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This PhD thesis presents the results I obtained in the context of the European Research Council-funded ARTISTIC project, where my work was centered on threedimensional simulations of lithium-ion battery electrode manufacturing. These simulations allow linking manufacturing parameters to electrode microstructure, considering both the active material and the carbon-binder domain phases. In particular, three steps of the electrode manufacturing line were modeled and studied: the slurry phase, its drying, and electrode calendering. All the models developed are presented in detail, focusing on both their advantages and disadvantages, and the results obtained using them are illustrated. These models oer the possibility of studying a vast parameter space, allowing to control the active material particle size distribution, slurry solid content, electrode formulation, thickness and porosity, drying and calendering conditions. In addition, the electrode microstructures can be embedded in electrochemical models to assess their performance. This allows searching optimal manufacturing parameters and electrode microstructures as a function of the metrics used, as specic capacity or energy, and electrochemical protocol adopted. This parameter space was partially studied during this thesis, and much more conditions could be tested by utilizing the methodology we developed. Being conscious of this, all the codes developed during this thesis were published as open-source, and they were implemented in a user-friendly free web interface, allowing any kind of user, expert or not, to access this parameter space and hopefully investigate it in a collaborative way.

European Research Council (ERC) funded ARTISTIC project [START_REF] Lombardo | The ARTISTIC Online Calculator: Exploring the Impact of Li-ion Battery Electrode Manufacturing Parameters Interactively through your Browser[END_REF], lead by Prof. Alejandro A. Franco at Université de Picardie Jules Verne (UPJV), whose main goal is to develop physics-based and data-driven computational approaches aiming to study the links between Li-ion battery (LIB) electrode manufacturing and electrode microstructure and electrochemical performance. All this thesis was held at the Laboratoire de Réactivité et Chimie des Solides [START_REF] Lombardo | Carbon-Binder Migration: A Three-Dimensional Drying Model for Lithium-Ion Battery Electrodes[END_REF] (LRCS). My main contribution in the ARTISTIC project was the development and validation of three-dimensional (3D) physics-based models simulating dierent steps of LIB electrode manufacturing. The main output of these models is the 3D electrode microstructure, accounting for both active material (AM) and carbon-binder domain (CBD), associated to specic manufacturing processes and parameters.

The main purpose of our 3D LIB electrode manufacturing models is allowing access to the electrode microstructure as a function of dierent manufacturing parameters through a less time and resources expensive approach with respect to 3D experimental imaging techniques, as tomography, and a more reliable and versatile methodology than commonly used stochastic-based algorithms. These microstructures are then used as input for continuum electrochemical models, developed by other members of the ARTISTIC project, aiming to model the electrochemical performance of the simulated electrodes, and then linking manufacturing, microstructure, and electrochemical performance. Along side the core work of this thesis, I also contributed on the development of machine learning (ML) models applied either on experimental or simulated data.

Dierent steps of the LIB electrode manufacturing line were studied and simulated, and the results obtained are presented accordingly, i.e., the slurry phase (Chapter 2), its drying (Chapter 3), and electrode calendering (Chapter 4). For all these Chapters, the models developed for each of these steps are presented and the associated results are discussed.

In addition, the 3D slurry, drying, and calendering models are conceived for being part of an overall computational workow, meaning that the output of the slurry simulation is used as input for the drying one, and the output of the drying simulation is used as input of the calendering one, making Chapters 2-4 strongly linked. Chapters 5 and 6 present two dierent ways of exploiting these models, i.e., by their implementation into a user-friendly and free web interface, and by assessing the discharge performance of the 3D electrode microstructures obtained through our manufacturing models, respectively. However, before presenting the models developed and the results obtained during this thesis, the context in which it is inscribed needs to be discussed. For this, the state of the art on LIB electrode manufacturing, 3D electrode microstructure characterization and generation, and ML applied to battery research are illustrated. LIB electrode manufacturing and 3D electrode microstructure characterization and generation are discussed in full detail in sections section 1.3 and section 1.4, respectively, as they constitute the core subjects of this thesis. The applications of ML in battery research are discussed in less detail, as this constitutes an important but lateral branch of this thesis. For making the reading of these sections as easy and modular as possible, at the end of each section a "take home messages" subsection is included, which discusses a less detailed but much more concise view on the thematic presented. Nonetheless, at least one subsection (subsection 1.4.5) should be read in full to put the computational workow presented in this thesis in the right context.

In addition to the state of the art related to the research subjects of this thesis, a vast overview of the main sources of worldwide emissions of greenhouse gases (GHGs), and LIB history, economical and geopolitical challenges are discussed in section 1.1 and section 1.2, respectively. These discussions makes the Chapter 1 of this thesis non-conventional and particularly long, a stylistic choice for which I take full responsibility. The reason for this is that I do not conceive PhD theses as reports of only the technical knowledge accumulated by the PhD student, her/his scientic maturity and writing capabilities, and the results achieved, even though all of these are critical. More than this, I think that a PhD student should also demonstrates the capability to correlate her/his research eld to real-world problems, and to put the possible breakthroughs and limitations of current research directions in a broader context. In a thesis in the electrochemical energy storage eld, I think this means discussing and having an informed and solid view on crucial challenges of our time, as climate change and economic and geopolitical challenges related to critical materials, as many LIB components. However, I understand that this view could be controversial and that some readers will disagree. Therefore, if the reader considers out of scope these discussions or does not have the time for read them, s/he can simply do not consider and skip sections 1.1 and 1.2. Reading the rest of the thesis does not require having read these sections. On the contrary, if the reader is interested in these discussions, s/he can either read them in full, or read the associated take home messages subsections only.

Chapter 1

Context and state-of-the-art

This Chapter is divided in two parts, which can be read independently. The rst part is devoted to a deep discussion on the main causes of climate change (section 1.1), with a particular focus on the role of the energy eld in general and battery in particular, and LIB history, economical and geopolitical challenges (section 1.2). Considering that these rst two sections can be of interest for a wider public and that they also contain informed but still personal opinions, I have decided to write them using a much more informal, easily accessible, and personal writing style with respect to the rest of the thesis. The second part is devoted to the state-of-the-art of the research topics in which this thesis is inscribed, and it is divided in three sections, accounting for LIB electrode manufacturing (section 1.3), electrode microstructure characterization and generation (section 1.4), and ML applied to battery research (section 1.5). All the sections includes a "take home messages" subsection, whose main goal is oering a less detailed but much more concise view on the thematic discussed in the associated section.

Worldwide emissions

This section is devoted to the main sources of GHG emissions coming from humanrelated activities, and to options for decreasing them. The panorama oered here intends to illustrate the complexity of the problem by showing how variegated the sources of emissions are, their amount, and the challenges that need to be tackled to bring emissions down to 0. First of all, why are GHGs problematic? And what is the cost of human activities in terms of emitted GHGs?

The answer to the rst question relies on basic photophysics, i.e., the interaction between Figure 1.1: A,B) Schematic of the balanced (A) and imbalanced (B) incoming and outgoing energy relevant for the Earth climate. This imbalance leads to an excess of energy, which is mainly absorbed by oceans (91%). C) Observed (black line) and simulated surface temperature evolution when considering (khaki color) or not (teal color) human activities. D) CO 2-eq and CO 2 emission in the last decades. Data by the World Bank and the International Energy Agency (IEA), respectively [START_REF] Lombardo | Articial Intelligence Applied to Battery Research: Hype or Reality?[END_REF][START_REF] Lombardo | Accelerated Optimization Methods for Force-Field Parametrization in Battery Electrode Manufacturing Modeling[END_REF]. A-C) Figures from the 6 th Intergovernmental Panel on Climate Change (IPCC) report [START_REF] Cunha | Articial Intelligence Investigation of NMC Cathode Manufacturing Parameters Interdependencies[END_REF]. light and matter, for which we should start from our main source of light and energy: the Sun. The Sun produces energy through nuclear fusion, i.e., combining two lighter atoms into an heavier one, part of which is emitted in the form of radiation, going from infrared (IR) to the ultraviolet (UV) light. The dierence between IR and UV is the associated wavelength and energy, and in particular UV light has higher energy than IR one. Those radiations travel from the Sun to the Earth, until something (atom/molecule/particles) does not absorb or reect it.

1 A signicant fraction of the emitted UV light is ltered by 1 Just to give an idea to the non-expert readers, the process of light absorption is basically a jump from an energy level to another of the atom/molecule absorbing it, a process also referred to as excitation, and that can unlock photochemical reactions, as photosynthesis. The light is absorbed only if its energy the ozone (O 3 ) in the atmosphere, protecting us from it. The part of radiation crossing the atmosphere, mainly in the visible and IR range, is either absorbed, or reected by the Earth. In addition, only a part of the absorbed energy is used, for instance to unlock essential reactions, as photosynthesis, while another part is emitted back, typically as IR light (Figure 1.1 A, B).The radiation/energy emitted from the Earth should now go through the atmosphere to be dispersed, but just a fraction of it is able to do this, while another part is absorbed by some molecules in the atmosphere. Here, GHGs come to play their role. They have the correct vibrational energy levels to absorb part of the radiation re-emitted by the Earth. Absorbing this energy leads the GHGs molecules to move faster, increasing the temperature of the atmosphere, as temperature and molecule/atom velocity are two sides of the same coin. Therefore, higher GHG concentrations in the atmosphere leads to capture a higher fraction of the IR radiation re-emitted by the Earth, ultimately increasing the temperature. Such a simple phenomenon is commonly known as the greenhouse eect. However, it should be mentioned that this phenomenon is not only due to human activity, and up to a certain extent is even benecial for life on Earth. Indeed, a certain quantity of GHGs is the reason Earth atmosphere has a temperature high enough to allow life as we know it. However, the increase in the concentration of these gasses has lead to an average temperature increase (Figure 1.1 C), which is a major issue for life on earth and for our prosperity as human species. Now that we have discussed the role of GHGs, the next question is: how much do we emit yearly? To quantify it, a unit is needed. A possible unit would be the tons of carbon dioxide (CO 2 ) emitted, which is a discard product of many human activities and plays a major role in climate change and ocean acidication. However, this unit should be used carefully, knowing that CO 2 is the main but not the only relevant GHG. Others, as methane (CH 4 ), nitrous oxide (N 2 O) or uorinated molecules have global warming poten- tials that can be tens to hundred times the one of CO 2 . [7, 8] Then, the concept of CO 2 equivalent (CO 2-eq ) can be used instead. This unit quanties how much CO 2 emission would be needed to reach the greenhouse eect associated to the actual GHGs emitted.

As an order of magnitude, we can retain that we currently emit slightly more than 30 and corresponds to the energy dierence between the two energy levels of the molecule/atom. For more expert readers, obviously the story is a bit more complex than this [6], however, this is not a thesis in photochemistry or photophysics, so I will not go into further details to avoid burdening the discussion. [START_REF] Molina | Stratospheric sink for chlorouoromethanes: chlorine atomcatalysed destruction of ozone[END_REF] billion tons (Gtons) of CO 2 and CO 2-eq , respectively (Figure 1.1 D) 2 . It is interesting to notice that in 2020, due to the Covid-19 pandemic, the worldwide emission decreased of just 6% compared to 2019, and emission are expected to jump over the 2019 levels in 2021. [START_REF] Lombardo | Articial Intelligence Applied to Battery Research: Hype or Reality?[END_REF] I think this is a good metric to keep in mind, as it gives an idea of how hard it will be going down to 0 while keep improving our lifestyle and reducing poverty.

But what does "going down to 0" actually mean? It does not really mean stopping GHGs emissions, but rather reaching a net 0 emission. In other terms, it means capturing as much greenhouse gasses as we emit. For reaching such a goal, we need to substantially decrease our emissions and couple the remaining emitting activities with carbon capturing systems, which sounds easy, but is not. CO 2 can be captured either from gas contain- ing high concentration of carbon dioxide, such as exhaust industrial fumes, or directly from the atmosphere, referred to as direct air capture (DAC). [9] Even though the cost of DAC will be prohibitive for the next decades, due to the low CO 2 concentration in the atmosphere 3 , CO 2 capturing in industries seems to be essential for the deployment of any sustainable scenario. [10] Once captured, CO 2 can be either used, or stored. On the one hand, storage is typically performed by pumping the CO 2 underground into geological formations, or empty oil or gas deposits. On the other hand, its potential usages range from the food/drink (as soda) and pharmaceutical (as respiratory stimulus) industries to its conversion into chemicals or fuels, upon others. [11] It should be underlined, however, that today the main use of captured CO 2 is enhanced oil recovery (EOR), i.e., increasing oil extraction eciency. [10] If we aim to build a marketplace for carbon capture utilization and storage (CCUS) and, in the meantime, signicantly decrease the extraction of fossil fuels, large scale development of other CO 2 applications would be favorable. The importance of building a global marketplace of CCUS is stressed by its very limited usage today (just 40 millions CO 2 tons/year, approximately 0.1% of the global emission), which comes from the high costs and energy demanded by the CCUS systems currently available. [10] One aspect that could potentially boost this sector are devoted policies, from tax credits when CCUS is employed to carbon pricing and regulatory standards. [10] However, the issue of the high costs of CCUS remains, then its employment will be advantageous [START_REF] Lombardo | Carbon-Binder Migration: A Three-Dimensional Drying Model for Lithium-Ion Battery Electrodes[END_REF] The exact value of global emissions varies as a function of the sources used and the moment in which the data is recovered. As an example, the data (World Bank) I initially used for writing this section (April 2021) indicated an annual emission of ca. 50 Gtons of CO 2-eq , but this data was updated later on (October 2021) to ca. 46 Gtons.

3 Too high from a greenhouse eect perspective, but still way too low for capturing it eciently.

(and needed) only for certain activities, while other solutions can be employed for other sectors. In order to have an idea of this, we need to discuss a bit more in detail which are the most emitting sectors, how much they contribute to the global emissions, and which are the perspectives and challenges to decrease their contribution down to net 0.

The main emitting sectors in our society can be classied into 5 broad groups: 4 manufac- turing and construction (ca. 31%), electricity (ca. 27%), farming and forestry (ca. 19%), transportation (ca. 16%) and heating and cooling (ca. 7%). [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF]14]. The next subsections focus on discussing each of these elds of activity, with a particular stress on electricity and transportation, i.e., the ones in which LIBs are likely to play an important role.

Manufacturing and construction

Manufacturing and construction is the largest direct source of emissions and accounts for several critical activities, going from making objects essential for our daily life to building infrastructures vital to our society. Humankind makes use of an extraordinary number of dierent materials, as aluminum for our kitchens, glass for our windows, asphalt for our roads, fertilizer for our farms, etc. However, here I focus on cement, steel and plastics only, as they represent the most challenging ones from an environmental perspectives.

Cement and its derivatives, as concrete, are quite an extraordinary class of materials, allowing to build infrastructure able to lter nuclear radiations in nuclear plants as well as enabling oating bridges. [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] Its wide applicability to many engineering problems and its low cost has made it widely used at the global scale, with a worldwide production stable to approximately 4 billions tons/year. [START_REF] Iea | Cement, IEA[END_REF] Considering that the world population is around 8 billion people, [17] it means roughly 2 tons of cement each. However, this average does not reect the real situation, because some countries produce and use very little amount of cement, while others do it massively. Just to give some order of magnitude, China is by far the rst producer of cement (55% of the global production, ca. 1.5 tons/habitant), followed by India (8%, ca. 0.2 tons/habitant), while USA uses around 0.3 tons of cement for each habitant (ca. 3% of the global production). [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF][START_REF] Iea | Cement, IEA[END_REF] Here is the problem: one of the key component of cement is calcium, which is typically obtained 4 This separation and the associated percentages follow the ones proposed by Bill Gates and collabora- tors in his last book "How to avoid a Climate Disaster". [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] These percentages can vary as a function of the data sources used and how the dierent emission sources are grouped.

[13] However, the main trends remain, then I will stick to those values for the following discussions. Yearly emissions for the processes (blues) and energy (yellow) required by selected industries. [START_REF]IEA, Direct CO2 emissions from selected heavy industry sectors[END_REF] Data from the IEA [START_REF]IEA, Direct CO2 emissions from selected heavy industry sectors[END_REF], all rights reserved.

through thermal treatment of calcium carbonate, i.e., limestone. The products of this process are calcium oxide, which is needed for making the cement, and an equivalent of CO 2 as byproduct. The simplicity of this chemical equation is why it is dramatically dicult to get rid of CO 2 emissions for making cements (we emit around 2 Gtons/year just for making cement, ca. 4% of the total, and around 2/3 of it comes from the chemical reaction discussed above). [START_REF]IEA, Direct CO2 emissions from selected heavy industry sectors[END_REF][START_REF] Iea | Cement, IEA[END_REF] In that sense, the most probable way to signicantly cut the emission of cement production is by coupling it with CCUS. However, considering the critical role of cement in our economy and society, the cost of CCUS should be decreased substantially for this to happen, calling for more R&D in the eld. In addition to R&D, the widespread use of CCUS would surely benet from devoted regulations and standards giving some benet to the companies that chose to buy "greener", but more expensive, cement.

Steel is an extremely strong and elastic material, made of two very abundant elements:

iron and (few) carbon. It is relatively easy to mold steel, giving it the desired shape, but only at quite high temperatures, typically >1,500 °C, which requires a lot of energy. If for cement the main source of emission comes from the process itself, ca. 65%, the majority of CO 2 emission linked to steel manufacturing arises from the energy employed, ca. 90% out of 2.6 Gtons/year worldwide (>5% of the total). [START_REF]IEA, Direct CO2 emissions from selected heavy industry sectors[END_REF][START_REF] Iea | Iron and Steel Technology Roadmap[END_REF] The rest of the emissions is linked to the coke, typically used as carbon precursor, that at high temperatures releases carbon, which partially reacts with iron, making steel, and partially with oxygen, making CO 2 ).

[19] In addition, global demand of steel is projected to increase by more than a third from now to 2050. [START_REF] Iea | Iron and Steel Technology Roadmap[END_REF] From an environmental perspective, even if extremely challenging, the case of steel is simpler compared to cement. Considering that around 90% of the emissions comes from the energy used, the most important step in decarbonizing steel production is using carbon neutral energy sources. This can be obtained through electrication of the steel manufacturing process and decarbonized electricity, or by changing the combustible used from fossil fuels to bio-fuels or hydrogen produced without emitting greenhouse gasses. In this context, we can glimpse that making "green" electricity, coupled with a widespread electrication and stable power grid, would have a much higher impact than the 27% of global emissions cited above.

Plastics 5 are today ubiquitous [START_REF] Thompson | Our plastic age[END_REF] in our society. They are an important part of the modern chemical industry, which contributes for approximately 3% of the global emission (ca. 1.5 Gtons/year). However, plastics are, in terms of emissions, less problematic with respect to cement and steel. Similarly to steel, approximately the 85% of the emissions of this industry come from the energy sources used, but without the requirement of the high temperatures used for steel production. This indicates that the majority of plastics production emissions could be cut through electrication and use of decarbonized power grids. If this transition is successful, plastics production has the potential to not only become carbon neutral, but to become a carbon negative activity. [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] Indeed, plastics contain high amounts of carbon, which today are obtained from petrochemical products used as raw materials, making plastics so inexpensive. Therefore, it would be plausible to substitute these raw materials with carbon captured through CCUS or trees (here used to capture and store CO 2 ), which net result would be to sequestrate CO 2 from the at- mosphere and store it in plastics. However, not everything that shines is gold. As it is known, the combination of the typical long lifetime of plastics and their use as disposable objects undoubtedly lead us to a major environmental catastrophe, which in the last years rightfully raised the awareness and concerns of many. [21] This calls for re-thinking 5 With "plastics" here I refer to a extremely wide family of thermoplastic and thermosetting polymeric materials, as polypropylene, polyethylene, polyvinyl chloride, polyuretane, polyacrylonitrile etc.

the way in which plastics are used in our daily life, an area in which we, as individuals, have major responsibilities. In addition, actions to remedy to the damages caused, as massive recycling and plastic recovery from wild environments, is our responsibility as human beings.

[22]

1. 1.2 Farming Farming (agricultural + pastoralism) and forestry accounts for almost one fth of the global emissions. However, contrary to the other sectors discussed here, the main source of greenhouse gasses emission does not come from CO 2 , but rather from methane (CH 4 ) and nitrogen oxides (NO x ). Methane comes mainly from pastorialism (due to animal farting and excrement decomposition), while NO x comes from the use of fertilizer and animals excrement decomposition. These two sources of emissions link to farming activities, while the direct impact of forestry, and in particular deforestation, on climate is due to the CO 2 emitted by burning trees and from the soil, which can release part of its carbon into the atmosphere after the trees' removal. [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] Not to mention that deforestation is not only a problem for climate, but it is also a major concern in terms of biodiversity as well. [START_REF] Jha | Population Growth, Human Development, and Deforestation in Biodiversity Hotspots[END_REF][START_REF] Barlow | Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation[END_REF] Concerning the pastorialism-related emissions, it is challenging to imagine ways to reduce them down to 0. Improved breeding and better feed and veterinary results in decreased CH 4 emission for Kg of meat or dairy produced [12], as it is already the case in EU and USA, and it is a viable strategy to decrease emissions coming from developing countries, with particular attention to South America. However, if the use of meat and wasted food continue to grow worldwide, [25] those eorts would be most likely in vain. Even if not

particularly appealing yet, plant-based "meats" [26,27] surely have the potential to bring an important breakthrough in the eld. The success and large scale deployment of this option not only depends on the capability to make plan-based "meat" with approximately the same texture and taste of real meat, but also on the customers' will to change, at least partially, their habits and make an environmentally sustainable choice regarding their diet.

Concerning agriculture, a main environmental issue is the massive deployment of fertilizer.

A key element of fertilizer is Nitrogen, which is essential for the plant growth. Atmospheric nitrogen is naturally xed (i.e., transformed in ammonia, whose derivatives are absorbed by the plants) by several bacteria 6 in the soil. [29,[START_REF] Reis | Nitrogen xing bacteria in the family Acetobacteraceae and their role in agriculture[END_REF] However, this process is energy expensive, and the bacteria x nitrogen in limited amounts and only if the concentration of nitrogen-derivatives in the soil is low. The use of fertilizer is a way to articially add extra nitrogen in the soil, making it more fertile and unlocking signicantly higher food production, which is key to diminishing hunger and malnutrition in certain developing countries. However, their massive use leads to considerable downsides. From one side, articially adding nitrogen in the soil makes the bacteria discussed above less prone to

x atmospheric nitrogen, whose compensation calls for extra fertilizer. In addition, approximately only half of the nitrogen in fertilizer is actually absorbed by the plant, [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] the other half runs o either into the ground, possibly leading to groundwater pollution, or into the atmosphere as NO x . Another relevant aspect is how ammonia is produced, i.e., through the famous Haber-Bosh process, requiring high temperatures (350-550 °C)

and pressure (140-320 atm), which reads as a lot of energy, today mainly coming from fossil fuels. [31] There are several elds of research currently searching for solutions to the fertilizer-related issues. One idea is to use solar fertilizer, i.e., fertilizer produced in situ through the use of solar energy. [START_REF] Comer | Prospects and Challenges for Solar Fertilizers[END_REF] From one side, this approach would cut the emissions coming from the Haber-Bosh process, as well as cost and emissions linked to the fertilizer transport, which can be problematic in some diculty accessible rural areas. On the other side, it does not address the problems of water pollution and NO x emissions. A panacea of those problems could come from an extremely valuable, safe and (unfortunately) underappreciated technology: genetically modied organisms (GMOs). [START_REF] Bressanini | OGM tra leggende e realtà. Chi ha paura degli organismi geneticamente modicati?[END_REF][START_REF] Bressanini | al bio, falsi allarmi e verità nascoste del cibo che portiamo in tavola[END_REF] I sincerely think that, as society, we should make peace with GMOs. The advantages they bring are signicantly greater than the associated risks. Therefore, we should deploy them more and we should invest more public money on them. The latter is critical, because leaving this enormous eld of research to big corporations only would lead to the generation of GMOs for crops with high economic impact only, as corn, rice and wheat, leaving behind local crops whose cultural, gastronomic and economic value is vital for certain communities. This goes from crops specic to developing countries to protected designation of origin (PDO), protected geographical indication (PGI) and traditional specialities guaranteed (TSG) crops in developed countries. If not the public, it is dicult to imagine someone deploying signicant economical resources to develop GMOs of "Pomodoro di 6 The full story is more complicated than this. For instance, there are also plants, like those of the legume family, that assist nitrogen xing. [28] Pachino" [35] or "Pistacchio di Bronte" [36], just to cite some Sicilian crops of particular interest to me, able to resist the possible eects of climate change. We know, and we already start to see, to which extent climate change will aect agriculture, which calls for the development and deployment of crops adapted to a warmer and less predictable weather. At the risk of repeating myself, we should act now to minimize the damages we know are coming, and GMOs can play a critical role in this challenge by making crops resistant to oods, drought or frost. In addition, public eorts should be placed in supporting developing countries during this worldwide challenge, because they are the ones that will be impacted the most and have less resources to compensate for the damage climate change will bring, without mentioning that they are among the ones that impacted the environment the least and that gained the least from the massive deployment of GHG emitting technologies. In that sense, more resources and eorts should be placed in institutions as the Consultative Group for International Agricultural Research (CGIAR), which already led to important results in this eld. [37] Going back to the fertilizer-related problems, GMOs could be adopted in many ways, from making plants absorbing a higher fraction of nitrogen, leading to less water and air pollution [START_REF] Mcallister | Engineering nitrogen use ecient crop plants: the current status[END_REF], to bacteria xing more nitrogen [START_REF] Amarger | Genetically modied bacteria in agriculture[END_REF] or plants able to x nitrogen from air by themselves. [START_REF] Good | Toward nitrogen-xing plants[END_REF] Last but not least, we should bare in mind that in the next decades we will need to produce more food (the United Nations estimates that the world population will grow of ca. 25% by 2050 and 40% by 2100). [START_REF]billion%20in%202100&text=The% 20current%20world%20population%20of, Nations%20report%20being%20launched%[END_REF] This makes even more urgent to nd and massively deploy solutions for reducing the environmental impact of farming while increasing food production rate (especially in developing countries) and avoiding any king of deforestation, for which a combination of strong international political agreements and economic incentives is vitally and urgently needed. [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] 1.1.

Heating and cooling

Heating and cooling considers a pretty vast plethora of aspects, going from building insulation and radiator/air conditioning to domestic, industrial and transport (cold chain) refrigeration for foods and drugs. In addition, cooling is essential for the operation of computational clusters, as data centers and clouds platform, vitally needed for our society and economy. As an example, this thesis would have not been possible without the access to computing centers, for which air conditioning is needed. Besides this, considering the relatively low (ca. 7%) contribution of this group of activities to the whole emissions, one could be tempted to neglect it. However, there are at least three good reasons to discuss it:

(i) if actions are not taken now, its impact on the climate will raise considerably in the next years; (ii) it is one of the best example of the role of science and successful international actions in mitigating climate change and (iii) it is part of many post-pandemic economic recovery plans, especially concerning buildings insulation and energy eciency [42].

The need for cooling is raising worldwide, mainly due to average temperature raise and the economic growth of developing countries, especially the ones living in a humid and hot environment, e.g., India, as it is shown in Figure 1.3.[43] Up to date, 3.6 billions cooling appliances are already installed and 10 new devices are installed each second worldwide, i.e., approximately 300 thousand/year, an increase of around 10% per year. [START_REF]Cooling Emissions and Policy Synthesis Report[END_REF] This is good news that signals an improvement in the life conditions for many. In addition, cooling, and particularly cold chains, is critical for ghting food waste and providing safer food and drug supplies to developing countries. However, an increase of cooling capacity by more than a factor 2 by 2050, as prospected by the International Energy Agency (IEA), Copyrights IEA, all rights reserved. [START_REF]Cooling Emissions and Policy Synthesis Report[END_REF] There are mainly two sources of emission linked to refrigeration systems (excluding their manufacturing): leakage of refrigerant and energy consumed. The typical energy source used for refrigeration is electricity, whose cost of production in terms of emission is discussed in the next subsection. Similarly to other aspects covered before, decarbonized power grids can have a signicant role in reducing the impact of cooling on the environment. Concerning the refrigerant, their history allows a glimpse of the critical role of international actions and science in ghting the climate challenge. The rst efcient refrigerants deployed massively were chlorouorocarbons (CFCs), i.e., molecules containing carbon (C), chlorine (Cl) and uorine (F). At atmospheric pressure and room temperature (RT), CFCs are gases that can be compressed/expanded for refrigeration purposes. Additionally, they are chemically very stable, non toxic and not ammable.

These properties made them the molecules of choice not only for cooling appliances, but also aerosol propellants, as deodorants.

[44] However, these compounds are so stable that they reach the ozone layer untouched, where they react and consume ozone (O 3 ). This was rst recognized by Molina and Rowland in 1974,[45] a nding for which they won the Nobel prize in Chemistry in 1995. [46] What was the impact of such nding on the society as a whole? From that moment, many national actions were undertaken to substitute CFCs in many applications, starting from aerosol. This not only stopped the increase in production of CFCs (Figure 1.4 A and B), but also paved the way for what was coming.

A few years later, in the late '80s, the Montreal protocol [47] was signed, whose goal was to substantially decrease the deployment of CFCs. The clear success of this protocol was studied by [START_REF] Velders | The importance of the Montreal Protocol in protecting climate[END_REF], whose main ndings are reported in Figure 1.4. [START_REF] Velders | The importance of the Montreal Protocol in protecting climate[END_REF] In this study, they did not only observe how rapidly the production of CFCs decreased, but they also oered estimations of how their production rate would have evolved without the ndings by Molina and Rowland (green band) and the Montreal protocol (blue band), as reported in Figure 1.4 A and B. It is impressive to see that without both of them, today CFCs would have had an impact on climate approximately equal to the one of CO 2

(Figure 1.4 C).

However, Figure 1.4 shows just a part of the story. We could ponder on how it was possible to substitute all the CFCs in such a so short period of time, considering their widespread utilization as refrigerants. The reason is that they were substituted with something pretty similar: 7 hydrouorocarbons (HFCs). HFCs are chemically similar to CFCs, but with the substitution of one or more Cl atom(s) with hydrogen (H). This is enough to decrease their chemical stability, which makes them decompose before reaching the ozone layer. If 7 Therefore, the industries producing CFCs could quite easily adapt their production sites. and the Montreal protocol[47] (blue). C) Actual and predicted worldwide CO 2-eq emission related to the CFCs production and usage for the same conditions of A and B. The red line indicates the actual and foreseen CO 2 emissions at a global scale. [48] from one side, they lead the ozone layer to the path of recovery, [49] from the other side HFCs are terrible for climate change, having a greenhouse power thousands of times the one of CO 2 . The latter is the main reason cooling systems, and their expected growth in the next decades, are problematic from an environmental perspective.

8 However, if we do not consider the challenge of decarbonized power grids, this eld does not require breakthroughs in terms of novel technologies: not only many of the needed technical solutions are known, but they are also commercial. Refrigerants with signicantly lower impact on climate, as well as less energy intensive cooling devices, as heat pumps 9 , already exist. [START_REF]Cooling Emissions and Policy Synthesis Report[END_REF] Concerning the alternative refrigerants, it can be challenging to reach the same safety standards of HFCs for all applications, which can slow down their substitution. Support for this could come from the Kigali amendment [50], signed in 2016 by 170 countries in the context of the Montreal protocol, whose goal is to reach a decrease of 80% in the use of HFCs by 2047. In terms of energy eciency, almost all the pieces are in place. However, most air conditioners sold today are 2 to 3 times less ecient than the best alternative in the market. 10 From one side, more ecient air conditioners (ACs) are more expensive at the time of purchase, but they are overall less expensive when considering their whole 8 It should be noted, however, that the high energy demand of cooling systems, that can lead to important energy peaks, is a reason of concern as well. [START_REF]Cooling Emissions and Policy Synthesis Report[END_REF] 9 Despite their name, they can be used for cooling by simply inverting their working principle 10 The widespread adoption of ecient air conditioners would save 0.5 Gtons/year of CO 2-eq , i.e., 1% of the total. [START_REF]Cooling Emissions and Policy Synthesis Report[END_REF] lifetime thanks to energy saving. [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] The surprising nding is that today inecient ACs are the product of choice in both poorer and richer countries. [START_REF]Cooling Emissions and Policy Synthesis Report[END_REF] For instance, the average eciency of the ACs in Europe is ca. half of what it could be. [START_REF]Cooling Emissions and Policy Synthesis Report[END_REF] This is due to lack of information (the economic gain that one could make by buying more ecient appliances is not always clear), calling for appropriate standards. Another important aspect relies on juridic incentives to shift from fossil fuel-to electric-based heaters and coolers. Last but not least, incentives and public investments can play a signicant role in building efciency and are part of many post pandemic recovery plans [42], which would not only be good for the environment, but also for the economy, as it was estimated that investments in building eciency can generate more jobs than similar investments in other energy related sectors [START_REF]Cooling Emissions and Policy Synthesis Report[END_REF].

Electricity

Being able to produce electricity without emitting greenhouse gasses is undoubtedly the single breakthrough that would matter the most in reaching 0 net CO 2-eq emissions.

This would not "just" cut the emission related to its production (ca. 27% of the total), but it would signicantly ease the decarbonization of production processes, cooling/heating and transportation. However, this is far from being straightforward, as it would require:

(i) massive energy production and storage through non-emitting sources; (ii) much more interconnected and capillary power grids with respect to what we have today (also in developed countries) and (iii) electrifying manufacturing processes, cooling/heating systems and transportation, signicantly increasing the demand for electricity compared to today.

Each point above brings signicant technical, economical and political challenges, as I try to illustrate in this subsection. However, it is unlikely that we will be able to reach 0 net emissions without accomplishing those goals, which means that we need to nd solutions for them.

First, what are the energy sources we employ to make electricity today? The answer to this question tremendously depends on the region of the world you are looking at. From when comparing relatively similar ones, as European nations. Points i and ii are clearly problematic from an environmental perspective, and we could ponder on why the share of fossil fuels is still so high. One rst reason is their low cost, which makes it challenging for other energy sources to compete. This comes from their abundance, our capability to extract and transport them cheaply and eciently, the fact that their price does not fully reect their environmental impact and national subsides aiming to keep their price low. [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] Concerning their abundance, and despite the knowledge that they will one day come to an end, most likely this will not be the main driving force to shift towards greener energy sources. The already known reserves of natural gas and oil have been estimated to last beyond 2060, while the coal ones beyond 2100.

[52] In addition, more reserves are likely to be discovered in the coming years.

For many, the eciency of fossil fuel-related companies in extracting and transporting these resources, and the lack of full consideration of their environmental impact on the nal price 11 are not surprising, while the reader could be surprised by the reference to national subsides. Nonetheless, it should be acknowledged that fossil fuels subsides, for hundreds of billion $US, globally [START_REF]Fossil fuel consumption subsidies bounced back strongly in 2018[END_REF], are still in place. These subsides were introduced in the 19 th and 20 th centuries, since lower prices of fossil fuels meant cheaper and more abun- dant energy, which boosted modern economies. [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] Without any knowledge on the side eects of fossil fuels, those subsides were then justied. But why are such subsides still in place, today? The reason goes hand in hand with the risks of implementing a carbon tax (or a system of carbon pricing). The core reason is that fossil fuels are so interconnected to our economy that increasing their price raise the cost of many other critical products, as electricity, anything containing plastic, car fuels, etc. our market and society are addicted to the low prices of fuels and related facilities, and it will be painfully dicult to get o those economical drugs. In that sense, raising the awareness of the population is needed, but it is not enough. Even though a part of the population, once accessed to the right information, will probably agree to pay extra costs 11 Many forms of CO 2 pricing already exist in Europe[53] and other part of the world, but its current price does not reect its real cost yet, reason for which it is expected to grow in the next years.

in order to reduce the amount of fossil fuels we use, the rest won't, and they should not be shamed for this. Understandably, people with low salary cannot really aord an increase in the cost of life. This is particularly true when considering that poorest people are also the ones aected the most by the increase of fossil fuel cost, as they typically live far away from their workplace, they own or live in less well insulated houses, etc. In that sense, the revenues of any carbon tax should be devoted to refund, for instance decreasing other taxes, the ones that are most aected by the higher price of emissions, as poorest people and heavy industries needing massive amount of energy. However, this strategy can be envisaged if a signicant part of the population, i.e., middle and high incomes, is capable of paying this extra cost. Therefore, how can we expect developing countries to pay such a price? Furthermore, many developing countries today aim to have an economical leap similar to the one of China, which poses a concern of paramount importance, i.e., China grew so fast also thanks to extremely cheap coal. This means that, reasonably, other developing countries will follow this path, if we do not oer them alternatives that are similarly cheap and bring the promise of a signicant, and fast, economic growth. [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] In that sense, what could possibly be the role of countries like the European ones and USA?

What I believe is that we should become the demonstrators of the economical growth that shifting from emitting to non-emitting energy sources can bring. However, we should not do it in a way that is viable for rich countries only. While developing the technologies that will, hopefully, unlock such a transition, we should keep in mind that developing countries should be able to deploy them massively in the near future as well.

12 In other terms, we should demonstrate that disentangling economic growth and GHG emissions is possible. Even though this could be a utopia, I think that strategies aiming to avoid the massive utilization of coal in new emerging economies while supporting their economical growth should be a key part of any "green" political agenda of richer countries.

Making CO 2 neutral electricity essentially means deploying CO 2 neutral energy sources.

Therefore, now I focus on the main non-emitting energy sources available/foreseeable today, i.e., solar, wind, hydro, bio-and electro-fuels, nuclear and power plants using fossil fuels coupled with CCUS.

13 , discussion that points out to other reasons why fossil fuels are still so widely employed worldwide.

12 What exactly near future means here is diculty to say, but I think that a good, and challenging, target would be starting massive deployment of those technologies in developing countries by 2050 or so. 13 Here I am excluding geothermal. The reason is that, despite it could be an useful sources in specic scenarios, it seems that it will never have a signicant role in the energy mix on a global perspective. [START_REF] Mackay | Sustainable Energy -without the hot air[END_REF] Let's start with the renewable sources: hydroelectric, solar and wind. Hydroelectric is an energy source already deployed from centuries, even before fossil fuels [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF]), and has several advantages and, mainly, one disadvantage. In terms of advantages, it is reliable and it can be tuned as a function of our needs, meaning that, for instance, a dam can be opened or closed to make more or less electricity, respectively. On the other side, it often requires changing entire ecosystems, for instance by building dams, and it is intrinsically limited, meaning that how much electricity you can make out of it depends on the amount of moving water (like rivers) employable in a certain country. Except for certain specic scenario, as Brazil, for which hydro power today generates > 60% of the total electricity produced[56], on a global scale hydro power will not be able to generate more than 20-30%

of the electricity we need, which in practice means that we need other energy sources as well.

Solar and wind, both on shore and o shore 14 , still have very low global shares of ca. 2 and 5%, respectively.

[51] Additionally, contrary to hydro power, they are intermittent and cannot produce electricity on demand, i.e., sun does not always shine and wind does not always blow. However, these energy sources grown signicantly in the last years, thanks to a signicant decrease in their cost during the last decade, which is now comparable to the one of fossil fuels. [START_REF]Projected Costs of Generating Electricity 2020[END_REF]58]. For instance, just in 2019, solar and wind capacity grew of 22% and 12% compared to 2018, respectively, and they will continue growing in the 14 On shore wind refers to turbines installed on the land, while o shore turbines are installed in water. next years. An example of massive deployment of these sources is Denmark (Figure 1.6), which today generates around 50% of its electricity from wind only, with a particular focus on o shore wind.

[59] Even though o shore wind is still more expensive than on shore one, [START_REF]Projected Costs of Generating Electricity 2020[END_REF]58] the former is raising more hopes and expectations. The main reasons are that o shore wind is more predictable, less intermittent and many cities are build on the coast, which makes it easier (shorter) to transport electricity from the wind farm to the city. But why do lower intermittency and shorter distances matter so much?

Concerning the rst point, the main problem with intermittency is intermittency itself:

as society we need available electricity at any moment. This is needed from both a social and economical point of view. From one side, no one would ever accept to shift from a system in which you can turn on the light at any moment to a system in which you can do it only at specic times. From the other side, without reliable electricity 24/7 it is pretty much impossible to build a modern economy. Therefore, the massive deployment of intermittent energy sources requires the storage of the energy produced during low demand to make it available when requested. The classical example is solar electricity produced during the day while it is needed during the night as well. However, as I will discuss in a moment, there are much more complicated scenarios than this. In addition, all this should be accomplished while maintaining low the cost of electricity.

[60] If from one side, solar and wind electricity is reaching comparable prices to that of fossil fuels [START_REF]Projected Costs of Generating Electricity 2020[END_REF]58],

from the other side energy storage is rather expensive. The most straightforward way you could think of for storing electricity is in a battery, i.e., a system capable of transforming electrical to chemical energy, and vice versa. Despite a drop of approximately 90% in the cost of LIBs from 2010 to 2019, it is unlikely that their price will ever unlock the deployment of 100% renewable sources. For the following discussion, I will drop the example of LIBs, because they are the ones that attracted the major interest and investments in the last years [START_REF]Energy Storage, IEA[END_REF], but the overall trends discussed here can be transposed to other battery types as well, as redox-ow, post Li-ion, or all-solid state batteries. The price of LIBs is still above 100 US dollar (USD) per kWh, and particularly its price in 2019 was 156 USD per kWh. [START_REF] Iea | Evolution of Li-ion battery price[END_REF] Considering the raising demand for this technology, mainly from the automotive sector, [START_REF]Global EV Outlook 2021[END_REF] their price is expected to decrease further and the psychological price of 100 USD for kW h seems to be around the corner. Even though this price is incredibly low compared to what it was just 10 years ago (almost 1200 USD per kWh), is it low enough for massively deploying renewable sources? And can we use LIBs to deal with daily oscillation (day/night), oscillations between dierent days (more or less sunny/windy days) and between dierent seasons (summer/winter)? The short answer is yes for certain scenarios, but not for all of them.

Taking solar energy as an example, dealing with daily oscillations requires a surplus in energy production during the day which would be stored to be used later during the night.

How will this aect the electricity bill? If we consider a price of 100 USD per kW h and we assume a battery life of 1000 charge/discharge cycles, this would lead to an extra cost of 0.1 USD per kW h (100 USD divided by 1000). Assuming an initial cost of 0.3 USD per kWh, 15 this would lead to a surcharge of around 33%. However, this is an overestimation, as the battery will not be used to store all the energy produced in a day, but only a part of it. Assuming that 1/3 of the overall energy produced need to be stored, the actual surcharge would be a third of the estimated one above, i.e., around 10%. In these terms, it does not look that much, but we are still missing a couple of considerations. First,in the calculations above we considered that the battery installation/maintenance was free of charge. Second, an increase of even just 10% is plausibly aordable for richer countries, but not necessarily for poorer ones.

16 Nevertheless, the challenge of daily variation is probably solvable. In the example above, I considered just one energy source, while any energy mix is composed of dierent sources. We will surely have hydro on board as well, together with other sources as nuclear and fossil fuels coupled with CCUS. This means that, if there is no sun, I could be lucky enough to have wind, and when I do not have any of them I will have other energy sources to compensate, together with the energy stored in the batteries. In addition, I am condent that we can go below 100 USD per kWh [START_REF]Projected Costs of Generating Electricity 2020[END_REF] for LIBs, post-LIBs, and redox-ow batteries, and increase battery life times above 1000 cycles. I am also condent that we will be able to take advantage of the electric vehicle (EV) outbreak for smart solutions like vehicle-to-home[64] (V2H) and battery second use, 17 which could further decrease the cost of energy storage.

Concerning the oscillations between dierent days, it implies that taking only daily oscillations into account is insucient for properly calculating battery requirements. Instead, 15 Today, almost everywhere, you can get it for less. [START_REF]Projected Costs of Generating Electricity 2020[END_REF]60] 16 As said above, we need a system that can work for them as well, if not all this will be in vain. 17 Battery second use that batteries that are not suitable for specic uses anymore, like for EVs, are recovered for other applications, like to store electricity coming from renewable sources. Even though it sounds as a very nice idea, it is not clear yet how exploitable it is in practice, especially when costs and safety concerns are accounted for.

oversizing the energy storage system is needed to account for the lower production in certain days or weeks. But there is also another aspect that shows us why 100% renewable sources is unrealistic. What happens when an extreme weather event occurs? For instance, an hurricane can destroy or damage wind turbines, hindering energy production for a few weeks at best. In these scenarios, back up infrastructures that can deploy more energy on demand are needed. To the best of my knowledge, the only infrastructures capable of rapidly doing so are power plants burning fuels. Those fuels could be hydrogen, biofuels or fossil fuels. Concerning hydrogen, today mainly used for making fertilizer or oil renery, to date its generation processes are CO 2 intensive. [65] Despite the promise of green hydrogen, i.e., hydrogen made by water electrolysis and using electricity coming from renewable sources, its cost would prohibit its mass production for the short and medium terms. [START_REF] Iea | Hydrogen, IEA[END_REF] However, being able to inject green hydrogen in the natural gas pipelines could boost the future demand. [START_REF] Iea | Hydrogen, IEA[END_REF]66] Concerning biofuels, for the moment they are prohibitively expensive and raise concerns about the land usage needed for making them. [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] I do believe that in the coming decades we will need power plants using fossil fuels for the kind of situation presented above. This means that, to stick with the net 0 target, we will need to equip those power plants with CCUS systems, reminding us the importance of decreasing their current price. [10] Finally, the biggest challenge of all is seasonal variation. What would be the surcharge linked to energy storage if we imagine using batteries for this purpose? In this scenario, battery life is not a major concern (you need to charge/discharge it only once in a year).

However, its cost is still 100 USD per kWh. This means that, recovering the battery cost in 50 years, probably already too long for typical investments, would lead to a surcharge of 2 USD per kW h provided (100 USD divided by 50). Taking in mind the initial assumed price of 0.3 USD, this would mean a surcharge of over 650%. Clearly, this is not going to happen. [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] Even assuming to cut the price of any kind of battery down to 20 USD per kWh, which would be an astonishing accomplishment, it would still mean an overcharge of over 100%.

18 In addition, here I did not account for self-discharge, which would be enough to discard many types of batteries for seasonal storage applications. Keeping to the subject of this thesis, all the above means that LIBs can be, and I am convinced will be, useful for short-and medium-term storage, but not for long-term storage. For 18 And, as before, here I avoided considering the costs linked to the space needed for the battery, as well as maintenance and interests on the investment. the latter, technologies as pumped hydro storage (i.e., compressing water underground to store energy and extracting water when energy is requested) or compressed air energy storage (similar to pumped hydro storage, but using air instead of water) would be more suitable. [START_REF] Guerra | The value of seasonal energy storage technologies for the integration of wind and solar power[END_REF][START_REF] Gabrielli | Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage[END_REF] The extra costs that batteries could bring to the electricity bill for the daily and seasonal oscillation scenarios described above is illustrated in Figure 1.7.

Coming back to the comparison between on shore and o shore wind, we have seen how advantageous it could be to deploy a less intermittent energy source. But why is distance from cities, where the majority of electricity is consumed, critical? The answer relies on how our power grids are made. Even though we imagine modern power grids as completely interconnected, this is not necessarily the case and many power plans producing the electricity we use today are built close to big cities. [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] From one side, this is possible thanks to simplicity of transporting fossil fuels and it is convenient because it requires transporting electricity for shorter distances before reaching the nal consumer.

From the other side, this is problematic in the case of renewables, as they are generated in a distributed way and possibly far from big cities. This calls for the construction of new power lines and the strengthening of the ones already in place, which can be a severe political and social issue. Indeed, even just planning where to build new power lines is far from being straightforward, and it typically requires several years (people tend to protest if someone plan to run a power line above their backyard). [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] In that sense, it is understandable why a renewable energy source that is less intermittent and that is produced relatively close to big coastal cities attracted so much interest. However, o shore wind cannot be the solution for everyone (just think of countries with no access to seas/oceans, as Austria). Therefore, signicantly upgrading our current power grid facilities, in both developed and developing countries, will be needed in the next years. For this to become a reality, devoted analysis to inform legislators on the best options available, i.e., where to run the new power lines, how much the power grid should be upgraded, etc.

[69], and more ecient power grid management, as the so called smart grid [START_REF] Raza | A Review on Articial Intelligence Based Load Demand Forecasting Techniques for Smart Grid and Buildings[END_REF], will surely be strongly benecial.

The pages above can be summarized as the following: (i) intermittent energy sources pose major issues, (ii) electrochemical energy storage, and batteries in particular, can be helpful for solving only some of these issues, (iii) in general, a complete dependence on only renewable energy sources is unlikely, except, maybe, for some specic scenario, as Brazil thanks to hydro power and Denmark thanks to o shore wind. If the settled goal is reaching net 0 emission, this means that other non-emitting energy sources are needed, as bio-and electro-fuels, fossil fuels coupled with CCUS and nuclear. The rst two options were briey discussed above, and if from one side they do not require major modications of our current energy infrastructures (power grids, needs of massive energy storage, etc.), from the other side both of these technologies are not mature enough for a global scale deployment. [10,[START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] The main reasons are their high cost and, for the case of bio-fuels, concerns about the sustainability of their mass production. Indeed, bio-fuels competing with food crops raise ethical and economical concerns, as decreasing the available land for food crops can either lead to an increase of their price or induce deforestation to get extra arable lands. [START_REF] Ghosh | Biofuels, Bioenergy and Food Security[END_REF] Even if bio-fuels using not edible crops or biomass, as waste, and electrofuels, i.e., fuels produced by directly using hydrogen, made through water electrolysis, and CO 2 , [72] exist, the concerns for their price persist. [12, 73] Last but not least, nuclear (ssion) is surely an important option. 19 If I should summarize the advantages of nuclear 19 Here I discuss nuclear ssion only, while I avoid speculating on nuclear fusion.

in one sentence, I would say that it is the only energy source we know that is CO 2 neutral, continuous, cheap and has already been implemented at a large scale. The best example for this is France, which gets around 70% of its electricity from nuclear only, as depicted in Figure 1.6. For all the reasons above, nuclear is the most simple and straightforward way to decarbonize our electricity. However, it should not be hidden that nuclear raises some important social concerns, rst and foremost about the hazards linked to nuclear plants. Traumatic accidents as Chernobyl in 1986[74] and Fukushima in 2011 [75] have scared the public about the long term risks of using an energy source that, in case of dramatic accidents, is dicult to keep under control. Even though these concerns are perfectly understandable, the risks associated with nuclear should not be considered as self standing, but compared to the risks associated to the use of other energy sources.

Figure 1.8 shows that fossil fuels are much more dangerous for human life compared to nuclear as they lead to more deaths per unit of energy produced, even without taking into account climate change. The only reason for which many believe the opposite is that fossil fuels do it silently, while nuclear does it in single, but catastrophic, events.

Another aspect that should be compared is the environmental hazards linked to nuclear and fossil fuels. If from one side, nuclear accidents can have a tremendous impact on the environment, and nuclear waste management is a major concern as well, but the impact of fossil fuels is far from being less relevant, as extensively discussed in this rst section.

In addition, these comparisons are made for a nuclear sector that still has signicant space for improvement. Companies that designed smaller and intrinsically safer nuclear plants, as well as reactors able to use nuclear waste as fuel, already exist.

[79] Nonetheless, the share of nuclear energy in the last two decades is almost constant worldwide (Figure 1.5), reecting the lack of investments in this sector. [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] This is linked to the concerns of public opinions discussed above,[80] which are humanly understandable, but, I think, not scientically justiable. Instead of investing for making power plants safer, many countries just gave up on the idea of relying, massively, on nuclear. If the same logic would have been applied to the rst airplanes and cars, which were far from being safe, most likely the world of today would look extremely dierent from the one we live in.

Transportation

Last but not least, among the group of activities discussed in this section, transportation is the one in which LIBs will play the most important role. The last years showed the rapid growth of interest in EVs from both car owners and the automotive industry, allowing speculating about the beginning of the EV era. [START_REF]Global EV Outlook 2021[END_REF][START_REF]Global EV Outlook 2020[END_REF] In this subsection, I try to oer a panorama of what are the main trends we can observe today, pointing out to the key aspects we should keep in mind for an environmentally benecial shift from internal combustion engines to EVs. Nonetheless, this discussion does not take into consideration the challenges associated with a rapidly growing EV market in terms of sustainability of raw materials and geopolitical/economical equilibrium, which is discussed in the section.1.2.4next section.

As with the previous subsections, the rst data to analyze is the impact of transportation to our global emission. To many readers, the fact that transportation accounts for only ca. 16% of our emissions could seem strange, as we tend to give this eld of activity more weight. Therefore, it is useful to make a small digression to enumerate the reasons of this discrepancy: (i) the data above refers to a global perspective, while the relative impact of transport could be higher in specic countries, like the USA [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF]; (ii) his data only takes the burning of fossil fuels for transport into account, as the emissions arising from Another aspect that can be rather surprising is that aviation plays a smaller role than what it is typically believed, i.e., around 1/8 of the transportation-related emissions, as shown in Figure 1.9. On the contrary, cars (ca. 45%) and trucks (ca. 22.5%) are the main contributors, while aviation is in third position (ca. 12.5%) followed by shipping (ca. 11.25%), buses (ca. 6.25%) and rail (trains, undergrounds, etc.) accounting for the rest (ca. 2.5%).

Here is the good news: more than half of this pie chart (cars, buses and rail-based transportation) can be decarbonized through electrication. Here is the bad news: up to date it does not seems that we can signicantly electrify the rest.

I will rst consider the part of the pie that, I believe, we cannot electrify. For this, it is useful to consider the requirements to electrify a certain mode of transport. First, we should compare the energy density For all the above, in my opinion it is clear that LIBs cannot t the needs of today commercial aviation, for which an increase of the fuel weight by such an order of magnitude would make modern passenger planes unable to y. [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] A more debated subject is the case of trucks. As a recent study by Sripad et al. [START_REF] Sripad | Performance Metrics Required of Next-Generation Batteries to Make a Practical Electric Semi Truck[END_REF] pointed out, electrifying trucks is technologically and economically feasible for short ranges (300 miles), doubtful for medium ranges (600 miles) and unfeasible for long ranges (900 miles). The authors found that making medium range electrical trucks economically feasible would require a battery pack of 400 W h Kg -1 with a cost <100 USD per kWh, which, while not impossible for LIBs, will hopefully be simpler using beyond Li-ion technologies. However, such a scenario is far from being straightforward, as reected by the content of many international development scenarios [START_REF]World Energy Model[END_REF], which assumes little to no electrication for trucks in the coming decades. Despite the recent claims/production of Tesla of a rst electric truck[88], I do not believe that we will see a signicant electrication of this eld in the near future, but I would be happy to be refuted on this. Concerning shipping, mainly cargo ships transporting containers, the main problem is the price of fuel.

21 Indeed, the fuel used for shipping, known as bunker fuel, is ridiculously cheap (in USA, 1.29 USD per gallon, compared to 2.43$ for gasoline), because it comes from dregs of oil-rening processes. [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] Considering that those ships use massive amount of fuels, the combination of extremely low price and high energy density makes it dicult to imagine electrifying this sector.

Therefore, the most straightforward path to decarbonizing airplanes, ships, and trucks is via the development of sustainable and cheap advanced bio-or electro-fuels, which is as 20 Energy density refers to how much energy can be stored per unit of mass or volume. When discussing EVs, it links to how far you can go with your car. 21 As discussed in more details below, the economical convenience of electrifying strongly depends on the ratio between the price of fuels and the price of electricity.

hard as it sounds considering their current price (in USA, around 5 and 8 USD per gallon, respectively). [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] Despite the challenges discussed above, a rst important step in the way to decarbonize this part of the pie could be shifting towards transporting commodities via rail. 22 Another way to reduce the environmental impact of transporting commodities is transporting less, which, I think, could be partially done. I do think that the capability of moving commodities around the world is not only important but essential for many activities and the life of many, but I also believe it is not really needed to eat in a regular manner fresh tomatoes during Winter and fresh oranges during Summer, but such a debate is beyond the scope of this thesis.

Concerning the part of the pie we can electrify, cars will have the most important role, followed by buses and railway. The technology needed to electrify trains, undergrounds, etc. is already well known, and many railway lines have already been electried.

[89] While electrifying the rest is technically possible, it is not necessarily convenient for all applications, such as small trains moving towards mountains or touristic trains, where dieselor steam-powered trains are typically more convenient. Concerning the buses, we should discern between city buses, perfect for electrication, and long distance buses going from a city/country to another, which would require energy densities comparable to the ones needed for trucks. [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF][START_REF]Global EV Outlook 2021[END_REF]90] Indeed, city buses move for short distances, stop frequently and always in the same places, allowing frequent recharging through braking systems and devoted charging stations.

Concerning the EV market, today, all the major automotive companies are investing in electrication [91103] and the worldwide EV eet has rapidly grown in the last years (Figure 1.10). This lead to the construction, or planning, of many battery factories [104,105] and it is raising expectations for a massive electrication of the automotive sector in the coming years. However, it should be stressed that today (globally) the number of EVs is in the order of few millions, [START_REF]Global EV Outlook 2021[END_REF] while the overall number of vehicles on the road is about 1.4 billion.

[106] Despite the massive investments and the raise of interest in EVs, going from millions to billion(s) will not be easy, but I think that such a goal could be reachable in a few decades.

Figure 1.10 shows the evolution of the EV eet in the last 10 years in terms of number 22 This is quite challenging as well, and does not just require strengthening the current rail infras- tructures in many countries and in between countries, but also requires dealing with the truck-related corporations. of vehicles (left) and their growth (right) in China, Europe, United States and in the rest of the world. The rst thing that we can notice is the impressive growth of EV production, lead by China, which is today, and will be in the next years, the rst EV market. [START_REF]Global EV Outlook 2021[END_REF] The European market is growing signicantly and it is expected to be the second EV market for the next years, [START_REF]Global EV Outlook 2021[END_REF] and, impressively, 2020 marked the rst year in which the European EV eet grew more rapidly than the Chinese one. If from one side, the growth of the EV market in China is surely benecial for a faster growth of the EV sector as a whole, one could question the environmental benet of using EVs in China, where the energy mix is particularly unfavorable (Figure 1.5). Indeed, as shown in Figure 1.11, emissions related to EVs are strongly dependent on the energy mix utilized to produce electricity. Even though more recent studies [107,108] pointed out to even better performance of EVs, in terms of emission reduction, with respect to the work of Larcher and Tarascon (Figure 1.11), the overall message remains: focusing all the eorts and resources on EVs only is not enough because, for achieving more sustainable transportation, investments for a greener electrical grid is vital.

Coming back to the number of EVs in dierent nations, one could wonder why the EV eet of the United State is growing slower than the European one. The reason to this is not just economical, but also cultural and geographical. Americans tend to love big cars, which are more dicult to electrify than smaller ones [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF], and, from a geographical perspective, many of USA roads are much longer than the European ones, requiring either higher battery energy density or more fast charging stations. This means that, for having [111,112] the same share of EVs in Europe and USA, in USA more sophisticated EVs or higher infrastructural investments are needed. From a car owner perspective, it is important to know if going electric is an economically convenient step, in which both the cost of buying and maintaining the car should be taken into account. In that sense, one should consider both the cost of buying a car and the cost of owning it. Today, EVs are still more expensive than their combustion engine counterpart, even if their price starts to be comparable thanks to public incentives for EVs. [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF][START_REF]Global EV Outlook 2021[END_REF] Besides governments incentives, EVs price are expected to decrease in the coming years, mainly driven by the economy of scale and the expected decrease in the battery costs. [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF][START_REF]Global EV Outlook 2021[END_REF] This makes reasonable to imagine that the prices of both types of vehicles will become comparable in the coming decade. [START_REF] Jha | Population Growth, Human Development, and Deforestation in Biodiversity Hotspots[END_REF] In terms of the cost of owning a car, one should consider the cost of insuring and maintaining it, the taxes for owning the car and the cost of recharging/re-fulling it. The cost of insurance reect the car price, i.e., the higher the price, the higher the insurance [START_REF] Jha | Population Growth, Human Development, and Deforestation in Biodiversity Hotspots[END_REF] The estimation of 10 years comes from me and it is a completely rough approximation, whose only goal is to give an order of magnitude. Here I do not intend to claim exactly when the price of EVs and combustion engine cars will become comparable.

cost, which means that today this is unfavorable for EVs. On the contrary, the cost for maintenance is smaller for EVs. [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF][START_REF]Global EV Outlook 2021[END_REF] Concerning the taxes, it should be accounted that likely, at a certain point, some extra tax for owning EVs will be introduced. [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] The reason of this is that replacing combustion engine cars with EVs reduces the governmental income from taxes on car fuels, which are typically used to build new roads and maintain old ones. Then, this loss should be compensated for somehow, as through an extra tax for owning an EV. When, and if, this will happen, the raise in EV sales could be slowed down, but hopefully not stopped. Last but not least, the cost of recharging or re-fuelling is a main driver to determine whether shifting to electric is economically convenient, and it essentially depends on the cost of electricity and fuels. [START_REF] Gates | How to avoid a climate disaster: The solutions we have and the breakthroughs we need[END_REF] This is really dicult to estimate, because the cost of fossil fuels could change signicantly in the next years if devoted legislations, as carbon tax, removal of fossil fuels incentives, requirements of CCUS, etc., are undertaken; the same applies to the cost of electricity as a function of the degree of decarbonization, need of energy storage, investments for upgrading the power grid, changes in incentives/legislation, etc.. For this reason, I prefer not to speculate on the evolution of these prices here. What it is possible to say is that, to date, buying and owning an EV in the USA is overall more expensive than a combustion engine car thanks to the low price of gasoline in USA, while they are already less expensive, or comparable, in the EU, where gasoline price is higher. This is another reason for the trend in Figure 1.10 for a more rapid growth of the European EV eet compared to the American one.

The bottlenecks facing the massive employment of EVs are the last aspect left to discuss.

For this, it is possible to refer to the 5 main barriers raised by the EV100 community 24 in the context of the 2021 IEA EV outlook. [START_REF]Global EV Outlook 2021[END_REF]113] The results of this inquiry are reported in Figure 1.12 A, indicating the lack of charging stations as main concern. This aspect is particularly underdeveloped outside China, as it is shown in Figure 1.12 B and C.

Indeed, China signicantly outperform all the rest of the world in terms of both slow (<22 kW) and fast (>= 22kW) public charging stations. If other countries aiming to push the EV eld, as EU, do not ll this gap quickly, the lack of charging stations could become a serious limit to the development of the EV market. A deciency in public charging stations would hamper long distance trips using EVs, which in turn aects sales.

In that sense, and despite the estimation that the number of private charging stations 24 EV 100[113] is a climate group initiative where >100 members, coming from the private sector, have committed to switch to EVs their eet (ca. 4.8 millions vehicles) and to install new charging stations will, by far, exceed the number of public ones [START_REF]Global EV Outlook 2021[END_REF], public chargers are not an option, if the goal is a massive deployment of EVs. [START_REF]Global EV Outlook 2021[END_REF] In addition, public charging stations is also a matter of equity, because many people will not have a private charging station at home, as people that cannot aord it, who lives in apartments, etc.. Considering all the above, it is not surprising that many companies are working on charging stations, with a particular focus on fast charging. [114116] In addition, an aspect that should be carefully managed is the development of smart charging protocols helping to help in avoiding severe peak loads on the electric grid. The simpler example is avoiding simultaneous charge of the majority of EVs, as for example at the end of the day when everyone returns home from work. In that sense, charging stations coupled with software able to determine when it is more convenient to start/end the charge as a function of the owners' habits and the current load on the power grid could be particularly useful.

[64] Other challenges raised by the EV100 community include the lack of appropriate EV types, change of habits and uncertainty about the policy landscape. Massive investments from the automobile companies could mitigate the concerns in available EV models, while the positive driving experience associated with EVs should compensate for the change in habits when making the switch. Lastly, uncertainty about the policy landscape could be a major concern in many areas, and in that sense the EU seems to lead the way thanks to the work of the European commission.

[117]

1.1.6 Take home messages Climate change is a serious risk for the ecosystem and human beings, especially, but not only, in poorest countries, whose causes are interconnected to many vital aspects of our societies and lifestyle: from manufacturing and construction to farming and forestry, from cooling and heating to electricity and transportation. Similarly to what was achieved with the Montreal protocols [START_REF] Molina | Stratospheric sink for chlorouoromethanes: chlorine atomcatalysed destruction of ozone[END_REF]47] in terms of reducing CFC emissions, strong international actions are needed to reach 0 net GHG emissions in few decades. For achieving such a colossal revolution, we should massively deploy, and reduce the price, of the climate favorable technologies already developed, as renewable energy sources, nuclear energy, GMO, etc., and bring new technological and industrial breakthroughs to nd the missing solutions, as cheaper and energy dense batteries, chip CCUS, bio-and electro-fuels, green hydrogen, etc.. A key aspect of this revolution will be decarbonizing power grids, which can unlock the partial or total decarbonization of many other activities, as manufacturing, transportation, cooling and heating, etc.. In that sense, it is important to note that developed and developing countries will not follow the same trajectory. If developed countries can plan to pay the price of developing and building the technologies and infrastructures required to go down to 0 net emission, developing countries cannot. On the contrary, many Asiatic and African countries are looking to China, and its impressive economical leap during the last 30 years, with the nal goal of escaping from poverty. This is legitimate, and we should all hope that the life condition in these countries will improve in the coming years. In that sense, I do believe that the role of richer countries in the next years will not only be decreasing their own carbon footprints, but also developing new technologies with the nal goal of oering an alternative, with respect to coal, to poorer countries aiming to a fast economical growth. For this, international actions as political agreements, economic incentives and devoted investments are needed. However, in my perspective all the above means that, when doing research in this direction, researchers should keep in mind that the new technologies should t the needs of both rich and poor countries, and not of rich countries only.

Concerning the subject of this thesis, the main applications of LIBs in this global challenge are in the electricity storage and transportation sectors. LIBs are expected to contribute signicantly to the electrication of cars and city-buses, which already accounts for ca. half of the emission arising from transportation. Even if a full shift from combus-tion engine cars to EVs will take decades, the current industrial investments on the eld and the general interest for this technology makes me believe that we have undertaken the right path for making such transition a reality. However, this transition will have a cost, the reason for which its speed is critical. From an environmental perspective, the faster the transition the better it is. However, its high price would be only partially justied if the energy mix used for making electricity relies heavily on highly polluting energy sources, as in China today. From a broader perspective, we should pay close attention to the sustainability of this transition, from both an economic and a supply chain perspectives. For example, industries should have enough time and resources to convert their production facilities without economic or social disasters. Concerning the deployment of batteries for stationary applications, LIBs (and post LIBs) will be useful for taking care of daily electricity production oscillations and it is reasonable to think that their price can be decreased to allow managing weekly oscillations as well. However, today it is unrealistic to believe that batteries could be of any help in terms of seasonal variations, because their adoption would increase electricity bills unrealistically high (Figure 1. 7).

The path to follow for achieving 0 net emissions on a global scale still holds signicant uncertainties and, despite the important guide of international organizations as the IPCC [118] or the IEA[119], its denition calls for uncountable debates, which is easy to forecast would take of our time in the next 20-30 years. To get the best out of these discussions, I think that all of us needs an appropriate, even if general, holistic perspective of the dierent challenges to be tackled. The main goal of this rst section was to present the holistic view I could build during my thesis. I do not pretend that this view is complete, and it surely lacks for many aspects, but I hope that it is complete enough to give a rst overall look on such challenges. However, as researchers, we should also have a more specic view on the history, economical and geopolitical challenges, and not only the scientic ones, behind the technology on which we do research. The aim of the next section is presenting the history of LIBs and the challenges brought forth by their massive production.

1.2 Li-ion battery: history and challenges

This section aims to give an introduction to how LIB work, their history and challenges from a scientic and economic/geopolitics perspective.

At their core, batteries are devices able to transform chemical energy into electrical energy.

If LIB cells are essentially composed of two porous electrodes, a positive one, known as cathode, and a negative one, known as anode), plus a liquid electrolyte, as shown schematically in Figure 1.13. Other "inert" components are needed: a porous separator, two current collectors, one for the anode side, typically made of copper, and one for the cathode side, typically made of aluminum, and the cell case. The main role of the separator is avoiding the physical contact between the electrodes, which would lead to a short circuit of the cell, while allowing the electrolyte to link (ionically, i.e., through Li-ions) the two electrodes. The electrodes are also electronically linked through the two current collectors and the external circuit, allowing for using the electricity stored by the cell and recharging it. Going from LIB cells to battery packs the system becomes much more complicated, and one also needs the cables to connect the cells in the desired conguration (series/parallel), heating and cooling systems, a battery management system (BMS) to check the status of the battery pack, etc. When LIB cells are analyzed from a macroscopic perspective only the system looks rather simple, however, nothing could be more wrong, as I discuss below. The rst thing to consider is that the components enumerated above are the ones present in the cell before cycling, but others are formed during the rst cycles of the cell. Particularly, a characteristic of LIBs is the use of anodes with very low potential and cathodes with a high one. This is a major advantage in terms of increasing the energy density of the cell, but working with such an "extreme" potential window, approximately from -3

V to +1 V with respect to 2H + + 2e -- → H 2 ) 25 , makes it almost impossible to nd a molecule that can act as electrolyte (i.e., able to transport eciently Li + from the cath- ode to the anode and vice versa) while being stable in this potential window. Typically, the 2 nd condition is not satised, meaning that the electrolyte reacts either at the anode side, if it is not electrochemically stable at low potential, either at the cathode side, if it is not electrochemically stable at high potential, or both. This electrochemical reaction takes place during the cell rst cycle(s) and it forms new interphases at the interfaces between cathode/anode and electrolyte, which are commonly known as cathode-electrolyte interphase (CEI) and solid-electrolyte interphase (SEI), respectively. The latter is systematically formed in LIBs when using low potential materials, i.e., potentials similar to the one of Li, while the CEI formation is a less critical issue for many cathode materials 25 The exact range depends on the exact anode/cathode pair chosen.

employed today, unless when using high voltage cathodes (>4.5 V versus Li).

[121] The formation of such interphase(s) has several consequences: (i) a certain amount of the electrolyte and of the Li + in it are consumed by this reaction, (ii) the anode and/or the cathode are not in direct contact with the electrolyte anymore. The rst point leads to the so-called irreversible capacity, which is basically a certain fraction of the initial cell capacity 26 that is lost irreversibly during the rst cycles, due to Li + loss caused by the SEI formation and growth, and that could hamper the cycling of the cell. Indeed, one could imagine that the SEI would prevent the movement of Li+ from the electrolyte to the electrode and vice versa. However, electrolytes, typically based on carbonates, that are able to form stable SEI have been found/developed, which avoids further electrolyte decomposition by limiting future reactions between the solvent and the anode, while still allowing ionic transport from the electrolyte to the anode, and vice versa. Such a benecial SEI is surely one of the three main pillars on which the rst commercially successful LIBs were made, together with suitable cathode and anode materials. However, to better understand how such a result could be achieved, we should go back in history and trace the main steps and discoveries that made modern LIBs a reality. First, I discuss why the scientic community focused on Li as an element and the rst attempts to develop Li-metal rechargeable batteries (subsection 1.2.1). Then, I focus our attention on how the knowledge developed in the context of Li-metal batteries, together with devoted breakthrough discoveries, paved the way towards modern LIBs (subsection 1.2.2). Lastly, in subsection 1.2.3 I focus on the main economic and geopolitical challenges arising from an ever expanding LIBs market, which today is more critical then ever due to the expected raise of the EV market in the coming years, as thoroughly discussed in subsection 1.1.5.

Why lithium?

Lithium (Li) is the element with the lowest reduction potential (-3.04 V versus 2H + + 2e -- → H 2 ) and is the lightest of all the metals, resulting in an extremely high gravimetric capacity of 3860 mA h g -1 . Those two features are, basically, the reason of all the interest in Li for energy storage applications. For better understanding this, it should be reminded that the energy of a battery depends on the potential dierence between the cathode and the anode, as well as their capacities. Then, coupling a material with a very low 26 the capacity is essentially linked to how much Li-ions the electrodes can store.

voltage, as Li, to another with a high one gives large potential dierences, leading to high energy density. This is further enhanced by the lightness (high gravimetric capacity) of lithium. In this sense, Li really is the "holy grail" of battery materials, which is why many researchers focused on the development of Li-metal batteries at the beginning of this research eld. However, as widely known today, Li metal poses major challenges. First, you should deal with Li metal. This could sound obvious, but considering its strong reactivity (Li metal reacts with almost everything, and particularly it produces hydrogen when reacts with water) this material poses major safety hazards and its direct use would signicantly complicate the cell manufacturing at the industrial scale. Second, during charges Li + deposits as Li metal at the anode side, a phenomenon called Li plating, but not in an uniform way. In addition, Li metal batteries form dendrites, depicted in Figure 1.14, which penetrates the separator causing a short circuit and induces the thermal runaway of the cell, i.e., the temperature raises uncontrollably, igniting the ammable liquid electrolyte. This is a major concern that does not only cause lower cell life, but also prevented the commercialization of Li-metal batteries till today. the H 2 generation when Li metal and water come in contact, a water-based electrolyte is not feasible. Concerning organic-based solvents, many studies were done [121,123] and it was found that they should be anhydrous and aprotic. It was found that the best performing families of compounds are alkyl ethers and carbonic/carboxilic esters.

At that time, propylene carbonate (PC) was one of the most common choices, which, with the advantage of hindsight, was a rather bad choice that could have slowed down the development of modern LIBs, as discussed in the next subsection.

[121] However, the electrolyte is not only composed of solvent, but also requires a lithium salt to unlock Li + transport. 27 Today, these salts are composed of Li + and complex anions, as BF 4or PF 6 -, being the latter the most common choice, that better delocalizes the charges, oering improved ionic conductivity in an organic medium. However, in the 60'-70's one of the most common solution was using Lewis acids, as AlCl 3 This same particular cell introduces us to the eld of LIB. Indeed, it can be noted that in the Al|TiS 2 cell, no metallic Li is used, but rather its ion (Li + ) is moved from the cathode to the anode, and vice versa. This is, basically, the main concept behind LIBs:

avoiding the use Li metal by adopting materials that can host, react or form alloys with Li + . If from one side this inevitably decrease the energy density of the battery due to the mass/volume of the material hosting Li + , it also unlocks much broader stability and cycle life with respect to Li-metal batteries.

How were LIBs made?

We ended the last subsection with the innovative work of Witthingham and the subsequent Al|TiS 2 cell developed by Exxon. This cell gives the possibility to present 2 out of the 3 main classes of LIB electrodes. 28 The 3 rd class of materials is known as conversion-type materials. The key idea here is using binary compounds (M-X, where M is a metal and X=O,N,F,S,P) that reacts with Li + to "convert" it into the metal at its elemental state and a lithium salt (LiX), and vice versa. [125] ber of problems, as particle breakage, loss of contact, exposure of fresh surface to the electrolyte, leading to further electrolyte decomposition and SEI growth, and poor cycle life. [126] On the opposite side of the Al|TiS 2 cell, we can nd the mainly adopted class of material for modern LIBs, i.e., intercalation-type materials. The concept behind intercalation materials rst came from host-guest chemistry, [127] in which essentially one molecule has exactly the right 3D shape to "host" a second molecule, which is referred as "guest". The host-guest interaction, often through reversible interactions, as hydrogen bonds, brings out new properties, i.e., not coming neither from the host alone nor the guest alone, which is of paramount importance for many biological phenomena. [128] Similarly, in the context of batteries the idea was to develop cathode or anode materials with structures able to accommodate Li + thanks to specic holes/planes in the crys- talline or amorphous structure of these materials. Today, intercalation materials are the material of choice for almost all commercial LIB anodes and cathodes. Therefore, it is not surprising that Witthingham, who rstly developed a highly reversibly insertion-like cathode, was awarded with the Nobel prize in Chemistry in 2019, for the development of LIBs. However, TiS 2 was just a rst prototype of what insertion-like cathodes looks like today, and its potential, around 2-2.5 V versus 4 V of modern LIBs, was probably too low for any successful commercialization. [121] For getting much closer to the state of the art cathodes, the work of John B. Goodenough in 1980, the 2 nd winner of the 2019 chemistry Nobel prize, acted as a watershed. [129,130] In their work, Goodenough and co-workers demonstrated that LiCoO 2 (LCO) was an optimal cathode material, thanks to its high reversibility and voltage, around 4 V versus Li or even higher, as a function of the de-lithiation state reached. Following this result until modern days, LCO paved the way towards the most widely adopted cathode materials, as LiNi x Mn y Co z O 2 (NMC) or LiFePO 4 (LFP). [121, 125] However, the path to develop insertion-like anodes was signi- cantly more complex compared to the cathode side, reasons for which the 3 rd 2019 Nobel laureate (Akira Yoshino) is still missing from this story.

Developing intercalation-like anode materials working at low voltage and in a reversible manner was particularly challenging for a series of reasons. Among the most important ones we can enumerate: (i) stability issues at the electrode/electrolyte interface, (ii) sensitivity of graphitic-materials to solvent co-intercalation and (iii) the initial habit of assembling LIB cells in their charged state. Starting from the rst point, and as al-ready discussed in subsection 1.2.1, no solvent can withstand the potential range typically adopted in LIBs, and the vast majority of them are not stable at the very low potential of Li. Carbonaceous materials show similar potentials (0.1 V versus Li for the case of graphite) compared to Li, which leads to similar instabilities at the anode/electrolyte interface. In addition, graphitic material, despite their ideal potential, were initially considered not suitable for making LIBs, mainly due to their sensitivity to solvent cointercalation (point (ii)). For understanding this, it should be underlined that graphite hosts Li + in between its 2D graphene layers (left of Figure 1.15), but often Li + interca- lates together with its solvation shell (center of Figure 1.15). This process leads to the formation of the so-called ternary graphite-intercalation compounds (GIC), which can follow dierent paths as a function of the solvent nature (scenarios 1-3, Figure 1.

15).[121]

At the stage we have so far reached in the story, there are two possible scenarios: either the the GICs are made of solvent molecules that are unstable at voltages close to that of Li and then decompose (Scenario 1), or they are stable enough at such high voltages and form stable ternary GICs (Scenario 2).[121] Even if it was not known at that time, the use of PC leads to the scenario 1, and in particular to gas formation, which eventually destroys the graphite structure, phenomenon typically known as graphite exfoliation. On the other side, ethers can form stable ternary GIC, but they are not stable at the potential typically adopted at the cathode side (around +4 V versus Li), which would just shift the "interface problem" from the anode to the cathode. As the electrolyte adopted at the time was mainly PC-or ether-based, graphitic structures were initially discarded as potential intercalation anodes. Instead, researchers focused on less ordered carbonaceous materials, being soft and hard carbons 29 the most studied ones. [121] The reason for such a choice is that due to their less ordered structures, such carbonaceous materials can avoid solvent co-intercalation, but at the expense of increasing the overall anode potential and thus decreasing the nal cell energy. The rst R&D group that successfully made LIB prototypes using this approach was lead by Akira Yoshino (the 3 rd Nobel laureate of this story) while working at the petrochemical giant Asahi Chemical (1987).[120, 121] In particular, their cells were made of soft carbon as anode, LCO as cathode and a PCbased electrolyte.[121] They also opted for aluminum (Al) as the current collector for the cathode, a copper (Cu) current collector for the anode side and polyvinylidene diuoride (PVdF) and carboxymethyl cellulose (CMC) or styrene-butadiene rubber (SBR) as binders, in order to enhance the particles contact and the adhesion between electrodes and current collectors. In addition, the developers assembled their cells in a discharged state, meaning with all the lithium needed for the cells to work initially stored in the cathode side, as proposed by Auborn and Barberio,among others.[121,131] This choice made the cell assembly easier (similarly to Li, lithiated graphite is quite reactive) and is also critical in terms of increasing the cells cycle life. But before going into that, it is interesting to note how close is it the setup developed by Asahi Chemical is to the state of the art LIBs, indicating the major successful breakthrough made by Yoshino's group. Those results were then presented to the Sony corporation by the Asahi Chemical in 1987 (after the signature of a not disclosure agreement), which lead to a strong R&D momentum and to the well known rst successful commercialization of LIBs in 1991 by Sony.[121] However, there was still one last piece missing from the puzzle: the knowledge about the existence of scenario 3 (Figure 1.15), which also gives us the opportunity to discuss the importance of assembling LIBs cell in their discharged state (point (iii)). As mentioned above, the 1 st 29 "Soft" and "hard" refers to how dicult it is to get an ordered graphitic-like structure through thermal treatment above 2500°C (easier for the soft carbons, harder for the hard ones). [121] LIBs generation relied on soft carbons, however, in the years after LIBs commercialization by Sony (1992Sony ( -1994),[121] ),[121] it was realized that some molecules that are unstable at low voltage do not result in graphite exfoliation (as PC), but they rather decompose forming a interphase at the electrolyte/anode interface. This interphase, known as SEI, can be stable enough to protect the anode surface from direct contact with the electrolyte, avoiding further electrolyte decomposition, and allow Li + intercalation while blocking solvent co-intercalation. The existence of this scenario unlocks the use of graphitic structure, making graphite the anode of choice for almost all the commercial LIBs available today.

In particular, this scenario is attained when PC is replaced with ethylene carbonate (EC), which is an ubiquitous component of LIB electrolyte cocktails today. It is then interesting to notice how sensitive the interface phenomena are to the exact chemistry of the solvent used, and to the associated Li-solvation shell. Indeed, the only dierence between PC and EC is a single methyl group, the reason for which it was initially (wrongly) believed that PC and EC are interchangeable. [121] In addition, once the importance of the SEI was recognized, it became clear how critical it is to control such degradation processes.

In that sense, assembling the cell in its charged state leads to the electrolyte reacting with the graphite in a uncontrolled fashion as soon as it gets in contact with the anode. This would make impossible the control of the SEI formation, which today is known to be critical for enhancing LIB cycle life. [132] On the contrary, assembling the cell in its discharged state makes it possible to perform the st charge in a controlled manner, leading to a certain degree of control on the SEI formation. This also showed the importance of additives, which are used in the electrolyte cocktails to change the characteristics of the arising SEI layer, which strongly impacts the cell cycle life. [124] Considering that many of the additives used today decompose at higher voltages compared to the ones of EC-based electrolytes, the procedure used for the rst charges, the so-called formation step, can also control which electrolytes components decompose rst, and at which rate.[121] For all these reasons, the formation step today is a critical part of the LIB cell manufacturing (section 1.3), having an important impact in terms of cell cost and performance. The understanding of the existence of scenario 3 and the comprehension of the critical role of electrolyte cocktails is still observable in the electrolyte utilized today, which are typically made of EC and dimethyl carbonate (DMC), together with a uorinated Li salt and eventual additives, and where the DMC can be substituted (totally or partially) by diethyl carbonate (DEC) to tune the electrolyte properties and stability at high or low temperatures [133].

To conclude this historical digression about LIBs, their development required several breakthrough discoveries which brought about the technology that marked the start of the portable electronics revolution [134] and is part of the climate revolution we need to accomplish (section 1.1). However, the expected growth of LIBs production [START_REF]Global EV Outlook 2021[END_REF] poses signicant challenges in terms of raw materials supply chain. Undoubtedly, LCO was a major breakthrough discovery by John B. Goodenough,[129,130] which is still used in many portable phone batteries and inspired modern cathode materials, as NMC. However, LCO relies on Cobalt (Co), which is expensive, not abundant and not well distributed from a geographical perspective. Irrespective of Co, Li itself is problematic from a supply chain and geopolitical point of view, as well as Nickel (Ni), copper (Cu) and graphite, which are all key components of modern LIBs. The aim of the next subsection is to oer a reection on the challenges this brings.

Economic and geopolitical challenges behind LIBs

The rst thing to ask when analyzing the risks of the LIBs supply chain is what materials are needed for making them. Figure 1.16 A lists the materials, and associated weight percentages, needed for LIBs using NMC-622 30 as the cathode and graphite as the anode. These percentages can change as a function of the anode/cathode pair chosen, but they give a rough idea of what needed for producing LIBs. Figure 1.16 A shows that the three main components are graphite (22%), nickel (17%) and copper (17%). [135] Other components that are less abundant in the cell, but still crucial for the following discussion, are lithium (3%) and cobalt (6%), while the rest (CBD, electrolyte, manganese, aluminum, plastics) are less problematic from a supply chain perspective. [135] In particular, these materials pose three major issues: (i) strong geographical localization of the raw materials, sometimes in not economically/politically stable countries, (ii) risk of shortage of those materials in the near future and (iii) predominant position of one single nation (China) for their processing/rening. Starting from a purely economical/industrial perspective, the uncertainties about the raw/processed materials price and the risks of 30 Many kind of NMC exist, the associated numbers indicate the relative fraction of Nickel, Manganese and Cobalt, respectively. Then, NMC-622 stands for LiNi 0.6 Mn 0.2 Co 0.2 O 2 supply chain shortage are surely two aspects that can potentially slow down investments on the eld. Concerning the rst aspect, Figure 1.16 B shows the price uctuation of some energy-related assets, among which it is possible to notice that the strongest uctuation concerns lithium and cobalt (excluding palladium, that is linked to the hydrogen-related technologies [136,137]). While Li is an unavoidable components of LIBs, the signicant price uctuation of Co is one of the reasons for which many eorts are being undertaken to increase the Ni content, and consequently decrease of the Co content, of next-generation NMC. [135,138] Another critical factor pushing in this direction comes from the reports of child labor in the Democratic Republic of the Congo (DRC) mines, that are, even today, the main global source of Co. [141] Concerning the risk of raw material shortage, Figure 1.16 C shows that, in few years time, we could have a shortage of key materials, as Copper, lithium and cobalt, for both the stated policy scenario, i.e., if all the nations follow the plans they announced, and the sustainable development scenario, dened by the IEA as the scenario needed to reach net 0 emissions by 2070 and keeping it all the way down until the end of the 21 th century 31 ). Even though the risk of such shortages could be mitigated by the discovery of new mining areas or the exploitation of deep sea ones, 32 it should be taken seriously to avoid that such shortages even occurs. This is particularly important when considering the average time for nding and building new mines, typically in the range of 5-20 years, and the negative impact that such shortages would have on the clean energy related industries, as EV, photovoltaic, wind turbines, etc.. [140] Besides price uctuation and the possible raw materials shortage, other critical aspects to be considered are where those materials are coming from, and where they are processed.

Figure 1.17 shows the production share of the three main producers for selected energyrelated minerals (A) and the global share of key minerals processing/rening (B). This data clearly shows to which degree their production is geographically localized (≥ 50% from their 3 top producers only) and that the majority of all these materials are further processed by China alone. I do not intend here to enter into an extremely complicated discussion about the political, economical and military equilibrium between the "western world" and China, but, undoubtedly, geopolitical frictions exist, and a part of the reasons behind them can be seen in Figure 1.17. In addition, similarly to the case of Co extracted in the DRC, I believe that aspects linked to human rights, as the Uighur work camps[142], need to be part of the discussion at all levels, from the consumers who choose which product to buy to the highest diplomacy ranks. New concerns in that sense could come from Afghanistan, were Taliban have now, unfortunately, gained the control of the country and where enormous mineral reserves have been identied, among which the biggest Li deposit ever detected. [143,144] All the above shows how critical it is for countries aiming to decarbonize their economy to nd secure supply chains for raw materials, as thorough recycling processes could support the supply, but not replace it. This calls for the search for, and investment in, mines in ethically secure regions, while keeping in mind the posed risks and hazards of large scale mining. [140] One last aspect that should be considered is the patents landscape. LIBs are a highly patented eld (mainly from large companies, Figure 1.18 B), where Japan and Republic of Korea (ROK) play the most important role, as shown in Figure 1.18 A. Indeed, the only cathode material for which neither Japan nor ROK have the biggest share, in terms of international patent families (IPFs), is LiNi x Co y Al z O 2 (NCA), which is understandable considering that NCA is, historically, Tesla cathode material of choice 33 .[138] However, the actual number of IPFs for NCA is signicantly smaller compared to other cathode materials (Figure 1.18 C), showing that the majority of investments and innovations in this eld are currently coming from Asia. Lastly, for completeness, the same analysis is reported for anode materials (Figure 1.18 D), showing a signicant raise of interest in Li 33 Even though Tesla's batteries were initially produced by Panasonic, a Japanese company, which means that is likely that the NCA Tesla's patents came after some Japanese ones. metal anodes in the last years.

Take home messages

This section aimed to show how LIBs were developed, starting from the "Holy Grail" of Li-metal batteries down to all the challenges that needed to be tackled for nding a suited combination of cathode, anode, electrolyte, current collectors, additives and assembly conditions. During this long process, a critical role was played by the development of:(i) intercalation materials suited for Li + (Stanley Witthingham, 1976), (ii) high voltage cathode materials, as LCO (John B. [START_REF] Mizushima | x CoO 2 (0<x<-1): A new cathode material for batteries of high energy density[END_REF] and (iii) the LIBs setup, combining LCO-based cathodes, carbonaceous anodes (soft carbons), suited current collectors, additives and separators (Akira Yoshino, 1987). These major breakthroughs, together with the discoveries of many others, led to the rst successful commercialization of LIBs by Sony (1991). However,just few years later (1992)(1993)(1994) it was realized that the electrolyte decomposition, and the consequent SEI formation, can play a major role in increasing the cell cycle life, unlocking the use of graphitic-based anodes, which are still the state of the art for commercial LIBs.

Despite the undoubtedly successful story of LIB development and commercialization, which enabled the portable electronics revolution, many challenges lay ahead. The increase in LIB mass production, required by the rapid growth of the EV market, can pose severe issues in terms of raw material supply chain stability. Many critical materials for LIB production are extracted in a rather geographically localized region of the world, and they are mainly processed in China. This imbalance could lead to economic and geopolitical frictions between countries, especially in the eventuality of raw materials shortage.

In addition, aspects as human rights, child labour in DRC and Uighur work camps in China, upon others, should be taken with utmost seriousness.

Another aspect that is being dominated by Asiatic countries (mainly Japan and ROK) concerns LIB-related IPFs, which once again underlines the weakness of Europe in such a critical technological eld.

Knowing the origins and challenges of LIB raw materials, the next section deals with LIB manufacturing, where the core of the research done in this thesis stands.

Li-ion battery manufacturing

In the last section, I discussed the challenges behind mineral extraction and renement from an economical and geopolitical perspective. After those steps, the rened minerals are used to synthesize the nal materials, as for instance NMC, needed for producing LIBs (left of Figure 1.19) and nally LIBs cells and battery packs are manufactured (right of Figure 1.19). First I discuss the impact of manufacturing on the nal LIB price and how this relates to the raw material cost. Then, as the main subject of this thesis is on the 3D simulation of LIB electrode manufacturing, I present in more details the dierent electrode manufacturing steps (mixing, coating, drying, calendering) and their role in dening the nal electrode features. However, here I only discuss the state of the art LIB manufacturing, as this was the main focus on this thesis. For a discussion on the possible next generation LIB manufacturing processes, like dry coating, the interested readers can refer to Refs. [146,147] As discussed in section 1.1, the price of battery packs has dramatically dropped in the last few years, from approximately 1200 USD per kW h (2012) to ca. 155 USD per kW h (2019), mainly thanks to improved manufacturing procedures and the economy of scale. [START_REF]Global EV Outlook 2021[END_REF][START_REF]Global EV Outlook 2020[END_REF]138,145] However, the lower the battery price the higher the impact of the raw material cost, dening a lower limit to the nal battery price that is often neglected in LIBs costs predictions, as recently outlined by Hsieh et al.[145] LIB pack price predictions by Hsieh et al. together with previously reported models not accounting for this lowest limit. The rst thing we notice is that the price predictions vary signicantly as a function of the model used, which stresses the importance of analyzing output data in light of the model assumptions. Second, ignoring the lowest limit imposed by the raw material costs is likely to lead to overestimate long-term predictions. In that sense, the recent work of Hsieh et al. surely represented a progress with respect to the state of the art. However, even this approach presents important uncertainties. Indeed, as discussed in subsection 1.2.4 (Figure 1.16), the raw material price is far from being stable and independent of the evolving geopolitical situation, which makes any prediction of their price evolution particularly challenging. This is exemplied in Figure 1.20 B for the work of Hsieh et al.[145] Indeed, this particular study was performed by accounting for the Li, Co and Ni price variation between 2016 and 2017, a period in which Li and Co experienced a surge in their price (Figure 1.20 C). The continuation of this trend until 2030 would have led to the so-called scenario 2 (140 USD per kWh), while the decrease of their price back to their 2016 level would have led to scenario 1 (93 USD per kWh). From the perspective of today (Figure 1.20 C), the price of Co and Li dropped signicantly from 2017, suggesting that the scenario 1 could be the most relevant one, but no real claim can be made in this sense considering the high volatility of their price. The exact LIB price prediction for the coming decade does not only depend on the chosen model, but also on the authors' expertise, as discussed by Sakti et al.[148], making it dicult to trust any exact forecast. Nonetheless, this kind of study oers two main messages:

(i) decreasing manufacturing cost is critical for decreasing the overall LIB costs, and will remain as such in the coming years, (ii) relatively soon we will reach a point where the only way to further decrease battery cost is by either decreasing price of raw materials or increasing their capacity, for instance through novel chemistries.

While, the lower cap of LIB pricing is set by the raw materials used, the dierent steps of the manufacturing process also individually aect the nal cost of production. Thus, the next part of this section oers a short outlook on the main steps of LIB cell manufacturing, illustrated in Figure 1.21 A-C. It should be underlined that the discussion below only refers to cell manufacturing, while it does not account for the battery pack production. Even though the latter is critical in dening the nal pack performance in terms of energy density, safety and life time (through the battery management system, cells position and connections into the pack, cooling devices, etc.), battery pack production is disregarded here as it is beyond the scope of this thesis, whose focus is on the electrode manufacturing.

LIB electrodes are porous and composed of dierent components: typically one or more AMs (Figure 1.18 C,D), whose role is allowing Li + intercalation/de-intercalation, one or more conductive additive(s), whose role is to enhance the overall electrode electronic conductivity, and one or more binder additive(s), whose role is assuring good contact between the particles and between the electrode and the current collector and improving the electrode mechanical stability. Typical conductive additives are carbon particles, typically in the order of tens of µm big, or carbon nanobers, while typical binders are PVdF, CMC and SBR,upon others.[151] The choice of the materials denes the cathode/anode formulation, while their relative weight/volume fraction denes the electrode composition.

Once their formulation/composition is dened, the electrodes need to be manufactured somehow (Figure 1.21 A). The rst step is mixing the electrode components, which is typically assisted by the use of a solvent, as n-methyl-pyrrolidone (NMP) or water, which outputs a slurry, a black viscous suspension. The slurry is coated on a current collector, which is moved into an oven where the solvent is removed. Then, the dried electrodes are compressed in order to reduce the electrode porosity and increase the particle contact, which is typically known as calendering. One last step that can be performed is vacuum drying, whose goal is to remove any possible remaining solvent from the electrode pores.

The steps with the greatest impact on price are coating and, particularly, drying, due to the limited processing speed. As soon as the cathodes and anodes are manufactured, they should be assembled, together with the separators, electrical contacts and cell case, to make the cell (Figure 1.21 B). The exact procedure followed from now on depends on the producer and on the cell format chosen, which industrially is typically prismatic, pouch, or cylindrical (Figure 1.21 D). 34 In the following, I focus on the prismatic format, which is the one of choice for many EV manufactures,[149] thanks to its higher energy density at 34 At the lab/R&D scale, the cell format of choice is typically either coin, or swagelok cell, whose assembly is signicantly easier and that requires smaller samples. the pack level.

35 In this scenario, the electrodes are cut, in order to give them the needed shape, and stacked (referred to as "compound generation" in Figure 1.21 B). Afterwards, the electrical contacts needed to connect the electrodes to the external circuit are made and the stacked electrodes are inserted in the cell case, which is then closed. Among the dierent cell assembly steps, for the case of prismatic cells the one impacting the nal price the most is electrodes stacking, due to its relatively low speed. This is also a good example showing the dierences that can arise as a function of the cell format chosen. For example, for cylindrical cells the electrodes should be rolled instead of staking them, which is signicantly faster but requires more exible electrodes to avoid cracking. After the cell assembly, three remaining critical steps, common to each cell format, are electrolyte lling, formation and aging. Electrolyte lling consists of lling the electrode and separator pores with a selected electrolyte, which is typically accelerated by performing this step under-vacuum. The importance of the formation step, with the consequent SEI/CEI formation, in terms of setting the nal cell electrochemical performance was extensively discussed in subsection 1.2.3, but here it should be underlined that this step is also critical in determining the nal battery price, due to the long times that this step requires (slow charges/discharges for controlling the SEI/CEI formation). In addition, this step can also lead to gas generation, that should be removed by re-opening and re-closing the cell. Last but not least, before commercialization, the cells are stored in controlled conditions to check eventual short-circuits, a step known as aging. This is particularly costly as well, because it requires long waiting times, up to several weeks, and devoted storing rooms in the manufacturing plant.

Focusing on electrode manufacturing, the main research subject of this thesis, the next subsections intend to oer a more detailed discussion on the key role of mixing, coating, drying and calendering in setting the nal electrode characteristics.

Mixing

The main role of mixing is obtaining an homogeneous, stable and easy-to-process slurry, all of which is critical for the coating step and the nal electrode performance.

Initially, the particles of the electrode component powders (AM, carbon, and binder) 35 An important outlier is Tesla, which utilizes cylindrical cells for its EVs and that recently developed, in collaboration with Panasonic, the 21700 and 46800 cylindrical formats, rather than the classical 18650 one (18 mm large and 650 mm long). [152] form aggregates, which further aggregates forming agglomerates (Figure 1 The main advantage of ball milling is its higher dispersing eciency, dened as the ratio between the minimal cluster size and the mixing energy, but at the cost of particle deformation or breakage. [153] It could also lead to mechanochemical reactions due to the high local pressures applied, eld known as mechanochemistry [154]. Therefore, hydrodynamic mixers, which do not present these drawbacks, are often preferred for slurry mixing, despite their higher energy costs and limit in terms of minimal reachable cluster size, estimated to be around 100 nm [153]. A possible, but less popular, alternative is ultrasonic mixing (right of Figure 1.23 A), which oers approximately the same mixing quality of hydrodynamic shear-based mixers but with lower energy inputs, which makes it particularly advantageous for slurries with an high solid content 36 (SC).[153] However, intensive ultrasounds were found to lead, especially in water-based slurries, to radical formation causing binder degradation. [153] Low mixing time or speed can lead to not optimal and heterogeneous electrodes, due to insucient agglomerate breakage and dispersion, however an excessive mixing can be detrimental as well. Figure 1.23 B shows 2D cuts of dierent LCO-based cathodes obtained by changing only the mixing speed, indicating the presence of big carbon black agglomerates when using low mixing speed (30 rpm) and LCO agglomerates when using high mixing speed (819 rpm). This shows that the mixing parameters should be tuned to nd an optimally dispersed slurry and electrode, which in the case of Nakajima et al.[156] was found to be around 165 rpm.

The role of mixing speed, and the arising electrode microstructure, can be seen in terms of electrochemical performance as well (Figure 1.23 B), and especially at high current density, for which the electrode being mixed with the highest speed is the one performing the worst. The mixing time and speed are not the only parameters to be considered, but the sequence of mixing signicantly impacts electrode features as well. For instance, Lee et al. [159] found that a multi-step mixing process, in which AM and carbon were added in a concentrated NMP-based solution of PVdF, and extra solvent was added iteratively after 30 minutes mixing, was benecial in terms of discharge capacity for LCO-based cathodes. On the anode side, Zheng et al.[153,160] found that adding the PVdF into an NMP-based solution already containing graphite and carbon black was benecial in terms of capacity retention. The two examples above, upon others [161,162], do not only give a taste of the importance of mixing sequence, but also underline that the "ideal" mixing procedure depends on the system under analysis and that it can be tuned in a 36 SC is dened as the mass of the solid components (AM(s) plus additives(s)) divided by the slurry mass, i.e., solid components plus solvent. multitude of ways, limited only by researchers' creativity. However, among the dierent mixing procedures, two of them were found to be typically benecial.[153] Both these procedures rely on dry blending of powders, which is achieved by pre-mixing all or part of the initial powders, i.e., AM, carbon, or binder. On the one side, dry blending of all the powders and subsequent solvent addition seems to lead to a carbon binder domain phase that is well dispersed in between the AM particles, leading to good percolation networks (Figure 1.23 D). Pre-mixing only the AM and carbon, with little to no binder can lead to covering the AM surface with a thin carbon layer, enhancing its electronic conductivity, similarly to what depicted in Figure 1.23 E. One last parameter to be considered during mixing is temperature, which has a direct impact on the slurry viscosity and was found to aect the slurry processability and improving its stability, up to a certain limit.[163]

Coating and slurry rheology

Once an homogeneous slurry is obtained, it should be coated onto a current collector, typically Al for cathodes and Cu for anodes. At the industrial scale, this step is typically linked with drying, meaning that after coating the slurry is directly moved into an oven, as schematized in Figure 1.24 A. At the lab scale, however, the coating is often performed through a doctor blade and the drying is typically performed using hot plates. During the coating step, any kind of defect (holes, bubbles, etc.) should be avoided, and the most important parameters are the comma gap and coating speed. Comma gap (Figure 1.24 B) denes the thickness of slurry that is coated onto the current collector, which is intrinsically linked to the electrode mass loading, i.e., AM mass per electrode surface.

Coating speed is intrinsically linked to the production rate, that at the industrial scale should be maximized. However, there is a limit to the production rate applicable, due to the need of homogeneous coatings and to limits on how fast a slurry can be dried. In terms of slurry features, rheology aects coating the most. Rheology is dened as the "study of deformation and ow in materials" [165] and it can oer key information needed for evaluating the slurry quality. Figure 1.25 depicts a selected number of rheological measurements relevant for LIB slurries, going from shear-viscosity curves (A), yield stress (σ 0 ) measurement (B), breakage of the network structure (C) and storage and loss mod- ules determination (D). The shear-viscosity curve determination (Figure 1.25 A) is the most common one among the aforementioned measurements and it is directly linked to the coating step. During coating a shear force is applied to the slurry, which moves in response to it; the ratio between the velocity at which the uid moves and its height is known as shear-rate (inset in Figure 1.25 A). To measure a shear-viscosity curve dierent shear forces are applied and the resistance of the uid to be deformed, essentially the viscosity, is measured. In a comma coater (Figure 1.24 B) the applied shear-rate is dened as the coating speed divided by the comma gap, which at the prototyping/industrial scale typically varies between tens to hundreds of hertz. A shear-viscosity curve can oer two key information about the slurry quality: its (i) stability and ii) processability. The slurry stability is linked to its resistance to phenomena as particles sedimentation 37 and can be assessed by its low shear viscosity (LSV), where the higher this value the more stable the slurry is. The slurry processability can be assesses by its high shear viscosity (HSV), where the lower this value the higher the processability. Other two measurements of interest are the determination of the minimum force needed to induce a ow (σ 0 ) and amplitude/frequency sweep. The best procedure to determine of σ 0 is still debated in the literature,[153] but one possible is through the analysis of the stress evolution as a function of the shear-rate applied, in which case σ 0 is dened as the stress at the plateau (Figure 1.25 B). In amplitude and frequency sweeps the slurry is typically located in between one xed and one moving plate, where the latter is moved with certain oscillation(s) and frequency(ies). During an amplitude sweep experiment (Figure 1.25 C), the frequency of oscillation (ν) is held constant and the applied strain, or the amplitude of deformation, is increased, while a frequency sweep does the inverse (Figure 1.25 D).[166] These experiments are often performed in sequence: for instance the procedure we followed during my thesis was rstly doing an amplitude sweep experiment (ν of 1 Hz), to dene the higher deformation for which a linear viscoelastic regime (LVR) is observed (γ c in Figure 1.25 C), and we used this value to perform the frequency sweep analysis by applying a ν ranging between 0.1 and 500 Hz. These two measurements can give insight on two main slurry features: γ c is linked to the maximal strain/stress that can be applied before breaking the particle network into the slurry (inset of Figure 1.25 C), while the frequency sweep analysis oer information on the storage (G') and loss (G) modulus. The ratio between G and G' is known as tanγ and it is linked to the liquid-like (tanγ > 1) or solid-like 37 This is relevant because particle in the slurry, as any suspension, tend to sediment in the long term. This becomes critical when considering that, especially at the industrial scale, the slurry can be stored for a certain time in between its production and coating.

(tanγ < 1) behavior of the slurry, where a solid-like slurry tends to return to its initial state after deformation (elastic-like behavior), while a liquid-like slurry is easier to deform (viscous behavior). As discussed in Chapter 2, we found that these dierent behaviors aect coating step and the dried electrode porosity.

Drying

As soon as the slurry is coated it is moved into an oven for the drying step, which sets the dried electrode microstructure and it is the most relevant step in terms of electrode manufacturing costs (Figure 1.21 A). Figure 1.26 A shows a schematic of the drying procedure from a microstructural point of view, which can be divided into three main stages: (i) the slurry lm shrinks until reaching its nal thickness, i.e., that of the dried electrode, (ii) the solvent in between the AM particles evaporates, stage in which the AM particles have no or few space left to move, while smaller additives can do it more freely, and iii) the nal dry electrode is obtained. During solvent removal, one key phenomenon is additive migration, for which binder migration is, by far, the most studied case, which leads to higher additives concentration in the top layers of the dried electrode, as can be seen in Figure 1.26 B. The main reasons of migration seem to be convective and capillary forces developed during drying, while diusion tends to re-homogenize the system. This indicates that the faster the drying the higher the migration, due to higher convective/capillary forces and less time for re-homogenization. Binder migration in particular is widely accepted by the LIB community and has been observed through energy dispersive X-ray (EDX), [169,170,173,174] Raman [168] and real-time uorescent spectroscopy. [175] Among them, EDX is particularly convenient for PVdF, due to the unique signature of uorine. Considering the high anity of carbon particles to the binder, the possibility of incurring in light carbon additives migration has been previously discussed by Jaiser et al. [171], but this is much more complicated to study due to the presence of carbon in both conductive additives and binder. However, a possible indication of it was reported by Stein et al. [169], as showed in Figure 1.26 C and D. Particularly, they found that by applying a two stage-drying procedure, leading to lower additive migration, the decrease in the EDX peak associated to the carbon is higher than what expected when considering PVdF migration only, at both 70°C and 120°C. However, those results should be considered carefully and other studies are needed to accurately assess the possibility of carbon migration. My personal guess on this is that carbon migration can take place as well, but it depends on the initial conditions, and particularly on the carbon-binder domain aggregate/agglomerate size. If these aggregates/agglomerates are small enough in the slurry phase, I would expect a certain degree of carbon migration, while I would not for big aggregates/agglomerates. Figures 1.27 A and B show the decrease in specic charge capacity at dierent C-rates and the increase in the overall resistance of electrodes dried at higher temperatures, indicating how the heterogeneity developed during fast drying can negatively impact electrochemical performance. This is especially critical for thick and ultra-thick electrodes, which can lead to a cell with higher energy density, thanks to a decrease of the "inactive" component mass, but that suers from transport limitations. [176] In that context, a possible solution proposed by Kremer et al.[173] is using multi-layered electrodes having a higher amount of CBD in their bottom layer, to counterbalance additive migration. Another issue linked to binder migration is a lower adhesion with the current collector (Figure 1.27 C), which can lead to electrode detachment and consequent cell failure. In addition, fast drying can lead to electrode cracking, particularly severe in the case of water-based slurries. [177,178] Considering all the above, it is clear that there is a limit to how fast a given slurry can be dried, which is the ultimate reason why increasing the production rate of this manufacturing step is particularly challenging. However, strategies for mitigating this issue could be found and one key of access for this lies in Figure 1.27 C. Indeed, it can be observed that the decrease of adhesive force with the current collector, ultimately linked to binder migration, does not take place all along the drying step, but rather in a specic time range. [171] In addition, the presence of transition times during solvent evaporation, meaning that no signicant migrations is observed before or after such times, was found by the same group through incorporation of a brightener into the slurry and following its associated uorescence during drying (Figure 1.27 D). [174] Knowing that additive migration takes place in a specic time range, a possible pathway to reduce drying time while maintaining the electrode performance relies on applying HDRs before and after the transition times, leading to time saving, and a LDR when binder migration takes place. This 3-stage drying strategy was developed and tested by Jaiser et al.[179], who were able save ca. 40% of the drying time while keeping the same adhesive force with the current collector compared to the electrodes fully dried at LDR (Figure 1.28). All the ndings discussed above are not only useful for better understanding additive migration and help in preventing it, but they are also extremely valuable from a computational viewpoint. Indeed, any model aiming to simulate the drying process should keep in mind how additive migration occurs, a subject that was covered during this thesis and that is discussed in Chapter 3.

Calendering

The last electrode manufacturing step is calendering, which is systematically performed at the industrial scale but often neglected at the lab scale. Calendering basically relies on applying a pressure to the electrode, typically through moving rolls, which leads to an irreversible mechanical deformation and lm compaction. This increases the extent of the electronic percolation network, enhances the electrode mechanical stability, decreases its porosity and increases the theoretical energy density. In addition, calendering can also bring a certain degree of order into the electrode microstructure, as can be seen from the scanning electron microscopy (SEM) images reported in Figure 1.29 for the case of NMC-based cathodes and graphite-based anodes. In general, the calendering process signicantly inuences the mechanical and adhesion properties of the electrodes, as well as its microstructure and electrochemical performance. [180184] Even though all the effects enumerated above can have a positive inuence to the electrochemical performance, it should be also considered that decreasing the electrode porosity does not only increase the electronic conductivity, but also decrease the ionic conductivity and active surface area (AM surface in direct contact with the electrolyte), indicating that the calendering step relies on nding the best trade o between these compelling needs. In addition, calendering can also lead to particle deformation and cracking, which negatively aect the performance and mechanical stability of the electrodes. [185] In addition, calendering induced cracking depends not only on the applied pressure but on the mechanical properties of the AM particles, as depicted in Figure 1.30 A and B for the case of lithium manganese oxide-(LMO) and NMC-based cathodes, respectively. Even though the calendering pressure is probably the most critical parameter for this manufacturing step, the role of calendering speed and the temperature of the rolls should not be neglected. If from one side, calendering speed relates to the production rate, from the other side, roll temp induces higher deformability and consequent re-organization of the binder phase, which inuences the conductivity of the produced electrode.

[187] This is claried in Figure 1.31 that depicts the role of calendering temperature (60°C against 75°C) on electrochemical performance for four dierent electrode formulations. results of this approach clearly indicates the importance of considering the whole electrode/cell manufacturing chain in order to capture the interdependencies between the dierent steps, rather than focusing on modeling one single process. This philosophy, even though using 3D physics-based modeling rather than 1D one, is also at the basis of my thesis, in which we focused on developing a computational workow accounting for several electrode manufacturing processes, rather than separated models accounting for one single step, as is shown in more details in Chapters 2, 3, 4 and 5.

Take home messages

In this section a panorama of the role of manufacturing in determining the nal LIB price is presented at rst. The rst message of this discussion was the need of considering a minimal price for LIBs associated to the raw materials cost, which is expected to be low enough for certain applications, as the rst generations of EVs, but could not be low enough for others, if using the current state of the art cathode and anode materials.

Then, a brief outlook of the main electrode and cell manufacturing steps was illustrated, going from the electrode formulation to cell aging. Among these steps, the most critical ones in terms of LIB price are coating and drying, electrode stacking (for the case of prismatic cells), formation and aging. Afterwards, a more detailed view on electrode manufacturing (mixing, coating, drying and calendering) was oered. An important aspect is the production of well dispersed and homogeneous slurries through mixing, which does not only depend on the mixing speed and time, but also on the sequence of mixing, i.e., the order to which the electrodes components are added. Concerning coating, the absence of any defects (bubbles, holes, etc.) is of paramount importance for producing high quality electrodes, in which slurry rheology plays a major role. Rheology can give access to information as the stability and proccessability of the slurry, for instance through shear-viscosity curves, the breakage of particle aggregates, or its liquid-like or solid-like behavior, all of which aect the coating step and the nal electrode features. Drying is a critical manufacturing step and can lead to additive migration from the bottom to the top electrode layers, outputting heterogeneous electrode microstructures. This phenomenon increases with drying rate and was found to be detrimental for both electrochemical and mechanical properties, limiting the drying speed and impacting the nal cost of this manufacturing step. However, since additive migration occurs at specic time ranges within the drying step, advanced drying procedures such as 3-stage drying, in which HDR is applied when additives migration does not take place and LDR is applied during the rest of the drying, could mitigate this migration and save time. Calendering leads to an irreversible mechanical compaction of the electrode, decreasing its porosity and increasing particle contacts, among others. This step is benecial in terms of electronic conductivity but is detrimental for other key features, as ionic conductivity and active surface area, calling for trade os. Lastly, it is important to bare in mind that electrode and cell manufacturing processes are rather interconnected and sequentially aect each other. This is the main reason for which, during this thesis, we focused on a computational workow accounting for several electrode manufacturing steps and their links, rather than isolated models accounting for one process only.

Another aspect that was often underlined in this section was the impact of manufacturing on the electrode microstructure and nal electrodes performance. Even though the critical role of electrode microstructure is recognized by the LIB community, accessing this information is not trivial, and many approaches for doing so were developed in the last years. The next section deals with these approaches, that rely on experiments, on models, or both, the second case being the most relevant one in the context of this thesis.

Electrode microstructure

In view of the importance of the electrode microstructure, many approaches have been developed to determine it experimentally or to reproduce it in silico. This section aims to give an overview on the main approaches developed so far, which can be classied as: (i) arbitrary, (ii) stochastic, (iii) imaging, (iv) machine-learning based and (v) physics-based.

Arbitrary

The arbitrary approach literally indicates drawing completely arbitrary microstructures, as the examples depict in Figure 1.33. This approach does not aim to build realistic structures, but it can be rather useful for assessing the limits of validity of a model or testing specic hypotheses. For instance, Tu et al. [191] utilized the arbitrary structures [192] shown in Figure 1.33 A to test the limits of validity of the tortuosity factor concept, a measure of how tortuous is the Li + path in the electrolyte, when measured in the con- ventional "ow through" approach, [193] leading to the denition of the new "electrode tortuosity factor" concept, which is able to account for the role of dead end pores in dening the electrode performance. Another example is the work of Cooper et al.[192] that used this approach to test the role of pore shape in dening the EIS response (Figure 1.33 B)

Stochastic

The most simple computational procedure to generate realistic looking electrode microstructure is through stochastic approaches, where particle location in the microstructure is dened with a certain degree of randomness. The computational cost of this approaches is low, i.e., fast generation of electrode microstructures, and the code development relatively easy, which are the main reasons for the popularity of this approach, and to specic functionalities in commercial software, as Geodict [194]. Even though a certain degree of randomness is embedded in these models, it does not necessarily mean that the structure is generated totally randomly. For instance, Minstry et al. [195] developed an algorithm which rst generates a backbone of spherical AM particles located randomly in a dened simulation box, referred to as "active material structure" in Figure 1.34 A, and then applies a certain degree of control on the CBD phase location (Figure 1.34 A). Particularly, the CBD phase position is determined through the computation of a "deposition energy", a pre-dened mathematical function that depends on one parameter (ω, named "morphology parameter") controlling the preference of the CBD phase to be added on predeposited CBD versus an uncovered AM surface. In other words, ω can be seen as a parameter linked to the ratio between cohesive forces of CBD and adhesive forces between CBD and AM, controlling the CBD morphology, which was found to aect the electrode performance. [169,188] Particularly, if adhesive forces prevail, the CBD phase morphology is lm-like, like a deposit of CBD on the AM surface, while it is cluster-like, 3D CBD clusters in between the AM particles, if adhesive forces dominate. Another example is the algorithm developed by Laue et al.[196], whose most interesting feature is its capability to account for non-spherical AM particles (Figure 1.34 B). To reach this result, the authors randomly locate the nuclei of the AM particles inside a dened simulation box (rather than the particles themselves, as Minstry et al. [195]) and let them grow until reaching a settled dimension. However, in this procedure particle overlap is allowed, leading to the possible merging of two or more AM particles. This specicity allows obtaining non-spherical AM particles. Indeed, even if every single particle, taken by itself, is where the CBD phase organization (lm-or cluster-like) can be controlled through a devoted parameter, here named ω. B) Algorithm architecture developed by Laue et al.[196] allowing to build electrode microstructures accounting for non-spherical AM particles. A) spherical, the merged particle arising from two or more spheres is not spherical anymore.

In addition, to account for the lost volume of the AM phase due to this overlap, this procedure is performed iteratively until reaching the desired AM volume fraction. Then, the CBD phase is similarly added until it reaches its settled volume fraction and the rest is lled by the electrolyte phase. An interesting out-of-the-box stochastic approach was recently developed by Joos et al.[197], whose main features are depicted in Figure1.35. In particular, the authors used focused ion beam SEM (FIB-SEM) to access the electrode microstructure of various cathodes, which were segmented to distinguish between the AM (in Figure 1.35 A green stands for NCA and yellow for LCO), the CBD and pore phases.

Then, they adopted an erodedilate approach to distinguish the single AM particles and CBD agglomerates, leading to the development of two libraries: one containing all the AM particles identied (1100 NCA and LCO particles) and a second one containing the CBD agglomerates [START_REF] Thompson | Our plastic age[END_REF]. An example of NCA particles and CBD agglomerate coming from those libraries is depicted in Figure 1.35 B, showing the high degree of detail captured by this approach. In order to generate the electrode microstructure, a certain number of AM particles and CBD agglomerates is randomly selected from these libraries to t the settled size and volume fractions (AM, CBD and pores) of the desired electrode. Then, the AM [197] particles are added to the simulation box through a drop and roll approach, meaning that they are dropped from the top of the simulation box and, if a collision between two particles is identied, roll until reaching their nal position (by considering periodic boundary conditions in the lateral dimensions), as it is showed in Figure 1.35 C. Finally, the CBD agglomerates are added randomly in between the AM particles. The main disadvantage of this approach is that it requires a large amount of high quality experimental data for the construction of the AM and CBD libraries, but, once this is done, it really oers the advantage of highly realistic microstructures at low computational cost (right of Figure 1.35 A).

Experimental imaging techniques

Going from modeling to experimental approaches, the most common 3D techniques to assess the electrode microstructure are FIB-SEM [198200] and transmission X-ray com- Ref. [207] puted tomography (TXCT). [201203] The advantage of these techniques is that they give access to highly reliable data, but they require expensive and non-routinely instruments, being the use of synchrotron facilities the clearest example. From one side, FIB-SEM typically oers spatial resolutions down to 10 nm/pixel, but it is time consuming to analyze large sample volume and it is intrinsically destructive, hampering any operando measurement. [204] From the other side, TXCT is not destructive and can be applied either for accessing larger volumes through µCT (up to the device level, but at the expense of lower resolution) or highly resolute data through nanoCT (below 100 nm/pixel, but at the expense of lower analyzed volume).[204] While FIB-SEM allows distinguishing relatively easily between the AM, CBD and pore phases (Figure 1.36 B and D), this is much more challenging through TXCT (Figure 1.36 A and C). Indeed, typically TXCT relies on material attenuation constant, which is a function of the atom number (Z) and the material density, that poses major issues when dealing with LIB cathodes, where the AM has high attenuation constant, due to the presence of transition metals, while carbon and binder have a low attenuation constant. This dierence makes it easy to identify the AM phase, but also makes it particularly challenging to distinguish between the CBD and the pore phases, which are often not resolved. [205,206,208210] Up to date, ve main strategies exist to capture the CBD phase by using tomography: (i) adding the CBD phase as a post processing step, typically referred to as "binder bridge" approach, (ii) combining the TXCT results of two samples to resolve the AM and CBD phases separately, (iii) combining TXCT and another imaging technique, (iv) using TXCT techniques not relying on attenuation contrast and (v) embed atoms with higher Z as contrast enhancer in the CBD phase.

The binder bridge approach is based on recovering the AM phase only from the TXCT data, and then stochastically adding the CBD phase, as schematized in Figure 1.37 A. This approach is simple and allows considering the CBD phase even with the simplest TXCT setup, but adding the CBD as a post-processing step can lead to ctitious results. However, similarly to the case of stochastic electrode generation discussed above, that analyses two dierent samples: the rst one containing AM, carbon and binder, and the second one containing carbon and binder only. Then, the TXCT on the rst sample is used to identify the AM phase and the macro pores, while the TXCT on the second sample is used to recover the CBD morphology. Afterwards, the data obtained from the two samples are overlapped, allowing to resolve the CBD phase while keeping the information of the AM and macro pores. This approach is of interest and the results obtained by the authors are impressive, but some concern can be raised on the correctness of overlapping data coming from two signicantly dierent samples. Indeed, the lack of AM and the different manufacturing procedures needed to make these two electrodes are likely to aect the CBD microstructure, suggesting that the one of the carbon+binder sample could be not totally representative of the one in the AM+carbon+binder electrode. Concerning the second case, i.e., combining two imaging techniques, it is possible to reconstruct the AM domain from TXCT, while analyzing the same sample with FIB-SEM to access the CBD phase. This approach was used by Zielke et al.[198] (Figure 1.38 B) who succeeded in resolving and quantifying the nanoporosity inside the CBD phase, that, for the case of a LCO-based cathodes using carbon black and PVdF as additives, was found to be ca. 50%. This measurement was extremely signicant for setting the models developed during this thesis, and other similar measurements, but in dierent conditions, as for instance calendered electrodes, would be of major interest. The main drawback of this approach is the complex experimental setup required for combining TXCT and FIB-SEM accurately.

[204] The last two approaches rely either on techniques not using attenuation contrast or on the addition of contrast-enhancing particles. An example of the rst case is holotomography, which relies on phase contrast and was recently adopted by Tu et al. [204] to resolve all the phases in NMC-based cathodes (Figure 1.38 C). Concerning the last approach, a possible pathway is embedding atoms with high Z into the conductive additive to enhance its contrast, as was done by Morelli et al. [212] by using iron coated carbon particles (Figure 1.38 D). However, it should be kept in mind that the introduction of high Z atoms could change/aect the electrode microstructures.

ML-based

The most recent electrode microstructure generation approach relies on machine learning, eld that is introduced and discussed in the next section. For the following discussion, it is enough to bare in mind that ML typically refers to algorithms with specic architectures allowing them to be trained through data, with the nal goal of developing a model able to reproduce this data and predict new results. In the context of this section, the ML-concept translates into using electrode microstructures obtained from another approach to train an ML algorithm, which afterwards is able to output new electrode microstructures. The main advantage of this procedure is is maintaining the accuracy of the training data while gaining in terms of throughput, i.e., the amount of structures obtainable per unit of time. Indeed, if obtaining electrode microstructures through TXCT could require several weeks or months, considering sample preparation, waiting time for accessing synchrotrons and data treatment, a trained 38 ML model would take few seconds or minutes to do this. However, to train an ML algorithm able to generate fake but realistic electrode microstructures, highly delity data is needed, which is the main reason why until now the main examples of this approach relied on tomography data. However, it should be noted here that this approach can be transposed to physics-based models as well. 39 A and B). This approach also allowed outputting electrode microstructures as big as desired, by keeping the same resolution, and considering periodic boundary conditions (PBCs), which is relevant for characterizing those microstructures through electrochemical models. A direct evolution of this approach is the Slice-Gan developed [START_REF] Mcallister | Engineering nitrogen use ecient crop plants: the current status[END_REF] The training process could be much longer, as in the order of one week, but it should be done only once.

by Kench et al.[214] that is able to obtain the same results, i.e., outputting realistic 3D electrode microstructure, but using 2D data (electrode slices) for the training, rather than 3D ones. This represents a major advantage when considering that 2D data are easier to access and less costly with respect to their 3D counterpart (Figure 1.39 C).

Physics-based

The basic idea behind physics-based modeling for electrode microstructure generation is describing the interaction between electrode components through mathematical equations related to physical phenomena. Considering that manufacturing processes essentially depend on physical phenomena, this approach is particularly suited for modeling them. This could be done through 1D models, [189,190,215,216] that can give useful information on the battery manufacturing as a whole but no information on the associated microstructure, which can only be accessed through 2D or 3D models. The adoption of 3D physics-based models for electrode manufacturing is where the vast majority of my research during my PhD stands.

In terms of 2D approaches, the model developed by Liu et al.[217] aims to capture the microstructural rearrangement during the drying step considering explicitly all the phases involved, i.e., AM, carbon nanoparticles, binder, solvent and its vapor, as illustrated in Figure 1.40 A. A similar approach was followed to study mixing.[218] However, in order to account for all the phases, the authors were obliged to consider very small simulation boxes (0.5 µm big) and AM particle sizes comparable to the ones of carbon, restricting this approach to AM nanoparticles. Considering that the size of the vast majority of AMs of interest for LIB electrodes ranges between sub-µm to tens of µm, it becomes clear that this approach suers from strong limitations. Nevertheless, this example shows the rst hurdle faced when simulating LIB electrodes through physics-based modeling, which is essentially a problem of scale. Indeed, from one side one would need a resolution high enough to account for the smaller components in the slurry/electrode, being the solvent or binder molecule, and from the other side one would need a simulation box big enough to account for a statistically signicant number, at least few hundreds, of the biggest component in the system, being the AM particles. Considering the dierence in scale between the main components of LIB slurries and electrodes, typically from nm to tens of µm, having such a resolution and simulation box size is computationally prohibitive. This calls for approximations, with the nal aim of capturing the main features of the electrode microstructure and its link to manufacturing while keeping a reasonable computational cost. By keeping this in mind, one rst possible approach is disregard the smaller components in the electrode, focusing on the AM only. As an example, Gimenez et al. [219,222,223] (Figure 1.40 B) published a series of interesting works with calendering as the main focus, in which they presented the mechanical model they developed, its validation and the eect of calendering on the electrode microstructure and associated properties, as its electronic conductivity. In this model the binder is accounted implicitly through the generation of bonds in between the AM particles, which contributes to the overall mechanics of the simulated electrode. In terms of advantages, this approach surely allow considering a relatively big (before compression, 150×150×150 µm 3 , x×y ×z) simulation box, which can be considered as representative of reality thanks to the use of PBCs on x and y. In addition, the model was parametrized by comparing experimental and simulated indentation curves, which capture the electrode mechanical behavior. The validation step is critical for assessing the limits of validity of any model. Another positive feature of this model is the explicit consideration of the particle size distribution (PSD) of the graphite used as experimental reference. However, as any approach, this method suers of some limitations. Firstly, it does not consider the location of CBD agglomerates, which was found to play a major role in dening the electrode microstructure and associated electrochemical performance, as discussed in the previous section. Additionally, the initial uncompressed structure was generated stochastically (reads as no consideration of slurry preparation, coating and drying), which is a severe limitation when considering the interconnections between the dierent manufacturing steps. A philosophically dierent approach is the one published in 2016 by Forouzan et al.[220] that utilized a similar approach with respect to the one developed at the ARTISTIC project. [224] This approach does not consider AM particles only, but it also accounts for the carbon nanoparticles, binder and nanopores in devoted CBD particles, with a diameter of 1.3 µm each. In addition, the slurry phase and associated drying are taken into account and the PSD of the AM (NMC-532) is explicitly considered. Briey, the AM and CBD particle number was calculated as a function of the mass of the electrode fraction to be simulated, the experimental density of AM, carbon and binder and the AM PSD. Then, the size of the CBD particles is increased and their density decreased to account for the solvent contribution, making the CBD particles at the slurry phase eective particles accounting for carbon, binder and solvent. To perform the drying, the CBD size is decreased and its density increased back to its original values, leading to particle reorganization (Figure 1 (GH), accounting for the adhesive forces between particles and the overall mechanics of the system, respectively. In terms of model validation, the main observables used by the authors were the slurry density and shear-viscosity curve for the slurry phase, and the electrode porosity, density and Young modulus for the electrode phase. This validation was performed through parametrization of the FF parameter values, which was done by rst considering slurries and electrodes containing carbon and binder alone, to determine the FF parameter values for the CBD particles, and then considering actual LIB slurries and electrodes (AM+carbon+binder), to determine the parameter values for the AM particles. Even though this is a computationally advantageous approach because it limits the number of parameters to be considered at once, such a strategy could suer the same limitations of the work of Lu et al.[211], meaning that the properties of the CBD phase in an electrode made of carbon+binder only are not necessarily the same as those in an actual LIB slurry and electrode. Even though this work was remarkable, some drawbacks exist such as: (i) the consideration of one condition only, calling for deeper testing of the model; (ii) a not explicit consideration of the SC; (iii) lack of some manufacturing steps (as calendering); (iv) lack of electrochemical testing. In the concept of the ARTISTIC project in general and my thesis in particular we addressed those lacks.

The model developed by Forouzan et al.[220] in 2016 was recently (mid 2021) updated by the same research group, where they accounted for the slurry phase, its drying and electrode calendering, as illustrated in Figure 1.40 D.[221] This model was tested for four dierent chemistries (graphite, LCO, NMC and Li-rich NMC), it utilizes a dierent FF and considers dierently the solvent with respect to the aforementioned work. Concerning the FF, the authors modied the smoothed particle hydrodynamics (SPH) FF available in LAMMPS to account for the discrete nature of AM and CBD particles, a method that was named multi-phase smoothed particle (MPSP). Another main dierence is the consideration of the solvent as an explicit particle rather than included in the CBD phase, which is a research direction that was undertaken by myself as well during my PhD and that is discussed in section 2. 1.2.[230] However, no information was reported on the exact SC used for fabricating the electrodes and how this links to the number of solvent particles.

In addition, the CBD size was increased from 1.3 µm to 2 µm and it was claimed that the AM particles are generated as a combination of primary particles, rather than considering the secondary ones only (top right of Figure 1.40 D). 39 Even though the increase of CBD size allows decreasing the computational cost, baring in mind that CBD is supposed to represent experimental CBD agglomerates, which were found to be somewhere in between 0.5 and 2 µm big [198,231], the choice of a 2 µm CBD diameter seems a bit extreme. Such a choice would have been understandable if simulating electrodes with particularly high weight fraction of carbon and binder, which would lead to a signicant growth of the computational cost if considering small CBD particles, but it does not seem to be justied here (AM weight percentage (wt.%) ≥ 90%). Concerning the consideration of the primary particles, this approach can be useful not only for a more detailed description of AM, but also for building more complex (non-spherical) particles shape. This is clearly an interesting research direction, which is under investigation from several months in our research group as well. However, by taking a look to the 3D rendering reported by the authors (Figure 1.40 D) primary AM particles seems to be isolated rather than forming secondary ones. The slurry, drying and calendered model were validated by comparing the experimental and simulated viscosity, electrode thickness, electronic conductivity, Mac-Mullin number (N M ) and Young Modulus. From one side, the validation of the slurry phase is questionable because: (i) it relies on one single point of the shear-viscosity curve (1000 Hz) rather than the full curve, and (ii) in the MPSM model it is possible to tune the "viscosity" of the simulated particles, which seems to allow adjusting the viscosity of 39 Many AM particles, as for instance NMC, consist of primary particles that are strongly bonded to form secondary particles.

the whole slurry easily. On the other side, it is impressive that the authors managed to obtain a semi-quantitative agreement with all the electrode properties enumerated above for the four AMs considered. In terms of results, the authors focused on the heterogeneities developed during manufacturing. However, here we should distinguish between two kind of heterogeneities: the ones linked to a certain manufacturing step/condition, as additive migration during drying [171], and heterogeneities produced by the uncertainties in manufacturing parameters, as studied by Thomitzek et al.[189]. The work by Nikpour et al.[221] focused on the second source of heterogeneities, that were accounted computationally by generating a series of slurries and electrode microstructures while keeping the same FF parameter values but changing the initial (random) particle location, as was previously reported by our research group as well. [232] In terms of heterogeneities arising from a certain manufacturing step/condition, the authors found that calendering improves the homogeneity of AM particles, while no tendency in terms of CBD heterogeneity was identied, besides a highly concentrated CBD phase at the current collector interface for the dried electrode and at the current collector + calendering plane interface for the calendered electrodes. These more concentrated CBD regions can even be noted visually from Figure 1.40 D. However, these peaks are likely to depend on the interaction between the CBD particles and the planes (current collector and calendering roll), meaning that they are probably an artifact arising from the model. This in my opinion remains true even if the author tried to validate this trend comparing simulated and experimental results, but using a small fraction of the electrode that does not seem to be particularly representative when observing the dierent SEM images reported in this work. In summary, the work of Nikpour et al.[221] is surely an evolution of the model developed by Forouzan et al.[220] and brings signicant advantages, as a more explicit consideration of the solvent and the implementation of a calendering model, but my impression is that this approach still requires some improvement.

Besides the models reported by Forouzan et al.[220] and Nikpour et al.[221], to the best of my knowledge up to date there are only two approaches simulating more than one manufacturing step in 3D while accounting for AM and CBD phases, both depicted in Figure 1.41. Figure 1.41 A shows the computational workow we have developed at the ARTISTIC project [START_REF] Lombardo | The ARTISTIC Online Calculator: Exploring the Impact of Li-ion Battery Electrode Manufacturing Parameters Interactively through your Browser[END_REF], which is discussed in full detail in the next Chapters. Figure 1.41 B illustrates a schematic of the approach developed by Srivastava et al. [233] in which the AM (NMC-111) secondary particles are described explicitly by taking into account their PSD, the carbon-binder domain is considered through CBD particles and the solvent is accounted implicitly, i.e., AM and CBD particles are assumed to be suspended in an implicit background solvent that provides a mean-eld viscous drag to the particle motion. The authors simulated four dierent electrodes, ranging from 90 to 96 wt.% of AM, by using a large simulation box (>100 µm for each size, Figure 1.41 B) and CBD particles of ca. 0.6 µm in diameter when accounting for carbon+binder+nanopores, which led to an incredibly high number of simulated particles (2500 AM and 1-2 million CBD).

Likely, this was possible thanks to the impressive computational facilities available at the Sandia National Laboratories.[235] Just as a reference, with the computational resources available during my thesis, mainly the regional computational cluster Matrics[236], we typically considered between 3,000 and 15,000 particles (AM+CBD), similarly to Forouzan et al. [220] and Nikpour et al.[221], while we reached around 100,000 particles by using national computing clusters.[230] However, it should be noted that in Srivastava et al. using >1 million particles was eased by the lack of any model parametrization, i.e., the FF parameter values were not adjusted to t any experimental observable, for which many simulations are typically needed. The slurry phase is modeled by randomly generating a certain number of AM and CBD particles in a dened simulation box, such that the solid volume fraction is equal to 10%. Therefore, drying is simulated by shrinking the slurry structure until reaching a porosity of 50%, while during calendering the electrode is shrunk further, until reaching a porosity equal to 30%. The only dierence between drying and calendering is that during drying the interaction with the implicit solvent is considered, while it is not during calendering. In terms of results, the authors focused their attention on the eect of cohesive forces between CBD particles and adhesive forces between AM and CBD, which is somehow linked to the chemical nature of AM, carbon and binder, on the 3D microstructure. In particular, their results show that these properties have a major impact on the electrode microstructure, and that the transport performance, here a measure of the ratio between ionic and electronic transport, could be approximately doubled by tuning them. 1.4.6 Assessing electrochemical performance As electrochemical properties are at the core of LIB research, there is an extremely wide variety of electrochemical protocols that are used to test LIB cells and battery packs, as for instance constant current/power discharges and charges in dierent conditions (different current densities, number of cycles, waiting times, voltage cut-os, symmetrical cycling or not, temperature, pressure, etc.), galvanostatic intermittent titration technique (GITT), potentiostatic intermittent titration technique (PITT), EIS, etc. The aim of this section is not reviewing this wide range of techniques, but rather to oer a concise overview of the dierent approaches available to study the links between electrode microstructure and associated electrochemical performance. There are mainly three ways to analyze this link: (i) analyzing the electrode microstructure through, for instance, tomography or SEM and assessing its macroscopic electrochemical properties, [188] (ii) performing operando measurements to follow the evolution of the electrode microstructure upon cycling[237] and (iii) modeling electrochemical performance. In the following I briey discuss some key features of the third approach, as it is the only one applicable to electrode microstructures coming from physics-based modeling.

The most known and widely adopted electrochemical model is probably the Pseudo two-Dimensional (P2D) model, [238] relying on the porous electrode theory developed by Newman and Tiedemannn in 1975[239] and concentrated solution theory. This approach treats the cell as a 1D system in which each component (cathode-separator-anode) is assigned a certain length and homogenized properties, as porosity, surface area, etc.. Even though the mathematical derivation of the equations behind P2D or any kind of Newman-like model could look rather complex, especially when applied to 3D systems, their main features are very well known and are of much simpler access. They can be summarized as:

(i) Fick's law to account for solid state Li + diusion, (ii) mass and charge conservation to account for Li + concentration in the electrolyte phase, (iii) Ohm's law to calculate the solid state potential, (iv) Kirchho 's and Ohm's laws to compute the liquid-phase potential in the electrolyte and separator and (v) Butler-Volmer equation to model Li + (de)intercaltion.

[240] The popularity of this approach led to the development of many versions of the P2D model, as for instance explicitly considering the AM PSD [241,242] and commercial software. [243] Along the years, this approach proved being robust enough to be used for a benchmark when experimental data is not available, and its relatively low computational cost allows utilizing it for optimization purposes.[244] However, there are some applications that require a lower computational cost compared to P2D models and others that need to account for a higher degree of details. Concerning the rst case, the most important example is battery management systems (BMSs), requiring online estimations, for which the computational cost of P2D model is not low enough. To tackle this issue, simplied P2D models, being the single particle model (SPM) [245] the most known one, or data-driven models, as ML algorithms, are the most common choices. Concerning the second case, if the objective is the analysis of the explicit 3D electrode microstructure, 3D electrochemical models should be adopted. These models are still based on the porous electrode theory developed by Newman and concentrated solution theory, but the associated equations are derived for a 3D system. In particular, three main approaches can be followed when applying 3D electrochemical models: (i) considering only the AM phase and the associated electrical and electrochemical properties, [206] (ii) merging the AM and CBD phase and assigning to this merged phase eective properties accounting for the presence of both [224] and (iii) explicitly assigning dierent physics to the AM and CBD phases. [246] The rst approach can be applied to electrode microstructures accounting for AM only, while the other two require electrode microstructures explicitly considering both AM and CBD. In the context of the ARTISTIC project, we have adopted the third approach, whose associated models were developed by Mehdi Chouchane[247] and Abbos Shodiev[248] for galvanostatic discharge/charge and EIS, respectively. Even if I did not participate to their development, during my PhD I utilized the aforementioned discharge model to study the interlinks between AM PSD, electrode thickness, degree of compression and electrochemical performance (Chapter 6).

Take home messages

This section oered a panorama on the dierent methodologies available to access the electrode microstructure, which was found to strongly inuence the electrode properties.

These approaches were divided into ve main groups: (i) arbitrary, (ii) stochastic, (iii) imaging, (iv) machine-learning based and (v) physics-based. The rst approach relies on drawing completely arbitrary microstructures, not aiming to build realistic structures, but rather to assess the limits of validity of a model or to test specic hypotheses. Stochastic approaches are based on generating electrode microstructures randomly, but the algo-rithm architecture can be build in such a way to allow a certain degree of control on certain structural parameters, as AM or CBD morphology. Imaging approaches rely on experimental techniques as TXCT and FIB-SEM, which give a direct access to the actual electrode microstructure. However, those techniques suer from certain limitations, as the diculty of resolving the CBD and pore phases through TXCT, and often require not routinely available and costly instruments, as synchrotrons. New techniques were developed to allow higher resolutions and enhanced contrast of the dierent phases, but the diculties for routinely utilizing these techniques remain. ML-based approaches basically use electrode microstructures obtained from other techniques, as experimental imaging, for their training, which leads to the capability of building fake but realistic electrode microstructures in few seconds or minutes with low requirements in terms of computational cost (after training). Lastly, physics-based approaches rely on describing the interaction between electrode components through mathematical equations related to physical phenomena. From one side, these approaches can give access to the detailed 3D electrode microstructure and its evolution, for instance during a certain manufacturing step. From the other side, their development can be nontrivial and their training and validation requires electrode microstructures previously obtained through other techniques.

One aspect of particular interest within the battery community is the link between electrode microstructure and associated electrochemical performance. To assess this link, dierent approaches can be used, either relying on experimental techniques, asoperando measurements, or on electrochemical models. Besides the case of electrode microstructures outputted through imaging techniques, all the approaches enumerated above can only rely on electrochemical models to establish this link. Up to date, the majority of these models descend from the Newman model, which relies on a combination of porous electrode and concentrated solution theory. This approach can be derived for dierent conditions, from SPM models for applications requiring online estimations (as BMS), to P2D models for optimization purposes due to its good balance between computational cost and accuracy, to 3D electrochemical models, allowing an explicit consideration of the 3D electrode microstructure.

1.5 A third path: Machine learning Besides the experimental and classical computational approaches, the popularity of machine learning in LIB R&D is surging. ML is a subset of articial intelligence (AI) and it indicates a class of algorithms whose main feature is to use data as input for building a model, which afterwards can be used to reproduce this data and predict new ones, classify new results or for dimensionality reduction purposes. Nowadays, AI or ML are used in a multitude of critical applications, ranging from portable phones to social networks, from robotics[249] to autonomous driving[250] and power grids [251], and are starting to be massively applied in battery R&D as well. [252256] In the following, I give a short denition of AI, oer a concise introduction of the typical workow of ML algorithms and nally discuss where ML is being applied in LIB R&D by giving few selected examples.

Historically, AI has been dened as making machines think humanly, act humanly, think rationally, or act rationally.[257] For instance, the Turing test[258,259], which aims to verify if a human being, who is asked to interact either with a human or a machine through few questions, is capable of distinguishing machines from humans, is an example of AI dened as machines acting humanly. However, the denition of what is acting or thinking humanly/rationally is in constant evolution, and it is not linked to computer science alone, but it is rather interconnected to other disciplines such as philosophy, psychology, neurobiology, logic and mathematics, just to cite a few.[257] AI could be also dened as the science and engineering of making computers behave in ways that, until recently, we thought required human intelligence.[260] However, similarly to the previous case, which behaviors we classify as requiring human intelligence or not is time and society dependent. Indeed, just some decades ago it would have been believed by many that playing games or interpreting human behaviors, in order to send personalized feeds, would require human intelligence, while today these are tasks that we recognize machines can do.[261] All the above makes AI a moving target, whose exact denition is not trivial. However, the majority of AI systems in current use have in common the capability of learning from experience, which is typically accomplished through ML. These algorithms have tremendous capabilities to assess multi-dimensional datasets, i.e., datasets containing multiple variables, discover patterns in data and unlock applications that are dicult to exploit by using other approaches. [254,262265] This is of high relevance for battery R&D, in which a multitude of parameters should be considered simultaneously and the amount of data generated grows rapidly, following the world data-sphere trend.

[266] This is also reected by the number of battery related publications, with approximately 30,000 LIB scientic articles published to date,[267] that could be used as data source as well through text mining algorithms, an aspect that was studied during this thesis in collaboration with Hassna El-Bousiydy [268] and that is discussed in Appendix A.

Any ML model should be trained at rst by using a collection of data, also referred to as dataset, and, when possible, evaluated. In the most common case (supervised models) a part of the dataset is used to train the algorithm (training step), whose predictive capability is assessed by comparing values predicted by the trained model and data that were not used for the training step. The latter is generally referred to as test step. If the so-obtained model proves to be reliable in this step, the supervised ML algorithm is ready to be used (Figure 1.42 A). ML algorithms can be classied as supervised, unsupervised, or semi-supervised methods. On the one hand, supervised approaches employ datasets that are pre-treated to dene certain variables as inputs and others as outputs. On the other hand, this prior information is missing for the case of unsupervised ML algorithms, whose goal is to nd patterns in the dataset. Within supervised ML, it is possible to distinguish between regression and classication, where the latter indicates an ML approach analyzing the dataset in terms of classes, while the former analyzes it in terms of continuous values. The classes used for a supervised ML can come from the operator or from an unsupervised ML. Semi-supervised approaches are somewhere in between the two and utilize datasets containing both labeled and unlabeled data. Besides the type used, classical ML algorithms rely on data and are rather agnostic to physics, meaning that they could aim, for instance, to determine the relationship between dierent variables interpolating the training data, rather than oering a physical interpretation of this relationship. Considering that data is at the core of any ML approach, the quantity, quality, and veracity of the dataset used for the training is critical, for which good practices when building it are needed.[269] As an example, design of experiments together with good protocols can be helpful for building reliable datasets while reducing the number of experiments to be performed, as recently highlighted in the eld of batteries and supercapacitors. [270272] Dierent ML architectures exist today, going from neural network (NN) based, to the ones relying on decision tree(s) (DTs), support vector machine (SVM), probabilistic-based approaches, etc. For avoiding burdening the discussion, I will only discuss the ML archi-tectures relevant to this thesis before presenting the associated results (Chapter 2 and 4).

For more specic information on how each ML algorithm architecture works, the interested readers are referred to the many excellent books already published on the topic. ML is currently being applied to almost any aspect of interest for LIB R&D, but the battery community did not grant the same amount of attention to each of them, as depicted in Figure 1.42 B. Particularly, prognostic/diagnosis (ca. 40%) and material design and synthesis (ca. 27%) are the most studied ones, followed by materials and electrode characterization (ca. 17%) and manufacturing (ca. 6%), while the rest (ca. 10%) is accounted by other applications, as for instance surrogate models or text mining. [279] In the following, I briey discuss why ML-based approaches can be of interest for these research elds, while Figure 1.43 depicts one selected example for each.

Battery prognostic and diagnosis stand for the prediction of the occurrence of adverse events for battery life and safety, as short circuits, and the detection of those events at their early stage. [280] This is needed in order to prevent hazardous accidents and schedule battery maintenance and replacements. [281,282] In this context, ML can be helpful for dierent applications, with life time predictions and online estimations for BMS applications the most studied ones. same result by using voltage, current, and temperature as inputs. However, these studies were performed in classical academic settings where cycling is carried out at constant current, even though testing protocols closer to real-life applications, as constant power, would be preferable. [287] In terms of material design and synthesis, the most studied research topics are: (i) identication of the most promising materials and synthesis conditions through optimization procedures or inverse design approaches and (ii) reducing the computational cost of materials simulations by helping to tackle increasingly complex chemistries and larger length-and time-scales. Concerning the rst aspect, traditional experimental procedures for materials discovery are based on the researchers' chemical intuition and trial and error testing, which is inherently slow and economically expensive. High-throughput (HT) experimentation, where a pool of candidates are rst synthesized massively and then characterized, can mitigate this issue, especially when candidate materials are selected for experimental validation upon previous fast computational screening. However, the compositional space oered by the periodic table for the search for new battery materials is colossal. ML approaches, based on high-delity data from physical-based simulations, experiments, or both, can help in nding complex nonlinear relationships between a relatively large number of variables, which ultimately ease classifying materials with similar characteristics or predicting new ones with targeted properties. This approach can be adopted for all the materials in the cell, from AM, to predict their voltage, capacity, capacity retention, etc., to solid or liquid electrolytes, where the main focus is their ionic conductivity.[291293] Figure 1.43 B oers a schematic of the ML approach developed by Joshi et al.[288] to predict the voltage for electrode materials in metal-ion batteries. Furthermore, ML-based approaches are not only applicable to single materials, but in principle they can be adapted to study interfaces as well, aspect that has raised much interested in the battery community in the last years. [294] With regard to ML applied to materials synthesis, only few examples are available up to date. However, an interesting example was published by Ming et al. [295], where the authors used an experimental dataset and ML-aided analysis to establish optimal synthesis parameters and fulll target specications for Ni-rich NMC cathode materials. A dierent approach relies on the combination of ML and robotics for autonomous materials synthesis and electrode/cell optimization. [296,297] Concerning material simulations, the most used approach in the eld is density functional theory (DFT), which oers a good balance between high accuracy and relatively low computational cost among quantum mechanics-based methods.

DFT, together with other ab-initio modeling approaches, can be used to elucidate specic molecular-scale mechanisms, which could only be speculated upon when addressed through experimental techniques. However, these approaches are rather computationally expensive, limiting the simulations to a restricted number of atoms or molecules. The implementation of ML-based approaches can be particularly useful for mitigating this issue, thanks to the development of ML-driven potentials. [298] The main idea behind this approach is using data coming from ab-initio simulations to train an ML algorithm. Then, the trained ML model is used to compute the interactions between atoms/molecules, with the advantage of being much less computationally expensive than computing those inter-actions through quantum mechanics-based equations. [298300] A eld in which the importance of ML based approaches is starting to be recognized is in materials characterization, as for instance tomography, X-ray absorption spectroscopy (XAS) and powder diraction (XRD). Characterization-related data production nowadays is several orders of magnitude higher than a few decades ago, mainly due to the rapid growth of fast detector technologies, [279] which can be handled thanks to datadrive frameworks used to automate their management. The rst deep neural network algorithms were essentially focused on image processing, with the nal aim of identifying specic image features and separating them via a segmentation step. Among this family of techniques, convolutional neural networks (CNNs) have gained tremendous success in image analysis and pattern identication, which is of high relevance for imaging techniques in general and tomography in particular.[279] ML could also be used to assist in the analysis of spectra and diraction patterns, leading to particular advantages for the analysis of HT and in situ/operando data. Starting from tomography techniques, ML can assist in image reconstruction from raw tomographic data, and segment those images to distinguish the dierent phases (either AM+pores, or AM+CBD+pores), leading not only to an acceleration of these steps, but to higher accuracy as well. [204,289,301305] As an example, (ICSD) are typically used. However, these procedures are laborious and time-consuming, while they can be accelerated and automatized through ML algorithms.

[308313] Automatizing those process (image reconstruction and segmentation, XAS spectra and XRD pattern analysis, upon others[314]) does not only save time but also enables informed on the y modications of in situ or operando experiments. Indeed, as pointed out by Aoun et al.,[315] a quick and eective on the y evaluation of results is highly desirable to enable researchers to decide on eventual experiment modications depending of the results observed live, and thus get the most of the granted beamtime.

Last but not least, up to date only few works have focused on ML applied to battery manufacturing, some of them were performed during this thesis (Chapters 2 and 4). In this context, ML can be oriented either at the lab/prototyping scale, with the aim of deeper understanding of a given manufacturing step, or at the industrial scale, with the nal goal of setting the infrastructures needed for "smart" industries (Industry 4.0). The rst approach was rstly proposed by us, [316] (iii) well-established communications procedures able to connect machine, operators and data management systems and (iv) the computational capability to store, clean and analyze the so-obtained data. Concerning (i), data recovering in a continuous process as industrial production should be automatized as much as possible, as for instance through sensors, [321] and performed manually only when other options are not available. The so-obtained data should be stored and curated (data warehouse) and nally analyzed, for instance through ML-based approach (iv). It should be underlined, however, that those models should be able to capture the uncertainties related to manufacturing as well, whose importance was discussed in subsection 1.3.5.[190] Once these models are developed, manufacturing procedures could be changed as a function of the recovered data recovered and the associated model output, with the nal aim of improving the nal cell quality and reducing scraps. [290] For linking these models and the production process, points ii and iii are needed, for which technologies that are expected to play a critical role are, respectively, Cyber-physical systems[322] (CPS) and industrial internet of things[323] (IIoT), with a particular attention to key aspects as cybersecurity as well.

[324] Setting all the above is surely not trivial and requires devoted investments together with new technologies and tools, an aspect in which academia can play a role as well. Concerning this last aspect, the recent works of Turetskyy,325,326] should be taken as an important reference for the battery eld. The authors designed a data infrastructure for recovering, manually, or automatically, data linked to LIB cell production (Figure 1.43 D) and developed a data-driven approach for identifying critical process parameters (PPs)and understanding their impact on the nal battery performance, with a particular focus on product quality criteria. As a rst case study, [325] this methodology was applied to study the eect of several PPs, as calendering, laser cutting, and z-folding, on 11 selected electrochemical intermediate product features (IPFs) and nal product properties (FPPs), as capacity loss after the rst cycle or self-discharge during aging. The dataset was composed of 172 NMC|graphite pouch cells and the authors utilized one-way ANOVA to check the inuence of each PP on the selected IPFs and FPPs, showing that only some PPs impact them in a statistically relevant way. The authors also developed a least absolute shrinkage and selection operator model combined with least-angle regression (LASSO-LARS), which demonstrated a good predictive accuracy (> 70%) with respect to the experimental results. In addition, this approach was recently extended by building a computational infrastructure relying of CPSs and ML models to determine the IPFs required to reach the target FPPs and for decision support during LIBs production. [326] Even though all these works mainly focused on quality criteria for NMC|graphite pouch cells, their major interest is the infrastructure itself, that in principle can be applied to dierent cell chemistries and formats and to understand and optimize other industrially relevant challenges, as reducing energy consumption, environmental footprint and costs.

Besides the promises and hopes behind ML-based approaches, a long way is still awaiting us before their widespread adoption in battery R&D. Besides the most technical challenges, as for instance the use of appropriate descriptors to build the ML model, key aspects that should be tackled are data scarcity and lack of standards, error determination, collaboration and user-friendly tools. Concerning the rst aspect, ML models need access to large and reliable datasets, but these are often not accessible for the case of LIB R&D. From one side, this is hampered by the lack of minimal standards dening what should be systematically reported when presenting results (Appendix A). From the other side, building common databases implies sharing data, which can be rather problematic for discoveries with a potential industrial interest, but that should become more common among academic research. In addition, ML algorithms themselves should be subjected to standards and good practices, [269] in order to raise trust among the battery community.

Another critical aspect for the development of ML algorithms is the error associated to the data used for the training and the error on the ML predictions. The rst one can be considered by using an ML method accounting for the error, as Bayesian-based models, while the second one can be accounted for by developing ML algorithms with two outputs for each feature of interest, i.e., the average value and the associated standard deviation.

One nal important consideration is that ML cannot become a real support for battery R&D without a strong collaboration between ML and experimental/modeling experts. Indeed, from one side ML-related researchers critically need trustworthy data and often need support to put the obtained results in context. From the other side, automatized ML-based procedures, possibly through user-friendly interfaces, and the access to reliable data can boost researchers' eciency and enhance scientic inspiration and cleaver reasoning, all of which are key enablers for technological breakthroughs.

Lastly, for more examples and much more detailed discussions on ML and its applications to battery R&D, we have written, in collaboration with 16 researchers from 7 dierent research institutes, a comprehensive review to which the interested readers can refer to Ref. [279] 1.5.1 Take home messages This last section of Chapter 1 focused on the eld of ML, which is becoming more and more attractive to the battery community. A brief denition of AI, eld in which ML is inscribed, was given, together with a description of the typical ML workow. In this concern, dening AI is not trivial, because it is typically described as a function of what we believe intelligence is, for which human behavior and way of thinking are commonly used as reference. Such a view, even if understandable, could be a limit when applied to machines, or, being more general, when applied to everything that is not a human being.

Besides the philosophical questions behind AI, one feature that is commonly associated to it is its capability of learning from experience, which is typically accomplished through ML.

ML are algorithm architectures that can be trained through data to reproduce them and predict new results or identify patterns, for instance. ML can be divided into supervised, unsupervised and semi-supervised approaches, and many type of algorithms, each with its specic algorithm architecture, as NN, DT, SVM, etc., exist. Particularly, supervised approaches refer to ML algorithms using labeled data, meaning that some of them are identied as inputs and other as outputs, while unsupervised approaches use unlabeled data and semi-supervised ones use both unlabeled and labeled data. Already today, ML approaches have the capability to outperform many procedures in current use in LIB R&D, which is the main reason behind the interest in them. ML is being applied to almost all the relevant research topics for LIBs, from battery prognostic and diagnosis to materials design and synthesis, from materials and electrode characterization to manufacturing.

In those elds, ML can be helpful, for example, to predict cycle life, support materials design and synthesis through the combination (or not) with robotics and HT approaches, accelerate the analysis of raw data coming from tomography and lead the way towards industry 4.0. However, and despite all the remarkable accomplishments that ML has brought until today, many challenges are waiting ahead. Key aspects that should be tackled are data scarcity and lack of standards, error determination, collaboration, and user-friendly tools. All the above calls for open access databases in which researchers could, and when possible should, upload their data, which would pave the way to more sophisticated and accurate ML approaches and oer reliable data to be used as reference by any interested researcher. In addition, experimental, modeling and ML researchers should agree on minimal standards and good practice to enhance results reliability. In this concern, the explicit consideration of the error associated with the data and the ML predictions would surely be benecial. Last but not least, ML and experimental/modeling experts need to collaborate in order to support each other and ll the reciprocal lacks, which could be simplied through the development and adoption of user friendly tools.

Goals and motivations: The ARTISTIC project

This thesis is inscribed in the ERC-funded ARTISTIC project [START_REF] Lombardo | The ARTISTIC Online Calculator: Exploring the Impact of Li-ion Battery Electrode Manufacturing Parameters Interactively through your Browser[END_REF], which started in 2018 and will end in 2023 and whose main objective is the development of computational tools reproducing LIB electrode manufacturing and its impact on the electrode microstructure, as well as the impact of such a microstructure on the electrochemical performance: in other words, it aims to set a computational workow allowing to link manufacturing, microstructure, and electrochemical performance, as schematized in Fig- ure 1.44. To achieve such a challenging goal, the project is divided into 4 main working packages (WPs): WP1 accounts for the development and validation of discrete 3D LIB electrode manufacturing models, while WP2 aims to characterize experimentally slurries and electrodes produced at dierent manufacturing conditions, generating data that is used as a reference for the validation of the manufacturing models; WP3 consists in the development and validation of 4D (3D+time) continuum electrochemical models, which can be then validated by using as reference experimental data (WP4). In addition, early on in the project we got interested in applying ML-based strategies to the dierent aspects of the project (center of Figure 1.44). During my PhD, I had the chance to work on all these WPs, but the main topic of my PhD and my main contributions to the project are part of the WP1, i.e., the development and validation of discrete 3D LIB manufacturing models.

Before moving to the next Chapters, and considering the complexity of the manufacturing models developed in the context of the ARTISTIC project, it is of interest to oer the readers a schematics of the main approach followed to build these models, which is reported in Figure 1.45. The computation workow we have built is modular and consists of a series of models, each one related to a given step of LIB electrode manufacturing.

Therefore, rstly we have dened the main steps we were interested to simulate. In the context of this work, three main steps were selected: the slurry phase, its drying, and electrode calendering. Afterward, for each of these steps, we should be able to account for as many manufacturing parameters as possible (i.e., the parameters linked to experimental manufacturing processes) and embed them in a 3D model. More manufacturing parameters are controllable, more detailed is the description of the manufacturing process.

However, these 3D models should be built somehow, which means that they have their internal parameters. In the context of our work, these parameters account for the inter- action between AM and CBD particles, and I will refer to them as FF parameters. These parameters are needed to build the model, but their value is unknown and, in principle, we would prefer to keep them constant and play with the manufacturing parameters only to see their impact on the microstructure, which is the nal goal of this computational workow. However, we should still give a value to the FF parameters, which in our case was assigned by tting macroscopic experimental observables that can be measured experimentally and calculated computationally, like the slurry density and viscosity, or the electrode porosity and mechanical properties. The last step of our computational work-Figure 1.45: Overall approach followed to build our sequential and modular 3D computational workow for simulating LIB electrode manufacturing. On top, the dierent manufacturing parameters that can be controlled through the current version of these models are reported explicitly. ow consists of linking the dierent 3D manufacturing models sequentially to account for the sequential way in which LIB electrodes are manufactured experimentally. In our case, this has been achieved by using the 3D microstructure outputted by a given manufacturing model as an input of the next manufacturing model, as schematized in Figure 1.45.

Most of the next Chapters [START_REF] Lombardo | Carbon-Binder Migration: A Three-Dimensional Drying Model for Lithium-Ion Battery Electrodes[END_REF][START_REF] Lombardo | Articial Intelligence Applied to Battery Research: Hype or Reality?[END_REF][START_REF] Lombardo | Accelerated Optimization Methods for Force-Field Parametrization in Battery Electrode Manufacturing Modeling[END_REF][START_REF] Cunha | Articial Intelligence Investigation of NMC Cathode Manufacturing Parameters Interdependencies[END_REF] focus on a more detailed discussion of these manufacturing models (WP1) and their validation (WP2), while 6 is dedicated to the work I could perform in the context of 4D electrochemical simulations (WP3).

Chapter 2 Slurry phase

This Chapter is devoted to the study of the slurry phase via 3D physics-based models (section 2.1) and a ML-based approach (section 2.2). The reference AM used to settle these models was NMC-111, from now on referred as NMC. Furthermore, the physicsbased model initially developed for the NMC-based slurries is currently being applied to dierent chemistries, as LFP and organic-based AMs (Chapter 8), and was used as baseline to build a new 3D physics-based approach (section 2.1.2). The work presented in this Chapter is inscribed in the work packages (WPs) 1 (3D discrete modeling of electrode manufacturing) and 2 (electrode fabrication and characterization) of the ARTISTIC project.

Three-dimensional physics-based models

Two dierent models are presented in the following, whose main dierence is the consideration of the solvent. The rst one (NMC-like) considers the solvent embedded into the CBD particles, while the second one (graphite-like) distinguishes between carbon+binder, accounted through the CBD particles, and solvent, which is described by using devoted particles. A third approach consists in implicitly considering the solvent through a devoted FF, as for instance applying a Langeving force [327]. However, the rst results related to this third approach were not promising and it will not be presented in this thesis, even though research in this direction are still ongoing within the ARTISTIC project.

NMC

Model development

In this subsection, I rst introduce the challenges and assumptions behind our NMClike model, then discuss how the initial structure is generated, and nally present the physics used to simulate the slurry and the computational workows developed to characterize it. The most important challenge in developing any 3D model for LIB electrodes and slurries is the dierence in scales among their components, i.e., AM (typically µmtens of µm), carbon (tens of nm), binder (nm) and solvent (nm). As discussed in section 1.4.5, this calls for approximations in order to reduce the computational cost of the model. Indeed, without them, one would need a resolution in the order of nm to account for the smaller components in the slurry/electrode, and a simulation box big enough (tens of µm long in x, y and z) to account for a statistically relevant number of AM particles, which would lead to simulations that are simply too costly for being performed with the computational resources available today. In this thesis we adopted a coarsening approach, which is schematically depicted in Figure 2.1. In particular, secondary AM particles are considered explicitly, while the CBD particles account for carbon+binder+solvent at the slurry phase and represent carbon+binder agglomerates at the electrode phase. The primary AM particle composing the secondary ones are not taken into account in the current version of the model and both AM and CBD particles are considered as spherical for simplicity. One last relevant aspect is the CBD nanoporosity [198], which could be considered either by setting a dened CBD size and then expanding it to account for the pore phase inside it, or by decreasing the CBD density when calculating the number of CBD particles for a certain CBD size, electrode dimension and formulation. For example, for the case of 50% nanoporosity, the rst approach would lead to doubling the CBD volume, [233] while the second one would consider a CBD density equal to half of the one of carbon and binder. [234] These two approaches eventually lead to the same result and in the context of this thesis we have opted for the second one. The assumptions taken lead to the following consequences: (i) this model is valid for AM particles that are approximately spherical, (ii) the CBD phase is far from being spherical in real electrodes, requiring post-processing of this phase and (iii) the lack of details at the nanoscale hamper an explicit consideration of the role played by small additives, as surfactants [328,329]. The rst consequence limits the types of AM that can be simulated through this model, even if this approach could be upgraded by considering elliptical particles (section 3.4) or by building complex particle shapes through the combination of spherical particles [221], which is a current research subject within the project (Chapter 8). The second consequence is particularly important when studying the link between microstructure and electrochemical performance, for which the CBD phase microstructure should be made more realistic either via expand-erode approaches [197], or through meshing. [230,246] The last consequence can be taken into account, up to a certain extent, through the model parametrization.

For instance, the presence of a surfactant would change the rheological properties of the associated slurry, and parametrizing the model using them as a metric can allow implicitly considering their role in the slurry phase. In addition, during this thesis we have considered a CBD nanoporosity approximately equal to 50%, as found experimentally for the case of carbon black and PVdF. [198] However, it should be underlined that the CBD nanoporosity could change as a function of weight ratio between carbon and binder, their chemical nature and the manufacturing procedure followed, for instance. From a model perspective, this parameter could be easily tuned to capture these dierences, but to the best of my knowledge, up to date, no experimental study aiming to verify and eventually quantify the variation of CBD nanoporosity as a function of the parameters cited above have been reported.

Once the model approximation have been dened dened, the number and size of the AM and CBD particles should be determined, for which the model needs ve inputs: (i) the mass of the electrode fraction to be simulated, (ii) the formulation of interest (wt.% of AM, carbon and binder), (iii) the material density, (iv) the AM PSD and (v) the CBD nanoporosity and particle size. The electrode mass used during this thesis is in between 0.1 and 0.2 µg, and the associated weight and volume of each phase (AM and CBD) is calculated by multiplying this mass by the weight fraction of AM, carbon and binder and diving this by the associated density. The weight fraction of the CBD phase is calculated as the sum of the weight fractions of carbon and binder, while its density is calculated as the weighted average of the carbon and binder densities divided by two, to account for the 50% nanoporosity. Then, the volume of AM and CBD phases is used to calculate the number of AM and CBD particles, with the constrain of following the AM PSD (Figure 2.2 B) and the selected CBD size. Here, we have opted for a CBD diameter of 1.3 µm, coherent with previous experimental ndings. [198,231] It should be underlined, however, that using smaller sizes would be benecial for a more accurate description of the CBD phase, but it would also increase the computational cost. Considering that here the CBD is described through spheres, even smaller sizes would improperly account for the continuum-like shape of the CBD phase that has been found experimentally. Therefore, here it was decided to use relatively coarse CBD particles to decrease the computational cost, while using post-processing procedures, as meshing, to obtain a more realistically looking CBD phase before assessing the electrochemical performance (Chapter 6). Here, the number of AM and CBD particles ranges between 200 and 500 and between 3,000 and 15,000, respectively. These particles are randomly generated into a predened simulation box (left of Figure 2.3) and the CBD particles are expanded and their density decreased to account for the presence of solvent. Afterwards, the physics selected to account for particle interaction should be applied. As a reminder, in the context of MD, the FFs are used to compute forces between particles at a certain time, which are used to calculate their acceleration through the Newton's laws of motion [226] allowing to determine particle position and velocity in the following time step. Here we used the LJ and GH FF, accounting for the adhesive forces between particles and the overall mechanics of the system, respectively. The forces calculated by using these FFs lead to particle reorganization, until the system converges to the selected temperature and pressure, here 300 K and 1 atm, as should be underlined that this model intends to simulate particles rather than molecules, contrary to classical MD or CGMD. Therefore, it could also be referred to as particle dynamics, but here I stick to the CGMD terminology for coherence with respect to the previously published articles.

From the right of Figure 2.3 it can be noted that CBD particles make a continuum-like and highly overlapped medium, which is the reason for which this strategy allows mimicking the behavior of viscous suspensions, as slurries. However, to reach this result the FF parameters should be correctly tuned. Equations 2.1-2.4 report the mathematical description of the LJ and GH FFs. The LJ FF (F LJ ) depends on the distance between particles (r) and on three parameters: ε, σ and r c . ε represents the potential well of the LJ potential curve, σ is the distance at which the inter-particle potential is equal to zero and r cut is the cut-o distance at which two particles do not interact anymore. The GH FF (F GH ) is used to model the mechanical properties of the system and it is com- posed of a normal and a tangential term. k n , k t , γ n , γ t , ν n and ν t represent the normal and tangential elastic constants, viscoelastic damping constant and relative normal and tangential velocity components between two interacting particles, respectively. Moreover, the normal and tangential components of both k and γ are linked to each other, and their ratio is a function of the Poisson ratio (ν), as it can be noted by Equations 2.5 and 2.6.[330] ∆s t , m ef f and n ij represent the tangential displacement vector, the eective mass m i m j m i +m j and the unit vector along the line connecting the center of the two interacting particles. R and δ are the particles radii and the overlap distance, respectively. It should be underlined that for δ = 0, F GH is equal to 0; consequently, to take into account the GH FF, a certain degree of particle overlap needs to be allowed. For this reason, in the simulations the diameter of the AM particles is slightly increased with respect to their experimental value, mimicking the presence of surrounding solvent and unlocking the use of GH FF. The last parameter needed for the GH FF is the friction coecient (Xu), dened as the maximum ratio between tangential and normal forces. Finally, because the CBD is an eective particle, its diameter (d CBD ) and density (ρ CBD ) constitute also eective parameters that can be tuned to optimize the FFs.

E LJ (r) = 4ε[( σ r ) 12 -( σ r ) 6 ]
(2.1)

F LJ (r) = -∆E LJ (2.2)    F LJ (r) = -∆E LJ if r ≤ r c F LJ (r) = 0 otherwise (2.3) F GH = √ δ R i R j R i + R j [(k n δn ij -m ef f γ n ν n ) -(k t ∆s t + m ef f γ t ν t )]
(2.4)

k t k n = 3(1 -ν) 2 -ν (2.5) γ t γ n = 2 (2-ν)(1+ν) 1 1-ν 2 (2.6)
Some of the parameters above, as the particle overlap and velocity, are computed automatically by the MD software, while others, highlighted in green and red in Figure 2.3, should be dened by the operator. This allows changing the particle properties and the overall slurry characteristics, which should be compared to its experimental counterpart to verify the correctness of the model. This requires dening observables that can be measured at the experimental level and calculated at the computational level. Considering the importance of rheological properties in dening the slurry characteristics, the main metric adopted here is the shear-viscosity curve, with a particular focus on the range of shear-rates of interest from a pre-industrial or industrial perspectives, i.e., tens to hundreds hertz. Moreover, a second metric used for the model parametrization is the slurry density, which is measured with a density meter (DMA4500, Anton Paar GmbH) experimentally and it is calculated as the mass of the particles divided by the volume of the associated simulation box computationally. Before discussing how the viscosity was measured from a computational perspective, it should be underlined here that in the model presented above the SC of the slurry is accounted for implicitly through the model parametrization. This means that the FF parameters are tuned to match the properties of the experimental slurry having the SC of interest, instead of directly using the SC as a model input. This aspect was implemented in a later version of the NMC-like model (Chapter 5) and in the graphite-like model (section 2.1.2). Figure 2.4 A depicts a schematic of the procedure followed to determine the viscosity of the simulated slurries through non-equilibrium MD (NEMD). 1 A shear-rate (γ) is applied 1 To be more specic, and considering that the approach used here was dened as CGMD, a most correct terminology would be NE-CGMD, but in the following I stick to NEMD for simplicity.

to the slurry, which leads to its deformation and gives as output the shear stress (τ ), i.e., the force that should be applied in order to maintain this deformation divided by the slurry surface. The viscosity is simply dened as the ratio between τ and γ. This set-up is particularly similar to the experimental set-up used to measure the slurry viscosity (section 2.3), making it particularly suited for comparing experimental and simulated results.

In this simulation, the same FF parameter values of the slurry simulation are utilized for consistency. Furthermore, it should be noted here that one NEMD simulation allows calculating the τ for the specic η applied, meaning that each simulation outputs one single point of the shear-viscosity curve. An example of the outputted viscosity for four dierent shear-rates is illustrated in Figure 2.4 B, in which it can be noted that the viscosity (η) decreases by increasing γ, dening a shear-thinning behavior, typically observed for LIB slurries. [146,166] In addition, it can be noted that the η uctuates during the NEMD simulation, which is the main reason for which this simulation should be run for a long enough time to reach a stable η value. In the context of this thesis, the viscosity that was compared to its experimental counterpart was obtained by averaging the η obtained in the last 20 millions time steps.

Model validation and parametrization

Three main approaches were developed to parametrize the slurry model with respect to the experimental shear-viscosity (η-γ) curve and slurry density: (i) manual parametrization, (ii) particle swarm optimization (PSO) assisted parametrization and (iii) ML-based parametrization. The FF parameter values proposed by Faraouzan et al. [220] were tested as a starting point. However, these values were not suited for the compositions, SCs and AM PSD analyzed in our work and led to signicantly higher (ca. two order of magnitude) η values compared to the experimental results. This leads to the rst optimization method (manual optimization), which consisted in rstly focusing at one single point (γ = 14s -1 ) until reaching a reasonable η compared to the experimental one. Then, the entire η-γ curve was simulated for dierent sets of FF parameter values. This approach is the one in which most time was spent during the rst year of this thesis and is the least computationally ecient, but is also the one that led to the most complete and accurate results, the most signicant of which are shown in -AM:C45:PVdF), demonstrating the possibility of consistently tting experiential η-γ curves corresponding to dierent SCs and compositions. The experimental curves were obtained following the procedure described in the section 2.3 and are an average of two η-η experiments for two dierent slurries (four γ-η curves in total) measured through a rheometer (Kinexus lab+, Malvern Instruments). To further test the validity of our manual parametrization method, the consistency between experimental and simulated slurry density was also veried (Figure 2.5 C). Moreover, the sensitivity of the simulated slurry microstructures relative to the dierent compositions and SCs of interest can be captured by calculating their associated radial distribution functions (g(r)), which is a measure of the particle local arrangement and captures the likelihood of nding a phase i (either AM or CBD) at certain distance from a phase j. In particular, for the example reported in Figure 2.5 D it can be seen that going from SC 68% to 70% (95:2.5:2.5) the average distance between AM and CBD particles increases. This is linked to the need for slightly increasing (ca. 8%) the σ of AM particles in order to properly t the associated γ-η curve, showing that the parameters chosen aect the arising microstructure. An example of FF parameter values is reported in Table 2 Even through the manual parametrization approach lead to positive results, this strategy is rather computationally costly and time consuming. To give an order of magnitude, obtaining the results showed in Figure 2.5 required several months and hundreds of simu-lations by using 12 nodes (128 GB of RAM each), each composed of 2 processors (Intel® Xeon® CPU E5-2680 v4 @ 2.40 GHz, 14 cores). To tackle this problem, four dierent optimization methods, all based on the PSO theory, were developed. The rst one relies on PSO theory only, while the other three were named human-driven PSO (H-D PSO), machine learning-driven PSO (ML-D PSO) and learning PSO (LPSO). The PSO is a stochastic global optimization algorithm based on swarm behavior, rst proposed by Kennedy and Eberhart.[331,332] It has already been used in many domains, demonstrating its robustness,[333335] and the most known application of PSO in material science is the CALYPSO method, used to predict the energetically stable/metastable crystal structure at a given chemical composition and external conditions.

[336340] Nonetheless, the algorithm developed in the context of this thesis was the rst one applying PSO to LIB manufacturing simulations.

[330] The working principle of our PSO-based algorithms is schematized in Figure 2.6 for the case in which only two parameters, p 1 and p 2 , need to be optimized. In this scheme, each point (n) in the graph represents a certain slurry microstructure, which is obtained by using the associated p n 1 and p n 2 values for the CGMD and NEMD simulation. In this scheme, the number of points, hereafter called particles to be consistent with the nomenclature of the PSO theory, was limited to four for the sake of the clarity. At the iteration i ( Once these simulations are ended, the calculated η are stored. The results that are shown in this section were obtained by using 8 particles and launching 2 NEMD simulations for each particle, which allows obtaining the η associated to 2 dierent values of γ, here 18s -1 and 125s -1 . The choice of using two points is a compromise between the need to capture the shape of the γ-η curve and the computational cost, but dierent compromises can be found as a function of the computational resources available. The results obtained for each PSO particle are analyzed to determine how close or how far the simulated results are with respect to the experimental ones. To quantify that, a cost function (Eq. 2.7) was dened. A) Simulated slurries and associated FF parameters at the iteration i, B-E) Evolution of the FF parameter values in terms of the results obtained at the iteration i and F) Simulated slurries and associated FF parameters at the iteration i + 1.

Cost = (1 -η i norm ) 2 + (1 -η i norm ) 2 (2.7) η norm = η sim η exp (2.8) ρ norm = ρ sim ρ exp (2.9)
Where ρ sim , η sim , ρ exp and η exp represent the simulated and experimental density and viscosity (one for each NEMD simulation performed), respectively. After the evaluation step, the FF parameter values should be modied in order to launch the new simulations at the iteration i + 1, for which two elements are needed: (i) the particle velocity (dened in Eq. 2.10 and that is given randomly at the iteration 0), and (ii) the vector linking each particle to the one having the lowest cost value. This is described in Figure 2.6 B, C and D for the case of the particle circled in brown. In this scheme, the blue vectors represent the particle velocities at the iteration i, while the red vectors link each particle to the one with the lowest cost value. The particle position at the iteration i + 1 is dened by the vector addition of these two vectors (represented as purple vectors in Figure 2.

C-E).

This operation is performed for all the particles to obtain their position at the iteration i + 1 (Figure 2.6 E). Afterwards, the new simulated microstructures are calculated and the loop restarts. It should be underlined that Figure 2.6 represents a simplication of the actual procedure followed by our PSO-based algorithm and it is strictly valid for i = 0

only. Indeed, for the sake of clarity this scheme does not take into account the concept of personal best, discussed below. Equations 2.10 and 2.11 dene more rigorously how the PSO particle position and velocity are calculated after each iteration.

v i (t + 1) = wv i (t) + r 1 c 1 (p i (t) -x i (t)) + r 2 c 2 (g(t) -x i (t))
(2.10)

x i (t + 1) = x i (t) + v i (t + 1) (2.11)
The time variable in Eqs. 2.10 and 2.11 refers to the PSO iterations. The three terms in Equation 2.10 are commonly known as the inertia term and the cognitive and social components, respectively.

[332] v i (t) and x i (t) represent the i -th particle velocity and position at a certain time t, while p i (t) and g(t) represent the position of the personal and global best, respectively. The personal best represents the position in the n-dimensional space in which each particle has obtained its best result, i.e., lowest value of the cost The last tested procedure is using ML algorithms to predict the FF parameter values needed for tting the γ-η curve and density of a slurry of interest. This approach would have the major advantage of not requiring the CGMD or NEMD simulations, leading to a major decrease in computational cost. Several algorithm architectures, developed by Marc Dusquenoy [342] (PhD in our research group), were tested, but unfortunately none of them led to satisfactory results due to the mismatch between model inputs (density and two η values) and outputs (eight selected FF parameters). More details on the attempts undertaken in this direction can be found in the supporting information of Ref. [330] Nonetheless, work to adopt more ecient ML-driven strategies to simplify and further accelerate the slurry phase parametrization is undergoing within the ARTISTIC project.

Graphite

There are two main approaches to consider the SC as an explicit input for a model similar to the one described in the previous subsection: (i) splitting carbon+binder and solvent into two dierent entities and calculating the solvent volume as a function of the SC and (ii) determining the degree of expansion of the CBD particles as a function of the SC. The rst approach constitutes the main subject of this subsection, while the second approach was implemented for the online manufacturing simulation platform we developed [343], which is presented in Chapter 5. Figure 2.9 depicts a schematic of this idea and compares it to the coarsening approach used for the NMC-like model. In this approach, CBD particles at the slurry phase are splitted into its solid (carbon+binder)

and liquid (solvent) components. In this formalism, the CBD particles at the slurry phase are identical to the CBD particles at the electrode phase, while the solvent is accounted for by devoted solvent "particles". The number of solvent particles is calculated to match the solvent volume used, which can be derived from the simulated electrode mass and the SC used experimentally. It should be underlined, however, that any solvent is a continuous medium and it is not composed of particles. Here, particles are used for computational convenience, because they allow describing the solvent using a similar formalism to that of AM and CBD particles. However, to mimic the continuous nature of the solvent, the FF parameter values associated to the solvent particles are tuned to allow strong overlapping done with the CBD particles within the NMC-like model. This approach can be applied to any material that satises the approximations and limitation of the NMC-like model (section 2.1.1), and within the context of this thesis it was applied to the case of graphitebased slurries. Graphite was selected here because it is the reference anode material of today LIBs, but it should be underlined that the graphite particles typically used experimentally do not satisfy the approximation i of the model, i.e., the use of spherical particles. Nonetheless, the rst attempts for modeling graphite anodes were performed by keeping the spherical approximation and using a spherical-like graphite as experimental reference (Figure 2.10 B). The procedure attempted to move from spherical to elliptical particles is discussed in section 3.1.1.

The number of particles to be simulated is calculated as for the case of the NMC-like model, with the dierence that the SC is used as input to calculate the number of solvent particles. In the context of this model the slurry density was calculated as the mass of the solid components + the mass of the solvent used to calculate the number of AM, CBD and solvent particles divided by the simulation box volume. In addition, the PSD was not measured through SEM but with granulometry. This approach is signicantly faster compared to using SEM 2 but it outputs the PSD in terms of % of volume (p v i ) rather 2 Measuring the PSD through granulometry requires one single and fast measurement, eventually repeated to verify its reproducibility, while the SEM measure requires taking and analyzing tens to than % of particle (p i ), which can be misleading because it exacerbates the importance of big particles, and it relies on the approximation that the particles are spherical, which is considered an acceptable approximation here because the same one is done from a modeling perspective and due to the spherical-like shape of the particles used (inset of Figure 2.10 B). To obtain the PSD in terms of % of particles (Figure 2.10 B), Eq.2.12 was used. D i stands for the particle diameter.

p i = p v i D 3 i i p v i D 3 i (2.12)
Concerning the physics used, the nal model utilizes the same FFs of the NMC-like model, i.e., LJ and GH (Figure 2.11 C). However, in its rst version a coulombic FF [344] was added to account for the presence of charges in the graphite slurry (Figure 2.11 B) due to the dissociation of carboxymethyl cellulose (CMC), typically used as additive. This rst model was built by using the dielectric constant of water (≈ 80) while the overall charge of the system was a parameter controlled by the operator. The same amount of positive and negative charges were accounted to reach charge neutrality; the AM and CBD particles hundreds pictures. were treated as negatively charged, due to the deposition of the dissociated CMC on their surface, while the solvent particles were treated as positively charged due to the cations dissolved into it. The overall charge was equally distributed as a function of the particle surface, meaning that a particle with a surface X has half of the charges associated to a particle with a surface 2X. Besides all the above, the approach considering charges was excluded, because it was acknowledged that charge neutrality should be obtained at length scales (tens of nm) that are much smaller than the ones considered in the model (µm), meaning that accounting for coulombic interactions at the particle level would not be physically justied.

To parametrize the model, the same procedure of the NMC-like model was adopted, but unfortunately it was not possible to t the experimental γ-η curve through this approach.

Figures 2.12 A and B present the results obtained by classical and H-D PSO, showing that it was not possible to reach a cost value equal to 0, i.e., it was not possible to t the experimental results (Figure 2.12 C). From one side, the graphite model parametrization is more complicate than the NMC one, due to the low η of the associated experimental slurries. From the other side, the graphite-like model did not prove to allow simultaneous tting of the experimental slurry density and η, neither with PSO-driven approaches, nor through manual or ML-driven parametrization, indicating that the graphite-like model developed here is still incomplete or not suited for reproducing the associated slurry behavior. However, this method can be parametrized with respect to the slurry density only (Figure 2.10 A) to be used as input for the drying simulation. This leads to less reliable results with respect to the NMC slurries and electrodes presented in this thesis, but the so-obtained graphite microstructure can still be used as baseline for qualitative studies, as shortly discussed in section 3.3.

Machine learning based approach

The idea behind the work presented in this section is to characterize the role of slurry characteristics and coating in dening the dried electrode features through ML-based models. In particular, dierent slurries, diverse wt.% of AM and SC, were produced and characterized in terms of rheological properties (γ-η curve and amplitude/frequency sweep analysis). Then, these slurries were coated on an Al current collector by using dierent comma gaps and constant coating speed (0.3 mmin -1 ). Finally, the coated slurries were dried by using 2 ovens (1 meter long each) at 80°C and 95°C, and the porosity and mass loading of the dried electrodes were characterized. The ratio between C45 and PVdF wt.% was kept constant to one, while the mass loading is dened here as the mass of AM per unit of electrode surface. In terms of ML algorithms, three algorithm architectures were tested: neural network, decision tree and support vector machines. The working principle behind these three methods is illustrated in Figure 2.13 and is discussed in the following.

After this general presentation of the NN, DT and SVM approaches, the workow used and the associated results are discussed (next subsections).

A NN algorithm architecture reproduces the working principles of a human brain in silico. Each neuron in the brain contains just a small piece of the global information, which is shared between the dierent neurons through their interconnections (synapses) and transmitted through electrical pulses. Similarly, the algorithm architecture of NNs relies on interconnected neurons, each of them storing just one small piece of the global information. The neurons are divided in layers, which can be classied as input, output and hidden layers. The number of neurons in the input layer is equal to the number of model input, while the output layer consists of one neuron for each output. The hidden layer(s) are composed by n neurons. The number of hidden layers and the number of neurons for each layer are hyperparameters (HPs), i.e., parameters whose value is dened by the operator and inuences the training process, that need to be optimized for the case under analysis. The training procedure of a generic NN algorithm (Figure 2.13 A) can be described as follows. Each neuron, except for the input ones, has a value associated to it, that depends on the sum of the value of each neuron belonging to the previous layer(s) multiplied by a coecient. This coecient is specic to each neuron and is adjusted during the training. This value is then used as argument of the activation function (one HP of the model), which outputs the nal value associated to this specic neuron. This operation is accomplished for all the neurons, going from the input to the output ones. Once the output neuron values are calculated by the NN, they are compared to the output values in the training dataset. Following a backpropagation process, the dierence between the predicted and the real results is used to modify the coecient matrix, i.e., the coecient associated to each neuron. This process is performed n times, where n is a HP, in order to nd the optimal coecient matrix that numerically describes the relationship between inputs and outputs. The values of the coecients at the beginning of the training process are chosen randomly, while the values associated to the input neurons are the values associated to the inputs in the training dataset.

The basic idea of DT is to divide a complex problem into n smaller ones through a tree-like structure. In this representation, each node of the tree represents one small sub-problem, while the tree as a whole constitutes the solution to the overall problem. At the beginning of the training process, the data contained in the dataset is injected in the root, i.e., the rst node in the upper part of the DT (top of Figure 2.13 B). Afterwards, the algorithm searches for the input that best discriminates between the outputs. In other words, it searches which value (c i ) of which variable splits the initial dataset as to separate as many outputs as possible, minimizing the associated error in the meantime. This leads to the bifurcation of the node, and of the dataset, in two paths, one for values of the selected inputs lower than c i and the second one for values higher than c i . Iterating this procedure leads to a series of paths linking each possible input to a certain output, resulting in the tree shape reported in Figure 2.13 B.

SVM aims to nd the best hyperplane(s) (i.e., multi-dimensional plane) to separate the inputs as a function of their associated output(s). In other words, SVM identies which hyperplanes better separate the hyperspace of inputs and outputs in n zones, where n depends on the number of initial classes, while minimizing the associated model error and maximizing the probability that each zone is well separated from the others (Figure 2.13 C). The degree of separation of these zones can be modulated by some HPs of the SVM method, typically referred to as cost, gamma and the kernel used. Table 2.2: Classes dened for the electrode mass loading and porosity. The limit of each class was dened in order to have approximately the same data point for each class.

Workow

opted for supervised classication approaches for all the ML methods employed, which requires dening which variables are the model inputs (here, process parameters) and which ones are the model outputs (here, electrode properties). In particular, the inputs were dened as the AM wt.%, the SC, and the viscosity associated to the slurry at the shearrate employed for the coating, while the outputs were dened as the electrode porosity and loading. In addition, to use supervised classication approaches the output(s) should be dened in terms of classes, which are dened in Table 2.2 and are illustrated in Figure 2.14 through circles, squares and triangles. Afterwards, the ML model can be trained to learn the region of the parameter space that distinguishes between the dened classes (colored regions in Figure 2.14). Finally, the model can be used for predictions, i.e., as a function of the process parameters selected it outputs the expected class for the electrode property of interest.

The reason we have preferred using classication approaches is that they typically require smaller datasets compared to regression ones, which was critical in the context of this study due to the limited dataset available (82 data points). However, this data was highly reliable due to the multiple measurements of slurry rheology and electrode loading/porosity (complete dataset available here[316]), which surely helped in obtaining an acceptable model accuracy despite the limited dataset size. In addition, the predictive capability of the trained model should be assessed, the reason for which only 80% of the data was used for the training, while the remaining 20% was used to test the trained model (test set). The prediction accuracy was assessed through the regression plot, i.e., by comparing the data in the test set (true results) and the predictions coming from the trained ML model (predicted results), and quantied as the R-square of the points obtained into the regression plot with respect to its rst bisector (true results = predicted results). This was done for dierent sub-sizes of the full dataset in order to assess the evolution of predictive accuracy as a function of the dataset size (Figure 2.15). Another The error reported refers to the standard deviation calculated by using dierent seed numbers to split the dataset in training and test sets. The exact HPs used for each of these models can be found in Ref. [316] aspect that should be considered is that the separation between training and test sets is performed randomly through a seed number. Dierent seed numbers lead to dierent training and test sets and, ultimately, to dierent ML models and prediction accuracies.

Therefore, ten dierent seeds were tested for each model, and the average results, together with the associated standard deviation, is reported in Figure 2.15. As expected, the model accuracy increases with the dataset size, and the one performing the best is the SVM, with a predictive accuracy above 70% when using the full dataset. Even though this value is not particularly high, it is still impressive that we could achieve such a result with a rather simple ML model and with so few data, underling again the importance of data quality. In addition, the aim of this work was to identify trends linking the selected process parameters and electrode properties, rather than oering exact predictions, for which the predictive capabilities illustrated in Figure 2.15 were found to be sucient enough.

Due to its higher predictive accuracy, the ML results presented in the next subsection refer to the ones obtained through the SVM model. However, it should be underlined that similar trends were found through the other ML models as well (supporting information of Ref.

[316]). seen that when increasing the AM wt.% the size of the upper corner low mass loading region decreases, while the lower corner high mass loading region increases. The trends observed through the SVM classication can be veried by comparing them with the unclassied raw experimental data. Figure 2.17 shows that the mass loading has a direct relation with η and, for each composition analyzed, its sensitivity towards η decreases by increasing the SC. Concerning the eect of the AM wt.%, it can be noticed that the slope of the curves (mass loading vs. η for a specic SC) increase with the AM wt.% The trends observed by using the raw experimental data match those of the SVM model perfectly, conrming its accuracy and its capability to disclose trends without the need of making simultaneous analyses with dierent kinds of 2D plots. In terms of result interpretations, the role of AM wt.% is straightforward due to the direct relationship between the amount of AM added into the slurry and the mass loading, while to understand the eect of slurry η and SC, the eect of those parameter on the coating conditions should be considered (Figure 2.19). Indeed, at constant η, the associated γ is higher for higher SCs, i.e., the comma-gap used to produce the shear deformation is lower (here we used a constant coating speed, as discussed above). This determines the amount of slurry coated over the current collector, that in turn aect the electrode mass loading. Similar considerations can be made to analyze the role of η while keeping the SC and AM wt.% constant, i.e., the higher the η the higher the comma-gap.

Results

Going from a rather simple case study (mass loading) to a more challenging one (porosity) the SVM representation shows its main advantages. Particularly, the classication performed by the SVM algorithm is displayed in Figure 2.20, in terms of η, SC and AM wt.%. The most distinct feature of this classication is that by increasing the AM wt.% in the case of mass loading, the experimental porosity can be directly plotted as a function of the slurry η and SC for the four AM wt.% analyzed (Figure 2.21). Nonetheless, the analysis of the unclassied data is less evident than the case of mass loading. In general, lower η output lower porosities, but nding trends in this 2D plots is a dicult task. Considering the mismatch between raw experimental data and SVM predictions, we evaluated the correctness of the trends disclosed through SVM by further experimental analysis of the slurry rheology. Figures 2.22 A and B display the frequency sweep analysis for the NMC 92.7% and 96% slurries, respectively. For the entire frequency range measured, the former behaves as viscoelastic solid (solid-like behavior), as the storage modulus (G') is higher than the loss modulus (G), or alternatively tanγ < 1. On the contrary, the NMC 96% slurry behaves as a viscoelastic liquid (liquid-like behavior), tanγ > 1. This should not be surprising, as by reducing the relative proportion of NMC the amount of PVdF and conductive carbon increases. Keeping in mind that NMC specic surface area (0.25 m 2 g -1 ) is two orders of magnitude lower than that of the carbon additive (63 m 2 g -1 ), the increase in the amount of carbon produces more contact surface area between the particles, while more PVdF yields strongly linked particles. During a deformation, as during coating, it is more likely that the NMC 96% slurries reduce its mean inter-particle distances due to its liquid-like behavior, yielding more compact structures. Moreover, this behavior is very sensitive to the SC: the higher the SC, the higher the liquid-like behavior. In this sense, at high SC the attained porosity is lower than at low SC because of its greater liquid-like behavior, which allows an higher degree of particle ow and deformation, producing denser and more compact coated lms. In the case of NMC 92.7% slurries, Figure 2.22 B exhibits an increase in the solid-like behavior as SC rises, but in a less sensitive way compared to the 96% case. This implies that the numerous interactions that take place between particles produce a more rigid network, less sensitive to deformation upon coating and therefore producing more porous electrodes after the evaporation of the NMP solvent. In conclusion, the solid-like or liquid-like slurry behavior was found to be the reason behind the trends captured by the SVM model.

Take home messages

This Chapter presented the two approaches that were used within this thesis to study the slurry phase, i.e., through 3D physics-based models and ML algorithms relying on experimental data.

In terms of 3D models two dierent methodologies were presented, here named NMC-like and graphite-like due to the rst type of AM for which they were applied. However, it should be noted that, in principle, these approaches can be applied to any other material satisfying the model assumptions, the spherical AM shape being the most limiting one.

In order to make the model computationally doable, a coarsening approach was adopted, which can be summarized as follows: (i) Explicit consideration of the AM secondary particle size distribution, (ii) consideration of carbon+binder+solvent through eective CBD particles (NMC-like) or consideration of carbon+binder through CBD particles and the solvent through a highly overlapping particle (graphite-like). The inputs of the model, how the initial structure is generated and the physics applied to obtain the 3D slurry microstructure were detailed. In particular, the model can account for the dierent component weight fraction, AM PSD and CBD nanoporosity, and the physics adopted relies on the LJ and GH FFs, mimicking the adhesive forces between particles and the overall mechanics of the system, respectively. However, these FFs depend on some parameters, whose values should be optimized in order to match the experimental observables used as reference, here γ-η curve and slurry density. This is needed for both demonstrating the validity of the model adopted and obtaining microstructures that are as reliable as possible.

In the case of the NMC-like model, a complete parametrization has been accomplished, for dierent AM and CBD wt.% and SCs, through two dierent approaches: (i) manual and (ii) PSO-assisted optimization. The manual approach led to the most accurate results, but it also requires more time and computational resources. The PSO-based optimization automatizes this process, and the dierent versions developed were able to converge to the parameter values faster than with the manual approach. However, the PSO-based approach was also found to have issues with escaping to local minima, for which the code infrastructure would benet from devoted procedures. Concerning the graphite-like model, its main advantage is using the SC as a model input, rather than implying it from the model parametrization. However, this could also be achieved when keeping the NMClike infrastructure, by expanding the CBD particles as a function of the SC used Chapter 5. In terms of model parametrization, the case of spherical-like graphite particles was taken as a main reference. However, unfortunately, a complete parametrization was not achievable through any of the approaches tested, manual, PSO-and ML-based, indicating that the current version of the model cannot capture the rheological properties of the slurries considered here. Nonetheless, this model can be parametrized by using simplied metrics, i.e., slurry density only, in order to output slurry and electrode microstructures that can be used as baseline for qualitative studies (Chapter 3).

Concerning the ML-based approach, the main idea was to develop a ML-based infrastructure to link process parameters and electrode properties, with the nal aim of identifying trends between them. In particular, we analyzed the impact of key slurry characteristics, AM wt.%, SC, and η at the applied shear-rate/comma-gap, over the dried electrode mass loading and porosity. Three dierent ML methods were tested: decision tree, support vector machine and deep neural network. It was found that SVM combines high accuracy with a straightforward graphical analysis of the results. Following this approach, several trends linking electrode mass loading and porosity to the slurry characteristics were disclosed, and all of them were explained in terms of the viscoelastic behavior of slurries.

In addition, while the trends observed for electrode mass loading seem intuitive enough, this is not the case for the electrode porosity trends. This stresses the relevance of ML methods in oering a dierent perspective on data analysis, and uncovering previously unknown dependencies between electrode features and process parameters. To the best of my knowledge, this was the rst time that this kind of approach was proposed and its validity demonstrated in the context of LIB manufacturing. Chapter 3

Experimental and computational details

Drying

The second step of the computational workow presented here is drying, whose modeling approach diers as a function of the model used to simulate the slurry, i.e., NMC-like or graphite-like. Two dierent models were developed: the rst one simulates the electrode microstructure obtained at the end of the drying, while the second one mimics the drying process itself and the associated microstructure evolution, with a particular focus on CBD migration. The work presented in this Chapter is inscribed in the WP 1 (3D discrete modeling of LIB electrode manufacturing) of the ARTISTIC project.

Homogeneous approach

In this section I present the workow, advantages, and disadvantages of the simplest drying model we developed. This model uses a computational framework similar to the one of the slurry model, and aims to simulate the 3D electrode microstructure obtained at the end of the drying by using the 3D slurry microstructure discussed in Chapter 2 as input. In particular, it uses the same FFs adopted for the slurry simulation and uses all (x,y,z) PBCs. The solvent is removed by shrinking the CBD particle size and increasing their density to reach their solid state, i.e., particles accounting for carbon+binder+nanopores only, as introduced in the previous Chapter. The solvent is removed at the very beginning by keeping the particle position obtained at the end of the slurry simulation frozen, as illustrated in the left side of Figure 3.1. In addition, the FF parameter values are changed to account for the dierences between slurry (liquid-like system) and electrode (solid system) states. Briey, the main dierences between slurry until reaching a stable 3D structure at the selected condition (here, 300K and 1 atm).

In terms of advantages, this approach is particularly versatile and relatively simple to use and parametrize, an aspect that was widely tested during this thesis by simulating electrodes with dierent compositions, AM particle size distributions, CBD sizes, etc.

In addition, considering the strong similarities between the slurry and drying computational frameworks, the transition from the rst to the second does not cause any artifact, meaning that particle reorganization is only led by the the new FF parameter values and CBD size/density, and there is no eect due to the shift to a new model. Concerning its disadvantages, this model does not simulate the drying process but only its nal output, and the use of PBCs in all directions implies that it cannot capture wide electrode heterogeneities, as the ones developed during fast drying (chapter 1). In order to show this in more detail, Figure 3.2 illustrates the 3D rendering of three electrodes obtained through this approach (A) and their volume fraction evolution (AM, CBD and pores) as a function of the electrode thickness. The FF parameter values of the drying simulation can be tuned to t a porosity of interest, where the ones selected here have been chosen

to be in the range of values found experimentally (carbon to binder ratio equal to 3:2)

and to follow the main trend observed, i.e., the higher the CBD content the higher the porosity. An example of FF parameter values used for the drying simulation is reported in Table 3 constant for the three conditions and were similar to the ones reported in Table 2.1. It should be underlined here that two kind of porosities are considered from a computational viewpoint: the bulk and the nano porosities. The bulk porosity is dened as the pores in between the AM and CBD particles, while the nanopores are accounted for in the CBD phase and are calculated as half (50% nanoporosity) of the CBD volume fraction.

The overall electrode porosity is calculated by simply adding bulk and nano porosities. reported in Figure 3.3 A: CBD/pore, AM/pore and AM/CBD. The second and third one are particularly relevant, because they dene the active surface, i.e., the AM surface in direct contact with the electrolyte and available for electrochemical reactions, and the contacts between AM and CBD particles, which are essential for carrying the electrons until the reaction site. In addition, since the CBD nanoporous, the AM/CBD interface is reachable by Li + as well, even if following a more tortuous path.

[246] Specically, as ex- pected, the higher the AM wt.% the higher the active surface and the lower the AM/CBD surface fraction. Both of these trends can be explained by simply considering that the smaller CBD particles tend to ll the AM interstitial pores, reducing the active surface and increasing the AM/CBD surface. In addition, it can be noted that the CBD/pore surface fraction increases when increasing the CBD wt.%. This is probably linked to the spherical approximation used to treat the CBD phase, leading to a discontinuous CBD with sub-micron (around 0.2 µm big) interstitial pores in between CBD particles. This means that the fraction of the CBD that would have been in contact with other CBD if considering a more continuous phase is instead in contact with pores. As this is the case for all the electrodes simulated here, and considering that this phenomenon scales with the number of CBD particles, this artifact could be the cause of the last identied trend, i.e., the higher the CBD/pore surface fraction the higher the CBD wt.%. Figure 3.3 B depicts the bulk pore size distribution of the three electrodes considered, showing that the electrodes with the higher porosity (85 wt.%) present a higher amount of both small and big pores. However, when comparing two electrodes with similar bulk porosity (90 and 95 AM wt.%), it can be noted that the one having the lower AM fraction presents a greater amount of small pores and fewer big pores with respect to the electrode having the higher AM fraction. Again, this could be explained by considering that CBD particles tend to ll big AM interstitial pores, then the less CBD the less these pores are lled, leading to bigger pores.

Last but not least, it should be highlighted that electrodes obtained through this model were used to study the role of electrode microstructure and material properties in dening the overall electrode performance in terms of galvanostatic discharge and EIS through devoted 4D (3D + time) electrochemical models. [246,348] 3.1.1 Elliptical particles

The model described in the previous section can be, in principle, adapted to account for elliptical particles, rather than spherical ones, unlocking studies on how the AM shape denes the electrode microstructure and the associated performance. Studying this is surely of interest and it is the main reason for which we attempted to adapt the slurry and drying models to the case of non spherical particles. Figure 3.4 shows an example of result obtained through these models, where ellipsoidal AM particles and spherical CBD particles are used. The main drawback of this approach, and the reason it was abandoned, is the lack of FFs applicable to elliptical 3D particles. Indeed, the only FFs available are generalizations of the LJ FF that account for three dierent particle diameters, as the Gayberne FF.

[349] In addition, even if these FFs allow dening dierent ε for the three Cartesian directions only one σ, which controls the distance of equilibrium between particles, can be dened. This is a strong limitation and causes numerical instability, especially for the drying simulation where the interaction forces are stronger, making this approach not reliable. The reason behind these limitations is that controlling one single σ, i.e., one single distance of equilibrium, when particles have three dierent diameters means either obtaining a high degree of particle overlap, or few to no contact between particles.

Indeed, xing σ as a function of the distance between two particles when considering their smallest size would lead to signicant particle overlap when they interact through their longest size, while xing it considering their longest size would lead to no contact when they interact through their smallest size. This problem could be tackled in two ways:

developing new FFs allowing to account for dierent equilibrium distances as a function of the Cartesian direction, or implementing FFs already employable for spherical particles for the case of elliptical ones. The second option was attempted in collaboration with Dr. Oier Arcelus[350] (post-doc in our research group) and Dr. Alain Ngandjong[351] (ARTISTIC post-doc) in adapting the GH FF for elliptical particle, but the diculty of working on the source code of a software as complex as LAMMPS prevented the success of this work. An alternative strategy, not presented here and currently under development in the ARTISTIC project, is using rigid bodies, consisting of spherical particles linked together to form complex, non-spherical shapes. This approach would have two main advantages with respect to elliptical particles: it is not restricted to ellipses but could be used to generate any shape of choice, and it can utilize the FFs already available for spherical particles.

Heterogeneous approach

The scientic and industrial interest behind additive migration and fast drying, and the inability of capturing this phenomenon through the rst model presented in this

Chapter are the main driving forces that lead to the development of a second drying model, which is presented in this section. In addition, to the best of my knowledge this is the rst and, today, only 3D physics-based model that demonstrated the ability of capturing additive migration.

Model development

The key idea behind the model presented in this section is to modulate the speed of solvent removal, i.e., CBD shrinking and density increase, as a function of the CBD particle position, where CBD particles at the top of the slurry shrink faster than the ones at the bottom. In particular, the CBD particles are classied into three groups as a function of their z-coordinate (slurry thickness): the ones in the rst third (bottom, referred to as CBD1), the ones in the second third (center, referred to as CBD2) and the ones in the last third (top, referred to as CBD3). Then, we dened the shrinking speed of CBD1 (υ bottom ) as the speed needed to remove all the solvent at the end of the simulation. In other terms, since CBD1 particles have the slowest shrinking speed, this means assuming that the solvent removal is complete at the end of the drying. Afterwards, a relative shrinking factor (RSF) is dened as υ i / υ bottom for the center and top CBDs, where υ is the shrinking speed for CBD2 and CBD3, respectively. Taking in mind that evaporation occurs faster in the top of the slurry with respect to its bottom, both the RSFs are > 1.

The higher these RSFs, the faster the solvent removal, i.e., the higher the drying rate. In addition, non-PBCs are applied on z by placing repulsive planes at the bottom and top of the slurry, as illustrated in Figure 3.5. Faster shrinking speeds of the CBD particles result in more free space in the associated regions, leading to a higher particle degree of freedom. However, this aspect alone would not be enough to account for the convective and capillary forces causing additive migration experimentally. For this, it should be considered that the attractive interactions of the CBD particles increase when the solvent is removed, as discussed in the previous section. This was found to be needed, in all the previous versions of the drying model, to obtain electrodes with approximately the same porosity, density and mechanical properties of their experimental counterpart. [220,224,234,352] In the context of a model in which the solvent is removed asymmetrically, this leads to higher attractive forces of the CBD phase in the top and middle regions compared to the bottom one. These stronger attractive interactions and the higher amount of space available, both dictated by the asymmetric CBD shrinking speeds adopted, translate in a force gradient towards the top of the slurry that aects the dynamics of lighter CBD particles, mimicking the role of convective and capillary forces. Another important aspect that needs to be considered is particle sedimentation, for which gravity should be accounted. However, here adding an extra term equal to the gravitational acceleration would not be enough to account for the role played by gravity at the experimental level, due to a mismatch between the experiment and modeling time scale. Indeed, experimental drying time ranges from a few minutes (industrial drying) to hours (academic drying), while the model, being developed in the context of a MD software, can reach hundreds of ms, and simulating minutes or hours would be computationally extremely challenging. It should be underlined that this problem of time scale is not only faced by us, but also by other groups currently working on 3D physics-based models of manufacturing process, as recently highlighted by Nikpour et al.[221] Considering that a nal solution to this problem has not emerged yet, the time scale mismatch calls for devoted strategies capturing a phenomenon occurring in the order of minutes or hours through simulations accounting for one second or less. In the context of the model presented here, this translates into two dierent strategies: applying an acceleration term equal to the gravitational acceleration (9.8ms -2 ) together with an extra force, or applying an eective gravitational accelera- tion higher than the real one. The rst strategy, adopted for the results presented in this Chapter, calculates the extra force by considering the atmospheric pressure. Indeed, pressure cannot be accounted for here through the same procedure adopted previously (slurry and homogeneous electrode), where pressure is computed through a barostat, i.e., it is calculated by considering particle interactions and collisions and adjusting the simulation box volume in order to reach the selected pressure. This procedure can be used only when using all PBCs, while the z condition is not periodic in the model presented here. Therefore, the following computational strategy was used to account for atmospheric pressure: (i) the force acting on the whole slurry due to the atmosphere (F atm ) was calculated as the atmospheric pressure (101325 Pa) by the slurry surface (S slurry ) and (ii) a fraction of F atm was added to each particle as a function of its surface area (S i ) normalized to the sum of surface areas of all the particles in the system. Figure 3.6 depicts a schematic of the 3D microstructure evolution going from the slurry (left) to the dried electrode (right) through this procedure. Even though this simplistic strategy led to positive results, it should be acknowledged that this approach could lead to instabilities due to the consideration of the slurry surface from one side, and the consideration of PBCs (x and y) on the other side. This hinders the generalization of this model to include conditions much dierent to the ones considered here, as slurries with signicantly dierent slurry surface.

The second approach was developed taking this issue into account and trying to make the model as generalizable as possible. In particular, this strategy substitutes the extra force with an eective gravitational acceleration term, allowing the consideration of particle sedimentation despite the time scale considered explicitly by the model. This approach does not depend on any slurry feature, making it more generalizable to dierent conditions, which is why this was the strategy of choice for the online computational platform we developed, which is discussed in Chapter 5.

The last two aspects of the model workow that should be considered are how to consider the two experimental drying regimes (lm shrinkage and pore emptying) and how to implement the selected RSFs. Concerning the rst aspect, it should be reminded here that the slurry lms shrink until reaching their nal thickness (rst regime), and then the solvent in between AM particles evaporates (second regime), a stage in which AM particles do not have any space left to move, while additives can (Figure 1.26 A). From a computational perspective, this was accounted for by freezing the AM particles at the time the transition from the rst to the second regime occurs. This can be dened in different ways, as for instance when a certain macro feature is reached, after a xed amount of time, or when a certain amount of solvent has been removed. The rst approach is the one that was followed to obtain the main results that is presented in the next section, and particularly performing this transition when the electrode thickness associated to a bulk porosity of ca. 46% is reached. This enables focusing only on the eect of DR on CBD migration and its impact on the electrode characteristics, avoiding to consider any other possible contribution, as dierences in the electrode macro features arising from the dierent DRs adopted. It should be stated, however, that the porosity of electrodes dried at dierent drying rates could dier, but to the best of my knowledge no clear trends have been previously disclosed, neither experimentally nor computationally. Nonetheless, the same trends in terms of CBD migration during drying were found even when not imposing a nal electrode porosity. Concerning the implementation of the RSFs, it was observed that applying the ones selected from the beginning of the simulation did not allow reproducing the experimental results (blue curve in Figure 3.7). Indeed, applying constant RSFs for CBD2 and CBD3 leads to CBD migration from the very beginning of the simulation, while this is not the case experimentally (section 1.3.2) Therefore, instead of applying the selected RSFs from the beginning of the drying, a RSF of 1 is initially applied to all the CBD particles. However, the RSF of the bottom region is kept constant at 1, while the RSF of the bottom and top regions increases from 1 to the selected RSF through a devoted function, which can be controlled by the operator. The rationality behind this is that slurries start the drying from a rather homogeneous condition and heterogeneities, as for instance in terms of temperature gradient, are not induced instantaneously but requires a certain time, accounted for by increasing the RSF from one to the selected value through the chosen function. In particular, several functions were tested, here were obtained using RSF 2 = 1.3 and RSF 3 = 2.2. "Constant" indicates that no function is used, and the selected RSF is applied from the beginning of the simulation.

part of which are depicted in Figure 3.7, showing that the computational procedure discussed above is able to trigger the development of CBD heterogeneity during drying. In addition, applying functions as quadratic, linear, square root, etc. delays additive migration, as expected experimentally (Figure 1.26 B and Figure 1.27 C). Considering all the above, the results that are presented in the next subsection were obtained by using a linear function (blue curve in Figure 3.7), which was found to be a good compromise between all the functions tested.

Results

The rst and most important feature of this second drying model is its capability of mimicking CBD migration as a function of the DR used. As a reminder, the DR was dened here through the RSF applied to CBD2 (central region) and CBD3 (top region),

i.e., the higher those values, the higher the DR. Figure 3.8 A illustrates the 3D electrode microstructures obtained at dierent DRs and starting from the same slurry (94 wt.% of AM, 6wt.% of CBD, SC=65%), with the RSFs of the center (RSF 2 ) and top (RSF 3 ) CBD particles at their bottom, reported as RSF 2 /RSF 3 . The RSF of the CBD in the bottom Here, cold colors indicate low/middle drying rates, while hot colors indicate middle/high drying rates. A normalized time of 0 indicates the slurry phase, while at 1 the drying is complete.

(CBD1) is kept constant to 1 by denition, as discussed in the previous section. From the 3D rendering it can be already noted that the higher the DR (from left to right) the higher the degree of heterogeneity, i.e., more CBD particles in the top region of the electrode with respect to its bottom. To quantify it, the evolution of the CBD fraction for each region (CBD1, CBD2 and CBD3) during drying is reported in Figure 3.8 B for the four DRs considered. These results can be summarized as: (i) the higher the DR, the higher the fraction of CBD3 at the expense of CBD2 and CBD1. (ii) CBD migration does not take place during the whole drying step, but rather in a specic time range. (iii) the times at which CBD migration starts and ends depend on the DR, and particularly CBD migration starts and ends earlier for higher DRs compared to lower DRs. Both (i) and (ii) were found experimentally (section 1.3.3), indicating that the model is capable of reproducing these trends. To the best of my knowledge, (iii) was not previously reported, calling for further experimental studies aiming to verify and eventually quantify this phenomenon.

To further characterize the electrode microstructure, the volume fraction (AM, CBD and macro pores) evolution as a function of the electrode thickness is reported in Figure 3.9.

In terms of solid phases (Figure 3.9 A), it can be noted that the electrodes dried at lower DRs contain more AM and CBD in the rst half of their thickness and less in the second half compared to the ones dried at higher DRs. Concerning the CBD phase, no signicant dierences can be observed for the central region of the electrodes. This trend for the CBD phase was already discusses (Figure 3.8 B), while the AM distribution is linked to particle sedimentation, and particularly to the minor time available for sedimentation during fast drying. In our model, it was found that the porosity dened as a switching point from the rst regime to the second one, where the nal AM backbone is formed, was reached at normalized times of ca. 0.79 and 0.62 for the lowest and highest DRs, respectively. The middle DRs (1.1/1.4 and 1.2/1.8) show intermediate transition times between these two. This means that the AM particles had approximately 27% more time to sediment when dried at the lowest DR with respect to the highest one, leading to higher concentration of this phase in the bottom of the electrode. The pore phase (Figure 3.9 B) follows approximately the reverse trend when compared to the AM volume fraction, indicating that the electrode bulk porosity is mainly controlled by the location of the biggest particle. Besides the distribution of AM, CBD, and pore volume fractions, the interfaces between the dierent phases are a key characteristic as well. Figure 3.9 C shows that the approach employed in this work was capable of keeping both the percentage of AM surface in contact with both CBD and the pores, and the percentage of CBD surface in contact with the pore phase substantially constant. This indicates that the application of dierent DRs, through the computational workow proposed here, aects specically the phase distributions (Figure 3.8 and 3.9 A and B), while the interfaces are rather controlled by the FF parameter values utilized for the drying simulation, which were kept constant for all the DRs.

Another aspect of the model that was tested is its capability of reproducing complex drying protocols. In particular, here we focused on the three-stage drying protocol is not eective for reducing CBD migration, which is understandable considering that the majority of the migration would have already occurred by the time the LD rate is applied (Figure 3.8). This shows that the model can qualitatively capture the trend discussed by Jaiser et al., but the quantitative results dier. On the one hand, using adhesion with the current collector as their metric, they found that applying a low DR rate in the middle of the drying led to the same structural properties as the electrode fully dried at low DR rate. On the other hand, in our case, this three-stage dried electrode is still more heterogeneous with respect to the one dried at 1.02 / 1.08 (gure 3.10 C), despite the use of a particularly low DR (1.02 / 1.03) in the three-stage scenario, indicating that there is still room for improvements in the model.

Graphite electrodes

Similarly to the case of slurries obtained through the NMC-like model, two dierent drying procedures were developed for the case of graphite-like slurries: a homogeneous and a heterogeneous approach. However, computational diculties hampered the nalization of the heterogeneous approach. The homogeneous approach is similar to the case of the NMC-like model, meaning that the solvent is removed at the very beginning of the simulation and the arising particle position are kept frozen. The dierence from the NMC-like model is that the solvent is removed by erasing the solvent particles, not by decreasing the size of the CBD particles and increasing their density. The heterogeneous approach attempted for the case of graphite-like slurries takes inspiration from the one presented above, but with some important dierences. Similarly to the NMC-like scenario, non-PBCs on z are applied and the solvent is removed asymmetrically, i.e., faster in the top of the slurry and slower at its bottom. However, in the case of graphite-like slurries this translates to removing solvent particles with a dierent probability as a function of the solvent particle location. The key idea here is to remove M solvent particles every N timesteps and identifying the zone of the slurry (top, center, or bottom) from which these particles are removed through a Monte Carlolike approach. In particular, every N time steps a random number is selected and, as a function of the outcome, the region from which M solvent particles are erased (randomly) is decided, as schematized in Figure 3.12. The solvent particles are deleted through the evaporate LAMMPS command.

[354] Unfortunately, when applying this procedure particle interactions seem to almost disappear, hampering any particle reorganization, as it can be noted from the schematic in the bottom of Figure 3.12. Several FF parameter values were were tested in an attempt to solve this issue. A possible hint could come from the recent work of Nikpour et al., that applied a comparable procedure and claimed that developing it required "signicant modication to the built-in LAMMPS particle deletion algorithm" [221], an issue that could be behind the diculties we encountered as well.

Take home messages

This Chapter presented the two approaches developed in the context of this thesis to simulate LIB slurry drying through 3D physics-based modeling. The rst approach does not model the drying process but only its nal output, i.e., the 3D dried electrode microstructure. This approach uses a computational framework similar to the one of the slurry model presented in Chapter 2, where the main dierences are the CBD properties and FF parameter values. In particular, the CBD particles are shrunk and their density increased in order to remove the solvent and the FF parameters values are changed to enhance particle attractive interactions and the stiness of the system, which is accomplished mainly by increasing the ε and k. The CBD properties and FF parameter values are changed at the beginning of the simulation, by keeping the particle position arising from the slurry simulation frozen. In terms of advantages, this model is versatile, is relatively easy to use and parametrize, and was tested for a variety of dierent conditions, as dierent compositions, AM PSD, CBD size, etc. In terms of disadvantages, it cannot capture the dynamics of drying and it outputs rather homogeneous electrode microstruc-tures, avoiding any consideration of additive migration occurring during fast drying. The attempt to adapt this approach for elliptical particles was abandoned due to the lack of suitable FFs. A more promising approach, currently under development in the project, is using rigid bodies, consisting of spherical particles linked together to form complex, non-spherical shapes.

The second drying model developed intends to overcome the limitation of the rst one, its main feature being the capability of accounting for CBD migration. The key idea behind this model is to modulate the speed of solvent removal, i.e., CBD shrinking and density increase, as a function of the position of the CBD particles, where CBD particles at the top of the slurry shrink faster than the ones in the bottom. Considering that the attractive interactions of the CBD particles increases when the solvent is removed, removing it asymmetrically leads to higher attractive forces of the CBD phase in the top and middle regions compared to the bottom one, which translate to a force gradient towards the top of the slurry that aects the dynamics of lighter CBD particles, mimicking the role of convective and capillary forces. To the best of my knowledge, this is the rst 3D physics-based approach that demonstrated the ability to reproduce the main trends found experimentally in terms of additive migration. In particular, the slurry is divided into three zones, dierentiated by dierent CBD shrinking speed, and the DR is dened as a function of the shrinking speeds employed. Four dierent electrodes were generated starting from the same slurry (94 wt.% of AM, 6wt.% of CBD, SC=65%) and utilizing the same FF parameter values, but changing the DR. The main results of this analysis can be summarized as: (i) the higher the DR, the higher the fraction of CBD3 at the expense of CBD2 and CBD1; (ii) CBD migration does not take place during the whole drying step, but rather in a specic time range; (iii) the times at which CBD migration starts and ends depend on the DR, and particularly CBD migration starts and ends earlier for higher DRs. Both (i) and (ii) were found experimentally (section 1.3.3), indicating that the model is capable of reproducing these trends, while (iii) was not previously reported, calling for further experimental studies aiming to verify and eventually quantify this phenomenon. Three-stage drying protocols were developed and tested as well. In this context, the procedure that oered the best results in terms of avoiding additive migration is applying high DR at the beginning and end of drying, and low drying rate in between them, as previously indicated experimentally (Figure 1.28). However, the model was able to reproduce this experimental trend only qualitatively, and not quantitatively, indicating that there is still space for improvements in the model.

Even tough this new drying procedure led to positive results, it should now be tested for a wide range of electrode formulations, AM particle size distributions, CBD sizes and DRs to verify its generalizability to dierent scenarios. In this sense, this model has already been implemented in the online computational platform (Chapter 5), allowing the selection of the desired electrode composition (weight ratio of AM and CBD), SC, AM particle size distribution, CBD size, drying and calendering conditions, which we hope will lead to a deeper testing of the model in a collaborative way.

The two drying approaches discussed above have been also adapted for graphite-like slurries, in which the solvent is removed by erasing the solvent particles. In this context, the homogeneous model translates to removing all the solvent particles at the beginning of the simulation and changing the FF parameter values to t the experimental electrode properties, using the porosity as the main metrics. A second model to capture CBD migration was attempted as well, in which solvent particles are removed during the simulation in an asymmetric way, faster in the top with respect to the bottom, through a Monte Carlolike approach, but with unsatisfactory results. Indeed, unfortunately when applying this procedure particle interactions seem to almost disappear, hampering any particle reorganization, possibly due to errors in the source code of the LAMMPS command used to remove the solvent particles during drying.

Experimental and computational details

LiNi 0.33 Mn 0.33 Co 0.33 O 2 was supplied from Umicore. Graphite (GHDR 10-4) was sup- similarly to the heterogeneous drying approach discussed in section 3.2; PBCs are applied to the x and y directions, while the z direction is treated as non-periodic. However, in this case it is not possible to use the same FFs adopted for the slurry and drying simulation, mainly due to the lack of the LJ FF in any DEM software. This translates to the need for changing the FFs when going from drying to calendering, which causes the main limitation of this approach, as discussed in more detail at the end of this section. In particular, the FFs adopted are the GH[358] and the simplied Johnson-Kendall-Roberts[359] (SJKR).

As for the case of the CGMD simulations, the GH (Eq. 2.4) models the mechanical properties of the system, while the SJKR (Eq. 4.1) links to adhesive forces, principally due to binder bridges between particles.

F SJKR = CED × A (4.1)
However, here the GH FF is dened using the material macroscopic properties, meaning that instead of dening k n and γ n (Eq. 2.4), the model requires the denition of the material Young modulus (E) and coecient of restitution (e). The SJKR FF is computed whenever two bodies are in contact, acting as a force which opposes the detachment of the two interacting particles, and relates to the material cohesion energy density (CED) and area of contact between two interacting particles (A). The CED represents a proportionality constant related to the adhesive force strength per unit of surface of contact. If a force higher than F SJKR is developed due to calendering, the two particles are separated, simulating binder bridge breakage. However, if the two particles come into contact again, the SJKR FF is computed again, which can be considered as the re-forming of the binder bridges. The FF parameter values used for the simulations discussed in this section are reported in Table 4.1, where the E of the two planes were selected to match the ones of Al (current collector) and steel (calendering roll), [360,361] while the NMC one was found to be in between 100 and 200 GPa [360,362364]. All the other parameter values were modulated to t the mechanical properties of the electrode before calendering, for which micro-indentation curves were taken as main reference, and the electrode porosity evolution during calendering (Figure 4. Micro-indentation is a widely used technique to investigate the mechanical properties of a material. This is performed through a point indenter that deforms the material at the micro-scale, and this deformation is directly related to its hardness and E. This method typically uses an indenter that penetrates the surface of the specimen upon application of a given load at a constant rate, and registers its displacement during the load and unload.[365] Due to its direct correlation with the sample mechanical properties, the experimental load-displacement curve of the electrode was used to parametrize the calendering model, by tting this curve with a simulated one over the modeled electrode.

In both experiment and modeling, the electrode was compressed up to 10% of its initial thickness. This is performed experimentally through a diamond indenter and computationally through moving the top plane. A similar electrode thickness was considered experimentally (ca. 180 µm) and computationally (ca. 150 µm) to make the results as comparable as possible. However, it would have been computationally inaccessible to consider such an electrode thickness and simulate the compression of a surface as large as the experimental one (ca. 31,000 µm 2 ). Considering that the contact surface between the in- denter and the electrode has a direct impact on the measured force, both the force and the indenter/plane displacements were normalized relative to the maximal force/displacement obtained both experimentally and computationally. This allows a consistent comparison of the experimental and modeling results. However, the electrode surface considered can play a role on the indentation curve shape, causing signicant uctuations when small surface areas are considered, as shown in Figure 4.2 A. This observation is understandable considering the dimension of AM particles (2-10 µm) with respect to the electrode surface area, and taking into account that the forces measured during the indentation are computed as the forces acting on the moving plane due to particle compression. Indeed, if the electrode surface is too small, the movement of a single big AM particle can lead to a signicant variation in the computed force, giving rise to a noisy indentation curve; a bigger electrode surface mitigates this issue, due to the increased number of particles in contact with the moving plane. In particular, it can be observed that the electrode surface obtained after the drying simulation is too small to prevent strong uctuations (blue curve in Figure 4.2 A). Therefore, the electrode is replicated two (green curve) and four (light-blue curve) times on both x and y to identify the minimal electrode surface needed to prevent this size eect, for which the fourfold electrode (Figure 4.2 B) was selected. The associated micro-indentation is reported again in Figure 4.2 C for a direct comparison to its experimental counterpart. In addition, to validate the DEM model parametrization further, the same FF parameter values were used to t the experimental porosity prole as a function of the calendering pressure (Figure 4.2 D), for which the electrode elastic relaxation was considered both experimentally and computationally. In particular, this was accounted for experimentally by measuring the electrode thickness a few days after calendering, from which the porosity is calculated, while computationally the top plane was moved down until reaching a desired pressure and then moved back up to its initial position, which leads to a relaxation of the electrode microstructure. It should be acknowledged that this parameterization suers from the underlying problem of ignoring the nanoporosity of the CBD phase, as only the bulk porosity is accounted for. If this is taken into consideration, the simulated porosity would be ca. As extensively discussed in section 1.3.4, calendering plays an important role in decreasing the electrode ionic conductivity, which is not only a function of the electrode porosity, but also of its pore size distribution and electrolyte tortuosity. The black curves refer to the pristine uncalendered electrode. mentally and computationally. However, the pore radii found through Hg intrusion and PorosityPlus are signicantly dierent, which links to the dierent approximations behind these two approaches. On the one hand, Hg intrusion porosimetry is based on applying an external pressure in order to force the liquid Hg into the porous structure. As Hg is a not wetting liquid for the majority of materials (contact angle > 90), the pressure needed to ll the pores is proportional to the pore cross-sectional area.[366] Particularly, the smaller the pore, the higher the pressure that should be applied. Consequently, the pressure applied can be used to calculate the pore radius through the Washburn equation[367], which assumes a cylindrical pore shape. On the other hand, PorosityPlus calculates the pore size distribution by tting as much spheres as possible into the electrode pore phase, which makes the x axis of Figure 4.3 A and B refer to dierent radii (cylinder and sphere radius, respectively), the reason for which the associated values cannot be directly compared and only the overall trends should be considered. The tortuosity of the ionic phase was calculated by using TauFactor [193], by considering a bulk ionic diusivity of 7.5 m s -2 and through the MacMullin number[368] (N M ), Eq. 4.2, where D bulk , D ef f ective , σ bulk and σ ef f ective are the bulk and eective ionic diusivity and conductivity, respectively, while τ and are the tortuosity factor and electrode porosity. The results show that τ increases by increasing the calendering pressure, reaching a plateau-like behavior for high pressures, similarly to the electrode porosity (Figure 4.2 D). Interestingly, the evolution of τ during calendering is similar for all the Cartesian directions, indicating that calendering inuences the transport properties of the electrolyte of the entire electrode microstructure, and not only in the direction of compression (here, z).

N M = D bulk D ef f ective = σ bulk σ ef f ective = τ (4.2)
Another approach that can be used to measure τ is through EIS of symmetric cells using a non-intercalating electrolyte [191], which in practice means assembling a cell using the same electrode as both cathode and anode, divided by a separator and by using an electrolyte that does not contain Li. This protocol was reproduced computationally and embedded in the EIS model developed by Abbos Shodiev[348], for which an example is depicted in Figure 4.5. In addition, the AM electronic conductivity was articially increased to 1 S m 1 for avoiding any electronic limitation. In particular, Figure 4.5 A

shows the EIS results in the form of Nyquist plot for the uncalendered and two calendered electrodes. The EIS response can be roughly divided into three dierent regions: tion to the overall impedance of a cross-sectional cut at half the electrode thickness at 100 Hz (top) and the associated phase (AM, CBD and pores) distribution (bottom), giving a glimpse of the degree of details accessible through an EIS model using 3D electrode microstructure as inputs. For more information on this model, the interested readers are referred to Ref. [348].

In addition, the same three electrode microstructures tested through EIS were also embedded in the galvanostatic discharge model developed by Mehdi Chouchane[246]. In particular, a single discharge at a rate equal to 1C (NMC specic capacity = 280 mA h The color scale indicates the state of discharge ( [Li] s / [Li] s,max ) of AM particles, while gray stands for the CBD phase. B) Discharge curves as a function of the specic capacity (the dotted line is a t to reach 2 V) for the uncalendered and calendered electrodes.

Here the capacity was normalized by the AM mass only. g -1 ) was simulated in half-cell conguration, whose main results are depicted in Figure 4.6. In particular, Figure 4.6 A shows that all the conditions tested are electronically limited, meaning that the electrode bottom is easier/faster to lithiate with respect to its top. Therefore, it is not surprising that the discharge capacity increases with the applied pressure (Figure 4.6 B). However, in the rst part of discharge the voltage of the uncalendered electrode is higher than the calendered ones, until it drops sharply at approximately 70 mA h g 1 , whereas the opposite trend would have been expected due to the ohmic drop caused by the poorer electronic conductivity of the uncalendered electrode. This opposite behavior arises from the dierent boundary conditions used for the dried and calendered electrodes, where the former uses full (x,y,z) PBCs, while the latter considers z as nonperiodic. This leads to an overestimation of the surface of contact between the particles and the current collector, causing a lower current density at the current collector plane for the dried electrode, which is the reason for the smaller ohmic drop during the rst half of the discharge. Nonetheless, the poorer electronic transport of the uncalendered electrode leads to a rapid drop in the potential in the second half of discharge and ultimately to a lower specic capacity. In addition, these results allow comparing the ionic and electronic transport properties of the electrodes, as reported in Figure 4.6 C. In particular, as expected, this analysis shows that the ionic transport decreases due to calendering, while the opposite trend is observed in terms of electronic transport.

Overall, this study not only allowed developing a rst calendering model in the context of the ARTISTIC project, but also linking this to the previous manufacturing and electrochemical models. However, this model showed its limitations when tested for signicantly dierent conditions compared to the one considered above. In particular, Figure 4.7 illustrates the microstructure evolution during calendering when using the DEM-based model for a monodisperse electrode, i.e., an electrode made by AM particles of one single size (ca. 8 µm). This schematic, in which the early stages of calendering are particularly detailed, shows a signicant particle re-organization taking place in the rst stage of calendering, which cannot be physically explained when considering electrode compression only. In particular, the main reason for this reorganization is the change of FFs felt by the particles, due to the shift from the CGMD to the DEM model. Therefore, the adoption of such an approach is likely to introduce an artifact aecting the calendered electrode microstructure. This is the main reason for which this model was abandoned and a new one was developed by maintaining the CGMD infrastructure, which is the subject of the next section. This section presents the second calendering model we developed, which was designed to overcome the limits of the rst one, and was applied to electrodes obtained through homogeneous and heterogeneous drying. The basic principle behind this approach is to introduce, within the LAMMPS framework, two planes at the bottom and top of the dried electrode to simulate the current collector and calendering roll, respectively. These planes interact with the particles through the GH FF, which is computed only when a particle is overlapped with a plane (2.4). A strong k n is assigned to both planes to avoid particle-plane overlapping, and the same FF parameter values used for the drying for AM and CBD particles are employed. Non-PBCs are applied to z, while PBCs are applied to x and y. Calendering is performed by moving down the top plane until reaching the desired degree of compression. The consideration of the electrode elastic recovery is performed by erasing the top plane at the end of compression and letting the electrode microstructure relax. A schematic of this computational workow is depicted in been applied, i.e., the electrode thickness was compressed by 10%, 20% and 30% with respect to the initial electrode thickness. Here the elastic relaxation is not considered for the purpose of having perfect control on the dierent degrees of compression of the nal electrodes. In particular, the application of not PBCs on z and the electrode compression disrupt the ideal homogeneity of the dried electrode phase distribution (Figure 4.9 A and B). However, it should be anticipated that this is linked to the almost perfect homogeneous phase distribution of the dried electrode considered here, and the opposite trend is observed when starting from an heterogeneous dried electrode microstructure.

Moreover, a trend of particular interest is the evolution of the pore phase distribution, for which it can be noted that calendering causes lower porosity in the electrode top layers compared to its bottom, and that this dierence tends to disappear for high degrees of compression (Cal30). This trend can be understood considering that calendering is an anisotropic phenomenon, meaning that compression is performed from the electrode top, which causes the compaction of the particles in the electrode top layers at rst, leading to lower porosity in this region. However, if the calendering degree is high enough, all the pores are signicantly reduced in size, leading to a re-homogeneization of the pore phase.

In addition, it should be underlined that this result could dier as a function of the actual experimental set-up employed, and for instance using two moving rolls, one at the bottom and one at the top of the electrode, could lead to a more homogeneous porosity depletion during calendering.

Figure 4.9 C presents the pore size distribution of the dried and calendered electrodes, which follows the same trend observed experimentally (Figure 4.3), i.e., the more the electrode is calendered, the smaller and the fewer its pores become. Finally, as expected, the percentage of contacts between solid (AM or CBD) and pore phase decreases with calendering, while the AM/CBD interfaces increase (Figure 4.9 D).

Another feature of this model is the capability of controlling the decrease of CBD nanoporosity during calendering. Concerning this aspect, it should be reminded that only few works have quantied how nanoporous this phase is, reporting a value of approximately 50% [198]. Furthermore, to the best of my knowledge, no study in the literature analyzed the evolution of CBD nanoporosity as a function of the manufacturing conditions, additive relative amounts and chemical nature, etc. Nonetheless, it is my opinion that the CBD nanoporosity is aected by all these parameters, up to a certain extent. For instance, it is easy to imagine that calendering does not only reduce the number and size of micropores, but of nanopores in the CBD phase as well. This is the reason for which the calendering model was developed to account for this decrease, even though, to date, no experimental reference in this sense has been reported. In particular, the CBD nanoporosity decrease is accounted for by shrinking the CBD particles down to a certain volume, which corresponds to the removal of a certain percentage of CBD nanopores. For the sake of giving a rough reference, a complete depletion of the nanopores would lead to a CBD shrinkage from 1.3 µm to ca. 1 µm. Figure 4.10 A illustrates 3D electrode microstructures obtained by using the same dried electrode of Figure 4.9, but compressing it by 25% of its initial thickness, accounting (or not) for the elastic recovery, and considering dierent CBD nanoporosity decrease. In addition, Figure 4.10 B reports their phase distribution evolution as a function of the electrode thickness, showing that the decrease in CBD nanoporosity (ε decrease ) mainly aects the CBD (decrease) and bulk pore (increase)

phases. This is simply due to the fact that the phase evolution analysis does not take into account the CBD nanoporosity, then its reduction is read as a decrease of the CBD volume fraction, which translates into an increase in the bulk pore volume (constant AM volume).

The CGMD-based calendering model was also tested on electrodes dried through the heterogeneous approach (section 3.2), as illustrated in Figure 4.11. It can be noted that, in the context of heterogeneous electrodes, calendering helps in leveling down the dierences between electrodes dried dierently, and reducing the overall electrode heterogeneities (Figure 3.9). This aspect can be better evaluated when directly comparing dried and calendered electrodes, for which the concept of relative phase dierence (RPD) is used (Figure 4.12). In particular, the RPD is dened as the ratio of the volume fraction of a compressed electrode to that of the compressed one initially dried at the lowest DR (here 1.02 / 1.08). The same applies for the uncompressed electrodes. Therefore, the RPD oers a quantication of how dierent the analyzed electrode microstructure is with respect to the less heterogeneous one; particularly the closer the RPD to 1, the lower the dierences. Furthermore, to easily compare compressed and dried electrodes, their associated RPD is reported as a function of their normalized thickness (0% stands for the current collector side, 100% for the separator side). From this analysis, it is possible to note that the RPDs of the calendered electrodes (dashed lines) are systematically lower compared to those of the non-calendered ones (full lines), underling that calendering helps in leveling the heterogeneities arising from fast drying. Lastly, comparing the RPDs of AM, CBD and pore phases for the dierent electrodes considered, left to right in Fig- reported here, this reads as dierent calendered electrode microstructures when applying the same calendering protocol to electrodes dried dierently.

Hybrid approach: combining ML, experiment and stochastic electrodes

The last approach developed to study calendering relies on a combination of experiments, partially stochastic electrode generation and ML, and was developed in strong collaboration with Marc Duquesnoy[342] (ML model development and statistical analysis),

Dr. Emiliano Primo[345] (experimental data) and Mehdi Chouchane[247] (microstructure generation), while my role was dening the overall methodology, interpreting the associated results and writing the related article. In this section, I rst focus on the overall approach we proposed, hereafter referred to as hybrid approach, and then I give some examples of results to underline its potential benet.

In general, an ideal strategy for a systematic use of ML-based approaches should combine the intrinsic reliability of experiments and physics-based modeling with the high throughput of stochastic methodologies. The overall hybrid approach we proposed ( A), and (ii) dening the remaining (unknown) electrode properties stochastically. The so-generated electrode microstructures can be analyzed in terms of several microscale electrode features, as particle interconnectivity or the electrolyte tortuosity (Figure 4.13 C). Furthermore, the low computational cost of the D-DEMG allows investigating broad arrays of manufacturing conditions and electrode properties, oering a wide view on the manufacturing process under analysis. This data can then be processed through ML algorithms to nd mathematical correlations between manufacturing conditions (electrode and process variables) and electrode properties, which can be used to develop human interpretable graphs mapping these correlations (Figure 4.13 D). The eect of manufacturing on macroscopic electrode properties, as porosity, thickness and mass loading, can be easily captured experimentally, while the evolution of microscale properties can be studied through experimentally validated physics-based modeling or experimental imaging techniques (section 1.4.3). However, the main diculty for implementing the latter input is dening appropriate descriptors of the electrode microstructure and embed them in the D-DEMG. Some possibilities could be the evolution of phase distribution as a function of the electrode thickness or the pore size distribution. Considering this diculty, the rst case study we performed accounting for experimental data only. An experimental dataset accounting for 54 electrodes encompassing 14 dierent initial conditions (electrode composition and porosity prior compression) and calendering pressure, hereafter referred to as calendering conditions, was constructed. A polynomial tting (accuracy of ca. 97%, Figure 4.14) was performed to link the porosity after the calendering ( cal ) to the electrode composition and porosity ( ini ) prior the calendering, and to the calender- ing pressure. The equation found through the above-mentioned polynomial tting was implemented in a D-DEMG, which rst denes an initial simulation box (x ×y × z,50 ×50 × 100 µm 3 ), and then interpolates the electrode porosity and thickness (z dimension)

for the calendering conditions chosen from the tting equation. The new simulation box is lled stochastically with AM and CBD phases based on the electrode composition and the experimental AM particle size distribution, and the arising electrode microstructure is characterized in terms of τ , contacts between current collector and AM (% CC-AM ) or CBD (% CC-CBD ) and active surface. Due to the partially stochastic nature of the generated elec- trode microstructures, this procedure is repeated ten times for each calendering condition, and the average values constitute the dataset used by the ML algorithm. This procedure is computationally ecient (section 4.5), allowing to rapidly build big datasets. In particular, here 4400 structures, hence 440 data points, were generated for training (80%)

and testing (20%) the ML model. In addition, another 4400 structures were generated to further test and validate the trained model. Here, the Sure Independent Screening and Sparsifying Operator (SISSO) [373] method was used, which outputs a mathematical equation describing the relations between model inputs and outputs. This approach showed a predictive accuracy > 97% for all the properties analyzed except for % CC-AM (ca. 76%). and σ ef f ective are reported as a function of the calendering pressure and AM wt.% for dierent ini . In particular, Figure 4.15 A-D depicts the ML-predicted electrolyte τ , i.e., the porosity times the ratio between the bulk and the eective conductivity/diusivity of Li + (Eq. 4.2). As expected, τ increases with the calendering pressure, due to the lower cal attained, which reduces the size and interconnectivity of the pores. Moreover, the eect of pressure on τ is more pronounced for lower AM wt.% and, consequently, higher CBD wt.%. Since the size of the CBD phase is smaller, it occupies the interstitial space between the bigger AM particles, causing a reduction in the size of AM interstitial pores for higher CBD mass fraction, outputting more tortuous paths within the pore phase.

Furthermore, it can be noted that by increasing ini the eect of the pressure on τ is even more accentuated, leading to signicantly higher values of τ at high calendering pressures. This is of particular relevance because it indicates that the initial condition of the calendering process can have a strong impact on the electrode properties arising from the manufacturing process itself. High standard deviations (SDs) of τ are found for the more calendered electrodes (lower values of cal ), especially for the case of ini = 48%. This is due to the fact that τ does not only depend on the geometric path length but also on the pore size and shape. [374,375] In other words, it is not just the value of cal that impacts the tortuosity, but the pore size distribution plays a critical role too, and low cal implies that τ is more sensitive to small variations in the interconnectivity and shape of the pores. This calls for better metrics for quantifying the eect of cal on τ compared to the classically used Bruggeman relationship[369], and points out the relevance of routine measurements of the electrode pore size distribution both computationally and experimentally. Figure 4.15 E-H depicts the ML-predicted electrolyte σ ef f ective , which is linked to τ and oers a dierent perspective on the analysis. In particular, it underlines that the ionic transport is hampered by a decrease of cal and AM wt.%, indicating once again the importance of the pore size distribution, small pores being detrimental for σ ef f ective .

One of the main benets of the procedure we developed is the capability of tracking several microscale properties and linking them to macroscopic ones at low computational cost. Figure 4.16 summarizes the trends found during this rst case study in the form of a correlation matrix, where the circle color, green or red, indicates if there is a direct or an inverse relationship between the variables, respectively. In addition, their size is linked to the degree of correlation between variables, meaning that bigger circles represent strongly correlated variables, while smaller ones indicate poorly or uncorrelated variables. The circles sizes were calculated from the variable pair Pearson product-moment correlation coecient. The interdependencies found highlight that manufacturing optimization relies on a complex interplay of trade-os, indicating that calendering should be tuned as a function of the electrode target performance. Indeed, calendering pressure, and most likely any other manufacturing parameter, is benecial for certain electrode properties and detrimental to others, suggesting that it is not possible to nd a general recipe to optimize LIB performance. Lastly, it should be acknowledged that all the results obtained in this rst case study were not particularly surprising, making the procedure itself (Figure 4.13) the main interest of this work.

Take home messages

This Chapter presented the three approaches we developed to study LIB electrode calendering. In particular, two dierent methodologies relying on 3D physics-based modeling were discussed, the rst one relying on DEM and the second one on CGMD. Both apply a xed plane on the electrode bottom, representing the current collector, and a moving plane on its top, representing the calendering roll, which is moved down until reaching a certain electrode compression/calendering pressure to mimic the calendering process. The DEM-based approach was parametrized by giving particular relevance to the electrode mechanical properties, which were assessed both experimentally and computationally through indentation curves. The development of this model allowed to link all the computational infrastructures developed at that time in the ARTISTIC project, and particularly the 3D slurry and homogeneous drying model, and the EIS and galvanostatic discharge 4D models. However, this methodology showed its limitations when testing it to electrode compositions or AM PSD signicantly dierent compared to the ones used as rst case study. Specically, it was noted that this model tends to introduce artifacts in the electrode microstructure which were likely to be dictated by the shift of FFs required when going from the CGMD to the DEM computational environment. Considering this important limit, a second physics-based model was developed. In particular, this model operates in the context of CGMD to avoid the artifacts observed for the DEM model, and is able to mimic electrode compression, elastic relaxation, and the decrease of the CBD nanoporosity. Among the dierent results obtained through this approach, two of them are of particular interest: (i) calendering was found to reduce the electrode porosity asymmetrically, meaning that the compressed electrode top layers are less porous than the bottom ones. This is true except for particularly high degrees of compression, in which the porosity is greatly reduced in the entire electrode microstructure. In addition, the porosity gradient developed after compression is mitigated thanks to the electrode elastic recovery, but can still be observed after it. (ii) Calendering tends to introduce heterogeneities in the electrode microstructure when the electrode prior to calendering is (almost) perfectly homogeneous, but it is helpful to mitigate electrode heterogeneities when the dried electrode microstructure is not homogeneous.

The third approach presented in this chapter relies on a combination of experiments, par-tially stochastic electrode generation and ML. In particular, experiments and/or physicsbased modeling could be used to identify the evolution of a certain electrode property during calendering. This can be expressed through mathematical equations that are embedded in a D-DEMG algorithm, which rst generates a microstructure having the electrode properties for a certain manufacturing condition (indicated by aforementioned equations), and then denes the remaining (unknown) electrode properties stochastically.

Lastly, the electrode microscale properties, as its τ , are assessed. Several electrode microstructures can be generated and analyzed by following this approach thanks to its low computational cost, enabling to rapidly build big datasets. These can be analyzed through ML algorithms to identify the relationships between manufacturing conditions and electrode properties at the microscale. While this approach was applied to calendering, it should be underlined that other manufacturing steps could be considered as well. The results allowed to build an overall perspective on the eect of calendering on the electrode microscale properties that were summarized in the form of a correlation matrix (Figure 4.16), but the trends identied were not particularly surprising, making the development and denition of the hybrid (experiment + physics-based modeling + D-DEMG + ML) approach the main interest of this work.

Experimental and computational details

All the electrodes manufactured for building the dataset used for the hybrid approach were produced by Dr. Emiliano primo [345]. The procedure used to prepare the slurries and dried electrodes is the same one discussed in section 3. In all these simulations the NMC electronic conductivity was considered to be 5 × 10 -3 S m -1 . All the other parameter values can be found in the supporting information of

Ref. [246]. The number of mesh elements used was > 800, 000. The computational cost of the discharge simulations ranged between 5 and 9 h in a laboratory server with 256 GB of RAM. The impedance was measured at seven frequencies per decade, ranging from 1 to 10 7 Hz and applying a 10 mV sinusoidal perturbation. The simulation parameters can be found in Ref. [348] and took between 24 and 36 h by using an Intel® Xeon® E5-4627 Cache @ 3.30 GHz with 264 GB of RAM. The τ EIS was measured by tting the Nyquist plot, obtained through an EIS 4D model, with a transmission line model (TLM) in series with a high frequency resistance, corresponding to the separator + electrode resistances.

The TLM accounts for the resistance of the ionic path at mid-to-high frequencies, while the low frequency capacitive behavior corresponds the double layer formation. R ion can be graphically extracted, by multiplying the real axis projection of the sloping mid-to-high frequency part by 3.

Generating 8800 electrode microstructures through the D-DEM took approximately 7

days by using an Intel® Core i7-8700 CPU @ 3. in electrochemical simulations willing to use the 3D electrode microstructures obtained through our computational workow as input for their electrochemical models. In particular, (i) can benet from a user-friendly interface that can introduce them to the eld of 3D physics-based modeling in a simplied way, while (ii) and (iii) can easily construct their own customized dataset by simulating and analyzing diverse electrode microstructures without learning how to use our 3D manufacturing models. The online calculator is composed of dierent sections (slurry, drying, calendering) that can be accessed sequentially. Therefore, the user should rst select the parameters of the slurry phase, run the associated simulation, and then recover its results to move on to the following section (here, drying). Alternatively, the user can recover a slurry structure that has been already calculated and move directly to the drying section. The selected/calculated slurry is used as input for the drying simulation, together with the drying parameters chosen by the user, as for instance the adoption of the homogeneous or heterogeneous drying approach.

Similarly, the user can either launch the drying simulation of interest, or recover results already available, to move to the calendering section. The outputs obtained at the end of the simulations are the 3D slurry/electrode microstructures, the slurry density, and the electrode mass loading, bulk and overall porosity. The 3D slurry/electrode microstructure can be either visualized through the web interface, or downloaded as a text le. The slurry density is calculated as the mass of the solid components plus the mass of the solvent divided by the slurry volume, the mass loading is dened as the AM mass divided by the electrode surface, and the porosities are calculated through voxelization of the 3D electrode structure by using a resolution of 0.2 µm, where periodic or non-periodic boundary conditions are considered according to the drying or calendering model used. because, thanks to this list, the users can chose to recover results already available for conditions similar to the ones s/he is interested for, which can lead to signicant time saving. Concerning the parameters of the models, from the slurry section the user can dene: (i) the chemistry used (AM, carbon, binder and solvent), (ii) the CBD size, (iii) the AM PSD, (iv) the electrode solid components (AM+carbon+binder) mass, (v) the weight percentages of the dierent solid components (AM, carbon and binder), and vi)

the SC. The CBD nanoporosity is accounted for and is kept constant at 50% [198]. These parameters give a signicant degree of freedom to the users, who can nely tune the slurry and electrode features. However, concerning (i), to date the only chemistries available are NMC-111 (AM), carbon black (conductive additive), PVdF (binder), and NMP (solvent), but other chemistries could be implemented in the future. In addition, the user can control the carbon and binder wt.% separately, but the model accounts for them through the CBD phase, whose wt.% is the sum of the carbon and binder weight percentages. This way the platform parameters are as similar as possible to the experimental ones, which make them more user-friendly for experimental researchers. Nonetheless, in the future, dierent ratios between carbon and binder could be accounted for by, for instance, modulating the adhesive forces of the CBD particles. In terms of drying simulation, the user can select the number of drying zones, the DR in the form of RSFs (section 3.2), and the evaporation mode, meaning the mathematical function to be used for going from the initial RSF, equal to 1, to the selected value (Figure 3.7). The number of drying zones chosen also dictates the kind of model used. The homogeneous approach is used when 1 zone is chosen, while the heterogeneous one is used for values >1. In the case of heterogeneous drying, the RSF of the bottom zone is kept constant to 1 by denition (section 3.2), and the choice of the middle and/or top RSF(s) and evaporation mode is unlocked only if a number of drying zones >1 is selected. Lastly, the controllable parameters for the calendering simulation are the degree of compression, the percentage of CBD nanoporosity decrease, and whether or not electrode elastic recovery is to be considered. All these parameters have certain pre-dened limits, all indicated in the platform, to guide the user, and discretized values to avoid overcharging the calculator with similar simulations.

The computational procedures used to simulate the slurry, its drying, and electrode calendering were slightly modied compared to the ones presented in Chapters 2,[START_REF] Lombardo | Articial Intelligence Applied to Battery Research: Hype or Reality?[END_REF][START_REF] Lombardo | Accelerated Optimization Methods for Force-Field Parametrization in Battery Electrode Manufacturing Modeling[END_REF] to make them as generalizable and as reliable as possible without the need for an in deep parametrization. In particular, the size of the CBD at the slurry phase is calculated as a function of the size of the solid CBD (carbon+binder+nanopores) and the SC selected by the user, allowing explicit consideration of the amount of solvent in the slurry and avoiding the need for a systematic comparison of the simulated and experimental γ-η curves. In addition, sedimentation is considered using an eective gravitational force, higher than the actual one to account for the mismatch between simulated and experimental time scales (section.3.2section 3.2). The FF parameter values employed were dened separately for the slurry, drying, and calendering in order to reproduce the main trends observed experimentally, as the increase of porosity with the CBD wt.%, or the increase of slurry density with the AM wt.% or SC, and to t, with a reasonable error, the experimental values at our disposal. In particular, the values selected were found to reproduce these trends well, and the relative error when comparing the simulated and experimental slurry density and electrode porosity was found to be ≤ 25%. Nonetheless, giving the users the possibility of modifying the FF parameter values is an option that we considered, and that we could implement through an "expert user" option if the user feedback would point to this aspect. In addition, the open-source codes can be downloaded freely from the ARTISTIC project github [380], where they are reported in a particular easy-to-use format, i.e. with a text le containing the user inputs that need to be lled as the only requirement to launch the associated manufacturing simulation. Therefore, the opensource codes can be used by expert users to customize the FF parameter values, the initial CBD nanoporosity, or to adapt the codes to account for dierent chemistries, upon others.

Lastly, Figure 5.3 reports an example of a series of structures obtained through this platform for two arbitrary sets of AM PSD, formulation, SC, drying and calendering conditions.

Take home messages

This Chapter presents the online calculator we developed in the ARTISTIC computational portal, which allows running the slurry, drying, and calendering simulations through a free and user-friendly web interface. Through this interface the main parameters discussed in this thesis, from the formulation and AM PSD, to the drying and calendering conditions, can be controlled. In addition, the users do not need any computational resource, as the simulation are performed in devoted computational resource located in the Matrics[236] computational cluster. The main goal of this interface is giving non-expert users access to the model we developed, it was designed with three groups of researchers in mind: (i) experimental researchers willing to approach the modeling eld, (ii) researchers developing predictive models, as ML-based ones, interested in studying LIB electrode manufacturing, and (iii) experts in electrochemical simulations willing to use the 3D electrode microstructures obtained through our computational workow as input for their electrochemical models. In particular, (i) can benet from a user-friendly interface that can introduce them to the eld of 3D physics-based modeling in a simplied way, while (ii) and (iii) can build easily their own customized datasets by simulating and analyz-ing diverse electrode microstructures without learning how to use our 3D manufacturing models.

Computational details

The online platform, whose concept was originally conceived by Prof. Alejandro A. Contrary to the model presented in subsection 2.11, the size of the liquid CBD is not considered as an eective parameter to be tuned for tting the slurry density and η-γ

curve, but it is directly calculated as a function of the solvent volume, dened by the SC, and the size of the solid CBD (carbon+binder+nanopores).

In terms of computational resources, six nodes (384GB of RAM each), each composed of 2 processors (Intel® Xeon® Gold 6148 CPU @ 2.40GHz, 20 cores) are devoted to the online calculator. Each slurry and drying simulation utilizes one full node, while the calendering simulation takes half of it. Each user is allowed to run up to 3 simulations in parallel, while the extra ones would not be launched before at least one of the three is nished. This is imposed to avoid overuse of the platform from single users, which would risk to increase the waiting time of other users. The computational cost of the simulations is a function of the number of particles used, which depends on the mass, formulation, AM PSD, and CBD size chosen. Some examples of computational cost are oered in the read-me reported in the online calculator for slurry, drying, and calendering.

[343] The computational cost discussed in section 2.4, section 3.5, and section 4.5 are a good ref-erence for the slurry, drying, and calendering simulations, respectively, but it should be considered that the computational cost scales non-linearly with the particle number. For this reason, the online platform prints the number of AM and CBD particles associated to the launched simulation, which can give a rough idea of the associated computational cost.

Chapter 6

Electrochemical performance

This Chapter focus on a case study I performed combining the 3D manufacturing models presented in Chapter 2, 3 and 4 with the 4D galvanostatic discharge model developed by Mehdi Chuchane [246] to study the eect of AM PSD and electrode thickness on the electrode discharge performance for a given electrode composition, here 96 wt.% of AM. In addition, bi-layer electrodes made of two dierent PSDs for their top and bottom were studied as well. The original plan also accounted for dierent degree of electrode porosity: highly porous (ca. 50% porosity), compressed (ca. 35% porosity) and highly compressed (ca. 25% porosity) electrodes. However, due to time constraints, only the rst and second conditions were investigated. To better underline the reasons for which this study was designed, I shortly present the state of the art of the topic at rst, focusing on the most relevant computational procedures reported so far, and then I illustrate the results obtained using our computational workow. The work presented in this Chapter is inscribed in the WP 3 (electrode performance modeling) of the ARTISTIC project.

AM PSD, electrode thickness, and performance

The role of AM particle size distribution was studied both experimentally [383387] and computationally [388393] for dierent AM chemistries. The main experimental approaches for tuning the AM PSD are through controlling the synthesis and precipitation conditions [385,387], and particle sieving [384]. However, accurate control of AM PSD is challenging with any of these approaches, the reason for which 3D or homogenized modeling could be a convenient alternative. In this context, stochastically generated 3D electrodes were recently used by the Janek's group [389,390] in the context of all solidstate batteries (ASSBs), and by Kespe et al.[391] in the context of LIBs. The former analyzed single layer electrodes considering up to three AM particle sizes, while the latter focused on bi-layer electrodes accounting for one AM particle size for each layer, where bigger AM particles at the electrode bottom and smaller one at its top was found to be a benecial conguration. Both these works did not explicitly consider the role of conductive additives. Another possible approach is articially modifying electrode structures obtained through tomography to module the AM particle sizes, as recently reported by Lu et al.[211], who found that small AM particle sizes at the electrode top unlocks higher discharge capacity. However, only two conditions, before and after reducing the AM size in the electrode top region, were considered. One last recent work that should be mentioned is the one of Witt et al.[388], who studied thousands of dierent cell congurations through a P2D-based approach. In this particularly interesting work, the authors highlighted that dierent optimization objectives, as (dis)charge capacity, energy or power, are likely to require dierent electrode designs (AM wt.%, porosity, thickness, loading, multi-layers, etc.), and that the optimum depends on the utilized conguration, as for instance half-or full-cell congurations. In addition, among the dierent cell conditions they studied, the role of bi-layer cathodes was not found to be of major interest neither for charge, nor for discharge. However, even though the use of homogenized approaches unlocks the consideration of thousand of dierent conditions, it also hampers the explicit consideration of the inuence of CBD and AM distribution into the 3D electrode. In addition, in this study each layer was composed of one AM size only, neglecting the role of polydisperse AM PSDs. In the context briey presented above, the work presented in this

Chapter aimed to oer added insights on the role of the 3D particle network in dening the electrochemical performance of electrodes having dierent AM PSDs and thicknesses.

Figure 6.1 depicts a schematic of the computational workow followed.

Two kind of AM PSDs were selected: (i) monodisperse, which are unrealistic but whose simplicity is helpful for investigating the role of AM particle size, and (ii) polydisperse, which are more representative of reality. Concerning the former, ve dierent electrodes were generated by taking the dimensions selected in Figure 2.2 as reference,

i.e., 3.5 µm, 4.5 µm, 5.86 µm, 8.28 µm, and 10.35 µm. Concerning the latter, a bimodallike PSD was used as reference, and dierent versions of it were generated to increase the A rst impact of the AM PSD is the evolution of the electrode pore size distribution, as depicted in Figure 6.3 for both monodisperse (A) and polydisperse (B-D) AM PSDs.

In particular, Figure 6.3 A shows that the pore sizes increase with the AM size, which is due to the bigger AM interstitial pores. This tendency, i.e., the bigger the average AM size, the bigger the pore sizes, can be noted also for the polydisperse scenario (Figure 6.3 B and C). However, in this context the dierent PSDs are much more similar, with the only exceptions being the structure with the smaller average AM size (lower +++ ) and the one having more middle size AM particles (medium + ). In addition, the dierent AM interstitial pore sizes cause a signicant change in the electrode electronic percolation network, as can be noted in Figure 6.4. Specically, small AM interstitial pores lead to many small CBD clusters which are poorly interconnected with each other (left of Figure 6.4), while big interstitial pores allow the formation of continuous-like CBD clusters (right of Figure 6.4). Considering that CBD is the principal electronic transport medium in NMC-based cathodes, this dierence has a signicant eect on the electronic percolation network, inuencing the overall electrochemical performance. This is particularly relevant in the context of the work presented here, as all the highly porous electrodes tested were shown to be electronically limited. This can be seen clearly from the example reported in Figure 6.1, where it can be noted that lithiation starts from the electrode bottom and moves upwards during discharging. This indicates that both electrons and Li + are available at the electrode bottom regions from the beginning of discharge, while this condition is met only later on for the electrode top regions.

One last aspect of the computational workow employed is that all the electrodes were either doubled or combined to form thick or graded electrodes (both ca. 130 µm thick), respectively (Figure 6.5). The former contains one AM PSD only, while the latter accounts for a given AM PSD at its bottom and a second one at its top. For all cases, the main electrochemical observables considered are the discharge curve (voltage Vs. specic ,max ], ca. 32,300 mol m -3 ), which was calculated considering a specic capacity of ca. 185 mA h g -1 and a NMC density of 4.65 g cm -3 . The main electrochemical results obtained for the case of thin electrodes are illustrated in Figure 6.6. It should be stated, however, that the mesh resolution used for this study was found to be poor for reproducing the monodisperse structure accounting for an AM diameter of 3.5 µm (red curves in the monodisperse scenario), leading to signicant deformations of the particle shape, the reason for which the results associated to this structure should be taken carefully. Besides this, overall, the electrodes behaving the best are the ones having smaller AM sizes, for both monodisperse and polydisperse scenarios. This is the most classically expected result when using a model that does not take into account parasitic reactions, because decreasing the AM size increases the AM surface to volume ratio, making Li + intercalation faster, and reduces the time needed for Li to diuse into the NMC particles. Indeed, the center of big AM particles is of dicult access for Li + , making a part of this particles underutilized during discharge, contrary to small AM particles, as can be noted in Figure 6.1 and as underlined previously [246]. In addition, Figure 6.6 B

shows that all the electrodes are utilized homogeneously, with electrode top that is just slightly underutilized compared to its bottom, due to the electronic limitations discussed above. However, a certain degree of ionic limitation is observed as well, as indicated by the lower [Li + ] at the electrode bottom with respect to its top (Figure 6.6 C). Nonetheless, the dierence between the top and bottom [Li + ] ranges between 2 and 5% only, and all the electrodes showed the behavior illustrated in Figure 6.1, indicating that these electrodes are more electronically than ionically limited. When going from thin to thick electrodes both these limitations become more signicant (Figure 6.7), leading to lower specic capacity and higher polarization. However, the increase of the electronic limitations was found to be greater than the ionic one, reason for which the relationship between AM particle size and percolation network starts to play a more important role. Interestingly, for the case of monodisperse thick electrodes, the electrodes having small AM particles are not the ones performing the best, and the electrode with the highest specic discharge capacity is the one having the smallest particle size allowing to obtain a continuum-like CBD phase, i.e., the one with AM particles of 8.28 µm (Figures 6.4 and 6.7). This indicates that, in a context of strong electronic limitations, the percolation network can become more important than the available AM surface or Li s diusion limitations. How- ever, when further increasing the AM size (from 8 to 10 µm) there is no signicant extra advantage in terms of percolation network, while the increased Li s diusion path and the lower AM surface to volume ratio lead to a decrease of the specic discharge capacity. In addition, the accentuation of the electronic limitations is clearly observable in Figure 6.7 B, that reports a drastic drop in the SOD when going from the bottom of the electrode to its top, especially for small AM particle sizes. However, when analyzing the polydisperse scenario, the identication of any specic trend is a dicult task. Indeed, in a more realistic scenario both small and big AM particles would contribute, even if at dierent ratios, allowing to reach a decent percolation network for all the polydisperse AM PSDs tested. Even though some specic AM PSDs showed signicantly better (medium -) or worse (higher ++ ) performance, it was not possible to identify a clear trend linking them.

However, these results underline that the consideration of monodisperse electrodes only, as Refs. [389,391], can lead to non-representative conclusions with respect to realistic scenarios.

Aiming to study the role of the electrode bottom and top regions in the context of (mainly) electronically limited electrodes in more detail, a series of graded electrodes were generated and analyzed. The rst tested hypothesis is whether using bigger AM particles in the bottom layer and smaller in the top layer can lead to performance gains compared to the reversed scenario (small particles in the bottom and big in the top), whose results are illustrated in Figure 6.8. This hypothesis was found to be correct for the case of monodisperse electrodes, as the big AM particles at the bottom ease the formation of a more convenient electronic percolation path, while the small AM particles at the top are more easily and rapidly lithiated due to their smaller diusion length and bigger surface to volume ratio. Indeed, when using the reversed conguration the specic discharge capacity drops by 30-35% for all the conditions tested, mainly caused by a poor lithiation of the electrode top (Figure 6.8 B). However, this hypothesis was not conrmed in the case of polydisperse electrodes, for which the opposite trend was observed, i.e., better performance when using smaller AM in the electrode bottom and bigger in its top (Figure 6.8). Aiming to further investigate the potential of bi-layered electrodes, I analyzed a series of electrode structures by keeping the AM PSD of either the top or bottom layer constant, while changing the AM PSD of the other layer. In particular, Figure 6.9 A and C compare the performance of electrodes using either the medium + (full lines) or medium -(dashed lines) AM PSD in the bottom layer and dierent AM PSDs in the top layer. This comparison shows that all the electrodes using the mediumelectrodes in the bottom layer have a higher specic discharge capacity, due to a more homogeneous electrode lithiation (Figure 6.9 C), which can be achieved thanks to the better electronic percolation network of the medium electrodes compared to the medium + one (Figure 6.7). Therefore, in the context of the case study considered here, and similarly to the monodisperse scenario, bottom layers with a better electronic percolation network lead to more homogeneous SOD, enhancing the electrochemical performance. However, if from one side it was easy to correlate a better percolation network with bigger AM particle sizes for the case of monodisperse AMs, from the other side it is dicult to identify which AM PSDs are potentially benecial in this concern, making it dicult to translate the results found here into practical advice for manufacturers. Nonetheless, by assuming that the percolation network of the bottom layer is the key for better electrochemical performance, an easier way for achieving this, even if not investigated here, could be increasing the conductive additive contents of this layer, rather than tuning the AM PSD. Figure 6.9 B and D illustrates the role of the AM PSD in the top layer, that was studied by xing the AM PSD of the bottom layer (medium -) and changing the AM PSD of the top one. In particular, in this case it was observed that the smaller the average AM size of the top layer, the higher the specic discharge capacity, as previously highlighted by Lu et al. [211].

Finally, when comparing the best performing bi-layer electrodes to the single layer ones, a gain of approximately 7% and 10% in terms of specic discharge capacity can be reached for the monodisperse and polydisperse scenarios, respectively. This underlines that the multi-layer electrode conguration is part of the electrode performance optimization toolkit, as recently highlighted by Witt et al.[388]. However, this modest increase should not only be experimentally veried, but also compared to the possible extra costs that manufacturing multi-layer electrodes could require, which is outside the scope of this study.

The same analysis was performed for the case of compressed electrodes (overall porosity of ca. 35%). It should be underlined, however, that the electrodes tested here were calendered through the DEM-based model, which means that the arising structures are aected, up to a certain extent, by the artifact discussed in section 4.1 and illustrated in Figure 4.7. Therefore, even though the results associated to these structures are reported here for the sake of completeness, they should be approached with caution. Beside this, a rst notable dierence when going from the uncompressed to the compressed electrodes is that the discharge of the latter is almost homogeneous for thin electrodes. This means that from the beginning of discharge, lithiation occurs from both electrode top and bottom, even if a residual of electronic limitation is still observable (left of Figure 6.10).

Concerning the thick compressed electrodes, they behave similarly to the uncompressed case, i.e., discharge starting from the electrode bottom and moving towards its top due to electronic limitations. However, thanks to the improved electronic percolation network and the decrease of electrode thickness, the SOD at the end of discharge of compressed electrodes is signicantly more homogeneous compared to their uncompressed counterpart, as illustrated in the right of Figure 6.10. Figures 6.11 and 6.12 summarize the main results obtained for the thin and thick compressed electrodes, respectively. Comparing these results to the ones obtained for uncompressed electrodes (Figures 6.6 and 6.7), it can be noted that the more classically expected trend, i.e., the smaller the AM size, the better the performance, is observed for both thin and thick monodisperse electrodes. In addition, the SOD evolution as a function of the electrode thickness is signicantly more homogeneous, while a stronger ionic limitation is observed (for both, please note the dierent scales with respect to the uncompressed condition). Furthermore, the specic discharge capacity and gravitational energy density of the compressed electrodes are higher for thick electrodes and they are lower for thin electrodes compared to their uncompressed counterparts. This phenomenon could arise from the lower AM surface available for Li + intercalation, but it could also arises from an artifact of the DEM model. One last notable dierence concerns the mediumelectrode, which is the one with the lower discharge capacity among the polydisperse compressed electrodes despite having the better electronic percolation network in its uncompressed state (Figure 6.7 B). This could arise from an artifact introduced by the DEM model as well.

In conclusion, this study suggests that, as a function of the electrode thickness and porosity, the AM PSD can play dierent roles, as for instance easing the formation of good/bad electronic percolation networks or big/small pores, or accelerating particle lithiation by increasing the AM surface to volume ratio. However, this study is partial and should be taken as such. Indeed, the case of compressed electrodes should be repeated using the CGMD-based model instead of DEM-based one, to conrm or question the observed trends, and the case of highly compressed electrodes should be investigated. Finally, an aspect not considered here but that would be worthy of devoted studies is the role of electrode formulation and its correlation with AM PSD, and electrode thickness, porosity and electrochemical performance.

Take home messages

The analysis reported in this chapter intended to study how AM PSD and electrode thickness aect electrode electrochemical performance for dierent electrode porosities, and to investigate the potential gain from using graded electrodes. In particular, two scenarios, i.e., monodisperse and polydisperse AM, and two conditions, highly porous (overall porosity of ca. 50%) and compressed (overall porosity of ca. 35%), were considered. The results indicate that the AM PSD inuences key electrode properties as its pore size distribution and electronic percolation network, aecting the discharge performance. In particular, the analysis performed through monodisperse electrodes suggests that the higher the AM size, the bigger the pores and the longer the CBD percolation network. In the case of highly porous and electronically limited electrodes, this can lead to higher specic discharge capacity for electrodes having bigger AM particles, which is somehow surprising when not considering side reactions. This phenomenon was observed with particular clearness for thick monodisperse electrodes, underlining the critical role of the electrode thickness, even though this property is often not reported experimentally (Appendix A). However, these trends are much more dicult to recognize when using realistic (polydisperse) AM PSDs, underlining that modeling studies using only monodisperse electrodes may point to misleading conclusions, and questioning the trends obtained here in terms of the monodisperse scenario. Nonetheless, for both monodisperse and polydisperse electrodes, it was observed that the electrode bottom is critical for electronically limited and thick electrodes. In this context, double-layer electrodes can be useful, especially when designed to have an optimal electronic percolation network in their bottom layer, and small AM particles in their top layer for making their lithiation faster. This could be attempted in dierent ways, as for instance increasing the amount of carbon additive in the bottom layer, but here we focused on tuning the AM PSD of the bottom and top layers, for which only a modest, up to 10%, increase of specic discharge capacity was observed. When considering compressed electrodes, the advantages of using big AM particles for improving the electronic percolation network seems to be less relevant, but the results obtained for this condition are likely to be aected by artifacts, making them dicult to trust. In addition, highly compressed electrodes represent a third condition of interest that was not examined here, and for which it could be speculated that ionic limitations would prevail. In this context, a similar but reversed conguration with respect to the highly porous condition could be benecial, i.e. utilizing an electrode with bigger pores, or higher porosity, in the top layer to facilitate the path of Li + , and small AM particles in the bottom layer to speed up their lithiation. Lastly, an aspect not considered here but that would be worthy of systematic studies is the role of electrode formulation and its correlation to AM PSD, and electrode thickness, porosity and electrochemical performance.

Computational details

The dried and compressed electrode microstructures were generated as discussed in section 3. for the NMC electronic conductivity, which was considered to be 5 × 10 -3 S m -1 . As a reference, the electronic conductivity assigned to the CBD phase is 5 order of magnitudes higher (760 S m -1 ). All the meshes were generated by using the same parameters, i.e., resolution of 0.2 µm, precision of 5,5,11 (x,y,z), and no down sampling, and the number of mesh elements ranged between > 600, 000 (structures with bigger AM particles) and > 1, 000, 000 (structures with smaller AM particles). The electrochemical simulations took between 24 and 48 h in a Desktop computer Intel(R) Core(TM) i7-8700 CPU @3.20

GHz, 64 GB of RAM.

Chapter 7

Overall Conclusions and perspectives

This thesis presented the LIB electrode manufacturing models, mainly 3D physicsbased ones, and approaches developed within the ARTISTIC project, accounting for the slurry phase (Chapter 2), its drying (Chapter 3), and electrode calendering (Chapter 4).

These models consider a number of experimental parameters, as the AM particle size distribution, electrode formulation, SC, drying, calendering conditions, etc., and allow access to the associated electrode microstructure. Overall, the main interest of 3D physicsbased models is that they are less resources and time expensive compared to experimental imaging techniques, as TXCT, and more reliable compared to stochastic approaches, making them a good compromise between throughput and reliability.

Concerning the slurry phase, two physics-based and one ML-based approaches were developed. The physics-based models were named "NMC-like" and "graphite-like" due to the AM for which they were initially applied to, and the main dierence between them is the dierent consideration of the solvent: the NMC-like model considers it embedded in expanded CBD particles, while the graphite-like model splits carbon+binder and solvent in two dierent particles. Both these approaches aim to form a continuous-like media with the use of big and highly overlapping particles (expanded CBD and solvent particles, respectively) to mimic the behavior of viscous suspensions, as LIB electrode slurries. To assess if these models can describe the main slurry properties, the experimental and simulated slurry density and shear-viscosity curves were compared. Particular attention was given to the latter, as rheological properties of slurries determine their stability and processability, both critical for slurry mixing, coating and drying. Concerning the NMC-like model, the η-γ curve of dierent slurry compositions and SCs were reproduced with good accuracy through parametrization of the FFs. This was achieved through two dierent approaches: manual and PSO-driven parametrization. The former relies on researcher's intuition and her/his understanding of the model, while the latter is based on an automated optimization algorithm based on the PSO-theory, combined or not with data previously obtained by a human operator, or an ML algorithm. The PSO-based approach demonstrated to be more ecient than the manual parametrization, but it still requires a signicant amount of computational resources. To bypass this issue, several ML algorithms were trained to identify the suited FF parameter values for a targeted experimental η-γ curve, but with scarce results due to the unbalance between ML model inputs (viscosity for two dierent shear-rates, and density) and outputs (8 selected FF parameter values). Concerning the graphite-like model, unfortunately a complete parametrization with respect to slurry rheology was not possible, leading to a weaker model parametrization performed with respect to the slurry density only.

In addition to the 3D physics-based models, an ML-based approach was developed. Different ML algorithms were trained using an in-house experimental dataset accounting for slurry formulation, SC and viscosity, and the electrode mass loading and porosity for dierent coating comma gaps. Among the dierent ML algorithms tested, SVM combined the highest accuracy and a straightforward graphical representation, helping to identify correlations between slurry and electrode features. In terms of electrode mass loading, the same trends were identied through analysis of the raw experimental data and the SVM model outputs. From the one side, this conrmed the accuracy of the ML model, but from the other side the SVM-based representation did not bring any signicant advantage compared to simpler 2D plotting of experimental data. However, when analyzing the electrode porosity, no clear trend was observed in the raw experimental data, while some trends can be identied through the ML-based representation. In particular, lower porosity was observed for higher AM wt.% and slurry SC. To conrm this trend, devoted oscillation and frequency sweep measurements were performed, leading to the understanding that the trends identied through the ML-based approach were linked to the slurry liquid-like or solid-like behavior. In particular, it was noted that high amounts of carbon and binder (low AM wt.%) led to a solid-like behavior, low amounts of carbon and binder to a liquid-like behavior, and that both are aected by the SC utilized, being the second scenario particularly sensible to it. This implies that particle interactions in high AM wt.% and SC produce a less rigid network, which is more prone to be deformed during coating and leads to less compact coated slurries and more porous dried electrodes. The opposite can be said in the case of low AM wt.%. Once again, this trend was conrmed and understood through devoted experimental measurements, but it would have not been identied by simply looking at the raw experimental data, stressing the relevance of ML methods in oering a dierent perspective on data and uncovering relationships between variables.

Slurry drying was studied from a physics-based perspective using two dierent approaches, here named "homogeneous" and "heterogeneous" drying. Starting from the 3D slurry structure, the homogeneous approach remove the solvent entirely at the very beginning of the simulation, and then particle interactions and PBCs in all the directions are applied, leading to shrinkage of the structure and to the dried electrode microstructure.

Similarly to the slurry model, the FF parameter values can be tuned to t the desired electrode properties, as its density and porosity. This model is particularly stable, and its parametrization is relatively easy, allowing easy comparison between electrodes with different compositions, AM PSDs, porosities, and thicknesses. However, it suers from two main limitations: (i) it outputs rather homogeneous electrode microstructures, not accounting for heterogeneities developed during drying, and (ii) it models the dried electrode microstructure at the end of the drying, but not the dying process itself. The heterogeneous drying approach was developed having the consideration of these two aspects as main goal. In this model, the solvent is not removed from the beginning of the simulation, but during the drying simulation by iteratively shrinking the CBD particles, going from the "liquid" CBD (carbon+binder+solvent) to the solid one (carbon+binder+nanopores).

In addition, the speed of this transition is function of the CBD particle position, i.e., faster in the slurry top than its bottom. Non-periodic boundary conditions are applied in the thickness direction, and higher attractive forces are set for solid than liquid CBD particles, as it was found to be needed when using the homogeneous approach. This computational strategy translates in: (i) higher space available in the top and middle regions due to the faster CBD shrinking speed and (ii) higher attractive interactions of the CBD particles in the slurry top layers compared to the ones in the bottom. These two features lead to the migration of CBD particles during drying, and mimics the role of convective and capillary forces causing additive migration experimentally. Thanks to this computational strategy, it was possible to mimic the main trends observed experimentally during fast drying, i.e., (i) the higher the DR (here, the faster the CBD shrinkage), the higher the fraction of CBD in the electrode top at the expense of its bottom. (ii) CBD migration does not take place during the entire drying process, but rather in a specic time range.

Moreover, a third trend was identied, i.e., the times at which CBD migration starts and ends depend on the DR, and particularly that CBD migration starts and ends earlier for higher DRs. To the best of my knowledge, this trend was not previously reported, calling for further experimental studies aiming to verify, and eventually quantify, this phenomenon. Both homogeneous and heterogeneous approaches were initially developed for NMC-like slurries, and only the homogeneous approach was correctly implemented for graphite-like slurries, while the adaptation of the heterogeneous approach did not lead to meaningful results. This could arise from errors in the LAMMPS code developed for this scenario, or to issues in the source code behind the LAMMPS command used to remove the solvent "particles". Finally, the homogeneous drying approach was used for elliptical AM particles, but this project was interrupted due to the lack of FFs available for this scenario, leading to numerical instabilities.

Electrode calendering was studied through two dierent 3D physics-based models, and a hybrid approach. The rst physics-based model, based on DEM (LIGGHTS), allowed to reproduce the mechanical properties of the experimental electrode taken as reference (96 wt.% of AM, 2 wt.% of carbon, and 2 wt.% of binder), to reproduce expected trends as the decrease of pore size and amount, and to link the 3D manufacturing models to 4D electrochemical simulations accounting for EIS and galvanostatic discharge in symmetric and half cell conguration, respectively. However, a deeper study on this model showed that it introduces an artifact due to the shift from the CGMD (slurry and drying) to the DEM FFs, which was observed with particular clearness when using signicantly dierent AM PSDs compared to the one adopted for the rst study. Therefore, a second calendering model was developed in the CGMD (LAMMPS) environment to avoid any change of FF, allowing to get rid of this artifact. The parameters of interest for this second model are the degree of electrode compression, the consideration (or not) of electrode elastic recovery, and the decrease of CBD nanoporosity during calendering. This last aspect was developed by speculating on the reduction of nanopores during electrode compression, which, however, to the best of my knowledge has never been studied and quantied in the context of LIB electrodes. In terms of results, the two trends of major interest relate to the volume fraction distribution of AM, CBD and pores as a function of the electrode thickness after electrode compression or compression + elastic recovery.

In particular, it was observed that calendering reduces electrode porosity asymmetrically, i.e., more in the electrode top layers. This was related to the anisotropic electrode compression occurring during calendering, which is modeled through a plane that is initially located at the electrode top and moved downward, which causes particle compaction in the electrode top layers at rst. However, if the compression degree is high enough, all the pores are signicantly reduced in size, leading to a re-homogeneization of the pore phase. In addition, it should be underlined that this result could dier as a function of the actual experimental set-up employed, and for instance using two moving rolls, one at the bottom and one at the top of the electrode, could lead to a more homogeneous porosity depletion during calendering. The second trend of interest relates to the role of calendering in emphasizing or mitigating electrode heterogeneities. It was observed that calendering leads to an increase of electrode heterogeneities when starting from an ideal homogeneous electrode (homogeneous drying), while it helps mitigating them when utilizing a strongly heterogeneous dried electrode (heterogeneous drying). This also underlines that the microstructure outputted by a given manufacturing process depends on the slurry/electrode microstructure prior to this process, and that these interlinks can be accounted for through the methodology implemented during this thesis.

The third approach we developed combines experimental results, data-driven electrode microstructure generation, and ML. In particular, this approach requires experimental data as input, which is used to link given manufacturing parameters to selected electrode properties. The relationship between manufacturing parameters and electrode properties is described mathematically through tting or ML, and the arising model is used as input for the D-DEMG. This algorithm generates electrode microstructures by imposing the electrode features associated with a given manufacturing condition of interest, and denes the remaining ones stochastically. Afterwards, the microscale electrode properties, as its τ , are determined, building a dataset that links manufacturing parameters and electrode

properties at both at the macro and microscales. This procedure is particularly ecient from a computational perspective, allowing to generate several electrode microstructures for each condition of interest and to account for their partially stochastic nature. The nal dataset is used for training and testing an ML algorithm to link manufacturing parameters and electrode properties, with the goal of identifying relationships between them. In addition, even if not tested yet, this methodology was designed to consider data obtained through 3D physics-based models, as pore size distribution or volume fractions as a function of the electrode thickness, as D-DEMG inputs, which could be combined or substituted to the experimental data.

The slurry, homogeneous and heterogeneous drying, and CGMD-based calendering models were embedded in a user-friendly and free web interface, allowing non-expert users to utilize them. In particular, users can dene parameters such as the AM PSD, CBD size, electrode formulation, SC, drying, and calendering conditions. These parameters are sent to a computational cluster, which run the associated simulation in devoted resources.

Once the simulation ends, the results are recovered by the online platform and added to the associated dataset, and a mail is sent to the user who launched the simulation. In addition, it should be underlined that the results obtained through this platform are openly shared with all the users, meaning that anyone can recover any results previously obtained by others. In combination with the publication of the associated open-access codes, I think that this approach allows a complete transparency and gives full access to these models for any kind of researcher. This platform was designed with three groups of researchers in mind: (i) experimental researchers willing to approach the modeling eld, (ii) researchers developing predictive models, as ML-based ones, interested in studying LIB electrode manufacturing, and (iii) experts in electrochemical simulations willing to use the 3D electrode microstructures obtained through our computational workow as input for their electrochemical models. In particular, (i) can benet from a user-friendly interface that can introduce them to the eld of 3D physics-based modeling in a simplied way, while (ii) and (iii) can easily build their own customized dataset by simulating and analyzing diverse electrode microstructures without the need of learning how to use our 3D manufacturing models.

Finally, the 3D manufacturing simulation outputs were combined with 4D electrochemical models, previously developed within the ARTISTIC project, to study the interplay between AM PSD, electrode thickness, and specic discharge capacity in half-cell conguration for both single and bi-layer electrodes. Eight polydisperse and ve monodisperse electrodes were generated, accounting for thin (ca. 65 µm) and thick (ca. 130 µm) scenarios, and keeping the electrode formulation (96 wt.% of AM) constant. The noncalendered electrodes were highly porous (ca. 50% porosity) and were tested under a constant current of 280 mA g -1 . In this context, all the electrodes were found to be elec- tronically limited, with lithiation starting from the electrode bottom and moving upwards during discharge, causing higher average SODs the electrode bottom than its top. This dierence was minimal (ca. 5%) at the end of discharge for thin electrodes, but became extremely signicant for thick electrodes (up to 55% and 75% for the polydisperse and monodisperse scenarios, respectively), especially for the ones having a poor electronic percolation network. This was particularly evident in the case of monodisperse electrodes, for which small AM particle sizes are the optimal choice for thin electrodes, while bigger AM particle sizes allow obtaining improved electronic percolation networks, which can lead to higher specic capacity for thick electrodes. This is related to the small AM interstitial pores obtained when using small AM particles, leading to small and poorly interconnected CBD agglomerates, i.e., the main electronic carrier phase. On the contrary, big AM particles cause big AM interstitial pores and a continuous-like, well connected CBD network. This suggests that AM size does not only impact the reaction rate and diusion path, but plays a role in dening the CBD phase distribution as well, strongly impacting the electronic percolation network. Which of these two eects, faster reaction rate or improved percolation network, contributes the most to discharge capacity denes if smaller or bigger AM particles are desirable. However, this trend was not evident when utilizing polydisperse AM particles, which indicates that studies relying on monodisperse electrodes can give indications on the phenomena to be considered when searching for an optimal AM PSD, but their results can lead to wrong or inaccurate conclusions when transposed to realistic, polydisperse AM PSDs.

Bi-layer electrodes can be designed to combine the advantages of small and big AM particle sizes by, e.g., for electronically limited electrodes, utilizing AM PSDs leading to good electronic percolation network in the bottom layer, and small AM particles to speed up particle lithiation in the top layer. The opposite scenario can be speculated for the case of ionically limited electrodes.

Many perspectives can be drawn from the works discussed in this thesis to overcome its main limits, and they can be summarized as: (i) direct comparison between simulated and experimental electrode microstructures, (ii) consideration of realistic, non-spherical AM particle shapes, (iii) implementation of models simulating manufacturing processes not accounted for in the computational workow developed so far, (iv) testing and, when needed, adapting the manufacturing models to dierent chemistries, (v) testing and implementing new force elds, (vi) deeper exploration of the manufacturing parameter space and its link to electrochemical performance, and (vii) further improvements of the computational calculator. Almost all these perspectives are currently under study/development within the ARTISTIC project.

• Microstructure comparison: In my perspective, the main limitation of this thesis is the lack of direct comparison between simulated and experimental electrode microstructures, which limits the representativeness of the simulated electrode microstructures.

This would: (i) allow conrming or questioning the accuracy of the model in terms of reproducing the 3D particle location, and (ii) lead to signicant step forwards in terms of reliability of the models. In my opinion, the procedure that should be followed for such an important perspective should be: (i) obtaining a series of experimental electrode microstructures, distinguishing between AM and CBD phases, and linked to known manufacturing conditions; (ii) applying a post-processing step, for instance based on meshing or expand-erode approaches, to the simulated electrode microstructures, aiming to make them as similar as possible to the experimental ones. This procedure would introduce a third kind of parameters, not only the manufacturing and the FF parameters, but also the post-processing parameters.

Therefore, it would be important to nd sets of both FF and post-processing parameters that could allow an accurate tting between experimental and simulated microstructures. If this result will be achieved in the future, it would unlock the utilization of our 3D models for a quantitative assessment of the eect of manufacturing parameters on the electrode microstructure, while the version developed in this thesis is more suited for a qualitative or semi-quantitative assessment. Last but not least, an important aspect to keep in mind for reaching such a challenging goal would be the denition of suited observables to compare the simulated and experimental microstructures. For this, I think that as much microstructural parameters as possible should be considered, like contacts between the particles and between particles and current collector, active surface area, phases distribution, and particle roughness and sphericity.

• AM particle shape: Even though the shape of the NMC and graphite particles used as a reference during this thesis are spherical-like, many AM particles are far from being spherical. Moreover, their shape and size can be aected by manufacturing processes like mixing and calendering. In that sense, the use of elliptical particles, as discussed in this thesis, does not seem to be a convenient approach, while I believe that the preferable strategy is utilizing rigid bodies consisting of spherical particles linked together to form complex, non-spherical particles. However, rigid bodies cannot account for change in shape during manufacturing, for which the consideration of breakable bonds between the spherical particles forming the non-spherical body is probably the best solution. Nonetheless, this is likely to require a complex parametrization of the bond strength. An extra improvement could arise from the consideration of bonds that can be broken and formed during the simulation to account for agglomerate breakage and formation, respectively. Again, this is likely to require a complex model parametrization, in which the rst challenge would be dening the experimental observables to use as comparison for the simulation results.

• Extra manufacturing processes: Two important manufacturing processes that aect the electrode microstructure and the associated electrochemical performance are currently not accounted for in our computational workow: powder/slurry mixing, and slurry coating. As an example, the implementation of a 3D mixing model into our computational workow could allow an in-depth study on the role of mixing procedures in dening the arising 3D electrode microstructure and performance.

• Chemistries: In collaboration with other LRCS PhD students, we worked on applying the NMC-like model to another two chemistries that are signicantly dierent than that of NMC. The results obtained so far were not discusses in this thesis, but indicate that this model can be easily adapted to account for dierent AM chemistries, suggesting that it could be considered chemistry neutral, as we hope and plan to demonstrate with upcoming articles in this direction.

• Force elds: During this thesis we mainly used a combination of two force elds, the GH and LJ FFs. The GH is a FF designed for granular materials, which makes it suited for simulations at the particle level. On the contrary, the LJ is a FF originally designed for molecular systems, while here was used as an eective FF to account for particle attractive interactions. Even though combining the LJ and GH FFs lead to the positive results showed in this thesis, substituting the LJ with a granular-like FF could be benecial. This option was explored during this thesis (not discussed)

and is still being investigated. However, up to date all the tested FFs did not lead to satisfactory results.

• Parameter space exploration: The manufacturing models developed in this thesis, combined with the 4D electrochemical models developed within the ARTISTIC project, give access to an extremely vast parameter space, accounting for the AM PSD, CBD size, formulation, SC, electrode thickness and porosity, drying protocol, calendering compression, current density, multi-layer structures, etc. This parameter space was only partially explored, and dierent studies could be attempted by using other parameters. This can be done from a purely computational perspective to identify trends to be proposed to experimental researchers, but, when possible, these studies should be combined with experimental analysis to maximize their reliability and distinguish between trends identied through simulations that are likely to be correct, and artifacts arising from the approximations used. The computational calculator can be read as a way to make other researchers access this parameter space, aiming to investigate it in a collaborative way.

• Improved computational calculator: The majority of parameters accessible via our manufacturing models are directly controllable through the online platform, but few of them, like the electrode porosity and thickness or the initial CBD nanoporosity, are not. The last two will be implemented soon. The consideration of the initial CBD nanoporosity would be straightforward, as it would simply require adding an extra variable in the code and an extra menu in the platform. The electrode thickness can be somehow controlled by dening the aspect ratio of the initial simulation box. A user-friendly fashion to include this is by adding a cursor with, for instance, or magnetic characterization of battery materials, or computational studies, rather than electrochemical performance. The database was hereby reduced to ca. 6,300 (48% remaining), ∼5,800 LIB and ∼500 SIB, articles. Out of the ∼6,700 discarded articles, ∼7%

were Reviews and ∼12% dealt with other energy storage technologies or LIB/SIB separators, but surprisingly ∼81% were ltered due to lacking electrode composition. The latter comes from: (i) articles without electrochemical testing of composite electrodes e.g., modeling studies, (ii) complete lack of report of the electrode(s) composition(s) or being placed in the supplementary information, (iii) data actually being reported, but in a way that did not allow discriminating it through the search rules dened within the algorithm. While (ii) could be addressed relatively easily by accessing the Supplementary Information, if the electrode composition is therein reported, (iii) underlines the complexity of recovering information reported in a non-standardized way and to the associated information losses, even when data is reported. Even if the TM algorithms eciency is expected to increase, at present and most likely in the next years part of the literature data will be unreachable, calling for standardization actions. For each property of interest (Figure 8.1) a specic library is dened, which should ideally capture all the dierent ways a certain information can be reported in the literature i.e., being sensitive, while being selective i.e., avoiding false hits. This is particularly challenging when dealing with common words such as "thickness" or "diameter", or similar formats/units being used to report dierent kinds of information such as electrode and electrolyte composition. for two main reasons: (i) they are expected to signicantly aect the electrochemical performance of the cell, and (ii) these properties are easy-to-measure and general enough to be relevant for a wide spectrum of electrochemical energy storage technologies, like supercapacitors or ASSBs. Out of the screened properties, the electrolyte composition and the cycling conditions (voltage cut-o/range and current density) can be considered as typically reported (> 80%). Some other battery properties that are of paramount importance for the performance are not often reported, such as electrode thickness and porosity, and electrolyte volume (≤ 10%). In addition, the electrode surface area is not found to be systematically disclosed (ca. 25%). Since these parameters are critical for e.g., high-power applications, observing such trends is highly problematic. Even more revealing, the electrode mass loading was found to be reported in only ∼15% and ∼27%

of the LIB and SIB articles, respectively. Bearing in mind that this property critically determines the battery performance, those percentages were expected to be higher. In addition, for the case of electrode mass loading, porosity, and thickness, specic libraries were developed to distinguish if the value was reported as an exact value or as a range or approximate value. While the electrode thickness and porosity are expressed > 50% of times as exact values, the mass loading is often reported as an approximate value or a range of values (∼70%) (bars in Figure 8. The same can be said for the true/false negatives for the case of articles classied as not reporting a certain property. The F-score is a weighted average of precision and recall, On the other hand, the source of lower F-scores for electrode composition, current density and voltage cut-o/range is their lower sensitivity. For the rst property, the high number of false negatives are due to huge variability in corpora and lexicons or due to the information reported in a reference within the article, outside the experimental section, or in the supplementary material. The error on the current density is due to conversion issues on its units or to information reported in the gures. Lastly, the false negatives found for the voltage cut-o/range are systematically due to information that can be inferred from gures, which are inaccessible for the TM algorithm.

One last aspect that should be considered is how electrode and cell properties are reported in scientic literature, i.e., if they are reported similarly or in a scattered way.

In order to quantify the complexity of our mining procedure, the concept of Shannon Entropy [395], from the information theory, inspired the calculation of the mining scattering (MS). Briey, if researchers report a certain information similarly, its associated MS value would be low, while high MS values indicate that the habits of reporting a certain information in scientic literature is highly scattered, hampering its recovery. For more details about the implementation and denition of the MS concept, the interested readers are referred to Ref. [394]. The MS results for the 10 screened properties are reported in the right spider graph of Figure 8.3. The current density can be easily recovered by searching selectively its units, A g -1 or A cm -2 and their variations, or the C-rate. Similarly, the MS associated to the mass loading is extremely low, as it is always reported in similar ways and can thus be easily captured. Aside from these two parameters, all other properties are highly complex to recover, as highlighted by their high MS. Note that the properties which had low F-score values are among the ones that have higher values of MS, implying that their lower accuracy is not related to an undeveloped library but to the unstructured way in which they are presented within the articles. Finally, NIB articles show similar trends, as depicted in Figure 8.4.

Overall, this work showed that elementary electrode properties are far from being routinely disclosed. Yet, they are basic cell/electrode features for assessing the applicability of a material, raising severe concerns on the possibility to reproduce or re-use data reported in the literature. In this concern, I believe it is essential to dene the minimal data that should be reported when publishing a scientic article, as well as dening good practices among the battery community [271]. This requires dening standards, which however should account for the distinct characteristics of dierent battery technologies, as LIBs and ASSBs, and should not be seen as a burden by the community, but as a tool to further support and ensure the creativity process, maximizing simultaneously researchers' freedom and eciency. It should not be hided, however, that this will be dicult to put in place, and I think it cannot be done without the support of scientic journals. Indeed, journals could demand authors, during the submission procedure, to ll specic templates accounting for, for instance, electrode and cell properties, and cycling conditions. In addition, each of the dierent steps impacting battery technologies, from material synthesis and characterization to electrode/cell manufacturing and cycling protocol, would ideally require a devoted template, making their denition and worldwide utilization particularly challenging.

In that concern, at the end of the article discussed above[394], we proposed a simple data template asking for cell type and size, anode, cathode, separator and electrolyte main characteristics, cycling conditions, and how many times the experiments were repeated. However, unfortunately, to the best of my knowledge no one really adopted this template. More than this, I have also built, in collaboration with François Rabuel[396],

Tristan Lombard[397], and Marc Duquesnoy[342], an Excel-based data template accounting for electrode manufacturing for the LRCS prototyping unit. This template is specic to LIB/NIB electrode manufacturing and accounts for many detailed information, as the material characteristics, weight percentages, SC, and the exact mixing, coating and calendering protocols and parameters. Furthermore, many tools useful to the user are conceived, as calculators allowing to determine the mass of the dierent components to be used for achieving a certain electrode formulation and slurry SC, automatic calculation of the electrode porosity, density, and mass loading, and an estimator of the comma gap to apply during coating to obtain a certain electrode thickness or mass loading as a function of the rst measurements performed, upon others. Therefore, if from one side this template requires reporting detailed information, from the other side it gives practical advantages to the user, who save time in terms of estimating or calculating dierent properties and can recover information easily. For this reason, this template was adopted and is still in use among the LRCS prototyping unit users. However, this template was not conceived to account for other important steps, as cell assembly and electrochemical testing. For this, the original plan was linking the data reported in this template to electrochemical results. The path we followed was dening a nomenclature of the electrochemical tests that allows linking the data template to the electrochemical results. In addition, this nomenclature, reported below, accounted also for information about cell assembly, enabling to recover this information as well. The main advantage of this procedure would have been allowing to have a complete and quantitative track from electrode manufacturing to electrochemistry, and all this information would have been reported in a common database, allowing to recover this data easily and to use it to build useful datasets for ML-based analysis.

DATE_OPERATOR_CATHODE"+"CALENDERING IDENTIFIER_ANODE"+" CALENDERING IDENTIFIER_SEPARETOR_ELECTROLYTE"+ "ADDITIVE1"+"ADDITIVE2_TEMPERATURE_TYPE OF TEST _TYPE OF CELL_NUMBER OF TEST_OTHER(S)

However, contrary to the data template, the advantages of using this nomenclature, especially at the early stage of its implementation, are not self-evident for the user, and the eorts that it requires are even higher, reasons for which this protocol was not really used in practice. Indeed, even if a manual to follow this nomenclature was written, using it requires to check or remember the position of the dierent information in the name each time a cell is tested, keeping in mind the dierent exceptions (as referring to the drying identier rather than the calendering one, if a non-calendered electrode is used), and continuously updating the material/protocols libraries when new chemistries or techniques are tested. In addition, the moment in which this protocol should have been implemented

in practice was just before the rst Covid-related connement in France, and after that anybody was only interested in recovering the time lost, while nobody was interested in testing this new protocol anymore. However, besides the bad luck with the timing, I think that this protocol would have not been successful, as it was probably too complicate for the users and oered no immediate advantages to them. In that sense, if anybody would be interested to continue this work, or doing something similar, my advice would be developing a user-friendly interface in which users could report easily the information requested, and that outputs the associated name for the electrochemical test. critical support on this; thanks to Jiahui Xu and Chaoyue Liu for the collaborations, all the useful discussions, and for continuing to work on the methodologies we developed during these years to improve them further; thanks to Roberto Russo and Fanny Lambert for our collaboration on organic-based electrodes (not presented in this manuscript) and all the useful discussions; thanks to all the researchers that collaborated to our Chemical Reviews article, which was a real enriching collaborative work between 16 researchers from 7 dierent research institutes; last but not least, thanks to Prof. Alejandro A. Franco, for having chosen me to be part of this project and for putting together an extremely good scientic team, for all the scientic and personal discussions, for having obtained the funding needed, and for letting me develop freely personal and professional skills during the past years. A particular thanks to Noura Rahabani (LRCS, France), who proof-read this thesis and helped me signicantly improve my writing style and the readability of this manuscript. I thank her also for the several scientic and geopolitical discussions we had, which were always enriching from both a personal and professional perspective. One last thanks to all the colleagues at the LRCS, with a particular thank you to Cédric Barcha, for their friendship and all the useful discussions we had. I acknowledge the impressive work done by Bill gates and collaborators in his last book "How to avoid a Climate Disaster", from which I was inspired for the organization of section 1.1, that kicked o my informed personal reection on these topics, and that represented an important source of information for section 1.1. I also acknowledge the outstanding work of international organizations as the International Energy Agency, whose reports were an important data source for sections 1.1 and 1.2. Lastly, other authors that should be acknowledge for their impressive work on the eld of energy, economics, and geopolitics, even if less cited in this manuscript, are Vaclav Smil and Daniel Yergin.
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Résumé

Cette thèse présente les résultats que j'ai obtenus dans le cadre du projet ARTISTIC, nancé par le Conseil Européen de la Recherche, où mes travaux ont été consacrés aux simulations tridimensionnelles de la fabrication des électrodes de batteries lithium-ion. Ces simulations permettent de mettre en relation les paramètres de fabrication et la microstructure de l'électrode, en considérant à la fois le matériau actif et le domaine du carbone et du liant. En particulier, trois étapes de la chaîne de fabrication des électrodes ont été modélisées et étudiées : la phase slurry, son séchage et le calandrage des électrodes. Tous les modèles développés sont présentés en détail, en mettant l'accent sur leurs avantages et leurs inconvénients, et les résultats obtenus à partir de ces modèles sont illustrés. Ces modèles orent la possibilité d'étudier un vaste espace de paramètres, permettant de contrôler la distribution granulométrique de la matière active, la teneur en solides de la suspension, la formulation, l'épaisseur et la porosité de l'électrode, les conditions de séchage et de calandrage. En outre, les microstructures d'électrodes peuvent être intégrées dans des modèles électrochimiques an d'évaluer leurs performances. Cela permet de rechercher les paramètres de fabrication et les microstructures d'électrodes optimaux en fonction des objectifs visés et du protocole électrochimique adopté. Ce vaste espace de paramètres n'a été que partiellement étudié au cours de cette thèse, et bien plus de conditions pourraient être testées en utilisant la méthodologie que nous avons développée. C'est pourquoi tous les codes développés au cours de cette thèse ont été publiés en open source, et implémentés dans une interface web gratuite, interactive et facile à utiliser, permettant à tout type d'utilisateur, expert ou non, d'accéder à cet espace de paramètres, dans la perspective de continuer à l'explorer de façon collaborative.

Mot-clés: Batterie Li-ion, Électrode, Fabrication, Microstructure, Tridimensionnel, Modélisation Abstract This PhD thesis presents the results I obtained in the context of the European Research Council-funded ARTISTIC project, where my work was centered on three-dimensional simulations of lithium-ion battery electrode manufacturing. These simulations allow linking manufacturing parameters to electrode microstructure, considering both the active material and the carbon-binder domain phases.

In particular, three steps of the electrode manufacturing line were modeled and studied: the slurry phase, its drying, and electrode calendering. All the models developed are presented in detail, focusing on both their advantages and disadvantages, and the results obtained using them are illustrated. These models oer the possibility of studying a vast parameter space, allowing to control the active material particle size distribution, slurry solid content, electrode formulation, thickness and porosity, drying and calendering conditions. In addition, the electrode microstructures can be embedded in electrochemical models to assess their performance. This allows searching optimal manufacturing parameters and electrode microstructures as a function of the metrics used, as specic capacity or energy, and electrochemical protocol adopted. This parameter space was partially studied during this thesis, and much more conditions could be tested by utilizing the methodology we developed. Being conscious of this, all the codes developed during this thesis were published as open-source, and they were implemented in a user-friendly free web interface, allowing any kind of user, expert or not, to access this parameter space and hopefully investigate it in a collaborative way.
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 12 Figure 1.2: Yearly emissions for the processes (blues) and energy (yellow) required by
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 13 Figure 1.3, indicates an equal increase in the associated emissions during the same period of time if nothing is done to avoid it.
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 13 Figure 1.3: Prospects on cooling capacity projections for residential and commercial air conditioning.Copyrights IEA, all rights reserved.[START_REF]Cooling Emissions and Policy Synthesis Report[END_REF] 
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 14 Figure 1.4: Actual (black line) and predicted (green and blue bands) worldwide production of A) CFC-11 and B) CFC-12 without the ndings by Molina and Rowland[45] (green)
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 115 Figure 1.5 we can notice 3 key aspects: (i) on a global scale fossil fuels (coal+oil+natural gas) still have the highest share (approx. 65%); (ii) despite many citizens in EU sees coal as a thing of the past, at the global scale it still holds the highest share at almost 40% and (iii) the energy mix can dier signicantly from one country to another, even
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 16 Figure 1.6: Percentages of electricity production per source for several countries at 2018. PV stands for photovoltaics. Data from the IEA[51], all rights reserved.
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 17 Figure 1.7: Rough estimation of the electricity bill increase due to the extra cost arising from batteries (per 1 kW h of electricity assuming a battery life of 1000 cycles and an electricity/battery cost of 0.3 and 100 USD) in the context of daily and seasonal energy storage. The analysis above does not take into account neither the return to the battery investment nor the extra costs arising from battery installation and maintenance. The extra costs of weekly oscillations strongly depends on the exact conditions considered and it stands in between the two.
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 18 Figure 1.8: Deaths for TW h of energy produced by dierent sources, considering both accidents and air pollution. Data from Refs. [7678]
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 19 Figure 1.9: Percentage of emissions for transportation. Here, 100% stands for approx. 8 Gtons/year, i.e., around 16-17% of the total. The data refers to 2019, because referring to 2020 would have lead to an underestimation of certain sectors, mainly aviation, due to the Covid-19 pandemic. Data from the IEA[82], all rights reserved.
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 110 Figure 1.10: Number of EVs (left) and its rst derivative (right). Here "EVs" specically means full electric (BEV) and plug-in hybrid (PHEV). Data from the IEA[63], all rights reserved.
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 1 Figure 1.11: A) Comparison of the environmental footprint of diesel-or gasoline-based cars (left) and EVs using dierent energy mixes for electricity production (right). The analysis considers the fuel, electricity, car and battery production CO 2 footprint as well as the emissions arising from burning the fuels in the combustion engines cars. Figure from Larcher and Tarascon.[109] B) Comparison of emissions per Km (per passenger) for medium cars using (from top to bottom) electricity only, electricity+fossil fuels (plugin), diesel and petrol. The data does not account for the battery/car production and it refers to to the energy mix of UK, where ca. 50% of the electricity is produced using low emitting energy sources.[110] Data from the UK Government and exploited by Our World in Data.[111, 112] 
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 1 Figure 1.12: A) Top 5 barriers for EV adoption by the EV100 members.[113] Number (left) and derivative (right) of public B) slow (< 22kW) and C) fast (>= 22kW) charging stations. Data from the IEA[63], all rights reserved.
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 1 Figure 1.13: Schematic of a lithium-ion battery. The anode (left) represents a graphiticlike structure, while the cathode (right) a layered-oxides. Figure by John B. Goodenough.[120]
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 1 Figure 1.14: Schematic of a lithium dendrite-related challenges in lithium-metal batteries.
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  Figure by Cheng et al..[122]
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 115 Figure 1.15: Schematic of the intercalation phenomena occurring at a graphite anode as a function of the solvent nature, leading to dierent scenarios. Scenario 1 is representative of PC-based electrolyte, scenario 2 of ethers-based ones and scenario 3 of ethylene carbonatebased electrolytes. Figure by Winter et al..[121]
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 1 Figure 1.16: A) Weight percentages of the dierent components of a NMC-622|graphite LIB. B) Price volatility of energy-related assets. C) Operating and under construction production of (left) copper, (center) lithium, and (right) cobalt compared to the expected demand in the stated policy scenario (STEPS) and sustainable developing scenario (SDS). A) Data from the IEA[135, 139] B,C) Figures from the IEA[140], all rights reserved.
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 1 Figure 1.17: A) Production share of the three main produces for selected energy-related minerals. B) Share of raw material processing/rening per nation. For the case of graphite (data not shown) the Chinese processing/rening share was found to be ca. 100%.[138] A,B) Figures from the IEA[140], all rights reserved.
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 118 Figure 1.18: Global share of IPFs for LIBs as a whole and for specic cathode materials between 2014 and 2018 A) for selected countries and B) deposited by public research organizations (PROs), as Universities, small-medium enterprises (SMEs) and large companies. C,D) Evolution of IPF number, from 2009 to 2018, for dierent cathode (C) and anode (D) materials. Data from the IEA[135], all rights reserved.
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 1 Figure 1.19: Schematic of LIB production chain from raw materials (left) to EV battery packs (right). Figure adapted from Hsieh et al.[145]

  Figure adapted from Hsieh et al.[145]
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 1 20 A compares the 
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 1 Figure 1.20: A) Comparison of dierent predictions of LIB pack price. The "two-stage learning model" refers to the approach followed by Hsieh et al.[145] accounting for the raw material costs. B) Variation of predicted LIBs pack cost as a function of the price evolution of Co, Li and Ni in the coming decade. C) Actual evolution of Li, Cu,Co and Ni prices between January 2015 and January 2021. A,B)Figure from Hsieh et al.[145] C) Figure from the IEA[140],all rights reserved.
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 1 Figure 1.21: Schematic of the main steps of A) electrode manufacturing, B) cell assembly and C) cell nishing for the case of prismatic LIB cells. D) Rendering of the three main industrial LIB cell formats. A-C) Figure adapted from Ref.[149], D) Figure adapted from Ref.[150]

  .22 B). During mixing, these agglomerates should be broken down (Figure 1.22 C) and dispersed in order to form new agglomerates containing a combination of the starting materials. This is required because optimally functioning LIB electrodes have porous structures in which AM and carbon particles are interconnected in a way that allows ecient electron and Li + transport to the reaction site, the AM surface, where Li + (de)intercalation takes place, as shown in the idealistic structure illustrated in Figure 1.22 D.
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 1 Figure 1.22: Schematic of A) slurry mixing, B) particle aggregates and agglomerates, C) agglomerate breakage through a shear-based mixer and D) idealistic electrode microstructure. B,C,D) Figures reproduced from Ref. [153].
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 1 Figure 1.23: A) Schematic of dierent mixing equipments. B) Example of the role of mixing speed on the electrode microstructure and associated electrochemical performance (C) at low (20 mA h g -1 , ca. C/10) and high (1000 mA h g -1 , ca. 4-5 C) current density. D,E) Schematic of AM, carbon and binder aggregates obtainable through powder premixing. Figures reproduced by A) Ref.[155], B,C) Ref.[156], D) Ref.[157], E) Ref.[158]

Figure 1 .

 1 Figure 1.24: A) Schematic of an industrial coating+drying equipment. B) Top view of the prototyping coater at the LRCS[2]. A) Figures reproduced from Ref. [164].
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 1 Figure 1.25: A) Example of shear-viscosity curve. In the inset a schematic denition of shear-rate is reported. B) Example of yield stress measurement. C) Evolution of shear modulus as a function of the oscillation strain, indicating the moment (γ c ) at which the network structure breaks. D) Frequency sweep measurement. Inset of A) reproduced from Ref.[166]. Figures adapted from Ref.[146]
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 1 Figure 1.26: A) Schematic of the drying step from a microstructural point of view. B) Evolution of binder (SBR) concentration at dierent drying times in graphite-based anodes, captured by freezing the slurry and analyzing its composition through Raman spectroscopy. C,D) Carbon and uorine content, and relative decrease, marked in red, when applying a single-stage or two-stage drying procedure at 70°C and 120°C. These results were obtained using NMC-based cathodes containing PVdF as binder and through energy dispersive X-ray measurements performed at the bottom and top of the electrodes. A) Figure reproduced from Ref.[167], B) Figure adapted from Ref.[168], C,D) Figures adapted from Ref.[169] 
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 1 Figure 1.28: A) Schematic of the 3-stage drying procedure developed by Jaiser et al.[179]. B) Comparison of the drying time and normalized adhesive forces, where 0 and 1 stand for the adhesive force of electrodes fully dried at HDR and LDR, respectively. A,B) Figure reproduced from Ref.[179]

Figure 1 .

 1 Figure 1.29: SEM images of (left) NMC-based cathode and (right) graphite-based anode before (top) and after (bottom) calendering. The SEM images was cutted by the authors (white lines in the middle of the SEM images) to allow a detailed view on both the bottom and top of the electrodes. A) Figure reproduced from Ref.[180]

Figure 1 .

 1 Figure 1.30: SEM images of (left) LMO-based and (right) NMC-based cathodes showing the cracks arising after calendering. A) top: non-calendered electrode; bottom: calendered electrode. The associated porosity are reported in red. B) Calendered electrode reporting the initial (before calendering) and nal electrodes porosity. A) Figure reproduced from Ref.[186] B) Figure reproduced from Ref.[169]
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 133 Figure 1.33: Arbitrarily generated structures to assess A) the limits of validity of the classical "ow through" tortuosity factor and B) the role of pore shape in terms of EIS response. Figures reproduced from A) Ref.[191] and B) Ref.[192] 
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 1 Figure 1.34: A) Schematics of the algorithm architecture developed by Minstry et al.[195],

Figure

  Figure adapted from Ref.[195] and B) Figure reproduced from Ref.[196] 
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 1 Figure 1.35: A) Schematic of the procedure followed by Joos et al.[197] to develop stochastic electrode microstructures, starting from experimental FIB-SEM images (left), from which the single AM particles (green stands for NCA and yellow for LCO) and CBD agglomerates are extracted and used to build electrode microstructures on demand (right). B) Example of AM particles and one CBD agglomerate extracted by the FIB-SEM data. C) Schematic of the drop and roll approach used to build the electrode microstructure.Figures reproduced from Ref.[197] 

  Figures reproduced from Ref.[197] 
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 1 Figure 1.36: A,C) Example of TXCT 3D rendering accounting for AM only for the case of NMC-based cathodes (A and C) and graphite anodes (A), B, D) Example of FIB-SEM 3D rendering (B) and 2D slice (D). B) green and black stands for AM and CBD, respectively, while the empty spaces represents the pores. D) non-segmented (left) and segmented (right) images. In the segmented image, red, green and black stand for AM, CBD and pores, respectively. Figures reproduced from A) Ref.[205], B) Ref.[199], C) Ref.[206], D)
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 1 Figure 1.37: A) Schematic of the procedure developed by Ferraro et al.[208] to embed the CBD phase into an AM backbone obtained from TXCT data through a binder bridge approach. B,C) 3D and 2D examples of electrode microstructures in which the AM backbone is obtained through X-ray tomography and the CBD phase is added though binder bridge approaches. D) Carbon and uorine map showing how the binder tends to form pendular rings in between AM particles. Figures reproduced from A) Ref.[208], B) Ref.[209], C) Ref.[210], D) Ref.[174]
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 138 Figure 1.38: Schematic of A) the dual-scan approach developed by Lu et al.[184, 211], B) the approach developed by Zielke et al.[198] consisting of the combination of TXCT and FIB-SEM and C) holotomography approach utilized by Tu et al.[204] relying on phase contrast rather than attenuation contrast. D) 3D rendering of the TXCT obtained by Morelli et al.[212] by using a contrast-enhancing particles to resolve the CBD phase. Figures reproduced from A) Ref.[211], B) Ref.[198], C) Ref.[204], D) Ref.[212]
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 1 Figure 1.39: A) Schematic of the GAN architecture developed by Gayon-Lombardo et al.[213] and B) comparison of structures coming from tomography (training set) and predicted by the GAN (generated set). C) Schematic of the Slice-Gan algorithm developed by Kench et al.[214] Figures reproduced from A,B) Ref.[213], C) Ref.[214]
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 1 Figure 1.40: A) Example of 2D microstructures obtained by Liu et al.[217] for electrodes dried at low drying rate (top) and high drying rate (bottom). B) Schematic of the calendering model developed by Gimenez et al.[219] C) Schematic of the drying simulation developed by Forouzan et al.[220] D) manufacturing workow (slurry+drying+calendering) developed by Nikpour et al.[221] Figures reproduced from A) Ref.[217], B) Ref.[219], C) Ref.[220], D) Ref.[221]

  .40 C). The initial particle position, i.e., before running the slurry simulation, is dened randomly. The simulations were performed in the open-source molecular dynamic (MD) software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator)[225] through the application of devoted force elds (FFs),i.e., a series of equations describing the interaction between particles as a function of their relative distance, velocity and properties. In the context of MD, the FFs are used to compute forces between particles at a certain time, which are used to calculate their acceleration through the Newton's laws of motion[226] allowing to determine particle position and velocity in the following time step, typically through Verlet-like algorithms.[227] In the context of the model developed by Forouzan et al. the selected FFs, for both slurry and dried electrode, were the Lennard-Jones[228] (LJ) and Granular Hertz[229] 

Figure 1 .

 1 Figure 1.41: A) Schematic of the computational workow developed at the ARTIS-TIC project.[1] B) Schematic of the approach developed by Srivastava et al.[233] to mimic slurry drying and electrode calendering. Figures reproduced from A) Ref.[234], B) Ref.[233]

Figure 1 .

 1 Figure 1.42: A) Schematic of the working principles of an ML approach for supervised/unsupervised and classication/regression methods. For simplicity, here classication is represented as the only application of unsupervised ML, despite other applications, as for instance dimensionality reduction, exist. B) Scientic articles applying AI or ML to dierent battery-related R&D topics. The analysis above was performed on ca. 200 scientic articles. Figures reproduced from Ref.[279]

  [279] Figure1.43 A shows a schematic of the methodology developed bySeverson et al.[262], allowing to predict battery lifetime from the rst 100 cycles only. Considering that experiments aiming to determine battery cycle life can last months or years[124, 283] and that many dierent conditions (dierent manufacturing procedures, charge/discharge protocols, etc.) should be tested, this approach can lead to a signicant gain in time and resources. This was demonstrated byAttia et al.[263],which coupled the model developed by Severson et al. with a Bayesian-based algorithm to develop a closed loop optimization, that allowed the optimization of the charging protocols in 16 days, compared to the 500 that would have been needed by testing each battery until its end of life (EoL). In terms of online estimation, previously trained ML models are fast enough to substitute simplied models as SPM (subsection 1.4.6) and equivalent circuit based ones. Besides the exact model used, the most widely adopted observables for online estimations are state of charge (SOC), state of health (SOH) and remaining useful life (RUL), which are dened as the percentage of remaining charge with respect to the fully charged condition, the current capability of the battery to store and supply energy relative to the one at the beginning of its life and the remaining load cycles (or time) until the battery reaches its EoL 40 , respectively.[279] However, it should be under- lined here that the denitions above are rather simplistic, and when considering the full battery pack it should be taken into account that at a certain moment in time dierent cells could have dierent capacities, SOC, etc.[284] Besides this, the main observables that are used as input to predict SOC, SOH or RUL are internal resistance, current, voltage and temperature, upon others.[280] For instance,Richardson et al.[285] developed an ML algorithm, based on Gaussian process, to predict battery capacity through voltage measurements over short periods of galvanostatic operation, whileChoi et al.[286] reached the 40 For EV applications, this is typically dene as the 80% of the initial battery capacity.

Figure 1 .

 1 Figure 1.43: A) Representation of the approach used by Severson et al.[262] allowing the prediction of battery cycle life from its rst 100 cycles. B) Schematic representation of the working procedure followed by Joshi et al.[288] to predict the redox potential of electrode materials in metal-ion batteries and some examples of results. C) Comparisons of traditional and ML-based image segmentation by Jiang et al.[289], in which over 650 unique particles of dierent size, shape, position, and degree of cracking were successfully identied and isolated. D) Schematic of LIB cell production assisted by data-driven approaches. Figures adapted from A) Ref.[262], B) Ref.[288], C) Ref.[289], D) Ref.[290]

Figure 1 .

 1 Figure 1.43 C shows a tomography image segmentation performed through ML, which was able to distinguish single AM particles even when severe crackings were present, contrary to classical segmentation approaches.[289] Characterization techniques as XAS or XRD rely on comparing the obtained results to the spectra/patterns of reference compounds to determine the oxidation state of the redox elements in the electroactive compounds, providing in the meantime information on the local environment of the probed elements, and identify the crystalline phases present in the analyzed sample, respectively.[279] For this purpose, open access libraries of experimental XAS data are rare, driving the use of simulated reference data, while databases for XRD spectra such as the the Crystallography Open Database[306] (COD) or the Inorganic Crystal Structures Database[307]

  as it is discussed in full in Chapter 2. Other interesting studies that took inspiration from the aforementioned work are the analysis reported byLiu et al.[317] andChen et al.[318].Liu et al.[317] used the same dataset built and freely released by us[316] to study the eect of the active material wt.%, SC, slurry viscosity and comma gap on the electrode mass loading through Gaussian process regression models.Chen et al.[318] used a similar but more complete procedure with respect to the ones we used, in which they combined K-means clustering and an SVM model to guide the manufacturing of Li 6 PS 5 Cl electrolytes, focusing on their ionic conductivity and lm uniformity and homogeneity. Concerning the applications of ML-based approaches at the industrial scale, the concept of Industry 4.0 should be briey introduced at rst. This term was rstly introduced at the Hannover Messe Trade fair established by the German government in 2011,[319] but is still dicult to nd a universally accepted denition of Industry 4.0. Common features are: interconnectivity between physical and cybernetic domains, decentralized decisions and humans-robots collaboration.[320] To reach such a visionary goal, manufacturing plants should overcome four main challenges: (i) the capability of performing real-time measurements all along the manufacturing chain, (ii) being able to interact with the physical industrial environment through digital infrastructures,

Figure 1 .

 1 Figure 1.44: Schematic of the overall concept of the ARTISTIC project (center), aiming to link LIB electrode manufacturing, microstructure, and electrochemical performance. The project is divided into 4 main WPs (left and right), and, altogether with physics-based models and experiments, also ML-based strategies were applied to the dierent aspects of the project (center). All the examples of results reported here were obtained by myself during the PhD. The work I could perform in the context of WP4 is the only one notreported in this thesis because it is part of a scientic collaboration that is still ongoing at the moment this manuscript is being written.

Figure 2 . 1 :

 21 Figure 2.1: Schematic representation of the coarsening approach utilized for developing the NMC-like model. The secondary AM particles are described explicitly, while the CBD particles account for carbon+binder+solvent at the slurry phase and for carbon+binder at the electrode phase.

Figure 2 .

 2 Figure 2.2: A) SEM image showing the quasi-spherical NMC particles used as reference material in this thesis and a schematic of how their diameter was measured. B) Experimental PSD measured through SEM together with the dimension of the AM particles considered for setting the associated model in blue.

Figure 2 . 3 :

 23 Figure 2.3: Schematic of the slurry model set up and simulation. Left, initial random structure in which the number of AM and CBD particles are dened as a function of the electrode mass, weigh fractions, material density, AM PSD, CBD size and nanoporosity. Center, application of the LJ and GH FF in all PBCs to obtain the slurry structure at 300 K and 1 atm. The highlighted terms in the LJ and GH equations indicate the parameters that should be tuned by the operator. Right, example of slurry structure.

Figure 2 .

 2 Figure 2.4: A) Schematic of the computational procedure followed to measure the viscosity associated to a certain shear-rate through NEMD. B) Examples of viscosity outputs through the NEMD approach for four dierent shear-rates.

Figure 2 . 5 .

 25 Figures 2.5 A and B compare the η-γ curve of experimental and simulated slurries for two compositions (96:2:2 and 95:2.5:2.5

Figure 2 . 5 :

 25 Figure 2.5: A,B) Comparison of experimental (full lines) and simulated (dots) η-γ curve for two compositions, reported in weight percentages, and dierent SCs. The reported error stands for the standard deviation. C) Comparison of experimental and simulated slurry density. The standard deviation of the experimental densities is lower or equal than 0.04 gcm -3 . D) Example of radial distribution function of two dierent slurries, having the same composition but dierent SC.

d

  AMexp stands for the experimental AM diameter (Figure 2.2 B), which is expanded during the CGMD and NEMD simulation to account for the overlap requested by the use of the GH FF.

Figure 2 . 6 A

 26 ), four dierent CGMD simulations are launched in parallel. The parameter values at the rst iteration (iteration 0) are given randomly. Once the CGMD simulation is nished, the code automatically recovers the slurry microstructure and density. The densities are stored as a result, while the microstructures are used to launch the NEMD simulations for the γ of interest in parallel.

Figure 2 . 6 :

 26 Figure 2.6: Schematic of the working principle of the PSO-based algorithm we developed.

Figure 2 . 7 :

 27 Figure 2.7: Schematic of the working principles of A) human-driven PSO and B) machine learning-driven PSO.

Figure 2 . 8 A

 28 Figure 2.8 A shows a comparison between the results obtained through classical, H-D and ML-D PSO (96:2:2 -SC=71%), showing that the classical PSO reached a local minimum from which it was not able to escape, while both H-D and ML-D PSO allowed reaching a complete parametrization (cost ≈ 0) after a few iterations. In addition, Figure 2.8 B

Figure 2 . 9 :

 29 Figure 2.9: Comparison of the coarsening approach utilized for the NMC-like (left) and graphite-like (right) models.

Figure 2 .

 2 Figure 2.10: A) Example of simulated graphite slurry with a density of 1.26 g cm -3 . The legend illustrates the particle size used for CBD, solvent and AM particles. B) PSD of the spherical-like graphite (GHDR 10-4, Imerys) utilized. The inset shows a SEM image of the graphite particles used.

Figure 2 .

 2 Figure 2.11: A) Schematic comparison of the main components used experimentally and computationally for the case of graphite-based slurries. B) Schematic of the rst version of the graphite-like model (accounting for coulombic interactions between particles) and C) last version of the graphite-like model (not accounting for coulombic interactions between particles).

Figure 2 .

 2 Figure 2.12: A,B) Average cost obtained by using classical and H-D PSO for the case of graphite-based slurries. C) Experimental γ-η curve for the slurry formulation (inset) used as experimental reference (density equal to 1.26 gcm -3 with a standard deviation of 0.01 gcm -3 ). Here SBR and TX stand for styrene butadiene rubber and Triton X 100, respectively.

Figure 2 .

 2 Figure 2.13: Schematics of the working principle of A) neural network, B) decision tree and C) support vector machine.

Figure 2 .

 2 Figure 2.14: Schematics of the working procedure developed to link process parameters (slurry AM wt.%, SC and viscosity at the shear-rate applied during coating) and electrode properties (mass loading and porosity) through supervised classication ML algorithms.

Figure 2 .

 2 Figure 2.14 depicts an overall schematic of the procedure followed in this work. Once the experimental dataset is built and the ML method of interest is dened, the model characteristics should be specied, i.e., if employing unsupervised or supervised approaches

Figure 2 . 15 :

 215 Figure 2.15: Average predictive accuracy of the DT (green), SVM (red) and DNN (blue) models as a function of the dataset size for electrode A) mass loading and B) porosity.

Figure 2 .Figure 2 . 16 :

 2216 Figure 2.16 illustrates the SVM classication levels for the electrode mass loading as a function of the slurry η and SC for four dierent AM wt.%. Thanks to this graphical representation, it is possible to easily capture the correlations between each slurry descriptor, or a combination thereof, and the electrode mass loading. The classication reects that η and the AM wt.% have a direct relationship with the electrode mass loading, while SC is inversely related to it. By comparing the relative weight of each level region, it can be

Figure 2 .

 2 Figure 2.17: Experimental mass loading as a function of the slurries η and SC for dierent AM wt.%, reported at the top of each graph.

Figure 2 . 18 :

 218 Figure 2.18: Mass loading as a function of the slurry η for dierent AM wt.% and SCs, reported at the top of each graph.

Figure 2 .Figure 2 . 20 :

 2220 Figure 2.19: γ-η curve for NMC 95% -C45 2.5% -PVdF 2.5% slurries at three dierent SCs: 65, 67.7 and 69.9%. For shortness, the coating speed is referred here as line load.

Figure 2 .

 2 Figure 2.21: Experimental porosity as a function of the slurries η and SC for dierent AM wt.%, reported at the top of each graph.

Figure 2 .

 2 Figure 2.22: Frequency sweep analysis for the slurries containing the lowest and the highest AM wt.% tested experimentally: A) 92.7% (SC = 55 and 60%) and B) 96% SC = 66.9 and 73.3%. C) γ-η curves associated to the slurries analyzed in A and B in the γ range applied during the coating. D) Schematic explanation of the role of solid-like or liquid-like behavior in terms of slurry compaction during coating, which was found to aect the electrode porosity after drying.

LiNi 0. 33 10 - 1 - 5 × 10 2

 33101510 Mn 0.33 Co 0.33 O 2 was supplied from Umicore. C-NERGY super C65 carbon black was from IMERYS. SolefTM Polyvinylidene uoride was purchased from Solvay and N-methylpyrrolidone, from BASF. The slurry solid components(NMC, C65 and PVdF) were premixed with a soft blender overnight. Afterwards, NMP was added until reaching the desired solid content. The total mass of solid components was always equal to 65 g. The mixing was performed in a Dispermat CV3-PLUS high-shear mixer for 2 h at 3000 rpm in a water-bath cooled recipient at 25 ºC. The viscosity vs. shear-rate curves were acquired by applying a shear-rate ramp (Hz) immediately after the slurry preparation, by using a rheometer (Kinexus lab+, Malvern Instruments) and measuring 7 points per decade. The frequency sweep experiments were performed between 0.1 and 100 Hz within the linear viscoelastic regime, previously determined through amplitude sweep experiments (Kinexus lab+, Malvern Instruments). The slurry density was measured using a density meter (DMA4500, Anton Paar GmbH). Both rheological and density measurements were performed at room temperature (≈ 25 °C). The slurry fabrication and rheological/density characterization were performed by myself and Dr. EmilianoPrimo[345] (ARTISTIC post-doc). The coating process was performed by a comma-gap machine (People Technology Inc. model PDL-250) with a two built-in ovens, each one of 1 m long. The temperature of the two ovens were 80 ºC and 95 ºC, respectively. All the electrodes were coated over a 22 µm aluminum foil and the line speed of the comma coater was kept at 0.3 m min -1 , while the comma gap was varied in order to apply dier- ent shear-forces during the coating. For each dried electrode, eight small circular disk of 13 mm of diameter where punched, and their mass and thickness measured, in dierent zones of the coated aluminum (performed by Ricardo Pinto Cunha during his master thesis). The mass loading is determined by multiplying the electrode mass by the AM wt.%, while the porosity is calculated considering the electrode mass, volume, composition and the material densities. This was done to work with average values of each descriptor to take into account possible coating heterogeneities. The NMC particle size distribution was measured by Dr. Emiliano primo[345] by coating a very diluted NMP-based solution containing the NMC particle onto a current collector in order to obtain a deposition of well separated AM particles, whose size was analyzed through SEM images.Graphite (GHDR 10-4) was supplied by Imerys, C45 by C-NERGY, CMC by ACROS, SBR by Zeon and TX by Sigma-Aldrich. The graphite particle size distribution was measured through granulometry (Mastersizer 3000, Malvern Panalytical) by using a diluted water-based solution containing graphite particles. The measures of the slurry γ-η curve and density were performed, as described above for the NMC-based slurries, by Dr. EmilianoPrimo[345] and Hassan Oularbi[346].The CGMD and NEMD simulations, for both NMC-like and graphite-like model, took, respectively, 3-5 hours and 1-3 days by using one computational node (128 GB of RAM each), each composed of 2 processors (Intel® Xeon® CPU E5-2680 v4 @ 2.40 GHz, 14 cores). The CGMD simulations are performed in an NPT (300K and 1 atm) environment, while the NEMD simulations are performed in an NVT environment. Both of them use PBCs for all the directions (x, y and z). The CGMD and NEMD simulations used a timestep of 1 ns and the number of timestep was 20 6 and 90 6 , respectively. All the PSObased codes were developed in C++ programming language, while the DNN algorithm used for the ML-D PSO was developed using Python programming language. The PSO algorithms were designed by myself and coded in strong collaboration with Jean-Baptiste Hoock[347], whose coding skills were vital to set up the code infrastructure and the links with the computational facility used for theCGMD and NEMD simulations[236]. The ML models discussed in section 2.2 were developed in R programming language.

Figure 3 . 1 :

 31 Figure 3.1: Schematic of the homogeneous drying model allowing to simulate the 3D electrode microstructure after drying and using 3D slurry microstructures obtained previously as starting point. The CBD sizes, containing solvent or not, used for this example are depicted in the gure legend. However, these parameters could be tuned by the operator as a function of the slurry SC and the solid CBD size chosen.
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  AMexp stands for the experimental AM diameter (Figure 2.2 B), which is slightly expanded during the CGMD simulation to account for the overlap requested by the use of the GH FF. The slight expansion of the AM diameters is removed at the end of the simulation.

Figure 3 . 2 B

 32 Figure 3.2 B, C and D shows the volume fraction evolution as a function of the electrode thickness for AM, CBD and pores, respectively. The main outcomes of this analysis is that all the electrodes considered are homogeneous, meaning that no particular dierence in terms of volume fractions is observed when comparing the bottom, center and top of the electrodes. However, the volume fraction distribution is not the only structural feature of interest. Other important characteristics include the interfaces and pore size distribution, which are reported in Figure3.3. In particular, three main interfaces are

Figure 3 .

 3 Figure 3.3: A) Surface fraction of CBD/pore, AM/pore and AM/CBD interfaces and B) pore size distribution of the three electrodes depicted in Figure 3.2, where the pores are considered to be spherical.

Figure 3 . 4 :

 34 Figure 3.4: Example of slurry and dried electrode microstructures obtained by using elliptical AM particles. For the case of the slurry, the 3D structure without the CBD particles is reported as well, to oer a better look on the AM particles. The formulation used here is 94 wt.% of AM (NMC) and 6 wt.% of CBD (C45+PVdF).

Figure 3 . 5 :

 35 Figure 3.5: Schematic illustration of the key idea behind the 3D drying model developed to capture additive migration. PBCs are applied on x and y directions, while the z direction is treated as non-periodic.

Figure 3 . 6 :

 36 Figure 3.6: Schematic illustration of the heterogeneous drying model allowing to simulate the drying process accounting for CBD migration. The three colors associated to the CBD phase link to the three regions (bottom, middle and top) dened for the computational workow utilized.

Figure 3 . 7 :

 37 Figure 3.7: Evolution of the fraction of CBD1 (dotted line) and CBD3 (full line) during drying for dierent mathematical functions used to go from RSF = 1 (beginning of the drying simulation) to the selected values (end of the simulation). The curves reported

Figure 3 . 8 :

 38 Figure 3.8: A) 3D rendering of four electrode microstructures obtained from the same slurry but changing the drying conditions. The RSFs of CBD2 / CBD3 for each case are reported below the associated structure. The drying rate increases from left to right.The four electrodes have the same surface area (26.7 ×26.7µm 2 ), an active loading of 13.6 mg cm -2 , a density of 2.24 ± 0.01 and a bulk/overall porosity of 0.458 ± 0.004 / 0.518 ± 0.004. The errors reported here are the standard deviations. B) Evolution of the fractions of CBD1 (dotted line), CBD2 (dashed line) and CBD3 (full line) during drying.

Figure 3 . 9 :

 39 Figure 3.9: A) Evolution of AM, CBD and B) bulk pore volume fractions as a function of the electrode thickness for electrodes dried at dierent DRs (legend on the top left). The vertical dotted lines indicate the three electrode regions dening the three RSFs during drying (Figure 3.8 A). C) Percentage of AM surface in contact with pore (AM/pore) or CBD (AM/CBD) phases and percentage of CBD surface in contact with the pore phase (CBD/pore) for the same electrode regions (top, center and bottom) of A and B. Here the top, center and bottom regions are indicated with full, dashed and dotted lines, respectively.

Figure 3 .

 3 Figure 3.10: A) Schematic of the three-stage drying protocols implemented in this work, where the low DR rate step was applied at the end (yellow), middle (light green) and beginning (dark green) of the drying protocol. B) Comparison between the electrode fully dried at 1.2 / 1.8 and the ones dried with the three-stage drying protocols dened in A. C) Comparison of the less heterogeneous three-stage dried electrode and the one fully dried at 1.02 / 1.08.

Figure 3 .

 3 Figure 3.10 B shows that applying low DR at both the beginning and middle of the drying is benecial in decreasing CBD migration, the second case being the best condition, similarly to the scenario tested by Jaiser et al. Applying low DR at the end of the drying

Figure 3 .

 3 11 illustrates an example of slurry and electrode 3D microstructures for which the bulk and nano porosities are reported. An electrode obtained through this approach was used as a baseline for the 3D modeling of the electrochemical and mechanical behavior of Si-graphite blended electrodes byLiu et al.[230]. Briey, the graphite electrode was decorated with Si particles of 300 nm by Dr. Oier Arcelus[350], aiming to represent the Si agglomerates in the Si-graphite electrode. This structure was then relaxed through LAMMPS by using the LJ+GH FFs and embedded in an electrochemical+mechanical continuous model developed byChao Liu[353], which demonstrated being able to capture fundamental phenomena as the dierent contribution of Si and graphite during discharge as a function of the state of discharge or lithium crosstalk between Si and graphite particles.

Figure 3 . 11 :

 311 Figure 3.11: Example of slurry and dried electrode microstructures by using spherical graphite as AM. The experimental slurry density was found to be equal to 1.26 gcm -3 ,

Figure 3 .

 3 Figure 3.12: A) Schematic of the proposed heterogeneous drying model for graphite-like slurries. B) Example of results obtained through the procedure depicted in A) using p 3 p 2 p 1 .

4 Calendering

 4 AbbosShodiev[248] (both ARTISTIC PhDs). A schematic of the overall computational workow is reported in Figure4.1. The calendering model discussed here is based on the discrete element method (DEM), which is based on Newton's laws of motion, similarly to MD, but from a granular micro or macroscopic perspective[356]. Aiming to make the transition from the CGMD environment to the DEM one as smooth as possible, this calendering model was developed through the open-source software LIGGGHTS[357], i.e., the DEM version of LAMMPS. In particular, two planes are added at the bottom and top of the dried electrode microstructures to mimic the current collector and calendering roll,

Figure 4 . 1 :

 41 Figure 4.1: Schematic of the overall computational workow developed in the context of the ARTISTIC project, going from the slurry to electrochemistry.

5 Table 4 . 1 :

 541 CED [pgµm -1 µs -2 ] 6 × 10 5 7 × 10 4 5.5 × 10 5 6 × 10 Example of FF parameter values for the case of the DEM-based calendering applied to an electrode containing 96 wt.% The mixed interactions i-j (ex. AM-CBD) for e, ν and Xu correspond to the geometric mean of each property associated to the materials i and j. The AM and CBD dimensions and density were kept constant to the ones used for the dried electrode CGMD simulation.

Figure 4 .

 4 Figure 4.2: A) Comparison of experimental and simulated indentation curves (electrode composition: NMC 96 wt.%, carbon black 2 wt.% and PVdF 2 wt.%. Slurry SC: 69%) for dierent simulated electrodes surface areas. The bigger electrodes were obtained by replicating the pristine electrode (green curve) by a factor of two (purple curve) or four (light-blue curve) in the x and y directions. The compressed fourfold microstructure is reported and compared to the uncompressed pristine one in B), while the associated microindentation curve is reported again in C) for clearer comparison with the experimental data. D) Comparison of the experimental and simulated electrode porosity as a function of the calendering pressure applied. Here, only the bulk porosity is considered from a computational perspective.

  3-5% higher for the dierent calendering pressures considered (Figure 4.2 D), which signals that this part of the parametrization is incorrect. Besides this important mistake, the trends identied are still useful for characterizing the overall DEM-based methodology and and the results obtained proof the capability of linking the 3D physics-based simulations to 4D electrochemical models.

Figure 4 .

 4 3 compares the experimental and simulated pore size distribution of electrodes obtained by using the same dried electrode, but applying dierent calendering pressures. The experimental pore size distribution was measured through mercury (Hg) intrusion porosimetry, while that of the simulated electrodes was measured through a modied version of the opensource software PorosityPlus[355]. In particular, the overall amount of pores and their size decrease with the porosity, i.e., by increasing the calendering pressure, both experi-

Figure 4 .

 4 Figure 4.3: A) Experimental and B) simulated pore size distribution of electrodes having the same composition (NMC 96 wt.%, carbon black 2 wt.% and PVdF 2 wt.%) but dierent porosities, obtained through the application of dierent calendering pressures.

Figure 4 . 4 :

 44 Figure 4.4: Tortuosity factor of the calendered and uncalendered electrodes as a function of the applied calendering pressure for x, y and z Cartesian directions. The dashed lines and the associated values correspond to the electrode bulk porosity for the applied calendering pressures. The CBD nanoporosity is accounted for by assigning an eective ionic diusivity to the CBD phase of approximately 2.5 m s -2 , which was calculated through the Bruggeman relationship[369] and considering a nanoporosity of 50%.

Figure 4 . 5 :

 45 Figure 4.5: A) Simulated Nyquist plots for uncalendered and calendered electrodes in a symmetric cell conguration. B) (Top row) Electrode cross-sectional impedance 2D plots corresponding to the ionic contribution to the total measured impedance at half the electrode thickness at 100 Hz. (Bottom row) Scheme reporting the distribution of AM, CBD and pore phases in the same 2D slices. The bulk porosity of each electrode microstructure analyzed is reported next to the associated result. Data and image by Abbos Shodiev[248] and Dr. Emiliano Primo[345].

Figure 4 .

 4 Figure 4.6: A) 3D electrode rendering for each condition tested at the end of discharge.

  C) Electrolyte Transport (the inverse of the average Li + concentration gradient value along the z-axis); CBD Transport (dened as the inverse of the average standard deviation of local current density at the CBD surface); and the Active Surface Area, which refers to the AM surface area in contact with the electrolyte. The electrodes previous discharge were considered as fully charged and the electrolyte lling all the pores. Data and image by Mehdi Chouchane.[247]

Figure 4 . 7 :

 47 Figure 4.7: Schematic of the microstructure evolution during calendering when using the DEM-based model for a monodisperse electrode (AM diameter of 8.28 µm), where the early stages of calendering are particularly detailed.

Figure 4 . 8 :

 48 Figure 4.8: Schematic of the CGMD-based calendering model applied to a NMC-based electrode dried through the homogeneous approach.

Figure 4 .

 4 8, showing that this model does not introduce noticeable artifacts, contrary to the DEM one (Figure 4.7).

Figure 4 .

 4 Figure 4.9 compares the volume phase evolution as a function of the electrode thickness, pore size distribution and surface of contact of an electrode containing 90 wt.% of AM (Figure 3.2 A) before and after compression. Three dierent degrees of compression have

Figure 4 . 9 :

 49 Figure 4.9: A) AM, CBD and B) pore phase evolution as a function of the electrode thickness for an electrode obtained through the homogeneous approach (section 3.1) before (Dried) and after calendering for dierent degrees of compression. Cal10, Cal20 and Cal30 stand for electrodes that have been compressed by 10%, 20% and 30% of the electrode initial thickness. No electrode elastic recovery is considered and the electrode AM wt.% is equal to 90%. C) Bulk pore size distribution and D) surface of contacts for the dried and calendered electrodes.

Figure 4 .

 4 Figure 4.10: A) 3D rendering of electrode microstructures containing 90 wt.% of AM and compressed by 25% of their initial thickness, by accounting or not for the elastic recovery, and by considering dierent percentages of CBD nanoporosity decrease, as specied in the legend at the bottom of each structure. B) AM, CBD and C) pore phase evolution as a function of the electrode thickness for the electrodes represented in A).

ure 4 .

 4 11, underlines that the electrode microstructures have a memory, meaning that the structure arising from one manufacturing step aects the following one. In the case study

Figure 4 .

 4 Figure 4.11: A) Schematic of the calendering of an electrode microstructure obtained through the heterogeneous approach. B) AM, CBD (left) and pore (right) phase evolution as a function of the electrode thickness for the dried electrodes illustrated in Figure 3.8 A, which have been compressed by 25% of their initial thickness.

Figure 4 . 12 :

 412 Figure 4.12: Evolution of the RPD of AM, CBD and bulk pore phases as a function of their normalized thickness (0% stands for the current collector side, 100% for the separator side) for electrodes compressed (Calendered) or not (Dried) that were dried at dierent DRs and compressed by 25% of their initial thickness. The black dotted line is a guideline indicating an RPD equal to 1.

  Figure 4.13) encompasses experiments or physics-based modeling together with data-driven electrode microstructure generation (D-DEMG) and ML algorithms to speed up the assessment of the impact of manufacturing parameters on electrode properties (Figures 4.13 A). The identied trends can be expressed through equations arising from mathematical tting or from ML models, which are then embedded into a D-DEMG (Figure 4.13 B). The D-DEM working principle can be summarized as: (i) generating a microstructure tting the known electrode properties associated to a certain manufacturing condition (Figures 4.13

Figure 4 .

 4 Figure 4.13: Schematic of the overall hybrid approach. Experimental and/or physicsbased modeling results capturing the impact of manufacturing parameters on certain electrode properties (A) are embedded in a data-driven stochastic electrode microstructure generator algorithm (B) that generates electrode microstructures associated to specic manufacturing conditions. These microstructures are then analyzed, building a data set (C) that is used to train and validate the ML algorithm. This allows describing mathematically the correlations between electrode properties and manufacturing conditions (D). Dark gray arrows represent the steps considered in the case study presented here and in Ref.[372], while light gray ones indicate possible future perspectives.

Figure 4

 4 Figure 4.14: cal obtained through polynomial tting of the experimental dataset as a function of the calendering pressure and the AM wt.% for dierent ini : A) 42%, B) 44%, C) 46% and D) 48%. Figure made by Marc Duquesnoy[342] (PhD in our research group).

Figure 4 .

 4 Figure 4.15 shows an example of results, in which the ML prediction of electrolyte τ

Figure 4 .

 4 Figure 4.15: A-D) ML-predicted τ as a function of the calendering pressure and AM wt.% for dierent ini : A) 42%, B) 44%, C) 46% and D) 48%. As a reference, the electrode porosity after the calendering ( cal ) is reported next to the cross symbols for AM mass fractions equal to 93% and 96% at pressures equal to 40, 80, 120 and 160 MPa. The SD ranges between A) 0.05 and 0.35, B) 0.1 and 0.5, C) 0.1 and 1, D) 0.1 and 1.6. E-H) σ ef f ective as a function of cal and AM wt.% for dierent ini : A) 42%, B) 44%, C) 46% and D) 48%. The SD ranges between A) 0.001 and 0.0025 S/m, B) 0.001 and 0.0023 S/m, C) 0.001 and 0.003 S/m, D) 0.0008 and 0.0022 S/m. For all these results the CBD nanoporosity was not considered. Figure made by Marc Duquesnoy[342].

Figure 4 .

 4 Figure 4.16: ML-assessed interdependencies between calendering pressure and electrode macroscopic features and output microscale properties. Green and red colors represent direct and inverse relations, respectively, while the size of the circles indicates the degree of correlation, i.e., big circles, strong correlation. The last column indicates the sense to which the property should be tuned (maximize or minimize) to increase an electrode performance descriptor (here, energy density). Figure made by Dr. Emiliano Primo[345].

5 .

 5 Electrodes were calendered with a prototype-grade lap press calender (BPN250, People Technology, Korea) consisting of a two-roll compactor of 25 cm of diameter in which the gap between the rolls controls the pressure applied. The roll speed and temperature were kept constant to 0.54 m min -1 and 60°C, respectively.The timestep used for the DEM simulation is equal to 0.1 ns, while the number of timesteps varied between 13 × 10 7 and 20 × 10 7 as a function of the level of compression desired by moving the upper plane at a speed of 0.002 m s 1 . The same number of timesteps and speed, but in the opposite direction, was used for the decompression step. The plane speed was selected in order to minimize the computational cost and maximize the numeri-cal stability of the simulations. Several tests were performed to verify the eect of lowering the plane speed, showing that its eect is negligible, as discussed in the supporting information of[234]. The upper plane was initially located at a distance of few micrometers with respect to the limit of the CGMD structure to avoid overlapping between plane and particles. The applied calendered pressure was calculated as the force applied at the electrode upper plane at maximal compression divided by its surface. Concerning the computational cost, the DEM simulation took between 20 and 40 h as a function of the level of compression desired by using the pristine dried electrode structure and one node (128 GB of RAM) composed of 2 processors each (Intel® Xeon® CPU E5-2680 v4 @ 2.40 GHz, 14 cores) on the MatriCs platform (Université de Picardie Jules Verne). When using the fourfold electrode (ca. 160,000 particles) the simulation took approximately 4 days by using the same computational resources. The dried and calendered electrode porosities were measured through the open-source software PorosityPlus[355] by using a resolution of 0.2 µm.The CGMD-based calendering model took between 5 and 25 hours using the pristine dried electrode structure and one node (128 GB of RAM) composed of 2 processors each (In-tel® Xeon® CPU E5-2680 v4 @ 2.40 GHz, 14 cores) on the MatriCs platform (Université de Picardie Jules Verne), as a function of the composition considered (number of particles ranging from 6,000 to 15,000), degree of compression used and the consideration (or not) of the elastic recovery and CBD nanoporosity decrease. The pore size distribution, phase evolution as a function of the electrode thickness, and surface of contact analyses were performed as presented in section 3.5.The CGMD-or DEM-generated electrode microstructures were meshed through the IN-NOV[376] software. Both the EIS and galvanostatic discharge simulations were performed in Comsol Multiphysics[377] by using the Batteries & Fuel Cells module and the transport of diluted species modules. The latter was used to account for Li s diusion in the NMC particles through Fick's law, but Li + (de)intercalation was not permitted in the EIS simulations to mimic a non-intercalating electrolyte. The CBD nanoporosity was considered by assigning an eective ionic diusivity into the CBD phase, which was calculated as a function of the bulk diusivity and CBD nanoporosity through the Bruggeman relationship[369]. The EIS simulation used a symmetric cell conguration, for which the NMC-electrode was doubled and a separator was placed in between. The discharge sim-ulation considered a half-cell conguration by adding a separator to the electrode top, a source of Li + to the top of the separator simulating the Li foil, and a source of electrons at the electrode bottom simulating the current collector. The discharge simulations reported in section 4.1 assigned to the NMC particles the theoretical capacity of 280 mA h g -1 , while the ones discussed in section 4.2 considered a practical capacity of 177 mA h g -1 .

Figure 5 . 1 :

 51 Figure 5.1: A schematic of the working principle behind the ARTISTIC online calculator, allowing to reproduce LIB electrode manufacturing from the slurry to the calendered electrode (Chapters 2, 3, and 4) through a user-friendly web interface. In particular, users can select the manufacturing parameters of interest, as electrode formulation, SC, drying and calendering conditions, which are sent to the computational cluster Matrics[236] for running the associated simulation. When the simulation ends, the results are stored and reported in the online platform, making them available to anyone, and the user that launched the simulation is informed through an email containing the instructions for visualizing and recovering the results.

Figure 5 .

 5 Figure 5.2 illustrates schematically this working principle.

Figure 5 . 2 :

 52 Figure 5.2: Schematic of the ARTISTIC online calculator from the slurry (top) to the calendered electrode (bottom). Values in red indicate an example. These parameters are sent to the Matrics[236] computational cluster for running the associated simulation. The results are shown in the online platform as soon as the simulation nishes, and the user requesting the simulation receives an email informing her/him about the end of the simulation and how to recover the associated results. The mouse icons indicate clickable regions of interest, as the read-me and list of available results for each section, or the possibility to move, (de)zoom, and download the 3D slurry/electrode microstructure.

Figure 5 . 3 :

 53 Figure 5.3: Examples of slurries, dried and calendered electrodes using two arbitrary AM PSDs, named PSD1 and PSD2. Red particles stand for CBD, while dierent colors stand for AM of dierent sizes (the same color in the top and bottom structures does not necessarily represent the same size). The SC of the top slurry is 58%, and the SC of the bottom one is 64%. The mass loading of the electrodes are 7.6 mg cm -2 (top) and

Franco[ 381

 381 ], was developed in strong collaboration with Sylvain Doison, from the company EWILL[382], and Jean-Baptiste Hoock[347], and with the support of Dr. Fernando Caro (post-doc in our research group) and Dr. AlainNgandjong[351]. In particular, my role was the development of the manufacturing modeling codes used for the online platform in a way that allows a direct and easy link between the web interface and the computational cluster, the design of the web interface, and its testing and debugging. Sylvain Doison was in charge of the technical development of the web interface, and Jean-Baptiste Hoock of developing the needed code infrastructure to link the web interface and the computational cluster. Dr. Fernando Caro and Dr. AlainNgandjong[351] supported the design of the web interface. Finally, Prof. Alejandro A. Franco[381] dealt with the UPJV administration, collected the needed funding, and conceived the concept behind the platform.

Figure 6 . 1 :

 61 Figure 6.1: Schematic of the procedure utilized to analyze the discharge performance of electrodes having dierent AM PSDs and thicknesses.

Figure 6 . 2 :

 62 Figure 6.2: Polydisperse AM PSDs used for this work. The one used as a reference is illustrated as bar chart, whose interpolation is reported as full grey line. The interpolation of the other polydisperse AM PSDs is reported as full lines of dierent colors. A) PSDswith an higher importance of small particle sizes, B) PSDs with an higher importance of big particle sizes, and C) PSDs with an higher or lower importance of medium particle sizes. D) Legend.

Figure 6 . 3 :

 63 Figure 6.3: Pore size distribution of electrodes having monodisperse (A) and polydisperse (B-D) AM.

Figure 6 . 4 :

 64 Figure 6.4: Electrode microstructures (ca. 65 µm thick) obtained by using dierent monodisperse AM sizes.

Figure 6 . 5 :

 65 Figure 6.5: Schematic of the three electrode congurations considered, i.e., thin (left), thick (middle), and graded (right) electrodes.

Figure 6 . 6 :

 66 Figure 6.6: A) Discharge curves, B) SOD and C) [Li + ] evolution as a function of the electrode thickness at the end of discharge, and D) legends for the monodisperse and polydisperse scenarios when using thin (ca. 65 µm thick) electrodes with an overall porosity of ca. 50%. The discharge capacity is normalized with respect to the AM mass only, and the numbers reported in A) indicate the gravitational energy density in kW h Kg -1 of the curves of the corresponding color, while the mass refers to the AM mass only. The incomplete discharge curves indicate that the associated simulation stopped for numerical instabilities.

Figure 6 . 7 :

 67 Figure 6.7: A) Discharge curves, B) SOD and C) [Li + ] evolution as a function of the electrode thickness at the end of discharge, and D) legends for the monodisperse and polydisperse scenarios when using thick (ca. 130 µm thick) electrodes with an overall porosity of ca. 50%. The discharge capacity is normalized with respect to the AM mass only, and the numbers reported in A) indicate the gravitational energy density in kW h Kg -1 of the curves of the corresponding color, while the mass refers to the AM mass only. The incomplete discharge curves indicate that the associated simulation stopped for numerical instabilities.

Figure 6 . 8 :

 68 Figure 6.8: A) Discharge curves and B) SOD evolution as a function of the electrode thickness at the end of discharge of graded electrodes in which bigger AM particles are located in the electrode bottom and smaller ones in its top (full lines), or vice versa (dashed line).

Figure 6 . 9 :

 69 Figure 6.9: Comparison of the discharge curves (A) and SOD evolution as a function of the electrode thickness at the end of discharge (C) for electrodes having the same AM PSD in the top layer for two dierent bottom layers, i.e., medium + (full line), and medium -(dashed lines). Comparison of the discharge curves (B) and SOD evolution as a function of the electrode thickness at the end of discharge (D) for electrodes having the same bottom layer (medium -) and dierent AM PSDs for the top layer.

Figure 6 . 10 :

 610 Figure 6.10: Left) Comparison of the SOD evolution during discharge for the case of thin (ca. 65 µm) electrodes that were compressed (bottom), or not (top). Right) Comparison of the 3D SOD at the end of discharge for uncompressed or compressed thick (ca. 130 µm) electrodes.

Figure 6 .

 6 Figure 6.11: A) Discharge curves, B) SOD and C) [Li + ] evolution as a function of the electrode thickness at the end of discharge, and D) legends for the monodisperse and polydisperse scenarios when using thin (ca. 65 µm thick) compressed electrodes with an overall porosity of ca. 35%. The discharge capacity is normalized with respect to the AM mass only, and the numbers reported in A) indicate the gravitational energy density in kW h Kg -1 of the curves of the corresponding color, while the mass refers to the AM mass only. The incomplete discharge curves indicate that the associated simulation stopped for numerical instabilities. These results are aected by the artifact arising from the use of the DEM-based model (Figure 4.7) and should be taken carefully.

Figure 6 .

 6 Figure 6.12: A) Discharge curves, B) SOD and C) [Li + ] evolution as a function of the electrode thickness at the end of discharge, and D) legends for the monodisperse and polydisperse scenarios when using thick (ca. 130 µm thick) compressed electrodes with an overall porosity of ca. 35%. The discharge capacity is normalized with respect to the AM mass only, and the numbers reported in A) indicate the gravitational energy density in kW h Kg -1 of the curves of the corresponding color, while the mass refers to the AM mass only. The incomplete discharge curves indicate that the associated simulation stopped for numerical instabilities. These results are aected by the artifact arising from the use of the DEM-based model (Figure 4.7) and should be taken carefully.

  5 and section 4.5, respectively. During calendering, no CBD nanoporosity decrease or elastic recovery is considered. The CGMD-or DEM-generated electrode microstructures were meshed through the IN-NOV[376] software. The galvanostatic discharge simulations were performed in Comsol Multiphysics[377] by using the Batteries & Fuel Cells module and the transport of diluted species modules. The latter was used to account for Li s diusion in the NMC particles through the Fick's law. The CBD nanoporosity was considered by assigning an eective ionic diusivity to the CBD phase, which was calculated as a function of the bulk diusivity and CBD nanoporosity through the Bruggeman relationship[369]. The discharge simulation considered a half-cell conguration by adding a separator (6 µm thick homogenized media with eective properties corresponding to a porosity of 60%) to the electrode top, a source of Li + to the top of the separator simulating the Li foil, and a source of electrons at the electrode bottom simulating the current collector. For all the simulations, a current of 280 mA g -1 was used, respectively. As a reference, the theoretical capacity of NMC is 280 mA h g -1 , while the practical one is typically around 180 mA g -1 . All the parameter values used are reported in the supporting information of Ref.[246], except
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 81 Figure 8.1: Workow of the TM algorithm developed by Hassna El-Bousiydy[268].

Figure 8 . 2 :

 82 Figure 8.2: LIB text mining algorithm outputs according to the properties used, indicating the percentage of the analyzed articles reporting them (colored), or not (grey). The articles discarded by the rst two lters (ca. 1,300 articles) and the SIB articles (ca. 750 articles) are not included here.

Figure 8 .

 8 Figure 8.2 reports the results of our analysis for all the properties investigated for LIBs in terms of how often they are reported in scientic literature. The electrode, electrolyte and separator properties, and the cycling conditions were screened only in the publications that contained the electrode composition. The searched properties were selected

  2). Although rarely acknowledged, disclosing an electrode property as a range of values, sometimes with dierences between the extremes exceeding 100%, makes quite dicult to both reproduce experiments and get reliable information out of them.The error associated to each percentage reported in Figure8.2 was assessed by analyzing manually 1000 randomly selected articles (100 for each screened property) and comparing the results to the ones obtained through the algorithm. The error analysis indicates mainly three sources of error: (i) on the conversion step from PDF to TXT format, (ii) incompleteness of the library developed and (iii) data not accessible, because it is reported in the supplementary information, within a reference or in gures. The metrics used for evaluating the error associated to our TM algorithm outputs was the F-score, that arise from a combination of precision and recall. Precision is the ratio of true positive observations to the total of true and false positives, while recall (or sensitivity) is the ratio of true positive observations to the entire observations reporting the screened property, i.e., true positives + false negatives. A true/false positive observation is dened as an article correctly/wrongly classied by the TM algorithm as reporting a certain property.

Figure 8 .

 8 Figure 8.3: F-score (left) and mining scattering (right) from the analysis of the information within the analyzed articles according to the 10 properties investigated.

Figure 8 . 3 (

 83 left) displays in a spider graph the F-score for the 10 searched properties. Porosity, surface area, mass loading, electrolyte composition and separator have F-scores ≥ 0.85, limit above which it is considered to be a good data extraction procedure. The lowest F-scores are those of thickness and electrolyte volume. This arises from their low precision and the main source of this inaccuracy is that both a thickness and a volume are not exclusively associated to an electrolyte/electrode property, leading to false positives, and then to an overestimation.
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 84 Figure 8.4: SIB TM outputs (top) and associated mining scattering (bottom).

  Cette thèse présente les modèles de fabrication d'électrodes LIB, principalement en 3D et basés sur équations physiques, et les approches développées dans le cadre du projet ARTISTIC, prenant en compte la phase slurry (Chapter 2), son séchage (Chapter 3), et le calandrage des électrodes (Chapter 4). Ces modèles prennent en compte un certain nombre de paramètres expérimental, comme la distribution granulométrique de l'AM, la formulation de l'électrode, le SC, le séchage, les conditions de calandrage, etc., et permettent d'accéder à la microstructure de l'électrode associée. Dans l'ensemble, le principal intérêt des modèles 3D basés sur équations physiques est qu'ils sont moins coûteux en ressources et en temps que les techniques d'imagerie expérimentale, comme la TXCT, et plus ables que les approches stochastiques, ce qui les rend un bon compromis entre coût computationnel et abilité.En ce qui concerne la phase slurry, deux approches 3D et une approche ML ont été développées. Les modèles 3D ont été nommés "NMC-like" et "graphite-like" en raison de l'AM pour lequel ils ont été initialement appliqués, et la principale diérence entre eux est la prise en compte du solvant : le modèle NMC-like considère qu'il est intégré dans des particules de CBD expansé, tandis que le modèle graphite-like sépare le liant+carbone et le solvant en deux particules diérentes. Ces deux approches visent à former un milieu de type continu avec l'utilisation du CBD expansé ou les "particules" de solvent. Pour évaluer si ces modèles peuvent décrire les principales propriétés du slurry, nous avons comparé la densité et courbe de viscosité de cisaillement du slurry simulée avec cela expérimentale.Une attention particulière a été accordée à la courbe de viscosité de cisaillement, car les propriétés rhéologiques du slurry déterminent leur stabilité et leur facilité de traitement, deux aspects critiques pour le mélange, le coating et le séchage des slurries. En ce qui concerne le modèle de type NMC, la courbe η-γ des diérentes compositions et SCs a été reproduite avec une bonne précision grâce à la paramétrisation des FFs du modèle.Deux approches diérentes ont été utilisées à cette n : la paramétrisation manuelle et la paramétrisation pilotée par PSO. La première s'appuie sur l'intuition du chercheur et sa compréhension du modèle, tandis que la seconde repose sur un algorithme d'optimisation automatisé basé sur la théorie PSO, combiné ou non avec des données préalablement obtenues par un opérateur humain, ou un algorithme ML. L'approche basée sur la théorie PSO s'est avérée plus ecace que la paramétrisation manuelle, mais elle nécessite tou-jours une quantité importante de ressources informatiques. Pour contourner ce problème, plusieurs algorithmes ML ont été entraînés à identier les valeurs de paramètres du FF plus appropriées pour reproduire la courbe expérimentale η-γ ciblée, mais avec des résultats limités en raison du déséquilibre entre les entrées du modèle ML (viscosité pour deux taux de cisaillement diérents, et densité) et les sorties (8 valeurs de paramètres du FF).En ce qui concerne le modèle graphite, il n'a malheureusement pas été possible d'eectuer une paramétrisation complète en ce qui concerne la rhéologie de la suspension, ce qui a conduit à une paramétrisation plus faible du modèle, dans le but de reproduire la densité de la suspension uniquement.En plus des modèles 3D basés sur la physique, une approche basée sur le ML a été développée. Diérents algorithmes ML ont été entraînés à l'aide d'un ensemble de données expérimentales tenant compte de la formulation, du SC et de la viscosité du slurry, ainsi que du loading de AM et porosité de l'électrode pour diérents comma gaps. Parmi les diérents algorithmes ML testés, le SVM a combiné la plus grande précision et une représentation graphique simple, permettant d'identier les corrélations entre les caractéristiques du slurry et des électrodes. En termes de loading de l'électrode, les mêmes tendances ont été identiées par l'analyse des données expérimentales brutes et des sorties du modèle SVM. D'une part, cela a conrmé la précision du modèle ML, mais d'autre part, la représentation basée sur le SVM n'a pas apporté d'avantage signicatif. Cependant, lors de l'analyse de la porosité des électrodes, aucune tendance claire n'a été observée dans les données expérimentales brutes, alors que certaines tendances peuvent être identiées par la représentation basée sur le ML. En particulier, une porosité plus faible a été observée pour des AM wt.% et des SC plus élevés. Pour conrmer cette tendance, des mesures d'oscillation et de balayage de fréquence ont été eectuées, ce qui a permis de comprendre que les tendances identiées par l'approche basée sur le ML étaient liées au comportement de type liquide ou solide du slurry. En particulier, il a été noté que des quantités élevées de carbone et de liant (faible AM wt.%) conduisaient à un comportement de type solide, alors que des faibles quantités de carbone et de liant conduisaient à un comportement de type liquide, et que les deux étaient aectés par le SC utilisé, le second y étant particulièrement sensible. Cela implique que les interactions entre les particules, dans le cas d'un pourcentage en poids d'AM et de SC élevés, produisent un réseau moins rigide, qui est plus susceptible d'être déformé pendant le coating et conduit à des électrodes plus poreuses. Le contraire peut être dit dans le cas de faibles pourcentage en poids d'AM. Une fois de plus, cette tendance a été conrmée et comprise par des mesures expérimentales, mais elle n'aurait pas été identiée en regardant simplement les données expérimentales brutes, soulignant la pertinence des méthodes ML, en orant une perspective diérente sur les données et découvrant les relations entre les variables.Le séchage du slurry a été étudié en utilisant deux approches diérentes, nommées ici séchage "homogène" et "hétérogène". En partant de la structure 3D du slurry, l'approche homogène élimine entièrement le solvant au tout début de la simulation, puis les interactions entre les particules et les conditions périodiques dans toutes les directions sont appliquées, ce qui conduit au rétrécissement de la structure et à la microstructure de l'électrode séchée. Comme pour le modèle du slurry, les valeurs des paramètres du FF peuvent être ajustées pour correspondre aux propriétés souhaitées de l'électrode, comme sa densité et porosité. Ce modèle est particulièrement stable et sa paramétrisation est relativement simple, ce qui permet de comparer facilement des électrodes ayant des compositions, des AM PSDs, des porosités et des épaisseurs diérentes. Cependant, il soure de deux limitations principales : (i) il produit des microstructures d'électrode plutôt homogènes, ne tenant pas compte des hétérogénéités développées pendant le séchage, et(ii) il modélise la microstructure de l'électrode séchée à la n du séchage, mais pas le processus de séchage-même. L'approche du séchage hétérogène a été développée en ayant comme objectif principal la prise en compte de ces deux aspects. Dans ce modèle, le solvant n'est pas éliminé du début de la simulation, mais au cours de la simulation en rétrécissant itérativement les particules de CBD, passant du CBD "liquide" (carbone+liant+solvant) au CBD solide (carbone+liant+nanopores). En outre, la vitesse de cette transition est fonction de la position des particules de CBD, i.e., plus rapide dans le haut du slurry que dans son bas. Des conditions aux limites non périodiques sont appliquées dans le sens de l'épaisseur, et des forces d'attraction plus élevées sont établies pour les particules CBD solides que liquides, comme cela a été observé comme étant nécessaire lors de l'utilisation de l'approche homogène. Cette stratégie de calcul se traduit par : (i) un espace disponible plus important dans les régions supérieure et médiane en raison de la vitesse de retrait plus rapide du CBD et (ii) des interactions attractives plus élevées des particules de CBD dans les couches supérieures du slurry par rapport à celles de la partie inférieure. Ces deux caractéristiques conduisent à la migration des particules de CBD pendant le séchage, et imitent le rôle des forces convectives et capillaires causant la migration des additifs expérimentalement. Grâce à cette stratégie de calcul, il a été possible d'imiter les principales tendances observées expérimentalement lors d'un séchage rapide:(i) plus le DR est élevé (ici, plus le retrait du CBD est rapide), plus la fraction de CBD dans le haut de l'électrode est élevée, au détriment du CBD dans le bas de l'électrode, (ii) la migration du CBD n'a pas lieu pendant tout le processus de séchage, mais plutôt dans une plage de temps spécique. De plus, une troisième tendance a été identiée, i.e., les moments auxquels la migration du CBD commence et se termine dépendent du DR, et en particulier la migration du CBD commence et se termine plus tôt pour les DR plus élevés. À ma connaissance, cette tendance n'a pas été signalée auparavant, ce qui appelle d'autres études expérimentales visant à vérier, et éventuellement à quantier, ce phénomène. Les approches homogène et hétérogène ont été initialement développées pour les slurries contenant du NMC, et seulement l'approche homogène a été correctement mise en ÷uvre pour les slurries de type graphite. Enn, l'approche de séchage homogène a été utilisée pour des particules de AM elliptiques, mais ce projet a été interrompu en raison du manque de FF disponibles, ce qui conduit à des instabilités numériques.Le calandrage des électrodes a été étudié à l'aide de deux modèles 3D basés sur la physique et d'une approche hybride. Le premier modèle physique, basé sur le DEM (LIGGHTS), a permis de reproduire les propriétés mécaniques de l'électrode expérimentale prise comme référence (96 % en poids d'AM, 2 % en poids de carbone et 2 % en poids de liant), de reproduire les tendances attendues telles que la diminution de la taille et de la quantité des pores, et de relier les modèles de fabrication 3D aux simulations électrochimiques 4D (3D+temps). Cependant, une étude plus approfondie de ce modèle a montré qu'il introduit un artefact dû au passage du CGMD (slurry et séchage) au DEM, ce qui a été observé avec une netteté particulière lors de l'utilisation de AM PSD signicativement diérents par rapport à celui adopté pour la première étude. Par conséquent, un second modèle de calandrage a été développé dans l'environnement CGMD (LAMMPS) pour éviter tout changement de FF, permettant de se débarrasser de cet artefact. Les paramètres d'intérêt pour ce second modèle sont le degré de compression de l'électrode, la prise en compte (ou non) de la récupération élastique, et la diminution de la nanoporosité du CBD pendant le calandrage. Ce dernier aspect a été développé en spéculant sur la réduction des nanopores lors de la compression de l'électrode, qui n'a cependant, à ma connaissance, jamais été étudiée et quantiée dans le contexte des électrodes de LIB. En termes de résultats, les deux tendances d'intérêt majeur concernent la distribution des fractions volumiques d'AM, de CBD et de pores après compression ou compression + récupération élastique. En particulier, il a été observé que le calandrage réduit la porosité de l'électrode de manière asymétrique, c'est-à-dire davantage dans les couches supérieures de l'électrode. Ceci est lié à la compression anisotrope de l'électrode qui se produit pendant le calandrage, qui est modélisée par un plan qui est initialement situé au sommet de l'électrode et déplacé vers le bas, ce qui provoque la compaction des particules dans les couches supérieures de l'électrode au début. Cependant, si le degré de compression est susamment élevé, la taille de tous les pores est réduite de manière signicative, ce qui conduit à une ré-homogénéisation des pores. De plus, il faut souligner que ce résultat peut varier en fonction du montage expérimental utilisé, et par exemple l'utilisation de deux rouleaux mobiles, l'un en bas et l'autre en haut de l'électrode, pourrait conduire à une réduction plus homogène de la porosité pendant le calandrage. La deuxième tendance intéressante concerne le rôle du calandrage dans l'accentuation ou l'atténuation des hétérogénéités de l'électrode. Il a été observé que le calandrage conduit à une augmentation des hétérogénéités de l'électrode lorsqu'on part d'une électrode très homogène (séchage homogène), alors qu'il contribue à les atténuer lorsqu'on utilise une électrode fortement hétérogène (séchage hétérogène). Ceci souligne également que la microstructure produite par un procédé de fabrication donné dépend de la microstructure du slurry/électrode avant ce procédé, et que ces interrelations peuvent être prises en compte par la méthodologie mise en ÷uvre dans cette thèse. La troisième approche que nous avons développée combine des résultats expérimentaux, la génération partiellement stochastique de microstructures d'électrodes et du ML. En particulier, cette approche utilise les données expérimentales pour relier des paramètres de fabrication donnés à des propriétés d'électrode sélectionnées. La relation entre les paramètres de fabrication et les propriétés de l'électrode est décrite mathématiquement par tting ou ML, et le modèle qui en résulte est utilisé comme entrée pour le D-DEMG. Cet algorithme génère des microstructures d'électrode en imposant les caractéristiques d'électrode observée expérimentalement pour une condition de fabrication donnée, et dénit les autres de manière stochastique. Ensuite, les propriétés de l'électrode à l'échelle microscopique, comme son τ , sont déterminées, en construisant un ensemble de données qui relie les paramètres de fabrication et les propriétés de l'électrode à la fois à l'échelle macroscopique et à l'échelle microscopique. Cette procédure est particulièrement ecace du point de vue du coût computationnel, et elle permet de générer plusieurs microstructures d'électrodes pour chaque condition d'intérêt et de tenir compte de leur nature partiellement stochastique. L'ensemble des données est utilisé pour entraîner et tester un algorithme ML, dans le but d'identier les relations entre paramètres de fabrication et propriétés des électrodes. En outre, même si elle n'a pas encore été testée, cette méthodologie a été conçue pour considérer les données obtenues par des modèles physiques 3D, comme par exemple la distribution de la taille des pores, comme des entrées D-DEMG, qui pourraient être combinées ou substituées aux données expérimentales. Les modèles slurry, séchage homogène et hétérogène, et calandrage basé sur le CGMD ont été intégrés dans une interface web user-friendly et gratuite, permettant aux utilisateurs non experts de les utiliser. En particulier, les utilisateurs peuvent dénir des paramètres tels que la PSD de l'AM, la taille du CBD, la formulation de l'électrode, le SC, et les conditions de séchage et de calandrage. Ces paramètres sont envoyés à un cluster de calcul, qui exécute la simulation associée dans des ressources dédiées. Une fois la simulation terminée, les résultats sont récupérés par la plateforme en ligne et ajoutés au dataset, et un mail est envoyé à l'utilisateur qui a lancé la simulation. En outre, les résultats obtenus par cette plateforme sont ouvertement partagés avec tous les utilisateurs, ce qui signie que chacun peut récupérer les résultats précédemment obtenus par d'autres. En combinaison avec la publication des codes associés comme open-access, je pense que cette approche permet une transparence totale et donne un accès complet à ces modèles pour tout type des chercheurs. Cette plateforme a été conçue en pensant à trois groupes de chercheurs : (i) les chercheurs expérimentaux désireux d'aborder le domaine de la modélisation, (ii) les chercheurs développant des modèles prédictifs, comme ceux basés sur le ML, intéressés par l'étude de la fabrication des électrodes de LIB, et (iii) les experts en simulations électrochimiques désireux d'utiliser les microstructures d'électrodes 3D obtenues par notre procédure computationnel comme entrée pour leurs modèles électrochimiques. En particulier, (i) peuvent bénécier d'une interface conviviale qui peut les introduire dans le domaine de la modélisation 3D de manière simpliée, alors que (ii) et (iii) peuvent facilement construire leur propre dataset personnalisé en simulant et analysant diverses microstructures d'électrodes sans avoir besoin d'apprendre à utiliser nos modèles de fabrication 3D.Enn, les résultats de la simulation de fabrication 3D ont été combinés avec des modèles électrochimiques 4D, précédemment développés dans le cadre du projet ARTISTIC, an d'étudier l'interaction entre la PSD de l'AM, l'épaisseur de l'électrode et la capacité de décharge spécique dans une conguration de demi-cellule pour des électrodes à une ou deux couches. Huit électrodes polydispersées et cinq électrodes monodispersées ont été générées, en tenant compte des scénarios mince (ca. 65 µm) et épais (ca. 130 µm), et en maintenant constante la formulation de l'électrode (96 % en poids d'AM). Les électrodes non calandrées étaient très poreuses (ca. 50% de porosité) et ont été testées sous un courant constant de 280 mA g -1 . Dans ce contexte, toutes les électrodes se sont révélées limitées électroniquement, avec la lithiation commençant à la base de l'électrode et se déplaçant vers le haut pendant la décharge. Cela cpnduit à des SODs plus élevés à la base de l'électrode qu'à son sommet. Cette diérence était minime (ca. 5%) à la n de la décharge pour les électrodes minces, mais est devenue extrêmement signicative pour les électrodes épaisses (jusqu'à 55% et 75% pour les scénarios polydisperses et monodisperses, respectivement), surtout pour celles ayant un mauvais réseau de percolation électronique. Cela était particulièrement évident dans le cas des électrodes monodisperses, pour lesquelles les petites tailles de particules de AM sont le choix optimal pour les électrodes minces, alors que les tailles de particules de AM plus grandes permettent d'obtenir de meilleurs réseaux de percolation électronique, ce qui peut conduire à une capacité spécique plus élevée pour les électrodes épaisses. Ceci est lié aux petits pores interstitiels entre les particules de AM lors de l'utilisation de petites particules, conduisant à des agglomérats de CBD petits et mal interconnectés. Au contraire, les grosses particules d'AM produisent de gros pores interstitiels et un réseau de CBD continu et bien connecté. Cela suggère que la taille de l'AM n'a pas seulement un impact sur la vitesse de réaction et le chemin de diusion, mais joue également un rôle dans la distribution de la phase CBD, ce qui a un impact important sur le réseau de percolation électronique. Savoir lequel de ces deux eets, taux de réaction plus rapide ou réseau de percolation amélioré, contribue le plus à la capacité de décharge dénit si des particules de AM plus petites ou plus grandes sont souhaitables. Cependant, cette tendance n'était pas évidente lors de l'utilisation de particules de AM polydisperses, ce qui indique que les études reposant seulement sur des électrodes monodisperses peuvent donner des indications sur les phénomènes à prendre en compte lors de la recherche d'une AM PSD optimale, mais leurs résultats peuvent conduire à des conclusions erronées ou inexactes lorsqu'ils sont transposés à des AM PSD polydisperses.Les électrodes bi-couches peuvent être conçues pour combiner les avantages des petit et grande particules de AM en utilisant, par exemple pour les électrodes limitées électroniquement, des AM PSDs conduisant à un bon réseau de percolation électronique dans la couche inférieure, et des petites particules de AM pour accélérer la lithiation dans la couche supérieure. Le scénario opposé peut être spéculé pour le cas des électrodes limitées ioniquement.

  

  

  

  

  

  .1, while the values used for simulating the other slurries reported in Figure 2.5 can be found in the supporting information of Refs.[234,

	330]		
		AM	CBD
	ε[pgµm 2 µs -2 ]	0.01 × d AMexp 0.001 × d CBD
	σ[µm]	0.88 × d AMexp	1.1
	r c [µm]	1.14 × d AMexp	2.2
	d[µm]	1.14 × d AMexp	6.2
	ρ[gcm -3 ]	4.65	0.01
	k n [pgµm -1 µs -2 ]	8	8
	γ n [µm -1 µs -1 ]	38	38
	ν	0.15	0.15
	Xu	0.015	0.015
	Table 2.1: Example of FF parameter values for the case of the slurry 96:2:2, SC=71%.

  .1. The slurry FF parameter values used for the associated slurries were kept

		AM	CBD
	ε[pgµm 2 µs -2 ]	525 × d AMexp 900 × d CBD
	σ[µm]	0.89 × d AMexp	1.15
	r c [µm]	1.14 × d AMexp	2.2
	d[µm]	1.02 × d AMexp	1.3
	ρ[gcm -3 ]	4.65	0.9
	k n [pgµm -1 µs -2 ]	200	200
	γ n [µm -1 µs -1 ]	10	10
	ν	0.3	0.3
	Xu	12.5	12.5

Table 3 .

 3 

1: Example of FF parameter values for the the homogeneous drying simulation.

Table 4

 4 

	.2) are in agreement with the

Table 4 .

 4 2: Ionic resistances of the electrolyte within the porous electrode multiplied by the electrode surface (R ion ) and associated τ EIS calculated according to the graphical method proposed byLandesfeind et al.[370] Data from AbbosShodiev.[248] 

This stands for a 50% or 66% chance that the long term temperature raise, with respect to pre- industrial levels, will be of +1.65°C or +1.8°C,

respectively 32 This is, however, technically challenging and seems to be particularly destructive from an environ- mental/ecosystem perspective.[140] 
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two built-in ovens, each one of 1 m long. The temperature of the two ovens were 80 ºC and 95 ºC, respectively. All the electrodes were coated over a 22 µm aluminum foil and the line speed of the comma coater was kept at 0.3 m min -1 , while the comma gap was varied. The NMC and graphite electrodes taken as reference here were made by Hassan Oularbi [346].

The homogeneous and heterogeneous drying simulations takes approximately 1 and 6 days by considering approximately 6000 particles (94 wt.% of AM, CBD solid diameter of 1.3 µm and the AM PSD depicted in Figure 2.2) and using two computational nodes (128 GB of RAM each), each composed of 2 processors (Intel® Xeon® CPU E5-2680 v4 @ 2.40 GHz, 14 cores), respectively. The homogeneous simulations are performed in a NPT environment (300K and 1 atm) using all (x, y and z) PBCs, while the heterogeneous simulations are performed in an NVT environment considering x and y periodic and z as non-periodic. The homogeneous and heterogeneous drying simulations use a timestep of 1 ns and a number of timestep of 100 × 10 6 . The analysis of the volume fractions and interfaces were performed through voxelization of the electrode microstructures by using a resolution of 0.1 µm. The pore size distribution was measured through a modied version of the open-source software PorosityPlus[355] by using a resolution of 0.2 µm.

Chapter 5

Online manufacturing simulations This Chapter presents the web platform we developed to allow the utilization of the computational workow illustrated in Chapters 2, 3, and 4 through a user-friendly interface, and without the need of any computational skills or resources. In addition, this platform was not designed to encompass only slurry, drying, and calendering, but also electrolyte impregnation [378] and galvanostatic discharge [246], which will be added in the nal version of the platform and that are not discussed in this Chapter. To access to this platform, the user should simply register for free to the computational portal of the ARTISTIC project [379], and then access to it through her/his credentials. In this computational platform there are dierent sections, allowing to visualize and download previous results obtained by our groups and access the codes developed so far. The section of interest for this Chapter is the one named "Online calculator", whose working principle is depicted in Figure 5.1 and is presented in full detail below. The work presented in this Chapter is inscribed in the WPs 1 (3D discrete modeling of LIB electrode manufacturing) and, in perspective, 3 (electrode performance modeling) of the ARTISTIC project.

Free online calculator: from slurry to calendering

The main idea behind our online calculator is to unlock the utilization of our 3D manufacturing models to non-experts in the eld of 3D physics-based modeling, which we believe is of interested for (mainly) three kinds of researchers: (i) experimental researchers willing to approach the modeling eld, (ii) researchers developing predictive models, as ML-based ones, interested in studying LIB electrode manufacturing, and (iii) experts three degree of thickness, thinner, medium, and thicker, corresponding to three pre-dened initial simulation box aspect ratios. Similarly, the consideration of the electrode porosity could be implemented by dening three levels of porosity, less porous, medium, and more porous, corresponding to three sets of FF parameter values in which particle attraction/repulsion is modulated accordingly. However, the consideration of electrode porosity through this strategy requires several tests to identify the best FF parameter values to be associated to these options. Lastly, another improvement would be accounting for chemistries other than NMC. Considering that this model seems to be suciently chemistry-neutral, this could simply translate to changing the allowed AM and CBD particle size ranges as a function of the chemistry selected.

Appendix A -Data standardization

This Appendix is dedicated to data standardization in terms of: (i) identifying the lack of data in scientic reports, which makes dicult to reproduce and put in the right context the associated results, and (ii) the development of data sheets to support the standardization of LIB electrode manufacturing and characterization. The rst aspect was analyzed through the text mining (TM) algorithm developed by Hassna El-Bousiydy[268] (PhD in our research group) and by analyzing more than 13,000 scientic publications.[394] The aim of this work was to provide an overview of certain valuable electrode and cell features retrievable out of scientic literature in terms of how often they are reported and about the scattered ways in which they are reported. In addition, another aspect we wanted to underline is the diculty of recovering this non-standardized data automatically, i.e., through a TM algorithm, for using it as ML dataset. The TM algorithm we used is based on keyword search, i.e., devoted in-house libraries accounting for a combination of keywords and logic operators to identify if a target property, as the mass loading, is reported or not. In addition, specic strategies to distinguish among the article sections were implemented and three dierent lters were developed. These lters aim to limit the initial database to original experimental studies that deal with LIBs and sodium-ion batteries (SIBs).

1 In particular, two dierent lters were applied to discard Review articles and to discriminate LIB and SIB studies from other kind of energy storage technologies, such as supercapacitors, K-, Mg-, Al-, Ca-and Zn-Ion batteries, Li-or Na-air/sulfur or redox ow batteries, and also articles dealing with LIB/SIB separators. This lter also classies articles as LIB or SIB, by frequency analysis. A third lter is applied within the Experimental section to discard articles where no electrode composition is found, to avoid considering articles focusing only on materials physical properties, e.g., structural 1 The development of the libraries and lters, strategies to distinguish the article sections, the analysis and evaluation of the obtained results, and the writing of the associated article were my main roles in this work, together with Dr. Emiliano Primo[345].
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