitive than minimizers for selecting conserved k-mers in biological sequences[END_REF]. Compared to naive sampling, these techniques have the advantage of guaranteeing a maximum distance on two successive sampled k-mers, which greatly improves the sensitivity of homology detection.

Alignments are not the only method to compute sequence similarities: "alignment-free" algorithms compute sequence similarity by looking at their composition, without the need of performing explicit alignments. The most common type of alignment-free algorithms represent sequences as sets or multi-sets of k-mers. Alignment-free algorithms are usually faster than their alignment-based counterparts given that fewer operations are involved in the computation of similarity (no alignment is produced) and fast set representations exist (i.e. hash tables). However, with the ongoing data deluge in the bioinformatics field, the high memory requirements of alignment-free algorithms are quickly becoming a limiting factor, despite their obvious speed advantage. Improving the current infrastructure with additional storage capabilities is an unrealistic option since sequencing has long outpaced Moore's law [START_REF] Scott | On the Future of Genomic Data[END_REF]. While sampling k-mers remains one of the most straight-forward option to reduce space, sketching techniques have started to play a major role in bioinformatics starting with the introduction of Mash software [START_REF] Ondov | Mash: fast genome and metagenome distance estimation using MinHash[END_REF] in 2016.

A combination of an alignment-free estimator of mutation rate [START_REF] Fan | An assembly and alignment-free method of phylogeny reconstruction from next-generation sequencing data[END_REF] and the MinHash sketching technique of [START_REF] Broder | On the resemblance and containment of documents[END_REF], Mash was the first method to allow for the comparison of all the 54118 bacterial genomes stored in the NCBI RefSeq at the time [START_REF] Ondov | Mash: fast genome and metagenome distance estimation using MinHash[END_REF]. Since then, a myriad of sketching techniques have followed (for a non-exhaustive list see Part I). MinHash-based (and the somehow correlated HyperMinHash [START_REF] William | HyperMinHash: MinHash in LogLog space[END_REF]) sketches do not take into account k-mer multiplicities, with sequences treated as simple sets of k-mers. While doubts have been raised recently about the utility of counts in producing highquality phylogenies [START_REF] Li | Feature frequency profile-based phylogenies are inaccurate[END_REF], k-mer multiplicities remain useful for a wide range of other applications [START_REF] Marchet | REINDEER: efficient indexing of k-mer presence and abundance in sequencing datasets[END_REF][START_REF] Khorsand | Nebula: ultra-efficient mapping-free structural variant genotyper[END_REF][START_REF] Denti | MALVA: Genotyping by Mapping-free ALlele Detection of Known VAriants[END_REF]. Hence, k-mers counting represents another pillar of many bioinformatics pipelines and, as such, has been the subject of an intense research effort over the past years, resulting in multiple counting tools, such as Jellyfish [START_REF] Marçais | A fast, lock-free approach for efficient parallel counting of occurrences of k-mers[END_REF], DSK [START_REF] Rizk | DSK: k-mer counting with very low memory usage[END_REF] and KMC [START_REF] Kokot | KMC 3: counting and manipulating k-mer statistics[END_REF]. These methods primarily focus on counting speed, with memory and queries often treated as second class citizens. Such a trade-off is understandable if counting is expected to be the primary bottleneck and k-mers are expected to be accessed only once. This is the case for exploratory analyses where counting tables provide useful insights about the composition of genomic datasets. However, the lack of support for fast single-point queries and large output sizes make most counting tools unsuitable for random comparisons of k-mers extended with their frequencies. Practical k-mer set representations extending k-mers with their weights have been proposed [START_REF] Marchet | BLight: Efficient exact associative structure for k-mers[END_REF][START_REF] Ermanno | Sparse and Skew Hashing of K-Mers[END_REF], but these works focus on the idea of separating genomic and count information into independent data structures for maximal flexibility [START_REF] Marchet | REINDEER: efficient indexing of k-mer presence and abundance in sequencing datasets[END_REF][START_REF] Karasikov | Lossless indexing with counting de Bruijn graphs[END_REF].

In particular, an interesting question is whether taking into account the distribution of counts can lead to smaller overall space. Works like [START_REF] Chor | Genomic dna k-mer spectra: models and modalities[END_REF] or [START_REF] Csűrös | Reconsidering the significance of genomic word frequencies[END_REF] suggest that k-mer spectra are heavy-tail distributed for k large enough. In other words, the majority of k-mers are mostly unique or appear few times, with a very small fraction repeating many times. For this reason, fixed-width counters potentially waste a lot of space since most of the significant bits are truly needed by only a handful of values. While classic sketching techniques for counts, like CountSketch or Count-Min [START_REF] Cormode | Summarizing and Mining Skewed Data Streams[END_REF][START_REF] Charikar | Finding frequent items in data streams[END_REF] work best on such kind of distributions, their estimations are affected by errors so large that they are unsuitable for bioinformatics applications. The problem of developing a sketching technique for k-mer count tables, taking advantage of the count distribution while, at the same time, achieving small errors is the main topic of Part II.

Sketching is not the only option for building maps between k-mers and their count values. Another approach involves the use of Minimal Perfect Hash Functions (MPHFs) [START_REF] Limasset | Fast and scalable minimal perfect hashing for massive key sets[END_REF] with the actual counts stored in an external array. Each query is thus split into two separate steps: using the MPHF to retrieve an index and accessing the array at the given position. While the external array can be compressed to save space, this is seldom done in practice in order to favor speed over memory. Furthermore, MPHFs take non-negligible space themselves, with a theoretical minimum of 1.44 bits/key and implementations taking up to ≈ 3 bits/key in practice [START_REF] Limasset | Fast and scalable minimal perfect hashing for massive key sets[END_REF][START_REF] Ermanno | PTHash: Revisiting FCH Minimal Perfect Hashing[END_REF]. An alternative method to MPHFs is provided by Compressed Static Functions (CSFs). Counts are bundled together with the mapping information avoiding the external array altogether. Most importantly, CSF size depends on the empirical zero-order entropy of the stored count vector. Since entropy of genomic k-mer counts is expected to be low, thanks to its power-law distribution, CSFs have the potential of being more memory efficient than MPHFs. In Part III we show how we adapted the only practical implementation of CSFs available today [START_REF] Genuzio | Fast scalable construction of ([compressed] static | minimal perfect hash) functions[END_REF] to succinctly store k-mer count tables. The proposed methods in Part III can be viewed as more involved alternatives to our sketch-based solution of Part II.

Finally, in Part IV we shift our attention from efficient k-mer count table representations to the efficient computation of k-mer set differences, when sequences are highly similar. As noted earlier, MinHash has become the default sketching technique for comparing unweighted sets of k-mers. Nevertheless, when sets are of high similarity, sketch size s needs to be chosen large enough for MinHash to be able to sample differences. To this end, Part IV presents a method able to estimate Jaccard similarity for highly similar sets in small space. Our advancements are based on the combination of syncmers [START_REF] Edgar | Syncmers are more sensitive than minimizers for selecting conserved k-mers in biological sequences[END_REF] and Invertible Bloom Look-up Tables (IBLTs), a sketching technique first developed for set reconciliation in distributed settings [START_REF] Eppstein | Straggler identification in round-trip data streams via Newton's identities and invertible Bloom filters[END_REF][START_REF] Michael | Invertible Bloom lookup tables[END_REF].

To sum up, the contribution of this work is the development of new methods for the problems of: i) representing count data from k-mer count tables efficiently, while also providing support for single count queries, and ii) computing (symmetric) differences between very similar sets in small space. Solutions to the first point can be viewed as natural extensions to existing k-mer set representations, allowing to extend k-mers with their frequencies. We present two complementary approaches to this problem: the first is a new weighted sketch able to achieve competitive space with small query errors. Our second approach is based on a combination of minimizers and CSFs. We provide three alternative implementations with different trade-offs. All our methods take advantage of the characteristic power-law distribution of k-mers, which makes them more efficient than fixed-width counters, while retaining the ability of retrieving single k-mer counts.

Solving our second challenge gives us a memory-efficient sketching technique based on IBLTs to estimate Jaccard similarity, able to beat MinHash in both memory and precision on highly similar sequences (such as viral or bacterial strains).

Structure of this thesis

Part I starts with the introduction of key biological concepts followed by an overview of the methods that constitute the basis upon which we built our own results. In particular, we open Chapter 1 with an overview of the main sequencing techniques used to transform the genetic information contained in DNA into digital-friendly representations. This introductory chapter concludes with a remainder about assembly, for which full sequences can only be obtained by reconstruction from smaller fragments. Chapter 3 introduces the concept of pairwise sequence comparisons and classic approaches to this problem. Chapter 4 follows with an overview of alignment-free algorithms and related challenges (Section 4.2). We present the idea of sketching in Chapter 5 together with the sketching techniques used in this thesis in Section 5.1. We continue with Chapter 6 in which we present the problem of succinctly represent exact k-mer counts and relevant solutions. Note that current implementations of exact k-mer count tables provide the inputs of our methods in Part II and III (e.g. we build our sketches from KMC databases).

Part II presents Set-Min sketch, our sketching technique for highly skewed power-law distributions. First, Chapter 7 introduces the problem and related solutions: CountSketch and Count-Min sketch with and without conservative updates in Section 5.1.1, Section 5.1.2 and Section 5.1.3, respectively. A summary of the contributions of this part is given in Section 7.2. Chapter 8 is about Set-Min sketch. We start by listing the main insights behind our method in Section 8.1. After the introduction of power-law distributions and the idea of using collisions between equal counters to reduce space, we follow with the internal structure of Set-Min sketch in Section 8.2. We show how tighter error bounds can be achieved by replacing counters with sets in a Count-Min matrix (Section 8.2.1.1). A heuristic algorithm for dimensioning Set-Min sketches is given in 8.2.2. Section 8.3 is about a simplified version of Set-Min sketch whose main purpose is to demonstrate that full set representations are indeed necessary to achieve the desired error bounds. We conclude by presenting an experimental comparison of our methods against well-known solutions based on MPHFs and k-mer counting tools.

A general discussion about Set-Min together with some final consideration make up Chapter 9.

Part III is about locom, our exact framework for efficient k-mer count representation. Multiple algorithms are presented, with CSFs as their maximum common divisor. Locom's data structures are more involved and computationally expensive to build than simple Set-Min sketches. The main advantage of our CSFs-based solutions over sketching are the more succinct and exact count representations they provide. In some instances, maps produced by locom are even smaller than the empirical zero-order entropy of the uncompressed counts. As before, this part is divided into three chapters. Chapter 10 introduces the problem, previous solutions and a summary of our contributions (Sections 10.1, 10.2 and 10.3). Chapter 11 starts once again with the insights behind our methods. The expected high correlation of neighboring k-mer counts allows hashing similar values to the same bucket by using minimizers (Section 11.1.1 and 11.1.2). We combine Bloom Filters (Section 5.1.5) with a third-party implementation of CSFs (Section 6.2.2) to produce Bloom-Enhanced Compressed Static Functions (BCSFs) in Section 11.2.1. Adding a LSH-based bucketing to BCSFs gives rise to two efficient count representations: AMB (Section 11.2.3) and FIL (Section 11.2.4). Both algorithms can work in the exact or approximate case demonstrating the flexibility of our framework. Comparisons and benchmarks are presented in Section 11.3. Chapter 12 discuss the limitations and possible further applications of our methods.

Part IV deviates from the previous subject by addressing the problems of i) estimating Jaccard similarity of very similar sequences and ii) computing a superset of k-mer sets differences in small space. Chapter 13 explains the interest of our approach (Section 13.1) and the summary of our contributions (Section 13.2). Chapter 14 starts by introducing the relevant building blocks of our method in Section 14.1. We achieve the goal of efficiently estimating Jaccard similarities as a by-product of set reconciliation techniques. More in detail, we use IBLTs (Section 5.1.6) to efficiently estimate set differences. In order to do so, in Section 14.2.1 we extend IBLT difference to work with sketches, without the need to keep one of the original sets. To dampen the effects of mutations on the number of k-mers ending up in the symmetric difference (one single mutation can lead to the introduction of up to k different k-mers), we sample k-mers before IBLT construction (Section 14.2.3). In Section 14.3.1, we experimentally show that, unlike minimizers, syncmers are unbiased estimators of Jaccard similarity suggesting a practical alternative to the shortcomings pointed out in [START_REF] Belbasi | The minimizer jaccard estimator is biased and inconsistent[END_REF]. Further, we apply the full potential of IBLTs by computing exact supersets of the whole k-mer sets in Section 14.2.5. Section 14.3 reports our results. Chapter 15 wraps everything up by discussing and summarizing our findings and presents possible future developments.

Finally, in Chapter 16 we close the thesis with conclusions and perspectives.

Part I

State of the art

Chapter 1

DNA Sequencing and assembly

Reading the succession of bases in DNA molecules is the fundamental task providing raw material to all bioinformatics pipelines. Despite 50 years of technological advancements, reading whole genomes remains a hard process, with most sequencing technologies unable to process very long biomolecules. Therefore, input DNA sequences have first to be split into multiple, shorter fragments. Furthermore, since sequencers are not perfect and reading DNA molecules is a noisy process subject to errors, sequences are first copied multiple times before fragmentation. Sequencing output is thus a collection of multiple, redundant strings, usually called "reads". The original sequence is then reconstructed from its set of reads. This process is called (de novo) "assembly" if no prior knowledge about the original sequence is known. If, on the other hand, an already assembled sequence similar to the sequenced one is available, it can be used as a guide by "aligning" reads to it. In both cases, redundancy is used for error correction. In this chapter, we provide an overview of the technologies and methods used in these two steps.

Classic sequencing approaches

The oldest surviving sequencing method still in use today is Sanger sequencing [START_REF] Sanger | A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase[END_REF] which is heavily inspired by the cell replication process. Multiple imperfect copies of a DNA sequence are obtained by introducing some nucleotides with dideoxyribose sugars (instead of the normal deoxyribose normally found in DNA) during Polymerase Chain Reaction (PCR) [START_REF] Mullis | The Polymerase Chain Reaction[END_REF][START_REF] Saiki | Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA Polymerase[END_REF] prompting DNA polymerases to stop extension. Sorting the incomplete copies by their molecular weight through gel electrophoresis and reading their terminating character gives the original starting sequence. Sanger sequencing completely replaced a previous method: chemical sequencing (due to Maxam [START_REF] Maxam | A new method for sequencing DNA[END_REF]) which relied on radioactive reagents making it less practical. Due to its high accuracy, Sanger sequencing is still actively being used in project targeting relatively short genomes or for validation of results produced by newer technologies.

Second-Generation sequencing

Second-Generation sequencing technologies (also known as Next-Generation sequencing (NGS)) started to appear around 2006. Reading fragments is done in a massively parallel way allowing for much higher throughput than the previous generation. The main advantage of Second-Generation sequencing is that it is considerably cheaper than Sanger's. For example, completion of the Human Genome Project using NGS would cost $1K against the $2.7 billion required by Sanger sequencing. Despite shorter reads (< 400bps) and slightly higher error rates compared to Sanger sequencing, NGS sequencers remain the most convenient solution for a wide range of applications that require good trade-offs between accuracy and cost-effectiveness. Common Next-Generation technologies are listed below [START_REF] Brinda | Novel computational techniques for mapping and classification of Next-Generation Sequencing data[END_REF].

Illumina. Illumina sequencers were first introduced in 2006 [START_REF] Liu | Comparison of Next-Generation Sequencing Systems[END_REF], and quickly became the incumbent technology dominating its generation [START_REF] Goodwin | Coming of age: ten years of next-generation sequencing technologies[END_REF]. Read lengths range from 100 to 300 bp with optional support for paired-end output. Error rates are very small (< 0.01% of bases are wrongly called [START_REF] Schirmer | Illumina error profiles: resolving fine-scale variation in metagenomic sequencing data[END_REF][START_REF] Schirmer | Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform[END_REF]), with substitutions being the most common type of errors, especially at the end of reads.

SOLiD. Also introduced in 2006 [START_REF] Liu | Comparison of Next-Generation Sequencing Systems[END_REF] its distinguishing feature is how sequences are viewed in input. Instead of reading each nucleotide separately, SOLiD sequencers detect transitions between bases. Therefore, reads are returned as sequences of colors instead of letters [START_REF] Peckham | Solid TM sequencing and 2-base encoding[END_REF]. This encoding allows distinguishing different events (sequencing errors, substitutions and indels) by looking at colors alone [START_REF] Breu | A theoretical understanding of 2 base color codes and its application to annotation, error detection, and error correction[END_REF]. Error rates are also very small (< 0.001) but special analysis software is needed to work with the uncommon encoding. Average (paired-end) read length is 100 bp.

Ion Torrent. The most recent method of the list (2010 [START_REF] Liu | Comparison of Next-Generation Sequencing Systems[END_REF]), with lengths of about 400bp. The most common type of errors are indels which appear at a rate of about 0.03 with substitutions an order of magnitude less likely [START_REF] Bragg | Shining a Light on Dark Sequencing: Characterising Errors in Ion Torrent PGM Data[END_REF].

Roche/454. Sequencers based on the concept of "pyrosequencing" [START_REF] Ronaghi | Real-Time DNA Sequencing Using Detection of Pyrophosphate Release[END_REF] were first introduced in 2005 [START_REF] Liu | Comparison of Next-Generation Sequencing Systems[END_REF]. The company sponsoring them shut down in 2013 [START_REF] Hollmer | Roche to close 454 life sciences as it reduces gene sequencing focus[END_REF]. Read length were around 1000 bp with errors rates of about 0.01, mostly indels.

Third generation sequencing

Short reads produced by NGS are often an obstacle in the detection of large rearrangements in parts of the genomes. Third-Generation sequencers complement short, highly accurate reads with longer ones (> 10000bp) and, as such, they are commonly referred to as Long-Read sequencing. The downside is that bases are affected by higher errors. Long reads are now best suited to the detection of large structural variations (long deletion/insertions or duplications). However, further improvements in read accuracy are expected to make them completely replace the previous generation.

There are currently two major competing long-read technologies:

Pacific Bioscience. Also known as PacBio (www.pacb.com), typical read lengths are 20000 bp with errors < 0.1 [START_REF] Vaser | Fast and accurate de novo genome assembly from long uncorrected reads[END_REF]. The underlying technology called Single-molecule realtime (SMRT) sequencing couples a single polymerase protein with a zero-mode waveguide unit [START_REF] Levene | Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations[END_REF]. Four fluorescent dyes are attached to nucleotides (one different dye for each of the 4 bases). When a new nucleotide is added by the polymerase, the fluorescent tag is removed from its nucleotide and diffuses through the zero-mode wavelength guide. The optical signal is captured by the sequencer for generating the sequence. High throughputs are the result of multiple polymerases working in parallel.

Oxford Nanopore. Sequencers based on nanopores use a different idea than SMRT. As the name suggests, sequences are passed though molecular electro-active "pores" of a membrane. Different bases produce different perturbations in the pore's current. This signal is used to read the sequence. Typical error rates range between 5% [START_REF] Ekim | Minimizer-space de Bruijn graphs: Whole-genome assembly of long reads in minutes on a personal computer[END_REF] to 10% [START_REF] Delahaye | Sequencing DNA with nanopores: Troubles and biases[END_REF]. Read lengths surpassing 1 Mbp have been reported with more common values in the order of 100 Kbp. The most remarkable feature of Nanopore sequencers is their size with the entry level sequencers MinION and Flongle slightly larger than a USB dongle (https://nanoporetech.com/). Other aspects that make Oxford Nanopore sequencers interesting are their ReadUntil mode of operation [START_REF] Kovaka | Targeted nanopore sequencing by real-time mapping of raw electrical signal with UN-CALLED[END_REF]1,[START_REF] Bao | SquiggleNet: real-time, direct classification of nanopore signals[END_REF] and their rapidly evolving performances.

Chapter 2 Assembly

In the previous section, we saw how sequencers produce in output datasets of reads by reading fragmented sequences. In order to obtain the original sequence of bases, reads need to be reassembled back into one contiguous representation.

The reconstruction process greatly depends on the error rate and type of the reads (short or long), and if an already assembled reference genome is available. With no prior reference genome, assembly must be performed "de novo". Almost all algorithms in this category use some sort of graph representation. The basic idea is to represent reads as nodes and to add edges between likely successive reads. The original DNA sequence thus appears as one of the paths in the graph.

Two main types of graphs exist [START_REF] Rizzi | Overlap graphs and de Bruijn graphs: data structures for de novo genome assembly in the big data era[END_REF]:

• de Bruijn graphs [START_REF] Daniel | Velvet: Algorithms for de novo short read assembly using de Bruijn graphs[END_REF][START_REF] Simpson | ABySS: A parallel assembler for short read sequence data[END_REF][START_REF] Li | De novo assembly of human genomes with massively parallel short read sequencing[END_REF][START_REF] Peng | IDBA -A Practical Iterative de Bruijn Graph De Novo Assembler[END_REF][START_REF] Gnerre | Highquality draft assemblies of mammalian genomes from massively parallel sequence data[END_REF][START_REF] Conway | Gossamer-a resource-efficient de novo assembler[END_REF][START_REF] Chikhi | Space-efficient and exact de Bruijn graph representation based on a Bloom filter[END_REF][START_REF] Bankevich | SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing[END_REF][START_REF] Ekim | Minimizer-space de Bruijn graphs: Whole-genome assembly of long reads in minutes on a personal computer[END_REF] are primarily used for short, low-error reads. Each read is decomposed into small overlapping fixed-sized substrings called k-mers which are used as nodes. Edges between two nodes (k-mers) represent overlaps of k -1 bases.

• Overlap graphs [START_REF] Ruan | Fast and accurate long-read assembly with wtdbg2[END_REF][START_REF] Koren | Canu: scalable and accurate long-read assembly via adaptive k -mer weighting and repeat separation[END_REF][START_REF] Li | Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences[END_REF] link reads together directly, based on their prefix/suffix overlaps.

If a previous assembly of a sequence already exists, then the problem becomes much simpler as the order of most reads can be inferred from the guide. This particular instance of assembly takes the more appropriate name of "alignment".

Several families of aligners exist in practice:

• Dynamic programming [START_REF] Smith | Identification of common molecular subsequences[END_REF][START_REF] Saul | A general method applicable to the search for similarities in the amino acid sequence of two proteins[END_REF][START_REF] Gotoh | An improved algorithm for matching biological sequences[END_REF] is the exact, baseline method which is generally too computationally inefficient for datasets larger than some thousand bases.

• Seed and extend [START_REF] Wilbur | Rapid similarity searches of nucleic acid and protein data banks[END_REF][START_REF] Pearson | Improved tools for biological sequence comparison[END_REF][START_REF] Altschul | Basic local alignment search tool[END_REF][START_REF] Li | Minimap2: pairwise alignment for nucleotide sequences[END_REF] makes use of k-mer indexes as a heuristic to quickly find highly similar regions to extend. Reads are placed along the sequences by finding the most similar ordered sequence of seeds that match in both. Dynamic programming is used locally to produce the final base-to-base alignment. Very fast in practice since it uses hash tables for storing seed. Recent advancements aimed at reducing index size though sampling allowed reviving seed and extend for long noisy reads [START_REF] Li | Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences[END_REF].

• Sequence indexing by suffix trees/arrays [START_REF] Weiner | Linear pattern matching algorithms[END_REF][START_REF] Ukkonen | On-line construction of suffix trees[END_REF][START_REF] Manber | Suffix Arrays: A New Method for On-Line String Searches[END_REF], BWT [START_REF] Burrows | Technical report 124[END_REF] or FM-Indexes [START_REF] Ferragina | Opportunistic data structures with applications[END_REF] such as [START_REF] Delcher | Alignment of whole genomes[END_REF][START_REF] Delcher | Fast algorithms for large-scale genome alignment and comparison[END_REF][START_REF] Holland | SIMtoEXP: Software for Comparing Simulations to Experimental Scattering Data[END_REF][START_REF] Langmead | Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[END_REF][START_REF] Langmead | Fast gapped-read alignment with Bowtie 2[END_REF][START_REF] Li | Fast and accurate short read alignment with Burrows-Wheeler transform[END_REF][START_REF] Li | SOAP2: an improved ultrafast tool for short read alignment[END_REF] are best suited for short exact reads. Indexes provide a way to find all sequence positions that highly resemble a read. As before, an exact dynamic programming procedure is needed to finalize local alignments.

All methods described so far use some definition of sequence similarity to define edges or to place reads at the most accurate position for later refinement. However, similarity is not limited to assembly but is used in a plethora of other methods such as mappers [START_REF] Jain | A Fast Approximate Algorithm for Mapping Long Reads to Large Reference Databases[END_REF][START_REF] Jain | A fast adaptive algorithm for computing whole-genome homology maps[END_REF][START_REF] Jain | High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries[END_REF], phylogenetic reconstruction or taxonomic placement to deduce organism hierarchies [START_REF] Břinda | Rapid inference of antibiotic resistance and susceptibility by genomic neighbour typing[END_REF][START_REF] Derrick | Kraken: ultrafast metagenomic sequence classification using exact alignments[END_REF], and others.

Chapter 3

Pairwise sequence similarity

Sequence similarity has been an instrumental bioinformatics tool for tracing the evolutionary history of sequences since it is a powerful way to prune for function homology or to reconstruct phylogenetic histories. New species arise by mutation of existing ones though an evolutionary process made possible by incremental modifications of DNA. Genes needed for survival, for example, are expected to change very slowly over time given that any misplaced mutation is fatal. We limit ourselves to pairwise sequence comparisons, given that most of the techniques mentioned in Section 4 and Section 5 only support this mode of operation. Moreover, various methods build multiple sequence alignments (MSAs) by combining multiple pairwise comparisons [START_REF] D J Lipman | A tool for multiple sequence alignment[END_REF][START_REF] Higgins | CLUSTAL: a package for performing multiple sequence alignment on a microcomputer[END_REF][START_REF] Notredame | T-coffee: a novel method for fast and accurate multiple sequence alignment11Edited by J. Thornton[END_REF][START_REF] Edgar | MUSCLE: multiple sequence alignment with high accuracy and high throughput[END_REF] highlighting the importance of this reduction.

Alignment-based methods

Alignment-based methods are deeply rooted into the problem of edit distance computation. Given two sequences S 1 and S 2 , under this framework similarity is expressed in terms of the number of basic operations needed to transform S 1 into S 2 . Here with "basic operations" we refer to unary substitutions and indels. Scores can be assigned to each type of operations in order to weight them differently. For example, uniform schemes do not take into account that large indels are usually the result of one single event, in which case similarity might be under-estimated. In practice, it makes more sense to split the weight of indels into two distinct parts: one for the introduction of the indel and the for extending it. Scores for DNA and other biological sequences are most often defined by ad-hoc matrices, reporting, for each mutation a biologically-relevant value. Several schemes have been designed over the years based on various models, like BLOSUM62 [START_REF] Henikoff | Amino acid substitution matrices from protein blocks[END_REF] and PAM120 [3] for protein sequences.

Comparing two sequences can be done globally or locally. For global alignments, sequences are considered from end-to-end and their similarity is computed taking into account all bases. On the contrary, local alignments try to find the best matching of substrings, that is, some bases of S 1 and S 2 might not be taken into account in the similarity score. Matches can thus be ranked and reported from the most likely to the least probable.

Exact algorithms for computing similarity or align sequences are based on dynamic programming [START_REF] Saul | A general method applicable to the search for similarities in the amino acid sequence of two proteins[END_REF][START_REF] Smith | Identification of common molecular subsequences[END_REF][START_REF] Gotoh | An improved algorithm for matching biological sequences[END_REF], but they are considered too computationally demanding even for moderately long sequences. Nevertheless, exact algorithms, or modified versions thereof, remain the last core step in various tools where they align homologous regions found by faster heuristics.

Full hash-based and succinct solutions

Heuristics to speed-up sequence comparison were first introduced in the programs FASTP [START_REF] Wilbur | Rapid similarity searches of nucleic acid and protein data banks[END_REF] and FASTA [START_REF] Pearson | Improved tools for biological sequence comparison[END_REF] in 1985 and 1988, respectively. Both software were eventually replaced by BLAST [START_REF] Altschul | Basic local alignment search tool[END_REF] with their only remaining significant legacy being the ubiquitous Fasta format still in use today. Thanks to its higher sensitivity, better performance and rigorous statistical characterization of its output BLAST quickly overthrew FASTA as the de-facto standard in sequence similarity search. The main idea behind FASTA and BLAST is quite simple: index all k-mers (hashed or not) of a sequence in order to quickly prune for similar regions during alignment. Exact algorithms are only used in areas sharing a large fraction of k-mers (seeds). Such heuristic avoids running full algorithms (such as Smith-Waterman) over the whole sequences, instead limiting their use to localized, and smaller areas. BLAST is probably one of the most influential tools in bioinformatics (and in general), with almost 100K citations as the time of writing, still in use today for performing quick database similarity searches. Its limitations started to show with the introduction of Second-Generation sequencing. The huge throughputs of newer sequencers and the need to align more complex genomes, simply proved to be too much for BLAST to handle with reasonable performances. This is why, almost immediately after the introduction of Next-Generation sequencing new aligners quickly started to appear. The basic idea of building an index to quickly prune the search space remains unchanged from the previous generation, with performance improvements primarily achieved by replacing k-mer indexing with full-text, succinct alternatives. Full-text indexing also allows for seed lengths not limited to k. Techniques such as: suffix arrays [START_REF] Manber | Suffix Arrays: A New Method for On-Line String Searches[END_REF], suffix trees [START_REF] Weiner | Linear pattern matching algorithms[END_REF] and BWT-based indexing [START_REF] Burrows | Technical report 124[END_REF] (FM-Index [START_REF] Ferragina | Opportunistic data structures with applications[END_REF]) have proved to be quite effective in terms of space. On the other hand, text-based mappers are less resilient to mismatches than their hash-based counter-parts, with every error leading to substantial slow-downs. Yet, the high quality of reads produced by Second-Generation sequencing makes these performance hits unlikely in practice.

Sampling for sequence alignments

Limitations of succinct text-based indexing appeared with the introduction of long noisy reads. Exact matches become hard to find in the presence of large errors. Even highly optimized solutions like BWA [START_REF] Li | Fast and accurate short read alignment with Burrows-Wheeler transform[END_REF] were not able to give acceptable results. The answer was to combine classic hash-based (k-mer) indexing with sampling. Reducing k allows tuning for sensitivity since matches become more likely, even in the presence of errors. Sampling, on the other hand, allows reducing index size at the cost of negligible sensitivity losses.

The type of sampling can be important in practice. In principle, seeds should cover all parts of a sequence to avoid missing some potential homologies. Sampling k-mer uniformly at random by, for example, only keeping k-mers whose hash is 0, while easy to implement, provides no guarantee on the distribution of seeds along the sequence potentially leading to parts of the genomes that might not be covered enough resulting in unalignable reads.

Therefore, sampling techniques with known and provable coverage guarantees are preferred. Examples include minimizers [START_REF] Schleimer | Winnowing: local algorithms for document fingerprinting[END_REF][START_REF] Roberts | Reducing storage requirements for biological sequence comparison[END_REF] and syncmers [START_REF] Edgar | Syncmers are more sensitive than minimizers for selecting conserved k-mers in biological sequences[END_REF], the latter of which we use in Part IV. The first aligner implementing these concepts was minimap [START_REF] Li | Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences[END_REF], quickly followed by its improved version minimap2 [START_REF] Li | Minimap2: pairwise alignment for nucleotide sequences[END_REF]. Note that, by default, both versions work as mappers, only providing base-to-base alignments as optional refinements of homologous regions found by using minimizer indexes.

Chapter 4

Alignment-free similarity estimation

Estimating sequence similarity from base-aligned sequences is best suited for applications that require high precision such as high-quality phylogeny reconstruction. In many other use cases however, exact retrieval of mutations is not a strict requirement and a simple estimation of similarity would be sufficient. This makes full alignments redundant and unnecessarily complex since they remain quite challenging and computationally intensive even with seeding heuristics. The idea of analyzing sequencing data without relying on actual alignments started to appear around the same time as Second-Generation sequencers. A classic example is the computation of sequence similarities by representing datasets as "bag-of-words", i.e. sets or multisets of k-mers. Simpler representations improve overall computational efficiency [START_REF] Bonham-Carter | Alignment-free genetic sequence comparisons: a review of recent approaches by word analysis[END_REF] allowing for comparisons at larger scales [START_REF] Bernard | Alignment-free microbial phylogenomics under scenarios of sequence divergence, genome rearrangement and lateral genetic transfer[END_REF][START_REF] Jun | Wholeproteome phylogeny of prokaryotes by feature frequency profiles: An alignment-free method with optimal feature resolution[END_REF][START_REF] Sims | Alignment-free genome comparison with feature frequency profiles (FFP) and optimal resolutions[END_REF][START_REF] Leimeister | Fast and accurate phylogeny reconstruction using filtered spaced-word matches[END_REF]. Further, so-called alignment-free methods are resistant to shuffling and recombination events, since base order is completely irrelevant outside k-mers. Since then, alignment-free algorithms have been developed for the most disparate problems: phylogeny reconstruction [START_REF] Fan | An assembly and alignment-free method of phylogeny reconstruction from next-generation sequencing data[END_REF][START_REF] Gardner | When Whole-Genome Alignments Just Won't Work: kSNP v2 Software for Alignment-Free SNP Discovery and Phylogenetics of Hundreds of Microbial Genomes[END_REF][START_REF] Shea | kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome: Table 1[END_REF][START_REF] Leimeister | Fast and accurate phylogeny reconstruction using filtered spaced-word matches[END_REF], metagenomic classification [START_REF] Derrick | Kraken: ultrafast metagenomic sequence classification using exact alignments[END_REF][START_REF] Ames | Scalable metagenomic taxonomy classification using a reference genome database[END_REF], variant calling [START_REF] Shajii | Fast genotyping of known SNPs through approximate k -mer matching[END_REF][START_REF] Sun | Toward fast and accurate SNP genotyping from whole genome sequencing data for bedside diagnostics[END_REF][START_REF] Denti | MALVA: Genotyping by Mapping-free ALlele Detection of Known VAriants[END_REF][START_REF] Khorsand | Nebula: ultra-efficient mapping-free structural variant genotyper[END_REF], transcript quantification [START_REF] Bray | Near-optimal probabilistic RNA-seq quantification[END_REF][START_REF] Patro | Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms[END_REF] and a plethora of others. Here, we focus on methods computing sequence similarity, since it is one of the main ingredients of Part IV as well as the main motivation behind Parts II and III. Alignment-free methods computing similarities can be roughly classified into multiple categories depending on the type of information they use:

1. Set-based approaches represent sequences as simple sets of k-mers, without taking into account any other type of information [START_REF] Fan | An assembly and alignment-free method of phylogeny reconstruction from next-generation sequencing data[END_REF][START_REF] Leimeister | Fast and accurate phylogeny reconstruction using filtered spaced-word matches[END_REF].

2. Frequency-aware solutions augment k-mers with their number of occurrences [START_REF] Pride | Evolutionary Implications of Microbial Genome Tetranucleotide Frequency Biases[END_REF][START_REF] Sims | Alignment-free genome comparison with feature frequency profiles (FFP) and optimal resolutions[END_REF][START_REF] Luczak | A survey and evaluations of histogram-based statistics in alignment-free sequence comparison[END_REF].

3. Methods based on information theory evaluate the information content of full-length sequences [START_REF] Vinga | Information theory applications for biological sequence analysis[END_REF][START_REF] Li | The Similarity Metric[END_REF].

4. Solutions based on the length of matching words (common [START_REF] Ulitsky | The Average Common Substring Approach to Phylogenomic Reconstruction[END_REF], longest common [START_REF] Haubold | Genome comparison without alignment using shortest unique substrings[END_REF] and minimal absent [START_REF] Pinho | On finding minimal absent words[END_REF][START_REF] Yang | Large Local Analysis of the Unaligned Genome and Its Application[END_REF] matches).

5. Solutions based on graphical representations of DNA [START_REF] Wen | A 2D graphical representation of protein sequence and its numerical characterization[END_REF][START_REF] Randić | Unique graphical representation of protein sequences based on nucleotide triplet codons[END_REF].

Different representations are usually associated to different measures of similarity which can be directly given in input to standard methods building phylogenetic-trees (see [START_REF] Zielezinski | Benchmarking of alignment-free sequence comparison methods[END_REF] for a review and benchmark). However, most of these measures were conceived without an underlying biologically-sound evolutionary model in mind [START_REF] Zielezinski | Alignment-free sequence comparison: benefits, applications, and tools[END_REF]. This limitation becomes problematic when distances must be assigned to branches.

Jaccard similarity

One notable exception to the fact that most alignment-free measures lack a biological foundation is Jaccard similarity. Jaccard similarity (also known as Jaccard index) is defined for both weighted and unweighted sets [START_REF] Murphy | The Finley Affair: A Signal Event in the History of Forecast Verification[END_REF][START_REF] Manasse | Consistent Weighted Sampling[END_REF]. Unweighted Jaccard is the fraction of shared k-mers divided by their total number, and it is easily representable by set unions and intersections

J(x, y) = |A ∩ B| |A ∪ B| (4.1)
An estimator of the mutation rate between two sequences framed in terms of (unweighted) Jaccard similarity has been proposed by [START_REF] Fan | An assembly and alignment-free method of phylogeny reconstruction from next-generation sequencing data[END_REF]. Full phylogenetic trees with accurate branch lengths can thus be inferred from sets of long-enough k-mers, and under the condition of uniformly distributed mutations. The same estimator was later reused in Mash [START_REF] Ondov | Mash: fast genome and metagenome distance estimation using MinHash[END_REF] making Jaccard similarity one of the most successful alignment-free similarities in bioinformatics (more about this in Chapter 5).

On the other hand, weighted Jaccard is simply the extension of Jaccard to multi-sets. Given two vectors x = (x 1 , x 2 , . . . , x n ) and x = (x 1 , x 2 , . . . , x n ) with x i , y i ≥ 0, ∀i their weighted Jaccard similarity J w is defined by:

J w (x, y) = i min(x i , y i ) i max(x i , y i ) (4.2)
The utility of weighted comparisons for phylogenetic reconstruction has been questioned in [START_REF] Li | Feature frequency profile-based phylogenies are inaccurate[END_REF]. While the rebuttal was targeting another popular frequency-based alignmentfree technique (FFP [START_REF] Sims | Alignment-free genome comparison with feature frequency profiles (FFP) and optimal resolutions[END_REF]), it casts doubts on all other frequency-aware methods as well. Nevertheless, weighted Jaccard has been applied in other contexts, such as solving ambiguous alignments of very repetitive parts of the human genome [START_REF] Jain | Weighted minimizer sampling improves long read mapping[END_REF][START_REF] Jain | Long-read mapping to repetitive reference sequences using Winnowmap2[END_REF], or comparing the composition of metagenomes [START_REF] Benoit | Multiple comparative metagenomics using multiset k-mer counting[END_REF][START_REF] Benoit | SimkaMin: fast and resource frugal de novo comparative metagenomics[END_REF].

Alignment-free algorithms at scale

The main drawback of k-mer-based alignment-free methods is the relatively high memory usage due to the costly and highly redundant nature of k-mers. The combination of rapidly declining sequencing costs (see Figure 4.1) and relative explosion of sequencing data coming from various initiatives, such as the Human Microbiome Project (HMP) [START_REF]Structure, function and diversity of the healthy human microbiome[END_REF], the Earth Microbiome Project [START_REF] Thompson | A communal catalogue reveals Earth's multiscale microbial diversity[END_REF] or the Global Ocean Survey [START_REF] Douglas B Rusch | The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific[END_REF] is putting current alignment-free pipelines under serious pressure. Analyzing data is quickly becoming the main bottleneck in many workflows. Additionally, available data today needs to be kept accessible and usable in the future so that new analyses can reuse it for validation/reproducibility purposes. Furthermore, count-aware alignment-free solutions have seen little to no developments on optimizing count storage, with most tools focusing on efficient representations of k-mers instead. Efficient k-mer count representations have only started to appear very recently [START_REF] Karasikov | MetaGraph: Indexing and Analysing Nucleotide Archives at Petabase-scale[END_REF][START_REF] Ermanno | On Weighted K-Mer Dictionaries[END_REF] in data structures designed to be static, memory-optimized alternatives of fully dynamic k-mer count tables. These monolithic solutions offer the same types of queries as fully dynamic alternatives, by storing both k-mers and counts together.

Another way to achieve space-efficient, static, general-purpose k-mer count tables for alignment-free algorithms is to add optimized count representations on top of already available solutions tailored at k-mer sets. Since both parts are completely independent to one another, multiple combinations of exact or approximate data structures become possible depending on the desired trade-offs. In recent years, sketching data structures have gained particular interest in bioinformatics applications and, as such, we present them in the following section. 

Chapter 5 Sketching

Sketching refers to the general idea of applying some sort of dimensionality reduction technique on input datasets. Such ad-hoc reduced representations are called "sketches" and they can effectively replace the original inputs in all subsequent analyses. By reducing the dimensionality of data, often by several orders of magnitude, these techniques offer approximate answers to the specific applications they were built for. Computing estimations instead of exact results allow for much more favorable time and memory requirements overall. Original data can be deleted or stored elsewhere with additional sketches built as new inputs become available. Reduced memory size make sketching techniques an attractive alternative to exact alignment-free algorithms in big-data settings.

A vast majority of similarity-oriented sketching techniques available today are based on some sort of Locality Sensitive Hashing (LSH) scheme [START_REF] Leskovec | Finding Similar Items[END_REF]. Put it simply, LSH tries to hash similar objects to similar hashes. Therefore, LSH schemes naturally cluster similar things together, under a given definition of similarity.

Here we provide a list of sketching techniques available at the time of writing this thesis.

1. Sketches for similarity estimation are great alternatives to alignment-free algorithms for pair-wise comparisons. Several techniques have been proposed:

i Set similarity. MinHash sketching was first introduced in [START_REF] Broder | On the resemblance and containment of documents[END_REF] as a method to detect duplicated web pages represented as sets. The original version of MinHash required multiple hash functions to work whereas the "bottom-s" variant uses only one. The "bottom-s" variant is at the basis of the seminal tool Mash [START_REF] Ondov | Mash: fast genome and metagenome distance estimation using MinHash[END_REF], an implementation tailored to genomic datasets. Since then, Mash has been followed by many alternatives [START_REF] Brown | sourmash: a library for MinHash sketching of DNA[END_REF][START_REF] Zhao | BinDash, software for fast genome distance estimation on a typical personal laptop[END_REF][START_REF] William | HyperMinHash: MinHash in LogLog space[END_REF][START_REF] Daniel | Dashing: fast and accurate genomic distances with HyperLogLog[END_REF][START_REF] Ertl | SuperMinHash -A New Minwise Hashing Algorithm for Jaccard Similarity Estimation[END_REF] and derived works [START_REF] Sarmashghi | Skmer: assembly-free and alignment-free sample identification using genome skims[END_REF][START_REF] Koslicki | Improving MinHash via the containment index with applications to metagenomic analysis[END_REF][START_REF] Ondov | Mash Screen: highthroughput sequence containment estimation for genome discovery[END_REF][START_REF] Katz | Mashtree: a rapid comparison of whole genome sequence files[END_REF], including our own variant in Part IV which, unlike the competition, uses sketches initially conceived for set reconciliation [START_REF] Eppstein | Straggler identification in round-trip data streams via Newton's identities and invertible Bloom filters[END_REF][START_REF] Michael | Invertible Bloom lookup tables[END_REF].

ii Multiset similarity. Examples are [START_REF] Manasse | Consistent Weighted Sampling[END_REF][START_REF] Ioffe | Improved Consistent Sampling, Weighted Minhash and L1 Sketching[END_REF][START_REF] Haeupler | Consistent Weighted Sampling Made Fast, Small, and Easy[END_REF][START_REF] Li | 0-Bit Consistent Weighted Sampling[END_REF][START_REF] Shrivastava | Exact Weighted Minwise Hashing in Constant Time[END_REF][START_REF] Wu | Consistent Weighted Sampling Made More Practical[END_REF][START_REF] Shrivastava | Simple and Efficient Weighted Minwise Hashing[END_REF][START_REF] Christiani | DartMinHash: Fast Sketching for Weighted Sets[END_REF]. In particular, Histosketching [START_REF] Yang | HistoSketch: Fast Similarity-Preserving Sketching of Streaming Histograms with Concept Drift[END_REF][START_REF] Yang | D 2 HistoSketch: Discriminative and Dynamic Similarity-Preserving Sketching of Streaming Histograms[END_REF] is at the basis of the bioinformatics tool HULK [START_REF] Will Pm Rowe | Streaming histogram sketching for rapid microbiome analytics[END_REF].

iii Edit distance. Edit distance sketches usually target database filtering, i.e. retrieving (w.h.p.) all sequences with edit distance within a user-defined threshold from the query. Classic solutions embed edit distance into simpler metrics (Hamming distance) [START_REF] Chakraborty | Streaming algorithms for embedding and computing edit distance in the low distance regime[END_REF][START_REF] Zhang | EmbedJoin: Efficient Edit Similarity Joins via Embeddings[END_REF] with successful applications in bioinformatics [START_REF] Yan | Accel-Align: a fast sequence mapper and aligner based on the seed-embed-extend method[END_REF]. Alternatives based on minimizers have also been proposed [START_REF] Marçais | Localitysensitive hashing for the edit distance[END_REF][START_REF] Zhang | MinJoin: Efficient Edit Similarity Joins via Local Hash Minima[END_REF].

2. Sketches for count estimation were first developed for estimating the multiplicity of objects coming from a stream (e.g. networking). Part II presents a modification of these methods specifically adapted for k-mer count tables.

i Counting distinct elements. The standard method for estimating the number of distinct elements in a dataset is HyperLogLog [START_REF] Flajolet | Hyperloglog: The analysis of a near-optimal cardinality estimation algorithm[END_REF]. Recent works [START_REF] William | HyperMinHash: MinHash in LogLog space[END_REF] have shown that sketches based on HyperLogLog can be used to estimate similarity and, as such, are tightly related to MinHash sketching.

ii Count approximation. The standard count-approximation techniques are CountSketch [START_REF] Charikar | Finding frequent items in data streams[END_REF] and Count-Min sketch [START_REF] Cormode | An improved data stream summary: the count-min sketch and its applications[END_REF]. Both have been extensively studied [START_REF] Cormode | Summarizing and Mining Skewed Data Streams[END_REF][START_REF] Cormode | Approximating Data with the Count-Min Sketch[END_REF][START_REF] Ting | Count-Min: Optimal Estimation and Tight Error Bounds using Empirical Error Distributions[END_REF][START_REF] Taşyaran | One Table to Count Them All: Parallel Frequency Estimation on Single-Board Computers[END_REF][START_REF] Ben Basat | Faster and More Accurate Measurement through Additive-Error Counters[END_REF] but surprisingly few bioinformatics applications use them in practice [START_REF] Zhang | These are not the k-mers you are looking for: efficient online k-mer counting using a probabilistic data structure[END_REF][START_REF] Will Pm Rowe | Streaming histogram sketching for rapid microbiome analytics[END_REF]. This discrepancy can be explained by the large errors (up to a fraction of the size of the whole input) that potentially afflict count estimates. In k-mer based applications it is often of high importance to reliably distinguish low-frequency k-mers from more common ones, but having such large inaccuracies prevents that.

iii Detection of heavy hitters or cold items. Finding the most common (or rare) items in a data stream can be viewed as a sub-problem of count estimation. Sketches for approximating counts are often used as building-blocks of algorithms for this problem [START_REF] Charikar | Finding frequent items in data streams[END_REF][START_REF] Cormode | Finding the frequent items in streams of data[END_REF].

3. Graph sketching techniques give approximate answers to a multitude of graphrelated queries [START_REF] Mcgregor | Graph stream algorithms: a survey[END_REF]: vertex connectivity [START_REF] Kapralov | Single Pass Spectral Sparsification in Dynamic Streams[END_REF][START_REF] Guha | Vertex and Hyperedge Connectivity in Dynamic Graph Streams[END_REF]2], vertex cover [START_REF] Chitnis | Kernelization via Sampling with Applications to Finding Matchings and Related Problems in Dynamic Graph Streams[END_REF][START_REF] Assadi | Tight bounds for single-pass streaming complexity of the set cover problem[END_REF], triangle counting [START_REF] Chakrabarti | Incidence Geometries and the Pass Complexity of Semi-Streaming Set Cover[END_REF][START_REF] Har-Peled | Towards Tight Bounds for the Streaming Set Cover Problem[END_REF] and set cover [START_REF] Chakrabarti | Incidence Geometries and the Pass Complexity of Semi-Streaming Set Cover[END_REF][START_REF] Har-Peled | Towards Tight Bounds for the Streaming Set Cover Problem[END_REF].

Sketching techniques relevant to our work

We The CountSketch [START_REF] Charikar | Finding frequent items in data streams[END_REF] is an approximated data structure that compactly stores an array a of counters. The sketch itself is an R × B matrix A of counters where each row i has associated two hash functions: h i (•) and s i (•). All h i (•) and s i (•) are supposed to be pairwise independent. Given an item p of frequency ℓ, doing h i (p) returns the bucket in row i associated to p. On the other hand, s i (p) is a binary function returning values in -1, 1.

CountSketch

Updates are in the form of (p, ℓ) and are performed by doing A(i, h i (p)) = A(i, h i (p))+ s i (p) × ℓ for each row i (see Figure 5.1). Multiplication by the random sign s i (•) ensures the unbiasedness of estimates. Collisions between different counters are a possibility. This introduces errors in the retrieved counts, which, as such, should more correctly be called "estimates". For this reason, queries are performed by computing median i (s i (p) × A(i, h i (p))). Computing the median over R independent rows helps in reducing the effects of collisions involving very large counts. Averaging would not work as well because of its susceptibility to outliers of large magnitude. By choosing B = log(1/δ) and R = 1/ϵ 2 for two given parameters 0 < δ < 1 and ϵ > 0, errors are guaranteed to be < ϵ∥a∥ 2 with a probability of at least 1 -δ, where ∥a∥ 2 is the L 2 -norm of input vector a [START_REF] Charikar | Finding frequent items in data streams[END_REF]. Similarly to Count-Sketch, Count-Min sketch [START_REF] Cormode | An improved data stream summary: the count-min sketch and its applications[END_REF] is a method able to represent an associative array a of counters in an approximated way. As before, Count-Min sketch is an R × B matrix A of counters with hash functions h i (•) associated to each row. Hash functions s i (•) are not required in this case, as we will see shortly. Updates are again in the form of (key, value) pairs (p, ℓ) for which Count-Min sketch perform A(i, h i (p)) = A(i, h i (p)) + ℓ for each row i. New counters are thus always inserted by addition and never by subtraction, making estimates returned by Count-Min sketches always biased by a positive quantity. The (approximate) current counter associated with a key p is retrieved as â(p) = min i {h i (p)}. It is now easy to see from where Count-Min takes its name. Collisions between different counters lead to potential overestimation errors whose effects cannot be alleviated by multiplying each update with s i (•). Taking the minimum of the R counters associated to an item p, instead of the median, is thus the best choice to minimize errors (see Figure 5.2). This simpler strategy also leads to a more straightforward analysis and error bounds. It is in fact known [START_REF] Cormode | An improved data stream summary: the count-min sketch and its applications[END_REF] that a Count-Min sketch built on a vector a, with R = ⌈ln( 1 δ )⌉ and B = ⌈ e ε ⌉ for any given ε and δ, overestimates each returned count by at most ε∥a∥ 1 , with probability at least 1-δ, where ∥a∥ 1 is the L 1 -norm of a.

Count-Min sketch

If counts follow a Zipf distribution with parameter a > 1, B can be reduced to O(ε -1/a ) to guarantee the same bounds [START_REF] Cormode | An improved data stream summary: the count-min sketch and its applications[END_REF]. In Section 8.4 we show that these error bounds may not be acceptable for k-mer counting applications.

Count-Min sketch with conservative updates

Count-Sketch and Count-Min both support negative updates, i.e. they allow for ℓ < 0 in updates (p, ℓ), provided that the cumulative count of each key remains positive at any given time. However, if updates are only positive, Count-Min can be modified for better accuracy entailing only a slightly different update procedure, first mentioned in [START_REF] Cormode | Count-Min Sketch[END_REF] (therein attributed to [START_REF] Estan | New directions in traffic measurement and accounting[END_REF]) as conservative update. Under this modification, updates for each row i are made according to A(i, h i (p)) = max{A(i, h i (p)), â(p) + ℓ}, where â(p) is the current Count-Min estimate of a(p). It is easily seen that under this scheme, â(p) can still only over-estimate a(p), but cannot be larger than â(p) computed by the original Count-Min.

MinHash sketching

MinHash sketching was introduced in [START_REF] Broder | On the resemblance and containment of documents[END_REF] as a method to estimate Jaccard similarity between two sets, applied to document comparisons. In bioinformatics, MinHash was first applied in Mash software [START_REF] Ondov | Mash: fast genome and metagenome distance estimation using MinHash[END_REF] and then successfully used in a number of other tools. Assume we are given a universe U and an order on U defined via a hash function h. For a set A ⊂ U , the bottom-s MinHash sketch of A, denoted S(A), is the set of s minimal elements of A (or their hashes), where s is a user-defined parameter. The Jaccard similarity index between two sets A and B, J(A, B) = |A ∩ B|/|A ∪ B|, can then be estimated from the sketches of A and B, namely

Ĵ = |S(A ∪ B) ∩ S(A) ∩ S(B)|/|S(A ∪ B)| (5.1)
is an unbiased estimator of J(A, B). The Jaccard similarity between the k-mer sets of two datasets constitutes a biologically relevant measure of their similarity. In particular, if involved datasets are genomic sequences, this measure allows one to estimate the mutation rate between the sequences [START_REF] Fan | An assembly and alignment-free method of phylogeny reconstruction from next-generation sequencing data[END_REF][START_REF] Ondov | Mash: fast genome and metagenome distance estimation using MinHash[END_REF].

Bloom filters

{x, y, z} A Bloom filter (BF) is a well known data structure allowing for approximate membership queries [START_REF] Burton | Space/time trade-offs in hash coding with allowable errors[END_REF]. Its key feature is the ability to favor space usage at the cost of a user-selectable false positive rate on each query. Given a set A of size n = |A|, a target false positive rate ε and a family of pairwise independent hash functions, a spaceoptimal Bloom filter B is a bit array of m = -n log(ε)/ ln(2) ≈ -1.44n log(ε) bits with r = ln(2)m/n ≈ 0.693m/n hash functions associated to it. Inserting a new element p is as simple as setting to 1 the bits at positions given by the r hash functions when hashing p. Queries are performed by looking at the bits associated to p, if they are all set, then p ∈ A while p / ∈ A otherwise. False positives arise from the fact that elements p / ∈ A might have all their bits set because of other insertions as shown in Figure 5.3. Applications where the retrieval of the actual elements stored in Bloom filters is important, have to rely on additional data structures for this purpose, with Bloom filters being used as temporary set representations [START_REF] Shibuya | Space-efficient representation of genomic k-mer count tables[END_REF]. For a set F ⊆ U \ A, we denote F P B (F ) the set of false positives of F , of expected size ε|F |.
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Invertible Bloom Lookup Tables

Invertible Bloom Lookup Tables (IBLT) [START_REF] Eppstein | Straggler identification in round-trip data streams via Newton's identities and invertible Bloom filters[END_REF][START_REF] Michael | Invertible Bloom lookup tables[END_REF] are a generalization of Bloom filters for storing a set of elements (keys), drawn from a large universe, possibly associated with attribute values. In contrast to Bloom filters, in addition to insertions, IBLTs also support deletion of keys as well as listing. The latter operation succeeds with high probability (w.h.p.) depending on the number of stored keys relative to the size of the data structure. An important property is that this probability depends only on the number of keys stored at the moment of listing, and not across the entire lifespan of the data structure. Thus, at a given time, an IBLT can store a number of keys greatly exceeding the threshold for which it was built, returning to be fully functional whenever a sufficient number of deletions has taken place. Note also that IBLTs, in their basic version, don't support multiple insertions of the same key.

An IBLT is an array T of m buckets together with r hash functions h 1 , . . . , h r mapping a key universe U (in our case, k-mers or strings) to [0..m -1] and an additional global hash function h e on U . Each bucket T [i], i ∈ [0..m -1], contains three fields: a counter T [i].C, a key field T [i].P and a hash field T [i].H, where C counts the number of keys hashed to bucket i, P stores the XOR-sum of the keys (in binary representation) hashed to bucket i, and H contains the XOR-sum of hashes produced by h e on keys.

Adding a key p to the IBLT is done as follows. For each j ∈ {1, . . . , r}, we perform

T [h j (p)].C = T [h j (p)].C + 1, T [h j (p)].P = T [h j (p)].P ⊕ p, and T [h j (p)].H = T [h j (p)].H ⊕ h e (p)
, where ⊕ stands for the XOR operation working with the binary representations of p and h e (p) (see Figure 5.4). Given that XOR is the inverse operation of itself, deletion of p is done similarly except that

T [h j (p)].C = T [h j (p)].C -1.
Listing the keys held in an IBLT is done through the process of peeling working recursively as follows. If, for some i we have |T [i].C| = 1, payload field T [i].P is supposed to contain a single key p. Field H is not strictly necessary, it acts as a "checksum" to verify that p is indeed a valid key by checking if h e (T [h j (p)].P ) = T [h j (p)].H. This check is used to avoid the case when |T [i].C| = 1 whereas T [i].P is not a valid key, which can result from extraneous deletions of keys not present in the data structure. In Section 14.2.2 we will elaborate on the role of this field in our framework. If the check holds, key p can be reported and deleted (peeled) from the IBLT. Updating hash sums and counters is then done in a way similar to insertion:

T [h j (p)].H = T [h j (p)].H ⊕ h e (p) and T [h j (p)].C = T [h j (p)].C -1, ∀j ∈ [1, . . . , r].
The procedure continues until all counters T [i].C are equal to zero. The first part of Figure 5.5 shows how the removal of elements can make an unpeelable sketch to be peelable again. The second part illustrates the listing procedure itself.

At each moment, an IBLT is associated to an r-hypergraph where nodes are buckets and edges correspond to stored keys with each edge including the buckets a key is hashed to. Listing the keys contained in an IBLT then relies on the peelability property of random hypergraphs [START_REF] Dietzfelbinger | Tight thresholds for cuckoo hashing via xorsat[END_REF][START_REF] Molloy | The pure literal rule threshold and cores in random hypergraphs[END_REF]. Assume our hash functions are fully random. Then it is known that for r ≥ 3, a random r-hypergraph with m nodes and n edges is peelable w.h.p. iff m ≥ c r n where c r is a constant peelability threshold. The first values of c r are 

c 3 ≈ 1.222, c 4 ≈ 1.295, c 5 ≈ 1.425, • • • [69]. Thus, allocating m = n(c r + ε), ( 5 
C H P 0 0x78 0x08 -1 0x6E 0x19 0 0x00 0x00 -1 0x6E 0x19 0 0x00 0x00 2 0x00 0x00 C H P 1 0x16 0x11 0 0x00 0x00 0 0x00 0x00 0 0x00 0x00 0 0x00 0x00 2 0x00 0x00 C H P 0 0x00 0x00 0 0x00 0x00 0 0x00 0x00 0 0x00 0x00 0 0x00 0x00 0 0x00 0x00 0x19 = CGC ×2 0x11 = CAC delete (1) 
(2)

Figure 5.5: The reported example represents the difference between the k-mer set from Figure 5.4 and a modified version of itself, where k-mer CAC has been mutated into CGC (1). Once sketched, the difference (top left of ( 2)) has two buckets containing one element each (C = -1), and two buckets with two elements each (first and last rows). Despite having C = 0, the first row contains something (H and P fields are different from 0x00) while the last one is subject to a collision of two copies of the same element (C = 2 and H = P = 0x00). Peeling starts by first finding any eligible bucket whose counter is 1 or -1 and whose hash field H is equal to h e (P ). This is the case for the bucket containing 0x19 (top left). Value 0x19 (corresponding to CGC) is then subtracted from all its buckets, leading to a new peelable bucket (first bucket of the second sketch in the top right corner of (2)). Peeling this new item (0x11 = CAC) empties the sketch and terminates the process. The retrieved symmetric difference is thus CGC, CAC with CAC coming from the set depicted in Figure 5.4 (counter C = 1) and CGC being its mutated version (C = -1).

Chapter 6 Exact representations of k-mer count tables

As it has been the case for sketches, we do a quick review of the main methods we use in our solution in Part III. Despite the fact that the structures of Part III do not store k-mers but only frequencies, we start this review by listing full static k-mer table representations first. This should provide a more general view helping to put the algorithms effectively used in this thesis into context.

Full static representations

This section is dedicated to k-mer count table representations that store both k-mers and counts, thus supporting both counter retrieval and extraneous k-mer identification. Exact presence/absence support is costly and not always required if queries are restricted over a known set of k-mers. Nevertheless, in applications where support for both types of queries is justified, exact dictionaries are generally the preferred option [154]

Hash Tables

Common hash table implementations found in standard libraries of most programming languages provide the easiest and quickest (in terms of development time) solution for storing (key, value) pairs. However, this leads to suboptimal space for both k-mers and counts, given that the former are highly redundant overlapping strings, while the latter follow skewed distributions. Solutions tailored to genomic datasets have been the subject of extensive research efforts leading to the many results of the following (sub)sections.

Quotient filters

Quotient filters try to reduce space by storing lists of sorted k-mers. k-mers are then split into prefix and suffix with contiguous stretches of equal prefixes implicitly represented as positions in an array (or just stored once using an exact set representation). Queries are performed by first searching for the prefix of a given k-mer. If it is found, then the search continues in the block of suffixes associated with the prefix. Counts are stored into additional fields (one for each suffix). All modern k-mer counters use some sort of variation of this method [START_REF] Marçais | A fast, lock-free approach for efficient parallel counting of occurrences of k-mers[END_REF][START_REF] Kokot | KMC 3: counting and manipulating k-mer statistics[END_REF][START_REF] Pandey | A General-Purpose Counting Filter: Making Every Bit Count[END_REF] with DSK [START_REF] Rizk | DSK: k-mer counting with very low memory usage[END_REF] the sole exception. Latest advancement also try to optimize space weights by dynamically allocating variable-length counters for count values [START_REF] Moustafa Shokrof | MQF and buffered MQF: quotient filters for efficient storage of k-mers with their counts and metadata[END_REF].

Dictionaries based on super k-mers

Super k-mers are groups of contiguous k-mers sharing the same minimizer [START_REF] Li | MSPKmerCounter: A Fast and Memory Efficient Approach for K-mer Counting[END_REF]. Bucketing super k-mers by minimizer allows for fast membership queries. Queries are performed by finding the set of super k-mers associated to the minimizer of a query k-mer p. Searching the queried k-mer as a substring of the super k-mers gives the answer. Mapping minimizers to their sets of super k-mers is achieved with the help of Minimal Perfect Hash Functions (see 6.2.1). Two implementations of this method are BLight [START_REF] Marchet | BLight: Efficient exact associative structure for k-mers[END_REF] and the more recent ssHash [START_REF] Ermanno | Sparse and Skew Hashing of K-Mers[END_REF] and its extension supporting k-mer counts [START_REF] Ermanno | On Weighted K-Mer Dictionaries[END_REF].

Graph-based dictionaries

Another family of k-mer dictionaries is obtained by extending de Bruijn graphs with counts. Classic approaches rely on MPHFs to link additional information to k-mers in a graph [START_REF] Holley | Bifrost: highly parallel construction and indexing of colored and compacted de Bruijn graphs[END_REF], whereas recent solutions store k-mers and counts into two separate data structures optimized for their respective tasks [START_REF] Karasikov | Lossless indexing with counting de Bruijn graphs[END_REF]. A related approach is the structure proposed in [START_REF] Italiano | Compressed Weighted de Bruijn Graphs[END_REF] where delta-encoded weights are added on top of the BOSS data structure (a de Bruijn graph stored as a set of contigs) [START_REF] Bowe | Succinct de Bruijn Graphs[END_REF]. Note that, in general, FM-Indexes [START_REF] Ferragina | Opportunistic data structures with applications[END_REF] naturally offer a count operation, if a given k-mer is found, then its number of occurrences can also be retrieved.

Count-only data structures

Count-only data structures do not explicitly store k-mers by limiting queries to a known set of k-mers. Further space optimizations of the weights becomes possible, at the cost of losing membership queries. This strategy is useful when k-mers are known in advance and counts need to be retrieved multiple times during execution. While not exactly equivalent to full k-mer count tables, they are strictly related concepts, often with readily-available drop-in replacements for a wide range of use cases. Methods in Part III belong to this family.

Minimal Perfect Hash Functions

Minimal Perfect Hash Functions (MPHFs) are bijective functions between keys of a set S ⊂ U and integers in the range [0, |S|-1]. By using hash values as indexes for an external array, it is possible to associate any type of information to k-mers. Unlike the previous structures, keys in S are not explicitly represented, making answering membership queries impossible. On the other hand, not storing S leads to much greater space efficiency, with a theoretical lower bound of log e = 1.44 bits/element [START_REF] Mehlhorn | On the program size of perfect and universal hash functions[END_REF]. However, this lower bound is achievable only in theory, for sets so big that they have no practical interest [START_REF] Hagerup | Efficient Minimal Perfect Hashing in Nearly Minimal Space[END_REF] MPHFs can be categorized into four families [START_REF] Ermanno | PTHash: Revisiting FCH Minimal Perfect Hashing[END_REF]:

• Hash and displace MPHFs belonging to this family are FHD [START_REF] Fox | A faster algorithm for constructing minimal perfect hash functions[END_REF], CHD [11] and ptHash [START_REF] Ermanno | PTHash: Revisiting FCH Minimal Perfect Hashing[END_REF][START_REF] Ermanno | Parallel and External-Memory Construction of Minimal Perfect Hash Functions with PTHash[END_REF] 

(x) + z 0 h 2 (x) + z 1 mod |S|) with the displacement value d i of bucket B i the index of pair (z 0 , z 1 ) in sequence (0, 0), • • • , (0, |S| -1), • • • , (|S| -1, 0), • • • , (|S|, |S|).
On the other hand, ptHash does (h 1 (x, s) ⊕ h 2 (d i , s) mod |S|) with s a user-defined seed. In case of successful construction, the binary array can be discarded and only the list of displacements is saved. Such vector is usually stored using succinct data structures, with ptHash achieving good time/space trade-offs thanks to the improved compressibility of its d i values.

• Linear systems MPHFs use the relation between linear systems of n = |S| equations and m variables to random r-hypergraphs [START_REF] Majewski | A Family of Perfect Hashing Methods[END_REF]. If the ratio between n and m is above a certain threshold that depends on the parameter r of the hypergraph, then it is possible to assign a unique ordering to the n keys with high probability.

• Cascading First introduced in [START_REF] Müller | Retrieval and Perfect Hashing Using Fingerprinting[END_REF] this type of MPHFs are built by repeatedly resolving collisions when inserting keys into arrays. The algorithm starts by hashing all elements in S to a bit-vector v 0 of size n 0 = |S|. Bits corresponding to exactly one element are set to 1, unused bits and collisions are marked by 0 (collisions need to be temporarily remembered using additional bits). The n 1 elements colliding in v 0 are then inserted again into a new bit-vector v 1 and so on and so forth. On average, this procedure stops after 1.56 levels in the most succinct setting [START_REF] Müller | Retrieval and Perfect Hashing Using Fingerprinting[END_REF].

The final MPHF is the concatenation of each layer with added support for fast rank queries. Note that, during construction, it is thus necessary to save the sets of colliding keys or to re-run the construction algorithm over the entire stream of keys multiple times, generating a new array for each layer. The index of a key is retrieved by a query to a rank/select data structure counting the number of cells occupied before the wanted element. An implementation of this technique can be found in [START_REF] Limasset | Fast and scalable minimal perfect hashing for massive key sets[END_REF] where a parameter γ allows to increase the space of each bit-vector for faster construction times.

• Recursive splitting Suitable MPHFs can be found by brute force for small sets [START_REF] Esposito | RecSplit: Minimal Perfect Hashing via Recursive Splitting[END_REF]. The above observation can be recursively applied in a divide and conquer approach to build MPHFs for larger sets. The downside of this approach are the slow queries due to the generation of a tree of splittings over multiple levels.

Compressed static functions

A static function (SF) is a representation of a function defined on a given subset S of a universe U such that an invocation of the function on any element from S yields the function value, while an invocation on an element from U \ S produces an arbitrary output. The problem has been studied in several works (see references in [11,[START_REF] Genuzio | Fast scalable construction of ([compressed] static | minimal perfect hash) functions[END_REF]) resulting in several solutions that allow function values to be retrieved without storing elements of S themselves. One natural solution comes through MPHFs: one can build a MPHF for S and then store function values in order in a separate array. This solution, however, incurs an overhead associated with the MPHF, known to be theoretically lower-bounded by about 1.44 bits per element of S. This overhead is especially unfortunate when the distribution of values is very skewed, in which case the value array may be compressed into a much smaller space. Compressed Static Functions try to solve this problem by proposing a static function representation whose size depends on the compressed value array. The latter is usually estimated through the zero-order empirical entropy, defined by

H 0 (f ) = ℓ∈L |f -1 (ℓ)| |K| log( |K| |f -1 (ℓ)| )
, where L is the set of all values (i.e. L = {f (t) | t ∈ K}}) and f -1 (ℓ) = {t | f (t) = ℓ} is the set of k-mers with value ℓ. |K| • H 0 (f ) can be viewed as a lower bound on the size of compressed value array, in absence of additional assumptions. Thus, the goal of CSFs is to approach the bound of H 0 (f ) bits per element as closely as possible, in representing a static function f . We refer the reader to [11,[START_REF] Genuzio | Fast scalable construction of ([compressed] static | minimal perfect hash) functions[END_REF] and references therein for an overview of different algorithmic solutions for SFs and CSFs.

[11] proposed a solution for CSF taking an asymptotically optimal nH 0 (f )+o(nH 0 (f )) space (n size of the underlying value set), however the solution is rather complex and probably not suitable for practical implementation. As of today, to our knowledge, the only practical implementation of a CSF is GV3CompressedFunction [START_REF] Genuzio | Fast scalable construction of ([compressed] static | minimal perfect hash) functions[END_REF], found in the Java package Sux4J (https://sux.di.unimi.it/). Although entropy-sensitive, the method of [START_REF] Genuzio | Fast scalable construction of ([compressed] static | minimal perfect hash) functions[END_REF], has an intrinsic limitation of using at least 1 bit per element, due to involved coding schemes. This is a serious limitation when dealing with very skewed distributions of values, where one value occurs predominantly often and the empirical entropy can be much smaller than 1. This is precisely the case for count distributions in whole genomes (see Section 8.1.1).

Chapter 7

Context and motivation

Problem statement

Counting every substring of length k in genomic sequences is a rather common task in many bioinformatics pipelines. Representing sequences as sets of k-mers is the idea behind many alignment-free algorithms with k-mers being used for efficient sequence similarity estimation and/or to quickly find seeds during the initial steps of sequence alignment. However, augmenting k-mers with their counts allow for a much greater range of possibilities. For example, k-mer count statistics can be used to filter too common k-mers and only use the rarer ones as seeds for greater specificity. Another use is genome size estimation from sequencing reads or, similarly, sequencing coverage estimation. Read trimming also makes use of k-mer frequencies in order to ignore uninformative parts of sequenced reads [START_REF] Liu | Musket: a multistage kmer spectrum-based error corrector for Illumina sequence data[END_REF]. The same information can also be used to correct reads if its k-mer frequencies seem unlikely. Other applications range from detecting sequence duplication to alignment-free variant calling [START_REF] Rahman | Association mapping from sequencing reads using k-mers[END_REF][START_REF] Khorsand | Nebula: ultra-efficient mapping-free structural variant genotyper[END_REF].

In recent years, many k-mer counting algorithms have been proposed, such as Jellyfish [START_REF] Marçais | A fast, lock-free approach for efficient parallel counting of occurrences of k-mers[END_REF], DSK [START_REF] Rizk | DSK: k-mer counting with very low memory usage[END_REF] or KMC [START_REF] Kokot | KMC 3: counting and manipulating k-mer statistics[END_REF]. All these tools output a map associating k-mers to their counts. Such a map can require a fairly big amount of disk space, especially for large values of k because it stores both genomic (i.e. the k-mers) and count data together. For example, the binary file produced by KMC when counting a human genome with k = 32 weights around 28 GB. Almost all tools, including KMC, employ efficient representations of k-mers, such as quotienting, in order to reduce their memory footprint but, even with such optimizations, memory efficiency remains an important issue.

Many applications, however, only deal with k-mers that come from partially assembled reads or succinct representations of k-mer sets, such as colored de Bruijn graphs [START_REF] Holley | Bifrost: highly parallel construction and indexing of colored and compacted de Bruijn graphs[END_REF][START_REF] Martin D Muggli | Building large updatable colored de Bruijn graphs via merging[END_REF], or spectrum-preserving string sets [START_REF] Rahman | Representation of k-mer sets using spectrumpreserving string sets[END_REF][START_REF] Břinda | Simplitigs as an efficient and scalable representation of de Bruijn graphs[END_REF], that is, only k-mers present in the original data are queried for their frequencies. For this reason, a way to reduce memory usage is to store counters only, together with a mapping linking them to their k-mers, without the need to reserve space for any genomic information. The idea of storing only counter information and not k-mers is also supported by the observation that the number of distinct k-mer counts in genomic data is relatively small. It is in fact known that kmer counts in genomes obey a "heavy-tail" power-law distribution with a relatively large absolute value of the exponent [START_REF] Csűrös | Reconsidering the significance of genomic word frequencies[END_REF]. For such distributions, the number of distinct k-mers makes a linear fraction of the data size, while the number of distinct counts is relatively small. For example, for the human genome and k = 27, there are about 2.5 billions distinct k-mers but about only 8, 000 distinct frequency values. In many practical cases, the majority of k-mers have very small counts: in the above example, 97% are unique, while almost 99% have a count of at most 5. Furthermore, frequent k-mers often tend to have identical frequencies as well, due to transposable elements: for example, k-mers specific to Alu repeats in primate genomes will likely have the same count. It is thus possible to take advantage of these properties to reduce space by trying to share count values with multiple k-mers.

Contributions

The count approximating sketches described in Section 5.1 have seen little to no application in bioinformatics even though: i) k-mers usually follow highly skewed power-law distributions [START_REF] Csűrös | Reconsidering the significance of genomic word frequencies[END_REF][START_REF] Chor | Genomic dna k-mer spectra: models and modalities[END_REF], and ii) both CountSketch and Count-Min sketch are known to have an advantage under this particular setting [START_REF] Cormode | Summarizing and Mining Skewed Data Streams[END_REF]. In most cases they are only applied as temporary storage solutions while performing more complex operations [START_REF] Will Pm Rowe | Streaming histogram sketching for rapid microbiome analytics[END_REF][START_REF] Zhang | These are not the k-mers you are looking for: efficient online k-mer counting using a probabilistic data structure[END_REF] with none used for permanent storage of counts. The answer to this apparent paradox resides in the streaming nature of both sketch constructions, where updates are allowed to arrive in the form of unary increments. While general, this constraint limits the possibility to take full advantage of the peculiar distribution of the weights in order to reduce errors.

Basically, the goal of this work is to provide an approximated technique for the longterm storage of counts for a known set of k-mers. To this end, we propose a new probabilistic data structure that we call Set-Min sketch, capable of representing k-mer count information in small space and with small errors. Set-Min sketch and its analysis follow the same path as the aforementioned sketches by saving counts into a matrix, and by avoiding collisions through multiple independent hash functions. The distinguishing property of our method compared to, e.g. Count-Min sketch, is that the matrix stores sets of counters instead of sums. Changing counter representation leads to better error guarantees, or in other words, to achieve the same error guarantees, Set-Min sketches need less space than previous solutions.

Memory-wise sets are more efficient than simple counters in two cases:

• The number of possible count values is small.

• Counts are distributed following a "heavy-tail" power-law distribution. The higher the skew, the smaller the space required by Set-Min.

The main insight is that the same count value in a given cell of the sketch can be shared by multiple k-mers. Adding a new k-mer p with its counter c is as simple as adding c to the r cells of the matrix associated to p. Retrieval, on the other hand, is performed by set intersections which has the potential to retrieve the exact values associated to k-mers. Thanks to these modifications, Set-Min guarantees that the expected cumulative error obtained when querying all k-mers of the count table T it represents can be bounded by a fraction of the total number of k-mers (including multiplicities) in T . This is in stark contrast to Count-Min where the same bound applies on each single query. Note, finally, that Set-Min sketch is a general data structure in that it can be used to efficiently represent a mapping of k-mers to any type of labels, provided that the number of possible labels is relatively small.

We introduce these considerations more formally in Section 8.1 together with the concept of skewed distributions. Section 8.2 introduces the data structure itself and how insertion and queries are performed, respectively. The theoretical analysis of our sketch can be found in Section 8.2 together with a practical algorithm for dimensioning the sketch according to the desired error bound. We present experimental results in Section 8.4 on a range of datasets illustrating the benefits of our approach. We provide comparisons against alternative solutions, namely Count-Min sketch (and its optimized version called Max-Min sketch) and, on the other hand, Minimal Perfect Hashing. An implementation of Set-Min can be found at https://github.com/yhhshb/fress.

Chapter 8

Set-Min sketch

Similarly to Count-Min sketch (Section 5.1.2), Set-Min itself does not store k-mers. Instead, it estimates frequencies by relying on a matrix of sets instead of numerical counters. The intuition behind this modification is presented in Section 8.1. We follow by formally presenting our method and its analysis in Section 8.2. Finally, Section 8.4 experimentally validates our results on a practical implementation of our ideas.

Key algorithmic ideas

Count-Sketch and Count-Min sketches use independent and distinct insertions at different cells to mitigate the effects of collisions between different counts (Section 5.1). Both can be applied in a streaming setting where count values for each item arrive as a series of partial updates. The main drawback of using sums to update the content of each bucket is that the more values hash to a cell, the larger the expected error will be, since it becomes impossible to retrieve the original unaggregated values. In applications where counts arrive already computed, and the interest of sketching is more towards space rather than streaming, it might be interesting to take advantage of the distribution of the input to boost compression. Both Count-Sketch and Count-Min are not prone to such improvements since input values are lost due to the sum operations. This chapter introduces the idea of a sketching method tailored to efficiently represent power-law distributed counts by taking advantage of collisions instead of being hindered by them.

Skewed distribution

A k-mer spectrum is the distribution of k-mer frequencies across all k-mers occurring in the data, showing how many k-mers support each frequency value. For large values of k, k-mer spectra follow a power-law distribution [START_REF] Csűrös | Reconsidering the significance of genomic word frequencies[END_REF][START_REF] Chor | Genomic dna k-mer spectra: models and modalities[END_REF] characterized by a linear-like dependence when represented in the log-log scale. That is, the k-mer frequency distribution fits a dependence f (t) ≈ c • t -a , where a is usually greater than 2. An example of the spectrum for the human reference genome with k equal to 32 is given in Figure 8.1. According to this distribution, a very large fraction of k-mers has very low frequencies, while only a handful of k-mers are "unexpectedly" very repetitive. Large values of a imply that there are relatively few distinct frequency values with non-zero support, whose number is given by the 1 a -power of the total number of k-mers. That means that, for large-enough k's, few distinct frequencies are expected to appear on the x-axis of a spectrum.

In general, spectra start to become power-law distributed when k > log 4 (L), with L the length of genome the input data belongs to. k-mers shorter than this threshold are not powerful enough to be equivalent representations of the original data. This becomes 

Using counter collisions to reduce space

In order to make use of the few distinct frequency values, we will limit our method to sketching already constructed count tables. As we saw earlier (Chapter 7), counting kmers is a well known problem with optimized solutions readily available [START_REF] Kokot | KMC 3: counting and manipulating k-mer statistics[END_REF][START_REF] Marçais | A fast, lock-free approach for efficient parallel counting of occurrences of k-mers[END_REF][START_REF] Rizk | DSK: k-mer counting with very low memory usage[END_REF]. The only downside of limiting ourselves to full tables is that it prevents our sketch to update counters of already inserted k-mers. On the other hand, knowing exactly which counters have been inserted opens up the possibility of re-using the values already present in buckets for later insertions. This can be done quite easily by replacing each cell of a Count-Min matrix with a set of counters. We call the resulting data structure Set-Min sketch. Unlike Count-Min, Set-Min sketches are able to represent mappings of very skewed distributions (e.g. power-law distributions with large a) in less space, by sharing the same counters across multiple k-mers of the same buckets.

Estimates returned by Set-Min sketches are not affected by the sum of colliding kmers's counts as in Count-Min sketches or Count-Sketches. Instead, each count value in a set is treated as a distinct object, and errors can only come from returning the wrong value instead of the correct one. This can happen with probability < 1 even when rows are made of B ≪ L 0 buckets, where L 0 = ∥a∥ 0 is the number of distinct k-mers in a counting table a. This is not the case for neither Count-Min nor Count-Sketch whose estimates are always affected by some errors, if B ≪ L 0 . As we will see in Section 8.2.1.1, this intuition behind Set-Min sketches leads to better overall estimates than competing methods. We now more formally introduce the Set-Min sketch data structure. Assume we are given a set K of keys with associated values taken from a set L with |L| ≪ |K|. In our case, K is a set of k-mers and L the set of their frequencies, although our method will hold for any set of labels L, not necessarily numerical. We want to compactly implement the associative map of (key, value) pairs. A Set-Min sketch is an R × B matrix M where each bucket is treated as a set, initially empty. Similar to Count-Min sketch, rows in the matrix correspond to hash functions h i , 0 ≤ i ≤ R -1, that we assume pairwise independent.

Set-Min data structure

ℓ 2 ℓ 1 ℓ 1 , ℓ 2 ℓ 1 ℓ 2 ℓ 2 ℓ 1 R = 4 B = 6
At construction time, the key of each (key, value) pair (p, ℓ) is hashed by the hash functions to retrieve its buckets, and the value ℓ is inserted into each set. Formally, we update M (i, h i (p)) = M (i, h i (p)) ∪ {ℓ} for each row i (see Figure 8.2).

Retrieval of a value associated with a key p, is performed by simply computing the intersection of the sets corresponding to p, that is ∩ 0≤i≤R-1 M (i, h i (p)). In general, three outcomes are possible:

1. The intersection is a singleton, in which case the exact value associated to p is returned.

2. The intersection contains more than one value, which corresponds to a collision. One value must be selected as the answer.

3. The intersection is empty, p is not present in the map.

However, since in this work we assume that only k-mers present in the dataset can be queried, empty intersections (case 3) becomes impossible. This in turns, allows for tighter sketch dimensions. Not having to worry about recognizing alien k-mers means that the most common label, i.e. the label ℓ 1 with the largest support, can be in every bucket without affecting errors. In other words, it becomes the "default" value returned by the sketch.

Instead of potentially having the same value physically stored into each set, we further optimize by ignoring it. ℓ 1 thus becomes the new case 3 and is retrieved implicitly: when the intersection is empty, ℓ 1 is returned. In practice, this optimization allows us to save space and will be further discussed later. Note that, with these modifications, an error may occur even if the resulting intersection is a singleton, but the right label is actually ℓ 1 . In case of k-mers and for large k, ℓ 1 is usually equal to 1, which is the frequency of the largest fraction of k-mers. A graphical representation with colored labels of the above modifications can be seen in Figure 8.3. 

Dealing with collisions

The only thing left to decide is what label to return in case of collisions. This choice is guided by the number of k-mers supporting each label of the intersection: the label with the smallest support is returned (see Figure 8.4). The rationale for this is that the label with the smallest support has the smallest probability to appear "by chance". On the other hand, labels with larger supports belong to more buckets in the sketch, and are therefore more likely to occur in the intersection by accident. Thus, the algorithm compares spectrum values for all labels in the intersection, and returns the label with the smallest value (ties are broken randomly). If the spectrum is monotonically decreasing (as it is usually the case for large k, see Figure 8.1), then the label returned is simply the largest one among those in the intersection. 

Bounding the total error

We now show that with Set-Min sketch, we can bound the total absolute error over all k-mers of the dataset. Consider a sketch S built on a map assigning to each k-mer p ∈ K a value (label) ℓ p ∈ L which is the frequency of p in the dataset. We denote by c ℓ the number of k-mers with frequency ℓ ∈ L (spectrum value).

Consider

D = p∈K | lp -ℓ p | (8.1)
where lp is the label of p returned by the sketch. Our goal is to dimension R and B such that D ≤ ε∥a∥ 1 , where ∥a∥ 1 is the total number of k-mers in the dataset (roughly, the dataset size) and 0 < ϵ ≤ 1.

Querying p returns an incorrect frequency m ̸ = ℓ p iff m occurs in the intersection and c m < c ℓp . The probability of this event is

1 -1 - 1 B cm R ≈ 1 -e -cm B R (8.2)
and the expectation of the error when querying p is then

cm<c ℓp m∈L |m -ℓ p | 1 -e -cm B R . ( 8.3) 
Summing up over all k-mers, we obtain

E[D] = ℓ∈L c ℓ cm<c ℓ m∈L |m -ℓ| 1 -e -cm B R . ( 8.4) 
The total number of k-mers is ∥a∥ 1 = ℓ∈L ℓc ℓ . Given 0 < ε ≤ 1, our goal is to choose B and R in order to ensure

ℓ∈L c ℓ cm<c ℓ m∈L |m -ℓ| 1 -e -cm B R < ε ℓ∈L ℓc ℓ . (8.5)
Assuming that k is sufficiently large, and the spectrum is monotonically decreasing, i.e. c m < c ℓ iff m > ℓ. (8.5) then rewrites to

ℓ∈L c ℓ m>ℓ m∈L (m -ℓ) 1 -e -cm B R < ε ℓ≥1 ℓc ℓ . (8.6)
Assume now that the spectrum follows a power-law with large exponent, that is, c ℓ = C • ℓ -a for some a > 2. Note that under this assumption, the number of unique k-mers is c 1 = C, and the number of all k-mers is

ℓ≥1 ℓc ℓ = C • ℓ≥1 1 ℓ a-1 ≤ C • a -1 a -2 , since ζ(s) = i≥1 1 i s ≤ s s-1 for s > 1.
We then have the following result.

Theorem 1. Given 0 < ε ≤ 1, if B > C and R, B satisfy R • log B C > log 1 ε , ( 8.7) 
then (8.6) holds.

Proof. Our goal is to estimate

ℓ∈L c ℓ m>ℓ m∈L (m -ℓ) 1 -e -cm B R , ( 8.8) 
where c ℓ = C • ℓ -a . We assume B > C and approximate 1 -e -cm B ≈ cm B = C B m -a . We further lower-approximate (8.8) by replacing sums by integrals, thus obtaining

∞ 1 C • ℓ -a ∞ ℓ (m -ℓ) C B m -a R dm dℓ. (8.9)
Routine computation of the integral yields

C C B R 1 (aR -2)(aR -1)(aR + a + 3) . (8.10)
The inequality of the Theorem becomes

C B R 1 (aR -2)(aR -1)(aR + a + 3) < ε a -1 a -2 . (8.11)
The Theorem follows.

The theorem allows us to dimension the Set-Min sketch. For example, one can set B = αC for some constant α > 1 and R = log α 1 ε .

Computing tighter sketch dimensions

Theorem 1 provides a way to dimension a Set-Min sketch, provided that the spectrum follows a power-law distribution with a sufficiently large parameter a. In order to validate these estimates experimentally, and, at the same time, obtain a tool for computing tighter values B and R for arbitrary spectra, we implemented a simple heuristic hill climbing algorithm to compute those values by directly solving equation 8.5. Algorithm 1, given below, starts with R = 1 and some initial value of B and then iteratively increments R and recomputes (8.4) until equation (8.5) holds true. In the implementation, B is initially set to 1.44 × c max , where c max is the largest spectrum value. After such a value of R is found, the algorithm starts decrementing R while incrementing B to maintain the total space RB constant as long as (8.5) holds. The final R and B are thus the last which satisfied (8.5) in the decrementing loop. Note that, for both loops, there is a value of R for which the exit condition is satisfied. The rationale for this step is to have as small R as possible in order to reduce query time, while maintaining the total space constant. In the general case, however, we use a variant when, instead of directly comparing count values, counts are ordered according to the support size. Whenever the k-mer spectrum is not strictly decreasing for increasing k-mer counts, the maximum count does not correspond to the one with the smallest support and a simple max operation would be incorrect. When this happens, updates are performed by keeping the label with the minimum number of k-mers in the k-mer spectrum, and a query returns the label with the smallest such number. This policy is akin to Set-Min's choice of returning the count with the minimum support in case of collisions and should be the default behavior of Max-Min when no previous knowledge about spectrum distribution is available.

Data: {c ℓ } ℓ∈L , ∥a∥ 1 = ℓ∈L ℓc ℓ , ε Result: R and B R ← 1; B ← 1.44 × c max ; T ← ε∥a∥ 1 ; E ← E(D) (computed by (8.4)); while E > T do R ← R + 1; E ← E(D); end M ← R × B; while E < T do R ← R -1; B ← ⌈ M R ⌉; E ← E(D); end R ← R + 1; B ← ⌈ M R ⌉;
In the static case, Max-Min sketch improves Count-Min without any computational overhead: it simply replaces addition by max in the update rule, somehow simulating the behavior of Set-Min sketch. As with the conservative update, one can check that estimates by Max-Min can only be over-estimates which, however, don't exceed estimates by original Count-Min. Nevertheless, in Section 8.4 we will see how these improvements are not enough to beat our method.

Results

Comparisons are performed against Count-Min and MPHF implementations. In particular, we use BBHash [START_REF] Limasset | Fast and scalable minimal perfect hashing for massive key sets[END_REF] as our MPHF implementation of choice, with its supporting library as the only external dependency of our code, as Count-Min is implemented directly within fress. In addition to following the optimizations seen in Section 8.2, fress only stores indexes to a dictionary (array) of sets in each cell of the sketch, rather than full sets. This array of involved sets is stored in text format together with the spectrum of the count table in input. The current version of fress does not include any complex optimization, such as multi-threading or succinct representations of the final sketch matrix.

Data sets

We tested Set-Min on six different data sets of different size and complexity. Four of them are fully assembled genomes:

• SAI: Sakai strain of Escherichia Coli taken from [START_REF] Yi | Co-phylog: an assembly-free phylogenomic approach for closely related organisms[END_REF] (NCBI accession number B000007),

• MNO: genome of Drosophila melanogaster from FlyBase 1 ,

• RAI: genome of Gossypium Raimondii [START_REF] Hatje | A Phylogenetic Analysis of the Brassicales Clade Based on an Alignment-Free Sequence Comparison Method[END_REF] downloadable from AFproject [START_REF] Zielezinski | Benchmarking of alignment-free sequence comparison methods[END_REF],

• GRC: human reference genome assembly GRCh38 2 .

The other two contain unassembled reads:

• USAI: Sakai strain at 5x coverage from again from the AFproject paper [START_REF] Zielezinski | Benchmarking of alignment-free sequence comparison methods[END_REF],

• SRR: low-coverage human data SRR622461 from the 1000 Genomes Project 3 Table 8.1 summarizes the characteristics of each data set for each value of k in our analysis. Observe that, while the number of distinct k-mers is comparable to the total number of k-mers (data size), the number of distinct k-mer counts is small. This is in accordance with the power-law distribution discussed in Section 8.1.1. 

Set-Min vs Count-Min sketch

Table 8.2 compares Set-Min sketch to Count-Min sketch. Dimensions R and B were computed using Algorithm 1 to ensure bound (8.5) to hold for ε = 0.01. Dimensions of Count-Min sketch were set to be the same. Value 1 is the most common count in all reported datasets, and it was not inserted into Count-Min sketch in order to make the comparison against Set-Min as fair as possible. Zero values are thus interpreted as the non-inserted count. For ease of comparison, column T reports the threshold ε∥a∥ 1 given to Algorithm 1. Columns E s and E c report the actual total sum of errors for Set-Min and Count-Min, respectively. In all reported cases E s < T , as expected. The total error of Count-Min, E c is, most of the time, one order of magnitude larger than E s . For SRR with k = 15, it even exceeds the total number of k-mers ∥a∥ 1 in the dataset.

The average error of Set-Min is, in most cases, very close to 1, which suggests that the overwhelming majority of collisions occur between successive counts such as 1 and 2 -the most abundant ones in the spectra considered here. The average error of Count-Min is bigger but of the same order of magnitude, except for small k and unassembled datasets. On the other hand, the fraction of k-mers producing an error is in striking contrast: in case of Set-Min, about only 1-3% of distinct k-mers produce an error, while for Count-Min, this fraction is much larger. This shows that Count-Min cannot be used when most of k-mer counts are expected to be retrieved precisely, for comparable sketch sizes.

Set-Min vs Max-Min sketch

Table 8.3 compares Set-Min with Max-Min -the optimized version of Count-Min discussed in Section 5.1.2. As expected from theoretical considerations, the performance in terms of average error and sum of errors is better for Max-Min than regular Count-Min, but worse than the one of Set-Min. The same behavior is observed for the number of k-mers having an erroneously estimated frequency. Therefore, Max-Min falls in-between Set-Min and Count-Min, providing a simple and inexpensive practical method to enhance the latter, without reaching the accuracy of the former.

Altogether, Table 8.3 shows that the performance of Max-Min is closer to Count-Min than to Set-Min. This is because, by keeping the maximum element in each bucket, we are reducing each set of Set-Min to a single element opening the possibility of increased collisions by potentially sharing a given maximum element between unrelated k-mers. The intersection operation performed by Set-Min during query is thus strictly necessary, to guarantee the desired error bounds.

Set-Min sketch vs KMC output

Not surprisingly, Set-Min achieves better memory consumption than KMC in all our tests (columns M kmc and M s of Table 8.4). Values of R and B do not change from Table 8.2. Compression rate is variable: from a small factor to two orders of magnitude. The best compression is achieved for larger values of k and assembled genomes. The former is primarily explained by the decreasing number of distinct counts, due to the power-law behavior. As for the difference between assembled genomes and sequencing data, we will discuss it in more details in Section 8.4.6.

Set-Min sketch vs MPHFs

Table 8.4 also reports the space usage for BBHash to obtain the best memory-optimized hash functions. Column M bbhash is the space (in bytes) required by the hash function only, while M bball is the space required by the hash function plus the external array of frequencies.

As in the previous case, Set-Min sketch is more memory-efficient when k is large, taking about an order of magnitude less memory than a MPHF. For small values of k, BBHash takes slightly less space and, being exact, may therefore be the preferable choice. However, one should keep in mind that MPHF does not support updates, while a Set-Min sketch is updatable to a certain extent with new (k-mer,count) pairs, and also mergeable with another possibly redundant map.

The behavior of the unassembled datasets is of particular interest. Even for large k's, MPHF appears to be a better choice for this type of data. The causes of this phenomenon and possible solutions are discussed in Section 8.4.6.

Unassembled datasets

As seen in Table 8.4, for the unassembled datasets, Set-Min sketch does not seem to have an advantage in memory usage, even for large k's. We found that this is due to low-count k-mers, specifically to k-mers whose count does not exceed the sequencing coverage. It is known that for Illumina sequencing, sequencing errors produce a linear growth of the number of new distinct k-mers (for large k) depending on the coverage (see e.g. Figure 2(b) of [START_REF] Salikhov | Using cascading Bloom filters to improve the memory usage for de Brujin graphs[END_REF]). Frequencies of these "erroneous" k-mers do not have the same statistical behavior as bona fide k-mers, in particular first spectrum values do not decay at the same rate as the rest of the spectrum. Figure 8.5 shows the spectrum of the unassembled SRR datasets. One can observe a slower decay behavior for a few first spectrum values. In this situation, additional rows are needed just to make the sketch able to distinguish, with required precision, between small frequency values. Note that in practice, distinguishing between small frequencies is often irrelevant. For example, many read assemblers simply discard low-frequency reads as a way to de-noise the data. In the case of Set-Min, it is possible to collapse together the first m columns of the spectrum by assigning to all k-mers in this subset the same frequency. This would considerably reduce the sketch size. Formally, error guarantee (8.5) would not hold anymore, but most of newly introduced errors would be small (typically, equal to 1) and would occur for low counts only.

To check the above, we constructed a Set-Min sketch for SRR with dimensions (R, B) = (4, 3310557), merging together the first five columns of the sorted spectrum and assigning count 5 to all merged k-mers. While the final sum of errors was well above the theoretical limit (10 9 against 7 • 10 6 ), the maximum and average error were respectively 55 and 2.8. In many applications this error level could be acceptable.

Time measurements

Construction time is reported in Figure 8.6. Set-Min sketches are generally faster to build than memory-optimized BBHash except for smaller values of k. However, similarly to Table 8.4, Set-Min sketch is at a disadvantage when the count value distribution is less skewed, such in the case of short k or for unassembled reads. For highly skewed data, Set-Min can be built faster than BBHash MPHFs, but is still more computationally demanding than Count-Min or Max-Min because of the additional operations required to create and update the sets of labels. Set-Min average query time performance is 50% slower than Count-Min (and by extension of Max-Min) and comparable to those of BBHash, when data is very skewed. Following the previous trend, Set-Min sketches appear to be the slowest method for small values of k and for unassembled reads. Note how, the number of k-mers appearing 2 times is not that smaller than the number of unique k-mers. In such a case, Set-Min sketch needs a lot of space just to distinguish count values of these two groups. As before, unassembled datasets and small values of k prove to be the most difficult situations. On the other hand, for very skewed distributions Set-Min sketches perform as well as BBHash MPHFs. 8.4: Set-Min (ϵ = 0.01) compared to KMC and BBHash (run with γ = 1). All memory is reported in bytes. Column M kmc , M s , M bball are the memory taken by a fully functional map between k-mers and their frequencies when applying KMC, Set-Min sketch and BBHash, respectively. M bbhash is the memory of the hash function produced by BBHash without the external array of frequencies. 
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Discussion

We presented Set-Min sketch -a novel sketching method inspired by the Count-Min sketch, whose primary use is to associate keys to labels without explicitly storing the former. We demonstrated its advantages for storing k-mer counts information when the distribution of labels (k-mer counts) follows a power-law distribution. Under this assumption, we proposed simple bounds for a Set-Min sketch that guarantee the total error sum to be within an ε fraction of the total number of k-mers in the dataset. We showed that the probabilistic compression provided by Set-Min sketches allows for better memory usage compared to the raw output of the popular KMC k-mer counting tool when applied to labels following a skewed distribution, at the price of a very modest error rate. Space savings are especially remarkable in case of whole-genome data and large values of k, where they can reach two orders of magnitude reductions in memory usage. Set-Min has been shown to be more space efficient than the MPHF-based solution for large values of k. For smaller k's, however, MPHFs provide an implementation with comparable memory consumption.

Set-Min sketches are easy to implement and fast to build thanks to the same matrix layout of Count-Min sketches. The only true complex operations that need extra attention are insertions into each cell of the sketch. Luckily, overall space can be further reduced by implementing one of the many optimizations introduced earlier: replacement of cell sets with indices to involved sets or ignoring the most common count value if the set of possible k-mers is known in advance. Count sketches provide a good trade-off between algorithmic complexity, space, construction/query times and errors, with Set-Min optimized for medium-long term storage of counts. Finally, Set-Min sketch achieves better point-query errors than both Count-Min and Max-Min sketches of comparable dimensions, thanks to the distribution-aware dimensioning performed on the k-mer spectrum.

Another application of Set-Min sketches, not explored here, is to act as a temporary representation while building more complex structures based on counters. Consider, for example, the exact computation of weighted pairwise distances between all pairs of genomes in a given set. Examples of such distances are the Bray-Curtis similarity measure, see e.g. [START_REF] Benoit | SimkaMin: fast and resource frugal de novo comparative metagenomics[END_REF], or Weighted Jaccard similarity estimation [START_REF] Ioffe | Improved Consistent Sampling, Weighted Minhash and L1 Sketching[END_REF]. The most naive algorithm is to first process each sequence independently, generating one count tables for each, and then compare tables pair-wisely to produce the desired output. Instead of storing whole tables, one can store multiple Set-Min sketches together with a presence-absence data structure, such as a Bloom filter. By doing so, the weighted comparison computation is reduced to a single pass through the presence-absence data structure with the counters of a given k-mer retrieved on-demand from the Set-Min sketches of the datasets in which the k-mer is found. Yet another possible application is sharing counter information between different computational units in a distributed setting, where a server oversees multiple less powerful machines. All nodes have access to the same genomic representation (say, a set of contigs), but only the server can efficiently perform k-mer counting, while the smaller machines have the task of processing incoming data based on the counts. In this case, the server could send a Set-Min sketch to all its subordinates.

One further feature of Set-Min sketch is its mergeability from redundant maps. A large map can be split into m sub-maps without the restriction of having disjoint sets of keys. Even if some maps have redundant information, i.e. share common (key, value) pairs, the Set-Min sketch built by cell-wise union of the m sketches will be equivalent to the sketch built from the whole original map. Count-Min sketches do not have this property, but instead they are mergeable when constituent maps should be "added up". In case of redundancy, Count-Min will simply count each repeated item multiple times. In this respect, Set-Min and Count-Min sketches may have complementary uses.

As introduced in Section 8.1, in this work we assumed that only k-mers present in the dataset can be queried. This assumption allowed us to discard the largest value of the spectrum corresponding to unique k-mers, thereby saving space. Set-Min sketches can seamlessly work without this assumption, but the space required for storing k-mer counters may not be competitive to other solutions. An alternative could be to build an additional data structure, such as a Bloom filter, representing presence-absence information for the set of k-mers having the largest count. This allows the discrimination between k-mers absent in the dataset from those present but non-represented in the sketch.

Another scenario occurs when working with multiple datasets of very high similarity, such as large collections of bacterial strains [START_REF] Solomon | Fast Search of Thousands of Short-Read Sequencing Experiments[END_REF]. In this case, it might be beneficial to build a Bloom filter for the k-mers present in the union of the datasets, and maintain multiple Set-Min sketches to represent k-mer counts in each dataset.

Note that Set-Min sketches can also be helpful for long-term storage and transmission of the k-mer composition of a dataset augmented with count information. The k-mers of the dataset can be reassembled into simplitigs [START_REF] Břinda | Simplitigs as an efficient and scalable representation of de Bruijn graphs[END_REF] with a Set-Min sketch storing the (approximated) frequencies. The full count table can be restored from the simplitigs and the sketch.

Chapter 10

Context and motivation 10.1 Problem statement

The previously introduced Set-Min sketching technique allows for efficient storage of very skewed distributions of k-mer counts. However, in some applications even small errors might be undesirable. For example, it could be useful to separate unique k-mers from the others in order to find unambiguous seeds or correct reads [START_REF] Limasset | Toward perfect reads: self-correction of short reads via mapping on de Bruijn graphs[END_REF]. Finding unique k-mers exactly with Set-Min sketches is not possible, since errors primarily come from mixing together the most common frequencies which, in practice, are usually the lowest ones [START_REF] Csűrös | Reconsidering the significance of genomic word frequencies[END_REF]. More generally, information about k-mer counts is increasingly used in other applications too [START_REF] Sims | Alignment-free genome comparison with feature frequency profiles (FFP) and optimal resolutions[END_REF][START_REF] Rahman | Association mapping from sequencing reads using k-mers[END_REF][START_REF] Khorsand | Nebula: ultra-efficient mapping-free structural variant genotyper[END_REF][START_REF] Marchet | REINDEER: efficient indexing of k-mer presence and abundance in sequencing datasets[END_REF][START_REF] Karasikov | MetaGraph: Indexing and Analysing Nucleotide Archives at Petabase-scale[END_REF][START_REF] Karasikov | Sparse Binary Relation Representations for Genome Graph Annotation[END_REF][START_REF] Mustafa | Metannot: A succinct data structure for compression of colors in dynamic de Bruijn graphs[END_REF], which can benefit from (exact) spaceefficient solutions. Furthermore, assigning to each k-mer its frequency in a dataset is just one particular application of mapping k-mers to numerical values. To this end, mapping k-mers to indices of an array is an effective solution which makes possible any type of annotation.

Minimal Perfect Hash Functions (MPHFs for short) implement such an approach [START_REF] Müller | Retrieval and Perfect Hashing Using Fingerprinting[END_REF][START_REF] Yu | Memoryefficient and Ultra-fast Network Lookup and Forwarding using Othello Hashing[END_REF][START_REF] Esposito | RecSplit: Minimal Perfect Hashing via Recursive Splitting[END_REF] and are already extensively applied as building blocks in bioinformatics solutions [START_REF] Limasset | Fast and scalable minimal perfect hashing for massive key sets[END_REF][START_REF] Yu | SeqOthello: querying RNA-seq experiments at scale[END_REF]. Having two independent data structures allows for more aggressive space optimizations. For example, the original sequence dataset can be used as the primary source of k-mers while a random-access data structure will then allow retrieving their counts efficiently. A MPHF bijectively maps each item from a set S to an index in the range [0, |S| -1]. Any additional information can then be stored in an array indexed by the values returned by the MPHF. The idea works well as long as the array stores a number of distinct elements close to |S|, but it can be suboptimal for count values nonuniformly distributed, which is the case for k-mer counts. Because of this, the multiset of k-mer counts will typically have a fairly low empirical zero-order entropy, and it could be effectively compressed to save further space. However, standard compression algorithms do not maintain random access to the compressed contents limiting this solution to be a long-term storage option only. Furthermore, MPHFs themselves encompass a nonnegligible space overhead which must be added to the space of the array storing the counters. In case of BBHash [START_REF] Limasset | Fast and scalable minimal perfect hashing for massive key sets[END_REF] this surplus is around 3 bits/key, whereas the theoretical minimum is 1.44.

An alternative to MPHFs are the so-called Static Functions [11,[START_REF] Genuzio | Fast scalable construction of ([compressed] static | minimal perfect hash) functions[END_REF] which encode values together with their hash function into a single structure. In particular, Compressed Static Functions (CSFs), as their name suggests, are Static Functions whose space approaches the number of bits defined by the empirical entropy of the stored values. This feature makes them particularly useful for representing different k-mer annotations, such as counts or presence information across sequences of a given sample [START_REF] Marchet | REINDEER: efficient indexing of k-mer presence and abundance in sequencing datasets[END_REF][START_REF] Karasikov | MetaGraph: Indexing and Analysing Nucleotide Archives at Petabase-scale[END_REF][START_REF] Karasikov | Sparse Binary Relation Representations for Genome Graph Annotation[END_REF][START_REF] Mustafa | Metannot: A succinct data structure for compression of colors in dynamic de Bruijn graphs[END_REF]. Both MPHFs and CSFs do not deal with k-mers themselves (as it was the case for sketch-

Contributions

The following chapters present new data structures based on Compressed Static Functions for storing genomic k-mer count tables using the smallest possible space. Section 11.2.1 demonstrates how to extend the only practical implementation of CSFs [START_REF] Genuzio | Fast scalable construction of ([compressed] static | minimal perfect hash) functions[END_REF] with Bloom filters (see Section 5.1) in order to break its intrinsic lower-bound of 1 bit per element allowing to efficiently represent multisets of counts of very low entropy. The resulting Bloom-enhanced CSFs (BCSFs) are then used as building blocks in Chapter 11 in combination with minimizer bucketing to obtain two additional exact algorithms: AMB and FIL. Both algorithms take advantage of the fact that similar k-mers tend to have identical (or similar) counts [START_REF] Marchet | REINDEER: efficient indexing of k-mer presence and abundance in sequencing datasets[END_REF] by bucketing together count values of k-mers with the same minimizer. A similar idea is used by some k-mer counting algorithms [START_REF] Rizk | DSK: k-mer counting with very low memory usage[END_REF][START_REF] Kokot | KMC 3: counting and manipulating k-mer statistics[END_REF][START_REF] Lemane | kmtricks: Efficient construction of Bloom filters for large sequencing data collections[END_REF] with the difference that in our case buckets contain counts rather than the k-mers themselves. By choosing a representative value for each bucket, we obtain a "bucket table" that we encode using Bloom-enhanced CSF.

Results for both AMB and FIL are reported in Section 11.3 demonstrating their utility for both low and high entropy datasets. Space and time comparisons clearly show how the proposed methods are able to represent count tables efficiently, while still being able to query the resulting data structures. In particular, for large enough k (and large enough minimizers lengths), we are able to compress count values in less space than their empirical entropy while retaining fast query times. To the best of our knowledge, this is the first implementation proposing such a compact representation. In addition to these exact representations, the natural extension of our algorithm AMB to the approximate case is presented in Section 11.2.6 with additional space savings obtained by allowing a predefined absolute error over queries.

We collectively call our implementations "Locom" which can be found at https: //github.com/yhhshb/locom.

Chapter 11

Locom: minimizers meet Compressed Static Functions

Unlike Set-Min sketches (Chapter II), Locom is able to provide exact representations, and it is capable of dealing with counts not necessarily power-law distributed. The wider applicability range stems from the smart combination of minimizer bucketing, Bloom Filters and Compressed Static Functions producing, in some cases, compressed representations smaller than the empirical entropy of the counts they are storing. The intuition behind our methods is presented in Section 11.1. We follow by presenting two different methods for compressing counts, AMB in Section 11.2.3 and FIL in Section 11.2.4. Finally, Section 11.3 presents our results.

Key algorithmic ideas

For ease of explanation, throughout the rest of this work dedicated to Locom, we will consider k-mer count tables as associative arrays f , mapping a set of k-mers K, considered static, to their counts, i.e. number of occurrences in a given dataset. As before, ∥f ∥ 1 stands for the L1-norm of f , that is q∈K f (q).

Correlation of neighboring k-mer counts

Decomposing a sequence into its constituent k-mers is a required step in many bioinformatics analyses. For appropriately long k's, k-mers can be used for sequence similarity computation replacing classical string-based approaches. Moreover, by storing k-mers into fast data structures such as hash tables, algorithms that work on bags of words are usually faster and easier to understand and to implement. Sometimes, however, k-mers alone are not sufficient to capture the complexity of the original sequences. One example of such situation are genomes with high numbers of duplications, which cannot be represented by simple sets. In this case, counting information nicely complements k-mers with additional structural information about the original sequences. For example, k-mers with very high copy numbers come, most of the time, from very low-complexity zones spread throughout genomes, and are often removed from indexes by alignment algorithms. Thus, k-mer counting can provide invaluable information about sequence structure.

As we will empirically demonstrate with our results, this relation between genomic content and k-mer counts also weakly applies in the opposite direction. That is, similar k-mers are likely to have similar counts. Possible sources of similarity are:

• Skewed distributions. All counts are similar because one value is more likely than others (see Figure 11.1). For very high skews, k-mer similarity becomes less important, since very different k-mers start to have the same count values.

• Repeats. Repeated blocks increase the counter of all their k-mers together as depicted in Figure 11.2.

• Mutations. Changing one base likely generates k unique neighboring k-mers (see Figure 11.

3).

A

AC C AC GC 7-mer Figure 11.1: High correlation between neighboring k-mer counts can be due to their high skewed distribution without any particular relation between k-mers. In the reported case k = 7 with all k-mers unique. G The first sequence is the original one, of coverage 20. One of its 20 copies contain a single mutated letter (highlighted in red) which generates a block of 4 additional unique 4mers in the mutated sequence and a block of 4 4-mers of frequency 19 from the original sequence. Since the affected count values in both sequences are somehow linked to some particular k-mers, LSH techniques looking at k-mer composition are a viable option to bucket counts together. However, collisions between different count values are possible, and should be dealt with.

The above examples only refer to counting fully assembled genomes, but the property holds true for other types of datasets too. For example, in [START_REF] Marchet | REINDEER: efficient indexing of k-mer presence and abundance in sequencing datasets[END_REF] counts obtained from transcriptomes are compressed by replacing blocks of similar values by their average, without detrimental effects on downstream analysis.

Minimizers as a context-aware bucketing technique of kmers

Minimizers are a popular technique used in different applications involving k-mer analysis. The use of minimizers for biosequence analysis goes back to [START_REF] Roberts | Reducing storage requirements for biological sequence comparison[END_REF], whereas a similar concept, named winnowing, was earlier applied in [START_REF] Schleimer | Winnowing: local algorithms for document fingerprinting[END_REF] both papers define minimizers over windows of w consecutive k-mers with a minimizer being the minimum k-mer of a window. This original definition of minimizers have been extensively applied to various data-intensive sequence analysis problems in bioinformatics, such as metagenomics (Kraken [START_REF] Derrick | Kraken: ultrafast metagenomic sequence classification using exact alignments[END_REF]) or minimizing cache misses in k-mer counting (KMC [START_REF] Kokot | KMC 3: counting and manipulating k-mer statistics[END_REF]), or mapping and assembling long single-molecule reads [START_REF] Li | Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences[END_REF][START_REF] Li | Minimap2: pairwise alignment for nucleotide sequences[END_REF]. Space reduction comes from the fact that successive windows often share the same minimum with minimizer indexes subsets of the k-mer sets they originate from. Recently, there has been a series of works on both theoretical and practical aspects of designing efficient minimizers for aligning sequences, see e.g. [START_REF] Zheng | Lower Density Selection Schemes via Small Universal Hitting Sets with Short Remaining Path Length[END_REF][START_REF] Ekim | A Randomized Parallel Algorithm for Efficiently Finding Near-Optimal Universal Hitting Sets[END_REF].

Here, instead, we define minimizers following the definition given in [START_REF] Rizk | DSK: k-mer counting with very low memory usage[END_REF][START_REF] Kokot | KMC 3: counting and manipulating k-mer statistics[END_REF]. Given a k-mer q of length k, its minimizer of length m, with m ≤ k, is the smallest substring of q of length m w.r.t. some order defined on m-mers. Standard practice is to use a non-cryptographic hash function to hash m-mers and take the one with the minimum hash value as minimizer. Note that the lexicographic ordering has been shown to have poor statistical properties [START_REF] Roberts | Reducing storage requirements for biological sequence comparison[END_REF]. The choice of hash function is not important as long as it has good statistical guarantees (randomness and uniformity). The guiding idea is that a minimizer can be considered as a "footprint" (hash value) of a corresponding kmer so that similar (e.g. neighboring in the genome) k-mers are likely to have the same minimizer, see Figure 11.4. In this case, minimizers can be seen as a specific instance of locality-sensitive hashing, in particular of MinHash sketching [START_REF] Broder | On the resemblance and containment of documents[END_REF].

The same algorithm to find "windowed" minimizers can be reused, without modifications, to bucket k-mers, by simply setting window size equal to k and minimizer size equal to m, whereas the original minimizer definition targeted sampling.

Adapting Compressed Static Functions to k-mer count tables 11.2.1 Bloom-enhanced Compressed Static Functions

As mentioned earlier (Section 6.2.2), the Compressed Static Functions (CSF) of [START_REF] Genuzio | Fast scalable construction of ([compressed] static | minimal perfect hash) functions[END_REF] do not properly deal with datasets generated by low-entropy distributions (when entropy is smaller than 1). This case occurs when datasets have a dominant value representing a large fraction (say, more than a half) of all values. This is typically the case with genomic k-mer count data, and whole-genome data in particular, where a very large fraction of k-mers occur just once. For example, in E.Coli genomes (≈5.5Mbp), about 97% of all distinct 15-mers occur once, whereas only the remaining 3% occur twice or more. For such datasets, the method of [START_REF] Genuzio | Fast scalable construction of ([compressed] static | minimal perfect hash) functions[END_REF] does not approximate well the empirical entropy, as it cannot achieve less than 1 bit per key. Our technique to circumvent this deficiency and compress close to the empirical entropy is to augment CSFs of [START_REF] Genuzio | Fast scalable construction of ([compressed] static | minimal perfect hash) functions[END_REF] with Bloom filters (Section 5.1.5). We start by building a Bloom filter for all k-mers whose value is not the dominant one, and then we construct a CSF on all positives (i.e. true and false positives) of this filter. At query time, we first check the query k-mer against the Bloom filter and, if the answer is positive, recover its value from the CSF. Formally, let K 0 be the k-mers with the most common frequency. Let |K 0 | = α|K|. Assume that our Bloom filter implementation takes C BF log 1 ε bits per key and our CSF implementation takes C CSF bits per key. For the purpose of explanation, we will specify both C BF and C CSF at the end of this section.

We store keys K \ K 0 in a Bloom filter B and build a CSF for (K \ K 0 ) ∪ F P B (K 0 ). The total space is

C BF (1 -α)|K| log 1 ε + C CSF |K|((1 -α) + εα). ( 11.1) 
The Bloom filter enables space-saving only if α is sufficiently large. To decide if we need a Bloom filter, we have to verify if the inequality

C BF (1 -α)|K| log 1 ε + C CSF |K|((1 -α) + εα) < C CSF |K|. (11.2) 
holds for some ε < 1. Note again that C CSF on the left and right sides are not exactly the same in reality, however assuming them the same is not reductive because of specificities of the CSF implementation we use. We will elaborate further on this later on. Then (11.2) rewrites to

C BF C CSF 1 -α α log 1 ε + ε < 1. (11.3) 
Using simple calculus, we obtain that if

C BF C CSF 1-α α > ln 2 (that is, C BF C CSF 1-α α log e > 1)
, then (11.3) never holds for 0 < ε < 1. The left-hand side of (11.3) reaches its minimum for

ε 0 = C BF C CSF 1 -α α log e, (11.4) 
and this minimum is smaller than 1 if ε 0 < 1. We conclude that in order to decide if a Bloom filter enables space-saving, we have to check the value ε 0 . If ε 0 ≥ 1, we do not need a Bloom filter, otherwise we need one with ε = ε 0 . This shows that a Bloom filter is needed whenever

α > C BF log e C CSF + C BF log e (11 .5) 
For C BF = C CSF , this gives α > 0.59.

In order to apply equation (11.4), we need estimates of C BF and C CSF , that is, estimates of the number of bits per element taken by our implementations of Bloom filter and CSF. For C BF , we have C BF = 1.44 corresponding to the theoretical coefficient of Bloom filters. On the other hand, we experimentally estimated C CSF associated with the implementation we use as a function of the empirical entropy H 0 , giving:

C CSF =    0.22H 2 0 + 0.18H 0 + 1.16, if H 0 < 2 1.1H 0 + 0.2, otherwise. (11.6) 
In the following we use the term Bloom-enhanced Compressed Static Function, BCSF for short, to speak about CSF possibly augmented by a prior Bloom filter, as described in this section. Algorithm 2 summarizes the computation of the BCSF data structure while Figure 11.5 graphically depicts its main steps.

Minimizer bucketing

A key idea to reduce the computational burden of counting k-mers, is to use minimizers to bucket k-mers and split the counting process across multiple tables (cf e.g. [START_REF] Kokot | KMC 3: counting and manipulating k-mer statistics[END_REF]). Here we use the same principle to bucket count values instead of k-mers themselves. Let M m (K) = {µ m (q) | q ∈ K} be the set of minimizers of all k-mers of K of a given length m < k (µ m (q) is the function returning the minimizer of k-mer q). We map the input set K onto the (smaller) set M m (K). To each minimizer s ∈ M m (K), corresponds the bucket {f (q) | q ∈ K, µ m (q) = s}. We call a minimizer and the corresponding bucket ambiguous if this set contains more than one value. The guiding idea is to replace f by a mapping g of M m (K) to N. Querying value f (q) for a k-mer q ∈ K will reduce to first querying g(µ m (q)) and then possibly "correcting" the retrieved value. In other words, for each bucket, we replace its set of counts with one representative value, and we split the query into two operations: retrieving the representative from the buckets and correcting to reconstruct the original value. The rationale is that k-mers having the same minimizer tend to have the same count allowing multiple values to be dealt with by a single bucket.

Obviously, m should be large enough such that similar k-mers tend to bucket together. Similarly to Section 8.1.1, we use m > log 4 (L), where L is the size of the reference genome associated to the input data. The same rule applies to k following the definition of minimizers for which k >= m. How much larger k should be compared to m depends on how much local counts are in practice. For discriminative values of m (m ≫ log 4 (L)) and expected high locality, choosing k ≫ m leads to better overall compression when bucketing is involved.

We consider two implementations which differ on how the representatives are chosen and how corrections are applied.

Lazy collision resolution: AMB

The first implementation is named AMB (from AMBiguity). For non-ambiguous minimizers u, AMB defines g(u) to be the unique value of the bucket. For ambiguous minimizers v, we set g(v) = 0, where 0 is viewed as a special value marking ambiguous buckets (k-mers with count 0 are not present in the input). This has the disadvantage of providing no information about the values of ambiguous buckets, and also of making g less compressible (because of an additional value). On the other hand, this has the advantage of distinguishing between ambiguous and non-ambiguous buckets and allows the query to immediately return the answer for k-mers hashing to non-ambiguous buckets. As a consequence, unambiguous k-mers are not propagated further, and if g(µ m (q)) ̸ = 0 it can be immediately returned as f (q). We then have to store mapping f restricted only to k-mers from ambiguous buckets, which we denote f . Both mappings g and f are stored using BCSFs. A graphical representation of the above procedure is reported in Figure 11.6.

Correcting the effects of collisions: FIL

The second implementation is named FIL (from FILtration) and is shown in Algorithm 4. Here, g(s) is defined to be the majority value among all values of its bucket, ties resolved arbitrarily. In particular, if s is a non-ambiguous minimizer then g(s) is set to the unique value of the bucket. In practice, computing the majority value may incur a computational overhead as this requires storing bucket values until all values are known. An option to cope with this, not explored further in this work, is to use the "approximate majority" computed by the online Boyer-Moore majority algorithm [START_REF] Boyer | MJRTY-A Fast Majority Vote Algorithm[END_REF]. We then store a "correcting mapping" h : K → N defined by h(q) = f (q) -g(µ m (q)). That is, we construct another counting table h where each k-mer is associated to the correction factor h(q), which, added to the representative g(s) results in the original count c. Both mappings g and h are stored using BCSFs. The rationale for this scheme is that, due to the properties of minimizers, h(q) is supposed to be often 0, which makes h well compressible using BCSF. Note that because of the majority rule, 0 will always be the majority value of h (see Figure 11.7). Therefore, the Bloom filter of the BCSF storing h (if any) will hold k-mers q with f (q) ̸ = g(µ m (q)) (i.e. h(q) ̸ = 0). Then the BCSF will store h restricted to k-mers with h(q) ̸ = 0 together with a subset of k-mers (false positives of the Bloom filter) for which h(q) = 0.

Cascading

An intermediate layer corresponding to a minimizer length m < k, introduced in Section 11.2.2, can be viewed as a "filter" providing values for some k-mers and "propagating" the other k-mers to the next layer. Therefore, both implementations can be cascaded into more than one layer. This construction is reminiscent of the BBHash algorithm [START_REF] Limasset | Fast and scalable minimal perfect hashing for massive key sets[END_REF] or to cascading Bloom filters from [START_REF] Salikhov | Using cascading Bloom filters to improve the memory usage for de Brujin graphs[END_REF].

For m 1 < m 2 < ...m ℓ ≤ k, each layer i is then input some map f i-1 defined on a subset of k-mers K i-1 ⊆ K (f 0 = f , K 0 = K) and outputs another map f i defined on a smaller subset K i ⊆ K i-1 . Each layer stores a bucket table for minimizers M m i (K) = {µ m i (q) | q ∈ K i-1 }. The specific definition of f i and K i depends on the implementation.

The multi-layer scheme is particularly intuitive for the AMB implementation, where each layer stores a unique value for non-ambiguous minimizers and a special value 0 otherwise. In this case, K i consists of those k-mers of K i-1 hashed to ambiguous buckets, and f i is simply a restriction of f to those k-mers. Algorithm 3 shows a pseudocode of multi-level AMB extended to the approximate case (see Section 11.2.6 below), while Figure 11.8 depicting a graphical representation of the algorithm used for query. The multi-layer version of the FIL scheme is shown in Algorithm 5.

Extension to approximate counts

In addition to cascading, AMB can also be easily extended to work as an approximation algorithm. Consider, to this end, the layered bucketing procedure described in 11.2.5. In the exact case, a bucket is marked as colliding whenever it contains two or more distinct count values. In the approximate case, a collision is defined if a bucket contains a pair of counts, c i , c j such that |c i -c j | > δ with δ a pre-defined maximum absolute error. With this modification, the algorithm guarantees to output a value within the absolute error δ from the true count.

We chose g(s) to be the minimum value in a bucket if the bucket is unambiguous. The rationale of using minimum is the decreasing behavior of k-mer spectra which implies that smaller counts are more frequent and therefore more likely to constitute the majority. In order to detect collisions, it is then sufficient to only remember the maximum max(s) and minimum min(s) values seen by each bucket and check if max(s) -min(s) > δ. If that is the case, then the bucket is marked as colliding, otherwise min(s) is chosen as representative (see Algorithm 3). 11.6: Depiction of AMB's construction algorithm for a table containing 3-mers, minimizer length m = 2 and δ = 0. Counts are first bucketed using minimizers (1) Nonambiguous buckets are reduced to their single value while ambiguous buckets are marked with the special value 0 (2) k-mers inside ambiguous buckets are then filtered (3) Both the array of representatives and the filtered table are then stored using BCSFs (steps (4) and ( 5)). Extension to the multi-layered case can be easily achieved by re-applying the same procedure on the filtered table with a bigger m ′ > m as long as m ′ ≤ k. for larger k's, minimizers provide an effective way of factoring the space of k-mers in such a way that k-mers with equal counts tend to have the same minimizer.
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More in detail, for larger k, the overwhelming majority of buckets are unambiguous (e.g. more than 99% of them, for k = 18, m = 13). As a consequence, AMB is able to "filter out" a very large number of k-mers with few buckets. Only a small set of k-mers, corresponding to ambiguous buckets, are propagated to the next layer. This, combined with the prevalence of one value due to the skewness of the count distribution, and the fact of using minimizers with increasing lengths, leads to highly compressible bucket tables. Altogether, this enables breaking the empirical entropy lower bound.

The situation is similar for FIL: its first layer is even better compressible than the one of AMB, due to the absence of the additional special value which makes the table of AMB slightly less compressible. On the other hand, the BCSF of the second layer table of FIL turns out to take more space than that of AMB. This is because its Bloom filter operates on the large set of all k-mers, which implies a very small value of ε to keep the set of false positives under control, and as a consequence, a relatively large Bloom filter. Overall, FIL turns out to yield a slightly larger space than AMB.

For small k's, none of our methods beats the empirical entropy, with minimizers unable to provide an efficient mean to factor the space of k-mers according to count values. On the contrary, we observe that in this case applying a BCSF to the input table provides the most efficient solution.

Since longer k-mers lead to more skewed data, and by extension, to smaller entropies, both AMB and FIL better compress whole genome count tables for increasing ks. The Elegans dataset (around 100 Mbp) tests this assumption. We randomly chose m 1 = 18 and m 2 = 19 for both three-layer AMB and FIL (ignoring m 2 for the two layered versions). Figure 11.10 demonstrates that our algorithms are not limited to bacterial genomes. Instead, they are applicable in the general case as long as count tables are computed on fully assembled data and k is large enough. Note that, under such a regime, larger values of k only reduce the entropy of the data, leading to more succinct representations whereas simple CSF could not go below 1.2 bits/k-mer.

Compression of higher entropy data

With very skewed data, collisions of k-mer counts may happen between unrelated k-mers simply because one counter value strongly dominates the spectrum. In order to demonstrate the utility of minimizers in a more general setting other than whole genome count tables, we applied our methods to less skewed distributions. To this end, we compressed the k-mer count tables when using dataset SRR10211353 whose results are presented in Figure 11.12. As opposed to fully assembled genomes, entropy in this case remains well above 1 even for larger values of k. Nonetheless, both AMB and FIL are able to produce representations more compact than both simple CSFs and BCSFs for all k > 13, beating the entropy lower bound.

Further proof of the ability of minimizer-based bucketing to boost compression of kmer count tables can be found in Figure 11.11. Here, we compressed the table produced by counting the number of occurrences for each k-mer among the 29 E.Coli genomes of dataset df (note that df is a mnemonic for "document frequency"). Note that entropy does not decrease as rapidly as before with increasing k, despite counts bounded in the range [1,[START_REF] Břinda | Simplitigs as an efficient and scalable representation of de Bruijn graphs[END_REF].

The use of minimizers for larger k's, proves to be beneficial again, with AMB and FIL requiring much less space than the empirical entropy of the data. Again, when k = 13, both AMB and FIL do not have an advantage over a simpler (B)CSF. For even smaller k-mers (B)CSF remains the best option (see Figure 11.13). The seemingly erroneous exceptions (BCSF taking more space than simple CSF) are explained by the approximation carried out by formula (11.2) (assumption of equal values of C CSF in both sides).

Approximate counts

In many applications, it is acceptable to tolerate a small absolute error in retrieved counts. Figure 11.15 reports space usage when using the approximate version of AMB (δ > 0, see section 11.2.6) on the Sakai dataset. Results for the exact algorithm (δ = 0) are reported in Figure 11.14 for comparison.

In order to show how the approximate algorithm achieves better compression ratios, k was chosen from [START_REF] Ben Basat | Faster and More Accurate Measurement through Additive-Error Counters[END_REF]11,[START_REF] Belbasi | The minimizer jaccard estimator is biased and inconsistent[END_REF][START_REF] Benoit | SimkaMin: fast and resource frugal de novo comparative metagenomics[END_REF], a range of values which is particularly difficult for AMB (or FIL) with δ = 0. Trying all possible minimizer combinations compatible with such ks, the best results are obtained for very short minimizer lengths (between 1 and 5). Building minimizer layers for such small values of m does not lead to better compression than simple (B)CSFs, with Figure 11.14 showing no tangible differences between (B)CSFs and AMB (or FIL). For these reasons, minimizer lengths in Figure 11.15 are equal to k -1 (and k -2) for every choice of k (e.g. if k = 10, layers will be 8, 9, 10 for three-layer AMB). Using the same small lengths of the exact case would not allow meaningful bucketing of counts values.

An interesting observation about the approximate case is that AMB with three layers is substantially better than AMB with two layers only for k = 12 and k = 13. For k = 10 and k = 11 both versions give almost the same results. Figure 11.16 shows query time averaged over all distinct k-mers, in ns/k-mer. Simple CSFs, not surprisingly, are the fastest method, with BCSF having a negligible effect on the average query speed. On the other hand, bucketing has a tangible effect on performance, with speed negatively affected by additional layers. For short k-mers, both FIL and AMB are slower than the simple CSF by a factor equal to their number of layers.

Query speed

The situation is different for larger k's where AMB is only marginally slower than a bare-bones CSF. This is because most queries are solved without accessing all layers every time, thanks to unambiguous buckets. Two-layered FIL, on the other hand, gives almost constant average query times across all test, since all queries have to access both of its layers to reconstruct the exact count value. We did not perform tests for FIL with 3 layers because it will always be slower than the two layered version.

Technical observations

In all reported cases, good minimizer lengths for the first layer (m 0 ) follow the rule: m 0 > m s = (log 4 |G| + 2) with |G|, the size in base pairs of the genome. Smaller m 0 , are no longer capable of partitioning k-mers in a meaningful way. Furthermore, space tends to first monotonically decrease to a minimum for increasing minimizer lengths, to increase again once the optimal value is passed. It is therefore possible to find the minimum by sequentially trying all possible minimizers greater than m s and stop as soon as the compressed size starts to increase again.

If it is not possible to choose m 0 > m s = (log 4 |G| + 2) because, e.g. k is already too small, approximation might be a viable option even for relatively small δ. The only caveat to pay attention to in this case is to check if a minimizer layer would be useful or not. If yes, δ can be incremented without further adjustments compared to exact case.

If not, minimizer lengths for the bucketing layers should be chosen as big as possible to allow meaningful bucketing of count values.

Our results also show how multiple layers have a marginal effect on final compression sizes. In case of AMB, using three layers is always helpful, compared to the two-layer case. Best results are usually achieved for combinations including the best minimizer length obtained for the two-layer case. On the other hand, FIL with three layers seems to be advantageous only for low entropy data, performing worse than its two-layer counterpart when compressing document frequency tables and for small k's. 

Chapter 12 Discussion

We introduced three data structures to represent compressed k-mer count tables.

BCSFs combine Compressed Static Functions, as implemented in Sux4J software [START_REF] Genuzio | Fast scalable construction of ([compressed] static | minimal perfect hash) functions[END_REF], with Bloom filters thus allowing for much better compression of skewed distributions with empirical entropy smaller than 1. To the best of our knowledge, this was the first time CSFs were used in a bioinformatics application. We provide a method to optimally dimension BCSFs.

AMB and FIL pair BCSFs with a bucketing procedure where count values are mapped into buckets according to k-mer's minimizers. This locality-sensitive hashing scheme allows to efficiently factor the space of counts, which leads to breaking the empirical entropy lower bound for large enough k's. Both algorithms use slightly different strategies in decomposing the input table across minimizer layers:

• AMB tries to reduce space by representing counts of multiple k-mers at once. Colliding buckets containing multiple distinct values are marked with a special value and all involved k-mers are propagated to the next layer. Since non-colliding k-mers do not propagate further, each successive layer is expected to contain fewer k-mers than its predecessor.

• FIL, on the other hand, is not limited by collisions in buckets since it is always able to assign representatives to buckets by majority rule. The input table is then altered to map each k-mer to the difference between its value and its representative.

Count values are then retrieved by adding representatives to these correction factors. Memory reduction comes from the fact that, by construction, 0 is the expected most common value in each layer, making them more compressible using BCSFs.

Our last contribution is an extension of AMB to the approximate case, gaining more space at the expense of a small and user-definable absolute error on the retrieved counts.

We validated our algorithms on four different types of count tables, two fully assembled genomes (E.Coli and C.Elegans) of different sizes, one dataset of E.Coli reads at 10x coverage and one document frequency table of 29 different E.Coli genomes, for different k-mer lengths. AMB and FIL have a clear advantage when minimizers are long enough to bucket k-mers in a meaningful way, for both skewed and high entropy data. When it is not possible to define a long-enough minimizer length, the advantage of using intermediate minimizer layers vanishes, and simple CSF and its BCSF provide a better solution.

In all our experiments, the data structures produced by AMB are smaller than the ones given by FIL. This is due to the bigger BCSF needed by FIL in order to store the propagated k-mers after the bucketing procedure. Since there is no way for FIL to distinguish between colliding and non-colliding k-mers, output tables contain all k-mers in input. Despite the better compressibility of the set of corrections, the combined size of the two BCSFs of FIL ends-up bigger than its AMB equivalent. Potential regimes where FIL performs better than AMB are an interesting open question left for future developments.

At query time, CSF and BCSF are the fastest methods requiring about 100ns on average for a single query. For a fixed number of layers, AMB is faster than FIL in all situations when minimizers are useful. FIL becomes faster than AMB only for those cases when both algorithms achieve worse compression ratios than simple (B)CSF.

We consider this study to be the first step towards designing efficient representations for k-mer count tables occurring in data-intensive bioinformatics applications. One possible future direction is compression of RNA-Seq experiments where counts may translate expression levels of genes [START_REF] Yu | SeqOthello: querying RNA-seq experiments at scale[END_REF]. RNA-Seq counts usually follow negative binomial distributions which, unlike power-laws are not strictly decreasing. For such reasons, we expect methods presented in this section to be more general than simple Set-Min sketches. This is because the main source of errors of Set-Min sketches are frequencies with similar number of k-mers. For example, Set-Min sketches can easily mix two different count values ℓ 1 and ℓ 2 with |ℓ 1 -ℓ 2 | > 1 if c ℓ 1 ≈ c ℓ 2 leading to bigger sketches. On the other hand, since neighboring RNA-Seq counts are expected to be highly correlated (belonging to areas similarly expressed) AMB and FIL are expected to work without any major hiccup. Metagenomics is another application where minimizers are expected to be beneficial, since different species may be present with different abundances easily captured by k-mer counts.

Chapter 13

Context and motivation

Problem statement

Despite being faster than their alignment-based counterparts, algorithms based on kmer sets are starting to struggle when applied to the large datasets produced nowadays [START_REF] Marchet | Data structures based on k-mers for querying large collections of sequencing data sets[END_REF][START_REF] Gupta | Sub-linear Sequence Search via a Repeated And Merged Bloom Filter (RAMBO): Indexing 170 TB data in 14 hours[END_REF][START_REF] Karasikov | Lossless indexing with counting de bruijn graphs[END_REF]. To deal with this issue, a considerable effort has been put into developing optimized data structures, with succinct solutions [START_REF] Ermanno | Sparse and Skew Hashing of K-Mers[END_REF][START_REF] Karasikov | Lossless indexing with counting de bruijn graphs[END_REF] and approximate membership data structures [START_REF] Salikhov | Using cascading Bloom filters to improve the memory usage for de Brujin graphs[END_REF][START_REF] Gupta | Sub-linear Sequence Search via a Repeated And Merged Bloom Filter (RAMBO): Indexing 170 TB data in 14 hours[END_REF][START_REF] Bingmann | COBS: A Compact Bit-Sliced Signature Index[END_REF][START_REF] Bradley | Ultra-fast search of all deposited bacterial and viral genomic data[END_REF][START_REF] Martin D Muggli | Building large updatable colored de Bruijn graphs via merging[END_REF] being two examples.

In recent years, sketching techniques have been gaining increasing attention thanks to their capacity of drastically decreasing space usage. MinHash is probably the most wellknown representative of this family of algorithms. As already mentioned in Chapter 5, MinHash comparisons of DNA sequence datasets were pioneered in Mash software [START_REF] Ondov | Mash: fast genome and metagenome distance estimation using MinHash[END_REF] and subsequently used in several other tools. With this approach, input datasets are transformed into smaller "sketches" on which subsequent comparisons are performed. In short, sequences are first fragmented into their constituent k-mers which are then hashed, with each sketch storing only s minimum values, with s defined by the user. The fraction of shared hashes between two sketches is an unbiased estimator of the Jaccard similarity index [START_REF] Broder | On the resemblance and containment of documents[END_REF]. A MinHash sketch can thus be viewed as a sample of the set of k-mers of the sequence it represents. Given that s is much smaller than the genome length, working with the sampled hashes leads to fast pairwise comparisons using small memory. However, when two sequences are close and share most of their k-mers, MinHash sketches of small size are not able to reliably estimate their degree of similarity since differences are likely to be missed during sampling. Here, we show a combination of Invertible Bloom Lookup Tables (a sketching technique initially conceived for the problem of set reconciliation) and syncmer-based sampling is able to efficiently estimate the Jaccard index of similar sequences.

Contributions

In Chapter 14, we propose an alternative approach to evaluate the difference in k-mer composition of two related datasets. Our method relies on the Invertible Bloom Lookup Table (IBLT) data structure by [START_REF] Michael | Invertible Bloom lookup tables[END_REF][START_REF] Eppstein | Straggler identification in round-trip data streams via Newton's identities and invertible Bloom filters[END_REF] which is an extension of Bloom filters (see Sections 5.1.5 and 5.1.6), supporting deletions and, most importantly, enumeration (with high probability) of stored items. One of the applications of IBLTs is reconciliation of two sets: in a scenario considered in [START_REF] Michael | Invertible Bloom lookup tables[END_REF], a set A is stored in an IBLT which is then transmitted to the holder of another set B. By screening B against the IBLT of A it is possible to recover the items A \ B and B \ A, with high probability. This is done through the so-called peeling procedure [START_REF] Dietzfelbinger | Tight thresholds for cuckoo hashing via xorsat[END_REF].

Inspired by ideas of [START_REF] Porat | Improved sketching of hamming distance with error correcting[END_REF] we make one step further, we recover A \ B and B \ A from IBLTs of both A and B, rather than a single sketch and the whole other set. A crucial property is that the size of these IBLTs is bounded in terms of the symmetric difference size (A \ B) ∪ (B \ A) rather than the size of the original sets. This provides a key to the efficiency of our solution when input sets are similar: even if input sets are very big, their difference can be recovered using a data structure (sketch) whose size is proportional to the size of said difference, and not to the size of the sets. Further, the symmetric difference allows us to estimate the Jaccard similarity, using information about input set sizes. Thus, whereas close datasets require larger MinHash sketches to be properly compared, our method, on the contrary, requires smaller memory.

Another ingredient of our solution is k-mer sampling. Intuitively, since two adjacent k-mers share k -1 bases, the information stored in the set of all k-mers appears highly redundant. One popular method of sampling k-mers from genomic sequences is based on minimizers [START_REF] Roberts | Reducing storage requirements for biological sequence comparison[END_REF]. Under this technique, consecutive sampled k-mers are within a bounded distance from each other and therefore no large portion of the sequence can remain unsampled. Another favorable property is that similar regions are likely to yield similar samples of minimizers. However, it has recently been shown that estimating Jaccard similarity based on minimizer sampling leads to a bias [START_REF] Belbasi | The minimizer jaccard estimator is biased and inconsistent[END_REF]. Here we propose to replace minimizers by syncmers [START_REF] Edgar | Syncmers are more sensitive than minimizers for selecting conserved k-mers in biological sequences[END_REF]. Syncmers provide another way of k-mer sampling which has certain advantages over minimizers. As opposed to minimizers, syncmers are not context-dependent: for a k-mer to be a syncmer depends on the k-mer alone regardless the context where it occurs, and, under standard randomness assumptions on involved hash functions, all k-mers have equal chance to be syncmers. As a consequence, syncmer sampling leads to an unbiased estimate of Jaccard similarity, as the fraction of syncmers among shared k-mers (intersection) is expected to be the same as that among all k-mers (union). We experimentally validate that this is, indeed, the case.

By combining syncmer sampling with IBLTs, we obtain a space-efficient method for accurately estimating Jaccard similarity for similar datasets. For datasets of high similarity, the proposed method is superior to the popular MinHash algorithm [START_REF] Ondov | Mash: fast genome and metagenome distance estimation using MinHash[END_REF], both in terms of memory and precision. We also propose an application of this technique to retrieve k-mers that differ between two given datasets. Our method computes a superset of those k-mers with a limited number of spurious k-mers. In particular, under the assumption that each k-mer occurs once, our method computes the exact set differences between involved k-mer sets. We validate our algorithms on both simulated data and on real datasets made of SARS-CoV-2 and Staphylococcus Pneumoniae genomes in Section 14.3.

Our implementation of IBLTs is available at https://github.com/yhhshb/km-peeler Chapter 14 KM-peeler: Invertible Bloom Lookup Tables for fast k-mer set differences

The problem of retrieving symmetric set differences using small space has been extensively studied in network applications under the name of "set reconciliation". As the name "reconciliation" suggests, distributed systems often have the need to synchronize slightly divergent copies of the same set stored in different nodes. Instead of exchanging whole sets, the optimal solution consists in exchanging only the unique items needed to recreate perfect copies. However, in order to know the differences to be sent, whole sets differences have to be computed first, nullifying the intuition of only exchanging the minimum required information necessary for reconciliation. Invertible Bloom Lookup Tables [START_REF] Eppstein | Straggler identification in round-trip data streams via Newton's identities and invertible Bloom filters[END_REF][START_REF] Michael | Invertible Bloom lookup tables[END_REF] solve this problem by transforming sets into compressed sketches. IBLTs are dimensioned depending on the number of expected differences between the involved sets. Nodes can thus exchange these small sketches, subtract the elements of their own (uncompressed) set and retrieve the difference from the soupdated resulting sketch. Note how Jaccard similarity can be reframed in terms of such differences and set sizes, making IBLTs suitable sketches for it. In case of k-mer sets, space can be further reduced by sampling k-mers before insertion into IBLTs.

In the next section (Section 14.1) we introduce the remaining building blocks of our method not covered in Section 5.1. The method itself is introduced in Section 14.2, with an experimental evaluation in Section 14.3.

Key algorithmic ideas 14.1.1 Random sampling

Random sampling for a given sampling rate 1/ν, where ν is assumed to be integer, and a fixed random hash function h : Σ k → [0..ν -1] with good statistical properties is performed by sampling (i.e. keeping) all k-mers q that satisfy h(q) = 0.

Minimizers

Unlike Locom which uses minimizers as a Locality Sensitive Hashing scheme for k-mers (sections 11.1.2 and 11.2.2), here they are employed in their original role of sampling technique [START_REF] Roberts | Reducing storage requirements for biological sequence comparison[END_REF] and [START_REF] Schleimer | Winnowing: local algorithms for document fingerprinting[END_REF]. Figure 14.1 presents this mode of operation. In this context, minimizers are defined by a triplet of parameters (k, w, h), where k is the k-mer length, w a window size, and h the function defining a k-mer order. Each window S[i, w + k -1] defines a minimizer which is the minimal k-mer among w k-mers occurring in S[i, w+k-1] w.r.t. the order given by h. Two neighboring minimizers are thus separated by at most w positions making it impossible to have large stretches of the original sequence not covered by any minimizers.

Since two neighboring windows at positions i and i + 1 are likely to share their minimizer, minimizers provide a way to sample k-mers from a sequence with bounded distance between consecutive samples. An advantage of this sampling strategy is that similar sequences will likely have similar lists of minimizers, which is useful for mapping algorithms [START_REF] Li | Minimap2: pairwise alignment for nucleotide sequences[END_REF][START_REF] Jain | High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries[END_REF]. Under reasonable assumptions, the density of minimizers, i.e. the fraction of sampled k-mers, is 2 w+1 [START_REF] Roberts | Reducing storage requirements for biological sequence comparison[END_REF][START_REF] Edgar | Syncmers are more sensitive than minimizers for selecting conserved k-mers in biological sequences[END_REF]. If minimizer positions in the original sequence are not important, they can be discarded and the resulting k-mer multiset can be reduced to a simple k-mer set. 
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Syncmers

Minimizers are susceptible to mutations of any base of their window [START_REF] Edgar | Syncmers are more sensitive than minimizers for selecting conserved k-mers in biological sequences[END_REF]. That is, a k-mer may cease to be a minimizer if a modified base occurs not only inside this k-mer, but also in its close neighborhood. Sampling with a higher density alleviates this problem, but it reduces the advantages of the methods because more minimizers are selected. Methods to generate minimizers with the best possible density exist [START_REF] Deblasio | Practical universal k-mer sets for minimizer schemes[END_REF][START_REF] Ekim | A Randomized Parallel Algorithm for Efficiently Finding Near-Optimal Universal Hitting Sets[END_REF], but they are usually offline algorithms, limiting their potential applications outside alignment. Syncmers are a family of alternative methods to minimizers that do not suffer from this issue [START_REF] Edgar | Syncmers are more sensitive than minimizers for selecting conserved k-mers in biological sequences[END_REF]. Similarly to minimizers, syncmers are defined using a triplet of parameters (k, z, h) where z < k is used to decompose each k-mer into its constituent z-mers and h defines an order over them. A k-mer q is a syncmer (called closed syncmers in [START_REF] Edgar | Syncmers are more sensitive than minimizers for selecting conserved k-mers in biological sequences[END_REF]) iff its minimal z-mer occurs as a prefix (position i = 0) or as a suffix (position i = k -z + 1) of q. Thus, a syncmer is defined by its sequence alone, regardless the context in which it occurs. For this reason, syncmer sampling has been shown to be more resistant to mutations thus improving the sensitivity of alignment algorithms [START_REF] Edgar | Syncmers are more sensitive than minimizers for selecting conserved k-mers in biological sequences[END_REF].

Similar to minimizers, consecutive syncmers occur at bounded distance. More precisely, consecutive syncmers must overlap by at least z characters and therefore "pave" the sequence without gaps (except for the beginning and end), as shown in Figure 14.2. The fraction of syncmers among all k-mers is estimated to be 2 k-z+1 [START_REF] Edgar | Syncmers are more sensitive than minimizers for selecting conserved k-mers in biological sequences[END_REF]. Inspired by work [START_REF] Porat | Improved sketching of hamming distance with error correcting[END_REF], we modify the above scheme in order to recover the symmetric difference between A and B from their respective IBLTs T A and T B , rather than from the IBLT of one set and the whole other set. To do this, we define T A and T B to be of the same size and to use the same hash functions. We then compute the difference of T A and T B , denoted T A-B and defined through T
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A-B [i].C = T A [i].C -T B [i].C, T A-B [i].P = T A [i].P ⊕ T B [i].P , and T A-B [i].H = T A [i].H ⊕ T B [i].H. Information about elements of A ∩ B is "cancelled out" in T A-B , that is, T A-B holds elements of (A \ B) ∪ (B \ A).
Peeling then proceeds as usual, listing both A \ B and B \ A with the distinction made possible by looking at the sign of C.

A remarkable property of this scheme is that it allows one to recover set differences using a space proportional to the size of those differences regardless the size of the involved sets. Indeed, for the peeling process to succeed w.h.p., it is sufficient that the size of T A-B be O(n) where n = |(A \ B) ∪ (B \ A)| (see (5.2)). This is particularly suitable for the bioinformatics framework where we are often dealing with highly similar datasets, such as genomes of different individuals or closely related species. Other than that, adapting IBLTs for sets of genomic sequences is as simple as allocating enough space inside the IBLT buckets for their 2-bit representation.

Making buckets lighter

In the above scheme of IBLT difference, the H field becomes important as the case

T A-B [i].C = 1 (or T A-B [i].C = -1)
can occur due to a spurious "cancelling out" of distinct keys. However, to save space, we propose to get rid of the H field and replace the "checksum" verification by another test:

if T A-B [i].C = 1 (resp. T A-B [i].C = -1), we check whether p = T A-B [i].P is a valid key by checking if h j (p) = i for one of j ∈ [1..r].
This allows us to save space at the price of additional verification time. This technique works particularly well for large IBLTs, but it becomes less effective for small ones, as the "false positive" probability is proportional to the size of the table.

Combining sampling and IBLTs for Jaccard similarity estimation

We now turn to our main goal: estimating Jaccard similarity of two k-mer sets using IBLTs. The common approach uses MinHash sketching as described in [START_REF] Ondov | Mash: fast genome and metagenome distance estimation using MinHash[END_REF] (see Section 5.1.4). However, MinHash requires larger sketches to measure similarity of close datasets. One possible idea could be to store MinHash sketches in IBLTs in hope to use them for estimating Jaccard similarity through the IBLT difference scheme from the previous section. This, however, runs into an obstacle due to the fact that applying (5.1) requires knowledge of k-mers belonging to the sketch intersection, and not only to sketch differences. Comparisons involving bottom-s sketches need to stop after s distinct (hash) values have been processed. IBLTs do not allow this: knowing the symmetric difference between two MinHash sketches does not allow to retrieve the fraction of shared hashes in the union of size s. Thus, IBLTs are incompatible with bottom-s MinHash sketches, and the original MinHash implementation by [START_REF] Broder | On the resemblance and containment of documents[END_REF] is not competitive in terms of computational resources since it requires s independent hash functions. Rather than working with the entire sets of k-mers, we resort to sampling. It is known that sampling minimizers incurs a bias in estimating Jaccard similarity [START_REF] Belbasi | The minimizer jaccard estimator is biased and inconsistent[END_REF]. Instead, we propose to use syncmers, which don't suffer from being context-dependent thus resulting in an unbiased estimator of Jaccard similarity.

Our approach consists in storing sampled k-mers in IBLTs and apply the IBLT difference technique to recover set differences. Then, Jaccard similarity is estimated by 

IBLT dimensioning with syncmers

Dimensioning an IBLT holding syncmers requires estimating the expected number of differences in the set difference of involved k-mer sets. Assuming that input datasets are close genomic sequences of size L related by a mutation rate bounded by p m and that k is sufficiently large so that k-mer occurrences are unique, we can estimate the set difference. Each mutation results in 2k k-mers in the set difference (k k-mers on each side), and therefore the size of set difference is estimated to be 2kp m L. Taking into account density C P

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • h 1 (•) h 2 (•) h 3 (•)
Figure 14.3: Unlike the IBLT presented in Figure 5.4, our implementation ignores hash field H. Furthermore, tables are split into r independent slices following the analysis of [START_REF] Michael | Invertible Bloom lookup tables[END_REF].

Datasets

The datasets used in this study are:

• covid: subsample of 50 SARS-CoV-2 genomes1 . Sequence names are provided in Table 16.1.

• spneu: subsample of 28 Streptococcus Pneumoniae genomes from [START_REF] Břinda | Rapid inference of antibiotic resistance and susceptibility by genomic neighbour typing[END_REF] whose names are reported in Table 16.2. The subsample has been chosen to contain very close strains, with pairwise mutation rates between them not exceeding 0.0005.

Comparison of different sampling approaches

Random sampling, minimizers and syncmers have been compared by computing Jaccard similarities between pairs of synthetic sequences. Each pair is constructed by first generating a uniform random sequence of length L and then mutating it through independent substitutions. Points in Figures 14.4 are averages over T = 500 independent trials. For fairness of comparison, parameters for uniform sampling, minimizers and syncmers have been chosen to guarantee the same sampling rate 1/ν. We know that c s ≈ 2/(k -z + 1), c m ≈ 2/(w + 1) and c ns ≈ 1/ν are the densities of syncmers, minimizers and random sampling, respectively. Thus, given parameters k and z, setting the minimizer window length as w = k-z and choosing a sampling rate 1/ν = c s ensures about the same number of sampled k-mers for all algorithms. As Figure 14.4 shows, syncmers do not have the previously reported biased behavior of minimizers [START_REF] Belbasi | The minimizer jaccard estimator is biased and inconsistent[END_REF], but they are statistically similar to random sampling. Nevertheless, we choose syncmer sampling as a way to reduce IBLT memory usage in Section 14.3.3 in anticipation of future applications that might take advantage of the bounded distance guarantee.

Space performance of IBLTs

In order to demonstrate the space efficiency of IBLTs in our framework, we compare them against a solution based on KMC k-mer counting software [START_REF] Kokot | KMC 3: counting and manipulating k-mer statistics[END_REF]. KMC provides an efficient way for storing, manipulating and querying sets of k-mers. Unlike other counting tools (Jellyfish [START_REF] Marçais | A fast, lock-free approach for efficient parallel counting of occurrences of k-mers[END_REF] or DSK [START_REF] Rizk | DSK: k-mer counting with very low memory usage[END_REF]), KMC allows easy sorting of its output which leads to an efficient way to compute Jaccard similarity. We compared memory taken by IBLTs vs. KMC databases for storing syncmers issued from two similar sequences. For this, we applied the same procedure as in Section 14.3.1: mutating a random sequence of length L with mutation probability p m . Sampled syncmers from both sequences are stored respectively in IBLTs and KMC databases. Figure 14.5 reports average space taken by the two data structures. Each bar is the average over T = 100 trials, except for case L = 10M for which T = 10. IBLTs were dimensioned (see (5.2)) to guarantee peelability of all T sketches with high probability.

Figure 14.5a clearly demonstrates the advantage of IBLTs when the mutation rate is small. For larger p m and long sequences, the number of differences reach a point where exact data structures become preferable, as illustrated by Figure 14.5b for p m = 0.01 and sequences of length 10M.

In our experiments, subtracting one IBLTs from another is dominated by the time taken to load/save the sketches, and not by performing the actual difference. Even in more complex scenarios, subtraction remains a very simple operation that can be performed by accessing one bucket at a time in any given order. On the other hand, the amount of time required by listing the content of an IBLT varies greatly and depends on the set of items stored in it.

Accuracy of Jaccard similarity estimation from IBLTs of syncmers

Figures 14.6 and 14.7 report comparisons of both IBLTs and MinHash sketches on covid and spneu datasets respectively. Both plots show the average absolute error of Jaccard estimate computed over all pairs of sequences of the respective dataset. Exact Jaccard similarities computed over the full k-mer sets are used as ground truth. MinHash sketches (line MinHash in the plots) were implemented using Mash [START_REF] Ondov | Mash: fast genome and metagenome distance estimation using MinHash[END_REF]. All sketch sizes (in bytes) are fixed beforehand with both MinHash sketches and IBLTs dimensioned accordingly in order to fit the allocated memory. The number of bits allocated for payload field P in our IBLT implementation is set to be the minimum multiple of 8 larger than or equal to 2k. As Mash [START_REF] Ondov | Mash: fast genome and metagenome distance estimation using MinHash[END_REF] uses 32-or 64-bit hashes, we used k = 15 in our experiments in order to force both methods to use 32-bit representations.

In all experiments, IBLTs storing syncmers (line syncmers + IBLT) showed the best precision. For covid genomes (Figure 14.6), full MinHash sketches become competitive for larger sketch sizes. Unlike MinHash, the average error of IBLTs remains constant across all reported cases because over-dimensioning only increases the probability of successful listing. For the spneu dataset (Figure 14.7), MinHash errors are about twice those of IBLTs across all allocated sketch sizes confirming that IBLTs are more memory-efficient. The general conclusion is that if sequences to be compared are highly similar, IBLTs storing syncmers are more efficient than MinHash sketches, with the latter being better suited to quickly provide an overview over more diverging datasets.

Sampling syncmers for further space reductions

Since syncmer sampling rate ( 2 k-z+1 ) cannot be made arbitrarily small for a given k, we also tested the effect of additional downstream sampling of syncmers, before inserting them into IBLTs. To this end, Figure 14.8 reports a comparison of syncmers sampled with different sampling rates 1/ν. We observe that downstream sampling of syncmers comes at the cost of decreased precision for both datasets (Figure 14.8a and 14.8b), but it might be useful to further reduce space.

The effect on IBLT space of further sampling syncmers has been explored on the covid dataset with sampling rates 1/ν = 0.5, 0.25, 0.125, 0.0625. Results are shown in Figure 14.9. All pairwise sketch differences are guaranteed to be always peelable. Decreasing the sampling rate leads to reduced sketch sizes since fewer items need to be inserted inside IBLTs. However, starting at η = 8 sampling starts to be decreasingly effective, with IBLTs that are not half the size of their predecessor. This phenomenon can be explained by taking into account the suppression of hash field H explained in Section 14.2.2. As a direct consequence of this choice, spurious counters arising from collisions are detected with probability that depends on the number of buckets in the sketch. For large sampling rates, IBLTs can be too small to successfully recover from collisions. The only available solution in this case is to over dimension the sketch nullifying the advantages of sampling. Thus, for very small input sets, it is advisable to use an IBLT implementation with explicit hash field in its buckets.

Approximating k-mer set differences

We tested the method from Section 14.2.5 of approximating k-mer set differences on both the covid dataset and on two random datasets. Each random dataset contains 50 sequences of length 30000 obtained by first generating a uniform random sequence which is then mutated 49 times using a mutation probability p m .

Recall that the method of Section 14.2.5 allows one to compute a superset of the symmetric difference (K(S 1 ) \ K(S 2 )) ∪ (K(S 2 ) \ K(S 1 )) of sets of k-mers occurring in datasets S 1 and S 2 . Here we measure the precision of this method, that is the number of spurious k-mers found by the algorithm. Those are k-mers actually belonging to K(S 1 ) ∩ K(S 2 ) but output by the algorithm as if they belong to (K(S 1 )\K(S 2 ))∪(K(S 2 )\K(S 1 )).

Table 14.1 summarizes the experiments. Columns 'diff' and 'err' show the average/maximum cardinality of the true set difference and spurious k-mers, respectively, over all pairs of sequences. In the case of random datasets, sequences were generated with mutation probabilities p m = 0.01 and p m = 0.001. We observe that the number of spurious k-mers remains small, on average within about 3% of the true set difference size. Additional sampling helps in reducing IBLT space at the cost of additional errors as seen in Figure 14.8. However, not storing hash filed H imply diminishing returns for compression ratios > 4 since recognizing spurious buckets becomes harder (as described in Section 14.2.2).

covid

Conclusion

In this thesis: i) we designed two memory-efficient representations of k-mer counts which can be combined with third-party k-mer set representation to serve as more efficient alternatives to k-mer count tables, and ii) we studied the problem of quickly computing k-mer sets differences with applications to Jaccard similarity estimation.

The first problem was addressed in Part II and Part III.

Part II introduced Set-Min sketch, a novel sketching technique geared towards counts. Inspired by Count-Min sketch we demonstrate how to take better advantage of the typical skewed distribution of k-mer counts by replacing each counter with a set of elements. By storing distinct count values in each cell, our sketch re-use multiple times the most common elements for better memory efficiency. At query time, sets belonging to cells associated to the query are intersected. If there are no collisions (multiple elements in the intersection) the query returns the true value associated to the key, without errors. When collisions do occur, Set-Min sketch is nevertheless able to limit errors by once again taking advantage of the skewed distributions of k-mers. We make use of these insights in the theoretical analysis of Set-Min sketch (Chapter 8) where we bound (in expectation) the total cumulative error of our sketch and provide a practical dimensioning procedure.

We shifted our attention from sketching techniques to a combination of Locality Sensitive Hashing and succinct data structures in Part III where we present Locom. Locality Sensitive Hashing based on k-mer minimizers is a way to bucket similar counts together, by taking advantage of the observation that similar or successive k-mers tend to appear the same number of times. Compared to Set-Min sketch, whose bucketing is completely random, Locom's buckets are more likely to contain similar counts leading to better overall compression. Buckets are stored using Bloom-enhanced Compressed Static Functions (BCSFs), our modified version of the only available implementation of Compressed Static Functions available at the time of writing. Our enhancements remove the space lowerbound of 1 bit/key making BCSFs more suitable for representing skewed distributions than their predecessor. We present two variations of Locom: AMB and FIL, whose difference lies on how collisions are dealt with.

For the second problem we proposed a solution based on Invertible Bloom Lookup Tables (IBLTs) in Part IV. Our method to retrieve the symmetric set difference of two sets directly works with their IBLTs, without having to keep one set uncompressed. Further, we show how syncmers are unbiased estimators of Jaccard similarity unlike minimizers. For sequences of high similarity, the combination of these two results leads to a more memory efficient sketching technique than MinHash. Finally, we show how a slight modification of these ideas allows for efficient computation of supersets of exact k-mer set differences, at the cost of small post-processing.

In conclusion, this work opens new perspectives in designing efficient data structures and sketching techniques for representing counts associated to k-mers, as well as efficient methods tailored to the ever-increasing number of similar genomes sequenced each year. These objectives are achieved by taking advantage of the statistical characteristics of kmers in order to produce highly adapted algorithms specifically designed for this kind of tasks.

Nevertheless, representing k-mer multiplicities across multiple datasets is an interesting problem as it can be viewed as the natural extension of our ideas. The problem is not new by itself, with current solutions achieving succinct representations of counts by Run-Length-Encoding (RLE) [START_REF] Marchet | REINDEER: efficient indexing of k-mer presence and abundance in sequencing datasets[END_REF] or using combinations of efficient binary matrix implementations and de Bruijn graphs [START_REF] Karasikov | Lossless indexing with counting de Bruijn graphs[END_REF]. However, effective extension of CSFs to multiple k-mer multisets is still an open problem left for further developments.

• Invertible Bloom Lookup Tables for multisets. Our IBLT implementation presented in Part IV is limited to simple sets. Future work will be dedicated to extension to multisets (that is sketching k-mer count tables). One interesting direction would be to merge IBLTs with Count-Min sketches in order to support peeling of weights similarly to Counter Braids [START_REF] Lu | Counter braids: a novel counter architecture for per-flow measurement[END_REF].

• IBLTs for seeding. Related to the previous idea is how to extend IBLTs to work as fast methods to detect possible differences between two sequences. The current state of our implementation require to scan the original sequences to find the exact positions of the mismatches and possible false positives. A more efficient solution would be to augment IBLTs to store k-mer positions. This case is hindered by the need to deal with collisions resulting from the same k-mer appearing in different locations.

• Other applications of IBLTs. Instead of extending the current implementation of IBLTs to support other types of queries, further research directions can be discovered by asking: are there other applications where our IBLTs can be useful? A possible answer worth exploring is fast VCF file comparisons, especially between sets of SNPs (Single Nucleotide Polymorphisms).
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 41 Figure 4.1: Sequencing cost against Moore's Law. Sequencing is becoming cheaper every passing year. Because of this, new data is produced at increasing pace straining current analysis methods.

  report here the main sketching techniques relevant to the works in Part II and IV. While Part II takes inspiration from count approximation sketches such as CountSketch and Count-Min (sections 5.1.1, 5.1.2, 5.1.3), Part IV use set reconciliation to challenge MinHash sketching in case of high similarity of the involved sets (sections 5.1.4, 5.1.5, 5.1.6).
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 51 Figure 5.1: Example of inserting the pair (p, 5) into an empty CountSketch. Empty cells represent counts equal to 0. Note how the sign of the inserted element in each cell depends on s i (•)
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 52 Figure 5.2: Example of query on a Count-Min sketch. Counters 5 and 7 corresponding to two different items were inserted in the sketch causing a collision in cell(2,[START_REF] Altschul | Basic local alignment search tool[END_REF]. In case of collisions in all cells of the sketch, taking the minimum minimizes error.
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 53 Figure 5.3: Using a Bloom filter with three hash functions to represent set x, y, z. Bits at positions given by the r = 3 independent hash functions are set to 1. At query, element v is correctly recognized as not present in the Bloom filter but w (in red) results in a false positive since all its bits are set to 1.
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 81 Figure 8.1: k-mer spectrum of the human genome for k = 32 in log-log scale. Note how the number of highly repetitive k-mers rapidly decreases as their repetitions increase. Most of the k-mers in a fully assembled genomes are thus unique, for large enough ks.
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 82 Figure 8.2: Example of a Set-Min sketch with L = {ℓ 1 , ℓ 2 }. Two pairs (e, ℓ 1 ) and (f , ℓ 2 ) with e ̸ = f have been inserted into the sketch, with e, f hashed to the same bucket at line 2.
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 83 Figure 8.3: Set-Min sketch memory optimization. The most common label (in blue) in the histogram (left) is not actually inserted into the sketch (bottom right). Empty intersections of the final sketch (top right) are interpreted as the missing label.
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 84 Figure 8.4: Example of collision resolution in case of multiple items occurring in the intersection. The brown label is returned because it is more rare compared to the blue one.
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 85 Figure 8.5: Spectrum in log-log scale of SRR unassembled data sets for k = 32. Note how, the number of k-mers appearing 2 times is not that smaller than the number of unique k-mers. In such a case, Set-Min sketch needs a lot of space just to distinguish count values of these two groups.
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 87 Figure 8.7: Average query time of Set-Min, Count-Min and BBHash. Similar to Figure 8.6 Set-Min sketches are generally slower than their Count-Min or Max-Min counter-parts.As before, unassembled datasets and small values of k prove to be the most difficult situations. On the other hand, for very skewed distributions Set-Min sketches perform as well as BBHash MPHFs.
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 112113 Figure 11.2: Example of count correlation due to repetitions. Substring TGG repeats 3 times generating a block of relatively high counts very similar to one another. Nonconsecutive duplications have the same effect.
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 114 Figure 11.4: Example of minimizers used as k-mer fingerprints. The same minimizer is likely to be shared by multiple neighboring k-mers. In the example above k = 12 and m = 4. Column h(•) indicate the hash value of each substring of length 4. The minimizer of two successive 12-mers is highlighted in red.
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 1111 Figure 11.11: Compressed space usage for the high entropy df dataset.
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 1114 Figure 11.14: Space usage for the Sakai dataset with small k when using AMB (FIL is slightly worse and was omitted). Minimizer lengths vary between 1 and 5 indicating that the best option is to use a simple (B)CSF.
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 1116 Figure 11.16: Average query time for AMB with 2 and 3 layers and FIL with 2 layers.

Figure 14 . 2 : 1

 1421 Figure 14.2: Syncmers computed on the same sequence as Figure 14.1. k = 15 and z = 4. The minimum z-mer of each syncmer is highlighted in red.

  J(A, B) = |A| -|A \ B| |A| + |B \ A| = |B| -|B \ A| |B| + |A \ B| . (14.1)Note that cardinalities |A| and |B| can be easily retrieved from respective IBLTs T A and T B by summing all counter values and dividing by r.

2 k

 2 -z+1 of syncmers (Section 14.1.3), we obtain the estimationn = 4kLp m k -z + 1 . (14.2)the other hand, experiments involving real-world sequences transform k-mers into their canonical form before any other operation (MinHash sketching, sampling, insertion into IBLTs).
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 145146 Figure 14.5: Space taken by IBLTs depends on the similarity between stored sets. For very similar sequences (mutation rate p m = 0.001, Figure 14.5a), IBLTs are more efficient than KMC. Their advantage appears reduced for increased p m and large sequences (Figure 14.5b).
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 147 Figure 14.7: Comparison between IBLTs and MinHash for computing pairwise Jaccard on the spneu dataset with the same setting as Figure 14.6.
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 148 Figure 14.8: Effect of sampling syncmers before IBLT insertion on the average absolute error. 1/ν is the compression rate used for sampling syncmer sets before IBLT insertion. ν = 1 means no sampling (full syncmer sets).
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 149 Figure 14.9: IBLT size when using syncmers (k = 15, z = 4) combined with sampling. Additional sampling helps in reducing IBLT space at the cost of additional errors as seen in Figure14.8. However, not storing hash filed H imply diminishing returns for compression ratios > 4 since recognizing spurious buckets becomes harder (as described in Section 14.2.2).
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  . They work by first splitting the input set into multiple buckets B i of different (FHD) or homogeneous (CHD) size. Buckets are then serially processed in order to find integer values d i , such that all elements in B

i can be inserted into a global binary array without collisions. FHD maps elements to their positions inside the binary array by doing (h(x) + d i mod |S|) with buckets processed by decreasing size, where h(•) is a random hash function. On the other hand, both CHD and ptHash use two pairwise independent hash functions h 1 and h 2 to avoid failure if d i reaches |S|. CHD computes positions by doing (h 1
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 8 1: Data sheet for the data sets used in our study. Columns T k and D k report the total number of k-mers and the number of distinct k-mers (in millions), respectively. D c reports the number of distinct k-mer counts. C k reports the number (in millions) of distinct k-mers with a count value different from the most common one (which is 1 in all reported cases).

	Type	Name T k [M] k D k [M]	D c	C k [M]
				11	2.38	69	1.30
		SAI	5.50	15	5.23	42	0.16
				21	5.30	28	0.11
				15	101	883	15.51
		MNO	143	21 27	122 124	710 605	4.10 4.00
				32	125	522	4.01
	assembled	RAI	727	15 21 27	251 546 604	1944 105.71 1019 57.13 699 45.21
				32	632	540	38.59
				15	547	12718 370.16
		GRC	2935	21 27	2327 2483	10038 95.15 7946 73.99
				32	2567	6651	66.71
				11	3.06	239	2.76
		USAI	25	15	9.74	143	6.74
				21	10.0	97	6.52
	unassembled	SRR	7500	15 21 27	676 3635 3734	22323 538.56 17211 1435.30 13157 1353.95
				32	3703	10643 1261.06

  Construction time of Set-Min sketches compared to Count-Min, Max-Min and BBHash (with external array). Time is reported in milliseconds on a logarithm scale. Set-Min sketches tend to be slower than Count-Min or Max-Min sketches of comparable size due to the extra operations needed to manage sets. Compared to MPHFs, Set-Min sketches are generally faster when data is very skewed, which is not the case for unassembled datasets or small values of k.

	Construction time [ms]	10 3 10 4 10 5 10 6	method Set-Min Count-Min Max-Min BBall
		10 2	
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	Figure 8.6:	

Table 8 .

 8 2: Set-Min compared to Count-Min. T is the reference upper bound on the sum of errors equal to ε∥a∥ 1 (right-hand side of(8.5)). E s and E c are the sum of errors for Set-Min and Count-Min respectively. N s and N c are the percentages (rounded to integers) of distinct k-mers producing an error, for Set-Min and Count-Min, respectively. A s and A c are respective average errors, with average taken over the number of distinct k-mers resulting in an error in the respective sketch. SAI11 4 1.04 • 10 6 5.50 • 10 4 5.00 • 10 4 1.39 • 10 6 1.8 26 1.15 2.24 SAI 15 5 2.13 • 10 5 5.50 • 10 4 4.66 • 10 4 2.38 • 10 5 0.9 4 1.01 1.1 SAI 21 5 1.20 • 10 5 5.50 • 10 4 5.29 • 10 4 4.57 • 10 5 0.9 7 1.05 1.18 USAI 11 5 4.58 • 10 5 2.57 • 10 5 1.99 • 10 5 7.44 • 10 7 2.6 99 2.46 24.6 USAI 15 4 4.79 • 10 6 2.49 • 10 5 2.45 • 10 5 8.01 • 10 6 1.9 33 1.31 2.53 USAI 21 5 3.99 • 10 6 2.38 • 10 5 2.00 • 10 5 7.91 • 10 6 1.6 34 1.21 2.35 MNO 15 5 1.79 • 10 7 1.43 • 10 6 1.39 • 10 6 8.35 • 10 6 1.4 7 1 1.25 MNO 21 4 4.69 • 10 6 1.43 • 10 6 1.41 • 10 6 2.26 • 10 7 1.1 12 1.03 1.61 MNO 27 5 3.72 • 10 6 1.43 • 10 6 1.11 • 10 6 2.28 • 10 7 0.9 12 1.01 1.48 MNO 32 5 3.81 • 10 6 1.42 • 10 6 1.11 • 10 6 2.10 • 10 7 0.9 12 1.01 1.44 RAI 15 4 8.36 • 10 7 7.27 • 10 6 5.65 • 10 6 1.50 • 10 8 2.1 27 1.08 2.25 RAI 21 4 8.47 • 10 7 7.27 • 10 6 5.73 • 10 6 4.09 • 10 7 1 6 1.01 1.3 RAI 27 4 7.14 • 10 7 7.27 • 10 6 6.49 • 10 6 3.56 • 10 7 1.1 5 1.01 1.22 RAI 32 4 6.38 • 10 7 7.27 • 10 6 6.87 • 10 6 3.15 • 10 7 1.1 4 1.01 1.17 GRC 15 3 2.26 • 10 8 2.93 • 10 7 2.78 • 10 7 1.36 • 10 9 2.9 52 1.78 4.74 GRC 21 4 1.42 • 10 8 2.93 • 10 7 2.60 • 10 7 1.65 • 10 8 1.1 6 1.01 1.23 GRC 27 4 1.07 • 10 8 2.93 • 10 7 2.82 • 10 7 1.91 • 10 8 1.1 6 1.01 1.25 GRC 32 4 9.84 • 10 7 2.93 • 10 7 2.92 • 10 7 1.85 • 10 8 1.1 6 1.01 1.22 SRR 15 4 1.17 • 10 8 7.90 • 10 7 4.93 • 10 7 1.34 • 10 10 3.3 96 2.2 20.68 SRR 21 3 2.39 • 10 9 7.35 • 10 7 7.09 • 10 7 5.63 • 10 8 1.8 9 1.11 1.68 SRR 27 4 1.78 • 10 9 6.80 • 10 7 4.92 • 10 7 4.58 • 10 8 1.3 8 1.04 1.53 SRR 32 4 1.72 • 10 9 6.34 • 10 7 4.95 • 10 7 4.01 • 10 8 1.3 7 1.03 1.48

	Name k R	B	T	E s	E c	N s N c A s	A c

Table 8 .

 8 3: Set-Min compared to Max-Min sketch. Columns E c , N c , A c are replaced by E m , N m , A m with the same meaning as their Table 8.2 counterparts. SAI 11 5.50 • 10 4 5.00 • 10 4 4.15 • 10 5 1.8 13.5 1.15 1.29 SAI 15 5.50 • 10 4 4.66 • 10 4 2.13 • 10 5 0.9 4 1.01 1.01 SAI 21 5.50 • 10 4 5.29 • 10 4 4.02 • 10 5 0.9 7.2 1.05 1.06 USAI 11 2.57 • 10 5 1.99 • 10 5 1.24 • 10 7 2.6 63.5 2.46 6.4 USAI 15 2.49 • 10 5 2.45 • 10 5 1.72 • 10 6 1.9 13.3 1.31 1.33 USAI 21 2.38 • 10 5 2.00 • 10 5 1.76 • 10 6 1.6 14.2 1.21 1.24 MNO 15 1.43 • 10 6 1.39 • 10 6 5.74 • 10 6 1.4 5.6 1 1.02 MNO 21 1.43 • 10 6 1.41 • 10 6 1.78 • 10 7 1.1 11.2 1.03 1.31 MNO 27 1.43 • 10 6 1.11 • 10 6 1.78 • 10 7 0.9 12.1 1.01 1.2 MNO 32 1.42 • 10 6 1.11 • 10 6 1.65 • 10 7 0.9 11.3 1.01 1.17 RAI 15 7.27 • 10 6 5.65 • 10 6 5.81 • 10 7 2.1 16.8 1.08 1.38 RAI 21 7.27 • 10 6 5.73 • 10 6 3.05 • 10 7 1 5.2 1.01 1.07 RAI 27 7.27 • 10 6 6.49 • 10 6 2.84 • 10 7 1.1 4.5 1.01 1.05 RAI 32 7.27 • 10 6 6.87 • 10 6 2.61 • 10 7 1.1 4 1.01 1.03 GRC 15 2.93 • 10 7 2.78 • 10 7 4.07 • 10 8 2.9 27.8 1.78 2.67 GRC 21 2.93 • 10 7 2.60 • 10 7 1.38 • 10 8 1.1 5.5 1.01 1.08 GRC 27 2.93 • 10 7 2.82 • 10 7 1.62 • 10 8 1.1 6 1.01 1.09 GRC 32 2.93 • 10 7 2.92 • 10 7 1.58 • 10 8 1.1 5.7 1.01 1.08 SRR 15 7.90 • 10 7 4.93 • 10 7 3.31 • 10 9 3.3 61.8 2.2 7.92 SRR 21 7.35 • 10 7 7.09 • 10 7 2.42 • 10 8 1.8 5.9 1.11 1.13 SRR 27 6.80 • 10 7 4.92 • 10 7 2.05 • 10 8 1.3 5.2 1.04 1.06 SRR 32 6.34 • 10 7 4.95 • 10 7 1.89 • 10 8 1.3 4.9 1.03 1.04

	Name k	T	E s	E m	N s N m	A s	A m

  SAI 11 1.21 • 10 7 5.75 • 10 6 9.13 • 10 5 3.00 • 10 6 SAI 15 3.80 • 10 7 1.20 • 10 6 2.06 • 10 6 5.99 • 10 6 SAI 21 4.77 • 10 7 6.77 • 10 5 2.03 • 10 6 6.00 • 10 6 USAI 11 1.54 • 10 7 1.49 • 10 7 1.17 • 10 6 4.61 • 10 6 USAI 15 6.95 • 10 7 2.87 • 10 7 3.72 • 10 6 1.35 • 10 7 USAI 21 8.53 • 10 7 3.00 • 10 7 3.91 • 10 6 1.39 • 10 7 MNO 15 7.08 • 10 8 1.68 • 10 8 3.87 • 10 7 2.15 • 10 8 MNO 21 9.80 • 10 8 3.55 • 10 7 4.66 • 10 7 2.45 • 10 8 MNO 27 1.24 • 10 9 3.75 • 10 7 4.73 • 10 7 2.48 • 10 8 MNO 32 1.37 • 10 9 3.84 • 10 7 4.90 • 10 7 2.36 • 10 8 RAI 15 1.76 • 10 9 7.54 • 10 8 9.59 • 10 7 5.98 • 10 8 RAI 21 4.37 • 10 9 6.78 • 10 8 2.16 • 10 8 1.24 • 10 9 RAI 27 6.04 • 10 9 5.36 • 10 8 2.37 • 10 8 1.29 • 10 9 RAI 32 6.96 • 10 9 4.79 • 10 8 2.70 • 10 8 1.38 • 10 9 GRC 15 3.83 • 10 9 1.70 • 10 9 2.09 • 10 8 1.65 • 10 9 GRC 21 1.86 • 10 10 1.28 • 10 9 9.32 • 10 8 6.46 • 10 9 GRC 27 2.48 • 10 10 9.66 • 10 8 9.86 • 10 8 6.57 • 10 9 GRC 32 2.82 • 10 10 8.38 • 10 8 1.08 • 10 9 6.54 • 10 9 SRR 15 4.73 • 10 9 2.00 • 10 9 2.59 • 10 8 2.12 • 10 9 SRR 21 2.91 • 10 10 1.61 • 10 10 1.48 • 10 9 1.10 • 10 10 SRR 27 3.73 • 10 10 1.60 • 10 10 1.48 • 10 9 1.08 • 10 10 SRR 32 4.07 • 10 10 1.46 • 10 10 1.57 • 10 9 1.04 • 10 10
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  Figure 11.9: Results for the Sakai dataset for big values of k. For presentation purposes, H 0 is represented as an additional red column in each subgroup.

	bits / k-mer bits / k-mer	0.6 0.8 1.0 1.2 1.4 2 3 4	0.61 4.43 3.95 4.43 1.34 4.43 0.87 4.43 0.87 4.43 4.43 0.87	0.90	1.23 3.15 3.23 4.13 4.07 0.91 3.58 3.63 4.13	1.22 2.61 2.59 2.11 2.25 4.10 3.97 3.48	1.94 1.80 2.29 2.29 4.06 3.89 3.41	1.22 3.36 3.82 4.00 1.84 1.71 2.18 2.20	H0 CSF BCSF AMB 2 layers AMB 3 layers FIL 2 layers FIL 3 layers H0 CSF BCSF AMB 2 layers AMB 3 layers FIL 2 layers FIL 3 layers
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		0.0 0	13	13						15		15		k 18 k				18	21	21 24
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		0.0			24										28 k				32
			Figure 11.10: Results when compressing the reference genome of C.Elegans

  Figure 11.12: Compressed space usage for the high entropy SRR dataset.Figure 11.13: Compressed space usage for the low entropy df dataset.

	bits / k-mer	2 3 4 5	2.68	3.07	3.37	3.28	3.28	3.46	3.51		4.46	5.01	5.01	5.01	5.01	5.01	5.16		4.40	4.94	4.94	4.94	4.94	4.94	4.94	H0 CSF BCSF AMB 2 layers AMB 3 layers FIL 2 layers FIL 3 layers
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	bits / k-mer	2 3 4	3.47 3.88 4.38 3.92	3.92 4.38 3.83 4.38 3.83	3.92 4.38	3.92	3.15 2.27	3.58 2.61	3.58 2.68 2.81 2.67 2.80	3.11 2.67 3.11	3.06	3.47 1.62 3.47 1.61 2.22	2.16 1.61	2.32 1.61 2.31		3.00	3.41	3.41	2.08	1.95	2.10	2.09	H0 CSF BCSF FIL 2 layers FIL 3 layers AMB 3 layers AMB 2 layers H0 CSF BCSF AMB 2 layers AMB 3 layers
																1.20								1.34
		1																					0.61		0.87	0.87	0.87
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  Figure 11.15: Space usage when using the approximated version of AMB. Entropy (red columns) and CSF (blue columns) are reported for comparison. Unlike Figure11.14, AMB is able to break the empirical entropy lower bound when small errors are acceptable.

	3.88 4.38 4.42 4.16 3.83 3.44 3.08 4.45 4.18 3.83 3.44 3.02	2.27 2.61 2.35 1.87 1.46 1.16 0.94 2.38 1.80 1.35 0.99	1.20 1.62 1.04	1.01	1.34	H0 CSF AMB 2 layers, =1 AMB 2 layers, =2 AMB 2 layers, =3 AMB 2 layers, =4 AMB 2 layers, =5 AMB 3 layers, =1 AMB 3 layers, =2 AMB 3 layers, =3 AMB 3 layers, =4 AMB 3 layers, =5
		0.74	0.69 0.52 0.44 0.40	0.55 0.32 0.20 0.14	0.61	0.45 0.34 0.31 0.30 0.29 0.37 0.19 0.14 0.11 0.11
	Average lookup time (ns/k-mer)							method CSF BCSF AMB 2 layers AMB 3 layers FIL 2 layers
	10	11	12		13 k		15	18	21

  Figure 14.1: Example of minimizers as a sampling technique with a sequence of length 40, k = 15, w = 8. Note how two consecutive minimizers (highlighted in red) are never separated by more than w = 8 bases.

	15-mer	h(•)
	GGATGGTGTCCTCAT GATGGTGTCCTCATC ATGGTGTCCTCATCT TGGTGTCCTCATCTA GGTGTCCTCATCTAA GTGTCCTCATCTAAT TGTCCTCATCTAATG GTCCTCATCTAATGA TCCTCATCTAATGAT CCTCATCTAATGATG CTCATCTAATGATGT TCATCTAATGATGTC CATCTAATGATGTCG ATCTAATGATGTCGG TCTAATGATGTCGGT CTAATGATGTCGGTA TAATGATGTCGGTAA AATGATGTCGGTAAA ATGATGTCGGTAAAG TGATGTCGGTAAAGA GATGTCGGTAAAGAG ATGTCGGTAAAGAGT TGTCGGTAAAGAGTC GTCGGTAAAGAGTCT TCGGTAAAGAGTCTA CGGTAAAGAGTCTAC	10 21 14 37 32 5 26 6 26 37 19 14 10 31 9 4 29 19 19 9 15 0 37 11 22 37

Table 14 .

 14 1: True size of symmetric difference of k-mer sets and its overestimate. For each experiment, 'diff' is the average/maximum size of the true symmetric difference, and 'err' is the average/maximum number of spurious k-mers reported as being in the symmetric difference. p m is the mutation probability used to generate sequences from a random one.

					random	
				p m = 0.001	p m = 0.01
		diff	err	diff	err	diff	err
	average 325.29 11.03 1708.78 60.03 15342.81 357.57
	max	661	31	2396	110	17047	486

https://github.com/Cyan4973/xxHash

https://www.ncbi.nlm.nih.gov/datasets/coronavirus/genomes/
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Part II

Sketching count information

Part III

Space-efficient representation of genomic k-mer count tables

ing), and require appropriate additional structures in order to answer membership queries. This is not restrictive, as having different, specialized methods allows for greater flexibility, otherwise unattainable in a monolithic setting. Further memory reductions are still possible despite the advantage of CSFs over MPHFs for skewed input count distributions if k-mer similarity is taken into account. Recent works [START_REF] Marchet | REINDEER: efficient indexing of k-mer presence and abundance in sequencing datasets[END_REF] have suggested that similar k-mers often share similar count values. In fully assembled genomes, for example, repetitive k-mers are often the result of long duplications. All k-mers involved in such events are thus more likely to have increased copy numbers which end-up clustered together. Hence, for k big enough, Locality-Sensitive Hashing based on k-mer similarity is also able to cluster together similar counts.

The following chapters focus on the development of novel techniques based on Compressed Static Functions as better representations of k-mer counts. Compared to Set-Min sketch, our new methods are targeted to exact count storage with optional extension to the approximate case. Like before, we do not explicitly take into account k-mers, limiting our structures to be collision-free only on the set they were built for. Our contributions can be summarized as the following:

1. An extended CSF implementation achieving smaller memory than current solutions for very skewed distributions (Section 11.2.1).

2. The first algorithm combining item 1 with minimizer-based bucketing of weights (Section 11.2.3).

3. An alternative version of item 2.

We report our analysis and results in Section 11.3.

Related work

Despite ongoing efforts to reduce overall space usage [START_REF] Pandey | A General-Purpose Counting Filter: Making Every Bit Count[END_REF][START_REF] Moustafa Shokrof | MQF and buffered MQF: quotient filters for efficient storage of k-mers with their counts and metadata[END_REF] of classic k-mer counters [START_REF] Marçais | A fast, lock-free approach for efficient parallel counting of occurrences of k-mers[END_REF][START_REF] Rizk | DSK: k-mer counting with very low memory usage[END_REF][START_REF] Kokot | KMC 3: counting and manipulating k-mer statistics[END_REF][START_REF] Shi | K-mer counting with low memory consumption enables fast clustering of single-cell sequencing data without read alignment[END_REF] they remain tailored toward dynamic representations of count tables and are ill-suited as long-term storage options due to the computational overhead needed to support updates. Further optimizations become possible if count tables are considered to be static [START_REF] Marchet | BLight: Efficient exact associative structure for k-mers[END_REF]. Under this hypothesis, fully queryable static count tables can be equivalently seen as a combination of three different components:

1. A presence/absence data structure telling whether k-mers are in the table or not.

2. A map data structure mapping each k-mer to its frequency.

An efficient representation for count values.

Such framework is the foundation of algorithms representing k-mer counts across multiple datasets such as [START_REF] Marchet | REINDEER: efficient indexing of k-mer presence and abundance in sequencing datasets[END_REF][START_REF] Karasikov | Lossless indexing with counting de Bruijn graphs[END_REF]. Presence/absence information can be retrieved using variations of de Bruijn graphs, but other methods are possible, e.g. by using simplitigs (spectrum-preserving string sets) [START_REF] Břinda | Simplitigs as an efficient and scalable representation of de Bruijn graphs[END_REF][START_REF] Rahman | Representation of k-mer sets using spectrumpreserving string sets[END_REF] or similar methods [START_REF] Rahman | Disk compression of k-mer sets[END_REF][START_REF] Schmidt | Matchtigs: minimum plain text representation of kmer sets[END_REF] combined with indexing for quickly locating the positions of k-mers. If exact queries are not needed, Approximate Membership Queries (AMQ) data structures can be used instead [START_REF] Burton | Space/time trade-offs in hash coding with allowable errors[END_REF][START_REF] Fan | Cuckoo Filter: Practically Better Than Bloom[END_REF].

Techniques for representing counts coming from multiple datasets fall short when applied to single k-mer sets, since it is an application they were not designed for. We hereby focus on developing efficient count representations under the aforementioned framework for single datasets only. Similarly to what we did for Set-Min sketch we limit ourselves to retrieve counts of k-mers that are known to be present in the dataset, leaving presence/absence queries to other data structures.

Data: A count table T

Result: A BCSF for T Compute R, the spectrum of T ; Let K 0 ⊆ K be the set k-mers with the most common frequency in R; 

Algorithm 5: FIL multi-layer construction algorithm.

Results

Datasets

Three datasets were used in this study:

1. The collection of fully assembled Escherichia Coli genomes from [START_REF] Yi | Co-phylog: an assembly-free phylogenomic approach for closely related organisms[END_REF], from now on referred to as "df".

2. Escherichia Coli Sakai strain (NCBI accession number B000007) from the previous collection [START_REF] Yi | Co-phylog: an assembly-free phylogenomic approach for closely related organisms[END_REF] but from now on referred to as "Sakai" to highlight its stand-alone usage.

3. Full reference genome of Caenorhabditis Elegans, strain Bristol N2 downloaded from RefSeq (accession number GCF_000002985.6). We will refer to this dataset as "Elegans".

4. "SRR10211353" run of Illumina reads (10x coverage, Escherichia Coli) downloaded from NCBI SRA (accession number SAMN12880992).

Unless stated otherwise, FIL and AMB were run on all possible combinations of two and three minimizer lengths for k ∈ [START_REF] Benoit | SimkaMin: fast and resource frugal de novo comparative metagenomics[END_REF][START_REF] Bernard | Alignment-free microbial phylogenomics under scenarios of sequence divergence, genome rearrangement and lateral genetic transfer[END_REF][START_REF] Bonham-Carter | Alignment-free genetic sequence comparisons: a review of recent approaches by word analysis[END_REF][START_REF] Bradley | Ultra-fast search of all deposited bacterial and viral genomic data[END_REF] with only the best combinations reported using the following naming convention:

• CSF: baseline CSF implementation from Sux4J [START_REF] Genuzio | Fast scalable construction of ([compressed] static | minimal perfect hash) functions[END_REF].

• BCSF: extended CSF with Bloom filter from Section 11.2.1. It may get reduced to a simple CSF if the Bloom filter is not useful.

• AMB m 1 k: our first implementation, selecting each representative by minimum and marking colliding buckets with a special value.

• AMB m 1 m 2 k: same as before but with an additional layer.

• FIL m 1 k: our second implementation, saving into each bucket a majority-selected representative and saving corrections into its second layer.

• FIL m 1 m 2 k: same as before but with an additional layer.

Implementation

All construction code is written in python, except for the CSF part which is handled by a simple Java program using Sux4J [START_REF] Genuzio | Fast scalable construction of ([compressed] static | minimal perfect hash) functions[END_REF]. A utility written in C using the code provided by Sux4J for reading and querying its CSFs provides time measurements. We use xxHash 1 to define an ordering over minimizers.

Compression of skewed data

Figure 11.9 reports memory usage when compressing the Sakai dataset. Simple CSF use more than 1 bit/k-mer, while Bloom-enhanced CSF (BCSF) is considerably more efficient, reaching space closer to the entropy. For relatively small k's (k = 13) AMB and FIL give almost the same results as BCSF, that is, minimizer-based bucketing is not helpful. For larger k's, however, both AMB and FIL lead to significant space reductions, eventually breaking the entropy barrier for larger values of k (k = 18, 21). This demonstrates that

Part IV

Efficient reconciliation of genomic datasets of high similarity

Approximating k-mer set differences

The method of Section 14.2.3 allows estimating Jaccard similarity on k-mers by Jaccard similarity on syncmers. Here we describe how we can extend these ideas in order to recover all k-mers from K(S 1 ) \ K(S 2 ) and K(S 2 ) \ K(S 1 ), where S 1 , S 2 are input datasets and K(S) denotes the set of k-mers of a dataset S. Note first that a straightforward way of doing this, through IBLTs of K(S 1 ) and K(S 2 ), requires a considerable space because a single mutation generates a difference of k k-mers. Using syncmers, we can "pack" k-mers into longer strings, compute the differences and then recover k-mers from them. The set of recovered k-mers, however, will be a superset of exact differences.

To achieve this, instead of storing syncmers, we store in IBLTs extended syncmers of length 2k -z. Extended syncmers are obtained by extending each syncmer to the right by k -z bases. Since successive syncmers overlap by at least z bases, this ensures that each k-mer belongs to at least one extended syncmer.

By applying the IBLT difference technique (Section 14.2.3), we obtain the extended syncmers that differ between the two datasets, from which we extract k-mers and discard those shared between the two obtained sets. It may still happen that the sets we obtain are supersets of exact differences, due to the fact that an extended syncmer can contain a k-mer which belongs to another extended syncmer common to both datasets. However, we state that for a sufficiently large k, the fraction of common k-mers in those sets will be small enough, which we illustrate experimentally in Section 14.3.5. In the extreme case where each k-mer occurs once, our method computes exact k-mer set differences.

IBLT for collections of MinHash sketches

Another application of IBLTs is the reconciliation of whole sequence databases by storing whole MinHash sketches inside IBLTs. MinHash sketches are used as a proxy to detect unique sequences in each dataset so that only them need to be synchronized. In particular, sequence reconciliation can be useful to synchronize multiple databases of reference genomes used by targeted alignments. For example, in Metalign [START_REF] Lapierre | Metalign: efficient alignment-based metagenomic profiling via containment min hash[END_REF] metagenomes are aligned to multiple references selected from a given database. Multiple copies of the same database can be enriched by their users with new sequences that need to be shared to maintain synchronization. On the other hand, having too many similar sequences to choose from would negatively affect performances.

Transforming sequences into MinHash sketches is an elegant way to cluster them together with sensitivity controlled by the MinHash parameter s. Multiple strains or similar organism tend to have the same MinHash sketches for s small-enough. After reducing the multiset of MinHash sketches to a simple set, IBLTs can provide further compression and the ability to quickly retrieve differences.

We do not provide results for this kind of application, since it naturally follows from the exactness of IBLT listing. The only difference compared to storing sequences is that each bucket must allocate enough space for whole MinHash sketches.

Results

Our IBLT implementation is available at https://github.com/yhhshb/km-peeler.git. Buckets do not store an explicit hash field, following the idea presented in Section 14.2.2. Furthermore, we split the m buckets into r sub-tables following the implementation of [START_REF] Michael | Invertible Bloom lookup tables[END_REF]. Slice j is indexed by hash function h j (•). Each k-mer (syncmer) coming from simulated sequences (sections 14.3.1 and 14.3.2) is stored as-is, without further processing. On 

Chapter 15 Discussion

We showed that whenever involved datasets are similar enough and their similarity can be bounded a priori, IBLTs lead to a more space-efficient and, at the same time, more accurate method for estimating Jaccard similarity of underlying k-mer sets. This is achieved by combining IBLTs with syncmers as a means to sampling k-mers and further reduce the space of our data structures. As opposed to minimizers, syncmers provide an unbiased estimator of Jaccard index, which was confirmed in our experiments. Thus, IBLTs combined with syncmers constitute a powerful alternative to MinHash sketching for estimating Jaccard similarity of similar datasets.

Various bioinformatics fields where similar sequences are the norm can potentially benefit from IBLTs. In pan-genomics, for example, IBLTs could not only provide a more space-efficient similarity estimations between new sequences and references but also a way to quickly find the involved differences. This is possible thanks to the exact nature of successful listing operations. k-mers found in the symmetric difference can be used as seeds to quickly find the divergent positions between sequences. This opens up new possibilities as k-mers belonging to a dataset can be used to infer information about genetic variation, specific mutation, etc. To this end, we extended our method to return exact symmetric difference supersets of whole k-mer sets. We believe this method can be extended to compute exact set differences with the help of additional space-efficient data structures and plan to explore this in our future work.

Our ideas may have further useful applications, for example to reconciliation of datasets located on remote computers, in which case IBLTs could avoid transmitting whole collections of strings. Another example is a selection of sufficiently diverse datasets avoiding redundancy (see Section 14.2.6). Note finally that IBLTs may also act as filters for filtering out dissimilar datasets: in this case, non-peelability of the difference IBLT is an indicator of dissimilarity. 

Chapter 16

Appendix

Datasets used in experiments

Future work and perspectives

Various open problems and future directions appeared during the development of our methods. We hereby provide some perspective and ideas for expansion.

• Frequency-aware phylogeny reconstruction. As briefly mentioned in Chapter 4, frequency-aware alignment-free methods do not seem to be better than purely compositional ones in phylogeny reconstruction. The utility of k-mer frequencies for inferring biological relations between species has been questioned in [START_REF] Li | Feature frequency profile-based phylogenies are inaccurate[END_REF] with experimental large scale benchmarks supporting this observation [START_REF] Zielezinski | Alignment-free sequence comparison: benefits, applications, and tools[END_REF]. On the other hand, works like [START_REF] Jain | Long-read mapping to repetitive reference sequences using Winnowmap2[END_REF] show how multiplicities are helpful during mapping, as they allow the comparison of very repetitive regions. It is therefore of high interest to better understand the relation between these two, seemingly opposing findings. A preliminary question to this problem is how to use local, frequency-aware mappings in the more general settings of phylogeny reconstruction.

• Further analysis of current count sketches under specific regimes. We mentioned in Chapter 5.1.3 how Count-Min sketch [START_REF] Cormode | An improved data stream summary: the count-min sketch and its applications[END_REF] can achieve better error guarantees if the distribution of counts follow a Zipf distribution (Section 5.1.2).

On the other hand, in Section 5.1.3 we mentioned the conservative update strategy of Count-Min sketch which we use in Part II to modify Set-Min sketches into Max-Mins. However, up until recently [START_REF] Fusy | Phase transition in count approximation by Count-Min sketch with conservative updates[END_REF] no formal analysis of Count-Min sketch under conservative updates existed. Future directions can thus consist in providing formal analyses of useful modifications of already available sketching methods.

• Other weighted schemes for k-mer sets. While in this thesis we focused on efficient representations of k-mer counts, other weighting schemes for k-mers can be devised. An example of such alternative weightings was presented in Part III where k-mers were associated to the number of datasets they appeared in (document frequency). An obvious question is whether additional weighting schemes can benefit from our solutions of Part II and Part III. Additionally, since not all weighting schemes are guaranteed to be power-law distributed another interesting question is the development of efficient representations of counts distributed arbitrarily. A good direction toward this goal is to extend the idea of taking advantage of the high similarity of neighboring k-mers as we or [START_REF] Ermanno | On Weighted K-Mer Dictionaries[END_REF] already do.

• Additional Compressed Static Function implementations. The only available CSF implementation available today is the one of [START_REF] Genuzio | Fast scalable construction of ([compressed] static | minimal perfect hash) functions[END_REF], used by our methods in Part III. It is therefore desirable for alternative methods to appear in the near future. A wider choice not only benefits programs (CSFs in Locom can be swapped quite easily since they are used as black boxes), but also developers, who would be able to choose the best CSF to their problem (note that [START_REF] Genuzio | Fast scalable construction of ([compressed] static | minimal perfect hash) functions[END_REF] only provides a Java implementation).

• Compressed multi-dataset count representations. All our count-aware methods focus on the representation of k-mer counts coming from one single dataset.

Abstract

Sequence comparison is one of the fundamental concepts of bioinformatics. Alignment-free algorithms representing sequences as (multi-)sets of their constituent k-mers are widely used in practice due to their simplicity and speed. However, exact data structures storing k-mer multiplicities are usually suboptimal as they do not take advantage of the characteristic Power-Law distribution of k-mer counts. Sketching techniques, on the other hand, suffer from large count estimation errors. This thesis addresses the problem of efficiently storing counts for known sets of k-mers and the problem of computing differences (and by extension, Jaccard similarity) of very similar sets in small space. Two independent solutions are provided for the first problem. The first one consists in a sketching-based solution inspired by Count-Min sketch, with provable better error guarantees for k-mers following a heavily skewed distribution. The second method starts by improving on a previous implementation of Compressed Static Functions, by extending its applicability to data of entropy < 1. The resulting algorithm and data structure are then paired with minimizer-based bucketing in order to produce two additional compression strategies.

For the second topic of this work, we propose Invertible Bloom Lookup Tables (IBLTs) as an efficient way to compute symmetric differences of similar k-mer sets. The combination of IBLTs and syncmers allows, in some instances, to estimate Jaccard similarity more precisely than comparable MinHash sketches. Further, the full versatility of IBLTs is demonstrated by computing approximated set differences of full k-mer sets.

Résumé

La comparaison de séquences est l'un des concepts fondamentaux de la bioinformatique. En pratique, dans plusieurs applications, les algorithmes "sans alignement" sont souvent employés en raison de leur majeure vitesse et simplicité par rapport aux solutions classiques. Dans ce cadre, les séquences sont représentées comme des ensembles de kmers. Cependant, les structures de données pour stocker de k-mers avec leurs multiplicités n'utilisent pas le fait que celles-ci suivent des distributions "Power-Law" très asymmétriques. D'autre part, les techniques classiques d'esquissage (sketching) pour l'estimation de poids présentent des erreurs trop grandes pour la plupart d'applications bioinformatiques.

Dans cette thèse nous introduisons deux méthodes alternatives visées à représenter les poids associés aux k-mers de manière efficace. La première est une nouvelle esquisse inspirée à Count-Min sketch, adaptée à de distributions de k-mers particulièrement asymétriques. Notre deuxième technique est plutôt une famille de méthodes avec pour base une version améliorée d'une précédente implantation de Fonctions Statiques Compressées ("Compressed Static Function" ou CSFs). Les CSFs sont après combinées avec un regroupement basé sur les minimizers afin de produire deux stratégies de compression supplémentaires.

Finalement, le dernier argument de cette thèse porte sur l'introduction d' "Invertible Bloom Lookup Tables" (IBLTs) afin de calculer efficacement de différences symétriques entre ensembles de k-mers. La combinaison d'IBLTs avec de l'échantillonnage basé sur les syncmers permet une plus efficace estimation de la similarité de Jaccard par rapport aux esquisses MinHash quand les ensembles en question sont très similaires. La pleine versatilité d'IBLTs est démontrée en approximant la différence entre ensembles de k-mers complets, sans aucun type d'échantillonnage.