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Title: Mining differential causal rules in knowledge graphs Keywords: Knowledge Graph; Knowledge Discovery; Causality; Rule Mining Abstract: The mining of association rules within knowledge graphs is an important area of research. Indeed, this type of rule makes it possible to represent knowledge, and their application makes it possible to clean up the contents of knowledge graphs by adding missing triples or by removing erroneous triples. However, these rules express associations and do not allow the expression of causal relations, whose semantics differ from an association. In a system, a causal link between a variable A and a variable B is a directed relationship from A to B and indicates that a change in A causes a change in B, with the other variables in the system maintaining the same values. Several frameworks exist for determining causal relationships, including the potential outcome framework, which involves matching similar instances with different values on a variable named treatment to study the effect of that treatment on an other variable named the outcome. In this thesis, we propose several approaches to define rules representing a causal effect of a treatment on an outcome. This effect can be local, i.e., valid for a subset of instances of a knowledge graph defined by a graph pattern, or average, i.e., valid on average for the whole set of graph instances. The discovery of these rules is based on the framework of studying potential outcomes by matching similar instances, comparing their RDF descriptions or their learned representations through graph embedding models.
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Chapter 1 Introduction

According to Oxford's dictionary, the term data refers to facts or information, especially when examined and used to find out things or to make decisions. Data as such were collected by humans for centuries, e.g., for constructing buildings, hunting, preparing meals, etc. However, despite their wide use in all types of domains, no norm or standards existed until the end of the 18th century. At that time, the lack of standards resulted in trouble replicating actions, such as collecting fees in different areas. A focus on data was therefore developed, and standards such as the meter, introduced in 1791, or the kilogram in 1799 1 , were defined and used to facilitate data-based operations.

Since the end of the 19th century and the construction of the world's first computer by Charles Babbage, computer-based systems have been massively developed and deployed, making it easier to extract insights from data or to realise operations on it. As a result of the combination of these computer based-systems and technologies allowing the representation of information, the amount of observational data created and stored worldwide increased exponentially, and so did the number of applications relying on data. In the 20th century, a new term appeared: Artificial Intelligence (AI). At that time, AI referred to computers that could possibly replicate human reasoning. Nowadays, AI characterises the families of methods designed to analyse the increasing volume of data to understand and extract new knowledge. In 2004, John McCarthy proposed the following definition: AI is the science and engineering of making intelligent machines, especially intelligent computer programs. It is related to the similar task of using computers to understand human intelligence, but AI does not have to confine itself to methods that are biologically observable. AI tools are numerous and can be applied to all types of data, e.g., text, images or tabular data. They are implemented in all do-mains, such as agriculture, banking, health, history, etc., where they can be used as a product or to guide decision-makers. Besides their use, AI methods are also an important focus of research in both academia and in industry.

To process and analyse data automatically, data need to be represented and stored. Several data models exist to store data, one of which is knowledge graphs. Thanks to the linked open data (LOD) initiative [START_REF] Berners-Lee | Linked Data -Design Issues[END_REF] and to the development of standard languages such as RDF 2 for representing data and OWL 3 for representing knowledge, knowledge graphs have gained importance. Projects like DBpedia [START_REF] Auer | Dbpedia: A nucleus for a web of open data[END_REF], and YAGO [START_REF] Suchanek | Yago: A core of semantic knowledge[END_REF], which led to the creation of big cross-domains RDF knowledge graphs by automatically extracting information from Wikipedia, have pushed the adoption of knowledge graphs as a standard model for representing data and knowledge. While the term Knowledge Graph was introduced in 1972 [START_REF] Schneider | Course modularization applied: The interface system and its implications for sequence control and data analysis[END_REF], the increase of its renown can be attributed to Google with the introduction of the Google Knowledge Graph [START_REF] Singhal | Introducing the knowledge graph: things, not strings[END_REF] in 2012, which was the first big company to announce their use of knowledge graph publicly. Ever since, companies from different businesses developed their own knowledge graphs: in social networks (Facebook [START_REF] Noy | Industry-scale knowledge graphs: Lessons and challenges[END_REF], LinkedIn [START_REF] Chen | Building the linkedin knowledge graph[END_REF]), finance (Accenture [START_REF] Okorafor | The path from data to knowledge[END_REF]), e-commerce (Amazon [START_REF] Krishnan | Making search easier: How amazon's product graph is helping customers and products more easily[END_REF]), and other domains. Knowledge graphs are composed of a collection of triples, where subjects are linked to objects through properties, and of an ontology that gathers classes, properties and axioms. The growing interest in knowledge graphs can be explained by the flexibility they propose, as they do not need a defined schema such as in relational databases, which facilitates updating their content. In addition to representing data, knowledge graphs have the ability to represent knowledge in ontologies. This is of interest when collaborating with experts of various domains, who can represent knowledge in a manner that is usable for a reasoning purpose. Another reason for the adoption of knowledge graphs is their ability to ease data sharing and data interoperability. These features enhance the sharing and use of data from different sources. Knowledge graphs are used for many tasks, such as web searches, recommendations, data integration or conversational agents.

An important task on knowledge graphs is rule mining [START_REF] Galárraga | Amie: Association rule mining under incomplete evidence in ontological knowledge bases[END_REF][START_REF] Ortona | RuDiK: Rule discovery in knowledge bases[END_REF], where a rule represents semantic dependencies between properties. An example of such a rule is bornIn(x, y) ⇒ citizenOf (x, y). These kinds of rules can be used for link prediction, error detection, schema matching and so on. However, such rules do not express a causal relation, which is needed to explain a phenomenon. A causal relation between A and B is a directed relation from A to B, where a change in variable A causes a change in variable B within a system where all other variables keep the same values. Such relations differ from an association or a correlation, where a relationship between two variables may stand because of randomness or because of a L. Simonne third variable causally linked to both variables. Discovering causal relations is the key to a large spectrum of domains, from chemistry, where the reaction between two chemical compounds can be studied in a lab, to sociology, where experiments can be tested on populations of people. While such relations are important for decision-making and knowledge discovery, they are often complicated to discover. Indeed, the gold standard consists of planning an experiment to measure the effect of a potential cause on an outcome. However, planning such experiments can be difficult for cost or ethical reasons. It is, for instance, impossible to force someone to start smoking. Therefore, causal relations are often studied through observational data rather than data obtained through an experiment. As naively dealing with observational data can lead to biases in the estimation of causal effects, several frameworks exist to tackle this issue, such as the potential outcome framework [START_REF] Holland | Statistics and causal inference[END_REF] and the structural causal model [START_REF] Pearl | Causal inference in statistics: An overview[END_REF], which are the two main frameworks that exist to this end. While methods for discovering causal effects exist for relational and column-based data models, few methods focus on causality within knowledge graphs, and none adapt the potential outcome framework. As such, methods are required to discover causal effects explaining an outcome in a knowledge graph. Given an outcome, a set of rules could represent a set of explanations as to why the outcome is observed.

Objectives and Contributions

Discovering causal relations and providing explanations as to why instances of a knowledge graph have different outcome values is the objective of this thesis. More precisely, we developed a novel approach for differential causal rule discovery by adapting the potential outcome framework and using three different methods for matching the instances. The discovered rules allow us to explain a difference in outcome values through a difference in treatment values. It is to note that these rules capture effects that are potentially causal. An example of a rule could be that eating a higher-protein diet explains a higher muscle gain. This work does not cover other frameworks in causal discovery, such as the structural causal model [START_REF] Pearl | Causal inference in statistics: An overview[END_REF], and neither does it address the problem of causal knowledge incorporation in machine learning models [START_REF] Bengio | Representation learning: A review and new perspectives[END_REF]. In more detail, this thesis presents the following contributions.

The definition of Differential Causal Rules (DCR), published in [START_REF] Simonne | Fouille de règles différentielles causales dans les graphes de connaissances[END_REF][START_REF] Simonne | Differential causal rules mining in knowledge graphs[END_REF], that are first-order logic rules providing an explanation to a difference of values of a numerical path for two instances of a class in a knowledge graph. An explanation is a difference of values in another path that can either be numerical or categorical. A DCR is composed of an optional component, named strata, that expresses the description of instances on which an effect is valid. An example of DCR is that for people living in cities, being more sensitive to climate change explains a higher will to reduce one's meat consumption.

L. Simonne and to rank treatments. Chapter 6 presents the third algorithm we developed to mine differential causal rules expressing the average effect of a treatment. These rules are interesting when dealing with a knowledge graph with missing data. Chapter 7 summarises the thesis and discuss the approaches that were developed, and gives perspectives on future work on causality in knowledge graphs.

Chapter 2 Preliminaries

Although all knowledge graphs are represented in the same data model, they can still be very different depending on how they are created, e.g., using extracted knowledge, crowd-sourced. The objectives of this chapter are to provide an overview of what knowledge graphs are, to define the scope of this thesis regarding the type of knowledge graphs it can be applied to, and to provide examples of knowledge graphs.

Section 2.1 defines knowledge graphs and ontologies as well as the standard languages that exist in the semantic web community, such as the resource description framework (RDF) and the web ontology language (OWL).

Section 2.2 presents how knowledge graphs can be constructed, and, the consequences the construction can have on both qualitative and quantitative features of knowledge graphs. It presents popular knowledge graphs studied within the semantic web community. It also gives the scope of this thesis regarding the type of knowledge graphs it can be applied to.

Knowledge Graph: Data and Ontology

In this section, we first present the two main components that usually compose knowledge graphs, namely the Resource Description Framework1 (RDF) data graph and the ontology. Then, we give our formal definition of a knowledge graph.

RDF Data Graph

The RDF is a standard promoted by the W3C 2 . It is used to describe entities uniformly to facilitate data interchange on the Web. L. Simonne An RDF data graph is a set of triples that describes entities. The triples are in the form (subject, property, object), where a subject and an object are represented as nodes in the graph, and a property is represented by an arc from subject to object. A subject is an IRI3 , a property is an IRI, and the object can either be an IRI or a Literal such as a String, an Integer or a Float. Some triples of an RDF Graph may be structured as (subject, rdf : type, class) and indicate that an IRI subject is an instance of a class.

The use of RDF facilitates the interoperability of a knowledge graph with other knowledge graphs. For instance, if several knowledge graphs constructed by different organisations were to describe a similar domain, using RDF would allow the use of all knowledge graphs combined.

An example of an RDF Graph is presented in Figure 2.1. In this figure, the described entities are French engineering schools that are part of the University Paris-Saclay. As seen in the figure, an RDF Graph is a directed multi-relational graph, and several different properties may exist between two entities. It is to note that beyond this example, entities of a knowledge graph may represent all kinds of types, such as people, buildings, countries, etc.

Ontologies

Ontologies are a core element of the semantic web. They are used in complement to the RDF Data Graph and allow to structure and formalise domain knowledge. More formally, an ontology is defined as an explicit, formal specification of a shared conceptualisation [START_REF] Thomas | Toward principles for the design of ontologies used for knowledge sharing[END_REF].

An ontology is usually described using W3C standard languages such as RDF
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Schema (RDFS) 4 or the Web Ontology Language (OWL) 5 . RDFS is used to represent a hierarchy of classes and the hierarchy of properties. More precisely, RDFS defines classes with rdfs:Class, properties with rdf:Property, and their hierarchy with rdfs:subClassOf and rdfs:subPropertyOf, respectively. Given a property, RDFS also defines its domain and its range with rdfs:range and rdfs:domain to precise the class, or classes, of its resource and value respectively. OWL and OWL2, its second version, are more expressive languages that can be used to represent more complex knowledge. An OWL2 ontology is composed of a set of classes and a set of properties that can either express relations between entities, i.e., owl:ObjectProperty, or relations between a class and a Literal, i.e., owl:DataTypeProperty. A property is defined by its domain and range, which are classes for an owl:ObjectProperty, and a class for the domain and a Literal as a range for the owl:DataTypeProperty.

In addition to expressing classes and properties, the OWL2 language allows to declare axioms, which are a key component of an ontology. An axiom is a statement that says what is true in a domain 6 . Eight types of axioms exist, including class axioms, object property axioms and data property axioms. For instance, with c 1 and c 2 two classes, the class axiom owl:subClassOf indicates a subsumption between c 1 and c 2 , noted c 1 ⊑ c 2 . In Figure 2.2, the class University is subsumed by the class Research Institute. Other class axioms may indicate an equivalence or a disjunction between c 1 and c 2 . An example of an axiom on properties is the functionality of a property, which indicates that a functional property is a property that can have only one (unique) value y for each instance x. This can be valid for a datatype property with the axiom owl:FunctionalDataTypeProperty or an object property with the axiom owl:FunctionalObjectProperty.

Ontologies are therefore used to formalise a vocabulary for a given domain as well as to apply reasoning to infer new knowledge, by making implicit knowledge explicit, and to check the knowledge consistency. It is to note that, more broadly, using an ontology enhances the reasoning in a knowledge graph itself, but also with other knowledge graphs if using the same vocabulary. When ontologies are different, several approaches of ontologies alignment exist to facilitate the use of several graphs by finding the matches between the classes and properties [START_REF] Sabou | Survey on complex ontology matching[END_REF].

Knowledge Graph Definition

While the term Knowledge Graph was for the first time used in 1972 [START_REF] Schneider | Course modularization applied: The interface system and its implications for sequence control and data analysis[END_REF], their study gained attention around 2007 with knowledge graphs being developed in Figure 2.2: Example of an Ontology using OWL different projects and all main tech companies such as Google [START_REF] Singhal | Introducing the knowledge graph: things, not strings[END_REF], Amazon [START_REF] Krishnan | Making search easier: How amazon's product graph is helping customers and products more easily[END_REF], Facebook [START_REF] Noy | Industry-scale knowledge graphs: Lessons and challenges[END_REF], Microsoft, Uber, LinkedIn [START_REF] Chen | Building the linkedin knowledge graph[END_REF], Accenture [START_REF] Okorafor | The path from data to knowledge[END_REF], etc. Academia first contributed to this trend, with researchers increasingly studying various fields of the semantic web. Notably, standard knowledge graphs were created, such as DBpedia [START_REF] Auer | Dbpedia: A nucleus for a web of open data[END_REF] and YAGO [START_REF] Suchanek | Yago: A core of semantic knowledge[END_REF] in 2007.

Despite this craze, a debate still exists to give a formal definition of what a knowledge graph is. We propose to use the definition of Hogan et al. [START_REF] Hogan | Knowledge graphs[END_REF], i.e., that a knowledge graph is a graph of data intended to accumulate and convey knowledge of the real world, whose nodes represent entities of interest and whose edges represent relations between these entities. More precisely, the graph of data conforms to a graph-based data model, and knowledge refers to something known. We retain that knowledge graphs are a multi-relational graph representing data on both instances description, i.e., data graph, and knowledge, i.e., ontology or schema.

Definition 1. Knowledge Graph. A knowledge graph KG can be defined by a couple (F, O) with:

• O = (C, DP, OP, A) an ontology defined by a set of classes C, a set of owl:DataTypeProperty DP, a set of owl:ObjectProperty OP, and a set of axioms A;

• F a collection of triples (subject, property, object) where subject is an IRI, property is an IRI, and object is either an IRI or a Literal. We note R the set of resources with all IRIs and I the subset of R composed of all IRIs referring to instances. L is the set of Literal values. The triples collection is also referred to as an RDF Data Graph.

Knowledge Graphs Diversity

Knowledge Graphs can be constructed through different processes and from various data sources. As a result, they largely differ on a set of criteria, e.g., their size, completeness, described topic, applications, etc. The objective of this section is L. Simonne to explain and show this diversity to define the scope of this thesis regarding the knowledge graphs it can be applied to. Figure 2.3 is a schematic representation of Dong [START_REF] Luna | Challenges and innovations in building a product knowledge graph[END_REF] on how knowledge graphs are built and their applications. In particular, this figure shows that the construction of a knowledge graph is composed of two parts: first, knowledge is collected from data sources and, secondly, the knowledge is cleaned.

In the first part of the knowledge graph construction, the knowledge collection, knowledge graphs may be built upon automated processes on relational databases, web pages, or a corpus of documents with natural language processing methods. Knowledge graphs can also be built through crowd-sourcing, such as Wikidata [START_REF] Vrandečić | Wikidata: A free collaborative knowledgebase[END_REF], where the community can contribute by adding data or editing it.

As a result of this diversity in construction processes, knowledge graphs may differ in size or incompleteness. Let two knowledge graphs, DrugDiscovery and ChemicalP rocess, illustrate this diversity. In the first example, let a pharmaceutical company that aims to build a knowledge graph, named DrugDiscovery. This company may use natural language processing methods over documents such as publications or books on drug testing. As a result, the collection of triples representing the entities and relations extracted from the processing of documents may be missing triples and have some erroneous triples. In the second example, let us consider researchers in chemistry that would be interested in describing their experiments in a knowledge graph. The knowledge graph is named ChemicalP rocess. The data sources they would use to construct the knowledge graph could be provided by the measuring systems they use, as well as their measures stored in tabular data. In this example, a triples collection would be highly accurate and complete.

As a consequence of the knowledge collection, knowledge graphs are more or less complete and can be composed of erroneous triples depending on their knowledge collection process. Therefore, the second part of the knowledge graph construction is the knowledge-cleaning step. This step consists, through various techniques, of removing erroneous triples, adding missing triples, finding entities that refer to the same one or also finding the correspondence of the schema with the schema of other knowledge graphs. This step is of great interest as it determines the downstream tasks that can be applied to a knowledge graph. For instance, a knowledge graph with missing and erroneous triples will not likely be used for specific queries.

While techniques that address the cleaning of a knowledge graph issue have shown to have high performances, it is, however, almost impossible to have a knowledge graph with no missing or erroneous triples when it has been built with extracted knowledge. Therefore, several assumptions can be made before using a knowledge graph. One assumption is the Closed World Assumption (CWA) that states that a missing triple is false. Another, the Open World Assumption (OWA), states that a missing fact might be true or false. For instance, in Figure 2.1, the node AgroParisTech represents an engineering school. However, this information is not in the graph. In the CWA setting, AgroParisTech being an engineering school would be considered false, while this could still be true in the OWA setting. Other assumptions exist and are to be used depending on the application of the knowledge graph.

The diversity of knowledge graphs is also represented through the applications they support. For instance, a knowledge graph such as ChemicalP rocess can store data and be the object of queries to retrieve data to train a machine learning model. Knowledge graphs can also be used to learn abstract representations of entities through embedding models [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF] to discover new triples or to find similar entities. This could be an application of DrugDiscovery, where learning the embedding representation of molecules could lead to the discovery of new treatments.

More generally, the applications of a knowledge graph depend on the domain it describes. Standards knowledge graphs such as YAGO describe general knowledge from several domains. In Figure 2.4, an extract of YAGO shows the description of the singer Elvis Presley. However, YAGO describes not only singers but also people in general, cities, countries, movies, and organisations 7 . It is composed of billions of triples and is linked to other knowledge graphs such as Wikidata, Freebase or DBpedia, therefore facilitating data interoperability. Such knowledge graph can be used for a large set of applications such as question answering or entity recognition [START_REF] Pellissier Tanon | Yago 4: A reason-able knowledge base[END_REF]. Knowledge graphs with many triples describing general knowledge also serve as standards to test and evaluate the performances of all types of methods, such as in rule mining or key discovery. Knowledge graphs may L. Simonne Figure 2.4: Extract of YAGO also describe domain-specific knowledge such as industrial processes, human behaviour regarding nutrition [START_REF] Simonne | Differential causal rules mining in knowledge graphs[END_REF], historical events [START_REF] Schouten | The wind in our sails: Developing a reusable and maintainable dutch maritime history knowledge graph[END_REF], or any experiments where observational data are gathered. These knowledge graphs share applications with general knowledge graphs, such as question answering, but can also be the object of other applications that are more domain-specific, for instance, through collaborations with domain experts. These collaborations may lead to the adoption of a common language to describe events of a domain [START_REF] Ibanescu | Po 2 -A process and observation ontology in food science. application to dairy gels[END_REF] or to the discovery of results that can be used by experts.

Chapter 3

State of the Art

The objective of this thesis is to propose approaches that discover gradual causal rules in knowledge graphs. This chapter presents a background of existing work that has been done on causality and on how causality has been addressed in knowledge graphs.

The concept of causality has been widely studied by philosophers and statisticians. While this concept is rather difficult to apprehend, as well as controversial, the discovery of causal relations has a broad spectrum of applications in many fields, such as life science, chemistry or social science. Consequently, numerous works attempted to tackle causal discovery in statistical and computer science.

We first introduce and discuss the notion of causality to define and scope the content of the thesis and the type of causal discovery it investigates. To this end, we propose an overview of how causality can be apprehended and present the different frameworks that exist to tackle causal relations. One of these frameworks is called the potential outcome framework and aims to estimate the causal effect of a treatment by estimating counterfactuals. This framework is suited to estimate causal effects from observational data when testing causal effects by planning experiments such as A/B tests is impossible. While this framework is widely studied by statisticians, it has never been considered by computer scientists when data are represented as knowledge graphs. A key feature of the potential outcome framework is the counterfactual estimation that can be done using matching techniques. This framework will be detailed since it is used in our approaches. We will also present approaches that estimate the similarity between two individuals in a knowledge graph.

On the other hand, many approaches focus on discovering rules that capture concepts such as associations or correlations. These approaches vary depending on the language expressivity, the search strategy and the quality measure of the rules they generate. In this chapter, we present the different kinds of rules that can be mined in existing approaches in knowledge graphs, and how they differ from the L. Simonne rules we aim to mine. We explain why such approaches cannot easily be adapted for differential causal rules.

Section 3.1 focuses on causality, describes the main frameworks for its study and introduces the terms used to study causal inference. A deeper analysis of the potential outcome framework is provided.

Section 3.2 is an overview of the different rule types and mining processes, including Association Rules and Action Rules. We show why the semantics of such rules make them unsuitable for a causal study purpose.

Section 3.3 presents several approaches to quantify the similarity between instances of a knowledge graph. More particularly, we present identity and weakidentity links between instances, as well as numerical similarity based on embedding models.

Causality

This section provides two distinct pieces of content on causality. First, the subsection 3.1.1 gives a brief background on the history of causality and shows how it shifted from a philosophical concept to a key element of artificial intelligence and other scientific fields. Then, the subsections 3.1.2 to 3.1.8 present causality as it is defined by statisticians, the frameworks defined for its study, and how it is addressed for knowledge graphs.

A bit of history of causality

The concept of causality has been widely studied by philosophers throughout the centuries. We first present a selection of philosophical theses discussing the notion of causality, and then discuss how causality is studied within the computer science community nowadays.

The first time the notion of causality was mentioned dates back to the time of Greek philosophers [START_REF] Hulswit | From Cause to Causation a Peircean Perspective[END_REF], with Plato and, significantly, Aristotle. Aristotle, in several books such as Physics, Posterior Analytics and Metaphysics, defined four causes during the 4th century before JC: material, formal, efficient and purpose. In his mind, causality was not only related to the effect of a thing, but also to its essence itself, i.e., why it had been realised. An example can be provided through the analysis of a house:

1. The material cause of the house would be the materials used to build it, such as wood or metal;

L. Simonne 3. The efficient cause is the people who built the house;

4. The purpose cause is to provide shelter to the people living in the house.

Therefore, for Aristotle, four different causes could be defined for an object. This concept evolved over the centuries, and philosophers restrained the study of causality to the efficient cause.

In the middle age, philosophers adapted Aristotle's work in the context of strong Christian culture. For example, Descartes makes the distinction between a general cause, which is god, and specific causes, that mechanical and automatic motion of matter. In his thesis, and the thesis of philosophers after him, such as Spinoza, the concept of causality is materialistic, deterministic, and does not involve the mind.

Leibniz revokes the materialistic view of causation presented by philosophers that preceded him and advocates for the definition of a reason that can involve the mind and the soul as final causes.

During the XVIII th century, Hume, in his work A Treatise of Human Nature [START_REF] Hume | A Treatise of Human Nature[END_REF], proposes a thesis that had a wide impact on causality. He defines causality as a mental phenomenon. While he agrees that causality should respect (i) contiguity in space and time of the cause and the effect and that (ii) the cause should occur before the effect, it is impossible for him to justify any connection between the cause and the effect. In other words, even given the repetition of an experiment that could show a causal effect, it is not enough to guarantee that this causal effect should happen in the following experiment. Therefore, nothing can justify a cause in reality, and causality is a mental phenomenon that people learn by observing things occurring together in time and then making an association between a cause and an effect. Causality, for Hume, is a mental construction due to the repeated and constant conjunction between the event we call cause and that we call effect.

In reaction to Hume's work, Kant proposes another thesis for causality in his work Critique of Pure Reason [START_REF] Kant | Critique of Pure Reason[END_REF]. While he also believes that causality occurs in the mind, he, however, proposes that causality is a category that is innate, rather than something that is learned, that, as a consequence allows people to perceive events happening one after another.

Nowadays, defining causality remains an open question for philosophers and scientists from different domains. The research on causal inference from statisticians and computer scientists increased since the '70s (Rubin [START_REF] Rubin | Estimating causal effects of treatment in randomized and nonrandomized studies[END_REF], Holland [START_REF] Holland | Statistics and causal inference[END_REF]), and is nowadays a trending topic (Pearl's Turing Award [START_REF] Pearl | Causal inference in statistics: An overview[END_REF], Bengio [START_REF] Scholkopf | Toward Causal Representation Learning[END_REF]). Besides, the number of topics studied by causality is also growing. While most of the existing approaches try to assess causal effects, an increasing number of publications focus on incorporating causal knowledge into machine learning (ML) model training processes, on improving ML's generalisation ability or transfer learning Bengio [START_REF] Scholkopf | Toward Causal Representation Learning[END_REF].

Causation, Correlation and Association

This subsection introduces how association, causation, and correlation represent different relations. An association is a general concept that indicates that a relation holds between two variables. In other words, two associated variables can be correlated, or one could cause the other. A correlation is a specific type of association that indicates a dependence between two variables. It is symmetric and indicates that when one variable changes, the other variable also changes. Two variables can be positively or negatively correlated depending on whether an increase in one variable is associated with an increase or a decrease respectively in the other variable. The correlation r between two random variables X and Y is a value between -1 and 1. It is described in equation 3.1 with E(X) the expected value of X and σ X the standard deviation of X.

r = E[(X -E(X))(Y -E(Y ))] σ X σ Y (3.1)
Correlation is not to be confused with causation. Causation is an asymmetric relation between two variables A and B. More precisely, it is a directed relation from A to B, where a change in variable A causes a change in variable B within a system where all other variables keep the same values.

In the following, we present examples illustrating the difference between causation and correlation. In Figure 3.1, a positive correlation is observed between the number of people who drowned by falling into a pool and the number of films Nicolas Cage appeared in. However, one could doubt that seeing a movie with Nicolas Cage causes people to fall into pools. Another example is the positive correlation between the number of Nobel prize laureates from a country and the average consumption of chocolate by the country's inhabitants. Again, one can doubt that eating chocolate causes winning the Nobel prize. Other examples of spurious correlations can be found on the following website 1 .

In the previous examples, we could see that variables that are a priori completely independent can be associated. This is merely due to randomness. However, in some cases, an association between two variables can underlie a more complex structure. For instance, the existence of a third variable causal to the two others. Figure 3.2 is an example proposed by Neil [START_REF] Neal | Introduction to causal inference from a machine learning perspective[END_REF] to illustrate this type of structure. If looking at the two icons on the bottom, one can see that sleeping while wearing shoes is associated with waking up with a headache: people that slept with their shoes happened to have a headache. However, this association exist due to another variable which is a common cause, i.e., the number of alcoholic beverages that were drunk the night before. Therefore, in addition to randomness, an association can also be due to a causal structure. The examples show that, while an association or a correlation between two variables can be easily measured, demonstrating a causal relation is not trivial.
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The following section provides a formal introduction to causal inference.

The Fundamental Problem of Causal Inference

This section presents the fundamental problem of causal inference [START_REF] Holland | Statistics and causal inference[END_REF] and introduces the vocabulary used within causal inference.

Figure 3.3 presents an example where a person is either suffering from a disease, in which case it is surrounded by a continuous box, or in good health, in which case it is surrounded by a dotted box. Researchers in drug discovery are interested in discovering whether a drug could heal this person, i.e., changing its box from continuous to dotted. To obtain the causal effect of the drug, one would want to compare the health of the sick person after they took the drug to its health if it did not. However, both measures can not be observed, as the person can only take or not take the drug. Therefore, the causal effect of the drug on this person can not be computed, as taking the drug could heal the person, but the person might have healed without taking it. The problem of not observing both measures is known as the fundamental problem of causal inference.

Figure 3.3: Illustration of the fundamental problem of causal inference

More formally, the health Y i of a person i, named unit, is referred to as the outcome Y , and the effect of a drug on the person's health is named the effect. The drug is referred to as the treatment T . Y i (do(T = 1)) is the outcome of i if i takes the treatment, and Y i (do(T = 0)) is the outcome of i if i does not take the treatment. The formula do(T = 1) and do(T = 0) are formally known as an intervention. Y i (do(T = 1)) is also written as Y i (1). The causal effect of the drug on the person is named the individual treatment effect T E i and is the difference between the two outcomes:

T E i = Y i (1) -Y i (0) (3.2)
Because both outcomes can not be observed, the individual treatment effect can not be computed. The outcome that does not exists is named the counterfactual. The notion of counterfactual was first mentioned by the philosopher Spinoza during the 17th century.

Several frameworks were introduced to tackle the problem of causal discovery. In particular, two main frameworks are recognised as standards to causal inference: the potential outcome framework 3.1.4 and the structural causal model 3.1.5. The gold standard of causal discovery is randomised experiments that we present in the section 3.1.6.

Potential Outcome Framework

The potential outcome framework is a standard framework for discovering causal relations. The works of Rubin [START_REF] Rubin | Estimating causal effects of treatment in randomized and nonrandomized studies[END_REF][START_REF] Althauser | The computerized construction of a matched sample[END_REF][START_REF] Rubin | Bias reduction using mahalanobis-metric matching[END_REF] Rosenbaum [START_REF] Rosenbaum | The central role of the propensity score in observational studies for causal effects[END_REF][START_REF] Rosenbaum | Reducing bias in observational studies using subclassification on the propensity score[END_REF] and Holland [START_REF] Holland | Statistics and causal inference[END_REF] i Y (1) Y (0) Y (1) -Y (0) 

Metrics for Measuring a Causal Effect

The potential outcome framework aims to estimate the counterfactual (3.1.3) to determine a causal effect. Comparing the counterfactual to the observed outcome enables the determination of the average treatment effect AT E. The term average is used in opposition to the individual effect, which can not be measured, and shows an effect measured on a set of instances. With the notations introduced in 3.1.3, the AT E is defined as follows:

AT E = E[Y (1) -Y (0)] (3.3) 
Table 3.1 is used to show the computation of the AT E. In this table, computing the AT E as described in equation 3.3 is not possible due to the absence of an outcome, denoted by "?". Complete data as in Table 3.2 would be necessary to compute the AT E. However, it is only presented for an explanatory purpose as it is impossible to obtain. Using the linearity of expectation, the AT E can be derived to E[Y [START_REF] Althauser | The computerized construction of a matched sample[END_REF]] -E[Y (0)]. Thus, the AT E can be computed and equals AT E = 3.(1/4) + 0.(1/4) + 1.(1/4) + 0.(1/4) = 1, which would mean that the treatment has an effect.

Another common measure of the treatment effect is the average treatment effect of the treated AT T , described in 3.4, which is similar to the AT E to the difference that it only focuses on treated instances. In the example, the AT T is computed as follows: AT T = 3.(1/2) + 0.(1/2) = 1.5. As noted in the previous section on the use of observational data rather than data from a randomised experiment, it is to note that both the AT E and the AT T are not equal to the difference between the means of the outcomes of the treated and control sets,
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E[Y |T = 1] -E[Y |T = 0].
There is a bias named the selection bias. Using the linearity of the expectation, it can be demonstrated as follows in equation 3.5:

E[Y |T = 1] -E[Y |T = 0] = E[Y (1)|T = 1] -E[Y (0)|T = 0] = E[Y (1)|T = 1] -E[Y (0)|T = 1] + E[Y (0)|T = 1] -E[Y (0)|T = 0] = E[Y (1) -Y (0)|T = 1] + E[Y (0)|T = 1] -E[Y (0)|T = 0] = AT T + BIAS (3.5) 
The selection bias in equation 3.5 is the difference between the potential outcome of treated instances if they did not take the treatment, which is a counterfactual, and the outcome of the instances that did not take the treatment. In other words, this term should be equal to 0 if the treated and control sets are similar, i.e., with a covariate balance between both sets. However, it usually differs from 0 as the treated and control sets often have different distributions. Intuitively, this can be explained by the fact that there is usually a reason why a certain population received a treatment, meaning that it differs from the control population. For instance, one could analyse the effect of a policy aiming to increase the success rate of obtaining a high school degree. To this end, the treated population, i.e., that would be the object of the new policy, for instance, with new lectures, could be students in disadvantaged areas, while the control population would be more privileged students. However, the reason for defining the policy would be that the population have a different success rate, meaning that

E[Y (0)|T = 1] ̸ = E[Y (0)|T = 0]
. Therefore, bias often exists, and the causal effect is to be computed differently.
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Methods and Hypotheses of the Potential Outcome Framework

We showed that a bias could be introduced when estimating the causal effect if comparing the mean outcome of both the treated and control sets. This bias is due to the difference in covariates distribution between the sets. To obtain a nonbiased estimation of a causal effect, the potential outcome framework proposes several approaches that are based on the estimation of the counterfactual.

The set of methods can be split into two groups, depending on whether the counterfactual is estimated with an existing unit of the dataset, or with a prediction regarding the other units of the dataset. The first group of methods are matching methods. These approaches estimate the counterfactual of a unit with an existing unit of the dataset. Therefore, it creates matches of instances that can then be compared to estimate the causal effect, which balances the covariate distribution between the treated and control sets. These methods are further investigated in the next section. The second group of families consists of modelling adjustment. They estimate the counterfactual of a unit by making predictions of its potential outcome based on models learned on the units of the dataset. Modelling adjustments might imply different types of models such as linear regression, i.e., named regression adjustment. It has been shown that using both type of models combined lead to better results [START_REF] Glazerman | Nonexperimental versus experimental estimates of earnings impacts[END_REF][START_REF] Daniel | Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference[END_REF]. Many more methods exist, and some are presented in this tutorial [START_REF] Kiciman | Tutorial on causal inference and counterfactual reasoning[END_REF], such as natural experiments that aim to naturally find sets of instances that form a control and a treated set without attributing the treatment, or instrumental variable.

The methods of the potential outcome framework previously described rely on several assumptions that we present. These assumptions posit an assignment mechanism [START_REF] Stuart | Matching methods for causal inference: A review and a look forward[END_REF] to ensure a non-biased estimation of the causal effect when creating the control and test sets. The first assumption is the strongly ignorable treatment assignment [START_REF] Rosenbaum | The central role of the propensity score in observational studies for causal effects[END_REF]. It stipulates that (i) the treatment assignment should be independent of the potential outcomes given covariates and that (ii) the probability of receiving the treatment should be positive for all instances. The second assumption is called the Stable Unit Treatment Value Assumption [START_REF] Rubin | Bias reduction using mahalanobis-metric matching[END_REF], known as SUTVA. It states that the outcomes of one instance should not be affected by the treatment assignment of any other individuals. This assumption can be more or less difficult to hold depending on the relation between the dataset units, e.g., for people of the same group, like a school or a company. As these assumptions hardly stand in some cases, part of research in causality seeks to define how to relax these assumptions [START_REF] Hong | Evaluating kindergarten retention policy[END_REF].
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Matching-based Methodology for Discovering Causal Effects

When dealing with observational data, one of the most used methods for estimating causal effects is matching [START_REF] Stuart | Matching methods for causal inference: A review and a look forward[END_REF]. Matching can be seen as a pre-processing step that balances the covariates between the treated and control sets. To do so, it sub-samples a dataset by pruning instances that are too dissimilar to the other instances of the dataset. More precisely, it aims to create matches of similar instances that shall be used to measure a causal effect. A causal effect can be assessed after the matching step through various metrics. In this section, we briefly present the steps of matching, i.e., (i) the definition of a distance between instances, (ii) the matching of instances and (iii) the analysis of the outcome.

The first step consists of defining the distance between two instances to determine their similarity. Many distances can be used with tabular data, such as relatively simple ones, e.g., the exact distance, or more complex ones, e.g., propensity score, that we will introduce later. While several distances exist, they are all used for the same task, measuring the similarity between two instances. A distance is chosen depending on the features of the description of the instance. With the instances being described in a low-dimensional space, the euclidean distance can be used to find similar instances. However, such distances become hard to use with higher dimensions, even if they are relaxed using coarsened matching techniques, such as Iacus2012 et al. [START_REF] Iacus | Causal inference without balance checking: Coarsened exact matching[END_REF], that are doing exact matching on intervals instead of on values. Propensity score [START_REF] Rosenbaum | The central role of the propensity score in observational studies for causal effects[END_REF] facilitates matching when dealing with higherdimension datasets. Its intuition is to train a model that will predict a score for each instance, representing its probability of being treated. Two instances having the same score can then be considered similar as they share the same probability of being treated. However, limits to propensity score were shown [START_REF] King | Why Propensity Scores Should Not Be Used for Matching[END_REF], in particular, as it can create many irrelevant matcheIacus2012. Iacus2012e created with the defined distance. Several matching methods exist, such as nearest-neighbour matching or sub-classification. For each of these methods, several parameters are to be defined. In nearest-neighbour matching, a user can decide to match a treated unit to one control unit, or several of them. Also, an instance that has been selected in a pair can either be drawn in another pair or not. In another setting, sub-classification aims to estimate a causal effect in several sub-classes instead of creating pairs through the dataset. The different choices of matches are discussed by Stuart [START_REF] Stuart | Matching methods for causal inference: A review and a look forward[END_REF].

In the third step, a causal effect is estimated given the set of instances selected by the matching step. A causal effect can be directly defined on the selected instances, or on models that represent either the treated or the control units, for instance, by comparing the coefficients of such models. Various metrics exist to measure a causal effect, such as the difference in the potential outcomes between treated or control units, or relative metrics, such as the odds ratio (OR) [START_REF] Szumilas | Explaining odds ratios[END_REF] or relative risks (RR), that measure how a treatment is associated to an outcome. The choice of the metric depends on the measured effect, e.g., the AT E and the AT T , as well as the type of treatment or the outcome. For instance, with the outcome being a discrete variable, the OR and the RR are better suited.

Figure 3.4, from Ho et al. [START_REF] Daniel | Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference[END_REF], is used to illustrate the steps previously described. Two sets of units are studied: the set of treated units, represented by a T on the figure, and the set of control units, represented by a C. In this example, the outcomes of treated and control units are modelled by a linear or quadratic model. The causal effect is obtained by comparing the model of the treated units to the model of the control units. In the left figure, no matching has been applied, and all instances are considered to estimate the models. In the right figure, only matched instances are selected to estimate the models. As a result, in the left figure, the comparison of the linear models indicates that the treated group has higher outcome values, while the comparison of the quadratic model indicates that the control group has higher outcome values. In the right figure, where matching has been applied, both models show that outcome values are the same for both the treated and control units. This example points out several key messages. The first is that causal analysis is to be proceeded carefully, as naively using different models leads to different estimations of a causal effect. In other words, there exist a model dependence in the estimation of the causal effect. The second is that matching prunes instances dissimilar to others only to compare comparable instances and that it reduces model dependence by doing so.

L. Simonne

It is to note that the potential outcome framework has been defined for tabular data and that the notion of distance and similarity is essential to the matching process, as estimating a causal effect is done by comparing similar instances. Therefore, approaches focusing on similarity in knowledge graphs are presented in section 3.3.

Causal Model and Structural Causal Models

The structural causal model framework (SCM) is another important framework for studying causality. It consists of modelling a system with equations named structural equations. In this framework, such a system can be represented as a causal graph that is a directed acyclic graph (DAG) in which nodes represent variables and edges the causal links between the variables they link. This section aims to provide a brief introduction to this framework. For more details, we advise the reader to refer to the work of Pearl [START_REF] Pearl | Causal inference in statistics: An overview[END_REF].

The structural causal model is, to a certain extent, comparable to statistical learning, where the objective is to learn a probabilistic model from observations. A causal model, however, in addition to learning a model from observations, also learns counterfactuals. It does not only learn how to predict an outcome but can also answer the question: what would have happened to the outcome if a certain variable had a certain value?. In other words, it is able to model interventions that is how the system would react if a variable were to be changed. An example of intervention would be: what would have happened if this person took the treatment A? Consequently, causal models have a much bigger explanation power than probabilistic models, which only focus on learning to make predictions.

One component of a structural causal model is a set of structural equations, which are functions involving the variables of a system that are linked causally. For instance, let T and Y two variables where T causes Y . The structural equation describing this causal relation is represented as follows:

Y := f Y (T ) (3.6) 
The function f Y can be any type of function that describes the distribution of Y given T . As a causal relation is not symmetric, the symbol "=" can not be used. Instead, it is replaced by ":=" [START_REF] Pearl | Causal inference in statistics: An overview[END_REF] to indicate the direction of the relation, e.g., from T to Y in this example. In addition to the structural equation, the structural causal model provides a DAG that describes this system. This DAG is depicted in Figure 3.5), where edges represent the direction of the causal relation.

A system can be composed of many more variables and causal relations. For a sake of simplicity, we present another simple system composed of variables X, Y and T with the following structural equations: L. Simonne 

Y := f Y (X, T ) T := f T (X) (3.7)
These equations indicate that T is caused by X, Y is caused by X and T , and that T is not caused by any variable. The resulting DAG is presented on the left side of Figure 3.6. As seen in the figure, no edges are directed to the node representing X as it is not caused by T or Y . While the cause from T to Y in the previous system (Figure 3.5) is rather simple to study as the system only owns two variables, it is much harder in this system where X causes both T and Y , therefore acting as a confounder. Therefore, the causal effect from T to Y should be estimated by considering the confounder X. Interventions were defined for this purpose. An intervention sets the value of a variable, e.g., T = t in our example and, by doing so, removes causal edges in the DAG. It is to note that the intervention on X is possible as the DAG is known by the user, who therefore knows that X is a confounder. The right side of Figure 3.6 shows the DAG after the intervention on T : as the value of T is set, X no longer causes T . The DAG is said to be mutilated.

More generally, two variables A and B are usually included in a system with other variables. The other system variables may act as confounders to A and B. Consequently, a user should use an adjustment set of variables to discard the effect of the confounders and to obtain a non-biased estimation of the causal effect from A to B. The adjustment set defines variables where interventions should be applied and is obtained by analysing the causal graph, i.e., the DAG, of a system. In our example, X is the only variable of the adjustment set. In practice, the adjustment set may be more difficult to define and its construction relies on criteria such as the backdoor path [START_REF] Pearl | Causal inference in statistics: An overview[END_REF]. While a structural causal model is extremely powerful in estimating causal effects, it, however, presents some limitations. Learning the parameters of the structural equations may be complex, and the estimation of causal effects strongly relies on the definition of the causal graph, which is not trivial even with expert knowledge. Furthermore, the estimation of causal effects is highly sensitive to the variables of the adjustment set, as missing or wrongly added variables can lead to biased estimation.

In the next section, we present randomised experiments that are the gold standard for estimating causal effects.

The Gold Standard: Randomised Experiments

Randomised experiments are a design of experiments to estimate the causal effect of a treatment on an outcome. More precisely, as the individual treatment effect can not be computed (section 3.1.3), randomised experiments can be used to estimate several effects such as the AT E (3.3) or the AT T (3.4).

Let a unit, e.g. a person or a molecule, that can either take or not take a treatment, e.g. a drug or a change of temperature. Given a set of units, a randomised experiment consists of randomly splitting the units in the set of treated that receives the treatment (T = 1) and the set of control that does not (T = 0). With X the set of covariates and T the treatment value, it results in T being independent of all covariates, T ⊥ ⊥ X.

For instance, if testing a drug, people from the treated group will receive the drug while people from the control group will receive a placebo. The design of a randomised experiment is schematised in Figure 3.7, where the effect of a drug is assessed 2As a consequence of the random attribution of the treatment, a covariate balance is observed between the set of the treated and the set of control. In other words, the distribution of the covariates is the same in both sets. The conditional distribution of covariates of both sets can be rewritten as:

P (X|T = 1) = P (X) P (X|T = 0) = P (X) (3.8)
The covariate balance is therefore shown as:

P (X|T = 1) = P (X|T = 0) (3.9)
Given the covariate balance, the effect of a treatment is obtained by simply comparing the distribution of the outcomes from both sets. The resulting effect is unbiased.

This result can be compared to the previous frameworks described in 3.1.4 and 3.1.5. Having a covariate balance is the objective of the potential outcome framework 3.1.4, which applies a processing step of instance selection to obtain it. Regarding the structural causal model 3.1.5, it aims to obtain the same unbiased estimate by making all adjustments. From a graphical point of view, applying a random attribution of the treatment removes all edges directed to the outcome, except the edge from the treatment. It is for that reason that the estimated effect is unbiased. Randomised experiments are, therefore, rather simple to design, and are easier to handle to obtain unbiased estimates of causal effects than existing frameworks. These reasons led to using it as a gold standard in causal discovery experiments.

However, applying such experiments can be delicate for several reasons depending on the domain it can be designed for. One of the reasons is the cost of such experiments. Depending on the features of the experiment, such as its duration or the type of instances it is applied on, e.g., people, molecules, a randomised experiment can become expensive. It is for instance, cheaper to test a digital marketing strategy on a social network within a few days than to test a drug on people for several months. Apart from the cost, ethics are another limit of randomised experiments. As an example, it is not possible to force someone to smoke.

Consequently, research in causal discovery is often done on data that already exists, i.e., observational data, where a researcher did not interfere before. In such a setting, the independence of the treatment attribution is no longer valid, and comparing the outcomes of the treated and control unit can introduce a bias in the causal effect, as shown in 3.5, as the distribution of covariates in both sets is no longer balanced. For instance, if studying a drug, the treated set could be composed of people that are in general more likely to be sick, or that have a different diet, etc. As a result, users assessing causal effects in observational data can use approaches within the potential outcome framework or structural causal modelling.

Causality in Knowledge Graphs

To the best of our knowledge, only two papers deal with causality within knowledge graphs [START_REF] Munch | Interactive causal discovery in knowledge graphs[END_REF][START_REF] De Haan | Discovering Research Hypotheses in Social Science Using Knowledge Graph Embeddings[END_REF]. We describe and underlie the limits of these approaches.

In the first paper [START_REF] Munch | Interactive causal discovery in knowledge graphs[END_REF], Munch et al. propose a two steps approach to discover causal relations. First, the knowledge graph is converted into a relational database using ontological and expert knowledge. Then, they learn a probabilistic relational model on the relational database. As output, a bayesian network is constructed and provides joint tables of probabilities. These tables describe the likelihood of observing an event given the set of associated variables. For instance, if studying the year when a writer wrote his first book, the table indicates that the likelihood of a writer writing a book before 1980 is 0.01 if the writer is born after 1950 and has studied in a university with a rank above 101. Although such a relationship might be causal, the approach has some limits. Firstly, learning a probabilistic relational model implies discretizing all variables, which is a loss of information for numerical variables. Secondly, it has been shown that learning bayesian networks is a difficult task whenever the database becomes large [START_REF] Neapolitan | Learning Bayesian networks witn integration of indirect prior knowledge[END_REF]. Also, this approach has only been evaluated on a small knowledge graph (≈7k triples).

In the second paper, De Haan et al. [START_REF] De Haan | Discovering Research Hypotheses in Social Science Using Knowledge Graph Embeddings[END_REF] are working on the COoperation DAtabank3 (CODA) knowledge graph that describes scientific papers in social science, their experimental settings, and the research hypotheses the papers tested. For instance, the description of a paper within the CODA KG may include the effect of a variable, named the Independent Variable (IV), on another variable, named the Dependent Variable (DV). In other words, it describes research hypotheses holding between an IV and a DV, and the relationship between them, such as their strength. Using this knowledge graph, the approach aims to discover new hypotheses for domain experts by predicting new links between an IV and a DV. This link prediction is done by relying on knowledge graph embeddings. While this approach leads to the discovery of new hypotheses, i.e., potentially new causal effects, it, however, relies on exploiting a knowledge graph where effects are already measured and described. It is not designed to be applied on a knowledge graph where effects are to be discovered from scratch. Furthermore, as hypotheses are discovered from a link prediction task, quantifying their causal effect is hardly interpretable.

Discussion

The notion of causality has been introduced and compared to association and correlation. It is to retain that association and causation are different relationships. An association can be observed due to underlying causal structures or randomness and should not be confused with causal relations.

When randomised experiments can not be conducted, the potential outcome framework and the structural causal model are the two standard frameworks for causal inference. On one hand, the potential outcome framework relies on comparing similar instances that differ in treatment value to study the effect of the given treatment. It seems relevant to adapt it to knowledge graphs where the similarity between instances is an important field of research (see section 3.3). On the other hand, the structural causal model relies on tabular data and the definition of a causal graph to learn the parameters of structural equations. Therefore, while there exist approaches to transforming knowledge graphs into relational databases, we believe that adopting the potential outcome framework to the causal discovery problem in knowledge graphs might be more suited.

The study of the state of the art of causality in knowledge graphs showed that only a few approaches focus on causal discovery and that these approaches were either only applicable to small knowledge graphs [START_REF] Munch | Interactive causal discovery in knowledge graphs[END_REF] or not defined to really measure causal effects [START_REF] De Haan | Discovering Research Hypotheses in Social Science Using Knowledge Graph Embeddings[END_REF]. Furthermore, none of these approaches was designed to explain why two instances have different values for a numerical property.

In the following section, we present rule mining approaches and study whether they can be used to express a causal relationship or not. The knowledge embedded in a rule can be declared or induced from observations [START_REF] Hogan | Knowledge graphs[END_REF]. Declared knowledge is composed of commonsense knowledge [START_REF] Mccarthy | Formalizing Commonsense: Papers by John McCarthy[END_REF], expressed by common people, and of domain knowledge, expressed by domain experts. Such knowledge can be represented in the ontology of a knowledge graph using ontology axioms or additional rules. Conversely, knowledge can also be induced by analysing frequent patterns within a knowledge graph. Resulting rules can also be represented in an ontology.

Rule Mining in Knowledge Graphs

As we aim to discover causal relations, we shall in this section focus on rules obtained by rule mining approaches that represent inductive knowledge. In par-L. Simonne ticular, we present a standard association rule mining approach, i.e., AMIE [START_REF] Galárraga | Fast rule mining in ontological knowledge bases with AMIE+[END_REF]. In addition to understanding how association and action rules can be mined, we study whether such rules could be suited to express a causal relation.

Association Rule Mining

An association rule AR has a head ⃗ B composed of one atom only, and a body ⃗ H composed by at least one atom, where an atom is a triple (s, p, o) where the object can either be a variable or a constant. An example of an association rule is hasChild(x, y) ∧ citizenOf (x, z) ⇒ citizenOf (y, z). Association rules mining approaches are used for knowledge discovery and graph completion, as association rules represent inducted patterns that can be used to remove erroneous triples or discover missing ones.

An association rule is usually assessed by metrics such as the support, the head coverage and the confidence. Given the rule R : ⃗ B ⇒ r(x, y), these metrics are described in equations 3.10, 3.11 and 3.12 respectively. The support of a rule is the number of correct predictions that can be deduced by the rule. The head coverage is a relative value between 0 and 1 that represents the number of instantiations of the rule on the number of instantiations of the head of the rule. The confidence is a ratio between the number of instantiations of a rule on the number of instantiations of its body.

supp( ⃗ B ⇒ r(x, y)) = #(x, y) : ∃z 1 , ..., z m : ⃗ B ∧ r(x, y) (3.10) hc( ⃗ B ⇒ r(x, y)) = supp( ⃗ B ⇒ r(x, y)) #(x ′ , y ′ ) : r(x ′ , y ′ ) (3.11) conf ( ⃗ B ⇒ r(x, y)) = supp( ⃗ B ⇒ r(x, y)) #(x, y) : ∃z 1 , ..., z m : ⃗ B (3.12)
As graph completion and refinement is an important topic for knowledge graphs, in particular, due to their creation process (see Chapter 2), a large set of methods exist to mine association rules in knowledge graphs, such as AMIE [START_REF] Galárraga | Amie: Association rule mining under incomplete evidence in ontological knowledge bases[END_REF] and its improved versions [START_REF] Galárraga | Fast rule mining in ontological knowledge bases with AMIE+[END_REF][START_REF] Lajus | Fast and exact rule mining with amie 3[END_REF], RuDiK [START_REF] Ortona | RuDiK: Rule discovery in knowledge bases[END_REF], and AnyBURL [START_REF] Meilicke | Anytime bottom-up rule learning for knowledge graph completion[END_REF]. Such methods are divided into two categories: generate and test techniques and divide and conquer techniques.

We present AMIE [START_REF] Galárraga | Amie: Association rule mining under incomplete evidence in ontological knowledge bases[END_REF] in a concise manner, which can be considered a standard approach in association rule mining. AMIE is a generate and test technique that discovers the complete set of closed and connected horn rules in a knowledge base. Two atoms are connected if they share a variable or entity, and a rule is connected if every atom is connected transitively to every other atom of the rule [START_REF] Galárraga | Amie: Association rule mining under incomplete evidence in ontological knowledge bases[END_REF]. A L. Simonne Figure 3.8: Simplified representation of AMIE [START_REF] Galárraga | Amie: Association rule mining under incomplete evidence in ontological knowledge bases[END_REF] rule is closed if every variable in the rule appears at least twice. A simplified representation of AMIE is presented in Figure 3.8.

The objective of AMIE is, given a head defined as a parameter, to find all association rules having this head on a knowledge graph. This task is not trivial as knowledge graphs can be incomplete, erroneous, and might have relations that are not functional, i.e., with several objects given a subject and relation. Moreover, as seen in 2.1, a missing fact in a knowledge graph is not necessarily false. Therefore, metrics such as the confidence (equation 3.12) are not adapted to guide the mining of association rules. AMIE defined the partial completeness assumption (PCA), which differs from the OWA or CWA (see Chapter 2). This assumption states that if the knowledge graph owns at least one object for a given entity and relation, it knows all objects of this entity and relation. This assumption enables the computation of the PCA-confidence by considering negative examples that do not exist in a KG.

Given the language bias, AMIE is described as follows. Given a head defined by the user, AMIE iterates between three steps: it (i) considers a candidate rule, (ii) computes quality measures on this rule and (iii) refines the rule to generate new candidate rules. Figure 3.8 is used to illustrate these steps:

(i) The rule Candidate Rule 0 with a head composed of atom_h and an empty body is initialised.

(ii) Several quality metrics are computed and compared to parameters given by a user. Among these metrics are the support, the head coverage and the PCA confidence. A rule is pruned if it does not verify the supports and the head coverage requirements.

(iii) If a rule verifies the requirements, it is extended by adding an atom to the body from the pool of atoms, e.g. Candidate Rule 1 has one atom more than Candidate Rule 0 with the atom atom_1. The choice of the atom is directed by language bias: it can be a dangling atom, an instantiated atom, or a closing atom. Although the figure only shows one rule created from Candidate Rule 0, many rules can be created by its extension.

A rule is extended until it no longer verifies the quality measures, i.e., its metrics are below thresholds chosen by the user, or if the length of its body reached the maximum number of atoms indicated by the user. An association rule is added to the set of association rules if it verifies the quality measures and the rules extended from it do not verify them. An association rule is evaluated by computing the number of correct and incorrect predictions that can be made on unseen data.

Action Rules Mining and Counterfactual Explanations

Action rules [START_REF] Ras | Action-rules: How to increase profit of a company[END_REF][START_REF] Sýkora | Action rules: Counterfactual explanations in python[END_REF] are another type of rule mined over knowledge graphs. Such rules are part of counterfactual explanations. Counterfactuals explanations explain how to obtain an alternative decision from a machine learning model by identifying changes in input features that lead to a desired outcome from the model [START_REF] Rasouli | Care: Coherent actionable recourse based on sound counterfactual explanations[END_REF].

Counterfactual explanation approaches can be used for interpretability purposes to understand how a model makes predictions or for a user to know what input to use to obtain a certain outcome. Action Rules are extensions of classification rules. Therefore, they express a different relation than association rules. An action rule can be presented as in equation 3.13, proposed by Sýkora et al.:

R : [(ω) ∧ (α → β)] ⇒ [ϕ → ψ] (3.13)
An action rule expresses that, with a set of attributes that do not change, denoted by ω, an action, i.e., a change in a set of attributes denoted by α → β, will change the class of an instance, denoted by ϕ → ψ.

For instance, in the context of a house pricing classifier, an action rule can express that if the number of bathrooms has the value of 3, the class would have been high cost rather than low cost.

The quality of an action rule can be estimated by several metrics, e.g., the support or the confidence. Other quality metrics may focus on the action by measuring how many attributes it changes, how different the values of the attributes are, and whether the changes are coherent or not.

Such rules can be mined through two categories of approaches [START_REF] Dardzinska | Action rules mining[END_REF]. The first category of approaches is named rule-based and mines action rules by mining association rules in the first step, then generates actions rules as a post-processing L. Simonne step. The second category of approaches consists of directly discovering action rules from a database.

Discussion

Inductive knowledge represented as rules can be mined from databases and knowledge graphs. These rules represent patterns mined over the database. Among such rules, association rules are a well-known type of rule that indicates an association between atoms, while action rules are a part of counterfactual explanations and provide explanations for how to obtain a different value on an attribute. Section 3.1 emphasises on causal concepts, such as treatment, effect, or outcome, and frameworks on how to discover causal relations, such as the potential outcome framework. These concepts should be represented by rules enlightening a causal effect. However, association and action rules are not defined to express such concepts and are therefore not suited to display causal effects.

Association rule mining approaches aim to find a set of bodies for a given head to obtain rules to predict new facts in a knowledge graph. Firstly, association rules were not designed to display a causal effect but rather an association, which is different to causation. Indeed, as seen in 3.1, two variables that are not causal can be associated, for example, through a third variable causal to the two variables, or to randomness. Secondly, in such approaches, the head of the rules can be specified by the user and could express an outcome on two instances. However, the language bias does not allow to verify a treatment value for the two instances, neither does it ensures that the instances are similar. For instance, the head of a rule could indicate that two houses have different prices, i.e., the outcome, but in its body one house could be described by its surface and the other by its location, i.e., unrelated treatment. Furthermore, the mining of association rules involves meeting criteria such as support, head coverage, etc., but not any similarity between instances. Consequently, instances that are used to estimate the quality of the rule could be very different.

Action rules express that a change in a subset of attributes will change the class of an instance. While these rules express the idea of intervention, they are not suited for expressing causal relations. Besides, action rules are designed for classification problems and can not be used as such to explain a difference on a numerical property for two specified instances.

Existing rules in knowledge graphs are not suited for expressing a causal effect as they (i) do not explicit concepts as treatment, effect or outcome and (ii) are mined in a way that the relations they describe are hardly causal. Therefore, we will address these limitations and propose rule mining methods that adapt the potential outcome framework. In this framework, matching techniques can be used to estimate causal effects (see section 3.1.4). As matching consists on creating pairs L. Simonne of similar instances, the following section focuses on various similarity measures that are defined on knowledge graphs.

Identity and Similarity of Instances in a Knowledge Graph

Knowledge graphs can be generated through various techniques, such as scrapping data from the web or combining existing knowledge graphs (see Chapter 2). As a result, knowledge graphs can own false triples and might be incomplete. Therefore, identity management in knowledge graphs is an important research theme in the semantic web community. It consists of discovering instances in one or several knowledge graphs that refer to the same entity and has several applications, such as linking instances from different knowledge graphs or deleting false identity links [START_REF] Raad | Detecting erroneous identity links on the web using network metrics[END_REF]. One common output of such approaches is the generation of more or less strict identity links between instances. These identity links are of great interest in initiatives such as the Linked Open Data (LOD).

From a less strict perspective, another research theme focuses on similarity, i.e., handling similar instances that do not refer to the same entity. Reasoning on similar instances has different applications, such as knowledge graph completion [START_REF] Ferré | Link prediction in knowledge graphs with concepts of nearest neighbours[END_REF].

As we aim to adapt the potential outcome framework on knowledge graphs, this section emphasises on identity and similarity measures between instances of a knowledge graph. Section 3.3.1 describes identity and similarity links that exist between instances, section 3.3.2 focuses on various approaches aiming to get similar instances, and section 3.3.3 describes knowledge graph embeddings models and how they can be used to measure the similarity between instances.

Identity and Similarity Predicates

Besides predicates describing instances in a knowledge graph, represented as directed edges to other instances or literals, other predicates express the degree of identity or similarity between two instances of the same knowledge graph or different knowledge graphs as for data linking approaches.

Among the identity links, the owl:sameAs [START_REF] Peter | Owl web ontology language semantics and abstract syntax section 5. rdf-compatible modeltheoretic semantics[END_REF] relation is a widely used relation that states that two instances refer to the same real-world object. However, despite its wide adoption, it has been shown that its use led to erroneous matches [START_REF] Halpin | When owl:sameAs isn't the same: An analysis of identity in linked data[END_REF][START_REF] Hogan | An empirical survey of linked data conformance[END_REF][START_REF] Raad | The sameas problem: A survey on identity management in the web of data[END_REF]; where instances are not described by the same property values.

Less strict approaches were therefore proposed as an alternative to sameAs. For instance, instances can be considered identical within a context [START_REF] Beek | A contextualised semantics for owl:sameas[END_REF][START_REF] Raad | Detection of contextual identity links in a knowledge base[END_REF]. In another work, Halpin et al. [START_REF] Halpin | When owl:sameAs isn't the same: An analysis of identity in linked data[END_REF] proposed an ontology, i.e., the similarity ontology, L. Simonne where relations are defined to indicate similarity links or possible identities between instances. However, such links can be interpreted differently depending on the context and the use and should therefore be handled carefully.

Mining Similar Instances

Identity and similarity predicates may be expressed in some knowledge graphs. However, such predicates are often missing and approaches were defined to discover instances that refer to the same entity or, more generally, to similar instances. Discovering similar instances of a knowledge graph may be used for various tasks, such as query relaxation, graph completion, or taxonomy mining. Approaches measuring the similarity and identity between two instances may be separated into two families depending on whether the similarity output is numeric or symbolic.

Approaches that define numerical similarities that can be used on knowledge graphs may exploit instances RDF descriptions, such as in [START_REF] Horváth | Relational instancebased learning with lists and terms[END_REF][START_REF] Ferilli | A general similarity framework for horn clause logic[END_REF], or vector representations learned through embedding models. When considering RDF descriptions, RIBL [START_REF] Horváth | Relational instancebased learning with lists and terms[END_REF] defines a distance based on edit distances between two graphs. In another approach [START_REF] Ferilli | A general similarity framework for horn clause logic[END_REF], authors propose a similarity between Horn clauses based on (un-)shared predicates and arguments. Embedding models learn vector representation of instances, and the similarity between two instances is computed as the distance between their embedding vectors. These models are briefly presented in the following section (section 3.3.3).

A similarity between instances of a knowledge graph can also be represented with a symbolic measure. For instance, a similarity can be a relaxed description [START_REF] Hurtado | Query relaxation in rdf[END_REF][START_REF] Ferré | Answers Partitioning and Lazy Joins for Efficient Query Relaxation and Application to Similarity Search[END_REF], or a conceptual distance [START_REF] Ferré | Concepts de plus proches voisins dans des graphes de connaissances[END_REF][START_REF] Ferré | Link prediction in knowledge graphs with concepts of nearest neighbours[END_REF]. Both of these similarities rely on queries, either by discovering proper relaxed queries [START_REF] Ferré | Answers Partitioning and Lazy Joins for Efficient Query Relaxation and Application to Similarity Search[END_REF], or by analysing the intension of a graph concept [START_REF] Ferré | Concepts de plus proches voisins dans des graphes de connaissances[END_REF][START_REF] Ferré | Link prediction in knowledge graphs with concepts of nearest neighbours[END_REF]. While a numerical similarity is hardly interpretable, these symbolic measures are much easier to understand, with the queries explaining why two instances are similar.

Similarity between Embedding Vectors

This section provides a comprehensive introduction to knowledge graph embeddings. We first introduce what knowledge graph embedding models are and then how they can be used to mine similar instances. [START_REF] Wang | Knowledge graph embedding: A survey of approaches and applications[END_REF]. KGE are part of representation learning, which aims to learn a representation of data to make it easier to extract useful information when building classifiers or other predictors [START_REF] Bengio | Representation learning: A review and new perspectives[END_REF]. If focusing on graphs, representation learning has several frameworks, such as Node Representation, with approaches such as node2vec [START_REF] Grover | Node2vec: Scalable feature learning for networks[END_REF], or Graph Neural Networks, with approaches such as graph attention networks [START_REF] Velicković | Graph attention networks[END_REF]. An overview of representation learning on graphs has been proposed by Hamilton et al. [START_REF] Hamilton | Representation Learning on Graphs: Methods and Applications[END_REF]. As this thesis focuses on knowledge graphs, this section shall describe KGE only.

Knowledge Graph Embeddings

A summary of how knowledge graph embedding models are defined, trained and evaluated is provided. Deeper comprehensive work has been realised and can be found in the literature [START_REF] Wang | Knowledge graph embedding: A survey of approaches and applications[END_REF][START_REF] Costabello | Knowledge graph embeddings tutorial: From theory to practice[END_REF]. KGE aim to embed entities and relations of a knowledge graph into low-dimension vectors while preserving the structure of the knowledge graph. To this end, an embedding technique consists of three steps: (i) representing the entities and relations into an embedding space, (ii) defining a scoring function and (iii) learning the representations while minimising a loss function. A simplified overview of embeddings is proposed in Figure 3.9. We propose to study TransE [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF] as an example.

In the first step (i), entities and relations are defined in an embedding space. For entities, this space can be the vector space but also multivariate Gaussian distributions. Relations usually are operations such as vectors, tensors or mixtures of Gaussians. In TransE, as shown in Figure 3.10, both entities, denoted by s for the subject and o for the object, and relations, denoted by p, are defined as vectors in the same vector space.

In the second step (ii), a scoring function is defined to measure the plausibility of a fact. Consequently, facts defined in a knowledge graph should have higher scores than unobserved or false facts. The scoring function of TransE is presented in equation 3.14. Intuitively, p is interpreted as a translation that connects s and o, and the score should be high if the fact holds. As its name suggests, TransE is part of Translational Distance Models, where other models differ to TransE with relations represented as hyperplane [START_REF] Wang | Knowledge graph embedding by transvlating on hyperplanes[END_REF], or distinct spaces for entities and relations [START_REF] Lin | Learning entity and relation embeddings for knowledge graph completion[END_REF], or by more or less relaxing the translational requirement. Other Figure 3.10: TransE Entity and Relation Space [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF] kinds of models exist, such as Semantic Matching Models [START_REF] Nickel | A three-way model for collective learning on multi-relational data[END_REF]95], that focus on latent semantics of entities and relations, or deeper models [START_REF] Dettmers | Convolutional 2d knowledge graph embeddings[END_REF][START_REF] Dai Quoc Nguyen | A novel embedding model for knowledge base completion based on convolutional neural network[END_REF].

f T ransE = -∥(s + p) -o∥ 1/2 (3.14)
In the last step (iii), the representation of entities and relations is learned by solving an optimisation problem that maximises the plausibility of observed facts. However, this plausibility should be maximised compared to the plausibility of false facts, which should be minimised. As there are no false or negative facts in a knowledge graph, the training procedure implies generating negative facts using the local closed world assumption (LCWA). With I the set of individuals, the set of negative facts C is described in equation 3.15.

C = {(ŝ, p, o)|ŝ ∈ I} ∪ {(s, p, ô)|ô ∈ I} (3.15)
The LCWA states that a knowledge graph is locally complete. Therefore, given a fact, facts considered negative can be generated by changing the subject or the object of the fact while the predicate stays unaltered. Given the scoring function and the sets of positive and negative facts, an embedding model can be trained by minimising a loss function L. One example of a loss function, the pairwise margin-based hinge loss, is presented in equation 3. [START_REF] Ferré | Concepts de plus proches voisins dans des graphes de connaissances[END_REF], where f (t -; θ) is the score of a negative fact and f (t + ; θ) the score of a true fact. While other loss functions exist, such as the binary cross-entropy, all of them aim to maximise the plausibility of a true fact and minimise the plausibility of a negative fact.

L(θ) = t + ∈F t -∈C max(0, [γ + f (t -; θ) -f (t + ; θ)]) (3.16)
Several protocols exist to evaluate the performance of KGE models. Among them, the triple classification and the entity ranking protocols are the most common [START_REF] Wang | On evaluating embedding models for knowledge base completion[END_REF]. In the triple classification protocol, positive and negative facts are classified as correct or false, and the accuracy is used to evaluate the performance of models. Entity ranking has a different objective, i.e., ranking facts given their score, and therefore has different performance metrics. Given the set of individual rank scores R, this protocol provides several metrics: the Mean Rank 3.17, the Mean Reciprocal Rank 3.18 and the Hits@n 3.19.

M R = 1 |R| r∈R r (3.17) M RR = 1 |R| r∈R 1 r (3.18) Hits@n = |{r ∈ R|r ≤ n}| |R| (3.19)
The mean rank (MR) computes the mean of all individual ranks of R. It is easily interpretable but sensitive to outliers, i.e., it can be strongly affected by rare high scores. The mean reciprocal rank (MRR) is less sensitive to outliers by computing the mean over all inverse individual ranks of R. The Hits@n computes the number of facts with a rank lower or equal to a value n. Hits@n at several n values are commonly computed as Hits@1, Hits@3 and Hits@10. KGE are used for various downstream tasks such as link prediction, triple classification and entity resolution. In addition to these tasks, they can also be used for more specific tasks such as taxonomy mining [START_REF] Martel | Taxonomy extraction using knowledge graph embeddings and hierarchical clustering[END_REF] or explaining clusters with association rules [START_REF] Gad-Elrab | ExCut: Explainable Embedding-Based Clustering over Knowledge Graphs[END_REF].

Embeddings Vectors Similarity

In addition to their use within downstream tasks, the representation of entities and relations learned through a KGE can be used to mine similar entities. If the KGE embody the semantic features of entities, similar RDF instances will have similar vectors in the embedding space [START_REF] Wang | Attributed graph clustering: A deep attentional embedding approach[END_REF], and similar vectors in the embedding space will represent similar RDF instances [START_REF] Moon | Learning entity type embeddings for knowledge graph completion[END_REF][START_REF] Jain | Do Embeddings Actually Capture Knowledge Graph Semantics? Lecture Notes in Computer Science[END_REF].

Discussion

The potential outcome framework, particularly matching approaches, states that similar instances should be compared to estimate a causal effect. In the case of matching, the objective of the user is to find the closest matches of instances within a dataset, with the instances composing the matches having different treatment values for its effect to be studied. Consequently, selected pairs of instances should not be identical but rather similar, as they should differ in the treatment value. Therefore, the owl:sameAs [START_REF] Peter | Owl web ontology language semantics and abstract syntax section 5. rdf-compatible modeltheoretic semantics[END_REF] predicate can not be used, nor methods assessing whether two instances refer to the same entity.

On the other hand, approaches assessing the degree of similarity between instances seem more adapted to the problem of creating matches of similar instances. Still, all approaches focusing on similarity might not be adapted. As the estimation of a causal effect is sensitive to the matches used for its computation [START_REF] Stuart | Matching methods for causal inference: A review and a look forward[END_REF][START_REF] King | Why Propensity Scores Should Not Be Used for Matching[END_REF], explanations of their creation should be provided. Consequently, numerical similarity distances such as [START_REF] Horváth | Relational instancebased learning with lists and terms[END_REF][START_REF] Ferilli | A general similarity framework for horn clause logic[END_REF] are not suited for the problem of creating matches in the potential outcome framework, as they are sensitive to missing data and do not provide explanations for their values. Knowledge graph embeddings as such are not suited for this problem either. While being (i) less sensitive to missing data and (ii) able to create a ranked list of the most similar pairs using a distance in the embedding space, they, however, do not ensure that the created pairs are similar enough for this problem.

Symbolic similarities [START_REF] Ferré | Answers Partitioning and Lazy Joins for Efficient Query Relaxation and Application to Similarity Search[END_REF][START_REF] Ferré | Link prediction in knowledge graphs with concepts of nearest neighbours[END_REF] seem well-suited to create the matches for estimating a causal effect as they are interpretable and give an explanation as to why two instances can be considered similar. However, they may present two challenges. The first is that they are sensitive to missing data. Therefore, instances without a description of some properties may not be used to create matches. The second challenge is that their use might not be trivial with knowledge graphs where the descriptions of instances are complex. In such a knowledge graph, finding similar pairs that only differ on a few properties is impossible, in the same way as it is impossible to find exact matches in tabular data when there are more than a few columns describing instances [START_REF] Althauser | The computerized construction of a matched sample[END_REF]. Therefore, using such approaches would lead to obtaining pairs where even the most similar ones would differ on a large set of properties. Ranking the similarity of these pairs would be difficult, as it would rely on much expert knowledge to assess which differences are more important.

Chapter 4 Coarsened Matching for Differential Causal Rules Mining

In this chapter, we will present our first contributions to differential causal rules discovery in knowledge graphs. They are based on the potential outcome framework and coarsened matching of instances for causal discovery. These approaches are the objects of the following publications: Patterns in knowledge graphs are often represented as rules, such as association and action rules (see section 3.2). However, to our knowledge, no rules expressing a causal effect in knowledge graphs are defined in the literature. Therefore, this chapter defines how causal effects can be represented as rules that we name differential causal rules. The causal effect of a treatment can be observed on all instances of a dataset, in which case it has a general effect. Still, it can also have effects on subsets of instances only, in which case it has a local effect. To define expressive rules, differential causal rules should characterise the set of instances on which a treatment has an effect, whether local or general.

L. Simonne

Causal effects can be discovered through several frameworks (see section 3.1) and, in particular, the potential outcome framework and matching techniques. Matching instances of a knowledge graph is a challenging task due to the openworld assumption that is followed in knowledge graphs. To facilitate this task, in addition to defining differential causal rules, this chapter presents an approach that generates abstract properties that summarises part of instances description. Instances can be matched on abstract properties instead of their initial description. The contributions of this chapter are the following:

• The definition of differential causal rules that represent the effect of a treatment on a subset of instances of a knowledge graph characterised by a graph pattern named strata.

• The generation of abstract properties based on a community detection algorithm summarising part of instances description.

• An algorithm that mines differential causal rules with a pessimistic heuristic to minimise the number of false rules.

The chapter is structured as follows. Section 4.1 defines differential causal rules and strata, which is a basic graph pattern representing a set of instances.

Section 4.2 presents how the potential outcome framework and matching are adapted to mine differential causal rules in knowledge graphs. More particularly, it expresses the limits of exact instances matching [START_REF] Simonne | Fouille de règles différentielles causales dans les graphes de connaissances[END_REF] and shows how abstract properties can be generated [START_REF] Simonne | Differential causal rules mining in knowledge graphs[END_REF] and used to match instances. Finally, it presents Dicare-S and Dicare-C, the algorithms that mine differential causal rules in knowledge graphs.

Section 4.3 describes the experiments done with Dicare-S and Dicare-C and the datasets it was applied on.

Section 4.4 provides a quantitative and qualitative assessment of the rules that were mined. Moreover, it discusses the benefits and limits of Dicare-S and Dicare-C and compares the semantics of differential causal rules to association rules.

Section 4.5 concludes on the approaches and proposes a set of criteria that future approaches should focus on.

Differential Causal Rule

This section defines the different terms that compose a differential causal rule, that express a causal effect of a treatment on instances of a knowledge graph. Moreover, as effects can vary depending on the set of instances considered, it also motivates the definition of a strata, i.e., a basic graph pattern that specifies the instances on which an effect is observed.

Motivation: Local Effects and Simpson's Paradox

A treatment may have heterogeneous effects depending on the set of units it is applied to. For instance, a drug developed given a disease may only cure women and not men or only young people. In addition, analysing a treatment effect is not trivial as an effect may be subject to paradoxes, therefore expressing a wrong effect. A well-studied paradox is the Simpson's paradox, presented in Figure 4.1, where an observed effect might have opposing signs depending on the considered set of variables describing instances. In this example, it is observed that higher X values lead to higher Y values if studying the whole set of instances, as shown with the black line of the figure. However, if the evolution of Y given X is done by considering whether the instances are from subgroup A, represented by triangles, or subgroup B, represented by the plus signs, e.g., men or women, then higher X values lead to smaller Y values. Therefore, the effect has an opposing sign depending on whether the whole set of instances is studied as one or if this set is studied separately by adding a variable.

Several metrics exist to measure a causal effect (see section 3.1.4) that can represent average or local effects. In this chapter, we aim to mine rules that express a causal effect on instances where this effect has been verified only. By observing local effects, we aim to mine rules with local effects that do not present paradoxes. Such specific rules can then be generalised if the effect of a treatment is observed on different subsets of instances. For instance, we shall specify that the effect of a drug is only valid on women rather than expressing an average effect of all instances. Given Figure 4.1, we shall consider that X has a negative effect on instances from both A and B, and, therefore, a negative effect on all instances.

Strata Definition

To describe the set of instances on which a local effect is valid, we define a strata as follows.

Definition 2. Strata. Let X be a variable that can be instantiated by individuals of the target class C, a strata ST i (X) is a conjunction of predicates that corresponds to a basic graph pattern in RDF, rooted by X, and such that all the leaves represent literals or class IRIs. i is an index that indicates the basic graph pattern a strata corresponds to.

The depth of the graph pattern defining a strata or a treatment can be bounded by a given threshold d corresponding to the longest path, one can reach from L. Simonne X in the graph pattern without cycles. For example, the target class W riter, N ovelist(X) is a valid strata (i.e., N ovelist ⊆ W riter). A more specific strata can be: N ovelist(X) ∧ nationality(X, "F rance").

Differential Causal Rule Definition

Given the strata definition, we introduce the other components of a differential causal rule, the treatment and the outcome. As a reminder, we consider a knowledge graph as follows: Definition 3. Knowledge Graph. A knowledge graph KG is defined by a pair (O, F) where O is an ontology represented in OWL and F is a set of RDF triples describing class instances of O.

Given a knowledge graph, we consider property paths P T in the form P T :

p 1 (X, Y 1 ) ∧ p 2 (Y 1 , Y 2 ) ∧ . . . ∧ p n (Y n-1 , Y n ).
The properties at the end of these paths can have categorical or numerical values and can be single-valued, i.e., functional, or multi-valued. For the sake of understanding, we consider the value(s) of a property path as referring to the value(s) of the property at the end of the path.

We consider that a differential causal rule is applied to two instances (X 1 , X 2 ) of a class of O and that a treatment T represents a difference in P T values between X 1 and X 2 .

We distinguish two types of treatments: a categorical treatment T c involving a path of properties whose end is a categorical property,e.g., literal or hierarchical values, and a numerical treatment T n involving a path of properties whose end is a numerical property, e.g., integer or real values. Definition 4. Categorical treatment. Let X 1 and X 2 be two instances of a class, a property path P T and two sets of values V 1 and V 2 of path P T for X 1 and X 2 respectively. A categorical treatment T c is defined by:

T c (X 1 , X 2 ) : P T (X 1 , V 1,P T ) ∧ P T (X 2 , V 2,P T ) ∧ belongs(v 1 , V 1,P T ) ∧ belongs(v 2 , V 2,P T ) ∧ ¬belongs(v 1 , V 2,P T ) ∧ ¬belongs(v 2 , V 1,P T ),
where belongs(v, V ) is a function that verifies that the value v belongs to the set of values V , and ¬belong is used to check that v only belongs to the set of values of one of the two instances.

Definition 5. Numerical treatment. Let X 1 and X 2 be two instances of a class, a property path P T and two sets of values V 1,P T and V 2,P T of path P T for X 1 and X 2 respectively. A numerical treatment T n is defined by:

T n (X 1 , X 2 ) : P T (X 1 , V 1,P T ) ∧ P T (X 2 , V 2,P T ) ∧ compare Tn (s(V 1,P T ), s(V 2,P T )),
where compare Tn is a function comparing numerical values that can be implemented by lessT han or greaterT han and s is an aggregation function that can be max, min, sum, etc.

Similarly, we consider for the outcome a property path P O such as

P O : p 1 (X, Z 1 ) ∧ p 2 (Z 1 , Z 2 ) ∧ . . . ∧ p m (Z m-1 , Z m ).
For the outcome, we only consider property paths leading to numerical values. Definition 6. Outcome. Let X 1 and X 2 be two instances of a class, a property path P O , two sets of numerical values U 1,P O and U 2,P O of path P O for X 1 and X 2 respectively, and s an aggregation function. The outcome O is defined by:

O(X 1 , X 2 ) : P O (X 1 , U 1,P O ) ∧ P O (X 2 , U 2,P O ) ∧ lessT han(s(U 1,P O ), s(U 2,P O )),
where lessT han is fixed to avoid the creation of equivalent rules due to the permutation of X 1 and X 2 .

Example 1. A categorical treatment T c could be that two athletes have different manualities: one is right-handed, and the second is left-handed. A numerical treatment T n could express that the club's budget for one athlete is higher than that of another. An outcome O could be that one athlete has a better ranking than another.

A differential causal rule (DCR) represents a causal relationship between a treatment T and an outcome O. It expresses that T , i.e. a difference of values on a property path P T , explains O, i.e. a difference of values on a property path P O . As an explanation is to happen before what it explains, P T is to describe a feature that precedes in times the feature described by P O . Definition 7. Differential Causal Rule. Given X 1 and X 2 two instances of a target class of O that belong to the strata ST i , the property path P O leading to the result, a treatment T ∈ {T n (X 1 , X 2 ),T c (X 1 , X 2 ) defined by the property path P T , and s an aggregation function, a differential causal rule DCR T is defined as follows:

DCR T : T ∧ ST i (X 1 ) ∧ ST i (X 2 ) ∧ P O (X 1 , U 1,P O ) ∧ P O (X 2 , U 2,P O ) ⇒ lessT han(s(U 1,P O ), s(U 2,P O ))
It is to note that the outcome is expressed partly in the body of the rule and partly in its head. We call a rule involving a numerical (resp. categorical) treatment a numerical (resp. categorical) differential causal rule. Example 2. Given example 1, a categorical DCR could be that, for athletes playing tennis, being right-handed compared to left-handed explains a better rank. In this example, the strata defines the sports concerned by the rule. A numerical DCR could indicate that, for runners, being younger explains faster running times.

Approaches: Dicare-S and Dicare-C

This section describes how the potential outcome framework, particularly the matching task, is adapted to mine differential causal rules from knowledge graphs. We present two approaches, Dicare-S [START_REF] Simonne | Fouille de règles différentielles causales dans les graphes de connaissances[END_REF] and Dicare-C [START_REF] Simonne | Differential causal rules mining in knowledge graphs[END_REF], where Dicare-C is an extension of Dicare-S.

Adapting the Potential Outcome Framework

The matching task consists of creating pairs of similar instances that differ on a treatment value to study the effect of a treatment (see 3.1.4). The matching step can be seen as a pre-processing step that prunes instances that are too different to others in a dataset to balance the covariate distribution between the treated and control sets. We aim to match instances using their RDF description as we deal with knowledge graphs.

To compare instance descriptions, we investigated two different techniques of matching: exact instance matching, applied as a baseline, and coarsened matching used in Dicare-S and Dicare-C.

Exact Instances Matching

Exact matching consists of matching two instances if they share the same description on a set of paths. In other words, if all paths describing two instances, apart from the paths leading to the treatment and the outcome, lead to the same values, then the instances can be matched.

However, it has been shown that, in practice, the probability of constructing an exact match decreases with the number of attributes describing the instances [START_REF] Althauser | The computerized construction of a matched sample[END_REF], to the point that it becomes impossible if considering a big number of attributes. Therefore, the set of attributes on which instances should have the same values is to be restricted to a set of main attributes defined by the user.

Regarding the open nature of knowledge graphs, with the existence of functional and not functional properties and missing values, exact matching on property paths would be even more complex and also unfeasible. Exact matching could only be applied if a knowledge graph describes instances with a small set of paths.

As a consequence of the constraints imposed by exact matching, alternatives were proposed.

Coarsened Matching

Iacus et al. proposed an alternative to exact matching named coarsened matching [START_REF] Iacus | Causal inference without balance checking: Coarsened exact matching[END_REF], which basis were already defined by Althauser and Rubin [START_REF] Althauser | The computerized construction of a matched sample[END_REF]. The principle of coarsened matching is to coarsen each variable so that substantively indistinguishable values are grouped [START_REF] Iacus | Causal inference without balance checking: Coarsened exact matching[END_REF]. Therefore, while two slightly different values of one variable would be considered different in exact matching, they could be considered identical in coarsened matching. Not only can coarsened matching be used for causal analysis, but it can also reduce bias.

The choice of coarsening is related to the application domain studied within a database. Given a numerical variable, a categorical variable, or ordered values, the coarsened values should be customised based on domain knowledge.

We used coarsened matching in Dicare-S [START_REF] Simonne | Fouille de règles différentielles causales dans les graphes de connaissances[END_REF] and Dicare-C [START_REF] Simonne | Differential causal rules mining in knowledge graphs[END_REF]. More precisely, while Dicare-S is coarsening paths values of a knowledge graph, Dicare-C [START_REF] Simonne | Differential causal rules mining in knowledge graphs[END_REF] further extends Dicare-S by guiding the coarsening step by generating abstract properties where instances should be matched. These abstract properties have semantic meaning and are determined upon a community detection step. They represent a summary of a set of paths and shall replace parts of the initial RDF description of instances, easing the matching step. We present how they are generated in the next section.

Abstract Properties Generation

This section defines abstract properties and how they are generated in Dicare-C. These abstract properties ease the matching step between instances by comparing their values on the abstract properties instead of their RDF description. Definition 8. Abstract Property. An abstract property semantically summarises a part of an instance description in a knowledge graph. It is represented as a new path linking an instance of a target class to a community of valued property paths.

For example, given a target class Person, a community might gather property paths such as the place where a person works, which is an IRI, and its way of commute, e.g., by bus or car, which is a literal. Such paths can be of different lengths and lead to IRIs or literal values. The community of valued property paths might be written as {commute(X, ′ bike ′ ), worksAt(X, Y )∧city(Y, P aris)}, and an abstract property may link an instance of the target class to this community.

Abstract Property Generation

The abstract properties are generated in three main steps: (i) the computation of the similarity between two valued property paths based on co-occurrence, (ii) the detection of communities of valued property paths, and finally, (iii) the generation of abstract properties.

Similarity between valued property paths. In the first step, the similarity between valued property paths is computed. This step is realised on sets of paths indicated by a domain expert that should share semantic proximity to discover meaningful communities. The similarity of two valued property paths is defined as their co-occurrence. Definition 9. Co-occurrence. The co-occurrence between two paths P i and P j represents the number of instances having both P j and P i in their description, divided by the number of instances having P i . With D k the description of an instance k of the target class, i.e., the set of valued paths rooted by k, the cooccurrence is defined as follows:

co -occ(P i , P j ) = #{k|(P i ∈ D k ) ∧ (P j ∈ D k )} #{k|P i ∈ D k } (4.1)
The co-occurrence is asymmetric as only P i appears in the denominator. Therefore, it is computed for each (P i , P j ) and (P j , P i ). Given a set of valued property paths where the community discovery applies, the co-occurrence is computed for each pair of paths. It results in a similarity matrix that can be seen as a directed weighted graph, named co-occurrence graph, where each node represents a valued property path P i , and where each edge from a node P i to a node P j is weighted with the similarity co -occ(P i , P j ).

Example 3. Let P 1 be the path that indicates if a person watches football. Let P 2 the gender of a person. If 90% of people watching football are men, co -occ(P 1 , P 2 ) would be equal to 0.9. If 90% of men are watching football, co -occ(P 2 , P 1 ) would also be equal to 0.9. However, it is less likely than the previous statement. As a result, co -occ(P 2 , P 1 ) is likely to be lower than 0.9.

Communities of valued property paths. The second step consists of detecting communities on the co-occurrence graph. The community detection step is represented in Figure 4.2, where it is shown that communities are discovered from the co-occurrence graph. In this figure, the bold arrows indicate higher weights than the dashed arrows. For a sake of simplicity, only one weight is represented between two edges, however, as shown in example 3, the weights are not necessarily symmetric. This task is complex as the graph's matrix is unsymmetrical. Therefore, spectral clustering algorithms such as Louvain's algorithm [START_REF] Vincent D Blondel | Fast unfolding of communities in large networks[END_REF] can not be used. We have chosen to apply OSLOM [START_REF] José | Finding statistically significant communities in networks[END_REF] since it is suitable for detecting communities in directed graphs. As output, OSLOM may assign all of the valued property paths into communities. However, some may be isolated without being part of any community. Such valued property paths are interpreted as independent of communities. If no communities are detected, we assume the paths to be unsuitable for explainability as their distribution can be considered random. A (25% for i 1 and 100% for i 2 ) motivates the generation of an abstract property from i 2 to A only.

Given p c the proportion of paths an instance of the target class has towards a community c, and T c a threshold on the proportion given by the expert on the community c, an abstract property linking the instance to c is created if p c > T c . T c is to be determined carefully as small (resp. high) values would lead to all (resp. none) instances of the target class having the abstract property in their description, making it not discriminatory and expressive enough to be studied as a treatment. The abstract properties generation of Dicare-C relaxes the exact matching constraint. Indeed, instances having initial RDF descriptions that were different can be matched on newly generated abstract properties if their RDF descriptions were semantically related. Next, we present the algorithm that generates abstract properties.

Abstract Property Algorithm

The algorithm for generating abstract properties is presented in Algorithm 1. It takes as input the KG, the sets of paths P indicated by the expert where communities are studied, the target class t c , and the inputs of OSLOM, i.e., the number of iterations n, a boolean isolated indicating whether all nodes have to be part of a community or not, and a statistical parameter s related to the statistical significance of the discovered communities. High values of s will lead to strong communities, while low values of s lead to higher sensitivity and could detect communities that were not discovered with high values of s. The algorithm returns KG enriched , which is the knowledge graph enriched with abstract properties.

KG enriched is created in the initialisation of the algorithm with the removePaths function. It is a copy of KG, except that all paths P related to the community detection have been removed. After the initialisation, the algorithm iterates on each set of paths P i ∈ P and applies two steps on each P i . The first step discovers communities if they exist, while the second step creates abstract properties linking instances to the communities they are linked to. In the following, we present the two steps that are applied to each set of paths.

In the first step, an empty squared matrix of order m is created, where m is the number of paths of P i . The matrix is named occmatrix and is used to discover communities. For each combination of paths of P i , noted (P ij , P ik ) ∈ P i × P i , the value of co-occurrence is computed as defined in Definition 4.1. This computation is done with the co-occ function and has its value stored in occmatrix. OSLOM is applied to occmatrix once it has been filled. It uses the parameters n, isolated and s as previously described.

In the second step, abstract properties are generated. If communities are discovered for a set P i , thresholds T i for generating the abstract properties are given by the user. In the algorithm, this is done with the get-thresholds function. More precisely, T i contains a set of thresholds T ic for each community c of the communities that were discovered. Properties are generated by iterating on all instances of the target class t c . For each instance x of t c , the proportion of paths p xc to each community c is computed and compared to the threshold T c of the community. If p xc is greater or equal to T c , then an abstract property is generated from x to c and is added to the output KG enriched . KG enriched is used for mining the differential causal rules as presented in the next section 4.2.3. T i ← get-thresholds(comm, P i )

Algorithm 1 Community Detection and Abstract Properties

11:
for x in instances(t c ) do 12:

for each community c ∈ comm do 13:

if p xc ≥ T c then 14:

KG enriched ← KG enriched ∪ abstractP roperty(x, c) 15: Return KG enriched

Differential Causal Rules Mining

This section presents the mining of differential causal rules. Differential causal rules are either mined after the pre-processing step of generating abstract properties for Dicare-C, or without a pre-processing step for Dicare-S. Apart from this pre-processing step, their mining follows the same procedure for both Dicare-C and Dicare-S and relies on the potential outcome framework. More precisely, the differential causal rules are mined in three steps. In the first step, potential differential causal rules are generated. In the second step, their effect on an outcome is measured to select the valid rules, i.e., that have an effect on the outcome. Lastly, the third step is a post-processing of the valid rules that aim to facilitate their understanding. The three steps are described in the following sections.

Step 1: Potential Rules Generation Potential rules are generated in a two steps approach. First, it creates a partition of the instances of the target class. As a result, it obtains clusters of instances where all instances of a cluster are described by the same strata. Then, it generates potential rules by doing a pair-wise comparison of the clusters to verify whether a treatment can be studied or not.

Parameters.

The algorithm to generate the potential differential rules is presented in Algorithm 2. It takes as inputs the knowledge graph enriched with the abstract properties KG enriched for Dicare-C. For Dicare-S, KG enriched is the same knowledge graph as KG. Other parameters are the target class t c , the property paths Q that will be queried to match instances to clusters, the parameters for the coarsening of paths co, a threshold on the minimum support of instances of a cluster t supp , and a threshold on the maximum number of paths in the treatment of a rule t tr . It is to note that Q is composed of property paths with a depth shorter or equal to d and that it includes the abstract properties previously generated.

Partitioning the instances. In the first step of the potential rules generation, described in lines 4 to 15 in Algorithm 2, instances of the target class t c are partitioned into clusters that we name described clusters (DC). We provide a definition of described clusters and explain how they are obtained. Definition 10. Described Clusters. A described cluster DC i = (ST i , I i ) associates a strata ST i , which is a graph pattern, to the set of instances I i of the target class t c that has the strata ST i in their description.

A DC is obtained from an existing DC, apart from the initial described cluster DC 0 = (ST 0 , I tc ) that associates the empty strata ST 0 to all instances of t c , noted I tc . Consequently, the partitioning is initialised with DC 0 . The partitioning of the instances into DCs is done by iteratively querying all paths P that are in Q. For each path P , co(P ) is included in co and defines the set of interval values of P . These intervals are used to coarsen the path values. Therefore, with the function coarsenedQuery that we define, instances with the same coarsened value co P j for path P are obtained. It is to note that the coarsening can be applied for both numerical or categorical values. Given a described cluster DC i = (ST i , I i ), one or several DCs more specific than DC i are obtained by querying P on I i . More precisely, with n the number of intervals of path P , n more specific DC are obtained from DC i . Given an interval value co P j and the instances I j ⊂ I i that have values in co P j , a more specific described cluster is DC j = (ST j , I j ) where ST l is the strata ST i enriched with the value co P j on P .

All property paths of Q are queried until the most specific described clusters are obtained. It results in a partition of the instances. A described cluster DC i is only queried if its number of instances n(I i ) is higher than the minimum support of instances t supp . We propose example 4 based in Figure 4.4 to illustrate the algorithm. As seen in the algorithm, we propose to use queues to facilitate the construction of described clusters. Using the queues allows to easily select the described clusters that can be extended.

Example 4. In Figure 4.4, the algorithm is described with Q = {P A , P B } where each property path in Q can lead to two values. As seen on the root of the proposed tree structure, the partitioning is initialised with DC 0 . The nodes at a depth of one represent the DCs obtained after the query on P A on DC 0 , and the nodes at a depth of two represent the DCs obtained after the query on P B on DC 1 and DC 2 .

Generating Potential Rules. In the tree structure that represents the partitioning of the target class instances into the described clusters, some described clusters are located at the maximum depth. Definition 11. Maximally Specific Described Clusters. A maximally specific described cluster M SC is a described cluster with a strata describing all paths from L. Simonne The set of M SC is used to generate the potential rules. To this end, the strata of all pairs of M SC, i.e., (M SC i , M SC j ) ∈ M SC×M SC, are compared. With ST i the strata of M SC i and ST j the strata of M SC j , ST i and ST j are compared on each path value. In algorithm 2, this comparison is done by the getP athDif f erences function. The number of paths where the strata have different values is obtained and compared to the threshold on the maximum number of paths in a treatment t tr . If it is lower or equal than t tr , then a potential rule R i,j is generated with as treatment the differences of values on the paths that were obtained and as strata the same strata as ST i or ST j without the treatment paths. In algorithm 2, the potential rule R i,j is generated by the builtRule function. The effect of R i,j is computed using I i and I j in the following step. We propose the example 5 to illustrate the generation of a potential rule.

Example 5. In Figure 4.5, the M SC DC 3 and DC 4 are presented. Let t tr = 1. The comparison of the strata of DC 3 and DC 4 shows that they have the same value on P A but a different value on P B . Therefore, they have one path with a different value, which makes it equal to t tr . A potential rule R 1 can therefore be generated. The strata ST 1 of R 1 is a value A1 on P A , and the treatment is a difference of values on P B that is value B1 compared to value B2.

Step 2: Causal Metric Computation for Rule Assessment

The quality of association rules (see section 3.2) is assessed by metrics such as confidence and support, and their mining relies on exploiting properties of these metrics, e.g., the monotony of the support. The support of a rule R is the number of true predictions made by the rule, i.e., the number of times it appears. The confidence of a rule R is the support of R divided by the total number of predictions made by R, i.e., a relative value that is the support of the rule divided by the support of its body. However, these metrics alone are not suited to quantify a causal effect of a rule as they do not measure a treatment effect. For instance, a treatment could appear only a few times, meaning it will have low support, but could still have a substantial effect. Similarly, confidence could indicate that the body and the head of a rule are frequently associated. However, the measure of L. Simonne 

P = Q[i] 9: Q DC i+1 = queue() 10:
while ¬Q DC i .isEmpty() do 11:

DC l = Q DC i .dequeue() 12:
for co P j in co(P ) do 13:

I j = coarsenedQuery(KG enriched , I l , P, co P j )

14:

if size(I j ) ≥ t support then 15:

DC j = (ST l ∧ P = co P j , I j )

16:

Q DC i+1 .enqueue(DC j ) 17: M SC = Q DC len(Q)+1
▷ Part 2: Generating potential rules 18: for (M SC i , M SC j ) ∈ M SC × M SC do 19:

if getP athDif f erences(ST i , ST j ) ≤ t tr then 20: R i,j = builtRule(M SC i , M SC j ) 21: R potential .add(R i,j ) 22: Return R potential L. Simonne a treatment effect should also consider the rule's confidence with the opposing head, as it could be higher and suggest an opposing effect of the treatment. More generally, the support and the confidence do not show notions of comparison, e.g., as how one treatment performs compared to another. Therefore, another metric is to be used to assess the quality of a differential causal rule.

We propose to use a causal ratio inspired by the odds ratio [START_REF] Szumilas | Explaining odds ratios[END_REF] that explicitly shows the strength of the relation between the treatment and the outcome. The causal ratio differs from the odds ratio as it is defined for a knowledge graph and applied to pairs of instances that belong to a defined strata. We give the definition of the causal ratio. Definition 12. Causal Ratio. Let a differential causal rule R with a treatment T such as R :

T ∧ ⃗ B ⇒ lessT han(s(U 1,P O ), s(U 2,P O )) where ⃗ B : ST i (X 1 ) ∧ ST i (X 2 ) ∧ P O (X 1 , U 1,P O ) ∧ P O (X 2 , U 2,P O ).
The metric causal ratio, noted causal r , is the following:

causal r (R) = supp(T ∧ ⃗ B ⇒ lessT han(s(U 1,P O ), s(U 2,P O ))) supp(T ∧ ⃗ B ⇒ greaterT han(s(U 1,P O ), s(U 2,P O )) (4.2)
causal r is the ratio between the support of a differential causal rule and the support of the same rule with the opposing effect. It is a symmetric value, where a value of 1 indicates that the treatment is independent of the outcome, as it equally leads to the outcome lessT han or the opposing outcome greaterT han. A value higher (resp. lower) than 1, however, means that the treatment has a positive (resp. negative) effect on the outcome, as pairs with the treatment will be more (resp. less) likely to have the outcome than the opposing outcome.

The treatment of numerical rules has been formalised with the compare Tn predicate that can either be lessT han or greaterT han (see Definition 5). Similarly, a categorical treatment may verify the presence of one value V 1 and the absence of a value V 2 , or the inverse. In both cases, a treatment can therefore be studied in two ways. To ease the process of mining the rules, the treatments are initially studied in both ways, and the rule that leads to a positive effect, i.e., a value of causal r higher than 1, is kept.

The last step to assess the effect of a rule that has a positive effect on the outcome consists in constructing a statistical test to evaluate whether causal r is significantly higher than 1. It is inspired by Li et al. [START_REF] Li | Mining causal association rules[END_REF] and considers a standard normal deviate u 1-α/2 to compute a confidence interval with a (1-α) confidence as described in equation 4. 

[cr -, cr + ] = exp(ln(causal r ) ± u 1-α/2 1 a + 1 b ) (4.3)
causal r is considered significantly higher than 1 if cr -> 1. This confidence interval is computed for all potential causal rules from R potential to select the rules where a treatment has an effect. It is to note that a support of zero is replaced by 1 to avoid a division by 0. Example 6. Let us consider two fiction writers who published their first books at ages 18 and 25 and three non-fiction writers who published their first books at ages 17, 31 and 32. The rule explaining that fiction writers publish their first book at a younger age than non-fiction writers would have a causal r value of 2, as four pairs verify the rule, and two pairs where the opposite outcome is observed.

Step 3: Generalising Consistent Rules

The previous step selected the potential rules that have an effect on the treatment. The selected rules are said to be specific, as they built from maximally specific described clusters in the first step. In other words, the selected rules may have strata that are describing a large number of paths. While such strata makes a rule highly expressive by describing the instances on which a treatment has an effect, it may also make the rules less interpretable.

As a treatment effect may appear in different rules, we propose to merge the strata of the rules involving the same treatment to obtain more general rules that are easier to interpret. In addition to being easier to interpret, the number of general rules is also lower than the number of specific rules as the latter are merged. The merging procedure ensures the generation of consistent rules only, as defined in definition 13. This procedure is said to be resistant to paradoxes, as described in section 4.1.1, as it verifies local effects and then generalises them in creating more general rules. An example of resistance to paradoxes is presented in example 7.

Definition 13. Rule Consistency. Let R 1 : ⃗ ST 1 ∧ ⃗ T ⇒ lessT han(s(U 1 ), s(U 2 )). The rule R 1 is consistent iff ∀ST 2 ⊑ ST 1 , R 2 : ⃗ ST 2 ∧ ⃗ T ⇒ lessT han(s(U 1 ), s(U 2 )
) is also consistent or ST 1 is maximally specific and causal r (R 1 ) is significantly higher than 1. A strata ST 1 is said to be maximally specific iff there is no ST 2 ⊑ ST 1 such that depth(ST 2 ) ≤ d, where d is a parameter setting the maximal depth.

Example 7. Table 4.1 describes the continent of writers, the year they were born, and their age when they published their first book. The treatment implying that being born later explains an older age of the first publication is assessed by causal r . If matching writers independently of their continent, causal r would equal 0.57. However, if matching writers from Europe only (resp. USA), causal r would equal 5.0 (resp. 4.0). Therefore, the process of generalising consistent rules would first lead to the two specific rules that verify the treatment on continents, then to the rule implying that the treatment is valid on both continents.

The process of generalising consistent rules is performed in a recursive merging procedure to find more general rules from the specific rules previously mined.

To do so, the valid specific rules are initially placed in a list named the candidate's list. At each iteration, the first rule of the candidate's list is compared to the other rules of the list to detect rules it could be merged with. Two rules can be merged if they have the same treatment and the paths values of their strata are identical except for one path, e.g., the strata Genre(X, F iction) ∧ Continent(X, Europe) and Genre(X, F iction) ∧ Continent(X, U SA). We aim to suppress this path to generalise the strata, e.g. suppression of Continent. If two rules with the same treatment were to be valid for Genre(X, N onF iction) ∧ Continent(X, Europe) and Genre(X, F iction) ∧ Continent(X, U SA), they could not be merged as they differ on more than one path.

A merged rule is created if there does not exist a rule that uses the same strata with another value for the path to suppress. It will be composed of the treatment and common part of the strata expressed in the rules it is created from. In our example, if the rule Genre(X, F iction) ∧ Continent(X, Asia) is not valid, the generalised strata Genre(X, F iction) can not be generated.

The resulting merged rule is then added to the candidate rules. If no rules to be merged with are found, then the rule is at the more general description it can be. In this case, it is removed from the candidate's list and outputted in the set of final differential causal rules. The merging procedure stops when the candidate's list is empty. An example of how rules can be merged is provided in example 7.

Experiments

The objectives of the experiments are threefold. First, they aim to quantitatively evaluate the results of Dicare-S and Dicare-C in terms of the number of differential causal rules that can be discovered and the number of outcome differences they can explain. The second objective is to analyse the plausibility and interpretability of the discovered rules qualitatively. This analysis is realised by collaborating with domain experts. Lastly, we aim to compare the discovered rules with both the state-of-the-art approach [START_REF] Munch | Interactive causal discovery in knowledge graphs[END_REF] and association rules.

Datasets Presentation and Settings

Two datasets were used for the experimental evaluation of our approach: DBpe-diaW and Vitamin. Some statistics of the datasets are presented in Table 4 The class Writer is the main class of DBpediaW. It is described by the writers' birth date, genre and gender. This knowledge graph also describes books published by the authors, with their release date and the number of pages. Lastly, it also describes the universities the authors attended, describing their countries and ranking, denoted by arwuW. As DBpediaW was constructed by querying DBpedia, its properties were originally in DBpedia and are documented on the DBpedia web-page2 .

The studied outcome path is the age of an author at the time he published his first book. As it is a single value, no aggregation function s is used for the outcome. As a result, the mined rules aim to explain why some authors published their first book at a younger age than others. The discretization has been done similarly as in Munch et al. [START_REF] Munch | Interactive causal discovery in knowledge graphs[END_REF] to facilitate the comparison of both approaches.

As DBpediaW is a knowledge graph describing a domain relatively simple to understand, the results obtained from Dicare-S and Dicare-C on it are analysed by people that are not experts of the book publication domain. The evaluation has been realised by researchers in computer science from Université Paris-Saclay.

Vitamin

Vitamin is the second dataset used for the experiment. It is bigger than DBpediaW and has a more complex schema described in Figure 4.7. It extensively describes people and their eating habits.

Vitamin has been constructed with data obtained through an online survey by researchers from INRAE3 [START_REF] Thomopoulos | Consumers' Motivations towards Environment-Friendly Dietary Changes: An Assessment of Trends Related to the Consumption of Animal Products[END_REF]. The definition of the schema has been built in collaboration with an INRAE researcher involved in the survey design. The survey is composed of 33 questions, where each question can be answered by one or several answers that can either be numerical or categorical values. The questions cover a wide set of categories that includes criteria in food choice, current and ideal food diet, food preferences, reasons, hindrances and facilitating factors for reducing animal product consumption, socio-demographic information, and agreement with arguments on animal product consumption. The schema has been built to gather information on questions of the same categories under the same or similar concepts. As there were, up to our knowledge, no properties for describing this domain, we also constructed the properties of the schema. Additional information on the survey is available [START_REF] Thomopoulos | Consumers' Motivations towards Environment-Friendly Dietary Changes: An Assessment of Trends Related to the Consumption of Animal Products[END_REF][START_REF] Salliou | Adopting, adhering to or abandoning veganism: insights on vegan diet transitions from life story accounts[END_REF].

The studied outcome path is the willingness of people to reduce their meat consumption. In other words, we aim to explain why some people have a higher will to reduce their meat consumption than others. Such explanations could either confirm existing knowledge on this phenomenon or provide new explanations that L. Simonne As shown in Figure 4.7, the schema is rather complex. As a consequence, the results of Dicare-S and Dicare-C over Vitamin were submitted to two experts in nutritional behaviour for the qualitative evaluation of the rules.

Communities Detection

The community detection step from Dicare-C has only been applied on Vitamin. It has not been applied to DBpediaW as it is considered simple enough to be exploited directly.

Parameters have been defined for using OSLOM [START_REF] José | Finding statistically significant communities in networks[END_REF]. isolated has been set to T rue to enable nodes to be single, and the statistical significance of the communities s has been set to 0.9. Three topics were chosen to define the sets of paths P where communities were searched: food taste, positive or negative opinions on diet-change motivation, opinions on climate change and animal well-being.

The paths related to opinions proved to have four communities used to create abstract properties. An extract of the resulting communities is shown in Table 4 Human Nature is to eat animals Eating animal products makes me happy of animal well-being, the impact of breeding on climate change, and reasonable opinions on meat-free diets. On the contrary, community 2 shows that pro-meat opinions are associated with good opinions on breeding as a natural element unrelated to climate issues, and with bad opinions on meat-free diets. Community 3 gather moderate opinions on climate and animal well-being, while 4 describe various strong but conflicting opinions. The expert assessment is that the resulting communities are well highlighting extreme points of view concerning postures towards food: conservationists or meat lovers. In this sense, the communities were judged accurate, intuitive and useful for explainability purposes.

The other sets of paths concerning food taste and positive or negative influences did not lead to communities. They are, therefore, not used for the explainability purpose in the following steps.

Mining Evaluation

The quantitative and qualitative results of Dicare-S and Dicare-C on DBpediaW and Vitamin are presented in Table 4.4. The table presents, for each approach and dataset, the number of rules that are obtained, the average number of rules that can explain the outcome of a pair, the percentage of correct rules as evaluated by experts, and the number of pairs that are explained with at least one rule. The baseline is the exact matching procedure described in 4.2.1, i.e., matching instances if they share the same description on a set of paths.

For each rule, the experts could evaluate a rule with the following choices: a rule (i) seems relevant, (ii) may be relevant, (iii) the expert does not know or (iv) the rule seems false.

DBpediaW

Dicare-S and Dicare-C have the same results on DBpediaW as no community detection step was applied, while the baseline does not mine any rules as exact 

) ∧ ageF irstBook(i 2 , u 2 )∧ univ.arwuW(i 1 , v 1 ) ∧ univ.arwuW(i 2 , v 2 ) ∧ v 1 < v 2 ⇒ u 1 < u 2 (4.4) genre(F iction) ∧ country(U S)∧ ageF irstBook(i 1 , u 1 ) ∧ ageF irstBook(i 2 , u 2 )∧ birthYear(i 1 , v 1 ) ∧ birthYear(i 2 , v 2 ) ∧ v 1 > v 2 ⇒ u 1 < u 2 (4.5)
These results show that the generalisation can lead to more general rules even with a drastic consistency constraint. The evaluators, i.e., 5 researchers in computer science, judged that 9 out of the 12 rules (75%) were meaningful and interpretable.

If looking at the rule in equation 4.4, it makes sense that studying at universities of better standing may explain a younger age of first book publication for writers. Such writers could have more credit to editors as their universities are better known. The rule from equation 4.5 indicates that the earlier a writer is born, for instance, a writer born in 1900 compared to another born in 1960, the later he will publish his first book. An explanation could be the democratisation of access to publishing, which is becoming gradually easier. With the years passing, we could imagine new processes to print books and more editors in an extended market.

It is to note that such rules can be considered causal if and only if all properties associated with the outcome are studied. Indeed, a missing property could explain both the outcome and an existing property that explains the outcome. Consequently, the outputted rule could express a correlation between two paths having the same cause more than causation. The knowledge graph's completeness in terms of paths might also have an effect on the number of pairs explained. For instance, for DBpediaW, the rules can explain 16.5% of the differences between ages of the first publication. This suggests that other properties not described in the dataset should be considered to explain the outcome.

Vitamin

Dicare-S did not output any rule on Vitamin as matching instances without abstract properties is impossible. The baseline also did not output any rule, as exact matching is not possible either. In total, 119 specific rules were mined and merged into 44 more specific rules by Dicare-C. These rules can explain the reduction in meat for 52.5% of the pairs of people. An example of a mined rule is presented in equation 4.6. It expresses that, for women, being part of community 1 compared to community 2 explains a higher meat reduction aim.

gender(X, woman) ∧ reduction(i 1 , v 1 ) ∧ reduction(i 2 , v 2 ) hasOpinion(i 1 , 2) ∧ hasOpinion(i 2 , 1) ⇒ v 1 < v 2 (4.6) livesIn(X, countryside) ∧ lowerEducation(X, Bachelor) ∧ hasOpinion(X, 3)∧ reduction(i 1 , u 1 ) ∧ reduction(i 2 , u 2 ) ∧ gender(i 1 , man) ∧ gender(i 2 , woman) ⇒ u 1 < u 2 (4.7)
The experts estimated that 35 of the 44 rules were meaningful and interpretable (80%). In particular, rules involving the mined communities as the treatment were judged very intuitive. It has been noted that a rule's interpretability is dependent on its strata. More precisely, the merged rules are characterised by their length, as their strata can be more or less specific. The more general the rule is, the easier it is to understand. For instance, in the rule described in equation 4.7, the sex treatment has been found in a rule applied to people living in rural areas, having at least a Bachelor, and having the community 3 on opinions. Compared to the previous rule, it is harder to understand and assess.

Comparative Evaluation and Discussion

Comparison to Association Rules

Association rules were mined with AMIE [START_REF] Galárraga | Fast rule mining in ontological knowledge bases with AMIE+[END_REF] after adding a predicate in the dataset that compares the outcome of 2 people, named aimsT oChangeComparedT o.

L. Simonne

Without the community step, AMIE discovers 5480 rules that conclude on this predicate. These rules are too numerous and hardly interpretable, also we simplified the graph with the abstract properties. 111 rules were mined with a support of 100 and confidence of 0.1 as parameters. One mined rule is: higherEducation(x, HighSchool) ∧ age(y, [START_REF] Althauser | The computerized construction of a matched sample[END_REF][START_REF] Hulswit | From Cause to Causation a Peircean Perspective[END_REF])

⇒ aimsT oChangeComparedT o(x, y) (4.8)

Such an association rule does not explain the difference in the reduction in meat. In this rule, no treatment clearly appears, as there are no comparisons between x and y on the paths in the association rule. For instance, y could have stopped its studies at high school, in which case education would not be a treatment, but y could also have attended university, in which case education would have been a treatment not described in the rule. More generally, a property can not be used as a treatment if the value is only known for one instance. In addition to this treatment issue, another problem is related to the paths not described in the rule. For instance, an explanation to the head of the rule could be that x is a woman and y is a man, but this is not mentioned in the rule. More generally, even if a treatment were to appear in the association rule, AMIE does not verify the similarity of instances as it does not rely on matching or defines the strata for which a treatment is valid. Therefore, due to the treatment that is not clearly expressed and the missing paths that could explain the outcome, association rules are not suited to explain outcome differences.

Comparison to the State of the Art

The results are compared to Munch et al. [START_REF] Munch | Interactive causal discovery in knowledge graphs[END_REF], whose approach based on bayesian networks aims to predict a discretized outcome with discretized attributes. This approach discovers that the year of publishing depends directly on the writers' university and birth date. For instance, a writer born before 1950 who studied in a university with an arwuW smaller or equal to 100 has a 0.58 probability of publishing his first book before 1980.

As a reminder, Dicare-S and Dicare-C aim to explain differences in the outcome rather than making predictions. They discover more rules involving four different treatments, i.e., paths on birthDate, arwuW, genre, and gender, that vary depending on 12 different strata. For instance, one mined rule indicates that the book genre can also explain differences in the age of first publication for a given strata, while such rules were not found by the approach of Munch et al. [START_REF] Munch | Interactive causal discovery in knowledge graphs[END_REF]. In addition to discovering more treatments, differential causal rules are more expressive as they express graduality, e.g., with the rank of a university (equation 4.4) or the birth date of an author (equation 4.5), while these paths were discretized L. Simonne in Munch et al.

Comparison of Dicare-S and Dicare-C

The experiment on Vitamin shows an interest in discovering and using abstract properties for matching. Not only the mined communities were judged meaningful and able to represent sets of paths, but their use also made it possible to mine differential causal rules on a complex knowledge graph. While Dicare-S can be used on relatively simple knowledge graphs, Dicare-C is to be used on more complex knowledge graphs.

Expert Assessment

The aim of Thomopoulos et al. [START_REF] Thomopoulos | Consumers' Motivations towards Environment-Friendly Dietary Changes: An Assessment of Trends Related to the Consumption of Animal Products[END_REF] was to investigate the relationship between environmental concerns, health and ethical issues and consumer demands, knowing that livestock production has an important ecological footprint. With a random forest model trained on the tabular data used to generate Vitamin, they can predict that a person will shift towards fewer animal products in their food diet with a 0.65 accuracy. This relatively low accuracy shows that this data is not easy to exploit for classification purposes. The random forest insights led to the conclusion that: the willingness to change is stronger for the youngest, hindrances to change are food pleasure, health and to a lesser extent social resistance and animal ethics. The less radical the animal products reduction is, the more environmental concerns are the main motivation.

Some similarities can be found between the random forest, Dicare-S and Dicare-C. In all of them, through a more or less complex procedure, the variables can be ordered by discriminating power. For instance, it has been shown in Dicare-C that the more general rules had the opinion as treatment, followed by the gender, the place of living and finally the education. In Thomopoulos et al. [START_REF] Thomopoulos | Consumers' Motivations towards Environment-Friendly Dietary Changes: An Assessment of Trends Related to the Consumption of Animal Products[END_REF], the features that better separate individuals that want to change their diets from individuals that do not can also be retrieved and ranked. However, in our approaches, we do not aim to classify all individuals, but rather to find out all the plausible reasons why one would want to change his diet and not the other. Our approaches guarantee that all the pairs of individuals used to establish the rule quality are identical, i.e., have the same property paths or abstract properties, except for the values that appear in the treatment. This makes our rules adapted to explain differences in the outcome with differences in treatment that can potentially be causal. Furthermore, since the number of treatments and strata can be huge, the community step of Dicare-C simplifies the explanations and the discovery process.

Conclusion

This chapter proposed the first definition of differential causal rules and two approaches, Dicare-S and Dicare-C, to mine them. The approaches are based on the potential outcome framework and, in particular, on instance matching. As exactly matching instances of a knowledge graph is not feasible, the approaches rely on coarsened matching and generating abstract properties that are a semantic summary of part of the description of the instance.

The discovered rules are expressive and were judged interpretable and mostly correct by experts from the considered application. However, due to the pessimistic heuristic during the rule mining process, the rules cannot provide an explanation for many pairs. Therefore, no explanations are provided for many pairs. A second drawback of the approach is that discovered rules can be more or less general depending on the set of instances they are applied to, which makes them more or less interpretable. In particular, specific rules, i.e., that are applied on precise subsets of graph instances, are harder to interpret.

As a consequence, we highlight several limitations on which Dicare-S and Dicare-C can be improved in next approaches (see Chapters 5 and 6):

• Rule Interpretability. A rule should be easily understandable by an expert to be used as insight. Rules with long strata, as mined through Dicare-C, are hardly understandable and are hardly usable. Moreover, it is impossible to rank the rules and the treatment effects.

• Pairs Explanation. In terms of explainability, current approaches hardly explain more than half of the pairs having the outcome on the tested datasets. As this can be partly explained by the dataset content, mining more general rules that could explain more pairs is of interest.

• Instance Matching Criteria. The comparison of exact matching to coarsened matching with abstract properties showed that matching similar instances is a complex step. Moreover, matching becomes increasingly difficult with the size of a knowledge graph. Alleviating this constraint could allow for mining more general rules.

• Feasibility on Knowledge Graphs. Lastly, it is to note that current approaches were developed on knowledge graphs where mining communities is possible. However, all knowledge graphs might not be suited for this task. As a consequence, other approaches should consider matching similar instances without using abstract properties to expand the set of knowledge graphs on which causal discovery can be applied.

In the following chapters, we will propose approaches that aim to satisfy one, or several of the fore-mentioned limitations: Chapter 5 proposes an approach to enable an easier interpretation of differential causal rules, and Chapter 6 proposes an approach that mines a new type of rules expressing an average effect for a treatment to explain more pairs.

• An algorithm that mines counter effect rules from previously mined differential causal rules.

The chapter is structured as follows. Section 5.1 defines counter effect rules, that show opposing causal effects of a treatment on different subsets of instances.

Section 5.2 describes how counter effect rules are mined as a post-processing step of differential causal rules mined using Dicare-C.

Section 5.3 presents counter effect rules that were mined with the proposed approach and one dataset, and show how they can be used to rank treatments.

Section 5.4 provides a discussion on counter effect rules and how they can be used to complement differential causal rule mining approaches.

Section 5.5 concludes this chapter on counter effect rules.

Counter Effect Rules

This section defines the limits of differential causal rules mined by Dicare-S and Dicare-C, and motivates the need for using a complementary type of rules, named counter effect rules, that aim to ease the interpretation of differential causal rules.

Motivation

The previous chapter, Chapter 4, introduced Dicare-S and Dicare-C, two approaches that were defined to mine differential causal rules from a knowledge graph. Such rules express that a treatment has a causal effect on a specified set of instances described by a strata, i.e., a basic graph pattern.

While differential causal rules were mined and overall judged interpretable by experts, their analysis presents some limitations. More precisely, two issues arise. The first is that, at the scale of one rule, a rule can be difficult to interpret due to its strata length. Indeed, while a general rule, i.e., with few elements in its strata, will be easily interpreted, more specific rules are harder to interpret. The second issue comes at the scale of analysing the whole set of rules and is on treatment effects. Firstly, the rules are numerous, and it might therefore be difficult for a user to go through all of the rules to get insights, for instance, to understand which treatment has the stronger effect. Secondly, a treatment may appear in several rules, sometimes with a consistent effect as it can be the same for several strata, but also with opposing effects for other strata. Therefore, the effect of one treatment can be ambiguous, and the differential causal rules alone are not suited to explain why the treatment has opposing effects.

This chapter focuses on the second issue, i.e., the treatment effects, and introduces counter effect rules to facilitate the interpretability of differential causal Definition 14. Description Change. Let ST i and ST j be two strata that describe two sets of instances I i and I j . The description change between ST i and ST j is denoted by →, such that ST i → ST j indicates that the considered instances changed from I i to I j .

Let a differential causal rule DCR 1 that expresses the effect of a treatment T on the strata ST 1 . Let another strata ST 2 . The description change from ST 1 to ST 2 , noted ST 1 → ST 2 , can be used to study how the effect of the treatment T evolves when applied to another strata, ST 2 .

Example 8. Let two strata ST 1 : Researcher(X) ∧ gender(X, "M an") and ST 2 : Researcher(X) ∧ gender(X, "W oman"). Let T be a treatment whose effect is studied on ST 1 and ST 2 . The description change ST 1 → ST 2 can be used to study how the effect of T changes depending on whether it is applied to researchers that are men or women.

Given the definition of description change, we propose a definition for counter effect rules. Definition 15. Counter Effect Rule. Let two instances X 1 and X 2 of a class C ∈ O, and a treatment T that explains an outcome O when X 1 and X 2 belong to a strata ST i . A counter effect rule CER T expresses that, if X 1 and X 2 belong to another strata ST j ̸ = ST i , then T will explain the opposite outcome O. A description change from ST i to ST j explains an opposite effect of a treatment. More formally, a CER T is defined as follows:

CER T (X 1 , X 2 ) : C(X 1 ) ∧ C(X 2 ) ∧ T (X 1 , X 2 ) ∧ P O (X 1 , U 1 ) ∧ P O (X 2 , U 2 )∧ [ST i (X 1 ) ∧ ST i (X 2 ) → ST j (X 1 ) ∧ ST j (X 2 )] ⇒ [O(X 1 , X 2 ) → O(X 1 , X 2 )]
(5.1)

L. Simonne

It is to note that such a rule is built from the combination of two differential causal rules. It is not a first-order logic rule, but a representation of how one treatment may have opposing effects depending on the instances it is applied on. Such rules are of interest to experts as they ease the understanding of the differential causal rules for two reasons. First, they explicitly show that a treatment may have opposing effects and why. Secondly, such rules can be used to show the consistency of treatments, which can be a criterion to rank them. We discuss these criteria in section 5.3.

Example 9. Let two strata ST 1 : Researcher(X) ∧ gender(X, "M an") and ST 2 : Researcher(X) ∧ gender(X, "W oman"). Given two instances X 1 and X 2 , a treatment T indicates that X 1 lives in the countryside and X 2 lives in a city. The outcome O indicates that X 1 has a higher will to reduce its meat consumption than X 2 . Let DCR 1 and DCR 2 be two differential causal rules as defined in Definition 7. DCR 1 express that, for men researchers, living in the countryside compared to living in cities, i.e., T , explains a higher will to reduce one's meat consumption. DCR 2 express that treatment T has the opposite effect of O for women researchers, as for them living in cities compared to living in the countryside explains a higher will to reduce one's meat consumption.

The resulting CER is presented as follows (equation 5.2). For the sake of understanding, its representation has been simplified. The first line indicates the treatment, i.e., living in the countryside compared to living in cities. The second line expresses a part of the outcome with the paths leading to the values of meat reduction. The third line is composed of two parts: the first indicates the common part of ST 1 and ST 2 , Researcher(X) in this example, and the second, in bold, shows the description change, i.e., what explains the opposing outcome of the treatment. The fourth and last line is the head of the rule and shows the change of effect of the treatment that results from the description change.

livesIn(X 1 , countryside) ∧ livesIn(X 2 , city)∧ reduceM eat(X 1 , u 1 ) ∧ reduceM eat(X 2 , u 2 )∧ Researcher(X) ∧ [gender(X, "Man") → gender(X, "Woman")] ⇒ [higherThan(u 1 , u 2 ) → lessThan(u 1 , u 2 )] (5.2) 
It is to note that the length of the description change plays an essential role in the understanding of a counter effect rule. Indeed, a small description change such as presented in equation 5.2 is easy to understand. However, the longer the change, the harder it is to understand. Therefore, this length should be controlled as a parameter in the mining of the counter effect rules.

Approach for Counter Effect Rule Generation

This section describes the approach to mine counter effect rules. This approach is constructed in two steps and consists in the post-processing of differential causal rules that can be mined by Dicare-C. In the first step, differential causal rules are discovered by using Dicare-C, i.e., the approach described in Chapter 4. In the second step, the differential causal rules are processed to obtain counter effects rules.

Mining Differential Causal Rules

In the first step, DCRs are mined with Dicare-C. As a reminder, the algorithm takes as input a KG, a target class c, a set of property paths P that lead to possible treatments P T , the property path leading to the outcome P O , and expert knowledge to guide the mining. It outputs the DCRs.

Dicare-C relies on a bottom-up strategy. First, it generates potential DCRs and evaluates them using a metric inspired by the odds ratio. The obtained DCRs are said to be specific as they express treatments on stratas composed of several predicates. Secondly, the strata of the DCRs are merged to obtain more general rules if they share the same treatment and outcome. While the effect of a specific rule is quantified by the odds ratio, a rule obtained from a merge is not quantified. Therefore, merged rules can not be ranked. Regarding the mining of counter effect rules, only the specific DCRs are considered to ease their discovery.

Obtaining Opposite Effects

In the second step of the algorithm, the set of CERs, D, is obtained from the DCRs previously mined.

As shown in equations 5.1 and 5.2, a CER expresses that a change from one strata to another explains an opposite effect of the same treatment. It is therefore obtained by comparing two differential causal rules if they have the same treatment but opposite outcomes. However, as discussed in section 5.1.2, the generation of all CERs on this criterion alone is not desirable, as some CERs may have a description change too long to be understandable. As a consequence, instead of outputting all CERs, we introduce a threshold, d c , that is the maximum number of changes a rule can have, i.e., the number of differences between the two strata it is built from. For instance, the CER in equation 5.2 has d c = 1. The use of a threshold ensures the generation of a set of rules that can be interpreted.

In the algorithm, the DCRs are first sorted by the treatment they express. Then, for each unique treatment T , two sets of rules are obtained: R (T,O) and R (T,O) depending on the rules outcome, where R (T,O) is the set of rules where T explains T , and R (T,O) is the set of rules where T explains the opposing outcome. A potential counter effect rule per pair

(R i , R j ) ∈ R (T,O) × R (T,O) is constructed.
With ST i the strata of the rule R i , the potential counter effect constructed from R i and R j is added to D if its number of changes n(ST i , ST j ) is lower or equal than d c .

Example 10. Let us consider DCR 1 and DCR 2 the DCR given in section 5.1.2. DCR 1 and DCR 2 have the same treatment but opposite outcomes and can therefore be used to generate the potential CER described in equation 5.1. With d c set to 1, as n(ST 1 , ST 2 ) = 1, this CER can be added to D.

A final procedure is applied on the CERs of D. Similarly, as for the mining of differential causal rules, the CERs are merged to obtain more general rules.

Experiments

We conducted experiments in order to show the relevance of the CERs that can be mined over a knowledge graph. The obtained CERs were then compared to the DCRs mined using Dicare-C (see Chapter 4) and to association rules mined using AMIE [START_REF] Galárraga | Amie: Association rule mining under incomplete evidence in ontological knowledge bases[END_REF].

Dataset Presentation

The dataset Vitamin has been used for the experiment. It is extensively described in section 4.3.1. As a reminder, it describes people and their socioeconomic characteristics, such as age, gender, current and ideal diet, opinions on animal welfare facts and climate change. The outcome is the difference between a person's current and ideal diet, i.e., their willingness to reduce their meat consumption. It is denoted by P O = reduceM eat having values ∈ N.

In addition to mine treatments that may explain differences in one's meat reduction willingness, we are interested in observing whether such treatments are consistent or may have opposite effects. Also, we aim to rank them based on their consistency and ability to change the effect of other treatments.

It is to note that DBpediaW has not been used in this experiment as no counter effect rules could be mined over it.

Settings

The DCRs mined by Dicare-C on Vitamin are the same as the DCRs obtained in section 4. 

Mined Counter Effect Rules

In total, 23 CERs with a change of one element were discovered using the set of 119 specific DCRs previously mined. As a reminder, the DCRs used to create the CER were overall judged accurate and meaningful by experts in the field. An example of a CER, CER 1 , is presented in equation 5.31 , where living in cities compared to living on the countryside explains a higher will to reduce one's meat consumption for men that attended high school, but a lower will if they were women. This rule is also illustrated in Figure 5.1.

CER 1 : livesIn(X 1 , city) ∧ livesIn(X 2 , countryside) ∧ reduceM eat(X 1 , u 1 )∧ reduceM eat(X 2 , u 2 ) ∧ [education(X, high_school) ∧ hasOpinion(X, 1)]∧ [gender(X, man) → gender(X, woman)] ⇒ [greaterThan(u 1 , u 2 ) → greaterThan(u 2 , u 1 )]
(5.3) Table 5.1 presents an extract of treatments involved in the mined DCRs (Treatment), the number of DCRs they are involved in (#DCR), their consistency (% same O), i.e., the percentage of DCRs they are implied on and where they have the same outcome, the number of CERs (#CER), and the most common treatments paths that explain their counter effect (Counter Treatment).

Two observations are presented in this table. The first observation is on the ranking of treatments based on their consistency value. This ranking shows that two treatments are strong: the first is the sensitivity to climate change and animal well-being, and the second is gender, as women seem more willing to reduce their meat consumption than men. Both of these treatments have a 100% consistency, meaning they always explain the same outcome on strata where they have an effect. On the contrary, the consistency metric also shows that treatments may have less consistent effects, such as the treatment on education that equally leads Table 5.1: Extract of Results. X 2 has a higher will to reduce its meat consumption than X 1 .

Treatment #DCR (% same O) #CER Counter Treatment hasOpinion(X 1 , 2) ∧ hasOpinion(X 2 , 1)
14 (100%) 0 NA gender(X 1 , man) ∧ gender(X 2 , woman) 10 (100%) 0 NA livesIn(X 1 , city) ∧ livesIn(X 2 , campaign) 18 (88%) 2 gender,education education(X 1 , university) ∧ education(X 2 , high_school) 16 (50%) 7 gender,opinion to opposing effects. The second observation is on counter treatments, which figure on the last column of the table. Counter treatments exist only for treatments that are not consistent, e.g., the difference of education or the place of living. As such treatments change the effects of the latter ones, they can be considered stronger. It appears that counter treatments that are often found are also the treatments that are the most consistent.

Discussion

Comparison to Association Rules

A set of association rules has been mined using AMIE [START_REF] Galárraga | Amie: Association rule mining under incomplete evidence in ontological knowledge bases[END_REF] with a support of 100 and confidence of 0.1. As in section 4.3, the target head of the association rules has been set by introducing a new predicate that compares the difference in the reduceMeat predicates. A set of 111 rules were mined using AMIE. However, none of them could explain a difference in the reduceM eat predicate between the two instances. More precisely, while the body of the mined rules could contain predicates on both instances, they do not compare the same ones for the two instances. Therefore, as described in section 4.3, association rules are not suited for such explainability purposes. Consequently, they are also not suited to show one treatment can have different effects depending on the set of instances it is applied on.

Comparison to Differential Causal Rules

Counter effect rules are obtained after processing a set of differential causal rules. We aim to emphasise the gains of this processing compared to the analysis of the differential causal rules alone. As discussed in section 5.1.1, counter effect rules were defined in response to the limits of differential causal rules regarding interpretability. More precisely, the differential causal rules are numerous and may express opposing effects for the same L. Simonne treatment, making it difficult for an expert to analyse them. The results of the mining of counter effect rules, presented in section 5.3, lead to several observations. First, it showed that treatments may lead to different outcomes and are not always the same. Secondly, the counter effect rules can be used to rank the treatments based on their consistency, and also underlie the stronger effects of treatments on other treatments. As a consequence, they allow separate treatments based on whether they have general or more local effects. This can be of great interest to an expert as they discovered general effects are usually already known and published in the literature, as in Thomopoulos et al. [START_REF] Thomopoulos | Consumers' Motivations towards Environment-Friendly Dietary Changes: An Assessment of Trends Related to the Consumption of Animal Products[END_REF], while more local effects may be leading to deeper analysis or the design of new experiments.

In other words, while some differential causal rules may be easy to interpret, especially the more general ones, using the counter effect rules allows to get a faster and wide analysis of the treatments than studying the differential causal rules alone, therefore proposing an approach to some of the limits of the latter.

Conclusion

In this chapter we presented a new approach for generating counter effect rules that express that a treatment effect can have opposing effects on different sets of instances of a knowledge graph. These rules are generated as a post-processing step from a set of differential causal rules.

Counter effect rules have shown to be of interest to facilitate the interpretation of differential causal rules. Indeed, while a differential causal rule studies a local effect, counter effect rules provide a deeper analysis of a treatment in terms of consistency and comparison to other treatments. As a consequence, the mining of both types of rules should be used complementary.

While this chapter provided an approach that increases the interpretability of previous results, thus improving a limit enunciated in the conclusion of Chapter 4, it, however, does not improve other limits such as the number of explained pairs or the instance matching criteria. The next chapter will address these limits by introducing Dicare-E, an embedding-based approach.

L. Simonne instance pairs for which differences in the outcome are provided with an explanation needs to be improved. Furthermore, while matching RDF instances with complex descriptions has been addressed by a community detection algorithm, this coarsened matching process still remains difficult as it relies on an expert to guide the community detection step.

Consequently, we developed a new approach named Dicare-E that we present in this chapter. The objectives of this new approach are threefold. First, we aim to mine causal rules expressing an average causal effect on all instances of a knowledge graph, in opposition to the local effects expressed by rules mined in Dicare-C and Dicare-S. These average rules should be easier to interpret. Secondly, we aim to explain more pairs that have the outcome. Lastly, we aim to facilitate the matching of instances to have an approach adapted to more complex knowledge graphs that may have missing data. More precisely, Dicare-E is a hybrid algorithm that combines numerical and symbolic methods to discover causal rules. While Dicare-C and Dicare-S use instances descriptions to match similar instances, Dicare-E uses instances representation in a low dimensional vector space to measure the similarity of instances and to determine if they can be matched.

The contributions of this chapter are the following:

• A method to match similar instances based on their embedding representations. This method defines a threshold in the embedding space to ensure the matching of similar instances only.

• The definition of average causal rules, which are differential causal rules expressing an average effect of a treatment across all instances of a target class in a knowledge graph.

• An algorithm, Dicare-E, that mines average causal rules and an analysis of its results that shows that Dicare-E explains a higher number of pairs compared to Dicare-C and is more resistant to missing data.

The chapter is structured as follows. Section 6.1 presents the motivation of Dicare-E by underlying the limits of Dicare-C and Dicare-S presented in chapter 4. It also shows how we propose to use graph embeddings in an attempt to solve such limits. Section 6.2 presents Dicare-E, the algorithm that we developed to discover differential causal rules by relying on graph embeddings. Section 6.3 presents the results of the experiments we realised using Dicare-E. Section 6.4 concludes the chapter.

Average Differential Causal Rules

This section emphasises on the motivation of both defining a new type of rules that are easier to interpret and easing the matching of instances of a knowledge graph. It defines the new type of rules, named average differential causal rules.

Motivation

The approaches presented in the previous chapter, Dicare-C and Dicare-S, define differential causal rules and how they adapt the potential outcome framework to mine them in a knowledge graph. These rules express the local effects of treatments on a subset of instances. They are mined by matching similar instances based on their RDF description. However, these approaches presented several limits as exposed in section 4.5, namely the interpretability of the rules, the number of explained pairs, and the instance matching criteria. The first limit is the interpretability of differential causal rules. While counter effect rules, introduced in Chapter 5, enhance the interpretation of differential causal rules when studied as a whole, it does not ease the interpretation of a rule by itself. The expert assessment of the rules indicates that the more specific the strata of a rule is, the more difficult the rule is to be interpreted. Moreover, the community detection step used to simplify the matching step reduces the granularity in the treatment's precision. Indeed, the effect of a particular path within a community used as a treatment can not be assessed. Finally, as the obtained rules are discovered by generating specific ones, a rule's treatment effect is no longer measured by the metric, and thus, rules can not be ranked on how strong their effects are.

The second limit is the number of pairs these rules can explain. Indeed, as differential causal rules express local effects, many pairs are not provided with an explanation for why they have the outcome.

The third limit is that Dicare-C and Dicare-S use the RDF description of instances to match similar instances, making it not trivial to create matches, especially in case of incompleteness. Dicare-C and Dicare-S measure the similarity between two instances as the number of paths they have in common, with the paths being original RDF descriptions or abstract paths generated from a community detection step. However, using this similarity measure becomes increasingly difficult with the number of paths describing instances. Indeed, the higher the number of elements where instances need to be similar to be matched, the more difficult it is to find matches within a database [START_REF] Althauser | The computerized construction of a matched sample[END_REF]. This statement is even stronger with small databases where it is less likely to find a match for a given instance. Finding similar instances is even more difficult with knowledge graphs where parts of instances description can be missing, and instances may be described by non-functional properties. While Dicare-C already addressed these problems by reducing the number of paths to study by using a community detection step, finding two instances with the same descriptions in a knowledge graph is complex and even impossible in some cases.

This chapter aims to answer these limits by introducing an approach that mines rules expressing the average effects of treatments. These rules are discovered by using knowledge graph embeddings.

Average Differential Causal Rules

We propose the definition of average differential causal rules. They are differential causal rules that do not express any constraint on the instance pairs through a specified strata. These rules express an average effect of a treatment over all instances of a target class in a knowledge graph.

Given the definitions of categorical treatment T c (see Definition 4), numerical treatment T n (see Definition 5) and outcome O (see Definition 6), an average differential causal rule ADCR is defined as follows: Definition 16. Average Differential Causal Rule (ADCR). Given X 1 and X 2 two instances of a target class of an ontology O, P O the property path leading to the outcome, a treatment T ∈ {T n (X 1 , X 2 ),T c (X 1 , X 2 )} defined by the property path P T , and s an aggregation function, an average differential causal rule DCR T is defined as follows:

ADCR T : T ∧ P O (X 1 , U 1,P O ) ∧ P O (X 2 , U 2,P O ) ⇒ lessT han(s(U 1,P O ), s(U 2,P O ))
An average differential causal rule expresses the average effect of a treatment over the instances of a target class in a knowledge graph. It is to note, as for differential causal rules, that an average differential causal rule can be categorical or numerical depending on the type of treatment path.

Example 11. A categorical ADCR could be that, on average, being a woman compared to being a man explains a higher life expectancy. A numerical ADCR could indicate that, on average, being younger explains a better athlete rank.

Approach:

Dicare-E

Overview

This section presents Dicare-E, an approach that mines average differential causal rules from a knowledge graph. Dicare-E is composed of three main parts. In the first part, similar instances across the knowledge graph are matched on their representation as embedding vectors. The matching is realised given a distance threshold that is estimated. Although two strategies were proposed to estimate this threshold (see [START_REF] Simonne | Découverte de règles causales dans les graphes de connaissances à l'aide de plongements dans les graphes[END_REF][START_REF] Simonne | Discovering causal rules in knowledge graphs using graph embeddings[END_REF] for more details), we present the strategy developed in [START_REF] Simonne | Discovering causal rules in knowledge graphs using graph embeddings[END_REF] as it is more interpretable and has a smaller complexity in time. In the second part, matches of similar instances are created using the estimated distance threshold and are used to study the effect of treatments on an outcome path. In the last part, the effect of treatments is estimated by computing a causal metric on the set of similar instances.

The workflow of Dicare-E is presented in Figure 6.1.

Using Knowledge Graph Embeddings to Find Similar Instances

Problem Statement

The first part of Dicare-E consists of defining the method to match similar instances of a knowledge graph. To this end, we propose to use embedding models to match instances based on their vector representation. However, matching instances based on their distance in the embedding space is challenging. The objective of knowledge graph embedding approaches is to represent entities and relations from a knowledge graph in low-dimensional vectors (see section 3.3.3). As a reminder, the output of embedding models are vectors representing entities and relations of a knowledge graph. Depending on a dataset, a model or another might perform better. While it can be difficult to compare and represent instances with their RDF descriptions, it is much easier with vectors. Indeed, vectors can be compared through various functions such as euclidean or cosine distances. Vectors representation has been studied in many works, including in Wang et al. [START_REF] Wang | Attributed graph clustering: A deep attentional embedding approach[END_REF] where authors show that similar RDF instances have similar vectors in the embedding space. In Moon et al. [START_REF] Moon | Learning entity type embeddings for knowledge graph completion[END_REF] and Jain et al. [START_REF] Jain | Do Embeddings Actually Capture Knowledge Graph Semantics? Lecture Notes in Computer Science[END_REF], authors found that similar vectors in the embedding space will represent similar RDF instances. These works motivate the use of embedding approaches to match similar instances based on their embeddings.

However, given a set of instances of a knowledge graph whose vectorial representation has been learned, matching similar instances is not trivial. For example, to find an instance similar to an instance i, by using a distance such as the euclidean distance, one may consider the closer instance in the embedding space, the instance j. While this distance could indicate that j is the closer instance to i in the embedding space, it does not guarantee that they are similar. However, the potential outcome framework indicates that only pairs of similar instances are to be used to compute a treatment effect and that pairs of instances that are not similar should be pruned. Therefore, estimating a threshold d tr is a key element.
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Estimation of the Distance Threshold

In this section, we propose a method to address the distance threshold estimation problem. As the distance in the embedding space is not interpretable, this method generates a ground truth in the embedding space to make the distance more interpretable. More precisely, the method generates perturbed instances from existing instances given a number of differences. By computing the distance in the embedding space between the existing instances and their perturbed versions, it generates an interpretable ground truth on the distance. The distance threshold can then be estimated in an interpretable way.

Perturbed instances are RDF copies of original instances of the knowledge graphs, except that they are modified in a controlled manner. The perturbed instances are considered as part of ground truth, as their differences from the original instances of the KG are known. Computing the distance between the vector representation of original and perturbed instances within the embedding space allows the estimation of the distance threshold corresponding to a chosen number of differences. The workflow of this method is presented in Figure 6.1, where the threshold d tr is estimated with steps (a), (b), and (c). In the following, we present how we generate perturbed instances and how they are used to define d tr .

In the first step, step (a) in Fig. 6.1, perturbed instances are generated for a subset of class instances that are randomly selected. For each class instance, a specified number of perturbed instances are created. A perturbed instance i ′ is generated from an existing instance i with the parameter S that expresses the number of differences. Definition 17. Number of differences on a property path. Let P be a property path, and O i (resp. O i ′ ) the set of literal values of P describing i (resp. i ′ ). Let s P (i, i ′ ) be the number of differences on P between i and i ′ . s P (i, i ′ ) is defined as follows:

s P (i, i ′ ) = max(|O i |, |O i ′ |) -|O i ∩ O i ′ | (6.1)
Definition 18. Number of differences. Let P be the whole set of property paths considered for the differences between two instances i and i ′ . The number of differences between i and i ′ , noted s(i, i ′ ), is computed over all property paths of P as follows:

s(i, i ′ ) = P ∈P s P (i, i ′ ) (6.2)
It is to note that, in some cases, several URIs may share the same literal values. Therefore, URIs are not considered in the number of differences as instances are compared by relying on literal values only. For instance, the URIs #France and #france may be described on one property, the property related to their number of inhabitants, and have the same literal value. Comparing #France and #france would not make a difference as they have the same literal values. Also, existing identity or difference links between URIs are not considered.

Given the number of differences we defined, perturbed instances are generated so that their number of differences with the original instance equals the parameter S. The perturbation process can modify a literal value and add or suppress a data property, and new literal values are selected among existing values. The distance threshold is defined as the mean distance between the vector of an original instance and the vector of a perturbed instance that has been created from the original instance using a number of differences. This estimation is performed in step (c).

More precisely, given P T the property path associated with the treatment T to analyse, and P O the property path associated with the outcome O, P T and P O are removed from KG e for the embedding model training as the matching of instances is to be carried out independently to T and O. The resulting knowledge graph is denoted by KG f . An embedding model f is then trained on KG f . After the training, the embedding vectors of the perturbed instances G S and the corresponding original instances I are obtained. A distance threshold d tr is then computed as the mean distance between pairs of instances (i, i ′ ) having a number of differences S, where i is an instance of I and i ′ is an instance of G i,S . Definition 19. Distance Threshold. Given the number of differences S, the euclidean distance d, the sets of original instances I and their perturbed versions G i,S and ⃗ i (resp. ⃗ i ′ ) the embedding vector representing i (resp. i ′ ), the distance threshold d tr is defined as follows:

d tr = 1 | I | i∈I 1 | G i,S | i ′ ∈G i,S d( ⃗ i, ⃗ i ′ ) (6.3)

Generating Pairs of Similar Instances to Study a Treatment Effect

The effect of a treatment on an outcome is represented by an average differential causal rule (see Definition 16). Obtaining an average differential causal rule is done in two steps. In the first step, the average differential causal rule is created given the studied treatment. In this step, such a rule is qualified as potential as its effect has not yet been measured. This step, therefore, consists of obtaining the pairs that verify the treatment. It is represented in step (d) of Figure 6.1. In the second step, the effect of the treatment is computed by using the obtained pairs and is presented in the next section. Depending on whether a property path P T ∈ P is numerical or categorical, the process of generating a potential rule and the pairs of similar instances used to evaluate it differs. We present the processes for generating potential rules with a categorical or a numerical path as follows.

Categorical Treatment. When P T leads to categorical values, one or several combinations of values can be built depending on the number of categorical values of P T . Consequently, one potential rule ADCR T is generated for each combination (V i , V j ) of different values of P T . In the sequel, we will refer to each combination of this form as a treatment T . To create the pairs of similar instances that verify T , a set of instances I V i (resp. I V j ) having the value V i (resp. V j ) is obtained from KG. Then, a distance matrix D is constructed by computing the distance d between the embedding vectors of all pairs (i, j) ∈ I V i × I V j . Given d tr , pairs of instances are added to the set of similar pairs M if their distance d verifies d < d tr . This process is done with a greedy strategy without replacement, as we aim to construct pairs as diverse as possible. In other words, an instance can only appear in one pair at maximum. Numerical Treatment. When P T leads to numerical values, one potential rule DCR T can be generated. The process for obtaining M is similar to a categorical treatment, except that D is a squared matrix where each instance with a value for Example 13. In table 6.1, we assume that d tr = 1. The treatment path is "has-Gender" and is, therefore, a categorical path. In this example, pairs are built to study the treatment "T: being a man compared to being a woman", where women are the rows of the table and men are the columns. Three pairs verifying the treatment can be created: (i 1 , j 1 ), (i 2 , j 4 ) and (i 3 , j 2 ). The instances i 4 , j 3 and j 5 are not matched as no available instances were similar enough to them.

Obtaining a Treatment Effect

In the last step of Dicare-E, step (e), the effects of the treatments are measured. The metric causal r , defined in Definition 12, is used to assess the effect of the treatment T on the outcome and is therefore used to select the rules from the set of potential rules built in the previous step. The procedure to measure the effect of a rule is the same as described in 4.2.3, to the difference that an average effect is measured instead of a local effect on a strata. Let a potential rule ADCR T and a set of similar pairs M that verify the treatment T . As a reminder, causal r is defined in Definition 12. It is computed as follows:

causal r (R) = supp(T ∧ ⃗ B ⇒ lessT han(s(U 1,P O ), s(U 2,P O ))) supp(T ∧ ⃗ B ⇒ greaterT han(s(U 1,P O ), s(U 2,P O )) (6.4)
causal r compares the number of pairs of M that verify the outcome to the number of pairs of M that verify the opposite of the outcome, i.e., greaterT han instead of lessT han.

It has values in [0, +∞[ and measures the strength of the relation between the treatment and the outcome. The treatment and the outcome are considered independent if causal r (ADCR T ) = 1. On the contrary, the more distant to 1, the stronger the strength of the relation, i.e., the higher the effect of the treatment on 
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the outcome. If higher than 1, the treatment has an effect on the outcome, while a value lower than 1 indicates that the treatment has the opposite effect on the outcome (i.e. greaterT han).

Example 14. In table 6.2, by using the pairs created in example 13, the treatment T : "being a man compared to being a woman" has an estimated effect: causal r (ADCR T ) = 2 1 .

To select the rules expressing an effect of a treatment on the outcome, a confidence interval is built on the causal ratio. A rule with a lower bound of the confidence interval higher than 1 is selected as expressing an effect.

When a user wants to test other treatments or study other outcomes, the embedding model f is to be retrained as pairs are to be created without considering the treatment and outcome.

Experiments

The experiments aim to show the relevance of the discovered rules, meaning (i) whether they were judged meaningful by domain experts and (ii) their ability to explain differences in outcome values, i.e., the number of pairs having the outcome that can be explained by at least one rule. As Dicare-E relies on graph embeddings, we also evaluated how robust Dicare-E is to missing data. Moreover, we compared the results of Dicare-E to both a baseline and to Dicare-C [START_REF] Simonne | Differential causal rules mining in knowledge graphs[END_REF]. The baseline we considered is a naive approach that discovers DCRs with strict literal-based matching (see section 4. 3).

An extract of the code can be found on this link1 .

Datasets and settings

Datasets

The datasets Vitamin and DBpediaW have been used for the experiment. These datasets have been used in the previous chapters and are described in section 4.3.1.

Vitamin describes people and their socioeconomic characteristics such as age, gender, current and ideal diet, opinions on animal welfare facts and climate change. We are interested in explaining the difference between a person's current and ideal diet, i.e., their willingness to reduce their meat consumption denoted by reduceMeat having values ∈ N.

DBpediaW describes authors and books they wrote. We try to explain why some writers publish their first book at a younger age than others. The treatment path is denoted by the predicate publishedAt that expresses the difference between a writer's birth date and his first book publication date.

As the outcomes of both datasets are single values, no aggregation functions s are used.

Experiments Settings

The parameters for the perturbed instances generation are S = 15, n = 150 and m = 3 for Vitamin and S = 2, n = 50 and m = 3 for DBpediaW. The values for S were defined to select pairs with a number of differences lower than onethird of their number of literals. The quality metric causal r is computed with the confidence of 90% for both methods.

The treatment paths that were studied for Vitamin include people's gender, age, type of habitation, work, education, source of media, current diet, and sets of various opinions on climate change and animal welfare. The treatment paths that were studied for DBpediaW include people's birth date, gender, writing genre, and the universities they studied at.

For the baseline and Dicare-C [START_REF] Simonne | Differential causal rules mining in knowledge graphs[END_REF], we defined the maximal length of paths to explore as the length of the longest path of an instance description of the target class, i.e., a P erson for Vitamin and a W riter for DBpediaW.

To select the most suitable embedding model for each dataset, we trained embedding models using the python library AmpliGraph [10]. 

Selection of the Knowledge Graph Embedding Model

DBPediaW

Vitamin MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@ The performances were obtained by training the models with the original knowledge graphs. We assume that the models with the best performances on the whole knowledge graphs will also perform best when removing the treatment and outcome paths.

The runtime of Dicare-E for running the 7 treatment paths that were tested is around 9 hours for Vitamin and around 10 minutes for DBpediaW.

Effect of the number of differences S on the distance d and the causal effect causal r

A key parameter in the generation of perturbed instances is the number of differences S. This section provides an analysis of this parameter. It first focuses on the correlation between S and the distance d, and then on the effect of S on the causal metric causal r .

Correlation between the number of differences S and the distance d

The variation of the euclidean distance d with the number of differences S is studied. To this end, an experiment is designed as follows: 100 instances of P erson in Vitamin are randomly selected, and, for each of them, one perturbed instance is generated per number of differences S ranging from 0 to S max . S max is set to 24 for this study, i.e., in average half of the literals of instances of P erson can be different.

After the generation step, an embedding model is trained over Vitamin enriched with the perturbed instances. The euclidean distance d is computed between the selected instances of P erson and the perturbed instances generated from them given S. Fig. 6.3 is a violin plot showing the distribution of d between pairs of instances given each number of differences S from 0 to S max . The wider line in the middle of each violin indicates its median value. Similarly, as for the first method, Fig. 6.3 shows that, as expected, higher S values lead to higher euclidean distances.

Effect of the number of differences S on the causal effect causal r

The previous section showed that different values of S will lead to different estimations of the distance threshold. As a consequence, the estimated effect of a treatment may be different depending on the parameter S since the set of selected pairs will be different.

To underline the importance of S, the rule R 1 : being educated instead of being not educated explains a higher will to reduce one's meat consumption is studied, where educated stands for possessing a high school degree or a higher degree. Several metrics on R 1 are described in Fig. 6 A rule is valid if the error bar does not cross the horizontal red bar set at 1. In this example, R 1 is not valid for S = 10 as, although its causal r value is lower than 1, its confidence interval ranges from 0.5 to 1.1 and, therefore, includes the value 1, meaning it is not significantly different from 1. R 1 is valid with S = 20 since the confidence interval is lower than 1. Moreover, since causal r (R 1 ) < 1, the rule is changed to being not educated instead of being educated explains a higher will to reduce its meat consumption.

Smaller S values, i.e., lower d tr values, lead to smaller sets of pairs. Such sets are composed of the most similar instances. As their number is small, the Figure 6.4: causal r (R 1 ) (left y-axis, bullets) and number of pairs created (right y-axis, bins) given S values (x-axis). P T : education (X 1 : educated, X 2 : not educated) estimation of causal r has a large variance, i.e, large confidence intervals. Conversely, higher S values lead to bigger sets of pairs that, however, are less similar. The estimation of causal r (R 1 ) is more likely to be biased but has a smaller variance. Therefore, S allows controlling the bias-variance trade-off of the estimation of causal r . The more the dataset is large and representative of the real-world distribution, the more likely it is to find similar instances with lower S values. The quality of the discovered rules would therefore be higher.

Quantitative and Qualitative Evaluation of the Mined Rules

22 rules were discovered on Vitamin and 3 rules on DBpediaW. Two rules, one rule for each dataset, are presented: R 2 (equation 6.5) for Vitamin, and R 3 (equation 6.6) for DBpediaW 2 . R 2 states that being omnivorous compared to being vegetarian is an explanation for a higher will to reduce one's meat consumption. R 3 states that being born after another author, e.g., in 1980 compared to 1900, is an explanation for a younger age of first book publication.

R 2 : hasDiet(i 1 , vegetarian) ∧ hasDiet(i 2 , omnivorous)∧ reduction(i 1 , v 1 ) ∧ reduction(i 2 , v 2 ) ⇒ v 1 < v 2 (6.5) R 3 : ageF irstBook(i 1 , u 1 ) ∧ ageF irstBook(i 2 , u 2 )∧ birthYear(i 1 , v 1 ) ∧ birthYear(i 2 , v 2 ) ∧ v 1 > v 2 ⇒ u 1 < u 2 (6.6) 2 
The predicates belong have been omitted to simplify the reading.
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The following section provides an analysis of the mined rules. The summary of the results is presented in Table 6.4. In this table, we give for each KG and each approach tested, that is the baseline, Dicare-C and Dicare-E, the number of discovered rules, the average number of rules per pair of instances, the percentage of pairs evaluated as correct by the experts, and the number of explained pairs. Vitamin. Two researchers in nutrition and human behaviour evaluated the 22 rules from Dicare-E and the 30 best rules from Dicare-C. This evaluation has been done by following the same protocol as for Dicare-C (see section 4.3), where the choices for a rule are (i) seems relevant, (ii) may be relevant, (iii) does not know or (iv) seems false. No rules were mined with the baseline, as no exact matches could be found. The rules of Dicare-E were all judged relevant or potentially relevant, while 5 rules of Dicare-C had an effect judged unsure or false. The researchers mentioned that the more specific the strata of the rules from Dicare-C, the harder they were to understand. Moreover, Dicare-C discovers rules that involve computed abstract properties, while Dicare-E approach involves precise property paths that belong to the original KG. For instance, Dicare-C considers only one abstract treatment that represents a set of paths on animal welfare and global warming, while Dicare-C mines distinct rules that involve distinct treatments corresponding to the aforementioned paths.

Besides the quality of the rules, Dicare-E explains much more pairs of instances having the outcome (85.7% vs 52.5% for Dicare-C ), and, for each pair, Dicare-E provides in average twice as many explanations (2.5 rules vs 1.1 rules per pair). Moreover, Dicare-E is more robust as removing 15% of the triples reduces the percentage of pairs explained from 85.7% to 83.2% (22 to 17 rules, with the 17 rules being included in the 22 original rules) in our approach and from 52.5% to 35.8% for Dicare-C. DBPediaW. As this dataset is rather simple, a group of 5 researchers in computer science has been selected to review the rules. No rules were mined with the baseline. By considering the votes of the reviewers, the percentage of rules considered as could be relevant or relevant is 83.3% for Dicare-C and 100% for Dicare-E. There was no disagreement in the expert's judgements. As for Vitamin, the percentage of pairs explained is higher with our approach and is more robust to missing data, i.e., removing 15% of the triples, as it decreases from 84.3% to 33.5% for Dicare-E (from 3 to 1 rule) and from 16.5% to 3.7% for Dicare-C.

Discussion

Dicare-E has been developed as an attempt to solve some of the limits raised for Dicare-C, namely the interpretability of the rules it mines, the number of pairs explained and the instance matching criteria. This section compares both approaches on a set of criteria, including the aforementioned ones.

Rule Interpretability. Dicare-C mines differential causal rules that express a local effect of a treatment on a subset of instances. In the obtained set of rules, the same treatment may appear in several rules, making it possibly difficult to interpret. To overcome this limit, we developed an approach that generates counter effect rules in Chapter 5. However, a differential causal rule alone remains difficult to interpret. Dicare-E discovers average differential causal rules, which were judged more interpretable by experts than differential causal rules. Rule Expressiveness. While discovering average effects lead to more interpretable rules, it however implies a loss of expressiveness in the treatment effects. Indeed, an average effect may hide local effects, such as different effects of one treatment. A trade-off exists between interpretability and expressiveness. It is to note that, however, the average differential causal is more expressive when it comes to the treatment they express. Dicare-C relies on a community detection step, which results in gathering paths under abstract properties that will compose some of the treatments. Such abstract properties, while having a meaningful semantics, can only express the combined effects of the properties they are composed of and not the precise effect of one property in particular. By matching instances on their embedding representations, Dicare-E can assess any path as a treatment.

Number of Pairs Explained. As a consequence of their average effects, average differential causal rules can be applied to much more pairs of instances than differential causal rules. Therefore, they provide many more possible explanations as to why the outcome can be observed. Not only do the rules explain more pairs, but they also result in providing more explanations for one pair having the outcome.

Instance Matching Criteria. Dicare-E uses instances vector representations to match similar instances, while Dicare-C relies on instances RDF descriptions. Using the embeddings presents two features of interest. First, it allows matching instances even if they have missing values, which is not possible in Dicare-C. As a consequence, Dicare-E is more robust to missing data. Secondly, it enables an easy ranking of best matches with the distance between embedding vectors. This ranking makes it possible to create the best matches with a greedy matching strategy, which has been shown to perform well [START_REF] Xing | Comparison of multivariate matching methods: Structures, distances, and algorithms[END_REF]. In Dicare-C, pairs are created from sets of similar instances based on their values on a given set of paths only, making it not possible to rank potential pairs.

Runtime.

Training an embedding model is computationally high. Consequently, the runtime of Dicare-E is higher than the runtime of Dicare-C. Training a model only once instead of training it for each treatment before creating pairs of similar instances would reduce the runtime. However, this setting has been tested and led to a different set of constructed pairs. Consequently, using the once-trained model could lead to biased results, and the models are retrained for each treatment.

Feasibility on Knowledge Graphs. Dicare-C relies on a pre-processing step that aims to discover communities within a knowledge graph. Such communities lead to the creation of abstract properties that are used to simplify the matching procedure. However, all knowledge graphs might not be suited for community detection. Dicare-E, on the contrary, does not rely on a pre-processing step and seems therefore better suited to be applied to a larger diversity of knowledge graphs. However, as it relies on embeddings, it can only be applied to knowledge graphs in which entities and relations representations can be correctly learned by an embedding model.

It appears that Dicare-C and Dicare-E seem complementary and may be adapted to different use cases and knowledge graphs. Dicare-C discovers expressive rules displaying local effects, whose interpretation can be rather difficult, but that is rather fast to obtain. Such local effects may be of interest to users that may investigate them. On the other hand, Dicare-E has a higher runtime but discovers rules displaying average effects, on more precise treatments, that are easier to interpret. Dicare-E seems adapted to be used on any knowledge graphs that can be represented in an embedding space, while Dicare-C is suited for small knowledge graphs and bigger knowledge graphs where communities can be discovered.

Conclusion

In this chapter, we defined a type of causal rule, i.e., average differential causal rules, that express the average effect of a treatment on an outcome. We also proposed Dicare-E, an approach for mining such rules from a knowledge graph.

Dicare-E is based on the potential outcome framework. More particularly, it matches similar instances by using their embedding vector representations. As defining the similarity of two vectors on their distance alone in the embedding space is not trivial, we proposed two methods to define a threshold in this space to ensure the creation of similar pairs only. The created pairs are used to mine average differential causal rules that can both describe a numerical or a categorical treatment. Such rules were evaluated as interpretable by experts and are able to explain many pairs having the studied outcome.

The comparison of Dicare-E with the previous approach, Dicare-C [START_REF] Simonne | Differential causal rules mining in knowledge graphs[END_REF], shows that it improves the results regarding some limits raised in section 4.5. More precisely, the average differential causal rules are more interpretable and explain more pairs having the studied outcome. Also, as the matching relies on embeddings, it is possible to match instances whose description is partly missing and ease the matching process by finding the more similar instances. Dicare-E is more time-consuming than Dicare-C as it must train an embedding model. Lastly, in terms of feasibility on knowledge graphs, Dicare-E can be used on any knowledge graphs that can be represented in an embedding space, while Dicare-C is suited for small knowledge graphs and knowledge graphs where communities can be mined.

Although Dicare-E improves several criteria compared to the previous approach, there are still limitations to this work. The first concerns the evaluation of the rules. The experiments were applied on the same knowledge graphs as Dicare-C where no ground truth is available, and there are up-to-date no knowledge graphs where the ground truth is known. The second is on the sensibility of Dicare-E to its parameters. It has been shown that changing the distance threshold with different parameters for the matching step may lead to various results in terms of rules. The definition of the parameters used to estimate the distance threshold should therefore be done before running the approach to control the similarity of the selected pairs to respect the potential outcome framework.

Chapter 7 Conclusion and Perspectives

To conclude the thesis, this chapter provides both the highlights of the results of the work that has been conducted, as well as possible directions for future work.

Summary of the Results

The objective of this thesis is to define how causal relations can be discovered within a knowledge graph and represented as causal rules. To this end, several approaches were developed and evaluated and are discussed in this section.

In Chapters 2 and 3, we defined what knowledge graphs are and presented a bibliographical study of the problem of causality in general and, more specifically, in knowledge graphs. The study focused on (i) the definition of a causal relationship and the frameworks for discovering this type of relationship, including the potential outcome framework; (ii) the study of the different rules that can be discovered from a knowledge graph, including association rules, and the demonstration of why these rules are not suitable for the expression of causal relations; (iii) the study of approaches allowing the determination of similar instances within a knowledge graph, constituting the basis of the potential outcome framework, for the study of the potential results that one seeks to apply to knowledge graphs.

State-of-the-art has made it possible to highlight the following elements:

• Several frameworks exist to discover causal relations. The definition of a causal relationship is the subject of research in philosophy and statistics. Several frameworks exist for determining a causal relationship, including the potential outcomes framework, based on comparing similar instances to which a different treatment is applied.

• Current rule mining approaches, such as association rule mining, are not suited for causal discovery. Although association rule mining L. Simonne is an important topic, this type of rule only allows the expression of an association because of its syntax and the way these rules are mined.

• Both symbolic and numerical approaches are used to determine similar instances within a knowledge graph. In particular, graph concepts allow one to define a conceptual distance, and graph embeddings allow one to learn vector representations of instances between which a distance can be computed. However, these distances alone do not determine whether two instances are sufficiently similar for a causal discovery problem.

In Chapter 4, we presented two approaches [START_REF] Simonne | Fouille de règles différentielles causales dans les graphes de connaissances[END_REF][START_REF] Simonne | Differential causal rules mining in knowledge graphs[END_REF] that define and mine differential causal rules. These rules express the effect of a cause variable, named treatment, on a variable named result, for a set of instances defined by a graph pattern named strata. These rules thus provide explanations as to why two instances have different results. This chapter shows that such rules expressing a causal relationship can be obtained by adapting the potential outcome framework. The developed approaches have been tested and evaluated by experts on two datasets, including a dataset named Vitamin. Vitamin describes people, their eating habits, and their opinions on food and climate change issues. Experts have found the rules determined on Vitamin to be broadly interpretable and meaningful. However, these rules have some limitations, including that (i) some rules are difficult to interpret, as one treatment can have opposite effects, (ii) their ordering is not clearly defined, and (iii) the rules only explain a small proportion of instances pairs with a different outcome.

In Chapter 5, we described an approach [START_REF] Simonne | Counter effect rules mining in knowledge graphs[END_REF] that defines and mines counter effects rules. The definition of these rules follows the limitation expressed by the causal differential rules of chapter 4 on the interpretation of the rules. It allows for facilitating the interpretation of the rules. In particular, counter effects rules show that one treatment can have opposite effects depending on the sets of instances to which it is applied. They also show the differences between these sets of instances that explain the opposing effect. The search for counter effects rules allows us to (i) clarify the interpretation of causal differential rules and (ii) rank treatments by looking at, first, how consistent their effects are in the rules where they appear and, secondly, their propensity to change the meaning of other treatments.

In Chapter 6, we presented a new type of rule named average differential causal rules [START_REF] Simonne | Découverte de règles causales dans les graphes de connaissances à l'aide de plongements dans les graphes[END_REF][START_REF] Simonne | Discovering causal rules in knowledge graphs using graph embeddings[END_REF]. Unlike differential causal rules, which express the effect of a treatment on a subset of instances, average differential causal rules express the average effect of a treatment on all instances of a knowledge graph. We developed a hybrid approach that mines such rules. The mined rules are (i) simpler to interpret and (ii) explain significantly more differences in the outcome than differential causal rules. This hybrid approach is based on the potential outcome framework and L. Simonne knowledge graph embeddings. Learning graph embedding vectors representing the instances of a knowledge graph allows us to determine similar instances across the entire graph, even if the descriptions of the instances are incomplete. An important result was raised from the experimental evaluation, as this approach is more robust to missing data than previous approaches.

To conclude, we showed in this thesis that causal relations in knowledge graphs can be represented as rules that we named differential causal rules. These rules provide explanations as to why instances of a target class of a knowledge graph have different outcome values and are obtained by adapting the potential outcome framework. The potential outcome framework is a standard framework to discover causal effects. The method of this framework that has been adapted is matching, which consists of comparing similar instances that differ in the treatment path to study. We showed that discovering rules using matching could be done by several methods, i.e., symbolic or hybrid methods, that are more or less resistant to missing data in a knowledge graph. The causal effects expressed in the rules are explained by treatments. They may express a local effect, i.e., over a subset of instances of the target class described by a graph pattern, or an average effect, i.e., over all instances of the target class. A trade-off exists between rules expressing a local or an average effect. Rules with local effects are more expressive but may be harder to interpret and provide explanations to a small number of pairs having different outcome values. On the other hand, rules expressing average effects are easier to interpret and explain more pairs but are less expressive.

Discussion and Future Work

In this section, in regard to the limits of our contributions, we propose perspectives for future work. We structure these directions in two categories: short-term perspectives and long-term perspectives.

Short-Term Perspectives

Rules Generalisation Heuristic. In Dicare-S and Dicare-C, presented in Chapter 4, differential causal rules are obtained in several steps, including the discovery of specific differential causal rules and the generalisation of specific rules to more general ones. This generalisation is made by verifying a consistency constraint, i.e., that states that two specific rules can be merged only if they both verify the same treatment and effect. However, in practice, there are many cases where the effect of a treatment on a strata can be unknown. This can be explained by a lack of data or by a strata where no instances are found, as it could lead to inconsistent descriptions. Consequently, the effect of a treatment on such strata can not be verified, and these strata can not be part of more general rules due to the strict generalisation process. This results in rules that can not be generalised due to missing information and that are, therefore, more difficult to interpret than more general rules. While this generalisation process ensures the discovery of rules with strong confidence, we believe another generalisation process could be tested. In such a process, a less strict heuristic could be defined, such as generalising all rules except the ones where the treatment has been shown to have no effect.

Rules Analysis. Both differential causal rules and average differential causal rules can be used to explain the outcome of pairs of instances. Also, several rules can provide an explanation for one pair. In this case, either all rules explain the same outcome of the pair, i.e., given the treatment of the rule that is verified by the pair, the pair also verifies the outcome of the rule, or rules may provide opposing explanations, i.e., the treatment of the rules are verified by the pair, but the outcome of the pair is not always the outcome of the rules. In Dicare-C and Dicare-E, a pair is considered to be explained if it verifies at least the treatment and the outcome of one rule. However, a deeper analysis of the rules may be provided. Chapter 5 proposes a first analysis of differential causal rules obtained in Chapter 4 when treatments may lead to opposing effects depending on the strata they are applied to. We believe such an analysis could also be done on the rules obtained in Chapter 6, to analyse whether relationships between treatments can be obtained, e.g., if they lead to the same or opposing outcomes. Such relations could be used to propose an ordering between the rules in addition to their support and their causal metric.

Concepts of Nearest Neighbours. Our approaches adapted the potential outcome framework, especially the matching method. Matching consists of creating pairs of similar instances. As the literature mentioned [START_REF] Althauser | The computerized construction of a matched sample[END_REF][START_REF] Daniel | Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference[END_REF] and as our work confirmed [START_REF] Simonne | Differential causal rules mining in knowledge graphs[END_REF][START_REF] Simonne | Discovering causal rules in knowledge graphs using graph embeddings[END_REF], matching becomes increasingly difficult with the number of properties or paths that describe the instances. The literature indicates that the set of key properties that should be controlled is to be defined carefully. In our symbolic approaches [START_REF] Simonne | Fouille de règles différentielles causales dans les graphes de connaissances[END_REF][START_REF] Simonne | Differential causal rules mining in knowledge graphs[END_REF], this set is defined by an expert. In our hybrid approaches [START_REF] Simonne | Découverte de règles causales dans les graphes de connaissances à l'aide de plongements dans les graphes[END_REF][START_REF] Simonne | Discovering causal rules in knowledge graphs using graph embeddings[END_REF], the best matches are obtained using embedding vectors that capture a representation of the instances. However, while the embedding-based distance is easy to use to select the closest matches in a knowledge graph, it is however hardly interpretable. Although the quality of a matching process is hardly measurable without ground truth, we believe other matching strategies could be applied. For instance, we believe that using the concept of nearest neighbours [START_REF] Ferré | Link prediction in knowledge graphs with concepts of nearest neighbours[END_REF] can be an interesting lead to match similar instances in an interpretable way. Moreover, it does not require a training phase as embeddings do.

Long-Term Perspectives

Approaches Generality. In order to show the generality of our approaches, it would be interesting to apply them to knowledge graphs other than Vitamin or DBpediaW. However, the approaches developed in this thesis can not be used for all knowledge graphs. As discussed in Chapter 2, knowledge graphs diversity can be observed by considering their content, which can describe expert or general knowledge, or their size. We list the features a knowledge graph should possess to apply our approaches. Firstly, such a knowledge graph should describe instances of a target class with an outcome path of interest, i.e., a property path to explain. Indeed, many knowledge graphs, such as wikidata, provide general descriptions of instances and rarely the same paths for all instances. In this case, applying our approaches would not be relevant as there would not necessarily be a path of interest to explain. More generally, we believe that our approaches are to be used on domain-specific knowledge graphs. Secondly, as our approaches rely on the potential outcome framework, the estimations of causal effects represented in causal rules are computed by comparing similar instances. While assessing this similarity becomes difficult with the increasing number of paths describing instances, it is also difficult to measure when only a few describe instances. Indeed, in this situation, creating pairs could be rather easy. However, a low number of paths may not discriminate enough, as the instances of created pairs could still be rather different. Therefore, our approaches should be applied to knowledge graphs with a minimum number of paths describing their instances. Lastly, regarding the size of the knowledge graph, our approaches have been tested on small and medium-sized knowledge graphs. We believe that both Dicare-C and Dicare-E could be applied to larger knowledge graphs by adapting their settings.

Rules Validation. While our approaches rely on experts' validation to judge and select the causal rules from the set of discovered rules, we believe there are other ways to select the causal rules. More precisely, at least two sets of methods could be used. First, statistical methods such as refuting methods could be adapted. Their objective is to discard rules that have no effects. An example of such a method consists of changing the values of one variable, such as the treatment or the outcome, to random values and observing whether an effect is still measured or not. While such methods could discard rules that have no effects, they are, however, not able to make the distinction between rules expressing a causal relation or a correlation. Consequently, the second set of methods to adapt would be methods selecting causal relations. To this end, however, no statistical methods exist but only expert knowledge, as done in this thesis. For instance, when learning a structural causal model, which is the main framework in causal discovery with the potential outcome framework, the estimation of causal effects is computed on L. Simonne treatments selected by the user in a pre-processing step. Independence between a variable and the outcome is also to be indicated by the user. Therefore, future approaches should (i) discard correlations between property paths before running the approaches, as already defined in our approaches, and (ii) ensure a rigorous validation process of the rules by the experts. While a validation process has already been defined in this thesis, it could be improved by using more experts or by applying consensus ranking techniques to select the most valid rules.

Rules Interpretability. Two types of rules expressing a causal relationship were defined in this work, namely differential causal rules and average differential causal rules. Given instances of a target class, the first underlies the causal effect of a treatment on a subset of instances defined by a basic graph pattern, while the second focus on an average effect of a treatment on all instances of the target class. Both rules are used as explanations as to why two instances may have a different result for a given outcome property path. The evaluation of both types of rules showed that the rules expressing average effects were easier to interpret and could explain more differences in the result. However, they are also less expressive as they display an average effect which can hide heterogeneous local effects. As a conclusion to rules interpretability, we believe that our approaches can be extended to provide even more interpretable rules. It would be possible, for instance, to target strata where a treatment has a particularly strong effect instead of outputting all possible rules. This could lead to displaying only the stronger treatment effects to experts instead of all possibilities, easing the interpretation of the rules. Such rules could be obtained in a post-processing step of the set of average differential causal rules, for instance, by analysing the frequent descriptions of instances where a rule is valid. To give even more insights to the experts, we believe that another future work on the rules definition could be, in opposition to focusing on treatment effects, to display strata where treatments have no effects. In other words, such strata would not be sensitive to interventions, and this information would be useful to experts in experimental or policy design, for instance.

Semantic Representation of Causal Relations. In this thesis, causal relations are represented as rules which are one possible way to represent this kind of knowledge. Besides, rule and knowledge can be represented as other components, such as axioms or relations defined within an ontology. While mining rules are of interest to a user as they can be easily interpreted, other forms of knowledge representation could also be relevant to the representation of causal relations. One possible example of other causal relations approaches outputs could be predicates that specify that one relation causally links two or more predicates and under which conditions. One recent work [START_REF] Rebboud | Beyond Causality: Representing Event Relations in Knowledge Graphs[END_REF] proposed the first version of an ontology L. Simonne that could include such knowledge. Overall, developing this ontology could lead to the ability to express causal relations in a more precise manner in addition to rules.

Multiple Knowledge Graphs. In the context of Linked Open Data (LOD), knowledge graphs can be linked if they describe the same or similar content. Therefore, a research question of interest for future work could investigate how several knowledge graphs can be dealt jointly to discover causal relations. While extensive work can be found in the literature on the discovery and management of identity across knowledge graphs, this work would rather focus on discovering similar instances across knowledge graphs. This task is not trivial, given differences that may exist between different knowledge graphs. It would likely adapt ontology alignment methods to compare instances in the same referential. L. Simonne de relations causales est l'objet de nombreuses expériences dans une diversité de domaines. Par exemple, en santé, un médicament est étudié afin de déterminer s'il permet de soigner ou non une maladie. En marketing, des tests sont réalisés afin de décider quelle campagne de publicité est à privilégier pour maximiser les ventes d'un produit.

L'étude de relations causales est donc un sujet de grande importance. Cependant, la fouille de ce type de relation au sein de graphes de connaissances est un sujet très peu étudié. De ce fait, l'objectif de cette thèse est de découvrir des relations causales au sein de graphes de connaissances. Dans cette thèse, nous nous intéressons plus particulièrement à développer de nouvelles approches de découverte de relations causales en appliquant le cadre d'étude des résultats potentiels, potential outcome framework en anglais, qui cherche à estimer l'effet d'une variable sur une autre. Ainsi, d'autres cadres d'études, comme les modèles causaux structuraux, ne sont pas étudiés dans cette thèse. L'incorporation de représentations causales dans l'apprentissage de modèles d'intelligence artificielle est un sujet qui n'est également pas adressé par cette thèse.

État de l'art

Le chapitre 3 fournit une étude de l'état de l'art concernant la causalité au sein des graphes de connaissances. L'étude peut se diviser en plusieurs parties, dont (i) la définition d'une relation causale et les cadres d'études de la causalité permettant de découvrir ce type de relation; (ii) l'étude des différents types de règles pouvant être découvertes depuis un graphe de connaissances, dont les règles d'association, et la démonstration de pourquoi ces règles ne sont pas adaptées à l'expression de relations causales; (iii) l'étude des approches permettant la détermination d'instances similaires au sein d'un graphe de connaissances, cet élément constituant la base du cadre d'étude des résultats potentiels que l'on cherche à appliquer aux graphes de connaissances. L'état de l'art a permis de mettre en évidence les éléments suivants : Les approches développées [START_REF] Simonne | Fouille de règles différentielles causales dans les graphes de connaissances[END_REF][START_REF] Simonne | Differential causal rules mining in knowledge graphs[END_REF] ont été testées et évaluées par des experts sur deux jeux de données, dont un jeu de données nommé Vitamin. Vitamin décrit des personnes, leurs habitudes alimentaires et leur avis sur des questions d'alimentation et de changement climatique. Les experts ont jugé les règles découvertes sur Vitamin comme étant globalement interprétables et ayant du sens. Cependant, ces règles présentent certaines limites, dont (i) leur ordre qui n'est pas clairement défini, (ii) certaines règles sont difficiles à interpréter, un traitement pouvant avoir des effets opposés, et (iii) les règles expliquent une faible proportion des paires ayant un résultat différent.

Fouille de règles à effets opposés

Dans le chapitre 5, nous proposons une contribution publiée dans une conférence internationale [START_REF] Simonne | Counter effect rules mining in knowledge graphs[END_REF] définissant des règles à effets opposés. La définition de ces règles fait suite aux limites exprimées par les règles différentielles causales du chapitre 4, et permet de faciliter l'interprétation de ces règles. Plus particulièrement, les règles à effets opposés montrent qu'un même traitement peut avoir des effets opposés en fonction des ensembles d'instances auxquels il est appliqué, et explicitent les différences entre ces ensembles d'instances.

La fouille des règles à effets opposés permet de (i) clarifier l'interprétation des règles différentielles causales et de (ii) hiérarchiser les traitements en regardant le sens de leurs effets dans les règles où ils apparaissent et leur tendance à changer le sens d'autres traitements.

Plongements de graphes pour la fouille de règles différentielles causales

Dans le chapitre 6, nous proposons des contributions publiées dans des conférences nationales et internationales [START_REF] Simonne | Discovering causal rules in knowledge graphs using graph embeddings[END_REF][START_REF] Simonne | Découverte de règles causales dans les graphes de connaissances à l'aide de plongements dans les graphes[END_REF] définissant des règles causales à effets moyens. À la différence des règles différentielles causales qui expriment l'effet d'un traitement sur un sous-ensemble d'instances, les règles causales à effets moyens expriment l'effet moyen d'un traitement sur l'ensemble des instances d'un graphe de connaissance. Cette approche permet d'obtenir des règles (i) plus simples à interpréter et (ii) qui expliquent significativement davantage de différences sur le résultat par rapport aux règles différentielles causales. Cette approche est fondée sur le cadre d'étude des résultats potentiels et exploite les plongements de graphes pour la comparaison des instances. L'apprentissage des plongements de graphes représentant les instances d'un graphe de connaissances permet de déterminer des instances similares à travers l'ensemble du graphe, et ce même si les descriptions des instances sont incomplètes. En conséquence, cette approche est également davantage résiliante aux données manquantes que les précédentes approches.

Conclusion

Nous avons montré dans cette thèse que les relations causales dans les graphes de connaissances peuvent être représentées par des règles que nous avons nommées règles causales différentielles. Ces règles fournissent des explications à pourquoi des instances d'une classe cible d'un graphe de connaissances ont des valeurs différentes sur un chemin de propriétés, et sont obtenues en adaptant le cadre des résultats potentiels. Le cadre des résultats potentiels est un cadre standard pour découvrir des effets causaux. La méthode de ce cadre qui a été adaptée est l'appariement, qui consiste à comparer des instances similaires qui diffèrent par le chemin de traitement à étudier. Nous avons montré que la découverte de règles à l'aide de l'appariement pouvait se faire par plusieurs méthodes, i.e., symboliques ou L. Simonne hybrides, qui sont plus ou moins résistantes à l'incomplétude de l'information. Les effets causaux exprimés dans les règles sont expliqués par des traitements. Ils peuvent exprimer un effet local, i.e., sur un sous-ensemble d'instances de la classe cible décrit par un motif de graphe, ou un effet moyen, i.e., sur toutes les instances de la classe cible. Il existe un compromis entre l'utilisation des règles exprimant un effet local ou un effet moyen. Les règles exprimant un effet local sont plus expressives mais peuvent être plus difficiles à interpréter, et fournissent des explications à un petit nombre de paires ayant des valeurs de résultat différentes. D'autre part, les règles exprimant des effets moyens sont plus faciles à interpréter et expliquent un plus grand nombre de paires, mais sont moins expressives.
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  rule expresses a relation between two graph patterns through a IF-THEN structure. Rules are composed of a body ⃗ B and a head ⃗ H such as ⃗ B → ⃗ H, with ⃗ B and ⃗ H being graph patterns and → indicating the implication. Several types of rules exist, such as association rules or action rules.

  Knowledge graph embeddings (KGE) have become a popular research domain. Since Bordes et al. proposed TransE in 2013 [8], many approaches were developed. An overview of KGE approaches and applications has been proposed by Wang et al.
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Algorithm 2

 2 Generating Potential Rules 1: Input: KG enriched , t c , Q, co, t supp , t tr 2: Output: R potential 3: R potential = [] 4: I 0 = instances(t c ) 5: DC 0 = (ST 0 , I 0 ) 6: Q DC 0 = queue(DC 0 ) 7: for i in range(0, len(Q)) do ▷ Part 1: Partitioning the instances of t c 8:

3 .

 3 With a = supp(T ∧ ⃗ B ⇒ lessT han(s(U 1,P O ), s(U 2,P O )) and b = supp(T ∧ ⃗ B ⇒ greaterT han(s(U 1,P O ), s(U 2,P O ))):
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 351 Figure 5.1: Illustration of a counter effect rule
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 12 In Fig.6.2, #Fake_Messi is a perturbed instance of #Messi with S = 1, where the difference is on P = hasAge. Another #Fake_Messi with S = 1 could be generated by generating a new club, e.g., #Fake_PSG, with owner #QSI and president #Kahn.
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 62 Figure 6.2: Generating a perturbed #Messi from the original one
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 63 Figure 6.3: Evolution of d between pairs of instances (y-axis) depending on S (xaxis)
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 4 In this figure, the x-bar indicates the values of S. The left y-bar indicates the values of causal r (R 1 ), and the right y-bar indicates the number of pairs created to estimate causal r (R 1 ). The black circles show the values of causal r (R 1 ), and the vertical bars, named error bars, are the corresponding confidence intervals of causal r (R 1 ). The histogram indicates the number of pairs created to estimate causal r (R 1 ).

  

  

  

Table 3 .

 3 1: Instances Values on Treatment and Outcome -Real Data are the foundation of this framework. In the following, we present metrics that measure a causal effect in this framework. Then, we present different approaches of the potential outcome framework as well as the hypotheses under which a causal effect can be estimated. Lastly, we introduce matching, one of the most-used methods in the potential outcome framework. It is to note that this framework is used in a large diversity of domains, such as health or political science.
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	.2: Instances Values on Treatment and Outcome -Hypothetical Data

1 :

 1 Input: KG, P, t c , isolated, s, n 2: Output: KG enriched 3: KG enriched ← KG.removeP aths(P) 4: for P i ∈ P do

5: occmatrix ← matrix | P i | × | P i | ▷ Part 1: Discovering Communities 6:

for (P ij ,P ik ) ∈ P i × P i do 7:

occmatrix[P ij ][P ik ] ← co-occ (P ij ,P ik ) 8: comm ← OSLOM (occmatrix, n,

isolated, s) 9:

if (comm ̸ = ∅) then ▷ Part 2: Generating Abstract Properties 10:

Table 4 .

 4 1: Simpson's Paradox: An Example

	Continent Birth Date Age First Book
	Europe	1943	35
	Europe	1955	40
	Europe	1957	39
	Europe	1960	46
	USA	1970	19
	USA	1980	29
	USA	1982	27
	USA	1983	31
	USA	1985	31

  .2. The datasets can be downloaded at this link 1 .

	Table 4.2: Datasets Description	
		DBpediaW Vitamin
	# Facts	6908	86006
	# Classes	4	19
	# instances t c	185	1714
	# Properties	8	22
	# Execution Time (s)	< 1	15.1
	# Rules	12	77

DBpediaW

DBpediaW has been built by Munch et al.

[START_REF] Munch | Interactive causal discovery in knowledge graphs[END_REF]

. It describes authors of books and has been obtained by querying DBpedia

[START_REF] Auer | Dbpedia: A nucleus for a web of open data[END_REF]

. Its schema is presented in Figure

4

.6.

Table 4 .

 4 3: Extract of Communities -Vitamin

	.3. Community 1 shows a profile of opinions associated with the importance

Table 4 .

 4 4: Mining results using Dicare-S and Dicare-C. possible in this dataset. Therefore, we refer to the results of both approaches as the results of Dicare-S in the following. Dicare-S outputted 22 most specific rules, including 14 gradual and 8 categorical. This set resulted in 12 rules after the generalisation step. The equations 4.4 and 4.5 present a simplified representation of two rules.

		DBPediaW			Vitamin	
		#Rules (Per pair) %Correct %Pairs #Rules (Per pair) %Correct %Pairs
	Baseline	0 (0)	NA	0	0 (0)	NA	0.0
	Dicare-S	12 (1.1)	83.3	16.5	0 (0.0)	NA	0.0
	Dicare-C	12 (1.1)	83.3	16.5	44 (1.1)	80.0	52.5
	matching is not					

genre(F iction) ∧ gender(male) ∧ country(U S)∧ ageF irstBook(i 1 , u 1

Table 6 .

 6 1: Distance between instances when analysing the categorical treatment gender. P T is both in a row and in a column. Pairs are then drawn without replacement and added to M if they verify T and if their distance d is lower than d tr .

			P P = M an
		j 1	j 2	j 3	j 4	j 5
		i 1 0.7 1.4 1.2 1.9 1.8
	P P = W oman	i 2 1.7 1.4 1.5 0.8 1.2 i 3 3.2 0.6 1.0 0.9 1.8
		i 4 0.8 1.2 2.7 1.4 1.5

Table 6 .

 6 2: Values of instances on an outcome path Instance Value on P O i 1

Table 6 .

 6 3 presents the performances of the embedding models trained over Vitamin and DBpediaW on a link prediction task. The metrics described in this table are the mean reciprocal rank (equation 3.18) and the Hits@n (equation 3.[START_REF] Gad-Elrab | ExCut: Explainable Embedding-Based Clustering over Knowledge Graphs[END_REF]. ConvE performs the best on Vitamin: it obtains the highest MRR and Hits@n values, L. Simonne and is therefore used in the following. DistMult has the best performances on DBpediaW and is used.

Table 6 .

 6 3: Models performance evaluation metrics on Vitamin and DBPediaW

Table 6 . 4 :

 64 Results of the evaluation of rules mined using a baseline, Dicare-C and Dicare-E.

		DBPediaW			Vitamin	
		#Rules (Per pair) %Correct %Pairs #Rules (Per pair) %Correct %Pairs
	Baseline	0 (0)	NA	0	0 (0)	NA	0
	Dicare-C	12 (1.1)	83.3	16.5	44 (1.1)	80.0	52.5
	Dicare-E	3 (1.4)	100	84.3	22 (2.5)	100	85.7

•

  Plusieurs cadres d'études existent pour découvrir des relations causales. La définition même d'une relation causale est l'objet de recherches en philosophie et en statistiques. Plusieurs cadres d'études existent pour déterminer une relation causale, dont le cadre d'étude des résultats potentiels qui est basé sur la comparaison d'instances similaires sur lesquelles un traitement différent est appliqué. • Les règles d'association ne permettent pas d'exprimer une relation causale. Bien que la fouille de règles d'association soit un sujet important, L. Simonne ce type de règles permet seulement d'exprimer une association du fait de sa syntaxe et de la façon dont ces règles sont obtenues. • Des approches symboliques et numériques permettent de déterminer des instances similaires au sein d'un graphe de connaissance. En particulier, les concepts de graphes permettent de définir une distance conceptuelle, et les plongements de graphes permettent d'apprendre des représentations vectorielles d'instances entre lesquelles il est possible de calculer une distance. Cependant, ces distances seules ne permettent pas de déterminer si deux instances sont suffisamment similaires pour un problème de découverte causale. 8.3 Appariemment tronqué pour la fouille de règles différentielles causales Le chapitre 4 présente des contributions publiées dans des conférences nationales et internationales [81, 78]. Ces travaux ont porté sur la définition de règles différentielles causales. Ces règles expriment l'effet d'une cause nommée traitement sur une variable nommée résultat, et ce pour un ensemble d'instances défini par un motif de graphe nommé strate. Ces règles permettent ainsi de fournir des explications à pourquoi deux instances ont un résultat différent. Ce chapitre montre que de telles règles exprimant une relation causale peuvent être obtenues en adaptant le cadre d'étude des résultats potentiels.

In case the reader were interested in how such norms were introduced, we strongly advise him/her to visit the Musées des Arts et Métiers https://www.arts-et-metiers.net/ in Paris
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The value 1 for predicate hasOpinion represents a person with pro-meat opinions who believes that breeding is unrelated to climate issues
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Chapter 5 Counter Effect Rules Mining

In this chapter, we will present our contribution to counter effect rule mining in knowledge graphs. These rules are obtained by processing differential causal rules to facilitate their interpretation. This work is the object of the following publication:

1. Lucas Simonne, Nathalie Pernelle, and Fatiha Saïs. Counter effect rules mining in knowledge graphs. In Knowledge Engineering and Knowledge Management, Lecture Notes in Computer Science, pages 167-173. Springer International Publishing, 2022 [START_REF] Simonne | Counter effect rules mining in knowledge graphs[END_REF] The previous chapter introduced Dicare-C and Dicare-S, two approaches that mine differential causal rules from a knowledge graph. Such rules express that a treatment has a causal effect on a subset of instances defined by a graph pattern called strata. While these approaches output differential causal rules judged globally of interest and meaningful by experts, some of these rules are hardly interpretable. For instance, one treatment may have opposing effects in some rules depending on the set of instances it is applied to. In addition to their interpretation, the ranking of treatments is not trivial, as the set of rules can be large.

Given these limits of the previous approaches that mine differential causal rules, Dicare-S and Dicare-C, we propose in this chapter a new type of rule that is complementary to such rules and that facilitate their interpretation. The contributions of this chapter are the following :

• The definition of counter effect rules expressing that a treatment can have opposing effects on two sets of instances given a difference between these sets' descriptions. Such rules can be used to rank treatments and to display the local effects of treatments from differential causal rules. The mining of differential causal rules and counter effect rules has been shown useful in discovering causal effects of treatments on instances of a knowledge graph. However, the rules that are mined with Dicare-C and Dicare-S only express local effects. They are, therefore, sometimes difficult to interpret, and the number of The threshold is used to create a set of pairs of similar instances, that is, with a distance d such as d < d tr . Résumé en Français

Introduction

Les graphes de connaissances permettent de stocker des données decrivant le monde, ses individus et les relations qui les lient. Depuis la fin des années 2010, l'étude et l'utilisation des graphes de connaissances connait un essor grandissant, aussi bien dans le milieu académique, i.e., chercheurs en université, que de la part des entreprises privées, e.g., Google, Microsoft, etc. Les données decrites par les graphes de connaissances peuvent être des connaissances encyclopédiques, à l'image de Yago ou de DBpedia, ou bien des connaissances de domaines spécifiques, tels la musique ou l'agronomie.

Plusieurs thématiques d'étude des graphes de connaissances existent. Parmi celles-ci, l'on trouve notamment la fouille de règles d'association, qui, à partir d'un graphe de connaissances, permet d'obtenir un ensemble de règles permettant à la fois la découverte de nouvelles connaissances, ainsi que le nettoyage d'un graphe de connaissance en supprimant des données erronnées et en ajoutant des données manquantes. Les connaissances découvertes par des règles d'association relèvent, comme leur nom le suggère, d'associations. De manière générale, une association indique l'existence d'un lien statistique entre deux variables. Un tel lien peut indiquer une relation de corrélation, de causalité, ou bien résulter d'un fait aléatoire. En conséquence, en terme de découverte de connaissances, une association exprimée par une règle d'association peut aussi bien indiquer une relation qui aura une valeur ajoutée pour l'utilisateur d'un graphe de connaissance, ou bien n'aura pas de sémantique exploitable car relevant d'une simple association.

Une association regroupe donc un ensemble de relations, dont les relations causales. De façon informelle, la causalité est l'influence par laquelle un événement, i.e., une cause, contribue à la production d'un autre événement, i.e., un effet, où la cause est responsable de l'effet, et l'effet est dépendant de la cause. La recherche