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Résumé: Grâce aux récents progrès tech-
nologiques, le chercheur en neurosciences dis-
pose d’une quantité croissante de jeux de don-
nées pour étudier le cerveau. La multiplicité des
travaux dédiés a également produit des ontologies
encodant des connaissances à la pointe concer-
nant les différentes aires, les schémas d’activation,
les mots-clés associés aux études, etc. Il ex-
iste d’autre part une incertitude inhérente aux im-
ages cérébrales, du fait de la mise en correspon-
dance entre voxels – ou pixels 3D – et points réels
sur le cerveau de différents sujets. Malheureuse-
ment, à ce jour, aucun cadre unifié ne permet
l’accès à cette mine de données hétérogènes avec
l’incertitude associée, obligeant le chercheur à se
tourner vers des outils ad hoc.

Dans cette étude, nous présentons NeuroLang,
un langage probabiliste basé sur de la logique
de premier ordre, comprenant des règles existen-
tielles, de l’incertitude probabiliste, l’intégration

d’ontologies reposant sur l’hypothèse du monde
ouvert, ainsi que des mécanismes garantissant une
réponse aux requêtes résolvables, même sur de
très grandes bases de données. Nous soutenons
que NeuroLang, par l’expressivité de son langage
de requête, contribuera à grandement améliorer la
recherche en neurosciences, en donnant notam-
ment la possibilité d’intégrer de manière trans-
parente des données hétérogènes, telles que des
ontologies avec des atlas cérébraux probabilistes.
Dans ce cas-ci, des domaines cognitifs – à la gran-
ularité fine – et des régions cérébrales seront asso-
ciés via un ensemble de critères formels, favorisant
ainsi la communication et la reproductibilité des ré-
sultats d’études sur les fonctions cérébrales. Aussi
croyons-nous que NeuroLang est à même de se po-
sitionner en tête sur ces approches numériques qui
visent à formaliser la recherche neuroscientifique à
grande échelle via la programmation probabiliste
et logique du premier ordre.



Title: Development of a probabilistic domain-specific language for brain connectivity including hetero-
geneous knowledge representation
Keywords: Datalog, Open-world Assumption, Probabilistic Programming, Query Answering, Meta-
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Abstract: Researchers in neuroscience have a
growing number of datasets available to study the
brain, which is made possible by recent techno-
logical advances. Given the extent to which the
brain has been studied, there is also available on-
tological knowledge encoding the current state of
the art regarding its different areas, activation pat-
terns, keywords associated with studies, etc. Fur-
thermore, there is inherent uncertainty associated
with brain scans arising from the mapping between
voxels—3D pixels—and actual points in different
individual brains. Unfortunately, there is currently
no unifying framework for accessing such collec-
tions of rich heterogeneous data under uncertainty,
making it necessary for researchers to rely on ad
hoc tools.

In this work we introduce NeuroLang, a proba-
bilistic language based on first-order logic with ex-

istential rules, probabilistic uncertainty, ontologies
integration under the open world assumption, and
built-in mechanisms to guarantee tractable query
answering over very large datasets. We propose
that NeuroLang provides a substantial improve-
ment to cognitive neuroscience research through
the expressive power of its query language. We
can leverage the ability of NeuroLang to seam-
lessly integrate useful heterogeneous data, such
as ontologies and probabilistic brain atlases, to
map fine-grained cognitive domains to brain re-
gions through a set of formal criteria, promoting
shareable and highly reproducible research on the
domains of brain function. We believe that Neu-
roLang is well suited for leading computational ap-
proaches to formalize large-scale neuroscience re-
search through probabilistic first-order logic pro-
gramming.
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1 - Résumé étendu en français

Grâce aux récents progrès technologiques, le chercheur en neurosciences dis-
pose d’une quantité croissante de jeux de données pour étudier le cerveau. La
multiplicité des travaux dédiés a également produit des ontologies encodant des
connaissances à la pointe concernant les différentes aires, les schémas d’activation,
les mots-clés associés aux études, etc. Il existe d’autre part une incertitude in-
hérente aux images cérébrales, du fait de la mise en correspondance entre voxels –
ou pixels 3D – et points réels sur le cerveau de différents sujets. Malheureusement,
à ce jour, aucun cadre unifié ne permet l’accès à cette mine de données hétérogènes
avec l’incertitude associée, obligeant le chercheur à se tourner vers des outils ad
hoc.

Dans cette thèse, nous présentons NeuroLang, un langage probabiliste basé sur
de la logique de premier ordre, comprenant des règles existentielles, de l’incertitude
probabiliste, l’intégration d’ontologies reposant sur l’hypothèse du monde ouvert,
ainsi que des mécanismes garantissant une réponse aux requêtes résolvables, même
sur de très grandes bases de données. Nous soutenons que NeuroLang, par
l’expressivité de son langage de requête, contribuera à grandement améliorer la
recherche en neurosciences, en donnant notamment la possibilité d’intégrer de
manière transparente des données hétérogènes, telles que des ontologies avec
des atlas cérébraux probabilistes. Dans ce cas-ci, des domaines cognitifs – à la
granularité fine – et des régions cérébrales seront associés via un ensemble de
critères formels, favorisant ainsi la communication et la reproductibilité des ré-
sultats d’études sur les fonctions cérébrales. Aussi croyons-nous que NeuroLang
est à même de se positionner en tête sur ces approches numériques qui visent
à formaliser la recherche neuroscientifique à grande échelle via la programmation
probabiliste et logique du premier ordre.

Cette thèse est divisée en quatre parties : Background, Main Contributions,Real-
World Use Cases in Neuroscience Research et Discussion. Nous présentons main-
tenant le plan de chaque chapitre :

Dans Background, nous introduisons certains des concepts nécessaires à la
compréhension de la portée de cette thèse et des difficultés rencontrées. Il se
compose de quatre sections : Dans la première section, nous nous plongerons
dans la complexité du cerveau et les améliorations technologiques qui ont permis
à la science d’avancer jusqu’à aujourd’hui, mais aussi dans les problèmes que cette
avancée génère pour nous. Dans la deuxième section, nous introduirons l’idée
de la programmation logique, nous expliquerons la syntaxe Datalog sur laquelle
NeuroLang est basé et nous présenterons certaines des différences entre NeuroLang
et Datalog, que le lecteur doit comprendre avant de naviguer à travers les exemples
proposés dans ce manuscrit. Dans la troisième section, nous présenterons l’idée de
la méta-analyse et pourquoi nous pensons qu’il s’agit d’un excellent cas d’utilisation
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pour démontrer les caractéristiques les plus remarquables de NeuroLang. Enfin,
dans la quatrième section, nous nous plongerons dans les ontologies et l’idée de
l’hypothèse du monde ouvert, les avantages de leur intégration dans la réponse aux
requêtes, et certaines des difficultés qui doivent être surmontées à de telles fins.

En Main Contributions, comme son nom l’indique, nous présenterons les deux
contributions les plus importantes de cette thèse. Tout d’abord, nous ferons une
présentation détaillée de l’architecture du système de réponse aux requêtes Neu-
rolang, accompagnée de quelques exemples simples qui nous permettront de mettre
en évidence certaines de ses caractéristiques les plus intéressantes. Ensuite, dans
la deuxième contribution, nous nous plongerons dans les ontologies et l’hypothèse
du monde ouvert pour présenter une expérience menée à l’aide de NeuroLang qui
présente une caractérisation multi-niveaux des régions histologiques concernant les
processus cognitifs.

Dans Real-World Use Cases in Neuroscience Research nous montrons deux
applications du monde réel qui utilisent NeuroLang pour répondre à des questions
d’actualité en neurosciences. Ces deux travaux montrent comment certaines des
caractéristiques les plus pertinentes de NeuroLang sont adaptées au monde réel :
l’intégration de connaissances hétérogènes et ontologiques dans le premier travail
et les requêtes de ségrégation dans le second.

Enfin, dans la Discussion, nous passerons brièvement en revue les concepts
les plus importants présentés au cours de cette thèse tout en introduisant quelques
idées sur le développement futur de NeuroLang. Ces idées concernent des pistes de
recherche que nous n’avons pas empruntées et qu’il serait intéressant d’explorer,
mais aussi des idées personnelles sur des améliorations possibles qui pourraient être
réalisées dans un futur proche.
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2 - INTRODUCTION

2.1 . The Thinking Being

There is a point in the history of our planet that marks a before and af-
ter. An event that, perhaps imperceptible at that time, will transform the world
in every corner: the emergence of the thinking being. This event triggers a
fundamental paradigm shift; from this moment onwards, our capacity to gener-
ate questions will surpass in speed the capacity by which we can offer answers.

Figure 2.1: Vesalii, An-dreae. De humani cor-poris fabrica libri septem

A paradigm that will push humanity towards the
path of studying, explaining, and attempting to pre-
dict the observable universe’s social, artificial, and
natural phenomena with nothing more than the pure
intention of understanding it.

It is in order to guide and quantify the progress
of this thinking being that what we know today
as science arises; a set of systematic, verifiable
knowledge that, based on observation, experience
and rationalization, will allow our thinking being to
organize its knowledge through methods, models,
and theories in order to generate new structures of
thought. New structures that, in turn, will allow
this being to observe the world to which it belongs
with a new perspective and to formulate new ques-
tions, thus giving rise to a cycle of knowledge that
feeds back to the present day.

However, while it is true that our thinking being
has taken advantage of this feedback loop of knowl-
edge to reach places he could never have imagined,
one destination still eludes him: his own thinking.
Understanding the circuits and patterns of brain ac-
tivity and how these give rise to the emergence of

mental processes and behavior is, undoubtedly, one of the most critical questions
in today’s science in general and neuroscience in particular. In this way, the human
brain of this being faces the titanic task of, stripped of all subjectivity, understand-
ing itself. Fortunately, and for the benefit of our thinking being, the feedback cycle
of sciences has not stopped.

2.2 . A Flood of Data
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Technological advances in recent decades have allowed us to access informa-
tion from the brain in vivo and in a non-intrusive manner with a resolution never
imagined. One example of these advances is functional magnetic resonance imag-
ing (fMRI), which uses a technique known as BOLD-contrast imaging (for Blood-
Oxygen-Level Dependent contrast imaging) to produce an image that reflects local
blood oxygen levels at each point in the brain [55]. The increase in oxygen level in
an area is associated with an increase in neuronal activity due to the hemodynamic
response generated by neurovascular coupling [34]. fMRI is a remarkable scientific
breakthrough that has significantly contributed to the understanding of the human
brain that we have today.

Figure 2.2: Vesalii, An-dreae. De humani cor-poris fabrica libri septem

However, despite scientific and technological
advances, neuroscience is at a turning point. On
the one hand, recent studies show that current ap-
proaches to classifying brain areas, such as relative
location, cell population type, or connectivity, are
insufficient to characterize a cortical area and its
function unequivocally, hindering its reproducibility
and progress in neuroscience. On the other hand,
the interest in unraveling the mysteries of the brain
has given rise to a growing number of projects de-
veloped in the last decades that have produced
large heterogeneous databases, including ontolo-
gies, multidimensional images, and demographic in-
dicators, among others [72, 52, 33, 79]. As a con-
sequence, neuroscience is faced with a flood of data
that it needs to be able to harness in order to con-
tinue advancing in its titanic task.

A powerful approach to synthesize neuroimag-
ing results and data unbiasedly is meta-analysis [53].
Through a handful of meta-analysis tools developed
over the past decades, researchers have been able to agree on results and derive
latent patterns of brain-behavior mapping [33, 79]. However, most of the time,
meta-analyses also require combining data from heterogeneous sources, such as
brain activity patterns, brain atlases, textual terms, topic models, and formal cog-
nitive ontologies [58]. However, commonly used meta-analysis tools are not keeping
up with the rapid expansion and diversification of the field, impeding the search
for domains of brain function.

Thus, neuroscience urgently needs a universal standard for specifying neu-
roanatomy and function: a way to allow neuroscientists to combine heterogeneous
datasets and simultaneously specify tissue characteristics, relative location, known
function, and topology of connections for the unambiguous identification of a given
brain region.
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Figure 2.3: Studies mentioning the term brain from 1900 onwards, ac-cording to the PubMed.gov database.

2.3 . Need of a Unified Framework

Researchers in neuroscience have a growing number of datasets available to
study the brain, which is made possible by recent technological advances [72, 52,
33, 79]. Given the extent to which the brain has been studied, there is also available
ontological knowledge encoding the current state of the art regarding its different
areas, activation patterns, keywords associated with studies, etc. Furthermore,
there is inherent uncertainty associated with brain scans arising from the mapping
between voxels—3D pixels—and actual points in different individual brains. Un-
fortunately, there is currently no unifying framework for accessing such collections
of rich, heterogeneous data under uncertainty, making it necessary for researchers
to rely on ad hoc tools.

In this work, we introduce NeuroLang, a probabilistic language based on first-
order logic with existential rules, probabilistic uncertainty, ontologies integration
under the open world assumption, and built-in mechanisms to guarantee tractable
query answering over very large datasets. We propose that NeuroLang provides a
substantial improvement to cognitive neuroscience research through the expressive
power of its query language. We can leverage the ability of NeuroLang to seam-
lessly integrate valuable heterogeneous data, such as ontologies and probabilistic
brain atlases, to map fine-grained cognitive domains to brain regions through a
set of formal criteria, promoting shareable and highly reproducible research on
the domains of brain function. We believe NeuroLang is well suited for leading
computational approaches to formalize large-scale neuroscience research through
probabilistic first-order logic programming. After presenting the language and its
general query-answering architecture, we discuss real-world use cases showing how
NeuroLang can be applied to practical scenarios.
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2.4 . Organisation of this dissertation

This thesis is divided into four parts: Background, Main Contributions, Real-
World Use Cases in Neuroscience Research and Discussion. We now present the
outline of each chapter:

In Background, we introduce some of the concepts necessary to understand
the scope of this dissertation and the difficulties encountered. It consists of four
sections: In the first section, we will delve into the complexity of the brain and
the technological improvements that allowed science to advance to the present
day, but also into the problems that this advance is generating for us today. In
the second section, we will introduce the idea of logic programming, explain the
Datalog syntax on which NeuroLang is based and we will introduce some of the
differences between NeuroLang and Datalog, which the reader needs to understand
before navigating through the examples proposed in this manuscript. In the third
section, we will present the idea of Meta-Analysis and why we believe it is an
excellent use case to demonstrate the most outstanding features of NeuroLang.
Finally, in the fourth section, we will delve into ontologies and the idea of the
Open-world assumption, the advantages of integrating them in query answering,
and some of the difficulties that need to be overcome for such purposes.

In Main contributions as the name suggests, we will present this thesis’s
two most important contributions. First, we will give a detailed presentation of
the architecture of the Neurolang query answering system, accompanied by some
simple examples that allow us to highlight some of its most exciting features.
Then, in the second contribution, we will delve into ontologies and the open-world
assumption to present an experiment conducted using NeuroLang that presents a
multilevel characterization of histological regions concerning cognitive processes.

In Real-World Use Cases in Neuroscience Research we show two real-world
applications that use NeuroLang to answer questions of current neuroscientific
relevance. These two works show how some of the most relevant features of
NeuroLang are adapted to the real world: the integration of heterogeneous and
ontological knowledge in the first work and segregation queries in the second.

Finally, in Discussion, we will briefly review the most important concepts
presented during this dissertation while introducing some ideas about the future
development of NeuroLang. These ideas involve research avenues that we did not
take and would be interesting to explore, but also personal ideas about possible
improvements that could be carried out in the near future.
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Part I

Background
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3 - On brains and data

3.1 . Complexity of the brain

While the functionality carried out by most of the vital organs of the human
being is unremarkable, the human brain sets us apart from the rest of life on our
planet. The brain is a complicated tissue composed of approximately 86 billion
neuronal cells, of which 16 billion form part of the cerebral cortex [39]. Each of
these 16 billion neocortical neurons has an average of 7000 synaptic connections,
giving a total of 150,000 to 180,000 kilometers of myelinated neuronal fibers in an
average adult at the age of 20 [29]. In addition, there is another 85 billion non-
neuronal cells [39]. Furthermore, let us not forget that all these cells and neural
fibers are contained within an organ that weighs about a kilo and a half and is
"enclosed" within the cave of bones we call the skull.

The brain, unlike other organs, is composed of exquisitely specialized substruc-
tures involved in motor, sensory and integrative functionalities [51]. While it is
true that, given the abundance of cells and fibers, one would think that the brain
has enough redundancy and plasticity to be able to lose a number of these without
too many consequences, it is partly because of this hyperspecialization of differ-
ent regions that it is not only the number of neurons that matters but also the
region where the loss occurs. Donald O. Hebb, in his famous "The Organization
of Behavior: A Neuropsychological Theory" [38] of 1949, echoed this situation:

“The effect of a clear cut removal of cortex outside the speech area
is often astonishingly small, at times no effect whatever can be found
(Hebb, 1942a, 1945b). It is possible that there is always a loss of
intelligence in aphasia, when the "speech area" is seriously damaged,
but this does not, of course, explain why damage elsewhere should
have no effect. It would be unreasonable to suppose that most of
the cortex has nothing to do with intelligence, and there are, in fact,
definite indications that this is not true. Intelligence must be affected
by any large brain injury, yet sometimes it seems not to be.”

In the face of this complexity, how do we then measure brain responses?

3.2 . The short history of how we measure the brain

The earliest written record of the anatomical description of a brain dates back
to ancient Egypt. This document was written around 1600 BC and is known as
the Edwin Smith papyrus (1822-1906), after the American farmer, antiquarian,
and Egyptologist who discovered it. However, the contents of this manuscript
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are believed to be a copy of a treatise written between 3000 - 2500 BC. The
document contains 48 well-structured clinical traumatology cases and is devoted
to civil construction injuries. In one of the cases, as a result of an open head injury,
we can read the first known description of the history of the brain:

"On examining the wound, one can touch the viscera of the skull,
feeling ripples resembling the slagging of molten copper. Sometimes
the brain beats under the fingers in the same way as the fontanelles
of small children".

The subsequent advances are to be found in the Greek medical school founded
in Alexandria during the 3rd century BC. There, Herophilus (325 - 280 BC) and
Erasistratus (304 - 250 BC) were the first Greek physicians to perform systematic
dissections of human cadavers. Unhappily, the work of both disappeared entirely
with the destruction of the first library in Alexandria by Julius Caesar. We know
about it through quotations from later authors, especially Galen. Furthermore,
after the spread of Christianity during the Middle Ages, dissection was considered
blasphemous, and its practice was forbidden.

In the Italian Renaissance (1450-1600), the brain’s systematic anatomical and
physiological studies were resumed because it became possible to dissect human
cadavers. In 1543, the anatomist Andrew Vesalius (1514-1564) published De Hu-
mani Corporis Fabrica. The book is based on the lectures the author gave at the
University of Padua, during which he carried out countless dissections of cadavers
to illustrate his expositions. He presents a detailed examination of the organs and
a complete structure of the human body.

With the dissemination of the first photographic process, the daguerreotype,
in 1839 by Louis Daguerre (1787 - 1851), photography began to revolutionize the
world. This new tool promised scientists a more objective representation than
drawings and engravings. Thus, in 1873, Jules Bernard Luys (1828 - 1897) pub-
lished the first photographic neuroanatomical atlas: Iconographie Photographique
des Centres Nerveux. However, photography, despite its importance in various
fields of science, was not widely used for the study of the brain in the decades
following the publication of the first atlas.

During this time, the theory of the functional specialization of the brain began
to emerge. The Viennese physician Franz Joseph Gall (1758-1828) proposed that
the brain was the basis of the mind, that the mind was composed of different
mental faculties, and that each mental faculty resided in a specific brain region. A
heated debate on the localization of function in the brain had begun.

In addition to anatomy, another way to study the brain is through imaging
(or recording) its functions, such as electrical or metabolic activity. In the case of
electrical activity, its study in the nervous system of animals during the last quarter
of the 19th century opened the door to the development of electroencephalography.
With this technique, we can map electrical activity in the cerebral cortex at rest
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Figure 3.1: The spatiotemporal domain of neuroscience and the mainmethods available for studying the nervous system in 2014. Each coloredregion represents the useful domain of spatial and temporal resolutionfor one method available for the study of the brain. Open regions rep-resent measurement techniques; filled regions, perturbation techniques.Image from Sejnowski et. al. [67]

and in response to a stimulus. The first human study was published in 1929 by
the neuropsychiatrist Hans Berger (1873 - 1941).

On the other hand, functional magnetic resonance imaging (fMRI) is one way
to analyze the brain’s metabolic responses. fMRI is based on a technique known as
Blood-Oxygen-Level Dependent (BOLD) contrast imaging [55]. Neuronal signaling
processes in the brain, including the formation and propagation of action potentials,
resulting in a local increase in energy requirements, which in turn leads to an
increase in the oxygen concentration in the area [34]. Functional resonance imaging
allows us to measure variations in oxygenated and deoxygenated hemoglobin, and to
assume a proportional relationship of this variation with its corresponding activation
in the brain.

3.3 . Data unification

It has been a long time since, around 1600 BC, humans wrote the first anatom-
ical description of the brain on papyrus. We have been collecting information about
the brain for thousands of years in increasingly complex ways. Now, neuroscience
is in the era of big data and open science, with thousands of articles published
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annually [53], enabled by large-scale brain mapping initiatives [72, 52, 33, 79].
This new era offers enlightenment and new insights, but it can also be a bane if it
obscures, obstructs and overwhelms due to the lack of standards for collaboration
or the impossibility of combining heterogeneous data quickly and without human
error.

To exploit the full potential of this data, there must be ways to standardize,
integrate and synthesize diverse types of data from different levels of analysis and
across laboratories. The first step in solving this problem, through a cultural change
in the way data sharing between laboratories is done, is already happening in the
open with, for example, multimodal data sharing repositories [50, 35]. However,
for a multidisciplinary field like neuroscience, a universal framework for heteroge-
neous data integration and analysis is crucial for bridging the gap between methods
and data. For this purpose, we harness the expressive power of NeuroLang, a uni-
fied domain-specific language for functional neuroanatomy based on probabilistic
first-order logic. With NeuroLang, it is possible to formally express hypotheses,
synthesize results, and integrate data from various heterogeneous sources, opening
doors to questions that were previously hard to define and answer.
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4 - Datalog and Logic programming

Logic programming emerged in the 1970s from debates concerning procedural
versus declarative representations of knowledge in artificial intelligence. The driving
force behind logic programming is the idea that a single formalism suffices for both
logic and computation. Therefore, logic programming offers a slightly different
paradigm for computation: computation is logical deduction.

Languages based on the logic programming paradigm are non-procedural, be-
cause their programs are more concerned with a formal formulation of the problem
than the description of how to solve them: they internally use evaluation engines
to derive the solution. This means that the programmer only specifies the facts
and rules that define the problem, and the system automatically derives the steps
to solve it. This declarative approach allows for a more concise and readable repre-
sentation of the problem, as well as better adaptability and maintainability of the
code. This makes logic programming languages an excellent tool for expressing
hypotheses.

One of the prominent exponents of this paradigm is Prolog. Prolog evolved out
of research at the University of Aix-Marseille in the early 70’s. Alain Colmerauer
and Phillipe Roussel, both of University of Aix-Marseille, collaborated with Robert
Kowalski of the University of Edinburgh to create the underlying design of Prolog
as we know it today. The basic building block behind Prolog’s syntax are Horn
clauses.

Horn clauses are named after the logician Alfred Horn. A Horn clause logic
program is a set of sentences (or clauses) each of which can be written in the form:

A0 ← A1 ∧ · · · ∧An where n ≥ 0 (4.1)
Each Ai is an atomic formula of the form p(t1, . . . , tm), where p is a predicate

symbol and the ti are terms. Each term is either a constant symbol, a variable or
a function symbol. Every variable occurring in a clause is universally quantified,
and its scope is the clause in which the variable occurs. The backward arrow ←
is read as "if", and ∧ as "and". The atom A0 is called the conclusion (or head)
of the clause, and the conjunction A1 ∧ · · · ∧ An is the body of the clause. The
atoms A1, . . . , An in the body are called conditions. If n = 0, then the body is
equivalent to true, and the clause A0 ← true is abbreviated to A0 and is called a
fact. Otherwise if n ̸= 0, the clause is called a rule.

Submitting a query means asking Prolog to prove that the statement(s) implied
by the question can be made true as long as the correct variable instantiations are
made. The search for such proof is often referred to as goal execution. Each
predicate in the query constitutes a (sub)goal, which Prolog tries to satisfy one
after the other.
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With their ability to use predicates to relate objects with one another, logic pro-
grams can naturally express relational databases and queries. This is in fact one of
the main applications of logic programming. Datalog is perhaps the most famous
language for expressing and querying logic databases. Datalog and Prolog are two
closely related programming languages that are based on the first-order predicate
logic. Both languages provide a declarative and logical approach to computation,
and they are widely used for a variety of applications, such as knowledge represen-
tation, data integration, and deductive reasoning. However, there are some key
differences between Datalog and Prolog, which include:

Syntax and semantics: Datalog is a subset of Prolog, which means that every
Datalog program is also a valid Prolog program, but not vice versa. Datalog has
a simpler and more restricted syntax and semantics than Prolog, which makes it
easier to learn and understand, but also less expressive and flexible.

Evaluation strategy: Datalog and Prolog use different evaluation strategies
to derive the solutions of a given program. Datalog usually uses a bottom-up
approach, where the rules are applied to the facts in the database to derive new
facts, whereas Prolog uses a top-down approach, where the facts and rules are
used to satisfy the goals in a query [2].

Decidability and complexity: Datalog is a decidable language, which means
that every Datalog program has a finite and polynomial-time evaluation, whereas
Prolog is a Turing-complete language, which means that some Prolog programs
may not halt or may require exponential time to evaluate. Therefore Datalog
programs are more predictable and efficient than Prolog programs, but they are
also less powerful and versatile. This difference can be seen in Prolog’s ability to
contain function symbols in its literals, something that is not supported in Datalog.
This allows to generate an infinite domain from a finite set of symbols, and thus
simulate an infinite Turing tape. On the other hand, a Datalog program is bounded
in size and its queries are solvable in polynomial time [2].

Overall, the main differences between Datalog and Prolog lie in their syntax and
semantics, evaluation strategy, and decidability and complexity. These differences
can affect the expressiveness, efficiency, and predictability of the two languages,
and they can influence the choice of which language to use for a given application.
In our case, we decided to use Datalog as the main skeleton and influence of
NeuroLang. We will see, mainly in the contributions of this thesis, that we can
extend or limit the expressive power of Datalog according to our needs (allowing
recursion, negation, etc when nedded). However, the decidability of the language
is a fundamental feature for our use cases that we cannot afford to avoid.

4.1 . Datalog syntax

Now we will give a small introduction to the Neurolang syntax, marking dif-
ferences and some syntactic sugars to facilitate its writing, with respect to the
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original Datalog syntax. For a deeper dive into datalog syntax, we ask the reader
to refer to Foundations of databases [2], which is the reference material on which
this chapter is based.

As we mentioned before, Datalog is based on the idea of Horn clauses, therefore
we can define a Datalog rule as an expression of the form:

A0(u0)← A1(u1), . . . , An(un) (4.2)
where n ≥ 0, A0, . . . An are relation names and u0, . . . un are free tuples of appro-
priate arities. Each variable occurring in u0, must also be occurring in at least one
of u1, . . . un. The expression A0 is called the head of the rule, while A1, . . . , An

forms the body. A datalog program is a finite set of Datalog rules. A positive
literal is an atom, i.e A1(u1); and a negative literal is the negation of one, i.e,
¬A1(u1).

A formula of the form A0(u0), . . . , An(un)← B0(u0), . . . , Bn(un) is called a
clause. However, and this marks the first difference with our implementation, a
clause with more than one literal in the head, is not allowed in Neurolang. Clauses
with a single literal are called definite clauses. In the case that no variable occurs
in our clause, it is called a ground clause.

Moreover, since Neurolang is a probabilistic language, there are two fundamen-
tal differences in the syntax that we must emphasize.

1) Given a probabilistic atom of the form a : p, where p is a real number in
the interval [0, 1] and a is an atom with a predicate, Neurolang has the ability to
define probability encoding rules (PERs), which we will explain in more depth in
the following chapters, but which basically allows us to include the probability of
the atom, as another element of its tuple, allowing its subsequent manipulation.

2) The ability to define conditional probabilities in a simple way using the
double backslash ("//") as syntactic sugar.

We can see an example of both features in Listing 4.1 where given a probabilis-

Listing 4.1: PERs and conditional probability
ProbMap(i, j, k, PROB) :-

Activation(i, j, k)
// TermAssociation("emotion").

tic atom Activation and a deterministic atom TermAssociation, we can calculate
the conditional probability ProbMap of an Activation in the voxel (i, j, k) given
an association with the term “emotion” (TermAssociation("emotion")), where the
reserved word PROB in the head of the rule tells Neurolang that we want to ex-
tract the probability of each result atom as a new parameter in ProbMap. A more
detailed explanation of how PERs work will be given in the next chapters.
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Other forms of syntactic sugar present in Neurolang include: 3) The use of @
as a reserved word to describe expressions defining the probabilities of an atom.
The use of this feature can be seen in Listing 4.2 where we define the probability
of a voxel (i, j, k) based on the modified version of ALE proposed by Eickhoff et.
al. [30].

Listing 4.2: Example of the use of @
Activation(i, j, k) @ max(

(exp(-(1 / 2) * (d / sigma) ** 2)
/ ((2 * pi) ** (3 / 2) * sigma ** 3))
* (4 ** 3)

) :- StimTypeAuditory(bmapID, expID),
BrainMap(bmapID, expID, ..., ..., minSubj, i1, j1, k1),
Voxels(i, j, k),
(d == FocusCoactivates(i, j, k, i1, j1, k1)),
(sigma == sigmaGivenSubjects(minSubj))

This modification is based on the idea of using between-subjects and between-
templates variance to estimate the size of the modeled Gaussian from which to
compute the corresponding FWHM.

4) The use of exists as a reserved word, mainly associated with segregation
queries, that can be used in a variety of scenarios that require the explicit definition
of an existential. Listing 4.3 presents an example of the use of the reserved word
exists in the context of a segregation query that seeks to obtain only those studies
that are associated with the left bin and not the right bin. More details on this
experiment are presented in section 10.

Listing 4.3: Example of the use of the reserved word ‘exists‘
OnlyLeftBinActive(bin, study) :- LeftBinActive(bin, study),

~exists(bin2;
Bin(bin2), Study(study), RightBinActive(bin2, study)

)
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5 - Meta-analysis as a Use-case

Meta-analysis tools are examples of central neuroscience use cases requiring
the combination of heterogeneous datasets. Given the increasing availability of in-
formation describing cognitive structures and processes, Meta-analysis constitutes
a fertile ground to show how current knowledge representation advancements can
combine heterogeneous datasets, pushing forward neuroimaging research. Meta-
Analysis is a set of techniques used to combine a finite number of published articles,
which often disagree, to infer consensus-based findings [59]. Combining data may
improve statistical power when there are several studies on a specific question, but
each one of them is largely under-powered or has not been designed to address that
research question [40]. While the inappropriate use of these techniques can lead to
statistical errors and results can be misleading, some general rules can help solve
these problems [53]. This allows us to have a tool that can provide an accurate
and robust estimate after a systematic and rigorous integration of the available
evidence.

A popular method of performing a meta-analysis of neuroimage data is Coordinate-
based Meta-Analysis (CBMA), which tests for consistent activation of the same
anatomical regions. CBMA aims to find results that indicate replicable effects
across studies. By analyzing multiple studies simultaneously, those results repli-
cated across at least some can be identified and assumed to be relevant. CBMA
databases are then built by combining the extracted coordinates of reported peak
activations and a set of terms from neuroimaging studies.

Currently, there are three widely used CBMA methods: ALE, KDA, and MKDA [64].
Briefly, ALE, or activation likelihood estimation [70] generates "likelihood" maps
for each activation focus by placing a 3D Gaussian density with full width at half
maximum (FWHM) specified at the focus location with the idea that activation
foci are more accurately viewed not as single points, but as localization probability
distributions centered at the given coordinates; these maps are then combined to
create a whole-brain map assigning each voxel within the brain a value equal to
the probability that at least one of the points in the dataset actually lay within the
voxel. KDA, or kernel density analysis [76], also treats each focus independently
but instead uses a spherical kernel and a simple addition rule to produce a map
showing the number of foci within a given radius. MKDA, or multilevel KDA [77]
where the binary maps is based on the proportion of studies that activate in a
region rather than the number of peaks, showing where there are one or more foci
within a given radius; these binary maps of studies are then averaged, giving the
proportion of studies that have any focus within a given radius from a voxel.

At present, some of the current standard tools that implements variations of
this CBMA methods are Neurosynth [79], NeuroQuery [28], and BrainMap [46],
which harness automatically extracted as well as manually-curated information

23



present across neuroscientific articles. Briefly, these tools interpret each article as
an independent sample of neuroscientific knowledge and then develop query sys-
tems centered on study subset selection and posterior probabilistic inference on such
subsets. For instance, selecting all studies mentioning “fear” and inferring the most
common areas of the brain reported as active—i.e., deferentially oxygenated—in
such studies. In these tools, queries select a subset of around 15k full-text articles
reporting involvement of several brain locations each and a brain tessellation of
300k cubes, or voxels, then infer commonalities across these articles through max-
imum likelihood estimations combined with spatial information smoothing. Such
queries can express questions like “Where do articles reporting the term ‘emotion’
show activations?", or “Which terms associated with cognitive processes are most
likely associated with articles reporting activations in the amygdala?”. Finally, af-
ter the inferential tasks, the obtained probabilities are manipulated and aggregated
to frame results into the frequentist language neuroscientists commonly use to
communicate the significance of their results [79, 65]. These meta-analyses are
performed in under 30 seconds on a regular laptop computer—however, these tools
are limited in terms of the expressivity of their associated query languages.

Neurosynth combines text mining, meta-analysis, and machine learning tech-
niques to generate probabilistic mappings relating text-mined terms with activa-
tions in the human brain. While NeuroSynth has proven to be of great value to the
neuroscience community, the language used to infer these relationships is based on
propositional logic, which can limit the expressiveness of its query system. This
limitation excludes, for instance, the use of existential quantifiers and negation,
forbidding queries such as “What are the terms most probably mentioned in arti-
cles reporting activations in the parietal lobe and no other brain region”, which we
dub segregation queries. Another example is BrainMap, which has a hand-curated
dataset of great precision and an ontology for structuring all this knowledge and
annotating the articles. Nonetheless, Brainmap’s query system is also based on
propositional logic. It only allows selecting terms mentioned in articles knowing
them in advance, which again cannot express segregation queries or harness the
full information of neuroscience ontologies—such as CogAt [58]—that use open
knowledge.

While recent advances in automated meta-analysis techniques are mostly cen-
tered on better representing spatial correlations [65], to the best of our knowledge,
none have formally addressed expressivity limitations of query languages and the
feasibility of a more expressive resolution. Breaching the expressivity limitations
of current approaches and handling heterogeneous data requires tackling several
issues: handling noisiness in neuroimaging data and conclusions reported across
studies calls for a unifying formalism with probabilistic modeling capabilities; being
able to leverage ontological information modeled under the open world assumption;
finally, performance cannot be ignored since the amount of information needed to
model the human brain is considerable. In short, we need to design a logic-based
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language capable of:

• dealing with existentially quantified variables.

• performing negation and aggregation

• performing probabilistic inference

• post-processing inferred probabilities

• dealing with neuroimaging databases having, at least, a similar performance
to current meta-analytic tools

Our main proposal in this work is the development of a subset of Datalog+/–
extended with probabilistic semantics, aggregation, and negation, focused on meta-
analytic applications. Such an approach allows us to have a language based on first-
order logic with negation and existential (FO¬∃), enabling more complex queries
such as segregation queries or manipulation of information under the open-world
assumption. In all, we produce a language able to express the full breadth of
the pipeline needed for meta-analytic applications: from data preprocessing to
probabilistic modeling and inference, and finally, the post-processing of probabilis-
tic results into images and reports that are easily interpretable in terms of current
reporting used in neuroscience publications. Our main contribution is the introduc-
tion and evaluation of NeuroLang, a probabilistic language based on Datalog+/–
developed to express and solve rich logic-based queries meeting the functional
requirements of neuroimaging meta-analyses.
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6 - Ontologies and the Open World Assump-
tion

Among the variety of data structures that we can find to represent neurosci-
entific knowledge, there is one that will be of particular interest to us because of
the advantages it presents but also because of the challenges it implies: knowledge
graphs, also know as ontologies.

Ontologies are logical theories that formalize domain-specific knowledge and
consist of a formal representation of information as a set of concepts and the
relationships between instance of them, thereby making them available for machine
processing. This way of structuring knowledge hierarchically through relationships
gives ontologies a high expressive power. As a consequence, an incipient interest
in the scientific community to develop techniques that allow the combination of
traditional databases with ontological databases, has arisen with a particular focus
on use the knowledge provided by the ontology to answer queries over an incomplete
database under the open world semantics. This technique where an extensional
database D is combined with an ontology Σ, and the input conjunctive query is
not evaluated against the database D in the traditional way, but against the logical
theory D∪Σ, is known as ontology-mediated query answering (OMQA) [13]. Some
of the possible use cases for this approach include:

• The enrichment of incomplete data sources with the expert knowledge pro-
vided by an ontology in order to obtain a more complete set of answers. For
example, an ontology that associates cognitive processes with specific brain
regions could be used to improve the results provided by a meta-analytic
database where, auditory results for example, also tend to present activa-
tions in the motor cortex produced by the fact that the patient is usually
asked to press a button or raise their hand to report hearing a certain sound.

• The enrichment of data schemas (i.e., the relationship symbols used in the
representation of data) with additional symbols to be used in queries. For
example, in the case of terms that refer to cognitive processes such as pain
and nociception, we could have an ontology that expands the schema of our
data, adding information about the synonymy of these terms and that they
can be used interchangeably, allowing us to nourish our query results with
more information.

• The use of ontologies as data integrators, where an ontology can be used to
provide a unified view of different datasets. For example, an ontology that
combine regions and sub-regions of different atlases of the human brain
through the use of a unified set of entities.
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However, while queries are typically specified as unions of conjunctive queries,
the languages by which ontologies are usually defined are description logics (DLs) [6],
a family of knowledge representation languages, which is a subset of first-order
logic [63]. It’s interesting to note that DLs form the logical basis of the Web On-
tology Language (OWL) [66] and its revision OWL2, standardised by the W3C, one
of the most widely used languages for the definition of ontologies. Nevertheless,
the complete OWL language (called OWL Full to distinguish it from the subsets)
was designed to have maximum expressiveness, but without computational guar-
antees, which has led to extensive research to find language fragments that are
capable of guaranteeing this property. In seeking to overcome this situation, sev-
eral lightened versions of DL have been proposed, which guarantee decidability but
also a polynomial time response for conjunctive queries, in relation to the com-
plexity of the data. Some of these versions include EL[5] and the members of
the DL-Lite family[17]: DL-LiteR, DL-LiteF and DL-LiteA. These languages are
tractable fragments of OWL and, actually, the language DL-LiteR forms the OWL
2 QL profile of OWL 2.

DLs are equipped with formal semantics that allows humans and computers to
exchange information unambiguously and make possible the creation of reasoning
systems capable of inferring additional information from the facts explicitly stated
in an ontology. Leveraging the fact that they are based on a subset of first-order
logic, a DL ontology doesn’t describe a particular state of the world but instead
consists of a set of rules called axioms (also known as ABox statements), each
of which must be true in the world described. These axioms usually capture only
partial knowledge of the situation described by the ontology; hence there may be
many states of the world that are consistent with the ontology.

Having a way of expressing ontologies with emphasis on reasoning as a core
principle, that guarantee decidability and polynomial time response for conjunctive
queries was the necessary stepping stone for the development of ontologies to
take off. In the field of neuroscience, the interest in ontologies is reflected in the
emergence of projects such as Cognitive Atlas (CogAt) [58], Foundational Model of
Anatomy (FMA) [62], Cognitive Paradigm Ontology (CogPO) [71], among others.
The growing literature available on the human brain, and its natural division into
regions/processes, makes ontologies a suitable structure for the storage of this
information. Unfortunately, there is currently no unifying framework for accessing
such collections of rich heterogeneous data under uncertainty, making it necessary
for researchers to rely on ad-hoc tools and despite all their potential benefits, the
use of ontologies is still underappreciated in the area [59]. With this in mind, we
decided to, in the context of NeuroLang, offer a tool that allows neuroscientists
to integrate ontologies, enabling them to use the expert knowledge embedded in
these data structures, while providing a simple way to integrate this information
with the inherent uncertainty associated with for example, brain scans, arising from
the mapping between voxels and actual points in different individual brains.
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However, ontological knowledge is interpreted under the open-world assumption
(OWA), which entailed that the model is a representation of partial knowledge
about a domain. This means that the facts asserted in the model are not assumed
to be complete; if a statement cannot be inferred as true or false about an object,
it’s assumed to be unknown [2]. For this reason, the open world assumption
makes conclusions depend not only on the information contained in the knowledge
base, but also on unknown/missing and plausible information. This means that
using the information contained therein we can conclude that a certain assertion
(query) holds but we cannot simply deny it if there is insufficient evidence. This
is because information that could make the conclusion to be false might not be
present in the current knowledge base. As a consequence, it’s a necessary condition
that any attempt to reason on an ontological knowledge database must take this
characteristic into account. The open-world assumption helps to solve the problem
of data incompleteness, by allowing inference of new facts from the constraints
proposed by the ontology.

In the context of OWL, the most popular language for defining ontologies,
open knowledge can be present, for example, under a property known as someVal-
uesFrom. The inclusion of this constraint in our program results in the creation
of a rule with an existential in the head by which information is defined under the
open-world assumption [63]. Let’s see what this restriction means [66]:

"A restriction containing a someValuesFrom constraint defines a class
of individuals x for which there is at least one y such that the pair
(x,y) is an instance of P.“

The following example, which belongs to the Foundational Model of Anatomy
(FMA) [62] ontology, defines a class (the Left Superior Frontal Gyrus) of individuals
which have at least one member under the property of being RegionalPartOf of
the Left Frontal Lobe class:

<owl:Class rdf:ID="Left Superior Frontal Gyrus">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#RegionalPartOf" />
<owl:someValuesFrom>

<owl:Class rdf:about="Left Frontal Lobe" />
</owl:someValuesFrom>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

The someValuesFrom constraint is analogous to the existential quantifier of
first order logic (FOL) - for each instance of the class that is being defined, there
exists at least one value for P that fulfills the constraint. This would translate into
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the following FOL rule:

∀x Left Superior Frontal Gyrus(x)→ (6.1)
∃y RegionalPartOf(x, y) ∧ Left Frontal Lobe(y) ∈ ΣFMA

1 .

When considering X and Y as voxels, this constraint states that for every voxel
belonging to the Left Superior Frontal Gyrus, there is at least one voxel in the
Left Frontal Lobe such that both satisfy the RegionalPartOf property. In other
words, this is how FMA tells us that the left superior frontal gyrus, and hence its
sub-regions, belong to the left frontal lobe without explicitly stating what those
sub-regions are.

Consequently, if we want to be able to solve queries containing rules under
the open-world assumption, we must be able to infer results from rules that have
existentials in their heads. This shows us how the choice of Datalog+/– as the
backbone on which NeuroLang is based, is a wise choice when solving queries under
the open-world assumption due to its ability to deal with existentially quantified
variables.

As we mentioned before, one of the most important approach to query answer-
ing over ontologies is via rewriting the input ontology (and query) into a new set of
axioms that are expressed in logics for which scalable query answering algorithms
exist [12]. Taking into account that most ontologies are currently written in the
OWL2 tractable language, that OWL2 is equivalent to the DL-Lite families of De-
scriptions Logics, and that Cali et al. [19] prove that the Linear set of datalog rules
extended with existential qualifiers is more expressive than the description logic
DL-LiteR, we decided to implement the XRewriter algorithm proposed by Gottlob
et. al. [36]. XRewriter is designed as a practical rewriting algorithm for linear and
sticky TGDs, sufficient syntactic conditions to guarantee first order rewritability
of CQ answering. Also, XRewriter is based on backward-chaining resolution, this
means that the algorithm uses the TGDs as rewriting rules, with the aim of sim-
ulating, independently from the extensional database, the chase derivations which
are responsible for the generation of the image of the input query. This approach
is much more efficient than a forward substitution procedure because of the fact
that during the rewriting process, we only explore the part of the chase which is
needed in order to entail the query.

A more detailed description of NeuroLang’s architecture and how ontologies
are integrated into its resolution engine is presented in the first contribution of this
work, in the following chapter.
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Part II

Main Contributions
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7 - Scalable Query Answering under Uncer-
tainty to Neuroscientific Ontological Knowl-
edge

Abstract In this chapter, we present one of the main contributions of this
dissertation: we will precisely define the architecture of NeuroLang and we will
present a series of examples based on real-world use cases in neuroscientific re-
search, specifically applied to solving meta-analysis questions. This work was a
collaboration with Yamil Soto, Valentin Iovene, Maria Vanina Martinez, Ricardo
O.Rodriguez, Gerardo I. Simari and Demian Wassermann. For more information,
please refer to the original paper [80].

7.1 . Basic Probabilistic Ontological Model

In this section, we recall the basics on relational databases, conjunctive queries,
Datalog, and ontology-mediated query answering (including tuple-generating de-
pendencies and negative constraints), all based on a probabilistic extension with a
corresponding query answering semantics.

We assume an infinite universe of (data) constants ∆, an infinite set of (la-
beled) nulls ∆N (used as “fresh” Skolem terms) that are placeholders for unknown
values, and an infinite set of variables V. Different constants represent different
values (i.e., unique name assumption), while different nulls may represent the same
value. Sequences of k ≥ 0 variables, namely X1, . . . , Xk, are denoted by X.

Furthermore, we assume a relational schemaR, which is a finite set of predicate
symbols, we also allow built-in predicates (with finite extensions) and equality. As
expected, a term t is a constant, null, or variable. An atomic formula (or atom) a
has the form p(t1, . . . , tn), where p is an n-ary predicate, and t1, . . . , tn are terms.
We denote with F the set of all ground atoms built from R and ∆. A negated
atom is of the form ¬a where a is an atom. We assume that R = RD ∪RP , with
RD ∩ RP = ∅, containing predicates that refer to deterministic and probabilistic
events, respectively.

A database instance D for a relational schema RD is a (possibly infinite) set
of atoms with predicates from RD and arguments from ∆. On the other hand, let
a probabilistic atom be of the form a : p, where p is a real number in the interval
[0, 1] and a is an atom with a predicate from RP . We do not allow negation in
probabilistic atoms.

A probabilistic constraint c has the form

a1 : p1 | . . . |ak : pk,

where k > 0, each ai : pi is a probabilistic atom, and
∑
pi ≤ 1. If the pi’s in a
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probabilistic constraint do not sum to 1, then there exists also the possibility that
none of them happen. The probability of this complementary event is 1 −

∑
pi.

Given a probabilistic constraint c = a1 : p1 | . . . |ak : pk, we will make use of the
notation atoms(c) = {a1, . . . ,ak}. We will also denote the probability of any atom
a with p(a). We have that p(ai) = pi whenever ai : pi belongs to a probabilistic
constraint c.

Given a set of probabilistic constraints C, note that each ground atom can
only appear in one constraint in C. From a practical point of view, this assump-
tion restricts the number of possible worlds by limiting the potential combinations.
Vennekens et. al.[73, Eq. 5] propose more complex semantics where this assump-
tion is relaxed. This approach is similar to probabilistic databases [69] where each
tuple comes from a general probability distribution over tuples and inexistence is
one of the options. This allows to incorporate beliefs about the likelihood of tuples
and cell values.

Example 1 Consider the following database instance D and a set of probabilistic
constraints C (recall that ti atoms cannot appear in C).

D = {t1(a), t1(c), t2(a), t2(b)}

C =


c1 = s(a, b) : 0.3
c2 = s(b, c) : 0.7
c3 = r(b) : 0.4 | r(c) : 0.1

 (7.1)

Tuple Generating Dependencies Given a relational schema R, a tuple-
generating dependency (TGD) σ is a first-order formula of the form:

∀X∀YΦ(X,Y)→∃ZΨ(X,Z),

where Φ(X,Y) and Ψ(X, Z) are conjunctions of atoms over R (without nulls),
called the body and the head of σ, denoted body(σ) and head(σ), respectively.
Such σ is satisfied in a database D for R if and only if, whenever there exists a
homomorphism h that maps the atoms of Φ(X,Y) to atoms of D, there exists
an extension h′ of h that maps the atoms of Ψ(X,Z) to atoms of D. All sets
of TGDs are finite here and we assume that every TGD has a single atom in its
head. Furthermore, we say that a TGD σ is full whenever there are no existential
variables in the head. Let’s extend our example further:

Example 2 Based on Example 1 we can add the following set of rules:

Σ = {∀X t1(X)→ ∃Z o(X,Z),

∀X∀Y t2(X) ∧ o(X,Y )→ t(X),

∀X∀Y s(X,Y ) ∧ r(Y )→ w(X,Y )}

A = {∀X∀W v(X,W )→ u(X,min(W ))}
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TGDs can be extended to allow negation—in this work we allow semi-positive
Datalog [2] in the case that a rewriting is needed and stratified negation [2] other-
wise. Furthermore, as shown by the rule in set A in the previous example, we extend
the language so aggregation functions can be used in the head of full TGDs [2].
As we see in the following section, we restrict the syntax of this type of rules so
that neither negation nor recursion is allowed.

Definition 1 A probabilistic ontology O=(D,C,Σ) consists of a database in-
stance D, a set C of probabilistic constraints, and a set Σ of arbitrary TGDs.

Note that a database instance can be thought of as a set of probabilistic
constraints with only probabilistic atoms, each one annotated with probability 1.
Furthermore, the structure (D,Σ) corresponds to a knowledge base with existential
rules as defined in [19], whenever rules in Σ do not involve atoms that appear in
probabilistic constraints.

Semantics We take the notion of possible world (or interpretation) of a prob-
abilistic ontology as a subset of F and we denote with Ω the set of all possible
worlds. Each possible world ω ∈ Ω satisfies the following property:

∀F ∈ F : ω |= F iff F ∈ ω; otherwise ω |= ¬F

This means that ω is a complete interpretation of every element of F . The usual
semantics of a classical Datalog program P is the least Herbrand model that
contains exactly all ground facts in P plus every ground atom inferred from it, i.e.
the intersection of all worlds that satisfy P .

However, in the probabilistic case, we need to consider a generalization of
this semantics so that every ground fact is associated with a probability value.
According to this idea, we are going to take the models of a set of non-probabilistic
ontologies, induced by total choices, so that they all share the same TGDs but the
corresponding database instances differ. As mentioned before, in our approach,
we have two ways of associating probability with facts. In the first one, a fact
corresponds to a Boolean random variable that is true with probability p and false
with probability 1 − p. In the second, we interpret facts as multi-valued random
variables instead of binary ones. We use probabilistic constraints to represent both
and assume that the facts within the same constraint are mutually exclusive events,
whereas facts in different constraints are mutually independent events. According
to this idea, we give the following definition:

Definition 2 Given a probabilistic ontology O=(D,C,Σ), for each 1 ≤ j ≤ |C| :
cj = aj1 : p

j
1 | . . . |a

j
k : pjk, with cj ∈ C, we have:

choices(cj) = {aji | 1 ≤ i ≤ k} ∪ {⊥cj}.
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For each b = aji ∈ cj , we have p(b) = pji and p(⊥cj ) = 1 −
∑

1≤i≤k p
j
i . The set

of total choices for O is defined as total_choices(C) =

{[b1, . . . , bl] | l = |C|, 1 ≤ j ≤ |C| : bj ∈ choices(cj)}

The probability of a particular total choice λ ∈ total_choices(C) is defined as
p(λ) =

∏[b1,...,bl]∈λ
1≤j≤l p(bj). We use notation atoms(λ) = {bj ̸= ⊥cj | 1 ≤ j ≤ l :

[b1, ..., bl] ∈ λ} and atoms(C) =
⋃

λ∈total_choices(C) atoms(λ).

Definition 3 Let ω and λ be a possible world and a total choice, respectively.
Then, we will say that ω satisfies λ, denoted ω |= λ, if and only if atoms(λ) ⊆ ω.
Also, ∥λ∥ will denote the set of possible worlds of a total choice, i.e. ∥λ∥ = {ω ∈
Ω | ω |= λ}.

Example 3 The set of all total choices for probabilistic ontology (D,C,Σ) from
Examples 1 and 2 is the following:

λ1 = [s(a, b), s(b, c), r(b)] p(λ1) = 0.084
λ2 = [s(a, b), ⊥c2 , r(b)] p(λ2) = 0.036
λ3 = [⊥c1 , s(b, c), r(b)] p(λ3) = 0.196
λ4 = [⊥c1 , ⊥c2 , r(b)] p(λ4) = 0.084
λ5 = [s(a, b), s(b, c), r(c)] p(λ5) = 0.021
λ6 = [s(a, b), ⊥c2 , r(c)] p(λ6) = 0.009
λ7 = [⊥c1 , s(b, c), r(c)] p(λ7) = 0.049
λ8 = [⊥c1 , ⊥c2 , r(c)] p(λ8) = 0.021
λ9 = [s(a, b), s(b, c), ⊥c3 ] p(λ9) = 0.105
λ10 = [s(a, b), ⊥c2 , ⊥c3 ] p(λ10) = 0.045
λ11 = [⊥c1 , s(b, c), ⊥c3 ] p(λ11) = 0.245
λ12 = [⊥c1 , ⊥c2 , ⊥c3 ] p(λ12) = 0.105

It is easy to see that total_choices(C) defines a partition on Ω by using the fol-
lowing equivalence relation on Ω×Ω: ω ≡ ω′ if and only if ∀λ ∈ total_choices(C) :
ω |= λ⇔ ω′ |= λ.

We define the semantics of a probabilistic ontology based on the semantics of
a classical ontology with existential rules (TGDs). Intuitively, each total choice
induces a classical (i.e., non-probabilistic) ontology.

Definition 4 Let O=(D,C,Σ), be a probabilistic ontology, and let λ be a total
choice of C. Then, the (non-probabilistic) ontology induced by λ = [b1, . . . bl] is
defined as Oλ = (Dλ,Σ), with Dλ = D ∪ {b1, . . . bl}.

Example 4 Based on the total choices from Example 3 and probabilistic ontology
O = (D,C,Σ, ), each λi with 1 ≤ i ≤ 12, induces a non-probabilistic ontology
Oλ⟩ = (Dλi

,Σ) where Dλi
= D ∪ {b1, . . . , bl} with bk ∈ λi and bk ̸= ⊥cj for

every cj ∈ C.
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We now recall the notions of satisfaction and entailment in classical ontologies
from Cali et. al. [19]. We first introduce the definition of answers to conjunctive
queries for an instance database, on which the others are based.

A conjunctive query (CQ) over a relational schema R has the form Q(X) =

∃Φ(X,Y), where Φ(X,Y) is a conjunction of atoms (possibly equalities, but not
inequalities) with the variables X and Y, and possibly constants, but without nulls.
A Boolean CQ (BCQ) over R is a CQ of the form Q().

Answers to CQs and BCQs are defined via homomorphisms, which we recall
are mappings µ : ∆∪∆N ∪V → ∆∪∆N ∪V such that (i) c ∈ ∆ implies µ(c) = c,
(ii) c ∈ ∆N implies µ(c) ∈ ∆ ∪ ∆N , and (iii) µ is naturally extended to atoms,
sets of atoms, and conjunctions of atoms.

Definition 5 Given a database instance D and a CQ Q(X)=∃YΦ(X,Y), the
set of answers for Q(X) in D, denoted Q(D), is the set of all tuples t over ∆

such that there exists a homomorphism µ : X∪Y→∆ ∪∆N with µ(X) = t and
µ(Φ(X,Y)) ⊆ D. The answer to a BCQ Q is Yes, denoted D |= Q iff Q(D) ̸= ∅.

As we can have several completions of D that satisfy the TGDs in Σ we need
to consider the set of all possible models of an ontology (D,Σ).

Definition 6 Given an ontology (D,Σ), the set of models, denoted mods(D,Σ),
is the set of all (possibly infinite) databases B such that (i) D ⊂ B, and (ii) every
σ ∈Σ is satisfied in B.

Note that each B in the above definition can be considered as a possible world
under the closed world assumption, i.e. every tuple that does not appear in B is
false. It is important to recall that for full TGDs (pure Datalog rules), an ontology
(D,Σ) has a unique least model [2].

The definitions for query answering and entailment for deterministic ontologies
are as follows:

Definition 7 Given an ontology (D,Σ) and a CQ Q(X)=∃YΦ(X,Y), the set
of answers for Q in (D,Σ), denoted ans(Q,D,Σ), is the set of all tuples t over ∆
such that t ∈ Q(B) for every B ∈ mods(D,Σ). Furthermore, the answer to a BCQ
Q over D given Σ exists, denoted (D,Σ) |= Q, if and only if ans(Q,D,Σ) ̸= ∅.

With these definitions in place, we can now turn to probabilistic ontologies.
The probability of a conjunction of ground atoms is defined as follows.

Definition 8 Let O be a probabilistic ontology, and Φ be a conjunction of ground
atoms built from predicates in R. The probability that Φ holds in O, denoted
PrO(Φ), is the sum of the probabilities of all total choices λ such that (Dλ,Σ) |= Φ;
that is, PrO(Φ) =

∑λ∈total_choice(C)

(Dλ,Σ)|=Φ p(λ).
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At this point, it is interesting to remark the connection between our approach
and the one considered by Riguzzi et. al. [60]. The Logic Programs with Annotated
Disjunctions (LPADs) mentioned in their paper make an implicit treatment of
mutually exclusive facts, whereas our approach does it explicitly. In fact, LPADs
are more expressive than our language since they use non-Horn clauses. In addition,
they use well-founded semantics in order to deal with negation as failure. Both
aspects have a computational cost that we wish to avoid.

Figure 7.1: Overview of the NeuroLangQA algorithm. Step numbers referto those described in Algorithm 1

Semantics for Probabilistic Query Answering Probabilistic answers
to CQs are defined as pairs of tuple and probability such that the probability adds
all the probabilities of the choices for which the tuple is a classical answer to the
query in the deterministic ontology that the choice induces. Formally, this is:

Definition 9 The set of all probabilistic answers to a CQ Q(X) over a probabilistic
ontology O=(D,C,Σ), denoted with ans(Q,D,C,Σ), or ans(Q,O), is a set of
pairs (t, pt) where t is a tuple over ∆ and pt =

∑λ∈total_choice(C)

t∈ans(Q,Dλ,Σ) p(λ).

Observations If a probabilistic ontology O=(D,C,Σ) is such that C is
empty, then the semantics for (B)CQs as defined above coincides with that for
classical ontologies [19].

Note that query answering under general TGDs for non-probabilistic ontologies
is undecidable [11], even when the schema and TGDs are fixed [18]. The two
problems of CQ and BCQ evaluation under TGDs are logspace-equivalent [31,
27]. As mentioned above, in the non-probabilistic case, for arbitrary full TGDs there
exists exactly one minimal model [2] over which Q is evaluated. Furthermore, it
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has been shown that for full TGDs CQ evaluation can be done in polynomial time
in data complexity (i.e., assuming σ and Q fixed) [24].

7.2 . NeuroLang Programs

In addition to our model, we assume the existence of a separate schema T , the
target schema, that defines the language by means of which users of NeuroLang can
query about the probability of certain events. Predicates in T have a distinguished
term in the n-th position (for n-ary predicates) reserved exclusively for real numbers
in the interval [0, 1]; i.e., for any predicate p ∈ T , atoms of the form p(a1, . . . , an)

are such that a1, . . . , an−1 are variables or constants from ∆, while an is a variable
or a constant from [0, 1]. Below we show an example of how this language is used.

A NeuroLang program N is comprised of the following components:

• D, Σ: whereD is a set of ground atoms fromRD, and Σ is a set of full TGDs
that only use atoms fromRD and can have recursion and stratified negation.
In the scenario where rewriting must be applied, Sigma has to be restricted
to the non-recursive and semi-positive case to ensure the correctness of the
rewriting using XRewriter.

• (D1,Σ1): a classical ontology, where D1 is a set of ground atoms from RD,
Σ1 is a set of TGDs that belong to the Sticky fragment [15], and the bodies
and heads are atoms built from predicates in RD.

• C: a set of probabilistic constraints only involving atoms from RP .

• χ: a set of full TGDs, whose bodies and heads may contain atoms from
RD ∪RP . Neither negation nor recursion is allowed in this set of rules.

• Π: a set of probability encoding rules (PERs) with the following form:

σ∗ : ∀X∀Y(Φ(X,Y))→ ψ(X, ρX)

where Φ is a conjunction of atoms from RD ∪RP , ψ is an atom in T and
ρX is the distinguished term that in this case must be a variable (ranging
over the reals in [0, 1]).

• A: a set of rules of the form

∀X∀Y(Φ(X,Y,Z)→ ψ(X, agg(Z)) (7.2)
where Φ is a conjunction of atoms in RD ∪ T , ψ is an atom in T and agg
is an aggregation function (e.g., sum, count, avg, etc.). Neither negation
nor recursion is allowed in these rules.

Informally, the above sets together provide the following functionalities:
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(i) Σ, Σ1, C, and χ are used by the probabilistic inference mechanism, which
applies ontological rules and ultimately associates probabilities to atoms
(following the semantics described in Section 2);

(ii) Π incorporates probabilities as values inside atoms; and

(iii) rules in A manipulate these probabilities via aggregation functions to present
them as requested by the user.

Algorithm 1: NeuroLangQA
Input : NeuroLang program N = (D,Σ, (C,χ), (D1,Σ1),Π, A) and

query Q(X) = ∃YΦ(X,Y)
Output: ans(Q(X),N )
Step 1: Obtain database instance D′ and set of full TGDs Σ′ such that
D

′
= D ∪D1 and Σ

′
is the rewriting of Σ with respect to Σ1.

Step 2:
2a: Let Aux be the set of TGDs in Σ

′
whose bodies do not depend on

C ∪ χ ∪Π.
2b: Let M the set of ground atoms a such that (D′,Aux ∪A) |= a
Step 3:
B:= ∅
foreach PER π ∈ Π do

// Rule bodies are taken as queries
Let Qπ(X) = body(π)
// Obtain probability values
// associated with each query answer
probAnsPairs:= ans(Qπ(X), (M,C, χ))
foreach (t, p) ∈ probAnsPairs do

// Add query answers and PER
// heads to set B
Let h′ be the instantiation of head(π) with values from (t, p)
B:= B ∪ {h′, Qπ(t)}

end
end
Step 4: Let M ′ the set of ground atoms a such that
(B, (Σ′ −Aux) ∪A) |= a
Step 5: Return ans(Q(X),N ) computed from atoms in set M ′.

Note that PERs are full TGDs that will be used to translate from a source
schema to a target one, in the same spirit as source-to-target TGDs for data
exchange [31]. Effectively, they reify the probability of an atom, given by the
semantics, as a term in a new atom that can be further manipulated by other
rules. For instance, a set of probabilistic constraints C = {s(a, b) : 0.3} will be
reified by the PER ∀X∀Y s(X,Y ) → t(X,Y, ρX) as {t(a, b, 0.3)}. On the other
hand, for rules in A we incorporate functional symbols agg to the distinguished
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term in ψ to indicate that its value takes the result of applying the function agg to
all ρX that satisfy the body of the rule. Note that users here can define arbitrary
rules that manipulate probabilities by means of aggregation functions. It’s defined
as a post-processing step that builds a view as defined by the user issuing the
query. Therefore, it’s the user’s responsibility that the handling of the probabilities
obtained in the previous steps complies with the laws of probability. We extend
notation body and head used for TGDs to all types of rules defined in this section.
The following is a simple example of query answering using PERs.

Example 5 Consider the following NeuroLang program N . We add a set of PERs
and rules with aggregations.

D1 = {t1(a), t1(c)},
Σ1 = {∀Xt1(X)→ ∃Z o(X,Z)},

D = {t2(a), t2(b)},
Σ = {∀X∀Y t2(X) ∧ o(X,Y )→ t(X)},

C =


s(a, b) : 0.3
s(b, c) : 0.7
r(b) : 0.4 | r(c) : 0.1

 ,

χ = {∀X∀Y s(X,Y ) ∧ r(Y )→ w(X,Y )}},

Π = {∀X∀Y w(X,Y )→ v(X, ρX)},

A = {∀X∀W v(X,W )→ u(min(W ))},

Q1(X,P ) = v(X,P ), t(X),

Q2(X,P ) = v(X,P ), u(P ).

Now, the partition of possible worlds used to compute queries Q1 and Q2 is the
following (excluding atoms from D and (D1,Σ1) for clarity, and including proba-
bilities): 

{s(a, b) s(b, c) w(a, b) r(b) t(a)} : 0.084
{s(a, b) w(a, b) r(b) t(a)} : 0.036
{ s(b, c) r(b) t(a)} : 0.196
{ r(b) t(a)} : 0.084
{s(a, b) s(b, c) w(b, c) r(c) t(a)} : 0.021
{s(a, b) r(c) t(a)} : 0.009
{ s(b, c) w(b, c) r(c) t(a)} : 0.049
{ r(c) t(a)} : 0.021
{s(a, b) s(b, c) t(a)} : 0.105
{s(a, b) t(a)} : 0.045
{ s(b, c) t(a)} : 0.245
{ t(a)} : 0.105
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Answering Q1, Q2 leads to the target schema solution {v(a, 0.12), v(b, 0.07),
u(0.07)}. Hence, the resulting answer set is {Q1(a, 0.12), Q2(b, 0.07)}.

Query Answering in NeuroLang A NeuroLang query Q is any conjunc-
tion of atoms in RD ∪ T , such that atoms in T have as distinguished term a
variable; these variables will be instantiated with the probability of certain events
as computed by the inference mechanism. Algorithm 1 describes the pseudocode
for answering queries in the NeuroLang framework— Figure 7.1 provides a high-
level view of the main steps involved in this process, where inputs are as defined
above.

There are two steps in which NeuroLangQA makes external calls. First, in
Step 1 the rewriting of Σ w.r.t. Σ1 is done by means of the XRewrite algorithm
developed in [36] for rewriting queries with respect to the Sticky fragment of
existential rules (also known as Datalog+/–). Note that here the algorithm is
used to rewrite every appearance of heads of rules in Σ1 in the bodies of rules in
Σ, yielding a potentially larger set of full TGDs (rules without existentials in the
head).

Then, Step 3 derives the probabilities associated with atoms. This is done
by dynamically choosing the best algorithm for the job: if π is liftable according
to [23], then lifted query answering is applied and, based solely on syntatic analysis
of queries, a set of rules that derive an algebraic expression to computes the
probability of the query is derived; otherwise, the query is said to be non-liftable,
and has been proven to have a #P-hard complexity, then the query is compiled
to an SDD representation and model counting is applied [75]. Both cases are
implemented in relational algebra with provenance [68].

Provenance (or data provenance) is the idea of associating a column of extra
information to our data to answer meta-questions related to the output of our data.
For example, what operations gave rise to our results, or where did the final data
come from. In particular, we use Semiring provenance[37] that has been shown to
generalize previous formalisms using a clean mathematical framework.

Given a fixed semiring (K, O, 1,
⊕

,
⊗

) where O and 1 are two distinguished
elements along with two binary operations:

⊕
, an associative and commutative

operator with identity O and
⊗

, an associative and commutative operator with
identity 1, and based on Senellart[68] and defining prov[A] as the provenance
column in the Relational Algebra set extended with Provenance (RAP) A, and
non_prov[A] as the set of the columns in the RAP set A without the provenance
column, we can define for the operations selection, projection, union and cross
product, how each operation affects each of these columns: I) Selection and Re-
naming do not affect provenance annotations II) in the bag semantics, Projection
does not affect provenance annotations, but duplicate elimination

⊕
-es the anno-

tation of merged tuples. Therefore, in the case of duplicate rows, and assuming a
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Γ function that aggregate duplicate tuples and do nothing with single tuples, we
have:

πcols(RAP [A])

RAPπcols(non_prov[A]
⋃
{prov=Γ(prov[A],

⊕
)}[A]

(7.3)
III) In the union of tuples, the provenance annotations are

⊕
-ed, giving us:

RAP [A]
⋃
RAP [B]

RAPπ[non_prov[A]
⋃

non_prov[B]
⋃
{prov=prov[A]

⊕
prov[B]}[A

⋃
B]

(7.4)
IV) Finally, in a cross product, provenance annotations of tuples combined, are⊗

-ed, so we have

RAP [A] ▷◁ RAP [B]

RAPπ[non_prov[A]
⋂

non_prov[B]
⋃
{prov=prov[A]

⊗
prov[B]}[A ▷◁ B]

(7.5)
Note also that up to Step 3 we can guarantee the correctness of the semantics

of NeuroLangQA, i.e., the probabilities associated with atoms in set B correspond
to the probability with which they are entailed in the probabilistic ontology. How-
ever, since after this step users can manipulate the probabilities of atoms through
aggregation functions provided in A, it cannot be guaranteed that this relation-
ship holds in the next steps, so users have the responsibility of making a sound
use of such values. This manipulation is intentionally incorporated to increase the
expressive power of the languages; similar additions occur in other languages, like
Prolog. This feature is useful in our application case allowing, for instance, to
aggregate probabilistic values into voxel overlays (cf. Section 7.3.1), or select the
95th percentile top probabilities of a result set (cf. Section 7.3.2).

The final step of the algorithm returns the answers to query Q as the set of all
tuples t built from ∆ such that there exists a homomorphism µ where µ(X) = t

and µ(Φ(X,Y)) ∈M ′.

Correctness of NeuroLangQA We now discuss the correctness of Neu-roLangQA algorithm with respect to the probabilistic semantics described in Sec-
tion 7.1. Without loss of generality, we assume a query of the form

Q(X, ρX) = Φ(X) ∧ ψi(X, ρX),

where Φ(X) is a conjunction of atoms in RD and ψi(X, ρX) is an atom in T .
The result of Step 1 in NeuroLangQA is a special case of a probabilistic

ontology (D′,Σ′), where Σ′ is a set of full TGDs that may contain semi-positive
Datalog negation and no-recursion. In the scenario in which step one is not applied
because Σ1 is empty, Σ′ is a set of full TGDs that may contain stratified negation
and recursion. Furthermore, Step 2a removes from Σ′ all rules that depend on
C∪χ∪Φ [9]. Therefore, M computed in Step 2b is unique as neither probabilistic
atoms, nor existential rules are involved. Step 3 now considers the probabilistic on-
tology defined by O = (M,C∪C ′, χ). Note that atoms in M materialize ontology
(D′,Aux) and they will hold in every possible world for probabilistic ontology O.
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Recall that the purpose of PERs is to incorporate the probability of an atom as
an additional term—Step 3 does precisely that: for each PER π, it computes the
probability of all ground instantiations of body(π) that are entailed by O. For each
such instantiation t, set B contains the instantiation itself (Qπ(t)) and the head
of π instantiated by values in t and an extra position with value PrO(body(π)(t)).

Finally, Step 4 considers a deterministic ontology comprised by B (a set of
ground atoms) and the set of full TGDs (Σ′ −Aux) ∪A; M ′ contains all ground
atoms that are entailed by such ontology. As in the case of M , M ′ is unique since
neither existential rules nor probabilistic atoms are involved.

Therefore, we can conclude that—by construction—the results computed by
the NeuroLangQA algorithm are correct with respect to the probabilistic seman-
tics defined in Section 7.1 up to Step 3. This means that the probabilities associated
with atoms in B correspond to the probability with which they are entailed by the
probabilistic ontology. The final two steps simply follow the user-specified rules
for establishing personalized views, which may manipulate probability values in an
arbitrary fashion. With the framework in place, in the following we show how it
can be applied in practice.

7.3 . Examples based on Real-World Use Cases in Neuroscience
Research

In this section, we illustrate via concrete examples several use cases that appear
in real-world tasks carried out by neuroscience researchers. Since all of our analyses
are based on meta-analytic components, we first give a brief description of the
Neurosynth database we use in our examples. Where extra data is used, it will
be clarified in each particular case. The Neurosynth database is composed of
3.228×103 terms, 1.4370×104 studies (SelectedStudy), and 3.3593×104 voxels;
but this information would not be useful without associations, so we also have
1.049 299×106 terms reported as present in studies (TermInStudy) and 5.078 91×
105 voxels reported as active (FocusReported), also with their respective study.
Finally, there are 112 brain regions from Destrieux’s atlas [26] associated with
brain coordinates through the VoxelByRegionDestrieux relation. These data give
rise to the following extensional databases:
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D =



TermInStudy(“emotion", s1),...
TermInStudy(“pain", s120),
FocusReported(5,−5, 3, s1),...
FocusReported(−10, 5, 1, s25),
VoxelByRegionDestrieux(15, 47, 16,

’l_g_and_s_frontomargin’),...
VoxelByRegionDestrieux(16, 46, 15,

’l_g_and_s_frontomargin’),



C =



SelectedStudy(si) : 1
#studies

FocusCoactivates( 5,−5, 3, 5,−5, 3) : 1...
FocusCoactivates( 5,−5, 3, −10, 5, 1) :

(2π2)−3/2 exp
(
−1

2
∥(5,−5,3)−(−10,5,1)∥2

22

)


where FocusCoactivates represents spatial uncertainty in foci reporting, as they
encode that the probability that two foci co-activate is mediated by their distance
as measured by a 3D Gaussian law with standard deviation 2mm. This dataset has
approximately 5 million atoms. Furthermore, the CogAt ontology [58] is composed
of 5.6807× 104 rules. In the following, examples are written in extended Datalog
syntax, as in our implemented tool1. We base our examples on versions 1.4.0 of
IOBC, 0.3.1 of CogAt, and the Destrieux 2009 atlas [25] provided by Nilearn soft-
ware package v0.7.0 [32]. In addition, both the software code and other examples
can be found on the official NeuroLang repository1. While the examples presented
in this section are simple demonstrations of some of the features of Neurolang in
sections 9 and 10, we present use cases on the use of NeuroLang for real-world
neuroscience research.

7.3.1 . Forward inference

In this task, we wish to assess the probability of a voxel being reported as
active in a study given that the word “emotion” is present in the specific study.
The corresponding Neurolang program can be seen in listing 7.1.

Note that in order to represent this knowledge we only need the expressive
power of full TGDs (no existential rules are needed). In fig. 7.2 we see that the
most important reported activations are concentrated in the amygdala, the region
most related to emotions, as generally accepted in the neuroscience field.

1https://neurolang.github.io/
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Listing 7.1: Forward inference
TermAssociation(t) :- SelectedStudy(s),

TermInStudy(t, s).

Activation(i, j, k) :- SelectedStudy(s),
FocusReported(i1, j1, k1, s),
FocusCoactivates(i, j, k, i1, j1, k1).

% Probability Encoding Rule: PROB is
% used to encode probability as defined in
% Section 3. The // operator is
% syntactic sugar for conditional
% probability as P(A|B) = P(A,B) / P(B).
ProbMap(i, j, k, PROB) :-

Activation(i, j, k)
// TermAssociation("emotion").

% Aggregation to build a single image with
% the probability p in each position
% within the top 95% of probability
Percentile_95(compute_percentile(p, 95)) :-

ProbMap(i, j, k, p).

ProbabilityImage(create_region_overlay(i, j, k, p)) :-
ProbMap(i, j, k, p),
Percentile_95(p95), p > p95

Ans(x) :- ProbabilityImage(x)
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Figure 7.2: Resulting thresholded brain image from the NeuroLang usecase showing that foci in the amygdala are most probably reported if astudy includes the word “emotion”. As expected, the main area showncorresponds to the amygdala [51].

7.3.2 . Segregation reverse inference query

This example shows how we can use negation and existentials to express speci-
ficity. We pick the terms present in the CogAt ontology that are mentioned in
studies reporting activations within the short insural gyri. Listing 7.2 presents the
corresponding Neurolang program associated with this example.

Listing 7.2: Segregation reverse inference query. See thedescription in section 7.3.2.
OntologyTerms(t) :- hasTopConcept(u, c), label(u, t)
FilteredTerms(s, t) :- TermInStudy(s, t), OntologyTerms(t)
RegionActivated(s, r) :- VoxelByRegionDestrieux(i, j, k, r),

FocusReported(i, j, k, s).
SegregatedStudies(s) :- RegionActivated(s, r),

(DestrieuxLabels(r, 'l_g_insular_short') |
DestrieuxLabels(r, 'l_g_insular_short')),
~exists(r2, RegionActivated(s, r2), r != r2)

TermProbability(t, PROB) :- FilteredTerm(s, t)
// (SegregatedStudies(s)

SelectedStudy(s)).
Percentile_95(compute_percentile(p, 95)) :- TermProbability(t, p).
Ans(t, p) :- TermProbability(t, p), Percentile_95(p95), p > p95.

Processing took 42.45 seconds. Results are shown in table 7.1.
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term prob
anxiety 0.097819

Table 7.1: Terms, within the 95th percentile, mentioned in our segrega-tion query in section 7.3.2. Shows that studies presenting activations onlyrelated to the short insula gyrus tend to be associated with anxiety.
7.3.3 . Variance in primary neuroimaging data

In this example, we demonstrate how it’s possible, by implementing techniques
developed and validated by the scientific community, to account for variance in
primary neuroimaging data. In particular, our example focuses on one of the
most common algorithms for coordinate-based meta-analyses: activation likelihood
estimation, ALE [70, 47]. We will perform a meta-analysis using the modified
version of ALE proposed by Eickhoff et. al .[30]. This modification is based on
the idea of using between-subjects and between-templates variance to estimate the
size of the modeled Gaussian from which to compute the corresponding FWHM.

For this purpose, we will use the BrainMap database [46], composed of 3,112
publications totaling 15,256 experiments, which provides us with information on
the number of subjects present in each experiment. Our program will use three
different atoms from this database: StimMod, which relates each experiment to its
stimulus modality, StimType, which does the same with the type of stimulus, and
finally BrainMap, composed of the list of publications and experiments included in
the database, the number of participants, and the reported activations. Based on
empirical measurements made in 2009 by the BrainMap team, we can calculate
the FWHM that includes variation between-subjects and between-templates with
the following formula. Given N , the number of subjects in the experiment, the
formula is defined as

FWHM(N) :

√
π ln(2)

(
5.72 +

11.62

N

)
(7.6)

The calculation includes the square root of the inverse of the user-specified
number of subjects. For our example, we used 142 studies related to an auditory
stimulus modality among one of the following types: “Vocal Sounds", “Nonvocal
Sounds", “Sounds (Environmental)", or “Nonverbal Vocal Sounds". Listing 7.3
presents the program used to calculate the modified ALE. The rule defining the
Activation atom uses syntactic sugar to define an expression that assigns proba-
bilities to each of the possible values based on the formula for a three-dimensional
Gaussian distribution defined in Laird et. al. [47]. Based on algorithm 1, this rule
adds a new probabilistic relation Activation to C where the probability is com-
puted according to an expression that can only contain elements of the rule body
belonging to D or Σ, or constants. The variable ‘d ’ is the Euclidean distance
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between both points (i, j, k) and (i1, j1, k1). Function sigmaGivenSubjects calcu-
lates, given the number of subjects who participated in the experiments reported
by BrainMap, the formula defined in eq. (7.6). Finally, ‘resolution’ is a constant
that defines the resolution of the brain image used in the experiment. At the same
time, we will present results using the classical ALE variant as a reference, with an
FWHM value manually selected of 9. The code for this program can be found at
Listing 7.4.

Listing 7.3: Program code that computes the modified ver-sion of ALE
StimTypeAuditory(bmapID, expID) :- StimMod('auditory',bmapID,expID),

StimType('vocal sounds', bmapID, expID)
...

StimTypeAuditory(bmapID, expID) :- StimMod('auditory',bmapID,expID),
StimType('nonverbal vocal sounds', bmapID, expID)

Activation(i, j, k) @ max(
(exp(-(1 / 2) * (d / sigma) ** 2)
/ ((2 * pi) ** (3 / 2) * sigma ** 3))
* (resolution ** 3)

) :- StimTypeAuditory(bmapID, expID),
BrainMap(bmapID, expID, ..., ..., minSubj, i1, j1, k1),
Voxels(i, j, k)
(d == FocusCoactivates(i, j, k, i1, j1, k1)),
(sigma == sigmaGivenSubjects(minSubj))

Ans(i, j, k, PROB) :- Activation(i, j, k, p)

Figure 7.5 presents a comparison of the results of both algorithms. The ALE
scores for each voxel in the reference space were calculated and filtered using the
95th percentile of the modified ALE as the threshold for comparison.

Figure 7.3 shows a more accurate selection of voxels than Figure 7.4 concerning
the expected results for an auditory stimulus modality. This is because the modified
version of ALE allows us to weigh each voxel according to the number of subjects
that participated in the experiment. Though Figure 7.4 tends to show expected
results, it is unable to capture the variance and relies on each experiment present
in the BrainMap database with the same "weight", leading to noisier results.
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Figure 7.3: Modified ALE, accounting for between-subjects and between-templates variance

Figure 7.4: Classic ALE, with FWHM = 9
Figure 7.5: Comparison of results between ALE [70, 47] and Modified ALE[30] Figure 7.3 shows a more accurate selection of voxels than Figure 7.4concerning the expected results for an auditory stimulus modality. Thisis because the modified version of ALE allows us to weigh each voxel ac-cording to the number of subjects that participated in the experiment.Figure 7.4 is unable to capture the variance and relies on each experi-ment present in the BrainMap database with the same weight, leading tonoisier results.
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Listing 7.4: Program code that computes the classic ver-sion of ALE
StimTypeAuditory(bmapID, expID) :- StimMod('auditory',bmapID,expID),

StimType('vocal sounds', bmapID, expID)
...

StimTypeAuditory(bmapID, expID) :- StimMod('auditory',bmapID,expID),
StimType('nonverbal vocal sounds', bmapID, expID)

Activation(i, j, k) @ max(
(exp(-(1 / 2) * (d / 9) ** 2)
/ ((2 * pi) ** (3 / 2) * 9 ** 3))
* (resolution ** 3)

) :- StimTypeAuditory(bmapID, expID),
BrainMap(bmapID, expID, ..., ..., minSubj, i1, j1, k1),
Voxels(i, j, k),
(d == FocusCoactivates(i, j, k, i1, j1, k1))

Ans(i, j, k, PROB) :- Activation(i, j, k)
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8 - Neuroscientific Ontological Knowledge in
the context of NeuroLang

Abstract In this chapter, we present the second main contribution of this
dissertation. We will delve deeper into the world of ontologies, expanding on what
has already been introduced in chapter 6. In particular, we will look at some
advantages of using ontologies, such as the ability to resolve queries under the
open-world assumption or the possibility of using the hierarchical information of
ontologies to improve our results. Finally, we will present a real-world use case in
neuroscience research in which, by combining ontologies and other heterogeneous
databases such as the Julich atlas or the NeuroSynth meta-analysis database, we
are able to provide a multilevel-characterization of the different histological regions
in the atlas with respect to cognitive processes.

8.1 . Solving queries under the Open World Assumption

As we said in the chapter 6, Ontologies are primarily based on a family of for-
mal knowledge representation languages known as Descriptions Logics (DL), which
are a subset of first-order logic [63]. As DLs have been designed to deal with the
problem of incomplete information, instead of making assumptions to specify a par-
ticular interpretation fully, the semantics considers all possible situations in which
the axioms are satisfied. Since it keeps unspecified information open, this feature
is called open-world assumption (OWA) [2]. This assumption is also implied by
the fact that most DLs are fragments of first-order logic, which also adheres to
the OWA. Therefore, the lack of a given assertion or fact does not imply whether
the statement is true or false: it is not known. Thus, the open-world assumption
requires considering of existentially quantified variables to denote unknown indi-
viduals (as in eq. 6.1). This property allows us to answer queries over incomplete
data by employing the implicit information the ontology provides. But at the same
time, this often leads to more complex reasoning since the open-world assumption
encodes a possibly infinite set of elements that comply with the statements de-
scribed by the ontology. When this infinite expansion takes place, reasoning about
ontologies under the open world assumption becomes intractable.

A most promising approach to deal with the infinite expansion where answer-
ing queries including knowledge under the open-world assumption are Rewriting
algorithms [36, 12]. This class of algorithms allows us to rewrite our ontological
query in first-order logic so that the domain of our database with which it interacts
is preserved. In particular, these algorithms usually restrict the type of queries that
can be rewritten, avoiding an infinite expansion of possible results.

Our implementation is based on XRewriter, an algorithm proposed by Gottlob
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et al. [36] that guarantees tractability for ontologies that belong to the DL-Lite
family [16]. DL-Lite is a member of Description Logics (DL), a family of knowledge
representation languages used to define ontologies. DL-Lite is specifically tailored
to capture basic ontology languages while keeping polynomial data complexity
(polynomial time) for query answering. Fortunately, as far as we know, DL-Lite is
the adopted language in neuroinformatics for constructing ontologies.

To test Neurolang’s ability to solve queries based on open knowledge, we will
use the NeuroSynth meta-analysis database and the Cognitive Atlas ontology (Co-
gAt). The Cognitive Atlas is a collaborative knowledge-building project that aims
to develop an ontology that characterizes the state of current thought in cognitive
science. It defines a set of mental concepts along with a set of mental tasks and
the measurement relations between those classes [58]. Our approach will then use
terms present in the NeuroSynth database to associate studies with the cognitive
processes proposed by CogAt. This approach allows us to bridge both databases,
using the information structured in the CogAt ontology to ask questions that result
in a list of studies and their corresponding activation maps. As we mentioned, on-
tological knowledge is interpreted under the open-world assumption, which entails
that the model represents partial knowledge about a domain. Therefore, we will
focus on solving queries based on some ontology constraints defined as someVal-
uesFrom. These constraints usually represent open-world knowledge and have the
common characteristic of being defined by using existentially quantified variables
in the rule’s consequent (or head) as the one defined in equation 6.1.

In particular, we aim at inferring the brain activation pattern associated with
visual awareness. This process is encoded in the CogAt ontology, but is not found
in the Neurosynth database neither as a term nor a topic. Therefore, we need
a way to link the studies and activations related to this process, given that it is
not explicitly mentioned in the database. CogAt helps us in solving this problem:
a Tuple-generating dependency (TGDs or existential rules) specifies that spatial
attention is a sub-process of visual awareness. Which, expressed as a Datalog+/-
rule in CogAt’s TGD set, is:

∀XSpatialAttention(X)→ ∃Y PartOf(X,Y ) ∧ VisualAwareness(Y ) ∈ ΣCogAt
1 ,(8.1)

which has an existentially-quantified variable Y in the head, representing open-
world knowledge.

We seamlessly harness the open knowledge presented in CogAt to analyze ac-
tivations related to visual awareness using to NeuroLang’s built-in capabilities: we
write a program (see Listing 8.1) to obtain all studies that, while not mentioning vi-
sual awareness, mention terms which, according to CogAt, imply that the cognitive
process is involved. Importantly, we achieve this by combining an automatically-
produced literature database with an expert-produced ontology. The resulting
activations are presented in figure 8.1.
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Figure 8.1: The resultant brain activation map corresponding to ‘spatial
attention’, obtained through the resolution of a forward inference queryunder the open-world assumption. The activation map is thresholded atthe 95th percentile

Listing 8.1: Open world assumption.
Entity(t, s) :- TermInStudy(t, s)
OpenWorldStudies(s) :- PartOf(t, s), VisualAwareness(s).
ProbMap(x, y, z, PROB) :- FocusReported(x, y, z, s) //

(SelectedStudy(s) & OpenWorldStudies(s))
ProbabilityImage(create_region_overlay(x, y, z, p)) :-

ProbMap(x, y, z, p)

8.2 . Retrieving synonyms via the hierarchical structure of the
ontology

One of the main characteristics that differentiate first-order logic from proposi-
tional logic is the impossibility of the latter to define quantified variables. Although
this limitation allows the queries of languages based on propositional logic to be
solved in a computationally efficient manner, but at the same time, it imposes
strong limitations in terms of expressiveness. This limitation is due to the absence
of quantifiers that allow defining relations, which makes it necessary to explicitly
establish each of the variables on which we want to operate with our query. Thus,
this limitation requires that we know in advance each of the terms of interest, which
makes the queries increasingly complex as the number of elements increases.

To overcome this limitation, we can take advantage of domain-specific logical
theories formalized within ontologies. Since ontologies are formal representations
of knowledge based on a set of concepts and the relationships between them, we
could leverage first-order logic to take advantage of these relationships and increase
the domain covered by our query. With this approach, we can use the relationships
between terms already defined within the ontology to link the terms in the query.
We thus use the expert knowledge described by the ontologies in terms of defining
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the relationships. We do not need to know which terms are related to each other
in advance.

We will show how we can take advantage of NeuroLang’s ability to process
ontologies and solve complex queries. We will introduce an example that asks
about a series of terms and their related synonyms without the need to know them
beforehand or define them specifically in our query. For this purpose, we will write
a query using NeuroLang that reproduces Neurosynth’s forward inference for the
term ‘pain’. Unlike NeuroSynth, we will take advantage of NeuroLang’s first-order
language to automatically obtain all the synonyms of the term, from the CogAt
ontology, without the need to know them explicitly beforehand. In particular, we
will focus on a query that, making use of the structured knowledge specified in the
IOBC ontology and the possibility of manipulating existentially quantified variables
of our language, obtains the ‘altLabel’ property of the entities related to ‘Pain’.
Then, we will use the obtained result and the Neurosynth database to infer the most
commonly activated voxels in studies where these terms are significantly present.
To achieve this, we will get the conditional probability of each of the voxels to
be activated, given that one or more of the selected terms was mentioned in the
study. Finally, we filter out the resultant activation map at the 95th percentile of
voxel weights.

In this example, we show how we can leverage the ontological knowledge pro-
vided by the International Organization for Biological Control (IOBC) [45] to per-
form an analysis that includes terms related to our main term (noxious and nocicep-
tive related to pain, in this example) without knowing them beforehand, enriching
our results automatically.

Listing 8.2: Retrieving information from related terms viathe hierarchical structure of the ontology
RelatedTerm(term) :- term == "pain".
RelatedTerm(term) :- label(pain_entity, "pain"),

related(pain_entity, subclass),
altLabel(subclass, term).

FilteredBySynonym(t, s) :- TermInStudy(t, s), RelatedTerm(t).
Result(i, j, k, PROB) :- FocusReported(i, j, k, s) // (SelectedStudy(s),

FilteredBySynonym(t, s)).
Percentile_95(compute_percentile(p, 95)) :- Result(i, j, k, p).
VoxelActivationImg(create_region_overlay(i, j, k, p)) :-

Result(i, j, k, p),
Percentile_95(p95), p > p95.

ans(img) :- VoxelActivationImg(img).

Fig. 8.2 provides a view of the results obtained from this example (see Listing
8.2). In this case, the activations of Noxious and Nociceptive were also automati-
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cally included in the result.

Figure 8.2: The resultant brain activation map associated with ‘pain’ andits related terms (‘noxious’ and ‘nociceptive’) defined by the IOBC ontology.The results show that the dorsal anterior cingulate cortex and parietalregions are consistently active in studies mentioning "pain" or any relatedterm

8.3 . Multilevel characterization of brain regions through large-
scale reverse inference with heterogeneous data sources

Finally, we will show how to integrate some of the ideas discussed in previous
examples to model a meta-analysis experiment that links regions defined based on
histology with a set of hand-curated cognitive processes.

We will use NeuroLang to solve a set of queries that infer the probability of
a term being mentioned in a study, given that a particular region of the brain
is activated and the likelihood of the same term being mentioned given that the
region is not activated. A brain region is considered active in a specific study if at
least one of the reported coordinates matches one in the selected area.

Terms and studies were obtained from the Neurosynth database. The acquired
terms were then filtered based on the cognitive process defined in the CogAt on-
tology to remove noise irrelevant to our analysis. In addition, we use CogAt’s
hierarchical organization of cognitive processes, which organizes those terms into
general categories known as “top concepts”. We also generated 150 samples ran-
domly, allocating 70% of the studies. Julich’s Brain Atlas was used to partition
the brain into regions based on cytoarchitecture.

As the last step, the Bayes Factor of both hypotheses was computed, and terms
with a value less than 3.16 were filtered out. Those values were used to analyze
the preponderance of different cognitive processes in cytoarchitectonic areas. In
the case of top concepts, these appear if at least one term belonging to the top
concept passes the threshold, so values lower than 3.16 may be present.

It is essential to highlight that all this procedure, from filtering the Neurosynth’s
terms to the calculation and later filtering of the Bayes Factor, was carried out
within the same NeuroLang program, allowing its easy reproduction and subsequent
updating in the case of new data. The code of this program can be found in
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Listing 8.3
In this experiment, we perform a large-scale reverse inference using NeuroLang

and heterogeneous data: the Julich probabilistic histological atlas and an ontol-
ogy, CogAt. We aim to construct a knowledge tree linking histology to cognitive
ontology for a richer, multilevel characterization of brain regions. The importance
of this analysis is that it formalizes reverse inference by combining probabilistic
inference, fine-grained atlases, and detailed cognitive ontologies in a universal lan-
guage. Although reverse inference may still be imperfect at this point, as more
data becomes available and the CogAt ontology develops further, the exact same
queries can be used to update the results. This analysis could provide new insights
into which ontological entities are biologically realized and which are not and how
closely-related conceptual structures differ in their neural substrates. Furthermore,
this analysis could be extended to include network connectivity estimations for an
unequivocal characterization of brain regions.

Listing 8.3:Multilevel characterization of brain regions
ActivationsJulich(i, j, k, regionId, study) :-

Activations(study, i, j, k), JulichBrain(p, i, j, k, regionId)

ActiveRegion(study, regionId) :-
ActivationsJulich(i, j, k, regionId, study)

NonActiveREgions(study, regionId) :-
~ActiveRegion(study, regionId), Studies(study),
JulichAtlas(regionId, name, hemis)

TermProb(term, fold, PROB) :-
FilteredTerms(study, term) //

(ActiveRegion(study, regionId), Folds(study, fold),
Studies(study))

NegTermProb(term, fold, PROB) :-
FilteredTerms(study, term) //

(NonActiveRegion(study, regionId), Folds(study, fold),
Studies(study))

Answer(term, fold, bayesFactor) :-
TermProb(term, fold, prob), NegTermProb(term, fold, negProb),
bayesFactor == (prob / negProb)

To infer specific structure-function associations, we estimate the evidence in
favor of the presence of a general (top) concept or a particular term given activation
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in a region compared to when given no region activation. Terms and top concepts
are organized using the hierarchy provided by CogAt, which categorizes sets of
different cognitive terms that appear in articles under broad categories known as
top concepts (Emotion, Language, etc.). We use the Bayes factor (BF), which
represents the ratio of the posterior probability of one hypothesis to that of another,
as a measure of the strength of evidence in favor of the association. A BF > 1
suggests evidence for association, whereas BF > 3 is generally regarded as an
indicator of considerable evidence [43]. Although we use all the regions defined by
the Julich atlas in the reverse inference, we discuss only two regions of interest for
brevity: hippocampus and deep cerebellar nuclei. The results are summarized in
figures 8.4, 8.5, 8.7 and 8.8 using circular trees.

Figures 8.4 and 8.5 depict the reverse inference results for hippocampus. The
hippocampus is a sub-cortical brain region crucial for long-term memory encoding
and retrieval as well as involved in emotion-related processing. The Julich atlas
(version 2.9) divides the hippocampus into ten sub-regions in both brain hemi-
spheres. We observe that most hippocampus sub-regions are associated with the
top concept “Learning and Memory”, especially with its constituent terms: autobi-
ographical memory, episodic memory, and consolidation. Likewise, the term “nav-
igation” found under the top concept “Perception” is also associated with all hip-
pocampus sub-regions except the hippocampal amygdala transition area (HATA).
These results recapitulate the long-standing view of hippocampus’s major role in
memory processes. Nonetheless, the results also reveal fine differences among
hippocampal sub-regions, even across hemispheres. For instance, most left hip-
pocampus regions are associated with “semantic memory “under the top concept
“Language”, while only the “Presubiculum”, “Parasubiculum”, and “CA3” in the right
hippocampus are. This result is consistent with the dominance of language/seman-
tic processing in the left brain hemisphere. Furthermore, the HATA seems to be
the one region strongly linked to terms of “Emotion”, such as “valence” and “facial
expression”, in both hemispheres. Note that a region’s associations with singular
terms are much stronger than with top concepts, as the latter represent overly
broad behavioral domains that are not specific to any brain region.

Figures 8.7 and 8.8 show the reverse inference results for the deep cerebellar
nuclei (DCNs). DCNs are grey matter clusters embedded in the white matter
of the cerebellum. They are the sole output of the cerebellum and form part
of the closed-loop system connected to the sensorimotor, association, and limbic
cortices. The Julich atlas defines three DCNs: fastigial (FN), interposed (IN), and
dentate (DN). The cerebellum has been widely viewed as a sensorimotor region,
but this view has drastically changed in the past few decades. The cerebellum
is now believed to be involved in as many functions as the cerebral cortex. This
is evident in the results of the present reverse inference meta-analysis. For each
nucleus, in addition to associations with terms under “Action” and “Perception”, we
observe stronger associations with terms of “Language”, “Learning and Memory”
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and “Attention”. One nucleus, the IN in the left cerebellum, is also associated with
“maintenance” under “Executive-Cognitive Control” and “pain” under “Emotion”.
Nevertheless, caution must be taken when interpreting these results, as studies
from the 1990s and early 2000s often discarded the cerebellum from their imaging
experiments. Yet, the results are consistent with recent views of functional diversity
in the cerebellum beyond sensorimotor function.

Future generation neuroscience demands a universal standard to synthesize
the great loads of information into structured knowledge. In this work, we have
proposed that NeuroLang, a unified formal language for functional neuroanatomy,
is well suited for leading computational approaches to formalize large-scale neu-
roscience research, including meta-analysis, through probabilistic first-order logic
programming. NeuroLang can seamlessly integrate heterogeneous data and en-
able mapping cognitive domains to brain regions through a set of formal criteria.
We harness the expressiveness of NeuroLang to overcome the limitations of stan-
dard meta-analysis tools, promoting elaborate and highly reproducible research on
the domains of brain function. Towards achieving this goal, we provide use-case
examples that demonstrate how NeuroLang combines useful data sources, such
as ontologies and brain atlases, and allows us to express and solve meta-analytic
queries using declarative and compact programs.

Commonly used meta-analysis tools are limited in their formal expressivity as
they mainly rely on propositional logic semantics to query databases. Propositional
logic can at best be used to study a limited number of easy-to-define concepts at
a time, as it only deals with specific facts that carry a truth value. However, when
faced with a question that requires inferring associations among a variable number
of instances of objects such as behavioral domains, tasks, and brain regions, while
combining external data, propositional logic is inefficient. This is because it entails
that each instance of the objects be explicitly declared in a meta-analysis and
already be defined in the database at hand. Effectively, such a meta-analysis is
not scalable as it’s not possible to write queries containing existentially quantified
variables ranging over all instances of objects and formally represent multi-level
associations among them. Therefore, the breadth and specificity of queries that
can be expressed and solved with current tools are limited, impeding progress in
the field.

As our examples demonstrate, NeuroLang expands the scope neuroimaging
meta-analysis through its ability to combine and elaborately query heterogeneous
data in a single unifying framework. This allows us to make use of human-curated
databases, for instance, and take full advantage of knowledge models created by
experts in the field. A common way of modeling expert knowledge is ontologies,
which are high-level conceptual organizers of information. An ontology in cogni-
tive neuroscience presents a hierarchical schema for systematically fitting mental
functions and cognitive tasks together based on collaborative knowledge build-
ing. Significant advances have been made in the past two decades to provide
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Figure 8.3: Probabilistic maps of the hippocampal subregions defined byJulich’s brain atlas used in the reverse inference analysis [3].
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Figure 8.6: Probabilistic maps of the Cerebellum subregions defined byJulich’s brain atlas [3].
knowledge bases for neuroscience, such as the Cognitive Atlas (CogAt) [58] or
Cognitive Paradigm Ontology (CogPo) [71]. However, computationally leveraging
the hierarchical structure of these ontologies, preserving all its expressiveness, in a
well-grounded way that links it with empirical evidence from neuroimaging to drive
new discoveries remains an open challenge.

Integrating ontologies and leveraging their hierarchical structure can be read-
ily performed with NeuroLang to solve queries under the open-world assumption
(OWA). This assumption allows us to infer the neural correlates of Visual Aware-
ness, for instance, through its sub-parts defined using CogAt, without it being ex-
plicitly mentioned in the Neurosynth database. Thus, by leveraging NeuroLang’s
expressivity and the CogAt’s knowledge base we can make inferences not only on
the information contained in a meta-analytic database, but also on missing, but
plausible, information. In contrast, standard meta-analysis tools solve queries un-
der the closed-world assumption, where the truth is entirely present in the data.
Using Neurosynth, for instance, it’s not possible to query terms not present in the
database nor retrieve a set of related terms without explicitly declaring every single
one of them. Using Neurosynth, for instance, it’s not possible to automatically re-
trieve the set of terms related to Pain as we need explicit prior knowledge of each
one of them. BrainMap, on the other hand, includes an ontology, CogPo, which
explains how the database is organized. However, since BrainMap’s query system
is also based on propositional logic, it only grants access to either overly broad
behavioral domains or singular sub-domains, separately. Therefore, it necessitates
that we have prior knowledge of and explicitly declare all terms of interest for
meta-analysis. Conversely, through first-order logic semantics in NeuroLang, fine-
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65



C
erebellum

D
or

sa
l 
D

en
ta

te
N

u
cl

eu
s

Fastigial
Nucleus

In
te

rp
os

ed
N
uc

le
us

Ventral Dentate
Nucleus

Le
ar

n
in

g
 &

M
em

or
y

re
h
ea

rs
al

At
te

nt
io

n

su
st

ai
ne

d 
at

te
nt

io
n

Language

sem
antic 

mem
ory

Learning &
Memory

recall

autobiographical memory

NonCategorized

emotion regulationconsciousness

dyslexia

A
tten

tion
d
istraction

Le
ar

ni
ng

 &
M

em
or

y

au
to

bi
og

ra
ph

ic
al

 m
em

or
y

ex
pe

rt
is
e

re
he

ar
sa

l

Non

Categorize
d

conscio
usness

Action
response selection

Attention

fixation

Learning &

M
em

ory

rehearsal

N
on

C
ateg

orized

coord
in

ation

1.02

7.53

1.31

4.42

0.78

3.23

1.25

3.45

5.94

0.86

3.62

4.34

4.89

1.03

3.60

1.31

3.43

3.45

4.73

0.89

4.05

1.544.31

1.41

4.24

1.07

4.04

1.03

3.39

Figure 8.8: Reverse inference results for right cerebellum. Estimation ofthe amount of evidence in favor of the presence of a general (top) conceptor a particular term given activation in a region compared to when givenno region activation. We use the Bayes factor (BF), which represents theratio of the posterior probability of one hypothesis to that of another, asa measure of strength of evidence in favor of association.

66



grained hierarchical relations from any ontology can be automatically leveraged,
expanding the scope of meta-analysis beyond the limits of databases and sparing
us from the need to explicitly declare the entire domain of terms of interest.

NeuroLang’s probabilistic logic semantics enable inferring specific structure-
function associations through formal and declarative reverse inference. In many
neuroscience textbooks and articles, the functions of brain structures are mainly
inferred through qualitative assessments of findings [57]. This kind of informal
reverse inference is not deductively valid and can be misleading. A reverse infer-
ence is only truly informative if it quantifies the ratio of a region’s process-specific
activation to the overall likelihood of its activation with other processes [57]. For-
tunately, with the presence of large meta-analytic databases, a wide range of brain
states can be compiled and quantitatively contrasted to infer the level of speci-
ficity in function to structure mappings. And with automated machine learning
methods, such as natural language processing, it is easy to mine the literature for
useful data like terms and activation patterns. However, performing large-scale
reverse inference on hundreds of regions and terms/topics can be challenging with
existing approaches. For example, a recent large-scale effort to infer an ontology
from empirical evidence has revealed fine-grained mappings from terms of mental
function to brain circuits [10]. The authors of this study conclude that this compu-
tational ontology captures scientific knowledge of human brain function better than
human-curated ontologies. As groundbreaking as the results are, the methodology
of the study is seemingly very sophisticated and potentially strenuous to reproduce
independently, including exhaustive analysis steps, a brain atlas, multiple formal
ontologies, large databases, and a substantial level of analytical flexibility. On
the other hand, our reverse inference example, although not as developed, uses
probabilistic first-order logic semantics, such as quantified variables and existential
quantifiers, allowing reverse inference to be compactly expressed and executed,
while combining heterogeneous data. Thus, NeuroLang’s approach can reduce the
complexity of analysis pipelines to a set of formally defined questions. In this sense,
a user has only to worry about describing their desired results rather than explicitly
declaring each step of the meta-analysis.

The reverse inference analysis presented herein provides an architecture to sys-
tematically merge fine-grained cognitive ontologies with multiscale brain atlases
through neurobiological evidence. This serves to mitigate confirmation and reifi-
cation biases by bringing insights into which expertly denoted distinctions in the
mental process are biologically realized and which are not [10, 48]. Moreover, the
results of this analysis may even be leveraged as a reference for future hypothe-
sis generation. Importantly, however, this analysis as performed with NeuroLang
presents a step in a long process of formal knowledge compilation in cognitive neu-
roscience. That is, in the long-run, the evidence we infer to link brain regions to
ontologically organized terms can be updated, consolidated, or discarded as more
data becomes available. Thus, reverse inference in this case serves as a discovery
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strategy for “inference to the best explanation” given the available data [57]. For
instance, we present results on the deep cerebellar nuclei linking them to terms
related to disparate behavioral domains. However, the cerebellum in general is
under-represented in the literature, being entirely excluded from neuroimaging ex-
periments in older studies. This may have yielded amplified or reduced functional
associations for the DCNs that do not reflect the true extent of their functional
associations. Nonetheless, as more studies (that hopefully include the cerebellum)
bring new results, these associations can be automatically updated using the same
NeuroLang program. Alongside new results, as ontologies and brain atlases are fur-
ther updated, finer structure–function mappings can be directly and systematically
inferred atop existing knowledge.

8.3.1 . B2RIO
An open source tool based on the multilevel characterisation presented in this

section is freely available for use. Following the methodology presented in this
experiment, B2RIO1 allows neuroscientists to obtain, from a mask of the human
brain, a list of the cognitive processes associated with it, evaluated with respect to
their specificity using the same hypotheses presented in this experiment.

1https://github.com/NeuroLang/B2RIO
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Real-World Use Cases in
Neuroscience Research

69





9 - Foundational number sense training gains
are predicted by hippocampal–parietal cir-
cuits

In this chapter, we present some exciting real world experiments developed us-
ing NeuroLang which take advantage of some of its most attractive features, such
as segregation queries or integrating ontologies and heterogeneous databases. In
this particular section, we present the work led by Chang et al. [21] that uses the
ontology integration capabilities of NeuroLang. This work is part of a collabora-
tion through which we conducted a reverse meta-analysis to provide evidence of
the association between hippocampal-parietal functional circuitry and learning and
related functions, confirming the results obtained in the study.

9.1 . Summary of the work

The development of mathematical skills in early childhood relies on number
sense, the foundational ability to discriminate between quantities. Number sense
in early childhood is predictive of academic and professional success, and deficits
in number sense are thought to underlie lifelong impairments in mathematical abil-
ities. Despite its importance, the brain circuit mechanisms that support number
sense learning remain poorly understood. In this work, a theoretically motivated
training program to determine brain circuit mechanisms underlying foundational
number sense learning in female and male elementary school-aged children (ages
7-10) was designed. The four-week integrative number sense training program
gradually strengthened the understanding of the relations between symbolic (Ara-
bic numerals) and non-symbolic (sets of items) representations of quantity. The
study founds that the number sense training program improved symbolic quantity
discrimination ability in children across a wide range of math abilities, including
those with learning difficulties.

9.2 . NeuroLang’s contribution

In this study, we use NeuroLang to perform a reverse inference meta-analysis of
inter-regional co-activations across 14,371 fMRI studies and 89 cognitive functions
to confirm a reliable role for hippocampal-intraparietal-sulcus circuits in learning.
The study identifies a canonical hippocampal–parietal circuit for learning which
plays a foundational role in children’s cognitive skill acquisition. Findings provide
important insights into neurobiological circuit markers of individual differences in
children’s learning and delineate a robust target for effective cognitive interventions.

We used reverse meta-analysis to estimate the probability that a term related
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Figure 9.1: Reverse meta-analysis of 14,371 fMRI studies and cognitivefunctions reveals a significant association between hippocampal–parietalfunctional circuits and learning. A. A reverse meta-analysis was per-formed to map hippocampal–parietal functional circuits identified in thecurrent study to cognitive functions (see Methods for details). B. Top 5%cognitive functions mentioned in published articles where co-activationsof the left or right hippocampus (HIPP) and the left or right intraparietalcortex (IPS) are reported. L = left, R = right.
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to a cognitive function was mentioned in an fMRI study under the condition that
both regions to be analyzed, the hippocampus and the parietal cortex, were also
reported to be active in the study for either hemisphere. In other words, given L, a
cognitive function-related term defined in CogAt, and S, a study in the NeuroSynth
database, we calculate:

P (term L is mention in Study S| (9.1)
S reports activations in the left/right hippocampus

and in the left/right parietal cortex)

To estimate reverse meta-analysis probabilities, we followed the following steps.
First, the probability of a term being present in a study was encoded by thresholding
the term frequency-inverse document frequency (TF – IDF) value of the term being
present at 10−3, in agreement with NeuroSynth’s implementation [78]. Second,
we considered the probability of a region being reported in a given study as directly
proportional to the number of activations within the regions being mentioned in
the study. Third, terms were filtered using the CogAt [58] ontology to ensure that
only those relating to cognitive processes (89 terms listed in Figure 9.1 B) were
taken into account. To assess the stability of our estimations, we computed the
confidence interval of our reverse meta-analysis probability estimations; we split the
14,371 studies into 20 equal folds, maximizing the measurements for estimation.
Finally, the top 5% probable terms were considered to be sufficient evidence for
associations with analyzed circuits. Our analysis resulted in the selection of 25 out
of 356 associations (4 circuits, 89 terms), which represented above the 95 percentile
of probable term mentions for studies where hippocampal parietal circuits were
reported.

Our results from the reverse meta-analysis show that co-activations of both
the left and right hippocampus and IPS are significantly associated with the term
learning as well as related terms like encoding, memory, and retrieval. These
meta-analytic findings from a large set of fMRI studies expand on findings from
our training study and provide converging evidence for a strong association between
hippocampal–parietal functional circuitry and learning and related functions.
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10 - Functional gradients in the human lat-
eral prefrontal cortex revealed by a com-
prehensive coordinate-based meta-analysis

Following the previous section, in this case, we present a paper led by Abdallah
et al. [1] that adopts NeuroLang to infer the organizational principles of the lateral
prefrontal cortex (LPFC) through meta-analysis.

Besides providing a small summary of the meta-analysis performed in this work,
we will analyze two of the queries used since they present another exciting feature
of NeuroLang that we want to highlight in this work, which is only possible because
Neurolang implements a first-order logic resolution engine: Segregation queries.

10.1 . Summary of the work

The lateral prefrontal cortex (LPFC) supports a wide variety of cognitive pro-
cesses considered hallmark features of the human brain. Understanding the func-
tional organization of the LPFC is thus crucial to studying adaptive human be-
havior. Yet, the overarching organizing principles of the LPFC are still actively
debated. Recently, large-scale attempts have been made to map the entire LPFC
using conventional and meta-analytical approaches. So far, these mappings have
lacked specificity due to the limited breadth and complexity of the queries that
widely used tools can express and solve. In this study, a novel approach to ex-
pressive neuroimaging meta-analysis based on NeuroLang is adopted to infer the
organizing principles of LPFC from thousands of studies with greater specificity.

The versatility of the LPFC suggests that it is far from being a unitary brain
structure, and several hypotheses about its organization have emerged. For exam-
ple, one hypothesis, which arises from the domain of abstraction and hierarchical
cognitive control, proposes a rostrocaudal gradient in the LPFC [4, 7, 8, 14, 22,
44, 41, 54, 56]. In this spatial layout, caudal regions respond to immediate sensory
stimuli, medial regions select actions based on an prevailing context, and rostral
regions integrate concrete representations into more abstract rules to enable top-
down temporal control of behaviour. The authors propose that the multitude of
hypothesis on the LPFC organization is mainly due to the diversity of protocols
and researchers’ degrees of freedom across studies and therefore, it remains un-
clear to what extent the functional boundaries derived from each individual study
correspond to the gross organization of the LPFC. On the other hand, regarding
meta-analysis studies, the study proposes the same limitations we have discussed
throughout this dissertation: commonly used tools must be more expressive to
represent complex hypotheses of specific functional associations in the LPFC.

Finally, the study proposes to overcome these limitations by using NeuroLang.
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More specifically by performing a meta-analysis on 14371 articles available in the
NeuroSynth database together with a gradient-mapping approach to identify the
organising principles in the LPFC.

10.2 . Segregation queries

The last analysis of the study leads by Abdallah[1] aims to characterize the two
hemispheres of the LPFC in terms of specific topic associations in a gradient-like
manner. In order to infer the variation of coactivation patterns along the primary
gradient in the LPFC, they first create regions of interest from successive twenty-
percentile gradient bins (i.e., five quintile bins) in the right and left LPFC. Then,
they infer specific structure-function associations by estimating the extent to which
a spatially-localized activation along the principal gradient in the LPFC predicts a
Neurosynth topic’s presence in a study.

For this purpose, they write a NeuroLang program that solves segregation
queries between hemispheres. Here, they infer the probabilities “that a topic is
present in a study given activation in a quintile bin in the right (respectively left)
LPFC and there exists no reported activation in the entire left (respectively right)
LPFC”.

Segregation queries infer the probability that a topic is present in a study given
spatially constrained activation within a range of quintile bins and the simultaneous
absence of activation outside this range within the same hemisphere. Concurrently,
a segregation query infers the probability of the opposite event: a topic is present,
given that no activation within the quintile bins range or activation outside the
range exists. The log odds ratio of these two hypotheses gives us a measure of
evidence in favor of the association between a topic and patterns of activity along
the principal gradient. The NeuroLang program that infers specific structure-
function associations in the left LPFC using segregation queries is presented in
Listing 10.1

Finally, they also write a program that applies inter-hemispheric segregation
queries to infer the probability “that a topic is present given activation in a right
lpfc quintile bin and there exists no activation in the entire left lpfc”. The neu-
rolang program that infers hemisphere-specific topic-bin associations is presented
in Listing 10.2

The results of this analysis can be seen in Figure 10.1. Apart from the im-
plications of these results, we need to highlight the ease with which NeuroLang
segregation queries can obtain these results and the clarity that the queries offer
for understanding the hypothesis analyzed. A procedure that might otherwise be
hidden or obfuscated in a text description.

Segregation queries are one of the most relevant features of NeuroLang and its
first-order logic-based resolution engine. Given their simplicity and NeuroLang’s
ability to combine heterogeneous data, these queries can open the door to answer-
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Listing 10.1: Infering specific structure-function associa-tions in the left LPFC
LeftBinActive(bin, study) :- LeftBinVoxel(bin, x, y, z),

PeakReported(x2, y2, z2, study),
distance == EUCLIDEAN(x, y, z, x2, y2, z2), distance < 3

SegregationRule(bin1, bin2, study) :-
LeftBinActive(bin1, study), LeftBinActive(bin2, study),
(bin2 >= bin1), ~exists(bin3;

Bin(bin3), (bin3 < bin1 | bin3 > bin2), Study(study),
LeftBinActive(bin3, study)

)

NoSegregationRule(bin1, bin2, study) :-
Study(study), Bin(bin1), Bin(bin2),
~SegregationRule(bin1, bin2, study)

TopicPresentGivenSegregationRule(topic, bin1, bin2, PROB) :-
TopicInStudy(topic, study) //
(SegregationRule(bin1, bin2, study),
SelectedStudy(study))

TopicPresentGivenNoSegregationRule(topic, bin1, bin2, PROB) :-
TopicInStudy(topic, study) //
(NoSegregationRule(bin1, bin2, study),
SelectedStudy(study))

TopicAssociationMatrix(topic, bin1, bin2, LOR) :-
TopicPresentGivenSegregationRule(topic, bin1 , bin2, p1),
TopicPresentGivenNoSegregationRule(topic, bin1, bin2, p0),
LOR == log10((p1/(1 - p1))/(p0/(1 - p0)))

ans(topic, bin1, bin2, LOR) :-
TopicAssociationMatrix(topic, bin1, bin2, LOR)
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Listing 10.2: Infering hemisphere-specific topic-bin associ-ations
LeftBinActive(bin, study) :- LeftBinVoxel(bin, x, y, z),

PeakReported(x2, y2, z2, study),
distance == EUCLIDEAN(x, y, z, x2, y2, z2), distance < 3

RightBinActive(bin, study) :- RightBinVoxel(bin, x, y, z),
PeakReported(x2, y2, z2, study),
distance == EUCLIDEAN(x, y, z, x2, y2, z2), distance < 3

OnlyLeftBinActive(bin, study) :- LeftBinActive(bin, study),
~exists(bin2;

Bin(bin2), Study(study), RightBinActive(bin2, study)
)

OnlyRightBinActive(bin, study) :- RightBinActive(bin, study),
~exists(bin2;

Bin(bin2), Study(study), LeftBinActive(bin2, study)
)

TopicPresentGivenOnlyLeftBinActive(topic, bin, PROB) :-
TopicInStudy(topic, study) //
(OnlyLeftBinActive(bin, study), SelectedStudy(study))

TopicPresentGivenOnlyRightBinActive(topic, bin, PROB) :-
TopicInStudy(topic, study) //
(OnlyRightBinActive(bin, study), SelectedStudy(study))

InterHemisphereTopicBinAssociation(topic, bin, LOR) :-
TopicPresentGivenOnlyRightBinActive(topic, bin, p1),
TopicPresentGivenOnlyLeftBinActive(topic, bin, p2),
LOR == log10((p1/(1-p1))/(p2/(1-p2)))

ans(topic, bin, LOR) :-
InterHemisphereTopicBinAssociation(topic, bin,LOR)
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Figure 10.1: Gradient-based mapping of hemispheric asymmetries inthe LPFC. Meta-analysis of inter-hemispheric asymmetries reasserts theleft hemispheric dominance of language and memory and the right-hemispheric dominance of inhibition and sensory processing/monitoringin the LPFC. Positive log-odds ratios indicate evidence in favor of right-hemispheric preference of a topic in a given bin, whereas negative valuesindicate evidence in favor of left-hemispheric preference of a topic in agiven bin. Error bars represent the 95% confidence intervals estimatedfrom 5000 re-runs of the meta-analysis on random sub-samples of theNeurosynth dataset. Each random sub- sample comprises 60% of thestudies of the original dataset (around 8623 studies). Topics are orderedfrom most-left dominant to most- right dominant based on the averageof the log-odds ratio values over the five quintile bins.79



ing hard-to-formulate questions.
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Part IV
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11 - Discussion

In this dissertation, we presented a fragment of probabilistic Datalog+/– en-
riched with negation and aggregation, along with a scalable query resolution algo-
rithm coined NeuroLang. In addition, we present a series of practical applications
that demonstrate its potential and some of the most exciting advantages provided
by this tool, such as the integration of knowledge modelled under the open world
assumption in chapter 8 or the use of segregations as in chapter 10.

Several different approaches to probabilistic Datalog+/– semantics and query
resolution exist [36, 20]. Nonetheless, these do not incorporate aggregation, and
the possibility of manipulating the probabilistic query results within the same lan-
guage. These two features, as shown by our use-case analysis in Section 7.3, are
fundamental traits required to provide a probabilistic logic programming language
that can encode neuroimaging meta-analysis applications end-to-end.

The possibility of manipulating probabilities within the language comes at a
great expense. After our PERs are computed, in Step 4 of Algorithm 1, our lan-
guage allows handling probabilities as a standard float column. While this allows
for analyses required by our target applications, it calls for disciplined programming
from the user such that the manipulation of probabilities remains sound. Nonethe-
less, this gives our language great power; for instance, we can build probabilistic
brain images, through aggregation, as shown in Section 7.3.1; and compute the
probability differences between two events, which we show in Section 7.3.2.

All these features allow us to go beyond current tools in meta analyses whose
queries are based in propositional logic [79, 46] and harness the full power of the
FO¬∃ fragment, as well as open-world semantics, to express meta-analysis tasks
in a sound, disciplined, and declarative manner. Furthermore, by using a lifted
query processing approach when possible (see Algorithm 1, Step 3), we are able to
process current meta-analytic datasets enriched with ontologies that are of consid-
erable size, as described in chapter 8. While it is true that there are other works
that make possible the resolution of Datalog+/– queries ([20, 42]), the definition
of the problem we wish to solve makes it necessary to have a framework capable
of solving probabilistic choice and handling deterministic open-world knowledge.
Moreover, we are not aware of any practical implementation of the mentioned
works, beyond the provided theory. It’s important to highlight that NeuroLang
limits the representation of probabilistic atoms as mutually exclusive events or mu-
tually independent events. We are aware of this limitation and of several advances
in the field that overcome this limitation, such as MarkoViews [42]. Moreover,
reasoning over fine-grained ontologies can be computationally intractable, and as
we want to solve queries with at least a comparable performance as existing tools,
it’s necessary to make constraining decisions. In particular, we base our ontological
query answering on XRewriter, an algorithm that derives knowledge from ontologies
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proposed by Gottlob et. al. [36], providing practical and effective query resolutions.
However, XRewriter only guarantees tractability for ontologies that belong to the
DL-Lite family [36]. DL-Lite is a member of Description Logics (DL), a family
of knowledge representation languages that can be used to build ontologies. The
focus of the DL-Lite sub-family is to guarantee completeness (all newly defined
relations are guaranteed to be computed) and decidability (all computations will
finish in finite time) with maximum expressiveness. Fortunately, as far as we know,
DL-Lite is the adopted language in neuroinformatics for constructing ontologies,
and hence the impact of our decision should be currently negligible.

At a practical side, the multilevel characterization of brain regions through
large-scale reverse inference with heterogeneous data sources presented in chap-
ter 8 shows that we can not only make use of ontological knowledge to feed our
queries as in example 8.2, but we can also embed our results in the hierarchy
proposed by the ontology and obtain qualitatively more interesting results. On
the other hand, we present two practical applications of neuroscientific interest
in chapter 9 and 10 that, besides of being two important work with interesting
results, allow us to highlight some of the most exciting features of NeuroLang,
such as segregation queries. These experiments show that NeuroLang is more
than just a project based on theoretical ideas without practical applications. They
show a real need for an integrative framework that can solve queries based on
first-order logic combining heterogeneous data. NeuroLang is not only used in-
house in our lab, but is a mature and efficient tool that is starting to permeate
other labs with their own projects and ideas. To conclude, we have shown that
neuroimaging meta-analytic applications are an excellent real-world application for
a language such as probabilistic Datalog+/–. By using probabilistic semantics that
have recently converged from different probabilistic logic and open-world language
approaches [60, 20, 73], with open-world semantics [19, 36, 20], and query reso-
lution approaches [23, 20, 74], we have produced a language that is ready to be
used in neuroimaging applications.

Finally, and on a personal note, I think NeuroLang is a great tool, it has a
lot of potential and I hope that one day it will get the recognition it deserves.
My personal hope is that NeuroLang will be the cornerstone of a future full of
tools that enable unified formal interactions with large neuroscience databases,
promoting openness and reproducibility in the field.
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12 - Future improvements and beyond

In this section, I gather some ideas of possible improvements for the future of
NeuroLang. Some of them are already materialising thanks to the work of other
members of the team, while others are personal ideas or shortcomings that could
not be addressed during my thesis.

12.1 . English controlled language

While it is true that programming skills are becoming more and more important,
especially in research and even more so if large amounts of data consumption is
required, our intention was always to provide a tool for neuroscientists, who are
not necessarily experts in programming. Furthermore, we must take into account
that logic programming languages, such as the one used in NeuroLang, are not
widely used in general. That is why, in order to decrease the learning curve that
the use of NeuroLang may impose on some people, and in order to offer a tool
as accessible as possible to the average researcher, we decided and are currently
working on an interface that provides NeuroLang with a controlled English-based
language.

We believe this is a fundamental necessity if we want NeuroLang to go beyond
the doors of our lab and be adopted by the community.

12.2 . Learning architecture

NeuroLang currently allows probabilistic inference over data but not learning
to train machine learning models, and hence predictive models are currently not
possible to implement. But given their wide and effective usage in discriminating
cognitive functions and in deriving ontologies from empirical data [48], a learning
architecture in NeuroLang is planned in the future.

12.3 . Performance improvements through parallelisation

While it is true that NeuroLang can match the performance of most of the
meta-analysis tools against which it was compared during this work, there are still
some bottlenecks that can be reduced. Especially since many of the optimisations
made are at a theoretical level, for example, the use of optimisations to make a
relational algebra execution plan more efficient. However, in my personal opinion,
there are still optimisations to be made at the engineering level. For example, the
parallelisation of part of its execution. I personally believe that data loading is
one of the areas that would have the greatest benefit in relation to the cost of its
implementation.
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12.4 . Probabilistic ontologies

Modeling the real world requires the ability to be able to represent uncertainty.
While not addressed during this work, probabilistic ontologies can also be used
to model the uncertainty present in our data. While there has been significant
progress in this area [61, 49], we decided to leave this feature out of NeuroLang
due to the scarcity of probabilistic ontologies to take advantage of in the field of
neuroscience. If this situation change and probabilistic ontologies gain popularity,
extending NeuroLang’s ontology engine with the ability to manipulate this data
could be an exciting aspect of NeuroLang’s future.

12.5 . Σ expressivity during rewriting using XRewriter

Since, in order to guarantee the correctness of NeurolangQA, we had to limit
the expressivity of Σ in the case that rewriting by XRewriter was applied, we
consider that it is of full interest for the future of NeurolangQA to study the possible
expansion of Sigma during rewriting to know if we can guarantee its correctness in
the case of stratified negation.
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