
HAL Id: tel-04067436
https://theses.hal.science/tel-04067436

Submitted on 13 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Knowledge compilation for nondeterministic action
languages
Sergej Scheck

To cite this version:
Sergej Scheck. Knowledge compilation for nondeterministic action languages. Informatique et langage
[cs.CL]. Normandie Université, 2022. Français. �NNT : 2022NORMC265�. �tel-04067436�

https://theses.hal.science/tel-04067436
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le diplôme de doctorat

Spécialité INFORMATIQUE

Préparée au sein de l'Université de Caen Normandie

Κnοwledge Cοmpilatiοn fοr Νοndeterministic Αctiοn Languages

Présentée et soutenue par
SERGEJ SCHECK

Thèse soutenue le 12/12/2022
devant le jury composé de

M. STEFAN MENGEL Chargé de recherche HDR, CNRS Rapporteur du jury

M. BERNHARD NEBEL Professeur des universités, UNIVERSITE FREIBURG ALLEMAGNE Rapporteur du jury

MME HÉLÈNE FARGIER Directeur de recherche au CNRS, Institut de Recherche en
Informatique de Toulouse Membre du jury

M. PETER JONSSON Professeur des universités, Université de Linköping Membre du jury

M. ALEXANDRE NIVEAU Maître de conférences, Université de Caen Normandie Membre du jury

M. ANDREAS HERZIG Directeur de recherche au CNRS, Institut de Recherche en
Informatique de Toulouse Président du jury

Thèse dirigée par BRUNO ZANUTTINI (Groupe de recherche en informatique,
image, automatique et instrumentation)

Contents

I Introduction and Basics 1

1 Introduction 3
1.1 Motivation . 3
1.2 Outline . 6
1.3 Publications . 7

2 Related Work 9
2.1 State of the art . 9
2.2 Novelty . 11

3 Preliminaries 13
3.1 Model-based Domain-independent Planning . 13
3.2 Negation Normal Form . 14

3.2.1 Boolean Languages . 15
3.2.2 Conjunctive Normal Form . 15
3.2.3 Disjunctive Normal Form . 15
3.2.4 Representations . 15

3.3 Background in Complexity Theory . 16

4 A Formal Framework for Comparing Action Languages 19
4.1 Action Languages . 19

4.1.1 States . 19
4.1.2 Actions . 20
4.1.3 Translations . 21

4.2 Criteria for Comparison . 21
4.2.1 Queries . 22
4.2.2 Succinctness . 24
4.2.3 Transformations . 24

II Basic Languages 27

5 Minimally Complete Languages 29
5.1 Effects . 30
5.2 Nondeterministic PDDL . 31
5.3 Egalitarian PDDL . 33
5.4 NNF Action Theories . 34

6 Complexity Results for Minimally Complete Languages 37
6.1 Queries . 39

6.1.1 Successorship . 39
6.1.2 Applicability and Entailment . 41
6.1.3 Other queries . 43

6.2 Succinctness . 45
6.3 Transformations . 47
6.4 Conclusion . 51

III Variants of Basic Languages 53

7 Restrictions of Minimally Complete Languages 55
7.1 Nondeterministic Conditional STRIPS . 55

7.1.1 Queries . 57
7.1.2 Succinctness . 58
7.1.3 Transformations . 60

7.2 Incomplete Restriction: Non-negative E-PDDL/O-PDDL 60
7.3 Conclusion . 62

8 Extensions of E-PDDL and O-PDDL 65
8.1 E-PDDL and O-PDDL with Sequential Execution . 65
8.2 E-PDDL and O-PDDL with Negation . 67
8.3 E-PDDL and O-PDDL with Conjunction . 69
8.4 Complexity: Queries . 70
8.5 Complexity: Succinctness . 79
8.6 Complexity: Transformations . 80
8.7 Conclusion . 81

9 Extensions of NNF Action Theories 85
9.1 The Syntactic Frame Connective . 86

9.1.1 Compiling the Syntactic Connective Away . 88
9.2 The Semantic Frame Connective . 91

9.2.1 Complexity and Succinctness . 92
9.3 Conclusion . 95

IV Conclusion 97

10 Conclusion 99
10.1 Contributions . 99
10.2 Perspectives . 100

A Table of Notation 111

Résumé

Introduction

La compilation de connaissances (KC – knowledge compilation) est une branche de l’intelligence artifi-
cielle qui s’occupe du pré-traitement des représentations d’information pour pallier la difficulté calcula-
toire.

L’idée clé de la KC est que les données en entrée des requêtes peuvent souvent être partitionnées en
deux parties : une grande partie qui est fixe pour la plupart des requêtes, appelée « base de données »,
et une petite partie variable appelée directement « requête ». En répondant à une requête, la base de
données doit souvent être traitée de la même manière, on doit donc répéter le même calcul encore et
encore. Pour éviter cela, on peut pré-traiter la base de données (en sachant à quelles requêtes on veut
répondre le plus souvent ensuite) en faisant une grande partie de ce calcul une seule fois à l’avance.
Plus précisément, on calcule d’abord (on appelle cela la phase « hors ligne ») une représentation plus
convenable, pour répondre aux requêtes par la suite (dans la phase « en ligne »). Un exemple de pré-
traitement d’information dans la vie réelle est le dictionnaire : pour chercher les mots plus efficacement,
on trie d’abord les mots lexicographiquement. La différence avec la compilation de connaissances est
que le tri de mots peut être effectué en temps polynomial, pour permettre la recherche des mots en temps
logarithmique. Dans la compilation de connaissances, on est plutôt intéressé par un gain plus significatif :
en investissant un calcul en temps éventuellement exponentiel au départ, on peut atteindre une réponse
aux requêtes en temps polynomial par la suite, tandis que, avant le pré-traitement, les requêtes étaient
NP-difficiles. Bien sûr, on veut dans le même temps éviter que la taille de la nouvelle représentation ne
devienne trop grande : généralement on veut qu’elle reste polynomiale dans la taille de la représentation
originale. On dit que la représentation reste succincte.

Typiquement, on est intéressé par deux types de tâches de calcul : les requêtes, où le résultat est une
information extraite de la base de données, et les transformations, où le résultat est une autre représenta-
tion de la base de données. Ce n’est pas toujours possible de trouver une représentation qui soit succincte
et permette de répondre efficacement à toutes requêtes, et d’effectuer toutes les transformations, effi-
cacement : généralement il faut trouver un compromis entre la concision et l’efficacité. La KC étudie
précisément l’interconnexion entre la taille de la représentation et la complexité de répondre aux re-
quêtes ou d’effectuer les transformations. On appelle les ensembles de représentations avec une structure
concrète les langages (de représentation) ; typiquement, ils sont définis par une grammaire. Le but final
est d’élaborer un tableau (appelé knowledge compilation map – carte de compilation de connaissances)
qui résume les résultats de complexité pour permettre de choisir le langage le plus convenable pour une
tâche concrète.

Dans ce travail, nous appliquons l’approche de compilation de connaissances à la planification auto-
matique, concrètement aux langages d’actions, i.e. les ensembles de formules qui permettent d’exprimer
les actions. Un langage d’actions est un ensemble de formules/expressions, appelées descriptions d’ac-
tion, avec une fonction d’interprétation qui associe les descriptions d’action à des actions concrètes.

La planification automatique est un champ de l’intelligence artificielle qui étudie les algorithmes pour
atteindre un objectif à partir d’un état initial en exécutant des actions. En appliquant une action, on trans-
forme un état du monde en un autre état. Un plan peut être une séquence d’actions ou une politique pour
choisir les actions en fonction des observations. Nous nous concentrons sur les actions non déterministes,
i.e. où le résultat de l’application de l’action dans un état n’est pas toujours certain. Enfin, nous travaillons
avec des états propositionnels, encodés par des variables booléennes ; une action non déterministe est une
fonction qui associe à chaque état un ensemble d’états. Notons qu’il est commun dans la littérature sur
la planification de considérer les représentations booléennes.

Une notion centrale de la compilation de connaissances est celle de traduction : une traduction d’un
langage L1 à un autre langage L2 est une fonction qui transforme une expression de L1 en une expression
de L2 en satisfaisant une notion de préservation. La notion de préservation est définie par une propriété
à laquelle on s’intéresse : par exemple, on peut vouloir traduire une description Π1 d’une instance d’un
problème en une autre description Π2, de sorte que chaque plan π2 pour Π2 corresponde à un plan π1
pour Π1, et que pour chaque π1 il y ait un π2 qui soit de taille polynomiale en la taille de π1 (en particulier,
cela signifie qu’il existe un plan pour Π2 si et seulement s’il existe un plan pour Π1).

Travaux connexes

Il existe déjà des applications de la compilation de connaissances à la planification automatique, mais
elles considèrent d’autres notions de compilation qui sont moins strictes, par exemple, la compilation
peut être appliquée à un formalisme de planification entier (avec l’ensemble de variables, l’état initial et
le but). Ainsi, une traduction permet d’introduire des nouvelles variables, et c’est l’existence d’un plan
qui est préservée. Contrairement à ces travaux précédents, nous étudions une notion de traduction très
stricte, appliquée aux descriptions d’actions (qui elles-mêmes peuvent être identifiées avec des fonctions
booléennes). Nous interdisons que la traduction introduise de nouvelles variables ; de ce point de vue
notre travail est similaire à la carte de compilation classique, et c’est l’interprétation de la description
d’action qui est préservée par la traduction.

La différence avec les autres études de compilation de connaissances est la manière dont nous obte-
nons les langages (nos langages sont inspirés par les langages d’actions existants, et la plupart d’eux ne
correspondent pas directement à un langage booléen), la richesse des langages que nous étudions (on va
montrer que la plupart de ces langages peuvent être considérés comme des ensembles qui contiennent
tous les langages de la carte de compilation classique), et les critères que nous utilisons pour construire
notre carte de compilation. Nous nous concentrons sur les requêtes les plus typiques dans la planifica-
tion : d’abord, tester si une action est applicable dans un état, et si un plan séquentiel atteint nécessai-
rement un but. Les autres requêtes sont moins communes dans la littérature, mais elles semblent assez
naturelles pour la planification non déterministe. Pour les transformations, nous considérons l’extraction
d’une pré-condition en forme normale négative, l’expression du choix non déterministe, de l’exécution
séquentielle et de la négation des actions. Finalement, nous comparons les langages du point de vue de
leur succinctness, c’est-à-dire de leur concision.

Une caractéristique principale de notre approche est, d’abord, la distinction des langages de la façon
dont ils décrivent les actions (les langages peuvent être « impératifs », ce qui signifie que les modifications
sont explicitement mentionnées dans la description, ou « déclaratifs », ce qui signifie qu’ils décrivent les
contraintes satisfaites par les états prédécesseurs et successeurs, et que les changements des valeurs de
variables sont toujours possibles s’ils ne contredisent pas ces contraintes). L’autre caractéristique est la
représentation des descriptions d’actions (et des formules logiques qu’elles contiennent), où nous distin-
guons deux possibilités : une représentation directe par un arbre, où la taille de la formule correspond au
nombre de symboles dans l’expression, et une représentation par un graphe orienté acyclique, qui peut
être plus efficace en stockant des sous-expressions isomorphes une seule fois.

Préliminaires

Les applications principales de nos résultats sont au problème générique de la planification non détermi-
niste et totalement observable, que nous présentons dans le troisième chapitre, avec les notions de plan
et de politique. Nos travaux utilisent également, pour les formules logiques, la forme normale négative
(NNF), i.e. la représentation des formules logiques dans laquelle les négations ne peuvent apparaître
que dans les littéraux, et les seuls connecteurs internes sont ∧ (conjonction) et ∨ (disjonction) ; la forme
normale conjonctive (CNF) et la forme normale disjonctive (DNF) sont des cas particulier de NNF. Par
ailleurs, nous définissons les représentations des expressions en arbre et en circuit (graphe orienté acy-
clique, qui est la représentation standard dans la littérature de KC).

Les autres notions utiles sont des notions de complexité : nous définissons les classes de complexité
que nous utilisons, et plus spécifiquement les classes non uniformes P/poly et NP/poly (c’est-à-dire,
où l’algorithme qui résout le problème dépend de la taille de l’entrée). Nous présentons les hypothèses
sur lesquelles nos résultats reposent, à savoir NP 6⊆ P/poly et coNP 6⊆ NP/poly. Nous montrons enfin
deux lemmes qui sont utilisés par la suite : d’une part, décider si une formule CNF avec 3 littéraux
par clause (appelée 3-CNF) et avec au maximum 3 occurrences de chaque variable et un problème NP-
complet, et d’autre part, décider la validité d’une formule totalement quantifiée avec seulement un type
de quantificateur (mais des négations pouvant porter sur des sous-formules quantifiées) est un problème
PSPACE-complet.

Cadre formel

Nous donnons ensuite les définitions des objets centraux de notre travail. Nous définissons tout d’abord
de manière formelle la notion de langage d’actions et de traduction ; une traduction d’un langage L1
en un langage L2 est une fonction qui associe à une description d’action dans L1 et à l’ensemble des
variables sur lesquelles elle porte, une description d’action dans L2, qui a la même interprétation sur le
même ensemble de variables. Par ailleurs, nous généralisons le concept de représentation en arbre ou
circuit aux langages d’actions, et écrivons LT et LC pour les versions arbre et circuit, respectivement, du
langage L,.

Les requêtes et transformations auxquelles nous nous intéressons, sont, tout d’abord, les problèmes
de décider pour une action si elle est applicable dans un état (on note cette requête IS-APPLIC), et si
une séquence d’actions résulte toujours en un état qui satisfait une certaine propriété, décrite par une
formule NNF (on note cette requête ENTAILS). Ce sont les requêtes les plus basiques, qui apparaissent
souvent dans la littérature (elles constituent ensemble la problématique du belief tracking). Nous donnons
aussi une réduction simple du complément de IS-APPLIC (c’est-à-dire de la « non applicabilité ») à
ENTAILS, montrant ainsi que décider la non applicabilité n’est pas plus difficile que ENTAILS au sens de
la complexité. Les requêtes moins utilisées, mais qui ont toutefois certaines applications à la planification,
sont IS-SUCC (décider si un état peut être atteint par une action appliquée dans un autre état), ST (« self-
transition », cas particulier de IS-SUCC : décider si un état est un successeur possible de lui-même par
une action), IS-MON (décider si une action est monotone dans un état, i.e. qu’elle ne modifie jamais la
valeur d’une variable de vraie à fausse, ou qu’elle ne modifie jamais une valeur de fausse à vraie), et
IS-DET (décider si une action a au plus un successeur dans un état).

Les transformations que nous étudions sont EXTRACT-PRECOND (pour une action, trouver une
formule telle que l’action soit applicable dans un état si et seulement si l’état satisfait cette formule),
SEQUENCE (pour deux actions, trouver une description d’action qui soit équivalente à leur exécution en
séquence), CHOICE (exprimer l’action définie comme le choix non déterministe de deux autres actions),
et NEGATION (exprimer le complément d’une action). Contrairement aux requêtes, pour lesquelles nous
nous intéressons à la complexité en temps de calcul, pour les transformations nous cherchons à savoir si
le résultat de la transformation (qui doit être dans le même langage que l’entrée) est de taille au maximum
polynomiale. Nous définissons aussi le troisième critère pour la comparaison des langages : la succinct-
ness, c’est-à-dire la concision d’un langage : un langage L1 est appelé plus succinct qu’un autre langage
L2 si L2 peut être traduit en L1 et que la taille de la traduction est bornée par un polynôme (on dit que la

traduction est de taille polynomiale), mais que l’inverse n’est pas vrai.

Langages d’action minimalement complets

Nous commençons notre étude par les langages O-PDDL, E-PDDL et NNFAT, qui sont motivés par
la littérature et les algorithmes de planification. Le Planning Domain Definition Language PDDL est
un langage très utilisé par la communauté de planification, introduit originellement en 1998 pour la
compétition internationale de planification, et dont nous étudions deux versions nondéterministes.

Les deux versions de PDDL non déterministe que nous introduisons diffèrent par la sémantique
de l’application simultanée d’effets, qui donne lieu à deux langages d’actions : O-PDDL (« O » signi-
fiant « original ») et E-PDDL (« E » signifiant « égalitaire »). Enfin, les théories d’actions, qui sont des
formules logiques utilisées pour décrire les actions, nous donnent un langage déclaratif noté NNFAT
(pour NNF action theories). Nous définissons les trois langages O-PDDL, E-PDDL et NNFAT par leur
grammaire.

Nous appelons ces langages des « langages minimalement complets », car nous montrons que si l’on
exclut un connecteur de la grammaire, le langage résultant devient incomplet, i.e. incapable d’exprimer
toutes les actions non déterministes (sinon, le langage est dit complet). La différence entre O-PDDL
et E-PDDL est la sémantique de l’exécution parallèle (& en O-PDDL et u en E-PDDL). Pour définir
la sémantique, nous définissons les effets des actions, une notion similaire aux add-list et del-list de
STRIPS.

La différence entre & et u est le traitement des effets qui sont en conflit : & transforme ces effets
en un nouvel effet en appliquant le principe « affecter une variable à vrai l’emporte sur l’affectation à
faux », tandis que pour u, l’exécution parallèle d’effets qui sont en conflit n’est pas définie.

Nous illustrons cette différence avec des exemples, qui montrent aussi la différence entre les lan-
gages impératifs (O-PDDL et E-PDDL) et le langage déclaratif NNFAT : pour décrire la persistance
des valeurs des variables non modifiées par une action, on a besoin de nombreuses sous-expressions en
NNFAT, tandis qu’en O-PDDL et E-PDDL, cette persistance est intégrée dans la sémantique.

Résultats pour les langages minimalement complets

Nous donnons une image complète au regard de tous les critères : la complexité des requêtes, les résultats
de concision et les résultats pour les transformations.

Nous démontrons tout d’abord qu’il existe une traduction de NNFAT en E-PDDL (mais pas en
O-PDDL) en temps polynomial. Ceci implique que les résultats de difficulté qui sont valides pour
NNFAT sont valides également pour E-PDDL, et réciproquement, que les résultats d’appartenance
(d’une requête à une classe de complexité) valides pour E-PDDL le sont aussi pour NNFAT.

Requêtes Nous montrons que la plupart des requêtes (sauf IS-SUCC et donc ST) sont déjà difficiles
pour NNFAT : ENTAILS est coNP-complet pour tous les langages minimalement complets, et IS-SUCC

est NP-complet pour E-PDDL et O-PDDL. La preuve de ces résultats utilise des descriptions d’actions
notées α

sat,u
n et α

sat,&
n (qui décrivent la même action), qui jouent un rôle fondamental dans notre travail

et sont réutilisées plusieurs fois dans la thèse. L’intuition est que ces actions construisent de manière non
déterministe toutes les formules 3-CNF satisfaisables.

Nous démontrons ensuite que IS-APPLIC est NP-complet pour NNFAT et E-PDDL, mais peut être
résolu en temps polynomial pour O-PDDL. Pour ce dernier résultat, nous décrivons les procédures d’ins-
tanciation d’un circuit par un état, et de réduction d’un circuit : pour l’instanciation, il s’agit d’ajuster
le circuit qui décrit une action à un état concret, ce qu’on utilise en prétraitement ; la réduction est un
processus de simplification du circuit après élimination de branches non exécutables (ou dont on veut
ignorer l’exécution). Ces processus d’instanciation et de réduction sont réutilisés plusieurs fois dans la
thèse, pour élaborer des algorithmes efficaces.

Concernant les autres résultats, pour ENTAILS, nous obtenons que cette requête est coNP-complète
pour les trois langages. En utilisant l’instanciation et la réduction, nous démontrons aussi que IS-MON

et IS-DET sont résolubles en temps polynomial pour O-PDDL. Nous montrons qu’ils sont en revanche
coNP-complets pour E-PDDL et NNFAT. Enfin, nous démontrons que la requête ST est NP-complète
pour O-PDDL, et résoluble en temps linéaire pour E-PDDL et NNFAT.

Concision En utilisant ces résultats, et parce que les preuves de difficulté de ST pour O-PDDL et de
IS-SUCC pour E-PDDL utilisent des descriptions d’actions qui permettent de construire toutes les 3-CNF
satisfaisables, nous montrons que sous l’hypothèse NP 6⊆ P/poly, il n’existe pas de traduction de taille
polynomiale de O-PDDL en E-PDDL ou NNFAT, ni de traduction dans le sens inverse. Il s’ensuit que
O-PDDL est incomparable, du point de vue de la concision, avec E-PDDL et NNFAT ; nous montrons
en effet que NNFAT est moins succinct que E-PDDL sous l’hypothèse NP 6⊆ P/poly.

Transformations Pour les transformations, nous remarquons que CHOICE est évidemment possible en
temps linéaire pour tous les langages, parce qu’ils incluent un connecteur pour exprimer le choix. Nous
montrons que ni SEQUENCE ni NEGATION ne peuvent être effectuées dans O-PDDL et E-PDDL sans
explosion superpolynomiale, et que SEQUENCE ne peut pas l’être sans explosion dans NNFAT ; en re-
vanche, NEGATION peut être effectuée en temps linéaire dans NNFAT. Enfin, pour EXTRACT-PRECOND

nous montrons que le résultat ne peut pas toujours être de taille polynomiale pour NNFAT et E-PDDL,
mais que la transformation peut être effectuée en temps linéaire pour O-PDDL. Tous les résultats d’im-
possibilité tiennent sous sous l’hypothèse que NP 6⊆ P/poly.

Conclusion sur les langages minimalement complets Il se trouve tout d’abord que tous les résultats
de ce chapitre sont les mêmes pour les arbres et les circuits.

Par ailleurs, on peut conclure de nos résultats que la spécification d’actions directement en NNFAT
(qui est souvent utilisée pour le raisonnement interne par les planificateurs) pourrait être plus raisonnable
que la conversion depuis E-PDDL. On observe aussi que O-PDDL et E-PDDL ont des propriétés assez
différentes du point de vue de la complexité, et qu’ils sont incomparables du point de vue de la concision.
Cela signifie que le choix du langage concret à utiliser doit dépendre de l’algorithme de planification et
de la notion de solution : par exemple, si on cherche un plan acyclique, on pourra être intéressé par un
langage où ST est traitable efficacement (donc E-PDDL) ; sinon, il est en général souhaitable de pouvoir
tester l’applicabilité en temps polynomial (et on choisira alors O-PDDL). Une autre observation inté-
ressante est que E-PDDL permet d’effectuer une transformation qui ressemble au conditionnement des
formules booleénnes, généralisé pour les descriptions d’actions. En revanche, O-PDDL ne permet pas
d’effectuer cette transformation sans explosion superpolynomiale en taille ; l’étude du conditionnement
pour tous les langages pourra faire l’objet de travaux futurs.

Restrictions

Restrictions à la STRIPS Le langage STRIPS peut être considéré une restriction de PDDL (plus
précisément de sa version propositionnelle), et s’il est enrichi par un connecteur pour le choix non déter-
ministe d’effets, on obtient deux langages, que nous notons O-NCSTRIPS et E-NCSTRIPS. On peut
également voir ces langages comme obtenus en imposant des restrictions sur la profondeur et la structure
des descriptions d’actions en O-PDDL et E-PDDL.

Nous étudions ces deux langages O-NCSTRIPS et E-NCSTRIPS ; précisément, ces langages sont
définis comme l’ensemble des descriptions d’actions de O-PDDL et E-PDDL, respectivement, qui ne
permettent que des exécutions conditionnelles, parallèles, de choix non déterministes d’ensembles d’af-
fectations élémentaires. Cette restriction de structure est de même nature que celle de la forme normale
conjonctive pour les formules booléennes (une formule de profondeur bornée et avec un ordre fixe de
connecteurs). Pour ces restrictions, il n’y a pas lieu de faire la distinction entre la représentation en arbre
et la représentation en circuit, et nous montrons que les résultats de complexité de requêtes sont dans tous
les cas les mêmes pour le langage « parent » et son sous-langage. Pour les transformations, les résultats
se transfèrent également, sauf pour CHOICE pour lequel nous laissons le problème ouvert.

Un résultat intéressant est que le langage NNFATC (version circuit de NNFAT) ne peut pas être
traduit en E-NCSTRIPS sans explosion en taille. C’est le seul résultat de concision de la thèse qui n’est
pas basé sur une hypothèse de complexité non démontrée. Les autres résultats de concision sont basés sur
l’hypothèse NP 6⊆ P/poly, et les preuves sont assez analogues aux preuves pour les langages parents :
nous montrons que O-NCSTRIPS est incomparable, du point de vue de la concision, avec NNFAT,
E-NCSTRIPS et E-PDDL, et que E-NCSTRIPS est incomparable avec O-PDDL. Nous n’avons pas
de preuve que les langages parents sont (strictement) plus succincts que leurs restrictions, mais nous
conjecturons que c’est le cas.

Restriction aux affectations positives Enfin, nous considérons aussi une troisième restriction des lan-
gages minimalement complets, obtenue en interdisant une sorte d’affectation des variables. Le langage
NPDDLnf est ainsi défini comme la restriction de E-PDDL qui ne permet que les affectations positives
aux variables. Par conséquent, ce langage est à la fois un sous-langage de E-PDDL et un sous-langage
de O-PDDL, puisque la différence entre ces deux langages est le traitement de l’interaction des affec-
tations positives et négatives par l’exécution simultanée. Même s’il s’agit d’un langage très restrictif (il
est incomplet, c’est-à-dire incapable d’exprimer toutes les actions non déterministes), le langage a tout
de même une complexité importante pour IS-SUCC, qui est NP-complet (car l’expression α

sat,u
n utilisée

pour O-PDDL et E-PDDL est déjà une expression de NPDDLnf). Nous montrons que les requêtes et
transformations sont toujours possibles en temps polynomial pour NPDDLnf lorsque c’est le cas pour un
de ses langages parents, et difficiles sinon. Un résultat intéressant est que E-PDDL est plus succinct que
NPDDLnf même pour les actions positivement monotones (c’est-à-dire les actions que peut représenter
NPDDLnf).

Pour terminer, notons que nous ne considérons pas de restrictions de NNFAT, parce qu’elles sont
bien étudiées dans la littérature de compilations des connaissances.

Extensions

O-PDDL et E-PDDL Notre étude du langage E-PDDL est notamment motivé par la sémantique de
la logique des affectations propositionnelles parallèles DL-PPA de la littérature. Pour cette raison, nous
considérons dans ce chapitre des extensions de E-PDDL et de O-PDDL avec un connecteur de séquence
; emprunté à DL-PPA, notées E-PDDLseq et O-PDDLseq, respectivement. De manière analogue, nous
proposons d’autres extensions, obtenues en ajoutant le connecteur de négation ¬min (langages notés
O-PDDLnot et E-PDDLnot) et le connecteur de conjonction ∧ (O-PDDLand et E-PDDLand).

Pour définir la sémantique pour ;, ∧ et ¬min, il faut décider comment définir les effets. Pour ;, nous
adaptons la définition de DL-PPA, et pour ¬min et ∧ nous fixons une sémantique ; d’autres sémantiques
naturelles pourraient toutefois être étudiées dans des travaux futurs.

Les questions que nous étudions sont les mêmes que pour les langages précédents : complexité des
requêtes et des transformations, concision. Toutefois, nous obtenons moins de résultats que pour les
autres langages en ce qui concerne les transformations et la concision. La raison en est que pour prouver
des résultats de séparation (donc pour montrer qu’il n’existe pas une traduction de taille polynomiale),
nous utilisons le fait qu’une requête dans un langage est plus difficile que dans un autre. Mais pour les ex-
tensions de langages, nous démontrons que presque toutes les requêtes deviennent PSPACE-complètes.
Pour les transformations, nous utilisons typiquement le même principe de preuve, donc nos résultats sont
seulement fragmentaires.

Nous démontrons que pour l’extension par ∧ et par ;, les langages avec la représentation en arbre
permettent encore de vérifier la réponse aux requêtes en temps polynomial (et donc, les requêtes restent
dans NP ou coNP). Pour les représentations en circuit et pour les autres extensions, presque toutes les
requêtes (sauf ST pour les deux représentations de E-PDDLnot et E-PDDLand) sont PSPACE-complètes.
L’idée principale des preuves est typiquement basée sur l’utilisation d’une modification de la formule
α

sat,u
n en une description d’action définie de manière récursive.

Dans des travaux futurs, il serait également intéressant d’étudier un « surlangage » de tous nos lan-
gages. Nous avons déjà une preuve que toutes les requêtes dans ce langage sont PSPACE-complètes pour
la représentation en circuit. Nous conjecturons qu’il serait le plus succinct (strictement) de tous, mais si
tel est le cas, ce sera probablement difficilement à démontrer avec les outils que nous utilisons dans cette
thèse.

NNFAT Dans le dernier chapitre technique, nous étudions deux extensions de NNFAT. Nous l’enri-
chissons avec deux connecteurs permettant d’exprimer la persistance de variables. Le premier connec-
teur, FX , vise à exprimer la propriété sémantique des langages impératifs : quand il est appliqué, une
variable dans l’ensemble X peut changer sa valeur si et seulement si le changement apparaît explicite-
ment dans la description d’action. Par conséquent, nous avons aussi besoin d’une définition d’effets, avec
une distinction entre effets explicites et effets implicites. Nous qualifions FX de syntaxique, parce que la
sémantique d’une expression FX(α) dans le langage NNFATF obtenu en autorisant FX partout dans la
formule, dépend toujours de la description d’action α , et pas seulement de l’action décrite par α .

L’autre connecteur, CX ,V,F , utilise la notion de raisonnement par circonscription : parmi les succes-
seurs obtenus via le même changement des valeurs des variables d’un ensemble F , il choisit ceux où le
changement de valeurs des variables dans l’ensemble X est minimal. Ce connecteur est sémantique, parce
que l’interprétation de CX ,V,F(α) dépend seulement de l’action décrite par α , mais pas de la manière dont
cette action est décrite. Le langage NNFAT enrichi par CX ,V,F est noté NNFATC.

Dans ce chapitre, nous étudions seulement la représentation en circuit, mais nous conjecturons que
nos résultats sont également valides pour la représentation en arbre. Le résultat le plus important est
probablement une traduction polynomiale de NNFATF en NNFAT. Avec ce résultat, nous obtenons aisé-
ment tous les résultats de complexité pour NNFATF : IS-SUCC et ST sont possibles en temps polynomial,
IS-DET et IS-MON sont coNP-complets, et IS-APPLIC est NP-complet. Pour NNFATC, nous montrons
que toutes les requêtes sauf ST sont PSPACE-complètes. Il est intéressant de noter que ST reste soluble
en temps polynomial même pour un langage si riche.

Conclusion

Nous concluons notre travail par un résumé des résultats, donné par tableaux de complexité et des dia-
grammes de concision (tableaux 1, 2, 3 ; diagrammes 1 et 2).

Parmi les perspectives ouvertes par nos travaux, figurent l’étude de nouvelles transformations et
requêtes (qui peuvent aussi être utiles pour la planification), l’étude de nouveaux langages, et des appli-
cations de nos résultats, par exemple aux langages de représentation de préférences.

Language IS-SUCC IS-APPLIC ENTAILS

Langages minimalement complets
NNFATT, NNFATC temps linéaire NP-complet coNP-complet
O-PDDLT, O-PDDLC NP-complet temps linéaire coNP-complet
E-PDDLT, E-PDDLC NP-complet NP-complet coNP-complet

Restrictions des langages impératifs
O-NCSTRIPS NP-complet temps linéaire coNP-complet
E-NCSTRIPS NP-complet NP-complet coNP-complet
NPDDLnf NP-complet temps linéaire coNP-complet

Extensions des langages impératifs
O-PDDLT

seq NP-complet NP-complet coNP-complet
O-PDDLC

seq PSPACE-complet PSPACE-complet PSPACE-complet
O-PDDLT

and NP-complet NP-complet coNP-complet
O-PDDLC

and PSPACE-complet PSPACE-complet PSPACE-complet
O-PDDLT

not, O-PDDLC
not PSPACE-complet PSPACE-complet PSPACE-complet

E-PDDLT
seq NP-complet NP-complet coNP-complet

E-PDDLC
seq PSPACE-complet PSPACE-complet PSPACE-complet

E-PDDLT
and NP-complet NP-complet coNP-complet

E-PDDLC
and PSPACE-complet PSPACE-complet PSPACE-complet

E-PDDLT
not, E-PDDLC

not PSPACE-complet PSPACE-complet PSPACE-complet
Extensions de NNFAT

NNFATC
F temps polynomial NP-complet coNP-complet

NNFATC
C PSPACE-complet PSPACE-complet PSPACE-complet

TABLE 1: Résultats de complexité pour IS-SUCC, IS-APPLIC et ENTAILS.

Language ST IS-DET IS-MON

Langages minimalement complets
NNFATT, NNFATC temps linéaire coNP-complet coNP-complet
O-PDDLT, O-PDDLC NP-complet temps polynomial temps polynomial
E-PDDLT, E-PDDLC temps linéaire coNP-complet coNP-complet

Restrictions des langages impératifs
O-NCSTRIPS NP-complet temps polynomial temps polynomial
E-NCSTRIPS temps linéaire NP-complet coNP-complet
NPDDLnf temps linéaire temps polynomial trivial/temps polynomial

Extensions des langages impératifs
O-PDDLT

seq NP-complet coNP-complet coNP-complet
O-PDDLC

seq PSPACE-complet PSPACE-complet PSPACE-complet
O-PDDLT

and NP-complet coNP-complet coNP-complet
O-PDDLC

and PSPACE-complet PSPACE-complet PSPACE-complet
O-PDDLT

not, O-PDDLC
not PSPACE-complet PSPACE-complet PSPACE-complet

E-PDDLT
seq NP-complet coNP-complet coNP-complet

E-PDDLC
seq PSPACE-complet PSPACE-complet PSPACE-complet

E-PDDLT
and temps linéaire coNP-complet coNP-complet

E-PDDLC
and temps linéaire PSPACE-complet PSPACE-complet

E-PDDLT
not, E-PDDLC

not temps linéaire PSPACE-complet PSPACE-complet
Extensions de NNFAT

NNFATC
F temps polynomial coNP-complet coNP-complet

NNFATC
C temps linéaire PSPACE-complet PSPACE-complet

TABLE 2: Résultats de complexité pour ST, IS-DET et IS-MON.

Language CHOICE SEQUENCE NEGATION EXTRACT-PRECOND

Langages minimalement complets
NNFATT, NNFATC X ◦ X ◦
O-PDDLT, O-PDDLC X ◦ ◦ X
E-PDDLT, E-PDDLC X ◦ ◦ ◦

Restrictions des langages impératifs
O-NCSTRIPS ? ◦ ◦ X
E-NCSTRIPS ? ◦ ◦ ◦
NPDDLnf X ◦ ◦ X

Extensions des langages impératifs
O-PDDLT

seq X X ◦ ◦
O-PDDLC

seq X X ? ◦
O-PDDLT

and X ? ◦ ◦
O-PDDLC

and X ? ? ◦
O-PDDLT

not, O-PDDLC
not X ? X ◦

E-PDDLT
seq X X ◦ ◦

E-PDDLC
seq X X ? ◦

E-PDDLT
and X ◦ ◦ ◦

E-PDDLC
and X ◦ ? ◦

E-PDDLT
not, E-PDDLC

not X ◦ X ◦
Extensions de NNFAT

NNFATC
F X ◦ X ◦

NNFATC
C X ? ? ◦

TABLE 3: Difficulté d’effectuer une transformation. “X” signifie que la transformation est possible en
temps polynomial. “ ?” indique les questions ouvertes. ◦ signifie que sous une hypothèse sur les classes
de complexité, la taille du résultat de la transformation n’est pas polynomial en la taille de l’entrée.

FIGURE 1: Résultats de concision pour les langages minimalement complets, les langages
O-NCSTRIPS, E-NCSTRIPS, et les représentations en circuit des extensions de NNFAT (i.e. NNFATC

C
et NNFATC

F). Un arc de L1 vers L2 signifie que L1 peut être traduit en L2 en temps polynomial. Un arc
barré de L1 vers L2 signifie que sous une hypothèse sur les classes de complexité, il n’existe aucune tra-
duction de taille polynomiale de L1 en L2, pour aucune des représentations. Un arc barré par ×C signifie
que la séparation en termes de concision n’est démontrée que pour les circuits. Un arc étiqueté par C
signifie que l’existence d’une traduction en temps polynomial n’est prouvée que pour les circuits.

NNFATC
F

NNFATC
C

NNFAT

E-NCSTRIPS O-NCSTRIPS

E-PDDL O-PDDL

×
×

C × × ?

×C×

×
×
×

××

××

× ×

C

×

×
C

×C
?

×C

×C

×

E-PDDL

E-PDDLand

E-PDDLnot

E-PDDLseq

×

×

× C

× ×T ?×T

×
?

O-PDDL

O-PDDLand

O-PDDLnot

O-PDDLseq

×

×

× C

? ×T ?×T

?
?

FIGURE 2: Résultats de concision pour les extensions de E-PDDL et O-PDDL. Un arc barré par ×T

signifie que la séparation en termes de concision n’est démontrée que pour les arbres.

Acknowledgements

First I want to thank my advisors, Alexandre Niveau and Bruno Zanuttini, for their patience, kindness,
and being always there when I had questions or needed help. Our work sessions were a lot of fun, as well
as the social events we attended together. Of course all the results in this thesis are results of our common
work, and I am grateful to them for giving me the freedom to choose research questions which we were
working on together. Thank you also for motivating me to go to conferences and workshops where I
met many interesting people and learned a lot about other research directions in AI, and for letting me
try out teaching and even giving lectures in French, it was an awesome experience. In the end it seems
impossible to list all the things Alex and Bruno have done for me, but the German term for “doctoral
advisor” which is “Doktorvater” and literally means “doctoral father” is a good description of what they
have been for me.

I am grateful to Stefan Mengel and Bernhard Nebel for agreeing to be the reviewers of my thesis and
for carefully reading my dissertation and for spotting mistakes which seem so hard to notice. Also thank
you to Hélène Fargier and Peter Jonsson for being in my defense jury, and to Andreas Herzig for being
in both my defense jury and my follow-up committee and giving me numerous tips for my PhD.

I also would like to thank the supervisor of my Master’s thesis Manuel Bodirsky, who encouraged me
to do science after graduating from the TU Dresden, Maja Pech for being the supervisor of my Bachelor’s
thesis, and Reinhard Pöschel for being a member of my follow-up committee and the reviewer of both
my Bachelor’s and Master’s thesis. You all made me love universal algebra and made me believe I am
capable of doing research in mathematics, which determined my future life path.

Thank you my fellow PhD students Josselin, Mihail, Romain and Sébastien, with whom we shared
our room at work, and all other colleagues from the GREYC lab, you told me a lot about the French
culture and language.

I want to thank my mom Natalia and dad Wladimir for being awesome parents and for supporting me
throughout my life. A special thank you to my dad and to my math teacher Thomas Riede for influencing
my choice of profession by their example, and to my mom for helping me to prepare for exams during
my studies.

I am also grateful to all my friends and relatives whose presence in my life is a reason to never give
up. Especially I want to express my grattitude to Irina for doing rehearsals of my presentations over and
over again, for showing genuine interest for my research and for supporting me during hard times in life,
a “Dankeschön” to Cécile for checking my french summary for mistakes and a thank you to Raghad for
giving me tips on teaching. I would like to thank my sports friend Tomas̆ for not breaking my finger this
time, so that I could finish writing my thesis on time. Finally, thank you Lisa for your ∃-ence.

Part I

Introduction and Basics

CHAPTER 1

Introduction

1.1 Motivation

Knowledge Compilation

One of the key problems in computer science is the representation of information. When designing algo-
rithms to solve computational problems we always want them to terminate in a reasonable time. Whether
the time can be considered reasonable depends on the interconnection between the size of the input and
the amount of time necessary to output a solution. Additionally we want that the computation never
exceeds the amount of available resources like memory space. This raises the question about how to
measure the size of the input, since the same information can be represented in many different ways.
Knowledge compilation (KC) can be seen as a branch of computer science which studies the dependence
between various representations of information in artificial intelligence and the complexity of computa-
tional tasks usually performed on these representations. The key idea of knowledge compilation is that
many inputs to (repeated) computational tasks can be divided into two parts: the fixed part called knowl-
edge base and the varying part called query. The knowledge base is often much bigger than the query
and while performing the computation it must be treated in a certain way. To avoid the same computation
taking place again and again one could think of performing it just once to adjust the knowledge base for
answering a specific query task (which is called the off-line reasoning). Answering the query task with
the preprocessed knowledge base is called on-line reasoning and can be performed faster than without
preprocessing. This approach is especially useful if the original computational task was not tractable,
but becomes tractable after the preprocessing, and the preprocessing does not exponentially increase the
size of the knowledge base. Typically there is a trade-off between the succinctness of a representation
and the computational efficiency of answering queries: the more compact a representation becomes, the
more difficult is the extraction of information. More explanations and examples of this approach can be
found in e.g. (Cadoli and Donini, 1997).

Originally this approach was developed to compare sets of propositional formulas called (target)
languages (for example, Darwiche and Marquis (2002); Fargier and Marquis (2008)). These languages
were studied from the perspective of the complexity of queries like clausal entailment (whether some
information represented by a disjunction of literals is a logical consequence of the knowledge base) or
consistency (whether the knowledge base is noncontradictory). The result of the research in this area
can be summarized in a knowledge compilation map, like in Darwiche and Marquis (2002). According
to this map the user chooses the most succinct target language which still allows for efficient answering
of all queries the user is interested in, and then the knowledge base is automatically translated into the
target language from a specification language which is more convenient for humans. Although originally
knowledge compilation was studying languages with the same semantics (i.e. Boolean formulas with
the standard interpretation), the framework can be extended to compare very different languages, for

3

example, like in the approach of heterogeneous compilation (Fargier et al., 2013).
Since we will use the word “language” very often, we would like to illustrate the concept with a

real-life example: the English phrase “On Thursday, Alice went to work by tram, stayed there for nine
hours, then she took the bus to a dancing club and danced tango for two hours, then she went home by
foot and went to bed immediately after arriving home.” encodes some information and requires some
memory space to store this expression. And a query task could be of the form “Did Alice dance jive on
Thursday?”. A more concise representation could be obtained by dropping the vowels: “n Thrsd, lc wnt
t wrk b trm, std thr fr tw hrs, thn sh tk th bs t dncng clb nd dncd tng fr tw hrs, thn sh wnt hm b ft nd wnt
t bd mmdtl ftr rrvng hm”. This representation is still suitable to answer the query, but a human would
have a hard time understanding the phrase and answering the question. Another option would be to use
widely known abbreviations and digits and drop the prepositions and articles: "Alice, Th, tram: work (9
hrs), bus: dancing club, tango (2 hrs), foot: home, bed". This phrase is shorter than the original one, too,
but it is also much easier to read than the one without vowels, and the question about whether she danced
jive on Thursday is probably answered even quicker than when being given the original phrase. Thus,
compiling knowledge in the second manner might be more practical when the expected queries will be
of the kind as the example.

From the example with the human languages we see, that the idea of knowledge compilation is
universal and can be applied whenever some information will be queried repeatedly. Actually the idea of
sorting vocabulary in a dictionary or things at home is the same: we invest time before the actual work to
save time or resources after. The key difference is that knowledge compilation is a technique to address
intractability, and a knowledge compilation map usually is a table with “yes” or “no” entries depending
on whether a language supports a query in polynomial time or not.

In this work we will apply techniques to automated planning. We will see later that even very basic
queries for expressions with simple structure are often intractable and thus this is a good field for the
application of the KC approach.

Planning

Automated planning is a research area of artificial intelligence which deals with achieving goals from
an initial state. A concise definition from (Geffner and Bonet, 2013) sounds as follows: “Planning is
the model-based approach to autonomous behavior where the agent selects the action to do next using
a model of how actions and sensors work, what is the current situation, and what is the goal to be
achieved.” “Model-based” means here, that we describe a model of the world and the actions that can be
undertaken as an input to the planning algorithm (often called simply planner) which then searches for
a solution. A planning model usually consists of a set S of states which can change after the application
of actions a ∈ A. Executing actions is associated with positive costs which can depend on the applied
action and the current state. Transitions from one state to another are achieved via the effects of actions.
Depending on the knowledge about the current state, the properties of the actions and the action costs
one can distinguish many variants of the tasks. The most basic one is classical planning, with only one
agent, all actions being deterministic and durationless, action costs depending only on the action and not
on the state, a known initial state and a fully observable world. Many problems can be efficiently reduced
to classical planning. For example, if an action is “kind of deterministic” and has a “typical” effect (like
pushing the door to open it), and all alternative effects are considered to be exceptions (the door breaks
after pushing), we can plan in the classical setting an re-plan from the current state if something goes
wrong. These assumptions, however, are often still insufficient to model the real-world situation (for
example, if there is no “base case”, like when throwing the dice), and one of the obvious relaxations
which can be made to achieve better realism of the model is dropping determinism. An action is said to
be nondeterministic if the execution of it in a state can result in several successor states.

The notion of a solution to a planning problem depends on the setting and on the requirements. For
example, in classical planning a natural notion of solution is a linear plan, which is just a sequence of
actions, whereas for planning with nondeterminism it is more reasonable to consider policies, i.e. plans
where the action to be undertaken next depends on the current state or observations made before.

The most natural decision problem in automated planning is to decide for a given model together with

4

the inputs (initial state and goal states) whether there exists at least one plan (i.e. this problem depends
on what notion of plan we use). This is known as the plan existence problem (PLANEX) and is PSPACE-
hard even for a simple STRIPS-formalism (Fikes and Nilsson, 1971) for classical planning (Bylander,
1994).

PLANEX is a decision problem which is asked for a whole planning domain, but while searching for
a plan a planner asks many queries to actions and states on the way. The efficiency of such a planner
depends on the complexity of these queries, which motivates the complexity study of various represen-
tations for actions. As we will see later, the complexity of reasoning with representations of nondeter-
ministic actions stays in PSPACE even for quite sophisticated formalisms, but we will prove that these
formalisms differ in the succinctness of representations. Thus it might be useful to choose more succinct
representation knowing that the resulting efficiency of the planner might not change. We will deduce
some practical consequences for the choice of representations by programmers from our results in the
end of each chapter.

Actions

As we argued above, a central aspect of the description of planning problems is the formal representation
of actions. Such representations are indeed needed for specifying the actions available to the agent
(PDDL (McDermott, 1998) is a standard language for this), and also for planners to operate on them
while searching for a plan. The particular representation can be crucial for the performance of the planner.
This can be seen from a (very informal representation of a) generic planning algorithm (Algorithm 1): we

Input: Initial state, actions, goal state
Output: Plan that always reaches goal
while Goal not ensured do

if Actions available for choice then
Choose action not yet chosen at this step;
if Current plan guarantees precondition of chosen action then

Append action to current plan;
end

end
else

Remove last action from current plan;
end

end
return Current plan

Algorithm 1: Generic planning algorithm

observe that we need to check over and over again whether a chosen action is applicable after executing a
partial plan. We will see later that there are several queries and/or transformations, which could be used
to refine this algorithm, and thus the complexity of the algorithm depends on the complexity of those
repeated queries.

In this thesis we consider different representation languages which can be used to describe nonde-
terministic actions within the formal framework of the knowledge compilation map from (Darwiche and
Marquis, 2002), i.e. we study representation languages under the point of view of queries (how efficient
is it to answer various queries, depending on the language?), transformations (how efficient is it to trans-
form or combine different representations in a given language?), and succinctness (how concise is it to
represent knowledge in each language?). We focus on propositional domains in which states are assign-
ments to a given set of Boolean variables. This is less general than studying relational descriptions as in
PDDL, still the standard approach is reasoning with propositional representations (Helmert, 2006; Gnad
et al., 2019).

5

1.2 Outline

We will consider three main (basic) representation languages with some of their possible modifications.
The basic languages will be given by a Backus-Naur form (BNF) of the grammar defining the possible
action descriptions, with elementary/atomic actions which can be combined to more complex action
descriptions via connectives. For their modifications we will either extend the BNF or impose restrictions
on the structure of the action descriptions.

One basic language is a grounded, nondeterministic version of PDDL (McDermott, 1998), and
another one is a structurally similar language with an alternative semantics for the connective of par-
allel composition, which resembles that of the Dynamic Logic of Parallel Propositional Assignments
DL-PPA (Herzig et al., 2019). These two languages are imperative in the sense that modifications are
explicitly specified. This is useful when specifying actions by hand. The third main language is a logical
representation of actions by NNF action theories (Cimatti and Roveri, 2000). It is declarative in the
sense that it specifies how the states before and after the execution are related.

The modifications of the above languages which we are interested in are: syntactically restricting
the imperative languages to obtain STRIPS-like structure Fikes and Nilsson (1971); enriching the im-
perative languages by various connectives: by adding the sequence connective ; with the interpretation
of the operator of sequential composition from DL-PPA, with the negation connective ¬min denoting
action negation (Broersen, 2004) and with the conjunction connective ∧ denoting a “common execu-
tion”/intersection; and by enriching NNF action theories by two different connectives C and F, which
both formalize the notion of persistence (McCarthy, 1980) in different ways.

We chose to focus our study on those few languages because they use different constructs, different
structural restrictions on expressions, and different representations of persisting values. Among them,
the basic languages are minimally complete for representing nondeterministic actions, in the sense that
removing one of their connectives would yield a language which is not fully expressive. For these we
provide a systematic study. The other languages are well-studied restrictions (STRIPS-like languages)
and natural extensions, and for them we provide a complete picture regarding the complexity of queries.
The complexity of transformations and the relative succinctness of languages, however, is more difficult
to determine, since the separation proofs are usually based on different complexities of queries in the
languages, and if e.g. the queries are all PSPACE-complete (we will see that it is quite often the case for
extensions) then this approach does not work.

Orthogonally, we also study two concrete representations of action descriptions, as syntactic trees or
as (possibly) more compact circuits, where identical subexpressions are not necessarily repeated. The
former representation gives a natural measure of the size of action specifications, while the latter is the
one typically used for algorithmic efficiency, in particular for binary decision diagrams (Bryant, 1992).

To sum it up, our contributions are the following:

• we define a formal knowledge compilation framework for nondeterministic planning, including
the notions of action languages and translations between them and queries and transformations
which are the most natural to consider in this setting,

• then, we define three minimally complete languages for which we obtain a complete picture re-
garding their complexity and relative succinctness for both the tree and the circuit representation,

• finally, we study variants of these languages, and for all of them we give a complete picture for
complexity of queries (usually for both tree and circuit representations, except for Chapter 7 where
we do not make the distinction of representations for some languages, and Chapter 9 where all
results are given only for circuits), and several succinctness results and results about the complexity
of transformations (however, with gaps which are yet to be filled).

We will proceed as follows: in Chapter 2 we give an overview of related work and explain the dif-
ferences to our study. In Chapter 3 we give some preliminaries from propositional logic and complexity
theory. Then, in Chapter 4 we formally define the main concepts of our study: on the one hand, action

6

languages as the central object of the study, and on the other hand – queries and transformations, whose
complexity will be used to construct the knowledge compilation map. In Chapter 5 we define the action
languages which are basic for this work. For them we give the complexity results together with the de-
tailed proofs which contain almost all important proof ideas in Chapter 6. In Chapter 7 we define variants
of the basic action languages which are obtained by imposing some syntactic restrictions on them, and
give the corresponding complexity results. In Chapters 8 and 9 we proceed to defining extensions of the
basic action languages. As we said, reasoning about extensions is harder than about the basic languages,
so that we have less proven results and more open questions in those chapters. In the end of each chapter
with technical results we will give a brief summary with a table or diagram illustrating those results. We
conclude by giving a summary of the work and commenting on perspectives in Chapter 10. Appendix A
contains a table of the most important notions in this work and can be used to look up the definitions
without the need to search for it inside the thesis.

1.3 Publications

Our results are partially published in the following conference papers:

1. S. Scheck, A. Niveau, and B. Zanuttini. Knowledge Compilation for Action Languages. In
Journées Francophones sur la Planification, la Décision et l’Apprentissage pour la conduite de
systèmes (JFPDA 2020), 2020

2. S. Scheck, A. Niveau, and B. Zanuttini. Knowledge Compilation for Nondeterministic Action Lan-
guages. In Proceedings of the International Conference on Automated Planning and Scheduling,
volume 31, pages 308–316, 2021b

3. S. Scheck, A. Niveau, and B. Zanuttini. Explicit Representations of Persistency for Propositional
Action Theories. In Journées Francophones sur la Planification, la Décision et l’Apprentissage
pour la conduite de systèmes (JFPDA 2021), 2021a

4. S. Scheck, A. Niveau, and B. Zanuttini. A KC Map for Variants of Nondeterministic PDDL. In
16es Journées d’Intelligence Artificielle Fondamentale (JIAF 2022), 2022

The chronological ordering of the articles goes hand in hand with the introduction of new action lan-
guages, but the results about a new action language also involve its succinctness relation to the previously
introduced ones, and therefore it is not possible to say “the results from this article correspond to that
chapter”. This is especially so because we did not yet publish results about O-PDDL nor its variants,
and these results are distributed over the whole work. There are also no published results about the
action conjunction yet, these are given in Chapter 8. What can be related to articles are the languages
E-PDDLseq (main results are in Scheck et al. (2021b)) and E-PDDLnot (results published in Scheck et al.
(2022)). This thesis is thus a mix of the above articles together with many yet unpublished results.

7

8

CHAPTER 2

Related Work

In this chapter we first give an overview of what we know about current research in related research
areas, and then explain how our approach and results differ from those in the literature.

2.1 State of the art

The choice of an internal representation language has long been recognized by the planning community
as one key to building efficient planners, starting with CMBP (Cimatti and Roveri, 2000), which uses
binary decision diagrams for representing belief states and actions in conformant planning tasks. In the
stochastic setting, SPUDD (Hoey et al., 1999) likewise uses algebraic decision diagrams for representing
value functions and actions.

To et al. (2015) provide an abstract view of such symbolic approaches in the setting of nondeter-
ministic actions, and consider other representation languages, namely CNF, DNF, and prime implicate
representations. More recently, SYMPLE (Speck et al., 2018) uses edge-valued multi-valued decision
diagrams for cost-optimal planning. At another extreme, CONFORMANT-FF (Hoffmann and Brafman,
2006) uses an implicit (hence very succinct) representation, but relies on satisfiability testing for querying
the representation.

The question of representation languages for belief states and actions also arises beyond the classical,
propositional setting. In the stochastic setting, apart from SPUDD cited above, RBAB (Lesner and Zanut-
tini, 2011) uses algebraic decision diagrams for value functions, but (probabilistic) PDDL for actions.
Yet another domain in which efficient representations have been used is that of epistemic planning, with
the use of (DL-PA) accessibility programs (Charrier and Schwarzentruber, 2017) or of binary decision
diagrams (van Benthem et al., 2018) for representing epistemic actions (“event models”) succinctly.

Despite these numerous approaches, as far as we know there has been no systematic study of the com-
plexity of queries/transformations and succinctness for action languages. This is however an important
problem, since many planners start by transforming the action specifications into some representation
considered to be suitable for the particular algorithm (Hoey et al., 1999; To et al., 2015; van Benthem
et al., 2018; Speck et al., 2018). This thesis is thus a first attempt at a systematic study of various ac-
tion languages from the point of view of knowledge compilation. We start by studying nondeterministic
actions, which lie at the core of fully observable nondeterministic planning and of conformant plan-
ning (Rintanen, 2004; Palacios and Geffner, 2009; Geffner and Bonet, 2013; Muise et al., 2014; To et al.,
2015; Geffner and Geffner, 2018), because, as we will argue later in Chapter 6, the results for determin-
istic actions in our setting would be trivial. We also focus on propositional domains, in which states are
assignments to a given set of propositions.

Works with related objectives do exist, but the focus has been on other aspects of planning, like
the representation of plans (Bäckström and Jonsson, 2012), axioms (Thiébaux et al., 2005), or action

9

costs (Speck et al., 2021). The closest line of work which we are aware of is the one pioneered by Bäck-
ström (1995), who study what features of an action language (e.g., negative preconditions) can be em-
ulated by another language for variants of STRIPS. However, this study considers a less demanding
form of translations between languages than we do, allowing translations, in particular, to introduce new
variables. Nebel (2000) studies similar questions, up to preservation of plan length (up to a polynomial
increase, typically). Contrastingly, as explained in Subsection 4.1.3, we are interested in translations
which preserve the exact semantics of actions, including the set of variables involved. The difference
of our approach and that of Nebel resembles that between the Tseitin transformation and equivalent
transformations: while the first ensures equisatisfiability, the latter ensure that set of models remains the
same.

Farther from our goal, but also taking the point of view of knowledge compilation about planning,
Bäckström and Jonsson (2012) study representations of plans with respect to their size and to the com-
plexity of retrieving the individual actions which they prescribe at each step. Another class of objects
related to planning for which a knowledge compilation perspective has been taken is the class of action
costs (Speck et al., 2021). Also related is the translation of HTN specifications into PDDL proposed
by Alford et al. (2009). The objects of interest there (HTN specifications) are different from ours (plain
action specifications), though our study of action specifications using a construct for sequences is remi-
niscent of HTN decompositions at a given level.

Finally, in the knowledge compilation literature, a lot of work has focused on languages for rep-
resenting Boolean functions (Darwiche and Marquis, 2002; Oztok and Darwiche, 2015; Capelli et al.,
2021). We also consider Boolean functions (over variables before and after the action), but our study
departs from these since we consider languages which are not natural for representing standard Boolean
functions, namely, O-PDDL, E-PDDL (defined in Chapter 5) and their variants. These languages have
a “built-in” distinction into predecessor- and successor variables and thus for the size of e.g. an E-PDDL
representation of a given Boolean function it might be crucial which variables have been put into which
set, which relates this representation to the influence of the chosen ordering of variables on the size of
the minimal OBDD (Meinel and Theobald, 1998, Chapter 8). There have been other studies of settings
which likewise depart from standard Boolean functions. In particular, (Fargier and Mengin, 2021) take a
knowledge compilation perspective on languages for representing preferences. Some of these languages
bear important similarities with action languages (in particular, a preference relation also relates two
propositional states to each other, and the ceteris paribus assumption resembles persistency of fluents),
however, the natural problems to study for preferences and for action languages are different.

A general difference of our approach to many others in knowledge compilation is that we consider
very rich languages which are fully expressive. A language is said to be more expressive than another
if the first one can decribe everything the other can, but not vice versa (an example of a study involving
not fully expressive languages is (Fargier and Marquis, 2008)). The advantage of not fully expressive
languages is their higher computational efficiency. In our work, however, we concentrate on languages
which are fully expressive, i.e. able to represent every nondeterministic action. This relates our work
with the classical knowledge compilation map of Darwiche and Marquis (2002), where only complete
languages were studied.

What is different from (Darwiche and Marquis, 2002) is the manner in which the languages under
consideration are obtained: in the classical setting there is one “superlanguage” of Boolean formulas
in negation normal form, and all languages are its subclasses obtained by some syntactic restrictions:
for example, a bounded depth of the formula (CNF, DNF), restrictions on sets of variables shared by
subformulas (DNNF), ordering of the variables (OBDD) etc., thus the basic language NNF is “above” the
rest. By imposing such restrictions tractability of certain queries can be ensured. We, however, take basic
languages which are “in-between”, and then consider their variants obtained by adding connectives taken
from literature in knowledge representation (we will call languages obtained in this manner “extensions”)
or restricting the syntax to resemble “real-life” languages like STRIPS (these languages will be called
“restrictions”). This resembles the approach by Nebel (2000) where the basic language of STRIPS is
made “richer” and more expressive.

10

2.2 Novelty

Most complexity studies in planning restrict themselves to the propositional setting, first because plan-
ners usually operate on grounded representations (Gnad et al., 2019), second – because it is easier to
reason in the propositional setting, but the results are already general enough because the grounding
process is usually straightforward.

We start by defining three basic languages, of which one is inspired by the existing KC literature and
at the same time generalizes usual internal representations, namely formulas in negated normal form. The
choice of concretely this language as a typical representative of a declarative language is of secondary
importance, and the particularly chosen NNF action theories are suitable to illustrate all differences
of these two approaches, in particular: the problem of circumscription/ramifications (McCarthy, 1980;
Kartha and Lifschitz, 1994), the notion of translation for languages with a different semantics, and the
succinctness separation proofs. Since the complexity of Boolean formulas is a very well studied domain,
we do not need to put much effort into determining the complexity (most of the results in our work appear
either directly in Darwiche and Marquis (2002) and Lang et al. (2003) or can be deduced from there).
The novelty of our research regarding action theories is the extension of the language by connectives
which aim at adding an imperative flavour to a declarative language and thus could contribute to avoid
facing the frame problem when specifying actions. One of these connectives, CX ,V,F , aims at formalizing
the idea of the frame as in Kartha and Lifschitz (1994) in a way that allows to reuse already existing
action descriptions without any change. Contrary to other approaches we just define a simple grammar
where the corresponding connectives can appear anywhere in the formula, which generalizes already
existing formalisms, and again, general results about the very rich language studied in this work can be
transferred to special cases which are or will be studied in the literature. The other connective is not
inspired by any existing notion but by direct intuition.

As for imperative languages, the original motivation for the basic action languages which we will
consider is a formal propositional abstraction of the nondeterministic extension NPDDL of PDDL pro-
posed in Bertoli et al. (2003). It turns out that a straightforward formalization of the grammar leads to
a definition of action descriptions which matches the general definition of effects by Rintanen (2003),
where compound effects are defined as “conjunctions” and “disjunction” of other effects. These effects
are nondeterministic and the definition is general enough to ensure that each possible nondeterministic
action can be represented. Moreover, this setting is even more general than ours because the author
considers probabilities for nondeterministic choices, which we do not do. In his work, Rintanen shows
that for each nondeterministic effect there are equivalent effects in different normal forms. The syntax
of those effects is very close to our definition of the syntax of O-PDDL and E-PDDL (Chapter 5), but
we do not make the assumption that variables can be set only by one occurence of this variable in an
effect at once. Two different ways to relax this condition are the reason why we consider two different
nondeterministic variants of PDDL.

The first solution is inspired by the semantics of STRIPS (Fikes and Nilsson, 1971; Lifschitz, 1987),
when the transition from a predecessor state to a successor state happens by first deleting the “Delete
list” and then adding the “Add list”. Thus we can say that “addition overrides deletion” and whenever a
conflict between effects occurs it is resolved in favor of positive effects.

Another solution is the one used e.g. by Nebel (2000), which is to say that an application of an action
in a state is undefined if the positive and the negative effects are inconsistent. This is in the spirit of the
parallel composition u from the Dynamic Logic of Parallel Propositional Assignments DL-PPA (Herzig
et al., 2019). DL-PPA is an extension of DL-PA (Balbiani et al., 2013), a logic originally invented to
provide a framework for reasoning about imperative programs.

A particular result from Herzig et al. (2019) is that every program π in DL-PPA can be translated
into an equivalent DL-PA program in polynomial time, which implies that the connective of parallel
composition can be eliminated without explosion in size. This translation, however, uses additional
variables which does no harm because of the semantics of DL-PA which assumes the set of what we call
state variables to be infinite. Our approach is more restrictive since we compare expressions analogous
to Boolean formulas and assume the models to be assignments to finite sets of variables, and thus this
translation is not possible in our setting. From this point of view our study can be seen as “which

11

connectives can be expressed by other connectives without the use of additional variables and without a
super-polynomial blow-up in size”, and whether the parallel composition can be compiled away using
other connectives is an example for a natural question in our setting. The inspiration by DL-PPA and the
very similar semantics are the reason why we have chosen the DL-PA-like notation instead of that which
is more typical for the planning literature.

In the formal framework which will be defined in Chapter 4 we give a formal meaning to actions:
an action in our propositional setting is simply a collection of state transitions (s,s′) and thus for a set
of propositional state variables P a P-action corresponds to a Boolean function over P∪P′ where P′

stands for P after the execution of an action. Therefore we can say that we study classical knowledge
compilation for languages inspired by planning, but contrastingly to many other works on knowledge
compilation for representing Boolean formulas we do not pay much attention to trying to find sublan-
guages which allow for many tractable queries, but rather concentrate on expressivity of connectives
and their interaction. Thus our most important and practically relevant results will be the succinctness
separation results which show that some formalism is much richer than the other. Also in contrast with
many studies is that except for Chapter 7 we do not impose any restrictions on the depth of the formula,
ordering of the variables or ordering of the connectives, i.e. the grammar will be as general as possible.

We remark that many of the presented results are interesting on their own, even without a relation to
a concrete action language that exists “in real life”. For example, a particular succinctness result could
contribute to the design of some “real” action language in future, or a proof idea can be used in other
knowledge compilation studies not directly related to planning.

12

CHAPTER 3

Preliminaries

Contents
3.1 Model-based Domain-independent Planning . 13
3.2 Negation Normal Form . 14

3.2.1 Boolean Languages . 15
3.2.2 Conjunctive Normal Form . 15
3.2.3 Disjunctive Normal Form . 15
3.2.4 Representations . 15

3.3 Background in Complexity Theory . 16

For the sake of completeness we will give a brief, but necessary background in nondeterministic
planning, logic and computational complexity.

3.1 Model-based Domain-independent Planning

Since our study is mainly motivated by the operations on action descriptions performed by a planner, we
first give the formal definition of a planning task.

The following notation is standard in the literature (with little variations, concretely this notation
follows that by (Geffner and Bonet, 2013, p. 65)): a general non-deterministic (fully observable) planning
model without action costs is a tuple Σ := 〈S,S0,SG,A,F〉 where

• S is a finite set of possible states

• S0,SG ⊆ S are the set of possible initial and goal states respectively

• A is a set of actions, with A(s)⊆ A the set of actions applicable in s ∈ S

• F is a nondeterministic transition function with F(a,s)⊆ 2S for all a ∈ A,s ∈ S

In our work, for the sake of simplicity, we will write a(s) instead of F(a,s) and not distinguish between
action symbols and actions, because the subject of the study are computational properties of action
representations and not the planning formalisms themselves.

For a sequence of actions 〈a1, . . . ,ak〉 and 0 ≤ i ≤ k− 1 we define its execution (with S0 as above):
Si+1 := {si+1 ∈ ai(si) | si ∈ Si}. Then we can define various notions of solutions. For example, a sequence
of actions 〈a1, . . . ,ak〉 is a strong linear plan for Σ if each ai+1 is applicable in Si for all 0 ≤ i ≤ k− 1
(i.e. the action sequence is executable) and ak(Sk−1) ⊆ SG. The problem of checking whether a given
sequence of actions is indeed a plan is known as belief tracking.

13

A more flexible concept than linear plans is the notion of policies: a policy is a mapping π : S→ A
which defines which action is to be chosen in which state. An execution of a policy π in state s0 is a
sequence s0,π(s0),s1,π(s1),s2,π(s2), . . . with si+1 ∈ (π(si))(si). A policy is an acyclic safe solution (this
term is used for instance by (Ghallab et al., 2016)) to Σ if each of its executions in any s0 ∈ S0 is acyclic
(i.e. there is no repetition of states) and necessarily reaches a goal state sG ∈ SG at some point.

In the propositional setting, initial and goal states are often assumed to be represented by a Boolean
formula, i.e. the set of goal states is defined to be the set of all states which have a given (desired) property
described by the formula.

3.2 Negation Normal Form

In this thesis we will use the usual logical connectives for Boolean formulas: ∧ (conjunction), ∨ (dis-
junction), ¬ (negation), → (implication), ↔ (equivalence) and ⊕ (“exclusive or”) with the usual inter-
pretation. For the Boolean values we will use > and ⊥ for “true” and “false” respectively.

The first KC map (Darwiche and Marquis, 2002) was designed to compare languages of Boolean
formulas in negation normal form.

Definition 3.1 (NNF). Let Q be a set of variables. A literal over Q is a variable q ∈Q or its negation ¬q.
A Boolean formula ϕ over Q is said to be in negation normal form (NNF) if it is built up from literals
using conjunctions and disjunctions, i.e., if it is generated by the grammar

ϕ ::= q | ¬q | ϕ ∧ϕ | ϕ ∨ϕ

where q ranges over Q. The variables which occur in ϕ will be denoted by V(ϕ).

Example 3.2. Let Q = {p,q,r}. The formula ϕ = p∨(q∧¬r) is an NNF formula, but ψ = q→¬(p∧r)
is not an NNF formula, because it contains a negation of a non-atomic subformula and an implication
operator.

The set of NNF formulas is complete, i.e., any Boolean function can be expressed by an NNF for-
mula. In particular, a Boolean formula that contains only the operators ∨, ∧,→ and ¬ can be transformed
into an equivalent NNF formula in linear time. > and⊥ are formally not part of the grammar we defined
above, but they can be expressed as p∨¬p and p∧¬p, respectively, and therefore we allow for NNF for-
mulas to contain > and ⊥-symbols. We will assume that all logical formulas in our work are in negated
normal form unless stated otherwise. Since ϕ ↔ ψ is equivalent to (ϕ → ψ)∧ (ψ → β), a formula with
a bounded depth d of nesting of ↔ can be transformed into an equivalent NNF formula in linear time
(the time required for the transformation is exponential in d, but d is bounded), too. Therefore we will
sometimes use formulas containing↔ for the sake of simplicity and compactness, but keeping in mind
that we actually mean an equivalent NNF formula.

It is important to note that a formula ϕ with V(ϕ) ⊆ Q for some set of variables Q can be viewed
as a formula over Q (and the truth value of the corresponding Boolean function does not depend on the
variables in Q \V(ϕ)). For a Boolean formula ϕ over a set of variables Q and an assignment t to the
variables in Q, we write t |= ϕ (“t satisfies ϕ”) if ϕ evaluates to true under the assignment t. A special
case of this notation is t |= q for a variable q, which means that t(q) =>. The set of all models of ϕ will
be denoted by ‖ϕ‖. A formula ϕ is called satisfiable if ‖ϕ‖ 6= /0, i.e. there exists at least one model of ϕ ,
and unsatisfiable otherwise. Two formulas ϕ and ψ are equivalent, denoted by ϕ ≡ ψ if ‖ϕ‖= ‖ψ‖.

A formula is (partially) quantified if some of its variable occurences are bound by a quantifier (∃,∀).
If all variables are bound, it is called fully quantified. A quantified Boolean formula is in prenex normal
form if it consists of two parts: the quantifier-free second part called matrix (which is a normal Boolean
formula) and the first part containing only quantifiers.

Throughout the whole document we will use the greek letters ϕ,ψ,Φ,Ψ, . . . for logical formulas and
capital latin letters A,B,S,T,Q, . . . for sets of variables.

14

3.2.1 Boolean Languages

In the following we will consider several special classes of NNF formulas which play an important role
in knowledge compilation (but not only there). In the knowledge compilation literature these classes are
called languages (Darwiche and Marquis, 2002). The basic Boolean language in the literature is that of
NNF formulas, and its subsets will be called (sub)languages. By NNF (respectively CNF, DNF, . . .) we
might refer to the language or to just one formula, if the meaning is clear from the context, but usually
we will say “NNF formula” to avoid misunderstandings.

3.2.2 Conjunctive Normal Form

Definition 3.3 (CNF). Let Q be a set of variables. A clause over Q is a disjunction of literals. A Boolean
formula ϕ over Q is said to be in conjunctive normal form (CNF) if it is a conjunction of clauses.

Example 3.4. Let Q = {p,q,r}. γ1 = p∨¬p∨ q and γ2 = r∨¬q are clauses, and their conjunction
ϕ = γ1∧ γ2 = (p∨¬p∨q)∧ (r∨¬q) is a CNF-formula.

The set of all CNF formulas is complete, because any NNF formula can be transformed into an
equivalent CNF formula using the distributivity law, De Morgan’s laws and the elimination of double
negations.

A formula is said to be a 3-CNF if it is a CNF with at most three literals per clause.

3.2.3 Disjunctive Normal Form

Definition 3.5. Let Q be a set of variables. A term over Q is a conjunction of literals. A Boolean formula
ϕ over Q is said to be in disjunctive normal form (DNF) if it is a disjunction of terms.

Disjunctive normal form is the dual concept of CNF.

Example 3.6. The set of DNF formulas is complete because every Boolean formula ψ is equivalent to
the disjunction of terms tψ

s , where s ranges over all models of ψ and tψ
s = (

∧
s|=q q)∧ (

∧
s 6|=q¬q). I.e.

any Boolean function can be represented by a disjunction of terms, of which each one represents a tuple
which is mapped to > by this function.

3.2.4 Representations

One of the key aspects studied in knowledge compilation is the succinctness of languages which are
equally expressive. In order to reason about succinctness, it is crucial to define the size of formulas.
There are two natural variants of measuring the size.

The first variant corresponds to a representation of the formulas ϕ in the language by their syntactic
rooted tree. In this case, the size of a formula is just the number of symbols occuring there (excluding
the parentheses, which are actually not necessary, but rather used for better readability).

The second variant, which is the one used in the literature about knowlegde compilation (Darwiche
and Marquis, 2002), corresponds to the representation of these formulas ϕ by a rooted directed acyclic
graph, or circuit, where a root of a subformula can be the end node of many arcs. This allows to store
isomorphic subformulas one time independently of the number and place of their occurences in the
formula. A circuit can be reduced (this reduction process is similar to the one underlying binary decision
diagrams (Bryant, 1992)) by iteratively identifying the roots of two isomorphic subformulas to each other,
until no more reduction is possible. It is important to emphasize that we consider the tree representation
to be a special case of the circuit representation.

For example, when recursively defining a function f which maps formulas to other formulas, we
might use f (ϕ ∧ψ) := (f (ϕ)∨ f (ψ))∧ f (ϕ). In the tree representation the size of the image of a
formula would in general be exponential because of the double occurence of f (ϕ), but in the circuit
representation we can store the circuit of f (ϕ) once and refer to it twice. A concrete example of a
reduced circuit representation and the tree representation of a formula can be seen in Figure 3.1.

15

∧

∧ ∨

∨x1 ∨ ¬x2

∧ ∧

x3 ¬x4 ¬x3 x4

∧ ∧

x3 ¬x4 ¬x3 x4

∧

∧ ∨

∨

∧ ∧

x1 ¬x2

x3 ¬x4 ¬x3 x4

Figure 3.1: A tree (on the left) and circuit (on the right) NNF representation of the propositional (non-
NNF) formula (x1∧ (x3⊕ x4))∧ ((x3⊕ x4)∨¬x2). We see that the subformula induced by the ∨-node at
the third level occurs twice, but in the circuit representation it is stored just once and then referenced two
times.

Thus, the circuit representation of formulas with an arbitrary depth might be exponentially shorter
than the tree representation of the same formula, but for formulas of bounded depth this is not the case.

For all languages and representations, we write |α| for the size of an formulas ϕ in the representation,
namely the number of nodes and edges in the tree or DAG. For a set M we denote by |M| the cardinality
of M. Since we consider all formulas (and other syntactic expressions) in this work as graphs (including
trees), we might refer to subformulas (resp. subexpressions) as (internal) nodes and leaves.

3.3 Background in Complexity Theory

In this section we briefly give some basics from complexity theory which will be sufficient to understand
the complexity proofs in this work. We will refrain from giving formal definitions like in Arora and
Barak (2009) because the details of the theory are not important for our results.

Definition 3.7. A decision problem is a class of questions (called instances) which require a “yes” or
“no” answer. A decision problem is in the complexity class

• P if there exists an algorithm which outputs the answer in time polynomial in the size of the input
(we say it is a polynomial-time algorithm),

• NP if the answer “yes” can be verified by a polynomial-time algorithm when provided a certificate
whose size is polynomial in the size of the input,

• coNP if the answer “no” can be verified by a polynomial-time algorithm when provided a certifi-
cate whose size is polynomial in the size of the input,

• PSPACE if the answer can be computed by an algorithm that uses an amount of memory space
which is polynomial in the size of the input.

An alternative definition for NP involves nondeterministic Turing machines, that is, machines which
are the “best-possible guesser”. Then NP is the set of problems solvable by a nondeterministic Turing
machine in polynomial time, which explains the name (Nondeterministic Polynomial-time). Using this
definition one can define NPSPACE to be the class of problems which can be solved by a nondeterminis-
tic Turing machine using a polynomial amount of space. Since a well-known implication from Savitch’s
theorem is that NPSPACE = PSPACE (Arora and Barak, 2009, Theorem 4.12), we won’t introduce the
notion of Turing machines which is otherwise not relevant for this work.

For a complexity class C ∈ {NP,coNP,PSPACE} we say that a decision problem S is C-hard if
every decision problem T in C can be reduced to S in polynomial time, i.e. there is a polynomial-time
algorithm which computes for an instance t of T an instance s of S such that the answer for s is “yes” if
and only if it was “yes” for t. A C-hard problem is C-complete if it is in C and at the same time C-hard.

16

In this work, we will also use nonuniform complexity classes.

Definition 3.8. A polynomial advice function is a function a with the codomain {0,1}∗ (i.e. the set of all
strings with entries 0 or 1) such that for two inputs x,y with |x|= |y| (i.e. with the same length) it holds
a(x) = a(y) and the length of a(x) is bounded by a polynomial in |x|. Let C be a complexity class. Then
C/poly is the class of problems which are in C if the instances x are extended by a second input a(x) with
some polynomial advice function a.

Informally, for a decision problem S being in C/poly means that every instance s of S can be answered
by some C-algorithm (e.g. nondetermnistic Turing machine for C = NP), but the concrete algorithm is
chosen depending on the size of s.

The simplest illustration of this concept is the complexity class P/poly of problems which are solv-
able in polynomial time if the input is extended by an advice string which depends on the size of the
instance. In words this means that for the inputs of size n there exists a polynomial-time algorithm an

solving the problem, and an can be different for each n, thus a problem S in P/poly can be answered by
a family {an}n∈N of polynomial-time algorithms.

Inclusions and Assumptions Some relations between complexity classes are well-known (Arora and
Barak, 2009): for example, P is contained in NP,coNP and P/poly, and NP and coNP themselves are
contained in PSPACE. PSPACE itself is equal to coPSPACE (and thus coPSPACE = NPSPACE).

In our work we will use yet unproven assumptions especially about the nonuniform complexity
classes P/poly, NP/poly and coNP/poly. Although it is unproven, it is widely believed that all of
the complexity classes defined in Definitions 3.7 and 3.8 are distinct: in particular, it is believed that
NP 6⊆ P/poly and coNP 6⊆ NP/poly. NP⊆ P/poly would imply a collapse of the polynomial hierarchy
at the second level (Karp-Lipton theorem) and coNP ⊆ NP/poly would imply a collapse at the third
level (Yap, 1983) (for more details, and especially for the definition of the polynomial hierarchy, we
refer to Arora and Barak (2009)). Especially we assume PSPACE 6⊆ NP/poly.

Hard problems For a decision problem S (like deciding whether an action is applicable in a state) we
want to find the “smallest” complexity class C which contains it. Usually this means that S is among the
hardest problems in C, i.e. it is C-complete. Thus a complexity result for some query which is harder
than polynomial-time solvable normally consists of two parts: the membership and the completeness
part. In the membership part we prove that the problem is indeed in C, and in the hardness part we
give a polynomial-time reduction to S from some other problem T for which it is already known that it
is C-hard. C-hardness of S then follows by transitivity of reductions. There are large lists of problems
which are already proven to be complete (for example, many NP-complete problems are listed by Garey
and Johnson (1979)), but we will usually deal with the few classic ones, which are worth defining at this
point:

• Deciding the satisfiability of a 3-CNF is an NP-complete problem (known as 3-SAT),

• Deciding the unsatisfiability of a 3-CNF formula is a coNP-complete problem,

• Deciding the validity of a fully quantified Boolean formula with alternating quantifiers of the form
∃x1 : ∀x2 : ∃x3 : . . .∀xn : ϕ with a 3-CNF ϕ is a PSPACE-complete problem.

These problems are still quite general, and we are going to use more specific versions in proofs.

Lemma 3.9. Let k ≥ 3, then deciding the satisfiability of a 3-CNF ϕ is polynomial-time reducible to
deciding the satisfiability of another 3-CNF ψ with at most k occurences of each variable.

PROOF. Let ϕ be a 3-CNF over {x1, . . . ,xn}. Let the variable xi occur k+ j times in ϕ . We introduce the
variables y1

i , . . . ,y
j
i (and for notational convenience we write y0

i for xi) and for m = 1, . . . , j we replace
the m-th occurence of xi in ϕ with ym

i , and then append the clauses (ym−1
i ∨¬ym

i) and (¬ym−1
i ∨ ym

i) to
the modified ϕ (the conjunction of these two clauses is equivalent to ym−1

i ↔ ym
i). We obtain ψ by doing

17

this for all xi. This construction can be performed in linear time because for each “excessive” occurence
we need to add a constant number of symbols. φ and ψ are equisatisfiable by construction, because a
model of φ can be extended to a model of ψ by assigning the value of xi to the y1

i , . . . ,y
j
i , and for every

assignment satisfying ψ the restriction to the xi-variables is already a model of ϕ . �

Lemma 3.10. Deciding the validity of fully quantified formulas ¬(∃x1 : ¬(∃x2 : ¬(. . .¬(∃xn : ϕ) . . .)))
and ¬(∀x1 : ¬(∀x2 : ¬(. . .¬(∀xn : ϕ) . . .))) with ϕ being a 3-CNF or a 3-DNF is a PSPACE-complete
problem.

PROOF. First we observe that we can always introduce dummy variables y and z to obtain any desired
sequence of operators, for example: ∃x : χ ≡ ∀y : ∃x : ∀z : χ with y,z /∈ V(χ). Furthermore, for all
formulas χ it holds ∃x : χ ≡ ¬(∀x : ¬χ) and ∀x : χ ≡ ¬(∃x : ¬χ).

We know that deciding whether ∃x1 : ∀x2 : ∃x3 : . . .∀xn : ϕ with a 3-CNF ϕ is true is a PSPACE-
complete problem, and by applying the above equivalences we can completely eliminate one sort of
quantifier in a formula. For example: ∃x1∀x2∃x3 . . .ϕ with a 3-CNF ϕ is equivalent to ¬(∀x1 : ¬(∀x2 :
∃x3 : . . .∀xn : ϕ)). In the same manner we continue for the subformula ∃x3 : ∀x4 : . . .∀xn : ϕ , and repeat
the procedure until there are no more existential quantifiers. Then the transformed formula equivalent
to the original one is ¬(∀x1 : ¬(∀x2 : ¬(. . .¬(∀xn : ϕ) . . .))). Observe that ϕ itself is not negated here
because the last variable xn was universally quantified. If xn is existentially quantified, after performing
the above transformations we obtain ¬(∀x1 : ¬(∀x2 : ¬(. . .¬(∀xn : ¬ϕ) . . .))), and ¬ϕ is equivalent to a
3-DNF.

Dually, by replacing the universal quantifiers with negated existential ones we can transform every
fully quantified formula into the form ¬(∃x1 : ¬(∃x2 : ¬(. . .¬(∃xn : ϕ) . . .))). Since we can introduce
dummy variables, we can always get an appropriate prefix of quantifiers such that after transforming the
quantifiers using negations we obtain the desired form with only one sort of quantifiers and a 3-CNF or
a 3-DNF matrix. �

18

CHAPTER 4

A Formal Framework for Comparing Action Languages

Contents
4.1 Action Languages . 19

4.1.1 States . 19
4.1.2 Actions . 20
4.1.3 Translations . 21

4.2 Criteria for Comparison . 21
4.2.1 Queries . 22
4.2.2 Succinctness . 24
4.2.3 Transformations . 24

In this chapter we will formally define and illustrate the main notions of our study: states, actions,
action languages and translations between them, and give the criteria which we will use to design our
KC map. As we said in the introduction, these criteria can be roughly divided into three sorts: queries,
which in our case will all be decision problems, whose complexity is of interest, transformations, where
the output is a formula or an action description and where we are interested in the size of the output, and
succinctness relations between languages.

4.1 Action Languages

The object of study of this work are the properties of action languages. The notion of an action language
is similar to that of Boolean languages from Chapter 3, but a little more general. We recall that while in
the original KC map all languages had the same interpretation and semantics and the only difference was
the structure of the formulas, in our setting we will consider two different types of languages: the ones
inspired by STRIPS and PDDL, which are “imperative” because changes of variable values are explicitly
written in form of commands/variable assignments, and the “declarative” ones which specify relations
between predecessors and successors and are based on Boolean formulas, and where variables can change
their values if it is not explicitly prohibited. Recall that we study propositional representations.

4.1.1 States

Throughout our work we will consider a countable set of propositional state variables P := {pi | i ∈N}.
Sometimes we will use other variables like qi,ri, . . ., xi,yi, . . . or more sophisticated state variables like
window_open for better clarity.

Let P ⊂ P be a nonempty finite set of state variables; a subset of P is called a P-state, or simply a
state. The intended interpretation of a state s ∈ 2P is the assignment to P in which all variables in s are

19

true, and all variables in P \ s are false. For instance, for P := {p1, p2, p3}, s := {p1, p3} denotes the
state in which p1, p3 are true and p2 is false. Analogously to logical formulas we write V(α) for the set
of variables occuring in an action description α; note that we will consider expressions involving both
variables in P and variables not in P, so in general we do not have V(α) ⊆ P. If we write s |= ϕ for a
state s and formula ϕ we mean that the assignment corresponding to s is a model of ϕ .

4.1.2 Actions

We consider (purely) nondeterministic actions, which map states to sets of states. Hence a single state
may have several successors through the same action, in contrast with deterministic actions (which map
states to states), and no relative likelihood is encoded between the successors of a state, in contrast with
stochastic actions (which map states to probability distributions over states).

Definition 4.1 (action). Let P ⊂ P be a finite set of variables. A P-action is a mapping a from 2P to
2(2

P). The states in a(s) are called a-successors of s and P is called the scope of a.

Note that a(s) is defined for all states s. We say that a is applicable in s if and only if a(s) 6= /0.
Every action a can be identified with a binary transition relation ‖a‖ on states which is defined as
‖a‖ := {(s,s′) | s′ ∈ a(s)}. Elements of ‖a‖ are called state transitions.

In this thesis, we are interested in the properties of representations of actions in various langugages.

Definition 4.2 (action language). An action language is an ordered pair 〈L, I〉, where L is a set of ex-
pressions and I is a partial function from L×2P to the set of all actions such that, when defined on α ∈ L
and P⊂ P, I(α,P) is a P-action.

If 〈L, I〉 is an action language and L′ ⊆ L then we call 〈L′, I|L′×2P〉 a sublanguage of 〈L, I〉 and 〈L, I〉
a superlanguage of 〈L′, I|L′×2P〉. An action language 〈L, I〉 is complete, if for every P and every P-action
a there exists an α ∈ L with I(α,P) = a.

We call the expressions in L action descriptions, and call I the interpretation function of the language.
In this work action descriptions will be generated by a simple grammar similar to that of propositional
logic, which will be given in Bachus-Naur form. Complex expressions will be generated from atomic
actions using connectives (for example, the O-PDDL action description +p&−q consists of the atomic
actions +p and −q which are connected via the &-connective). An action language then will be either
directly defined as the set of all expressions generated by a grammar, or as a subset of this set satisfying
some additional criteria. Sometimes we will use the letter L to denote a generic action language and not
just its action descriptions. In such cases we will use IL to denote its interpretation function.

Observe that those sets P such that I(α,P) is defined are a priori not related to V(α): α may
involve extra symbols (not in P) which are not part of the state descriptions, and dually, a state may
assign variables of P which do not occur in α . As an illustration of the role of P, for the NNF action
theory α := (p∧¬p′)∨ (¬p∧ p′), which can be read “switch the value of p”, the semantics of such
theories (defined in Section 5.4) implies that all other variables take an arbitrary value after the action.
Hence the argument P in I(α,P) specifies which variables we consider and hence, which variables are
“reinitialized” in this manner. For example, if P = {p,q} then both states s′ = {p} and s′′ = {p,q}
are I(α,P)-successors of s = /0, and P 6⊆ V(α). This example also illustrates the use of extra symbols:
V(α) = {p, p′} 6⊆ P.

If the language 〈L, I〉 and the set P are fixed or clear from the context, then we write α(s) instead
of I(α,P)(s) for the set of all α-successors of s. We might also say “action α”, meaning the action
described by the action description α .

For an action description α we write ‖α‖ in the meaning of ‖I(α,P)‖ if I is clear from the context
and P is fixed. Recall that for logical formulas ϕ the notation ‖ϕ‖ stood for the set of models of ϕ , and
analogously, ‖α‖ can be seen a set of models of α where each model is a state transition (s,s′). For
actions α and β in a fixed language 〈L, I〉, we write α ≡ β if for all P such that I(α,P) and I(β ,P) are
defined, ‖I(α,P)‖= ‖I(β ,P)‖ holds.

As a general rule, we will use notation s, t, . . . for states, a,b, . . . for actions and α,β , . . . for action
descriptions.

20

4.1.3 Translations

Definition 4.3 (translation). A translation from an action language 〈L1, I1〉 to another language 〈L2, I2〉
is a function f : L1× 2P→ L2 such that I1(α,P) = I2(f (α,P),P) holds for all α ∈ L1 and P ⊂ P such
that I1(α,P) is defined.

In words, this means that the L1-expression α and the L2-expression f (α,P) describe the same P-
action. For instance, considering α := (p∧¬p′)∨ (¬p∧ p′) again and the set P := {p,q}, it can be
translated into the following expression in the nondeterministic variant of PDDL defined by Bertoli et al.
(2003):

(and (when (p) (not p)) (when (not p) (p)) (oneof q (not q)))

Again, when P is clear from the context, we write f (α) for f (α,P).
We insist that a translation is not allowed to introduce auxiliary variables. For instance, a translation

of a P-action α could not set a fresh proposition jeα representing “α has just been executed” in the
resulting state s′, since the translation would then be from a P-action to a P∪{jeα}-action. This is in
contrast with many studies of compilation for planning (see Chapter 2). The reason why we focus on this
setting is that we are interested in translating the actions, and not only the solutions to a planning problem.
Our strict notion guarantees that translating the actions of a domain will preserve many properties: the
existence of solution plans of course, but also their length, their number, and measures of complexity
like many notions of width (Palacios and Geffner, 2009; Lipovetzky and Geffner, 2012, for instance).

The translation f is said to be polynomial-time if it can be computed in time polynomial in the size
of α and P, and polynomial-size if the size of f (α,P) is bounded by a fixed polynomial in the size
of α and P. Clearly, a polynomial-time translation is necessarily also a polynomial-size one, but the
converse is not true in general. We emphasize that the computational process is not part of the definition
of “polynomial-size”, i.e. the existence of a polynomial-size translation f does not guarantee that f can
be computed using a polynomial amount of space. This remark is a general one, because in our work
all positive results will be about an existence of a polynomial-time translation, and all negative results –
about the non-existence of polynomial-size translations.

We note that the cardinality of P needs to be taken into account for the notions of polynomial-time
and polynomial-size translations. For instance, we will define a translation which is polynomial-time in
|α|+ |P| but in the worst case unbounded in only |α| (Proposition 6.2, page 38). ¸

Representations

We recall from Subsection 3.2.4 that the size of a formula depends on the representation. This notion can
be generalized to action descriptions in the obvious manner: we speak of a tree representation of action
descriptions if they are represented by the underlying syntactic tree, and of the circuit representation
if the representing graph is just a directed acyclic rooted graph. Both action descriptions and Boolean
formulas will be referred to as expressions. Since the grammars of our languages will use propositional
NNF formulas as parts of action descriptions, the chosen representation of action descriptions will also
affect the representation of the contained Boolean formulas. Analogously to formulas we will denote by
|α| the size of the expression α if the chosen representation is clear from the context.

We recall that the space efficiency of representations may significantly (superpolynomially) differ
only if the depth of the expressions is not bounded. Therefore we will give complexity and succinctness
results for both representations of languages L which allow for unbounded depth (except for Chapter 9,
where we emphasize that we study only circuit representations). These representations will be denoted
by LT and LC. If we make a statement about a language without specifying the representation, this means
that the statement holds for both representations.

4.2 Criteria for Comparison

In this section we introduce the criteria which we will use to compare the action languages. In knowledge
compilation we aim at identifying representations which enable storing information efficiently while

21

allowing to answer queries and perform transformations in reasonable time. Therefore we investigate
the complexity of queries and transformations most natural in planning and the relative succinctness of
the action descriptions (Darwiche and Marquis, 2002). Since we said in the introduction that queries are
the varying parts of the input to a computational problem, we should probably use the term query task to
denote the decision problems whose complexity is the key criterion which we study here. But since in
knowledge compilation literature the word query is often used to denote the query task, too, we will say
“query” instead of “query task” in the rest of this work for the sake of simplicity.

4.2.1 Queries

Applicability and Entailment

Remark 4.4. We note that all queries defined below take as input an action description α and at least
one state s, i.e. the question asked is usually “is it true for α and s that . . . ?”. By universally quantifying
over s we obtain a derived query “is . . . true for α and for all s (all s satisfying some property)?”. In this
work we do not concentrate on these derived queries, but we note that their complexity shouldn’t be very
hard to derive from the complexity of the “original” queries.

A large body of planners frame planning problems as search in the space of reachable states or belief
states (i.e., sets of states) or, equivalently, in the space of partial plans. Most essential to such approaches
is the ability to answer two queries at a given node/partial plan: (1) what actions are applicable, or
equivalently, what are the successors of this node, and (2) whether the current partial plan achieves the
goal (whether this is a terminal node). This motivates us to introduce two main queries to an action
language.

In this section let 〈L, I〉 be a fixed action language, α , α1, . . . ,αk be action descriptions in L, P ⊂ P
be a set of variables such that I(α,P) and I(α1,P), . . . , I(αk,P) are defined, and s, s′ be P-states.

When given action descriptions α1, . . . ,αk and a state s, we write (α1 ; . . . ; αk)(s) for the set of states
s′ such that there are s0,s1, . . . ,sk with s = s0, si ∈ αi(si−1) for i = 1, . . . ,k, and sk = s′.

Definition 4.5 (IS-APPLIC). The query IS-APPLIC asks for given α , P, s, whether α(s) is non-empty.

Definition 4.6 (ENTAILS). The query ENTAILS asks for given α1, . . . ,αk, P, s, and an NNF formula ϕ

over P, whether s′ |= ϕ for all s′ ∈ (α1 ; . . . ; αk)(s).

Note that if for (α1 ; . . . ; αk) and s there is no such chain s0, . . . ,sk as defined above then it automat-
ically entails any formula ϕ , especially any unsatisfiable formula, for instance ϕ := p∧¬p ≡ ⊥ for an
arbitrary p.

These two queries together define belief tracking, whose centrality to planning has been put forward
in the more general case of partially observable domains (Bonet and Geffner, 2014; Brafman and Shani,
2016). Recall from Section 3.1 that in order to verify for a sequence of actions that it is a strong linear
plan which reaches a goal we need to ensure that each action ai is applicable after ai−1 and that the goal
in the end is ensured, and this is essentially belief tracking. We wish to emphasize that a more general
formulation of these queries would involve a belief state rather than a state s, and the questions would
be whether all states in the belief state allow the action to be applied or whether they all satisfy the
goal. Since considering various representations of such belief states is out of the scope of this work (see
Remark 4.4), we stick to a single state s. However, upper bounds can already be derived from our results;
for instance, if for a language 〈L, I〉 the query IS-APPLIC is polynomial-time solvable for a single input
state s, then the more general query is in coNP for any “reasonable” representation of belief states (i.e.,
representations of S for which s ∈ S can be decided efficiently): indeed, it suffices to guess such an s ∈ S
that witnesses that the action is not applicable.

We also wish to emphasize that complexity results about these queries not only apply to planners
which directly work with partial plans, as Conformant-FF (Hoffmann and Brafman, 2006). They also
apply to planners in which an explicit belief state is maintained at each node (Cimatti and Roveri, 2000),
even if such belief states are not explicit in the definitions of the queries. For instance, if ENTAILS is
coNP-complete for some action language, then this means that entailment can be decided efficiently from

22

such an explicit representation only if that representation is (in the worst case) exponential in α1, . . . ,αk,
P, s, otherwise maintaining the belief state and checking whether the belief state after the last execution
always satisfies ϕ would give a polynomial-time algorithm.

Another important point is that in many practical languages, actions come with an explicit precon-
dition (Nebel, 2000; Nau, 2007, for instance), namely, a formula ϕ such that the action is applicable at
s if and only if s satisfies ϕ . In that case, query IS-APPLIC is polynomial-time for any “reasonable”
representation of ϕ . Such practical languages are essentially encompassed by our language O-PDDL
(Chapter 5), however, for E-PDDL and NNFAT (Chapter 5) the picture is different: indeed, as we will
show later (Chapter 6), representing preconditions explicitly might be (exponentially) less space-efficient
than representing them implicitly.

The complexities of the two queries are related as follows.

Lemma 4.7. For any action language, the complement of Is-Applic is polynomial-time reducible to
Entails, even if the input sequence of Entails is restricted to contain only one action.

PROOF. An action described by α is not applicable in s (i.e., it has no successors in s) if and only if all
α-successors s′ of s satisfy ⊥≡ p∧¬p for an arbitrary p, i.e. if and only if α entails ϕ :=⊥ in s. �

Successorship

IS-APPLIC and ENTAILS, although being practically relevant, are not the most fundamental ones. Both
IS-APPLIC and ENTAILS ask only about a part of the information captured by an action description. For
example, knowing the answers for IS-APPLIC of α for all s does not allow to uniquely determine the
action described by α . Therefore we define another query, which, while not used directly in practice, is
still very helpful for our studies, because it is very basic and can be seen as model checking for action
languages.

Definition 4.8 (IS-SUCC). IS-SUCC: given α , P, s, s′, decide whether s′ is an α-successor of s.

We will see that knowing the complexity of IS-SUCC is usually sufficient to easily deduce the com-
plexity of other queries.

Other queries

Definition 4.9. An action a is said to be deterministic in state s if |a(s)| ≤ 1.
An action a is said to be positively monotone in state s if for all s′ ∈ a(s) it holds that s⊆ s′. Dually,

an action is negatively monotone in s if s′ ⊆ s for all s′ ∈ a(s).

In words, an action a is deterministic in s if s has at most one a-successor. An action is positively
monotone in s, if it can only change variable values to > (to ⊥ if it is negatively monotone) for each
state transition from s. We emphasize that these definitions depend on a given state, e.g. an action can be
deterministic in one state and not deterministic in another.

The following questions are quite natural for nondeterministic planning. For instance, knowing that
all actions are deterministic is useful because one can first compile the action descriptions into a formal-
ism for classical planning and then apply all the numerous algorithms implemented in this area. And
checking monotony could be useful with respect to computing the delete-free relaxation, which plays an
important role in classical planning (Geffner and Bonet, 2013, page 28).

Definition 4.10. Let 〈L, I〉 be a fixed action language, α an action description in L, P ⊂ P be a set of
variables such that I(α,P) is defined, and s be a P-state. We consider the following queries:

• IS-DET: given α , P, s, decide whether α is deterministic in s.

• IS-MON: given α , P, s, decide whether α is positively monotone in s.

23

For IS-MON we can also consider the dual variant, asking whether an action is negatively monotone
in a given state. We study both of these queries, but we use the same name for them, because the
reasoning is almost always the same for symmetry reasons. At one place in our work (we will explicitly
state, where) there is a little asymmetry, which doesn’t affect the results, though.

The next query may seem a little artificial, and in this work we consider it only to use it in succinct-
ness proofs later.

Definition 4.11. The query ST asks for a given action description α , state variables P and s ⊆ P with
I(α,P) defined, whether s ∈ α(s).

However, ST might still be interesting on its own because answering this query is easy for many
of the languages we are going to study, and a positive answer to ST means that we are not progressing
towards the goal if our policy is using α in s.

Remark 4.12. Obviously, since trees are a special case of circuits, membership complexity results for
queries for the circuit representation also hold for the tree representation of a language, and hardness
results for trees also apply to circuits.

4.2.2 Succinctness

When choosing an internal representation of actions for a planner, we might e.g. want the complexity
of IS-APPLIC not to be harder than NP and that of ENTAILS not to be harder than coNP. Since there
are several languages with these properties, a complementary criterion is to choose a representation
which consumes the least memory, i.e. can express the actions more concisely. This motivates the next
definition (Darwiche and Marquis, 2002); recall that by a complete action language we mean one in
which any nondeterministic action has at least one representation. We will see later that this is the case
of all languages studied in this work.

Definition 4.13 (succinctness). A complete action language L1 is at least as succinct as a complete action
language L2 (written L1 � L2) if there exists a polynomial-size translation from L2 into L1. If in addition
there is no polynomial-size translation from L1 into L2 then L1 is strictly more succinct than L2, written
L1 ≺ L2. If neither L1 � L2 nor L2 � L1, we say that they are succinctness-incomparable.

Clearly, if L2 is translatable into L1 in polynomial time then L1 is at least as succinct as L2.
Apart from choosing internal representations, succinctness also tells to what extent a planner de-

signed for input descriptions of actions in a given language L, can be used to handle descriptions in
another language L′. Indeed, if L is at least as succinct as L′, then this means that an input in L′ can be
translated into one in L, for use by the planner, without an explosion in size. For instance, our results will
show that a planner designed for L = E-PDDL can be used with action descriptions in L′ = NNFAT, but
not necessarily vice-versa. In our work we will only compare languages in terms of succinctness for the
same representation (i.e. we will not compare languages with the tree representations, of the form LT

1 , to
languages with the circuit representation, of the form LC

2).

4.2.3 Transformations

The third main object of interest in knowledge compilation is the complexity of performing transforma-
tions of given expressions. Transformations can be used by planners for reasoning about several actions
at once; for instance, in the probabilistic setting, one version of SPUDD (Hoey et al., 1999) starts by
computing a disjunction of all available actions, so that the current belief state is progressed only once
(by all actions) at each subsequent step.

A natural example of a transformation in knowledge compilation is computing the CNF representa-
tion of ¬ϕ for a CNF formula ϕ . In our article the main difference between queries and transformations
will be the answer we are interested in. For queries we are looking for the membership and hardness re-
sults (e.g. showing that IS-SUCC in a language is both NP-hard and in NP), whereas for transformations
we are interested whether the representation f (α) for some transformation has size bounded by some
polynomial. In this thesis we concentrate on the complexity of the following four transformations.

24

Definition 4.14 (Transformations). Let 〈L, I〉 be a fixed action language, α , α1 and α2 be action descrip-
tions in L, P⊂P be a set of variables such that I(α,P) and I(α1,P), I(α2,P) are defined, and s and s′ be
P-states.

• EXTRACT-PRECOND: given α and P, compute an NNF formula ϕ such that for all s: α(s) 6=
/0 ⇐⇒ s |= ϕ .

• SEQUENCE: given α1,α2 ∈ L, compute an action description β ∈ L such that for all s: β (s) = {s′ |
∃t such that t ∈ α1(s) and s′ ∈ α2(t)}.

• CHOICE: given α1,α2 ∈ L, compute an action description β ∈ L such that for all s: β (s) = α1(s)∪
α2(s).

• NEGATION: given α ∈ L, compute an action description β ∈ L such that for all s: β (s) = {s′ | s′ /∈
α(s)}.

A transformation is said to be polynomial-time if the output action description β (resp. formula ϕ)
can be computed in time polynomial in the size of the inputs, including the scope P. It is said to be
polynomial-size if the size of the output is bounded by a polynomial in the size of the inputs.

We insist that for the three latter transformations it is required that the output is in the same lan-
guage as the input description(s), because they are about transforming action descriptions into other
action descriptions, whereas EXTRACT-PRECOND is rather about extracting information from an action
description. This relates it to queries, but we still see it as a transformation because we are mainly inter-
ested whether representing a precondition explicitly is possible without a loss of succinctness, while for
queries we are interested in the time complexity. Another reason to treat it separately from queries is that
in our work queries always can be formulated in a simple form which requires a state as input, whereas
for EXTRACT-PRECOND there is no such natural formulation, it’s always performed with only an action
description as input. The other direction of EXTRACT-PRECOND, “merging” the precondition and the
description of effects into one expression, is always possible in linear time for the languages which we
study, as we will see later.

As we already discussed in Subsection 4.2.1, the tractability of EXTRACT-PRECOND matters if we
want applicability checking to boil down to satisfaction of a given NNF formula (hence in polynomial
time). The other transformations are useful for planners which reason about higher-level actions. For ex-
ample, a language which supports polynomial-size SEQUENCE is a good candidate for a target language
if the action specification involves expressions similar to Hierarchical Task Networks (Georgievski and
Aiello, 2015) or macro operators (Botea et al., 2005). Similarly, if the actions are specified in a dynamic
logic which allows for action negation (Broersen, 2004), a target language supporting polynomial-size
NEGATION is a good choice if it is computationally more efficient from some point of view. CHOICE is
an obvious transformation to consider when working with nondeterminism.

Somewhat counterintuitive about transformations is that, contrary to queries where we can often
deduce information about complexity from the sub/superlanguage relation (e.g., IS-SUCC is NP-hard for
E-PDDLnot since it is NP-hard already for its sublanguage E-PDDL), it might be that a transformation
is easy for a language L, hard for a superlanguage L′ of L, and again easy for a superlanguage L′′ of L′.

The last remark we make in this section will be about SEQUENCE: the action β satisfying β (s) =
{s′ | ∃t such that t ∈ α1(s) and s′ ∈ α2(t)} for all s will be denoted α1 ; α2 because later in our work we
will introduce the sequence connective ;.

25

26

Part II

Basic Languages

CHAPTER 5

Minimally Complete Languages

Contents
5.1 Effects . 30

5.2 Nondeterministic PDDL . 31

5.3 Egalitarian PDDL . 33

5.4 NNF Action Theories . 34

In this chapter we formally define three action languages, which are minimally complete in the
sense that removing any of the operators from the grammar makes the resulting language incapable
of expressing all possible nondeterministic actions. Two of these languages are imperative and one is
declarative (see Chapter 4).

In Chapter 2 we already mentioned that Rintanen defined a formalism which allows to represent
every nondeterministic action (actually this formalism is in some sense much more general than ours, for
example, nondeterministic choices there come together with probabilities). However, all effect (effects
there roughly correspond to our action descriptions) descriptions there are assumed to satisfy Property 2
which states, that in each state only one occurence of a variable can contribute to the determination of a
successor. This property is “semantic” in the sense that cheking it requires computational effort to find
out whether the given expression is indeed a valid effect. For example, the effect (>B p)∧ (>B¬p)
(expressed with the notation from there) is formed according to the rules of the grammar, but it does not
satisfy Property 2, because the variable p is assigned twice, by the left and the right “conjunct”.

We want to define a semantics which provides an interpretation to every well-formed formula. To
do so we choose two natural ways to relax this assumption. The two (imperative) languages obtained in
this way will be called O-PDDL and E-PDDL, because they can be seen as abstract variants of a non-
deterministic extension (Bertoli et al., 2003) of the Planning Domain Definition Language PDDL (Mc-
Dermott, 1998). Since the different solutions can be expressed by the semantics of just one connective,
we will use the same notation for everything but these connectives, i.e. the only difference between the
grammars of O-PDDL and E-PDDL will be the connective of the parallel composition (& and u, re-
spectively). We found the notation of DL-PA (Balbiani et al., 2013) and DL-PPA (Herzig et al., 2019)
(especially +p and −p for atomic actions and u for the parallel composition) quite intuitive and there-
fore we use it instead of the notation more typical to the planning literature, but we decided to keep the
notation for the conditional execution B because its semantics is quite different from that of the formula
test ϕ?, which is specific to dynamic logics. The intuitiveness is not the only reason, though, later we
will again refer to DL-PPA in Chapter 8.

The third (declarative) language NNFAT is that of NNF action theories, which is a representation of
actions via Boolean formulas in negated normal form.

29

We will argue that these languages are indeed minimally complete and thus a good starting point for
our study. This chapter only contains definitions, explanations and illustrations, and aims at helping the
reader to get familiar with the notation and “style” of the technical part of this work.

We will illustrate the action languages by expressing the following running examples.

Example 5.1. Consider injecting a drug for anesthesia to a patient and then operating her. The whole
process can be described as an action “operating the patient”, and there are several possible results:
the anesthesia might work well, or not, and the surgery itself can be successful or not. If the surgery is
not successful, the patient dies, thus having no pain. If the surgery is successful, the patient is supposed
to have pain, which, however, can be suppressed by the anesthesia. This situation can be described via
the variables P = {no_pain,dead,cured}.

Example 5.2. Consider a self-driving car on a right highway lane with boundary fences (so that there
is no way to get off the road). Suddenly there is a child on the road directly in front of the car. The
car is programmed to always avoid deaths of people outside the car, which in this case can be achieved
by turning left to another lane or by stopping abruptly (or both). On the other hand, it is programmed
to prevent severe damage for the passengers. Therefore, when going left in an emergency situation the
car necessarily launches the airbags to minimize potential damage from the cars on the left lane, and
the other option of saving the passengers is simply staying on the current lane (i.e. not going left). The
situation can be modeled with the variables P = {child_on_road, left,moving,airbag}.

5.1 Effects

In order to define the interpretation functions for the imperative languages we first define the following
notion, similar to that of add- and del-lists of STRIPS.

Definition 5.3 (effect). An effect over a set of variables P⊂P is an ordered pair 〈Q+,Q−〉with Q+,Q−⊆
P and Q+∩Q− = /0. The set Q+ (resp. Q−) is called a positive (resp. negative) effect. An effect 〈A+,A−〉
is a subeffect of an effect 〈Q+,Q−〉 iff A+ ⊆ Q+ and A− ⊆ Q−.

We emphasize that the positive and negative parts of subeffects are disjoint by definition.
In the following we are going to define the set E(α,P,s) of explicit effects of α in s for O-PDDL,

E-PDDL and their extensions and restrictions, but we already use it to define the interpretation functions,
which simply formalize the fact that variables not explicitly set by the action retain their value. For all
action descriptions α in a language L and sets of variables P with V(α) ⊆ P ⊂ P such that E(α,P,s) is
defined, we set:

∀s⊆ P : IL(α,P)(s) := {(s\Q−)∪Q+ | 〈Q+,Q−〉 ∈ E(α,P,s)}

An effect 〈Q+,Q−〉 is said to witness a transition (s,s′) if (s\Q−)∪Q+ = s′.
We emphasize that for a transition (s,s′) there may exist several effects witnessing it. For example,

given P := {p1, p2}, the two effects 〈{p2}, /0〉 and 〈{p1, p2}, /0〉} cause the same transition from s := {p1}
to s′ := {p1, p2}. Note that the second effect “reassigns” p1 to the same value. In fact, it is easy to see that
for two given P-states s,s′, the effects which witness (s,s′) are all 〈Q+,Q−〉 satisfying s′ \ s ⊆ Q+ ⊆ s′

and s\ s′ ⊆ Q− ⊆ P\ s′. This motivates the following definition.

Definition 5.4 (minimal, maximal effect). An effect 〈Q+,Q−〉 is called minimal in s if Q+∩ s = /0 and
Q− ⊆ s hold (i.e. no positive or negative effect is useless in s), and P-maximal if Q+∪Q− = P holds.

In words, an effect 〈Q+,Q−〉 is minimal in s if every variable which occurs in Q+ or Q− indeed
changes the value during the transition defined by this effect in s, and it is P-maximal if every variable in
P is “assigned” by either the positive or the negative effect during the transition.

30

5.2 Nondeterministic PDDL

We start with the well-known planning domain definition language (PDDL). This language is a stan-
dardized one used for specifying actions at the relational level, widely used as an input for planners,
especially in the international planning competitions (McDermott, 1998; Fox and Long, 2002, 2003).
Since we are interested in nondeterministic actions, we consider a nondeterministic variant of PDDL
inspired by NPDDL (Bertoli et al., 2003), and we abstract away from the precise syntax of the specifica-
tion language. Note that PDDL enables specifications at the relational level, but we consider grounded
specifications, since this thesis focuses on the propositional setting.

We first define the syntax of O-PDDL. The “O” in our notation means “original”, because later in
Subsection 5.3 we will consider an alternative language with a slightly different semantics for simulta-
neous execution, which we will denote by E-PDDL. In the same time the “O” stands for “overriding”
because it is the language where “addition overrides deletion”.

Definition 5.5 (O-PDDL). An O-PDDL action description is an expression α generated by the grammar

α ::=+p | −p | ϕBα | (α ∪α) | α &α | ⊥

where p ranges over P, and ϕ over formulas in NNF over P.

Intuitively,

• +p (resp. −p) is the action which sets p true (resp. false),

• B denotes conditional execution,

• ∪ denotes (exclusive) nondeterministic choice,

• & denotes simultaneous execution, where addition overrides deletion,

• ⊥ denotes failure,

and, importantly, variables not explicitly set by the action are assumed to keep their value. Also observe
that auxiliary variables are not allowed — only variables in P can occur. +p and −p are called atomic
actions. Later we will often write ±p meaning “+p or −p”.

This syntax is an idealization of nondeterministic (grounded) PDDL; for instance, the action which
we write xB

(
+y∪ (−y&+z)

)
would be written

when x (oneof y (and (not y) z))

with the syntax of NPDDL (Bertoli et al., 2003).
Intuitively, a state transition via an O-PDDL action can be seen as an execution of the action, which

is a top-down execution of the nodes according to their semantics. We execute a ∪-node by choosing the
left or the right side of it, and then executing in parallel the left and the right side of each &-node which
has been chosen. In order to define the interpretation function of O-PDDL, we need to define how to
execute two effects simultaneously (via &).

Recall that by definition, the positive and negative part of an effect do not intersect. The semantics
of & will define how such effects are associated to expressions such as +p&+q&−p.

The effects E(α,P,s) of O-PDDL action descriptions, and thus the semantics of O-PDDL, are de-
fined as follows:

• E(⊥,P,s) = /0,

• E(+p,P,s) := {〈{p}, /0〉}, and E(−p,P,s) := {〈 /0,{p}〉},

• E(ϕBα,P,s) :=

{
E(α,P,s) if s |= ϕ ,
{〈 /0, /0〉} otherwise,

31

• E(α ∪β ,P,s) := E(α,P,s)∪E(β ,P,s),

• E(α &β ,P,s) :=
{
〈Q+

α ∪Q+
β
,(Q−α ∪Q−

β
)\ (Q+

α ∪Q+
β
)〉
∣∣∣∣ 〈Q+

α ,Q
−
α 〉 ∈ E(α,P,s),

〈Q+
β
,Q−

β
〉 ∈ E(β ,P,s)

}
We emphasize here that the failure symbol ⊥ is a necessary construct to ensure completeness of the
language. If ⊥ was not part of the language, actions would always be applicable because every atomic
action (±p) has at least one effect and combinations of two actions having at least one effect each result
in an action having at least one effect, too. We also highlight that B is not necessarily expressing a
precondition. If ϕ is not satisfied in a state s then ϕBα simply modifies no variable in s. If we want to
express that ϕ is a precondition for α being applicable we need to write (ϕBα)u(¬ϕB⊥). On the other
hand, the action ε which has only the empty effect 〈 /0, /0〉 in all states can be expressed via (p∧¬p)B+p
(or any other expression with a contradiction as condition), and therefore we do not include it into the
grammar, in order to keep it minimal.

Example 5.6. The running example 5.1 is naturally expressed as follows:

surgery :=

effect of anesthesia︷ ︸︸ ︷
(+no_pain∪ ε)

&((−no_pain&+cured)∪ (+no_pain&+dead))︸ ︷︷ ︸
effect of surgery

The description is natural because it can be written directly, decomposed into the effect of the anesthesia
and the effect of the surgery. If the anesthesia works, its effect +no_pain “overrides” the effect−no_pain
of the surgery itself. The variables keep their value if not assigned in this manner explicitly, so e.g. if
the patient was dead before, he remains dead afterwards, because there is no −dead assignment in the
action description.

The other one, example 5.2, is not that natural to express with O-PDDL because it needs to explicitly
list all possible consistent combinations of decisions which save the people on the road with decisions
made to save the passengers:

save_all := child_on_roadB

 (+left&+airbag)
∪(+left&+airbag&−moving)
∪(−left&−moving)

We emphasize that the variables which are not assigned explicitly in the action description retain their
value of the state where they are applied. For example, the action of saving the people does not affect
the position of the people on the road, so they stay on the road. The −left in the last line can be left out
since it is assumed that we are already on the right lane.

Proposition 5.7. O-PDDL is indeed minimally complete, i.e. excluding any of its constructs from the
grammar makes it unable to express all nondeterministic actions.

PROOF. Excluding e.g. −p makes the language uncapable of expressing the transition {p} → /0, and
for the same reason we cannot exclude +p. Without the condition operator B the language can only
express actions which are either applicable everywhere or nowhere. Actions defined without the choice
operator ∪ are necessarily deterministic, and expressions without & cannot describe actions which have
a transition where two or more variables change their value. Finally, ⊥ is necessary to allow expressing
actions which are not always applicable. �

Note that explicit effects (of subactions) matter only for &, in the sense that for other constructs, the
transition relation ‖α‖ of α only depends on the transition relation of its subactions. Still the effects
are necessary for the semantics because of the intended interpretation of &. For example, we want to
capture the property that for P = {p}, α = pB+p and α ′ = ε it holds (α &−p)({p}) = {{p}} and
(α ′&−p)({p}) = { /0}. Therefore in general it can happen that α ≡ α ′, but α &β 6≡ α ′&β and hence it
is not possible to define the semantics of & using only the transition relation.

32

5.3 Egalitarian PDDL

The operator & in O-PDDL has an asymmetry with respect to positive and negative assignments. This
asymmetry, on the one hand, makes non-applicability more explicit due to the mandatory failure symbol,
but on the other hand this has some unnatural implications; for instance, if we want to rename the
variable no_pain into a variable pain, simply replacing +no_pain by −pain and −no_pain by +pain in
Example 5.6 results in a different action, since this time +pain has priority over −pain. Therefore we
introduce a language in which the operator & is replaced by an operator u which treats +p and −p
literals symmetrically; as a consequence, executing +p and −p simultaneously will not be possible at
all, resulting in the action with no transition. Another justification for this operator is for modelling
actions which are composed of effects occurring in parallel (via different subprocesses); whenever the
subprocesses need to set the value of a variable to different values, the action fails. This is indeed the
view of the Dynamic Logic of Parallel Propositional Assignments (Herzig et al., 2019), from which we
borrow the operator u.

We denote the resulting language by E-PDDL, with “E” standing for “egalitarian”.

Definition 5.8 (E-PDDL). An E-PDDL action description is an expression α generated by the grammar

α ::=+p | −p | ϕBα | (α ∪α) | α uα

where p ranges over P, and ϕ over formulas in NNF over P.

For the interpretation function, we need to define an additional property for effects: we say that two
effects e1 := 〈Q+

1 ,Q
−
1 〉, e2 := 〈Q+

2 ,Q
−
2 〉 agree or are (mutually) consistent if Q+

1 ∩Q−2 = Q+
2 ∩Q−1 = /0

holds; in other words, if one effect assigns > to a variable, the other does not assign ⊥ to it. Then the
parallel combination of e1 and e2 is defined to be the effect 〈Q+

1 ∪Q+
2 ,Q

−
1 ∪Q−2 〉. It can be interpreted

as simultaneously executing the assignments of e1 and e2.

Example 5.9. Let P := {p1, p2, p3}, e1 := 〈{p1, p2},{p3}〉, e2 := 〈{p1}, /0〉, and e3 := 〈{p3},{p2}〉. Then
e1 and e3 do not agree, because the positive effect of e1 has a nonempty intersection with the negative
effect of e3. But e2 and e3 agree, and their combination is 〈{p1, p3},{p2}〉. e1 and e2 agree, too, and
their combination is e1 again, because e2 is a subeffect of e1.

Then we define the effects of α uβ in s to be all possible combinations of effects of α and β in s:

E(α uβ ,P,s) :=

{
〈Q+

α ∪Q+
β
,Q−α ∪Q−

β
〉

∣∣∣∣∣ 〈Q+
α ,Q

−
α 〉 ∈ E(α,P,s),〈Q+

β
,Q−

β
〉 ∈ E(β ,P,s),

Q+
α ∩Q−

β
= Q−α ∩Q+

β
= /0

}

The interpretation function is otherwise defined exactly as for O-PDDL.
As an example, for α := (+p1∪ (−p2u+p3))u (−p2∪+p2), P := {p1, p2, p3}, and any s, we have

E(α,P,s) = {〈{p1},{p2}〉,〈{p1, p2}, /0〉,〈{p3},{p2}〉}, since in the last combination, −p2 u+p3 and
+p2 do not agree.

Note that the expression +pu−p (for an arbitrary p ∈ P) defines an action with no successor. We
use ⊥ as a shorthand for it, but we do not need to include it into the grammar, contrary to O-PDDL. The
void action ε can be defined in E-PDDL in the same way as in O-PDDL, via (p∧¬p)B+p.

Example 5.10. Our running example 5.1 is expressed in E-PDDL as follows:

surgery :=
(+no_painu+cured)
∪(+no_painu+dead)
∪(−no_painu+cured)

The description is not very natural because we have to write all possible combinations of effects of anes-
thesia and surgery explicitly. If we replaced & by u in the expression from Example 5.6, the combination
of the choices +no_pain and (−no_painu+cured), i.e. the situation where the anesthesia worked and
the surgery went well, would not be possible.

33

Example 5.2, however, is expressed in E-PDDL more easily and naturally than in O-PDDL:

save_all ::= child_on_roadB

save the pedestrians︷ ︸︸ ︷
(+left∪−moving)

u(−left∪ (+leftu+airbag))︸ ︷︷ ︸
save the passengers

Due to the semantics of u it is impossible to choose going left to save the pedestrians and choose not
to go left to save the passengers, in contrast with the semantics of & where this would result in simply
going left. This captures the intuition of the impossibility to break the laws of nature.

It is easy to see, with exactly the same proof as for Proposition 5.7 (with u instead of &), that
E-PDDL is also minimally complete.

5.4 NNF Action Theories

We finally define the language NNFAT of NNF action theories. Such representations are typically used
by planners which reason explicitly on sets of states (aka belief states), since they allow for symbolic
operations on belief states and expressions (Cimatti and Roveri, 2000; Bryce et al., 2006; To et al., 2015).
Note that such planners in fact use more efficient representations, like OBDDs or DNFs, which are de-
fined by further restrictions on NNF. Then a sublanguage of NNF to work with can be chosen using the
knowledge compilation map for Boolean functions (Darwiche and Marquis, 2002). The general results
from our work can be used for sublanguages in the usual way: separation results showing that some
language L cannot be translated into NNFAT without a superpolynomial increase in size and complex-
ity upper bounds for queries can be directly transferred to all sublanguages of NNFAT, whereas for
transformations in general we can not draw conclusions.

To prepare the definition we associate an auxiliary variable p′ /∈ P to each variable p ∈ P; p′ is
intended to denote the value of p after the action took place, while p denotes the value before. For any
set P⊆ P, we write (P)′ for the set {p′ | p ∈ P}.

Definition 5.11 (NNFAT). An NNFAT action description is a Boolean formula α in NNF over P∪ (P)′
for some set of state propositions P⊂ P.

The interpretation of an NNFAT action description α is defined for all P ⊂ P such that V(α) ⊆
P∪ (P)′ by

∀s1 ⊆ P : I(α,P)(s1) = {s2 ⊆ P | s1∪ (s2)
′ |= α}

where s1 ∪ (s2)
′ is the assignment to P∪ (P)′ corresponding to the transition from s1 to s2. For P such

that V(α) * P∪ (P)′, I(α,P) is not defined. In words, an NNFAT action description represents the set
of all ordered pairs 〈s,s′〉 such that s′ is a successor of s, as a Boolean formula over variables in P∪ (P)′.
Thus NNFAT is a declarative language, that describes state transitions via conditions on the predecessor
and successor states together.

Importantly, NNFAT does not assume persistency of values, so that if, for example, a variable does
not appear at all in an NNFAT action description, then this means that its value after the execution
of the action can be arbitrary. For instance, the expression p′1 ∨ (¬p2 ∨ p′3), when interpreted over
{p1, p2, p3, p4}, represents an action which sets p4 to any value and either (1) sets p1 to true and p2, p3
to any value (nondeterministically), or (2) sets p3 to true and p1, p2 to any value, in case p2 is true in the
initial state, and otherwise sets each variable to any value, or (3) performs any consistent combination
of (1) and (2). The non-persistency of variables is illustrated by expressing our running examples in
NNFAT.

Example 5.12. We first remark that although in this example we use → and ↔ which are not part
of the grammar of NNFAT, we do it only for the sake of better comprehensibility. Since α ↔ β ≡
(α ∧β)∨ (¬α ∧¬β) and negation can be pushed to the leaves in linear time, and we do not have nested

34

equivalences in our example, the equivalent NNFAT representation is not much longer, but by far less
comprehensible than the given expression.

For the example with the surgery we need to express that variables which are not affected by a certain
effect retain their value. This is ensured by the conjunction with the equivalences stating exactly this in
the end of each line.

surgery :=

 (no_pain′∧ cured′∧ (dead↔ dead′))
∨(no_pain′∧dead′∧ (cured↔ cured′))
∨(¬no_pain′∧ cured′∧ (dead↔ dead′))

As for the second example 5.2:

save_all :=

child_on_road→

(left′∨¬moving′)
∧(¬left′∨ (airbag′∧ left′))
∧(left′↔ airbag′)
∧(left′→¬moving′)

∧

(child_on_road↔ child_on_road′)

∧

 (left 6↔ left′)
∨(moving 6↔moving′)
∨(airbag 6↔ airbag′)

→ child_on_road

Even though we use additional symbols, we need a lot of space to describe the fact that a change of a
variable must have an explicit reason mentioned in the description of the effects, which means here: if
a variable changes a value via save_all there must be a situation that requires a reaction causing this
change, i.e. there are people on the road.

Obviously, every action can be represented in NNFAT, since NNF is a complete language for Boolean
functions, therefore it is a complete language.

Remark 5.13. NNFAT is minimally complete in the sense that since negation is only allowed to occur
at leaves, we cannot exclude neither ∧ nor ∨ from the grammar while keeping full expressivity. In other
words, in order to be able to express all actions with e.g. only atomic actions p and p′ and operators ∧
and ¬, we would need to allow expressions of the form ¬α with non-atomic α , and then ¬α would not
be an NNF anymore.

Observe that the logical ∨ in NNFAT allows it to express nondeterminism naturally and acts in
exactly the same way as ∪ in E-PDDL and O-PDDL: for two actions α and β we have (α ∨β)(s) =
(α ∪β)(s) = α(s)∪β (s). Therefore it is important to emphasize that although at first sight the logical
∧ and the parallel execution u operators seem to be the same, too (for example, +pu+q sets p and q
true similarly to p′ ∧ q′), they are actually quite different, and in general none of them can be seen as
a generalisation of the other. The key difference is that while α ∧ β (s) = α(s)∩ β (s), the operator u
can produce new successors (for example, {p,q} /∈ (+p)(/0) and {p,q} /∈ (+q)(/0), but {p,q} ∈ (+pu
+q)(/0)).

Finally, note that an NNF precondition ϕ for applicability of an action described by α can be included
into the action description directly in NNFAT via ϕ ∧α .

35

36

CHAPTER 6

Complexity Results for Minimally Complete Languages

Contents
6.1 Queries . 39

6.1.1 Successorship . 39

6.1.2 Applicability and Entailment . 41

6.1.3 Other queries . 43

6.2 Succinctness . 45
6.3 Transformations . 47
6.4 Conclusion . 51

In this chapter we will give a complete KC map for the minimally complete languages O-PDDL,
E-PDDL and NNFAT. Recall that for each of them we study both the tree and circuit representation,
i.e. we will give complexity results for O-PDDLT, O-PDDLC, E-PDDLT, E-PDDLC, NNFATT and
NNFATC. We will summarize the results in form of a table and a diagram in the end of the chapter.

But before we turn to the subject of the chapter, we would like to justify why we study (truly)
nondeterministic action languages: this is because removing the connectives which are responsible for
nondeterminism (i.e. ∪ in O-PDDL and E-PDDL and ∨ in NNFAT) makes everything trivial. For
example, for an action description α with scope P generated by the grammar

α ::=+p | −p | ϕBα | α uα

deciding applicability in s⊆ P is easy (contrary to real E-PDDL, see Proposition 6.13): first replace each
subexpression ϕBβ with ε if s 6|= ϕ and with β if s |= ϕ (we will later give a name to this procedure in
Definition 6.10). Then α is applicable if and only if there is no variable p ∈ P such that +p and −p are
both atomic subactions of α .

Before we finally start with proving our complexity results we will prove some nontrivial statements
about the imperative languages.

Lemma 6.1. For all action descriptions α,β ,γ in E-PDDL and O-PDDL (with respect to whether & or
u is used) it holds:

1. In general, (α uα) 6≡ α and (α &α) 6≡ α

2. If s′ ∈ α(s)∩β (s) then s′ ∈ (α uβ)(s) and s′ ∈ (α &β)(s)

3. If all the effects of α and β in s are P-maximal, then (α u β)(s) = α(s)∩ β (s), but in general
α(s)∩β (s)((α &β)(s)

37

4. For all s, E(α u (β ∪ γ),P,s) = E((α uβ)∪ (α u γ),P,s) (and hence in particular α u (β ∪ γ) ≡
(α uβ)∪ (α u γ)), but in general, α ∪ (β u γ) 6≡ (α ∪β)u (α ∪ γ).
The same is true for & instead of u, i.e. E(α &(β ∪ γ),P,s) = E((α &β)∪ (α &γ),P,s), but in
general α ∪ (β &γ) 6≡ (α ∪β)&(α ∪ γ).

5. Conditions can be distributed over other operators: E(ϕ B (α u β),P,s) = E((ϕ B α)u (ϕ B
β),P,s), E(ϕB (α &β),P,s) = E((ϕBα)&(ϕBβ),P,s) and E(ϕB (α ∪β),P,s) = E((ϕBα)∪
(ϕBβ),P,s), and E(ϕB (ψBα),P,s) = E(ϕ ∧ψBα,P,s).

PROOF.

1. For P := {p,q}, α :=+p∪+q and s := /0, observe that s′ := {p,q} is not an α-successor of s, but
it is an (α uα) and (α &α)-successor of s (choosing +p once, and +q once).

2. Every effect 〈Q+,Q−〉 witnessing a transition (s,s′) satisfies Q+ ⊆ s′ and Q−∩ s′ = /0. If s′ is both
an α- and β -successor of s, then there are effects 〈Q+

α ,Q
−
α 〉 of α and 〈Q+

β
,Q−

β
〉 of β witnessing

this. Because of the previous statement it follows that Q+
α ∩Q−

β
= Q+

β
∩Q−α = /0 and thus 〈Q+

α ∪
Q+

β
,Q−α ∪Q−

β
〉 is an effect of α uβ and α &β in s witnessing (s,s′).

3. Two P-maximal effects agree only if they are equal, and a u-combination of an effect with itself is
itself. As for α &β , consider P = {p} and α =+p, β =−p, s = /0,s′ = {p}. Then s′ ∈ (α &β)(s)
but α(s)∩β (s) = /0. But since an &-combination of an effect with itself is still the same effect, it
holds that α(s)∩β (s)⊆ (α &β)(s).

4. The first part follows directly from the definitions. The second part is similar to Item 1 of the
lemma: let P := {p,q,r}, α := +p∪+q, β := +r, γ := +r, and s := /0, then we have {p,q} ∈
(α ∪β)u (α ∪γ)(s) as a result of choosing α twice, once with +p and once with +q, while {p,q}
is obviously not an α ∪ (β u γ)-successor of s. The proof is exactly the same for & in place of u.

5. Follows directly from the definitions.

�

Proposition 6.2. There is a polynomial-time translation from NNFATT to E-PDDLT, and one from
NNFATC to E-PDDLC.

PROOF. Let f be the function defined inductively as follows, for all NNFAT action descriptions α , α1,
α2 and sets of variables P such that P∪ (P)′ ⊇ V(α):

1. for p ∈ P, f (p) := (¬pB⊥)u
(

pB
d

q∈P(+q∪−q)
)

;

2. for p ∈ P, f (¬p) := (pB⊥)u
(
¬pB

d
q∈P(+q∪−q)

)
;

3. for p ∈ P, f (p′) :=+pu
(d

q∈P,q6=p(+q∪−q)
)

;

4. for p ∈ P, f (¬p′) :=−pu
(d

q∈P,q6=p(+q∪−q)
)

;

5. f (α1∧α2) := f (α1)u f (α2);

6. f (α1∨α2) := f (α1)∪ f (α2).

We show by induction that all the effects of f (α) (in any state) are P-maximal and that f is indeed a
translation from NNFAT to E-PDDL, i.e. f (α) and α describe the same action. Assume that the claim
is proven for α1 and α2.

For the base cases, Items 1–4 take care of the fact that there is no implicit persistency of values in
NNFAT. Since they explicitly assign all variables, all the effects of f (α) are P-maximal in the sense of
Definition 5.4.

38

Now let α := α1∧α2. Then s′ ∈ α(s) is equivalent to s′ ∈ α1(s)∧ s′ ∈ α2(s), and by the induction
hypothesis this is equivalent to s′ ∈ f (α1)(s)∧ s′ ∈ f (α2)(s). Now since by the induction hypothe-
sis f (α1) and f (α2) have only P-maximal effects, it follows together with Item 3 of Lemma 6.1 that
E(f (α1)u f (α2),P,s) = E(f (α1),P,s)∩E(f (α2),P,s), so that s′ ∈ f (α1)(s)∧s′ ∈ f (α2)(s) is equivalent
to s′ ∈

(
f (α1)u f (α2)

)
(s), that is, to s′ ∈ f (α)(s), and f (α1)u f (α2) has only P-maximal effects again.

Now let α = α1 ∨α2. Assume first s′ ∈ α(s), and by symmetry s′ ∈ α1(s); then by the induction
hypothesis we have s′ ∈ f (α1)(s) and hence, s′ ∈

(
f (α1)∪ f (α2)

)
(s) = f (α)(s). Conversely, assume

s′ ∈ f (α)(s), then by the definition of f (α) and the semantics of∪we have s′ ∈ f (α1)(s) or s′ ∈ f (α2)(s).
Assume by symmetry s′ ∈ f (α1)(s). Then by the induction hypothesis we have s′ ∈ α1(s) and hence,
s′ ∈ (α1∨α2)(s), that is, s′ ∈ α(s). It is easy to see that f (α1)∪ f (α2) has only P-maximal effects, since
f (α1) and f (α2) had.

Thus we have shown that α and f (α) describe the same action. Since f rewrites each node of α

independently from the others, it is polynomial-time both when applied to an expression in NNFATT

(with a result in E-PDDLT) and to an expression in NNFATC (with a result in E-PDDLC). �

The reason why the proof works only for E-PDDL, but not for O-PDDL is that because of Item 3 from
Lemma 6.1 u can naturally express ∧, but & cannot (Item 3 of Lemma 6.1). In fact, we will show later
that O-PDDL 6� NNFAT.

6.1 Queries

We recall that we are interested in the complexity of the queries IS-SUCC, IS-APPLIC, ENTAILS, ST,
IS-DET and IS-MON for tree and circuit representations. The complexity proofs for queries are the
key to the other proofs in our work, namely to hardness results for transformations and to succinctness
separation results.

6.1.1 Successorship

As we mentioned before, IS-SUCC is not the most widely used, but the most basic query in the sense that
it is analogous to model checking for Boolean formulas. One can say that the answers to IS-SUCC give
all the information which is stored in an action description.

Proposition 6.3. Is-Succ can be solved in linear time for NNFATT and NNFATC.

PROOF. By definition of NNFAT, s′ ∈ α(s) holds if and only if the assignment to P∪ (P)′ induced by
s,s′ satisfies α , which can be decided by replacing each leaf in the representation of α by its value in s
or s′, then evaluating α in a bottom-up fashion. Clearly, this can be done in linear time for both tree and
circuit representations (Darwiche and Marquis, 2002). �

For showing hardness results in our paper, we first define a particular encoding of a 3-CNF formula
ϕ over n variables as an assignment to polynomially many state variables.

Notation 6.4. Let n ∈ N, and let Xn := {x1, . . . ,xn} be a set of variables. Let Γn be the set of clauses of
length 3 over Xn. Observe that there are a cubic number Nn of such clauses (any choice of 3 variables with
a polarity for each). We fix an arbitrary enumeration γ1,γ2, . . . ,γNn of all these clauses, and we define
Pn ⊂ P to be the set of state variables {p1, p2, . . . , pNn}. Then to any 3-CNF formula ϕ we associate
the Pn-state s(ϕ) = {pi | i ∈ {1, . . . ,Nn},γi ∈ ϕ}, and dually, to any Pn-state s, we associate the 3-CNF
formula over Xn, written ϕ(s), which contains exactly those clauses γi for which pi ∈ s holds. For a literal
` and clause γ we write ` ∈ γ meaning that ` occurs in γ at least once.

Example 6.5. Let n := 2, and consider an enumeration of all clauses over X2 := {x1,x2} which starts
with γ1 := (x1∨ x1∨ x2),γ2 := (x1∨ x1∨¬x2),γ3 := (x1∨¬x1∨ x2),γ4 := (x1∨¬x1∨¬x2),γ5 := (¬x1∨
¬x1∨x2),γ6 := (¬x1∨¬x1∨¬x2), Then the 3-CNF ϕ := (x1∨x1∨x2)∧ (¬x1∨¬x1∨x2) is encoded
by the state s(ϕ) = {p1, p5}.

39

Notation 6.6. Using Notation 6.4, for all n ∈ N we define the E-PDDLT action description α
sat,u
n by

α
sat,u
n :=

l

x∈Xn

 (l

γi : x∈γi

(+pi∪ ε)
) ∪ (l

γi : ¬x∈γi

(+pi∪ ε)
)

Analogously we obtain the O-PDDL action description α
sat,&
n by replacing u by &:

α
sat,&
n := &

x∈Xn

((&
γi : x∈γi

(+pi∪ ε)
) ∪ (&

γi : ¬x∈γi
(+pi∪ ε)

))
Since there are no negative assignments−pi in the above action descriptions, u and & have the same

interpretation and thus α
sat,u
n and α

sat,&
n describe the same nondeterministic action. In the following we

will prove statements for α
sat,u
n , which are therefore also true for α

sat,&
n .

Intuitively, α
sat,u
n (and α

sat,&
n) chooses an assignment (true or false) to each variable in Xn (outermost

∪). Whenever it chooses an assignment for x, for each possible clause which is satisfied by this assign-
ment (innermost u), it chooses whether to include this clause into the result, or not (innermost ∪). Hence
it builds a formula which is satisfied at least by its choices, and clearly, any satisfiable 3-CNF formula
can be built in this manner. The following lemma is then a direct consequence.

Lemma 6.7. Let n ∈ N, and let ϕ be a 3-CNF formula over Xn. Then ϕ is satisfiable if and only if s(ϕ)
is an α

sat,u
n -successor of the state /0. Analogously, ϕ is satisfiable if and only if s(ϕ) ∈ α

sat,&
n (/0)

Corollary 6.8. Is-Succ is NP-hard for the tree and circuit representations of O-PDDL and E-PDDL.

Proposition 6.9. Is-Succ is NP-complete for both tree and circuit representations of O-PDDL and
E-PDDL.

PROOF. Hardness follows from Corollary 6.8, thus it remains to show NP-membership of IS-SUCC for
E-PDDLC and O-PDDLC. These results then apply to the tree representations (Remark 4.12, page 24).

We first give the proof for E-PDDLC. The intuition is to guess a branch to be chosen for each ∪-node
in the circuit. However, in circuits, a ∪-node might have exponentially many paths from the root to it,
inducing parallel executions, and in each of these a new child may be chosen.

For that reason, we define a witness of s′ ∈ α(s) to be the number of times each node in the circuit is
executed along an execution of α leading from s to s′. Precisely, we define a labelling to be a function
assigning to each node and edge in the circuit a number in [0..2|α|] (using O(|α|) bits), and satisfying the
following conditions.

1. the root is labelled with 1,

2. each edge out of a u-node has the same label as its source,

3. the labels of the edges out of a ∪-node sum up to the label of their source,

4. the edge from a B-node α of the form (ϕBβ) to node β has the same label as α if s satisfies ϕ ,
and 0 otherwise,

5. the label of each node is the sum of the labels of the edges pointing to it,

Clearly, the size of a labelling is polynomial in the size of the circuit, and by construction, there is a
given labelling of the circuit if and only if there is an execution of the action which executes each node
as many times as its label indicates.

Consequently, s′ ∈α(s) holds if and only if there is a labelling such that the action `1u·· ·u`k, where
`1, . . . , `k are those leaves of the circuit (that is, elementary assignments±p) whose label is nonzero, maps
s to s′ (in particular, these assignments are consistent together). This can be verified in polynomial time,
so the problem is indeed in NP.

For O-PDDLC the proof is exactly the same, but with & instead of u, and for `1 & · · ·&`k we do not
need consistency, but that the negative assignments necessary for the transition (s,s′) are not overwritten
by the positive ones, and that no ⊥-node is executed. �

40

6.1.2 Applicability and Entailment

The proof of the following statement follows a method which we will repeatedly use later to prove NP-
or P-membership of queries. Since the principal idea of those proofs is the same, we will present it at
this point in all details, and in those proofs which make use of this idea later we will refer to the detailed
version. First we need to introduce the procedure which we will call reducing and instantiating a circuit.

Definition 6.10. An E-PDDL or O-PDDL circuit α is instantiated by a state s as follows: for each node
n in α that is of the form ϕBβ redirect all arcs pointing to n to β if s |= ϕ , and to ε if s 6|= ϕ , and then
remove the ϕB.

For a circuit of an E-PDDL or O-PDDL action description α we can remove some nodes N =
{n1, . . . ,nk} and arcs L = {l1, . . . , lm} and then obtain the reduced circuit with respect to N and L as
follows:

1. for each node C which has been removed remove also the arcs which used to point at C

2. for each operator node which has no more children: remove this node

3. for each ∪-node γ∪β whose child γ has been removed, but β is still there, redirect all arcs directly
to β and remove the ∪-node

4. for each u-node (&-node respectively), if at least one child has been removed – remove the u
(resp. &)-node itself

5. if a subformula is not connected to the root, remove the whole subformula

All steps of the reduction algorithm need to be repeated as long as they can be applied. The remainder
will be a rooted connected graph.

In words, an instantiation by s of a circuit is a simplification which removes the conditional constructs
from a circuit without changing the effects for a particular state. Therefore, if α̂ is an instantiation of
α by s then for all s′ it holds that s′ ∈ α(s)⇔ s′ ∈ α̂(s). Thus we can assume for any procedure of
answering a query about α(s) for O-PDDL or E-PDDL that the first step will be an instatiation by the
input state.

Removing some nodes and arcs from a circuit disturbs the semantics of other nodes of the circuit.
By reducing the graph with respect to this removal we “rescue what can be recued", i.e. we eliminate all
parts of the circuit which cannot be executed anymore. Thus the reduced circuit allows for exactly those
executions which are still possible after removing the nodes and arcs.

An application of this procedure is for example removing all nodes which definitely cannot be exe-
cuted (like⊥) and then checking whether the reduced graph still allows for a sensible execution. We will
do exactly this in the proof of the next proposition.

Proposition 6.11. Is-Applic is linear-time for both representations of O-PDDL.

PROOF. Again, it is enough to prove the claim for circuits by Remark 4.12 (page 24).
The only reason for an O-PDDLC action α to fail in state s can be an execution of a ⊥-leaf. Since a

⊥-leaf can never be executed due to its semantics, it’s an "if and only if"-situation: an O-PDDLC-action
is non-applicable if and only if in each possible execution there necessarily exists an executed ⊥-node.
Therefore in order to check applicability we can remove all⊥-leaves and see whether the reduced circuit
still allows for an execution. The detailed algorithm looks as follows:

1. Instantiate α by s.

2. Remove all ⊥-nodes.

3. Reduce the circuit with respect to this removal.

4. If the root has been removed then α is non-applicable in s; if the root has not been removed, α is
applicable in s .̧

41

It is important to instantiate the circuit and not directly start with removing the ⊥-leaves because other-
wise we might remove a ϕB⊥-node with s 6|= ϕ , although the failure should actually be replaced by an
ε .

For the correctness of the algorithm we observe that if we removed the root node it means that we
necessarily removed the rest of the graph because it was not connected to the root anymore. Therefore
the executable remainder of the formula is simply non-existent. On the other hand, if the root has not
been removed by the reduction algorithm, there exists a possible execution of α without the need to
execute any of the ⊥-nodes, which is therefore a valid O-PDDLC-execution.

We see that the algorithm is executable in polynomial time (actually even in linear time) because the
decision whether to remove a node or an arc or not is made in constant time, and we need to make this
decision a linear number of times, in a bottom-up fashion. �

Proposition 6.12. Is-Applic is NP-complete for NNFATT and NNFATC.

PROOF. IS-APPLIC is in NP, because applicability of α in s can be witnessed by a particular successor,
and successorship can be verified in linear time for both NNFATT and NNFATC by Proposition 6.3.
For hardness, let ϕ be a propositional NNF formula over variables p1, . . . , pn. Let the NNFATT action
description ϕ ′ be obtained from ϕ by replacing each pi with p′i. Then ϕ ′ is applicable in any state (say
in s := /0) if and only if ϕ is satisfiable, because applicability of ϕ ′ means the existence of a model
(s,s′) of ϕ ′, where the unprimed variables are fictional for the Boolean function described by ϕ ′. Hence
IS-APPLIC is NP-hard for NNFATT (and hence for NNFATC as well). �

Proposition 6.13. Is-Applic is NP-complete for E-PDDLT and E-PDDLC.

PROOF. Hardness follows from the existence of a polynomial-time translation from NNFAT into
E-PDDL (Proposition 6.2). For membership we observe that a certificate for applicability of α in s
is a successor s′ ∈ α(s) with the corresponding successorship certificate, which can be verified in poly-
nomial time because IS-SUCC in in NP for E-PDDLC (Proposition 6.9). �

We now turn to the query ENTAILS. Since model checking for Boolean NNF formulas is linear-time, and
IS-SUCC is in NP for all our minimally complete languages, the following proposition is straightforward,
too.

Proposition 6.14. Entails is in coNP for both representations of NNFAT, O-PDDL and E-PDDL.

PROOF. Suppose we are given a sequence α1, . . . ,αk of action descriptions in any of the above languages
together with a state s and a formula ϕ . A witness for non-entailment would be a sequence of states
s0 = s,s1 ∈ α1(s0),s2 ∈ α2(s1), . . . ,sk ∈ αk(sk−1) such that sk 6|= ϕ together with the k corresponding
successorship witnesses. �

We observe that since by Lemma 4.7 (page 23) the complement of IS-APPLIC is reducible to ENTAILS

we deduce the following result from Propositions 6.12 and 6.13.

Corollary 6.15. Entails is coNP-hard for NNFATT, NNFATC, E-PDDLT and E-PDDLC.

It remains to show hardness for O-PDDL.

Proposition 6.16. Entails is coNP-hard for O-PDDLT and O-PDDLC.

PROOF. Consider the following O-PDDL action description over Xn = {x1, . . . ,xn}: α :=&xi∈Xn(+xi∪
−xi). This action is always applicable and the successors of any state are all possible assignments to the
xi variables. If now α entails a DNF ϕ over Xn this means that ϕ is satisfied by any assignment, i.e. it is
valid. This is a reduction from a coNP-complete problem (checking the validity of a DNF formula) to
ENTAILS. �

From Corollary 6.15 and Propositions 6.14 and 6.16 we conclude:

Corollary 6.17. Entails is coNP-complete for both the tree and circuit representations of NNFAT,
O-PDDL and E-PDDL.

42

6.1.3 Other queries

We start with determining the complexity of IS-DET and IS-MON. Our argumentation in proofs will be
similar, therefore the two queries are considered in the same subsection. First we observe that they are
both in coNP.

Corollary 6.18. Is-Det is in coNP for both representations of NNFAT, E-PDDL and O-PDDL.

PROOF. A witness for “real” nondeterminism of α in s can be given by two α-successors s′ and s′′

of s with s′ 6= s′′ together with the corresponding witnesses for successorship, which can be verified in
polynomial time by Propositions 6.3 and 6.9. �

Corollary 6.19. Is-Mon is in coNP for both representations of NNFAT, E-PDDL and O-PDDL.

PROOF. A witness for positive nonmonotony of α in s can be given by a successor s′ with s 6⊆ s′ (s′ 6⊆ s
for negative nonmonotony) together with a corresponding witness for successorship. �

Proposition 6.20. Is-Det can be answered in polynomial time for O-PDDLT and O-PDDLC.

PROOF. It is enough to show the claim for the circuit representation of O-PDDL. Let α be an O-PDDLC

action and s a state.
The algorithm resembles that from the proof of Proposition 6.11 and even makes use of it. To check

whether α is deterministic in s we go through all conditions which would ensure nondeterminism, and
argue that if none of them is satisfied then α is deterministic in s.

We first instantiate α by s and remove the ⊥-leaves since they do not contribute to any possible
nonfailing execution, and we reduce the graph. I.e. we check whether α is applicable in s, and if it is
not, then it is deterministic by definition. If α is applicable in s, we call the instantiated and reduced
graph α̂ and from now on work with it. If α (equivalently α̂) is nondeterministic in s, there must exist
a state variable p and successors s′,s′′ ∈ α(s) with p ∈ s′ and p /∈ s′′. If p ∈ s then there must exist an
assignment−p which is executed and not overwritten by a +p during at least one execution, and another
execution where either no −p is executed or it is overwritten by a +p. Therefore we have to check for
each p ∈ s: is there a −p leaf in α such that there is a possible execution without any +p-leaf being
executed in parallel? We do this by executing the following “algorithm”:

1. Remove all +p-nodes and reduce the remaining graph, obtaining α̂−p. If there is still a leaf −p
with a path to the root, we go on with Item 2. If there is no such −p leaf, we go on with a next
variable which is true in s, or go to the step with the variables which are false in s.

2. There is a −p leaf in α̂−p, and thus there is at least one successor with p being false. So we come
back to the original instantiated applicable graph α̂ and check whether there is a +p leaf.

• If there is a +p leaf, it can be executed since in α̂ every leaf node can be executed in at least
one possible execution, and therefore at least one successor where p is true, and thus α is
nondeterministic.

• If there is no +p leaf in α̂ , we remove all−p leaves, reduce the graph and check whether the
root is still there. If the answer is yes, there is at least one execution where p has not been
assigned, and since it was true before, it means there is at least one successor with p being
true, and thus α is nondeterministic. If the answer is “no”, we go on with the next variable
which is true in s, or go to the step with the variables which are false in s.

Now for each p /∈ s we have to do the dual thing. We first check whether there is a +p-leaf in α̂ . If
there is one, there is at least one execution which sets p to >. Then we need to check whether there is
an execution which keeps p false. If after removing all the +p-leaves and reducing the graph the root is
still there, then p must have remained or been reassigned to ⊥ and there is at least one successor with p
being false and thus α is nondeterministic.

43

Now it remains to verify that the above possibilities were the only possible reasons for α to be
nondeterministic. Indeed, the only reason for a variable p to change its value is an execution of some
elementary assignment ±p, and since we checked for each p if there is an option to keep and an option
to change its value, and the answer has been negative for each variable, it means that α must have been
deterministic. �

Proposition 6.21. The complement of Is-Applic is polynomial-time reducible to Is-Det for both repre-
sentations of NNFAT and E-PDDL.

PROOF. Let α be an NNFAT action with scope P and s be a state. Let q /∈ P be a fresh variable. Then
α is non-applicable in s if and only if the action α̂ := α ∧ (q′ ∨¬q′) is deterministic in s, because due
to the (q′∨¬q′)-part for each α-successor s′ of s there are at least two α̂-successors of s, namely s′ and
s′∪{q}. Thus α̂ is nondeterministic if and only if α has no successors in s.

Analogously, an E-PDDL action β is not applicable in s if the action β u (+q∪−q) is deterministic
in s with an auxiliary variable q.

The proof is the same for the tree and the circuit representations. �

Proposition 6.22. Is-Mon can be answered in polynomial time for O-PDDLT and O-PDDLC.

PROOF. It is enough show the claim for the circuit representation of O-PDDL. Let α be an O-PDDLC

action and s a state.
The proof is analogous to the proof of Proposition 6.20.
The only option for α to be not monotone is to contain an assignment −p which will be executed

while p ∈ s.
Therefore, after instantiating the circuit by s, removing all ⊥-nodes and reducing the graph (because

a non-applicable action is automatically monotone), for each p ∈ s we remove all +p, reduce the graph
and check whether the connected remainder contains a −p. If it does, there exists an execution which
changes a positive value to a negative, and thus α is not monotone in s.

If we checked all p ∈ s and didn’t find a variable which could be assigned ⊥, then α is positively
monotone.

Checking whether α is negatively monotone in s is even easier: an action is not negatively monotone
in s if and only if for some p /∈ s there exists a +p-leaf in the reduced remainder of the instantiated graph.
If there is one, then there is necessarily an execution which changes the value of p from ⊥ to > and thus
α is not negatively monotone. If no +p is executable for all p /∈ s, then α is negatively monotone. �

Proposition 6.23. The complement of Is-Applic is polynomial-time reducible to Is-Mon for both repre-
sentations of NNFAT and E-PDDL.

PROOF. The proof resembles that of Proposition 6.21. Let α be an NNFATC action with scope P and s
be a state. Let q /∈ P be a fresh variable. Then α is non-applicable in s if and only if the action α ∧¬q′

is positively monotone in s∪{q}. Analogously, an E-PDDLC action β is non-applicable in state s if
and only if the action β u−q is positively monotone in s∪{q} for variable q. The proof for checking
negative monotony works in the same way: an NNFAT action α is non-applicable in s if and only if the
action α ∧q′ is negatively monotone in s, and an E-PDDLC action β is non-applicable in state s if and
only if the action β u+q is negatively monotone in s. �

Together with the results about applicability (Propositions 6.12 and 6.13) we conclude.

Corollary 6.24. Is-Det is coNP-complete for both representations of NNFAT and E-PDDL.

Corollary 6.25. Is-Mon is coNP-complete for both representations of NNFAT and E-PDDL.

We finally turn to the query ST.

Proposition 6.26. ST is linear-time for both representations of E-PDDL and NNFAT.

44

PROOF. We first show the claim for E-PDDL. Let α be an E-PDDL-action and s a state. The following
cases are possible:

• α =+p: then s ∈ α(s) if and only if p ∈ s

• α =−p: then s ∈ α(s) if and only if p /∈ s

• α = β ∪ γ: then s ∈ α(s) if and only if s ∈ β (s) or s ∈ γ(s)

• α = ϕBβ : then s ∈ α(s) if and only if s 6|= ϕ or s ∈ β (s)

• α = β u γ: then s ∈ α(s) if and only if s ∈ β (s) and s ∈ γ(s). Indeed, if s ∈ β (s) and s ∈ γ(s) then
s∈ β (s)∩γ(s)⊆ (β uγ)(s) with the latter inclusion shown in Item 2 of Lemma 6.1. Conversely, if
s∈ (β uγ)(s) then there exist effects 〈Q+

β
,Q−

β
〉 of β in s and 〈Q+

γ ,Q
−
γ 〉 of γ in s with s = (s∪(Q+

β
∪

Q+
γ))\ (Q−β ∪Q−γ) and Q+

β
∩Q−γ = /0 = Q+

γ ∩Q−
β

. Hence Q+
β
,Q+

γ ⊆ s and s∩Q−
β
= s∩Q−γ = /0, and

therefore (s∪Q+
β
)\Q−

β
= (s∪Q+

γ)\Q−γ = s and s ∈ β (s) and s ∈ γ(s).

Thus ST can be checked in a bottom-up manner from the leaves ±p to the root in linear time.
For NNFAT the algorithm works in exactly the same manner, but with ∨ instead of ∪, ∧ instead of

u, p′ instead of +p, −p′ instead of −p. For atomic actions of the form α = p or α = ¬p we observe
that s ∈ (p)(s) if and only if p ∈ s, and s ∈ (¬p)(s) if and only if p /∈ s. �

Proposition 6.27. ST is NP-complete for both O-PDDLT and O-PDDLC.

PROOF. Since IS-SUCC is in NP for O-PDDLC by Proposition 6.9, we only need to show hardness for
O-PDDLT (recall Remark 4.12).

Recall the encoding of 3-CNFs over Xn = {x1, . . . ,xn} from Notation 6.4 over the variables p1, . . . , pNn

and the corresponding clauses γ1, . . . ,γNn . The proof will use an O-PDDLT action description βn which
is very similar to α

sat,&
n from Notation 6.6. We define βn as

βn :=
(
&
x∈Xn

((&
γi:x∈γi

(+pi∪ ε)
)
∪
(&

γi:¬x∈γi
(+pi∪ ε)

)))
&

 Nn

&
j=1
−p j

Intuitively, it constructs satisfiable 3-CNFs and works in the same way as α

sat,&
n with the additional

effect that it assigns all the pi variables. This means, it chooses an assignment to the x-variables, and
then chooses for each clause which is satisfied by this assignment whether to include it or not, and in
parallel it sets all the variables which correspond to clauses which are not chosen to false. We claim that
a 3-CNF ϕ is satisfiable if and only if s(ϕ) ∈ βn(s(ϕ)). Since + overrides −, if ϕ is satisfiable then
there exists a satisfying assignment to the x-variables such that the induced outer choices in βn allow us
to choose exactly the pi corresponding to the clauses of ϕ . Since those pi are already true in s(ϕ), they
are just reassigned and s(ϕ) is indeed a βn-successor of s(ϕ). Conversely, if s(ϕ) ∈ βn(s(ϕ)), then there
exists a choice for each ∪-node of βn such that all the pi ∈ s(ϕ) have been assigned >. The choice made
at the outer choice node induces a satisfying assignment to ϕ . �

6.2 Succinctness

Recall from Section 3.3 that the assumptions NP 6⊆ P/poly and coNP 6⊆ NP/poly which we will use in
the following are standard ones.

Proposition 6.28. If NP 6⊆ P/poly then there is no polynomial-size translation from E-PDDLT to
NNFATT, nor from E-PDDLC to NNFATC.

PROOF. We consider the action α
sat,u
n from Notation 6.6 again. The size of α

sat,u
n is clearly polynomial

in n in both the tree and circuit representations. Assume that there is a polynomial-size translation f
from E-PDDLT to NNFATT, and for all n ∈ N let β sat

n := f (αsat,u
n).Then the following is a nonuniform

polynomial time algorithm for the 3-SAT problem; given a 3-CNF ϕ :

45

1. encode ϕ into a state s(ϕ) as in Notation 6.4;

2. decide whether s(ϕ) is a β sat
n -successor of the state /0;

3. if yes, claim that ϕ is satisfiable, otherwise unsatisfiable.

All steps are polynomial-time (Proposition 6.3), the algorithm is correct (Lemma 6.7), and it depends
only on the number of variables in ϕ (which is polynomially related to its size), hence this is indeed a
nonuniform polynomial time algorithm for 3-SAT. Hence NP⊆ P/poly holds.

The proof is exactly the same for circuits. �

The proof of Proposition 6.28 illustrates the scheme that we will use for our separation results throughout
the paper. All results of the kind “L1 is not polynomial-size translatable into L2” will be proven using
the fact that there exists a query which is hard in L1 and less hard in L2, while some other hard problem
is reducible to the query in L1 in a very general sense. The answer to the well-known hard problem with
input x will be positive if and only if the answer to the query to a specific action description α together
with s(x) will be positive in L1. If there existed a polynomial-size translation from L1 into L2, we would
obtain a non-uniform algorithm with the complexity as that of the query in L2.

Proposition 6.29. If NP 6⊆ P/poly then there is no polynomial-size translation neither from NNFATT

into O-PDDLT nor from NNFATC into O-PDDLC.

PROOF. Recall the encoding of 3-CNF’s from Notation 6.4. Consider the NNFAT action description βn

over the variables Xn∪Pn = {x1, . . . ,xn, p1, . . . , pNn}.

βn :=
Nn∧
i=1

(pi→ (
∨
`∈γi

`′))

Here ` is a literal over Xn, and `′ is obtained from ` by replacing the variable with its primed copy (e.g.
if ` = ¬p2, `′ = ¬p′2). Intuitively, when βn is executed in s(ϕ) (with a 3-CNF ϕ over Xn) it creates
nondeterministically an assignment to the Xn that satisfies ϕ , if there is one. Thus βn is applicable in
s(ϕ) if and only if ϕ is satisfiable. Now if there existed a polynomial-size translation from NNFAT into
O-PDDL there would be a non-uniform polynomial algorithm for checking satisfiability of 3-CNF’s and
thus NP ⊆ P/poly. The proof works for both trees and circuits, because applicability is in P for both
O-PDDLT and O-PDDLC (Proposition 6.11). �

From Proposition 6.2 we conclude that if there existed a polynomial-size translation from E-PDDL into
O-PDDL there would also exist a polynomial-size translation from NNFAT into O-PDDL, contradicting
Proposition 6.29:

Corollary 6.30. If NP 6⊆ P/poly then there exists no polynomial-size translation neither from E-PDDLT

into O-PDDLT nor from E-PDDLC into O-PDDLC.

In other words, the reason for the non-existence of a translation from NNFAT and E-PDDL into
O-PDDL is the easy IS-APPLIC of the O-PDDL. Now we will prove that there is no polynomial-size
translation from O-PDDL into E-PDDL. Since IS-SUCC and ENTAILS are equally hard for O-PDDL
and E-PDDL, we will use ST to prove this separation result. We argue with the same reasoning as in the
proof of Proposition 6.28:

Corollary 6.31. If NP 6⊆ P/poly then there is no polynomial-size translation neither from O-PDDLT

into E-PDDLT nor from O-PDDLC into E-PDDLC.

PROOF. If O-PDDL was polynomial-size translatable into E-PDDL we could translate βn from the
proof of Proposition 6.27 into an E-PDDL-action description f (βn) and then check in linear time (Propo-
sition 6.26) the ST-query whether s(ϕ) ∈ f (βn)(s(ϕ)) to decide whether a 3-CNF ϕ is satisfiable, thus
obtaining a nonuniform polynomial-time algorithm for 3-SAT. �

46

Since NNFAT is polynomial-time translatable into E-PDDL (Proposition 6.2), we conclude the follow-
ing.

Corollary 6.32. If NP 6⊆ P/poly then there is no polynomial-size translation neither from O-PDDLT

into NNFATT nor from O-PDDLC into NNFATC.

6.3 Transformations

Of course, if a language allows for arbitrary nesting of an operator then it trivially supports a transforma-
tion. For example, NNFAT allows to express CHOICE of α1 and α2 via α1∨α2. Therefore the following
is a straightforward observation:

Corollary 6.33. Choice is linear-time for both representations of NNFAT, E-PDDL and O-PDDL.

In other cases, determining the complexity of a transformation seems to be not much easier than
determining the succinctness of the language enriched with the corresponding operator. We start with
NEGATION.

Proposition 6.34. If coNP 6⊆ NP/poly then Negation is not polynomial-size in any (tree or circuit)
representation of O-PDDL and E-PDDL.

PROOF. Recall from Lemma 6.7 that

α
sat,u
n :=

l

x∈Xn

 (l

γi : x∈γi

(+pi∪ ε)
) ∪ (l

γi : ¬x∈γi

(+pi∪ ε)
)

is such that s(ϕ) ∈ α
sat,u
n (/0) holds if and only if ϕ is satisfiable. Now suppose that NEGATION is

polynomial-size in E-PDDLT or E-PDDLC. Then there exists a polynomial-sized equivalent f (αsat,u
n)

of the negation of α
sat,u
n . Thus s(ϕ) ∈ f (αsat,u

n) holds if and only if ϕ is unsatisfiable, and so there is
a nonuniform NP-algorithm for a coNP-complete problem, because IS-SUCC is in NP for E-PDDL by
Proposition 6.9.
The proof for O-PDDLT and O-PDDLC is exactly the same with α

sat,&
n instead of α

sat,u
n . �

Proposition 6.35. Negation is linear time for both NNFATC and NNFATT.

PROOF. The negation of an NNF circuit can itself be transformed into an equivalent NNF circuit in
linear time, using De Morgan’s laws and elimination of double negations. �

The next results about SEQUENCE require a little preparation:

Lemma 6.36. Let k ∈N be fixed, and assume |P| ≤ k (i.e. the size of the scope of the described actions
is fixed). Then Is-Succ can be solved in polynomial time for O-PDDLC or E-PDDLC.

PROOF. We assume the formulas in L to be represented as circuits, since this is the hardest setting. Let
α be an L-action description over the variables P := {p1, . . . , pk}. Next to each leaf node (which is itself
an L-action description) we can write the corresponding set of effects in a given state s. The amount of
possible effects m is exponential in k which is fixed, but m does not depend on the size of α . Similarly,
each node pointing at subactions has a bounded number of effects (≤ m), which only depend on the
possible effects of the direct subactions. It is thus possible to identify all possible effects of the root node
of α in a bottom-up manner, and therefore to identify all possible successors of s (the maximal amount
of successors does not depend on the size of α neither). It remains to check whether s′ is one of them. �

47

Note that the same argumentation also works for IS-APPLIC and ENTAILS. We will see later that the
argumentation from the proof works for every superlanguage 〈L, I〉 of O-PDDLC or E-PDDLC from this
thesis.

Before proceeding to show that SEQUENCE is not polynomial-size for the minimally complete lan-
guages, we need the following technical result about restricting an action to pairs of states 〈s,s′〉 which
satisfy a given assignment to a subset of the variables, similar to Boolean conditioning. Given two dis-
joint sets of variables P,Q, a (P∪Q)-action a, and an assignment t ⊆ Q to the variables in Q, we define
the t-conditioning of a to be the P-action a|t satisfying ∀s⊆ P : a|t(s) = {s′ | (s′∪ t) ∈ α(s∪ t)}.

Example 6.37. For P := {p1, p2}, Q := {q1,q2}, and the E-PDDL action a described by

α :=

(
(p1∨ p2∨q2) B+ p2∪−q2

)
u
(
¬(p1∨ p2)∧q1 B+q2

)
u

(
(q2∨¬q1) B− p1

)
if t := {q1}, i.e. q1 = >, q2 = ⊥, then α({q1}) = {{q1,q2}}, α({p1,q1}) = {{p1,q1},{p1, p2,q1}},
α({p2,q1}) = {{p2,q1}} and α({p1, p2,q1}) = {{p1, p2,q1}}, so a|t can be described by

α|t :=
(p1∨ p2)B+p2∪ ε

u¬(p1∨ p2)B⊥

Lemma 6.38. Let P and Q be disjoint sets of variables, α be an E-PDDLT (resp. E-PDDLC) expression
for a (P∪Q)-action, and t ⊆ Q be an assignment to the variables in Q. Then we can compute an
E-PDDLT (resp. E-PDDLC) expression f (α) for the t-conditioning of α in time polynomial in |α|.

PROOF. We define f (α) as follows:

1. if α =±p with p ∈ P : f (α) := α

2. if α =+q with q ∈ t or α =−q with q /∈ t : f (α) := ε

3. if α =−q with q ∈ t or α =+q with q /∈ t : f (α) :=⊥

4. if α = β u γ : f (α) := f (β)u f (γ)

5. if α = β ∪ γ : f (α) := f (β)∪ f (γ)

6. if α = ϕBβ : f (α) := ϕ|t B f (β)

where ϕ|t denotes propositional conditioning. Clearly, f (α) can be computed in polynomial time. As
for correctness, we show it by induction on the formula structure in a sligthly stricter form because we
need this to deal with parallel execution. We claim that for all s, the effects of f (α) in s are exactly the
effects 〈E+ \Q,E− \Q〉, where 〈E+,E−〉 is an effect of α in s∪ t witnessing a transition of the form
(s∪ t,s′∪ t); clearly, this entails that f (α) indeed describes α|t .

1. Obvious since the only effect of α is 〈{p}, /0〉 or 〈 /0,{p}〉 with p /∈ Q, which leaves the values of
the variables in Q unchanged.

2. Assume by symmetry α := +q with q ∈ t. Then for all s, the only effect of α in s∪ t is 〈{q}, /0〉,
which witnesses a transition to s∪ t itself, and the only effect of f (α) in s is 〈 /0, /0〉, as claimed.

3. In this case α sets a variable in Q inconsistently with t, hence there is no effect of α witnessing a
transition of the form (s∪ t,s′∪ t), hence f (α) =⊥, which has no effect, is suitable.

4. By definition of u, for all P-states s the effects of β u γ in s∪ t witnessing a transition to some
s′∪ t are exactly the effects of the form 〈E+

β
∪E+

γ ,E−
β
∪E−γ 〉, where 〈E+

β
,E−

β
〉 is an effect of β in

s∪ t, 〈E+
γ ,E−γ 〉 is an effect of γ in s∪ t, and they agree; moreover, this is if and only if 〈E+

β
,E−

β
〉

witnesses a transition from s∪t to some sβ ∪t, and so does 〈E+
γ ,E−γ 〉 to some sγ∪t (because neither

48

could modify t without the combination being inconsistent or itself modifying t). By the induction
hypothesis, this is equivalent to f (β) having the effect 〈E+

β
\Q,E−

β
\Q〉 in s, and similarly for

f (γ), and since 〈E+
β
\Q,E−

β
\Q〉 and 〈E+

γ \Q,E−γ \Q〉 obviously agree, this is in turn equivalent to
f (β uγ), as defined in the statement, having the effect 〈(E+

β
∪E+

γ)\Q,(E−
β
∪E−γ)\Q〉, as claimed.

5. Follows from the definition of ∪.

6. For (s∪ t) 6|= ϕ , we get s 6|= ϕ|t and hence, the only effect of β and f (β) is 〈 /0, /0〉; now for (s∪ t) |=
ϕ , we get s |= ϕ|t and hence, α behaves as β and f (α) as f (β), so that the claim follows from the
induction hypothesis.

The proof is the same for circuits and for trees. �

We remark that the proof would not work for O-PDDL because if computing α|t was polynomial-time
for O-PDDL P-actions α we could solve ST (which is NP-complete by Proposition 6.27) in polynomial
time as follows: for a given s set Q = {p2, . . . , pn} and t := Q∩ s. Then compute α|t and check ST for
ŝ := s∩{p1}. By construction of α|t it holds that ŝ ∈ α|t(ŝ) if and only if s = (ŝ∪ t) ∈ α(ŝ∪ t) = α(s).

Proposition 6.39. If NP 6⊆ P/poly then Sequence is not polynomial-size for both the tree and circuit
representations of NNFAT, O-PDDL and E-PDDL.

PROOF. We start with the tree representations. Let n ∈ N, and let ϕ be a 3-CNF formula over a set of
variables Xn := {x1, . . . ,xn}. Recall from Notation 6.4 that we can encode ϕ over a set Pn ⊆ P. Finally,
let psat ∈ P be a fresh variable. We define three E-PDDL action descriptions over P = Xn∪Pn∪{psat}:

β1 :=
nl

i=1

(+xi∪−xi)

β2 := (χnB+psat)u (¬χnB−psat)

β3 :=
nl

i=1

−xi

where χn is the NNF
∧Nn

i=1(¬pi ∨
∨

`∈γi
`), which is satisfied if and only if each clause γi which is in ϕ

(as witnessed by pi being true) is also satisfied. In words, β1 guesses an assignment to V(ϕ), β2 sets
psat according to whether ϕ is satisfied by the assignment to the xi in the current state, and β3 resets
all guessed variables to false. Suppose that SEQUENCE is polynomial-size in E-PDDL. Then there
must exists a polynomial-size E-PDDL action description δ sat

n with s′ ∈ δ sat
n (s)⇔ ∃ŝ∃s̃ : ŝ ∈ β1(s), s̃ ∈

β2(ŝ) and s′ ∈ β3(s̃). Note that δ sat
n depends on n but not on ϕ , and that the size of δ sat

n is polynomial in
n because the sizes of β1,β2 and β3 are polynomial in n.

We observe that s(ϕ)∪{psat} is a δ sat
n -successor of s(ϕ) if and only if ϕ is satisfiable, because it is

an action which nondeterministically guesses an assignment and checks whether it satisfies ϕ . Hence the
following decision problem is NP-hard:

• Input: a 3-CNF formula ϕ

• Question: is s(ϕ)∪{psat} a δ sat
n -successor of s(ϕ)?

Let ϕ be a 3-CNF formula over n variables. Since δ sat
n is in E-PDDL, we can apply Lemma 6.38

with Q := Pn∪{x1 . . . ,xn} and t := s(ϕ), to get an expression in which the only occuring variable is psat,
and {psat} is a successor of /0 if and only if s(ϕ)∪{psat} is a δ sat

n -sucessor of s(ϕ), that is, if and only
if ϕ is satisfiable. Now since this expression has only one variable, it follows from Lemma 6.36 that
successorship can be decided in polynomial time, implying NP⊆ P/poly.

We can reuse the proof for NNFATT and NNFATC: observe that

49

•
dn

i=1(+xi ∪−xi) can be expressed in NNFATT (and hence in NNFATC) as
(∧Nn

j=1

(
(p j ∧ p′j)∨

(¬p j ∧¬p′j)
))
∧
(
(psat ∧ p′sat)∨ (¬psat ∧¬p′sat)

)
(that is, tacitly reassign each xi to an arbitrary

value, and leave the other variables unchanged)

• (χn B+psat) u (¬χn B−psat) as
(∧n

i=1
(
(xi ∧ x′i) ∨ (¬xi ∧ ¬x′i)

))
∧
(∧Nn

j=1

(
(p j ∧ p′j) ∨ (¬p j ∧

¬p′j)
))
∧
(
(¬χn∨ p′sat)∧ (χn∨¬p′sat)

)
•

dn
i=1−xi as

(∧n
i=1¬x′i

)
∧
(∧Nn

j=1

(
(p j ∧ p′j)∨ (¬p j ∧¬p′j)

))
∧
(
(psat∧ p′sat)∨ (¬psat∧¬p′sat)

)
We recall that the “conditioning” as in Lemma 6.38 can be performed on both representations of NNFAT
in polynomial-time since NNFAT is polynomial-time translatable into E-PDDL by Proposition 6.2.

As for O-PDDL, consider the following O-PDDL actions with the scope P = Xn ∪Pn ∪{psat}, as
before: β̂1 := &n

i=1(+xi ∪−xi) and β̂2 := ¬χnB⊥ with χn as in the proof for E-PDDL. Suppose that
SEQUENCE is polynomial-size in O-PDDL, then there exists β sat

n equivalent to the sequential execution
of β̂2 after β̂1, and it holds for all 3-CNF’s ϕ over Xn: ϕ is satisfiable if and only if β sat

n is applicable in
s(ϕ) (intuitively, β sat

n first guesses an assignment to Xn and then fails if this assignment does not satisfy
ϕ). Since β sat

n is polynomial-size, we obtain a non-uniform polynomial-time algorithm for 3-SAT, be-
cause deciding applicability is polynomial-time for both the tree and circuit representations of O-PDDL
by Proposition 6.11.

The proof is the same for trees and circuits. �

Finally we turn to EXTRACT-PRECOND.

Proposition 6.40. If NP 6⊆ P/poly then Extract-Precond is not polynomial-size for NNFAT nor for
E-PDDL under neither the tree nor the circuit representation.

PROOF. Recall that existential forgetting for a propositional language L is the problem of computing,
given a formula ϕ in L over variables x1, . . . ,xk,y1, . . . ,y`, a formula in L equivalent to ∃x1, . . . ,xk : ϕ

(Darwiche and Marquis, 2002). It is easy to see for NNFAT that SEQUENCE is a special case of ex-
istential forgetting; indeed, a possible description for α ; β (recall from Chapter 4 that this is how
we denote the sequential execution of β after α) over the state variables P would be ∃p′′1, . . . , p′′n :
α(p1, . . . , pn, p′′1, . . . , p′′n)∧β (p′′1, . . . , p′′n, p′1, . . . , p′n). We show that polynomial-size EXTRACT-PRECOND

implies polynomial-size existential forgetting.
Let x1, . . . ,xk,y1, . . . ,y` and ϕ be as above. Let n := max(k, `) and xk+1, . . . ,xn,y`+1, . . . ,yn be dummy

variables. Clearly, ϕ can be seen as a formula over variables x1, . . . ,xn,y1, . . . ,yn, and ∃x1, . . . ,xk : ϕ

is logically equivalent to ∃x1, . . . ,xnϕ . We define P to be {p1, . . . , pn}, and define α to be the action
description obtained from ϕ by replacing xi by p′i and yi by pi, for all i.

Now it is easy to see that if we can compute a polynomial-size NNF formula ψ with s |= ψ ⇐⇒
α(s) 6= /0 we can compute from it an NNF formula equivalent to ∃x1, . . . ,xn : ϕ in polynomial time by
replacing each pi (i = 1, . . . , `) by yi, and setting each pi (i = `+1, . . . ,n) to ⊥ (arbitrarily, since this is a
dummy variable).

To conclude, if EXTRACT-PRECOND was polynomial-size, so would be existential forgetting, and
thus SEQUENCE. But SEQUENCE is not polynomial-size if NP 6⊆ P/poly (Proposition 6.39).

Now, if EXTRACT-PRECOND was polynomial-size for E-PDDL, then it would be polynomial-size
for NNFAT, too, since the latter is polynomial-time translatable into the former by Proposition 6.2. �

A consequence of this proof is that existential forgetting is not polynomial-size for NNF formulas if NP 6⊆
P/poly. This is a stronger version of the statement than the one in (Lang et al., 2003, Proposition 23),
where the complexity-theoretic assumption was NP∩ coNP 6⊆ P/poly.

Proposition 6.41. Extract-Precond is linear-time in O-PDDLT and O-PDDLC.

50

PROOF. We do the proof indirectly, i.e. for an O-PDDL action α we first define an NNF formula ϕ(α)
such that α is not applicable in s if and only if s |= ϕ(α).

ϕ(α) is recursively obtained from α by replacing each & by ∨, each ∪ by ∧, each ψBβ by ψ∧ϕ(β)
and each ±q by ⊥. This is because for β &γ it is enough for one branch to fail to cause the failure of the
whole subaction, and for β ∪ γ we need both branches to fail. For the non-applicability of a conditional
execution ψBβ we need the condition ψ to be true and β to be not applicable. ±q never fails, so ϕ(±q)
must be ⊥. Thus α is applicable in s if and only if s |= ¬ϕ . Since the construction of ϕ is linear-time for
both O-PDDLT and O-PDDLC, we conclude the claim. �

6.4 Conclusion

The results of Chapter 6 are summarized in Table 6.1. We recall that NNFAT is polynomial-time trans-
latable into E-PDDL, but the converse does not hold even for polynomial-size translations, and that
O-PDDL and E-PDDL are succinctness-incomparable (all succinctness results hold under the assump-
tion that NP 6⊆ P/poly).

One conclusion is that converting an E-PDDL specification into an NNFAT representation neces-
sarily yields an explosion in some cases. Hence it is worth developing planners which tackle directly
the PDDL specification, or, dually, to read specifications in NNFAT, so as to avoid the conversion. The
latter may indeed make sense in some settings, since NNFAT is a declarative language (where it is easy
to specify that the action sets p1 to the same value as p2, for instance), quite complementary to the
imperative PDDL.

Since E-PDDL and O-PDDL are succinctness-incomparable, the choice of a particular semantics
for parallel execution could for example depend on the notion of plan one wants to find. Avoiding cycles
could be more difficult when working with O-PDDL due to NP-hardness of ST, but this is compensated
by the polynomial-time applicability checking and extracting of explicit NNF preconditions.

The advantage of NNFAT is that it is the only language with tractable IS-SUCC, but this query is not
a central one in planning, contrary to IS-APPLIC and ENTAILS.

A general conclusion that we can make from the fact that the complexities do not differ for the tree
and circuit representations is that whenever possible one should implement the planners to be able to
work with the more compact circuit representations.

As for the more theoretical conclusions, most of the results themselves are not very surprising, for
example, the hardness of applicability in NNFAT and E-PDDL comes from the “hidden” possible in-
consistencies of positive and negative assignments to the same variable. In O-PDDL there is no such
problem due to a “hierarchy” where positive assignments always win, and thus the only source of inap-
plicability is the explicit ⊥ symbol. What is surprising is the simplicity of the expression α

sat,u
n which

involves only positive assignments, no conditions and is of bounded depth. The latter fact is a motivation
to study do not of E-PDDL with bounded depth of action descriptions, suspecting that these restrictions
will remain highly expressive and difficult to reason about (we will see in the next chapter that this is
indeed the case). An interesting result is that ST is difficult for O-PDDL, but easy for E-PDDL. We will
see in Chapter 8 that even some of the very expressive extensions of E-PDDL still allow for tractable
ST.

The complexity and succinctness pictures in this chapter are complete, but we can imagine many
further research directions based on what we learned here: for example, the study of the PDDL-like
action language which allows for both & and u connectives. Another interesting question naturally
arising from our results is which restrictions made on E-PDDL would allow to translate it into NNFAT
(at least with a polynomial-size translation).

Altogether this chapter presents two of the three proof ideas which we use repeatedly in this thesis.
The first one is for succinctness separation results, which is to find a query which is more difficult in one
language than in the other, and to define a family of instances of this problem which toghether constitue
a non-uniform algorithm for some complete problem, and argue that a polynomial-size translation would
imply the existence of a “simpler” non-uniform algorithm for the same problem which is highly unlikely.
The second idea is the instanciation and reduction of the circuit for showing membership results.

51

Queries
Query/Transformation O-PDDL E-PDDL NNFAT
IS-SUCC NP-complete NP-complete linear time
IS-APPLIC linear time NP-complete NP-complete
ENTAILS coNP-complete coNP-complete coNP-complete
ST NP-complete linear time linear time
IS-DET polynomial-time coNP-complete coNP-complete
IS-MON polynomial-time coNP-complete coNP-complete

Transformations
CHOICE linear time linear time linear time
NEGATION ◦ ◦ linear time
SEQUENCE ◦ ◦ ◦
EXTRACT-PRECOND linear time ◦ ◦

Table 6.1: Complexity results for minimally complete languages. ◦ means that under some complexity-
theoretic assumption the transformation is not polynomial-size. Results hold for both the tree and the
circuit representations.

NNFAT

E-PDDL

O-PDDL

×

× ×

× ×

Figure 6.1: Succinctness results for minimally complete languages. An arc from L1 to L2 means that L1
can be translated into L2 in polynomial time (hence also in polynomial size). A crossed out arc from
L1 to L2 means that under some complexity-theoretic assumption there exists not even a polynomial-size
translation from L1 into L2. These relations hold whether the two languages are in the tree representation,
or they are both in circuit representation.

52

Part III

Variants of Basic Languages

CHAPTER 7

Restrictions of Minimally Complete Languages

Contents
7.1 Nondeterministic Conditional STRIPS . 55

7.1.1 Queries . 57

7.1.2 Succinctness . 58

7.1.3 Transformations . 60

7.2 Incomplete Restriction: Non-negative E-PDDL/O-PDDL 60
7.3 Conclusion . 62

We have seen in the previous chapter that already very simple action descriptions with a bounded
depth serve (such as α

sat,&
n) as witnesses for nontractability of queries or impossibility of polynomial-

size transformations. In this chapter we will consider restrictions of O-PDDL and E-PDDL whose
grammar is so restrictive that α

sat,&
n (resp. α

sat,u
n) are not part of the language anymore.

We concentrate on restrictions of imperative minimally complete languages O-PDDL and E-PDDL
in this chapter. The reason is that the only declarative language we study in our work is NNFAT, and its
restrictions like CNF, DNF, BDD, DNNF and others have been well-studied already for a long time (Dar-
wiche and Marquis, 2002).

7.1 Nondeterministic Conditional STRIPS

As we have already proven, we can’t simply drop any connective from the grammar of O-PDDL and
E-PDDL without losing completeness. But there are other ways to restrict the syntax. One can syn-
tactically restrict the depth of the expression, enforce a specific order of connectives (like in CNF and
DNF), assume the variables to always appear in a fixed order throughout the action description (like in
OBDD’s), or assume that certain subformulas don’t share variables (like in DNNF).

The original relational PDDL can be considered a generalization of the Stanford Research Institute
Problem Solver language STRIPS (Fikes and Nilsson, 1971). STRIPS can be seen as a syntactic restric-
tion of grounded PDDL (i.e. the action descriptions must have a concrete structure “if condition then
effect and if other condition then other effect. . . ”). Thus we can define in an analogous way restrictions
for our abstract variants of PDDL and obtain respectively two variants of nondeterministic conditional
STRIPS. We call them O-NCSTRIPS and E-NCSTRIPS, with “C” for “conditional” (contrary to un-
conditional STRIPS by Fikes and Nilsson (1971) we allow for effects to be conditional, i.e. of the form
ϕB . . .) and “N” for “nondeterministic”.

We recall that O-PDDL and E-PDDL relate to the general definitions of effects by Rintanen (2003),
and it is not surprising that O-NCSTRIPS and E-NCSTRIPS resemble the 1NF-normal form (1NF

55

meaning “unary nondeterminism”) of effects defined there. An effect (in Rintanen’s definition) is in
1NF-normal form if it is either deterministic (without ∪) or a nondeterministic choice of deterministic
effects. However our definitions here are a bit more general, since an O-NCSTRIPS or E-NCSTRIPS
action can be seen as a parallel execution of 1ND-effects.

Definition 7.1 (O-NCSTRIPS). An O-NCSTRIPS action description is an O-PDDL expression of the
form

n

&
i=0

(
ϕiB

(
(`1,1

i & . . .&`1, j1
i)∪ . . .∪ (`ki,1

i & . . .&`
ki, jki
i)

))
where each `k, j

i is either ε , ⊥, +p or −p for some p ∈ P.

In words, an O-NCSTRIPS action description specifies a set of conditions so that, when the action
is applied in a state s, for each condition satisfied by s exactly one of the corresponding effects occurs.

Analogously restricting E-PDDL we obtain the language E-NCSTRIPS.

Definition 7.2 (E-NCSTRIPS). An E-NCSTRIPS action description is an E-PDDL expression of the
form

nl

i=0

(
ϕiB

(
(`1,1

i u . . .u `
1, j1
i)∪ . . .∪ (`ki,1

i u . . .u `
ki, jki
i)

))
where each `k, j

i is either ε , +p or −p for some p ∈ P.

Note that for both languages now we need ε to be a possible atomic action, otherwise we can’t
express ε as a possible effect via (p∧¬p)B+p because conditions can occur only directly below the
root. Also note that since the root operator is always a simultaneous execution (& or u), we can put an
NNF precondition ϕ for the action α via (¬ϕB⊥)&α and (¬ϕB⊥)uα .

The following notation will be useful to illustrate our example and to write some expressions in
proofs more compactly.

Notation 7.3. For a state s let ψs denote the formula (
∧

p∈s p)∧ (
∧

p/∈s¬p). For an NNF formula ϕ

we denote by ϕ ′ the formula obtained by replacing all variables p in ϕ by their primed copies p′. The
expression ϕ ′ describes the action which maps every state s to an arbitrary model s′ of ϕ . In particular,
ψ ′s′ describes the deterministic action mapping every state to s′.

Example 7.4. The languages O-NCSTRIPS and E-NCSTRIPS are complete, since any action a can
at least be represented by one condition for each state s (satisfied only by s), associated to either (1) a
choice (∪) between some “conjunctions” (via & or u) of atoms, one conjunction per a-successor s′ of
s (setting all variables as in s′), or (2) to the degenerate choice of conjunctions ⊥, when a(s) is empty.
For example, if P := {p1, p2, p3} and the P-states s′ := {p1, p2},s′′ := {p3},s′′′ := {p1} are successors
of s := {p1} via the action a, then a possible E-NCSTRIPS description α of a could be

α = . . .u
(
(p1∧¬p2∧¬p3)B

(
(+p2)∪ (+p3u−p1)∪ (ε)

))
u·· ·

Formally, when given an action a we can compute an E-NCSTRIPS-representation α of a (with a given
scope P) as follows (with ψs as in Notation 7.3):

α :=
l

s⊆P

ψsB

{⋃
s′∈a(s)

(
(
d

p∈s′+p)u (
d

p/∈s′−p)
)

if a(si) 6= /0

⊥ if a(s) = /0

The O-NCSTRIPS representation of a is obtained analogously with & instead of u.

56

Results for Complete Restrictions

Since both O-NCSTRIPS and E-NCSTRIPS are complete, it is not surprising that they have a lot
in common with their “parent” superlanguages O-PDDL and E-PDDL. In this subsection we give
complexity results for queries and partial results for transformations and succinctness.

Since O-NCSTRIPS and E-NCSTRIPS are flat (the depth of the underlying graph is bounded),
there is no difference between the circuit and the tree versions up to polynomial-time transformations,
except for the representation of conditions ϕ; since, as it turns out, the representation of conditions
does not affect the complexity results in this work, we only write O-NCSTRIPS and E-NCSTRIPS
without specifying the representation, and we say that E-NCSTRIPS is a sublanguage of E-PDDLT or
E-PDDLC (and O-NCSTRIPS is a sublanguage of O-PDDLT and O-PDDLC), meaning each time the
corresponding version of E-NCSTRIPS/O-NCSTRIPS.

7.1.1 Queries

The membership results follow directly from O-NCSTRIPS being a sublanguage of O-PDDL and
E-NCSTRIPS being a sublanguage of E-PDDL:

Corollary 7.5. For O-NCSTRIPS, Is-Applic can be answered in linear time and Is-Det and Is-Mon can
be answered in polynomial time, Is-Succ and ST are in NP and Entails is in coNP.

For E-NCSTRIPS, ST can be answered in linear time, Is-Succ and Is-Applic are in NP and Entails,
Is-Det and Is-Mon are in coNP.

For the hardness results we will reuse the proof ideas from the previous chapter, but adjusted to the
quite restrictive syntax of O-NCSTRIPS and E-NCSTRIPS.

Notation 7.6. Recall from Notation 6.4 (page 39) that we can encode 3-CNFs over Xn with a polynomial
number of propositional variables Pn. For a set of 3-clauses Γ we write Γ ⊆5

` Γn if Γ ⊆ Γn, |Γ| ≤ 5 and
each clause in Γ contains ` exactly once. In other words, this means that the literal ` occurs in the clauses
in Γ at most 5 times. For each n, |{Γ | Γ⊆5

` Γn}| (the amount of such Γ’s) is polynomial in n.

Proposition 7.7. ST is NP-complete for O-NCSTRIPS.

PROOF. We recall Notation 7.6 and define the expression choosen(`) :=
⋃

Γ⊆5
`Γn

(&γ j∈Γ+p j). The size
of choosen(`) is polynomial in n. Let βn be the following O-NCSTRIPS-action:

βn :=
(n

&
i=1
>B (choosen(xi)∪ choosen(¬xi))

)
&
(Nn

&
j=1
>B−p j

)
Our claim now is similar to the hardness claim for O-PDDL: a 3-CNF formula ϕ with at most 5 oc-
curences of each literal is satisfiable if and only if s(ϕ) ∈ βn(s(ϕ)). The claim is easy to see because
choosen(x) chooses nondeterministically a set of clauses of which each contains x as a literal and the
total number of occurences of this literal is at most 5 (especially note that the empty set of clauses is
a possible choice, too). Thus for each satisfiable 3-CNF ϕ with at most five occurences of each literal
there exists an execution of βn which sets exactly the variables of s(ϕ) true and all other variables false.
Conversely, if s(ϕ) ∈ β (s(ϕ)) then there exists an execution setting exactly the variables in s(ϕ) to true
and the others to false. This execution induces an assignment to the x variables which is a witness for the
satisfiability of ϕ .

Now recall that deciding satisfiability of a 3-CNF with at most 5 occurences of a literal is still an
NP-complete problem (Lemma 3.9, page 17, with k = 5), for which we found a reduction to ST in
O-NCSTRIPS. NP-completeness follows from Corollary 7.5.

We remark that βn can also generate 3-CNF’s with more than 5 occurences of each literal, but this
does no harm for the proof. �

Proposition 7.8. Is-Succ is NP-complete for both O-NCSTRIPS and E-NCSTRIPS.

57

PROOF. Since ST is a special case of IS-SUCC and it is already NP-hard for O-NCSTRIPS, IS-SUCC

is NP-hard for O-NCSTRIPS, too.
For E-NCSTRIPS, consider the E-NCSTRIPS expression, γn =

dn
i=1>B(choosen(xi)∪choosen(¬xi))

(with choosen as in the proof of Proposition 7.7). With argumentation analogous to that for βn from the
proof of Proposition 7.7 we see that a 3-CNF ϕ with at most 5 occurences of each literal is satisfiable if
and only if s(ϕ) ∈ γn(/0) and thus IS-SUCC is NP-hard for E-NCSTRIPS.

NP-membership follows from Corollary 7.5. �

Proposition 7.9. Is-Applic is NP-complete for E-NCSTRIPS.

PROOF. Membership was stated in Corollary 7.5.
To show hardness for E-NCSTRIPS, we define the E-NCSTRIPS action ξn over the variables Xn∪

Pn with Xn, Pn as in Notation 6.4 (page 39):

ξn :=
l

pi∈Pn

(
piB

(
(
⋃
x∈γi

+x)∪ (
⋃
¬x∈γi

−x)
))

Intuitively, in s(ϕ) the action ξn chooses a satisfying assignment (to one of the x-variables) for each
clause γi of ϕ; clearly, a successful execution of ξn in s(ϕ) corresponds to one satisfying assignment for
ϕ , and each satisfying assignment corresponds to at least one successful execution of ξn. Thus a 3-CNF
formula ϕ is satisfiable if and only if ξn is applicable in s(ϕ), which gives a reduction from 3-SAT to
IS-APPLIC. �

Proposition 7.10. Entails is coNP-complete for O-NCSTRIPS and E-NCSTRIPS.

PROOF. The action α = &xi∈Xn(+xi ∪−xi) from the proof of Proposition 6.16 (page 42) entails a
DNF ϕ if and only if ϕ is valid. α is already an O-NCSTRIPS (we can insert a trivial precondition >
obtaining &xi∈Xn>B (+xi∪−xi)) action and therefore ENTAILS is coNP hard for O-NCSTRIPS.

For E-NCSTRIPS we know that IS-APPLIC is NP-hard and since its complement is reducible to
ENTAILS (Lemma 4.7, page 23) we conclude that ENTAILS is coNP-hard for E-NCSTRIPS. �

Proposition 7.11. Is-Det and Is-Mon are coNP-complete for E-NCSTRIPS.

PROOF. The proofs for reducing IS-APPLIC to IS-DET and IS-MON for E-PDDL (Propositions 6.21
and 6.23) can be reused to show the same reduction for E-NCSTRIPS: an E-NCSTRIPS-action α is
non-applicable in s if α u (>B (+q∪−q)) with a fresh variable q is deterministic in s. The >B . . .
serves to satisfy the formal requirements of the syntax of E-NCSTRIPS. The reduction to IS-MON is
obtained in the same manner. �

7.1.2 Succinctness

We now show the succinctness results, which are not surprising given the known succinctness relations
for E-PDDL and O-PDDL. We remark that since O-NCSTRIPS is a sublanguage of O-PDDL and
E-NCSTRIPS is a sublanguage of E-PDDL, the identity function is an obvious linear-time translation
in both cases.

Proposition 7.12. If NP 6⊆ P/poly then O-NCSTRIPS is neither polynomial-size translatable into
E-NCSTRIPS nor into E-PDDL.

Under the same assumption E-NCSTRIPS is neither polynomial-size translatable into O-NCSTRIPS
nor into O-PDDL.

PROOF. The argumentation is exactly the same as for incomparability of O-PDDL and E-PDDL, but
now we use the more complicated action descriptions: the O-NCSTRIPS action βn from the proof of
Proposition 7.7 and the E-NCSTRIPS action ξn from the proof of Proposition 7.9. Suppose that there
exists a polynomial-size translation from O-NCSTRIPS into E-PDDL. Then by translating the actions

58

βn from the proof of Proposition 7.7 we obtain a non-uniform polynomial-time algorithm for deciding
satisfiability of 3-CNF’s with at most 5 occurences of each literal, since ST can be decided in linear time
in E-PDDL. Thus, if NP 6⊆ P/poly then O-NCSTRIPS is not polynomial-time translatable neither into
E-PDDL nor into its sublanguage E-NCSTRIPS.

Conversely, if there existed a polynomial-size translation from E-NCSTRIPS into O-PDDL we
would obtain a non-uniform polynomial-time algorithm for deciding satisfiability of 3-CNF’s by trans-
lating ξn from the proof of Proposition 7.9 (which is applicable in s(ϕ) if and only if ϕ is satisfiable) into
O-PDDL where applicability can tested in polynomial time. Hence if NP 6⊆ P/poly then E-NCSTRIPS
is neither polynomial-size translatable into O-PDDL nor its sublanguage O-NCSTRIPS. �

Proposition 7.13. If NP 6⊆ P/poly then both NNFATT and NNFATC are succinctness-incomparable
with O-NCSTRIPS.

PROOF. From the proof of Proposition 7.7 we see with our usual argumentation about succinctness
(like in the proof of Proposition 6.28, page 45) that if there was a polynomial-size translation from
O-NCSTRIPS into NNFAT then we would have a nonuniform polynomial-time algorithm for checking
the satisfiability of 3-CNFs with at most 5 occurences of each literal, because IS-SUCC is linear-time in
NNFAT. Conversely, since NNFAT is not polynomial-size translatable into O-PDDL (Proposition 6.29,
page 46), it is not translatable into O-NCSTRIPS either. �

Proposition 7.14. If NP 6⊆ P/poly, there exists no polynomial-size translation from E-NCSTRIPS into
NNFATT nor into NNFATC.

PROOF. Analogously to the proof of Proposition 6.28 (page 45) we argue with γn from the proof
of Proposition 7.8 instead of α

sat,u
n : if there was a polynomial-size translation from E-NCSTRIPS into

either the tree or the circuit representation of NNFAT then there would be a polynomial-time non-uniform
algorithm for checking the satisfiability of 3-CNFs with at most 5 occurences of each literal, implying
NP⊆ P/poly. �

The following separation result is unconditional (this is the only separation result in this thesis which
does not rely on unproven assumptions about complexity classes).

Proposition 7.15. There exists no polynomial-size translation of NNFATC into E-NCSTRIPS.

PROOF. The majority function (which returns true if and only if at least half of its arguments are true)
can be computed by a boolean circuit ψ of linear size and logarithmic depth (Muller and Preparata, 1975).
Consider an action a over Pn = {p1, . . . , pn} which is applicable only in s = /0 and in this state produces
nondeterministically all s′ with |s′| ≥ n

2 . Thus it is representable by a polynomial-size circuit NNF action
theory ψ ′n. Now every E-NCSTRIPS representation of a can without loss of generality be assumed
to be of the form (ϕnBαn)u (¬ϕnB⊥) with ϕn = ¬p1 ∧ . . .∧¬pn and αn being an unconditioned
E-NCSTRIPS expression. By replacing u by ∧, ∪ by ∨, +p by p and−p by ¬p we would then obtain a
formula over Pn whose models are αn-successors of /0, thus obtaining a boolean circuit of bounded depth
of size polynomial in n for the majority function, which contradicts a result from Hastad (1986).�

Since NNFATC is polynomial-time translatable into E-PDDLC by Proposition 6.2 (page 38), we con-
clude:

Corollary 7.16. There exists no polynomial-time translation from E-PDDLC into E-NCSTRIPS.

After all we leave three succinctness questions open in this work: whether O-NCSTRIPS is strictly
less succinct than O-PDDL for any representation of O-PDDL, whether E-NCSTRIPS is strictly less
succinct than E-PDDLT and whether NNFATT is polynomial-size translatable into E-NCSTRIPS.

59

7.1.3 Transformations

As for the transormations, we can mostly reuse the argumentation from Chapter 6. The only big problem
here is that for O-NCSTRIPS and E-NCSTRIPS the operator ∪ is not allowed to occur at the root and
hence it is not obvious whether it is possible to perform polynomial-size CHOICE. For the other results:

Proposition 7.17. If NP 6⊆ P/poly and coNP 6⊆NP/poly then Extract-Precond, Negation and Sequence
are not polynomial-size for E-NCSTRIPS.

PROOF. Consider the E-NCSTRIPS action over Xn∪Pn

ξn :=
l

pi

(
piB

(
(
⋃
x∈γi

+x)∪ (
⋃
¬x∈γi

−x)
))

and recall from the proof of Proposition 7.9 that ξn is applicable in s(ϕ) if and only if ϕ is satisfiable.
Hence if there was a polynomial-size NNF representation of the precondition ψn of ξn, we could check
whether ϕ is satisfiable by checking s(ϕ) |= ψn, and thus we would obtain a non-uniform polynomial-
time algorithm for 3-SAT. As for SEQUENCE and NEGATION, the proof is a modification of the proof of
Propositions 6.34 and 6.39 in the same way as we did it for the Proposition 7.18 (i.e. for showing the im-
possibility of polynomial-size NEGATION we show that by expressing the negation of γn from the proof
of Proposition 7.8 in E-NCSTRIPS we obtain a non-uniform NP-algorithm for deciding unsatisfiability
of 3-CNF’s with at most 5 occurences of each literal). �

Proposition 7.18. If NP 6⊆P/poly and coNP 6⊆NP/poly then Negation and Sequence are not polynomial-
size for O-NCSTRIPS. Extract-Precond is linear-time for O-NCSTRIPS.

PROOF. The proof for SEQUENCE is exactly the same as in Proposition 6.39 (page 49), because all the
partial action descriptions there are already in O-NCSTRIPS. As for NEGATION, if it was possible with
a polynomial increase in size then by computing the polynomial-size negation of βn from the proof of
Proposition 7.7 we would obtain a non-uniform NP-algorithm for a coNP-complete problem of unsatis-
fiability of 3-CNFs with at most five occurences of each literal. Finally, since EXTRACT-PRECOND is
linear-time for O-PDDL, it is linear time for O-NCSTRIPS. �

7.2 Incomplete Restriction: Non-negative E-PDDL/O-PDDL

We will now turn to incomplete restrictions of E-PDDL and O-PDDL. As we have shown in Chapter 5,
dropping any of the connectives from the grammar yields an incomplete restriction, but most of them
are not very interesting because the loss in expressiveness is too big (e.g. after excluding the parallel
composition we can only define actions that change at most one variable per execution).

A more interesting restriction of the grammar is to exclude a sort of elementary assignments. Since
all basic queries are intractable for E-PDDL, it is interesting to consider its sublanguages which could
allow to answer at least some queries in polynomial time. One such language is the language NPDDLnf
of “negation-free E-PDDL-expressions”, generated by the grammar

α ::=⊥ |+p | ϕBα | (α ∪α) | α uα

Note that the grammar includes the ⊥ symbol to allow for actions to fail. It is important to note that
“negation-free” here refers only to the type of elementary assignments, i.e. assignments of the form −p
are not allowed. However, negative literals are still allowed in conditions ϕ . “Negation-freeness” does
neither refer to the negation operators which we will define in the next chapter, nor to the possibility or
impossibility to perform polynomial-size NEGATION.

The choice of the restriction to only positive effects is arbitrary, and the results of this section hold
for the “addition-free” restriction of E-PDDL by duality.

NPDDLnf is obviously not complete. It is easy to see that the actions which it can describe are
exactly those α’s satisfying: ∀s,s′: s′ ∈ α(s)⇒ s′ ⊇ s, i.e. monotone actions. Therefore the query

60

IS-MON for positive monotony is not sensible for NPDDLnf, and IS-MON for negative monotony boils
down to non-applicability.

Another observation which we make is that all effects of NPDDLnf actions are of the form 〈Q+, /0〉,
i.e. the negative part is always empty. Thus the condition for two effects to agree is always trivially
satisfied, and there is no difference between the effects of α uβ and α &β . Thus, although NPDDLnf
was first motivated as a restriction of E-PDDL, it turns out to be a restriction of O-PDDL as well, so it
could also be defined by the grammar

α ::=⊥ |+p | ϕBα | (α ∪α) | α &α

We have decided to use u instead of & for convenience and to stick to the DL-PPA-like syntax.
We first give the complexity results for NPDDLnf.

Proposition 7.19. Is-Applic can be answered in polynomial time for both NPDDLT
nf and NPDDLC

nf.

PROOF. The result follows from polynomial-time solvability of IS-APPLIC for O-PDDL (Proposi-
tion 6.11). �

Proposition 7.20. Is-Succ is NP-complete for NPDDLT
nf and NPDDLC

nf.

PROOF. Membership is inherited from E-PDDL (Proposition 6.13). For hardness, we consider the
action α

sat,u
n :=

d
x∈Xn

((d
γi : x∈γi

(+pi∪ ε)
) ∪ (d

γi : ¬x∈γi
(+pi∪ ε)

))
from Notation 6.6. We recall that

a 3-CNF is satisfiable if and only if s(ϕ)∈ α
sat,u
n (/0) (Lemma 6.7) and observe that α

sat,u
n is an NPDDLnf

expression. Thus we have a polynomial-time reduction from 3-SAT to IS-SUCC in NPDDLT
nf. �

Proposition 7.21. Entails is coNP-complete for both representations of NPDDLnf.

PROOF. Membership follows from the coNP-membership of ENTAILS for E-PDDL (Proposition 6.14).
As for the hardness, we claim that an NNF formula ϕ over Xn = {x1, . . . ,xn} is valid if and only if the
action α :=

d
xi∈Xn

(+xi∪ε) entails ϕ in s = /0. This is true because α(s) = {s′ | s′ ⊆ Xn} and therefore if
α entails ϕ this means that every assignment to Xn is a model of ϕ . �

Proposition 7.22. Is-Det can be answered in polynomial time for both representations of NPDDLnf.

PROOF. We argue analogously to the proof of Proposition 7.19: NPDDLnf is a sublanguage of O-PDDL
and hence the result follows from Proposition 6.20. �

The complexity of the last remaining query ST is inherited from the superlanguage E-PDDL (Proposi-
tion 6.26).

Corollary 7.23. ST is linear time for both representations of NPDDLnf.

The fact that IS-SUCC is still NP-hard for NPDDLnf despite its very restrictive manner raises the
question whether unrestricted E-PDDL is more succinct than NPDDLnf for monotone actions.

Proposition 7.24. If NP 6⊆ P/poly then there are families of monotone actions with a polynomial-size
description in E-PDDLT, but not in NPDDLT

nf nor even in NPDDLC
nf.

PROOF. Consider the encoding of 3-CNFs as in Notation 6.4. We define the action

βn :=
l

pi

(
piB

(
(
⋃
x∈γi

+x)∪ (
⋃
¬x∈γi

¬xB−x)
))

We observe that this action is positively monotone because it can only assign a variable to ⊥ if it was
already false before. Then a 3-CNF ϕ over X := {x1, . . . ,xn} is satisfiable if and only if βn is applicable in
s(ϕ), because βn simply assigns a variable to satisfy at least one literal in each clause in s(ϕ). If we could
find an equivalent description in NPDDLC

nf then we could check applicability in polynomial time because
of Proposition 7.19, so after translating the αn into equivalent negation-free expressions of polynomial
size we would obtain a non-uniform polynomial-time algorithm for checking the satisfiability of 3-CNFs.
�

61

Remark 7.25. Every O-PDDL description of a monotone action can be transformed into an equivalent
negation-free O-PDDL-expression in polynomial time. Suppose that the O-PDDL description α de-
scribes a monotone action. Then α̂ is negation-free and α̂ ≡ α , with α̂ obtained by replacing all nodes
of the form −p by ε , because we know that whenever a −p-node is executed, there is either a ⊥ or a
+p-node which is executed in parallel or p was already false, and therefore −p acts like ε here.

Hence the statement of Proposition 7.24 cannot be transferred to O-PDDL.

As for the succinctness, it doesn’t make much sense to compare NPDDLnf to complete languages in
our setting because NPDDLnf is not complete itself. However, the result of Proposition 7.24 can be seen
as a succinctness result in the framework of heterogeneous compilation (Fargier et al., 2013).

Now we consider the transformations. The first one is straightforward because ∪ is part of the
grammar of NPDDLnf.

Corollary 7.26. Choice is linear-time in NPDDLnf.

Proposition 7.27. Extract-Precond can be carried out in linear time in both representations of NPDDLnf.

PROOF. EXTRACT-PRECOND is polynomial-time for O-PDDL (Proposition 6.41, page 50) and hence
for NPDDLnf. �

Proposition 7.28. If coNP 6⊆ NP/poly then Negation is not polynomial-size for NPDDLC
nf neither for

NPDDLT
nf.

PROOF. Since α
sat,u
n is an NPDDLnf action description, we can reuse the proof of Proposition 6.34

(page 47). If polynomial-size NEGATION was possible for NPDDLnf then by using the representation of
the negation of α

sat,u
n for checking successorship we would obtain a non-uniform NP-algorithm for the

coNP-complete problem of unsatisfiability of 3-CNFs. �

Proposition 7.29. If NP 6⊆ P/poly then Sequence is not polynomial-size for NPDDLnf.

PROOF. Consider the set of state variables Pn∪Xn∪{psat}= {p1, . . . , pNn ,x1, . . . ,xn, psat} with Pn as in
Notation 6.4 (page 39) and the actions α1 :=

d
xi∈Xn

(+xi ∪ ε), α2 := χnB+psat with χn :=
∧Nn

i=1(¬pi ∨∨
`∈γi

`) like in the proof of Proposition 6.39 (page 49) and α3 := ¬psatB⊥. When executed in s(ϕ), the
sequence of actions α := α1 ; α2 ; α3 (recall that we use this notation for “first do α1, then do α2, then do
α3”) nondeterministically creates any possible assignment to the Xn variables, then assigns > to psat if
the 3-CNF ϕ encoded by the initial values of the Pn-variables is satisfied, and then fails if psat is false, i.e.
if the assignment made to Xn does not satisfy ϕ . If there was an NPDDLnf-action description f (α) of
polynomial size and with the same semantics we could check whether an arbitrary 3-CNF ϕ is satisfiable
by checking whether f (α) is applicable in s(ϕ). Since applicability in NPDDLnf is in P even for circuits
(Proposition 7.19), we would obtain a non-uniform P-algorithm for an NP-complete problem. �

7.3 Conclusion

We have studied two complete restrictions of minimally complete imperative languages, O-NCSTRIPS
and E-NCSTRIPS. We have shown that despite their very restrictive syntax they don’t differ from
their “parent languages” in terms of complexity, and thus the only reason to prefer O-NCSTRIPS over
O-PDDL is that some planner is designed to reason only with representations of a certain structure. A
positive side effect of the high complexity of these two representations is that they are complete (which
is not very surprising, though, because CNF and DNF are even more restrictive in their syntax and they
are still complete subclasses of the class of all NNF formulas).

We also studied a syntactic restriction of E-PDDL to only positive assignments and have observed
two interesting facts: first, in this case the semantics of u and & act in the same way, so in order to show
their “full power” these connectives need a more expressive grammar. The other observation is that using
negative assignments contributes to consiseness of representations even for monotone actions. The price

62

Query/Transformation O-NCSTRIPS E-NCSTRIPS NPDDLnf
Queries

IS-SUCC NP-complete NP-complete NP-complete
IS-APPLIC linear time NP-complete linear time
ENTAILS coNP-complete coNP-complete coNP-complete
ST NP-complete linear time linear time
IS-DET polynomial time coNP-complete polynomial time
IS-MON polynomial time coNP-complete trivial/polynomial time

Transformations
CHOICE ? ? linear time
NEGATION ◦ ◦ ◦
SEQUENCE ◦ ◦ ◦
EXTRACT-PRECOND linear time ◦ linear time

Table 7.1: Complexity results for O-NCSTRIPS, E-NCSTRIPS and NPDDLnf. ◦ means that under
some complexity-theoretic assumption the transformation is not polynomial-size. “?” means that the
answer is yet unknown (but we suspect that it will be ◦ after all). Recall that the answer to IS-MON is
trivially “yes” for testing positive monotony.

to pay is the complexity of IS-APPLIC, and although it is hard to imagine a setting where we don’t need
to check applicability, this result is interesting from the theoretical point of view: sometimes a seemingly
useless feature of a language can be useful from an unexpected point of view.

A natural continuation of the research of this chapter would be excluding the⊥ symbol from O-PDDL,
which would yield actions that are always applicable.

Complexity results of this chapter are summarized in Table 7.1. The question whether any of the
STRIPS-like restrictions supports polynomial-size CHOICE is still open, but we suspect that none of
them does. It is worth mentioning that we tried various families of actions to prove this claim, but did not
succeed even with quite technical constructions, which indicates that for expressing real-life problems
O-NCSTRIPS and E-NCSTRIPS could be expressive enough. We don’t give a succinctness diagram
at this point because the diagram would not be illustrative for O-NCSTRIPS and E-NCSTRIPS being
succinctness-incomparable and NPDDLnf being their incomplete sublanguage.

63

64

CHAPTER 8

Extensions of E-PDDL and O-PDDL

Contents
8.1 E-PDDL and O-PDDL with Sequential Execution 65
8.2 E-PDDL and O-PDDL with Negation . 67
8.3 E-PDDL and O-PDDL with Conjunction . 69
8.4 Complexity: Queries . 70
8.5 Complexity: Succinctness . 79
8.6 Complexity: Transformations . 80
8.7 Conclusion . 81

In this chapter we will extend the imperative languages O-PDDL and E-PDDL by three connectives:
the sequence connective ;, action negation connective ¬min and action conjunction connective ∧. These
connectives will be added to the grammar without any further restriction on the action descriptions (con-
trary to the previous chapter). Thus it is again relevant to consider a tree and a circuit representation for
each language.

8.1 E-PDDL and O-PDDL with Sequential Execution

The language E-PDDL, as we said before, is motivated to resemble a restricted version of the dynamic
logic of parallel propositional assignments DL-PPA, and it has been shown that in DL-PPA, planning
tasks can be expressed very compactly (Herzig et al., 2019). The grammar of DL-PPA consists of (state)
formulas ϕ and (program) formulas π . It can be given in BNF as follows:

π ::=p← ϕ | π ; π | π ∪π | π uπ | π tπ | π∗ | ϕ?

ϕ ::=p | > | ⊥ | ¬ϕ | ϕ ∨ϕ | 〈π〉ϕ

The expression p← ϕ means that p is assigned to the value given by ϕ in the current state. DL-PPA
itself is an extension of DL-PA which has elementary assignments of the form +p and −p instead of
p← ϕ in its original definition (Balbiani et al., 2013). In our setting, however, such details as the chosen
kind of elementary assignments play a very important role, and since we are originally motivated by
PDDL and STRIPS we do not consider assignments p← ϕ for now. For DL-PA and DL-PPA such
details are not crucial, because they are obviously complete and for the moment the studies about them
do not concentrate on succinctness issues in our strict definition. For example, translations between
them are allowed to introduce auxiliary variables because states in DL-PA/DL-PPA are assignments to
a countably infinite set of variables.

Hence the differences between E-PDDL and DL-PPA are the following:

65

• Elementary assignments: ±p in E-PDDL and p← ϕ in DL-PPA,

• State formulas: NNF in E-PDDL, with modal operators in DL-PPA,

• Conditions: conditional execution ϕBα in E-PDDL executes ε instead of α if ϕ is not satisfied.
Test (Fischer and Ladner, 1979) ϕ? fails if ϕ is not true in the current state,

• E-PDDL does not have the sequence connective ;, the non-exclusive choice connective t nor the
Kleene star (.)∗

The interpretation of u and ∪ is the same in both languages. Although trying to stick as much as possible
to DL-PPA we decided to keep theB-connective instead of the test ϕ?, because it naturally expresses the
notion of effect conditions, i.e. conditions which “launch” effects but are not necessary for applicability.
This notion is also natural to deterministic planning, but expressing it with the test necessarily requires a
choice connective: ϕBα is expressed as (ϕ? ; α)∪ (¬ϕ? ; ε).

Although the semantics of the connectives in DL-PPA are given via the valuations of programs π

(which correspond to action descriptions in this thesis) in the form of triples of valuations of the state
variables (V,U,W) ∈ ‖π‖, meaning “program π can lead from state V to state U via an assignment to
the variables in W”, we have chosen the view via the set E(α,P,s) because it is more direct, natural to
planning and involves the scope P, which is not the case for DL-PPA. These semantics are however
equivalent. The link between our definition and the definitions of DL-PPA is the following:

(V,U,W) ∈ ‖α‖ ⇐⇒ 〈W ∩U,W \U〉 ∈ E(α,P,V)

Thus, despite all the differences listed above, E-PDDL can indeed be considered to be a sublanguage
of DL-PPA. Due to the high expressive power of DL-PPA it is easy to show that it is more succinct
than E-PDDL (Scheck et al., 2020).Since it is natural in knowledge compilation to study chains (by
inclusion) of languages, we are interested in finding intermediate languages, which are more succinct
than E-PDDL but less succinct than DL-PPA. The sequence connective ; from DL-PPA describing via
α ; β the execution of an action β after the action α is the first and probably the most natural construct
to add to E-PDDL. The resulting language E-PDDLseq is a good candidate for such an intermediate
language.

Definition 8.1 (E-PDDLseq). An E-PDDLseq action description is an expression α generated by the
grammar

α ::= +p | −p | ϕBα | (α ∪α) | α uα | α ; α

where p ranges over P and ϕ over formulas in NNF over P.

Let us emphasize that “;” is not limited to occur only at the root of the expression (in contrast with
the actions we aim to compute with SEQUENCE). The interpretation function is the same as for E-PDDL
action descriptions, augmented with

∀s⊆ P : I(α ; β ,P)(s) := {s′ ⊆ P | ∃t ∈ α(s) : s′ ∈ β (t)}

Since an E-PDDLseq subaction can be combined with another action via the u connective, we also
need to specify our semantics in terms of explicit effects (since the semantics of u depends on effects
rather than only on state transitions). We define them in such a way that, if a variable is assigned by both
α and β , then it appears in the effects of α ; β with the same polarity as in the effects of β :

E(α ; β ,P,s) :=

〈Q+
β
∪ (Q+

α \Q−
β
),Q−

β
∪ (Q−α \Q+

β
)〉

∣∣∣∣∣∣∣
〈Q+

α ,Q
−
α 〉 ∈ E(α,P,s),

t := (s∪Q+
α)\Q−α ,

〈Q+
β
,Q−

β
〉 ∈ E(β ,P, t)

For example, for α :=+p1u+p2 and β :=−p1, the only effect of α ;β in the state s := /0 is 〈{p2},{p1}〉,
because the −p1 in β “beats” the +p1 in α .

66

Example 8.2. The sequence connective is particularly useful for describing actions featuring an interme-
diate nondeterministic process whose outcome influences the final result. For example, the E-PDDLseq
expression

+ peven ;(
+ p1u (pevenB−peven)u (¬pevenB+peven)

)
∪ −p1 ;

. . .(
+ pnu (pevenB−peven)u (¬pevenB+peven)

)
∪ −pn ;

¬pevenB⊥

describes an action which maps any state to the set of all states with an even number of pi’s (and peven),
set to true. An action description without the sequence connective would need to enumerate all possible
combinations directly, resulting in an exponential tree.

The semantics of the effects defined above for α ; β can also be used to enrich O-PDDL with the
sequence connective.

Definition 8.3 (O-PDDLseq). O-PDDLseq is the language of action descriptions generated by the gram-
mar

α ::= ⊥ |+p | −p | ϕBα | (α ∪α) | α &α | α ; α

We will see later that E-PDDLseq and O-PDDLseq are less different than the initial E-PDDL and
O-PDDL in terms of complexity, because ; and ∪ together are a very mighty and expressive tool which
makes reasoning difficult.

8.2 E-PDDL and O-PDDL with Negation

In the language of NNF action theories it is easy to define the set of nonsuccessors of an action. This
can be in particular useful when specifying an action which is explicitly prohibited to have certain con-
sequences. An example is when there are low-level, built-in mechanisms ensuring that apart from its
intended effects, the action also has a number of noneffects: obstacle avoidance for (high-level) naviga-
tion actions is a typical example. This motivates us to enrich O-PDDL and E-PDDL with a negation
connective.

We want an interpretation of “not α” to be as in Broersen (2004): an action describing the transition
to any state which is not reachable by α , i.e., we want a connective ¬ such that s′ ∈¬α(s) ⇐⇒ s′ /∈α(s).
This interpretation depends only on the transition relation of α and not on its effects in concrete states.
Still, because ¬α may occur as an operand of the u connective, we need to define its explicit effects.
However, contrary to the sequence connective, there is no obvious natural way to define the explicit
effects of ¬α in s when being given the effects of α in s. The following definitions are all possible
candidates satisfying the desired property s′ ∈ ¬α(s) ⇐⇒ s′ /∈ α(s), but with different sets of explicit
effects.

1. E(¬α,P,s) := {〈s′ \ s,s \ s′〉 | s′ /∈ α(s)}; we denote this connective by ¬min because all effects
defined in this manner are minimal in s.

2. E(¬α,P,s) := {〈s′,P\s′〉 | s′ /∈α(s)}; we denote this connective by¬max because all effects defined
in this manner are P-maximal.

3. E(¬α,P,s) :=
⋃

s′ /∈α(s){〈A,B〉 | s′ \ s ⊆ A ⊆ s′, s \ s′ ⊆ B ⊆ P \ s′}; we denote this connective by
¬all because it defines actions which have all possible effects witnessing the desired transitions.

67

Example 8.4. The difference in the interaction of negated actions with the u-connective can be illus-
trated with the following example. Let P := {p1, p2}, α :=+p1u+p2, β :=+p2, and s := /0.
Then we have (¬minα)(s) = (¬maxα)(s) = { /0,{p1},{p2}}, with the effects

E(¬minα,P,s) = {〈 /0, /0〉,〈{p1}, /0〉,〈{p2}, /0〉}
E(¬maxα,P,s) = {〈 /0,{p1, p2}〉,〈{p1},{p2}〉,〈{p2},{p1}〉}

Therefore

E((¬minα)uβ ,P,s) = {〈{p2}, /0〉,〈{p1, p2}, /0〉}
E((¬maxα)uβ ,P,s) = {〈{p2},{p1}〉}

and thus ((¬minα)u β)(s) = {{p2},{p1, p2}}, but ((¬maxα)u β)(s) = {{p2}}. It is also easy to see
that ((¬allα)uβ)(s) = ((¬minα)uβ)(s).

Adding each of the suggested connectives to E-PDDL would create a new language with (possibly)
different complexity and succinctness properties. In this article we focus on the language of E-PDDL
enriched with the connective ¬min. The reason to choose ¬min over ¬max is that effects of ¬maxα are P-
maximal and thus all successors of a state s via (¬maxα)uβ are also necessarily successors via ¬maxα ,
whereas we are interested in the ability of u to produce new successors. As for ¬all, we suspect that
when added to E-PDDL or O-PDDL it will lead to similar complexity results, but this still requires a
separate study.

Definition 8.5 (E-PDDLnot, O-PDDLnot). An E-PDDLnot action description is an expression α gener-
ated by the grammar

α ::= +p | −p | ϕBα | (α ∪α) | α uα | ¬minα

In the same manner we define O-PDDLnot by the grammar

α ::= +p | −p | ϕBα | (α ∪α) | α &α | ¬minα

⊥ is not a necessary part of the grammar of O-PDDLnot because for the scope P it can be expressed
by ¬min(&p∈P(+p∪−p)), i.e. as the negation af the action with all possible state-transitions.

Example 8.6. Let P := {p1, p2, p3}, s := {p1} and α :=+p2∪ (−p1u+p3). Then
(¬minα)(s) = { /0,{p1},{p2},{p1, p3},{p2, p3},{p1, p2, p3}}.

Example 8.7. Consider a medical robot who is programmed to give a vaccine to a patient based on the
available information. It makes no sense to give a vaccine to someone who receives immunotherapy to
treat a cancer at the same time, because with high probability the vaccine will not work. Immunotherapy
can possibly cure cancer by increasing the number of lymphocites. The action “immunotherapy” can be
described as (−cancer∪ ε)u (lymphocites_lowB−lymphocites_low). Then the robot’s action “vacci-
nate” should be inconsistent with whatever outcome is achievable by immunotherapy, thus we want the
action “vaccinate” to be expressed as

+vaccinated∧min¬min

(
(−cancer∪ ε)u (lymphocites_lowB−lymphocites_low)

)
Here the∧min means “keep all common successors”, and we will see in the subsection with the results

for E-PDDLnot that the ∧min is naturally expressed using ¬min and ∪: α ∧min β := ¬min(¬minα ∪¬minβ)
(this resembles De Morgan’s law).
u and & in this example work in the same way because they combine subexpressions which do not

share variables.

68

8.3 E-PDDL and O-PDDL with Conjunction

As we saw in Example 8.7, the intersection of two transition relations can be defined via ∪ and ¬min.
But since ∨ and ¬ are enough to express any Boolean function, but ∨ and ∧ are not enough, we might
conjecture that adding an explicit conjunction connective to E-PDDL might produce an intermediate
language which is more succinct than just E-PDDL but less succinct than E-PDDLnot (we will see later
that E-PDDLnot is indeed more succinct than E-PDDL).

Again, due to the semantics of u we need to define the semantics of ∧ in terms of effects. The
effects for the ∧-connective are motivated by Item 2 of Lemma 6.1, namely, that if s′ ∈ α(s)∩β (s) then
s′ ∈ (α uβ)(s). Therefore we define the effects of ∧ based on those for u. We set

E(α ∧β ,P,s) :=

{
〈Q+

α ∪Q+
β
,Q−α ∪Q−

β
〉

∣∣∣∣∣ 〈Q+
α ,Q

−
α 〉 ∈ E(α,P,s),〈Q+

β
,Q−

β
〉 ∈ E(β ,P,s),

(s∪Q+
α)\Q−α = (s∪Q+

β
)\Q−

β

}

I.e. the effects of α ∧β are combinations of their effects which lead to the same state transitions. Thus
(α ∧ β)(s) = α(s)∩ β (s) is ensured. The requirement for the effects to be mutually consistent (as
defined in Section 5.3) is not necessary here because the consistency is ensured automatically by the
condition (s∪Q+

α)\Q−α =(s∪Q+
β
)\Q−

β
: it holds that /0=Q−α ∩

(
(s∪Q+

α)\Q−α
)
=Q−α ∩

(
(s∪Q+

β
)\Q−

β

)
,

and Q+
β
⊆ (s∪Q+

β
) \Q−

β
because Q+

β
∩Q−

β
= /0. Thus Q−α ∩Q+

β
= /0. The other part of consistency,

Q−
β
∩Q+

α = /0, follows analogously.
For the same reason we can at the same time say that the effects for ∧ are motivated by the semantics

of &, because if two effects are mutually consistent then their u-combination and &-combination are the
same.

Observe that this semantics is different from the one of ∧min from the previous section: α ∧min β :=
¬min(¬minα ∪¬minβ) in reality has a ¬min-negation as the outermost connective and therefore all effects
of α ∧ β are minimal, which is not the case for ∧. For example, E(+p∧ ε,P,{p}) = {〈{p}, /0〉}, but
E(+p∧min ε,P,{p}) = {〈 /0, /0〉}.

Definition 8.8. An E-PDDLand action description is generated by the grammar

α ::= +p | −p | ϕBα | (α ∪α) | α uα | α ∧α

An O-PDDLand action description is an expression α generated by the grammar

α ::= +p | −p | ϕBα | (α ∪α) | α &α | α ∧α

Note that ⊥ is not a necessary part of the grammar of O-PDDLand because it can be expressed via
⊥ :=+p∧−p because +p and −p never have common successors.

Example 8.9. The ∧-connective also can be useful to enforce an action execution to satisfy some NNF
property. For a given E-PDDL action α the action α̂ := α ∧ f (ϕ ′) satisfies

s′ ∈ α̂(s)⇔ s′ ∈ α(s) and s′ |= ϕ

where ϕ ′ is the NNF action theory obtained by replacing each p in ϕ by its primed copy p′ as in Nota-
tion 7.3 (page 56) and f is the (polynomial-time) translation from NNFAT into E-PDDL from the proof
of Proposition 6.2 (page 38).

In general this procedure does not work for O-PDDL because there is no polynomial-size translation
from NNFAT into O-PDDL. Still the language O-PDDLand is worth being mentioned in our work
because we will see that many (but not all) results in this chapter are the same for the extensions of
O-PDDL and E-PDDL because the proofs often do not rely on parallel composition.

69

8.4 Complexity: Queries

Lemma 8.10. The following statements hold:

1. In general, (α ; α) 6≡ α

2. If α ≡ β then E(¬minα,P,s) = E(¬minβ ,P,s) for all s

3. ‖¬min(¬minα ∪¬minβ)‖= ‖α‖∩‖β‖

4. In general, γ u (¬min(¬minα ∪¬minβ)) 6≡ γ u (α ∧β)

PROOF.

1. Let P := {p}, s := {p} and α := (pB−p)u (¬pB⊥). Then /0 ∈ α(s) but α ; α is not even
applicable in s.

2. This follows directly from the fact that the effects of ¬minα are defined only in terms of ‖α‖.

3. It holds by definition of ¬min: s′ ∈ (¬minα)(s)⇔ s′ /∈ α(s), therefore s′ ∈ (¬minα ∪¬minβ)(s)⇔
s′ /∈ α(s) or s′ /∈ β (s), thus s′ ∈ (¬min(¬minα ∪¬minβ))(s) is equivalent to ¬(s′ /∈ α(s)) and ¬(s′ /∈
β (s)), i.e. to s′ ∈ α(s)∩β (s).

4. Let P = {p}, γ =−p, α =+p = β . Then γu(α∧β)≡ (−p)u(+p)≡⊥ but
(
γu(¬min(¬minα∪

¬minβ))
)
({p}) = { /0}.

�

Example 8.11. We illustrate Item 2 of the lemma. Let P := {p1, p2}. The actions α := ε and β := (p1B
+p1)u (¬p1B−p1)u (p2B+p2)u (¬p2B−p2) describe the same action (α ≡ β), but have different
effects in all states (E(α,P,s) = {〈 /0, /0〉} and E(β ,P,s) = {〈s,P \ s〉}). Still we have E(¬minα,P,s) =
E(¬minβ ,P,s). In particular this means that (¬minα)uγ and (¬minβ)uγ describe the same action (even
effectwise) for all actions γ .

The third item of Lemma 8.10 states that we can use ¬min to express the action that maps states s to
the successors s′ of s which α and β have in common. On the level of state transitions it is simply one
of De Morgan’s laws: ϕ ∧ψ ≡ ¬(¬ϕ ∨¬ψ). The last item of the Lemma means that despite having
De Morgan’s law on the level on state transitions we do not have this for effects, and therefore it is
not obvious whether E-PDDLnot is at least as succinct as E-PDDLand (the same for O-PDDLnot and
O-PDDLand), because with Item 3 can only express conjunctions not in the scope of u nor of &.

Altogether we will see that the complexity of the extensions of E-PDDL and O-PDDL which we
concentrate on in this section is the same and the proofs are either exactly the same or very similar.
Therefore we will write the proofs in details for the extensions of E-PDDL and then refer to them when
proving results for O-PDDL.

The first result is very general.

Proposition 8.12. Is-Succ is in PSPACE for E-PDDLC
seq, E-PDDLC

not and E-PDDLC
and, as well as for

O-PDDLC
seq, O-PDDLC

not and O-PDDLC
and.

PROOF. For generality we prove the claim for the circuit representation of the superlanguage of
E-PDDLC

not, E-PDDLC
and, E-PDDLC

seq, O-PDDLC
seq, O-PDDLC

not and O-PDDLC
and obtained by enriching

E-PDDL by &, ¬min, ∧ and ;, i.e. defined by the grammar

α ::= +p | −p | ϕBα | (α ∪α) | α &α | α uα | α ; α | ¬minα | α ∧α

In order to deal with the semantics of u the actual claim has to be “if s′ ∈ α(s) then for every effect
witnessing this transition we can prove that it is indeed a witness using a polynomial amount of memory
space, and if s′ /∈ α(s) then we can prove this in polynomial space, too”. We show the claim by induction

70

on the depth of α . Let q be the upper bound on the space needed to decide successorship. ence we have
to prove that q is polynomial.

Obviously an atomic action has the form ±p and the only effect witnessing this transition can be
found in polynomial space. The induction step is then that if we assume that for all action descriptions
of depth d and size n any question about whether an effect tuple witnesses a transition can be answered
using at most q(n) memory space then any such question can be answered using at most q(n) memory
space for all action descriptions of depth d +1. Consider an action description α of depth d +1 and an
effect 〈Q+

α ,Q
−
α 〉. Then there are several options about the root node:

• if α = ¬minβ then 〈Q+
α ,Q

−
α 〉 witnesses s′ ∈ α(s) if and only if s′ /∈ β (s) and thus we can check for

all possible effects whether they witness s′
?
∈ β (s). If there exists at least one 〈Q+

β
,Q−

β
〉 of β in s

witnessing this transition, then we output “no”, otherwise – “yes”,

• if α = β ∪ γ then we need to check whether 〈Q+
α ,Q

−
α 〉 is an effect of β witnessing s′ ∈ β (s), and if

the answer is “no”, then do the same for γ .

• if α = β &γ then we need to check for all possible choices of effects 〈Q+
β
,Q−

β
〉 and 〈Q+

γ ,Q
−
γ 〉 of β

and γ in s respectively whether their &-combination is 〈Q+
α ,Q

−
α 〉, and again, each of these steps is

executed for an action description of depth at most d and thus we require each time 2n space units
to store the two effects and q(n− 1) space units to compute whether e.g. 〈Q+

β
,Q−

β
〉 is indeed an

effect of β in s,

• if α = β u γ then we need to check for all possible choices of compatible effects 〈Q+
β
,Q−

β
〉 and

〈Q+
γ ,Q

−
γ 〉 of β and γ in s respectively whether their u-combination is 〈Q+

α ,Q
−
α 〉, and again, each of

these steps is executed for an action description of depth at most d and thus we require each time
2n space units to store the two effects and q(n−1) space units to compute whether e.g. 〈Q+

β
,Q−

β
〉

is indeed an effect of β in s,

• If α = β ∧ γ we proceed exactly as for u and in addition verify that 〈Q+
β
,Q−

β
〉 and 〈Q+

γ ,Q
−
γ 〉 lead

to the same state transition in s,

• if α = β ; γ then we can repeatedly check for all states s′′ and effects 〈Q+
β
,Q−

β
〉 and 〈Q+

γ ,Q
−
γ 〉

whether 〈Q+
β
,Q−

β
〉 is a witness for s′′ ∈ β (s) and 〈Q+

γ ,Q
−
γ 〉 is a witness for s′ ∈ γ(s′′). The amount

of space needed for each step is at most q(n−1) by assumption, and we need at most 3n space to
store s′′, 〈Q+

β
,Q−

β
〉 and 〈Q+

γ ,Q
−
γ 〉,

• if α = ϕBβ then we need to check whether s |= ϕ first. If this is not the case, then we just check
whether 〈Q+

α ,Q
−
α 〉 is 〈 /0, /0〉. If s |= ϕ , then we check whether 〈Q+

α ,Q
−
α 〉 is a witness for s′ ∈ β (s),

which is again possible in q(n−1) space by assumption.

We observe that a polynomial q satisfying the above requirements can be found. �

Corollary 8.13. Is-Applic, Entails, ST, Is-Det and Is-Mon are in PSPACE for E-PDDLC
seq, E-PDDLC

not,
E-PDDLC

and, O-PDDLC
seq, O-PDDLC

not and O-PDDLC
and.

PROOF. We reduce all queries to IS-SUCC. We start with IS-APPLIC. We can check that α is applicable
in s by guessing a successor s′ and verifying successorship. IS-SUCC is in PSPACE for all languages in
the claim by Proposition 8.12 and thus IS-APPLIC is in NPSPACE = PSPACE.

A similar trick works for ENTAILS: to show that α1 ; . . . ; αk do not entail ϕ in s we need to guess a
chain of successors s1, . . . ,sk with s1 ∈ α1(s), s2 ∈ α2(s1),. . . ,sk ∈ αk(sk−1), and verify successorship and
sk 6|= ϕ . Every step can be done after another, and each requires polynomial space. Thus, the complement
of ENTAILS is in NPSPACE = PSPACE, therefore ENTAILS is in coPSPACE = PSPACE, too.

ST is a special case of IS-SUCC and therefore its membership is clear.
For IS-MON and IS-DET we observe that a witness for the nonmonotony of α in s can be given by

one sucessor s′ ∈ α(s) with s 6⊆ s′. Similarly, a witness for nondeterminism of α in s are two successors

71

s′,s′′ ∈ α(s) with s′ 6= s′′. Thus the complements of IS-MON and IS-DET are in NPSPACE = PSPACE,
and thus IS-MON and IS-DET are in PSPACE themselves.

The proof is the same for all the languages from the statement of the Corollary because it doesn’t
make use of the specific language features. �

Thus we have proven the (intuitive) claim that all queries which we study in this article are not harder
than PSPACE.

Successorship

Now we consider the tree representations of E-PDDLseq, O-PDDLseq, E-PDDLand and O-PDDLand,
which turn out to allow for the easiest queries among the extensions.

Proposition 8.14. Is-Succ is NP-complete for E-PDDLT
seq, O-PDDLT

seq E-PDDLT
and and O-PDDLT

and.

PROOF. Hardness is clear because IS-SUCC is NP-hard (Proposition 6.9) for E-PDDL which is a
sublanguage of E-PDDLseq and E-PDDLand (and O-PDDL which is a sublanguage of O-PDDLseq and
O-PDDLand). To show membership, we define a witness for a positive instance to be composed of either
β or γ for each subexpression β ∪ γ of α . Such a witness is clearly of polynomial size, and verifying
it amounts to deciding successorship for a deterministic E-PDDLseq (resp. O-PDDLseq, E-PDDLand or
O-PDDLand) description, which is doable in polynomial time by simulating the (only) execution. �

When we turn to circuit representations, the problems become harder

Proposition 8.15. Is-Succ is PSPACE-complete for E-PDDLC
seq and O-PDDLC

seq.

PROOF. Membership is proven in Proposition 8.12.
Now for hardness, we give a reduction from the problem of deciding the validity of a QBF of the form

Φ := ∃p1∀p2∃p3∀p4 . . .∃p2n−1∀p2n : ϕ , where ϕ is a 3-CNF formula. Given such a QBF, let psat ∈P be a
fresh variable, define αn to be the E-PDDLseq (and O-PDDLseq at the same time) expression ¬ϕB−psat,
and for i := n−1, . . . ,0, define

αi := (+p2i+1∪−p2i+1) ;+p2i+2 ; αi+1 ;−p2i+2 ; αi+1;−p2i+1

Clearly, α0 has a circuit of size polynomial in ϕ (e.g., Fig. 8.1 depicts α0 for n = 2).
Intuitively, the action guesses a value for p2i+1, then verifies that together with p2i+2 set to true, the

nested formula αi+1 is valid, then that together with p2i+2 set to false instead, αi+1 is again valid, and
finally resets p2i+1 to false. Then it is easy to show the following, by induction on i := n,n−1, . . . ,0:

for all literals `1, . . . , `2i over p1, . . . , p2i, respectively, the state s := {psat}∪{p j | ` j = p j} is
an αi-successor of itself if and only if Φi := ∃p2i+1∀p2i+2 . . .∃p2n−1∀p2nϕ|`1,...,`2i is valid,

where ϕ|`1,...,`2i denotes propositional conditioning, that is, ϕ with the occurrences of p1, . . . , p2i replaced
by their value and simplified. In the end, we obtain that s = {psat} is an α0-successor of itself if and only
if Φ0 is valid, which concludes the proof since by construction we have Φ0 = Φ. �

For the next proof we introduce some additional notation.

Notation 8.16. Let Xn, γ1, . . . ,γNn and Pn be as in Notation 6.4, page 39. By ν=k we denote an assignment
to xk and by ν<k an assignment to x1, . . . ,xk−1, and ν≤k for an assignment to x1, . . . ,xk. If ν≤k−1 and ν=k
are clear from the context, then ν≤k refers to the induced joint assignment to x1, . . . ,xk.

For an assignment ν we denote by t(ν) the encodings (via Notation 6.4) of 3-clauses which are
satisfied by ν , i.e. those clauses γ which contain at least one literal which evaluates to > under ν .

For a fully quantified formula Φ in prenex form with matrix ϕ let Φ|ν≤i be the partially quantified
formula obtained from Φ by forgetting the first i quantifiers and conditioning ϕ by ν≤i, i.e. Φ|ν≤i =
�xi+1 . . .�x2n : ϕ|ν≤i where � is a wildcard for ∃- and ∀-quantifiers, which depends on the formula Φ.

72

;

∪ +p2 −p2 −p1

+p1 −p1 ;

∪ +p4 −p4 −p3

+p3 −p3 B

¬ϕC −psat

Figure 8.1: The (reduced) circuit representation of the E-PDDLseq action α0 for n = 2 from the proof of
Proposition 8.15. The children of all nodes are ordered from the left to the right; ϕC denotes a circuit for
ϕ . The nodes −p1 and −p3 are duplicated only for readability.

Proposition 8.17. Is-Succ is PSPACE-complete for E-PDDLC
and and O-PDDLC

and.

PROOF. PSPACE-membership follows from Proposition 8.12. We show PSPACE-hardness by reducing
the validity of a QBF to IS-SUCC.

Let Φ := ∃x1∀x2 . . .∀x2n : ϕ be a quantified Boolean formula with a 3-CNF ϕ = γ1 ∧ . . .∧ γk with
clauses γ j. Recall Notation 6.4 (page 39) with the set P2n to encode all 3-clauses over X2n = {x1, . . . ,x2n}.
Our state variables will be P2n∪X2n. Set

α2n+1 :=
l

x∈X2n

+xu
(l

γi: x∈γi

(+pi∪ ε)
)∪(l

γi: ¬x∈γi

(+pi∪ ε)
)

This action is analogous to α
sat,u
n from Notation 6.6 (page 40), i.e.. if ϕ is satisfiable then α2n+1 chooses

nondeterministically a satisfying assignment (and all satisfying assignments are possible) and produces a
successor encoding ϕ , but in contrast to α

sat,u
n the assignment is part of the successor, too, i.e. t∪ s(ϕ) ∈

α2n+1(/0) if and only if t |= ϕ .
Let k ∈ {1, . . . ,2n}. Set A+

k :=
d

j<k(+x j ∪ ε)u
d

j≥k+x j and A−k :=
d

j<k(+x j ∪ ε)u
d

j>k+x j, so
the only difference is the indexation of the second

d
in the definitions. Let

α2k := ((α2k+1∧A+
2k)u+x2k)∧ ((α2k+1∧A−2k)u+x2k)

and
α2k−1 := ((α2k∧A+

2k−1)u+x2k−1)∪ ((α2k∧A−2k−1)u+x2k−1)

Observe that the definitions of α2k and α2k−1 differ only about the main (central) connective. There is a
double occurence of α2k+1 (resp. α2k) in the definitions, but this is not a problem since we use the circuit
representation.

Now we prove by induction the following claim (with s(ϕ) as in Notation 6.4 and ν≤i, Φ|ν≤i as in
Notation 8.16):

for all Φ, ∀ν≤i ⊆ {x1, . . . ,xi} : Φ|ν≤i is valid ⇔ ({x j | j > i}∪ν≤i∪ s(ϕ)) ∈ αi+1(/0)

We will be done when we have proven the claim for i = 0, i.e. the reduction in the end looks as follows:

Φ is valid ⇔ (X2n∪ s(ϕ)) ∈ α1(/0)

Base case of the induction: if i = 2n then ν≤i is a complete assignment (each xi is assigned) and Φ|ν≤i

evaluates to > (i.e. ν≤i is a model of ϕ) if and only if (ν≤i∪ s(ϕ)) ∈ α2n+1(/0), which follows from the
definition of α2n+1.

73

Induction step: suppose that we know that the induction hypothesis holds for i. We assume first
that i = 2m was odd, so we have to show it for 2m−1 which is even, and thus α2m = ((α2m+1∧A+

2m)u
+x2m)∧ ((α2m+1∧A−2m)u+x2m). We have to show that

for all Φ, ∀ν≤2m−1 ⊆ {x1, . . . ,x2m−1} : Φ|ν≤2m−1 is valid ⇔ ({x j | j > 2m−1}∪ν≤2m−1∪s(ϕ))∈ α2m(/0)

.
Φ|ν≤2m−1 being valid is equivalent to Φ̂ := Φ|ν≤2m−1∪{x2m} and Φ̃ := Φ|ν≤2m−1 being valid (because

the first quantifier of Φ|ν≤2m−1 is universal). By the induction hypothesis we know that Φ̂ is valid if
and only if {x j | j > 2m}∪ (ν≤2m−1 ∪{x2m})∪ s(ϕ) is an α2m+1-successor of /0 which is equivalent to
{x j | j > 2m}∪ (ν≤2m−1∪{x2m})∪ s(ϕ) being an α2m+1∧A+

2m-successor of /0 because of the definition
of A+

2m.
Also from the induction hypothesis we know that Φ̃ is valid if and only if {x j | j > 2m}∪ν≤2m−1∪

s(ϕ) is an α2m+1-successor of /0 which is the case if and only if {x j | j > 2m}∪ ν≤2m−1 ∪ s(ϕ) is an
α2m+1∧A−2m-successor of /0 (again, because of the definition of A−2m).

Altogether we get that Φ|ν≤2m−1 is true if and only if {x j | j > 2m}∪ (ν≤2m−1 ∪{x2m})∪ s(ϕ) is an
α2m+1 ∧A+

2m-successor of /0, {x j | j > 2m}∪ ν≤2m−1 ∪ s(ϕ) is an α2m+1 ∧A−2m-successor of /0 and thus
{x j | j > 2m−1}∪ν≤2m−1∪ s(ϕ) is an α2m-successor of /0, because before the central ∧ in the definition
of α2m is executed, x2m is set to > by the +x2m-assignment on both sides.

The argumentation is analogous for i being even, but with an “or” instead of “and” for the validity of
Φ̂ and Φ̃.

The proof is exactly the same with & because there are only positive assignments in all action de-
scriptions and hence u and & behave in the same way. �

Before we can prove the theorem about PSPACE-hardness of IS-SUCC in E-PDDLnot, we need to
prove a technical lemma.

Lemma 8.18. Let ϕ , ψ be 3-CNF formulas, let s(ϕ) and s(ψ) be as in Notation 6.4 (page 39) with
V(ϕ),V(ψ) ⊆ {x1, . . . ,xn}, and define the QBF Ψn

ψ
:= ∃x1 : ¬(∃x2 : ¬(. . .¬(∃xn : ψ) . . .)). Then the

following hold:

1. If n is odd: if Ψn
ψ is true and s(ϕ)⊆ s(ψ) then Ψn

ϕ is true
dually: if Ψn

ψ is false and s(ϕ)⊇ s(ψ) then Ψn
ϕ is false

2. If n is even: if Ψn
ψ is true and s(ϕ)⊇ s(ψ) then Ψn

ϕ is true
dually: if Ψn

ψ is false and s(ϕ)⊆ s(ψ) then Ψn
ϕ is false

PROOF. We prove the claim by induction on n. We first remark that for each item the statement is
equivalent to its dual statement, so we need to show only one of them. For n = 1 deciding the truth of
Ψn

ψ is just deciding the satisfiability of ψ . Obviously, if a set of clauses is satisfiable, so is every subset
(and dually, if a set of clauses is unsatisfiable, so is every superset). Now suppose that the claim holds
for n. We have to distinguish two cases (which are dual to each other).

First assume that n is odd and thus n+1 is even. Suppose that Ψn+1
ψ is true, then there is an assignment

ν to x1 such that Φν
ψ

:= ∃x2 : ¬(∃x3 : . . .¬(∃xn+1 : ψ|x1=ν(x1)) . . .) is false. Now let ϕ be a 3-CNF with
s(ϕ)⊇ s(ψ), then s(ϕ|x1=ν(x1))⊇ s(ψ|x1=ν(x1)). Since both Φν

ψ and Φν
ϕ are formulas over n variables we

conclude by the inductive assumption (dual case of the first item) that Φν
ϕ is false. Therefore for Ψn+1

ϕ we
can use the same assignment ν to show that altogether Ψn+1

ϕ is true. Since ϕ was chosen arbitrarily with
the condition of s(ϕ) ⊇ s(ψ), we conclude the claim (we have proven the first statement in the second
item of the lemma).

The case when n is even follows with the dual reasoning. �

Proposition 8.19. Is-Succ is PSPACE-complete for both the tree and the circuit representations of
E-PDDLnot and O-PDDLnot.

74

PROOF. For membership we recall from Proposition 8.12 that all queries in this article are not harder
than PSPACE.

Now let the sets Pn,Xn and clauses γi be as in Notation 6.4. Recall the notation ∧min from Exam-
ple 8.7: we write β ∧min δ for the action description ¬min(¬minβ ∪¬minδ), like in Item 3 of Lemma 8.10.
We recall that (β ∧min δ)(s) = β (s)∩δ (s) for all states s.

Let Φ := ∃x1 : ¬(∃x2 : ¬(. . .(∃xn : ϕ))), with ϕ a 3-CNF over Xn. We recall from Lemma 3.10
(page 3.10) that deciding the truth of such formulas is a PSPACE-complete problem. We will prove
hardness for the tree representation by showing that Φ is true if and only if s(ϕ) ∈ αn

1 (/0) with

1. αn
n := χn

n

2. αn
k := χn

k u
(
¬min¬min(ρ

n
k ∧min (¬minαn

k+1))
)

with

• χn
k :=

(d
γi : xk∈γi

(+pi∪ ε)
)
∪
(d

γi : ¬xk∈γi
(+pi∪ ε)

)
• ρn

k :=
(
(
d

γi : xk /∈γi
(+pi∪ ε))∪ (

d
γi : ¬xk /∈γi

(+pi∪ ε))
)

We first observe that αn
1 can be constructed in polynomial time. In the following we give an intuition

for what these (sub)actions do in s := /0. ρn
k chooses an assignment to xk and reassigns all clauses which

are not satisfied by this assignment, and the interpretation of this is that a conjunction with ρn
k explicitly

prohibits to add any of the clauses that contain a literal which is true under this assignment. The subaction
χn

k chooses an assignment to xk and then produces nondeterministically any possible set of clauses which
are satisfied by this assignment. Recall that for all actions δ we have δ ≡¬min¬minδ ; the double negation
here serves to make sure that transitions are witnessed by minimal effects.

Recall from Notation 8.16 that ν=k refers to an assignment to xk and ν≤k to an assignment to
x1, . . . ,xk, and that for an assignment ν we denote by t(ν) the encodings (via Notation 6.4, page 39)
of 3-clauses which are satisfied by ν . Also recall that we denote by Φν≤k the fully quantified formula
∃xk+1 : ¬(∃xk+2 : ¬(. . .¬(∃xn : ϕ|ν≤k))).

Now we prove the claim that for every 0≤ k ≤ n−1 we have:

for all Φ, for all ν≤k : [Φν≤k true ⇐⇒ s(ϕ)\ t(ν≤k) ∈ α
n
k+1(/0)]

After having shown the claim for k = 0 we are done with showing the main claim because Φν≤0 = Φ

and t(ν≤0) = /0 (since ν≤0 is the empty assignement).
We start with k := n− 1. In this case, Φν≤k is just an existentially quantified 3-CNF which is true

(being already conditioned by an assignment ν≤k to x1, . . . ,xn−1) if and only if the clauses which have not
yet been satisfied by ν≤k (i.e. s(ϕ)\ t(ν≤k)) can be satisfied by an assignment to xn, which is equivalent
to s(ϕ)\ t(ν≤k) being an αn

n -successor of /0 (the statement is analogous to the statement of Lemma 6.7,
page 40).

Now we assume that the claim has already been shown for k, and we want to show it for k− 1:
we consider an assignment ν≤k−1 to x1, . . . ,xk−1, and we prove that Φν≤k−1 is true if and only if s(ϕ) \
t(ν≤k−1) ∈ αn

k (/0) =
(
χn

k u
(
¬min¬min(ρ

n
k ∧min (¬minαn

k+1))
))

(/0).
“ =⇒ :” Suppose that Φν≤k−1 is true. Then there exists an assignment ν=k to xk such that Φν≤k is false.

By the induction hypothesis this means that T := s(ϕ) \ t(ν≤k) /∈ αn
k+1(/0) and thus T ∈ ¬minαn

k+1(/0).
Since t(ν=k)⊆ t(ν≤k), we have t(ν=k)∩T = /0, therefore there is an execution of ρn

k (the outer choice is
defined by the ν=k and the inner choices are defined by assigning variables in T to >) which produces
T . Hence T ∈ (ρn

k ∧min ¬min(α
n
k+1)¸)(/0), and adding the double negation we have T ∈ ¬min¬min(ρ

n
k u

¬minαn
k+1)(/0) with the guarantee that the effect eT witnessing this transition is minimal – and thus, since

the transition starts from /0, that eT has no negative effects.
Now observe that, by construction of χn

k , any subset U of t(ν=k) is a successor of /0 via χn
k and the

transition is witnessed by a purely positive effect eU . This applies to the subset U := (s(ϕ)\ t(ν≤k−1))∩
t(ν=k). All in all, combining eT and eU (which necessarily agree since both contain only positive effects),
we get that U ∪T ∈ χn

k u
(
¬min¬min(ρ

n
k ∧min (¬minαn

k+1))
)
(/0) = αn

k (/0). Given that t(ν≤k)) = t(ν≤k−1)∪
t(ν=k), it is not hard to see that U ∪T = s(ϕ)\ t(ν≤k−1), which proves the claim.

75

“⇐= :” Now assume that s(ϕ)\ t(ν≤k−1) ∈ αk(/0) = χn
k u
(
¬min¬min(ρ

n
k ∧min (¬minαn

k+1))
)
(/0).

We first consider the case when n− k is odd. From the assumption we get that there exist U,T
such that s(ϕ) \ t(ν≤k−1) = U ∪T with U ∈ χn

k (/0) and T ∈ ¬min¬min(ρ
n
k ∧min (¬minαn

k+1))(/0). So T ⊆
s(ϕ)\ t(ν≤k−1) so there exists a V such that (s(ϕ)\ t(ν≤k−1))\V ∈ ¬min¬min(ρ

n
k ∧ (¬minαn

k+1))(/0), and
therefore (s(ϕ) \ t(ν≤k−1)) \V ∈ (ρn

k ∧ (¬minαn
k+1))(/0). By definition of ∧min this transition is possible

both via ρn
k and ¬minαn

k+1.
Let 〈Q+, /0〉 be the effect of ρn

k (ρn
k has only positive effects by construction) witnessing this transition

(i.e. Q+ = (s(ϕ) \ t(ν≤k−1)) \V), which especially means that Q+ ∈ ρn
k (/0) and Q+ ∈ ¬minαn

k+1(/0). By
definition of ρn

k there exists an assignment ν=k to xk such that t(ν=k)∩Q+ = /0. So it holds that Q+ ⊆
(s(ϕ)\t(ν≤k−1))\t(ν=k) = s(ϕ)\t(ν≤k). We recall that it also holds that Q+ ∈¬minαn

k+1(/0). Thus Q+ is
a set of clauses which encodes a 3-CNF formula ψ with s(ψ)⊆ s(ϕ)\ t(ν≤k)⊆ s(ϕ) (and thus it follows
s(ψ) = s(ψ)\ t(ν≤k)) and by the inductive assumption ∃xk+1 : ¬(∃xk+2 : ¬ . . .¬(∃xn : ψ|ν≤k) . . .) is false.
With the first (dual) statement of Lemma 8.18 (recall that n− k and hence the number of quantifiers was
odd) it follows that ∃xk+1 : ¬(∃xk+2 : ¬ . . .¬(∃xn : ϕ|ν≤k) . . .) is false, too, so Φν≤k−1 is true.

We now consider the case that n−k is even. For the effect 〈Q+, /0〉 (recall that both χn
k and¬min¬min(ρ

n
k ∧min

(¬minαn
k+1)) have only positive effects in /0) witnessing the transition from /0 to s(ϕ) \ t(ν≤k−1) (i.e.

Q+ = s(ϕ) \ t(ν≤k−1)) there must be an effect 〈U+, /0〉 of χn
k with U+ ⊆ Q+ and by construction of

χn
k there exists an assignment ν=k with U+ ⊆ t(ν=k). Therefore there must exist an effect 〈T, /0〉 of
¬min¬min(ρ

n
k ∧min (¬minαn

k+1)) in /0 with U+∪T = Q+ and thus s(ϕ)\ t(ν≤k−1) = Q+ ⊇ T ⊇Q+ \U+ ⊇
(s(ϕ) \ t(ν≤k−1)) \ t(ν=k) = s(ϕ) \ t(ν≤k). Since T ∈ ¬min¬min(ρ

n
k ∧min (¬minαn

k+1))(/0) and thus T ∈
(ρn

k ∧min (¬minαn
k+1))(/0) it follows that T ∈ ¬minαn

k+1(/0) and T ∈ ρn
k (/0) by definition of ∧min. Now we

distinguish two cases.
Case 1: assume that T ∩ ν=k = /0. Since T ∩ t(ν≤k−1) = /0, we can define a 3-CNF ψ by setting

s(ψ) := T ∪ (s(ϕ)∩ t(ν≤k))) such that s(ψ)\ t(ν≤k) ⊇ s(ϕ)\ t(ν≤k) (we recall that T ⊇ s(ϕ)\ t(ν≤k)).
By the inductive assumption ∃xk+1 : ¬(∃xk+2 : ¬ . . .¬(∃xn : ψ|ν≤k) . . .) is false. Since n− k is even we
apply the second statement of Lemma 8.18 and conclude that ∃xk+1 : ¬(∃xk+2 : ¬ . . .¬(∃xn : ϕ|ν≤k) . . .) is
false, too. Therefore Φν≤k−1 is true.

Case 2: T ∩ t(ν=k) 6= /0. Since T is a ρn
k -successor, there must exist an execution corresponding to the

(contrary) assignment ν̂=k (i.e. with ν̂=k(xk) = ¬ν=k(xk)) such that T ∩ ν̂=k = /0. Thus it holds that T ⊇
(s(ϕ) \ t(ν≤k−1)) \ t(ν̂=k). So the execution of χn

k corresponding to the assignment ν̂=k and producing
s(ϕ)∩ t(ν̂=k) =: Û+ gives us the desired Û+ such that Û+∪T = Q+. Further reasoning is analogous to
case 1: we set ν≤k := ν≤k−1∪ ν̂=k, then define a 3-CNF formula ψ (via s(ψ) := T ∪(s(ϕ)∩ t(ν≤k))) such
that s(ψ)\ t(ν≤k)⊇ s(ϕ)\ t(ν≤k). By the inductive assumption ∃xk+1 : ¬(∃xk+2 : ¬ . . .¬(∃xn : ψ|ν≤k) . . .)
is false. Since n− k is even we apply the second statement of Lemma 8.18 and conclude that
∃xk+1 : ¬(∃xk+2 : ¬ . . .¬(∃xn : ϕ|ν≤k) . . .) is false, too. Therefore Φν≤k−1 is true.

We observe that the connective u is only involved to combine positive effects (because we consider
transitions from /0) and thus it can be replaced with & everywhere in the proof without changing the
argumentation. �

Applicability and Entailment

We now turn to applicability and entailment.

Lemma 8.20. Is-Succ is polynomial-time reducible to Is-Applic for both representations of E-PDDLseq,
E-PDDLnot, O-PDDLseq, O-PDDLnot, E-PDDLand and O-PDDLand.

PROOF. Let α be a (tree- or circuit) E-PDDLseq action and let ψs′ be as in Notation 7.3 (page 56), i.e.
for all s, ψs′(s) = {s′}. For all states s,s′ it is easy to see that we have s′ ∈ α(s) if and only if the action
(α ; (¬ψs′B⊥)) is applicable in s, hence the result.

Now let β be a (tree- or circuit) E-PDDLnot action description. Let s,s′ be P-states. We define
ρs′ :=

(
(
d

p∈s′+p)u (
d

p/∈s′−p)
)
, the deterministic action leading from all states to s′. Then we have

s′ ∈ β (s) if and only if the action γ := ¬min(¬minβ ∪¬minρs′) is applicable in s, since it follows from
Item 3 of Lemma 8.10 that γ satisfies γ(s) = β (s)∩ρs′(s)⊆ {s′}.

76

Let γ be an E-PDDLand action description. Then s′ ∈ γ(s) if and only if γ̂ is applicable in s with
γ̂ := γ ∧ρs′ with ρs′ as in the proof of the claim for E-PDDLnot.

All proofs work in the same way with & instead of u. �

Corollary 8.21. Is-Applic is NP-complete for E-PDDLT
seq, O-PDDLT

seq, E-PDDLT
and and O-PDDLT

and

and PSPACE-complete for E-PDDLC
seq,O-PDDLC

seq, E-PDDLC
and, O-PDDLC

and and for both representa-
tions of E-PDDLnot and O-PDDLnot.

PROOF. Hardness follows from Lemma 8.20 together with the previous hardness results about IS-SUCC

(Propositions 8.15 to 8.19).
PSPACE-membership follows from Corollary 8.13.
For membership in NP, since IS-SUCC is in NP for E-PDDLT

seq, O-PDDLT
seq, E-PDDLT

and and
O-PDDLT

and (Proposition 8.14), it suffices to define a witness for IS-APPLIC with input α,s, to be a
successor s′ together with a witness for s′ ∈ α(s). �

Corollary 8.22. Entails is coNP-complete for E-PDDLT
seq, O-PDDLT

seq, E-PDDLT
and and O-PDDLT

and

and PSPACE-complete for E-PDDLC
seq,O-PDDLC

seq, E-PDDLC
and, O-PDDLC

and and both representations
of E-PDDLnot and O-PDDLnot.

PROOF. We first recall that PSPACE = coPSPACE. Then hardness follows for all the languages
from the reduction of non-applicability to entailment together with the hardness results about IS-APPLIC

(Corollary 8.21).
For coNP-membership we observe that non-entailment of ϕ for the sequence α1, . . . ,αk and the state

s can be verified by guessing sucessors s1 ∈ α1(s), s2 ∈ α2(s1), . . .sk ∈ αk(sk−1) with sk 6|= ϕ and the
corresponding certificates which can be verified in polynomial time because of the results for IS-SUCC.
PSPACE-membership is stated in Corollary 8.13. �

We now turn to IS-DET and IS-MON.

Proposition 8.23. Is-Det and Is-Mon are coNP-complete for E-PDDLT
seq, O-PDDLT

seq, E-PDDLT
and and

O-PDDLT
and, and PSPACE-complete for E-PDDLC

seq, O-PDDLC
seq, E-PDDLC

and, O-PDDLC
and and both

representations of E-PDDLnot and O-PDDLnot.

PROOF. PSPACE-membership was shown in Corollary 8.13. coNP-membership follows from NP-
membership of the corresponding IS-SUCC (Proposition 8.14), because a certificate for non-monotony
for α in s can be given by an s′ with s 6⊆ s′ and a certificate for s′ ∈ α(s), and a certificate for non-
determinism are two distinct successors together with the corresponding successorship certificates. As
for hardness for all languages, it follows from the reduction from non-applicability in the same way as in
the proof of Propositions 6.21 and 6.23: α is non-applicable in s if and only if the action α u (+q∪−q)
(with a fresh variable q) is deterministic in s, and if and only if the action α u−q is positively monotone
in s∪{q}. Since q is a fresh variable, u can be replaced by & to prove the claim for the extensions of
O-PDDL. Hardness then follows from the hardness result for IS-APPLIC (Corollary 8.21) together with
the fact that PSPACE = coPSPACE. �

It remains to determine the complexity for ST.

Proposition 8.24. ST is linear time solvable for both representations of E-PDDLnot and E-PDDLand.

PROOF. We recall that in the proof of Proposition 6.26 we gave a polynomial-time algorithm for decid-
ing whether s ∈ α(s) for E-PDDL actions α . This algorithm can be extended to work for E-PDDLnot
and E-PDDLand because it holds:

• if α = β ∧ γ then s ∈ α(s) if and only if s ∈ β (s) and s ∈ γ(s)

• if α = ¬minβ then s ∈ α(s) if and only if s /∈ β (s)

77

�

Proposition 8.25. ST is NP-complete for E-PDDLT
seq and O-PDDLT

seq, and PSPACE-complete for
E-PDDLC

seq and O-PDDLC
seq.

PROOF. We first show the claim for E-PDDLseq. Membership is clear because ST is a special case of
IS-SUCC and because of the membership results for IS-SUCC (Propositions 8.12 and 8.14). Hardness
follows from Corollary 8.21 and the reduction of IS-APPLIC to ST: α(s) 6= /0 if and only if s ∈ αs(s)
with αs := α ; (

d
p∈s+p) ; (

d
p/∈s−p). The proof is exactly the same for O-PDDLseq with & instead of

u. �

Proposition 8.26. ST is NP-complete for O-PDDLT
and and PSPACE-complete for O-PDDLC

and.

PROOF. The result for O-PDDLT
and follows from the hardness result for its sublanguage O-PDDLT

(Proposition 6.27) and the membership result for O-PDDLT
and (Proposition 8.14). Membership for

O-PDDLC
and was proven in Corollary 8.13. To show hardness we refer to the proof of Proposition 8.17:

we observe that if the proof was made only for O-PDDLC
and (and not for E-PDDLC

and as well), we could
modify the definition of α2n+1 to be

α2n+1 :=
[(

&
x∈X2n

(
+x&

(
&

γi: x∈γi
(+pi∪ ε)

))
∪
(
−x&

(
&

γi: ¬x∈γi
(+pi∪ ε)

)))]
︸ ︷︷ ︸

β

&
[

&
pi∈P2n

−pi

]
︸ ︷︷ ︸

δ

and then prove the reduction from deciding the truth of a fully quantified QBF Φ with a 3-CNF matrix
(quantifier-free part) ϕ to ST of the following form:

Φ is valid ⇔ (X2n∪ s(ϕ)) ∈ α1(X2n∪ s(ϕ))

The modified induction hypothesis (with the same interpretation of Φ|ν≤i , ν≤i, ν<i and αi as in the proof
of Proposition 8.17) looks as follows:

for all Φ,∀ν≤i ⊆ {x1, . . . ,xi} : Φ|ν≤i is valid ⇔ ({x j | j > i}∪ν≤i∪ s(ϕ)) ∈ αi+1(X2n∪ s(ϕ))

We first justify the base case (i = 2n): if ϕ is satisfiable then β produces an effect containing the
encoding s(ϕ) together with a satisfying assignment (now the satisfying assignment is obtained by reas-
signing all variables in X2n since this assignment will be overwritten later by positive assignments to all
the xi anyway). The δ -part of the action description ensures that the encoding s(ϕ) for any unsatisfiable
ϕ will be “destroyed” because in this case it cannot be “saved” by β . The rest of the proof then works
with exactly the same argumentation as in the original version. We still give it for clarity.

Induction step: suppose that we know that the induction hypothesis holds for i. We assume first
that i = 2m was odd, so we have to show it for 2m−1 which is even, and thus α2m = ((α2m+1∧A+

2m)u
+x2m)∧ ((α2m+1∧A−2m)u+x2m). We have to show for all Φ that

∀ν≤2m−1 ⊆ {x1, . . . ,x2m−1} : Φ|ν≤2m−1 is valid ⇔ ({x j | j > 2m−1}∪ν≤2m−1∪ s(ϕ)) ∈ α2m(X2n∪ s(ϕ))

.
Φ|ν≤2m−1 being valid is equivalent to Φ̂ := Φ|ν≤2m−1∪{x2m} and Φ̃ := Φ|ν≤2m−1 being valid (because the

first quantifier of Φ|ν≤2m−1 is universal). By the induction hypothesis we know that Φ̂ is valid if and only
if {x j | j > 2m}∪ (ν≤2m−1 ∪{x2m})∪ s(ϕ) is an α2m+1-successor of X2n ∪ s(ϕ) which is equivalent to
{x j | j > 2m}∪ (ν≤2m−1 ∪{x2m})∪ s(ϕ) being an α2m+1 ∧A+

2m-successor of X2n ∪ s(ϕ) because of the
definition of A+

2m.
Also from the induction hypothesis we know that Φ̃ is valid if and only if {x j | j > 2m}∪ν≤2m−1∪

s(ϕ) is an α2m+1-successor of X2n∪ s(ϕ) which is the case if and only if {x j | j > 2m}∪ν≤2m−1∪ s(ϕ)
is an α2m+1∧A−2m-successor of X2n∪ s(ϕ) (again, because of the definition of A−2m).

78

Altogether we get that Φ|ν≤2m−1 is true if and only if {x j | j > 2m} ∪ (ν≤2m−1 ∪ {x2m})∪ s(ϕ) is
an α2m+1∧A+

2m-successor of X2n∪ s(ϕ), {x j | j > 2m}∪ν≤2m−1∪ s(ϕ) is an α2m+1∧A−2m-successor of
X2n∪ s(ϕ) and thus {x j | j > 2m−1}∪ν≤2m−1∪ s(ϕ) is an α2m-successor of X2n∪ s(ϕ), because before
the central ∧ in the definition of α2m is executed, x2m is set to > by the +x2m-assignment on both sides.

The argumentation is analogous for i being even, but with an “or” instead of “and” for the validity of
Φ̂ and Φ̃.

This gives a reduction from the validity of QBF’s to ST in O-PDDLC
and. �

8.5 Complexity: Succinctness

Due to the high expressive power of the languages in this chapter it is much harder to determine the
succinctness relations, therefore the picture is far from being complete.

Proposition 8.27. If NP 6⊆ P/poly then there is no polynomial-size translation from

• E-PDDLT
seq or O-PDDLT

seq to E-PDDLT
not or E-PDDLT

and

• nor from E-PDDLC
seq or O-PDDLC

seq to E-PDDLC
not, or E-PDDLC

and.

PROOF. The algorithm for computing α|t in the proof of Lemma 6.38 (conditioning an action by a partial
assignment t to the variables Q) can be enriched for α being an E-PDDLnot (respectively E-PDDLand)
action description. We will show that if α =¬minβ , then f (α)=¬min f (β) indeed satisfies the claim from
that proof: it was claimed that for all s, the effects of f (α) in s are exactly the effects 〈E+ \Q,E− \Q〉,
where 〈E+,E−〉 is an effect of α in s∪ t witnessing a transition of the form (s∪ t,s′∪ t).

Let s be a P-state. By definition of ¬min, s′ ∪ t is an α-successor of s∪ t if and only if s′ ∪ t is
not a β -successor of s∪ t, if and only if s′ is not a β|t-successor of s, if and only if (by the induction
hypothesis) s′ is not an f (β)-successor of s, if and only if (by definition of ¬min again) s′ is an ¬min f (β)-
sucessor of s. Now by definition of ¬min, the only effect witnessing the transition (s∪ t,s′ ∪ t) for α

is 〈(s′ ∪ t) \ (s∪ t),(s∪ t) \ (s′ ∪ t)〉 = 〈s′ \ s,s \ s′〉, and similarly, for f (α) = ¬min f (β), the only effect
witnessing the transition from s to s′ is 〈s′ \ s,s\ s′〉, which is indeed 〈(s′ \ s)\Q,(s\ s′)\Q〉 since s,s′ do
not intersect Q.

As for E-PDDLand, the algorithm for computing α|t in the proof of Lemma 6.38 can also be enriched
by “if α = β ∧ γ then f (α) = f (β)∧ f (γ)”. This works for the same reason as for u.

Thus we have shown that α|t can be computed in polynomial time for E-PDDLT
not, E-PDDLT

and,
E-PDDLC

not and E-PDDLC
and. We recall the following definitions from the proof of Proposition 6.39

(page 49): For n ∈N and Xn,Pn as in Notation 6.4 and a fresh variable psat we define the E-PDDLseq (or
O-PDDLseq, since u can be replaced by &) actions β1,β2,β3 with scope P = Xn∪Pn∪{psat}:

β1 :=
nl

i=1

(+xi∪−xi)

β2 := (χnB+psat)u (¬χnB−psat)

β3 :=
nl

i=1

−xi

where χn is the NNF
∧Nn

i=1(¬pi ∨
∨

`∈γi
`). Recall that for a 3-CNF ϕ is holds s(ϕ)∪ {psat} ∈ (β1 ;

β2 ; β3)(s(ϕ)) if and only if ϕ is satisfiable. If any of the languages L ∈ {E-PDDLT
not,E-PDDLT

and,
E-PDDLC

not,E-PDDLC
and} could express β1 ; β2 ; β3 by an equivalent L-action description δ n then we

could condition δ n in polynomial time by ϕ and decide then whether {psat} ∈ δ n
|s(ϕ)(/0) in polynomial

time by Lemma 6.36. Thus we would obtain a non-uniform polynomial-time algorithm for deciding
3-CNF. �

Proposition 8.28. If PSPACE 6⊆ NP/poly then there is no polynomial-size translation:

79

• neither from E-PDDLC
not, E-PDDLC

and, O-PDDLC
not or O-PDDLC

and into E-PDDLC or O-PDDLC,

• nor from E-PDDLT
not or O-PDDLT

not into E-PDDLT
seq, E-PDDLT

and, O-PDDLT
seq or O-PDDLT

and.

PROOF. We first illustrate the (already presented) separation proof principle based on exploiting differ-
ent complexity of IS-SUCC in languages.

If E-PDDLnot was translatable into E-PDDL with only a polynomial increase in size, we could
translate αn

1 from Proposition 8.19 into a polynomial-sized equivalent action f (αn
1) in E-PDDLT

seq or
E-PDDLC. Thus we could decide the validity of a quantified Boolean formula of the form ∃x1 : ¬(∃x2 :
¬(. . .¬(∃xn : ϕ))) by checking s(ϕ) ∈ f (αn

1)(/0). Since IS-SUCC is in NP for both representations of
E-PDDL, this would imply PSPACE ⊆ NP/poly. Thus we have shown, that if PSPACE 6⊆ NP/poly
then E-PDDLT 6� E-PDDLT

not and E-PDDLC 6� E-PDDLC
not. With an analogous argumentation (with

the O-PDDLnot version of αn
1) we conclude that if PSPACE 6⊆ NP/poly then E-PDDLT 6�O-PDDLT

not
and E-PDDLC 6� O-PDDLC

not, and the same results hold with O-PDDL instead of E-PDDL because
IS-SUCC is in NP for both representations of O-PDDL and E-PDDL (Proposition 6.9).

All other results follow analogously. We recall from the proof of Proposition 8.17 that a fully quanti-
fied Boolean formula with 3-CNF matrix ϕ is true if and only if (X2n∪s(ϕ))∈α1(/0) with the E-PDDLC

and
(resp. O-PDDLC

and) action α1. Thus E-PDDLT
not, O-PDDLT

not, E-PDDLC
not, O-PDDLC

not, E-PDDLC
and

and O-PDDLC
and allow to define families of action descriptions which give a non-uniform algorithm for

solving PSPACE-complete decision problems. If there was a polynomial-size translation from one of
these languages into one where IS-SUCC is in NP this would imply PSPACE⊆ NP/poly. We conclude
with the observation that IS-SUCC is in NP for E-PDDLT

seq, E-PDDLT
and, O-PDDLT

seq and O-PDDLT
and

by Proposition 8.14 and for E-PDDLC and O-PDDLC by Proposition 6.9 (page 40).
�

8.6 Complexity: Transformations

Since EXTRACT-PRECOND is not polynomial-size in E-PDDL (Proposition 6.40), it follows

Corollary 8.29. If NP 6⊆ P/poly then Extract-Precond is not polynomial-size for both representations of
E-PDDLand, E-PDDLnot, E-PDDLseq, O-PDDLand, O-PDDLnot and O-PDDLseq.

PROOF. If EXTRACT-PRECOND was polynomial-size for any of E-PDDLand, E-PDDLnot, E-PDDLseq,
it would be polynomial-size for its sublanguage E-PDDL, and this is not possible if NP 6⊆ P/poly by
Proposition 6.40 (page 50).

As for O-PDDL, recall the following O-PDDL actions P = Xn∪Pn∪{psat} from the proof of Propo-
sition 6.39 (page 49): β̂1 := &n

i=1(+xi∪−xi) and β̂2 := ¬χnB⊥ with χn :=
∧Nn

i=1(¬pi∨
∨

`∈γi
`). Then

β̂ := β̂1 ; β̂2 is applicable in s(ϕ) if and only if the 3-CNF ϕ is satisfiable. If EXTRACT-PRECOND was
polynomial-size for O-PDDLseq then we could extract the polynomial-size NNF precondition of β̂1 ; β̂2
and obtain a family of NNF formulas which would constitute a non-uniform polynomial-time algorithm
for 3-SAT.

As for O-PDDLand: for a literal ` we write +` meaning +x if `= x and −x if `= ¬x, i.e. we assign
the variable of ` to the value which satisfies `. Now recall the encoding of 3-CNFs from Notation 6.4
(page 39) and consider the action αn over Xn∪Pn with

αn :=
∧

pi∈Pn

(
(piB

⋃
`∈γi

+`)& &
x∈Xn

(−x∪ ε)
)

Intuitively, each conjunct is an action which, when applied in s(ϕ)∪Xn, generates any assignment to Xn

nondeterministically, and if pi is true (i.e. the clause γi occurs in ϕ) every generated assignment in addi-
tion is a model of the clause γi. The conjunction over all i = 1, . . . ,Nn of (piB

⋃
`∈γi

+`)&&x∈Xn(−x∪ε)
thus produces (when applied in s(ϕ)∪Xn) nondeterministically all models of ϕ , if ϕ is satisfiable, and
fails otherwise. Now, if EXTRACT-PRECOND was polynomial-size for O-PDDLand than by extracting

80

the preconditions of αn we would obtain a family of NNF formulas which would constitute a non-uniform
polynomial-time algorithm for 3-SAT.

The proof for O-PDDLand can be reused for E-PDDLnot: observe that an arbitrary conjunction
∧

j β j

of actions β j can be expressed as ¬min(
⋃

j¬minβ j) (Lemma 8.10), and thus αn can be expressed in
O-PDDLnot. �

Since the connective ∪, is part of the grammar of all languages in this chapter, ¬min is part of the
grammar of E-PDDLnot and O-PDDLnot and ; is part of the grammar of E-PDDLseq and O-PDDLseq,
we have the following.

Proposition 8.30. Choice is linear-time for both representations of E-PDDLand, E-PDDLnot, E-PDDLseq,
O-PDDLand, O-PDDLnot, O-PDDLseq.

Sequence is linear-time for both representations of E-PDDLseq and O-PDDLseq.
Negation is linear-time for both representations of E-PDDLnot and O-PDDLnot.

Proposition 8.31. If NP 6⊆ P/poly then neither the tree nort the circuit representations of E-PDDLand,
E-PDDLnot support polynomial-size Sequence.

PROOF. In the proof of Proposition 8.27 we have actually shown the claim: if NP 6⊆ P/poly then
it is impossible to express β1 ; β2 ; β3 in either of the languages E-PDDLT

not, E-PDDLT
and, E-PDDLC

not
and E-PDDLC

and, but if SEQUENCE was polynomial-size for any of those languages then expressing two
sequences would be possible in polynomial size, too. �

We emphasize that proofs about impossibility of SEQUENCE in this chapter all rely on polynomial-time
computability of α|t , and since this is not possible for O-PDDL and its extensions, we can state results
about SEQUENCE only for extensions of E-PDDL.

We finally consider NEGATION.

Proposition 8.32. If coNP 6⊆NP/poly then Negation is not polynomial-size for E-PDDLT
seq, O-PDDLT

seq,
E-PDDLT

and and O-PDDLT
and.

PROOF. Recall from Lemma 6.7 (page 40) that

α
sat,u
n :=

l

x∈Xn

 (l

γi : x∈γi

(+pi∪ ε)
) ∪ (l

γi : ¬x∈γi

(+pi∪ ε)
)

is such that s(ϕ) ∈ α
sat,u
n (/0) holds if and only if ϕ is satisfiable. Now suppose that NEGATION is

polynomial-size in E-PDDLT
seq, O-PDDLT

seq, E-PDDLT
and or O-PDDLT

and. Then there exists a polynomial-
sized equivalent f (αsat,u

n) of the negation of α
sat,u
n . Thus s(ϕ) ∈ f (αsat,u

n) holds if and only if ϕ is un-
satisfiable, and so there is a nonuniform NP-algorithm for a coNP-complete problem (IS-SUCC in the
above languages is in NP by Proposition 8.14). �

Thus we have several open questions which are related to each other: whether E-PDDLC
seq and O-PDDLC

seq

support polynomial-size NEGATION and whether they are at least as succinct as E-PDDLC
not or O-PDDLC

not.

8.7 Conclusion

We motivated and introduced three connectives which we used to extend the grammars of O-PDDL and
E-PDDL. We obtained a complete picture of complexity of queries and made the interesting observation
that the queries which we study remain in NP for extensions with ∧ and ; in the tree representation, but
become PSPACE-complete for the circuit representations. While it is intuitively clear that there must
be some languages which are strictly less compact with trees than with circuits, and languages with
less tractable queries with circuits than with trees, this gives a concrete example of this phenomenon.

81

We observe that the α0 from the proof of Proposition 8.15 does not involve neither u nor & and thus
IS-SUCC is PSPACE-hard for the circuit representation of the language defined by the grammar

α ::=+p | −p | ϕBα | α ∪α | α ; α

It would be interesting to study this language in a continuation of this work.
We have only few results for the succinctness part (and many gaps to be filled), as well as for trans-

formations, because the key to these results is identifying queries which have different complexities in
different languages, but the circuit representations of our languages have almost only PSPACE-complete
queries (except for ST thanks to which we can still draw some conclusions in our work). More so-
phisticated and artificially-looking queries (possibly queries for effects) are probably needed for proving
further results about transformations and filling the gaps in succinctness diagrams.

It is interesting how asymmetry in the semantics of & in O-PDDL affects its complexity: all query
results except for ST are proven almost identically for extensions of E-PDDL and O-PDDL, but when
it comes to transformations there are still differences. For example, the proofs for impossibility of
polynomial-size EXTRACT-PRECOND are quite different for E-PDDLand and O-PDDLand. Further-
more, we do not know whether O-PDDLnot allows for polynomial-size SEQUENCE, which its egalitarian
counterpart definitely does not.

As for concrete practical recommendations which can be derived from our results, a particular direct
conclusion is that if a planner works with the tree representations it can be recommended to use the
sequence connective when specifying actions, since this can possibly help to avoid exponentially big
action descriptions without decreasing the efficiency of the planner.

The gaps in our results naturally define a direction for further research. Another interesting (and
probably difficult) question is the succinctness of the “superlanguage” which combines all connectives
which we defined in the proof of Proposition 8.12. We conjecture that all queries are PSPACE-complete
for this superlanguage, and that it is strictly more succinct than every language from this chapter. It would
be particularly interesting to compare this superlanguage to various versions of DL-PA and DL-PPA (e.g.
various definitions of elementary assignments, ±p or p← ϕ) from the point of view of succinctness.

Although we generally suspect that all languages defined in this chapter are succinctness-incomparable
to each other, it could turn out that e.g. there exists a translation from E-PDDLC

not into E-PDDLC
seq. Any-

way, every answer to the questions about the existence of such translations would be interesting not only
to the planning community, but also to e.g. logicians.

Our results are summarized in Figure 8.2 and in Tables 8.1, 8.2 and 8.3. We did not make a joint
diagram for all extensions of O-PDDL and E-PDDL together because it would become bewildering.
Instead we made two diagrams which allow to compare the relations between extensions and their “parent
language”. We observe that for extensions of O-PDDL we have more open questions, this is because
the “action conditioning” α|t cannot be computed in polynomial time in O-PDDL, contrary to E-PDDL
(Lemma 6.38).

82

E-PDDL

E-PDDLand

E-PDDLnot

E-PDDLseq

×

×

× C

× ×T ?×T

×
?

O-PDDL

O-PDDLand

O-PDDLnot

O-PDDLseq

×

×

× C

? ×T ?×T

?
?

Figure 8.2: Succinctness results for extensions of E-PDDL and O-PDDL. An arc from L1 to L2 means
that L1 can be translated into L2 in polynomial time (hence also in polynomial size). A crossed out arc
from L1 to L2 means that there exists not even a polynomial-size translation from L1 into L2. These
relations hold for both tree and circuit representations. An arc crossed out by ×T means that the non-
existence of a polynomial-size translation is proven only for circuits.

83

Language IS-SUCC IS-APPLIC ENTAILS

O-PDDLT
seq NP-complete NP-complete coNP-complete

O-PDDLC
seq PSPACE-complete PSPACE-complete PSPACE-complete

O-PDDLT
and NP-complete NP-complete coNP-complete

O-PDDLC
and PSPACE-complete PSPACE-complete PSPACE-complete

O-PDDLT
not, O-PDDLC

not PSPACE-complete PSPACE-complete PSPACE-complete
E-PDDLT

seq NP-complete NP-complete coNP-complete
E-PDDLC

seq PSPACE-complete PSPACE-complete PSPACE-complete
E-PDDLT

and NP-complete NP-complete coNP-complete
E-PDDLC

and PSPACE-complete PSPACE-complete PSPACE-complete
E-PDDLT

not, E-PDDLC
not PSPACE-complete PSPACE-complete PSPACE-complete

Table 8.1: Complexity results for IS-SUCC, IS-APPLIC and ENTAILS.
Language ST IS-DET IS-MON

O-PDDLT
seq NP-complete coNP-complete coNP-complete

O-PDDLC
seq PSPACE-complete PSPACE-complete PSPACE-complete

O-PDDLT
and NP-complete coNP-complete coNP-complete

O-PDDLC
and PSPACE-complete PSPACE-complete PSPACE-complete

O-PDDLT
not, O-PDDLC

not PSPACE-complete PSPACE-complete PSPACE-complete
E-PDDLT

seq NP-complete coNP-complete coNP-complete
E-PDDLC

seq PSPACE-complete PSPACE-complete PSPACE-complete
E-PDDLT

and linear time coNP-complete coNP-complete
E-PDDLC

and linear time PSPACE-complete PSPACE-complete
E-PDDLT

not, E-PDDLC
not linear time PSPACE-complete PSPACE-complete

Table 8.2: Complexity results for ST, IS-DET and IS-MON.
Language CHOICE SEQUENCE NEGATION EXTRACT-PRECOND

O-PDDLT
seq X X ◦ ◦

O-PDDLC
seq X X ? ◦

O-PDDLT
and X ? ◦ ◦

O-PDDLC
and X ? ? ◦

O-PDDLT
not X ? X ◦

O-PDDLC
not X ? X ◦

E-PDDLT
seq X X ◦ ◦

E-PDDLC
seq X X ? ◦

E-PDDLT
and X ◦ ◦ ◦

E-PDDLC
and X ◦ ? ◦

E-PDDLT
not, E-PDDLC

not X ◦ X ◦

Table 8.3: Results for transformations. “X” means that the transformation can be done in time polyno-
mial in the size of the input. “?” means that the question is open. ◦ means that under some complexity-
theoretic assumption (see formal statements) the size of the result of the transformation is in general not
polynomial in the size of the input.

84

CHAPTER 9

Extensions of NNF Action Theories

Contents
9.1 The Syntactic Frame Connective . 86

9.1.1 Compiling the Syntactic Connective Away 88

9.2 The Semantic Frame Connective . 91
9.2.1 Complexity and Succinctness . 92

9.3 Conclusion . 95

We want to emphasize ahead that the results in this chapter are given only for the circuit repre-
sentation. This is because the translation from Subsection 9.1.1 involves a construction which is only
polynomial-time constructible when using circuits. We will comment on this at the technical part when
giving the results.

A well-known question when representing action and change is how to succinctly specify the nonef-
fects of actions, that is, to ensure that the specification precludes fluents to change value while this is not
intended. This is known as the frame problem. While imperative languages naturally come with a solu-
tion to the frame problem, because operational semantics literally transform a situation into another one,
the frame problem is crucial in declarative languages, and it has been thoroughly studied, in particular
for the Situation Calculus (Reiter, 1991).

In this chapter we propose two different connectives for representing the persistency of fluents, and
consider the language of NNF actions theories as enriched by one or the other. The originality of this
contribution lies in the facts that (i) the language is enriched with an connective (analogously to Chap-
ter 8), which, we argue, allows one to specify the persistency of variables more naturally and succinctly
than expressions in the plain underlying logic (like successor-state axioms for the Situation Calculus),
and (ii) we allow the connectives to occur anywhere in the formula, including nested occurrences, which
again facilitates the description of actions.

Our connectives are one whose interpretation is dependent on the syntax of the action in its scope, and
one whose interpretation depends only on its semantics (as a relation between the states before and after
the action). The “semantic” one corresponds to interpreting the action in its scope under circumscrip-
tion (McCarthy, 1980), here used as a semantics of minimal change through the action. The syntactic
operator aims at unifying the semantics of E-PDDL and NNFAT (because we introduce the notion of
effects for NNFAT) and simultaneously at understanding the reasons for higher succinctness and com-
plexity of E-PDDL compared to NNFAT. We give a complete picture for the complexity of queries.
Precisely, we show that the syntactic connective can be compiled away in polynomial time for the circuit
representation; this shows that actions can be specified in the richer language without harming further
calculations. Since the complexity of queries and the results for transformations do not depend on the
representation for NNFAT, we can directly transfer the complexity results from Chapter 6. On the other

85

hand, we show that the semantic connective yields a more succinct language, but that the complexity of
answering queries increases accordingly. This result again is given for the circuit representation only, but
we conjecture that the same hardness results can be proven for the tree representation.

9.1 The Syntactic Frame Connective

We now define a syntactic connective, for representing the notion of persistency of languages like
O-PDDL and E-PDDL, where a variable does not change value if there is no explicit reason for this (this
is the reason why the effects we defined in previous chapters were called explicit effects). Concretely, we
want a connective F such that {p} is an F(p′∨¬p′)-successor of s = /0, but not an F(q′∨¬q′)-successor
for q 6= p, although p′ ∨¬p′ describes the same action as q′ ∨¬q′. Therefore we need to formalize the
intuition that some change is “explicitly mentioned” in an action description. For this, we extend the
notion of effects from Definition 5.3 (page 30) which apply in a state in the context of NNFAT, and this
time effects will themselves be decomposed into explicit and implicit effects.

Definition 9.1. An (extended) effect (over P ⊆ P) is a quadruple 〈e+,e−, i+, i−〉 such that e+,e−, i+, i−

are pairwise disjoint subsets of P. The explicit (resp. implicit) part of such an effect is the pair 〈e+,e−〉
(resp. 〈i+, i−〉). An effect 〈a+,a−,b+,b−〉 is a subeffect of 〈e+,e−, i+, i−〉 if a+ ⊆ e+,a− ⊆ e−,b+ ⊆ i+

and b− ⊆ i−.

We say “extended effect” to distinguish it from the notion of explicit effects we used to define the
semantics of E-PDDL and O-PDDL. But since it will be clear from the context which notion we use,
we will simply say “effect” in the rest of the chapter, and the meaning will depend on which language
we are talking about.

The positive (e+∪e−) and negative (e−∪ i−) parts are similar to add- and del-lists in STRIPS and to
the notion we used before: ε = 〈e+,e−, i+, i−〉 provokes a transition from a state s to ε(s) := (s′∪ e+∪
i+)\ (e−∪ i−).

We now define effects for NNFAT action descriptions. For combinations of effects via ∧, let ε1 =
〈e+1 ,e

−
1 , i

+
1 , i
−
1 〉 and ε2 = 〈e+2 ,e

−
2 , i

+
2 , i
−
2 〉. If e+1 ∪ i+1 = e+2 ∪ i+2 and e−1 ∪ i−1 = e−2 ∪ i−2 holds then we call

them compatible and write ε1 ≈ ε2 and set ε1 + ε2 := 〈e+1 ∪ e+2 ,e
−
1 ∪ e−2 , i

+
1 ∩ i+2 , i

−
1 ∩ i−2 〉. Intuitively,

ε1 ≈ ε2 means that they provoke exactly the same transitions, but possibly with different explicit/implicit
changes, and ε1 + ε2 is the effect which makes explicit any change which is explicit in one of them. We
call ε1 + ε2 the sum of ε1 and ε2.

Definition 9.2. Let α be an NNFAT action description and s be a state. Then the set of (extended) effects
of α with scope P in s, written Ex(α,P,s), is defined inductively by

• Ex(p,P,s) = {〈 /0, /0,A,B〉 | A,B⊆ P} for s |= p,
and Ex(p,P,s) = /0 for s 6|= p

• Ex(¬p,P,s) = {〈 /0, /0,A,B〉 | A,B⊆ P} for s 6|= p,
and Ex(¬p,P,s) = /0 for s |= p

• Ex(p′,P,s) = {〈 /0, /0,A,B〉 | A,B⊆ P\{p}}∪{〈{p}, /0,A,B〉 | A,B⊆ P\{p}} for s |= p,
and Ex(p′,P,s) = {〈{p}, /0,A,B〉 | A,B⊆ P\{p}} for s 6|= p

• Ex(¬p′,P,s) = {〈 /0, /0,A,B〉 | A,B⊆ P\{p}}∪{〈 /0,{p},A,B〉 | A,B⊆ P\{p}} for s 6|= p,
and Ex(¬p′,P,s) = {〈 /0,{p},A,B〉 | A,B⊆ P\{p}} for s |= p

• Ex(α1∧α2,P,s) = {ε1 + ε2 | ε1 ∈ Ex(α1,s),ε2 ∈ Ex(α2,s),ε1 ≈ ε2};

• Ex(α1∨α2,P,s) = Ex(α1,s)∪Ex(α2,s)∪Ex(α1∧α2,s).

where A,B are always disjoint from each other.

86

Intuitively, the first case says that the action p is not applicable if s does not satisfy p (second line),
and otherwise imposes no constraint on the successor state, but moreover does not set any value explicitly:
a transition may occur from, say, {p,q} to {r}, but then the positive effects A = {r} and negative effects
B = {p,q} are considered to be implicit.

For atomic actions of the form p′, we distinguish two cases. When s does not already satisfy p, then
all effects of p′ explicitly set p. Constrastingly, when s already satisfies p, then the action p′ leaves the
value unchanged, and we include both effects with an explicit setting of p (to the same value) and effects
with no setting of p at all (neither implicit nor explicit). Of course, for fixed A,B, those two effects
provoke a transition from s to the same successor s′. Nevertheless, including the effects which do not
set p at all turns out to be necessary for ∧ to behave as expected in the extension of NNFAT with the F
connective (to be defined soon).

Finally, it is worth noting that we include the effects of α1∧α2 in those of α1∨α2. Of course, the
transitions of α1∧α2 are already included in those of α1 and in those of α2, but not necessarily with the
same explicit parts.

Example 9.3. Let P = {p,q} α1 := p′, α2 := q′, α := α1 ∨α2 and s = {p}. Then α1 and α2 have the
following effects:

Ex(α1,P,s) ={〈{p}, /0, /0, /0〉,〈{p}, /0,{q}, /0〉,〈{p}, /0, /0,{q}〉,〈 /0, /0, /0, /0〉,〈 /0, /0,{q}, /0〉,〈 /0, /0, /0,{q}〉}
Ex(α2,P,s) ={〈{q}, /0, /0, /0〉,〈{q}, /0,{p}, /0〉,〈{q}, /0, /0,{p}〉}

Then the effects of α are the union of those sets of effects together with the additional effect 〈{p,q}, /0, /0, /0〉
which is the sum of 〈{p}, /0,{q}, /0〉 and 〈{q}, /0,{p}, /0〉.

With this in hand, we can define the framing connective FX . Intuitively, FX(α) retains only those
effects of α which include no implicit effect on variables of X . As can be seen, this is equivalent to
removing variables of X from the implicit part of all effects. So we define Ex(FX(α),P,s) to be

{〈e+,e−, i+ \X , i− \X〉 | 〈e+,e−, i+, i−〉 ∈ Ex(α,P,s)}

Analogously to Definition 5.4 (page 30) we say that an effect is minimal in s if s∩ (e+ ∪ i+) = /0 and
(e−∪ i−)⊆ s, i.e. all variables occuring in the effect really change the values of those variables in s.

Definition 9.4. The action language NNFATF is the language whose expressions with scope P are de-
fined by the grammar

α ::= p | p′ | ¬p | ¬p′ | α ∧α | α ∨α | FX(α),

where p ranges over P and X over subsets of P, and the interpretation function I is defined for all P,
s⊆ P and α with V(α)⊆ P∪ (P)′ via

I(α,P)(s) := {(s∪ e+∪ i+)\ (e−∪ i−) | 〈e+,e−, i+, i−〉 ∈ Ex(α,P,s)}

It can be seen by induction that FX can only remove successors (i.e. FX(α)(s)⊆ α(s)).

Example 9.5. Consider the action of leaving one’s bike in a garage for them to repair exactly one wheel,
but not knowing which one in advance.1 The action may have two effects: making the front wheel or the
back wheel ok (in both cases not affecting the other). However, in the process of repairing the back
wheel, it might occur that the gear is changed. Additionally, in no case would the brakes be affected.
Such an action could be encoded by

Fbrakes
(
Ff_wheel_ok(b_wheel_ok′)∨Fb_wheel_ok,gear(f_wheel_ok′)

)
Importantly, in general, pushing all occurrences of F to the root of the expression changes its inter-

pretation. For instance, in Example 9.5, this would yield the expression

Fbrakes,f_wheel_ok,b_wheel_ok,gear
(
b_wheel_ok′∨ f_wheel_ok′

)
according to which the gear can never change value.

1E.g., knowing only that they are not aligned which each other.

87

9.1.1 Compiling the Syntactic Connective Away

While NNFATF seems to be a “real” extension of NNFAT (i.e. a strictly more succinct language), we
will show that the syntactic connective FX can be compiled away, that is, eliminated from an NNFATC

F
expression to yield an expression in NNFATC which describes the same action and has the same inter-
pretation and size (up to a polynomial). Moreover, the elimination can be done in polynomial time. This
means that NNFATF can be used as a convenient language for describing actions, still the algorithms
which manipulate those descriptions (e.g. planners) need not be extended to cope with F, since all its
occurrences can simply be eliminated in polynomial time and space.

Before we proceed, we need some technical lemmas and additional notation.

Notation 9.6. We set Ex(α,P,s,s′) := {〈e+,e−, i+, i−〉 ∈ Ex(α,P,s) | (s∪ e+∪ i+)\ (e−∪ i−) = s′}, i.e.
the set of effects of α in s which describe the transition (s,s′). If P is clear from the context we will write
Ex(α,s,s′) instead of Ex(α,P,s,s′), and Ex(α,s) instead of Ex(α,P,s) to avoid unnecessary notation.

Thus, if we say that 〈e+,e−, i+, i−〉 ∈Ex(α,s,s′) this in particular means that s′ ∈α(s) and 〈e+,e−, i+, i−〉
is a witness for this.

In the rest of the section we will stick to Notation 9.6 and not mention the scope P in the effect
definitions, assuming for each statement that P is arbitrary, but fixed.

Lemma 9.7. If ε = 〈U,V,W,Z〉 ∈ Ex(α,s) and ε̃ = 〈A,B,C,D〉 with A ⊆U,B ⊆ V,C ⊆W,D ⊆ Z and
ε(s) = s′ = ε̃(s) then ε̃ ∈ Ex(α,s).

PROOF. The statement holds for atomic actions p,¬p, p′,¬p′ by definition.
For α = FX(β): let εx := 〈U,V,W,Z〉 ∈ Ex(β ,s) and ε = 〈U,V,W \X ,Z \X〉 ∈ Ex(α,s). We set

Xw :=W ∩X and Xz := Z∩X . Let A⊆U,B⊆V,C⊆ (W \X),D⊆ (Z \X) with ε̃ := 〈A,B,C,D〉 be such
that ε̃(s) = ε(s). We define ε̃x := 〈A,B,C∪Xw,D∪Xz〉 which is by assumption in Ex(β ,s) because it has
the same effect on s as εx. ε̃ is obtained from ε̃x by application of FX so ε̃ ∈ Ex(α,s) and we are done.

For α = α1∧α2: let ε = 〈U,V,W,Z〉 ∈ Ex(α,s) with ε = ε1 + ε2, with εi = 〈Ui,Vi,Wi,Zi〉. We want
to show that if ε̃(s) = ε(s) for ε̃ = 〈Ũ ,Ṽ ,W̃ , Z̃〉 with Ũ ⊆U,Ṽ ⊆V,W̃ ⊆W, Z̃ ⊆ Z, then ε̃ ∈ Ex(α,s). We
want to find effects ε̃1 and ε̃2 with the same effect on s as ε1 and ε2 but which are subeffects and whose
sum gives ε̃ . We set Ũ1 :=U1∩Ũ ,W̃1 :=W1∩(Ũ ∪W̃), Ũ2 :=U2∩Ũ ,W̃2 :=W2∩(Ũ ∪W̃), Ṽ1 :=V1∩Ṽ ,
Z̃1 := Z1 ∩ (Ṽ ∪ Z̃), Ṽ2 := V2 ∩ Ṽ , Z̃2 := Z2 ∩ (Ṽ ∪ Z̃). This definition is correct (i.e. Ũ1 ⊆U1, Ũ2 ⊆U2,
W̃1 ⊆W1, W̃2 ⊆W2, Ṽ1 ⊆V1, Ṽ2 ⊆V2, Z̃1 ⊆ Z1, Z̃2 ⊆ Z2, ε̃1(s) = ε1(s), ε̃2(s) = ε2(s) and ε̃1 + ε̃2 = ε̃).

For α = α1 ∨α2 the claim follows from the induction hypothesis together with the definition of
effects for ∨ and the result for ∧. �

Especially it follows that there is always a minimal effect satisfying a given state-transition, i.e. there is
at least one 〈e+,e−, i+, i−〉 ∈ Ex(α,s,s′) such that e+∪ i+ = s′ \ s and e−∪ i− = s\ s′.

Lemma 9.8. Let α,β be two action expressions in NNFATF, and let s,s′ be two states such that s′ is
both an α- and a β -successor of s. Let p be a variable with a different value in s and s′, and such that
there is an effect εp = 〈e+p ,e−p , i+p , i−p 〉 ∈ Ex(α,s,s′)∪Ex(β ,s,s′) with p ∈ e+p ∪ e−p (that is, p is assigned
explicitly). Then there is an effect ε = 〈e+,e−, i+, i−〉 ∈ Ex(α ∧β ,s,s′) such that p ∈ e+∪ e− holds.

PROOF. By symmetry, assume 〈e+p ,e−p , i+p , i−p 〉 ∈ Ex(α,s,s′) (so that p ∈ e+p ∪ e−p holds) and let εβ =
〈e+

β
,e−

β
, i+

β
, i−

β
〉 ∈ Ex(β ,s,s′) be an effect of β (with not necessarily p ∈ e+

β
∪ e−

β
).

Write X for the set of all variables which have different values in s and s′, write εp,X for the effect
〈e+p ∩X ,e−p ∩X , i+p ∩X , i−p ∩X〉, and similarly for εβ ,X . Since all variables which change value from s
to s′ are retained, we have εp,X ∈ Ex(α,s,s′) and εβ ,X ∈ Ex(β ,s,s′). Moreover, for all q ∈ X , since q
has different values in s and s′ and εp transform s into s′, q ∈ e+p ∪ e−p ∪ i+p ∪ i−p must hold and hence,
q ∈ e+p,X ∪ e−p,X ∪ i+p,X ∪ i−p,X holds. The same reasoning shows q ∈ e+

β ,X ∪ e−
β ,X ∪ i+

β ,X ∪ i−
β ,X and finally,

εp,X ≈ εβ ,X are compatible together. Moreover, by construction p ∈ e+p,X ∪ e−p,X holds. It follows that the
effect ε := εp,X + εβ ,X is as desired. �

88

Lemma 9.9. Let α be an NNFATF action description, let s be a state, and let ε1,ε2 ∈ Ex(α,s) with
ε1 ≈ ε2. Then the effect ε1 + ε2 is in Ex(α,s).

PROOF. Since the effects are compatible with each other, their combination using + is well-defined. We
now reason by induction on the structure of α .

For atomic α , it is easy to see that ε1 and ε2 have to be equal or incompatible with each other. Hence
the result clearly holds.

Now for α = β ∧ γ , there exist ε
β

i ,ε
γ

i , i = 1,2 with ε
β

i ∈ Ex(β ,s),εγ

i ∈ Ex(γ,s) and εi = ε
β

i + ε
γ

i .
By definition of ≈ it follows that ε

β

1 ≈ ε
β

2 and ε
γ

1 ≈ ε
γ

2 and ε
β

1 + ε
β

2 ≈ ε
γ

1 + ε
γ

2 , and by the inductive
assumption it follows ε

β

1 +ε
β

2 ∈Ex(β ,s) and ε
γ

1 +ε
γ

2 ∈Ex(γ,s), and by definition of the sum we conclude
ε = (ε+

1 ≈ ε
β

2)+(ε
γ

1 + ε
γ

2)
Similarly, for α = β ∨ γ , either both are effects of the same subexpression, in which case the result

holds by the induction hypothesis, or they are effects of β and γ , respectively, in which case the result
follows since the effects of β ∧ γ are included in those of β ∨ γ . Finally, for α = FX(β), we have that
both effects are effects of β and their implicit part does not intersect X , so the same holds for their
combination through + and hence, the latter is also an effect of α . �

We are now in position to define the transformation for compiling the FX connective away. This will
be done by defining a polynomial-time transformation similar to introducing successor-state axioms, but
taking into account the fact that FX may occur at any level of nesting.

Definition 9.10. Let α be a NNFATC
F action description with scope P. We recursively define the action

Expl(α, p) by

• α for α = p′ or α = ¬p′,

• ⊥ for α = q′ or α = ¬q′ with q 6= p,

• ⊥ for α = q or α = ¬q, for all variables q,

• (Expl(β , p)∧ γ)∨ (β ∧Expl(γ, p)) for α = β ∧ γ ,

• Expl(β , p)∨Expl(γ, p) for α = β ∨ γ ,

•
∧

x∈X∪{p}
(
(x↔ x′)∨Expl(β ,x)

)
for α = FX(β).

We observe that the size of the reduced circuit of Expl is polynomial in the cardinality of P and the
size of α .

The following is the core idea for the desired translation. It shows that if p changes its value via α

explicitly, then the corresponding state transition must be possible via Expl(α, p). For convenience we
will write (s,s′) |= α in the rest of the section, meaning s′ ∈ α(s), because our translation will be defined
in such a manner that Expl(α,s) will be a pure NNFAT action description and thus a Boolean formula.

Lemma 9.11. Let α be an expression in NNFATF, s,s′ be two states, and p be a variable with a different
value in s and s′. Then there is an effect ε = 〈e+,e−, i+, i−〉 ∈ Ex(α,s,s′) with p ∈ e+∪ e− if and only if
(s,s′) |= α ∧Expl(α, p).

PROOF. Assume first that there is an effect ε = 〈e+,e−, i+, i−〉 ∈ Ex(α,s,s′) with p ∈ e+∪ e−. By the
definition of Ex(α,s,s′) we have (s,s′) |= α . We show (s,s′) |= Expl(α, p) by induction on the structure
of α .

For α = p′ or α = ¬p′, since there is an effect in Ex(α,s,s′), we have in particular (s,s′) |= α =
Expl(α, p). For α = q′ or α = ¬q′ with q 6= p, and for α = q or α = ¬q with q being any variable, the
result holds vacuously since there is no effect 〈e+,e−, i+, i−〉 of α at all with p ∈ e+∪ e−.

Now for α = β ∧γ with NNFATF actions β ,γ , by definition of∧ there are effects εβ = 〈e+
β
,e−

β
, i+

β
, i−

β
〉 ∈

Ex(β ,s,s′) and εγ = 〈e+γ ,e−γ , i+γ , i−γ 〉 ∈ Ex(γ,s,s′) with ε = εβ + εγ , and from p ∈ e+∪ e− and the defini-
tion of + it follows p∈ e+

β
∪e−

β
or p∈ e+γ ∪e−γ . Assume by symmetry p∈ e+

β
∪e−

β
. Then by the induction

89

hypothesis we have (s,s′) |= Expl(β , p). Moreover, from ε ∈ Ex(α,s,s′) it follows (s,s′) |= α and hence
(s,s′) |= β ∧ γ and (s,s′) |= γ . In the end, we get (s,s′) |= Expl(β , p)∧ γ , as desired.

For α = β ∨ γ , the result follows directly from the definition of ∨ and the induction hypothesis.
Finally, for α = FX(β), the result follows from the fact that the set of effects of α is a subset of the

set of effects of β , together with the fact that by definition of FX , variables from X which change value
can only do so via an explicit effect of β and together with the induction hypothesis.

Conversely, assume (s,s′) |= α and (s,s′) |= Expl(α, p).
For α = p′, from (s,s′) |= Expl(α, p) = α we get that s′ is indeed an α-successor of s and hence,

the effect 〈{p}, /0, /0, /0〉 is as desired. The reasoning is similar for α = ¬p′. For α = q′ or α = ¬q′ with
q 6= p, and for α = q or α = ¬q with q being any variable, the result holds vacuously since Expl(α, p) is
⊥ and hence, (s,s′) |= Expl(α, p) does not hold.

Now for α = β ∧ γ with NNFATF actions β ,γ , assume by symmetry (s,s′) |= Expl(β , p)∧ γ . Then
we have (s,s′) |= Expl(β , p); on the other hand, by assumption (s,s′) |= α and hence (s,s′) |= β , and
from the induction hypothesis it follows that there is an effect εβ = 〈e+

β
,e−

β
, i+

β
, i−

β
〉 ∈ Ex(β ,s,s′) with

p ∈ e+
β
∪ e−

β
. Moreover, from (s,s′) |= γ it follows that there is an effect εγ ∈ Ex(γ,s,s′). Then from

Lemma 9.8 it follows that there is an effect 〈e+,e−, i+, i−〉 ∈ Ex(α,s,s′) with p ∈ e+∪ e−, as desired.
For α = β ∨ γ , the result follows directly from the definition of ∨.
Finally, for α = FX(β), since p 6↔ p′, from (s,s′) |= Expl(α, p) it follows that (s,s′) |= Expl(β , p);

moreover, since FX(β)-successors are always β -successors, it follows (s,s′) |= β and by the induc-
tion hypothesis and Lemma 9.7 we get that there is a minimal effect ε1 = 〈e+β ,e

−
β
, i+

β
, i−

β
〉 ∈ Ex(β ,s,s′)

with p ∈ e+
β
∪ e−

β
; on the other hand, by assumption (s,s′) |= α , so there exists a minimal effect ε2 =

〈a+
β
,a−

β
,b+

β
,b−

β
〉 ∈ Ex(β ,s,s′) with ε2 ∈ Ex(α,s,s′), that is, the implicit part of ε2 intersects X only in

those variables which don’t change their value from s to s′. By Lemma 9.9, ε := ε1+ε2 ∈ Ex(β ,s,s′) and
since its implicit part is a subeffect of the implicit part of ε2, ε ∈ Ex(α,s,s′) and it has p as an explicit
effect. �

We are now ready to prove the main result of the section. Our procedure essentially amounts to
replacing all occurrences of F with subformulas similar to successor-state axioms.

Proposition 9.12. NNFATC
F is translatable into NNFATC in polynomial time.

PROOF. Let α be a NNFATC
F action description with scope P. The translation f (α) is obtained by

replacing each node FX(β) (with X ⊆ P) of the circuit of α by β ∧
∧

p∈X
(
(p↔ p′)∨Expl(β , p)

)
in a

bottom-up fashion and keeping the other nodes. The bottom-up manner guarantees that for each FX(β)
which we replace the argument node β has already been transformed into an NNFAT. Observe that
(p↔ p′)≡ (p∧ p′)∨ (¬p∧¬p′) and thus f (α) is indeed an NNF formula (we use↔ for better clarity).

We first show f (α) ≡ α , by induction on the structure of α . For all constructs but FX the result is
straightforward, since those constructs are semantic and the root of α is left unchanged; for instance,
for α = β ∧ γ we have f (α) = f (β)∧ f (γ), and by the induction hypothesis we have f (β) ≡ β and
f (γ)≡ γ; since ∧ is semantic, it follows f (α)≡ β ∧ γ = α .

So let α = FX(β) be an expression in NNFATF, and let s,s′ be two states.
Assume first (s,s′) |= f (α). Then in particular we have s′ ∈ β (s). It remains to show that there is

an effect εβ = 〈e+
β
,e−

β
, i+

β
, i−

β
〉 ∈ Ex(β ,s,s′) whose explicit part e+

β
∪ e−

β
contains all variables p from X

which change value from s to s′; indeed, from this we will conclude that these effects are unaffected by
FX and hence, that this effect with X removed from its implicit part also transforms s to s′ on behalf of α .
Let p be a variable as above. From the definition of f (α) we conclude (s,s′) |= β ∧Expl(β , p), and by
Lemma 9.11 it follows that there is an effect εβ ,p = 〈e+β ,p,e

−
β ,p, i

+
β ,p, i

−
β ,p〉 ∈Ex(β ,s,s′) with p∈ e+

β ,p∪e−
β ,p.

As in the proof of Lemma 9.8, it can be seen that by first restricting those εβ ,p’s (for each p) to the set
of all variables which change value from s to s′, we get effects which are all in Ex(β ,s,s′) and which are
compatible together. Hence their sum εβ via + is well-defined, and it transforms s into s′. Moreover, by
construction εβ has in its explicit part all those p’s which change value from s to s′. Finally, Lemma 9.9
shows that εβ is an effect of β , which concludes.

90

Conversely, assume s′ ∈ α(s). Then by definition of FX we first get s′ ∈ β (s). Now let p be a variable
in X . If p has the same value in s and s′, then (s,s′) |= (p↔ p′) holds. Otherwise, from s′ ∈ β (s) and
the fact that p is in X but changes value from s to s′, we get that there is an effect in Ex(β ,s,s′) with
p in its explicit part. Then from Lemma 9.11 it follows (s,s′) |= Expl(β , p). Hence in the end, we get
(s,s′) |= β ∧

∧
p∈X((p∧ p′)∨ (¬p∧¬p′)∨Expl(β , p)) = f (α), as desired.

Finally, f (α) can be computed in polynomial time from α since in the end, we have only introduced
one new node per variable p and per node β of α (those nodes Expl(β , p)), and none of these nodes
creates any new node (they only use other Expl(γ,q) nodes), plus a linear number of nodes of the form
β ∧

∧
p∈X((p∧ p′)∨ (¬p∧¬p′)∨Expl(β , p)), which also only reuse other γ or Expl(γ,q) nodes. �

Since NNFATC and NNFATC
F are polynomial-time translatable into each other, we conclude that all

polynomial-time tractability results of NNFATC hold for NNFATF, as well as all (polynomial-time possi-
bility and polynomial-size impossibility) results about transformations and succinctness (see Chapter 6).
The only results which need to be adjusted are those for IS-SUCC, ST and NEGATION (we recall that
those queries were linear-time for NNFAT).

Corollary 9.13. Choice can be performed in linear time for NNFATC
F . Is-Succ and ST can be answered

and Negation can be performed in polynomial time for NNFATC
F .

PROOF. For two NNFATC
F action α and β CHOICE is achieved via the NNFATC

F action α∨β . The claim
for IS-SUCC, ST and NEGATION follows from the linear time results in Chapter 6 (Proposition 6.3, 6.26
and 6.35, pages 37-47) together with the existence of a polynomial-time translation and the sublanguage
relation. �

Corollary 9.14. Is-Applic is NP-complete and Is-Det, Is-Mon and Entails are coNP-complete for NNFATC
F .

PROOF. The claim follows from results for NNFAT in Chapter 6 (Propositions 6.12 and Corollaries 6.17,
6.24 and 6.25, pages 42-44). �

Corollary 9.15. If NP 6⊆P/poly then Sequence and Extract-Precond are not polynomial-size for NNFATC
F .

PROOF. Follows from the results for NNFAT (Propositions 6.39 and 6.40, pages 49 -50). �

Corollary 9.16. NNFATC
F is polynomial-time translatable into E-PDDLC. If NP 6⊆P/poly then O-PDDLC

and NNFATC
F are succinctness-incomparable to each other.

PROOF. NNFATC
F is polynomial-time translatable into NNFATC which is polynomial-time translatable

into E-PDDLC by Proposition 6.2 (page 38).
Assume NP 6⊆P/poly. NNFATC

F is not polynomial-size translatable into O-PDDLC because NNFATC

is not (Proposition 6.29, page 46). The converse result follows from the nonexistence of a polynomial-
size translation from O-PDDLC into E-PDDLC (Proposition 6.31, page 46), but in the proof we must
replace “then check in linear time” by “then check in polynomial time”, which does not change the
argumentation. �

9.2 The Semantic Frame Connective

The semantic frame connective which we study builds on circumscription (McCarthy, 1980), which is
a nonmonotonic semantics for formulas enforcing a form of closed-world assumption, and especially
on propositional circumscription (Eiter and Gottlob, 1993; Nordh, 2005). However, by introducing a
connective for this interpretation, we allow circumscription to be enforced only on some parts of an
expression.

Let α be an action description and s be a P-state. For all partitions {X ,V,F} of P, we introduce the
connective CX ,V,F so that CX ,V,F(α)(s) chooses those α-successors of s which change variables from X
minimally among all states with the same values over F .

91

Precisely, we define a state s′ to be preferred to a state s′′ with respect to a state s and to X ,V,F , which
we write s′ ≺s

X ,V,F s′′, if s′ ∩F = s′′ ∩F and (s′∆s)∩X ((s′′∆s)∩X hold, where ∆ denotes symmetric
difference for sets.2

Definition 9.17. The action language NNFATC is the language whose expressions with scope P are
defined by the grammar

α ::= p | p′ | ¬p | ¬p′ | α ∧α | α ∨α | CX ,V,F(α),

where p ranges over P and 〈X ,V,F〉 over partitions of P, and the interpretation function I is defined as
for the original NNFAT (in Chapter 5), extended with

I(CX ,V,F(α),P)(s) = {s′ ∈ I(α,P)(s) | @s′′ ∈ I(α,P)(s) : s′′ ≺s
X ,V,F s′}

We observe that for every partition X ,V,F of P, every state s and every NNFATC action α the action
CX ,V,F(α) is applicable in s if and only if α is applicable in s, because a CX ,V,F(α)-successor is chosen
among α-successors.

In other words, analogously to FX from the previous section, CX ,V,F can only remove successors, i.e.
CX ,V,F(α)(s)⊆ α(s).

Another important observation is that FX is not a special case of CX ,V,F . It might seem that FX is
nothing more than CX , /0,P\X . However, taking P = {p}, α = p′ ∨¬p′, and s = /0, it can be seen that
both /0 and {p} are FX(α)-successors of s, while only /0 is a CX , /0,P\X(α)-successor. Indeed, FX(α) takes
into account the fact that both alternatives are explicitly mentioned in the formula, while CX , /0,P\X(α)
considers only the semantics of α and hence, is equivalent to CX , /0,P\X(>).

Example 9.18. Let P = {p1, . . . , p5}, X = {p1, p2}, V = {p3}, and F = {p4, p5}. Let α = (p′1∨ p′3)∧
(p′2 ∨ p′4)∧ (p′5) and s = /0. Then {p1, p2, p5} is an α-successor, but not a CX ,V,F(α)-successor, of s,
because s′′ = {p2, p3, p5} is also an α-successor of s with s′′ ∩F = {p5} = s′ ∩F and (s′′∆s)∩X =
{p2} ⊂ {p1, p2} = (s′∆s)∩X. On the other hand, s′′ is a CX ,V,F(α)-successor of s even though s′′′ =
{p3, p4, p5} changes fewer values over X, since s′′ and s′′′ differ over F and hence are incomparable with
each other.

It can be seen that the CX ,V,F connective is convenient in particular for expressing actions which
involve external causes (to be put in the set F) of changes of values for variables of interest (set X), in
the presence of ramifications (set V).

Example 9.19. Consider encoding the action of driving from work to home. A particularly succinct
description is

C{home},{at_work},{flat_tire,engine_ok}(
(engine_ok′∧¬flat_tire′)→ home′)∧ (home′↔¬at_work′)

)
Consider s = {engine_ok,at_work}. Minimization of change over {home} entails that when the causes
are not met (for instance, when engine_ok′ is false), among the possible successors of s only the ones with
¬home′ are retained, ignoring the ramification at_work′; successors with home′ are not retained, reflect-
ing the fact that there is no “proof” provided by the action that home should change value. On the other
hand, due to their presence in the set F, all combinations of causes will be retained. Precisely, the succes-
sors of s are {engine_ok,at_work,flat_tire}, {at_work}, {at_work,flat_tire}, and {engine_ok,home}.

9.2.1 Complexity and Succinctness

We now study complexity and succinctness issues for NNFATC
C .

Proposition 9.20. Is-Succ, Is-Applic, Entails, ST, Is-Mon and Is-Det are in PSPACE for NNFATC
C .

2As mnemonics, variables in V may vary; those in F are fixed.

92

PROOF. We start with IS-SUCC. s′ ∈ α(s) can be checked as follows:

• if α is atomic (i.e. α ∈ {p, p′,¬p,¬p′}) then s′ ∈ α(s) can be checked in linear time,

• if α = α1∨α2: s′ ∈ α(s) if and only if s′ ∈ α1(s) or s′ ∈ α2(s),

• if α = α1∧α2: s′ ∈ α(s) if and only if s′ ∈ α1(s) and s′ ∈ α2(s),

• if α = CX ,V,F(β): s′ ∈ α(s) if and only if s′ ∈ β (s) and for all s′′: if (s′′∆s)∩X ((s′∆s)∩X and
s′′∩F = s′∩F then s′′ /∈ β (s).

Each of the above steps can be performed in polynomial space (the last step requires a loop, but can reuse
the same space again and again).

The complement of IS-APPLIC is reducible to IS-SUCC: the NNFATC action α over the variables P
is non-applicable in s if and only if for a fresh variable q it holds that {q} ∈ C{q},P, /0(α ∨q′)(s). Indeed,
the only case when setting q to > is a minimal change of its value is when there is no α-successor of s,
and conversely, if q′ can be set to ⊥ then there must exist an α-successor of s.

As for ENTAILS: whether a given sequence α1 ; . . . ; αk entails ψ in s can be checked by verifying
for each sequence of states s1, . . . ,sk whether s1 ∈ α1(s), s2 ∈ α2(s1), . . . , sk ∈ αk(sk−1) and for each
sequence for which this is true: whether sk |= ψ . This can be performed in polynomial space and thus
ENTAILS is in PSPACE, too.

ST is a special case of IS-SUCC and thus in PSPACE.
As for IS-MON: to show that α is not positively monotone in s we give a successor s′ ∈ α(s) with

s 6⊆ s′. This can be verified in polynomial space and thus the complement of IS-MON is in NPSPACE =
PSPACE and thus IS-MON is in coPSPACE = PSPACE, and the case with negative monotony follows
by symmetry. Analogous argumentation works for IS-DET: α is non-deterministic in s if there are two
α-successors s′,s′′ of s with s′ 6= s′′, which can be verified in polynomial space. �

We now turn to the hardness results. We recall that for a formula ψ over the variables {q j | j ∈ J} we
write ψ ′ for the formula obtained by replacing all variables q j by q′j.

Proposition 9.21. Is-Succ is PSPACE-hard for NNFATC
C .

PROOF. We modify Notation 6.4 by introducing for every variable x j two variables q j,r j and write
q j ∈ γi if x j ∈ γi, and r j ∈ γi if ¬x j ∈ γi. We also use the notation χn from the proof of Proposition 6.39,
with χn :=

∧Nn
i=1(¬pi∨

∨
`∈γi

`). We set Qn := {q j,r j | 1 ≤ j ≤ n}. Sn := Qn∪{p1, . . . , pNn}. We obtain
β n

n+1 by replacing all x j in χn by q′j and all ¬x j by r′j and then define recursively

β
n
i := C{qi,ri}, /0,Sn\{qi,ri}

(
(q′i∧ r′i)∨ (q′i∧β

n
i+1)∨ (r′i ∧β

n
i+1)
)

The double occurence of β n
i+1 does not lead to an explosion since it needs to be stored only once for the

circuit, and thus β n
1 can be constructed in polynomial time.

Let Φ := ∀x1 : ∃x2 : . . . : ∀xn : ϕ , which is logically equivalent to ∀x1 : ¬(∀x2 : ¬(. . .¬(∀xn : ϕ) . . .),
be a quantified Boolean formula with a 3-CNF ϕ . Deciding the validity of such formulas is PSPACE-
complete. We claim that Φ is true if and only if s(ϕ)∪Qn ∈ β n

1 (s(ϕ)).
Indeed, first observe that by minimal change over qi,ri for all i and all states s ⊆ Sn \ {qi,ri}, t ⊆

{p1, . . . , pNn}: s∪{qi,ri} ∈ β n
i (t)⇔ s∪{qi},s∪{ri} /∈ β n

i+1(t). We set Vi := {q j,r j | i ≤ j ≤ n} and
Wi := {qi,ri} and it follows with t := s(ϕ)

s(ϕ)∪Qn ∈ β
n
1 (s(ϕ))

⇔s(ϕ)∪V2∪{q1},s(ϕ)∪V2∪{r1} /∈ β
n
2 (s(ϕ))

⇔∀z1 ∈W1 : ¬(s(ϕ)∪V2∪{z1} ∈ β
n
2 (s(ϕ)))

. . .

⇔∀z1 ∈W1 : ¬
(
∀z2 ∈W2 : ¬(∀z3 ∈W3 : ¬ . . .(s(ϕ)∪{z1, . . . ,zn} ∈ β

n
n+1(s(ϕ))))

)
Now s(ϕ)∪{z1, . . . ,zn} ∈ β n

n+1(s(ϕ)) in the last line is equivalent to ϕ being true under the assignment
defined by xi := (zi = qi). We have proven the claim and thus PSPACE-hardness of IS-SUCC. �

93

Proposition 9.22. Entails and Is-Applic are PSPACE-complete for NNFATC
C .

PROOF. Membership follows from Proposition 9.20. For hardness of IS-APPLIC observe: s′ ∈ α(s) if
and only if α ∧ψs′ (with ψs′ as in Notation 7.3, page 56) is applicable in s.

Hardness of ENTAILS follows with the reduction of non-applicability to ENTAILS (Lemma 4.7,
page 23). �

Proposition 9.23. ST is linear-time solvable for NNFATC
C .

PROOF. The proof for NNFAT (Proposition 6.26, page 44) can be extended by the fact that s ∈
CX ,V,F(α)(s) if and only if s ∈ α(s), because, on the one hand, CX ,V,F(α)(s) ⊆ α(s), and on the other
hand, since no variable changes its value in the transition from s to s, the change to the variables X is
minimal for every partition X ,V,F . �

Proposition 9.24. Is-Det and Is-Mon are PSPACE-complete for NNFATC
C .

PROOF. Membership follows from Proposition 9.20. The hardness proofs are typical: an NNFATC
C

action α is non-applicable in s if and only if for a fresh variable q the action α∧(q′∨¬q′) is deterministic
in s, and it is also non-applicable in s if and only if α ∧¬q′ is positively monotone in s∪{q}. Together
with PSPACE-hardness of IS-APPLIC (Proposition 9.22) we conclude PSPACE-hardness of IS-DET and
IS-MON. �

We finally turn to transformations and succinctness. Due to a different semantics we cannot reuse
the proofs from Chapter 8, and since it turned out that reasoning about succinctness and transformations
is especially hard when languages get very rich, we do not have many results for NNFATC.

Remark 9.25. CHOICE for α and β in NNFATC can be performed via α ∨β .

Corollary 9.26. Extract-Precond is not possible in polynomial size if NP 6⊆ P/poly.

PROOF. If NP 6⊆ P/poly then EXTRACT-PRECOND is not polynomial-size already for NNFAT which
is a sublanguage of NNFATC. �

The next proof is analogous to other succinctness proofs and uses the fact that a query (namely,
IS-SUCC) for one language is harder than for the other.

Proposition 9.27. If PSPACE 6⊆ P/poly then there is no polynomial-size translation from NNFATC into
NNFATC

C . If PSPACE 6⊆ NP/poly then then there is no polynomial-size translation from NNFATC
C into

O-PDDLC nor E-PDDLC.

PROOF. Recall from the proof of Proposition 9.21 that a QBF ∀x1 : ∃x2 : . . .∀xn : ϕ with a 3-CNF
matrix ϕ is true if and only if s(ϕ)∪Qn ∈ β n

1 (s(ϕ)) with Qn = {q j,r j | 1 ≤ j ≤ n}. If there existed a
polynomial-size translation from NNFATC

C into NNFATC we would obtain a non-uniform polynomial-
time algorithm for a PSPACE-complete problem. The proof is analogous for O-PDDLC and E-PDDLC,
but the assumption must be PSPACE 6⊆ NP/poly because IS-SUCC is NP-complete for O-PDDLC and
E-PDDLC (Proposition 6.9, page 40). �

Proposition 9.28. If NP 6⊆ P/poly then there exists no polynomial-size translation from O-PDDLC or
any of its extensions into NNFATC

C .

PROOF. Recall from Proposition 6.27 (page 45)that a 3-CNF ϕ is satisfiable if and only if s(ϕ) ∈
βn(s(ϕ)). If O-PDDLC was polynomial-size translatable into NNFATC

C there would exist a polynomial-
time algorithm for 3-SAT because ST is linear-time for NNFATC

C by Proposition 9.23. �

94

9.3 Conclusion

We studied extensions of NNF action theories with connectives expressing two different types of persis-
tency of variables in the circuit representation, with the goal of enriching the language. It turns out that
using a frame connective to adapt the semantics of PDDL at any level of nesting does not change time
nor space complexity; hence this connective can be used when specifying actions, then compiled away
efficiently so as to use algorithms designed for (standard) NNF action theories. The language result-
ing for our second connective (related to the interpretation of formulas under circumscription) is more
succinct but also has a greater complexity for basic queries.

The question whether NNFATC
C supports polynomial-size SEQUENCE or NEGATION remains open,

as well as its succinctness relative to extensions of imperative languages.
Our complexity results are summarized in Table 9.1. We do not give a succinctness diagram because

we have only partial succinctness results and thus the diagram would not be illustrative at this point.

95

Query/Transformation NNFATC
F NNFATC

C
Queries

IS-SUCC polynomial time PSPACE-complete
IS-APPLIC NP-complete PSPACE-complete
ENTAILS coNP-complete PSPACE-complete
ST polynomial time linear time
IS-DET coNP-complete PSPACE-complete
IS-MON coNP-complete PSPACE-complete

Transformations
CHOICE linear time linear time
NEGATION polynomial time ?
SEQUENCE ◦ ?
EXTRACT-PRECOND ◦ ◦

Table 9.1: Complexity results for circuit representations of extensions of NNFAT. ◦ means that under
some complexity-theoretic assumption the transformation is not polynomial-size. “?” denotes open
questions.

96

Part IV

Conclusion

CHAPTER 10

Conclusion

10.1 Contributions

The contribution of this work is a formal framework for comparing nondeterministic action languages
from the perspective of knowledge compilation together with some first results. We studied the succinct-
ness and the complexity of answering queries and performing transformations for two representations (as
trees and as circuits) of various (propositional) languages which are complete with respect to expressing
nondeterministic actions.

The most important contribution is probably Chapter 6, which contains results for abstract versions
of action languages used in “real life”, namely, NNFAT, O-PDDL and E-PDDL. For these languages
(which we called minimally complete) we obtained a complete picture regarding their mutual relative
succinctness, the time complexity of answering queries and the possibility of performing polynomial-
size transformations.

We introduced queries which we consider to be natural for planning and which fit well into the knowl-
edge compilation framework: asking whether an action is applicable in a given state (IS-APPLIC) and
whether a given action sequence always results in a state that satisfies some given property (ENTAILS).
These two queries constitute what is called "belief tracking" in the literature (Bonet and Geffner, 2014).
Other queries which we studied in this framework are less common but still important, especially the
“model checking of planning”, IS-SUCC. The results about the queries IS-DET and IS-MON are usually
easily derived from results about IS-APPLIC, and results for ST are rather a technical tool for succinct-
ness separation proofs.

As we added further connectives to the minimally complete languages, we asked ourselves whether
the semantics of these connectives can be simulated at least once, i.e. we studied transformations mo-
tivated by aiming to express connectives with other connectives. This is e.g. motivated by results from
the classical knowledge compilation map of Darwiche and Marquis (for example, the language MODS
satisfies polynomial-time bounded ∧-closure and does not satisfy polynomial-time general ∧-closure,
whereas there are other languages which do not satisfy even bounded ∧-closure). The results we have
proven agree with the intuition that if a grammar does not have a specific connective then it will be hard
to mimick this connective, but many questions remain open, e.g. whether a single action negation can be
expressed in E-PDDLseq when using the circuit representation.

The most important and technically difficult contribution of this work are the succinctness separation
results. Although it might seem that the complexity proofs for queries are more technical, it is actually
the succinctness proofs which require the complexity proofs to be of a certain form, which is more
general than necessary. For example, the E-PDDL action α

sat,u
n (Notation 6.6, page 40) is intentionally

defined to produce all satisfiable 3-CNFs, although a reduction from deciding satisfiability of a concrete
family of 3-CNF’s to IS-SUCC would be sufficient to show NP-hardness.

99

The most important part of the succinctness study of our work is the complete succinctness dia-
gram from Chapter 6. We have shown that O-PDDL with its “asymmetric” parallel composition is
succinctness-incomparable from E-PDDL and NNFAT and has nice computational properties (deciding
applicability in polynomial-time), which indicates that there necessarily exist actions which allow for
much higher computational efficiency when represented in O-PDDL as compared to E-PDDL.

As for interesting/surprising observations, we can point out at least three of them. The first is that
the complexity of queries for “basic” minimally complete languages does not depend on the chosen
representation (tree or circuit). This is in contrast with more expressive extensions of the basic languages,
where the representation may indeed crucially affect the complexity.

The more specific second observation from Chapters 5 and 9 is related to the first one: it seems that
the connectives of parallel composition u (or &) together with nondeterminism are already sufficient to
provoke nontractability of IS-SUCC, and the hardness results remain valid even for the very restricted
syntax of O-NCSTRIPS and E-NCSTRIPS. α

sat,u
n (Notation 6.6, page 40) is very simply defined,

does not involve neither conditional execution B nor negative assignments −p (indirectly it involves
B to define ε , though, but allowing the “skip” action to be part of the grammar is natural (Rintanen,
2003; Balbiani et al., 2013)). We can say that the main reason for E-PDDL being more complex and
succinct than NNFAT is not the persistence of variables (because the syntactic persistence connective
FX is intended to mimick the semantics of E-PDDL), but that α uβ can produce new successors in s
which have not been successors of s neither via α nor via β . This contradicts the first intuition we had
(and which motivated us to study NNFATF: we conjectured that it would be more succinct than NNFAT
before having proven the converse for circuits).

The third observation is that in this thesis there is a very general succinctness scheme: if a language
has a hard query then it is not polysize-translatable into a language where this query is easier. This is
not obvious in general, but follows by construction of our hardness proofs. In contrast, the observation
that any language supporting polynomial-size sequence is not translatable into a language not supporting
polynomial-size sequence is straightforward because for SEQUENCE we are interested in the size of the
output, as well as in succinctness questions.

10.2 Perspectives

We leave some problems open for transformations (see Table 10.3) and succinctness. For succinctness,
we summarized the results for the minimally complete languages and the STRIPS-like restrictions in
a succinctness diagram in Figure 10.1. For the extensions we reuse the diagrams from Chapter 8 in
Figure 10.2, because all languages in one diagram would look confusing. In this diagram, a dotted
arc from L1 to L2 on means that the existence of a polynomial-size translation from L1 to L2 is open;
for all these arcs we conjecture that there is actually none. Furthermore, only little is known about the
succinctness relations between the extensions. Filling all those gaps would be a direct continuation of this
work, but these problems seem very hard to tackle, except for the gaps from Chapter 9: we conjecture
that all results which were proven there for circuits also hold for tree representations (especially, we
conjecture the existence of a polynomial-time translation from NNFATT

F into NNFATT and PSPACE-
completeness of IS-SUCC for NNFATT

C).
In the following we will give some research questions which were beyound the scope of this thesis.

In our setting it would be interesting to determine the complexity of other queries and transformations.

Further queries

Queries obviously useful to planning are to count and enumerate successors, generate a successor of
a given state uniformly at random (as needed in Monte-Carlo approaches), test whether a given action
sequence can cycle, and to determine whether all executions of a given action sequence are free of dead-
ends (in contrast to ENTAILS, which when all executions result in dead ends returns true).

These queries could be formalized as follows (we assume, as before, that all action descriptions α,αi

have an interpretation over the scope P with s⊆ P):

100

• RAND-UN-SUCC: for given α , s, output s′ ∈ α(s) at random with a uniform probability distribu-
tion,

• ENUM-SUCC: for given α , s, output α(s),

• HAS-CYCLE: for given α1, . . . ,αk, s, decide if there exist j,m ≤ k with m > j and s′ such that
s′ ∈ (α1 ; . . . ; α j)(s) and s′ ∈ (α j+1 ; . . . ; αm)(s′)

• HAS-SUBEFFECT (for languages whose semantic is defined via explicit effects): for given α , s
and effect 〈Q+,Q−〉 decide whether α has an effect 〈A+,A−〉 in s with A+ ⊆ Q+,A− ⊆ Q−,

• HAS-NON-SUCC: for given α , s decide whether there exists s′ /∈ α(s),

• NO-FAIL: for given α1, . . . ,αk, s, let α0 := ε . Decide for all 1≤ j ≤ k whether α j is applicable in
all s′ such that s′ ∈ (α0 ; . . . ; α j−1)(s).

For some of these quries we could easily derive their complexity from the results in this work, for
others (like RAND-UN-SUCC) it would be more difficult (there exist works on uniformly sampling NP-
certificates, e.g. Bellare et al. (2000), which could be useful for generating successors for languages with
NP-complete IS-SUCC).

In this thesis and in the definitions above the input of a query always consists of the action description
and one particular state. However, we could relax this assumption and input belief states (i.e. sets of
states) S, and naturally generalize the queries by universally or existentially quantifying over S: for
example, two different versions of IS-APPLIC for belief states would be: “is there at least one s ∈ S such
that α is applicable in s?” and “is α applicable in s for all s ∈ S?”.

Further transformations

As for transformations, we studied the difficulty of expressing a connective with other connectives. A
natural transtormation in this setting would be combining two actions via logical conjunction ∧ (without
using ∧, of course). We observed in Chapter 8 that E-PDDLand allows to express for an action α the
action which keeps only those state transitions of α where the successor satisfies an NNF formula ϕ

(in other words, it allows to dismiss successors violating ϕ). This motivates the question whether other
languages can do this, too. Another interesting transformation, in particular for regression approaches to
planning, is the computation of the “reverse” action of α (leading from s′ to s whenever α leads from s
to s′).

We have seen that conditioning of an action by an assignment t (as defined in Chapter 6) can be
performed in polynomial time for E-PDDLnot, E-PDDLand and E-PDDL, but not for E-PDDLseq or
variants of O-PDDL. Thus we have implicitly shown results about another transformation which could
be studied for all action languages.

These transformations can be formalized as follows (we remark that the output action description has
to be in the same language as the inputs):

• CONJUNCTION: for given action descriptions α1,α2 compute an action description β such that for
all s: β (s) = α1(s)∩α2(s),

• REVERSE: given α and P, compute an action description β ∈ L s.t. for all s: β (s)= {s′ | s∈α(s′)},

• ENSURE: given action α and NNF formula ϕ , compute action β such that for all s: β (s) = {s′ ∈
α(s) | s′ |= ϕ},

• CONDITIONING: for given action α , set Q⊆ P and assignment t to Q compute P\Q action β such
that β (s) = {s′ | (s′∪ t) ∈ α(s∪ t)}.

The complexity of CONJUNCTION does not seem to be easy to determine (except for variants of NNFAT
and languages like E-PDDLand and E-PDDLnot), i.e. we only have shown (almost) trivial positive results,

101

but almost no impossibility results, and this is the reason why we did not include it into our framework
in this thesis.

As for REVERSE, we observe that the reverse of an NNFAT expression can be obtained simply by
swapping p and p′ for all variables p, but there does not seem to be any obvious approach for the other
languages, because of parallel execution u.1 However, as it is shown in Herzig (2014), in DL-PA (which
does not have parallel composition) the reverse of an action can be computed in linear time without
auxiliary variables.

Further languages

Our main perspective is a more systematic study, for languages constructed using combinations of fea-
tures like the sequence operator, modalities, Kleene star, etc. We could introduce a connective RX

dual to FX with the semantics (in terms of explicit effects) E(RX(α),P,s) := {〈Q+ ∪ A+,Q− ∪ A−〉 |
A+,A− ⊆ X ,A+ ∩A− = /0}. We call this connective RX because it is motivated by the release proposi-
tions from Kartha and Lifschitz (1994). Then, as an example, one could consider the language L with
the grammar defined by

α ::=+p | −p | ϕBα | α ∪α | α uα | α ∧α | RX(α)

with NNF formulas ϕ and X ⊆ P for the intended scope P⊆ P.
We could relax the assumption that formulas are always in NNF, and consider e.g. modal formulas

〈α〉ϕ meaning “there exists an execution of α such that ϕ is true afterwards”, as in DL-PA (Balbiani
et al., 2013), and in general, involving DL-PA into our study with the semantics restricted to the scope P
would provide many natural questions.

An interesting question would be whether replacing +p and −p in some language by p← ϕ , as in
DL-PPA, would produce a more succinct language2.

The ultimate goal is to draw clear pictures of what language to choose depending on the queries
which are used by, e.g., a planning algorithm or a simulator.

Beyound the setting

There are questions which seem natural, but which do not fit into the framework we defined in this thesis.
For example, we could allow translations f to introduce auxiliary variables Q with the restriction that
they are false in each predecessor- and successor state, i.e. that with t(q) = ⊥ for all q ∈ Q the action
descriptions α and f (α)|t (defined as in Chapter 6) describe the same action.

Another perspective is to consider languages for stochastic actions, and for actions with observations
(and hence queries on belief states, which we mentioned before).

Finally, as we said in chapter 2, our setting is related to that of preferences, and there exists research in
knowledge compilation for languages for representing preferences (Fargier and Mengin, 2021). It could
be interesting to continue this research by using imperative languages to represent preference relations.

1For DL-PPA, Herzig et al. (2019) give an algorithm for computing the reverse action (described for DL-PA by Herzig
(2014)), but it uses auxiliary variables, which we do not allow.

2We obtained preliminary results about this question with Frédéric Maris

102

Language IS-SUCC IS-APPLIC ENTAILS

Minimally complete languages
NNFATT, NNFATC linear time NP-complete coNP-complete
O-PDDLT, O-PDDLC NP-complete linear time coNP-complete
E-PDDLT, E-PDDLC NP-complete NP-complete coNP-complete

Restrictions of imperative languages
O-NCSTRIPS NP-complete linear time coNP-complete
E-NCSTRIPS NP-complete NP-complete coNP-complete
NPDDLnf NP-complete linear time coNP-complete

Extensions of imperative languages
O-PDDLT

seq NP-complete NP-complete coNP-complete
O-PDDLC

seq PSPACE-complete PSPACE-complete PSPACE-complete
O-PDDLT

and NP-complete NP-complete coNP-complete
O-PDDLC

and PSPACE-complete PSPACE-complete PSPACE-complete
O-PDDLT

not, O-PDDLC
not PSPACE-complete PSPACE-complete PSPACE-complete

E-PDDLT
seq NP-complete NP-complete coNP-complete

E-PDDLC
seq PSPACE-complete PSPACE-complete PSPACE-complete

E-PDDLT
and NP-complete NP-complete coNP-complete

E-PDDLC
and PSPACE-complete PSPACE-complete PSPACE-complete

E-PDDLT
not, E-PDDLC

not PSPACE-complete PSPACE-complete PSPACE-complete
Extensions of NNFAT

NNFATC
F polynomial time NP-complete coNP-complete

NNFATC
C PSPACE-complete PSPACE-complete PSPACE-complete

Table 10.1: Complexity results for IS-SUCC, IS-APPLIC and ENTAILS.

Language ST IS-DET IS-MON

Minimally complete languages
NNFATT, NNFATC linear time coNP-complete coNP-complete
O-PDDLT, O-PDDLC NP-complete polynomial time polynomial time
E-PDDLT, E-PDDLC linear time coNP-complete coNP-complete

Restrictions of imperative languages
O-NCSTRIPS NP-complete polynomial time polynomial time
E-NCSTRIPS linear time NP-complete coNP-complete
NPDDLnf linear time polynomial time trivial/polynomial time

Extensions of imperative languages
O-PDDLT

seq NP-complete coNP-complete coNP-complete
O-PDDLC

seq PSPACE-complete PSPACE-complete PSPACE-complete
O-PDDLT

and NP-complete coNP-complete coNP-complete
O-PDDLC

and PSPACE-complete PSPACE-complete PSPACE-complete
O-PDDLT

not, O-PDDLC
not PSPACE-complete PSPACE-complete PSPACE-complete

E-PDDLT
seq NP-complete coNP-complete coNP-complete

E-PDDLC
seq PSPACE-complete PSPACE-complete PSPACE-complete

E-PDDLT
and linear time coNP-complete coNP-complete

E-PDDLC
and linear time PSPACE-complete PSPACE-complete

E-PDDLT
not, E-PDDLC

not linear time PSPACE-complete PSPACE-complete
Extensions of NNFAT

NNFATC
F polynomial time coNP-complete coNP-complete

NNFATC
C linear time PSPACE-complete PSPACE-complete

Table 10.2: Complexity results for ST, IS-DET and IS-MON.

103

Language CHOICE SEQUENCE NEGATION EXTRACT-PRECOND

Minimally complete languages
NNFATT, NNFATC X ◦ X ◦
O-PDDLT, O-PDDLC X ◦ ◦ X
E-PDDLT, E-PDDLC X ◦ ◦ ◦

Restrictions of imperative languages
O-NCSTRIPS ? ◦ ◦ X
E-NCSTRIPS ? ◦ ◦ ◦
NPDDLnf X ◦ ◦ X

Extensions of imperative languages
O-PDDLT

seq X X ◦ ◦
O-PDDLC

seq X X ? ◦
O-PDDLT

and X ? ◦ ◦
O-PDDLC

and X ? ? ◦
O-PDDLT

not, O-PDDLC
not X ? X ◦

E-PDDLT
seq X X ◦ ◦

E-PDDLC
seq X X ? ◦

E-PDDLT
and X ◦ ◦ ◦

E-PDDLC
and X ◦ ? ◦

E-PDDLT
not, E-PDDLC

not X ◦ X ◦
Extensions of NNFAT

NNFATC
F X ◦ X ◦

NNFATC
C X ? ? ◦

Table 10.3: Difficulty of performing a transformation. “X” means that the transformation can be done in
time polynomial in the size of the input. “?” means that the question is open. ◦ means that under some
complexity-theoretic assumption (see formal statements) the size of the result of the transformation is in
general not polynomial in the size of the input.

104

Figure 10.1: Succinctness results for minimally complete languages, complete restrictions and circuit
representations of NNFAT (i.e. NNFATC

C and NNFATC
F). An arc from L1 to L2 means that L1 can be

translated into L2 in polynomial time (hence also in polynomial size). A crossed out arc from L1 to
L2 means that there exists not even a polynomial-size translation from L1 into L2. These relations hold
for both tree and circuit representations. An arc crossed out by ×C means that the non-existence of a
polynomial-size translation is proven only for circuits. An arc labeled by C means that the translation
works only into the circuit representation of the destination.

NNFATC
F

NNFATC
C

NNFAT

E-NCSTRIPS O-NCSTRIPS

E-PDDL O-PDDL

×
×

C × × ?

×C×

×
×
×

××

××

× ×

C

×

×
C

×C
?

×C

×C

×

E-PDDL

E-PDDLand

E-PDDLnot

E-PDDLseq

×

×

× C

× ×T ?×T

×
?

O-PDDL

O-PDDLand

O-PDDLnot

O-PDDLseq

×

×

× C

? ×T ?×T

?
?

Figure 10.2: Succinctness results for extensions of E-PDDL and O-PDDL. An arc crossed out by ×T

means that the non-existence of a polynomial-size translation is proven only for trees.

105

106

Bibliography

R. Alford, U. Kuter, and D. Nau. Translating HTNs to PDDL: A small amount of domain knowledge
can go a long way. In Proceedings of the Twenty-First International Joint Conference on Artificial
Intelligence (IJCAI 2009), pages 1629–1634, 01 2009.

S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge University Press,
2009.

C. Bäckström. Expressive Equivalence of Planning Formalisms. Artificial Intelligence, 76(1-2):17–34,
1995.

C. Bäckström and P. Jonsson. Algorithms and limits for compact plan representations. Journal of
Artificial Intelligence Research, 44:141–177, 2012.

P. Balbiani, A. Herzig, and N. Troquard. Dynamic logic of propositional assignments: a well-behaved
variant of PDL. In Proceedings of the Twenty-Eighth Annual ACM/IEEE Symposium on Logic in
Computer Science (LiCS 2013), pages 143–152, 2013.

M. Bellare, O. Goldreich, and E. Petrank. Uniform Generation of NP-Witnesses using an NP-oracle.
Information and Computation, 163(2):510–526, 2000.

P. Bertoli, A. Cimatti, U. Dal Lago, and M. Pistore. Extending PDDL to nondeterminism, limited sensing
and iterative conditional plans. In Proceedings of ICAPS 2003 Workshop on PDDL, 2003.

B. Bonet and H. Geffner. Belief tracking for planning with sensing: Width, complexity and approxima-
tions. Journal of Artificial Intelligence Research, 50:923–970, 2014.

A. Botea, M. Enzenberger, M. Müller, and J. Schaeffer. Macro-FF: Improving AI planning with auto-
matically learned macro-operators. Journal of Artificial Intelligence Research, 24:581–621, 2005.

R. I. Brafman and G. Shani. Online belief tracking using regression for contingent planning. Artificial
Intelligence, 241:131–152, 2016.

J. Broersen. Action negation and alternative reductions for dynamic deontic logics. Journal of applied
logic, 2(1):153–168, 2004.

R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Computing
Surveys (CSUR), 24(3):293–318, 1992.

D. Bryce, S. Kambhampati, and D. E. Smith. Planning Graph Heuristics for Belief Space Search. Journal
of Artificial Intelligence Research, 26:35–99, 2006.

T. Bylander. The computational complexity of propositional STRIPS planning. Artificial Intelligence,
69(1-2):165–204, 1994.

107

M. Cadoli and F. M. Donini. A Survey on Knowledge Compilation. AI Communications, 10(3-4):
137–150, 1997.

F. Capelli, J. Lagniez, and P. Marquis. Certifying Top-Down Decision-DNNF Compilers. In Proceedings
of the Twenty-Fifth AAAI Conference on Artificial Intelligence, pages 6244–6253. AAAI Press, 2021.

T. Charrier and F. Schwarzentruber. A Succinct Language for Dynamic Epistemic Logic. In Proceedings
of the Sixteenth International Conference on Autonomous Agents and Multiagent Systems (AAMAS
2017), pages 123–131, 2017.

A. Cimatti and M. Roveri. Conformant Planning via Symbolic Model Checking. Journal of Artificial
Intelligence Research, 13:305–338, 2000.

A. Darwiche and P. Marquis. A knowledge compilation map. Journal of Artificial Intelligence Research,
17:229–264, 2002.

T. Eiter and G. Gottlob. Propositional Circumscription and Extended Closed-World Reasoning are ΠP2-
complete. Theoretical Computer Science, 114(2):231–245, 1993.

H. Fargier and P. Marquis. Extending the Knowledge Compilation Map: Krom, Horn, Affine and Be-
yond. In AAAI, pages 442–447, 2008.

H. Fargier and J. Mengin. A Knowledge Compilation Map for Conditional Preference Statements-based
Languages. In Proceedings of the Twentieth International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2021), pages 492–500, 2021.

H. Fargier, P. Marquis, and A. Niveau. Towards a Knowledge Compilation Map for Heterogeneous
Representation Languages. In Proceedings of the Twenty-Third International Joint Conference on
Artificial Intelligence (IJCAI 2013), pages 877–883, 2013.

R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem proving to problem
solving. Artificial intelligence, 2(3-4):189–208, 1971.

M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. Journal of computer
and system sciences, 18(2):194–211, 1979.

M. Fox and D. Long. The Third International Planning Competition: Temporal and Metric Planning.
In Proc. 6th International Conference on Artificial Intelligence Planning Systems (AIPS 2002), pages
333–335, 2002.

M. Fox and D. Long. PDDL2. 1: An extension to PDDL for expressing temporal planning domains.
Journal of Artificial Intelligence Research, 20:61–124, 2003.

M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the, 1979.

H. Geffner and B. Bonet. A Concise Introduction to Models and Methods for Automated Planning.
Morgan & Claypool Publishers, 2013.

T. Geffner and H. Geffner. Compact Policies for Fully Observable Non-Deterministic Planning as SAT.
In Proceedings of the Twenty-Eighth International Conference on Automated Planning and Scheduling
(ICAPS 2018), pages 88–96, 2018.

I. Georgievski and M. Aiello. HTN planning: Overview, comparison, and beyond. Artificial Intelligence,
222:124–156, 2015.

M. Ghallab, D. S. Nau, and P. Traverso. Automated planning and acting. Cambridge University Press,
2016.

108

D. Gnad, A. Torralba, M. Domínguez, C. Areces, and F. Bustos. Learning how to ground a plan–partial
grounding in classical planning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 7602–7609, 2019.

J. Hastad. Almost optimal lower bounds for small depth circuits. In Proceedings of the eighteenth annual
ACM symposium on Theory of computing, pages 6–20, 1986.

M. Helmert. The Fast Downward Planning System. Journal of Artificial Intelligence Research, 26:
191–246, 2006.

A. Herzig. Belief Change Operations: A Short History of Nearly Everything, Told in Dynamic Logic of
Propositional Assignments. In Fourteenth International Conference on the Principles of Knowledge
Representation and Reasoning, 2014.

A. Herzig, F. Maris, and J. Vianey. Dynamic logic of parallel propositional assignments and its appli-
cations to planning. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence (IJCAI 2019), pages 5576–5582, 2019.

J. Hoey, R. St Aubin, and C. Boutilier. SPUDD: Stochastic planning using decision diagrams. In Pro-
ceedings of Uncertainty in Artificial Intelligence (UAI). Stockholm, Sweden. Page (s), 1999.

J. Hoffmann and R. Brafman. Conformant Planning via Heuristic Forward Search: A New Approach.
Artificial Intelligence, 170(6–7):507–541, 2006.

G. N. Kartha and V. Lifschitz. Actions with Indirect Effects (Preliminary Report). In Principles of
Knowledge Representation and Reasoning, pages 341–350. Elsevier, 1994.

J. Lang, P. Liberatore, and P. Marquis. Propositional independence: formula-variable independence and
forgetting. Journal of Artificial Intelligence Research, 18:391–443, 2003.

B. Lesner and B. Zanuttini. Efficient Policy Construction for MDPs Represented in Probabilistic PDDL.
In Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling
(ICAPS 2011). AAAI Press, 2011.

V. Lifschitz. On the Semantics of STRIPS. In Reasoning about Actions and Plans: Proceedings of the
1986 Workshop, pages 1–9, 1987.

N. Lipovetzky and H. Geffner. Width and Serialization of Classical Planning Problems. In ECAI, volume
242 of Frontiers in Artificial Intelligence and Applications, pages 540–545. IOS Press, 2012.

J. McCarthy. Circumscription—a form of non-monotonic reasoning. Artificial intelligence, 13(1-2):
27–39, 1980.

D. McDermott. PDDL–the planning domain definition language. Technical Report CVC TR-
98-003/DCS TR-1165, Yale Center for Computational Vision and Control, 1998. Available at:
www.cs.yale.edu/homes/dvm (consulted on 2020/03/16).

C. Meinel and T. Theobald. Algorithms and Data Structures in VLSI Design: OBDD-foundations and
applications. Springer Science & Business Media, 1998.

C. J. Muise, S. A. McIlraith, and V. Belle. Non-Deterministic Planning With Conditional Effects. In
Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling
(ICAPS 2014), pages 370––374. AAAI Press, 2014.

D. E. Muller and F. P. Preparata. Bounds to Complexities of Networks for Sorting and for Switching.
Journal of the ACM (JACM), 22(2):195–201, 1975.

D. S. Nau. Current trends in automated planning. AI magazine, 28(4):43–43, 2007.

109

B. Nebel. On the compilability and expressive power of propositional planning formalisms. Journal of
Artificial Intelligence Research, 12:271–315, 2000.

G. Nordh. A Trichotomy in the Complexity of Propositional Circumscription. In International Con-
ference on Logic for Programming Artificial Intelligence and Reasoning, pages 257–269. Springer,
2005.

U. Oztok and A. Darwiche. A Top-Down Compiler for Sentential Decision Diagrams. In Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015), pages
3141–3148. AAAI Press, 2015.

H. Palacios and H. Geffner. Compiling Uncertainty Away in Conformant Planning Problems with
Bounded Width. Journal of Artificiall Intelligence Research, 35:623–675, 2009.

R. Reiter. The Frame Problem in the Situation Calculus: A Simple Solution (Sometimes) and a Com-
pleteness Result for Goal Regression. In Artificial and Mathematical Theory of Computation, 1991.

J. Rintanen. Expressive Equivalence of Formalisms for Planning with Sensing. In Proceedings of the
Thirteenth International Conference on Automated Planning and Scheduling (ICAPS 2003), pages
185–194. AAAI Press, 2003.

J. Rintanen. Complexity of planning with partial observability. In Proceedings of the Fourteenth Inter-
national Conference on Automated Planning and Scheduling (ICAPS 2004), pages 345–354. AAAI
Press, 2004.

S. Scheck, A. Niveau, and B. Zanuttini. Knowledge Compilation for Action Languages. In Journées
Francophones sur la Planification, la Décision et l’Apprentissage pour la conduite de systèmes (JF-
PDA 2020), 2020.

S. Scheck, A. Niveau, and B. Zanuttini. Explicit Representations of Persistency for Propositional Action
Theories. In Journées Francophones sur la Planification, la Décision et l’Apprentissage pour la
conduite de systèmes (JFPDA 2021), 2021a.

S. Scheck, A. Niveau, and B. Zanuttini. Knowledge Compilation for Nondeterministic Action Lan-
guages. In Proceedings of the International Conference on Automated Planning and Scheduling,
volume 31, pages 308–316, 2021b.

S. Scheck, A. Niveau, and B. Zanuttini. A KC Map for Variants of Nondeterministic PDDL. In 16es
Journées d’Intelligence Artificielle Fondamentale (JIAF 2022), 2022.

D. Speck, F. Geißer, and R. Mattmüller. Symbolic Planning with Edge-Valued Multi-Valued Decision
Diagrams. In Proceedings of the Twenty-Eighth International Conference on Automated Planning and
Scheduling (ICAPS 2018), pages 250–258. AAAI Press, 2018.

D. Speck, D. Borukhson, R. Mattmüller, and B. Nebel. On the Compilability and Expressive Power
of State-Dependent Action Costs. In Proceedings of the Thirty-First International Conference on
Automated Planning and Scheduling (ICAPS 2021), pages 358–366. AAAI Press, 2021.

S. Thiébaux, J. Hoffmann, and B. Nebel. In defense of PDDL axioms. Artificial Intelligence, 168:38–69,
2005.

S. T. To, T. C. Son, and E. Pontelli. A generic approach to planning in the presence of incomplete
information: Theory and implementation. Artificial Intelligence, 227:1–51, 2015.

J. van Benthem, J. van Eijck, M. Gattinger, and K. Su. Symbolic Model Checking for Dynamic Epistemic
Logic — S5 and Beyond. Journal of Logic and Computation, 28(2):367––402, 2018.

C. K. Yap. Some consequences of non-uniform conditions on uniform classes. Theoretical computer
science, 26(3):287–300, 1983.

110

APPENDIX A

Table of Notation

Throughout the table we assume P to be a finite set of state variables p∈ P, the sets X ,V,F will constitute
a partition of P, the set Q will be disjoint from P, ` will denote elementary assignments (+p or −p), ϕ

will be an NNF formula over P and α,β will be action descriptions which have an interpretation over P,
and a will be a P-action.

Notation Notion Explanation/Details
General

‖ϕ‖ Models {s | s |= ϕ}
‖α‖ State transitions {(s,s′) | s′ ∈ α(s)}
V(ϕ), V(α) Set of variables occuring in a formula or action description
NNF Negation Normal Form ϕ ::= p | ¬p | ϕ ∧ϕ | ϕ ∨ϕ

Actions and Connectives
⊥ Failure E(⊥,P,s) = /0
ε Action “skip” E(ε,P,s) := {〈 /0, /0〉}
+p, −p Elementary assignments E(+p,P,s) := {〈{p}, /0〉}, E(−p,P,s) := {〈 /0,{p}〉}

B Conditional execution E(ϕBα,P,s) :=

{
E(α,P,s) if s |= ϕ ,
{〈 /0, /0〉} otherwise

∪ Nondeterministic choice E(α ∪β ,P,s) := E(α,P,s)∪E(β ,P,s)

u Parallel composition
(mutex)

E(α uβ ,P,s) :=

{〈Q+
α ∪Q+

β
,Q−α ∪Q−

β
〉 |

〈Q+
α ,Q

−
α 〉 ∈ E(α,P,s),

〈Q+
β
,Q−

β
〉 ∈ E(β ,P,s),

Q+
α ∩Q−

β
= Q−α ∩Q+

β
= /0}

&
Parallel composition
(+p overrides −p)

E(α &β ,P,s) :=
{〈Q+

α ∪Q+
β
,(Q−α ∪Q−

β
)\ (Q+

α ∪Q+
β
)〉 |

〈Q+
α ,Q

−
α 〉 ∈ E(α,P,s),

〈Q+
β
,Q−

β
〉 ∈ E(β ,P,s)}

; Sequential composition E(α ; β ,P,s) :=
{〈Q+

β
∪ (Q+

α \Q−
β
),Q−

β
∪ (Q−α \Q+

β
)〉 |

〈Q+
α ,Q

−
α 〉 ∈ E(α,P,s), t := (s∪Q+

α)\Q−α ,
〈Q+

β
,Q−

β
〉 ∈ E(β ,P, t)}

∧ Action conjunction E(α ∧β ,P,s) :=

{〈Q+
α ∪Q+

β
,Q−α ∪Q−

β
〉 |

〈Q+
α ,Q

−
α 〉 ∈ E(α,P,s),

〈Q+
β
,Q−

β
〉 ∈ E(β ,P,s),

(s∪Q+
α)\Q−α = (s∪Q+

β
)\Q−

β
}

¬min Action negation E(¬minα,P,s) := {〈s′ \ s,s\ s′〉 | s′ /∈ α(s)}

111

FX Syntactic frame Ex(FX(α),P,s) := {〈e+,e−, i+ \X , i− \X〉 | 〈e+,e−, i+, i−〉 ∈ Ex(α,P,s)}
s′ ≺s

X ,V,F s′′ Preference w.r.t. to X ,V,F s′∩F = s′′∩F , (s′∆s)∩X ((s′′∆s)∩X
CX ,V,F Circumscription CX ,V,F(α)(s) := {s′ ∈ α(s) | @s′′ ∈ α(s) : s′′ ≺s

X ,V,F s′}
a|t t-conditioning ∀s⊆ P : a|t(s) = {s′ | (s′∪ t) ∈ α(s∪ t)}

Action Languages
LT Tree representation of language L
LC Circuit representation of language L
NNFAT NNF action theories α ::= p | ¬p | p′ | ¬p′ | α ∧α | α ∨α

O-PDDL “original nondet. PDDL” α ::=⊥ |+p | −p | ϕBα | α ∪α | α &α

E-PDDL “egalitarian nondet. PDDL” α ::=+p | −p | ϕBα | α ∪α | α uα

O-NCSTRIPS “orig. nondet. STRIPS” &n
i=0

(
ϕiB

(
(`1,1

i & . . .&`1, j1
i)∪ . . .∪ (`ki,1

i & . . .&`
ki, jki
i)

))
E-NCSTRIPS “egalit. nondet. STRIPS”

dn
i=0

(
ϕiB

(
(`1,1

i u . . .u `
1, j1
i)∪ . . .∪ (`ki,1

i u . . .u `
ki, jki
i)

))
NPDDLnf Negation-free NPDDL α ::=⊥ |+p | ϕBα | α ∪α | α uα

E-PDDLseq E-PDDL with sequence α ::=+p | −p | ϕBα | α ∪α | α uα | α ; α

E-PDDLnot E-PDDL with negation α ::=+p | −p | ϕBα | α ∪α | α uα | ¬minα

E-PDDLand E-PDDL with conjunction α ::=+p | −p | ϕBα | α ∪α | α uα | α ∧α

O-PDDLseq O-PDDL with sequence α ::=+p | −p | ϕBα | α ∪α | α &α | α ; α

O-PDDLnot O-PDDL with negation α ::=+p | −p | ϕBα | α ∪α | α &α | ¬minα

O-PDDLand O-PDDL with conjunction α ::=+p | −p | ϕBα | α ∪α | α &α | α ∧α

NNFATF NNFAT with synt. frame α ::= p | ¬p | p′ | ¬p′ | α ∧α | α ∨α | FX(α)

NNFATC NNFAT with circumscript. α ::= p | ¬p | p′ | ¬p′ | α ∧α | α ∨α | CX ,V,F(α)

Queries and Transformations
IS-SUCC Successorship for given α,s,s′: is s′ ∈ α(s)?
IS-APPLIC Applicability for given α,s: is α(s) 6= /0?
ENTAILS Entailment for given α1, . . . ,αk,s,ϕ: is s′ |= ϕ for all s′ ∈ (α1 ; . . . ; αk)(s)?
ST Self-transition for given α,s: is s ∈ α(s)?
IS-DET Determinism for given α,s: is |α(s)| ≤ 1?
IS-MON Pos. (Neg.) Monotony for given α,s: is s′ ⊇ s (for neg.: s′ ⊆ s) for all s′ ∈ α(s)?
CHOICE for given α1,α2 compute β s.t. for all s: β (s) = α1(s)∪α2(s)
SEQUENCE for given α1,α2 compute β s.t. for all s: β (s) = {s′ | ∃t s.t. t ∈ α1(s) and s′ ∈ α2(t)}
NEGATION for given α compute β s.t. for all s: β (s) = {s′ | s′ /∈ α(s)}

EXTRACT-PRECOND for given α compute ϕ s.t. for all s: α(s) 6= /0 ⇐⇒ s |= ϕ

Complexity Classes
P/poly, NP/poly, coNP/poly Non-uniform complexity classes (see Section 3.3, Definition 3.8)

112

113

114

Compilation de connaissances pour les langages d’actions non
déterministes

Dans cette thèse, nous étudions les langages formels pour représenter des actions non déterministes du
point de vue de la compilation de connaissances. Nous donnons un cadre formel pour capturer les carac-
téristiques essentielles de langages d’actions comme le « Planning Domain Definition Language » PDDL
dans le cadre propositionnel, et présentons des langages qui sont des versions abstraites non déterministes
des langages d’action de la littérature, ou leurs modifications obtenues en étendant ou en restreignant les
ensembles de descriptions d’actions possibles. Les extensions sont obtenues en ajoutant des connecteurs
supplémentaires à la grammaire, tandis que les restrictions sont obtenues en n’autorisant que les des-
criptions d’actions d’une certaine structure ou en supprimant des connecteurs de la grammaire. Nous
comparons ces langages par rapport à trois critères : la complexité de répondre aux requêtes, la possi-
bilité d’effectuer des transformations sans explosion en taille superpolynomiale, et la concision. Nous
donnons une image complète pour les complexités de toutes les requêtes pour tous les langages, et une
image presque complète pour les transformations et les requêtes pour les langages qui ne sont pas très
riches mais toujours capables d’exprimer toutes les actions. Nos résultats concordent avec l’intuition que
généralement il existe un compromis entre la concision et la complexité des requêtes. Nous identifions
tout de même plusieurs cas où il pourrait être utile de préférer une représentation plutôt qu’une autre.

Mots-clefs : planification, compilation de connaissances, langage d’action, non déterminisme

Knowledge Compilation for Nondeterministic Action Languages

In this thesis we study formal languages for representing nondeterministic actions from the perspective
of Knowledge Compilation. We define a formal framework to capture essential features of languages
like the “Planning Domain Definition Language” PDDL in a propositional setting, and present a number
of languages which are either abstract nondeterministic versions of action languages from the literature
or their modifications obtained by extending or restricting the sets of possible action descriptions. Exten-
sions are obtained by allowing additional connectives in the grammar, whereas restrictions are obtained
by either allowing only expressions of a certain structure or removing constructs from the grammar. We
compare those languages with respect to three criteria: complexity of answering queries, possibility of
performing transformations without a superpolynomial explosion in size, and relative succinctness. We
give a complete picture for complexities of all queries for all languages, and an almost complete picture
for transformations and queries for languages which are not very rich but still fully expressive. Our
results agree with the intuition that there is a tradeoff between the succinctness and the complexity of
queries. We still identify several cases where it might be useful to prefer one representation over another.

Keywords: automated planning, knowledge compilation, action language, nondeterminism

115

	I Introduction and Basics
	Introduction
	Motivation
	Outline
	Publications

	Related Work
	State of the art
	Novelty

	Preliminaries
	Model-based Domain-independent Planning
	Negation Normal Form
	Boolean Languages
	Conjunctive Normal Form
	Disjunctive Normal Form
	Representations

	Background in Complexity Theory

	A Formal Framework for Comparing Action Languages
	Action Languages
	States
	Actions
	Translations

	Criteria for Comparison
	Queries
	Succinctness
	Transformations

	II Basic Languages
	Minimally Complete Languages
	Effects
	Nondeterministic PDDL
	Egalitarian PDDL
	NNF Action Theories

	Complexity Results for Minimally Complete Languages
	Queries
	Successorship
	Applicability and Entailment
	Other queries

	Succinctness
	Transformations
	Conclusion

	III Variants of Basic Languages
	Restrictions of Minimally Complete Languages
	Nondeterministic Conditional STRIPS
	Queries
	Succinctness
	Transformations

	Incomplete Restriction: Non-negative E-PDDL/O-PDDL
	Conclusion

	Extensions of E-PDDL and O-PDDL
	E-PDDL and O-PDDL with Sequential Execution
	E-PDDL and O-PDDL with Negation
	E-PDDL and O-PDDL with Conjunction
	Complexity: Queries
	Complexity: Succinctness
	Complexity: Transformations
	Conclusion

	Extensions of NNF Action Theories
	The Syntactic Frame Connective
	Compiling the Syntactic Connective Away

	The Semantic Frame Connective
	Complexity and Succinctness

	Conclusion

	IV Conclusion
	Conclusion
	Contributions
	Perspectives

	Table of Notation

