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Résumé: La fouille de règles d’association au sein
de graphes de connaissances est un domaine de
recherche important. En effet, ce type de rè-
gle permet de représenter des connaissances, et
leur application permet de nettoyer le contenu de
graphes en ajoutant des données manquantes ou
en supprimant des données éronnées. Cependant,
ces règles ne permettent pas d’exprimer des re-
lations causales, dont la sémantique diffère d’une
association. Dans un système, un lien de causal-
ité entre une variable A et une variable B est une
relation orientée de A vers B et indique qu’un
changement dans A cause un changement dans
B, les autres variables du système conservant les
mêmes valeurs. Plusieurs cadres d’étude existent
pour déterminer des relations causales, dont le
modèle d’étude des résultats potentiels, qui con-

siste à apparier des instances similaires ayant des
valeurs différentes sur une variable nommée traite-
ment pour étudier l’effet de ce traitement sur une
autre variable nommée résultat. Nous proposons
dans cette thèse plusieurs approches permettant de
définir des règles représentant l’effet causal d’un
traitement sur un résultat. Cet effet peut être lo-
cal, i.e., valide pour un sous-ensemble d’instances
d’un graphe de connaissances défini par un motif
de graphe, ou bien moyen, i.e., valide en moyenne
pour l’ensemble d’instances du graphe. La décou-
verte de ces règles se base sur le cadre d’étude
des resultats potentiels en appariant des instances
similaires, en comparant leurs descriptions RDF au
sein du graphe ou bien leurs représentations ap-
prises à travers des modèles de plongements de
graphes.

Title: Mining differential causal rules in knowledge graphs
Keywords: Knowledge Graph; Knowledge Discovery; Causality; Rule Mining

Abstract: The mining of association rules within
knowledge graphs is an important area of research.
Indeed, this type of rule makes it possible to repre-
sent knowledge, and their application makes it pos-
sible to clean up the contents of knowledge graphs
by adding missing triples or by removing erroneous
triples. However, these rules express associations
and do not allow the expression of causal relations,
whose semantics differ from an association. In a
system, a causal link between a variable A and a
variable B is a directed relationship from A to B
and indicates that a change in A causes a change
in B, with the other variables in the system main-
taining the same values. Several frameworks ex-
ist for determining causal relationships, including

the potential outcome framework, which involves
matching similar instances with different values on
a variable named treatment to study the effect of
that treatment on an other variable named the
outcome. In this thesis, we propose several ap-
proaches to define rules representing a causal ef-
fect of a treatment on an outcome. This effect
can be local, i.e., valid for a subset of instances
of a knowledge graph defined by a graph pattern,
or average, i.e., valid on average for the whole set
of graph instances. The discovery of these rules is
based on the framework of studying potential out-
comes by matching similar instances, comparing
their RDF descriptions or their learned representa-
tions through graph embedding models.
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Chapter 1

Introduction

According to Oxford’s dictionary, the term data refers to facts or information,
especially when examined and used to find out things or to make decisions. Data
as such were collected by humans for centuries, e.g., for constructing buildings,
hunting, preparing meals, etc. However, despite their wide use in all types of
domains, no norm or standards existed until the end of the 18th century. At that
time, the lack of standards resulted in trouble replicating actions, such as collecting
fees in different areas. A focus on data was therefore developed, and standards
such as the meter, introduced in 1791, or the kilogram in 17991, were defined and
used to facilitate data-based operations.

Since the end of the 19th century and the construction of the world’s first
computer by Charles Babbage, computer-based systems have been massively de-
veloped and deployed, making it easier to extract insights from data or to realise
operations on it. As a result of the combination of these computer based-systems
and technologies allowing the representation of information, the amount of obser-
vational data created and stored worldwide increased exponentially, and so did
the number of applications relying on data. In the 20th century, a new term ap-
peared: Artificial Intelligence (AI). At that time, AI referred to computers that
could possibly replicate human reasoning. Nowadays, AI characterises the families
of methods designed to analyse the increasing volume of data to understand and
extract new knowledge. In 2004, John McCarthy proposed the following defini-
tion: AI is the science and engineering of making intelligent machines, especially
intelligent computer programs. It is related to the similar task of using computers
to understand human intelligence, but AI does not have to confine itself to methods
that are biologically observable. AI tools are numerous and can be applied to all
types of data, e.g., text, images or tabular data. They are implemented in all do-

1In case the reader were interested in how such norms were introduced, we strongly advise
him/her to visit the Musées des Arts et Métiers https://www.arts-et-metiers.net/ in Paris
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mains, such as agriculture, banking, health, history, etc., where they can be used
as a product or to guide decision-makers. Besides their use, AI methods are also
an important focus of research in both academia and in industry.

To process and analyse data automatically, data need to be represented and
stored. Several data models exist to store data, one of which is knowledge graphs.
Thanks to the linked open data (LOD) initiative [6] and to the development of
standard languages such as RDF2 for representing data and OWL3 for represent-
ing knowledge, knowledge graphs have gained importance. Projects like DBpedia
[3], and YAGO [84], which led to the creation of big cross-domains RDF knowl-
edge graphs by automatically extracting information from Wikipedia, have pushed
the adoption of knowledge graphs as a standard model for representing data and
knowledge. While the term Knowledge Graph was introduced in 1972 [74], the
increase of its renown can be attributed to Google with the introduction of the
Google Knowledge Graph [82] in 2012, which was the first big company to announce
their use of knowledge graph publicly. Ever since, companies from different busi-
nesses developed their own knowledge graphs: in social networks (Facebook [56],
LinkedIn [61]), finance (Accenture [57]), e-commerce (Amazon [43]), and other
domains. Knowledge graphs are composed of a collection of triples, where sub-
jects are linked to objects through properties, and of an ontology that gathers
classes, properties and axioms. The growing interest in knowledge graphs can be
explained by the flexibility they propose, as they do not need a defined schema such
as in relational databases, which facilitates updating their content. In addition to
representing data, knowledge graphs have the ability to represent knowledge in
ontologies. This is of interest when collaborating with experts of various domains,
who can represent knowledge in a manner that is usable for a reasoning purpose.
Another reason for the adoption of knowledge graphs is their ability to ease data
sharing and data interoperability. These features enhance the sharing and use of
data from different sources. Knowledge graphs are used for many tasks, such as
web searches, recommendations, data integration or conversational agents.

An important task on knowledge graphs is rule mining [21, 58], where a rule
represents semantic dependencies between properties. An example of such a rule
is bornIn(x, y) ⇒ citizenOf(x, y). These kinds of rules can be used for link pre-
diction, error detection, schema matching and so on. However, such rules do not
express a causal relation, which is needed to explain a phenomenon. A causal rela-
tion between A and B is a directed relation from A to B, where a change in variable
A causes a change in variable B within a system where all other variables keep the
same values. Such relations differ from an association or a correlation, where a re-
lationship between two variables may stand because of randomness or because of a

2https://www.w3.org/RDF/
3https://www.w3.org/OWL/
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third variable causally linked to both variables. Discovering causal relations is the
key to a large spectrum of domains, from chemistry, where the reaction between
two chemical compounds can be studied in a lab, to sociology, where experiments
can be tested on populations of people. While such relations are important for
decision-making and knowledge discovery, they are often complicated to discover.
Indeed, the gold standard consists of planning an experiment to measure the effect
of a potential cause on an outcome. However, planning such experiments can be
difficult for cost or ethical reasons. It is, for instance, impossible to force someone
to start smoking. Therefore, causal relations are often studied through observa-
tional data rather than data obtained through an experiment. As naively dealing
with observational data can lead to biases in the estimation of causal effects, sev-
eral frameworks exist to tackle this issue, such as the potential outcome framework
[31] and the structural causal model [60], which are the two main frameworks that
exist to this end. While methods for discovering causal effects exist for relational
and column-based data models, few methods focus on causality within knowledge
graphs, and none adapt the potential outcome framework. As such, methods are
required to discover causal effects explaining an outcome in a knowledge graph.
Given an outcome, a set of rules could represent a set of explanations as to why
the outcome is observed.

1.1 Objectives and Contributions

Discovering causal relations and providing explanations as to why instances of a
knowledge graph have different outcome values is the objective of this thesis. More
precisely, we developed a novel approach for differential causal rule discovery by
adapting the potential outcome framework and using three different methods for
matching the instances. The discovered rules allow us to explain a difference in
outcome values through a difference in treatment values. It is to note that these
rules capture effects that are potentially causal. An example of a rule could be
that eating a higher-protein diet explains a higher muscle gain. This work does
not cover other frameworks in causal discovery, such as the structural causal model
[60], and neither does it address the problem of causal knowledge incorporation
in machine learning models [5]. In more detail, this thesis presents the following
contributions.

The definition of Differential Causal Rules (DCR), published in [81, 78], that
are first-order logic rules providing an explanation to a difference of values of a
numerical path for two instances of a class in a knowledge graph. An explanation
is a difference of values in another path that can either be numerical or categorical.
A DCR is composed of an optional component, named strata, that expresses the
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description of instances on which an effect is valid. An example of DCR is that
for people living in cities, being more sensitive to climate change explains a higher
will to reduce one’s meat consumption.

An algorithm, Dicare-S that discovers DCR from a knowledge graph,
published in [81]. This algorithm is based on the coarsened matching of instances
based on their RDF description, up to instances URI and discretization process.
This algorithm is well suited to graphs where the descriptions of instances have
low variability.

An extension of Dicare-S, Dicare-C, that discovers DCR using a higher
coarsened level, published in [78]. It is based on a pre-processing step that aims
to facilitate the description of instances. More precisely, it generates abstract prop-
erties for instances that summarise part of their description using a community
detection algorithm and therefore facilitate their matching. This second match-
ing method is adapted to deal with graphs having more diverse and incomplete
descriptions.

A third algorithm, Dicare-E, that discovers DCR expressing an average
effect, published in [79, 80], as opposed to Dicare-S and Dicare-C that discover
rules expressing local effects. This algorithm mines rules iteratively and matches
similar instances based on their embedding representations. This algorithm is the
most resistant to missing data and discovers rules that are easier to interpret than
rules expressing local effects.

A method for processing DCR to facilitate their interpretation, published
in [77], especially when they display opposing effects. This method is based on
another representation of the rules and is used to rank treatments.

1.2 Thesis Outline
This thesis is organised as follows. Chapter 2 introduces what knowledge graphs
are and how they are built. It also presents the diversity of knowledge graphs
that exist. Chapter 3 provides the state of the art on causality and presents
the potential outcome framework that is adapted in this thesis. It also shows
how current rule mining approaches are not suited to express causal relations and
presents existing work on instances matching in knowledge graphs. Chapter 4
presents our first contribution with the definition of differential causal rules and
by presenting Dicare-S and Dicare-C that are two algorithms that mine such rules
given a knowledge graph. Chapter 5 introduces a type of rule named counter effect
rules that is complementary to differential causal rules. Our approach shows how
these rules can be used to facilitate the understanding of differential causal rules
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and to rank treatments. Chapter 6 presents the third algorithm we developed to
mine differential causal rules expressing the average effect of a treatment. These
rules are interesting when dealing with a knowledge graph with missing data.
Chapter 7 summarises the thesis and discuss the approaches that were developed,
and gives perspectives on future work on causality in knowledge graphs.

5





Chapter 2

Preliminaries

Although all knowledge graphs are represented in the same data model, they
can still be very different depending on how they are created, e.g., using ex-
tracted knowledge, crowd-sourced. The objectives of this chapter are to provide an
overview of what knowledge graphs are, to define the scope of this thesis regarding
the type of knowledge graphs it can be applied to, and to provide examples of
knowledge graphs.

Section 2.1 defines knowledge graphs and ontologies as well as the standard lan-
guages that exist in the semantic web community, such as the resource description
framework (RDF) and the web ontology language (OWL).

Section 2.2 presents how knowledge graphs can be constructed, and, the con-
sequences the construction can have on both qualitative and quantitative features
of knowledge graphs. It presents popular knowledge graphs studied within the
semantic web community. It also gives the scope of this thesis regarding the type
of knowledge graphs it can be applied to.

2.1 Knowledge Graph: Data and Ontology

In this section, we first present the two main components that usually compose
knowledge graphs, namely the Resource Description Framework 1 (RDF) data
graph and the ontology. Then, we give our formal definition of a knowledge graph.

2.1.1 RDF Data Graph

The RDF is a standard promoted by the W3C2. It is used to describe entities
uniformly to facilitate data interchange on the Web.

1https://www.w3.org/RDF/
2https://www.w3.org/
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Figure 2.1: Example of a RDF Graph

An RDF data graph is a set of triples that describes entities. The triples are in
the form (subject, property, object), where a subject and an object are represented
as nodes in the graph, and a property is represented by an arc from subject to
object. A subject is an IRI3, a property is an IRI, and the object can either be an
IRI or a Literal such as a String, an Integer or a Float. Some triples of an RDF
Graph may be structured as (subject, rdf : type, class) and indicate that an IRI
subject is an instance of a class.

The use of RDF facilitates the interoperability of a knowledge graph with
other knowledge graphs. For instance, if several knowledge graphs constructed by
different organisations were to describe a similar domain, using RDF would allow
the use of all knowledge graphs combined.

An example of an RDF Graph is presented in Figure 2.1. In this figure, the
described entities are French engineering schools that are part of the University
Paris-Saclay. As seen in the figure, an RDF Graph is a directed multi-relational
graph, and several different properties may exist between two entities. It is to note
that beyond this example, entities of a knowledge graph may represent all kinds
of types, such as people, buildings, countries, etc.

2.1.2 Ontologies

Ontologies are a core element of the semantic web. They are used in complement
to the RDF Data Graph and allow to structure and formalise domain knowledge.
More formally, an ontology is defined as an explicit, formal specification of a shared
conceptualisation [24].

An ontology is usually described using W3C standard languages such as RDF

3https://www.w3.org/International/O-URL-and-ident.html
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Schema (RDFS)4 or the Web Ontology Language (OWL)5. RDFS is used to repre-
sent a hierarchy of classes and the hierarchy of properties. More precisely, RDFS
defines classes with rdfs:Class, properties with rdf:Property, and their hi-
erarchy with rdfs:subClassOf and rdfs:subPropertyOf, respectively. Given
a property, RDFS also defines its domain and its range with rdfs:range and
rdfs:domain to precise the class, or classes, of its resource and value respectively.

OWL and OWL2, its second version, are more expressive languages that can
be used to represent more complex knowledge. An OWL2 ontology is composed
of a set of classes and a set of properties that can either express relations between
entities, i.e., owl:ObjectProperty, or relations between a class and a Literal, i.e.,
owl:DataTypeProperty. A property is defined by its domain and range, which
are classes for an owl:ObjectProperty, and a class for the domain and a Literal
as a range for the owl:DataTypeProperty.

In addition to expressing classes and properties, the OWL2 language allows to
declare axioms, which are a key component of an ontology. An axiom is a statement
that says what is true in a domain 6. Eight types of axioms exist, including
class axioms, object property axioms and data property axioms. For instance, with
c1 and c2 two classes, the class axiom owl:subClassOf indicates a subsumption
between c1 and c2, noted c1 ⊑ c2. In Figure 2.2, the class University is subsumed
by the class Research Institute. Other class axioms may indicate an equivalence
or a disjunction between c1 and c2. An example of an axiom on properties is the
functionality of a property, which indicates that a functional property is a property
that can have only one (unique) value y for each instance x. This can be valid
for a datatype property with the axiom owl:FunctionalDataTypeProperty or an
object property with the axiom owl:FunctionalObjectProperty.

Ontologies are therefore used to formalise a vocabulary for a given domain as
well as to apply reasoning to infer new knowledge, by making implicit knowledge
explicit, and to check the knowledge consistency. It is to note that, more broadly,
using an ontology enhances the reasoning in a knowledge graph itself, but also
with other knowledge graphs if using the same vocabulary. When ontologies are
different, several approaches of ontologies alignment exist to facilitate the use of
several graphs by finding the matches between the classes and properties [72].

2.1.3 Knowledge Graph Definition

While the term Knowledge Graph was for the first time used in 1972 [74], their
study gained attention around 2007 with knowledge graphs being developed in

4https://www.w3.org/TR/rdf-schema/
5https://www.w3.org/OWL/
6https://www.w3.org/TR/owl2-syntax/#Axioms
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Figure 2.2: Example of an Ontology using OWL

different projects and all main tech companies such as Google [82], Amazon [43],
Facebook [56], Microsoft, Uber, LinkedIn [61], Accenture [57], etc. Academia first
contributed to this trend, with researchers increasingly studying various fields of
the semantic web. Notably, standard knowledge graphs were created, such as
DBpedia [3] and YAGO [84] in 2007.

Despite this craze, a debate still exists to give a formal definition of what a
knowledge graph is. We propose to use the definition of Hogan et al. [29], i.e.,
that a knowledge graph is a graph of data intended to accumulate and convey
knowledge of the real world, whose nodes represent entities of interest and whose
edges represent relations between these entities. More precisely, the graph of data
conforms to a graph-based data model, and knowledge refers to something known.
We retain that knowledge graphs are a multi-relational graph representing data
on both instances description, i.e., data graph, and knowledge, i.e., ontology or
schema.

Definition 1. Knowledge Graph. A knowledge graph KG can be defined by
a couple (F ,O) with:

• O = (C,DP ,OP ,A) an ontology defined by a set of classes C, a set of
owl:DataTypeProperty DP, a set of owl:ObjectProperty OP, and a set of
axioms A;

• F a collection of triples (subject, property, object) where subject is an
IRI, property is an IRI, and object is either an IRI or a Literal. We note R
the set of resources with all IRIs and I the subset of R composed of all IRIs
referring to instances. L is the set of Literal values. The triples collection is
also referred to as an RDF Data Graph.

2.2 Knowledge Graphs Diversity

Knowledge Graphs can be constructed through different processes and from various
data sources. As a result, they largely differ on a set of criteria, e.g., their size,
completeness, described topic, applications, etc. The objective of this section is
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to explain and show this diversity to define the scope of this thesis regarding the
knowledge graphs it can be applied to.

Figure 2.3: Building a Knowledge Graph [14]

Figure 2.3 is a schematic representation of Dong [14] on how knowledge graphs
are built and their applications. In particular, this figure shows that the construc-
tion of a knowledge graph is composed of two parts: first, knowledge is collected
from data sources and, secondly, the knowledge is cleaned.

In the first part of the knowledge graph construction, the knowledge collection,
knowledge graphs may be built upon automated processes on relational databases,
web pages, or a corpus of documents with natural language processing methods.
Knowledge graphs can also be built through crowd-sourcing, such as Wikidata
[90], where the community can contribute by adding data or editing it.

As a result of this diversity in construction processes, knowledge graphs may
differ in size or incompleteness. Let two knowledge graphs, DrugDiscovery and
ChemicalProcess, illustrate this diversity. In the first example, let a pharmaceu-
tical company that aims to build a knowledge graph, named DrugDiscovery. This
company may use natural language processing methods over documents such as
publications or books on drug testing. As a result, the collection of triples repre-
senting the entities and relations extracted from the processing of documents may
be missing triples and have some erroneous triples. In the second example, let us
consider researchers in chemistry that would be interested in describing their exper-
iments in a knowledge graph. The knowledge graph is named ChemicalProcess.
The data sources they would use to construct the knowledge graph could be pro-
vided by the measuring systems they use, as well as their measures stored in
tabular data. In this example, a triples collection would be highly accurate and
complete.

11
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As a consequence of the knowledge collection, knowledge graphs are more or less
complete and can be composed of erroneous triples depending on their knowledge
collection process. Therefore, the second part of the knowledge graph construction
is the knowledge-cleaning step. This step consists, through various techniques, of
removing erroneous triples, adding missing triples, finding entities that refer to the
same one or also finding the correspondence of the schema with the schema of other
knowledge graphs. This step is of great interest as it determines the downstream
tasks that can be applied to a knowledge graph. For instance, a knowledge graph
with missing and erroneous triples will not likely be used for specific queries.

While techniques that address the cleaning of a knowledge graph issue have
shown to have high performances, it is, however, almost impossible to have a
knowledge graph with no missing or erroneous triples when it has been built with
extracted knowledge. Therefore, several assumptions can be made before using a
knowledge graph. One assumption is the Closed World Assumption (CWA) that
states that a missing triple is false. Another, the Open World Assumption (OWA),
states that a missing fact might be true or false. For instance, in Figure 2.1, the
node AgroParisTech represents an engineering school. However, this information
is not in the graph. In the CWA setting, AgroParisTech being an engineering
school would be considered false, while this could still be true in the OWA setting.
Other assumptions exist and are to be used depending on the application of the
knowledge graph.

The diversity of knowledge graphs is also represented through the applications
they support. For instance, a knowledge graph such as ChemicalProcess can store
data and be the object of queries to retrieve data to train a machine learning model.
Knowledge graphs can also be used to learn abstract representations of entities
through embedding models [8] to discover new triples or to find similar entities.
This could be an application of DrugDiscovery, where learning the embedding
representation of molecules could lead to the discovery of new treatments.

More generally, the applications of a knowledge graph depend on the domain it
describes. Standards knowledge graphs such as YAGO describe general knowledge
from several domains. In Figure 2.4, an extract of YAGO shows the description
of the singer Elvis Presley. However, YAGO describes not only singers but also
people in general, cities, countries, movies, and organisations7. It is composed
of billions of triples and is linked to other knowledge graphs such as Wikidata,
Freebase or DBpedia, therefore facilitating data interoperability. Such knowledge
graph can be used for a large set of applications such as question answering or
entity recognition [87]. Knowledge graphs with many triples describing general
knowledge also serve as standards to test and evaluate the performances of all
types of methods, such as in rule mining or key discovery. Knowledge graphs may

7https://yago-knowledge.org/
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Figure 2.4: Extract of YAGO

also describe domain-specific knowledge such as industrial processes, human be-
haviour regarding nutrition [78], historical events [76], or any experiments where
observational data are gathered. These knowledge graphs share applications with
general knowledge graphs, such as question answering, but can also be the object
of other applications that are more domain-specific, for instance, through collabo-
rations with domain experts. These collaborations may lead to the adoption of a
common language to describe events of a domain [38] or to the discovery of results
that can be used by experts.
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Chapter 3

State of the Art

The objective of this thesis is to propose approaches that discover gradual causal
rules in knowledge graphs. This chapter presents a background of existing work
that has been done on causality and on how causality has been addressed in knowl-
edge graphs.

The concept of causality has been widely studied by philosophers and statisti-
cians. While this concept is rather difficult to apprehend, as well as controversial,
the discovery of causal relations has a broad spectrum of applications in many
fields, such as life science, chemistry or social science. Consequently, numerous
works attempted to tackle causal discovery in statistical and computer science.

We first introduce and discuss the notion of causality to define and scope the
content of the thesis and the type of causal discovery it investigates. To this
end, we propose an overview of how causality can be apprehended and present
the different frameworks that exist to tackle causal relations. One of these frame-
works is called the potential outcome framework and aims to estimate the causal
effect of a treatment by estimating counterfactuals. This framework is suited to
estimate causal effects from observational data when testing causal effects by plan-
ning experiments such as A/B tests is impossible. While this framework is widely
studied by statisticians, it has never been considered by computer scientists when
data are represented as knowledge graphs. A key feature of the potential outcome
framework is the counterfactual estimation that can be done using matching tech-
niques. This framework will be detailed since it is used in our approaches. We will
also present approaches that estimate the similarity between two individuals in a
knowledge graph.

On the other hand, many approaches focus on discovering rules that capture
concepts such as associations or correlations. These approaches vary depending on
the language expressivity, the search strategy and the quality measure of the rules
they generate. In this chapter, we present the different kinds of rules that can be
mined in existing approaches in knowledge graphs, and how they differ from the
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rules we aim to mine. We explain why such approaches cannot easily be adapted
for differential causal rules.

Section 3.1 focuses on causality, describes the main frameworks for its study
and introduces the terms used to study causal inference. A deeper analysis of the
potential outcome framework is provided.

Section 3.2 is an overview of the different rule types and mining processes,
including Association Rules and Action Rules. We show why the semantics of such
rules make them unsuitable for a causal study purpose.

Section 3.3 presents several approaches to quantify the similarity between
instances of a knowledge graph. More particularly, we present identity and weak-
identity links between instances, as well as numerical similarity based on embed-
ding models.

3.1 Causality

This section provides two distinct pieces of content on causality. First, the sub-
section 3.1.1 gives a brief background on the history of causality and shows how
it shifted from a philosophical concept to a key element of artificial intelligence
and other scientific fields. Then, the subsections 3.1.2 to 3.1.8 present causality
as it is defined by statisticians, the frameworks defined for its study, and how it is
addressed for knowledge graphs.

3.1.1 A bit of history of causality

The concept of causality has been widely studied by philosophers throughout the
centuries. We first present a selection of philosophical theses discussing the notion
of causality, and then discuss how causality is studied within the computer science
community nowadays.

The first time the notion of causality was mentioned dates back to the time
of Greek philosophers [34], with Plato and, significantly, Aristotle. Aristotle, in
several books such as Physics, Posterior Analytics and Metaphysics, defined four
causes during the 4th century before JC: material, formal, efficient and purpose.
In his mind, causality was not only related to the effect of a thing, but also to its
essence itself, i.e., why it had been realised. An example can be provided through
the analysis of a house:

1. The material cause of the house would be the materials used to build it, such
as wood or metal;

2. The formal cause is the plan of the house;
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3. The efficient cause is the people who built the house;

4. The purpose cause is to provide shelter to the people living in the house.

Therefore, for Aristotle, four different causes could be defined for an object. This
concept evolved over the centuries, and philosophers restrained the study of causal-
ity to the efficient cause.

In the middle age, philosophers adapted Aristotle’s work in the context of
strong Christian culture. For example, Descartes makes the distinction between
a general cause, which is god, and specific causes, that mechanical and automatic
motion of matter. In his thesis, and the thesis of philosophers after him, such
as Spinoza, the concept of causality is materialistic, deterministic, and does not
involve the mind.

Leibniz revokes the materialistic view of causation presented by philosophers
that preceded him and advocates for the definition of a reason that can involve
the mind and the soul as final causes.

During the XVIIIth century, Hume, in his work A Treatise of Human Nature
[35], proposes a thesis that had a wide impact on causality. He defines causality as
a mental phenomenon. While he agrees that causality should respect (i) contiguity
in space and time of the cause and the effect and that (ii) the cause should occur
before the effect, it is impossible for him to justify any connection between the
cause and the effect. In other words, even given the repetition of an experiment
that could show a causal effect, it is not enough to guarantee that this causal effect
should happen in the following experiment. Therefore, nothing can justify a cause
in reality, and causality is a mental phenomenon that people learn by observing
things occurring together in time and then making an association between a cause
and an effect. Causality, for Hume, is a mental construction due to the repeated
and constant conjunction between the event we call cause and that we call effect.

In reaction to Hume’s work, Kant proposes another thesis for causality in his
work Critique of Pure Reason [40]. While he also believes that causality occurs in
the mind, he, however, proposes that causality is a category that is innate, rather
than something that is learned, that, as a consequence allows people to perceive
events happening one after another.

Nowadays, defining causality remains an open question for philosophers and
scientists from different domains. The research on causal inference from statisti-
cians and computer scientists increased since the ’70s (Rubin [71], Holland [31]),
and is nowadays a trending topic (Pearl’s Turing Award [60], Bengio [75]). Be-
sides, the number of topics studied by causality is also growing. While most of the
existing approaches try to assess causal effects, an increasing number of publica-
tions focus on incorporating causal knowledge into machine learning (ML) model
training processes, on improving ML’s generalisation ability or transfer learning
Bengio [75].
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3.1.2 Causation, Correlation and Association

This subsection introduces how association, causation, and correlation represent
different relations. An association is a general concept that indicates that a re-
lation holds between two variables. In other words, two associated variables can
be correlated, or one could cause the other. A correlation is a specific type of
association that indicates a dependence between two variables. It is symmetric
and indicates that when one variable changes, the other variable also changes.
Two variables can be positively or negatively correlated depending on whether an
increase in one variable is associated with an increase or a decrease respectively in
the other variable. The correlation r between two random variables X and Y is
a value between -1 and 1. It is described in equation 3.1 with E(X) the expected
value of X and σX the standard deviation of X.

r =
E[(X − E(X))(Y − E(Y ))]

σXσY
(3.1)

Correlation is not to be confused with causation. Causation is an asymmetric
relation between two variables A and B. More precisely, it is a directed relation
from A to B, where a change in variable A causes a change in variable B within
a system where all other variables keep the same values.

In the following, we present examples illustrating the difference between cau-
sation and correlation. In Figure 3.1, a positive correlation is observed between
the number of people who drowned by falling into a pool and the number of films
Nicolas Cage appeared in. However, one could doubt that seeing a movie with
Nicolas Cage causes people to fall into pools. Another example is the positive
correlation between the number of Nobel prize laureates from a country and the
average consumption of chocolate by the country’s inhabitants. Again, one can
doubt that eating chocolate causes winning the Nobel prize. Other examples of
spurious correlations can be found on the following website1.

In the previous examples, we could see that variables that are a priori com-
pletely independent can be associated. This is merely due to randomness. How-
ever, in some cases, an association between two variables can underlie a more
complex structure. For instance, the existence of a third variable causal to the
two others. Figure 3.2 is an example proposed by Neil [52] to illustrate this type
of structure. If looking at the two icons on the bottom, one can see that sleeping
while wearing shoes is associated with waking up with a headache: people that
slept with their shoes happened to have a headache. However, this association ex-
ist due to another variable which is a common cause, i.e., the number of alcoholic
beverages that were drunk the night before. Therefore, in addition to randomness,
an association can also be due to a causal structure.

1https://www.tylervigen.com/spurious-correlations
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Figure 3.1: Does Nicolas Cage causes people to drown by falling into the pool?

Figure 3.2: Two variables can be associated through a third variable

The examples show that, while an association or a correlation between two
variables can be easily measured, demonstrating a causal relation is not trivial.
The following section provides a formal introduction to causal inference.

3.1.3 The Fundamental Problem of Causal Inference

This section presents the fundamental problem of causal inference [31] and intro-
duces the vocabulary used within causal inference.

Figure 3.3 presents an example where a person is either suffering from a disease,
in which case it is surrounded by a continuous box, or in good health, in which
case it is surrounded by a dotted box. Researchers in drug discovery are interested
in discovering whether a drug could heal this person, i.e., changing its box from
continuous to dotted. To obtain the causal effect of the drug, one would want to
compare the health of the sick person after they took the drug to its health if it
did not. However, both measures can not be observed, as the person can only take
or not take the drug. Therefore, the causal effect of the drug on this person can
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not be computed, as taking the drug could heal the person, but the person might
have healed without taking it. The problem of not observing both measures is
known as the fundamental problem of causal inference.

Figure 3.3: Illustration of the fundamental problem of causal inference

More formally, the health Yi of a person i, named unit, is referred to as the
outcome Y , and the effect of a drug on the person’s health is named the effect.
The drug is referred to as the treatment T . Yi(do(T = 1)) is the outcome of i
if i takes the treatment, and Yi(do(T = 0)) is the outcome of i if i does not take
the treatment. The formula do(T = 1) and do(T = 0) are formally known as an
intervention. Yi(do(T = 1)) is also written as Yi(1). The causal effect of the
drug on the person is named the individual treatment effect TEi and is the
difference between the two outcomes:

TEi = Yi(1)− Yi(0) (3.2)

Because both outcomes can not be observed, the individual treatment effect can
not be computed. The outcome that does not exists is named the counterfactual.
The notion of counterfactual was first mentioned by the philosopher Spinoza during
the 17th century.

Several frameworks were introduced to tackle the problem of causal discovery.
In particular, two main frameworks are recognised as standards to causal inference:
the potential outcome framework 3.1.4 and the structural causal model
3.1.5. The gold standard of causal discovery is randomised experiments that
we present in the section 3.1.6.

3.1.4 Potential Outcome Framework

The potential outcome framework is a standard framework for discovering causal
relations. The works of Rubin [71, 1, 70] Rosenbaum [68, 69] and Holland [31]
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i Y (1) Y (0) Y (1)− Y (0)

1 3 ? ?
2 1 ? ?
3 ? 0 ?
4 ? 1 ?

Table 3.1: Instances Values on Treatment and Outcome - Real Data

are the foundation of this framework. In the following, we present metrics that
measure a causal effect in this framework. Then, we present different approaches of
the potential outcome framework as well as the hypotheses under which a causal
effect can be estimated. Lastly, we introduce matching, one of the most-used
methods in the potential outcome framework. It is to note that this framework is
used in a large diversity of domains, such as health or political science.

Metrics for Measuring a Causal Effect

The potential outcome framework aims to estimate the counterfactual (3.1.3) to
determine a causal effect. Comparing the counterfactual to the observed outcome
enables the determination of the average treatment effect ATE. The term average
is used in opposition to the individual effect, which can not be measured, and
shows an effect measured on a set of instances. With the notations introduced in
3.1.3, the ATE is defined as follows:

ATE = E[Y (1)− Y (0)] (3.3)

Table 3.1 is used to show the computation of the ATE. In this table, computing
the ATE as described in equation 3.3 is not possible due to the absence of an
outcome, denoted by "?". Complete data as in Table 3.2 would be necessary
to compute the ATE. However, it is only presented for an explanatory purpose
as it is impossible to obtain. Using the linearity of expectation, the ATE can
be derived to E[Y (1)] − E[Y (0)]. Thus, the ATE can be computed and equals
ATE = 3.(1/4) + 0.(1/4) + 1.(1/4) + 0.(1/4) = 1, which would mean that the
treatment has an effect.

Another common measure of the treatment effect is the average treatment effect
of the treated ATT , described in 3.4, which is similar to the ATE to the difference
that it only focuses on treated instances. In the example, the ATT is computed
as follows: ATT = 3.(1/2) + 0.(1/2) = 1.5.

ATT = E[Y (1)− Y (0)|T = 1] (3.4)
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i Y (1) Y (0) Y (1)− Y (0)

1 3 0 3
2 1 1 0
3 1 0 1
4 1 1 0

Table 3.2: Instances Values on Treatment and Outcome - Hypothetical Data

As noted in the previous section on the use of observational data rather than
data from a randomised experiment, it is to note that both the ATE and the ATT
are not equal to the difference between the means of the outcomes of the treated
and control sets, E[Y |T = 1] − E[Y |T = 0]. There is a bias named the selection
bias. Using the linearity of the expectation, it can be demonstrated as follows in
equation 3.5:

E[Y |T = 1]− E[Y |T = 0] = E[Y (1)|T = 1]− E[Y (0)|T = 0]

= E[Y (1)|T = 1]− E[Y (0)|T = 1]

+ E[Y (0)|T = 1]− E[Y (0)|T = 0]

= E[Y (1)− Y (0)|T = 1]

+ E[Y (0)|T = 1]− E[Y (0)|T = 0]

= ATT +BIAS

(3.5)

The selection bias in equation 3.5 is the difference between the potential out-
come of treated instances if they did not take the treatment, which is a counter-
factual, and the outcome of the instances that did not take the treatment. In
other words, this term should be equal to 0 if the treated and control sets are sim-
ilar, i.e., with a covariate balance between both sets. However, it usually differs
from 0 as the treated and control sets often have different distributions. Intu-
itively, this can be explained by the fact that there is usually a reason why a
certain population received a treatment, meaning that it differs from the control
population. For instance, one could analyse the effect of a policy aiming to in-
crease the success rate of obtaining a high school degree. To this end, the treated
population, i.e., that would be the object of the new policy, for instance, with
new lectures, could be students in disadvantaged areas, while the control popu-
lation would be more privileged students. However, the reason for defining the
policy would be that the population have a different success rate, meaning that
E[Y (0)|T = 1] ̸= E[Y (0)|T = 0]. Therefore, bias often exists, and the causal effect
is to be computed differently.
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Methods and Hypotheses of the Potential Outcome Framework

We showed that a bias could be introduced when estimating the causal effect if
comparing the mean outcome of both the treated and control sets. This bias is
due to the difference in covariates distribution between the sets. To obtain a non-
biased estimation of a causal effect, the potential outcome framework proposes
several approaches that are based on the estimation of the counterfactual.

The set of methods can be split into two groups, depending on whether the
counterfactual is estimated with an existing unit of the dataset, or with a prediction
regarding the other units of the dataset. The first group of methods are matching
methods. These approaches estimate the counterfactual of a unit with an existing
unit of the dataset. Therefore, it creates matches of instances that can then be
compared to estimate the causal effect, which balances the covariate distribution
between the treated and control sets. These methods are further investigated in the
next section. The second group of families consists of modelling adjustment. They
estimate the counterfactual of a unit by making predictions of its potential outcome
based on models learned on the units of the dataset. Modelling adjustments might
imply different types of models such as linear regression, i.e., named regression
adjustment. It has been shown that using both type of models combined lead
to better results [22, 28]. Many more methods exist, and some are presented in
this tutorial [41], such as natural experiments that aim to naturally find sets of
instances that form a control and a treated set without attributing the treatment,
or instrumental variable.

The methods of the potential outcome framework previously described rely
on several assumptions that we present. These assumptions posit an assignment
mechanism [83] to ensure a non-biased estimation of the causal effect when cre-
ating the control and test sets. The first assumption is the strongly ignorable
treatment assignment [68]. It stipulates that (i) the treatment assignment
should be independent of the potential outcomes given covariates and that (ii) the
probability of receiving the treatment should be positive for all instances. The
second assumption is called the Stable Unit Treatment Value Assumption
[70], known as SUTVA. It states that the outcomes of one instance should not be
affected by the treatment assignment of any other individuals. This assumption
can be more or less difficult to hold depending on the relation between the dataset
units, e.g., for people of the same group, like a school or a company. As these as-
sumptions hardly stand in some cases, part of research in causality seeks to define
how to relax these assumptions [32].

23



State of the Art L. Simonne

Matching-based Methodology for Discovering Causal Effects

When dealing with observational data, one of the most used methods for estimating
causal effects is matching [83]. Matching can be seen as a pre-processing step
that balances the covariates between the treated and control sets. To do so, it
sub-samples a dataset by pruning instances that are too dissimilar to the other
instances of the dataset. More precisely, it aims to create matches of similar
instances that shall be used to measure a causal effect. A causal effect can be
assessed after the matching step through various metrics. In this section, we
briefly present the steps of matching, i.e., (i) the definition of a distance between
instances, (ii) the matching of instances and (iii) the analysis of the outcome.

The first step consists of defining the distance between two instances to de-
termine their similarity. Many distances can be used with tabular data, such as
relatively simple ones, e.g., the exact distance, or more complex ones, e.g., propen-
sity score, that we will introduce later. While several distances exist, they are all
used for the same task, measuring the similarity between two instances. A distance
is chosen depending on the features of the description of the instance. With the
instances being described in a low-dimensional space, the euclidean distance can
be used to find similar instances. However, such distances become hard to use with
higher dimensions, even if they are relaxed using coarsened matching techniques,
such as Iacus2012 et al. [37], that are doing exact matching on intervals instead
of on values. Propensity score [68] facilitates matching when dealing with higher-
dimension datasets. Its intuition is to train a model that will predict a score for
each instance, representing its probability of being treated. Two instances having
the same score can then be considered similar as they share the same probability
of being treated. However, limits to propensity score were shown [42], in partic-
ular, as it can create many irrelevant matcheIacus2012. Iacus2012e created with
the defined distance. Several matching methods exist, such as nearest-neighbour
matching or sub-classification. For each of these methods, several parameters are
to be defined. In nearest-neighbour matching, a user can decide to match a treated
unit to one control unit, or several of them. Also, an instance that has been se-
lected in a pair can either be drawn in another pair or not. In another setting,
sub-classification aims to estimate a causal effect in several sub-classes instead of
creating pairs through the dataset. The different choices of matches are discussed
by Stuart [83].

In the third step, a causal effect is estimated given the set of instances selected
by the matching step. A causal effect can be directly defined on the selected
instances, or on models that represent either the treated or the control units, for
instance, by comparing the coefficients of such models. Various metrics exist to
measure a causal effect, such as the difference in the potential outcomes between
treated or control units, or relative metrics, such as the odds ratio (OR) [86] or
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Figure 3.4: Illustration of how model dependence in causal studies is reduced by
matching treated (T) and controlled (C) units.

relative risks (RR), that measure how a treatment is associated to an outcome.
The choice of the metric depends on the measured effect, e.g., the ATE and the
ATT , as well as the type of treatment or the outcome. For instance, with the
outcome being a discrete variable, the OR and the RR are better suited.

Figure 3.4, from Ho et al. [28], is used to illustrate the steps previously de-
scribed. Two sets of units are studied: the set of treated units, represented by a
T on the figure, and the set of control units, represented by a C. In this example,
the outcomes of treated and control units are modelled by a linear or quadratic
model. The causal effect is obtained by comparing the model of the treated units
to the model of the control units. In the left figure, no matching has been applied,
and all instances are considered to estimate the models. In the right figure, only
matched instances are selected to estimate the models. As a result, in the left
figure, the comparison of the linear models indicates that the treated group has
higher outcome values, while the comparison of the quadratic model indicates that
the control group has higher outcome values. In the right figure, where matching
has been applied, both models show that outcome values are the same for both
the treated and control units. This example points out several key messages. The
first is that causal analysis is to be proceeded carefully, as naively using differ-
ent models leads to different estimations of a causal effect. In other words, there
exist a model dependence in the estimation of the causal effect. The second is
that matching prunes instances dissimilar to others only to compare comparable
instances and that it reduces model dependence by doing so.
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It is to note that the potential outcome framework has been defined for tabu-
lar data and that the notion of distance and similarity is essential to the match-
ing process, as estimating a causal effect is done by comparing similar instances.
Therefore, approaches focusing on similarity in knowledge graphs are presented in
section 3.3.

3.1.5 Causal Model and Structural Causal Models

The structural causal model framework (SCM) is another important framework
for studying causality. It consists of modelling a system with equations named
structural equations. In this framework, such a system can be represented as a
causal graph that is a directed acyclic graph (DAG) in which nodes represent
variables and edges the causal links between the variables they link. This section
aims to provide a brief introduction to this framework. For more details, we advise
the reader to refer to the work of Pearl [60].

The structural causal model is, to a certain extent, comparable to statistical
learning, where the objective is to learn a probabilistic model from observations.
A causal model, however, in addition to learning a model from observations, also
learns counterfactuals. It does not only learn how to predict an outcome but can
also answer the question: what would have happened to the outcome if a certain
variable had a certain value?. In other words, it is able to model interventions
that is how the system would react if a variable were to be changed. An example
of intervention would be: what would have happened if this person took the treat-
ment A? Consequently, causal models have a much bigger explanation power than
probabilistic models, which only focus on learning to make predictions.

One component of a structural causal model is a set of structural equations,
which are functions involving the variables of a system that are linked causally.
For instance, let T and Y two variables where T causes Y . The structural equation
describing this causal relation is represented as follows:

Y := fY (T ) (3.6)

The function fY can be any type of function that describes the distribution of
Y given T . As a causal relation is not symmetric, the symbol "=" can not be used.
Instead, it is replaced by ":=" [60] to indicate the direction of the relation, e.g.,
from T to Y in this example. In addition to the structural equation, the structural
causal model provides a DAG that describes this system. This DAG is depicted
in Figure 3.5), where edges represent the direction of the causal relation.

A system can be composed of many more variables and causal relations. For a
sake of simplicity, we present another simple system composed of variables X, Y
and T with the following structural equations:
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Figure 3.5: Causal graph with T causing Y

Y := fY (X,T )

T := fT (X)
(3.7)

These equations indicate that T is caused by X, Y is caused by X and T ,
and that T is not caused by any variable. The resulting DAG is presented on the
left side of Figure 3.6. As seen in the figure, no edges are directed to the node
representing X as it is not caused by T or Y .

Figure 3.6: Applying an intervention on a causal graph

While the cause from T to Y in the previous system (Figure 3.5) is rather
simple to study as the system only owns two variables, it is much harder in this
system where X causes both T and Y , therefore acting as a confounder. Therefore,
the causal effect from T to Y should be estimated by considering the confounder
X. Interventions were defined for this purpose. An intervention sets the value of a
variable, e.g., T = t in our example and, by doing so, removes causal edges in the
DAG. It is to note that the intervention on X is possible as the DAG is known by
the user, who therefore knows that X is a confounder. The right side of Figure 3.6
shows the DAG after the intervention on T : as the value of T is set, X no longer
causes T . The DAG is said to be mutilated.

More generally, two variables A and B are usually included in a system with
other variables. The other system variables may act as confounders to A and B.
Consequently, a user should use an adjustment set of variables to discard the effect
of the confounders and to obtain a non-biased estimation of the causal effect from
A to B. The adjustment set defines variables where interventions should be applied
and is obtained by analysing the causal graph, i.e., the DAG, of a system. In our
example, X is the only variable of the adjustment set. In practice, the adjustment
set may be more difficult to define and its construction relies on criteria such as
the backdoor path [60].
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Figure 3.7: Design of a randomised experiment

While a structural causal model is extremely powerful in estimating causal
effects, it, however, presents some limitations. Learning the parameters of the
structural equations may be complex, and the estimation of causal effects strongly
relies on the definition of the causal graph, which is not trivial even with expert
knowledge. Furthermore, the estimation of causal effects is highly sensitive to the
variables of the adjustment set, as missing or wrongly added variables can lead to
biased estimation.

In the next section, we present randomised experiments that are the gold stan-
dard for estimating causal effects.

3.1.6 The Gold Standard: Randomised Experiments

Randomised experiments are a design of experiments to estimate the causal ef-
fect of a treatment on an outcome. More precisely, as the individual treatment
effect can not be computed (section 3.1.3), randomised experiments can be used
to estimate several effects such as the ATE (3.3) or the ATT (3.4).

Let a unit, e.g. a person or a molecule, that can either take or not take
a treatment, e.g. a drug or a change of temperature. Given a set of units, a
randomised experiment consists of randomly splitting the units in the set of treated
that receives the treatment (T = 1) and the set of control that does not (T = 0).
With X the set of covariates and T the treatment value, it results in T being
independent of all covariates, T ⊥⊥ X.

For instance, if testing a drug, people from the treated group will receive the
drug while people from the control group will receive a placebo. The design of a
randomised experiment is schematised in Figure 3.7, where the effect of a drug is
assessed2

2FDA logo: https://www.istockphoto.com/.
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As a consequence of the random attribution of the treatment, a covariate bal-
ance is observed between the set of the treated and the set of control. In other
words, the distribution of the covariates is the same in both sets. The conditional
distribution of covariates of both sets can be rewritten as:

P (X|T = 1) = P (X)

P (X|T = 0) = P (X)
(3.8)

The covariate balance is therefore shown as:

P (X|T = 1) = P (X|T = 0) (3.9)

Given the covariate balance, the effect of a treatment is obtained by simply
comparing the distribution of the outcomes from both sets. The resulting effect is
unbiased.

This result can be compared to the previous frameworks described in 3.1.4
and 3.1.5. Having a covariate balance is the objective of the potential outcome
framework 3.1.4, which applies a processing step of instance selection to obtain it.
Regarding the structural causal model 3.1.5, it aims to obtain the same unbiased
estimate by making all adjustments. From a graphical point of view, applying a
random attribution of the treatment removes all edges directed to the outcome,
except the edge from the treatment. It is for that reason that the estimated effect
is unbiased. Randomised experiments are, therefore, rather simple to design, and
are easier to handle to obtain unbiased estimates of causal effects than existing
frameworks. These reasons led to using it as a gold standard in causal discovery
experiments.

However, applying such experiments can be delicate for several reasons depend-
ing on the domain it can be designed for. One of the reasons is the cost of such
experiments. Depending on the features of the experiment, such as its duration
or the type of instances it is applied on, e.g., people, molecules, a randomised
experiment can become expensive. It is for instance, cheaper to test a digital mar-
keting strategy on a social network within a few days than to test a drug on people
for several months. Apart from the cost, ethics are another limit of randomised
experiments. As an example, it is not possible to force someone to smoke.

Consequently, research in causal discovery is often done on data that already
exists, i.e., observational data, where a researcher did not interfere before. In
such a setting, the independence of the treatment attribution is no longer valid,
and comparing the outcomes of the treated and control unit can introduce a bias
in the causal effect, as shown in 3.5, as the distribution of covariates in both sets
is no longer balanced. For instance, if studying a drug, the treated set could
be composed of people that are in general more likely to be sick, or that have a
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different diet, etc. As a result, users assessing causal effects in observational data
can use approaches within the potential outcome framework or structural causal
modelling.

3.1.7 Causality in Knowledge Graphs

To the best of our knowledge, only two papers deal with causality within knowledge
graphs [51, 12]. We describe and underlie the limits of these approaches.

In the first paper [51], Munch et al. propose a two steps approach to discover
causal relations. First, the knowledge graph is converted into a relational database
using ontological and expert knowledge. Then, they learn a probabilistic relational
model on the relational database. As output, a bayesian network is constructed
and provides joint tables of probabilities. These tables describe the likelihood of
observing an event given the set of associated variables. For instance, if studying
the year when a writer wrote his first book, the table indicates that the likelihood
of a writer writing a book before 1980 is 0.01 if the writer is born after 1950 and
has studied in a university with a rank above 101. Although such a relationship
might be causal, the approach has some limits. Firstly, learning a probabilistic
relational model implies discretizing all variables, which is a loss of information for
numerical variables. Secondly, it has been shown that learning bayesian networks
is a difficult task whenever the database becomes large [53]. Also, this approach
has only been evaluated on a small knowledge graph (≈7k triples).

In the second paper, De Haan et al. [12] are working on the COoperation DAta-
bank 3 (CODA) knowledge graph that describes scientific papers in social science,
their experimental settings, and the research hypotheses the papers tested. For
instance, the description of a paper within the CODA KG may include the effect
of a variable, named the Independent Variable (IV), on another variable, named
the Dependent Variable (DV). In other words, it describes research hypotheses
holding between an IV and a DV, and the relationship between them, such as
their strength. Using this knowledge graph, the approach aims to discover new
hypotheses for domain experts by predicting new links between an IV and a DV.
This link prediction is done by relying on knowledge graph embeddings. While
this approach leads to the discovery of new hypotheses, i.e., potentially new causal
effects, it, however, relies on exploiting a knowledge graph where effects are already
measured and described. It is not designed to be applied on a knowledge graph
where effects are to be discovered from scratch. Furthermore, as hypotheses are
discovered from a link prediction task, quantifying their causal effect is hardly
interpretable.

3http://data.cooperationdatabank.org/
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3.1.8 Discussion

The notion of causality has been introduced and compared to association and
correlation. It is to retain that association and causation are different relationships.
An association can be observed due to underlying causal structures or randomness
and should not be confused with causal relations.

When randomised experiments can not be conducted, the potential outcome
framework and the structural causal model are the two standard frameworks for
causal inference. On one hand, the potential outcome framework relies on com-
paring similar instances that differ in treatment value to study the effect of the
given treatment. It seems relevant to adapt it to knowledge graphs where the sim-
ilarity between instances is an important field of research (see section 3.3). On the
other hand, the structural causal model relies on tabular data and the definition
of a causal graph to learn the parameters of structural equations. Therefore, while
there exist approaches to transforming knowledge graphs into relational databases,
we believe that adopting the potential outcome framework to the causal discovery
problem in knowledge graphs might be more suited.

The study of the state of the art of causality in knowledge graphs showed
that only a few approaches focus on causal discovery and that these approaches
were either only applicable to small knowledge graphs [51] or not defined to really
measure causal effects [12]. Furthermore, none of these approaches was designed
to explain why two instances have different values for a numerical property.

In the following section, we present rule mining approaches and study whether
they can be used to express a causal relationship or not.

3.2 Rule Mining in Knowledge Graphs

A rule expresses a relation between two graph patterns through a IF-THEN struc-
ture. Rules are composed of a body B⃗ and a head H⃗ such as B⃗ → H⃗, with B⃗ and
H⃗ being graph patterns and → indicating the implication. Several types of rules
exist, such as association rules or action rules.

The knowledge embedded in a rule can be declared or induced from observations
[29]. Declared knowledge is composed of commonsense knowledge [48], expressed
by common people, and of domain knowledge, expressed by domain experts. Such
knowledge can be represented in the ontology of a knowledge graph using ontol-
ogy axioms or additional rules. Conversely, knowledge can also be induced by
analysing frequent patterns within a knowledge graph. Resulting rules can also be
represented in an ontology.

As we aim to discover causal relations, we shall in this section focus on rules
obtained by rule mining approaches that represent inductive knowledge. In par-
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ticular, we present a standard association rule mining approach, i.e., AMIE [20].
In addition to understanding how association and action rules can be mined, we
study whether such rules could be suited to express a causal relation.

3.2.1 Association Rule Mining

An association rule AR has a head B⃗ composed of one atom only, and a body
H⃗ composed by at least one atom, where an atom is a triple (s, p, o) where the
object can either be a variable or a constant. An example of an association rule
is hasChild(x, y) ∧ citizenOf(x, z) ⇒ citizenOf(y, z). Association rules mining
approaches are used for knowledge discovery and graph completion, as association
rules represent inducted patterns that can be used to remove erroneous triples or
discover missing ones.

An association rule is usually assessed by metrics such as the support, the head
coverage and the confidence. Given the rule R : B⃗ ⇒ r(x, y), these metrics are
described in equations 3.10, 3.11 and 3.12 respectively. The support of a rule is the
number of correct predictions that can be deduced by the rule. The head coverage
is a relative value between 0 and 1 that represents the number of instantiations of
the rule on the number of instantiations of the head of the rule. The confidence is a
ratio between the number of instantiations of a rule on the number of instantiations
of its body.

supp(B⃗ ⇒ r(x, y)) = #(x, y) : ∃z1, ..., zm : B⃗ ∧ r(x, y) (3.10)

hc(B⃗ ⇒ r(x, y)) =
supp(B⃗ ⇒ r(x, y))

#(x′, y′) : r(x′, y′)
(3.11)

conf(B⃗ ⇒ r(x, y)) =
supp(B⃗ ⇒ r(x, y))

#(x, y) : ∃z1, ..., zm : B⃗
(3.12)

As graph completion and refinement is an important topic for knowledge graphs,
in particular, due to their creation process (see Chapter 2), a large set of methods
exist to mine association rules in knowledge graphs, such as AMIE [21] and its
improved versions [20, 44], RuDiK [58], and AnyBURL [49]. Such methods are
divided into two categories: generate and test techniques and divide and conquer
techniques.

We present AMIE [21] in a concise manner, which can be considered a standard
approach in association rule mining. AMIE is a generate and test technique that
discovers the complete set of closed and connected horn rules in a knowledge base.
Two atoms are connected if they share a variable or entity, and a rule is connected
if every atom is connected transitively to every other atom of the rule [21]. A
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Figure 3.8: Simplified representation of AMIE [21]

rule is closed if every variable in the rule appears at least twice. A simplified
representation of AMIE is presented in Figure 3.8.

The objective of AMIE is, given a head defined as a parameter, to find all
association rules having this head on a knowledge graph. This task is not trivial
as knowledge graphs can be incomplete, erroneous, and might have relations that
are not functional, i.e., with several objects given a subject and relation. More-
over, as seen in 2.1, a missing fact in a knowledge graph is not necessarily false.
Therefore, metrics such as the confidence (equation 3.12) are not adapted to guide
the mining of association rules. AMIE defined the partial completeness assumption
(PCA), which differs from the OWA or CWA (see Chapter 2). This assumption
states that if the knowledge graph owns at least one object for a given entity and
relation, it knows all objects of this entity and relation. This assumption enables
the computation of the PCA-confidence by considering negative examples that do
not exist in a KG.

Given the language bias, AMIE is described as follows. Given a head defined
by the user, AMIE iterates between three steps: it (i) considers a candidate rule,
(ii) computes quality measures on this rule and (iii) refines the rule to generate
new candidate rules. Figure 3.8 is used to illustrate these steps:

(i) The rule Candidate Rule 0 with a head composed of atom_h and an empty
body is initialised.

(ii) Several quality metrics are computed and compared to parameters given by
a user. Among these metrics are the support, the head coverage and the PCA
confidence. A rule is pruned if it does not verify the supports and the head
coverage requirements.
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(iii) If a rule verifies the requirements, it is extended by adding an atom to the
body from the pool of atoms, e.g. Candidate Rule 1 has one atom more
than Candidate Rule 0 with the atom atom_1. The choice of the atom is
directed by language bias: it can be a dangling atom, an instantiated atom,
or a closing atom. Although the figure only shows one rule created from
Candidate Rule 0, many rules can be created by its extension.

A rule is extended until it no longer verifies the quality measures, i.e., its metrics
are below thresholds chosen by the user, or if the length of its body reached the
maximum number of atoms indicated by the user. An association rule is added to
the set of association rules if it verifies the quality measures and the rules extended
from it do not verify them. An association rule is evaluated by computing the
number of correct and incorrect predictions that can be made on unseen data.

3.2.2 Action Rules Mining and Counterfactual Explanations

Action rules [65, 85] are another type of rule mined over knowledge graphs. Such
rules are part of counterfactual explanations. Counterfactuals explanations explain
how to obtain an alternative decision from a machine learning model by identifying
changes in input features that lead to a desired outcome from the model [66].
Counterfactual explanation approaches can be used for interpretability purposes
to understand how a model makes predictions or for a user to know what input to
use to obtain a certain outcome.

Action Rules are extensions of classification rules. Therefore, they express a
different relation than association rules. An action rule can be presented as in
equation 3.13, proposed by Sýkora et al.:

R : [(ω) ∧ (α→ β)]⇒ [ϕ→ ψ] (3.13)

An action rule expresses that, with a set of attributes that do not change,
denoted by ω, an action, i.e., a change in a set of attributes denoted by α → β,
will change the class of an instance, denoted by ϕ→ ψ.

For instance, in the context of a house pricing classifier, an action rule can
express that if the number of bathrooms has the value of 3, the class would have
been high cost rather than low cost.

The quality of an action rule can be estimated by several metrics, e.g., the
support or the confidence. Other quality metrics may focus on the action by mea-
suring how many attributes it changes, how different the values of the attributes
are, and whether the changes are coherent or not.

Such rules can be mined through two categories of approaches [11]. The first
category of approaches is named rule-based and mines action rules by mining
association rules in the first step, then generates actions rules as a post-processing
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step. The second category of approaches consists of directly discovering action
rules from a database.

3.2.3 Discussion

Inductive knowledge represented as rules can be mined from databases and knowl-
edge graphs. These rules represent patterns mined over the database. Among such
rules, association rules are a well-known type of rule that indicates an association
between atoms, while action rules are a part of counterfactual explanations and
provide explanations for how to obtain a different value on an attribute. Sec-
tion 3.1 emphasises on causal concepts, such as treatment, effect, or outcome, and
frameworks on how to discover causal relations, such as the potential outcome
framework. These concepts should be represented by rules enlightening a causal
effect. However, association and action rules are not defined to express such con-
cepts and are therefore not suited to display causal effects.

Association rule mining approaches aim to find a set of bodies for a given head to
obtain rules to predict new facts in a knowledge graph. Firstly, association rules
were not designed to display a causal effect but rather an association, which is
different to causation. Indeed, as seen in 3.1, two variables that are not causal can
be associated, for example, through a third variable causal to the two variables, or
to randomness. Secondly, in such approaches, the head of the rules can be specified
by the user and could express an outcome on two instances. However, the language
bias does not allow to verify a treatment value for the two instances, neither does
it ensures that the instances are similar. For instance, the head of a rule could
indicate that two houses have different prices, i.e., the outcome, but in its body one
house could be described by its surface and the other by its location, i.e., unrelated
treatment. Furthermore, the mining of association rules involves meeting criteria
such as support, head coverage, etc., but not any similarity between instances.
Consequently, instances that are used to estimate the quality of the rule could be
very different.

Action rules express that a change in a subset of attributes will change the
class of an instance. While these rules express the idea of intervention, they are
not suited for expressing causal relations. Besides, action rules are designed for
classification problems and can not be used as such to explain a difference on a
numerical property for two specified instances.

Existing rules in knowledge graphs are not suited for expressing a causal effect
as they (i) do not explicit concepts as treatment, effect or outcome and (ii) are
mined in a way that the relations they describe are hardly causal. Therefore,
we will address these limitations and propose rule mining methods that adapt the
potential outcome framework. In this framework, matching techniques can be used
to estimate causal effects (see section 3.1.4). As matching consists on creating pairs
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of similar instances, the following section focuses on various similarity measures
that are defined on knowledge graphs.

3.3 Identity and Similarity of Instances in a Knowl-
edge Graph

Knowledge graphs can be generated through various techniques, such as scrapping
data from the web or combining existing knowledge graphs (see Chapter 2). As a
result, knowledge graphs can own false triples and might be incomplete.

Therefore, identity management in knowledge graphs is an important research
theme in the semantic web community. It consists of discovering instances in
one or several knowledge graphs that refer to the same entity and has several
applications, such as linking instances from different knowledge graphs or deleting
false identity links [62]. One common output of such approaches is the generation
of more or less strict identity links between instances. These identity links are of
great interest in initiatives such as the Linked Open Data (LOD).

From a less strict perspective, another research theme focuses on similarity,
i.e., handling similar instances that do not refer to the same entity. Reasoning on
similar instances has different applications, such as knowledge graph completion
[18].

As we aim to adapt the potential outcome framework on knowledge graphs,
this section emphasises on identity and similarity measures between instances of
a knowledge graph. Section 3.3.1 describes identity and similarity links that exist
between instances, section 3.3.2 focuses on various approaches aiming to get similar
instances, and section 3.3.3 describes knowledge graph embeddings models and how
they can be used to measure the similarity between instances.

3.3.1 Identity and Similarity Predicates

Besides predicates describing instances in a knowledge graph, represented as di-
rected edges to other instances or literals, other predicates express the degree of
identity or similarity between two instances of the same knowledge graph or dif-
ferent knowledge graphs as for data linking approaches.

Among the identity links, the owl:sameAs [59] relation is a widely used relation
that states that two instances refer to the same real-world object. However, despite
its wide adoption, it has been shown that its use led to erroneous matches [26, 30,
64]; where instances are not described by the same property values.

Less strict approaches were therefore proposed as an alternative to sameAs.
For instance, instances can be considered identical within a context [4, 63]. In
another work, Halpin et al. [26] proposed an ontology, i.e., the similarity ontology,
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where relations are defined to indicate similarity links or possible identities between
instances. However, such links can be interpreted differently depending on the
context and the use and should therefore be handled carefully.

3.3.2 Mining Similar Instances

Identity and similarity predicates may be expressed in some knowledge graphs.
However, such predicates are often missing and approaches were defined to discover
instances that refer to the same entity or, more generally, to similar instances.
Discovering similar instances of a knowledge graph may be used for various tasks,
such as query relaxation, graph completion, or taxonomy mining. Approaches
measuring the similarity and identity between two instances may be separated into
two families depending on whether the similarity output is numeric or symbolic.

Approaches that define numerical similarities that can be used on knowledge
graphs may exploit instances RDF descriptions, such as in [33, 15], or vector rep-
resentations learned through embedding models. When considering RDF descrip-
tions, RIBL [33] defines a distance based on edit distances between two graphs. In
another approach [15], authors propose a similarity between Horn clauses based
on (un-)shared predicates and arguments. Embedding models learn vector repre-
sentation of instances, and the similarity between two instances is computed as
the distance between their embedding vectors. These models are briefly presented
in the following section (section 3.3.3).

A similarity between instances of a knowledge graph can also be represented
with a symbolic measure. For instance, a similarity can be a relaxed description
[36, 17], or a conceptual distance [16, 18]. Both of these similarities rely on queries,
either by discovering proper relaxed queries [17], or by analysing the intension of a
graph concept [16, 18]. While a numerical similarity is hardly interpretable, these
symbolic measures are much easier to understand, with the queries explaining why
two instances are similar.

3.3.3 Similarity between Embedding Vectors

This section provides a comprehensive introduction to knowledge graph embed-
dings. We first introduce what knowledge graph embedding models are and then
how they can be used to mine similar instances.

Knowledge Graph Embeddings

Knowledge graph embeddings (KGE) have become a popular research domain.
Since Bordes et al. proposed TransE in 2013 [8], many approaches were developed.
An overview of KGE approaches and applications has been proposed by Wang et al.
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Figure 3.9: Simplified overview of a knowledge graph embedding model

[92]. KGE are part of representation learning, which aims to learn a representation
of data to make it easier to extract useful information when building classifiers or
other predictors [5]. If focusing on graphs, representation learning has several
frameworks, such as Node Representation, with approaches such as node2vec [23],
or Graph Neural Networks, with approaches such as graph attention networks [89].
An overview of representation learning on graphs has been proposed by Hamilton
et al. [27]. As this thesis focuses on knowledge graphs, this section shall describe
KGE only.

A summary of how knowledge graph embedding models are defined, trained
and evaluated is provided. Deeper comprehensive work has been realised and can
be found in the literature [92, 9]. KGE aim to embed entities and relations of a
knowledge graph into low-dimension vectors while preserving the structure of the
knowledge graph. To this end, an embedding technique consists of three steps:
(i) representing the entities and relations into an embedding space, (ii) defining
a scoring function and (iii) learning the representations while minimising a loss
function. A simplified overview of embeddings is proposed in Figure 3.9. We
propose to study TransE [8] as an example.

In the first step (i), entities and relations are defined in an embedding space.
For entities, this space can be the vector space but also multivariate Gaussian
distributions. Relations usually are operations such as vectors, tensors or mixtures
of Gaussians. In TransE, as shown in Figure 3.10, both entities, denoted by s for
the subject and o for the object, and relations, denoted by p, are defined as vectors
in the same vector space.

In the second step (ii), a scoring function is defined to measure the plausibility
of a fact. Consequently, facts defined in a knowledge graph should have higher
scores than unobserved or false facts. The scoring function of TransE is presented
in equation 3.14. Intuitively, p is interpreted as a translation that connects s and
o, and the score should be high if the fact holds. As its name suggests, TransE
is part of Translational Distance Models, where other models differ to TransE
with relations represented as hyperplane [94], or distinct spaces for entities and
relations [46], or by more or less relaxing the translational requirement. Other
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Figure 3.10: TransE Entity and Relation Space [8]

kinds of models exist, such as Semantic Matching Models [55, 95], that focus on
latent semantics of entities and relations, or deeper models [13, 54].

fTransE = −∥(s+ p)− o∥1/2 (3.14)

In the last step (iii), the representation of entities and relations is learned by
solving an optimisation problem that maximises the plausibility of observed facts.
However, this plausibility should be maximised compared to the plausibility of
false facts, which should be minimised. As there are no false or negative facts in
a knowledge graph, the training procedure implies generating negative facts using
the local closed world assumption (LCWA). With I the set of individuals, the set
of negative facts C is described in equation 3.15.

C = {(ŝ, p, o)|ŝ ∈ I} ∪ {(s, p, ô)|ô ∈ I} (3.15)

The LCWA states that a knowledge graph is locally complete. Therefore, given
a fact, facts considered negative can be generated by changing the subject or the
object of the fact while the predicate stays unaltered. Given the scoring function
and the sets of positive and negative facts, an embedding model can be trained
by minimising a loss function L. One example of a loss function, the pairwise
margin-based hinge loss, is presented in equation 3.16, where f(t−; θ) is the score
of a negative fact and f(t+; θ) the score of a true fact. While other loss functions
exist, such as the binary cross-entropy, all of them aim to maximise the plausibility
of a true fact and minimise the plausibility of a negative fact.

L(θ) =
∑
t+∈F

∑
t−∈C

max(0, [γ + f(t−; θ)− f(t+; θ)]) (3.16)

Several protocols exist to evaluate the performance of KGE models. Among
them, the triple classification and the entity ranking protocols are the most com-
mon [93]. In the triple classification protocol, positive and negative facts are
classified as correct or false, and the accuracy is used to evaluate the performance
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of models. Entity ranking has a different objective, i.e., ranking facts given their
score, and therefore has different performance metrics. Given the set of individual
rank scores R, this protocol provides several metrics: the Mean Rank 3.17, the
Mean Reciprocal Rank 3.18 and the Hits@n 3.19.

MR =
1

|R|
∑
r∈R

r (3.17)

MRR =
1

|R|
∑
r∈R

1

r
(3.18)

Hits@n =
|{r ∈ R|r ≤ n}|

|R|
(3.19)

The mean rank (MR) computes the mean of all individual ranks of R. It is
easily interpretable but sensitive to outliers, i.e., it can be strongly affected by
rare high scores. The mean reciprocal rank (MRR) is less sensitive to outliers by
computing the mean over all inverse individual ranks of R. The Hits@n computes
the number of facts with a rank lower or equal to a value n. Hits@n at several n
values are commonly computed as Hits@1, Hits@3 and Hits@10.

KGE are used for various downstream tasks such as link prediction, triple
classification and entity resolution. In addition to these tasks, they can also be
used for more specific tasks such as taxonomy mining [47] or explaining clusters
with association rules [19].

Embeddings Vectors Similarity

In addition to their use within downstream tasks, the representation of entities
and relations learned through a KGE can be used to mine similar entities. If the
KGE embody the semantic features of entities, similar RDF instances will have
similar vectors in the embedding space [91], and similar vectors in the embedding
space will represent similar RDF instances [50, 39].

3.3.4 Discussion

The potential outcome framework, particularly matching approaches, states that
similar instances should be compared to estimate a causal effect. In the case of
matching, the objective of the user is to find the closest matches of instances within
a dataset, with the instances composing the matches having different treatment
values for its effect to be studied. Consequently, selected pairs of instances should
not be identical but rather similar, as they should differ in the treatment value.
Therefore, the owl:sameAs [59] predicate can not be used, nor methods assessing
whether two instances refer to the same entity.
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On the other hand, approaches assessing the degree of similarity between in-
stances seem more adapted to the problem of creating matches of similar instances.
Still, all approaches focusing on similarity might not be adapted. As the estima-
tion of a causal effect is sensitive to the matches used for its computation [83, 42],
explanations of their creation should be provided. Consequently, numerical simi-
larity distances such as [33, 15] are not suited for the problem of creating matches
in the potential outcome framework, as they are sensitive to missing data and do
not provide explanations for their values. Knowledge graph embeddings as such
are not suited for this problem either. While being (i) less sensitive to missing
data and (ii) able to create a ranked list of the most similar pairs using a distance
in the embedding space, they, however, do not ensure that the created pairs are
similar enough for this problem.

Symbolic similarities [17, 18] seem well-suited to create the matches for estimat-
ing a causal effect as they are interpretable and give an explanation as to why two
instances can be considered similar. However, they may present two challenges.
The first is that they are sensitive to missing data. Therefore, instances without
a description of some properties may not be used to create matches. The second
challenge is that their use might not be trivial with knowledge graphs where the
descriptions of instances are complex. In such a knowledge graph, finding similar
pairs that only differ on a few properties is impossible, in the same way as it is
impossible to find exact matches in tabular data when there are more than a few
columns describing instances [1]. Therefore, using such approaches would lead to
obtaining pairs where even the most similar ones would differ on a large set of
properties. Ranking the similarity of these pairs would be difficult, as it would
rely on much expert knowledge to assess which differences are more important.
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Chapter 4

Coarsened Matching for Differential
Causal Rules Mining

In this chapter, we will present our first contributions to differential causal rules
discovery in knowledge graphs. They are based on the potential outcome frame-
work and coarsened matching of instances for causal discovery. These approaches
are the objects of the following publications:

1. Lucas Simonne, Nathalie Pernelle, and Fatiha Saïs. Fouille de rè-
gles différentielles causales dans les graphes de connaissances. Revue
des Nouvelles Technologies de l’Information, Extraction et Gestion des
Connaissances, RNTI-E-37 :293–300, 2021. [81]

2. Lucas Simonne, Nathalie Pernelle, Fatiha Saïs, and Rallou Tho-
mopoulos. Differential causal rules mining in knowledge graphs. In
Proceedings of the 11th on Knowledge Capture Conference, K-CAP
’21, page 105–112, New York, NY, USA, 2021. Association for Com-
puting Machinery. [78]

Patterns in knowledge graphs are often represented as rules, such as association
and action rules (see section 3.2). However, to our knowledge, no rules express-
ing a causal effect in knowledge graphs are defined in the literature. Therefore,
this chapter defines how causal effects can be represented as rules that we name
differential causal rules. The causal effect of a treatment can be observed on all
instances of a dataset, in which case it has a general effect. Still, it can also have
effects on subsets of instances only, in which case it has a local effect. To define
expressive rules, differential causal rules should characterise the set of instances
on which a treatment has an effect, whether local or general.
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Causal effects can be discovered through several frameworks (see section 3.1)
and, in particular, the potential outcome framework and matching techniques.
Matching instances of a knowledge graph is a challenging task due to the open-
world assumption that is followed in knowledge graphs. To facilitate this task,
in addition to defining differential causal rules, this chapter presents an approach
that generates abstract properties that summarises part of instances description.
Instances can be matched on abstract properties instead of their initial description.
The contributions of this chapter are the following:

• The definition of differential causal rules that represent the effect of a treat-
ment on a subset of instances of a knowledge graph characterised by a graph
pattern named strata.

• The generation of abstract properties based on a community detection algo-
rithm summarising part of instances description.

• An algorithm that mines differential causal rules with a pessimistic heuristic
to minimise the number of false rules.

The chapter is structured as follows. Section 4.1 defines differential causal
rules and strata, which is a basic graph pattern representing a set of instances.

Section 4.2 presents how the potential outcome framework and matching are
adapted to mine differential causal rules in knowledge graphs. More particularly,
it expresses the limits of exact instances matching [81] and shows how abstract
properties can be generated [78] and used to match instances. Finally, it presents
Dicare-S and Dicare-C, the algorithms that mine differential causal rules in knowl-
edge graphs.

Section 4.3 describes the experiments done with Dicare-S and Dicare-C and
the datasets it was applied on.

Section 4.4 provides a quantitative and qualitative assessment of the rules
that were mined. Moreover, it discusses the benefits and limits of Dicare-S and
Dicare-C and compares the semantics of differential causal rules to association
rules.

Section 4.5 concludes on the approaches and proposes a set of criteria that
future approaches should focus on.

4.1 Differential Causal Rule

This section defines the different terms that compose a differential causal rule,
that express a causal effect of a treatment on instances of a knowledge graph.
Moreover, as effects can vary depending on the set of instances considered, it also
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motivates the definition of a strata, i.e., a basic graph pattern that specifies the
instances on which an effect is observed.

4.1.1 Motivation: Local Effects and Simpson’s Paradox

A treatment may have heterogeneous effects depending on the set of units it is
applied to. For instance, a drug developed given a disease may only cure women
and not men or only young people. In addition, analysing a treatment effect is
not trivial as an effect may be subject to paradoxes, therefore expressing a wrong
effect. A well-studied paradox is the Simpson’s paradox, presented in Figure 4.1,
where an observed effect might have opposing signs depending on the considered
set of variables describing instances. In this example, it is observed that higher
X values lead to higher Y values if studying the whole set of instances, as shown
with the black line of the figure. However, if the evolution of Y given X is done by
considering whether the instances are from subgroup A, represented by triangles,
or subgroup B, represented by the plus signs, e.g., men or women, then higher
X values lead to smaller Y values. Therefore, the effect has an opposing sign
depending on whether the whole set of instances is studied as one or if this set is
studied separately by adding a variable.

Several metrics exist to measure a causal effect (see section 3.1.4) that can
represent average or local effects. In this chapter, we aim to mine rules that
express a causal effect on instances where this effect has been verified only. By
observing local effects, we aim to mine rules with local effects that do not present
paradoxes. Such specific rules can then be generalised if the effect of a treatment
is observed on different subsets of instances. For instance, we shall specify that
the effect of a drug is only valid on women rather than expressing an average effect
of all instances. Given Figure 4.1, we shall consider that X has a negative effect
on instances from both A and B, and, therefore, a negative effect on all instances.

4.1.2 Strata Definition

To describe the set of instances on which a local effect is valid, we define a strata
as follows.

Definition 2. Strata. Let X be a variable that can be instantiated by individuals
of the target class C, a strata STi(X) is a conjunction of predicates that corresponds
to a basic graph pattern in RDF, rooted by X, and such that all the leaves represent
literals or class IRIs. i is an index that indicates the basic graph pattern a strata
corresponds to.

The depth of the graph pattern defining a strata or a treatment can be bounded
by a given threshold d corresponding to the longest path, one can reach from
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Figure 4.1: Illustration of Simpson’s Paradox

X in the graph pattern without cycles. For example, the target class Writer,
Novelist(X) is a valid strata (i.e., Novelist ⊆ Writer). A more specific strata
can be: Novelist(X) ∧ nationality(X, “France“).

4.1.3 Differential Causal Rule Definition

Given the strata definition, we introduce the other components of a differential
causal rule, the treatment and the outcome. As a reminder, we consider a knowl-
edge graph as follows:

Definition 3. Knowledge Graph. A knowledge graph KG is defined by a pair
(O,F) where O is an ontology represented in OWL and F is a set of RDF triples
describing class instances of O.

Given a knowledge graph, we consider property paths PT in the form PT :
p1(X, Y1)∧ p2(Y1, Y2)∧ . . .∧ pn(Yn−1, Yn). The properties at the end of these paths
can have categorical or numerical values and can be single-valued, i.e., functional,
or multi-valued. For the sake of understanding, we consider the value(s) of a
property path as referring to the value(s) of the property at the end of the path.

We consider that a differential causal rule is applied to two instances (X1, X2)
of a class of O and that a treatment T represents a difference in PT values between
X1 and X2.

We distinguish two types of treatments: a categorical treatment Tc involving
a path of properties whose end is a categorical property,e.g., literal or hierarchical
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values, and a numerical treatment Tn involving a path of properties whose end is
a numerical property, e.g., integer or real values.

Definition 4. Categorical treatment. Let X1 and X2 be two instances of a
class, a property path PT and two sets of values V1 and V2 of path PT for X1 and
X2 respectively. A categorical treatment Tc is defined by:

Tc(X1, X2) : PT (X1, V1,PT
) ∧ PT (X2, V2,PT

) ∧ belongs(v1, V1,PT
) ∧

belongs(v2, V2,PT
) ∧ ¬belongs(v1, V2,PT

) ∧ ¬belongs(v2, V1,PT
),

where belongs(v, V ) is a function that verifies that the value v belongs to the set
of values V , and ¬belong is used to check that v only belongs to the set of values
of one of the two instances.

Definition 5. Numerical treatment. Let X1 and X2 be two instances of a class,
a property path PT and two sets of values V1,PT

and V2,PT
of path PT for X1 and

X2 respectively. A numerical treatment Tn is defined by:

Tn(X1, X2) : PT (X1, V1,PT
) ∧ PT (X2, V2,PT

) ∧ compareTn(s(V1,PT
), s(V2,PT

)),

where compareTn is a function comparing numerical values that can be implemented
by lessThan or greaterThan and s is an aggregation function that can be max,
min, sum, etc.

Similarly, we consider for the outcome a property path PO such as PO :
p1(X,Z1) ∧ p2(Z1, Z2) ∧ . . . ∧ pm(Zm−1, Zm). For the outcome, we only consider
property paths leading to numerical values.

Definition 6. Outcome. Let X1 and X2 be two instances of a class, a property
path PO, two sets of numerical values U1,PO

and U2,PO
of path PO for X1 and X2

respectively, and s an aggregation function. The outcome O is defined by:

O(X1, X2) : PO(X1, U1,PO
) ∧ PO(X2, U2,PO

) ∧ lessThan(s(U1,PO
), s(U2,PO

)),

where lessThan is fixed to avoid the creation of equivalent rules due to the permu-
tation of X1 and X2.

Example 1. A categorical treatment Tc could be that two athletes have different
manualities: one is right-handed, and the second is left-handed. A numerical treat-
ment Tn could express that the club’s budget for one athlete is higher than that of
another. An outcome O could be that one athlete has a better ranking than another.

A differential causal rule (DCR) represents a causal relationship between a
treatment T and an outcome O. It expresses that T , i.e. a difference of values on
a property path PT , explains O, i.e. a difference of values on a property path PO.
As an explanation is to happen before what it explains, PT is to describe a feature
that precedes in times the feature described by PO.
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Definition 7. Differential Causal Rule. Given X1 and X2 two instances of
a target class of O that belong to the strata STi, the property path PO leading to
the result, a treatment T ∈ {Tn(X1, X2),Tc(X1, X2) defined by the property path
PT , and s an aggregation function, a differential causal rule DCRT is defined as
follows:

DCRT : T ∧ STi(X1) ∧ STi(X2) ∧ PO(X1, U1,PO
) ∧ PO(X2, U2,PO

)⇒
lessThan(s(U1,PO

), s(U2,PO
))

It is to note that the outcome is expressed partly in the body of the rule
and partly in its head. We call a rule involving a numerical (resp. categorical)
treatment a numerical (resp. categorical) differential causal rule.

Example 2. Given example 1, a categorical DCR could be that, for athletes play-
ing tennis, being right-handed compared to left-handed explains a better rank. In
this example, the strata defines the sports concerned by the rule. A numerical DCR
could indicate that, for runners, being younger explains faster running times.

4.2 Approaches: Dicare-S and Dicare-C
This section describes how the potential outcome framework, particularly the
matching task, is adapted to mine differential causal rules from knowledge graphs.
We present two approaches, Dicare-S [81] and Dicare-C [78], where Dicare-C is
an extension of Dicare-S.

4.2.1 Adapting the Potential Outcome Framework

The matching task consists of creating pairs of similar instances that differ on a
treatment value to study the effect of a treatment (see 3.1.4). The matching step
can be seen as a pre-processing step that prunes instances that are too different to
others in a dataset to balance the covariate distribution between the treated and
control sets. We aim to match instances using their RDF description as we deal
with knowledge graphs.

To compare instance descriptions, we investigated two different techniques of
matching: exact instance matching, applied as a baseline, and coarsened matching
used in Dicare-S and Dicare-C.

Exact Instances Matching

Exact matching consists of matching two instances if they share the same descrip-
tion on a set of paths. In other words, if all paths describing two instances, apart
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from the paths leading to the treatment and the outcome, lead to the same values,
then the instances can be matched.

However, it has been shown that, in practice, the probability of constructing an
exact match decreases with the number of attributes describing the instances [1],
to the point that it becomes impossible if considering a big number of attributes.
Therefore, the set of attributes on which instances should have the same values is
to be restricted to a set of main attributes defined by the user.

Regarding the open nature of knowledge graphs, with the existence of func-
tional and not functional properties and missing values, exact matching on prop-
erty paths would be even more complex and also unfeasible. Exact matching could
only be applied if a knowledge graph describes instances with a small set of paths.

As a consequence of the constraints imposed by exact matching, alternatives
were proposed.

Coarsened Matching

Iacus et al. proposed an alternative to exact matching named coarsened matching
[37], which basis were already defined by Althauser and Rubin [1]. The principle of
coarsened matching is to coarsen each variable so that substantively indistinguish-
able values are grouped [37]. Therefore, while two slightly different values of one
variable would be considered different in exact matching, they could be considered
identical in coarsened matching. Not only can coarsened matching be used for
causal analysis, but it can also reduce bias.

The choice of coarsening is related to the application domain studied within
a database. Given a numerical variable, a categorical variable, or ordered values,
the coarsened values should be customised based on domain knowledge.

We used coarsened matching in Dicare-S [81] and Dicare-C [78]. More pre-
cisely, while Dicare-S is coarsening paths values of a knowledge graph, Dicare-C
[78] further extends Dicare-S by guiding the coarsening step by generating ab-
stract properties where instances should be matched. These abstract properties
have semantic meaning and are determined upon a community detection step.
They represent a summary of a set of paths and shall replace parts of the initial
RDF description of instances, easing the matching step. We present how they are
generated in the next section.

4.2.2 Abstract Properties Generation

This section defines abstract properties and how they are generated in Dicare-C.
These abstract properties ease the matching step between instances by comparing
their values on the abstract properties instead of their RDF description.
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Definition 8. Abstract Property. An abstract property semantically summarises
a part of an instance description in a knowledge graph. It is represented as a new
path linking an instance of a target class to a community of valued property paths.

For example, given a target class Person, a community might gather property
paths such as the place where a person works, which is an IRI, and its way of
commute, e.g., by bus or car, which is a literal. Such paths can be of different
lengths and lead to IRIs or literal values. The community of valued property paths
might be written as {commute(X,′ bike′), worksAt(X, Y )∧city(Y, Paris)}, and an
abstract property may link an instance of the target class to this community.

Abstract Property Generation

The abstract properties are generated in three main steps: (i) the computation of
the similarity between two valued property paths based on co-occurrence, (ii) the
detection of communities of valued property paths, and finally, (iii) the generation
of abstract properties.

Similarity between valued property paths. In the first step, the similarity
between valued property paths is computed. This step is realised on sets of paths
indicated by a domain expert that should share semantic proximity to discover
meaningful communities. The similarity of two valued property paths is defined
as their co-occurrence.

Definition 9. Co-occurrence. The co-occurrence between two paths Pi and Pj

represents the number of instances having both Pj and Pi in their description,
divided by the number of instances having Pi. With Dk the description of an
instance k of the target class, i.e., the set of valued paths rooted by k, the co-
occurrence is defined as follows:

co− occ(Pi, Pj) =
#{k|(Pi ∈ Dk) ∧ (Pj ∈ Dk)}

#{k|Pi ∈ Dk}
(4.1)

The co-occurrence is asymmetric as only Pi appears in the denominator. There-
fore, it is computed for each (Pi, Pj) and (Pj, Pi). Given a set of valued property
paths where the community discovery applies, the co-occurrence is computed for
each pair of paths. It results in a similarity matrix that can be seen as a directed
weighted graph, named co-occurrence graph, where each node represents a valued
property path Pi, and where each edge from a node Pi to a node Pj is weighted
with the similarity co− occ(Pi, Pj).

Example 3. Let P1 be the path that indicates if a person watches football. Let P2

the gender of a person. If 90% of people watching football are men, co−occ(P1, P2)
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would be equal to 0.9. If 90% of men are watching football, co− occ(P2, P1) would
also be equal to 0.9. However, it is less likely than the previous statement. As a
result, co− occ(P2, P1) is likely to be lower than 0.9.

Communities of valued property paths. The second step consists of detect-
ing communities on the co-occurrence graph. The community detection step is
represented in Figure 4.2, where it is shown that communities are discovered from
the co-occurrence graph. In this figure, the bold arrows indicate higher weights
than the dashed arrows. For a sake of simplicity, only one weight is represented
between two edges, however, as shown in example 3, the weights are not neces-
sarily symmetric. This task is complex as the graph’s matrix is unsymmetrical.
Therefore, spectral clustering algorithms such as Louvain’s algorithm [7] can not
be used. We have chosen to apply OSLOM [2] since it is suitable for detecting
communities in directed graphs. As output, OSLOM may assign all of the valued
property paths into communities. However, some may be isolated without being
part of any community. Such valued property paths are interpreted as indepen-
dent of communities. If no communities are detected, we assume the paths to be
unsuitable for explainability as their distribution can be considered random.

Figure 4.2: Getting communities of property paths from the co-occurrence graph

Generation of abstract properties. In the third step, abstract properties are
generated to link instances of the target class to the detected community they are
associated with. This step is illustrated in Figure 4.3. It is not trivial to decide
whether one instance is associated with a community. Let i1 and i2 two instances
of a target class and A and B two communities. i1 has 1 paths related to A and
3 to B, while i2 has 1 paths related to A and 0 to B. While both instances have
the same absolute number of paths associated with A, their proportion of paths to
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A (25% for i1 and 100% for i2) motivates the generation of an abstract property
from i2 to A only.

Given pc the proportion of paths an instance of the target class has towards
a community c, and Tc a threshold on the proportion given by the expert on the
community c, an abstract property linking the instance to c is created if pc > Tc.
Tc is to be determined carefully as small (resp. high) values would lead to all
(resp. none) instances of the target class having the abstract property in their
description, making it not discriminatory and expressive enough to be studied as
a treatment.

Figure 4.3: Updating the description of the instance i with abstract properties
from communities

The abstract properties generation of Dicare-C relaxes the exact matching
constraint. Indeed, instances having initial RDF descriptions that were different
can be matched on newly generated abstract properties if their RDF descriptions
were semantically related. Next, we present the algorithm that generates abstract
properties.

Abstract Property Algorithm

The algorithm for generating abstract properties is presented in Algorithm 1. It
takes as input the KG, the sets of paths P indicated by the expert where commu-
nities are studied, the target class tc, and the inputs of OSLOM, i.e., the number
of iterations n, a boolean isolated indicating whether all nodes have to be part
of a community or not, and a statistical parameter s related to the statistical
significance of the discovered communities. High values of s will lead to strong
communities, while low values of s lead to higher sensitivity and could detect com-
munities that were not discovered with high values of s. The algorithm returns
KGenriched, which is the knowledge graph enriched with abstract properties.

KGenriched is created in the initialisation of the algorithm with the removePaths
function. It is a copy of KG, except that all paths P related to the community
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detection have been removed. After the initialisation, the algorithm iterates on
each set of paths Pi ∈ P and applies two steps on each Pi. The first step discovers
communities if they exist, while the second step creates abstract properties linking
instances to the communities they are linked to. In the following, we present the
two steps that are applied to each set of paths.

In the first step, an empty squared matrix of order m is created, where m is
the number of paths of Pi. The matrix is named occmatrix and is used to discover
communities. For each combination of paths of Pi, noted (Pij,Pik) ∈ Pi ×Pi, the
value of co-occurrence is computed as defined in Definition 4.1. This computation
is done with the co-occ function and has its value stored in occmatrix. OSLOM
is applied to occmatrix once it has been filled. It uses the parameters n, isolated
and s as previously described.

In the second step, abstract properties are generated. If communities are dis-
covered for a set Pi, thresholds Ti for generating the abstract properties are given
by the user. In the algorithm, this is done with the get-thresholds function. More
precisely, Ti contains a set of thresholds Tic for each community c of the commu-
nities that were discovered. Properties are generated by iterating on all instances
of the target class tc. For each instance x of tc, the proportion of paths pxc to each
community c is computed and compared to the threshold Tc of the community. If
pxc is greater or equal to Tc, then an abstract property is generated from x to c and
is added to the output KGenriched. KGenriched is used for mining the differential
causal rules as presented in the next section 4.2.3.

Algorithm 1 Community Detection and Abstract Properties
1: Input: KG, P , tc, isolated, s, n
2: Output: KGenriched

3: KGenriched ← KG.removePaths(P)
4: for Pi ∈ P do
5: occmatrix← matrix | Pi | × | Pi | ▷ Part 1: Discovering Communities
6: for (Pij,Pik) ∈ Pi × Pi do
7: occmatrix[Pij][Pik] ← co-occ (Pij,Pik)

8: comm← OSLOM (occmatrix, n, isolated, s)
9: if (comm ̸= ∅) then ▷ Part 2: Generating Abstract Properties

10: Ti ← get-thresholds(comm,Pi)
11: for x in instances(tc) do
12: for each community c ∈ comm do
13: if pxc ≥ Tc then
14: KGenriched ← KGenriched ∪ abstractProperty(x, c)
15: Return KGenriched
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4.2.3 Differential Causal Rules Mining

This section presents the mining of differential causal rules. Differential causal
rules are either mined after the pre-processing step of generating abstract proper-
ties for Dicare-C, or without a pre-processing step for Dicare-S. Apart from this
pre-processing step, their mining follows the same procedure for both Dicare-C
and Dicare-S and relies on the potential outcome framework. More precisely, the
differential causal rules are mined in three steps. In the first step, potential differ-
ential causal rules are generated. In the second step, their effect on an outcome is
measured to select the valid rules, i.e., that have an effect on the outcome. Lastly,
the third step is a post-processing of the valid rules that aim to facilitate their
understanding. The three steps are described in the following sections.

Step 1: Potential Rules Generation

Potential rules are generated in a two steps approach. First, it creates a partition
of the instances of the target class. As a result, it obtains clusters of instances
where all instances of a cluster are described by the same strata. Then, it generates
potential rules by doing a pair-wise comparison of the clusters to verify whether a
treatment can be studied or not.

Parameters. The algorithm to generate the potential differential rules is pre-
sented in Algorithm 2. It takes as inputs the knowledge graph enriched with the
abstract properties KGenriched for Dicare-C. For Dicare-S, KGenriched is the same
knowledge graph as KG. Other parameters are the target class tc, the property
paths Q that will be queried to match instances to clusters, the parameters for
the coarsening of paths co, a threshold on the minimum support of instances of a
cluster tsupp, and a threshold on the maximum number of paths in the treatment of
a rule ttr. It is to note that Q is composed of property paths with a depth shorter
or equal to d and that it includes the abstract properties previously generated.

Partitioning the instances. In the first step of the potential rules generation,
described in lines 4 to 15 in Algorithm 2, instances of the target class tc are
partitioned into clusters that we name described clusters (DC). We provide a
definition of described clusters and explain how they are obtained.

Definition 10. Described Clusters. A described cluster DCi = (STi, Ii) asso-
ciates a strata STi, which is a graph pattern, to the set of instances Ii of the target
class tc that has the strata STi in their description.

A DC is obtained from an existing DC, apart from the initial described cluster
DC0 = (ST0, Itc) that associates the empty strata ST0 to all instances of tc, noted
Itc . Consequently, the partitioning is initialised with DC0.
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Figure 4.4: Partitioning instances into described clusters

The partitioning of the instances into DCs is done by iteratively querying all
paths P that are in Q. For each path P , co(P ) is included in co and defines the
set of interval values of P . These intervals are used to coarsen the path values.
Therefore, with the function coarsenedQuery that we define, instances with the
same coarsened value coPj

for path P are obtained. It is to note that the coarsening
can be applied for both numerical or categorical values.

Given a described cluster DCi = (STi, Ii), one or several DCs more specific
than DCi are obtained by querying P on Ii. More precisely, with n the number of
intervals of path P , n more specific DC are obtained from DCi. Given an interval
value coPj

and the instances Ij ⊂ Ii that have values in coPj
, a more specific

described cluster is DCj = (STj, Ij) where STl is the strata STi enriched with the
value coPj

on P .
All property paths of Q are queried until the most specific described clusters

are obtained. It results in a partition of the instances. A described cluster DCi is
only queried if its number of instances n(Ii) is higher than the minimum support
of instances tsupp. We propose example 4 based in Figure 4.4 to illustrate the
algorithm. As seen in the algorithm, we propose to use queues to facilitate the
construction of described clusters. Using the queues allows to easily select the
described clusters that can be extended.

Example 4. In Figure 4.4, the algorithm is described with Q = {PA, PB} where
each property path in Q can lead to two values. As seen on the root of the proposed
tree structure, the partitioning is initialised with DC0. The nodes at a depth of
one represent the DCs obtained after the query on PA on DC0, and the nodes at a
depth of two represent the DCs obtained after the query on PB on DC1 and DC2.

Generating Potential Rules. In the tree structure that represents the parti-
tioning of the target class instances into the described clusters, some described
clusters are located at the maximum depth.

Definition 11. Maximally Specific Described Clusters. A maximally specific
described cluster MSC is a described cluster with a strata describing all paths from
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Figure 4.5: Generating potential rules from maximally specific described clusters

Q. They are the leaves of the partitioning tree with a depth equal to the size of Q.

The set of MSC is used to generate the potential rules. To this end, the strata
of all pairs ofMSC, i.e., (MSCi,MSCj) ∈MSC×MSC, are compared. With STi
the strata ofMSCi and STj the strata ofMSCj, STi and STj are compared on each
path value. In algorithm 2, this comparison is done by the getPathDifferences
function. The number of paths where the strata have different values is obtained
and compared to the threshold on the maximum number of paths in a treatment
ttr. If it is lower or equal than ttr, then a potential rule Ri,j is generated with as
treatment the differences of values on the paths that were obtained and as strata
the same strata as STi or STj without the treatment paths. In algorithm 2, the
potential rule Ri,j is generated by the builtRule function. The effect of Ri,j is
computed using Ii and Ij in the following step. We propose the example 5 to
illustrate the generation of a potential rule.

Example 5. In Figure 4.5, the MSC DC3 and DC4 are presented. Let ttr = 1.
The comparison of the strata of DC3 and DC4 shows that they have the same value
on PA but a different value on PB. Therefore, they have one path with a different
value, which makes it equal to ttr. A potential rule R1 can therefore be generated.
The strata ST1 of R1 is a value A1 on PA, and the treatment is a difference of
values on PB that is value B1 compared to value B2.

Step 2: Causal Metric Computation for Rule Assessment

The quality of association rules (see section 3.2) is assessed by metrics such as
confidence and support, and their mining relies on exploiting properties of these
metrics, e.g., the monotony of the support. The support of a rule R is the number
of true predictions made by the rule, i.e., the number of times it appears. The
confidence of a rule R is the support of R divided by the total number of predictions
made by R, i.e., a relative value that is the support of the rule divided by the
support of its body. However, these metrics alone are not suited to quantify a
causal effect of a rule as they do not measure a treatment effect. For instance, a
treatment could appear only a few times, meaning it will have low support, but
could still have a substantial effect. Similarly, confidence could indicate that the
body and the head of a rule are frequently associated. However, the measure of
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Algorithm 2 Generating Potential Rules
1: Input: KGenriched, tc, Q, co, tsupp, ttr
2: Output: Rpotential

3: Rpotential = []
4: I0 = instances(tc)
5: DC0 = (ST0, I0)
6: QDC0 = queue(DC0)
7: for i in range(0, len(Q)) do ▷ Part 1: Partitioning the instances of tc
8: P = Q[i]
9: QDCi+1

= queue()

10: while ¬QDCi
.isEmpty() do

11: DCl = QDCi
.dequeue()

12: for coPj
in co(P ) do

13: Ij = coarsenedQuery(KGenriched, Il, P, coPj
)

14: if size(Ij) ≥ tsupport then
15: DCj = (STl ∧ P = coPj

, Ij)

16: QDCi+1
.enqueue(DCj)

17: MSC = QDClen(Q)+1
▷ Part 2: Generating potential rules

18: for (MSCi,MSCj) ∈MSC ×MSC do
19: if getPathDifferences(STi, STj) ≤ ttr then
20: Ri,j = builtRule(MSCi,MSCj)
21: Rpotential.add(Ri,j)

22: Return Rpotential
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a treatment effect should also consider the rule’s confidence with the opposing
head, as it could be higher and suggest an opposing effect of the treatment. More
generally, the support and the confidence do not show notions of comparison, e.g.,
as how one treatment performs compared to another. Therefore, another metric
is to be used to assess the quality of a differential causal rule.

We propose to use a causal ratio inspired by the odds ratio [86] that explicitly
shows the strength of the relation between the treatment and the outcome. The
causal ratio differs from the odds ratio as it is defined for a knowledge graph and
applied to pairs of instances that belong to a defined strata. We give the definition
of the causal ratio.

Definition 12. Causal Ratio. Let a differential causal rule R with a treat-
ment T such as R : T ∧ B⃗ ⇒ lessThan(s(U1,PO

), s(U2,PO
)) where B⃗ : STi(X1) ∧

STi(X2) ∧ PO(X1, U1,PO
) ∧ PO(X2, U2,PO

). The metric causal ratio, noted causalr,
is the following:

causalr(R) =
supp(T ∧ B⃗ ⇒ lessThan(s(U1,PO

), s(U2,PO
)))

supp(T ∧ B⃗ ⇒ greaterThan(s(U1,PO
), s(U2,PO

))
(4.2)

causalr is the ratio between the support of a differential causal rule and the
support of the same rule with the opposing effect. It is a symmetric value, where a
value of 1 indicates that the treatment is independent of the outcome, as it equally
leads to the outcome lessThan or the opposing outcome greaterThan. A value
higher (resp. lower) than 1, however, means that the treatment has a positive
(resp. negative) effect on the outcome, as pairs with the treatment will be more
(resp. less) likely to have the outcome than the opposing outcome.

The treatment of numerical rules has been formalised with the compareTn pred-
icate that can either be lessThan or greaterThan (see Definition 5). Similarly,
a categorical treatment may verify the presence of one value V1 and the absence
of a value V2, or the inverse. In both cases, a treatment can therefore be studied
in two ways. To ease the process of mining the rules, the treatments are initially
studied in both ways, and the rule that leads to a positive effect, i.e., a value of
causalr higher than 1, is kept.

The last step to assess the effect of a rule that has a positive effect on the
outcome consists in constructing a statistical test to evaluate whether causalr is
significantly higher than 1. It is inspired by Li et al. [45] and considers a standard
normal deviate u1−α/2 to compute a confidence interval with a (1-α) confidence as
described in equation 4.3. With a = supp(T ∧ B⃗ ⇒ lessThan(s(U1,PO

), s(U2,PO
))

and b = supp(T ∧ B⃗ ⇒ greaterThan(s(U1,PO
), s(U2,PO

))):

[cr−, cr+] = exp(ln(causalr)± u1−α/2

√
1

a
+

1

b
) (4.3)
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causalr is considered significantly higher than 1 if cr− > 1. This confidence
interval is computed for all potential causal rules from Rpotential to select the rules
where a treatment has an effect. It is to note that a support of zero is replaced by
1 to avoid a division by 0.

Example 6. Let us consider two fiction writers who published their first books at
ages 18 and 25 and three non-fiction writers who published their first books at ages
17, 31 and 32. The rule explaining that fiction writers publish their first book at
a younger age than non-fiction writers would have a causalr value of 2, as four
pairs verify the rule, and two pairs where the opposite outcome is observed.

Step 3: Generalising Consistent Rules

The previous step selected the potential rules that have an effect on the treatment.
The selected rules are said to be specific, as they built from maximally specific
described clusters in the first step. In other words, the selected rules may have
strata that are describing a large number of paths. While such strata makes a rule
highly expressive by describing the instances on which a treatment has an effect,
it may also make the rules less interpretable.

As a treatment effect may appear in different rules, we propose to merge the
strata of the rules involving the same treatment to obtain more general rules
that are easier to interpret. In addition to being easier to interpret, the number
of general rules is also lower than the number of specific rules as the latter are
merged. The merging procedure ensures the generation of consistent rules only,
as defined in definition 13. This procedure is said to be resistant to paradoxes, as
described in section 4.1.1, as it verifies local effects and then generalises them in
creating more general rules. An example of resistance to paradoxes is presented in
example 7.

Definition 13. Rule Consistency. Let R1 : S⃗T1∧ T⃗ ⇒ lessThan(s(U1), s(U2)).
The rule R1 is consistent iff ∀ST2 ⊑ ST1, R2 : S⃗T2∧T⃗ ⇒ lessThan(s(U1), s(U2)) is
also consistent or ST1 is maximally specific and causalr(R1) is significantly higher
than 1. A strata ST1 is said to be maximally specific iff there is no ST2 ⊑ ST1
such that depth(ST2) ≤ d, where d is a parameter setting the maximal depth.

Example 7. Table 4.1 describes the continent of writers, the year they were born,
and their age when they published their first book. The treatment implying that
being born later explains an older age of the first publication is assessed by causalr.
If matching writers independently of their continent, causalr would equal 0.57.
However, if matching writers from Europe only (resp. USA), causalr would equal
5.0 (resp. 4.0). Therefore, the process of generalising consistent rules would first

59



Coarsened Matching L. Simonne

Table 4.1: Simpson’s Paradox: An Example

Continent Birth Date Age First Book
Europe 1943 35
Europe 1955 40
Europe 1957 39
Europe 1960 46
USA 1970 19
USA 1980 29
USA 1982 27
USA 1983 31
USA 1985 31

lead to the two specific rules that verify the treatment on continents, then to the
rule implying that the treatment is valid on both continents.

The process of generalising consistent rules is performed in a recursive merging
procedure to find more general rules from the specific rules previously mined.

To do so, the valid specific rules are initially placed in a list named the can-
didate’s list. At each iteration, the first rule of the candidate’s list is compared
to the other rules of the list to detect rules it could be merged with. Two rules
can be merged if they have the same treatment and the paths values of their
strata are identical except for one path, e.g., the strata Genre(X,Fiction) ∧
Continent(X,Europe) and Genre(X,Fiction) ∧ Continent(X,USA). We aim
to suppress this path to generalise the strata, e.g. suppression of Continent. If
two rules with the same treatment were to be valid for Genre(X,NonFiction) ∧
Continent(X,Europe) and Genre(X,Fiction) ∧Continent(X,USA), they could
not be merged as they differ on more than one path.

A merged rule is created if there does not exist a rule that uses the same
strata with another value for the path to suppress. It will be composed of the
treatment and common part of the strata expressed in the rules it is created from.
In our example, if the rule Genre(X,Fiction) ∧ Continent(X,Asia) is not valid,
the generalised strata Genre(X,Fiction) can not be generated.

The resulting merged rule is then added to the candidate rules. If no rules to
be merged with are found, then the rule is at the more general description it can
be. In this case, it is removed from the candidate’s list and outputted in the set of
final differential causal rules. The merging procedure stops when the candidate’s
list is empty. An example of how rules can be merged is provided in example 7.

60



Coarsened Matching L. Simonne

4.3 Experiments

The objectives of the experiments are threefold. First, they aim to quantitatively
evaluate the results of Dicare-S and Dicare-C in terms of the number of differential
causal rules that can be discovered and the number of outcome differences they can
explain. The second objective is to analyse the plausibility and interpretability of
the discovered rules qualitatively. This analysis is realised by collaborating with
domain experts. Lastly, we aim to compare the discovered rules with both the
state-of-the-art approach [51] and association rules.

4.3.1 Datasets Presentation and Settings

Two datasets were used for the experimental evaluation of our approach: DBpe-
diaW and Vitamin. Some statistics of the datasets are presented in Table 4.2.
The datasets can be downloaded at this link1.

Table 4.2: Datasets Description

DBpediaW Vitamin
# Facts 6908 86006

# Classes 4 19
# instances tc 185 1714
# Properties 8 22

# Execution Time (s) < 1 15.1
# Rules 12 77

DBpediaW

DBpediaW has been built by Munch et al. [51]. It describes authors of books and
has been obtained by querying DBpedia [3]. Its schema is presented in Figure 4.6.

Figure 4.6: Schema of DBpediaW

1https://github.com/LucasSimonne/kcap2021
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The class Writer is the main class of DBpediaW. It is described by the writers’
birth date, genre and gender. This knowledge graph also describes books pub-
lished by the authors, with their release date and the number of pages. Lastly, it
also describes the universities the authors attended, describing their countries and
ranking, denoted by arwuW. As DBpediaW was constructed by querying DBpe-
dia, its properties were originally in DBpedia and are documented on the DBpedia
web-page2.

The studied outcome path is the age of an author at the time he published
his first book. As it is a single value, no aggregation function s is used for the
outcome. As a result, the mined rules aim to explain why some authors published
their first book at a younger age than others. The discretization has been done
similarly as in Munch et al. [51] to facilitate the comparison of both approaches.

As DBpediaW is a knowledge graph describing a domain relatively simple to
understand, the results obtained from Dicare-S and Dicare-C on it are analysed
by people that are not experts of the book publication domain. The evaluation
has been realised by researchers in computer science from Université Paris-Saclay.

Vitamin

Vitamin is the second dataset used for the experiment. It is bigger than DBpediaW
and has a more complex schema described in Figure 4.7. It extensively describes
people and their eating habits.

Vitamin has been constructed with data obtained through an online survey
by researchers from INRAE3 [88]. The definition of the schema has been built in
collaboration with an INRAE researcher involved in the survey design. The survey
is composed of 33 questions, where each question can be answered by one or several
answers that can either be numerical or categorical values. The questions cover a
wide set of categories that includes criteria in food choice, current and ideal food
diet, food preferences, reasons, hindrances and facilitating factors for reducing
animal product consumption, socio-demographic information, and agreement with
arguments on animal product consumption. The schema has been built to gather
information on questions of the same categories under the same or similar concepts.
As there were, up to our knowledge, no properties for describing this domain, we
also constructed the properties of the schema. Additional information on the
survey is available [88, 73].

The studied outcome path is the willingness of people to reduce their meat
consumption. In other words, we aim to explain why some people have a higher
will to reduce their meat consumption than others. Such explanations could either
confirm existing knowledge on this phenomenon or provide new explanations that

2https://dbpedia.org/ontology/
3National Research Institute for Agriculture, Food and Environment
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Figure 4.7: Schema of Vitamin

could be the object of future experiments. As the outcome is a single value, no
aggregation function s is used.

As shown in Figure 4.7, the schema is rather complex. As a consequence, the
results of Dicare-S and Dicare-C over Vitamin were submitted to two experts in
nutritional behaviour for the qualitative evaluation of the rules.

4.3.2 Communities Detection

The community detection step from Dicare-C has only been applied on Vitamin.
It has not been applied to DBpediaW as it is considered simple enough to be
exploited directly.

Parameters have been defined for using OSLOM [2]. isolated has been set to
True to enable nodes to be single, and the statistical significance of the commu-
nities s has been set to 0.9. Three topics were chosen to define the sets of paths
P where communities were searched: food taste, positive or negative opinions on
diet-change motivation, opinions on climate change and animal well-being.

The paths related to opinions proved to have four communities used to create
abstract properties. An extract of the resulting communities is shown in Table
4.3. Community 1 shows a profile of opinions associated with the importance
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Table 4.3: Extract of Communities - Vitamin

Community 1
Livestock is a major contributor to global warming

Vegetarian diets are healthier
The problem is not breeding but industrial breeding

Community 2
Vegan and Vegetarian diets are deficient

Human Nature is to eat animals
Eating animal products makes me happy

of animal well-being, the impact of breeding on climate change, and reasonable
opinions on meat-free diets. On the contrary, community 2 shows that pro-meat
opinions are associated with good opinions on breeding as a natural element un-
related to climate issues, and with bad opinions on meat-free diets. Community
3 gather moderate opinions on climate and animal well-being, while 4 describe
various strong but conflicting opinions. The expert assessment is that the result-
ing communities are well highlighting extreme points of view concerning postures
towards food: conservationists or meat lovers. In this sense, the communities were
judged accurate, intuitive and useful for explainability purposes.

The other sets of paths concerning food taste and positive or negative influences
did not lead to communities. They are, therefore, not used for the explainability
purpose in the following steps.

4.3.3 Mining Evaluation

The quantitative and qualitative results of Dicare-S and Dicare-C on DBpediaW
and Vitamin are presented in Table 4.4. The table presents, for each approach and
dataset, the number of rules that are obtained, the average number of rules that
can explain the outcome of a pair, the percentage of correct rules as evaluated
by experts, and the number of pairs that are explained with at least one rule.
The baseline is the exact matching procedure described in 4.2.1, i.e., matching
instances if they share the same description on a set of paths.

For each rule, the experts could evaluate a rule with the following choices: a
rule (i) seems relevant, (ii) may be relevant, (iii) the expert does not know or (iv)
the rule seems false.

DBpediaW

Dicare-S and Dicare-C have the same results on DBpediaW as no community
detection step was applied, while the baseline does not mine any rules as exact
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Table 4.4: Mining results using Dicare-S and Dicare-C.

DBPediaW Vitamin
#Rules (Per pair) %Correct %Pairs #Rules (Per pair) %Correct %Pairs

Baseline 0 (0) NA 0 0 (0) NA 0.0
Dicare-S 12 (1.1) 83.3 16.5 0 (0.0) NA 0.0
Dicare-C 12 (1.1) 83.3 16.5 44 (1.1) 80.0 52.5

matching is not possible in this dataset. Therefore, we refer to the results of both
approaches as the results of Dicare-S in the following. Dicare-S outputted 22
most specific rules, including 14 gradual and 8 categorical. This set resulted in 12
rules after the generalisation step. The equations 4.4 and 4.5 present a simplified
representation of two rules.

genre(Fiction) ∧ gender(male) ∧ country(US)∧
ageF irstBook(i1, u1) ∧ ageF irstBook(i2, u2)∧

univ.arwuW(i1,v1) ∧ univ.arwuW(i2,v2) ∧ v1 < v2

⇒ u1 < u2

(4.4)

genre(Fiction) ∧ country(US)∧
ageF irstBook(i1, u1) ∧ ageF irstBook(i2, u2)∧

birthYear(i1,v1) ∧ birthYear(i2,v2) ∧ v1 > v2

⇒ u1 < u2

(4.5)

These results show that the generalisation can lead to more general rules even
with a drastic consistency constraint. The evaluators, i.e., 5 researchers in com-
puter science, judged that 9 out of the 12 rules (75%) were meaningful and inter-
pretable.

If looking at the rule in equation 4.4, it makes sense that studying at universities
of better standing may explain a younger age of first book publication for writers.
Such writers could have more credit to editors as their universities are better
known. The rule from equation 4.5 indicates that the earlier a writer is born, for
instance, a writer born in 1900 compared to another born in 1960, the later he will
publish his first book. An explanation could be the democratisation of access to
publishing, which is becoming gradually easier. With the years passing, we could
imagine new processes to print books and more editors in an extended market.

It is to note that such rules can be considered causal if and only if all prop-
erties associated with the outcome are studied. Indeed, a missing property could
explain both the outcome and an existing property that explains the outcome.
Consequently, the outputted rule could express a correlation between two paths
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having the same cause more than causation. The knowledge graph’s completeness
in terms of paths might also have an effect on the number of pairs explained. For
instance, for DBpediaW, the rules can explain 16.5% of the differences between
ages of the first publication. This suggests that other properties not described in
the dataset should be considered to explain the outcome.

Vitamin

Dicare-S did not output any rule on Vitamin as matching instances without ab-
stract properties is impossible. The baseline also did not output any rule, as exact
matching is not possible either. In total, 119 specific rules were mined and merged
into 44 more specific rules by Dicare-C. These rules can explain the reduction in
meat for 52.5% of the pairs of people. An example of a mined rule is presented in
equation 4.6. It expresses that, for women, being part of community 1 compared
to community 2 explains a higher meat reduction aim.

gender(X,woman) ∧ reduction(i1, v1) ∧ reduction(i2, v2)
hasOpinion(i1,2) ∧ hasOpinion(i2,1)

⇒ v1 < v2

(4.6)

livesIn(X, countryside) ∧ lowerEducation(X,Bachelor) ∧ hasOpinion(X, 3)∧
reduction(i1, u1) ∧ reduction(i2, u2) ∧ gender(i1,man) ∧ gender(i2,woman)

⇒ u1 < u2

(4.7)

The experts estimated that 35 of the 44 rules were meaningful and interpretable
(80%). In particular, rules involving the mined communities as the treatment were
judged very intuitive. It has been noted that a rule’s interpretability is dependent
on its strata. More precisely, the merged rules are characterised by their length,
as their strata can be more or less specific. The more general the rule is, the easier
it is to understand. For instance, in the rule described in equation 4.7, the sex
treatment has been found in a rule applied to people living in rural areas, having
at least a Bachelor, and having the community 3 on opinions. Compared to the
previous rule, it is harder to understand and assess.

4.4 Comparative Evaluation and Discussion

4.4.1 Comparison to Association Rules

Association rules were mined with AMIE [20] after adding a predicate in the
dataset that compares the outcome of 2 people, named aimsToChangeComparedTo.
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Without the community step, AMIE discovers 5480 rules that conclude on this
predicate. These rules are too numerous and hardly interpretable, also we simpli-
fied the graph with the abstract properties. 111 rules were mined with a support
of 100 and confidence of 0.1 as parameters. One mined rule is:

higherEducation(x,HighSchool) ∧ age(y, [1, 34])
⇒ aimsToChangeComparedTo(x, y)

(4.8)

Such an association rule does not explain the difference in the reduction in meat.
In this rule, no treatment clearly appears, as there are no comparisons between
x and y on the paths in the association rule. For instance, y could have stopped
its studies at high school, in which case education would not be a treatment, but
y could also have attended university, in which case education would have been
a treatment not described in the rule. More generally, a property can not be
used as a treatment if the value is only known for one instance. In addition to
this treatment issue, another problem is related to the paths not described in the
rule. For instance, an explanation to the head of the rule could be that x is a
woman and y is a man, but this is not mentioned in the rule. More generally,
even if a treatment were to appear in the association rule, AMIE does not verify
the similarity of instances as it does not rely on matching or defines the strata
for which a treatment is valid. Therefore, due to the treatment that is not clearly
expressed and the missing paths that could explain the outcome, association rules
are not suited to explain outcome differences.

4.4.2 Comparison to the State of the Art

The results are compared to Munch et al. [51], whose approach based on bayesian
networks aims to predict a discretized outcome with discretized attributes. This
approach discovers that the year of publishing depends directly on the writers’
university and birth date. For instance, a writer born before 1950 who studied
in a university with an arwuW smaller or equal to 100 has a 0.58 probability of
publishing his first book before 1980.

As a reminder, Dicare-S and Dicare-C aim to explain differences in the out-
come rather than making predictions. They discover more rules involving four
different treatments, i.e., paths on birthDate, arwuW, genre, and gender, that
vary depending on 12 different strata. For instance, one mined rule indicates that
the book genre can also explain differences in the age of first publication for a given
strata, while such rules were not found by the approach of Munch et al. [51]. In
addition to discovering more treatments, differential causal rules are more expres-
sive as they express graduality, e.g., with the rank of a university (equation 4.4)
or the birth date of an author (equation 4.5), while these paths were discretized
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in Munch et al.

4.4.3 Comparison of Dicare-S and Dicare-C

The experiment on Vitamin shows an interest in discovering and using abstract
properties for matching. Not only the mined communities were judged meaningful
and able to represent sets of paths, but their use also made it possible to mine
differential causal rules on a complex knowledge graph. While Dicare-S can be used
on relatively simple knowledge graphs, Dicare-C is to be used on more complex
knowledge graphs.

4.4.4 Expert Assessment

The aim of Thomopoulos et al. [88] was to investigate the relationship between
environmental concerns, health and ethical issues and consumer demands, knowing
that livestock production has an important ecological footprint. With a random
forest model trained on the tabular data used to generate Vitamin, they can predict
that a person will shift towards fewer animal products in their food diet with a 0.65
accuracy. This relatively low accuracy shows that this data is not easy to exploit
for classification purposes. The random forest insights led to the conclusion that:
the willingness to change is stronger for the youngest, hindrances to change are
food pleasure, health and to a lesser extent social resistance and animal ethics. The
less radical the animal products reduction is, the more environmental concerns are
the main motivation.

Some similarities can be found between the random forest, Dicare-S and Dicare-
C. In all of them, through a more or less complex procedure, the variables can be
ordered by discriminating power. For instance, it has been shown in Dicare-C that
the more general rules had the opinion as treatment, followed by the gender, the
place of living and finally the education. In Thomopoulos et al. [88], the features
that better separate individuals that want to change their diets from individuals
that do not can also be retrieved and ranked. However, in our approaches, we
do not aim to classify all individuals, but rather to find out all the plausible rea-
sons why one would want to change his diet and not the other. Our approaches
guarantee that all the pairs of individuals used to establish the rule quality are
identical, i.e., have the same property paths or abstract properties, except for the
values that appear in the treatment. This makes our rules adapted to explain
differences in the outcome with differences in treatment that can potentially be
causal. Furthermore, since the number of treatments and strata can be huge, the
community step of Dicare-C simplifies the explanations and the discovery process.
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4.5 Conclusion

This chapter proposed the first definition of differential causal rules and two ap-
proaches, Dicare-S and Dicare-C, to mine them. The approaches are based on
the potential outcome framework and, in particular, on instance matching. As
exactly matching instances of a knowledge graph is not feasible, the approaches
rely on coarsened matching and generating abstract properties that are a semantic
summary of part of the description of the instance.

The discovered rules are expressive and were judged interpretable and mostly
correct by experts from the considered application. However, due to the pessimistic
heuristic during the rule mining process, the rules cannot provide an explanation
for many pairs. Therefore, no explanations are provided for many pairs. A second
drawback of the approach is that discovered rules can be more or less general
depending on the set of instances they are applied to, which makes them more
or less interpretable. In particular, specific rules, i.e., that are applied on precise
subsets of graph instances, are harder to interpret.

As a consequence, we highlight several limitations on which Dicare-S and
Dicare-C can be improved in next approaches (see Chapters 5 and 6):

• Rule Interpretability. A rule should be easily understandable by an expert
to be used as insight. Rules with long strata, as mined through Dicare-C,
are hardly understandable and are hardly usable. Moreover, it is impossible
to rank the rules and the treatment effects.

• Pairs Explanation. In terms of explainability, current approaches hardly
explain more than half of the pairs having the outcome on the tested datasets.
As this can be partly explained by the dataset content, mining more general
rules that could explain more pairs is of interest.

• Instance Matching Criteria. The comparison of exact matching to coars-
ened matching with abstract properties showed that matching similar in-
stances is a complex step. Moreover, matching becomes increasingly difficult
with the size of a knowledge graph. Alleviating this constraint could allow
for mining more general rules.

• Feasibility on Knowledge Graphs. Lastly, it is to note that current
approaches were developed on knowledge graphs where mining communities
is possible. However, all knowledge graphs might not be suited for this
task. As a consequence, other approaches should consider matching similar
instances without using abstract properties to expand the set of knowledge
graphs on which causal discovery can be applied.
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In the following chapters, we will propose approaches that aim to satisfy one,
or several of the fore-mentioned limitations: Chapter 5 proposes an approach to
enable an easier interpretation of differential causal rules, and Chapter 6 proposes
an approach that mines a new type of rules expressing an average effect for a
treatment to explain more pairs.
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Chapter 5

Counter Effect Rules Mining

In this chapter, we will present our contribution to counter effect rule mining
in knowledge graphs. These rules are obtained by processing differential causal
rules to facilitate their interpretation. This work is the object of the following
publication:

1. Lucas Simonne, Nathalie Pernelle, and Fatiha Saïs. Counter ef-
fect rules mining in knowledge graphs. In Knowledge Engineering and
Knowledge Management, Lecture Notes in Computer Science, pages
167–173. Springer International Publishing, 2022 [77]

The previous chapter introduced Dicare-C and Dicare-S, two approaches that
mine differential causal rules from a knowledge graph. Such rules express that
a treatment has a causal effect on a subset of instances defined by a graph pat-
tern called strata. While these approaches output differential causal rules judged
globally of interest and meaningful by experts, some of these rules are hardly in-
terpretable. For instance, one treatment may have opposing effects in some rules
depending on the set of instances it is applied to. In addition to their interpreta-
tion, the ranking of treatments is not trivial, as the set of rules can be large.

Given these limits of the previous approaches that mine differential causal rules,
Dicare-S and Dicare-C, we propose in this chapter a new type of rule that is com-
plementary to such rules and that facilitate their interpretation. The contributions
of this chapter are the following :

• The definition of counter effect rules expressing that a treatment can have
opposing effects on two sets of instances given a difference between these
sets’ descriptions. Such rules can be used to rank treatments and to display
the local effects of treatments from differential causal rules.
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• An algorithm that mines counter effect rules from previously mined differ-
ential causal rules.

The chapter is structured as follows. Section 5.1 defines counter effect rules,
that show opposing causal effects of a treatment on different subsets of instances.

Section 5.2 describes how counter effect rules are mined as a post-processing
step of differential causal rules mined using Dicare-C.

Section 5.3 presents counter effect rules that were mined with the proposed
approach and one dataset, and show how they can be used to rank treatments.

Section 5.4 provides a discussion on counter effect rules and how they can be
used to complement differential causal rule mining approaches.

Section 5.5 concludes this chapter on counter effect rules.

5.1 Counter Effect Rules

This section defines the limits of differential causal rules mined by Dicare-S and
Dicare-C, and motivates the need for using a complementary type of rules, named
counter effect rules, that aim to ease the interpretation of differential causal rules.

5.1.1 Motivation

The previous chapter, Chapter 4, introduced Dicare-S and Dicare-C, two ap-
proaches that were defined to mine differential causal rules from a knowledge
graph. Such rules express that a treatment has a causal effect on a specified
set of instances described by a strata, i.e., a basic graph pattern.

While differential causal rules were mined and overall judged interpretable by
experts, their analysis presents some limitations. More precisely, two issues arise.
The first is that, at the scale of one rule, a rule can be difficult to interpret due to
its strata length. Indeed, while a general rule, i.e., with few elements in its strata,
will be easily interpreted, more specific rules are harder to interpret. The second
issue comes at the scale of analysing the whole set of rules and is on treatment
effects. Firstly, the rules are numerous, and it might therefore be difficult for a
user to go through all of the rules to get insights, for instance, to understand
which treatment has the stronger effect. Secondly, a treatment may appear in
several rules, sometimes with a consistent effect as it can be the same for several
strata, but also with opposing effects for other strata. Therefore, the effect of one
treatment can be ambiguous, and the differential causal rules alone are not suited
to explain why the treatment has opposing effects.

This chapter focuses on the second issue, i.e., the treatment effects, and in-
troduces counter effect rules to facilitate the interpretability of differential causal
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rules. These rules indicate that one treatment can have opposing effects depending
on the set of instances it is applied to. By observing the difference between the
description of sets of instances where a treatment has opposing effects, it is possi-
ble to observe the change of description, i.e., another treatment, that explains the
change of effect. This makes it possible to rank treatment effects depending on,
first, how consistent the effects of one treatment are, and, secondly, how frequently
one treatment can change the effect of another treatment.

5.1.2 Counter Effect Rules Definition

We first propose a definition of a description change, i.e., how one graph pattern is
modified to obtain another graph pattern. This definition is based on the definition
of a strata (see definition 2).

Definition 14. Description Change. Let STi and STj be two strata that de-
scribe two sets of instances Ii and Ij. The description change between STi and
STj is denoted by →, such that STi → STj indicates that the considered instances
changed from Ii to Ij.

Let a differential causal rule DCR1 that expresses the effect of a treatment T
on the strata ST1. Let another strata ST2. The description change from ST1 to
ST2, noted ST1 → ST2, can be used to study how the effect of the treatment T
evolves when applied to another strata, ST2.

Example 8. Let two strata ST1 : Researcher(X)∧ gender(X, “Man“) and ST2 :
Researcher(X) ∧ gender(X, “Woman“). Let T be a treatment whose effect is
studied on ST1 and ST2. The description change ST1 → ST2 can be used to study
how the effect of T changes depending on whether it is applied to researchers that
are men or women.

Given the definition of description change, we propose a definition for counter
effect rules.

Definition 15. Counter Effect Rule. Let two instances X1 and X2 of a class
C ∈ O, and a treatment T that explains an outcome O when X1 and X2 belong
to a strata STi. A counter effect rule CERT expresses that, if X1 and X2 belong
to another strata STj ̸= STi, then T will explain the opposite outcome O. A
description change from STi to STj explains an opposite effect of a treatment.
More formally, a CERT is defined as follows:

CERT (X1, X2) : C(X1) ∧ C(X2) ∧ T (X1, X2) ∧ PO(X1, U1) ∧ PO(X2, U2)∧
[STi(X1) ∧ STi(X2)→ STj(X1) ∧ STj(X2)]⇒ [O(X1, X2)→ O(X1, X2)]

(5.1)
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It is to note that such a rule is built from the combination of two differential
causal rules. It is not a first-order logic rule, but a representation of how one treat-
ment may have opposing effects depending on the instances it is applied on. Such
rules are of interest to experts as they ease the understanding of the differential
causal rules for two reasons. First, they explicitly show that a treatment may have
opposing effects and why. Secondly, such rules can be used to show the consistency
of treatments, which can be a criterion to rank them. We discuss these criteria in
section 5.3.

Example 9. Let two strata ST1 : Researcher(X)∧ gender(X, “Man“) and ST2 :
Researcher(X)∧gender(X, “Woman“). Given two instances X1 and X2, a treat-
ment T indicates that X1 lives in the countryside and X2 lives in a city. The
outcome O indicates that X1 has a higher will to reduce its meat consumption than
X2. Let DCR1 and DCR2 be two differential causal rules as defined in Definition
7. DCR1 express that, for men researchers, living in the countryside compared to
living in cities, i.e., T , explains a higher will to reduce one’s meat consumption.
DCR2 express that treatment T has the opposite effect of O for women researchers,
as for them living in cities compared to living in the countryside explains a higher
will to reduce one’s meat consumption.

The resulting CER is presented as follows (equation 5.2). For the sake of
understanding, its representation has been simplified. The first line indicates the
treatment, i.e., living in the countryside compared to living in cities. The second
line expresses a part of the outcome with the paths leading to the values of meat
reduction. The third line is composed of two parts: the first indicates the common
part of ST1 and ST2, Researcher(X) in this example, and the second, in bold,
shows the description change, i.e., what explains the opposing outcome of the
treatment. The fourth and last line is the head of the rule and shows the change
of effect of the treatment that results from the description change.

livesIn(X1, countryside) ∧ livesIn(X2, city)∧
reduceMeat(X1, u1) ∧ reduceMeat(X2, u2)∧

Researcher(X) ∧ [gender(X, “Man“)→ gender(X, “Woman“)]

⇒ [higherThan(u1,u2)→ lessThan(u1,u2)]

(5.2)

It is to note that the length of the description change plays an essential role
in the understanding of a counter effect rule. Indeed, a small description change
such as presented in equation 5.2 is easy to understand. However, the longer the
change, the harder it is to understand. Therefore, this length should be controlled
as a parameter in the mining of the counter effect rules.
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5.2 Approach for Counter Effect Rule Generation

This section describes the approach to mine counter effect rules. This approach is
constructed in two steps and consists in the post-processing of differential causal
rules that can be mined by Dicare-C. In the first step, differential causal rules are
discovered by using Dicare-C, i.e., the approach described in Chapter 4. In the
second step, the differential causal rules are processed to obtain counter effects
rules.

5.2.1 Mining Differential Causal Rules

In the first step, DCRs are mined with Dicare-C. As a reminder, the algorithm
takes as input a KG, a target class c, a set of property paths P that lead to
possible treatments PT , the property path leading to the outcome PO, and expert
knowledge to guide the mining. It outputs the DCRs.

Dicare-C relies on a bottom-up strategy. First, it generates potential DCRs
and evaluates them using a metric inspired by the odds ratio. The obtained DCRs
are said to be specific as they express treatments on stratas composed of several
predicates. Secondly, the strata of the DCRs are merged to obtain more general
rules if they share the same treatment and outcome. While the effect of a specific
rule is quantified by the odds ratio, a rule obtained from a merge is not quantified.
Therefore, merged rules can not be ranked. Regarding the mining of counter effect
rules, only the specific DCRs are considered to ease their discovery.

5.2.2 Obtaining Opposite Effects

In the second step of the algorithm, the set of CERs, D, is obtained from the
DCRs previously mined.

As shown in equations 5.1 and 5.2, a CER expresses that a change from one
strata to another explains an opposite effect of the same treatment. It is therefore
obtained by comparing two differential causal rules if they have the same treatment
but opposite outcomes. However, as discussed in section 5.1.2, the generation of all
CERs on this criterion alone is not desirable, as some CERs may have a description
change too long to be understandable. As a consequence, instead of outputting
all CERs, we introduce a threshold, dc, that is the maximum number of changes
a rule can have, i.e., the number of differences between the two strata it is built
from. For instance, the CER in equation 5.2 has dc = 1. The use of a threshold
ensures the generation of a set of rules that can be interpreted.

In the algorithm, the DCRs are first sorted by the treatment they express.
Then, for each unique treatment T , two sets of rules are obtained: R(T,O) and
R(T,O) depending on the rules outcome, where R(T,O) is the set of rules where T
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explains T , and R(T,O) is the set of rules where T explains the opposing outcome.
A potential counter effect rule per pair (Ri, Rj) ∈ R(T,O) ×R(T,O) is constructed.
With STi the strata of the rule Ri, the potential counter effect constructed from
Ri and Rj is added to D if its number of changes n(STi, STj) is lower or equal
than dc.

Example 10. Let us consider DCR1 and DCR2 the DCR given in section 5.1.2.
DCR1 and DCR2 have the same treatment but opposite outcomes and can therefore
be used to generate the potential CER described in equation 5.1. With dc set to 1,
as n(ST1, ST2) = 1, this CER can be added to D.

A final procedure is applied on the CERs of D. Similarly, as for the mining of
differential causal rules, the CERs are merged to obtain more general rules.

5.3 Experiments
We conducted experiments in order to show the relevance of the CERs that can
be mined over a knowledge graph. The obtained CERs were then compared to the
DCRs mined using Dicare-C (see Chapter 4) and to association rules mined using
AMIE [21].

5.3.1 Dataset Presentation

The dataset Vitamin has been used for the experiment. It is extensively described
in section 4.3.1. As a reminder, it describes people and their socioeconomic char-
acteristics, such as age, gender, current and ideal diet, opinions on animal welfare
facts and climate change. The outcome is the difference between a person’s cur-
rent and ideal diet, i.e., their willingness to reduce their meat consumption. It is
denoted by PO = reduceMeat having values ∈ N.

In addition to mine treatments that may explain differences in one’s meat
reduction willingness, we are interested in observing whether such treatments are
consistent or may have opposite effects. Also, we aim to rank them based on their
consistency and ability to change the effect of other treatments.

It is to note that DBpediaW has not been used in this experiment as no counter
effect rules could be mined over it.

5.3.2 Settings

The DCRs mined by Dicare-C on Vitamin are the same as the DCRs obtained
in section 4.3. The mining of the CERs has been done with dc set to 1 to obtain
rules with a description change of one element only.
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Figure 5.1: Illustration of a counter effect rule

5.3.3 Mined Counter Effect Rules

In total, 23 CERs with a change of one element were discovered using the set of 119
specific DCRs previously mined. As a reminder, the DCRs used to create the CER
were overall judged accurate and meaningful by experts in the field. An example
of a CER, CER1, is presented in equation 5.31, where living in cities compared to
living on the countryside explains a higher will to reduce one’s meat consumption
for men that attended high school, but a lower will if they were women. This rule
is also illustrated in Figure 5.1.

CER1 : livesIn(X1, city) ∧ livesIn(X2, countryside) ∧ reduceMeat(X1, u1)∧
reduceMeat(X2, u2) ∧ [education(X, high_school) ∧ hasOpinion(X, 1)]∧

[gender(X,man)→ gender(X,woman)]

⇒ [greaterThan(u1,u2)→ greaterThan(u2,u1)]
(5.3)

Table 5.1 presents an extract of treatments involved in the mined DCRs (Treat-
ment), the number of DCRs they are involved in (#DCR), their consistency (%
same O), i.e., the percentage of DCRs they are implied on and where they have the
same outcome, the number of CERs (#CER), and the most common treatments
paths that explain their counter effect (Counter Treatment).

Two observations are presented in this table. The first observation is on the
ranking of treatments based on their consistency value. This ranking shows that
two treatments are strong: the first is the sensitivity to climate change and animal
well-being, and the second is gender, as women seem more willing to reduce their
meat consumption than men. Both of these treatments have a 100% consistency,
meaning they always explain the same outcome on strata where they have an
effect. On the contrary, the consistency metric also shows that treatments may
have less consistent effects, such as the treatment on education that equally leads

1The value 1 for predicate hasOpinion represents a person with pro-meat opinions who believes
that breeding is unrelated to climate issues
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Table 5.1: Extract of Results. X2 has a higher will to reduce its meat consumption
than X1.

Treatment #DCR (% same O) #CER Counter Treatment
hasOpinion(X1, 2) ∧ hasOpinion(X2, 1) 14 (100%) 0 NA
gender(X1,man) ∧ gender(X2, woman) 10 (100%) 0 NA

livesIn(X1, city) ∧ livesIn(X2, campaign) 18 (88%) 2 gender,education
education(X1, university) ∧ education(X2, high_school) 16 (50%) 7 gender,opinion

to opposing effects. The second observation is on counter treatments, which figure
on the last column of the table. Counter treatments exist only for treatments that
are not consistent, e.g., the difference of education or the place of living. As such
treatments change the effects of the latter ones, they can be considered stronger.
It appears that counter treatments that are often found are also the treatments
that are the most consistent.

5.4 Discussion

5.4.1 Comparison to Association Rules

A set of association rules has been mined using AMIE [21] with a support of
100 and confidence of 0.1. As in section 4.3, the target head of the association
rules has been set by introducing a new predicate that compares the difference in
the reduceMeat predicates. A set of 111 rules were mined using AMIE. However,
none of them could explain a difference in the reduceMeat predicate between the
two instances. More precisely, while the body of the mined rules could contain
predicates on both instances, they do not compare the same ones for the two
instances. Therefore, as described in section 4.3, association rules are not suited
for such explainability purposes. Consequently, they are also not suited to show
one treatment can have different effects depending on the set of instances it is
applied on.

5.4.2 Comparison to Differential Causal Rules

Counter effect rules are obtained after processing a set of differential causal rules.
We aim to emphasise the gains of this processing compared to the analysis of the
differential causal rules alone.

As discussed in section 5.1.1, counter effect rules were defined in response to
the limits of differential causal rules regarding interpretability. More precisely, the
differential causal rules are numerous and may express opposing effects for the same
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treatment, making it difficult for an expert to analyse them. The results of the
mining of counter effect rules, presented in section 5.3, lead to several observations.
First, it showed that treatments may lead to different outcomes and are not always
the same. Secondly, the counter effect rules can be used to rank the treatments
based on their consistency, and also underlie the stronger effects of treatments
on other treatments. As a consequence, they allow separate treatments based on
whether they have general or more local effects. This can be of great interest to an
expert as they discovered general effects are usually already known and published
in the literature, as in Thomopoulos et al. [88], while more local effects may be
leading to deeper analysis or the design of new experiments.

In other words, while some differential causal rules may be easy to interpret,
especially the more general ones, using the counter effect rules allows to get a
faster and wide analysis of the treatments than studying the differential causal
rules alone, therefore proposing an approach to some of the limits of the latter.

5.5 Conclusion
In this chapter we presented a new approach for generating counter effect rules
that express that a treatment effect can have opposing effects on different sets of
instances of a knowledge graph. These rules are generated as a post-processing
step from a set of differential causal rules.

Counter effect rules have shown to be of interest to facilitate the interpreta-
tion of differential causal rules. Indeed, while a differential causal rule studies
a local effect, counter effect rules provide a deeper analysis of a treatment in terms
of consistency and comparison to other treatments. As a consequence, the mining
of both types of rules should be used complementary.

While this chapter provided an approach that increases the interpretability of
previous results, thus improving a limit enunciated in the conclusion of Chapter
4, it, however, does not improve other limits such as the number of explained
pairs or the instance matching criteria. The next chapter will address these
limits by introducing Dicare-E, an embedding-based approach.
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Chapter 6

Knowledge Graph Embeddings for
Differential Causal Rule Mining

Chapter 6 presents our contributions to differential causal rules mining using
knowledge graph embeddings. While previous approaches presented in Chapter
4 rely on comparing RDF descriptions of instances, we show that rules can also be
obtained by comparing instances embedding representations. The obtained rules
express an average effect compared to the local effect of the rules expressed in
Chapter 4, making them easier to interpret. This chapter is based on the following
publications:

1. Lucas Simonne, Nathalie Pernelle, Fatiha Saïs, and Rallou Tho-
mopoulos. Découverte de règles causales dans les graphes de connais-
sances à l’aide de plongements dans les graphes. In IC 2022: 33es
Journées francophones d’Ingénierie des Connaissances (Proceedings of
the 33nd French Knowledge Engineering Conference), Saint-Etienne,
France, June 29 - July 1, 2022, pages xx–xx, 2022. [80]

2. Lucas Simonne, Nathalie Pernelle, Fatiha Saïs, and Rallou Tho-
mopoulos. Discovering causal rules in knowledge graphs using graph
embeddings. In WI-IAT’22: International Conference on Web Intel-
ligence, Niagara Falls Canada, November 17-20, 2022, pages xx–xx,
2022. [79]

The mining of differential causal rules and counter effect rules has been shown
useful in discovering causal effects of treatments on instances of a knowledge graph.
However, the rules that are mined with Dicare-C and Dicare-S only express local
effects. They are, therefore, sometimes difficult to interpret, and the number of
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instance pairs for which differences in the outcome are provided with an expla-
nation needs to be improved. Furthermore, while matching RDF instances with
complex descriptions has been addressed by a community detection algorithm, this
coarsened matching process still remains difficult as it relies on an expert to guide
the community detection step.

Consequently, we developed a new approach named Dicare-E that we present
in this chapter. The objectives of this new approach are threefold. First, we aim to
mine causal rules expressing an average causal effect on all instances of a knowledge
graph, in opposition to the local effects expressed by rules mined in Dicare-C and
Dicare-S. These average rules should be easier to interpret. Secondly, we aim to
explain more pairs that have the outcome. Lastly, we aim to facilitate the matching
of instances to have an approach adapted to more complex knowledge graphs
that may have missing data. More precisely, Dicare-E is a hybrid algorithm that
combines numerical and symbolic methods to discover causal rules. While Dicare-
C and Dicare-S use instances descriptions to match similar instances, Dicare-E
uses instances representation in a low dimensional vector space to measure the
similarity of instances and to determine if they can be matched.

The contributions of this chapter are the following:

• A method to match similar instances based on their embedding representa-
tions. This method defines a threshold in the embedding space to ensure the
matching of similar instances only.

• The definition of average causal rules, which are differential causal rules
expressing an average effect of a treatment across all instances of a target
class in a knowledge graph.

• An algorithm, Dicare-E, that mines average causal rules and an analysis
of its results that shows that Dicare-E explains a higher number of pairs
compared to Dicare-C and is more resistant to missing data.

The chapter is structured as follows. Section 6.1 presents the motivation of
Dicare-E by underlying the limits of Dicare-C and Dicare-S presented in chapter
4. It also shows how we propose to use graph embeddings in an attempt to solve
such limits.

Section 6.2 presents Dicare-E, the algorithm that we developed to discover
differential causal rules by relying on graph embeddings.

Section 6.3 presents the results of the experiments we realised using Dicare-E.
Section 6.4 concludes the chapter.
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6.1 Average Differential Causal Rules

This section emphasises on the motivation of both defining a new type of rules
that are easier to interpret and easing the matching of instances of a knowledge
graph. It defines the new type of rules, named average differential causal rules.

6.1.1 Motivation

The approaches presented in the previous chapter, Dicare-C and Dicare-S, define
differential causal rules and how they adapt the potential outcome framework to
mine them in a knowledge graph. These rules express the local effects of treatments
on a subset of instances. They are mined by matching similar instances based on
their RDF description. However, these approaches presented several limits as
exposed in section 4.5, namely the interpretability of the rules, the number of
explained pairs, and the instance matching criteria.

The first limit is the interpretability of differential causal rules. While counter
effect rules, introduced in Chapter 5, enhance the interpretation of differential
causal rules when studied as a whole, it does not ease the interpretation of a
rule by itself. The expert assessment of the rules indicates that the more specific
the strata of a rule is, the more difficult the rule is to be interpreted. Moreover,
the community detection step used to simplify the matching step reduces the
granularity in the treatment’s precision. Indeed, the effect of a particular path
within a community used as a treatment can not be assessed. Finally, as the
obtained rules are discovered by generating specific ones, a rule’s treatment effect
is no longer measured by the metric, and thus, rules can not be ranked on how
strong their effects are.

The second limit is the number of pairs these rules can explain. Indeed, as
differential causal rules express local effects, many pairs are not provided with an
explanation for why they have the outcome.

The third limit is that Dicare-C and Dicare-S use the RDF description of
instances to match similar instances, making it not trivial to create matches, es-
pecially in case of incompleteness. Dicare-C and Dicare-S measure the similarity
between two instances as the number of paths they have in common, with the
paths being original RDF descriptions or abstract paths generated from a commu-
nity detection step. However, using this similarity measure becomes increasingly
difficult with the number of paths describing instances. Indeed, the higher the
number of elements where instances need to be similar to be matched, the more
difficult it is to find matches within a database [1]. This statement is even stronger
with small databases where it is less likely to find a match for a given instance.
Finding similar instances is even more difficult with knowledge graphs where parts
of instances description can be missing, and instances may be described by non-
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functional properties. While Dicare-C already addressed these problems by reduc-
ing the number of paths to study by using a community detection step, finding two
instances with the same descriptions in a knowledge graph is complex and even
impossible in some cases.

This chapter aims to answer these limits by introducing an approach that mines
rules expressing the average effects of treatments. These rules are discovered by
using knowledge graph embeddings.

6.1.2 Average Differential Causal Rules

We propose the definition of average differential causal rules. They are differential
causal rules that do not express any constraint on the instance pairs through a
specified strata. These rules express an average effect of a treatment over all
instances of a target class in a knowledge graph.

Given the definitions of categorical treatment Tc (see Definition 4), numerical
treatment Tn (see Definition 5) and outcome O (see Definition 6), an average
differential causal rule ADCR is defined as follows:

Definition 16. Average Differential Causal Rule (ADCR). Given X1 and
X2 two instances of a target class of an ontology O, PO the property path leading
to the outcome, a treatment T ∈ {Tn(X1, X2),Tc(X1, X2)} defined by the property
path PT , and s an aggregation function, an average differential causal rule DCRT

is defined as follows:

ADCRT : T ∧ PO(X1, U1,PO
) ∧ PO(X2, U2,PO

)⇒ lessThan(s(U1,PO
), s(U2,PO

))

An average differential causal rule expresses the average effect of a treatment
over the instances of a target class in a knowledge graph. It is to note, as for
differential causal rules, that an average differential causal rule can be categorical
or numerical depending on the type of treatment path.

Example 11. A categorical ADCR could be that, on average, being a woman
compared to being a man explains a higher life expectancy. A numerical ADCR
could indicate that, on average, being younger explains a better athlete rank.

6.2 Approach: Dicare-E

6.2.1 Overview

This section presents Dicare-E, an approach that mines average differential causal
rules from a knowledge graph. Dicare-E is composed of three main parts. In
the first part, similar instances across the knowledge graph are matched on their
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representation as embedding vectors. The matching is realised given a distance
threshold that is estimated. Although two strategies were proposed to estimate
this threshold (see [80, 79] for more details), we present the strategy developed
in [79] as it is more interpretable and has a smaller complexity in time. In the
second part, matches of similar instances are created using the estimated distance
threshold and are used to study the effect of treatments on an outcome path. In
the last part, the effect of treatments is estimated by computing a causal metric
on the set of similar instances.

The workflow of Dicare-E is presented in Figure 6.1.

6.2.2 Using Knowledge Graph Embeddings to Find Similar
Instances

Problem Statement

The first part of Dicare-E consists of defining the method to match similar in-
stances of a knowledge graph. To this end, we propose to use embedding models
to match instances based on their vector representation. However, matching in-
stances based on their distance in the embedding space is challenging.

The objective of knowledge graph embedding approaches is to represent enti-
ties and relations from a knowledge graph in low-dimensional vectors (see section
3.3.3). As a reminder, the output of embedding models are vectors representing
entities and relations of a knowledge graph. Depending on a dataset, a model or
another might perform better. While it can be difficult to compare and represent
instances with their RDF descriptions, it is much easier with vectors. Indeed,
vectors can be compared through various functions such as euclidean or cosine dis-
tances. Vectors representation has been studied in many works, including in Wang
et al. [91] where authors show that similar RDF instances have similar vectors in
the embedding space. In Moon et al. [50] and Jain et al. [39], authors found
that similar vectors in the embedding space will represent similar RDF instances.
These works motivate the use of embedding approaches to match similar instances
based on their embeddings.

However, given a set of instances of a knowledge graph whose vectorial repre-
sentation has been learned, matching similar instances is not trivial. For example,
to find an instance similar to an instance i, by using a distance such as the eu-
clidean distance, one may consider the closer instance in the embedding space, the
instance j. While this distance could indicate that j is the closer instance to i in
the embedding space, it does not guarantee that they are similar. However, the
potential outcome framework indicates that only pairs of similar instances are to
be used to compute a treatment effect and that pairs of instances that are not
similar should be pruned. Therefore, estimating a threshold dtr is a key element.
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The threshold is used to create a set of pairs of similar instances, that is, with a
distance d such as d < dtr.

Figure 6.1: General workflow of Dicare-E with the perturbed-based strategy
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Estimation of the Distance Threshold

In this section, we propose a method to address the distance threshold estimation
problem. As the distance in the embedding space is not interpretable, this method
generates a ground truth in the embedding space to make the distance more inter-
pretable. More precisely, the method generates perturbed instances from existing
instances given a number of differences. By computing the distance in the embed-
ding space between the existing instances and their perturbed versions, it generates
an interpretable ground truth on the distance. The distance threshold can then
be estimated in an interpretable way.

Perturbed instances are RDF copies of original instances of the knowledge
graphs, except that they are modified in a controlled manner. The perturbed
instances are considered as part of ground truth, as their differences from the
original instances of the KG are known. Computing the distance between the
vector representation of original and perturbed instances within the embedding
space allows the estimation of the distance threshold corresponding to a chosen
number of differences. The workflow of this method is presented in Figure 6.1,
where the threshold dtr is estimated with steps (a), (b), and (c). In the following,
we present how we generate perturbed instances and how they are used to define
dtr.

In the first step, step (a) in Fig. 6.1, perturbed instances are generated for
a subset of class instances that are randomly selected. For each class instance,
a specified number of perturbed instances are created. A perturbed instance i′
is generated from an existing instance i with the parameter S that expresses the
number of differences.

Definition 17. Number of differences on a property path. Let P be a
property path, and Oi (resp. Oi′) the set of literal values of P describing i (resp.
i′). Let sP (i, i′) be the number of differences on P between i and i′. sP (i, i

′) is
defined as follows:

sP (i, i
′) = max(|Oi|, |Oi′|)− |Oi ∩Oi′ | (6.1)

Definition 18. Number of differences. Let P be the whole set of property
paths considered for the differences between two instances i and i′. The number of
differences between i and i′, noted s(i, i′), is computed over all property paths of P
as follows:

s(i, i′) =
∑
P∈P

sP (i, i
′) (6.2)

It is to note that, in some cases, several URIs may share the same literal values.
Therefore, URIs are not considered in the number of differences as instances are
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compared by relying on literal values only. For instance, the URIs #France and
#france may be described on one property, the property related to their number
of inhabitants, and have the same literal value. Comparing #France and #france
would not make a difference as they have the same literal values. Also, existing
identity or difference links between URIs are not considered.

Given the number of differences we defined, perturbed instances are generated
so that their number of differences with the original instance equals the parameter
S. The perturbation process can modify a literal value and add or suppress a data
property, and new literal values are selected among existing values.

Example 12. In Fig. 6.2, #Fake_Messi is a perturbed instance of #Messi with
S = 1, where the difference is on P = hasAge. Another #Fake_Messi with S = 1
could be generated by generating a new club, e.g., #Fake_PSG, with owner #QSI
and president #Kahn.

Figure 6.2: Generating a perturbed #Messi from the original one

In step (b), an embedding model is trained on the knowledge graph enriched
with the perturbed instances, named KGe. The vector representations of the
original and perturbed instances are learned and are used to estimate the distance
threshold. The distance threshold is defined as the mean distance between the
vector of an original instance and the vector of a perturbed instance that has been
created from the original instance using a number of differences. This estimation
is performed in step (c).

More precisely, given PT the property path associated with the treatment T to
analyse, and PO the property path associated with the outcome O, PT and PO are
removed from KGe for the embedding model training as the matching of instances
is to be carried out independently to T and O. The resulting knowledge graph is
denoted by KGf . An embedding model f is then trained on KGf . After the train-
ing, the embedding vectors of the perturbed instances GS and the corresponding
original instances I are obtained. A distance threshold dtr is then computed as
the mean distance between pairs of instances (i, i′) having a number of differences
S, where i is an instance of I and i′ is an instance of Gi,S.
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Definition 19. Distance Threshold. Given the number of differences S, the
euclidean distance d, the sets of original instances I and their perturbed versions
Gi,S and i⃗ (resp. i⃗′) the embedding vector representing i (resp. i′), the distance
threshold dtr is defined as follows:

dtr =
1

| I |
∑
i∈I

1

| Gi,S |
∑

i′∈Gi,S

d(⃗i, i⃗′) (6.3)

6.2.3 Generating Pairs of Similar Instances to Study a Treat-
ment Effect

The effect of a treatment on an outcome is represented by an average differential
causal rule (see Definition 16). Obtaining an average differential causal rule is
done in two steps. In the first step, the average differential causal rule is created
given the studied treatment. In this step, such a rule is qualified as potential as its
effect has not yet been measured. This step, therefore, consists of obtaining the
pairs that verify the treatment. It is represented in step (d) of Figure 6.1. In the
second step, the effect of the treatment is computed by using the obtained pairs
and is presented in the next section.

Depending on whether a property path PT ∈ P is numerical or categorical, the
process of generating a potential rule and the pairs of similar instances used to
evaluate it differs. We present the processes for generating potential rules with a
categorical or a numerical path as follows.

Categorical Treatment. When PT leads to categorical values, one or several
combinations of values can be built depending on the number of categorical values
of PT . Consequently, one potential rule ADCRT is generated for each combination
(Vi, Vj) of different values of PT . In the sequel, we will refer to each combination
of this form as a treatment T . To create the pairs of similar instances that verify
T , a set of instances IVi

(resp. IVj
) having the value Vi (resp. Vj) is obtained

from KG. Then, a distance matrix D is constructed by computing the distance
d between the embedding vectors of all pairs (i, j) ∈ IVi

× IVj
. Given dtr, pairs

of instances are added to the set of similar pairs M if their distance d verifies
d < dtr. This process is done with a greedy strategy without replacement, as we
aim to construct pairs as diverse as possible. In other words, an instance can only
appear in one pair at maximum.

Numerical Treatment. When PT leads to numerical values, one potential rule
DCRT can be generated. The process for obtaining M is similar to a categorical
treatment, except that D is a squared matrix where each instance with a value for
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Table 6.1: Distance between instances when analysing the categorical treatment
gender.

PP =Man
j1 j2 j3 j4 j5

PP = Woman

i1 0.7 1.4 1.2 1.9 1.8
i2 1.7 1.4 1.5 0.8 1.2
i3 3.2 0.6 1.0 0.9 1.8
i4 0.8 1.2 2.7 1.4 1.5

PT is both in a row and in a column. Pairs are then drawn without replacement
and added toM if they verify T and if their distance d is lower than dtr.

Example 13. In table 6.1, we assume that dtr = 1. The treatment path is "has-
Gender" and is, therefore, a categorical path. In this example, pairs are built to
study the treatment "T: being a man compared to being a woman", where women
are the rows of the table and men are the columns. Three pairs verifying the treat-
ment can be created: (i1, j1), (i2, j4) and (i3, j2). The instances i4, j3 and j5 are
not matched as no available instances were similar enough to them.

6.2.4 Obtaining a Treatment Effect

In the last step of Dicare-E, step (e), the effects of the treatments are measured.
The metric causalr, defined in Definition 12, is used to assess the effect of the
treatment T on the outcome and is therefore used to select the rules from the set
of potential rules built in the previous step.

The procedure to measure the effect of a rule is the same as described in 4.2.3,
to the difference that an average effect is measured instead of a local effect on a
strata. Let a potential rule ADCRT and a set of similar pairs M that verify the
treatment T . As a reminder, causalr is defined in Definition 12. It is computed
as follows:

causalr(R) =
supp(T ∧ B⃗ ⇒ lessThan(s(U1,PO

), s(U2,PO
)))

supp(T ∧ B⃗ ⇒ greaterThan(s(U1,PO
), s(U2,PO

))
(6.4)

causalr compares the number of pairs of M that verify the outcome to the
number of pairs of M that verify the opposite of the outcome, i.e., greaterThan
instead of lessThan.

It has values in [0,+∞[ and measures the strength of the relation between
the treatment and the outcome. The treatment and the outcome are considered
independent if causalr(ADCRT ) = 1. On the contrary, the more distant to 1, the
stronger the strength of the relation, i.e., the higher the effect of the treatment on
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Table 6.2: Values of instances on an outcome path

Instance Value on PO

i1 0
i2 1
i3 1
j1 1
j2 0
j4 0

the outcome. If higher than 1, the treatment has an effect on the outcome, while
a value lower than 1 indicates that the treatment has the opposite effect on the
outcome (i.e. greaterThan).

Example 14. In table 6.2, by using the pairs created in example 13, the treat-
ment T : "being a man compared to being a woman" has an estimated effect:
causalr(ADCRT ) =

2
1
.

To select the rules expressing an effect of a treatment on the outcome, a con-
fidence interval is built on the causal ratio. A rule with a lower bound of the
confidence interval higher than 1 is selected as expressing an effect.

When a user wants to test other treatments or study other outcomes, the
embedding model f is to be retrained as pairs are to be created without considering
the treatment and outcome.

6.3 Experiments

The experiments aim to show the relevance of the discovered rules, meaning (i)
whether they were judged meaningful by domain experts and (ii) their ability
to explain differences in outcome values, i.e., the number of pairs having the
outcome that can be explained by at least one rule. As Dicare-E relies on graph
embeddings, we also evaluated how robust Dicare-E is to missing data. Moreover,
we compared the results of Dicare-E to both a baseline and to Dicare-C [78].
The baseline we considered is a naive approach that discovers DCRs with strict
literal-based matching (see section 4.3).

An extract of the code can be found on this link1.

1https://github.com/WebIntelligence2022DCRMining/Submission
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6.3.1 Datasets and settings

Datasets

The datasets Vitamin and DBpediaW have been used for the experiment. These
datasets have been used in the previous chapters and are described in section 4.3.1.

Vitamin describes people and their socioeconomic characteristics such as age,
gender, current and ideal diet, opinions on animal welfare facts and climate change.
We are interested in explaining the difference between a person’s current and
ideal diet, i.e., their willingness to reduce their meat consumption denoted by
reduceMeat having values ∈ N.

DBpediaW describes authors and books they wrote. We try to explain why
some writers publish their first book at a younger age than others. The treatment
path is denoted by the predicate publishedAt that expresses the difference between
a writer’s birth date and his first book publication date.

As the outcomes of both datasets are single values, no aggregation functions s
are used.

Experiments Settings

The parameters for the perturbed instances generation are S = 15, n = 150 and
m = 3 for Vitamin and S = 2, n = 50 and m = 3 for DBpediaW. The values
for S were defined to select pairs with a number of differences lower than one-
third of their number of literals. The quality metric causalr is computed with the
confidence of 90% for both methods.

The treatment paths that were studied for Vitamin include people’s gender,
age, type of habitation, work, education, source of media, current diet, and sets of
various opinions on climate change and animal welfare. The treatment paths that
were studied for DBpediaW include people’s birth date, gender, writing genre, and
the universities they studied at.

For the baseline and Dicare-C [78], we defined the maximal length of paths to
explore as the length of the longest path of an instance description of the target
class, i.e., a Person for Vitamin and a Writer for DBpediaW.

To select the most suitable embedding model for each dataset, we trained
embedding models using the python library AmpliGraph [10].

6.3.2 Selection of the Knowledge Graph Embedding Model

Table 6.3 presents the performances of the embedding models trained over Vitamin
and DBpediaW on a link prediction task. The metrics described in this table are
the mean reciprocal rank (equation 3.18) and the Hits@n (equation 3.19). ConvE
performs the best on Vitamin: it obtains the highest MRR and Hits@n values,
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and is therefore used in the following. DistMult has the best performances on
DBpediaW and is used.

Table 6.3: Models performance evaluation metrics on Vitamin and DBPediaW

DBPediaW Vitamin
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

ConvE 0.2292 0.1881 0.2598 0.2844 0.3384 0.2498 0.3969 0.4850
DistMult 0.2736 0.2004 0.3169 0.3705 0.2167 0.1341 0.2451 0.3675
ComplEx NA NA NA NA 0.1732 0.1011 0.1867 0.3113
TransE 0.2088 0.1737 0.2099 0.2786 0.1470 0.1341 0.1563 0.2474
Baseline 0.0007 0.00014 0.0029 0.0081 0.0057 0.0009 0.0023 0.0081

The performances were obtained by training the models with the original
knowledge graphs. We assume that the models with the best performances on
the whole knowledge graphs will also perform best when removing the treatment
and outcome paths.

The runtime of Dicare-E for running the 7 treatment paths that were tested is
around 9 hours for Vitamin and around 10 minutes for DBpediaW.

6.3.3 Effect of the number of differences S on the distance
d and the causal effect causalr

A key parameter in the generation of perturbed instances is the number of differ-
ences S. This section provides an analysis of this parameter. It first focuses on
the correlation between S and the distance d, and then on the effect of S on the
causal metric causalr.

Correlation between the number of differences S and the distance d

The variation of the euclidean distance d with the number of differences S is
studied. To this end, an experiment is designed as follows: 100 instances of Person
in Vitamin are randomly selected, and, for each of them, one perturbed instance
is generated per number of differences S ranging from 0 to Smax. Smax is set to
24 for this study, i.e., in average half of the literals of instances of Person can be
different.

After the generation step, an embedding model is trained over Vitamin enriched
with the perturbed instances. The euclidean distance d is computed between the
selected instances of Person and the perturbed instances generated from them
given S. Fig. 6.3 is a violin plot showing the distribution of d between pairs of
instances given each number of differences S from 0 to Smax. The wider line in
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Figure 6.3: Evolution of d between pairs of instances (y-axis) depending on S (x-
axis)

the middle of each violin indicates its median value. Similarly, as for the first
method, Fig. 6.3 shows that, as expected, higher S values lead to higher euclidean
distances.

Effect of the number of differences S on the causal effect causalr

The previous section showed that different values of S will lead to different es-
timations of the distance threshold. As a consequence, the estimated effect of a
treatment may be different depending on the parameter S since the set of selected
pairs will be different.

To underline the importance of S, the rule R1 : being educated instead of being
not educated explains a higher will to reduce one’s meat consumption is studied,
where educated stands for possessing a high school degree or a higher degree.
Several metrics on R1 are described in Fig. 6.4. In this figure, the x-bar indicates
the values of S. The left y-bar indicates the values of causalr(R1), and the right
y-bar indicates the number of pairs created to estimate causalr(R1). The black
circles show the values of causalr(R1), and the vertical bars, named error bars, are
the corresponding confidence intervals of causalr(R1). The histogram indicates
the number of pairs created to estimate causalr(R1).

A rule is valid if the error bar does not cross the horizontal red bar set at 1.
In this example, R1 is not valid for S = 10 as, although its causalr value is lower
than 1, its confidence interval ranges from 0.5 to 1.1 and, therefore, includes the
value 1, meaning it is not significantly different from 1. R1 is valid with S = 20
since the confidence interval is lower than 1. Moreover, since causalr(R1) < 1, the
rule is changed to being not educated instead of being educated explains a higher
will to reduce its meat consumption.

Smaller S values, i.e., lower dtr values, lead to smaller sets of pairs. Such
sets are composed of the most similar instances. As their number is small, the
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Figure 6.4: causalr(R1) (left y-axis, bullets) and number of pairs created (right
y-axis, bins) given S values (x-axis). PT : education (X1: educated, X2: not
educated)

estimation of causalr has a large variance, i.e, large confidence intervals. Con-
versely, higher S values lead to bigger sets of pairs that, however, are less similar.
The estimation of causalr(R1) is more likely to be biased but has a smaller vari-
ance. Therefore, S allows controlling the bias-variance trade-off of the estimation
of causalr. The more the dataset is large and representative of the real-world dis-
tribution, the more likely it is to find similar instances with lower S values. The
quality of the discovered rules would therefore be higher.

6.3.4 Quantitative and Qualitative Evaluation of the Mined
Rules

22 rules were discovered on Vitamin and 3 rules on DBpediaW. Two rules, one rule
for each dataset, are presented: R2 (equation 6.5) for Vitamin, and R3 (equation
6.6) for DBpediaW 2. R2 states that being omnivorous compared to being vege-
tarian is an explanation for a higher will to reduce one’s meat consumption. R3

states that being born after another author, e.g., in 1980 compared to 1900, is an
explanation for a younger age of first book publication.

R2 : hasDiet(i1,vegetarian) ∧ hasDiet(i2,omnivorous)∧
reduction(i1, v1) ∧ reduction(i2, v2)⇒ v1 < v2

(6.5)

R3 : ageF irstBook(i1, u1) ∧ ageF irstBook(i2, u2)∧
birthYear(i1,v1) ∧ birthYear(i2,v2) ∧ v1 > v2

⇒ u1 < u2

(6.6)

2The predicates belong have been omitted to simplify the reading.
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The following section provides an analysis of the mined rules. The summary
of the results is presented in Table 6.4. In this table, we give for each KG and
each approach tested, that is the baseline, Dicare-C and Dicare-E, the number of
discovered rules, the average number of rules per pair of instances, the percentage
of pairs evaluated as correct by the experts, and the number of explained pairs.

Table 6.4: Results of the evaluation of rules mined using a baseline, Dicare-C and
Dicare-E.

DBPediaW Vitamin
#Rules (Per pair) %Correct %Pairs #Rules (Per pair) %Correct %Pairs

Baseline 0 (0) NA 0 0 (0) NA 0
Dicare-C 12 (1.1) 83.3 16.5 44 (1.1) 80.0 52.5
Dicare-E 3 (1.4) 100 84.3 22 (2.5) 100 85.7

Vitamin. Two researchers in nutrition and human behaviour evaluated the 22
rules from Dicare-E and the 30 best rules from Dicare-C. This evaluation has been
done by following the same protocol as for Dicare-C (see section 4.3), where the
choices for a rule are (i) seems relevant, (ii) may be relevant, (iii) does not know or
(iv) seems false. No rules were mined with the baseline, as no exact matches could
be found. The rules of Dicare-E were all judged relevant or potentially relevant,
while 5 rules of Dicare-C had an effect judged unsure or false. The researchers
mentioned that the more specific the strata of the rules from Dicare-C, the harder
they were to understand. Moreover, Dicare-C discovers rules that involve com-
puted abstract properties, while Dicare-E approach involves precise property paths
that belong to the original KG. For instance, Dicare-C considers only one abstract
treatment that represents a set of paths on animal welfare and global warming,
while Dicare-C mines distinct rules that involve distinct treatments corresponding
to the aforementioned paths.

Besides the quality of the rules, Dicare-E explains much more pairs of instances
having the outcome (85.7% vs 52.5% for Dicare-C ), and, for each pair, Dicare-E
provides in average twice as many explanations (2.5 rules vs 1.1 rules per pair).
Moreover, Dicare-E is more robust as removing 15% of the triples reduces the
percentage of pairs explained from 85.7% to 83.2% (22 to 17 rules, with the 17
rules being included in the 22 original rules) in our approach and from 52.5% to
35.8% for Dicare-C.

DBPediaW. As this dataset is rather simple, a group of 5 researchers in com-
puter science has been selected to review the rules. No rules were mined with
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the baseline. By considering the votes of the reviewers, the percentage of rules
considered as could be relevant or relevant is 83.3% for Dicare-C and 100% for
Dicare-E. There was no disagreement in the expert’s judgements. As for Vitamin,
the percentage of pairs explained is higher with our approach and is more robust
to missing data, i.e., removing 15% of the triples, as it decreases from 84.3% to
33.5% for Dicare-E (from 3 to 1 rule) and from 16.5% to 3.7% for Dicare-C.

6.4 Discussion
Dicare-E has been developed as an attempt to solve some of the limits raised
for Dicare-C, namely the interpretability of the rules it mines, the number of
pairs explained and the instance matching criteria. This section compares both
approaches on a set of criteria, including the aforementioned ones.

Rule Interpretability. Dicare-C mines differential causal rules that express
a local effect of a treatment on a subset of instances. In the obtained set of
rules, the same treatment may appear in several rules, making it possibly difficult
to interpret. To overcome this limit, we developed an approach that generates
counter effect rules in Chapter 5. However, a differential causal rule alone remains
difficult to interpret. Dicare-E discovers average differential causal rules, which
were judged more interpretable by experts than differential causal rules.

Rule Expressiveness. While discovering average effects lead to more inter-
pretable rules, it however implies a loss of expressiveness in the treatment effects.
Indeed, an average effect may hide local effects, such as different effects of one
treatment. A trade-off exists between interpretability and expressiveness. It is
to note that, however, the average differential causal is more expressive when it
comes to the treatment they express. Dicare-C relies on a community detection
step, which results in gathering paths under abstract properties that will compose
some of the treatments. Such abstract properties, while having a meaningful se-
mantics, can only express the combined effects of the properties they are composed
of and not the precise effect of one property in particular. By matching instances
on their embedding representations, Dicare-E can assess any path as a treatment.

Number of Pairs Explained. As a consequence of their average effects, aver-
age differential causal rules can be applied to much more pairs of instances than
differential causal rules. Therefore, they provide many more possible explanations
as to why the outcome can be observed. Not only do the rules explain more
pairs, but they also result in providing more explanations for one pair having the
outcome.
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Instance Matching Criteria. Dicare-E uses instances vector representations
to match similar instances, while Dicare-C relies on instances RDF descriptions.
Using the embeddings presents two features of interest. First, it allows matching
instances even if they have missing values, which is not possible in Dicare-C. As
a consequence, Dicare-E is more robust to missing data. Secondly, it enables
an easy ranking of best matches with the distance between embedding vectors.
This ranking makes it possible to create the best matches with a greedy matching
strategy, which has been shown to perform well [25]. In Dicare-C, pairs are created
from sets of similar instances based on their values on a given set of paths only,
making it not possible to rank potential pairs.

Runtime. Training an embedding model is computationally high. Consequently,
the runtime of Dicare-E is higher than the runtime of Dicare-C. Training a model
only once instead of training it for each treatment before creating pairs of similar
instances would reduce the runtime. However, this setting has been tested and led
to a different set of constructed pairs. Consequently, using the once-trained model
could lead to biased results, and the models are retrained for each treatment.

Feasibility on Knowledge Graphs. Dicare-C relies on a pre-processing step
that aims to discover communities within a knowledge graph. Such communities
lead to the creation of abstract properties that are used to simplify the matching
procedure. However, all knowledge graphs might not be suited for community
detection. Dicare-E, on the contrary, does not rely on a pre-processing step and
seems therefore better suited to be applied to a larger diversity of knowledge
graphs. However, as it relies on embeddings, it can only be applied to knowledge
graphs in which entities and relations representations can be correctly learned by
an embedding model.

It appears that Dicare-C and Dicare-E seem complementary and may be adapted
to different use cases and knowledge graphs. Dicare-C discovers expressive rules
displaying local effects, whose interpretation can be rather difficult, but that is
rather fast to obtain. Such local effects may be of interest to users that may in-
vestigate them. On the other hand, Dicare-E has a higher runtime but discovers
rules displaying average effects, on more precise treatments, that are easier to in-
terpret. Dicare-E seems adapted to be used on any knowledge graphs that can be
represented in an embedding space, while Dicare-C is suited for small knowledge
graphs and bigger knowledge graphs where communities can be discovered.
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6.5 Conclusion
In this chapter, we defined a type of causal rule, i.e., average differential causal
rules, that express the average effect of a treatment on an outcome. We also
proposed Dicare-E, an approach for mining such rules from a knowledge graph.

Dicare-E is based on the potential outcome framework. More particularly, it
matches similar instances by using their embedding vector representations. As
defining the similarity of two vectors on their distance alone in the embedding
space is not trivial, we proposed two methods to define a threshold in this space
to ensure the creation of similar pairs only. The created pairs are used to mine
average differential causal rules that can both describe a numerical or a categorical
treatment. Such rules were evaluated as interpretable by experts and are able to
explain many pairs having the studied outcome.

The comparison of Dicare-E with the previous approach, Dicare-C [78], shows
that it improves the results regarding some limits raised in section 4.5. More pre-
cisely, the average differential causal rules are more interpretable and explain
more pairs having the studied outcome. Also, as the matching relies on em-
beddings, it is possible to match instances whose description is partly missing and
ease the matching process by finding the more similar instances. Dicare-E is more
time-consuming than Dicare-C as it must train an embedding model. Lastly, in
terms of feasibility on knowledge graphs, Dicare-E can be used on any knowl-
edge graphs that can be represented in an embedding space, while Dicare-C is
suited for small knowledge graphs and knowledge graphs where communities can
be mined.

Although Dicare-E improves several criteria compared to the previous ap-
proach, there are still limitations to this work. The first concerns the evaluation of
the rules. The experiments were applied on the same knowledge graphs as Dicare-C
where no ground truth is available, and there are up-to-date no knowledge graphs
where the ground truth is known. The second is on the sensibility of Dicare-E
to its parameters. It has been shown that changing the distance threshold with
different parameters for the matching step may lead to various results in terms of
rules. The definition of the parameters used to estimate the distance threshold
should therefore be done before running the approach to control the similarity of
the selected pairs to respect the potential outcome framework.
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Chapter 7

Conclusion and Perspectives

To conclude the thesis, this chapter provides both the highlights of the results of
the work that has been conducted, as well as possible directions for future work.

7.1 Summary of the Results

The objective of this thesis is to define how causal relations can be discovered
within a knowledge graph and represented as causal rules. To this end, several
approaches were developed and evaluated and are discussed in this section.

In Chapters 2 and 3, we defined what knowledge graphs are and presented a
bibliographical study of the problem of causality in general and, more specifically,
in knowledge graphs. The study focused on (i) the definition of a causal rela-
tionship and the frameworks for discovering this type of relationship, including
the potential outcome framework; (ii) the study of the different rules that can be
discovered from a knowledge graph, including association rules, and the demon-
stration of why these rules are not suitable for the expression of causal relations;
(iii) the study of approaches allowing the determination of similar instances within
a knowledge graph, constituting the basis of the potential outcome framework, for
the study of the potential results that one seeks to apply to knowledge graphs.

State-of-the-art has made it possible to highlight the following elements:

• Several frameworks exist to discover causal relations. The definition
of a causal relationship is the subject of research in philosophy and statistics.
Several frameworks exist for determining a causal relationship, including
the potential outcomes framework, based on comparing similar instances to
which a different treatment is applied.

• Current rule mining approaches, such as association rule mining,
are not suited for causal discovery. Although association rule mining
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is an important topic, this type of rule only allows the expression of an
association because of its syntax and the way these rules are mined.

• Both symbolic and numerical approaches are used to determine
similar instances within a knowledge graph. In particular, graph con-
cepts allow one to define a conceptual distance, and graph embeddings allow
one to learn vector representations of instances between which a distance can
be computed. However, these distances alone do not determine whether two
instances are sufficiently similar for a causal discovery problem.

In Chapter 4, we presented two approaches [81, 78] that define and mine dif-
ferential causal rules. These rules express the effect of a cause variable, named
treatment, on a variable named result, for a set of instances defined by a graph
pattern named strata. These rules thus provide explanations as to why two in-
stances have different results. This chapter shows that such rules expressing a
causal relationship can be obtained by adapting the potential outcome frame-
work. The developed approaches have been tested and evaluated by experts on
two datasets, including a dataset named Vitamin. Vitamin describes people, their
eating habits, and their opinions on food and climate change issues. Experts have
found the rules determined on Vitamin to be broadly interpretable and meaning-
ful. However, these rules have some limitations, including that (i) some rules are
difficult to interpret, as one treatment can have opposite effects, (ii) their order-
ing is not clearly defined, and (iii) the rules only explain a small proportion of
instances pairs with a different outcome.

In Chapter 5, we described an approach [77] that defines and mines counter
effects rules. The definition of these rules follows the limitation expressed by the
causal differential rules of chapter 4 on the interpretation of the rules. It allows for
facilitating the interpretation of the rules. In particular, counter effects rules show
that one treatment can have opposite effects depending on the sets of instances to
which it is applied. They also show the differences between these sets of instances
that explain the opposing effect. The search for counter effects rules allows us to
(i) clarify the interpretation of causal differential rules and (ii) rank treatments by
looking at, first, how consistent their effects are in the rules where they appear
and, secondly, their propensity to change the meaning of other treatments.

In Chapter 6, we presented a new type of rule named average differential causal
rules [80, 79]. Unlike differential causal rules, which express the effect of a treat-
ment on a subset of instances, average differential causal rules express the average
effect of a treatment on all instances of a knowledge graph. We developed a hybrid
approach that mines such rules. The mined rules are (i) simpler to interpret and
(ii) explain significantly more differences in the outcome than differential causal
rules. This hybrid approach is based on the potential outcome framework and
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knowledge graph embeddings. Learning graph embedding vectors representing the
instances of a knowledge graph allows us to determine similar instances across the
entire graph, even if the descriptions of the instances are incomplete. An impor-
tant result was raised from the experimental evaluation, as this approach is more
robust to missing data than previous approaches.

To conclude, we showed in this thesis that causal relations in knowledge graphs
can be represented as rules that we named differential causal rules. These rules
provide explanations as to why instances of a target class of a knowledge graph
have different outcome values and are obtained by adapting the potential outcome
framework. The potential outcome framework is a standard framework to discover
causal effects. The method of this framework that has been adapted is matching,
which consists of comparing similar instances that differ in the treatment path
to study. We showed that discovering rules using matching could be done by
several methods, i.e., symbolic or hybrid methods, that are more or less resistant
to missing data in a knowledge graph. The causal effects expressed in the rules
are explained by treatments. They may express a local effect, i.e., over a subset of
instances of the target class described by a graph pattern, or an average effect, i.e.,
over all instances of the target class. A trade-off exists between rules expressing
a local or an average effect. Rules with local effects are more expressive but may
be harder to interpret and provide explanations to a small number of pairs having
different outcome values. On the other hand, rules expressing average effects are
easier to interpret and explain more pairs but are less expressive.

7.2 Discussion and Future Work

In this section, in regard to the limits of our contributions, we propose perspec-
tives for future work. We structure these directions in two categories: short-term
perspectives and long-term perspectives.

7.2.1 Short-Term Perspectives

Rules Generalisation Heuristic. In Dicare-S and Dicare-C, presented in Chap-
ter 4, differential causal rules are obtained in several steps, including the discovery
of specific differential causal rules and the generalisation of specific rules to more
general ones. This generalisation is made by verifying a consistency constraint,
i.e., that states that two specific rules can be merged only if they both verify the
same treatment and effect. However, in practice, there are many cases where the
effect of a treatment on a strata can be unknown. This can be explained by a lack
of data or by a strata where no instances are found, as it could lead to inconsistent
descriptions. Consequently, the effect of a treatment on such strata can not be
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verified, and these strata can not be part of more general rules due to the strict
generalisation process. This results in rules that can not be generalised due to
missing information and that are, therefore, more difficult to interpret than more
general rules. While this generalisation process ensures the discovery of rules with
strong confidence, we believe another generalisation process could be tested. In
such a process, a less strict heuristic could be defined, such as generalising all rules
except the ones where the treatment has been shown to have no effect.

Rules Analysis. Both differential causal rules and average differential causal
rules can be used to explain the outcome of pairs of instances. Also, several rules
can provide an explanation for one pair. In this case, either all rules explain the
same outcome of the pair, i.e., given the treatment of the rule that is verified
by the pair, the pair also verifies the outcome of the rule, or rules may provide
opposing explanations, i.e., the treatment of the rules are verified by the pair, but
the outcome of the pair is not always the outcome of the rules. In Dicare-C and
Dicare-E, a pair is considered to be explained if it verifies at least the treatment and
the outcome of one rule. However, a deeper analysis of the rules may be provided.
Chapter 5 proposes a first analysis of differential causal rules obtained in Chapter
4 when treatments may lead to opposing effects depending on the strata they are
applied to. We believe such an analysis could also be done on the rules obtained in
Chapter 6, to analyse whether relationships between treatments can be obtained,
e.g., if they lead to the same or opposing outcomes. Such relations could be used
to propose an ordering between the rules in addition to their support and their
causal metric.

Concepts of Nearest Neighbours. Our approaches adapted the potential out-
come framework, especially the matching method. Matching consists of creating
pairs of similar instances. As the literature mentioned [1, 28] and as our work
confirmed [78, 79], matching becomes increasingly difficult with the number of
properties or paths that describe the instances. The literature indicates that the
set of key properties that should be controlled is to be defined carefully. In our
symbolic approaches [81, 78], this set is defined by an expert. In our hybrid ap-
proaches [80, 79], the best matches are obtained using embedding vectors that
capture a representation of the instances. However, while the embedding-based
distance is easy to use to select the closest matches in a knowledge graph, it is
however hardly interpretable. Although the quality of a matching process is hardly
measurable without ground truth, we believe other matching strategies could be
applied. For instance, we believe that using the concept of nearest neighbours
[18] can be an interesting lead to match similar instances in an interpretable way.
Moreover, it does not require a training phase as embeddings do.
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7.2.2 Long-Term Perspectives

Approaches Generality. In order to show the generality of our approaches, it
would be interesting to apply them to knowledge graphs other than Vitamin or
DBpediaW. However, the approaches developed in this thesis can not be used for
all knowledge graphs. As discussed in Chapter 2, knowledge graphs diversity can
be observed by considering their content, which can describe expert or general
knowledge, or their size. We list the features a knowledge graph should possess to
apply our approaches. Firstly, such a knowledge graph should describe instances
of a target class with an outcome path of interest, i.e., a property path to explain.
Indeed, many knowledge graphs, such as wikidata, provide general descriptions
of instances and rarely the same paths for all instances. In this case, applying
our approaches would not be relevant as there would not necessarily be a path
of interest to explain. More generally, we believe that our approaches are to be
used on domain-specific knowledge graphs. Secondly, as our approaches rely on
the potential outcome framework, the estimations of causal effects represented
in causal rules are computed by comparing similar instances. While assessing
this similarity becomes difficult with the increasing number of paths describing
instances, it is also difficult to measure when only a few describe instances. Indeed,
in this situation, creating pairs could be rather easy. However, a low number of
paths may not discriminate enough, as the instances of created pairs could still be
rather different. Therefore, our approaches should be applied to knowledge graphs
with a minimum number of paths describing their instances. Lastly, regarding
the size of the knowledge graph, our approaches have been tested on small and
medium-sized knowledge graphs. We believe that both Dicare-C and Dicare-E
could be applied to larger knowledge graphs by adapting their settings.

Rules Validation. While our approaches rely on experts’ validation to judge
and select the causal rules from the set of discovered rules, we believe there are
other ways to select the causal rules. More precisely, at least two sets of meth-
ods could be used. First, statistical methods such as refuting methods could be
adapted. Their objective is to discard rules that have no effects. An example of
such a method consists of changing the values of one variable, such as the treat-
ment or the outcome, to random values and observing whether an effect is still
measured or not. While such methods could discard rules that have no effects, they
are, however, not able to make the distinction between rules expressing a causal
relation or a correlation. Consequently, the second set of methods to adapt would
be methods selecting causal relations. To this end, however, no statistical methods
exist but only expert knowledge, as done in this thesis. For instance, when learning
a structural causal model, which is the main framework in causal discovery with
the potential outcome framework, the estimation of causal effects is computed on
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treatments selected by the user in a pre-processing step. Independence between
a variable and the outcome is also to be indicated by the user. Therefore, future
approaches should (i) discard correlations between property paths before running
the approaches, as already defined in our approaches, and (ii) ensure a rigorous
validation process of the rules by the experts. While a validation process has al-
ready been defined in this thesis, it could be improved by using more experts or
by applying consensus ranking techniques to select the most valid rules.

Rules Interpretability. Two types of rules expressing a causal relationship were
defined in this work, namely differential causal rules and average differential causal
rules. Given instances of a target class, the first underlies the causal effect of a
treatment on a subset of instances defined by a basic graph pattern, while the sec-
ond focus on an average effect of a treatment on all instances of the target class.
Both rules are used as explanations as to why two instances may have a different
result for a given outcome property path. The evaluation of both types of rules
showed that the rules expressing average effects were easier to interpret and could
explain more differences in the result. However, they are also less expressive as
they display an average effect which can hide heterogeneous local effects. As a con-
clusion to rules interpretability, we believe that our approaches can be extended to
provide even more interpretable rules. It would be possible, for instance, to target
strata where a treatment has a particularly strong effect instead of outputting all
possible rules. This could lead to displaying only the stronger treatment effects
to experts instead of all possibilities, easing the interpretation of the rules. Such
rules could be obtained in a post-processing step of the set of average differential
causal rules, for instance, by analysing the frequent descriptions of instances where
a rule is valid. To give even more insights to the experts, we believe that another
future work on the rules definition could be, in opposition to focusing on treat-
ment effects, to display strata where treatments have no effects. In other words,
such strata would not be sensitive to interventions, and this information would be
useful to experts in experimental or policy design, for instance.

Semantic Representation of Causal Relations. In this thesis, causal rela-
tions are represented as rules which are one possible way to represent this kind of
knowledge. Besides, rule and knowledge can be represented as other components,
such as axioms or relations defined within an ontology. While mining rules are
of interest to a user as they can be easily interpreted, other forms of knowledge
representation could also be relevant to the representation of causal relations. One
possible example of other causal relations approaches outputs could be predicates
that specify that one relation causally links two or more predicates and under
which conditions. One recent work [67] proposed the first version of an ontology
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that could include such knowledge. Overall, developing this ontology could lead
to the ability to express causal relations in a more precise manner in addition to
rules.

Multiple Knowledge Graphs. In the context of Linked Open Data (LOD),
knowledge graphs can be linked if they describe the same or similar content. There-
fore, a research question of interest for future work could investigate how several
knowledge graphs can be dealt jointly to discover causal relations. While extensive
work can be found in the literature on the discovery and management of identity
across knowledge graphs, this work would rather focus on discovering similar in-
stances across knowledge graphs. This task is not trivial, given differences that
may exist between different knowledge graphs. It would likely adapt ontology
alignment methods to compare instances in the same referential.
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Chapter 8

Résumé en Français

8.1 Introduction

Les graphes de connaissances permettent de stocker des données decrivant le
monde, ses individus et les relations qui les lient. Depuis la fin des années 2010,
l’étude et l’utilisation des graphes de connaissances connait un essor grandissant,
aussi bien dans le milieu académique, i.e., chercheurs en université, que de la
part des entreprises privées, e.g., Google, Microsoft, etc. Les données decrites
par les graphes de connaissances peuvent être des connaissances encyclopédiques,
à l’image de Yago ou de DBpedia, ou bien des connaissances de domaines spéci-
fiques, tels la musique ou l’agronomie.

Plusieurs thématiques d’étude des graphes de connaissances existent. Parmi
celles-ci, l’on trouve notamment la fouille de règles d’association, qui, à partir d’un
graphe de connaissances, permet d’obtenir un ensemble de règles permettant à la
fois la découverte de nouvelles connaissances, ainsi que le nettoyage d’un graphe
de connaissance en supprimant des données erronnées et en ajoutant des données
manquantes. Les connaissances découvertes par des règles d’association relèvent,
comme leur nom le suggère, d’associations. De manière générale, une association
indique l’existence d’un lien statistique entre deux variables. Un tel lien peut
indiquer une relation de corrélation, de causalité, ou bien résulter d’un fait aléa-
toire. En conséquence, en terme de découverte de connaissances, une association
exprimée par une règle d’association peut aussi bien indiquer une relation qui aura
une valeur ajoutée pour l’utilisateur d’un graphe de connaissance, ou bien n’aura
pas de sémantique exploitable car relevant d’une simple association.

Une association regroupe donc un ensemble de relations, dont les relations
causales. De façon informelle, la causalité est l’influence par laquelle un événement,
i.e., une cause, contribue à la production d’un autre événement, i.e., un effet, où la
cause est responsable de l’effet, et l’effet est dépendant de la cause. La recherche

109



Résumé en Français L. Simonne

de relations causales est l’objet de nombreuses expériences dans une diversité de
domaines. Par exemple, en santé, un médicament est étudié afin de déterminer
s’il permet de soigner ou non une maladie. En marketing, des tests sont réalisés
afin de décider quelle campagne de publicité est à privilégier pour maximiser les
ventes d’un produit.

L’étude de relations causales est donc un sujet de grande importance. Cepen-
dant, la fouille de ce type de relation au sein de graphes de connaissances est un
sujet très peu étudié. De ce fait, l’objectif de cette thèse est de découvrir des re-
lations causales au sein de graphes de connaissances. Dans cette thèse, nous nous
intéressons plus particulièrement à développer de nouvelles approches de décou-
verte de relations causales en appliquant le cadre d’étude des résultats potentiels,
potential outcome framework en anglais, qui cherche à estimer l’effet d’une variable
sur une autre. Ainsi, d’autres cadres d’études, comme les modèles causaux struc-
turaux, ne sont pas étudiés dans cette thèse. L’incorporation de représentations
causales dans l’apprentissage de modèles d’intelligence artificielle est un sujet qui
n’est également pas adressé par cette thèse.

8.2 État de l’art

Le chapitre 3 fournit une étude de l’état de l’art concernant la causalité au sein des
graphes de connaissances. L’étude peut se diviser en plusieurs parties, dont (i) la
définition d’une relation causale et les cadres d’études de la causalité permettant de
découvrir ce type de relation; (ii) l’étude des différents types de règles pouvant être
découvertes depuis un graphe de connaissances, dont les règles d’association, et la
démonstration de pourquoi ces règles ne sont pas adaptées à l’expression de rela-
tions causales; (iii) l’étude des approches permettant la détermination d’instances
similaires au sein d’un graphe de connaissances, cet élément constituant la base du
cadre d’étude des résultats potentiels que l’on cherche à appliquer aux graphes de
connaissances. L’état de l’art a permis de mettre en évidence les éléments suivants
:

• Plusieurs cadres d’études existent pour découvrir des relations
causales. La définition même d’une relation causale est l’objet de recherches
en philosophie et en statistiques. Plusieurs cadres d’études existent pour
déterminer une relation causale, dont le cadre d’étude des résultats poten-
tiels qui est basé sur la comparaison d’instances similaires sur lesquelles un
traitement différent est appliqué.

• Les règles d’association ne permettent pas d’exprimer une relation
causale. Bien que la fouille de règles d’association soit un sujet important,
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ce type de règles permet seulement d’exprimer une association du fait de sa
syntaxe et de la façon dont ces règles sont obtenues.

• Des approches symboliques et numériques permettent de déter-
miner des instances similaires au sein d’un graphe de connais-
sance. En particulier, les concepts de graphes permettent de définir une
distance conceptuelle, et les plongements de graphes permettent d’apprendre
des représentations vectorielles d’instances entre lesquelles il est possible de
calculer une distance. Cependant, ces distances seules ne permettent pas de
déterminer si deux instances sont suffisamment similaires pour un problème
de découverte causale.

8.3 Appariemment tronqué pour la fouille de rè-
gles différentielles causales

Le chapitre 4 présente des contributions publiées dans des conférences nationales
et internationales [81, 78]. Ces travaux ont porté sur la définition de règles dif-
férentielles causales. Ces règles expriment l’effet d’une cause nommée traitement
sur une variable nommée résultat, et ce pour un ensemble d’instances défini par un
motif de graphe nommé strate. Ces règles permettent ainsi de fournir des explica-
tions à pourquoi deux instances ont un résultat différent. Ce chapitre montre que
de telles règles exprimant une relation causale peuvent être obtenues en adaptant
le cadre d’étude des résultats potentiels.

Les approches développées [81, 78] ont été testées et évaluées par des experts
sur deux jeux de données, dont un jeu de données nommé Vitamin. Vitamin
décrit des personnes, leurs habitudes alimentaires et leur avis sur des questions
d’alimentation et de changement climatique. Les experts ont jugé les règles dé-
couvertes sur Vitamin comme étant globalement interprétables et ayant du sens.
Cependant, ces règles présentent certaines limites, dont (i) leur ordre qui n’est pas
clairement défini, (ii) certaines règles sont difficiles à interpréter, un traitement
pouvant avoir des effets opposés, et (iii) les règles expliquent une faible proportion
des paires ayant un résultat différent.

8.4 Fouille de règles à effets opposés

Dans le chapitre 5, nous proposons une contribution publiée dans une conférence
internationale [77] définissant des règles à effets opposés. La définition de ces règles
fait suite aux limites exprimées par les règles différentielles causales du chapitre 4,
et permet de faciliter l’interprétation de ces règles. Plus particulièrement, les règles
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à effets opposés montrent qu’un même traitement peut avoir des effets opposés
en fonction des ensembles d’instances auxquels il est appliqué, et explicitent les
différences entre ces ensembles d’instances.

La fouille des règles à effets opposés permet de (i) clarifier l’interprétation des
règles différentielles causales et de (ii) hiérarchiser les traitements en regardant le
sens de leurs effets dans les règles où ils apparaissent et leur tendance à changer
le sens d’autres traitements.

8.5 Plongements de graphes pour la fouille de rè-
gles différentielles causales

Dans le chapitre 6, nous proposons des contributions publiées dans des conférences
nationales et internationales [79, 80] définissant des règles causales à effets moyens.
À la différence des règles différentielles causales qui expriment l’effet d’un traite-
ment sur un sous-ensemble d’instances, les règles causales à effets moyens expri-
ment l’effet moyen d’un traitement sur l’ensemble des instances d’un graphe de
connaissance. Cette approche permet d’obtenir des règles (i) plus simples à in-
terpréter et (ii) qui expliquent significativement davantage de différences sur le
résultat par rapport aux règles différentielles causales.

Cette approche est fondée sur le cadre d’étude des résultats potentiels et ex-
ploite les plongements de graphes pour la comparaison des instances. L’apprentissage
des plongements de graphes représentant les instances d’un graphe de connais-
sances permet de déterminer des instances similares à travers l’ensemble du graphe,
et ce même si les descriptions des instances sont incomplètes. En conséquence,
cette approche est également davantage résiliante aux données manquantes que
les précédentes approches.

8.6 Conclusion

Nous avons montré dans cette thèse que les relations causales dans les graphes de
connaissances peuvent être représentées par des règles que nous avons nommées
règles causales différentielles. Ces règles fournissent des explications à pourquoi des
instances d’une classe cible d’un graphe de connaissances ont des valeurs différentes
sur un chemin de propriétés, et sont obtenues en adaptant le cadre des résultats
potentiels. Le cadre des résultats potentiels est un cadre standard pour découvrir
des effets causaux. La méthode de ce cadre qui a été adaptée est l’appariement,
qui consiste à comparer des instances similaires qui diffèrent par le chemin de
traitement à étudier. Nous avons montré que la découverte de règles à l’aide
de l’appariement pouvait se faire par plusieurs méthodes, i.e., symboliques ou

112



Bibliography L. Simonne

hybrides, qui sont plus ou moins résistantes à l’incomplétude de l’information.
Les effets causaux exprimés dans les règles sont expliqués par des traitements.
Ils peuvent exprimer un effet local, i.e., sur un sous-ensemble d’instances de la
classe cible décrit par un motif de graphe, ou un effet moyen, i.e., sur toutes les
instances de la classe cible. Il existe un compromis entre l’utilisation des règles
exprimant un effet local ou un effet moyen. Les règles exprimant un effet local sont
plus expressives mais peuvent être plus difficiles à interpréter, et fournissent des
explications à un petit nombre de paires ayant des valeurs de résultat différentes.
D’autre part, les règles exprimant des effets moyens sont plus faciles à interpréter
et expliquent un plus grand nombre de paires, mais sont moins expressives.
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