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Résumé  

La méthode « Particle Tracking Velocimetry – PTV » est une des approches classiques 

pour étudier la complexité de la dynamique des échelles dissipative dans un écoulement 

turbulent. La richesse des mécanismes qui existent dans ces écoulements rend quasiment 

impossible la prise en compte de l'ensemble de ces phénomènes. Dans le but de 

caractériser ces phénomènes, le présent travail est basé sur une technique de suivi de 

particules appelée « Shake-The Box » pour mesurer les champs de vitesse 

tridimensionnels en fonction du temps à une résolution pouvant avoisiner l'échelle 

dissipative. Le dispositif expérimental d’un écoulement Von Karman Géant « GVK » et 

le traitement de la technique « Shake the Box » ont été optimisés et poussés à leurs limites 

afin d'améliorer la résolution spatiale et la précision des trajectoires lagrangiennes 

mesurées. L'approche utilisée dans cette thèse est basée non seulement sur des données 

expérimentales mais aussi sur des images synthétiques PIV basées sur une simulation 

numérique directe des équations de Navier Stokes. 

 

Résumé des optimisations expérimentale : 

 

L'expérience GVK présente de nombreux défis pratiques, notamment pour effectuer des 

mesures optiques à l'intérieur pour extraire des informations sur la turbulence. Le but du 

projet était d'étudier finement la turbulence générée par ce GVK à des nombres de 

Reynolds très élevés. La turbulence étant un phénomène 3D, la méthode "Shake the Box" 

(STB) a été choisie car elle fournit des informations sur les 3 composantes de la vitesse 

dans un volume en fonction du temps. Pour cette raison, une expérience mimétique qui 

reproduit l'accès optique dont nous disposons pour GVK a été utilisée dans le but d'affiner 

tous les obstacles expérimentaux possibles auxquels nous pourrions être confrontés sur 

l'expérience principale GVK. Tout d'abord, nous avons testé deux configurations 

possibles pour le placement des caméras autour de l'expérience quasi-cylindrique afin 

d'examiner les performances optiques. Les points d'accès optiques ont été conçus à 22,5°, 

45° et 67,5° de l'illumination du volume laser. Les premiers tests ont été effectués en 

utilisant les fenêtres à 45° et 67° avec des particules de sphères creuses Lavision 10µm 

pour l'ensemencement. L'énergie laser nécessaire pour les caméras à 67.5° était 

importante dans cette expérience et le bruit de fond enregistré était élevé. Les images des 

particules étaient fluctuantes en taille et des clusters étaient observés partout sur les 

images. Pour cette raison, nous avons pensé qu'il valait la peine d'investir dans des 

particules de meilleure qualité.  

 

La deuxième configuration a été testée en changeant la position des caméras à ±22,5° et 

±45° de l'illumination du volume. De plus, nous avons utilisé différentes particules pour 

l'ensemencement provenant de Spherotech (PP-50-100) avec un diamètre moyen plus 

petit (5,09μm) et plus monodispersé (c'est-à-dire une fonction de densité de probabilité 

plus étroite). Ces nouvelles particules, à notre connaissance, n'étaient pas utilisées pour 

la PIV auparavant et elles ont montré une grande capacité à améliorer les mesures. De 

plus, et en raison des niveaux de bruit élevés observés auparavant liés aux petites 

impuretés de moins de 1-3 µm présentes dans l'eau, nous avons décidé d'utiliser un 
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système de filtration de l'eau installé dans la salle d'expérience pour réduire toute 

contamination de l'eau par la poussière ou les fibres plastiques des conteneurs utilisés 

pour le transport de l'eau. La qualité de l'eau est d'une grande importance et des 

précautions doivent être prises en compte lors de l'ouverture du couvercle de l'expérience.  

 

La différence d'intensité visible sur les différentes caméras en raison de leur position dans 

les angles de diffusion avant est un paramètre expérimental qui ne pouvait pas être 

modifié. Ce phénomène est problématique car il diminue la qualité des résultats de la 

STB. Ce phénomène peut être atténué en fermant davantage l'ouverture des caméras qui 

reçoivent moins de lumière, mais cela augmente la taille de l'image des particules, ce qui 

peut également détériorer les résultats STB. La perspective offre quelques 

propositions/solutions à ce problème. 

 

Sur la base de la qualité des images ainsi que des résultats STB de la deuxième 

configuration proposée comme solution de mesure optique dans le chapitre III, il a été 

décidé d'utiliser cette solution dans la campagne GVK. Pendant les mesures, nous avons 

observé des effets d'astigmatisme sur les 4 caméras, mais plus particulièrement sur les 

caméras aux angles de ±22,5°. Ceci pourrait être dû à des contraintes mécaniques 

appliquées sur les vitres d'accès de GVK, endommageant ainsi ses propriétés optiques. 

Pour cette raison, nous nous sommes retrouvés avec une solution "non désirée" consistant 

à augmenter le nombre de diaphragmes des caméras afin d'obtenir un meilleur compromis 

sur la taille des images de particules dans le volume complet. Cette modification 

augmente considérablement la taille des images de particules, ce qui rend plus difficile 

l'identification et le suivi des particules par STB, comme le montre le chapitre IV. 

 

Malgré tous ces obstacles, une grande base de données STB dans GVK pour étudier sa 

turbulence a été générée au cours de ce doctorat. Pour les quatre fréquences de turbines 

étudiées (0.004, 0.01, 0.025 et 0.1 Hz) et les deux configurations contra et anti de GVK, 

40 runs ont été enregistrés pour chacun de ces 8 cas avec une résolution spatiale STB 

d'environ 0.6 𝑚𝑚. Pour chaque cas, un total d'environ 30 échelles de temps intégrales est 

disponible pour la configuration 0.004Hz et environ 50 à 60 pour les autres. 

 

Résumé des résultats de post traitement :  

 

Les qualités des tracks ont été exploitées pour les données expérimentales et synthétiques. 

Nous commençons par une comparaison entre les résultats du STB pour la 1ère 

configuration et la 2ème configuration testée sur un réservoir d'eau similaire de GVK 

(SWT). Ensuite, nous avons testé l'algorithme STB sur des données synthétiques pour 

comprendre l'effet des différents paramètres ainsi que pour essayer de pousser la méthode 

à ses limites. Enfin, nous avons mené l'expérience GVK en nous basant sur les 

conclusions obtenues sur les tests SWT et synthétiques. 

 

Tout d'abord, les particules achetées pour la deuxième configuration, ainsi que le 

changement de configuration des caméras, ont eu un impact massif sur la quantité et la 

qualité des tracks STB. Pour une concentration donnée de particules par pixel de 0,05ppp, 

nous avons pu suivre 80 000 particules de plus que lors de la première expérience réalisée 

sur SWT. De plus, la qualité globale des tracks et le niveau de bruit étaient bien meilleurs, 

même si la comparaison de différents essais peut être trompeuse dans le sens où les 

caractéristiques de l'écoulement peuvent affecter les résultats du STB et où la 

reproductibilité de l'expérience était faible. Pour cette raison, nous avons décidé d'étudier 

en profondeur l'effet de différents paramètres "expérimentaux" ainsi que les paramètres 

de traitement de la STB au moyen d'images synthétiques de PIV créées en utilisant des 



 

traceurs lagrangiens intégrés à partir d'un DNS. Cette expérience synthétique simule en 

grande partie ce que nous avions testé auparavant sur SWT. Les résultats de la STB ont 

été comparés à la référence DNS avec une algorithme innovant basée non seulement sur 

les particules mais aussi sur les informations des tracks. Ces tests ont montré que : 

 

1. La taille des particules est le facteur le plus important à régler autour de 2,4 pixels. 

2. La différence d'intensité entre les images des caméras pose un problème au 

système de suivi et réduit considérablement la longueur des tracks. Cette 

différence d'intensité entre les caméras doit être aussi faible que possible. 

3. Le STB a une très forte limitation de la densité des particules de l'image pour une 

taille moyenne donnée de l'image des particules. Par exemple, il est montré que 

0.05ppp semblait un peu trop pour la valeur de la taille des particules que nous 

avions d'environ 3.8 pixels en moyenne. 

 

De plus, ces tests ont montré que, même pour de très bonnes cartes « Optical Transfer 

Functions - OTF » et de disparité, les tracks sont fragmentées, la longueur des tracks est 

parfois surestimée, et les 15 à 20 premiers pas de temps présentent des valeurs d'erreur 

plus élevées que le reste des pas de temps. Ces résultats suggèrent que le premier morceau 

d'une track devrait être éliminé du post-traitement si l'on veut réduire le bruit dans les 

données. 

 

Toutes les informations collectées ont été appliquées à l'expérience GVK, les résultats 

STB ont montré une légère diminution de la qualité par rapport à nos tests sur SWT en 

raison des problèmes expérimentaux rencontrés que nous avons décrits précédemment. 

Notamment l'augmentation de la taille des particules pour limiter le problème 

d'astigmatisme ainsi que l'augmentation du rapport d'intensité entre les images des 

différentes caméras. Nous avons également montré que l'utilisation d'un filtre médian est 

utile pour supprimer les tracks fantômes, mais qu'il affecte drastiquement la longueur des 

tracks même. Ce paramètre doit être utilisé avec précaution et avec des tests prolongés 

avant de décider du meilleur ensemble de paramètres pour chaque exécution. 

 

Enfin, nous avons fait une comparaison entre la version Trackfit de Lavision et la version 

Trackfit créée au sein de laboratoire LMFL. Les différents paramètres du logiciel 

pouvaient être contrôlés par l'utilisateur pour maximiser la qualité des traces ainsi que le 

spectre spatial des vitesses contrairement à la boîte noire Trackfit de Lavision. Pour cette 

raison, Trackfit de Cheminet et al 2021 conduit à de meilleurs résultats en termes de 

résolutions temporelles et spatiales et il est essentiel d'aller plus loin dans l'analyse de la 

turbulence car nous sommes capables de contrôler les propriétés du filtre. 
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I.1 Why turbulence flows are interesting to study? 

Naturally, flows can be in two different states: laminar and turbulent. Laminar flow is 

when fluid particles move in the same direction. This is the case of very viscous fluids 

like oil or flows in microscopic pipes. On the other hand, turbulence is chaotic and 

undergoes irregular fluctuations. Turbulent flows can be found in flowing rivers, the 

atmospheric and oceanic flows, pipelines transportation, flow around vehicles, and many 

other practical engineering applications. They are also essential for the formation of rain 

drops, so a one might say it is vital for all life forms on earth. 

 

Despite the fact that turbulence occurs regularly in nature and in a variety of scientific 

fields, we still don't have a complete understanding of the associated physics. This does 

not mean that nothing has been done in the last four decades. On the contrary, our 

understanding of turbulence phenomenology has improved dramatically. New 

experimental techniques have been developed that allow us to measure aspects of 

turbulence that were previously thought to be impossible to observe. New experimental 

facilities were built, allowing us to better reproduce turbulence on realistic large-scale 

problems. 

 

Turbulent flows have multiple characteristic: The first characteristic is that it is 

unpredictable, it is chaotic and therefore very sensitive to the initial conditions. It is very 

difficult to predict the exact state of turbulent flows over a long time, but one can expect 

to predict its statistics though. Flows can be modeled by the famous Navier-Stokes 

equations that describe most of the fluid flows, but they are notoriously difficult to solve. 

Actually, there is a 1M$ award for the one who is able to solve these equations. The 

second characteristic of turbulent flow is that it is very dissipative compared to laminar 

flows. It takes in energy at the largest scales from big eddies, then this energy is 

transferred to the smallest scales where it is dissipated as heat. 

I.2 Turbulence basic information  

An important physical equation of any flow is the Navier Stokes equations named after 

French physicist Claude-Louis Navier and English physicist George Gabriel Stokes. The 

Navier–Stokes equations mathematically express conservation of momentum and 

conservation of mass for Newtonian fluids. For low Mach numbers, the incompressible 

Navier-Stokes equations are:  

 

{
𝜕𝑡𝒖 + (𝒖. 𝛻)𝒖 = −

1

𝜌
𝜵𝑝 + 𝜈𝛥𝒖

𝛻. 𝒖 = 0

 (I-1) 

 

where 𝜌 is the constant density of the fluid, 𝑝 is the pressure and 𝒖 is the velocity vector, 

representing the three components of the velocity field and  𝜈 is the kinematic viscosity 

(𝑚2/𝑠). A Poisson equation for the pressure can be obtained by taking the divergence of 

the momentum equation and using the continuity equation: 

 

𝛥𝑝 = −𝜌 𝑑𝑖𝑣((𝒖.𝜵)𝒖) (I-2) 

 



 

Solving the Poisson’s equation leads to choosing a numerical method to invert a 

Laplacian. As the momentum and Poisson’s equation cannot be solved implicitly, an 

iterative method is usually used to solve alternatively each of the two equations up to 

convergence. 

I.2.1 Different regimes of a fluid flow 

Osborne Reynolds studied fluid flow regimes in 1883 (Reynolds, 1883). He observed that 

the inertial effects, or entrainment by the fluid around an object, are dominant over the 

dissipative viscous effects, and that the fluid can at least absorb the fluctuations and 

instabilities that may appear in the velocity field. He created a dimensionless number, 

which bears his name today, and used it to describe different regimes of a flow. 

Mathematically speaking, the NS equations were rewrote using dimensionless (noted *) 

variables. The dimensionless NS equations becomes:  

 

𝜕𝑡∗  𝒖∗ + (𝒖∗. 𝛻∗)𝒖∗ = −𝜵∗𝑝∗ +
𝜈

𝐿𝑈
𝛥∗𝒖∗ (I-3) 

 

Where 𝐿 and 𝑈 are respectively some characteristic length and velocity of the problem. 

In this form, the equation displays a dimensionless number used to predict the behavior 

of a fluid in a system. This number is the so-called Reynolds number:  

 

𝑅𝑒 =
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠
=

𝐿𝑈

𝜈
 (I-4) 

 

If the Reynolds is low, the flow is “Laminar”. By increasing the forcing, the inertial 

forces will become more and more important, instabilities will appear, until the flow 

becomes completely chaotic leading to the name “turbulence”, originating from the Latin 

“turba” meaning disorder. Such flow is commonly seen in ocean currents, the flow in 

boat wakes and around aircraft-wing tips. 

I.2.2 The Richardson’s cascade 

Richardson predicted qualitatively that turbulence is actually a cascade of energy transfer 

from large structures to smaller ones (Richardson and Lynch, 1922) until the energy can 

be dissipated by viscosity. He described his observations in his famous poem: 

 

Big whorls have little whorls 
that feed on their velocity, and little whorls 
have smaller whorls and so on to viscosity - in the molecular sense 

 

In other words, there is a hierarchy of different vortices with different scales that extend 

from large to small scales. 

 

The nonlinear term of Navier-Stokes equations conserves the kinetic energy, and the 

viscous term on the right hand side of equation (I-1) is responsible to dissipate it into heat. 
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Figure I.1 depicts this hierarchy, in which energy from the large-scale flow is injected at 

a rate of  𝜖 into eddies at the integral scale 𝐿. These large eddies break up into smaller 

eddies, which break up even more until the turbulent energy is dissipated as heat by 

molecular viscosity. Statistics are flow dependent above the integral scale. However, 

statistics are supposed to be universal in the inertial and dissipation ranges, regardless of 

how turbulence is generated. 

 

 

Figure I.1 The Richardson cascade (Extracted from (George, 2013)) 

 

I.2.3 Kolmogorov scaling 

In 1941, Kolmogorov, 1941 found quantitative expressions for the intensity of fluid 

motions at scale ℓ and for the dissipation scale ℓ𝑑. Furthermore, at scales much smaller 

than ℓ𝐼 (the injection scale) the flow can be considered homogeneous. Turbulence is thus 

characterized by three parameters: the injection scale ℓ𝐼, the injection velocity 𝑢𝐼 and the 

viscosity of the fluid 𝜈. These parameters have dimensions [ℓ𝐼] = 𝐿, [𝑢𝐼] = 𝐿𝑇−1 and 

[𝜈] = 𝐿𝑇−2.  
The first hypothesis of Kolmogorov is that dissipation is independent of the viscosity, 

thus the only combination of 𝑢𝐼 and ℓ𝐼 with a correct dimension is 𝑢𝐼
3/ℓ𝐼. This gives the 

following expression of the dissipation rate:  

 

𝜖~
𝑢𝐼

3

ℓ𝐼 
 (I-5) 

 

The second and third hypothesis are that 𝛿𝑢(ℓ) (𝛿𝑢(ℓ) = 𝑢(𝑥 + ℓ) − 𝑢(𝑥)) does not 

depend on 𝜈 for ℓ𝑑 < ℓ < ℓ𝐼, and 𝛿𝑢(ℓ)  is function only of the dissipation rate and ℓ  



 

 

𝛿𝑢(ℓ) ~(𝜖ℓ)1 3⁄  (I-6) 

 

Using equations (I-5), (I-6) can be written as: 

 

𝛿𝑢(ℓ) ~𝑢𝐼 (
ℓ

ℓ𝐼
)
1/3

 (I-7) 

 

Then we can compute the Reynolds number associated with motions at scale ℓ as: 

 

𝑅𝑒ℓ ~
𝛿𝑢(ℓ)ℓ

𝜈
=

𝜖1 3⁄ ℓ4 3⁄

𝜈
 (I-8) 

 

Viscous dissipation will take place at scales ℓ𝑑 such that 𝑅𝑒ℓ𝑑
≈ 1. This scale is what will 

be called this point forward the Kolmogorov scale 𝜂: 

 

𝜂 ~ (
𝜈3

𝜖
)

1/4

,     𝑡𝜂 = (
𝜈

𝜖
)
1/2 

,       𝑢𝜂 = (𝜈𝜖)1/4 (I-9) 

 

where 𝑡𝜂 and 𝑢𝜂 are respectively the time and velocities associated to Kolmogorov scale. 

A last hypothesis that we wish to recall for the understanding of the cascade in the sense 

of Kolmogorov, is when the Reynolds is sufficiently large, there is an intermediate range 

of scales between the large scales and the dissipative scales for which the dynamics is 

driven only by the rate of energy injection/dissipation 𝜖 and independent of the viscous 

effects driven by 𝜈 . This range is called the inertial range (George, 2013) 

 

Finally, let us note that the link between the injection rate of kinetic energy at large scales 

and the rate of dissipation by small scales implies the possibility of defining the 

Kolmogorov scales from large scales: 

 

𝜂 ~
ℓ𝐼

𝑅𝑒𝐿
3/4

,     𝑡𝜂 =
ℓ𝐼

𝑢𝐼 . 𝑅𝑒𝐿
1/2

,       𝑢𝜂 =
𝑢𝐼

𝑅𝑒𝐿
1/4

 (I-10) 

 

Where ℓ𝐼 , ℓ𝐼/𝑢𝐼 and 𝑢𝐼  are related to large scales and the 𝑅𝑒𝐿 represents here the 

Reynold’s number associated to the biggest turbulent structures of the flow. 

 

I.3 Turbulence and singularities 

Starting from Kolmogorov theory we will follow the path opened by George Batchelor 

to discover possible pitfalls of Kolmogorov, 1941 to see how they are linked to 

intermittency.  This will lead us to a modern description of small scales structures. 
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Intermittency in a nutshell is the variation in time and space of the dissipation rate 𝜖. 

When it is the cascade rate that fluctuates at inertial scales, one talks about “inertial 

intermittency”. Connection between possible singularities of NSE and local interscale 

energy transfer and dissipation are explained to understand why dissipation contributes 

to intermittency.  

I.3.1 Kolmogorov theory in a nutshell (1941) 

Kolmogorov theory is based on symmetries of NS equations. Then, using the hypothesis 

of homogeneity, one can derive the Karman-Howarth equations as follow: 

 

1

2
𝜕𝑡〈(𝛿𝑢ℓ)

2〉 + ϵ = −
1

4
∇ℓ〈(𝛿𝑢ℓ)

3〉 + 𝜈Δℓ〈(𝛿𝑢ℓ)
2〉   (I-11) 

 

- 𝛿u(ℓ) = 𝑢(𝑥 + ℓ) − 𝑢(𝑥) is the increment of velocity at scale ℓ. 

- 𝜖 is the quantity of energy injected in the system. 

- νΔℓ〈(δuℓ)
2〉 is the diffusion due to viscosity. 

- 
1

4
∇ℓ〈(𝛿𝑢ℓ)

3〉 is energy transfer (flux) that describe how energy flow from large 

eddies to small eddies. 

 

This equation was derived by Karman-Howarth using only homogeneity assumption. 

Then Kolmogorov introduced the famous 4/3 law by taking the equation (I-11) and 

adding the assumption of self-similarity and stationarity. He described that it exists an 

inertial range where the viscosity effects are negligible. This leads to: 

 

4

3
𝜖ℓ ∝ 〈(𝛿𝑢ℓ)

3〉 (I-12) 

 

Self-similarity means that the divergence term is equal to 𝜖 in the inertial range so the 

second order moment should be scaled as the third order moment. Using a self-similarity 

hypothesis and the equation (I-12) one obtains: 

 

〈(𝛿𝑢ℓ)
2〉 ∝ (ϵℓ)2/3   (I-13) 

 

Then by simple Fourier transform one can obtain the famous Kolmogorov spectrum: 

 

𝐸(𝑘) = 𝐶𝜖2/3𝑘−5/3 

 
(I-14) 

where 𝐶 is the Kolmogorov constant. 

 

When Batchelor and Townsend, 1949 learned about the theory of K41, they were 

impressed by it. They investigated the limitations of this theory and its behavior at small 

scales in the Kolmogorov picture (in other words they investigated how the spectrum is 

terminated at high frequencies). In their paper, they concluded that “there appear to be 

isolated regions in which the large wave numbers, i.e. small scales, are activated 

separated by regions of comparative quiescence. This spatial inhomogeneity becomes 



 

more marked with increase in the order of velocity derivative, i.e at small scales.”. This 

inhomogeneity they talked about is what today we call intermittency. 

I.3.2 Oppositions to Kolmogorov theory - Batchelor & Landau 

(1953)  

Early experimental evidence aided the K41’s theory initial success (Batchelor, 1953). 

However, as previously stated, the experiments later revealed some flaws in the theory, 

particularly in relation to small-scale intermittency. 

 

Batchelor objection:  

As he was looking at higher and higher frequency of a turbulent flow using hot wire 

measurements, he saw that velocity is very intermittent meaning that it cannot be self-

similar. 

 

Landeau objection: 

 

Landeau observed that the energy dissipation is highly inhomogeneous, so turbulence 

cannot be self-similar. These objections were confirmed by looking at the velocity 

structure function later in 1990s. 

 

According to Kolmogorov, if the structure function is self-similar then it should scale as:  

 

𝑆𝑝(ℓ) = (𝛿𝑢)𝑃 > ~ℓ𝑃/3 (I-15) 

 

But recent observations identify a potential problem in this hypothesis by recording 

deviation from self-similarity. In the Figure I.2, we present structure functions at small 

scales. Indeed, they follow a power law, but the exponent of the plots of the left figure 

deviates from the 𝑃/3 law (see right figure). This was also observed in DNS and it 

indicates that the K41 is not always valid.  

 

 
 

Figure I.2 (Left) Structure functions at different scales. (Right) The corresponding 

exponent of the plots (Figures extracted from (Saw et al., 2018)). 
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I.3.3 Kolmogorov refinement of previous hypothesis (1962) 

At this point, it is established that the Kolmogorov theory fails at small scales. For this 

reason, Kolmogorov himself corrected his model (Kolmogorov, 1962a) by assuming that 

dissipation is not homogeneous as it was stated in equation (I-11). Instead, the dissipation 

is local to each scale 𝜖ℓ. In that way the velocity structure functions become: 

 

𝑆𝑝(ℓ)~〈- 𝜖 ℓ
𝑝/3〉 ℓ𝑝/3  

 
(I-16) 

 

And he introduced a correction term that depends on the statistical properties of 𝜖:  
 

𝑆𝑝(ℓ)~ℓ𝜏(𝑝/3)+𝑝/3 (I-17) 

 

Additionally, Kolmogorov made a second assumption that the local dissipation has a log 

normal distribution: 

 

ln(𝜖ℓ)̅̅ ̅̅ ̅̅ ̅̅ = ln 𝜖 + 𝜇𝑘62 ln(ln(ℓ/𝐿) + 𝐴 (I-18) 

 

where 𝜇𝐾62 is a constant. This was a very strong assumption made by Kolmogorov, but 

his prediction was very good and validated by DNS. But still, the main failure of 

Kolmogorov model was that the local dissipation was not derived directly from Navier 

Stokes equations (NSE). 

I.3.4 Parisi and Frisch (1995) 

The first attempt to derive the local dissipation from NSE was in 1995 by Parisi and 

Frisch, 1995 where they indirectly derive the local dissipation from NSE using the 

multifractal model. They observed that there is a fundamental symmetry in NSE 

((𝑡, 𝒙, 𝒖) 𝑡𝑜 (𝜆1−ℎ 𝑡, 𝜆𝒙, 𝜆ℎ 𝒖)), for arbitrary 𝜆 and Holder exponent ℎ. They introduced 

the function 𝐶(ℎ) which is a codimension of the places where the velocity increment 

scales like ℓℎ. Then they postulate that the exponent of the velocity structure function 

should be as follow: 

 

𝜉(𝑛) = 𝑚𝑖𝑛ℎ(𝑛ℎ + 𝐶(ℎ)) (I-19) 

 

By this method, all the properties of the intermittency should be encoded in the function 

𝐶(ℎ) the multifractal spectrum. An example of this spectrum is shown in the Figure I.3 

(right) where the minimum is close to a value of ℎ of 1/3. 

 



 

  

Figure I.3 (Left) Scaling exponents 𝜁(𝑝) of the wavelet structure functions as a function 

of the order. (Right) Multifractal spectrum C(h) for Von Karman swirling flow. The 

spectrum is obtained from the scaling exponents 𝜁(𝑝) shown in the figure to the left. 

The dotted line is a parabolic fit 𝐶(ℎ) =
(ℎ − 𝑎)2

2𝑏
 (Figures extracted from (Geneste et 

al., 2019)). 

I.3.5 Modern view of this problem 

The work of (Duchon and Robert, 1999) generalizes the Karman-Howarth equation to 

anisotropic, nonhomogeneous flows and they proposed a local energy budget considering 

a possible non-regularity of the velocity field:  

 

1

2
𝜕𝑡𝒖

2 + div (𝑢 (
1

2
𝒖2 +  𝑝)) = 𝐷(𝒖) − 𝜈(∇𝒖)2 

 

(I-20) 

 

Compared to the classical NSE, there is a new term called the Duchon-Robert term 𝐷(𝒖). 

This term comes from the possibility of having singularities in the flow. In practical, they 

introduced a smoothing of the velocity field at scale ℓ and they obtained the smoothed 

NSE with the Duchon Robert term 𝐷(𝒖): 
 

𝐷(𝒖) = lim
ℓ→0

1

4
∫ ∇φℓ (𝑟)
𝑟≤ℓ

 𝛿𝒖𝑟|𝛿𝒖𝑟|
2𝑑𝑟3 (I-21) 

 

where φℓ is a smoothing function convoluted with the velocity field 𝒖 to obtain the 

smoothed velocity field. This term provides a new criterion to look for possible 

singularities. 

 

The work by Duchon and Robert supports the idea that a singularity would generate 

additional dissipation due to the lack of regularity of the velocity field. This technique 

allows a spatial localization of the singularity. Kuzzay 2015b showed that such technique 

allows detection of possible singularities using Stereoscopic PIV velocity measurements. 
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I.4 EXPLOIT project 

In the cascade picture of turbulence, energy dissipation is due to viscous effects that 

become significant at scales which are small enough. However, very little is known about 

the dynamics and statistics of the corresponding dissipative structures. Further, the 

connection between structures and turbulent scales dynamic has largely focused on 

rotation-dominated flows and relied upon data from numerical simulations only. This is 

mainly because experimental studies of the dissipation have long faced technical barriers 

since direct estimate of the viscous dissipation 𝜖 = ν(∂j𝑢𝑖
′)2̅̅ ̅̅ ̅̅ ̅̅ ̅  requires resolutions down 

to the Kolmogorov scale. Local probes such as hot wires can achieve this resolution but 

require a complex array arrangement to allow for estimation of velocity gradient. Particle 

Image Velocimetry (PIV) allows for a simple computation of velocity gradients, but the 

Kolmogorov resolution is only achieved for Reynolds of the order of 104 (Delafosse et 

al., 2011) and not all the terms can be obtained for planar PIV measurements (Foucaut et 

al., 2021). Additionally, in the past, most detection of the smallest turbulent structures 

have been done using techniques based either on the vorticity monitoring in numerical 

simulations, or on statistical analysis of 1D velocity signal. The vorticity monitoring 

requires an access to the 3 components of the velocity at the dissipative scale. Due to the 

inherent limitations, this has been achieved in the fully turbulent regime mainly in 

numerical simulations with special geometries, such as fully periodic flow with high 

degree of symmetry. Therefore, the experiment requires using 3D-PIV with precision 

down to dissipative scale and even below the Kolmogorov scale if possible. 

 

The originality of the EXPLOIT project is to make a high-resolution PIV measurement 

on a big Von Karman flow experiment. This big experiment allows us to reach high 

Reynolds number without decreasing too much the Kolmogorov scale. The data will be 

used to detect the dissipation structures down to the Kolmogorov scale and beyond and 

to study the dissipation, not only from the point of view of the viscous contribution, but 

also to locate quasi-singularities and estimate their contribution to the dissipation. 

I.4.1 Von Karman flow 

The flow between two counter-rotating impellers enclosed by a cylinder is often used for 

studying fundamental aspects of turbulence specially to study the turbulence 

characteristics on different scales. This flow is generated in the so called Von Kármán 

tank (Kármán, 1921). In the central region of this tank, quasi-isotropic, homogeneous 

turbulence with relatively large Reynolds is created. Such conditions are similar to 

homogeneous isotropic turbulence, which the configuration of many DNS studies (Faller 

et al., 2021), and thus are suitable for fundamental turbulence research. The impellers can 

rotate in a variety of modes, linked to different forcing mechanisms. This flow allows us 

to achieve high 𝑅𝑒𝜆
1. The Von Karman flow encounters successive cascades of 

bifurcations towards a turbulent flow (Ravelet, 2005). As seen on the Figure I.4, 

bifurcation occurs when the average velocity field changes to a state with just one rotating 

cell imposing its direction. The flow is said to split (bifurcated) when symmetry is broken. 

 

 
1 The Taylor microscale is the intermediate length scale at which fluid viscosity significantly affects the 

dynamics of turbulent eddies in the flow. 𝑅𝑒𝜆 = 𝑢′̅𝜆/𝜈. 𝜆 is the Taylor microscale. 



 

  

Figure I.4 Schematic of the average flow in von Karman experiment. (a) “Anti” 

direction, symmetrical flow. (b) “Anti” direction, bifurcated flow (bottom impeller 

imposing its direction). The blue arrows correspond to the toroidal components and 

the red arrows to the poloidal components (Figure extracted from (Debue, 2019)). 

We distinguish between the positive direction of rotation, called “Contra”, when the 

convex side of the impellers pushes the fluid, and the negative direction, called “Anti”, 

when it is the concave side of the impellers which pushes the fluid. The Figure I.5 depicts 

the impeller geometry of the experiment we are doing in this thesis. 

  

Figure I.5 The geometry of an impeller that show the two cases of forcing depending 

on the rotation direction. 

I.4.2 Advantages of using Von Kármán flow 

First, the Von Karman flow have been widely studied, both experimentally and 

numerically, therefore we have a good knowledge of its physical properties. On the other 

hand, we seek to measure a small region at the center of the Von Karman experiment. 

This will allow us to consider that the flow is almost isotropic and homogeneous. In 
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decaying homogeneous isotropic turbulence, the variables 𝐾 (kinetic energy) and 𝜖 are 

functions of time alone and are quite simply related to each other (𝑑𝐾/𝑑𝑡 = − 𝜖). Kuzzay 

et al., 2015a showed that most of the dissipation happens at the center of the cylinder. 

 

Finally, this setup is well suited for multi-scale turbulence analysis due to the simplicity 

with which the Reynolds number can be varied by manipulating either the impeller 

rotation frequency or the fluid viscosity. 

I.4.3 Small experiment VK2 (previous work) 

The study of Von Karman flows in Saclay started with a smaller experiment. The VK2 

set-up, displayed on Figure I.6, is constituted of a vertical Plexiglas cylinder. Its radius is 

10 cm, and its height is 47 cm, its thickness is 1 cm, and it can be filled with glycerol, 

water, or a mixing of both. This cylindrical tank is placed inside another outer tank of 1 

cm thickness, filled with the same fluid as the cylindrical tank. The addition of this outer 

tank aims at decreasing aberrations which occur at the interface air-Plexiglass when using 

optical measurement systems. This setup was used during the thesis of Debue, 2019. 

 

  

Figure I.6 (Left) Photograph of the VK2 setup. (Right) Perspective view of the 

considered von Karman flow 

In his thesis work, Tomographic-PIV was used to measure the 3D components of the flow 

field at the center of the Von Karman flow.  

 

In the Table I-1 we present the Reynolds achieved; these values shown here are calculated 

based on the cylinder radius 𝑅, the impeller revolution per second 𝐹 and the fluid 

kinematic viscosity 𝜈 as follows: 

 

𝑅𝑒 =
𝜔𝑅2

𝜈
=

2𝜋𝑅2𝐹

𝜈
 

 

(I-22) 

 

Also, we included the associated Kolmogorov length scale and the ratio of this scale to 

the Tomo-PIV resolution (Δ𝑥
𝑡𝑜𝑚𝑜). The resolution achieved using TomoPIV was still not 

enough to resolve one Kolmogorov scale.  



 

Table I-1:Kolmogorov scale in the von Kármán flow for R=10 cm (VK2 set-up) at 

different Reynolds numbers and the associated spatial resolution in the Kolmogorov 

scale (𝛥𝑥
𝑡𝑜𝑚𝑜 =2mm, i.e. size of interrogation volume for an image density of 0.05 ppp). 

The Taylor-scale Reynolds number is useful to compare the level of turbulence in a von 

Kármán flow and in a direct numerical simulation (DNS) of homogeneous isotropic 

turbulence. 

𝑅𝑒 𝑅𝑒𝜆 𝜂 
𝜂

Δ𝑥
𝑡𝑜𝑚𝑜 

6.3 × 103 110 0.39 𝑚𝑚 0.19 

3.1 × 104 240 0.11 𝑚𝑚 0.05 

6.3 × 104 340 0.07 𝑚𝑚 0.03 

3.1 × 105 780 0.021 𝑚𝑚 0.01 

1.6 × 106 1700 0.0064 𝑚𝑚 0.003 

I.4.4 Bigger experiment – GVK  

The aim of the EXPLOIT project is to build a bigger experiment for multiple reasons. As 

mentioned before in a previous work of Debue, 2019 on the VK2 setup (Figure I.6), he 

showed that there is very intense events of inter-scale transfer even in the beginning of 

the dissipative range (Dubrulle, 2019). This suggests that the Kolmogorov scale is not the 

smallest scale in a turbulent flow. In order to confirm these results, measurements in the 

far dissipative range should be done. This could be achieved by improving the spatial 

resolution of PIV system. However, due to PIV limitations, spatial resolution cannot be 

increased linearly by increasing the number of particles. This leads us the main goal of 

designing the “Grand von Karman” set up (GVK) in order to increase the size of the 

Kolmogorov scales for the equivalent Reynolds numbers. This way the GVK will mainly 

act as a magnifying lens to look more in depth to rare dissipative events.  

In other words, the resolution of the optical system should be smaller than the 

Kolmogorov scale. For the VK2, the Tomo-PIV resolution 𝛥𝑥
𝑡𝑜𝑚𝑜 was about 2𝑚𝑚 almost 

5 times the estimated Kolmogorov scale for 𝑅𝑒 of 6.3 × 103 (𝜂 = 0.39 𝑚𝑚). This is 

clearly not enough to investigate what happens at the Kolmogorov scale and beyond.  

Increasing the cylinder radius by a factor of 5 compared to the VK2 set-up is enough to 

obtain a resolution smaller than the Kolmogorov scale, but one could be tempted to 

increase it even more. Nevertheless, we chose to limit to a factor 5 for practical issues. 

As the spatial resolution of Tomo-PIV was shown to be limited and practically difficult 

to improve, we decided to use particle tracking technique. In theory, the resolution 

defined by the mean particle spacing could be 3 times better since we don’t use cross 

correlation methods in a volume (particles are tracked individually) and cross correlation 

need between 10 to 20 particles inside the volume (Adrian, 1997). In this thesis 4D 

velocity tracks (3 velocity components as function of time measured in the volume) are 

obtained by PTV in a real turbulent flow in order to provide more insight into the possible 

singularities that might occur in the solutions to the 3D incompressible Navier-Stokes 

equations. 

 



34 I.4 EXPLOIT project 

In Table I-2, we show the difference in expected spatial resolution capabilities between 

Tomo-PIV and 4D-PTV applied to the GVK. The table show that we are able to solve 

one Kolmogorov length scale using Tomo-PIV at the lowest Reynolds. On the other hand, 

4D-PTV can solve up to 0.7𝜂 for a Reynold number of the order of 6.3 × 104. We should 

keep in mind that the resolution for both Tomo-PIV and 4D-PTV are for images with the 

same number of particles per pixels. Tomo-PIV uses typical correlation methods with 

windows that include 10 to 20 particles. On the other hand, 4D-PTV track individually 

every particle in the volume. This is the reason why the Tomo-PIV resolution is estimated 

to be 3 times less Debue, 2019 than the PTV resolution. 

Table I-2:Kolmogorov scale in the von Kármán flow for R=50 cm (GVK set-up) at 

different Reynolds numbers and the highest achieved spatial resolution for both Tomo 

PIV and PTV (𝛥𝑥
𝑡𝑜𝑚𝑜 = 2𝑚𝑚 and 𝛥𝑥

𝑃𝑇𝑉 = 0.5𝑚𝑚 for an image density of 0.05 ppp and 

for same field of view). The Taylor-scale Reynolds number is useful to compare the level 

of turbulence in a von Kármán flow and in a direct numerical simulation (DNS) of 

homogeneous isotropic turbulence. 

𝑅𝑒 𝑅𝑒𝜆 𝜂 
𝜂

Δ𝑥
𝑡𝑜𝑚𝑜 

𝜂

Δ𝑥
𝑃𝑇𝑉 

6.3 × 103 493 2 𝑚𝑚 1 4 

3.1 × 104 1200 0.59 𝑚𝑚 0.295 1.2 

6.3 × 104 1500 0.35 𝑚𝑚 0.175 0.7 

3.1 × 105 3500 0.1 𝑚𝑚 0.05 0.2 

1.6 × 106 7700 0.031 𝑚𝑚 0.0155 0.06 

 

 



 

 

  

Chapter II Optical metrology for 

turbulence measurement  
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II.1 The evolution of turbulence measurement techniques 

Leonardo da Vinci was probably the first who did a visualization of turbulent flows 

Figure II.1 (top). The fact that the patterns were stable and repeatable struck Leonardo as 

evidence that the flow was not chaotic but subject to physical laws, and he attempted to 

frame such principles in notes. The ability to store pictures or even movies of flows using 

photographic recording techniques was a major breakthrough in qualitative flow 

visualization in the late 19th and early 20th centuries. Figure II.1 (bottom) shows Prandtl 

in front of his water channel in 1904, manually controlling the flow with a paddle wheel. 

The box camera above the channel was most likely used to capture single frame time-

lapse photographs. Prandtl discovered a number of fundamental characteristics of 

unsteady flow phenomena. However, only photographic recording of the flow field 

visible through the tracers was possible at the time. There was no way to get quantitative 

data on such unsteady flow phenomena.  

 

 
 

Figure II.1 (Top) Sketch of the turbulent water motion by Leonardo da Vinci (Codex 

Atlanticus), showing the unsteady eddy motions. (Bottom) Ludwig Prandtl with his fluid 

test channel, 1904. 
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Today, a century after Prandtl's experiments, it's simpler to extract quantitative 

information about the instantaneous flow velocity field from the same types of images 

that Prandtl had access to in 1904. 

 

We begin with Taylor, 1935 analysis in his book “Statistical Theory of Turbulence”. 

Taylor measured the distribution of energy in a pipe over its cross section with a series 

of hot-wires. Direct estimation of the viscous dissipation, 𝜖 = ν(∂j𝑢𝑖
′)2̅̅ ̅̅ ̅̅ ̅̅ ̅ , requires 

resolutions down to the Kolmogorov scale. Local probes, such as hot-wires, can attain 

this resolution but require a complex array configuration to compute velocity gradients. 

Indirect measurement techniques such as hot-wire have the advantage of being simple to 

use and relatively low cost. They have the problem of disrupting the flow or fluid 

characteristics, which can lead to measurement mistakes (Raffel et al., 2018). Optical 

measurement techniques have been developed to overcome these limitations by allowing 

sensors to be placed outside of the flow. These techniques were previously restricted to 

point-wise velocity measurements, such as Laser Doppler Velocimetry (LDV), the first 

optical measuring technique. It requires tracer particles that faithfully follow the flow 

motion. A first laser Doppler device was provided by (Yeh and Cummins, 1964). Twenty 

years later, the term "Particle Image Velocimetry" (PIV) had its first appearance in the 

literature (Pickering and Halliwell, 1984). 

 

PIV piqued the interest of many researchers since it provided a novel and promising 

method of examining the structure of turbulent flows. This purpose influenced the method 

development decisions significantly. Turbulence is a natural phenomenon that happens 

on a wide range of physical scales, from the largest scales of the flow down to the 

Kolmogorov scale. As a result, an effective measurement technique must be capable of 

measuring throughout a wide dynamic range of length and velocity scales. With the 

development of PIV, it became possible to measure two components of velocity to 

confirm Kolmogorov's −5/3 law prediction (Kolmogorov, 1962b, Ullum et al., 1998). 

However, the flows that exists in nature are three dimensional. PIV has been quickly 

extended to the measurement of 3D components of the velocity because of its capability 

to capture the instantaneous flow organization, also known as coherent structures, 

observed in turbulent flows. Current existing techniques of three-dimensional 

velocimetry, using illumination by laser, can be divided into three main families 

according to (Raffel et al., 2018): 

• (0D-1,2 or 3C): the point wise velocity measurement techniques. 

• (2D): Two dimensional methods: 

o (2D-2C): the two components velocity measurement using one camera in a 

plan. 

o (2D-3C): the two-dimensional methods which allows the measurement of the 

three components of the velocity in a plane. It consists mainly of the 

stereoscopic PIV method. Stereoscopic-PIV was first introduced by (Arroyo 

and Greated, 1991). It needs two cameras to extract the 3rd component of the 

velocity. 

• (3D-3C): the three-dimensional techniques that make it possible to find the three 

components of the velocity in a volume. These techniques unlike the other two 

techniques, allow the measurement of the gradient tensor of instantaneous velocity 

without using additional hypothesis. It consists of scanning PIV (David et al., 2012) 

and tomographic measurements introduced by (Elsinga et al., 2006). This family also 

includes 3D-PTV techniques (Maas, 1992).  



 

Introduced by (Elsinga et al., 2006), tomographic Particle Image Velocimetry (Tomo-

PIV) relies on a tomographic reconstruction of the particle distribution and a subsequent 

three-dimensional cross-correlation. On the other hand, 3D PTV-methods (Maas, 1992) 

triangulate particle positions and try to find matching occurrences in successive time steps 

in order to form Lagrangian track (the method is also called 4D-PTV as it provides time 

information). The advantages of Tomo-PIV are the evaluation on an Eulerian grid that 

allows easy computation for flow components and the possibility to use high seeding 

densities concentration. However, the main problem associated to this method is the high 

percentage of ghost particles and its high computational cost due to cross correlations and 

volume reconstruction. 

Unlike Tomo-PIV which involves spatial averaging over the interrogation window, 4D 

PTV can inherently reach higher spatial resolution as it yields a vector for every tracked 

particle position. It also gives the Lagrangian representation of the flow field. However, 

as the number of particles increases, identification of overlapping particles and its 

corresponding 3D reconstruction becomes challenging, which leads to a tradeoff between 

spatial resolution and reconstruction accuracy. 

II.1.1 Particles Tracking Velocimetry 

In the early age of PIV, researchers were working on statistical methods based on auto 

correlation of double exposure images (Adrian, 1984) but by 1985, the computers 

performance were limited (128 KB of RAM and a 30 MB hard drive as standard). Two-

dimensional Fourier transforms and two-dimensional correlation analysis were 

practically impossible to perform on such machines. As a result, non-statistical methods 

(using optical Fourier transform) such as tracking particles individually sparked a lot of 

interest. 

 

PTV is one of the oldest techniques of flow measurement. The acquisition of quantitative 

information of high density at reasonable effort has only become possible with use of 

computers. Since the 70s, the methods and applications reported in the literature show a 

transition from systems with completely manual data processing (i.e., a human operator 

measures coordinates and defines correspondences) towards completely automated 

systems. Chiu and Rib, 1956 reported an early application based on stereoscopic imaging. 

Their method requires manual measurements in the images, which took 20 hours to track 

70 particles. In the 60’s, Boyle and Smith, 1970 invented the charge-coupled device, 

which is now known as CCD cameras. Their invention was a major breakthrough in 

imaging systems, and they were awarded the Nobel Prize for it. In 1989 Kobayashi et al., 

1989 used two CCD cameras to measure a flow between rotating disks. An average of 51 

simultaneous velocity vectors were obtained. Further, a Japanese group at Tokyo 

University has developed a completely automatic 3D PTV that allows the determination 

of up to 440 simultaneous velocity vectors (Nishino et al., 1989). This was particularly 

useful for measuring complex three-dimensional turbulent flows. The 3D PTV system 

was first developed in 1987 (Malik et al., 1993). It was based on digital photogrammetry 

methods and three synchronized CCD cameras recording particle image sequences. It has 

been applied to the measurements of velocity fields in test volumes of 12 × 120 × 15 to 

200 × 200 × 40 𝑚𝑚3 seeded with about 1000 − 1500 particles in a 24 𝑚 laboratory 

channel and in a stirred aquarium. In 1993, Maas et al., 1993a used high-resolution high-

speed CCDs with up to 4096 x 4096 pixels to record up to 1000 images per second and 



40 II.2 General PIV/PTV principles 

track up to 1000 particles simultaneously. This paper demonstrated how hardware 

evolutions will have a significant impact on PTV results. 

 

However, the main disadvantage of 3D-PTV is that it is typically used with a low density 

of particles due to difficulties not only for particle tracking but also for individual-particle 

detection, which can result in a higher ghost to true particle ratio.  

 

On this account, the goal with PTV systems was to achieve applicability to higher density 

particle images, and some new ideas have been reported in the literature in this regard. 

The hybrid PIV/PTV method (Cowen et al., 1997) is an example of this, in which standard 

cross-correlation (PIV) is used prior to individual-particle tracking to estimate the local 

velocity to be measured by the PTV system. Another example is the hybrid PIV/CFD 

method (Kaga and Yamaguchi, 1997) which involves iteratively checking particle-

velocity data against theoretical fluid-flow data. In that way the trajectories can be 

validated by numerical simulations of a flow with same physical properties. The year 

1998 marked the introduction of one of the most important algorithms of PTV, the 

relaxation method. It is based on binary image cross correlation method and it was 

introduced by Japanese researchers (Ohmi and Li, 2000). The most significant advantage 

of this method is that it is based on the probability of particle matching between the first 

and second frames, which is defined for each possible pair of particles, including the 

probability of no match. The number of erroneous (ghost) particles was reduced 

according to their findings. However, the number of ghost particles does not appear to be 

negligible in some of their experiments. This is especially true when the particle 

distribution density is high and/or the flow is subjected to strong shearing motions. As a 

result, the method needs to be improved for use in more complex turbulent flows. But the 

conclusion was that this PTV technique can be applied to a much higher density of 

particle distribution than previously thought. 

 

Recent advances in reconstruction algorithms, such as Iterative Particle Reconstruction 

(IPR) (Wieneke, 2013) and “Shake the Box” (STB) (Schanz et al., 2016a), have improved 

the accuracy of 3D PTV significantly. IPR constructs a projected image using a 

triangulation-based reconstructed field, then minimizes the intensity residuals in the 

image plane by shaking the particles in world coordinate location. For seeding densities 

up to 0.05 particles per pixels, this process achieves better positional accuracy, a lower 

fraction of ghost particles, and reconstruction accuracy comparable to the intensity-based 

Multiplicative Algebraic Reconstruction Technique (MART) (Elsinga et al., 2006). This 

concept is further developed in 4D-STB, which uses temporal information for a time-

resolved measurement to predict particle location in future frames and iteratively corrects 

the predicted position with IPR. For synthetic experiments with high particle 

concentrations, such measurements have successfully resolved flow structures (up to 

0.125 𝑝𝑝𝑝  (Schanz et al. , 2016a)) . As a result of these capabilities, 3D PTV 

measurements have gained renewed attention and applicability in many experiments.  

II.2 General PIV/PTV principles 

PTV like other laser velocimetry methods, works by seeding the flow with particles that 

are illuminated by a laser and whose images are captured by cameras. The particle 

displacements and velocities can be determined by processing the acquired images. 



 

II.2.1 Typical setup for 3D PTV 

A laser and 3 cameras at least are required in a typical 3D PIV setup, as shown in Figure 

II.2. Three cameras are essential for the establishment of stereoscopic correspondences 

because of ambiguities that occur when multiple candidates are found in a search area 

using only two cameras. These ambiguities can only be solved if a third (or even a fourth) 

camera is being used. A laser beam can be shaped using optics like lenses and mirrors to 

create a laser beam with the proper thickness and dimensions for the volume in question. 

PIV lasers are usually pulsed and must be synchronized with the cameras. The laser and 

cameras are connected to a computer which, by the help of a PTU synchronizer 

(Programmable Timing Unit), controls the acquisition parameters, and the recorded 

images are transferred to this computer for analysis. The idea is to acquire images with a 

short time step 𝑑𝑡 and measure particle displacements over that time to calculate their 

velocity.  

 

Figure II.2 Typical experimental setup of PTV system to track particle trajectories.  

II.2.2 Tracer particles 

To measure the velocity of a fluid flow represented by tracer particles, sufficiently small 

particles are needed. These particles must be neutrally buoyant. Meaning that, a solid 

particle in a fluid is in equilibrium due to gravity and Archimedes principle’s upward 

buoyant force. The difference in density between the fluid and the solid particle plays a 

role in this equilibrium. If the particle density is the same as the fluid, it will not move 

when the fluid is at rest. As a result, the particle must be as dense as the probed fluid in 

order to be a reliable tracer. Furthermore, the goal of turbulence research is to investigate 

all of the structures in the turbulent cascade, all the way down to the Kolmogorov 

dissipative scale. A solid particle with a diameter of 𝑑𝑝 > ℓ cannot probe a structure of 

size ℓ. Intuitively, we can expect a large particle to completely cover a structure. Thus, 

in order to probe structures as small as 𝜂, the particles must be as small as possible and 

necessary much smaller that 𝜂. Additionally, if we want to resolve a structure of size ℓ 

the particles displacement needs to be less than ℓ/2 (Shannon’s criteria) (J M Foucaut et 

al., 2004).  
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II.2.2.1 Mechanical considerations 

The first quantity used to qualify the tracer particles is the Stokes number. It compares 

the particle response time to the characteristic time of the fluid. 

 

𝑆𝑡 =
𝜏𝑝𝑎𝑟𝑖𝑐𝑙𝑒 

𝜏𝑓𝑙𝑢𝑖𝑑
 (II-1) 

 

A Small Stokes number, 𝑆𝑡 ≪ 1, describes a particle which "reacts" faster than the fluid, 

and will be able to follow the smallest flow fluctuations. On the other hand, by solving 

the equation of motion of a settling particle submitted to its weight, buoyancy and drag 

force, the particle characteristic time appears 𝜏𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 =
𝑑𝑝2×𝜌𝑝

18𝜇
  where 𝑑𝑝 𝑎𝑛𝑑 𝜌𝑝 are 

the particle size and particle density. Thus, the Stokes number can be expressed as: 

 

𝑆𝑡 =
𝑑𝑝2𝜌𝑝

18𝜇𝜏𝑓𝑙𝑢𝑖𝑑
 (II-2) 

 

In turbulence, 𝜏𝑓𝑙𝑢𝑖𝑑 should be the time scale at the smallest resolved scale of the flow. In 

our case, it should be of the order of the Kolmogorov scale or even less.  

 

The most critical conditions are met when particle tracers are immersed in turbulent flows 

at high Reynolds number, where a wide range of turbulent scales is present. Therefore, 

attention should be made to the size of the particle since the Stoke’s number increases 

with particle size (equation (II-2). Figure II.3 shows the behavior of a particle within a 

small-scale vortex. By increasing the Stoke’s number the sensitivity of a particle to the 

fluid dynamics decreases. On the other hand, the size of the particles cannot be arbitrarily 

decreased otherwise they would not scatter enough light to be visible (see the next section 

II.2.2.2). 

 

 

Figure II.3 Image from Toschi and Bodenschatz, 2009: Trajectories of heavy particles 

with different inertia. When released within a small-scale vortex filament (matching 

the velocity of the underlying fluid), particles with different inertia respond to vorticity 

differently. Particles with large Stokes numbers are almost insensitive to the presence 

of the vortex. The red line represents a fluid tracer, whereas the green, blue, brown, 

and yellow lines correspond to increasing Stokes values, respectively. 

 

Sedimentation is another issue that can arise when the particle density is higher than the 

fluid density. It causes a systematic error in the velocity because it adds a drift component 



 

to the particle velocity in addition to the fluid velocity. Furthermore, as a result of this 

sedimentation, the density of the seeding gradually decreases over time, necessitating 

new seeding or vigorous stirring to re-suspend them. The falling speed 𝑣𝑔 of the particles 

in the fluid characterizes this phenomenon. Once the particles (assumed spherical here) 

have reached their falling speed in a fluid at rest the falling speed is found to be: 

 

𝑣𝑔⃗⃗⃗⃗ =
𝑑𝑝2(𝜌𝑝 − 𝜌)𝑔 

18𝜇 
 

where 𝑔  is the gravitational acceleration.  

(II-3) 

 

II.2.2.2 Scattering properties 

The illumination of the measurement area is generally achieved using a laser beam 

expanded using a set of optics generating a collimated beam of the measurement volume 

thickness. Scattered light by small particles follows the theory of Mie (Gouesbet and 

Grehan, 1999a). Mie scattering is the scattering of light from spherical particles with 

diameters that match the wavelength of the incident light, as described by the generalized 

Lorenz-Mie theory (Gouesbet and Grehan, 1999a). The average intensity of scattered 

light in Mie scattering is proportional to the square of particle diameters. Large particles 

scatter more light and are therefore more visible in a PIV image. The cross section of 

scatter light is presented by (Melling, 1997) in the figure below. Seeding particles used 

in PIV have diameters in the range 1 − 10𝜇𝑚 (Raffel et al. , 2018). 

 

  

Figure II.4 (Left) Polar plot of light scattering by a 1μm oil particle in air (source 

(Gouesbet and Grehan, 1999b) ). (Right) The scattering cross section as a function of 

the particle size normalized by the wavelength (refractive index n = 1.6) (source 

(Melling, 1997)) 

 

II.2.3 Imaging of small particles 

Two aspects are important when imaging small particles for 3D PIV applications. First, 

the particles are usually imaged by cameras in focus, so the focal depth 𝛿𝑧 (see Figure 

II.5) should be larger or equal to the depth of field of the illuminated volume. The 

equation of the focal depth is given by (Solf, 1978): 
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𝛿𝑧 = 4.88𝑓#
2  [

|𝑀| + 1

𝑀
]

2

𝜆 (II-4) 

where: 

• 𝑓# =
𝑓′

𝐷𝑎
 is the aperture of the lens. It can be found by the ratio of the focal length 

𝑓′ over the diaphragm diameter of the camera 𝐷𝑎. 

• 𝑀 =
𝑝′𝑎′̅̅ ̅̅ ̅̅

𝑝𝑎̅̅ ̅̅
=

𝑓′

𝑓′+𝑝
 is the magnification of the set up. 𝑝𝑎̅̅̅̅  and 𝑝′𝑎′̅̅ ̅̅ ̅are the object and 

its corresponding image. 

• 𝜆 is the wavelength of the emitted light. 

 

On the other hand, For any particle within the focal depth, assuming diffraction limited 

imaging and a Gaussian intensity distribution of the particle image, its particle image 

diameter 𝑑𝜏 can be estimated as follows (Adrian, 1997): 

 

𝑑𝜏 = √(𝑀 × 𝑑𝑝)
2
+ 𝑑𝑑𝑖𝑓𝑓

2  (II-5) 

 

When the diameter of the particle geometric image, 𝑀 × 𝑑𝑝, is considerably smaller 

than 𝑑𝑑𝑖𝑓𝑓, this expression is dominated by diffraction effects and reaches a constant 

value of  𝑑𝑑𝑖𝑓𝑓 (Raffel et al., 2018): 

 

𝑑𝑑𝑖𝑓𝑓 = 2.44𝑓#(|𝑀| + 1)𝜆 (II-6) 

 

The diffraction spots must have a diameter 𝑑𝑑𝑖𝑓𝑓 of maximum 3.5 pixels and less than 2 

pixels is optimum (Raffel et al., 2018). 

 

 

Figure II.5 Representation of optical system dimensions used for imaging small 

particles. 𝛿𝑧 is the focal depth and 𝑑𝑑𝑖𝑓𝑓 is the diffraction diameter. 



 

Additionally, if there is a change in the medium that a light is traversing, the equation 

(II-4) can be modified as (Debue, 2019): 

 

𝛿𝑧 = 4.88𝑓#
2
𝑛𝑖

𝑛𝑒
 [
|𝑀| + 1

𝑀
]

2

𝜆 (II-7) 

 

where the optical index of the medium containing the observed field is 𝑛𝑖, while the 

optical index of the external media where the camera is positioned is 𝑛𝑒. For a fixed 

magnification 𝑀, if 𝑛𝑖> 𝑛𝑒, the focal depth is greater than for the case where both optical 

indices are equal.  

II.2.4 Calibration of cameras  

The 3D PIV reconstruction is based on the relation between the 3D actual physical space 

(or world reference system) and the image space. The calibration provides mapping 

functions. Two main functions exist in the bibliography: Pinhole model (Tsai, 1986) 

which is the physical model of the camera and an approximated polynomial model (Soloff 

et al., 1997). Recently, the calibration optical transfer function (OTF) (Schanz et al., 

2013a) became an additional option to minimize the calibration errors of the two camera 

models. 

 

Pinhole model 

We use bold italic letters for vectors and matrices (such as rotation array 𝑹) in 𝑅3. All 

the definitions used in the following are illustrated in Figure II.6. The world coordinate 

system is denoted (𝑂;  𝑋, 𝑌, 𝑍), while (𝐶; 𝑋′, 𝑌′, 𝑍′) is the camera coordinate system. 

Extrinsic parameters refer to the 3 angles defining the rotation of the camera frame 

relative to the world frame, denoted by the 3 × 3 array 𝑹, and to the translation vector 

𝑻 = 𝑂𝐶⃗⃗⃗⃗  ⃗, defined as the coordinates of the optical center 𝐶 expressed in the world frame. 

As a result, for a point 𝑃 of coordinates 𝑿 = [𝑋, 𝑌, 𝑍] in the world frame and 𝑿′ =
[𝑋′, 𝑌′, 𝑍′] in the camera frame, the following equation holds: 

 

𝑿′ = 𝑹−𝟏(𝑿 − 𝑻). (II-8) 

 

Here the inverse 𝑹−𝟏of the rotation matrix 𝑹 is equivalent to its transpose since 𝑹𝑻 𝑹 =
𝐼 (i.e. 𝑹 is orthonormal). The intrinsic parameters characterize the projective transform. 

The intersection point “A” of the optical axis with the image plane is referred to as the 

principal point with coordinates 𝑐𝑥 and 𝑐𝑦 in pixel units (coordinates (0,0) is top left in 

the pixel coordinate of the camera). The focal length 𝑓 = |𝐶𝐴⃗⃗⃗⃗  ⃗| is the distance from the 

optical center to the image plane, leading to 𝑓𝑥 (respectively 𝑓𝑦) when converted into 

horizontal (resp. vertical) pixels units. 𝑓𝑥 and 𝑓𝑦 might be different if the field is not 

squared. 
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Figure II.6 Coordinate reference system of the camera in a pinhole model. (𝑂;  𝑿, 𝒀, 𝒁) 

is the world coordinate system and (𝐶; 𝑿′, 𝒀′, 𝒁′ ) is the camera coordinate system 

(Figure extracted from (Cornic, 2016)). 

The pinhole model assumes the paraxial approximation. This means that a point "𝑃" with 

coordinates 𝑿′ = [𝑋′, 𝑌′, 𝑍′] in the camera frame, its image “p” onto the image plane "Π" 
and the optical center "C" are aligned. 

Since p ∈ Π, its coordinates in the (metric) camera frame are p= [𝑢, 𝑣, 𝑓]. Using the law 

of similar triangles, it was found that: 

 

{
𝑢 = 𝑓 

𝑋′

𝑍′

𝑣 = 𝑓 
𝑌′

𝑍′

 (II-9) 

 

When converted to pixel coordinates, the image coordinates [𝑥, 𝑦] of ‘p’ are obtained: 

 

{
𝑥 = 𝑓𝑥  

𝑋′

𝑍′
+ 𝑐𝑥

𝑦 = 𝑓𝑦  
𝑌′

𝑍′
+ 𝑐𝑦

 (II-10) 

 

If this projection is a linear transformation, then it can be represented as a product of a 

matrix and the input vector (in this case, it would be 𝑃(𝑋′, 𝑌′, 𝑍′)). However, from 

equation (II-10), we see that this projection is not linear, as the operation divides one of 

the input parameters (namely 𝑍′). Still, representing this projection as a matrix-vector 

product would be useful for future derivations.  

One way to solve this problem is to change the coordinate systems. For example, we 

introduce a new coordinate, such that any point p(𝑥, 𝑦) becomes (𝑥, 𝑦, 1). This 

augmented space is referred to as the homogeneous coordinate system. Using 

homogeneous coordinates, we can formulate: 

 



 

𝛼 × 𝑝 = 𝛼 ×

[
 
 
 
    𝑓𝑥

𝑋′

𝑍′
+ 𝑐𝑥  

   𝑓𝑦
𝑌′

𝑍′
+ 𝑐𝑦   

1 ]
 
 
 
 

= [
 𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] [
𝑋′
𝑌′
𝑍′

] = 𝐾𝑃 (II-11) 

where 𝛼 is determined by the equation obtained on the last line and 𝑲 is the intrinsic array 

or camera matrix defined as: 

 

𝑲 = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] (II-12) 

 

Polynomial model (Soloff model) 

The Soloff model is more suitable to map complicated refraction geometries (in cases 

without strongly severe distortions). The model is given by a least-squares polynomial 

with cubic dependence in 𝑋 and 𝑌, and quadratic dependence in the depth 𝑍. The mapping 

function can be given as:  

𝛺 = 𝑎0 + 𝑎1𝑋 + 𝑎2𝑌 + 𝑎3𝑍 + 𝑎4𝑋
2 + 𝑎5𝑋𝑌 + 𝑎6𝑌

2 + 𝑎7𝑋𝑍 

     + 𝑎8𝑌𝑍 + 𝑎9𝑍
2 + 𝑎10𝑋

3 + 𝑎11𝑋
2𝑌 + 𝑎12𝑋𝑌2 + 𝑎13𝑌

3 

     +𝑎14𝑋
2𝑍 + 𝑎15𝑋𝑌𝑍 + 𝑎16𝑌

2𝑍 + 𝑎17𝑋𝑍2 + 𝑎18𝑌𝑍2 

(II-13) 

where Ω is either pixel coordinate 𝑥, or 𝑦, 𝑖. 𝑒. one polynomial for 𝑥 and one for 𝑦 to 

determined) 

Scheimpflug condition  

Scheimpflug condition is needed when the optical axis is not orthogonal to measurement 

plane or volume. The full field of view cannot be focused on the same image plane 

(perspective effect). By tilting the camera, then all points in the a given plane will be 

focused. The Scheimpflug condition must be respected for 4D PTV as different viewing 

angle are required. 

II.2.5 Volume self-calibration 

Before volume self-calibration, we use recorded images of a plate with known markers 

position on at least two planes. These recordings allow us to obtain the image coordinates 

in pixels of some points in the physical space to fit the selected camera model seen in 

section II.2.4 

 

However, after calibrating the cameras using a calibration plate, the maximum calibration 

error is typically around ~0.4 pixels (based on the experiments done in this thesis). It 

should be less than 0.1 pixel to perform proper 3D PTV, hence the need of the “Volume 

Self Calibration” (VSC) (B. Wieneke, 2008). The technique is based on the correction of 

the mapping functions Ω (this mapping function is defined from the calibration plate using 

pinhole or polynomial model) using the particle images. These errors come from 

inaccurate calibration plates, inaccurate plate movement, mechanical instabilities and 

optical distortions that are not accounted for by the mapping function.  

 

Preferably, VSC should be done on low image densities to correct the system errors. Then 

it can be corrected iteratively for higher densities if needed. The technique starts by 

choosing the brightest particles from the image (𝑥𝑖, 𝑦𝑖)𝑜𝑟𝑖𝑔𝑛
 and triangulating the 
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matching particles to their 3D positions (𝑋𝑖, 𝑌𝑖 , 𝑍𝑖) (see section II.3.2 for the basics of this 

triangulation method and section II.4.1 for the method used in this thesis). A best fit of 

the 3D world position is usually done by minimizing the distance between the original 

image and its back projection (𝑥𝑖 , 𝑦𝑖) 𝑝𝑟𝑜𝑗 = Ω𝑛(𝑋𝑖, 𝑌𝑖, 𝑍𝑖). The triangulation error 

represented in Figure II.7 by the cyan vectors is what is called disparity vector. The 

disparities, 𝑑𝑛, for all particles throughout a sub-volume are then used to correct the 

mapping functions for all cameras. For a perfect line of sights, the disparity should be 

equal to zero as no correction is needed. 

 

𝛺𝑛(𝑋, 𝑌, 𝑍)𝑛𝑒𝑤 = 𝛺𝑛(𝑋, 𝑌, 𝑍)𝑜𝑟𝑖𝑔 − 𝑑𝑛(𝑋, 𝑌, 𝑍) (II-14) 

 

 

Figure II.7 Illustration of the disparity. Red lines: computed lines of sight through the 

particle. Black dot: triangulation of the particle. Dashed green lines: projection of the 

triangulated particle. Cyan arrows: disparity. Figure is extracted from (Cornic, 2016) 

The calculated disparities 𝑑𝑛,𝑖 = (𝑑𝑖𝑥, 𝑑𝑖𝑦)
𝑛

 are displayed as a small 2D Gauss blob of 

maximum intensity of 1 for all particles. Finally, disparity maps are summed for multiple 

recorded images and mapping functions are updated by the equation (II-14). 

II.3 Working principles of 3D PTV 

II.3.1 Coordinates of particles images 

The first step, which is essentially the first part of any 3D-PTV, is to locate 2D particle 

positions in each camera image to be able to find later on the corresponding 3D particle 

positions through matching and triangulation. 

 

Every local maximum in image intensity above a certain threshold is assumed to be a 

particle. Choosing the center of this local maximum pixel is the simplest method for 

determining a particle center. This method is relatively fast, can handle overlap, and is 



 

noise-resistant. Weighted averaging (Maas et al., 1993a) (Dracos, 1996) is a very simple 

technique and is therefore widely employed in PTV. To represent single particles, camera 

images must first be segmented into adjacent groups of bright pixels. The center of the 

pixel groups coordinates (𝑥𝑐 , 𝑦𝑐) are then calculated by averaging the positions of all the 

pixels in the group, weighted by their intensity. If we consider 𝐼(𝑥, 𝑦) to be the pixels 

intensity at (𝑥, 𝑦), 𝑥𝑐 is given by (similar for 𝑦):  

 

𝑥𝑐 =
∑ 𝑥𝑝𝐼(𝑥𝑝, 𝑦𝑝)𝑝

∑ 𝐼(𝑥𝑝, 𝑦𝑝)𝑝
 (II-15) 

 

As previously stated, we consider every local maximum of intensity (above a threshold) 

to be a particle. As a result, we assume that a group of pixels with 𝑁 intensity maxima 

contain 𝑁 particles when segmenting the camera image into groups of contiguous active 

pixels for averaging. Maas’ algorithm (Maas et al., 1993a) includes a preprocessing step 

that divides such pixel groups into 𝑁 subgroups, each with only one intensity maximum. 

The subgroups are formed by assuming that the intensity of pixels in a particle image 

decreases monotonically as the distance from the particle center grows. The contiguous 

subgroup containing the brightest local maximum is arbitrarily assigned to local intensity 

maxima. 

 

If we know the functional form of the intensity profile of the particle images on the 

detector, a fit of this function to the image would produce a very accurate determination 

of the particle center. However, the functional form is not known. Instead, it is common 

to approximate it as a Gaussian (Mann et al., 1999). 

 

𝐼(𝑥, 𝑦) =
𝐼0

2𝜋𝜎𝑥𝜎𝑦
{−

1

2
[(

𝑥 − 𝑥𝑐

𝜎𝑥
)
2

+ (
𝑦 − 𝑦𝑐

𝜎𝑦
)

2

]} (II-16) 

 

where σx and σy are the Gaussian widths in the horizontal and vertical directions. If a 

pixel group contains 𝑁 local maxima, the sum of 𝑁 Gaussians is fitted to the group. Bear 

in mind that if particle images start to overlap, the detection of individual particle images 

is difficult and the uncertainty of the fit increases. 

II.3.2 Particles 3D reconstruction (Establishment of 3D 

correspondences) 

Once the image coordinates of all particles in all images have been determined, 

correspondences between data of the different images have to be established to be able to 

reconstruct the 3D coordinates. The epipolar geometry is used to solve this problem, 

knowing the orientation parameters of the cameras from a calibration. This is a standard 

and well known method described in (Maas, 1992). 

 

From a point 𝑃’ in one image, an epipolar line in another image can be calculated using 

the orientation parameters of the cameras from the calibration procedure; the 

corresponding point must then be located on this line. The epipolar line is a straight line 

in the strict mathematical formulation, but it will be slightly curved in the more general 

case with convergent camera axes, non-negligible lens distortion, and multimedia 
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geometry (Figure II.8). A small two-dimensional area with tolerance ε (due to data 

quality) serves as the search area for the corresponding particle image. 

 

 

Figure II.8 The epipolar constraint on two corresponding image points P’ and P’’ 

which are the projection of the scene point P. Point P’’ must lie on the epiploar line 

with a defined tolerance 𝜀. T and R are the translation and rotation vectors respectively 

(Figure extracted from (Maas, 1992)). 

 

In the calibrated environment we capture the geometric constraint in an algebraic 

representation known as the essential matrix. With two views, the two camera coordinate 

systems are related by a rotation 𝑹 and a translation 𝑻. The essential matrix can be found 

to be:  

 

𝐸 = [

0 −𝑡𝑧 𝑡𝑦
𝑡𝑧 0 −𝑡𝑥

−𝑡𝑦 𝑡𝑥 0
] . 𝑅 (II-17) 

 

where 𝑻 = (𝑡𝑥, 𝑡𝑦, 𝑡𝑧)
𝑇
. The essential matrix relates the corresponding image points 

expressed in the camera coordinate system. This relation allows us to find the depth 

information. Development of this method in recent years include the use of 3 cameras at 

least to decrease the possibility of having wrong/ghost particles. This method is called 

“Iterative Particle Reconstruction” (IPR) (Wieneke, 2013) and it is based on the same 

fundamentals of the method introduced by (Maas, 1992). The difference basically lies in 

the use of “residual images” that verifies the detection of all possible particles. This 

method is described later on in this chapter in greater details. 



 

II.3.3 Particle tracking  

After both finding the 2D positions of the tracer particles and 3D matching them to find 

the full 3D positions, the particles must be tracked in time. In its most general form, the 

problem of tracking many particles over many frames is a multidimensional assignment 

problem. There is therefore no known tractable algorithm for solving the full problem. 

Particle tracking algorithms are instead forced to approximate the optimal solution of the 

full assignment problem by restricting the temporal scope of the tracking, considering 

only a few frames at a time. 

If 𝑥𝑖
𝑛 denote the 𝑖𝑡ℎparticle position in the 𝑛𝑡ℎ frame a tracking algorithm attempts to find 

an 𝑥𝑖
𝑛+1 for each 𝑥𝑖

𝑛 such that 𝑥𝑖
𝑛+1 is the position of the particle in frame 𝑛 + 1 that was 

at the position 𝑥𝑖
𝑛 in frame n. Multiple algorithms are explained and qualitatively 

compared in the interesting thesis of Ouellette et al., 2006. Additionally, Chenouard et 

al., 2014 have tested many tracking algorithms where different highly challenging 

scenarios were experienced from particle shape size to images frame rate and nonuniform 

background. Their results indicated that none of the methods can be considered as the 

best for particle tracking in any situation. However, new algorithms came to surface in 

another challenge for different PIV methods (Kähler et al., 2016). In this work, it was 

found that PTV algorithms can outperform state of the art PIV algorithms in terms of 

uncertainty. Furthermore, PTV-based methods with oriented particle search and 

refinement seem to overcome classical algebraic reconstruction and cross-correlation-

based methods, at least on synthetic images without noise (Schanz et al., 2013c). 

II.4 ‘Shake the Box’ 

Shake the box (Schanz et al., 2013c) (Schanz et al., 2014a) (Schanz et al., 2016a) was 

found to be the best method in PIV challenge (Kähler et al., 2016). It is probably one of 

the most advanced particles tracking method available today. Its most distinct feature is 

the accurate tracking of tracer particles at highest possible seeding densities so far. 

 

Shake the box applies an advanced triangulation techniques compared to the ones found 

in literature. This step is called Iterative Particle Reconstruction (IPR). It uses the residual 

images created by back projecting the triangulated particle cloud. Describing the imaging 

properties of the particles is important to avoid artificial residuals. For that, the use of a 

calibrated Optical Transfer Function (OTF) is a must for this method (Schanz et al., 

2013a). Finally, the Shake-The-Box algorithm introduces temporal information into the 

IPR processing of each time-step by predicting a particle cloud for each consecutive time-

step (Time-resolved STB). Trajectories of tracer particles are identified with a high spatial 

accuracy due to a nearly complete suppression of ghost particles. The STB method is 

illustrated in the figure below. Details of each step are explained in the following 

subsections.  
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Figure II.9 4D-PTV flowchart starting from particle reconstructions in four frames 

using IPR (Wieneke, 2013). Then it goes to the prediction and optimization phase by 

triangulating new particles found in residual images. (Figure adapted from (Khojasteh 

et al., 2021)). 

 

II.4.1 Iterative particle reconstruction ‘IPR’ 

Iterative particle reconstruction (Wieneke, 2013) starts with finding the particles using a 

standard 2D gaussian fitting-based (section II.3.1). The particles are then triangulated to 

3D positions using a sophisticated 3D-triangulation algorithm in order to obtain possible 

3D-particle locations (B. Wieneke, 2008). Wieneke improved the algorithm of (Maas et 

al., 1993b) which fails at high seeding densities. The triangulation procedure illustrated 

in the Figure II.10 is explained further downstream. 

 



 

 

Figure II.10 Illustration of the triangulation procedure. Red dots depict selected peaks, 

green depicts the searching area. The algorithm first selects one peak on Cam 1. The 

corresponding 3D line of sight (blue) is calculated and projected onto Cam 2. On Cam 

2 all peaks within a given tolerance, 𝜀𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛, (allowed triangulation error) 

around this line-segment (green area) are queried. For all found peaks, a 3D position 

is projected to Cam 3 and Cam 4 images. Then particles are found around a squared 

area of the same allowed triangulation error. 

The line-of-sight for each pixel is known thanks to the perspective volume calibration, 

which is of primary importance in particle identification. A beam can be projected 

through 3D space starting with the position of a single particle in camera 1 (the red 

particle in far left) and knowing the line-of-sight for each pixel. This beam will form a 

straight line on the sensor in camera 2. This line is known as the epipolar line (second 

image from the left). However, the matching particle cannot be expected to be located 

exactly on top of this line, as described before in section II.3.2, due to an unknown amount 

of remaining calibration errors. That is why instead of looking for matches only on a line, 

particles are searched around an area of maximum allowed triangulation error. All 

particles in this area are possible matches for the single particle that has been selected 

from camera 1. Each particle position within the stripe is used to do a triangulation to get 

a hypothetic 3D position for that combination. If the 3D particle position is correct, then 

matching particles in a specific area of interest must be present in cameras 3 and 4. The 

hypothetic 3D position is mapped to cameras 3 and 4 (using known lines of sight 

calibrations) to calculate the central position of the area of interest. A squared section 

with a size of (2 × 𝜀𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
2
is investigated around this central position to find 

possible matching particles (see Figure II.10, Cam3 and Cam4). This method is also used 

for Volume-Self-Calibration (see section II.2.5).  

 

A new optimized IPR technique was introduced by (Jahn et al., 2021). They apply 

triangulation error linearly increasing with the number outer iterations instead of the fixed 

triangulation error: 

 

𝜀𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑

= 𝜀𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 +

𝑖

𝑁𝐼𝑃𝑅 − 1
∗ 𝛥𝜀𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (II-18) 

 

where 𝑁𝐼𝑃𝑅 is the number of outer iterations of IPR and Δ𝜀𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is a second 

parameter allowing the triangulation error to increase slightly at each outer iteration. 

According to this paper, this approach minimizes the creation of ghost particles, 

especially at the first iterations where the residual image is still very populated. This new 

triangulation was not applied in the algorithm used in this thesis.  
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The next step is to perform triangulation iterations. This step is done after particles have 

been detected. The particles detected on Cam2 and verified by Cam3 and Cam4 are back 

projected to Cam1 to verify the correspondence of the found particle with the original 

one. If the position is not exact, residual images are calculated. The method described 

below are summarized in Wieneke 2013 and Schanz et al. 2016. Consider a particle 𝑝 

projected into the image of camera 𝑖 with coordinates 𝑋, 𝑌, 𝑍 and intensity 𝐼𝑝 . Thanks to 

the OTF and the mapping functions, a projected image on camera 𝑖 of this particle can be 

obtained noted 𝐼𝑝𝑎𝑟𝑡
𝑖 (𝑥𝑖, 𝑦𝑖 , 𝐼𝑝). By summing for all particles 𝑝 in the volume their 

projected image 𝐼𝑝𝑎𝑟𝑡
𝑖 (𝑥𝑖, 𝑦𝑖 , 𝐼𝑝), a projected image of the volume is obtained for camera 

𝑖 noted 𝐼𝑝𝑟𝑜𝑗
𝑖 . Then a residual image 𝐼𝑟𝑒𝑠

𝑖  is calculated by subtracting the original image 

from the back-projected image 𝐼𝑝𝑟𝑜𝑗
𝑖 .  

 

𝐼𝑟𝑒𝑠
𝑖 (𝑥𝑖, 𝑦𝑖) = 𝐼𝑜𝑟𝑖𝑔

𝑖 (𝑥𝑖, 𝑦𝑖) − 𝐼𝑝𝑟𝑜𝑗
𝑖 (𝑥𝑖, 𝑦𝑖) (II-19) 

where 𝐼𝑜𝑟𝑖𝑔
𝑖  is the recorded image of cam 𝑖.  

 

The aim of the triangulation algorithm is to minimize this residual image by finding the 

good values of all particles 𝑝 positions (𝑋, 𝑌, 𝑍) and intensity 𝐼𝑝. This is done locally for 

each particle by minimizing the residual with a "shaking" approach. For each particle 𝑝 

(approximate position 𝑋, 𝑌, 𝑍), a metric 𝑅 is constructed as follow: 

 

𝑅(𝑋′, 𝑌′, 𝑍′, 𝐼𝑃) = ∑ ∑ [𝐼𝑟𝑒𝑠+𝑝
𝑖 − 𝐼𝑃𝑎𝑟𝑡

𝑖 (𝑋′, 𝑌′, 𝑍′, 𝐼𝑝)]
2

𝑝𝑖𝑥𝑒𝑙𝑠 𝑎𝑟𝑜𝑢𝑛𝑑 
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡

𝑖

 
(II-20) 

With 𝐼𝑟𝑒𝑠+𝑝
𝑖 = 𝐼𝑟𝑒𝑠

𝑖 + 𝐼𝑃𝑎𝑟𝑡
𝑖 (𝑋, 𝑌, 𝑍, 𝐼𝑃). To minimize the metric, in 𝑋 direction first, the 

metric is evaluated for 𝑋′ = 𝑋 − Δ, 𝑋, 𝑋 + Δ, where Δ is the shaking parameter of 

typically 0.1 to 0.5 voxel. Then a quadratic polynomial is fitted to the 3 values to obtain 

the new 𝑋 position of the particle. Then the same is done in 𝑌 and 𝑍 directions. For each 

shake iteration, the particle intensity needs to be updated according to (II-21) 

 

𝐼𝑃,𝑛𝑒𝑤 = 𝐼𝑃 × √

∑ ∑ (𝐼𝑟𝑒𝑠+𝑝)𝑝𝑖𝑥𝑒𝑙𝑠 𝑎𝑟𝑜𝑢𝑛𝑑 
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡

𝑖

∑ ∑ (𝐼𝑃𝑎𝑟𝑡[𝑋𝑛𝑒𝑤,𝑌𝑛𝑒𝑤,𝑍𝑛𝑒𝑤,𝐼𝑃]𝑝𝑖𝑥𝑒𝑙𝑠 𝑎𝑟𝑜𝑢𝑛𝑑 
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡

𝑖
 (II-21) 

 

In case the intensity 𝐼𝑃,𝑛𝑒𝑤 falls below a specified threshold (usually 10% of the average 

particle intensity – this is a parameter that could be adjusted in the GUI of the Lavision 

STB algorithm), it is assumed that the particle was lost, and the shake process is not 

converging to the true particle position. In that case, the particle is deleted. 

 

The name “Shake the Box” comes from this part of the algorithm since it consists of 

shaking the particle for multiple iterations to update its position. The shaking is typically 

of 0.1 voxel. This iterative process has an outer loop that adds new particles and an inner 

loop that refine the position of the added particles (see Figure II.9). Each inner iteration 

of the inner ‘refine’ loop updates the particle position (‘shaking’) and intensity. The 

greater the number of iterations, the greater the precision, but also the longer the 

computation time. In the outer loop, new particles are added using remaining particles 



 

from the residuum. The more outer loops, the higher is the possibility to detect particles 

from the residuum as for the inner loop. On the other hand, more loops can increase the 

processing time significantly  as for the inner loop. 

II.4.2 Optical transfer function ‘OTF’ 

The Optical Transfer Function (OTF) is a complex-valued function describing the 

response of an imaging system as a function of spatial frequency. As we have seen in 

previous section, IPR and other reconstruction methods rely on accurate reprojection of 

3D particle positions. An accurate calibration of the camera lines of sight, which is 

ensured by performing a Volume Self Calibration, is an important precondition for this 

step. However, in describing the back-projected image of a particle, not only the precise 

location of the projection point is important, but also the shape of the particle image. Even 

if the particle position is perfect, the back projection cannot fit the recorded particle image 

if a circular Gaussian peak shape is assumed but the real shape is distorted due to 

astigmatisms or small depth of field compared to illuminated volume. Astigmatic 

distortions are common when viewing through interfaces with change of refractive index 

at non perpendicular angles.  

 

The method of OTF is as follow: it selects particles in specific subvolumes, and it 

identifies their shape using a two dimensional gaussian peak: 

 

𝑤(𝑥, 𝑦) = 𝑝. 𝑒𝑥𝑝 (−
1

2
(𝑎𝑥2 + 2𝑏𝑥𝑦 + 𝑐𝑦2)) (II-22) 

 

Where 𝑥, 𝑦 are the particles pixel position and 𝑎, 𝑏, 𝑐, 𝑝 are parameters that determine the 

shape and particle intensity of the image. The OTF in a particular subvolume is 

determined for all cameras by averaging the obtained parameters over several particles 

coming from the same area of space. Figure II.11 shows an example of particle patterns 

calculated for different slices in z direction. The particle pattern shows how important 

OTF could be to describe particle patterns in the volume. The use of an OTF with the 

existing volume self-calibration showed that it can significantly reduce the ghost particles 

(Schanz et al., 2013b). 

 

 

Figure II.11 Example of particle pattern for one camera and for 3 different planes in z 

direction for the experiment done in Chapter V. The volume is divided to 

8 × 8 × 3 subvolumes. 



56 II.4 ‘Shake the Box’ 

II.4.3 Initialization of tracks 

Following the particle identification, trajectories need to be extracted from the 

distributions of particle candidates for the first 4 time-steps as shown in Figure II.9. The 

approach is not discussed in the original ‘Shake the Box’ paper but it is mentioned that it 

is a very simple algorithm based on finding matches in consecutive frames by applying a 

search radius around the particle position. The details of some of the methods are 

discussed and tested in the thesis of (Ouellette et al., 2006). Also, an implementation of 

a predictor could be used by performing a Tomo-PIV evaluation of the first time steps.  

 

At the end of this phase, all tracks of 4 time steps in length found by the tracking system 

(see Figure II.12) are validated using thresholds of velocity and acceleration. 

II.4.4 Prediction of the particle positions 

The particles being tracked at 𝑡𝑛 are extended to time step 𝑡𝑛+1 by applying a Wiener 

filter (Wiener 1949) for extrapolation as described by Schanz et al 2016. The filter 

parameters are determined with the positions of particles at previous time step. Then the 

predicted particles locations are evaluated at time 𝑡𝑛+1 thanks to these obtained filters 

from previous known positions 𝑡𝑛−3, 𝑡𝑛−2, 𝑡𝑛−1, 𝑡𝑛 (see Figure II.12). 

 

 

Figure II.12 Illustration of the prediction algorithme. Knowing the past positions of a 

particle, the next is estimated by a wiener filter fit to the past. The closest particle to 

the estimated position is saved to the track for time step 𝑡𝑛+1. 

The closest particle to the predicted one is selected for the track. Every particles position 

at 𝑡𝑛+1 is then ‘shaked’ to its correct position and intensity again by the IPR procedure 

(triangulation inner loop, Figure II.9). 

 

During this phase, as not all particle tracks have been found yet, the residual images will 

still show a significant amount of particle images. New particle candidates are 

triangulated from the residual images using allowed triangulation error (see Figure II.13). 

This is the outer loop phase of the STB algorithm.  



 

 

Figure II.13 Schematic description of the Shake-The-Box procedure for one time-step 

in the converged state by illustrating the effects of the different computation steps on 

the residual image of a single camera (out of multiple). After performing some 

iterations of shaking, the residuals of the tracked particles vanish (nearly) completely. 

The not found particles in the residuals are then tackled by the triangulation/IPR 

process until all possible particles are found (Schanz et al., 2016a). 

The algorithm continues with time-step 𝑡𝑛+2 and so on. This process of finding 

tracks/identification of new ones, will continue until (nearly) all true particles are tracked. 

At this point, convergence is reached. 

II.4.5 Software parameters  

Shake the box method is a black box algorithm, which was only available for us through 

a software from Lavision. The version used for processing in this thesis is 

DAVIS 10.1.0.56724. The parameters are grouped in three main windows are: 

 

1- General 

 

As general parameters, we have first of all to specify the volume where particles may be 

detected. Using the “max” buttons will automatically add the x y and z limits found using 

the calibration plate after the Volume-Self-Calibration. Then we have to iteratively adjust 

the optimal intensity threshold for all cameras for the detection of particle peaks. Finally, 

the allowed triangulation error (𝜀𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛) that is necessary for the IPR process is 

specified here. 

 

2- Iterative particle reconstruction 

 

We specify in this window the parameters of the shaking process with first the inner and 

outer loops number of iterations (4 and 4 by default). The “Shake particle position” 

parameter defines the spatial distance that is used to ‘shake’ the particle around to find 

the optimal position which minimizes the residuum (see section II.4.1. By default, it is 

fixed to 0.1 voxel). Also, we can allow the algorithm to remove a particle if its calculated 

3D position is very close to an already existing particle (fixed to 1 voxel in this thesis 

work). This parameter requires a special attention, especially for high particles images 

densities. The effect of this parameter will be shown in chapter IV section IV.8. Finally, 

weak intensity particles are removed if they fall below a threshold (parameter fixed by 

default to 10% of the particle intensity). The intensity of predicted and triangulated 

particles is adapted in each iteration using equation (II-21). 
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3- Tracking 

 

In the tracking process, we can specify first the minimum time steps of the particles 

detected by IPR process to initialize a track before starting the process of prediction. The 

adjustable range is from 4 to 10 time steps. A smaller value results in more tracks, a higher 

number ensures longer tracks with sometimes less noise. A special attention should be 

made to the velocity limit parameters which have to be defined in this tab. If the flow has 

a non-zero mean component, the expected shift can be entered here. Then we can adjust 

the dynamic range of the expected shift. This parameter specifies the maximum shift 

between two particles from a times step to another. It has to be large enough to capture 

all existing particle shifts in the flow. However, if this parameter is too high, processing 

may take much longer and false (spurious) tracks may be detected. 

 

The outlier vectors can be drastically decreased by using a median filter. This filter can 

be applied iteratively ranging from 1  to 10 iterations. The median filter considers each 

particle in the flow and looks at its neighbors to decide whether or not velocity is 

conceivable with respect to the median velocity of its neighbors. The filter compares the 

difference of the velocity of the point and the median velocity of its neighbors with the 

standard deviation of the velocity of its neighbors. If the difference exceeds the standard 

deviation of the neighbors by some factor (also defined by the user), the particle is 

removed. Three parameters control the behavior of the median filter: 

 

1- Number of neighbors used: Determines the number of nearest neighbors that are 

used to calculate the deviation from the median. 

2- Max search range: determines the maximum search range for neighbor particles. 

Depending on the seeding concentration a smaller or bigger range may be 

necessary to find enough neighbors. The first parameter can restrict this region if 

more particles than the parameter “number of neighbors used” defined are present 

in this region. The filter takes then “number of neighbors used” particle the closest 

to the point considered. 

3- Remove if standard deviation >: The particle in question is removed, if its 

velocity from the median of the neighbors is bigger than the value of this 

parameter times the standard deviation of the neighboring velocities. 

II.5 Tracks smoothing 

For the investigation of turbulence flows, determining the position is important but having 

access to an accurate estimation of velocities and acceleration is essential. The derivatives 

to find velocity and acceleration amplifies exponentially the errors of the positions thus, 

polluting the higher-order turbulent statistics based on both temporal and spatial small-

scale quantities. For that reason, a smoothing method for the trajectories is necessary to 

brush off the errors. Smoothing can be done through least square polynomial fitting 

(Savitzky and Golay, 1964). This method is briefly discussed in section II.4.4.  

 

On the other hand, a more rigorous method is what is called “Splines” introduced by 

(Bézier, 1986) as follow is used: 

 

𝐶(𝑡) = ∑𝑏𝑗,𝑛′(𝑡)𝑃𝑗

𝑛′

𝑗=0

 (II-23) 



 

- Bézier curves are smooth curves defined using control points 𝑃𝑗 (see figure 

below). 

- 𝑛′ is the degree of Bézier curves. A Bezier curve of  degree 𝑛′ is defined by 𝑛′ +
1 control points 𝑃𝑗. 

-  𝑏𝑗,𝑛,(𝑡) are called the basis functions.  

 

Figure II.14 Example of a cubic Bézier curve defined by four control points. 

Now, B-splines (short for Basis Splines) (De Boor, 1978 ) use several Bézier curves 

joined end to end. A 𝑛′ degree B-spline curve defined by 𝑛 + 1 control points will consist 

of 𝑛 − 𝑛′ + 1 Bézier curves. In that way, we can have cubic B-spline defined by more 

than 4 control points for example, contrary to a cubic Bézier curve that could be only 

defined by 4 control points. 

 

When deriving a B-spline, one should ensure the continuity and continuity of derivative 

up to a second order. 

 

The equation of a B-spline is as follow: 

 

𝑆(𝑡) = ∑𝑏𝑗,𝑛′(𝑡)𝑃𝑗

𝑛

𝑗=0

 (II-24) 

Where (𝑃0, 𝑃1, … . . 𝑃𝑛) are control points and 𝑏𝑗,n′ are the basis function defined as: 

 

𝑏𝑗,0 = {
   1  𝑖𝑓 𝑡𝑗 ≤ 𝑡 < 𝑡𝑗+1

0        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝑏𝑗,𝑛′ =
𝑡 − 𝑡𝑗

𝑡𝑛+𝑗 − 𝑡𝑗
𝑏𝑗,𝑛′−1 (𝑡) +

𝑡𝑗+𝑛+1 − 𝑡

𝑡𝑗+𝑛+1 − 𝑡𝑗+1
𝑏𝑗+1,𝑛′−1 (𝑡) 

(II-25) 

 

The smoothing method we are discussing in this section is defined by Gesemann et al., 

2016 and consists of minimizing the least square between the noisy data 𝑝𝑖 and the fitted 

B-splines. Consider the regression 𝑛 + 1 data points. The least squares function to 

minimize is: 
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𝑙 = ∑{𝑃𝑖 − ∑𝑏𝑗,𝑛′(𝑡𝑖)𝑃𝑗

𝑛

𝑗=0

}

𝑛

𝑖=0

2

 (II-26) 

 

Finally, one need to introduce a penalty on the third order derivative of the fitted curve to 

avoid high frequency oscillations (Cheminet et al. 2021). This penalty term (Δ3𝑃𝑖 ) is 

multiplied by a parameter 𝜆𝑠 which control the smoothness of the fit. 

 

𝑙 = ∑{𝑃𝑖 − ∑𝑏𝑗,𝑛′(𝑡𝑖)𝑃𝑗

𝑛

𝑗=0

}

𝑛

𝑖=0

2

+ 𝜆𝑠 ∑{𝛥3𝑃𝑖}
2

𝑛−3

𝑖=0

 

 

 

 

(II-27) 

where 𝛥3𝑃𝑖 = 𝑃𝑖+3 − 𝑃𝑖 

 

If 𝜆𝑠 is equal to zero, no smoothing is applied. If 𝜆𝑠 is large the regularization/smoothness 

is dominant.  

 

This smoothing method acts as a low pass filter. Like any such filter, it has a transfer 

function 𝐻(𝑓), defined as the ratio of the Fourier transform of the smoothed data and the 

Fourier transform of the raw unfiltered data. Knowing 𝐻(𝑓) allows to define the cutoff 

frequency 𝑓𝑐. Deriving the filter response to a sinusoidal signal (Cheminet et al., 2021) 

found an analytical estimation of transfer function: 

 

𝐻(𝑓) =
1

1 + (
𝑓
𝑓𝑐

)
6     ,      𝑓𝑐 =

1

𝜋𝜆𝑠
1 6⁄

𝑓𝑁 
(II-28) 

 

where 𝑓𝑁 is the Nyquist frequency (in our case, as we will smooth the trajectories 

𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡) and as we acquire the images at a frequency 𝑓𝑎𝑞, 𝑓𝑁 will be 
1

2
𝑓𝑎𝑞 =

1

2Δ𝑡
). 

An example of noisy DNS compared to noise free DNS spectrums are shown in Figure 

II.15. The question that arises is how to find the cut off frequency 𝑓𝑐 in order to determine 

the smoothing parameter 𝜆𝑠? The noise is thought to be at high frequencies and can be 

considered a white noise. Two methods were used to find the cutoff frequency either by 

doing an intersection between an estimate signal spectrum (extrapolation of the linear 

part of the spectrum in loglog plot corresponding to a power law before the noise 

dominates) and an estimation of the noise spectrum (value of the plateau at the higher 

frequency where the white noise dominate. This point is called 𝑓𝑐1). This is not exactly 

where the signal to noise ratio (SNR) is equal to 1 (overestimation of the cut-off 

frequency). Another idea was to find the maximum spectrum curvature2 (point 𝑓𝑐2). We 

see that the 𝑓𝑐2 point is even further away than the frequency where the SNR=1.  

 
2 The curvature 𝜅 measures how fast a curve is changing direction at a given point: 𝜅 =

|𝑓′′(𝑥)|

(1+[𝑓′(𝑥)2])3/2 

Error on the noisy 

data. 

Regularization/Smoothing 

term. 



 

 

Figure II.15 PSD of particle positions for actual signal, noisy data (measured) and the 

added noise to the signal. Figure extracted from (Cheminet et al., 2021) 

(Cheminet et al., 2021) proposed a better solution to the problem by using Tikhonov 

regularization for ill-posed problem (Tikhonov, 1977). The method requires to minimize 

the following fuctional: 

 

‖𝑦 − 𝑘𝑥‖2
2 + 𝜆𝑠‖𝑥‖2

2  (II-29) 

 

Where the left term is the error on the data fit and the right term is the regularization 

parameter. Several techniques  were developed to circumvent this issue Cheminet et al., 

2021 tested two of them on synthetic data, namely the ℒ − 𝑐𝑢𝑟𝑣𝑒 criterion (Hansen and 

O’Leary, 1993) and the Normalized Cumulative Periodogram (𝑁𝐶𝑃) criterion (Hansen 

et al., 2006). They have shown that low value of 𝜆𝑠 faithfully reconstruct high signal 

gradients. The conclusion is based on PSDs of positions, velocities and acceleration as 

well as PDFs of curvatures. 

 

They have also shown that the use of smoothing parameter based on the 𝑁𝐶𝑃 criterion is 

the best to smooth the positions data. Overall, this study showed that the Trackfit 

smoothing method based on B-spline and equation (II-27) is a very powerful tool to 

reduce noise in Lagrangian trajectories. Furthermore, the smoothing tuning strategies can 

be based on a desired accuracy and on the physical behavior of the measured quantities a 

one wishes to focus on. 
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III.1 Optimization of experimental parameters – 

introducing the Small Water Tank (SWT) 

This chapter seeks to summarize two of the experiments carried out during the thesis. 

These two experiments have for objective to prepare the main experiment on the GVK. 

The experimental setup is first described in detail. Then, the principles of operation of the 

experimental techniques associated with PTV and tracks reconstruction are explained, 

and the main solutions chosen for both experimental (optical access, particles etc.) are 

discussed and justified. The results are presented and analyzed in the following chapter. 

 

After presenting the overall objective of the EXPLOIT project in Chapter I as well as the 

past related work; we decided to optimize the different parameters that can improve the 

particles tracking results. For this reason, we decided to build a replica of the GVK with 

the same geometrical characteristics but with simpler technical solutions (see Figure 

III.1). From this point on we will call this replica SWT (Figure III.2) which stands for 

“Similar Water Tank”. The interest of making this test is to optimize the parameters to 

prepare the experiments on the GVK, located at CEA Saclay. The idea was to build this 

replica in Lille as the LMFL was in charge of this parameter optimization within the 

EXPLOIT project.  

 

A schematic view of GVK is shown in Figure III.1 (left). The apparatus mainly consists 

of an outer tank formed by 16 faces placed in a circular way with 22.5 degrees angle 

between each face (see Figure III.1 (right)). On each side, five windows with a thickness 

of 6𝑚𝑚 are positioned vertically and serve as optical access points. It was decided for 

the first campaign on the GVK to use the middle access window for all 4 cameras to take 

measurements at the volume center. All the data presented in this thesis are measured at 

the center of the volume for GVK & SWT. 

 

 

Figure III.1 Views of the GVK (CEA Saclay) experiment. (Left) Perspective view with 

dimensions of the windows. The experiment is 100 cm tall. (Right) Top view that shows 

the angles of each window of the outer tank. 

An outer tank with same configuration was designed for the replica experiment. The faces 

are made of glass with same thickness of 6𝑚𝑚. Since we are only interested in 

measurement properties factors and not the actual flow, the SWT is only 25𝑐𝑚 in height 

compared to 100 𝑐𝑚 of the GVK. Another very important difference between these two 

experiments is the presence of a glass cylinder placed inside the outer tank of GVK as 



 

seen in the top view of Figure III.1. This cylinder has a thickness of 10𝑚𝑚. The gap 

between the tank and the cylinder is filled with water. We tried to get a cylinder for SWT 

in order to keep the same optical access compared to GVK, but we couldn’t find a cylinder 

at a reasonable cost to put inside of our replica. However, the internal cylinder should not 

significantly modify the focus in the center of the volume. A simple calculation of the 

focal length of the cylinder gives a value of 𝑓𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 of −200 𝑚. In other words, we think 

that the focus plane won’t be affected by the presence of the cylinder since we want to 

measure at the center of the volume at 0.5𝑚. 

 

Figure III.2 Views of the SWT experiment (LMFL Lille). (Left) Perspective view. 

(Right) Top view with the indication of the angles of each side of the tank. 

 

III.2 Experimental setup of SWT 

The SWT was designed to test key parameters, as previously stated. The tank shown in 

Figure III.2 (left) has 16 faces. These glass faces are glued to a bottom template to form 

a tank; a top template was used to close the tank once it was filled with water to keep the 

dust out. To insert the calibration plate, the top template had to be removed. Special 

attention was paid to keep the water as clean as possible throughout the process. Three 

fish tank pumps were installed inside SWT, facing the volume center where we planned 

to measure. The aim of these pumps was to generate a turbulent flow. As the replica do 

not contain any propeller and internal cylinder, the flow of GVK could not be reproduced. 

However, this mismatch of the flow is not critical to test most of the measurement 

parameters.  
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Figure III.3 Photograph of the SWT tank and the four cameras at their correct position. 

A calibration plate is placed in the center of the volume (top photograph corresponds 

to calibration phase). Three fish tanks pumps are used to generate a flow at the center 

of the volume  

 

III.2.1 Cameras and illumination  

The cameras used for the experiments are Phantom Miro 340. They record images at a 

rate of 800 frames per second for a maximum resolution of 2560𝑝𝑥 × 1600𝑝𝑥 . The 

cameras can operate at 1200 frames per second by reducing the resolution to 

1600𝑝𝑥 × 1600𝑝𝑥. The latter was used for this experiment with a maximum of 

3226 frames recorded per run of about 2.7 seconds at 1.2kHz. 

 

The cameras are (CMOS) with pixels size of 10 𝜇𝑚 and a dynamic range of 12 bits. The 

image format is Cine RAW. Connectivity is via gigabit ethernet for control and fast data 



 

downloads. In this chapter we study two different configurations. The main difference is 

the cameras angles with respect to the laser beam. 

 

The Scheimpflug conditions states that the lens plane, the image plane, and the object 

plane have to intersect in a common line for each camera. This can be achieved by tilting 

the camera relative to the lens with a so called Scheimpflug adapter, as can be seen in 

Figure III.4. It is an important criterion in order to have a sharp focus on the whole object 

plane. The cameras were equipped with macro Nikon 200 𝑚𝑚 lenses. The magnification 

was fixed to 𝑀 =  0.37 and the apperture at 𝑓# =  11 to be able to obain a good focus 

on the full depth of the volume of 6 𝑚𝑚. 

Table III-1 Characteristics of the camera and their spatial positions for both 

configurations tested in this chapter. 

Camera 𝑙𝑒𝑛𝑠(𝑚𝑚) M 𝑓# Config1 Config 2 

1 200 mm 0.37 11 +67.5° +45° 

2 200 mm 0.37 11 +45° +22.5° 

3 200 mm 0.37 11 −45° −22.5° 

4 200 mm 0.37 11 −67.5° −45° 

 

The cameras will only record particle images when the light source is on, and therefore 

all the cameras will record images at exactly the same instant. We use a Quantronix 

Darwin duo Q-switch Nd:YLF laser that provides green light at a wavelength of 527𝑛𝑚 

and for frequency from 1 to 10𝑘𝐻𝑧 with maximum 25 𝑚𝐽/𝑝𝑢𝑙𝑠𝑒 or 50𝑊. 

 

 
 

Figure III.4 Positions of laser beam and cameras to the SWT experiment. 

As presented in Figure III.4, the cameras are placed in forward scattering positions to 

optimize the particle intensity signal for the same laser power and camera lens aperture 

than for backward scattering. For mixed forward and backward scattering setup, we 

would need to send the laser beam back using a mirror so that each camera get the same 

signal, one way the laser in forward scattering and the other way in backward scattering. 
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The propagation of the laser beam through the 1𝑚 radius of the experiment reduces 

energy, and one should tune the laser strictly parallel for at least more than 1 m. 

III.2.2 Field of view 

An optical system (see Figure III.4) made by 4 lenses allow us to obtain an illuminated 

volume of 45 × 45 × 6 𝑚𝑚3. The first two lenses represent a telescope. We use a 

Galilean telescope which consists of negative spherical lens and positive spherical lens 

separated by the sum of their focal lengths. Since one of the lenses is negative, the 

separation distance between the two lenses is short (see Figure III.5). This telescope gives 

us the radius of the laser beam, 𝑟2 = 11𝑚𝑚 (beam of 22 𝑚𝑚 diameter). They are 

positioned just after the exit of the beam from the laser cover. Then, two mirrors were 

used to align the laser beam with the experiment along the optical path as presented in 

Figure III.5. A third lens, a cylindrical diverging one, is placed to open the beam 

vertically. It is followed by a vertical slit to cut the border of the beam in order to optimize 

the energy distribution of the beam as close as possible to a top hat profile from a gaussian 

shape. After the slit, we place a convergent cylindrical lens at 205𝑚𝑚 from the previous 

one. The convergent lens makes the beam slightly diverging with a radius at output 𝑟3 =
23 𝑚𝑚 (laser beam of 46 mm height) as presented in the sketch of Figure III.6. In this 

direction, the beam was tuned slightly diverging as no focal lens above 300 mm was 

available to retain only the high energy center part of the laser to get uniform light 

distribution in the full height of the volume. The laser beam is finally cut to 6𝑚𝑚 

thickness by a horizontal slit (again only the central part of the beam is conserved to 

obtain quasi top hat profile). The beam is sent to the SWT and reaches the center of the 

volume passing through glass and water. Finally, the beam exits from the other side of 

the experimental bench through a glass window. A mirror is fixed to reflect light to the 

ground in a bucket full of water to dump the energy of the laser for security purposes. 

 

 

Figure III.5 A photograph of the optical configuration for SWT.  



 

 

 

Figure III.6 (Top) side view. (Bottom) top view of a sketch of the optical system used 

to create the desired laser beam. 

 

III.2.3 Calibration of cameras  

The calibration of the system is carried out using the recorded images of a calibration 

plate. We open the upper template of the SWT, and we place the calibration plate in the 

center of the volume as presented in Figure III.3. During positioning, a particular attention 

is paid to verify the alignment between the laser beam and the calibration plate. 

 

The known geometry of the calibration plate allows the mapping of the physical space to 

the image plane with projection functions. The model used is a polynomial model (see 

section II.2.4). The application of a calibration correction (Volume-Self-Calibration) 

between each acquisition is important to calibrate the cameras to the images of the 

particles. The correction procedure is explained in detail in section II.2.5 Volume self-

calibration. This correction leads to an average error in the 8 × 8 × 3 subvolumes of less 

than 0.02 𝑝𝑖𝑥𝑒𝑙𝑠 and maximum of 0.2 𝑝𝑖𝑥𝑒𝑙𝑠. 

 

Figure III.7 Two levels 058-5 Lavision 3D calibration plate.  
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The calibration plate used for all experiments in this thesis is presented in the Figure III.7. 

It is a two-level double-sided 3D Calibration Plate provided by Lavision of size of 

58 × 58 𝑚𝑚 and with a level separation of 1𝑚𝑚. The separation of the round markers 

are 5 by 5 mm. 

III.3 First cameras configuration 

The primary objective of this first testing is to assess our setup optical behavior and its 

impact on STB results. For this configuration we use 4 cameras spatially aligned at angles 

of ±45 and ±67.5 degrees around the axis of the laser beam. According to the Mie theory 

(section II.2.2.2) we see that there is a factor of around 3 − 4  lower for the light scattered 

between a point of view at an angle of 67.5 compared to 45 degrees (for better 

understanding check Figure III.13). This factor increases the overall mean intensity of the 

cameras at 45° by a factor of two compared to cameras at 67.5°. Examples of particles 

images for these cameras are presented in Figure III.8 where the 𝑐𝑜𝑙𝑜𝑟𝑏𝑎𝑟 is the intensity 

in counts. Camera 2 and 3 that are at angles of ± 45° have a mean intensity of 150 𝑐𝑜𝑢𝑛𝑡𝑠 

compared to 75 𝑐𝑜𝑢𝑛𝑡𝑠 for cameras at ±67.5°. 

III.3.1 Seeding particles used for this configuration 

We utilize the same particles that were used on the VK2 (Debue et al., 2018) & (Valori 

et al., 2021). The particles are from Lavision. They are glass hollow spheres with diameter 

ranging from minimum 1 to maximum 30 𝜇𝑚, with the average of 10 𝜇𝑚 (Distribution 

of the particles size is presented in Figure III.9). Their density is 1.1𝑔/𝑐𝑚3. The choice 

of these particles was based on the image quality obtained during the little Von Karman 

experiment (VK2), as well as the fact that they were cheap and easy to obtain. 

III.3.2 Particles Images quality  

During particles images acquisition, we realized that we needed to increase the laser 

energy to higher levels than in the VK2 experiment (Debue et al, 2018) due to the longer 

distance that the laser beam had to travel through the radius of SWT (𝑅𝑆𝑊𝑇 = 50𝑐𝑚) 

compared to VK2 (𝑅𝑉𝐾2 = 10𝑐𝑚) and mainly because we have enlarged more the laser 

beam to be closer to a top hat profile. We also noticed that the background noise has 

increased (more than VK2) to the point where even the smallest impurities in the water 

could be seen (down to the minerals of the water used). Figure III.8 shows that when the 

threshold is set to 100 counts, we can only see a few particles for Cam1 and Cam4 because 

of the elevated background noise level. Also, the intensity difference is high between 

(Cam2 & Cam3) and (Cam1 & Cam 4). This could present an issue for the STB algorithm 

as we can only set one threshold for all cameras. In Chapter IV we will discuss in greater 

depth the choice of the optimal threshold for our experiment.  



 

 

Figure III.8 Examples of images from cameras 1 to 4 at a density of 0.05𝑝𝑝𝑝 with same 

color bar range (100 counts). Images are 106 × 106 pixels. 

On the other hand, all cameras show clusters of particles, probably linked to not well 

dissolved dry particles powder in water (the dry particle powder make some clusters due 

probably to static electricity which are hard to break, even if they were mixed hard in a 

small bottle with water before being injected in the experiment). The polydisperse particle 

size shown in Figure III.9 has an added effect on the particle images obtained on the four 

cameras. As scattered light is proportional to 𝑑𝑝2 (see Figure II.4, with 𝑑𝑝 the diameter 

of particle), cameras 1 and 4 (67.5° scattering angle) have less particles visible than 2 and 

3 as only the bigger ones are visible. So only the brightest ones will be reconstructed, and 

the smallest ones will contribute to noise. Increasing the laser power cannot solve the 

problem as then small impurities and dusts in water become visible in cameras 2 and 3 

when the small particles become visible in cameras 1 and 4. 

 

 

Figure III.9 Histogram distribution of Lavision HollowSpheres particles size with 

mean 𝑑𝑝 𝑜𝑓 9 − 13 𝜇𝑚 (source Lavision technical sheet) 

Moreover, as bigger particles scatter more light, their particle images will be larger due 

to the nonlinear digitalization of the camera chip. Indeed, the tail of the particle image 

intensity distribution is always cut by the camera background noise. So, particle image of 

smaller particles are more reduced than the bigger ones as the maximum intensity level 

is closer to the camera background noise than bigger ones. This raises concerns regarding 

the particle quality. The error in particle tracking is highly dependent on the particle 

image size in pixels. An analysis of STB results applied to synthetic images in Chapter 

IV shows that the quality in particles tracking strongly depends on the particle image 

diameter. 
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Further, we use a correlation-based method to detect the particles size on PIV images 

directly. From the raw images we take a window of 64 × 64 𝑝𝑖𝑥𝑒𝑙𝑠 and we correlate it 

with itself. Then the peak of this window is fitted with a 2D Gaussian equation. Finally, 

the diameter shown in the Figure III.10 is the module of 𝑑𝑝𝑥 & 𝑑𝑝𝑦 ( the particle diameter 

in x and y directions defined by 4 times the standard deviation in the corresponding 

direction of the gaussian distribution fit as defined by (J. M. Foucaut et al., 2004) for 100 

randomly selected images for each of the 4 cameras. In this figure we observe that the 

particle images for most cameras is higher than the recommended particle size. According 

to the researchers who are working on the STB development, we need to aim for a 

constant image size of around 2.4 pixels (see (Wieneke, 2013) and (Novara et al., 2016)). 

Hadad and Gurka, 2013 showed that the size of seeding particles had the largest influence 

on velocity and acceleration results in comparison to the other parameters in PTV in 

particular.  

Figure III.10 shows that camera 2 has higher particle image size comparing to the other 

cameras. This can also be noticed on the images of camera 2 in Figure III.8. This could 

be due to a variety of optical access-related factors like camera focus, lens aberrations 

etc; More attention should be paid to the focus of the cameras. 

 

 

Figure III.10 Mean particles size for 100 images and for all cameras. Particle size is 

estimated by fitting a 2D gaussian to the peak of correlation of one image by itself. 

Window size used for correlation is 64 × 64 pixels. 

The second feature of the particle image that we noticed during acquisition is that the 

software (Davis) was unable to detect higher concentrations than 0.02 𝑝𝑝𝑝, despite our 

efforts to increase the images density to 0.05 by adding more particles inside the volume. 

For this reason, we wanted to check the particles density using a simple code that detect 

the particles images. We use a MATLAB built in function to expand the image pixels 

using a user defined structuring element (here square 3 by 3 pixels element). The function 

is called “imdilate 3”. Then, we use a logical operation to find where the dilated image 

grey level is equal with the original image and where the original image is above a certain 

intensity threshold (in counts). The number of values equal to 1 in this logical image 

obtained is then the number of particle. The method is summarized as follow: 

 

 
3 For more information about the function “imdilate”:  https://fr.mathworks.com/help/images/ref/imdilate.html 

https://fr.mathworks.com/help/images/ref/imdilate.html


 

Finding image density 

1: loop on all Orig_image 
2:    New_Image = imdilate(Orig_image, [3 × 3]) Figure III.11 (b) 
3:   then  

4:    do a logical operation where: 
5:    Final_image=(New_image == Orig_image) 
6:    & 
7:    (Orig_image>= defined_Thresold) 
8:   then   
9:    find the illuminated pixels (x,y) in Final_image 
10:    Calculate the density from Final_image. 
11: end loop  

 

An example of each step of the procedure is presented in the Figure III.11. The first figure 

is the original image, (b) is the dilated image using “imdilate” where the particles in a 

3𝑝𝑥 × 3𝑝𝑥 window are expanded over the area of the window using the biggest intensity 

peak in the same window and (c) is the final image that is used to calculate the density of 

the image. We use this approach to have a common method of detection for all the images 

in this thesis. 

 

(a) (b) (c) 

   

Figure III.11 (a) Original_image. (b) New_image with pixels expanded using 

“imdilate” from Original_image and (c) result of the logical operation between 

Original_image and New_image for a specific threshold. 

 

The results are presented in the Figure III.12 for two camera images with physical density 

of 0.05𝑝𝑝𝑝 estimated from the weight of particles in a known volume of water supposing 

the camera is perpendicular to the FOV (field of view). Camera 1 and Camera 2 are at 

67.5° and 45° respectively with respect to the laser beam. The concentration detected for 

Camera 1 is 0.008𝑝𝑝𝑝 on average (equivalent to 23,000 particles per time step) for all 

time steps for a threshold of 70 counts and is 0.02 𝑝𝑝𝑝 for Camera 2. This result is 

compatible with the software's estimation. As a result, we're faced with the challenge of 

improving image quality. It will be shown in Sections III.5 that only a small fraction of 

the particles are tracked by the STB algorithm. 
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Figure III.12 Examples of images from cameras at a density of 0.05 𝑝𝑝𝑝 with a 

colorbar of 100 counts for camera 1 and 200 counts for camera 2;  𝑅ed plus signs (+) 

are the particles detected by our detection procedure used to compute the density of 

particles in the images. 

III.4 Second cameras configuration with monodisperse 

particles. 

A second test was performed with different position of the cameras. In the first 

configuration (previous section) the cameras were placed at angles of 45° & 67.5° with 

respect to the 𝑥 axis (the laser beam axis). Placing the cameras at angles of 22.5° & 45° 

might improve this setup because these angles get more scattered light as illustrated in 

Figure III.13. The particles we are using in this section are half the size of the particles 

used before. Light scattering is related to particle diameter squared (𝑑𝑝
2), by dividing the 

particle size by 2, one needs to increase the laser intensity by a factor of four to 

compensate and ensure that the particles are adequately illuminated. By placing the 

cameras at 22.5° 𝑎𝑛𝑑 45°, we increase the laser energy by 33% only compared to the 1st 

configuration. This was not an objective by itself, but we do know that the less energy we 

use, the less background noise we will have. 

 



 

 

 

Figure III.13 Mie polar chart of scattering lights for different particles size in function 

of the light wavelength. (Top) Mie chart for parallel polarization incident light. 

(Bottom) Mie chart for perpendicular polarization incident light. The position of 

cameras for the first and second configurations are indicated with pink and black dash 

lines respectively on the top figure.  

It is also possible to reduce background noise by improving the quality of the water used 

in the SWT. The noise level we observed in the previous section was most likely caused 

by a lack of water quality. For the first configuration, we used pure water, but we had to 

transport it in containers. This minor detail has probably affected the quality of the water. 

To bypass this difficulty, a specialized filtration system was installed close to the 

experiment. The filter used is Polyamide demineralizator E300 with 22𝐿 of resin that can 

filter up to 600𝐿 of water. The volume of our water tank is 200𝐿 so this filter can produce 

clean water for 3 full fillings. The system has a flow rate of 250𝐿/ℎ, it consists of a 

prefiltration unit of 5 𝜇𝑚, then 2 ion exchange columns by a mix of cationic plus anionic 

resins, finally a 1 𝜇𝑚 final post-filtration, the purpose of which is to avoid the possible 

release of resin. 

III.4.1 Improved seeding particles 

The second and most important concern, as mentioned before, is the particles properties. 

The particle size used in the first configuration is sparse, ranging from 3 to 30𝜇𝑚 as we 

see in the distribution of particles diameter of the Lavision HollowSpheres (Figure III.9). 

To lower the levels of background noise that may come from small particles (≤ 1 −
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3𝜇𝑚) as well as the number of particles clustering together, it was decided to invest in 

new particles with improved monodisperse properties. 

 

The particles used for this second configuration are Polystyrene particles with mean 

diameter of 𝑑𝑝 = 5.09 𝜇𝑚 from Spherotech, Reference: PP-50-10. These particles are 

composed of linear polystyrene without any cross-linking agent. They have sulfate groups 

on their surface. As a result, these particles are negatively charged which can help to 

avoid clustering problems. Microscopic photo of perfectly sphere-shaped polystyrene 

particles are shown in Figure III.14 to illustrate the uniformity of their size. Also, a very 

important advantage of these beads is that they are protein coated which can substantially 

increase their longevity specially in the water (according to Spherotech Inc). 

 

Further about these particles, they cannot tolerate organic solvents such as toluene, 

xylene, chloroform, methylene chloride, acetonitrile, dimethyl formamide or acetone. 

However, Spherotech polystyrene particles are stable in the presence of some water 

miscible solvents such as dimethyl sulfoxide and alcohols. 

 

  

Figure III.14 3 Sphero polystyrene 5.09 𝜇𝑚 diameter particles (Reference: PP-50-10) 

 

These beads are significantly more expensive than the Lavision one used before, 

nonetheless they are important to ensure better quality images and tracking results. They 

are shipped in a solution of 10 or 100 ml with 5% weight to volume ratio. Summary of 

their characteristics are included in the Table III-2. Also Figure III.15 is the histogram of 

particles number as function of their diameter. This plot shows a maximum particle size 

𝑑𝑝 = 7.5 𝜇𝑚 and a minimum of 𝑑𝑝 = 4.8 𝜇𝑚 (A tight size range of Spherotech 

polystyrene particles is maintained by monitoring size according to Spherotech). 

 

Table III-2: Properties of Spherotech PP-50-10 particles. 

Mean diameter  5.09 (𝜇𝑚) 

Particle shape Spherical 

Particle material Polystyrene  

Solution (𝑚𝑙) 10 or 100 (5% particles) 

Density  1.05 (𝑔/𝑐𝑚3) 

Price  160 € (10ml) or 1260 € (100ml) 

 



 

 

Figure III.15 Histogram distribution of Spherotech Polystyrene particles size with mean 

diameter 𝑜𝑓 5.09 𝜇𝑚. 

 

III.4.2 Impact of configuration changes to image quality 

For the second configuration we used the same optical setup as the one described in 

Figure III.5 but we increased laser energy by 33% compared to the first configuration to 

get sharp images of the particles on all cameras. Figure III.16 shows the difference in 

particle size recorded on images employing the new particles versus the old particles used 

for the first configuration. The size of the particles is clearly closer to the recommended 

size of 2.4 pixels as can be seen in Figure III.16 and closer to 2𝑝𝑥 estimated by the 

diffraction formula (II-6). Additionally, the size variations in each image are lower than 

the values reported previously. This proves that when it comes to clean and sharp images, 

good quality monodisperse particles are essential. The mean size computed on 3226 

images of the Spherothech polystyrene particles is 2.6 pixels for all cameras compared to 

3.2 pixels for Lavision HollowSphere particles. It should be noted that the particle image 

should have, in theory, the same size on the images since the magnification is the same 
(𝑀 = 0.37). However, since the particle size is estimated by the correlation method 

mentioned in section III.3, the estimated particle size depends on the signal of the 

autocorrelation. To put it another way, it is determined by the highest correlation peak at 

the center of the specified window which is influenced by the biggest particles inside the 

window (more intense so more weight). Because the Spherotech particles are 

monodispersed, the signal of particle image obtained is more homogeneous (less 

fluctuating) as shown in the Figure III.16(left). 
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Figure III.16 Particles size for 100 random images. (Left) Spherotech (second 

configuration). (Right) Lavision particles (first configuration). Particle size is 

estimated by fitting a 2D gaussian to the peak of correlation of one image by itself. 

Window size used is 64 × 64 pixels. 

From the Figure III.17, that represents a probability density function of the camera images 

(including background noise), one can notice a change of intensity as a belly shape 

appears for the camera images of the second configuration for an intensity of 500 to 1000 

counts (more visible for camera at 45°). This shape could be an indicator that we have 

more actual particle images, and the peak of low intensities (background noise) is 

comparable for all cameras (around 60 counts).  

Further, by comparing the cameras of the same angles, 1st Config 45° and 

2nd Config 45°, we notice that for intensities higher than ~1200 counts, the intensity for 

the 2nd configuration is lower than the 1st configuration. This implies that we have less 

big particles scattering high levels of light, hence it validates the narrow distribution 

claimed by the particles manufacturer. The two other lines are not comparable because of 

angle difference.  

 

 

Figure III.17 Comparison between PDFs of images intensity of Camera1 and Camera2 

for the first and second configurations. 



 

III.5 Shake the Box results for both configurations 

Aside from image quality, the properties of Shake the Box tracks are the most important 

to compare the two configurations. The major goal is to assess the tracking algorithm 

efficiency by comparing the results of these two configurations. To analyze the full 

potential of STB, we compare the results of several sets for one configuration. Cases were 

acquired at multiple images density 𝜙𝑖𝑚 increasing the spatial resolution as much as 

possible without compromising the track numbers and track length. Finally, the presence 

of erroneous tracks (ghost tracks) is an important factor and should be lessened as much 

as possible. In this section, we present STB results for three image densities 0.02, 0.05, 

and 0.07𝑝𝑝𝑝.  

 

Also, to look at the influence of the mean displacement of the particles, multiple 

displacements have been tested to check if we can improve the quality and quantity of 

the tracks. The displacement can be modified by skipping a specific number of images 

during the STB processing, 1dt represents the original sampling rate, 2dt is done by 

skipping one image and 3dt by skipping 2 images. The table below summarize the 

parameters of the 8 tests, 3 tests for first configuration and 5 for the second configuration. 

Higher densities have been tested for the second configuration as the property of the 

particles seems to improve the quality of the images. 

Table III-3: Total number of tests done for each configuration. 

𝜙𝑖𝑚 [𝑝𝑝𝑝] Displacement 1st configuration 2nd configuration 

 

0.02 1𝑑𝑡 
  

0.05 

1𝑑𝑡 
  

2𝑑𝑡 
  

3𝑑𝑡 -  
0.07 1𝑑𝑡 -  

The parameters of the Shake the Box were tweaked to maximize the number of tracked 

particles. Parameters were tested rigorously before choosing the perfect set, mainly 

particle count threshold, allowed triangulation error, shaking loops (see IPR section 

II.4.1) and velocity limits in order to get the tracks with the best properties. No image 

preprocessing was applied, and median filter was left off since the tests showed no visual 

spurious vectors (more info about median filter is included in section II.4.5). These tracks 

can be detected visually on the results by an incoherent displacement of particle compared 

to neighbors as well as illogical velocity magnitudes compared to maximum velocity of 

the majority of tracks. The volume needs to be carefully inspected before settling for a 

set of parameters. After testing, IPR parameters were left as default (4 inner and outer 

iteration loops) for both configurations. 

III.5.1 STB Comparison between the configurations. 

We present in Figure III.18 a 2D visualization of tracks for 1st and 2nd configurations of 

particles that are tracked with 10 time steps for each track plotted. Quick examination to 

these two snapshots of tracks shows a higher tracks density in the results of the second 
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configuration and for the same estimated image density (density is estimated by 

calculating the number of particles to put inside the volume to reach a specific 

concentration in particle per pixel 𝑝𝑝𝑝). 

 

Figure III.18 2D representations of tracks for 𝜙𝑖𝑚 = 0.05 𝑝𝑝𝑝 for (a) first 

configuration and (b) second configuration. Tracks are plotted with 10 time steps. Both 

are color coded with u component (velocity in x direction). 

 

Figure III.19 is the number of tracked particles per time steps for all cases presented in 

Table III-3. The difference is high between dotted blue line (1st Config) and solid green 

(2nd config) for an estimated image density of 0.05𝑝𝑝𝑝. Precisely, we are talking about 

an average of 1.9 × 104 and 9.0 × 104 tracked particles per time step, resulting to a ratio  

of tracked particles over particles inside the volume of 1.9 × 104/1.28 × 105  =  14% 

and 9.0 × 104/1.28 × 105 = 70% for the 1st and 2nd configurations respectively where 

1.28 × 105 is an estimation of the total number of particles in the measured volume and 

per time step for 0.05𝑝𝑝𝑝. For an estimated image density of 0.02 𝑝𝑝𝑝, the tracking ratio 

for the 2nd configuration is 90%  while for the 1st configuration the tracking ratio is only 

20%. The difference is outstanding between the results of these two configurations at 

least from the point of view of number of tracked particles. 

 

Looking at the histogram of track length for the 2nd configuration results in Figure III.20 

(ϕim = 0.02, 0.05 & 0.07𝑝𝑝𝑝) we surprisingly notice that the track length for 0.07𝑝𝑝𝑝 

and 0.02𝑝𝑝𝑝 are longer than 0.05𝑝𝑝𝑝, this result can be due to too many factors mostly 

related to the actual flow field (different runs for each concentration and statistics are not 

converged for one run of 2.6s). In other words, we cannot really conclude on the track 

length results. Similar remark can be said by comparing the 1st configuration results in 

Figure III.20.  

 

Finally, the spectrum of raw position (Figure III.21) data for track of minimum length of 

100 time steps is also tricky to analyze considering the unknown properties of the flow 

captured for each specific set, but it is noticeable that the energy at low frequencies 

increases by increasing the images density which could indicate that increasing the 𝑝𝑝𝑝 

increases the length of track in the large scale structures. We can consider that the plateau 

reached at high frequency can give an idea of the random error level. In the figure it is 

clear that the second configuration give systematically less noise than the first one and 

the error increases a little with the concentration due to the more difficult tracking (higher 

probability of overlapping particles or hidden particles by other). 

 



 

 

 

Figure III.19 Comparison of number of tracked particles per time step for a total of 

3226 images for different image densities 𝜙𝑖𝑚 = 0.02 & 0.05 𝑝𝑝𝑝 for 1st configuration 

and 𝜙𝑖𝑚 = 0.02, 0.05 & 0.07𝑝𝑝𝑝 for the 2nd configuration. All results showed are for 

a displacement of 1dt.  

 

Figure III.20 Histogram of track length as function of 𝜙𝑖𝑚 for displacement of 1dt.  
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Figure III.21 Power spectrum of raw positions of tracked particles for several images 

densities 𝜙𝑖𝑚  and for displacement of 1dt 

III.5.2 Effect of mean displacement. 

The mean particles displacement in pixel for all the cases at 1dt (original sampling) don’t 

exceed 2.8 pixels (Table III-4). The data could be oversampled, meaning the displacement 

between two snapshots are too close to track efficiently the next time step of a track. 

(Schanz et al., 2014b) used synthetic images with a mean displacement of 6𝑣𝑥 (and 

maximum displacement of 11𝑣𝑥) and they were able to detect 99,6% of particles even 

for a 𝜙𝑖𝑚 = 0.125 𝑝𝑝𝑝. This seems to indicate that a mean displacement around 6𝑣𝑥 is 

possibly suitable for STB algorithm.  

In the following, we check whether a displacement of 2𝑑𝑡 (mean displacement of around 

4.1 𝑡𝑜 4.8𝑣𝑥) and 3𝑑𝑡 (mean of around 7𝑣𝑥) could help to improve the STB outcome. 

Results from 1st Config 

  

Figure III.22 (Left) Histogram of track length for displacement of 1dt and 2dt. (Right) 

spectrum of raw positions for the same two cases. 



 

The first configuration in Figure III.22 (left) shows an improvement in track length by 

increasing mean displacement (case 2dt), with fewer small tracks and longer tracks that 

go up to 0.6𝑠, corresponding to particles being tracked over 350 images with 2dt as well 

as a slight increase in the number of tracked particles of 5% (Table III-4) (keep in mind 

that particles are always entering and leaving the volume). This slight increase in number 

of tracked particles could be explained by the sampling improvement. Indeed, the fit 

extrapolation created by the STB algorithm to predict the position of a particle in the 

following time step is better due to ratio of noise on particle positions of previous time 

steps over particle displacements which becomes smaller. The less systematic and 

random error on the past positions of a particle, the better is the estimated position of a 

new particle in a trajectory by the fit extrapolation. As a result, the rest of the tracks 

extrapolation procedure will be improved, giving more chance to the algorithm to track 

the particles at the next time step. 

 

Results from 2nd Config 

 

Figure III.23 Probability density function of displacement in pixels for the same run of 

the 2nd configuration but for several dt obtained by skipping images.  
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Figure III.24 Comparison of number of tracked particles per time step for different 

displacements 1𝑑𝑡, 2𝑑𝑡 𝑎𝑛𝑑 3𝑑𝑡 (2nd configuration). 

 

Figure III.25 Histogram of track length as function of displacement of 1dt, 2dt and 3dt. 



 

 

Figure III.26 Spectrum of raw positions for three displacements 1dt, 2dt and 3dt (2nd 

configuration). 

Figure III.25 confirms the findings of Figure III.22 (left). Both figures indicate a clear 

improvement of track length by increasing the time steps of the STB analysis. On the 

other hand, when comparing the 1dt and 2dt plots of tracked/identified particles in Figure 

III.25, it is remarkable to see that there are more tracked particles at each time step for 

the case of 2dt, owing to the fact that the tracks are longer, and hence more tracked 

particles are added at each time step. The average number of particles tracked per time 

step is 9.3 × 104 for 2𝑑𝑡 compared to 9.1 × 104 for 1𝑑𝑡. 
On the other hand, increasing the displacement to 3𝑑𝑡 shows a significant increase in the 

track length. However, particles number decreased slightly to 88 × 103 per time step, 

and we saw some spurious vectors are detected as shown in Figure III.27. These 

ghost/wrong tracks were not visible for the cases of 1dt and 2dt. Results could be 

improved for this specific case, but without having a reference it is difficult to tune the 

parameters of STB. This leads us however to suggest that the 2dt displacement is the best 

compromise. 
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Figure III.27 3D view of the tracks for the case of 𝜙𝑖𝑚 = 0.05𝑝𝑝𝑝 and displacement 

of 3dt between time step number 1137 and 1150. Regions with more spurious tracks 

are indicated with blue circles. 

 

III.6  Conclusion 

The experimental configurations presented in this chapter were essential to tune multiple 

parameters. What we learned is that water and particles quality are crucial for better Raw 

images. On the other hand, the second configuration of cameras seems to be the better 

solution, especially when using smaller particles because smaller particles require more 

laser energy. Hence the advantage of the second configuration that offers cameras closer 

to the direct incident light.  

 

Shake the box results were compared at different images densities to test the optimal 

spatial resolution that we can reach without compromising the quality of tracks. From 

table below, the ratio of particles tracked for 0.02𝑝𝑝𝑝 can reach 90%, 70% for 0.05𝑝𝑝𝑝 

and 55% for 0.07𝑝𝑝𝑝 . The sampling comparison suggests that an optimal displacement 

could be around 4 − 5 𝑝𝑥 (2dt in our case). But using this information alone it is not 

simple to estimate the optimal density and displacement for our application. For that 

reason, one can ask the following questions: What is the error on the particles position as 

function of different 𝑝𝑝𝑝 and STB parameters? What is the percentage of ghost 

particles/tracks? 

 

Conclusions are difficult to draw since we don’t have a reference with ground truth. 

Moreover, the code we are using (STB) is a black box with multiple parameters (allowed 

triangulation error, particles grey level threshold, IPR, median filter etc.) which happens 

to be very sensitive on the results. For this reason, we decide to go deeper in the 

investigation using synthetic PIV images generated using a solution obtained by a Direct 

Numerical Simulation (DNS) of the Navier-Stokes equations. 

 



 

Table III-4: Summary of the STB results of configurations 1 & 2. 

𝑪𝒂𝒔𝒆𝒔 𝟏𝒔𝒕 𝑪𝒐𝒏𝒇𝒊𝒈𝒖𝒓𝒂𝒕𝒊𝒐𝒏 𝟐𝒏𝒅 𝑪𝒐𝒏𝒇𝒊𝒈𝒖𝒓𝒂𝒕𝒊𝒐𝒏 
 

𝜙𝑖𝑚 [𝑝𝑝𝑝] 
 

0.02 0.05 0.02 0.05 0.07 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑝𝑒𝑟 𝑇𝑖𝑚𝑒 𝑆𝑡𝑒𝑝. 
× 103 

51 128 51 128 170 

1𝑑𝑡 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑡𝑟𝑎𝑐𝑘𝑒𝑑 

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 / 𝑇𝑖𝑚𝑒 𝑆𝑡𝑒𝑝 

× 103 

10 19 46 91 93 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑡𝑟𝑎𝑐𝑘  
𝑙𝑒𝑛𝑔𝑡ℎ [𝑻𝒊𝒎𝒆 𝑺𝒕𝒆𝒑] 

 

15 21 24 19 23 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓  
𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 [𝒑𝒙] 

 

1.5 2.1 2.2 2.4 2.8 

2𝑑𝑡 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑡𝑟𝑎𝑐𝑘𝑒𝑑 

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠/𝑇𝑖𝑚𝑒 𝑆𝑡𝑒𝑝 

× 103 
- 20 - 93 - 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑡𝑟𝑎𝑐𝑘  
𝑙𝑒𝑛𝑔𝑡ℎ [𝑻𝒊𝒎𝒆 𝑺𝒕𝒆𝒑] 

 
- 21 - 20 - 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓  
𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 [𝒑𝒙] 

 
- 4.1 - 4.8 - 

3𝑑𝑡 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑡𝑟𝑎𝑐𝑘𝑒𝑑 

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 /𝑇𝑖𝑚𝑒 𝑆𝑡𝑒𝑝 

× 103 
- - - 88 - 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑡𝑟𝑎𝑐𝑘  
𝑙𝑒𝑛𝑔𝑡ℎ [𝑻𝒊𝒎𝒆 𝑺𝒕𝒆𝒑] 

 
- - - 23 - 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓  
𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 [𝒑𝒙] 

 
- - - 7.2 - 
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List of symbols for this chapter: 

 

𝜙𝑖𝑚 Image density [𝑝𝑝𝑝]. 
 

 

𝑁𝐷𝑁𝑆 Number of DNS (reference) particles. 

 

 

𝑁𝑆𝑇𝐵 Number of STB tracked particles. 

 

 

𝑁𝑚𝑎𝑡𝑐ℎ Number of matchings from the tracked particles. 

 

 

𝑁𝑔ℎ Number of ghost particles. 

 

 

𝑛𝐷𝑁𝑆 Number of DNS (reference) tracks. 

 

 

𝑛𝑆𝑇𝐵 Number of STB tracks. 

 

 

𝑛𝑚𝑎𝑡𝑐ℎ Number of matching STB tracks. 

 

 

𝑛𝑔ℎ Number of STB ghost tracks. 

 

 

𝐺𝑇𝑀𝐿 Ghost tracks mean length. 

 

 

𝜓 Particles matching ratio of STB with DNS; 𝜓 =
𝑁𝑚𝑎𝑡𝑐ℎ

𝑁𝐷𝑁𝑆
. 

 

 

𝜀 Systematic position error between a reference 

particle and a matching particle.  

 

 

𝐶𝑇 Coverage of an STB track - The number of 

detected particles per one STB track compared 

to DNS track. 

 

 

𝑓𝑟 Fragmentation of an STB track - How many STB 

track(s) matching with one DNS track. 

 

 

𝑑𝑝 Mean particle image size [in 𝜇𝑚 𝑜𝑟 pixel]. 

 

 

𝑑𝑥𝐷𝑁𝑆 DNS spatial resolution. 

 

 

𝑑𝑥𝑒𝑥𝑝𝑒 Experiment spatial resolution =  Γ × 𝑑𝑥𝐷𝑁𝑆. Γ is 

a factor we use to control the transformation 

from DNS to experiment.  

 

 

Δ𝑃𝑇𝑉 Mean displacement of particles positions 

between two frames [𝑣𝑥]. 
 

 

 

 

 

 



 

IV.1 Introduction.  

In this section, we describe the principles of the synthetic PTV tests that we performed to 

assess the impact of several factors on the reconstruction quality of ‘Shake the box’. We 

will focus on the description of our image generating process, the STB tracking as well 

as quality evaluation metrics that we will consider. To this end a generator of synthetic 

tracks from DNS was used, allowing the creation of tracks at different seeding densities. 

Projections of such tracks on virtual cameras are used as input data for a STB analysis. 

All the tests were performed with a set of 250 images. 

 

The quality of results is assessed by means of statistical results: matching ratio 𝜓 with 

respect to the synthetics (ground truth) tracks 𝑛𝐷𝑁𝑆, systematic position error 𝜀, and the 

percentage of ghost particles. For this end, multiple tests were done using different sets 

of synthetic images. Most of these tests are defined by changing particles images 

densities, 𝜙𝑖𝑚, particles image diameter 𝑑𝑝 and by adding background noise to the 

synthetic images. Another parameter to be tested is the effect of the mean displacement, 

Δ𝑃𝑇𝑉. Original mean displacement is about 6𝑣𝑥, where all the 250 images are used. 

Increasing the mean displacement is done by skipping one image while processing in 

“DAVIS 10.1.0.56724” software which gives a mean displacement of 12𝑣𝑥. By Skipping 

two images we end up with a mean displacement of 18𝑣𝑥. On the other hand, we wanted 

to test a mean displacement that is close to the ones of the configurations of Chapter III. 

For this, intermediate particles positions were interpolated by spline interpolation to 

create a set of 500 images and mean displacement of 3𝑣𝑥. Another very important 

parameter is the particle size of the images that can be modified by changing the point 

spread function (PSF) (section IV.3.2) of the particles images which increases the 

diffraction spot of the particle. Three different particles images sizes were tested with 

mean size of 𝑑𝑝 = 2.4𝑝𝑥, 3.8𝑝𝑥 and 4.8𝑝𝑥. A summary table of the test to be performed 

are provided in the Table IV-1 for four particles densities ranging from 0.01𝑝𝑝𝑝 

to 0.07𝑝𝑝𝑝. We did not push the density further in this section as it is already challenging 

for the actual experiments to exceed 0.05 𝑝𝑝𝑝 as we saw in Chapter III.  

 

The difference of this study to its counterpart found in the bibliography is the fact that we 

apply STB to synthetic images as if they were real PIV images recorded by the cameras  

(DNS of turbulent flow as input for particle positions and synthetic calibration images 

were generated). Then, we follow all the steps of STB processing from the calibration 

process to volume self-calibration. The studies of (Schanz et al., 2014a) & (Schanz et al., 

2016b) are rather an assessment of the STB algorithm assuming a perfect calibration and 

self-calibration results which can explain the difference in outcomes between our results 

and their results. 

Table IV-1: Experimental parameters tested on synthetic images. 

𝜙𝑖𝑚 [𝑝𝑝𝑝] Noise Displacement Particle size 

  0.5𝑑𝑡 1𝑑𝑡 2𝑑𝑡 3𝑑𝑡 2.4 𝑝𝑥 3.8 𝑝𝑥 4.8 𝑝𝑥 
0.01  -    -  - 

0.03 - -    -  - 

0.05     - -   

0.07  -  - -   - 
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IV.2 Description of the DNS used to create synthetic 

images. 

Synthetic images were created using Lagrangian positions and velocity fields from a 

Direct Numerical Simulation (DNS) of the Navier-Stokes equations solved with a pseudo 

spectral code. 

 

The DNS is forced with Taylor Green vortex integrated on a triply periodic domain using 

a pseudo spectral code with a 2𝑛𝑑 order Runge-Kutta scheme with a time step of Δ𝑡𝐷𝑁𝑆 =
0.001. Up to 60 millions particles are integrated using 2𝑛𝑑 order Runge-Kutta scheme 

associated to a tri-linear interpolation of the velocity at the position of the particles. The 

position of the particles is saved every 4 time steps (𝛿𝑡𝐷𝑁𝑆 = 0.004). The simulation was 

performed on a 7683grid in physical space and a 2 3⁄  rule is used for the desaliasing.  

Table IV-2: DNS parameters used for creating PIV images 

Space discretization 𝑑𝑥𝐷𝑁𝑆 = 2𝜋/768 𝑑𝑥𝐷𝑁𝑆 = 0.00818 

Taylor Reynold number 𝑅𝑒𝜆 𝑅𝑒𝜆 = 68.9 

Integral scale  𝑙 =  0.829 

Kolmogorov length scale  𝜂𝑘
𝐷𝑁𝑆 = 0.02219  

DNS resolution   𝑘𝑚𝑎𝑥 × 𝜂𝑘
𝐷𝑁𝑆  =  5.7   

ΔtDNS 0.001  

𝛿𝑡𝐷𝑁𝑆 0.004  

 

The Table IV-2 provides the DNS parameters. The resolution of the DNS can be 

computed to be 5.7 or 𝑑𝑥𝐷𝑁𝑆/ 𝜂𝑘
𝐷𝑁𝑆  = 0.367 which means that the Kolmogorov scale is 

discretized with 3 meshes.  

 

For creating the synthetic tracks, we select a domain of the same size of the one in the 

experiment of Chapter III (45 × 45 × 6 𝑚𝑚3) projected on four cameras with same 

resolution of 1600 by 1600 pixels, with a given spatial resolution 𝜂𝑘
𝑒𝑥𝑝𝑒

 (𝜂𝑘
𝑒𝑥𝑝𝑒

 is the 

Kolmogorov scale in the synthetic experiment):  

 

𝜂𝑘
𝑒𝑥𝑝𝑒 = 𝜂𝑘

𝐷𝑁𝑆 × 𝛤 = 0.02219 × 0.0302 = 0.67𝑚𝑚  

And time conversion factor is simply: 

 𝛿𝑡𝐷𝑁𝑆 × 𝛤 

(IV-1) 

 

where Γ is defined as the transformation factor that transforms DNS coordinates to the 

desired experimental coordinates (𝜂𝑘
𝑒𝑥𝑝𝑒  was selected to match values that we will get on 

the large Von Karman experiment at CEA). Then we vary at the same time the particles 

number to solve as much as possible the Kolmogorov scale. For example, for synthetic 

PIV image density of 0.02𝑝𝑝𝑝 we can resolve one Kolmogorov scale and up to 

𝜂𝑘
𝑒𝑥𝑝𝑒/1.42 for a concentration of 0.05𝑝𝑝𝑝. This was calculated by defining the PTV 

resolution Δ𝑥
𝑃𝑇𝑉as the ratio of the volume of the experiment over the number of particles 

to the power 1/3 (for example for a concentration of 0.05𝑝𝑝𝑝, 𝜂𝑘
𝑒𝑥𝑝𝑒/ Δ𝑥

𝑃𝑇𝑉 = 1.42). 



 

The Lagrangian velocity spectrum of the DNS tracks is shown in Figure IV.1. The −2 

slope is typical for Lagrangian velocity spectra using the Kolmogorov hypothesis (see 

Yeung et al., 2006 and Tennekes and Lumley, 1972). 

 

Figure IV.1 Velocity spectrum of the Lagrangian DNS tracks used to create the 

synthetic tracks. 

IV.3 Simulator of PIV images 

In order to reproduce the second configuration discussed in Chapter III, the virtual 

cameras are distributed in forward scattering positions symmetrical to the 𝑥 axis. Cam1 

and Cam4 are positioned at an angle of ± 45° and Cam 2 and Cam3 are at an angle of 

± 22.5° with respect to the 𝑥 axis as shown in Figure IV.2. The size of the cameras image 

is 1600 × 1600 pixels as for the experiment. 
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Figure IV.2 Positioning of the cameras setup for synthetic experiment. Top right corner 

is the intersection of line of sights of all cameras limited by a volume of thickness 6mm. 

A pinhole model is assumed for the cameras, without Scheimpflug adapter for simplicity, 

(for a model that account for Scheimpflug angles check (Cornic et al., 2016)) and 

calibration is supposed to be perfectly known and to obey a pinhole model. The 

intersection of the line of sights from a pinhole model and with the 6 mm thick virtual 

light sheet creates the desired volume of investigation. 

IV.3.1 Cameras parameters  

The pinhole camera parameters are designed as follow; we start by calculating the 

projection of the focal length in both directions from: 

 

𝑓𝑥 = 𝑁𝑥/2/ 𝑡𝑎𝑛 (
𝐻𝑓𝑜𝑣

2
) 

𝑓𝑦 = 𝑁𝑦/2/ tan (
𝑉𝑓𝑜𝑣

2
) 

 

(IV-2) 

 

Where 𝑁𝑥 and 𝑁𝑦 are the image size in pixel. In our experiment we choose a squared 

image of 𝑁𝑥 = 𝑁𝑦 = 1600 𝑝𝑥 leading to equal angles of field of view in horizontal and 

vertical direction 𝐻𝑓𝑜𝑣 = 𝑉𝑓𝑜𝑣 with square pixel of size 𝑐 = 10𝜇𝑚 for all cameras. The 

angle 𝐻𝑓𝑜𝑣 and 𝑉𝑓𝑜𝑣 in the experiment was 4.58°. For the synthetic images they were 

fixed to same value. 

 

The intersection of the optical axis with the image plane is referred as the principal point 

with coordinates 𝑐𝑥 and 𝑐𝑦 in pixel units (see section II.2.4). In our case 𝑓𝑥 = 𝑓𝑦 =

2 × 104𝑝𝑥 and 𝑐𝑥 = 𝑐𝑦 = 800.5𝑝𝑥. 

The 3D world positions of the cameras are defined in the translation vector 𝑻 where the 

Y position is equal to zero since the position of cameras optical center is supposed to be 

in 𝑋, 𝑍 plane as shown in Figure IV.2.  



 

 

Copying our real experiment, virtual cameras are positioned with camera origin frame 𝐶 

at 0.74𝑚 from the center of the volume defining the physical origin (0,0,0). Hence, the 

magnification 𝑀 is equal to 0.37, so the magnification factor is equal to 
𝑐

𝑀
=

2.7 10−5𝑚/𝑝𝑥.  

IV.3.2 Synthetic particles 

We will consider a traditional approximation which considers the scattered light as 

proportional to the square of the particle physical diameter 𝑑𝑝 and determines the 

intensity of a particle by its diameter and its position in the light sheet only via: 

 

𝐸𝑝 ∝ 𝑑𝑝2𝑒
−

𝑧2

2𝜎𝐿𝑎𝑠𝑒𝑟
2

 

 

(IV-3) 

Assuming a Gaussian distribution of the laser beam with standard deviation of 

 σLaser (taken here as 22 mm as in the experiment of Chapter III). On the other hand, the 

particles physical diameters are randomly drawn in the [𝑚𝑖𝑛𝑑𝑝 , 𝑚𝑎𝑥𝑑𝑝 ] segment, 

according to a Gaussian distribution law with mean 𝑚𝑑𝑝 and standard deviation 𝜎𝑑𝑝, with 

𝑚𝑖𝑛𝑑𝑝 =  0.5 𝜇𝑚, 𝑚𝑎𝑥𝑑𝑝 =  2.5 𝜇𝑚 and 𝑚𝑑𝑝  =  1.5 𝜇𝑚. The distribution is 

controlled by 𝜎𝑑𝑝 = 0.3𝑝𝑥.  

 

Then for the final particle image intensities, we follow the work of (Champagnat et al., 

2014) where they developed an imaging model that reconstruct point-like particles rather 

than blobs. This model is better suited for particle tracking velocimetry.  

 

We consider a set of 𝑃 particles, each of which is denoted by index 𝑝 and located at 𝐗𝐩 

in 3D space. The imaging model is based on the concept of Point Spread Function (𝑃𝑆𝐹). 

Any source point located at 𝑿 in 3D-space has a geometrical image located at 𝐹(𝑿) in 

the focal plane of a given camera. Considering particles with intensity 𝐸𝑝 located at point 

𝑿𝒑 in 3D-space, the intensity distribution of the projected image is given by: 

 

𝐼(𝒙) = ∑ 𝐸𝑝. ℎ (𝑥 − 𝐹(𝑿𝒑))

𝑃

𝑝=1

 (IV-4) 

 

Where  𝒙 =  (𝑥 , 𝑦) denotes any location in the image plane, 𝐹 is the geometric 

projection function in the image (obtained with a pinhole model presented in section 

II.2.4), and ℎ the so-called 𝑃𝑆𝐹 which models the aperture limited diffraction and pixel 

integration. 

All the synthetic experiments performed in this chapter assume a Gaussian 𝑃𝑆𝐹 with 

standard deviation 𝜎𝑃𝑆𝐹: 
 

ℎ(𝑥, 𝑦) =
1

4
(𝑒𝑟𝑓 (

𝑥 + 0.5

√2 𝜎𝑃𝑆𝐹

) − 𝑒𝑟𝑓 (
𝑥 − 0.5

√2 𝜎𝑃𝑆𝐹

)) (IV-5) 
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                     × (𝑒𝑟𝑓 (
𝑦 + 0.5

√2 𝜎𝑃𝑆𝐹

) − 𝑒𝑟𝑓 (
𝑦 − 0.5

√2 𝜎𝑃𝑆𝐹

)). 

 

where erf(𝑥) =
2

√𝜋
× ∫ 𝑒−𝑡2

𝑑𝑡
𝑥

0
 is the error function used to integrate the Gaussian 

intensity distribution of a particle over a pixel. 

 

Synthetic images that were created with PSF made of a Gaussian with standard deviation 

𝜎𝑃𝑆𝐹 = 0.6, gives a mean particle image diameter of around 𝑑𝑝 = 3.8 𝑝𝑖𝑥𝑒𝑙𝑠. The PDF 

of the final intensity of the particles images is presented in dotted lines in the Figure IV.3 

(Bottom Right). The constant of proportionality in the particle intensity formula (IV-3) 

was adapted so that the mean particle diameter of 1.5 µm gives a grey level count of 50 

(8 bits images generated). The mean particle size for the synthetic particles, using the 

method described in section III.3.2, is measured at around 3.8 pixels (this value validates 

the estimation method used). This particle size is used for most of the tests done in this 

chapter. This size is slightly higher than for the real experiments as the mean diameter of 

SWT first configuration was 3.2 𝑝𝑥 and for the second configuration it was estimated to 

be 2.6 pixels. Smaller particles will be tested later in this chapter. 

IV.3.3 Background noise added 

The effect of image noise is simulated by adding to each pixel a random intensity from a 

normal distribution with variance 𝜎 and mean 𝜇. Two cases are studied starting from 

noise free ideal particle images [𝜎 = 0, 𝜇 = 0 ] to noisy images with  [𝜎 = 3 , 𝜇 = 5] (8 

bits images generated). These values were chosen to have a similar signal to noise ratio 

compared to the real experiment. In the graph at the bottom right of the Figure IV.3 the 

effect of the noise appears as a “bump” added to the intensity PDF. In this figure we can 

see that at the intensity of 20 counts, the PDFs of cameras with and without noise start to 

superpose since the maximum added noises intensity is around 20 counts. 

 



 

(a) (b) 

  
(c) (d) 

 
 

Figure IV.3 Particles images without noise (a) and with noise  [σ=3 ,μ=5] (b). 

Gaussian distribution of the added noise (c). PDF of images intensity for two cameras 

(cam 1 at 45° and Cam 2 at 22.5°) (d). Cameras with and without noise are represented 

with solid lines and dash lines respectively.  

IV.3.4 Particles coordinates & images density 

Seeding densities ranging from 2 to 15 particles per cubic millimeters corresponding to 

an effective image density of 0.01 𝑝𝑝𝑝 to 0.07 𝑝𝑝𝑝 were tested by selecting a certain 

number of the DNS tracks among the ones available randomly. The number of actual 

particles range approximately between 25,000 and 180,000 for each of the 250 time steps. 

Figure IV.4 shows a subset of a camera image for three seeding densities. 
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Figure IV.4. Zoom of camera images for 0.01, 0.05 and 0.07ppp (from left to right) for 

a mean particle size of 3.8 pixels. All images are with background noise added.  

We chose this range of concentration because we observed in Chapter III that exceeding 

0.05𝑝𝑝𝑝 in real experiments is difficult. Moreover, increasing the image density from 

0.05 to 0.07 did not result in a substantial increase in the number of particles detected, as 

shown in Table III-4 of Chapter III. 

The image density, 𝜙𝑖𝑚, in 𝑝𝑝𝑝 is calculated by taking the whole number of particles 

taken from DNS and then finding the number of particles existing in the volume. 

Subsequently, the 𝑝𝑝𝑝 is the number of particles divided by the number of pixels in the 

image = 1600 × 1600.  

 

Table IV-3: 𝑁𝐷𝑁𝑆, number of particles that are present in the volume seen by all 4 

cameras for a volume of thickness 6mm and the corresponding seeding densities 

𝜙𝑖𝑚 𝑜𝑓 0.01 ,0.03, 0.05 & 0.07 𝑝𝑝𝑝. 

Total particles taken 

from DNS  × 𝟏𝟎𝟔 

Number of Particles in 

volume × 𝟏𝟎𝟑 

Seeding density  

𝝓𝒊𝒎 [ppp]  𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
/𝑚𝑚3 

1.8 25.6 0.01 2 

5.6 76.8 0.03 6 

9.3 128  0.05 10 

13 179 0.07 15 

 

IV.3.5 Displacement range  

The original sampling rate for our study corresponds to 1dt resulting in a mean and 

maximum particle displacement of around 6 and 15 voxels respectively (equivalent to a 

velocity of 1.5 and 3.5 𝑚/𝑠 in the real experiment). The PDF of displacement is shown 

in Figure IV.5. Acquisition frequency used for STB is 8267 Hz with the scale factor  𝛤 

used to scale the DNS (see equation (IV-1)). The acquisition frequency is calculated as 

follow: 

 

𝑓𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 =
1

𝛿𝑡𝐷𝑁𝑆 ×  𝛤 
 (IV-6) 

 



 

 

Figure IV.5. PDF of displacement magnitude for 1dt increment. 

 

As mentioned in Table IV-4 the displacement tested are 

0.5𝑑𝑡 (3𝑣𝑥), 1𝑑𝑡 (6𝑣𝑥), 2𝑑𝑡 (12𝑣𝑥) and 3𝑑𝑡 (18𝑣𝑥). Displacement larger than 1dt are 

obtained by skipping images when performing STB in DAVIS software.  

IV.4 Reconstruction of tracks using STB 

IV.4.1 Synthetic calibration target 

For reconstruction, object-to-image correspondence are obtained from images of planar 

synthetic calibration target consisting of grid of a known pattern. We use a planar grid 

containing dots identical to the calibration target used in Chapter III. The calibration 

images are obtained by placing particles at the desired marker position in physical space 

and the same method as for generating the synthetic images of particles are used, using 

much larger standard deviation in the point spread function. Then extraction algorithms 

of Lavision software Davis like in real experiment recover the marker positions from the 

images of the plate and assign proper world (physical) coordinates to them. For the 

calibration tests described herein, grids of regularly spaced dots were used (see Figure 

IV.6). We are seeking to reconstruct a volume with thickness of 6𝑚𝑚 which here is 

accounted for by performing calibration using multiple calibration plate images at 

different volume depths starting from −5𝑚𝑚 to 10𝑚𝑚. 
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Figure IV.6 Synthetic calibration plate, L is the length of the plate  
𝐿 = 200𝑚𝑚. 𝑑𝑥 = 4.5𝑚𝑚 is the space between dots in x and y direction and 𝛥𝑍 =
5𝑚𝑚 is the spacing between planes created where total thickness calibrated is 3𝛥𝑧 =
15𝑚𝑚  

In the built-in algorithm of Lavision the dots are detected by cross-correlation with a 

similar-shaped template. Grid reconstruction is then performed on the recovered 

collection of dots using three user-positioned guide markers that roughly define the origin 

and first grid points along the major axes.  

To be coherent with the tests done on real experimental images of Chapter III we choose 

a 3rd order polynomial-based reconstruction method to map the camera. (Willert, 2006) 

concluded that the choice of camera model has only a minor influence on the estimate of 

the camera (pinhole) position. 

IV.4.2 Tracks reconstruction algorithm (STB) 

Shake the Box algorithm was applied to the particle images originating from synthetic 

tracks. For initialization, the first four time-steps were treated with IPR as follows: the 

original (default) allowed triangulation error was set to 0.5 𝑣𝑥 (unless determined 

otherwise) for all iterations. Each triangulation iteration was followed by 8 shake-

iterations, 4 outer loops for adding particles and 4 inner loops to refine (shake) particles 

positions in the resulting particle distributions. The minimum track length was set to 4 

time steps to trigger the algorithm to start predicting/shaking the particles. One parameter 

we have to tune carefully is the velocity limits which depends on the reference velocity 

and the image acquisition frequency you choose. All STB parameters are mentioned in 

the Table IV-4. 



 

Table IV-4: STB parameters applied to synthetic images. The parameters in bold are 

the parameters that are fixed in section IV.7. 

General parameters 

Threshold 

[𝑐𝑜𝑢𝑛𝑡𝑠] 

No Noise added 1 

With Noise added 10 − 15 − 20 − 25 − 30 

Triangulation [v𝑥] 0.3 − 0.4 − 0.5 − 0.6 − 0.7 

Iterative particle reconstruction (IPR) 

Adding particles (outer loop) 4 

Refine particle and position (inner loop) 4 

Shake particle position [v𝑥] 0.1 

Tracking 

Displacement  
0.5𝑑𝑡 1𝑑𝑡 2𝑑𝑡 3𝑑𝑡 

Velocity Limits [v𝑥] 10 20 40 60 

Median filter  off 

 

The reference tracks for a low seeding density case of 0.01 𝑝𝑝𝑝 are shown in Figure IV.7 

(top). Total number of reference tracks in the volume is 1.52 × 105. The 1.56 × 105 

corresponding detected tracks by STB for the same concentration are shown in the bottom 

figure. The number of STB detected tracks are higher than the tracks of DNS because of 

ghost tracks. Further, some of the good trajectories could be also fragmented to more than 

one track hence increasing the total number of detected tracks. 
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Figure IV.7. (Top) Reference particle tracks from the DNS (Bottom) Particle tracks 

reconstructed by STB. Overlay of 100 time-steps, color coded by particles 

displacement. Not all tracks are shown for visibility. 

IV.5 Matching STB tracks to DNS reference 

IV.5.1 Matching process 

In this section we discuss more in depth the novelty of this study where we used a 

matching procedure based not only on the spatial information of particles but also on the 

information provided by the tracks. 

The steps of the matching procedure are the following: 

 



 

Matching Algorithm 

1: loop on all particles 𝑃𝑖 of all DNS reference tracks 
2:  loop on all STB particle 𝑃𝑗 with same time and a position error less 

than a given value 𝑬𝒓𝒓𝒑𝒕 3: 

4:   Compute the mean position error ⟨𝐸𝑟𝑟⟩ of all particles of the STB 

tracks 𝑇𝑟(𝑃𝑗) having common times with reference DNS track 𝑇𝑟(𝑃𝑖).  5: 

6:   If 
 
 
 
 
 
 
then 
 

[ the mean position error ⟨𝐸𝑟𝑟⟩ is less than a given value 

“𝑬𝒓𝒓𝒕𝒓” and the evaluated STB track 𝑇𝑟(𝑃𝑗) not yet matched 

with a reference DNS track] 
or  
[the mean position error ⟨𝐸𝑟𝑟⟩ is less than the mean position 
error of the STB matching track already associated to the 
reference track 𝑇𝑟(𝑃𝑖)]  
 

match temporally the STB track 𝑇𝑟(𝑃𝑗) with the reference track 

𝑇𝑟(𝑃𝑖) 

7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16:   end if 

17:  end loop 

18: end loop 
 

 

Ghost particles are divided into two types. The first type is a ghost particle that is a part 

of STB track that matches with a DNS track. In the Figure IV.8 they are represented by 

the yellow asterisk marked by arrows. They spill out of the DNS track where the STB 

algorithm overestimate the actual track length. The number of these type of ghost 

particles is 𝑁𝑔ℎ,𝑡𝑟. The second type ghosts are the ghost particles that are part of a ghost 

track that does not have any reference match. The summation of all particles of these two 

types of ghosts is 𝑁𝑔ℎ.  

 

In addition, we define 𝑁𝐷𝑁𝑆 , 𝑁𝑆𝑇𝐵 & 𝑁𝑚𝑎𝑡𝑐ℎ, the number of particles of DNS, number of 

tracked particles of STB and number of STB particles matching with DNS. Consequently, 

the total number of tracked particles is 𝑁𝑆𝑇𝐵 = 𝑁𝑔ℎ + 𝑁𝑚𝑎𝑡𝑐ℎ .  
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Figure IV.8 Example of STB particles  (∗) tracked over multiple time steps to form an 

STB track. The track is matched by its DNS counterpart (𝒐). The STB track is 

overestimated by Shake the Box. These particles are considered as ghosts type 

"𝑔ℎ, 𝑡𝑟"(and their total number is 𝑁𝑔ℎ,𝑡𝑟 ). They don’t exist in the reference, but they 

are still part of a track that exists in the reference. The squared particles (∎) are type 

“𝑚𝑎𝑡𝑐ℎ. These are the type of particles used for comparison between DNS and STB.  

We examine using an example how the algorithm is able to match particles to a DNS 

track that is fragmented into two or more STB tracks as we see in the Figure IV.9. In this 

example we see that the red STB track is matched with its DNS reference (the blue circles) 

The deviation of this STB track from the DNS track is noticeable compared to the green 

track. This increase significantly the error calculated on the track. For that reason, when 

two particles of these two tracks should match with the same DNS particle, the matching 

algorithm chooses the particles from the green STB track (see Figure IV.9 bottom). 

Obviously the 4 red asterisk marked with arrows that does not match with DNS are 

considered as ghost, type “𝑔ℎ, 𝑡𝑟”. 

 

Finally, we analyzed the dependence of the matching results on the two parameters 𝐸𝑟𝑟𝑝𝑡 

and 𝐸𝑟𝑟𝑡𝑟 of the matching algorithm above. These two default errors were set as 

mentioned before to 1 & √2 𝑣𝑥  respectively as shown in Table IV-5. 



 

Table IV-5: Matching performance as function of search parameters, 𝐸𝑟𝑟𝑝𝑡 & 𝐸𝑟𝑟𝑡𝑟 , 

of the Matching algorithm. 

𝐸𝑟𝑟pt [𝑣𝑥] 𝐸𝑟𝑟tr [𝑣𝑥] Matching percentage  𝜀 ̅ [Pixel] 

1 √2 91.4% 0.2349 

0.6 √2 91.2% 0.2335 

0.3 √2 89.5% 0.2244 

0.6 0.6√2 88.1% 0.2169 

1.3 1.3√2 92.2 % 0.2408 

2 2√2 92.6 % 0.2457 

 

The default parameters of 𝐸𝑟𝑟𝑝𝑡 and 𝐸𝑟𝑟𝑡𝑟 (1 and √2 𝑣𝑥 respectively) gives a matching 

ratio of 91.4% and a mean error (i.e. position error between reference particle and 

matching particle) of 0.2349 𝑣𝑥. By decreasing the search area of the first particle from 

1 𝑣𝑥 to 0.6 𝑣𝑥 the matching ratio decreases to 89.5%. Decreasing both parameters to 

0.6  and 0.6√2 𝑣𝑥 reduces the matching ratio defined in equation (IV-7) by 3%. There is 

indeed not a great influence of these two parameters. This behavior proves that the 

matching procedure is well designed as the matching efficiency should be as little 

dependent on external parameters as possible. Even if we go up to 2 and 2√2 𝑣𝑥, the 

results remain comparable on the matching ratio and the mean error. This is the benefit 

of our matching algorithm which evaluate the best matching track and do not match 

particles of track one by one.  

 



106 IV.5 Matching STB tracks to DNS reference 

 

 

Figure IV.9 (Top) Example of a DNS reference track ( 𝑂 ) that is fragmented into two 

different STB tracks, (STB track 1 ☐ and STB track 2 ☐). (Bottom) a representation of 

the particles that are considered as matching particles (☐)(from both STB tracks). 

An important question is why we have ghost particles type N𝑔ℎ,tr and more importantly 

why we have ghost tracks that are completely wrong and does not match with any 

reference track? 

 



 

Even though 𝑁𝑔ℎ,tr are wrongfully tracked particles, they are at least part of a track that 

exists; on the other hand, our first assumption for the completely incorrect tracks 

represented by the tracks number 𝑛𝑔ℎ, is that they are the result of a wrong threshold 

setting where the STB algorithm tracks pixels from background noise or different wrong 

particles which by bad luck are close to predicted positions for some time steps. In section 

IV.6 we fixed all different parameters and changed the threshold to investigate in more 

details the effect of this parameter on the percentage of ghosts. 

IV.5.2 Evaluation metrics 

To evaluate the quality of the tracking results, each track identified by STB is matched 

with a synthetic track. In order to evaluate the quality of the STB algorithm, four 

evaluation parameters will be computed and analyzed in detail:  

 

Matching Ratio: The percentage of tracked particles that match with synthetic 

(reference) particles. The ratio is calculated for all tracks and all time steps.  

 

𝜓 =
𝑁𝐷𝑁𝑆

𝑁𝑚𝑎𝑡𝑐ℎ
 

 

(IV-7) 

Matching error: It is the systematic error between detected and synthetic matching 

particles. It is related to the calibration error as well as the triangulation and tracking 

(shaking and predicting) of the particles over time. The matching error is calculated for 

every matched particle for all time steps. 

 

𝜀(𝑖) = |𝒙𝑚𝑎𝑡𝑐ℎ(𝑖) − 𝒙𝐷𝑁𝑆(𝑖) | (IV-8) 

 

And the mean is calculated over all time steps: 

 

 𝜀 ̅  =
1

𝑁𝑚𝑎𝑡𝑐ℎ
∑ |𝒙𝑚𝑎𝑡𝑐ℎ(𝑖) − 𝒙𝐷𝑁𝑆(𝑖) |

 𝑁𝑚𝑎𝑡𝑐ℎ

𝑖=1

 (IV-9) 

 

Coverage index: For each DNS track, the coverage 𝐶𝑇 is the ratio between the total 

number of all STB particles matching with a reference DNS track and the length of this 

reference track. Maximum value of 𝐶𝑇 =1, represents a reference track that is fully 

detected by STB (even if several STB tracks are needed). 

 

Fragmentation index: This index measures the brokenness of a track. It is the number 

of STB matching tracks with a single reference track. 

 

In the Figure IV.10 (top right insert) we see an example of track where a part of it is 

detected by STB, exactly 13 positions tracked with respect to 21 actual DNS positions 

(𝐶𝑇 =62%). On the same figure an example of probability distribution function of 𝐶𝑇 at 

a concentration of 0.01𝑝𝑝𝑝 where 73% of the tracks are nearly fully recovered (𝐶𝑇 ≥
0.95). Additionally, only 4% of tracks are covered at 50% or less. Results of coverage 

for different image densities are included in the Figure IV.29 (a) and (b).  
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Figure IV.10 Probability distribution function of tracks coverage 𝐶𝑇 for a 

concentration 𝜙𝑖𝑚 = 0.01 𝑝𝑝𝑝. 𝐴n example of a track that is covered at 
13

21
 is shown in 

the top right insert. 

 

 

Figure IV.11 An example of a track that is fragmented into 3 different STB 

tracks;(𝑓𝑟 = 3). The 𝐷𝑁𝑆 track extends over 60 time steps. The length of STB track 

1 (+), STB track 2 (+) and 𝑆𝑇𝐵 𝑡𝑟𝑎𝑐𝑘 3 (+) are 22, 15 and 23 respectively. 

 



 

The fragmentation of a track , 𝑓𝑟 , quantifies the number of detected segments for a single 

original synthetic track. The larger 𝑓𝑟 is, the shorter will be the detected tracks. The new 

version of DAVIS 10.2.2 includes a track-connecting parameter, but it was not used for 

the time being to avoid overprocessing position data and to avoid using two different 

versions for the analysis done in his chapter. Figure IV.11 includes an example of a 

synthetic track fragmented to 3 different STB tracks. In this example, the red plus is a 

trajectory of particle being tracked over 22 time steps, the black plus signs is 15 time 

steps long and green plus signs is 23 time steps. The total number of detected particles is 

therefore 60. On the other hand, the actual DNS track is 65 time steps long. Note that 

matching ratio for this track (or 𝐶𝑇) is not 60/65 for this track, it is actually 57/65 because 

some particles of the three STB tracks overlap over the same DNS particle.  

 

In addition, we investigate why STB does not detect all the particles of a reference track 

as shown in the example of Figure IV.12 (left) where several time steps were not tracked. 

In order to answer to this question, we start to examine some characteristics of the cutoff 

points where the STB track comes to a pause before starting again after several time steps. 

In the Figure IV.12 (right) we find the nearest point from another DNS track, and we plot 

it. In this case, this nearest track (the black points) is at 0.2 voxels from the empty dark 

circles of DNS reference track in the Figure IV.12 (left). This may be a source of 

perturbation for STB. The projection of these two points (cut off and nearest) on the 

images plane shows that these two particles overlap on all 4 cameras (see Figure IV.13). 

This finding motivates the study of the optimal image density we can reach without 

having many fragmented tracks. 

 

 
 

Figure IV.12 (Left) Example of a DNS track fragmented to two different STB tracks 

where the STB matching track 1 stops at a cutoff point (highlighted in the right figure). 

Several time steps later, the DNS track is found by 𝑆𝑇𝐵 matching track 2. Additionally, 

a different DNS track passing by the nearest to cut off point is added.  
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Figure IV.13 Projection to camera images plane of the Cut off and nearest points 

shown in Figure IV.12 with a particle size found to be of 4 pixels (mean particle size of 

the set is 3.8 𝑝𝑥).  

IV.6 Optimization of ‘Shake the box’ parameters 

In this section, we will test the optimal grey level threshold to detect particle and allowed 

triangulation error parameters of the STB algorithm. Once optimized, these two factors 

will be fixed starting section IV.7. 

 

The velocities provided by the Trackfit included in the software are not very accurate as 

can be seen from the PSD of the velocities in Figure IV.14. Trackfit parameters of the 

Lavision Davis STB black box are limited to two: order of the polynomial and length of 

the polynomial track fit. Without a deep understanding of these parameters, and in order 

to evaluate only the properties of the STB algorithm, we decide to analyze exclusively 

the raw positions of tracked particles. 

 

Figure IV.14 Power spectral density of the velocities in x direction for two image 

densities 0.01 and 0.005 𝑝𝑝𝑝. The velocities are the output of the Trackfit included with 

the Davis software. 



 

 

IV.6.1 Effect of threshold 

First and foremost, we want to determine the best particle grey level threshold and 

allowed triangulation error parameters for our setup. The threshold corresponds to the 

minimum intensity of particles which are considered for the STB analysis. We start 

testing with different thresholds on the case with image density of 0.05 𝑝𝑝𝑝 with a 

displacement of 1𝑑𝑡 (corresponding to 6𝑣𝑥). The effect of thresholds is analyzed on 

noisy images only for the series mentioned in Table IV-1. The threshold is chosen within 

a range of 20 𝑐𝑜𝑢𝑛𝑡𝑠 (equivalent to around  3𝜎, with 𝜎 being the standard deviation of 

the background noise added to the synthetic images) since it is the maximum background 

noise added to the images. Results are presented in the Figure IV.15. 

 

 
 

Figure IV.15 (Left) Track length histogram as function of the threshold, for a given 

concentration 𝜙𝑖𝑚 = 0.05 𝑝𝑝𝑝  and a displacement of 1dt. (Right) Power spectral 

density of the same case. 

Figure IV.15 shows that a threshold of 10 counts may be too low because it leads to a 

large fraction of very small tracks less than twenty times steps as compared to the DNS. 

Moreover, the error on the raw positions is higher than for other thresholds tested. On the 

other hand, for an increasing threshold larger than 20, the histogram of track lengths starts 

to depart more from the DNS reference. In addition, as displayed in Figure IV.16, the 

number of particles detected for various thresholds agrees that a good threshold is 

between 15 and 20 counts. Finally, by looking at the PDF of errors, the peak of position 

error 𝜀 is maximum for a threshold of 15-20 counts indicating that less particles have 

much larger errors. For all these reasons we chose to continue the analysis by using a 

threshold of 20 𝑐𝑜𝑢𝑛𝑡𝑠 which corresponds to the maximum value of background noise 

added to the images 
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Figure IV.16 (Left) Comparison of the number of tracks detected as a function of time 

steps for different thresholds for a given concentration 𝜙𝑖𝑚 = 0.05 𝑝𝑝𝑝  and 

displacement of 1dt. (Right) Probability distribution function of position error 𝜀 in 

𝑣𝑜𝑥𝑒𝑙𝑠 for different thresholds. 

By increasing the threshold from 20 counts (maximum noise added to the particles 

images) to 30 counts which is larger than the noise added to the images, we find no 

significant decrease for ghost tracks which are 9000 and 7000 for a threshold of 15 counts 

and 30 counts respectively. Also, the overall ghost particles decrease slightly from 0.6% 

to 0.5%. 

Table IV-6: Comparison of detection track statistics as function of several thresholds 

for the case of 𝜙𝑖𝑚 = 0.05 𝑝𝑝𝑝 and a mean displacement of 1dt (corresponding to 

6𝑣𝑥). 

threshold 

[𝑐𝑜𝑢𝑛𝑡𝑠] 

𝑁𝑆𝑇𝐵 

× 106 

𝑁𝑚𝑎𝑡𝑐ℎ 

× 106 
𝜓 

 𝜀 ̅ 

[𝑣𝑥] 

𝑁𝑚𝑎𝑡𝑐ℎ 
𝜀<0.2

𝑁𝑚𝑎𝑡𝑐ℎ
 𝐶𝑇

̅̅ ̅ 
𝑁𝑔ℎ

𝑁𝑆𝑇𝐵
 

GTML 

[Time 
step] 

10 18.564 18.384 95.6 % 0.194  66.9% 0.84 1.4% 10 

20 18.602 18.492 96.5 % 0.192  68% 0.85 0.64% 12 

30 17.911  17.826 93.5 % 0.200  67% 0.80 0.5% 13 

40 16.147  15.964 83.3 % 0.223  60% 0.68 10% 17 

 

We conclude from the results of the Table IV-6 that a too low estimate or too high 

estimate of threshold increases the percentage of ghost particles. Especially a high 

threshold increases a great deal the percentage of ghost and the ghost tracks mean length 

(GTML). This is due to the reduction of the low intensity particles signal by an aggressive 

threshold. In that situation the STB algorithm may have problems differentiating the 

particles from different tracks as some particles can disappear at some time step by the 

high threshold when its intensity is close to it, hence, increasing ghost ratios. The 

threshold selected for the rest of the tests done in this chapter will be 20 counts.  



 

IV.6.2 Effect of allowed triangulation error 

Allowed triangulation error is more complicated to test as there is no clear guidelines. 

The default allowed triangulation error suggested by Lavision (0.5𝑣𝑥) was used on all 

the analysis of the SWT. We decided to test multiple allowed triangulation errors around 

this value in the range [0.3𝑣𝑥, 0.7𝑣𝑥]. 
 

   

Figure IV.17 (Left) Track length histogram as function of triangulation, for a given 

concentration 𝜙𝑖𝑚 = 0.05 𝑝𝑝𝑝  and displacement of 1dt (6vx). (Right) Number of 

tracks as function of time steps for the same cases. 

Figure IV.17 (left) shows that a low value of the allowed triangulation error 

(0.3𝑣𝑥, 0.4𝑣𝑥) strongly affect the track length and track number. These results drive us 

to question if we also underestimated the allowed triangulation error of 0.5 𝑣𝑥 that was 

used for SWT. On the other hand, an over estimation doesn’t look to affect a lot the 

deviation from DNS results. One must keep in mind that a higher allowed triangulation 

error significantly increases the STB processing time (from 1 hour 6 minutes for 0.5 𝑣𝑥 

to 1 hour 45 minutes for 0.7𝑣𝑥 for only 250 time steps). This value increases 

exponentially with data sets of thousands of images. 

 

 
 

Figure IV.18 (Left) Power spectrum distribution as function of allowed triangulation 

error for a given concentration 𝜙𝑖𝑚 of 0.05 𝑝𝑝𝑝  and displacement of 1dt. (Right) 

Probability distribution function of position error for the same cases. 
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By looking at the PSD of raw positions and PDF of errors Figure IV.18 we can safely 

conclude that triangulations of 0.5𝑣𝑥 to 0.7𝑣𝑥 are the best candidates for our application 

at a concentration of 0.05 𝑝𝑝𝑝 and a mean displacement of 6𝑣𝑥. We present more 

statistics in the Table IV-7. By increasing the triangulation from 0.5𝑣𝑥 to 0.7𝑣𝑥, the 

matching ratio increases by 2%. Additionally, the mean position error  𝜀 ̅ slightly 

decreases. Finally, the ratio of particles detected with position error less than 0.2𝑣𝑥 (6th 

column), increases with the allowed triangulation error parameter. 

 

Table IV-7: Comparison statistics between 0.5𝑣𝑥 & 0.7𝑣𝑥 using the case of 𝜙𝑖𝑚 =
0.05 𝑝𝑝𝑝 and a  𝑚𝑒𝑎𝑛 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 6𝑣𝑥. 

triangulation 

[𝑣𝑥] 

𝑁𝑆𝑇𝐵 

× 106 

𝑁𝑚𝑎𝑡𝑐ℎ 

× 106 
𝜓 

𝜀  ̅

[𝑣𝑥] 

𝑁𝑚𝑎𝑡𝑐ℎ 
𝜀<0.2

𝑁𝑚𝑎𝑡𝑐ℎ
 𝐶𝑇

̅̅ ̅ 
𝑁𝑔ℎ

𝑁𝑆𝑇𝐵
: 

0.5 18.602  18.492 96.5 % 0.192  68% 0.85 0.64% 
0.7 18.946 18.829  98.3 % 0.189 70.5% 0.90 0.66% 

 

Also it is worth to mention that during allowed triangulation error tests that were done on 

the data of VK2, it seemed that 0.5𝑣𝑥 is giving better results for the STB data (Ostovan 

et al., 2019) and (Cheminet et al., 2021) 

 

To conclude on this part and from this point forward, the allowed triangulation error will 

be set to a value of 0.5𝑣𝑥 for the rest the analysis even though it might seem that 0.7𝑣𝑥 

is better for our application and it should be considered for the processing of GVK data. 

IV.7 Optimization of experiment parameters 

IV.7.1 Optimal particle size 

In this subsection, we will focus on reproducing the effect of the particle size in synthetic 

images with noise. Increasing the size of particles introduces non negligible STB 

problems since it increases the chance of particles overlapping, hence increasing the 

number of undetected/ghost particles which make it more difficult to identify and track 

the particles. The effect is reproduced by varying the 𝜎𝑃𝑆𝐹  in the equation (IV-5). We 

tested three different 𝜎𝑃𝑆𝐹  of 0.3, 0.6 and 0.8𝑝𝑥. The case with 𝜎𝑃𝑆𝐹 of 0.3𝑝𝑥 was only 

tested with 0.07 𝑝𝑝𝑝 and 𝜎𝑃𝑆𝐹   of 0.8𝑝𝑥 was only tested with a concentration of 0.05 𝑝𝑝𝑝 

(see Table IV-1). 

 

Once again, we use the correlation-based method to estimate the mean diameter of the 

particles in each direction. For simplicity we will represent the mean diameter which is 

the average of both directions. For 𝜎𝑃𝑆𝐹  of 0.3, 0.6, and 0.8𝑝𝑥, the mean particle size is 

2.4𝑝𝑥, 3.8𝑝𝑥 and 4.8𝑝𝑥 respectively. Figure IV.19 represents a 30𝑝𝑥 × 30𝑝𝑥 zoom of 

images with image density of 0.05 𝑝𝑝𝑝 and for different particle sizes. The three 

snapshots correspond to the same physical space. The effect of the mean particle size is 

clear as the particles increase in size as well as they tend to blend more with the 

background noise. On the real experiments the particle size can be adjusted by the 

magnification and mainly by changing the lens aperture, but this is a tricky parameter to 



 

adjust since it affects the depth of field too. Additionally, a special attention should be 

made (during real experiment) to focusing the particles into crisp and defined images on 

the sensor where they are recorded. This is done using the focus adapter of the cameras 

lenses and tuning perfectly the Scheimpflug angle. The calibration and OTF check results 

with multiple iteration is necessary during the experimental tuning. 

 

   

Figure IV.19 Example of images with a mean particle size of 2.4𝑝𝑥, 3.8𝑝𝑥 and 4.8𝑝𝑥 

(from left to right respectively). The three images are at the same time step and 

represents the same portion of the image 30𝑝𝑥 × 30𝑝𝑥. 

𝟎. 𝟎𝟓 𝒑𝒑𝒑 case with noise: 

 

Using image density of 0.05𝑝𝑝𝑝 with added noise and a mean displacement of 6𝑣𝑥, we 

compare the STB results of two different cases with different particles diameter, 𝑑𝑝 =
3.8𝑝𝑥 and 4.8𝑝𝑥.  

  

Figure IV.20 (Left) Number of tracks as function of time for a concentration 𝜙𝑖𝑚 =
0.05 𝑝𝑝𝑝  and a displacement of 6vx for different 𝑑𝑝. (Right) Track length histogram 

as function of 𝑑𝑝  for the same cases  

From Figure IV.20 and Figure IV.21 we conclude that for image density of 0.05𝑝𝑝𝑝 the 

optimal particle size is definitely smaller than 3.8 pixels. The quantitative comparison is 

presented in Table IV-8. The number of tracked particles decreases considerably by 

increasing particles size. the matching ratio drops from  68% to 22.4%. For the mean 

particles size of 4.8𝑝𝑥 the tracks are shorter in length in general and mean fragmentation 

is 23% higher. Moreover, the mean position error is 150% higher. In addition, for particle 

diameter of 3.8 𝑝𝑥 only 6% of tracks are fragmented into 2 or more STB tracks, while 

for a particle diameter of 4.8𝑝𝑥, 23% of tracks are fragmented to at least two STB tracks.  
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Figure IV.21 (Left) Power spectral distribution in function of 𝑑𝑝, for a given 

concentration 𝜙𝑖𝑚 = 0.05 𝑝𝑝𝑝  and displacement of 1dt (6vx). (Right) Probability 

distribution function of position error 𝜀 for the same cases. 

 

Table IV-8: Comparison statistics between two different particle diameters for the case 

of 𝜙𝑖𝑚 = 0.05 𝑝𝑝𝑝 with a mean displacement of 6vx. 

𝑑𝑝 

[𝑝𝑥] 

𝑁𝑆𝑇𝐵 

× 106 

𝑁𝑚𝑎𝑡𝑐ℎ 

× 106 
𝜓 

𝜀  ̅

[𝑣𝑥] 

𝑁𝑚𝑎𝑡𝑐ℎ 
𝜀<0.2

𝑁𝑚𝑎𝑡𝑐ℎ
 𝐶𝑇

̅̅ ̅ 𝑓�̅� 
𝑁𝑔ℎ

𝑁𝑆𝑇𝐵
: 

3.8 18.602 18.492 96.5 % 0.192  68% 0.85 1.06 0.64% 
4.8 14.324  12.735  66.4% 0.326 22.4% 0.51 1.23 8.4% 

 

𝟎. 𝟎𝟕 𝒑𝒑𝒑 case with noise: 
 

For the cases with a higher concentration, Figure IV.22 shows that decreasing the particle 

size from 3.8 𝑝𝑥 to 2.4 𝑝𝑥 improved the STB performances. The number of tracks 

detected increased from 140,000 to 160,000, resulting in a matching ratio of 79 to 90% 

respectively. On the other hand, we can see a slight improvement for track lengths and 

PDF of errors. The PSD of position follows the reference DNS up to frequency of 𝑓 =
250𝐻𝑧 for a particle size of 2.4𝑝𝑥 whereas it starts to depart from the reference at 𝑓 =
150𝐻𝑧 for the case with mean particles size of 3.8𝑝𝑥. Moreover, the number of particles 

with a position error of less than 0.2 pixels increases by a factor of three as presented in 

Table IV-9 for particle image of 2.4 𝑝𝑥 compared to 3.8 𝑝𝑥. 

 



 

  

  

Figure IV.22 Effects of particle image size dp on (Top left) PSD of tracks position. (Top 

right) PDF of error. (Bottom left) Track length histogram. (Bottom right) number of 

tracks as function of time steps. All figures are for the same case of 𝜙𝑖𝑚 = 0.07 𝑝𝑝𝑝  
and displacement of 6vx. 

 

Table IV-9: Comparison statistics between particle image size of 2.4𝑝𝑥 & 3.8𝑝𝑥 for 

the case of 𝜙𝑖𝑚 = 0.07𝑝𝑝𝑝,𝑚𝑒𝑎𝑛 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 6𝑣𝑥. 

𝑑𝑝 

[𝑝𝑥] 

𝑁𝑆𝑇𝐵 

× 106 

𝑁𝑚𝑎𝑡𝑐ℎ 

× 106 
𝜓 

𝜀  ̅

[𝑣𝑥] 

𝑁𝑚𝑎𝑡𝑐ℎ 
𝜀<0.2

𝑁𝑚𝑎𝑡𝑐ℎ
 𝐶𝑇

̅̅ ̅ 𝑓�̅� 
𝑁𝑔ℎ

𝑁𝑆𝑇𝐵
: 

2.4 25.991  24.337 90.7 % 0.478  17% 0.76 1.11 6.3% 
3.8 22.785 21.223 79.1% 0.783 5.3% 0.59 1.10 6.1% 

 

Knowing the difficulty to track particles at such high concentration, the results seem to 

suggest that a particles size of 2.4 pixels is probably close to the optimum one for this 

concentration.  

 

The findings of this section confirm those of Chapter III, in which we found that smaller 

particle images produced better overall results. It is worth to mention that we didn’t try 

𝜎𝑃𝑆𝐹  of 0.3 (𝑑𝑝 of 2.4 𝑝𝑥) on 0.05𝑝𝑝𝑝 cases even though the STB results on 0.07𝑝𝑝𝑝 

case show that we can improve their quality. But when we look at the ratio of points with 

a position error less than 0.2𝑣𝑥, the highest value achieved for 0.07𝑝𝑝𝑝 is 17 %, or 

30 × 103 particles out of 180 × 103 possible per time step. On the other hand, the ratio 
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of position error less than 0.2𝑣𝑥 is 68% for a concentration of 𝜙𝑖𝑚 = 0.05𝑝𝑝𝑝 and 𝑑𝑝 =
3.8 𝑝𝑥, which is equivalent to 87 × 103 particles out of 128 × 103 per time step. What 

this tells us is that with arguably worse conditions for 0.05𝑝𝑝𝑝 (particle size of 3.8𝑝𝑥 as 

compared to 2.4𝑝𝑥 for 0.07 𝑝𝑝𝑝), the results are already better when it comes to detected 

particles with less systematic error on space positions. In addition, unlike the results of 

Figure IV.21 (left); the PSD position of the case 0.07 𝑝𝑝𝑝 for different particle sizes in 

Figure IV.22 (top left) is difficult to analyze. The error for 𝑑𝑝 of 2.4 𝑝𝑥 is less than error 

for 𝑑𝑝 of 3.8𝑝𝑥 for a frequency less than 600 Hz. The opposite is observed for high 

frequencies. This result leads us to question if the ideal image density is somewhere 

between 0.05 and 0.07𝑝𝑝𝑝. The next section will be devoted to the analysis of image 

density. This will be achieved by fixing all other parameters.  

IV.7.2 Optimal image density 𝜙𝑖𝑚. 

Particle concentration is an important factor for our PTV resolution. For our synthetic 

experiment based on DNS at 𝑅𝑒𝜆  =  70, Figure IV.23 shows that we need a particle 

concentration around 0.02𝑝𝑝𝑝  to resolve at least one Kolmogorov scale (we remind that 

the STB resolution is defined by 1/𝐶1/3 with 𝐶 the concentration of particles in the 

volume of 45 × 45 × 6 𝑚𝑚3). For a concentration of 0.05𝑝𝑝𝑝 we are able to resolve 

scales that are 43% smaller than Kolmogorov scale 𝜂𝑘
𝑒𝑥𝑝𝑒 for the DNS experiment.  

 

 

Figure IV.23 Ratio of Kolmogorov scale for the “DNS experiment” and PTV 

resolution as function of the image density. 

 

Effect of particles concentration for images without noise: 

First, we want to see the limits of STB for noise free images with particle size of 3.8 

pixels and a displacement of 1𝑑𝑡 (6𝑣𝑥). The different concentrations of particles are 

obtained by selecting a certain number of tracks randomly among the available ones in 

the DNS to generate the synthetic images. 



 

 

Figure IV.24 Power spectrum distribution of positions as a function of image density 

𝜙𝑖𝑚 for a given particle size of 3.8 pixels and a displacement of 6𝑣𝑥. 

Figure IV.24 shows clearly that the higher the image density, the higher the error on the 

raw positions (plateau at high frequencies represent nearly the noise which increases with 

increasing 𝜙𝑖𝑚). The question then is what maximum concentration can we reach without 

compromising too much the quality of results? When looking at the histograms of track 

length in Figure IV.25, the deviation from DNS is small until 0.05𝑝𝑝𝑝 and becomes more 

and more significant until it goes completely off at 0.07𝑝𝑝𝑝 with much more very short 

tracks. 

 

Figure IV.25 Track length histogram for several image densities for the case with a 

given particle size of 3.8 pixels and displacement of 6𝑣𝑥. The plots are shifted by one 

decade for visibility (reference plot is case 0.01ppp). 
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Impact of Noise for a given 𝝓𝒊𝒎 

We decided to study specifically the case of 0.05𝑝𝑝𝑝 as it seemed that it is the maximum 

image density for noise free images. The histogram and PSD of raw position in  Figure 

IV.26 show that the background noise added causes serious problems for STB compared 

to the case 0.01𝑝𝑝𝑝. 

  

Figure IV.26 (Left) Track length histogram for two image density with and without 

added noise. (Right) PSD for the same cases (𝜎𝑁𝑜𝑖𝑠𝑒 = 3, 𝜇 = 5). 

From the PDF of position errors (Figure IV.27), for three image density, we see that the 

peak noise for 0.05𝑝𝑝𝑝 is less than 0.2 pixels which is still acceptable. On the other hand, 

0.07𝑝𝑝𝑝 the PDF is shifted toward much higher error. 

 

Figure IV.27 Probability distribution function of error for different images density with 

background noise added (𝜎𝑁𝑜𝑖𝑠𝑒 = 3, 𝜇 = 5). 

From Table IV-10, the matching ratio drops drastically between 0.05𝑝𝑝𝑝 and 

0.07𝑝𝑝𝑝 from 96.5% to 79%. It is worth to recall that, the matching ratio for 0.07𝑝𝑝𝑝 

can be increased to 90% for a particle size of 2.4 𝑝𝑖𝑥𝑒𝑙 as we saw in the previous section. 

Nonetheless, the ratio of position error less than 0.2𝑣𝑥 is still far from the 0.05𝑝𝑝𝑝 case 

whether we compare it with images at 0.07 𝑝𝑝𝑝 with mean particle size equal 3.8 𝑝𝑥 or 

2.4𝑝𝑥. For 0.05 𝑝𝑝𝑝 we calculate the number of particles with an error less than 0.2𝑣𝑥, 



 

we found 87 × 103for a concentration of 0.05𝑝𝑝𝑝. This number drops to 30 × 103 for 

the 0.07𝑝𝑝𝑝 case. 

 

Additionally, number of tracks that are fully detected (see column number 7 in Table 

IV-10) is around 50 % for an image density of 0.05𝑝𝑝𝑝. In other words, a total of 400k 

track for all time steps are found and detected by STB. On the other hand, this ratio 

is 18% for the case of 0.07𝑝𝑝𝑝 for a 𝑑𝑝 of 3.8𝑝𝑥 and 29% for a 𝑑𝑝 of 2.4𝑝𝑥 meaning 

that in both cases the actual number of fully covered tracks is less than 4 × 105. One 

should keep in mind that these fully covered tracks can still be fragmented to two or more 

STB tracks. 

Table IV-10: Comparison statistics for images with background added noise (𝜎𝑁𝑜𝑖𝑠𝑒 =
3, 𝜇 = 5) in function of image density for particle size of 3.8px 

and 𝑚𝑒𝑎𝑛 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 6𝑣𝑥. 

𝜙𝑖𝑚 
𝑁𝑆𝑇𝐵 

× 106 
𝜓 

𝜀  ̅

[𝑣𝑥] 

𝑁𝑚𝑎𝑡𝑐ℎ 
𝜀<0.2

𝑁𝑚𝑎𝑡𝑐ℎ
 𝐶𝑇

̅̅ ̅ 
𝑛𝑚𝑎𝑡𝑐ℎ

𝑐𝑇=1 
 

𝑛𝑚𝑎𝑡𝑐ℎ
 𝑓�̅� 

𝑁𝑔ℎ

𝑁𝑆𝑇𝐵
: 

0.01 3.785 99.3% 0.059 99% 0.93 70% 1.002 0.05% 

0.05 18.602 96.5% 0.191 68% 0.85 46% 1.06 0.6% 

0.07 22.785 79.% 0.783 5.3% 0.59 18% 1.10 6% 

 

For all the reasons mentioned above, 0.05𝑝𝑝𝑝 seems to offer qualitatively and 

quantitatively acceptable results. A complete summary of some key parameters that 

compares the effect of images density with and without noise can be seen in Figure IV.28 

and Figure IV.29. 

 

In Figure IV.28 (bottom) we can see that matching ratio and mean position error for 

images without noise (full lines) respectively decreases and increases exponentially with 

images density, the optimal concentration seems to be between 0.04 and 0.05𝑝𝑝𝑝 for 

noise free images. Obviously for real experimental images, noise can come from different 

sources (background noise, focus, intensity difference etc). So, the question that surfaces 

is what is the limit of image density that can be used for images with noise? Second 

observation is the exponential decrease of matching ratio as well as the increase of 

position error for images with noise at density of 0.05𝑝𝑝𝑝 and higher (Figure IV.28 

(bottom)). Also, the particles number detected by STB start to be noticeably deviating 

from DNS one whether it is for the case with or without added background Noise (Figure 

IV.28 (top)). 

 

Additionally, the same observation can be made about 𝐶𝑇
̅̅ ̅ (Figure IV.29 (a)) and the 

fraction of ghost particles (Figure IV.29 (d)) where the slope increases gradually as the 

image density increases for both images with and without added background noise. The 

fraction of the fully recovered tracks by STB (𝐶𝑇 = 1) decreases from 55% for 𝜙𝑖𝑚 =
0.05𝑝𝑝𝑝 to less than 30% for 𝜙𝑖𝑚 = 0.07𝑝𝑝𝑝, meaning that 403 × 103 total tracks are 

fully covered by STB for 0.05𝑝𝑝𝑝 and 257 × 103 for image density of 0.07𝑝𝑝𝑝, when 

it should be higher by 40% ( the ratio of particles number between these two cases). 

Moreover, we have more ghost tracks for the 0.007𝑝𝑝𝑝 case (145 × 103) as compared 

to the 0.05𝑝𝑝𝑝 (27 × 103) for all time steps.  
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Figure IV.28 (Top) STB matching and reference DNS number of particles per time step 

for images with and without noise. (Bottom) Matching ratio in blue and average 

position error of matching particles in purple for images with and without noise. 

 

 

Figure IV.29 Statistics of the STB results as function of image density for images 

without noise (blue) and with noise (purple). (a) Mean of coverage (b) fraction of fully 

recovered tracks by STB (𝐶𝑇 = 1). (c) Average fragmentation (d) fraction of all ghost 

particles relative to the tracked particles. 

Since 0.05𝑝𝑝𝑝 seems optimal for our application, we try to find the distance between two 

particles (from center to center) for this concentration and for a mean particle diameter of 

(a) 

(d) (c) 

(b) 



 

3.8 pixels. The distance is calculated from the three dimensional distributions for each 

particle to all the other particles. We find that the mean distance between two particles is 

around 3𝑣𝑥 for this case. Given that the mean particle size is 3.8 pixels, this means that 

two particles overlap on average. Precisely, by making statistics on the particle images 

generated with image size of 3.8 pixels and concentration of 0.05ppp, we found 32 % of 

the 3D distribution of particles which overlaps over a quarter of other particle image and 

4% of particles overlaps at 50%. Figure IV.30 represent overlapping values as function 

of image densities. A comprehensive analysis for different particle sizes is provided by 

(Cierpka et al., 2013). 

 

Figure IV.30 Average mean distance of particles in 3D worlds in vx (blue line) and 

ratio of particles overlapping at 25% of their diameter in the camera images (red line).  

 

 

Figure IV.31 Ratio of the number of overlapping particle images versus the total 

number of particle images for different particle image diameters and particle image 

concentrations 𝜙𝑖𝑚 in particles per pixel. The right bottom plot shows the region for 

𝑑𝑝 ≤ 10px in logarithmic scale. Bottom figures extracted from (Cierpka et al., 2013). 
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IV.7.3 Intensity difference between cameras 

Another effect we found on the images from SWT is the intensity difference between 

cameras at different angles (check Figure III.8). The mean intensity of all images for 

cameras at ±22.5° is almost double as the one from cameras positioned at ±44.5°. We 

recreate this effect by multiplying the overall images intensity of images of second and 

third cameras by a factor of two, which is of course not totally similar as getting more 

light in real life experiment. The effect of energy difference between cameras has a clear 

effect on the statistics of tracks length and the PSD of particle positions. Figure IV.32 (b) 

shows a clear deviation from the reference DNS data. In addition, the PDF of errors 

shows, a similar behavior from the reference for  𝜀 < 1.5 𝑣𝑥 but more particles have a 

higher systematic error.   

 

As consequence, image preprocessing must be applied for the real images case, where a 

time series filter is applied to subtract the mean from the images. Additionally, the images 

are normalized to have similar background noise. For the current analysis we consider 

that all cameras receive the same amount of light from the illumination source. 

(𝒂) 

 

(𝒃) 

 



 

(𝒄) 

 

Figure IV.32 (a) Track length. (b) PSD of position and (c) PDF of error for two cases 

with Noise and reference intensity, and with Noise and modified intensity on cameras 

2 and 3. 

 

IV.7.4 Effect of displacement 

In this section the aim is to test the effect of average displacement between two 

consecutive time steps for the STB analysis to determine the sampling rate that should be 

tuned for the main experiment (GVK). We use synthetic images of 0.05ppp and particle 

image size of 3.8px. For this test, three time separations will be investigated: the original 

time sampling of 1dt corresponding to around 6𝑣𝑥 displacement, 2dt corresponding to 

12𝑣𝑥, and finally particles positions were interpolated by simple spline interpolation to 

create a 0.5dt case with an average displacement of 3𝑣𝑥. All figures presented in this 

subsection are for tracks of the same physical time length whatever the mean 

displacement value.  

 

A potential problem for the STB algorithm is slowly moving particles where the position 

accuracy of the involved particles is compromised due to the increased difficulty in the 

prediction phase of the algorithm, resulting in noisy tracks.  

 

In Figure IV.33 (a) we see clearly that a displacement of 2dt (12𝑣𝑥) is not optimal since 

the number of tracked particles is reduced. Hence the matching ratio decreased from 

96,5% to 88,9% for the 1dt and 2dt cases respectively. Additionally, the 2dt case leads to 

high percentage of ghost tracks.  

 

The 0.5dt case is comparable to the 1dt case of chapter 3 and seems to confirm the 

findings of the SWT experiment. In Chapter III we found that a displacement of around 

4.5𝑣𝑥 is better than a displacement less than 3𝑣𝑥. In this test on synthetic images, a 3𝑣x 

displacement (corresponding to 0.5 dt of the original 1dt sampling) leads to high positions 

errors as seen in the same Figure IV.33 (c). Also, the ghost ratio doubles, and ghost mean 

track length raises to 24 time steps (see Table IV-11). Furthermore, by visually looking 
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at the tracks for different image densities and multiple displacements, we see the 

evolution of spurious/ghost tracks for displacement larger than 2𝑑𝑡 (see Figure IV.34). 

 

(𝒂) 

 

(𝒃) 

 

(c) 

 

Figure IV.33 (a) Number of tracks. (b) PSD of position and (c) PDF of error for three 

cases 1dt 2dt & 0.5dt. 

 



 

Table IV-11: Comparison statistics for images with background added noise (𝜎𝑛𝑜𝑖𝑠𝑒 =
3, 𝜇 = 5) as function of particle displacement for particle image size of 3.8px and 

particle image concentration of 0.05ppp 

Displacement  𝜓 
𝜀  ̅

[𝑣𝑥]] 

𝑁𝑚𝑎𝑡𝑐ℎ 
𝜀<0.2

𝑁𝑚𝑎𝑡𝑐ℎ
 𝐶𝑇

̅̅ ̅ 
𝑛𝑚𝑎𝑡𝑐ℎ

𝑐𝑇=1 
 

𝑛𝑚𝑎𝑡𝑐ℎ
 𝑓�̅� 

𝑁𝑔ℎ

𝑁𝑆𝑇𝐵
: 

𝐺𝑀𝑇𝐿 

[TS] 

3𝑣𝑥 (0.5𝑑𝑡) 96.3% 0.35 31% 0.79 35% 1.17 1.3% 24 

6𝑣𝑥 (1𝑑𝑡) 96.5% 0.19 68% 0.85 46% 1.06 0.6% 12 

12𝑣𝑥 (2𝑑𝑡) 88.9% 0.26 36% 0.74 40% 1.05 5.1% 5 
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Figure IV.34 STB tracks for different displacement and images densities. 7 time steps 

only of all tracks presented in this figure are shown for visibility. 



 

IV.8 Error investigation  

For the error investigation, we will focus on the case of 𝜙𝑖𝑚 = 0.05 𝑝𝑝𝑝 with added noise 

and mean displacement of 6𝑣𝑥 (1𝑑𝑡). This case is arguably the best for our applicaltion 

on the GVK experiment. First we analyze the error as function of time steps and how it 

does evolve in time. Figure IV.35 (Bottom) that presents the mean error by time step, 

gives us insights into STB. The first 4 time steps are the IPR phase prior to STB phase 

where the method updates the coordinates and intensity parameters of particles with their 

tracks extrapolation as predictor. This explains the increasing mean error for time steps 2 

to 5. STB starts at time step number 5 where we can see the highest recorded mean error. 

Also we can see that the later time steps, from 220 to 250, have slightly more error, 

especially the last time step. In addition, in Figure IV.35 (top) we plot the PDF of errors 

for each time step. This time step number 5 leads to less particles with small errors and 

more particles with higher values of error. This is understandable considering that these 

particles are the first “tracked” particles. The error stabilizes after 10 to 20 time steps. 

This result shows that it is preferable to discard the first 20 time steps for correct statistics. 

For a set of 3226 images in our GVK experiment that should not be problematic. 

 

 

Figure IV.35 (Top) PDF of systematic error of all the points at a given time step (time 

step=1 to time step=30). (Bottom) The mean error ( 𝜀 ̅) of all points at a given time 

step and (left) for the first and (right) for last 30-time steps. Both plots are for the case 

of 𝜙𝑖𝑚 = 0.05 𝑝𝑝𝑝 with added noise and mean displacement of 6vx (1dt). 

 

It's also worth noting that one of IPR characteristics is that a particle is removed when its 

position is within one pixel of another particle (Wieneke, 2013). We confirm this feature 

by finding the distance between one particle to all other particles at one time step. We 

then plot the PDF of these distances between a particle and its nearest in voxel space at a 

given time step. The result is presented in Figure IV.36. This figure shows that STB tends 

to filter some of the particles that lies at a distance less than 2vx from another particle. 

This could be another explanation of why STB fails to find the remaining part of the track 

in Figure IV.12. In that example, the nearest particles to the “cut off point” is at 1. 28𝑣𝑥 
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from it, hence increasing the possibility that this particle was filtered by the STB 

algorithm. On the other hand, and since we are using the case which gave us the optimal 

results, we might introduce a criteria that could be helpful to detect the reliability of STB 

results. The criteria is the distance between two particles where it should represent a plot 

that, more or less, have similar properties to the figure below where the peak is at 9𝑣𝑥 

and standard deviation is 5𝑣𝑥. 

 

Figure IV.36 Comparison of PDFs of distances between a particle and its nearest in 

voxel space for the DNS and STB at Time step number 125 for the case of 𝜙𝑖𝑚 =
0.05 𝑝𝑝𝑝 with added noise and mean displacement of 6vx (1dt). 

Looking to the histograms of errors, the blue line in Figure IV.37 represents the histogram 

of error for 𝜙𝑖𝑚 = 0.01 & 𝜙𝑖𝑚 = 0.05𝑝𝑝𝑝 from left to right. The dashed red line 

represents the histogram of error for all matching points of a track minus the first, last 

and second last matching point of the same track. The idea is to see the contribution of 

the error of each of these points to the global histogram of errors. The last matching point 

of a track (as we saw the cut off point in Figure IV.12 ) is usually where an unknown 

source of perturbation affects the space positioning of it and leads to the end of the 

tracking. From Figure IV.37 we see that “Last match of track” has more contribution to 

the high error values. Also the 2nd last matching contributes to these errors. On the other 

hand the first match doesn’t seem to have a particular characteristic, besides having a 

lesser mean error. 

 

Furthermore, from Figure IV.37 (right of error histogram) we see a belly shape for 

0.6𝑣𝑥 < 𝜀 < 1.3𝑣𝑥 that start to form for images density of 0.05 𝑝𝑝𝑝. We investigate 

more these points to verify if they have a particular positioning in our volume or if they 

represent a specific range of displacements values. 



 

  

Figure IV.37 Histogram of systematic error ,𝜀, for: all matching point of a track (solid 

red line), first matching point of a track (black line), last match of a track (blue line), 

second last match of a track (green plot) and finally the histogram of error for all points 

matching in a track except the first, last and second last matching point in a track (red 

dotted line).  

First by looking at the PDF of coordinates in the volume for all time steps in Figure IV.38 

(top) we see that the error are mostly grouped in 𝑥 positive, 𝑧 negative and distributed 

across 𝑦 coordinates but mostly in 𝑦 positive. The same information could be deduced 

from the distribution of particles at the single time step (Time step number 125) in Figure 

IV.38 (bottom). 

Finally in the Table IV-12 we see that the last match of a particle in a track contributes 

the most to the noise on the position of the particles. The table represents the percentage 

of particles with error less than 0.2 vx. Last match has the least percentage of particles 

with low error. Eliminating the last match of a track should reduce the noise on the real 

experiment where we expect higher magnitude of errors due to multiple experimental 

factors that contribute to the position uncertainty of a particle.  
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Figure IV.38 (Top) PDF coordinates for STB particles at all time steps 

( 𝑓𝑟𝑜𝑚 1 to 250), the dotted vertical lines represent the boundaries of the volume. 

(Bottom) Is the distribution of particles in the volume color coded module of 𝜀 [vx] at 

time step number 125 for clarity. Both cases are for the case of 𝜙𝑖𝑚 = 0.05 𝑝𝑝𝑝 with 

added noise and mean displacement of 6vx (1dt). 

 

Table IV-12: Percentage of particles with systematic error less than 0.2𝑣𝑥  (
𝑁𝑚𝑎𝑡𝑐ℎ 

𝜀<0.2

𝑁𝑚𝑎𝑡𝑐ℎ
) 

as function of their position in a track and for different images densities 

Percentage of particles with error less than 0.2 vx  

 0.01 [ppp] 0.05 [ppp] 0.07 [ppp] 

All match tracks 99% 68.3% 6.05% 
First match of 

tracks 
99.01% 70.89% 1.95% 

Last match of 

tracks 
97.2% 56.4% 2.5% 

second last match 

of tracks 
97.3% 58.1% 3.07% 

All match tracks 

except (1st , last & 

2nd last) 

99.3% 69.02% 6.4% 

 

On the other hand the joint PDF of systematic error in 𝑥, 𝑦, 𝑧 directions as function of the 

the displacement [𝑣𝑥] in Figure IV.39 shows that most of errors in y direction are related 

to small diplacements. This result is somehow compatible with our findings in Chapter 



 

III where we saw that a mean displacement of around 2.8 vx was oversampled. A 

displacement of 2dt (around 4.5 vx) was optimal for application on the 2nd configuration. 

 

   

Figure IV.39 Joint PDF of error 𝜀𝑥, 𝜀𝑦, & 𝜀𝑧 with displacement [𝑣𝑥] for all time steps 

combined for the case of 𝜙𝑖𝑚 = 0.05 𝑝𝑝𝑝 with added noise and mean displacement of 

6vx (1dt). 

 

IV.9 Ghost tracks characteristics? 

Even if the ghost level is remarkably low (0.6% for 𝜙𝑖𝑚 = 0.05 𝑝𝑝𝑝 with background 

noise and for a displacement of 6𝑣𝑥 (see Table IV-10 )), it is however important to try to 

remove these last residues. Such unphysical tracks leads to wrong velocity data 

potentially biasing velocity and acceleration statistics. The first characteristic we find is 

the fact that ghost tracks have a higher displacement than the matching points of STB. 

The peak displacement of matching points is somewhere around 5𝑣𝑥 while the peak of 

displacement of ghost particles is around 10𝑣𝑥. This can be explained by the fact that 

ghost tracks are formed by unphysical particles. For a moderate density of particles, these 

unphysical particles forming ghosts are not as dense as the real particles. This means that 

a larger displacement is expected to form these ghost tracks, probably linked with the 

extrapolation of tracks to predict positions at next time step of STB algorithm. 

 

Figure IV.40 PDF plot of displacement of STB ghost particles compared to STB 

matching particles for the case of 𝜙𝑖𝑚=0.05 ppp with added noise and mean 

displacement of 6vx (1dt). 
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Additionally, we have calculated the mean displacement of ghost particles for different 

image densities, we found 8.2𝑣𝑥, 9𝑣𝑥, 10𝑣𝑥 and 11𝑣𝑥 for image densities of 

0.01, 0.03, 0.05 and 0.07 𝑝𝑝𝑝 respectively (where the mean displacement of all densities 

for all particles is 6 𝑣𝑥). The particles in ghost tracks always have a mean displacement 

larger than the matching particles with DNS. 

 

On the other hand, we plot the PDFs of ghost tracks length, it is remarkable to see some 

of ghost tracks (completely wrong) can be tracked up to 250 time steps which is the 

maximum number of time steps (see Figure IV.41). The minimum ghost tracks length is 

5 since IPR deletes tracks that are smaller than 4 time steps. 

 

Finally, by looking to a comparison between ghost tracks length, we remark in Figure 

IV.41 that by increasing the image densities we have less small ghost tracks. On the other 

hand, we have more ‘illogical’ tracks that are longer. 

  

Figure IV.41 PDF plot of ghost tracks length in function of image density 𝜙𝑖𝑚. 

 

IV.10 Summary & Conclusion 

A performance assessment of the iterative STB approach is carried out by means of the 

analysis of synthetic experiments. The availability of ground-truth particle and flow fields 

allows for the quantification of measurement errors in terms of position and the evaluation 

of the number of actual particles identified by STB. Evaluation metrics are provided to 

qualify STB parameters as well as experimental parameters (grey level threshold, allowed 

triangulation error, seeding density, image noise and particle displacement). Finally, 

some insights are given concerning errors and ghost tracks.  

 

Results show the capability of STB to detect up to 99% of particles for an image density 

of 0.01ppp. This matching ratio decreases slightly to 97% for images density of 0.05 𝑝𝑝𝑝. 

But the mean position error increases with a factor of 4 (from 0.051 𝑣𝑥 to 0.194 𝑣𝑥 for 

𝜙𝑖𝑚 = 0.01 𝑝𝑝𝑝 𝑡𝑜 0.05 𝑝𝑝𝑝 respectively). From these results we conclude that image 

density choice is very important. For our application and using a mean particle size of 

3.8𝑝𝑥, it seems that we pushed the density thresholds to its limits. The average distance 

between two particles in 3D space was found to be 3vx (for 0.005ppp and particle size of 



 

3.8px). It should be taking into account a smaller density than 0.05𝑝𝑝𝑝 if mean particle 

size is bigger than 3.8𝑝𝑥. 

 

Particle size tests shows that this parameter is the most crucial parameter to optimize 

around a mean diameter of 2.4𝑝𝑥. It was shown that this parameter affects significantly 

either quantitatively or qualitatively the STB results. Ghosts ratios increase substantially, 

and matching ratio decreases with increasing particle image size.  

 

Displacement trials were not very clear to interpret and to find an optimal displacement 

range. On the other hand, we showed that a high displacement values drastically affect 

the results and increases the number of spurious vectors. Nonetheless, we showed that a 

mean displacement of 6𝑣𝑥 seems optimal. Also, it is interesting to see that for images 

density of 0.05𝑝𝑝𝑝 the matching ratio increases slightly from 95.6% to 96.3% for a 

smaller mean displacement (3.1𝑣𝑥) but the mean error records a maximum of 0.358 𝑣𝑥 

between all the tests done on the same 0.05𝑝𝑝𝑝 image density, this could be a first 

indication to the optimal displacement that we should aim to on the real experiment. 

Finally, we test multiple image densities, and we see that the matching ratio drops 3.7% 

from 0.01𝑝𝑝𝑝 to 0.05𝑝𝑝𝑝, and then drops 16.5% from 0.05𝑝𝑝𝑝 to 0.07𝑝𝑝𝑝. 0.05 𝑝𝑝𝑝 

seems to be the limit of image density. Percentage of ghost tracks as well as ghost tracks 

length agrees with these findings. Furthermore, higher error magnitudes appear to be 

linked to small displacements rather than large displacement. Ghost particles, on the other 

hand, have higher displacements compared to other particles. Almost a factor of two 

higher.  

 

The main findings of the error investigation (section IV.8) is the fact that these errors are 

not linked to specific properties of the flow. 

One might need to delete the first 15 to 20 time steps of each track since they present the 

highest recorded errors < 𝜀 >. Further, the last match of a track contributes the most to 

the big errors in the PDFs shown in this section.  

 

Finally, grey level threshold and allowed triangulation error should be chosen carefully. 

The allowed triangulation error especially needs to be kept as defaults (0.5vx) if not sure 

of the value to use. On the other hand, grey level threshold needs to be as close as possible 

to the real background noise. This can be done by investigating visually the images. Low 

threshold increases the fragmented/small tracks ratio while a high threshold decreases the 

number of detected particles.  

 

To wrap up this section, the most important factors that affect STB results in descending 

order are: 
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 Experimental 

characteristics 

STB limits Comment 

1 Mean particle size 
Maximum 3.8px (if 0.05𝑝𝑝𝑝 is the 

goal images density) 

If particle size bigger than 3.8𝑝𝑥, 

images acquisition at lower 

images densities is required. 

2 
Intensity difference 

between cameras 

The mean intensity difference 

between cameras should not present 

big differences. 

If mean intensity difference 

between cameras is higher than a 

factor of 2; image preprocessing 

is absolutely needed. 

3 Images density 
Maximum 0.05ppp (if particle size is 

close to 3.8𝑝𝑥) 

Any optical aberration recorded 

(astigmatism etc.) requires 

decreasing the 𝜙𝑖𝑚. 

4 Displacement range Roughly between 4𝑣𝑥 to 6𝑣𝑥 

We could not say for sure what is 

the optimal choice. Deeper 

investigations must be done. But 

too small is clearly a problem. 

 

Table IV-13: Summary table of the parameters with basic results of the comparison 

with respect to synthetic tracks from DNS. 

𝚫𝐏𝐓𝐕 _𝑵𝒐𝒊𝒔𝒆_𝒅𝒑 
𝒑𝒂𝒓𝒕

𝒎𝒎𝟑
 
𝜼𝒌

𝒆𝒙𝒑𝒆

𝑹𝒆𝒔𝑷𝑻𝑽
 

[𝝁𝒅𝒑  𝝈𝒅𝒑] 

[𝒗𝒙] 

𝑻𝒉𝒓eshold  
[count] 

𝑻𝒓𝒊𝒂𝒏- 

𝒈𝒖𝒍𝒂𝒕𝒊𝒐𝒏 

 [𝒗𝒙] 

Results 

𝑁𝑚𝑎𝑡𝑐ℎ

× 106 
𝜓 

𝜀 ̅

[𝑣𝑥] 

0.01ppp DNS   [5.97, 2.38]      

1dt_3.8px 

2 0.86 

[5.8, 2.4] 1 0.5 3.78 99.3% 0.051 

2dt_3.8px [11.6, 5.2] 1 0.5 1.86 97.7% 0.054 

3dt_3.8px [17.7, 9.4] 1 0.5 1.2 95.3% 0.057 

1dt_Noise_3.8px [5.8, 2.4] 10 0.5 3.78 99.3% 0.059 

0.03ppp DNS   [5.96, 2.38]      

1dt_3.8px 

6 1.22 

[5.8, 2.4] 1 0.5 11.4 99.1% 0.063 

2dt_3.8px [11.7, 5.2] 1 0.5 5.58 97% 0.067 

3dt_3.8px [17.7, 9.4] 1 0.5 3.46 89.5% 0.073 

0.05ppp DNS   [5.96, 2.38]      

0.5dt_3.8px 

10 1.42 

[3.1, 1.3] 1 0.5 18.7 97.7% 0.298 

0.5dt_Noise_3.8px [3.1, 1.3] 10 0.5 18.5 96.3% 0.358 

1dt_3.8px [5.8, 2.4] 1 0.5 18.7 97.5% 0.249 

2dt_3.8px [12.6, 6.9] 1 0.5 8.5 88.9% 0.263 

1dt_Noise_3.8px 

[5.8, 2.4] 10 0.5 18.3 95.6% 0.194 

[5.8, 2.4] 15 0.5 18.6 96.5% 0.191 

[5.8, 2.4] 20 0.5 18.4 96.3% 0.192 

[5.8, 2.4] 25 0.5 18.2 95.2% 0.194 

[5.8, 2.4] 30 0.5 17.8 93.0% 0.200 

[5.8, 2.4] 15 0.3 12.9 67.4% 0.244 

[5.8, 2.4] 15 0.4 17.6 91.9% 0.200 

[5.8, 2.4] 15 0.6 18.7 97.8% 0.189 

[5.8, 2.4] 15 0.7 18.8 98.2% 0.188 

1dt_Noise_4.8px [5.8, 2.4] 30 0.5 12.7 66.4% 0.326 

0.07ppp DNS   [6, 2.38]      

1dt_3.8ox 

15 1.5 

[6, 2.75] 1 0.5 23.7 88.5% 0.496 

1dt_Noise_3.8px [6, 2.75] 15 0.5 21.2 79.1% 0.783 

1dt_Noise_2.4px [6, 2.75] 15 0.5 24.3 90.7% 0.478 
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V.1 Von Kármán mixing tank - GVK description and setup 

The GVK experiment was specifically designed to study turbulence experimentally at 

high Reynolds number in a large-scale mixing tank. The name of this experiment is also 

known in the community under the name “French washing machine”. It consists of two 

counterrotating impellers made of aluminum and immersed in a cylindrical tank filled 

with water as shown in Figure V.1. The fluid contained into the cylindrical tank is 

mechanically stirred by the two coaxial impellers and driven by two independent motors. 

The impellers generate a region of axisymmetric shearing near the middle of the tank, 

generating high levels of turbulence with a weak mean flow approaching zero near the 

center of the tank. The cylindrical tank is made of two plates of plexiglass, the final 

cylinder has a thickness of 1𝑐𝑚 as in VK2 and an inner diameter of 1 𝑚. This tank is 

placed in another hexadecagon tank formed of 16 faces as previously shown in Figure 

III.1. It is made of aluminum and holds the cylindrical tank while connecting the bottom 

and top of the set-up to ensure that the plexiglass cylindrical tank is not stressed. The 

inner and outer tanks are separated by four centimeters. There are two kinds of openings 

in the outer tank: windows and prisms as shown in Figure V.2. Both are removable and 

made of optical anti-refractive glass. The windows will be used for volume measurements 

in the tank center at several heights. They act as access points for the laser beam and 

image acquisition. The prisms will be used to observe a measurement volume near the 

wall (not included in this thesis work). A metal structure holds the tank and another one 

holds the bottom and the top engines. Siemens electrical asynchronous engines were 

chosen. Each motor has a rated power of 7𝑘𝑊, a torque of 45𝑁.𝑚, and a rotation 

frequency of 1500 𝑟𝑝𝑚. They are paired with reduction gears with a 20: 1 reduction 

ratio. Two pulleys of different sizes are provided for each engine, allowing the entire 

range of working parameters to be achieved. Transmission to the impellers is ensured by 

belts. The total height of GVK (when it is closed) is 2.2 𝑚, the length is 3𝑚 and the width 

is 1.3 𝑚. The inner radius of the cylinder is 𝑅 =  500𝑚𝑚 and the distance between the 

inner face of the impellers is 𝐻 =  1000𝑚𝑚, which gives an aspect ratio of 𝐻/𝑅 =  2.  
 

 

Figure V.1 Vertical cross section of the GVK setup designed by GP concept. 
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Figure V.2 3D view of the GVK setup designed by GP concept. 

 

V.1.1 Global quantities and scaling relations 

The considered von Kármán flow is characterized by a Reynolds number based on the 

cylinder radius 𝑅, the impeller revolution per second 𝐹 and the fluid kinematic viscosity 

𝜈 as follows (Kuzzay et al., 2015b): 

 

𝑅𝑒 =
𝜔𝑅2

𝜈
=

2𝜋𝑅2𝐹

𝜈
 

 

(V-1) 

 

where 𝐹 is the frequency of rotation of the impellers. The Reynolds can be varied by 

increasing F or by changing the fluid. Some tests were done on VK2 using a mixture of 

water and glycerol. As the mixture kinematic viscosity is larger than water, the Reynolds 

decreases leading to an increase of the Kolmogorov scale which can be better resolved. 

The small Reynolds numbers were created by a low frequency of impellers. We only use 

water for the time being for this first GVK campaign. 

 

Starting by an approximation of energy dissipation using torque measurements, one can 

get an accurate estimate of the global power injected into the flow. The input energy must 

balance the rate of energy dissipation within the flow. Following the work of (Kuzzay et 

al., 2015b) and (Rousset et al., 2014) the dissipation rate is estimated to:   

 

𝜖 =
2𝜔𝑇

𝑚
    With 𝑚 = 𝜌𝜋𝑅2 × 𝐻 

 
(V-2) 

 

where 𝑚 is the mass of the fluid in the cylinder and 𝑇 is the average torque (over time) 

applied on the fluid by one impeller. The total applied torque is 2𝑇 and the total power is 

2𝜔𝑇. 

 



 

Following the procedure described in (Marié, 2003), a non-dimensional value of the 

torque 𝐾𝑝 is computed as: 

 

𝐾𝑝 =
𝑇

𝜌𝑅5𝜔2 
 (V-3) 

 

Then from equation (V-2) we find: 

 

𝜖 =
2𝜔3𝐾𝑝𝜌𝑅5

𝜌𝜋𝑅2 × 𝐻 
=

2𝜔3𝑅3𝐾𝑝

𝐻𝜋
 (V-4) 

 

And the estimated Kolmogorov length scale is computed from the Kolmogorov’s scale 

definition  

 

𝜂 = (
𝜈3

𝜖
)

1
4

= (
𝐻𝜋𝜈3

2𝜔3𝑅3𝐾𝑝
)

1
4

= (
𝐻𝜋𝜈2

2𝜔2𝑅𝐾𝑝

1

𝑅𝑒
)

1
4

 (V-5) 

 

Finally, the Kolmogorov time scale is: 

 

𝜏𝜂 = (
𝜈

𝜖
)

1
2

= (
𝐻𝜋𝜈

2𝜔3𝑅3𝐾𝑝
)

1
2

 (V-6) 

 

V.1.2 Experimental setup 

Here we present the setup of the first campaign done on the GVK hoping for more 

successful campaigns to come. The experiment is shown in Figure V.3 as well as the PTV 

system. On the left of the figure, we can vaguely see the metal chassis holding the GVK 

and the engines. The top impeller is removed to add particles and water that is provided 

from a water tank situated in the same room (see right side of the Figure V.4). Also, the 

removable top allows us to introduce the calibration plate at the center of the volume for 

recording cameras calibration images. We make sure to cover the water tank with nylon 

sheet to prevent dust from entering the experiment. Control room including data 

acquisition systems is separated by curtains from the GVK for laser safety purposes.  

 

The experimental conditions are those presented previously in Chapter III. Cameras are 

placed symmetrically around the experiment following exactly the 2nd configuration (see 

section III.4) and to be in forward scattering to the source of light (for more information 

about the cameras see Table III-1). To enable optical measurements, the flow is seeded 

with particles of polystyrene of average size 5.09 𝜇𝑚 from Spherotech, we use the same 

particles tested in chapter III inasmuch of their proven quality. The third row windows 

are used to record images at the center of the volume. A calibration plates is introduced 

at the center of GVK using a mechanical system specially designed to accurately tune its 

position from outside of the tank to minimize as much as possible the possibility of 

polluting the water inside GVK. 

 



142 V.1 Von Kármán mixing tank - GVK description and setup 

 

Figure V.3 The outer tank of the “Grand Von Karman” (GVK) with cameras mounted 

around.  

 

 

Figure V.4 A sketch of the material placement inside the GVK room illustrating the 

GVK and the placement of the symmetrically located cameras. This sketch also shows 

the laser location and the optics that were used to create the beam that enters towards 

the cameras into the GVK through the middle window. 

 

During image acquisition, we observed some astigmatism effects for all cameras, but 

specially for camera 2 and camera 3. This optical aberration could be due to the presence 



 

of a small cylindrical lens formed by a slight bend of the glass windows of GVK which 

might be a result of the mechanical constraints applied on the access windows by the 

screws which compress the gasket. As a consequence, the volume in focus becomes 

shifted in both directions hence, causing the image formed on the camera sensor to be 

distorted. Given that we had one week timeline to finish the experiment, we decided to 

close the aperture (i.e increase the value of 𝑓# ) from 11 to 16 for cameras 2 and 3 where 

the astigmatism was too strong on the edge of the volume. The cameras properties are 

presented in Table V-1.  

 

Table V-1 Characteristics of the cameras and their spatial positions for the 

configuration used in this chapter. 

Camera Angle with Laser 

beam 
𝑙𝑒𝑛𝑠(𝑚𝑚) M 𝑓# 

1 +45.5° 200 mm 0.37 11 

2 +22.5° 200 mm 0.37 16 

3 −22.5° 200 mm 0.37 16 

4 −45° 200 mm 0.37 11 

 

By increasing the fstop number, we increase the depth of field from 5.27mm to 11mm to 

limit the blurred images in one direction on both edges of the volume, the drawback is 

that it increases the particle size. This by itself presents a problem since the real particle 

size obtained in SWT experiment configuration 2 (same optical set-up as here) at 𝑓# =
11 was already around the optimal at 2.4 pixels (see Figure III.16). The minimum particle 

diameter for camera 2 and camera 3 is estimated to be 2.9 pixels (see Table IV-2). Now 

astigmatism increases this number, and one must keep in mind that the diameter of the 

diffraction spots is bigger due to small blurring of the particles located on the edge of the 

illuminated volume. For that reason, it is ideally necessary to have a diffraction spot 

diameter around 2 pixels at the center. Another serious disadvantage of having different 

𝑓# values between cameras is the fact that cameras with lower 𝑓# (camera 1 and camera 

4) get more light. But since these two cameras are at ±45°, they get less scattered light 

already than ones at 22.5°. However, to minimize the background noise from reflections 

inside GVK, we played on the polarity of the laser. The optimum was reached for a 

polarity different than in SWT experiment. As the scattering light is highly sensitive to 

the polarity of the laser (see Figure III.13), we obtained much higher difference of particle 

intensities for cameras 2 and 3 (22.5°) compared to camera 1 and 4 (45°) than in SWT 

experiment. In SWT experiment (all cameras with same 𝑓# =  11) was about 2. Here, 

we obtained a factor about 4, even with the higher 𝑓# use for cameras 2 and 3. This 

difference can also be explained by the presence of coated glasses which can increase the 

transmitted light for 1 polarization. Probably a better compromise could have been found. 

 

Also, for camera 1 and camera 4 our image is not focused on the totality of the desired 

6𝑚𝑚 thickness as we see from the estimated 𝛿𝑍 in Table V-2. The minimum particle 

diameter for these two cameras is estimated to be 2 pixels at focus plane contrary to 

camera 2 and camera 3 for which it is 2.9𝑝𝑥. 

 

In conclusion, for all cameras, the particle image size obtained is too large compared to 

optimum value. This can be improved by correcting the astigmatism problem and playing 

on the polarity of the laser. However due to a risk of breaking a GVK glass windows or 

introducing leaks, we have not iterated on these points. Probably improvement can be 

found there. As the particle image diameter obtained here is larger than optimum one 
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found in chapter 4, the seeding density has then to be lower than the optimum 0.05ppp 

found. It was then decided to fix the concentration at 0.04 𝑝𝑝𝑝. 

Table V-2: Particle image minimum diameter and the depth of field as a function of the 

𝑓#. The results are for a given magnification factor M=0.37. 𝑑𝑑𝑖𝑓𝑓 is the particles 

diffraction diameter. 

𝑓# 𝑑𝑑𝑖𝑓𝑓(𝑝𝑖𝑥𝑒𝑙) 𝛿𝑍(𝑚𝑚) 

 

8 1.45  2.8 

11 2  5.27 

16 2.9  11 

22 3.98  21.1 

 

V.1.3 Images acquisition  

In this section we present the experimental data sets that are acquired during the timeline 

of this thesis. We use STB to track particle given by one standard deviation of velocity 

positions at the center of the turbulent von Kármán flow generated in the GVK set-up 

(Figure V.5). We use the Lavision software “Davis” for data acquisition. The acquisition 

frequency is adjusted for each rotation frequency of the impellers. In the previous work 

on the VK2; Debue, 2019 defined a criterion to estimate the acquisition frequency. 

 

𝑓𝑎𝑐𝑞 =
𝜔𝑅𝑎

5 (
𝑐

|𝑀|
)
     

(V-7) 

 

Where 𝑎 is equal 0.4 for Anti and 0.35 for Contra cases and 5 pixels is the targeted 

average displacement of particles given by one standard deviation of velocity between 

two successive frames. This displacement is around the optimum value based on our 

previous tests on synthetic images. 



 

 

Figure V.5 Photograph of the PTV experimental setup. A laser beam of thickness 6mm 

created by a set of optic described in Chapter 3 Figure III.5, is entering the GVK 

through a window and is exiting from the left side of the figure.  

Eight cases were recorded at different Reynolds numbers in order to vary the Kolmogorov 

scale and therefore to probe different scale ranges. The Reynolds numbers of the different 

cases are given in Table IV-2 for the Contra and Anti configurations, along with the 

corresponding flow parameters and the acquisition frequencies. This frequency is the 

value estimated to reach an average displacement of 5vx. 
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Table V-3: Physical parameters of GVK for the 8 different cases. F is the rotational 

speed of the impellers, Re is the Reynolds number of experiment (V-1), Kp is the torque 

coefficient (V-3), 𝑇𝑖 is the integral time scale, 𝑇𝑖  =  𝑅/(2𝜋𝑅𝐹), with R being an 

estimate of the integral length scale and 2𝜋𝑅𝐹 the maximum velocity of the flow, 𝜖 is 

the dissipation (V-4), 𝜂 is the Kolmogorov length scale (V-5), 𝜏𝜂 is the Kolmogorov 

time scale (V-6) and 𝑓𝑎𝑐𝑞 is the sampling frequency of the STB experiment. 

Case Anti Contra Anti Contra Anti Contra Anti Contra 

𝐹 (𝐻𝑧) 0.004 0.01 0.025 0.1 

𝑅𝑒 6.3 × 103
 1.5 × 104

 3.9 × 104 1.57 × 105
 

𝐾𝑝 0.135 0.047 0.135 0.047 0.135 0.047 0.135 0.047 

𝑇𝑖 (𝑠) 40 16 6.4 1.6 

𝜖 
(10−6 𝑚2/𝑠3) 

0.34 0.12 5.3 1.85 83.3 29 5330 1855 

𝜂 

(𝑚𝑚) 
1.3 1.7 0.66 0.86 0.33 0.43 0.12 0.15 

𝜏𝜂 (𝑠) 1.71 2.9 0.43 0.73 0.11 0.18 0.013 0.023 

𝑓𝑎𝑐𝑞  37 32 92 81 232 203 929 813 

 

The Kolmogorov length scale is of the order of 1 𝑚𝑚 at the lowest Reynolds. This makes 

fully spatially resolved measurements possible with our PTV system as the resolution of 

PTV system is estimated to 0. 5𝑚𝑚 for image concentration of 0.04ppp which is largely 

feasible (see Chapter IV). The actual acquisition frequencies that we use for the Anti-

Contra cases are 100, 150, 400 and 1200Hz for the 0.004, 0.01, 0.025 and 0.1Hz impellers 

rotation frequency. The frequencies are intentionally set higher than the estimated 

frequencies in order to avoid having too large displacement values. As shown in Chapter 

IV large displacements can be problematic for the STB algorithm. We therefore decided 

to take some security margins on our frequency estimation to be in the safe side as it was 

the first experiment on GVK, and we were not sure that the estimation formula obtained 

for VK2 (V-7) is valid in GVK. Moreover, the minimum laser frequency above which 

the same optical set-up can be used to generate the same volume light sheet is 100Hz. For 

the four frequencies of impellers investigated (0.004, 0.01, 0.025 and 0.1 Hz) and the two 

configurations contra and anti of GVK, 40 runs of full memory (3226 time steps) were 

recorded for each of these 8 cases. For each case, the total recorded time corresponds to 

about 30 integral time scales for the 0.004Hz configurations and about 50 to 60 for the 

others. This allows then to start computing turbulence statistics by averaging in time and 

space (homogeneous flow). The volume of recorded raw images is about 12 TB. 

 



 

V.2 Particles images quality 

As briefly discussed before, we noticed a problem in the image particles of the cameras, 

especially for camera 2 and camera 3. The particle images look elongated in x or y 

directions for different depth of fields. This effect which was noticeable to the naked eye 

at first was quantified by the OTF 2D map for different slices in the volume (in z 

direction). Astigmatism distortions are troublesome as it increases the mean particle size 

significantly. As we saw in the previous Chapter IV, this parameter might be the most 

important for STB reconstruction. Another important factor that plays big role in the 

quality of STB results is the image intensity factor between different cameras. From the 

particles images, we found that the average intensity for images of camera 1 to camera 4 

are 90, 415, 352 and 100 counts respectively. Indeed, the difference is unacceptable 

between camera 1 & camera 2 and camera 3 & camera 4. We have learned from Chapter 

IV that even a factor of two could be detrimental for the results. For this reason and before 

to process by STB, the images have to be corrected to reduce the intensity difference 

between different cameras that are at different angles with respect to the source of light. 

Additionally, the image preprocessing will help reduce the cameras background noise. In 

this way we achieve nicely shaped particle images with close to zero background noise. 

Finally, it is very important to use these processed images for the calculation of the optical 

transfer function and for the Shake-the-Box calculation. Otherwise, the optical transfer 

function will not fit to the new processed images and STB will suffer to track the particles.  

 

The image preprocessing is as follow: a spatial filter is used to remove the image 

background by subtracting the local minimum from each pixel. The size of the region 

used for this phase is 11𝑝𝑥 × 11𝑝𝑥 (i.e the 1600𝑝𝑥 × 1600𝑝𝑥 images are divided into 

145 sub windows). The mean intensity of images of cameras 1 to 4 becomes almost equal 

to 45 counts. In Figure V.6 (bottom) we see the PDF of intensity for 1000 images for all 

cameras before and after image preprocessing. The effect of image preprocessing is clear 

for camera 2 and camera 3. The peak becomes closer to the one observed for camera1 

and camera 4. Furthermore, an added value of the image preprocessing is the reduction 

in particle diameter due to a cut of the tail of the gaussian distribution of particle intensity 

by the background subtraction. In Figure V.6 (top) we show the estimated particle size 

for all particles over 1000 images. The mean particle size before image preprocessing 

was 3.2px, 5.4px, 4.8px and 3.3px for camera 1 to 4 respectively and reduced to 2.9px, 

4.6px, 4px and 2.9px for camera 1 to 4 after processing. 
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Figure V.6 (Top) PDF of particle size estimated from 1000 images. (Bottom) PDF of 

images intensity. Both figures are for images before and after image preprocessing 

Particle size is estimated by fitting a 2D gaussian to the peak of correlation of one 

image by itself. Window size used for correlation is 64×64 pixels. 

 

Finally, the particle size quality can be qualified using the OTF map. Figure V.7 show an 

OTF example at the center of the volume for camera 2. The OTF calculated for images 

before image preprocessing (left figure) present oddly shaped particles especially in the 

far right subvolumes. This effect could be greater for slices far from the center that could 

be not totally in focus due to optical aberrations and/or not covered with the depth of field 

(out of focus plane). On the other hand, the OTF for images after processing (right figure) 

is much better (blurred part close to background noise suppressed and intensity difference 

reduced) but not fully optimal as compared to the results of Chapter III.  

 



 

  

Figure V.7 Optical transfer function (OTF) that represents the particles pattern for a 

selected slice into the volume (z=0 the center of the volume). The left figure is the 

optical pattern calculated from the run #20 of the case 0.1Hz Anti before image pre-

processing. The right figure is the optical pattern for the same run after image pre-

processing. 

 

V.3 STB Analysis 

After processing the images, we carried out 4D Lagrangian particle tracking using the 

STB algorithm as described in detail previously. The first results of STB tracking are 

presented in this thesis. Here we try to optimize the tracks as much as possible before 

they can be exploited to search for some possible quasi-singularities in the turbulent flow. 

Our main goal in this chapter is to confirm if the spatial resolution has been improved 

compared to VK2 experiment (Debue et al 2019). This could be achieved by investigating 

the velocity spectra to check that the smallest scales exhibit a better signal to noise ratio. 

 

The STB parameters are adjusted and adapted to each of the 8 cases presented in Table 

V-3. The main difference between the results presented here and the results presented 

before in Chapter III is, as discussed before, the use of preprocessed images instead of 

raw images. Another difference is the use of a median filter (filter explained in section 

II.4.5) to reduce the number of spurious vectors. As this filter was not used before for the 

lack of necessity (no spurious vectors), the exact effect of each parameter of the filter 

used were unknown for us. We use here the suggested parameters from Lavision STB 

manual that are adapted to our values of displacement and 𝑝𝑝𝑝 (Max search range = 60 

vx, number of neighbors used = 10, threshold = 2). The effect of median filter is shown 

in the figure below. It does visually suppress spurious tracks with velocity completely 

different from neighbors as expected (see Figure V.8) without compromising the number 

of tracks (70 × 103 in average per time step for both cases). On the other hand, it does 

have a negative effect on the track length histogram with much shorter track (see Figure 

V.9 (top)) but reduces the noise levels for frequencies larger than 2 Hz (see bottom 

figure).  
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Figure V.8 Particle tracks reconstructed by STB with median filter OFF(Top) and with 

median filter ON (Bottom). Overlay of 11 time-steps are presented and color coded by 

particles velocity module. 

 



 

 

 

Figure V.9 (Top) Comparison of track length histogram for the case Anti 0.004Hz (run 

#20) where the STB is calculated with and without the use of a median filter. The 

images density is 0.04ppp. (Bottom) Power spectral density of the same cases. 

The median filter parameters used for all the recorded cases are the following:  

1- Number of neighbors used: 10. 

2- Max search range: 60 voxels. 

3- Threshold =2. 

Most probably the values of the median filter used are rather strict and the threshold could 

have been increased. Indeed, the parameter selected cut the tracks into smaller ones (See 

Figure IV.9 (top)), so probably the filter detects some particles inside some tracks which 

deviate just too much compared to the neighbors and removes these particles, fragmenting 

the tracks into several ones. Keeping these particles leads to longer track, so better 

turbulence information which can be extracted from, but with higher noise linked with 

these particles. A better compromise can probably be found. 

 

From the previous work of (Debue, 2019), (Ostovan et al., 2019) and others we know that 

the disparity map should be refined iteratively over the runs. As a standard practice, the 

disparity and OTF maps were refined every 10 runs. Initially, we did the same but after 
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every third run, the number of tracked particles started to fall off noticeably. This might 

be a result of the quality of our particle images that we discussed before or slight change 

of camera positions to each other due to small thermal dilatation of the large bench (about 

5 min between runs). As a consequence, we decided to test refining the OTF and disparity 

every run vs refining it every third run to see if there is a big difference. The results of 

these tests showed that there is no significant difference between both STB results 

therefore we didn’t refine the disparity and OTF every run because of the significant 

increase of the CPU and human time needed for refining the disparity. 

V.3.1 STB results for multiple cases 

At this stage, three points have been established: first, the images must be pre-processed; 

second, self-calibration and OTF must be refined at least every 3rd runs; and third, a 

median filter on tracks should be used when processing the images by STB algorithm. 

The results discussed in this chapter are only the “Anti” cases from Table V-3 due the 

enormous amount of data to present. In Figure V.10 and Figure V.11 STB results are 

analyzed and averaged for 40 runs for the following cases: Anti 0.04 Hz, 0.01Hz, 0.025Hz 

and 0.1 Hz. The histogram of the average displacement in 𝑥, 𝑦, 𝑧 directions is presented 

in Figure V.10. The peak of all cases nearly collapses around 3 to 4 voxels excepts for 

Anti 0.004Hz case which is around 2 vx due to minimum laser frequency of 100Hz which 

was imposing large oversampling compared to frequency estimated with equation (V-7). 

We calculated the RMS of the module of the velocity of the STB results, we found that 

our estimation (i.e 𝜔𝑅𝑎, see equation (V-7) with a =  0.35 for contra cases and a =
 0.40 for anti ones) is close to the calculated RMS of all cases except the 0.004Hz case 

where it is 35% smaller. This validate then the equation (V-7) to estimate the required 

acquisition frequency. 

In Chapter IV we saw that big displacement values will affect the STB results, on the 

other hand, the results weren’t clear for small displacements. However it is advised by 

(Schröder et al., 2015) who developed the STB algorithm to fix an average displacements 

of about 5vx. In Figure V.11 (a) we see that the number of tracked particles for the case 

Anti 0.1Hz is the highest in comparison to the other cases (the peak of the histogram of 

displacement is around 5vx). Then again, we see that the case of 0.004Hz represents the 

second best results when it comes to the number of tracks. This contradicts our 

expectancies to some extinct. This case was recorded first then Anti 0.01 Hz 3 days after, 

then 0.025 Hz 2 days after 0.01 Hz and then 0.1 Hz 1 day after 0.025 Hz. For the case 

0.1Hz, new particles were added. This could indicate that the lifetime of particles to get 

very good image quality in GVK is about 1-2 days. This could then explain why 0.004 

Hz gets more tracks than 0.01 and 0.025 Hz which is surprising for low displacements 

tuned for this case. 



 

 

Figure V.10 Histogram of the module of displacement for different cases. The 

histogram is an average for 40 runs for each case to extract valuable statistical results 

of turbulence both in Lagrangian and Eulerian framework. 

 

The histogram of track length in Figure V.11 (b) is more or less comparable for all cases 

though, with slight advantage of the Anti 0.025Hz case, probably linked to less tracked 

particle (i.e.only the most bright particles are tracked and can be followed on more time 

steps as their intensity level have less chance to become close to background noise of 

images). The track length is very important this is why our main objective by setting the 

parameters of STB is to get long trajectories. 

Although we have on average 20,000 more particles than with VK2 experiment for the 

same particle image density, there are much more tracks smaller than 10 time steps which 

increase the spatial noise levels. This conclusion is based on the result we also found in 

Chapter IV where we saw that the first 15 to 20 time steps of any trajectory are noisy all 

along with the last couple of time steps of a trajectory (check Figure IV.35). That is why 

we have to delete tracks that are very small if we want low noise data since they contribute 

to increase the noise.  

 

Finally, the PSD of raw positions in Figure V.11 (c) presents a strange peak at 48 Hz for 

all cases except the Anti 0.1Hz. This peak is small compared to the signal (about 3 

decades less) and it is systematically of 48 Hz. It cannot be linked to the rotation 

frequency which varies for each case. However, it could be linked to mechanical natural 

frequency of the system. Until now we have no more idea of the origin of this peak, but 

this question is to be answered before the next GVK campaigns. 
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Figure V.11 (a)Average number of tracks per time step. (b) Histogram of track length 

and (c) PSD of position for the Anti cases with disparity and OTF refined every 3rd 

runs. The STB results are for images with density of 0.04ppp. The statistics presented 

in this figure are an average for 40 runs. 



 

V.4 Velocity determination (smoothing STB tracks) 

We have seen in previous results that the Lagrangian velocities provided by Shake the 

Box black box are very polluted with noise. For that reason, a post-processing software 

written in MATLAB language, was developed by (Cheminet et al., 2021) in the 

framework of EXPLOIT project. TrackFit showed that is a very powerful tool to recover 

denoised Lagrangian trajectories. The smoothing tuning strategies can be determined by 

the experimenter taking into account the desired accuracy and the physical behavior of 

the measured quantities. 

 

The PSD of positions and velocities are depicted in the Figure V.12 for case Anti 0.1 Hz. 

It was calculated using tracks that have at least 100 time steps. We can learn a lot about 

the temporal resolution of our measurements and the particle position error by examining 

the Lagrangian spectrum. By examining the level of the noise region of the spectrum at 

high frequencies, one can determine the extent of the spatial noise. The frequency at 

which the noise appears in the spectrum determines the temporal resolution. 
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Figure V.12 (Top) Power Density Spectrum of Lagrangian particles positions. A 

comparison is made between Raw positions obtained by STB and TrackFit applied to 

the same Raw data. (Bottom) Power Density Spectrum of Lagrangian particles 

Velocities obtained using Trackfit and averaged over 10 runs of case ANTI 0.1Hz. 

Furthermore, with the TrackFit tool developed at LMFL, it is obvious that we reduce the 

noise levels for the velocity spectrums specially after 20 Hz. One should keep in mind 

that smoothing tracks filter also the turbulence at small scale. That is a problematic since 

the main objective of the GVK is to search these regions for possible quasi singularities.  

V.4.1 Eulerian spatial spectrum 

After passing the data through the Trackfit software, instantaneous Eulerian velocity 

fields were computed by means of a linear interpolation (griddata routine of MATLAB) 

from the smoothed tracks as well as the raw data from Lavision. Flow details can be 

observed in 2D plots showing samples of instantaneous velocity fields on the middle 

plane (𝑧 = 0) of the volume (see Figure V.13, case anti 0.1 Hz). There is a clear 

discrepancy in the level of noise between the results from Trackfit of Lavision and 

Trackfit of Cheminet et al., 2021. This difference is quantified in the spectrum presented 



 

in Figure V.14 where we can see that the noise level is reduced after 𝑘 = 250 𝑚−1 

(corresponding to wave length of 4 mm) as compared to the results obtained with Trackfit 

of Lavision. 

 

Lavision Trackfit+ griddata Cheminet et al 2021 Trackfit+griddata 
u velocity field u velocity field 

  
v velocity field v velocity field 

  
z velocity field z velocity field 

  

Figure V.13 Three components of the instantaneous velocity fields (Time step #20) on 

the middle plane (z=0) of STB measurements of the “Grand Von Karman” experiment, 

case Anti 0.1Hz. The left column represents the u,v,w velocity fields interpolated with 

griddata using the Lavision track fit data. The right column represents the u,v,w 

velocity fields interpolated the same way but using Cheminet et al., 2021 track fit data. 
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Figure V.14 Comparison between the 𝐸𝑖1 Power Spectral density of velocities u,v,w 

interpolated with griddata routines from using smoothed tracks from Lavision Trackfit 

and Cheminet et al., 2021 track fit. The spectrums are calculated from instantaneous 

velocity fields of case Anti 0.1Hz and averaged for 10 time steps and in y and z 

directions. 

 

V.5 Conclusion 

The first experiment done on GVK was not perfect nor the success we expected since we 

did not obtain the same quality of images as SWT that allowed us to track more particles 

and with less error. Complicated experiments like GVK present always new experimental 

challenges and the two weeks constraint have prevented us to take the time to solve 

problems to improve images quality, especially the surprising astigmatism problem. 

Nonetheless, we have created a database at different Reynolds numbers (larger than 𝑅𝑒 

created using VK2) and for different rotation directions, Anti and Contra of a Von 

Karman flow that are better in term of spatial resolution from what was done before in 

the framework of the EXPLOIT project. We also showed that the STB raw data are noisy 

and need to be smoothed before interpolating the velocity or acceleration. For this 

purpose, we presented the capabilities of the TrackFit tool to reduce the noise level of the 

raw data.  



 

 

  

Chapter VI Conclusions and 

perspectives 
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In the first section of conclusions, we will talk about the different objectives that have 

been targeted and the various contributions that we have made in the studied problematic. 

The second section encompasses the different ideas, written in the form of perspectives 

that could improve the proposed methods in order to consider a continuation of our 

research work. The conclusion and perspective sections will be divided in two parts, the 

first part is experimental related conclusions and perspectives, and second is conclusions 

and perspectives related to the improvement of STB results.  

VI.1 Conclusions  

 

Experimental conclusions  

 

The “Grand Von Karman” experiment presents many practical challenges, especially to 

carry out optical measurements inside to extract turbulence information. The goal of the 

project was to fine study the turbulence generated by this GVK at very high Reynolds 

numbers. As the turbulence is a 3D phenomenon, the "Shake the Box" (STB) method was 

selected as it provides information about the 3 velocities components in a volume as 

function of time. For that reason, a mimic experiment that reproduces the optical access 

we have for GVK was used with an objective to fine tune all the possible experimental 

barriers that we might face on the main experiment 𝑖. 𝑒 GVK. First of all, we tested two 

possible configurations for camera placements around the quasi-cylindrical experiment 

to examine the optical performance. Optical access points were designed at 22.5°, 45° 

and 67.5° from laser volume illumination. First tests were done using the windows at 45° 

and 67° with Lavision 10µ𝑚 Hollow sphere particles for seeding. Laser energy needed 

for cameras at 67.5° was important in this experiment and background noise recorded 

was high. Particles images were fluctuating in size and clusters were observed 

everywhere on the images. For that reason, we thought that it was worth it to invest in 

better quality particles.  

 

Second configuration was tested by changing the cameras positions at ±22.5° and ±45° 

from volume illumination. Additionally, we used different particles for seeding from 

Spherotech (PP-50-100) with smaller mean diameter (5.09𝜇𝑚) and more monodisperse 

(i.e. narrower probability density function). These new particles, from the best of our 

knowledge, were not used for PIV before and they showed a great capability to enhance 

the measurements. Moreover, and due to high noise levels observed before linked with 

small impurities less than 1-3 µm present inside the water, we decided to use a water 

filtration system installed in the room of the experiment to reduce any contamination of 

the water by dust or plastic fibers of containers used for transportation of the water. The 

water quality is of great importance and precautions need to be taken into account when 

opening the top of the experiment. It is probably not possible to work with a “clean room” 

type of precautions, but it is necessary to pay a lot of attention when manipulating around 

and inside the facility to avoid hairs and other dusts to penetrate into the tank. In the figure 

below we show an example of the precautions used when manipulating the GVK.  

 



 

 

 

The intensity difference visible on the different cameras as a result of their positions in 

forward scattering angles is one experimental parameter that could not be changed. This 

is problematic as it decreases the STB quality results as seen in Chapter IV. This 

phenomenon can be attenuated by closing more the aperture of cameras which get less 

light, but this increases the particle image size which can also deteriorate the STB results. 

The perspective offers some propositions/solutions to this issue. 

 

Based on images quality as well as STB results of the second configuration proposed as 

optical measurement solution in chapter III, it was decided to use this solution in the GVK 

campaign. During the measurements, we observed astigmatism effects on all 4 cameras 

but specially for the cameras at angles ±22.5°. This could be due to mechanical 

constraints applied on the access glass windows of GVK, hence damaging its optical 

properties. For that reason, we were left with an “undesired” solution to increase the fstop 

number  of cameras 2 and 3 to get a better compromise on the particle image size in the 

full volume. This change increases the particle images size substantially hence making it 

more difficult for STB to identify (OTF +IPR) and track (extrapolation) the particles as 

shown in Chapter IV. The STB results obtained in GVK during this PhD is then not as 

good as expected compared to ones obtained with the optical set-up tests presented in 

Chapter III. 

 

To obtain good 3D velocities measurements with STB, a nearly perfect calibration is 

needed (B Wieneke, 2008). For that, the disparity map obtained with volume self-

calibration should be as low as 0.02vx on average in the full domain. To be as close as 

possible to this goal, it was shown that a self-calibration refinement was needed every 3 

runs (i.e. every 15 min of recording interval). As this cannot be automatized, it required 

a lot of human time for processing the large data base acquired.  

 

Despite all the barriers, a large database of STB data in GVK to study its turbulence was 

generated during this PhD. For the four frequencies of impellers investigated (0.004, 0.01, 

0.025 and 0.1 Hz) and the two configurations contra and anti of GVK, 40 runs of full 

memory were recorded for each of these 8 cases with a STB spatial resolution of about 

0.6 mm. For each case, a total of about 30 integral time scale is available for the 0.004Hz 

configuration and about 50 to 60 for the others. The raw data images correspond to 12TB, 

and the processed data (raw tracks from STB) to about 6 TB to post-process. 

 

STB conclusions 

 

Tracks qualities were exploited for both experimental and synthetic data. We start by a 

comparison between STB results for 1st configuration and 2nd configuration tested on 
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similar water tank of GVK (SWT). We recall the main differences between these two 

configurations. For the first configuration, cameras were at ± 67.5° and ±45° and we 

used Lavision glass hollow spheres with diameter ranging from 1 to maximum 30 𝜇𝑚. 

For the second configuration, cameras were at ± 45° and ± 22.5° and we used 

Spherotech polystyrene particles with diameter ranging from 4.5 to maximum 7 𝜇𝑚. 

Then we tested the STB algorithm on synthetic data to understand the effect of different 

parameters as well as to try to push the method to its limits. Finally, we conducted the 

GVK experiment based on the conclusions obtained on the SWT and synthetic tests. 

 

First of all, the particles that were bought for the second configuration along with 

changing the configuration of cameras, had a massive impact on the quantity and quality 

of STB tracks. For a given particle per pixel concentration of 0.05ppp, we were able to 

track 80,000 more particles than the first experiment done on SWT. Also, the overall 

quality of tracks and level of noise were much better even though comparing different 

runs may be misleading in a sense that the flow characteristics could affect the STB 

results and the experiment reproducibility was poor. For that reason, we decided to 

investigate in depth the effect of different “experimental” parameters as well as STB 

processing parameters by means of synthetic PIV images created using Lagrangian 

tracers integrated from a DNS. This synthetic experiment simulates to a great deal what 

we had tested before on SWT 2nd configuration such as magnification factor, cameras 

positions, cameras lens etc. Scheimpflug condition was not taken into account. The STB 

results were compared to the ground truth DNS with a novelty matching procedure not 

only based on particles but also on track information. These tests showed that: 

 

1- The particle size is the most important factor to tune around 2.4 pixels. 

2- Intensity difference in cameras images creates problem for the tracking scheme 

and significantly decreases the length of tracks. This intensity difference between 

cameras has to be as low as possible. 

3- STB has a very strong limitations to image particle density for a given mean 

particle image size. For example, it is shown that 0.05𝑝𝑝𝑝 seemed a bit too much 

for the value of the particle size we had of about 3.8 pixels on average. 

 

Additionally, these tests showed that, even for very good OTF and disparity maps, the 

tracks are fragmented, the tracks length are overestimated sometimes, and the first 15 to 

20 time steps exhibit higher error values than the rest of time steps. These results suggest 

that the first piece of a track should be eliminated from the postprocessing if we need to 

reduce the noise in the data. 

 

All the information collected were applicated to the GVK experiment, the STB results 

showed a slight decrease in quality compared to our tests on SWT due to the experimental 

problems encountered we described before. Especially the increase in particle size to limit 

the astigmatism problem as well as the increase in the intensity ratio between the different 

cameras images. Also, we showed that the use of a median filter is helpful to suppress 

ghost tracks, but it affects drastically the tracks length. This parameter should be used 

with precautions and with extended tests before deciding the best set of parameters for 

each run. 

 

Finally, we made a comparison between the Trackfit version of Lavision and the Trackfit 

version created at LMFL. The different parameters of the software could be controlled by 

the user to maximize the quality of tracks as well as the spatial spectrum of velocities 

contrary to the black box Trackfit of Lavision. For that reason, Trackfit of Cheminet et al 



 

2021 lead to better results in terms of temporal and spatial resolutions and it is essential 

to go further in the analysis of turbulence as we are able to control the filter properties. 

VI.2 Perspectives 

Experimental possible improvements 

 

Due to STB dependency on image quality which are related to experimental limitations, 

we suggest some changes that could be made for a short, medium, and long term timeline. 

The main idea here is to modify the configuration to reduce the astigmatism aberrations, 

decrease as much as possible the particle size and moderate the intensity factor between 

cameras. A special attention should be made to the depth of field required (6mm) since it 

can be affected by changing any other setting of the cameras. 

 

The astigmatism we observed was the biggest setback for the quality of images during 

the campaign in GVK, especially for cameras 2 and 3 at 22.5°. The fstop number was 

increased from 11 to 16 for cameras 2 and 3 in order to increase the depth of field from 

5.5 mm to 11mm. Increasing the depth field results in less aberrated particle images. 

However, the drawback of this action was the increase in particle size to 2.9px. To 

minimize the astigmatism without increasing the fstop number, we could try in a first step 

to play on the mounting screws of the glass insert as they can introduce small bending of 

it as a thick gasket is compressed with these screws to ensure the sealing. The risk is to 

introduce water leaks or to break the glass. If the approach fails, we could try to improve 

our images quality without increasing the particle size by decreasing slightly the 

magnification by setting the cameras 200 mm further away from the glass insert 

(maximum allowed as there is the structure of the engines behind, see Figure V.3). This 

will reduce the magnification from 0.37 to 0.27, leading to particle image diffraction size 

similar (1.8 𝑝𝑥 compared to 1.9 𝑝𝑥) but larger depth of focus (9.2 mm compared to 5.7 

mm). By a small gain on the astigmatism problem with less glass bending couple with 

this solution, better images with smaller particle size can be obtained. However, the 

results found in Chapter III shows that a concentration of 0.05ppp will still be an optimum 

and we could expect about 100,000 tracks but on a larger volume. At the end, the spatial 

resolution will be the same or worth. Reducing the thickness of the measurement volume 

can improve the STB results, however as the turbulence is a 3D phenomenon, we will 

start to lose all the advantage of a volumetric measurement method. Putting all together, 

the images quality can only be improved by suppressing the astigmatism problem. If the 

insert mounting failed, then new inserts can be made with more thick glasses or by trying 

to add a cylindrical lens in front of objective lenses to compensate the aberration. This 

can be done by a tunable bending of a few millimeters thick plexiglass plate. 

 

Finally, the intensity difference between cameras should be reduced as much as possible 

without also changing the fstop number as it increases the particle size. One solution can 

be to add in front of the objective lens a density plate with the good optical density. 

 

For the medium-term timeline, there is a possibility to change the camera positions. We 

can set all the cameras in forward scattering and at ± 22.5° from the 6mm thick laser 

sheet in a top view but cameras 1 and 2 placed below the center of GVK looking to the 

measurement field of view by the inserts below the middle ones and cameras 3 and 4 in 

a symmetrical way above the center of GVK. In that way, we eliminate completely the 

intensity differences in cameras images. Also the lines of sight of each camera are not in 

the same plane in this configuration which should improve the 3D reconstruction of 

particle. For that, prism insert should be manufactured, and the cameras should be able to 
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rotate along their axis to optimize the common field of view between the four. The LMFL 

has recently designed and machined new Scheimpflug adaptors which have this 

possibility. 

 

 

STB improvements 

 

To increase the efficiency of STB, one might need to do more tests on synthetic images. 

There is an infinite number of parameters combination, but with the results presented in 

chapter IV, we can now propose quite narrow range for the optimum parameter. By 

making some additional tests with smaller particle image size of 1.5 and 2.5 𝑝𝑥 at seeding 

concentration of 0.05 𝑝𝑝𝑝 and 0.07𝑝𝑝𝑝, one can remove the ambiguity on the optimum 

particle image size and concentration proposed. By making a test with a smaller 

magnification inside the DNS to mimic the experimental set-up, smaller displacements 

can be simulated to get a better view of the optimum acquisition frequency to set on STB 

experiments.  

 

The usage of a median filter, which demonstrated how significantly it can impact track 

length, is another crucial test to be carried out with synthetic images. Finally, we should 

also use the smoothing method of Cheminet et al, 2021 on the reconstructed tracks to see, 

for the optimum test case, the real amount of signal that we can recover from the raw STB 

results compared to the ground truth DNS. This test can also provide a tool to estimate 

the cut off frequency in STB experiments. By applying flowfit interpolation on these 

smoothed tracks to come back to Eulerian data, we can also propose an estimation of the 

real spatial resolution we can expect with spatial spectrum comparisons. 

 

At the end, ‘Shake the Box’ showed that it is indeed a powerful tool but to quote 

Spiderman “with great powers come great responsibilities”. Well, STB failed at a lot of 

its responsibilities. STB was marketed as a next gen type of algorithms that can open 

more research possibilities especially increasing the resolution since it doesn’t rely on 

cross correlation methods. New upgrades have been employed recently to the new 

software version of Lavision, specially what is called reverse tracking. In this new 

version, instead of just looking forward to the next piece of a track, the algorithm is able 

to track back in the past direction to find some missed pieces of a track and to reduce the 

error to the already found pieces. This option was briefly tested at the end of this thesis 

work but without clear improvements, on the contrary, the results were not as good, and 

the computational cost is very high. For that reason, alternatives should be considered for 

the next research campaigns on GVK. A promising alternative is OpenLPT software that 

is written in C++ and was inspired from “Shake The box”. The work of (Jahn et al., 2021) 

showed comparable results to STB black box as concluded from the thesis work of 

(Khojasteh et al., 2021). This team in Rennes France developed a new 4D PTV method 

called “Lagrangian coherent track initialization”. It is based on local temporal and spatial 

coherency of neighbor trajectories. They reconstruct tracks that are consistent with the 

neighbor coherent motions. Their work showed a more sophisticated initialization 

technique, and they are able to reduce systematic errors starting from the very first 

detected particle of a track.  
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Titre en français : Optimisation d'une métrologie 4D-PTV pour la caractérisation d'un 

écoulement turbulent à très petites échelles. 

Résumé en français : 

L'étude fondamentale de la turbulence revêt d’une importance significative en raison de 

son rôle dominant dans de nombreux domaines de la physique, des sciences de 

l'ingénieur, de l'astrophysique, de l'aéronautique, etc. La dissipation turbulente joue un 

rôle central dans l'écoulement turbulent et est donc une quantité importante dans les 

modèles de turbulence. Dans le but de caractériser cette dissipation, le présent travail est 

basé sur une technique de suivi de particules appelée "Shake-The Box" pour mesurer les 

champs de vitesse tridimensionnels en fonction du temps à une résolution pouvant 

avoisiner l'échelle dissipative. Le dispositif expérimental et le traitement de la technique 

Shake the Box ont été optimisés et poussés à leurs limites afin d'améliorer la résolution 

spatiale et la précision des trajectoires lagrangiennes mesurées. L'approche utilisée dans 

cette thèse est basée non seulement sur des données expérimentales mais aussi sur des 

images synthétiques PIV basées sur une simulation numérique directe des équations de 

Navier Stokes. L'investigation quantitative et qualitative nous permet de définir les 

paramètres optimaux pour notre application ciblée sur un écoulement de Von Karman 

Géant et donne les limites de la méthode. 

Mots clés : Mécaniques des fluides, velocimetrie par images de particules (PIV), 

Turbulence, Mécaniques des fluides expérimentales. 

 

Title in English: Optimization of a 4D-PTV metrology for the characterization of a 

turbulent flow at very small scales. 

Abstract in English: 

The fundamental study of turbulence is of significant importance due to its dominant role 

in many fields of physics, engineering sciences, astrophysics, aeronautics, etc. Turbulent 

dissipation plays a central role in turbulent flow and is therefore an important quantity in 

turbulence models. With the aim of characterizing this dissipation, the present work is 

based on a particle tracking technique called "Shake-The Box" to measure three-

dimensional velocity fields as function of time at a resolution which can approach 

dissipative scale. The experimental setup and processing of the Shake the Box technique 

have been optimized and pushed to their limits in order to improve the spatial resolution 

and the accuracy of the measured Lagrangian trajectories. The approach used in this thesis 

was based not only on experimental data but also on synthetic PIV images based on direct 

numerical simulation of the Navier Stokes equations. The quantitative and qualitative 

investigation allows us to define the optimal parameters for our targeted application on a 

Giant Von Karman flow and gives the limits of the method. 

Keywords: Fluid mechanics, Particle image velocimetry (PIV), Turbulence, 

Experimental fluid mechanics. 

 


