
HAL Id: tel-04065824
https://theses.hal.science/tel-04065824

Submitted on 12 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An adaptive system for troubleshooting network issues
in the context of encrypted data traffic

Van-Van Tong

To cite this version:
Van-Van Tong. An adaptive system for troubleshooting network issues in the context of encrypted
data traffic. Artificial Intelligence [cs.AI]. Université Paris-Est Créteil Val-de-Marne - Paris 12, 2021.
English. �NNT : 2021PA120026�. �tel-04065824�

https://theses.hal.science/tel-04065824
https://hal.archives-ouvertes.fr


T
H
E
S
E

École doctorale Mathématiques et STIC
Mathématiques et Sciences et

Technologies de l’Information et de la Communication

Université Paris-Est Créteil

THÈSE
Pour l’obtention du grade de

Docteur de l’Université Paris-Est Créteil
Spécialité: “Informatique, Génie Informatique, Réseaux”

Présentée par

Van Van TONG
Un système adaptatif pour l’autodiagnostic de pannes

dans les réseaux de communication dans un contexte de
trafic chiffré de données

Directeur de thèse : Prof. Abdelhamid MELLOUK, Université Paris-Est Créteil (UPEC), France

Encadrant de thèse : Sami SOUIHI
Maître de conférences, Université Paris-Est Créteil (UPEC), France

Encadrant de thèse : Hai Anh TRAN
Maître de conférences, Institut Polytechnique de Hanoï (IPH), Vietnam

Soutenue publiquement

le 13 Décembre 2021

Devant le jury d’examen composé de:

Jean-philippe Georges, Rapporteur Professeur, Université de Lorraine, France
Farid Naït-Abdesselam, Rapporteur Professeur, Université Paris Descartes, France

Houda Labiod, Examinatrice Professeur, Télecom ParisTech, France
Abderrahim Benslimane, Examinateur Professeur, Université d’Avignon, France
Djamal Zaghlache, Examinateur Professeur, Télécom SudParis, France

Laboratoire Images, Signaux et Systèmes Intelligents

Équipe de contrôle intelligent dans les réseaux



T
H
E
S
I
S

MSTIC doctoral school
Mathématiques et Sciences et

Technologies de l’Information et de la Communication

University of Paris-Est Créteil

DISSERTATION
Submitted in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy of Paris-Est University
in “Computer Science, Computer Networking” Specialization

Presented by

Van Van TONG

An adaptive system for troubleshooting network issues in
the context of encrypted data traffic

PHD Thesis Advisor: Prof. Abdelhamid MELLOUK, University of Paris-Est Créteil (UPEC), France

PHD Thesis Supervisor: Sami SOUIHI
Associate Professor, University of Paris-Est Créteil (UPEC), France

PHD Thesis Supervisor: Hai Anh TRAN
Associate Professor, Hanoi University of Science and Technology (HUST), Vietnam

Defended publicly

on December 13, 2021

In front of a jury composed of:

Jean-philippe Georges, Reviewer Full Professor, University of Lorraine, France
Farid Naït-Abdesselam, Reviewer Full Professor, Paris Descartes University, France

Houda Labiod, Examiner Full Professor, Telecom Paris, France
Abderrahim Benslimane, Examiner Full Professor, Avignon University, France
Djamal Zaghlache, Examiner Full Professor, Telecom SudParis, France

Laboratory of Images, Signals and Intelligent Systems

Team of Intelligent Control for Networks



Résumé

Le réseau Internet devient de plus en plus complexe en raison du nombre croissant de pé-

riphériques réseau, des divers services multimédias et de la prévalence du trafic chiffré.

Les solutions conventionnelles sont effectivement ingérables en raison des problèmes

d’évolutivité, de la complexité temporelle élevée, du trafic chiffré, etc. Par conséquent,

dans ce contexte, nous proposons une nouvelle architecture de dépannage efficace pour

surmonter les limitations liées au trafic chiffré et à la complexité temporelle élevée. Cette

architecture contient cinq modules principaux : une collecte de données, une détection

d’anomalies, une remédiation temporaire, une analyse des causes profondes et une remé-

diation définitive. Dans la collecte de données, il y a deux sous-modules : la mesure des

paramètres et la classification du trafic. Le sous-module de mesure des paramètres per-

met de collecter des paramètres de réseau en série temporelle pour les modules suivants.

Selon ce sous-module, nous construisons et fournissons publiquement un ensemble de

données de dépannage. En plus des paramètres du réseau, nous proposons une nou-

velle approche de classification du trafic pour identifier les classes d’applications dans le

contexte du trafic chiffré. Les paramètres du réseau sont analysés pour identifier automa-

tiquement les anomalies du réseau et déclencher les modules de remédiation: i) Le mod-

ule de remédiation temporaire qui vise à réduire les impacts négatifs des anomalies. Dans

ce module, nous proposons un routage par segments basé sur la qualité d’expérience

(QoE) des applications en utilisant l’apprentissage par renforcement pour sélectionner

les chemins de routage appropriés correspondant à chaque application et répondre aux

exigences strictes des accords de niveau de service (SLA), ii) Les modules d’analyse des

causes profondes et de remédiation. Nous considérons la congestion comme un cas

d’utilisation pour générer des anomalies et prendre en compte ses causes profondes, no-

tamment la défaillance du lien, la défaillance du commutateur et la surcharge de la mé-

moire tampon. Cette architecture est mise en œuvre et validée dans des environnements

SDN (Software-Defined Networking) en utilisant les contrôleurs d’ONOS.

i



Abstract

Nowadays, the Internet network is becoming more and more complex due to an ever-

increasing number of network devices, various multimedia services and a prevalence of

encrypted traffic. Conventional solutions are effectively unmanageable because of scala-

bility issues, high time complexity, encrypted traffic and so on. Therefore, in this context,

we propose a novel efficient troubleshooting architecture to overcome limitations related

to encrypted traffic and high time complexity. This architecture contains five main mod-

ules: data collection, anomaly detection, temporary remediation, root cause analysis and

definitive remediation. In data collection, there are two submodules: parameter measure-

ment and traffic classification. The parameter measurement submodule is to collect time-

series network parameters for other modules. According to this submodule, we build and

publically provide a troubleshooting dataset for network troubleshooting. In addition to

the network parameters, we propose a novel traffic classification approach to identify ap-

plication classes in the context of encrypted traffic. The network parameters are analyzed

to automatically identify the network anomalies and trigger remediation modules: i) the

temporary remediation module which aims to reduce negative impacts of anomalies and

guarantee the availability in the network. In this module, we propose an application-

aware QoE (Quality of Experience)-based segment routing using reinforcement learning

to select appropriate routing paths corresponding to each application and meet strict SLA

(Service-level Agreement) requirements; ii) the root cause analysis and definitive remedi-

ation modules. We consider congestion as an use case to generate anomalies and take

into account its root causes including link failure, switch failure and buffer overload. This

architecture is implemented and validated in SDN (Software-Defined Networking) envi-

ronments using ONOS controllers.

ii



Acknowledgments

I am deeply indebted to Prof. Abdelhamid MELLOUK, Dr. Sami SOUIHI and Dr. Hai Anh

TRAN for their guidance and advice from the beginning of my research at the University

of Paris-Est Créteil until today. They were guiding me every single step of the PhD and

supporting me to complete this thesis. They gave me opportunities to think outside the

box, determine my research directions, and make sure that I was in the right direction. As

English is my second language, I would like to thank them for their patience in publication

and manuscript corrections. Furthermore, I feel honored for the great opportunity I had

to work with them.

I would like to thank all colleagues in the TINCNET/LISSI/UPEC research team in-

cluding Dr. Thiago Abreu, Dr. Said HOCEINI, Dr. Mohamed Aymen LABIOD and Dr. Brice

AUGUSTIN. They are helping me in many administrative and teaching tasks and provid-

ing me with an environment where I can concentrate on my research work. Moreover,

one of the valuable gifts of my life at UPEC is a group of friends: Lamine AMOUR, Fetia

BANNOUR, Tran-Tuan CHU, Abhishek DJEACHANDRANE and the others. Their support

over the years in all the ups and downs are immense comfort.

Last but not least, I would like to thank my parents for their endless love and encour-

agement. My journey would not be possible without their sacrifices. Their unconditional

love and Skype call encouraged me to keep going when I could not see the light at the end

of the tunnel.

iii



Contents

Résumé i

Abstract ii

Acknowledgments iii

List of Figures x

List of Tables xii

List of Acronyms xiv

List of publications xvii

Introduction 1

1 General Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Problem Statements and Objectives . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 State-of-the-art on Network Troubleshooting 7

1.1 Network Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1.1 Rule Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1.2 Link Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1.3 Buffer Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.2 Traditional Troubleshooting Architecture . . . . . . . . . . . . . . . . . 16

1.2 Background on encryption protocols . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1 QUIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1.1 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iv



CONTENTS

1.2.1.2 Connection Establishment . . . . . . . . . . . . . . . . . . . . 19

1.2.1.3 Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.1.4 Connection Migration . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.2 Other Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.2.1 IPsec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.2.2 TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Drawbacks of Troubleshooting with Encrypted Traffic . . . . . . . . . . . . . 23

1.3.1 Network Performance Monitoring . . . . . . . . . . . . . . . . . . . . . 23

1.3.1.1 QoE Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.1.2 Application Identification . . . . . . . . . . . . . . . . . . . . . 25

1.3.2 Intrusion Detection System (IDS) . . . . . . . . . . . . . . . . . . . . . 26

1.3.2.1 Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.2.2 DDoS Protection and Migration . . . . . . . . . . . . . . . . . 26

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Novel Global Troubleshooting Framework for Encrypted Traffic 29

2.1 Novel Network Troubleshooting Architecture for Encrypted Traffic . . . . . . 30

2.2 Proof-of-concept of Proposed Troubleshooting Architecture in SDN . . . . . 32

2.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 Data Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.2 Monitoring Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.3 Parameter Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.3.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.3.2 Packet Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.3.3 Quality of Experience . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.3.4 Other Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.3.5 Measurement Frequency . . . . . . . . . . . . . . . . . . . . . 43

2.4 Troubleshooting Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Datasets for root cause analysis . . . . . . . . . . . . . . . . . . . . . . 43

2.4.2 Dataset for traffic classification . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

v



CONTENTS

3 Traffic Classification: Novel QUIC traffic Classifier based on Convolutional Neu-

ral Network 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Convolutional network . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 Characteristics of QUIC-based applications . . . . . . . . . . . . . . . 51

3.3 Traffic Classification Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Port-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Payload-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.3 Statistic-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.4 DL-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Proposal: Novel Traffic Classification Method for QUIC Traffic . . . . . . . . 56

3.4.1 Traffic Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.2 Flow-based Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.4 Proposed Traffic Classification Method . . . . . . . . . . . . . . . . . . 58

3.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1 Dataset specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.2 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.3 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.3.1 First Stage of Classification . . . . . . . . . . . . . . . . . . . . 63

3.5.3.2 Second Stage of Classification . . . . . . . . . . . . . . . . . . 63

3.5.3.3 Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Anomaly Detection 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Anomaly Detection Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Knowledge-based Mechanisms . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.2 Rule Inductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.3 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.4 ML-based Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Proposed Anomaly Detection Approach using Machine Learning . . . . . . 71

vi



CONTENTS

4.3.1 ML-based Anomaly Detection Method . . . . . . . . . . . . . . . . . . 72

4.3.2 Data Collection and Processing . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Temporary Remediation: SDN-based Application-aware Segment Routing for Large-

scale Network 80

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Application-aware Routing Mechanisms . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Application-aware routing . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.2 Application-aware MPLS . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.3 Application-aware SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Proposed Adaptive Segment Routing Mechanism for Encrypted Traffic . . . 87

5.3.1 Overview of SDN-based Adaptive Segment Routing Framework . . . 87

5.3.2 Network Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.2.1 Traffic Classification . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.2.2 Parameter Measurement . . . . . . . . . . . . . . . . . . . . . 90

5.3.3 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.4 Application-aware Remediation . . . . . . . . . . . . . . . . . . . . . . 90

5.3.4.1 QoE Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.4.2 RL-based Segment Routing . . . . . . . . . . . . . . . . . . . . 91

5.3.4.3 Exploration-Exploitation Trade-off . . . . . . . . . . . . . . . 93

5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.2 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.3.1 Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.3.2 Selection algorithms . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.3.3 Segment routing mechanisms . . . . . . . . . . . . . . . . . . 99

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

vii



CONTENTS

6 Root Cause Analysis and Definitive Remediation 104

6.1 Root Cause Analysis: Machine Learning based Root Cause Analysis for SDN

Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1.2 Root Cause Analysis Mechanisms . . . . . . . . . . . . . . . . . . . . . 107

6.1.2.1 Knowledge-based Mechanism . . . . . . . . . . . . . . . . . . 107

6.1.2.2 Causality/Dependency Graph . . . . . . . . . . . . . . . . . . 108

6.1.2.3 ML-based Mechanism . . . . . . . . . . . . . . . . . . . . . . . 108

6.1.3 Proposed ML-based RCA Mechanism . . . . . . . . . . . . . . . . . . . 109

6.1.3.1 Data Collection and Processing . . . . . . . . . . . . . . . . . 110

6.1.3.2 ML-based RCA Method . . . . . . . . . . . . . . . . . . . . . . 111

6.1.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1.4.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Definitive Remediation: Adaptive QUIC BBR Algorithm using Reinforcement

Learning for Dynamic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2.2 Congestion Control Mechanisms . . . . . . . . . . . . . . . . . . . . . . 121

6.2.2.1 Loss-based Congestion Control . . . . . . . . . . . . . . . . . 121

6.2.2.2 Rate-based Congestion Control . . . . . . . . . . . . . . . . . 121

6.2.2.3 Improvement of Rate-based Congestion Control . . . . . . . 123

6.2.3 Proposal: Adaptive BBR Algorithm . . . . . . . . . . . . . . . . . . . . . 123

6.2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.4.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Conclusions and perspectives 130

1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

2 Perspectives and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Version abrégée en Français 136

1 Contexte général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

viii



CONTENTS

2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4 Conclusion et Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5 Liste des publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography 143

Annex 167

ix



List of Figures

1.1 Unidirectional link discovery in LLDP. . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Overall Traditional Troubleshooting Architecture. . . . . . . . . . . . . . . . . 16

1.3 The global growth of the encrypted traffic [1]. . . . . . . . . . . . . . . . . . . 17

1.4 Difference between TCP+TLS and QUIC architecture. . . . . . . . . . . . . . 18

1.5 Comparison of QUIC packet format with TCP+TLS. . . . . . . . . . . . . . . . 18

1.6 Comparison of connection establishment between QUIC and TCP+TLS. . . 20

1.7 Multiplexing comparison between HTTP1.1 and HTTP/2 over TCP and QUIC

[2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.8 IPsec packet structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.9 TLS record packet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 The novel troubleshooting architecture in the context of encrypted traffic. . 31

2.2 The novel troubleshooting framework in the SDN environment. . . . . . . . 33

2.3 NetFlow Architecture [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 sFlow Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 The link discovery in LLDP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Byte in payload of QUIC packets for different applications. . . . . . . . . . . 50

3.2 Percentage of small and large packets in flows. . . . . . . . . . . . . . . . . . . 52

3.3 Novel traffic classification approach for QUIC traffic. . . . . . . . . . . . . . . 56

3.4 Macro-averaging precision, macro-averaging recall and macro-averaging F1-

score in different subsets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Macro-averaging precision, macro-averaging recall and macro-averaging f1-

score in different loss functions. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Precision, recall and F1-score of the proposed method on five QUIC-based

applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

x



LIST OF FIGURES

4.1 Overall architecture of ML-based anomaly detection mechanism in the SDN

environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 The ML-based Anomaly Detection Method. . . . . . . . . . . . . . . . . . . . 73

5.1 The SDN-based adaptive SR framework issued from the global troubleshoot-

ing framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 The novel traffic classification approach for encrypted traffic. . . . . . . . . . 89

5.3 The QoE estimator for encrypted traffic. . . . . . . . . . . . . . . . . . . . . . 91

5.4 The RL-based SR mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Average MOS score and standard deviation of three selection algorithms in

the proposed SR mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6 The MOS score of three SR mechanisms. . . . . . . . . . . . . . . . . . . . . . 98

5.7 The average CPU usage and overhead of three SR mechanisms. . . . . . . . . 99

6.1 Overall architecture of ML-based RCA in SDN environment. . . . . . . . . . 110

6.2 The ML-based RCA Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 The accuracy against the number of features in the feature selection method. 116

6.4 Congestion control operating point: delivery rate and RTT against the amount

of inflight data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.5 Adaptive BBR alggorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.6 Number of network conditions in which each congestion control algorithm

obtains the best performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.7 Average reward and standard deviation of A-BBR and benchmarks. . . . . . 127

6.8 Fairness of A-BBR and benchmarks in dynamic network conditions. . . . . . 128

8.9 L’architecture proposée pour le dépannage des réseaux opérateurs. . . . . . 138

xi



List of Tables

1 Downtime of service providers and their economic impacts. . . . . . . . . . 1

2.1 Comparison between NetFlow, sFlow and Openflow-based monitoring ap-

proaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2 Existing troubleshooting dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Considered network conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Datasets for root cause analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Classification dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Registered port numbers by IANA for several applications. . . . . . . . . . . . 53

3.2 Signatures for several P2P applications. . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Dataset specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Performance metrics of ML algorithms in the first stage of classification. . . 62

3.5 Time complexity of ML algorithms in the first stage of classification. . . . . . 62

4.1 Considered network conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Anomaly Detection Datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Performance metrics of ML algorithms in anomaly detection for the dataset

in static network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Time complexity of ML algorithms in anomaly detection for the dataset in

static network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Performance metrics of ML algorithms in anomaly detection for the dataset

in dynamic network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Time complexity of ML algorithms in anomaly detection for the dataset in

dynamic network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Configuration of the PC used in the testbed. . . . . . . . . . . . . . . . . . . . 94

5.2 Scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xii



LIST OF TABLES

5.3 Summarization of average optimal MOS, median and 95 % confidence in-

terval of MOS in the SR mechanisms. . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Summarization of average overhead in the SR mechanisms. . . . . . . . . . . 103

6.1 Considered network conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Troubleshooting Datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Performance metrics of the considered ML algorithms for the dataset in

static network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 Time complexity of ML algorithms in RCA for the dataset in static network. 115

6.5 F1-score of two feature sets in the RCA for the dataset in static network. . . . 116

6.6 Performance metrics of the considered ML algorithms for the dataset in dy-

namic network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.7 Time complexity of ML algorithms in RCA for the dataset in dynamic network.118

6.8 Some important results of the considered congestion control algorithms. . . 128

8.9 Le coût lié aux interruptions de services. . . . . . . . . . . . . . . . . . . . . . 136

xiii



List of Acronyms

5G Fifth Generation Technology Standard.

AdaBoost Adaptive Boosting.

AI Artificial Intelligence.

ANN Artificial Neural Network.

API Application Programming Interface.

ASs Autonomous Systems.

BDDP Broadcast Domain Discovery Protocol.

CNN Convolutional Neural Network.

DDoS Distributed Denial-of-Service.

DFS Depth-First Search.

DL Deep Learning.

DRL Deep Reinforcement Learning.

FTP File Transfer Protocol.

HoL blocking Head of Line blocking.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

IANA Internet Assigned Numbers Authority.

ICMP Internet Control Message Protocol.

xiv



LIST OF ACRONYMS

IETF Internet Engineering Task Force.

IoT Internet of Things.

IPsec Internet Protocol Security.

LLDP Link-Layer Discovery Protocol.

LSTM Long Short-Term Memory.

MAC Message Authentication Code.

MIB Management Information Base.

ML Machine Learning.

MLP Multi-Layer Perceptron.

MOS Mean Opinion Score.

MPTCP MultiPath Transmission Control Protocol.

NFV Network Function Virtualization.

NOs Network Operators.

OF OpenFlow.

P2P Peer-to-Peer.

QoE Quality of Experience.

QUIC Quick UDP Internet Connections.

RF Random Forest.

SDN Software-defined Networking.

SIP Session Initiation Protocol.

SLA Service-level Agreement.

SMTP Simple Mail Transfer Protocol.

xv



LIST OF ACRONYMS

SNMP Simple Network Management Protocol.

SR Segment Routing.

SSH Secure Shell Protocol.

SSL Secure Sockets Layer.

SVM Support-Vector Machine.

TCAM Ternary Content Addressable Memory.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

TLS/SSL Transport Layer Security / Secure Sockets Layer.

UDP User Datagram Protocol.

UN United Nations.

VPN Virtual Private Network.

xvi



List of publications

International journals

• Van TONG, Sami SOUIHI, Hai Anh TRAN and Abdelhamid MELLOUK. "SDN-based

Application-aware Segment Routing for Large-scale Network." IEEE Systems Journal

(Accepted in October 2021), 10 pages, doi: 10.1109/JSYST.2021.3123809.

International conferences

• Van TONG, Hai Anh TRAN, Sami SOUIHI and Abdelhamid MELLOUK. "Machine

Learning based Root Cause Analysis for SDN Network." 2021 IEEE Global Commu-

nications Conference (GLOBECOM), 6 pages, Madrid, Spain, 7–11 December, 2021.

• Van TONG, Sami SOUIHI, Hai Anh TRAN and Abdelhamid MELLOUK. "Service-

centric Segment Routing Mechanism using Reinforcement Learning for Encrypted

Traffic." 2020 16th International Conference on Network and Service Management

(CNSM), 2020, pp. 1-5, doi: 10.23919/CNSM50824.2020.9269070.

• Lamine Amour, Van TONG, Sami SOUIHI, Hai Anh TRAN and Abdelhamid MEL-

LOUK. "Quality estimation framework for encrypted traffic (q2et)." 2019 IEEE Global

Communications Conference (GLOBECOM), 2019, pp. 1-6, doi: 10.1109/GLOBE-

COM38437.2019.9014234.

• Van TONG, Hai Anh TRAN, Sami SOUIHI and Abdelhamid MELLOUK. "Network

troubleshooting: survey, taxonomy and challenges." 2018 International Conference

on Smart Communications in Network Technologies (SaCoNeT), 2018, pp. 165-170,

doi: 10.1109/SaCoNeT.2018.8585610.

• Van TONG, Hai Anh TRAN, Sami SOUIHI and Abdelhamid MELLOUK. "A novel

QUIC traffic classifier based on convolutional neural networks." 2018 IEEE Global

xvii



LIST OF ACRONYMS

Communications Conference (GLOBECOM), 2018, pp. 1-6,

doi: 10.1109/GLOCOM.2018.8647128.

• Van TONG, Hai Anh TRAN, Sami SOUIHI and Abdelhamid MELLOUK. "Empiri-

cal study for dynamic adaptive video streaming service based on Google transport

QUIC protocol." 2018 IEEE 43rd Conference on Local Computer Networks (LCN),

2018, pp. 343-350, doi: 10.1109/LCN.2018.8638062.

xviii



Introduction

« We are all now connected by the
Internet, like neurons in a giant
brain »

Stephen Hawking

1 General Context

Root causes analysis of anomalies plays an important in the network. Therefore, network

troubleshooting which is a process of detecting anomalies, identifying its root causes and

implementing remediation approaches to solve it definitively, is studied thoroughly by

the research community [4, 5, 6]. The reason is that computer networks nowadays have

rapidly evolved along with significant growth of IoT (Internet of Things) increase not only

a network coverage but also a complexity in the computer network, bringing a risk of

incurring problems in the network. For example, there are many problems in the network

(e.g., server disruptions, cyberattacks, link failure, etc.).

Regarding the server disruptions, Tab. 1 illustrates the total downtime and corre-

sponding money lost of several service providers [7]. For instance, Youtube and Paypal

lost from $34,000 to over $6,700,000 related to a few hours of disruptions on their cloud

servers due to failures.

Besides, many cloud services nowadays are disrupted by cyberattacks (e.g., DDoS

Total Downtime (Hours) Cost (USD)
Youtube 0.17 34,000

CloudFlare 1 168,000
Zoho 33.5 600,000
Cisco 5.33 1,066,000
eBay 6.25 1,406,250

Facebook 8.5 1,700,000
Paypal 30.2 6,795,000

Table 1: Downtime of service providers and their economic impacts.

1



1. GENERAL CONTEXT

(Distributed Denial of Service) attacks, etc.). DDoS attack is a kind of cyberattack de-

signed to overload and disrupt network services by exhausting them with access requests.

In February 2018, Github [8] was targeted by DDoS attacks with 1.3 Tbps of traffic that

overwhelms their servers with 126.9 million packets per second. It was the biggest recorded

DDoS attack at that time, but GitHub’s systems only suffered from 20 minutes of down-

time. The reason is that GitHub implemented a DDoS migration mechanism to detect and

prevent attacks from exhausting their servers. Similarly, in February 2020, Amazon an-

nounced that their AWS Shield services mitigated the largest recorded DDoS attack with

2.3 Tbps of network traffic [8]. This attack which caused three days of "elevated threat" for

AWS Shield services, was carried out using hijacked CLDAP (Connection-less Lightweight

Directory Access Protocol) web servers. According to the latest report of Radware’s Threat

Research team during the first four month of 2021, the volume of DDoS attacks increases

by 30 percent. DDoS attacks not only focus on cloud services but also financial institutes.

For example, data centers of one of the top 15 banks in Europe, with over a trillion dollars

in assets, were targeted due to three large bursts of traffic during the second week of June

2021 [9]. The first attack reached a peak at 80 Gbps within seconds while the second and

last attacks reached a peak at 45 and 24 Gbps, respectively.

Before presenting the problem statements and objective of the thesis, we explain sev-

eral notations in network troubleshooting. Symptom is an external manifestation of fail-

ures that leads to anomalies in the network. Failure happens when an error results in a

malfunction of network systems. Error is a difference between observed and specified

conditions. For example, there are errors related to packet transmission when packets ar-

rive at a receiver. The receiver can incorrectly read bit value (e.g., reading bit 0 instead of

bit 1, etc.). Error is an outcome of faults. In other words, fault (also referred to problem)

is a root cause that leads the network systems to an error state. For example, a crashed

program is a failure that occurs when the program enters a branch of code comprising a

programming error. The root cause of programming error is a programmer who leads to

the failure (crashed program). In general, network problems can be categorized according

to its time duration [6, 10]:

• Permanent problem: It exists in the network until remediation is implemented (e.g.,

broken cable, malfunctioning interface card, etc.).

• Intermittent problem: It is a malfunction at a specific time interval in network sys-

2



2. PROBLEM STATEMENTS AND OBJECTIVES

tems that normally operate at other intervals. For example, Internet connections in

a home network are not stable during rush hours because of many network devices.

However, it is normal in other hours when the number of network devices accessing

the Internet reduces.

• Transient problem: It is a temporary problem in the network for a short period and

causes to slight performance degradation. After a given time, it disappears auto-

matically without human intervention. For example, when a user accesses a multi-

media service (e.g., video streaming, etc.), the service may not be available due to

overload. After a few minutes, the user retries and can access the service.

2 Problem Statements and Objectives

In network troubleshooting, the processing time for root cause analysis and remediation

can take from an hour to more than five hours depending on the status of anomalies in

the network [11]. As a result, network systems can suffer from negative impacts (e.g., high

latency, high loss, etc.). These impacts can result in frequent connection interruptions

in the network. Depending on the anomaly’s nature, there are two possible cases [12].

If the root cause of anomalies is identified and solved quickly, temporary remediation is

not necessary. Otherwise, temporary remediation is required to guarantee the availability

of the network. Therefore, it became inevitable to think about network troubleshooting

frameworks that guarantee the network’s availability during the root cause analysis and

definitive remediation.

Although network troubleshooting is studied for the past two decades, there have

been several concerns regarding its deployment in the context of encrypted traffic. The

traditional troubleshooting mechanisms were not designed for encrypted traffic. How-

ever, many service providers today encrypted network traffic to prevent attackers from

inspecting data packets for illegal activities. Concretely, 80 percent of web traffic was en-

crypted by 2019 compared to 40 percent by 2016 thanks to a recent Cisco report [13].

From the point of view of NOs (Network Operators), the information in the packets is hid-

den such as sequence number, acknowledgment number, payload signatures and so on.

This brings several limitations related to network performance monitoring approaches

(e.g., estimation of quality of experience, application identification, etc.) and intrusion

detection systems [14, 15]. Therefore, encrypted traffic results in many obstacles for trou-

3



3. MAIN CONTRIBUTIONS

bleshooting, particularly in data collection (e.g., collecting performance metrics, etc.) and

remediation approaches using a deep packet inspection (e.g., application-aware traffic

engineering, signature-based intrusion detection systems, etc.).

The main objective of this work are the following:

• It is difficult to design an effective troubleshooting architecture for encrypted traf-

fic where header and payload of packets can be encrypted to protect the data and

user’s privacy. Moreover, encrypted traffic results in obstacles for application-aware

remediation mechanisms due to a lack of information about application classes.

How can we design effective troubleshooting architecture for encrypted traffic?

• It is not easy to identify the real root cause of anomalies and solve it definitively.

Therefore, we present a proof-of-concept of root cause analysis and remediation

approaches to identify the root cause of anomalies and solve it completely.

• Identifying the root cause of anomalies and implementing remediation approaches

require much time depending status of anomalies. Consequently, the network will

be influenced negatively (e.g., high latency, high loss, etc.) during that period. How

can we deal with this issue?

3 Main contributions

In this section, we outline the main contributions of this work. Concretely, we propose a

novel troubleshooting framework for Network Operators in the context of encrypted traf-

fic with five modules: data collection, anomaly detection, temporary remediation, root

cause analysis and definitive remediation. In addition to the proposed troubleshooting

framework, there are four main contributions as follows:

• In addition to the data collection module, we propose a novel traffic classification

approach to classify encrypted traffic into different kinds of applications (e.g., video

streaming, file transfer, etc.). The application class plays an important role in the re-

mediation approaches (e.g., application-aware mechanisms, etc.) in network trou-

bleshooting (refer to Chapter 3).

• We propose a temporary remediation approach to assure the availability of network

as well as meet strict SLA requirements during the root cause analysis and definitive

remediation (refer to Chapter 5).

4



4. DISSERTATION ORGANIZATION

• We present a proof-of-concept for the root cause analysis and definitive remedi-

ation in network troubleshooting which allows to automatically identify the root

cause of anomalies and address it completely (refer to Chapter 6).

• To implement the network troubleshooting framework, it is necessary for troubleshoot-

ing datasets. Therefore, we build and contribute the troubleshooting datasets which

contain a dataset for encrypted traffic classification approaches and two datasets

for the root cause analysis in order to facilitate the network troubleshooting (refer

to Chapter 2, Section 2.4).

4 Dissertation Organization

In this dissertation, each chapter is dedicated to one module of the proposed troubleshoot-

ing framework. The remainder of this dissertation is organized as follows:

Chapter 1 This chapter provides related work on several network problems (e.g., link

failure, switch failure, etc.). In addition to explaining the fundamental parts of traditional

troubleshooting architecture, we explain how network traffic is encrypted and provide an

analysis on limitations of network troubleshooting for encrypted traffic.

Chapter 2 presents fundamental parts of novel troubleshooting architecture in the

context of encrypted traffic and shows a proof-of-concept of this architecture in SDN

(Software-defined Networking) environment. Besides, we present a parameter measure-

ment module to collect data in order to build troubleshooting datasets. Moreover, the

chapter thoroughly describes the troubleshooting datasets which are composed of datasets

for the root cause analysis and for encrypted traffic classification.

Chapter 3 describes a novel encrypted traffic classification method to identify differ-

ent kinds of applications. The purpose is to provide information about application classes

for application-aware mechanisms in network troubleshooting.

Chapter 4 presents related work on anomaly detection. Moreover, this chapter takes

into account congestion to generate anomalies and presents an anomaly detection ap-

proach using machine learning to detect these anomalies in the network.

Chapter 5 presents an application-aware segment routing mechanism in temporary

remediation. This mechanism identifies application classes according to traffic classifica-

tion. In a particular application, this mechanism implements a specific routing strategy

based on a reinforcement learning algorithm to meet strict SLA requirements.

5



4. DISSERTATION ORGANIZATION

Chapter 6 considers congestion a use-case for the root cause analysis and definite re-

mediation. This chapter presents a root cause analysis using machine learning to identify

the root cause of congestion. Besides, the chapter presents an adaptive congestion con-

trol algorithm to solve it completely.

Conclusions and Perspectives The last chapter concludes this thesis and provides an

insight into our future work and perspectives in the area of network troubleshooting.

6



Chapter 1

State-of-the-art on Network
Troubleshooting

«A Protocol Approach to
Troubleshooting»

Ed Wilson

Chapter 1 presents the state-of-the-art on network troubleshooting and a traditional

troubleshooting architecture for non-encrypted traffic. Then, we discuss its limitations

when traffic is encrypted.

Contents
1.1 Network Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1.1 Rule Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1.2 Link Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1.3 Buffer Overload . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.2 Traditional Troubleshooting Architecture . . . . . . . . . . . . . . . . 16

1.2 Background on encryption protocols . . . . . . . . . . . . . . . . . . . . . 17

1.2.1 QUIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1.1 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.1.2 Connection Establishment . . . . . . . . . . . . . . . . . . . 19

1.2.1.3 Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.1.4 Connection Migration . . . . . . . . . . . . . . . . . . . . . . 21

1.2.2 Other Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.2.1 IPsec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.2.2 TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Drawbacks of Troubleshooting with Encrypted Traffic . . . . . . . . . . . 23

1.3.1 Network Performance Monitoring . . . . . . . . . . . . . . . . . . . . 23

1.3.1.1 QoE Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.1.2 Application Identification . . . . . . . . . . . . . . . . . . . . 25

7



1.3.2 Intrusion Detection System (IDS) . . . . . . . . . . . . . . . . . . . . 26

1.3.2.1 Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.2.2 DDoS Protection and Migration . . . . . . . . . . . . . . . . 26

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8



1.1. NETWORK TROUBLESHOOTING

1.1 Network Troubleshooting

In the early 19th century, technicians were dispatched to find problems in telegraph and

phone line infrastructure to repair and solve the issues. Historically, a troubleshooter

refers to a skilled worker who finds and solves technical problems. Nowadays, troubleshoot-

ing is a form of problem-solving which aims to repair failed processes in a machine or a

system. According to related work [16, 17], there are several existing conceptions of the

troubleshooting process. The basic concept of troubleshooting is finding the faulty com-

ponents in a device to repair or replace it [18]. Schaafstal et al. [19] designed the trou-

bleshooting process with four subtasks: formulating problem description, cause genera-

tion, test, and evaluation. Similarly, troubleshooting is considered as an iterative process

with four subprocesses: problem space construction, problem space reduction, fault di-

agnosis, and solution verification [20].

Network troubleshooting is an iterative process with three subtasks: identifying, diag-

nosing and solving problems in the network. In the past, NOs (Network Operators) imple-

mented manual troubleshooting tools such as ping, traceroute and so on. ping is a com-

puter network administration utility designed to check a reachability between a source

and a destination and round-trip time of packets in the network. traceroute is a computer

network diagnostic utility used to display possible routes between a source and a destina-

tion and measure a transit delay of packets in the network. These troubleshooting tools

are used to diagnose complex problems such as loops caused by undefined interaction

between spanning tree protocols [21], etc. However, these approaches are not effective

with a huge number of network devices. Besides, 24.6 percent of administrators reported

that anomaly diagnosis takes over an hour on average to solve anomalies [22]. Therefore,

it is necessary for an automated troubleshooting process that aims to detect an anomaly,

locate its causes and solve it. Consequently, network troubleshooting is considered by the

research community [4, 5, 6]. In the following subsection, we present state-of-the-art of

network troubleshooting.

1.1.1 State-of-the-art

According to related work on network troubleshooting [4, 5, 23], problems can be clas-

sified into several categories thanks to locations where problems happen or factors that

result in problems. Yu et al. [5] and Fonseca et al. [4] categorize problems into problems

9



1.1. NETWORK TROUBLESHOOTING

in application, control and infrastructure layer. Similarly, problems can be classified into

problems in application service providers (ASP) or Internet service providers (ISP) [23].

Besides, problems can be classified into problems caused by administrators (e.g., router

misconfiguration, server misconfiguration, etc.) or problems that are not caused by ad-

ministrators (e.g., link failure, switch failure, buffer overload, etc.). According to a survey

of Network Operators (NOs) [11], in this thesis, we present several problems which are not

caused by administrators in following subsections.

1.1.1.1 Rule Failure

Bu et al. [24] categorized failure rule in the network into missing fault and priority fault.

The missing fault occurs when a rule is not executed as expected whereas the priority fault

occurs when overlapping rules violate a priority order.

There are research studies concentrating on the missing fault including ATPG [22] and

Monocle [25]. These approaches verify the rules by generating probe packets to exercise

every rule. ATPG uses a header space analysis [26] to check the reachability between all

test hosts. Then, the reachability result is transferred to a probe packet generator to com-

pute a minimal set of probe packets via greedy algorithm [27]. Next, these probe packets

are sent into the network systems to check the rule’s corrections. If an error is detected,

a fault localization algorithm is implemented to narrow down to identify the root cause.

However, ATPG has a drawback when it generates the probe packets for all rules. It is

not effective when there are only a few up-to-date rules. Consequently, Monocle is pro-

posed to overcome this drawback. This approach only verifies recently-installed rules and

reports misbehaviors. Besides, Monocle formulates knowledge from flow tables in the

switches as constraints and applies an SAT-solver [28] to generate a set of probe packets.

Probing is an intrusive method which generates significant overhead and increases

link utilization in the network. Consequently, it is necessary to minimize the number of

probe packets. This is a minimum set cover problem, which is a NP-Complete problem

[22]. Therefore, Bu et al. [24] proposed RuleScope, a framework for detecting rule failures

in the network. RuleScope divides flow tables into solvable subsets of rules to minimize

probe scale. Then, this approach creates a directed acyclic graph for each subset and

generates a set of probe packets for each subset. As a result, this approach processes the

probe packet generation more quickly due to a small scale of rule subsets.

Although RuleScope minimizes the number of probe packets, this approach suffers

10



1.1. NETWORK TROUBLESHOOTING

from a drawback related to a separation in the flow tables. This lead to the priority fault in

the switches. The separation in the flow tables into small subsets can result in preter-

mitting two overlapping rules in two different subsets of rules. Zhao et al. [29] pro-

posed SERVE, a rule verification to identify rule failure in the switches automatically. First,

SERVE extracts all rules for each device and builds a multi-rooted tree that considers rule

connections. Next, SERVE analyses the multi-rooted tree to generate the minimum num-

ber of probe packets. The minimum set cover problem is a NP-Complete problem, so

SERVE applies DFS (Depth-First Search) algorithm to generate the probe packets. In [30],

Zhao et al. extended the previous study [29] to present a complete framework. After

generating the probe packets, SERVE injects these packets into network systems using

an out-band channel. Besides, SERVE also computes a desired network behavior using

the multi-rooted trees. According to a comparison between the feedback from the out-

band channel for every rule and the desired network behaviors, SERVE can detect faulty

rules and send notifications to administrators. The SERVE’s performance is evaluated to

benchmarks in processing time, number of probe packets and overhead. Concerning the

number of probe packets, SERVE decreases the number of probe packets by up to 75 per-

cent in comparison with Monocle. Regarding the processing time, SERVE’s figure is three

times less than the figure for ATPG. As for the overhead, in-band bandwidth is not influ-

enced according to using the out-band channel to inject the probe packets. Besides, the

out-band bandwidth is far less than link capacity.

1.1.1.2 Link Failure

Link failure refers to unreachability between two switches. It can lead to a high packet loss

and performance degradation in the network. Link failure can be detected according to

probe packets in active monitoring approaches. ping is a simple troubleshooting tool that

sends probe packets to check the reachability between two end-points. If probe packets

are lost, it means that there is a faulty link between these end-points. Similarly, Cascone

et al. [31] proposed a fast failure detection mechanism to detect the link failure based

on the exchange of bidirectional "heartbeat" packets. When packet rate drops below a

threshold, a node sends heartbeat packets to its neighbors. If there are no responses from

its neighbors after a given time, the link failure happens in the network. However, this

mechanism requires a strict consumption related to the backup solutions that cannot be

utilized to guarantee the short failover delays (1 ms).

11



1.1. NETWORK TROUBLESHOOTING

Controller

s1 s2

p1 p2

Packet-out + LLDP Packet-in + LLDP

LLDP

Figure 1.1: Unidirectional link discovery in LLDP.

Moreover, this problem can be detected by using LLDP (Link-Layer Discovery Proto-

col) in SDN (Software-defined Networking) [32, 33]. According to the topology discov-

ery protocol, SDN controller can detect link failure and remove it from network topology.

First, an OF (OpenFlow) switch connects to the controller so that the controller knows its

active ports. Next, the controller generates a Packet-Out message to each active port in

the switch to discover the topology. The LLDP between switch s1 and s2 is depicted in

Fig. 1.1. First, the controller encapsulates an LLDP packet in a Packet-out message and

sends it to the switch s1. When switch s1 receives the Packet-out message, it will forward

the LLDP packet to switch s2. After receiving the LLDP packet, switch s2 encapsulates this

packet in a Packet-in message and sends it back to the controller. The controller receives

this message and creates a link from switch s1 to s2. The same process is performed to

identify the link for an opposite direction. When link s1-s2 is faulty, the controller will not

receive the Packet-in message from switch s2. Then, the controller will remove this link

from the network topology. In the network with S switches interconnected by a set of L

links, the total number of Packet-out and Packet-in messages are described in Equation

1.1, 1.2, respectively. Pi is the number of the active port in the switch Si .

TOTALPACKET−OUT =∑S
i=1 Pi (1.1)

TOTALPACKET−IN = 2L (1.2)

Unlike the SDN environments, a hybrid SDN contains OF switches and traditional

switches that LLDP cannot discover. Therefore, SDN controllers (e.g., Floodlight [34],

OpenDayLight [35], etc.) utilize a combination of LLDP and BDDP (Broadcast Domain

12



1.1. NETWORK TROUBLESHOOTING

Discovery Protocol) [32] for the topology discovery. There are two main differences be-

tween LLDP and BDDP. First, destination MAC address in BDDP is a broadcast address

(FF:FF:FF:FF:FF:FF) in contrast to multicast addresses used by LLDP. This allows the tra-

ditional switch forwarding the BDDP packets to detect multi-hop links whereas LLDP is

a mechanism for a single-hop link detection. Second, EtherType of LDDP is 0x88cc while

EtherType of BDDP is 0x8999.

To keep up-to-date topology information, the controller needs to send TOTALPACKET−OUT

Packet-out messages and TOTALPACKET−IN Packet-in messages periodically. This leads to

a significant control overhead and an increase of link utilization. Therefore, many studies

focus on optimizing the number of control packets for the topology discovery. Hasan et

al. [36] proposed OpenFlow Discovery Protocol version 2 (OFDPv2) to reduce the number

of Packet-out messages. First, OFDPv2 reduces the number of LLDP Packet-Out messages

sent to each switch to one. Then, this protocol installs a new rule in each switch to for-

ward LLDP packets received from the controller to all available ports. Finally, OFDPv2

customizes the event handler of the Packet-in message in the controller to parse the MAC

address.

Besides, Xu et al. [37] proposed a monitoring link failure detection approach to reduce

the number of Packet-out messages in LLDP to one. First, this approach calculates a mon-

itoring tree path based on network topology. Then, this approach installs monitoring flow

entries into each switch based on switch’s locations in the monitoring tree path to match

and apply actions to monitoring packets. Next, the controller sends a Packet-out message

to a source node to instruct this node to send out the monitoring packets to other nodes

following the monitoring tree. If a switch cannot receive the LLDP packet after a given

time, this switch will send an alarm packet to the controller.

Unlike sending LLDP packets periodically to network systems to update the topol-

ogy information, Azzouni et al. [38] proposed sOTDP, a secure and efficient OpenFlow

Discovery Protocol that applies BFD (Bidirectional Forwarding Detection) [39] to detect

link’s events quickly. The controller listens to link’s event notifications from switches to

update the network topology instead of updating it periodically by sending LLDP pack-

ets. BFD is a detection protocol designed to provide a fast failure detection of forwarding

paths. This protocol establishes a session between two endpoints over a particular link

and sends control messages to detect active links.

13



1.1. NETWORK TROUBLESHOOTING

1.1.1.3 Buffer Overload

Switch’s buffer overload occurs when a data volume exceeds the storage capacity of buffer

memory in switches. This can lead to congestion in the network. Phanishayee et al. [40]

highlighted that an increase of buffer size can solve the buffer overload due to a massive

amount of network traffic. Nevertheless, this approach has low scalability because re-

placement cost of conventional devices is extremely high. Therefore, many studies focus

on congestion control and congestion avoidance mechanisms to prevent and avoid the

buffer overload.

Concerning the congestion control mechanisms, there are two kinds of flows in the

network: elephant flows and mice flows. Elephant flows are the large continuous flows

that consume high bandwidth whereas mice flows are the small flows that consume low

bandwidth. The elephant flows contain more than 90 percent of all bytes transmitted in

the network [41, 42]. Thus, Kanagavelu et al. [43] proposed a local rerouting mechanism

for elephant flows in the SDN environment to decrease negative impacts of buffer over-

load. If link utilization is higher than 75 percent of link capacity, an alarm is triggered.

The controller re-routes the elephant flows into other paths with minimal link utilization

to avoid the congested links. As for the mice flows, its lifetime is short, but the percentage

of mice flows in network traffic is very high, approximately 90 percent [41, 42]. Trestian

et al. [44] proposed MiceTrap, an OpenFlow-based traffic engineering approach for mice

flows. First, the network traffic is classified into elephant flows and mice flows. The ele-

phant flows are processed as in previous research studies (e.g., [43], etc.) whereas the

mice flows are processed by MiceTrap. If a traffic volume exceeds a threshold, MiceTrap

is triggered. Then, MiceTrap routes the mice flows using a weighted multi-path routing

algorithm which assigns these flows into paths based on its weight. The higher the path’s

weight, the less the path is chosen.

Besides, there are studies focusing on both elephant and mice flows in the routing

approach. Song et al. [45] proposed a routing algorithm which re-routes congested link

when link utilization is higher than 70 percent of link capacity. However, the routing al-

gorithms without considering available bandwidth can lead to congested links in the net-

work. Thus, Attarha et al. [46] and Gholami et al. [47] proposed a routing algorithm that

estimates link utilization and selects the links with high available bandwidth. Similarly,

Sminesh et al.[48] proposed a routing algorithm using a Bayesian network. This approach

contains three modules. The first one is to identify a bottleneck link when its link uti-

14



1.1. NETWORK TROUBLESHOOTING

lization is higher than a threshold. The second one is to update topology and identify all

available routing paths. The final one is to select the routing paths using the Bayesian

network according to link utilization and residual bandwidth.

The above routing mechanisms consider a routing policy for different applications

(e.g., video streaming, file transfer, etc.). However, it is ineffective because each appli-

cation contains specific SLA requirements (e.g., low latency, high bandwidth, etc.). Con-

sequently, many research work placed a special focus on application-aware routing al-

gorithms. Li et al. [49] proposed an application-aware traffic control scheme that im-

plements a simple flow classification to apply corresponding rules. Adami et al. [50]

proposed a differentiated routing algorithm in the network. First, this approach applies

a deep packet inspection to identify the SIP (Session Initiation Protocol) flows using its

signatures (e.g., UDP packet with destination port 5060, content-Type is set to applica-

tion/sdp, etc.). Next, this approach calculates the shortest paths for these flows using the

Dijkstra algorithm with link utilization as a link cost. Similarly, Cheng et al. [51] pro-

posed an application-aware routing algorithm to implement different routing policies

corresponding to various applications. First, this method classifies the flows into three

categories consisting of real-time applications (VoIP, video communication and gaming),

streaming applications (streaming video, audio, IPTV and web browsing) and miscella-

neous applications (file sharing and miscellaneous upload/download). Then, each cate-

gory is processed with a specific routing policy using different network parameters such

as link load, delay and delay variation. Pasca et al. [52] proposed AMPF, an application-

aware multipath packet forwarding framework in SDN using a machine learning algo-

rithm. First, AMPF classifies network flows into real-time traffic, buffered transfer, web

browsing and restricted transfer. Next, AMPF calculates k available paths using Dijkstra’s

algorithm corresponding to each application. Finally, AMPF assigns network flows into

these routing paths.

Regarding the congestion avoidance algorithms, Abdelmoniem et al. [53] proposed a

switch-assisted TCP congestion control approach using a small modification to switches.

When congestion is detected, this approach rewrites the receiver window field in TCP

header to reduce sending rate. Similarly, Hwang et al. [54] proposed SCCP, a scalable con-

gestion control protocol. SCCP limits sending rate of TCP senders by leveraging switches.

Concretely, SCCP modifies the advertisement window field in the TCP header of packets

traversing the switches. Besides, many studies are focusing on end-to-end congestion

15



1.1. NETWORK TROUBLESHOOTING

avoidance algorithms which adjust sending rate at the sender’s side [55, 56]. Xu et al.

[57] proposed DRL-CC, a congestion control algorithm using DRL (Deep Reinforcement

Learning) in MPTCP. DRL-CC monitors acknowledgment packets to extract network pa-

rameters (e.g., RTT, RTT deviation, goodput, etc.) and implements a DRL algorithm to

adjust the congestion window (cwnd) at the sender’s side. Similarly, Jay et al. [58] pro-

posed Auro, an Internet congestion control algorithm using DRL. Auro monitors network

states and adjusts sending rate using the DRL algorithm and network parameters includ-

ing latency gradient, latency ratio and sending ratio.

1.1.2 Traditional Troubleshooting Architecture

Data Collection
Anomaly

Detection

Root Cause

Analysis
Remediation

Figure 1.2: Overall Traditional Troubleshooting Architecture.

Following existing survey on network troubleshooting [4, 5, 6], the traditional trou-

bleshooting architecture contains four main modules including data collection, anomaly

detection, root cause analysis and remediation modules. The traditional troubleshooting

architecture is depicted as in Fig. 1.2. First, the data collection module monitors the net-

work systems and collects the network traffic using monitoring approaches (e.g., NetFlow

[3], sFlow [59], OpenFlow-based monitoring approaches, etc.) to extract troubleshooting

data (e.g., network parameters, etc.). Then, this data is analyzed in the anomaly detection

module to detect anomalies (moments when network problems happen) in the network.

After that, the root cause analysis analyzes thoroughly the troubleshooting data to iden-

tify the root cause of anomalies in the network. An anomaly can be caused by many root

causes. For instance, congestion can result from link failure, DDoS attack, switch’s buffer

overload and so on. Finally, root cause is solved definitively in the remediation module

to return normal states to the network. The purpose of the troubleshooting architecture

is to build self-healing networks that automatically detect, diagnose, and remediate the

network anomalies.

Facing a growing number of data stealing attacks, encrypted traffic is utilized by many

service providers to make their data more secure and protect their user’s privacy. This

leads to many difficulties for network troubleshooting [14]. In the following sections, we

present how network traffic is encrypted and drawbacks of network troubleshooting in

16



1.2. BACKGROUND ON ENCRYPTION PROTOCOLS

the context of encrypted traffic.

1.2 Background on encryption protocols

In the report of Thales e-Security in April 2017 [1], the percentage of encrypted flows

ranges from 16 to 41 percent during the period 2005-2016. Fig. 1.3 shows the global

growth of encrypted traffic from 2005 to 2016. Similarly, in a current Cisco report [13],

80 percent of web traffic is encrypted by 2019 in comparison with 40 percent in 2016.

Figure 1.3: The global growth of the encrypted traffic [1].

According to related work [60], there are two kinds of encryption protocols in the net-

work. The first one encrypts the whole packet (e.g., IPsec, etc.) while the second one only

encrypts packets’s payload (e.g., TLS, etc.). Besides, Google has recently developed QUIC

(Quick UDP Internet Connections), a new transport layer network protocol from 2012,

to provide secure connections and improve latency in the network [61]. Similar to TLS

(Transport Layer Security), QUIC only encrypts the payload and a part of packet’s header.

QUIC is equivalent to a combination of TCP and TLS. Moreover, QUIC offers opportuni-

ties to overcome the limitations of TCP+TLS related to connection establishment time,

TCP Head of Line blocking and connection migration [61]. Therefore, in this thesis, we

consider QUIC as an encryption protocol in the network troubleshooting framework. The

background about IPsec, TLS and QUIC are presented as follows.

1.2.1 QUIC

QUIC [61] is a novel transport protocol designed by Google from 2012. Its design is mo-

tivated by multiple existing protocols such as TCP, TLS and HTTP/2 (Hypertext Transfer

Protocol version 2). In early 2021, QUIC is standardized by IETF (Internet Engineering

17



1.2. BACKGROUND ON ENCRYPTION PROTOCOLS

QUIC

IP

TCP

TLS

Congestion control

Loss recovery

HTTP/2

Multiplexing

UDP

Congestion control

Loss recovery

HTTP/3 over QUIC

Multiplexing

TLS 1.3

Figure 1.4: Difference between TCP+TLS and QUIC architecture.

Task Force) to solve urgent issues of TCP+TLS [62]. The difference between TCP+TLS and

QUIC is depicted as in Fig. 1.4. QUIC is designed to improve latency in the network by

sending data directly with 0-RTT in the best case. Moreover, it incorporates TLS1.3 to

require all connections to be encrypted. QUIC also offers multiplexing features to send

multiple data streams over a single connection. Furthermore, it offers opportunities to

migrate connections without interrupting data communication. QUIC is implemented

on the top of UDP (User Datagram Protocol), so it can be deployed in user space in con-

trast to TCP which is implemented in system kernels. This feature allows deploying QUIC

quickly in an application update cycle. The deep analysis on QUIC’s characteristics [2] is

described as follows.

1.2.1.1 Encryption

Src Port
Dest 

Port
Seq No ACK No Flags Window Options Payload

TCP
Encrypted

Src Port
Dest 

Port
Flags

Connection

ID

Packet

No
Frame ACK

UDP

Window Options Payload

Public 

header

QUIC (Open) QUIC (Encrypted)

Private 

header

Figure 1.5: Comparison of QUIC packet format with TCP+TLS.

QUIC uses TLS 1.3 to provide end-to-end encryption. When the TLS handshake is

complete, the encryption is performed on the UDP payload. In QUIC protocol, there are

18



1.2. BACKGROUND ON ENCRYPTION PROTOCOLS

two kinds of headers: public and private headers. The public header is not encrypted

whereas QUIC encrypts its private header along with the payload. The comparison of

QUIC packet format with TCP+TLS is depicted as in Fig. 1.5. QUIC public header contains

connection ID and flags. The connection ID is an identifier used to identify a connection

at an endpoint. The flags are used in the initial session establishment.

The remainder (private header and payload) is encrypted, so it is not visible to an

eavesdropper. In TCP, the control of the protocol is explicit, so a third party (e.g., NOs, etc.)

is able to inspect this information (e.g., sequence number, acknowledge number, etc.) for

network troubleshooting. For example, NOs can infer network performance parameters

(e.g., round-trip time, etc.) by inspecting TCP packets. In contrast, the private header

and payload of QUIC are encrypted to protect from third-party inspection. This creates

many obstacles for NOs in network troubleshooting. The detail is described thoroughly

in section 1.3.

1.2.1.2 Connection Establishment

Nowadays, many services require a secure and reliable connection. The combination

of TCP and TLS is a potential solution for this purpose. TCP+TLS requires at least two

RTTs to establish a secure connection, bringing a significant latency. QUIC integrates

TLS1.3 to set up a secure connection with 0-RTT for a connection establishment time. In

other words, encrypted payload is sent in the first packet when a previous connection is

resumed. Comparison of connection establishment between QUIC and TCP+TLS is de-

scribed as in Fig. 1.6.

Concerning first-time connection establishment (Fig. 1.6a), QUIC only uses 1-RTT by

combining transport and cryptographic handshake in contrast to 3-RTTs in TCP+TLS1.2

and 2-RTTs in TCP+TLS1.3. QUIC combines both transport and cryptographic handshake

in the first packet of connection to reduce latency in connection establishment. When a

client connects to a server for the first time, it sends a Client Hello message to the server

for key negotiation, along with other information (e.g., connection ID, preferred version

number, etc.). The client encodes the handshake using the version number which is pro-

posed. If the server does not support this version, it redirects the client to a version ne-

gotiation process. Otherwise, the server replies with a Server Hello message containing

necessary information (e.g., certificate, session information, etc.) for subsequent con-

nections. Next, the client can send encrypted packets to the server.

19



1.2. BACKGROUND ON ENCRYPTION PROTOCOLS

Client Server

TCP 

Handshake

TLS

 Handshake

Data Transfer

TCP+TLS1.2

3-RTTs

Client Server

TCP 

Handshake

TLS

 Handshake

Data Transfer

TCP+TLS1.3

2-RTTs

Client Server

QUIC 

Handshake

Data Transfer

QUIC

1-RTT

(a) First time connection establishment.

Client Server

TCP 

Handshake

TLS

 Handshake

Data Transfer

TCP+TLS1.2

2-RTTs

Client Server

TCP 

Handshake

Data Transfer

TCP+TLS1.3

1-RTT

Client Server

Data Transfer

QUIC

0-RTT

(b) Subsequent connections.

Figure 1.6: Comparison of connection establishment between QUIC and TCP+TLS.

The necessary information for the first-time connection establishment is stored in a

cryptographic cookie at the client-side. It is used to authenticate the client in the subse-

quent connections. In the cookie, the server’s Diffie-Hellman value is used to calculate an

encryption key.

As for the subsequent connections (Fig. 1.6b), the client sends the Diffie-Hellman

value and its cookie to the server, along with the encrypted payload. The server uses in-

formation in the cookie to authenticate the client. Then, it uses the Diffie-Hellman value

to calculate the encryption key to decrypt the encrypted payload and sends back the en-

crypted responses to the client.

1.2.1.3 Multiplexing

Multiplexing is a method of sending multiple data streams over a single connection. In

HTTP1.1, a client can only request one resource in a single connection as in Fig. 1.7a,

so it needs to open multiple concurrent TCP connections. However, each client has a

limited number of connections to a server, so sending a new request over one of these

connections has to wait until a previous connection is complete. This leads to the HTTP

HoL blocking (Head of Line blocking) which brings additional latency and complexity of

20



1.2. BACKGROUND ON ENCRYPTION PROTOCOLS

Figure 1.7: Multiplexing comparison between HTTP1.1 and HTTP/2 over TCP and QUIC [2].

managing multiple connections.

HTTP/2 (Fig. 1.7b) solves this problem by multiplexing multiple data streams over a

single connection if there are multiple requests to the server. Data transmitted in the same

connection is delivered to the client in order, leading to the TCP HoL blocking. If a TCP

packet in a connection is lost, the server must wait until the TCP packet is retransmitted

successfully before processing the following TCP packets.

QUIC (Fig. 1.7c) supports multiplexing multiple data streams over a single connection

without requiring ordered delivery of all packets. Consequently, this can overcome the

TCP HoL blocking. Data missing on a stream does not block the delivery of other streams.

1.2.1.4 Connection Migration

TCP uses a port and an IP address of both endpoints to identify a connection. All network

connections will be interrupted when a client changes its IP address such as moving out

of a Wi-Fi network range or switching from a wired to a cellular network. However, QUIC

uses a connection ID (identifier) randomly generated by a QUIC client to identify a con-

nection. When a QUIC client changes its IP address, it can continue to use the current

connection ID from a new IP address without any connection interruptions.

21



1.2. BACKGROUND ON ENCRYPTION PROTOCOLS

1.2.2 Other Protocols

1.2.2.1 IPsec

Original

IP Header

AH/ESP 

Header
Data

Authenticated fields

ESP

Trailer

ESP

Auth

Encrypted fields

AH/ESP 

Header

Original

IP Header
Data

Authenticated fields

ESP

Trailer

ESP

Auth

Encrypted fields

New

IP Header

(a) Transport mode.

(b) Tunnel mode.

Figure 1.8: IPsec packet structure.

IPsec (Internet Protocol Security) [63] is a secure network protocol that encrypts and

authenticates data packets to provide secure communication between two endpoints in

the network. IPsec is used widely in VPN (Virtual Private Network). IPsec is a layer 3 end-

to-end security scheme, so it not only protects payload but also IP header of data packets.

IPsec uses UDP packets on port 500 for initial handshake, authentication and shared se-

cret establishment. In this protocol, there are two main parts including Authentication

Header (AH) and Encapsulating Security Payload (ESP). In the infancy of IPsec, the for-

mer is responsible for authentication while the latter provides data confidentiality. ESP

adds a header and a trailer to each packet as in Fig. 1.8. IPsec can operate in two modes:

transport and tunnel modes. Only data and ESP trailer are encrypted in the transport

mode whereas an entire original packet and ESP trailer are encrypted in the tunnel mode.

1.2.2.2 TLS

TLS [64] is a successor of SSL (Secure Sockets Layer), a cryptographic protocol designed

to provide a communication security in the network. It runs in the application layer to

provide privacy and data integrity in data communication. TLS is considered as a secure

layer in HTTPS (Hypertext Transfer Protocol Secure), a popular secure communication

protocol on the Internet.

22



1.3. DRAWBACKS OF TROUBLESHOOTING WITH ENCRYPTED TRAFFIC

IP 

Header

TCP 

Header

TLS

Record

IP 

Header

Content

Type
Version Length Data MAC

Padding

(block ciphers)

Authenticated field

Encrypted fields

Figure 1.9: TLS record packet.

TLS contains two main layers including TLS record and TLS handshake. The former

one aims to divide data into compressed fragments. In a TLS record, a fragment is fol-

lowed by MAC (Message Authentication Code). The fragment and its MAC are encrypted

together in a TLS record. The structure of TLS record packet is described as in Fig. 1.9.

During the TLS handshake, clients and servers exchange messages to acknowledge and

verify each other. Then, it establishes an encryption algorithm and agrees on session keys.

At the beginning of TLS connections, clients and servers are authenticated according to

X.509 certificates chain. In this phase, TLS messages exchanged are not encrypted until

session keys are established and agreed. Next, these session keys are utilized by the TLS

record to communicate data.

1.3 Drawbacks of Troubleshooting with Encrypted Traffic

Nowadays, many new protocols (e.g., TLS1.3, QUIC, etc.) are designed to provide en-

cryption and authentication for data communication in the network. The authentication

protects the data integrity and prevents unexpected modifications in data packets. The

encryption provides the confidentiality of transport data and prevents a data inspection

for illegal purposes (e.g., stealing information, etc.). This reduces the ability of NOs to ob-

tain an insight into their networks and effectively manage their networks. In this subsec-

tion, we present two drawbacks of network troubleshooting in the context of encrypted

traffic.

1.3.1 Network Performance Monitoring

Network performance monitoring is an essential part of the data collection module to

collect network parameters for network troubleshooting. Parameter measurement helps

23



1.3. DRAWBACKS OF TROUBLESHOOTING WITH ENCRYPTED TRAFFIC

NOs to troubleshoot problems and identify whether the problems happen in their net-

work or other sides (e.g., service providers, clients, etc.). Measurement approaches mon-

itor network traffic and use information in packets (e.g., sequence number, acknowledg-

ment number, etc.) to measure network parameters (e.g., Quality of Experience, etc.) or

additional information (e.g., application class, etc.).

1.3.1.1 QoE Estimation

Concerning the Quality of Experience (QoE), many existing studies calculate QoE us-

ing a QoE model based on subjective data [65]. The QoE model is built according to

application-level parameters (e.g., start-up delay, number of stalling events, bitrate, res-

olutions, etc.). These parameters can be extracted by analyzing client or server-side logs,

but NOs do not have access to this information. Hence, NOs can implement network-side

measurement approaches by analyzing network traffic to obtain these parameters. In fact,

the application-level parameters can be measured thanks to the information in the HTTP

packet headers [66, 67]. For example, Youtube QoE is determined by stalling events in

the video playback. Therefore, Schatz et al. [66] proposed a deep packet inspection tech-

nique to measure the number of stalling events using IP network flows. The objective is

to measure the playing time accumulated in the buffer of the Youtube player by compar-

ing timestamp of packets and playback time of video frames. When the playback buffer

is empty, the video starts to stall. The playback time can be obtained according to the

HTTP packet headers. However, service providers (e.g., Youtube, etc.) nowadays encrypt

network traffic (e.g., using TLS, QUIC, etc.) to protect user’s privacy and data during data

transmission. Consequently, QoE estimation approaches using the inspection of HTTP

packet headers are no longer available. Therefore, Orsolic et al. [68, 69] proposed a QoE

classification approaches for Youtube traffic using a Machine Learning (ML) algorithm.

This approach monitors and analyzes network traffic to obtain 54 network features di-

vided into six categories: packet length, transferred data size, packet count, inter-arrival

time, throughput, and TCP flag count. Then, these parameters are analyzed in the ML

algorithm to classify QoE into three QoE classes: low, medium and high QoE. There are

many ML algorithms, so this approach evaluates performance of several ML algorithms

(OneR, Naive Bayes, SMO, J48 and Random Forest) to select an appropriate one for the

QoE classification.

24



1.3. DRAWBACKS OF TROUBLESHOOTING WITH ENCRYPTED TRAFFIC

1.3.1.2 Application Identification

Nowadays, with the development of 5G, there are many strict SLA requirements from end-

users (e.g., high reliability, low latency, etc.) [70]. Consequently, differential treatment is

expected by end-users. The emerging of application-aware mechanisms (e.g, network

slicing, traffic engineering, etc.) which implement different policies corresponding to

various applications, is a potential solution to overcome these drawbacks. In the past,

NOs used port numbers or signatures in payload of packets to identify the application

classes [71]. Libprotoident [72] is an open-source software library that implements the

deep packet inspection for protocol identification. Libprotoident only uses port numbers

and the first four bytes of payload in each direction. For example, Libprotoident iden-

tifies HTTP and SIP flows according to common strings (e.g., ET, PUT, HTTP, SIP, INVI,

REGI, etc.) and registered ports (80, 8080, 8081, 443). Similarly, Adami et al. [50] imple-

ment a deep packet inspection approach to identify the VoIP flows using signatures of SIP

protocol (e.g., content-type: "application/sdp", etc.). However, the packet’s payload can

be encrypted with encryption protocols (e.g., TLS, etc.). Therefore, Deri et al. [73] pro-

posed nDPI, an open-source library for protocol identification using the information in

both header and payload of packets. nDPI can handle TLS-encrypted traffic to identify

known applications. In this case, only the network traffic in the initial key exchange can

be decoded. nDPI can extract the hostname of servers to identify different applications.

For instance, network flows towards the server name "api.facebook.com" are assigned as

Facebook application. However, the server name can be encrypted according to DNS over

TLS, HTTPS or QUIC [74]. Consequently, encrypted traffic classification approaches us-

ing packet inspection are not effective. This results in many obstacles for the encrypted

traffic classification. Amaral et al. [75] proposed a new traffic classification method us-

ing flow-based features and a ML algorithm. This method monitors and analyzes network

traffic to extract 12 flow-based features from the first five packets of flows (e.g., packet size,

packet time-stamp, inter-arrival time, etc.). Then, these features are analyzed in the ML

algorithm to identify the application classes. Lopez-Martin et al. [71] proposed a traffic

classification approach using flow-based features and a DL (Deep Learning) algorithm to

identify 108 application classes for IoT (Internet of Things) network.

25



1.3. DRAWBACKS OF TROUBLESHOOTING WITH ENCRYPTED TRAFFIC

1.3.2 Intrusion Detection System (IDS)

1.3.2.1 Firewall

In the network, middlebox is deployed to block malicious traffic and prevent illegal ac-

tivities. It can classify network traffic into malicious or benign traffic to make appropriate

policies [14]. In the TLS-encrypted traffic, Service Name Indicator (SNI) is used to identify

malicious connections. If SNI in the client hello TLS message matches Subject Alternate

Name (SAN) in the server certificate, the connection is considered as a benign connec-

tion. However, SNI can be encrypted to protect the information about destinations (e.g.,

domain name of websites, etc.) [74]. Nowadays, SNI is encrypted in the DNS (Domain

Name System) over TLS, HTTPS and QUIC.

Besides, the middlebox can be used for content filtering [15]. The middlebox is to

block content to meet requirements from law enforcement or regulatory authorities (e.g.,

enforcing content-based billing, etc.). They analyze data packets to obtain URL (Uniform

Resource Locator) field. If it matches a blocked URL in a blacklist, a 404 error notification

is returned. However, these approaches are unavailable when traffic is encrypted. DNS

over TLS, HTTPS and QUIC hide the DNS information in the packets.

When network traffic is encrypted, it results in obstacles for malicious traffic preven-

tion and content filtering. If the middlebox can not inspect network traffic for network

management, it needs to be moved to the endpoints at a higher operational cost.

1.3.2.2 DDoS Protection and Migration

DDoS (Distributed Denial-of-Service) protection is necessary in network operations. It

aims to detect DDoS traffic and redirect it to a migration system to filter out DDoS traffic

from legitimate traffic.

DDoS can be implemented according to a botnet, a collection of compromised ma-

chines or bots [76]. Many bots nowadays use a domain generation algorithm (DGA) to

generate domain names and connect to command and control (C&C) server. Therefore,

many studies analyze the domain name of C&C server to detect DGA botnet and prevent

DDoS attacks. Woodbridge et al. [77] proposed a DGA botnet detection system using

a LSTM (Long Short-Term Memory) network. This system monitors and analyzes DNS

packets to obtain the domain name of (C&C) server. Then, the domain name is analyzed

in the LSTM network to detect the DGA botnet. If a domain name is classified as a ma-

licious domain, the IP address of C&C server corresponding to this domain is blocked to

26



1.3. DRAWBACKS OF TROUBLESHOOTING WITH ENCRYPTED TRAFFIC

prevent DDoS attacks. Tran et al. [78] proposed LSTM.MI, a LSTM-based DGA botnet

detection framework for handling multiclass imbalance. In LSTM.MI, original LSTM is

adapted to be cost-sensitive to handle the multiclass imbalance. However, DNS informa-

tion (e.g., domain name, IP address, etc.) is hidden with DNS over TLS, HTTPS and QUIC.

This leads to many challenges for the DGA botnet detection systems as well as DDoS pre-

vention.

Besides, DDoS can be detected according to a signature-based IDS [79, 80]. This ap-

proach inspects network traffic and checks anomalous signatures in a pre-defined list of

signatures such as file hashes, malicious domains, known byte sequences, and so on.

For example, Snort [81] is an open-source IDS for inspecting intruder signatures. Snort

rules contain protocol, source IP address, destination IP address, source port, destina-

tion port and signatures in the payload for one or more patterns. When network traffic

is encrypted, this approach is not effective. In this case, network features (e.g., packet

length, inter-arrival time, etc.) can be used to detect DDoS traffic. Garcia et al. [82] pro-

posed an anomaly detection system using AI (Artificial Intelligence) for detecting DDoS

traffic over encrypted traffic. This approach monitors network traffic and extracts 57 net-

work features (e.g., packet size, number of bytes, etc.). Then, these features are analyzed

in a detection model to classify network traffic into legitimate or intrusive. In the detec-

tion model, network features are first analyzed in a Gaussian mixture model to calculate a

probability density. If it is less than threshold1, network traffic is assigned as intrusive. If it

is bigger than threshold2, it is assigned as legitimate. Otherwise, a reconstruction error is

calculated according to Auto-Encoder. If the reconstruction error is less than threshold3,

it is assigned as legitimate. Otherwise, it is assigned as intrusive. Similarly, Zolotukhin

et al. [83] proposed an application-layer DDoS detection method for encrypted traffic.

In this method, there are two main phases containing training and detection phases. In

the training phase, this method monitors network traffic to collect network features of

seven categories: duration of conversation, number of packet sent in one second, num-

ber of bytes sent in one second, average packet size, average TCP window size, average

TTL and average of packets with different TCP flags. Then, legitimate traffic is clustered

into clusters using a ML algorithm (e.g., K-mean, K-medoids, Fuzzy c-means, etc.). In the

detection phase, network traffic is assigned as intrusive when it does not belong to any

clusters.

27



1.4. CONCLUSION

1.4 Conclusion

With the ever-increasing of network devices, computer networks have become more and

more complex. Therefore, network troubleshooting plays an important role in the net-

work systems [4, 5, 6]. This section surveyed related work on several network problems:

rule failure, link failure and switch’s buffer overload. Facing a growing number of data

theft attacks, many service providers encrypted network traffic to protect data and user’s

privacy. The network traffic can be encrypted by encryption protocols such as IPsec, TLS,

and so on. This leads to many obstacles for network troubleshooting for encrypted traffic

related to network monitoring approaches and intrusion detection systems.

When the packet’s payload is encrypted (e.g., TLS, etc.) or even entire packet is en-

crypted (e.g., IPsec in the tunnel mode, etc.), it prevents NOs from inspecting network

traffic to measure network parameters (e.g., QoE, etc.). Remarkably, the information about

the application class is hidden in this case. Consequently, many encrypted traffic classifi-

cation techniques are studied to identify the applications without decrypting the network

traffic. Besides, encrypted traffic results in many difficulties for intrusion detection sys-

tems. In the past, IDS detects different kinds of attacks according to its signatures in the

network traffic. However, these signatures are hidden due to encrypted traffic. Conse-

quently, IDS today detects different kinds of attacks thanks to network parameters (e.g.,

packet length, inter-arrival time, etc.).

The traditional troubleshooting architecture has been studied by the research com-

munity over the past decades. Nevertheless, in the context of encrypted traffic, this ar-

chitecture shows limitations related to network performance monitoring approaches and

intrusion detection systems. In the next chapter, we present a novel troubleshooting ar-

chitecture for encrypted traffic and the data collection module which aims to collect data

for further modules in network troubleshooting.

28



Chapter 2

Novel Global Troubleshooting
Framework for Encrypted Traffic

«The extension of the encryption
boundary into the transport layer»

Mirja Kühlewind, MAMI
Management and Measurement

Summit 2018

In Chapter 2, we propose a novel troubleshooting architecture in the context of en-

crypted traffic and then present a proof-of-concept of this architecture in SDN (Software-

defined Networking) environment. Then, we present the data collection module which

helps to build datasets for further modules in network troubleshooting.

Contents
2.1 Novel Network Troubleshooting Architecture for Encrypted Traffic . . . 30

2.2 Proof-of-concept of Proposed Troubleshooting Architecture in SDN . . . 32

2.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 Data Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.2 Monitoring Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.3 Parameter Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.3.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.3.2 Packet Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.3.3 Quality of Experience . . . . . . . . . . . . . . . . . . . . . . 42

2.3.3.4 Other Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.3.5 Measurement Frequency . . . . . . . . . . . . . . . . . . . . 43

2.4 Troubleshooting Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Datasets for root cause analysis . . . . . . . . . . . . . . . . . . . . . 43

2.4.2 Dataset for traffic classification . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

29



2.1. NOVEL NETWORK TROUBLESHOOTING ARCHITECTURE FOR ENCRYPTED
TRAFFIC

2.1 Novel Network Troubleshooting Architecture for Encrypted
Traffic

As discussed in Chapter 1, the traditional troubleshooting architecture designed for non-

encrypted traffic contains four essential modules: Data Collection, Anomaly Detection,

Root Cause Analysis and Remediation. In this architecture, after detecting anomalies in

the anomaly detection, its root cause will be identified in the root cause analysis module.

Finally, the root causes will be addressed in the remediation module to return to a nor-

mal state in the network. During implementing the root cause analysis and remediation

modules, the network will be negatively influenced (e.g., high latency, low reliability, etc.),

resulting in negative economic impacts for NOs. According to a report of North Ameri-

can Network Operator Group [11], duration time for the root cause analysis and remedia-

tion approaches can be from an hour to more than five hours depending on the status of

anomalies. In fact, Youtube lost $34,000 due to 0.17 hours of downtime while Cisco lost

$1,066,000 because of 5.33 hours of downtime in their cloud servers [7].

Nowadays, many service providers (e.g., Youtube, Facebook, etc.) encrypt their data

during transmission to protect data and user’s privacy. However, the traditional trou-

bleshooting architecture was not designed for encrypted traffic. According to related work

[14, 15], encrypted traffic results in many obstacles related to network performance moni-

toring approaches in data collection (e.g., QoE estimation, application identification, etc.)

and intrusion detection systems for anomaly detection. When traffic is encrypted, the in-

formation in packet header and payload are invisible. Hence, from the point of view of

Network Operators (NOs), network performance monitoring approaches that implement

a deep packet inspection face many obstacles to calculate QoE or to identify the appli-

cation classes [66, 71, 73]. Moreover, intrusion detection systems which depend on sig-

natures in the packet’s payload (e.g., file hashes, known byte sequences, etc.) to identify

different kinds of attacks are no longer available [79, 80].

Therefore, in this thesis, we propose a novel troubleshooting architecture for NOs in

the context of encrypted traffic. In the proposed architecture, we propose two processes

after detecting an anomaly in the network. The first process is the temporary remediation

module that ensures the availability and reduces the affection of anomalies in the net-

work until the root causes are addressed. In parallel with this process, we also implement

the second process that is responsible for identifying and dealing with the root causes.

30



2.1. NOVEL NETWORK TROUBLESHOOTING ARCHITECTURE FOR ENCRYPTED
TRAFFIC

Implementing two processes aims to reduce the negative impacts of network problems

during the root cause analysis and definitive remediation.

Concerning drawbacks of network troubleshooting, using network parameters is a po-

tential solution for network performance monitoring approaches (e.g., QoE estimation,

application identification, etc.) and intrusion detection systems in the context of en-

crypted traffic. In fact, there are DDoS detection methods for encrypted traffic using net-

work parameters (e.g., packet length, inter-arrival time, etc.) [82, 83]. Similarly, Orsolic

et al. [68, 69] proposed a QoE classification technique for Youtube traffic using 54 net-

work parameters and ML algorithms. To identify the application classes, encrypted traffic

classification approaches are using ML algorithms. These approaches focus on HTTPS

[84] and VPN traffic [85]. Consequently, we propose an encrypted traffic classification ap-

proach to identify application classes for QUIC traffic. Application identification plays an

important role in application-aware remediation mechanisms in network troubleshoot-

ing.

The proposed troubleshooting architecture for encrypted traffic is designed as in Fig.

2.1. The major modules are described as follows:

Traffic

Classification
Anomaly

Detection

Temporary 

Remediation

Parameter

Measurement

Definitive 

Remediation

Data Collection

Root Cause 

Analysis

CoA

NP

P1

P2

Problems?
Yes

No

Figure 2.1: The novel troubleshooting architecture in the context of encrypted traffic.

• Data Collection: It is composed by two essential modules: traffic classification and

parameter measurement. The former aims to identify the class of application (CoA)

on network flows in the context of encrypted traffic while the latter aims to monitor

and collect network parameters (NP) for further modules.

• Anomaly Detection: This module takes into account time-series network param-

eters from data collection to detect an anomaly (abnormal symptom of network

problems) in the network. The purpose is to identify the moment when problems

happen in the network by detecting its symptoms.

• Temporary Remediation: This module is to implement remediation approaches to

31



2.2. PROOF-OF-CONCEPT OF PROPOSED TROUBLESHOOTING ARCHITECTURE IN
SDN

reduce negative impacts of anomaly (e.g., high latency, high loss, etc.) temporarily

until its root causes are identified and solved.

• Root Cause Analysis: An anomaly can be caused by many root causes. For example,

congestion can be caused by link failure, switch failure, buffer overload, etc. This

module aims to identify its root causes (which problem leading to the anomaly) for

further modules.

• Definitive Remediation: After identifying the root causes of anomaly, this module is

to solve its root causes completely.

2.2 Proof-of-concept of Proposed Troubleshooting Archi-
tecture in SDN

To solve root causes (e.g., switch failure, misconfiguration, etc.) in the network, we some-

times need to update network devices. In traditional network architecture where control

logic is distributed, updating policies in the network troubleshooting is implemented sep-

arately in each network device [86]. This can lead to inconsistency between network de-

vices that results in other problems in the network. Fortunately, the emerging of SDN is a

potential solution to overcome this obstacle. SDN with a separation between the control

and infrastructure layers offers global visibility and better flexibility to troubleshoot the

network. Besides, SDN offers monitoring tools (e.g., link layer discovery protocol, etc.)

to facilitate network troubleshooting. Consequently, the proposed troubleshooting archi-

tecture is implemented in the SDN environment. In this context, we consider ONOS [87]

as a SDN controller due to a popularity in existing studies [86, 88].

As a proof-of-concept of the proposed troubleshooting architecture for encrypted traf-

fic, we present a troubleshooting framework for encrypted traffic in the SDN environ-

ment. This framework is described as in Fig. 2.2 with five main components: Data Col-

lection, Anomaly Detection, Temporary Remediation, Root Cause Analysis and Definitive

Remediation. During the transmission from servers to clients, network flow is transmit-

ted from ingress switches to a sFlow collector [59] to obtain the class of application thanks

to the traffic classification module. Besides, the measurement module monitors this flow

to collect network parameters. After that, these parameters are analyzed in the anomaly

detection module to detect anomalies (e.g., increase of latency, packet loss, etc.). When

anomalies occur in the network, we need to implement the temporary remediation mod-

32



2.2. PROOF-OF-CONCEPT OF PROPOSED TROUBLESHOOTING ARCHITECTURE IN
SDN

Temporary Remediation

Passive method

Parameter

Measurement

Network System 

(Encrypted Traffic with QUIC)

sFlow

Agent

SDN ControllernSDN Controller1 

 ...

S
e
rv

e
r 1

S
e
rv

e
r 2

S
e
rv

e
r n

U
se

r n
U

se
r 2

U
se

r 1

 ...  ...

Data Collection

Traffic 

Classification

sFlow Collector

Root Cause

Analysis

Anomaly Detection

Definitive Remediation

Adaptive 

Congestion Control

QoE

Estimator

RL-based

Segment Routing

App-aware QoE-based SR

Use case

Use case

sFlow

Agent

Figure 2.2: The novel troubleshooting framework in the SDN environment.

ule to guarantee the availability of the network and meet strict SLA requirements. There

are many remediation approaches including load balancing, routing and so on. Many

studies proved the performance of routing in problem remediation [89, 90]. In fact, Seg-

ment Routing (SR) is implemented by network operators (e.g., NTT [91], Vodafone [92],

etc.). Therefore, we propose an application-aware QoE-based Segment Routing in the

temporary remediation module. In parallel with the temporary remediation module, we

also need to implement the root cause analysis module to identify the root cause of anoma-

lies and solve it completely in the definitive remediation module. There are many prob-

lems in the network (e.g., misconfiguration, security, congestion, etc.), so we present an

use-case related to the root cause analysis and definitive remediation approach in this

thesis. We consider here congestion to generate anomalies because it is a widespread

33



2.2. PROOF-OF-CONCEPT OF PROPOSED TROUBLESHOOTING ARCHITECTURE IN
SDN

issue from the point of view of NOs [11]. Concretely, the development of IoT and 5G in-

creases the amount of Internet traffic, bringing much pressure for the network infrastruc-

ture and resulting in congestion in the network, particularly during the confinement of

Covid-19. Congestion can be caused by link failure, switch failure or buffer overload. The

objective of the root cause analysis is to identify the root causes of congestion. Concretely,

the root cause analysis is to identify the type of problems (link failure, switch failure or

buffer overload) leading to congestion in the network. If the link or switch failure happens

in the network, we will send notifications to administrators to address it. Otherwise, we

propose an adaptive congestion control mechanism in the definitive remediation to deal

with buffer overload. The major components in this framework are described as follows:

• Data Collection consists of two essential modules: traffic classification and param-

eter measurement. In the parameter measurement module, we measure network

parameters such as latency, packet loss, link utilization, number of packet sent,

number of packet received, number of byte sent, number of byte received, num-

ber of flow entries in switch and QoE. These parameters are measured according

to LLDP [93, 94] and PortStatistics API [95] in SDN controllers. The purpose is to

build troubleshooting datasets in static and dynamic network for further modules.

In the traffic classification module, there are two main stages of classification. The

first classification stage is to identify chat and VoIP applications using flow-based

features and a ML algorithm. The second classification stage aims to identify video

streaming, file transfer and Google play music applications using packet-based fea-

tures and Convolutional Neural Network. To implement this module, we need to

collect raw network traffic. Collecting network traffic from Openflow switches is

not effective with a huge amount of network traffic. Therefore, we implement sFlow

[59], an industry standard supporting a packet sampling technique, to collect ten

percent of network traffic at ingress switches. Concretely, sFlow agents sample net-

work traffic traversing the ingress switches and forward it to the sFlow collector for

the traffic classification.

• Anomaly Detection takes into account time-series network parameters to detect an

abnormal symptom of network problems. This module aims to identify the mo-

ment when problems happen in the network by detecting its symptoms (anoma-

lies). To generate network anomalies, we use a fault injection technique [96, 97]

34



2.2. PROOF-OF-CONCEPT OF PROPOSED TROUBLESHOOTING ARCHITECTURE IN
SDN

to generate congestion to the network. We implement an anomaly detection ap-

proach using three time-series network parameters (latency, packet loss and link

utilization) and a ML algorithm. To choose an appropriate ML algorithm, we evalu-

ate the performance and processing time of ML algorithms such as Support-Vector

Machine, Random Forest, Adaboost and Convolutional Neural Network.

• Temporary Remediation is the application-aware QoE-based segment routing mech-

anism that aims to consider various segment routing strategies corresponding to

different kinds of applications to meet strict SLA requirements. In a specific rout-

ing strategy, this module monitors network states and selects appropriate paths us-

ing reinforcement learning. The proposed segment routing mechanism is based on

the feedback of network environment (QoE) to adapt to unexpected network con-

ditions. The segment routing mechanism is evaluated according to an emulation

testbed with the SDN controller ONOS and the emulator mininet. Besides, we cus-

tomize the org.onosproject.segmentrouting application [98] supported by ONOS to

implement the proposed segment routing mechanism. In reinforcement learning, a

trade-off between exploration and exploitation phases needs to be considered thor-

oughly. Therefore, it is formalized as a multi-armed bandit problem. In this thesis,

we evaluate the performance of three selection algorithms (ε-greedy, softmax and

UCB1) in four scenarios (perfect scenario, delay scenario, loss scenario and scenario

with both delay and loss) to select an appropriate one for solving the multi-armed

bandit problem. Besides, the proposed segment routing mechanism is evaluated

with benchmarks (Standard_SR and Max_QoE mechanisms) related to MOS (Mean

Opinion Score) against time, average optimal MOS, median MOS, 95% confidence

interval of MOS, CPU usage and control overhead.

• Root Cause Analysis aims to identify the root cause of congestion in the network.

The objective is to identify the type of problems resulting in congestion (link fail-

ure, switch failure or buffer overload). We implement a ML-based root cause anal-

ysis using nine time-series network features (e.g., latency, packet loss, number of

byte sent, number of packets sent, etc.). Performance of ML algorithms (Support

Vector Machine, Bagging , Random Forest, Adaboost, Gradient Boosting and Con-

volutional Neural Network) are evaluated to select an appropriate ML algorithm. We

implement a feature selection method (wrapper method) to identify an appropriate

35



2.3. DATA COLLECTION

feature set to obtain a good performance. The performance of root cause analysis

is evaluated with datasets in static and dynamic networks.

• Definitive Remediation is an adaptive congestion control mechanism that is in charge

of dealing with root causes of congestion completely to return to normal states

in the network. In this module, we propose an adaptive BBR (Bottleneck Band-

width and Round-Trip Time) algorithm using reinforcement learning for QUIC traf-

fic. This algorithm aims to adjust sending rate at sender sides corresponding to

different network conditions. Adaptive BBR and benchmarks are evaluated in the

context of HTTP/3 in contrast to existing studies evaluating congestion control al-

gorithms in the context of HTTP/2. We customize the open-source lsquic [99] to

implement the adaptive BBR algorithm and benchmarks. The performance of these

algorithms is evaluated in an emulation testbed in dynamic network where RTT and

loss of link change after a given time.

2.3 Data Collection

As discussed in the previous section, data collection plays a vital role in network trou-

bleshooting. This is explained by a fact that the anomalies and its root causes result in a

fluctuation of data collected in the network. In this section, we present several kinds of

data classification, monitoring tools and the parameter measurement module which is to

collect data for network troubleshooting.

2.3.1 Data Classification

According to related work [100, 101], Data can be classified in different methods as fol-

lows:

• Data types [100]: structured, unstructured and semi-structured data.

• Source [101]: application-level data, network-level data, user feedback, user profile,

etc.

• Quantity: large data which need to be processed by big data processing techniques

(e.g., Hadoop, etc.) before being taken into account and small data which can be

taken into account without big data processing techniques.

36



2.3. DATA COLLECTION

In this manuscript, we consider the data classification according to data types because

it is widely used in network troubleshooting [6, 102, 103].

Structured data refers to data that contains a definite format (e.g., network parame-

ters, etc.). Therefore, it is easy to query and retrieve necessary information.

On the contrary, unstructured data contains no particular structure (e.g., troubleshoot-

ing ticket, etc.). The troubleshooting ticket is used to identify the anomaly and diagnose

its root causes. When problems happen in the network, clients contact an IT helpdesk

to report their problems. Then, the IT helpdesk collects information from the client’s re-

ports, generates troubleshooting ticket, and assigns it to the corresponding processing

team to diagnose. However, troubleshooting ticket contains a large amount of unstruc-

tured text data, leading to many obstacles for data parsing and processing [103].

The semi-structured data is a combination of structured and unstructured data (e.g.,

system logs, etc.). System log records various system states and alarms to identify perfor-

mance issues, failures, and its root causes. The information in the system log contains

structure data including the IP address of the object generating an alarm, a timestamp,

an alarm identifier, severity level of failures and so on [6, 102]. Besides, the system log

also contains unstructured data due to an existence of network issues. The system log is

available in the network systems, so it is a valuable resource for understanding network

status. In fact, there are many anomaly detection approaches using system logs for iden-

tifying the anomaly in the network [102, 104]. However, these approaches contain several

limitations including [6, 102]:

• Unstructured Data: Log data is unstructured, and it varies significantly between

different network systems. Therefore, it is challenging to parse log data in the dis-

tributed network systems with different kinds of network devices.

• Processing massive data: Log data is used to identify the anomaly in the network,

so it needs to be processed and analyzed in real-time. However, log data is usually

recorded in a huge file (e.g., a few GB, etc.). Therefore, processing massive data in a

short time is a challenge.

• Desynchronization: The clock desynchronization of systems logs in distributed sys-

tems can influence the order of received alarms and result in uncertain results.

In this thesis, we consider the network performance parameters as data for network

troubleshooting. In fact, it is studied by the research community in network troubleshoot-

37



2.3. DATA COLLECTION

ing [4, 5, 6]. In the following subsection, we will present network monitoring techniques

for data collection in network troubleshooting.

2.3.2 Monitoring Tools

To collect network parameters, there are two monitoring approaches including active and

passive monitoring. Active monitoring approaches [105, 106] send probe packets into

the network systems and analyze feedbacks to obtain network parameters. Passive ap-

proaches monitor the network traffic and analyze it to obtain the network parameters.

The active approaches generate overhead in the network, making the status of problems

more grave. Moreover, a loss of probe packets can lead to uncertain results. Therefore,

we consider passive monitoring approaches to collect network parameters. In fact, there

are popular standards for network monitoring including SNMP (Simple Network Man-

agement Protocol), NetFlow, sFlow, Openflow-based monitoring approaches as follows:

• SNMP is a popular protocol in network management, collecting information from

different network devices (e.g., routers, switches, etc.) in the network [107]. SNMP

offers massive statistical information about network devices through a database,

called MIB (Management Information Base). MIB is a collection of parameters re-

flecting physical links (e.g., maximum packet size, transmission rate, etc.), rout-

ing (e.g., routing metrics, destination address, etc.), underlying protocols (e.g., TCP,

ICMP, etc.) and so on. However, SNMP contains several drawbacks [108]. The first

one is unreliability. SNMP uses the underlying UDP (User Datagram Protocol) pro-

tocol, so there is no guarantee of delivery, ordering, or duplicate protection for data

transmission. The second one is related to a simple data structure. SNMP only sup-

ports a simple data structure, so it is inefficient to transfer data in a short time.

• NetFlow [3] is a flow sampling technique designed by Cisco, which is supported by

many vendors including Juniper, HP, OpenVswitch and so on. NetFlow samples a

flow with a specific probability, aggregates all packets of this flow into flow records

and then exports towards NetFlow collectors. NetFlow architecture is depicted as

in Fig. 2.3. NetFlow contains three main components including NetFlow exporter,

NetFlow collector and analysis application. NetFlow exporter aggregates all packets

of a flow into flow records (with a probability) and exports to one or more NetFlow

collectors. NetFlow collector pre-processes data from NetFlow exporter and stores

38



2.3. DATA COLLECTION

in NetFlow storage. Analysis application collects data from NetFlow storage and

analyzes for the network management.

Internet

Remote

Site 1

Remote

Site 2

LAN

Analysis

Application

NetFlow

Storage

NetFlow

Exporter

NetFlow

Collector

NetFlow

Packets
Queries

Figure 2.3: NetFlow Architecture [3].

• sFlow [59] is a standard for network monitoring with a packet sampling technique

that is supported by vendors containing IBM, HP, OpenVswitch and so on. sFlow

samples each packet with a specific probability and aggregates sampled packets

into sFlow records and exports to sFlow collectors. sFlow architecture is shown as

in Fig. 2.4.

Internet

Remote

Site 1

Remote

Site 2

LAN

sFlow

Storage

sFlow

Agent

sFlow

Packets

Analysis

sFlow Collector

Figure 2.4: sFlow Architecture.

• Openflow-based monitoring approach is studied by the research community. Sim-

ilar to NetFlow and sFlow, Openflow-based monitoring approaches collect network

parameters based on information provided by Openflow agents in Openflow-supported

devices. Openflow [109] is a communication protocol providing access to the for-

warding plane of network devices (e.g., switch, router, etc.) in the network. Conse-

quently, it offers opportunities to overcome the limitations of monitoring standards

(e.g., sFlow, NetFlow, etc.).

39



2.3. DATA COLLECTION

In comparison with Openflow-based approaches, sFlow and NetFlow have several

limitations related to scalability, flexibility, and reliability issues. Regarding the scal-

ability issue, these approaches require configuring an agent for each network de-

vice. As for the flexibility issue, the agents send data from all network devices to

the collectors periodically, which does not allow to select specific devices to be ob-

served. Finally, concerning the reliability issues, these approaches use UDP proto-

col (a connectionless protocol) for data transmission, so lost UDP packets can lead

to uncertain results. The difference between NetFlow, sFlow and Openflow-based

monitoring approaches is described in Tab. 2.1.

Table 2.1: Comparison between NetFlow, sFlow and Openflow-based monitoring approaches.

NetFlow/sFlow
Openflow-based

approaches

Scalability
Require to configure an agent

for each network device
Agent is configured automatically
according to Openflow protocol

Flexibility
Send data from all devices
to collectors periodically

Select which device to be
observed at any time slot

Reliability
Unreliability due to using underlying UDP

to send data to collectors
Using Southbound API

2.3.3 Parameter Measurement

In this thesis, we consider a dataset constituting by context-dependent parameters in-

cluding:

• Latency

• Packet loss

• Link utilization

• Number of packet sent

• Number of packet received

• Number of byte sent

• Number of byte received

• Number of flow entries in switch

• QoE (Quality of Experience)

40



2.3. DATA COLLECTION

2.3.3.1 Latency

Latency is calculated according to LLDP (Link-Layer Discovery Protocol) in SDN con-

trollers as in existing studies [93, 94]. In SDN controllers, LLDP is used to discover and

update network topology. The detail is depicted in Fig. 2.5. To update the status of the

link s1−s2, the controller sends a Packet-out message containing a LLDP packet to instruct

switch s1 sending this LLDP packet to the neighboring switch s2. The switch s2 receives

the LLDP packet, encapsulates this packet in a Packet-in message and sends it back to the

controller. To estimate the latency, the controller encodes the time-stamp and puts it in

the LLDP packet of Packet-out message. When the controller receives the Packet-in mes-

sage, it will decode to obtain the time-stamp. The latency is a difference between current

time and time-stamp.

Controller

s1 s2

p1 p2

Packet-out + LLDP Packet-in + LLDP

LLDP

Figure 2.5: The link discovery in LLDP.

2.3.3.2 Packet Loss

Packet loss refers to the loss of LLDP packets on each link. When the controller sends

the Packet-out message, we store the time-stamp of each LLDP packet in this message

in a database. After the Packet-in message arriving the controller, we check the time-

stamp and remove this from the database. After a given time, we increase the number of

packet lost on a particular link by one if the difference between the current time and time-

stamp in the database is bigger than a threshold. Then, we remove the time-stamp out of

the database. The above parameters are calculated on each link and then aggregated to

calculate parameters on the routing path of network flows.

41



2.3. DATA COLLECTION

2.3.3.3 Quality of Experience

QoE is a measure of user satisfaction of multimedia services (e.g., video streaming, file

transfer, etc.). MOS (Mean Opinion Score) is used to estimate the QoE on user’s side.

Therefore, it is necessary to have a subjective dataset related to MOS. Consequently, we

use a MOS dataset built in a collaboration between our laboratory (LISSI) and Orange (a

Network Operator in France). This dataset was built in a subjective test campaign to ob-

tain 1560 samples covering 23 parameters (e.g., application parameters, network param-

eters, etc.). Testbed for this campaign was implemented in the LISSI laboratory where

181 participants were asked to watch a short video and give their opinions. These par-

ticipants are researchers and students from different disciplines between 19 and 38 years

with little or no experience in video assessment experimentation. There are five levels of

participants’ opinions including 1 (Bad), 2 (Poor), 3 (Fair), 4 (Good) and 5 (Excellent).

According to the related research work, QoE estimation approaches are divided into

three types: subjective, objective, and hybrid solutions. The first one requires partici-

pants to evaluate their perceptions about multimedia applications, so it is costly, time-

consuming, and ineffective with real-time monitoring due to human intervention. The

second one constructs an objective model estimating user perception using parameters

(e.g., network parameter, application parameter, etc.), but identifying an effective model

is sometimes complicated. The third one is a hybrid approach that uses a subjective

dataset to learn QoE models based on ML algorithms. Consequently, it can combine ad-

vantages of both subjective and objective approaches.

Therefore, in this manuscript, we implemented the hybrid approach for QoE estima-

tion, offering opportunities to estimate MOS in real-time. The MOS dataset and descrip-

tion about testbed building it (e.g., number of participants, understanding level of partic-

ipants, etc.) are published to Github [110]. We have chosen the random forest algorithm

to estimate the MOS score because it has less root mean square error than other ML ap-

proaches [111]. MOS is estimated according to network parameters (e.g., latency, packet

loss, etc.). The detail of QoE estimation is described in [111].

2.3.3.4 Other Parameters

For other parameters, link utilization, the number of packet sent, the number of packet

received, the number of byte sent, the number of byte received and the number of flow

entries in switch are calculated according to the Openflow-based monitoring approach

42



2.4. TROUBLESHOOTING DATASET

via Portstatistic API [95] (Application Programming Interface) in SDN controllers.

2.3.3.5 Measurement Frequency

In parameter measurement, a frequency of polling for measurement is an essential factor.

There are two methods for identifying the frequency of polling including periodic polling

and event-triggered polling [112]. The former requests a measurement periodically after

a given time while the latter requests the measurement when a pre-defined event occurs.

The event-triggered polling requires building a database about pre-defined events, and it

is not effective with unnoticed events. Periodic polling can overcome this obstacle and

offer opportunities to monitor the network in real-time effectively. Therefore, we imple-

ment periodic polling in the parameter measurement module. The frequency is set to

three seconds (standard window time) as in existing work [113, 114]. According to the pa-

rameter measurement module, we can collect data to build troubleshooting datasets for

network troubleshooting. These datasets are described in the following subsections.

2.4 Troubleshooting Dataset

2.4.1 Datasets for root cause analysis

There are several troubleshooting datasets related to troubleshooting ticket, network pa-

rameters in NFV (Network Function Virtualization), etc. Tab. 2.2 describes the existing

troubleshooting dataset. However, there is no troubleshooting dataset related network

parameters for identifying root causes of anomalies (e.g., link failure, switch failure, etc.).

Therefore, in this manuscript, we build and contribute the troubleshooting dataset for

network troubleshooting. Recently, during the Covid-19 pandemic, network infrastruc-

tures of NOs have to suffer a high pressure from a vast amount of Internet traffics. This

results from many network devices accessing the Internet for education, remote working,

entertainment and so on. Consequently, this leads to congestion in the network. Be-

sides, according to a report of NOs, congestion is one of popular issues in the network

[11]. Therefore, we take into account congestion to generate anomalies in the network

and construct the troubleshooting dataset related to three root causes of congestion in-

cluding link failure, switch failure and buffer overload. It is not easy to get a dataset re-

lated to these root causes because it happens unpredictably in the network. Therefore,

many studies [96, 97] use a fault injection technique to generate root causes. Link fail-

ure is simulated by adding latency in links while switch failure is simulated by generating

43



2.4. TROUBLESHOOTING DATASET

Table 2.2: Existing troubleshooting dataset.

Data
Types

Dataset Class
Number
samples

Troubleshooting
Ticket

Servicenow [115]

Network,
User Maintenance,

Database,
Application Workbench,

and Security

3001

Github [116]
Github Bug,

Enhancement
and Question

30000

Network
Parameter

NFV [117]

Normal,
CPU bottleneck,

Memory bottleneck,
and I/Obottleneck

3693

rule failures in the switches to obtain packet loss. Buffer overload is simulated by send-

ing a huge amount of traffic exceeding link’s capacity. These root causes are simulated

in two scenarios including static and dynamic networks. In the static network, the delay

and loss in the links are fixed with a specific value. In the dynamic network, the link state

is changed between normal and error state according to Gilbert-Elliot (GE) model [118]

following a probability value after a given time (400 seconds). In this model, the proba-

bility of changing from normal state to error state is p while the figure for changing from

error state to normal state is r. When a link is in the error state, the loss and delay will be

modified as described in the Tab. 2.3.

Table 2.3: Considered network conditions.

Root Causes
Static

Network
Dynamic
Network

Link
failure

Delay: 125ms Delay: [25, 50, 75, 100, 125ms]

Switch
failure

Loss: 50% Loss: [10, 20, 30, 40, 50%]

Buffer
overload

Bandwidth: 10 mbps,
Sending rate: 60-100 mbps

Bandwidth: 10 mbps,
Sending rate: 60-100 mbps

In each network condition, we first extract nine features corresponding to network

and standard parameters thanks to existing studies [94, 111] and API PortStatistics [95]

in the controller. These parameters include latency, packet loss, link utilization, number

of packet sent, number of packet received, number of byte sent, number of byte received,

number of flow entries in switch and QoE (Quality of Experience). Then, these parameters

44



2.4. TROUBLESHOOTING DATASET

Table 2.4: Datasets for root cause analysis.

Root Causes
Static

Network
Dynamic
Network

Buffer
overload

6900 6900

Link
failure

9995 19710

Switch
failure

7560 17565

on each link will be aggregated to calculate the paths’ features to identify the root cause of

anomalies. After that, these features are normalized into a value between 0 and 1 accord-

ing to Max Normalization [119]. In RCA, we consider time-series features, and a sample

aggregates features of ten consecutive time steps to identify the root causes. We built two

datasets for network troubleshooting (one for each network condition). The number of

network states corresponding to each root cause is depicted as in Tab. 2.4. These dataset

are published to Github [120].

2.4.2 Dataset for traffic classification

Table 2.5: Classification dataset.

Application
Number of samples

(flows)
Chat 2,783
VoIP 2,608

File transfer 4,451
Video streaming 5,844

Google play music 4,349

To validate the performance of the traffic classification module, we build a traffic clas-

sification dataset for QUIC traffic during three weeks (starting from March 2018). To cap-

ture the network traffic of video streaming, chat, VoIP and Google play music applica-

tions, we use Selenium WebDriver [121] in Google Chrome running on Ubuntu 16.04 OS.

Besides, we also use quic-go [122] to transfer data between servers and clients using QUIC

protocol. Then, network traffic of file transfer application is captured. We captured ap-

proximately 150 GB of network traffic including over 20,000 network flows of five QUIC-

45



2.5. CONCLUSION

based applications. The detail is described in Tab. 2.5. This dataset is published to Github

[123].

In the following chapter, we present in detail a novel encrypted traffic classification

approach for QUIC traffic. The approach is to identify application class in the context of

encrypted traffic.

2.5 Conclusion

In this chapter, we present a novel troubleshooting architecture adapted to the context

of encrypted traffic. Besides, we show the proof-of-concept of this architecture in SDN

environments. After that, we present a parameter measurement module to collect net-

work parameters composed of latency, packet loss, link utilization, number of packet sent,

number of packet received, number of byte sent, number of byte received, number of flow

entries in switch, QoE. The purpose is publicly provide troubleshooting datasets for the

research community.

In addition to the network parameters, we identify the application class to facilitate

the application-aware remediation approaches in network troubleshooting. The detail is

described in the following chapter.

46



Chapter 3

Traffic Classification: Novel QUIC traffic
Classifier based on Convolutional Neural
Network

«Predicting the future isn’t magic,
it’s artificial intelligence»

Dave Waters

In chapter 3, we present a traffic classification module to identify the application class

for QUIC traffic. The application class also plays an important role in application-aware

remediation approaches in network troubleshooting. This module is briefly described in

the proposed troubleshooting framework (Fig. 2.2).

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Convolutional network . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 Characteristics of QUIC-based applications . . . . . . . . . . . . . . 51

3.3 Traffic Classification Approaches . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Port-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Payload-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.3 Statistic-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.4 DL-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Proposal: Novel Traffic Classification Method for QUIC Traffic . . . . . . 56

3.4.1 Traffic Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.2 Flow-based Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.4 Proposed Traffic Classification Method . . . . . . . . . . . . . . . . . 58

3.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1 Dataset specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

47



3.5.2 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.3 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.3.1 First Stage of Classification . . . . . . . . . . . . . . . . . . . 63

3.5.3.2 Second Stage of Classification . . . . . . . . . . . . . . . . . 63

3.5.3.3 Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

48



3.1. INTRODUCTION

3.1 Introduction

Traffic classification [71] plays an essential role in network troubleshooting for NOs. The

objective of traffic classification is to identify application classes in the network to imple-

ment application-aware mechanisms to address network problems and meet strict SLA

requirements. Concretely, traffic classification is used widely in application-aware rout-

ing, billing policies, intrusion detection systems, identifying security threats, enforcing

QoS requirements and so on [124]. Therefore, traffic classification is studied thoroughly

by the research community.

In the past, many attempts to identify the application class relied on port-based ap-

proaches and payload-based approaches. The first approach uses port numbers in TCP/UDP

packets to identify the application class. However, it is not effective because modern ap-

plications and protocols are not always tied to a specific port. Besides, many networks

change the port number in the packets using NAT (Network Address Translation), leading

to inaccurate results for traffic classification. The second approach [50] inspects a pay-

load of packet to identify its signatures corresponding to a particular application, called

Deep Packet Inspection. This approach can achieve high accuracy, but it is limited due to

encrypted network traffic. Concretely, network traffic nowadays is encrypted to protect

data and user’s privacy, so the signature of application in the payload of packet is hidden.

To overcome drawbacks of such approaches, statistic-based approach using Machine

Learning (ML) [71] is emerged. This approach analyzes high-level information obtained

from network flows (e.g., TCP window size, packets inter-arrival times, etc.) using ML to

identify the application class. Flow-based features can be extracted from all packets of a

flow [125, 126] or the first few packets of a flow [71, 127]. However, these approaches re-

quire identifying pre-defined flow-based features with human intervention, so it requires

a knowledge base about considered applications and a large analysis time. Consequently,

many studies focus on a traffic classification approach using Deep Learning (DL). The

objective of the DL algorithm is to combine feature extraction and classification modules

into one module, so this approach does not require human intervention for the feature

extractions. This method converts the payload of packet into bytes to create a vector rep-

resenting an application class. Then, DL algorithms analyze this vector to automatically

extract packet-based features (implicit features) and classify these features into the appli-

cation classes for HTTPS [84] and VPN traffic [85, 128].

49



3.1. INTRODUCTION

Figure 3.1: Byte in payload of QUIC packets for different applications.

Similar to HTTPS, Google has recently developed Quick UDP Internet Connection

(QUIC) [61], a new transport layer network protocol on the top of UDP. QUIC contains

many advantages related to connection establishment, congestion control, multiplexing

without head of line blocking and connection migration. Besides, QUIC also provides

a security protection equivalent to TLS/SSL (Transport Layer Security / Secure Sockets

Layer).

Many existing studies focus on traffic classification solutions for HTTPS [84] and VPN

traffic [85, 128]. In this thesis, we concentrate on a traffic classification solution for QUIC

traffic. From the experiments, the investigation on bytes in payload of the QUIC packets

(Fig. 3.1) illustrates that the DL-based traffic classification approaches cannot be effective

for several QUIC-based applications including chat and VoIP applications. The reason is

that there is less difference in the payload of packets for chat and VoIP applications.

Therefore, in this thesis, we propose a novel traffic classification method using Con-

volutional Neural Network (CNN). It is a hybrid between the statistical-based method and

the DL-based method. The proposal contains two main stages. The first one uses flow-

based features and a ML algorithm to classify the network traffic into chat, VoIP and other

applications corresponding to elephant flows (large continuous flows in total bytes). The

second one takes into account packet-based features and CNN to classify the elephant

flows into video streaming, file transfer and Google play music. Chat, VoIP, video stream-

ing, file transfer and Google play music are taken into account here because it is reported

that these applications will comprise over 80 percent of global IP traffic by 2022 [129].

The remainder of this chapter is as follows. Section 3.2 presents background about

50



3.2. BACKGROUND

CNN and characteristics of QUIC-based applications. Related work on traffic classifica-

tion is introduced in Section 3.3. Section 3.4 describes the novel traffic classification ap-

proach for QUIC traffic. Section 3.5 shows experimental results. Section 3.6 presents a

conclusion which highlights future perspectives.

3.2 Background

3.2.1 Convolutional network

Convolutional network [130] [131] is known as Convolutional Neural Network (CNN), a

specialized artificial neural network for data processing. It can be applied to pattern

recognition, DGA botnet detection, traffic classification and so on [71]. Artificial Neural

Network (ANN) [131] is a kind of machine learning algorithm inspired by the biological

neural networks. However, ANN contains two main drawbacks [131] in the context with a

large input size. ANN has connections between each neuron of a layer to each neuron of

the following layers. It implements a matrix multiplication by a matrix of separate param-

eters. Besides, each element of weight matrix in ANN is utilized only once to compute the

output of next layers.

CNN contains characteristics including spare connectivity, parameter sharing, and

equivariant representations [131]. Consequently, it offers opportunities to overcome the

disadvantages of ANN. Spare connectivity means that each neuron in a layer can interact

indirectly with a large portion of the input to make a kernel smaller. With the parame-

ter sharing characteristic, each kernel element is utilized at every position of the input

to use the same parameters for more than one. The third characteristic indicates that a

translation of input features results in an equivalent translation of outputs. These char-

acteristics result in a reduction of memory requirements and processing time to obtain

better performance compared to ANN.

3.2.2 Characteristics of QUIC-based applications

Fig. 3.2 show differences between QUIC-based applications related to flow-based fea-

tures. In this paper, we use a collected dataset [123] with five applications containing

VoIP (VC), chat (C), video streaming (VS), Google play music (GPM) and file transfer (FT).

In QUIC-based applications, QUIC is responsible for establishing, finishing connec-

tions, and transferring data between end-users. There are significant differences between

51



3.3. TRAFFIC CLASSIFICATION APPROACHES

C VoIP FT VS GPM
Five QUIC-based applications

0.15

0.3

0.45
Sm

al
l p

ac
ke

ts
 in

 fl
ow

s 
(%

)

(a) Small packets.

C VoIP FT VS GPM
Five QUIC-based applications

0

0.3

0.6

0.9

La
rg

e 
pa

ck
et

s 
in

 fl
ow

s 
(%

)

(b) Large packets.

Figure 3.2: Percentage of small and large packets in flows.

these applications. In chat application of Google Hangout, all packets transferred be-

tween end-users are supported by QUIC, but the data transferred is insufficient. There-

fore, most packets in flows are small packets whose packet lengths are less than 150 bytes.

It is similar to VoIP of Google Hangout. In Fig. 3.2a, a range of small packets in the flows

of chat and VoIP is larger than the figure for others.

In file transfer, video streaming and Google play music, servers and clients frequently

transfer a large data, so there is a high number of large packets whose packet lengths are

bigger than 1000 bytes in the network flows. In Fig. 3.2b, the percentage of large pack-

ets in the flows of these applications is over 60 percent. Moreover, the clients frequently

reply small packets to the servers, so the percentage of small packets of these services

is approximately 30 percent, except for Google play music (approximately 15 percent).

However, the range of percentage of small packets in these applications is slightly tight.

3.3 Traffic Classification Approaches

In this section, we present related work on traffic classification including port-based ap-

proaches, payload-based approaches, statistic-based approaches and DL-based meth-

ods.

3.3.1 Port-based Approaches

Traditionally, the application class is identified according to a well-known port number

in a packet. In the past, a particular application is registered to a specific port number in

IANA (Internet Assigned Numbers Authority) [132]. The port-based approaches analyze

52



3.3. TRAFFIC CLASSIFICATION APPROACHES

the packet to obtain the port number and identify the corresponding application class.

Tab. 3.1 indicates ports registered by IANA and corresponding applications. For instance,

SSH applications use port 22, and HTTP applications use port 80 for data transmission.

Table 3.1: Registered port numbers by IANA for several applications.

Registered ports Applications
20 FTP Data
21 FTP Control
22 SSH
23 TELNET
25 SMTP
53 DNS
80 HTTP

161 SNMP
443 HTTPS

This approach is no longer available due to inaccuracy of classification results [71].

In fact, many applications use port numbers from a well-known application (e.g., port

443, etc.). Besides, many network administrators use NAT to change the port number of

packets in the network.

3.3.2 Payload-based Approaches

An alternative for the port-based approach is the payload-based approach, called Deep

Packet Inspection. This approach analyzes the payload of packets to obtain application’s

signature and identify a corresponding application. Tab. 3.2 shows the signatures for

several P2P (Peer-to-Peer) applications [133].

Table 3.2: Signatures for several P2P applications.

Application Signatures Protocol
eDonkey 2000 0xe319010000, 0xe53f010000 TCP, UDP

BitTorrent "0x13Bit" TCP
Ares GET hash:, Get sha1: TCP

Adami et al. [50] identify the VoIP traffic according to the signatures of SIP proto-

col (e.g., content-type: "application/sdp", etc.). This approach can achieve good per-

formance, but it contains three main drawbacks. First, searching the signatures in the

payload of packets requires high resource consumption in the network devices. Second,

53



3.3. TRAFFIC CLASSIFICATION APPROACHES

the packet’s payload is hidden due to encrypted traffic nowadays, so this leads to many

obstacles for signature extraction. Finally, this approach requires updating the signature

frequently for a new version of applications or new applications.

3.3.3 Statistic-based Approaches

The emerging of statistic-based approaches using ML is a potential solution to overcome

the limitations of port and payload-based approaches. This method extracts flow-based

features corresponding to network flows and analyzes it using the ML technique to clas-

sify the network flows into different applications.

Williams et al. [134] proposed a traffic classification using statistical-based approach.

This method extracts the flow-based features from all packets of flows and analyzes it us-

ing ML algorithms (e.g., Naive Bayes, C4.5, Bayesian Network, etc.) to classify network

traffic into FTP, Telnet, SMTP, DNS, and HTTP. The flow-based features contain a proto-

col, flow duration, flow volume in bytes, packet length, and inter-arrival time in the flows.

Similarly, Fathi-Kazerooni et al. [126] proposed a traffic classification approach using the

random forest algorithm. This approach collects ten flow-based features from all packets

of flows and analyzes it to identify six applications including Chrome, Google Driver, One

Drive, One Note, Spotify and Whatapp. However, these approaches are not able to early

detect applications because these approaches extract and analyze flow-based features af-

ter the flows terminate.

Many studies focused on statistical-based approaches for early application detection.

Amaral et al. [75] proposed a novel traffic classification approach for the SDN environ-

ment. The objective is to collect 12 features from the first five packets of flows (e.g., packet

size, packet time-stamp, inter-arrival time, etc.) and analyze it using ML algorithms (ran-

dom forest, stochastic gradient boosting and extreme gradient boosting) to identify eight

applications. Besides, Lopez-Martin et al. [71] proposed a traffic classification approach

for IoT network. This approach extracts six time-series features of the first 20 packets of

flows and analyzes it using DL algorithms (RNN, CNN and CNN+RNN) to classify net-

work traffic into 108 applications. However, this approach uses the port number in traf-

fic classification, so this can results in uncertain results when many applications use the

same ports (e.g., port 445, etc.). Moreover, the statistic-based approaches require to iden-

tify pre-defined flow-based features with human intervention. Consequently, these ap-

proaches require a knowledge base about applications.

54



3.3. TRAFFIC CLASSIFICATION APPROACHES

3.3.4 DL-based Approaches

The DL-based approach is a variant of the statistic-based approach. The main goal of

the DL algorithm is to combine the feature extraction and classification modules into one

module. This approach extracts packet-based features (implicit features) according to an-

alyzing the packet’s payload using the DL algorithm, unlike the statistic-based approach

which extracts the pre-defined flow-based features. Then, the packet-based features are

analyzed according to a classifier in the DL algorithm to identify the application class.

Lotfollahi et al. [128] proposed "Deep Packet", a novel traffic classification using DL

algorithms. Deep Packet processes 1500 bytes in the payload of packet to obtain a vector.

Next, this vector is analyzed in the DL algorithms to classify network traffic into email,

chat, FTP, Skype, torrent, etc. In this approach, the authors evaluate the performance of

two DL algorithms including stacked autoencoder and CNN. However, using all bytes in

the packet’s header (e.g., port number, etc.) can lead to uncertain results because many

applications use the same ports. Similarly, Wang et al. [85] analyze the first 784 bytes

in each packet using CNN to identify six VPN and six non-VPN applications. Moreover,

Wang et al. [84] proposed an encrypted traffic approach using the DL algorithm in the

home gateway. This method processes the first 1480 bytes of each packet and analyzes

it in ML algorithms to identify 15 applications in the context of encrypted traffic (e.g.,

Facebook, Gmail, SFTP, etc.). To select an appropriate algorithm, the authors evaluate the

performance of multi-layer perceptron (MLP), stacked autoencoder and CNN. However,

these DL-based approaches only take into account the payload of a packet in network

flows to identify the application class. To improve the performance of traffic classification,

Lim et al. [135] propose a traffic classification using multi-layer LSTM (Long Short-Term

Memory) which considers payload of many packets in a network flow. This approach

analyzes the payload of the first 30 packets in a flow to create a 3-dimensional vector and

analyzes it using multi-layer LSTM to identify eight applications.

The existing studies focus on traffic classification approaches for non-encrypted traf-

fic or encrypted traffic including HTTPS and VPN traffic. Therefore, in this thesis, we focus

on a traffic classification approach for QUIC traffic. After investigating the characteristics

of QUIC-based applications, we realized that DL-based approaches are not effective for

several applications (e.g., chat and VoIP, etc.). Consequently, we propose a hybrid QUIC

traffic classification approach using both flow-based features, packet-based features and

DL algorithms.

55



3.4. PROPOSAL: NOVEL TRAFFIC CLASSIFICATION METHOD FOR QUIC TRAFFIC

3.4 Proposal: Novel Traffic Classification Method for QUIC
Traffic

In this thesis, we propose a new traffic classification method using flow-based features,

packet-based features and CNN. The detail is described as in Fig. 3.3a. There are two

kinds of network flows: mice flows (small continuous flows in total bytes) and elephant

flows (large continuous flows in total bytes). Therefore, the proposal comprises two main

stages of classification. In the first stage, flow-based features are analyzed in ML algo-

rithms (e.g., random forest, SVM, etc.) to identify chat and VoIP applications (mice flows).

After that, packet-based features of elephant flows are extracted and analyzed according

to CNN to classify elephant flows into file transfer, video streaming, or Google play music.

Network

Traffic

Feature 

Extraction

ML

Algorithm

Pre-processing

Mice 

Flows?

Multiclass

Classification

Majority

Rule

Chat

VoIP

Yes

No

File 

Transfer

Google

Play Music

Video

Streaming

Data-Link Header

Removal

Byte Conversion

Normalization

Zero Padding

Pre-processing

(a) Overall structure.

Convolutional 

Layer

Convolutional 

Layer

Average Pooling

Layer

Flatter Layer

Fully Connected

Layer

Fully Connected

Layer

Fully Connected

Layer

Softmax

Multiclass

Classification

(b) Multiclass classification
module using CNN.

Figure 3.3: Novel traffic classification approach for QUIC traffic.

56



3.4. PROPOSAL: NOVEL TRAFFIC CLASSIFICATION METHOD FOR QUIC TRAFFIC

3.4.1 Traffic Collection

In traffic classification, we need to collect network traffic and analyze it to identify the

application classes. Network traffic can be collected directly from Openflow switches in

the SDN environment, but it is not effective with a tremendous amount of network traf-

fic. Consequently, it is necessary for a network monitoring standard supporting sampling

technique to reduce traffic volume. There are two sampling techniques including flow

sampling and packet sampling. Flow sampling (e.g., NetFlow, etc.) samples a flow with a

specific probability, aggregates all packets of this flow into flow records, and exports to-

wards collectors. Packet sampling (e.g., sFlow, etc.) samples each packet with a specific

probability and aggregates sampled packets into sFlow records and exports to collectors.

The flow sampling technique can collect too many packets of several flows and no packets

for other flows. Therefore, it is ineffective for traffic classification. However, we can partly

collect packets of all flows in the network with the packet sampling technique. Therefore,

sFlow [59] is used here in the traffic classification approach. sFlow was widely used by

vendors including IBM, HP, OpenVswitch and so on.

sFlow contains two main elements including sFlow agents and sFlow collectors. sFlow

agents are implemented at ingress nodes (edge nodes) in the network. When there is

network traffic traversing the sFlow agents, it will sample these packets, aggregate them

and export to the sFlow collectors for the traffic classification.

3.4.2 Flow-based Features

In the first classification stage, flow-based features are used to identify chat and VoIP ap-

plications. According to subsection 3.2.2, there are differences between five applications,

particularly packet length. Therefore, we take into account eight flow-based features in

the first classification stage: average payload length, percentage of small, medium, and

large packets in the network flows in both directions between clients and servers. The

length of small, medium and large packets range from 0 to 150, 150 to 1000 and over 1000

bytes, respectively.

3.4.3 Pre-processing

The pro-processing module processes QUIC packets of elephant flows, converts its pay-

load into bytes and normalizes into decimal values for further modules. This module

57



3.4. PROPOSAL: NOVEL TRAFFIC CLASSIFICATION METHOD FOR QUIC TRAFFIC

contains four main steps consisting of data-link header removal, byte conversion, nor-

malization and zero padding.

The data-link header contains information related to the physical layer, which plays

an important role in frame forwarding in the network. However, this information is use-

less for traffic classification, so the data-link header will be filtered in the data-link header

removal step. Besides, we only use the payload of packets because the remaining infor-

mation in the packets (e.g., port number, etc.) can result in uncertain results in the traffic

classification. After that, the payload of packets is converted from bit to byte to reduce an

input size. Then, these bytes are normalized by dividing by 255, the maximum value for

a byte. CNN requires the same input length while the length of QUIC packets varies from

over 50 to approximately 1400 bytes. Therefore, the packets are inserted zero values in the

zero padding step to have a similar length for each packet. If the packet length is less than

1400, these packets are padded with zero values at the end of packets. Finally, each packet

is represented by a vector containing 1400 decimal values.

3.4.4 Proposed Traffic Classification Method

Fig. 3.3a describes the overall of the proposed traffic classification method. First, network

traffic is collected, and then the first few packets of each flow are processed in the feature

extraction module to extract eight flow-based features representing the network flow. The

more packets in a flow we use, the higher accuracy we can obtain. However, it results in

a high processing time. Therefore, we consider the first twenty packets of each flow to

extract flow-based features as in existing study [71]. Then, these features are analyzed in

ML algorithms which classify the network flows into chat, VoIP and elephant flows. ML

algorithm is considered as a classifier for identifying the application class. There are many

ML algorithms (e.g., random forest, SVM, MLP, etc.), but the random forest algorithm out-

performs the others [136] (refer to experimental results). Consequently, random forest is

considered as a ML algorithm in the first classification stage. After identifying chat and

VoIP applications, the remainder of network traffic (elephant flows) is processed in the

second classification stage to classify elephant flows into video streaming, file transfer

and Google play music application.

First, the packet of elephant flows is processed in the pre-processing module to extract

the vector of 1400 decimal values representing each packet. Then, this vector is analyzed

in the multiclass classification module to identify the application class. The structure of

58



3.4. PROPOSAL: NOVEL TRAFFIC CLASSIFICATION METHOD FOR QUIC TRAFFIC

this module is described in Fig. 3.3b. The size of input vector is large (1400 values), so ANN

as well as traditional ML algorithms (e.g., SVM, MLP, etc.) are not effective in data process-

ing [137]. Besides, CNN contains characteristics including spare connectivity, parameter

sharing, and equivariant representations. This offers opportunities to learn more effec-

tive representations in comparison with traditional machine learning algorithms [137].

Therefore, CNN is taken into account in the multiclass classification module.

The structure of the multiclass classification module contains five essential layers in-

cluding convolutional layer, average pooling layer, flatter layer, fully connected layer and

softmax. The convolutional layer is considered as a feature learning to extract packet-

based features representing a packet in elephant flows. The average pooling layer re-

places the input vector at a certain location with an average value of nearby values while

the flatter layer flattens an output obtained from the average pooling layer into a one-

dimensional vector. In the fully connected layer, each neuron has complete connections

to each neuron in the following layers. The softmax layer is a generalization of a logistic

function that squashes an n-dimensional vector into an n-dimensional vector with ele-

ment values between 0 and 1. The combination of the fully connected layer and softmax

is similar to a classifier that indicates a relationship between the input vectors and the

application classes to classify the elephant flows into different kinds of applications.

In each elephant flow, we extract packet-based features of the first few packets, clas-

sify these packets and aggregate classification results to identify application class for the

elephant flow according to the majority rule. The majority rule is a decision rule that se-

lects an alternative with high votes. If most packets among these packets are classified

as an application, the flow will be assigned to that application. If the vote of applications

is equal, a classification probability of these packets is used to identify the application

class. The higher number of packets in each flow classified, the higher accuracy we can

obtain. Nevertheless, this can lead to a high processing time. Therefore, we consider the

first ten packets of each elephant flow to identify the application class. The detail of the

majority rule is described in Algorithm 1. l abel (i d) is an application class of flow after

the classification and pr obi j is a probability of packet packeti classified as application

app j in the flows. argmax is a function that returns an index of the highest value in the

input. m and n are a number of application classes and a number of packets required for

the classification in each flow, respectively.

The proposal contains two main algorithms including random forest and CNN. There-

59



3.4. PROPOSAL: NOVEL TRAFFIC CLASSIFICATION METHOD FOR QUIC TRAFFIC

Algorithm 1 Majority rule

Require: i d , FlowId , l abel , FlowLabel , app, Count , pr ob, Pr ob, a
1: while i d in FlowId do
2: for j = 1 to m do
3: for i = 1 to n do
4: if l abel (i d) is app j then
5: ai j = 1
6: else
7: ai j = 0
8: end if
9: end for

Count j =
n∑

i=1
ai j

Pr ob j =
n∑

i=1
pr obi j

10: end for
11: if all Count j unique in Count then
12: FlowLabel (i d) = argmax(Count )
13: else
14: FlowLabel (i d) = argmax(Pr ob)
15: end if
16: Return application class Fl owLabel (i d)
17: end while

fore, time complexity of the proposal is related to time complexity of these algorithms.

Regarding the time complexity of the random forest algorithm, its time complexity in the

training phase is O(n0 ∗ log (n0)∗d ∗k) where n0 is the number of input sample, d is di-

mensional of data and k is the number of trees in the forest while the time complexity in

testing phase is O(k ∗d
′
) where d

′
is the depth of tree [138].

As for the time complexity of CNN, total time complexity of all convolutional layers

[139] is estimated by Equ. 5.1:

O(
d∑

l=1
nl−1 · s2

l ·nl ·m2
l ). (3.1)

where d is the number of convolutional layers, nl−1 is the number of input channels

of the l -th layer, nl is the number of filters in the l -th layer, sl is the spatial size of the filter

and ml is the spatial size of the output feature map.

This time complexity is applied in both training and testing phase, and training time

is approximately three times of testing time.

60



3.5. EXPERIMENTAL RESULTS

3.5 Experimental results

3.5.1 Dataset specification

In the experiment, we implement a testbed to collect network traffic and publically pro-

vide a real traffic classification dataset from March to April 2018 [123]. Network traffic of

video streaming, chat, VoIP and Google play music applications are captured by watch-

ing videos on Youtube, accessing Google Hangout and Google play music automatically

according to Selenium WebDriver [121] in Google Chrome running on Ubuntu 16.04 OS.

Network traffic of file transfer application is collected by transferring data between servers

and clients using quic-go [122], an open-source library supporting QUIC protocol. As a

result, approximately 150 GB of network traffic was collected, including over 20,000 net-

work flows of five QUIC-based applications. The detail is described in Tab. 3.3. In the first

classification stage using the random forest algorithm, the dataset is divided into 5-fold.

Concretely, the training and testing phase comprise 20 and 80 percent of the dataset, re-

spectively. In the multiclass classification, the dataset is also divided into 5-fold. The

training, validation, and testing comprise 45, 5, 50 percent of the dataset, respectively.

Table 3.3: Dataset specification.

Application
Number of samples

(flows)
Chat 2,783
VoIP 2,608

File transfer 4,451
Video streaming 5,844

Google play music 4,349

The proposal is written in Python using Keras library [140] and scikit-learn tools [141].

Besides, all experiments are implemented in a workstation (Intel(R) Xeon(R) CPU E5-2640

v3 @ 2.6 GHz and 16 GB of RAM) running Ubuntu 16.04.

3.5.2 Performance metrics

In this section, we present measures [142] to evaluate the performance of the proposal

consisting of precision, recall, and F1-score (F-measure). Precision is a percentage of rel-

evant flows that are retrieved while recall is a percentage of retrieved flows that are rele-

vant. F1-score represents a harmonic mean between precision and recall. The detail of

61



3.5. EXPERIMENTAL RESULTS

these parameters are described in equation 3.2, 3.3, 3.4.

Pr eci si on = TP

TP+FP
. (3.2)

Recal l = TP

TP+FN
. (3.3)

F1− scor e = 2

1/Recal l +1/Pr eci si on
. (3.4)

Quality of overall classification can be evaluated in two ways [142]. In macro-averaging,

a metric is averaged over all classes that are treated equally. Micro-averaging is based on

cumulative True Positive (TP), False Positive (FP), True Negative (TN) and False Negative

(FN) of the dataset.

3.5.3 Performance analysis

Table 3.4: Performance metrics of ML algorithms in the first stage of classification.

Class
Precision Recall F1-score Nb

SamplesMLP SVM RF MLP SVM RF MLP SVM RF
Chat 0.9800 0.9759 0.9671 0.0072 0.8448 0.9454 0.0143 0.9057 0.9562 2227
VoIP 0.6298 0.9460 0.9671 0.9335 0.9608 0.9680 0.7529 0.9534 0.9675 2086
Elephant
flows

0.8690 0.9582 0.9757 0.9628 0.9800 0.9797 0.9135 0.9690 0.9777 11351

Micro 0.8234 0.9587 0.9724 0.8234 0.9587 0.9744 0.8234 0.9587 0.9734
15664

Macro 0.8263 0.9600 0.9679 0.6278 0.9286 0.9634 0.5536 0.9427 0.9656

Table 3.5: Time complexity of ML algorithms in the first stage of classification.

Algorithm
Average

Training Time (ms)
Average

Testing Time (ms)
MLP 0.25505 0.00042
SVM 7.76140 0.01472
RF 0.11787 0.03165

This section is dedicated to evaluating the performance of the proposed traffic classi-

fication method which contains two stages of classification. In the first stage, we evaluate

the performance and time complexity of ML algorithms (e.g., SVM, random forest, etc.)

to select an appropriate ML algorithm. In the second stage, we evaluate its performance

over different scenarios including different subsets of the input vector and various loss

62



3.5. EXPERIMENTAL RESULTS

functions. Besides, we evaluate the running time of the proposed traffic classification ap-

proach.

3.5.3.1 First Stage of Classification

The performance of MLP (Multilayer Perceptron) [143], SVM (Support-Vector Machine)

[144] and RF (Random Forest) [145] are described in Tab. 3.4. The micro and macro pre-

cision, recall and F1-score of MLP are the lowest in three ML algorithms with below 83

percent while the figures for RF are the highest with approximately 97 percent. Tab. 3.5

indicates the time complexity of ML algorithms in the first stage of classification. We cal-

culate the training time and testing time for the training and testing dataset and then

generate the average training and testing time for a sample in these datasets. Although

MLP does not have good performance, its traing and testing time are the lowest in three

algorithms with 0.25505 and 0.00042 ms, respectively. The average testing time of SVM

is lower than the figure for RF with 0.01472 and 0.03165 ms, respectively. However, the

difference between macro recall of SVM and RF is approximately 4 percent. Therefore, RF

is selected as a ML algorithm in the first stage of classification.

With RF algorithm, the precision, recall and F1-score of chat and VoIP applications are

impressive, with approximately 96 percent, except for the recall of chat application which

is 94.54 percent. Chat and VoIP applications have similar value regions in flow-based

features, so several flows of VoIP application are classified incorrectly to chat application.

This leads to lower results for chat application. In particular, the performance of elephant

flows (file transfer, video streaming, and Google play music) are over 97 percent. The

reason for it is that there is a difference in flow-based features between chat, VoIP and

elephant flows. As a result, the micro and macro-averaging precision, recall and F1-score

of the dataset achieve over 96 percent.

3.5.3.2 Second Stage of Classification

After classifying the network traffic into chat, VoIP or elephant flows, each packet of ele-

phant flows is pre-processed in the pre-processing module to obtains a vector of 1400

decimal values, and this vector is analyzed in the second stage of classification to classify

into video streaming, file transfer or Google play music.

In the first scenario, we investigate the influence of different subsets of input vectors

in the second stage of classification. We implement the experiments on five subsets with

63



3.5. EXPERIMENTAL RESULTS

the sparse_categorical_crossentropy loss function to select the subset with good perfor-

mance. Fig. 3.4 indicates the macro-averaging precision, recall and F1-score of five sub-

sets including the first 300, 600, 900, 1200 and 1400 decimal values. There is an upward

trend in the macro-averaging precision, recall and F1-score in five subsets. The perfor-

mance for the first 300 and 900 decimal values are not good, with over 70 percent for the

macro-averaging F1-score. The reason for it is that the precision of video streaming ap-

plication with the first 300 values is 64.34 percent. Besides, flows of video streaming are

classified incorrectly to the flows of file transfer, so this reduces the recall of file transfer

in the experiment of the first 300 values. It is similar to the subset of the first 900 values.

The discriminant power with the subset of 1400 values is larger than the figure for others,

so the macro-averaging precision, recall and F1-score are the highest, with approximately

99 percent.

 

0

0.2

0.4

0.6

0.8

1

Precision Recall F1-score

Pe
rc

en
ta

ge

300 features 600 features 900 features 1200 features 1400 features

Figure 3.4: Macro-averaging precision, macro-averaging recall and macro-averaging F1-score in
different subsets.

In the second scenario, we investigate the influence of loss functions [146] on the con-

volutional neural network (Fig. 3.5). As the above discussion, the performance of the

dataset with 1400 values is the highest in five subsets, so we use this dataset in the second

scenario. In this scenario, we evaluate the performance of three kinds of the loss function

(categorical_hinge (Hinge), mean_squared_error (MSE) and sparse_categorical_crossen-

tropy (SCCE)) to select the appropriate loss function. Hinge loss is the loss function that

is notably used in Support Vector Machine for "maximum-margin" classification. In Fig.

3.5, the performance of hinge loss is not good because the macro-averaging F1-score is

over 20 percent. The reason is that many flows of file transfer are classified incorrectly.

64



3.5. EXPERIMENTAL RESULTS

Mean squared error is the loss function that measures an average square of error. The

performance of MSE loss is higher than the figure for hinge loss. A noticeable feature is

that the performance of SCCE is the highest in three loss functions. The macro-averaging

of SCCE is the largest, with approximately 99 percent.

 

0

0.2

0.4

0.6

0.8

1

Precision Recall F1-score

Pe
rc

en
ta

ge

Hinge MSE SCCE

Figure 3.5: Macro-averaging precision, macro-averaging recall and macro-averaging f1-score in
different loss functions.

Briefly, we consider the dataset with 1400 values corresponding to 1400 bytes in the

payload of packets and the SCCE loss function in the second stage of classification. Fig.

3.6 indicates the overall results of the proposed traffic classification approach with these

selections. The micro and macro-averaging of precision, recall, and F1-score are over 96

percent. These results are summarized according to the results of the first and second

stage of classification.

 

 

 

  

0

0.2

0.4

0.6

0.8

1

Precision Recall F1-score

Pe
rc

en
ta

ge

Chat VoLt File transfer

Video streaming Google play music Micro

Macro

Figure 3.6: Precision, recall and F1-score of the proposed method on five QUIC-based
applications.

65



3.6. CONCLUSION

3.5.3.3 Time Analysis

Regarding the time complexity, the average training and testing time of RF in the first stage

of classification are 0.11787 and 0.03165 ms, so this stage can process up to over 33,000

network flows per second. The average training and testing time of CNN in the second

stage of classification are 11.1842 and 3.4 ms, so this stage can process approximately 300

network flows per second. Moreover, it is reported that Openflow switches can handle

from 150 to 750 new flows per second [147]. Similarly, Aliyu et al. [148] reported that

HP ProCurve 5406zl with K.15.10.0009 firmware could handle 275 new flows per second.

Therefore, the proposed traffic classification approach can operate effectively with SDN

switches.

3.6 Conclusion

In the chapter, we present the novel traffic classification method using the convolutional

neural network, flow-based features, and packet-based features to identify various QUIC-

based applications. There are two main classification stages in the proposed method.

The first one is to classify the network traffic into chat, VoIP or elephant flows, whereas

the second one aims to classify the elephant flows into video streaming, file transfer or

Google play music. The experimental results demonstrate that the proposed method can

detect five QUIC-based applications with high accuracy (over 96 percent).

Traffic classification aims to identify application classes for network management (e.g.,

application-aware traffic engineering, network slicing, etc.). Therefore, time complexity

is an essential factor in traffic classification. In the future, we will develop the proposed

traffic classification approach with more suitable time complexity. Besides, we will con-

struct a larger dataset, deeply investigate the flow-based features, and compare the per-

formance of the proposed method with existing traffic classification approaches to make

the proposed method more reliable.

After collecting network parameters from parameter measurement and application

class from the traffic classification module, we need to analyze it to identify network

anomalies. The objective is to identify when problems happen in the network and make

appropriate decisions to optimize network performance. Consequently, in the next chap-

ter, we present a proposed anomaly detection approach using machine learning algo-

rithm.

66



Chapter 4

Anomaly Detection

«The computer was born to solve
problems that did not exist before.»

Bill Gates

Chapter 4 presents a proposed anomaly detection approach to identify network anoma-

lies. This approach is implemented in the anomaly detection module which is depicted

as in Fig. 2.2.

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Anomaly Detection Approaches . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Knowledge-based Mechanisms . . . . . . . . . . . . . . . . . . . . . . 69

4.2.2 Rule Inductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.3 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.4 ML-based Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Proposed Anomaly Detection Approach using Machine Learning . . . . 71

4.3.1 ML-based Anomaly Detection Method . . . . . . . . . . . . . . . . . 72

4.3.2 Data Collection and Processing . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

67



4.1. INTRODUCTION

4.1 Introduction

An anomaly is an observation that deviates from other observations to raise a suspicion

that it is generated by a different mechanism [149]. According to its nature, the anomaly

can be categorized into point, collective, and contextual anomalies [150]. The point anomaly

is a deviation of a data sample from usual behaviors. This kind of anomaly is simplest and

widely studied by the research community. For example, packet loss in the network every

day is less than 1 percent, but it increases to more than 20 percent on a specific day. This

situation is considered as a point anomaly. The collective anomaly happens when a col-

lection of data samples behaves anomalously with an entire dataset. Anomalous behavior

is not considered as a collective anomaly, but point anomaly happening continuously in

duration is considered as a collective anomaly. The contextual anomaly is an event or be-

havior considered as an anomaly depending on the context. In contextual anomaly, there

are two features including contextual (e.g., geographic coordinates in spatial data, time

in time-series data, etc.) and non-contextual features (e.g., an indicator determining the

context of anomaly, etc. ). For example, the throughput of network systems increases sig-

nificantly at 0 AM every day due to regular backup. This activity creates an outlier related

to traffic volume, but it is not considered as an anomaly. However, an outlier at 1 AM can

be considered as a contextual anomaly.

Anomaly detection plays an important role in the network. It helps NO to detect

problems in the network early to reduce negative impacts of problems quickly (e.g., high

loss, low latency, etc.). Therefore, there are many anomaly detection techniques over

the past ten years including knowledge-based mechanisms, rule inductions, ML-based

mechanisms and so on. Despite many available techniques, following are obstacles in

the anomaly detection [149]:

• Boundary between normality and anomaly is not clear. There is no universal rule to

decide whether a behavior is normal or anomalous, except a subjective judgment.

Consequently, data can contain noise, which leads to low performance.

• There is a lack of public labeled dataset in the anomaly detection.

• Designing a general anomaly detection technique is not accessible because there

are specific requirements for each context. For instance, an anomaly detection

technique for wired networks may have limited usage in the wireless network.

68



4.2. ANOMALY DETECTION APPROACHES

4.2 Anomaly Detection Approaches

Maha et al. [151] grouped the studies on anomaly detection into four main mechanisms

including knowledge-based mechanisms, rule inductions, information theory and ML-

based mechanisms. In the following section, we present a brief explanation of these

mechanisms and highlight its advantages and drawbacks.

4.2.1 Knowledge-based Mechanisms

This mechanism (called expert system) requires human knowledge about anomalies to

obtain its patterns and encodes these patterns in a method that is realized by the ma-

chine. Consequently, the knowledge-based mechanism contains two main steps. First,

network experts analyze a large amount of data manually to identify anomaly patterns.

Then, these patterns are deployed in the network systems to detect anomalies in the fu-

ture. The knowledge expert can be structured in different ways:

• Rule-based systems: It contains if-then rules related to events or alarms. It requires

an assumption that the same network conditions will result in the same conse-

quences.

• Statistic-based systems: It is an advanced version of the rule-based system. The

objective is to create rules based on statistical calculation. Casas et al. [152] pro-

posed mPlane, a distributed measurement platform for ISP networks. mPlane al-

lows detecting anomalies based on similarity level between distribution of network

parameters and baseline. The baseline value is the value of network parameters

when there is no performance problem in the network. The similarity level between

distributions is calculated on Kullback-Leibler divergence. Alvarez Cid-Fuentes et

al. [96] proposed an anomaly detection approach in distributed systems. This ap-

proach detects anomalies using a statistical model. If the radial basis function of an

instance is bigger than a threshold, this instance will be considered as an anomaly.

Similarly, Chen et al. [153] proposed a matrix differential decomposition-based

anomaly detection and localization in NFV (Network Function Virtualization). This

method identifies the anomalies in NFV environments according to the deviation

between measured and reference RTT matrix.

The knowledge-based mechanisms suffer from low false positives because it only de-

tects anomalies specified by network experts. However, it contains two main problems.

69



4.2. ANOMALY DETECTION APPROACHES

First, it is costly and time-consuming because list of anomaly patterns should be exhaus-

tive. Second, it is not effective with new kinds of anomalies that are not defined in the

rules. Therefore, the research community moves toward other anomaly detection ap-

proaches.

4.2.2 Rule Inductions

This approach uses a learning algorithm to learn rules in a deterministic way for anomaly

detection. In this approach, there are two main phases including training and testing.

In the training phase, this method learns the rules from a large amount of labeled data.

Then, the testing phase detects the anomalies according to these rules. There are many

learning algorithms for rule induction including decision tree, association rules and so

on. The decision tree is a learning algorithm that uses a tree-like decision model for

anomaly detection. Association rules generate the rules based on a support and a con-

fidence. Bohmer et al. [154] proposed a novel anomaly detection approach based on

association rule mining to reduce false positives in anomaly detection. However, it is not

effective with high-dimensional data due to high processing time and accuracy issues.

4.2.3 Information Theory

This approach is related to an assumption that anomalies in a dataset vary its informa-

tion content. This approach is based on measuring an information indicator of data flows

to build an appropriate anomaly detection model. According to related work [149], there

are many measuring functions including entropy, conditional entropy, relative entropy,

relative conditional entropy and information gain. For example, an anomaly detection

model needs to look for features with high information gain. If all features have low infor-

mation gain, performance of anomaly detection is not good. In other words, the higher

the information gain of features, the better the performance. This approach is to obtain

an appropriate classifier for anomaly detection, but it is sensitive to noise.

4.2.4 ML-based Mechanisms

This approach analyzes data points using ML algorithms to classify it into anomaly or

normality. In this approach, there are three main steps. First, we identify features repre-

senting for a data point. Then, we analyze the training data using ML algorithms to learn

a model for the classification. Finally, we use this model to classify new data. There are

70



4.3. PROPOSED ANOMALY DETECTION APPROACH USING MACHINE LEARNING

many ML algorithms including decision tree, SVM, neural network, and so on.

In fact, many studies have used decision tree in anomaly detection [155, 156]. This

approach detects anomalies using a tree-like decision model. The time complexity of this

approach depends on the time complexity of algorithms used to construct the trees (e.g.,

ID3, C4.5, etc.). Although this approach can detect anomaly effectively, it contains two

main drawbacks: high dimensional data and over-fitting problem. Consequently, Ran-

dom Forest (RF) algorithm is studied in the anomaly detection by the research community

[157]. Random forest builds multiple decision trees on a different subset of input dataset,

and aggregates the output of these decision trees to make the final decision. In this case,

it can overcome the over-fitting problem. In the random forest algorithm, a balance be-

tween accuracy and computational resources needs to be considered thoroughly. The

higher the number of decision trees in the random forest algorithm, the more accurate

the classification results and the higher computational resources.

Besides, Bayesian networks are studied in the anomaly detection [158, 159]. This ap-

proach can be easily and quickly implemented, but it requires an independent assump-

tion between data features. This property is not always guaranteed in the high dimen-

sional data where data features have a correlation. When the independence assumption

is not guaranteed, it can lead to low performance.

Support-Vector Machine (SVM) is another algorithm which is taken into account in

the anomaly detection [160, 161, 162]. Its objective is to find a hyperplane in data space

to detect the anomaly based on a kernel function. However, with non-kernel functions,

SVM can suffer from the over-fitting problem, leading to low performance in anomaly

detection.

Despite good performance, the ML-based mechanisms contain two main disadvan-

tages. First, it requires a labeled dataset to train an anomaly detection model. Second, it

cannot effectively detect unknown problems which are not in the training dataset.

4.3 Proposed Anomaly Detection Approach using Machine
Learning

Although there are many anomaly detection approaches, we implement an anomaly de-

tection approach using machine learning in this thesis. The reason is that it offers op-

portunities to expand to detect anomalies caused by unknown problems easily. This can

be achieved by increasing the number of features and expanding the training dataset.

71



4.3. PROPOSED ANOMALY DETECTION APPROACH USING MACHINE LEARNING

Regarding the first drawback of this approach, we simulate root causes of anomalies to

collect the training dataset. As for the second drawback, we can frequently update the

anomaly detection model when there are new problems.

Application layer

Control layer

Infrastructure 

layer

Application1

Application2

Applicationn

SDN 

controller1

SDN 

controller2

SDN 

controllern
...

Anomaly 

Detection

Data Collection 

and Processing

Anomaly Detection

Model

Administrator

Features

Classification 
Results

Figure 4.1: Overall architecture of ML-based anomaly detection mechanism in the SDN
environment.

In this thesis, we take into account the anomaly detection mechanism in SDN envi-

ronment because it offers global visibility and monitoring tools to facilitate anomaly de-

tection (as discussed in Chapter 2). The overall architecture of the ML-based anomaly de-

tection mechanism in the SDN environment is depicted as in Fig. 4.1. First, the network

traffic from the infrastructure layer is collected and analyzed in the data collection and

processing module to extract the network features representing network status. Then,

these features are analyzed in the anomaly detection model which is built according to

ML algorithms, to classify the network status into anomaly or normality.

4.3.1 ML-based Anomaly Detection Method

After collecting and extracting network features from data collection and processing mod-

ule, we analyze these features using the ML-based anomaly detection method to identify

the anomalies in the network. Network problems can lead to performance degradation

and a fluctuation of network features. ML algorithms aim to learn this fluctuation to de-

tect anomalies in the network. The detail of this approach is described as in Fig. 4.2.

There are two main phases in this method including training and testing phases. In

the training phase, the network features will be analyzed according to a ML algorithm to

obtain a pre-trained anomaly detection model for the testing phase. The objective of the

anomaly detection model is to detect the anomalies in the network. There are different

72



4.3. PROPOSED ANOMALY DETECTION APPROACH USING MACHINE LEARNING

Network 

Environment

Data  Collection 

and Processing

ML

Algorithm

Network 

Environment

Data  Collection 

and Processing

Anomaly Detection

Model

Training Testing

Network 
Traffic

Features

Model

Anomaly Normality

Figure 4.2: The ML-based Anomaly Detection Method.

kinds of ML algorithms for anomaly detection. Consequently, we evaluate several algo-

rithms to select the appropriate one and balance between accuracy and time complexity.

The considered ML algorithms includes Multi-Layer Perceptron (MLP) [163], Support-

Vector Machine (SVM) [164], Random Forest (RF) [164], Adaptive Boosting (AdaBoost)

[165] and Convolutional Neural Network (CNN) [166]. Concerning the CNN model, we

use two convolutional 1D (1 dimensional) layer, a max Pooling 1D, a flatter layer and

three fully connected layers. For the others algorithms, we adjust hyper-parameters such

as depth of tree, number of estimators and so on. These configurations are chosen as in

existing study [97].

4.3.2 Data Collection and Processing

This module collects and extracts network features representing network status (anomaly

and normality) in the network. This module refers to the parameter measurement mod-

ule in the proposed troubleshooting framework (Fig. 2.2). In this thesis, we consider con-

gestion and simulate three root causes (link failure, switch failure and buffer overload) to

obtain anomalous network status. We simulate link failure by generating a delay in links.

Besides, switch failure is simulated by generating rule failure leading to a packet loss in the

switches. Buffer overload is simulated by generating a massive amount of network traf-

73



4.3. PROPOSED ANOMALY DETECTION APPROACH USING MACHINE LEARNING

Table 4.1: Considered network conditions.

Status
Static

Network
Dynamic
Network

Anomalous
status

Link
failure

Delay: 125ms Delay: [25, 50, 75, 100, 125ms]

Switch
failure

Loss: 50% Loss: [10, 20, 30, 40, 50%]

Buffer
overload

Bandwidth: 10 mbps,
Sending rate: 60-100 mbps

Bandwidth: 10 mbps,
Sending rate: 60-100 mbps

Normal
status

Sending rate: 1-3 mbps

fic exceeding the link’s capacity. The anomalous network statuses are simulated in two

scenarios including static and dynamic networks. In the static network, delay and loss

parameters in the links are tied to a particular value. In contrast, in the dynamic network,

link status is changed according to Gilbert-Elliot (GE) model [118] following a probabil-

ity value after a given time (400 seconds). The probability of changing from normal to

anomalous status and anomalous to normal status are p and r, respectively. If link status

is anomalous, delay and loss are changed as in Tab. 4.1.

In each link, we extract three network parameters including latency, packet loss and

link utilization. These parameters are discussed in the parameter measurement module

(Chapter 2, Section 2.3.3). This choice is explained by a fact that these parameters are

taken into account in many SLA (Service-level Agreement) of service providers [167]. The

parameters on each link will be aggregated to calculate the parameter of a routing path

(network features) which is used for anomaly detection. After that, these features are nor-

malized into a value between 0 and 1 according to Max Normalization [119]. In anomaly

detection, we consider time-series features, and a sample aggregates features of ten con-

secutive time steps to identify the anomaly. An input sample is a matrix 10×3 (number of

time steps × number of features). The anomaly detection datasets are depicted as in Tab.

4.2.

Table 4.2: Anomaly Detection Datasets.

Status
Static

Network
Dynamic
Network

Anomalous 24452 44172
Normal 11075 11075

74



4.4. EXPERIMENTAL RESULTS

4.4 Experimental Results

4.4.1 Experimental Setup

In the experiments, mininet [168] is used to generate network topology with five spine

nodes and two leaf nodes. The delay and loss parameters on each link is configured in

mininet based on TCLink argument. In GE model, p and r are set to 0.81 and 0.07 as

in [118]. The ML algorithms are implemented according to a library scikit-learn [141] in

Python. The training, validation and testing phase comprise 76, 4, and 20 percent of the

anonaly detection dataset.

Performance of ML algorithms is evaluated according to performance metrics: preci-

sion, recall, and F1-score (F-measure) [142]. Precision is the percentage of relevant flows

retrieved, while recall is the percentage of retrieved flows that are relevant. F1-score (F-

measure) represents a harmonic mean between precision and recall. The detail of these

parameters are depicted in Equations 4.1, 4.2, 4.3. There are two ways to evaluate the

quality of the overall classification including micro-averaging and macro-averaging value.

In macro-averaging, a metric is averaged over all classes that are treated equally whereas

micro-averaging is based on the cumulative True Positive (TP), False Positive (FP), True

Negative (TN) and False Negative (FN) of the dataset.

Pr eci si on = TP

TP+FP
. (4.1)

Recal l = TP

TP+FN
. (4.2)

F1− scor e = 2

1/Recal l +1/Pr eci si on
. (4.3)

4.4.2 Performance Analysis

There are two anomaly detection datasets including datasets in static and dynamic net-

works. We consider a balance between the performance and time complexity of ML al-

gorithms to select an appropriate one. Tab. 4.3 shows the performance metrics of ML

algorithms for the dataset in static network. In the dataset in static network, the range

of network features between classes is sometimes overlapping, so this leads to noises in

the dataset. The performance metrics of SVM are the lowest in four algorithms. The mi-

75



4.4. EXPERIMENTAL RESULTS

cro and macro precision, recall and F1-score are approximately 83.3 percent. The reason

is that SVM does not perform well when the dataset contains more noises (e.g., classes

are overlapping, etc.) [169]. RF builds multiple decision trees on different subset of the

dataset and selects the class selected by most trees. The number of decision trees in RF is

set to 100 as default in library scikit-learn. Consequently, RF can achieve good classifica-

tion results. The precision, recall and F1-score of RF algorithm are close to 98.8 percent.

AdaBoost is a ML algorithm using boosting ensemble method and decision tree as the in-

dividual model. The boosting ensemble method is to learn the individual model from the

mistakes of previous models. Despite learning from the mistakes by increasing weight

of misclassified samples, it can lead to uncertain results when dataset contains noises.

Therefore, the precision, recall and F1-score of AdaBoost reduce from 1 to 1.5 percent in

comparison with RF algorithm. Besides, The performance of CNN is the highest in four

algorithms, with approximately 99 percent.

Tab. 4.4 indicates running time of ML algorithm for the dataset in static network.

These values are the average training and testing time for a sample in the training and

testing dataset. SVM has the largest training and testing time, with 0.9183 and 0.3940 ms.

The testing time of RF and AdaBoost are nearly equal to 0.009 ms. Although CNN has the

highest performance, its training and testing time are higher than the figures for RF and

AdaBoost. In a fold, the training time of an epoch of CNN is 0.0548 ms. This value increase

against the number of folds and epochs. In the thesis, we configure the number of folds

and epochs to 20. Therefore, the total training time for a sample is 21.92 ms (0.0548·20·20).

The testing time of CNN nearly doubles the figures for RF and AdaBoost.

Tab. 4.5 and 4.6 illustrate the performance metrics and time complexity of ML algo-

rithms for the dataset in dynamic network. There is an imbalance between the number

of normal and anomalous network status, so the normal network status is classified as

anomalous network status in SVM algorithm. Therefore, the precision, recall and F1-score

of normal network status are 0 in SVM algorithm. Moreover, CNN has the highest perfor-

mance metrics in four algorithms, but its time complexity nearly doubles the figure for

RF and AdaBoost. Regarding the balance between the performance metrics and the run-

ning time of ML algorithms, we consider RF as a ML algorithm in the ML-based anomaly

detection method.

76



4.4. EXPERIMENTAL RESULTS

Table 4.3: Performance metrics of ML algorithms in anomaly detection for the dataset in static
network.

Class
Precision Nb

samplesSVM RF Adaboost CNN
Normal 0.7240 0.9881 0.9587 0.9830 2215

Anomalous 0.8950 0.9880 0.9834 0.9965 4891
Micro 0.8379 0.9880 0.9757 0.9923 7106
Macro 0.8095 0.9881 0.9710 0.9898 7106

Class
Recall Nb

samplesSVM RF Adaboost CNN
Normal 0.7756 0.9734 0.9634 0.9923 2215

Anomalous 0.8661 0.9947 0.9812 0.9922 4891
Micro 0.8379 0.9880 0.9757 0.9923 7106
Macro 0.8209 0.9840 0.9723 0.9923 7106

Class
F1-score Nb

samplesSVM RF Adaboost CNN
Normal 0.7489 0.9807 0.9610 0.9876 2215

Anomalous 0.8803 0.9913 0.9823 0.9944 4891
Micro 0.8379 0.9880 0.9757 0.9923 7106
Macro 0.8146 0.9860 0.9717 0.9910 7106

Table 4.4: Time complexity of ML algorithms in anomaly detection for the dataset in static
network.

Algorithms
Training

Time (ms)
Testing

Time (ms)
SVM 0.9183 0.3940
RF 0.2040 0.0098

AdaBoost 0.1548 0.0094
CNN 0.0548 0.0163

77



4.4. EXPERIMENTAL RESULTS

Table 4.5: Performance metrics of ML algorithms in anomaly detection for the dataset in dynamic
network.

Class
Precision Nb

samplesSVM RF Adaboost CNN
Normal 0 0.9738 0.9060 0.9774 2215

Anomalous 0.7995 0.9850 0.9773 0.9946 8834
Micro 0.7995 0.9828 0.9630 0.9911 11049
Macro 0.3998 0.9794 0.9417 0.9860 11049

Class
Recall Nb

samplesSVM RF Adaboost CNN
Normal 0 0.9395 0.9097 0.9783 2215

Anomalous 1 0.9937 0.9763 0.9943 8834
Micro 0.7995 0.9828 0.9630 0.9911 11049
Macro 0.5000 0.9666 0.9430 0.9863 11049

Class
F1-score Nb

samplesSVM RF Adaboost CNN
Normal 0 0.9563 0.9079 0.9779 2215

Anomalous 0.8886 0.9893 0.9768 0.9945 8834
Micro 0.7995 0.9828 0.9630 0.9911 11049
Macro 0.4443 0.9728 0.9424 0.9862 11049

Table 4.6: Time complexity of ML algorithms in anomaly detection for the dataset in dynamic
network.

Algorithms
Training

Time (ms)
Testing

Time (ms)
SVM 0.8439 0.4344
RF 0.1810 0.0103

AdaBoost 0.1615 0.0092
CNN 0.0403 0.0165

78



4.5. CONCLUSION

4.5 Conclusion

This chapter presents an anomaly detection approach using a ML algorithm to detect the

anomalies in the network. Our contribution consists of an anomaly detection approach

contains two main modules: i) data collection and processing and ii) anomaly detection

model. The first module collects and extracts network features representing network sta-

tus. Then, these features are analyzed in the anomaly detection model which is learned

according to a ML algorithm. There are many ML algorithms, so we evaluate the perfor-

mance and time complexity of these algorithms to select an appropriate ML algorithm.

As a result, RF algorithm is selected as a ML algorithm in anomaly detection. The experi-

mental results show that the micro and macro F1-score can achieve up to approximately

99 percent in the considered datasets.

After identifying the anomalies in the network, we need to implement a basic reme-

diation approach to reduce the negative impacts of anomalies and guarantee the avail-

ability of the network until the root cause of anomalies is identified and solved. There-

fore, in the following chapter, we present a QoE-based application-aware segment routing

to make appropriate routing strategies corresponding to different applications and meet

strict user’s requirements for encrypted traffic.

79



Chapter 5

Temporary Remediation: SDN-based
Application-aware Segment Routing for
Large-scale Network

«The Internet is not just one thing»

James H. Clark

Chapter 5 presents a QoE-based application-aware segment routing in the SDN envi-

ronment for encrypted traffic. This approach is implemented in the temporary remedia-

tion module which is depicted briefly as in Fig. 2.2.

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Application-aware Routing Mechanisms . . . . . . . . . . . . . . . . . . . 84

5.2.1 Application-aware routing . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.2 Application-aware MPLS . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.3 Application-aware SR . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Proposed Adaptive Segment Routing Mechanism for Encrypted Traffic . 87

5.3.1 Overview of SDN-based Adaptive Segment Routing Framework . . 87

5.3.2 Network Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.2.1 Traffic Classification . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.2.2 Parameter Measurement . . . . . . . . . . . . . . . . . . . . 90

5.3.3 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.4 Application-aware Remediation . . . . . . . . . . . . . . . . . . . . . 90

5.3.4.1 QoE Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.4.2 RL-based Segment Routing . . . . . . . . . . . . . . . . . . . 91

5.3.4.3 Exploration-Exploitation Trade-off . . . . . . . . . . . . . . 93

5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

80



5.4.2 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.3.1 Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.3.2 Selection algorithms . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.3.3 Segment routing mechanisms . . . . . . . . . . . . . . . . . 99

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

81



5.1. INTRODUCTION

5.1 Introduction

According to the related work [4, 5], there are many remediation approaches including

load balancing, routing and so on. Moreover, many studies proved the performance of

routing in problem remediation [89, 90]. Therefore, we consider an application-aware

routing in the temporary remediation module. The application-aware routing which im-

plements different kinds of routing policies corresponding to differentiated applications,

can overcome this drawback. To facilitate the application-aware routing, it needs two re-

quirements related to a routing technique supporting Traffic Engineering and a network

architecture that can obtain a global view of network.

For the first requirement, Multi-Protocol Label Switching (MPLS) is a potential so-

lution which is deployed by network operators to improve their IP networks. However,

MPLS contains three main drawbacks [170, 171]. First, it requests an IP network to main-

tain an explicit state at network nodes along an MPLS path, bringing a scalability prob-

lem in both control and data plane. Second, MPLS can not benefit from the load bal-

ancing given by Equal-cost Multi-path routing (ECMP). Finally, MPLS with the support

of IGPs (Interior Gateway Protocols) for routing protocol can not be easily implemented

on multiple Autonomous Systems (ASs). Therefore, many network operators (e.g., NTT,

Vodafone, etc.) implement Segment Routing (SR) in their network infrastructure as a so-

lution for these issues [91, 92]. The core idea of SR architecture is based on the notion

of source routing [172] and tunneling to guarantee the scalability property in decreasing

the amount of state information to be processed in the core network. Besides, SR’s main

benefit is to fix the scalability issues and limitations of the MPLS approach. Concretely,

SR does not require any state maintenance in core network nodes. Moreover, it takes ad-

vantage of the ECMP routing and the implementation on multiple ASs [173].

For the second requirement of the application-aware routing, Software-defined Net-

working (SDN) is a promising solution. It decouples the control layer from the infrastruc-

ture layer, offering an opportunity to obtain a global network view. Therefore, application-

aware SDN-based SR is concerned by the research community [173, 174]. However, this

SR mechanism contains two main disadvantages:

• First, this routing mechanism considers the application class to meet different SLA

(Service-level Agreement) requirements, but application identification is sometimes

complicated due to encrypted traffic. In the past, the application class can be ob-

82



5.1. INTRODUCTION

tained by DSCP (Differentiated Services Code Point) in packet’s header or deep packet

inspection. However, DSCP field can be changed during packet’s transmission [175]

while the deep packet inspection is not effective with encrypted traffic [176]. In-

deed, many service providers encrypt their data during the transmission to protect

the user’s privacy. According to a recent Cisco report [13], 80 percent of web traf-

fic was encrypted by 2019 in comparison with 40 percent by 2016. Consequently,

there is a necessity for a novel traffic classification approach to identify the applica-

tion class in this case. Much existing research work focus on the classification ap-

proaches for VPN [85] and TLS/SSL [84] traffic. However, a novel solution is studied

here to obtain the application class for the traffic of QUIC (Quick UDP Internet Con-

nection) [61] which is a new transport layer network protocol developed by Google

from 2012. The amount of QUIC traffic comprises 35 percent of Google’s egress traf-

fic (approximately 7 percent of global Internet traffic) and continues to increase in

the future [177].

• Second, routing paths are identified according to the human intervention, so it is

not adaptive with the unprecedented change of network environments. For the past

few decades, QoS (Quality of Service) played an essential role in the network sys-

tems, so many studies [178] concentrated on QoS-aware SR mechanisms. The main

objective is to optimize the network resource utilization as well as meet network

requirements related to QoS. Nevertheless, selecting appropriate QoS parameters

is sometimes complicated. Therefore, QoE (Quality of Experience), which network

operators need to assure, is considered in SR in this work. QoE is a metric corre-

lated to QoS metrics, but it is a perception of end-user. Consequently it facilitates

network policies to guarantee the user’s SLA requirements.

In this chapter, a novel SDN-based SR mechanism for encrypted traffic is proposed for

network operators. The objective is to implement the corresponding routing policies for

various SLA requirements because each application has a specific SLA requirement. This

mechanism selects the appropriate paths in a particular routing policy using Reinforce-

ment Learning (RL) and the network environment’s feedback (QoE) to adapt to dynamic

network conditions. There are traditional algorithms in the QoE-aware SR scheme (e.g.,

selecting a path with maximal QoE value, etc.). However, it is not effective with dynamic

networks. With the development of 5G, the networks have become more and more com-

83



5.2. APPLICATION-AWARE ROUTING MECHANISMS

plex. Using the RL algorithm in the QoE-aware SR mechanism offers opportunities to

select appropriate paths to adapt to the dynamic changes of network environments and

improve long-term performance.

Outline: The remainder of the chapter is structured as follows. Section 5.2 introduces

the related work in SR. In section 5.3, the chapter presents the proposed SR mechanism.

Section 5.4 describes the experimental results of the proposed mechanism. Finally, the

chapter concludes with section 5.5 which highlights our future work.

5.2 Application-aware Routing Mechanisms

This section presents related work on application-aware routing, application-aware MPLS,

application-aware SR mechanisms and highlights its pros and cons.

5.2.1 Application-aware routing

Li et al. [179] emphasized that network operators have encountered a challenge of pro-

viding better services with the rapid growth of 5G and multimedia services which re-

quires diverse network requirements (e.g., low latency, high reliability, etc.). However,

network operators are unaware of which applications in their networks, so they cannot

obtain a global view to manage the networks effectively. Therefore, many studies focus

on application-aware routing techniques in network management. Application-aware

routing is a routing technique that selects optimal routes corresponding to an individual

application thanks to a corresponding routing strategy [180].

Adami et al. [50] proposed an application-aware routing technique for SIP (Session

Initiation Protocol) traffic. First, this approach uses a deep packet inspection to identify

SIP flows using its signatures (e.g., UDP packet, port 5060, content-Type: application/sdp,

etc.). Then, this approach selects the shortest paths for these SIP flows using the Dijkstra

algorithm with link utilization as a constraint.

Cheng et al. [51] proposed an application-aware routing algorithm to deploy various

routing policies corresponding to different applications. This algorithm classifies network

traffic into three categories: real-time applications (e.g., VoIP, gaming, etc.), streaming

applications (e.g., video streaming, web browsing, etc.) and miscellaneous applications

(e.g., file sharing, etc.). Then, each category is processed with a specific routing policy

using different network parameters such as link load, delay and delay variation.

84



5.2. APPLICATION-AWARE ROUTING MECHANISMS

U-chupala et al. [180] proposed Overseer, an application-aware routing in SDN. Over-

seer analyzes network traffic using a deep packet inspection to classify into three kinds

of applications including bandwidth-oriented (e.g., HTTP, FTP, media streaming, etc.),

latency-oriented (e.g., SSH, online game, etc.) and default applications. Then, Over-

seer implements different routing policies corresponding to different kinds of applica-

tions containing maximal-bandwidth, minimal-latency and minimal-path-length strate-

gies. The first one is to forward packets of bandwidth-oriented applications through the

paths with the largest bandwidth while the second one aims to forward packets of latency-

oriented applications through the paths with the smallest latency. The final one is to im-

plement a default strategy that selects the shortest paths to forward packets of default

applications.

Jeong et al. [181] proposed an application-aware traffic engineering system in SDN to

implement differentiated treatments on various applications. This approach uses a deep

packet inspection to identify application classes and sends application information to a

Traffic Scheduler. In this module, each application is assigned to a corresponding priority

queue. According to application-specific priority queues and current network states, Traf-

fic Scheduler calculates optimal routes corresponding to different applications. In this

approach, the authors take into account two kinds of traffic including iPerf and Youtube.

Rego et al. [182] proposed an improvement of Open Shortest Path First (OSPF) routing

protocol in SDN environments. This approach changes the metric calculation (e.g., band-

width, delay, etc.), adapting to different applications to select appropriate routing paths.

However, identifying a practical metric calculation is sometimes complicated.

The above approaches identify the application class using the deep packet inspection,

but it is not effective with encrypted traffic. Moreover, these approaches use an IP routing

mechanism that identifies next-hops based on a destination IP address. It requires much

processing time because each switch needs to analyze the packet’s header to obtain the

IP address. Besides, there is a large number of rules to be installed in the switches due

to the rapid growth of Internet traffic, so these mechanisms require more TCAM (Ternary

Content Addressable Memory) resource consumption [183].

5.2.2 Application-aware MPLS

The emerging of MPLS is a promising solution to overcome the drawbacks of IP routing

mechanisms. MPLS identifies the next-hops based on the label added to the packet, so

85



5.2. APPLICATION-AWARE ROUTING MECHANISMS

this requires less processing time and TCAM resource consumption.

Bahnasse et al. [184] proposed an application-aware MPLS in SDN to optimize net-

work resources. This approach identifies VoIP, video, HTTP, and ICMP traffic based on

DSCP field in the packet’s header. Then, a specific routing policy is applied for each ap-

plication to meet bandwidth constraints. However, identifying the application class using

DSCP sometimes is inaccurate because it can be changed during data transmission [175].

Google [185] proposed Espresso, a SDN-based Internet peering edge routing infras-

tructure that offers an opportunity for the application-aware MPLS mechanism at the

Internet-peering scale. According to integrating application-aware MPLS mechanism,

Espresso delivers 13 percent more network traffic on their infrastructures and improves

link utilization and user perception compared to BGP (Border Gateway Protocol)-based

routing. Nevertheless, MPLS suffers from several hindrances related to scalability prob-

lem and ECMP routing.

5.2.3 Application-aware SR

Many other proposals on SR are proposed to address the hindrances of MPLS. Kukreja

et al. [173] presented a demonstration of SDN-based SR for multi-domain networks. In

this demonstration, an orchestrator finds suitable routing paths and encodes to packet’s

header corresponding to diverse applications. The objective is to meet different resource

requirements of these applications (e.g., bandwidth, delay constraints, etc.). Neverthe-

less, it is assumed that the orchestrator knows the class application.

Peng et al. [174] proposed an application-aware network framework that takes advan-

tage of SR to meet their SLA requirements. This framework identifies the application char-

acteristics according to the deep packet inspection mechanism and then forwards pack-

ets into corresponding paths (policy or traffic engineering tunnel). Nevertheless, these SR

mechanisms identify the routing paths thanks to human intervention, which is ineffec-

tive with the unprecedented change of network environments. In contrast, the proposed

SR mechanism identifies the routing paths using RL to adapt to dynamic networks. More-

over, classifying the network traffic using deep packet inspection is not practical due to

encrypted traffic nowadays [176]. Therefore, the proposed SR mechanism implements a

novel traffic classification approach to classify the encrypted network traffic and identify

the application classes.

86



5.3. PROPOSED ADAPTIVE SEGMENT ROUTING MECHANISM FOR ENCRYPTED
TRAFFIC

5.3 Proposed Adaptive Segment Routing Mechanism for En-
crypted Traffic

5.3.1 Overview of SDN-based Adaptive Segment Routing Framework

Passive method

Parameter

Measurement

Network System 

(Encrypted Traffic with QUIC)

sFlow

Agent

SDN ControllernSDN Controller1 

 ...

S
e

rv
e

r 1
S

e
rv

e
r 2

S
e

rv
e

r n

U
s
e
r n

U
s
e
r 2

U
s
e
r 1

 ...  ...

Network Monitoring

QoE

Estimator

RL-based

Segment Routing

Application-aware 

Remediation

Traffic 

Classification

sFlow Collector

Ingress

Switch

Anomaly Detection

Adaptive 

Segment Routing

Figure 5.1: The SDN-based adaptive SR framework issued from the global troubleshooting
framework.

The proposed multi-modular system is depicted in Fig. 5.1. During the transmission

from servers to clients, a network flow is transmitted from ingress switches to a sFlow

collector [59] to obtain the class of application thanks to traffic classification module. In

the beginning, the network flow is forwarded using the shortest paths from the standard

SR algorithm. After that, network parameters from parameter measurement module are

analyzed in anomaly detection module to detect abnormal symptom of problems (e.g., in-

crease of latency, packet loss, etc.). When the problems occur in the network, the network

flow is forwarded using an adaptive SR mechanism that selects the appropriate routing

paths to meet strict user requirements related to the QoE corresponding to each network

87



5.3. PROPOSED ADAPTIVE SEGMENT ROUTING MECHANISM FOR ENCRYPTED
TRAFFIC

application. When the problems are solved, the network flow will be forwarded using the

standard SR algorithm. The major components in this framework are described as fol-

lows:

• Network monitoring includes two essential modules containing traffic classification

and parameter measurement modules. The former aims to identify the class of ap-

plication on network flows (video streaming, file transfer and VoIP) in the context

of encrypted traffic while the latter aims to monitor and collect network parameters

for further modules.

• Anomaly Detection takes into account time-series network parameters to detect an

abnormal symptom of network problems.

• Application-aware Remediation is used to consider various routing strategies corre-

sponding to different kinds of applications to optimize the QoE in the network. This

module is considered as a temporary remediation module to decrease negative im-

pacts of anomalies (e.g., high loss, high latency, etc.) until its root causes are solved

completely.

The proposed SR mechanism considers the class of application to implement appro-

priate routing policies corresponding to each kind of application. When network traffic is

encrypted, this information is hidden. Therefore, there is a necessity of a traffic classifica-

tion module for identifying this information. The traffic classification is presented in the

following section.

5.3.2 Network Monitoring

5.3.2.1 Traffic Classification

A novel traffic classification approach is presented in this section to identify different

kinds of applications for encrypted traffic. In [129], it is reported that video streaming,

file sharing, and VoIP will comprise over 80 percent of global IP traffic by 2022. Conse-

quently, these applications are considered in the traffic classification module. Regard-

ing the network traffic for traffic classification, it can be collected directly from Openflow

switches, but it is not effective with a huge amount of network traffic. Therefore, sFlow

[59], a standard for network monitoring supporting packet sampling technique, is de-

ployed to reduce the collected traffic volume and offer opportunities to implement the

88



5.3. PROPOSED ADAPTIVE SEGMENT ROUTING MECHANISM FOR ENCRYPTED
TRAFFIC

traffic classification module in real-time. When the network traffic traverses the ingress

switches (edge switches), the sFlow agents send the network traffic to the sFlow collector

after sampling. At the sFlow collector, the traffic classification module collects the net-

work traffic to identify the class of application. This module is described as follows (Fig.

5.2).

Network 

Traffic

Feature 

Extraction

Random 

Forest

Pre-

processing

Multiclass

classification
Elephant 

flows

Traffic Classification

VoIP

Mice 
flows

FT

VS

Figure 5.2: The novel traffic classification approach for encrypted traffic.

There are two kinds of flows in the network traffic including mice flows (small con-

tinuous flows in total bytes) and elephant flows (huge continuous flows in total bytes).

After investigating their characteristics, flow-based features (handcrafted features) of the

first few packets in each flow [71] are collected and analyzed using the random forest al-

gorithm [136] to classify the network traffic into the mice flows (VoIP) or the elephant-

flows (video streaming and file transfer). This approach considers the random forest al-

gorithm in mice-flow identification over several traditional machine learning algorithms

(e.g., SVM, MLP, etc.) based on the research in [136]. After that, the elephant flows are

classified into video streaming (VS) or file transfer (FT) using packet-based features (im-

plicit features) and the convolutional neural network (CNN). The latter learning algo-

rithm is taken into account in this approach because it contains characteristics includ-

ing spare connectivity, parameter sharing, and equivariant representations. This helps to

learn more effective representations in comparison with traditional machine learning al-

gorithms [131]. The detail of the traffic classification module is described in our previous

work [186] (Chapter 3).

Regarding time complexity of this module, it is based on CNN, and the total time com-

plexity of all convolutional layers [139] is estimated by Equ. 5.1:

O(
d∑

l=1
nl−1 × s2

l ×nl ×m2
l ). (5.1)

89



5.3. PROPOSED ADAPTIVE SEGMENT ROUTING MECHANISM FOR ENCRYPTED
TRAFFIC

where d is the number of convolutional layers, nl−1 is the number of input channels

of the l -th layer, nl is the number of filters in the l -th layer, sl is the spatial size of the filter

and ml is the spatial size of the output feature map.

This time complexity is applied in both training and testing phase, and training time

is approximately three times of testing time.

5.3.2.2 Parameter Measurement

Many SLAs of service providers depend on several performance metrics such as latency,

packet loss, and link utilization [171, 184]. Consequently, a parameter measurement mod-

ule is implemented to measure these parameters on each link in the network. Latency

is measured according to an existing work [94] while packet loss and link utilization are

measured thanks to PortStatistics API [95] in the controller.

5.3.3 Anomaly Detection

In this section, an anomaly detection approach is presented to identify abnormal symp-

toms of network problems. Unlike the existing rule-based approaches that trigger the

alarms when network parameters (e.g., packet loss, delay, etc.) exceed a threshold, its fluc-

tuations are monitored to early detect the unusual symptoms in this approach [187, 188].

The time-series parameters on network flows such as latency, packet loss, and link uti-

lization are taken into account. These parameters are concatenated into a 1-dimensional

vector. Then this vector is analyzed according to the random forest algorithm as in exist-

ing work [97, 189] to classify the network states into normal or abnormal states to early

detect the anomaly of network problems.

The time complexity of random forest algorithm in training phase is O(n0 × l og (n0)×
d ×k) where n0 is the number of input sample, d is dimensional of data and k is the num-

ber of trees in the forest while the time complexity in testing phase is O(k×d
′
) where d

′
is

the depth of tree [138].

5.3.4 Application-aware Remediation

5.3.4.1 QoE Estimator

The rapid growth of the Internet leads to the diversity of multimedia applications. Con-

sequently, deploying a general QoE model for different applications is ineffective due to

its various QoS requirements. Therefore, we implement a novel QoE estimator (Fig. 5.3)

90



5.3. PROPOSED ADAPTIVE SEGMENT ROUTING MECHANISM FOR ENCRYPTED
TRAFFIC

Server1

Server2

Servern

User2

User1

Usern

   .
   .

VoIP 

QoE assessment

Video 

QoE assessment

File 

QoE assessment

QoE Estimator

MOSVoIP

MOSVideo

MOSFile

Traffic 

Classification

QUIC

Traffic

Network

Monitoring

Figure 5.3: The QoE estimator for encrypted traffic.

to calculate QoE of different applications. The application class is identified in the traffic

classification module. Then, a specific QoE model is used to calculate QoE for a particular

application.

QoE can be calculated according to subjective and objective approaches. The former

requires participants to evaluate their MOS (Mean Opinion Score) about multimedia ap-

plications while the latter builds an objective model calculating MOS using parameters

(e.g., network parameter, application parameter, etc.). However, the subjective approach

is costly and ineffective with real-time monitoring, whereas identifying an effective model

in the objective approach is sometimes complicated. Therefore, we implement a hybrid

approach that uses a subjective dataset to learn QoE models based on ML algorithms.

The hybrid approach offers opportunities to estimate MOS in real-time. We use a MOS

dataset which is built in a collaboration between our laboratory (LISSI) and Orange (a

Network Operator in France) [110]. There are many ML algorithms (e.g., MLP, SVM, ran-

dom forest, etc.). The random forest has less root mean square error in comparison with

others [111], so it is considered as a ML algorithm in QoE estimation. MOS is calculated

thanks to network parameters (e.g., latency, packet loss, etc.). There are five levels of MOS

including 1 (Bad), 2 (Poor), 3 (Fair), 4 (Good) and 5 (Excellent). The detail of this module

is described in [111].

5.3.4.2 RL-based Segment Routing

The SR algorithm is formalized as a RL task that contains agent, state, action, reward, and

policy (Fig. 5.4). The detail is described as follows:

Agent: An entity in the network system applies a learning algorithm to perform its

91



5.3. PROPOSED ADAPTIVE SEGMENT ROUTING MECHANISM FOR ENCRYPTED
TRAFFIC

tasks. In a routing problem, an agent selects appropriate paths to optimize a reward.

State s: A snapshot of the network environment which is observed by the agent.

Action a: An action illustrates how an agent replies to the network environment. In the

routing problem, the action is a routing path between a server and a client in the network.

All routing paths in the network can be obtained in the SDN controller.

Policy π: A policy is a map from an observed state to action in the network environ-

ment.

Reward r: A reward is a feedback of the network environment corresponding to the

agent. In the routing problem, the agent monitors a network state s and performs an

action a from the routing policy. Then, the agent moves to next state s′ and receives a

reward r. The reward is the MOS score of a chosen path which is calculated via the pre-

trained QoE estimator (section 5.3.4.1).

RL-based SR 

Agent
Environment

Parameter 

Measurement

Traffic

Classification

N
e
tw

o
rk

 

M
o

n
ito

ri
n
g

Q
o

E
 

E
s
ti
m

a
to

r

action at

reward rt

state st

rt+1

st+1

Figure 5.4: The RL-based SR mechanism.

The main goal of RL is to optimize an objective function O f (Eq. 6.4):

O f = Max E[
∞∑

t=0
γt × rt ]. (5.2)

where γt ∈ [0, 1] is a discount factor.

In RL, there are two kinds of approaches including model-based and model-free ap-

proaches. In the first approach, the agents learn the environment model and enhance

its policies to obtain optimality while the agents optimize its policies without prior infor-

mation about the network environment in the second approach. The first one can learn

faster than the second one. It is still less popular because of a large storage cost and de-

pendence on accuracy of an initial information [190]. Therefore, the model-free approach

is used in this work. In this approach, Q-value estimates how good it is to execute a given

action in a given state. Q(s, a) is the expected return starting from state s and taking ac-

tion a following policy π. At a time step, the agent is in state s, performs action a, receives

92



5.3. PROPOSED ADAPTIVE SEGMENT ROUTING MECHANISM FOR ENCRYPTED
TRAFFIC

reward r and moves to next sate s′. The Q-value is updated as in Eq. 6.5:

Q(s, a) = (1−α)Q(s, a)+α[r +γmax
a′ Q(s′, a′)]. (5.3)

where α is a learning rate and γ is a discount factor.

Time complexity of reinforcement learning algorithm is O(m ×N0) where N0 is the

number of action, and m is the size of state space [191, 192].

5.3.4.3 Exploration-Exploitation Trade-off

An exploration and exploitation phase in RL needs to be balanced to obtain an optimal

cumulative MOS score (cumulative reward). The exploitation phase which selects the

routing path (action) with maximal Q-value, can not be implemented systematically be-

cause each routing path needs to be evaluated frequently to achieve the optimal MOS

score. In this chapter, the trade-off between the exploration and exploitation phase is

formalized as a MAB problem (Multi-Armed Bandit). MAB problem is a formalization of

sequential decision-making tasks. At a time step, a decision-maker selects an action and

receives a reward from an unknown distribution corresponding to this action. The main

objective is to maximize the total reward received through a sequence of actions. In this

chapter, three selection algorithms are presented to resolve the MAB problem: ε-greedy

[193], softmax [194], and UCB1 (Upper Confidence Bounds) [195].

First, ε-greedy is the simplest algorithm to resolve the bandit problem. Concretely,

the agent selects the routing path with the highest Q-value with a probability of (1-ε).

Otherwise, the agent selects the routing path randomly. Then, the ε value reduce against

the time so that the agent can learn more about the network environment and become

more confident.

Second, the softmax algorithm selects the routing paths according to a probability

function of Q-value. Each routing path ai is assigned to a probability pi as in Eq. 5.4:

pi = e
Qai
τ∑N0

j=1 e
Qa j
τ

(5.4)

where τ is a temperature parameter, N0 is a number of routing paths and Qa j is a Q-value

of routing path a j .

93



5.4. EXPERIMENTAL RESULTS

When the temperature parameter τ is reduced, the routing paths are exploited more

frequently. In that way, the temperature parameter τ is reduced each episode (forwarding

time). Therefore, softmax algorithm not only explores the less-used routing paths but also

selects the best routing path in terms of expectation gains.

Finally, the UCB1 algorithm is related to an index-based algorithm. UCB-index is de-

fined as a sum of a current Q-value and a confidence bound. The UCB-index is described

as in Eq. 5.5:

UCB− i ndexai = Qai +
√

2l n(N)

nai

. (5.5)

where Qai is a Q-value of routing path ai , nai is a number of chosen time of routing path

ai and N is an episode number (forwarding time).

After calculating the UCB-index for each routing path, UCB1 algorithm selects the

path with maximal UCB-index. As shown in Eq. 5.5, the UCB-index comprises two parts

including Q-value Qai and confidence bound
√

2l n(N)
nai

. A routing path is chosen when

the Q-value is large or the confidence bound is high. When the routing path with the

large Q-value is chosen, this choice is an exploitation trial. When the confidence bound is

high, this choice is an exploration trial. The confidence bound is higher when the number

of chosen times of the routing path is smaller in comparison with other paths. In other

words, the less routing path is selected, the more it has the opportunity to be selected.

5.4 Experimental results

5.4.1 Experiment Setup

Table 5.1: Configuration of the PC used in the testbed.

Operation System Ubuntu 16.04.6 LTS
Processor Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz
Memory 2133MHz DDR4 8GB

The performance of the proposed SR mechanism is evaluated via an emulation testbed

with mininet v2.2 [196] and ONOS controller v2.4 [197]. mininet is a popular emulator

in the research community to emulate the network topology. ONOS only supports leaf-

spine topology, so we use this topology from a simple scene (five spine nodes and two

94



5.4. EXPERIMENTAL RESULTS

leaf nodes) to a complex one (more than 15 nodes). The number of nodes in the topol-

ogy is set to 7, 17, 32 and 47. Moreover, ONOS also supports segment routing through

org.onosproject.segmentrouting application, and we customize it to implement the pro-

posed SR mechanism. To generate QUIC traffic of video streaming in the network, we re-

play a pcap file of QUIC traffic from servers to clients using tcpreplay application, which

is collected according to watching videos in Youtube with Google Chrome. The testbed

is implemented in a PC described in Tab. 5.1. For the exploration-exploitation trade-off,

ε and τ are set to 1 and 2, respectively. For the RL algorithm, α and γ are set to 0.7 and

1, respectively. These parameters are selected according to an existing work [198]. The

source code of the proposed framework is available at [120].

Table 5.2: Scenarios.

Scenarios Descriptions
perfect

scenario
No delay and loss

Scenario
with faults

delay 25, 50, 75, 100 and 125ms
loss 5, 10, 15, 20 and 25%

delay
and loss

(25ms, 5% loss), (50ms, 10%), (75ms, 15%),
(100ms, 20%) and (125ms, 25%)

The experiments are considered in four scenarios (Tab. 5.2). The network parameters

are chosen to cover the maximum QoE range. The first scenario is to evaluate the perfor-

mance of the proposed approach in the network condition without delay and loss, and

other scenarios are used to consider the proposed mechanism in the context with faults.

Loss and delay parameters in the routing paths are generated according to mininet. In

the last three scenarios, each routing path is randomly set to a specific delay, loss or both

delay and loss. These delay and loss parameters are changed every 50 episodes which are

chosen according to the experiments to generate dynamic network states. An uniform

link capacity is set to 10 Mbps, and a sending rate is set to 2.5 Mbps as in an existing work

[183].

The proposed application-aware SR mechanism is designed for three applications in-

cluding video streaming, file transfer and VoIP. Among these applications, video stream-

ing comprises the highest global IP traffic [129], so we consider video streaming as a proof-

of-concept to thoroughly validate the performance of the proposed SR mechanism.

95



5.4. EXPERIMENTAL RESULTS

5.4.2 Benchmark

To validate the performance of the proposed SR mechanism, our proposal is compared

with the benchmarks including:

• Standard SDN-based SR (Standard_SR): This algorithm uses the Dijkstra algorithm

to determine the shortest paths between servers and clients.

• SDN-based SR with maximal QoE (Max_QoE) [199]: This approach calculates the

MOS score of all routing paths and selects the paths with maximal MOS score. In

contrast, the MOS score of a chosen path is calculated in the proposed mechanism

which helps to reduce resource consumption.

These approaches are evaluated via the following performance metrics:

• MOS: the perceived quality at the user’s side.

• CPU Usage: the percentage of the CPU’s capacity which is calculated via ps com-

mand (process status) in the Unix-like operation systems.

• Control Overhead: To discovery network topology and update status of links (e.g.,

latency, loss, etc.), a routing algorithm needs to generate the control packets (e.g.,

LLDP packets, etc.). Control overhead refers to the ratio of the control packet num-

ber to the total number of the sent packets.

5.4.3 Performance Analysis

The selection algorithms for MAB formalization are presented including UCB1, softmax

and ε-greedy. Their performances are first evaluated to select the appropriate selection

algorithm. Then, the performance of our proposal is compared to the benchmarks in-

cluding Standard_SR and Max_QoE mechanisms related to MOS score, CPU usage, and

control overhead. Besides, the running time of each module in the proposed SR mecha-

nism is thoroughly evaluated.

5.4.3.1 Time Analysis

In section 5.3, we analyzed the mathematical time complexity of algorithms in the pro-

posed SR mechanism. According to this time complexity, the traffic classification requires

96



5.4. EXPERIMENTAL RESULTS

perfect delay loss delay + loss
0

1

2

3

4

5

M
O

S

UCB1

Softmax

E-greedy

Figure 5.5: Average MOS score and standard deviation of three selection algorithms in the
proposed SR mechanism.

higher processing time in comparison with other modules. It requires 0.0316 ms to iden-

tify the network flows of VoIP and 3.4 ms to identify the network flows of video streaming

and file transfer. To implement this module in real-time, we use sFlow, a standard for

network monitoring, to reduce the amount of network traffic collected for the traffic clas-

sification module when there is a huge amount of traffic in the networks. In the testbed,

we configure sFlow agents to collect 10 percent of network traffic going through sFlow

agents. Regarding the running time of the anomaly detection module, it requires 0.0127

ms to process a network flow. As for the RL-based Segment Routing module, it searches

in the Q-table which representing routing policies, to select an appropriate path, so it can

make instant decisions.

5.4.3.2 Selection algorithms

Fig. 5.5 illustrates the average MOS score and standard deviation of UCB1, softmax and

ε-greedy in the proposed SR mechanism with four scenarios. In the perfect scenario, there

is no delay and loss in the network. The sending rate is 2.5 Mbps while the link capacity

is 10 Mbps. Consequently, changing the routing paths does not lead to the fluctuation of

the MOS score in three selection algorithms. Although there is no significant difference

between these algorithms, the MOS score of softmax is slightly better than the others.

97



5.4. EXPERIMENTAL RESULTS

20 40 60 80 100 120 140

Episodes

4

4.2

4.4

4.6

4.8

5
M

O
S

Max_QoE

RL_Softmax_SR

Standard_SR

(a) perfect scenario.

20 40 60 80 100 120 140

Episodes

0

1

2

3

4

5

M
O

S

Max_QoE

RL_UCB1_SR

Standard_SR

(b) delay scenario.

20 40 60 80 100 120 140

Episodes

0

1

2

3

4

5

M
O

S

Max_QoE

RL_UCB1_SR

Standard_SR

(c) loss scenario.

20 40 60 80 100 120 140

Episodes

0

1

2

3

4

5

M
O

S

Max_QoE

RL_UCB1_SR

Standard_SR

(d) scenario with loss and delay.

Figure 5.6: The MOS score of three SR mechanisms.

The average MOS score of softmax, UCB1 and ε-greedy reach to 4.47, 4.46 and 4.39, re-

spectively. Besides, their standard deviations are 0.29, 0.291 and 0.31, respectively. In this

scenario, the MOS score varies from 4.3 to 4.5. The MOS score of ε-greedy converges to 4.3

while the MOS score of the others converges to 4.5. Therefore, the average MOS score of

ε-greedy is lower than two other selection algorithms.

The average MOS score of UCB1 is the highest, and the standard deviation is the lowest

in three selection algorithms for the other scenarios. The average MOS score of UCB1 in

delay scenario, loss scenario and the final scenario are 3.55, 3.7 and 3.5, respectively. UCB1

first explores the routing path during the first few episodes and then converges to optimal

MOS score. When the network states are changed, UCB1 can explore the less-used routing

paths. Consequently, it continues to reach an optimal value quickly. softmax chooses the

routing paths according to probability function, so it takes much time to converge to an

optimal value. As a result, the MOS score of softmax is lower than the figure for UCB1.

For ε-greedy, it first explores the routing paths with a high ε value. When ε value reduces

to approximately 0, it can not explore the routing paths frequently. Therefore, the MOS

98



5.4. EXPERIMENTAL RESULTS

score of ε-greedy is lower than two other selection algorithms.

According to Fig. 5.5, our proposal will implement different selection algorithms cor-

responding to various scenarios. softmax will be implemented for perfect scenario while

UCB1 will be implemented for other scenarios in our proposal in the following experi-

ments. Our proposal refers to RL_Softmax_SR in perfect scenario and RL_UCB1_SR for

other scenarios.

5.4.3.3 Segment routing mechanisms

Fig. 5.6 illustrates the MOS score against the episodes (forwarding time) of three SR mech-

anisms in four scenarios. In perfect scenario (Fig. 5.6a), the role of the routing paths is the

same due to no delay and loss in the network. As a result, the MOS score of three SR

mechanisms is nearly equal. The average MOS score of our proposal (RL_Softmax_SR),

Max_QoE and Standard_SR are 4.47, 4.47 and 4.46, respectively. Besides, their standard

deviations are 0.29, 0.29 and 0.34, respectively.

7 17 32 47

Number of Node

90

100

110

120

C
P

U
 U

s
a

g
e

 (
%

)

Max_QoE

RL_SR

Standard_SR

(a) Average CPU usage.

7 17 32 47

Number of Node

20

40

75

O
v
e

rh
e

a
d

 (
%

)

Max_QoE

RL_SR

Standard_SR

(b) Average overhead.

Figure 5.7: The average CPU usage and overhead of three SR mechanisms.

In delay scenario (Fig. 5.6b), each routing path is set to a specific delay parameter

which leads to the differences in the MOS score between the routing paths. Therefore,

there is a significant difference between three SR mechanisms. The MOS score of Stan-

dard_SR is the lowest in three SR mechanisms because it selects the shortest paths to

forward the packets. The MOS score of this mechanism depends on the delay parameter

which is set to the shortest path. The network states are changed every 50 episodes, so the

MOS score of this mechanism changes periodically. The MOS score of Standard_SR in the

first, second and last 50 episodes are approximately 2.4, 2.8 and 3.1, respectively. Max_-

QoE monitors the network topology, calculates the MOS score of all routing paths and

99



5.4. EXPERIMENTAL RESULTS

selects the path with the best MOS score. Therefore, it achieves a high MOS score (ap-

proximately 4) in the majority of episodes. In this scenario, our proposal (RL_UCB1_SR)

implements UCB1 to determine the routing paths to forward the packets. UCB1 explores

the routing paths in the first 16 episodes, so the MOS score varies between 1.7 and 4. After

that, the MOS score of our proposal converges to an optimal value (approximately 4). At

50th and 100th episodes, the network states are changed to create dynamic network envi-

ronments. UCB-index of the less-used routing path becomes larger when a routing path

is not chosen frequently. Consequently, UCB1 can explore the less-used routing paths to

select the appropriate path. As a result, the MOS score of our proposal can converge to op-

timal value quickly after a few episodes. Besides, our proposal can choose another routing

path at 24th and 89th episodes after converging to an optimal value. In other words, our

proposal does not always select the routing path with the best UCB-index to guarantee the

exploration-exploitation trade-off. In Fig. 5.6b, the MOS score of our proposal is slightly

lower or equal to the MOS score of Max_QoE.

In loss scenario (Fig. 5.6c), the MOS score of Standard_SR is lower than the figure for

our proposal. The MOS score of this mechanism in the first, second and last 50 episodes

are 2.3, 2.1 and 2.4, respectively. Similar to previous scenarios, our proposal using UCB1

selection algorithm (RL_UCB1_SR) first explores the routing paths during the first few

episodes and then converges quickly to optimal value (nearly 4). A remarkable feature

from Fig. 5.6c is that the MOS score of Max_QoE is lower than the MOS score of our

proposal from the 50th episode. ONOS controller sends the control packets (e.g., LLDP

packets, etc.) to discover the network topology every 3 seconds, so the delay on the rout-

ing paths is measured according to control packets as in an existing work [93]. Therefore,

Max_QoE can monitor the network and select the path with the best MOS score in delay

scenario. The loss parameter is measured via PortStatistics API in ONOS controller after

data is transmitted in the network. Consequently, the loss on a routing path is not updated

when this path is not chosen. At the beginning of the first 50 episodes in loss scenario, the

loss of all routing paths is initiated to 0. Therefore, Max_QoE can select the path with the

best MOS score. At the 50th episode, the network states are changed. The routing paths

with low MOS score in previous network state becomes the paths with high MOS score in

current network state, but the loss on these paths are not updated. Therefore, the MOS

score of Max_QoE is lower than the figure for our proposal.

In scenario with delay and loss (Fig. 5.6d), the MOS score of Standard_SR is the lowest

100



5.4. EXPERIMENTAL RESULTS

in three SR mechanisms. Similar to delay scenario, the MOS score of our proposal (RL_-

UCB1_SR) is equal or slightly smaller than the MOS score of Max_QoE. The MOS score of

Max_QoE in the first, second and last 50 episodes are 3.9, 3.7 and 3.9, respectively. Be-

sides, the optimal MOS score of our proposal are 3.9, 3.7 and 3.7, respectively. Although

the MOS score of Max_QoE is higher than the others, it requires much resource consump-

tion related to CPU usage and overhead.

There is less difference between the CPU usage and overhead in four scenarios, so the

average CPU usage and overhead of these mechanisms in four scenarios are depicted in

Fig. 5.7. The number of leaf nodes is increased while the number of spine nodes is not

changed to obtain a larger network topology in these experiments. Fig. 5.7a shows the

CPU usage of three SR mechanisms. The testbed is implemented in a computer with 4

cores described in Tab. 5.1, so the CPU usage can reach 400 percent in maximum. The

CPU usage of Max_QoE is the highest in three SR mechanisms because it monitors the

entire network topology in order to obtain the routing path with the best MOS score. The

CPU usage of Max_QoE for 7 nodes is 94.3 percent, and it increases to 125.48 percent for

47 nodes. The CPU of our proposal is lower than the figure for Max_QoE. It raises from

91.45 to 118.95 percent when the number of nodes increases from 7 to 47. Besides, there

is an increase in the CPU usage of Standard_SR from 89.73 to 115.63 percent when the

number of nodes raises from 7 to 47.

Fig. 5.7b indicates the control overhead of three SR mechanisms. The overhead of

Max_QoE is higher than two other mechanisms because Max_QoE sends the control pack-

ets to monitor the entire network topology. It increases rapidly from 8.33 to 75 percent

when the number of nodes increases from 7 to 47. Our proposal only monitors the chosen

paths, so the overhead of our proposal and Standard_SR are nearly equal. The overhead of

our proposal with 7 and 47 nodes are 3.95 and 26.71 percent, respectively. The overhead of

Max_QoE is nearly three times the overhead of our proposal for 47 nodes. In other words,

our proposal reduces up to 64.39 percent of overhead in comparison with Max_QoE. Al-

though Max_QoE can achieve a high MOS score in the majority of episodes, it requires

much resource consumption in terms of CPU usage and overhead. Consequently, it is not

appropriate for a large-scale network. In contrast, the MOS score of our proposal is nearly

equal or higher than the figure for Max_QoE in considered scenarios, but it requires less

resource consumption in comparison with Max_QoE. Some important results are sum-

marized as in Tab. 5.3 and 5.4. Tab. 5.3 indicates important results related to the median

101



5.4. EXPERIMENTAL RESULTS

Table 5.3: Summarization of average optimal MOS, median and 95 % confidence interval of MOS
in the SR mechanisms.

Scenarios Mechanisms Average
Improvement

of
proposal (%)

Median
95%

Confidence
Interval

Perfect
Proposal 4.47 - 4.53 4.47±0.047

Standard_SR 4.46
Nearly
equal

4.52 4.46±0.056

Max_QoE 4.47 Equal 4.53 4.47±0.047

Delay
Proposal 3.86 - 3.82 3.86±0.1

Standard_SR 2.76 139.8 2.80 2.76±0.05

Max_QoE 3.93
Nearly
equal

4.01 3.93±0.062

Loss
Proposal 3.9 - 3.93 3.9±0.089

Standard_SR 2.26 172.6 2.11 2.26±0.023
Max_QoE 2.86 136.4 3.11 2.86±0.154

Delay+
Loss

Proposal 3.76 - 3.70 3.76±0.078
Standard_SR 2.7 139.3 2.40 2.7±0.04

Max_QoE 3.83
Nearly
equal

3.72 3.83±0.024

MOS, 95 % confidence interval of MOS and the average optimal MOS score which is the

average value of the optimal MOS score in each 50 episode of three SR mechanisms. Tab.

5.4 illustrates the essential results in term of the average overhead against the number of

nodes of our proposal and Max_QoE. Confidence interval (CI) gives an estimated interval

for an unknown population parameter. It is associated with a confidence level, represent-

ing a probability which the estimated interval includes a true value of the parameter. 95%

confidence interval is computed at the 95% confidence level containing the parameter. It

is calculated by Equ. 5.6.

CI = x + z? · σp
n

(5.6)

where x is mean of MOS,σ is its standard deviation, n is number of samples and z? is 1.96

for 95% of confidence level.

In Tab. 5.3, 95% confidence interval of the proposed SR mechanism is wider than the

figure for Max_QoE in four scenarios. The reason is that the proposal needs to explore the

routing paths to select the appropriate one, so its MOS fluctuates more frequently than

the figure for Max_QoE.

102



5.5. CONCLUSION

Table 5.4: Summarization of average overhead in the SR mechanisms.

Mechanisms
Average overhead (%)

7 17 32 47
Max_QoE 8.33 24.99 50 75
Proposal 3.95 9.64 18.18 26.71

Improvement of
proposal (%)

52.58 61.43 63.64 64.39

5.5 Conclusion

Segment Routing needs to be performed more adaptively to avoid network problems (e.g.,

congested links, etc.) and meet different service-level agreement requirements. To cope

with these demands, we propose a novel SDN-based adaptive segment routing framework

for network operators in the context of encrypted traffic. Our proposal is developed on

the SDN controller which can be integrated into networks supporting virtualized archi-

tectures related to SDN. The proposed segment routing mechanism implements differ-

ent routing policies corresponding to various applications and meets strict service-level

agreement requirements. Moreover, the appropriate routing path is selected according to

reinforcement learning policy and the feedback of the network environment (QoE). The

experimental results show that the proposed SR mechanism using reinforcement learning

outperforms the standard SR mechanism in terms of QoE and reduces up to 64.39 percent

of overhead in comparison with Max_QoE mechanism.

Segment list is one of the important factors of the segment routing mechanism, so

path encoding algorithm needs to be investigated thoroughly to optimize the performance

of the segment routing mechanism. After detecting the network problems and imple-

menting the adaptive segment routing mechanism to reduce its influences, the root causes

of the issues needs to be considered to deal with it definitely. Therefore, the root cause

analysis mechanism will be investigated in our future work.

After reducing the negative impacts of anomalies in the network (e.g., high latency,

high loss, etc.) with the temporary remediation module, we need to identify the root

causes of anomalies and solve it completely. In the following chapter, we present an use-

case for the root cause analysis and definitive remediation to identify the root cause of

congestion and address it definitively.

103



Chapter 6

Root Cause Analysis and Definitive
Remediation

«The spread of computers and the
Internet»

Marc Andreessen

Chapter 6 presents an use-case for the root cause analysis and definitive remediation.

Concretely, we present a root cause analysis mechanism using machine learning to iden-

tify the root causes of congestion, and then we implement an adaptive congestion control

algorithm in the definitive module to solve it completely. These modules are described in

detail in Fig. 2.2.

Contents
6.1 Root Cause Analysis: Machine Learning based Root Cause Analysis for

SDN Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1.2 Root Cause Analysis Mechanisms . . . . . . . . . . . . . . . . . . . . 107

6.1.2.1 Knowledge-based Mechanism . . . . . . . . . . . . . . . . . 107

6.1.2.2 Causality/Dependency Graph . . . . . . . . . . . . . . . . . 108

6.1.2.3 ML-based Mechanism . . . . . . . . . . . . . . . . . . . . . . 108

6.1.3 Proposed ML-based RCA Mechanism . . . . . . . . . . . . . . . . . . 109

6.1.3.1 Data Collection and Processing . . . . . . . . . . . . . . . . 110

6.1.3.2 ML-based RCA Method . . . . . . . . . . . . . . . . . . . . . 111

6.1.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 112

6.1.4.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . 113

6.1.4.2.1 Dataset in Static Network . . . . . . . . . . . . . . . 113

6.1.4.2.2 Dataset in Dynamic Network . . . . . . . . . . . . . 116

6.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

104



6.2 Definitive Remediation: Adaptive QUIC BBR Algorithm using Reinforce-
ment Learning for Dynamic Networks . . . . . . . . . . . . . . . . . . . . . 119

6.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2.2 Congestion Control Mechanisms . . . . . . . . . . . . . . . . . . . . . 121

6.2.2.1 Loss-based Congestion Control . . . . . . . . . . . . . . . . 121

6.2.2.2 Rate-based Congestion Control . . . . . . . . . . . . . . . . 121

6.2.2.3 Improvement of Rate-based Congestion Control . . . . . . 123

6.2.3 Proposal: Adaptive BBR Algorithm . . . . . . . . . . . . . . . . . . . . 123

6.2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.4.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . 126

6.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

105



6.1. ROOT CAUSE ANALYSIS: MACHINE LEARNING BASED ROOT CAUSE ANALYSIS
FOR SDN NETWORK

6.1 Root Cause Analysis: Machine Learning based Root Cause
Analysis for SDN Network

6.1.1 Introduction

Root cause analysis refers to a process of identifying and delimiting elements leading to

anomalies. There are three main objectives in the root cause analysis [151]:

• The first one is to identify which network problems resulting in the anomalies (e.g.,

link failure, switch failure, etc.). If a network problem happens, it will be classified

to return the type of the problem [200].

• The second one is to identify events that lead to the anomalies. Event logs of net-

work elements can be used to study their causalities and identify anomalous events

[201].

• The final one is to localize network elements that result in the anomalies. Perfor-

mance evaluation at network elements can be used to identify the anomalous ele-

ments [202].

The root cause analysis can return the type of network problems, anomalous events

and anomalous network elements. In this manuscript, we focus on identifying the type

of problems that results in network anomalies. We assume that one problem results in

anomalies in the network. When many problems lead to anomalies simultaneously in the

network, network administrators need to troubleshoot problems manually to solve them

completely.

In the past, administrators are able to troubleshoot network problems (e.g., using

ping, traceroute, etc.) and solve it manually. However, it is not effective because of the

huge number of network devices and human intervention. Consequently, the root cause

analysis is studied by the research community. Conventional root cause analysis (e.g.,

knowledge-based mechanism, etc.) [153, 203] identifies the root causes using rules and

policies with a specific threshold. However, an effective threshold identification is some-

times complicated. The emerging of Machine Learning (ML) and Deep Learning (DL) is

a potential solution to solve this drawback. In fact, root cause analysis using machine

learning and deep learning is studied by the research community to troubleshoot the net-

work anomalies [96, 97]. Hong et al. [97] proposed a root cause analysis method using

106



6.1. ROOT CAUSE ANALYSIS: MACHINE LEARNING BASED ROOT CAUSE ANALYSIS
FOR SDN NETWORK

ML to identify the problems related to SLA (service-level agreement) violations for virtual

network management. Similarly, Kawasaki et al. [204] proposed a ML-based fault clas-

sification to identify three kinds of problems including node-down, interface-down and

CPU overload. However, these studies have not considered a balance between accuracy of

machine learning algorithms and its processing time to select the appropriate algorithm

yet.

In this section, we implement a root cause analysis (RCA) mechanism using ML and

time-series network parameters to identify network problems leading to anomalies in the

SDN environment. In the root cause analysis, the balance between accuracy and process-

ing time of different ML algorithms (e.g., Random Forest, Gradient Boosting, Convolution

Neural Network, etc.) is considered to select the appropriate algorithm. Unlike the exist-

ing studies that select the ML algorithm with the best performance, we select the machine

learning algorithm with good performance and low time complexity to improve process-

ing time when there is vast network traffic.

The remainder of the section is organized as follows. Subsection 6.1.2 presents related

work on root cause analysis. The ML-based RCA mechanism is discussed in subsection

6.1.3. Subsection 6.1.4 describes the experimental results. The section concludes with

subsection 6.1.5 which highlights our future work.

6.1.2 Root Cause Analysis Mechanisms

This subsection presents related work on root cause analysis using knowledge-based mech-

anisms, causality/dependency graphs and ML-based mechanisms.

6.1.2.1 Knowledge-based Mechanism

This mechanism (called expert system) requires prior knowledge about anomalies to build

rules to identify the types of problems and localize its locations. A rule is presented in a

form as follows: if <symptoms> then <root cause>. Zhou et al. [205] proposed BigRoots,

a rule-based root cause analysis mechanism in big data systems. BigRoots uses four kinds

of features including discrete, numerical, resource and time features. The objective is to

identify the problems related to CPU, I/O (Input/Output) and network. Hochenbaum

et al. [203] proposed a root cause analysis in cloud infrastructure using statistical rules.

This approach uses system, application and core driver metrics to localize the location of

anomalies.

107



6.1. ROOT CAUSE ANALYSIS: MACHINE LEARNING BASED ROOT CAUSE ANALYSIS
FOR SDN NETWORK

Despite a high accuracy, the knowledge-based mechanism contains two mains disad-

vantages. First, it can not identify unknown problems which are not in the rule datasets.

Consequently, this approach requires updating rule datasets frequently when there are

new network problems. This results in a high maintenance cost. Second, searching in a

large rule dataset is costly and time-consuming.

6.1.2.2 Causality/Dependency Graph

A causality graph is a graph that shows a relationship between network problems and

its symptoms. The objective of the causality graph is to represent initial problems (root

causes) and its symptoms and model complex chains of intermediate problems related

to these symptoms. For example, Bayesian network is an instance of the causality graph.

The Bayesian network is a directed acyclic graph (DAG) representing cause-and-effect re-

lationships between random variables. A node in the DAG is the random variable (e.g.,

network elements, problems, etc.) whereas an edge is a causality between two connected

nodes. Conditional probabilities express the strength of these relationships. This ap-

proach requires a deep knowledge of cause-and-effect relationships between network

problems and its symptoms.

Bennacer et al. [206] proposed a root cause analysis approach using a Bayesian net-

work to localize locations of anomalous elements. Benayas et al. [207] proposed a root

cause analysis using a Bayesian network in Big Data infrastructures. The objective is to

infer ten kinds of problems (e.g., changing flow priorities, modifying in-port rules, etc.)

thanks to Bayesian network and network parameters (e.g., change in a number of hosts,

change in time-out, etc.)

The Bayesian network contains two main drawbacks. First, it depends on reliable prior

knowledge to build DAG models, so it requires deep knowledge about problems and its

symptoms. Second, the complexity of inference in the Bayesian network increases sig-

nificantly with a huge number of nodes, so it is not effective with large-scale networks

[206].

6.1.2.3 ML-based Mechanism

Each network problem has a specific behavior that leads to particular range of parame-

ters (e.g., network parameters, resource parameters, etc.). ML-based mechanism analyzes

these parameters to identify the root cause of anomalies based on classifications. In fact,

108



6.1. ROOT CAUSE ANALYSIS: MACHINE LEARNING BASED ROOT CAUSE ANALYSIS
FOR SDN NETWORK

many studies considered ML-based root cause analysis to detect which problems leading

to anomalies in the network.

Qiu et al. [208] proposed a novel method using ML for identifying the root cause of

anomalies in NFV infrastructure. This approach collects and analyzes the features of CPU

consumption, disk I/O, and memory consumption using ML algorithms including Neural

Network, Neural Network+SVM, K-Nearest Neighbors, Linear SVM, Radial Basis Function

SVM, Decision Tree and Random Forest. This approach aims to identify the problems

related to CPU, memory and I/O.

Kawasaki et al. [204] proposed a ML-based fault classification to analyze the root

cause of failures in the NFV environment. This approach collects 41 features from the net-

work environment and analyzes these features using ML algorithms (e.g., Random Forest,

Support Vector Machine, etc.) to identify three kinds of problems including node-down,

interface-down and CPU overload.

Similarly, Hong et al. [97] proposed an anomaly detection method using machine

learning to identify the problems related to resource usage and SLA violations. This method

identifies the problems (e.g., high CPU utilization, lack of memory, etc.) based on 25 fea-

tures and ML algorithms including Distributed Random Forest, Gradient Boosting, Ex-

treme Gradient Boost and Deep Learning.

These studies have not considered the balance between the accuracy and the time

complexity of ML algorithms yet. Besides, the ML-based mechanisms have two main

drawbacks. First, it requires a large labeled dataset to train a root cause analysis model.

Second, it cannot effectively identify unknown problems which are not in training datasets.

6.1.3 Proposed ML-based RCA Mechanism

This subsection presents the proposed root cause analysis using machine learning to

identify root cause of anomalies in the network.

The overall architecture of ML-based RCA in the SDN environment is depicted as in

Fig. 6.1. First, network traffic is collected from the infrastructure layer and processed in

Data Collection and Processing module to extract network features. Then, these features

are analyzed in the Root Cause Analysis model to identify the type of problems resulting in

anomalies in the network. Finally, classification results are notified to the administrators

to operate the network effectively.

109



6.1. ROOT CAUSE ANALYSIS: MACHINE LEARNING BASED ROOT CAUSE ANALYSIS
FOR SDN NETWORK

Application layer

Control layer

Infrastructure 

layer

Application1

Application2

Applicationn

SDN 

controller1

SDN 

controller2

SDN 

controllern
...

Root Cause 

Analysis

Data Collection 

and Processing

Root Cause 

Analysis Model

Administrator

Features

Classification 
Results

Figure 6.1: Overall architecture of ML-based RCA in SDN environment.

6.1.3.1 Data Collection and Processing

Data Collection and Processing module aims to collect and extract network features cor-

responding to the network problems for the RCA model. According to a report of network

operators [11], we consider three kinds of problems including link failure, switch failure

and buffer overload. These problems occur unpredictably in the network, so building

troubleshooting datasets related to these problems is not accessible. Therefore, we use a

fault injection technique to generate network problems to the network as in existing stud-

ies [96, 97]. Link failure is simulated by generating latency in links while switch failure is

simulated by generating rule failures in the switches to bring packet loss in links. Buffer

overload is simulated by generating a vast amount of traffic surpassing the capacity of

links.

These network problems are simulated in two scenarios including static and dynamic

networks. In static network, the delay and loss in the links are tied to a specific value. In

dynamic network, the link state is changed between normal and error state according to

Gilbert-Elliot (GE) model [118] following a probability value after a given time (400 sec-

onds). In this model, the probability of changing from normal to error state and from

error to normal state are p and r, respectively. When a link is in the error state, the loss

and delay change as in Tab. 6.1.

In each network condition, we collect and extract nine features related to network and

standard parameters according to existing studies [94, 111] and API PortStatistics [95].

These parameters contain latency, packet loss, link utilization, number of packet sent,

number of packet received, number of byte sent, number of byte received, number of

flow entries in switch and QoE (Quality of Experience). Then, these parameters on each

110



6.1. ROOT CAUSE ANALYSIS: MACHINE LEARNING BASED ROOT CAUSE ANALYSIS
FOR SDN NETWORK

Table 6.1: Considered network conditions.

Root causes
Static

Network
Dynamic
Network

Link
failure

Delay: 125ms Delay: [25, 50, 75, 100, 125ms]

Switch
failure

Loss: 50% Loss: [10, 20, 30, 40, 50%]

Buffer
overload

Bandwidth: 10 mbps,
Sending rate: 60-100 mbps

Bandwidth: 10 mbps,
Sending rate: 60-100 mbps

link are aggregated to calculate the path’s features to identify different kinds of network

problems. After that, these features are normalized into a value between 0 and 1 accord-

ing to Max Normalization [119]. In RCA, we consider time-series features, and a sample

aggregates features of ten consecutive time steps to identify the network problems. An

input sample is a matrix 10×9 (number of time steps × number of features).

Table 6.2: Troubleshooting Datasets.

Root causes
Static

Network
Dynamic
Network

Buffer
overload

6900 6900

Link
failure

9995 19710

Switch
failure

7560 17565

We built troubleshooting datasets in static and dynamic networks. The number of

network states corresponding to each problem is depicted as in Tab. 6.2.

6.1.3.2 ML-based RCA Method

The collected features from the Data Collection and Processing module are analyzed in

a ML-based RCA method to identify different kinds of problems. The existence of prob-

lems leads to a fluctuation of these features. According to ML algorithms, this fluctuation

can be detected to identify the root causes of anomalies. The detail of this approach is

described as in Fig. 6.2.

There are two main phases in this method including training and testing. In the train-

ing phase, the network features will be analyzed according to a ML algorithm to obtain a

pre-trained RCA model for the testing phase. The RCA model aims to infer problems in

111



6.1. ROOT CAUSE ANALYSIS: MACHINE LEARNING BASED ROOT CAUSE ANALYSIS
FOR SDN NETWORK

Network 

Environment

Data  Collection 

and Processing

ML

Algorithm

Network 

Environment

Data  Collection 

and Processing

RCA

Model

Training Testing

 .

Network 
Traffic

Features

Model

Problem1 Problemn

Figure 6.2: The ML-based RCA Method.

the network. There are different kinds of ML algorithms for the RCA. Therefore, we eval-

uate several algorithms to select the appropriate one and balance between accuracy and

time complexity. The considered ML algorithms includes Support Vector Machine (SVM)

[164], Bagging [209], Random Forest (RF) [164], Adaboost [165], Gradient Boosting [210]

and Convolutional Neural Network (CNN) [166]. Regarding the CNN model, we use two

convolutional 1D (1 dimensional) layer, a max Pooling 1D, a flatter layer and three fully

connected layers. For the others algorithms, we adjust hyper-parameters such as num-

ber of estimators, depth of tree and so on. These configurations are chosen as in existing

studies [97] to optimize the performance of ML algorithms.

6.1.4 Experimental Results

6.1.4.1 Experimental Setup

In the experiments, mininet [168] is used to generate network topology which contains

five spine nodes and two leaf nodes. The delay and loss on each link is configured thanks

to mininet. In GE model, p and r are set to 0.81 and 0.07 as in [118]. The ML algorithms are

implemented according to a library scikit-learn [141] in Python. The training, validation

and testing phases comprise 76, 4 and 20 percent of the troubleshooting dataset, respec-

tively. The datasets and source code of the ML-based RCA mechanism are published in

112



6.1. ROOT CAUSE ANALYSIS: MACHINE LEARNING BASED ROOT CAUSE ANALYSIS
FOR SDN NETWORK

[211].

Performance of ML algorithms is evaluated thanks to performance metrics including

precision, recall, and F1-score [142]. Precision is the percentage of relevant flows that are

retrieved, while recall is the percentage of retrieved flows that are relevant. F1-score (F-

measure) represents a harmonic mean between precision and recall. The detail of these

parameters are depicted in Equations 6.1, 6.2, 6.3. There are two ways to evaluate the

quality of the overall classification including micro-averaging and macro-averaging value.

In macro-averaging, a metric is averaged over all classes that are treated equally whereas

micro-averaging is based on the cumulative True Positive (TP), False Positive (FP), True

Negative (TN) and False Negative (FN) of the dataset.

Pr eci si on = TP

TP+FP
. (6.1)

Recal l = TP

TP+FN
. (6.2)

F1− scor e = 2

1/Recal l +1/Pr eci si on
. (6.3)

6.1.4.2 Performance Analysis

6.1.4.2.1 Dataset in Static Network There are two datasets including datasets in static

and dynamic networks. First, we evaluate the balance between the accuracy and the time

complexity of ML algorithms to select the appropriate one with the dataset in static net-

work. The performance metrics of these algorithms are described in Tab. 6.3. Ensemble

learning is a model that makes predictions according to different models. There are two

popular ensemble methods including bagging and boosting. Bagging trains individual

models on a different subset of datasets in parallel and aggregate to improve the perfor-

mance. In contrast, Boosting trains individual models in a sequence, and each model

learns mistakes from the previous one to enhance the performance. In this section, Bag-

ging uses SVM as a base classifier, so its F1-score is higher than the figure for SVM. RF is

the ML algorithm using the bagging ensemble method and decision tree as the individual

model, so its F1-score (approximately 96.3 percent) is higher than the figure for SVM and

Bagging.

Adaboost and Gradient Boosting are the ML algorithms using boosting ensemble method

113



6.1. ROOT CAUSE ANALYSIS: MACHINE LEARNING BASED ROOT CAUSE ANALYSIS
FOR SDN NETWORK

Table 6.3: Performance metrics of the considered ML algorithms for the dataset in static network.

Class
Precision Nb

Samples
SVM Bagging RF Adaboost CNN

Gradient
Boosting

Buffer
Overload

0.8040 0.8525 0.9380 0.9637 0.9593 0.9675 1380

Link
Failure

0.9007 0.9802 0.9715 0.9670 0.9658 0.9764 1999

Switch
Failure

0.9739 0.9875 0.9776 0.9617 0.9834 0.9791 1512

Micro 0.8920 0.9403 0.9634 0.9644 0.9691 0.9746 4891
Macro 0.8928 0.9401 0.9624 0.9641 0.9695 0.9743 4891

Class
Recall Nb

Samples
SVM Bagging RF Adaboost CNN

Gradient
Boosting

Buffer
Overload

0.8797 0.9928 0.9870 0.9819 0.9899 0.9928 1380

Link
Failure

0.8844 0.9415 0.9560 0.9540 0.9745 0.9735 1999

Switch
Failure

0.9134 0.8909 0.9517 0.9623 0.9431 0.9597 1512

Micro 0.8920 0.9403 0.9634 0.9644 0.9691 0.9746 4891
Macro 0.8925 0.9417 0.9649 0.9661 0.9692 0.9753 4891

Class
F1-score Nb

Samples
SVM Bagging RF Adaboost CNN

Gradient
Boosting

Buffer
Overload

0.8401 0.9173 0.9619 0.9727 0.9743 0.9928 1380

Link
Failure

0.8925 0.9604 0.9637 0.9605 0.9701 0.9735 1999

Switch
Failure

0.9427 0.9367 0.9645 0.9620 0.9629 0.9597 1512

Micro 0.8920 0.9403 0.9634 0.9644 0.9691 0.9746 4891
Macro 0.8918 0.9382 0.9633 0.9651 0.9691 0.9753 4891

114



6.1. ROOT CAUSE ANALYSIS: MACHINE LEARNING BASED ROOT CAUSE ANALYSIS
FOR SDN NETWORK

Table 6.4: Time complexity of ML algorithms in RCA for the dataset in static network.

Algorithms
Training

Time (ms)
Testing

Time (ms)
SVM 1.21472 0.49883

Bagging 37.9581 35.8988
RF 0.03084 0.00143

Adaboost 0.36427 0.01378
CNN 26.044 0.02636

Gradient
Boosting

1.48182 0.00555

and decision tree as the individual model. The objective of boosting ensemble method is

to learn from the mistakes. Adaboost learns from the mistakes by increasing weight of

misclassified samples while Gradient Boosting uses the gradient instead of adjusting the

weight. Hence, Gradient Boosting is more flexible than Adaboost. As a result, the micro

and macro F1-score of Gradient Boosting is slightly higher than the figure for Adaboost.

Moreover, F1-score of CNN is nearly similar to Gradient Boosting with 97 percent.

Despite the good performance, Adaboost, CNN and Gradient Boosting require much

processing time. The time complexity of the considered ML algorithms is depicted as in

Tab. 6.4. This table describes the average processing time for a sample in the training

and testing phase. The training and testing time of RF are the lowest in the considered

ML algorithms with 0.03084 and 0.00143 ms, respectively. The testing time of Adaboost,

CNN and Gradient Boosting are nearly 10, 18 and 4 times the testing time of RF while

the difference in F1-score between these algorithms is less than 1 percent. Therefore, we

consider RF as a ML algorithm for RCA.

We use nine features to identify the root cause of anomalies, but some of these fea-

tures are ineffective for the RCA. Consequently, we implement a feature selection method

(wrapper method) to identify the appropriate feature set. The wrapper method [212] eval-

uates all possible feature sets based on a specific machine learning algorithm and selects

the feature set with the highest accuracy. RF is considered as a learning algorithm in the

wrapper method due to the balance between its accuracy and time complexity. Fig. 6.3

illustrates the accuracy against the number of features in the feature selection method.

The feature set with seven features indicates better results than the others, so this feature

set is considered in the RCA. This feature set contains latency, link utilization, number of

packet received, number of byte sent, number of byte received, number of flow entries

in switch and QoE. Tab. 6.5 shows F1-score of the selected feature set (Feature Set 2) in

115



6.1. ROOT CAUSE ANALYSIS: MACHINE LEARNING BASED ROOT CAUSE ANALYSIS
FOR SDN NETWORK

1 2 3 4 5 6 7 8 9

Number of features

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

u
ra

cy
 (

%
)

Figure 6.3: The accuracy against the number of features in the feature selection method.

Table 6.5: F1-score of two feature sets in the RCA for the dataset in static network.

Class
F1-score Nb

SamplesFeature
Set 1

Feature
Set 2

Buffer
Overload

0.9619 0.9748 1380

Link
Failure

0.9637 0.9710 1999

Switch
Failure

0.9645 0.9674 1512

Micro 0.9634 0.9710 4891
Macro 0.9633 0.9710 4891

comparison with the feature set with all nine features (Feature Set 1).

6.1.4.2.2 Dataset in Dynamic Network Tab. 6.6 and 6.7 illustrate the performance

metrics and the time complexity of ML algorithms with the selected feature set in the RCA

for dynamic network. Similar to the dataset in static network, micro and macro F1-score

of Gradient Boosting are the highest (approximately 95 percent) while the testing time of

RF is the lowest in the considered ML algorithms for the dataset in dynamic network. The

difference of F1-score between RF and Gradient Boosting is approximately 1 percent, so

RF is considered as a ML algorithm in RCA for the dataset in dynamic network. The RCA

can achieve good results in the dynamic network with over 93 percent of the micro and

macro precision, recall and F1-score. The micro and macro F1-score in the dynamic net-

work are approximately 94 percent, and reduce about 3 percent compared to the figure

116



6.1. ROOT CAUSE ANALYSIS: MACHINE LEARNING BASED ROOT CAUSE ANALYSIS
FOR SDN NETWORK

Table 6.6: Performance metrics of the considered ML algorithms for the dataset in dynamic
network.

Class
Precision Nb

Samples
SVM Bagging RF Adaboost CNN

Gradient
Boosting

Buffer
Overload

0.6710 0.7813 0.9191 0.9201 0.9040 0.9535 1380

Link
Failure

0.7797 0.8669 0.9471 0.9244 0.9483 0.9487 3942

Switch
Failure

0.8492 0.8554 0.9451 0.9326 0.9292 0.9578 3513

Micro 0.7914 0.8491 0.9418 0.9269 0.9333 0.9530 8835
Macro 0.7666 0.8345 0.9371 0.9257 0.9272 0.9534 8835

Class
Recall Nb

Samples
SVM Bagging RF Adaboost CNN

Gradient
Boosting

Buffer
Overload

0.5659 0.7739 0.9464 0.9341 0.9688 0.9667 1380

Link
Failure

0.8630 0.8757 0.9500 0.9434 0.9302 0.9619 3942

Switch
Failure

0.7996 0.8488 0.9308 0.9055 0.9229 0.9377 3513

Micro 0.7914 0.8491 0.9418 0.9269 0.9333 0.9530 8835
Macro 0.7428 0.8328 0.9424 0.9277 0.9406 0.9554 8835

Class
F1-score Nb

Samples
SVM Bagging RF Adaboost CNN

Gradient
Boosting

Buffer
Overload

0.6140 0.7776 0.9325 0.9270 0.9353 0.9601 1380

Link
Failure

0.8192 0.8712 0.9486 0.9338 0.9392 0.9553 3942

Switch
Failure

0.8236 0.8521 0.9379 0.9188 0.926 0.9476 3513

Micro 0.7914 0.8491 0.9418 0.9269 0.9333 0.9530 8835
Macro 0.7523 0.8336 0.9397 0.9266 0.9335 0.9543 8835

117



6.1. ROOT CAUSE ANALYSIS: MACHINE LEARNING BASED ROOT CAUSE ANALYSIS
FOR SDN NETWORK

Table 6.7: Time complexity of ML algorithms in RCA for the dataset in dynamic network.

Algorithms
Training

Time (ms)
Testing

Time (ms)
SVM 3.70088 1.43646

Bagging 81.4241 67.4686
RF 0.38460 0.00587

Adaboost 0.35830 0.01368
CNN 26.1040 0.02455

Gradient
Boosting

1.40897 0.01087

for the static network. The reason is that the error status as well as the delay and loss

value change after a given time in the dynamic network. This leads to less fluctuation in

the network features, and therefore reduces these performance metrics.

6.1.5 Conclusion

In this section, we present a root cause analysis approach using machine learning and

time-series network parameters to identify the root cause of anomalies (type of problems

leading to the anomalies) in the SDN environment. There are various machine learning

algorithms, so we consider the balance between accuracy and time complexity to select

the appropriate algorithm. The experimental results illustrate that the precision, recall

and F1-score of the root cause analysis approach are approximately 97 percent in the

static network.

In the future, we will extend the troubleshooting datasets to consider more network

problems. Besides, there is a massive amount of useful resources (e.g., system log, etc.) in

addition to the network parameters to enhance the performance of root cause analysis.

Therefore, system logs as well as data-processing applications (e.g., Hadoop, Splunk, etc.),

will be considered to improve the performance of root cause analysis.

118



6.2. DEFINITIVE REMEDIATION: ADAPTIVE QUIC BBR ALGORITHM USING
REINFORCEMENT LEARNING FOR DYNAMIC NETWORKS

6.2 Definitive Remediation: Adaptive QUIC BBR Algorithm
using Reinforcement Learning for Dynamic Networks

6.2.1 Introduction

Nowadays, the Internet grows rapidly, leading to many hindrances for service providers

such as latency optimization, congestion and so on. Growth in latency-sensitive web ser-

vice leads to various strict latency requirements from end-user’s side. Moreover, the In-

ternet is changing from insecure to secure traffic rapidly, which leads to more latency in

data transmission (e.g., additional latency due to TLS handshake, etc.). The emerging of

QUIC (Quick UDP Internet Connections) [61], a new transport layer network protocol de-

veloped by Google, is a potential solution to improve latency in the network. In early 2021,

QUIC was standardized by Internet Engineering Task Force (IETF) to offer opportunities

to reduce latency in connection establishment and prevent HoL Blocking (Head-of-Line

Blocking) in comparison with TCP+TLS. QUIC accounts for over 30 percent of Google’s

total egress traffic and approximately 7 percent of global Internet traffic [61]. According

to a recent statistic of Statista, the global Internet traffic is expected to reach 333 exabytes

(EB) per month by 2022 compared with 100 exabytes per month in 2017 [213]. The rapid

growth in the global Internet traffic creates much pressure for network infrastructure and

results in congestion in the network, particularly in the Covid-19 pandemic. Therefore,

congestion control plays an essential role in the network. In fact, congestion control is

considered by much existing work to prevent congestion in the network [214, 215]. How-

ever, Google implemented a static congestion control mechanism for QUIC in its infancy.

In the early stage, QUIC used Cubic for the congestion control like in TCP. Cubic is a

loss-based approach that changes a cwnd (congestion window) parameter to adjust an

amount of inflight data (data sent but not yet acknowledged) in a buffer of network de-

vices based on a loss signal. Loss happens in the network when the buffer is overloaded.

Consequently, a large buffer size leads to a bufferbloat, influencing on interactive applica-

tions (e.g., multiplayer online games, etc.). On the other hand, a small buffer size results

in high packet loss and low throughput, impacting multimedia applications (e.g., video

streaming, etc.). Moreover, using loss signal in congestion control can lead to uncertain

results because non-congestion packet loss is a widespread phenomenon in the network

(e.g., port flap in routers, lossy wireless links, etc.) [214].

To overcome these disadvantages, Google has developed BBR (Bottleneck Bandwidth

119



6.2. DEFINITIVE REMEDIATION: ADAPTIVE QUIC BBR ALGORITHM USING
REINFORCEMENT LEARNING FOR DYNAMIC NETWORKS

and Round-Trip Time), a new congestion control algorithm [216]. BBR is a rate-based ap-

proach that monitors delivery rate and minimal RTT (Round-Trip Time) to adjust sending

rate. However, a static congestion control algorithm cannot be effective across differ-

ent network conditions [217]. After evaluating the performance of BBR and its variants

across network conditions (section 6.2.4.2), we conclude a necessity of an adaptive con-

gestion control algorithm for dynamic networks. Therefore, in this section, we propose

an Adaptive BBR algorithm (A-BBR) using Reinforcement Learning (RL) for QUIC proto-

col. The experimental results (section 6.2.4.2) show that A-BBR has a higher overall aver-

age reward by 18.6, 30.76, 13.3 and 27.5 percent compared to origin BBR and three other

BBR’s variants. Besides, the fairness index of A-BBR is similar to the figure for the others

(approximately 1), showing a fair bandwidth sharing between flows of these congestion

control algorithms. The contributions of this work are listed as follows:

• A-BBR aims to select the appropriate policies to adaptively change the sending rate

to unprecedented changes of network environments.

• A-BBR with RL allows implementing a real-time solution in congestion control, un-

like existing studies using Deep Reinforcement Learning (DRL) [217] which requires

high resource consumption and time complexity.

• Performance of A-BBR and benchmarks are evaluated in the context of HTTP/3 (Hy-

pertext Transfer Protocol version 3) in contrast to existing studies evaluating con-

gestion control algorithms in the context of HTTP/2 [218]. HTTP/3 offers opportu-

nities to solve the drawbacks of HTTP/2 in terms of HoL Blocking and latency re-

duction in connection establishment [61]. To the best of our knowledge, this is the

first study comparing the performance of congestion control algorithms for QUIC

in the context of HTTP/3.

Outline: The remainder of this section is organized as follows. Subsection 6.2.2 presents

related work on loss-based congestion control algorithms, rate-based congestion control

algorithms and improvement of these algorithms. The adaptive BBR algorithm (A-BBR)

is discussed in subsection 6.2.3. Subsection 6.2.4 describes the experimental results of

A-BBR. The section concludes with subsection 6.2.5 which highlights our future work.

120



6.2. DEFINITIVE REMEDIATION: ADAPTIVE QUIC BBR ALGORITHM USING
REINFORCEMENT LEARNING FOR DYNAMIC NETWORKS

6.2.2 Congestion Control Mechanisms

In this subsection, we present related work on congestion control algorithms such as loss-

based congestion control algorithms (New Reno and Cubic), rate-based congestion con-

trol algorithm (BBR) and improvement of rate-based congestion control algorithm. These

algorithms are supported in open-source libraries of QUIC protocol (e.g., lsquic, picoquic,

quic-go, quiche, etc.) [219].

6.2.2.1 Loss-based Congestion Control

According to related work [220, 221], there are many congestion control algorithms in the

network such as Tahoe, New Reno, Westwood, BIC, Cubic and so on. New Reno is imple-

mented in Window XP while Cubic is deployed in Linux kernels version 2.6.19 and above

from 2006 [221]. These algorithms are loss-based congestion control algorithms that ad-

just sending rate based on the feedback of receivers (e.g., acknowledgment packets, etc.).

The loss-based congestion control algorithms contain three main phases including

Slow Start, Recovery and Congestion Avoidance. A sender enters the Slow Start phase when

its congestion window is less than the ssthresh threshold which is initialized to an infinite

value in the beginning. Then, cwnd increases double every RTT to increase sending rate

quickly in the early stage. The sender moves to the Recovery phase when there is a loss in

the network. The loss happens when one of two following conditions is met. Firstly, the

elapsed time from when a packet is sent is equal or bigger than a threshold (9×RTT/8).

Secondly, the difference between the highest packet number of acknowledged packets

and the packet number of the unacknowledged packet is equal or bigger than three. In

the Recovery phase, the sender re-transmits lost packets and reduces ssthresh threshold to

the half value of current cwnd in New Reno (or reduces ssthresh by 30 percent in Cubic).

Besides, it sets current cwnd to current ssthresh threshold before moving to the Conges-

tion Avoidance phase. The sender ends the Recovery phase and enters the Congestion

Avoidance phase when packets sent during the Recovery phase are acknowledged. In the

Congestion Avoidance phase, the sender increases cwnd by one every RTT in New Reno

(or increases cwnd following a cubic function every RTT in Cubic) to avoid congestion.

6.2.2.2 Rate-based Congestion Control

BBR [216] is a rate-based approach that adjusts the sending rate according to a pacing_-

gain and a delivery rate estimated from acknowledged packets. The objective is to de-

121



6.2. DEFINITIVE REMEDIATION: ADAPTIVE QUIC BBR ALGORITHM USING
REINFORCEMENT LEARNING FOR DYNAMIC NETWORKS

B: Loss-based CC

Operating pointA: Optimal
Operating 

point

RTTmin

bdp
 bdp + buffer 

size

buffer 

limited

bandwidth 

limited

R
o
u
n

d
-t

ri
p

 T
im

e
D

e
liv

e
ry

 R
a

te

bottleneck

rate br

Amount of inflight data (D
inflight

)

Figure 6.4: Congestion control operating point: delivery rate and RTT against the amount of
inflight data.

termine the amount of inflight data (Dinflight) in order to utilize bandwidth-delay product

bdp (available bottleneck bandwidth) effectively. This value is calculated according to de-

livery rate and RTT as follows: bd p = br ×RTTmi n , where br is the delivery rate and RTTmin

is minimal RTT.

Fig. 6.4 shows the delivery rate and RTT against Dinflight. Operating point A shows that

Dinflight is equal to the bandwidth-delay product bdp. After reaching point A, increasing in

Dinflight does not increase the delivery rate. If Dinflight is continued to increase, the buffer

starts to be filled with excess data. When the buffer is fully filled, the operating point shifts

to B where the inflight packets start to be dropped. BBR tries to shift the operating point

toward A while loss-based approaches (e.g. Cubic, etc.) move the operating point to B

which results in unexpected delay in data transmission.

There are four main phases in BBR including Startup, Drain, ProbeBW and ProbeRTT.

In the Startup phase, BBR increases its sending rate by using a pacing_gain of 2/ln(2).

If there are three consecutive rounds where increasing the sending rate only leads to a

small growth in the delivery rate (less than 25 percent), BBR exits this phase and enters

the Drain phase. In this phase, BBR decreases its sending rate using a pacing_gain of

ln(2)/2 until the amount of inflight data matches bdp. After that, BBR enters the ProbeBW

phase to probe more bandwidth using a pacing_gain cycle of [1.25, 0.75, 1, 1, 1, 1, 1, 1].

BBR increases the sending rate using each pacing_gain in a duration of RTTmin which is

updated every 10 seconds in the ProbeRTT phase. When an increase in the sending rate

leads to a growth in the delivery rate, BBR sets the delivery rate to a new sending rate.

Otherwise, BBR maintains the current sending rate. BBR contains a drawback related to

122



6.2. DEFINITIVE REMEDIATION: ADAPTIVE QUIC BBR ALGORITHM USING
REINFORCEMENT LEARNING FOR DYNAMIC NETWORKS

a static congestion policy. Concretely, it uses a fixed pacing_gain sequence to adjust the

sending rate which is not effective across network conditions.

6.2.2.3 Improvement of Rate-based Congestion Control

In BBR, the sending rate is calculated according to the pacing_gain and the delivery rate.

The pacing_gain is changed every period of time (RTTmin) following the sequence of [1.25,

0.75, 1, 1, 1, 1, 1, 1]. This fixed pacing_gain sequence is suboptimal in several network

environments. For example, in the wireless network, many packets will be aggregated

in a single large frame to reduce overhead and increase efficiency in data transmission

[222]. This leads to a higher throughput and airtime consumption. Consequently, the

amount of inflight data Dinflight needs to be increased in order to reach bdp. Therefore,

there is a need for a higher pacing_gain in order to probe more bandwidth. Wang et al.

[222] proposed BBR+ with a novel pacing_gain sequence of [1.5, 0.5, 1.5, 0.5, 1.5, 0.5, 1.5,

0.5]. BBR+ increases the pacing_gain to 1.5 to probe more bandwidth and then reduces

it to 0.5 to decrease the excess data in the buffer. Similarly, Zhang et al. [223] presented

BBR-Tsunami with a pacing_gain sequence of [1.5, 0.75, 1.25, 1.25, 1.25, 1.25, 1.25, 1.25].

According to BBR+ and BBR-Tsunami, we propose another pacing_gain sequence of [2,

0.5, 1.5, 0.5, 2, 0.5, 1.5, 0.5] to probe more bandwidth in the context of high packet loss.

This algorithm refers to M-BBR (Modified BBR).

A static congestion control algorithm is ineffective for various network conditions,

so Nie et al. [217] proposed TCP-RL, an adaptive congestion control schema in TCP us-

ing Deep Reinforcement Learning. TCP-RL takes into account three network parameters

(throughput, RTT and loss) using Deep Reinforcement Learning to select an appropri-

ate congestion control algorithm. In contrast, we propose an adaptive BBR algorithm in

QUIC protocol for dynamic networks.

6.2.3 Proposal: Adaptive BBR Algorithm

In this section, an adaptive BBR algorithm (A-BBR) is proposed to perform effectively

across network conditions. This algorithm is inspired by a reinforcement learning task

that selects the appropriate set of pacing_gain thanks to feedbacks from the network en-

vironment to optimize an objective function. Determining the appropriate policies to

solve this task is formalized in this section.

Selecting the appropriate pacing_gain sequence is formalized as a reinforcement learn-

123



6.2. DEFINITIVE REMEDIATION: ADAPTIVE QUIC BBR ALGORITHM USING
REINFORCEMENT LEARNING FOR DYNAMIC NETWORKS

Receiver1

Receivern

Sender1

Sendern

Data 

packets

ACK 

packets

Bottleneck 

Link

Policy π(s,a)

Set of pacing_gain1

Set of pacing_gain2

Set of pacing_gainn

RL-based Agent

 
..

Congestion Control Environment

Reward (Throughput, RTT)

State
 
 
 
 
.

 
 
 
 
.

Startup Drain
Probe

BW

Probe

RTT

BBR s Variant

Action

Figure 6.5: Adaptive BBR alggorithm.

ing task (Fig. 6.5). The detail is described as follows:

• Agent: An agent is an entity in the network system executing its tasks according to a

learning algorithm. In A-BBR algorithm, an agent selects the appropriate pacing_-

gain sequence to optimize an objective function.

• State: An instance of the network state that is monitored by the agent.

• Action: An action describes how an agent reacts to the network environment. In

A-BBR algorithm, the action is a pacing_gain sequence corresponding to each BBR

variant. The considered pacing_gain sequences contain [1.25, 0.75, 1, 1, 1, 1, 1, 1]

(Origin-BBR), [1.5, 0.5, 1.5, 0.5, 1.5, 0.5, 1.5, 0.5] (BBR+), [1.5, 0.75, 1.25, 1.25, 1.25,

1.25, 1.25, 1.25] (BBR-Tsunami) and [2, 0.5, 1.5, 0.5, 2, 0.5, 1.5, 0.5] (M-BBR). Chang-

ing the pacing_gain leads to the change in sending rate corresponding to various

network conditions. These pacing_gain sequences are selected to probe more avail-

able bandwidth across network conditions (e.g., lossy network, etc.).

• Policy: A policy is a mapping between a state and an action in the network environ-

ment.

• Reward: A reward is a feedback from the network environment. At step t, the agent

monitors a network state s and executes an action a. After that, the network state

moves to s
′
, and the agent receives a corresponding reward r . In several studies [217,

224], reward is defined as follows: r = log Thr oug hput
RTT . However, this reward function

leads to a small difference in the performance of BBR with considered pacing_gain.

Therefore, reward is defined as follows: r = Thr oug hput
RTT . The reward is normalized

124



6.2. DEFINITIVE REMEDIATION: ADAPTIVE QUIC BBR ALGORITHM USING
REINFORCEMENT LEARNING FOR DYNAMIC NETWORKS

into a value between 0 and 1 according to min-max normalization function [119] to

facilitate a comparison between the congestion control algorithms.

The objective of RL is to optimize the accumulative reward O f (Equ. 6.4):

O f = Max E[
∞∑

t=0
γt × rt ]. (6.4)

where γt ∈ [0, 1] is a discount factor.

There are two approaches in RL: model-based and model-free. The first approach

learns an environment model to optimize the optimality while the second one learns its

policies without prior information in the network environment. In this work, the model-

free approach is considered because it requires less storage cost and dependence on ac-

curacy of initial information than the model-based approach [190]. The quality of action

a is evaluated via Q-value Q(s, a) which is updated every step as in Eq. 6.5:

Q(s, a) = (1−α)Q(s, a)+α[r +γmax
a′ Q(s′, a′)]. (6.5)

where α is a learning rate and γ is a discount factor.

In this approach, ε− g r eed y [225] is considered as a selection algorithm to balance

between exploration and exploitation phases. Concretely, the agent chooses the pacing_-

gain sequence with the highest Q-value with a probability of (1-ε). Otherwise, the agent

chooses the pacing_gain sequence randomly. Then, the ε value is reduced every step ac-

cording to ε_decay until it drops to ε_mi n.

The time complexity of the reinforcement learning algorithm is O(m ×N) where N is

the number of actions, and m is the size of state space [192].

6.2.4 Experimental Results

6.2.4.1 Experimental Setup

The testbed is implemented with dumbbell topology (in Fig. 6.5) similar in [216]. mininet

[168] is used to emulate network topology and change network states in the bottleneck

link. This link is set with a bandwidth of 10 mbps, a RTT of [50, 200, 100 ms] and a loss

of [30, 10, 0, 20, 1, 5 %] to create a variety of network conditions. Therefore, there are 18

considered network conditions corresponding to the change of loss and RTT. The number

of senders and receivers is set from one to three. In the experiments, a file with a size of 40

MB is sent from servers to clients. In sender’s side, the proposal (A-BBR) and benchmarks

(Cubic, Origin-BBR, BBR+, BBR-Tsunami and M-BBR) are implemented according to cus-

tomizing the library lsquic [99] to provide QUIC over HTTP/3. In receiver’s side, Google

125



6.2. DEFINITIVE REMEDIATION: ADAPTIVE QUIC BBR ALGORITHM USING
REINFORCEMENT LEARNING FOR DYNAMIC NETWORKS

Origin-BBR BBR+ BBR-Tsunami M-BBR
0

2

4

6

8

10

12

Figure 6.6: Number of network conditions in which each congestion control algorithm obtains
the best performance.

Chrome is used to communicate with senders via QUIC over HTTP/3. In reinforcement

learning, ε is initiated to 1. ε_decay , ε_mi n, α and γ are set to 0.95, 0.3, 0.7 and 1, respec-

tively. These parameters are chosen according to the experiments.

6.2.4.2 Performance Analysis

Fig. 6.6 illustrates the number of network conditions in which each congestion control

algorithm obtains the best performance (largest reward). There are 4 BBR variants cor-

responding to 4 pacing_gain sequences (described in section 6.2.3). This figure indicates

that a specific congestion control algorithm cannot perform well across various network

conditions. In the considered network conditions, Origin-BBR performs well overall, but

it is effective in only 11 network conditions. In contrast, M-BBR performs best in none of

these network conditions. This confirms the necessity of the adaptive BBR algorithm for

QUIC in dynamic networks.

In reality, network conditions are changed over time. Consequently, we evaluate the

performance of A-BBR and benchmarks in the considered network conditions. Fig. 6.7a

shows their standard deviations and average rewards in these network conditions. A-BBR

can achieve good results in almost network conditions that will be changed every 100 time

steps. The change in these network conditions leads to the change of RTT and loss in the

network. Consequently, this leads to the change of throughput, resulting in the fluctu-

126



6.2. DEFINITIVE REMEDIATION: ADAPTIVE QUIC BBR ALGORITHM USING
REINFORCEMENT LEARNING FOR DYNAMIC NETWORKS

0 2 4 6 8 10 12 14 16 18
Network Conditions

0.0

0.2

0.4

0.6

0.8

1.0

1.2
A

v
e
ra

g
e
 R

e
w

a
rd

Cubic
Origin-BBR
M-BBR
BBR+
BBR-Tsunami
A-BBR

(a) Average reward and standard deviation in each considered network
condition.

Cubic
Origin-BBR

M-BBR BBR+

BBR-Tsunami
A-BBR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Overall average reward and
standard deviation in all

considered network conditions.

Figure 6.7: Average reward and standard deviation of A-BBR and benchmarks.

ation of reward in these network conditions. According to RL, A-BBR can learn to keep

the same pacing_gain sequence or select other sequences to obtain good results and op-

timize the accumulative reward. Loss is set to 30 percent, and RTT varies from 50 to 200

in the first three network conditions. In these network conditions, the average reward of

Origin-BBR ranges from 0.01 to 0.06. The reason is that Origin-BBR increases the send-

ing rate with a pacing_gain of 1.25 for a duration (RTTmin), but there is 30 percent of loss

in this scenario. This leads to a decrease in throughput and reward against time. When

Origin-BBR tries with lower pacing_gain value, its throughput and reward continue to

decrease against time. Moreover, the average reward of Cubic is the lowest in the con-

sidered congestion control algorithms. In these network conditions, there is a loss in the

network. Cubic reduces its cwnd according to loss signal, so there is a decrease in its

throughput and average reward. A noticeable feature from Fig. 6.7a that the average re-

ward of the considered congestion control algorithms reaches a peak every three network

conditions. In every three network conditions, RTT is set to 50 ms in the first network

condition, then increases to 200 ms in the second one and finally reduces to 100 ms in the

last one. This leads to the fluctuation of average reward in these algorithms. The overall

average reward and standard deviation of these congestion control algorithms obtained

in all considered network conditions are illustrated as in Fig. 6.7b. The overall average re-

ward of the proposal is the highest with 0.51 while the figure for the Origin-BBR, M-BBR,

BBR+, BBR-Tsunami and Cubic are 0.43, 0.39, 0.45, 0.4 and 0.04, respectively. The over-

all average reward of our proposal shows an improvement of 18.6, 30.76, 13.3 and 27.5

percent in comparison with the figure for Origin-BBR and three other BBR’s variants. Be-

127



6.2. DEFINITIVE REMEDIATION: ADAPTIVE QUIC BBR ALGORITHM USING
REINFORCEMENT LEARNING FOR DYNAMIC NETWORKS

sides, the overall standard deviation of A-BBR is nearly equal to the figure for Origin-BBR,

M-BBR, BBR+ and BBR-Tsunami. Their overall standard deviations range from 0.064 to

0.077. Some important results related to overall average reward and overall standard de-

viation are summarized in Tab. 6.8.

Table 6.8: Some important results of the considered congestion control algorithms.

Algorithms Origin-BBR M-BBR BBR+
Overall

average reward
0.43 0.39 0.45

Algorithms BBR-Tsunami Cubic A-BBR
Overall

average reward
0.4 0.04 0.51

Algorithms Origin-BBR M-BBR BBR+
Overall

standard deviation
0.073 0.067 0.077

Algorithms BBR-Tsunami Cubic A-BBR
Overall

standard deviation
0.069 0.003 0.064

Cubic
Origin-BBR

M-BBR BBR+

BBR-Tsunami
A-BBR

A-BBR vs Cubic
0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.8: Fairness of A-BBR and benchmarks in dynamic network conditions.

Fig. 6.8 indicates the Jain’s fairness of the considered congestion control algorithms in

network condition with a bandwidth of 10 Mbps, a loss of 5% and a RTT of 100 ms. In this

experiment, the file with size of 40 MB is sent from three senders to three corresponding

receivers. All considered congestion control algorithms can achieve a good fairness index

128



6.2. DEFINITIVE REMEDIATION: ADAPTIVE QUIC BBR ALGORITHM USING
REINFORCEMENT LEARNING FOR DYNAMIC NETWORKS

because their values approximate to 1. The last column shows fairness between A-BBR

and Cubic with a flow of A-BBR and two Cubic flows. The fairness index between A-BBR

and Cubic approximates to 0.5, so there is less fair bandwidth sharing between flows of

these algorithms. With the loss of 5 percent, Cubic reduces its cwnd according to loss

signal while A-BBR can probe to adjust its sending rate. Therefore, the throughput of A-

BBR is higher than Cubic which leads to a low fairness index.

6.2.5 Conclusion

This section proposes an adaptive BBR algorithm (A-BBR) for QUIC to adapt to the unex-

pected changes of network environments because a static congestion control algorithm

(original BBR) is not effective across various network conditions. According to RL, A-BBR

changes the sending rate adaptively using the feedback from the network environments.

Moreover, A-BBR and the benchmarks are evaluated in the context of HTTP/3. The exper-

imental results show that A-BBR achieves good results related to the average reward and

fairness index across considered network conditions compared to the benchmarks.

Despite the good results, A-BBR as well as BBR’s variants contain a drawback related to

the fairness with existing congestion control algorithms (e.g., QUIC Cubic, etc.). Google

is developing BBR v2 which offers an opportunity to solve this drawback. In the future,

we will implement the adaptive algorithm for BBR v2. Besides, we will extend this study

to select appropriate congestion control algorithms (e.g., QUIC Cubic, QUIC New Reno,

etc.) across various network conditions.

129



Conclusions and perspectives

«Software Defined Networks
and the maturing of the Internet»

Nick Mckeown,
IET Appleton, 2014

1 Summary of Contributions

Nowadays, the rapid development of the Internet results in more and more multimedia

services (e.g., video streaming, online game, etc.) and diversified network devices such as

IoT devices (Internet of Things). The huge number of network devices not only enlarges

the network infrastructures but also leads to many critical issues in the network. A down-

time on cloud-based services leads to negative economic impacts (e.g., the loss from over

$30,000 to $6,700,000) for many service providers (e.g., Youtube, Facebook, Paypal, etc.)

[226]. Therefore, network troubleshooting has been increasingly concerned over the past

two decades. The purpose is to detect anomalies, identify its root causes and implement

remediation approaches to deal with these root causes definitively.

Although network troubleshooting is studied thoroughly by the research community,

the emerging of encrypted traffic entails many questions regarding its deployment in the

context of encrypted traffic. For example, Google developed QUIC (Quick UDP Internet

Connections), a transport layer network protocol from 2012 to improve latency in data

communication. QUIC also provides an encryption algorithm to guarantee secure data

communication in the network. In this case, from the point of view of NOs (Network Op-

erators), useful information obtained in data packets is hidden such as sequence num-

ber, acknowledgment number, payload signature, and so on. This causes to drawbacks

for network performance monitoring approaches (e.g., QoE estimation, application iden-

tification, etc.) and intrusion detection systems. These approaches are essential compo-

nents in network troubleshooting frameworks, so encrypted traffic brings certain obsta-

130



1. SUMMARY OF CONTRIBUTIONS

cles to data collection (e.g., QoE estimation, application identification, etc.) and reme-

diation approaches (e.g., application-aware traffic engineering, payload-based intrusion

detection systems, etc.) in network troubleshooting.

Moreover, computer networks nowadays become more complex due to many network

devices (e.g., IoT devices, etc.), so the processing time for root cause analysis and remedia-

tion approaches becomes larger. Therefore, network systems have negative impacts (e.g.,

high latency, high loss, etc.) during the root cause analysis of anomalies and remediation.

Consequently, it is necessary for network troubleshooting frameworks that guarantee net-

work availability during the root cause analysis and remediation and deal with some of

the limitations encountered in encrypted traffic. Therefore, in this thesis, we propose a

novel troubleshooting framework for NOs in the context of encrypted traffic. The pro-

posed troubleshooting framework contains five main modules: data collection, anomaly

detection, temporary remediation, root cause analysis, and definitive remediation. These

modules are described as follows:

• Data collection: In this module, we implement a parameter measurement mod-

ule to collect troubleshooting data and build datasets in static and dynamic net-

works. A sample in the datasets contains nine time-series network parameters (e.g.,

latency, loss, etc.) and corresponding labels for three root causes: link failure, switch

failure and buffer overload. From the point of view of NOs, network performance

metrics (e.g., quality of experience, application classes, etc.) are hidden due to en-

crypted traffic. Consequently, we propose a novel traffic classification approach for

QUIC traffic. The information about application classes plays an important role

in application-aware remediation approaches (e.g., application-aware traffic engi-

neering, etc.). There are two main classification stages in the traffic classification

approach. The first one analyzes flow-based features using a ML (Machine Learn-

ing) algorithm to classify the network traffic into chat, VoIP or elephant flows. Ran-

dom Forest is considered as a ML algorithm in this stage after evaluating the per-

formance of several ML algorithms (e.g., Support-Vector Machine, Random Forest,

etc.). The second classification stage analyzes packet-based features using CNN

(Convolutional Neural Network) algorithm to classify the elephant flows into video

streaming, file transfer or Google play music. In this stage, performance is evalu-

ated in various scenarios such as different subsets of input vector and various loss

functions. The experiment results show that classification results can achieve ap-

131



1. SUMMARY OF CONTRIBUTIONS

proximately 99 percent for video streaming, file transfer and Google play music and

approximately 96 percent for other applications such as chat and VoIP.

• Anomaly detection: After collecting troubleshooting data, this information is an-

alyzed in anomaly detection module to detect anomalies in the network. In this

thesis, we implement an anomaly detection approach using machine learning algo-

rithm to classify network states into normal or abnormal states. The experimental

results show that the precision, recall and F1-score of the proposed anomaly detec-

tion approach achieve up to 99 percent in the considered datasets.

• Temporary remediation: If anomalies happen in the network, we need to imple-

ment a temporary remediation module that is responsible for reducing negative

impacts of problems (e.g., high latency, high loss, etc.) and guaranteeing the net-

work availability during the root cause analysis and definitive remediation. In the

temporary remediation module, we propose an application-aware segment routing

mechanism in the SDN (Software-defined Networking) environment. This module

is to implement a variety of routing strategies corresponding to different applica-

tions. First, the temporary remediation module identifies application classes ac-

cording to traffic classification. Then, this module selects an appropriate routing

strategy for a specific application thanks to RL (Reinforcement Learning) algorithm

and feedback from the network environment. In the RL algorithm, there are various

selection algorithms (e.g., E-greedy, softmax, etc.), so we evaluate the performance

of these algorithms to select appropriate ones for four scenarios: perfect scenario,

delay scenario, loss scenario and scenario with both delay and loss. Besides, the

proposed segment routing mechanism is evaluated with benchmarks (Standard_-

SR and Max_QoE mechanisms) related to MOS (Mean Opinion Score) against time,

average optimal MOS, median MOS, 95% confidence interval of MOS, CPU usage

and control overhead. The experimental results illustrate that MOS of the proposed

mechanism is nearly equal or higher than the figure for benchmarks while it re-

quires less CPU usage and control overhead compared to benchmarks in the con-

sidered scenarios. Concretely, the proposed mechanism reduces up to 64.39 per-

cent of overhead in comparison with Max_QoE mechanism.

• Root cause analysis: In parallel with the temporary remediation, we implement a

root cause analysis module to identify the root cause of anomalies in the network.

132



1. SUMMARY OF CONTRIBUTIONS

In this module, we implement a root cause analysis approach using time-series net-

work parameters and a ML algorithm. In the thesis, congestion is considered to gen-

erate anomalies in the network. The objective of root cause analysis is to identify the

root cause of congestion (link failure, switch failure or buffer overload). Besides, the

performance and processing time of ML algorithms (e.g., Support Vector Machine,

Bagging, Random Forest, Adaboost, etc.) are evaluated to select an appropriate al-

gorithm for datasets in static and dynamic networks. The experimental results show

that Random Forest can achieve high accuracy while requiring less processing time

than other algorithms. Consequently, it is considered as a ML algorithm in the root

cause analysis approach. F1-score of the proposed root cause analysis mechanism

achieves up to 97 percent while it only requires 0.00143 ms for the testing time for

the dataset in static network.

• After identifying the root cause of anomalies, we implement a definitive remedi-

ation module to solve the root cause definitively. If congestion results from link

failure or switch failure, we send notifications to administrators so that they can

address these root causes. Otherwise, we propose an adaptive BBR (Bottleneck

Bandwidth and Round-Trip Time) algorithm using the RL algorithm to deal with

the switch’s buffer overload in the network. This approach aims to adjust sending

rate at sender sides adaptively for various network conditions. The performance of

proposed congestion control algorithm is evaluated with benchmarks in the con-

text of HTTP/3 in contrast to HTTP/2 in existing studies. The experimental results

show that the proposed congestion control algorithm achieves a high overall av-

erage reward and fairness index in comparison with the benchmarks. Concretely,

the overall average reward of the proposal is the highest with 0.51 while the figure

for the Origin-BBR, M-BBR, BBR+, BBR-Tsunami and Cubic are 0.43, 0.39, 0.45, 0.4

and 0.04, respectively. The overall average reward of our proposal shows an im-

provement of 18.6, 30.76, 13.3 and 27.5 percent in comparison with the figure for

Origin-BBR and three other BBR’s variants.

Despite the promising results, the proposed troubleshooting framework has several

limitations as follows:

• In this framework, we consider congestion as a use-case to generate anomalies and

build troubleshooting datasets related to three root causes: link failure, switch fail-

133



2. PERSPECTIVES AND FUTURE WORK

ure, and buffer overload. However, there are various kinds of anomalies (e.g., server

disruption, etc.) as well as its root causes are not taken into account yet in the frame-

work.

• Encrypted traffic not only leads to a lack of information about application class

but also results in many obstacles for network performance monitoring approaches

(e.g., QoE estimation, etc.) and intrusion detection systems using a deep packet in-

spection (e.g., DDoS detection, botnet detection, etc.). However, we only take into

account the application class as a use case in the proposed troubleshooting frame-

work.

• In the proposed traffic classification approach, we use supervised learning algo-

rithms to classify the network traffic into five applications, but it requires a large

labeled dataset. Besides, building large labeled datasets is time-consuming and

costly. Consequently, building larger datasets with more kinds of applications will

face many obstacles in the future.

• According to the related work, there are many remediation approaches in network

troubleshooting such as routing, load balancing, etc. However, we take into account

the routing aspect as an example in the temporary remediation module. The rout-

ing aspect can effectively reduce negative impacts of congestion in the network de-

vices (e.g., router, switch, etc.), but it is ineffective with other anomalies (e.g., server

disruption, switch configuration, etc.) which is not considered yet in the frame-

work.

• Congestion can be caused by link failure, switch failure or buffer overload. In this

thesis, buffer overload is taken into account, and we present a congestion control

algorithm to solve it definitively. However, remediation approaches for other root

causes need to be studied in the troubleshooting framework.

2 Perspectives and Future Work

According to promising results, this work can be extended with various research perspec-

tives as follows:

• First, we contribute troubleshooting datasets in terms of link failure, switch failure

and buffer overload. In the future, we will implement simulation scenarios to col-

134



2. PERSPECTIVES AND FUTURE WORK

lect more data related to other root causes to facilitate network troubleshooting.

Besides, a root cause analysis need to be studied to identify these root causes in this

case.

• The emerging of encrypted traffic causes to limitations for network management

and network troubleshooting regarding network performance monitoring approaches

(e.g., QoE estimation, application identification, etc.) and intrusion detection sys-

tem using a deep packet inspection (e.g., DDoS detection, botnet detection, etc.).

In this thesis, we place a special focus on traffic classification solutions for identify-

ing application classes in the context of encrypted traffic. Other aspects need to be

thoroughly taken into account in the future.

• The proposed traffic classification approach uses supervised ML algorithms to clas-

sify encrypted network traffic. It requires large labeled datasets, but capturing large

labeled datasets is a costly and time-consuming. Consequently, many studies fo-

cus on traffic classification approaches using semi-supervised ML algorithms. The

objective is to pre-train a model on a large unlabeled dataset and transfer learned

weights to a new model that is retrained with a small labeled dataset. Therefore,

these approaches will be taken into account as a part of our future work.

• The application-aware segment routing mechanism proposed in this work is im-

plemented for a certain applications such as video streaming, file transfer and VoIP.

This mechanism selects an appropriate routing strategy corresponding to a specific

application to meet strict SLA (Service-level Agreement) requirements. Next step

of this thesis is to extend to develop a more effective proof-of-concept in a product

environment.

• Finally, we propose an adaptive BBR algorithm for QUIC to adapt to the unexpected

changes of network environments. The purpose is to change sending rate at sender

sides adaptively in dynamic network. We will extend this work to select appropriate

congestion control algorithms (e.g., QUIC Cubic, QUIC New Reno, QUIC BBR, etc.)

across various network conditions. In a specific algorithm, we will implement RL

algorithm to select appropriate sending rate to improve network performance in

dynamic network.

135



Version abrégée en Français

1 Contexte général

Les avancées dans le domaine des réseaux de télécommunication, l’avènement de l’Inter-

net des objets et la multiplication des services font qu’aujourd’hui les mécanismes embar-

qués dans le cœur des réseaux de transport prennent une place importante dans l’offre

de services. Par conséquent, le réseau est devenu plus complexe et nombreux sont les

problèmes qui peuvent impacter le fonctionnement continu des services fournis aux us-

agers. Pour se rendre compte de l’intérêt de cet aspect, Tab. 8.9, publiée en 2020, donne

un aperçu du coût engendré par les interruptions des services chez certains opérateurs

[7]. Par exemple, nous constatons que YouTube et PayPal ont subi une perte financière

entre $ 34,000 et $ 6,700,000 pour quelques heures d’interruption de leurs serveurs dues

à des défaillances techniques.

De même, de nombreux services Cloud sont aujourd’hui perturbés par des cyberat-

taques, comme c’est le cas, des attaques de type DDoS (Distributed Denial of Service)

conçues pour surcharger et perturber les services réseau en les saturant de demandes

d’accès. En février 2018, Github [8] en a été la cible avec 1,3 Tb/s de trafic issu de la ré-

ception de 126,9 millions de paquets par seconde ayant saturé leurs serveurs. Bien que

cela soit la plus grande attaque DDoS enregistrée à l’époque, les systèmes de GitHub n’ont

souffert que de 20 minutes d’interruption. GitHub a en effet mis en place un mécanisme

Arrêt (Heures) Coût ($)
Youtube 0.17 34,000

CloudFlare 1 168,000
Zoho 33.5 600,000
Cisco 5.33 1,066,000
eBay 6.25 1,406,250

Facebook 8.5 1,700,000
Paypal 30.2 6,795,000

Table 8.9: Le coût lié aux interruptions de services.

136



2. MOTIVATIONS

de migration pour détecter et empêcher ce type d’attaque. Selon le dernier rapport de

Radware, au cours des quatre premiers mois de 2021, le volume des attaques DDoS a aug-

menté de 30 % [8]. Les attaques informatiques ne sont bien évidemment pas les seules

causes d’interruption de services, la société Facebook a connu, par example, le 04 octo-

bre 2021, l’une des pannes les plus importantes de son histoire à cause d’un problème

de configuration BGP (Border Gateway Protocol) qui eut pour conséquence de ne plus

annoncer les routes avec leurs préfixes DNS (Domain Name System) [227].

En conclusion, il est aujourd’hui nécessaire de réfléchir à de nouveaux mécanismes

de dépannage efficaces et adaptés aux évolutions actuelles et futures des systèmes et des

réseaux afin d’assurer leur résilience.

2 Motivations

Les opérations liées au diagnostic et à leur résolution dans les réseaux constituent des

tâches souvent chronophages. Il est en effet souvent nécessaire de consacrer un temps

plus au moins long pour analyser des causes, poser le diagnostic et ensuite proposer une

méthode de résolution dans l’objectif du rétablissement des services. Cette période peut

varier de quelques secondes à quelques heures selon l’état des anomalies constatées dans

le réseau [11]. Durant cette période, et sans aucune action correctrice, les systèmes con-

tinuent à subir une dégradation de leurs performances [12]. De plus, l’augmentation de

la part du trafic chiffré dans l’Internet, qui est passé de 40 % en 2016 à 80 % en 2019 [13],

conduit à de nouveaux challenges au regard des mécanismes traditionnels [4, 5, 6], en par-

ticulier celui de la perception de l’usager au regard des services qui lui sont fournis. En

effet, plusieurs mécanismes mis en place aujourd’hui par les opérateurs réseau se basent

sur l’identification du type de flux transporté afin de concevoir des stratégies permettant

de prendre en compte la satisfaction de l’usager terminal.

3 Contributions

Dans cette thèse, nous proposons une nouvelle architecture de détection et de dépannage

pour les réseaux opérateurs qui prend en compte la nature chiffrée du trafic transporté.

Cette architecture (Fig. 8.9), modulaire par son aspect fonctionnel, comprend la collecte

de données, la détection d’anomalies, la résolution temporaire, l’analyse des causes pro-

fondes et la résolution définitive. Ces modules sont décrits comme suit :

137



3. CONTRIBUTIONS

Résolution temporaire

Méthode 

passive

 Mesure de 

paramètre

Système de réseau 

(Trafic chiffré avec QUIC)

Agent 

sFlow

Contrôleur SDNnContrôleur SDN1 

 ...

S
e
rv

e
u
r 1

S
e
rv

e
u
r 2

S
e
rv

e
u
r n

C
lie

n
t n

C
lie

n
t 2

C
lie

n
t 1

 ...  ...

 Collecte de Données

Classification 

du trafic

Collecteur sFlow

Commutateur 

d'entrée

Analyse des 

causes profondes

Détection d anomalies

 Résolution définitive

Contrôle de congestion 

adaptive

Estimateur 

de QoE

Routage de 

segments en 

utilisant une 

apprentissage par 

renforcement

SR tenant compte des 

applications

Cas 

d'usage

Cas d'usage

Figure 8.9: L’architecture proposée pour le dépannage des réseaux opérateurs.

• Module de collecte de données : celui-ci est conçu afin de collecter des informa-

tions sur l’état du réseau et du trafic. Ainsi, nous proposons une nouvelle approche

de classification pour le trafic QUIC qui comporte deux étapes principales. La pre-

mière phase analyse les caractéristiques basées sur le contenu du flux, à l’aide d’un

algorithme d’apprentissage automatique (ML : Machine Learning) de type « Ran-

dom Forest ». L’objectif est ici de classer le trafic transporté selon le type de l’applica-

tion utilisée: messagerie instantanée, Voix sur IP et « autres ». La deuxième étape

étudie les caractéristiques intrinsèques du type « autres » en se basant sur la nature

des paquets. Nous utilisons ici un algorithme de type réseau neuronal convolu-

tif (CNN : Convolutional Neural Network) pour classer ces flux en 3 catégories : «

vidéo », « transfert de fichiers » ou « musique ». Les performances de ce module

sont évaluées dans divers scénarios et les résultats montrent que la classification

obtenue pouvait atteindre les 99 % pour l’identification des flux vidéo, transfert de

fichiers et musique et environ 96 % pour les autres types.

138



3. CONTRIBUTIONS

• Module de détection des anomalies : Il se base sur les données collectées par le

précédent module afin de détecter les anomalies dans le réseau. La méthode mise

en œuvre, basée sur des techniques d’apprentissage automatique, analyse l’évolution

des caractéristiques fonctionnelles du réseau de transport afin d’identifier les eventu-

elles anomalies. Les problèmes de réseau peuvent en effet entraîner une dégrada-

tion des performances et une fluctuation dans le fonctionnement du réseau qu’il

est possible de reconnaître automatiquement afin de classer le système en 2 états

: « normal » et « anormal ». Les résultats expérimentaux montrent que la précision

du mécanisme de détection d’anomalies proposé atteigne 99 % de taux de succès

pour les jeux de données considérés.

• Module de résolution temporaire : Ce module prend la forme d’un mécanisme de

routage de segments tenant compte des applications usagers, l’objectif est de ré-

sourdre temporairement certaines défaillances constatées dans le réseau, le temps

d’en rechercher les causes réelles. L’approche proposée se base sur le paradigme

SDN (Software-defined Networking) et a pour objectif de choisir automatiquement

des stratégies de routage en fonction de l’application et du contexte en cours. Tout

d’abord, le module de résolution temporaire identifie les classes d’applications en

fonction de la classification du trafic. Ensuite, il sélectionne d’une manière au-

tomatisée, en utilisant un algorithme d’apprentissage par renforcement (RL, Re-

inforcement Learning), une stratégie de routage appropriée. Les résultats expéri-

mentaux montrent que l’approche mise en place, bien que moins gourmande en

ressources CPU et réseau, offre des résultats au minimum comparables aux autres

approches existantes. Concrètement, le mécanisme proposé réduit jusqu’à 64.39 %

la surcharge par rapport à un mécanisme qui maximise systématiquement la qual-

ité perçue par l’usager.

• Analyse des causes profondes : Parallèlement à la résolution temporaire, un mod-

ule d’analyse des causes profondes des anomalies a été mis en œuvre. Nous avons

considéré la congestion comme cas d’étude et nous nous sommes donnés comme

objectifs d’identifier sa cause (défaillance d’un lien, défaillance d’un commutateur

ou surcharge de la mémoire tampon). Plusieurs algorithmes et approches ont été

évalués et le choix s’est porté sur l’algorithme Random Forest qui offre un bon com-

promis entre le temps d’exécution et la précision recherchés.

139



4. CONCLUSION ET PERSPECTIVES

• Enfin, nous nous sommes intéressés aux mécanismes de résolution du problème

dans le cas de la congestion. Évidemment, la défaillance d’un lien ou d’un commu-

tateur nécessite une intervention humaine, mais en ce qui concerne la surcharge

de la mémoire tampon, nous avons proposé un algorithme adaptatif pour le con-

trôle de congestion de type BBR (Bottleneck Bandwidth and Round-Trip Time) afin

de remédier à la panne constatée. Cette approche, qui se base sur un algorithme

d’apprentissage par renforcement, vise à ajuster le taux d’envoi du côté de l’expédit-

eur, de manière adaptative, en fonction des conditions du réseau. Les performances

de l’algorithme proposé sont évaluées dans le contexte du protocole HTTP/3 et

comparées aux approches existantes: Origin-BBR, M-BBR, BBR+, BBR-Tsunami et

Cubic. La récompense moyenne globale de notre proposition montre une amélio-

ration de 18.6, 30.76, 13.3 et 27.5 % par rapport à la version Origin-BBR ainsi que de

ses trois autres variantes.

4 Conclusion et Perspectives

Le développement rapide de l’Internet s’est traduit par une augmentation du nombre de

services et de dispositifs connectés. Ceci a eu comme conséquence la complexification du

réseau et l’apparition de nombreux problèmes et dysfonctionnements qui peuvent aller

jusqu’à provoquer l’arrêt des services entraînant ainsi des répercussions économiques

graves pour les fournisseurs de services [226]. Par conséquent, la mise en œuvre d’approch-

es mise en forme de dépannage des réseaux dans le but de détecter les anomalies, d’identi-

fier leurs causes profondes et de mettre en œuvre des approches de résolution automa-

tique, est devenue primordiale. Néanmoins, l’émergence du trafic chiffré a rendu difficile,

voire impossible, l’utilisation de certaines approches. Dans cette thèse, nous proposons

une nouvelle architecture de dépannage pour les réseaux opérateurs adaptés à ce con-

texte. L’architecture de dépannage proposé contient cinq modules principaux : la col-

lecte de données, la détection d’anomalies, la résolution temporaire, l’analyse des causes

profondes et la résolution définitive.

À l’avenir, ce travail peut être étendu à diverses perspectives:

• La classification et l’identification des applications dans le contexte du trafic chiffré

peuvent être améliorées en considérant d’autres aspects non pris en compte dans le

cadre de cette thèse, en y intégrant d’autres paramètres applicatifs, plus de données

140



5. LISTE DES PUBLICATIONS

émanant d’autres sources, voire d’autres modèles.

• La collecte des données étiquetées d’apprentissage nécessaires à la classification

de trafic est coûteuse et chronophage. Il serait intéressant d’étudier la possibilité de

pré-entraîner un modèle sur un ensemble de données non étiquetées et de trans-

férer les poids appris à un nouveau modèle qui est entraîné de nouveau avec un

petit ensemble de données étiquetées.

• Un mécanisme de routage par segment tenant compte de l’application a été pro-

posé dans la cadre de cette thèse. Ce mécanisme sélectionne une stratégie de routage

appropriée correspondant à une application spécifique afin de répondre aux ex-

igences strictes du contrat client-opérateur SLA (Service-level Agreement), mais

l’analyse que nous avons effectuée a pris la forme d’une preuve de concept qu’on

pourrait élargir à d’autres applications afin de confirmer nos conclusions ou de les

faire évoluer.

• Enfin, nous nous sommes intéressés à la congestion comme cause probable de dys-

fonctionnement et il faudra certainement considérer d’autres fonctionnalités afin

de faire évoluer l’architecture proposée.

5 Liste des publications

Revues internationales avec comité de lecture

• Van TONG, Sami SOUIHI, Hai Anh TRAN and Abdelhamid MELLOUK. "SDN-based

Application-aware Segment Routing for Large-scale Network." IEEE Systems Journal

(Accepté en octobre 2021), 10 pages, doi: 10.1109/JSYST.2021.3123809.

Conférences internationales avec comité de lecture et actes

• Van TONG, Hai Anh TRAN, Sami SOUIHI and Abdelhamid MELLOUK. "Machine

Learning based Root Cause Analysis for SDN Network." 2021 IEEE Global Commu-

nications Conference (GLOBECOM), 6 pages, Madrid, Spain, 7–11 December, 2021

(en cours).

• Van TONG, Sami SOUIHI, Hai Anh TRAN and Abdelhamid MELLOUK. "Service-

centric Segment Routing Mechanism using Reinforcement Learning for Encrypted

141



5. LISTE DES PUBLICATIONS

Traffic." 2020 16th International Conference on Network and Service Management

(CNSM), 2020, pp. 1-5, doi: 10.23919/CNSM50824.2020.9269070.

• Lamine Amour, Van TONG, Sami SOUIHI, Hai Anh TRAN and Abdelhamid MEL-

LOUK. "Quality estimation framework for encrypted traffic (q2et)." 2019 IEEE Global

Communications Conference (GLOBECOM), 2019, pp. 1-6, doi: 10.1109/GLOBE-

COM38437.2019.9014234.

• Van TONG, Hai Anh TRAN, Sami SOUIHI and Abdelhamid MELLOUK. "Network

troubleshooting: survey, taxonomy and challenges." 2018 International Conference

on Smart Communications in Network Technologies (SaCoNeT), 2018, pp. 165-170,

doi: 10.1109/SaCoNeT.2018.8585610.

• Van TONG, Hai Anh TRAN, Sami SOUIHI and Abdelhamid MELLOUK. "A novel

QUIC traffic classifier based on convolutional neural networks." 2018 IEEE Global

Communications Conference (GLOBECOM), 2018, pp. 1-6,

doi: 10.1109/GLOCOM.2018.8647128.

• Van TONG, Hai Anh TRAN, Sami SOUIHI and Abdelhamid MELLOUK. "Empiri-

cal study for dynamic adaptive video streaming service based on Google transport

QUIC protocol." 2018 IEEE 43rd Conference on Local Computer Networks (LCN),

2018, pp. 343-350, doi: 10.1109/LCN.2018.8638062.

142



Bibliography

[1] Thales e Security. The percentage of encrypted flows. x, 17

[2] Yong Cui, Tianxiang Li, Cong Liu, Xingwei Wang, and Mirja Kühlewind. Innovat-

ing transport with quic: Design approaches and research challenges. IEEE Internet

Computing, 21(2):72–76, 2017. x, 18, 21

[3] José Suárez-Varela and Pere Barlet-Ros. Towards a netflow implementation for

openflow software-defined networks. In 2017 29th International Teletraffic Congress

(ITC 29), volume 1, pages 187–195. IEEE, 2017. x, 16, 38, 39

[4] Paulo César Fonseca and Edjard Souza Mota. A survey on fault management in

software-defined networks. IEEE Communications Surveys & Tutorials, 19(4):2284–

2321, 2017. 1, 9, 16, 28, 38, 82, 137

[5] Yinbo Yu, Xing Li, Xue Leng, Libin Song, Kai Bu, Yan Chen, Jianfeng Yang, Liang

Zhang, Kang Cheng, and Xin Xiao. Fault management in software-defined network-

ing: A survey. IEEE Communications Surveys & Tutorials, 21(1):349–392, 2018. 1, 9,

16, 28, 38, 82, 137

[6] Sihem Cherrared, Sofiane Imadali, Eric Fabre, Gregor Gössler, and Imen Grida Ben

Yahia. A survey of fault management in network virtualization environments: Chal-

lenges and solutions. IEEE Transactions on Network and Service Management,

16(4):1537–1551, 2019. 1, 2, 9, 16, 28, 37, 38, 137

[7] Maurice Gagnaire, Felipe Diaz, Camille Coti, Christophe Cerin, Kazuhiko Shiozaki,

Yingjie Xu, Pierre Delort, Jean-Paul Smets, Jonathan Le Lous, Stephen Lubiarz, et al.

Downtime statistics of current cloud solutions. International Working Group on

Cloud Computing Resiliency, Tech. Rep, 2012. 1, 30, 136

[8] Blair Felter. 7 of the most famous recent ddos attacks. Sep 2021. 2, 136, 137

143



BIBLIOGRAPHY

[9] Eva Abergel. Ddos attacks against financial institutes resurge in june 2021. Sep

2021. 2

[10] Ma łgorzata Steinder and Adarshpal S Sethi. A survey of fault localization tech-

niques in computer networks. Science of computer programming, 53(2):165–194,

2004. 2

[11] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. A survey on

network troubleshooting. Technical Report Stanford/TR12-HPNG-061012, Stanford

University, Tech. Rep., 2012. 3, 10, 30, 34, 43, 110, 137

[12] Maha Mdini. Anomaly detection and root cause diagnosis in cellular networks. The-

ses, Ecole nationale supérieure Mines-Télécom Atlantique, September 2019. 3, 137

[13] CISCO. Cisco white paper report: Encrypted traffic analytics. June 2021. 3, 17, 83,

137

[14] Mirja Kühlewind, Brian Trammell, Tobias Bühler, Gorry Fairhurst, and Vijay Gur-

bani. Challenges in network management of encrypted traffic. arXiv preprint

arXiv:1810.09272, 2018. 3, 16, 26, 30

[15] K Moriarty and Al Morton. Effects of pervasive encryption on operators. draft-mm-

wg-effect-encrypt-25 (work in progress), 2018. 3, 26, 30

[16] Nancy M Morris and William B Rouse. Review and evaluation of empirical research

in troubleshooting. Human factors, 27(5):503–530, 1985. 9

[17] David H Jonassen and Woei Hung. Learning to troubleshoot: A new theory-based

design architecture. Educational Psychology Review, 18(1):77–114, 2006. 9

[18] Ray S Perez. A view from troubleshooting. Toward a unified theory of problem solv-

ing, pages 127–166, 2012. 9

[19] Alma Schaafstal, Jan Maarten Schraagen, and Marcel Van Berl. Cognitive task anal-

ysis and innovation of training: The case of structured troubleshooting. Human

factors, 42(1):75–86, 2000. 9

[20] Scott D Johnson, Jeff W Flesher, Jihn-Chang J Jehng, and Ahmed Ferej. Enhanc-

ing electrical troubleshooting skills in a computer-coached practice environment.

Interactive learning environments, 3(3):199–214, 1993. 9

144



BIBLIOGRAPHY

[21] Brandon Heller, Colin Scott, Nick McKeown, Scott Shenker, Andreas Wundsam,

Hongyi Zeng, Sam Whitlock, Vimalkumar Jeyakumar, Nikhil Handigol, James Mc-

Cauley, et al. Leveraging sdn layering to systematically troubleshoot networks. In

Proceedings of the second ACM SIGCOMM workshop on Hot topics in software de-

fined networking, pages 37–42, 2013. 9

[22] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. Automatic

test packet generation. In Proceedings of the 8th international conference on Emerg-

ing networking experiments and technologies, pages 241–252. ACM, 2012. 9, 10

[23] TONG Van, Hai Anh Tran, Sami Souihi, and Abdelhamid MELLOUK. Network trou-

bleshooting: survey, taxonomy and challenges. In 2018 International Conference on

Smart Communications in Network Technologies (SaCoNeT), pages 165–170. IEEE,

2018. 9, 10

[24] Kai Bu, Xitao Wen, Bo Yang, Yan Chen, Li Erran Li, and Xiaolin Chen. Is every flow

on the right track?: Inspect sdn forwarding with rulescope. In Computer Commu-

nications, IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on,

pages 1–9. IEEE, 2016. 10

[25] Peter Perešíni, Maciej Kuźniar, and Dejan Kostić. Monocle: Dynamic, fine-grained

data plane monitoring. In Proceedings of the 11th ACM Conference on Emerging

Networking Experiments and Technologies, page 32. ACM, 2015. 10

[26] Peyman Kazemian, George Varghese, and Nick McKeown. Header space analysis:

Static checking for networks. In NSDI, volume 12, pages 113–126, 2012. 10

[27] Petr Slavık. A tight analysis of the greedy algorithm for set cover. Journal of Algo-

rithms, 25(2):237–254, 1997. 10

[28] Armin Biere. Picosat essentials. Journal on Satisfiability, Boolean Modeling and

Computation, 4:75–97, 2008. 10

[29] Y. Zhao, P. Zhang, Y. Wang, and Y. Jin. Sdn-enabled rule verification on data plane.

IEEE Communications Letters, pages 1–1, 2018. 11

[30] Zhao, P. Zhang, Y. Wang, and Y. Jin. Troubleshooting data plane with rule verifi-

cation in software-defined networks. IEEE Transactions on Network and Service

Management, 15(1):232–244, March 2018. 11

145



BIBLIOGRAPHY

[31] Carmelo Cascone, Davide Sanvito, Luca Pollini, Antonio Capone, and Brunilde

Sanso. Fast failure detection and recovery in sdn with stateful data plane. Inter-

national Journal of Network Management, 27(2):e1957, 2017. 11

[32] Leonardo Ochoa Aday, Cristina Cervelló Pastor, and Adriana Fernández Fernández.

Current trends of topology discovery in openflow-based software defined networks.

2015. 12, 13

[33] George Tarnaras, Evangelos Haleplidis, and Spyros Denazis. Sdn and forces based

optimal network topology discovery. In Proceedings of the 2015 1st IEEE Conference

on Network Softwarization (NetSoft), pages 1–6. IEEE, 2015. 12

[34] Floodlight. Floodlight project. 12

[35] OpenDayLight. Opendaylight project. 12

[36] Farzaneh Pakzad, Marius Portmann, Wee Lum Tan, and Jadwiga Indulska. Efficient

topology discovery in software defined networks. In Signal Processing and Commu-

nication Systems (ICSPCS), 2014 8th International Conference on, pages 1–8. IEEE,

2014. 13

[37] H. Xu, L. Yan, H. Xing, Y. Cui, and S. Li. Link failure detection in software defined

networks: an active feedback mechanism. Electronics Letters, 53(11):722–724, 2017.

13

[38] Abdelhadi Azzouni, Raouf Boutaba, Nguyen Thi Mai Trang, and Guy Pujolle. softdp:

Secure and efficient openflow topology discovery protocol. In NOMS 2018-2018

IEEE/IFIP Network Operations and Management Symposium, pages 1–7. IEEE, 2018.

13

[39] Dave Katz and Dave Ward. Bidirectional forwarding detection (bfd). Technical re-

port, 2010. 13

[40] Amar Phanishayee, Elie Krevat, Vijay Vasudevan, David G Andersen, Gregory R

Ganger, Garth A Gibson, and Srinivasan Seshan. Measurement and analysis of tcp

throughput collapse in cluster-based storage systems. In FAST, volume 8, pages

1–14, 2008. 14

146



BIBLIOGRAPHY

[41] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ronnie

Chaiken. The nature of data center traffic: measurements & analysis. In Proceed-

ings of the 9th ACM SIGCOMM conference on Internet measurement, pages 202–208.

ACM, 2009. 14

[42] Theophilus Benson, Aditya Akella, and David A Maltz. Network traffic characteris-

tics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM conference

on Internet measurement, pages 267–280. ACM, 2010. 14

[43] Renuga Kanagevlu and Khin Mi Mi Aung. Sdn controlled local re-routing to reduce

congestion in cloud data center. In Cloud Computing Research and Innovation (IC-

CCRI), 2015 International Conference on, pages 80–88. IEEE, 2015. 14

[44] Ramona Trestian, Gabriel-Miro Muntean, and Kostas Katrinis. Micetrap: Scalable

traffic engineering of datacenter mice flows using openflow. In Integrated Network

Management (IM 2013), 2013 IFIP/IEEE International Symposium on, pages 904–

907. IEEE, 2013. 14

[45] Seungbeom Song, Jaiyong Lee, Kyuho Son, Hangyong Jung, and Jihoon Lee. A

congestion avoidance algorithm in sdn environment. In Information Networking

(ICOIN), 2016 International Conference on, pages 420–423. IEEE, 2016. 14

[46] Shadi Attarha, Koosha Haji Hosseiny, Ghasem Mirjalily, and Kiarash Mizanian.

A load balanced congestion aware routing mechanism for software defined net-

works. In Electrical Engineering (ICEE), 2017 Iranian Conference on, pages 2206–

2210. IEEE, 2017. 14

[47] Masoumeh Gholami and Behzad Akbari. Congestion control in software defined

data center networks through flow rerouting. In Electrical Engineering (ICEE), 2015

23rd Iranian Conference on, pages 654–657. IEEE, 2015. 14

[48] N Sminesh C, Grace Mary Kanaga E, et al. A proactive flow admission and re-routing

scheme for load balancing and mitigation of congestion propagation in sdn data

plane. arXiv preprint arXiv:1812.02474, 2018. 14

[49] Gaolei Li, Mianxiong Dong, Kaoru Ota, Jun Wu, Jianhua Li, and Tianpeng Ye. Deep

packet inspection based application-aware traffic control for software defined net-

147



BIBLIOGRAPHY

works. In Global Communications Conference (GLOBECOM), 2016 IEEE, pages 1–6.

IEEE, 2016. 15

[50] Davide Adami, Gianni Antichi, Rosario G Garroppo, Stefano Giordano, and An-

drew W Moore. Towards an sdn network control application for differentiated traf-

fic routing. In 2015 IEEE International Conference on Communications (ICC), pages

5827–5832. IEEE, 2015. 15, 25, 49, 53, 84

[51] Li-Chia Cheng, Kuochen Wang, and Yi-Huai Hsu. Application-aware routing

scheme for sdn-based cloud datacenters. In Ubiquitous and Future Networks

(ICUFN), 2015 Seventh International Conference on, pages 820–825. IEEE, 2015. 15,

84

[52] Siva Sairam Prasad, Kotaro Kataoka, et al. Ampf: Application-aware mul-

tipath packet forwarding using machine learning and sdn. arXiv preprint

arXiv:1606.05743, 2016. 15

[53] Ahmed M Abdelmoniem and Brahim Bensaou. Incast-aware switch-assisted

tcp congestion control for data centers. In Global Communications Conference

(GLOBECOM), 2015 IEEE, pages 1–6. IEEE, 2015. 15

[54] Jaehyun Hwang, Joon Yoo, Sang-Hun Lee, and Hyun-Wook Jin. Scalable conges-

tion control protocol based on sdn in data center networks. In 2015 IEEE Global

Communications Conference (GLOBECOM), pages 1–6. IEEE, 2015. 15

[55] Lei Zhang, Yong Cui, Mowei Wang, Zhenjie Yang, and Yong Jiang. Machine learning

for internet congestion control: Techniques and challenges. IEEE Internet Comput-

ing, 23(5):59–64, 2019. 16

[56] Ticao Zhang and Shiwen Mao. Machine learning for end-to-end congestion control.

IEEE Communications Magazine, 58(6):52–57, 2020. 16

[57] Zhiyuan Xu, Jian Tang, Chengxiang Yin, Yanzhi Wang, and Guoliang Xue.

Experience-driven congestion control: When multi-path tcp meets deep reinforce-

ment learning. IEEE Journal on Selected Areas in Communications, 37(6):1325–1336,

2019. 16

148



BIBLIOGRAPHY

[58] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv Tamar. A

deep reinforcement learning perspective on internet congestion control. In Inter-

national Conference on Machine Learning, pages 3050–3059. PMLR, 2019. 16

[59] Raja Majid Ali Ujjan, Zeeshan Pervez, Keshav Dahal, Ali Kashif Bashir, Rao Mumtaz,

and J González. Towards sflow and adaptive polling sampling for deep learning

based ddos detection in sdn. Future Generation Computer Systems, 111:763–779,

2020. 16, 32, 34, 39, 57, 87, 88

[60] Petr Velan, Milan Čermák, Pavel Čeleda, and Martin Drašar. A survey of methods

for encrypted traffic classification and analysis. International Journal of Network

Management, 25(5):355–374, 2015. 17

[61] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic, Dan

Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. The quic

transport protocol: Design and internet-scale deployment. In Proceedings of the

Conference of the ACM Special Interest Group on Data Communication, pages 183–

196. ACM, 2017. 17, 50, 83, 119, 120

[62] Mike Kosek, Tanya Shreedhar, and Vaibhav Bajpai. Beyond quic v1: A first look at

recent transport layer ietf standardization efforts. IEEE Communications Magazine,

59(4):24–29, 2021. 18

[63] Gabriel Lopez-Millan, Rafael Marin-Lopez, and Fernando Pereniguez-Garcia. To-

wards a standard sdn-based ipsec management framework. Computer Standards &

Interfaces, 66:103357, 2019. 22

[64] Eric Rescorla and Tim Dierks. The transport layer security (tls) protocol version 1.3.

2018. 22

[65] Lamine Amour, Sami Souihi, Abdelhamid Mellouk, and SM Mushtaq. Q2abr: Qoe-

aware adaptive video bit rate solution. International Journal of Communication

Systems, 33(10):e4204, 2020. 24

[66] Raimund Schatz, Tobias Hoßfeld, and Pedro Casas. Passive youtube qoe monitoring

for isps. In 2012 Sixth International Conference on Innovative Mobile and Internet

Services in Ubiquitous Computing, pages 358–364. IEEE, 2012. 24, 30

149



BIBLIOGRAPHY

[67] Pedro Casas, Alessandro D’Alconzo, Pierdomenico Fiadino, Arian Bär, Alessandro

Finamore, and Tanja Zseby. When youtube does not work—analysis of qoe-relevant

degradation in google cdn traffic. IEEE Transactions on Network and Service Man-

agement, 11(4):441–457, 2014. 24

[68] Irena Orsolic, Dario Pevec, Mirko Suznjevic, and Lea Skorin-Kapov. A machine

learning approach to classifying youtube qoe based on encrypted network traffic.

Multimedia tools and applications, 76(21):22267–22301, 2017. 24, 31

[69] Irena Orsolic and Lea Skorin-Kapov. A framework for in-network qoe monitoring of

encrypted video streaming. IEEE Access, 8:74691–74706, 2020. 24, 31

[70] HE Lin, Peng KUANG, WANG Shicheng, LIU Ying, LI Xing, and PENG Shuping.

Application-aware ipv6 networking. Telecommunications Science, 36(8):36, 2019.

25

[71] Manuel Lopez-Martin, Belen Carro, Antonio Sanchez-Esguevillas, and Jaime Lloret.

Network traffic classifier with convolutional and recurrent neural networks for in-

ternet of things. IEEE Access, 5:18042–18050, 2017. 25, 30, 49, 51, 53, 54, 58, 89

[72] Michael Finsterbusch, Chris Richter, Eduardo Rocha, Jean-Alexander Muller, and

Klaus Hanssgen. A survey of payload-based traffic classification approaches. IEEE

Communications Surveys & Tutorials, 16(2):1135–1156, 2013. 25

[73] Luca Deri, Maurizio Martinelli, Tomasz Bujlow, and Alfredo Cardigliano. ndpi:

Open-source high-speed deep packet inspection. In 2014 International Wire-

less Communications and Mobile Computing Conference (IWCMC), pages 617–622.

IEEE, 2014. 25, 30

[74] C Huitema and E Rescorla. Issues and requirements for sni encryption in tls. Inter-

net Engineering Task Force, Internet-Draft draft-ietftls-sni-encryption-03, 2018. 25,

26

[75] Pedro Amaral, Joao Dinis, Paulo Pinto, Luis Bernardo, Joao Tavares, and Henrique S

Mamede. Machine learning in software defined networks: Data collection and traf-

fic classification. In 2016 IEEE 24th International conference on network protocols

(ICNP), pages 1–5. IEEE, 2016. 25, 54

150



BIBLIOGRAPHY

[76] Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou, Saeed Abu-

Nimeh, Wenke Lee, and David Dagon. From throw-away traffic to bots: Detecting

the rise of dga-based malware. In 21st {USENIX} Security Symposium ({USENIX}

Security 12), pages 491–506, 2012. 26

[77] Jonathan Woodbridge, Hyrum S Anderson, Anjum Ahuja, and Daniel Grant. Pre-

dicting domain generation algorithms with long short-term memory networks.

arXiv preprint arXiv:1611.00791, 2016. 26

[78] Duc Tran, Hieu Mac, Van Tong, Hai Anh Tran, and Linh Giang Nguyen. A lstm based

framework for handling multiclass imbalance in dga botnet detection. Neurocom-

puting, 275:2401–2413, 2018. 27

[79] Mohammad M Shurman, Rami M Khrais, and Abdulrahman A Yateem. Iot denial-

of-service attack detection and prevention using hybrid ids. In 2019 International

Arab Conference on Information Technology (ACIT), pages 252–254. IEEE, 2019. 27,

30

[80] Yazan Otoum and Amiya Nayak. As-ids: Anomaly and signature based ids for the

internet of things. Journal of Network and Systems Management, 29(3):1–26, 2021.

27, 30

[81] Tamer AbuHmed, Abedelaziz Mohaisen, and DaeHun Nyang. A survey on deep

packet inspection for intrusion detection systems. arXiv preprint arXiv:0803.0037,

2008. 27

[82] Norberto Garcia, Tomas Alcaniz, Aurora González-Vidal, Jorge Bernal Bernabe,

Diego Rivera, and Antonio Skarmeta. Distributed real-time slowdos attacks de-

tection over encrypted traffic using artificial intelligence. Journal of Network and

Computer Applications, 173:102871, 2021. 27, 31

[83] Mikhail Zolotukhin and Timo Hämäläinen. Data stream clustering for application-

layer ddos detection in encrypted traffic. In Cyber Security: Power and Technology,

pages 111–131. Springer, 2018. 27, 31

[84] Pan Wang, Feng Ye, Xuejiao Chen, and Yi Qian. Datanet: Deep learning based en-

crypted network traffic classification in sdn home gateway. IEEE Access, 6:55380–

55391, 2018. 31, 49, 50, 55, 83

151



BIBLIOGRAPHY

[85] Wei Wang, Ming Zhu, Jinlin Wang, Xuewen Zeng, and Zhongzhen Yang. End-to-end

encrypted traffic classification with one-dimensional convolution neural networks.

In 2017 IEEE International Conference on Intelligence and Security Informatics (ISI),

pages 43–48. IEEE, 2017. 31, 49, 50, 55, 83

[86] Fetia Bannour, Sami Souihi, and Abdelhamid Mellouk. Distributed sdn control:

Survey, taxonomy, and challenges. IEEE Communications Surveys & Tutorials,

20(1):333–354, 2017. 32

[87] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,

Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow, et al.

Onos: towards an open, distributed sdn os. In Proceedings of the third workshop on

Hot topics in software defined networking, pages 1–6, 2014. 32

[88] Fetia Bannour, Sami Souihi, and Abdelhamid Mellouk. Adaptive distributed sdn

controllers: Application to content-centric delivery networks. Future Generation

Computer Systems, 113:78–93, 2020. 32

[89] Gwangsun Kim, Changhyun Kim, Jiyun Jeong, Mike Parker, and John Kim.

Contention-based congestion management in large-scale networks. In 2016 49th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages

1–13. IEEE, 2016. 33, 82

[90] Piotr Jurkiewicz, Robert Wójcik, Jerzy Domżał, and Andrzej Kamisiński. Testing im-

plementation of famtar: Adaptive multipath routing. Computer Communications,

149:300–311, 2020. 33, 82

[91] Cisco to optimize ntt docomo’s 5g mobile backhaul for simpler, more flexible and

scalable network operation. June 2021. 33, 82

[92] Cisco and vodafone showcase mobile transport networking advancements via seg-

ment routing at mobile world congress. June 2021. 33, 82

[93] Lingxia Liao and Victor CM Leung. Lldp based link latency monitoring in software

defined networks. In 2016 12th International Conference on Network and Service

Management (CNSM), pages 330–335. IEEE, 2016. 34, 41, 100

152



BIBLIOGRAPHY

[94] Yang Li, Zhi-Ping Cai, and Hong Xu. Llmp: exploiting lldp for latency measurement

in software-defined data center networks. Journal of Computer Science and Tech-

nology, 33(2):277–285, 2018. 34, 41, 44, 90, 110

[95] ONOS. Portstatistics api. June 2021. 34, 43, 44, 90, 110

[96] Javier Alvarez Cid-Fuentes, Claudia Szabo, and Katrina Falkner. Adaptive perfor-

mance anomaly detection in distributed systems using online svms. IEEE Transac-

tions on Dependable and Secure Computing, 17(5):928–941, 2018. 34, 43, 69, 106,

110

[97] Jibum Hong, Suhyun Park, Jae-Hyoung Yoo, and James Won-Ki Hong. Ma-

chine learning based sla-aware vnf anomaly detection for virtual network manage-

ment. In 2020 16th International Conference on Network and Service Management

(CNSM), pages 1–7. IEEE, 2020. 34, 43, 73, 90, 106, 109, 110, 112

[98] Segment routing application designy. July 2021. 35

[99] Lsquic library. April 2021. 36, 125

[100] Adanma Cecilia Eberendu et al. Unstructured data: an overview of the data of big

data. International Journal of Computer Trends and Technology, 38(1):46–50, 2016.

36

[101] Lamine Amour, Souihi Sami, Said Hoceini, and Abdelhamid Mellouk. An open

source platform for perceived video quality evaluation. In Proceedings of the 11th

ACM Symposium on QoS and Security for Wireless and Mobile Networks, pages 139–

140, 2015. 36

[102] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly detection

and diagnosis from system logs through deep learning. In Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security, pages 1285–

1298, 2017. 37

[103] Aleksandra Revina, Krisztian Buza, and Vera G Meister. It ticket classification: The

simpler, the better. IEEE Access, 8:193380–193395, 2020. 37

153



BIBLIOGRAPHY

[104] Xiao Yu, Pallavi Joshi, Jianwu Xu, Guoliang Jin, Hui Zhang, and Guofei Jiang. Cloud-

seer: Workflow monitoring of cloud infrastructures via interleaved logs. ACM

SIGARCH Computer Architecture News, 44(2):489–502, 2016. 37

[105] Debanshu Sinha, K Haribabu, and Sundar Balasubramaniam. Real-time monitor-

ing of network latency in software defined networks. In 2015 IEEE International

Conference on Advanced Networks and Telecommuncations Systems (ANTS), pages

1–3. IEEE, 2015. 38

[106] Alon Atary and Anat Bremler-Barr. Efficient round-trip time monitoring in open-

flow networks. In IEEE INFOCOM 2016-The 35th Annual IEEE International Con-

ference on Computer Communications, pages 1–9. IEEE, 2016. 38

[107] Ghazi Al-Naymat, Mouhammd Al-Kasassbeh, and Eshraq Al-Harwari. Using ma-

chine learning methods for detecting network anomalies within snmp-mib dataset.

International Journal of Wireless and Mobile Computing, 15(1):67–76, 2018. 38

[108] K Amirthalingam and Robert J Moorhead. Snmp-an overview of its merits and de-

merits. In Proceedings of the Twenty-Seventh Southeastern Symposium on System

Theory, pages 180–183. IEEE, 1995. 38

[109] Adrian Lara, Anisha Kolasani, and Byrav Ramamurthy. Network innovation using

openflow: A survey. IEEE communications surveys & tutorials, 16(1):493–512, 2013.

39

[110] Lamine Amour. Poqemon qoe dataset. June 2021. 42, 91

[111] Lamine Amour, Van Tong, Sami Souihi, Hai Anh Tran, and Abdelhamid Mellouk.

Quality estimation framework for encrypted traffic (q2et). In 2019 IEEE Global Com-

munications Conference (GLOBECOM), pages 1–6. IEEE, 2019. 42, 44, 91, 110

[112] Sihyung Lee, Kyriaki Levanti, and Hyong S Kim. Network monitoring: Present and

future. Computer Networks, 65:84–98, 2014. 43

[113] Woojoong Kim, Jian Li, James Won-Ki Hong, and Young-Joo Suh. Ofmon: Open-

flow monitoring system in onos controllers. In 2016 IEEE NetSoft Conference and

Workshops (NetSoft), pages 397–402. IEEE, 2016. 43

154



BIBLIOGRAPHY

[114] Xuan Thien Phan and Kensuke Fukuda. Sdn-mon: Fine-grained traffic monitor-

ing framework in software-defined networks. Journal of Information Processing,

25:182–190, 2017. 43

[115] Servicenow dataset. June 2021. 44

[116] Github dataset. June 2021. 44

[117] Nfv dataset. June 2021. 44

[118] Ana Bildea, Olivier Alphand, Franck Rousseau, and Andrzej Duda. Link quality esti-

mation with the gilbert-elliot model for wireless sensor networks. In 2015 IEEE 26th

Annual International Symposium on Personal, Indoor, and Mobile Radio Commu-

nications (PIMRC), pages 2049–2054. IEEE, 2015. 44, 74, 75, 110, 112

[119] Dalwinder Singh and Birmohan Singh. Investigating the impact of data normaliza-

tion on classification performance. Applied Soft Computing, 97:105524, 2020. 45,

74, 111, 125

[120] Van Tong. Service-centric segment routing using reinforcement learning. June

2021. 45, 95

[121] Selenium. Webdriver. https://www.seleniumhq.org/projects/webdriver/, June 2021.

45, 61

[122] lucas clemente. A quic implementation in pure go. https://github.com/lucas-

clemente/quic-go, June 2021. 45, 61

[123] Van Tong. Network flow of quic. https://drive.google.com/drive/folders/1cwHhzvaQbi-

ap8yfrj2vHyPmUTQhaYOj?usp=sharing, June 2021. 46, 51, 61

[124] Shahbaz Rezaei, Bryce Kroencke, and Xin Liu. Large-scale mobile app identification

using deep learning. IEEE Access, 8:348–362, 2019. 49

[125] Zhong Fan and Ran Liu. Investigation of machine learning based network traffic

classification. In 2017 International Symposium on Wireless Communication Sys-

tems (ISWCS), pages 1–6. IEEE, 2017. 49

[126] Sina Fathi-Kazerooni, Yagiz Kaymak, and Roberto Rojas-Cessa. Tracking user ap-

plication activity by using machine learning techniques on network traffic. In 2019

155



BIBLIOGRAPHY

International Conference on Artificial Intelligence in Information and Communica-

tion (ICAIIC), pages 405–410. IEEE, 2019. 49, 54

[127] Ola Salman, Imad H Elhajj, Ali Chehab, and Ayman Kayssi. A multi-level internet

traffic classifier using deep learning. In 2018 9th International Conference on the

Network of the Future (NOF), pages 68–75. IEEE, 2018. 49

[128] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein Zade, and

Mohammdsadegh Saberian. Deep packet: A novel approach for encrypted traffic

classification using deep learning. Soft Computing, 24(3):1999–2012, 2020. 49, 50,

55

[129] VNI Cisco. Cisco visual networking index: Forecast and trends, 2017–2022. White

Paper, 2021. 50, 88, 95

[130] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks.

arXiv preprint arXiv:1511.08458, 2015. 51

[131] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org. 51, 89

[132] IANA. Service name and transport protocol port number registry. June 2021. 52

[133] Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and KC Claffy. Transport

layer identification of p2p traffic. In Proceedings of the 4th ACM SIGCOMM confer-

ence on Internet measurement, pages 121–134, 2004. 53

[134] Nigel Williams, Sebastian Zander, and Grenville Armitage. A preliminary perfor-

mance comparison of five machine learning algorithms for practical ip traffic flow

classification. ACM SIGCOMM Computer Communication Review, 36(5):5–16, 2006.

54

[135] Hyun-Kyo Lim, Ju-Bong Kim, Kwihoon Kim, Yong-Geun Hong, and Youn-Hee Han.

Payload-based traffic classification using multi-layer lstm in software defined net-

works. Applied Sciences, 9(12):2550, 2019. 55

[136] Kun Zhou, Wenyong Wang, Chenhuang Wu, and Teng Hu. Practical evaluation of

encrypted traffic classification based on a combined method of entropy estimation

and neural networks. ETRI Journal, 42(3):311–323, 2020. 58, 89

156

http://www.deeplearningbook.org


BIBLIOGRAPHY

[137] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org. 59

[138] Shuhua Gao, Cheng Xiang, Changkai Sun, Kairong Qin, and Tong Heng Lee. Effi-

cient boolean modeling of gene regulatory networks via random forest based fea-

ture selection and best-fit extension. In 2018 IEEE 14th International Conference on

Control and Automation (ICCA), pages 1076–1081. IEEE, 2018. 60, 90

[139] Kaiming He and Jian Sun. Convolutional neural networks at constrained time cost.

In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 5353–5360, 2015. 60, 89

[140] F. CholletKeras. Keras. https://github.com/fchollet/keras, 2016. 61

[141] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

Dubourg, et al. Scikit-learn: Machine learning in python. Journal of machine learn-

ing research, 12(Oct):2825–2830, 2011. 61, 75, 112

[142] Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures

for classification tasks. Information Processing & Management, 45(4):427–437, 2009.

61, 62, 75, 113

[143] Mlp. https://scikit-learn.org/stable/modules/generated/sklearn.neural_net-

work.MLPClassifier.html, May 2021. 63

[144] Svm. https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html,

May 2021. 63

[145] Rf. shorturl.at/bquyW, May 2021. 63

[146] F. CholletKeras. loss function. https://keras.io/losses/, 2016. 64

[147] Curtis R Taylor, Douglas C MacFarland, Doran R Smestad, and Craig A Shue. Con-

textual, flow-based access control with scalable host-based sdn techniques. In IEEE

INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Com-

munications, pages 1–9. IEEE, 2016. 66

157

http://www.deeplearningbook.org


BIBLIOGRAPHY

[148] Aliyu Lawal Aliyu, Peter Bull, and Ali Abdallah. Performance implication and anal-

ysis of the openflow sdn protocol. In 2017 31st International Conference on Ad-

vanced Information Networking and Applications Workshops (WAINA), pages 391–

396. IEEE, 2017. 66

[149] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. A survey of network

anomaly detection techniques. Journal of Network and Computer Applications,

60:19–31, 2016. 68, 70

[150] Gilberto Fernandes, Joel JPC Rodrigues, Luiz Fernando Carvalho, Jalal F Al-

Muhtadi, and Mario Lemes Proença. A comprehensive survey on network anomaly

detection. Telecommunication Systems, 70(3):447–489, 2019. 68

[151] Maha Mdini. Anomaly detection and root cause diagnosis in cellular networks. PhD

thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la

Loire, 2019. 69, 106

[152] Pedro Casas, Pierdomenico Fiadino, Sarah Wassermann, Stefano Traverso, Alessan-

dro D’Alconzo, Edion Tego, Francesco Matera, and Marco Mellia. Unveiling net-

work and service performance degradation in the wild with mplane. IEEE Commu-

nications Magazine, 54(3):71–79, 2016. 69

[153] Jing Chen, Ming Chen, Xianglin Wei, and Bing Chen. Matrix differential

decomposition-based anomaly detection and localization in nfv networks. IEEE

Access, 7:29320–29331, 2019. 69, 106

[154] Kristof Böhmer and Stefanie Rinderle-Ma. Mining association rules for anomaly

detection in dynamic process runtime behavior and explaining the root cause to

users. Information Systems, 90:101438, 2020. 70

[155] Bhupendra Ingre, Anamika Yadav, and Atul Kumar Soni. Decision tree based in-

trusion detection system for nsl-kdd dataset. In International conference on in-

formation and communication technology for intelligent systems, pages 207–218.

Springer, 2017. 71

[156] Ansam Khraisat, Iqbal Gondal, and Peter Vamplew. An anomaly intrusion detection

system using c5 decision tree classifier. In Pacific-Asia Conference on Knowledge

Discovery and Data Mining, pages 149–155. Springer, 2018. 71

158



BIBLIOGRAPHY

[157] Rifkie Primartha and Bayu Adhi Tama. Anomaly detection using random forest:

A performance revisited. In 2017 International conference on data and software

engineering (ICoDSE), pages 1–6. IEEE, 2017. 71

[158] MA Jabbar, Rajanikanth Aluvalu, and S Sai Satyanarayana Reddy. Intrusion detec-

tion system using bayesian network and feature subset selection. In 2017 IEEE

International Conference on Computational Intelligence and Computing Research

(ICCIC), pages 1–5. IEEE, 2017. 71

[159] MJ Vargas-Muñoz, Rafael Martínez-Peláez, Pablo Velarde-Alvarado, E Moreno-

García, DL Torres-Roman, and JJ Ceballos-Mejía. Classification of network anoma-

lies in flow level network traffic using bayesian networks. In 2018 International Con-

ference on Electronics, Communications and Computers (CONIELECOMP), pages

238–243. IEEE, 2018. 71

[160] Huiwen Wang, Jie Gu, and Shanshan Wang. An effective intrusion detection frame-

work based on svm with feature augmentation. Knowledge-Based Systems, 136:130–

139, 2017. 71

[161] Mukaram Safaldin, Mohammed Otair, and Laith Abualigah. Improved binary gray

wolf optimizer and svm for intrusion detection system in wireless sensor networks.

Journal of ambient intelligence and humanized computing, 12(2):1559–1576, 2021.

71

[162] Pynbianglut Hadem, Dilip Kumar Saikia, and Soumen Moulik. An sdn-based intru-

sion detection system using svm with selective logging for ip traceback. Computer

Networks, 191:108015, 2021. 71

[163] H Taud and JF Mas. Multilayer perceptron (mlp). In Geomatic Approaches for Mod-

eling Land Change Scenarios, pages 451–455. Springer, 2018. 73

[164] Iftikhar Ahmad, Mohammad Basheri, Muhammad Javed Iqbal, and Aneel Rahim.

Performance comparison of support vector machine, random forest, and extreme

learning machine for intrusion detection. IEEE access, 6:33789–33795, 2018. 73, 112

[165] Abdul Rehman Javed, Zunera Jalil, Syed Atif Moqurrab, Sidra Abbas, and Xuan Liu.

Ensemble adaboost classifier for accurate and fast detection of botnet attacks in

159



BIBLIOGRAPHY

connected vehicles. Transactions on Emerging Telecommunications Technologies,

page e4088, 2020. 73, 112

[166] Donghwoon Kwon, Kathiravan Natarajan, Sang C Suh, Hyunjoo Kim, and Jinoh

Kim. An empirical study on network anomaly detection using convolutional neural

networks. In 2018 IEEE 38th International Conference on Distributed Computing

Systems (ICDCS), pages 1595–1598. IEEE, 2018. 73, 112

[167] Dan Frost and S Bryant. Packet loss and delay measurement for mpls networks.

Technical report, RFC 6374, september, 2011. 74

[168] Dhruvkumar Dholakiya, Tanmay Kshirsagar, and Amit Nayak. Survey of mininet

challenges, opportunities, and application in software-defined network (sdn). In

International Conference on Information and Communication Technology for Intel-

ligent Systems, pages 213–221. Springer, 2020. 75, 112, 125

[169] Mark JF Gales, Anton Ragni, H AlDamarki, and C Gautier. Support vector machines

for noise robust asr. In 2009 IEEE Workshop on Automatic Speech Recognition &

Understanding, pages 205–210. IEEE, 2009. 76

[170] Pier Luigi Ventre, Stefano Salsano, Marco Polverini, Antonio Cianfrani, Ahmed Ab-

delsalam, Clarence Filsfils, Pablo Camarillo, and Francois Clad. Segment routing:

A comprehensive survey of research activities, standardization efforts and imple-

mentation results. IEEE Communications Surveys & Tutorials, 2020. 82

[171] Zahraa N Abdullah, Imtiaz Ahmad, and Iftekhar Hussain. Segment routing in

software defined networks: A survey. IEEE Communications Surveys & Tutorials,

21(1):464–486, 2018. 82, 90

[172] Aniruddha Kushwaha, Sidharth Sharma, Naveen Bazard, Ashwin Gumaste, and

Biswanath Mukherjee. Design, analysis, and a terabit implementation of a source-

routing-based sdn data plane. IEEE Systems Journal, 2020. 82

[173] Navin Kukreja, Rodolfo Alvizu, Ana Kos, Guido Maier, Roberto Morro, Alessandro

Capello, and Carlo Cavazzoni. Demonstration of sdn-based orchestration for multi-

domain segment routing networks. In 2016 18th International Conference on Trans-

parent Optical Networks (ICTON), pages 1–4. IEEE, 2016. 82, 86

160



BIBLIOGRAPHY

[174] Shuping Peng, Jianwei Mao, Ruizhao Hu, and Zhenbin Li. Demo abstract: Apn6:

Application-aware ipv6 networking. In IEEE INFOCOM 2020-IEEE Conference on

Computer Communications Workshops (INFOCOM WKSHPS), pages 1330–1331.

IEEE, 2020. 82, 86

[175] Ana Custura, Raffaello Secchi, and Gorry Fairhurst. Exploring dscp modification

pathologies in the internet. Computer Communications, 127:86–94, 2018. 83, 86

[176] Cong Dong, Chen Zhang, Zhigang Lu, Baoxu Liu, and Bo Jiang. Cetanalytics: Com-

prehensive effective traffic information analytics for encrypted traffic classification.

Computer Networks, 176:107258, 2020. 83, 86

[177] Quic statistic. January 2021. 83

[178] Ming-Chieh Lee and Jang-Ping Sheu. An efficient routing algorithm based on

segment routing in software-defined networking. Computer Networks, 103:44–55,

2016. 83

[179] Zhenbin Li, Shuping Peng, Daniel Voyer, Chongfeng Xie, Peng Liu, Zhuangzhuang

Qin, Kentaro Ebisawa, Stefano Previdi, and Jim Guichard. Problem Statement

and Use Cases of Application-aware Networking (APN). Internet-Draft draft-li-

apn-problem-statement-usecases-01, Internet Engineering Task Force, September

2020. Work in Progress. 84

[180] U Pongsakorn, Yasuhiro Watashiba, Kohei Ichikawa, Susumu Date, Hajimu Iida,

et al. Application-aware network: Network route management using sdn based on

application characteristics. CSI Transactions on ICT, 5(4):375–385, 2017. 84, 85

[181] Seyeon Jeong, Doyoung Lee, Jonghwan Hyun, Jian Li, and James Won-Ki Hong.

Application-aware traffic engineering in software-defined network. In 2017 19th

Asia-Pacific Network Operations and Management Symposium (APNOMS), pages

315–318. IEEE, 2017. 85

[182] Albert Rego, Sandra Sendra, Jose M Jimenez, and Jaime Lloret. Dynamic metric

ospf-based routing protocol for software defined networks. Cluster Computing,

22(3):705–720, 2019. 85

161



BIBLIOGRAPHY

[183] Alcardo Alex Barakabitze, Is-Haka Mkwawa, Lingfen Sun, and Emmanuel Ifeachor.

Qualitysdn: Improving video quality using mptcp and segment routing in sdn/nfv.

In 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft),

pages 182–186. IEEE, 2018. 85, 95

[184] Ayoub Bahnasse, Fatima Ezzahraa Louhab, Hafsa Ait Oulahyane, Mohamed Talea,

and Assia Bakali. Novel sdn architecture for smart mpls traffic engineering-diffserv

aware management. Future Generation Computer Systems, 87:115–126, 2018. 86, 90

[185] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holliman,

Gary Baldus, Marcus Hines, Taeeun Kim, Ashok Narayanan, Ankur Jain, et al. Taking

the edge off with espresso: Scale, reliability and programmability for global internet

peering. In Proceedings of the Conference of the ACM Special Interest Group on Data

Communication, pages 432–445, 2017. 86

[186] Van Tong, Hai Anh Tran, Sami Souihi, and Abdelhamid Mellouk. A novel quic traffic

classifier based on convolutional neural networks. In 2018 IEEE Global Communi-

cations Conference (GLOBECOM), pages 1–6. IEEE, 2018. 89

[187] Seunghyeon Lee, Jinwoo Kim, Seungwon Shin, Phillip Porras, and Vinod Yeg-

neswaran. Athena: A framework for scalable anomaly detection in software-defined

networks. In 2017 47th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), pages 249–260. IEEE, 2017. 90

[188] Lorenzo Fernández Maimó, Ángel Luis Perales Gómez, Félix J García Clemente,

Manuel Gil Pérez, and Gregorio Martínez Pérez. A self-adaptive deep learning-

based system for anomaly detection in 5g networks. IEEE Access, 6:7700–7712, 2018.

90

[189] Jin Wang, Yangning Tang, Shiming He, Changqing Zhao, Pradip Kumar Sharma,

Osama Alfarraj, and Amr Tolba. Logevent2vec: Logevent-to-vector based anomaly

detection for large-scale logs in internet of things. Sensors, 20(9):2451, 2020. 90

[190] Zoubir Mammeri. Reinforcement learning based routing in networks: Review and

classification of approaches. IEEE Access, 7:55916–55950, 2019. 92, 125

[191] Sven Koenig and Reid G Simmons. Complexity analysis of real-time reinforcement

learning. In AAAI, pages 99–107, 1993. 93

162



BIBLIOGRAPHY

[192] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient rein-

forcement learning with linear function approximation. In Conference on Learning

Theory, pages 2137–2143. PMLR, 2020. 93, 125

[193] VN Temlyakov. Greedy approximation in convex optimization. Constructive Ap-

proximation, 41(2):269–296, 2015. 93

[194] Yu-Lin He, Xiao-Liang Zhang, Wei Ao, and Joshua Zhexue Huang. Determining

the optimal temperature parameter for softmax function in reinforcement learn-

ing. Applied Soft Computing, 70:80–85, 2018. 93

[195] Hai Anh Tran, Said Hoceini, Abdelhamid Mellouk, Julien Perez, and Sherali Zeadally.

Qoe-based server selection for content distribution networks. IEEE Transactions on

Computers, 63(11):2803–2815, 2013. 93

[196] Mininet. February 2021. 94

[197] Open network operating system (onos). June 2021. 94

[198] Shih-Chun Lin, Ian F Akyildiz, Pu Wang, and Min Luo. Qos-aware adaptive routing

in multi-layer hierarchical software defined networks: A reinforcement learning ap-

proach. In 2016 IEEE International Conference on Services Computing (SCC), pages

25–33. IEEE, 2016. 95

[199] Elisavet Grigoriou, Alcardo Alex Barakabitze, Luigi Atzori, Lingfen Sun, and Virginia

Pilloni. An sdn-approach for qoe management of multimedia services using re-

source allocation. In 2017 IEEE International Conference on Communications (ICC),

pages 1–7. IEEE, 2017. 96

[200] Sergio Fortes, Raquel Barco, Alejandro Aguilar-García, and Pablo Muñoz. Contex-

tualized indicators for online failure diagnosis in cellular networks. Computer Net-

works, 82:96–113, 2015. 106

[201] Karthik Nagaraj, Charles Killian, and Jennifer Neville. Structured comparative anal-

ysis of systems logs to diagnose performance problems. In 9th {USENIX} Sympo-

sium on Networked Systems Design and Implementation ({NSDI} 12), pages 353–366,

2012. 106

163



BIBLIOGRAPHY

[202] Giorgos Dimopoulos, Ilias Leontiadis, Pere Barlet-Ros, Konstantina Papagiannaki,

and Peter Steenkiste. Identifying the root cause of video streaming issues on mo-

bile devices. In Proceedings of the 11th ACM Conference on Emerging Networking

Experiments and Technologies, pages 1–13, 2015. 106

[203] Jordan Hochenbaum, Owen S Vallis, and Arun Kejariwal. Automatic anomaly de-

tection in the cloud via statistical learning. arXiv preprint arXiv:1704.07706, 2017.

106, 107

[204] Junichi Kawasaki, Genichi Mouri, and Yusuke Suzuki. Comparative analysis of net-

work fault classification using machine learning. In NOMS 2020-2020 IEEE/IFIP

Network Operations and Management Symposium, pages 1–6. IEEE, 2020. 107, 109

[205] Honggang Zhou, Yunchun Li, Hailong Yang, Jie Jia, and Wei Li. Bigroots: An effec-

tive approach for root-cause analysis of stragglers in big data system. IEEE Access,

6:41966–41977, 2018. 107

[206] Leila Bennacer, Laurent Ciavaglia, Abdelghani Chibani, Yacine Amirat, and Ab-

delhamid Mellouk. Optimization of fault diagnosis based on the combination of

bayesian networks and case-based reasoning. In 2012 IEEE Network Operations

and Management Symposium, pages 619–622. IEEE, 2012. 108

[207] Fernando Benayas, Alvaro Carrera, and Carlos A Iglesias. Towards an autonomic

bayesian fault diagnosis service for sdn environments based on a big data infras-

tructure. In 2018 Fifth International Conference on Software Defined Systems (SDS),

pages 7–13. IEEE, 2018. 108

[208] Juan Qiu, Qingfeng Du, Yu He, YiQun Lin, Jiaye Zhu, and Kanglin Yin. Performance

anomaly detection models of virtual machines for network function virtualization

infrastructure with machine learning. In International Conference on Artificial Neu-

ral Networks, pages 479–488. Springer, 2018. 109

[209] A Niranjan, Anusha Prakash, N Veena, M Geetha, P Deepa Shenoy, and KR Venu-

gopal. Ebjrv: An ensemble of bagging, j48 and random committee by voting for

efficient classification of intrusions. In 2017 IEEE International WIE Conference on

Electrical and Computer Engineering (WIECON-ECE), pages 51–54. IEEE, 2017. 112

164



BIBLIOGRAPHY

[210] Jordan Frery, Amaury Habrard, Marc Sebban, Olivier Caelen, and Liyun He-

Guelton. Efficient top rank optimization with gradient boosting for supervised

anomaly detection. In Joint European Conference on Machine Learning and Knowl-

edge Discovery in Databases, pages 20–35. Springer, 2017. 112

[211] Van Tong. May 2021. 113

[212] Qasem Al-Tashi, Helmi Md Rais, Said Jadid Abdulkadir, Seyedali Mirjalili, and

Hitham Alhussian. A review of grey wolf optimizer-based feature selection methods

for classification. Evolutionary Machine Learning Techniques, pages 273–286, 2020.

115

[213] Global data volume of consumer ip traffic 2017-2022. March 2021. 119

[214] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey,

and Michael Schapira. Pcc vivace: Online-learning congestion control. In 15th

USENIX Symposium on Networked Systems Design and Implementation NSDI 18,

pages 343–356, 2018. 119

[215] Xuewei Wu, Li Wang, Bo Bai, Jianyong Qiao, and Aiguo Fei. Hopf bifurcation in

dctcp congestion control. IEEE Communications Letters, 24(7):1424–1427, 2020.

119

[216] Mario Hock, Roland Bless, and Martina Zitterbart. Experimental evaluation of bbr

congestion control. In 2017 IEEE 25th International Conference on Network Proto-

cols (ICNP), pages 1–10. IEEE, 2017. 120, 121, 125

[217] Xiaohui Nie, Youjian Zhao, Zhihan Li, Guo Chen, Kaixin Sui, Jiyang Zhang, Zijie

Ye, and Dan Pei. Dynamic tcp initial windows and congestion control schemes

through reinforcement learning. IEEE Journal on Selected Areas in Communica-

tions, 37(6):1231–1247, 2019. 120, 123, 124

[218] Yue Wang, Kanglian Zhao, Wenfeng Li, Juan Fraire, Zhili Sun, and Yuan Fang. Per-

formance evaluation of quic with bbr in satellite internet. In 2018 6th IEEE Interna-

tional Conference on Wireless for Space and Extreme Environments (WiSEE), pages

195–199. IEEE, 2018. 120

165



BIBLIOGRAPHY

[219] Robin Marx, Joris Herbots, Wim Lamotte, and Peter Quax. Same standards, different

decisions: A study of quic and http/3 implementation diversity. In Proceedings of

the Workshop on the Evolution, Performance, and Interoperability of QUIC, pages

14–20, 2020. 121

[220] Sanjeev Patel, Yash Shukla, Nikhil Kumar, Tejasv Sharma, and Kulgaurav Singh. A

comparative performance analysis of tcp congestion control algorithms: Newreno,

westwood, veno, bic, and cubic. In 2020 6th International Conference on Signal

Processing and Communication (ICSC), pages 23–28. IEEE, 2020. 121

[221] Imad Abdeljaouad, Hicham Rachidi, Sherwin Fernandes, and Ahmed Karmouch.

Performance analysis of modern tcp variants: A comparison of cubic, compound

and new reno. In 2010 25th Biennial Symposium on Communications, pages 80–83.

IEEE, 2010. 121

[222] Jing Wang, Yufan Zheng, Yunzhe Ni, Chenren Xu, Feng Qian, Wangyang Li, Wantong

Jiang, Yihua Cheng, Zhuo Cheng, Yuanjie Li, et al. An active-passive measurement

study of tcp performance over lte on high-speed rails. In The 25th Annual Interna-

tional Conference on Mobile Computing and Networking, pages 1–16, 2019. 123

[223] Songyang Zhang. An evaluation of bbr and its variants. arXiv preprint

arXiv:1909.03673, 2019. 123

[224] Keith Winstein and Hari Balakrishnan. Tcp ex machina: Computer-generated con-

gestion control. ACM SIGCOMM Computer Communication Review, 43(4):123–134,

2013. 124

[225] Hai-Anh Tran, Sami Souihi, Duc Tran, and Abdelhamid Mellouk. Mabrese: A new

server selection method for smart sdn-based cdn architecture. IEEE Communica-

tions Letters, 23(6):1012–1015, 2019. 125

[226] Christophe Cérin, Camille Coti, Pierre Delort, Felipe Diaz, Maurice Gagnaire,

Quentin Gaumer, Nicolas Guillaume, J Lous, Stephane Lubiarz, J Raffaelli, et al.

Downtime statistics of current cloud solutions. International Working Group on

Cloud Computing Resiliency, Tech. Rep, 1:2, 2013. 130, 140

[227] Facebook outage. October 2021. 137

166



Annex (Paper published in IEEE System
Journal)

167



SDN-based Application-aware Segment Routing for
Large-scale Network

Van TONG∗, Sami SOUIHI∗, Hai Anh TRAN† and Abdelhamid MELLOUK∗
∗Univ Paris Est Creteil, TINCNET/LISSI, F-94400 Vitry-sur-Seine, France

Email: (van-van.tong, sami.souihi and mellouk)@u-pec.fr
† SOICT, HUST, Vietnam

Email: anhth@soict.hust.edu.vn
Abstract—With the rapid growth of 5G, network operators

have met with difficulties in ensuring user satisfaction due to di-
verse SLA (Service-level Agreement) requirements. Application-
aware routing is able to potentially address this issue in imple-
menting differentiated routing policies corresponding to various
applications. To facilitate the application-aware routing, SDN
(Software-defined Networking) and SR (Segment Routing) are
potential solutions with programmability property to steer net-
work traffic into appropriate routing paths. However, application-
aware SR encounters two main problems including application
identification for encrypted traffic and path identification with
human intervention. Therefore, this paper proposes a new SDN-
based SR mechanism that could help network operators over-
come these problems. This approach implements Reinforcement
Learning (RL) to adapt to dynamic networks in order to optimize
the QoE (Quality of Experience) that network operators must
guarantee. The proposal also considers the application class to
implement corresponding routing policies for various applications
to meet the stringent SLA requirements. Identifying the applica-
tions is sometimes complicated due to encrypted network traffic.
Hence, our proposal implements a traffic classification approach
to classify encrypted traffic into different kinds of applications.
Obtained results under considered conditions illustrate that our
proposal outperforms the standard SR mechanism related to
QoE and decreases up to 64.39 percent of overhead compared
to several benchmarks.

Index Terms—Segment Routing, Application-aware routing,
Traffic classification, Quality of Experience, SDN

I. INTRODUCTION
Network operators have faced a challenge related to improv-

ing network services [1]. Concretely, the rapid development of
5G leads to many strict user’s network requirements (e.g., low
latency, high reliability, etc.). Therefore, differentiated appli-
cation treatment is expected by end-users. However, network
operators lack application awareness in their networks which
results in dissatisfaction of the end-users. Application-aware
routing which implements different kinds of routing policies
corresponding to differentiated applications, can overcome this
drawback. To facilitate the application-aware routing, it needs
two requirements related to a routing technique supporting
Traffic Engineering and a network architecture that can obtain
a global view of network.

For the first requirement, Multi-Protocol Label Switching
(MPLS) is a potential solution which is deployed by network
operators to improve their IP networks. However, MPLS
contains three main drawbacks [2]. First, it requests an IP
network to maintain an explicit state at network nodes along
an MPLS path, bringing a scalability problem in both control
and data plane. Second, MPLS can not benefit from the load
balancing given by Equal-cost Multi-path routing (ECMP).
Finally, MPLS with the support of IGPs (Interior Gateway

Protocols) for routing protocol can not be easily implemented
on multiple Autonomous Systems (ASs). Therefore, many net-
work operators (e.g., NTT, Vodafone, etc.) implement Segment
Routing (SR) in their network infrastructure as a solution
for these issues [3], [4]. The core idea of SR architecture is
based on the notion of source routing [5] and tunneling to
guarantee the scalability property in decreasing the amount of
state information to be processed in the core network. Besides,
SR’s main benefit is to fix the scalability issues and limitations
of the MPLS approach. Concretely, SR does not require any
state maintenance in core network nodes. Moreover, it takes
advantage of the ECMP routing and the implementation on
multiple ASs [6].

For the second requirement of the application-aware routing,
Software-defined Networking (SDN) is a promising solution.
It decouples the control layer from the infrastructure layer
that offers an opportunity to obtain a global network view.
Therefore, application-aware SDN-based SR is concerned by
the research community [6], [7]. However, this SR mechanism
contains two main disadvantages:

• First, this routing mechanism considers the application
class to meet different SLA (Service-level Agreement)
requirements, but application identification is sometimes
complicated due to encrypted traffic. In the past, the
application class can be obtained by DSCP (Differen-
tiated Services Code Point) in packet’s header or deep
packet inspection. However, DSCP field can be changed
during packet’s transmission [8] while the deep packet
inspection is not effective with encrypted traffic [9].
Indeed, many service providers encrypt their data during
the transmission to protect the user’s privacy. According
to a recent Cisco report [10], 80 percent of web traffic
was encrypted by 2019 compared to 40 percent by 2016.
Consequently, there is a necessity for a novel traffic
classification approach to identify the application class
in this case. Much existing research work focus on the
classification approaches for VPN [11] and TLS/SSL
[12] traffic. However, a novel solution is studied here to
obtain the application class for the traffic of QUIC (Quick
UDP Internet Connection) [13] which is a new transport
layer network protocol developed by Google in 2012. The
amount of QUIC traffic comprises 35 percent of Google’s
egress traffic, which corresponds to approximately 7
percent of all Internet traffic and continues to increase
in the future [14].

• Second, routing paths are identified according to the

Dinh Tong
Typewriter
To be published in IEEE System Journal



human intervention, so it is not adaptive with the unprece-
dented change of network environments. For the past few
decades, QoS (Quality of Service) played an essential
role in the network systems, so much research work
[15] concentrated on QoS-aware SR mechanisms. The
main objective is to optimize the network resource uti-
lization as well as meet network requirements related to
QoS. Nevertheless, selecting appropriate QoS parameters
is sometimes complicated. Therefore, QoE (Quality of
Experience), which network operators need to assure, is
considered in SR in this work. QoE is a metric correlated
to QoS metrics, but it is a perception of end-user that
facilitates network policies to guarantee the user’s SLA
requirements.

In this paper, a novel SDN-based SR mechanism for en-
crypted traffic is proposed for network operators. There are
traditional algorithms in the QoE-aware SR scheme (e.g.,
selecting a path with maximal QoE value, etc.). However, it
is not effective with dynamic networks. With the development
of 5G, the networks have become more and more complex.
Using the RL algorithm in the QoE-aware SR mechanism
offers opportunities to select appropriate paths to adapt to the
dynamic changes of network environments and improve long-
term performance. Moreover, this SR mechanism also plays
an important role in a network troubleshooting framework.
The rapid development of the Internet leads to many complex
problems frequently in network systems. Network operators
need to react quickly to reduce its negative impacts. However,
this requires so much time (e.g., a few hours, etc.) to identify
and solve its root causes definitively [16]. The proposed
segment routing mechanism can reduce the negative influence
of problems (e.g., optimize QoE, etc.) until the root cause of
problems is solved.

This research is an extended version of our previous work
[17]. The additional contributions are presented as follows:

• A more comprehensive analysis of the SDN-based SR
framework for network operators is comprised. The ob-
jective is to implement the corresponding routing policies
for various SLA requirements because each application
has a specific SLA requirement. In a particular routing
policy, this mechanism selects the appropriate paths using
Reinforcement Learning (RL) according to the network
environment’s feedback (QoE) to adapt to dynamic net-
work conditions. Unlike our previous work which investi-
gated overloaded network scenario, the impact of perfect
network scenario and fault tolerance on the proposed SR
mechanism are studied here.

• The RL algorithm is enhanced by our adaptive selection
algorithm which implements different selection policies
corresponding to various scenarios. This contrasts with
our previous work which implemented only the softmax
selection algorithm.

• The proposed SR mechanism is evaluated thoroughly
with the benchmarks according to MOS score (Mean
Opinion Score), controller’s CPU usage and control over-
head while our previous work evaluates cumulative MOS

score and CPU usage of the PC implementing a testbed.
Outline: The remainder of the paper is structured as fol-

lows. Section II introduces the related work in SR. In section
III, the paper presents the proposed SR mechanism. Section IV
describes the experimental results of the proposed mechanism.
Finally, the paper concludes with section V which highlights
our future work.

II. RELATED WORK
This section presents related work on segment routing,

application-aware routing and encrypted traffic classification
methods.

Barakabitze et al. [18] proposed QoEMultiSDN, a QoE-
based multipath source routing algorithm to optimize the
network resource by mapping subflow paths into the SR paths
in SDN and NFV environments. Concretely, this approach
selects routing paths using a constrained shortest path model
and QoS parameters (e.g., delay, packet loss, etc.). Although
QoEMultiSDN adaptively selects bitrate of video streaming
using QoE, the routing path is still identified according to
QoS parameters.

Li et al. [1] emphasized that network operators have encoun-
tered a challenge of providing better services with the rapid
growth of 5G and multimedia services which requires diverse
network requirements (e.g., low latency, high reliability, etc.).
However, network operators are unaware of which applications
in their networks, so they are unable to obtain a global view
to manage the networks effectively. Therefore, much research
work focus on application-aware routing (e.g., application-
aware MPLS, etc.).

Rego et al. [19] proposed an improvement of Open Shortest
Path First (OSPF) routing protocol in SDN environments.
This approach changes the metric calculation (e.g., bandwidth,
delay, etc.) adaptively corresponding to different applications
to select appropriate routing paths. However, identifying an
effective metric calculation is sometimes complicated. Sim-
ilarly, Bahnasse et al. [20] proposed an application-aware
MPLS in SDN to optimize network resource. This approach
identifies VoIP, video, HTTP, and ICMP traffic based on DSCP
field in the packet’s header. Then, a specific routing policy is
applied for each application to meet bandwidth constraints.
However, identifying the application class using DSCP some-
times is inaccurate because it can be changed during data
transmission [8]. Google [21] proposed Espresso, an SDN-
based Internet peering edge routing infrastructure which offers
an opportunity for the application-aware MPLS mechanism at
Internet-peering scale. According to integrating application-
aware MPLS mechanism, Espresso delivers 13 percent more
network traffic on their infrastructures and improves link
utilization and user perception compared with BGP (Border
Gateway Protocol)-based routing. Nevertheless, MPLS suffers
from several hindrances related to scalability problem and
ECMP routing. Consequently, many other proposals on SR
are proposed to address these hindrances.

In fact, Kukreja et al. [6] presented a demonstration of SDN-
based SR for multi-domain networks. In this demonstration,
an orchestrator finds the suitable routing paths and encodes
to packet’s header corresponding to diverse applications. The



objective is to meet different resource requirements of these
applications (e.g., bandwidth, delay constraints, etc.). Never-
theless, it is assumed that class application is known by the
orchestrator. Peng et al. [7] proposed an application-aware
network framework that takes advantage of SR to meet their
SLA requirements. This framework identifies the application
characteristics according to deep packet inspection mechanism
and then forwards packets into corresponding paths (policy or
traffic engineering tunnel). Nevertheless, these SR mechanisms
identify the routing paths thanks to human intervention which
is not effective with the unprecedented change of network en-
vironments. In contrast, the proposed SR mechanism identifies
the routing paths using RL to adapt to dynamic networks.
Moreover, classifying the traffic using deep packet inspection
is not effective due to encrypted traffic nowadays [9]. There-
fore, the application-aware routing mechanism needs a traffic
classification approach to classify the encrypted network traffic
and identify the application class.

Wang et al. [11] presented an encrypted traffic classification
method with a one-dimensional convolution neural network
(CNN). This method uses the first 784 bytes in the payload of
each packet to create a one-dimensional vector and analyzes
them using CNN to classify VPN traffic into email, chat,
streaming, file transfer and VoIP. Similarly, Pan et al. [12]
proposed an encrypted traffic classification approach using
deep learning algorithm. This approach monitors HTTPS traf-
fic and collects the first 1480 bytes in the packet’s payload to
create a one-dimensional vector. Next, this vector is analyzed
according to deep learning algorithms (e.g., CNN, etc.) to
classify the network traffic into 15 kinds of applications. In this
paper, an encrypted traffic classification method is presented
to identify the QUIC traffic into different types of applications.

III. PROPOSED ADAPTIVE SEGMENT ROUTING
MECHANISM FOR ENCRYPTED TRAFFIC

Passive method

Parameter

Measurement

Network System 

(Encrypted Traffic with QUIC)

sFlow

Agent
SDN

Controllern

SDN

Controller1 

 ...

Server1

Server2

Servern Usern

User2

User1

 ...  ...

Network Monitoring

QoE

Estimator

RL-based

Segment Routing

Application-aware 

Remediation

Traffic 

Classification

sFlow Collector

Problem Detection

Adaptive 

Segment Routing

Fig. 1: The SDN-based adaptive SR framework.

A. Overview of SDN-based Adaptive Segment Routing Frame-
work

The proposed multi-modular system is depicted in Fig. 1.
During the transmission from servers to clients, a network flow

is transmitted from ingress switches to a sFlow collector [22]
to obtain the class of application thanks to traffic classification
module. In the beginning, the network flow is forwarded using
the shortest paths from the standard SR algorithm. After that,
network parameters from parameter measurement module and
the class of application are analyzed in problem detection
module to detect abnormal symptoms (e.g., increase of latency,
packet loss, etc.). When the problems occur in the network, the
network flow is forwarded using an adaptive SR mechanism
that selects the appropriate routing paths that meet strict user
requirements related to the QoE corresponding to each net-
work application. When the problems are solved, the network
flow will be forwarded using the standard SR algorithm. The
major components in this framework are described as follows:

1) Network monitoring includes two essential modules con-
taining traffic classification and parameter measurement
modules. The former aims to identify the class of appli-
cation on network flows (video streaming, file transfer
and VoIP) in the context of encrypted traffic while the
latter aims to monitor and collect network parameters
for further modules.

2) Problem Detection takes into account time-series net-
work parameters and the class of application to detect
an abnormal symptom of network problems.

3) Application-aware Remediation is used to consider var-
ious routing strategies corresponding to different kinds
of applications to optimize the QoE in the network.

The proposed SR mechanism considers the class of applica-
tion to implement appropriate routing policies corresponding
to each kind of application. When network traffic is encrypted,
this information is hidden. Therefore, there is a necessity of
a traffic classification module for identifying this information.
The traffic classification is presented in the following section.
B. Network Monitoring
1) Traffic Classification

A novel traffic classification approach is presented in this
section to identify different kinds of applications for encrypted
traffic. In [23], it is reported that video streaming, file sharing,
and VoIP will comprise over 80 percent of global IP traffic by
2022. Consequently, these applications are considered in the
traffic classification module. Regarding the network traffic for
traffic classification, it can be collected directly from Openflow
switches, but it is not effective with a huge amount of
network traffic. Therefore, sFlow [22], a standard for network
monitoring supporting packet sampling technique, is deployed
to reduce the collected traffic volume and offer opportunities
to implement the traffic classification module in real-time.
When the network traffic traverses the ingress switches (edge
switches), the sFlow agents send the network traffic to the
sFlow collector after sampling. At the sFlow collector, the
traffic classification module collects the network traffic to
identify the class of application. This module is described as
follows (Fig. 2).

There are two kinds of flows in the network traffic including
mice flows (small continuous flows in total bytes) and elephant
flows (huge continuous flows in total bytes). After investi-
gating their characteristics, flow-based features (handcrafted



Network 

Traffic

Feature 

Extraction

Random 

Forest

Pre-

processing

Multiclass

classification
Elephant 

flows

Traffic Classification

VoIP

Mice 
flows

FT

VS

Fig. 2: The novel traffic classification approach for encrypted
traffic.

features) of the first few packets in each flow [24] are collected
and analyzed using the random forest algorithm [25] to classify
the network traffic into the mice flows (VoIP) or the elephant-
flows (video streaming and file transfer). This approach con-
siders the random forest algorithm in mice-flow identification
over several traditional machine learning algorithms (e.g.,
SVM, MLP, etc.) based on the research in [25]. After that,
the elephant flows are classified into video streaming (VS)
or file transfer (FT) using packet-based features (implicit
features) and the convolutional neural network (CNN). The
latter learning algorithm is taken into account in this approach
because it contains characteristics including spare connectivity,
parameter sharing, and equivariant representations. This helps
to learn more effective representations in comparison with
traditional machine learning algorithms. The detail of the
traffic classification module is described in our previous work
[26].

Regarding time complexity of this module, it is based on
CNN, and the total time complexity of all convolutional layers
[27] is estimated by Equ. 1:

O(

d∑
l=1

nl−1 · s2l · nl ·m2
l ). (1)

where d is the number of convolutional layers, nl−1 is the
number of input channels of the l-th layer, nl is the number
of filters in the l-th layer, sl is the spatial size of the filter and
ml is the spatial size of the output feature map.

This time complexity is applied in both training and testing
phase, and training time is approximately three times of testing
time.
2) Parameter Measurement

Many SLAs of service providers depend on several perfor-
mance metrics such as latency, packet loss, and link utilization
[20]. Consequently, a parameter measurement module is im-
plemented to measure these parameters on each link in the
network. Latency is measured according to an existing work
[28] while packet loss and link utilization are measured thanks
to PortStatistics API [29] in the controller.
C. Problem Detection

In this section, a problem detection approach is presented
to identify abnormal symptoms of network problems. Unlike
the existing rule-based approaches that trigger the alarms
when network parameters (e.g., packet loss, delay, etc.) exceed
a threshold, its fluctuations are monitored to early detect
the unusual symptoms in this approach [30]. The class of
application and the time-series parameters on network flows
such as latency, packet loss, and link utilization are taken

into account. These parameters are concatenated into a 1-
dimensional vector. Then this vector is analyzed according to
random forest algorithm as in some existing work [31], [32]
to classify the network states into normal or abnormal states
to early detect the network problems.

Time complexity of random forest algorithm in training
phase is O(n0 ∗ log(n0) ∗ d ∗ k) where n0 is the number of
input sample, d is dimensional of data and k is the number of
trees in the forest while the time complexity in testing phase
is O(k ∗ d′

) where d
′

is the depth of tree [33].
D. Application-aware Remediation
1) QoE Estimator

Server1

Server2

Servern

User2

User1

Usern

   .
   .

VoIP 

QoE assessment

Video 

QoE assessment

File 

QoE assessment

QoE Estimator

MOSVoIP

MOSVideo

MOSFile

Traffic 

Classification

QUIC

Traffic

Network

Monitoring

Fig. 3: The QoE estimator for encrypted traffic.
QoE is considered as a factor to evaluate the performance of

the proposed SR mechanism. Using a common QoE model for
various applications is not effective because each application
has a particular QoS requirement. Consequently, a novel QoE
estimator (Fig. 3) is implemented to calculate the QoE of
different applications. According to the related research work,
QoE estimation approaches are divided into three types: sub-
jective, objective, and hybrid solutions. The first one requires
participants to evaluate their perceptions about multimedia
applications, so it is costly, time-consuming, and ineffective
with real-time monitoring due to human intervention. The
second one constructs an objective model estimating user per-
ception using parameters (e.g., network, application, etc.), but
identifying an effective model is sometimes complicated. The
third one is a hybrid approach that uses a subjective dataset
to learn QoE models based on ML algorithms. Consequently,
it can combine advantages of both subjective and objective
approaches. Therefore, we implemented the hybrid approach
for QoE estimation, offering opportunities to estimate MOS
in real-time. The MOS dataset and description about testbed
building it (e.g., number of participants, understanding level
of participants, etc.) are published to Github [34]. We have
chosen the Random forest algorithm to estimate the MOS
score because it has less root mean square error than other
ML approaches [35]. MOS is estimated according to network
parameters (e.g., latency, packet loss, etc.). There are five
levels of MOS including 1 (Bad), 2 (Poor), 3 (Fair), 4
(Good) and 5 (Excellent). According to the traffic classification
module, an appropriate pre-trained QoE model is implemented



for each application. The detail of this module is described in
[35].

2) RL-based Segment Routing
The SR algorithm is formalized as a RL task that contains

agent, state, action, reward, and policy (Fig. 4). The detail is
described as follows:

Agent: An entity in the network system applies a learning
algorithm to perform its tasks. In a routing problem, an agent
selects appropriate paths to optimize a reward.

State s: A snapshot of the network environment which is
observed by the agent.

Action a: An action illustrates how an agent replies to the
network environment. In the routing problem, the action is a
routing path between a server and a client in the network.
All routing paths in the network can be obtained in the SDN
controller.

Policy π: A policy is a map from an observed state to action
in the network environment.

Reward r: A reward is a feedback of the network environ-
ment corresponding to the agent. In the routing problem, the
agent monitors a network state s and performs an action a
from the routing policy. Then, the agent moves to next state
s′ and receives a reward r. The reward is the MOS score of
a chosen path which is calculated via the pre-trained QoE
estimator (section III-D1).

RL-based 

SR Agent
Environment

Parameter 

Measurement

Traffic

Classification

N
e

tw
o
rk

 

M
o
n
it
o
ri
n

g

Q
o
E

 

E
s
ti
m

a
to

r

action at

reward 

rt

state st

rt+1

st+1

Fig. 4: The RL-based SR mechanism.

The main goal of RL is to optimize an objective function
Of (Eq. 2):

Of = Max E[

∞∑
t=0

γt × rt]. (2)

where γt ∈ [0, 1] is a discount factor.
In RL, there are two kinds of approaches including model-

based and model-free approaches. In the first approach, the
agents learn the environment model and enhance its policies
to obtain optimality while the agents optimize its policies
without prior information about the network environment in
the second approach. The first one can learn faster than the
second one. It is still less popular because of a large storage
cost and dependence on accuracy of an initial information [36].
Therefore, the model-free approach is used in this work. In this
approach, Q-value estimates how good it is to execute a given
action in a given state. Q(s, a) is the expected return starting
from state s and taking action a following policy π. At a time
step, the agent is in state s, performs action a, receives reward
r and moves to next sate s′. The Q-value is updated as in Eq.
3: Q(s, a) = (1− α)Q(s, a) + α[r + γmax

a′
Q(s′, a′)]. (3)

where α is a learning rate and γ is a discount factor.
Time complexity of reinforcement learning algorithm is

O(m ∗ N0) where N0 is the number of action, and m is the
size of state space [37], [38].

3) Exploration-Exploitation Trade-off

An exploration and exploitation phase in RL needs to be
balanced to obtain an optimal cumulative MOS score (cumu-
lative reward). The exploitation phase which selects the routing
path (action) with maximal Q-value, can not be implemented
systematically because each routing path needs to be evaluated
frequently to achieve the optimal MOS score. In this paper,
the trade-off between the exploration and exploitation phase is
formalized as a MAB problem (Multi-Armed Bandit). MAB
problem is a formalization of sequential decision-making
tasks. At a time step, a decision-maker selects an action and
receives a reward from an unknown distribution corresponding
to this action. The main objective is to maximize the total
reward received through a sequence of actions. In this paper,
three selection algorithms are presented to resolve the MAB
problem: ϵ-greedy [39], softmax [40], and UCB1 (Upper
Confidence Bounds) [41].

First, ϵ-greedy is the simplest algorithm to resolve the bandit
problem. Concretely, the agent selects the routing path with
the highest Q-value with a probability of (1-ϵ). Otherwise,
the agent selects the routing path randomly. Then, the ϵ value
reduce against the time so that the agent can learn more about
the network environment and become more confident.

Second, the softmax algorithm selects the routing paths
according to a probability function of Q-value. Each routing
path ai is assigned to a probability pi as in Eq. 4:

pi =
e

Qai
τ∑N0

j=1 e
Qaj
τ

(4)

where τ is a temperature parameter, N0 is a number of routing
paths and Qaj is a Q-value of routing path aj .

When the temperature parameter τ is reduced, the routing
paths are exploited more frequently. In that way, the temper-
ature parameter τ is reduced each episode (forwarding time).
Therefore, softmax algorithm not only explores the less-used
routing paths but also selects the best routing path in terms of
expectation gains.

Finally, the UCB1 algorithm is related to an index-based
algorithm. UCB-index is defined as a sum of a current Q-
value and a confidence bound. The UCB-index is described
as in Eq. 5:

UCB − indexai
= Qai

+

√
2ln(N)

nai

. (5)

where Qai
is a Q-value of routing path ai, nai

is a number of
chosen time of routing path ai and N is an episode number
(forwarding time).

After calculating the UCB-index for each routing path,
UCB1 algorithm selects the path with maximal UCB-index. As
shown in Eq. 5, the UCB-index comprises two parts including
Q-value Qai

and confidence bound
√

2ln(N)
nai

. A routing path
is chosen when the Q-value is large or the confidence bound is
high. When the routing path with the large Q-value is chosen,
this choice is an exploitation trial. When the confidence bound
is high, this choice is an exploration trial. The confidence
bound is higher when the number of chosen times of the
routing path is smaller in comparison with other paths. In other



words, the less routing path is selected, the more it has the
opportunity to be selected.

IV. EXPERIMENTAL RESULTS
A. Experiment Setup

TABLE I: Configuration of the PC used in the testbed.

Operation System Ubuntu 16.04.6 LTS
Processor Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz
Memory 2133MHz DDR4 8GB

Concerning the experiments, we used the tool mininet [42]
to emulate a network with Openflow switches. We imple-
mented a real SDN controller using ONOS [43] and connected
it to Openflow switches in the network emulated by mininet.
The latter is a popular emulator in the networking research
community to emulate network topologies. ONOS merely
supports leaf-spine topology, so we use this topology for both
simple scene (five spine nodes and two leaf nodes) and a com-
plex one (more than 15 nodes). The number of nodes in the
topology is set to 7, 17, 32, and 47. Moreover, ONOS also sup-
ports segment routing through org.onosproject.segmentrouting
application, so we customized it to implement the proposed SR
mechanism. To generate QUIC traffic of video streaming in the
network, we replay a pcap file of QUIC traffic from servers to
clients using tcpreplay application. That pcap file is collected
by watching videos on Youtube with Google Chrome. The
testbed is deployed in a PC described as in Tab. I. For the
exploration-exploitation trade-off, ϵ and τ are set to 1 and 2,
respectively. For the RL algorithm, α and γ are set to 0.7
and 1, respectively. These parameters are selected according
to an existing work [44]. The source code of the proposed
framework is available at [45].

TABLE II: Scenarios.

Scenarios Descriptions
perfect

scenario No delay and loss

Scenario
with faults

delay 25, 50, 75, 100 and 125ms
loss 5, 10, 15, 20 and 25%

delay
and loss

(25ms, 5% loss), (50ms, 10%), (75ms, 15%),
(100ms, 20%) and (125ms, 25%)

The experiments are considered in four scenarios (Tab. II).
The network parameters are chosen to cover the maximum
QoE range. The first scenario is to evaluate the performance
of the proposed approach in the network condition without
delay and loss, and other scenarios are used to consider the
proposed mechanism in the context with faults. Loss and
delay parameters in the routing paths are generated according
to mininet. In the last three scenarios, each routing path is
randomly set to a specific delay, loss or both delay and loss.
These delay and loss parameters are changed every 50 episodes
which are chosen according to the experiments to generate
dynamic network states. An uniform link capacity is set to
10 Mbps, and a sending rate is set to 2.5 Mbps as in an
existing work [46]. The topology in the testbed is the leaf-
spine topology which contains two leaf nodes and five spine
nodes.

The proposed application-aware SR mechanism is designed
for three applications including video streaming, file transfer

and VoIP. Among these applications, video streaming com-
prises the highest global IP traffic [23], so we consider video
streaming as a proof-of-concept to thoroughly validate the
performance of the proposed SR mechanism.
B. Benchmark

To validate the performance of the proposed SR mechanism,
our proposal is compared with the benchmarks including:

1) Standard SDN-based SR (Standard SR): This algorithm
uses the Dijkstra algorithm to determine the shortest
paths between servers and clients.

2) SDN-based SR with maximal QoE (Max QoE) [47]:
This approach calculates the MOS score of all routing
paths and selects the paths with maximal MOS score. In
contrast, the MOS score of a chosen path is calculated in
the proposed mechanism which helps to reduce resource
consumption.

These approaches are evaluated via the following perfor-
mance metrics:

1) MOS: the perceived quality at the user’s side.
2) CPU Usage: the percentage of the CPU’s capacity which

is calculated via ps command (process status) in the
Unix-like operation systems.

3) Control Overhead: To discovery network topology and
update status of links (e.g., latency, loss, etc.), a routing
algorithm needs to generate the control packets (e.g.,
LLDP packets, etc.). Control overhead refers to the ratio
of the control packet number to the total number of the
sent packets.

C. Performance Analysis

perfect delay loss delay + loss
0

1

2

3

4

5

M
O

S

UCB1

Softmax

E-greedy

Fig. 5: Average MOS score and standard deviation of three
selection algorithms in the proposed SR mechanism.

The selection algorithms for MAB formalization are pre-
sented including UCB1, softmax and ϵ-greedy. Their perfor-
mances are first evaluated to select the appropriate selection
algorithm. Then, the performance of our proposal is compared
to the benchmarks including Standard SR and Max QoE
mechanisms related to MOS score, CPU usage, and control
overhead. Besides, the running time of each module in the
proposed SR mechanism is thoroughly evaluated.
1) Time Analysis

In section III, we explained the mathematical time complex-
ity of the proposed SR mechanism’s algorithms. According to
this time complexity, the traffic classification requires higher
processing time in comparison with other modules. It requires



20 40 60 80 100 120 140

Episodes

4

4.2

4.4

4.6

4.8

5

M
O

S

Max_QoE

RL_Softmax_SR

Standard_SR

(a) perfect scenario.

20 40 60 80 100 120 140

Episodes

0

1

2

3

4

5

M
O

S

Max_QoE

RL_UCB1_SR

Standard_SR

(b) delay scenario.

20 40 60 80 100 120 140

Episodes

0

1

2

3

4

5

M
O

S

Max_QoE

RL_UCB1_SR

Standard_SR

(c) loss scenario.

20 40 60 80 100 120 140

Episodes

0

1

2

3

4

5

M
O

S

Max_QoE

RL_UCB1_SR

Standard_SR

(d) scenario with loss and delay.

Fig. 6: The MOS score of three SR mechanisms.
0.0316 ms to identify the network flows of VoIP and 3.4 ms to
identify the network flows of video streaming and file transfer.
When there is a huge amount of network traffic, collecting all
packets of network flows for the traffic classification module is
not effective due to high computational resources. Therefore,
we use sFlow to reduce the amount of traffic collected for this
module. In the testbed, we configure sFlow agents to collect
10 percent of network traffic going through sFlow agents.
Regarding the running time of the problem detection module,
it requires 0.0127 ms to process a network flow. As for the RL-
based Segment Routing, it only needs to search in the Q-table,
which representing routing policies, to select an appropriate
path, so it can make instant decisions.

2) Selection algorithms
Fig. 5 illustrates the average MOS score and standard

deviation of UCB1, softmax and ϵ-greedy in the proposed
SR mechanism with four scenarios. In the perfect scenario,
there is no delay and loss in the network. The sending rate is
2.5 Mbps while the link capacity is 10 Mbps. Consequently,
changing the routing paths does not lead to the fluctuation of
the MOS score in three selection algorithms. Although there is
no significant difference between these algorithms, the MOS
score of softmax is slightly better than the others. The average
MOS score of softmax, UCB1 and ϵ-greedy reach to 4.47,
4.46 and 4.39, respectively. Besides, their standard deviations
are 0.29, 0.291 and 0.31, respectively. In this scenario, the
MOS score varies from 4.3 to 4.5. The MOS score of ϵ-greedy
converges to 4.3 while the MOS score of the others converges
to 4.5. Therefore, the average MOS score of ϵ-greedy is lower
than two other selection algorithms.

The average MOS score of UCB1 is the highest, and the
standard deviation is the lowest in three selection algorithms

for the other scenarios. The average MOS score of UCB1 in
delay scenario, loss scenario and the final scenario are 3.55,
3.7 and 3.5, respectively. UCB1 first explores the routing path
during the first few episodes and then converges to optimal
MOS score. When the network states are changed, UCB1 can
explore the less-used routing paths. Consequently, it continues
to reach an optimal value quickly. softmax chooses the routing
paths according to probability function, so it takes much time
to converge to an optimal value. As a result, the MOS score of
softmax is lower than the figure for UCB1. For ϵ-greedy, it first
explores the routing paths with a high ϵ value. When ϵ value
reduces to approximately 0, it can not explore the routing paths
frequently. Therefore, the MOS score of ϵ-greedy is lower than
two other selection algorithms.

According to Fig. 5, our proposal will implement different
selection algorithms corresponding to various scenarios. soft-
max will be implemented for perfect scenario while UCB1
will be implemented for other scenarios in our proposal in the
following experiments. Our proposal refers to RL Softmax SR
in perfect scenario and RL UCB1 SR for other scenarios.

3) Segment routing mechanisms
Fig. 6 illustrates the MOS score against the episodes (for-

warding time) of three SR mechanisms in four scenarios. In
perfect scenario (Fig. 6a), the role of the routing paths is
the same due to no delay and loss in the network. As a
result, the MOS score of three SR mechanisms is nearly equal.
The average MOS score of our proposal (RL Softmax SR),
Max QoE and Standard SR are 4.47, 4.47 and 4.46, respec-
tively. Besides, their standard deviations are 0.29, 0.29 and
0.34, respectively. Network states at different episodes are
different. Moreover, the proposed approach using the rein-
forcement learning algorithm sometimes explores less-used



routing paths to balance exploration and exploitation phases.
Therefore, there are the MOS fluctuations between 4.3 and 4.6
in Fig. 6a.

In delay scenario (Fig. 6b), each routing path is set to
a specific delay parameter which leads to the differences in
the MOS score between the routing paths. Therefore, there
is a significant difference between three SR mechanisms.
The MOS score of Standard SR is the lowest in three SR
mechanisms because it selects the shortest paths to forward
the packets. The MOS score of this mechanism depends on
the delay parameter which is set to the shortest path. The
network states are changed every 50 episodes, so the MOS
score of this mechanism changes periodically. The MOS score
of Standard SR in the first, second and last 50 episodes
are approximately 2.4, 2.8 and 3.1, respectively. Max QoE
monitors the network topology, calculates the MOS score of
all routing paths and selects the path with the best MOS score.
Therefore, it achieves a high MOS score (approximately 4)
in the majority of episodes. In this scenario, our proposal
(RL UCB1 SR) implements UCB1 to determine the routing
paths to forward the packets. UCB1 explores the routing paths
in the first 16 episodes, so the MOS score varies between 1.7
and 4. After that, the MOS score of our proposal converges
to an optimal value (approximately 4). At 50th and 100th
episodes, the network states are changed to create dynamic net-
work environments. UCB-index of the less-used routing path
becomes larger when a routing path is not chosen frequently.
Consequently, UCB1 can explore the less-used routing paths to
select the appropriate path. As a result, the MOS score of our
proposal can converge to optimal value quickly after a few
episodes. Besides, our proposal can choose another routing
path at 24th and 89th episodes after converging to an optimal
value. In other words, our proposal does not always select
the routing path with the best UCB-index to guarantee the
exploration-exploitation trade-off. In Fig. 6b, the MOS score
of our proposal is slightly lower or equal to the MOS score
of Max QoE.

In loss scenario (Fig. 6c), the MOS score of Standard SR
is lower than the figure for our proposal. The MOS score of
this mechanism in the first, second and last 50 episodes are
2.3, 2.1 and 2.4, respectively. Similar to previous scenarios,
our proposal using UCB1 selection algorithm (RL UCB1 SR)
first explores the routing paths during the first few episodes
and then converges quickly to optimal value (nearly 4). A
remarkable feature from Fig. 6c is that the MOS score of
Max QoE is lower than the MOS score of our proposal
from the 50th episode. ONOS controller sends the control
packets (e.g., LLDP packets, etc.) to discover the network
topology every 3 seconds, so the delay on the routing paths
is measured according to control packets as in an existing
work [48]. Therefore, Max QoE can monitor the network and
select the path with the best MOS score in delay scenario.
The loss parameter is measured via PortStatistics API in
ONOS controller after data is transmitted in the network.
Consequently, the loss on a routing path is not updated when
this path is not chosen. At the beginning of the first 50 episodes

in loss scenario, the loss of all routing paths is initiated to 0.
Therefore, Max QoE can select the path with the best MOS
score. At the 50th episode, the network states are changed. The
routing paths with low MOS score in previous network state
becomes the paths with high MOS score in current network
state, but the loss on these paths are not updated. Therefore,
the MOS score of Max QoE is lower than the figure for our
proposal.

In scenario with delay and loss (Fig. 6d), the MOS
score of Standard SR is the lowest in three SR mechanisms.
Similar to delay scenario, the MOS score of our proposal
(RL UCB1 SR) is equal or slightly smaller than the MOS
score of Max QoE. The MOS score of Max QoE in the first,
second and last 50 episodes are 3.9, 3.7 and 3.9, respectively.
Besides, the optimal MOS score of our proposal are 3.9, 3.7
and 3.7, respectively. Although the MOS score of Max QoE is
higher than the others, it requires much resource consumption
related to CPU usage and overhead.

There is less difference between the CPU usage and over-
head in four scenarios, so the average CPU usage and overhead
of these mechanisms in four scenarios are depicted in Fig. 7.
The number of leaf nodes is increased while the number of
spine nodes is not changed to obtain a larger network topology
in these experiments. Fig. 7a shows the CPU usage of three
SR mechanisms. The testbed is implemented in a computer
with 4 cores described in Tab. I, so the CPU usage can reach
400 percent in maximum. The CPU usage of Max QoE is
the highest in three SR mechanisms because it monitors the
entire network topology in order to obtain the routing path
with the best MOS score. The CPU usage of Max QoE for 7
nodes is 94.3 percent, and it increases to 125.48 percent for
47 nodes. The CPU of our proposal is lower than the figure
for Max QoE. It raises from 91.45 to 118.95 percent when
the number of nodes increases from 7 to 47. Besides, there is
an increase in the CPU usage of Standard SR from 89.73 to
115.63 percent when the number of nodes raises from 7 to 47.

Fig. 7b indicates the control overhead of three SR mech-
anisms. The overhead of Max QoE is higher than two other
mechanisms because Max QoE sends the control packets to
monitor the entire network topology. It increases rapidly from
8.33 to 75 percent when the number of nodes increases from
7 to 47. Our proposal only monitors the chosen paths, so the
overhead of our proposal and Standard SR are nearly equal.
The overhead of our proposal with 7 and 47 nodes are 3.95
and 26.71 percent, respectively. The overhead of Max QoE is
nearly three times the overhead of our proposal for 47 nodes.
In other words, our proposal reduces up to 64.39 percent of
overhead in comparison with Max QoE. Although Max QoE
can achieve a high MOS score in the majority of episodes, it
requires much resource consumption in terms of CPU usage
and overhead. Consequently, it is not appropriate for a large-
scale network. In contrast, the MOS score of our proposal
is nearly equal or higher than the figure for Max QoE in
considered scenarios, but it requires less resource consumption
in comparison with Max QoE.

Some important results are summarized as in Tab. III and



7 17 32 47

Number of Node

90

100

110

120

C
P

U
 U

s
a

g
e

 (
%

)

Max_QoE

RL_SR

Standard_SR

(a) Average CPU usage.

7 17 32 47

Number of Node

20

40

75

O
v
e

rh
e

a
d

 (
%

)

Max_QoE

RL_SR

Standard_SR

(b) Average overhead.

Fig. 7: The average CPU usage and overhead of three SR mechanisms.
TABLE III: Summarization of average optimal MOS, median
and 95 % confidence interval of MOS in the SR mechanisms.

Scenarios Mechanisms Average
Improvement

of
proposal (%)

Median
95%

Confidence
Interval

Perfect
Proposal 4.47 - 4.53 4.47±0.047

Standard SR 4.46 Nearly
equal 4.52 4.46±0.056

Max QoE 4.47 Equal 4.53 4.47±0.047

Delay
Proposal 3.86 - 3.82 3.86±0.1

Standard SR 2.76 139.8 2.80 2.76±0.05

Max QoE 3.93 Nearly
equal 4.01 3.93±0.062

Loss
Proposal 3.9 - 3.93 3.9±0.089

Standard SR 2.26 172.6 2.11 2.26±0.023
Max QoE 2.86 136.4 3.11 2.86±0.154

Delay+
Loss

Proposal 3.76 - 3.70 3.76±0.078
Standard SR 2.7 139.3 2.40 2.7±0.04

Max QoE 3.83 Nearly
equal 3.72 3.83±0.024

TABLE IV: Summarization of average overhead in the SR
mechanisms.

Mechanisms Average overhead (%)
7 17 32 47

Max QoE 8.33 24.99 50 75
Proposal 3.95 9.64 18.18 26.71

Improvement of
proposal (%) 52.58 61.43 63.64 64.39

IV. Tab. III indicates important results related to the median
MOS, 95 % confidence interval of MOS and the average
optimal MOS score which is the average value of the optimal
MOS score in each 50 episode of three SR mechanisms.
Tab. IV illustrates the essential results in term of the aver-
age overhead against the number of nodes of our proposal
and Max QoE. Confidence interval (CI) gives an estimated
interval for an unknown population parameter. It is associated
with a confidence level, representing a probability which the
estimated interval includes a true value of the parameter. 95%
confidence interval is computed at the 95% confidence level
containing the parameter. It is calculated by Equ. 6.

CI = x+ z⋆ · σ√
n

(6)

where x is mean of MOS, σ is its standard deviation, n is
number of samples and z⋆ is 1.96 for 95% of confidence level.

In Tab. III, 95% confidence interval of the proposed SR
mechanism is wider than the figure for Max QoE in four
scenarios. The reason is that the proposal needs to explore
the routing paths to select the appropriate one, so its MOS
fluctuates more frequently than the figure for Max QoE.

V. CONCLUSION
Segment Routing needs to be performed more adaptively to

avoid network problems (e.g., congested links, etc.) and meet
different service-level agreement requirements. To cope with
these demands, we propose a novel SDN-based adaptive seg-
ment routing framework for network operators in the context
of encrypted traffic. Our proposal is developed on the SDN
controller which can be integrated into networks supporting
virtualized architectures related to SDN. The proposed seg-
ment routing mechanism implements different routing policies
corresponding to various applications and meets strict service-
level agreement requirements. Moreover, the appropriate rout-
ing path is selected according to reinforcement learning policy
and the feedback of the network environment (QoE). The
experimental results show that the proposed SR mechanism
using reinforcement learning outperforms the standard SR
mechanism in terms of QoE and reduces up to 64.39 percent
of overhead in comparison with Max QoE mechanism.

Segment list is one of the important factors of the segment
routing mechanism, so path encoding algorithm needs to be
investigated thoroughly to optimize the performance of the
segment routing mechanism. After detecting the network prob-
lems and implementing the adaptive segment routing mecha-
nism to reduce its influences, the root causes of the issues
needs to be considered to deal with it definitely. Therefore,
the root cause analysis mechanism will be investigated in our
future work.

ACKNOWLEDGMENT
This research is funded by Vietnam National Foundation for

Science and Technology Development (NAFOSTED) under
grant number 102.02-2019.314.

REFERENCES
[1] Z. Li, S. Peng, D. Voyer, C. Xie, P. Liu, Z. Qin, K. Ebisawa,

S. Previdi, and J. Guichard, “Problem Statement and Use Cases
of Application-aware Networking (APN),” Internet Engineering Task
Force, Internet-Draft draft-li-apn-problem-statement-usecases-01, Sep.
2020, work in Progress. [Online]. Available: https://datatracker.ietf.org/
doc/html/draft-li-apn-problem-statement-usecases-01

[2] P. L. Ventre, S. Salsano, M. Polverini, A. Cianfrani, A. Abdelsalam,
C. Filsfils, P. Camarillo, and F. Clad, “Segment routing: A com-
prehensive survey of research activities, standardization efforts and
implementation results,” IEEE Communications Surveys & Tutorials,
2020.

[3] “Cisco to optimize ntt docomo’s 5g mobile backhaul for simpler,
more flexible and scalable network operation,” January 2021.
[Online]. Available: https://newsroom.cisco.com/press-release-content?
type=webcontent&articleId=2057092

https://datatracker.ietf.org/doc/html/draft-li-apn-problem-statement-usecases-01
https://datatracker.ietf.org/doc/html/draft-li-apn-problem-statement-usecases-01
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=2057092
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=2057092


[4] “Cisco and vodafone showcase mobile transport networking
advancements via segment routing at mobile world congress,”
January 2021. [Online]. Available: https://newsroom.cisco.com/
press-release-content?type=webcontent&articleId=1913303

[5] A. Kushwaha, S. Sharma, N. Bazard, A. Gumaste, and B. Mukherjee,
“Design, analysis, and a terabit implementation of a source-routing-
based sdn data plane,” IEEE Systems Journal, 2020.

[6] N. Kukreja, R. Alvizu, A. Kos, G. Maier, R. Morro, A. Capello, and
C. Cavazzoni, “Demonstration of sdn-based orchestration for multi-
domain segment routing networks,” in 2016 18th International Con-
ference on Transparent Optical Networks (ICTON). IEEE, 2016, pp.
1–4.

[7] S. Peng, J. Mao, R. Hu, and Z. Li, “Demo abstract: Apn6: Application-
aware ipv6 networking,” in IEEE INFOCOM 2020-IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). IEEE,
2020, pp. 1330–1331.

[8] A. Custura, R. Secchi, and G. Fairhurst, “Exploring dscp modification
pathologies in the internet,” Computer Communications, vol. 127, pp.
86–94, 2018.

[9] C. Dong, C. Zhang, Z. Lu, B. Liu, and B. Jiang, “Cetanalytics: Com-
prehensive effective traffic information analytics for encrypted traffic
classification,” Computer Networks, vol. 176, p. 107258, 2020.

[10] CISCO, “Cisco white paper report: Encrypted traffic
analytics,” February 2021. [Online]. Available: https:
//www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/
enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf

[11] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end
encrypted traffic classification with one-dimensional convolution neural
networks,” in 2017 IEEE International Conference on Intelligence and
Security Informatics (ISI). IEEE, 2017, pp. 43–48.

[12] P. Wang, F. Ye, X. Chen, and Y. Qian, “Datanet: Deep learning based
encrypted network traffic classification in sdn home gateway,” IEEE
Access, vol. 6, pp. 55 380–55 391, 2018.

[13] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The quic transport
protocol: Design and internet-scale deployment,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication.
ACM, 2017, pp. 183–196.

[14] “Quic statistic,” January 2021. [Online]. Available: https://sniansfblog.
org/the-potential-impact-of-quic-will-it-replace-tcp-ip/

[15] M.-C. Lee and J.-P. Sheu, “An efficient routing algorithm based on
segment routing in software-defined networking,” Computer Networks,
vol. 103, pp. 44–55, 2016.

[16] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “A survey
on network troubleshooting,” Technical Report Stanford/TR12-HPNG-
061012, Stanford University, Tech. Rep., 2012.

[17] V. Tong, H. A. Tran, S. Souihi, and A. Mellouk, “Service-centric
segment routing mechanism using reinforcement learning for encrypted
traffic,” in 2020 16th International Conference on Network and Service
Management (CNSM). IEEE, 2020.

[18] A. A. Barakabitze, I.-H. Mkwawa, A. Hines, L. Sun, and E. Ifeachor,
“Qoemultisdn: Management of multimedia services using mptcp/sr in
softwarized and virtualized networks,” IEEE Access, 2020.

[19] A. Rego, S. Sendra, J. M. Jimenez, and J. Lloret, “Dynamic metric
ospf-based routing protocol for software defined networks,” Cluster
Computing, vol. 22, no. 3, pp. 705–720, 2019.

[20] A. Bahnasse, F. E. Louhab, H. A. Oulahyane, M. Talea, and A. Bakali,
“Novel sdn architecture for smart mpls traffic engineering-diffserv aware
management,” Future Generation Computer Systems, vol. 87, pp. 115–
126, 2018.

[21] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus,
M. Hines, T. Kim, A. Narayanan, A. Jain et al., “Taking the edge off
with espresso: Scale, reliability and programmability for global internet
peering,” in Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, 2017, pp. 432–445.

[22] R. M. A. Ujjan, Z. Pervez, K. Dahal, A. K. Bashir, R. Mumtaz, and
J. González, “Towards sflow and adaptive polling sampling for deep
learning based ddos detection in sdn,” Future Generation Computer
Systems, vol. 111, pp. 763–779, 2020.

[23] V. Cisco, “Cisco visual networking index: Forecast and
trends, 2017–2022,” White Paper, 2021. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white-paper-c11-741490.pdf

[24] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Net-
work traffic classifier with convolutional and recurrent neural networks
for internet of things,” IEEE Access, vol. 5, pp. 18 042–18 050, 2017.

[25] K. Zhou, W. Wang, C. Wu, and T. Hu, “Practical evaluation of encrypted
traffic classification based on a combined method of entropy estimation
and neural networks,” ETRI Journal, 2020.

[26] V. Tong, H. A. Tran, S. Souihi, and A. Mellouk, “A novel quic traffic
classifier based on convolutional neural networks,” in 2018 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2018, pp. 1–6.

[27] K. He and J. Sun, “Convolutional neural networks at constrained time
cost,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 5353–5360.

[28] Y. Li, Z.-P. Cai, and H. Xu, “Llmp: exploiting lldp for latency measure-
ment in software-defined data center networks,” Journal of Computer
Science and Technology, vol. 33, no. 2, pp. 277–285, 2018.

[29] ONOS, “Portstatistics api,” February 2021. [Online]. Available: http:
//api.onosproject.org/1.5.1/org/onosproject/net/device/PortStatistics.html

[30] L. F. Maimó, Á. L. P. Gómez, F. J. G. Clemente, M. G. Pérez, and
G. M. Pérez, “A self-adaptive deep learning-based system for anomaly
detection in 5g networks,” IEEE Access, vol. 6, pp. 7700–7712, 2018.

[31] J. Wang, Y. Tang, S. He, C. Zhao, P. K. Sharma, O. Alfarraj, and
A. Tolba, “Logevent2vec: Logevent-to-vector based anomaly detection
for large-scale logs in internet of things,” Sensors, vol. 20, no. 9, p.
2451, 2020.

[32] J. Hong, S. Park, J.-H. Yoo, and J. W.-K. Hong, “Machine learning based
sla-aware vnf anomaly detection for virtual network management,” in
2020 16th International Conference on Network and Service Manage-
ment (CNSM). IEEE, 2020, pp. 1–7.

[33] S. Gao, C. Xiang, C. Sun, K. Qin, and T. H. Lee, “Efficient boolean
modeling of gene regulatory networks via random forest based feature
selection and best-fit extension,” in 2018 IEEE 14th International
Conference on Control and Automation (ICCA). IEEE, 2018, pp. 1076–
1081.

[34] L. Amour, “Poqemon qoe dataset,” June 2021. [Online]. Available:
https://github.com/Lamyne/Poqemon-QoE-Dataset

[35] L. Amour, V. Tong, S. Souihi, H. A. Tran, and A. Mellouk, “Quality
estimation framework for encrypted traffic (q2et),” in 2019 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2019, pp. 1–6.

[36] Z. Mammeri, “Reinforcement learning based routing in networks: Re-
view and classification of approaches,” IEEE Access, vol. 7, pp. 55 916–
55 950, 2019.

[37] S. Koenig and R. G. Simmons, “Complexity analysis of real-time
reinforcement learning,” in AAAI, 1993, pp. 99–107.

[38] C. Jin, Z. Yang, Z. Wang, and M. I. Jordan, “Provably efficient rein-
forcement learning with linear function approximation,” in Conference
on Learning Theory. PMLR, 2020, pp. 2137–2143.

[39] V. Temlyakov, “Greedy approximation in convex optimization,” Con-
structive Approximation, vol. 41, no. 2, pp. 269–296, 2015.

[40] Y.-L. He, X.-L. Zhang, W. Ao, and J. Z. Huang, “Determining the
optimal temperature parameter for softmax function in reinforcement
learning,” Applied Soft Computing, vol. 70, pp. 80–85, 2018.

[41] H. A. Tran, S. Hoceini, A. Mellouk, J. Perez, and S. Zeadally, “Qoe-
based server selection for content distribution networks,” IEEE Trans-
actions on Computers, vol. 63, no. 11, pp. 2803–2815, 2013.

[42] “Mininet,” February 2021. [Online]. Available: http://mininet.org/
[43] “Open network operating system (onos),” February 2021. [Online].

Available: https://wiki.onosproject.org/display/ONOS/ONOS
[44] S.-C. Lin, I. F. Akyildiz, P. Wang, and M. Luo, “Qos-aware adaptive

routing in multi-layer hierarchical software defined networks: A rein-
forcement learning approach,” in 2016 IEEE International Conference
on Services Computing (SCC). IEEE, 2016, pp. 25–33.

[45] V. Tong, “Service-centric segment routing using reinforcement learning,”
February 2021. [Online]. Available: https://github.com/vanvantong/rl-sr

[46] A. A. Barakabitze, I.-H. Mkwawa, L. Sun, and E. Ifeachor, “Qualitysdn:
Improving video quality using mptcp and segment routing in sdn/nfv,”
in 2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft). IEEE, 2018, pp. 182–186.

[47] E. Grigoriou, A. A. Barakabitze, L. Atzori, L. Sun, and V. Pilloni, “An
sdn-approach for qoe management of multimedia services using resource
allocation,” in 2017 IEEE International Conference on Communications
(ICC). IEEE, 2017, pp. 1–7.

[48] L. Liao and V. C. Leung, “Lldp based link latency monitoring in software
defined networks,” in 2016 12th International Conference on Network
and Service Management (CNSM). IEEE, 2016, pp. 330–335.

https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1913303
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1913303
https://www.cisco.com/c/dam/en/us/solutions/collateral/ enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/ enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/ enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
https://sniansfblog.org/the-potential-impact-of-quic-will-it-replace-tcp-ip/
https://sniansfblog.org/the-potential-impact-of-quic-will-it-replace-tcp-ip/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf
http://api.onosproject.org/1.5.1/org/onosproject/net/device/PortStatistics.html
http://api.onosproject.org/1.5.1/org/onosproject/net/device/PortStatistics.html
https://github.com/Lamyne/Poqemon-QoE-Dataset
http://mininet.org/
https://wiki.onosproject.org/display/ONOS/ONOS
https://github.com/vanvantong/rl-sr

	These_Van_27_11
	Résumé 
	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Acronyms
	List of publications
	Introduction
	General Context
	Problem Statements and Objectives
	Main contributions
	Dissertation Organization

	State-of-the-art on Network Troubleshooting
	Network Troubleshooting
	State-of-the-art
	Rule Failure
	Link Failure
	Buffer Overload

	Traditional Troubleshooting Architecture

	Background on encryption protocols
	QUIC
	Encryption
	Connection Establishment
	Multiplexing
	Connection Migration

	Other Protocols
	IPsec
	TLS


	Drawbacks of Troubleshooting with Encrypted Traffic
	Network Performance Monitoring
	QoE Estimation
	Application Identification

	Intrusion Detection System (IDS)
	Firewall
	DDoS Protection and Migration


	Conclusion

	Novel Global Troubleshooting Framework for Encrypted Traffic
	Novel Network Troubleshooting Architecture for Encrypted Traffic
	Proof-of-concept of Proposed Troubleshooting Architecture in SDN
	Data Collection
	Data Classification
	Monitoring Tools
	Parameter Measurement
	Latency
	Packet Loss
	Quality of Experience
	Other Parameters
	Measurement Frequency


	Troubleshooting Dataset
	Datasets for root cause analysis
	Dataset for traffic classification

	Conclusion

	Traffic Classification: Novel QUIC traffic Classifier based on Convolutional Neural Network
	Introduction
	Background
	Convolutional network
	Characteristics of QUIC-based applications

	Traffic Classification Approaches
	Port-based Approaches
	Payload-based Approaches
	Statistic-based Approaches
	DL-based Approaches

	Proposal: Novel Traffic Classification Method for QUIC Traffic
	Traffic Collection
	Flow-based Features
	Pre-processing
	Proposed Traffic Classification Method

	Experimental results
	Dataset specification
	Performance metrics
	Performance analysis
	First Stage of Classification
	Second Stage of Classification
	Time Analysis


	Conclusion

	Anomaly Detection
	Introduction
	Anomaly Detection Approaches
	Knowledge-based Mechanisms
	Rule Inductions
	Information Theory
	ML-based Mechanisms

	Proposed Anomaly Detection Approach using Machine Learning
	ML-based Anomaly Detection Method
	Data Collection and Processing

	Experimental Results
	Experimental Setup
	Performance Analysis

	Conclusion

	Temporary Remediation: SDN-based Application-aware Segment Routing for Large-scale Network
	Introduction
	Application-aware Routing Mechanisms
	Application-aware routing
	Application-aware MPLS
	Application-aware SR

	Proposed Adaptive Segment Routing Mechanism for Encrypted Traffic
	Overview of SDN-based Adaptive Segment Routing Framework
	Network Monitoring
	Traffic Classification
	Parameter Measurement

	Anomaly Detection
	Application-aware Remediation
	QoE Estimator
	RL-based Segment Routing
	Exploration-Exploitation Trade-off


	Experimental results
	Experiment Setup
	Benchmark
	Performance Analysis
	Time Analysis
	Selection algorithms
	Segment routing mechanisms


	Conclusion

	Root Cause Analysis and Definitive Remediation
	Root Cause Analysis: Machine Learning based Root Cause Analysis for SDN Network
	Introduction
	Root Cause Analysis Mechanisms
	Knowledge-based Mechanism
	Causality/Dependency Graph
	ML-based Mechanism

	Proposed ML-based RCA Mechanism
	Data Collection and Processing
	ML-based RCA Method

	Experimental Results
	Experimental Setup
	Performance Analysis

	Conclusion

	Definitive Remediation: Adaptive QUIC BBR Algorithm using Reinforcement Learning for Dynamic Networks
	Introduction
	Congestion Control Mechanisms
	Loss-based Congestion Control
	Rate-based Congestion Control
	Improvement of Rate-based Congestion Control

	Proposal: Adaptive BBR Algorithm
	Experimental Results
	Experimental Setup
	Performance Analysis

	Conclusion


	Conclusions and perspectives
	Summary of Contributions
	Perspectives and Future Work

	Version abrégée en Français
	Contexte général
	Motivations
	Contributions
	Conclusion et Perspectives
	Liste des publications

	Bibliography
	Annex

	Annex
	Introduction
	Related work
	Proposed Adaptive Segment Routing Mechanism for Encrypted Traffic
	Overview of SDN-based Adaptive Segment Routing Framework
	Network Monitoring
	Traffic Classification
	Parameter Measurement

	Problem Detection
	Application-aware Remediation
	QoE Estimator
	RL-based Segment Routing
	Exploration-Exploitation Trade-off


	Experimental results
	Experiment Setup
	Benchmark
	Performance Analysis
	Time Analysis
	Selection algorithms
	Segment routing mechanisms


	Conclusion
	References




