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Résumé

L’analyse multifractale est devenue un outil de référence pour le traitement des signaux et des im-

ages. Fondée sur la quantification des fluctuations de la régularité locale, elle s’est avérée utile dans

un nombre croissant d’applications, qui ne concernaient pourtant jusqu’à présent que des données

univariées (séries temporelles à valeurs scalaires ou images acquises dans une seule bande spectrale).

Récemment, les bases théoriques de l’analyse multifractale multivariée ont été élaborées, montrant

un potentiel pour quantifier les dépendances entre plusieurs collections de données allant au-delà de

la corrélation linéaire. Cependant, l’estimation précise des paramètres associés à un modèle mul-

tifractal multivarié reste un défi, limitant sévèrement leur utilisation réelle dans les applications.

L’objectif principal de cette thèse est de proposer et d’étudier des méthodes d’analyse multifrac-

tale multivariée pour le traitement du signal et des images. Plus précisément, l’approche proposée

s’appuie sur un nouveau modèle Gaussien multivarié adapté au logarithme des coefficients domi-

nants d’ondelettes. Ce modèle utilise une approximation de la vraisemblance basée sur les résultats

de Whittle et une augmentation de données pour les paramètres d’intérêt à valeurs matricielles. Ce

modèle permet de construire des procédures d’estimation efficaces pour deux choix pertinents de lois

a priori dans un contexte d’inférence Bayésienne. Des algorithmes basés sur des stratégies de Monte

Carlo par chaines de Markov et d’Expectation-Maximization sont conçus et utilisés pour calculer

les estimateurs bayésiens. Des simulations de Monte Carlo, réalisées sur des images et des signaux

synthétiques multivariés avec différentes tailles d’échantillon, différents nombres de composantes et

différents jeux de paramètres, montrent des améliorations significatives des performances par rap-

port à l’état de l’art. En outre, des limites inférieures théoriques sur la variance des estimateurs sont
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déterminées pour étudier le comportement asymptotique de ces estimateurs. Enfin, la pertinence du

cadre d’estimation multifractale multivariée proposé est démontrée par l’application à deux exemples

de données réelles : la détection de la somnolence à partir de signaux physiologiques multicanaux et

l’imagerie satellitaire multispectrale.
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Abstract

Multifractal analysis has become a reference tool for signal and image processing. Grounded in the

quantification of local regularity fluctuations, it has proven useful in an increasing range of applica-

tions, yet so far involving only univariate data (scalar valued time series or single channel images).

Recently the theoretical ground for multivariate multifractal analysis has been devised, showing po-

tential for quantifying transient higher-order dependence beyond linear correlation among collections

of data. However, the accurate estimation of the parameters associated with a multivariate multi-

fractal model remains challenging, severely limiting their actual use in applications. The main goal

of this thesis is to propose and study practical contributions on multivariate multifractal analysis of

signals and images. Specifically, the proposed approach relies on a novel and original joint Gaussian

model for the logarithm of wavelet leaders and leverages on a Whittle-based likelihood approxima-

tion and data augmentation for the matrix-valued parameters of interest. This careful design enables

efficient estimation procedures to be constructed for two relevant choices of priors using Bayesian

inference. Algorithms based on Monte Carlo Markov Chain and Expectation Maximization strategies

are designed and used to approximate the Bayesian estimators. Monte Carlo simulations, conducted

on synthetic multivariate signals and images with various sample sizes, numbers of components and

multifractal parameter settings, demonstrate significant performance improvements over the state of

the art. In addition, theoretical lower bounds on the variance of the estimators are designed to study

their asymptotic behavior. Finally, the relevance of the proposed multivariate multifractal estima-

tion framework is shown for two real-world data examples: drowsiness detection from multichannel

physiological signals and potential remote sensing applications in multispectral satellite imagery.
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Abbreviations and notation

Abbreviations

1D One dimensional

2D Two dimensional

BB Bayesian Cramér–Rao bound

CN Complex normal

CRB Cramér–Rao bound

DFT Discrete Fourier transform

DWT Discrete wavelet transform

EM Expectation-Maximization

FIM Fisher information matrix

fBm Fractional Brownian motion

GMM Generalized method of moments

IW Inverse Wishart

WLR Weighted linear fit

LN Log-normal

MAP Maximum a posteriori

MCMC Markov chain Monte Carlo

MFA Multifractal analysis

ML Maximum likelihood
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MLE Maximum likelihood estimator

MMSE Miminum mean-square error

MRW Multifractal random walk

MSE Mean squared error

MV-MRW Multivariate multifractal random walk

QQ Quantile-quantile

RMSE Root mean-square error

SIW Scaled inverse Wishart

STD Standard deviation

Main notation

Matrix notation

a Scalar value

a Column vector

A Matrix

·T Transpose operator

·H Hermitian transpose operator

detA Determinant of matrix A

Tr(A) Trace of matrix A

||a|| Standard L2-norm ||a|| =
√
aHa

⌊·⌋ Integer truncating operator

[A]n1,n2 Element of the matrix A in the n1th row and n2th column

Jn1, n2K Set of integers ranging from n1 to n2

IR R×R identity matrix

diag(a1, . . . , aN ) N ×N diagonal matrix with (diagonal) entries specified by a1, . . . , aN
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Random variable notation

x ∼ “The variable x is distributed according to”

p(x) ∝ “The distribution of x is proportional to”

LN (β, α2) Log-Gaussian distribution with mean β and variance α2

CN (m,Σ) Circularly-symmetric complex Gaussian distribution with mean m and covariance Σ

IW(ν,Λ) Inverse Wishart distribution with ν degrees of freedom and scale matrix Λ

E[·], Ê[·] Mean and sample mean

Var[·], V̂ar[·] Variance and sample variance

Cov[·], Ĉov[·] Covariance and sample covariance

xi



xii



Contents

Acknowledgements iii
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Introduction

Context and objectives of the thesis

Multifractal analysis (MFA) probes the temporal dynamics in time series or the spatial dynamics

(textures) in images, by quantifying the strengths and topological-geometrical structures of the fluc-

tuations of the pointwise regularity of the data. This is achieved with the multifractal spectrum,

the object of central interest to MFA, see, e.g., [Jaf04, WAJ07], which is estimated using numerical

implementations that commonly involve multiscale (e.g., wavelet-based) representations of the data

[MBA93, JML+16, LWA+16].

MFA has been successfully used in a large range of different signal processing applications, e.g.,

biomedical applications (infra slow brain activity [CVA+12b]), geophysics [FGK94], finance [MS98]

or internet traffic [ABF+02], to name but a few. More recently, it has also been proved to be

useful paradigm in an increasing number of different image processing applications, e.g., texture

classification [XYLJ10, WAJ+09], biomedical imagery [BPL+01, KLSJA01, LB09], physics [PBA+06,

RAD00], biology [SS01], climate research [LS13] and art investigation [CERW08, AJW13, JJHB+08].

For further examples, the reader is referred to [JAW15, AWJD19] and references therein.

However, such past successes have been limited to the analysis of univariate data (scalar valued

time series or single channel images). Yet, these are often the parts of naturally multivariate data,

e.g., physical quantities jointly registered by several sensors, multispectral images, multitemporal

images, etc. Conducting a joint analysis instead of individually analyzing the data components could

provide a richer characterization, and in particular unravel the dynamics, coupling mechanisms and

dependencies among the different registered components. While this limitation had been recognized

1



2 Introduction

early on and partially addressed in specific applicative contexts [MSKF90, Lux07], the theoretical

foundation for multivariate MFA was laid only recently [JSW+19a, JSW+19b]. Its first practical use

showed that the multivariate (or joint) multifractal spectrum can effectively capture and quantify

transient local dependencies in data that cannot be considered by second-order statistics [WLA+18,

LAR+18, ALW+19, AWJD19].

Unfortunately, the accurate estimation of the associated multivariate multifractal parameters is

extremely challenging, severely limiting the use of multivariate MFA in applications. In essence,

whatever the multiscale representations that are used, multifractal estimation relies on log-log re-

gressions, intrinsically requiring the data to have a long enough sample size in order to allow their

dynamics to develop along a set of scales ranging across several orders of magnitude. These regres-

sions lead to large estimation variances, notably for limited sample size data, and become a critical

challenge, for example, in several bivariate settings as explored in [WLA+18, LAR+18, ALW+19].

The main goal of this thesis is to empower multivariate multifractal signal and image analysis

by complementing it with an adequate statistical modeling and estimation framework. The first

key difficulty stems from the intricate statistical nature of the multifractal models, characterized by

highly non Gaussian marginals, scale-free joint distributions and strong dependence, which lead to

difficult estimation problems. A second major difficulty arises from the need for models that lead

to computationally efficient estimators for the multivariate multifractal parameters in order to deal

with large data with potentially many data components.

The strategy adopted in this thesis consists of embedding the estimation of the multivariate mul-

tifractal parameters in a Bayesian framework. To this end, we introduce in Chapter 2, a novel and

original model for the joint statistics of nonlinear multiscale representations, the wavelet leaders,

that arise in the multifractal analysis of discrete data. The clever design of this model, parametrized

by multifractal parameters of interest, allows the estimation problem to be formulated in a Bayesian

framework. In Chapters 2 and 3, several numerical algorithms are proposed to approximate the asso-

ciated Bayesian estimators and their performance is studied on synthetic data using Monte Carlo

simulations. In Chapter 4, we study the asymptotic behavior of the proposed estimators by estab-

lishing fundamental lower bounds for the mean squared error (MSE) for the multifractal parameters
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of interest. This can explain and predict their behavior in specific scenarios and facilitate the de-

sign of experiments (number of subjects in study, recording length, etc) to yield certain accuracy.

Furthermore, we investigate in Chapter 5 the potential benefits of multivariate MFA in general and

of the proposed Bayesian methodology in particular for drowsiness detection for the example of a

four-channel physiological signal, and for remote sensing applications via the example of a four-band

satellite image.

The proposed Bayesian multifractal estimation algorithms, synthesis procedures for multivariate

multifractal processes, and procedures for computing lower bounds on the variance of the proposed

estimators is available in https://www.irit.fr/~Herwig.Wendt/software.html via a documented

toolbox.

This thesis has been carried out in the Institut de Recherche en Informatique de Toulouse (France),

within the Computational Imaging and Vision research group and funded by the French ANR JCJC

research grant MUTATION (ANR-18-CE45-0007).

Structure of the manuscript and main contributions

Chapter 1 recalls the key theoretical and practical concepts of MFA, from univariate to multivariate

modeling and analysis of multifractal time series and images. The main contribution of this chapter

lies in the synthetic overview exposition itself. As a basis for the following chapters the current

benchmark multivariate multifractal formalism based on wavelet leaders is defined. This formalism

leads to a polynomial expansion of the pairwise joint multifractal spectrum whose coefficients are

given by the log-cumulants of wavelet leaders. The leading order log-cumulants summarize the mul-

tifractal properties and can hence be used in applications instead of the multifractal spectrum. The

focus of the present thesis is on the estimation of the second-order log-cumulant c2, quantifying the

degree of fluctuation of the pointwise regularity individually and the coupling of these fluctuations

across components, and the multifractal correlation parameter ρmf.

Chapter 2 introduces a parametric model for the multivariate statistics of the logarithm of wavelet

leaders (termed log-leaders for short). This model consists of multivariate Gaussian distributions

https://www.irit.fr/~Herwig.Wendt/software.html
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whose variance-covariance structures are controlled by two symmetric positive definite (p.d.) ma-

trices containing the second-order log-cumulants. This model and its validation constitute a key

contribution of this chapter and the core of this thesis. We then complement the model with two

original and interwoven threads: first, a spectral approximation for the efficient evaluation of the

corresponding likelihood, and second, a data augmentation strategy in the spectral domain that

enables its factorization in parameter-wise components. Separability further allows us to introduce

Bayesian models building on this approximation and two relevant choices of prior distributions for

the multifractal matrix-valued parameters of interest. In particular, we propose the use of an inverse

Wishart prior distribution due to its conjugacy for covariance parameters of Gaussian distributions

and a scaled inverse Wishart prior due to its greater flexibility to incorporate prior information. The

derivation of the conditional distributions simplifies the use of Markov Chain Monte Carlo (MCMC)

algorithms to approximate the minimum mean square error (MMSE) estimator associated with the

resulting posterior distributions. We also investigate the use of a geometric mean to obtain the

approximation of the MMSE estimator and compare it against the classical arithmetic mean. The

combination of the two priors and the two ways of calculating the average of symmetric p.d. matrices

leads to a total of four different estimators. Their estimation performance is studied and compared

against classical linear regressions, using extensive Monte Carlo simulations relying on synthetic mul-

tivariate multifractal signals and images for several sample sizes and numbers of data components.

The methods and algorithms developed in this chapter constitute additional valuable contributions

and lead to the first operational tool for practical multivariate MFA of multivariate signals and images.

Chapter 3 proposes and studies new methods and algorithms based on Expectation-Maximization

(EM) strategies for multivariate multifractal parameter estimation. The EM methodology is appeal-

ing for having a reduced computational time compared to MCMC-based methods. The proposed

procedures are built on the previously devised statistical model of the log-leaders. Specifically, we

propose EM-based algorithms to approximate the maximum likelihood and the maximum a posteriori

estimator. Various Monte Carlo simulations are used to assess and study their estimation perfor-

mance. Furthermore, they are compared against the former Bayesian estimators and classical linear
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regression-based algorithms, in terms of accuracy and computational time. The design of these es-

timators and their evaluation are the main methodological and practical contributions of this chapter.

Chapter 4 provides lower bounds on the MSE performance of estimators of the matrix-valued pa-

rameters of the statistical model introduced in Chapter 2. To the best of our knowledge, this has not

be achieved so far for multivariate multifractal parameter estimation and, specifically, for the model

proposed in this thesis. First, considering the parameters to be unknown and deterministic matrices,

the Cramér–Rao bound is determined. Second, assuming that the parameters are unknown random

matrices that are modeled as inverse Wishart distributed matrices, the Bayesian Cramér–Rao bound

is derived. This constitutes a key contribution of this chapter. In addition, as a second contribu-

tion, a novel closed-form expression for computing non-trivial expectations involving Wishart random

matrices is derived and proved. As another main contribution, the properties of these bounds are

analytically studied and also numerically investigated via Monte Carlo simulations. Finally, we illus-

trate the use of the proposed bounds for the parameters associated with the bivariate multifractal

spectrum.

Chapter 5 investigates for the first time the use of multivariate multifractal parameters in two

applications of very different natures: i) drowsiness detection in multichannel physiological signals

and ii) quantification of spatial/textural information in multispectral satellite images. The obtained

results demonstrate that the Bayesian methods and algorithms developed in this thesis provide an

operational multivariate MFA tool that can be applied on real-world multivariate datasets.

Chapter 6 concludes the present thesis and provides a guideline for future work.
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1.1 Introduction

This chapter aims to provide a synthetic presentation of the main theoretical and practical concepts

for the multivariate modeling and analysis of multifractal times series and images.

Over the last decades, multifractal analysis (MFA) has grown into a standard signal and image

processing tool, characterizing data in terms of the fluctuations of their pointwise regularity in time

or space. In the past, MFA has led to significant successes in many real-world applications in very

different contexts, see, e.g., [Man74, JS01, KSAY06, DHA+11, CVA+12a, FAF+17]. However, these

successes have been mainly limited to the analysis of univariate data (scalar valued time series

or single channel images). Yet, they are often the constituting parts of multivariate data (e.g.,

physical quantities jointly registered by several sensors or several bands in a color space). While

this limitation had been recognized early on and partially addressed in specific applicative contexts

[MSKF90, Lux07], its theoretical grounding remained, up to a recent past, fundamentally univariate

in principle, hence tied to the independent analysis of single time series or images. This is a severe

limitation for its practical use because many recent applications entail the joint analysis of signals or

images recorded for the same system using different sensors, and crucial information is potentially

conveyed in the coupling and dependencies between components. The scope of this thesis is to

propose and study statistical models and estimation algorithms based on the theoretical foundations

of multivariate MFA [JSW+19a, JSW+19b], to overcome this deadlock.

These theoretical foundations are briefly recalled in this chapter which is organized as follows.

In Section 1.2, we introduce the main mathematical notions of univariate and multivariate MFA.

For an exhaustive presentation, the reader is referred to [Jaf97a, Jaf97b, DMA01] for a univariate

formulation and to [MSKF90, JSW+19a, JSW+19b] for a multivariate formulation. In Section 1.3,

the main practical aspects are presented. In Section 1.4, we introduce the multifractal processes that

will be used throughout this thesis for the numerical validation of the proposed contributions and

tools. Finally, in Section 1.5, we comment on the existing procedures for the estimation of parameters

characterizing the multifractal properties of data and we highlight their limitations.

Note that, while the theoretical concepts and practical tools for MFA can, in principle, be given
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for arbitrary dimension, cf., [Jaf04], the choice has been taken to focus the presentation on signals

(1D) and images (2D).

1.2 Multifractal analysis

Let X(t) ∈ R, t ∈ Rd, denote a univariate locally bounded function under analysis with t ∈ R (d = 1)

for time series and t = (t1, t2) ∈ R2 (d = 2) for images.

MFA is a mathematical tool which provides a quantification of the fluctuations along time or space

of the local regularity of X. The Hölder exponent hX(t0) > 0 is most commonly used to measure

the local regularity (see, e.g., [Rie03, Jaf04] for details) and is defined as follows. The function X is

said to belong to Cα(t0) at position t0 if there exist constants K,α > 0 and a polynomial P of order

strictly smaller than α such that

||X(t)− P (t− t0)|| ≤ K||t− t0||α, (1.1)

for t sufficiently close to t0 (|| · || stands for the Euclidean norm). The Hölder exponent is then defined

as the largest value of α such that the inequality (1.1) is satisfied, i.e.,

hX(t0) ≜ sup{α : X ∈ Cα(t0)}. (1.2)

Fig. 1.1 illustrates the definition (1.2) for a univariate function X(t) with t ∈ R.

X(t)

tt0

0.2 0.4 0.6

t
0

α = h(t
0
) = 0.6

t
0

Figure 1.1: Definition of Hölder exponent of a 1D function X(t) at t0 (left plot). Different values of

α (center plot) such that the inequality (1.1) is satisfied. Hölder exponent equals the largest value

of α (right plot).
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The Hölder exponent is a special case of p-exponents hpX(t0), where p > 0 is a parameter, which

is a recently studied family of regularity exponents, see, e.g., [JML+16, LWA+16]. Qualitatively,

the closer hX(t0) to 0, the rougher X at position t0 and the larger hX(t0), the smoother X at t0.

The definition (1.2) comprises only non-negative exponents, which is guaranteed by the assumption

that X is locally bounded. However, it has been reported that real-world data often violate this

assumption, see, e.g., [WAJ+09, WRJA09]. Further comments on this assumption and a practical

solution to relax it are discussed in Section 1.3.3.

The focus of MFA is to provide a global description of the fluctuations of the local regularity of

the function X, rather than providing the function hX(t) for each time or space instance t. This is

achieved via the so-called multifractal spectrum D(h), which is formally defined as the collection of

fractal (Hausdorff) dimension (dimH) of the sets of points that have identical exponent h, i.e.,

D(h) ≜ dimH

{
t : hX(t) = h

}
, (1.3)

where theoretically 0 ≤ D(h) ≤ d and, by convention, D(h0) = −∞ if h0 is not a Hölder exponent

observed in X. Broadly speaking, D(h) is a measure of the geometrical importance of different Hölder

exponents, disregarding any information on their precise geometric distribution. For more technical

details, the reader is referred to [Jaf04, JAW15].

The above framework permits the MFA for one single function and regularity exponent. Multi-

variate MFA deals with the simultaneous MFA of several pointwise exponents derived from one or

several functions and is briefly recalled in what follows.

1.2.1 Multivariate multifractal analysis

Let X(t) = (X1(t), . . . , XR(t)) ∈ RR denote an R-variate function under analysis with R locally

bounded components Xr(t) : Rd → R, with r ∈ {1, . . . , R}. The Hölder exponent of X at t0 is

defined as

hX(t0) ≜ (hX1(t0), . . . , hXR(t0)), (1.4)

where hXr(t0) > 0 is the Hölder exponent associated with the rth component Xr, defined as in (1.2).
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The R-variate (or joint) multifractal spectrum, denoted as DR(h), ofX is defined as the collection

of Hausdorff dimensions of the sets of points t at which hX(t) takes the same value h = (h1, . . . , hR),

i.e.,

DR(h) ≜ dimH

{
t : hX(t) = h

}
, (1.5)

see [MSKF90, JSW+19a, JSW+19b] for details. Note that if R = 1 we are in the univariate setting.

The shape, width, and orientation of the function DR(h) with respect to the h-axes quantify the

degree of local fluctuation of the regularity of the components of X, and to what extent these

fluctuations are coupled between components.

Therefore, the multifractal spectrum DR(h) is the object of central interest to MFA. However, its

practical estimation from real-world data cannot be conducted based on its formal definition (1.5) as,

in practice, only a discretized version of X with finite resolution is available. Indeed, its estimation

requires to use robust numerical methods well-known as multifractal formalisms [FP85, Jaf04].

1.3 Multifractal formalism using wavelet leaders

Multifractal formalisms provide a link between the multiscale statistics of specifically tailored mul-

tiresolution quantities and the multifractal spectrum. Several different univariate multifractal for-

malisms have been proposed in the literature, relying on different multiresolution coefficients. Some

historical examples are the increments [FP85], the wavelet coefficients [AAD+02], the wavelet trans-

form modulus maxima representations [MBA93, KLSJA01], the wavelet leaders [Jaf04, LJA05,

WAJ07] or most recently the p-leaders [JML+16, LWA+16].

In this thesis, we make use of wavelet leaders, derived from the wavelet coefficients, which have

been proven to possess the key theoretical and practical properties for MFA purposes based on the

Hölder exponent and have resulted in the current state of the art multifractal formalism, see, e.g.,

[Jaf04, LJA05, WAJ07] for details. The multifractal formalism constructed from the wavelet leaders

has been first developed for multivariate data in [JSW+19a, JSW+19b] and is briefly recalled in this

section.
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1.3.1 Wavelet leaders

In this manuscript, we only consider the analysis of 1D (d = 1) and 2D (d = 2) data. Therefore,

we only provide the theoretical definition of 1D and 2D wavelet leaders. The extensions to the case

d > 2 are straightforward, see, e.g., [Jaf04, JLA06, JAR+10].

Let X(k) denote the discretized version of the locally bounded univariate function X(t) ∈ R. For

simplicity and without loss of generality, X(k) is assumed to be square, i.e., k ∈ {1, 2, . . . , N}d.
Wavelet coefficients in 1D. For d = 1, let ψ ∈ CNψ−1 denote a mother wavelet, which is an

oscillating reference pattern that is characterized by its number of vanishing moments, a positive

integer Nψ ≥ 1 such that

∀n = 0, . . . , Nψ − 1 :

∫

R
tnψ(t)dt ≡ 0 and

∫

R
tNψψ(t)dt ̸= 0. (1.6)

It is designed such that the collection

{ψj,k(t) = 2−j/2ψ(2−jt− k)}(j,k)∈(Z,Z) (1.7)

of its dilated and translated templates forms an orthonormal basis of L2(R) [Mal98], i.e.,

X(t) =
∑

j,k

DX(j,k)ψj,k(t), (1.8)

where DX(j,k) = ⟨ψj,k, X⟩ are the discrete wavelet coefficients and ⟨ . , . ⟩ is the inner product.

Wavelet coefficients in 2D. For d = 2, the construction of an orthonormal discrete wavelet

transform (DWT) can be practically defined via the use of four 2D filters G(m)(k),m = 0, 1, 2, 3,

with k = (k1, k2), obtained as tensor products of the quadrature mirror filters H0 and G0 (low-

pass and high-pass, respectively) defining a 1D orthonormal DWT relying on a mother wavelet

ψ. By convention, G(0)(k) = H0(k1)H0(k2) corresponds to the 2D low pass filter yielding the ap-

proximation coefficients D
(0)
X (j,k), whereas G(1)(k) = G0(k1)H0(k2), G

(2)(k) = H0(k1)G0(k2) and

G(3)(k) = G0(k1)G0(k2) correspond to the high pass filters yielding the wavelet (detail) coefficients

D
(m)
X (j,k),m = 1, 2, 3. Specifically, D

(m)
X (j,k),m = 0, 1, 2, 3, are obtained by, first at the finest scale

j = 1, convolving the discrete imageX with G(m),m = 0, 1, 2, 3, and decimation; for the coarser scales
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j ≥ 2 they are iteratively obtained by convolving G(m),m = 0, 1, 2, 3 with D
(0)
X (j − 1, ·) and decima-

tion. For formal definition details on wavelet transforms, the reader is referred to [Mal98, AMVA04].

MFA is robust to the choice of wavelet as long as it is smooth enough [VA99, TA03]. In this

thesis, we use a Daubechies’ least asymmetric wavelet [Dau88] with a sufficient number of vanishing

moment Nψ. This is a common choice since its mother wavelet ψ gathers a number of attractive

theoretical properties for scaling analysis.

Normalization of wavelet coefficients. For scaling and MFA purposes, it is common to

normalize the wavelet coefficients according to a L1-norm [BMA93, ABF+02] as follows

dX(j,k) = 2−j/2DX(j,k), k ∈ Z, (1.9)

d
(m)
X (j,k) = 2−jD(m)

X (j,k), k ∈ Z2, m = 1, 2, 3. (1.10)

Therefore, we will refer to dX and d
(m)
X , m = 1, 2, 3, as the (discrete) wavelet coefficients.

Wavelet leaders in 1D. For d = 1, the wavelet leader LX(j,k), is defined as the largest coefficient

modulus, taken over finer scales and within a short temporal neighborhood 3λj,k, with

λj,k = [k2j , (k + 1)2j)

denoting the dyadic interval of size 2j and 3λj,k standing for the union of λj,k with its 2 neighbors,

i.e.,

LX(j,k) ≜ sup
λ′⊂3λj,k

|dX(λ′)|. (1.11)

The definition (1.11) is illustrated in Fig. 1.2.

Wavelet leaders in 2D. For d = 2, the supremum in the definition of the wavelet leaders (1.11)

is taken for the detail coefficients and for all eight direct neighbors, i.e.,

LX(j,k) ≜ sup
m∈{1,2,3}, λ′⊂3λj,k

|d(m)
X (λ′)|, (1.12)

where

λj,k = [k12
j , (k1 + 1)2j)× [k22

j , (k2 + 1)2j)

denotes the dyadic cube of side length 2j centered at position k and

3λj,k =
⋃

n1,n2∈{−1,0,1}
λj,(k1+n1,k2+n2)
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Figure 1.2: Definition of wavelet leaders (1D) [Wen08]: The wavelet leader LX(j,k) (1.11), at scale

2j and position k (red fat dot), is defined as the largest |dX(j,k)| (blue dots) within the time

neighborhood 3λj,k over all finer scales 2j
′
< 2j (area in gray, truncated at fine scales).

the union of this cube with its eight neighbors. The definition (1.12) is illustrated in Fig. 1.3.

Multivariate wavelet leaders. For a discrete R-variate function X(k) = (X1(k), . . . , XR(k)),

let LX(j,k) denote the vector of wavelet leaders such that its rth component LXr(j,k) is the wavelet

leader associated with Xr at position k and scale 2j , i.e.,

LX(j,k) = LX(λj,k) ≜ (LX1(j,k), . . . , LXR(j,k)). (1.13)

Wavelet leaders can be shown to reproduce Hölder exponents in the limit of fine scales as follows

hX(t0) = lim inf
j→+∞

lnLX(λj,k(t0))/ ln 2
−j , (1.14)

where λj,k(t0) denotes the dyadic cube of width 2−j which contains t0. The construction of the mul-

tifractal formalism described in the following section fundamentally relies on the key property (1.14).

For an exhaustive presentation, the reader is referred to [JSW+19a].

1.3.2 Multivariate wavelet leader multifractal formalism

Let S(j, q) denote the empirical moments of LX(j,k) at scale 2j , referred to as the multivariate

structure functions and defined as

S(j, q) =
1

nj

∑

k

R∏

r=1

LXr(j,k)
qr , (1.15)
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Figure 1.3: Definition of wavelet leaders (2D) [Wen08]: The wavelet leader LX(j,k) (1.12), at scale

2j and spatial position k (black cross), is defined as the largest |d(m)
X (j,k)|, m ∈ {1, 2, 3}, (red, green,

blue dots) within the spatial neighborhood 3λj,k over all finer scales 2j
′
< 2j (red volume, truncated

at fine scales). The wavelet coefficients over which the supremum is taken are marked by fat dots.

where q=(q1, . . . , qR) and nj≈⌊Nd/2dj⌋ is the number of wavelet leaders available at scale 2j for a

single data component.

The corresponding scaling function is defined as

ζR(q) = lim inf
j→+∞

lnS(j, q)/ ln 2−j , (1.16)

and is founded to be tightly related to DR(h) via their Legendre transform, referred to as the

multivariate Legendre spectrum

LR(h) ≜ inf
q
(d+ ⟨q,h⟩ − ζR(q)). (1.17)

Finally, LR(h) provides an upper-bound for DR(h)

DR(h) ≤ LR(h), (1.18)

for large classes of processes and is in practice used as an estimator of DR(h). This statement is

more restricted in the multivariate case than the univariate one, but is nevertheless valid for many
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process constructions that necessarily require a synchronicity condition. For technical details, the

reader is referred to [JSW+19a].

Log-cumulants. Let

ℓXr(j,k) ≜ lnLXr(j,k) (1.19)

denote the logarithm of the wavelet leaders (aka log-leaders) associated with Xr at a fixed scale 2j

and position k. The first-order (mean) and second-order (auto- and cross-covariances) cumulants of

ℓXr(j,k) and ℓXr′ (j,k), with r, r
′∈{1, . . . , R}, take the form [CGM93, WLA+18]

E[ℓXr(j,k)] = c01(r) + c1(r) ln 2
j , (1.20)

Cov(ℓXr(j,k), ℓXr′ (j,k)) = c02(r, r
′) + c2(r, r

′) ln 2j , (1.21)

where c0· are model adjustment parameters not related to the multifractal spectrum. Similar ex-

pressions are obtained for the higher-order R-variate cumulants [SL87, AWJD19]. The use of (1.20)

and (1.21) implicitly amounts to a parabolic approximation of the pairwise scaling exponents ζ2(pr, pr′)

which yields a pairwise parabolic approximation of the multifractal spectrum D2(hr, hr′) around its

maximum [JSW+19a, AWJD19]:

D2(hr, hr′) ≈ d+
c2(r

′, r′)b
2

(
hr − c1(r)

b

)2

+
c2(r, r)b

2

(
hr′ − c1(r

′)
b

)2

− c2(r, r
′)b
(
hr − c1(r)

b

)(
hr′ − c1(r

′)
b

)
, (1.22)

where c2(r, r) < 0 and b ≜ c2(r, r)c2(r
′, r′)− c2(r, r

′)2 ≥ 0 [LAR+18]. Notably, the leading order

c-coefficients provide a relevant summary of the multifractal properties of X in applications where

it would often not be convenient to handle an entire function D(h). Specifically,

- (c1(r), c1(r
′)) indicates the position of the maximum of D2(hr, hr′), which corresponds to the

average degrees of Xr, Xr′ regularity,

- c2(r, r) quantifies the amount of pointwise regularity fluctuations (multifractality) for the rth

component,

- c2(r, r
′) characterizes the coupling between the regularity fluctuations of the rth and r′th com-

ponents.
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Note that the projections of D2(hr, hr′) on the hr = 0 and hr′ = 0 planes correspond to the

marginal univariate spectra and are entirely controlled by the univariate parameters c1(r), c2(r, r)

and c1(r
′), c2(r′, r′).

In the multivariate setting, it is natural to seek to define the normalized coupling parameter

ρmf(r, r
′) ≜ − c2(r, r

′)√
c2(r, r)c2(r′, r′)

∈ [−1, 1]. (1.23)

In view of the model defined in Section 1.4.1, it can be interpreted as a multifractal correlation and

can be shown to quantify higher-order dependence beyond linear correlation among the data com-

ponents {Xr}Rr=1 [WLA+18, LAR+18, ALW+19]. An estimator of ρmf can be defined by replacing

the coefficients in (1.23) by estimates as in (1.28) [WLA+18]. The type of information that can be

captured by ρmf is illustrated in Fig. 1.4, which shows a 3-variate synthetic multifractal image (de-

fined in Section 1.4.1), and the magnitude of its isotropic image gradients, with positive and negative

values for ρmf among its components. The linear correlation equals zero for all components. Never-

theless, the image gradient magnitudes reveal the strong co-organization and dependence between

the components. Indeed, for components with positive ρmf, large gradients tend to co-occur at the

same locations, while they tend to be coupled with small gradients when ρmf is negative.

Therefore, conducting a multivariate MFA rather than analyzing the data components individua-

lly can potentially provide a richer characterization, and in particular unravel the dynamics, coupling

mechanisms and dependencies between the different registered components. Unfortunately, the ac-

curate estimation of the associated multivariate multifractal parameters is extremely challenging,

which severely limits their actual use in applications (see Section 1.5).

This thesis addresses these limitations, proposes and studies practical tools for the estimation of

parameters associated with the joint multifractal spectrum (cf. Chapters 2 and 3) and investigates

the potential benefits of multivariate MFA for real-world multivariate signal and image processing

(cf. Chapter 5).
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X1, ⇢mf(1, 3)=�0.99 X2, ⇢mf(1, 2) = 0.99 X3, ⇢mf(2, 3)=�0.99

Fig. 1. Illustrations for multifractal correlation: synthetic 3-variate multifractal
image (top row, defined in [?], [?] and Section II-C), magnitude of gradients
(second row) and zooms of the patch marked by red square (bottom row).
X1 and X2 have multifractal correlation ⇢mf(1, 2) = 0.99, and ⇢mf(1, 3) =
⇢mf(2, 3) = �0.99 with component X3. The linear correlation equals zero
for all components.

image gradient magnitudes reveal the strong co-organization
and dependence between the components. Indeed, for com-
ponents with positive ⇢mf, large gradients tend to co-occur at
the same locations, while they tend to be coupled with small
gradients when ⇢mf is negative.

C. Multivariate multifractal random walk

The multivariate multifractal random walk (MV-MRW) [?],
[?], [?] is the canonical multifractal model process for multi-
variate data and is used here to illustrate the proposed approach
and assess its performance.
Definition. The construction of an MV-MRW for R com-
ponents requires two collections of stochastic processes: (i)
a collection of increments of fractional Brownian motions
(G1(t), . . . , GR(t)), which is determined by the self-similarity
parameters H1, . . . , HR and an R⇥R point covariance ⌃ss,
with corresponding correlation coefficients ⇢ss(r, r

0), and
(ii) a collection of Gaussian processes (!1(t), . . . ,!R(t))
with prescribed covariance function ⌃mf, with entries given
by [⌃mf]rr0 (k, l) = [⇧mf]rr0�r�r0 ln

⇣
T

||k�l||2+1

⌘
, r, r0 2

{1, . . . , R}, for ||k � l||2  T � 1 and 0 otherwise, where
T is an arbitrary integral scale, equal to the data sample size
in the rest of the paper. To simplify notations, we consider
[⇧mf]rr = 1 and [⇧mf]rr0 = ⇢mf(r, r

0). These processes are
numerically synthesized as described in [?]. Each component
Xr, r 2 {1, . . . , R}, of an MV-MRW is then defined as the
primitive of the product Gre

!r .
Multifractal properties. The multifractality parameters of
an MV-MRW are given by c1(r) = Hr + �2

r/2, c2(r, r) =
��2

r , and c2(r, r
0) = �⇢mf(r, r

0)�r�r0 [?], [?], whereas
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Fig. 2. Gamma plots for the joint distribution of the empirical log-leaders at
scale j = 4, associated with 100 independent 210⇥210⇥R synthetic images
generated using a 2D MV-MRW, with R=2, 6, 10 (from left to right; �r =p

r/100, ⇢mf(r, r
0) uniform in [0, 0.5]). The closer to the red line, the better

the approximation of the distribution by an R-variate normal distribution.

its higher-order cumulants are equal to zero. Examples of
realizations of an MV-MRW (2D) for R = 3 are plotted in
Fig. 1. Typical values of c2 for real-world data range from zero
(no multifractality) down to c2 ⇡ �0.25, which corresponds
to an extremely intermittent signal that is rarely observed for
a non-pathological physical signal.

III. STATISTICAL MODEL FOR MULTIVARIATE
LOG-LEADERS

Estimations based on log-log regressions lead to large
variance, in particular for the second order cumulants c2

and for ⇢mf [?], [?], [?]. Instead, we propose a second-
order statistical model for the vector of log-leaders `(j,k) ,
[`X1

(j,k), . . . , `XR
(j,k)]T 2 RR for multivariate multifractal

data. This model will be shown to be useful to estimate the
multifractality parameters in multivariate scenarios using a
Bayesian framework.

A. Direct model

Marginal distributions. In the univariate case, theoretical
arguments suggest that the marginal distributions of multireso-
lution coefficients of multifractal processes are approximately
log-normal [?]. This has been studied and confirmed nume-
rically for univariate wavelet leaders in [?], [?]. It is hence
natural to extend this modeling to the multivariate case R > 1.
Numerical simulations for synthetic multivariate multifractal
processes as defined in Section II-C, for large ranges of
sample sizes and multifractal parameter values, suggest that
the empirical distribution of the log-leaders `(j,k) can indeed
be well approximated by an R-variate Gaussian distribution.
Illustrative examples are given in Fig. 2, which shows gamma
plots (cf. e.g. [?], [?]) for scale j =4, d=2 and R= 2, 6, 10,
additional results can be found in the companion report [?].
Covariance. The theoretical results derived for univariate
random wavelet cascades in [?] suggest a linear asymptotic
decay for the auto-covariance of log-leaders, see also [?], [?]
for an empirical study for a larger class of single-variable
multifractal processes. Theoretical arguments available in, e.g.,
[?], [?] suggested similar linear asymptotic behavior also
for the cross-covariance terms for multivariate multifractal
processes. Inspired by that, we propose a generic covariance
model for log-leaders for multivariate multifractal processes,
with the key novel ingredient of a cross-term that describes
the covariance between log-leaders of different components,

Figure 1.4: Illustrations for multifractal correlation: synthetic 3-variate multifractal image (top

row, defined in [BDM01, WLA+18] and Section 1.4.1), magnitude of gradients (second row) and

zooms of the patch marked by red square (bottom row). X1 and X2 have multifractal correlation

ρmf(1, 2) = 0.99, and ρmf(1, 3) = ρmf(2, 3) = −0.99 with component X3. The linear correlation equals

zero for all components.

1.3.3 Negative regularity

The wavelet leader multifractal formalism presented above is only well defined for locally bounded

functions. However, it has been reported that a large number of real-world signals and images do not

satisfy this prerequisite, see, e.g., [WAJ+09, WRJA09]. In these cases, a practical solution consists

of constructing the multifractal formalism using the modified wavelet coefficients

dγX(j,k) = 2jγ/2dX(j,k), k ∈ Z, (1.24)

d
(m),γ
X (j,k) = 2jγd

(m)
X (j,k), k ∈ Z2, m = 1, 2, 3, (1.25)

with γ > 0 instead of dX(j,k) and d
(m)
X (j,k) in (1.9) and (1.10). The parameter γ can be chosen

sufficiently large to ensure that the multifractal formalism is properly defined. For precise definitions
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and details about the theoretical and practical consequences implied by this modification, the reader

is referred to [WAJ07, WRJA09, AJW15].

Another alternative solution is the use of a multifractal formalism based on p-leaders [JML+16,

LWA+16], which allow us to measure the regularity of non-locally bounded functions. This approach

is however beyond the scope of this thesis and shall be considered for future work.

1.4 Multifractal processes

The Mandelbrot cascades [Man99], consisting of split/multiply iterative constructions that induce

multifractal properties, are historical and benchmark models for multifractal processes. Multivariate

extensions of cascades were however barely considered and used (see a contrario [MSKF90]). Al-

ternatively, multifractal random walk (MRW) processes were constructed as more realistic models

for real world data [BDM01], notably with signed increments. Their construction is based on the

increments of fractional Brownian motion (fBm), the reference Gaussian self-similar process [ST94],

whose variance is modulated using an independent process whose properties mimic those of Man-

delbrot cascades, and hence impart their multifractality to the MRW [BDM01]. Its multivariate

extension was first considered in the unpublished work [BDM00] and used in [WLA+18, LAR+18] to

illustrate the nature of the information captured in the bivariate multifractal spectrum. Nowadays,

the multivariate multifractal random walk (MV-MRW) [BDM00, MDB00, WLA+18] has become a

canonical multifractal model process for multivariate data. In this thesis, we will use the MV-MRW

to illustrate the proposed approach and assess its performance.

1.4.1 Multivariate multifractal random walk

Definition. The construction of an MV-MRW for R components requires two collections of those

stochastic processes: (i) a collection of increments of fractional Brownian motions (G1(t), . . . , GR(t)),

which is determined by the self-similarity parameters H1, . . . ,HR and an R×R point covariance

Σss, with corresponding correlation coefficients ρss(r, r
′), and (ii) a collection of Gaussian processes
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(ω1(t), . . . , ωR(t)) with prescribed covariance function Σmf, with entries given by

[Σmf]r,r′ (k, l)=[Πmf]r,r′λrλr′ ln

(
T

||k − l||+ 1

)
, r, r′∈{1, . . . , R},

for ||k − l|| ≤ T − 1 and 0 otherwise, where T is an arbitrary integral scale, equal to the data

sample size in the rest of the manuscript. To simplify notations, we consider [Πmf]r,r = 1 and

[Πmf]r,r′ = ρmf(r, r
′). These processes are numerically synthesized as described in [HPA11]. Each

component Xr, r ∈ {1, . . . , R}, of an MV-MRW is then defined as the primitive of the product

Gre
ωr .

Multifractal properties. The multifractality parameters of an MV-MRW are given by c1(r) =

Hr + λ2r/2, c2(r, r) = −λ2r , and c2(r, r′) = −ρmf(r, r
′)λrλr′ [BDM00, WLA+18], whereas its higher-

order cumulants are equal to zero. Examples of realizations of a 2D MV-MRW for R = 3 are plotted

in Fig. 1.4.

Typical values of c2(r, r) for real-world data range from zero (no multifractality) down to c2(r, r) ≈
−0.25, which corresponds to an extremely intermittent signal that is rarely observed for a non-

pathological physical signal. This range of values −0.25 ≲ c2(r, r) ≤ 0 covers, however, a huge

range of observed intermittencies. Let us frame this with a statistical example: for c2(r, r) → 0,

MRW converges to Gaussian fBm, with no multifractality, whose moments of all orders exist; for a

multifractality parameter such that |c2(r, r)| = 0.08, the moments of (the increments of) MRW exist

only to order 5 (included); for larger values even less moments exist, which illustrates the strong

degree and variability of intermittency that is covered by the orders of magnitude considered for the

parameter c2(r, r).

1.5 Estimation procedures

In this section we provide a brief review of the state of the art of the most important estimators used

in MFA. We point out their main limitations and highlight the absence of efficient estimators in the

multivariate formulation.
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1.5.1 Estimators tied to specific models

Several parametric model-based methods have been proposed for univariate MFA and are briefly

recalled below.

These approaches include the generalized method of moments (GMM) proposed and studied, e.g.,

in [Lux07, Lux08]. In essence, the GMM formulates parameter inference as the solution (in the least

squares sense) of an over-determined system of equations derived from the moments of the data.

However, this method relies heavily on fully parametric models for the data and achieves, to the

best of our knowledge, only limited benefits in practical applications as shown in [BKM08, BKM13,

BADML12] for financial time series.

Maximum likelihood (ML) methods are classical in parameter inference, yet their use in this

context has been scarce and their definitions have been tied to specific instances of self-similar or

multifractal processes only, see, e.g., [WO92, Ber94]. The key difficulty for their use stems from the

intricate statistical nature of most of the multifractal models, characterized by highly non Gaussian

marginals, scale-free distributions and strong dependence that remain poorly studied to date. The

same remark is true for their wavelet coefficients and wavelet leaders [OW00, VWAJ10]. On the

other hand, the fBm (in 1D) and fractional Brownian fields (in 2D) are jointly Gaussian self-similar

processes with fully parametric covariance function suitable for ML and Bayesian estimation. For-

mulated in the spectral or wavelet domains, ML-based methods associated with 1D fBm process

have been investigated in [Ber94, CP06, MRS08]. For images, an ML estimator has been proposed

in [LOKS86], where the estimation problem is however reduced to a univariate formulation for the

rows/columns of the image there. In [LR12], an ML approach formulated in the time domain for a

specific 1D multifractal multiplicative cascade process was also proposed. Yet, this method strongly

relies on the particular construction of this process and cannot be easily accommodated to more

general classes of models or dimensions. In this context, a Bayesian method also has been introduced

in [WO92] but is only relevant for the analysis of 1D self-similar signals.
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1.5.2 Generic estimators

Linear regression. Regardless of the multiscale representations used, classical multifractal es-

timation essentially relies on log-log regressions. As suggested by (1.20) and (1.21), the estimation

of the coefficients c1 and c2 can be conducted by linear regressions of the sample cumulants across

scale j

ĉ1(r) =
1

ln 2

j2∑

j=j1

wjÊ[ℓXr(j, ·)], (1.26)

ĉ2(r, r
′) =

1

ln 2

j2∑

j=j1

wjĈov(ℓXr(j, ·), ℓXr′ (j, ·)), (1.27)

ρ̂mf(r, r
′) = − ĉ2(r, r

′)√
ĉ2(r, r)ĉ2(r′, r′)

, (1.28)

where Ê and Ĉov denote the sample mean and covariance, and Jj1, j2K is the range of scales such

that (1.20) and (1.21) hold, see, e.g., [WAJ07]. The linear regression weights wj have to satisfy the

usual constraints
∑j2

j=j1
jwj = 1 and

∑j2
j=j1

wj = 0. In this thesis, we consider the weighted linear

regression (WLR) [AFTV00, VAT03] defined by

wj =
1

nj

V0j − V 1

V0V2 − V 2
1

(1.29)

where

Vi =

j2∑

j=j1

jibj , i = 0, 1, 2. (1.30)

Estimations based on log-log regressions are appealing for their simplicity and low computational

cost. However, they have a limited practical estimation performance. In particular, these regressions

intrinsically require the data to have a large enough sample size (of order 2562 pixels for a single

channel image) in order to allow their dynamics to develop along a set of scales ranging over several

orders of magnitude. This challenge is significantly more severe for images than for signals: indeed,

modulo border effects of the wavelet transform, the number of available scales is proportional to the

logarithm of the number of samples for 1D signals and to the logarithm of the square root of the

number of pixels for an image. For instance, for a 1D signal with 256×256 = 65536 samples, j2 = 13
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or 14 scales can be computed, while j2 = 4 or 5 for an image of N × N = 256 × 256 pixels. As a

consequence, images of sizes smaller than 256 × 256 and thus image patches cannot be relevantly

analyzed in practice using (1.26) and (1.27).

In general, the regression-based methods lead to large estimation variances notably for limited

sample size data. This issue becomes a critical challenge in particular for the second (and higher)

order cumulants c2 and for ρmf, for example, in several bivariate settings as explored in [WLA+18,

ALW+19]. Moreover, these regressions can wrongly lead to positive values of c2(r, r) and, thus, to

complex values of ρmf when using (1.28) for their estimation. They can also give values outside the

interval of definition [−1, 1] and even infinite values.

Statistical model for log-leaders and Bayesian inference. Most recently, a proposed heuris-

tic semi-parametric model for the statistics of the log-leaders associated with univariate multifractal

signals and images permitted the formulation of Bayesian frameworks to estimate the parameter

associated with the univariate multifractal spectrum, see, e.g., [WDTA13, CWD+15]. Unlike the

methods mentioned in the beginning of this section, these approaches do not rely on the assump-

tion of specific model processes for the data. The developed Bayesian methodology showed excellent

estimation performance, outperformed the classical linear regression and permitted to process small

sample sized real-world data. In the same line of work, [WCA+18] proposed to conduct the analysis

within a hierarchical Bayesian model that jointly describes the collection of multifractality parame-

ters associated with the univariate multifractal spectra of different individual data components. This

method combining the univariate statistical model of log-leaders with suitable multivariate priors that

encode prior information on the univariate multifractal parameters. Moreover, it was shown to be

useful for real-world hyperspectral image processing. These practical contributions to the univariate

MFA were gathered in the PhD thesis [Com16].

All these works constitute an inspiration for this thesis. However, we here face a more ge-

neral modeling problem (a multivariate analysis that requires the modeling and validation of the

cross-component covariance behavior) and a different estimation problem (matrix-valued parameters

instead of single-variables). The only technically related points to our current work are the use of

a Gaussian model for the marginal distributions of log-leaders, the modeling of the auto-covariance
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(note, however, that we use a different and better suited parametrization in the present work) and

the strategies for evaluating the likelihood efficiently (using a Whittle approximation and data aug-

mentation).

To sum up, the practical multivariate MFA remained so far based on log-log linear regression

algorithms, which can be extremely challenging for small sample sizes that severely limits their

actual use in real-world applications. The present thesis proposes to empower the multivariate MFA

by complementing it with an adequate statistical modeling and Bayesian estimation framework.

1.6 Conclusions

In this chapter, we have introduced the main theoretical and practical concepts of MFA from the

univariate to the multivariate modeling and analysis of multifractal times series and images. The

main object of interest of MFA, the estimation of the multifractal spectrum, is achieved in practice via

a multivariate multifractal formalism. Wavelet leaders are the multiresolution quantities that yield

the current benchmark multifractal formalism, which will be used throughout this manuscript. The

multifractal properties of multivariate multifractal data can be well summarized by the log-cumulants

c1 and c2. The present thesis will focus on the joint estimation of second-order log-cumulants c2 (auto-

and cross-multifractality) and the multifractal correlation ρmf associated with the joint multifractal

spectrum of multivariate multifractal signals and images.
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2.1 Introduction

Multifractal analysis (MFA) has been successfully used in many signal and image processing ap-

plications (classification, detection, etc, see, e.g., [JAW15] for a review). However, these successes

have been limited to the analysis of univariate data. This limitation is crucial nowadays, given the

increasing number of applications where the acquired data are multivariate, e.g., multitemporal,

multispectral or multimodal images. MFA of multivariate data has been addressed in the past, but

still limited to the individual analysis of the data components, see, e.g., [WCA+18]. The theoretical

foundations of multivariate MFA have only recently been settled [JSW+19a, JSW+19b]. It aims to

enrich the data analysis by providing information potentially hidden in the coupling of the regularity

data components. Yet, the estimation of the parameters associated with the multivariate multifrac-

tal spectrum, the core of multivariate MFA, still relies on classical linear regression-based algorithms

which suffer from limited practical performance (see Section 1.5.2).

The main goal of this chapter is to provide practical tools for accurately performing multivariate

MFA. Due to the statistical nature of multifractal processes (strongly non-Gaussian and with intricate

dependence), the design of accurate estimators of multivariate multifractal parameters becomes very

challenging, in particular, when the sample size is small (e.g., notably including a range of biomedical

applications). Therefore, we require generic models that need as little assumptions as possible from

the data and also to design computationally efficient estimators to deal with large data sizes and

potentially many data components.

To this end, we propose to elaborate a semi-parametric model for the multivariate multiscale

statistics of the logarithm of wavelet leaders (referred to as log-leaders for short) and make use

of Bayesian inference for the corresponding estimation problem. The methodology adopted here

follows the strategies developed in [WDTA13, CWD+15, WCA+18] where Bayesian approaches were

proposed for the estimation of the multifractal parameters associated with individual components

of time series or images. However, here we face a different problem, the estimation of the matrix

parameters associated with the joint multifractal spectrum of multivariate signals and images, and

new methods and algorithms are developed to address it.



2.1 - Introduction 29

The remainder of this chapter is organized as follows.

In Section 2.2.1, we propose an empirical second-order statistical model for the log-leaders asso-

ciated with multiplicative cascades, exemplified by the multivariate multifractal random walk (MV-

MRW) process. This generic model combines the validation of a multivariate Gaussian distribution

with a multiscale covariance structure controlled by two symmetric positive definite (p.d.) matrix-

valued parameters containing the multifractality parameters of interest {c2(r, r′)}Rr,r′=1. This model

is the cornerstone of the inference methods developed in this thesis.

The evaluation of the likelihood arising from the proposed model requires the inversion of large

covariance matrices, which can become computationally and numerically challenging, even for small

sample sizes. To bypass this issue, we resort in Section 2.2.2 to a Whittle-type approximation [Whi53]

to efficiently evaluate the likelihood in the spectral domain. Consequently, a suitable model in the

Fourier domain is presented in Section 2.2.3 and a data augmentation strategy is used in Section 2.2.4

to express the Whittle approximation as the marginal distribution of an augmented likelihood leading

to a function that is separable with respect to (w.r.t.) the multifractal matrix-valued parameters to

be estimated.

Separability further permits to propose efficient estimation algorithms (Section 2.3) based on

relevant choices of prior distributions. In particular, we propose to study the use of the inverse

Wishart prior which is appealing for its conjugacy property that leads to closed-form conditional

distributions that simplifies the parameter inference. Its use however intrinsically induces dependence

between the parameter estimates and can lead to biased results. As an alternative, we also propose

to study the scaled inverse Wishart prior, which consist in a specific decomposition of the matrix-

valued parameters that enables us to incorporate semi-independently prior information to each matrix

element, yet at cost of not having closed-form expressions anymore.

In Section 2.3, we specify the resulting conditional distributions and use two different Markov

chain Monte Carlo (MCMC) algorithms for approximating the minimum mean square error (MMSE)

estimator associated with the resulting posterior distributions. The approximation of the MMSE

estimator is conducted by averaging of the generated symmetric p.d. matrix-valued samples. This

average is usually computed using the classical arithmetic mean associated with the Euclidean metric.
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As an alternative, we propose and study the use of a geometric mean associated with an appropriate

Riemannian metric.

Finally, the combination of the inverse Wishart/scaled inverse Wishart priors and arithmetic/

geometric means results in four different Bayesian estimators. Their performance for multivariate

multifractal estimation are assessed and compared against classical linear regressions, using exten-

sive Monte Carlo simulations relying on synthetic multivariate multifractal processes for signals and

images as defined in Section 1.4.1. Performance results, reported in Section 2.4 for different mul-

tifractal parameter settings and sample sizes, demonstrate a significant improvement in estimation

performance achieved at moderate extra computational cost. This opens the way for the practical

use of multivariate MFA on real-world data (see Chapter 5).

Developments and results presented in this chapter have been reported in [LWTA21, LWTA22b,

LWTA22a].

2.2 Statistical model for log-leaders

In this section, we introduce a novel empirical second-order statistical model for the vector of log-

leaders of multivariate multifractal processes (cf. Section 1.4.1)

ℓ(j,k) ≜ (ℓX1(j,k), . . . , ℓXR(j,k)) ∈ RR (2.1)

where ℓXr(j,k) is defined as in expression (1.19). This model will be shown to be useful to estimate

the multifractality parameters in multivariate scenarios using Bayesian frameworks.

2.2.1 Direct model

Marginal distributions. We first numerically investigate the joint distribution of the vector of

log-leaders (2.1) associated with synthetic R-variate MRW processes introduced in Chapter 1. In

the univariate case, theoretical arguments suggest that the marginal distributions of multiresolution

coefficients of multifractal processes are approximately log-normal [Man90]. This has been studied

and confirmed numerically for univariate wavelet leaders in [CWT+15a, WCA+18]. It is hence natural

to seek to extend this modeling to the multivariate case R > 1. Illustrative examples are given in
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Fig. 2.1, which shows gamma plots for scale j=4, d=2 and R= 2, 6, 8, 10, 20, 50 associated with 100

independent 210×210×R synthetic images generated using a 2D MV-MRW process with λr =
√
r/100

and ρmf(r, r
′) uniform in [0, 0.5].
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Figure 2.1: Gamma plots for the joint distribution (‘◦’) of the empirical log-leaders at scale j = 4,

associated with 100 independent 210×210×R synthetic images generated using a 2D MV-MRW, with

R=2, 6, 8, 10, 20, 50 (from left to right; λr =
√
r/100, ρmf(r, r

′) uniform in [0, 0.5]). The closer to the

red line, the better the approximation of the distribution by an R-variate normal distribution.

In short, a gamma plot is a generalization of the well-known QQ-plot to multivariate data and

enables a visual assessment of the fit between the ordered squared generalized distances, from the

smallest to largest, against the corresponding percentile of the chi-squared distribution. The closer

to the red line, the better the approximation of the distribution by an R-variate normal distribution.
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For further details on the assessment of the Gaussianity of multivariate data, the reader is referred

to [JW02, OA16].

Similar results, not reported here for space reasons, were consistently obtained for different sample

sizes, numbers of data components and multifractal parameter values, for both signals and images.

As an additional illustration for one real-world data scenario, Fig. 2.2 (center plots) shows the

corresponding gamma plots for a specific 256× 256 patch of two bands (3 and 21) of a hyperspectral

image acquired by the Hyspex hyperspectral scanner during the Madonna project [SFL+11]. All

these results suggest that, overall, the empirical distribution of the log-leaders ℓ(j,k) can indeed be

well approximated by an R-variate Gaussian distribution.
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Figure 2.2: On top, patches of size 256 × 256 for two bands (3 and 21) of a hyperspectral image

acquired by the Hyspex hyperspectral scanner during the Madonna project [SFL+11]. On center,

gamma plots for the empirical log-leaders marginal and joint distributions at scale j = 1, associated

with X = (X1, X2). On bottom, comparison between the proposed model (blue line) and the sample

covariance (red line) at scale j = 1.
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We furthermore propose the following model for the second-order statistics of the vector of the

log-leaders.

Covariance. The theoretical results derived for univariate random wavelet cascades in [ADKR03]

suggest a linear asymptotic decay for the auto-covariance of log-leaders, see also [CWT+15a, WCA+18]

for an empirical study for a larger class of single-variable multifractal processes. Theoretical argu-

ments available in, e.g., [MDB00, MSDA01] suggested similar linear asymptotic behavior also for the

cross-covariance terms for multivariate multifractal processes. Inspired by that, we propose a cova-

riance model for log-leaders of multivariate multifractal processes, with the key novel ingredient of a

cross-term that describes the covariance between log-leaders of different components, parametrized

by c2(r, r
′).

Model. Assuming that the vector of log-leaders associated with the signal/image under analysis

is stationary and isotropic, the R×R auto-covariance matrix of the vectors ℓ(j,k) at a fixed scale j

is approximated by a radially symmetric function Sj(ρ) with ρ ≜ ||∆k|| as

Cov(ℓ(j,k), ℓ(j,k +∆k)) ≈ Sj(ρ), (2.2)

with

Sj(ρ) = Σ1f1(j, ρ) +Σ2f2(j, ρ), (2.3)

where Σ1 and Σ2 are two R×R symmetric real-valued matrices containing the unknown multifractal

parameters to be estimated. Specifically, upon a change of sign, the elements of Σ1 equal the auto-

and cross-multifractality parameters c2, i.e., −[Σ1]r,r′ = c2(r, r
′), with r, r′ ∈ {1, . . . , R}. The matrix-

valued parameter Σ2 is used for model adjustment at small lags ρ ≤ 3, whose precise shape was found

not to depend on the multifractality parameters and was modeled by a simple single parameter affine

function f2(j, ρ). Specifically,

f1(j, ρ) = max

(
0,− ln

ρ+ 1

ρj + 1

)
, (2.4)

f2(j, ρ) = max

(
0, 1− ln(ρ+ 1)

ln 4

)
, (2.5)

where ρj = ⌊n1/dj /κ⌋, with κ = 5 (1D) and κ = 4 (2D) fixed using cross-validation. The operator ⌊·⌋
truncates to integer values and nj is defined in Chapter 1 as the total number of wavelet leaders of
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a single data component at scale j. For i ∈ {1, 2} and all scales j, fi(j, ·) is a non-negative function

and its shape resembles that used in the auto-covariance model described in e.g. [CWD+15], except

that the new parameterization proposed here ensures that no change of coordinates is necessary.

Therefore, assuming that Σ1 and Σ2 are p.d. ensures that Sj is positive semi-definite (p.s.d.) for all

scales j, as it is the sum of two p.s.d. matrices [HJ12].

As an illustrative example, the sample covariance at scale j = 2, averaged over 100 independent

copies of an 210 × 210 × 3 synthetic MV-MRW image with (λ1, λ2, λ3) = (
√
0.02,

√
0.04,

√
0.06) and

ρmf(1, 2)=ρmf(1, 3)=ρmf(2, 3)=0.5, is compared to the proposed covariance model Sj(ρ) in Fig. 2.3.

Each plot corresponds to each covariance matrix element for slice ρ = ||(0,∆k2)||. One can observe

a good fit for the zero lag (1.21) and the covariance decay (2.4) that convey information on the

multifractal parameters, and slightly larger discrepancies for lags 1 and 2 covered by the model

adjustment (2.5). Similar results have been obtained for a wide range of multifractal parameters

values, sample sizes and numbers of data components.

Likelihood. Let l(j,k) denote the centered vector of the log-leaders at a fixed scale j and position

k. The vector

lj ≜ (l(j,k1)
T , . . . , l(j,knj )

T ) ∈ RRnj (2.6)

stacks all the vectors {l(j,k)} at scale j organized in lexicographic order. The likelihood of lj w.r.t.

Γ = (Σ1,Σ2) (2.7)

is given by

p(lj | Γ) ∝ (detΞj)
− 1

2 exp

(
−1

2
lTj Ξ

−1
j lj

)
, (2.8)

where Ξj = Σ1⊗F 1j+Σ2⊗F 2j is an Rnj×Rnj covariance matrix with [F ij ]u,v = fi(j, ||ku−kv||),
i = 1, 2. For any scale j, the positive definiteness of F ij can be assessed numerically to check that

Σi ⊗ F ij and Ξj are also p.d.

We assume here that lj and lj′ at different scales j
′ ̸= j are independent. Note that the theore-

tical results in [ADKR03] and our numerical results suggest that the interscale dependence between

log-leaders could also be described by a model reminiscent of (2.2), with proper adjustments for
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Figure 2.3: Comparison between the proposed model (blue line) and the sample covariance (red line)

at scale j = 2, averaged over 100 independent copies of an 210 × 210 × 3 synthetic MV-MRW image

with (λ1, λ2, λ3) = (
√
0.02,

√
0.04,

√
0.06) and ρmf(1, 2)=ρmf(1, 3)=ρmf(2, 3)=0.5. Plots correspond

to each covariance matrix element for slice ρ = ||(0,∆k2)||.

decimation. This work assumes independence to simplify the proposed model and reduce the com-

putational cost. The results reported in Section 2.4 demonstrate that this assumption is reasonable

and leads to state of the art performance.

Together with the above model, the likelihood of the vector l = (lTj1 , . . . , l
T
j2) of the log-leaders at

scales j ∈ Jj1, j2K (Jn1, n2K denotes the set of integers ranging from n1 to n2) can be written as

p(l | Γ) =
j2∏

j=j1

p(lj | Γ),

∝
j2∏

j=j1

(detΞj)
− 1

2 exp

(
−1

2
lTj Ξ

−1
j lj

)
. (2.9)
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2.2.2 Whittle approximation

The likelihood (2.9) is a mixture of Gaussians with large (Rnj × Rnj) full covariance matrices

Ξj requiring the inversion of these matrices for its numerical evaluation. For large sample sizes,

this inversion can become computationally and numerically challenging due to growing condition

number. Even when the inversion is not problematic, one may want to use a faster solution based

on an approximation. Therefore, we make use of a Whittle approximation [Whi53] to approximate

the time-domain likelihood (2.9) in the frequency domain by a likelihood with a simpler structured

covariance matrix as follows

p(l | Γ) ≈
j2∏

j=j1

pW (lj | Γ), (2.10)

with

pW (lj | Γ) ∝
∏

m∈Ij
(detRj,m)−1 exp

(
−zHj,mR−1

j,mzj,m

)
. (2.11)

The coefficients zj,m ∈ CR denotes the R-variate normalized discrete Fourier coefficient of l(j,k) at

frequency ωj,m =
2πm

n
1/d
j

,

zj,m =
1

n
1/d
j

∑

k∈J1,n1/d
j Kd

l(j,k) exp (−ikTωj,m),
(2.12)

where m ∈ Ij ≜ J⌊(−n1/dj − 1)/2⌋, n1/dj − ⌊n1/dj /2⌋Kd \ {0}. Moreover, the power spectral matrix Rj,·

forms a Fourier pair with the covariance matrix Sj,· [SOLE17], which can be approximated using a

discrete Fourier transform of fi(j, ·), as follows

Rj,m = Σ1g1(ωj,m) +Σ2g2(ωj,m), (2.13)

where

gi(ωj,m) =
∑

k∈J−n1/d
j ,n

1/d
j Kd

fi(j, ||k||) exp (−ikTωj,m), i = 1, 2. (2.14)

For i ∈ {1, 2} and any scale j, fi(j, ·) is a non-negative even function. Thus, gi(ωj,m) is real-valued

and strictly positive. Since Σ1 and Σ2 are assumed to be p.d., Rj,· is a real-valued p.d. matrix for

any scale j.
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Figure 2.4: Comparison between the sample power spectral matrix (red line), averaged over 100

independent realizations of a 2D MV-MRW for R = 2, N = 215, (λ1, λ2) = (
√
0.04,

√
0.08) and

ρmf(1, 2) = 0.6, and the proposed model (blue line) obtained using (2.13). Plots correspond to slice

ρ̃ = ||(0,m2)||.

The coefficient zj,m and the power spectral matrix Rj,m have a central symmetry property since

the log-leaders l(j,k) and the functions fi(j, ·) are real-valued. Thus, the product in (2.11) can be

taken over the positive half of the total frequency grid.

Fig. 2.4 illustrates the fit between the models used for the power spectral densities (PSDs) and

the cross power spectral density (CPSD) (computed using (2.13)) and their estimates. Simulation

results obtained for a wide range of multifractal parameters evidence that the proposed model yields

an excellent fit at low frequencies but larger deviation from the estimated (C)PSDs at high frequencies

because of the coarser modeling of short time lags discussed above and potential aliasing due to the

slow decay of the correlation function. Therefore, we propose a high-frequency cutoff introducing a

bandwidth parameter η to control the fraction of the spectral grid that is actually used. Thus, the

product in (2.11) is conducted using m ∈ I†j = {m ∈ Ij : 0 < ρ̃ ≤ √
η⌊n1/dj /2⌋} with ρ̃ ≜ ||m||.

The value for η is obtained using cross validation in order to meet a bias-variance trade-off of the

estimates. In particular, we set η = 1 (1D) and η = 0.25 (2D) in this thesis, see Section 2.4.1.
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2.2.3 Model in the Fourier domain

Expression (2.11) can be interpreted as a spectral likelihood, see, e.g., [GF14, BR12, Cha97], lead-

ing to model the Fourier coefficients zj,m by independent random vectors with a non-degenerated

centered circular-symmetric complex Gaussian distribution CN (0,Rj,m). To simplify notation, we

replace the sub-index ·j,m of Section 2.2.2 by a single sub-index ·s defined as a one-to-one func-

tion of (j,m) on the set {1, . . . ,M}, where M is the number of elements of the set {(j,m) : j =

Jj1, j2K and m ∈ I†j }. Therefore, the density of the spectral observation vector z = (zT1 , . . . ,z
T
M ) ∈

CMR, can be written as

p(z | Γ) =
M∏

s=1

p(zs | Γ)

∝
M∏

s=1

(detRs)
−1 exp(−zHs R

−1
s zs), (2.15)

where Rs = Σ1g1,s +Σ2g2,s, with gi,s = gi(ωs) and i = 1, 2.

2.2.4 Data augmentation

Model (2.15) is simple and cheap to evaluate numerically compared to (2.9). However, its main

inconvenience regarding the estimation of Σ1 and Σ2 is that these matrices are additively tied

together in Rs, so that it is not possible to design conjugate priors leading to simple conditional

distributions (that will be used in the estimation algorithm). To bypass this difficulty, we use data

augmentation (see, e.g., [TW87, DM01] for more details) and introduce a complex-valued vector of

latent variables u = (uT1 , . . . ,u
T
M ) ∈ CMR as the hidden mean of the observed data z

z | u,Σ1 ∼ CN (u,Σ1 ⊗G1), u | Σ2 ∼ CN (0,Σ2 ⊗G2), (2.16)

where Gi ≜ diag(gi,1, . . . , gi,M ), for i = 1, 2. This leads to the augmented likelihood

p(z,u | Γ) = p(z | u,Σ1)p(u | Σ2),

∝ (detΣ1)
−M exp

(
−1

2
Tr(Σ−1

1 Φ̃1)

)
(detΣ2)

−M exp

(
−1

2
Tr(Σ−1

2 Φ̃2)

)
, (2.17)
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with

Φ̃1 =2

M∑

s=1

(zs − us)(zs − us)
Hg−1

1,s , (2.18)

Φ̃2 =2

M∑

s=1

usu
H
s g

−1
2,s . (2.19)

By construction, the likelihood (2.15) is obtained by marginalizing (2.17) w.r.t. u, i.e.,

p(z | Γ) =
∫
p(z,u | Γ)du. (2.20)

The advantage of using (2.17) w.r.t. (2.15), is that, in (2.17), the matrix-valued parametersΣ1 andΣ2

are no longer additively tied but conditionally independent. Several estimators for Γ can be defined

based on the likelihood (2.17) (cf. Section 2.3 and Chapter 3). In a Bayesian formulation, the shape

of (2.17) allows (scaled) inverse Wishart priors to be used as (semi-) conjugate priors for Σ1,Σ2,

which will simplify the estimation of these matrix-valued parameters using Bayesian inference.

2.3 Bayesian estimation

The matrices Σ1 and Σ2 of the model introduced above can be estimated using Bayesian estima-

tors. Bayesian inference consists in assigning prior distributions to the unknown model parameters

and estimating them using Bayes’ theorem. The estimation of covariance matrices using Bayesian

estimators has been considered in several studies, motivated by the regularizing effect of the prior

distribution (see, e.g., [SL05]). This section presents Bayesian approaches for the estimation of Σ1

and Σ2 for an arbitrary number R of data components.

2.3.1 Bayesian models

a) Likelihood

The proposed Bayesian models are based on the augmented likelihood (2.17), which is the product

of two complex Gaussian distributions having Σ1 and Σ2 as R×R covariance matrices.
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b) Priors

Inverse Wishart. The natural conjugate prior forΣi is the inverse Wishart (IW) prior [BMM00],

i.e., Σi ∼ IW(νi,Λi). It has the probability density function (pdf)

p(Σi|νi,Λi) ∝ (detΣi)
− 1

2
(νi+R+1) exp (−1

2
Tr(ΛiΣ

−1
i )), (2.21)

where νi ∈ R is the degree of freedom and Λi is an R × R real-valued p.d. scale matrix. The IW

prior is proper for νi > R − 1 and its mean E[Σi] = Λi/(νi − R − 1) only exists if νi > R + 1. The

conjugacy property of this prior facilitates the parameter inference, since the corresponding condi-

tional distributions have closed-form, which simplifies the use of MCMC algorithms to numerically

evaluate the Bayesian estimators. However, the variance parameters in Σi are only controlled by νi

and thus do not allows us to incorporate accurate prior information for the different variance compo-

nents. Moreover, if νi is larger than one, the variance estimates are biased because the implied scaled

distribution on each individual variance has extremely low density in a region near zero [Gel06].

Finally, the IW prior imposes a dependency between the correlations and the variances which is not

a desired property (larger variances are associated with absolute values of the correlations near one

while small variances are associated with correlations near zero [TGM+11]).

Scaled inverse Wishart. An alternative to the IW prior is the scaled inverse Wishart (SIW)

prior proposed in [OZ08]. The idea is to use a decomposition of the matrix Σi to allow the priors

of the standard deviations and correlation coefficients to be defined semi-separately, providing more

flexibility than the IW prior. In essence, Σi is modeled using two independent random matrices Qi

and ∆i defined below as

Σi ≜ ∆iQi∆i, (2.22)

where Qi ∼ IW(νi,Λi) and ∆i is a diagonal matrix such that its diagonal elements δir = [∆i]r,r are

independent and log-normally distributed, i.e., δir ∼ LN (βir, α
2
ir) with pdf

p(δir|βir, α2
ir) ∝

1

δirαir
exp

(
−(ln δir − βir)

2

2α2
ir

)
, (2.23)

for i ∈ {1, 2} and r ∈ {1, . . . , R}. Yet, the induced flexibility comes at the price of having to deal

with non-closed-form expressions for the conditional distributions, which makes parameter estimation



42 Chapter 2 - Multivariate statistical model and Bayesian estimation

more complicated.

c) Posterior distribution

The posterior distribution associated with the proposed Bayesian models for Γ and the latent vector

u can be computed from Bayes’ theorem

p(Γ,u | z) ∝ p(z,u | Γ)p(Γ)

∝ p(z,u | Γ)p(Σ1)p(Σ2). (2.24)

Finally, since the vector of latent variables u is not interesting for MFA purposes and is here in-

troduced for computational convenience only, we consider the marginal minimum mean square error

(MMSE) and maximum a posteriori (MAP) estimators respectively defined by

Γ̂
MMSE

= E[Γ | z], (2.25)

and

Γ̂
MAP

= argmax
Γ

p(Γ | z), (2.26)

where the expectation and maximization are taken w.r.t. the marginal posterior distribution

p(Γ | z) =
∫
p(Γ,u | z)du ∝ p(z | Γ)p(Γ). (2.27)

Those estimators are difficult to be expressed using simple closed-form expressions. As an alter-

native, the computation of the MAP estimator using an Expectation-Maximization (EM) algorithm

will be studied in Chapter 3. In what follows, we explain how the MMSE estimator can be computed

via MCMC algorithms [RC05].

2.3.2 Estimation algorithms

We consider Gibbs samplers to approximate the MMSE estimator (2.25), consisting of generating

a large number Nmc of samples {Σ(λ)
1 ,Σ

(λ)
2 }Nmc

λ=1 according to the conditional distributions of (2.24)

when using an IW prior for Σi or its scaled version. These samples will then be used to approximate

the MMSE estimator by computing the average of p.d. matrices. We will study two different ways

to compute the matrix average.
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a) Two-stage Gibbs sampler using an IW prior

Assuming Σi ∼ IW(νi,Λi) for all i ∈ {1, 2}, the posterior (2.24) can be expressed as

p(Γ,u | z) ∝(detΣ1)
− 1

2
(2M+ν1+R+1) exp

(
−1

2
Tr
(
Σ−1

1 (Λ1 + Φ̃1)
))

(detΣ2)
− 1

2
(2M+ν2+R+1) exp

(
−1

2
Tr
(
Σ−1

2 (Λ2 + Φ̃2)
))

. (2.28)

Thus, the conditional distribution of Σi | z,u is

p(Σi | z,u) ∝ (detΣi)
− 1

2
(2M+νi+R+1) exp

(
−1

2
Tr(Σ−1

i (Λi + Φ̃i))

)
, (2.29)

which is the following IW distribution:

Σi | z,u ∼ IW(νi + 2M,Λi + Φ̃i). (2.30)

The conditional distribution of u | z,Γ can be shown to be the following complex normal distribution:

u | z,Γ ∼ CN (µ, Σ̃), (2.31)

where Σ̃ is a block diagonal matrix whose sth block is defined as

Σ̃s =
[
(g1,sΣ1)

−1 + (g2,sΣ2)
−1
]−1

, (2.32)

and µ = (µT1 , . . . ,µ
T
M ) ∈ CMR with

µs = Σ̃s(g1,sΣ1)
−1zs. (2.33)

Using the conditional distributions (2.30) and (2.31), Algorithm 1 summarizes the two steps of the

proposed Gibbs sampler used to generate samples according to the posterior of interest (2.24) when

using IW priors.

b) Metropolis-within-Gibbs sampler using SIW prior

The SIW prior used for Σi is defined by independent priors for the scale parameters {δir}Rr=1 and

the matrix parameter Qi [OZ08]:

p(Σi) = p(Qi)
R∏

r=1

p(δir). (2.34)
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Algorithm 1 Two-stage Gibbs sampler using IW prior

1: Initialization:

2: Set u = 0 and draw Σ
(0)
i ∼ IW(νi,Λi) for i = 1, 2

3: MCMC iterations:

4: for λ = 1 : Nmc do

5: Step 1: Sample parameters Γ

6: for i = 1 : 2 do

7: Draw Σ
(λ)
i from the IW distribution (2.30)

8: end for

9: Step 2: Sample latent vector u

10: Draw u(λ) according to the CN distribution (2.31)

11: end for

12: return {Σ(λ)
1 ,Σ

(λ)
2 }Nmc

λ=1

Thus, the posterior distribution (2.24) can be rewritten after substituting both Σ1 and Σ2 by their

decompositions (2.22) as

p(Γ,u | z) ∝ p(z,u | Γ)
2∏

i=1

p(Qi)

R∏

r=1

p(δir)

∝ (det∆1)
−2M (detQ1)

− 1
2
(2M+ν1+R+1) exp

(
−1

2
Tr
(
Q−1

1 (Λ1 +∆−1
1 Φ̃1∆

−1
1 )
))

(det∆2)
−2M (detQ2)

− 1
2
(2M+ν2+R+1) exp

(
−1

2
Tr
(
Q−1

2 (Λ2 +∆−1
2 Φ̃2∆

−1
2 )
))

2∏

i=1

R∏

r=1

1

δirαir
exp

(−(ln δir − βir)
2

2α2
ir

)
. (2.35)

For i = {1, 2}, assuming Qi ∼ IW(νi,Λi), the following result is obtained

p(Qi | ∆i, z,u) ∝ (detQi)
− 1

2
(2M+νi+R+1) exp

(
−1

2
Tr(Q−1

i (Λi +∆−1
i Φ̃i∆

−1
i ))

)
, (2.36)

which means that the conditional distribution of Qi | ∆i, z, u is the IW distribution:

Qi | ∆i, z,u ∼ IW(νi + 2M,Λi +∆−1
i Φ̃i∆

−1
i ). (2.37)
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Similarly, after some manipulations of (2.24), the log-conditional posterior distribution of δir (rth

diagonal element of ∆i) can be determined:

ln p(δir| Qi, {δir′}Rr′=1,r′ ̸=r, z,u) =− (2M + 1)ln δir − (ln δir − βir)
2(2α2

ir)
−1 − [Q−1

i ]r,r[Φ̃i]r,r(2δ
2
ir)

−1

− δ−1
ir

∑

r′ ̸=r
δ−1
ir′ [Q

−1
i ]r,r′ [Φ̃i]r,r′ + constant, (2.38)

which is not a standard distribution. To sample according to (2.38) a Metropolis-Hastings random

walk procedure is used for updating each component δir in turn. The proposal distribution is chosen

here as a real-valued Gaussian distribution whose location parameter is the current value δ◦ir and the

scale parameter σ2δir is adaptively chosen to ensure an acceptance rate between 0.4 and 0.6 [RC05]. It

is interesting to mention here that the Metropolis steps do not significantly reduce the convergence

speed of the sampler since they only apply to R parameters. The draws of Qi and {δir}Rr=1 are finally

used to generate samples of Σi using (2.22).

Finally, the conditional distribution of u | Γ, z is the same as in (2.31). Algorithm 2 summarizes

the different steps of the proposed sampling method.

c) Approximation of the MMSE estimator

The chosen prior distributions for Σ1 and Σ2 guarantee that the sampled matrices are p.d. along

the iterations. Finally, after a burn-in period, where the first Nbi samples are discarded, the MMSE

estimator of Σi is approximated by averaging over the set of real-valued p.d. matrices {Σ(λ)
i }Nmc

λ=Nbi+1,

where Σ
(λ)
i is the λth matrix generated by the sampler. The average over the space of the real-valued

p.d. matrices can be computed using the arithmetic mean associated with the Euclidean metric,

Σ̂
A

i =
1

Nmc −Nbi

Nmc∑

λ=Nbi+1

Σ
(λ)
i , (2.39)

which is by construction also p.d.

Alternatively, we have proposed to use the geometric mean (also called Karcher or Riemannian

mean) associated with a Riemannian metric, see, e.g., [Moa05] for details. The Karcher mean Σ̂
K

i is
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Algorithm 2 Metropolis-within-Gibbs sampler using SIW prior

1: Initialization:

2: Set u = 0 and draw Q
(0)
i ∼ IW(νi,Λi) and δ

(0)
ir ∼ LN (βir, α

2
ir) for all i = 1, 2 and r = 1, . . . , R

3: MCMC iterations:

4: for λ = 1 : Nmc do

5: Step 1: Sample parameters Γ

6: for i = 1 : 2 do

7: Draw Q
(λ)
i from the IW distribution (2.37)

8: Set δ◦ir = δ
(λ−1)
ir for all r = 1, . . . , R

9: for r = 1 : R do

10: Draw δ⋆ir ∼ N (δ◦ir, σ
2
δir

) and µ ∼ U[0,1]

11: Compute a = min

{
1,
p(δ⋆ir | {δ◦ir}Rr=1,r ̸=r′ , βir, σ

2
ir)

p(δ◦ir | {δ◦ir}Rr=1,r ̸=r′ , βir, σ
2
ir)

}
using (2.38)

12: Set δ
(λ)
ir =




δ⋆ir if µ < a

δ◦ir otherwise

13: end for

14: Set ∆
(λ)
i = diag(δ

(λ)
i1 , . . . , δ

(λ)
iR )

15: Compute Σ
(λ)
i = ∆

(λ)
i Q

(λ)
i ∆

(λ)
i

16: end for

17: Step 2: Sample latent vector u

18: Draw u(λ) according to the CN distribution (2.31)

19: end for

20: return {Σ(λ)
1 ,Σ

(λ)
2 }Nmc

λ=1
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defined as the unique p.d. symmetric matrix-valued solution to the nonlinear matrix equation

Nmc∑

λ=Nbi+1

ln
(
(Σ

(λ)
i )−1X

)
= 0. (2.40)

This way of building the estimator takes advantage of the geometry of the problem, i.e., that the

estimators of Σ1,Σ2 should be p.d. matrices. Unfortunately, due to the noncommutative nature of

the matrix multiplication, in general, it is not possible to obtain the geometric mean in closed-form

for more than two matrices [Moa05]. As an alternative, (2.40) can be solved using the iterative

algorithm proposed in [BI13]. Unlike the arithmetic mean, the Karcher mean has the interesting

property that it commutes with the matrix inverse [Moa05].

Note that the estimation of the multifractal correlation ρmf conducted by replacing the c2 coeffi-

cients in (1.23) by their estimates as in (1.28), is equivalent to compute the correlation coefficient of

the covariance matrix Σ1, which ensures that −1 ≤ ρmf ≤ 1.

Below, we denote by SIW(·) and IW(·) the MMSE estimators resulting from using the IW (2.30-

2.31) or SIW priors (2.31-2.37-2.38), and use the sub-indexes (·)A and (·)K for the arithmetic and

Karcher means.

2.4 Numerical experiments

We have introduced in the previous sections a Bayesian approach for the estimation of the second-

order log-cumulants c2 (auto- and cross-multifractality parameters) and the multifractal correlation

ρmf relying on a multivariate parametric statistical model for the log-leaders of multivariate signals

and images. In this section, we numerically investigate the performance of the IWA, IWK, SIWA,

SIWK estimators using Monte Carlo simulations for the canonical multifractal process as defined in

Section 1.4.1, for different sample sizes and a large range of values of the multifractal parameters.

The different Bayesian estimators are compared to the current standard and benchmark estimators

(defined in Section 1.5.2, cf., (1.27) and (1.28)) relying on linear regressions. Those are generically

referred to as WLR estimators in what follows.
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2.4.1 General setting

Wavelet transform. Wavelet analysis is conducted with a Daubechies’ least asymmetric wavelet

[Dau88], a common choice for scaling analysis, with Nψ = 3 vanishing moments and γ = 0 in (1.24)

and (1.25).

Analysis scales. One commonly discards the finest scale j = 1 to remove corruption by improper

initialization of the discrete wavelet transform [VTA00], and the last scales because they contain

a statistically insignificant number of wavelet coefficients. Unless specified otherwise, the range of

scales have been adjusted as j1 = 2 to j2 = log2N − 4, see, e.g., [WAJ07, WRJA09].

Prior specification. The hyperparameters of the prior distributions are set to νi = R + 2,

Λi = IR (R × R identity matrix), (βir, α
2
ir) = (0.1, 1), for i ∈ {1, 2} and r ∈ {1, . . . , R}, see, e.g.,

[OZ08, ANS14]. As an illustrative example for R = 2, Fig. 2.5 (left plot) shows the empirical

cumulative distribution function (cdf) associated with 2000 samples of the multifractal parameter

−c2(1, 1) (the first diagonal element of Σ1) when using the above setting. We can observe that

these choices lead to a reasonable amount of prior probability mass (≈ 1/4 − 1/3) assigned to a

conservatively large range for multifractality −0.25 ≲ c2(r, r) ≤ 0 (see Fig. 2.5 (left plot)), yet

the priors are sufficiently non-informative so as not to bias our performance analysis. Concerning

the multifractal correlation parameter ρmf, our choice of priors and parameter values induce a flat,

unimodal distribution on the interval [−1, 1], as can be observed in Fig. 2.5 (right plot).

Gibbs sampler parameters. The parameters for the Gibbs samplers are set to Nmc = 2000 for

the length of the Markov chains and Nbi = 1000 for the number of samples that are discarded in the

burn-in period. These values were found to be suitable to ensure the convergence of the proposed

estimation algorithms and small variance for the approximation of the estimators, see, e.g., [RC05].

Performance assessment. The four Bayesian estimators (combining IW/scaled IW priors and

arithmetic/Karcher means respectively) are numerically verified for 100 independent realizations of

the synthetic multivariate multifractal processes described in Section 1.4.1 for different sample sizes,

numbers of data components and a large range of values of multifractal parameters. We compare

the estimates θ̂ of θ ∈ {{−c2(r, r′)}Rr,r′=1, {ρmf(r, r
′)}Rr,r′=1,r ̸=r′} obtained by Bayesian estimation to

those obtained using the WLR estimator. The performance is quantified using the sample mean, the
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Figure 2.5: Empirical cumulative distribution function associated with 2000 samples of the multi-

fractal parameter −c2(1, 1) (left) and the multifractal correlation parameter ρmf(1, 2) (right) as the

first diagonal element and the correlation coefficient of Σ1, which is distributed according an IW or

an SIW distribution.

bias, the sample standard deviation (STD) and the root mean square error (RMSE) of the estimates

averaged across realizations

m(θ̂) = Ê[θ̂], b(θ̂) = m(θ̂)− θ, s(θ̂) =

√
V̂ar[θ̂] and r(θ̂) =

√
b(θ̂)2 + s(θ̂)2, (2.41)

where Ê[] and V̂ar[] are the sample mean and the sample variance.

Bandwidth parameter. The values of η for the high-frequency cutoff, mentioned in Section 2.2.2,

are obtained using cross validation. Specifically, we studied the global RMSE behavior of the esti-

mates using numerical simulations for a large range of multifractal parameter values. Fig. 2.6 shows

illustrative examples using 100 independent copies of bivariate synthetic multifractal signals of size

210 × 2 (left plot) and bivariate synthetic multifractal images of size 29 × 29 × 2 (right plot), with

ρmf(1, 2) = 0.5, c2(1, 1) = c2(1, 2) = −0.02 and c2(2, 2) = −0.08. One can observe that the range

of values of η for which the RMSE is the smallest are different for times series and for images

(0.75 ≤ η ≤ 1 (1D) and η ≤ 0.25 (2D), respectively). However, the estimation is robust w.r.t. the

precise choice of η within these ranges.
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Figure 2.6: RMSE performance of the estimates of the multifractal parame-

ters c2(1, 1), c2(1, 2), c2(2, 2) obtained using IWA and SIWA algorithms for η ∈
{0.1, 0.18, 0.25, 0.33, . . . , 0.7, 0.78, 0.85, 0.93, 1}. These estimates were obtained from 100 inde-

pendent 210 × 2 synthetic multifractal signals (left plot) and 210 × 210 × 2 synthetic multifractal

images (right plot), with ρmf(1, 2) = 0.5, c2(1, 1) = c2(1, 2) = −0.02 and c2(2, 2) = −0.08.

2.4.2 Estimation performance

Our experiments aim at evaluating the estimation performance of the proposed algorithms depending

on the values of the multifractal parameters, sample sizes and numbers of data components. We

conducted a detailed performance analysis for the bivariate case (R = 2), and a study for R ∈
{1, ..., 10}. The parameters of the MV-MRW process for R = 2 are set to (H1, H2) = (0.72, 0.72),

λ1 =
√
0.02, λ2 ∈ {

√
0.02,

√
0.04,

√
0.06,

√
0.08,

√
0.1)}, ρss(1, 2) = 0 (uncorrelated data components)

and ρmf(1, 2) ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Sample sizes are fixed to N = 212 (1D signals) and N ×N =

29 × 29 (2D square images) when not mentioned otherwise.

Figures 2.7, 2.8, 2.9 and 2.10 summarize the estimation performance of WLR, SIWA and IWA

estimators for 1D (signals) and 2D (images). We further compare the arithmetic mean and Karcher

mean for a small sample size where their performance was found to be interesting.

a) Linear regression vs. Bayesian estimation

We observe that while bias is in general smaller for WLR than for Bayesian estimators, the latter

produce smaller STD for all multifractality and multifractal correlation parameters. Specifically,

WLR has 2 − 7 times larger STD than the Bayesian estimators for c2 parameters and 5 − 27 times
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larger STD for ρmf. Consequently, the RMSE values of the Bayesian estimators are smaller than

those of WLR for c2 and ρmf, respectively. These RMSE reductions are larger for large values of the

multifractality parameter c2(2, 2), and they are especially important for small values of ρmf (up to a

factor 14). Such significant performance gains for the proposed Bayesian estimators are observed for

both time series (1D) and images (2D).

b) Comparison of priors

Figures 2.7, 2.8, 2.9 and 2.10 show that the use of the scaled inverse Wishart prior globally leads

to smaller bias, but larger STD than the inverse Wishart prior. This was expected because of the

extra modeling flexibility of the scaled prior with a larger number of parameters. This bias-variance

trade-off leads in many cases to better estimation performance (i.e., smaller RMSE) for SIWA. In par-

ticular, SIWA always yields better estimation performance than IWA for the multifractal correlation

parameter ρmf(1, 2), and for the univariate parameters c2(1, 1) and c2(2, 2) when −c2(2, 2) < 0.05,

for which IWA yields RMSE values up to twice as large as those for SIWA.
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Figure 2.7: 1D MV-MRW estimation performance for R = 2, N = 212, ρmf(1, 2) = 0.5 and −c2(2, 2) ∈
{0.02, 0.04, 0.06, 0.08, 0.1}
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Figure 2.8: 1D MV-MRW estimation performance for R = 2, N = 212, ρmf(1, 2) ∈
{0.1, 0.3, 0.5, 0.7, 0.9}
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Figure 2.9: 2D MV-MRW estimation performance for R = 2, N = 29, ρmf(1, 2) = 0.5 and −c2(2, 2) ∈
{0.02, 0.04, 0.06, 0.08, 0.1}
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Figure 2.10: 2D MV-MRW estimation performance for R = 2, N = 29, ρmf(1, 2) ∈
{0.1, 0.3, 0.5, 0.7, 0.9}
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c) Estimation performance vs. sample sizes

Fig. 2.11 summarizes the RMSE performance of WLR, SIWA, SIWK, IWA and IWK estimators for

synthetic multifractal N×N×2 images as a function of sample sizes N ∈ {26, 27, 28, 29, 210, 211}. The
coarser scale is set as j2 ∈ {3, 4, 5, 6, 7, 8} and the other parameters are set as in the above sections.

For all estimators, the RMSE decreases when the sample size N increases, as expected. However, the

RMSE values are significantly smaller for Bayesian estimators when compared to WLR. The latter

performs worse when the sample size is small (N < 28), explained by its large estimate variances.

As above, SIW(·) leads to smaller RMSE values than IW(·), and significantly so for multifractality

parameters c2(2, 2) and c2(1, 1). For large sample sizes N ≥ 210, all estimators tend to have a similar

behavior in terms of RMSE. Similar results and conclusions are obtained for 1D time series.

d) Comparison of averages

Fig. 2.11 shows that the estimators using Kacher mean and arithmetic mean lead to similar RMSE

performance, except for very small sample image size (26 × 26). In particular, the estimator using

the IW prior and Kacher mean shows a slightly improved estimation performance compared to its

counterpart using the classical arithmetic mean. This is not the case for the SIW prior.

We further compare SIWA, SIWK, IWA and IWK estimation performance for 1D bivariate MRW

processes for small sample size N = 26 and for several multifractality settings, i.e., −c2(2, 2) ∈
{0.02, 0.04, . . . , 0.1}. Results are summarized in Table 2.1 and lead to the following conclusions.

The estimators SIW(·) have significantly reduced BIAS for c2(1, 1) and c2(2, 2), and similar BIAS

for c2(1, 2) when compared to IW(·). This conclusion is valid for all levels of multifractality for c2(2, 2).

Moreover, the STD values are smaller for SIW(·) than for IW(·), leading overall to significantly reduced

RMSE for SIW(·) in all cases. As far as the matrix averages are concerned, smaller RMSE values are

consistently obtained when the Karcher mean is used to approximate the MMSE estimator.

Conversely to the 2D scenario, for small sample sizes, the estimator with best performance is the

MMSE estimator that combines the SIW prior with Karcher mean, with up to 5 times smaller RMSE

values.
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Figure 2.11: RMSE performance for 2D MV-MRW with R = 2, ρmf(1, 2) = 0.5, c2(1, 1) = c2(1, 2) =

−0.02, c2(2, 2) = −0.08, N = {26, 27, 28, 29, 210, 211}, j1 = 2 and j2 ∈ {3, 4, 5, 6, 7, 8}.
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Table 2.1: 1D MV-MRW estimation performance for N = 26, R = 2 and −c2(2, 2) ∈
{0.02, 0.04, 0.06, 0.08, 0.1} (best results in bold).

−c2(2, 2) 0.02 0.04 0.06 0.08 0.1
−
c 2
(1
,1
)
=

0
.0
2

B
IA

S SIWA 0.0252 0.0266 0.0299 0.0278 0.0237

SIWK 0.0075 0.0099 0.0130 0.0107 0.0073

IWA 0.1052 0.1045 0.1063 0.1061 0.1029

IWK 0.0945 0.0938 0.0953 0.0948 0.0922

S
T
D

SIWA 0.0272 0.0307 0.0386 0.0394 0.0301

SIWK 0.0181 0.0229 0.0295 0.0278 0.0208

IWA 0.0339 0.0304 0.0376 0.0410 0.0330

IWK 0.0295 0.0267 0.0328 0.0349 0.0286

R
M
S
E

SIWA 0.0370 0.0407 0.0488 0.0482 0.0383

SIWK 0.0196 0.0249 0.0322 0.0298 0.0221

IWA 0.1105 0.1088 0.1128 0.1138 0.1080

IWK 0.0990 0.0975 0.1008 0.1011 0.0965

−
c 2
(2
,2
)

B
IA

S SIWA 0.0301 0.0209 0.0047 0.0027 0.0015

SIWK 0.0118 0 0.0179 0.0270 0.0335

IWA 0.1080 0.0985 0.0852 0.0728 0.0703

IWK 0.0968 0.0863 0.0719 0.0589 0.0540

S
T
D

SIWA 0.0378 0.0376 0.0408 0.0610 0.0717

SIWK 0.0280 0.0291 0.0301 0.0481 0.0518

IWA 0.0386 0.0334 0.0419 0.0483 0.0620

IWK 0.0337 0.0292 0.0362 0.0420 0.0537

R
M
S
E

SIWA 0.0483 0.0430 0.0411 0.0611 0.0717

SIWK 0.0304 0.0291 0.0350 0.0551 0.0616

IWA 0.1147 0.1040 0.0950 0.0874 0.0937

IWK 0.1025 0.0911 0.0805 0.0723 0.0762

−
c 2
(1
,2
)

B
IA

S SIWA 0.0097 0.0109 0.0146 0.0171 0.0185

SIWK 0.0098 0.0123 0.0158 0.0184 0.0204

IWA 0.0105 0.0079 0.0116 0.0121 0.0140

IWK 0.0105 0.0085 0.0122 0.0130 0.0150

S
T
D

SIWA 0.0060 0.0086 0.0085 0.0106 0.0103

SIWK 0.0028 0.0058 0.0053 0.0069 0.0063

IWA 0.0165 0.0168 0.0172 0.0189 0.0198

IWK 0.0145 0.0148 0.0151 0.0166 0.0171

R
M
S
E

SIWA 0.0115 0.0139 0.0169 0.0201 0.0212

SIWK 0.0102 0.0136 0.0167 0.0197 0.0213

IWA 0.0196 0.0185 0.0208 0.0224 0.0242

IWK 0.0179 0.0171 0.0194 0.0211 0.0228
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e) Estimation performance vs. numbers of data components

Fig. 2.12 displays the RMSE values of the estimated multifractal parameters, computed as the root

square of the average over realizations of the trace of the matrix (x− x̂)(x− x̂)T , where the vector x

contains the diagonal and upper triangle of Σ1. As expected, the RMSE of all estimators increases as

the number R of data components (thus, (R2+R)/2 multifractal parameters) increases. The relative

performance of the estimators remains similar to the case R = 2: The Bayesian estimators perform

significantly better than WLR, and SIWA has slightly lower RMSE than IWA.

1 2 3 4 5 6 7 8 9 10

10-2

10-1

SIWA

IWA

WLR

Figure 2.12: 2D MV-MRW estimation performance for R ∈ {1, 2, . . . , 10}, N = 29, j1 = 2 and j2 = 5.

f) Computational cost

Given an R-variate signal with sample size n (n = N for time series and n = N2 for images), neglec-

ting border effects of the wavelet transform, the global complexity of our algorithms is O(R3n lnn),

i.e., nearly linear in sample size n and cubic in R. For comparison, the method based on linear

regression has complexity O(nR3) (without the lnn factor due to our additional use of a fast Fourier

transform).

The iterative algorithm introduced in [BI13] to compute the Karcher mean to approximate the
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Figure 2.13: Computational time T (in seconds) versus image sizes N × N × 2 with N ∈
{8, 9, 10, 11, 12}, j1 = 2 and j2 = log2N − 4 for all methods.

MMSE estimator does not depend on n but depends linearly on the number of matrices being

averaged. Moreover, it has the same complexity in R (O(R3)). The computational time comparison

in this section is made as a function of n, thus the algorithms using the Karcher mean are not

included.

Fig. 2.13 compares the execution times for the estimation of the multivariate multifractal pa-

rameters from a bivariate image (R = 2) of size N × N using WLR, IWA and SIWA estimators,

as a function of N . The results confirm the leading order complexity estimates mentioned above.

Specifically, the cost when using the Bayesian estimators is only ∼ 8 times larger when compared to

linear regression and is hence no real limitation in practice. Also, the cost of SIWA is found to be

only marginally larger than that of IWA.

As an example, the processing of a 1024×1024 image takes about one minute on a standard laptop

computer with a 2.11 Ghz Intel Core i7 processor and 16GB RAM, allowing even the processing of

a 4096× 4096 image with a reasonable execution time.

Overall, these results clearly demonstrate a significant benefit of the proposed Bayesian estimators

for multivariate MFA, at reasonably larger computational cost than linear regression.
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2.5 Conclusions and perspectives

Conclusions. In this chapter, we proposed and studied Bayesian estimation procedures for the

multifractality parameters associated with the recent theoretical definition of the joint multifractal

spectrum of multivariate data. Specifically, we introduced and validated an original and versatile

model for the joint statistics of the log-leaders of several data components that combines a Whittle-

type spectral approximation and a data augmentation strategy. Based on the proposed statistical

model, two alternative Bayesian models are derived assuming IW and SIW prior distributions for the

multifractal matrix-valued parameters of interest. The MMSE estimator is then approximated using

standard Gibbs sampling and two ways to compute the average p.d. matrix estimates: the classical

arithmetic mean and the Karcher mean. This leads to four different Bayesian estimators that were

numerically studied and compared against the WLR through numerous experiments performed on

synthetic multifractal data. The results clearly demonstrated the significant advantages of the pro-

posed framework in terms of estimation accuracy notably for small sample sizes and the multivariate

multifractal parameters, at moderate computational cost.

Perspectives. The estimation of the first-order log-cumulant c1 associated with the average

regularity of each component of the data can be incorporated straightforwardly into the proposed

statistical model and estimation framework, following the ideas of [Com16]. However, the incorpo-

ration of higher-order log-cumulants is more challenging and will require taking into account a more

complex statistical model. This would constitute an important continuation of this work. Along

another line, the acceleration and improvement of the sampling algorithms could be investigated, for

example, we could use strategies to recycle the samples in the algorithm resulting from using SIW

priors similar to the strategy proposed in [MECV18]. Other prior distributions with more complex

parametrization and greater flexibility have been proposed for covariance matrix estimation, see, e.g.,

[ANS14]. Their study could be another option to further improve the multifractal parameter esti-

mation accuracy, possibly at the cost of having more difficult estimation problems. These research

directions are discussed in more detail in Chapter 6.
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3.1 Introduction

In Chapter 2, we provided practical tools for multivariate multifractal analysis using Bayesian infe-

rence. Specifically, Markov chain Monte Carlo (MCMC) algorithms were proposed and studied for

approximating the minimum mean square error (MMSE) estimator of the matrix-valued multifractal

parameters Σ1,Σ2. The devised Bayesian models use (scaled) inverse Wishart priors and are built

on the augmented likelihood (2.17) which approximates the original domain-based likelihood (2.9).

Numerous numerical simulations verified that the proposed Bayesian approaches outperform the

standard linear regression-based algorithms. The price to be paid was extra computational time.

Even though the computational time of the Bayesian algorithms was shown not to be dramatic for

our concrete examples, the processing of large real-world databases (e.g., many data components,

large number of windows/patches under analysis, large sample sizes, etc) and the increasing num-

ber of real-time applications involving such data call for alternative formulations to reduce these

computational costs.

Expectation-Maximization (EM) based algorithms, which are attractive for their reduced com-

putational time, are considered here as an alternative to the MCMC-based algorithms developed in

the previous chapter. The use of EM-based methods for the estimation of univariate multifractal

parameters was first mentioned in the PhD thesis [Com16] (Appendix E). Inspired by these ideas, in

this chapter, we devise new estimators of the matrix-valued multifractal parameters associated with

the joint multifractal spectrum using EM strategies. We also compare their performance and compu-

tational costs against the classical estimators constructed using linear regressions and the previously

proposed Bayesian estimators. The design of these new EM-based estimators and their evaluation

are the main methodological and practical contributions of this chapter.

The outline of the chapter is set as follows. Section 3.2 presents the general formulation of the

EM algorithm for augmented models and discusses its theoretical convergence. Section 3.3 derives

the EM algorithms to performance maximum likelihood and maximum a posteriori estimation of

the matrix-valued multifractal parameters of interest. Section 3.4 compares the performance of the

different EM and MCMC estimators in terms of estimation accuracy and computational cost. This
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comparison is done thanks to various Monte Carlo simulations performed for several multifractality

parameter values, numbers of data components and observation sizes.

Developments and results presented in this chapter have been partly reported in [LWTA22c].

3.2 EM algorithm

The EM algorithm is an iterative scheme that can be used for computing the maximum likelihood

estimator (MLE) or the maximum a posteriori (MAP) estimator for models with latent variables.

It consists of generating a sequence of estimates that increases the likelihood or posterior of interest

at each iteration and converges to one of its local maxima [DLR77]. In this section, we recall the

general formulation of MLE and MAP estimators based on EM algorithms, denoted as EM-MLE and

EM-MAP respectively.

Augmented models. Consider a general scenario in which the observed data y is augmented

by some hidden vector x to form the complete data, where x can be either missing data or cleverly

introduced latent variables. The joint likelihood p(y,x|θ) depends on a set of parameters to be

inferred, abbreviated by θ.

If θ is unknown and deterministic, the MLE of θ based on the observed data y is the solution of

the following optimization problem

θ̂
MLE

= argmax
θ

ln p(y|θ), (3.1)

where the likelihood p(y|θ) is obtained by marginalizing p(y,x|θ) with respect to (w.r.t.) x, i.e.,

p(y|θ) =
∫
p(y,x|θ)dx.

Assuming that the unknown parameters have a prior distribution p(θ), the MAP estimator of θ

is obtained by maximizing the posterior distribution as follows

θ̂
MAP

= argmax
θ

ln p(θ|y), (3.2)

where the posterior p(θ|y) ∝ p(y|θ)p(θ) can be computed using Bayes’ theorem and p(θ|y) =
∫
p(θ,x|y)dx.
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Problems (3.1) and (3.2) can be difficult to solve because the cost functions to be maximized can

be complicated and have several local maxima. In practice, EM-based algorithms can be used to

approximate θ̂
MLE

and θ̂
MAP

as follows.

EM-MLE. Starting from some initial parameter θ(0), the EM-MLE algorithm iterates between

the following two steps

1. Expectation (E-step): compute the expectation of the log-augmented likelihood ln p(y,x|θ)
w.r.t. the conditional distribution of the latent vector x given the current estimate θ(λ), i.e.,

Q(θ,θ(λ)) = Ep(x|y,θ(λ))[ln p(y,x|θ)]. (3.3)

2. Maximization (M-step): update θ(λ) with

θ(λ+1) = argmax
θ

Q(θ,θ(λ)). (3.4)

EM-MAP. Similarly, the EM-MAP algorithm iterates between the following two steps

1. E-step: compute the expectation of the log-augmented posterior likelihood p(θ,x|y) w.r.t. the
conditional distribution of the latent vector x given the current estimate θ(λ), i.e.,

F (θ,θ(λ)) =Ep(x|y,θ(λ))[ln p(θ,x|y)]

=Ep(x|y,θ(λ))[ln p(y,x|θ)] + ln p(θ). (3.5)

2. M-step: update θ(λ) with

θ(λ+1) = argmax
θ

F (θ,θ(λ)). (3.6)

The sequence of parameters θ(0),θ(1),θ(2), . . . obtained from EM-MLE and EM-MAP algorithms

does not decrease the corresponding log-likelihood and log-posterior, which guarantees that the EM

algorithms converge to local maxima of the likelihood and the posterior, respectively. Hopefully,

these local maxima are good approximations of the optimal solutions of the problems (3.1) and (3.2).

The proof of this statement is recalled in the next section.
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3.2.1 Convergence

The intuition behind EM-MLE is that at each iteration the two steps lead to an increase of the log-

likelihood, i.e., ln p(y|θ(λ+1)) ≥ ln p(y|θ(λ)) which ensures that the iterations will converge to some

local maximum of the likelihood function. It can be seen by using the equality p(y|θ)p(x|y,θ) =

p(y,x|θ) that

p(x|y,θ(λ)) ln p(y|θ) = p(x|y,θ(λ)) ln p(y,x|θ)− p(x|y,θ(λ)) ln p(x|y,θ) (3.7)

which leads, by integrating over x, to the equality

ln p(y|θ) = Q(θ,θ(λ))−
∫
p(x|y,θ(λ)) ln p(x|y,θ)dx

= Q(θ,θ(λ)) +DKL

(
p(x|y,θ(λ)||p(x|y,θ)

)
−
∫
p(x|y,θ(λ)) ln p(x|y,θ(λ))dx (3.8)

where DKL

(
· || ·

)
is the Kullback-Leibler divergence. Therefore, it can be derived that

ln p(y|θ(λ+1)) = Q(θ(λ+1),θ(λ)) +DKL

(
p(x|y,θ(λ)||p(x|y,θ(λ+1))

)
−
∫
p(x|y,θ(λ)) ln p(x|y,θ(λ))dx

≥(1) Q(θ(λ),θ(λ)) +DKL

(
p(x|y,θ(λ)||p(x|y,θ(λ+1))

)
−
∫
p(x|y,θ(λ)) ln p(x|y,θ(λ))dx

=(2) ln p(y|θ(λ+1)) +DKL

(
p(x|y,θ(λ)||p(x|y,θ(λ+1))

)

≥(3) ln p(y|θ(λ))

where the inequality (1) comes from the definition of θ(λ+1) in (3.4), the equality (2) comes from (3.8)

and the last inequality (3) is due to the positivity of the KL divergence.

Although an EM iteration does increase the likelihood, no guarantee exists that the sequence

converges to the MLE. For multimodal distributions, the EM algorithm can converge to a local

maximum of the observed data likelihood function, depending on starting values.

A similar analysis can be derived to prove that the log-posterior distribution is non-decreasing at

each iteration when using the EM-MAP estimator.

It is well known that the rate at which the EM algorithm converges is linear. For more properties

on convergence of the EM algorithm, the reader is referred to e.g. [RW84, DLR77, Wu83].
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3.3 EM algorithms for multivariate multifractal analysis

3.3.1 EM-MLE estimator

In the following, we devise an EM algorithm for the approximation of the MLE estimator of Γ =

(Σ1,Σ2) defined as

Γ̂
MLE

= argmax
Γ

ln p(z|Γ), (3.9)

where z ∈ CRM and ln p(z|Γ) is the logarithm of the likelihood (2.15) which is obtained by margi-

nalizing p(z,u | Γ) (2.17) w.r.t. u ∈ CRM , i.e., p(z | Γ) =
∫
p(z,u | Γ)du. Given an initial guess

Γ(0), the proposed EM-MLE method iterates between the following two steps.

E-step. We compute the expectation of the log-augmented likelihood

ln p(z,u | Γ) = −M ln(detΣ1)−M ln(detΣ2)−
1

2
Tr(Σ−1

1 Φ̃1 +Σ−1
2 Φ̃2) + constant, (3.10)

w.r.t. the conditional distribution of the latent vector u (2.31) given the current estimate Γ(λ) =

(Σ
(λ)
1 ,Σ

(λ)
2 )

Q(Γ,Γ(λ)) = Ep(u|z,Γ(λ))[ln p(z,u | Γ)]. (3.11)

Matrices Φ̃1 and Φ̃2, defined in (2.18) and (2.19), are recalled bellow

Φ̃1 = 2

M∑

s=1

(zs − us)(zs − us)
Hg−1

1,s , Φ̃2 = 2

M∑

s=1

usu
H
s g

−1
2,s .

By linearity of the trace operator, it can be shown that

Ep(u|z,Γ(λ))[ln p(z,u | Γ)] =−M ln(detΣ1)−M ln det(Σ2) + constant

− 1

2
Tr(Σ−1

1 Ep(u|z,Γ(λ))[Φ̃1] +Σ−1
2 Ep(u|z,Γ(λ))[Φ̃2]), (3.12)

where

Ep(u|z,Γ(λ))

[
Φ̃1

]
= 2

M∑

s=1

(
Σ̃

(λ)
s + (zs − µ(λ)

s )(zs − µ(λ)
s )H

)
g−1
1,s , (3.13)

Ep(u|z,Γ(λ))

[
Φ̃2

]
= 2

M∑

s=1

(
Σ̃

(λ)
s + µ(λ)

s (µ(λ)
s )H

)
g−1
2,s . (3.14)
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M-step. We maximize Q(Γ,Γ(λ)) by finding the zeroes of its gradient ∇Q = (∇Q1,∇Q2), with

∇Q1 =
∂Ep(u|z,Γ(λ))[ln p(z,u | Γ)]

∂Σ1
=−MΣ−1

1 +Σ−1
1 Ep(u|z,Γ(λ))

[
Φ̃1

]
Σ−1

1 , (3.15)

∇Q2 =
∂Ep(u|z,Γ(λ))[ln p(z,u | Γ)]

∂Σ2
=−MΣ−1

2 +Σ−1
2 Ep(u|z,Γ(λ))

[
Φ̃2

]
Σ−1

2 , (3.16)

yielding the following closed-form expressions for the parameters to be updated

Σ
(λ+1)
1 =M−1Ep(u|z,Γ(λ))

[
Φ̃1

]
, (3.17)

Σ
(λ+1)
2 =M−1Ep(u|z,Γ(λ))

[
Φ̃2

]
. (3.18)

3.3.2 EM-MAP estimator

The MMSE estimators, proposed in Chapter 2, rely on two Bayesian models using inverse Wishart

(IW) or scaled inverse Wishart (SIW) prior distributions for Σ1,Σ2. Similar to the proposed MCMC-

based algorithms, the use of an IW prior leads to a simpler formulation of the estimators when

compared to an SIW prior (the M-step requires solving a system of nonlinear equations that is not

always easy and fast to solve). Since our goal here is to investigate for the first time the usefulness of

the EM strategies for a faster and accurate estimation of the matrix-valued multifractal parameters

of interest, we consider the IW prior-based Bayesian model for simplicity. The study of the EM-based

estimator when using SIW priors is the subject of future work.

In the following, we devise an EM algorithm for the approximation of the MAP estimator (2.26)

based on the posterior distribution (2.28) using an IW prior. The proposed EM-MAP method iterates

between the following two steps.

E-step. We compute the expectation of the log-augmented posterior ln p(Γ,u | z)

ln p(Γ,u | z) =− 1

2
(2M + ν1 +R+ 1) ln(detΣ1)−

1

2
(2M + ν2 +R+ 1) ln(detΣ2)

− 1

2
Tr(Σ−1

1 (Λ1 + Φ̃1) +Σ−1
2 (Λ2 + Φ̃2)) + constant, (3.19)
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w.r.t. the conditional distribution of the latent vector u (2.31) given the current estimates Γ(λ)

F (Γ,Γ(λ)) =Ep(u|z,Γ(λ))[ln p(Γ,u | z)]

=Ep(u|z,Γ(λ))[ln p(z,u | Γ)] + ln p(Σ1) + ln p(Σ2)

=Q(Γ,Γ(λ)) + ln p(Σ1) + ln p(Σ2), (3.20)

where p(Σi) has been defined in (2.21).

M-step. We update the parameter estimates by maximizing the function F (Γ,Γ(λ)). Indeed,

finding the zeroes of the gradient ∇F = (∇F1,∇F2) of the function F , with

∇Fi =
∂Ep(u|z,Γ(λ))[ln p(Γ,u | z)]

∂Σi
= ∇Qi −

1

2

(
(νi +R+ 1)Σ−1

i −Σ−1
i ΛiΣ

−1
i

)
, i = 1, 2, (3.21)

yields the following set of equations

Σ
(λ+1)
1 =

2

2M + ν1 +R+ 1

[
Ep(u|z,Γ(λ))

[
Φ̃1

]
+Λ1/2

]
, (3.22)

Σ
(λ+1)
2 =

2

2M + ν2 +R+ 1

[
Ep(u|z,Γ(λ))

[
Φ̃2

]
+Λ2/2

]
. (3.23)

3.4 Numerical experiments

This section studies the estimation performance of the EM-MLE and the EM-MAP estimators defined

in Sections 3.3.1 and 3.3.2 for the estimation of the multifractal parameters associated with the joint

multifractal spectrum. We also compare their performance against the four MMSE estimators devel-

oped in Chapter 2 (SIWA, SIWK , IWA and IWK) and the linear regression-based estimator (1.27)

denoted as WLR.

a) Monte Carlo simulations

To validate and study the estimation performance, we use Monte Carlo simulations considering a

large number of independent realizations of a 1D multivariate multifractal random walk (MV-MRW)

process (cf. Section 1.4 and e.g., [BDM01]). The analysis of the results is presented for the univariate

and bivariate scenarios, i.e., the numbers of data components are R = 1 and R = 2.
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Parameters of the multifractal signal. The multifractality parameter −c2(r, r), with r =

1, . . . , R, has been chosen in the interval [0.01, 0.16] so as to consider various levels of regularity. The

multifractal correlation for the bivariate setting is set to ρmf(1, 2) = 0.5. The lengths of the generated

signals are set to N ∈ {25, 27, 28, 29, . . . , 215}.
Wavelet analysis. We used a Daubechies’ wavelet with Nψ = 2 vanishing moments, and scales

j ∈ J2, log2N − 4K for N ∈ {27, 28, 29, . . . , 215} and j ∈ J1, 2K for N = 25.

Prior specification. In the bivariate setting, the hyperparameters of the prior distributions are

set to νi = 4 and Λi = I2, with i ∈ {1, 2} (cf. Chapter 2) leading to non informative priors. In the

univariate setting, we only use IW priors and its parameters were chosen to have a support equal to

[0.004, 0.1], covering the possible values of these parameters, i.e., ν1 = ν2 = 20 and Λ1 = Λ2 = 0.2.

Algorithm specification. Note that the EM algorithm is stopped when the variations of the

marginal log-likelihood or the marginal log-posterior are less than 10−4 or when a maximum of 200

iterations has been reached. The initial guess of the parameters for the initialization of the EM

algorithms has been chosen as Σ
(0)
i = Λi/(νi−R− 1), with i = 1, 2. The consequences of this choice

is discussed in Section 3.4.1. For the MMSE estimators, we chose a number of burn-in iterations

Nbi = 1000 and a total number of iterations Nmc = 2000.

Performance. The estimation performance is evaluated in terms of mean, standard deviation

(STD) and root mean square error (RMSE), defined in (2.41), computed using the different realiza-

tions of the MV-MRW processes.

b) Estimation performance

Fig. 3.1 compares all proposed estimators (SIWA, SIWK , IWA, IWK , EM-MAP, EM-MLE andWLR)

as a function of N ∈ {27, 28, 29, . . . , 215}, for R = 2, c2(1, 1) = c2(1, 2) = −0.02, c2(2, 2) = −0.08 and

ρmf(1, 2) = 0.5, in terms of the RMSE of the multifractal parameter estimates.

WLR performance. All estimators, including EM algorithms, overall perform better than WLR,

most notably for small sample sizes (N < 28). The large RMSE values of the WLR estimator are

the result of the large variance produced by them, which becomes critical for large values of c2(r, r)

and in the estimation of ρmf (see Section 2.4.2).
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Figure 3.1: RMSE of all estimators as a function of N ∈ {27, 28, 29, . . . , 215} averaged over 100 copies

of a 1D bivariate MRW process with c2(1, 1) = c2(1, 2) = −0.02, c2(2, 2) = −0.08 and ρmf(1, 2) = 0.5.

EM algorithms. Overall, the MAP estimator has reduced RMSE values compared to the MLE

estimator except when the univariate multifractality parameter c2(1, 1) is small. This is explained

by the large bias induced by the IW prior for small c2(r, r) values, as discussed in Section 2.4.2.

Bayesian estimators. The MMSE and MAP estimators have similar behavior for all values

of N especially for the cross-parameter c2(1, 2) and the multifractal correlation ρmf. Regarding

the univariate multifractality parameters c2(1, 1), c2(2, 2), the performance of the Bayesian methods

depends on the chosen prior distribution. The performance gain of estimators using the SIW prior

is in particular remarkable for small values of c2(r, r) and for small sample sizes (values reaching up
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to 4 times smaller when c2(1, 1) = −0.02 and N = 27). For more details on the comparison of the

two different priors, the reader is referred to Section 2.4.2.

For a better presentation of the results, only the MMSE estimator using an IW prior (the same

as the one used for the MAP estimator) and arithmetic mean will be considered in what follows.

Performance vs. c2. Fig. 3.2 compares the MMSE, WLR, EM-MLE and EM-MAP estimators

as a function of −c2 ∈ [0.01, 0.16], for R = 1 and three sample sizes N = 25, 27, 29. The results

are averaged over Nmc = 10000 realizations and indicate that using the models of Chapter 2 for the

univariate scenario allows us to obtain significant performance gains, in particular for small values

of N and for large values of c2, with RMSE values up to 5 times smaller than with linear regression.

We note that the use of Bayesian estimators improves the estimation performance compared to the

MLE, especially for small sample size (N = 25). Overall, the performance of the Bayesian estimators

(MMSE and EM-MAP) using the same IW prior is very similar.
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Figure 3.2: Estimation performance (from left to right: mean, STD and RMSE) as a function of c2

for N = 25 (top), N = 27 (middle) N = 29 (bottom).
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3.4.1 Computational cost and convergence

Computational cost. Fig. 3.3 shows the execution times of the different algorithms as a function

of N ∈ {25, 26, . . . , 215} when R = 1. It is observed that the MMSE estimator is approximately 50

times slower than the EM-MAP estimator, which itself is twice as slow as a linear regression for N =

210. Overall, this allows us to conclude that the EM-MAP estimator allows us to obtain significant

gains in estimation performance compared to a linear regression or a MLE, with a computational cost

much lower than the MMSE estimator, and of the order of that obtained with a linear regression.

5 6 7 8 9 10 11 12 13 14 15

-10

-5

0

5

WLR
EM-MLE
EM-MAP
MMSE

Figure 3.3: Execution time as a function of N for R = 1 (Intel(R) Xeon(R) Silver 4114 processor

CPU 2.20GHz, 64GB RAM, single-threaded).

Convergence. As an illustration, Fig. 3.4 shows, for sample size N ∈ {27, 29, 212}, how the target

function of the EM algorithms increases with each iteration. The initialization is the same for both

methods. We observe that the MAP estimator requires less iterations to converge, in particular for

small sample size (N = 27). This can be interpreted in view of the regularization introduced by the

prior information in the Bayesian formulation.

Overall, the EM-MLE estimator converge slower than the EM-MAP estimator. Fig. 3.5 displays

the histograms of the reached iterations for a total of 1000 independent realizations of the algorithms
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for R = 2 and N = 27. Fig. 3.5 (left) corresponds to the initial guess Σ
(0)
i = I2 and Fig. 3.5 (right)

corresponds to a different one, Σ
(0)
i =

(
0.1181 −0.0309

−0.0309 0.1954

)
, with i = 1, 2. We can observe that

the maximum and the mean of the reached iterations vary with the starting point. Therefore, the

initialization strategies of the EM algorithms should be carefully chosen.
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Figure 3.4: Evaluation of the target function of the EM algorithms in each iteration, for R = 2 and

N ∈ {27, 29, 212}. Initialization Σ
(0)
i = [1 0 ; 0 1], with i = 1, 2
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Figure 3.5: Number of iterations of EM-MAP estimator to converge over 1000 independent realiza-

tions and for two different initialization: I1 = I2 (left) and I2 =

(
0.1181 −0.0309

−0.0309 0.1954

)
(right).
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3.5 Conclusions and perspectives

Conclusions. Building on the statistical model of log-leaders introduced in Chapter 2, new

methods and algorithms based on EM strategies were proposed and studied in this chapter to ap-

proximate the MLE and MAP estimator of the multivariate multifractal parameters of interest. The

relevance of EM algorithms for multifractal parameter estimation was verified on synthetic data. In

particular, the proposed EM-MAP and the MMSE estimator based on the Bayesian model associa-

ted with an IW prior distribution yield overall similar estimation performance. Nevertheless, the

EM-MAP estimator benefits from significantly lower computational costs.

Yet, it was again evidenced that the use of the SIW prior (only used with MMSE estimators)

leads to significant estimation improvements in general, which motivates its use in the applications

studied in Chapter 5.

Perspectives. One main drawback of these EM algorithms is the dependence on initialization,

as observed in the experiments. Therefore, a continuation of this work could be to investigate different

initialization strategies. It would be interesting to explore the use of these EM-based estimators on

large real-world datasets, where the reduced computational time of such algorithms can become

critical. The EM strategies developed in this chapter could also be used to design new estimation

algorithms robust to noisy data, where outliers can be modeled as latent variables. Another possible

line of work is to explore this methodology when an SIW prior is assigned to the parameters, a

challenge being to achieve a reduced computational cost since the update of the parameters in

the M-step does not have closed-form. These ideas are discussed in more detail in the concluding

Chapter 6.
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4.1 Introduction

In the earlier chapters, we proposed several estimators for the symmetric positive definite (p.d.)

matrices Σ1,Σ2 associated with the joint multifractal spectrum of multivariate data. The estima-

tion relies on a multivariate statistical Gaussian model for the log-leaders of multivariate data. For

convenience and numerical reasons, this model is diagonalized in the Fourier domain where the pa-

rameters of interest govern the covariance structure of a zero mean circularly-symmetric complex

Gaussian likelihood (2.11) (or the augmented version (2.17)). For a deterministic parameter esti-

mation, we devised an Expectation-Maximization (EM) algorithm to approximate the maximum

likelihood estimator (MLE) [Kay93] in Section 3.3.1. On the other hand, we proposed Bayesian ap-

proaches assuming a prior distribution for these matrix-valued parameters and then devised Markov

chain Monte Carlo (MCMC) and EM-based algorithms for approximating the minimum mean square

(MMSE) and the maximum a posteriori (MAP) estimators (see Sections 2.3.2 and 3.3.2). The pro-

posed estimators have been validated through numerous Monte Carlo simulations (see Sections 2.4

and 3.4). A theoretical analysis of the performance of these estimators can explain and predict their

behavior in specific scenarios. This can facilitate the design of experiments (numbers of subjects

in study, recording lengths, etc) to yield certain accuracy. This can also make it possible to study

the asymptotic behavior of the estimators of the multifractal parameters of interest. This kind of

theoretical analysis can be achieved by establishing fundamental lower bounds for the mean squared

error (MSE) of these parameters.

Many lower bounds have been developed for deterministic settings, such as the classical Cramér–Rao

[Cra46, Rao92], Hammersley–Chapman–Robbins [Ham50, CR51], Bhattacharya [Bha66] and Barankin

[Bar49] bounds, as well as more recent results [Abe93, HFU96, FL02, Eld04], to name but a few.

Similarly, lower bounds have been derived for parameters that are assigned an a priori probability dis-

tribution as well, commonly referred to as Bayesian bounds, for example, the Bayesian Cramér–Rao

[Tre01], Bobrovski–Zakai [BZ76] and Weiss–Weinstein [WW85, WW88] bounds. By far the simplest

and most commonly used of these approaches is the Cramér–Rao bound (CRB) and its Bayesian

version. In what follows, we will refer to the Bayesian Cramér–Rao bound as BB in short.
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To the best of our knowledge, none of the existing works provide a lower bound on the MSE per-

formance for multivariate multifractal parameter estimation and specifically for the model proposed

in Chapter 2. In this chapter, we close this gap by providing the CRB and the BB on the MSE

performance of estimators in the multivariate multifractal analysis (MFA) framework. In the spirit

of [BBT08], in this chapter, we derive the CRB and BB for the MSE of the matrix-valued parameters

of the statistical model described in the Section 2.2.3.

First, in Section 4.2, we recall in a general fashion the statistical model and the estimation pro-

blem. Then, considering Σ1,Σ2 to be unknown and deterministic matrices, Section 4.3 derives the

CRB. Assuming they are unknown and random matrices with inverse Wishart (IW) prior distribu-

tions (see Section 2.3), Section 4.4 derives the BB of Σ1,Σ2 and analytically studies their properties.

In Section 4.5, we study the properties of the bounds in this framework using Monte Carlo simu-

lations. Finally, in Section 4.5.3, we illustrate the use of the proposed bounds for the parameters

associated with the bivariate multifractal spectrum. For simplicity, this chapter will be limited to an

IW prior, see Section 4.6 for further comments on the use of the scaled inverse Wishart (SIW) prior.

To sum up, the main contributions of this chapter are i) the derivation of the BB for the specified

statistical model, which is a new theoretical result obtained from (4.8), (4.14), (4.16) and (4.20), ii)

the derivation and proof of a novel closed-form expression for computing non-trivial expectations

involving Wishart random matrices, see Proposition 1, iii) the study of the analytic properties of

the bounds (see Section 4.4) and iv) extensive numerical experiments and results that validate and

illustrate the obtained theoretical expressions of the bounds (see Section 4.5).

The work presented in this chapter has been submitted to a journal on 23/09/2022.

4.2 Problem statement and statistical model

Consider M independent zero mean circularly-symmetric complex Gaussian random vectors zs ∈
CR, s = 1, ...,M , such that E[zs] = 0, E[zszTs ] = 0, and E[zszHs ] = Rs, i.e., zs ∼ CN (0,Rs). The

covariance matrix Rs is assumed to be real-valued p.d. and of the form

Rs = Σ1g1,s +Σ2g2,s, s = 1, ...,M,
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where g1,·, g2,· > 0 are known real-valued functions for all s ∈ {1, . . . ,M} and Σ1,Σ2 are the R×R

symmetric p.d. matrix-valued parameters to be estimated. This model is identical to the statistical

model introduced in Chapter 2 for log-leaders. Thus, the vector of the MR samples arranged as

z = (zT1 , . . . ,z
T
M ) ∈ CMR can be modeled as a zero mean circularly-symmetric complex Gaussian

random vector with the real-valued covariance matrix

R = Σ1 ⊗G1 +Σ2 ⊗G2, (4.1)

where ⊗ is the Kronecker product and G1,G2 are known diagonal matrices whose sth diagonal

entries are given by [Gi]ss = gi,s, for i ∈ {1, 2}.
The expressions derived and studied in what follows can be generalized to more than 2 matrix

summands. For ease of presentation, we treat here the case with 2 summands, without loss of

generality.

4.3 Cramér-Rao bound

Let θ ∈ Rp, with p = R2 + R, the vector obtained by concatenating the vectors vectriu(Σ1) and

vectriu(Σ2), where the matrix operator vectriu(A) returns the vector of the elements of the upper

triangular part of A. Note that the first and the last p
2 elements of θ, denoted as θ1: p

2
and as θ p

2
+1:p,

correspond to the main diagonal and all elements of Σ1 and Σ2 above the diagonal, respectively. In

the following, the matrix R will be denoted as R(θ) to emphasize the dependence of R on θ.

We first derive the Cramér–Rao bound for the estimation of Γ = (Σ1,Σ2), assuming that the

matrices are deterministic and unknown. The evaluation of the CRB requires to invert the Fisher

information matrix (FIM), defined as [Tre01]

Fθ = Ez|Γ

[
−∂

2L(z | Γ)
∂θ∂θT

]
, (4.2)

where L(z | Γ) is the log-likelihood of z which can be expressed as

L(z | Γ) = −M lnπ − ln detR(θ)− zHR−1(θ)z. (4.3)
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Note that L(z | Γ) (4.3) is twice differentiable with respect to (w.r.t.) θ and has a bounded support

independent of θ. These are sufficient regularity conditions to ensure the existence of the CRB.

Since z is a zero mean circularly-symmetric complex Gaussian vector, the element of F θ located

at the kth row and lth column, for k, l ∈ {1, . . . , p}, can be calculated as [Fre93, PF86]

[Fθ]kl = tr

{
R−1(θ)

∂R(θ)

∂θk
R−1(θ)

∂R(θ)

∂θl

}
. (4.4)

Note that in general the expression (4.4) needs O(R3M3) operations to be computed because it

requires the matrix inversion of R(θ). That can lead to a large computational time for large values

of M and R and even when it is not problematic a faster solution is preferred. We propose to

overcome this limitation by exploiting the diagonal block structure of R(θ), that is,

R(θ) =




R1(θ) . . . 0
...

. . .
...

0 . . . RM (θ)


 , (4.5)

whose sth block given by Rs(θ) = Σ1g1,s +Σ2g2,s and s = 1, . . . ,M . Thus, both the matrix inverse

and the derivative operators can be applied to each R × R diagonal block of R(θ), individually.

Specifically,

R−1(θ) =




R−1
1 (θ) . . . 0
...

. . .
...

0 . . . R−1
M (θ)


 , (4.6)

with R−1
s (θ) = (Σ1g1,s +Σ2g2,s)

−1 and

∂R(θ)

∂θl
=




B1,l . . . 0
...

. . .
...

0 . . . BM,l


 , (4.7)

with

Bs,l =
∂Rs(θ)

∂θl
=




J1,lg1,s if l ∈ {1, . . . , p2},

J2,lg2,s if l ∈ {p2 + 1, . . . , p},
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where J i,l =
∂Σi

∂θl
does not depend on θ, hence

∂2Σi

∂θk∂θl
= 0 for i ∈ {1, 2}. Thus, (4.4) can be

rewritten as

[Fθ]kl(θ) =
M∑

s=1

tr
{
R−1
s (θ)Bs,kR

−1
s (θ)Bs,l

}
, (4.8)

which can be computed with only O(R3M) operations.

The MSE of any estimator θ̂ of θ is defined as the trace of the error covariance matrix

MSE = Tr(Eθ[(θ̂ − θ)(θ̂ − θ)T ]), (4.9)

where θ̂ is the vector obtained by concatenating the vectors vectriu(Σ̂1) and vectriu(Σ̂2). Finally,

under the assumption that the estimator is unbiased, the MSE for the entries of Γ, when Σ1,Σ2 are

deterministic, is lower bounded by the trace of the inverse of the FIM, i.e.,

MSE ≥ CRB = Tr([Fθ]
−1). (4.10)

4.4 Bayesian Cramér-Rao bound

In this section, we derive the BB for the MSE of estimators of Γ, when Σ1 and Σ2 are assigned

independent inverse Wishart priors, i.e., Σi ∼ IW(νi,Ωi), with νi degrees of freedom (νi ∈ R and

νi > R+1), and mean matrix (νi−R− 1)−1Ωi, where Ωi is a real-valued p.d. scale matrix. To this

end, we make use of the following results.

Proposition 1 Moments of the type E[WAWBW ].

If Σ ∼ IW(ν,Ω), then W = Σ−1 has the Wishart distribution W(ν,∆ = Ω−1). Then, for any

pair of real-valued symmetric matrices (A,B):

EΣ

[
Σ−1AΣ−1BΣ−1

]
= ∆A∆B∆(ν3 + 2ν2 + ν) +∆B∆A∆(ν2 + 3ν)

+ [Tr (∆A)]∆B∆(ν2 + ν) + [Tr (∆B)]∆A∆(ν2 + ν)

+∆
[
(ν2 + ν) Tr (∆A∆B) + ν Tr (∆A) Tr (∆B)

]
. (4.11)

The proof of Proposition 1 is provided in Appendix A using the approach detailed in [GLM05].

On the other hand, according to [HP20], for any real-valued symmetric matrix A, we have

EΣ

[
Σ−1AΣ−1

]
= (ν2 + ν)∆A∆+ ν Tr (∆A)∆. (4.12)
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The evaluation of the BB requires to invert the posterior Fisher information matrix (PFIM),

defined as [Tre01]

F = Ez,Γ

[
−∂

2L(z,Γ)

∂θ∂θT

]
, (4.13)

where L(z,Γ) is the joint log-likelihood of the model, which is twice differentiable w.r.t. θ and has a

bounded support independent of θ. These required regularity conditions ensure the existence of the

BB. Equation (4.13) can be rewritten as

F = EΓ

[
Ez|Γ

[
−∂

2L(z | Γ)
∂θ∂θT

]
− ∂2π1(Σ1)

∂θ∂θT
− ∂2π2(Σ2)

∂θ∂θT

]

= EΓ [F θ + FΣ1 + FΣ2 ] . (4.14)

Moreover, πi(Σi) is the log-prior of Σi and for i ∈ {1, 2}, one has

πi(Σi) = −νi +R+ 1

2
ln detΣi −

1

2
Tr(ΩiΣ

−1
i ) + constant. (4.15)

Note that the expression in (4.15) also satisfies the regularity conditions ensuring the existence of

the BB for Γ.

As a consequence, the following result is obtained

[FΣi ]kl = −∂
2πi(Σi)

∂θk∂θl
=
νi +R+ 1

2
Tr (Σ−1

i J i,kΣ
−1
i J i,l)

− 1

2
Tr (Ωi[Σ

−1
i J i,kΣ

−1
i J i,lΣ

−1
i +Σ−1

i J i,lΣ
−1
i J i,kΣ

−1
i ]). (4.16)

Expectations. In order to compute (4.14), the linearity property of the expectation is used,

F = EΓ [F θ] + EΓ [FΣ1 + FΣ2 ] . (4.17)

Moreover, since π1(Σ1) does not depend on θk if k ∈ {p2 + 1, . . . , p} and π2(Σ2) does not depend on

θk if k ∈ {1, . . . , p2}, then [FΣi ]kl = 0 if k ∈ {1, . . . , p2} and l ∈ {p2 + 1, . . . , p}, and viceversa. As a

consequence,

FΣ1 + FΣ2 =




− ∂2L(Σ1)

∂θ1: p
2
∂θT1: p

2

O

O − ∂2L(Σ2)

∂θ p
2
+1:p∂θ

T
p
2
+1:p


 (4.18)
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and thus the expectation EΓ [FΣ1 + FΣ2 ] reduces to determining the expectation of − ∂2π1(Σ1)

∂θ1: p
2
∂θT1: p

2

w.r.t. Σ1 and the expectation of − ∂2π2(Σ2)

∂θ p
2
+1:p∂θ

T
p
2
+1:p

w.r.t. Σ2. Both expectations have a closed-form

expression that can be determined using the matrix expectations (4.11) and (4.12).

The challenge here is to compute the expectation EΓ [F θ], which involves calculating the expec-

tation of the expression R−1
s Bs,kR

−1
s Bs,l w.r.t. Γ for all s = 1, . . . ,M . This computation is possible

provided we can compute the expectation

EΓ

[
(aΣ1 + bΣ2)

−1A (aΣ1 + bΣ2)
−1B

]
, (4.19)

for a, b ∈ R+, Σ1 ∼ IW(ν1,Ω1), Σ2 ∼ IW(ν2,Ω2) and any pair of symmetric matrices A and B.

Note that, if a or b is equal to zero, (4.19) can be calculated using (4.12). Otherwise, we propose to

approximate (4.19) numerically via a Monte Carlo algorithm. Given a, b, A and B, we can generate

a large number Lmc of samples {Σ(λ)
1 ,Σ

(λ)
2 }Lmc

λ=1 according to inverse Wishart distributions, compute

E(λ) =

[(
aΣ

(λ)
1 + bΣ

(λ)
2

)−1
A
(
aΣ

(λ)
1 + bΣ

(λ)
2

)−1
B

]

and approximate (4.19) by the average of {E(λ)}Lmc
λ=1.

Finally, the inverse of the PFIM (4.13), denoted as [F ]−1, yields the desired lower bound for the

MSE of any estimator Γ̂ of Γ, when Σ1,Σ2 are IW distributed:

MSE ≥ BB = Tr([F ]−1). (4.20)

4.4.1 Properties of the bounds

Assuming that a or b are zero and∆ is diagonal, (4.20) can be computed in closed-form. In particular,

the entries of F are given by

[F ]kl = γ1Tr(∆Jk) Tr(∆J l) + γ2Tr(∆Jk∆J l), (4.21)

where γ1 = 1
2(ν

2 + ν(2M − R + 3)) and γ2 = 1
2(ν

3 + ν2(2M − R + 6) + ν(2M + 9 − R)). For ∆

the identity matrix, the contribution of the first term Tr(∆Jk) Tr(∆J l) to the PFIM is a matrix

with zero entries except for an R ×R diagonal block with non-zero entries, that of the second term
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Tr(∆Jk∆J l) is a diagonal matrix. It can be shown that the PFIM has R − 1 eigenvalues equal to

γ2, R(R + 1)/2 − R = (R2 − R)/2 eigenvalues equal to 2γ2 and one eigenvalue equal to Rγ1 + γ2.

The trace of [F ]−1 with the above assumptions gives an approximation of the BB (4.20),

aBB = Tr([F ]−1) =
R(R− 1)

4γ2
+
R((R− 1)γ1 + γ2)

γ22 +Rγ1γ2
. (4.22)

This shows that the bound behaves asymptotically as:

� O(ν−3) as ν → +∞

� O(ν−2) as ν → R+ 1

� O(R) as R→ +∞

� O(R2) as R→ 1

� O(M−1) as M → +∞.

4.5 Numerical experiments

In this section, we use extensive numerical simulations to study the properties of the CRB and BB for

the MSE for any estimator of Γ = (Σ1,Σ2) in the i) deterministic and ii) probabilistic frameworks,

and compare the bounds against the MSE of the maximum likelihood and Bayesian estimators.

4.5.1 Monte Carlo simulations

Estimation algorithms. For the deterministic CRB studied in Section 4.3, we consider the

EM-MLE estimator proposed in Section 3.3.1. For the BB determined in Section 4.4, we consider

the MMSE (IWA) and EM-MAP estimators, proposed in Sections 2.3.2 and 3.3.2.

Simulation setup. Unless otherwise stated R = 2, M = 28, Ω1 = Ω2 = IR (R × R identity

matrix) and ν1 = ν2 = 80. Without loss of generality, we use the functions g1,s = 2π cos2(x[s]) + 0.1

and g2,s = 2π sin2(x[s]) + 0.1, where x is the vector of M components whose values have been

generated in the interval [0, 2], equi-spaced with a distance of 2/(M − 1). In all cases, we compute
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the sample MSE of the estimators as the average of the trace of the error covariance matrix over

1000 independent realizations. Gibbs samplers are run with Nmc = 1000 and Nbi = 500, and (4.19)

is approximated where needed as described using Lmc = 200.

4.5.2 Performance analysis

a) Performance vs. sample sizes

Fig. 4.1 compares the CRB and the MSE of the MLE. We also display a function proportional to

1/M indicating the expected asymptotic behavior. The following comments are appropriate:

1) The CRB decreases almost linearly when the sample size increases.

2) The MSE is very close to the CRB for large values of M . Similar results obtained for other

choices of deterministic Γ are not reproduced here because they lead to the same conclusions.

5 6 7 8 9 10 11 12

10-4

10-3

10-2

Figure 4.1: Comparison between the sample MSE of the MLE averaged over 1000 independent

realizations versus the CRB for sample sizes M ∈ {25, 26, . . . , 212}.

Fig. 4.2 displays the BB and its approximation aBB, and the MSE of the MMSE and MAP

estimators, for various sample sizes, where Σ1,Σ2 are random matrices with inverse Wishart prior

distributions. We observe that:

1) As expected, the BB decreases as M−1 when M → ∞ and to a constant when M → 0. The
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approximation aBB is asymptotically similar but tends to a different constant for small sample

sizes.

2) BB vs. MSE: The MSE of both estimators is approaching the BB whenM increases - the more

data, the tighter the bound.

3) MMSE vs. MAP: Overall, the MMSE estimator has better performance than the MAP esti-

mator, in particular for small sample sizes. This result was expected since the MMSE estimator

indeed minimizes the MSE.

5 6 7 8 9 10 11 12

10 -6

10 -5

MMSE
MAP
BB
aBB

Figure 4.2: Comparison between the sample MSE of the MAP and MMSE estimators averaged over

1000 independent realizations versus the BB for sample sizesM ∈ {25, 26, . . . , 212}, ν1 = ν2 = 80 and

R = 2.

b) Performance vs. degrees of freedom

Fig. 4.3 compares the MSE of the MMSE and MAP estimators and the BB for various degrees of

freedom, ν1 = ν2 ∈ {10, 15, 20, 25, . . . , 120}. We can observe that the BB decreases when ν1 and

ν2 increase. Indeed, in that case, the priors are more informative. The approximation aBB is very

similar to BB and predicts that this decay is of order ν−3. Moreover, the values of the MSE for both

the MAP and MMSE estimators are observed to be significantly larger than the lower BB for small

values for ν1 and ν2 (uninformative priors), but very close to the bound for large values of ν1, ν2

(informative priors).
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Figure 4.3: Comparison between the sample MSE of the MAP and MMSE estimators averaged over

1000 independent realizations versus the BB, varying the degrees of freedom ν1 = ν2, for R = 2 and

M = 28.
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Figure 4.4: Comparison between the sample MSE of the MAP and MMSE estimators averaged over

1000 independent realizations versus the BB, varying the number of components R, for M = 28,

Ω1=Ω2=IR and ν1=ν2=80.

c) Performance vs. numbers of components

Fig. 4.4 displays the MSE of the MMSE and MAP estimators and the BB when the number of

components R - thus, the number of parameters p - is varied, specifically R ∈ {1, 2, 3, . . . , 10}. We

can observe that:

1) BB vs. R: The BB increases with increasing values for R and is very tightly approximated by
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aBB, thus suggesting an asymptotically linear behavior in R.

2) BB vs. MSE: The values taken by the MSE and the BB are very similar for small numbers

of components/parameters. For large values of R, the bound is slightly less tight. Since the

sample size is fixed here, this behavior is coherent. Indeed, we would expect that larger sample

sizes are required to converge to the BB when more parameters are estimated.

Similar results were obtained when ∆i, i = 1, 2, is considered as a non-diagonal matrix leading

to the same conclusions as above.

4.5.3 Application to a multivariate multifractal analysis

In this section, we apply the theoretical results developed in the above sections to a practical example

related to the statistical model introduced in Chapter 2 for multivariate MFA. The Fourier transform

of the log-leaders approximately obeys the data model considered in Section 4.2, where the elements

of Σ1 are directly related to the multifractality of the data. Specifically, for a bivariate time series

(R = 2), Σ1 = −[c2(1, 1), c2(1, 2); c2(1, 2), c2(2, 2)] and thus θ1:3 = −( c2(1, 1), c2(1, 2), c2(2, 2)),

where c2(1, 1), c2(2, 2) < 0 are related to the widths of the marginal multifractal spectra, and c2(1, 2)

quantifies the joint multifractality. The matrix Σ2 is an adjustment parameter that essentially sub-

sumes the short-lag auto-correlation of log-leaders. The BB for the multifractal correlation parameter

ρmf(1, 2) defined in (1.23), has not been derived above. However, it is obtained from the BB for Σ1

based on functional invariance [Tre01].

Simulation study. We generate 2000 independent copies of 210 × 2 time series of a canonical

multifractal model process described in Section 1.4.1 to compute the sample MSE of the MMSE

(IWA) estimator, and the BB, for different multifractal parameter settings, controlled by Σ1. The

estimation is conducted for a single-scale j = 2 because the Bayesian model in Section 2.2.1 does not

take into account the dependence between scales.

In a first experiment, Σ1 is generated using Ω1 = [0.5, 0; 0, ω], with 0.37 ≤ ω ≤ 1.2 and

ν1 = 10, leading to realistic expected values for the multifractal parameters, i.e., −c2(1, 1) = 0.05

and −c2(2, 2) ∈ [0.037, 0.12]. In a second experiment Ω1 = [0.4, γ; γ, 0.4] with γ tuned such that
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0 ≤ ρmf(1, 2) ≤ 0.8 in average. The parameters of Σ2 cannot be controlled by the 2-variate MRW

synthesis and are thus unknown, and we set Ω2 = Ω1 and ν2 = ν1.
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BB
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Figure 4.5: Sample MSE for multifractal parameters c2(1, 1), c2(1, 2), c2(2, 2) as a function of c2(2, 2)

(top) and sample MSE for multifractal correlation ρmf(1, 2) (bottom).

Results for the two experiments are presented in Fig. 4.5 (top and bottom row, respectively).

They indicate that the derived BB provide good indications for the variations of the observed MSE

of the multifractal parameter estimates. In particular, they show that:

1) The MSE of the estimator of c2(1, 1) does not depend on c2(2, 2), which is to be expected because

c2(1, 1) corresponds to a marginal parameter of the first data component that is independent

of c2(2, 2).

2) The MSE of the estimator of c2(2, 2) increases with c2(2, 2), indeed c2(2, 2) controls the variance

of the marginal likelihood of the second data component.
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3) The MSE of the estimator of c2(1, 2) also increases with c2(2, 2) because ρmf(1, 2) is held fixed

so that c2(1, 2) and thus the covariance also increase.

4) The MSE of ρmf(1, 2) decreases in a non-trivial way when ρmf(1, 2) increases.

Overall, the results show that the shape of the BB can predict the behavior of the MSE for the

parameter estimates associated with the joint multifractal spectrum. The larger gap in the plots as

compared to the results obtained on synthetic data, can potentially be explained by the fact that

the model for the statistics of the log-leaders is not exact, and that the Σ2 parameter cannot be

controlled in the experiments.

4.6 Conclusions and perspectives

Conclusions. This chapter derived and studied the Crámer-Rao lower bound and its Bayesian

version for the MSE of estimators of the symmetric p.d. matrix-valued parameters of a zero mean

circularly-symmetric complex Gaussian model with a covariance matrix structured as the sum of

two covariance matrices (extensions to more than 2 summands are straight-forward). To calculate

the Bayesian bound, a novel closed-form expression for a non-trivial expectation involving Wishart

random matrices was provided. The properties of the bounds were studied analytically. Various

numerical simulations were used to validate the theoretical results. Their use of the derived Bayesian

bound was illustrated for the estimation performance of the parameters of the bivariate multifractal

spectrum.

Perspectives. The expressions derived and studied in this chapter can be extended to more than

2 matrix summands and potentially used in other important contexts where Gaussian models with a

zero mean vector and a covariance matrix R structured as above can arise, e.g., [DNR11, HDS+17,

CRV+19]. The derivation of this type of bounds for the case when SIW priors are used, could also

be carefully studied but it involves the calculation of non-trivial expectation. The above ideas are

discussed in more detail in the concluding Chapter 6.
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5.1 Introduction

In Chapters 2 and 3, we devised methods and algorithms capable of integrating multivariate multi-

fractal analysis (MFA) into a Bayesian framework. In this chapter, we illustrate and investigate the

potential use and benefits of such multivariate Bayesian multifractal methodologies for real-world data

processing. The principal motivation here is to illustrate the contributions of the cross-multifractality

and multifractal correlation parameters to enrich the data analysis.

In the past, fractal and multifractal approaches have been proposed and successfully used for

different types of single-channel physiological signal processing in numerous contexts, see, e.g.,

[IAG+99, AMM+07, WCB+09, ZM13, CLCF18] to name but a few. Such data are usually part

of multivariate datasets. However they have been analyzed individually rather than jointly. The

algorithms developed in this thesis allow us to overcome this limitation. Specifically, in Section 5.2,

we investigate the use of a joint MFA of a four-channel physiological signal to address the problem of

drowsiness detection. We used the multifractal properties of the data as a feature vector in a devised

detection scheme, and compared the detection accuracy based on a joint MFA against that obtained

for exclusive use of univariate parameters.

In the context of image processing, fractal and MFA have also been widely used, especially for

the modeling of textures associated with natural images [WRJA09]. As important examples, in re-

cent works [CWT+15b, CWD+15, WCA+18], Bayesian univariate multifractal analyses have been

put to test on real-world hyperspectral images. Their results evidenced that multifractal parameters

associated with univariate spectra can provide relevant spatial/textural attributes in the context of

hyperspectral imagery. Moreover, these works also suggested that the combination of both spectral

and spatial information can improve the performance in classical hyperspectral image processing

tasks, such as classification [FTB+13, RAAF10], segmentation [GRR+09] or endmember identifica-

tion [MP12]. Inspired by those works, in this chapter we also investigate for the first time the use

of the proposed multivariate MFA in the context of satellite imagery. Specifically, in Section 5.3, we

propose to use the multifractal parameters to extract spatial information of a multispectral image in

terms of the fluctuations of the local regularity of the image amplitudes and the characterization of
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these fluctuations between different bands. The computed multifractal features are then used in a

spatial clustering algorithm and compared against the exclusive use of simple pixel intensity-based

features.

The results shown in this chapter overall suggest the following comments. First, the Bayesian

methodology presented in this thesis is an operational tool for multivariate MFA applicable to real-

world multivariate data processing. Second, it can provide new relevant attributes in biomedical

and remote sensing contexts, which could in turn be employed in tasks such as classification, image

segmentation or data mining.

To the best of our knowledge, this is the first time that a joint MFA is performed and investigated

on such real-world datasets. Therefore, this constitutes in itself the main contribution of this chapter.

The presented results allow us to arrive at first conclusions and to visualize the next directions of

investigation, but nevertheless remain on a preliminary analysis. In particular, the definition of a

precise methodology for the incorporation of multifractal features in multispectral image processing

algorithms is not discussed here.

Results presented in this chapter have been partly reported in the journal paper [LWTA22a].

5.2 Multichannel polysomnographic data

5.2.1 Context and motivation

In this section, we consider the problem of detecting drowsiness, defined as an intermediate state

between awake and sleep [YPLJ18], from several light non-invasive modalities related to the cardio-

vascular, respiratory and brain states. Drowsiness is a major factor in high rates of vehicle accidents.

The use of non-invasive biomedical signals for drowsiness detection is an important and open issue

that has recently received a considerable interest [SSM14, WWF18, ANJ+16, BWZ+19, ACC20].

Fractal and multifractal models have been widely and successfully used for the analysis of single

physiological time series, including sleep staging, in particular for heart rate (HR) [IAG+99, CLCF18,

WAK+19] but also for electroencephalogram (EEG) [WCB+09, ZM13, MNWL06, CLCF18], blood

pressure (BP) [CLCF18, AMM+07] and respiration (RESP) [MNWL06, AMM+07] recordings.
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The Bayesian multivariate MFA approaches proposed in this thesis allow us to go beyond a

component-wise analysis and to investigate with robust algorithms that also quantify the multifrac-

tal dependencies between components, such datasets in which the signals are recorded jointly and

simultaneously. To the best of our knowledge, this is the first time that a joint multivariate analysis

of such data has been performed. In what follows, we describe the data and the analysis scenario

(Section 5.2.2), and propose and study a drowsiness detection scheme based on the multivariate

multifractal characteristics of the data (Section 5.2.3).

5.2.2 Data and preprocessing

MIT-BIH dataset. The dataset used for this study is extracted from the MIT-BIH Polysomno-

graphic database1, which involves a collection of recordings of multiple physiological signals, including

HR, BP, EEG and RESP, acquired during sleep at a sample rate of 250 Hz [GAG+00]. The recordings

come with manual annotations for sleep stages for each 30 second segment. We consider here the

states “awake” vs. “sleep stage 1” (or drowsy stage) since the transition to the latter is considered

as drowsiness.

Preprocessing. All the 18 available four-channel records were used in the experiments, without a

priori exclusion of subjects. Note that most studies reported in the literature use only a hand-picked

subset of subjects to avoid variability caused by the use of different sensors for certain subjects, and

to remove subjects affected by outliers. For each multichannel recording, we consider the HR (r=1),

BP (r=2), EEG (r=3) and RESP (r=4) channels, yielding R=4 components. HR recordings were

corrected for missing QRS using the Pan Tompkins ECG QRS detector and linear interpolation. The

data was resampled at 4 Hz using linear interpolation, and the analysis was performed on the 2nd

primitive (γ = 2 in (1.24)) to avoid negative uniform regularity issues (cf. Section 1.3.3).

5.2.3 Multivariate multifractal analysis for drowsiness detection

Multifractal analysis. The multivariate MFA was performed using 75% overlapping windows

of sample size N = 480, yielding a set of multifractal parameter estimates for each 30 second interval

1https://physionet.org/content/slpdb/1.0.0/
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(i.e., for each annotation). We use the MMSE estimator associated with an SIW prior (cf. Section 2.3)

and scales j = J3, 6K (equivalently, 2.6s−21s), with parameters set to Nψ = 3, Nmc = 1000, Nbi = 500.

In total, 2381 and 561 examples are available for the awake and sleep stage 1 states, respectively.

For each example and channel r ∈ {1, 2, 3, 4}, the proposed algorithm estimated the values of c1(r)

and c2(r, r). Likewise, for the 6 pairs of channels, c2(r, r
′) and ρmf(r, r

′) (with r ̸= r′) were estimated.

The values of c1(r) were estimated using standard linear regression as defined in (1.26). We study

several sets of features: the univariate features {c1(r)}4r=1, {c2(r, r)}4r=1, {c1(r), c2(r, r)}4r=1, and their

combination with either {c2(r, r′)}4r ̸=r′;r,r′=1 or {ρmf(r, r
′)}4r ̸=r′;r,r′=1, as joint multifractality estimates.

An illustration of estimates of the single-channel parameters c1(1) and c2(1, 1) (HR channel) and the

cross-channel parameters c2(1, 3) and ρmf(1, 3) (HR and EEG channels) are provided in Fig. 5.1.

ρmf (1,3)

c2 (1,3)

c2 (1,1)

c1 (1)

AWAKE
DROWSY

Figure 5.1: Visualization of awake and drowsy stages and multifractal estimates.

Detection performance. Drowsiness detection was performed using a random forest classi-

fier with 50 trees that were trained on random subsets of 80% of the available examples (class 0

corresponds to the awake state and class 1 to sleep stage 1).

The detection performance was tested on the remaining 20% of the database. The reported results

are averages over 25 different random subsets. The obtained classification and detection performance

are quantified using 2-class accuracies as in [ACC20], and F-measure and area-under-curve (AUC)

for the receiver operational characteristics (ROCs), as reported in Table 5.1. To further illustrate
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the detection performance, the ROCs are also displayed in Fig. 5.1. The ROCs are computed by

varying the relative weight for the “awake” and “sleep stage 1” classes in the loss during training of

the random forest.

We observe that the use of the joint multifractal parameters c2(r, r
′) or ρmf(r, r

′) consistently and

significantly improves single-recording (up to 5.9%, 7.0% and 8.7% increase for classification accu-

racy, F-measure and AUC, respectively). The best results are obtained when the single-recording

parameters c1(r) and c2(r, r) are used jointly with either the multifractal correlation parameter

ρmf(r, r
′) or the cross-multifractality parameter c2(r, r

′) (classification accuracy 90.7 − 91.0%, F-

measure 83.2 − 83.7% and AUC 0.901). Thus, the performance is similar to the state of the art

reported in [ACC20] (classification accuracy of 93%). Overall, these results demonstrate the ro-

bustness and relevance of the proposed joint estimation framework for the analysis of real-world

data.
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Figure 5.2: Drowsiness detection performance (ROCs, bottom): c1(r), c2(r, r) and (c1(r), c2(r, r))

(blue solid lines in left, center, right plot, respectively) and the corresponding curve when c2(r, r
′)

(red solid line) or ρmf(r, r
′) (yellow solid line) is used as an additional feature.
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Table 5.1: Classification accuracy (top, in %), F-measure (center) and AUC (bottom), the larger,

the better.
features c1(r)& c2(r, r) c2(r, r)& c1(r) c1 & c2(r, r)

Classification accuracy

82.7 86.9 90.1

with c2(r, r
′) 88.6 87.7 90.7

with ρmf 86.1 87.7 91.0

F-measure (detection)

73.7 75.6 83.2

with c2(r, r
′) 80.7 77.2 83.7

with ρmf 77.6 77.5 83.2

AUC (detection)

0.787 0.817 0.898

with c2(r, r
′) 0.874 0.839 0.901

with ρmf 0.874 0.839 0.901
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5.3 Multispectral satellite image

5.3.1 Context and motivation

Nowadays, remote sensing applications are of great importance for ecology, agriculture, defense,

natural disaster forecasting, etc. Many of the images used in these contexts are multivariate, such

as multispectral images that typically have between 3 to 15 spectral bands, hyperspectral images

that typically consist of hundreds of contiguous spectral bands jointly registered, multitemporal

images in which the same scene is registered at different times, or combinations thereof. Several

attempts have been made for the use of fractal and multifractal concepts for these images, see, e.g.,

[SXGL06, KWD+20] for recent reviews.

The use of Bayesian models and estimators for univariate MFA purposes was already tested on

real-world hyperspectral images, see, e.g., [CWT+15b, CWD+15, WCA+18]. Their results evidenced

that multifractal parameters associated with univariate spectra can provide relevant spatial/textural

attributes in the context of hyperspectral imagery. Inspired by those works, in this section we inves-

tigate for the first time the use of the proposed multivariate MFA in the context of satellite imagery.

The study focuses on investigating the potential benefit in capturing complementary information

using multivariate multifractal parameters as compared to traditional pixel intensity-based features.

5.3.2 Data and preprocessing

The dataset used for our study is a real-world multispectral satellite image. This image contains

around 100 million pixels and includes four multispectral bands (R = 4): blue (r = 1), red (r = 2)

and green (r = 3) color bands, and near infrared (r = 4), and is depicted in Fig. 5.3 in the RGB

color space. It was provided by the CNES from Toulouse. We focus in particular on the area of size

300× 300 pixels indicated by a red frame in Fig. 5.3 and depicted in Fig. 5.4 using gray scale.
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Figure 5.3: Real-world multispectral satellite image provide by the CNES from Toulouse

Figure 5.4: The blue, red, green and near infrared bands of the patch under analysis (gray scale).
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5.3.3 Multivariate multifractal analysis for satellite imagery

Analysis scenario. In an attempt to increase the spatial resolution, we propose to conduct the

analysis on small patches of the multispectral images in order to illustrate and study the charac-

terization enabled by the multifractal properties throughout space and bands. Thus, each band is

decomposed into 912 patches of size 30 × 30 pixels, with 90% overlap, resulting in a decomposition

into patches of size 30 × 30 × 4. This choice is motivated by the desire to obtain results as close

as possible to the pixel domain to allow a better interpretation of the extracted spatial information.

Note that this size is extremely small for MFA purposes where classical linear regression for example

cannot be used. Dealing with such a small sample size is only possible using the proposed statistical

model and algorithms.

For each patch, we use the MMSE estimator associated with an SIW prior (cf. Section 2.3) and

scale j = 1, with parameters set to Nψ = 1, Nmc = 4000, Nbi = 2000. The multifractal correlation

ρmf(r, r
′) is estimated using (1.23) and estimates {ĉ2(r, r′)}4r,r′=1. For comparison, we compute the

linear correlation ρ(r, r′) of each patch between pairs of bands.

Multifractal correlation vs. linear correlation. An illustration of the estimates of the multi-

fractal correlation ρmf(r, r
′) and the linear correlation ρ(r, r′) are provided in Fig. 5.5 for (r, r′) = (1, 4)

(top row) and (r, r′) = (2, 3) (bottom row). One can observe that ρmf estimates reproduce better the

spatial structures of the image texture such as the paths between parcels of land. Similar result and

conclusion were obtained for the rest of band combinations. These preliminary results suggest that

the multifractal correlation is a spatial attribute that conveys complementary information that differs

from, for example, the standard linear correlation. Thus, it could be incorporated, for instance, into

an edge detection or segmentation scheme based on the characteristics of the multifractal spectrum

to identify the roads for example.
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Figure 5.5: Estimates of the multifractal correlation ρmf(r, r
′) (left) and the linear correlation ρ(r, r′)

(right) for (r, r′) = (1, 4) (top row) and (r, r′) = (2, 3) (bottom row).
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Multifractal segmentation. Based on the conclusions drawn in the previous experiment, it is

natural to seek to use the multivariate multifractal properties in a patch-wise classification scheme.

We propose to use a simple k-means algorithm, see, e.g., [Mac67, Boc08]. The problem consists in

partitioning the 912 feature vectors (one per patch) into k clusters in which each vector belongs to the

cluster with the nearest mean. Specifically, we gather all multifractal estimates ĉ2, ρ̂mf per patch into

a vector with a total of 16 components and then use it, after normalization, as input to the k-means

algorithm. As an illustration, in Fig. 5.6 (top row), results of the classification algorithm are shown

for k = 3 (left), k = 4 (center) and k = 5 (right) clusters. Each color corresponds to a different class

and the color scale changes with k. For this experiment, the ground truth is not available. Thus, we

propose to compare these result against those obtained based on a normalized vector composed of

classical features given by the average and standard deviation (STD) of the image amplitudes, and

the linear correlation between different bands (14 features in total). Qualitatively, the segmentation

obtained using the multivariate multifractal characteristics better preserves the spatial structure of

the original image compared to the other approach. However the classification of the same kind of

objects in the images is not consistent, for instance in the position of the roads.
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Figure 5.6: Segmentation obtained via k-means using second-order multifractality parameters and

multifractal correlations estimates (top) and using the mean, STD and correlation of pixel intensity

values (botton). Numbers of classes: k = 3 (left), k = 4 (center) and k = 5 (right).
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5.4 Conclusions and perspectives

Conclusions. In this chapter, we proposed and investigated the use of a multivariate MFA for

two different real-world multivariate datasets. In the analysis of the four-channel physiological signal,

it was shown that the combination of the univariate multifractal properties with those characterizing

the coupling between components improves the performance of the proposed drowsiness detection

scheme compared to using only the univariate ones. The experiments conducted on the four-band

satellite image illustrated the improvements of using the multifractal correlation parameter for the

extraction of spatial/textural information with respect to the use of the standard correlation coef-

ficient. Moreover, a qualitative analysis of the results indicated that the multivariate multifractal

properties captured spatial information different from that given by the average, STD and the linear

correlation of the images amplitudes, suggesting that they could be used in a complementary manner

as spatial features to perform tasks such as data-mining, segmentation or classification. Overall, the

results reported in this chapter enabled us to illustrate that the Bayesian methodology to estimate

the parameters associated with the joint multifractal spectrum introduced in Chapter 2 is operational

and relevant for the joint MFA of real-world multivariate signals and images.

Perspectives. Results reported in Chapter 5 constitute a preliminary illustration of the potential

applications of the proposed Bayesian methodology for multivariate MFA of real-world data. A

systematic study of practical multivariate MFA remains to be defined and tested on other datasets

and applications, for example, in financial time series or hyperspectral images. Future research

directions are discussed in more detail in Chapter 6.



Chapter 6

Conclusions and future work

Context

Multifractal analysis (MFA) is a powerful theoretical and practical tool for signal and image process-

ing. It enables the characterization of data based on the dynamics of their local regularity and has

found many successful applications of different natures in the past. However, these successes have

been limited to the independent processing of individual data components, while in an increasing

number of applications, the data to be analyzed are multivariate. The theoretical foundations of

multivariate analysis and the definition of the multivariate multifractal spectrum, and its practical

potential to capture higher-order transient dependencies between different components of the data,

have only recently been settled. However, the accurate estimation of the multivariate multifractal

parameters remains challenging, severely limiting their actual use in applications. To overcome these

limitations, the primary objective of this thesis was to propose and study practical contributions to

multivariate MFA of signals and images. To this end, the present thesis formulated a novel Bayesian

framework for multivariate multifractal parameter estimation. In addition, the use of multivariate

MFA in general and of these novel methods in particular was investigated in two different contexts:

drowsiness detection from a multichannel physiological signals and potential remote sensing applica-

tions from a multispectral satellite image.

Conclusions

Chapter 1 presented the main theoretical and practical concepts of the multivariate MFA of sig-

nals and images. In practice, the estimation of the multivariate multifractal spectrum of the data is

109



110 Conclusions et Perspectives

the central object of interest of MFA and can be achieved via a multivariate multifractal formalism

based on wavelet leaders. The multivariate multifractal parameters of interest considered here are

the second-order log-cumulants c2 (auto- and cross-multifractality coefficients) and the multifractal

correlation ρmf. Their estimation relies on classical linear regression-based algorithms which suffer

of several practical limitations. Therefore, the focus of this thesis is to devise accurate and efficient

estimation algorithms for multivariate MFA of signals and images.

Chapter 2 introduced a novel and original joint Gaussian model for the log-leaders and leverages

on a Whittle-based likelihood approximation and on data augmentation for the symmetric positive

definite (p.d.) matrix-valued parameters of interest. This careful design enables efficient estimation

procedures to be constructed in a Bayesian framework for two relevant choices of priors and two

alternative ways of calculating the average of symmetric p.d. matrices. Algorithms based on Monte

Carlo Markov Chain (MCMC) are designed and used to approximate the minimum mean square

error (MMSE) estimator associated with the resulting posterior distributions. Monte Carlo simula-

tions, conducted on synthetic multivariate signals and images with various sample sizes, numbers of

components and multifractal parameter values, demonstrated significant performance improvements

over the state of the art, at moderately increased computational cost only. The methods and algo-

rithms developed in this chapter constitute the first operational tool for practical multivariate MFA

of multivariate signals and images.

Chapter 3 proposed and studied Expectation-Maximization based algorithms to approximate the

maximum likelihood and the maximum a posteriori estimators of the matrix-valued multifractal

parameters of interest. These new approaches were built on the proposed statistical model of the

log-leaders, with the motivation of having a reduced computational time. Using Monte Carlo sim-

ulations, their performance is assessed and compared against the MCMC-based estimators and the

classical linear regression-based algorithm in terms of accuracy and computational time.

Chapter 4 derived and studied the Crámer-Rao and the Bayesian Crámer-Rao lower bounds of the
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mean squared error of estimators of the matrix-valued parameters of the proposed statistical model.

A novel closed-form expression for a non-trivial expectation involving Wishart random matrices was

derived that is required for the calculation of the Bayesian bound. The properties of these bounds

were analytically studied and also numerically investigated via Monte Carlo simulations. Finally, we

illustrated the use of the proposed bounds for the estimation performance of the parameters associa-

ted with the bivariate multifractal spectrum.

Chapter 5 investigated for the first time the potential use and benefits of multivariate MFA and

of the proposed Bayesian methodology in two applications of very different natures: i) drowsiness

detection in multichannel physiological signals and ii) quantification of spatial/textural information

in multispectral satellite images. In the analysis of the four-channel physiological signal, it was

shown that the combination of the univariate multifractal properties with those characterizing the

coupling between components improves the performance of the proposed drowsiness detection scheme

compared to using only the univariate ones. The experiments conducted on the four-band satellite

image illustrated the improvements of using the multifractal correlation parameter for the extrac-

tion of spatial/textural information with respect to the use of the standard correlation coefficient.

These preliminary results indicated that the multivariate multifractal properties could potentially be

beneficial for the multispectral satellite image processing. Finally, this chapter illustrated that the

Bayesian methodology to estimate the parameters associated with the joint multifractal spectrum

yielded robust estimation procedures that are operational and relevant for the joint MFA of real-

world multivariate signals and images.
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Perspectives and future work

At the end of this work, the following directions for future work can be formulated.

Model developments

To simplify the proposed model and reduce the computational cost, in Chapter 2, it is assumed

that log-leaders at different scales are independent. However, this assumption is not realistic as

interscale dependence of wavelet coefficients and the associated log-leaders is commonly reported

in the literature, see, e.g., [BS99, LM01, SS02] and references therein. Therefore, the design of

appropriate models based on the inter-scale dependence of log-leaders could be investigated in future

work (see [ABM98] for results obtained for 1D random wavelet cascades process). These may requires

further improvements in the estimation of the multivariate multifractal parameters.

The estimation of the first-order log-cumulant c1 associated with the average regularity of each

component of the data can be incorporated straightforwardly into the proposed statistical model and

estimation framework, as in the univariate scenario, see, e.g., [Com16]. However, the incorporation of

higher-order log-cumulants linked to the multivariate skewness and the kurtosis of the distribution of

the log-leaders, is more challenging and potentially requires the use of non-Gaussian distributions as

generative models, such as, for instance, the skew Student-t-normal distribution and its extensions,

see, e.g., [CBP08, NO12].

Along a similar line, the model could be generalize to the use of p-exponent and p-leaders

[JML+16, LWA+16], a versatile family of regularity exponents and multiresolution coefficients to

which wavelet leaders belong as a special case (p = +∞). Preliminary results indicate that log-p-

leaders are in general non well modeled by multivariate Gaussians, thus require further developments

beyond the model presented here.

Other prior distributions with more complex parametrization and greater flexibility have been

proposed for covariance matrix estimation in the literature, such as, for instance, the hierarchical

half-t prior, see, e.g., [ANS14, TGM+11] and reference therein. The investigation of such alternative

priors could improve the multifractal parameter estimation accuracy, possibly at the cost of having
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to deal with more difficult estimation problems.

In a different vein, it would be interesting to address multivariate MFA of collections of multi-

variate signals and images via the design of Bayesian hierarchical models incorporating multivariate

priors. This could enforce a smooth estimation of the multifractal parameters as explored in the

univariate setting, see [WCA+18]. These could be critical for future segmentation, edge detection

and classification schemes in multivariate image applications. The study of such hyperpriors enabling

the efficient coupling of matrix valued parameters remains as an open issue in itself.

In the spirit of [LPAT21], the EM strategies developed in Chapter 3 could be used to design new

estimation algorithms robust to noise, outliers or other corruptions present in multifractal data.

Computational and algorithmic developments

The acceleration and improvement of the sampling algorithms developed in Chapter 2, could be

investigated. For example, we could use strategies to recycle the samples in the algorithm resulting

from using scaled inverse Wishart (SIW) priors similar to the approach proposed in [MECV18].

To expedite convergence and accuracy for the proposed EM algorithms as well as initialization

strategies must be carefully study. A variety of heuristic or metaheuristic approaches exist to escape

a local maximum, such as, for instance, random-restart hill climbing starting with several different

random initial estimates, see, e.g., [NR02]. These EM methodologies could also be extended to the

use of SIW priors, an additional challenge being to nevertheless achieve a reduced computational

cost when the update of the parameters in the M-step does not have a closed-form expression.

Theoretical analysis of the estimators

The expressions derived and studied in Chapter 4 for the lower bounds can be extended for more

than 2 matrix summands and potentially used beyond the multivariate MFA. Specifically, Gaussian

models with a zero mean vector and a covariance matrix R structured as (4.1) can arise in other

important contexts. One example is given by vector-valued additive Gaussian processes, in which the

matrices G1,G2 subsume the kernels for the temporal/spatial isotropic covariance models, expressed
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in the Fourier domain, and Σ1,Σ2 are the associated point covariance matrices for the vector-

valued variates, see, e.g., [DNR11, HDS+17, CRV+19]. Thus, it would be interesting to study the

performance of the derived bounds in such models. Another continuation of this work is the derivation

of similar expressions when an SIW prior is used. However, this is challenging because the use of

this prior induces a nonlinear parametrization of the matrices to be estimated, leading to non-closed-

form expectations. This significantly complicates the derivation of analytical expressions for the

lower bounds.

Applications

Results reported in Chapter 5 constitute a preliminary illustration of the potential applications of

the proposed Bayesian methodology for multivariate MFA of real-world data. Its practical use on a

broader scale will certainly require further research.

Methodologically, model selection/validation procedures are required to, for example, assess

whether the log-leaders associated with the analyzed multivariate data are well described by the

proposed statistical model and to determine the range of scales over which the model is valid. The

latter is challenging since only limited results are available in the literature, even for the linear

regression-based estimation (see, e.g., [VAT03, LTA14] for examples of procedures addressing the

scaling range selection).

The work presented in Chapter 5 leads us to conclude that multivariate multifractal attributes

could be considered for i) drowsiness detection using multivariate physiological signals, and ii) the

extraction of textural information for multispectral satellite image processing applications. A sys-

tematic study of practical multivariate MFA remains to be defined and tested on other datasets

and applications. In this sense, different perspectives need be explored, such as the investigation

of different multifractal formalisms (e.g, using the most recent p-leaders) or of different attributes

(higher-order log-cumulants), the incorporation of multifractal attributes in segmentation, detection,

classification algorithms and the comparison against established methods.
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Appendix A

Proof of Proposition 1

The Proposition 1 introduced in Section 4.4 and recalled below, is proved in this section using the

approach detailed in [GLM05].

Moments of the type E[WAWBW ]. If Σ ∼ IW(ν,Ω), then W = Σ−1 has the Wishart

distribution W(ν,∆ = Ω−1). Then, for any pair of real-valued symmetric matrices (A,B):

EΣ

[
Σ−1AΣ−1BΣ−1

]
= ∆A∆B∆(ν3 + 2ν2 + ν) +∆B∆A∆(ν2 + 3ν)

+ [Tr (∆A)]∆B∆(ν2 + ν) + [Tr (∆B)]∆A∆(ν2 + ν)

+∆
[
(ν2 + ν) Tr (∆A∆B) + ν Tr (∆A) Tr (∆B)

]
. (A.1)

Proof. The proof is based on Eq. (4.27) of the paper by Graczyk, Letac and Massam [GLM05]

recalled below

E [Tr(Sm1 Sm2Sm
T
3 )
]
= p3tr(σm1σm2σm

T
3 )

+
p2

2

[
Tr(σm1) Tr(σm2σm

T
3 ) + Tr(σm2) Tr(σm1σm

T
3 ) + Tr(σmT

3 ) Tr(σm1σm2)
]

+
p2

2

[
Tr(σm1σm2σm3) + Tr(σm1σm

T
2 σm

T
3 ) + Tr(σm1σm3σm

T
2 )
]

+
p

4

[
Tr(σm1) Tr(σm2) Tr(σm

T
3 ) + Tr(σm1) Tr(σm2σm3)

]

+
p

4

[
Tr(σm2) Tr(σm1σm3) + Tr(σmT

3 ) Tr(σm1σm
T
2 )
]

+
p

4

[
Tr(σm1σm

T
2 σm3) + Tr(σm1σm

T
3 σm2) + Tr(σm1σm

T
3 σm

T
2 )
]

+
p

4
[Tr(σm1σm3σm2)] . (A.2)

First, we note that for any matrix X

E[Tr(XmT
3 )] = Tr(E[X]mT

3 ). (A.3)
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Thus, if we can express the left hand side of this equation as

E[Tr(XmT
3 )] = Tr(MmT

3 ),

by identification, we obtain E[X] = M . By setting X = Sm1Sm2S in (A.3), we obtain

E[Tr(Sm1Sm2Sm
T
3 )] = Tr(E[Sm1Sm2S]m

T
3 ).

The left hand side of this equation can be computed by Eq. (4.27) of the paper by Graczyk, Letac

and Massam. The trick is to express the right hand side of (A.2) as Tr(MmT
3 ) to obtain

E[Sm1Sm2S] = M .

There are 15 terms in the right hand side of (A.2) that need to be expressed as Tr(Mkm
T
3 ) with

k = 1, ..., 15. These terms are detailed below

1. Term #1

p3Tr(σm1σm2σm
T
3 ) = Tr(M1m

T
3 ),

with

M1 = p3σm1σm2σ.

2. Term #2

p2

2

[
Tr(σm1) Tr(σm2σm

T
3 )
]
= Tr(M2m

T
3 ),

with

M2 =
p2

2
[Tr(σm1)]σm2σ.

3. Term #3

p2

2

[
Tr(σm2) Tr(σm1σm

T
3 )
]
= Tr(M3m

T
3 ),

with

M3 =
p2

2
[Tr(σm2)]σm1σ.
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4. Term #4

p2

2

[
Tr(σmT

3 ) Tr(σm1σm2)
]
= Tr(M4m

T
3 ),

with

M4 =
p2

2
[Tr(σm1σm2)]σ.

5. Term #5

p2

2
[Tr(σm1σm2σm3)] =

p2

2

[
Tr(mT

3 σm2σm1σ)
]
=
p2

2

[
Tr(σm2σm1σm

T
3 )
]
= Tr(M5m

T
3 ),

with

M5 =
p2

2
σm2σm1σ.

6. Term #6

p2

2

[
Tr(σm1σm

T
2 σm

T
3 )
]
=
p2

2

[
Tr(σm1σm

T
2 σm

T
3 )
]
= Tr(M6m

T
3 ),

with

M6 =
p2

2
σm1σm

T
2 σ.

7. Term #7

p2

2

[
Tr(σm1σm3σm

T
2 )
]
=
p2

2

[
Tr(σmT

2 σm1σm3)
]
=
p2

2

[
Tr(mT

3 σm1σm
T
2 σ)

]
= Tr(M7m

T
3 ),

with

M7 =
p2

2
σm1σm

T
2 σ.

8. Term #8

p

4

[
Tr(σm1) Tr(σm2) Tr(σm

T
3 )
]
= Tr(M8m

T
3 ),

with

M8 =
p

4
Tr(σm1) Tr(σm2)σ.
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9. Term #9

p

4
[Tr(σm1) Tr(σm2σm3)]=

p

4

[
Tr(σm1) Tr(m

T
3 σm

T
2 σ)

]
=
p

4

[
Tr(σm1) Tr(σm

T
2 σm

T
3 )
]
=Tr(M9m

T
3 ),

with

M9 =
p

4
Tr(σm1)σm

T
2 σ.

10. Term #10

p

4
[Tr(σm2) Tr(σm1σm3)]=

p

4

[
Tr(σm2) Tr(m

T
3 σm

T
1 σ)

]
=
p

4

[
Tr(σm2) Tr(σm

T
1 σm

T
3 )
]
=Tr(M10m

T
3 ),

with

M10 =
p

4
Tr(σm2)σm

T
1 σ.

11. Term #11

p

4

[
Tr(σmT

3 ) Tr(σm1σm
T
2 )
]
= Tr(M11m

T
3 ),

with

M11 =
p

4
Tr(σm1σm

T
2 )σ.

12. Term #12

p

4

[
Tr(σm1σm

T
2 σm3)

]
=
p

4

[
Tr(mT

3 σm2σm
T
1 σ)

]p
4

[
Tr(σm2σm

T
1 σm

T
3 )
]
=Tr(M12m

T
3 ),

with

M12 =
p

4
σm2σm

T
1 σ.

13. Term #13

p

4

[
Tr(σm1σm

T
3 σm2)

]
=
p

4

[
Tr(σm2σm1σm

T
3 )
]
= Tr(M13m

T
3 ),

with

M13 =
p

4
σm2σm1σ.
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14. Term #14

p

4

[
Tr(σm1σm

T
3 σm

T
2 )
]
=
p

4

[
Tr(σmT

2 σm1σm
T
3 )
]
= Tr(M14m

T
3 ),

with

M14 =
p

4
σmT

2 σm1σ.

15. Term #15

p

4
[Tr(σm1σm3σm2)] =

p

4

[
Tr(σm1σm2σm

T
3 )
]
= Tr(M15m

T
3 ),

with

M15 =
p

4
σm1σm2σ.

After summing all these terms, the following result is obtained

E
[
Tr(Sm1Sm2Sm

T
3 )
]
= Tr

(
15∑

k=1

Mkm
T
3

)
,

hence

E[Sm1Sm2S] =

15∑

i=1

Mk.

Using the fact that m1 and m2 are symmetric matrices, straightforward computations lead to

E[Sm1Sm2S] = σm1σm2σ
(
p3 + p2 +

p

4

)
+ σm2σm1σ

(
p2

2
+

3p

4

)

+ σm2σ

(
p2

2
+
p

4

)
Tr(σm1) + σm1σ

(
p2

2
+
p

4

)
Tr(σm2)

+ σ

(
p2

2
Tr(σm1σm2) +

p

4
Tr(σm1) Tr(σm2) +

p

4
Tr(σm1σm2)

)
. (A.4)

The definition of the Wishart distribution in statistics is different from the definition used in the

paper by Graczyk, Letac and Massam. Indeed, in the paper by Graczyk, Letac and Massam, a

random matrix S is distributed according to a Wishart distribution with parameters p and σ if its

Laplace transform is

E
[
e−Tr(sS)

]
=

1

det [I + sσ]p
.



122

Conversely, in statistics, a random matrix W is distributed according to a Wishart distribution with

parameters ν and ∆ if its Laplace transform is

E
[
e−Tr(sW )

]
=

1

det [I + 2s∆]
ν
2

.

To use an expression in the paper by Graczyk, Letac and Massam that is compatible with our

definition, one has to replace σ by 2∆ and p by ν
2 . These changes lead to

E[Sm1Sm2S) =∆m1∆m2∆
(
ν3 + 2ν2 + ν

)
+∆m2∆m1∆

(
ν2 + 3ν

)

+∆m2∆
(
ν2 + ν

)
Tr(∆m1) +∆m1∆

(
ν2 + ν

)
Tr(∆m2)

+∆
(
ν2Tr(∆m1∆m2) + ν Tr(∆m1) Tr(∆m2) + ν Tr(∆m1∆m2)

)
, (A.5)

which concludes the proof.
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sensing. PhD thesis, Université de Toulouse, 2016. Thèse de doctorat dirigée par

Tourneret, Jean-Yves et Mclaughlin, Steve Signal, Image, Acoustique et Optimisation

Toulouse, INPT 2016.

[CP06] N. H. Chan and W. Palma. Estimation of long-memory time series models: A survey

of different likelihood-based methods. Adv. Econom., 20:89–121, 2006.

[CR51] D. G. Chapman and H. Robbins. Minimum variance estimation without regularity

assumptions. The Annals of Mathematical Statistics, 22(4):581–586, 1951.

[Cra46] H. Cramér. A contribution to the theory of statistical estimation. Scandinavian Actu-

arial Journal, 1946(1):85–94, 1946.

[CRV+19] L. Cheng, S. Ramchandran, T. Vatanen, N. Lietzén, R. Lahesmaa, A. Vehtari, and

H. Lähdesmäki. An additive Gaussian process regression model for interpretable non-

parametric analysis of longitudinal data. Nature Communications, 10(1):1–11, 2019.

[CVA+12a] P. Ciuciu, G. Varoquaux, P. Abry, S. Sadaghiani, and A. Kleinschmidt. Scale-free

and multifractal dynamic properties of fMRI signals during rest and task. Frontiers in

Physiology, 3(186), 2012.



128 BIBLIOGRAPHY

[CVA+12b] P. Ciuciu, G. Varoquaux, P. Abry, S. Sadaghiani, and A. Kleinschmidt. Scale-free and

multifractal time dynamics of fMRI signals during rest and task. Frontiers in Physiology,

3:186–186, 2012.

[CWD+15] S. Combrexelle, H. Wendt, N. Dobigeon, J.-Y. Tourneret, S. McLaughlin, and P. Abry.

Bayesian estimation of the multifractality parameter for image texture using a Whittle

approximation. IEEE Trans. Image Proces., 24(8):2540–2551, 2015.

[CWT+15a] S. Combrexelle, H. Wendt, J.-Y. Tourneret, P. Abry, and S. McLaughlin. Bayesian esti-

mation of the multifractality parameter for images via a closed-form Whittle likelihood.

In Proc. Eur. Signal Proces. Conf. (EUSIPCO), Nice, France, 2015.

[CWT+15b] S. Combrexelle, H. Wendt, J.-Y. Tourneret, S. McLaughlin, and P. Abry. Hyperspectral

image analysis using multifractal attributes. In Proc. IEEE GRSS Workshop on Hy-

perspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS),

Tokyo, Japan, June 2015.

[Dau88] I. Daubechies. Orthonormal bases of compactly supported wavelets. Comm. Pure and

App. Math., 41:909–996, 1988.

[DHA+11] M. Doret, H. Helgason, P. Abry, P. Gonçalvès, C. Gharib, and P. Gaucherand. Multi-
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