
HAL Id: tel-04065758
https://theses.hal.science/tel-04065758

Submitted on 12 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sketching data structures for alignment-free analysis of
genomic sequences

Yoshihiro Shibuya

To cite this version:
Yoshihiro Shibuya. Sketching data structures for alignment-free analysis of genomic sequences. Bioin-
formatics [q-bio.QM]. Université Paris-Est, 2022. English. �NNT : 2022PESC2013�. �tel-04065758�

https://theses.hal.science/tel-04065758
https://hal.archives-ouvertes.fr

Sketching data structures for alignment-free
analysis of genomic sequences
Thèse de doctorat de l’Université Paris-Est

École doctorale: MSTIC
Spécialité de doctorat: Informatique
Unité de recherche : Laboratoire d’Informatique Gaspard-Monge

Thèse présentée et soutenue à l’Université Gustave Eiffel,
le 29/11/2022, par :

Yoshihiro SHIBUYA

Composition du Jury

Éric RIVALS Président du juryDR CNRS, Université de Montpellier
Rayan CHIKHI RapporteurChargé de recherche expert, Institut Pasteur, Paris
Yann PONTY RapporteurDR CNRS, École Polythechnique de Paris
Karel BR̆INDA ExaminateurStarting faculty, INRIA, Rennes
Cinzia PIZZI ExaminatriceAssociate Professor, University of Padua
Irena RUSU-ROBINI ExaminateurProfessor, Université de Nantes

Encadrement de la thèse
Gregory KUCHEROV Directeur de thèseDR CNRS, LIGM, Université Gustave Eiffel

1

Acknowledgment

I would like to express my gratitude to my advisor Gregory Kucherov who
was always present to answer my questions and to provide guidance in
many different things, from scientific writing to academic bureaucracy.

I would also like to address special thanks to Djamal Belazzougui whose
expertise on a vast array of subjects led to many interesting insights de-
veloped in this thesis.

I would like to thank Florent Koechlin, Revekka Kyriakoglu and Pablo
Rotondo for helping me settle in Paris when I first arrived in France, and
for providing a very friendly work environment during my studies.

Thanks to the people of the LIGM lab, from secretaries to professors
for creating a hassle-free working environment.

Thank you to my former supervisor Matteo Comin for having introduced
me to this research field, and whose involvement during my Master thesis
pushed me to undertake doctoral studies.

Last but not least, I have to thank my own family for the invaluable
support they provided me during the Covid pandemic and other difficult
times.

3

Abstract
With the advent of Next Generation Sequencing (NGS) technologies, the amount of se-
quencing data has started to exponentially grow year by year. This data deluge has made
the development of new computationally efficient methods a priority in the big-data era
of bioinformatics. Dealing with such huge amount of information can be done in two
orthogonal ways: by compressing the input of current tools, or by providing specialized
algorithms with better scaling capabilities. In practice, these two approaches are often
combined in order to take advantage of their respective strenghts.

This thesis proposes new methods exploring these ideas. To this end, we first provide
two approaches for the efficient storage and retrieval of static k-mer count information.
k-mer counting is a well-known problem in bioinformatics for which many tools have been
proposed over the last decade. However, such approaches usually focus on construction
speed, without further optimizing for query efficiency nor space. Count information is
usually stored using fixed-width representations, potentially wasting a lot of space when
small count values are involved.

Both our methods take advantage of the characteristic power-law distribution of k-
mer counts to dramatically improve space while providing fully queryable data structures.
The first one is Set-Min sketch, a variation of the well-known Count-Min sketch. Unlike
Count-Min, Set-Min sketch provides better error-space tradeoffs by bounding the expected
cumulative error by a fraction of the total number of k-mers in the data set. This is in
stark contrast to Count-Min where the same bound holds for point-query errors only.

A further development toward optimized data structures for k-mer counts is repre-
sented by our family of data structures that we call locom. We demonstate how grouping
similar counts together using minimizers as a bucketing technique helps in boosting overall
compressibility. One of the ingredients of locom are Bloom-enhanced Compressed Static
Functions (BCSFs), improved versions of the sole Compressed Static Function implemen-
tation available at the time of writing. Finally, the combinination of LSH and BCSFs
produces a new family of data structures potentially able to represent counters in less
space than their empirical zero-order entropy. To the best of our knowledge, no previous
method was able to achieve such compression factors.

Similarity estimation of very similar sequences is the other major problem studied
in this work. Current methods estimating pairwise Jaccard similarity, such as MinHash
sketching, are space-inefficient when sequence composition is too similar. Here we focus on
circumventing this limitation by making use of Invertible Bloom Lookup Tables (IBLTs),
sketches capable of retrieving the symmetric difference of two sets using space proportional
to the difference, and not on the number of elements in each set. We combine IBLTs
with syncmers-based sampling for further space reductions. This choice is experimentally
justified by showing how, compared to minimizers, syncmers lead to unbiased estimations
of Jaccard similarity. Moreover, since IBLTs are able to retrieve differences exactly we
also explore the application of retrieving super-sets of the symmetric difference of whole
k-mer sets.

4

Résumé
Avec l’introduction des technologies de séquençage à haut débit (en anglais: High Through-
put Sequencing aussi connues sous le nom de Next Generation Sequencing), la quantité
de données biologiques produites chaque année a vu une croissance exponentielle. Cette
surcharge d’information a rendu prioritaire le développement de nouvelles méthodes plus
adaptées pour faire face à cette âge de la bioinformatique où les données massives jouent un
rôle fondamental. L’objectif peut être atteint de deux façons différentes et pas mutuelle-
ment exclusives: avec compression de données ou avec des algorithmes qui passent à
l’échelle.

Cette thèse présente de nouvelles méthodes qui explorent ces idées. Tout d’abord, nous
proposons deux approches différentes pour stocker et récupérer les compteurs associés aux
k-mers. Le comptage de k-mer est un problème bien connu en bioinformatique pour lequel
plusieurs outils ont été proposés. Cependant, ces approches sont habituellement focalisées
sur la vitesse du comptage, sans tenir en compte l’efficacité des requêtes ou l’espace occupé
par les représentations en sortie. En plus, plusieurs outils emploient des compteurs de
taille fixe, ce qui résulte en un gaspillage de plusieurs bits en cas de petites valeurs.

Nos méthodes exploitent le fait que les compteurs de k-mers suivent une distribution
dite “power-law”, ce qui nous permet d’obtenir des structures plus compactes tout en
supportant des requêtes efficaces. Notre première structure s’appelle Set-Min, une esquisse
de compteurs de k-mers, variante de la bien connue esquisse Count-Min. Contrairement à
Count-Min, où les erreurs de chaque estimation sont bornées par une fraction du nombre
de k-mers totales présentes dans l’ensemble d’origine, Set-Min borne la somme totale
attendue des erreurs. En pratique, cette différence fait que les estimations renvoyées par
Set-Min soient beaucoup plus précises que celles obtenues avec une esquisse Count-Min
de taille identique.

Dans la deuxième partie de cette thèse nous développons davantage ces idées dans
le logiciel locom. Nous démontrons comment les minimizers peuvent également être em-
ployées pour regrouper les compteurs de k-mers similaires. Cette considération est suivie
de l’introduction de nos “Bloom-enhanced Compressed Static Functions” (BCSFs), une
amélioration de la seule implantation de Fonctions Statiques Compressées (“Compressed
Static Functions”) disponible au moment de rédiger ces lignes. Finalement, avec une com-
binaison de LSH et BCSFs nous obtenons dans le même algorithme une nouvelle famille
de structures de données capables de stocker des comptages en un nombre de bits inférieur
à leur entropie d’ordre zéro. À notre connaissance, aucune méthode précédente n’avait
réussi à atteindre une telle efficacité.

Avec le dernier sujet de cette thèse nous abordons le problème d’estimation de la
similarité entre séquences très similaires. L’esquissage avec MinHash n’est pas adapté
à ce type de situation car, pour avoir une probabilité acceptable d’échantillonner des
différences, les esquisses se trouvent à devoir avoir des tailles considérables, avec une
conséquente perte d’efficacité. Pour cette raison, nous cherchons de contourner cette
limitation en utilisant les Invertible Bloom Lookup Tables (IBLTs), des esquisses capables
de trouver la différence symétrique de deux ensembles avec espace qui dépend de la taille
de la différence, et non pas de la taille des ensembles. Par ailleurs, nous démontrons
comment combiner l’échantillonage basé sur les syncmers avec les IBLTs pour réduire
davantage la taille de nos esquisses tout en évitant le biais propre aux estimateurs de la
similarité de Jaccard basés sur les minimizers. Enfin, puisque les IBLTs sont capables de
récupérer les différences exactes nous explorons la possibilité de calculer efficacement des
super-ensembles de différences entre ensembles de k-mers complets.

5

Contents

List of Figures 12

List of Tables 13

List of Acronyms 14

Publications 15

Résumé détaillé de la thèse en français 17

Introduction 23

I State of the art 28

1 DNA Sequencing and assembly 29
1.1 Classic sequencing approaches . 29
1.2 Second-Generation sequencing . 29
1.3 Third generation sequencing . 30

2 Assembly 32

3 Pairwise sequence similarity 34
3.1 Alignment-based methods . 34
3.2 Full hash-based and succinct solutions . 35
3.3 Sampling for sequence alignments . 35

4 Alignment-free similarity estimation 36
4.1 Jaccard similarity . 37
4.2 Alignment-free algorithms at scale . 37

5 Sketching 39
5.1 Sketching techniques relevant to our work 40

5.1.1 CountSketch . 40
5.1.2 Count-Min sketch . 41
5.1.3 Count-Min sketch with conservative updates 42
5.1.4 MinHash sketching . 42
5.1.5 Bloom filters . 42
5.1.6 Invertible Bloom Lookup Tables . 43

6 Exact representations of k-mer count tables 46
6.1 Full static representations . 46

6.1.1 Hash Tables . 46

6

6.1.2 Quotient filters . 46
6.1.3 Dictionaries based on super k-mers 47
6.1.4 Graph-based dictionaries . 47

6.2 Count-only data structures . 47
6.2.1 Minimal Perfect Hash Functions . 47
6.2.2 Compressed static functions . 48

II Sketching count information 50

7 Context and motivation 51
7.1 Problem statement . 51
7.2 Contributions . 52

8 Set-Min sketch 53
8.1 Key algorithmic ideas . 53

8.1.1 Skewed distribution . 53
8.1.2 Using counter collisions to reduce space 54

8.2 Set-Min data structure . 55
8.2.1 Dealing with collisions . 56
8.2.2 Computing tighter sketch dimensions 59

8.3 Max-Min sketch . 59
8.4 Results . 60

8.4.1 Data sets . 60
8.4.2 Set-Min vs Count-Min sketch . 61
8.4.3 Set-Min vs Max-Min sketch . 62
8.4.4 Set-Min sketch vs KMC output . 62
8.4.5 Set-Min sketch vs MPHFs . 62
8.4.6 Unassembled datasets . 62
8.4.7 Time measurements . 63

9 Discussion 70

III Space-efficient representation of genomic k-mer count ta-
bles 72

10 Context and motivation 73
10.1 Problem statement . 73
10.2 Related work . 74
10.3 Contributions . 75

11 Locom: minimizers meet Compressed Static Functions 76
11.1 Key algorithmic ideas . 76

11.1.1 Correlation of neighboring k-mer counts 76
11.1.2 Minimizers as a context-aware bucketing technique of k-mers 77

11.2 Adapting Compressed Static Functions to k-mer count tables 78
11.2.1 Bloom-enhanced Compressed Static Functions 78
11.2.2 Minimizer bucketing . 80
11.2.3 Lazy collision resolution: AMB . 80
11.2.4 Correcting the effects of collisions: FIL 80
11.2.5 Cascading . 81

7

11.2.6 Extension to approximate counts 81
11.3 Results . 88

11.3.1 Datasets . 88
11.3.2 Implementation . 88
11.3.3 Compression of skewed data . 88
11.3.4 Compression of higher entropy data 89
11.3.5 Approximate counts . 90
11.3.6 Query speed . 90
11.3.7 Technical observations . 90

12 Discussion 96

IV Efficient reconciliation of genomic datasets of high simi-
larity 98

13 Context and motivation 99
13.1 Problem statement . 99
13.2 Contributions . 99

14 KM-peeler: Invertible Bloom Lookup Tables for fast k-mer set differ-
ences 101
14.1 Key algorithmic ideas . 101

14.1.1 Random sampling . 101
14.1.2 Minimizers . 101
14.1.3 Syncmers . 102

14.2 KM-peeler . 103
14.2.1 Set reconciliation from two IBLTs 103
14.2.2 Making buckets lighter . 104
14.2.3 Combining sampling and IBLTs for Jaccard similarity estimation . . 104
14.2.4 IBLT dimensioning with syncmers 104
14.2.5 Approximating k-mer set differences 105
14.2.6 IBLT for collections of MinHash sketches 105

14.3 Results . 105
14.3.1 Comparison of different sampling approaches 106
14.3.2 Space performance of IBLTs . 106
14.3.3 Accuracy of Jaccard similarity estimation from IBLTs of syncmers . 107
14.3.4 Sampling syncmers for further space reductions 107
14.3.5 Approximating k-mer set differences 108

15 Discussion 113

16 Appendix 114

Conclusion and Perspectives 115

Bibliography 119

8

List of Figures

4.1 Sequencing cost against Moore’s Law. Sequencing is becoming cheaper
every passing year. Because of this, new data is produced at increasing
pace straining current analysis methods. 38

5.1 Example of inserting the pair (p, 5) into an empty CountSketch. Empty
cells represent counts equal to 0. Note how the sign of the inserted element
in each cell depends on si(·) . 40

5.2 Example of query on a Count-Min sketch. Counters 5 and 7 corresponding
to two different items were inserted in the sketch causing a collision in cell
(2,4). In case of collisions in all cells of the sketch, taking the minimum
minimizes error. 41

5.3 Using a Bloom filter with three hash functions to represent set x, y, z. Bits
at positions given by the r = 3 independent hash functions are set to 1. At
query, element v is correctly recognized as not present in the Bloom filter
but w (in red) results in a false positive since all its bits are set to 1. . . . 42

5.4 Example of insertions in an IBLT with m = 6 and r = 3. The binary
representation of each k-mer is inserted into payload field P of r = 3
non-necessarily distinct buckets given by hash functions hj(·), j = 1, 2, 3.
The resulting table is not peelable, since all buckets contain more than
one element (all counts are different from 1 (or -1)). Note however that
IBLTs support deletions and the sketch might return to be peelable again
if enough inserted elements are removed. 44

5.5 The reported example represents the difference between the k-mer set from
Figure 5.4 and a modified version of itself, where k-mer CAC has been
mutated into CGC (1). Once sketched, the difference (top left of (2)) has
two buckets containing one element each (C = −1), and two buckets with
two elements each (first and last rows). Despite having C = 0, the first row
contains something (H and P fields are different from 0x00) while the last
one is subject to a collision of two copies of the same element (C = 2 and
H = P = 0x00). Peeling starts by first finding any eligible bucket whose
counter is 1 or -1 and whose hash field H is equal to he(P). This is the
case for the bucket containing 0x19 (top left). Value 0x19 (corresponding
to CGC) is then subtracted from all its buckets, leading to a new peelable
bucket (first bucket of the second sketch in the top right corner of (2)).
Peeling this new item (0x11 = CAC) empties the sketch and terminates
the process. The retrieved symmetric difference is thus CGC, CAC with
CAC coming from the set depicted in Figure 5.4 (counter C = 1) and CGC
being its mutated version (C = −1). 45

9

8.1 k-mer spectrum of the human genome for k = 32 in log-log scale. Note how
the number of highly repetitive k-mers rapidly decreases as their repetitions
increase. Most of the k-mers in a fully assembled genomes are thus unique,
for large enough ks. 54

8.2 Example of a Set-Min sketch with L = {ℓ1, ℓ2}. Two pairs (e, ℓ1) and (f ,
ℓ2) with e ̸= f have been inserted into the sketch, with e, f hashed to the
same bucket at line 2. 55

8.3 Set-Min sketch memory optimization. The most common label (in blue) in
the histogram (left) is not actually inserted into the sketch (bottom right).
Empty intersections of the final sketch (top right) are interpreted as the
missing label. 56

8.4 Example of collision resolution in case of multiple items occurring in the
intersection. The brown label is returned because it is more rare compared
to the blue one. 57

8.5 Spectrum in log-log scale of SRR unassembled data sets for k = 32. Note
how, the number of k-mers appearing 2 times is not that smaller than the
number of unique k-mers. In such a case, Set-Min sketch needs a lot of
space just to distinguish count values of these two groups. 64

8.6 Construction time of Set-Min sketches compared to Count-Min, Max-Min
and BBHash (with external array). Time is reported in milliseconds on
a logarithm scale. Set-Min sketches tend to be slower than Count-Min or
Max-Min sketches of comparable size due to the extra operations needed to
manage sets. Compared to MPHFs, Set-Min sketches are generally faster
when data is very skewed, which is not the case for unassembled datasets
or small values of k. 65

8.7 Average query time of Set-Min, Count-Min and BBHash. Similar to Figure
8.6 Set-Min sketches are generally slower than their Count-Min or Max-
Min counter-parts. As before, unassembled datasets and small values of
k prove to be the most difficult situations. On the other hand, for very
skewed distributions Set-Min sketches perform as well as BBHash MPHFs. 66

11.1 High correlation between neighboring k-mer counts can be due to their
high skewed distribution without any particular relation between k-mers.
In the reported case k = 7 with all k-mers unique. 77

11.2 Example of count correlation due to repetitions. Substring TGG repeats
3 times generating a block of relatively high counts very similar to one
another. Non-consecutive duplications have the same effect. 77

11.3 Example showing the effect of a single mutation when coverage is > 1.
The first sequence is the original one, of coverage 20. One of its 20 copies
contain a single mutated letter (highlighted in red) which generates a block
of 4 additional unique 4-mers in the mutated sequence and a block of 4 4-
mers of frequency 19 from the original sequence. Since the affected count
values in both sequences are somehow linked to some particular k-mers,
LSH techniques looking at k-mer composition are a viable option to bucket
counts together. However, collisions between different count values are
possible, and should be dealt with. 77

11.4 Example of minimizers used as k-mer fingerprints. The same minimizer is
likely to be shared by multiple neighboring k-mers. In the example above
k = 12 and m = 4. Column h(·) indicate the hash value of each substring
of length 4. The minimizer of two successive 12-mers is highlighted in red. 78

10

11.5 Graphical representation of Algorithm 2. Construction starts with his-
togram computation (1) in order to divide the given table into two sets K0
and K1 = K \K0 (the latter highlighted as a gray area). A Bloom filter is
then built over K1 (2) and false positives from K0 are extracted (3) Finally,
a CSF storing counters for both K1 and the set of false positives is built
(4) The final BCSF is the combination of the Bloom filter (if any) and the
CSF. 83

11.6 Depiction of AMB’s construction algorithm for a table containing 3-mers,
minimizer length m = 2 and δ = 0. Counts are first bucketed using mini-
mizers (1) Non-ambiguous buckets are reduced to their single value while
ambiguous buckets are marked with the special value 0 (2) k-mers inside
ambiguous buckets are then filtered (3) Both the array of representatives
and the filtered table are then stored using BCSFs (steps (4) and (5)). Ex-
tension to the multi-layered case can be easily achieved by re-applying the
same procedure on the filtered table with a bigger m′ > m as long as m′ ≤ k. 84

11.7 Similarly to AMB the construction of FIL data structures starts by buck-
eting counts (1) However, this time representatives are chosen by majority
rule (2) so that the special value 0 is not required. The output table is
obtained from the one in input by performing differences between counters
and their representatives (3) instead of propagating ambiguous k-mers. The
array of representatives and the new values are stored using BCSFs (4) (5)
Note that the updated count table contains a large number of 0s, and it is
thus more compressible than the original one. 85

11.8 Multi-layered AMB queries. Thanks to the special value 0 each query stops
as soon as a suitable value is found. Increasing minimizer lengths are used
to gradually solve collisions in successive layers. 86

11.9 Results for the Sakai dataset for big values of k. For presentation purposes,
H0 is represented as an additional red column in each subgroup. 92

11.10Results when compressing the reference genome of C.Elegans 92
11.11Compressed space usage for the high entropy df dataset. 93
11.12Compressed space usage for the high entropy SRR dataset. 93
11.13Compressed space usage for the low entropy df dataset. 94
11.14Space usage for the Sakai dataset with small k when using AMB (FIL is

slightly worse and was omitted). Minimizer lengths vary between 1 and 5
indicating that the best option is to use a simple (B)CSF. 94

11.15Space usage when using the approximated version of AMB. Entropy (red
columns) and CSF (blue columns) are reported for comparison. Unlike
Figure 11.14, AMB is able to break the empirical entropy lower bound
when small errors are acceptable. 95

11.16Average query time for AMB with 2 and 3 layers and FIL with 2 layers. . . 95

14.1 Example of minimizers as a sampling technique with a sequence of length
40, k = 15, w = 8. Note how two consecutive minimizers (highlighted in
red) are never separated by more than w = 8 bases. 102

14.2 Syncmers computed on the same sequence as Figure 14.1. k = 15 and
z = 4. The minimum z-mer of each syncmer is highlighted in red. 103

14.3 Unlike the IBLT presented in Figure 5.4, our implementation ignores hash
field H. Furthermore, tables are split into r independent slices following
the analysis of [69]. 106

11

14.4 Minimizers present a non-negligible bias as opposed to syncmers and ran-
dom sampling which are unbiased (and overlap in the plot). Each mea-
surement was repeated 500 times on random sequences of length L = 10K
with k = 15, w = 11 (for minimizers) and z = 4 (for syncmers). Sampling
rate is given by 1/ν = 2/(k − z + 1) = 1/6. 109

14.5 Space taken by IBLTs depends on the similarity between stored sets. For
very similar sequences (mutation rate pm = 0.001, Figure 14.5a), IBLTs are
more efficient than KMC. Their advantage appears reduced for increased
pm and large sequences (Figure 14.5b). 110

14.6 Comparison between IBLTs and MinHash for computing pairwise Jaccard
on the covid dataset. The x-axis reports the amount of space allocated
for each sketch while the y-axis reports the average absolute error. k = 15
and z = 4 in all tests. Sketch size for MinHash and table size for IBLTs
are chosen to fit the allocated memory. 110

14.7 Comparison between IBLTs and MinHash for computing pairwise Jaccard
on the spneu dataset with the same setting as Figure 14.6. 111

14.8 Effect of sampling syncmers before IBLT insertion on the average absolute
error. 1/ν is the compression rate used for sampling syncmer sets before
IBLT insertion. ν = 1 means no sampling (full syncmer sets). 111

14.9 IBLT size when using syncmers (k = 15, z = 4) combined with sampling.
Additional sampling helps in reducing IBLT space at the cost of additional
errors as seen in Figure 14.8. However, not storing hash filed H imply
diminishing returns for compression ratios > 4 since recognizing spurious
buckets becomes harder (as described in Section 14.2.2). 112

12

List of Tables

8.1 Data sheet for the data sets used in our study. Columns Tk and Dk report
the total number of k-mers and the number of distinct k-mers (in millions),
respectively. Dc reports the number of distinct k-mer counts. Ck reports
the number (in millions) of distinct k-mers with a count value different
from the most common one (which is 1 in all reported cases). 61

8.2 Set-Min compared to Count-Min. T is the reference upper bound on the
sum of errors equal to ε∥a∥1 (right-hand side of (8.5)). Es and Ec are the
sum of errors for Set-Min and Count-Min respectively. Ns and Nc are the
percentages (rounded to integers) of distinct k-mers producing an error,
for Set-Min and Count-Min, respectively. As and Ac are respective average
errors, with average taken over the number of distinct k-mers resulting in
an error in the respective sketch. 67

8.3 Set-Min compared to Max-Min sketch. Columns Ec, Nc, Ac are replaced
by Em, Nm, Am with the same meaning as their Table 8.2 counterparts. . 68

8.4 Set-Min (ϵ = 0.01) compared to KMC and BBHash (run with γ = 1). All
memory is reported in bytes. Column Mkmc, Ms, Mbball are the memory
taken by a fully functional map between k-mers and their frequencies when
applying KMC, Set-Min sketch and BBHash, respectively. Mbbhash is the
memory of the hash function produced by BBHash without the external
array of frequencies. 69

14.1 True size of symmetric difference of k-mer sets and its overestimate. For
each experiment, ‘diff’ is the average/maximum size of the true symmetric
difference, and ‘err’ is the average/maximum number of spurious k-mers re-
ported as being in the symmetric difference. pm is the mutation probability
used to generate sequences from a random one. 108

16.1 Names of covid genomes used for Figure 14.6 114
16.2 Names of S.Pneumoniae genomes used for Figure 14.7 114

13

List of Acronyms

CS CountSketch
CM Count-Min sketch
SMS Set-Min Sketch
MPHF Minimal Perfect Hash Function
CSF Compressed Static Function
BCSF Bloom-enhanced Compressed Static Function
IBLT Invertible Bloom Lookup Table

14

Publications

Journals
1. Yoshihiro Shibuya, Djamal Belazzougui, and Gregory Kucherov. Set-Min Sketch: A

Probabilistic Map for Power-Law Distributions with Application to k-Mer Annota-
tion. Journal of Computational Biology, 29(2):140–154, February 2022

2. Yoshihiro Shibuya, Djamal Belazzougui, and Gregory Kucherov. Space-efficient
representation of genomic k-mer count tables. Algorithms for Molecular Biology,
17(1):5, March 2022

International Conferences
1. Yoshihiro Shibuya, Djamal Belazzougui, and Gregory Kucherov. Efficient recon-

ciliation of genomic datasets of high similarity. 22nd International Workshop on
Algorithms in Bioinformatics (WABI 2022). Accepted.

2. Yoshihiro Shibuya, Djamal Belazzougui, and Gregory Kucherov. Set-Min sketch: a
probabilistic map for power-law distributions with application to k-mer annotation.
RECOMB 2021. Padova, Italy, 2021, virtual conference.

3. Yoshihiro Shibuya, Djamal Belazzougui, and Gregory Kucherov. Space-Efficient
Representation of Genomic k-Mer Count Tables. In Alessandra Carbone and Mo-
hammed El-Kebir, editors, 21st International Workshop on Algorithms in Bioin-
formatics (WABI 2021), volume 201 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 8:1–8:19, Dagstuhl, Germany, 2021. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik

Preprints
1. Yoshihiro Shibuya, Djamal Belazzougui, and Gregory Kucherov. Efficient reconcili-

ation of genomic datasets of high similarity. bioRxiv, page 2022.06.07.495186, June
2022. Type: article

2. Yoshihiro Shibuya and Gregory Kucherov. Set-min Sketch: a Probabilistic Map
for Power-Law Distributions with Application to k-mer Annotation. bioRxiv, page
2020.11.14.382713, November 2020

Workshops
1. Yoshihiro Shibuya, Djamal Belazzougui, and Gregory Kucherov. Space-efficient sets

differences with applications to Jaccard estimation. International workshop “Data
Structures in Bioinformatics”, Düsseldorf, Germany.

15

2. Yoshihiro Shibuya, Djamal Belazzougui, and Gregory Kucherov. Space-efficient
representation of genomic k-mer count tables. Workshop “SeqBIM 2021”, Lyon,
France.

3. Yoshihiro Shibuya, Djamal Belazzougui, and Gregory Kucherov. Succinct k-mer
tables in practice. International workshop “Data Structures in Bioinformatics”,
Milan, Italy.

4. Yoshihiro Shibuya, Djamal Belazzougui, and Gregory Kucherov. Set-min sketch: a
probabilistic map for power-law distributions with applications to k-mer annotation.
National workshop “SeqBIM 2020”, Toulouse, France.

5. Yoshihiro Shibuya, and Gregory Kucherov. uANI: whole genome comparison and
phylogeny reconstruction using sketching. National workshop “SeqBIM 2019”, Marne-
la-Vallée, France.

Other works not included in this thesis
1. Yoshihiro Shibuya and Matteo Comin. Better quality score compression through

sequence-based quality smoothing. BMC Bioinformatics, 20(9):302, November 2019

2. Yoshihiro Shibuya and Matteo Comin. Indexing k-mers in linear space for quality
value compression. Journal of Bioinformatics and Computational Biology, 17(05):1940011,
October 2019

16

Résumé détaillé de la thèse en
français

Structures d’esquissage pour l’analyse sans
alignement de séquences biologiques

Introduction

L’estimation de la similarité entre séquences biologiques est l’un des pilliers de la bioinfor-
matique. Aligner et compter les mutations entre séquences est la méthode classique pour
atteindre ce but. Dans le cas général, les alignements multiples de séquences seraient le
choix idéal mais, en pratique, leur complexité limite leur utilisation à des cas trop simples
pour qu’ils puissent être utiles avec les données d’aujourd’hui. Beaucoup d’outils font face
à cette limitation en décomposant chaque alignement multiple en une série d’alignements
à deux à deux. Le résultat final est alors obtenu en agrégeant les alignements partiels.
Cette technique permet une diminution importante du temps de calcul.

Historiquement, les algorithmes classiques d’alignement sont liés à la définition de dis-
tance d’édition de chaînes de caractères. La similarité est alors calculée en base aux opéra-
tions fondamentales requises pour transformer une chaîne dans l’autre. À noter que, à dif-
férence de la similarité entre chaînes quelconques, la comparaison entre séquences d’ADN,
ou d’autres molécules biologiques (p.e. ARN), requiert d’assigner des “scores” adaptés aux
couples de caractères alignés, pour mieux capturer leur signification biologique. Utiliser la
similarité d’édition dans sa forme base, où les mutations sont vues comme indépendantes
et toujours de pèse unitaire, peut porter à des conclusions erronées. En général, ces algo-
rithmes utilisent des approches de programmation dynamique afin d’obtenir une solution
optimale par rapport au système de score choisi. Les premiers algorithmes d’alignement
[145, 194, 71] ont été proposés il y a plusieurs décennies, mais ils continuent à jouer un
rôle de première importance même aujourd’hui.

Cependant, avec l’accumulation de données produites par les technologies de séquençage
de première génération (séquençage de Sanger [174]), la simple programmation dynamique
commençait à s’avérer trop lente. Ainsi, pour répondre à ces limitations, de nouvelles ap-
proches heuristiques ont été proposées en complément de leurs prédécesseurs. L’hypothèse
à la base de ces heuristiques est le fait que, si deux séquences sont suffisamment simi-
laires, alors elles doivent forcément partager au moins une région bien conservée. Les
outils de la famille de BLAST [151, 206, 4] cherchent ces régions en construisant des in-
dices de sous-chaînes chevauchées de longueur constante k appelées “k-mers”. Les parties
potentiellement homologues sont alors individuées grâce aux k-mers en commun (graines).
Le résultat final est obtenu avec de la programmation dynamique classique limitée aux
alentours des blocs trouvés par les indices, ce qui permet une majeure efficacité.

L’introduction de séquenceurs de deuxième génération en 2006 avec un plus haut

17

débit mit à nouveau en difficulté les algorithmes présents à l’époque. Une nouvelle famille
d’algorithmes d’alignement prit alors place. À la place de construire des indices de k-
mers, outils comme BWA [112] et similaires [105, 117] emploient de méthodes d’indexation
compressée comme les suffix trees/arrays [200, 130], la BWT [28] ou bien des FM-Index
[61]. La nature succincte de ces indices permet de réduire considérablement l’espace de
stockage. Un autre avantage de ce type de structures est que la recherche de régions
conservées n’est plus limitée au graines de longueur k alors qu’elle se peut étendre sans
limite. Les indices compressés restent les meilleures méthodes d’alignement de reads
affectées par petites erreurs, ce qui est le cas pour la deuxième génération de séquenceurs.

En revanche, les reads produites par la troisième génération de séquenceurs sont plus
longues mais aussi plus imprécises. La majeure longueur est avantageuse pour la détec-
tion de mutations à large échelle (comme de longues délétions, insertions ou bougement
de bases) mais l’augmentation de la probabilité d’erreur, avec conséquente diminution de
régions conservées, rend l’indexation compressée presque inutile. Les nouvelles techniques
heuristiques pour la troisième génération reprennent alors le concept d’indexation de k-
mers en le combinant avec de l’échantillonnage, afin de diminuer les ressources compu-
tationnelles requises pour la recherche de graines. Plusieurs méthodes d’echantillionnage
existent, parmi elles les bien connues “minimizers” [178, 167, 114, 91, 89] (mais aussi les
“syncmers” [52]).

L’alignement n’est guère la seule méthode pour estimer la similarité entre séquences.
En effet, une autre possibilité consiste en obtenir une indication de ressemblance depuis
la composition des séquences sans chercher d’aligner leurs bases. Cette idée est le fonde-
ment de techniques dites “alignment-free” (lit. sans alignement) où les comparaisons sont
basées sur des indicateurs de similarité alternatifs, comme, par exemple, la longueur de
sous-chaîne partagées (“Average Common Subsequence” [201]) ou le degré de compress-
ibilité d’une chaîne par rapport à l’autre [203, 115]. Parmi les dizaines de méthodes sans
alignement pour l’estimation de la similarité, les techniques qui utilisent les k-mer ont eu
le plus de succès grâce à leur versatilité [15, 92, 193, 108, 60, 65, 66, 207, 5, 180, 196, 49,
100, 23, 150]. Dans ce cadre, les séquences sont représentées comme ensembles (pesés ou
pas) de k-mers. Malgré la grande disponibilité de mesures de distance qui peuvent être
calculées sur des ensembles, la plupart d’elles n’ont pas de bases biologiques [224]. Seule-
ment récemment une mesure de distance biologiquement vraisemblable a été introduite
par [60], où la fréquence de mutation est estimée à partir de la similarité de Jaccard [142].

Il y a quelques années, même les algorithmes sans alignement ont commencé à mon-
trer leurs limitations à cause de la croissance exponentielle du rendement des moderns
séquenceurs. Encore une fois, il a donc fallu adapter de nouvelles techniques à l’analyse
des séquences. Le 2016 a signé le début en bioinformatique des algorithmes de “sketching”
(esquissage) avec l’introduction de l’outil Mash [147]. L’esquissage consiste à transformer
les séquences en représentations réduites qui peuvent être ensuite comparées directement
afin de donner une estimation de la grandeur pour laquelle elles ont été conçues. À dif-
férence des algorithmes sans alignement classiques, les esquisses contiennent beaucoup
moins d’information par rapport aux séquences originelles mais leurs estimations ont
une qualité comparable à celle de méthodes plus complètes. En particulier, Mash est
une implantation de la technique MinHash [26] visée à la similarité de Jaccard. Plusieurs
implantations de MinHash ont suivi Mash [27, 221, 216, 7, 56] ainsi que de nouvelles appli-
cations [175, 103, 147, 99]. Un des résultats de cette thèse (Partie IV) est l’introduction
d’une méthode d’esquissage alternative pour la similarité de Jaccard, dans le cadre de
séquences très similaires. Nous utilisons des “Invertible Bloom Lookup Tables” [55, 69]
pour atteindre l’objectif. Par ailleurs, nous montrons d’autres applications des IBLTs
liées à leur capacité de récupérer exactement la différence symétrique de deux ensembles.
En plus, nous démontrons expérimentalement comment l’échantillonnage de syncmers

18

donne des estimations de la similarité de Jaccard qui ne sont pas biaisées, à différence de
l’échantillonnage basé sur les minimizers.

Un autre objectif de notre travail est l’exploration de représentations efficaces pour
les fréquences de k-mers. Les fréquences des k-mers sont utiles dans plusieurs analyses
[60, 65, 66, 108, 207, 5, 180, 196, 49, 100, 23, 150] mais leurs techniques d’esquissages n’ont
pas bénéficié du même succès de MinHash ou d’autres méthodes réservées aux k-mers.
À ce propos, nous proposons dans la Partie II une technique d’esquissage adaptée aux
compteurs de k-mer. Notre algorithme d’esquissage, inspiré aux bien connues CountSketch
[33] et Count-Min sketch [42], résulte plus adapté aux distributions de k-mers typique pour
des données biologiques, afin de réduire les erreurs qui affectent les estimations ponctuelles.

En revanche, dans la Partie III nous proposons plusieurs façons de compresser exacte-
ment les fréquences de k-mers. Nous apportons des améliorations à la seule implantation
de “Compressed Static Functions” (CSFs) [67] disponible au moment de l’écriture de cette
thèse afin de créer des Bloom-enhanced Compressed Static Functions (BCSFs). La com-
binaison de BCSFs et le groupage de k-mers avec les minimizers donne de représentations
succinctes dont espace dépend de l’entropie de l’ensemble des compteurs. À notre con-
naissance, nos algorithmes ont été les premiers à produire des structures de données plus
petites de l’entropie des pèses y stockés dedans.

Esquissage de compteurs
Compter les nombre d’occurrences de k-mers est une des opérations primordiales en bioin-
formatique. Cette information est utile pour plusieurs tâches, comme le garnissage de
reads [125] ou la détection de variants (sans alignement) [163, 100]. Des nombreaux outils
pour le comptage ont été proposés dans la littérature, comme Jellyfish [135], DSK [165]
ou bien KMC [101]. Chaque compteur a ses avantages et désavantages afin de balancer
vitesse et mémoire. Par exemple, Jellyfish favorise la vitesse alors que DSK ou KMC
tendent à être moins exigeants en termes de mémoire (RAM). Les sorties de tous ces
outils sont des tables où chaque k-mer est associé à sa fréquence. En général, ce genre de
structures associatives peuvent avoir besoin de beaucoup d’espace, surtout s’elles stockent
de longues k-mers. Pour donner une idée, il suffit de savoir que le comptage d’un génome
humain par KMC donne en sortie une table d’environ 28 Go, pour k = 32.

Une technique utilisée dans la pratique est de sauvegarder seulement les compteurs
et ignorer les k-mers. Cette idée est supportée par le fait que l’ensemble de k-mers en
plusieurs applications est fixe et il ne peut pas changer. Exemples sont la lecture de k-
mers depuis des reads partiellement assemblées ou depuis des représentations succinctes
d’ensembles de k-mers (comme de graphes de de Bruijn colorés [82] ou de “spectrum-
preserving string sets” [29, 162]). L’idée de stocker seulement les compteurs sans leurs
k-mers est supportée aussi par le fait que, en général, le nombre de valeurs de comptage
est relativement petit par rapport au nombre de k-mers totales.

En effet, pour grandes valeurs de k, les spectres de k-mers obtenus en listant leur
nombre en fonction de leurs fréquences suivent une distribution dite “power-law” [44, 36].
Ce sont des distributions très asymétriques où un grand nombre de k-mers a de très
petites fréquences, alors que seulement une minorité est très répétitive. Pour k croissant,
on s’attend à une diminution du nombre de fréquences distinctes, avec pour cas limite la
situation où toutes les k-mers sont uniques.

Utiliser des compteurs de taille fixe peut alors gaspiller beaucoup d’espace car seule-
ment une petite fraction de valeurs a réellement besoin d’un grand nombre de bits. Dans
les deux sections qui suivent, nous proposons deux techniques alternatives pour représen-
ter les comptages de manière efficace.

19

Esquisse Set-Min
La Partie II de cette thèse introduit l’esquisse Set-Min, une variante de la bien connue
esquisse Count-Min [42] (elle-même variante de CountSketch [33]). Pour rappel, l’esquisse
Count-Min est une matrice A de compteurs de B colonnes et R lignes chacune avec sa
propre fonction d’haçage hi(·). À l’arrivée d’un nouveau pair (clé, valeur) (p, ℓ), l’insertion
consiste à exécuter A(i, hi(p)) = A(i, hi(p)) + ℓ pour chaque ligne i. Les mises à jour sont
donc additives ce qui donne des estimations (â(p) = mini{hi(p)}) toujours biaisées par
des quantités positives ou nulles. Si Count-Min est dimensionnée avec R = ⌈ln(1

δ
)⌉ et

B = ⌈ e
ε
⌉ pour n’importe quelle valeur de 0 < ε ≤ 1 et 0 < δ ≤ 1, alors ses estimations

sont affectées par une erreur au plus ε∥a∥1 avec une probabilité 1 − δ, où ∥a∥1 est la
norme L1 de a. Des erreurs d’une magnitude si potentiellement élevée (une fraction du
nombre total de k-mers) sur chaque estimation peuvent s’avérer incompatibles avec la
bioinformatique.

Cependant, nous démontrons comment Set-Min permet de borner l’erreur cumulative
totale, calculée comme la somme des erreurs de toutes les k-mers. Il suffit tout simplement
de remplacer les compteurs d’une matrice Count-Min avec des ensembles de fréquences.
En effet, grâce à la représentation par ensembles, il devient possible de réutiliser un
même compteur pour plusieurs k-mers qui tombent dans la même cellule. Puisque les
multiplicités des k-mers doivent maintenant être connues avant insertion, Set-Min perd
la capacité d’esquisser de séries de mises à jour partielles, comme c’était le cas pour
Count-Min. Nous proposons un algorithme heuristique pour le dimensionnement de nos
esquisses.

Nos résultats montrent que Set-Min est plus précise d’une esquisse Count-Min de
dimensions comparables. Ce résultat est possible grâce à l’exploitation de la distribution
asymétrique typique pour les spectres de k-mers. En plus, pour k suffisamment grand et
génomes assemblés, Set-Min peut être un ordre de magnitude plus petite par rapport à
de solutions basée sur Minimal Perfect Hashing.

Représentation efficace pour les tables de comptage
des k-mers
Dans certains cas, il est préférable de n’avoir aucune erreur d’estimation. Par exem-
ple, trouver exactement l’ensemble de k-mers uniques avec une esquisse Set-Min n’est
pas, en général, possible, car, même si les estimations sont beaucoup plus précises de
celles de Count-Min, elles sont toujours affectées par des erreurs. Avec le grand nombre
d’applications qui font usage de fréquences [193, 163, 100, 132, 95, 96, 143], il est alors
indispensable de pouvoir disposer d’une structure exacte.

À part l’exactitude, le but de cette partie de la thèse reste inchangé par rapport à
la précédente: concevoir une structure qui permet de récupérer de fréquences de k-mers.
Seulement les compteurs doivent être traités, avec les k-mers elles mêmes supposées con-
nues. La solution classique à ce problème est d’utiliser des “Minimal Perfect Hash Func-
tions” (MPHFs) [144, 214, 57, 122, 157]. Les MPHFs assignent bijectivement chaque objet
d’un ensemble S de dimension |S| une position dans l’intervalle [0, |S| − 1]. En utilisant
l’ordre imposé par une MPHF pour indexer un tableau, il devient alors possible d’assigner
n’importe quelle information supplémentaire aux k-mers. Cependant, cette solution n’est
pas optimale: les MPHFs ont besoin de mémoire supplémentaire aux compteurs stockés
dans les tableaux.

À ce propos, très récemment, [67] a proposé une implantation pratique de Compressed
Static Functions (CSFs). La caractéristique qui distingue les CSFs de MPHFs est que le les

20

premières sont de structures monolithiques dont l’espace dépend de l’entropie des valeurs
qui contiennent. Les CSFs n’ont pas ainsi besoin d’un tableau extérieur et, théoriquement,
elles peuvent remplacer les MPHFs dans toutes les applications. Toutefois, la solution
de [67] comporte une limitation technique qui limite son efficacité à 1 bit/clé. Cette
contrainte se révèle particulièrement désavantageuse pour les k-mers, à cause de leur
entropie qui est souvent < 1 en raison de leur distribution asymétrique. Notre premier
résultat est alors une amélioration de [67] pour distributions d’entropies inférieures à 1.

Pour ce faire, nous utilisons de filtres de Bloom pour éviter de sauvegarder explicite-
ment la plupart de copies du compteur le plus commun, en nous focalisant sur les valeurs
les plus rares. La structure résultante, que nous appelons “Bloom-enhanced Compressed
Static Function” (BCSF) est ensuite employée comme élément de base pour la suite de nos
travaux. En effet, nous démontrons également comment utiliser les minimizers [178, 167]
pour regrouper de mêmes compteurs ensemble afin de gagner encore plus d’espace. Le
fait que les k-mers voisines tendent à partager leur fréquence a été observée par [132]. Ce
constat est combiné avec des BCSFs en deux techniques que nous appelons AMB et FIL.

BCSFs, AMB et FIL sont comparés entre eux et avec BBHash [122], une implantation
de MPHF bien connue en bioinformatique. Avec un choix adéquat de k, AMB et FIL
produisent de structures plus petites de l’entropie des fréquences qui contiennent. À
notre connaissance, nos algorithmes ont été les premiers à atteindre cet objectif.

Computation efficace de différences entre ensembles
de k-mers avec les “Invertible Bloom Lookup Tables”
Nous nous éloignons des tables de comptage dans la Partie IV de cette thèse. À leur place
nous nous concentrons sur le problème de comment esquisser efficacement la similarité de
Jaccard pour des séquences (ensembles de k-mers) très similaires. Pour mieux comprendre
le problème il faut savoir que la similarité de Jaccard entre deux ensembles A et B
est définie comme le nombre d’éléments partagés divisé par le nombre total d’éléments
distincts. En termes mathématiques: J = |A ∩B|/|A ∪B|.

MinHash est la technique d’esquissage de la similarité de Jaccard [26]. Dans ce cadre,
les ensembles sont réduits en esquisses de taille fixe s. Si s est trop petite et A et B
ont une similarité élevée, |A ∩ B| pourrait contenir pas suffisamment de k-mers pour
que MinHash puisse les échantillonner. La similarité de Jaccard résulterait alors égale
à 1 même pour des ensembles différents. Pour cette raison, nous remplaçons MinHash
avec une technique d’esquissage appelée “Invertible Bloom Lookup Table” (IBLT) [69, 55],
initialement conçue pour le problème de réconciliation d’ensembles. Les IBLTs permettent
de récupérer la différence exacte entre deux ensembles, ce qui les différencie des esquisses
MinHash. Étant donné que la similarité de Jaccard peut être réécrite en termes du nombre
d’éléments dans chaque différence (A \B et B \A), il devient alors possible d’utiliser des
IBLTs à la place de MinHash quand la similarité entre séquence est attendue être élevée.
La procédure de récupération est basée sur le pelage de graphes [50].

L’implantation originelle d’IBLTs décrite en [69] est un tableau de cellules, chacune
composée d’un compteur C, un champ H et un champ dédié à la somme de clés. Les
insertions fonctionnent de manière similaire aux filtres de Bloom classiques, avec r fonc-
tions de hachage qui assignent r indices à chaque clé. Le compteur C compte le nombre
de clés contenues dans les cellules, tandis que le champ P stocke leur somme binaire
obtenue avec l’opérateur XOR. Les champs H servent à vérifier s’il y a de collisions, ce
qui pourrait empêcher la réussite de l’opération de pelage. Ici, nous montrons comment
ce dernier contrôle peut être aussi réalisé sans champ H, en regardant seulement les po-
sitions données par les r fonctions d’haçage. En plus, inspiré par [159], et à différence de

21

toute méthode antérieure faisant usage d’IBLTs, nous calculons la différence entre deux
IBLTs directement, sans avoir besoin d’un de deux ensembles de départ. Pour cette raison,
notre méthodologie devient plus proche à MinHash, où les esquisses sont les seules don-
nées utilisées durant les comparaisons. Nous appelons notre implantation “km-peeler”.
Ensuite, nous combinons l’echantillionnage par syncmers avec notre implantation d’IBLT
(c-à-d: nous insérons dans les IBLTs des ensembles de syncmers à la place d’ensembles
de k-mers). Les syncmers n’introduisent pas de biais dans les estimations de similarité
de Jaccard, à différence des minimizers. Avec des esquisses de taille comparable, notre
technique résulte en des estimations plus précises de celles produites par MinHash.

Même si les IBLTs peuvent porter à des esquisses efficaces pour la similarité de Jac-
card, elles ont été conçues pour récupérer efficacement les différences de façon exacte.
Afin de mieux démontrer la pleine puissance d’IBLTs, nous les appliquons au problème
d’approximation de différences d’ensembles de k-mers. À la place d’échantillonner les
syncmers comme contre-mesure au fait que chaque mutation peut comporter jusqu’à k
nouvelles k-mers dans la différence, ici nous les utilisons pour regrouper ensemble plusieurs
k-mers, afin de calculer leurs différences avec des IBLTs. Les groupements récupérés depuis
les différences entre IBLTs sont après décomposés dans les k-mers qui les constituent.
L’approximation dérive du fait que les ensembles de k-mers finaux sont en général de
super-ensembles des vraies différences.

22

Introduction

Similarity estimation is a fundamental task in bioinformatics. Classical approaches to
this problem consist in aligning sequences and estimating similarity as a function of mu-
tations. Multiple sequence alignment is used to precisely compute similarities of multiple
sequences, but finding the best solution is a hard problem. Instead, most tools divide the
multiple sequence alignment into multiple pairwise comparisons, which are later combined
to give the final result [123, 80, 146, 51]. Similarity between two strings can then be esti-
mated from the alignments listing the elemental operations (substitutions, insertions and
deletions) needed to transform one sequence into the other. The dynamic programming
algorithms computing alignments [145, 194, 71] are the backbone of many tools still in
use nowadays [112, 114]. Such algorithms are very precise at the price of being com-
putationally demanding, and they are not very well suited to deal with long sequences.
Further improvements to the topic of (pairwise) sequence comparison came with the tool
BLAST in which seeding heuristics were incorporated to classical dynamic programming
algorithms as a mean to speed-up homology detection. Seeding refers to the idea of index-
ing one of the sequences using so-called “seeds”, i.e. fixed-length overlapping substrings
of the sequence (in the literature also known as k-mers or q-mers). Storing such seeds
inside hash tables along with their position in the sequence makes it possible to quickly
discover potential sites of similarity. Full alignments/edit-distance computations can then
be limited to such regions with a considerable advantage in terms of time. However, such
efficiency improvements were quickly outpaced around 2006 with the introduction of Next-
Generation Sequencing technologies characterized by much higher throughputs. In order
to deal with the increasing amounts of data generated each year, the dawn of the big-data
era of bioinformatics spurred interest in finding more memory-efficient replacements of
hash tables. This led to the development of new aligners [112, 117, 105] based on com-
pressed representations supporting a wide range of operations (substring search, count).
Examples of such structures are suffix trees/arrays [204, 200], BWT [28] and FM-Index
[61].

Further disruptions of the bioinformatics landscape came with the introduction of
Long-Read sequencers (also known as Third-Generation sequencers). Note that Long-
Read sequencers are not yet meant as replacements for the previous generation (which was
retroactively renamed Second-Generation). Rather, they complement short, almost error-
free reads with longer and noisier ones. Long reads are advantageous in applications where
their increased lengths allow detection of structural variations. On the other hand, higher
error rates lead to slower searches in succinct indexes, since each mismatched character
has to be dealt with during exact searches [112].To solve this issue, the Third-Generation
sequencing era has seen the revival of k-mer-based indexes [113, 114]. Unlike full k-mer
indexes, new hash table-based dictionaries keep space usage under control by sampling
k-mers. Many sampling techniques designed for k-mers have been proposed in recent
years, e.g. minimizers [178, 167] or syncmers [52]. Compared to naive sampling, these
techniques have the advantage of guaranteeing a maximum distance on two successive
sampled k-mers, which greatly improves the sensitivity of homology detection.

Alignments are not the only method to compute sequence similarities: “alignment-

23

free” algorithms compute sequence similarity by looking at their composition, without
the need of performing explicit alignments. The most common type of alignment-free
algorithms represent sequences as sets or multi-sets of k-mers. Alignment-free algorithms
are usually faster than their alignment-based counterparts given that fewer operations are
involved in the computation of similarity (no alignment is produced) and fast set repre-
sentations exist (i.e. hash tables). However, with the ongoing data deluge in the bioin-
formatics field, the high memory requirements of alignment-free algorithms are quickly
becoming a limiting factor, despite their obvious speed advantage. Improving the current
infrastructure with additional storage capabilities is an unrealistic option since sequenc-
ing has long outpaced Moore’s law [93]. While sampling k-mers remains one of the most
straight-forward option to reduce space, sketching techniques have started to play a ma-
jor role in bioinformatics starting with the introduction of Mash software [148] in 2016.
A combination of an alignment-free estimator of mutation rate [60] and the MinHash
sketching technique of [26], Mash was the first method to allow for the comparison of all
the 54118 bacterial genomes stored in the NCBI RefSeq at the time [148]. Since then, a
myriad of sketching techniques have followed (for a non-exhaustive list see Part I).

MinHash-based (and the somehow correlated HyperMinHash [216]) sketches do not
take into account k-mer multiplicities, with sequences treated as simple sets of k-mers.
While doubts have been raised recently about the utility of counts in producing high-
quality phylogenies [120], k-mer multiplicities remain useful for a wide range of other
applications [132, 100, 49]. Hence, k-mers counting represents another pillar of many
bioinformatics pipelines and, as such, has been the subject of an intense research effort
over the past years, resulting in multiple counting tools, such as Jellyfish [135], DSK
[165] and KMC [101]. These methods primarily focus on counting speed, with memory
and queries often treated as second class citizens. Such a trade-off is understandable if
counting is expected to be the primary bottleneck and k-mers are expected to be accessed
only once. This is the case for exploratory analyses where counting tables provide useful
insights about the composition of genomic datasets. However, the lack of support for
fast single-point queries and large output sizes make most counting tools unsuitable for
random comparisons of k-mers extended with their frequencies. Practical k-mer set rep-
resentations extending k-mers with their weights have been proposed [133, 155], but these
works focus on the idea of separating genomic and count information into independent
data structures for maximal flexibility [132, 98].

In particular, an interesting question is whether taking into account the distribution
of counts can lead to smaller overall space. Works like [36] or [44] suggest that k-mer
spectra are heavy-tail distributed for k large enough. In other words, the majority of
k-mers are mostly unique or appear few times, with a very small fraction repeating many
times. For this reason, fixed-width counters potentially waste a lot of space since most of
the significant bits are truly needed by only a handful of values. While classic sketching
techniques for counts, like CountSketch or Count-Min [43, 33] work best on such kind of
distributions, their estimations are affected by errors so large that they are unsuitable for
bioinformatics applications. The problem of developing a sketching technique for k-mer
count tables, taking advantage of the count distribution while, at the same time, achieving
small errors is the main topic of Part II.

Sketching is not the only option for building maps between k-mers and their count
values. Another approach involves the use of Minimal Perfect Hash Functions (MPHFs)
[122] with the actual counts stored in an external array. Each query is thus split into two
separate steps: using the MPHF to retrieve an index and accessing the array at the given
position. While the external array can be compressed to save space, this is seldom done
in practice in order to favor speed over memory. Furthermore, MPHFs take non-negligible
space themselves, with a theoretical minimum of 1.44 bits/key and implementations taking

24

up to ≈ 3 bits/key in practice [122, 157]. An alternative method to MPHFs is provided
by Compressed Static Functions (CSFs). Counts are bundled together with the mapping
information avoiding the external array altogether. Most importantly, CSF size depends
on the empirical zero-order entropy of the stored count vector. Since entropy of genomic
k-mer counts is expected to be low, thanks to its power-law distribution, CSFs have
the potential of being more memory efficient than MPHFs. In Part III we show how we
adapted the only practical implementation of CSFs available today [67] to succinctly store
k-mer count tables. The proposed methods in Part III can be viewed as more involved
alternatives to our sketch-based solution of Part II.

Finally, in Part IV we shift our attention from efficient k-mer count table represen-
tations to the efficient computation of k-mer set differences, when sequences are highly
similar. As noted earlier, MinHash has become the default sketching technique for com-
paring unweighted sets of k-mers. Nevertheless, when sets are of high similarity, sketch
size s needs to be chosen large enough for MinHash to be able to sample differences. To
this end, Part IV presents a method able to estimate Jaccard similarity for highly similar
sets in small space. Our advancements are based on the combination of syncmers [52]
and Invertible Bloom Look-up Tables (IBLTs), a sketching technique first developed for
set reconciliation in distributed settings [55, 69].

To sum up, the contribution of this work is the development of new methods for
the problems of: i) representing count data from k-mer count tables efficiently, while
also providing support for single count queries, and ii) computing (symmetric) differences
between very similar sets in small space. Solutions to the first point can be viewed as
natural extensions to existing k-mer set representations, allowing to extend k-mers with
their frequencies. We present two complementary approaches to this problem: the first
is a new weighted sketch able to achieve competitive space with small query errors. Our
second approach is based on a combination of minimizers and CSFs. We provide three
alternative implementations with different trade-offs. All our methods take advantage of
the characteristic power-law distribution of k-mers, which makes them more efficient than
fixed-width counters, while retaining the ability of retrieving single k-mer counts.

Solving our second challenge gives us a memory-efficient sketching technique based on
IBLTs to estimate Jaccard similarity, able to beat MinHash in both memory and precision
on highly similar sequences (such as viral or bacterial strains).

Structure of this thesis
Part I starts with the introduction of key biological concepts followed by an overview of
the methods that constitute the basis upon which we built our own results.
In particular, we open Chapter 1 with an overview of the main sequencing techniques
used to transform the genetic information contained in DNA into digital-friendly repre-
sentations. This introductory chapter concludes with a remainder about assembly, for
which full sequences can only be obtained by reconstruction from smaller fragments.
Chapter 3 introduces the concept of pairwise sequence comparisons and classic ap-
proaches to this problem.
Chapter 4 follows with an overview of alignment-free algorithms and related challenges
(Section 4.2).
We present the idea of sketching in Chapter 5 together with the sketching techniques
used in this thesis in Section 5.1.
We continue with Chapter 6 in which we present the problem of succinctly represent
exact k-mer counts and relevant solutions. Note that current implementations of exact
k-mer count tables provide the inputs of our methods in Part II and III (e.g. we build
our sketches from KMC databases).

25

Part II presents Set-Min sketch, our sketching technique for highly skewed power-law
distributions.
First, Chapter 7 introduces the problem and related solutions: CountSketch and Count-
Min sketch with and without conservative updates in Section 5.1.1, Section 5.1.2 and
Section 5.1.3, respectively. A summary of the contributions of this part is given in Sec-
tion 7.2.
Chapter 8 is about Set-Min sketch. We start by listing the main insights behind our
method in Section 8.1. After the introduction of power-law distributions and the idea of
using collisions between equal counters to reduce space, we follow with the internal struc-
ture of Set-Min sketch in Section 8.2. We show how tighter error bounds can be achieved
by replacing counters with sets in a Count-Min matrix (Section 8.2.1.1). A heuristic
algorithm for dimensioning Set-Min sketches is given in 8.2.2. Section 8.3 is about a
simplified version of Set-Min sketch whose main purpose is to demonstrate that full set
representations are indeed necessary to achieve the desired error bounds. We conclude
by presenting an experimental comparison of our methods against well-known solutions
based on MPHFs and k-mer counting tools.
A general discussion about Set-Min together with some final consideration make up Chap-
ter 9.

Part III is about locom, our exact framework for efficient k-mer count representa-
tion. Multiple algorithms are presented, with CSFs as their maximum common divisor.
Locom’s data structures are more involved and computationally expensive to build than
simple Set-Min sketches. The main advantage of our CSFs-based solutions over sketching
are the more succinct and exact count representations they provide. In some instances,
maps produced by locom are even smaller than the empirical zero-order entropy of the
uncompressed counts. As before, this part is divided into three chapters.
Chapter 10 introduces the problem, previous solutions and a summary of our contribu-
tions (Sections 10.1, 10.2 and 10.3).
Chapter 11 starts once again with the insights behind our methods. The expected high
correlation of neighboring k-mer counts allows hashing similar values to the same bucket
by using minimizers (Section 11.1.1 and 11.1.2). We combine Bloom Filters (Section 5.1.5)
with a third-party implementation of CSFs (Section 6.2.2) to produce Bloom-Enhanced
Compressed Static Functions (BCSFs) in Section 11.2.1. Adding a LSH-based bucketing
to BCSFs gives rise to two efficient count representations: AMB (Section 11.2.3) and FIL
(Section 11.2.4). Both algorithms can work in the exact or approximate case demon-
strating the flexibility of our framework. Comparisons and benchmarks are presented in
Section 11.3.
Chapter 12 discuss the limitations and possible further applications of our methods.

Part IV deviates from the previous subject by addressing the problems of i) estimat-
ing Jaccard similarity of very similar sequences and ii) computing a superset of k-mer sets
differences in small space.
Chapter 13 explains the interest of our approach (Section 13.1) and the summary of our
contributions (Section 13.2).
Chapter 14 starts by introducing the relevant building blocks of our method in Section
14.1. We achieve the goal of efficiently estimating Jaccard similarities as a by-product of
set reconciliation techniques. More in detail, we use IBLTs (Section 5.1.6) to efficiently
estimate set differences. In order to do so, in Section 14.2.1 we extend IBLT difference
to work with sketches, without the need to keep one of the original sets. To dampen
the effects of mutations on the number of k-mers ending up in the symmetric difference
(one single mutation can lead to the introduction of up to k different k-mers), we sample

26

k-mers before IBLT construction (Section 14.2.3). In Section 14.3.1, we experimentally
show that, unlike minimizers, syncmers are unbiased estimators of Jaccard similarity sug-
gesting a practical alternative to the shortcomings pointed out in [12]. Further, we apply
the full potential of IBLTs by computing exact supersets of the whole k-mer sets in Section
14.2.5. Section 14.3 reports our results.
Chapter 15 wraps everything up by discussing and summarizing our findings and presents
possible future developments.

Finally, in Chapter 16 we close the thesis with conclusions and perspectives.

27

Part I

State of the art

28

Chapter 1

DNA Sequencing and assembly

Reading the succession of bases in DNA molecules is the fundamental task providing raw
material to all bioinformatics pipelines. Despite 50 years of technological advancements,
reading whole genomes remains a hard process, with most sequencing technologies unable
to process very long biomolecules. Therefore, input DNA sequences have first to be
split into multiple, shorter fragments. Furthermore, since sequencers are not perfect and
reading DNA molecules is a noisy process subject to errors, sequences are first copied
multiple times before fragmentation. Sequencing output is thus a collection of multiple,
redundant strings, usually called “reads”. The original sequence is then reconstructed from
its set of reads. This process is called (de novo) “assembly” if no prior knowledge about
the original sequence is known. If, on the other hand, an already assembled sequence
similar to the sequenced one is available, it can be used as a guide by “aligning” reads to
it. In both cases, redundancy is used for error correction. In this chapter, we provide an
overview of the technologies and methods used in these two steps.

1.1 Classic sequencing approaches
The oldest surviving sequencing method still in use today is Sanger sequencing [174]
which is heavily inspired by the cell replication process. Multiple imperfect copies of a
DNA sequence are obtained by introducing some nucleotides with dideoxyribose sugars
(instead of the normal deoxyribose normally found in DNA) during Polymerase Chain
Reaction (PCR) [141, 172] prompting DNA polymerases to stop extension. Sorting the
incomplete copies by their molecular weight through gel electrophoresis and reading their
terminating character gives the original starting sequence. Sanger sequencing completely
replaced a previous method: chemical sequencing (due to Maxam [136]) which relied on
radioactive reagents making it less practical. Due to its high accuracy, Sanger sequencing
is still actively being used in project targeting relatively short genomes or for validation
of results produced by newer technologies.

1.2 Second-Generation sequencing
Second-Generation sequencing technologies (also known as Next-Generation sequencing
(NGS)) started to appear around 2006. Reading fragments is done in a massively parallel
way allowing for much higher throughput than the previous generation. The main advan-
tage of Second-Generation sequencing is that it is considerably cheaper than Sanger’s. For
example, completion of the Human Genome Project using NGS would cost $1K against
the $2.7 billion required by Sanger sequencing. Despite shorter reads (< 400bps) and
slightly higher error rates compared to Sanger sequencing, NGS sequencers remain the

29

most convenient solution for a wide range of applications that require good trade-offs be-
tween accuracy and cost-effectiveness. Common Next-Generation technologies are listed
below [25].

Illumina. Illumina sequencers were first introduced in 2006 [124], and quickly became
the incumbent technology dominating its generation [70]. Read lengths range from 100 to
300 bp with optional support for paired-end output. Error rates are very small (< 0.01%
of bases are wrongly called [176, 177]), with substitutions being the most common type
of errors, especially at the end of reads.

SOLiD. Also introduced in 2006 [124] its distinguishing feature is how sequences are
viewed in input. Instead of reading each nucleotide separately, SOLiD sequencers detect
transitions between bases. Therefore, reads are returned as sequences of colors instead
of letters [152]. This encoding allows distinguishing different events (sequencing errors,
substitutions and indels) by looking at colors alone [24]. Error rates are also very small
(< 0.001) but special analysis software is needed to work with the uncommon encoding.
Average (paired-end) read length is 100 bp.

Ion Torrent. The most recent method of the list (2010 [124]), with lengths of about
400bp. The most common type of errors are indels which appear at a rate of about 0.03
with substitutions an order of magnitude less likely [22].

Roche/454. Sequencers based on the concept of “pyrosequencing” [168] were first
introduced in 2005 [124]. The company sponsoring them shut down in 2013 [83]. Read
length were around 1000 bp with errors rates of about 0.01, mostly indels.

1.3 Third generation sequencing
Short reads produced by NGS are often an obstacle in the detection of large rearrange-
ments in parts of the genomes. Third-Generation sequencers complement short, highly
accurate reads with longer ones (> 10000bp) and, as such, they are commonly referred
to as Long-Read sequencing. The downside is that bases are affected by higher errors.
Long reads are now best suited to the detection of large structural variations (long dele-
tion/insertions or duplications). However, further improvements in read accuracy are
expected to make them completely replace the previous generation.

There are currently two major competing long-read technologies:

Pacific Bioscience. Also known as PacBio (www.pacb.com), typical read lengths are
20000 bp with errors < 0.1 [202]. The underlying technology called Single-molecule real-
time (SMRT) sequencing couples a single polymerase protein with a zero-mode waveguide
unit [111]. Four fluorescent dyes are attached to nucleotides (one different dye for each of
the 4 bases). When a new nucleotide is added by the polymerase, the fluorescent tag is
removed from its nucleotide and diffuses through the zero-mode wavelength guide. The
optical signal is captured by the sequencer for generating the sequence. High throughputs
are the result of multiple polymerases working in parallel.

Oxford Nanopore. Sequencers based on nanopores use a different idea than SMRT.
As the name suggests, sequences are passed though molecular electro-active “pores” of a
membrane. Different bases produce different perturbations in the pore’s current. This
signal is used to read the sequence. Typical error rates range between 5% [53] to 10%
[46]. Read lengths surpassing 1 Mbp have been reported with more common values in

30

www.pacb.com

the order of 100 Kbp. The most remarkable feature of Nanopore sequencers is their size
with the entry level sequencers MinION and Flongle slightly larger than a USB dongle
(https://nanoporetech.com/). Other aspects that make Oxford Nanopore sequencers
interesting are their ReadUntil mode of operation [104, 1, 9] and their rapidly evolving
performances.

31

https://nanoporetech.com/

Chapter 2

Assembly

In the previous section, we saw how sequencers produce in output datasets of reads by
reading fragmented sequences. In order to obtain the original sequence of bases, reads
need to be reassembled back into one contiguous representation.

The reconstruction process greatly depends on the error rate and type of the reads
(short or long), and if an already assembled reference genome is available. With no prior
reference genome, assembly must be performed “de novo”. Almost all algorithms in this
category use some sort of graph representation. The basic idea is to represent reads as
nodes and to add edges between likely successive reads. The original DNA sequence thus
appears as one of the paths in the graph.

Two main types of graphs exist [166]:

• de Bruijn graphs [217, 192, 118, 153, 68, 38, 34, 8, 53] are primarily used for short,
low-error reads. Each read is decomposed into small overlapping fixed-sized sub-
strings called k-mers which are used as nodes. Edges between two nodes (k-mers)
represent overlaps of k − 1 bases.

• Overlap graphs [170, 102, 113] link reads together directly, based on their pre-
fix/suffix overlaps.

If a previous assembly of a sequence already exists, then the problem becomes much
simpler as the order of most reads can be inferred from the guide. This particular instance
of assembly takes the more appropriate name of “alignment”.

Several families of aligners exist in practice:

• Dynamic programming [194, 145, 71] is the exact, baseline method which is generally
too computationally inefficient for datasets larger than some thousand bases.

• Seed and extend [206, 151, 4, 114] makes use of k-mer indexes as a heuristic to
quickly find highly similar regions to extend. Reads are placed along the sequences
by finding the most similar ordered sequence of seeds that match in both. Dynamic
programming is used locally to produce the final base-to-base alignment. Very fast
in practice since it uses hash tables for storing seed. Recent advancements aimed
at reducing index size though sampling allowed reviving seed and extend for long
noisy reads [113].

• Sequence indexing by suffix trees/arrays [204, 200, 130], BWT [28] or FM-Indexes
[61] such as [48, 47, 81, 106, 105, 112, 117] are best suited for short exact reads.
Indexes provide a way to find all sequence positions that highly resemble a read.
As before, an exact dynamic programming procedure is needed to finalize local
alignments.

32

All methods described so far use some definition of sequence similarity to define edges
or to place reads at the most accurate position for later refinement. However, similarity
is not limited to assembly but is used in a plethora of other methods such as mappers
[87, 88, 91], phylogenetic reconstruction or taxonomic placement to deduce organism
hierarchies [30, 207], and others.

33

Chapter 3

Pairwise sequence similarity

Sequence similarity has been an instrumental bioinformatics tool for tracing the evolution-
ary history of sequences since it is a powerful way to prune for function homology or to re-
construct phylogenetic histories. New species arise by mutation of existing ones though an
evolutionary process made possible by incremental modifications of DNA. Genes needed
for survival, for example, are expected to change very slowly over time given that any
misplaced mutation is fatal. We limit ourselves to pairwise sequence comparisons, given
that most of the techniques mentioned in Section 4 and Section 5 only support this mode
of operation. Moreover, various methods build multiple sequence alignments (MSAs) by
combining multiple pairwise comparisons [123, 80, 146, 51] highlighting the importance
of this reduction.

3.1 Alignment-based methods

Alignment-based methods are deeply rooted into the problem of edit distance computa-
tion. Given two sequences S1 and S2, under this framework similarity is expressed in
terms of the number of basic operations needed to transform S1 into S2. Here with “basic
operations” we refer to unary substitutions and indels. Scores can be assigned to each
type of operations in order to weight them differently. For example, uniform schemes do
not take into account that large indels are usually the result of one single event, in which
case similarity might be under-estimated. In practice, it makes more sense to split the
weight of indels into two distinct parts: one for the introduction of the indel and the
for extending it. Scores for DNA and other biological sequences are most often defined
by ad-hoc matrices, reporting, for each mutation a biologically-relevant value. Several
schemes have been designed over the years based on various models, like BLOSUM62 [79]
and PAM120 [3] for protein sequences.

Comparing two sequences can be done globally or locally. For global alignments,
sequences are considered from end-to-end and their similarity is computed taking into
account all bases. On the contrary, local alignments try to find the best matching of
substrings, that is, some bases of S1 and S2 might not be taken into account in the
similarity score. Matches can thus be ranked and reported from the most likely to the
least probable.

Exact algorithms for computing similarity or align sequences are based on dynamic
programming [145, 194, 71], but they are considered too computationally demanding
even for moderately long sequences. Nevertheless, exact algorithms, or modified versions
thereof, remain the last core step in various tools where they align homologous regions
found by faster heuristics.

34

3.2 Full hash-based and succinct solutions
Heuristics to speed-up sequence comparison were first introduced in the programs FASTP
[206] and FASTA [151] in 1985 and 1988, respectively. Both software were eventually
replaced by BLAST [4] with their only remaining significant legacy being the ubiquitous
Fasta format still in use today. Thanks to its higher sensitivity, better performance
and rigorous statistical characterization of its output BLAST quickly overthrew FASTA
as the de-facto standard in sequence similarity search. The main idea behind FASTA
and BLAST is quite simple: index all k-mers (hashed or not) of a sequence in order
to quickly prune for similar regions during alignment. Exact algorithms are only used
in areas sharing a large fraction of k-mers (seeds). Such heuristic avoids running full
algorithms (such as Smith-Waterman) over the whole sequences, instead limiting their
use to localized, and smaller areas. BLAST is probably one of the most influential tools
in bioinformatics (and in general), with almost 100K citations as the time of writing, still
in use today for performing quick database similarity searches. Its limitations started to
show with the introduction of Second-Generation sequencing. The huge throughputs of
newer sequencers and the need to align more complex genomes, simply proved to be too
much for BLAST to handle with reasonable performances.

This is why, almost immediately after the introduction of Next-Generation sequencing
new aligners quickly started to appear. The basic idea of building an index to quickly
prune the search space remains unchanged from the previous generation, with performance
improvements primarily achieved by replacing k-mer indexing with full-text, succinct
alternatives. Full-text indexing also allows for seed lengths not limited to k. Techniques
such as: suffix arrays [130], suffix trees [204] and BWT-based indexing [28] (FM-Index
[61]) have proved to be quite effective in terms of space. On the other hand, text-based
mappers are less resilient to mismatches than their hash-based counter-parts, with every
error leading to substantial slow-downs. Yet, the high quality of reads produced by
Second-Generation sequencing makes these performance hits unlikely in practice.

3.3 Sampling for sequence alignments
Limitations of succinct text-based indexing appeared with the introduction of long noisy
reads. Exact matches become hard to find in the presence of large errors. Even highly
optimized solutions like BWA [112] were not able to give acceptable results. The answer
was to combine classic hash-based (k-mer) indexing with sampling. Reducing k allows
tuning for sensitivity since matches become more likely, even in the presence of errors.
Sampling, on the other hand, allows reducing index size at the cost of negligible sensitivity
losses.

The type of sampling can be important in practice. In principle, seeds should cover all
parts of a sequence to avoid missing some potential homologies. Sampling k-mer uniformly
at random by, for example, only keeping k-mers whose hash is 0, while easy to implement,
provides no guarantee on the distribution of seeds along the sequence potentially leading
to parts of the genomes that might not be covered enough resulting in unalignable reads.

Therefore, sampling techniques with known and provable coverage guarantees are pre-
ferred. Examples include minimizers [178, 167] and syncmers [52], the latter of which
we use in Part IV. The first aligner implementing these concepts was minimap [113],
quickly followed by its improved version minimap2 [114]. Note that, by default, both
versions work as mappers, only providing base-to-base alignments as optional refinements
of homologous regions found by using minimizer indexes.

35

Chapter 4

Alignment-free similarity estimation

Estimating sequence similarity from base-aligned sequences is best suited for applications
that require high precision such as high-quality phylogeny reconstruction. In many other
use cases however, exact retrieval of mutations is not a strict requirement and a simple
estimation of similarity would be sufficient. This makes full alignments redundant and
unnecessarily complex since they remain quite challenging and computationally intensive
even with seeding heuristics. The idea of analyzing sequencing data without relying on ac-
tual alignments started to appear around the same time as Second-Generation sequencers.
A classic example is the computation of sequence similarities by representing datasets as
“bag-of-words”, i.e. sets or multisets of k-mers. Simpler representations improve overall
computational efficiency [18] allowing for comparisons at larger scales [15, 92, 193, 108].
Further, so-called alignment-free methods are resistant to shuffling and recombination
events, since base order is completely irrelevant outside k-mers. Since then, alignment-free
algorithms have been developed for the most disparate problems: phylogeny reconstruc-
tion [60, 65, 66, 108], metagenomic classification [207, 5], variant calling [180, 196, 49, 100],
transcript quantification [23, 150] and a plethora of others. Here, we focus on methods
computing sequence similarity, since it is one of the main ingredients of Part IV as well as
the main motivation behind Parts II and III. Alignment-free methods computing similari-
ties can be roughly classified into multiple categories depending on the type of information
they use:

1. Set-based approaches represent sequences as simple sets of k-mers, without taking
into account any other type of information [60, 108].

2. Frequency-aware solutions augment k-mers with their number of occurrences [160,
193, 127].

3. Methods based on information theory evaluate the information content of full-length
sequences [203, 115].

4. Solutions based on the length of matching words (common [201], longest common
[78] and minimal absent [158, 212] matches).

5. Solutions based on graphical representations of DNA [205, 164].

Different representations are usually associated to different measures of similarity
which can be directly given in input to standard methods building phylogenetic-trees
(see [223] for a review and benchmark). However, most of these measures were con-
ceived without an underlying biologically-sound evolutionary model in mind [224]. This
limitation becomes problematic when distances must be assigned to branches.

36

4.1 Jaccard similarity
One notable exception to the fact that most alignment-free measures lack a biological
foundation is Jaccard similarity. Jaccard similarity (also known as Jaccard index) is
defined for both weighted and unweighted sets [142, 129]. Unweighted Jaccard is the
fraction of shared k-mers divided by their total number, and it is easily representable by
set unions and intersections

J(x, y) = |A ∩B|
|A ∪B|

(4.1)

An estimator of the mutation rate between two sequences framed in terms of (un-
weighted) Jaccard similarity has been proposed by [60]. Full phylogenetic trees with
accurate branch lengths can thus be inferred from sets of long-enough k-mers, and under
the condition of uniformly distributed mutations. The same estimator was later reused in
Mash [148] making Jaccard similarity one of the most successful alignment-free similarities
in bioinformatics (more about this in Chapter 5).

On the other hand, weighted Jaccard is simply the extension of Jaccard to multi-sets.
Given two vectors x = (x1, x2, . . . , xn) and x = (x1, x2, . . . , xn) with xi, yi ≥ 0,∀i their
weighted Jaccard similarity Jw is defined by:

Jw(x, y) =
∑

i min(xi, yi)∑
i max(xi, yi)

(4.2)

The utility of weighted comparisons for phylogenetic reconstruction has been ques-
tioned in [120]. While the rebuttal was targeting another popular frequency-based alignment-
free technique (FFP [193]), it casts doubts on all other frequency-aware methods as well.
Nevertheless, weighted Jaccard has been applied in other contexts, such as solving am-
biguous alignments of very repetitive parts of the human genome [90, 89], or comparing
the composition of metagenomes [14, 13].

4.2 Alignment-free algorithms at scale
The main drawback of k-mer-based alignment-free methods is the relatively high mem-
ory usage due to the costly and highly redundant nature of k-mers. The combination
of rapidly declining sequencing costs (see Figure 4.1) and relative explosion of sequenc-
ing data coming from various initiatives, such as the Human Microbiome Project (HMP)
[84], the Earth Microbiome Project [198] or the Global Ocean Survey [171] is putting
current alignment-free pipelines under serious pressure. Analyzing data is quickly becom-
ing the main bottleneck in many workflows. Additionally, available data today needs to
be kept accessible and usable in the future so that new analyses can reuse it for vali-
dation/reproducibility purposes. Furthermore, count-aware alignment-free solutions have
seen little to no developments on optimizing count storage, with most tools focusing on
efficient representations of k-mers instead. Efficient k-mer count representations have
only started to appear very recently [95, 154] in data structures designed to be static,
memory-optimized alternatives of fully dynamic k-mer count tables. These monolithic
solutions offer the same types of queries as fully dynamic alternatives, by storing both
k-mers and counts together.

Another way to achieve space-efficient, static, general-purpose k-mer count tables for
alignment-free algorithms is to add optimized count representations on top of already
available solutions tailored at k-mer sets. Since both parts are completely independent
to one another, multiple combinations of exact or approximate data structures become

37

possible depending on the desired trade-offs. In recent years, sketching data structures
have gained particular interest in bioinformatics applications and, as such, we present
them in the following section.

Figure 4.1: Sequencing cost against Moore’s Law. Sequencing is becoming cheaper every
passing year. Because of this, new data is produced at increasing pace straining current
analysis methods.

38

Chapter 5

Sketching

Sketching refers to the general idea of applying some sort of dimensionality reduction
technique on input datasets. Such ad-hoc reduced representations are called “sketches”
and they can effectively replace the original inputs in all subsequent analyses. By reducing
the dimensionality of data, often by several orders of magnitude, these techniques offer
approximate answers to the specific applications they were built for. Computing estima-
tions instead of exact results allow for much more favorable time and memory requirements
overall. Original data can be deleted or stored elsewhere with additional sketches built
as new inputs become available. Reduced memory size make sketching techniques an
attractive alternative to exact alignment-free algorithms in big-data settings.

A vast majority of similarity-oriented sketching techniques available today are based
on some sort of Locality Sensitive Hashing (LSH) scheme [110]. Put it simply, LSH tries to
hash similar objects to similar hashes. Therefore, LSH schemes naturally cluster similar
things together, under a given definition of similarity.

Here we provide a list of sketching techniques available at the time of writing this
thesis.

1. Sketches for similarity estimation are great alternatives to alignment-free algo-
rithms for pair-wise comparisons. Several techniques have been proposed:

i Set similarity. MinHash sketching was first introduced in [26] as a method to
detect duplicated web pages represented as sets. The original version of MinHash
required multiple hash functions to work whereas the “bottom-s” variant uses
only one. The “bottom-s” variant is at the basis of the seminal tool Mash [148],
an implementation tailored to genomic datasets. Since then, Mash has been
followed by many alternatives [27, 221, 216, 7, 56] and derived works [175, 103,
147, 99], including our own variant in Part IV which, unlike the competition,
uses sketches initially conceived for set reconciliation [55, 69].

ii Multiset similarity. Examples are [129, 85, 74, 116, 190, 208, 191, 37]. In
particular, Histosketching [210, 211] is at the basis of the bioinformatics tool
HULK [169].

iii Edit distance. Edit distance sketches usually target database filtering, i.e.
retrieving (w.h.p.) all sequences with edit distance within a user-defined thresh-
old from the query. Classic solutions embed edit distance into simpler met-
rics (Hamming distance) [32, 218] with successful applications in bioinformatics
[209]. Alternatives based on minimizers have also been proposed [134, 219].

2. Sketches for count estimation were first developed for estimating the multiplicity
of objects coming from a stream (e.g. networking). Part II presents a modification
of these methods specifically adapted for k-mer count tables.

39

i Counting distinct elements. The standard method for estimating the number
of distinct elements in a dataset is HyperLogLog [62]. Recent works [216] have
shown that sketches based on HyperLogLog can be used to estimate similarity
and, as such, are tightly related to MinHash sketching.

ii Count approximation. The standard count-approximation techniques are
CountSketch [33] and Count-Min sketch [42]. Both have been extensively studied
[43, 41, 199, 197, 10] but surprisingly few bioinformatics applications use them
in practice [220, 169]. This discrepancy can be explained by the large errors
(up to a fraction of the size of the whole input) that potentially afflict count
estimates. In k-mer based applications it is often of high importance to reliably
distinguish low-frequency k-mers from more common ones, but having such large
inaccuracies prevents that.

iii Detection of heavy hitters or cold items. Finding the most common (or
rare) items in a data stream can be viewed as a sub-problem of count estimation.
Sketches for approximating counts are often used as building-blocks of algorithms
for this problem [33, 40].

3. Graph sketching techniques give approximate answers to a multitude of graph-
related queries [137]: vertex connectivity [94, 72, 2], vertex cover [35, 6], triangle
counting [31, 76] and set cover [31, 76].

5.1 Sketching techniques relevant to our work
We report here the main sketching techniques relevant to the works in Part II and IV.
While Part II takes inspiration from count approximation sketches such as CountSketch
and Count-Min (sections 5.1.1, 5.1.2, 5.1.3), Part IV use set reconciliation to challenge
MinHash sketching in case of high similarity of the involved sets (sections 5.1.4, 5.1.5,
5.1.6).

5.1.1 CountSketch

-5

+5

+5

-5

R = 4

B = 6

(p, 5)

Figure 5.1: Example of inserting the pair (p, 5) into an empty CountSketch. Empty cells
represent counts equal to 0. Note how the sign of the inserted element in each cell depends
on si(·)

The CountSketch [33] is an approximated data structure that compactly stores an
array a of counters. The sketch itself is an R×B matrix A of counters where each row i
has associated two hash functions: hi(·) and si(·). All hi(·) and si(·) are supposed to be
pairwise independent. Given an item p of frequency ℓ, doing hi(p) returns the bucket in

40

row i associated to p. On the other hand, si(p) is a binary function returning values in
−1, 1.

Updates are in the form of (p, ℓ) and are performed by doing A(i, hi(p)) = A(i, hi(p))+
si(p)× ℓ for each row i (see Figure 5.1). Multiplication by the random sign si(·) ensures
the unbiasedness of estimates. Collisions between different counters are a possibility.
This introduces errors in the retrieved counts, which, as such, should more correctly be
called “estimates”. For this reason, queries are performed by computing mediani(si(p)×
A(i, hi(p))). Computing the median over R independent rows helps in reducing the effects
of collisions involving very large counts. Averaging would not work as well because of its
susceptibility to outliers of large magnitude. By choosing B = log(1/δ) and R = 1/ϵ2 for
two given parameters 0 < δ < 1 and ϵ > 0, errors are guaranteed to be < ϵ∥a∥2 with a
probability of at least 1− δ, where ∥a∥2 is the L2-norm of input vector a [33].

5.1.2 Count-Min sketch

0 5 0 7 0 0

0 0 0 12 0 0

5 0 0 0 7 0

0 7 0 0 5 0

min(5, 12, 5, 5) = 5

Figure 5.2: Example of query on a Count-Min sketch. Counters 5 and 7 corresponding to
two different items were inserted in the sketch causing a collision in cell (2,4). In case of
collisions in all cells of the sketch, taking the minimum minimizes error.

Similarly to Count-Sketch, Count-Min sketch [42] is a method able to represent an
associative array a of counters in an approximated way. As before, Count-Min sketch is
an R × B matrix A of counters with hash functions hi(·) associated to each row. Hash
functions si(·) are not required in this case, as we will see shortly. Updates are again
in the form of (key, value) pairs (p, ℓ) for which Count-Min sketch perform A(i, hi(p)) =
A(i, hi(p)) + ℓ for each row i. New counters are thus always inserted by addition and
never by subtraction, making estimates returned by Count-Min sketches always biased
by a positive quantity. The (approximate) current counter associated with a key p is
retrieved as â(p) = mini{hi(p)}. It is now easy to see from where Count-Min takes
its name. Collisions between different counters lead to potential overestimation errors
whose effects cannot be alleviated by multiplying each update with si(·). Taking the
minimum of the R counters associated to an item p, instead of the median, is thus the
best choice to minimize errors (see Figure 5.2). This simpler strategy also leads to a
more straightforward analysis and error bounds. It is in fact known [42] that a Count-
Min sketch built on a vector a, with R = ⌈ln(1

δ
)⌉ and B = ⌈ e

ε
⌉ for any given ε and δ,

overestimates each returned count by at most ε∥a∥1, with probability at least 1−δ, where
∥a∥1 is the L1-norm of a.

If counts follow a Zipf distribution with parameter a > 1, B can be reduced to O(ε−1/a)
to guarantee the same bounds [42]. In Section 8.4 we show that these error bounds may
not be acceptable for k-mer counting applications.

41

5.1.3 Count-Min sketch with conservative updates
Count-Sketch and Count-Min both support negative updates, i.e. they allow for ℓ < 0
in updates (p, ℓ), provided that the cumulative count of each key remains positive at
any given time. However, if updates are only positive, Count-Min can be modified for
better accuracy entailing only a slightly different update procedure, first mentioned in
[39] (therein attributed to [58]) as conservative update. Under this modification, updates
for each row i are made according to A(i, hi(p)) = max{A(i, hi(p)), â(p) + ℓ}, where â(p)
is the current Count-Min estimate of a(p). It is easily seen that under this scheme, â(p)
can still only over-estimate a(p), but cannot be larger than â(p) computed by the original
Count-Min.

5.1.4 MinHash sketching
MinHash sketching was introduced in [26] as a method to estimate Jaccard similarity
between two sets, applied to document comparisons. In bioinformatics, MinHash was
first applied in Mash software [148] and then successfully used in a number of other
tools. Assume we are given a universe U and an order on U defined via a hash function
h. For a set A ⊂ U , the bottom-s MinHash sketch of A, denoted S(A), is the set of
s minimal elements of A (or their hashes), where s is a user-defined parameter. The
Jaccard similarity index between two sets A and B, J(A, B) = |A∩B|/|A∪B|, can then
be estimated from the sketches of A and B, namely

Ĵ = |S(A ∪B) ∩ S(A) ∩ S(B)|/|S(A ∪B)| (5.1)

is an unbiased estimator of J(A, B).
The Jaccard similarity between the k-mer sets of two datasets constitutes a biologi-

cally relevant measure of their similarity. In particular, if involved datasets are genomic
sequences, this measure allows one to estimate the mutation rate between the sequences
[60, 148].

5.1.5 Bloom filters

{x, y, z}

1 1 1 1 1 1 1 1

{v, w}

Figure 5.3: Using a Bloom filter with three hash functions to represent set x, y, z. Bits at
positions given by the r = 3 independent hash functions are set to 1. At query, element v
is correctly recognized as not present in the Bloom filter but w (in red) results in a false
positive since all its bits are set to 1.

42

A Bloom filter (BF) is a well known data structure allowing for approximate mem-
bership queries [17]. Its key feature is the ability to favor space usage at the cost of
a user-selectable false positive rate on each query. Given a set A of size n = |A|, a
target false positive rate ε and a family of pairwise independent hash functions, a space-
optimal Bloom filter B is a bit array of m = −n log(ε)/ ln(2) ≈ −1.44n log(ε) bits with
r = ln(2)m/n ≈ 0.693m/n hash functions associated to it. Inserting a new element p is as
simple as setting to 1 the bits at positions given by the r hash functions when hashing p.
Queries are performed by looking at the bits associated to p, if they are all set, then p ∈ A
while p /∈ A otherwise. False positives arise from the fact that elements p /∈ A might have
all their bits set because of other insertions as shown in Figure 5.3. Applications where
the retrieval of the actual elements stored in Bloom filters is important, have to rely on
additional data structures for this purpose, with Bloom filters being used as temporary
set representations [185]. For a set F ⊆ U \A, we denote FPB(F) the set of false positives
of F , of expected size ε|F |.

5.1.6 Invertible Bloom Lookup Tables
Invertible Bloom Lookup Tables (IBLT) [55, 69] are a generalization of Bloom filters
for storing a set of elements (keys), drawn from a large universe, possibly associated with
attribute values. In contrast to Bloom filters, in addition to insertions, IBLTs also support
deletion of keys as well as listing. The latter operation succeeds with high probability
(w.h.p.) depending on the number of stored keys relative to the size of the data structure.
An important property is that this probability depends only on the number of keys stored
at the moment of listing, and not across the entire lifespan of the data structure. Thus,
at a given time, an IBLT can store a number of keys greatly exceeding the threshold
for which it was built, returning to be fully functional whenever a sufficient number of
deletions has taken place. Note also that IBLTs, in their basic version, don’t support
multiple insertions of the same key.

An IBLT is an array T of m buckets together with r hash functions h1, . . . , hr mapping
a key universe U (in our case, k-mers or strings) to [0..m − 1] and an additional global
hash function he on U . Each bucket T [i], i ∈ [0..m − 1], contains three fields: a counter
T [i].C, a key field T [i].P and a hash field T [i].H, where C counts the number of keys
hashed to bucket i, P stores the XOR-sum of the keys (in binary representation) hashed
to bucket i, and H contains the XOR-sum of hashes produced by he on keys.

Adding a key p to the IBLT is done as follows. For each j ∈ {1, . . . , r}, we perform
T [hj(p)].C = T [hj(p)].C +1, T [hj(p)].P = T [hj(p)].P ⊕p, and T [hj(p)].H = T [hj(p)].H⊕
he(p), where ⊕ stands for the XOR operation working with the binary representations of
p and he(p) (see Figure 5.4). Given that XOR is the inverse operation of itself, deletion
of p is done similarly except that T [hj(p)].C = T [hj(p)].C − 1.

Listing the keys held in an IBLT is done through the process of peeling working
recursively as follows. If, for some i we have |T [i].C| = 1, payload field T [i].P is supposed
to contain a single key p. Field H is not strictly necessary, it acts as a “checksum” to
verify that p is indeed a valid key by checking if he(T [hj(p)].P) = T [hj(p)].H. This
check is used to avoid the case when |T [i].C| = 1 whereas T [i].P is not a valid key,
which can result from extraneous deletions of keys not present in the data structure. In
Section 14.2.2 we will elaborate on the role of this field in our framework. If the check
holds, key p can be reported and deleted (peeled) from the IBLT. Updating hash sums and
counters is then done in a way similar to insertion: T [hj(p)].H = T [hj(p)].H ⊕ he(p) and
T [hj(p)].C = T [hj(p)].C − 1, ∀j ∈ [1, . . . , r]. The procedure continues until all counters
T [i].C are equal to zero. The first part of Figure 5.5 shows how the removal of elements
can make an unpeelable sketch to be peelable again. The second part illustrates the listing

43

procedure itself.
At each moment, an IBLT is associated to an r-hypergraph where nodes are buckets

and edges correspond to stored keys with each edge including the buckets a key is hashed
to. Listing the keys contained in an IBLT then relies on the peelability property of
random hypergraphs [50, 139]. Assume our hash functions are fully random. Then it
is known that for r ≥ 3, a random r-hypergraph with m nodes and n edges is peelable
w.h.p. iff m ≥ crn where cr is a constant peelability threshold. The first values of cr are
c3 ≈ 1.222, c4 ≈ 1.295, c5 ≈ 1.425, · · · [69]. Thus, allocating

m = n(cr + ε), (5.2)

buckets, for ε > 0, for storing n keys guarantees successful peeling with high probability.

ACA
ACG
AGC
ATG
CAC
CAT
CGA
CGT
GAC
GCA
GCG
GTC
TAG
TCG
TGC
TTA

0x04
0x06
0x09
0x0E
0x11
0x13
0x18
0x1B
0x21
0x24
0x26
0x2D
0x32
0x36
0x39
0x3C

C H P

7 0xD3 0x24
11 0x78 0x0F
6 0xCB 0x3D
7 0x61 0x31
8 0xEE 0x26
9 0xB9 0x0A

Figure 5.4: Example of insertions in an IBLT with m = 6 and r = 3. The binary
representation of each k-mer is inserted into payload field P of r = 3 non-necessarily
distinct buckets given by hash functions hj(·), j = 1, 2, 3. The resulting table is not
peelable, since all buckets contain more than one element (all counts are different from 1
(or -1)). Note however that IBLTs support deletions and the sketch might return to be
peelable again if enough inserted elements are removed.

44

C H P

7 0xD3 0x24
11 0x78 0x0F
6 0xCB 0x3D
7 0x61 0x31
8 0xEE 0x26
9 0xB9 0x0A

ACA
ACG
AGC
ATG
CGC
CAT
CGA
CGT
GAC
GCA
GCG
GTC
TAG
TCG
TGC
TTA

C H P

0 0x78 0x08
-1 0x6E 0x19
0 0x00 0x00
-1 0x6E 0x19
0 0x00 0x00
2 0x00 0x00

C H P

1 0x16 0x11
0 0x00 0x00
0 0x00 0x00
0 0x00 0x00
0 0x00 0x00
2 0x00 0x00

C H P

0 0x00 0x00
0 0x00 0x00
0 0x00 0x00
0 0x00 0x00
0 0x00 0x00
0 0x00 0x00

0x19 = CGC ×2

0x11 = CAC

delete

(1)

(2)

Figure 5.5: The reported example represents the difference between the k-mer set from
Figure 5.4 and a modified version of itself, where k-mer CAC has been mutated into CGC
(1). Once sketched, the difference (top left of (2)) has two buckets containing one element
each (C = −1), and two buckets with two elements each (first and last rows). Despite
having C = 0, the first row contains something (H and P fields are different from 0x00)
while the last one is subject to a collision of two copies of the same element (C = 2
and H = P = 0x00). Peeling starts by first finding any eligible bucket whose counter
is 1 or -1 and whose hash field H is equal to he(P). This is the case for the bucket
containing 0x19 (top left). Value 0x19 (corresponding to CGC) is then subtracted from
all its buckets, leading to a new peelable bucket (first bucket of the second sketch in the
top right corner of (2)). Peeling this new item (0x11 = CAC) empties the sketch and
terminates the process. The retrieved symmetric difference is thus CGC, CAC with CAC
coming from the set depicted in Figure 5.4 (counter C = 1) and CGC being its mutated
version (C = −1).

45

Chapter 6

Exact representations of k-mer count
tables

As it has been the case for sketches, we do a quick review of the main methods we use in
our solution in Part III. Despite the fact that the structures of Part III do not store k-mers
but only frequencies, we start this review by listing full static k-mer table representations
first. This should provide a more general view helping to put the algorithms effectively
used in this thesis into context.

6.1 Full static representations
This section is dedicated to k-mer count table representations that store both k-mers
and counts, thus supporting both counter retrieval and extraneous k-mer identification.
Exact presence/absence support is costly and not always required if queries are restricted
over a known set of k-mers. Nevertheless, in applications where support for both types
of queries is justified, exact dictionaries are generally the preferred option [154]

6.1.1 Hash Tables

Common hash table implementations found in standard libraries of most programming
languages provide the easiest and quickest (in terms of development time) solution for
storing (key, value) pairs. However, this leads to suboptimal space for both k-mers and
counts, given that the former are highly redundant overlapping strings, while the latter
follow skewed distributions. Solutions tailored to genomic datasets have been the subject
of extensive research efforts leading to the many results of the following (sub)sections.

6.1.2 Quotient filters

Quotient filters try to reduce space by storing lists of sorted k-mers. k-mers are then split
into prefix and suffix with contiguous stretches of equal prefixes implicitly represented
as positions in an array (or just stored once using an exact set representation). Queries
are performed by first searching for the prefix of a given k-mer. If it is found, then the
search continues in the block of suffixes associated with the prefix. Counts are stored into
additional fields (one for each suffix).

All modern k-mer counters use some sort of variation of this method [135, 101, 149]
with DSK [165] the sole exception. Latest advancement also try to optimize space weights
by dynamically allocating variable-length counters for count values [189].

46

6.1.3 Dictionaries based on super k-mers
Super k-mers are groups of contiguous k-mers sharing the same minimizer [119]. Bucketing
super k-mers by minimizer allows for fast membership queries. Queries are performed by
finding the set of super k-mers associated to the minimizer of a query k-mer p. Searching
the queried k-mer as a substring of the super k-mers gives the answer. Mapping minimizers
to their sets of super k-mers is achieved with the help of Minimal Perfect Hash Functions
(see 6.2.1). Two implementations of this method are BLight [133] and the more recent
ssHash [155] and its extension supporting k-mer counts [154].

6.1.4 Graph-based dictionaries
Another family of k-mer dictionaries is obtained by extending de Bruijn graphs with
counts. Classic approaches rely on MPHFs to link additional information to k-mers in
a graph [82], whereas recent solutions store k-mers and counts into two separate data
structures optimized for their respective tasks [98]. A related approach is the structure
proposed in [86] where delta-encoded weights are added on top of the BOSS data structure
(a de Bruijn graph stored as a set of contigs) [19]. Note that, in general, FM-Indexes [61]
naturally offer a count operation, if a given k-mer is found, then its number of occurrences
can also be retrieved.

6.2 Count-only data structures
Count-only data structures do not explicitly store k-mers by limiting queries to a known
set of k-mers. Further space optimizations of the weights becomes possible, at the cost of
losing membership queries. This strategy is useful when k-mers are known in advance and
counts need to be retrieved multiple times during execution. While not exactly equivalent
to full k-mer count tables, they are strictly related concepts, often with readily-available
drop-in replacements for a wide range of use cases. Methods in Part III belong to this
family.

6.2.1 Minimal Perfect Hash Functions
Minimal Perfect Hash Functions (MPHFs) are bijective functions between keys of a set
S ⊂ U and integers in the range [0, |S|−1]. By using hash values as indexes for an external
array, it is possible to associate any type of information to k-mers. Unlike the previous
structures, keys in S are not explicitly represented, making answering membership queries
impossible. On the other hand, not storing S leads to much greater space efficiency, with
a theoretical lower bound of log e = 1.44 bits/element [138]. However, this lower bound
is achievable only in theory, for sets so big that they have no practical interest [75]

MPHFs can be categorized into four families [157]:

• Hash and displace MPHFs belonging to this family are FHD [63], CHD [11] and
ptHash [157, 156]. They work by first splitting the input set into multiple buckets Bi

of different (FHD) or homogeneous (CHD) size. Buckets are then serially processed
in order to find integer values di, such that all elements in Bi can be inserted into a
global binary array without collisions. FHD maps elements to their positions inside
the binary array by doing (h(x)+di mod |S|) with buckets processed by decreasing
size, where h(·) is a random hash function. On the other hand, both CHD and
ptHash use two pairwise independent hash functions h1 and h2 to avoid failure if
di reaches |S|. CHD computes positions by doing (h1(x) + z0h2(x) + z1 mod |S|)
with the displacement value di of bucket Bi the index of pair (z0, z1) in sequence

47

(0, 0), · · · , (0, |S| − 1), · · · , (|S| − 1, 0), · · · , (|S|, |S|). On the other hand, ptHash
does (h1(x, s)⊕ h2(di, s) mod |S|) with s a user-defined seed. In case of successful
construction, the binary array can be discarded and only the list of displacements
is saved. Such vector is usually stored using succinct data structures, with ptHash
achieving good time/space trade-offs thanks to the improved compressibility of its
di values.

• Linear systems MPHFs use the relation between linear systems of n = |S| equa-
tions and m variables to random r-hypergraphs [128]. If the ratio between n and
m is above a certain threshold that depends on the parameter r of the hypergraph,
then it is possible to assign a unique ordering to the n keys with high probability.

• Cascading First introduced in [144] this type of MPHFs are built by repeatedly
resolving collisions when inserting keys into arrays. The algorithm starts by hashing
all elements in S to a bit-vector v0 of size n0 = |S|. Bits corresponding to exactly
one element are set to 1, unused bits and collisions are marked by 0 (collisions need
to be temporarily remembered using additional bits). The n1 elements colliding in
v0 are then inserted again into a new bit-vector v1 and so on and so forth. On
average, this procedure stops after 1.56 levels in the most succinct setting [144].
The final MPHF is the concatenation of each layer with added support for fast
rank queries. Note that, during construction, it is thus necessary to save the sets
of colliding keys or to re-run the construction algorithm over the entire stream of
keys multiple times, generating a new array for each layer. The index of a key is
retrieved by a query to a rank/select data structure counting the number of cells
occupied before the wanted element. An implementation of this technique can be
found in [122] where a parameter γ allows to increase the space of each bit-vector
for faster construction times.

• Recursive splitting Suitable MPHFs can be found by brute force for small sets
[57]. The above observation can be recursively applied in a divide and conquer
approach to build MPHFs for larger sets. The downside of this approach are the
slow queries due to the generation of a tree of splittings over multiple levels.

6.2.2 Compressed static functions
A static function (SF) is a representation of a function defined on a given subset S
of a universe U such that an invocation of the function on any element from S yields
the function value, while an invocation on an element from U \ S produces an arbitrary
output. The problem has been studied in several works (see references in [11, 67]) resulting
in several solutions that allow function values to be retrieved without storing elements
of S themselves. One natural solution comes through MPHFs: one can build a MPHF
for S and then store function values in order in a separate array. This solution, however,
incurs an overhead associated with the MPHF, known to be theoretically lower-bounded
by about 1.44 bits per element of S.

This overhead is especially unfortunate when the distribution of values is very skewed,
in which case the value array may be compressed into a much smaller space. Compressed
Static Functions try to solve this problem by proposing a static function representation
whose size depends on the compressed value array. The latter is usually estimated through
the zero-order empirical entropy, defined by H0(f) = ∑

ℓ∈L
|f−1(ℓ)|

|K| log(|K|
|f−1(ℓ)|), where L is

the set of all values (i.e. L = {f(t) | t ∈ K}}) and f−1(ℓ) = {t | f(t) = ℓ} is the set
of k-mers with value ℓ. |K| · H0(f) can be viewed as a lower bound on the size of
compressed value array, in absence of additional assumptions. Thus, the goal of CSFs is

48

to approach the bound of H0(f) bits per element as closely as possible, in representing a
static function f . We refer the reader to [11, 67] and references therein for an overview
of different algorithmic solutions for SFs and CSFs.

[11] proposed a solution for CSF taking an asymptotically optimal nH0(f)+o(nH0(f))
space (n size of the underlying value set), however the solution is rather complex and
probably not suitable for practical implementation. As of today, to our knowledge, the
only practical implementation of a CSF is GV3CompressedFunction [67], found in the Java
package Sux4J (https://sux.di.unimi.it/). Although entropy-sensitive, the method
of [67], has an intrinsic limitation of using at least 1 bit per element, due to involved
coding schemes. This is a serious limitation when dealing with very skewed distributions
of values, where one value occurs predominantly often and the empirical entropy can be
much smaller than 1. This is precisely the case for count distributions in whole genomes
(see Section 8.1.1).

49

https://sux.di.unimi.it/

Part II

Sketching count information

50

Chapter 7

Context and motivation

7.1 Problem statement
Counting every substring of length k in genomic sequences is a rather common task
in many bioinformatics pipelines. Representing sequences as sets of k-mers is the idea
behind many alignment-free algorithms with k-mers being used for efficient sequence
similarity estimation and/or to quickly find seeds during the initial steps of sequence
alignment. However, augmenting k-mers with their counts allow for a much greater range
of possibilities. For example, k-mer count statistics can be used to filter too common
k-mers and only use the rarer ones as seeds for greater specificity. Another use is genome
size estimation from sequencing reads or, similarly, sequencing coverage estimation. Read
trimming also makes use of k-mer frequencies in order to ignore uninformative parts of
sequenced reads [125]. The same information can also be used to correct reads if its k-mer
frequencies seem unlikely. Other applications range from detecting sequence duplication
to alignment-free variant calling [163, 100].

In recent years, many k-mer counting algorithms have been proposed, such as Jellyfish
[135], DSK [165] or KMC [101]. All these tools output a map associating k-mers to their
counts. Such a map can require a fairly big amount of disk space, especially for large
values of k because it stores both genomic (i.e. the k-mers) and count data together. For
example, the binary file produced by KMC when counting a human genome with k = 32
weights around 28 GB. Almost all tools, including KMC, employ efficient representations
of k-mers, such as quotienting, in order to reduce their memory footprint but, even with
such optimizations, memory efficiency remains an important issue.

Many applications, however, only deal with k-mers that come from partially assembled
reads or succinct representations of k-mer sets, such as colored de Bruijn graphs [82, 140],
or spectrum-preserving string sets [162, 29], that is, only k-mers present in the original
data are queried for their frequencies. For this reason, a way to reduce memory usage
is to store counters only, together with a mapping linking them to their k-mers, without
the need to reserve space for any genomic information. The idea of storing only counter
information and not k-mers is also supported by the observation that the number of
distinct k-mer counts in genomic data is relatively small. It is in fact known that k-
mer counts in genomes obey a “heavy-tail” power-law distribution with a relatively large
absolute value of the exponent [44]. For such distributions, the number of distinct k-mers
makes a linear fraction of the data size, while the number of distinct counts is relatively
small. For example, for the human genome and k = 27, there are about 2.5 billions
distinct k-mers but about only 8, 000 distinct frequency values. In many practical cases,
the majority of k-mers have very small counts: in the above example, 97% are unique,
while almost 99% have a count of at most 5. Furthermore, frequent k-mers often tend
to have identical frequencies as well, due to transposable elements: for example, k-mers

51

specific to Alu repeats in primate genomes will likely have the same count. It is thus
possible to take advantage of these properties to reduce space by trying to share count
values with multiple k-mers.

7.2 Contributions
The count approximating sketches described in Section 5.1 have seen little to no appli-
cation in bioinformatics even though: i) k-mers usually follow highly skewed power-law
distributions [44, 36], and ii) both CountSketch and Count-Min sketch are known to have
an advantage under this particular setting [43]. In most cases they are only applied as
temporary storage solutions while performing more complex operations [169, 220] with
none used for permanent storage of counts. The answer to this apparent paradox resides
in the streaming nature of both sketch constructions, where updates are allowed to arrive
in the form of unary increments. While general, this constraint limits the possibility to
take full advantage of the peculiar distribution of the weights in order to reduce errors.

Basically, the goal of this work is to provide an approximated technique for the long-
term storage of counts for a known set of k-mers. To this end, we propose a new prob-
abilistic data structure that we call Set-Min sketch, capable of representing k-mer count
information in small space and with small errors. Set-Min sketch and its analysis fol-
low the same path as the aforementioned sketches by saving counts into a matrix, and
by avoiding collisions through multiple independent hash functions. The distinguishing
property of our method compared to, e.g. Count-Min sketch, is that the matrix stores
sets of counters instead of sums. Changing counter representation leads to better error
guarantees, or in other words, to achieve the same error guarantees, Set-Min sketches
need less space than previous solutions.

Memory-wise sets are more efficient than simple counters in two cases:

• The number of possible count values is small.

• Counts are distributed following a “heavy-tail” power-law distribution. The higher
the skew, the smaller the space required by Set-Min.

The main insight is that the same count value in a given cell of the sketch can be shared
by multiple k-mers. Adding a new k-mer p with its counter c is as simple as adding c to
the r cells of the matrix associated to p. Retrieval, on the other hand, is performed by
set intersections which has the potential to retrieve the exact values associated to k-mers.
Thanks to these modifications, Set-Min guarantees that the expected cumulative error
obtained when querying all k-mers of the count table T it represents can be bounded
by a fraction of the total number of k-mers (including multiplicities) in T . This is in
stark contrast to Count-Min where the same bound applies on each single query. Note,
finally, that Set-Min sketch is a general data structure in that it can be used to efficiently
represent a mapping of k-mers to any type of labels, provided that the number of possible
labels is relatively small.

We introduce these considerations more formally in Section 8.1 together with the
concept of skewed distributions. Section 8.2 introduces the data structure itself and how
insertion and queries are performed, respectively. The theoretical analysis of our sketch
can be found in Section 8.2 together with a practical algorithm for dimensioning the sketch
according to the desired error bound. We present experimental results in Section 8.4 on
a range of datasets illustrating the benefits of our approach. We provide comparisons
against alternative solutions, namely Count-Min sketch (and its optimized version called
Max-Min sketch) and, on the other hand, Minimal Perfect Hashing. An implementation
of Set-Min can be found at https://github.com/yhhshb/fress.

52

https://github.com/yhhshb/fress

Chapter 8

Set-Min sketch

Similarly to Count-Min sketch (Section 5.1.2), Set-Min itself does not store k-mers. In-
stead, it estimates frequencies by relying on a matrix of sets instead of numerical counters.
The intuition behind this modification is presented in Section 8.1. We follow by formally
presenting our method and its analysis in Section 8.2. Finally, Section 8.4 experimentally
validates our results on a practical implementation of our ideas.

8.1 Key algorithmic ideas
Count-Sketch and Count-Min sketches use independent and distinct insertions at different
cells to mitigate the effects of collisions between different counts (Section 5.1). Both can
be applied in a streaming setting where count values for each item arrive as a series of
partial updates. The main drawback of using sums to update the content of each bucket is
that the more values hash to a cell, the larger the expected error will be, since it becomes
impossible to retrieve the original unaggregated values. In applications where counts ar-
rive already computed, and the interest of sketching is more towards space rather than
streaming, it might be interesting to take advantage of the distribution of the input to
boost compression. Both Count-Sketch and Count-Min are not prone to such improve-
ments since input values are lost due to the sum operations. This chapter introduces the
idea of a sketching method tailored to efficiently represent power-law distributed counts
by taking advantage of collisions instead of being hindered by them.

8.1.1 Skewed distribution
A k-mer spectrum is the distribution of k-mer frequencies across all k-mers occurring in the
data, showing how many k-mers support each frequency value. For large values of k, k-mer
spectra follow a power-law distribution [44, 36] characterized by a linear-like dependence
when represented in the log-log scale. That is, the k-mer frequency distribution fits a
dependence f(t) ≈ c · t−a, where a is usually greater than 2. An example of the spectrum
for the human reference genome with k equal to 32 is given in Figure 8.1. According to
this distribution, a very large fraction of k-mers has very low frequencies, while only a
handful of k-mers are "unexpectedly" very repetitive. Large values of a imply that there
are relatively few distinct frequency values with non-zero support, whose number is given
by the 1

a
-power of the total number of k-mers. That means that, for large-enough k’s, few

distinct frequencies are expected to appear on the x-axis of a spectrum.
In general, spectra start to become power-law distributed when k > log4(L), with L

the length of genome the input data belongs to. k-mers shorter than this threshold are
not powerful enough to be equivalent representations of the original data. This becomes

53

100 101 102 103 104 105

k-mer frequency

101

103

105

107

109

Nu
m

be
r o

f k
-m

er
s

Figure 8.1: k-mer spectrum of the human genome for k = 32 in log-log scale. Note how
the number of highly repetitive k-mers rapidly decreases as their repetitions increase.
Most of the k-mers in a fully assembled genomes are thus unique, for large enough ks.

obvious when k = 1, leading to almost uniform spectra (unless for strong GC biases). In
case of human reference genomes, k > 16, since |G| ≈ 4× 109.

8.1.2 Using counter collisions to reduce space

In order to make use of the few distinct frequency values, we will limit our method to
sketching already constructed count tables. As we saw earlier (Chapter 7), counting k-
mers is a well known problem with optimized solutions readily available [101, 135, 165].
The only downside of limiting ourselves to full tables is that it prevents our sketch to
update counters of already inserted k-mers. On the other hand, knowing exactly which
counters have been inserted opens up the possibility of re-using the values already present
in buckets for later insertions. This can be done quite easily by replacing each cell of
a Count-Min matrix with a set of counters. We call the resulting data structure Set-
Min sketch. Unlike Count-Min, Set-Min sketches are able to represent mappings of very
skewed distributions (e.g. power-law distributions with large a) in less space, by sharing
the same counters across multiple k-mers of the same buckets.

Estimates returned by Set-Min sketches are not affected by the sum of colliding k-
mers’s counts as in Count-Min sketches or Count-Sketches. Instead, each count value in
a set is treated as a distinct object, and errors can only come from returning the wrong
value instead of the correct one. This can happen with probability < 1 even when rows
are made of B ≪ L0 buckets, where L0 = ∥a∥0 is the number of distinct k-mers in a
counting table a. This is not the case for neither Count-Min nor Count-Sketch whose
estimates are always affected by some errors, if B ≪ L0. As we will see in Section 8.2.1.1,
this intuition behind Set-Min sketches leads to better overall estimates than competing
methods.

54

8.2 Set-Min data structure

ℓ2 ℓ1

ℓ1, ℓ2

ℓ1 ℓ2

ℓ2 ℓ1

R = 4

B = 6

Figure 8.2: Example of a Set-Min sketch with L = {ℓ1, ℓ2}. Two pairs (e, ℓ1) and (f , ℓ2)
with e ̸= f have been inserted into the sketch, with e, f hashed to the same bucket at line
2.

We now more formally introduce the Set-Min sketch data structure. Assume we are
given a set K of keys with associated values taken from a set L with |L| ≪ |K|. In our
case, K is a set of k-mers and L the set of their frequencies, although our method will
hold for any set of labels L, not necessarily numerical. We want to compactly implement
the associative map of (key, value) pairs. A Set-Min sketch is an R×B matrix M where
each bucket is treated as a set, initially empty. Similar to Count-Min sketch, rows in
the matrix correspond to hash functions hi, 0 ≤ i ≤ R − 1, that we assume pairwise
independent.

At construction time, the key of each (key, value) pair (p, ℓ) is hashed by the hash
functions to retrieve its buckets, and the value ℓ is inserted into each set. Formally, we
update M(i, hi(p)) = M(i, hi(p)) ∪ {ℓ} for each row i (see Figure 8.2).

Retrieval of a value associated with a key p, is performed by simply computing the
intersection of the sets corresponding to p, that is ∩0≤i≤R−1M(i, hi(p)). In general, three
outcomes are possible:

1. The intersection is a singleton, in which case the exact value associated to p is
returned.

2. The intersection contains more than one value, which corresponds to a collision.
One value must be selected as the answer.

3. The intersection is empty, p is not present in the map.

However, since in this work we assume that only k-mers present in the dataset can be
queried, empty intersections (case 3) becomes impossible. This in turns, allows for tighter
sketch dimensions. Not having to worry about recognizing alien k-mers means that the
most common label, i.e. the label ℓ1 with the largest support, can be in every bucket
without affecting errors. In other words, it becomes the “default” value returned by the
sketch.

Instead of potentially having the same value physically stored into each set, we further
optimize by ignoring it. ℓ1 thus becomes the new case 3 and is retrieved implicitly: when

55

the intersection is empty, ℓ1 is returned. In practice, this optimization allows us to save
space and will be further discussed later. Note that, with these modifications, an error
may occur even if the resulting intersection is a singleton, but the right label is actually
ℓ1. In case of k-mers and for large k, ℓ1 is usually equal to 1, which is the frequency of
the largest fraction of k-mers. A graphical representation with colored labels of the above
modifications can be seen in Figure 8.3.

Figure 8.3: Set-Min sketch memory optimization. The most common label (in blue)
in the histogram (left) is not actually inserted into the sketch (bottom right). Empty
intersections of the final sketch (top right) are interpreted as the missing label.

8.2.1 Dealing with collisions

The only thing left to decide is what label to return in case of collisions. This choice
is guided by the number of k-mers supporting each label of the intersection: the label
with the smallest support is returned (see Figure 8.4). The rationale for this is that the
label with the smallest support has the smallest probability to appear “by chance”. On
the other hand, labels with larger supports belong to more buckets in the sketch, and
are therefore more likely to occur in the intersection by accident. Thus, the algorithm
compares spectrum values for all labels in the intersection, and returns the label with the
smallest value (ties are broken randomly). If the spectrum is monotonically decreasing
(as it is usually the case for large k, see Figure 8.1), then the label returned is simply the
largest one among those in the intersection.

56

Figure 8.4: Example of collision resolution in case of multiple items occurring in the
intersection. The brown label is returned because it is more rare compared to the blue
one.

8.2.1.1 Bounding the total error

We now show that with Set-Min sketch, we can bound the total absolute error over all
k-mers of the dataset. Consider a sketch S built on a map assigning to each k-mer p ∈ K
a value (label) ℓp ∈ L which is the frequency of p in the dataset. We denote by cℓ the
number of k-mers with frequency ℓ ∈ L (spectrum value).

Consider
D =

∑
p∈K

|ℓ̂p − ℓp| (8.1)

where ℓ̂p is the label of p returned by the sketch. Our goal is to dimension R and B such
that D ≤ ε∥a∥1, where ∥a∥1 is the total number of k-mers in the dataset (roughly, the
dataset size) and 0 < ϵ ≤ 1.

Querying p returns an incorrect frequency m ̸= ℓp iff m occurs in the intersection and
cm < cℓp . The probability of this event is

(
1−

(
1− 1

B

)cm
)R

≈
(
1− e− cm

B

)R
(8.2)

and the expectation of the error when querying p is then

∑
cm<cℓp

m∈L

|m− ℓp|
(
1− e− cm

B

)R
. (8.3)

Summing up over all k-mers, we obtain

57

E[D] =
∑
ℓ∈L

cℓ

∑
cm<cℓ
m∈L

|m− ℓ|
(
1− e− cm

B

)R
. (8.4)

The total number of k-mers is ∥a∥1 = ∑
ℓ∈L ℓcℓ. Given 0 < ε ≤ 1, our goal is to choose

B and R in order to ensure
∑
ℓ∈L

cℓ

∑
cm<cℓ
m∈L

|m− ℓ|
(
1− e− cm

B

)R
< ε

∑
ℓ∈L

ℓcℓ. (8.5)

Assuming that k is sufficiently large, and the spectrum is monotonically decreasing,
i.e. cm < cℓ iff m > ℓ. (8.5) then rewrites to

∑
ℓ∈L

cℓ

∑
m>ℓ
m∈L

(m− ℓ)
(
1− e− cm

B

)R
< ε

∑
ℓ≥1

ℓcℓ. (8.6)

Assume now that the spectrum follows a power-law with large exponent, that is,
cℓ = C · ℓ−a for some a > 2. Note that under this assumption, the number of unique
k-mers is c1 = C, and the number of all k-mers is

∑
ℓ≥1

ℓcℓ = C ·
∑
ℓ≥1

1
ℓa−1 ≤ C · a− 1

a− 2 ,

since ζ(s) = ∑
i≥1

1
is ≤ s

s−1 for s > 1.
We then have the following result.

Theorem 1. Given 0 < ε ≤ 1, if B > C and R, B satisfy

R · log B

C
> log 1

ε
, (8.7)

then (8.6) holds.

Proof. Our goal is to estimate∑
ℓ∈L

cℓ

∑
m>ℓ
m∈L

(m− ℓ)
(
1− e− cm

B

)R
, (8.8)

where cℓ = C · ℓ−a. We assume B > C and approximate 1 − e− cm
B ≈ cm

B
= C

B
m−a. We

further lower-approximate (8.8) by replacing sums by integrals, thus obtaining
∫ ∞

1
C · ℓ−a

∫ ∞

ℓ
(m− ℓ)

(
C

B
m−a

)R

dm dℓ. (8.9)

Routine computation of the integral yields

C
(

C

B

)R 1
(aR− 2)(aR− 1)(aR + a + 3) . (8.10)

The inequality of the Theorem becomes
(

C

B

)R 1
(aR− 2)(aR− 1)(aR + a + 3) < ε

a− 1
a− 2 . (8.11)

The Theorem follows.

The theorem allows us to dimension the Set-Min sketch. For example, one can set
B = αC for some constant α > 1 and R = logα

1
ε
.

58

8.2.2 Computing tighter sketch dimensions
Theorem 1 provides a way to dimension a Set-Min sketch, provided that the spectrum
follows a power-law distribution with a sufficiently large parameter a. In order to validate
these estimates experimentally, and, at the same time, obtain a tool for computing tighter
values B and R for arbitrary spectra, we implemented a simple heuristic hill climbing
algorithm to compute those values by directly solving equation 8.5. Algorithm 1, given
below, starts with R = 1 and some initial value of B and then iteratively increments R
and recomputes (8.4) until equation (8.5) holds true. In the implementation, B is initially
set to 1.44 × cmax, where cmax is the largest spectrum value. After such a value of R is
found, the algorithm starts decrementing R while incrementing B to maintain the total
space RB constant as long as (8.5) holds. The final R and B are thus the last which
satisfied (8.5) in the decrementing loop. Note that, for both loops, there is a value of R
for which the exit condition is satisfied. The rationale for this step is to have as small R
as possible in order to reduce query time, while maintaining the total space constant.

Data: {cℓ}ℓ∈L, ∥a∥1 = ∑
ℓ∈L ℓcℓ, ε

Result: R and B
R← 1;
B ← 1.44× cmax;
T ← ε∥a∥1;
E ← E(D) (computed by (8.4));
while E > T do

R← R + 1;
E ← E(D);

end
M ← R×B;
while E < T do

R← R− 1;
B ← ⌈M

R
⌉;

E ← E(D);
end
R← R + 1;
B ← ⌈M

R
⌉;

Algorithm 1: Heuristic to compute R and B

8.3 Max-Min sketch
Now, consider a k-mer spectrum H(·) where H(ℓi) is the number of k-mers associated to
label ℓi. If it follows a decreasing trend such that H(ci+1) ≤ H(ci)∀i ∈ 1 · · · |L|, and we
are in the static case (when values of keys are given once and never change afterwards)
then Count-Min sketches can be modified to achieve better errors. Under this framework,
the conservative update strategy seen in Section 5.1.3 can be further modified by defining
updates as A(i, hi(p)) = max{A(i, hi(p)), ℓ}. For this reason, we call this variant of
Count-Min sketch Max-Min.

In the general case, however, we use a variant when, instead of directly comparing
count values, counts are ordered according to the support size. Whenever the k-mer
spectrum is not strictly decreasing for increasing k-mer counts, the maximum count does
not correspond to the one with the smallest support and a simple max operation would
be incorrect. When this happens, updates are performed by keeping the label with the

59

minimum number of k-mers in the k-mer spectrum, and a query returns the label with
the smallest such number. This policy is akin to Set-Min’s choice of returning the count
with the minimum support in case of collisions and should be the default behavior of
Max-Min when no previous knowledge about spectrum distribution is available.

In the static case, Max-Min sketch improves Count-Min without any computational
overhead: it simply replaces addition by max in the update rule, somehow simulating
the behavior of Set-Min sketch. As with the conservative update, one can check that
estimates by Max-Min can only be over-estimates which, however, don’t exceed estimates
by original Count-Min. Nevertheless, in Section 8.4 we will see how these improvements
are not enough to beat our method.

8.4 Results
Comparisons are performed against Count-Min and MPHF implementations. In partic-
ular, we use BBHash [122] as our MPHF implementation of choice, with its supporting
library as the only external dependency of our code, as Count-Min is implemented directly
within fress. In addition to following the optimizations seen in Section 8.2, fress only
stores indexes to a dictionary (array) of sets in each cell of the sketch, rather than full sets.
This array of involved sets is stored in text format together with the spectrum of the count
table in input. The current version of fress does not include any complex optimization,
such as multi-threading or succinct representations of the final sketch matrix.

8.4.1 Data sets
We tested Set-Min on six different data sets of different size and complexity. Four of them
are fully assembled genomes:

• SAI: Sakai strain of Escherichia Coli taken from [213] (NCBI accession number
B000007),

• MNO: genome of Drosophila melanogaster from FlyBase1,

• RAI: genome of Gossypium Raimondii [77] downloadable from AFproject[223],

• GRC: human reference genome assembly GRCh382.

The other two contain unassembled reads:

• USAI: Sakai strain at 5x coverage from again from the AFproject paper [223],

• SRR: low-coverage human data SRR622461 from the 1000 Genomes Project3

Table 8.1 summarizes the characteristics of each data set for each value of k in our
analysis. Observe that, while the number of distinct k-mers is comparable to the total
number of k-mers (data size), the number of distinct k-mer counts is small. This is in
accordance with the power-law distribution discussed in Section 8.1.1.

1http://flybase.org
2ftp:

//ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_
alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz

3ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/SRR622461_1.fastq.gz. Only the
file SRR622461_1 is used in this study.

60

http://afproject.org/app/
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/SRR622461_1.fastq.gz
https://www.internationalgenome.org/
http://flybase.org
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38 /seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38 /seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38 /seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/SRR622461_1.fastq.gz

Table 8.1: Data sheet for the data sets used in our study. Columns Tk and Dk report
the total number of k-mers and the number of distinct k-mers (in millions), respectively.
Dc reports the number of distinct k-mer counts. Ck reports the number (in millions) of
distinct k-mers with a count value different from the most common one (which is 1 in all
reported cases).

Type Name Tk [M] k Dk [M] Dc Ck [M]

assembled

SAI 5.50
11 2.38 69 1.30
15 5.23 42 0.16
21 5.30 28 0.11

MNO 143

15 101 883 15.51
21 122 710 4.10
27 124 605 4.00
32 125 522 4.01

RAI 727

15 251 1944 105.71
21 546 1019 57.13
27 604 699 45.21
32 632 540 38.59

GRC 2935

15 547 12718 370.16
21 2327 10038 95.15
27 2483 7946 73.99
32 2567 6651 66.71

unassembled

USAI 25
11 3.06 239 2.76
15 9.74 143 6.74
21 10.0 97 6.52

SRR 7500

15 676 22323 538.56
21 3635 17211 1435.30
27 3734 13157 1353.95
32 3703 10643 1261.06

8.4.2 Set-Min vs Count-Min sketch
Table 8.2 compares Set-Min sketch to Count-Min sketch. Dimensions R and B were
computed using Algorithm 1 to ensure bound (8.5) to hold for ε = 0.01. Dimensions of
Count-Min sketch were set to be the same. Value 1 is the most common count in all
reported datasets, and it was not inserted into Count-Min sketch in order to make the
comparison against Set-Min as fair as possible. Zero values are thus interpreted as the
non-inserted count. For ease of comparison, column T reports the threshold ε∥a∥1 given
to Algorithm 1. Columns Es and Ec report the actual total sum of errors for Set-Min
and Count-Min, respectively. In all reported cases Es < T , as expected. The total error
of Count-Min, Ec is, most of the time, one order of magnitude larger than Es. For SRR
with k = 15, it even exceeds the total number of k-mers ∥a∥1 in the dataset.

The average error of Set-Min is, in most cases, very close to 1, which suggests that the
overwhelming majority of collisions occur between successive counts such as 1 and 2 – the
most abundant ones in the spectra considered here. The average error of Count-Min is
bigger but of the same order of magnitude, except for small k and unassembled datasets.
On the other hand, the fraction of k-mers producing an error is in striking contrast: in
case of Set-Min, about only 1-3% of distinct k-mers produce an error, while for Count-
Min, this fraction is much larger. This shows that Count-Min cannot be used when most
of k-mer counts are expected to be retrieved precisely, for comparable sketch sizes.

61

8.4.3 Set-Min vs Max-Min sketch
Table 8.3 compares Set-Min with Max-Min – the optimized version of Count-Min discussed
in Section 5.1.2. As expected from theoretical considerations, the performance in terms of
average error and sum of errors is better for Max-Min than regular Count-Min, but worse
than the one of Set-Min. The same behavior is observed for the number of k-mers having
an erroneously estimated frequency. Therefore, Max-Min falls in-between Set-Min and
Count-Min, providing a simple and inexpensive practical method to enhance the latter,
without reaching the accuracy of the former.

Altogether, Table 8.3 shows that the performance of Max-Min is closer to Count-Min
than to Set-Min. This is because, by keeping the maximum element in each bucket, we
are reducing each set of Set-Min to a single element opening the possibility of increased
collisions by potentially sharing a given maximum element between unrelated k-mers.
The intersection operation performed by Set-Min during query is thus strictly necessary,
to guarantee the desired error bounds.

8.4.4 Set-Min sketch vs KMC output
Not surprisingly, Set-Min achieves better memory consumption than KMC in all our tests
(columns Mkmc and Ms of Table 8.4). Values of R and B do not change from Table 8.2.
Compression rate is variable: from a small factor to two orders of magnitude. The best
compression is achieved for larger values of k and assembled genomes. The former is
primarily explained by the decreasing number of distinct counts, due to the power-law
behavior. As for the difference between assembled genomes and sequencing data, we will
discuss it in more details in Section 8.4.6.

8.4.5 Set-Min sketch vs MPHFs
Table 8.4 also reports the space usage for BBHash to obtain the best memory-optimized
hash functions. Column Mbbhash is the space (in bytes) required by the hash function
only, while Mbball is the space required by the hash function plus the external array of
frequencies.

As in the previous case, Set-Min sketch is more memory-efficient when k is large,
taking about an order of magnitude less memory than a MPHF. For small values of k,
BBHash takes slightly less space and, being exact, may therefore be the preferable choice.
However, one should keep in mind that MPHF does not support updates, while a Set-Min
sketch is updatable to a certain extent with new (k-mer,count) pairs, and also mergeable
with another possibly redundant map.

The behavior of the unassembled datasets is of particular interest. Even for large k’s,
MPHF appears to be a better choice for this type of data. The causes of this phenomenon
and possible solutions are discussed in Section 8.4.6.

8.4.6 Unassembled datasets
As seen in Table 8.4, for the unassembled datasets, Set-Min sketch does not seem to
have an advantage in memory usage, even for large k’s. We found that this is due to
low-count k-mers, specifically to k-mers whose count does not exceed the sequencing
coverage. It is known that for Illumina sequencing, sequencing errors produce a linear
growth of the number of new distinct k-mers (for large k) depending on the coverage
(see e.g. Figure 2(b) of [173]). Frequencies of these “erroneous” k-mers do not have the
same statistical behavior as bona fide k-mers, in particular first spectrum values do not
decay at the same rate as the rest of the spectrum. Figure 8.5 shows the spectrum of

62

the unassembled SRR datasets. One can observe a slower decay behavior for a few first
spectrum values. In this situation, additional rows are needed just to make the sketch
able to distinguish, with required precision, between small frequency values. Note that in
practice, distinguishing between small frequencies is often irrelevant. For example, many
read assemblers simply discard low-frequency reads as a way to de-noise the data. In the
case of Set-Min, it is possible to collapse together the first m columns of the spectrum
by assigning to all k-mers in this subset the same frequency. This would considerably
reduce the sketch size. Formally, error guarantee (8.5) would not hold anymore, but most
of newly introduced errors would be small (typically, equal to 1) and would occur for low
counts only.

To check the above, we constructed a Set-Min sketch for SRR with dimensions (R, B) =
(4, 3310557), merging together the first five columns of the sorted spectrum and assigning
count 5 to all merged k-mers. While the final sum of errors was well above the theoretical
limit (109 against 7 · 106), the maximum and average error were respectively 55 and 2.8.
In many applications this error level could be acceptable.

8.4.7 Time measurements
Construction time is reported in Figure 8.6. Set-Min sketches are generally faster to build
than memory-optimized BBHash except for smaller values of k. However, similarly to
Table 8.4, Set-Min sketch is at a disadvantage when the count value distribution is less
skewed, such in the case of short k or for unassembled reads. For highly skewed data, Set-
Min can be built faster than BBHash MPHFs, but is still more computationally demanding
than Count-Min or Max-Min because of the additional operations required to create and
update the sets of labels. Set-Min average query time performance is 50% slower than
Count-Min (and by extension of Max-Min) and comparable to those of BBHash, when
data is very skewed. Following the previous trend, Set-Min sketches appear to be the
slowest method for small values of k and for unassembled reads.

63

100 101 102 103 104 105

101

103

105

107

109

Figure 8.5: Spectrum in log-log scale of SRR unassembled data sets for k = 32. Note
how, the number of k-mers appearing 2 times is not that smaller than the number of
unique k-mers. In such a case, Set-Min sketch needs a lot of space just to distinguish
count values of these two groups.

64

SA
I k=

11

SA
I k=

15

SA
I k=

21

MNO k=
15

MNO k=
21

MNO k=
27

MNO k=
32

RA
I k=

15

RA
I k=

21

RA
I k=

27

RA
I k=

32

GRC
 k=

15

GRC
 k=

21

GRC
 k=

27

GRC
 k=

32

USA
I k=

11

USA
I k=

15

USA
I k=

21

SR
R k=

15

SR
R k=

21

SR
R k=

27

SR
R k=

32

102

103

104

105

106

Co
ns

tru
ct

io
n

tim
e

[m
s]

method
Set-Min
Count-Min
Max-Min
BBall

Figure 8.6: Construction time of Set-Min sketches compared to Count-Min, Max-Min
and BBHash (with external array). Time is reported in milliseconds on a logarithm scale.
Set-Min sketches tend to be slower than Count-Min or Max-Min sketches of comparable
size due to the extra operations needed to manage sets. Compared to MPHFs, Set-
Min sketches are generally faster when data is very skewed, which is not the case for
unassembled datasets or small values of k.

65

SA
I k=

11

SA
I k=

15

SA
I k=

21

MNO k=
15

MNO k=
21

MNO k=
27

MNO k=
32

RA
I k=

15

RA
I k=

21

RA
I k=

27

RA
I k=

32

GRC
 k=

15

GRC
 k=

21

GRC
 k=

27

GRC
 k=

32

USA
I k=

11

USA
I k=

15

USA
I k=

21

SR
R k=

15

SR
R k=

21

SR
R k=

27

SR
R k=

32
0

100

200

300

400

500

600

700

800

Qu
er

y
tim

e
[n

s]

method
Set-Min
Count-Min
Max-Min
BBall

Figure 8.7: Average query time of Set-Min, Count-Min and BBHash. Similar to Figure 8.6
Set-Min sketches are generally slower than their Count-Min or Max-Min counter-parts.
As before, unassembled datasets and small values of k prove to be the most difficult
situations. On the other hand, for very skewed distributions Set-Min sketches perform as
well as BBHash MPHFs.

66

Table 8.2: Set-Min compared to Count-Min. T is the reference upper bound on the sum
of errors equal to ε∥a∥1 (right-hand side of (8.5)). Es and Ec are the sum of errors for
Set-Min and Count-Min respectively. Ns and Nc are the percentages (rounded to integers)
of distinct k-mers producing an error, for Set-Min and Count-Min, respectively. As and
Ac are respective average errors, with average taken over the number of distinct k-mers
resulting in an error in the respective sketch.

Name k R B T Es Ec Ns Nc As Ac

SAI 11 4 1.04 · 106 5.50 · 104 5.00 · 104 1.39 · 106 1.8 26 1.15 2.24
SAI 15 5 2.13 · 105 5.50 · 104 4.66 · 104 2.38 · 105 0.9 4 1.01 1.1
SAI 21 5 1.20 · 105 5.50 · 104 5.29 · 104 4.57 · 105 0.9 7 1.05 1.18

USAI 11 5 4.58 · 105 2.57 · 105 1.99 · 105 7.44 · 107 2.6 99 2.46 24.6
USAI 15 4 4.79 · 106 2.49 · 105 2.45 · 105 8.01 · 106 1.9 33 1.31 2.53
USAI 21 5 3.99 · 106 2.38 · 105 2.00 · 105 7.91 · 106 1.6 34 1.21 2.35
MNO 15 5 1.79 · 107 1.43 · 106 1.39 · 106 8.35 · 106 1.4 7 1 1.25
MNO 21 4 4.69 · 106 1.43 · 106 1.41 · 106 2.26 · 107 1.1 12 1.03 1.61
MNO 27 5 3.72 · 106 1.43 · 106 1.11 · 106 2.28 · 107 0.9 12 1.01 1.48
MNO 32 5 3.81 · 106 1.42 · 106 1.11 · 106 2.10 · 107 0.9 12 1.01 1.44
RAI 15 4 8.36 · 107 7.27 · 106 5.65 · 106 1.50 · 108 2.1 27 1.08 2.25
RAI 21 4 8.47 · 107 7.27 · 106 5.73 · 106 4.09 · 107 1 6 1.01 1.3
RAI 27 4 7.14 · 107 7.27 · 106 6.49 · 106 3.56 · 107 1.1 5 1.01 1.22
RAI 32 4 6.38 · 107 7.27 · 106 6.87 · 106 3.15 · 107 1.1 4 1.01 1.17
GRC 15 3 2.26 · 108 2.93 · 107 2.78 · 107 1.36 · 109 2.9 52 1.78 4.74
GRC 21 4 1.42 · 108 2.93 · 107 2.60 · 107 1.65 · 108 1.1 6 1.01 1.23
GRC 27 4 1.07 · 108 2.93 · 107 2.82 · 107 1.91 · 108 1.1 6 1.01 1.25
GRC 32 4 9.84 · 107 2.93 · 107 2.92 · 107 1.85 · 108 1.1 6 1.01 1.22
SRR 15 4 1.17 · 108 7.90 · 107 4.93 · 107 1.34 · 1010 3.3 96 2.2 20.68
SRR 21 3 2.39 · 109 7.35 · 107 7.09 · 107 5.63 · 108 1.8 9 1.11 1.68
SRR 27 4 1.78 · 109 6.80 · 107 4.92 · 107 4.58 · 108 1.3 8 1.04 1.53
SRR 32 4 1.72 · 109 6.34 · 107 4.95 · 107 4.01 · 108 1.3 7 1.03 1.48

67

Table 8.3: Set-Min compared to Max-Min sketch. Columns Ec, Nc, Ac are replaced by
Em, Nm, Am with the same meaning as their Table 8.2 counterparts.

Name k T Es Em Ns Nm As Am

SAI 11 5.50 · 104 5.00 · 104 4.15 · 105 1.8 13.5 1.15 1.29
SAI 15 5.50 · 104 4.66 · 104 2.13 · 105 0.9 4 1.01 1.01
SAI 21 5.50 · 104 5.29 · 104 4.02 · 105 0.9 7.2 1.05 1.06

USAI 11 2.57 · 105 1.99 · 105 1.24 · 107 2.6 63.5 2.46 6.4
USAI 15 2.49 · 105 2.45 · 105 1.72 · 106 1.9 13.3 1.31 1.33
USAI 21 2.38 · 105 2.00 · 105 1.76 · 106 1.6 14.2 1.21 1.24
MNO 15 1.43 · 106 1.39 · 106 5.74 · 106 1.4 5.6 1 1.02
MNO 21 1.43 · 106 1.41 · 106 1.78 · 107 1.1 11.2 1.03 1.31
MNO 27 1.43 · 106 1.11 · 106 1.78 · 107 0.9 12.1 1.01 1.2
MNO 32 1.42 · 106 1.11 · 106 1.65 · 107 0.9 11.3 1.01 1.17
RAI 15 7.27 · 106 5.65 · 106 5.81 · 107 2.1 16.8 1.08 1.38
RAI 21 7.27 · 106 5.73 · 106 3.05 · 107 1 5.2 1.01 1.07
RAI 27 7.27 · 106 6.49 · 106 2.84 · 107 1.1 4.5 1.01 1.05
RAI 32 7.27 · 106 6.87 · 106 2.61 · 107 1.1 4 1.01 1.03
GRC 15 2.93 · 107 2.78 · 107 4.07 · 108 2.9 27.8 1.78 2.67
GRC 21 2.93 · 107 2.60 · 107 1.38 · 108 1.1 5.5 1.01 1.08
GRC 27 2.93 · 107 2.82 · 107 1.62 · 108 1.1 6 1.01 1.09
GRC 32 2.93 · 107 2.92 · 107 1.58 · 108 1.1 5.7 1.01 1.08
SRR 15 7.90 · 107 4.93 · 107 3.31 · 109 3.3 61.8 2.2 7.92
SRR 21 7.35 · 107 7.09 · 107 2.42 · 108 1.8 5.9 1.11 1.13
SRR 27 6.80 · 107 4.92 · 107 2.05 · 108 1.3 5.2 1.04 1.06
SRR 32 6.34 · 107 4.95 · 107 1.89 · 108 1.3 4.9 1.03 1.04

68

Table 8.4: Set-Min (ϵ = 0.01) compared to KMC and BBHash (run with γ = 1). All
memory is reported in bytes. Column Mkmc, Ms, Mbball are the memory taken by a fully
functional map between k-mers and their frequencies when applying KMC, Set-Min sketch
and BBHash, respectively. Mbbhash is the memory of the hash function produced by BBHash
without the external array of frequencies.

Name k Mkmc Ms Mbbhash Mbball

SAI 11 1.21 · 107 5.75 · 106 9.13 · 105 3.00 · 106

SAI 15 3.80 · 107 1.20 · 106 2.06 · 106 5.99 · 106

SAI 21 4.77 · 107 6.77 · 105 2.03 · 106 6.00 · 106

USAI 11 1.54 · 107 1.49 · 107 1.17 · 106 4.61 · 106

USAI 15 6.95 · 107 2.87 · 107 3.72 · 106 1.35 · 107

USAI 21 8.53 · 107 3.00 · 107 3.91 · 106 1.39 · 107

MNO 15 7.08 · 108 1.68 · 108 3.87 · 107 2.15 · 108

MNO 21 9.80 · 108 3.55 · 107 4.66 · 107 2.45 · 108

MNO 27 1.24 · 109 3.75 · 107 4.73 · 107 2.48 · 108

MNO 32 1.37 · 109 3.84 · 107 4.90 · 107 2.36 · 108

RAI 15 1.76 · 109 7.54 · 108 9.59 · 107 5.98 · 108

RAI 21 4.37 · 109 6.78 · 108 2.16 · 108 1.24 · 109

RAI 27 6.04 · 109 5.36 · 108 2.37 · 108 1.29 · 109

RAI 32 6.96 · 109 4.79 · 108 2.70 · 108 1.38 · 109

GRC 15 3.83 · 109 1.70 · 109 2.09 · 108 1.65 · 109

GRC 21 1.86 · 1010 1.28 · 109 9.32 · 108 6.46 · 109

GRC 27 2.48 · 1010 9.66 · 108 9.86 · 108 6.57 · 109

GRC 32 2.82 · 1010 8.38 · 108 1.08 · 109 6.54 · 109

SRR 15 4.73 · 109 2.00 · 109 2.59 · 108 2.12 · 109

SRR 21 2.91 · 1010 1.61 · 1010 1.48 · 109 1.10 · 1010

SRR 27 3.73 · 1010 1.60 · 1010 1.48 · 109 1.08 · 1010

SRR 32 4.07 · 1010 1.46 · 1010 1.57 · 109 1.04 · 1010

69

Chapter 9

Discussion

We presented Set-Min sketch – a novel sketching method inspired by the Count-Min
sketch, whose primary use is to associate keys to labels without explicitly storing the
former. We demonstrated its advantages for storing k-mer counts information when the
distribution of labels (k-mer counts) follows a power-law distribution. Under this assump-
tion, we proposed simple bounds for a Set-Min sketch that guarantee the total error sum
to be within an ε fraction of the total number of k-mers in the dataset. We showed that
the probabilistic compression provided by Set-Min sketches allows for better memory us-
age compared to the raw output of the popular KMC k-mer counting tool when applied
to labels following a skewed distribution, at the price of a very modest error rate. Space
savings are especially remarkable in case of whole-genome data and large values of k,
where they can reach two orders of magnitude reductions in memory usage. Set-Min has
been shown to be more space efficient than the MPHF-based solution for large values of
k. For smaller k’s, however, MPHFs provide an implementation with comparable memory
consumption.

Set-Min sketches are easy to implement and fast to build thanks to the same matrix
layout of Count-Min sketches. The only true complex operations that need extra attention
are insertions into each cell of the sketch. Luckily, overall space can be further reduced by
implementing one of the many optimizations introduced earlier: replacement of cell sets
with indices to involved sets or ignoring the most common count value if the set of possible
k-mers is known in advance. Count sketches provide a good trade-off between algorith-
mic complexity, space, construction/query times and errors, with Set-Min optimized for
medium-long term storage of counts. Finally, Set-Min sketch achieves better point-query
errors than both Count-Min and Max-Min sketches of comparable dimensions, thanks to
the distribution-aware dimensioning performed on the k-mer spectrum.

Another application of Set-Min sketches, not explored here, is to act as a tempo-
rary representation while building more complex structures based on counters. Consider,
for example, the exact computation of weighted pairwise distances between all pairs of
genomes in a given set. Examples of such distances are the Bray-Curtis similarity measure,
see e.g. [13], or Weighted Jaccard similarity estimation [85]. The most naive algorithm
is to first process each sequence independently, generating one count tables for each, and
then compare tables pair-wisely to produce the desired output. Instead of storing whole
tables, one can store multiple Set-Min sketches together with a presence-absence data
structure, such as a Bloom filter. By doing so, the weighted comparison computation is
reduced to a single pass through the presence-absence data structure with the counters of
a given k-mer retrieved on-demand from the Set-Min sketches of the datasets in which the
k-mer is found. Yet another possible application is sharing counter information between
different computational units in a distributed setting, where a server oversees multiple
less powerful machines. All nodes have access to the same genomic representation (say,

70

a set of contigs), but only the server can efficiently perform k-mer counting, while the
smaller machines have the task of processing incoming data based on the counts. In this
case, the server could send a Set-Min sketch to all its subordinates.

One further feature of Set-Min sketch is its mergeability from redundant maps. A
large map can be split into m sub-maps without the restriction of having disjoint sets
of keys. Even if some maps have redundant information, i.e. share common (key, value)
pairs, the Set-Min sketch built by cell-wise union of the m sketches will be equivalent
to the sketch built from the whole original map. Count-Min sketches do not have this
property, but instead they are mergeable when constituent maps should be "added up".
In case of redundancy, Count-Min will simply count each repeated item multiple times.
In this respect, Set-Min and Count-Min sketches may have complementary uses.

As introduced in Section 8.1, in this work we assumed that only k-mers present in the
dataset can be queried. This assumption allowed us to discard the largest value of the
spectrum corresponding to unique k-mers, thereby saving space. Set-Min sketches can
seamlessly work without this assumption, but the space required for storing k-mer counters
may not be competitive to other solutions. An alternative could be to build an additional
data structure, such as a Bloom filter, representing presence-absence information for the
set of k-mers having the largest count. This allows the discrimination between k-mers
absent in the dataset from those present but non-represented in the sketch.

Another scenario occurs when working with multiple datasets of very high similarity,
such as large collections of bacterial strains [195]. In this case, it might be beneficial to
build a Bloom filter for the k-mers present in the union of the datasets, and maintain
multiple Set-Min sketches to represent k-mer counts in each dataset.

Note that Set-Min sketches can also be helpful for long-term storage and transmission
of the k-mer composition of a dataset augmented with count information. The k-mers
of the dataset can be reassembled into simplitigs [29] with a Set-Min sketch storing the
(approximated) frequencies. The full count table can be restored from the simplitigs and
the sketch.

71

Part III

Space-efficient representation of
genomic k-mer count tables

72

Chapter 10

Context and motivation

10.1 Problem statement
The previously introduced Set-Min sketching technique allows for efficient storage of very
skewed distributions of k-mer counts. However, in some applications even small errors
might be undesirable. For example, it could be useful to separate unique k-mers from
the others in order to find unambiguous seeds or correct reads [121]. Finding unique
k-mers exactly with Set-Min sketches is not possible, since errors primarily come from
mixing together the most common frequencies which, in practice, are usually the lowest
ones [44]. More generally, information about k-mer counts is increasingly used in other
applications too [193, 163, 100, 132, 95, 96, 143], which can benefit from (exact) space-
efficient solutions. Furthermore, assigning to each k-mer its frequency in a dataset is just
one particular application of mapping k-mers to numerical values. To this end, mapping
k-mers to indices of an array is an effective solution which makes possible any type of
annotation.

Minimal Perfect Hash Functions (MPHFs for short) implement such an approach [144,
214, 57] and are already extensively applied as building blocks in bioinformatics solutions
[122, 215]. Having two independent data structures allows for more aggressive space
optimizations. For example, the original sequence dataset can be used as the primary
source of k-mers while a random-access data structure will then allow retrieving their
counts efficiently. A MPHF bijectively maps each item from a set S to an index in the
range [0, |S| − 1]. Any additional information can then be stored in an array indexed
by the values returned by the MPHF. The idea works well as long as the array stores a
number of distinct elements close to |S|, but it can be suboptimal for count values non-
uniformly distributed, which is the case for k-mer counts. Because of this, the multiset of
k-mer counts will typically have a fairly low empirical zero-order entropy, and it could be
effectively compressed to save further space. However, standard compression algorithms
do not maintain random access to the compressed contents limiting this solution to be
a long-term storage option only. Furthermore, MPHFs themselves encompass a non-
negligible space overhead which must be added to the space of the array storing the
counters. In case of BBHash [122] this surplus is around 3 bits/key, whereas the theoretical
minimum is 1.44.

An alternative to MPHFs are the so-called Static Functions [11, 67] which encode val-
ues together with their hash function into a single structure. In particular, Compressed
Static Functions (CSFs), as their name suggests, are Static Functions whose space ap-
proaches the number of bits defined by the empirical entropy of the stored values. This
feature makes them particularly useful for representing different k-mer annotations, such
as counts or presence information across sequences of a given sample [132, 95, 96, 143].
Both MPHFs and CSFs do not deal with k-mers themselves (as it was the case for sketch-

73

ing), and require appropriate additional structures in order to answer membership queries.
This is not restrictive, as having different, specialized methods allows for greater flexibility,
otherwise unattainable in a monolithic setting.

Further memory reductions are still possible despite the advantage of CSFs over
MPHFs for skewed input count distributions if k-mer similarity is taken into account.
Recent works [132] have suggested that similar k-mers often share similar count values.
In fully assembled genomes, for example, repetitive k-mers are often the result of long du-
plications. All k-mers involved in such events are thus more likely to have increased copy
numbers which end-up clustered together. Hence, for k big enough, Locality-Sensitive
Hashing based on k-mer similarity is also able to cluster together similar counts.

The following chapters focus on the development of novel techniques based on Com-
pressed Static Functions as better representations of k-mer counts. Compared to Set-Min
sketch, our new methods are targeted to exact count storage with optional extension to
the approximate case. Like before, we do not explicitly take into account k-mers, limiting
our structures to be collision-free only on the set they were built for. Our contributions
can be summarized as the following:

1. An extended CSF implementation achieving smaller memory than current solutions
for very skewed distributions (Section 11.2.1).

2. The first algorithm combining item 1 with minimizer-based bucketing of weights
(Section 11.2.3).

3. An alternative version of item 2.

We report our analysis and results in Section 11.3.

10.2 Related work
Despite ongoing efforts to reduce overall space usage [149, 189] of classic k-mer counters
[135, 165, 101, 181] they remain tailored toward dynamic representations of count tables
and are ill-suited as long-term storage options due to the computational overhead needed
to support updates. Further optimizations become possible if count tables are considered
to be static [133]. Under this hypothesis, fully queryable static count tables can be
equivalently seen as a combination of three different components:

1. A presence/absence data structure telling whether k-mers are in the table or not.

2. A map data structure mapping each k-mer to its frequency.

3. An efficient representation for count values.

Such framework is the foundation of algorithms representing k-mer counts across mul-
tiple datasets such as [132, 98]. Presence/absence information can be retrieved using
variations of de Bruijn graphs, but other methods are possible, e.g. by using simplitigs
(spectrum-preserving string sets) [29, 162] or similar methods [161, 179] combined with
indexing for quickly locating the positions of k-mers. If exact queries are not needed,
Approximate Membership Queries (AMQ) data structures can be used instead [17, 59].

Techniques for representing counts coming from multiple datasets fall short when ap-
plied to single k-mer sets, since it is an application they were not designed for. We hereby
focus on developing efficient count representations under the aforementioned framework
for single datasets only. Similarly to what we did for Set-Min sketch we limit ourselves
to retrieve counts of k-mers that are known to be present in the dataset, leaving pres-
ence/absence queries to other data structures.

74

10.3 Contributions
The following chapters present new data structures based on Compressed Static Functions
for storing genomic k-mer count tables using the smallest possible space. Section 11.2.1
demonstrates how to extend the only practical implementation of CSFs [67] with Bloom
filters (see Section 5.1) in order to break its intrinsic lower-bound of 1 bit per element
allowing to efficiently represent multisets of counts of very low entropy. The resulting
Bloom-enhanced CSFs (BCSFs) are then used as building blocks in Chapter 11 in com-
bination with minimizer bucketing to obtain two additional exact algorithms: AMB and
FIL. Both algorithms take advantage of the fact that similar k-mers tend to have identi-
cal (or similar) counts [132] by bucketing together count values of k-mers with the same
minimizer. A similar idea is used by some k-mer counting algorithms [165, 101, 109] with
the difference that in our case buckets contain counts rather than the k-mers themselves.
By choosing a representative value for each bucket, we obtain a “bucket table” that we
encode using Bloom-enhanced CSF.

Results for both AMB and FIL are reported in Section 11.3 demonstrating their utility
for both low and high entropy datasets. Space and time comparisons clearly show how
the proposed methods are able to represent count tables efficiently, while still being able
to query the resulting data structures. In particular, for large enough k (and large enough
minimizers lengths), we are able to compress count values in less space than their empirical
entropy while retaining fast query times. To the best of our knowledge, this is the first
implementation proposing such a compact representation. In addition to these exact
representations, the natural extension of our algorithm AMB to the approximate case
is presented in Section 11.2.6 with additional space savings obtained by allowing a pre-
defined absolute error over queries.

We collectively call our implementations “Locom” which can be found at https:
//github.com/yhhshb/locom.

75

https://github.com/yhhshb/locom
https://github.com/yhhshb/locom

Chapter 11

Locom: minimizers meet
Compressed Static Functions

Unlike Set-Min sketches (Chapter II), Locom is able to provide exact representations, and
it is capable of dealing with counts not necessarily power-law distributed. The wider ap-
plicability range stems from the smart combination of minimizer bucketing, Bloom Filters
and Compressed Static Functions producing, in some cases, compressed representations
smaller than the empirical entropy of the counts they are storing. The intuition behind
our methods is presented in Section 11.1. We follow by presenting two different methods
for compressing counts, AMB in Section 11.2.3 and FIL in Section 11.2.4. Finally, Section
11.3 presents our results.

11.1 Key algorithmic ideas
For ease of explanation, throughout the rest of this work dedicated to Locom, we will
consider k-mer count tables as associative arrays f , mapping a set of k-mers K, considered
static, to their counts, i.e. number of occurrences in a given dataset. As before, ∥f∥1
stands for the L1-norm of f , that is ∑

q∈K f(q).

11.1.1 Correlation of neighboring k-mer counts
Decomposing a sequence into its constituent k-mers is a required step in many bioinfor-
matics analyses. For appropriately long k’s, k-mers can be used for sequence similarity
computation replacing classical string-based approaches. Moreover, by storing k-mers
into fast data structures such as hash tables, algorithms that work on bags of words are
usually faster and easier to understand and to implement. Sometimes, however, k-mers
alone are not sufficient to capture the complexity of the original sequences. One example
of such situation are genomes with high numbers of duplications, which cannot be repre-
sented by simple sets. In this case, counting information nicely complements k-mers with
additional structural information about the original sequences. For example, k-mers with
very high copy numbers come, most of the time, from very low-complexity zones spread
throughout genomes, and are often removed from indexes by alignment algorithms. Thus,
k-mer counting can provide invaluable information about sequence structure.

As we will empirically demonstrate with our results, this relation between genomic
content and k-mer counts also weakly applies in the opposite direction. That is, similar
k-mers are likely to have similar counts. Possible sources of similarity are:

• Skewed distributions. All counts are similar because one value is more likely than
others (see Figure 11.1). For very high skews, k-mer similarity becomes less impor-
tant, since very different k-mers start to have the same count values.

76

• Repeats. Repeated blocks increase the counter of all their k-mers together as de-
picted in Figure 11.2.

• Mutations. Changing one base likely generates k unique neighboring k-mers (see
Figure 11.3).

A
1

A
1

T
1

C
1

C
1

C
1

A
1

A
1

G
1

A
1

A
1

A
1
ACCACGC

7-mer

Figure 11.1: High correlation between neighboring k-mer counts can be due to their high
skewed distribution without any particular relation between k-mers. In the reported case
k = 7 with all k-mers unique.

G
1

G
1

A
1

T
3

G
3

G
2

T
3

G
3

G
2

T
3

G
3

G
1

T
1

C
1

A
1

T
1
TTA

3-mer

Figure 11.2: Example of count correlation due to repetitions. Substring TGG repeats
3 times generating a block of relatively high counts very similar to one another. Non-
consecutive duplications have the same effect.

T
20

G
20

A
20

A
20

T
20

C
19

A
19

T
19

G
19

A
19

G
19

C
19

A
20

T
20

A
20

G
20
G C G A

4-mer

T
20

G
20

A
20

A
20

T
20

C
1

A
1

T
1

T
1

A
1

G
1

C
1

A
20

T
20

A
20

G
20
G C G A

Figure 11.3: Example showing the effect of a single mutation when coverage is > 1. The
first sequence is the original one, of coverage 20. One of its 20 copies contain a single
mutated letter (highlighted in red) which generates a block of 4 additional unique 4-
mers in the mutated sequence and a block of 4 4-mers of frequency 19 from the original
sequence. Since the affected count values in both sequences are somehow linked to some
particular k-mers, LSH techniques looking at k-mer composition are a viable option to
bucket counts together. However, collisions between different count values are possible,
and should be dealt with.

The above examples only refer to counting fully assembled genomes, but the property
holds true for other types of datasets too. For example, in [132] counts obtained from
transcriptomes are compressed by replacing blocks of similar values by their average,
without detrimental effects on downstream analysis.

11.1.2 Minimizers as a context-aware bucketing technique of k-
mers

Minimizers are a popular technique used in different applications involving k-mer analysis.
The use of minimizers for biosequence analysis goes back to [167], whereas a similar
concept, named winnowing, was earlier applied in [178] to document search. However,

77

GCATCGACTAGCA
GCAT

CATC
ATCG

TCGA
CGAC

GACT
ACTA

CTAG
TAGC

AGCA

392
216
98
420
584
161
394
522
156
758

12-mer

4-mer

h(·)

Figure 11.4: Example of minimizers used as k-mer fingerprints. The same minimizer is
likely to be shared by multiple neighboring k-mers. In the example above k = 12 and
m = 4. Column h(·) indicate the hash value of each substring of length 4. The minimizer
of two successive 12-mers is highlighted in red.

both papers define minimizers over windows of w consecutive k-mers with a minimizer
being the minimum k-mer of a window. This original definition of minimizers have been
extensively applied to various data-intensive sequence analysis problems in bioinformatics,
such as metagenomics (Kraken [207]) or minimizing cache misses in k-mer counting
(KMC [101]), or mapping and assembling long single-molecule reads [113, 114]. Space
reduction comes from the fact that successive windows often share the same minimum
with minimizer indexes subsets of the k-mer sets they originate from. Recently, there
has been a series of works on both theoretical and practical aspects of designing efficient
minimizers for aligning sequences, see e.g. [222, 54].

Here, instead, we define minimizers following the definition given in [165, 101]. Given
a k-mer q of length k, its minimizer of length m, with m ≤ k, is the smallest substring
of q of length m w.r.t. some order defined on m-mers. Standard practice is to use a
non-cryptographic hash function to hash m-mers and take the one with the minimum
hash value as minimizer. Note that the lexicographic ordering has been shown to have
poor statistical properties [167]. The choice of hash function is not important as long
as it has good statistical guarantees (randomness and uniformity). The guiding idea is
that a minimizer can be considered as a “footprint” (hash value) of a corresponding k-
mer so that similar (e.g. neighboring in the genome) k-mers are likely to have the same
minimizer, see Figure 11.4. In this case, minimizers can be seen as a specific instance of
locality-sensitive hashing, in particular of MinHash sketching [26].

The same algorithm to find “windowed” minimizers can be reused, without modifi-
cations, to bucket k-mers, by simply setting window size equal to k and minimizer size
equal to m, whereas the original minimizer definition targeted sampling.

11.2 Adapting Compressed Static Functions to k-mer
count tables

11.2.1 Bloom-enhanced Compressed Static Functions
As mentioned earlier (Section 6.2.2), the Compressed Static Functions (CSF) of [67] do
not properly deal with datasets generated by low-entropy distributions (when entropy is
smaller than 1). This case occurs when datasets have a dominant value representing a
large fraction (say, more than a half) of all values. This is typically the case with genomic

78

k-mer count data, and whole-genome data in particular, where a very large fraction of
k-mers occur just once. For example, in E.Coli genomes (≈5.5Mbp), about 97% of all
distinct 15-mers occur once, whereas only the remaining 3% occur twice or more. For
such datasets, the method of [67] does not approximate well the empirical entropy, as it
cannot achieve less than 1 bit per key. Our technique to circumvent this deficiency and
compress close to the empirical entropy is to augment CSFs of [67] with Bloom filters
(Section 5.1.5). We start by building a Bloom filter for all k-mers whose value is not the
dominant one, and then we construct a CSF on all positives (i.e. true and false positives)
of this filter. At query time, we first check the query k-mer against the Bloom filter and,
if the answer is positive, recover its value from the CSF.

Formally, let K0 be the k-mers with the most common frequency. Let |K0| = α|K|.
Assume that our Bloom filter implementation takes CBF log 1

ε
bits per key and our CSF

implementation takes CCSF bits per key. For the purpose of explanation, we will specify
both CBF and CCSF at the end of this section.

We store keys K \K0 in a Bloom filter B and build a CSF for (K \K0) ∪ FPB(K0).
The total space is

CBF (1− α)|K| log 1
ε

+ CCSF |K|((1− α) + εα). (11.1)

The Bloom filter enables space-saving only if α is sufficiently large. To decide if we
need a Bloom filter, we have to verify if the inequality

CBF (1− α)|K| log 1
ε

+ CCSF |K|((1− α) + εα) < CCSF |K|. (11.2)

holds for some ε < 1. Note again that CCSF on the left and right sides are not exactly the
same in reality, however assuming them the same is not reductive because of specificities
of the CSF implementation we use. We will elaborate further on this later on. Then
(11.2) rewrites to

CBF

CCSF

1− α

α
log 1

ε
+ ε < 1. (11.3)

Using simple calculus, we obtain that if CBF

CCSF

1−α
α

> ln 2 (that is, CBF

CCSF

1−α
α

log e > 1), then
(11.3) never holds for 0 < ε < 1. The left-hand side of (11.3) reaches its minimum for

ε0 = CBF

CCSF

1− α

α
log e, (11.4)

and this minimum is smaller than 1 if ε0 < 1. We conclude that in order to decide if a
Bloom filter enables space-saving, we have to check the value ε0. If ε0 ≥ 1, we do not
need a Bloom filter, otherwise we need one with ε = ε0. This shows that a Bloom filter
is needed whenever

α >
CBF log e

CCSF + CBF log e
(11.5)

For CBF = CCSF , this gives α > 0.59.
In order to apply equation (11.4), we need estimates of CBF and CCSF , that is, es-

timates of the number of bits per element taken by our implementations of Bloom filter
and CSF. For CBF , we have CBF = 1.44 corresponding to the theoretical coefficient of
Bloom filters. On the other hand, we experimentally estimated CCSF associated with the
implementation we use as a function of the empirical entropy H0, giving:

CCSF =
0.22H2

0 + 0.18H0 + 1.16, if H0 < 2
1.1H0 + 0.2, otherwise.

(11.6)

79

In the following we use the term Bloom-enhanced Compressed Static Function, BCSF
for short, to speak about CSF possibly augmented by a prior Bloom filter, as described in
this section. Algorithm 2 summarizes the computation of the BCSF data structure while
Figure 11.5 graphically depicts its main steps.

11.2.2 Minimizer bucketing
A key idea to reduce the computational burden of counting k-mers, is to use minimizers
to bucket k-mers and split the counting process across multiple tables (cf e.g. [101]).
Here we use the same principle to bucket count values instead of k-mers themselves. Let
Mm(K) = {µm(q) | q ∈ K} be the set of minimizers of all k-mers of K of a given length
m < k (µm(q) is the function returning the minimizer of k-mer q). We map the input
set K onto the (smaller) set Mm(K). To each minimizer s ∈ Mm(K), corresponds the
bucket {f(q) | q ∈ K, µm(q) = s}. We call a minimizer and the corresponding bucket
ambiguous if this set contains more than one value. The guiding idea is to replace f by
a mapping g of Mm(K) to N. Querying value f(q) for a k-mer q ∈ K will reduce to first
querying g(µm(q)) and then possibly “correcting” the retrieved value. In other words, for
each bucket, we replace its set of counts with one representative value, and we split the
query into two operations: retrieving the representative from the buckets and correcting
to reconstruct the original value. The rationale is that k-mers having the same minimizer
tend to have the same count allowing multiple values to be dealt with by a single bucket.

Obviously, m should be large enough such that similar k-mers tend to bucket together.
Similarly to Section 8.1.1, we use m > log4(L), where L is the size of the reference
genome associated to the input data. The same rule applies to k following the definition
of minimizers for which k >= m. How much larger k should be compared to m depends
on how much local counts are in practice. For discriminative values of m (m≫ log4(L))
and expected high locality, choosing k ≫ m leads to better overall compression when
bucketing is involved.

We consider two implementations which differ on how the representatives are chosen
and how corrections are applied.

11.2.3 Lazy collision resolution: AMB
The first implementation is named AMB (from AMBiguity). For non-ambiguous mini-
mizers u, AMB defines g(u) to be the unique value of the bucket. For ambiguous mini-
mizers v, we set g(v) = 0, where 0 is viewed as a special value marking ambiguous buckets
(k-mers with count 0 are not present in the input). This has the disadvantage of pro-
viding no information about the values of ambiguous buckets, and also of making g less
compressible (because of an additional value). On the other hand, this has the advantage
of distinguishing between ambiguous and non-ambiguous buckets and allows the query
to immediately return the answer for k-mers hashing to non-ambiguous buckets. As a
consequence, unambiguous k-mers are not propagated further, and if g(µm(q)) ̸= 0 it can
be immediately returned as f(q). We then have to store mapping f restricted only to
k-mers from ambiguous buckets, which we denote f̃ . Both mappings g and f̃ are stored
using BCSFs. A graphical representation of the above procedure is reported in Figure
11.6.

11.2.4 Correcting the effects of collisions: FIL
The second implementation is named FIL (from FILtration) and is shown in Algorithm 4.
Here, g(s) is defined to be the majority value among all values of its bucket, ties resolved

80

arbitrarily. In particular, if s is a non-ambiguous minimizer then g(s) is set to the unique
value of the bucket. In practice, computing the majority value may incur a computational
overhead as this requires storing bucket values until all values are known. An option to
cope with this, not explored further in this work, is to use the “approximate majority”
computed by the online Boyer-Moore majority algorithm [20]. We then store a “correcting
mapping” h : K → N defined by h(q) = f(q)− g(µm(q)). That is, we construct another
counting table h where each k-mer is associated to the correction factor h(q), which,
added to the representative g(s) results in the original count c. Both mappings g and h
are stored using BCSFs. The rationale for this scheme is that, due to the properties of
minimizers, h(q) is supposed to be often 0, which makes h well compressible using BCSF.
Note that because of the majority rule, 0 will always be the majority value of h (see Figure
11.7). Therefore, the Bloom filter of the BCSF storing h (if any) will hold k-mers q with
f(q) ̸= g(µm(q)) (i.e. h(q) ̸= 0). Then the BCSF will store h restricted to k-mers with
h(q) ̸= 0 together with a subset of k-mers (false positives of the Bloom filter) for which
h(q) = 0.

11.2.5 Cascading
An intermediate layer corresponding to a minimizer length m < k, introduced in Sec-
tion 11.2.2, can be viewed as a “filter” providing values for some k-mers and “propagat-
ing” the other k-mers to the next layer. Therefore, both implementations can be cascaded
into more than one layer. This construction is reminiscent of the BBHash algorithm [122]
or to cascading Bloom filters from [173].

For m1 < m2 < ...mℓ ≤ k, each layer i is then input some map fi−1 defined on a
subset of k-mers Ki−1 ⊆ K (f0 = f , K0 = K) and outputs another map fi defined on
a smaller subset Ki ⊆ Ki−1. Each layer stores a bucket table for minimizers Mmi

(K) =
{µmi

(q) | q ∈ Ki−1}. The specific definition of fi and Ki depends on the implementation.
The multi-layer scheme is particularly intuitive for the AMB implementation, where

each layer stores a unique value for non-ambiguous minimizers and a special value 0
otherwise. In this case, Ki consists of those k-mers of Ki−1 hashed to ambiguous buckets,
and fi is simply a restriction of f to those k-mers. Algorithm 3 shows a pseudocode
of multi-level AMB extended to the approximate case (see Section 11.2.6 below), while
Figure 11.8 depicting a graphical representation of the algorithm used for query. The
multi-layer version of the FIL scheme is shown in Algorithm 5.

11.2.6 Extension to approximate counts
In addition to cascading, AMB can also be easily extended to work as an approximation
algorithm. Consider, to this end, the layered bucketing procedure described in 11.2.5. In
the exact case, a bucket is marked as colliding whenever it contains two or more distinct
count values. In the approximate case, a collision is defined if a bucket contains a pair of
counts, ci, cj such that |ci − cj| > δ with δ a pre-defined maximum absolute error. With
this modification, the algorithm guarantees to output a value within the absolute error δ
from the true count.

We chose g(s) to be the minimum value in a bucket if the bucket is unambiguous. The
rationale of using minimum is the decreasing behavior of k-mer spectra which implies that
smaller counts are more frequent and therefore more likely to constitute the majority. In
order to detect collisions, it is then sufficient to only remember the maximum max(s)
and minimum min(s) values seen by each bucket and check if max(s) −min(s) > δ. If
that is the case, then the bucket is marked as colliding, otherwise min(s) is chosen as
representative (see Algorithm 3).

81

Data: A count table T
Result: A BCSF for T
Compute R, the spectrum of T ;
Let K0 ⊆ K be the set k-mers with the most common frequency in R;
Compute α = |K0|/|K|;
Compute ε by using equation 11.4;
if ε < 1 then

C = K \K0;
Initialize a Bloom Filter B of ⌈|C| log(e) log2(1

ε
)⌉ bits;

Insert C into B;
Compute E = FPB(K0);
S = C ∪ E;

else
S = K

end
Construct CSF for S;

Algorithm 2: BCSF construction

Data: Input count table T , M = m1 < m2 < ...mℓ ≤ k, δ
Result: One BCSF for each layer
i = 0;
Ti = T ;
foreach minimizer length m in M do

let L be a map from minimizers to pairs of values;
foreach key-value pair (q, c) in Ti do

let z be the minimizer of q;
if z is a key in L then

let (rmin, rmax) = L[z];
L[z] = (min(rmin, c), max(rmax, c));

else
L[z] = (c, c);

end
end
let B be a map from minimizers to integer values;
foreach minimizer z in L do

let (rmin, rmax) = L[z];
if rmax − rmin > δ then B[z] = 0 ;
else B[z] = rmin ;

end
Compress B by using BCSF;
Initialize Ti+1;
foreach key-value pair (q, c) in Ti do

let z be the minimizer of q;
if B[z] == 0 then

Ti+1[q] = c;
end

end
i = i + 1;

end
Algorithm 3: AMB multi-layer construction algorithm. Exact AMB can be obtained
by setting δ = 0.

82

AAA 7
AAT 5
ATC 2
TCT 2
CTT 1
TTC 3
TCA 2
CAC 3
ACG 1
CGG 3
GGT 3
GTG 5
TGT 5
GTA 2
TAA 1
ATG 1
TGG 3
GGC 3
GCC 1
CCC 3
CCA 4
ACT 2
CTC 4
TCC 4
CCT 1
TCG 2
GTT 2
TTT 1
TTG 2
TGC 1
GCG 2
CGT 2
GCT 1
CTG 1
GTC 1
TAT 1
ATA 1
TAC 1
ACA 1
CAA 2
CAG 2
AGA 1
GAA 1
ATT 2

7521 3 4
0

5

10

15

(1)

Bloom filter
(2)

GCC 1
TAC 1

(3)

CSF

(4)

(4)

Figure 11.5: Graphical representation of Algorithm 2. Construction starts with histogram
computation (1) in order to divide the given table into two sets K0 and K1 = K \ K0
(the latter highlighted as a gray area). A Bloom filter is then built over K1 (2) and false
positives from K0 are extracted (3) Finally, a CSF storing counters for both K1 and the
set of false positives is built (4) The final BCSF is the combination of the Bloom filter (if
any) and the CSF.

83

AAA 7
AAT 5
ATC 1
TCT 2
CTT 1
TTC 3
TCA 2
CAC 1
ACG 1
CGG 3
GGT 3
GTG 5
TGT 5
GTA 2
TAA 1
ATG 1
TGG 3
GGC 3
GCC 1
CCC 3
CCA 4
ACT 2
CTC 4
TCC 4
CCT 1
TCG 3
GTT 2
TTT 1
TTG 2
TGC 5
GCG 3
CGT 3
GCT 1
CTG 1
GTC 5
TAT 1
ATA 1
TAC 1
ACA 1
CAA 2
CAG 2
AGA 1
GAA 1
ATT 2

7 5 1 2 1
2 1 1 1
2 2 4 1 1
1 3 2 1 2 2
2
3 1 1 1
3 3 3 3
5 5 1
2
1 3 4 4 1
2 2 2
1
2
1

(1)

AA 0
AT 0
CT 0
TT 0
TC 2
AC 0
GG 3
GT 0
TA 2
CC 0
CG 2
GC 1
AG 2
GA 1

(2)

AAA 7
AAT 5
ATC 2
TCT 2
CTT 1
TTC 3
CAC 3
ACG 1
GTG 5
TGT 5
TAA 1
ATG 1
GCC 1
CCC 3
CCA 4
ACT 2
CTC 4
TCC 4
CCT 1
GTT 2
TTT 1
TTG 2
GCT 1
CTG 1
GTC 1
TAT 1
ATA 1
TAC 1
ACA 1
CAA 2
GAA 1
ATT 2

(3)

BCSF
first layer

(4)

BCSF
last layer

(5)

Figure 11.6: Depiction of AMB’s construction algorithm for a table containing 3-mers,
minimizer length m = 2 and δ = 0. Counts are first bucketed using minimizers (1) Non-
ambiguous buckets are reduced to their single value while ambiguous buckets are marked
with the special value 0 (2) k-mers inside ambiguous buckets are then filtered (3) Both
the array of representatives and the filtered table are then stored using BCSFs (steps (4)
and (5)). Extension to the multi-layered case can be easily achieved by re-applying the
same procedure on the filtered table with a bigger m′ > m as long as m′ ≤ k.

84

AAA 7
AAT 5
ATC 2
TCT 2
CTT 1
TTC 3
TCA 2
CAC 3
ACG 1
CGG 3
GGT 3
GTG 5
TGT 5
GTA 2
TAA 1
ATG 1
TGG 3
GGC 3
GCC 1
CCC 3
CCA 4
ACT 2
CTC 4
TCC 4
CCT 1
TCG 2
GTT 2
TTT 1
TTG 2
TGC 1
GCG 2
CGT 2
GCT 1
CTG 1
GTC 1
TAT 1
ATA 1
TAC 1
ACA 1
CAA 2
CAG 2
AGA 1
GAA 1
ATT 2

7 5 1 2 1
2 1 1 1
2 2 4 1 1
1 3 2 1 2 2
2
3 1 1 1
3 3 3 3
5 5 1
2
1 3 4 4 1
2 2 2
1
2
1

(1)

AA 1
AT 1
CT 1
TT 2
TC 2
AC 1
GG 3
GT 5
TA 2
CC 1
CG 2
GC 1
AG 2
GA 1

(2)

AAA 6
AAT 4
ATC 1
TCT 1
CTT -1
TTC 1
TCA 0
CAC 2
ACG 0
CGG 0
GGT 0
GTG 0
TGT 0
GTA 0
TAA 0
ATG 0
TGG 0
GGC 0
GCC 0
CCC 2
CCA 3
ACT 1
CTC 3
TCC 3
CCT 0
TCG 0
GTT 0
TTT -1
TTG 0
TGC 0
GCG 0
CGT 0
GCT 0
CTG 0
GTC -4
TAT 0
ATA 0
TAC 0
ACA 0
CAA 1
CAG 0
AGA 0
GAA 0
ATT 0

(3)

BCSF
first layer

(4)

BCSF
last layer

(5)

Figure 11.7: Similarly to AMB the construction of FIL data structures starts by buck-
eting counts (1) However, this time representatives are chosen by majority rule (2) so
that the special value 0 is not required. The output table is obtained from the one in
input by performing differences between counters and their representatives (3) instead
of propagating ambiguous k-mers. The array of representatives and the new values are
stored using BCSFs (4) (5) Note that the updated count table contains a large number
of 0s, and it is thus more compressible than the original one.

85

Data: Input count table T , a minimizer length m0
Result: FIL compressed structure
let L be a map from minimizers to multisets of values;
foreach key-value pair (q, c) in T do

let z be the minimizer of q;
insert c into L[z];

end
let B be a map from minimizers to integer values;
foreach minimizer z in L do

let b be the multiset at L[z];
let r be the representative value of b chosen by majority rule;
B[z] = r;

end
Compress B by using BCSF;
Create output table O;
foreach key-value pair (q, c) in T do

let z be the minimizer of q;
O[q] = c−B[z];

end
Compress O by using BCSF;

Algorithm 4: FIL construction algorithm.

Query k-mer p

i = 1

Retrieve c from BCSFi using m = mi

v == 0

i = i + 1

return c

false

true

Figure 11.8: Multi-layered AMB queries. Thanks to the special value 0 each query stops
as soon as a suitable value is found. Increasing minimizer lengths are used to gradually
solve collisions in successive layers.

86

Data: Input count table T , M = m1 < m2 < ...mℓ ≤ k
Result: One BCSFs + Bloom filter for each layer
i = 0;
Ti = T ;
foreach minimizer length m in M do

Let L be a map from minimizers to multisets of values;
Let n = 0;
foreach key-value pair (q, c) in Ti do

Let z be the minimizer of q;
Insert c into L[z];
n = n + 1;

end
Let B be a map from minimizers to integer values;
foreach minimizer z in L do

Let b be the multiset at L[z];
Let r be the representative value of b chosen by majority rule;
B[z] = r;

end
Compress B by using BCSF;
Initialize Ti+1;
Let pq = 0;
foreach key-value pair (q, c) in Ti do

Let z be the minimizer of q;
if B[z] ̸= c then

Ti+1[q] = c−B[z];
pq = pq + 1;

end
end
Compute α = (n− pq)/n;
Let ϵ = (1− α)/α;
Initialize an empty Bloom Filter F of size 1.44 log2(1/ϵ);
Insert all elements of Ti+1 into F ;
foreach key-value pair (q, c) in Ti do

let z be the minimizer of q;
if B[z] == c and q is in F then

Ti+1[q] = c−B[z] ; //Add false positive of F to Ti+1,
c−B[z] = 0 by definition

end
end
i = i + 1;

end
Algorithm 5: FIL multi-layer construction algorithm.

87

11.3 Results

11.3.1 Datasets
Three datasets were used in this study:

1. The collection of fully assembled Escherichia Coli genomes from [213], from now on
referred to as “df”.

2. Escherichia Coli Sakai strain (NCBI accession number B000007) from the previous
collection [213] but from now on referred to as “Sakai” to highlight its stand-alone
usage.

3. Full reference genome of Caenorhabditis Elegans, strain Bristol N2 downloaded from
RefSeq (accession number GCF_000002985.6). We will refer to this dataset as
“Elegans”.

4. “SRR10211353” run of Illumina reads (10x coverage, Escherichia Coli) downloaded
from NCBI SRA (accession number SAMN12880992).

Unless stated otherwise, FIL and AMB were run on all possible combinations of two
and three minimizer lengths for k ∈ [13, 15, 18, 21] with only the best combinations re-
ported using the following naming convention:

• CSF: baseline CSF implementation from Sux4J [67].

• BCSF: extended CSF with Bloom filter from Section 11.2.1. It may get reduced to
a simple CSF if the Bloom filter is not useful.

• AMB m1 k: our first implementation, selecting each representative by minimum
and marking colliding buckets with a special value.

• AMB m1 m2 k: same as before but with an additional layer.

• FIL m1 k: our second implementation, saving into each bucket a majority-selected
representative and saving corrections into its second layer.

• FIL m1 m2 k: same as before but with an additional layer.

11.3.2 Implementation
All construction code is written in python, except for the CSF part which is handled by a
simple Java program using Sux4J [67]. A utility written in C using the code provided by
Sux4J for reading and querying its CSFs provides time measurements. We use xxHash 1

to define an ordering over minimizers.

11.3.3 Compression of skewed data
Figure 11.9 reports memory usage when compressing the Sakai dataset. Simple CSF use
more than 1 bit/k-mer, while Bloom-enhanced CSF (BCSF) is considerably more efficient,
reaching space closer to the entropy. For relatively small k’s (k = 13) AMB and FIL give
almost the same results as BCSF, that is, minimizer-based bucketing is not helpful. For
larger k’s, however, both AMB and FIL lead to significant space reductions, eventually
breaking the entropy barrier for larger values of k (k = 18, 21). This demonstrates that

1https://github.com/Cyan4973/xxHash

88

https://github.com/Cyan4973/xxHash

for larger k’s, minimizers provide an effective way of factoring the space of k-mers in such
a way that k-mers with equal counts tend to have the same minimizer.

More in detail, for larger k, the overwhelming majority of buckets are unambiguous
(e.g. more than 99% of them, for k = 18, m = 13). As a consequence, AMB is able to
“filter out” a very large number of k-mers with few buckets. Only a small set of k-mers,
corresponding to ambiguous buckets, are propagated to the next layer. This, combined
with the prevalence of one value due to the skewness of the count distribution, and the fact
of using minimizers with increasing lengths, leads to highly compressible bucket tables.
Altogether, this enables breaking the empirical entropy lower bound.

The situation is similar for FIL: its first layer is even better compressible than the
one of AMB, due to the absence of the additional special value which makes the table of
AMB slightly less compressible. On the other hand, the BCSF of the second layer table
of FIL turns out to take more space than that of AMB. This is because its Bloom filter
operates on the large set of all k-mers, which implies a very small value of ε to keep the
set of false positives under control, and as a consequence, a relatively large Bloom filter.
Overall, FIL turns out to yield a slightly larger space than AMB.

For small k’s, none of our methods beats the empirical entropy, with minimizers unable
to provide an efficient mean to factor the space of k-mers according to count values. On
the contrary, we observe that in this case applying a BCSF to the input table provides
the most efficient solution.

Since longer k-mers lead to more skewed data, and by extension, to smaller entropies,
both AMB and FIL better compress whole genome count tables for increasing ks. The El-
egans dataset (around 100 Mbp) tests this assumption. We randomly chose m1 = 18 and
m2 = 19 for both three-layer AMB and FIL (ignoring m2 for the two layered versions).
Figure 11.10 demonstrates that our algorithms are not limited to bacterial genomes. In-
stead, they are applicable in the general case as long as count tables are computed on
fully assembled data and k is large enough. Note that, under such a regime, larger values
of k only reduce the entropy of the data, leading to more succinct representations whereas
simple CSF could not go below 1.2 bits/k-mer.

11.3.4 Compression of higher entropy data
With very skewed data, collisions of k-mer counts may happen between unrelated k-mers
simply because one counter value strongly dominates the spectrum. In order to demon-
strate the utility of minimizers in a more general setting other than whole genome count
tables, we applied our methods to less skewed distributions. To this end, we compressed
the k-mer count tables when using dataset SRR10211353 whose results are presented in
Figure 11.12. As opposed to fully assembled genomes, entropy in this case remains well
above 1 even for larger values of k. Nonetheless, both AMB and FIL are able to produce
representations more compact than both simple CSFs and BCSFs for all k > 13, beating
the entropy lower bound.

Further proof of the ability of minimizer-based bucketing to boost compression of k-
mer count tables can be found in Figure 11.11. Here, we compressed the table produced
by counting the number of occurrences for each k-mer among the 29 E.Coli genomes of
dataset df (note that df is a mnemonic for “document frequency”). Note that entropy
does not decrease as rapidly as before with increasing k, despite counts bounded in the
range [1, 29].

The use of minimizers for larger k’s, proves to be beneficial again, with AMB and
FIL requiring much less space than the empirical entropy of the data. Again, when
k = 13, both AMB and FIL do not have an advantage over a simpler (B)CSF. For
even smaller k-mers (B)CSF remains the best option (see Figure 11.13). The seemingly

89

erroneous exceptions (BCSF taking more space than simple CSF) are explained by the
approximation carried out by formula (11.2) (assumption of equal values of CCSF in both
sides).

11.3.5 Approximate counts
In many applications, it is acceptable to tolerate a small absolute error in retrieved counts.
Figure 11.15 reports space usage when using the approximate version of AMB (δ > 0, see
section 11.2.6) on the Sakai dataset. Results for the exact algorithm (δ = 0) are reported
in Figure 11.14 for comparison.

In order to show how the approximate algorithm achieves better compression ratios, k
was chosen from [10, 11, 12, 13], a range of values which is particularly difficult for AMB
(or FIL) with δ = 0. Trying all possible minimizer combinations compatible with such
ks, the best results are obtained for very short minimizer lengths (between 1 and 5).
Building minimizer layers for such small values of m does not lead to better compression
than simple (B)CSFs, with Figure 11.14 showing no tangible differences between (B)CSFs
and AMB (or FIL). For these reasons, minimizer lengths in Figure 11.15 are equal to k−1
(and k−2) for every choice of k (e.g. if k = 10, layers will be 8, 9, 10 for three-layer AMB).
Using the same small lengths of the exact case would not allow meaningful bucketing of
counts values.

An interesting observation about the approximate case is that AMB with three layers
is substantially better than AMB with two layers only for k = 12 and k = 13. For k = 10
and k = 11 both versions give almost the same results.

11.3.6 Query speed
Figure 11.16 shows query time averaged over all distinct k-mers, in ns/k-mer. Simple
CSFs, not surprisingly, are the fastest method, with BCSF having a negligible effect on the
average query speed. On the other hand, bucketing has a tangible effect on performance,
with speed negatively affected by additional layers. For short k-mers, both FIL and AMB
are slower than the simple CSF by a factor equal to their number of layers.

The situation is different for larger k’s where AMB is only marginally slower than
a bare-bones CSF. This is because most queries are solved without accessing all layers
every time, thanks to unambiguous buckets. Two-layered FIL, on the other hand, gives
almost constant average query times across all test, since all queries have to access both
of its layers to reconstruct the exact count value. We did not perform tests for FIL with
3 layers because it will always be slower than the two layered version.

11.3.7 Technical observations
In all reported cases, good minimizer lengths for the first layer (m0) follow the rule:
m0 > ms = (log4|G| + 2) with |G|, the size in base pairs of the genome. Smaller m0, are
no longer capable of partitioning k-mers in a meaningful way. Furthermore, space tends to
first monotonically decrease to a minimum for increasing minimizer lengths, to increase
again once the optimal value is passed. It is therefore possible to find the minimum
by sequentially trying all possible minimizers greater than ms and stop as soon as the
compressed size starts to increase again.

If it is not possible to choose m0 > ms = (log4|G| + 2) because, e.g. k is already
too small, approximation might be a viable option even for relatively small δ. The only
caveat to pay attention to in this case is to check if a minimizer layer would be useful or
not. If yes, δ can be incremented without further adjustments compared to exact case.

90

If not, minimizer lengths for the bucketing layers should be chosen as big as possible to
allow meaningful bucketing of count values.

Our results also show how multiple layers have a marginal effect on final compression
sizes. In case of AMB, using three layers is always helpful, compared to the two-layer case.
Best results are usually achieved for combinations including the best minimizer length
obtained for the two-layer case. On the other hand, FIL with three layers seems to be
advantageous only for low entropy data, performing worse than its two-layer counterpart
when compressing document frequency tables and for small k’s.

91

13 15 18 21
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
bi

ts
 /

k-
m

er

0.
61

0.
24

0.
19

0.
18

1.
34

1.
23

1.
22

1.
22

0.
87

0.
34

0.
26

0.
25

0.
87

0.
26

0.
11

0.
08

0.
87

0.
26

0.
10

0.
07

0.
90

0.
29

0.
13

0.
10

0.
91

0.
29

0.
13

0.
10

H0
CSF
BCSF
AMB 2 layers
AMB 3 layers
FIL 2 layers
FIL 3 layers

Figure 11.9: Results for the Sakai dataset for big values of k. For presentation purposes,
H0 is represented as an additional red column in each subgroup.

24 28 32
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

bi
ts

 /
k-

m
er

0.
21

0.
19

0.
18

1.
24

1.
23

1.
23

0.
29

0.
26

0.
25

0.
14

0.
11

0.
100.

13

0.
11

0.
09

0.
20

0.
18

0.
160.

19

0.
16

0.
15

H0
CSF
BCSF
AMB 2 layers
AMB 3 layers
FIL 2 layers
FIL 3 layers

Figure 11.10: Results when compressing the reference genome of C.Elegans

92

13 15 18 21 24
k

0

1

2

3

4

bi
ts

 /
k-

m
er

3.
95

3.
58

3.
48

3.
41

3.
36

4.
43

4.
07

3.
97

3.
89

3.
82

4.
43

4.
13

4.
10

4.
06

4.
00

4.
43

3.
23

2.
25

1.
94

1.
84

4.
43

3.
15

2.
11

1.
80

1.
71

4.
43

3.
63

2.
59

2.
29

2.
18

4.
43

4.
13

2.
61

2.
29

2.
20

H0
CSF
BCSF
AMB 2 layers
AMB 3 layers
FIL 2 layers
FIL 3 layers

Figure 11.11: Compressed space usage for the high entropy df dataset.

13 15 18 21
k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

bi
ts

 /
k-

m
er

3.
47

3.
15

3.
06

3.
00

3.
92

3.
58

3.
47

3.
41

3.
92

3.
58

3.
47

3.
41

3.
83

2.
81

2.
22

2.
08

3.
83

2.
80

2.
16

1.
95

3.
92

3.
11

2.
32

2.
10

3.
92

3.
11

2.
31

2.
09

H0
CSF
BCSF
AMB 2 layers
AMB 3 layers
FIL 2 layers
FIL 3 layers

Figure 11.12: Compressed space usage for the high entropy SRR dataset.

93

10 11 12
k

0

1

2

3

4

5

bi
ts

 /
k-

m
er

2.
68

4.
46

4.
40

3.
07

5.
01

4.
94

3.
37

5.
01

4.
94

3.
28

5.
01

4.
94

3.
28

5.
01

4.
94

3.
46

5.
01

4.
94

3.
51

5.
16

4.
94

H0
CSF
BCSF
AMB 2 layers
AMB 3 layers
FIL 2 layers
FIL 3 layers

Figure 11.13: Compressed space usage for the low entropy df dataset.

10 11 12 13
k

0

1

2

3

4

bi
ts

 /
k-

m
er

3.
88

2.
27

1.
20

0.
61

4.
38

2.
61

1.
62

1.
34

4.
38

2.
68

1.
61

0.
87

4.
38

2.
67

1.
61

0.
87

4.
38

2.
67

1.
61

0.
87

H0
CSF
BCSF
AMB 2 layers
AMB 3 layers

Figure 11.14: Space usage for the Sakai dataset with small k when using AMB (FIL is
slightly worse and was omitted). Minimizer lengths vary between 1 and 5 indicating that
the best option is to use a simple (B)CSF.

94

10 11 12 13
k

0

1

2

3

4
bi

ts
 /

km
er

3.
88

2.
27

1.
20

0.
61

4.
38

2.
61

1.
62

1.
34

4.
42

2.
35

1.
04

0.
45

4.
16

1.
87

0.
69

0.
34

3.
83

1.
46

0.
52

0.
31

3.
44

1.
16

0.
44

0.
30

3.
08

0.
94

0.
40

0.
29

4.
45

2.
38

1.
01

0.
37

4.
18

1.
80

0.
55

0.
19

3.
83

1.
35

0.
32

0.
14

3.
44

0.
99

0.
20

0.
11

3.
02

0.
74

0.
14

0.
11

H0
CSF
AMB 2 layers, =1
AMB 2 layers, =2
AMB 2 layers, =3
AMB 2 layers, =4
AMB 2 layers, =5
AMB 3 layers, =1
AMB 3 layers, =2
AMB 3 layers, =3
AMB 3 layers, =4
AMB 3 layers, =5

Figure 11.15: Space usage when using the approximated version of AMB. Entropy (red
columns) and CSF (blue columns) are reported for comparison. Unlike Figure 11.14, AMB
is able to break the empirical entropy lower bound when small errors are acceptable.

10 11 12 13 15 18 21
k

0

100

200

300

400

500

600

700

Av
er

ag
e

lo
ok

up
 ti

m
e

(n
s/

k-
m

er
)

method
CSF
BCSF
AMB 2 layers
AMB 3 layers
FIL 2 layers

Figure 11.16: Average query time for AMB with 2 and 3 layers and FIL with 2 layers.

95

Chapter 12

Discussion

We introduced three data structures to represent compressed k-mer count tables.
BCSFs combine Compressed Static Functions, as implemented in Sux4J software

[67], with Bloom filters thus allowing for much better compression of skewed distributions
with empirical entropy smaller than 1. To the best of our knowledge, this was the first
time CSFs were used in a bioinformatics application. We provide a method to optimally
dimension BCSFs.

AMB and FIL pair BCSFs with a bucketing procedure where count values are mapped
into buckets according to k-mer’s minimizers. This locality-sensitive hashing scheme
allows to efficiently factor the space of counts, which leads to breaking the empirical
entropy lower bound for large enough k’s. Both algorithms use slightly different strategies
in decomposing the input table across minimizer layers:

• AMB tries to reduce space by representing counts of multiple k-mers at once. Col-
liding buckets containing multiple distinct values are marked with a special value
and all involved k-mers are propagated to the next layer. Since non-colliding k-mers
do not propagate further, each successive layer is expected to contain fewer k-mers
than its predecessor.

• FIL, on the other hand, is not limited by collisions in buckets since it is always
able to assign representatives to buckets by majority rule. The input table is then
altered to map each k-mer to the difference between its value and its representative.
Count values are then retrieved by adding representatives to these correction factors.
Memory reduction comes from the fact that, by construction, 0 is the expected most
common value in each layer, making them more compressible using BCSFs.

Our last contribution is an extension of AMB to the approximate case, gaining more
space at the expense of a small and user-definable absolute error on the retrieved counts.

We validated our algorithms on four different types of count tables, two fully assembled
genomes (E.Coli and C.Elegans) of different sizes, one dataset of E.Coli reads at 10x
coverage and one document frequency table of 29 different E.Coli genomes, for different
k-mer lengths. AMB and FIL have a clear advantage when minimizers are long enough to
bucket k-mers in a meaningful way, for both skewed and high entropy data. When it is not
possible to define a long-enough minimizer length, the advantage of using intermediate
minimizer layers vanishes, and simple CSF and its BCSF provide a better solution.

In all our experiments, the data structures produced by AMB are smaller than the
ones given by FIL. This is due to the bigger BCSF needed by FIL in order to store
the propagated k-mers after the bucketing procedure. Since there is no way for FIL to
distinguish between colliding and non-colliding k-mers, output tables contain all k-mers
in input. Despite the better compressibility of the set of corrections, the combined size
of the two BCSFs of FIL ends-up bigger than its AMB equivalent. Potential regimes

96

where FIL performs better than AMB are an interesting open question left for future
developments.

At query time, CSF and BCSF are the fastest methods requiring about 100ns on
average for a single query. For a fixed number of layers, AMB is faster than FIL in all
situations when minimizers are useful. FIL becomes faster than AMB only for those cases
when both algorithms achieve worse compression ratios than simple (B)CSF.

We consider this study to be the first step towards designing efficient representations
for k-mer count tables occurring in data-intensive bioinformatics applications. One possi-
ble future direction is compression of RNA-Seq experiments where counts may translate
expression levels of genes [215]. RNA-Seq counts usually follow negative binomial distri-
butions which, unlike power-laws are not strictly decreasing. For such reasons, we expect
methods presented in this section to be more general than simple Set-Min sketches. This
is because the main source of errors of Set-Min sketches are frequencies with similar num-
ber of k-mers. For example, Set-Min sketches can easily mix two different count values
ℓ1 and ℓ2 with |ℓ1 − ℓ2| > 1 if cℓ1 ≈ cℓ2 leading to bigger sketches. On the other hand,
since neighboring RNA-Seq counts are expected to be highly correlated (belonging to
areas similarly expressed) AMB and FIL are expected to work without any major hic-
cup. Metagenomics is another application where minimizers are expected to be beneficial,
since different species may be present with different abundances easily captured by k-mer
counts.

97

Part IV

Efficient reconciliation of genomic
datasets of high similarity

98

Chapter 13

Context and motivation

13.1 Problem statement
Despite being faster than their alignment-based counterparts, algorithms based on k-
mer sets are starting to struggle when applied to the large datasets produced nowadays
[131, 73, 97]. To deal with this issue, a considerable effort has been put into developing
optimized data structures, with succinct solutions [155, 97] and approximate membership
data structures [173, 73, 16, 21, 140] being two examples.

In recent years, sketching techniques have been gaining increasing attention thanks to
their capacity of drastically decreasing space usage. MinHash is probably the most well-
known representative of this family of algorithms. As already mentioned in Chapter 5,
MinHash comparisons of DNA sequence datasets were pioneered in Mash software [148]
and subsequently used in several other tools. With this approach, input datasets are
transformed into smaller “sketches” on which subsequent comparisons are performed. In
short, sequences are first fragmented into their constituent k-mers which are then hashed,
with each sketch storing only s minimum values, with s defined by the user. The fraction
of shared hashes between two sketches is an unbiased estimator of the Jaccard similarity
index [26]. A MinHash sketch can thus be viewed as a sample of the set of k-mers of the
sequence it represents. Given that s is much smaller than the genome length, working
with the sampled hashes leads to fast pairwise comparisons using small memory. However,
when two sequences are close and share most of their k-mers, MinHash sketches of small
size are not able to reliably estimate their degree of similarity since differences are likely
to be missed during sampling. Here, we show a combination of Invertible Bloom Lookup
Tables (a sketching technique initially conceived for the problem of set reconciliation)
and syncmer-based sampling is able to efficiently estimate the Jaccard index of similar
sequences.

13.2 Contributions
In Chapter 14, we propose an alternative approach to evaluate the difference in k-mer
composition of two related datasets. Our method relies on the Invertible Bloom Lookup
Table (IBLT) data structure by [69, 55] which is an extension of Bloom filters (see Sections
5.1.5 and 5.1.6), supporting deletions and, most importantly, enumeration (with high
probability) of stored items. One of the applications of IBLTs is reconciliation of two sets:
in a scenario considered in [69], a set A is stored in an IBLT which is then transmitted
to the holder of another set B. By screening B against the IBLT of A it is possible
to recover the items A \ B and B \ A, with high probability. This is done through the
so-called peeling procedure [50].

99

Inspired by ideas of [159] we make one step further, we recover A \ B and B \ A
from IBLTs of both A and B, rather than a single sketch and the whole other set. A
crucial property is that the size of these IBLTs is bounded in terms of the symmetric
difference size (A \ B) ∪ (B \ A) rather than the size of the original sets. This provides
a key to the efficiency of our solution when input sets are similar: even if input sets
are very big, their difference can be recovered using a data structure (sketch) whose size
is proportional to the size of said difference, and not to the size of the sets. Further,
the symmetric difference allows us to estimate the Jaccard similarity, using information
about input set sizes. Thus, whereas close datasets require larger MinHash sketches to be
properly compared, our method, on the contrary, requires smaller memory.

Another ingredient of our solution is k-mer sampling. Intuitively, since two adjacent
k-mers share k − 1 bases, the information stored in the set of all k-mers appears highly
redundant. One popular method of sampling k-mers from genomic sequences is based
on minimizers [167]. Under this technique, consecutive sampled k-mers are within a
bounded distance from each other and therefore no large portion of the sequence can
remain unsampled. Another favorable property is that similar regions are likely to yield
similar samples of minimizers. However, it has recently been shown that estimating
Jaccard similarity based on minimizer sampling leads to a bias [12]. Here we propose to
replace minimizers by syncmers [52]. Syncmers provide another way of k-mer sampling
which has certain advantages over minimizers. As opposed to minimizers, syncmers are
not context-dependent: for a k-mer to be a syncmer depends on the k-mer alone regardless
the context where it occurs, and, under standard randomness assumptions on involved
hash functions, all k-mers have equal chance to be syncmers. As a consequence, syncmer
sampling leads to an unbiased estimate of Jaccard similarity, as the fraction of syncmers
among shared k-mers (intersection) is expected to be the same as that among all k-mers
(union). We experimentally validate that this is, indeed, the case.

By combining syncmer sampling with IBLTs, we obtain a space-efficient method for
accurately estimating Jaccard similarity for similar datasets. For datasets of high sim-
ilarity, the proposed method is superior to the popular MinHash algorithm [148], both
in terms of memory and precision. We also propose an application of this technique to
retrieve k-mers that differ between two given datasets. Our method computes a super-
set of those k-mers with a limited number of spurious k-mers. In particular, under the
assumption that each k-mer occurs once, our method computes the exact set differences
between involved k-mer sets. We validate our algorithms on both simulated data and on
real datasets made of SARS-CoV-2 and Staphylococcus Pneumoniae genomes in Section
14.3.

Our implementation of IBLTs is available at https://github.com/yhhshb/km-peeler

100

https://github.com/yhhshb/km-peeler

Chapter 14

KM-peeler: Invertible Bloom
Lookup Tables for fast k-mer set
differences

The problem of retrieving symmetric set differences using small space has been exten-
sively studied in network applications under the name of “set reconciliation”. As the
name “reconciliation” suggests, distributed systems often have the need to synchronize
slightly divergent copies of the same set stored in different nodes. Instead of exchang-
ing whole sets, the optimal solution consists in exchanging only the unique items needed
to recreate perfect copies. However, in order to know the differences to be sent, whole
sets differences have to be computed first, nullifying the intuition of only exchanging the
minimum required information necessary for reconciliation.

Invertible Bloom Lookup Tables [55, 69] solve this problem by transforming sets into
compressed sketches. IBLTs are dimensioned depending on the number of expected differ-
ences between the involved sets. Nodes can thus exchange these small sketches, subtract
the elements of their own (uncompressed) set and retrieve the difference from the so-
updated resulting sketch. Note how Jaccard similarity can be reframed in terms of such
differences and set sizes, making IBLTs suitable sketches for it. In case of k-mer sets,
space can be further reduced by sampling k-mers before insertion into IBLTs.

In the next section (Section 14.1) we introduce the remaining building blocks of our
method not covered in Section 5.1. The method itself is introduced in Section 14.2, with
an experimental evaluation in Section 14.3.

14.1 Key algorithmic ideas

14.1.1 Random sampling
Random sampling for a given sampling rate 1/ν, where ν is assumed to be integer, and
a fixed random hash function h : Σk → [0..ν − 1] with good statistical properties is
performed by sampling (i.e. keeping) all k-mers q that satisfy h(q) = 0.

14.1.2 Minimizers
Unlike Locom which uses minimizers as a Locality Sensitive Hashing scheme for k-mers
(sections 11.1.2 and 11.2.2), here they are employed in their original role of sampling
technique [167] and [178]. Figure 14.1 presents this mode of operation. In this context,
minimizers are defined by a triplet of parameters (k, w, h), where k is the k-mer length,
w a window size, and h the function defining a k-mer order. Each window S[i, w + k− 1]

101

defines a minimizer which is the minimal k-mer among w k-mers occurring in S[i, w+k−1]
w.r.t. the order given by h. Two neighboring minimizers are thus separated by at most w
positions making it impossible to have large stretches of the original sequence not covered
by any minimizers.

Since two neighboring windows at positions i and i + 1 are likely to share their mini-
mizer, minimizers provide a way to sample k-mers from a sequence with bounded distance
between consecutive samples. An advantage of this sampling strategy is that similar se-
quences will likely have similar lists of minimizers, which is useful for mapping algorithms
[114, 91]. Under reasonable assumptions, the density of minimizers, i.e. the fraction of
sampled k-mers, is 2

w+1 [167, 52]. If minimizer positions in the original sequence are not
important, they can be discarded and the resulting k-mer multiset can be reduced to a
simple k-mer set.

GGATGGTGTCCTCATCTAATGATGTCGGTAAAGAGTCTAC
GGATGGTGTCCTCAT

GATGGTGTCCTCATC
ATGGTGTCCTCATCT

TGGTGTCCTCATCTA
GGTGTCCTCATCTAA

GTGTCCTCATCTAAT
TGTCCTCATCTAATG

GTCCTCATCTAATGA
TCCTCATCTAATGAT

CCTCATCTAATGATG
CTCATCTAATGATGT

TCATCTAATGATGTC
CATCTAATGATGTCG

ATCTAATGATGTCGG
TCTAATGATGTCGGT

CTAATGATGTCGGTA
TAATGATGTCGGTAA

AATGATGTCGGTAAA
ATGATGTCGGTAAAG

TGATGTCGGTAAAGA
GATGTCGGTAAAGAG

ATGTCGGTAAAGAGT
TGTCGGTAAAGAGTC

GTCGGTAAAGAGTCT
TCGGTAAAGAGTCTA

CGGTAAAGAGTCTAC

10
21
14
37
32
5
26
6
26
37
19
14
10
31
9
4
29
19
19
9
15
0
37
11
22
37

15-mer h(·)

Figure 14.1: Example of minimizers as a sampling technique with a sequence of length
40, k = 15, w = 8. Note how two consecutive minimizers (highlighted in red) are never
separated by more than w = 8 bases.

14.1.3 Syncmers
Minimizers are susceptible to mutations of any base of their window [52]. That is, a k-mer
may cease to be a minimizer if a modified base occurs not only inside this k-mer, but also
in its close neighborhood. Sampling with a higher density alleviates this problem, but it
reduces the advantages of the methods because more minimizers are selected. Methods
to generate minimizers with the best possible density exist [45, 54], but they are usually
offline algorithms, limiting their potential applications outside alignment.

Syncmers are a family of alternative methods to minimizers that do not suffer from
this issue [52]. Similarly to minimizers, syncmers are defined using a triplet of parameters

102

(k, z, h) where z < k is used to decompose each k-mer into its constituent z-mers and h
defines an order over them. A k-mer q is a syncmer (called closed syncmers in [52]) iff its
minimal z-mer occurs as a prefix (position i = 0) or as a suffix (position i = k − z + 1)
of q. Thus, a syncmer is defined by its sequence alone, regardless the context in which
it occurs. For this reason, syncmer sampling has been shown to be more resistant to
mutations thus improving the sensitivity of alignment algorithms [52].

Similar to minimizers, consecutive syncmers occur at bounded distance. More pre-
cisely, consecutive syncmers must overlap by at least z characters and therefore “pave”
the sequence without gaps (except for the beginning and end), as shown in Figure 14.2.
The fraction of syncmers among all k-mers is estimated to be 2

k−z+1 [52].

GGATGGTGTCCTCATCTAATGATGTCGGTAAAGAGTCTAC
TGTCCTCATCTAATG

GTCCTCATCTAATGA
ATGATGTCGGTAAAG

TGTCGGTAAAGAGTC
GTCGGTAAAGAGTCT

15-mer

Figure 14.2: Syncmers computed on the same sequence as Figure 14.1. k = 15 and z = 4.
The minimum z-mer of each syncmer is highlighted in red.

14.2 KM-peeler

14.2.1 Set reconciliation from two IBLTs
Invertible Bloom Lookup Tables from Section 5.1.6 can be used to achieve set reconcil-
iation between two sets A and B. In practice, this translates to recovering sets A \ B
and B \ A. Under a scenario described in [69], the holder of A stores it in an IBLT TA

which is then transmitted to the holder of B. Elements of B are then deleted from TA.
In the resulting IBLT, P -fields with TA[i].C = 1 correspond to elements of A \ B and
those with TA[i].C = −1 to B \A. The peeling process is applied to either of such fields.
Whenever TA[i].C = 1, we delete p = TA[i].P from TA on condition that he(p) = TA[i].H.
Similarly, whenever TA[i].C = −1, we add (XOR) p = TA[i].P to TA on condition that
he(p) = TA[i].H. The process lists all elements of both A \B and B \ A w.h.p.

Inspired by work [159], we modify the above scheme in order to recover the symmetric
difference between A and B from their respective IBLTs TA and TB, rather than from
the IBLT of one set and the whole other set. To do this, we define TA and TB to be of
the same size and to use the same hash functions. We then compute the difference of TA

and TB, denoted TA−B and defined through TA−B[i].C = TA[i].C − TB[i].C, TA−B[i].P =
TA[i].P ⊕ TB[i].P , and TA−B[i].H = TA[i].H ⊕ TB[i].H. Information about elements of
A ∩ B is “cancelled out” in TA−B, that is, TA−B holds elements of (A \ B) ∪ (B \ A).
Peeling then proceeds as usual, listing both A \ B and B \ A with the distinction made
possible by looking at the sign of C.

A remarkable property of this scheme is that it allows one to recover set differences
using a space proportional to the size of those differences regardless the size of the involved
sets. Indeed, for the peeling process to succeed w.h.p., it is sufficient that the size of TA−B

be O(n) where n = |(A \ B) ∪ (B \ A)| (see (5.2)). This is particularly suitable for the
bioinformatics framework where we are often dealing with highly similar datasets, such
as genomes of different individuals or closely related species. Other than that, adapting
IBLTs for sets of genomic sequences is as simple as allocating enough space inside the
IBLT buckets for their 2-bit representation.

103

14.2.2 Making buckets lighter
In the above scheme of IBLT difference, the H field becomes important as the case
TA−B[i].C = 1 (or TA−B[i].C = −1) can occur due to a spurious “cancelling out” of
distinct keys. However, to save space, we propose to get rid of the H field and replace
the “checksum” verification by another test: if TA−B[i].C = 1 (resp. TA−B[i].C = −1), we
check whether p = TA−B[i].P is a valid key by checking if hj(p) = i for one of j ∈ [1..r].
This allows us to save space at the price of additional verification time. This technique
works particularly well for large IBLTs, but it becomes less effective for small ones, as the
“false positive” probability is proportional to the size of the table.

14.2.3 Combining sampling and IBLTs for Jaccard similarity es-
timation

We now turn to our main goal: estimating Jaccard similarity of two k-mer sets using
IBLTs. The common approach uses MinHash sketching as described in [148] (see Sec-
tion 5.1.4). However, MinHash requires larger sketches to measure similarity of close
datasets. One possible idea could be to store MinHash sketches in IBLTs in hope to
use them for estimating Jaccard similarity through the IBLT difference scheme from the
previous section. This, however, runs into an obstacle due to the fact that applying (5.1)
requires knowledge of k-mers belonging to the sketch intersection, and not only to sketch
differences. Comparisons involving bottom-s sketches need to stop after s distinct (hash)
values have been processed. IBLTs do not allow this: knowing the symmetric difference
between two MinHash sketches does not allow to retrieve the fraction of shared hashes in
the union of size s. Thus, IBLTs are incompatible with bottom-s MinHash sketches, and
the original MinHash implementation by [26] is not competitive in terms of computational
resources since it requires s independent hash functions.

Rather than working with the entire sets of k-mers, we resort to sampling. It is known
that sampling minimizers incurs a bias in estimating Jaccard similarity [12]. Instead, we
propose to use syncmers, which don’t suffer from being context-dependent thus resulting
in an unbiased estimator of Jaccard similarity.

Our approach consists in storing sampled k-mers in IBLTs and apply the IBLT differ-
ence technique to recover set differences. Then, Jaccard similarity is estimated by

J(A, B) = |A| − |A \B|
|A|+ |B \ A|

= |B| − |B \ A|
|B|+ |A \B|

. (14.1)

Note that cardinalities |A| and |B| can be easily retrieved from respective IBLTs TA and
TB by summing all counter values and dividing by r.

14.2.4 IBLT dimensioning with syncmers
Dimensioning an IBLT holding syncmers requires estimating the expected number of
differences in the set difference of involved k-mer sets. Assuming that input datasets are
close genomic sequences of size L related by a mutation rate bounded by pm and that k is
sufficiently large so that k-mer occurrences are unique, we can estimate the set difference.
Each mutation results in 2k k-mers in the set difference (k k-mers on each side), and
therefore the size of set difference is estimated to be 2kpmL. Taking into account density

2
k−z+1 of syncmers (Section 14.1.3), we obtain the estimation

n = 4kLpm

k − z + 1 . (14.2)

104

14.2.5 Approximating k-mer set differences
The method of Section 14.2.3 allows estimating Jaccard similarity on k-mers by Jaccard
similarity on syncmers. Here we describe how we can extend these ideas in order to recover
all k-mers from K(S1) \K(S2) and K(S2) \K(S1), where S1, S2 are input datasets and
K(S) denotes the set of k-mers of a dataset S.

Note first that a straightforward way of doing this, through IBLTs of K(S1) and K(S2),
requires a considerable space because a single mutation generates a difference of k k-mers.
Using syncmers, we can “pack” k-mers into longer strings, compute the differences and
then recover k-mers from them. The set of recovered k-mers, however, will be a superset
of exact differences.

To achieve this, instead of storing syncmers, we store in IBLTs extended syncmers of
length 2k − z. Extended syncmers are obtained by extending each syncmer to the right
by k − z bases. Since successive syncmers overlap by at least z bases, this ensures that
each k-mer belongs to at least one extended syncmer.

By applying the IBLT difference technique (Section 14.2.3), we obtain the extended
syncmers that differ between the two datasets, from which we extract k-mers and discard
those shared between the two obtained sets. It may still happen that the sets we obtain
are supersets of exact differences, due to the fact that an extended syncmer can contain
a k-mer which belongs to another extended syncmer common to both datasets. However,
we state that for a sufficiently large k, the fraction of common k-mers in those sets will be
small enough, which we illustrate experimentally in Section 14.3.5. In the extreme case
where each k-mer occurs once, our method computes exact k-mer set differences.

14.2.6 IBLT for collections of MinHash sketches
Another application of IBLTs is the reconciliation of whole sequence databases by storing
whole MinHash sketches inside IBLTs. MinHash sketches are used as a proxy to detect
unique sequences in each dataset so that only them need to be synchronized. In partic-
ular, sequence reconciliation can be useful to synchronize multiple databases of reference
genomes used by targeted alignments. For example, in Metalign [107] metagenomes are
aligned to multiple references selected from a given database. Multiple copies of the same
database can be enriched by their users with new sequences that need to be shared to
maintain synchronization. On the other hand, having too many similar sequences to
choose from would negatively affect performances.

Transforming sequences into MinHash sketches is an elegant way to cluster them
together with sensitivity controlled by the MinHash parameter s. Multiple strains or
similar organism tend to have the same MinHash sketches for s small-enough. After
reducing the multiset of MinHash sketches to a simple set, IBLTs can provide further
compression and the ability to quickly retrieve differences.

We do not provide results for this kind of application, since it naturally follows from
the exactness of IBLT listing. The only difference compared to storing sequences is that
each bucket must allocate enough space for whole MinHash sketches.

14.3 Results
Our IBLT implementation is available at https://github.com/yhhshb/km-peeler.git.
Buckets do not store an explicit hash field, following the idea presented in Section 14.2.2.
Furthermore, we split the m buckets into r sub-tables following the implementation of [69].
Slice j is indexed by hash function hj(·). Each k-mer (syncmer) coming from simulated
sequences (sections 14.3.1 and 14.3.2) is stored as-is, without further processing. On

105

https://github.com/yhhshb/km-peeler.git

the other hand, experiments involving real-world sequences transform k-mers into their
canonical form before any other operation (MinHash sketching, sampling, insertion into
IBLTs).

C P

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

h1(·)

h2(·)

h3(·)

Figure 14.3: Unlike the IBLT presented in Figure 5.4, our implementation ignores hash
field H. Furthermore, tables are split into r independent slices following the analysis of
[69].

14.3.0.1 Datasets

The datasets used in this study are:

• covid: subsample of 50 SARS-CoV-2 genomes1. Sequence names are provided in
Table 16.1.

• spneu: subsample of 28 Streptococcus Pneumoniae genomes from [30] whose names
are reported in Table 16.2. The subsample has been chosen to contain very close
strains, with pairwise mutation rates between them not exceeding 0.0005.

14.3.1 Comparison of different sampling approaches
Random sampling, minimizers and syncmers have been compared by computing Jaccard
similarities between pairs of synthetic sequences. Each pair is constructed by first gener-
ating a uniform random sequence of length L and then mutating it through independent
substitutions. Points in Figures 14.4 are averages over T = 500 independent trials. For
fairness of comparison, parameters for uniform sampling, minimizers and syncmers have
been chosen to guarantee the same sampling rate 1/ν. We know that cs ≈ 2/(k − z + 1),
cm ≈ 2/(w + 1) and cns ≈ 1/ν are the densities of syncmers, minimizers and random
sampling, respectively. Thus, given parameters k and z, setting the minimizer window
length as w = k−z and choosing a sampling rate 1/ν = cs ensures about the same number
of sampled k-mers for all algorithms. As Figure 14.4 shows, syncmers do not have the
previously reported biased behavior of minimizers [12], but they are statistically similar
to random sampling. Nevertheless, we choose syncmer sampling as a way to reduce IBLT
memory usage in Section 14.3.3 in anticipation of future applications that might take
advantage of the bounded distance guarantee.

14.3.2 Space performance of IBLTs
In order to demonstrate the space efficiency of IBLTs in our framework, we compare
them against a solution based on KMC k-mer counting software [101]. KMC provides an

1https://www.ncbi.nlm.nih.gov/datasets/coronavirus/genomes/

106

https://www.ncbi.nlm.nih.gov/datasets/coronavirus/genomes/

efficient way for storing, manipulating and querying sets of k-mers. Unlike other counting
tools (Jellyfish [135] or DSK [165]), KMC allows easy sorting of its output which leads to
an efficient way to compute Jaccard similarity.

We compared memory taken by IBLTs vs. KMC databases for storing syncmers issued
from two similar sequences. For this, we applied the same procedure as in Section 14.3.1:
mutating a random sequence of length L with mutation probability pm. Sampled syncmers
from both sequences are stored respectively in IBLTs and KMC databases. Figure 14.5
reports average space taken by the two data structures. Each bar is the average over
T = 100 trials, except for case L = 10M for which T = 10. IBLTs were dimensioned (see
(5.2)) to guarantee peelability of all T sketches with high probability.

Figure 14.5a clearly demonstrates the advantage of IBLTs when the mutation rate is
small. For larger pm and long sequences, the number of differences reach a point where
exact data structures become preferable, as illustrated by Figure 14.5b for pm = 0.01 and
sequences of length 10M.

In our experiments, subtracting one IBLTs from another is dominated by the time
taken to load/save the sketches, and not by performing the actual difference. Even in more
complex scenarios, subtraction remains a very simple operation that can be performed
by accessing one bucket at a time in any given order. On the other hand, the amount of
time required by listing the content of an IBLT varies greatly and depends on the set of
items stored in it.

14.3.3 Accuracy of Jaccard similarity estimation from IBLTs of
syncmers

Figures 14.6 and 14.7 report comparisons of both IBLTs and MinHash sketches on covid
and spneu datasets respectively. Both plots show the average absolute error of Jaccard
estimate computed over all pairs of sequences of the respective dataset. Exact Jaccard
similarities computed over the full k-mer sets are used as ground truth. MinHash sketches
(line MinHash in the plots) were implemented using Mash [148]. All sketch sizes (in
bytes) are fixed beforehand with both MinHash sketches and IBLTs dimensioned accord-
ingly in order to fit the allocated memory. The number of bits allocated for payload field
P in our IBLT implementation is set to be the minimum multiple of 8 larger than or equal
to 2k. As Mash [148] uses 32- or 64-bit hashes, we used k = 15 in our experiments in
order to force both methods to use 32-bit representations.

In all experiments, IBLTs storing syncmers (line syncmers + IBLT) showed the best
precision. For covid genomes (Figure 14.6), full MinHash sketches become competitive for
larger sketch sizes. Unlike MinHash, the average error of IBLTs remains constant across
all reported cases because over-dimensioning only increases the probability of successful
listing. For the spneu dataset (Figure 14.7), MinHash errors are about twice those of
IBLTs across all allocated sketch sizes confirming that IBLTs are more memory-efficient.
The general conclusion is that if sequences to be compared are highly similar, IBLTs
storing syncmers are more efficient than MinHash sketches, with the latter being better
suited to quickly provide an overview over more diverging datasets.

14.3.4 Sampling syncmers for further space reductions

Since syncmer sampling rate (2
k−z+1) cannot be made arbitrarily small for a given k, we

also tested the effect of additional downstream sampling of syncmers, before inserting
them into IBLTs. To this end, Figure 14.8 reports a comparison of syncmers sampled
with different sampling rates 1/ν. We observe that downstream sampling of syncmers

107

comes at the cost of decreased precision for both datasets (Figure 14.8a and 14.8b), but
it might be useful to further reduce space.

The effect on IBLT space of further sampling syncmers has been explored on the covid
dataset with sampling rates 1/ν = 0.5, 0.25, 0.125, 0.0625. Results are shown in Figure
14.9. All pairwise sketch differences are guaranteed to be always peelable. Decreasing the
sampling rate leads to reduced sketch sizes since fewer items need to be inserted inside
IBLTs. However, starting at η = 8 sampling starts to be decreasingly effective, with
IBLTs that are not half the size of their predecessor. This phenomenon can be explained
by taking into account the suppression of hash field H explained in Section 14.2.2. As
a direct consequence of this choice, spurious counters arising from collisions are detected
with probability that depends on the number of buckets in the sketch. For large sampling
rates, IBLTs can be too small to successfully recover from collisions. The only available
solution in this case is to over dimension the sketch nullifying the advantages of sampling.
Thus, for very small input sets, it is advisable to use an IBLT implementation with explicit
hash field in its buckets.

14.3.5 Approximating k-mer set differences
We tested the method from Section 14.2.5 of approximating k-mer set differences on
both the covid dataset and on two random datasets. Each random dataset contains 50
sequences of length 30000 obtained by first generating a uniform random sequence which
is then mutated 49 times using a mutation probability pm.

Recall that the method of Section 14.2.5 allows one to compute a superset of the
symmetric difference (K(S1) \ K(S2)) ∪ (K(S2) \ K(S1)) of sets of k-mers occurring in
datasets S1 and S2. Here we measure the precision of this method, that is the number of
spurious k-mers found by the algorithm. Those are k-mers actually belonging to K(S1)∩
K(S2) but output by the algorithm as if they belong to (K(S1)\K(S2))∪(K(S2)\K(S1)).

Table 14.1 summarizes the experiments. Columns ‘diff’ and ‘err’ show the aver-
age/maximum cardinality of the true set difference and spurious k-mers, respectively,
over all pairs of sequences. In the case of random datasets, sequences were generated with
mutation probabilities pm = 0.01 and pm = 0.001.

covid random
pm = 0.001 pm = 0.01

diff err diff err diff err
average 325.29 11.03 1708.78 60.03 15342.81 357.57
max 661 31 2396 110 17047 486

Table 14.1: True size of symmetric difference of k-mer sets and its overestimate. For each
experiment, ‘diff’ is the average/maximum size of the true symmetric difference, and ‘err’
is the average/maximum number of spurious k-mers reported as being in the symmetric
difference. pm is the mutation probability used to generate sequences from a random one.

We observe that the number of spurious k-mers remains small, on average within about
3% of the true set difference size.

108

0.0 0.2 0.4 0.6 0.8 1.0
J

0.0

0.2

0.4

0.6

0.8

1.0

J

sampling
syncmers
minimizers

Figure 14.4: Minimizers present a non-negligible bias as opposed to syncmers and random
sampling which are unbiased (and overlap in the plot). Each measurement was repeated
500 times on random sequences of length L = 10K with k = 15, w = 11 (for minimizers)
and z = 4 (for syncmers). Sampling rate is given by 1/ν = 2/(k − z + 1) = 1/6.

109

1000 10000 100000 1000000 10000000
L

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
di

sk
 sp

ac
e

(B
)

1e7
method

IBLT
kmc

(a) pm = 0.001

1000 10000 100000 1000000 10000000
L

0.000

0.005

0.010

0.015

0.020

di
sk

 sp
ac

e
(G

B)

method
IBLT
kmc

(b) pm = 0.01

Figure 14.5: Space taken by IBLTs depends on the similarity between stored sets. For
very similar sequences (mutation rate pm = 0.001, Figure 14.5a), IBLTs are more efficient
than KMC. Their advantage appears reduced for increased pm and large sequences (Figure
14.5b).

2000 3000 4000 5000 6000 7000 8000 9000 10000
Allocated space (Bytes)

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

Av
er

ag
e

ab
so

lu
te

 e
rro

r

MinHash
syncmers + MinHash
syncmers + IBLT

Figure 14.6: Comparison between IBLTs and MinHash for computing pairwise Jaccard
on the covid dataset. The x-axis reports the amount of space allocated for each sketch
while the y-axis reports the average absolute error. k = 15 and z = 4 in all tests. Sketch
size for MinHash and table size for IBLTs are chosen to fit the allocated memory.

110

160000 180000 200000 220000 240000 260000 280000 300000
Allocated space (Bytes)

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040
Av

er
ag

e
ab

so
lu

te
 e

rro
r

MinHash
syncmers + MinHash
syncmers + IBLT

Figure 14.7: Comparison between IBLTs and MinHash for computing pairwise Jaccard
on the spneu dataset with the same setting as Figure 14.6.

1/1 1/2 1/4 1/8 1/16
1/

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Av
er

ag
e

ab
so

lu
te

 e
rro

r

(a) covid dataset

1/1 1/2 1/4 1/8 1/16
1/

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

Av
er

ag
e

ab
so

lu
te

 e
rro

r

(b) spneu dataset

Figure 14.8: Effect of sampling syncmers before IBLT insertion on the average absolute
error. 1/ν is the compression rate used for sampling syncmer sets before IBLT insertion.
ν = 1 means no sampling (full syncmer sets).

111

1/1 1/2 1/4 1/8 1/16
1/

0

500

1000

1500

2000

2500

Di
sk

 sp
ac

e
(B

yt
es

)

Figure 14.9: IBLT size when using syncmers (k = 15, z = 4) combined with sampling.
Additional sampling helps in reducing IBLT space at the cost of additional errors as
seen in Figure 14.8. However, not storing hash filed H imply diminishing returns for
compression ratios > 4 since recognizing spurious buckets becomes harder (as described
in Section 14.2.2).

112

Chapter 15

Discussion

We showed that whenever involved datasets are similar enough and their similarity can be
bounded a priori, IBLTs lead to a more space-efficient and, at the same time, more accu-
rate method for estimating Jaccard similarity of underlying k-mer sets. This is achieved
by combining IBLTs with syncmers as a means to sampling k-mers and further reduce the
space of our data structures. As opposed to minimizers, syncmers provide an unbiased
estimator of Jaccard index, which was confirmed in our experiments. Thus, IBLTs com-
bined with syncmers constitute a powerful alternative to MinHash sketching for estimating
Jaccard similarity of similar datasets.

Various bioinformatics fields where similar sequences are the norm can potentially
benefit from IBLTs. In pan-genomics, for example, IBLTs could not only provide a more
space-efficient similarity estimations between new sequences and references but also a
way to quickly find the involved differences. This is possible thanks to the exact nature
of successful listing operations. k-mers found in the symmetric difference can be used
as seeds to quickly find the divergent positions between sequences. This opens up new
possibilities as k-mers belonging to a dataset can be used to infer information about
genetic variation, specific mutation, etc. To this end, we extended our method to return
exact symmetric difference supersets of whole k-mer sets. We believe this method can be
extended to compute exact set differences with the help of additional space-efficient data
structures and plan to explore this in our future work.

Our ideas may have further useful applications, for example to reconciliation of datasets
located on remote computers, in which case IBLTs could avoid transmitting whole collec-
tions of strings. Another example is a selection of sufficiently diverse datasets avoiding
redundancy (see Section 14.2.6). Note finally that IBLTs may also act as filters for fil-
tering out dissimilar datasets: in this case, non-peelability of the difference IBLT is an
indicator of dissimilarity.

113

Chapter 16

Appendix

Datasets used in experiments

Table 16.1: Names of covid genomes used for Figure 14.6

BS001151.1 LR877722.1 LR883214.1 MT520216.1
MT706180.1 MT757082.1 MT800758.1 MT834020.1
MT970159.1 MT971010.1 MT973151.1 MW064390.1
MW064919.1 MW064981.1 MW153809.1 MW153954.1
MW154711.1 MW156712.1 MW184416.1 MW184648.1
MW190904.1 MW190957.1 MW191020.1 MW191146.1
MW206148.1 MW276931.1 MW321243.1 MW321430.1
MW593629.1 MW631874.1 MW669599.1 MW681303.1
MW681489.1 MW693959.1 MW696216.1 MW702101.1
MW708072.1 MW708184.1 MW708826.1 MW720341.1
MW733722.1 MW738615.1 MW749542.1 MW776764.1
MW820211.1 MW850083.1 MW863243.1 MW868532.1
MW868533.1 MW871079.1

Table 16.2: Names of S.Pneumoniae genomes used for Figure 14.7

BZ2I7.fa R34-3087.fa 007649.fa R34-3097.fa
4PYM0.fa JBYFY.fa T8Z8O.fa R34-3044.fa
O61U7.fa 81LMX.fa O0RHB.fa R34-3083.fa

R34-3025.fa WAMFH.fa O8I1E.fa R34-3164.fa
CCV1H.fa 0U64I.fa 6893Z.fa 1VDX8.fa

R34-3074.fa R34-3227.fa LS3OB.fa UTEDZ.fa
REAOU.fa R34-3229.fa 067094.fa 4K4C9.fa

114

Conclusion

In this thesis: i) we designed two memory-efficient representations of k-mer counts which
can be combined with third-party k-mer set representation to serve as more efficient
alternatives to k-mer count tables, and ii) we studied the problem of quickly computing
k-mer sets differences with applications to Jaccard similarity estimation.

The first problem was addressed in Part II and Part III.
Part II introduced Set-Min sketch, a novel sketching technique geared towards counts.

Inspired by Count-Min sketch we demonstrate how to take better advantage of the typical
skewed distribution of k-mer counts by replacing each counter with a set of elements.
By storing distinct count values in each cell, our sketch re-use multiple times the most
common elements for better memory efficiency. At query time, sets belonging to cells
associated to the query are intersected. If there are no collisions (multiple elements in
the intersection) the query returns the true value associated to the key, without errors.
When collisions do occur, Set-Min sketch is nevertheless able to limit errors by once again
taking advantage of the skewed distributions of k-mers. We make use of these insights in
the theoretical analysis of Set-Min sketch (Chapter 8) where we bound (in expectation)
the total cumulative error of our sketch and provide a practical dimensioning procedure.

We shifted our attention from sketching techniques to a combination of Locality Sensi-
tive Hashing and succinct data structures in Part III where we present Locom. Locality
Sensitive Hashing based on k-mer minimizers is a way to bucket similar counts together,
by taking advantage of the observation that similar or successive k-mers tend to appear
the same number of times. Compared to Set-Min sketch, whose bucketing is completely
random, Locom’s buckets are more likely to contain similar counts leading to better over-
all compression. Buckets are stored using Bloom-enhanced Compressed Static Functions
(BCSFs), our modified version of the only available implementation of Compressed Static
Functions available at the time of writing. Our enhancements remove the space lower-
bound of 1 bit/key making BCSFs more suitable for representing skewed distributions
than their predecessor. We present two variations of Locom: AMB and FIL, whose dif-
ference lies on how collisions are dealt with.

For the second problem we proposed a solution based on Invertible Bloom Lookup
Tables (IBLTs) in Part IV. Our method to retrieve the symmetric set difference of two sets
directly works with their IBLTs, without having to keep one set uncompressed. Further, we
show how syncmers are unbiased estimators of Jaccard similarity unlike minimizers. For
sequences of high similarity, the combination of these two results leads to a more memory
efficient sketching technique than MinHash. Finally, we show how a slight modification
of these ideas allows for efficient computation of supersets of exact k-mer set differences,
at the cost of small post-processing.

In conclusion, this work opens new perspectives in designing efficient data structures
and sketching techniques for representing counts associated to k-mers, as well as efficient
methods tailored to the ever-increasing number of similar genomes sequenced each year.
These objectives are achieved by taking advantage of the statistical characteristics of k-
mers in order to produce highly adapted algorithms specifically designed for this kind of
tasks.

115

Future work and perspectives

Various open problems and future directions appeared during the development of our
methods. We hereby provide some perspective and ideas for expansion.

• Frequency-aware phylogeny reconstruction. As briefly mentioned in Chapter
4, frequency-aware alignment-free methods do not seem to be better than purely
compositional ones in phylogeny reconstruction. The utility of k-mer frequencies
for inferring biological relations between species has been questioned in [120] with
experimental large scale benchmarks supporting this observation [224]. On the other
hand, works like [89] show how multiplicities are helpful during mapping, as they
allow the comparison of very repetitive regions. It is therefore of high interest to
better understand the relation between these two, seemingly opposing findings. A
preliminary question to this problem is how to use local, frequency-aware mappings
in the more general settings of phylogeny reconstruction.

• Further analysis of current count sketches under specific regimes. We
mentioned in Chapter 5.1.3 how Count-Min sketch [42] can achieve better error
guarantees if the distribution of counts follow a Zipf distribution (Section 5.1.2).
On the other hand, in Section 5.1.3 we mentioned the conservative update strategy
of Count-Min sketch which we use in Part II to modify Set-Min sketches into Max-
Mins. However, up until recently [64] no formal analysis of Count-Min sketch under
conservative updates existed. Future directions can thus consist in providing formal
analyses of useful modifications of already available sketching methods.

• Other weighted schemes for k-mer sets. While in this thesis we focused on
efficient representations of k-mer counts, other weighting schemes for k-mers can
be devised. An example of such alternative weightings was presented in Part III
where k-mers were associated to the number of datasets they appeared in (document
frequency). An obvious question is whether additional weighting schemes can benefit
from our solutions of Part II and Part III. Additionally, since not all weighting
schemes are guaranteed to be power-law distributed another interesting question
is the development of efficient representations of counts distributed arbitrarily. A
good direction toward this goal is to extend the idea of taking advantage of the high
similarity of neighboring k-mers as we or [154] already do.

• Additional Compressed Static Function implementations. The only avail-
able CSF implementation available today is the one of [67], used by our methods
in Part III. It is therefore desirable for alternative methods to appear in the near
future. A wider choice not only benefits programs (CSFs in Locom can be swapped
quite easily since they are used as black boxes), but also developers, who would be
able to choose the best CSF to their problem (note that [67] only provides a Java
implementation).

• Compressed multi-dataset count representations. All our count-aware meth-
ods focus on the representation of k-mer counts coming from one single dataset.

116

Nevertheless, representing k-mer multiplicities across multiple datasets is an inter-
esting problem as it can be viewed as the natural extension of our ideas. The
problem is not new by itself, with current solutions achieving succinct represen-
tations of counts by Run-Length-Encoding (RLE) [132] or using combinations of
efficient binary matrix implementations and de Bruijn graphs [98]. However, effec-
tive extension of CSFs to multiple k-mer multisets is still an open problem left for
further developments.

• Invertible Bloom Lookup Tables for multisets. Our IBLT implementation
presented in Part IV is limited to simple sets. Future work will be dedicated to
extension to multisets (that is sketching k-mer count tables). One interesting direc-
tion would be to merge IBLTs with Count-Min sketches in order to support peeling
of weights similarly to Counter Braids [126].

• IBLTs for seeding. Related to the previous idea is how to extend IBLTs to work
as fast methods to detect possible differences between two sequences. The current
state of our implementation require to scan the original sequences to find the exact
positions of the mismatches and possible false positives. A more efficient solution
would be to augment IBLTs to store k-mer positions. This case is hindered by the
need to deal with collisions resulting from the same k-mer appearing in different
locations.

• Other applications of IBLTs. Instead of extending the current implementation of
IBLTs to support other types of queries, further research directions can be discovered
by asking: are there other applications where our IBLTs can be useful? A possible
answer worth exploring is fast VCF file comparisons, especially between sets of SNPs
(Single Nucleotide Polymorphisms).

117

118

Bibliography

[1] Omar Ahmed, Massimiliano Rossi, Sam Kovaka, Michael C. Schatz, Travis Gagie,
Christina Boucher, and Ben Langmead. Pan-genomic matching statistics for tar-
geted nanopore sequencing. iScience, 24(6):102696, June 2021.

[2] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsifica-
tion, spanners, and subgraphs. In Proceedings of the 31st symposium on Principles
of Database Systems - PODS ’12, page 5, Scottsdale, Arizona, USA, 2012. ACM
Press.

[3] Stephen F. Altschul. Amino acid substitution matrices from an information theoretic
perspective. Journal of Molecular Biology, 219(3):555–565, June 1991.

[4] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J.
Lipman. Basic local alignment search tool. Journal of Molecular Biology,
215(3):403–410, October 1990.

[5] Sasha K. Ames, David A. Hysom, Shea N. Gardner, G. Scott Lloyd, Maya B.
Gokhale, and Jonathan E. Allen. Scalable metagenomic taxonomy classification
using a reference genome database. Bioinformatics, 29(18):2253–2260, September
2013.

[6] Sepehr Assadi, Sanjeev Khanna, and Yang Li. Tight bounds for single-pass stream-
ing complexity of the set cover problem. In Proceedings of the forty-eighth annual
ACM symposium on Theory of Computing, pages 698–711, Cambridge MA USA,
June 2016. ACM.

[7] Daniel N. Baker and Ben Langmead. Dashing: fast and accurate genomic distances
with HyperLogLog. Genome Biology, 20(1):265, December 2019.

[8] Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A. Gurevich, Mikhail
Dvorkin, Alexander S. Kulikov, Valery M. Lesin, Sergey I. Nikolenko, Son Pham,
Andrey D. Prjibelski, Alexey V. Pyshkin, Alexander V. Sirotkin, Nikolay Vyahhi,
Glenn Tesler, Max A. Alekseyev, and Pavel A. Pevzner. SPAdes: a new genome as-
sembly algorithm and its applications to single-cell sequencing. Journal of Computa-
tional Biology: A Journal of Computational Molecular Cell Biology, 19(5):455–477,
May 2012.

[9] Yuwei Bao, Jack Wadden, John R. Erb-Downward, Piyush Ranjan, Weichen Zhou,
Torrin L. McDonald, Ryan E. Mills, Alan P. Boyle, Robert P. Dickson, David
Blaauw, and Joshua D. Welch. SquiggleNet: real-time, direct classification of
nanopore signals. Genome Biology, 22(1):298, October 2021.

[10] Ran Ben Basat, Gil Einziger, Michael Mitzenmacher, and Shay Vargaftik. Faster
and More Accurate Measurement through Additive-Error Counters. In IEEE IN-
FOCOM 2020 - IEEE Conference on Computer Communications, pages 1251–1260,
Toronto, ON, Canada, July 2020. IEEE.

119

[11] Djamal Belazzougui and Rossano Venturini. Compressed static functions with ap-
plications. In Proceedings of the twenty-fourth annual ACM-SIAM symposium on
Discrete algorithms, SODA ’13, pages 229–240, New Orleans, Louisiana, January
2013. Society for Industrial and Applied Mathematics.

[12] Mahdi Belbasi, Antonio Blanca, Robert S. Harris, David Koslicki, and Paul
Medvedev. The minimizer jaccard estimator is biased and inconsistent. bioRxiv,
2022.

[13] Gaëtan Benoit, Mahendra Mariadassou, Stéphane Robin, Sophie Schbath, Pierre
Peterlongo, and Claire Lemaitre. SimkaMin: fast and resource frugal de novo
comparative metagenomics. Bioinformatics (Oxford, England), 36(4):1275–1276,
February 2020.

[14] Gaëtan Benoit, Pierre Peterlongo, Mahendra Mariadassou, Erwan Drezen, Sophie
Schbath, Dominique Lavenier, and Claire Lemaitre. Multiple comparative metage-
nomics using multiset k-mer counting. PeerJ Computer Science, 2:e94, November
2016.

[15] Guillaume Bernard, Cheong Xin Chan, and Mark A. Ragan. Alignment-free micro-
bial phylogenomics under scenarios of sequence divergence, genome rearrangement
and lateral genetic transfer. Scientific Reports, 6(1):28970, September 2016.

[16] Timo Bingmann, Phelim Bradley, Florian Gauger, and Zamin Iqbal. COBS: A
Compact Bit-Sliced Signature Index. In Nieves R. Brisaboa and Simon J. Puglisi,
editors, String Processing and Information Retrieval, Lecture Notes in Computer
Science, pages 285–303, Cham, 2019. Springer International Publishing.

[17] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 1970.

[18] O. Bonham-Carter, J. Steele, and D. Bastola. Alignment-free genetic sequence
comparisons: a review of recent approaches by word analysis. Briefings in Bioin-
formatics, 15(6):890–905, November 2014.

[19] Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct
de Bruijn Graphs. In Ben Raphael and Jijun Tang, editors, Algorithms in Bioin-
formatics, Lecture Notes in Computer Science, pages 225–235, Berlin, Heidelberg,
2012. Springer.

[20] Robert S. Boyer and J. Strother Moore. MJRTY—A Fast Majority Vote Algorithm.
In Robert S. Boyer, editor, Automated Reasoning: Essays in Honor of Woody Bled-
soe, Automated Reasoning Series, pages 105–117. Springer Netherlands, Dordrecht,
1991.

[21] Phelim Bradley, Henk C Den Bakker, Eduardo P. C. Rocha, Gil McVean, and Zamin
Iqbal. Ultra-fast search of all deposited bacterial and viral genomic data. Nature
biotechnology, 37(2):152–159, February 2019.

[22] Lauren M. Bragg, Glenn Stone, Margaret K. Butler, Philip Hugenholtz, and
Gene W. Tyson. Shining a Light on Dark Sequencing: Characterising Errors in
Ion Torrent PGM Data. PLOS Computational Biology, 9(4):e1003031, April 2013.

[23] Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal
probabilistic RNA-seq quantification. Nature Biotechnology, 34(5):525–527, May
2016.

120

[24] Heinz Breu. A theoretical understanding of 2 base color codes and its applica-
tion to annotation, error detection, and error correction. Technical report, Applied
Biosystems, 2008.

[25] Karel Brinda. Novel computational techniques for mapping and classification of
Next-Generation Sequencing data. Theses, Université Paris-Est, November 2016.

[26] A. Z. Broder. On the resemblance and containment of documents. In Proceedings.
Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171), pages
21–29, June 1997.

[27] C. Titus Brown and Luiz Irber. sourmash: a library for MinHash sketching of DNA.
Journal of Open Source Software, 1(5):27, September 2016.

[28] M Burrows and DJ Wheeler. Technical report 124. Palo Alto, CA: Digital Equip-
ment Corporation, 1994.

[29] Karel Břinda, Michael Baym, and Gregory Kucherov. Simplitigs as an efficient
and scalable representation of de Bruijn graphs. bioRxiv, page 2020.01.12.903443,
January 2020.

[30] Karel Břinda, Alanna Callendrello, Kevin C. Ma, Derek R. MacFadden, Themoula
Charalampous, Robyn S. Lee, Lauren Cowley, Crista B. Wadsworth, Yonatan H.
Grad, Gregory Kucherov, Justin O’Grady, Michael Baym, and William P. Hanage.
Rapid inference of antibiotic resistance and susceptibility by genomic neighbour
typing. Nature Microbiology, 5(3):455–464, March 2020.

[31] Amit Chakrabarti and Anthony Wirth. Incidence Geometries and the Pass Com-
plexity of Semi-Streaming Set Cover. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1365–1373. Society for In-
dustrial and Applied Mathematics, January 2016.

[32] Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucký. Streaming algo-
rithms for embedding and computing edit distance in the low distance regime. In
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing,
pages 712–725, Cambridge MA USA, June 2016. ACM.

[33] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in
data streams. Theoretical Computer Science, 312(1):3–15, January 2004.

[34] Rayan Chikhi and Guillaume Rizk. Space-efficient and exact de Bruijn graph rep-
resentation based on a Bloom filter. Algorithms for Molecular Biology, 8(1):22,
September 2013.

[35] Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Haji-
aghayi, Andrew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernel-
ization via Sampling with Applications to Finding Matchings and Related Problems
in Dynamic Graph Streams. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1326–1344. Society for Industrial
and Applied Mathematics, January 2016.

[36] Benny Chor, David Horn, Nick Goldman, Yaron Levy, and Tim Massingham. Ge-
nomic dna k-mer spectra: models and modalities. Genome Biology, 10(10):R108,
Oct 2009.

121

[37] Tobias Christiani. DartMinHash: Fast Sketching for Weighted Sets. Technical
Report arXiv:2005.11547, arXiv, May 2020. arXiv:2005.11547 [cs] type: article.

[38] Thomas Conway, Jeremy Wazny, Andrew Bromage, Justin Zobel, and Bryan
Beresford-Smith. Gossamer–a resource-efficient de novo assembler. Bioinformat-
ics (Oxford, England), 28(14):1937–1938, July 2012.

[39] Graham Cormode. Count-Min Sketch. In Ling Liu and M. Tamer Özsu, editors,
Encyclopedia of Database Systems, pages 511–516. Springer US, Boston, MA, 2009.

[40] Graham Cormode and Marios Hadjieleftheriou. Finding the frequent items in
streams of data. Communications of the ACM, 52(10):97–105, October 2009.

[41] Graham Cormode and Muthu Muthukrishnan. Approximating Data with the
Count-Min Sketch. IEEE Software, 29(1):64–69, January 2012.

[42] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms, 55(1):58–75, April
2005.

[43] Graham Cormode and S. Muthukrishnan. Summarizing and Mining Skewed Data
Streams. In Proceedings of the 2005 SIAM International Conference on Data Min-
ing, pages 44–55. Society for Industrial and Applied Mathematics, April 2005. 5th
SIAM International Conference on Data Mining, SDM 2005 ; Conference date: 21-
04-2005 Through 23-04-2005.

[44] M. Csűrös, L. Noé, and G. Kucherov. Reconsidering the significance of genomic
word frequencies. Trends in Genetics, 23(11):543–546, November 2007.

[45] Dan DeBlasio, Fiyinfoluwa Gbosibo, Carl Kingsford, and Guillaume Marçais. Prac-
tical universal k-mer sets for minimizer schemes. In Proceedings of the 10th ACM
International Conference on Bioinformatics, Computational Biology and Health In-
formatics, BCB ’19, page 167–176, New York, NY, USA, 2019. Association for
Computing Machinery.

[46] Clara Delahaye and Jacques Nicolas. Sequencing DNA with nanopores: Troubles
and biases. PLOS ONE, 16(10):e0257521, October 2021.

[47] A. L. Delcher. Fast algorithms for large-scale genome alignment and comparison.
Nucleic Acids Research, 30(11):2478–2483, June 2002.

[48] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L.
Salzberg. Alignment of whole genomes. Nucleic Acids Research, 27(11):2369–2376,
January 1999.

[49] Luca Denti, Marco Previtali, Giulia Bernardini, Alexander Schönhuth, and Paola
Bonizzoni. MALVA: Genotyping by Mapping-free ALlele Detection of Known VAri-
ants. iScience, 18:20–27, August 2019.

[50] Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea Montanari,
Rasmus Pagh, and Michael Rink. Tight thresholds for cuckoo hashing via xor-
sat. In Proceedings of the 37th International Colloquium Conference on Automata,
Languages and Programming, ICALP’10, page 213–225, Berlin, Heidelberg, 2010.
Springer-Verlag.

122

[51] R. C. Edgar. MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Research, 32(5):1792–1797, March 2004.

[52] Robert Edgar. Syncmers are more sensitive than minimizers for selecting conserved
k-mers in biological sequences. PeerJ, 9:e10805, February 2021.

[53] Barış Ekim, Bonnie Berger, and Rayan Chikhi. Minimizer-space de Bruijn graphs:
Whole-genome assembly of long reads in minutes on a personal computer. Cell
Systems, 12(10):958–968.e6, October 2021.

[54] Barış Ekim, Bonnie Berger, and Yaron Orenstein. A Randomized Parallel Algorithm
for Efficiently Finding Near-Optimal Universal Hitting Sets. In Russell Schwartz,
editor, Research in Computational Molecular Biology, Lecture Notes in Computer
Science, pages 37–53, Cham, 2020. Springer International Publishing.

[55] David Eppstein and Michael T. Goodrich. Straggler identification in round-trip data
streams via Newton’s identities and invertible Bloom filters. IEEE Transactions on
Knowledge and Data Engineering, 23(2):297–306, 2011.

[56] Otmar Ertl. SuperMinHash - A New Minwise Hashing Algorithm for Jaccard
Similarity Estimation. Technical Report arXiv:1706.05698, arXiv, June 2017.
arXiv:1706.05698 [cs] type: article.

[57] Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. RecSplit: Mini-
mal Perfect Hashing via Recursive Splitting. In 2020 Proceedings of the Symposium
on Algorithm Engineering and Experiments (ALENEX), Proceedings, pages 175–
185. Society for Industrial and Applied Mathematics, December 2019.

[58] Cristian Estan and George Varghese. New directions in traffic measurement and
accounting. In Matthew Mathis, Peter Steenkiste, Hari Balakrishnan, and Vern
Paxson, editors, Proceedings of the ACM SIGCOMM 2002 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communication,
August 19-23, 2002, Pittsburgh, PA, USA, pages 323–336. ACM, 2002.

[59] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher.
Cuckoo Filter: Practically Better Than Bloom. In Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and Technologies,
CoNEXT ’14, pages 75–88, New York, NY, USA, December 2014. Association for
Computing Machinery.

[60] Huan Fan, Anthony R. Ives, Yann Surget-Groba, and Charles H. Cannon. An as-
sembly and alignment-free method of phylogeny reconstruction from next-generation
sequencing data. BMC Genomics, 16(1):522, July 2015.

[61] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
Proceedings 41st Annual Symposium on Foundations of Computer Science, pages
390–398, Redondo Beach, CA, USA, 2000. IEEE Comput. Soc.

[62] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog:
The analysis of a near-optimal cardinality estimation algorithm. In In Aofa ’07:
Proceedings of the 2007 International Conference on Analysis of Algorithms, 2007.

[63] Edward A. Fox, Qi Fan Chen, and Lenwood S. Heath. A faster algorithm for
constructing minimal perfect hash functions. In In Proceedings of the Fifteenth
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, Data Structures, pages 266–273, 1992.

123

[64] Éric Fusy and Gregory Kucherov. Phase transition in count approximation by
Count-Min sketch with conservative updates, July 2022. arXiv:2203.15496 [cs].

[65] Shea N. Gardner and Barry G. Hall. When Whole-Genome Alignments Just Won’t
Work: kSNP v2 Software for Alignment-Free SNP Discovery and Phylogenetics of
Hundreds of Microbial Genomes. PLoS ONE, 8(12):e81760, December 2013.

[66] Shea N Gardner, Tom Slezak, and Barry G. Hall. kSNP3.0: SNP detection and
phylogenetic analysis of genomes without genome alignment or reference genome:
Table 1. Bioinformatics, 31(17):2877–2878, September 2015.

[67] Marco Genuzio, Giuseppe Ottaviano, and Sebastiano Vigna. Fast scalable con-
struction of ([compressed] static | minimal perfect hash) functions. Information and
Computation, 273:104517, August 2020.

[68] Sante Gnerre, Iain MacCallum, Dariusz Przybylski, Filipe J. Ribeiro, Joshua N.
Burton, Bruce J. Walker, Ted Sharpe, Giles Hall, Terrance P. Shea, Sean Sykes,
Aaron M. Berlin, Daniel Aird, Maura Costello, Riza Daza, Louise Williams, Robert
Nicol, Andreas Gnirke, Chad Nusbaum, Eric S. Lander, and David B. Jaffe. High-
quality draft assemblies of mammalian genomes from massively parallel sequence
data. Proceedings of the National Academy of Sciences, 108(4):1513–1518, January
2011.

[69] Michael T. Goodrich and Michael Mitzenmacher. Invertible Bloom lookup tables,
2011.

[70] Sara Goodwin, John D. McPherson, and W. Richard McCombie. Coming of age:
ten years of next-generation sequencing technologies. Nature Reviews Genetics,
17(6):333–351, June 2016.

[71] Osamu Gotoh. An improved algorithm for matching biological sequences. Journal
of Molecular Biology, 162(3):705–708, December 1982.

[72] Sudipto Guha, Andrew McGregor, and David Tench. Vertex and Hyperedge Con-
nectivity in Dynamic Graph Streams. In Proceedings of the 34th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, pages 241–247,
Melbourne Victoria Australia, May 2015. ACM.

[73] Gaurav Gupta, Minghao Yan, Benjamin Coleman, R. A. Leo Elworth, Todd
Treangen, and Anshumali Shrivastava. Sub-linear Sequence Search via a Re-
peated And Merged Bloom Filter (RAMBO): Indexing 170 TB data in 14 hours.
arXiv:1910.04358 [cs, q-bio], December 2019. arXiv: 1910.04358.

[74] Bernhard Haeupler, Mark Manasse, and Kunal Talwar. Consistent Weighted Sam-
pling Made Fast, Small, and Easy. Technical Report arXiv:1410.4266, arXiv, Octo-
ber 2014. arXiv:1410.4266 [cs] type: article.

[75] Torben Hagerup and Torsten Tholey. Efficient Minimal Perfect Hashing in Nearly
Minimal Space. In Afonso Ferreira and Horst Reichel, editors, STACS 2001, Lecture
Notes in Computer Science, pages 317–326, Berlin, Heidelberg, 2001. Springer.

[76] Sariel Har-Peled, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. Towards Tight
Bounds for the Streaming Set Cover Problem. In Proceedings of the 35th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages
371–383, San Francisco California USA, June 2016. ACM.

124

[77] Klas Hatje and Martin Kollmar. A Phylogenetic Analysis of the Brassicales Clade
Based on an Alignment-Free Sequence Comparison Method. Frontiers in Plant
Science, 3, August 2012.

[78] Bernhard Haubold, Nora Pierstorff, Friedrich Möller, and Thomas Wiehe. Genome
comparison without alignment using shortest unique substrings. BMC Bioinformat-
ics, 6(1):123, May 2005.

[79] S Henikoff and J G Henikoff. Amino acid substitution matrices from protein blocks.
Proceedings of the National Academy of Sciences, 89(22):10915–10919, November
1992.

[80] Desmond G. Higgins and Paul M. Sharp. CLUSTAL: a package for performing
multiple sequence alignment on a microcomputer. Gene, 73(1):237–244, December
1988.

[81] Bryan W. Holland, Norbert Kučerka, and D. Peter Tieleman. SIMtoEXP: Software
for Comparing Simulations to Experimental Scattering Data. Biophysical Journal,
106(2):384a, January 2014.

[82] Guillaume Holley and Páll Melsted. Bifrost: highly parallel construction and in-
dexing of colored and compacted de Bruijn graphs. Genome Biology, 21(1):249,
September 2020.

[83] Mark Hollmer. Roche to close 454 life sciences as it reduces gene sequencing focus.
Fierce Biotech, 2013.

[84] Human Microbiome Project Consortium. Structure, function and diversity of the
healthy human microbiome. Nature, 486(7402):207–214, June 2012.

[85] Sergey Ioffe. Improved Consistent Sampling, Weighted Minhash and L1 Sketching.
In 2010 IEEE International Conference on Data Mining, pages 246–255, December
2010. ISSN: 2374-8486.

[86] Giuseppe F. Italiano, Nicola Prezza, Blerina Sinaimeri, and Rossano Venturini.
Compressed Weighted de Bruijn Graphs. In Pawe13 Gawrychowski and Tatiana
Starikovskaya, editors, 32nd Annual Symposium on Combinatorial Pattern Match-
ing (CPM 2021), volume 191 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 16:1–16:16, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

[87] Chirag Jain, Alexander Dilthey, Sergey Koren, Srinivas Aluru, and Adam M.
Phillippy. A Fast Approximate Algorithm for Mapping Long Reads to Large Refer-
ence Databases. In S. Cenk Sahinalp, editor, Research in Computational Molecular
Biology, Lecture Notes in Computer Science, pages 66–81, Cham, 2017. Springer
International Publishing.

[88] Chirag Jain, Sergey Koren, Alexander Dilthey, Adam M Phillippy, and Srinivas
Aluru. A fast adaptive algorithm for computing whole-genome homology maps.
Bioinformatics, 34(17):i748–i756, September 2018.

[89] Chirag Jain, Arang Rhie, Nancy F. Hansen, Sergey Koren, and Adam M. Phillippy.
Long-read mapping to repetitive reference sequences using Winnowmap2. Nature
Methods, 19(6):705–710, June 2022.

125

[90] Chirag Jain, Arang Rhie, Haowen Zhang, Claudia Chu, Brian P Walenz, Sergey
Koren, and Adam M Phillippy. Weighted minimizer sampling improves long read
mapping. Bioinformatics, 36(Supplement_1):i111–i118, July 2020.

[91] Chirag Jain, Luis M. Rodriguez-R, Adam M. Phillippy, Konstantinos T. Kon-
stantinidis, and Srinivas Aluru. High throughput ANI analysis of 90K prokary-
otic genomes reveals clear species boundaries. Nature Communications, 9(1):5114,
November 2018.

[92] Se-Ran Jun, Gregory E. Sims, Guohong A. Wu, and Sung-Hou Kim. Whole-
proteome phylogeny of prokaryotes by feature frequency profiles: An alignment-free
method with optimal feature resolution. Proceedings of the National Academy of
Sciences, 107(1):133–138, January 2010.

[93] Scott D. Kahn. On the Future of Genomic Data. Science, 331(6018):728–729,
February 2011.

[94] M. Kapralov, Y. T. Lee, C. N. Musco, C. P. Musco, and A. Sidford. Single Pass Spec-
tral Sparsification in Dynamic Streams. SIAM Journal on Computing, 46(1):456–
477, January 2017.

[95] Mikhail Karasikov, Harun Mustafa, Daniel Danciu, Marc Zimmermann, Christopher
Barber, Gunnar Rätsch, and André Kahles. MetaGraph: Indexing and Analysing
Nucleotide Archives at Petabase-scale. Technical report, bioRxiv, November 2020.
Type: article.

[96] Mikhail Karasikov, Harun Mustafa, Amir Joudaki, Sara Javadzadeh-no, Gunnar
Rätsch, and André Kahles. Sparse Binary Relation Representations for Genome
Graph Annotation. Journal of Computational Biology, 27(4):626–639, December
2019.

[97] Mikhail Karasikov, Harun Mustafa, Gunnar Rätsch, and André Kahles. Lossless
indexing with counting de bruijn graphs. bioRxiv, 2022.

[98] Mikhail Karasikov, Harun Mustafa, Gunnar Rätsch, and Andre Kahles. Lossless
indexing with counting de Bruijn graphs. Genome Research, page gr.276607.122,
May 2022.

[99] Lee S. Katz, Taylor Griswold, Shatavia S. Morrison, Jason A. Caravas, Shaokang
Zhang, Henk C. den Bakker, Xiangyu Deng, and Heather A. Carleton. Mashtree: a
rapid comparison of whole genome sequence files. Journal of Open Source Software,
4(44):1762, December 2019.

[100] Parsoa Khorsand and Fereydoun Hormozdiari. Nebula: ultra-efficient mapping-free
structural variant genotyper. Nucleic Acids Research, 49(8):e47, January 2021.

[101] Marek Kokot, Maciej D13ugosz, and Sebastian Deorowicz. KMC 3: counting and
manipulating k-mer statistics. Bioinformatics, 33(17):2759–2761, 05 2017.

[102] Sergey Koren, Brian P. Walenz, Konstantin Berlin, Jason R. Miller, Nicholas H.
Bergman, and Adam M. Phillippy. Canu: scalable and accurate long-read assembly
via adaptive k -mer weighting and repeat separation. Genome Research, 27(5):722–
736, May 2017.

126

[103] David Koslicki and Hooman Zabeti. Improving MinHash via the containment index
with applications to metagenomic analysis. Applied Mathematics and Computation,
354:206–215, August 2019.

[104] Sam Kovaka, Yunfan Fan, Bohan Ni, Winston Timp, and Michael C. Schatz. Tar-
geted nanopore sequencing by real-time mapping of raw electrical signal with UN-
CALLED. Nature Biotechnology, 39(4):431–441, April 2021.

[105] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with Bowtie 2.
Nature methods, 9(4):357–359, March 2012.

[106] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L. Salzberg. Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome. Genome
Biology, 10(3):R25, March 2009.

[107] Nathan LaPierre, Mohammed Alser, Eleazar Eskin, David Koslicki, and Serghei
Mangul. Metalign: efficient alignment-based metagenomic profiling via containment
min hash. Genome Biology, 21(1):242, September 2020.

[108] Chris-André Leimeister, Salma Sohrabi-Jahromi, and Burkhard Morgenstern. Fast
and accurate phylogeny reconstruction using filtered spaced-word matches. Bioin-
formatics, page btw776, January 2017.

[109] Téo Lemane, Paul Medvedev, Rayan Chikhi, and Pierre Peterlongo. kmtricks: Ef-
ficient construction of Bloom filters for large sequencing data collections. bioRxiv,
page 2021.02.16.429304, February 2021.

[110] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Finding Similar
Items, page 68–122. Cambridge University Press, 2 edition, 2014.

[111] M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W.
Webb. Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations.
Science, 299(5607):682–686, January 2003.

[112] H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics, 25(14):1754–1760, July 2009.

[113] Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long
sequences. Bioinformatics, 32(14):2103–2110, July 2016.

[114] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics,
34(18):3094–3100, September 2018.

[115] M. Li, X. Chen, X. Li, B. Ma, and P.M.B. Vitanyi. The Similarity Metric. IEEE
Transactions on Information Theory, 50(12):3250–3264, December 2004.

[116] Ping Li. 0-Bit Consistent Weighted Sampling. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
665–674, Sydney NSW Australia, August 2015. ACM.

[117] R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and J. Wang. SOAP2: an
improved ultrafast tool for short read alignment. Bioinformatics, 25(15):1966–1967,
August 2009.

127

[118] Ruiqiang Li, Hongmei Zhu, Jue Ruan, Wubin Qian, Xiaodong Fang, Zhongbin Shi,
Yingrui Li, Shengting Li, Gao Shan, Karsten Kristiansen, Songgang Li, Huanming
Yang, Jian Wang, and Jun Wang. De novo assembly of human genomes with mas-
sively parallel short read sequencing. Genome Research, 20(2):265–272, February
2010.

[119] Yang Li and XifengYan. MSPKmerCounter: A Fast and Memory Efficient Ap-
proach for K-mer Counting. Technical Report arXiv:1505.06550, arXiv, May 2015.
arXiv:1505.06550 [cs, q-bio] type: article.

[120] Yuanning Li, Kyle T. David, Xing-Xing Shen, Jacob L. Steenwyk, Kenneth M.
Halanych, and Antonis Rokas. Feature frequency profile-based phylogenies are in-
accurate. Proceedings of the National Academy of Sciences, 117(50):31580–31581,
December 2020.

[121] Antoine Limasset, Jean-François Flot, and Pierre Peterlongo. Toward perfect reads:
self-correction of short reads via mapping on de Bruijn graphs. Bioinformatics,
36(5):1374–1381, March 2020.

[122] Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo. Fast
and scalable minimal perfect hashing for massive key sets. arXiv:1702.03154 [cs],
February 2017. arXiv: 1702.03154.

[123] D J Lipman, S F Altschul, and J D Kececioglu. A tool for multiple sequence
alignment. Proceedings of the National Academy of Sciences, 86(12):4412–4415,
June 1989.

[124] Lin Liu, Yinhu Li, Siliang Li, Ni Hu, Yimin He, Ray Pong, Danni Lin, Lihua Lu,
and Maggie Law. Comparison of Next-Generation Sequencing Systems. Journal of
Biomedicine and Biotechnology, 2012:e251364, July 2012.

[125] Yongchao Liu, Jan Schröder, and Bertil Schmidt. Musket: a multistage k-
mer spectrum-based error corrector for Illumina sequence data. Bioinformatics,
29(3):308–315, 11 2012.

[126] Yi Lu, Andrea Montanari, Balaji Prabhakar, Sarang Dharmapurikar, and Abdul
Kabbani. Counter braids: a novel counter architecture for per-flow measurement.
ACM SIGMETRICS Performance Evaluation Review, 36(1):121–132, June 2008.

[127] Brian B Luczak, Benjamin T James, and Hani Z Girgis. A survey and evaluations
of histogram-based statistics in alignment-free sequence comparison. Briefings in
Bioinformatics, 20(4):1222–1237, July 2019.

[128] B. S. Majewski, N. C. Wormald, G. Havas, and Z. J. Czech. A Family of Perfect
Hashing Methods. The Computer Journal, 39(6):547–554, 01 1996.

[129] Mark Manasse, Frank McSherry, and Kunal Talwar. Consistent Weighted Sampling.
ICDM, June 2010.

[130] Udi Manber and Gene Myers. Suffix Arrays: A New Method for On-Line String
Searches. SIAM Journal on Computing, 22(5):935–948, October 1993.

[131] Camille Marchet, Christina Boucher, Simon J. Puglisi, Paul Medvedev, Mikaël Sal-
son, and Rayan Chikhi. Data structures based on k-mers for querying large collec-
tions of sequencing data sets. Genome Research, 31(1):1–12, January 2021.

128

[132] Camille Marchet, Zamin Iqbal, Daniel Gautheret, Mikaël Salson, and Rayan Chikhi.
REINDEER: efficient indexing of k-mer presence and abundance in sequencing
datasets. Bioinformatics, 36(Supplement_1):i177–i185, July 2020.

[133] Camille Marchet, Mael Kerbiriou, and Antoine Limasset. BLight: Efficient exact
associative structure for k-mers. Bioinformatics (Oxford, England), page btab217,
April 2021.

[134] Guillaume Marçais, Dan DeBlasio, Prashant Pandey, and Carl Kingsford. Locality-
sensitive hashing for the edit distance. Bioinformatics, 35(14):i127–i135, July 2019.

[135] Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers. Bioinformatics, 27(6):764, March 2011.

[136] A M Maxam and W Gilbert. A new method for sequencing DNA. Proceedings of
the National Academy of Sciences, 74(2):560–564, February 1977.

[137] Andrew McGregor. Graph stream algorithms: a survey. ACM SIGMOD Record,
43(1):9–20, May 2014.

[138] Kurt Mehlhorn. On the program size of perfect and universal hash functions. 23rd
Annual Symposium on Foundations of Computer Science (sfcs 1982), pages 170–
175, 1982.

[139] Michael Molloy. The pure literal rule threshold and cores in random hypergraphs. In
Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms,
SODA ’04, pages 672–681, USA, January 2004. Society for Industrial and Applied
Mathematics.

[140] Martin D Muggli, Bahar Alipanahi, and Christina Boucher. Building large updat-
able colored de Bruijn graphs via merging. Bioinformatics, 35(14):i51–i60, July
2019.

[141] Kary B. Mullis, François Ferré, and Richard A. Gibbs. The Polymerase Chain
Reaction. Springer Science & Business, 1994.

[142] Allan H. Murphy. The Finley Affair: A Signal Event in the History of Forecast
Verification. Weather and Forecasting, 11(1):3–20, March 1996.

[143] Harun Mustafa, André Kahles, Mikhail Karasikov, and Gunnar Rätsch. Metannot:
A succinct data structure for compression of colors in dynamic de Bruijn graphs.
Technical report, bioRxiv, March 2018. Type: article.

[144] Ingo Müller, Peter Sanders, Robert Schulze, and Wei Zhou. Retrieval and Perfect
Hashing Using Fingerprinting. In Joachim Gudmundsson and Jyrki Katajainen,
editors, Experimental Algorithms, Lecture Notes in Computer Science, pages 138–
149, Cham, 2014. Springer International Publishing.

[145] Saul B. Needleman and Christian D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3):443–453, March 1970.

[146] Cédric Notredame, Desmond G Higgins, and Jaap Heringa. T-coffee: a novel method
for fast and accurate multiple sequence alignment11Edited by J. Thornton. Journal
of Molecular Biology, 302(1):205–217, September 2000.

129

[147] Brian D. Ondov, Gabriel J. Starrett, Anna Sappington, Aleksandra Kostic, Sergey
Koren, Christopher B. Buck, and Adam M. Phillippy. Mash Screen: high-
throughput sequence containment estimation for genome discovery. Genome Bi-
ology, 20(1):232, November 2019.

[148] Brian D. Ondov, Todd J. Treangen, Páll Melsted, Adam B. Mallonee, Nicholas H.
Bergman, Sergey Koren, and Adam M. Phillippy. Mash: fast genome and
metagenome distance estimation using MinHash. Genome Biology, 17(1):132, June
2016.

[149] Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro. A General-
Purpose Counting Filter: Making Every Bit Count. In Proceedings of the 2017 ACM
International Conference on Management of Data, pages 775–787, Chicago Illinois
USA, May 2017. ACM.

[150] Rob Patro, Stephen M Mount, and Carl Kingsford. Sailfish enables alignment-free
isoform quantification from RNA-seq reads using lightweight algorithms. Nature
Biotechnology, 32(5):462–464, May 2014.

[151] W R Pearson and D J Lipman. Improved tools for biological sequence comparison.
Proceedings of the National Academy of Sciences, 85(8):2444–2448, April 1988.

[152] Heather E. Peckham, Stephen F. McLaughlin, Jingwei N. Ni, Michael D. Rhodes,
Joel A. Melek, Kevin J. McKernan, and Alan P. Blanchard. SolidTM sequencing
and 2-base encoding. 2007.

[153] Yu Peng, Henry C. M. Leung, S. M. Yiu, and Francis Y. L. Chin. IDBA – A
Practical Iterative de Bruijn Graph De Novo Assembler. In Bonnie Berger, editor,
Research in Computational Molecular Biology, Lecture Notes in Computer Science,
pages 426–440, Berlin, Heidelberg, 2010. Springer.

[154] Giulio Ermanno Pibiri. On Weighted K-Mer Dictionaries. Technical report, bioRxiv,
May 2022. Type: article.

[155] Giulio Ermanno Pibiri. Sparse and Skew Hashing of K-Mers. Technical report,
bioRxiv, April 2022. Type: article.

[156] Giulio Ermanno Pibiri and Roberto Trani. Parallel and External-Memory Con-
struction of Minimal Perfect Hash Functions with PTHash. Technical Report
arXiv:2106.02350, arXiv, June 2021. arXiv:2106.02350 [cs] type: article.

[157] Giulio Ermanno Pibiri and Roberto Trani. PTHash: Revisiting FCH Minimal Per-
fect Hashing. In Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’21, pages 1339–1348,
New York, NY, USA, July 2021. Association for Computing Machinery.

[158] Armando J Pinho, Paulo JSG Ferreira, Sara P Garcia, and João MOS Rodrigues.
On finding minimal absent words. BMC Bioinformatics, 10(1):137, December 2009.

[159] Ely Porat and Ohad Lipsky. Improved sketching of hamming distance with error
correcting. In Bin Ma and Kaizhong Zhang, editors, Combinatorial Pattern Match-
ing, pages 173–182, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[160] David T. Pride, Richard J. Meinersmann, Trudy M. Wassenaar, and Martin J.
Blaser. Evolutionary Implications of Microbial Genome Tetranucleotide Frequency
Biases. Genome Research, 13(2):145–158, February 2003.

130

[161] Amatur Rahman, Rayan Chikhi, and Paul Medvedev. Disk compression of k-mer
sets. Algorithms for Molecular Biology, 16(1):10, June 2021.

[162] Amatur Rahman and Paul Medvedev. Representation of k-mer sets using spectrum-
preserving string sets. bioRxiv, page 2020.01.07.896928, January 2020.

[163] Atif Rahman, Ingileif Hallgrímsdóttir, Michael Eisen, and Lior Pachter. Association
mapping from sequencing reads using k-mers. eLife, 7:e32920, June 2018.

[164] Milan Randić, Jure Zupan, and Alexandru T. Balaban. Unique graphical represen-
tation of protein sequences based on nucleotide triplet codons. Chemical Physics
Letters, 397(1):247–252, October 2004.

[165] Guillaume Rizk, Dominique Lavenier, and Rayan Chikhi. DSK: k-mer counting
with very low memory usage. Bioinformatics, 29(5):652–653, March 2013.

[166] Raffaella Rizzi, Stefano Beretta, Murray Patterson, Yuri Pirola, Marco Previtali,
Gianluca Della Vedova, and Paola Bonizzoni. Overlap graphs and de Bruijn graphs:
data structures for de novo genome assembly in the big data era. Quantitative
Biology, 7(4):278–292, December 2019.

[167] Michael Roberts, Wayne Hayes, Brian R. Hunt, Stephen M. Mount, and James A.
Yorke. Reducing storage requirements for biological sequence comparison. Bioin-
formatics, 20(18):3363–3369, December 2004.

[168] Mostafa Ronaghi, Samer Karamohamed, Bertil Pettersson, Mathias Uhlén, and Pål
Nyrén. Real-Time DNA Sequencing Using Detection of Pyrophosphate Release.
Analytical Biochemistry, 242(1):84–89, November 1996.

[169] Will PM Rowe, Anna Paola Carrieri, Cristina Alcon-Giner, Shabhonam Caim, Alex
Shaw, Kathleen Sim, J. Simon Kroll, Lindsay J. Hall, Edward O. Pyzer-Knapp, and
Martyn D. Winn. Streaming histogram sketching for rapid microbiome analytics.
Microbiome, 7(1):40, March 2019.

[170] Jue Ruan and Heng Li. Fast and accurate long-read assembly with wtdbg2. Nature
Methods, 17(2):155–158, February 2020.

[171] Douglas B Rusch, Aaron L Halpern, Granger Sutton, Karla B Heidelberg, Shan-
non Williamson, Shibu Yooseph, Dongying Wu, Jonathan A Eisen, Jeff M Hoff-
man, Karin Remington, Karen Beeson, Bao Tran, Hamilton Smith, Holly Baden-
Tillson, Clare Stewart, Joyce Thorpe, Jason Freeman, Cynthia Andrews-Pfannkoch,
Joseph E Venter, Kelvin Li, Saul Kravitz, John F Heidelberg, Terry Utterback, Yu-
Hui Rogers, Luisa I Falcón, Valeria Souza, Germán Bonilla-Rosso, Luis E Eguiarte,
David M Karl, Shubha Sathyendranath, Trevor Platt, Eldredge Bermingham, Vic-
tor Gallardo, Giselle Tamayo-Castillo, Michael R Ferrari, Robert L Strausberg,
Kenneth Nealson, Robert Friedman, Marvin Frazier, and J. Craig Venter. The Sor-
cerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern
Tropical Pacific. PLoS Biology, 5(3):e77, March 2007.

[172] Randall K. Saiki, David H. Gelfand, Susanne Stoffel, Stephen J. Scharf, Russell
Higuchi, Glenn T. Horn, Kary B. Mullis, and Henry A. Erlich. Primer-Directed
Enzymatic Amplification of DNA with a Thermostable DNA Polymerase. Science,
239(4839):487–491, January 1988.

131

[173] K. Salikhov, G. Sacomoto, and G. Kucherov. Using cascading Bloom filters to
improve the memory usage for de Brujin graphs. BMC Algorithms for Molecular
Biology, 9(1):2, 2014.

[174] F. Sanger and A. R. Coulson. A rapid method for determining sequences in DNA by
primed synthesis with DNA polymerase. Journal of Molecular Biology, 94(3):441–
448, May 1975.

[175] Shahab Sarmashghi, Kristine Bohmann, M. Thomas P. Gilbert, Vineet Bafna, and
Siavash Mirarab. Skmer: assembly-free and alignment-free sample identification
using genome skims. Genome Biology, 20(1):34, February 2019.

[176] Melanie Schirmer, Rosalinda D’Amore, Umer Z. Ijaz, Neil Hall, and Christopher
Quince. Illumina error profiles: resolving fine-scale variation in metagenomic se-
quencing data. BMC Bioinformatics, 17(1):125, March 2016.

[177] Melanie Schirmer, Umer Z. Ijaz, Rosalinda D’Amore, Neil Hall, William T. Sloan,
and Christopher Quince. Insight into biases and sequencing errors for amplicon
sequencing with the Illumina MiSeq platform. Nucleic Acids Research, 43(6):e37–
e37, 01 2015.

[178] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: local algorithms
for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD interna-
tional conference on Management of data, SIGMOD ’03, pages 76–85, San Diego,
California, June 2003. Association for Computing Machinery.

[179] Sebastian Schmidt, Shahbaz Khan, Jarno Alanko, and Alexandru I. Tomescu.
Matchtigs: minimum plain text representation of kmer sets. Technical report,
bioRxiv, February 2022. Type: article.

[180] Ariya Shajii, Deniz Yorukoglu, Yun William Yu, and Bonnie Berger. Fast genotyping
of known SNPs through approximate k -mer matching. Bioinformatics, 32(17):i538–
i544, September 2016.

[181] Christina Huan Shi and Kevin Y. Yip. K-mer counting with low memory consump-
tion enables fast clustering of single-cell sequencing data without read alignment.
Technical report, bioRxiv, August 2019. Type: article.

[182] Yoshihiro Shibuya, Djamal Belazzougui, and Gregory Kucherov. Space-Efficient
Representation of Genomic k-Mer Count Tables. In Alessandra Carbone and Mo-
hammed El-Kebir, editors, 21st International Workshop on Algorithms in Bioin-
formatics (WABI 2021), volume 201 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 8:1–8:19, Dagstuhl, Germany, 2021. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[183] Yoshihiro Shibuya, Djamal Belazzougui, and Gregory Kucherov. Efficient reconcili-
ation of genomic datasets of high similarity. bioRxiv, page 2022.06.07.495186, June
2022. Type: article.

[184] Yoshihiro Shibuya, Djamal Belazzougui, and Gregory Kucherov. Set-Min Sketch:
A Probabilistic Map for Power-Law Distributions with Application to k-Mer Anno-
tation. Journal of Computational Biology, 29(2):140–154, February 2022.

[185] Yoshihiro Shibuya, Djamal Belazzougui, and Gregory Kucherov. Space-efficient
representation of genomic k-mer count tables. Algorithms for Molecular Biology,
17(1):5, March 2022.

132

[186] Yoshihiro Shibuya and Matteo Comin. Better quality score compression through
sequence-based quality smoothing. BMC Bioinformatics, 20(9):302, November 2019.

[187] Yoshihiro Shibuya and Matteo Comin. Indexing k-mers in linear space for qual-
ity value compression. Journal of Bioinformatics and Computational Biology,
17(05):1940011, October 2019.

[188] Yoshihiro Shibuya and Gregory Kucherov. Set-min Sketch: a Probabilistic Map
for Power-Law Distributions with Application to k-mer Annotation. bioRxiv, page
2020.11.14.382713, November 2020.

[189] Moustafa Shokrof, C. Titus Brown, and Tamer A. Mansour. MQF and buffered
MQF: quotient filters for efficient storage of k-mers with their counts and metadata.
BMC Bioinformatics, 22(1):71, February 2021.

[190] Anshumali Shrivastava. Exact Weighted Minwise Hashing in Constant Time. ArXiv,
2016.

[191] Anshumali Shrivastava. Simple and Efficient Weighted Minwise Hashing. In Ad-
vances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016.

[192] Jared T. Simpson, Kim Wong, Shaun D. Jackman, Jacqueline E. Schein, Steven J.M.
Jones, and İnanç Birol. ABySS: A parallel assembler for short read sequence data.
Genome Research, 19(6):1117–1123, June 2009.

[193] Gregory E. Sims, Se-Ran Jun, Guohong A. Wu, and Sung-Hou Kim. Alignment-free
genome comparison with feature frequency profiles (FFP) and optimal resolutions.
Proceedings of the National Academy of Sciences, 106(8):2677–2682, February 2009.

[194] T.F. Smith and M.S. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147(1):195–197, March 1981.

[195] Brad Solomon and Carl Kingsford. Fast Search of Thousands of Short-Read Se-
quencing Experiments. Nature biotechnology, 34(3):300, March 2016.

[196] Chen Sun and Paul Medvedev. Toward fast and accurate SNP genotyping from
whole genome sequencing data for bedside diagnostics. Bioinformatics, 35(3):415–
420, February 2019.

[197] Fatih Taşyaran, Kerem Yıldırır, Kamer Kaya, and Mustafa Kemal Taş. One Table
to Count Them All: Parallel Frequency Estimation on Single-Board Computers.
Technical Report arXiv:1903.00729, arXiv, March 2019. arXiv:1903.00729 [cs] type:
article.

[198] Luke R. Thompson, Jon G. Sanders, Daniel McDonald, Amnon Amir, Joshua
Ladau, Kenneth J. Locey, Robert J. Prill, Anupriya Tripathi, Sean M. Gibbons,
Gail Ackermann, Jose A. Navas-Molina, Stefan Janssen, Evguenia Kopylova, Yoshiki
Vázquez-Baeza, Antonio González, James T. Morton, Siavash Mirarab, Zhenjiang
Zech Xu, Lingjing Jiang, Mohamed F. Haroon, Jad Kanbar, Qiyun Zhu, Se Jin Song,
Tomasz Kosciolek, Nicholas A. Bokulich, Joshua Lefler, Colin J. Brislawn, Gregory
Humphrey, Sarah M. Owens, Jarrad Hampton-Marcell, Donna Berg-Lyons, Valerie
McKenzie, Noah Fierer, Jed A. Fuhrman, Aaron Clauset, Rick L. Stevens, Ashley
Shade, Katherine S. Pollard, Kelly D. Goodwin, Janet K. Jansson, Jack A. Gilbert,
and Rob Knight. A communal catalogue reveals Earth’s multiscale microbial diver-
sity. Nature, 551(7681):457–463, November 2017.

133

[199] Daniel Ting. Count-Min: Optimal Estimation and Tight Error Bounds using Em-
pirical Error Distributions. In Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pages 2319–2328, Lon-
don United Kingdom, July 2018. ACM.

[200] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,
September 1995.

[201] Igor Ulitsky, David Burstein, Tamir Tuller, and Benny Chor. The Average Common
Substring Approach to Phylogenomic Reconstruction. Journal of Computational
Biology, 13(2):336–350, March 2006.

[202] Robert Vaser, Ivan Sović, Niranjan Nagarajan, and Mile Šikić. Fast and accurate de
novo genome assembly from long uncorrected reads. Genome Research, 27(5):737–
746, May 2017.

[203] S. Vinga. Information theory applications for biological sequence analysis. Briefings
in Bioinformatics, 15(3):376–389, May 2014.

[204] Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium
on Switching and Automata Theory (swat 1973), pages 1–11, October 1973. ISSN:
0272-4847.

[205] Jia Wen and YuYan Zhang. A 2D graphical representation of protein sequence and
its numerical characterization. Chemical Physics Letters, 476(4):281–286, July 2009.

[206] W J Wilbur and D J Lipman. Rapid similarity searches of nucleic acid and pro-
tein data banks. Proceedings of the National Academy of Sciences, 80(3):726–730,
February 1983.

[207] Derrick E Wood and Steven L Salzberg. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biology, 15(3):R46, 2014.

[208] Wei Wu, B. Li, Ling Chen, and Chengqi Zhang. Consistent Weighted Sampling
Made More Practical. WWW, 2017.

[209] Yiqing Yan, Nimisha Chaturvedi, and Raja Appuswamy. Accel-Align: a fast se-
quence mapper and aligner based on the seed–embed–extend method. BMC Bioin-
formatics, 22(1):257, May 2021.

[210] Dingqi Yang, Bin Li, Laura Rettig, and Philippe Cudré-Mauroux. HistoSketch:
Fast Similarity-Preserving Sketching of Streaming Histograms with Concept Drift.
In 2017 IEEE International Conference on Data Mining (ICDM), pages 545–554,
November 2017. ISSN: 2374-8486.

[211] Dingqi Yang, Bin Li, Laura Rettig, and Philippe Cudré-Mauroux. D2HistoSketch:
Discriminative and Dynamic Similarity-Preserving Sketching of Streaming His-
tograms. IEEE Transactions on Knowledge and Data Engineering, 31(10):1898–
1911, October 2019.

[212] Lianping Yang, Xiangde Zhang, Tianming Wang, and Hegui Zhu. Large Local
Analysis of the Unaligned Genome and Its Application. Journal of Computational
Biology, 20(1):19–29, January 2013.

[213] Huiguang Yi and Li Jin. Co-phylog: an assembly-free phylogenomic approach for
closely related organisms. Nucleic Acids Research, 41(7):e75, April 2013.

134

[214] Ye Yu, Djamal Belazzougui, Chen Qian, and Qin Zhang. Memory-
efficient and Ultra-fast Network Lookup and Forwarding using Othello Hashing.
arXiv:1608.05699 [cs], November 2017. arXiv: 1608.05699.

[215] Ye Yu, Jinpeng Liu, Xinan Liu, Yi Zhang, Eamonn Magner, Erik Lehnert, Chen
Qian, and Jinze Liu. SeqOthello: querying RNA-seq experiments at scale. Genome
Biology, 19(1):167, October 2018.

[216] Yun William Yu and Griffin M. Weber. HyperMinHash: MinHash in LogLog space.
IEEE Transactions on Knowledge and Data Engineering, pages 1–1, 2020.

[217] Daniel R. Zerbino and Ewan Birney. Velvet: Algorithms for de novo short read
assembly using de Bruijn graphs. Genome Research, 18(5):821–829, May 2008.

[218] Haoyu Zhang and Qin Zhang. EmbedJoin: Efficient Edit Similarity Joins via Em-
beddings. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 585–594, Halifax NS Canada, August
2017. ACM.

[219] Haoyu Zhang and Qin Zhang. MinJoin: Efficient Edit Similarity Joins via Local
Hash Minima. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 1093–1103, Anchorage AK USA,
July 2019. ACM.

[220] Qingpeng Zhang, Jason Pell, Rosangela Canino-Koning, Adina Chuang Howe, and
C. Titus Brown. These are not the k-mers you are looking for: efficient online k-mer
counting using a probabilistic data structure. PloS One, 9(7):e101271, 2014.

[221] XiaoFei Zhao. BinDash, software for fast genome distance estimation on a typical
personal laptop. Bioinformatics, 35(4):671–673, February 2019.

[222] Hongyu Zheng, Carl Kingsford, and Guillaume Marçais. Lower Density Selection
Schemes via Small Universal Hitting Sets with Short Remaining Path Length. In
Russell Schwartz, editor, Research in Computational Molecular Biology, Lecture
Notes in Computer Science, pages 202–217, Cham, 2020. Springer International
Publishing.

[223] Andrzej Zielezinski, Hani Z. Girgis, Guillaume Bernard, Chris-Andre Leimeister,
Kujin Tang, Thomas Dencker, Anna Katharina Lau, Sophie Röhling, Jae Jin Choi,
Michael S. Waterman, Matteo Comin, Sung-Hou Kim, Susana Vinga, Jonas S.
Almeida, Cheong Xin Chan, Benjamin T. James, Fengzhu Sun, Burkhard Mor-
genstern, and Wojciech M. Karlowski. Benchmarking of alignment-free sequence
comparison methods. Genome Biology, 20(1):144, July 2019.

[224] Andrzej Zielezinski, Susana Vinga, Jonas Almeida, and Wojciech M. Karlowski.
Alignment-free sequence comparison: benefits, applications, and tools. Genome
Biology, 18(1):186, October 2017.

135

Abstract
Sequence comparison is one of the fundamental concepts of bioinformatics. Alignment-free
algorithms representing sequences as (multi-)sets of their constituent k-mers are widely
used in practice due to their simplicity and speed. However, exact data structures storing
k-mer multiplicities are usually suboptimal as they do not take advantage of the charac-
teristic Power-Law distribution of k-mer counts. Sketching techniques, on the other hand,
suffer from large count estimation errors.

This thesis addresses the problem of efficiently storing counts for known sets of k-mers
and the problem of computing differences (and by extension, Jaccard similarity) of very
similar sets in small space. Two independent solutions are provided for the first problem.
The first one consists in a sketching-based solution inspired by Count-Min sketch, with
provable better error guarantees for k-mers following a heavily skewed distribution. The
second method starts by improving on a previous implementation of Compressed Static
Functions, by extending its applicability to data of entropy < 1. The resulting algorithm
and data structure are then paired with minimizer-based bucketing in order to produce
two additional compression strategies.

For the second topic of this work, we propose Invertible Bloom Lookup Tables (IBLTs)
as an efficient way to compute symmetric differences of similar k-mer sets. The combi-
nation of IBLTs and syncmers allows, in some instances, to estimate Jaccard similarity
more precisely than comparable MinHash sketches. Further, the full versatility of IBLTs
is demonstrated by computing approximated set differences of full k-mer sets.

Résumé
La comparaison de séquences est l’un des concepts fondamentaux de la bioinformatique.
En pratique, dans plusieurs applications, les algorithmes “sans alignement” sont sou-
vent employés en raison de leur majeure vitesse et simplicité par rapport aux solutions
classiques. Dans ce cadre, les séquences sont représentées comme des ensembles de k-
mers. Cependant, les structures de données pour stocker de k-mers avec leurs multi-
plicités n’utilisent pas le fait que celles-ci suivent des distributions “Power-Law” très
asymmétriques. D’autre part, les techniques classiques d’esquissage (sketching) pour
l’estimation de poids présentent des erreurs trop grandes pour la plupart d’applications
bioinformatiques.

Dans cette thèse nous introduisons deux méthodes alternatives visées à représenter
les poids associés aux k-mers de manière efficace. La première est une nouvelle es-
quisse inspirée à Count-Min sketch, adaptée à de distributions de k-mers particulièrement
asymétriques. Notre deuxième technique est plutôt une famille de méthodes avec pour
base une version améliorée d’une précédente implantation de Fonctions Statiques Com-
pressées (“Compressed Static Function” ou CSFs). Les CSFs sont après combinées avec
un regroupement basé sur les minimizers afin de produire deux stratégies de compression
supplémentaires.

Finalement, le dernier argument de cette thèse porte sur l’introduction d’ “Invertible
Bloom Lookup Tables” (IBLTs) afin de calculer efficacement de différences symétriques
entre ensembles de k-mers. La combinaison d’IBLTs avec de l’échantillonnage basé sur
les syncmers permet une plus efficace estimation de la similarité de Jaccard par rapport
aux esquisses MinHash quand les ensembles en question sont très similaires. La pleine
versatilité d’IBLTs est démontrée en approximant la différence entre ensembles de k-mers
complets, sans aucun type d’échantillonnage.

137

	List of Figures
	List of Tables
	List of Acronyms
	Publications
	Résumé détaillé de la thèse en français
	Introduction
	I State of the art
	DNA Sequencing and assembly
	Classic sequencing approaches
	Second-Generation sequencing
	Third generation sequencing

	Assembly
	Pairwise sequence similarity
	Alignment-based methods
	Full hash-based and succinct solutions
	Sampling for sequence alignments

	Alignment-free similarity estimation
	Jaccard similarity
	Alignment-free algorithms at scale

	Sketching
	Sketching techniques relevant to our work
	CountSketch
	Count-Min sketch
	Count-Min sketch with conservative updates
	MinHash sketching
	Bloom filters
	Invertible Bloom Lookup Tables

	Exact representations of k-mer count tables
	Full static representations
	Hash Tables
	Quotient filters
	Dictionaries based on super k-mers
	Graph-based dictionaries

	Count-only data structures
	Minimal Perfect Hash Functions
	Compressed static functions

	II Sketching count information
	Context and motivation
	Problem statement
	Contributions

	Set-Min sketch
	Key algorithmic ideas
	Skewed distribution
	Using counter collisions to reduce space

	Set-Min data structure
	Dealing with collisions
	Computing tighter sketch dimensions

	Max-Min sketch
	Results
	Data sets
	Set-Min vs Count-Min sketch
	Set-Min vs Max-Min sketch
	Set-Min sketch vs KMC output
	Set-Min sketch vs MPHFs
	Unassembled datasets
	Time measurements

	Discussion

	III Space-efficient representation of genomic k-mer count tables
	Context and motivation
	Problem statement
	Related work
	Contributions

	Locom: minimizers meet Compressed Static Functions
	Key algorithmic ideas
	Correlation of neighboring k-mer counts
	Minimizers as a context-aware bucketing technique of k-mers

	Adapting Compressed Static Functions to k-mer count tables
	Bloom-enhanced Compressed Static Functions
	Minimizer bucketing
	Lazy collision resolution: AMB
	Correcting the effects of collisions: FIL
	Cascading
	Extension to approximate counts

	Results
	Datasets
	Implementation
	Compression of skewed data
	Compression of higher entropy data
	Approximate counts
	Query speed
	Technical observations

	Discussion

	IV Efficient reconciliation of genomic datasets of high similarity
	Context and motivation
	Problem statement
	Contributions

	KM-peeler: Invertible Bloom Lookup Tables for fast k-mer set differences
	Key algorithmic ideas
	Random sampling
	Minimizers
	Syncmers

	KM-peeler
	Set reconciliation from two IBLTs
	Making buckets lighter
	Combining sampling and IBLTs for Jaccard similarity estimation
	IBLT dimensioning with syncmers
	Approximating k-mer set differences
	IBLT for collections of MinHash sketches

	Results
	Comparison of different sampling approaches
	Space performance of IBLTs
	Accuracy of Jaccard similarity estimation from IBLTs of syncmers
	Sampling syncmers for further space reductions
	Approximating k-mer set differences

	Discussion
	Appendix
	Conclusion and Perspectives
	Bibliography

