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Introduction

La crise de la biodiversité et le changement climatique en cours ont conduit à un relatif consen-
sus sur la nécessité de préserver l’intégrité et le fonctionnement des écosystèmes exploités. Bien
que déjà au cœur de multiples pressions anthropiques (pêche, aquaculture, routes maritimes,
exploitation des fonds marins, activités récréatives, énergies renouvelables et fossiles, etc.), les
milieux marins sont aujourd’hui considérés comme des espaces privilégiés pour le déploiement
de "l’économie bleue" de demain. Dans ce contexte, la planification spatiale marine (PSM) vise
à organiser rationnellement l’utilisation de l’espace et des ressources marines afin de réduire
les tensions entre les activités humaines et les écosystèmes marins, ainsi qu’entre les acteurs
de l’océan. De ce fait, la PSM s’est largement diffusée au sein des institutions en charge de
la gestion et est finalement devenue le cadre privilégié dans la perspective d’un développement
durable. Fruit de mobilisations collectives, la PSM est par nature au carrefour de diverses dis-
ciplines (écologie, économie, sociologie, droit, etc.), ce qui en fait un cadre difficile à mettre en
place. Parce qu’elle se veut rationnelle et fondée sur des preuves, la PSM utilise de nombreux
outils d’aide à la décision tout au long de son processus afin d’éclairer la prise de décision de
manière systématique et transparente. Il existe une profusion de tels outils (Marxan, Prior-
itizR, SeaSketch, Atlantis, Coastal Resilience, etc.). Ces outils sont plus ou moins ouverts,
libres, complémentaires, poursuivent des objectifs différents, mobilisent des méthodes et des
connaissances variées.

En général, la PSM cherche un découpage de l’océan afin d’allouer dans le temps et l’espace
les activités humaines en mer en accord avec un développement durable. Un cas particulier de
la PSM est l’allocation de l’espace marin à des fins de conservation. En d’autres termes, nous
nous concentrons sur les outils et les méthodes de désignation des zones protégées, un sujet
particulièrement d’actualité. Cela donne à la science de la conservation une place de choix
dans les débats internationaux. En effet, les aires protégées sont au cœur des politiques inter-
nationales actuelles visant à atténuer l’érosion de la biodiversité. Par exemple, les membres
(États, ONG, agences) de l’Union Internationale pour la Conservation de la Nature (UICN)
ont convenu de viser un niveau de protection de 30% de la surface de chaque écorégion marine
d’ici à 2030, contre moins de 8% aujourd’hui. Plus récemment, le Green Deal européen fixe un
objectif de 30% de la surface des eaux européennes à couvrir par des aires marines protégées
(AMP) d’ici à 2030. Les AMP apparaissent donc comme une part essentielle des solutions pour
assurer la préservation des écosystèmes marins. La surface concernée est immense, tout comme
les dommages potentiels aux écosystèmes ou les contraintes inutiles aux activités humaines.
Par conséquent, même une petite limitation de ces outils ne peut être négligée en raison de
l’amplitude de l’impact potentiel. L’objectif principal de ce travail est donc d’améliorer les out-
ils existants impliqués dans la PSM car ces outils connaissent plusieurs limitations qui doivent
être abordées. Notre travail cherche à ouvrir la boîte noire de ces outils et nous espérons ap-
porter plus de transparence et d’équité dans les processus de PSM.

Les travaux menés dans cette thèse explorent spécifiquement trois axes d’amélioration :

1. Deux classes d’algorithmes peuvent résoudre le problème de sélection de sites de réserve
: les algorithmes métaheuristiques (tels que le recuit simulé, couramment mis en œu-
vre dans Marxan) et l’optimisation exacte (programmation en nombres entiers, couram-
ment mise en œuvre dans PrioritizR). Bien que les approches exactes soient désormais
capables de résoudre des problèmes à grande échelle, les métaheuristiques restent large-
ment utilisées. L’une des raisons est que les logiciels basés sur des métaheuristiques
fournissent un ensemble de solutions de réserve sous-optimales au lieu d’une seule. Ces
solutions alternatives sont généralement bien accueillies par les parties prenantes car
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elles constituent une meilleure base de négociation entre des objectifs potentiellement
conflictuels. Les algorithmes métaheuristiques utilisent des procédures aléatoires pour
explorer l’espace des solutions de réserve sous-optimales. Par conséquent, ils peuvent pro-
duire une grande quantité de solutions alternatives similaires, donc peu informatives, ce
qui nécessite généralement un post-traitement statistique lourd. Il manque des méthodes
efficaces pour générer un ensemble diversifié de solutions proches de l’optimum à l’aide
de l’optimisation exacte. Nous présentons ici deux nouvelles approches pour résoudre
ce problème. Nos algorithmes contrôlent explicitement à la fois l’écart d’optimalité et la
dissimilarité entre les solutions de réserve alternatives. Ils permettent l’identification d’un
ensemble de solutions de réserve parcimonieux, mais significatif. Les algorithmes présen-
tés ici pourraient augmenter l’adoption de l’optimisation exacte par les utilisateurs finaux.
Ces méthodes devraient contribuer à des discussions moins confuses et plus transparentes
dans la conception des politiques de conservation. Ceci est l’objet du Chapitre 3.

2. La plupart des outils d’aide à la décision largement utilisés (e.g. Marxan, PrioritizR)
ne permettent généralement pas de prendre en compte explicitement l’incertitude. Or,
ces incertitudes peuvent conduire à des solutions de réserve inefficace, à des dommages
potentiellement irréversibles pour les écosystèmes et à des contraintes inutiles pour les
parties prenantes. Les approches probabilistes ont été appliquées avec succès avec des
données de présence/absence mais ce cadre est trop restrictif lorsque des données non-
binaires sont disponibles. Nous proposons deux approches averse au risque incorporant
une incertitude paramétrique dans les modèles de sélection de sites de réserve : (1) un
cadre d’optimisation robuste dans lequel un nombre donné de paramètres est toléré de
dévier d’une valeur nominale, (2) un problème d’optimisation avec contrainte en prob-
abilité résolu en utilisant une approche d’approximation par échantillonnage. Pour les
deux modèles, un paramètre de niveau de risque permet aux utilisateurs finaux d’établir
le risque qu’ils sont prêts à prendre. Ce travail leur fournit des outils pour concevoir des
solutions de réserve qui sont robustes à l’incertitude afin de faire face aux changements
globaux actuels. Ceci est l’objet du Chapitre 4.

3. Pour des raisons écologiques, d’application pratique et de gestion, une réserve sans co-
hérence spatiale a peu de chances d’être mise en œuvre. La plupart des outils d’aide à
la décision largement utilisés pour la sélection de sites de réserve (e.g. Marxan, Prior-
itizR) n’incluent qu’une contrainte spatiale grossière dans leurs modèles d’optimisation
par le biais d’un paramètre de compacité. La compacité d’une solution est appliquée em-
piriquement en pénalisant le périmètre global dans la fonction objectif. Plusieurs modèles
d’optimisation ont tenté de surmonter cette difficulté et de tenir compte d’une propriété
spatiale donnée : fragmentation limitée, connectivité des sites sélectionnés, zones tampons
autour des sites sélectionnés, etc. Mais, à ce jour, il n’existe pas de modèle de sélection
de sites de réserve qui garantisse la production d’une réserve connectée, compacte et sans
trous. Nous proposons un programme linéaire en nombres entiers utilisant la théorie des
graphes pour construire explicitement une réserve qui soit connectée, compacte et sans
trous. Pour ce faire, nous utilisons une approche de flots multi-commodités qui incor-
pore ces attributs spatiaux dans un modèle de sélection de sites de réserve. Nous avons
testé la faisabilité numérique de notre modèle sur des instances générées et sur le cas réel
de Fernando de Noronha. Nos résultats montrent que nous pouvons faire respecter la
compacité, la connectivité et l’absence de trous en utilisant un seul modèle. Ce travail
fournit aux utilisateurs finaux un modèle d’optimisation pour concevoir des solutions de
réserve présentant des propriétés spatiales souhaitables, ce qui augmente leurs chances
d’être mises en œuvre. Ceci est l’objet du Chapitre 5.

Bien que la sélection de sites de réserve puisse sembler être un aspect très spécifique de la PSM,
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comprendre et améliorer ces outils d’aide à la décision est une étape nécessaire avant d’aborder
la question plus globale de la PSM : comment trouver un zonage spatial équitable et durable
des activités humaines ? En permettant de comprendre précisément pourquoi et comment le
résultat a été obtenu, les axes présentés ici devraient, nous l’espérons, ouvrir la boîte noire des
outils d’aide à la décision et finalement contribuer à un meilleur processus de planification.

L’étude de cas utilisée comme illustration numérique des méthodes développées dans la thèse
est l’archipel brésilien de Fernando de Noronha dans l’Atlantique tropical. Pour des raisons
méthodologiques, nous avons également utilisé un jeu de données généré.

Produire un ensemble de solutions de réserve différente et
proche de l’optimalité par l’optimisation exacte

Un ensemble de solutions de réserve alternatives est généralement nécessaire pour créer des
réserves naturelles efficaces, car elles favorisent de meilleures négociations entre les différentes
parties prenantes. Dans un cadre décisionnel, les contraintes et les objectifs lés à la conception
d’une réserve peuvent être difficiles à exprimer dans un formalisme d’optimisation numérique
spatialement explicite. Tout phénomène non modélisé susceptible d’influencer la décision peut
entraîner des divergences avec les solutions proposées par l’optimisation. Par exemple, des
mécanismes sociaux complexes régissent la décision finale d’implantation des parcs éoliens (Bell
et al. 2005; Virtanen et al. 2022). Le processus de décision, qui repose finalement sur des
négociations, nécessite donc une certaine latitude sur les solutions possibles à envisager. La
génération de solutions alternatives donne aux utilisateurs la possibilité de trouver une solution
qui pourrait être plus satisfaisante par rapport à ces objectifs non modélisés. Pour ces raisons,
la capacité des outils d’aide à la décision à produire un éventail de solutions, au lieu d’une
seule, est fréquemment mise en avant dans la littérature (Pressey et al. 1993; Possingham et al.
2000; Possingham et al. 2006; Sarkar 2012; Ferretti et al. 2019). Par conséquent, les outils de
sélection de sites de réserve ont besoin d’options permettant de générer différentes alternatives
proches de l’optimalité.
La capacité à produire des solutions alternatives a souvent été présentée comme un atout
majeur des algorithmes métaheuristiques par rapport aux approches d’optimisation exactes
(Pressey et al. 1993; Possingham et al. 2000; Possingham et al. 2006; Sarkar 2012). Dans
un sondage réalisé auprès des utilisateurs de Marxan (Ardron et al. 2010), "la génération de
solutions multiples était de loin le point fort le plus souvent relevé de Marxan" par rapport
aux autres algorithmes de sélection de sites de réserve. Pourtant, des avancées récentes ont
rendu les méthodes d’optimisation exactes plus attrayantes pour les utilisateurs (Schuster et al.
2020; Hanson et al. 2019; Beyer et al. 2016; Rodrigues and Gaston 2002) car elles fournissent
la solution optimale en un temps raisonnable, même pour des grandes instances. La capacité
à générer de multiples solutions semble donc être le dernier argument restant en faveur des
algorithmes métaheuristiques. Techniquement parlant, les métaheuristiques s’appuient sur des
processus aléatoires pour créer une diversité implicite au sein de l’ensemble des solutions (voir
l’annexe B-2.1 dans (Serra-Sogas et al. 2020)). Au contraire, les méthodes de résolution ex-
actes produisent généralement, par construction, une seule solution optimale et ne sont pas
conçues pour produire un éventail de solutions différentes. Cette limitation majeure restreint
considérablement la capacité des méthodes de résolution exacte à informer les problèmes de
conservation du monde réel. Cependant, en l’absence de critères explicites, les approches mé-
taheuristiques ne fournissent aucun contrôle sur les alternatives générées et ne garantissent pas
non plus l’obtention de solutions réellement différentes. La recherche de solutions alternatives
proches de l’optimalité avec des méthodes de résolution exactes a commencé à être discutée
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dans (Fischer and Church 2005) et a été explorée dans le contexte général de la recherche
opérationnelle (Chang et al. 1982a; Brill et al. 1982; Chang et al. 1982b; Makowski et al. 2000).
L’algorithme développé dans (Arthur et al. 1997) calcule l’ensemble exhaustif des solutions op-
timales d’un problème de sélection de sites de réserve. Dans le même esprit, un algorithme de
sélection par séparation et évaluation a montré comment des solutions sous-optimales peuvent
être déduites avec des méthodes exactes (Önal 2004). L’outil de sélection de sites de réserve Pri-
oritizR offre également des fonctions supplémentaires permettant aux utilisateurs de construire
un portefeuille de solutions alternatives1. Cependant, la production de solutions alternatives
basées sur leur distance à l’optimalité avec des méthodes de résolution exactes ne garantit tou-
jours pas l’obtention de solutions différentes. Cela nous a motivé à introduire explicitement
une mesure de dissimilarité dans la recherche de solutions alternatives.

Dans ce travail, nous proposons deux algorithmes itératifs incorporant un critère de dissimilar-
ité explicite pour construire un ensemble de solutions proche de l’optimalité significativement
différentes les unes des autres avec des méthodes de résolution exactes. Les solutions sont
sélectionnées en fonction d’une dégradation contrôlée de la fonction objectif et en utilisant une
mesure de dissimilarité explicitement formulée. Nous avons observé que l’utilisation de la dis-
tance naturelle comme mesure de dissimilarité conduit à des solutions alternatives qui incluent
strictement la solution optimale. En considérant qu’il ne s’agissait pas d’une alternative valable
mais seulement d’une solution dégradée, notre mesure de dissimilarité a permis de discriminer
de tels cas, ce qui est nouveau en science de la conservation. L’Algorithme MinDegradation
fournit les solutions alternatives les moins coûteuses qui sont suffisamment différentes les unes
des autres selon un seuil de dissimilarité donné. L’Algorithme MaxDissimilarity fournit les
solutions les plus différentes les unes des autres pour une dégradation de l’objectif fixé. Ces
procédures impliquent la formulation de programmes linéaires en nombres entiers mixtes réso-
lus par des méthodes exactes. Une autre contribution importante est l’analyse comparative de
ces deux procédures entre elles et avec les méthodes existantes.

Nos résultats montrent que la génération de solutions alternatives en fonction de l’intervalle de
la valeur objective peut entraîner une faible variabilité entre les solutions, car elles sont très sim-
ilaires les unes aux autres. Ces solutions qui ne diffèrent que de quelques unités de planification
sont assez peu informatives. Elles peuvent difficilement être considérées comme des alterna-
tives. Pire encore, plus loin de la valeur optimale, la variabilité entre les solutions alternatives
semble peu pertinente car la procédure augmente artificiellement la valeur objective en incluant
des unités de planification inutiles. En tant que telle, elle répond mal au besoin de solutions
alternatives à la fois bonnes et différentes. La mesure de dissimilarité que nous incorporons
nous permet de surmonter cette limitation. Les algorithmes proposés cherchent explicitement à
générer une dissimilarité entre les solutions de réserve et à fournir de véritables alternatives. De
manière similaire à (Chang et al. 1982b; Brill et al. 1982), la mesure de dissimilarité que nous
définissons permet d’éviter que les réserves alternatives n’englobent la solution optimale. Un
autre écueil, particulièrement frappant dans les approches métaheuristiques, est la nécessité de
générer de nombreuses solutions alternatives afin d’explorer largement l’espace des solutions.
Cette grande quantité de solutions alternatives nécessite un post-traitement statistique pour
identifier quelques solutions distinctes. Cela nécessite souvent des analyses statistiques sup-
plémentaires, comme par exemple la fréquence de sélection des sites de réserve ou l’analyse de
regroupement. En revanche, nos méthodes fournissent directement un ensemble de présentation
composé de solutions significativement distinctes. Quelques solutions qui sont à la fois bonnes
et différentes les unes des autres peuvent donc suffire.

1Plus de détails sur https://prioritizr.net/reference/portfolios.html
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En résumé, la force de ce travail réside dans le fait que seules quelques itérations sont néces-
saires pour générer un ensemble de présentation de solutions vraiment différentes. De plus,
les méthodes développées sont hautement personnalisables. Par exemple, d’autres mesures de
dissimilarité pourraient être utilisées dans nos procédures itératives pour évaluer les différences
entre les solutions (Makowski et al. 2000). Ces différences ne dépendent que de la définition
d’une mesure de dissimilarité, et peuvent être adaptées en fonction du cas d’application. Un
autre avantage de ce type d’approche est de pouvoir quantifier explicitement la qualité des
solutions alternatives générées. Comme la recherche de solutions alternatives est effectuée par
des méthodes de résolution exactes, nous connaissons l’écart à l’optimum, ce qui donne plus de
contrôle à l’utilisateur final. Enfin, la production de l’ensemble de présentation est entièrement
contrôlée par deux paramètres. L’utilisateur peut alors choisir exactement le compromis entre
la diversité de l’ensemble des solutions alternatives et l’écart à l’optimum. En ce qui concerne
les points faibles, les approches proposées sont principalement limitées par le temps de calcul
nécessaire. Ce temps peut être important pour certaines instances et il augmente avec le nom-
bre d’alternatives demandées de par la nature itérative de l’approche. Cependant, nous n’avons
pas cherché à améliorer le temps de calcul dans ce travail. Dans l’état actuel des algorithmes,
nous pouvons fournir des ordres de grandeur pour le temps de calcul avec un ordinateur per-
sonnel (Intel Core i7-8850H CPU @ 2.60GHz) lorsque 4 alternatives sont demandées. Nous
avons observé les ordres de grandeurs suivants pour le temps de calcul sur plusieurs instances
générées :

• environ 2-3 minutes pour 500 unités de planification et 3 éléments de conservation avec
l’Algorithm MaxDissimilarity

• environ 10-60 minutes pour 1000 unités de planification et 5 éléments de conservation
avec l’Algorithm MaxDissimilarity.

• environ 10-20 secondes pour 500 unités de planification et 3 éléments de conservation avec
l’Algorithm MinDegradation.

• environ 2-15 minutes pour 1000 unités de planification et 5 éléments de conservation avec
l’Algorithm MinDegradation

Ces temps de calcul doivent être relativisés. Si nous ne cherchons pas nécessairement une
preuve d’optimalité, ils peuvent être beaucoup plus faibles. Nos algorithmes nous permettent
de fournir rapidement des solutions intéressantes et réalisables si nous décidons de conserver la
solution courante après un temps maximum donné.

En conclusion, contrairement à ce qui était couramment affirmé dans la littérature (Possingham
et al. 2000; Ardron et al. 2010), notre travail a montré que les méthodes d’optimisation exactes
utilisées pour le problème de sélection de sites de réserve peuvent également être avantageuses
pour produire un ensemble de solutions alternatives. Par conséquent, il n’est pas vrai que
les métaheuristiques sont les seules méthodes capables de produire un ensemble de présenta-
tion. En outre, l’inclusion d’un critère de dissimilarité explicite directement dans le modèle
d’optimisation a permis de construire un ensemble de présentation plus contrôlé et transpar-
ent. En recherchant des solutions sensiblement différentes, nous avons augmenté les chances
d’aborder des objectifs qui ne sont pas nécessairement modélisés, tels que des objectifs sociopoli-
tiques ou de gestion. Le faible nombre d’alternatives nécessaires avec nos méthodes peut éviter
un bruit inutile dans le processus de prise de décision. En d’autres termes, les algorithmes
proposés peuvent renforcer le pouvoir des utilisateurs en leur donnant plus de contrôle sur les
alternatives produites et en supprimant l’analyse de post-traitement habituellement nécessaire.
Nous espérons que ces méthodes pourront au moins jeter un nouvel éclairage sur les discussions
relatives à la conservation et, à terme, apporter plus de succès aux décisions de conservation
dans la pratique.

10 / 138



Optimisation averse au risque pour la sélection de réserve
avec des données non-binaires incertaines

Les outils de planification spatiale de la conservation visent à trouver les meilleurs sites de
réserve à partir des connaissances disponibles afin d’assurer la persistance de la biodiversité à
long terme et, éventuellement, des services écosystémiques. Mais l’incertitude inhérente aux
connaissances disponibles peut entraîner une mauvaise prise de décision et conduire à des so-
lutions de réserve inefficaces. Cette inefficacité peut causer des dommages irréversibles aux
écosystèmes, des contraintes inutiles sur les usages humains, et plus généralement un gaspillage
des ressources de conservation déjà limitées. Il apparaît donc crucial de fournir aux décideurs des
méthodes permettant de quantifier le compromis entre le risque et le coût d’une décision. Dans
un contexte de changement global, les méthodes de sélection des réserves qui tiennent compte
des incertitudes peuvent conduire à produire des réserves qui ont plus de chances d’atteindre
leurs objectifs de conservation. De plus, la connaissance incomplète et imparfaite est à la base
de la science de la conservation (Soule 1985). C’est pourquoi la prise en compte de l’incertitude
a été identifiée comme une lacune importante de la science de la conservation (Margules and
Pressey 2000; Foley et al. 2010; Reside et al. 2018). Le type d’incertitude qui peut intervenir
dans les problèmes de sélection de réserves est détaillé dans (Regan et al. 2009). Dans ce travail,
nous avons considéré une incertitude épistémique, qu’il s’agisse de variabilité (source naturelle
telle que le changement climatique) ou d’imprécision (du modèle ou de la mesure). En pratique,
cette incertitude affecte les quantités non-binaires des éléments de conservation du problème
d’optimisation de la sélection des sites de réserve.

Le principal cadre utilisé dans les méthodes de sélection de sites de réserve pour intégrer ex-
plicitement l’incertitude sont les formulations avec des contraintes en probabilité (Polasky et
al. 2000; Haight et al. 2000; Araújo and Williams 2000; Williams and Araújo 2000; Sarkar
et al. 2004; Cabeza et al. 2004; Tole 2006; Moilanen et al. 2006a; Moilanen et al. 2006b). Une
formulation de contraintes en probabilité vise à s’assurer que la probabilité de satisfaire des
contraintes données est supérieure à un certain seuil. Ces travaux sont basés sur des données
binaires puisqu’ils considèrent la présence/absence des éléments de conservation. Le modèle
probabiliste développé dans (Haight et al. 2000), linéarisé dans (Polasky et al. 2000) en in-
troduisant un niveau de risque toléré, a constitué une contribution méthodologique majeure.
Elle a permis des développements ultérieurs dans le même cadre (Araújo and Williams 2000;
Williams and Araújo 2000; Sarkar et al. 2004; Cabeza et al. 2004; Tole 2006; Moilanen et al.
2006a; Moilanen et al. 2006b). Ils sont basés sur la connaissance a priori de la probabilité de
présence (ou de persistance dans (Araújo and Williams 2000; Williams and Araújo 2000)) de
chaque élément de conservation à l’intérieur d’une unité de planification. Ces probabilités sont
censées être connues ou déduites de données environnementales (Araújo and Williams 2000;
Tole 2006). Elles sont considérées comme incertaines en raison des imprécisions du modèle
et une analyse du manque d’information est appliquée dans (Moilanen et al. 2006a; Moilanen
et al. 2006b). Les problèmes d’optimisation résultants ont été résolus principalement à l’aide
d’heuristiques, bien qu’une comparaison avec des méthodes de résolution exactes ait également
été effectuée dans (Sarkar et al. 2004). La clé de ces cadres stochastiques est que la variable
aléatoire associée à une quantité d’éléments de conservation dans une unité de planification a
une distribution de probabilité binaire (présence ou absence, persistance ou disparition). De
cette façon, la probabilité globale de présence d’un élément de conservation dans la solution de
la réserve peut être exprimée analytiquement. Cette expression permet ensuite d’exprimer un
programme linéaire en nombres entiers déterministe. Des détails théoriques supplémentaires
peuvent être trouvés dans (Beraldi and Ruszczyński 2002). Cette approche n’est pas possible
lorsque des données non-binaires sont disponibles. Dans notre cas, nous avons considéré des
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mesures d’abondance : la quantité de l’élément de conservation dans une unité de planification
est non-binaire, puisqu’elle peut prendre n’importe quelle valeur positive. L’obtention d’une
expression analytique similaire à celle de (Polasky et al. 2000) n’était pas possible avec des don-
nées non-binaires. D’où la nécessité de développer un autre modèle pour prendre en compte
l’incertitude sur les données non-binaires, quitte à résoudre une approximation. Une autre ap-
proche similaire, mais compatible avec des données non-binaires, est déployée dans MarProb2,
i.e. Marxan avec probabilités (Game et al. 2008; Carvalho et al. 2011; Tulloch et al. 2013). La
probabilité qu’une unité de planification soit détruite dans le futur est incluse dans la descrip-
tion du problème. La probabilité qu’un élément de conservation n’atteigne pas son objectif est
calculée à l’aide d’une table statistique sous l’hypothèse d’une distribution gaussienne. Dans
le même esprit que l’approche Marxan, cette probabilité a été incluse dans la fonction objectif
avec une pénalité de manque de représentation, puis résolue à l’aide d’un algorithme méta-
heuristique. Enfin, un indice de robustesse est proposé dans (Beech et al. 2008) en utilisant
une stratégie de Monte-Carlo. Une distribution de probabilité prédéfinie permet de générer
des échantillons de chaque quantité de caractéristiques de conservation. L’indice de robustesse
est simplement la proportion de fois où une unité de planification est sélectionnée parmi les
solutions de réserve calculées pour chaque instance dérivée des échantillons.

L’optimisation incertaine fait apparaître deux philosophies opposées quant à l’attitude à l’égard
du risque : l’approche neutre vis-à-vis du risque et l’approche averse au risque. Une attitude
neutre vis-à-vis du risque est souvent utilisée lorsque le résultat d’une décision est répété de
nombreuses fois. De cette façon, la décision est conçue pour optimiser une quantité attendue au
fil du temps. En revanche, lorsque le résultat d’une décision est le fruit d’une seule réalisation,
nous pouvons ne pas tolérer le risque encouru. En sciences de la conservation, une décision de
découpage spatial est prise une fois et le risque associé à une mauvaise décision peut entraîner la
destruction d’habitats et l’extinction d’espèces. C’est pourquoi, notre préférence pour le risque
s’est portée sur les approches averses au risque. Dans ce travail, nous montrons aux utilisateurs
comment incorporer l’incertitude affectant les quantités non-binaires des éléments de conser-
vation dans le problème de sélection des sites de réserve en utilisant des cadres d’optimisation
averses au risque. Nous proposons deux modèles d’optimisation qui tiennent compte explicite-
ment du risque qu’un utilisateur est prêt à prendre. Dans la première approche, nous avons
considéré une incertitude paramétrique non-probabiliste : les quantités des éléments de conser-
vation peuvent prendre une gamme de valeurs possibles au lieu d’une valeur particulière. Pour
résoudre ce problème, nous proposons une formulation d’optimisation robuste. En d’autres ter-
mes, nous avons cherché à trouver la meilleure solution réalisable quelle que soit la réalisation
de l’incertitude au sein de chaque ensemble de paramètres incertains. Mais, afin d’éviter la so-
lution du pire cas trop conservatrice, nous avons introduit un ensemble d’incertitude budgétisé
(Bertsimas and Sim 2004). Dans ce cadre, nous avons cherché à trouver la meilleure solution
réalisable en considérant un nombre de paramètres définis par l’utilisateur qui sont tolérés à
dévier de leur valeur nominale. L’optimisation qui en résulte est un programme linéaire mixte
en nombres entiers déterministe. Enfin, une analyse de sensibilité du paramètre de niveau de
risque fournit un moyen simple de représenter la robustesse de la solution de réserve de la
solution nominale au pire cas. Dans la deuxième approche, nous avons considéré une formu-
lation averse au risque avec des contraintes de probabilités. Comme nous ne disposons pas
d’une distribution de probabilité binaire, le calcul analytique de la quantité globale probable de
chaque élément de conservation dans la réserve n’est pas disponible. C’est pourquoi, nous avons
abordé ce problème d’optimisation en utilisant une approche d’approximation par échantillon-
nage (Luedtke and Ahmed 2008). L’idée est de discrétiser l’espace de probabilité en utilisant
un ensemble d’échantillons probables. De cette façon, la probabilité peut être estimée par une

2https://marxansolutions.org/software/
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proportion parmi les échantillons considérés. Pour concevoir la solution de réserve, nous avons
généré 100 échantillons probables en utilisant les géostatistiques. Nous avons généré des échan-
tillons conditionnellement à ce qui a été observé aux points de mesure. Au lieu de développer
un indice de robustesse comme dans (Beech et al. 2008), nous avons pris en compte les échan-
tillons de manière explicite dans la formulation d’un programme linéaire en nombres entiers.
Nous avons calculé la solution de réserve de la formulation de la contrainte de probabilités
pour plusieurs valeurs de niveau de risque. Nous avons comparé le niveau de risque avec une
probabilité estimée plus précise sur 1000 échantillons.

Nos résultats ont montré ce qu’il en coûte de produire des solutions de réserve averses au risque
qui sont robustes à l’incertitude et à quel point elles le sont. Alors que le formalisme robuste
traitait des quantités surestimées des éléments de conservation, le formalisme de la contrainte
de probabilités traitait d’une incertitude plus probabiliste contenue dans les échantillons. Les
modèles proposés dans ce travail sont nouveaux par rapport aux modèles classiques présentés
dans (Polasky et al. 2000; Haight et al. 2000) qui ne sont compatibles qu’avec des données
binaires. Nos approches ont permis de tenir compte d’une incertitude qui affecte les quantités
d’éléments de conservation non-binaires, ce qui est souhaitable dans de nombreux cas. En
général, la solution de réserve robuste est apparue coûteuse par rapport à la solution nominale.
Par exemple, en considérant que la moitié des paramètres est surestimée, la réserve robuste
coûterait plus de 50% par rapport à la solution nominale lorsque le paramètre de déviation est
fixé à 30%. Lorsque nous avons évalué les solutions robustes sur les 1000 échantillons générés,
bien que les coûts impliqués soient importants, les objectifs de couverture sont presque toujours
atteints. Les solutions du cadre robuste sont un moyen sûr d’être immunisé contre l’incertitude,
même pour de petits budgets d’incertitude, mais elles peuvent être très coûteuses. À l’inverse,
les solutions du formalisme de contrainte de probabilités fournissent des solutions moins chères,
seulement quelques pourcents au-dessus de la solution nominale, qui sont plus ou moins immu-
nisées contre le risque selon le choix de l’utilisateur. Cela semble permettre un réglage plus fin
du risque qu’un décideur est prêt à prendre. Nous avons également observé que des solutions
robustes pour de petites valeurs du budget d’incertitude permettaient d’obtenir les mêmes ré-
sultats. Cependant, la relation entre le budget d’incertitude et la probabilité d’atteindre les
cibles n’est pas aussi simple que dans le formalisme des contraintes de probabilités. Il peut
être plus difficile d’utiliser ce cadre pour concevoir une solution de réserve qui soit immunisée
contre une incertitude contenue dans les échantillons.

Nos résultats ont également montré que la comparaison de la solution du problème nominal
avec nos solutions averses au risque permet d’identifier dans quelle mesure des unités de planifi-
cation données contribuent à la robustesse de la solution. Les unités de planification en dehors
de la solution nominale et qui sont souvent sélectionnées dans les solutions averses au risque
sont susceptibles d’augmenter la robustesse de la solution vis-à-vis de l’incertitude considérée.
À l’inverse, les unités de planification de la solution nominale qui ne sont pas sélectionnées dans
les solutions averses au risque lorsque nous augmentons l’incertitude sont susceptibles d’être
perdues lorsque l’incertitude est réalisée. Nous observons que ces unités de planification ne sont
pas les mêmes dans les cadres de contraintes robustes et de probabilités. Ce type d’observations
était à la base de l’indice de robustesse développé dans (Beech et al. 2008). Dans ce travail, nous
sommes allés plus loin, puisque nous tenons compte a priori des échantillons dans le modèle
d’optimisation dans le formalisme des contraintes de probabilités.

Le cadre robuste fournit un moyen d’incorporer l’incertitude sans aucune distribution de prob-
abilité. Le seul prix à payer est d’ordre computationnel car il implique un programme linéaire
en nombres entiers plus important par rapport au problème nominal. Le formalisme des con-
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traintes de probabilités est une approche plus probabiliste. Notre travail a montré comment
nous pouvions résoudre efficacement une approximation de ce problème difficile en utilisant
des échantillons générés. Les limites du formalisme des contraintes de probabilités peuvent
provenir du nombre d’échantillons nécessaires. Comme la taille du problème est liée au nom-
bre d’échantillons, nous ne pouvons pas augmenter le nombre d’échantillons sans causer des
difficultés de calcul. Notre expérience utilisant les géostatistiques pour générer des échantil-
lons a illustré une autre limite : le paramètre de niveau de risque du formalisme des con-
traintes de probabilités ne représente pas strictement le risque réel. Pourtant, l’intérêt des
décideurs est de garantir une solution de réserve pour se protéger contre un niveau de risque
réel prédéfini. Puisqu’il y avait une corrélation apparente entre ces deux quantités, nous auri-
ons pu fixer empiriquement le niveau de risque du modèle pour atteindre un niveau de risque
réel prédéfini. Cependant, la relation entre le nombre d’échantillons et la probabilité réelle
d’atteindre les objectifs devrait être étudiée plus en détail. Dans ce travail, nous n’avons con-
sidéré que l’incertitude relative à un élément de conservation unique, ce qui limite l’évaluation
de l’effet de couplage. Nous avons fait ce choix pour des raisons de simplicité, mais cela
mériterait d’autres explorations pour établir des conclusions plus générales. Une autre limite
observée est que nos solutions averses au risque sont assez similaires malgré l’augmentation des
paramètres du niveau de risque. Cela s’explique par l’étude de cas considérée : les éléments de
conservation sont principalement distribuées autour de l’île principale, tout comme les solutions.

Nos méthodes averses au risque fournissent aux utilisateurs des moyens simples de déduire une
relation univoque entre la robustesse d’une solution de réserve et le coût associé. Ces cadres
permettent également d’identifier les zones susceptibles d’être perdues lorsque l’incertitude se
réalise, ce qui constitue une information précieuse dans un contexte de prise de décision. Le
choix du formalise à privilégier dépend de la modélisation de l’incertitude : distribution de
probabilité ou intervalles de valeurs possibles. Le compromis entre le niveau de risque et le
coût de la robustesse doit être fait par le décideur dans les deux cadres.

Conception explicite de réserves compactes, connectées et
sans trous

La résolution du problème d’optimisation de sélection des sites de réserve aboutit souvent
à la sélection de sites de réserve dispersés. Pourtant, la conception de réserves compactes,
connectées et sans trous est généralement nécessaire pour des raisons écologiques, de gestion
et d’application de la loi (Diamond 1975). Une réserve est connectée si l’on peut se déplacer
n’importe où à l’intérieur sans avoir à la quitter. Un trou dans la réserve est une zone extérieure
à la réserve que l’on ne peut quitter sans traverser la réserve. Actuellement, les attributs spa-
tiaux des réserves sont peu pris en compte dans les outils d’aide à la décision utilisés pour
la sélection des réserves. Dans les outils d’aide à la décision largement utilisés pour la sélec-
tion des réserves (e.g. Marxan, PrioritizR), le seul attribut spatial explicitement considéré est
la compacité globale d’une solution (Ball and Possingham 2000; Ball et al. 2009; Watts et al.
2009; Hanson et al. 2020). La compacité d’une solution est imposée en pénalisant directement le
périmètre global de la réserve dans la fonction objectif du problème d’optimisation traité. Cette
approche soulève plusieurs problèmes. Tout d’abord, l’expression du périmètre est quadratique
par rapport aux variables de décision. La linéarisation de l’expression du périmètre implique
l’ajout de nombreuses variables de décision et contraintes (Billionnet 2013; Beyer et al. 2016)
qui peuvent être coûteuses en calcul dans un contexte de programmation en nombres entiers.
De plus, cette approche transforme le problème en un problème multi-objectif où le coût d’une
solution et son périmètre sont implicitement en concurrence. En pratique, le multiplicateur de
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compacité est déterminé de manière empirique jusqu’à ce qu’une solution réponde aux exigences
spatiales jugées satisfaisantes. Cela affaiblit la nature systématique de l’approche de concep-
tion des réserves, bien qu’une définition plus systématique du multiplicateur de compacité soit
proposée dans (McDonnell et al. 2002). Des améliorations utilisant à la fois le périmètre et
la surface de la réserve dans l’objectif ont été proposées dans (McDonnell et al. 2002) pour
renforcer la compacité de la réserve. Dans le même ordre d’idées, une combinaison pondérée
des mesures de compacité et de connectivité est incluse dans l’objectif et résolue à l’aide de
métaheuristiques dans (Nalle et al. 2002). Dans tous les cas, la connectivité et l’absence de
trous ne sont pas garantis, mais plutôt susceptibles d’apparaître avec l’application empirique
de la compacité de la réserve.

Dans un contexte de recherche opérationnelle, plusieurs modèles d’optimisation ont été pro-
posés pour tenir compte explicitement de propriétés spatiales spécifiques (Williams et al. 2004;
Williams et al. 2005; Billionnet 2013; Billionnet 2016; Billionnet 2021). Par exemple, les mod-
èles d’optimisation ont pour but de sélectionner un noyau de réserve avec une zone tampon
autour (Williams and ReVelle 1998; Clemens et al. 1999). Mais ces modèles n’obligent pas la
réserve à être connectée et sans trous, bien qu’une telle réserve puisse en émerger. Une grande
famille de modèles tire parti des possibilités de modélisation offertes par l’utilisation des dis-
tances entre les sites candidats. La minimisation de la somme des distances deux à deux ou
de la distance maximale entre tous les sites de la réserve (Önal and Briers 2002) favorise les
réserves compactes, mais ne garantit pas que la réserve soit connectée et sans trous. Il en va
de même pour les modèles qui contraignent deux sites distincts contenant le même élément de
conservation à être plus proches qu’une distance seuil prédéfinie (Williams 2006). Une autre
grande famille de modèles d’optimisation tire parti de la théorie des graphes (Önal and Briers
2006; Wang and Önal 2011; Wang and Önal 2013; Jafari and Hearne 2013; Billionnet 2016;
Shirabe 2005) notamment pour assurer explicitement la connectivité de la réserve. Cependant,
la sélection des sites peut encore aboutir à l’inclusion de trous dans la solution de réserve. Une
réserve perforée par des trous ne peut pas être utilisée dans une conception de réserve à grande
échelle. Si des trous apparaissent dans une solution proposée par un outil d’aide à la décision,
elles seront soit incorporées arbitrairement dans la réserve, soit connectées artificiellement à
l’extérieur (dans les deux cas, cela conduira souvent à l’utilisation de solutions sous-optimales),
soit la solution fournie sera ignorée. L’utilisation de modèles imposant la connectivité et fa-
vorisant la compacité est susceptible de favoriser les réserves sans trous, mais cela n’est pas
garanti. Par exemple, il peut être nécessaire de concevoir des réserves naturelles autour de
zones qui ne peuvent pas être incluses dans la réserve, comme un port ou une route commer-
ciale. Ces zones ne peuvent pas être entourées par la réserve et doivent rester accessibles de
l’extérieur. Les modèles les plus récents fournissent souvent une solution de réserve avec des
trous dans ces cas. La prise en compte des trous dans les réserves est rarement abordée dans
la littérature. L’absence de trous dans la réserve peut être obtenue par la recherche itérative
d’une réserve sans trous parmi des solutions légèrement sous-optimales ((Billionnet 2016)). Ce
modèle n’empêche pas a priori les trous d’être inclus dans la réserve, mais espère plutôt qu’une
telle solution existe même si la valeur objective se retrouve dégradée. Une telle procédure est
intéressante mais ne garantit pas l’obtention d’une réserve connectée, compacte et sans trous
avec la meilleure valeur objectif. Un modèle sélectionnant des régions cellulairement convexes
(également dans des grilles régulières) qui sont ainsi connectées et sans trous est donné dans
(Williams 2003). Un tel modèle peut être adapté pour éviter les réserves avec des trous, mais
l’exigence de convexité peut négliger certaines solutions admissibles connectées et sans trous si
elles ne sont pas cellulairement convexes.

Dans ce travail, nous avons proposé un programme linéaire en nombres entiers qui produit
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des réserves compactes, connectées et sans trous. Un modèle d’optimisation faisant appel à la
théorie des graphes impose la connectivité à la fois de la réserve et de la non-réserve ce qui
permet d’obtenir des réserves connectées et sans trous. Nous avons utilisé un modèle de flux
multi-commodités pour imposer la connectivité. Nous avons choisi un modèle de flux multi-
commodités plutôt qu’un modèle de flux unique afin d’exprimer les contraintes de flux comme
des contraintes paresseuses. L’utilisation de contraintes dures à la place de contraintes pa-
resseuses prend beaucoup plus de temps voire même rend impossible de trouver des solutions
dans la limite de temps de 1000 secondes dans la plupart des cas. La compacité globale de la
réserve est définie en spécifiant un rayon ou un périmètre maximum de la réserve. Nous avons
également fourni une réduction du problème, en profitant de la structure rectangulaire de la
grille. En effet, en raison de la forme du graphe induit par une grille rectangulaire, nous avons
appliqué un "échiquier" pour séparer les nœuds en deux ensembles. En fonction de sa position
sur l’échiquier, un nœud est étiqueté noir ou blanc et appartient à l’ensemble correspondant.
Ensuite, nous avons appliqué le modèle de flux multi-commodités uniquement aux nœuds noirs
pour réduire la taille du problème sans aucune perte. Nous avons comparé les solutions de notre
modèle avec celles de l’état de l’art, à la fois en termes de temps de calcul et de qualité des
solutions par rapport aux exigences spatiales. Le code utilisé pour ce travail est libre, ouvert et
disponible. Le modèle que nous avons proposé est hautement personnalisable en ce qui concerne
la façon dont nous appliquons la compacité. Un bon réglage du multiplicateur de compacité,
du périmètre maximum ou du rayon maximum permet de façonner finement les attributs spa-
tiaux de la réserve. Nous avons illustré sur l’instance du monde réel de Fernando de Noronha
que notre modèle pouvait déjà être utilisé dans la pratique. Nous avons évalué numérique-
ment la généralité des approches proposées sur plusieurs instances générées composées de 300
ou 500 unités de planification et de 3 éléments de conservation. En ce qui concerne la taille
des instances dans les travaux existants, le nombre d’unités de planification considéré dans ce
travail est similaire aux autres travaux existants : 100 unités de planification dans (Billionnet
2012), 131 dans (Önal and Briers 2002), 225 dans (Billionnet 2021), 324 unités de planification
(Williams 2006), 391 unités de planification dans (Önal and Briers 2006), 400 dans (Billionnet
2016)). Cependant, le nombre d’éléments de conservation est un ordre de grandeur supérieur à
celui des travaux existants, toujours autour de 100 éléments de conservation. La comparaison
de la taille des instances reste difficile à interpréter, car les instances ne sont pas générées de la
même manière que dans la littérature.

Au lieu de supprimer les solutions de réserve avec des trous de l’espace de recherche (Billion-
net 2016), nous avons utilisé des contraintes de flux paresseuses pour a priori construire une
non-réserve connectée. Nous avons fait dans ce travail ce qui était préconisé dans la discussion
de (Billionnet 2016) en incluant a priori un modèle pour empêcher la formation de trous dans
les réserves. Nous nous distinguons également de (Billionnet 2016) car nous avons utilisé un
modèle de flux multi-commodités et des contraintes paresseuses pour faire respecter la con-
nectivité dans le problème de l’ensemble minimal. L’utilisation d’un flux multi-commodités
dans les problèmes de sélection de sites de réserve n’est pas nouvelle et a déjà été mentionnée
dans (Billionnet 2021) mais il s’agit d’une approche différente par rapport à (Billionnet 2012;
Billionnet 2016; Williams 2006).

La principale limite de notre travail est la taille limitée des instances qui peuvent être résolues
avec notre modèle dans un temps raisonnable. Le problème d’optimisation que nous avons pro-
posé reste difficile à résoudre numériquement. Cela était attendu car la résolution de modèles
qui prennent en compte des contraintes spatiales a tendance à être plus exigeante numérique-
ment en général, en particulier lorsque la taille du problème augmente (Wang et al. 2018). Bien
que la taille des instances considérées soit du même ordre de grandeur que ce qui est habituelle-
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ment fait dans une littérature similaire, il s’agit tout de même de petites instances par rapport
aux applications qui ne prennent pas en compte des exigences spatiales. D’un autre côté, cela
pourrait être atténué par le fait que nous pouvons potentiellement fournir des solutions sans la
preuve d’optimalité. Nos résultats montrent que l’obtention d’une réserve compacte, connectée
et sans trous n’entraîne qu’une faible augmentation du coût de sélection du site par rapport
aux modèles implémentés dans les outils d’aide à la décision tels que Marxan et PrioritizR. Le
seul prix à payer est un temps de calcul plus important. Par conséquent, l’obtention de réserves
spatialement cohérentes est davantage un défi numérique qu’une question de ressources limitées
par rapport au coût considéré. Étant donné que les solutions optimales ne sont pas si coûteuses
par rapport aux modèles de l’état de l’art, une solution de réserve compacte, connectée et
sans trous qui est légèrement sous-optimale peut tout de même être intéressante. De plus,
sélectionner une solution de réserve sous-optimale est souvent tolérée dans la littérature sur la
conservation, notamment lorsque des métaheuristiques sont utilisées pour résoudre le problème.

La grande étendue et l’aspect "toile d’araignée" des réserves sont une caractéristique commune
aux modèles qui imposent la connectivité de la réserve (Önal and Briers 2006; Billionnet 2012).
Nous avons atténué cet écueil inhérent aux modèles de connectivité en contraignant le rayon
et le périmètre de la réserve à rester sous un seuil prédéfini. Nos résultats ont également mon-
tré que l’inclusion de la compacité par pénalité du périmètre dans l’objectif ou par l’inclusion
d’une contrainte de périmètre maximum aident le modèle à trouver une solution plus rapide-
ment. Afin de conserver une approche à objectif unique, il peut être préférable de contraindre
un périmètre maximal de la réserve au lieu d’utiliser une pénalité dans l’objectif, mais nos
résultats ont montré que cela rend la résolution plus lente pour les instances de 500 unités de
planification.

Dans ce travail, nous n’avons pas abordé le problème de la représentation des éléments de con-
servation dans deux composantes distinctes de la réserve, ce qui est parfois une caractéristique
souhaitable pour être robuste aux événements catastrophiques (e épidémie, incendie). Imposer
une distance minimale entre deux sites sélectionnés contenant le même élément de conserva-
tion (Williams 2006) était la méthode pour obtenir une telle propriété. L’inclusion d’une telle
contrainte pourrait améliorer le modèle, ce qui peut donner lieu à des développements futurs.
Une autre caractéristique que nous n’avons pas prise en compte dans ce travail est la nature
potentiellement différente des unités de planification exclues a priori : certaines peuvent être
traversées, d’autres non. Par exemple, dans la conception d’une réserve marine, une unité de
planification terrestre est exclue a priori et ne peut être traversée. En revanche, une unité
de planification située dans le port est exclue a priori mais peut être traversée. La princi-
pale implication de cette différence en matière de modélisation est qu’un chemin assurant la
connectivité dans les modèles de flux ne peut pas traverser toutes les unités de planification
exclues a priori. Ce point n’est pas inclus dans nos modèles actuels et pourrait donner lieu à
des développements futurs.

Conclusion
Cette thèse s’est intéressée aux propriétés des outils d’aide à la décision couramment utilisés
dans les négociations de la planification spatiale marine, en particulier ceux mis en œuvre pour
identifier de manière optimale la localisation des aires de conservation (i.e. aires marines pro-
tégées). Nous avons d’abord (Chapitre 2) dressé un panorama des outils existants, des raisons de
leur coexistence, de leur formalisme et de leur fonctionnement, ainsi que de leurs forces et faib-
lesses respectives. Un résumé graphique des outils existants est illustré dans la Figure 1. Après
avoir établi que les outils d’optimisation de résolution approchés (métaheuristiques) avaient
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principalement une raison d’être historique (surmonter des problèmes de calcul aujourd’hui
disparus), nous avons choisi de nous focaliser sur les outils d’optimisation en résolution exacte
pour développer un certain nombre de leurs fonctionnalités qui faisaient défaut jusqu’à présent.
Nous avons d’abord proposé des algorithmes qui permettent de produire un ensemble diversifié
de solutions de réserve. Alors que les algorithmes métaheuristiques fournissent par construc-
tion un échantillon aléatoire de l’espace des solutions, sans aucune indication sur la proximité
à l’optimum, ni aucun contrôle sur la diversité réelle de ces solutions (ce qui implique d’en
produire beaucoup), nous avons proposé (Chapitre 3) des algorithmes permettant de produire
des solutions alternatives, tout en contrôlant explicitement leur proximité à l’optimum et en
maximisant la différence entre ces solutions. Nos algorithmes permettent donc de construire un
portefeuille parcimonieux de solutions (peu de solutions sont nécessaires puisqu’elles sont con-
struites pour être réellement différentes), dont la dégradation par rapport à l’optimum peut être
explicitement contrôlée. Un autre axe de développement important nous a semblé être la prise
en compte de l’incertitude dans ce type de modèle. Dans les applications existantes, les données
d’observation sont prises pour une vérité absolue, alors que l’on sait, par exemple, que chaque
instrument présente une variance de mesure. De même, les effets de la variation saisonnière, par
exemple, bien que souvent connus, sont rarement pris en compte dans ces modèles statiques.
Nous avons donc proposé (Chapitre 4) des algorithmes qui permettent d’introduire explicite-
ment les connaissances existantes sur les différents types d’incertitude affectant les données
d’entrée et de construire des solutions de réserve robustes à ces variations autour des données
d’observation. Enfin, nous avons pu identifier qu’une solution mathématiquement optimale
n’est souvent pas forcément pratique à gérer dans sa géométrie : des problèmes de discon-
tinuité, de non-compacité, d’enclaves peuvent apparaître dans les solutions proposées par les
modèles, et sont généralement supprimés dans le monde réel par une simplification a posteriori
de la géométrie de la réserve. Dans le Chapitre 5, nous avons proposé des solutions numériques
efficaces et explicites pour éviter l’apparition de ces phénomènes si tel est le souhait des ac-
teurs, évitant ainsi des simplifications hasardeuses et a posteriori de la forme de la réserve. La
Figure 2 fournit un résumé graphique des développements algorithmiques produits lors de cette
thèse.

Mots-clés: planification spatiale marine ; outils d’aide à la décision ; aires marines protégées ;
sélection optimale de sites de réserve ; programmation linéaire en nombres entiers ; Atlantique
tropicale.
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Figure 1: Résumé graphique des outils mettant en œuvre les modèles de sélection de sites de
réserve de l’état de l’art. Marxan déploie un algorithme métaheuristique pour construire un nombre défini
par l’utilisateur de solutions de réserve qui nécessitent un post-traitement statistique. PrioritizR déploie des
méthodes d’optimisation exactes pour trouver la solution la moins coûteuse au problème de sélection des sites
de réserve.
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Figure 2: Résumé graphique des développements algorithmiques de la thèse. Le Chapitre 3 fournit
des méthodes d’optimisation exacte pour déduire un ensemble diversifié de solutions proches de l’optimalité,
dissimilaires entre elles et avec une dégradation prédéfinie de la valeur de la fonction objectif. Le Chapitre 4
fournit deux approches utilisant l’optimisation exacte pour traiter une incertitude qui affecte les données non-
binaires du problème de sélection du site de réserve. Le Chapitre 5 fournit des méthodes d’optimisation exacte
qui construisent des réserves compactes, connectées et sans trous. Le code Julia associé est ouvert, gratuit et
disponible sur https://github.com/AdrienBrunel. PLMNE = programmation linéaire mixte en nombres entiers.
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The biodiversity crisis and ongoing climate change have led to a relative consensus on the
need to preserve the integrity and functioning of exploited ecosystems. Although already at
the heart of multiple anthropogenic pressures (fishing, aquaculture, shipping routes, seabed
exploitation, recreational activities, renewable and fossil energies, etc.), marine environments
are now considered as ideal spaces for the deployment of tomorrow’s "blue economy". In this
context, Marine Spatial Planning (MSP) aims to rationally organise the use of marine space
and resources in order to reduce tensions between human activities and marine ecosystems,
as well as between the stakeholders of the ocean. As a result, MSP has been widely dissem-
inated within the institutions in charge of management and has finally become the preferred
framework in the perspective of a sustainable development. Since MSP is the fruit of collective
mobilisations, it is by nature at the crossroad of various disciplines (ecology, economy, sociol-
ogy, law, etc.) making it a challenging framework to establish. Because it is intended to be
rational and evidence-based, MSP makes use of numerous decision-support tools throughout
its process in order to inform decision-making in a systematic and transparent manner. There
is a profusion of such tools (Marxan, PrioritizR, SeaSketch, Atlantis, Coastal Resilience, etc.).
These tools are more or less open, free, complementary, pursue different objectives, mobilise
various methods and knowledge.

In general, MSP seeks an ocean zoning in order to allocate in time and space human activities
at sea in accordance with a sustainable development. A particular case of MSP is the allocation
of marine space for conservation use. In other words, we focus on the tools and methods for
designating protected areas, a particularly hot topic at the moment. This gives the conservation
science a prominent place in international debates. Indeed, protected areas are at the heart
of current global policies to mitigate the erosion of biodiversity. For instance, the members
(states, NGOs, agencies) of the International Union for Conservation of Nature (IUCN) have
agreed to target a level of protection of 30% of the surface of each marine eco-regions by 2030,
compared with less than 8% today. More recently, the European Green Deal sets a target of
30% of the surface of the European waters to be covered by marine protected areas (MPAs) by
2030. MPAs thus appear to be an essential part of the solutions for ensuring the preservation
of marine ecosystems. The surface areas involved are huge, and so are the potential damages
toward ecosystems or unnecessary constraints on human activities. Consequently, even a small
limitation of these tools cannot be overlooked due to the amplitude of the potential impact.
The main purpose of this work is thus to overcome some of the known limitations of these de-
cision support tools involved in MSP. In particular, we seek to decipher some black box issues
of the tools currently used, and bring more transparency in their parametrization so that they
foster more equity in MSP processes.

The work carried out in this thesis explores specifically three axes of improvement:

1. Two classes of algorithms may solve the reserve site selection problem: metaheuristic
algorithms (such as simulated annealing, commonly implemented in Marxan) and exact
optimisation (i.e. integer programming, commonly implemented in PrioritizR). Although
exact approaches are now able to solve large-scale problems, metaheuristics are still widely
used. One reason is that metaheuristic-based software provides a set of suboptimal re-
serve solutions instead of a single one. These alternative solutions are usually welcomed
by stakeholders as they provide a better basis for negotiations among potentially con-
flictive objectives. Metaheuristic algorithms use random procedures to explore the space
of suboptimal reserve solutions. Therefore, they may produce a large amount of simi-
lar, thus uninformative, alternative solutions, which usually calls for a heavy statistical
post-processing. Effective methods for generating a diverse set of near-optimal solutions
using exact optimisation are lacking. Here we present two new approaches for addressing
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this issue. Our algorithms explicitly control both the optimality gap and the dissimilarity
between alternative reserve solutions. They allow the identification of a parsimonious, yet
meaningful set of reserve solutions. The algorithms presented here could potentially in-
crease the uptake of exact optimisation by practitioners. These methods should contribute
to less noisy and more transparent discussions in the design of conservation policies. This
is the subject of Chapter 3.

2. Most widely used decision support tools (e.g. Marxan, Prioritizr) generally do not allow to
explicitly account for uncertainty. Yet, these uncertainties can lead to deprecated reserve
solutions, potential irreversible damages towards ecosystems and useless constraints on
stakeholders. Probabilistic approaches were successfully applied with presence/absence
data but this framework is too restrictive when non-binary data are available. We propose
two risk-averse approaches incorporating a parametric uncertainty within reserve site se-
lection models: (1) a robust optimisation framework where a given amount of parameters
is tolerated to deviate from a nominal value, (2) a chance constraint optimisation problem
solved using a sampling approximation approach. For both models, a risk-level parameter
allows conservation practitioners to establish the risk they are willing to take. This work
provides conservation practitioners tools to design reserve solutions that are robust to
uncertainty in order to face current global changes. This is the subject of Chapter 4.

3. For ecological, enforcement and management reasons, a reserve without any spatial con-
sistence has limited chance of being implemented. Most widely used decision support
tools for reserve site selection (e.g. Marxan, Prioritizr) include only a rough spatial con-
straint in their optimisation models through a compactness parameter. The compactness
of a solution is empirically enforced by penalising the overall perimeter in the objective
function. Several optimisation models tried to overcome this and accounted for a given
spatial property: limited fragmentation, connectivity of selected sites, buffer zones around
selected sites, etc. But, to this day, there is not a reserve site selection model that guar-
antee to produce a connected, compact and gap-free reserve. We propose a mixed-integer
linear program using graph theory to explicitly build a reserve that is connected, com-
pact and gap-free. To do so, we used a multicommodity flow approach that incorporates
these spatial attributes within a reserve site selection model. We tested the computa-
tion feasibility of our model on generated instances and on the real case of Fernando
de Noronha. Our results show that we can enforce compactness, connectivity and the
absence of gaps using a single model. This work provides conservation practitioners an
optimisation model to design reserve solutions showing desirable spatial properties, what
increases their chances of being implemented. This is the subject of Chapter 5.

Although reserve site selection can seem a very specific aspect of MSP, understanding and im-
proving these decision support tools is a needed step before addressing the more global question
of MSP : how to find an equitable and sustainable spatial zoning of human uses? Allowing to
understand precisely why and how the result was arrived at, the axes presented here should
hopefully open the black-box of decisions support tools and eventually contribute to a better
planning process.

The case study used as a numerical illustration of the methods developed in the thesis is the
Brazilian archipelago of Fernando de Noronha in the tropical Atlantic. For methodological
purposes, we also used generated datasets.

Keywords: marine spatial planning; decision support tools; marine protected areas; optimal
reserve site selection; integer linear programming; tropical Atlantic.
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1.1 Context

1.1.1 Marine spatial planning

Marine environments are frequently seen as suitable areas for the development of the so-called
blue economy by institutions (The EU Blue Economy Report 2019 ; The EU Blue Economy
Report 2020 ), banks or even NGOs (WWF Briefing 2018: Principles for a Sustainable Blue
Economy). The concept of blue economy refers to the development of economic activities
linked to coastal and oceanic ecosystems. This concept is particularly attractive within polit-
ical spheres because it opens up new perspectives for the economic growth necessary for the
survival of current capitalist models. The practical consequence of the blue economy develop-
ment is the increase of the spatial occupancy of the ocean and coastline by multiple human
uses: fishing, aquaculture, shipping routes, seabed exploitation, recreational activities, renew-
able energies, fossil energies, tourism, etc. Yet, these spaces are already being at the heart of
multiple anthropogenic pressures, facing global changes and undergoing a biodiversity crisis.
The prospect of increased exploitation of the sea may therefore seems paradoxical and repre-
sents an organisational and ecological challenge. The launch of the United Nations Decade of
Ocean Science for Sustainable Development (2021-2030) at the United Nations Ocean Confer-
ence confirms the importance of this challenge at an institutional level.

Within that context, marine spatial planning (MSP) is positioning itself as a rational and col-
lective decision-making process regulating uses of marine spaces and resources. The end goal is
to reduce tensions between exploitation and conservation, as well as between ocean stakehold-
ers. Stakeholders can be of various types (e.g. private companies, governments, individuals,
etc.) and have very different interests (e.g. recreative activities, resource exploitation, routes,
etc.). For example, a stakeholder can be an individual using the ocean to practice kite surfing
or a private company installing offshore wind turbines. Tensions can rise between stakeholders
when they share an interest in a common marine area and that their activities are not compat-
ible. Also, the activity pursued by a stakeholder may occasion degradations to the ecosystems.
According to (Ehler and Douvere 2009), "MSP implies analysing and allocating the spatial and
temporal distribution of human activities in marine areas to achieve ecological, economic, and
social objectives that are usually specified through a public political process". In other words,
MSP aims at finding a spatial zoning of human uses that allows a sustainable exploitation of
the ocean. A spatial zoning consists in deciding which human uses can be deployed at sea
and in which areas they can be deployed. Finding such zoning can be assimilated to a re-
source allocation problem: the resource is the marine space to be allocated to each considered
uses. MSP broadly diffused over the last 10-15 years to eventually emerge as the dominant
marine management paradigm to reach the so-called sustainable development. It has been
widely promoted by academics, practitioners, and policymakers as a process for implementing
ecosystem-based management in the marine environment, reducing user conflicts, enhancing en-
vironmental protection, and facilitating maritime economies’ expansion (Douvere 2008; Ehler
and Douvere 2009; Brouwer et al. 2016). MSP is commonly expressed as a step-by-step process
(cf. Figure 1.1) involving stakeholder participation to increase the chance of the MSP plan to
be accepted. In this work, we mostly focused on the steps 5, 6 and 7.

1.1.2 Decision support tools

MSP strives to be a rational and evidence-based process (Pınarbaşı et al. 2017). MSP is cog-
nitively a complex process due to the amount and heterogeneity of available information (e.g.
oceanography, biology, economics, laws, politics, existing uses, futures uses, etc.). In this frame-
work, rooted in data analysis, decision support tools (DSTs) turned out to be indispensable

26 / 138



Figure 1.1: Step-by-step MSP process. This figure was extracted from (Ehler and Douvere 2009).

for rationally informing the decision-making process. DSTs take the form of spatially explicit
tools, involving interactive software comprising maps, models, communication modules and
additional elements that can help to solve multifaceted problems that are too complex to be
solved by human intuition alone or by conventional approaches. With the help of these tools,
support for decision-making can be undertaken in a more systematic and objective manner.

The number and types of DSTs have grown continuously. Main DSTs involved in MSP were
catalogued in (Coleman et al. 2011) where one can find details (goal, method, input, output,
etc.) about ARIES, Atlantis, Coastal Resilience, Cumulative Impacts, InVEST, MarineMap,
Marxan with Zones, MIMES, Multipurpose Marine Cadastre. This useful decision guide aims
to empower planners to swim among the profusion of DSTs in order to be able to choose one
depending on the problem tackled. It also underlines the difficulty of developing a marine
spatial planning process. That is why we choose in this work to focus on an important aspect
of marine spatial planning: the systematic planning of conservation areas.

1.1.3 Protected areas

Conservation institutions identify protected areas as an essential part of the solution to ensure
the resilience of marine ecosystems. For instance, the United Nations (UN) target for global
ocean protection was established to 10% of the surface of coastal and marine areas in marine
protected areas (MPAs) by 2020, as set forth by Aichi Target 11 under the Convention on Bio-
logical Diversity. Although we focused on MPAs, this work may still be relevant for terrestrial
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reserves. The UN Sustainable Development Goal 14 reaffirms this commitment. Going further,
many scientists emphasised that the 10% target was intended as a first milestone for global
ocean protection, rather than an endpoint. In that respect, International Union for Conser-
vation of Nature (IUCN) members, composed of governments, non-governmental organisations
and agencies, agreed on an ambitious protection target of 30% of the surface of each marine
ecoregion by 2030 (“IUCN World Parks Congress 2014 Bulletin”, “IUCN Congress 2016 Bul-
letin”), against less than 8% observed today and less than 2% before 20081. More recently, the
European Green Deal aims at covering 30% of the European seas surface with MPAs, among
which 10% under a strict protection. De facto, MPAs were proved to provide biotic communi-
ties global benefits (e.g. (Stolton and Dudley 2010)) especially when the reserve is strict (no
access, no removal) (Claudet et al. 2020; Liu et al. 2017). The development of coastal and
ocean-related human activities, the biodiversity crisis and ongoing global changes have led to a
relative consensus on the need to preserve the integrity and functioning of exploited ecosystems.
This gives the conservation science a prominent place to address nowadays’ challenges. DSTs
for reserve design have therefore rapidly become an issue for research and use at the global
level, including addressing MSP issues. Designing MPAs is a small but essential part of MSP
processes (Vaughan and Agardy 2020).

1.2 Conservation science

1.2.1 Environmental ethics

Environmental ethics is a branch of philosophy which takes roots in the United-States, Norway
and Australia in the early 20th. The 1960s saw the academic birth of the discipline, thus formal-
ising previous debates. It still remains an active field in the face of current environmental crises.
As defined in (Brennan and Lo 2002) and published in the Stanford Encyclopedia of Philosophy,
"Environmental ethics is the discipline that studies the moral relationship of human beings to,
and also the value and moral status of, the environment and its nonhuman contents". In other
words, environmental ethics critically examines the relationship between mankind and other
biotic and abiotic communities, seeking for ethics rules which can guide human behaviour and
actions related to the environmental protection. In particular, environmental ethics address
the essential questions underlying human conservation actions: why should we care for and
protect the environment? What could be the moral status of nonhuman entities justifying their
protection? For instance, to what extent humans are morally obliged to prevent the extinction
of given endangered species, especially if it does not imply any direct interest? Do biological
features hold an intrinsic value worth preserving? Is there space for a non-anthropocentric
environmental ethics leading to environmental protection? These questions lie within the scope
of environmental ethics and appear particularly relevant regarding conservation science if not
at its very foundation. Consequently, we provide a brief overview of the various schools of
thoughts of the environmental ethics and highlight the global consensus justifying and guiding
the conservation science. Our review aims to enrich our comprehension of the ethical principles
upon which conservation science and policies are built.

In order to deepen our understanding of the emergence of conservation actions and the under-
lying environmental ethics, it is necessary to go through an historical review. As depicted in
(Baer 1968), humans initially nomads lived in synergy with the environment, immediate needs
being satisfied thanks to the surroundings. Agriculture and animal breeding allowed humans
to become sedentary and increased their survival. Their sedentary behaviour was inherently

1https://www.protectedplanet.net/marine
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accompanied by habitat destruction. Besides, it favoured and enhanced the vision of a control-
lable and exploitable nature, which was from now on considered as a distinct entity. In the late
18th, the Enlightenment movement enshrined an anthropocentric and demiurgic vision of the
world. It eventually led to the 19th century climax of this vision, namely the industrial revolu-
tion and colonialism. Facing social and environmental destruction, the awareness regarding the
need for nature protection emerged in western societies. Romanticism especially illustrated this
trend, placing pristine nature on a pedestal as an aesthetic and spiritual source. Romanticists
idealisation and personification of nature resulted in conferring it an intrinsic value, although
still acknowledging the nature/human dichotomy. Paradoxically, (Baer 1968) underlines that
travels and tourism probably take its roots in romanticist nature promotion, while being a great
threat for the environment today. Nevertheless, a global awareness emerged from bitter obser-
vation regarding human destructive activities (monocultures, intensive breeding, urbanisation)
and eventually led to first intended initiatives in nature protection as explained in (Harroy
1969) and later described in Section 1.2.2.

Let us go through a quick description of early debates among naturalist thinkers, notably de-
picted in (Norton 1991), which will later influence environmental ethics works. Although both
inherited from the nature/human dichotomy, two major competing views emerged in the late
19th: "Preservationist" versus "Conservationist" respectively embodied by John Muir and Gif-
ford Pinchot. On one side, preservationist Muir advocates to keep human away from pristine
nature as much as possible in order to preserve its inherent aesthetic and spiritual values (Muir
1913). Muir ethics is clearly inspired by romanticists. It can also be linked with the Amer-
ican naturalist poet Henry David Thoreau who defended an intrinsic raison d’être of nature
beyond economic gains, and shared his humility behind wilderness and complex life forms in
a contemplative Rousseau style (Thoreau 1854). On the other side, conservationist Pinchot
pled for a sustainable resource management compatible with human interests, thus promot-
ing a more utilitarian and anthropocentric approach (Pinchot 1910). Philosophically speaking,
Pinchot can be associated with Kant positions which are strongly anthropocentric and only
acknowledge intrinsic value to rational agents, i.e., Homo Sapiens. This early debate, still
flowing within contemporary thoughts, illustrates both side of a continuous spectrum regard-
ing environmental ethics guiding conservation actions. Indeed, it crystallises tensions between
anthropocentric/non-anthropocentric views and perfectly illustrates the question whether to
assign natural features an intrinsic value, i.e., outside of human interests.

Now we have established extreme positions regarding environmental ethics, it is important
to mention other main schools of thoughts that can be roughly located on the preservation-
ist/conservationist scale. Before all, further environmental ethics developments emerged fol-
lowing Rachel Carson work (Carson 1962) which can be considered as the birth of the academic
discipline (Brennan and Lo 2002). Indeed, Carson drew general awareness regarding ecological
degradations and pointed it out as a public health topic. The "biocentrism" school of thoughts
appeared in reaction to strong anthropocentric doctrines. Biocentrism rejects a supposed hu-
man moral superiority and treats all other living organisms on an equal foot. Biocentrism thus
confers any living form an equal intrinsic value. Consequently, all living forms imply a moral
duty and are worth protecting. However, biocentrism individualist ethics fails to apprehend
ecological processes and communities equilibrium. This lack can potentially lead to ineffec-
tive conservation actions. For instance, it is sometimes compulsory to prevent by all means
invasive species to exist because they could endanger the whole ecosystem integrity. That is
why Aldo Leopold developed an inherently holistic position (Leopold 1949), namely its "Land
Ethic" also known as "ecocentrism". Ecocentrism is inherited from contemporary theoretical
developments in ecology, especially regarding species interdependence, that even Homo Sapiens
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cannot escape. Therefore, ecocentrism places ecosystems integrity as a guiding end and can
be condensed in Leopold following principle: "A thing is right when it tends to preserve the
integrity, stability, and beauty of the biotic community. It is wrong when it tends otherwise”.
Arne Næss developed his theory of "deep ecology" which repudiates the anthropocentric vision
and advocates for the intrinsic valuation of the biosphere, calling for biodiversity preservation
and close partnership with other living forms (Naess 1973). Deep ecology is opposed to what
Næss called "shallow ecology" which limits its action in reducing industrial damages or re-
sources depletion and considers the environmental crisis as a technical problem. Proponents of
deep ecology pleads for an humble human life, limiting extractive activities to essential needs.
Murray Bookchin’s "social ecology" analyses the current environmental crisis as a mere conse-
quence of other structural domination forms whether based on gender, ethnicity or social class
(Bookchin 1971; Bookchin 1982). Through his words "man’s obligation to dominate nature flows
directly from man’s domination over man", he is the first to intimately link ecological issues
with political organisation. Social ecology aims at deconstructing our essentialised extractive
relationship with nature, holding capitalism inherently accountable for ecological imbalances.
According to Bookchin, any attempt to overcome the environmental crisis that is unable to
question power distribution and political foundations is doomed to failure. Social ecology thus
condemns "green capitalism" which blames individuals instead of structures. Also, Bookchin
harshly criticizes deep ecology arguing this movement, although claiming its anti-capitalist ori-
gin, supports strong social hierarchies based on a social Darwinism inherited from a Malthusian
tradition (Bookchin 1987). Social ecology, strongly anti-capitalist, advocates for radical social
changes to overcome the environmental crisis. His ethics is accompanied by a well-defined
political baseline known as "libertarian municipalism" or "communalism". Indeed, Bookchin
promotes a decentralised cooperative confederation of free and self-directed communes in har-
mony with surroundings ecosystems, primarily focused on human welfare. In the same line,
Françoise d’Eaubonne developed the "ecofeminism" in 1974 to describe an environmental ethics
which apprehends ecological destruction and nature/human dichotomy through the prism of
a structurally oppressive relationship. Consequently, ecofeminism directly benefits from theo-
retical feminist works and analyses. Ecofeminism identifies common domination mechanisms
between human-centered and male-centered societies, which can help highlight legitimisation
processes of the dominant group over the dominated group. More notably, male-centered soci-
eties consider women as exploitable entities similarly as anthropocentric ones with nonhuman
features. Besides, it is argued patriarchy plays a particular role among other domination forms
as probably the first mechanism from which fuels others, a point also supported by Bookchin’s
social ecology. In conclusion, several schools of thought, such as biocentrism, ecocentrism, deep
ecology, social ecology and ecofeminism among others, appeared in the 20th devoted to the cre-
ation of a relevant environmental ethics and influencing civil society, governments and scientific
literature.

If an historical winner of the Muir/Pinchot debate had to be named, it would certainly be
Pinchot. Indeed, conservation science and policies tend to acknowledge and even essentialise
our economic relationship with nature, although they aim at organising extractive activities
sustainably. Consensual and politically privileged, the conceptual framework of sustainable
development and ecosystem services is still today rooted in conservationist ethical positions.
Therefore, the environmental ethics supporting the conservation science has a strong conser-
vationist baseline. For example, MSP has the clear objective of organising the sustainable
development of human activities at sea. An element of such organisation goes through design-
ing nature reserves, i.e. areas with a minimal human influence. Paradoxically, this element is
clearly from a preservationist heritage.
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Debates among scientists are still quite tensed today regarding the definition of conservation
science and oppose two competing views. On one side, the quite canonical and traditional
conservation vision depicted in (Soule 1985). On the other side, the extremely pragmatic and
anthropocentric vision carried by Kareiva, the former chief scientist of The Nature Conservancy
(TNC) (Kareiva and Marvier 2012; Kareiva et al. 2011). The answers to this view (Soulé 2013;
Doak et al. 2014) exposed the division among the conservation science community. Such aca-
demic debates help to maintain the global confusion about conservation actions, which is very
useful to slow down any conservation process. Paradoxically, Kareiva received a huge media
coverage and is depicted as an "out-of-the-box" and "provocative" "thinker" while his position
exactly reflects the strong anthropocentric ethics consensual among western societies in sys-
tems wholly based on economics. Finally, since the academic birth of environmental ethics, a
lot of papers addressed the question of which environmental ethics should support and justify
conservation efforts. Several elements were given, especially in (Norton 1994; Norton 1984;
Maris 2010) which remain still relevant today and tend to question conservationist positions.
In particular, (Maris 2010) built an environmental ethics based on five potentially contradictory
principles (autonomy, humility, responsibility, goodwill, diversity).

The methods addressed in this thesis are based on conservationist ethics since this work is
positioned within the conservation literature. Instead of refusing these tools associated to a
conservationist vision, we pragmatically focused on improving the methods in order to provide
a more transparent framework and hopefully contribute to more equitable discussions between
stakeholders involved in MSP processes. Besides, we chose in this thesis to deal with the
methods of reserve site selection, which is strongly associated with a preservationist vision.

1.2.2 Emergence of conservation within science and institutions

In this section, we discuss how conservation science as we know it today began academically
thanks to international cooperation. Although undoubtedly essential today in the light of the
biodiversity crisis and climate change context (cf. Section 1.1), conservation science remains
quite young as an academic discipline and find its roots in the late 1960s. Indeed, the creation of
American Conservation Biology journal in 1987 enshrined it as a structured academic discipline
even though European Biological Conservation journal existed since 1968, especially with im-
portant Australian theoretical work (Sarkar 2004; Odenbaugh 2016). Nowadays, many journals
with broad topics (Nature, Science, Trends in Ecology & Evolution, Frontiers in Ecology and
the Environment, Environmental Modeling & Assessment, BioScience, Biodiversity and Con-
servation, Marine Policy, Environmental Conservation, Journal of Biosciences, etc.) publish
conservation-related papers betraying a major interest towards conservation science.

If conservation was primarily a scientific concern, it later became an important political is-
sue motivated by various environmental ethics (cf. Section 1.2.1). An historical pathway
can be found in (Baer 1968; Harroy 1969). Early conservation actions were unintended and
uniquely motivated by private interests. For instance, hunt or forest reserves were built to
ensure respectively leisure or economic monopolies. These protected domains were nonetheless
quite efficient regarding conservation. In the late 19th, local and intended conservation efforts
successfully took place around the world through what will be later called "National Parks"
(Fontainebleau (France, 1853), Yellowstone (United-States, 1872), Royal National Park (Aus-
tralia, 1879), Rocky Mountains (Canada, 1885), Tongariro (New-Zeland, 1887), Monte Vedado
de El Chico (Mexico, 1898), etc.). A few coordinated international initiatives existed in the
early 20th and eventually failed, weakened by world wars and economic crises. Indeed, under
the impulsion of the Swiss pioneer Paul Sarasin at the 8th International Congress of Zoology
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held in 1910, the principle of a transnational cooperation focused on nature protection was
widely accepted and confirmed in 1913 in Bern during the "Conférence Internationale pour
la Protection de la Nature". As mentioned before, world war 1 unfortunately aborted this
promising international cooperation effort. Further attempts knew the same faith due to the
1929 economic crisis and world war 2. Although international cooperation collapsed, this pe-
riod witnessed a worldwide multiplication of protection attempts at the national scale (Japan,
Chile, Argentina, Indonesia, Rwanda, Congo, etc.). The first stable operational international
institution devoted to nature protection only emerged after world war 2. Indeed, the Interna-
tional Union for Protection of Nature (IUPN) was created in 1948 during the Conference of
Fontainebleau, renamed IUCN in 1956. Note the semantic sliding, from "protection" to "con-
servation", betrays the underlying ethical debate between preservationist and conservationist,
sketched in Section 1.2.1. The IUCN missions are numerous among which we can mention
government lobbying, conservation actions coordination between nations, worldwide data col-
lection and publication, public sensitization. The second half of the 20th century witnessed
the creation of other notorious international organisations such as International Waterfowl &
Wetlands Research Bureau (IWRB) in 1954 and World Wildlife Fund (WWF) in 1961.

1.2.3 Missions and motives

A "Conservation Biology" definition is proposed in (Sarkar 2004) and updated in (Odenbaugh
2016) both found in the Stanford Encyclopedia of Philosophy. The work in (Soule 1985) is
often considered as a canonical and kick-off paper for modern conservation science. The author
attempted to answer "What is Conservation Biology?" which deserves a deeper attention. Soulé
drew a guideline for future conservation scientist by providing specificity of the discipline and
underlying motives. He depicted conservation science as a crisis-oriented science arguing the
need for immediate action although based on incomplete and uncertain knowledge. He argued
that conservation science is inherently and pragmatically holistic. This holistic vision is inher-
ited from the theoretical developments in ecology but also through its multidisciplinary aspect.
Indeed, conservation science is inherently multidisciplinary in order to support as rationally as
possible the decision process requiring knowledge from ecology, geography, sociology, economy,
mathematics, management policies, etc. The denomination "conservation biology" has today
become "conservation science", expressing a broader coverage not restricted to biology. Histor-
ical journal names such as Conservation Biology and Biological Conservation are the remnants
of this semantic change. Soulé divided motives behind conservation science in two categories:
functional and normative postulates (Soule 1985). The functional postulates highlight species
interdependence, functions importance, but also that species, habitat and processes have a
functioning range. Outside this range, they irreversibly disappear. The normative postulates
advocate for a protection due to diversity intrinsic value in the ecocentrist tradition, while
human benefits of ecosystems are also acknowledged. This dichotomy appears when someone
argues that "conservation is useless". This statement is obviously wrong, because human de-
pends on nature in so many ways: a genetic pool for potential and actual developments of
medicine, an epidemic barrier, a pristine and natural laboratory to study modification due to
humans (Jenkins and Bedford 1973), an outdoor classroom for pupils and researchers, a source
of inspiration for artists and scientists, a museum of evolution and diversity, a renewable food
and energy stock, cleaning air and water, etc. But these instrumental values are hopefully
not the only reasons why people contribute to conservation. The usefulness of conservation
is always highlighted, especially on the political ground, due to a long conservationist ethics
tradition. Yet, uselessness can also be defended on the ethical ground, which raises the question
of the intrinsic value of nonhuman entities. Intrinsic values are often conferred to ecosystems
and can solely justify their conservation. In a less political example, we can find a similar
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statement with the famous claim "mathematics is useless". Yet, mathematics is clearly useful
and indispensable to many technologies we use every day. However, mathematicians often do
mathematics for the love, fun and beauty of it. This motivation dichotomy is historically il-
lustrated: nature preservation was initially mostly justified for aesthetic and spiritual values;
today, the sustainable development framework and ecosystem services vision prevail behind the
political motivation and thus conservation funding. Another striking example is the systematic
highlight of nature instrumental values in the introduction of academic works to justify the
relevance of the work. Yet, it is possible to work in favour of conservation for non-instrumental
values.

Soulé concludes about conservation biology fundamental role regarding the decrease of diversity
destruction rate, which can lead to huge threats and mitigate human impacts through iterative
management actions. Conservation core mission is to ensure diversity persistence of both biotic
and abiotic communities in a context of strong human disturbance and associated imbalances.
Diversity leads to stability at a community/ecosystem level (equilibrium dynamics, resilience
of ecosystems) (Soule 1985; Odenbaugh 2016; Holling 1973; Weise et al. 2020). Conservation
science thus aims at preserving long-term equilibrium of ecosystems which are subject to human
disturbances. More operationally, the biodiversity persistence mission also raises the question
of biodiversity. What is biodiversity? Which relevant surrogates? It is a practical vague notion,
as discussed in (Sarkar 2002; Sarkar and Margules 2002; Sarkar et al. 2006).

1.2.4 Early works (1960-1980)

1.2.4.1 SLOSS debate

As explicitly stated within the name, the Single Large Or Several Small (SLOSS) debate ques-
tions whether a single large area would have a greater specie richness compared to several small
areas of the same surface. This 1960s debate emerged within the island biogeography scientific
field. This field benefits from perfect natural laboratories: oceanic islands. Island biogeog-
raphy focused on quantifying both a static link between island area and species number, but
also a supposedly existing dynamic equilibrium between species extinction and immigration
rate (MacArthur and Wilson 1967). Naturally, the question about most favourable shapes of
islands network created the SLOSS debate. Why it is relevant regarding conservation science?
Actually, islands are thought to be perfect metaphors for nature reserves (Diamond 1975; May
1975). Indeed, it is assumed that such places can be considered as a network of safe "islands"
separated by unwelcoming habitats. Consequently, island biogeography scientists historically
contributed to and influenced conservation early works, especially at a time when national parks
began to flourish worldwide as mentioned in Section 1.2.2. Questions about relevant reserve de-
sign such as site selection or shapes thus appeared. Therefore, Diamond (1975) and May (1975)
draw important principles and conclusions for reserve design derived from biogeography studies.
In particular, Diamond (1975) suggested precious geometric principles regarding nature reserve
(cf. Figure 1.2). The purpose was not to take an active side in the SLOSS debate, but mostly
recommend for close if not connected reserve network in order to increase the immigration rate
between ecosystems. Besides, although (Diamond 1975; May 1975) acknowledged a single large
area would be more favourable than several small areas for holding species, restricted budgets
and human colonisation forbid large reserves. Even if it would be possible, (May 1975) argued
it would be hazardous to put "all eggs in one basket" in the light of potential catastrophic
events (epidemic, fires, etc.). Recommendations derived from island biogeography theory were
incorporated into the World Conservation Strategy (IUCN, 1980).
However, experiments did not validate the equilibrium theory of island biogeography between
immigration and extinction rate (Simberloff 1976). This experimental failure raised criticisms,
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Figure 1.2: This figure extracted from (Diamond 1975) illustrates suggested geometric principles for the design
of nature reserves. For each proposed shape, labelled from A to F, left design results in a lower extinction rate
than the right one.

since reserve design properties were inferred using the analogy with island biogeography theo-
ries. The mere idea to search a general theory is tackled in (Simberloff and Abele 1976) as a
given island network shape can favour some taxa and disadvantage other. In the continuation,
(Soulé and Simberloff 1986) closed the SLOSS debate by excluding any generalisation since the
answer is highly local-dependent. These questions are still central research axes in the modern
conservation science.

1.2.4.2 Conservation value

Conservation science thus inherited from the island biogeography literature, especially through
the SLOSS debate which stated quite valuable lessons regarding the spatial attributes of nature
reserves. The question of site selection and general reserve design later emerged, because limited
resources are usually available for conservation. Consequently, such research themes exposed
the underlying question of "conservation value" associated with a given delineated area. For
instance, a parcel dedicated to oil palm monoculture is ecologically worth less than an equal size
parcel of primary forest containing hundreds of species and diverse habitats. In other words, all
locations are not equal regarding the conservation interests. One of the primary scientific con-
cern was to compute a conservation value, monetary or not, for the considered areas. The urge
to value wildlife appeared as an operational response in our economy-based societies. Wildlife
valuation is often defended for operational purposes, since the economic appeal is assumed to
be the best motive for the public and thus conservation policy. Yet, maintaining a positive
view of oneself was proved to be more efficient than economic reasons to obtain a behaviour
change (Bolderdijk et al. 2012). This wildlife valuation can be imputed upon several factors:
prioritize conservation actions in a limited resources context, weight quantitatively conservation
with respect to other competing land-use, drive decided destruction and degradation towards
the least ecologically worthy area, inform decision in a reserve selection process. The literature
interest in conservation value computation illustrated once again the prevalence of Pinchot
conservationist positions over preservationist’s. Anyway, early effort of conservation biology in
the 1970s were animated by wildlife valuation, which broadly diffused and structured literature
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research questions.

Early initiatives developed a lot of effort to express a conservation value in monetary unit (Hel-
liwell 1967; Helliwell 1969; Westman 1977) to eventually compete directly with other land-use
such as agriculture, recreational activities, construction, etc. Although Helliwell focused on
conservation monetary evaluation, he also recognized a potential use for comparative purposes
and opened perspectives in the conservation literature through standard scoring systems. In-
deed, he first proposed a standard although subjective approach: several factors (landscape
position, light exposition, species presence, etc.) were scored on a 1 to 4 scale corresponding
to a monetary equivalent (Helliwell 1967). The multiplication of every factor value eventually
gave a price for trees and woodlands. Two years later, a more detailed process relying on
the same principle is described (Helliwell 1969). In particular, wildlife benefits are divided in
categories (education, recreation, actual and potential production) where seven factors (direct
returns, genetic reserve, ecological balance, educational value, research, natural history interest,
local character) are evaluated through a scoring system. A weighted sum allowed to eventually
assess the overall conservation value. It is worth noting the author acknowledged the "hor-
ror" such process can provoke within the scientific community (Helliwell 1967) while today it
is a common framework which has widely diffused among research, public and above all con-
servation practices (Reducing Emissions from Deforestation and Forest Degradation (REDD)
policy, MSP, ecosystem services, etc.). Also, such ideas appeared extensively developed within
an intern TNC documentation (Helliwell 1971) which shows how early this private organisation
influenced conservation practices. Others took the side to avoid a monetary framework but
kept the idea of systematic scoring for wildlife valuation (Tubbs and Blackwood 1971; Tans
1974; Gehlbach 1975; Goldsmith 1975; Wright 1977). Indeed, the assessment of a conserva-
tion value can serve a comparison purpose between studied areas. For example, conservation
scores ranking can help decision makers to prefer a given area with respect to another when
a reserve is selected or when the nature removal/damage is decided for exploitation. Ob-
viously, the ultimate goal of systematic methods for conservation value computation is the
first step to eventually feed priority ranking algorithms for reserve site selection (Tans 1974;
Gehlbach 1975). Anyway, whatever the chosen unit (arbitrary or monetary), systematic scor-
ing systems have been provided and improved accounting for various criteria in order to offer
the most transparent method. In particular, the scoring systems literature review in (Wright
1977) provided a quite exhaustive list of criteria contributing to the ecological score of consid-
ered areas: species and habitat attributes (rarity, richness, diversity, etc.), area features (size,
accessibility, availability, proximity with disturbances, threat), research and educational use,
management features, etc. Another improvement of conservation practice is found in (Gold-
smith 1975) where, motivated by a practical case study, the author brought a mapping effort
as he divided the studied area in a 1 kilometre square grid. Aggregating scores through a
weighted/non-weighted additive/multiplicative operation allowed to go from a multi-dimension
scoring space into a scalar conservation value and occasioned debates within the community.
Scientists commonly acknowledged the inherent subjectivity of such scoring systems (criteria
choice and shades, relative weights, final aggregation, etc.). However, systematic methods, un-
like arbitrary expert opinion, have the merit to provide a transparent and defensible framework
opened for improvement and critics. Besides, providing a standard survey is a great tool for
amateur naturalist allowing large data collection precious for conservation (Gehlbach 1975).
An enlightening review on conservation value assessment can be found in (Margules and Usher
1981).

These works on conservation value, contemporary with environmental ethics developments,
witnessed and enshrined an emerging conservation paradigm: nature is a service provider and
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only valuable relatively to human benefits, which is why conservation is deserved. Illustrations
of this paradigm can be found in (Westman 1977) as the author wondered in Science "How
Much Are Nature’s Services Worth?" but also in (Possingham and Shea 1999; Bayon and Jenk-
ins 2010) homonym papers. Few voices pleaded otherwise, i.e., in favour of defending nature
intrinsic values, although such values are often highlighted in the conservation literature. Nev-
ertheless, Ehrenfel (1976) raised relevant criticisms and objections regarding the conservation
value framework. Although Ehrenfel (1976) acknowledged these valuation methods are a way
to fill a gap in western policies demands bathing into an economy-based society, he affirmed
a cost/benefit framework remains unsatisfactory especially towards what he called poetically
"non-resource" and advocated for an intrinsic value of biological features. For example, the
mere and unimpeachable species right to exist as evolutionary partners is defended. Started
from the Houston toad example, the author observed that majority of biological features fac-
tually have neither directly nor indirectly demonstrated value for humans and thus fall into
the non-resource category. However, the urge to protect these features exists despite motiva-
tion towards its preservation is often distrusted in western societies when in competition with
another land-use. A solution could be to find a subterfuge to assign this "useless" feature an
economic value and paradoxically transform it into a resource, thus opening perspectives for a
protection. To do so, more or less anthropocentric reasons can be invoked (such as aesthetic,
educational, research, recreational, evolutionary, avoid irreversible change, undiscovered values,
etc.). Nevertheless, he argued such approach is not a relevant solution because it will start an
inevitable cost/benefit competition with respect to other land use, not particularly favourable
for conservation, which can even lead to legitimate irreversible removal. Indeed, several reasons
are provided: short term gains are often superior to long term sustained yield gains, benefits
highly depend on market change, conservation values are hard to identify and quantify, infor-
mation imbalance disadvantages conservation. Besides, Ehrenfel advocated that developments
of scoring systems and associated ranking algorithms can reverse the governance paradigm.
Indeed, as such tools are available for planners, there is a risk to systematize identification of
areas which can be dedicated to human exploitation, thus encouraging and even legitimating
ecosystem removal. Despite these risks and warnings, these tools are used today to identify ar-
eas of human activities. Our work therefore seeks to open the black box of these tools, improve
them if necessary, in order to make them as transparent as possible to an end user.

1.3 Operations research

1.3.1 General overview

Operations research is a field of mathematics covering a set of methods that seek to develop the
best decisions for a given problem. Since we seek the best decisions, optimisation methods are
particularly central to this branch of mathematics and are the object of our interest in this work.

It should be noted that the name "operations research" comes from the military "operations"
of world war 2 when the discipline experienced a particular boom. Today, the applications of
operations research are multiple and particularly suited to the capitalist issues of our societies
(capital investment, production planning, commodity stock, employees management, etc.). Our
work is not related to these issues, as we use these methods for reserve design. Indeed, in the
reserve site selection problem, we apply such methods to formulate and solve an ecological
problem. We seek to determine how to allocate a conservation resource, i.e. a space free of
anthropogenic pressures, in order to best protect biodiversity.

What is optimisation? Optimisation is a branch of mathematics that seeks the value of a deci-
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sion variable among possible values that minimises or maximises a given function. Thus, an op-
timisation problem can always be expressed as an objective function and inequality constraints.
More mathematically, one can generically formulate an optimisation problem as follows:{

minimize f(x)
subject to x ∈ X

In other words, we seek to determine the value, under the existence hypothesis, of the decision
variable x ∈ X which minimises2 the objective quantity f(x). Classically, it is by a set of
constraints to which the variable x is subject that its set of admissible values X is drawn.

Furthermore, optimisation problems are categorised according to the nature of the set X and
the objective function f . For example, if X and f are convex, it is called convex optimisation.
If the objective f is linear and X can be deduced from a set of linear constraints, we speak of
linear optimisation. In particular, convex or linear optimisation knows existence theorems for
the optimum and relatively efficient solving methods. If the set of admissible values X is discrete
(respectively continuous), then we speak of integer optimisation (respectively continuous). If
the set of admissible values X has both continuous and discrete components, then we speak of
mixed optimisation.

1.3.2 Integer linear programming

In this work, we have a specific interest for integer linear programming. When the decision
variable of an optimisation problem can take integer values, we speak of integer programming
by opposition to continuous programming. The "linear" adjective specifies that the objective
function and the constraints involved are linear in the decision variable. In our case, the op-
timisation problem described later in Section 1.4.2 involves a decision variable that can take
a value of 0 or 1. This binary choice reflects whether to include or not a specific delineated
area within a reserve. The decision variable is x ∈ {0, 1}N where N is the number of units
resulting from the study area division. Naively, we could think of this problem as simpler than
continuous programming because we «only» have to compute every possibility for x ∈ {0, 1}N ,
which is a finite number (equal to 2N), and take the smallest value among the resulting finite
set. And this would be, by nature, an impossible task impossible with a continuous decision
variable. However, a finite set unfortunately does not mean computer sized. We speak of com-
binatorial explosion. Indeed, for N ≥ 266, the number of evaluations of f is greater than the
number of atoms in the universe (∼ 1080). For instance, in our real-world study case, N = 756
which corresponds to more than 10227 possibilities for x. Besides, solving the associated relaxed
problem (i.e. allowing x to explore the smallest continuous set including {0, 1}N) and taking
the closest integer solution neither theoretically nor practically guarantees to find a relevant
solution (cf. Figure 1.3). Finally, unlike continuous programming, the derivative of f does not
have any sense in discrete programming while at the foundation of continuous optimisation
solvers.

For example, let us consider the following simple optimisation problem:

max
x,y

x+ y

s.t. 86x+ 100y ≤ 1155
−13x+ 10y ≤ 82
11x− 50y ≤ 0
x, y ∈ N

2Without loss of generality, we speak of minimisation. Indeed, if we seek x to maximise a quantity f(x), this
is equivalent to minimising its opposite −f(x).
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An illustration of this problem can be found in Figure 1.3. Numerically, the unique continuous
solution is (385

36
, 847
360

) ≃ (10.69, 2.35) with an objective value of approximately 13.05. The integer
solutions are {(4, 8), (5, 7), (6, 6), (7, 5), (8, 4)} with an objective value of 12. Importantly, the
closest integer solution from the continuous solution, namely (11, 2), is not even in the domain
of admissible values.

Figure 1.3: Example of a two-dimension linear optimisation problem. The values of the objective
are represented with a grey shaded gradient. Admissible values for continuous decision variables x and y are
delineated by linear constraints represented with red lines. The values of the objective function evaluated for
integer x and y are written in black inside the admissible domain and in white outside. The unique solution of
the continuous problem is represented by the green star. The closest integer solution is circled in black. The
solutions of the discrete optimisation problem are circled in green.
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1.3.3 Illustration examples

1.3.3.1 Hiking backpack

Let’s put ourselves in the place of a hiker preparing his backpack, and more particularly his
meals, in order to carry out a week in autonomy. His objective is to pack as light as possible
(cf. Figure 1.4). But of course the hiker is obliged to cover his, supposedly known, protein, fat
and carbohydrate needs for the week’s hike. The hiker’s decision is therefore based on whether
to put each food item in his backpack. In practice, every hiker sets up a set of simple rules,
more or less intuitive, based on the weight of the food and its nutritional quality until he finds a
solution that satisfies him, i.e. an acceptable backpack weight for his hike. However, our hiker
has no guarantee that this is the best solution, i.e. the lightest backpack. And it is to this
question that mathematical optimisation tools allow us to calculate the lightest backpack that
will cover his needs for the 3 nutrients considered, namely proteins, fats and carbohydrates.
Selecting sites to be integrated into a protected area is exactly the same thing: we want to find
the "lightest" reserve (for example the smallest, or the least expensive) that will satisfy our
"nutritional needs", in this case contain/recover enough of the species we wish to protect.

Figure 1.4: Example of the integer optimisation problem for preparing a hiking backpack. Which
food items to include in our backpack in order to cover our known 1-week needs for the three considered nutrients
(proteins, carbohydrates, fats)?

1.3.3.2 Goats and vegetables

Let us imagine green cabbages, red cabbages and carrots growing in some goat pens. Data
feeding the problem is qualified as «spatially explicit» because we can count and locate goats
and vegetables. Naturally, if goats are free to access their pen, they will probably eat every
vegetables. However, we would like to establish a conservation plan to protect an a priori
defined amount of green cabbages, red cabbages and carrots. Thus, we wonder which pens are
worth forbidding to goats in order to protect enough vegetables and impact the least goats.
Practically, let us imagine four pens (labelled A,B,C,D) with goats and vegetables distributed
as shown in Figure 1.5. We want to protect at least 3 green cabbages, 1 red cabbage and 1
carrot. As a result, it appears better to lock pen A and D instead of solely B because both
achieve the targets (3 green, 1 red, 1 carrot) but respectively 1 goat is impacted instead of 3.
Pen C is not worth protecting because it does not contain any vegetables while a goat is using
it. In other words, systematic reserve site selection tools try to ensure conservation of a given

39 / 138



amount of given features (vegetables) while limiting the benefit loss associated with a given
usage (goat).

Figure 1.5: Example of an optimisation problem solved by systematic reserve site selection. Blue and green
background mean pen is respectively opened and locked (i.e. part of the reserve). From initial situation (top
left), which pen accesses to forbid in order to eventually protect 3 green cabbages, 1 red cabbage and 1 carrot
while minimising impact on goats? If pen B is locked (top right), targets are achieved and 3 goats are impacted
while, if pen A and D are locked (bottom left), only 1 goat is impacted and targets are still achieved.

1.4 Systematic reserve site selection

1.4.1 History

Following elaborated works dedicated to conservation value computation through detailed scor-
ing systems (cf. Section 1.2.4), first developments of reserve site selection algorithms appeared
and systematic planning became a major question in conservation sciences. Systematic meth-
ods for reserve site selection are a way to provide a rational choice in opposition with ad-hoc
selection. Indeed, nature reserves were historically selected where no other land use were to be
found. However, in an environmental crisis context with limited resources, ad-hoc reserves are
unlikely to fill conservation purposes as depicted in (Pressey 1994; Pressey and Tully 1994) and
systematic planning appeared as a relevant solution to guide conservation effort. The main mis-
sion of conservation science is to ensure biodiversity persistence, which is therefore the purpose
followed by systematic reserve site selection algorithms. As a reminder, conservation features
(species, habitat, etc.) are spatially explicit data and the purpose is to select pieces of region
composing a consistent nature reserve.

Priority ranking algorithms are a first naive approach to develop a systematic reserve site selec-
tion. The principle is simply to sort considered areas based on their conservation value in order
to eventually select the highest ones for priority conservation actions or until a surface budget
is reached (Tans 1974; Gehlbach 1975; Rabe and Savage 1979). Obviously, reserve selection
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resulting from ranking algorithms entirely depends on the chosen scoring system. For instance,
output can widely vary whether conservation value is rarity or richness based. This subjectiv-
ity inherited from conservation value computation is mitigated though the selection procedure
transparency and defensible character. However, such approach lacks of representativeness as
ranking algorithms cannot systematically ensure a full coverage of every considered biological
features. For example, if 2 specie are located within the studied area, it is likely areas with the
highest conservation scores only contain 1 specie and no individuals of the other.

Since then, complementarity became a principle of reserve site selection. Consequently, an
iterative ranking algorithm is developed in (Kirkpatrick 1983) aiming to compensate lack of
representativeness and thus systematically ensure complementarity of nature reserve. To do
so, between each site selection, scores are computed again accounting for the already covered
conservation features and thus taking into account complementarity. Such iterative approaches
implied the development of heuristic rules to best ensure reserve representativeness. Following
the influencing Kirkpatrick’s paper, several authors successfully proposed their own improved
version of iterative heuristic (Margules et al. 1988; Pressey and Nicholls 1989).

Nevertheless, such "greedy" algorithms cannot mathematically ensure "efficiency" of the se-
lected reserve, whatever the criterion behind it. Indeed, efficiency of a nature reserve can be
understood in various manners, such as a reserve which represents the maximum conservation
features or with a minimum area. Consequently, an optimisation framework is suggested in
(Cocks and Baird 1989) in order to a priori account for efficiency and representativeness in
conservation plans, directly expressed in objective and constraints formulation. Indeed, authors
noticed the reserve site selection problem can be expressed within an integer programming (IP)
field as the considered decision variable represents the choice whether to include or not a unit in
the nature reserve, i.e. mathematically worth 1 or 0. This major paradigm shift allowed to ben-
efit from decision theory literature and moved conservation debate towards unprecedented and
still relevant questions: Which optimisation solvers realise the best trade-off between optimal-
ity and time computation? Which objective formulation best address conservation missions?
Which constraints best account for ecological stakes (connectivity, representation, shapes, re-
dundancy, etc.)? Iterative heuristic remained preferred, discarding optimisation methods for
computation time reasons (Pressey et al. 1997). The optimisation framework widely diffused
and became canonical within conservation literature, as further developments followed and
overcame this limitation (Possingham et al. 1993; Church et al. 1996; Possingham et al. 2000;
Margules and Pressey 2000; Possingham et al. 2006). In particular, the development of Marxan
impulsed by TNC (demonstrating once again TNC influence) participated in the broad diffu-
sion of the optimisation framework standard in systematic reserve site selection. An important
literature review regarding systematic conservation planning can be found in (Csuti et al. 1997;
Sarkar 2012).

1.4.2 General formulation

In a reserve site selection problem, the study area is discretised into a set J of planning units
within which a set I of conservation features are distributed. The amount of conservation
feature i ∈ I within the planning unit j ∈ J is denoted aij. Each planning unit has a cost cj
representing the socio-economic cost of closing this unit. One then seeks to find the least cost
collection of planning units covering a sufficient amount of each conservation features. The
coverage of the conservation feature i is considered sufficient if it exceeds a user-defined target
ti. The decision is about whether to include the planning unit in the reserve. Consequently,
we associate the decision variables xj with each planning unit j: xj = 1 if a planning unit
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j belongs to the reserve and xj = 0 otherwise. The reserve compactness is the only spatial
attribute incorporated in the model. Other spatial concerns, such as contiguity, minimum
fragmentation, buffer zones, corridors, etc., may govern the site selection but are not considered
here. Since a small perimeter involves a compact reserve, the reserve perimeter is included in
the objective function. The perimeter is computed as the total length of the boundaries between
reserved and non-reserved planning units. To model this, the length of the shared boundary
between planning units j1 and j2 is denoted bj1j2 . A multiplier, noted β, is used within the
objective function to reflect the importance of compactness relatively to the total cost of site
selection. Mathematically speaking, the general problem of reserve site selection is expressed
as the following combinatorial optimisation problem P0:

P0 :


min
x

∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2)

s.t.
∑
j∈J

aijxj ≥ ti ∀i ∈ I

xj ∈ {0, 1} ∀j ∈ J

We can linearise the quadratic term of the objective function when decision variables are binary
(Billionnet 2013; Beyer et al. 2016). Sets of planning units a priori excluded or included in the
reserve are respectively noted LO and LI. Considering this linearisation but also locked-in and
locked-out planning units, we write the full mathematical optimisation problem P f

0 of reserve
site selection:

P f
0 :



min
x,z

∑
j∈J

cjxj + β(
∑
j1∈J

∑
j2∈J

bj1j2zj1j2 +
∑
j∈J

xjb
∗
j,N+1)

s.t.
∑
j∈J

aijxj ≥ ti ∀i ∈ I

zj1j2 ≤ xj1 ∀j1 ∈ J,∀j2 ∈ J
zj1j2 ≤ xj2 ∀j1 ∈ J,∀j2 ∈ J
zj1j2 ≥ xj1 + xj2 − 1 ∀j1 ∈ J,∀j2 ∈ J
xj = 0 ∀j ∈ LO
xj = 1 ∀j ∈ LI
xj ∈ {0, 1} ∀j ∈ J
zj1j2 ∈ {0, 1} ∀j1 ∈ J,∀j2 ∈ J

This problem is a generalisation of the minimum set cover problem, which is known to be NP-
hard (Garey and Johnson 1979). It is a non-convex problem due to the binary nature of the
decision variables. Yet, it can be expressed as an integer linear program and available solvers
can solve realistic instances in a reasonable time. Another approach to solve this problem is
to use metaheuristic algorithms to quickly identify suboptimal solutions. This is the strategy
deployed in Marxan. Practically speaking, in this work we will use both CbC and Gurobi
to have the exact solution and the simulated annealing procedure of Marxan when we use
a metaheuristic approach. CbC is a free and open-source solver (Forrest et al. 2018) from
the COIN-OR3 project (Lougee-Heimer 2003). Gurobi is a commercial solver used under a
free academic licence. The code developed in Julia language (Bezanson et al. 2012; Bezanson
et al. 2015) using the JuMP optimisation library (Dunning et al. 2017) is available on the
GitHub repository https://github.com/AdrienBrunel. Julia was our preferred coding language,
although we also used R to be able to communicate towards more ecology-oriented disciplines.
The numerical experiments were all realised on a personal computer (Intel Core i7-8850H CPU
@ 2.60GHz).

3Common Optimization INterface for Operations Research
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1.5 Study cases

1.5.1 Observed data

1.5.1.1 Fernando de Noronha

Fernando de Noronha is a small oceanic archipelago in the western tropical Atlantic, made up
of 21 islands, islets and rocks with a total surface area of 26 km2, and constituting a genuine
Brazilian natural and cultural heritage. Its distance from the coasts4 has allowed it to preserve
until today a relatively wild coastline where a great marine biodiversity evolves in clear waters
and constitutes on land a refuge for native fauna and flora. The main island, 10 km long and
3.5 km wide, is the only one inhabited by man. Fernando de Noronha hosts a small-scale fishery
composed of approximately 10 artisanal and recreational vessels. In 2001, the archipelago was
listed as a World Natural Heritage Site by UNESCO. An oasis of marine life in a relatively
barren and open ocean, these islands play a key role in the process of reproduction, dispersion
and colonisation by marine organisms in the entire tropical South Atlantic. The productive
waters of the archipelago provide an important feeding ground for species such as tuna, billfish,
cetaceans, sharks and sea turtles when they migrate to the African coast. These islands also
contain the largest concentration of tropical seabirds in the western Atlantic, and include the
only examples of the Atlantic island forest and oceanic mangrove in the South Atlantic. The
Dolphin Bay is home to an exceptional population of resident dolphins. The Fernando de
Noronha ecosystem is legally protected by a number of federal laws and state regulations,
including a marine national park since 1988. For all these reasons, Fernando de Noronha is
a conservation showcase in Brazil while facing many interests, such as oil industry, tourism
intensification and fisheries, resulting in an open sky laboratory for marine spatial planning. In
the frame of the EU RISE Paddle project and related projects (FAROFA surveys, LMI Tapioca,
Mafalda project, etc.), a series of field research surveys were conducted since 2015, providing
the spatially explicit data on fish and fisheries used hereafter.

1.5.1.2 Grid

Prior to any work, Fernando de Noronha study area was divided into planning units, i.e. our
conservation resource soon to be allocated. We built a grid made of regular rectangular pixels,
with longitude and latitude respectively in [32.65◦W, 32.30◦W] and [3.95◦S, 3.75◦S] ranges. We
chose a 0.01◦ resolution which results in considering N=36×21=756 planning units. Both our
boundaries and resolution choices were justified to properly capture data feeding our case study.
This discretisation process allowed us to transform the input geographical layers into vectors
and matrices. This operation was required to fit in the optimisation framework and thus tackle
mathematically the reserve site selection problem. Pixels located in Fernando de Noronha land
and harbour were a priori excluded from potential reserve site candidate (see transparent grey
pixels in Figure 1.7). In other words, these locked-out planning units were not authorised to
be included in a reserve. Fernando de Noronha harbour is the archipelago nerve centre, what
justified it could not be included in a strict reserve. Regarding the exclusion of land, the
purpose was to avoid a fictive bridge between two non-connected marine areas.

1.5.1.3 Fish biomass

Recent acoustic surveys around Fernando de Noronha collected in situ data on fish distribution
(Bertrand 2019). Acoustic raw data were processed to synthesise the collection of fish echoes as
a nautical area back-scattering strength (Maclennan et al. 2002), i.e. sA, summed over the water

4360 km from Natal, 545 km from Recife
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column. Figure 1.6 displays the sA raw spatial distribution as purple circles along sampling
transects (solid black lines). We used sA as a proxy for fish biomass (Simmonds and MacLennan
2005). We chose to treat fish biomass as categories, assigning each observation to its quartile
prior to the interpolation. A fifth category was added to account for null densities. Interpolating
between sample data allowed producing a continuous 2D-view of fish biomass distribution within
the sampling area. Outside this area, as the reserve site selection optimisation models cannot
deal with absent data, we set values to 0, although we did not know the actual fish distribution
there. The interpolation consisted in indicator co-kriging where each indicator variable was
coding for a given category (Bez and Braham 2014; Chiles and Delfiner 2012). Finally, as
acoustic data resolution was finer than our grid, we selected the most frequent class of sA
values within each planning unit as a conservation feature surrogate hereafter. Results of this
process are presented in Panel B in Figure 1.7.

1.5.1.4 Habitats

Bathymetric data were collected from GEneral Bathymetric Chart of the Ocean (GEBCO)
online platform5. GEBCO 2014 was preferred over 2020 update because in situ depth mea-
surement from recent surveys (see above) were closer to 2014 than 2020 interpolation. Data
resolution is 30 arcseconds (i.e., 0.0083◦) both for latitude and longitude. Such resolution was
consistent with our 0.01◦ (i.e., 36 arcseconds) grid resolution. Continental shelf and shelf break
can be considered as two separate suitable habitats for benthic and demersal fish, both worth
protecting. A GEBCO point was discriminated as continental shelf or shelf break respectively
for depth within [0m, 50m] and [50m, 200m] ranges. Finally, according to the majority of point
states (i.e., continental shelf or shelf break habitat) within each planning unit, the predominant
conservation feature took the value 1 while the other 0. For instance, we assigned a value of 1
for the continental shelf and 0 to the shelf break feature if there were more continental shelf than
shelf break points within the planning unit. Note, in case of equality, we assigned the pixel to
continental shelf. Results of this process were illustrated in Panel C and D in Figure 1.7. Note
that the continental shelf or shelf break habitat distributions did not overlap in our gridded
data due to the very nature of the data processing described above.

1.5.1.5 Fishery

Fishery data were composed of 69 GPS tracks from fishers’ trips collected in situ through the
5 past years at Fernando de Noronha. Fishery activity in Fernando de Nornoha is performed
daily by 4-10 vessels. Although the sampling did not cover the entire fleet, it is reasonable to
assume we have a significant insight on the fishery activity. An hidden Markov segmentation
model was applied (Tatiana Beltrão Alves Da Costa personal communication) (Joo et al. 2013;
McClintock et al. 2020) to the fishery data in order to classify each trajectory segment into
one behavioural state: fishing or travelling. We considered the amount of points in the fishing
state as a quantitative proxy representing pressure due to fishing activities. Consequently, in
order to build a socio-economic cost for each planning unit, we counted the number of points
in the fishing state falling within each planning unit and called this quantity FC for «Fishing
Count». The socio-economic cost is intended from a manager perspective. For instance, select-
ing a planning unit with a high fishing points concentration in the reserve would be a cost for
humans despite being a pressure relief for biodiversity. Grid boundaries were chosen to capture
fishermen’s interests in the extreme west of Fernando de Noronha. Results of this process were
illustrated in Panel A in Figure 1.7.

5https://download.gebco.net/

44 / 138

https://download.gebco.net/


Figure 1.6: Raw input data feeding the conservation problem. Bathymetric raw data (GEBCO 2014)
is represented by a light to deep blue colour gradient with appended iso-depth solid thin black lines (50m, 200m,
1000m, 2000m, 3000m, 4000m). Fishermen’s boats GPS points estimated in a fishing state are illustrated with
orange dots. Acoustic raw data are depicted by purple circles whose radius is proportional to

√
sA value along

line boat transects represented with a solid thick black line. Light grey polygon shows the limits of the existing
marine park.

Figure 1.7: Data used for the reserve site selection optimisation problem. (A) Fishery-based cost
layer in a continuous orange colour gradient. (B) Fish Biomass conservation feature surrogate in a discrete
purple colour gradient. (C) Continental shelf and (D) Shelf break habitat conservation feature surrogates in
light and deep blue respectively. Transparent grey pixels are the planning units a priori excluded from the
solution.

45 / 138



1.5.2 Generated data

For testing purposes, we developed a systematic way of building user-defined scenarios for re-
serve site selection optimisation problems. The idea is to provide the conservation literature
tools to facilitate benchmarks of developed methods in conservation planning. Therefore, the
main ambition is to generate realistic discrete spatial distributions of the considered conserva-
tion features.

Technically speaking, we arbitrarily chose to compute the amount aij of a conservation feature
i ∈ I in a planning unit j ∈ J by randomly drawing this value in a Gaussian distribution.

aij ∼ N (mij, σ
2
ij)

The mean value mij of the Gaussian distribution only depends on the distance dij to the closest
(chosen or randomly drawn) Nepi epicentres associated to the conservation feature i ∈ I. To be
more precise, the mean value mij depends on dαi

ij , where αi is a predefined parameter for each
conservation feature i ∈ I controlling the dispersion of the mean values distribution relatively
to the epicentres.

mij = µi

[
1−

(
dij
dmax

)αi
]

The maximum mean value, i.e. the mean value at the epicentres, is a chosen parameter µi for
each conservation feature i ∈ I. If no epicentres are provided, the mean value of the Gaussian
distribution depends on the distance to the locked-out planning units supposed to represent
a shoreline. The standard deviation σij of the Gaussian distribution is such as σij = σimij

where σi is a chosen parameter for each conservation feature i ∈ I. The code used to generate
data is available in open access6. The instance is characterised by the rectangular grid size Nx

and Ny and the number of conservation features Ncf . We show the generated spatial distri-
butions of two conservation features resulting from the data generation procedure in Figure 1.8.

6https://github.com/AdrienBrunel/data_generation
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(a) Spatial distribution of the mean value mij

when epicentres correspond to the locked-out
planning units. The maximum mean value is 5.7.

(b) Random drawing from the Gaussian dis-
tribution, where the mean values are shown in
Panel 1.8a. Dispersion coefficient is αi = 0.75.

(c) Spatial distribution of the mean value mij

where 2 epicentres are randomly drawn among
planning units. The maximum mean value is 2.9.

(d) Random drawing from the Gaussian dis-
tribution where the mean values are shown in
Panel 1.8c. Dispersion coefficient is αi = 0.78.

Figure 1.8: Example of the generated spatial distribution for two different conservation features
in a 25× 20 rectangular grid. The amounts of considered conservation feature are shown with a yellow to
red gradient. The corresponding numerical values are written in black inside the planning units. Locked-out
planning units are represented in grey. We chose σi = 0.20.
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1.6 Research questions
Implementing an MSP approach is a large and complex task: the multidisciplinary nature of
the approach, the heterogeneity of stakeholders’ interests, the absence of complete knowledge to
fully support a decision, the imbalance of quantity and quality of data informing a problem, the
profusion of DSTs etc. In particular, determining the best spatial zoning of human activities at
sea based on the available ecological and socio-economic knowledge can be difficult and over-
whelming. To better understand the tools and methods involved in such processes, we address
the more specific case of reserve site selection. Addressing the reserve site selection optimisation
problem may even lead us to develop ideas and methods that could be of great help for the more
difficult problem of finding a global spatial zoning for MSP. In addition, the current agenda
of international conservation policies made the reserve site selection problem a today’s problem.

Yet, there are still research gaps and questions in the methods used to solve this problem, de-
spite being already widely applied in real-world cases. In particular, building a relevant set of
alternative solutions using exact optimisation methods is needed. Uncertainty is poorly taken
into account, while it is inherent to input data of such problems. Spatial attributes of reserves
are often advocated to discard a reserve solution and should be accounted explicitly. In this
thesis, we provide (1) an analysis of existing reserve site selection tools, (2) two iterative pro-
cedure to build a set of truly dissimilar alternative reserve solutions using exact optimisation,
(3) two models to account for an uncertainty affecting non-binary parameters using exact op-
timisation, (4) a global integer programming model to build compact, connected and without
holes reserve solutions. More generally, our research involves the improvement of the methods
used for reserve site selection and eventually in MSP.

The end goal of this work is to bring more equity in MSP processes by increasing the under-
standing and transparency of the methods involved. We thus aim to empower stakeholders and
reduce the epistemic injustice. Although we acknowledge these tools are a result of environ-
mental ethics we question, we still pragmatically want to improve the methods involved. Our
work aims to make the decision more transparent and accountable.
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Chapter 2

Opening the black box of decision support
tools in marine spatial planning: analysis
of reserve site selection algorithms
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2.1 Introduction
Conservation planning tools such as Marxan have been widely used as DSTs in MSP processes.
For instance, those tools were mobilised in 40% of the MSP procedures that implemented a
formal analysis tool in (Pınarbaşı et al. 2017) meta-analysis; and they were likely to be handled
by a variety of users (e.g., scientists, NGOs, planners). While this mathematical formalisation
of the reserve site selection problem has provided great advances in solving complex problems
fed with highly heterogeneous data, it also came with a series of limitations. In particular, Pı-
narbaşı et al. (2017) identified the following: the limited functionalities of each DST, especially
in the later stages of MSP, leading to coupling the use of several DSTs, the limited lifespan of
DSTs due to the lack of updating, the fact that DSTs are mostly used for environmental issues,
the cost of DSTs and last but not least, the fact these DSTs introduced a high technicality in
the reserve site selection process. Here we argue that technical choices required by these DSTs,
too often not made explicit, may introduce pitfalls in MSP discussion tables and convey the
risk of dispossessing part of the stakeholders involved in MSP of their critical expertise on the
solution provided by the algorithms. In that case, the original quest for transparency may turn
out to produce new black box effects. Given the importance of data at almost every stage of its
implementation, informational questions are at the very core of MSP (Trouillet 2019; Trouil-
let 2020). By being likely related to the rationalist and quantitative model (Kidd and Ellis
2012), MSP participates in the return of evidence-based planning and favour a certain revival
of positivism (Faludi and Waterhout 2006). In this logic, DSTs and other tools mobilised by
geodesign (Goodchild 2010) require greater attention. Such an approach is in line with the
critical current on MSP (Flannery et al. 2020), which has been developing in recent years.

In that context, our work aims at informing practitioners about stakes, possibilities and limita-
tions of MSP approach through reserve site selection tools. The purposes of this chapter are to
(1) detail and question the mathematical framework of reserve site selection DSTs to end-users
through illustrations of a simple case study, (2) provide guidelines for the use of optimisation-
based reserve site selection tools, (3) draw global awareness of stakeholders on reserve site
selection DSTs by deciphering the effects data and parameterisation options may have on the
final solutions and thus avoid blind trust in a decision-making process or misinterpretation.
Our case study for scenario simulations takes place in Fernando de Noronha archipelago in the
Brazilian tropical Atlantic.
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2.2 Material and methods
The general optimisation framework for reserve site selection is detailed in Section 1.4.2. The
study site of Fernando de Nornoha was described in Section 1.5.1.1. The grid used to discretise
the study area and express an optimisation problem was described in Section 1.5.1.2.

2.2.1 Optimisation

2.2.1.1 Formulation

Various optimisation models emerged from the encounter between operations research and
conservation science. The two main generic models, namely the minimum set and maximum
coverage formulations, are detailed in Table 2.1.

Minimum set formulation Maximum coverage formulation

{
min

x∈{0,1}N
cTx+ βxTB(1− x)

s.t. Ax ≥ t
(2.1)

{
max

x∈{0,1}N
ωTAx

s.t. cTx+ βxTB(1− x) ≤ b
(2.2)

Table 2.1: Minimum set and maximum coverage formulations modelling the reserve site selection
optimisation problem. Let M species be distributed among N planning units. Cost c ∈ RN , conservation
feature distribution A ∈ RM×N , common boundary length of planning unit B ∈ RN×N , targets t ∈ RM ,
conservation feature relative weight ω ∈ RM , budget b ∈ R, compactness parameter β ∈ R+, planning unit
status x ∈ {0, 1}N .

In the minimum set formulation (cf. Equation (2.1)), we seek for the collection of planning units
that meet predefined conservation targets at a minimum socio-economic cost. In the maximum
coverage problem (cf. Equation (2.2)), we seek for the planning unit collection that cover the
maximum amount of conservation features within the limits of a predefined socio-economic cost
budget. In both formulations, the compactness parameter β set the relative importance of the
reserve perimeter with respect to the reserve cost. The bigger the compactness parameter, the
more spatially aggregated the computed reserve.

2.2.1.2 Solving methods

In an integer programming framework, the solving method choice is essential as it directly in-
fluences the solution output. Two main families exist to solve the same optimisation problem:
metaheuristics and exact solving methods. Metaheuristic solvers, e.g. simulated annealing al-
gorithm used in Marxan, output a user-defined number of suboptimal reserve solutions which
are interpreted as alternative solutions by practitioners in the decision process. Exact methods
give a single optimal solution. Finally, metaheuristics do not face any restriction in the opti-
misation formulation nature, while exact solvers can only deal with linear problems. In our
binary programming context, the quadratic element xTB(1− x) in Table 2.1 can be linearised
(Billionnet 2007). Practically speaking, many solutions exist to solve the reserve site selection
optimisation problem embedded in various software. In this work, regarding exact integer lin-
ear programming algorithms, we used free and open-source CbC solver (Forrest et al. 2018)
from COIN-OR project (Lougee-Heimer 2003) called through a dedicated code1 developed in
Julia language (Bezanson et al. 2012; Bezanson et al. 2015) using JuMP optimisation library
(Dunning et al. 2017). The Julia language allowed us to directly express and customise the

1https://github.com/AdrienBrunel/reserve-site-selection
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optimisation problem according to a specific need. For a less technical audience, the same so-
lutions can be found thanks to the newcomer PrioritizR R package (Hanson et al. 2020) based
on COIN-OR project free and open source Symphony solver (Harter et al. 2017; Ralphs et al.
2019). For metaheuristic solvers, we used the simulated annealing algorithm of Marxan (Ball
et al. 2009; Game and Grantham 2008; Ardron et al. 2010).

2.2.2 Input data

It is essential to understand that data entering reserve site selection DSTs should ideally pro-
vide detailed and true spatial distribution of every considered biodiversity features (species,
habitats, ecological processes, etc.) and human activities. Practically, we only have access to
a measured surrogate dataset for these spatially explicit layers. For example, the GPS tracks
of several equipped birds could be a relevant proxy representing the spatial distributions of the
species. Similarly, ocean depth can be used as a habitat surrogate. We rarely have direct access
to true spatial distributions of the variables of interest (e.g. number of individuals of a given
species, ecological niche location, allele distribution within a species, detailed fishing catches,
etc.) whether we represent a conservation feature or the cost layer. Consequently, we often
need to derive this piece of information through an indirect although more accessible source of
data, i.e. a measure and estimation of a surrogate data distribution. The conservation feature
or cost distribution are sensitive elements as the whole optimisation process is based upon it.

The input data used for this chapter were described in Section 1.5.1. Section 1.5.1.3 detailed
how we used the acoustic data as a surrogate for the fish biomass conservation feature. Sec-
tion 1.5.1.4 detailed how we used the bathymetry data as a surrogate for two binary conservation
features: the continental shelf and shelf break habitats. Section 1.5.1.5 detailed the fishery data
we used as a cost layer. Illustrations of the raw and processed data are respectively shown in
Figure 1.6 and Figure 1.7.

In order to have a better grasp on input data influence, we focused on how we processed the cost
distribution. Consequently, several cost layers, directly involved in the optimisation objective
expression, were considered resulting in 5 different scenarios described below :

• Cost1 = 1
Simple and constant cost, worth 1 for every planning unit. In first approximation, it is a
common and relevant approach to consider equally every pixel.

• Cost2 = 1+ FC
Raw use of our fishing points count, namely FC except that we added 1 in order to avoid
planning unit worth 0. Indeed, "free" planning units can greatly pollute research space
and solution interpretation.

• Cost3 =1 + ln(1 + FC)
A natural logarithm was applied to 1+FC (we added 1 to force consistency with the
logarithm definition domain). We once again added 1 to the global expression to avoid
"free" planning units, for the exact same reasons detailed above.

• Cost4 = FC1→10 scale
According to FC value, we projected the cost on a 1 to 10 scale. This process can be
understood as a grade and has the huge benefit to be computed whatever the data feeding
cost representation.

• Cost5 = FC1→100 scale
Idem as above but with a 1 to 100 scale to observe the scale resolution influence.
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We assessed the impact of the shape of input data on output results by comparing the maps
of reserve solutions. If we consider two spatial distributions (cost or solution) as independent
random variables X and Y , the statistical correlation coefficient between X and Y appeared as
a reasonable metric for sensitivity. In particular, a correlation coefficient of 1 means maps are
strictly identical. When there is no variability in the studied distribution (for example Cost1
is constant through all planning units), the standard deviation σX is worth 0 and correlation
coefficient is logically not defined. As we compared several scenarios, we had a collection
of correlation coefficients composing cost and solution correlation (symmetric) matrices. In
conclusion, we had a simple quantitative comparison index between gridded maps provided by
the correlation matrices between cost distributions, where the line/column number corresponds
to the considered scenario number.
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2.3 Results

2.3.1 Sensitivity of reserve solutions to structural elements

2.3.1.1 Formulation

We performed sensitivity analyses on cost and conservation feature coverage for both maximum
coverage and minimum set formulations. More precisely, the sensitivity analysis was performed
on the cost parameter regarding maximum coverage and conservation feature targets for the
minimum set (we considered equal targets for the three conservation features). Results were
synthesised in Figure 2.1. First, our approach showed the bijection between the reserve cost
and conservation features protection levels with both formulations. Indeed, at one reserve cost
corresponded one protection level for each conservation feature. Furthermore, when looking
closer at the maximum coverage results, the curve corresponding to the continental shelf (light
blue circles) was the highest while the one corresponding to the shelf break was the lowest
(deep blue circles). So the continental shelf was the feature participating the most to the global
coverage score while shelf break the least. Thus, the continental shelf habitat was numerically
easier to represent than shelf break in optimal reserve solution. We can explain this as a com-
bination of two reasons thanks to Figure 1.7 : planning units including the continental shelf
conservation feature were cheaper than the planning units including the shelf break but also
included more significant amount of fish biomass.

Figure 2.1: Reserve cost in arbitrary units versus conservation feature coverage in % for both
minimum set and maximum coverage formulations. The 3 conservation features coverage are shown
in purple (biomass abundance), light blue (continental shelf) and deep blue (shelf break) while associated
formulation is depicted through full circles (maxcov) versus empty squares (minset) on the curve. The scenario
considered here included a cost layer worth 1 + ln(1 + FC), a compactness parameter β = 1. Exact solving is
performed thanks to CbC solver.
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2.3.1.2 Solving method

We here illustrated (cf. Figure 2.2) results provided by reserve site selection DSTs computed
with both solving approaches (see Section 2.2.1.2). The metaheuristic results were represented
by a green colour gradient representing the Marxan selection frequency. The white number
within planning units indicates how many times it was selected among 100 Marxan runs. Plan-
ning units with a red border depict the reserve derived thanks to the exact integer program-
ming algorithm. We first observed a visual difference between the metaheuristic and optimal
solutions. Metaheuristic results spread more in space what makes sense as it explored many
suboptimal solutions and thus more planning units. In particular, low depth isolated pixels in
the extreme west of the study area and eastern pixels were sometimes selected by metaheuris-
tics while they did not belong to the optimal solution. It can be explained as they had an
important fishing cost as we can see in Figure 1.7. The aggregated aspect was due to the active
compactness penalty (see Section 2.3.2.2 for details). Note locked-out pixels were not included
in the reserve solution as expected. Furthermore, we can observe reserve solutions were centered
around the main island which is simply explained by the fact most of the conservation features
to be covered lied there as depicted in Figure 1.7. Also, in this small size study case, a 5% gap
was derived between optimal and mean metaheuristic solution scores (among 100 Marxan runs).

Figure 2.2: Metaheuristic versus exact integer programming reserve solutions. Minimum set for-
mulation, 3 conservation features each represented with a 50% protection target, considered cost layer worth
1 + ln(1 + FC) and compactness parameter β = 1. Selected planning units within optimal reserve solution
by Marxan (using Simulated Annealing metaheuristic algorithm) are represented with a green colour gradient
according to selection frequency among 100 Marxan runs (white number inside planning unit). Red border
around planning unit indicates selection by integer programming exact (free open-source) solver CbC.

2.3.1.3 Influence of cost expression

Table 2.2 depicts the link between cost distribution (orange figures) and associated reserve so-
lution (green figures) correlation coefficients. For example, the correlation coefficient between
Cost5 and Cost2 was greater than 0.998 because cost distributions were almost identical. It
could be expected as FC1→100 scale, due to the thin scale choice, well captured FC spatial
distribution. Conversely, the use of a natural logarithm (Cost3) implied a way smaller cor-
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relation coefficient of 0.55 when compared to Cost2. Note dashes in the first line of the cost
correlation matrix corresponded to undefined correlation coefficient because Cost1 involved a
constant distribution and thus a standard deviation of 0. Now, the remaining question is what
were the implication of such cost distribution differences in the computed optimal reserve ? Did
correlated distribution implie a correlated reserve solution ? Did a completely different cost end
in a completely different reserve ? In order to lead our analysis upon the cost expression, we
considered 3 conservation features with each a 50% target and set β = 0. We did not account
for the compactness parameter because a given β > 0 would involve a different quantitative
share of compactness penalty in the objective as cost term ranges greatly change with the way
we compute it (e.g. more than 10 000 with Cost2, less than 10 in a scenario with Cost4). First,
we quantitatively observed a weak but existing correlation between solutions. It can simply be
explained by the fact every scenario shared the exact same conservation feature spatial distri-
butions for feeding the optimisation problem formulation, logically reflected in similar reserve
solutions. Also, despite the logarithm application, the reserve solutions obtained with Cost2
and Cost3 were quite alike (correlation coefficient of 0.93). Table 2.2 illustrates that similar
cost distribution can end up in a different reserve solution (see Cost3 and Cost5 cost and so-
lution correlation coefficients) while different costs can lead to a similar reserve solution (see
Cost2 Cost3 cost and solution correlation coefficients). Also, in order to study the effect of a
data gap, we simulated a scenario where we removed the biomass abundance data layer and
only kept habitat data (continental shelf and shelf break). Note solutions were computed with
β = 0 for relevance purpose as we wanted to observe only the effect of a data gap without any
compactness considerations. We obtained a correlation coefficient of 0.75 between scenarios
with and without biomass abundance data. As expected, we observed a notable difference be-
tween reserve solutions as it did not have to cover abundance biomass data anymore. Although,
both scenarios had most input in common what justified why global results were concentrated
around Fernando de Noronha archipelago and showed common selected planning units.

Cost1 Cost2 Cost3 Cost4 Cost5
1 1 + FC 1 + ln(1 + FC) FC1→10 scale FC1→100 scale

Cost Solution Cost Solution Cost Solution Cost Solution Cost Solution
1 1 - 0.40 - 0.41 - 0.47 - 0.47
1 + FC ⋆ 1 0.55 0.93 0.85 0.79 1.00 0.82
1+ln(1+FC) ⋆ ⋆ 1 0.83 0.84 0.58 0.87
FC1→10 scale ⋆ ⋆ ⋆ 1 0.87 0.89
FC1→100 scale ⋆ ⋆ ⋆ ⋆ 1

Table 2.2: Cost layer and solution correlation matrices. Correlations coefficient between cost (orange)
and solution (green) spatial distributions from one scenario to another. Correlation coefficient for Cost1 does not
exist (because cost distribution is constant). Star symbols indicate symmetric coefficients. For those simulations,
we fixed a minimum set formulation, 3 conservation features each represented with a 50% protection target and
compactness parameter β = 0.

2.3.2 Parameters influence

2.3.2.1 Coverage targets

Figure 2.1 presents the results of a sensitivity analysis over coverage targets. The targets were
simultaneously and equally increased. Regardless the formulation, we observed a non-linear
and concave progression of coverage with respect to the reserve cost. It thus implied increasing
conservation feature coverage is more and more expensive.
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2.3.2.2 Compactness parameter

Sensitivity analysis over the compactness parameter β is shown in Figure 2.3. As we can see, a
smooth decreasing trend appeared when we plotted the reserve perimeter xTB(1−x) versus the
compactness parameters β. It made sense as β was the penalty directly applied to the reserve
outside perimeter within the objective function (see Equation (2.1)). Therefore, the greater
the penalty, the smaller the perimeter. We can also see the decrease seemed to quickly ease
and eventually reached an equilibrium before decreasing again for way bigger values. However,
this second decrease (for β ≥ 8) is fictive as solutions included pixels at the border (see the
reserve solution of the right panel) of the study area with an artificial 0 boundary value (as no
neighbours exist). It is a purely numerical edge effect but this common mistake can be observed
in published research, attesting it is not a well-known pitfall, e.g., (Delavenne et al. 2012; Beyer
et al. 2016; Magris et al. 2021). Again, a sensitivity analysis can easily show when this kind of
odd behaviour of the solution appears. More generally, as soon as β ≥ 0, a planning unit at
the edge of the study area is more likely included in the reserve solution.

Figure 2.3: Perimeter (in arbitrary unit) versus compactness parameter. Sensitivity analysis per-
formed on the compactness parameter β with respect to the reserve solution perimeter. Minimum set formula-
tion, 3 conservation features represented, considered cost layer worth 1 + ln(1 + FC), exact solving thanks to
CbC solver.

2.3.2.3 Compactness parameter correction

We observed in Figure 2.3 but also in other publications, e.g. (Delavenne et al. 2012; Beyer
et al. 2016; Magris et al. 2021), that planning units at the edge of the study area are more
likely to be included in the reserve solution. This unwanted edge effect is explained by the
fact the planning units at the edge have less common frontiers with surrounding pixels due
to their position at the border. These planning units thus have artificially a smaller weight
in the reserve perimeter computation. For instance, in a regular grid, a middle planning unit
has 4 neighbours while a pixel at the border has 3 and a corner has only 2. Starting from
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this observation, we provided a simple correction : we added one fictive planning unit which
shared a boundary with every planning units located at the edge of the grid (see Figure 2.4).
The length of this boundary depended on what was missing to reach an equal weight for the
perimeter computation. Indeed, a planning unit at the corner misses 2 edges, while another
pixel at the border only misses 1. The fictive pixel was locked-out (i.e. never included in the
reserve solution) thus leaving the rest of the optimisation problem undisturbed.

Figure 2.4: Principle of the correction involving the addition of a fictive pixel connected to the
external edge of the grid. The newly added fictive pixel is invisible in the original model (necessarily locked-
out), but allows the outer edge of the study area to be taken into account within the computation of the reserve
solution perimeter.

Mathematically speaking, we considered an augmented boundary matrix B∗ now including the
boundary lengths of the fictive pixel and every other planning units. Consequently, B∗ was
composed of the previous matrix B used so far, completed by an additional column and row.
For consistency purpose, the decision variable vector was also augmented with a component
associated with the aforementioned fictive pixel. Since it would never be selected in the reserve,
this component was a priori set to 0). The detailed expression of the augmented matrix
B∗ ∈ R(N+1)×(N+1) and the vector x∗ ∈ R(N+1) are given in (2.3).

B∗ =


B

b∗1,N+1
...

b∗N,N+1

b∗N+1,1 · · · b∗N+1,N 0

 x∗ =


x∗
1
...
x∗
N

x∗
N+1

 =


x1

...
xN

0

 (2.3)

The additional coefficients b⋆i,j of the matrix B∗ were used to indicate how many sides each pixel
i ∈ {1, ..., N} shared with the outer boundary and thus with the fictive pixel. Hence, those
extra coefficients were defined as follows :

∀i ∈ {1, ..., N},

b∗i,N+1 = b∗N+1,i =


1, if pixel i shares a single side with the outer boundary
2, if pixel i shares 2 sides with the outer boundary (i.e. located at a corner)
0, otherwise

Note the last diagonal coefficient b∗N+1,N+1 was set to 0 (like the other diagonal coefficients of
the matrix B) since the planning units were not connected to themselves. Considering the prior
changes, the reserve perimeter was calculated as follows :
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x∗TB∗(1− x∗) =
∑N+1

i=1

∑N+1
j=1 x∗

i b
∗
i,j(1− x∗

j)

=
∑N

i=1

∑N
j=1 xibi,j(1− xj) +

∑N
i=1 xib

∗
i,N+1

= xTB(1− x)+ xTb∗

(2.4)

Denoting b∗ = (b∗1,N+1, · · · , b∗N,N+1)
T in Equation (2.4), we can see the new perimeter calculation

was composed of two terms : the known quadratic term xTB(1−x) used previously to calculate
the reserve perimeter but also xT b∗ which represented the contribution of the outer boundary of
the study area to the perimeter computation. Thus, the addition of a fictive pixel only involved
the addition of this new term in the model. The extra row in matrix B∗ appeared unnecessary
in the perimeter calculation since the decision variable xN+1 associated with the fictive pixel
was always set to 0. However, the presence of this row allowed the B∗ to remain a square and
symmetric matrix eventually allowing to write the model in a compact form.

(a) Reserve solution with β = 10 without im-
plementing the compactness parameter correc-
tion.

(b) Reserve solution implementing the compactness
parameter correction.

Figure 2.5: Reserve solutions obtained with and without the compactness parameter correction.
Minimum set formulation, 3 conservation features each represented with a 50% protection target, considered
cost layer worth 1 + ln(1 + FC), compactness parameter β = 10, exact solving provided by CbC solver.

The modifications described above were added to both the minimum set and the maximum
coverage original formulations. We performed some computational experiments with the up-
dated minimum set formulation and compared it with the original one. Results can be found
in Figure 2.5 which shows side by side the solutions obtained with and without the proposed
correction. It can be seen in Figure 2.5b that the selected reserve did not extend to the edge of
the area like in the original model (Figure 2.5a) and the perimeter was now, as expected, cor-
rectly derived by the model. Moreover, the CPU time required to solve this instance with the
new formulation turned out to be of the same order of magnitude than the original formulation.
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2.4 Discussion

2.4.1 Sensitivity of reserve solutions to structural elements

We clarified features structuring reserve site selection procedure especially underlying mathe-
matics. Indeed, an optimisation framework implied technical choices, not always made explicit,
such as the formulation and the optimisation solving method to choose to address the conser-
vation problem. In particular, DSTs with embedded formulations and solvers (e.g. Marxan,
PrioritizR), although comfortable to use, made impossible to customise the problem.

2.4.1.1 Minimum set vs Maximum coverage

Minimum set formulation betrays a strong economy-centered vision which could itself be dis-
cussed. Indeed, this vision, consensual following Marxan developments, aimed at minimising
impacts on human activities. The main concern was thus primarily to preserve an human ac-
tivity. Maximum coverage formulation, more biodiversity-aimed, can also be studied to better
enlighten the problem. Computing solutions from both formulations clearly allowed to draw
a more complete and balanced picture of the problem. It could also lead to better numerical
interpretation. Different formulations shaped different solutions so both need to be studied in
order to efficiently inform and support the decision making process. In particular, Figure 2.1
shows the kind of information decision makers could be interested in and extract. The link be-
tween reserve cost and conservation features protection level with both formulations can help
decision makers to understand implication in nature protection.

2.4.1.2 Single-objective view

Optimisation formalism is inherently single-objective which means only one human activity can
be properly accounted for in the reserve design process in the minimum set formulation (see
Equation 2.1). Consequently, it can poorly represent several stakeholders which is a pity in the
frame of MSP. We could certainly create a global anthropogenic index by combining several
human activity information although it should be avoided to keep visible the competition
between socio-economic costs. Multiplying single-objective computation is a better practice to
highlight contradictions between stakeholders interests and leave the final arbitration to decision
makers. In this sense, exact optimisation methods are more adapted as scenario multiplication
is advised as described in Section 2.2.1.2. Similarly, in the maximum coverage formulation, users
had to referee between conservation features weights due to the single-objective nature. Anyway,
subjectivity is part of the conservation-based planning process which requires transparency in
return. Finally, multi-objective optimisation field could provide better answer elements around
the notion of Pareto front which could be addressed to deepen global understanding. Note it is
required to use exact solving methods to draw a relevant Pareto front. Furthermore, the initial
formulation in Equation (2.1) was already multi-objective as we included both the reserve cost
(represented by cTx) but also the reserve perimeter length (represented by xTB(1− x)) within
the objective. We did not mention it explicitly, but there was an invisible competition between
these two elements which could lead to misinterpretations.

2.4.1.3 Solving method

Although metaheuristic were historically preferred due to Marxan developments, exact solvers
should prevail in the future. In our case study (see Section 2.3.1.2), the gap between both
methods was acceptable due to the small size of the problem. A further analysis was detailed
in (Schuster et al. 2020) highlighting bigger performance gaps on a wider, more meaningful ap-
plication both in optimality and time computation. These matters were extensively discussed
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in the past (Church et al. 1996; Pressey et al. 1996; Önal 2004; Vanderkam et al. 2007). Then,
the linearisation requirement associated with exact methods was not a problem in reserve site
selection as the linearisation is possible (Billionnet 2007). Finally, the number of solutions
provided by metaheuristics were often seen as an advantage (Ardron et al. 2010) while in-
terpreting many suboptimal solutions is a challenge by itself. First, this numerical so-called
flexibility is questionable as we do not know how far from optimum solutions are. In addition,
a given stakeholder could easily find among these, a solution suiting its own interests. It could
eventually leave the final choice to the most influential lobby and be the breeding ground of
ocean grabbing (Queffelec et al. 2021). Unlike metaheuristics, exact solvers provides a single
optimal solution, greatly encouraging the multiplication of scenarios to better enlighten the
conservation question. Yet, if alternative solutions were really needed, it could also be achieved
with exact solvers. A simple procedure could consist in excluding iteratively solutions found
and thus derive the optimal solution exhaustive set. We could even introduce a relaxation
parameter to explore suboptimal solutions with an a priori given optimal gap.

2.4.2 Input data

We highlighted biases due to the input data feeding a conservation-based planning approach.
Indeed, these DSTs are data driven, restricted to a spatially explicit nature, which means
outcome can only reflect geographical layers input quality. Besides, as we cannot access true
spatial distribution, we must use surrogate data. It implies to process data in order to be
as close as possible to an unknown reality and thus express a relevant optimisation problem.
However, as illustrated in Section 2.2.2, data processing involved many modelling choices. It
appeared other choices could have been made with the same level of relevance but with a
potential different reserve outcome. Such ideas must be clearly stated and understood by
practitioners. Below, we provided a list of elements regarding data feeding DSTs that needed
to be questioned by stakeholders as they can greatly influence reserve design results.

2.4.2.1 Surrogacy

The way we estimate a quantitative index from a surrogate dataset is a sensitive step with
respect to the reserve output as we demonstrated in Section 2.3.1.3. Such technical step,
although done honestly, can eventually lead to imbalance between stakeholders involved in the
MSP or towards biodiversity conservation. The way we go from the raw material to a processed
and gridded input data can lead to quite different solutions. For example, arbitrary application
of a logarithm function to smoothen raw data can advantage a given stakeholder without anyone
noticing. To avoid this pitfall, only sensitivity analyses and transparency on the transformations
applied to the raw material can deepen user’s grasp on data processing influence. Few works
dealt with data processing influence (Drira et al. 2019; Visconti et al. 2013; Carvalho et al.
2010; Fiorella et al. 2010). Besides, a measure is at some point guided by reality (biological,
economical, geographical accessibility of the surrogate measure) which implies a natural bias
towards accessible data. For example, megafauna is potentially over-represented while other
smaller species can be underestimated if not voluntarily forgotten due to the lack of surrogate
measure. Only large data collection surveys and data gathering can mitigate this effect. Finally,
we can also argue that the mere fact to whether or not include a given feature in the reserve
design process is a first and essential bias. Considering a given feature obviously implies it will
be accounted for in the procedure but also mean other features will be completely forgotten (by
choice, lack of data or even knowledge). Therefore, considered features inherently imbalance
stakeholders and biodiversity interests. For example, a stakeholder struggling to provide data
will be under-represented and thus potentially harmed through the MSP process. Similarly, a
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species impossible to track is not accounted for in the reserve design and can suffer from the
MSP process.

2.4.2.2 Data type

Data feeding reserve site selection DSTs are necessarily spatially explicit, i.e. quantitatively
located in space, allowing us to associate each planning unit cost and conservation feature
amounts. For example, a conservation feature can be a quantity like a biomass or a number of
items. However, nature of data involved in MSP is not always spatially explicit and conversion
can be difficult if not impossible. Indeed, data can be purely qualitative or at best semi-
qualitative. Consequently, such data cannot be accounted for in reserve site selection tools
and can be removed from the input dataset and potentially weaken a given stakeholder. For
example, deriving a map of the diving activity is hard as quantifying this activity can be at
best done thanks to shade of diving pressure from "low number of visits" to "diving hotspot".
One way to mitigate such weakness in first approximation is to transform the best we could
qualitative data into semi-quantitative one with level of intensity.

2.4.2.3 Quantity and quality

Stakeholders providing great data both in quality and quantity is likely to be favoured through
DSTs as their interests will be well represented and not forgotten within the site selection
procedure and even potentially protected. Such DSTs follow the "garbage in, garbage out" rule
which underlines their strong data dependency. Indeed, solutions can only be as good as the
input data feeding the optimisation model. Once again, only large data collection surveys of
every feature can enhance quality and equity of the reserve design process.

2.4.2.4 Uncertainty

Data is considered certain in most reserve site selection algorithms as uncertainty is difficult
to handle within an optimisation framework. Yet, uncertainty is everywhere due to measure
itself but also inherent to ecological processes. For example, a value of 0 is algorithmically
equivalent to a certain absence while it can practically mean a lack of data sampling. Accounting
for uncertainty in reserve selection procedure is a great deal and several approaches help to
mitigate this lack (Monte-Carlo approach, robust optimisation, chance constraints, stochastic
optimisation, etc.). (Regan et al. 2009; Reside et al. 2018)

2.4.3 Parameters influence

Through the illustration provided in our work, we detailed to what extent parameters (conser-
vation feature coverage targets, compactness parameter) choices can widely shape the results
of a reserve site selection procedure. Such statement appears more than logical in a parametric
model, however it is important to establish a quantitative link between parameters and outputs.
Deciphering parameters influence can also avoid imbalances in the MSP process in favour of
more technical users.

2.4.3.1 Coverage targets

If not ecologically guided, coverage targets can be used as tuning parameters. Indeed, as
demonstrated in Section 2.3.1.1, these parameters were directly linked with the reserve cost
(cf. Figure 2.1) and should be manipulated with great care as it could lead to imbalance in the
marine spatial planning process. If any ecological information is available, a sensitivity analysis
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on the coverage targets is the minimum that should be realised to best inform the reserve design
process.

2.4.3.2 Compactness parameter

Examples in the published literature showed that an unwanted edge effect due to the com-
pactness parameter was not particularly highlighted. Formulation should be modified to avoid
such traps (locked-out a fictive pixel linked to every pixel at the border for instance, see Ap-
pendix 2.3.2.3 for detailed formulation). Finally, xTB(1− x) compactness share is historically
included in the objective. Yet, another legitimate approach could be to directly constrain the
outside perimeter with a given boundary budget bp leading to the constraint xTB(1− x) ≤ bp
(e.g. see Equation (2.2)). Such approach would be more straightforward and avoid invisible
multi-objective competition between compactness and coverage. Besides, a blind setting of the
compactness parameter potentially provides unwanted numerical effects but can also lead to a
change of "regime" in the solution, i.e. a completely different solution because the compactness
demand overcome the original objective. In particular, a given regime can favour a stakeholder
with respect to another so a great care must be observed. Performing a sensitivity analysis on
the compactness parameter is the least we can do to have a better grasp on its influence (see
Section 2.3.2.2).
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2.5 Conclusion
Few works had already pointed out some effects from input data initial formats (Carvalho et
al. 2010; Visconti et al. 2013), interpolation transformation (Drira et al. 2019) and weighting
(Fiorella et al. 2010). The example developed in this article builds upon and go further by
systematically clarifying the mathematical functioning of each step of reserve selection DSTs
to end-users through numerical and graphical illustrations. We deciphered the effects data and
parameterisation options may have on the final solutions and showed that DSTs present at least
two points of attention. The first confirmed the tricky issue of input data (bathymetry, fishing,
proxys used, etc.) which significantly influenced the DST results. Similarly, the absence of data
may penalise certain stakes without this always being spelled out. The second concerns the
numerous technical choices made throughout the process by the DSTs users and designers: from
the definition of the grid playing as spatial referential to the processing of the data, including
the "minimum set vs. maximum coverage" choices, etc. Based on our case study, we provide
specific guidelines for mitigating to some extent these technical pitfalls:

• Perform sensitivity analyses on parameters to enhance numerical understanding

• Compute both the minimum set and the maximum coverage formulation to better en-
lighten the conservation problem

• Document with transparency every modelling choice, in particular regarding the construc-
tion of the objective function which implies inherent subjectivity (e.g., how the cost is
built)

More generally, we illustrated that the informational questions are spread over the entire geo-
graphic information chain, from data production to its use for management purposes. In this
sense, this study finally raised fundamental questions about the place and role of the data
producers, the technicians who process it and the decision-makers who use it. As roles become
blurred (Goodchild 2009), it is necessary to try to take into account the needs of the end users
the most upstream in this geographic information chain, either by involving them in each of
the stages, or by making each of these stages and the associated issues more understandable
and accessible by them. Consequently, a better knowledge of the issues at stake throughout
this geographic information chain will foster a better understanding of the various biases noted
in this example, thus allowing to avoid most of the traps, and in fine limits the risk of ocean
grabbing (Queffelec et al. 2021) and favour equitable MSP negotiations.
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Transition
In this chapter, we analysed several aspects of the optimisation models for reserve site selec-
tion. We opened the black-box of such tools by performing sensitivity analyses toward several
parameters, questioned the optimisation models, addressed the solving methods, in order to
draw a clearer picture of the issues involved. During the analysis of the solving methods, we
were confronted to the difficulty of analysing an important number of reserve solutions by using
metaheuristics algorithm. We were surprised that this was considered as an advantageous fea-
ture of metaheuristics within the conservation literature. Yet, it appeared to us as an additional
complexity involving an heavy post-processing. That is why, in the next chapter, we focused on
producing a small amount of truly different reserve solutions using exact optimisation methods.
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Chapter 3

Producing a diverse set of near-optimal
reserve solutions with exact optimisation
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3.1 Introduction

Biodiversity and habitats are threatened worldwide (IPBES 2019). Building comprehensive
networks of nature reserves has become a popular conservation solution (Ticco 1995; Tundi
Agardy 1994; Le Saout et al. 2013) and was shown to bring significant benefits (Claudet et al.
2008; Stolton and Dudley 2010; Liu et al. 2017). At sea, for instance, current political objec-
tives are to cover 30% of the marine spaces under jurisdiction by 2030 with marine protected
areas (IUCN 2014; IUCN 2016; Commission 2020). Similar concerns also exist on land (Baillie
and Zhang 2018; Dinerstein et al. 2019). Several methods (often embedded within a decision
support tool software, e.g. Marxan or PrioritizR) select reserve sites given constraints and
objectives.

A set of alternative reserve solutions is usually necessary to create effective nature reserves as
they support better negotiations between different stakeholders. In a decision-making frame-
work, constraints and objectives of reserve design may be difficult to formulate in the context
of a spatially-explicit numerical optimisation. Any unmodeled phenomenon that may influence
the decision can lead to divergences with the proposed solutions. For example, complex social
mechanisms govern the final decision of wind farm locations (Bell et al. 2005; Virtanen et al.
2022). The decision process, based eventually on negotiations, thus requires some latitude
on the possible solutions to be considered. Generating alternative solutions gives conservation
practitioners the possibility of finding a solution that could be more satisfactory with respect to
these unmodeled objectives. For these reasons, the ability of decision support tools to produce
a range of solutions instead of a single one, has been put forward frequently in conservation
literature (Pressey et al. 1993; Possingham et al. 2000; Possingham et al. 2006; Sarkar 2012;
Ferretti et al. 2019). Consequently, reserve site selection tools do need options for generating
different, near-optimal alternatives.

The ability to produce alternative solutions has often been presented as a key strength of meta-
heuristic algorithms over exact optimisation approaches (Pressey et al. 1993; Possingham et al.
2000; Possingham et al. 2006; Sarkar 2012). In a survey realised among Marxan users (Ardron
et al. 2010), "generating multiple solutions was by far the most commonly noted strength of
Marxan" over other reserve site selection algorithms. Yet, recent advances made exact opti-
misation methods more attractive for conservation practitioners (Schuster et al. 2020; Hanson
et al. 2019; Beyer et al. 2016; Rodrigues and Gaston 2002) because they provide the optimal
solution even for large-scale instances in reasonable time. The ability of generating multiple
solutions thus seems to be the last argument remaining in favour of metaheuristic algorithms.
Technically speaking, metaheuristics rely on random processes to create an implicit diversity
within the set of solutions (see Appendix B-2.1 in (Serra-Sogas et al. 2020)). On the contrary,
exact solving methods usually produce, by construction, a single optimal solution and are not
designed for producing a range of different solutions. This major limitation severely restricts
the ability of exact solving methods to inform real-world conservation problems. However, in
the absence of explicit criteria, metaheuristic approaches do not provide any control over the
alternatives generated, nor do they guarantee to have truly different solutions. The search for
near-optimal alternative solutions with exact solving methods began to be discussed in (Fis-
cher and Church 2005) and was explored in the general context of operational research (Chang
et al. 1982a; Brill et al. 1982; Chang et al. 1982b; Makowski et al. 2000). The algorithm
developed in (Arthur et al. 1997) computes the exhaustive set of optimal solutions of a re-
serve site selection problem. In the same line, a branch and bound screening algorithm showed
how suboptimal solutions can be derived with exact methods (Önal 2004). The reserve site
selection tool PrioritizR also provides additional functions allowing users to build a portfolio
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of alternative solutions1. Though, producing alternative solutions based on their distance to
optimality with exact solving methods still does not guarantee to provide different solutions.
This motivated us to explicitly introduce a dissimilarity measure in the search for alternative
solutions.

In this work, we propose two iterative algorithms incorporating an explicit dissimilarity criterion
to build a range of near-optimal solutions significantly different from each other with exact solv-
ing methods. Solutions are selected based on a controlled objective value degradation and using
an explicit dissimilarity measure. We discuss and compare two metrics for the dissimilarity cri-
terion. Our results show that generating alternative solutions according to the objective value
interval can result in a low variability among solutions, as they are very similar to each other.
These solutions which only differ by a few planning units are quite uninformative. They can
hardly be considered as alternatives. Even worse, further from the optimal value, the variability
among alternative solutions appears irrelevant because the procedure artificially increases the
objective value by including pointless planning units. As such, it poorly answers the need for
both good and different alternative solutions. The dissimilarity measure we incorporate allows
us to overcome this limitation. The proposed algorithms explicitly seek to generate dissimilarity
between reserve solutions and provide true alternatives. Similarly to (Chang et al. 1982b; Brill
et al. 1982), the dissimilarity measure we define allows to avoid alternative reserves embedding
the optimal one. Another pitfall, particularly striking in metaheuristic approaches, is the need
to generate numerous alternative solutions in order to widely explore the solution space. This
large amount of alternative solutions requires a statistical post-processing to identify a few dis-
tinct solutions. It often requires additional statistical analyses, e.g. the selection frequency of
reserve sites or clustering analysis (Ardron et al. 2010; Harris et al. 2014; Linke et al. 2011). By
contrast, our methods directly provide a presentation set composed of significantly distinct solu-
tions. A few alternatives that are both good and different from each other can thus be sufficient.

At this point, it is necessary to precise the terminology chosen to dissipate any ambiguity
about the generation of alternative solutions of an optimisation problem. Indeed, this concept
is covered by different terminologies in conservation biology literature. For example, the term
"flexibility" was used in (Ardron et al. 2010) for designating this feature of Marxan. In other
works, this term referred to the ability of an optimisation model to be easily tuned (Rodrigues
et al. 2000; Cocks and Baird 1989). We thus avoided the term flexibility. In PrioritizR, the
term "portfolio" is used for functions generating a set of alternative solutions. In this context,
a portfolio means a collection of solutions. In other works (e.g. (Fischer and Church 2005;
Ardron et al. 2010; Delavenne et al. 2012; Metcalfe et al. 2015) among others), portfolio was
used for designating a collection of sites, i.e. one reserve solution. To dissipate this ambiguity,
we also avoided the term portfolio. Finally, in the operations research literature, the term
chosen is "presentation set". This term makes explicit the fact that these alternative solutions
are intended to be presented to decision-makers and decided upon. In this work, we used
"presentation set" to name the collection of alternative solutions of an optimisation problem.

1More details at https://prioritizr.net/reference/portfolios.html
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3.2 Methods

In this section, we present the dissimilarity measure we used for quantifying the differences
between two reserve solutions. Then, we provide the mathematical formulation of new ap-
proaches incorporating our dissimilarity measure for generating presentation sets. The general
formulation of the reserve site selection considered is detailed in Section 1.4.2.

3.2.1 Measuring the dissimilarity between two reserve solutions

For providing a diverse presentation set, we first need a function characterising the dissimilarity
between two solutions. Consequently, when x, y ∈ {0, 1}N , we defined the following dissimilarity
measure:

d(x, y) =
∑
j∈J

xj(1− yj),

Dissimilarity measure d counts the number of planning units selected in x and not in y. This
measure is rather a pseudo-distance than a distance, because it does not meet the separation
property. Indeed, d(x, y) = 0 does not imply that x = y. Instead, d(x, y) = 0 whenever the
reserve defined by x is included in that defined by y. This is actually an enjoyable property
for the production of alternative solutions, because there is no real point in presenting an
alternative solution that would strictly include an optimal solution x⋆. As an illustration,
Figure 3.1 displays three examples where the dissimilarity measure d is compared with the
distance D(x, y) = d(x, y) + d(y, x), which is equal to 0 only if x = y. For instance, on the
leftmost example, we see that the red solution is simply a worse alternative to the green solution,
so we wanted to avoid this case. This type of measure was proposed in the context of land-use
planning through the 4 steps of the "Hop Skip and Jump" procedure (Brill et al. 1982).

(a) The green reserve is strictly in-
cluded in the red reserve. We have
d(x, y) = 0 and D(x, y) = 2.

(b) The blue reserve has planning
units both inside and outside the
green reserve. We have d(x, y) = 2
and D(x, y) = 6.

(c) The green reserve has an empty
intersection with the yellow reserve.
We have d(x, y) = 6 and D(x, y) =
14.

Figure 3.1: Numerical examples of the dissimilarity measure d and distance D. The reserve x depicted
in green includes 6 planning units. Other reserves y, hatched in red, blue and yellow, include 8 planning units.
According to the dissimilarity measure d, the green and red reserve are the same. The dissimilarity measure
characterises differences between two reserves as much as distance D as illustrated with the blue and yellow
reserve examples.
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3.2.2 Computing a presentation set

In this section, we describe our two methods that compute a presentation set using the dissim-
ilarity measure d. The approach proposed by the add_gap_portfolio function2 of PrioritizR is
referred to as the Algorithm AddGapPortfolio.

3.2.2.1 Imposing dissimilarity between alternative solutions

For some predefined dissimilarity threshold δ and k feasible solutions x0, . . . , xk−1 of P0, we
may impose that a new alternative solution x differs sufficiently from xl for every l ∈ [[0, k− 1]]
by constraining d(xl, x) to be at least equal to δ. More formally, this can be achieved by adding
the following constraints to the initial optimisation problem P0:

cd(x
l, δ) : d(xl, x) =

∑
j∈J

xl
j(1− xj) ≥ δ, ∀l ∈ [[0, k − 1]].

The integer linear program solved at iteration k ≥ 1 is P k
1 such as:

P k
1 :


min
x

∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2)

s.t.
∑
j∈J

aijxj ≥ ti ∀i ∈ I

d(xl, x) ≥ δ ∀l ∈ [[0, k − 1]]
xj ∈ {0, 1} ∀j ∈ J

Algorithm MinDegradation details the pseudocode of the iterative procedure we implemented
to produce the presentation set. The procedure stops if the problem becomes infeasible or
the maximum number of iterations n is reached. Infeasibility is reached when no alternative
satisfying the dissimilarity constraints can be found. If the user wants a larger presentation
set, they may choose a smaller threshold δ.

Algorithm MinDegradation Iterative search of n alternative solutions of P0 with at least δ
dissimilarities to the past solutions.
Require: P0, x⋆, n, δ
Ensure: x1, . . ., xk

1: k ← 0; P ← P0; x0 ← x⋆ ▷ initialisation
2: while (P is feasible & k < n) do ▷ stop when infeasible or enough solutions
3: k ← k + 1
4: add cd(x

k−1, δ) to P ▷ impose dissimilarities to the past solutions
5: solve P ▷ get an optimal solution xk or detect that P is infeasible
6: end while

3.2.2.2 Maximising dissimilarity between alternative solutions

Another option we investigated was to iteratively seek for the most different solution at a
user-defined extra cost relatively to the optimal value. More formally, assume that k − 1
alternative solutions x1, . . . , xk−1 have been previously computed. At iteration k ≥ 1, we seek
for an alternative solution xk that maximises ∆(x) = min {d(xl, x) : l ∈ [[0, k − 1]]} among the
solutions that do not exceed the cost (1 + γ)z⋆. Given that ∆(x) is not a linear function
of x, we needed to linearize its expression. The classical method to do this uses that the
minimum value among a finite set is the maximum lower bound of the set, i.e., max

x
∆(x) =

2More details at https://prioritizr.net/reference/add_gap_portfolio.html.
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max
∆

{
∆ : ∆ ≤ d(xl, x)

}
. The corresponding mixed integer linear program we solved at iteration

k ≥ 1 is given by:

P k
2 :



max
x,∆

∆

s.t.
∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2) ≤ (1 + γ)z⋆∑
j∈J

aijxj ≥ ti ∀i ∈ I∑
j∈J

xl
j(1− xj) ≥ ∆ ∀l ∈ [[0, k − 1]]

xj ∈ {0, 1} ∀j ∈ J
∆ ∈ R+

Algorithm MaxDissimilarity details the pseudocode of the iterative procedure we implemented
to produce the presentation set. We provided more numerical details for this algorithm in
Section 3.3.3.

Algorithm MaxDissimilarity Iterative search of n alternative solutions maximising the dis-
similarity to the past solutions at a relative extra cost budget γ.
Require: P 1

2 , x⋆, z⋆, n, γ
Ensure: x1, . . ., xk

1: k ← 0; P ← P 1
2 ; x0 ← x⋆ ▷ initialisation

2: while (P is feasible & k < n) do ▷ stop when infeasible or enough solutions
3: k ← k + 1
4: add cd(x

k−1,∆) to P ▷ impose dissimilarities to the past solutions
5: solve P ▷ get an optimal solution xk or detect that P is infeasible
6: end while

3.2.2.3 Imposing an objective value interval

We show how we produced the presentation set composed of alternative solutions located at a
predefined objective value interval. We here developed our own algorithm although the function
add_gap_portfolio of PrioritizR allows to generate the same set of alternative solutions.

Let γ1 ∈ R+ and γ2 ∈ R+, such as γ1 ≤ γ2, be the boundaries of the objective value interval
relatively to the optimal value z⋆. The constraints cl(γ1) and cu(γ2) are imposing the objective
value to belong to the predefined interval [(1 + γ1)z

⋆, (1 + γ2)z
⋆]:

cl(γ1) :
∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2) ≥ (1 + γ1)z
⋆

cu(γ2) :
∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2) ≤ (1 + γ2)z
⋆

If γ1 = γ2 = 0, we explore only the optimal solutions set. For γ1 > 0, we explore alternative
solutions that are strictly suboptimal.
The constraint cD(y, δ) impose the solution x to have at least δ different planning units with
respect to y:

cD(y, δ) : D(x, y) =
∑
j∈J

yj(1− xj) + xj(1− yj) ≥ δ

Importantly, δ = 1 forbids x and y to be strictly equal.
Practically, we first add to the optimisation problem the constraints cl(γ1) and cu(γ2) which
must be satisfied at every iteration. Then, to derive a pool of alternative solutions, we excluded
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at iteration k ≥ 1 the solution xk−1 derived the iteration before. The addition of constraint
cD(x

k−1, 1) guarantee this. Indeed, this constraint prevents the searched solution at iteration
k ≥ 1 to be exactly xk−1.
Practically, the integer linear program solved at iteration k ≥ 1 is P k

3 such as:

P k
3 :



min
x

∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2)

s.t.
∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2) ≤ (1 + γ2)z
⋆∑

j∈J
cjxj + β

∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2) ≥ (1 + γ1)z
⋆∑

j∈J
aijxj ≥ ti ∀i ∈ I∑

j∈J
xj(1− xl

j) + xl
j(1− xj) ≥ 1 ∀l ∈ [[0, k − 1]]

xj ∈ {0, 1} ∀j ∈ J

The constraints cl(γ1) and cu(γ2) used in P k
3 are not linear. We linearised these constraints

exactly as we did for the model P f
0 described in Section 1.4.2. Algorithm AddGapPortfolio de-

tails the pseudocode of the iterative procedure we implemented to produce the presentation set.
The procedure stops if the problem becomes infeasible or the maximum number of iterations n
is reached. Infeasibility is reached when the objective value of the alternative solution exceeds
the upper bound γ2. If the user wants a larger presentation set, they may choose a greater
threshold γ2. For instance, if γ1 = 0 and γ2 is high enough, Algorithm AddGapPortfolio returns
the n solutions with the smallest objective value. If n is chosen high enough, Algorithm Ad-
dGapPortfolio returns the exhaustive set of solutions with an objective value relatively to the
optimal value within the interval [γ1, γ2]. Unlike metaheuristics where the optimality gap is
unknown, we a priori established it using this algorithm. We thus offer users more control over
the presentation set provided.

Algorithm AddGapPortfolio Iterative search of n best alternative solutions whose objective
values relatively to the optimal value z⋆ of solution x⋆ of problem P0 belongs to the predefined
interval [γ1, γ2].
Require: P0, x⋆, z⋆, n, γ1, γ2
Ensure: x1, . . ., xk

1: k ← 0; P ← P0; x0 ← x⋆ ▷ initialisation
2: add cl(γ1) and cu(γ2) to P
3: while P is feasible & k < n do ▷ stop when infeasible or enough solutions
4: k ← k + 1
5: add cD(x

k−1, 1) to P ▷ exclude previous solution
6: solve P ▷ get an optimal solution xk or detect that P is infeasible
7: end while

3.2.3 Illustration of the approaches for computing a presentation set

Figure 3.2 illustrates schematically how the alternative solutions are selected by different meth-
ods. Solutions are mapped in a specific plane: the optimality gap versus the dissimilarity to the
optimal solution of P0. Figure 3.2a illustrates the alternative solutions produced by repeating
a metaheuristic algorithm such as simulated annealing. These alternative solutions would be
scattered in the considered plane. These are neither guaranteed to be close to optimality nor
to be different from the optimal solution. Algorithm AddGapPortfolio selects the alternative
solutions in a given objective value interval. Figure 3.2b shows the alternative solutions that

73 / 138



would produce Algorithm AddGapPortfolio. These solutions can be at any dissimilarity to the
optimal solution, although their objective value belongs to a predefined interval by construction.
Figure 3.2c shows how Algorithm MinDegradation would select the leftmost solution among the
solutions above a predefined dissimilarity threshold. In other words, Algorithm MinDegrada-
tion would select the solution closest to the optimum at a fixed dissimilarity measure. Similarly,
for Algorithm MaxDissimilarity, the first alternative selected would be the solution with the
most dissimilarity given a tolerated degradation of the objective value. In Figure 3.2d, this
corresponds to the topmost solution among the solutions at the left of a predefined objective
value threshold.

(a) Alternative solutions selected by repeating a
metaheuristic algorithm.

(b) Alternative solutions selected by Algo-
rithm AddGapPortfolio according to a predefined
objective value interval.

(c) Alternative solution selected by Algo-
rithm MinDegradation at the first iteration: the
least cost solution at a predefined dissimilarity
measure δ.

(d) Alternative solution selected by Algo-
rithm MaxDissimilarity at the first iteration: the
most dissimilar solution with a degraded objec-
tive value budget of γ.

Figure 3.2: Schematic representation of alternative solutions selected by metaheuristics, Algo-
rithm AddGapPortfolio, Algorithm MinDegradation and Algorithm MaxDissimilarity. Each circle
represents a reserve solution. The reserve solutions are located by the optimality gap and the dissimilarity to
the optimal solution d(x⋆, x). The optimal solution x⋆ is circled in green at the bottom left of this plan. The
bigger the circle, the greater the dissimilarities to the optimal solution. Alternative solutions that would select
an algorithm are depicted with orange circles.
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3.3 Case study
The code for this work is open, free and available3. We used the Gurobi solver under a free
academic licence called through a code developed in Julia language (Bezanson et al. 2012;
Bezanson et al. 2015) using the JuMP optimisation library (Dunning et al. 2017). The developed
methods were numerically tested on the real-world example of Fernando de Noronha composed
of 3 conservation features and 756 planning units. The details of the data describing the case
study can be found in Section 1.5.1.

3.3.1 Presentation set imposing an objective value interval

Exhaustive set of optimal solutions (γ1 = γ2 = 0) Algorithm AddGapPortfolio returns
all the solutions whose relative optimality gaps belong to the interval [γ1, γ2]. By setting
γ1 = γ2 = 0, we were thus able to compute the exhaustive set of optimal solutions. Here, we
have 16 optimal solutions with an objective value z⋆ = 197.71. Panel A of Figure 3.3 shows
the selection frequency among optimal solutions, i.e. the percentage of time a planning unit
was selected among the 16 optimal solutions. We observe a low variability since 84 over 93
planning units were selected at a 100% frequency. The nine planning units with a selection
frequency below 100% have all a cost of 1 and have similar amounts of conservation features.
The 16 optimal solutions are composed of combinations of these nine planning units of similar
characteristics that still meets targets.

Alternative solutions by increasing optimality gaps (γ1 = 0, γ2 > 0) We computed the
n = 500 following suboptimal solutions from best to worst optimality gap. We set γ2 to a high
enough value to be certain Algorithm AddGapPortfolio produces the n alternative solutions.
The objective value of the last and worst solution returned by the algorithm was 198.98, which
corresponded to an optimality gaps of 0.64%. Any value of γ2 greater than 0.64 would have led
to the same 500 alternative solutions. As above, Panel B of Figure 3.3 illustrates the selection
frequency of these 500 alternative solutions. Again, a low variability is observed, because many
planning units have similar characteristics and are interchangeable. The visual impression is
thus similar to the exhaustive set of optimal solutions.

Alternative solutions within an objective value interval (γ1 > 0, γ2 > 0) We set
γ1 > 0 to get suboptimal solutions with an optimality gap of at least γ1. We chose γ2 high
enough to have n = 100 alternative solutions. Panel C and D in Figure 3.3 respectively
show results for γ1 = 0.05 and γ1 = 0.15. We observe a greater variability than for the two
previous presentation sets. However, when comparing the conservation features distribution in
Figure 1.7, many planning units selected in the alternative solutions do not increase the amount
of conservation features in the reserve nor decrease its perimeter. These planning units are only
selected to deteriorate the objective value and thus satisfy the constraint of the objective value
interval. Although the variability appears greater in Panel C and D compared to other panels,
the core of the reserve is still globally similar to the optimal solutions.

3.3.2 Presentation set imposing a dissimilarity measure

In this section, we applied Algorithm MinDegradation to our case study. Figure 3.4 shows
n = 4 alternative solutions found by the iterative procedure for δ = 20. We first observe that,
as expected, at least 20 planning units selected in the optimal solution x⋆ are not found in the
alternative solutions. The dissimilarity to the optimal solution appears more clearly than the

3GitHub repository at https://github.com/AdrienBrunel/rssp_presentation_set.git
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Figure 3.3: Selection frequency among alternative solutions obtained with Algorithm AddGap-
Portfolio. Selected planning units of alternative reserve solutions are represented with a green transparency
gradient according to the selection frequency expressed in percentage (black number inside planning unit).

alternatives produced by Algorithm AddGapPortfolio. The alternative solutions proposed in
Figure 3.4 cover different regions of the archipelago, although limited by the fact that non-zero
amounts of conservation feature are aggregated around the main island. In particular, the
southern region is privileged in Panel B whereas the north and east of Fernando de Noronha
are preferred in Panel C. Panel A shows a solution similar to the optimal one, although two
planning units are selected at the extreme west of the study area. Panel D displays a solution
cut into several pieces all around the main island.

3.3.3 Presentation set maximising the dissimilarity measure

We applied Algorithm MaxDissimilarity to find the n = 4 alternative solutions maximising
the minimum dissimilarity to the past solutions. Illustrations are presented in Figure 3.5 for
a relative extra cost budget of γ = 10%. Interestingly, a clear visual difference between the
four alternative reserves appears in Figure 3.5. Panel A proposes a solution cut into 4 pieces,
favouring the east of the archipelago. Panel B shows a clear preference for the south of the
island. Panel C is the most similar to the optimal solution, although two planning units are
found at the extreme west of the main island. Panel D presents a reserve in two pieces, one
in the north and one in the south. The dissimilarity measure between the reserve in Panel A
and the optimal one is equal to 27 planning units. The first iteration simply maximises the
dissimilarities to the optimal solution. The minimum dissimilarity measure between the reserve
in Panel B to past solutions is 22: the dissimilarity to the optimal solution and to the solution
in Panel A are both equal to 22. By definition of Algorithm MaxDissimilarity, there is no other
solution such that the dissimilarity measure from those two past solutions are both greater than
22.
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Figure 3.4: Example of alternative solutions obtained with Algorithm MinDegradation for δ =
20. The alternative reserve solution is represented in green, while the optimal solution x⋆ is depicted with
planning units delimited by a thick black border. The number of white planning units with a thick black border
corresponds to the dissimilarity measure between the optimal solution and the alternative solution.

Figure 3.5: Example of alternative solutions maximising the minimum dissimilarity measure to
the past solutions at a fixed extra cost. We show four successive alternatives with an extra cost budget
γ = 10%. The alternative reserve solution is represented in green, whereas the optimal solution x⋆ is depicted
with planning units delimited by a thick black border.
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3.3.4 Optimality gap versus dissimilarity measure

We compared the alternative solutions obtained with Algorithm AddGapPortfolio, MinDegra-
dation and MaxDissimilarity for various values of the parameters involved. To do so, we
represented the mean optimality gap of the alternative solutions and the dissimilarity to the
optimal solution. We repeatedly applied Algorithm AddGapPortfolio, MinDegradation and
MaxDissimilarity by respectively setting the γ1, δ and γ parameter to increasing values.

All curves in Figure 3.6 increase. As expected, the top curve is obtained with Algorithm MaxDis-
similarity because it explicitly sought to maximise the dissimilarity to the past solutions. Since
the dissimilarity measure was not considered at all in Algorithm AddGapPortfolio but only
the targeted objective value interval, the corresponding curve is the lowest and is not strictly
increasing. The curve obtained with Algorithm MinDegradation is in between the two others
because it explicitly accounted for the dissimilarity measure but did not seek to maximise it.

Figure 3.6: Dissimilarity to the optimal solution versus the optimality gap. Algorithm AddGap-
Portfolio for γ1 ∈ [[1%, 15%]] and n = 100, Algorithm MinDegradation for δ ∈ [[1, 22]] and n = 20, Algo-
rithm MaxDissimilarity for γ ∈ [[1%, 15%]] and n = 4. Optimality gaps and dissimilarity measures are averaged
over the alternative solutions composing the presentation set obtained with the considered algorithm.
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3.4 Discussion

We proposed two procedures to produce a diverse set of near-optimal solutions using exact
solving methods. The presentation set was composed of alternative solutions that are not only
different from the optimal solution, but also different from each other thanks to the iterative
modification of the nominal optimisation problem. We observed that using the natural distance
as the dissimilarity measure leads to alternative solutions that strictly includes the optimal one.
Considering that it was not a valuable alternative but only a degraded solution, our dissimi-
larity measure allowed to discriminate such cases, which is new in conservation biology. The
Algorithm MinDegradation provides the least cost alternative solutions that are sufficiently
different from each other according to a given dissimilarity threshold. The Algorithm MaxDis-
similarity provides the most different solutions from each other at a fixed degradation of the
cost. These procedures implied the formulation of mixed integer linear programs solved using
exact methods. Another important contribution is the comparative analysis of these two pro-
cedures among them and with existing methods.

In summary, the strength of this work lies in the fact that only a few iterations are needed to
generate a presentation set of truly different solutions. Moreover, the methods developed are
highly customisable. For example, other dissimilarity measures could be used in our iterative
procedures to assess the differences between solutions in the same line as in (Makowski et al.
2000). These differences only depends on the definition of a dissimilarity measure, and can be
adapted according to the application case. Another advantage of this type of approach is to be
able to explicitly quantify the quality of the alternative solutions generated. Since the search for
alternative solutions is carried out by exact solving methods, we know the optimality gap which
gives more control to the end user. Finally, the production of the presentation set is completely
controlled by two parameters. The user can then choose exactly the trade-off between the
diversity of the set of alternative solutions and the optimality gap. The sensitivity analysis
conducted in Section 3.3.4 is an illustration of this trade-off for each approach. Regarding the
weaknesses, the proposed approaches are mostly limited by the computation time required.
It can be large for some instances and it increases with the number of alternatives requested.
However, we did not focus on improving the computation time in this work. In the current state
of the algorithms, we can provide orders of magnitude for the computation time with a personal
computer (Intel Core i7-8850H CPU @ 2.60GHz) when 4 alternatives need to be computed. To
do so, we performed tests with several instances randomly generated according to the process
described in Appendix 1.5.2. An example of a presentation set is given in Figure 3.7. We
observed the following computational times:

• about 2-3 minutes for 500 planning units and 3 conservation features with Algorithm MaxDis-
similarity

• about 10-60 minutes for 1000 planning units and 5 conservation features with Algo-
rithm MaxDissimilarity

• about 10-20 seconds for 500 planning units and 3 conservation features with Algorithm Min-
Degradation

• about 2-15 minutes for 1000 planning units and 5 conservation features with Algo-
rithm MinDegradation

These computation times must be put into perspective. If we are not necessarily looking for a
proof of optimality, they can be much lower. Our algorithms allow us to quickly provide inter-
esting and feasible solutions if we decide to keep the current solution after a given maximum
time. Finally, producing only 4 alternatives is a meaningful choice, because they are really
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different alternatives that do not require additional statistical analyses.

In conclusion, unlike what was commonly stated in the conservation literature (Possingham
et al. 2000; Ardron et al. 2010), our work showed that exact optimisation methods used for
the reserve site selection problem can also be advantageous to produce a range of alternative
solutions. As a consequence, it is not true that metaheuristics are the only methods that are able
to produce a presentation set. Besides, the inclusion of an explicit dissimilarity criterion directly
within the optimisation model allowed to build a more controlled and transparent presentation
set. By seeking significantly different solutions, we increased the chance to address objectives
that are not necessarily modelled, such as socio-political or management objectives. The low
number of alternatives needed with our methods may avoid unnecessary noise in the decision-
making process. In other words, the proposed algorithms can potentially empower conservation
practitioners by giving them more control over the alternatives produced and by removing the
post-processing analysis usually needed. We hope that these methods can at least shed a new
light in conservation discussions and eventually bring more success in conservation decisions in
practice.

(a) Alternative reserve solution found at iteration
1 with Algorithm MaxDissimilarity.

(b) Alternative reserve solution found at itera-
tion 2 with Algorithm MaxDissimilarity.

(c) Alternative reserve solution found at iteration
3 with Algorithm MaxDissimilarity.

(d) Alternative reserve solution found at itera-
tion 4 with Algorithm MaxDissimilarity.

Figure 3.7: Presentation set computed with Algorithm MaxDissimilarity. The considered scenario
was made of 40 × 25 planning units and 5 conservation features. We chose an extra cost budget of γ = 0.10.
Relative targets for every conservation features were set to 25%. Green planning units represents the alternative
reserve solution. Planning units with a black border indicates the initial optimal solution.
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Transition
In this chapter, we showed how to produce alternative reserve solutions that are dissimilar from
each other using exact optimisation methods. In our models, we always assumed that the data
involved was perfectly known and certain. However, it is never the case in real world problems.
Indeed, data are always affected with uncertainty due to the in-situ collection, processing
methods, etc. That is why we felt the need to address how to incorporate uncertainty within
the reserve site selection problem.
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Chapter 4

Risk-averse optimisation for reserve site
selection with uncertain non-binary data

83



4.1 Introduction

Biodiversity and habitats are threatened worldwide (IPBES 2019). Building comprehensive
networks of nature reserves is the frontline answer in the face of this situation (Ticco 1995;
Tundi Agardy 1994; Le Saout et al. 2013) and it was shown to bring conservation benefits
(Claudet et al. 2008; Stolton and Dudley 2010; Liu et al. 2017). At sea, for instance, current
political objectives are to cover 30% of the marine spaces under jurisdiction by 2030 with ma-
rine protected areas (IUCN 2014; IUCN 2016; Commission 2020). Similar concerns also exist
on land (Baillie and Zhang 2018; Dinerstein et al. 2019). Given these objectives, there is a
strong demand to find the best compromises between the protection of biodiversity and the
sustainability of human uses of these spaces. To analyse such problems, numerical optimisa-
tion methods are commonly implemented (Margules and Pressey 2000; Moilanen et al. 2009;
Ando et al. 1998; Stewart and Possingham 2005). Such methods are often embedded within
a software, e.g. Marxan or PrioritizR (Ball and Possingham 2000; Ball et al. 2009; Hanson
et al. 2020). They are designed to systematically select reserve sites and are used as a decision
support tools in real-world cases1 (Flower et al. 2020; Fernandes et al. 2005).

Conservation spatial planning tools aim at finding the best reserve sites from the available
knowledge in order to ensure the long term biodiversity persistence and eventually the provi-
sion of ecosystem services. But the uncertainty inherent to the available knowledge can result
in a poor decision-making and lead to inefficient reserve solutions. This inefficiency can cause
irreversible damages towards ecosystems, useless constraints on human uses, and more generally
a waste of already scarce conservation resources. It thus appears crucial to provide decision
makers methods allowing to quantify the tradeoff between the risk and the cost of a decision.
In a global change context, reserve selection methods that account for uncertainties may lead
to produce reserves that have more chances of achieving their conservation objectives. It seems
even compulsory knowing that incomplete and imperfect knowledge is at the root of the con-
servation science (Soule 1985) That is why uncertainty within conservation planning has been
identified as an important research gap (Margules and Pressey 2000; Foley et al. 2010; Reside
et al. 2018). The type of uncertainty that can be involved in reserve selection problems is
detailed in (Regan et al. 2009). In this work, we considered an epistemic uncertainty, whether
it is variability (natural source such as climate change) or incertitude (model or measure im-
precision). In practice, this uncertainty affects the non-binary conservation feature amounts of
the reserve site selection optimisation problem.

The main framework used in reserve site selection methods to explicitly incorporate uncertainty
are chance constraint formulations (Polasky et al. 2000; Haight et al. 2000; Araújo and Williams
2000; Williams and Araújo 2000; Sarkar et al. 2004; Cabeza et al. 2004; Tole 2006; Moilanen
et al. 2006a; Moilanen et al. 2006b). A chance constraint formulation aims to ensure that the
probability of satisfying given constraints is above a given threshold. These works are based
on binary data since they consider presence/absence of the conservation features. The proba-
bilistic model developed in (Haight et al. 2000), linearised in (Polasky et al. 2000) using a risk
level, was a major methodological contribution. It allowed further developments in the same
framework (Araújo and Williams 2000; Williams and Araújo 2000; Sarkar et al. 2004; Cabeza
et al. 2004; Tole 2006; Moilanen et al. 2006a; Moilanen et al. 2006b). They are based on the a
priori knowledge of the probability of presence (or persistence in (Araújo and Williams 2000;
Williams and Araújo 2000)) of each conservation feature inside a planning unit. These prob-
abilities are supposed to be known or derived from environmental data (Araújo and Williams

1More case study examples can be found at https://marxansolutions.org/community/ and https://prioritizr.
net/articles/publication_record.html.
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2000; Tole 2006). They are considered uncertain due to model imprecisions and an informa-
tion gap analysis is applied in (Moilanen et al. 2006a; Moilanen et al. 2006b). The resulting
optimisation problems were mostly solved using heuristics, although a comparison with exact
solving methods was also performed in (Sarkar et al. 2004). The key behind these stochastic
frameworks is that the random variable associated with a conservation feature amount inside
a planning unit has a binary probability distribution (presence or absence, persistence or dis-
appearance). This way, the overall probability of presence within the reserve solution of a
conservation feature can be expressed in closed-form. This expression then allow to express a
deterministic integer linear program (ILP). More theoretical details can be found in (Beraldi
and Ruszczyński 2002). This approach is not possible when non-binary data are available. In
our case, we considered measures of abundance: the conservation feature amount within a plan-
ning unit is non-binary, since it can take any positive value. Obtaining a similar closed-form
expression as in (Polasky et al. 2000) was not possible with our non-binary data. Hence, the
need to develop another model to take into account the uncertainty on non-binary data, even
if it means solving an approximation. Another similar approach, compatible with non-binary
data, is deployed in MarProb2, i.e. Marxan with Probability (Game et al. 2008; Carvalho et al.
2011; Tulloch et al. 2013). The probability of a planning unit being destroyed in the future is
included in the problem description. The probability that a conservation feature fails to meet
its target is computed with a statistics table under the hypothesis of a Gaussian distribution.
In the same line of Marxan approach, this probability was included in the objective function
with a representation shortfall penalty and then solved using a metaheuristic algorithm (see
Appendix B-2.1 in (Serra-Sogas et al. 2020)). In this work, we want to develop ILPs that can
be solved using exact methods. Finally, a robustness index is proposed in (Beech et al. 2008)
using a Monte-Carlo strategy. A predefined probability distribution allows to generate samples
of each conservation feature amounts. The robustness index is simply the proportion of times a
planning unit is selected among the reserve solutions computed for each instance derived from
the samples.

Uncertain optimisation reveals two opposing philosophies regarding their attitude towards risk:
risk-neutral and risk-averse approaches. A risk-neutral attitude is often used when the outcome
of a decision is repeated many times. This way, the decision is designed to optimize an expected
quantity over time. However, when the outcome of a decision is the result of one realisation,
we may not tolerate the risk involved. In conservation biology, a zoning decision is taken
once and the risk associated with a bad decision can lead to habitat destruction and species
extinctions. That is why, our risk preference went towards the risk-averse approaches. In this
work, we show conservation practitioners how to incorporate uncertainty affecting non-binary
conservation feature amounts in the reserve site selection problem using risk-averse optimisation
frameworks. We propose two optimisation models explicitly accounting for the risk a user is
willing to take. In the first approach, we considered a non-probabilistic parametric uncertainty:
the conservation features amounts can take a range of possible values instead of a particular
one. To address this problem, we provide a robust optimisation formulation. In other words,
we aimed at finding the best feasible solution whatever the uncertainty realisation within each
parameter uncertain set. But, in order to avoid the too preservative worst-case solution, we
introduced a budgeted uncertainty set (Bertsimas and Sim 2004). In this framework, we aimed
at finding the best feasible solution considering a user-defined number of parameters that are
tolerated to deviate from their nominal value. The resulting optimisation is a deterministic
mixed integer linear program (MILP). Finally, a sensitivity analysis towards the risk-level
parameter provides a simple way to represent the reserve solution robustness from the nominal
solution to the worst-case. In the second approach, we considered a risk-averse formulation

2https://marxansolutions.org/software/
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with chance constraints. Since we do not have a binary probability distribution, the analytic
computation of the overall probable amount of each conservation feature in the reserve is not
available. That is why, we addressed this optimisation problem using a sampling approximation
approach (Luedtke and Ahmed 2008). The idea is to discretise the probability space using a
set of probable samples. This way, the probability can be estimated by a proportion among
the considered samples. To design the reserve solution, we generated 100 probable samples
using geostatistics. We generated samples conditionally to what was observed at the measure
points. Instead of developing a robustness index as in (Beech et al. 2008), we accounted for
the samples explicitly in the formulation of the ILP. We computed the reserve solution of the
chance constraint formulation for several risk-level values. We compared the risk-level with a
more accurate estimated probability over 1000 samples.
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4.2 Methods

4.2.1 Robust framework

We now assume that the amount aij of conservation feature i in the planning unit j takes
its values within a continuous interval Uij. We characterise the interval Uij using a nominal
value āij and a deviation parameter σij ≥ 0. As aij ≥ 0, we only consider adverse deviation.
Formally, we have Uij = [āij − σij, āij]. The robust optimisation problem is:

min
x

∑
j∈J

cjxj

s.t.
∑
j∈J

aijxj ≥ ti ∀aij ∈ Uij, ∀i ∈ I

xj ∈ {0, 1} ∀j ∈ J

(4.1)

The problem described in (4.1) is equivalent to solve P0 when all aij parameters take their
worst values āij − σij. Find a solution that is immune to the worst case scenario is often too
expensive. In addition, it does not provide any information about the behaviour of the reserve
solution toward an inferior risk nor regarding the cost of robustness. That is why we propose
a simplification of the problem by considering a budgeted uncertainty approach.
For normalisation purposes, we define the new parameter δij such as:

δij =
āij − aij

σij

(4.2)

This way, the deviation is inactive when δij = 0 and maximal (worth −σij) when δij = 1.
Regarding the uncertainty set, aij ∈ Uij corresponds to δij ∈ [0, 1].

In order to be less conservative, we only authorise Γ =
∑

i∈I Γi parameters aij to deviate
simultaneously. Let δi· = [δi1, . . . , δiN ] be a vector of [0, 1]N . We define ∆Γi , the set of δi· within
our interest:

∀i ∈ I, ∆Γi = {δi· ∈ [0, 1]N/
∑
j∈J

δij ≤ Γi} (4.3)

Finally, the simplified robust optimisation problem of (4.1) considering budgeted uncertainty
sets ∆Γi is: 

min
x

∑
j∈J

cjxj

s.t.
∑
j∈J

āijxj −
∑
j∈J

δijσijxj ≥ ti, ∀δi· ∈ ∆Γi ,∀i ∈ I

xj ∈ {0, 1}, ∀j ∈ J

(4.4)

The problem (4.4) still has an infinite set of constraints. Yet, such excess is dispensable if we
impose the solution to be robust to the worst uncertainty:∑

j∈J
āijxj −

∑
j∈J

δijσijxj ≥ ti ∀i ∈ I,∀δi· ∈ ∆Γi

⇐⇒
∑
j∈J

āijxj − ti ≥ max
δi·∈∆Γi

{∑
j∈J

δijσijxj

}
∀i ∈ I

(4.5)

By doing so, the right-hand side can be expressed as a linear program which represents the
adversary decision regarding the most disadvantageous uncertainty:

∀i ∈ I,
∑
j∈J

āijxj − ti ≥


max
δi·

∑
j∈J

δijσijxj

s.t.
∑
j∈J

δij ≤ Γi [vi]

δij ≤ 1 ∀j ∈ J [uij]
δij ≥ 0 ∀j ∈ J

(4.6)
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By switching to a dual formulation of the standard linear program expressed in (4.6), the
constraint becomes:

∀i ∈ I,
∑
j∈J

āijxj − ti ≥


min
ui·,vi

Γivi +
∑
j∈J

uij

s.t. vi + uij ≥ xjσij ∀j ∈ J
uij ∈ R+ ∀j ∈ J
vi ∈ R+

(4.7)

By definition, any feasible ui· and vi gives a greater objective value than the minimum. Con-
sequently, considering any feasible ui· and vi is even more demanding relatively to constraint
(4.7). Therefore, problem (4.4) can be equivalently formulated as the following MILP:

Prob :



min
x,u,v

∑
j∈J

cjxj

s.t.
∑
j∈J

āijxj − (Γivi +
∑
j∈J

uij) ≥ ti ∀i ∈ I

vi + uij ≥ xjσij ∀i ∈ I,∀j ∈ J
xj ∈ {0, 1} ∀j ∈ J
uij ∈ R+ ∀i ∈ I,∀j ∈ J
vi ∈ R+ ∀i ∈ I

(4.8)

4.2.2 Chance constraint framework

Let (Ω,P) be a probability space and ω ∈ Ω. The probability that all targets ti are reached by a
given solution x ∈ {0, 1}N is P(

∑
j∈J aij(ω)xj ≥ ti,∀i ∈ I). Let α be a risk-level parameter. We

propose an optimisation problem seeking for the least-cost reserve solution that has a probability
of α to cover all targets. In other words, given any realisation ω ∈ Ω of the uncertainty, the
reserve solution has a risk of (1− α) to fail to cover all the targets. The optimisation problem
including this joint chance constraint is:

min
x

∑
j∈J

cjxj

s.t. P(
∑
j∈J

aij(ω)xj ≥ ti,∀i ∈ I) ≥ α

xj ∈ {0, 1} ∀j ∈ J

(4.9)

Problem (4.9) is intractable if the probability of meeting all targets cannot be expressed in
closed-form. To solve this difficult problem, we approximate the probability by considering a
sampling approximation of the probability space. Let ps be the occurring probability of sample
s ∈ S obtained in the sample of size |S|. We thus introduce zs the decision variable worth 1
if all the sample constraints are satisfied simultaneously for the sample s ∈ S and 0 otherwise.
We finally get the following sampling approximation of the optimisation problem (4.9):

Psa :



min
x,z

∑
j∈J

cjxj

s.t.
∑
j∈J

asijxj ≥ zsti ∀i ∈ I,∀s ∈ S∑
s∈S

zsps ≥ α

xj ∈ {0, 1} ∀j ∈ J
zs ∈ {0, 1} ∀s ∈ S

(4.10)
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4.2.3 Conceptual diagrams

Figure 4.1: Conceptual diagram of the robust framework solved using a budgeted uncertainty
set approach. On the left panel, a reserve candidate is represented with green planning units. On the right
panel, the spatial distribution of a conservation feature amounts is represented with a purple transparency
gradient. The adverse part chooses a predefined number (uncertainty budget) of planning units that will take
their worst value in their uncertainty set. This choice is made to penalise the most the objective value of the
solution considered. The robust reserve solution seeks the least-cost solution that meets the conservation feature
targets.

Figure 4.2: Conceptual diagram of the chance constraint framework solved using a sampling
approximation approach. On the right, a reserve candidate is represented with green planning units. On
the left, 10 samples for the spatial distribution of a conservation feature amounts is represented with a purple
transparency gradient. The probability space is discretised with samples. The reserve solution must satisfy a
predefined proportion of the considered samples. In the diagram, the reserve solution meets the target of the
conservation feature for 80% of the samples.
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4.3 Results

In the following, we only considered the uncertainty of the fish biomass conservation feature,
since the two others can be considered certain. Regarding the robust numerical application in
Section 4.3.1, we chose the same value for every deviation parameters, i.e. σij = σ for all i ∈ I
and j ∈ J . Several values of Γ1 = Γ are tested. The maximum value for Γ is 157 since we have
157 non-zero planning units for the fish biomass. Regarding the chance constraint framework,
in Section 4.3.2, the design of the reserve solution was done over 100 generated samples. This
number was chosen to have small computation times. The probability of meeting the sample
constraint was assessed over 1000 samples (different from the 100 considered in Psa). To produce
a user-defined number of samples for the fish biomass amount distribution, we used conditional
simulations (Chiles and Delfiner 2012) based on work (Bez and Braham 2014; Bez 2021) as
done in (Salvetat et al. 2022). All samples were considered equiprobable.

4.3.1 Robust framework

We computed robust reserve solutions for several values of the uncertainty budget Γ and the
tolerated deviation parameter σ. Figure 4.3 shows 4 robust solutions computed for σ = 40%.
Panel A shows the reserve solution of the nominal-value problem P f

0 because Γ = 0. In this
scenario, the fish biomass within each planning unit takes its nominal value since they are not
tolerated to deviate. As expected, the size and objective value of the robust reserve solution
are increasing with Γ relatively to the solution of the nominal-value problem P f

0 . In particular,
Γ = 20 and Γ = 40 respectively corresponds to an increase of 17.0% and 22.7% in size. It
corresponds to an increase of 17.3% and 31.7% in objective value. Histograms in Figure 4.3
shows the coverage of each conservation feature in the nominal scenario by the robust solution.
As expected, the coverage increases with Γ. In particular, Γ = 20 and Γ = 40 respectively
corresponds to a coverage of 18.2% and 32.6% of the fish biomass in the nominal scenario. The
coverage of the fish biomass and continental shelf conservation feature are increasing jointly
because their spatial distribution is overlapping significantly. Panel D shows the worst-case
solution. It is the least-cost solution that would still meet the targets even if the fish biomass
takes its worst value in each planning unit. The worst-case solution involves an extra cost of
79% and an increase in size of 36.4% relatively to the solution of the nominal-value problem P f

0 .
The worst-case solution corresponds to an increase of 66.9% for the coverage of fish biomass in
the nominal scenario.

Figure 4.4 shows the sensitivity analysis towards the parameters involved in the robust frame-
work. The objective value of the robust solutions are increasing with the uncertainty budget.
Robustness logically involves an extra cost. The greater the deviation coefficient, the higher
the objective value of the robust solutions. We also observe that a level is reached (except for
σ = 50%) when the uncertainty budget is greater than a given threshold. It means that the
worst case solutions is reached even for value of Γ < 157. The lower the deviation coefficient,
the further this level is reached.

Figure 4.5 shows the selection frequency of each planning unit within the set of robust solutions,
where robust solutions are computed for σ = 40% and several values of Γ. The selection
frequency allows mapping the planning unit the most and least involved in the robust solutions.
Planning units selected in the solution of the nominal problem are almost selected in every
robust solutions, i.e. 17 occurrences. However, a few planning units of the nominal solution are
only selected a few times at the west of the island. These planning units thus tend to disappear
from the robust solutions. At the opposite, many planning units east of the main island are
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Figure 4.3: Robust reserve solutions for Γ ∈ {0,20,40,157} and σ = 40%. Green planning units
represent the reserve solution when Γ parameters are tolerated to deviate from their nominal value. Histograms
at the top left of each panel shows the coverage of each conservation feature (FB=fish biomass, CS=continental
shelf, SB=shelf break) by the robust solution if all parameters take their nominal value. z⋆ is the objective
value of the considered solution.

Figure 4.4: Sensitivity analysis of the deviation parameter σ. Relative difference to the optimal value
of the nominal scenario computed for Γ ∈ {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 157} and
σ ∈ {10%, 20%, 30%, 40%, 50%}.

selected more than 10 times over the 17 simulations, although they are not included in the
certain solution. These planning units are more robust to the uncertainty.
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Figure 4.5: Selection frequency among robust solutions. Robust solutions are computed for σ = 40%
and Γ ∈ {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 157}. Selected planning units of robust
solutions are represented with a green transparency gradient according to selection frequency expressed in
number of occurrence (black number inside planning unit). Planning units with a black border represent the
reserve solution of the nominal-value problem P f

0 .

4.3.2 Chance constraint framework

We show in Figure 4.6 the reserve solutions of Psa for different values of the risk-level param-
eter α. To achieve the sampling approximation of the chance constraint (proportion α among
the 100 samples used for design), the reserve solution is generally selecting the same planning
units for different values of the risk-level α. Planning units that are selected in the nominal
solution and avoided in the chance constraint formulation also remain the same planning units
for different values of the risk-level α. Histograms confirm the coverage is beyond the target
for the considered proportion α among the 100 design samples. The solutions approximately
involve an extra 40% cost with respect to the objective value of the optimal solution of the
nominal-value problem P f

0 .

We generated 1000 new samples to see how the computed solutions perform with respect to
these samples. This way, we have a more accurate estimation of the performance with respect
to the uncertainty. We call ϵ̂ the proportion among the 1000 samples where the solution of Psa

is feasible. Table 4.1 shows both the risk-level α and this estimated probability ϵ̂. We can see
that there is a significant difference between the design probability α and the estimation of the
true probability ϵ̂.

4.3.3 Comparison between the two approaches

In this section, the solutions computed using the robust and chance constraint framework are
compared. These solutions’ probability of meeting all the coverage targets is assessed over 1000
samples. The samples considered here did not call geostatistics and conditional simulations
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Figure 4.6: Reserve solutions satisfying a sampling approximation of a chance constraint for a
risk-level α ∈ {0.75,0.85,0.90,0.95}. Green planning units represent the reserve solution. Planning units
with a black border represent the reserve solution of the nominal-value problem P f

0 . Histograms at the top
left of each panel show the coverage distribution for the fish biomass conservation feature for the 100 samples
considered. The red line gives the fish biomass absolute target. z⋆ is the objective value of the considered
solution.

Design risk-level α Estimated probability ϵ̂
Relative difference to the
nominal objective value

0.75 0.634 37%
0.80 0.656 38%
0.85 0.720 39%
0.90 0.782 40%
0.95 0.831 41%
1.00 0.993 50%

Table 4.1: Relationship between the design probability α computed using 100 samples and the
estimated probability ϵ̂ using 1000 samples.

in order to perform a relevant comparison between the two approaches. To do so, we inde-
pendently drew the amounts aij of the fish biomass conservation feature within each planning
unit using a Gaussian probability distribution. The mean value of the Gaussian probability
distribution is given by the nominal value āij. The standard deviation is set to σ̂āij.
Importantly, this standard deviation is consistent with the deviation parameter σ of model Prob.
Let α be the risk-level parameter of model Psa. The chance constraint solution is computed
using 100 samples. Let Γ be the uncertainty budget parameter of model Prob. Let σ be the
deviation parameter describing the uncertainty set of model Prob. Let ϵ̂ be the estimation of
the true probability of satisfying the coverage constraints estimated on 1000 different samples.
Let γ be the relative difference to objective value of the nominal solution and the risk-averse
solution.

The nominal solution, obtained with Γ = 0, is failing to meet the targets for almost 50% of the
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1000 samples for any values of σ̂. Table 4.2 shows that solutions of Psa involved a small increase
of the objective value: around 1% for σ̂ = 10% and around 5% for σ̂ = 50%. In this numerical
experiment, the values of α and ϵ̂ are very close, even with only 100 samples used for design.
At the opposite, Table 4.3 shows that robust solutions are meeting the targets for almost each
of the 1000 samples. Indeed, for most values of (Γ, σ), the proportion of feasible solutions ϵ̂
is above 98%. For Γ ≥ 20, we have ϵ̂ = 1. However, these reserve solutions correspond to
important increase of the objective value: around 6% in average for σ̂ = 10% and around 70%
for σ̂ = 50%. Interestingly, for Γ = 10, the objective value increase is comparable to the values
obtained with the chance constraint solutions for α ≥ 0.95.

σ̂ α ϵ̂ γ

10% 0.75 0.701 0.5%
10% 0.80 0.812 1.0%
10% 0.85 0.810 1.1%
10% 0.90 0.914 1.2%
10% 0.95 0.964 1.8%
10% 1.00 0.988 2.2%
20% 0.75 0.815 1.7%
20% 0.80 0.812 1.7%
20% 0.85 0.851 2.2%
20% 0.90 0.898 2.7%
20% 0.95 0.957 3.2%
20% 1.00 0.996 7.4%
30% 0.75 0.733 2.0%
30% 0.80 0.817 2.7%
30% 0.85 0.844 3.2%
30% 0.90 0.928 4.2%
30% 0.95 0.955 5.1%
30% 1.00 0.988 7.5%
40% 0.75 0.790 3.2%
40% 0.80 0.787 3.9%
40% 0.85 0.820 4.4%
40% 0.90 0.906 5.6%
40% 0.95 0.943 6.7%
40% 1.00 0.989 9.9%
50% 0.75 0.718 3.5%
50% 0.80 0.832 4.2%
50% 0.85 0.870 5.1%
50% 0.90 0.858 5.8%
50% 0.95 0.888 7.1%
50% 1.00 0.975 12.2%

Table 4.2: Chance constraint solutions re-
sults for several values of the design prob-
ability α and standard deviation σ used to
generate the samples. The probability of meet-
ing the coverage constraints ϵ̂ was computed using
1000 samples. Relative targets were all set to 50%.
The β multiplier was set to 1.

σ̂ = σ Γ ϵ̂ γ

10% 0 0.566 0.0%
10% 10 0.988 2.2%
10% 20 1.000 3.7%
10% 40 1.000 5.9%
10% 80 1.000 9.0%
10% 157 1.000 9.9%
20% 0 0.545 0.0%
20% 10 0.985 4.2%
20% 20 1.000 7.7%
20% 40 1.000 13.6%
20% 80 1.000 21.1%
20% 157 1.000 23.8%
30% 0 0.527 0.0%
30% 10 0.980 6.4%
30% 20 1.000 12.4%
30% 40 1.000 22.3%
30% 80 1.000 36.4%
30% 157 1.000 44.0%
40% 0 0.506 0.0%
40% 10 0.981 8.9%
40% 20 1.000 17.3%
40% 40 1.000 31.7%
40% 80 1.000 60.1%
40% 157 1.000 79.0%
50% 0 0.535 0.0%
50% 10 0.980 11.4%
50% 20 1.000 21.8%
50% 40 1.000 43.1%
50% 80 1.000 90.4%
50% 157 1.000 177.4%

Table 4.3: Robust solutions results for sev-
eral values of the uncertainty budget Γ, the
deviation parameter σ̂ used in model Prob

and the standard deviation σ used to gener-
ate the samples. The probability of meeting the
coverage constraints ϵ̂ was computed using 1000
samples. Relative targets were all set to 50%. The
β multiplier was set to 1.
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4.4 Discussion

The main problem addressed in this work was to deal with a parametric uncertainty that af-
fects the non-binary conservation features amounts. We considered two risk-averse optimisation
frameworks to incorporate this kind of uncertainty in the reserve site selection problem. It led
us to express two MILPs. First, we proposed a robust optimisation formulation using a bud-
geted uncertainty set approach. In this formulation, we compute the least-cost reserve solution
that is immune to the deviation of conservation feature amounts within a predefined number
of planning units. Then, we provided a chance constraint formulation solved using a sampling
approximation. In this formulation, we compute the least-cost reserve solution that meets the
conservation feature targets for a given proportion of previously generated samples.

Our results showed what it costs to produce risk-averse reserve solutions that are robust to
uncertainty and how robust they are. While the robust framework dealt with overestimated
conservation feature amounts, the chance constraint framework addressed a more probabilistic
uncertainty contained within samples. The models proposed in this work are new with re-
spect to the classical models presented in (Polasky et al. 2000; Haight et al. 2000) which are
only compatible with binary data. Our approaches allowed to account for an uncertainty that
affect non-binary conservation feature amounts which is desirable in many cases. In general,
the robust reserve solution appeared expensive relatively to the nominal solution. For exam-
ple, considering half of the parameters overestimated, the robust reserve would cost more than
50% relatively to the nominal solution when the deviation parameter is set to 30%. When we
evaluated the robust solutions over the 1000 generated samples, although the cost involved are
important, the coverage targets are always met for values of Γ > 10. The solutions of the robust
framework are a sure way to be immune to uncertainty, even for small uncertainty budgets,
but can be very expensive. At the opposite, the chance constraint solutions provide cheaper
solutions, only a few percent above the nominal solution, that are more or less immune to the
risk depending on the user choice. It seems to allow a finer tuning of the risk a decision-maker
is willing to take. We also observed that robust solutions for small values of the uncertainty
budget achieved the same results. However, the relationship between the uncertainty budget
and the probability of meeting the targets is not as straightforward as in the chance constraint
framework. It may be more difficult to use this framework to design a reserve solution that is
immune to an uncertainty contained in samples.

Our results also showed that comparing the solution of the nominal problem with our risk-
averse solutions allow identifying to what extent given planing units contribute to the solution
robustness. Planning units outside the nominal solution and often selected in the risk-averse
solutions are likely to increase the robustness of the solution toward the uncertainty considered.
At the opposite, the planning units of the nominal solution that are not selected in the risk-
averse solutions when we increase the uncertainty are likely to be lost when the uncertainty
is realised. We observe that these planning units are not the same in the robust and chance
constraint frameworks. This kind of observations were at the basis of the robustness index
developed in (Beech et al. 2008). In this work, we went further, since we a priori accounted
for the samples within the optimisation model in the chance constraint framework.

The robust framework provides a way to incorporate uncertainty without any probability dis-
tribution. The only price to pay is computational because it involves a bigger MILP with
respect to the nominal problem. The chance constraint framework is a more probabilistic
approach. Our work showed how we could efficiently solve an approximation of this difficult
problem using generated samples. The limitations of the chance constraint framework can come
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from the number of samples needed. Since the size of the MILP is related to the number of
samples, we cannot increase the number of samples without causing computational difficulties.
Our experiment using geostatistics for generating samples illustrated another limitation: the
risk-level parameter α of the chance constraint framework did not strictly represent the actual
risk, estimated with ϵ̂. Yet, the interest of decision-makers is to ensure a reserve solution to
be protected against an actual predefined risk-level. Since there was an apparent correlation
between these two quantities, we could have empirically set the risk-level α to reach a prede-
fined ϵ̂. However, the relationship between the number of samples and the actual probability
of meeting the targets should be further investigated. In this work, we only considered the
uncertainty toward a unique conservation feature, which limits the assessment of the coupling
effect. We did this choice for clarity purposes, but this would deserve further explorations to
draw more general conclusions. Another limitation observed is that our risk-averse solutions
are quite similar despite the increasing of the risk-level parameters. An explanation of this
comes from the case study considered: the conservation features are mainly distributed around
the main island, so are the solutions.

Our risk-averse methods provide conservation practitioners efficient ways to derive a one-to-one
relation between the robustness of a reserve solution and the associated cost. These frameworks
also allow the identification of areas that are likely to be lost when the uncertainty is realised,
which is precious information in a decision-making context. The choice of the framework to
privilege depends on the uncertainty modelling: probability distribution or intervals of possible
values. The trade-off between the risk-level and the robustness cost is to be made by the
decision-maker in both frameworks.
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Transition
In this chapter, we showed two approaches that incorporate uncertainty affecting non-binary
data using exact optimisation methods in the reserve site selection problem. The reserve solu-
tions that were computed sometimes showed undesirable spatial properties such as an isolated
planning unit, holes within the reserve, etc. Indeed, except the empirical setting of the com-
pactness parameter β, we do not have any constraints specifying spatial attributes of our reserve
solution. Yet, the spatial attribute of a reserve was originally at the core of the discipline with
the SLOSS debate and is often an argument to discard a reserve solution. That is why, in the
next chapter, we focused on explicitly addressing the problem of producing reserve that are
compacts, connected and without holes.
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Chapter 5

Explicit design of compact, connected and
gap-free reserves

99



5.1 Introduction

Biodiversity and habitats are threatened worldwide (IPBES 2019). Building comprehensive
networks of nature reserves is the frontline answer to this situation (Ticco 1995; Tundi Agardy
1994; Le Saout et al. 2013) and it has shown to bring conservation benefits (Claudet et al. 2008;
Stolton and Dudley 2010; Liu et al. 2017). At sea, for instance, current political objectives are
to cover 30% of the marine spaces under jurisdiction by 2030 with marine reserves (IUCN 2014;
IUCN 2016; Commission 2020). Similar concerns also exist on land (Baillie and Zhang 2018;
Dinerstein et al. 2019). Within this context, there is a strong demand to find the best com-
promises between the protection of biodiversity and the sustainability of human uses of these
spaces. To analyse such problems, numerical optimisation methods are commonly implemented
(Margules and Pressey 2000; Moilanen et al. 2009; Ando et al. 1998; Stewart and Possingham
2005). Such methods are often embedded within a software, e.g. Marxan or PrioritizR (Ball
and Possingham 2000; Ball et al. 2009; Hanson et al. 2020). They are designed to systematically
select reserve sites and are used as a decision support tools in real-world cases1 (Flower et al.
2020; Fernandes et al. 2005).

Nevertheless, solving these optimisation problems often results in the selection of scattered re-
serve sites. Yet, designing reserves that are compact, connected, and gap-free is usually needed
for ecological, management and enforcement reasons (Diamond 1975). A reserve is connected
if one can move anywhere inside without having to leave it. A gap within a reserve is a zone
outside the reserve you cannot leave without crossing the reserve. Currently, the spatial at-
tributes of reserves are poorly considered in decision support tools used for reserve selection.
In the widely used decision support tools for reserve selection (e.g. Marxan, PrioritizR), the
only spatial attribute explicitly addressed is the global compactness of a solution (Ball and
Possingham 2000; Ball et al. 2009; Watts et al. 2009; Hanson et al. 2020). The compactness of
a solution is enforced by directly penalising the overall perimeter of the reserve in the objec-
tive function of the optimisation problem addressed. Several issues come with this approach.
The linearisation of the perimeter expression involves the addition of many decision variables
and constraints (Billionnet 2013; Beyer et al. 2016) which can be computationally expensive
in an integer programming context. Also, this approach transforms the problem into a multi-
objective problem where the cost of a solution and its perimeter are implicitly competing.
In practice, the compactness multiplier is empirically determined until a solution meets the
spatial requirements deemed satisfactory. This weakens the systematic nature of the reserve
design approach, although a more systematic setting of the compactness multiplier is proposed
in (McDonnell et al. 2002). Improvements using both the reserve perimeter and area in the
objective were proposed in (McDonnell et al. 2002) to enforce the compactness of the reserve.
In the same line, a weighted combination of both compactness and connectivity measure are
included in the objective and solved using metaheuristics in (Nalle et al. 2002). In any case,
the connectivity and the absence of gaps are not ensured but rather possibly emerging with the
empirical enforcement of the reserve compactness.

In an operation research context, several optimisation models were proposed to explicitly ac-
count for specific spatial properties (Williams et al. 2004; Williams et al. 2005; Billionnet 2013;
Billionnet 2016; Billionnet 2021). For instance, optimisation models aim to design a reserve
core with a buffer zone (Williams and ReVelle 1998; Clemens et al. 1999). But these models do
not constrain the reserve to be connected and gap-free, although such reserve can emerge from
them. A large family of models takes advantage of the modelling possibilities offered by the

1More case study examples can be found at https://marxansolutions.org/community/ and https://prioritizr.
net/articles/publication_record.html.
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use of pairwise distances between candidate sites. Minimizing the sum of pairwise distances
or the maximum distance between all reserve sites (Önal and Briers 2002) favour compact re-
serves, but do not guarantee that the reserve is connected and gap-free. The same applies for
models that constrain two distinct sites containing the same conservation feature to be closer
than a predefined threshold distance (Williams 2006). Another large family of optimisation
model takes advantage of graph theory (Önal and Briers 2006; Wang and Önal 2011; Wang and
Önal 2013; Jafari and Hearne 2013; Billionnet 2016; Shirabe 2005) in particular to explicitly
ensure the reserve connectivity. However, the site selection may still result in the inclusion of
gaps within the reserve solution, which we define as a set of isolated sites not assigned to the
reserve and entirely disconnected from the outside (i.e. surrounded by the reserve). A reserve
perforated by gaps cannot be used in a large-scale reserve design. If gaps appear in a solution
proposed by a decision support tool, they will either be arbitrarily incorporated into the reserve,
artificially connected to the outside (in either case, this will often lead to the use of suboptimal
solutions), or the provided solution will be ignored. Using models imposing connectivity and
promoting compactness is likely to favour gap-free reserves, but this is not guaranteed. For
instance, it may be necessary to design nature reserves around areas that cannot be included in
the reserve, such as a harbour or a trade route. These areas cannot be enclosed by the reserve
and must remain accessible from the outside. State-of-the-art models often provide a reserve
solution with gaps in these cases. Consideration of gaps within reserves is rarely addressed in
the literature. Absence of gaps in the reserve can be a posteriori achieved by iteratively search-
ing a gap-free reserve among slightly suboptimal solutions (Billionnet 2016). This model does
not a priori prevent gaps to be included within the reserve, but rather hope such solution exists
even if the objective value is degraded. Such procedure is interesting but does not guarantee
to have the connected, compact and gap-free reserve with the best objective value. A model
selecting cellulary convex regions (also in regular grids) that are thus connected and gap-free
is given in (Williams 2003). Such a model can be adapted to avoid reserves with gaps, but the
convexity requirement may neglect some admissible connected and gap-free solutions if they
are not (cellulary) convex.

In this work, we proposed a model to build connected, compact and gap-free reserves. An
optimisation model using graph theory enforces the connectivity of both the reserve and the
non-reserve areas, resulting in connected and gap-free reserves. The overall compactness of the
reserve is shaped by specifying a maximum radius or perimeter of the reserve. We illustrate the
reserve solution provided by our approach on the real-world instance of Fernando de Noronha.
We numerically assess the generality of the proposed approaches on several generated instances
made of 300 or 500 planning units and 3 conservations features. Regarding the size of instances
in existing works, the number of planning units considered in this work is similar to other
existing works: 100 planning units in (Billionnet 2012), 131 in (Önal and Briers 2002), 225 in
(Billionnet 2021), 324 planning units (Williams 2006), 391 planning units in (Önal and Briers
2006), 400 in (Billionnet 2016)). However, the number of conservation features is an order of
magnitude beyond in existing work, always around 100 conservation features. The comparison
of the instance sizes is still hard to interpret, because the instances are not generated in the
same way.
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5.2 Models
Here we present the integer linear programs for reserve site selection ensuring the reserve to be
connected, compact and gap-free. Before all, we recall the general formulation of the reserve site
selection problem. Then, the multicommodity flow approach using graph theory is presented
for both the reserve and non-reserve areas. Finally, a reduction of the problem is proposed as
well as an approach limiting the maximum radius of the graph of the reserve. The graph of the
reserve is the graph induced by the planning units selected in the reserve solution.

5.2.1 General formulation of the reserve site selection problem

In a reserve site selection problem, the study area is discretised into a set of J planning units
within which a set of I conservation features are distributed. The amount of conservation
feature i in the planning unit j is denoted aij. Each planning unit has a cost cj usually
understood as the socio-economic cost associated with the closure of this unit. The decision
is about whether to include the planning unit in the reserve. Consequently, we associate the
decision variables xj with each planning unit j: xj = 1 if a planning unit j belongs to the
reserve and xj = 0 otherwise. One then seeks to find the least cost collection of planning units
covering a sufficient amount for each conservation features. The covering of a conservation
feature i is considered sufficient if it exceeds a user-defined level noted ti.∑

j∈J

aijxj ≥ ti,∀i ∈ I (5.1)

Mathematically speaking, the general problem of reserve site selection is expressed as the fol-
lowing integer linear program PN :

PN :


min
x

∑
j∈J

cjxj

s.t. (5.1)
xj ∈ {0, 1} ∀j ∈ J

In state-of-the-art models, the reserve perimeter is included in the objective function, to favour
aggregated reserve solutions since a small perimeter involves a compact reserve. The perimeter
is computed as the total length of the boundaries between reserved and non-reserved planning
units. To model this, the length of the shared boundary between planning units j1 and j2 is
denoted bj1j2 . A parameter β is used to set the importance of compactness relatively to the total
cost of site selection. The quadratic expression of the perimeter can be linearised (Billionnet
2007; Beyer et al. 2016) by replacing the product xj1xj2 with the new binary decision variable
zj1j2 and add the following set of constraints:

zj1j2 − xj1 ≤ 0 ∀j1 ∈ J
zj1j2 − xj2 ≤ 0 ∀j2 ∈ J
zj1j2 − xj1 − xj2 ≥ −1 ∀j1 ∈ J,∀j2 ∈ J

(5.2)

Finally, the general formulation of the reserve site selection problem results in the following
integer linear program PN+COMP :

PN+COMP :


min
x,z

∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2(xj1 − zj1j2)

s.t. (5.1), (5.2)
xj, zj1j2 ∈ {0, 1} ∀j, j1, j2 ∈ J

This combinatorial optimisation problem is a minimum set cover problem known to be NP-hard
(Garey and Johnson 1979). It is a non-convex problem due to the binary nature of the decision
variables. Yet, it can be expressed as an integer linear program and known solvers (like Gurobi
or CbC) can solve it for realistic instances in a reasonable time.
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5.2.2 Connectivity of the reserve

The grid is seen as a graph, where each planning unit j ∈ J represents a node in the graph.
The set of nodes is J . Planning units sharing an edge in the grid are considered neighbours and
thus involve an edge e = (e1, e2) in the graph between the nodes e1, e2 ∈ J . The set of edges
is noted E. The corresponding directed edges (e1 → e2) and (e2 → e1) are called arcs. The
set of arcs is noted A. We then use a multicommodity flow model developed in (Abdelmaguid
2018). The idea is to constrain every node selected in the reserve to have a flow going from the
source to the sink. The source is the commodity k ∈ K, i.e. a selected node, and the sink is
the root node of the spanning tree. Therefore, we build a path connecting every selected nodes
k ∈ K and the root node which is constrained to belong to the reserve. The reserve is thus
ensured to be connected. In this model, the set of commodities is K = J . The selection of
the root node j ∈ J of the spanning tree associated to the reserve is represented by the binary
decision variable rj ∈ {0, 1}. The selection of an arc a ∈ A in the spanning tree associated to
the reserve is represented by the binary decision variable ua ∈ {0, 1}. The activation of the flow
of commodity k ∈ K between the source node k and the sink node (i.e. root of the spanning
tree) along the arc a ∈ A is represented by the binary decision variable fk

a ∈ {0, 1}. Let V (n)
be the set of neighbours nodes of node n ∈ J .

The selected arcs of the spanning tree must be between two nodes selected in the reserve:{
ua ≤ xa1 ∀a = (a1, a2) ∈ A
ua ≤ xa2 ∀a = (a1, a2) ∈ A

(5.3)

A maximum of one arc is activated by edge:

u(e1→e2) + u(e2→e1) ≤ 1 ∀e = (e1, e2) ∈ E (5.4)

The number of arcs in the tree is equal to the number of nodes minus 1 (prevent cycle formation):∑
a∈A

ua =
∑
j∈J

xj − 1 (5.5)

The root of the tree must be in the reserve:

rj ≤ xj ∀j ∈ J (5.6)

There is only one root node for the spanning tree of the reserve:∑
j∈J

rj ≤ 1 (5.7)

If the arc is not selected, all associated flow variables are set to 0:

fk
a ≤ ua ∀a ∈ A,∀k ∈ K (5.8)

If the node is not selected, all the associated flow variables are set to 0:

fk
a ≤ xk ∀a ∈ A,∀k ∈ K (5.9)

For commodity k ∈ K, the flow at source node is 1, the flow at sink node is 0, elsewhere for
selected nodes, the flow entering is the same as the flow leaving the node.

∑
j∈V (n)

fk
(j→n) −

∑
j∈V (n)

fk
(n→j) ≤ rn ∀k ∈ K, ∀n ∈ J \ {k}∑

j∈V (n)

fk
(j→n) −

∑
j∈V (n)

fk
(n→j) ≥ 0 ∀k ∈ K, ∀n ∈ J \ {k}∑

j∈V (k)

fk
(k→j) −

∑
j∈V (k)

fk
(j→k) = xk − rk ∀k ∈ K

(5.10)
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Finally, the multicommodity flow model PCON for the reserve is:

PCON :


min

x,z,u,r,f

∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2(xj1 − zj1j2)

s.t. (5.1)− (5.10)
xj, zj1j2 , ua, rj, f

k
a ∈ {0, 1} ∀j, j1, j2 ∈ J,∀a ∈ A, ∀k ∈ K

5.2.3 Gap-free reserve

We apply the same multicommodity flow model to the non-reserve to have a connected non-
reserve. A connected non-reserve implies that the reserve would not have gaps within it. Thus,
the term 1−xj plays the role of the term xj. We add a fictive node α in the graph representing
the area outside the studied zone. Indeed, the non-reserve must be connected to the exterior
area. Note that we fix the node α to be the root of the spanning tree of the non-reserve. The
selection of an arc a ∈ A in the spanning tree associated to the non-reserve is represented
by the binary decision variable va ∈ {0, 1}. The activation of the flow of commodity k ∈ K
between the source node k and the sink node α along the arc a ∈ A is represented by the binary
decision variable gka ∈ {0, 1}. The set of edges and arcs associated with the fictive node α are
respectively noted Ef and Af . Let E+ = E ∪ Ef , A+ = A ∪ Af , and J+ = J ∪ {α}.
The added set of constraints for the non-reserve is :

xα = 0
va ≤ 1− xa1 ∀a = (a1 → a2) ∈ A+

va ≤ 1− xa2 ∀a = (a1 → a2) ∈ A+

v(e1→e2) + v(e2→e1) ≤ 1 ∀e = (e1, e2) ∈ E+∑
a∈A+

va =
∑

j∈J+

(1− xj)− 1

gka ≤ va ∀a ∈ A,∀k ∈ K
gka ≤ 1− xk ∀a ∈ A,∀k ∈ K∑
j∈V (α)

gk(α→j) −
∑

j∈V (α)

gk(j→α) ≤ 1 ∀k ∈ K∑
j∈V (n)

gk(j→n) −
∑

j∈V (n)

gk(n→j) = 0 ∀k ∈ K, ∀n ∈ J \ {k}∑
j∈V (k)

gk(j→k) −
∑

j∈V (k)

gk(k→j) = 1− xk ∀k ∈ K

va, g
k
a ∈ {0, 1} ∀a ∈ A+,∀k ∈ K

(5.11)

By adding (5.11) to PCON , we get the integer linear program PCON+GF that ensure connected
reserve solutions to be gap-free.

5.2.4 Compactness of the reserve

5.2.4.1 Maximum radius in the graph of the reserve

We want to avoid producing connected reserve solutions that spread across the entire study
area. We thus impose the radius of the graph of the reserve to remain below a predefined
threshold, denoted Rmax in the following. We have a double hope with this additional con-
straint. First, we will produce more compact reserves and avoid cobweb shape for the reserves.
By doing so, we also limit the considered nodes when finding a path in the multicommodity
flow models. By removing the nodes further than Rmax, we also hope to increase the solving
speed.

Once the graph of an incumbent reserve solution is connected, we can define the centre and
the radius of the graph of the reserve. The centre is the selected node whose maximal distance
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from other selected nodes is the smallest. The radius is the maximum distance in the graph
between the centre and other selected nodes. Let d(j1, j2) define the distance in the graph of
the reserve between the node j1 ∈ J and j2 ∈ J . This distance corresponds to the smallest path
in the reserve graph from node j1 to node j2. Note that the global matrix of distances between
all nodes of the grid was computed outside the solving procedure. All the selected nodes of
the incumbent connected reserve that are at a distance greater than Rmax from the centre are
added to the set of commodities K. Then, the following constraint is applied:∑

j∈J
d(j,k)≤Rmax

∑
n∈V (j)

fk
j→n ≤ Rmax ∀k ∈ K (5.12)

Finally, we impose the non-selection of nodes at a distance greater than Rmax from the root of
the tree of the reserve:

xj1 ≤ 1− rj2 ∀j1 ∈ J, j2 ∈ J, d(j1, j2) > Rmax (5.13)

By adding (5.12) and (5.13) to PCON+GF , we get the integer linear program that ensures
connected and gap-free solutions to have a maximum radius of Rmax.

5.2.4.2 Maximum perimeter of the reserve

As explained in Section 5.2.1, the compactness of a reserve in state-of-the-art models is enforced
using a multi-objective approach by penalising the reserve perimeter in the objective. Rather
than that, we can keep a single objective formulation and specify a maximum perimeter Pmax

the reserve should not exceed. The associated constraint is :∑
j1∈J

∑
j2∈J

bj1j2(xj1 − zj1j2) ≤ Pmax (5.14)

By adding (5.12) and (5.13) and/or (5.14) to PCON+GF , we get the integer linear program
that ensures connected and gap-free solutions to have a maximum perimeter of Pmax. The
models that include constraints used to enforce compactness of the reserve will be named
PCON+GF+COMP . The setting of compactness parameters, i.e. β, Rmax, Pmax, will remove the
ambiguity related to our choice of constraints. If β is set, we include the penalty of the reserve
perimeter in the objective and add the associated linearisation constraints (5.2) to the model.
If Rmax is set, the constraints (5.12) and (5.13) are added to the model. If Pmax is set, the
constraint (5.14) is added to the model.

5.2.5 Improvements of the model

5.2.5.1 Chessboard reduction

In a rectangular grid, if we want a connected and gap-free reserve, a node in a given binary state,
i.e. selected or unselected, cannot be surrounded by neighbouring nodes in the complementary
state. The rectangular grid is thus assimilated to a chessboard, and the nodes are separated
into two sets: black and white nodes. This way, the 4 neighbouring nodes of a black node are
white and vice versa. Let B be the set of black nodes and W the set of white nodes. We have
J = W ∪B. In terms of constraints, we prevent white (respectively black) nodes of the grid in
a given state to be surrounded by four black (respectively white) neighbours in the same state:

xj ≤
∑

i∈V (j)

xi ∀j ∈ J

1− xj ≤
∑

i∈V (j)

1− xi ∀j ∈ J
(5.15)
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Then, we apply the multicommodity flow model only to black nodes. It means that the set of
commodities is K = B instead of K = J in model PCON or PCON+GF . This is the main moti-
vation behind this chessboard reduction: we reduce the number of expensive multicommodity
flow constraints by only adding two constraints by node. This way, each node is whether asso-
ciated with a commodity or satisfy constraint (5.15) and has its neighbours associated with a
commodity. In the following, the chessboard reduction is systematically applied.

5.2.5.2 Lazy constraints

Enforcing flow constraints for every node can be computationally challenging in multicommod-
ity flow models. Lazy constraints are constraints included in the model only if they are not
satisfied by the incumbent solution. Since the flow constraints (5.10) in the multicommodity
flow model can be separated by commodities, these constraints are implemented as lazy con-
straints. The motivation behind this choice is that a non-connected reserve is not a frequent
case. We hope that the iterative activation of the lazy constraints is faster than considering the
exhaustive set of flow constraints. In the following, the concerned constraints are systematically
applied as lazy constraints.

A graph is connected if there is a path from any point to any other point in the graph. If a graph
is not connected, the graph is made of two or more isolated connected subgraphs. We speak of
connected components of the graph for the maximal, in terms of nodes, connected subgraphs.
In our case, if the number of connected components of an incumbent reserve solution is greater
than 1, the reserve is not connected and we activate the flow constraints associated with a
given commodity noted k1 ∈ K. We define the rentability of a node as the ratio between the
conservation feature’s total amounts within a planning unit and its cost. The commodity k1 is
chosen as the node with the highest rentability among the nodes of each connected component
of the incumbent reserve solution.

We do the same for the multicommodity flow model of the non-reserve. If the number of con-
nected components of the non-reserve graph is greater than 1, the incumbent reserve solution
has a gap within it, and we activate the flow constraints associated with a given commodity
noted k2 ∈ K. The commodity k2 is chosen as the node with the lowest rentability among
each connected component of the non-reserve. Again, a gap within the reserve is hoped to be
a rare case, so the lazy constraints allow a faster solving than including the exhaustive set of
flow constraints (5.11).

The constraints (5.12) are also implemented as lazy constraints, and thus activated only if the
incumbent reserve solution is spreading too much.
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Figure 5.1: Example of the graph of a connected and gap-free reserve solution. Red arrows show
the spanning tree of the reserve. The centre of the reserve tree is node 43. Radius of the graph of the reserve
is 8 (reached from node 43 to 36 for example). Orange arrows show the spanning tree of the non-reserve. The
centre of the non-reserve tree is node α = 85 representing the outside area.
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5.3 Numerical experiments

5.3.1 Illustration on a real-world instance

The real-world instance of Fernando de Noronha is detailed in Section 1.5.1.1 and is shown in
Figure 1.7.

Table 5.1 provides the characteristics of the reserve solutions computed using the models de-
scribed in Section 5.2 on the real-world instance of Fernando de Noronha. The first observation
is that the spatial coherence of a reserve is not guaranteed by state-of-the-art models. Fig-
ure 5.2a and Figure 5.3a shows that the reserve site selection is really scattered for β = 0.
Setting β = 1 in these models improved the global compactness of the reserve selection as illus-
trated in Figure 5.2b and Figure 5.3b but did not guarantee the connectivity of the reserve nor
the absence of gaps within it (cf. Table 5.1). The state-of-the-art model with β = 1 shown in
Figure 5.3b illustrates the problem with high covering demands and locked-out planning units:
it naturally creates gaps by surrounding the locked-out planning units. When targets were set
to 50%, obtaining a connected and gap-free reserve (cf. Figure 5.2c) took 19.5 seconds. It
required to solve the model PCON+COMP with β = 1 since the reserve solution did not have any
gap within it. However, when we increased the compactness demand (β = 1 and Rmax = 14), a
gap was appearing within the solution. We removed this by solving the model PCON+GF+COMP .
We also observe that the solving of PCON+GF+COMP took less time than PCON+COMP (179.6
against 920.5 seconds). To obtain an even more compact reserve, we directly constrained the
reserve perimeter to remain below 80 instead of the 90 of the reserve solution with β = 1 and
Rmax = 14. The connected, compact and gap-free solution (cf. Figure 5.2d) was obtained in
366.1 seconds. When targets were set to 70%, solving the model PCON+COMP with β = 1 did
not prevent the occurrence of gaps within the reserve (cf. Table 5.1). The compact, connected
and gap-free reserve solution obtained by solving PCON+GF+COMP with β = 1 is shown in Fig-
ure 5.3c. Also, the selection of isolated planning units is tolerated as soon as the perimeter
involved contributed less to the objective than the selection cost. Unlike the state-of-the-art
models solutions, our connected and gap-free reserve solutions left a path from the harbour of
Fernando de Noronha to the outside area. It took only 42.6 seconds in this example. Then we
increased our compactness demands by setting Pmax = 90 and Rmax = 16. The corresponding
solution is shown in Figure 5.3d. This reserve which looks more compact than Figure 5.3c and
is still connected and gap-free.
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Targets Model Parameters Time Perimeter Cost Radius Components Gaps
50% N β = 0 0.2 150 90.6 - 14 4
50% N+COMP β = 1 0.2 96 101.7 - 2 0
50% CON+COMP β = 1 19.5 92 106.0 16 1 0
50% CON+COMP β = 1, Rmax = 14 920.5 90 112.4 14 1 1
50% CON+COMP+GF β = 1, Rmax = 14 179.6 90 112.8 14 1 0
50% CON+COMP+GF Pmax = 80, Rmax = 14 366.1 80 125.6 14 1 0
70% N β = 0 0.0 156 200.2 - 7 7
70% N+COMP β = 1 0.1 108 216.8 - 2 2
70% CON+COMP β = 1 69.4 100 227.6 16 1 2
70% CON+COMP+GF β = 1 42.6 98 232.8 18 1 0
70% CON+COMP+GF β = 1, Rmax = 17 295.1 96 235.0 17 1 0
70% CON+COMP+GF β = 1, Rmax = 16 367.6 94 237.6 16 1 0
70% CON+COMP+GF Pmax = 90, Rmax = 16 164.2 90 243.6 16 1 0

Table 5.1: Results of the numerical experiments for 36 × 21 planning units and 3 conservation
features for the real-world instance of Fernando de Noronha. A summary of the characteristics of the
reserve solutions is provided: computation time in seconds, reserve perimeter, total cost, radius of the reserve
graph, number of connected components, number of gaps. Targets are the same for the three conservation
features (50% or 70%). N=nominal, COMP=compactness, CON=connectivity, GF=gap-free.

(a) Reserve solution of the nominal problem with
β = 0.

(b) Reserve solution of the nominal problem with
β = 1.

(c) Reserve solution of the problem PCON+COMP

with β = 1.
(d) Reserve solution of the problem
PCON+GF+COMP with Pmax = 80 and
Rmax = 14.

Figure 5.2: Reserve solutions of the real-world instance of Fernando de Noronha for several
models. Conservation features targets are all set to 50%. Green planning units represent the reserve selection.
Grey planning units are a priori excluded. N=nominal, COMP=compactness, CON=connectivity, GF=gap-
free.
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(a) Reserve solution of the nominal problem with
β = 0.

(b) Reserve solution of the nominal problem with
β = 1.

(c) Reserve solution of the problem
PCON+GF+COMP with β = 1.

(d) Reserve solution of the problem
PCON+GF+COMP with Pmax = 90 and
Rmax = 16.

Figure 5.3: Reserve solutions of the real-world instance of Fernando de Noronha for several
models. Conservation features targets are all set to 70%. Green planning units represent the reserve selection.
Grey planning units are a priori excluded. N=nominal, COMP=compactness, CON=connectivity, GF=gap-
free.
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5.3.2 Feasibility assessment on generated instances

In this section, we tested our models for several generated instances to have a more accu-
rate idea of the computation time needed and the extra-cost involved to obtain connected and
gap-free reserve solutions. We used a systematic way of building scenarios with a user-defined
complexity for our reserve site selection optimisation problems. More details can be found in
Section 1.5.2. The generation of instances is different from what is done in (Billionnet 2016).
We wanted more realistic instances, closer to a real dataset, and more likely to have gaps when
targets are high. Table 5.2 and Table 5.3 provides the characteristics of the reserve solutions
computed using the models described in Section 5.2 for generated instances of respectively 300
and 500 planning units.

In any case, the nominal problems PN and PN+COMP are solved very fast, mostly under 1
second and 3.4 seconds at worst. However, the reserve solutions with β = 0 are very scattered,
with many gaps, for all instances: 23.6 connected components and 11.0 gaps in average for 300
planning units; 41.5 connected components and 21.2 gaps in average for 500 planning units.
The reserve solutions with β = 1 are less scattered, but still have several connected components
and gaps in general: 2.7 connected components and 2.2 gaps in average for 300 planning units;
5.2 connected components and 3.4 gaps in average for 500 planning units.

The reserve solutions using our complete model PCON+GF+COMP with β = 1 expectedly provides
connected and gap-free reserves. For instances of 300 planning units, the mean computation
time is 80.0 seconds with a standard deviation of 61.4 seconds, a minimum and maximum
time of 15.8 and 229.6 seconds respectively. Obtaining a connected and gap-free reserve so-
lution involves a mean relative extra cost of 2.7% (standard deviation of 1.8%, maximum of
5.7%) with respect to the state-of-the-art model with the same value of β. When we match
the compactness demand, i.e. we constrain the perimeter to remain below the perimeter of the
state-of-the-art reserve solution, the mean relative extra cost drops to 0.7% (standard deviation
of 0.4%, maximum of 1.3%). The mean computation time for this model is 150.6 seconds. Once
the reserve was compact, connected and gap-free, we evaluated the impact of an increase of
compactness using the Rmax constraints. To do so, we set Rmax to the reserve radius obtained
solving PCON+GF+COMP with β = 1 minus 1 so the constraints were activated. For instances
of 300 planning units, the mean computation time is 182.3 seconds with a standard deviation
of 280.4 seconds, a minimum and maximum time of 21.1 and 928.7 seconds. The inclusion of
Rmax constraints was sometimes associated with a decrease in computation time, sometimes
with an increase, depending on the instances considered.

For instances of 500 planning units, the proof of optimality was not provided every time with
a time limit set to 1000 seconds. Though, the incumbent solution returned is still compact,
connected and gap-free. In the following, for instances reaching the time limit, we will con-
sider a solving time of 1000 seconds and the characteristics of the incumbent suboptimal re-
serve solution. The mean computation time of the reserve solutions using our complete model
PCON+GF+COMP with β = 1 is 480.0 seconds with a standard deviation of 382.8 seconds, a
minimum and maximum time of 50.8 and 1000 seconds respectively. Obtaining a connected
and gap-free reserve solution involves a mean relative extra cost of 3.4% (standard deviation of
1.7%, maximum of 6.9%) with respect to the state-of-the-art model with the same value of β.
When we match the compactness demand, i.e. we constrain the perimeter to remain below the
perimeter of the state-of-the-art reserve solution, the mean relative extra cost drops to 0.9%
(standard deviation of 0.4%, maximum of 1.6%). For instances of 500 planning units, when a
maximum radius was imposed to the reserve, it led to more computational difficulties. Unlike
instances of 300 planning units, the addition of the Rmax constraints systematically involves a
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greater computation time or an incumbent solution further from optimality than without Rmax.
There are even 3 instances where no solutions are found within the time limit.

5.3.3 Assessment of the compactness models

In this section, we aim to assess the difference of computation time needed to obtain a compact
solution whether using constrains associated to the use of β or Pmax. To do so, we first solved
PCON+GF+COMP with β = 1. The perimeter of the reserve solution obtained was then used for
Pmax when we solved PCON+GF+COMP . We expectedly obtained the same solutions between
the two models. For instances of 300 planning units, the mean computation time was 80.0
seconds for PCON+GF+COMP with β and 74.8 seconds with PCON+GF+COMP with Pmax. Then,
Table 5.4 does not show a systematic trend between the two models since it sometimes took
more time, sometimes less time, depending on the instance. However, for instances of 500
planning units, Table 5.5 shows a clear trend: models with constraints associated to the use
of β are solved faster than the models using the Pmax constraint for every instance. When the
time limit was reached, the model using the constraints associated with β provided a solution
closer to optimality than the model with the Pmax constraint.
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Instance Model Parameters Time Perimeter Cost Radius Components Gaps
1 N β = 0 0.1 272 460.1 - 21 10
1 N+COMP β = 1 0.4 106 544.3 - 2 3
1 CON+GF+COMP β = 1 15.8 76 575.5 12 1 0
1 CON+GF+COMP Pmax = 106 245.6 106 550.2 13 1 0
1 CON+GF+COMP β = 1, Rmax = 11 24.9 82 571.4 11 1 0
2 N β = 0 0.2 286 480.9 - 25 14
2 N+COMP β = 1 0.4 96 580.2 - 1 3
2 CON+GF+COMP β = 1 80.1 86 592.5 13 1 0
2 CON+GF+COMP Pmax = 96 143.5 96 582.7 14 1 0
2 CON+GF+COMP β = 1, Rmax = 12 30.9 88 590.9 12 1 0
3 N β = 0 0.1 296 466.4 - 26 9
3 N+COMP β = 1 0.2 112 541.2 - 2 4
3 CON+GF+COMP β = 1 124.0 102 554.9 12 1 0
3 CON+GF+COMP Pmax = 112 229.9 112 546.3 12 1 0
3 CON+GF+COMP β = 1, Rmax = 11 21.1 86 572.3 11 1 0
7 N β = 0 0.1 276 454.0 - 19 4
7 N+COMP β = 1 0.1 142 527.9 - 4 1
7 CON+GF+COMP β = 1 40.2 132 540.4 15 1 0
7 CON+GF+COMP Pmax = 142 10.1 142 530.9 16 1 0
7 CON+GF+COMP β = 1, Rmax = 14 101.3 130 543.0 14 1 0
12 N β = 0 0.1 284 491.9 - 23 14
12 N β = 1 0.1 112 572.1 - 2 2
12 CON+GF+COMP β = 1 19.8 110 575.7 17 1 0
12 CON+GF+COMP Pmax = 112 44.3 112 574.4 17 1 0
12 CON+GF+COMP β = 1, Rmax = 16 345.5 106 580.0 16 1 0
13 N β = 0 0.4 268 464.9 - 21 10
13 N+COMP β = 1 0.5 106 555.0 - 1 2
13 CON+GF+COMP β = 1 69.6 106 555.9 12 1 0
13 CON+GF+COMP Pmax = 106 41.2 106 555.9 12 1 0
13 CON+GF+COMP β = 1, Rmax = 11 55.3 92 570.9 11 1 0
14 N β = 0 0.1 286 452.7 - 30 15
14 N+COMP β = 1 0.2 120 524.3 - 2 4
14 CON+GF+COMP β = 1 65.9 102 548.2 12 1 0
14 CON+GF+COMP Pmax = 120 307.2 120 531.2 12 1 0
14 CON+GF+COMP β = 1, Rmax = 11 104.8 112 539.8 11 1 0
15 N β = 0 0.2 302 490.4 - 25 14
15 N+COMP β = 1 0.2 148 565.4 - 6 1
15 CON+GF+COMP β = 1 76.5 136 582.4 18 1 0
15 CON+GF+COMP Pmax = 148 78.2 148 571.1 19 1 0
15 CON+GF+COMP β = 1, Rmax = 17 928.7 138 582.1 16 1 0
16 N β = 0 0.1 280 472.3 - 21 5
16 N+COMP β = 1 0.7 124 567.6 - 4 0
16 CON+GF+COMP β = 1 229.6 120 573.8 17 1 0
16 CON+GF+COMP Pmax = 124 191.6 124 569.9 16 1 0
16 CON+GF+COMP β = 1, Rmax = 16 175.3 118 575.8 16 1 0
17 N β = 0 0.0 274 418.2 - 25 15
17 N+COMP β = 1 1.0 114 477.8 - 3 2
17 CON+GF+COMP β = 1 78.7 94 499.4 12 1 0
17 CON+GF+COMP Pmax = 114 214.0 114 483.3 14 1 0
17 CON+GF+COMP β = 1, Rmax = 11 35.3 84 515.6 11 1 0

Table 5.2: Results for 10 generated instances of 20×15 planning units and 3 conservation features.
A summary of the characteristics of the reserve solutions is provided: computation time in seconds, reserve
perimeter, total cost, radius of the reserve graph, number of connected components, number of gaps. Conserva-
tion features targets are all set to 50%. N=nominal, COMP=compactness, CON=connectivity, GF=gap-free.
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Instance Model Parameters Time Perimeter Cost Radius Components Gaps
4 N β = 0 0.1 524 772.6 - 38 28
4 N+COMP β = 1 0.4 248 925.0 - 3 7
4 CON+GF+COMP β = 1 139.0 214 961.8 21 1 0
4 CON+GF+COMP Pmax = 248 993.1 248 930.8 22 1 0
4 CON+GF+COMP β = 1, Rmax = 20 284.3 204 973.4 20 1 0
5 N β = 0 0.2 474 663.6 - 39 17
5 N+COMP β = 1 0.8 224 778.9 - 7 4
5 CON+GF+COMP β = 1 TL[0.5%] 222 792.8 21 1 0
5 CON+GF+COMP Pmax = 224 TL[0.7%] 224 791.6 21 1 0
5 CON+GF+COMP β = 1, Rmax = 20 TL[Infeasible] - - - - -
6 N β = 0 0.6 494 742.1 - 43 16
6 N+COMP β = 1 3.4 248 882.8 - 6 2
6 CON+GF+COMP β = 1 577.4 224 910.8 23 1 0
6 CON+GF+COMP Pmax = 248 969.8 248 889.1 23 1 0
6 CON+GF+COMP β = 1, Rmax = 22 TL[Infeasible] - - - 1 0
8 N β = 0 0.1 476 749.8 - 43 20
8 N+COMP β = 1 0.2 196 880.8 - 5 3
8 CON+GF+COMP β = 1 50.8 164 915.9 21 1 0
8 CON+GF+COMP Pmax = 196 105.1 196 886.4 21 1 0
8 CON+GF+COMP β = 1, Rmax = 20 179.7 166 914.1 20 1 0
9 N β = 0 0.1 530 806.8 - 43 25
9 N+COMP β = 1 1.4 228 957.5 - 3 4
9 CON+GF+COMP β = 1 542.6 192 999.5 21 1 0
9 CON+GF+COMP Pmax = 228 717.2 228 965.1 24 1 0
9 CON+GF+COMP β = 1, Rmax = 20 TL[Infeasible] - - - 1 0
10 N β = 0 0.4 460 773.3 - 47 27
10 N+COMP β = 1 2.6 194 912.6 - 3 3
10 CON+GF+COMP β = 1 97.6 184 927.8 18 1 0
10 CON+GF+COMP Pmax = 194 TL[0.1%] 194 919.1 20 1 0
10 CON+GF+COMP β = 1, Rmax = 17 263.2 174 938.4 17 1 0
18 N β = 0 0.2 494 771.8 - 41 17
18 N+COMP β = 1 0.6 230 913.4 - 8 5
18 CON+GF+COMP β = 1 TL[0.4%] 178 976.6 23 1 0
18 CON+GF+COMP Pmax = 230 TL[0.5%] 230 927.0 22 1 0
18 CON+GF+COMP β = 1, Rmax = 22 TL[4.1%] 222 976.8 21 1 0
19 N β = 0 0.1 460 807.9 - 30 15
19 N+COMP β = 1 0.5 210 940.9 - 6 2
19 CON+GF+COMP β = 1 109.2 202 956.2 23 1 0
19 CON+GF+COMP Pmax = 210 TL[0.3%] 210 951.5 22 1 0
19 CON+GF+COMP β = 1, Rmax = 22 435.2 202 956.9 19 1 0
20 N β = 0 0.1 506 800.6 - 50 26
20 N+COMP β = 1 1.3 198 950.4 - 6 2
20 CON+GF+COMP β = 1 895.1 184 969.5 20 1 0
20 CON+GF+COMP Pmax = 198 TL[0.3%] 198 957.9 24 1 0
20 CON+GF+COMP β = 1, Rmax = 19 TL[0.7%] 174 984.2 19 1 0
21 N β = 0 0.3 470 736.0 - 41 21
21 N+COMP β = 1 0.6 198 870.2 - 5 2
21 CON+GF+COMP β = 1 388.3 166 905.8 18 1 0
21 CON+GF+COMP Pmax = 198 616.7 198 875.6 19 1 0
21 CON+GF+COMP β = 1, Rmax = 17 TL[0.2%] 162 911.4 17 1 0

Table 5.3: Results for 10 instances of 25×20 planning units and 3 conservation features. A summary
of the characteristics of the reserve solutions is provided: computation time in seconds, reserve perimeter, total
cost, radius of the reserve graph, number of connected components, number of gaps. Conservation features
targets are all set to 50%. N=nominal, COMP=compactness, CON=connectivity, GF=gap-free. If the time
limit is reached (TL=1000s), the optimality gap of the incumbent solution is given within brackets.
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Instance Model Parameters Time Perimeter Cost Radius Components Gaps
1 CON+GF+COMP β = 1 15.8 76 575.5 12 1 0
1 CON+GF+COMP Pmax = 76 12.0 76 575.5 12 1 0
2 CON+GF+COMP β = 1 80.1 86 592.5 13 1 0
2 CON+GF+COMP Pmax = 86 83.6 86 592.5 13 1 0
3 CON+GF+COMP β = 1 124.0 102 554.9 12 1 0
3 CON+GF+COMP Pmax = 102 47.4 102 554.9 12 1 0
7 CON+GF+COMP β = 1 40.2 132 540.4 15 1 0
7 CON+GF+COMP Pmax = 132 35.8 132 540.4 15 1 0
12 CON+GF+COMP β = 1 19.8 110 575.7 17 1 0
12 CON+GF+COMP Pmax = 110 118.0 110 575.7 17 1 0
13 CON+GF+COMP β = 1 69.6 106 555.9 12 1 0
13 CON+GF+COMP Pmax = 106 35.9 106 555.9 12 1 0
14 CON+GF+COMP β = 1 65.9 102 548.2 12 1 0
14 CON+GF+COMP Pmax = 102 108.6 102 548.2 12 1 0
15 CON+GF+COMP β = 1 76.5 136 582.4 18 1 0
15 CON+GF+COMP Pmax = 136 171.6 136 582.4 18 1 0
16 CON+GF+COMP β = 1 229.6 120 573.8 17 1 0
16 CON+GF+COMP Pmax = 120 98.5 120 573.8 17 1 0
17 CON+GF+COMP β = 1 78.7 94 499.4 12 1 0
17 CON+GF+COMP Pmax = 94 36.3 94 499.4 12 1 0

Table 5.4: Assessment of the computation time needed to enforce compactness whether using β or
Pmax constraints for 10 instances of 20×15 planning units and 3 conservation features. A summary
of the characteristics of the reserve solutions is provided: computation time in seconds, reserve perimeter, total
cost, radius of the reserve graph, number of connected components, number of gaps. Conservation features
targets are all set to 50%.

115 / 138



Instance Model Parameters Time Perimeter Cost Radius Components Gaps
4 CON+GF+COMP β = 1 139.0 214 961.8 21 1 0
4 CON+GF+COMP Pmax = 214 438.9 214 961.8 21 1 0
5 CON+GF+COMP β = 1 TL[0.5%] 222 792.8 21 1 0
5 CON+GF+COMP Pmax = 222 TL[1.0%] 222 794.1 21 1 0
6 CON+GF+COMP β = 1 577.4 224 910.8 23 1 0
6 CON+GF+COMP Pmax = 224 630.1 224 910.8 23 1 0
8 CON+GF+COMP β = 1 50.8 164 915.9 21 1 0
8 CON+GF+COMP Pmax = 164 109.3 164 915.9 21 1 0
9 CON+GF+COMP β = 1 542.6 192 999.5 21 1 0
9 CON+GF+COMP Pmax = 192 717.2 192 999.5 21 1 0
10 CON+GF+COMP β = 1 97.6 184 927.8 18 1 0
10 CON+GF+COMP Pmax = 184 305.8 184 927.8 18 1 0
18 CON+GF+COMP β = 1 TL[0.4%] 178 976.6 23 1 0
18 CON+GF+COMP Pmax = 178 TL[0.1%] 178 974.8 23 1 0
19 CON+GF+COMP β = 1 109.2 202 956.2 23 1 0
19 CON+GF+COMP Pmax = 202 130.7 202 956.2 23 1 0
20 CON+GF+COMP β = 1 895.1 184 969.5 20 1 0
20 CON+GF+COMP Pmax = 184 930.6 184 969.5 20 1 0
21 CON+GF+COMP β = 1 388.3 166 905.8 18 1 0
21 CON+GF+COMP Pmax = 166 727.4 166 905.8 18 1 0

Table 5.5: Assessment of the computation time needed to enforce compactness whether using β or
Pmax constraints for 10 instances of 25×20 planning units and 3 conservation features.A summary
of the characteristics of the reserve solutions is provided: computation time in seconds, reserve perimeter, total
cost, radius of the reserve graph, number of connected components, number of gaps. Conservation features
targets are all set to 50%. If the time limit is reached (TL=1000s), the optimality gap of the incumbent solution
is given within brackets.
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5.4 Discussion

In this work, we proposed a global integer linear program that produces compact, connected and
gap-free reserves. We used a multicommodity flow model to enforce the connectivity of both
the reserve and the non-reserve areas, resulting in connected and gap-free reserve solutions. We
chose a multicommodity flow model rather than a single flow model in order to express the flow
constraints as lazy constraints. Therefore, using Julia callbacks functions, a lot of constraints
were not activated and improved the solving time. Using hard constraints instead took much
more time or even made it impossible to find solutions within the time limit of 1000s in most
cases. We also provided a reduction of the problem, benefiting from the rectangular structure
of the grid. Indeed, due to the shape of the graph inferred from the rectangular grid, we ap-
plied a "chessboard" to separate the nodes into two sets. According to their position on the
chessboard, a node was labelled black or white and belonged to the corresponding set. Then,
we applied the multicommodity flow model only to the black nodes to decrease the size of the
problem without any loss. We illustrated on the real-world instance of Fernando de Noronha
that our model could already be used in practice. We numerically assessed the generality of
the proposed approaches on several generated instances by deriving average characteristics.
Our numerical experiments performed for generated instances showed that our model can be
useful for instances composed of 300 to 500 planning units. We compared the solutions of our
model with state-of-the-art model both in computation time and solution quality with respect
to spatial requirements. The code used for this work is free, open and available. The model we
proposed is highly customizable regarding the way we enforce compactness. A good setting of
the β multiplier, the maximum perimeter or the maximum radius allowed to finely shape the
reserve spatial attributes.

Instead of removing reserve solutions with gaps from the search space (Billionnet 2016), we
used lazy flow constraints to a priori build a connected non-reserve. We did in this work what
was advocated in the discussion of (Billionnet 2016) by including a priori a model to prevent
the formation of gaps within reserves. We also differ from (Billionnet 2016) because we used
a multicommodity flow model and lazy constraints to enforce connectivity in the minimum set
problem. Using a multicommodity flow in reserve site selection problems is not new and was
already mentioned in (Billionnet 2021) but it is a different approach compared to (Billionnet
2012; Billionnet 2016; Williams 2006).

The main limitation of our work is the limited size of instances that can be solved with our
model in a reasonable time. The optimisation problem we proposed is still challenging compu-
tationally. This was expected because solving models that consider spatial constraints tends to
be more computationally demanding in general, especially as the problem size increases (Wang
et al. 2018). Although the size of the instances considered is of the same order of magnitude as
what is usually done in a similar literature, these are still small instances compared to appli-
cations that did not focus on meeting spatial requirements. On the other hand, this could be
mitigated by the fact that we can potentially provide solutions without the optimality proof.
Our results showed that obtaining a reserve that is compact, connected and gap-free only in-
volved a small increase of the site selection cost with respect to state-of-the-art models used in
decision support tools such as Marxan and PrioritizR. The only price to pay is a greater compu-
tation time. Therefore, obtaining spatially coherent reserves is a more computational challenge
rather than a question of limited resources with respect to the considered cost. Since optimal
solutions are not so expensive relatively to state-of-the-art models, a compact, connected and
gap-free reserve solution that is slightly suboptimal could be interesting. In addition, taking
a suboptimal reserve solution is often tolerated in the conservation literature, especially when
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metaheuristics are used to solve the problem.

The wide spreading and "cobweb" aspect of reserves within the study area is a common feature
in models enforcing connectivity of the reserve (Önal and Briers 2006; Billionnet 2012). We
mitigated this pitfall inherent to connectivity models by constraining the reserve radius and
perimeter to remain below a predefined threshold. Our results also showed that including com-
pactness constraints with the β multiplier and the associated constraints or the Pmax constraint
help the model to find a solution faster. In order to keep a single objective approach, it may
be better practice to constrain a maximum perimeter of the reserve instead of using a penalty
in the objective, but our results (cf. Section 5.3.3) illustrated that it makes solving slower for
500 planning units instances.

In this work, we did not address the problem of representing conservation features in two
distinct reserve components, which is sometimes a desirable characteristic to be robust to
catastrophic events (e.g. epidemic, fire). Imposing a minimum distance between two selected
sites containing the same conservation feature (Williams 2006) was the method to achieve such
property. It could improve the model to include such constraint, which can occasion future
developments. Another feature we did not account for in this work is the potential different
nature of locked-out planning units: some can be crossed, while others cannot. For example, in
marine reserve design, a planning unit made of land is locked-out and cannot be crossed. On
the other hand, a locked-out planning unit located in the harbour can be crossed. The main
modelling implication of this difference is that a path ensuring connectivity in flow models
cannot cross every locked-out planning units. This is not included in our current models and
could occasion future developments.
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Chapter 6

Discussion
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6.1 Synthesis of the developments

The thesis work addressed the properties of decision support tools commonly used in marine
spatial planning negotiations, in particular those implemented to optimally identify the loca-
tion of conservation areas (e.g. marine protected areas). We first (Chapter 1) provided an
overview of existing tools, the reasons for their coexistence, their formalism and functioning,
and their respective strengths and weaknesses. Having established that the approximate solv-
ing optimisation tools (metaheuristics) had a mainly an historical raison d’être (to overcome
computational problems that have now disappeared), we chose to focus on the exact solving
optimisation tools to develop a certain number of their functionalities that were lacking up
to now. We first proposed algorithms that allow to produce a diverse set of reserve solutions.
While metaheuristic algorithms provide by construction a random sample of the solution space,
without any indication of the distance to the optimum, nor any control on the real diversity
of these solutions (which implies to produce many of them), we have proposed (Chapter 2) al-
gorithms allowing to produce alternative solutions to the optimum, while explicitly controlling
their distance to the optimum and maximizing the difference between these solutions. Our al-
gorithms therefore allow the construction of a parsimonious portfolio of solutions (few solutions
are needed since they are constructed to be truly different), whose relaxation from what would
constitute a mathematically optimal solution can be explicitly controlled. Another important
area of development seemed to us to be the consideration of uncertainty in this type of model.
In existing applications, observational data are taken for absolute truth, whereas it is known,
for example, that each instrument has a measurement variance. Similarly, the effects of sea-
sonal variation, for example, although often known, are rarely taken into account in these static
models. We have therefore proposed (Chapter 3) algorithms that make it possible to explicitly
introduce the existing knowledge on the different types of uncertainty affecting the input data
and to construct reserve solutions that are robust to these variations around the observation
data. Finally, we were able to identify that a mathematically optimal solution is often not
necessarily practical to manage in its geometry: problems of discontinuity, non-compactness,
enclaves can appear in the solutions proposed by the models, and are generally removed in the
real world by an a posteriori simplification of the geometry of the reserve. In Chapter 4, we
proposed efficient and explicit numerical solutions to avoid the appearance of these phenomena
if this is the wish of the stakeholders, thus avoiding hazardous and a posteriori simplifications
of the reserve’s shape.

6.2 Findings and limitations

In order to evaluate the advances provided by this thesis work, we perform the following thought
exercise: imagine a working group whose mission is to identify reserve areas. Let us assume
that this group is composed of end users of reserve selection tools with limited numerical exper-
tise. These users could be fishers, tourism companies, non-governmental organisations, citizens,
social scientists, policymakers, etc. Without knowing the content of this thesis, this working
group, after some research, would most probably have turned to the best known tool, i.e.
Marxan. After having studied the voluminous documentation of this tool, they would probably
have followed the paid training offered by the Marxan team in order to be able to really use the
tool on their real case. After this training and after a few weeks, they would surely manage to
launch Marxan. After an empirical adjustment of the important parameters of Marxan (namely
the “Specie Penalty Factor”, the “Boundary Length Modifier” and the number of desired solu-
tions), they would have finally obtained a set of reserve solutions for the considered scenario.
The full parameterisation of the simulated annealing algorithm requires a deep understanding
of the tool, and would probably be left to its default parameterisation. Once they have obtained
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the set of reserve solutions, they would have difficulty extracting useful information from this
solution set and would surely be overwhelmed by the statistical analyses to be conducted. In
particular, they may not be aware that within this solution set, it is not guaranteed that all
solutions satisfy the targets. Thus, in the best case scenario, they would have to set up sorting
and selection procedures a posteriori. In any case, they would have great difficulty in grasping
the numerical issues involved in using such methods. In order to have a better understanding
of these issues, at least empirically, they would surely have had to conduct experiments similar
to those in Chapter 2 to see the influence of certain parameters/choices on their case study.
As a conclusion of this thought experiment, it is very likely that this working group would
have relied on blind belief in the tool, which can lead to nonsense and misinterpretations. This
is confirmed by published results containing errors and our experience in using this tool. We
think in particular of the edge effect involved by the use of the penalty of the perimeter in the
objective function. This undesirable numerical effect seems to be a common mistake even in
published literature (Delavenne et al. 2012; Beyer et al. 2016; Magris et al. 2021).

The same working group, in the light of this work, would understand that the use of metaheuris-
tic algorithms is not necessarily the only option and that this choice implies strong numerical
issues. The use of exact optimisation methods instead is surely preferable. Although the prob-
lem to be solved is the same, the formalism of metaheuristics does not allow one to immediately
grasp what the algorithm actually does. It is often too complex, and this is even more true for
an end user with limited numerical expertise. Paradoxically, these tools are often implemented
by users who do not have the technical expertise to understand numerical issues, as the survey
in (Ardron et al. 2010) attests. On the other hand, understanding what an optimal solution is
and what it corresponds to is extremely simple and straightforward: it is the least expensive
solution that meets the predefined targets. For metaheuristics, it is much less clear: there
are several solutions (the user sets the number of solutions) which may be cheap (the qual-
ity of the solutions, i.e. the difference from the minimum cost, is not known nor controlled)
and which may meet the predefined targets (depending on the setting of the "Specie Penalty
Factor" parameter, it is possible to have a large number of solutions which do not meet the
targets). Exact optimisation methods are easier to learn, equally fast in computation time, and
leave less room for empirical parameter settings whose meaning is not intuitive. Second, exact
optimisation provides a single solution, which makes it easier to analyse and opens the door to
multiple scenarios rather than multiple solutions to the same scenario.

And if one wishes to generate a set of distinct solutions, this is still possible in the light of
Chapter 3. Moreover, in the case where the data contain uncertainty, we have provided methods
in Chapter 4 which allow, without changing the theoretical framework, to explicitly specify this
uncertainty and to compute reserve solutions which take it into account. Similarly, if we want
to enforce our solutions to be spatially coherent, the models presented in Chapter 5 allow this.
Figure 6.1 and Figure 6.2 provide a graphical summary of both the state-of-the-art models and
the algorithmic developments achieved in this thesis. This thesis proposes tools using exact
optimisation methods that today have no reason not to be used in comparison to metaheuristic
algorithms as used in Marxan. A major limitation of the proposed methods compared to
Marxan is that they are not yet available as an off-the-shelf tool. In order to overcome this
limitation, it would be desirable to disseminate our developments by implementing them in
existing tools such as PrioritizR. But before this can be possible, the numerical evaluation of
the methods is necessarily missing. This numerical evaluation would consist of solving the
model considered on many instances in order to draw the numerical limits of these models.
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Figure 6.1: Graphical summary of the state-of-the-art tools used for reserve site selection. Marxan
deploys a metaheuristic algorithm to build a user-defined number of reserve solutions that need a statistical
post-processing. PrioritizR deploys exact optimisation methods to find the least-cost solution to the reserve site
selection problem.
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Figure 6.2: Graphical summary of the developments of the thesis. Chapter 3 provides exact optimi-
sation methods to derive a diverse set of near-optimal solutions that are dissimilar between them and with a
predefined degradation of the objective function value. Chapter 4 provides two approaches using exact optimi-
sation to deal with an uncertainty that affects non-binary data of the reserve site selection problem. Chapter 5
provides exact optimisation methods that build compact, connected and gap-free reserves. The associated Julia
code is open, free and available at https://github.com/AdrienBrunel. MILP = mixed integer linear program-
ming.
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6.3 Perspectives
In this thesis, we developed ideas and methods for the problem of reserve site selection. We
could consider that solving the reserve site selection problem is the same as allocating the
conservation human use. We could have done the same with another use and this is even the
more general purpose of MSP. Indeed, the ultimate goal of marine spatial planning is to provide
a spatial zoning to say which human activities can exist in which areas. For example, instead
of selecting reserve sites, we can select locations for offshore wind turbines. Our methods can
be a thinking basis for a more general spatial zoning, not only focused on conservation.

6.3.1 A different example of human use allocation: site selection of
offshore wind farms

The multiplication of offshore wind turbines naturally raised the question of finding the most
relevant areas for this activity at sea. Finding the optimal collection of planning units to deploy
an offshore wind turbine is mathematically the same problem as finding the optimal collection
of planning units to include within a reserve. In collaboration with Créocéan, we did the exer-
cise to show how we can build an optimisation problem for this different need. Therefore, we
proposed Créocéan to address the offshore wind turbine location problem through an integer
programming framework. The only changing elements are the objective function and the con-
straints that must be adapted for the offshore wind turbine locations problem.

This problem is usually addressed through a multi-criteria decision-making (MCDM) formalism,
since the feasibility and quality of sites are evaluated according to several criteria (Van Haaren
and Fthenakis 2011; Kim et al. 2016; Rodríguez-Rodríguez et al. 2016). The choice of sites is
mainly based on ad-hoc methods or heuristics. While few works exist (Mytilinou and Kolios
2017; Mytilinou et al. 2018), the optimisation formalism for the problem of wind farms site
selection is not canonical yet. The fact that optimisation is not the main conceptual framework
can be justified in the sense that many feasibility constraints does not leave that much choice
for the location of wind farms. Optimisation models are sometimes used in this research area
(Salcedo-Sanz et al. 2014; Serrano González et al. 2014), yet it is usually for finding the best
wind turbine arrangement within the wind farm (known as the wind farm layout optimisation
problem).
We worked with Créocéan to provide a preliminary example of wind farms site selection using
the methods developed in this thesis. In this collaboration, the study area was discretised
using 1.2 km square pixels. This distance represents the safety distance around an offshore
wind turbine. The available data provided by Créocéan was levels of constraint represented by
an integer in {0, 1, 2, 3} and an average wind speed for every planning unit. The constraint were
of various nature (Natura 2000 areas, military zone, ocean depth, fishing areas, maritime routes,
etc.). The strongest level of constraint 3 indicated that the planning unit cannot host an offshore
wind turbine. We removed every planning unit that had a level 3 for any constraint considered,
which decrease the size of the problem. We imposed budgets tci for every constraint ci. We also
imposed a maximum number of wind turbines ne The objective we chose to maximise was the
total average wind speed v. Similarly, as in reserve site selection, we included the wind turbines
selection perimeter in the objective to favour compact selection. We proposed the following
optimisation model, inspired from reserve site selection models, and that can be adapted for
other human use allocation:

max
x∈{0,1}N

vTx− βxTB(1− x)

s.t. cTi x ≤ tci ∀i ∈ I
1Tx ≤ ne

(6.1)
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6.3.2 Toward a spatial zoning of human activities

The optimisation framework is by nature single objective, while the issues of MSP are inher-
ently multi-objective. In order to overcome this limitation of our methods, it is advised to
multiply the scenarios by changing the human activity considered to eventually confront the
solutions between scenarios. However, the multi-objective optimisation literature could shed a
new light on the reserve site selection problem (Basirati et al. 2021; Fox et al. 2019).

The literature for the spatial allocation of multiple uses is mainly based on the Marxan with
Zones tool, implementing a metaheuristic approach (Watts et al. 2009). This tool has led to
direct applications taking into account several human activities (fishing, transport, tourism,
conservation, etc.) (White et al. 2012; Agostini et al. 2015; Markantonatou et al. 2021; Jumin
et al. 2018). Taking into account ecological data and fisheries models allows an interesting
application with the designation of "no take", "limited take" and "take" zones (Metcalfe et al.
2015). In line with the objectives of MSP, a conflict index can be explicitly minimised according
to present or future conditions (Tuda et al. 2014). The outputs of metaheuristic approaches
may require heavy statistical processing (Markantonatou et al. 2021). Also, the comparison be-
tween the outputs of the decision support tools and the decisions actually taken highlights the
gap that still exists between the tools and reality (Agostini et al. 2015). The implementation
of an exact solving for a spatial allocation problem is relatively rare in the literature. Indeed,
a model solved by exact methods is developed in (Basirati et al. 2021) in order to allocate
planning units to a human activity, the other existing human activities acting as constraints.
The multi-objective optimisation model seeks to maximise the compactness of the allocation
and an overall value of interest of the considered human activity.

We propose two development perspectives:

− A global approach: we directly seek for the best allocation of all considered uses. This
approach can potentially be numerically difficult. A conceptual diagram is provided in
Figure 6.3.

− An iterative approach: based on an explicit a priori preference (e.g. fishing > conservation
> wind turbines), we successively allocate a use among the available planning units (i.e.
planning units that were not already allocated). This approach should be more accessible
numerically because it is a simplification of the global approach. A conceptual diagram
is provided in Figure 6.4.

We think reasonable to assume that we can derive indexes of socio-ecological impacts and
socio-economic gains such as:

− The socio-ecological impact ckj ∈ R of use k ∈ K if allocated to the planning unit j ∈ J .

− The socio-economic gain gkj ∈ R+ of use k ∈ K if allocated to the planning unit j ∈ J .

Let us consider M uses that seek to be deployed within a grid composed of N planning units.
Let K = [[1,M ]] and J = [[1, N ]]. Let xk ∈ {0, 1}N the decision variable associated with the
allocation of use k ∈ K. Use k ∈ K is allocated to plannning unit j ∈ J if xk

j = 1. We seek to
find the "best" allocation X =

[
x1, x2, . . . , xM

]
∈ {0, 1}N×M .

We represent the set of admissible values X k for the decision variable xk associated with the
allocation of use k ∈ K. The compatibility between every pair of uses, i.e. if two uses can
be allocated to the same planning unit, can be modelled by linear constraints. The con-
straint forbidding the allocation of more than one use within a planning unit can be expressed
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Figure 6.3: Conceptual diagram of the global approach. The allocation of uses are represented with
orange, blue, red and green planning units. These planning units are allocated based on cost and gains layers.
In this diagram, blue and red uses are considered compatible.

Figure 6.4: Conceptual diagram of the iterative approach. We assume that a preference is explicitly
expressed between uses. In this case, we first allocate the green use, then the orange use, then the blue use and
finally the ed use. In this diagram, blue and red uses are considered compatible.

∑
k∈K xk

j ≤ 1 and this ∀j ∈ J . Let us imagine that two activities k1 et k2 can be allocated in
the same planning units, we can then write

∑
k∈K−{k1} x

k
j ≤ 1 et

∑
k∈K−{k2} x

k
j ≤ 1.

Regarding the models, we can express an objective that maximises the total gain of the allo-
cation. The objective is then to maximise

∑
k∈K ωk

∑
j∈J g

k
j x

k
j . The corresponding model can

be found in Equation (6.2). This formulation assume that the gains involved by the allocation
of uses will contribute to a common total gain represented with a weighted sum. If we change
our perspective, we could also seek to the allocation of uses that minimises the socio-ecological
impacts. The corresponding model can be found in Equation (6.3). One can imagine putting
negative ckj coefficients to represent the positive impact of a reserve, for instance.

A gain-oriented approach:


max

x1,...,xM

∑
k∈K

ωk

∑
j∈J

gkj x
k
j

s.t. xk ∈ X k ∀k ∈ K∑
k∈K

xk
j ≤ 1 ∀j ∈ J

(6.2)
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An impact-oriented approach:

min
x1,...,xM

∑
k∈K

∑
j∈J

ckjx
k
j

s.t. xk ∈ X k ∀k ∈ K∑
k∈K

xk
j ≤ 1 ∀j ∈ J∑

j∈J
gkj x

k
j ≥ tk ∀k ∈ K

(6.3)

In an iterative gain-oriented approach, and if we name x̂1, . . . , x̂k−1 the allocations of uses
computed the iterations before, we have at iteration k ∈ K the following optimisation problem:

max
xk

∑
j∈J

gkj x
k
j

s.t. xk ∈ X k ∀k ∈ K
xk
j ≤ 1− x̂l

j ∀l ∈ {1, 2, . . . , k − 1}
(6.4)

6.4 Ethical positioning
Considering marine space as an available and allocable resource is a strong ideological position
in itself. The ideas that support sustainable development (and therefore MSP) are derived
from the conservationist environmental ethics of Gifford Pinchot. However, we have seen that
this position is at the extreme of a continuum of environmental ethics and that other paths
are possible. Choosing MSP means accepting the idea of a possible sustainable development
because there is no possibility in these tools to question human activities a priori. The "do
nothing" scenario can be the most favourable scenario, especially when the knowledge around a
study area is patchy. However, this scenario is not possible with the tools we are dealing with,
since an activity is necessarily allocated to a space as soon as these tools are used. While the
consequences on ecosystems are sometimes irreversible, the development of human activities
continues to grow, as attested by the attractiveness of the blue economy. This is consistent
with our economic models since they are based on a growth obligation. Nature reserves must
not become an artefact to justify the constant and increasing exploitation of the environment.
The advent of conservation policies should not be a signal that the solution to biodiversity loss
has been identified but that the limits have been reached and that the only barrier to mitigate
global change is to create areas without human pressure. The debate around the effectiveness
of these zones can remain but it must be concomitant with that of the possibility of prohibiting
the development of human activities for the sake of ecosystems.

All of this thesis work has been centred around the problem of reserve selection, but the final
issue is indeed political and social. Although reserve selection tools only address a fraction of
the MSP problem, we have been able to see the numerical issues that can exist. Thus, the
proposed methods can be seen as providing technical improvements leading to better decision
making. But this work as a whole allows us to increase transparency in the decision-making
process, to clarify grey areas, to make choices more explicit, to simplify and make more in-
tuitive the understanding of how these tools work. Indeed, more transparency means more
equity in a discussion that brings together actors with heterogeneous levels of power in a MSP
process. Overall, whether it is a question of constructing a set of truly different solutions,
taking into account uncertainty or the spatial attributes of the reserves, we have been able to
show that our needs can be explicitly taken into account in exact and therefore transparent
integer optimisation models. Transparency leads to more fairness in negotiations and tends to
reduce epistemic injustice, more specifically the hermeneutical injustice (Fricker 2007; McKin-
non 2016). Knowledge, intentionally or unintentionally, is unevenly distributed and this leads
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to powers imbalance: we speak of hermeneutical injustice. Those who lack resources to produce
and access knowledge will be disadvantaged in a situation where this knowledge is involved, e.g.
in MSP negotiations. Bringing more transparency is bringing knowledge closer to actors that
can be victim of this epistemic injustice. It is therefore in the hope of rebalancing discussions,
giving more control and understanding to end-users, regardless of their numerical expertise,
and thus increasing the chances of practical implementation that this work makes sense.

The proposed approach is mathematical, whereas the issues are social and political. Mathe-
matics do not make disappear power issues. They are crossed by these. Mathematical tools can
even amplify the power imbalance between stakeholders (Queffelec et al. 2021). For example,
it is reasonable to imagine that those who are able to understand or even produce these tools
will have an important advantage in negotiations. The solution is not more "objective" and
"rational" because it is derived from a mathematical tool. Despite our efforts to make the
methods transparent and more equitable, these tools cannot be completely immune to these
power relations. At best, we can only make these issues transparent, force decisions to be
arguable, understandable by all so that the decisions taken tend to be more equitable.

Reserve selection tools could themselves be questioned, since these mathematical tools are often
in the hands of users who rarely have the expertise to detect numerical problems (such as those
induced by high "Boundary Length Modifier" values in Marxan, observed in the published
literature). Therefore, there may be a temptation to place blind trust in tools that promise
mathematical truth. But, an optimal solution is completely dependent on the data that shapes
it as well as the formulation from which it is derived. As shown in Chapter 2, the solution of
the "MaxCov" formulation is not the same as the solution of the "Minset" formulation. And
we have only shown two formulations, but others exist.
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