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Résumé

Cette thèse est consacrée à l’étude de la production de mélange turbulent par des instabilités
de Faraday et Rayleigh-Taylor. La première partie est dédiée à l’instabilité de Faraday pour des
fluides miscibles. Après avoir mis en évidence le mécanisme sélectionnant le mode de l’onde
primaire stationnaire, nous étudions sa transition sous-critique à la turbulence. Nous obtenons,
à partir de critères théoriques validés expérimentalement et numériquement, que la transition
finale à la turbulence est causée par le déferlement venant du développement d’une instabil-
ité secondaire paramétrique au nœud de la vague. Dans un deuxième temps, l’instabilité de
Rayleigh-Taylor est étudiée à l’occasion de la mise en œuvre d’une nouvelle installation expéri-
mentale. Ce dispositif original permet de stabiliser le fluide lourd grâce à une grille jusqu’à
ce qu’il soit mis en contact avec le fluide léger, permettant un meilleur contrôle des condi-
tions initiales. Le but de l’étude est de déterminer, grâce aux expériences et à des simulations
numériques, si la dynamique classique de l’instabilité de Rayleigh-Taylor est préservée malgré
la présence de la grille. Une majeure partie de l’étude a porté sur la compréhension des mé-
canismes responsables de l’apparition d’un jet ascendant au moment du contact entre les deux
fluides. Le modèle proposé confirme que la courbure des ménisques au niveau des trous de
la grille, créés par un saut de pression entre le fluide lourd et l’air, est à l’origine de ce jet. Ce
résultat nous oriente donc vers l’élaboration d’un nouveau dispositif permettant de contrôler
finement les niveaux de pression.
Mots-clés : Instabilité, mélange, turbulence, Rayleigh-Taylor, Faraday, fluides miscibles, Fusion
par Confinement Inertiel, DNS, expérimentation, analyse de stabilité linéaire

Abstract

This thesis is devoted to the study of the production of turbulent mixing by the Faraday and
Rayleigh-Taylor instability. The first part focuses on the Faraday instability for miscible fluids.
After evidencing the mechanism selecting the primary wave mode, we study its sub-critical
transition to turbulence. From theoretical criteria validated experimentally and numerically, we
find that the wavebreaking leading to turbulence originates from a parametric secondary in-
stability at the node of the primary wave. In the second part, the Rayleigh-Taylor instability
is addressed within the framework of a new experimental facility. This original setup allows
to stabilise the heavy fluid by means of a grid until the contact with the lighter fluid is made,
in order to better control initial conditions. The purpose of the study is to determine, through
experiments and numerical simulations, whether the classical dynamics of the Rayleigh-Taylor
instability is preserved despite the presence of the grid. Most of this work focused on under-
standing the mechanisms responsible for the appearance of an ascending jet when contact is
made between the two fluids. The model proposed confirms that the meniscii curvature inside
the holes, created by a pressure jump at the interface between the heavy fluid and air, is at the
origin of the jet. This finding paves the way to a new setup in which the fluid pressures could
be controlled precisely.
Keywords: Instabilities, mixing, turbulence, Rayleigh-Taylor, Faraday, miscible fluids, Inertial
Confinement Fusion, DNS, experiment, linear stability analysis
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“ ”Long has paled that sunny sky:
Echoes fade and memories die:
Autumn frosts have slain July.

Still she haunts me, phantomwise,
Alice moving under skies
Never seen by waking eyes.

LEWIS CAROLL
Through the Looking-Glass: A Boat, Beneath a Sunny Sky
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Introduction

Inertial Confinement Fusion (ICF) is a promising method (Nuckolls et al. [1972] and Atzeni &
Meyer-ter Vehn [2004]) to study matter in extreme conditions of temperature and pressure that
is currently under development. Recently, a milestone towards fusion has been reached at NIF
(National Ignition Facility) with record values of fusion yield achieved (Zylstra et al. [2021]).
As such, it is of great interest to entities such as the Comissariat à l’Energie Atomique et aux
Energies Alternatives (CEA).

This method is based on the compression of a spherical target using high intensity laser
beams. The target is a capsule usually filled with a mixture of two hydrogen isotopes, the
Deuterium D and the Tritium T, and the goal is to achieve fusion between these two atoms
by increasing the pressure and temperature.

Two approaches exist: the ‘direct drive’ approach (upper right of Fig. 1, Betti & Hurricane
[2016]) in which the lasers are focused directly on the target and the ‘indirect drive’ approach
(upper left of Fig. 1, Lindl [1995] and Lindl et al. [2004]) in which the lasers heat the inner walls
of a gold cavity containing the target.

In the direct drive approach, the surface of the capsule is ablated due to the rapid heating.
This causes an implosion compressing the fuel, and creates a shock wave, increasing further the
pressure and temperature of the DT mixture and resulting in a self-sustaining burn.

The other approach, the indirect drive, is the one currently employed at the Laser Megajoule
(LMJ) and the National Ignition Facility (NIF). The goal of this approach is to irradiate the target
uniformly with X-rays. The X-rays are produced by the gold cavity called Hohlraum when it
is heated by the laser beams. This irradiation of the capsule heats its outer surface, causing a
high-speed ablation leading to the implosion of the target. This method should produce a much
more homogeneous heating of the target than the direct drive approach possessing more energy
losses.

The implosion process is the same in both approaches and it can be divided in three stages
(Fig. 1): absorption of the energy coming from the laser beams by the capsule surface and ab-
lation of the outer materials; implosion of the capsule, the extreme thermodynamic conditions
required for the fusion are reached; creation of a hotspot through ignition of the fuel surrounded
by colder and denser DT mixture.
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Figure 1: Schematics of indirect (upper left) and direct drive (upper right) approaches in Inertial Con-
finement Fusion experiments. The four bottom images describe the implosion process. First, a spherical
capsule is prepared at t = 0 with a layer of DT fuel on its inside surface. Second, the capsule surface
absorbs energy which ablates the outer materials. Third, the capsule imploses. Lastly, a hotspot of DT
is formed surrounded by colder and denser DT fuel. This last image on the bottom right evidences the
effects of the hydrodynamics instability. Image taken from Betti & Hurricane [2016].

However, perturbation to the idealised configuration during the compression can completely
alter the dynamics of the implosion and prevent the fusion. The ICF is a complicated process
involving several very different physical phenomena such as shocks, magnetic field dynamics,
hydrodynamic instabilities and complex equations of state. Thus, elementary configurations
need to be studied to better understand the importance and impact of these perturbations and
prevent them from hindering the fusion process. In hydrodynamics, these perturbations can
happen at the interface between the ablator and the fuel. Thus, the elementary configuration of
interest is that of an interface between two fluids of different densities under varying accelera-
tion. As the acceleration in the compression process is unknown, several simplified systems can
be considered. Among them: a stable configuration under periodic acceleration, the Faraday
instability and an unstable configuration under constant acceleration, the Rayleigh-Taylor insta-
bility. Indeed, we know that when the perturbations develop at the ablator/fuel interface, they
can be amplified by the Rayleigh-Taylor instability which can lead to the mixing of cold (dense)
fuel in the hotspot plasma, decreasing the possible fusion yield.

Thus, this thesis is divided in two parts: the first two chapters focus on the transition to
turbulence in the Faraday instability while the emphasis is put on the Rayleigh-Taylor instability
in the last three chapters.

The first chapter is a brief state of the art on the Faraday instability. After introducing para-

4



Chapter 0. Introduction

metric instabilities, a short summary of some studies dealing with the onset of the Faraday
instability with immiscible fluids is proposed. Lastly, the time evolution of the instability when
miscible fluids are involved is addressed with the notions of turbulent mixing and saturated
state.

The second chapter aims at characterising the mechanism leading to turbulence in the case of
Faraday waves in miscible fluids. First, it was found that the mode selected by the primary wave
at onset is a subcritical one as a result of a mode competition process. Then, two models for the
wavebreaking mechanism are developed. They provide a criterion on the steepness of the wave
after which the wavebreaking should occur. These models are then confronted to experimental
data and a rather good agreement was found between theory and experiments. This shows that
the mechanism involved in the wave breaking which then leads to turbulence is a secondary
parametric instability coming from the movement of the primary standing wave.

The third chapter is a concise description of the Rayleigh-Taylor instability and the different
studies made on the subject. A summary of the various most known Rayleigh-Taylor experi-
ments are given along with a few numerical effects observed such as the difference between two
dimensional and three dimensional simulations.

The fourth chapter presents a new type of Rayleigh-Taylor experiment involving the pres-
ence of a grid at the interface between the two fluids. The grid maintains the heavier fluid
inside a reversed container until the contact with a bottom container filled with lighter fluid.
The problematic is: does the grid’s presence throughout the experiment impact the dynamics of
the instability? In order to answer this question, experimental and numerical data are collected.
It is found that the grid geometry greatly influences the shapes of the developing structures;
but it is difficult to conclude on whether the long term dynamics is really influenced as classical
values for the growth rate are recovered in some experiments.

The last chapter investigates the cause for the apparition of an ascending central jet observed
in the majority of the experiments described in the fourth chapter. Numerical simulations are
performed in order to test out several theories about the initial conditions that could reproduce
this effect. However, as none of these theories give the expected results, the cause for the as-
cending central jet has to be found elsewhere. This is why we established an aspiration model
translating a pressure jump at the interface between the two fluids, evidenced by the curva-
ture of the meniscii inside the holes of the grid, into an imposed velocity field. This model is
implemented inside the simulations and the different parameters are studied to reproduce as
faithfully as possible the effect observed in the experiments.
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1.1. Parametric Instability

Introduction

This introduction aims at describing the Faraday instability and presenting some of the main
studies that were made since its discovery, both in the immiscible and miscible frameworks. In
the following Chapter 2, the emphasis is put on the transition to turbulence of standing Faraday
waves. This subject is inscribed in the continuity of the observations of the destabilisation of
standing waves under horizontal vibrations made by Thorpe [1968], and more recently of the
works of Gréa & Ebo Adou [2018], Briard et al. [2019] and Briard et al. [2020] regarding the final
saturated state of the miscible Faraday instability.

1.1 Parametric Instability

The general mechanism causing the excitation of an oscillator by modulating its natural fre-
quency is called ‘Parametric Instability’. Indeed, for specific values of control parameters in-
volving a forcing frequency, some initially stable systems can be destabilized. The example of
the pendulum is explained hereafter.

Considering a simple pendulum with natural frequency Ω whose suspension point is under
periodic acceleration G = G0(1 + F cos(ωt)) with a forcing parameter F = aωω2/G0, G0 the
gravitational acceleration, aω the oscillations amplitude and ω the oscillations frequency, we
find that the oscillation of that pendulum is globally amplified when ω/Ω = 2/n, n being any
integer (Benielli & Sommeria [1998]). This is shown in Fig. 1.1 where ω = 2Ω meaning that
the apparent gravity oscillates by one period when the pendulum oscillates by half a period.
Indeed, when the pendulum moves downward, the apparent gravity is higher than average,
thus the pendulum is pushed downwards more strongly; when the pendulum moves upward,
the apparent gravity is lower than average, the pendulum can thus move upwards more easily.
The modulation of the apparent gravity δg is indicated on the figure.

t0

δg

1
4
T

δg

1
2
T

δg

3
4
T

δg

T

δg

Figure 1.1: The mechanism of parametric instability illustrated by a sketch of a pendulum at successive
phases with the corresponding modulation δg of the apparent gravity (the extremal positions of the pen-
dulum are indicated by dotted lines and its velocity by the blue arrow). The apparent gravity is stronger
than average when the pendulum moves downward and is weaker than average when the pendulum
moves upward. This is possible when the excitation period is half T, the natural period of the pendulum.
Figure greatly inspired by the figure 2 of Benielli & Sommeria [1998].
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Chapter 1. State of the art : The Faraday Instability

When the vertical periodic acceleration is strong enough, the effective potential of the sys-
tem can be changed by the Kapitza effect and a new stable state of equilibrium can arise. This
phenomenon is known as the Kapitza’s pendulum (Kapitza [1951]) in which a rigid pendulum
subjected to vertical vibrations can balance stably in an inverted position (with the dangling
mass above the suspension point). In hydrodynamics, the same phenomenon can be found in
the formation of frozen waves that happens when a system containing a lighter fluid above a
heavier fluid is strongly oscillated horizontally (Wolf [1970], Lyubimov et al. [2017] and Gréa &
Briard [2019]).

These parametric instabilities have often been studied in internal and interfacial waves (Be-
nielli & Sommeria [1998]). Several other examples of parametric instability can be found in
physics as it is a common wave-wave interaction, such as the ‘electron decay’ instability aris-
ing from the decay of a strong electromagnetic wave into two electrostatic waves (an electron
plasma wave and an ion acoustic wave). Another example of a parametric decay instability
involves the sheath-plasma resonance as it can be parametrically excited through a large ampli-
tude RF pump signal at twice the pump frequency (Stenzel et al. [1975]). This type of instability
can also be associated with other scientific domains such as medicine. Indeed, the association
between the Korotkoff sounds (the sounds detected by a stethoscope in the auscultatory blood
pressure measurement) and the parametric instability of a fluid filled elastic tube was evidenced.

1.2 The Faraday instability

The Faraday instability was first described by Faraday in 1831 (Faraday [1831]) in the context
of acoustical figures. It is a parametric instability involving the resonance between the forcing
frequency and the natural frequency of an interface (review in Miles & Henderson [1990]).

This instability consists of the superposition of two fluids of different densities in an initial
stable configuration with the lighter fluid, ρl , above the heavier one, ρh. The interface between
the two fluids can be destabilized under periodic vertical accelerations G(t) which changes the
effective gravity. A sketch is shown in Fig. 1.2 to illustrate this principle with the destabilized
interface as a dotted curve. A specificity of this instability is that it is subharmonic, meaning
that the wave formed at the interface oscillates at half the frequency of the periodic vertical
oscillations.
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Figure 1.2: Sketch of the Faraday instability with the heavier fluid in dark blue and the lighter one in
lighter blue. The interface deformation ξ due to the vertical oscillations G(t) is shown in dotted line. The
direction of the gravity G0 is indicated with an arrow.

The interface between the two fluids follows the dynamics of a Mathieu equation:

Mathieu equation (Benjamin & Ursell [1954])

ξ̈ + 2γ(k)ξ̇ +Ω(k)2(1 + F cos(ωt))ξ = 0, (1.1)

where ξ is the amplitude of the interface deformation, γ is the viscous damping term, F is the
forcing parameter and ω is the frequency of the forcing. The frequency Ω is the natural resonant
frequency of the interface in the case of immiscible fluids and the inviscid frequency of the
diffuse interface in the case of miscible fluids. It is thus important to consider both cases. Both
parameters γ and Ω depend on the horizontal wavenumber k.

It is to be noted that equation (1.1), coming from the decoupling of each inviscid interfacial
mode, can only be written in the limit of small damping. Otherwise, the problem can be fully
analysed using the method described in Kumar & Tuckerman [1994].

1.3 Immiscible fluids and onset

Numerous experimental and theoretical works focused on the onset of the immiscible Faraday
instability.

It was observed that organised structures appeared at the interface between the two fluids
and their pattern formation was quite extensively studied (Douady [1990], Fauve et al. [1992] and
Edwards & Fauve [1994]). For example, Edwards & Fauve [1994] observed the emergence of a
pattern of parallel lines in the case of a single-frequency forcing at high viscosity (see Fig. 1.3a).
They also observed a hexagonal pattern in the case of two-frequency forcing (see Fig. 1.3b).
They used a mixture of glycerol and water to obtain these results. These hexagonal patterns (see
Fig. 1.3b) along with some square patterns were observed experimentally at large frequency in
more recent studies (Kityk et al. [2005]) and compared to Direct Numerical Simulations (DNS) by
Périnet et al. [2009]. A review of the different patterns found is proposed in Skeldon & Rucklidge
[2015] along with a comparison between experiments and weakly non-linear analysis, underly-
ing that three-wave interactions play a fundamental role in the stabilisation of certain patterns.
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Chapter 1. State of the art : The Faraday Instability

Recent studies evidenced a secondary instability arising close to the transition towards chaos
and leading to vibrations of the 2D Faraday pattern (Domino et al. [2016] and Fig. 1.3c). These
vibrations, previously observed by Goldman et al. [2003] and Shani et al. [2010], are similar to a
2D transverse elastic wave. The authors fully characterized the dispersion relation of the trans-
verse elastic waves and showed that a Faraday pattern presents an effective shear elasticity.

(a) (b)

20.4 mm

(c)

Figure 1.3: (a) Single-frequency forcing at high viscosity. A pattern of essentially parallel lines is observed.
The forcing frequency is 2ω/2π = 80 Hz. (b) Hexagons produced by two-frequency forcing. The forcing
acceleration is f (t) = a[cos(χ) cos(4ωt)+ sin(χ) cos(5ωt + ϕ)] where ω/2π = 14.6 Hz, ϕ = 75◦ and χ = 45◦.
The pattern is observed at the primary transition from the flat surface. The mixture used in both cases is
composed of 88% glycerol and 12% water with a kinematic viscosity of 1.00 cm2.s−1. Pictures taken from
Edwards & Fauve [1994]. (c) Top view of the oscillating Faraday pattern. Picture taken from Domino
et al. [2016].

Stability diagrams of the Mathieu equation (1.1) for the instability onset are determined us-
ing the Floquet theory. It was found that the unstable tongues lift up under the effects of viscos-
ity and surface tension (see Kumar & Tuckerman [1994]). Indeed, Fig. 1.4a presents the stability
diagram of ideal fluids whereas Fig. 1.4b shows the stability diagram when taking into account
the viscosity. Note the displacement of the minima of the tongues towards higher values of
k and a when considering the viscosity: higher forcing are needed to destabilize the interface.
Taking into account the viscosity also smooths the bottom of the tongues and widens the band
of excited wavenumbers.

The stability analysis of a three-fluid system was very recently performed by Ward et al.
[2019] as they investigated, both theoretically and experimentally, the mechanically forced Fara-
day instability in immiscible two-interface fluid layers systems. It was found that the coupling
of the fluid interfaces gave double-tongued stability curves (see Fig. 1.5a) and that adding a third
fluid could either enhance or delay the instability. Indeed, a two-fluid system can be destabilized
when a third fluid is added and local stabilisation can be achieved by adjusting the fluid proper-
ties and layer heights. Moreover, the behavior of the tongues with frequency and viscosity (see
Fig. 1.5b) was found to agree with the one seen in two-fluid cases. Thus, it was shown that the
theory of Kumar & Tuckerman [1994] can be extended to a three-fluid system and that a good
estimate of the three-fluid stability curve can be obtained by superimposing the calculations for
two two-fluid systems (top-middle and middle-bottom fluids) and then taking the lowest of the
thresholds.

This study on the stability of a double interface system was of particular interest to us as we
also performed Faraday experiments with a double interface: one miscible interface between
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1.3. Immiscible fluids and onset

(a) (b)

Figure 1.4: (a) Stability boundaries for ideal fluids (νh = νl = 0 m2.s−1). The tongues correspond alter-
nately to subharmonic (SH) and harmonic (H) responses. Fluid parameters are ρh = 519.933 kg.m−3, ρl =
415.667 kg.m−3, γ = 2.181× 10−6 N.m−2 and 2π/ω = 100 Hz. (b) Stability boundaries for the Full Hydro-
dynamic System (FHS) for viscous fluids of viscosity νh = νl = 7.516 × 10−8 m2.s−1 and other parameters
are as in (a). Here, ac is the critical excitation amplitude, g is the gravitational acceleration and k is the
wavenumber. This figure was taken from Kumar & Tuckerman [1994].

(a) (b)

Figure 1.5: (a) Theoretical predictions for critical amplitudes. Double-tongued stability curves are ob-
served for three-fluid Faraday instability systems, where each section of a tongue is dominated by one
of the interfaces. The testing frequency is 9 Hz and the properties of the fluids considered are given in
Table I of Ward et al. [2019]. (b) Effect of viscosity on three-fluid instability thresholds. The black lines
are obtained using the same fluid properties than (a), while the red lines are obtained by increasing the
viscosity of the middle fluid by a factor of 20. Increasing the middle fluid viscosity causes a shift of the
threshold towards higher amplitude and higher wavenumber. The testing frequency is 10 Hz. Figures
taken from Ward et al. [2019].

fresh and salt water and a free surface between fresh water and air 1. The goal of these experi-
ments was to understand the influence of the free surface on the miscible interface by carefully
choosing the forcing frequency. However, the presence of jets forming on the free surface and
penetrating the stratification below complicated the study and the preliminary works will be

1FARAMIX2 campaign made at GTT (Gaztransport & Technigaz company) on October 2019 with B.-J. Gréa (CEA),
A. Briard (CEA) and L. Gostiaux (CNRS, LMFA)
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Chapter 1. State of the art : The Faraday Instability

reported elsewhere than in this manuscript.

1.4 Miscible fluids and Turbulence

The miscible Faraday instability, less studied than its immiscible counterpart, was firstly in-
vestigated by Zoueshtiagh et al. [2009]. Of particular interest is the possible development of
a turbulent mixing layer at the interface between the two fluids. For these vertically excited
waves, the vertical periodic acceleration is G(t) = G0(1 + F cos(ωt)), thus the control parameters
of the instability are the Atwood number A:

Atwood number

A = (ρh − ρl)/(ρh + ρl), (1.2)

and the acceleration ratio F:

Forcing parameter

F =
aωω2

G0
, (1.3)

where aω is the amplitude of displacement of the tank containing the fluids and G0 is the gravi-
tational acceleration.

The development of the instability is depicted in Fig. 1.6. It shows the time evolution of a
Faraday experiment between salt and fresh water (Briard et al. [2020]). Starting from the initial
condition with a clear interface (Fig. 1.6a), the two fluids are destabilized via the periodic vertical
acceleration G(t) with a time growing wave amplitude (Fig. 1.6b and Fig. 1.6c). This leads to
the breaking of the wave (Fig. 1.6d), turbulent mixing (Fig. 1.6e) and the final saturated state
(Fig. 1.6f). The specific mechanism leading to the wavebreaking will be adressed in Chap. 2.

The final saturated state has been investigated in recent studies. It was found in Gréa &
Ebo Adou [2018] that the mixing zone width L(t), which grows in size as the instability develops,
reaches an asymptotic size Lsat:

Lsat =
2AG0

ω2 (2F + 4). (1.4)

Indeed, parametric resonances excite internal gravity waves, and as long as these waves keep
being excited, turbulent kinetic and potential energies are produced by the periodic forcing.
However, the mean density gradient decreases when L(t) increases, meaning that this mecha-
nism cannot be sustained and a final state is reached with a saturated mixing layer size given in
Eq. (1.4).

This was validated experimentally and numerically in Briard et al. [2019] and Briard et al.
[2020]. In the latter, several experiments and numerical simulations were made to test the de-
pendence of Lsat in Atwood number A and forcing frequency ω. A good agreement was found
between the experimental data and the theoretical prediction as shown in Fig. 1.7.
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(a) (b) (c)

(d) (e) (f)

Figure 1.6: Pictures of a Faraday experiment with miscible fluids with F = 0.30, ω = 4.52 rad.s−1 and
A = 0.03 (Briard et al. [2020]) at different times: (a) initial configuration at t = 0 s, (b) deformation of
the interface between the fluids at t = 46 s and (c) growth of the deformation amplitude at t = 58 s, (d)
breaking of the wave at t = 61 s (see Chap. 2), (e) turbulent mixing at t = 111 s and (f) final saturated state
at t = 378 s (Gréa & Ebo Adou [2018] and Briard et al. [2020]).

(a) (b)

Figure 1.7: Comparison between the obtained Lsat and the prediction Lsat, for the three Atwood numbers:
A = 0.015 in blue, A = 0.03 in red and A = 0.045 in green. Symbols: □: Lsat with probe; △: Lsat with
image and ×: Lsat with DNS. (a) The A-dependence; (b) The ω-dependence. This figure was taken from
Briard et al. [2020].
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Introduction

This chapter is dedicated to the transition to turbulence of the miscible Faraday instability.
As already explained in Chap. 1, the Faraday instability is a parametric instability involving

a two-fluid system of different densities (the heavier below the lighter) subjected to a vertical
periodic acceleration. In the case of this study, the two fluids are miscible ones with a small
density contrast as the experiments were made in the hopes of studying the mixing zone gener-
ated by this instability. Moreover, this type of Faraday instability was less studied than the non
miscible counterpart.

During the experiments, it was noticed that after some oscillations of the interfacial wave,
vortices appeared at the node and the wave would then break leading in the end to the mix-
ing of the two fluids. This phenomenon can be seen in Fig. 2.1, where (a) is an experimental
observation of this wavebreaking, while (b) comes from Direct Numerical Simulations. These
observations were very similar to the ones made by Thorpe [1968]. Lateral plungers were used
to destabilize standing waves. These waves also consists of miscible fluids with a small density
variation, the lighter one being placed above the heavier one. With this experimental setup, he

0.368 m

0.
27
5
m

(a)

?G(t) = G0 (1 + F cosωt)

x

y
z

(b)

Figure 2.1: The breaking of a Faraday wave in the FARAMIX experiment. (a): Time series images from
the camera zooming on one wavelength and presenting two oscillation periods of the primary wave.
This illustrates the different stages of the wavebreaking with first a blurring of the interface at the node
followed by a roll-up. This case corresponds to the EXPb5 experiment which parameters are detailed in
Tab. A. (b): Visualisation of the interface at wavebreaking in the direct numerical simulation DNSd3
which parameters are given in Tab. B. The reference frame as well as the acceleration direction are also
indicated.
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(a) (b) (c)

Figure 2.2: The development of instability at the interfacial wave node. Half the wave profile in mode n
= 2 is shown. h1 = 25.5 cm, h2 = 19.0 cm, ρ2 - ρ1 = 9.0×10−3 g/c.c. Total plunger amplitude = 0.9 cm. The
photographs were taken at intervals of two or three oscillations. (a) Stage 1 is visible with a well defined
wave. (b) A blurring can be seen at the node of the wave which corresponds to stage 2. (c) Stage 3: the
wave is broken at the node. Pictures taken from Thorpe [1968].

identified several stages for the instability that we were also able to observe:

1. The wave amplitude increases gradually with a symmetrical and sharply defined profile
(see Fig. 2.2a).

2. Then, when the wave’s slope reaches around 0.2, blurred regions become apparent near
the wave nodes while the rest of the profile remains sharp. This stage is called blurring
(see Fig. 2.2b).

3. Irregularities, also called the interface roll-up, then arise at the node, coming from the
formation of vortices, for wave slopes of about 0.4. Resulting from the mixing in the region
of the node, the interface becomes gradually less distinct (see Fig. 2.2c).

4. At last, the two-dimensional motion breaks down and cross waves with the same fre-
quency and in phase with the plungers occurs which results in mixing.

This breaking process has since then been observed for a Faraday wave between miscible
fluids by Kalinichenko [2005]. He agreed with Thorpe [1968] on the fact that the mechanism
leading to this wavebreaking is a sort of Kelvin-Helmholtz instability. However, it has been
found that a subharmonic secondary parametric instability can be involved in the breaking pro-
cess of internal gravity waves (McEwan & Robinson [1975], Bouruet-Aubertot et al. [1995], Be-
nielli & Sommeria [1998], Staquet & Sommeria [2002], Sutherland [2010] and Yalim et al. [2020]).
This leads to the question at the basis of this work: what is the mechanism at the origin of the
breaking of the Faraday waves?

This chapter is organized as follows: we give in Sec. 2.1 and 2.2 a description of the experi-
ments and numerical simulations used for this study. In Sec. 2.3, we analyze the characteristics
of the primary Faraday wave, emphasizing in particular the mode selection mechanism. Sec-
tion 2.4 is dedicated to the wavebreaking process with two theoretical approaches proposed and
shedding light on the importance of a subharmonic secondary instability. We then detail our
methodology in order to measure the wavebreaking amplitudes in Sec. 2.5. Finally, the analysis
and discussion of the results in view of the theoretical predictions are provided in Sec. 2.5.3.
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2.1. Description of the experiments

2.1 Description of the experiments

The experiments were carried out at the GazTransport and Technigaz® (GTT) Motion Analysis
and Testing Laboratory. The setup was initially designed to study free-surface flows and was
used in order to study the turbulent mixing driven by vertical vibrations in Briard et al. [2020].

The instability studied here is between brine and fresh water, miscible fluids of small density
contrast. To contain the fluids, an acrylic tank of inner dimensions 94 x 67 x 11 cm3 was used.

The tank was first half-filled with fresh water coloured with food dye (Patent Blue V). The
heavier salt water was made using commercial Axal® softening agent consisting of sodium chlo-
ride and was injected very slowly into the container through a diffuser located at the bottom.
This allowed to keep a sharp interface between the two fluids. A photograph of the tank and
both fluids is visible in Fig. 2.3.

Figure 2.3: Picture of the tank with its dimensions (W = 94.6 cm, H = 67 cm and D = 11 cm). The tank is
filled with fresh water coloured with blue dye and salt water below it. Snapshot during the instability.

The pure water at 20◦C had a constant density of 998 kg.m−3 and the Atwood number (see
Chap. 1) took three different values: A = [0.015; 0.03; 0.045]. This means that the density differ-
ence between the two fluids ranged from 10 to 100 kg.m−3.

In order to generate the vertical acceleration needed for this study, the tank was mounted on
the platform of an Aquilon model Symétrie® hexapod owned by GTT. Only vertical sinusoidal
oscillations were generated with this hexapod even though it can induce motions along six axes
(translation and rotation). The acceleration was limited to 6.87 m.s−2 (corresponding to a forc-
ing parameter, defined in Chap. 1, F = 0.7), the vertical velocity to 1.6 m.s−1 and the vertical
amplitude aω to ± 65 cm.

The platform had an initial vertical position of Z(t = 0) = b, where Z refers to the vertical
position of the hexapod, not to be mistaken with z the coordinate in the moving frame. After
20 s of rest, the hexapod moved in a series of n vertical oscillations Z(t) = b cos(ωt) starting at
t = 0 s and ending at 2nπ/ω. Thus, at the end of the cycle, the platform was back at its initial
position Z = b. It stood there for 20 s before being taken back slowly to Z = 0. Combining a
cosine function, a start and end at Z = b ensures that no additional acceleration exists at the
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beginning and end of the forcing.
Density profiles were measured before and after experiments with a MicroScale Conductiv-

ity and Temperature Instrument (MSCTI) from Precision Measurement Engineering, Inc. The
probe was fixed above the tank and the hexapod moved the tank in a slow vertical motion in
order to get the vertical conductivity and temperature profiles. A temperature correction on the
conductivity measurements had to be applied since the salt water was always cooler than the
fresh water due to the lights heating the latter during the filling.

A monochromatic Imaging Development Systems video camera was attached to the oscillat-
ing platform by a 1.5 m long Elcom® arm that was mechanically reinforced in order to minimize
the vibrations of the camera. That camera was used to capture, at 45 frames per second, images
of LED back-lightened white screen as seen through the tank with the use of general purpose
red gelatin filter that was put in front of the lens. This red gelatin filter allowed Briard et al.
[2020] to operate in the absorption band of the dye and any effect of small persistent vibrations
was removed during the post-processing.

In order to convert the image intensity into normalized concentration, the Beer-Lambert ab-
sorption law for the blue dye was used. The intensity values covered all 14 bits of the dynamical
range of the camera as the result of the optimization of the aperture and exposure time during
the experiments. The initial concentration field was used to perform a point by point calibra-
tion of the intensity taking into account the background lighting inhomogeneities. Hence, each
image was converted into a depth-averaged and normalized concentration field ⟨C⟩Y. This con-
centration field was then compared before and after each experiments to the measurements of
the density probe and it was found that the change in optical index in salt water induces an
under-estimation of the instantaneous mixing zone size L(t) when calculated from the camera
images.

Each experiment lasted typically around 2 to 3 hours with the longest part being the filling
of the tank. Moreover, the tank was washed between each experiments. Briard et al. [2020]
had access to the GTT facility for 4 weeks and made 47 experiments with various parameters
investigated and some configurations done several times in order to check the reproducibility of
an experiment. However, due to the hexapod limitations, a whole region of the parameter space
could not be explored (see Fig. 2.4). The initial mixing zone length of these experiments varied
between 0.5 cm and 2 cm, depending on the quality of the tank filling. Of the 47 experiments
performed, only those that had a very sharp initial interface were investigated in this work. This
corresponds to 18 experiments shown in Tab. A.
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Figure 2.4: Map in the (ω, F) plane of the configurations explored experimentally in Briard et al. [2020].
Symbols are for various Atwood numbers: A = 0.015 blue squares, A = 0.03 red triangles, and A = 0.045
green circles. One symbol can represent multiple experiments. Open symbols mean that the instability
was not triggered. The dashed line indicates the limit of the admissible parameters. This image was
taken from Briard et al. [2020].

Series Number A F ω [rad s−1] kn,m [m−1] Mode (n, m) δ [cm]
EXPa 1 0.015 0.30 2.555 13.28 (4, 0) 1.3∗

2 0.015 0.30 2.953 16.60 (5, 0) 0.8
3 0.015 0.30 3.462 23.25 (7, 0) 1.0
4 0.015 0.30 3.924 33.21 (9, 0) 1.1
5 0.015 0.40 2.457 13.28 (4,0) 1.7
6 0.015 0.40 3.462 23.25 (7,0) 0.6
7 0.015 0.40 3.942 29.89 (9,0) 0.6
8 0.015 0.50 3.142 19.93 (6,0) 1.4
9 0.015 0.50 3.924 26.57 (8,0) 0.5

EXPb 1 0.03 0.30 4.524 19.93 (6,0) 0.6∗

2 0.03 0.40 3.462 9.96 (3,0) 0.8
3 0.03 0.50 4.524 19.93 (6,0) 0.8
4 0.03 0.69 4.290 16.60 (5,0) 0.4∗

5 0.03 0.69 4.290 16.60 (5,0) 0.5∗

6 0.03 0.69 4.290 19.93 (6,0) 0.5∗

EXPc 1 0.045 0.50 3.066 6.64 (2,0) 1.2
2 0.045 0.69 4.290 13.28 (4,0) 0.3∗

3 0.045 0.69 4.290 13.28 (4,0) 0.7∗

Table A: Label (series and number), Atwood number A, forcing parameter F and frequency ω considered
for the experiments in this work. The wavenumbers kn,m and mode type corresponding to the primary
Faraday wave are also indicated. The initial interface thickness δ is either measured by a probe when
available or directly from the camera (labelled with ∗).
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2.2 Direct Numerical Simulation

To complete the experiments, Direct Numerical Simulations (DNS) were performed (see Tab. B)
using a code named ‘Stratospec’ (Viciconte et al. [2018] and Viciconte et al. [2019]).

These simulations solve the Navier-Stokes-Boussinesq equations (2.1) on a triply periodic
cubic box of length Lbox = 2π. The length of the box was converted into the physical dimension
of the tank which is W = 94.6 cm.

Equations solved by the numerical simulations

∂U
∂t

+ (U · ∇)U = −∇P − 2ACG(t)x3 + ν∇2U,

∂C
∂t

+ (U · ∇)C = D∇2C,

∇ · U = 0,

(2.1a)

(2.1b)

(2.1c)

where x3 is the upward vertical direction, U is the total velocity field, C is the total concen-
tration field, G(t) = G0(1 + F cos(ωt)) is the vertical periodic acceleration, P is the reduced
pressure, ν is the kinematic viscosity and D the scalar diffusivity.

These DNS use a classical spectral Fourier collocation method with two-third rule dealiasing.
Moreover, they have 10243 points and are performed using a pencil-decomposition with 1024
cores. A third-order low-storage strong-stability-preserving Runge-Kutta scheme with implicit
viscous terms is used to calculate the time increment.

Periodicity in the vertical inhomogeneous direction needs to be ensured. To do so, an initial
condition in which the concentration field changes sharply from its light to heavy value at the
vertical boundaries was chosen (see Eqs. (2.2) and (2.3)). In addition to this initial condition on
the concentration field, the velocity field is chosen null initially.

Initial condition

• Initial condition on the concentration field:

C(x, t = 0) =
1
2

[
1 + tanh

(
z − ζ(x)

σ

)]
+ Cinh(x), where ζ(x) = ϵ sin(kn,0x), (2.2)

with

Cinh(x) = −1
2

[
tanh

(
z + W/2

σ

)
+ tanh

(
z − (W/2 − W/Np)

σ

)]
, (2.3)

where Np is the number of points in one direction.

• Initial condition on the velocity field:

U = 0. (2.4)

The ‘true’ initial concentration profile is given by the first term of Eq. (2.2), where the param-
eter σ is used to define the initial interface thickness δ = 3σ. This parameter is given for each
of the simulations carried out in this work in Tab. B. The function ζ(x) indicates the position of
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2.2. Direct Numerical Simulation

Series Number A F ω [rad s−1] Mode (n, m) r ϵ/ϵ1 [cm] δ = 3σ [cm]
DNSa 1 0.015 0.70 3.500 (6,0) 1.5 0.9

2 0.030 0.60 2.800 (2,0) 1.5 0.9
3 0.030 0.80 2.340 (2,0) 1.5 0.9
4 0.030 0.80 2.800 (2,0) 1.5 0.9
5 0.030 1.00 2.340 (2,0) 1.5 0.9
6 0.045 0.50 4.900 (4,0) 1.5 0.9
7 0.045 0.69 3.200 (2,0) 1.5 0.9
8 0.045 0.694 4.29 (4,0) 1.5 0.9

DNSb∗ 1 0.03 0.8 2.4 (2,0)/(3,0) 0.5 1.5 1.8
2 0.03 0.8 2.5 (2,0)/(3,0) 0.5 1.5 1.8
3 0.03 0.8 2.6 (2,0)/(3,0) 0.5 1.5 1.8
4 0.03 0.8 2.7 (2,0)/(3,0) 0.5 1.5 1.8
5 0.03 0.8 2.8 (2,0)/(3,0) 0.5 1.5 1.8
6 0.03 0.8 2.9 (2,0)/(3,0) 0.5 1.5 1.8
7 0.03 0.8 3.07 (2,0)/(3,0) 0.5 1.5 1.8

DNSc∗ 1 0.03 0.8 3.07 (2,0)/(3,0) 0.1 1.5 1.8
2 0.03 0.8 3.07 (2,0)/(3,0) 0.1 3 1.8
3 0.03 0.8 3.07 (2,0)/(3,0) 0.25 3 1.8
4 0.03 0.8 3.07 (2,0)/(3,0) 0.5 3 1.8
5 0.03 0.8 3.07 (2,0)/(3,0) 1 3 1.8

DNSd 1 0.045 0.5 4.29 (4,0) 1.5 0.9
2 0.045 0.694 4.29 (4,0) 1.5 0.9
3 0.045 1 4.29 (4,0) 1.5 0.9
4 0.045 1.5 4.29 (4,0) 1.5 0.9
5 0.045 2 4.29 (4,0) 1.5 0.9
6 0.045 2.5 4.29 (4,0) 1.5 0.9
7 0.045 3 4.29 (4,0) 1.5 0.9
8 0.045 3.5 4.29 (4,0) 1.5 0.9
9 0.045 4 4.29 (4,0) 1.5 0.9
10 0.045 4.5 4.29 (4,0) 1.5 0.9
11 0.045 5 4.29 (4,0) 1.5 0.9

DNSe 1 0.03 0.3 2.8 (2,0) 1.5 1.8
DNSf 1 0.045 1 4.29 (4,0) 1.5/0.015 0.9

Table B: Label (series and number) and parameters in physical units (Atwood number A, forcing param-
eter F and frequency ω) taken for the direct numerical simulations presented in this work. The cases
DNSa, d and e correspond to the wavebreaking detection. The series DNSb and c are dedicated to the
competition between mode (2, 0) and (3, 0) where the selected mode appears underlined. The parameter
r expresses the initial amplitude ratio (r = 0 corresponding to a pure (2, 0) mode). The initial amplitudes
ϵ of the interface perturbation, the y-spanwise perturbation amplitude ϵ1 for DNSf together with the in-
terface thicknesses δ are also detailed. The computation domain is of cubic size with length W = 94.6 cm
or 2W for the series labelled with ∗. All the DNSs have a 10243 grid resolution.

the initial perturbed interface of sinusoidal shape with wavelength kn,0 and amplitude ϵ. In the
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Chapter 2. The subcritical transition to turbulence of Faraday waves in miscible fluids

majority of our simulations ϵ was set at 1.5 cm. This gives a more diffused initial interface with
a larger amplitude in the simulations than in the experiments, ensuring grid convergence in the
simulations by having at least 20 grid points across the interface layer. The wavenumber kn,0

can be found from the modes given in Tab. B. Indeed, we have kn,0 = π n
Lbox

= n
2 , so, for DNSa1

for exemple, k6,0 = 3.
DNSb∗ and DNSc∗ were used to study the effect of mode selection. For these simulations we

have:
ζ(x) = ϵ[r cos(k3,0x) + (1 − r) cos(k2,0x)], (2.5)

where the parameter r expresses the initial amplitude ratio between the modes (3,0) and (2,0).
These simulations were conducted in a computational domain twice the size of the tank 2W in
order to allow the development of odd modes that are otherwise forbidden due to the periodic
boundary conditions. This means that the interface thickness δ is doubled and the viscosity and
diffusion coefficients are multiplied by 4 to ensure grid convergence.

Since the flow remains 2D even after the wavebreaking for DNSa-e, we performed DNSf to
study the full transition to turbulence where the interface position is slightly perturbed in the
spanwise y-direction:

ζ(x, y) = ϵ sin(kn,0x) + ϵ1 f (y), (2.6)

with f (y) being the normalized white noise function and ϵ1 being the amplitude of the y distur-
bance amplitude set at 10−2ϵ. Other values of ϵ1 were also tested with a similar result to DNSf.
The breaking of the spanwise symmetry invariance can also be produced by the lateral walls in
the experiments. Hence, simulations using penalization layers to reproduce these walls were
conducted (but are not presented here) and yield similar results to DNSf.

The term Cinh is added to ensure the vertical periodicity at the boundaries. However, this
term gives two unstable regions at the top and the bottom of our domain where a Rayleigh-
Taylor instability can be triggered. Hence, a penalization method, described in Briard et al.
[2020], is implemented to avoid this phenomenon.

The goal of the penalization method is to mimic solid walls in our pseudo-spectral code, so
that the velocity and concentration fields are frozen inside the penalized layers of height Lη .
Thus, the height of the unpenalized box is H = W − 2Lη and its depth is still D = W = 94.6 cm
as penalization was only applied on layers at the top and bottom of the computational domain
to prevent any triggering of a Rayleigh-Taylor instability. We did not try to reproduce the walls
of the tank by adding vertical penalization layers as it does not play a role in the wavebreaking
process. The height of the penalization layers Lη was varied to verify that it did not affect the
dynamics of the interface and in all the simulations presented, the Faraday wave’s amplitude
was always less than half the height of the unpenalized domain.

The penalization method for the velocity field is inspired from Jause-Labert et al. [2012] and
consists in adding a term in the right hand side of Eq. (2.1a) to imitate a porous medium:

Penalised momentum equation (see Jause-Labert et al. [2012])

∂U
∂t

+ (U · ∇)U = −∇P − 2ACG0x3 (1 + F cos(ωt)) + ν∇2U − 1
ηu

χU, (2.7)

where ηu is the velocity penalization parameter and χ is the mask function.
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2.3. Mode selection mechanism of the Faraday wave

The velocity penalization parameter is set to 1 × 10−3 s and the penalization mask is defined
as a door function D(x), equal to 1 inside the penalization layer and 0 inside the fluid. The mask
is filtered in the spectral space using χ(k) = D̂(k) exp(−Cs(k/Np)2) to avoid Gibbs oscillations
with Cs the filter parameter. Here, we set Np = 1024 and Cs = 256 to preserve the shape and
intensity of the mask.

The concentration field is also penalized as in Kadoch et al. [2012]. The mask is the same
for the two fields U and C but the penalization parameter is different. Thus, a scalar penaliza-
tion parameter ηc is defined as an effective diffusivity inside the solid domain. The advection
equation (2.1b) is modified:

Penalised advection equation (see Kadoch et al. [2012])

∂C
∂t

+ ((1 − χ)U · ∇)C = ∇ · ((D(1 − χ) + ηcχ)∇C) . (2.8)

In our simulations we chose ηc = 2.3 × 10−9 m2.s−1 as it does not impose any constraint on
the time step unlike ηu and can be chosen very small.

The main differences between the simulations and the experiments are: i) the computational
domain in the simulations is of the same width as the width of the tank in the experiments
but not of the same height nor depth, the simulations are thus two dimensional in a three-
dimensional cubic box whereas the experiments were two dimensional because the tank was of
very small depth; ii) the simulations are periodic along x so the rigid walls of the experiments
in the main direction are not taken into account; iii) the kinematic viscosity in the simulations
is set as ν = 2.26 × 10−6 m2.s−1 which is quite close to the viscosity of the fresh water at 20◦C
(ν = 1.31 × 10−6 m2.s−1), however, the limited spatial resolution forced us to choose D = ν

for the diffusivity whereas in the experiments the Schmidt number, defined as Sc = ν/D, was
around 700. The effect of a too large D can mainly be seen on the early time evolution of the
mixing zone size L(t) and hindered us from exploring small F configurations as the instability
would take a very long time to be triggered, time during which the interface would diffuse
considerably numerically but would remain flat in the experiments.

2.3 Mode selection mechanism of the Faraday wave

Before studying any secondary instability at the origin of the wavebreaking mechanism, we
first focus on the primary wave characteristics and more particularly on figuring out which
mechanism selects its dominant wavelength.

2.3.1 Linear theory

As explained in Chapter 1, the amplitudes ξk for the interface modes of wavenumber k are
governed by a Mathieu equation:

ξ̈k + 2γ(k)ξ̇k +Ω2(k)(1 + F cos(ωt))ξk = 0, (2.9)

where Ω is the inviscid frequency of the diffuse interface. The damping term γ will be described
in Sec. 2.3.1.1.
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Chapter 2. The subcritical transition to turbulence of Faraday waves in miscible fluids

In the deep water approximation, the inviscid frequency Ω(k) is a growing function of k and
can be determined for a given vertical density profile. In this work, we considered a piecewise
linear profile (see for instance Briard et al. [2020]):

Inviscid frequency

Ω(k) =
( AG0k

1 + kδ/2

)1/2

. (2.10)

The classical dispersion relation for an interface within the deep water approximation
Ω(k) =

√AG0k is recovered for small wavenumbers (kδ ≪ 1) whereas the interface mode re-
duces to the local buoyancy or Brunt-Väisälä frequency at the interface, Ω =

√
2AG0/δ, in the

large wavenumber limit (kδ ≫ 1).

2.3.1.1 The viscous damping term

The viscous dissipation term γ(k), corresponding to small interfacial mode damping, can have
different origins:

1. it can come from the bulk flow for a sharp interface giving it the form:

Bulk damping (see Lamb [1945] and Landau & Lifshitz [2013])

γb(k) = 2νk2; (2.11)

2. due to velocity gradients, it can also come from the thin layer separating the two fluids.
Considering a piecewise linear profile, Briard et al. [2020] found the following expression
for the damping:

Interfacial layer damping (see Briard et al. [2020])

γδ(k) = (AG0νk2)/(Ω2δ) ∼ νk/δ for kδ ≪ 1; (2.12)

3. the last contribution to the damping to take into consideration is the one coming from the
boundary layers at the various walls in the experiments. Keulegan [1959], Miles [1967]
derived an expression for the damping of a free surface wave in a rectangular basin due
to the laminar boundary layers which can be generalized to our problem as Thorpe [1968]
did. The calculations to derive the expression of that contribution are detailed below.

First, the boundary layer width can be expressed as δw = (2ν/Ω)1/2 giving δw ∼ 1 − 2 mm
when considering the parameters of the experiments (ν = 1.31 × 10−6 m2.s−1, Ω =

√AG0k s−1,
A = 0.03 and k = π/W m−1). Note that this boundary layer width is much smaller than the
characteristic wavelengths of the instability and the size of the tank.

Then, taking a rectangular basin of height H, width W and depth D (see Fig. 2.5) and con-
sidering a wave of small amplitude a, horizontal wavenumber k and oscillating at the frequency
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Figure 2.5: Drawing of a rectangular basin of width W, height H and depth D, filled with two fluids of
different densities, the heavier below, without free surface. The amplitude a of the wave is indicated.

Ω, we have derived the contribution of each wall to the damping. The rest interface position is
located at the middle of the tank z = 0. We will consider two cases: one where the top boundary
is a wall and one where it is a free surface.

Indeed, from Landau & Lifshitz [2013], we know that the damping coefficient is written
γ = ⟨Ėmech⟩/2⟨Emech⟩ where Emech is the mechanical energy. We consider that the amplitude of
the wave a is very small (a ≪ 1) so that the wave moves linearly. The velocity potential ϕ for
the primary mode can be expressed as (Keulegan [1959]):





ϕ = − aG0
Ω cosh kH/2

cosh k(z + H/2) cos kx cosΩt, for z < 0,

ϕ = − aG0
Ω cosh kH/2

cosh k(z − H/2) cos kx cosΩt, for z > 0.
(2.13)

Our system being symmetric, all of the computations performed on only the lower part of
the tank with Etot = 2Elower. From this velocity potential, we can calculate the particle velocities
for the lower part as u = −∂xϕ and w = −∂zϕ.





u = −G0ak
Ω

cosh k(z+H/2)
cosh kH/2 sin kx cosΩt,

w = G0ak
Ω

sinh k(z+H/2)
cosh kH/2 cos kx cosΩt.

(2.14)

We write the mean mechanical energy for the lower part of the tank as being twice the mean
kinetic energy for that lower part which gives:

⟨Emech,low⟩ = ρ
∫

V
⟨v2⟩dV = ρ

∫

V

(〈
u2〉+

〈
w2〉) dV. (2.15)
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Taking the mean over a period of time of cos2(Ωt) brings a factor of a half, so we get:

⟨Emech,low⟩ =
1
2

ρ

(
G0ak

Ω cosh kH/2

)2 ∫

V

[
cosh2 k(z + H/2) sin2 kx + sinh2 k(z + H/2) cos2 kx

]
dV

=
1
2

ρ

(
G0ak

Ω cosh kH/2

)2 ∫ W

0

∫ D

0

∫ 0

−H/2

[
sin2 kx + sinh2 k(z + H/2)

]
dzdydx

=
1
2

ρDW
(

G0ak
Ω cosh kH/2

)2 sinh kH
4k

.

(2.16)

In order to get the total mechanical energy, we have to sum the mechanical energy of the
lower part of the tank and the one of the upper part of the tank. Thanks to the symmetry in our
system, we have:

⟨Emech,tot⟩ = 2⟨Emech,low⟩ = ρDW
(

G0ak
Ω cosh kH/2

)2 sinh kH
4k

. (2.17)

Now, we need to evaluate the damping coefficients for each wall of the tank.

Contributions of the vertical walls y = 0 and y = D: Considering the wall at y = 0 for the
lower part of the tank (z ≤ 0), we have the following expression for the fluid velocities in the
viscous layer:





u = G0ak
Ω

cosh k(z+H/2)
cosh kH/2 sin kx

[
e−y/δw cos(Ωt − y/δw) − cosΩt

]
,

w = −G0ak
Ω

sinh k(z+H/2)
cosh kH/2 cos kx

[
e−y/δw cos(Ωt − y/δw) − cosΩt

]
,

(2.18)

giving a null velocity at the wall and the potential solution u0 = ∇ϕ away from it.

Taking the square of the y-derivative, we get:




(∂yu)2 =
(

G0ak
Ω

)2 cosh2 k(z+H)/2
cosh2 kH/2

sin2 kx 1
δ2

w
e−2y/δw [1 + sin 2(y/δw −Ωt)] ,

(∂yw)2 =
(

G0ak
Ω

)2 sinh2 k(z+H)
cosh2 kH/2

cos2 kx 1
δ2

w
e−2y/δw [1 + sin 2(y/δw −Ωt)] .

(2.19)

The mean kinetic energy dissipated on this wall can be written:

⟨Ė1⟩ = ρν
Ω

2π

∫ 0

−H/2

∫ W

0

∫ ∞

0

∫ 2π/Ω

0

[
(∂yu)2 + (∂yw)2] dtdydxdz. (2.20)

Adding (∂yu)2 and (∂yw)2 and integrating over a complete cycle of period 2π/Ω, we have:

∫ 2π/Ω

0

[
(∂yu)2 + (∂yw)2] dt =

2π

Ω

(G0ak)2

Ω2
e−2y/δw

δ2
w cosh2 kH/2

[
sin2 kx + sinh2 k(z + H/2)

]
. (2.21)
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Hence, at leading order in 1/δw,

⟨Ė1⟩ =
Ω

2π

2πρν(G0ak)2

Ω3
1

δ2
w cosh2 kH/2

∫ ∞

0
e−2y/δw dy

∫ W

0

∫ 0

−H/2

[
sin2 kx + sinh2 k(z + H/2)

]
dzdx

=
Ω

2π

(G0ak)2

Ω2
ρνδw

2δ2
wΩ

2πW (H/4 + sinh kH/4k − H/4)
cosh2 kH/2

=
ρνW
2δw

(
aG0k

Ω cosh kH/2

)2 sinh kH
4k

.

(2.22)

The contribution from the wall at y = D is the same and considering the upper part of the
rectangular basin, we get ⟨Ė1,tot⟩ = 4⟨Ė1⟩.

From this, we can evaluate the contributions from these walls to the damping:

γw1 =
⟨Ė1,tot⟩

2⟨Emech,tot⟩
=

ν

δwD
. (2.23)

Contributions of the vertical walls x = 0 and x = W: Now considering the vertical wall x = 0
in the bottom part of the tank, the fluid velocities in the viscous layer are:





u = 0,

w = −G0ak
Ω

sinh k(z+H)
cosh kH/2

[
e−x/δw cos(Ωt − x/δw) − cosΩt

]
.

(2.24)

Hence,

(∂xw)2 =
(

G0ak
Ω

)2 sinh2 k(z + H/2)
cosh2 kH/2

1
δ2

w
e−2x/δw [1 + sin 2(x/δw −Ωt)] . (2.25)

The amount of energy dissipated on this wall is:

⟨Ė2⟩ =
Ω

2π

2πρν(G0ak)2

Ω3
1

δ2
w cosh2 kH/2

∫ ∞

0
e−2x/δw dx

∫ D

0
dy
∫ 0

−H/2
sinh2 k(z + H/2)dz

= (G0ak)2 ρνδw

2δ2
wΩ

2
D (sinh kH/2k − H/2)

2 cosh2 kH/2

=
ρνD
2δw

(
aG0k

Ω cosh kH/2

)2 (sinh kH
4k

− H
4

)
.

(2.26)

Again, to have the full contributions of the walls at x = 0 and x = W, we have ⟨Ė2,tot⟩ = 4⟨Ė2⟩.
Thus:

γw2 =
⟨Ė2,tot⟩

2⟨Emech,tot⟩
=

ν

δwD

(
1 − kH

sinh kH

)
. (2.27)
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Contributions of the horizontal walls at z = −H/2 and z = H/2: Considering the bottom wall
z = −H/2, the fluid velocities in the viscous layer are:





u = −G0ak
Ω

1
cosh kH/2 sin kx

[
e−(z+H/2)/δw cos(Ωt − (z + H/2)/δw) − cosΩt

]
,

w = 0.
(2.28)

So,

(∂zu)2 =
(

G0ak
Ω

)2 sin2 kx
cosh2 kH/2

1
δ2

w
e−2(z+H/2)/δw [1 + sin(2((z + H/2)/δw −Ωt))] . (2.29)

The corresponding loss of energy is given by:

⟨Ė3⟩ =
Ω

2π

2πρν(G0ak)2

Ω3
1

δ2
w cosh2 kH

∫ ∞

−H/2
e−2(z+H/2)/δw dz

∫ D

0
dy
∫ W

0
sin2 kxdx

=
(G0ak)2

Ω2
ρνδw

2δ2
w

WL
2 cosh2 kH/2

=
ρνDW

4δw

(
aG0k

Ω cosh kH/2

)2

.

(2.30)

In the case where there is no free surface, we get:

γw3 =
2⟨Ė3⟩

2⟨Emech,tot⟩
=

νk
δw sinh kH

, (2.31)

whereas in the case of a free surface, we have:

γw3 =
⟨Ė3⟩

2⟨Emech,tot⟩
=

νk
2δw sinh kH

. (2.32)

Total contribution : The total contribution of the walls to the damping is γw = γw1 +γw2 +γw3 :

γw =
ν

δw

[
2
D

+
k

sinh(kH)

(
1 − H

D

)]
, (2.33)

for the case without free surface and

γw =
ν

δw

[
2
D

+
k

sinh(kH)

(
1
2
− H

D

)]
, (2.34)

for the case with a free surface.
However, we will only consider the dominant contribution of the lateral walls to the damp-

ing, which can be expressed as:
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Boundary layers damping

γw ∼ ν

Dδw
=

√
νΩ√
2D

, (2.35)

where D = 11 cm.

The numerical values of the damping coefficients coming from the bulk, the interfacial layer
between the two fluids and the boundary layers at the walls are given in Tab. C. Even if we
account for the viscosity contrast between fresh and salt water, the values do not vary more
than a few percent. This indicates clearly that the dissipation occurs essentially in the viscous
layers at the walls since γw is the largest of all the contributions. Indeed, γw scales like ν1/2

whereas the bulk dissipation γb and the interfacial dissipation γδ are linear in ν. However,
for larger wavenumbers, the contribution from the interface layer becomes the most important
contribution to the damping as can be seen in Fig. 2.6.

These aspects have been extensively studied by Bechhoefer et al. [1995]. The authors sug-
gested using fluids with high viscosities to better control the dissipation in experiments per-
formed in order to study the instability threshold. As our work was focused on the wavebreak-

Mode (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0)
γw = 9.75 ×10−3 1.08 ×10−2 1.15 ×10−2 1.22 ×10−2 1.28 ×10−2 1.32 ×10−2 1.36 ×10−2

γb = 1.16 ×10−4 2.60 ×10−4 4.62 ×10−4 7.22 ×10−4 1.04 ×10−3 1.42 ×10−3 1.85 ×10−3

γδ = 1.74 ×10−3 2.61 ×10−3 3.48 ×10−3 4.35 ×10−3 5.22 ×10−3 6.09 ×10−3 6.96 ×10−3

Table C: Values for the damping coefficients γw, γb and γδ in s−1 and evaluated for the largest wave-
lengths developing in the experiments. We assume here that the Atwood number is A = 0.03 and the
thickness of the interfacial layer is δ = 0.5 cm. Here, the top boundary is taken as a wall to evaluate γw
(the values would be nearly the same for a free surface).
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Figure 2.6: Plot of the three damping coefficients as a function of the wavenumber k for a diffuse interface
of width δ = 0.5 cm and an Atwood number A = 0.03. The vertical dashed black line gives a typical
wavenumber used in the experiments.
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ing mechanism, we favored the use of low viscosity fluids.

2.3.1.2 Stability diagram

The stability diagram representing the first subharmonic tongue is shown in Fig. 2.7. This dia-
gram is plotted for different large scale modes of the tank using the damping coefficients from
the interfacial layer γδ and from the boundary layers at the walls γw. The neutral curves of
the Mathieu equation (2.9) are computed using the method proposed by Kumar & Tuckerman
[1994], and previously used in Briard et al. [2020], assuming different Atwood number A values
and an initial interface thickness δ = 1 cm. For a given wavenumber k, the minimum forcing
Fth needed to destabilize the interface occurs at a frequency corresponding to the first subhar-
monic resonance Ω(k) = ω/2. The classical asymptotic theory of the Mathieu equation gives
Fth = 8γ/ω, in the limit of small damping (see for instance Rajchenbach & Clamond [2015]). The
minimum forcing varies very weakly for the different modes in the figure. Indeed, the contri-
bution due to the damping from the viscous layers at the walls γw scales like ω1/2, leading to a
decrease of Fth at larger ω which is compensated by the contribution from the damping at the
interface γδ scaling like ω2.

The parameters taken in the experiments, shown in Fig. 2.7, are located in the unstable re-
gions well above the viscous thresholds determined by the linear Floquet theory. Consequently,
for most of the experiments, two or more modes can be simultaneously subharmonically unsta-
ble.
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Figure 2.7: Stability diagram for (2.9) in a non dimensional frequency ω/
√
AG0k2,0 and forcing F plane.

The colored regions correspond to the first subharmonic instability band associated with the different
modes of the tank (the mode number is indicated in the figure). The diagram is obtained using the
damping coefficient γ = γδ + γw at three different Atwood numbers and considering an interface thick-
ness δ = 1 cm. The neutral curves (thick black plain lines) have a slight dependence on the Atwood
number showing that they are not completely superimposed. The symbols correspond to the parameters
taken in the experiment in Tab. A. The shapes indicate the Atwood number and the colors reveal which
mode is eventually selected.
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2.3.2 Linear or nonlinear mode selection?

In this section, we investigate the mechanisms leading to the mode selection of the primary
wave. As discussed in the previous section, several modes can be linearly unstable, and play
a role in the interface dynamics, due to the large forcing acceleration parameter F. Surpris-
ingly, a single mode, corresponding nearly always to the smallest unstable wavelength, emerges
from this process. There is a clear tendency to favor the modes pertaining to the right unstable
tongues in Fig. 2.7, the mode reported in Tab. A being also indicated by the color of the symbol
in the stability diagram. Moreover, the selection mechanism does not apparently discriminate
between the even or the odd modes of the tank as both can be observed in the experiments.

We only considered the modes in the first subharmonic bands because we expected that the
modes with the largest growth rates would be the ones selected and the higher resonance regions
have much smaller amplification rates. For a given mode, the Floquet theory shows that the
maximum amplification occurs for parameters close to the subharmonic resonance frequency
located at the center of the instability tongue. However, the results in Fig. 2.7 reveal that in many
cases, the selected mode does not have the largest linear growth rate. Moreover, some of the
observed modes are hardly unstable and have very small growth rate from the linear theory (see
for instance the EXPa1) and that is even if we take into account some experimental uncertainties
in terms of Atwood number A (±0.001) or initial interface thickness δ (±0.5 cm) which would
only slightly modify instability tongues of Fig. 2.7. Indeed, a larger interface thickness would
decrease the natural frequencies Ω leading to a slight left-shift of the instability tongues. The
movements of the hexapod were well controlled and remained sinusoidal so it is very unlikely
that spurious forcing frequencies would appear in the system and change the linear stability of
the problem.

The initial perturbation of the interface can also play a role in the mode selection mechanism.
Indeed, a large initial amplitude on a given mode would explain why it appears even if it has
not the largest growth rate during the linear phase. This would suggest that an initial condition
at small scales is at work in the experiments although we have not observed such disturbance or
could not identify a source able to generate it. However, this would not explain the appearance
of linearly stable modes.

However, nonlinearities have the ability to select modes and generate transient chaotic regi-
mes for Faraday experiments with immiscible fluids (see for instance Ciliberto & Gollub [1985]).
Using weakly nonlinear approaches, Meron & Procaccia [1986] and Meron [1987] have already
detailed how the mode suppression phenomenon can occur. Considering two modes close to the
first subharmonic resonance, the sign of the nonlinear cubic coupling terms in each amplitude
equation is determined by the detuning parameter ∆ = (Ω2/ω2) − (1/4). Here, the detuning
parameter for a given mode expresses the departure of the forcing frequency from the first sub-
harmonic resonance. Thus, if ∆ = 0 there is a perfect resonance between the forcing frequency
ω and the subharmonic resonance frequency Ω. Therefore, when two modes compete, their re-
spective detuning parameters ∆ generally have opposite signs because the forcing frequency ω

lies between the two subharmonic resonance frequencies (see Fig. 2.7). One mode can develop
by pumping energy from the other one, even if it is linearly stable, which explains the mode
suppression. Indeed, as the wave amplitude grows, the frequency of the wave Ω tends to di-
minish (Thorpe [1968]), hence the detuning parameter gets smaller (Fauve [1998]), left-shifting
the instability bands and making the modes become more or less resonant depending on the
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Figure 2.8: Diagram of the process of mode suppression, showing the evolution of the resonance of
subcritical (∆ ≥ 0) (a) and supercritical (∆ < 0) (b) modes.

value of their initial detuning parameter. This mode suppression process is shown in Fig. 2.8
with the shifting of the tongues either towards resonance (Fig. 2.8a) for ∆ ≥ 0 initially, or fur-
ther away from resonance (Fig. 2.8a) for ∆ < 0 initially. The theory shows that the vanishing
mode is supercritical (∆ < 0), as the nonlinear coupling damps the instability, while the domi-
nant one is subcritical (∆ ≥ 0), as it is reinforced by the nonlinearities. Thus this process favors
the subcritical modes at smaller wavelength.

2.3.3 Numerical analysis of the mode competition

At this stage, the mode suppression due to a nonlinear coupling between competing modes can
explain the mode selection demonstrated in Fig. 2.7. Furthermore, the mode amplitude is no
longer negligible compared to its wavelength when the selection process is at work, suggest-
ing that the nonlinear effects are an important ingredient to account for. To further assess this
hypothesis, direct numerical simulations were performed with well-characterized initial condi-
tions.

Two series of DNS have been performed using 10243 grid points and an Atwood number
of A = 0.03 (Series DNSb and c in Tab. B). The frequency ω and the forcing F taken in the
simulations are represented in the phase diagram of Fig. 2.9. It is important to stress here that
the phase diagram does not take into account the wall damping as simulations are performed in
a triply periodic box. These two series of DNS start from the same location in the phase diagram
(point A) with F = 0.8 and ω = 3.07 (or equivalently ω/

√
AG0k2,0 = 2.2). This corresponds

to parameters with the two unstable modes having nearly the same exponential growth rate as
∼ eµωt. Indeed, the Floquet exponent µ (Sec. 2.4.1.2) takes the value 0.09 for mode (3,0) and 0.07
for mode (2,0). We fix the forcing parameters in the DNSc series and vary the amplitude ratio r.
In the other series, the relative amplitude is set at r = 0.5 and we decrease the forcing frequency
ω in order to explore more deeply the (2,0) subharmonic instability tongue. The simulations are
stopped when the wavebreaking occurs and we report which of the (2,0) or (3,0) mode prevails
at this moment in Fig. 2.9. This procedure is performed both visually and by computing the
Fourier modes of the interface.

The simulations clearly demonstrate mode suppression to the benefit of the modes with the
smallest wavelength. The results, reported in Fig. 2.9 show the dominance of mode (3,0) even
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Figure 2.9: Parameters of the DNS (symbols) in the stability diagram ω/
√
AG0k2,0 − F. The colored

areas correspond to the subharmonic instability tongues for the modes (2,0) and (3,0) accounting for
viscosity and a diffused interface δ = 1.8 cm. The symbols’ color indicates which mode emerges from the
simulation, the mixed colors express that both modes can be observed. The two series DNSb and DNSc
(see Tab. B) are presented here starting from point A. In the DNSb group, the initial amplitude ratio r
between modes (2,0) and (3,0) is set at r = 0.5 and the forcing frequency is decreased. In the DNSc group,
the frequency is fixed and r is varied. The point corresponding to DNSe is also placed.

if it starts with a small initial amplitude (the transition occurs at r = 0.1) or if it is in a region
where it is linearly stable (for small ω). The phenomenon can be observed in more detail on
the snapshots extracted from the two series in Fig. 2.10, where the mode (3,0) emerges from
cases with initial r = 0.25, 0.5 or with the frequencies ω = 2.6, 2.8. Indeed, in the last row
of Fig. 2.10(b), one can observe that mode (2,0) prevails only for ω = 2.4 (ω/

√
AG0k2,0) and

for larger ω, say ω = 2.6 (ω/
√
AG0k2,0) mode (3,0) is visible despite being linearly stable, as

can be seen in Fig. 2.11, where the Fourier mode of the interface are shown for the last row of
Fig. 2.10(b). As a consequence, the mode competition greatly enhances the sensitivity to initial
conditions in the experiment. As importantly, this process breaks the symmetry of the primary
wave as can be seen in both the experiments (Fig. 2.1) and the simulations (Fig. 2.10).

We now address some specifities of the mode suppression in the case of our Faraday exper-
iments with miscible fluids. We have not observed oscillations between two specific modes as
in Ciliberto & Gollub [1984] and Ciliberto & Gollub [1985] or similarly in Yalim et al. [2019] in
the context of a stable stratification. This is notably because, at large forcing parameter, the in-
terface irreversibly grows allowing continuously new modes to be destabilized. The modes can
change in our experiment as already reported in Briard et al. [2020]. But it always corresponds
to a one way transition from large to small wavelength for interface modes. The more complex
transitions evidenced in figure 14 of Briard et al. [2020], for instance, refer to modes pertaining

34



Chapter 2. The subcritical transition to turbulence of Faraday waves in miscible fluids
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Figure 2.10: Mode selection in 6 DNS of Fig. 2.9. (a) Cases corresponding to DNSc (see Tab. B) with r
varying and A = 0.030, ω = 3.07, F = 0.8. The amplitude of the interface deformation is ϵ = 3 cm. (b)
Cases corresponding to DNSb (see Tab. B) with ω varying and A = 0.030, F = 0.8, r = 0.5, ϵ = 1.5 cm.
We put the slices of width W of the concentration field at four instants starting from the initial interface
at t = 0 and ending when wavebreaking occurs; pure fluids remain in white while mixed fluid with
C = 0.5 ± 0.15 is in black.
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Figure 2.11: Slices of width W of the concentration field at wavebreaking for the series DNSb with ω = 2.4,
2.6 and 2.8 shown as inserts of the Fourier modes of the interface.

not to the same instability band or being of different nature. The irreversible mixing produced
by the rapid breaking of the primary waves also explains this aspect.

Another difference with past Faraday immiscible experiments conducted in a shallow basin
is that in our case the dominant waves correspond to those with the smallest wavelength as
already discussed. This point clearly agrees with the nonlinear theory of mode suppression. It
can be shown that within the deep water approximation, the subcritical modes are indeed those
with small wavelength (see Rajchenbach & Clamond [2015] for details).

In this part, it has been evidenced that the mode selection of the primary wave may result
from a complex nonlinear mode competition process. When this is the case, the subcritical mode
is eventually selected. In the following, we explain the breakdown of the Faraday waves.
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2.4 Modelling the breakdown of Faraday waves

The goal of this study is to evaluate the critical wave steepness at which the wavebreaking
occurs. To do so, two heuristic models are presented in this section (see Fig. 2.12). These models
are dedicated to the breakdown of Faraday waves initiating the transition to turbulent mixing
and allow us to explore various frameworks for the breakdown and to disentangle the inner
mechanisms responsible for the instability.

Both models, although relying on different assumptions, suggest that the breakdown results
from a subharmonic secondary instability at small scales. Therefore, one key ingredient in these
approaches is to account for the unsteadiness of the primary wave. This aspect differs from
secondary instability analysis relying on a frozen base flow used for instance in the context of
the Kelvin-Helmholtz instability (Salehipour et al. [2015]).

For the first approach, hereafter referred to as global, we seek to identify the conditions for
which a small disturbance can develop around the mean profile which characterizes a Faraday
wave of given amplitude (see Fig. 2.12(b)). Indeed, this theory is based on the fact that mono-
tonicity of the horizontally averaged density profiles is changed due to the breakdown of the
Faraday waves. In contrast, the second model, later called local, relies on the local analysis of
small perturbations at the node of the primary wave (see Fig. 2.12(c)).

ξp

G0

z

x

2π/k

(a) Sketch of the primary wave

~U

−~U

2π/kwb

C̄

z Lint L

C̄

z

(c) Zoom on the node - Local frame
(b) Mean concentration profile

Figure 2.12: Frameworks applied to model the wavebreaking of the primary wave (a) and detailed in
Sec. 2.4. For the global approach (b), we consider the stability of the horizontally averaged concentration
profiles. For the local approach (c), we study the development of small perturbations of wavenumber
kwb at the node of the primary wave.
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2.4.1 The global approach

2.4.1.1 A simple model equation

In order to derive a simple model for the breakdown of Faraday waves, the system of equa-
tions (2.1) is averaged. This gives equations for the mean flow and its fluctuations by decom-
posing the concentration and velocity fields as C = C̄ + c and U = Ū + u. The mean quantities
∗̄ are obtained by averaging along the horizontal x and y directions and c and u are the fluctu-
ating part. Due to the symmetries and the incompressibility condition, it can be shown that the
mean velocity is zero (Ū = 0). Meanwhile, the mean vertical concentration profile C̄(z, t) evolves
principally due to the vertical buoyancy flux wc as:

∂tC̄ + ∂zwc = κ∂2
zzC̄. (2.36)

In this global approach, the primary Faraday wave is thus embedded in the mean vertical
concentration profile C̄(z, t) while having fluctuation components satisfying (2.36).

Further simplifications are now made in order to obtain a simpler model. We seek a ‘rapid’
secondary instability occurring at small scales and located at z = 0. In this context, the rapid
acceleration theory, initially developed by Hunt & Carruthers [1990] and applied to turbulent
mixing layer in Gréa [2013], provides a convenient framework for expressing the dynamics of
small scale disturbances. We thus discard all the dissipative and the non linear terms, except
for the coupling between the fluctuations and the mean concentration field. The small scale
disturbance only sees a uniform mean concentration gradient at z = 0 determined by the mixing
width:

Inverse mean concentration gradient

L = −1/∂zC̄(0, t). (2.37)

Within this quasi-homogeneous approximation, the small scale fluctuating quantities and
pressure p are determined by:

∂tu = −∇p − 2AG(t)cx3,

∂tc =
w

L(t)
,

∇ · u = 0.

(2.38a)

(2.38b)

(2.38c)

The classical equations for an internal gravity wave driven, here, by a time varying acceler-
ation and mean density gradient can be recognized in the system of equations (2.38). This mean
gradient can be evaluated from the mixing zone width (see Eq. (2.39)).
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Integral mixing zone width (Andrews & Spalding [1990])

Lint = 6
∫ +∞

−∞
C̄(1 − C̄)dz. (2.39)

It was introduced by Andrews & Spalding [1990] and previously used in Briard et al. [2020]
for the fully turbulent regime in the case where this mean density gradient is uniform across the
layer. However, this property is lost when the flow takes the form of a single laminar wave. In
this case, the inverse concentration gradient is maximum at z = 0. Different ways to evaluate
this gradient will be discussed in a next section.

These waves depend on their orientations but for this heuristic model we focus only on
waves with a wavevector in the horizontal plane. Differently oriented modes are thought to
be less relevant in the secondary instability, partly because they are less likely to modify the
mean concentration profile. Indeed, the feedback of the fluctuations to the mean concentration
profile is controlled by the vertical buoyancy flux term wc which is weaker for vertically oriented
modes. Eliminating w in Eqs. (2.38), we obtain the following Mathieu-like equation (a detailed
derivation can be found in Gréa & Ebo Adou [2018]):

c̈ +
L̇
L

ċ +
2AG(t)

L
c = 0. (2.40)

The concentration fluctuations c are therefore fully determined by L expressing the ampli-
tude of the primary Faraday wave. The condition on L, for which the perturbations can develop,
needs to be determined. Indeed, the rise of the perturbation foreshadows the breaking process
of the primary wave and the onset of turbulence. More precisely, Eq. (2.40) exhibits the buoy-
ancy frequency defined as ΩB = (2AG0/L)1/2 and a damping term L̇/L expressing the variations
of ΩB as the mixing zone width L evolves. As will be seen in Sec. 2.4.2, the ΩB frequency is rele-
vant for the secondary instability because the shear at the nodes of the primary wave is directly
driven by the wave amplitude.

We now detail the implications of this model equation regarding the wavebreaking phe-
nomenology as observed in Fig. 2.1.

2.4.1.2 The subcritical nature and the criterion for the wavebreaking

The stability of the model equation (2.40) allows to evaluate the saturation criterion of the in-
stability. This gives when the subharmonic instability stops or, equivalently, when the inner
frequencies of the layer and the forcing frequency are no longer in resonance. Hence, this has
been extensively discussed in Gréa & Ebo Adou [2018] and Briard et al. [2020] in order to pre-
dict the final widths of the turbulent mixing zones. But the authors did not seek to account
for the unsteadiness of L. However, as we interpret the wavebreaking as the development of a
secondary subharmonic instability at small scales, we aim at finding the onset of this instabil-
ity. Indeed, it is our belief that a small disturbance, characterized by the buoyancy frequency
ΩB, will become parametrically unstable as the result of both the forcing and the primary wave
oscillations. Thus, the enlargement of the primary wave amplitude determines not only the in-
stability threshold but also the later amplification of the secondary instability growth rate. This
explains the subcritical nature of this secondary instability and why it develops rapidly at the
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interface. This peculiarity is indeed well-known for non linear Mathieu systems such as (2.40)
as detailed in Soliman & Thompson [1992] or Fauve [1998].

In order to derive an analytic criterion for the wavebreaking, we consider the inverse mean
concentration gradient L having the following simple form L(t) = L0(1 + β cos(ωt)). The length
L is thus expected to be proportional to the amplitude ξp of the primary Faraday wave, L(t) ∼
|ξp| in the laminar phase. Here, the proportionality coefficient depends on the shape of the
nonlinear primary wave. Also, the parameter β expresses the relative amplitude of the Faraday
wave oscillations while L0 is the mean over one oscillation period. This expression does not
account for the primary mode growth, which is assumed small over an oscillation period. It also
expresses that for a subharmonic instability, L oscillates at the frequency ω while ξp oscillates at
the frequency ω/2. However, the higher temporal harmonics of L(t), or ξp for the primary wave,
are discarded. In addition, it is important to note that the primary Faraday mode amplitude is
in phase with the acceleration G(t).

In this context, we use Floquet analysis to find the secondary subharmonic instability onset.
Indeed, with L(t) = L0(1 + β cos(ωt)) injected in Eq. (2.40), we have:

(1 + β cos(τ))c̈ − β sin(τ)ċ +
Ω2

0,B

ω2 (1 + F cos(τ))c = 0, (2.41)

where τ = ωt and Ω2
0,B = 2AG0/L0. Applying the Floquet theorem, the solutions for a linear

equation with time periodic coefficients (Eq. (2.41)) are known and take the form:

Floquet Theorem on c

c =
N=+∞

∑
n=−∞

Yne(µ+i(n+α))τ , (2.42)

where µ is the Floquet exponent characterizing the growth rate of the instability. The most
unstable modes generally correspond to α = 0 or α = 1/2 which here represent the harmonic
or subharmonic modes respectively.

Taking µ = 0 allows to determine the neutral branches of the instability. Inserting the solu-
tion (2.42) in Eq. (2.41), one gets:

N=+∞

∑
n=−∞

[
−(n + α)2

(
1 +

β

2
(eiτ + e−iτ)

)
Ynei(n+α)τ − β

2
(eiτ − e−iτ)(n + α)Ynei(n+α)τ

]

+
N

∑
n

s
(

1 +
F
2

(eiτ + e−iτ)
)

Ynei(n+α)τ = 0, (2.43)

with s = Ω2
0,B/ω2, which can be simplified into

Yn(n + α)2 +
β

2
[Yn−1(n − 1 + α)(n + α) + Yn+1(n + 1 + α)(n + α)]

= s
[

Yn +
F
2

(Yn−1 + Yn+1)
]

. (2.44)
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This constitutes a generalized eigenvalue problem of the form AX = sBX, where X is con-
structed from the real and imaginary parts of the vector Y. In order to restrict the problem to
0 ≤ n ≤ N, we follow Kumar & Tuckerman [1994] who expressed the condition for c being
real and truncated the solution. This leads to (2N+2)×(2N+2) matrix sizes for A and B. Lastly,
we only focus on the subharmonic instability so we take α = 1/2 and we have the realisability
condition Y−1 = Y∗

0 , where ∗ indicates the complex conjugate. The matrices A and B are thus:

A =




d+0 0 β
2 b0 0

0 d−0 0 β
2 b0

. . .
β
2 a1 0 d1 0

. . . . . . 0
0 β

2 a1 0 d1
. . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . dN−1 0 β

2 bN−1 0
. . . . . . 0 dN−1 0 β

2 bN−1

0 . . . β
2 aN 0 dN 0

0 β
2 aN 0 dN




(2.45)

and

B =




1 + F
2 0 F

2 0

0 1 − F
2 0 F

2
. . .

F
2 0 1 0

. . . . . . 0
0 F

2 0 1
. . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 1 0 F

2 0
. . . . . . 0 1 0 F

2

0 . . . F
2 0 1 0
0 F

2 0 1




(2.46)

with an = (n − 1 + α)(n + α), bn = (n + 1 + α)(n + α). For the diagonal terms in matrix A, we
have dn = (n + α)2 for all n > 0 and for n = 0, we have d±0 = α2 ± β

2 a0.

The results of this generalized eigenvalues problem are represented in the stability diagram
of Fig. 2.13 exhibiting the instability tongues for β = 0 and β = 0.7. Note that the case β = 0
corresponds to the classical stability diagram of a Mathieu equation. In this representation, the
right-hand sides of the neutral branches (solid black lines of Fig. 2.13) determine the critical
amplitude of the primary wave and the beginning of the secondary instability as L0 grows. This
gives a critical threshold Lcrit which should be close to the one characterizing the wavebreaking
Lwb if the instability develops quickly (we still have Lcrit ≤ Lwb).

An analytical approximation for the critical threshold Lcrit can be derived by taking N = 0
and solving (for F and β ≪ 1):
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Figure 2.13: Stability analysis of Eq. (2.40) with L(t) = L0(1 + β cos(ωt)) and represented in the plane
(Ω2

0B/ω2, F) with Ω0B = (2AG0/L0)1/2. The two colored areas indicate the first subharmonic tongues with
β = 0 and β = 0.7 respectively. The dashed blue lines correspond to the approximation (2.48) while the
red dashed dotted ones correspond to (2.49).

(
1/4 − β/8 − s(1 + F/2) 0

0 1/4 + β/8 − s(1 − F/2)

)(
Yr

0

Yi
0

)
= 0 (2.47)

Indeed, one of the solutions of Eq. (2.47) is given by:

First approximation of Lcrit from the global theory

Lcrit ∼
2AG0(4 − 2F)
ω2(1 + β/2)

, for F ≪ 1 and β ≪ 1. (2.48)

As shown in Fig. 2.13 in blue dashed lines, the criterion (2.48) slightly underestimates Lcrit at
small F and large β while being reasonably correct for the parameters taken in the experiment.
However, it becomes very bad at large F, even leading to negative values for F ≥ 2. Despite
being more complicated, a better approximation can be derived, taking N = 1, corresponding to
Eq. (2.49) below and shown by the red dashed dotted lines in Fig. 2.13.

Second approximation of Lcrit from the global theory

Lcrit =
2AG0

ω2
4F2 + 8F − 16

F(9 + 3β) − (β + 20) + M
, (2.49)

with M =
√

9(13 + 8β)F2 − 6(48 + β(17 + 4β))F + 256.

In equation (2.48), we see that the forcing parameter F together with the movement of the
primary wave characterized by β contribute to the destabilization of the primary wave. In par-
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ticular, even without acceleration forcing (F = 0), the secondary instability can be triggered by
the primary wave oscillations. This also leads to striking differences in terms of growth rates.
For instance, for the subharmonic resonance at F = 0.7, we find a Floquet exponent µ = 0.09 for
β = 0 (also corresponding to the growth of the primary wave), while µ = 0.2 for the case with
β = 0.7. Therefore, the acceleration induced by the primary wave increases noticeably (but not
drastically) the growth rate of the secondary modes. This effect explains why the breakdown
occurs in a time scale shorter than the growth of the primary wave.

2.4.2 The local approach

The main advantage of the previous approach is of being relatively simple since it relies on the
horizontal averaging process. However, the drawback of this theory is the loss of track of the
physical mechanism responsible for the secondary instability. Moreover, it works under the
assumption that the secondary instability mode only results from the interaction with the mean
component of the primary wave, which can be excessive. This was our motivation to come up
with a complementary method.

For the local approach, we perform a stability analysis of the flow generated at the node of
the primary wave. To do so, we assume we have an inviscid interfacial wave of small amplitude.
The equations describing the field generated by this type of wave have already been written in
many classical textbooks (see for instance Sutherland [2010]). The procedure leading to these
equations is recalled below.

We first express a 2D incompressible velocity disturbance of the primary wave by its stream
function as (up, wp) = (−∂zψp, ∂xψp) and we seek modal solutions of the form ψp(x, z, t) =
Ap(t)ψ̂p(z)eikx, assuming that the interface deformation is ζp(x, t) = ξp(t)eikx. Neglecting the
nonlinear terms, the momentum equations are written:




∂tup = − 1

ρ∂xP ⇐⇒ ∂t∂zψp = − ik
ρ p,

∂twp = − 1
ρ∂zP − G(t) ⇐⇒ ∂tikψp = − 1

ρ∂z p,
(2.50)

with P = p + PHydro = p − ρg(t)z with p of the form p = p̂eikx. Deriving the first equation (2.50)
along z, multiplying the second by ik and substracting the first equation to the second, we obtain
the degenerate Rayleigh equation:

∂2
zzψ̂p − k2ψ̂p = 0, (2.51)

leading to ψ̂p = e±kz on either side of the interface.
Then, discarding the second order terms, we write the kinematic condition expressing the

interface dynamics:

wp = ikψp =
Dζp

Dt
= ζ̇p, (2.52)

giving ikAp = ξ̇p and the continuity of ψp across the interface. Moreover, the equation for the
horizontal momentum, not taking into account the second order terms, writes:

∂tup = −∂2
tzψp = − 1

ρi
ikp, (2.53)

i = 1 or 2 whether we are looking at the fluid above or below the interface, and the continuity of
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pressure at the interface gives:

−ρ1G(t)ζp + ρ1
∂2

tzψp

ik
= −ρ2G(t)ζp + ρ2

∂2
tzψp

ik
. (2.54)

Leading to, in z = 0,
ξ̈p +AG(t)kξp = 0. (2.55)

Thus, for a standing wave, which is the sum of two traveling waves propagating in opposite
directions, we have:

ζp = ξp sin(kx), w = ξ̇pe∓kz sin(kx), ψp = − ξ̇p

k
e∓kz cos(kx), and u = ±ξ̇pe∓kz cos(kx). (2.56)

The goal is to perform the stability analysis of this flow at the node of the primary wave
where we have x = 0 and z = 0. Therefore, we rescale the dimensions with the typical wavenum-
ber kwb of the secondary instability. Thus, the flow induced by the primary wave reduces to an
horizontal interface subjected to a discontinuous tangential velocity, in the limit of small pertur-
bation wavelength κ = kwb/k ≫ 1:

ζp = 0, up = ±ξ̇p = ±U and wp = 0. (2.57)

Now, we perform the linear stability analysis of the base flow coming from the primary
wave, defined by Eq. (2.57). Using the same steps as previously, we consider a small velocity per-
turbation (u, w) = (−∂zψ, ∂xψ), we seek modal solutions of the form ψ±(x, z, t) = A±(t)ψ̂±eikwbx

with an interface deformation ζ(x, t) = ξ(t)eikwbx and we obtain the degenerate Rayleigh equa-
tion:

∂2
zzψ̂± − k2

wbψ̂± = 0, (2.58)

which gives, using boundary conditions, ψ̂+ = e−kwbz and ψ̂− = ekwbz.

At z = 0, we thus have, neglecting the nonlinear terms:

w = ikwbψ =
Dζ

Dt
= ζ̇ ± Uikwbζ, (2.59)

and so {
A+ = ξ̇

ikwb
+ Uξ ,

A− = ξ̇
ikwb

− Uξ .
(2.60)

Moreover, still at the interface, the continuity of pressure gives:

p+ − ρ1G(t)ξ = p−G(t)ξ , (2.61)

with p = p±eikx and the momentum equation for the horizontal velocity writes:



∂tu + U∂xu = − 1

ρ1
p,

∂tu − U∂xu = − 1
ρ2

p.
(2.62)
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Thus, we have: {
−ikwb p+ = ρ2

(
kwbȦ+ + ik2

wbUA+
)

,

−ikwb p− = ρ1
(
−kwbȦ− + ik2

wbUA−) .
(2.63)

Combining all these conditions, we obtain:

ρ1

(
ξ̈

i
+ 2kwbUξ̇ + ξ[kwbU̇ + ik2

wbU2]
)
+ ikwbρ1G(t)ξ =

ρ2

(
− ξ̈

i
+ 2kwbUξ̇ + ξ[kwbU̇ − ik2

wbU2]
)
+ ikwbρ2G(t)ξ . (2.64)

Thus, the equations driving the evolution of an interfacial perturbation amplitude ξ at the
node of the primary wave are given in the inviscid limit by

ξ̈ − 2iAkwbUξ̇ +
(
AG(t)kwb − k2

wbU2 − iAkwbU̇
)

ξ = 0, (2.65)

already derived by Kelly [1965], which expresses the dynamics of an oscillating sheared inter-
face, and within the Boussinesq limit here.

In this theory, supposing the instability amplitude and wavelength to be small, respectively
kξ ≪ 1 and κ = kwb/k ≫ 1, allows us to neglect the interface tilting at the node and to assume
the quasi-homogeneity of the perturbation. Note that often at least two vortices may appear in
the experiments at the node of the primary wave during the breaking process suggesting the
validity of the homogeneity assumption.

Many works have been dedicated to the stability analysis of (2.65) in the case of G constant
and U oscillating at a single frequency ω. In addition to the parametric resonant modes Kelly
[1965] identified, Lyubimov & Cherepanov [1987] and Khenner et al. [1999] have shown and
derived a criterion for the existence of Kelvin-Helmholtz type modes at the interface. These
latter modes generate a longwave instability observed in most experiments and which may
exhibit frozen wave patterns at high forcing frequency (Wolf [1970], Wunenburger et al. [1999],
Yoshikawa & Wesfreid [2011], Gaponenko et al. [2015], Lyubimov et al. [2017] and Gréa & Briard
[2019]). Frozen waves are completely steady structures analogous to the inclined equilibrium
positions of a strongly and horizontally oscillated pendulum.

As is emphasized from the local analysis, the shear is an important part of the breakdown
process of the primary wave which was early recognized in the works of Thorpe [1968] and
Kalinichenko [2005]. However, the exact nature of the instability, being a Kelvin-Helmholtz
(KH) or parametric resonance (PR) type, has yet to be identified. Indeed, the results of Kelly
[1965] and Khenner et al. [1999] do not apply to our specific configuration where the acceleration
oscillates at frequency ω while the shear velocity is subharmonic, it oscillates at frequency ω/2.
Thus, we reconsider the problem of Eq. (2.65) by taking a primary wave of the form ξp(t) =
a cos(ωt/2) leading to:

U(t) = − aω

2
sin(ωt/2) and U2 =

a2ω2

8
(1 − cos(ωt)) =

1
2
AG0k

1 + 4∆
a2(1 − cos(ωt)), (2.66)

where in the last expression, the subharmonic resonance condition ω2 = 4AG0k/(1 + 4∆) for
an inviscid interface is used. In order to study the stability of (2.65), it is further convenient to
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introduce the new variable Y defined from ξ = Y exp[
∫ t

0 iAkwbU(t′)dt′] giving, at leading order
in A:

Ÿ + (AG(t)kwb − k2
wbU2)Y = 0. (2.67)

Due to the change of variable expression and that U oscillates at ω/2, the response in ξ will
also be subharmonic. However, for small Atwood number, ξ ∼ Y and the response can also
be nearly synchronous. Indeed, by substituting the expression for U(t) into (2.67), we obtain a
simple Mathieu equation of the form:

Ÿ + (P + Q cos(ωt))Y = 0, (2.68)

with P = AG0k
(

κ − 1
2(1+4∆)

κ2(ka)2
)

and Q = AG0k
(

κF + 1
2(1+4∆)

κ2(ka)2
)

.

Figure 2.14: Stability curve of Eq. (2.67) for F = 0.7 and ∆ = 0 in the κ − ka plane or the P − Q plane
(insert) corresponding to the classical representation of the Mathieu equation. The blue colored areas
show the Kelvin-Helmholtz (KH) and parametric resonance (PR) instability regions. The dashed curve
corresponds to P = 0. The area corresponding to P < 0 is located above the dashed curve in the κ − ka
representation. The critical wave steepness value indicated by the black dotted curve corresponds to the
criterion (2.69).

In Fig. 2.14, we show the stability diagram of Eq. (2.67) in a κ − ka plane (the subharmonic
resonance condition for the primary wave is again used). The instability tongue corresponding
to the KH type modes appears for P ≤ 0 which stands as the classical criterion for the inviscid
KH instability, kwbŪ2 ≥ AG0 (Chandrasekhar [1961]). The parametric resonance zones start for
P ≥ 0 but have also a continuation in the opposite half-plane. Remarkably, the instability zones
exhibit a very weak dependence on κ for κ ≫ 1. Therefore, at given κ and as the primary wave
amplitude grows, the perturbation passes through the successive instability zones, first the PR
types then lately the KH one. The growth rates can be computed with the Floquet exponent µ

and show a maximum approximately in the middle of each zone. The KH and PR1 growth rates
are larger compared to the other instability zones. Therefore, the breakdown of the Faraday
wave is expected to occur when the wave steepness ka lies in the instability KH or PR1 zones.
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This local theory is inviscid which explains that the growth rates are higher at large κ. Of course,
the viscosity and the thickness δ of the interface should play a role and moderate this aspect.

Similarly to the global approach, we can propose an approximation for the critical wave
steepness corresponding to the onset of the PR1 instability. Using the asymptotic expression
for the neutral curves of the Mathieu equation in the limit P → −∞, Q → +∞ detailed in
Abramowitz & Stegun [1965], we obtain Eq. (2.69).

Critical steepness from the local theory

kacrit ∼
1
3

(1 + 4∆)(1 + F). (2.69)

This simple expression (2.69) corresponds indeed to the plateau (it does not depend on κ)
separating the PR1 and PR2 bands in the small perturbation wavelength limit κ ≫ 1 as shown
on Fig. 2.14 (black dotted line).

Two theoretical approaches have been proposed to study the breaking process of Faraday
waves. In order to assess their validity, it is necessary to detect the wavebreaking in both the
experiments and simulations. In the next section, the detection method will be detailed.

2.5 Data analysis of the experiments and simulations

In this section, we detail the method used to detect the instant at which the wavebreaking occurs
and how the primary wave amplitudes and inverse mean density gradients were measured.
Then, we discuss the validity of the global and local approaches, developed in the previous
section, against the data from the experiments and the simulations.

2.5.1 Primary wave amplitude and inverse mean density gradient

As was seen in Sec. 2.4, the primary wave is characterized, in the global theory, through the
inverse mean concentration gradient L(t) at the interface rest position z = 0 whereas, in the case
of the local theory, it is characterized through the wave amplitude ξp(t) (see Fig. 2.12). Thus, to
compare these two theories, we have to find the link between those two quantities. Assuming
that the shape of the primary wave is frozen, a proportionality relation is expected between L(t)
and ξp whose proportionality coefficient is determined by the shape of the wave. Considering a
sharp sinusoidal interface with wave amplitude larger than the interface thickness, we can write
the interface position as ζp(x, t) = ξp(t) sin(kx) and thus show that the proportionality coefficient
is π. Hence, we have L(t) = π|ξp|.

This choice was first motivated by the fact that a sinusoidal profile is a good fit for the inter-
face position (see Fig. 2.15(a)). Though if the amplitude is too small, the fit is less satisfactory
(probably because the interface thickness should be accounted for in the evaluation of the mean
concentration profile). And secondly by the expression for the finite amplitude standing wave
profile given by Thorpe [1968] in deep water approximation, knowing that the higher order
corrections are negligible even at moderate wave steepness.

However, the inverse local gradient L is a difficult quantity to obtain from the mean concen-
tration profile which is the only quantity to which we have access in the experiments. Indeed,
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Figure 2.15: (a) Visualisation of the interface in experiment EXPa7 (see Tab. A) at the amplitude maximum
just before the wavebreaking and compared to a sinusoidal profile (red line). (b) Mean concentration
profile from the experiment EXPa7 (dashed blue line) and a sinusoidal interface (black continuous line).
(c) Lint plotted as a function of |ξp| at a maximum amplitude just before the wavebreaking for all the
experiments of Tab. A. The values for |ξp| are evaluated from the crest-to-crest distance of the wave
measured directly on the images (lighter blue squares) or using the mean concentration profiles (darker
blue circles). The two arrows correspond to the EXPa7 case shown in (a) and (b).

these profiles can be noisy, especially when the secondary instabilities start, as they are obtained
from the post-processing of the camera images as detailed in Sec. 2.1 and in Briard et al. [2020].
As for the amplitude of the wave |ξp|, it can be obtained either from the crest-to-crest amplitude
of the wave measured on the raw images or from taking the height between two arbitrary thresh-
olds on the mean concentration (here we take the height where 0.1 ≤ C̄ ≤ 0.9), which are two
methods very sensitive to small variations. Therefore, we wanted to use a less sensitive method
to measure indirectly both the inverse local gradient and the wave amplitude. Indeed, using the
integral length Lint introduced in Eq. (2.39) and, again, assuming the shape of the concentration
profiles frozen, we can deduce all the characteristic lengths. For a sinusoidal interface, we have:

Lint = 2.4|ξp| = 0.76L. (2.70)
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To ensure that these relations apply in our problem, we have measured the inverse mean
concentration gradient L, the integral length Lint and the amplitude |ξp| at a local maximum
just before the wavebreaking using the threshold method on C̄. In Fig. 2.15(b), we see that the
sinusoidal profile provides a good evaluation of the mean concentration profile. The method
shows that the inverse mean gradient is maximum at the center of the layer z = 0, in accordance
with the fact that the wavebreaking starts at the nodes of the primary wave. Besides, we recover
the expected relation between L and the wave amplitude |ξp|. Therefore, the different lengths L
and |ξp| can be correctly evaluated from Lint. In Fig. 2.15(c), we further check that the relation
between Lint and |ξp| holds on multiple experimental data just before the wavebreaking. The
correlation is thus satisfactory and gives us confidence in our method to extract the amplitudes
and the inverse concentration gradients necessary to explore the wavebreaking phenomenon.

Moreover, the global theory assumes an inverse density gradient oscillating as L(t) = L0(1 +
β cos(ωt)), while in the local theory the primary wave amplitude evolves as ξp = a cos(ωt/2). By
expanding |ξp(t)| in Fourier series and truncating at leading order, we simply get L0 = 2κa/π

and β = 2/3. This allows to express the results from the global theory in terms of critical steep-
ness as for the local theory, to better compare the two. In particular, the critical wave steepness
for the global theory expressed by (2.48) in the limit of small F, using the resonance condition
κ = π, gives:

Critical steepness from the global theory

kacrit =
3
8

(2 − F)(1 + 4∆). (2.71)

2.5.2 Wavebreaking detection

Now that we are capable of measuring the amplitude of the primary wave, we have to find
out at which instant the wavebreaking occurs. This part is used to detail the method for this
wavebreaking detection.

When the wavebreaking occurs, vortices appear at the node of the wave giving birth to a
mushroom-like structure, as we can see in Fig. 2.16. Thus, one method of detection would be
a simple visual criterion. However, this is somewhat subjective so we came up with an auto-
mated detection procedure using a simple algorithm based on the Thorpe displacement, first
introduced by Thorpe [1977]. Indeed, the wavebreaking phenomenon can be defined as a local
overturning of the interface at the node and this displacement characterizes the distance a parcel
of fluid has to move vertically in order to be in a stable equilibrium with the surrounding wa-
ter. Thus, the existence of some local overturns would produce a non zero Thorpe displacement
while a completely stable profile would have no displacements. Hence, for every image in an
experiment, we compute the displacements δT = z∗ − z for each 1D vertical transect, where z
is the position of a fluid parcel on the instantaneous concentration field and z∗ is the position
of the same parcel in the vertical sorted concentration field (see Fig. 2.16). Then, when this dis-
placement exceeds a certain value (here |δT| > 5 − 12 px = 5.5 − 13.2 mm), chosen a bit smaller
than the initial interface widths, it gives us the image, and thus the instant, at which the wave-
breaking occurs. For a given experiment, this algorithm provides almost the same image, and
thus the same time and value for L, as the one chosen by eyes only (see Fig. 2.16). However,

48



Chapter 2. The subcritical transition to turbulence of Faraday waves in miscible fluids

-7

-4

-2

0

2

4

7

δ T
[m

m
]

0.54m

Figure 2.16: Procedure for the wavebreaking detection. Left: Visual criterion from the calibrated camera
image. Right: The Thorpe displacements δT evaluated by sorting the concentration field in each vertical
transect of the calibrated image. The colorbar indicates the displacement in [mm].

it is not possible to detect from this method the beginning of the ‘blurred’ region as defined in
Thorpe [1968] and indicating the secondary instability onset leading to the wavebreaking at the
nodes.

Now that we have the value of L for which there is wavebreaking, the last thing we need is
to find the value of the ratio κ, and thus kwb, as it is necessary for the local theory. For this, we
once again use the Thorpe displacement to measure the vortex size at wavebreaking. To deter-
mine kwb we take the maximum displacement δT evaluated at the image given by the Thorpe
displacement method. By construction, this measurement cannot be smaller than the arbitrary
threshold chosen for the wavebreaking detection. In practice, δT exceeds by more than three
times this value.

As a summary, we illustrate in Fig. 2.17 the whole procedure allowing for the wavebreaking
detection and the measurements of the wave amplitudes and inverse concentration gradients.
The time evolution of the integral length Lint in a simulation revealing the subharmonic oscil-
lations (Lint oscillates at frequency ω) and the growth of the primary wave are presented in
Fig. 2.17(a). The instant corresponding to the wavebreaking is determined by evaluating the
Thorpe displacement. This corresponds to the appearance of the vortices at the nodes. In addi-
tion, we show the evolution of the integral length Lint,s computed from the sorted concentration
profiles as in Briard et al. [2019]. This quantity expresses the evolution of irreversible mixing by
distinguishing the available and the background potential energies (see also for instance Win-
ters et al. [1995], Peltier & Caulfield [2003], Davies Wykes & Dalziel [2014]). We observe that the
growth of the irreversible mixing starts just after the wavebreaking time. In Fig. 2.17, we verify
further that this process is due to the wavebreaking as the curve of Lint,s gets detached from
the interface width Lint,d expressing the thickening of the interface by pure diffusion. However,
the slow evolution of Lint,s would make it difficult to build a wavebreaking detection criterion
from it. In Fig. 2.17(b), we also present the different mean concentration profiles before and
after the wavebreaking time and renormalized by Lint which confirms that the mean concentra-
tion profiles can be considered as frozen and well represented by a sinusoidal interface before
the wavebreaking. At and after the wavebreaking, the mean concentration profiles are dras-
tically distorted, and exhibit inversions of the stratification due to the roll-up of the interface.
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Figure 2.17: Time evolution of the mixing zone width and the mean concentration profiles at different
instants extracted from the DNSd2 (see parameters in Tab. B). (a) Evolution of the integral lengths Lint and
Lint,s, computed from the mean and sorted concentration profiles respectively, as a function of ωt. The
dashed line corresponds to the integral scale Lint,d expressing the thickening of the interface by diffusion
only. The star symbol at ωt = 17.75 indicates the wavebreaking detected by the Thorpe displacement.
The horizontal lines correspond to the theoretical wavebreaking predictions, here converted in terms of
integral length. (b) Mean concentration profiles at different times corresponding to the local maxima of
Lint in (a) and renormalized by the integral mixing zone width Lint. The inserted images illustrate the
state of the interface at the same instants.

The predictions from the local and the global theories are also plotted in Fig. 2.17(a) showing a
good agreement with the measured amplitude at the wavebreaking, and as expected we have
Lwb > Lcrit for both theories. We discuss more thoroughly this point in the next section.
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2.5.3 Results and discussion

2.5.3.1 Critical steepness values

The goal now is to compare the measurements of the wavebreaking in the experiments and in
the simulations against the local and global approaches presented in Sec. 2.4.

Using the procedure described in the Sec. 2.5.2, we detect the moments corresponding to
the wavebreaking. These moments are usually close to a maximum of the primary wave and
give us the Lint of the wavebreaking. However, it is the amplitude a that is needed to compare
theories and experiments. In order to find this amplitude at wavebreaking, we perform a linear
interpolation between two successive maxima. Thus, the wave steepnesses ka and wave ratios
κ are reported and superimposed to the stability curves obtained from the local and the global
approaches for both the experiments, in Fig. 2.18, and the DNS, in Fig. 2.19.

From these figures, we see that the wave steepness measured at wavebreaking is around
ka ∼ 0.75, both for the experiments and the DNS. The critical steepness values predicted by
the theories, for the moderate forcing parameters F investigated in this work, are both around
ka = 0.5. Therefore, we notice that the experimental and numerical values are located above
the thresholds provided by the theories and inside the parametric resonance instability band.
Some points happen to be slightly below the threshold given by the global theory at ∆ = 0.04 in
Fig. 2.18(d) and 2.19(d). These points correspond to negative detuning cases which have lower
critical steepness value.

This result gives a strong credit to a wavebreaking process due to a secondary subharmonic
instability appearing when the primary wave reaches a critical amplitude. Therefore, it is a sub-
critical instability. Moreover, we performed a numerical simulation, DNSe, whose parameters
puts it close to the neutral curve (see Tab. B and Fig. 2.9). In this case, the primary wave reaches
a saturation amplitude below the critical steepness and does not experience wavebreaking.

Another feature to be noticed from Fig. 2.18 is that the ka measured in the experiments tends
to decrease when the wavenumber ratio κ increases. This stands despite the difficulty to evaluate
κ but is less obvious in the DNS (see Fig. 2.19. Although the neutral curves depend very weakly
on κ (they do not depend on it with the global theory), the instability growth rates evaluated
from the Floquet theory increase when the small perturbation wavelength κ becomes large in
the local theory. This is a characteristic result of classical inviscid theories such as for the Kelvin-
Helmholtz instability. It is therefore not surprising to see that the wavebreaking occurs earlier,
i.e. at smaller ka, when the secondary instability is initiated at smaller wavelengths. Moreover,
the unstable modes from the higher parametric bands (PR2 for instance) may play a role in the
destabilization process of the primary wave. More precisely, it may explain the blurring of the
interface already observed by Kalinichenko [2005], well before the wavebreaking, at ka ∼ 0.4.
These PR bands are, however, expected to be seriously damped by the viscosity in addition of
having a lower growth rate.

We also found that the growth rates of the PR1 modes, as computed in the local theory, are
very large compared to the primary Faraday wave ones. Indeed, we find Floquet exponents
µ varying between 2 and 8, corresponding to an amplification around 500 over one oscillation
period. By contrast, the primary wave has Floquet exponents around 0.8. This is due to the
additional forcing generated by the primary wave and explains why the breaking process de-
velops over one or two oscillation periods. It seems also justified to neglect in the theory the
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Figure 2.18: Parametric instability bands (colored regions) and experimental data (symbols) correspond-
ing to the wavebreaking in a κ − ka representation. The parameters for the experiments are detailed in
Tab. A. The left (a,c) diagrams correspond to the local theory (PR1 instability band). The right (b,d) ones
are associated with the global theory. We place the theoretical instability zones with ∆ = 0 in the (a,b)
figures and ∆ = 0.04 for the (c,d) figures, all of them with F = 0.3 and F = 0.7. The symbol colors indicate
successively (a) the forcing parameter F, (b) the Atwood number A, (c) the detuning ∆ and (d) the pri-
mary wave mode in the experiments.

growth of the primary wave amplitude for these parameters. By contrast, the growth rates eval-
uated by the global approach are much more modest (∼ 0.2). This point is probably due to
the assumption linking the local mean concentration gradient to the amplitude of the primary
wave detailed in Sec. 2.5.1. Indeed, as soon as the secondary instability develops, the shape of
the mean concentration profile is distorted due to the perturbation feedback. This aspect is well
demonstrated in the simulation result of Fig. 2.17. It eventually leads to a local change of sign in
the stratification which would in return considerably increase the instability growth rate. How-
ever, this effect is not accounted for in the present global approach which still remains effective
at predicting the secondary instability onset.

A large range of κ values has been found in the experiments and simulations, which comes
equally from the primary and secondary wavelength measurements. The simulations provide
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(a) (b)

(c) (d)

Figure 2.19: Same as Fig. 2.18 but for the DNS data corresponding to the series DNSa (see Tab. B).

larger κ (up to 110 in Fig. 2.19) partly because the primary wavelength is large. Therefore, an
important question is: how is the wavenumber kwb selected? Neither the global theory, which
does not depend on kwb, nor the local theory, which relies on the analysis of an infinitely thin
interface, can explain this aspect. When the interface thickness reaches comparable size with the
secondary instability wavelength, the natural frequency becomes bounded and the instability
growth rate is expected to be limited. By analogy, the pure KH instability (represented by the
Taylor-Goldstein equation) has a maximum growth rate around δkwb ∼ 1 at low Richardson
number. This also depends on the shear and density profiles considered for the analysis (see
for instance Taylor [1931], Hazel [1972], Caulfield [1994]). The same process for the PR mode
seems at work in our experiments as suggested by the measurements of kwb. This has been also
evidenced theoretically by Poulin et al. [2003] on oscillatory uniform shear layer configurations.
However, the local analysis accounting for the interface thickness is rendered complex by the
coupling between the internal layer modes induced by the time varying shear and acceleration.
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2.5. Data analysis of the experiments and simulations

2.5.3.2 Exploring further the forcing parameter effect

From Eqs. (2.69) and (2.71), we see that the local and global approaches differ in their depen-
dence on the forcing parameter F. Indeed, the critical wave steepness grows linearly in F in the
case of the local theory (see dashed line on Fig. 2.20) while, for the global theory, the dependence
on F is more complex, it even exhibit a diminution of the wave steepness at small F (see dotted
line on Fig. 2.20). Several DNS were performed, the DNSd cases, to investigate the dependence
of the wave steepness on the forcing parameter and the results are shown on Fig. 2.20). These
simulations are conducted using the same initial conditions and frequency ω, varying only the
forcing parameter F and the results show a critical wave steepness globally evolving linearly
with F. This seems reasonably well predicted by the local approach although it ends up over-
estimating the critical wave steepness at very large F (above F = 4). By contrast, the global
approach clearly underestimates the critical wave steepness. However, when F become large,
the growth of the primary wave amplitude cannot be neglected over one oscillation period, so
the global and local approaches become limited. In the DNSd cases of Fig. 2.20, the wavebreak-
ing occurs during the first oscillation for F ≥ 3, when the sign of gravity is inverted. Therefore,
at large F, the secondary instability is expected to change nature as it becomes triggered more by
the growth of the primary wave than its oscillations. In that respect, the wavebreaking process
is no longer parametric but becomes of KH type similar to the one appearing in Rayleigh-Taylor
instability (Birkhoff [1962], Daly [1967], Baker et al. [1993]).
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Figure 2.20: Wave steepness at wavebreaking as a function of the forcing parameter F for the DNSd cases
(symbols) with ω = 4.29 rad.s−1 and A = 0.045 (see Tab. B). The dashed and dotted curves correspond
respectively to the local and global criteria. Inserts: Visualisation of the concentration field in DNSd3 and
11 just after the wavebreaking.

2.5.3.3 The final transition to turbulence

So far, we have not demonstrated that the secondary instability developing at the node of the
primary wave triggers the full transition to a turbulent regime. Indeed, the simulations with
a 2D interface initialisation are unable to develop the cascading process leading to turbulence.
We thus provide as an example the simulation DNSf where the 2D initialisation is perturbed by
a small random white noise in the spanwise y direction. In Fig. 2.21, we compare at different
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ωt = 0

ωt = 8.6

ωt = 15.8

ωt = 25.7

ωt = 34.3

Figure 2.21: Visualisation of the interface at different times of DNSd3 (left) and DNSf(right) correspond-
ing to the parameters in Tab. B. Wavebreaking is detected at ωt = 14.5 for both simulations.

times DNSf with the simulation DNSd3 using the same parameters (see Tab. B) but having a
simple 2D initial condition.

Both simulations evolve similarly until wavebreaking (here at ωt = 14.5). This means also
that the critical amplitude is not modified by the small spanwise y perturbation, hardly visible
since its amplitude is two orders of magnitude smaller than that of the x 2D perturbation. This
feature has been reproduced on other simulations at different ϵ1 parameters or in simulations
where the spanwise invariance is broken by the presence of lateral walls. After wavebreaking,
the simulations differ sensitively as DNSf (or simulations with the spanwise invariance broken)
exhibits a rapid transition to turbulent mixing. The process is so violent that turbulence does
not remain confined to the node of the Faraday wave and spreads around the whole layer. The
images of Fig. 2.21 at ωt = 25.7 reveal that the final mechanism leading to turbulent mixing is
related to the merging and the stretching of the secondary vortices at the node forced by the
oscillations of the Faraday wave.

In order to identify the specificity of this transition, we evaluate the Reynolds and bulk
Richardson numbers as classically introduced for the Kelvin-Helmholtz instability (Caulfield
[2021]). Taking for the interface half width σ and for the half shear velocity U = aω/2, we find
Re = Uσ/ν = 313 at the wavebreaking (ωt = 14.5). For the bulk Richardson number, we obtain
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Ri = AG0σ/U2 = 0.023. While the low value of the Richardson number is consistent with the
existence of a strong shear instability, the Reynolds number is unexpectedly small for a mixing
transition. This is despite being probably underestimated due to the blurring of the interface
before the wavebreaking. Perhaps the fact that the transition does not result from a convective
secondary instability inside the vortices as often observed for the Kelvin-Helmholtz instability
(Salehipour et al. [2015]) may explain this aspect. By contrast, we can consider a global Reynolds
number based on the width and velocity of the layer. This gives Re = a2ω/ν ∼ 104 and agrees
with a mixing transition criteria of Re > 104 proposed by Dimotakis [2005].

2.6 Conclusion

In this chapter, the wavebreaking mechanism leading to turbulence of growing Faraday waves
at the interface between miscible fluids of small density contrast was investigated experimen-
tally, numerically and theoretically along with the mode selection mechanism of the primary
wave.

We have evidenced that the mode selection of the Faraday wave results not only from a linear
process but also a nonlinear competition favoring the modes with smaller wavelength. Indeed,
it was shown that, considering the large forcing accelerations and quantification induced by the
geometry of the tank used in our experiments, several subharmonic modes can be simultane-
ously unstable by the Floquet linear theory but only one appears. The parameters taken in the
experiments are located well above the instability threshold even if we take into account the
viscous damping at the walls and from the bulk flow. Hence, the inviscid theory provides a
good first approximation for this problem. Moreover, as the mode amplitude grows, the natu-
ral frequencies of the system decrease. Therefore, when the primary amplitude reaches critical
value, the modes with positive detuning, called subcritical, are favored whereas the modes with
negative detuning, called supercritical, become damped as they are less in parametric resonance
with the forcing frequency. This mode competition phenomenology also explains the sensitivity
to initial conditions and the symmetry breaking of the dominant mode which has been observed
in our experiments.

Two theories were constructed to explain the breakdown of the primary wave as the ap-
pearance of a secondary subharmonic instability at small scales. The first theory, referred to as
‘global’, is based on a horizontal averaging process and reveals that the secondary instability is
mostly due to the oscillations of the primary wave. This explains why this instability develops
very rapidly compared to the growth rate of the primary wave. From this theory, we propose a
criterion giving the critical steepness of the primary wave at which the wavebreaking is expected
to occur. However, this theory is too simple and it cannot explain why the secondary instability
appears at the node of the wave and how it depends on its wavelength. This is why we thought
of a second theory, referred to as ‘local’. In this theory, we study the flow in a local frame at-
tached to the node of the wave. It reveals the importance of the shear in the development of
the secondary instability. From a stability analysis, it was shown that the unstable modes can
be either Kelvin-Helmholtz or of parametric resonance type, with the latter developing earlier
during the growth of the primary wave.

Then, we compared these theories to the experimental and numerical data. Thus, we eval-
uated the primary wave amplitudes and the wavenumber associated with the wavebreaking
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thanks to the Thorpe displacement method which indicates a local overturning. The results
show that the wavebreaking is detected for wave steepnesses around 0.75 inside the parametric
resonance band. Thus, it was deduced that the wavebreaking came from a parametric resonant
subharmonic instability developing when the primary Faraday wave amplitude reaches a criti-
cal value: it is of subcritical nature. Therefore, the present mechanism for Faraday waves shows
similarities with the breaking process of internal gravity waves. However, when the forcing pa-
rameter is increased, our approaches come to a limitation as the wavebreaking process changes
in nature resulting more from the amplitude growth of the primary wave than its oscillations. In
this case, the phenomenon becomes similar to the secondary vortices appearing in the classical
Rayleigh-Taylor instability.

In addition, to show that this wavebreaking does lead to turbulence, numerical simulations
with 2D initial conditions perturbed along the spanwise direction were performed. It was in-
deed found from these simulations that the final transition to turbulence originates from the
secondary instability at the node of the wave. The stretching and merging of the secondary vor-
tices driven by the oscillations of the primary wave is an efficient mechanism to produce mix-
ing, differing substantially with the transition scenarios observed in the context of the Kelvin-
Helmholtz instability.
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3.1. Description of the instability

Introduction

The second part of this thesis is dedicated to the Rayleigh-Taylor instability through a grid.
Thus, this chapter is aimed at describing the classical Rayleigh-Taylor instability and its main
features. Moreover, a small review of the experimental and numerical studies and some recent
findings are given.

3.1 Description of the instability

Unlike the Faraday instability, the Rayleigh-Taylor instability, also involving the superposition
of two fluids of different densities, is not a parametric instability. Indeed, in this case the heavier
fluid is on top of the lighter one in a vertical downwards gravitational field. Thus, it is naturally
unstable to any sort of perturbations at its interface (in a case without viscosity or surface ten-
sion) and is solely driven by the gap in potential energy coming from the difference in density of
the two fluids. The bigger this difference, the more rapidly the instability develops. However,
it bodes well to remember that if there are no perturbations at the interface between the two
fluids, the hydrostatic pressure will maintain the system.

The Rayleigh-Taylor instability (see Fig. 3.1b) has been extensively studied throughout his-
tory starting with the observations of Rayleigh [1882] and Taylor [1950] describing the very char-
acteristic development of this instability: we have ‘bubbles’, or mushroom-like shapes, of lighter
fluid ascending inside the heavier fluid while ‘spikes’ of heavier fluid fall inside the lighter fluid,
thus creating a mixing layer expanding away from the initial position of the interface between
the two fluids (see Fig. 3.1a).

At small Atwood number (A < 0.1, arbitrary threshold), defined as A = (ρh − ρl)/(ρh + ρl),
the up-welling (bubble) and down-welling (spike) penetrations are almost the same, thus the
disturbances form a symmetrical mixing region. Therefore in small Atwood incompressible

(a) (b)

Figure 3.1: (a) Rayleigh-Taylor bubble and spike. The penetration distance, from the initial position of
the density interface, of the light bubble (ρ2) is written h1 and the corresponding penetration of the heavy
spike (ρ1) is written h2. This figure was taken from Andrews & Dalziel [2010]. (b) Visualisation of a
vertical slice of the density field in the Rayleigh-Taylor instability mixing layer at late time for an Atwood
number of 0.5. The gravity is directed downwards. The heavy fluid is in black while the light fluid is in
yellow. This image was taken from Cabot & Zhou [2013].

60



Chapter 3. State of the art : The Rayleigh-Taylor Instability

cases, the Boussinesq assumption is used. This assumption states that the density can be taken as
constant everywhere in the equations except in the buoyancy terms where the density difference
effects need to be accounted for. However, at large Atwood number, the spike narrows, the drag
on its head decreases and thus, its penetration is greater than that of the bubble. The tip of the
structures are destabilised by the Kelvin-Helmholtz instability, involving the local shear, which
leads to mixing and turbulence.

The reason behind the extensive study of this instability is that it can be found in several nat-
ural instances like the cirrus clouds where characteristic mushroom-like shapes can be seen. It
also plays an important role in many scientific domains such as oceanography, climate dynam-
ics, astrophysics (for example in the filamentary structure on the sun) and in many industrial
applications such as the Inertial Confinement Fusion or painting (a more detailed list can be
found in Zhou [2017a] and Zhou [2017b] where the instability is reviewed).

3.2 Self-similar regime and turbulence

The evolution of a Rayleigh-Taylor mixing layer can be divided into three stages: first the linear
phase, then the nonlinear growth and finally, self-similar growth. The linear phase, in which
the initial perturbations grow exponentially and independently until they reach a critical ampli-
tude called the saturation amplitude, can be predicted by linear stability theory. The nonlinear
growth results from the mode coupling which leads to the development of an inertial range of
scales in the kinetic energy spectrum and ultimately the mixing transition. This mixing transi-
tion occurs for large Reynolds numbers, Re = Ul/ν > 1− 2× 104, where U is the velocity, l is the
tranverse extent of the flow and ν is the kinematic viscosity (Dimotakis [2000]). The self-similar
growth occurs after the Rayleigh-Taylor mixing layer transitions to fully developed turbulence
(Cook & Dimotakis [2001] and Cook et al. [2004]).

In mathematics, a self-similar object is similar to itself at a different scale. This property
can be found in everyday objects such as the Romanesco broccoli (Fig. 3.2). Indeed, the same
pattern is found in the Romanesco broccoli as one zooms in on the picture. For the Rayleigh-
Taylor instability, the temporal growth of the mixing layer is self-similar with a well known
expression in the Boussinesq approximation given by Youngs [1984]:

Figure 3.2: Romanesco broccoli as a self-similar object. Image taken from the Wikipedia page.
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Mixing layer width

L(t) = 2αAG0t2, (3.1)

where α is the bubble growth rate. This expression was popularised by Youngs [1984]. How-
ever, Birkhoff [1954] first derived a self-similar growth for mixing layer that is consistent with
Eq. (3.1). Indeed, he found that, in the long term, the penetration distance hb of the bubbles in
the heavy fluid can be written hb = αbAG0t2, αb being the growth rate of the bubbles, while the
penetration distance of the spikes is hs = αsAG0t2, where αs is the growth rate of the spikes.
Thus, using the notation of Eq. (3.1), we have L(t) = (αb + αs)AG0t2. The height hb is given by
the saturated linear mode with the biggest amplitude. Moreover, he supposed that the spikes
fall with a free fall velocity such that their height is proportional to G0t2. Self-similarity in the
Rayleigh-Taylor instability is often associated with the large-scale properties of the flow, domi-
nated by production mechanisms, which were largely studied in CEA (Gréa [2013], Soulard et al.
[2015] and Soulard et al. [2016]).

The growth rate of the mixing layer is a critical parameter, not only for engineering appli-
cations, but also because it characterises the self-similar dynamics of the Rayleigh-Taylor insta-
bility. It will be evaluated, using the Boussinesq assumption (Glimm et al. [2001] and Jacobs &
Dalziel [2005]), as:

Growth rate

α =
L̇2

8AG0L
. (3.2)

Other techniques exist to compute this growth rate and were compared in Cabot & Cook [2006]
as shown in Fig. 3.3a: the similarity method (Eq. (3.2)) is more robust than other evaluations
such as α = L/AG0t2, or fitting with polynomials, or using a criterion based on a concentration
threshold.

The value of the growth rate is still a much discussed topic due to the large discrepancies
found in the literature. However, the work of the α-group (Dimonte et al. [2004]) should be men-
tioned here. It was a collaboration between several teams working to find a value for the growth
rate of the mixing layer when the self-similar regime is reached. It allowed the comparison be-
tween experimental results and identical simulations performed with different numerical codes.
They observed a clear difference between the experimental and numerical values for the growth
rate, namely around α ∼ 0.025 while in the experiments α ∼ 0.055. Moreover, the miscibility
seems to strongly affect the value of the growth rate α (Roberts & Jacobs [2016]) indicating that it
plays a role in the late-time turbulent instability growth. Indeed, the growth rate for the miscible
experiments of Roberts & Jacobs [2016] was found to always be significantly smaller than the
growth rate of the immiscible experiments.
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(a) (b)

Figure 3.3: (a) Comparison of measurement techniques for the Rayleigh-Taylor instability growth rate, α,
including the Reynolds number (Re) dependence. The mixing layer thickness (h) and its growth rate (ḣ)
are normalized by the Atwood number (A), gravity (g) and time (t). Figure taken from Cabot & Cook
[2006]. (b) Comparison of αb from numerical simulations (points) and experiments in histogram form.
LEM is from Linear Electric Motor (Dimonte & Schneider [2000]), RR from ‘rocket rig’ (Read [1984]),
K from Kucherenko et al. (Kucherenko et al. [1991]), AS is from Andrews and Spalding (Andrews &
Spalding [1990]). Figure taken from Dimonte et al. [2004].

3.3 Experimental works and Numerical simulations

The Rayleigh-Taylor instability has been extensively studied through experimental works (for
example Schneider et al. [1998], Ramaprabhu & Andrews [2004] and Akula et al. [2013]) and
numerical studies (for example Cook & Dimotakis [2001], Cook et al. [2004] and Glimm et al.
[1990]). However, it can be difficult to control and characterize the initial perturbation in these
experiments which is the principal drawback of experimental investigations. This issue can be
resolved using computational studies as the initial conditions are more easily controlled and
characterized. Both methods have their advantages and drawbacks and one must complement
the other. The second part of this thesis being dedicated to the study of the turbulent mixing,
a sample of large-Reynolds-number Rayleigh-Taylor experimental and numerical studies are
reviewed hereafter. For a more comprehensive list, see the reviews Zhou [2017a] and Zhou
[2017b].

3.3.1 Experimental works

A classic experiment in the Rayleigh-Taylor research field is the ‘Rocket Rig’ (RR) of Read [1984],
which consists of two-dimensional or three-dimensional boxes filled with the lighter fluid above
the heavier one. These are then accelerated downwards with an acceleration up to 50 times that
of the gravity which sets up an unstable Rayleigh-Taylor interface (see Fig. 3.4a for the exper-
imental setup). However, only high Atwood numbers were considered and most experiments
were made with immiscible fluids. Indeed, the interface in RR experiments with miscible fluids
would smear due to diffusion leading to a delay in the development of the mixing layer. These
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(a) (b)

Figure 3.4: (a) Experimental apparatus of the Rocket Rig. Figure taken from Read [1984]. (b) Left: Experi-
mental configuration for the Linear Electric Motor. Right: Closeup view of projectile in acceleration (top)
and brake regions (bottom). Figure taken from Dimonte & Schneider [2000].

experiments inspired the immiscible linear electric motor experiments (LEM) of Dimonte et al.
[1996], Dimonte & Schneider [1996] and Dimonte & Schneider [2000]. The details of this exper-
imental setup, whose picture is shown in Fig. 3.4b, are given in Dimonte et al. [1996] where it is
described as a rail gun but with ‘augmentation coils, solid armatures, and open diagnostic ac-
cess’. The basic goal is the same as the RR experiments: to accelerate a system of a light fluid on
top of a heavy one in order to produce turbulent mixing through the Rayleigh-Taylor instability.
Here, the facility allows for an acceleration up to a thousand times the earth’s gravity and vari-
able acceleration profiles unlike the Rocket Rig. Both of these experiments have the particularity
to possess a non constant gravitational field.

Small Atwood number experiments were not carried out with these setups as it would re-
quire for the box to move a much higher distance S to reach the late-time mixed state than with
high Atwood number. This accelerating distance could easily become a difficulty as we have
S > 300H, with H the box height, for Atwood numbers smaller than 0.01.

Hence, stationary Rayleigh-Taylor experiments were created to explore small Atwood num-
bers. These use miscible fluids and innovative methods to place the heavy fluid over the light
one and three of them are listed hereafter.

3.3.1.1 The overturning tank

The first stationary experiment is the overturning tank engineered by Andrews & Spalding
[1990] (see Fig. 3.5). The experimental setup is shown in Fig. 3.5a and consists of a narrow
tank of thickness 0.5 cm, height 36 cm and breadth 25 cm filled with fresh water on top of a
heavy brine solution. It pivots around its center and when it is released, it spins 180◦ thanks to
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(a)

(1) (2)

(3) (4)

(b)

Figure 3.5: (a) Experimental setup of the overturning tank. Figure taken from Andrews & Dalziel [2010].
(b) Tilted-rig experiments with an initial tilt angle of 0.9◦ and an Atwood number of A = 0.048 taken at
different times: (1) t = 2 s, (2) t = 2.2 s, (3) t = 2.4 s and (4) t = 2.6 s. Figure taken from Andrews & Dalziel
[2010].

springs and is caught at the top by a door catch thus placing the heavy fluid on top of the lighter
one. The experiments could be performed either with a horizontal interface or with an initially
tilted rig with a wedge placed on one side. The tilted rig generates an initial long wavelength
of half a sawtooth. The result of this tilted-rig experiment for an initial angle of 0.9◦ is shown
in Fig. 3.5b at four different times with an Atwood number of A = 0.048. In the beginning, the
center of the mixing region develops as if it were a flat interface with visible bubbles and spikes.
Then, an overturning motion appears with the creation of jets at the sides of the box. As this
overturning motion develops, the central mixing zone is rotated and stretched out due to the
longer wavelength initial perturbations. This leads to a thinning of the central mixing region.

Thus, this new type of experiment found a way to overcome the issue of mixing development
time at small Atwood number by inverting the position of the two fluids and holding the tank
steady until the mixing was complete. This was used by Voropayev et al. [1993] to explore
the Rayleigh-Taylor instability in a linearly stratified fluid and by Dalziel et al. [2008] to study
the Rayleigh-Taylor mixing in a high aspect geometry. However, the narrow depth of the tank
imposed a two dimensional flow although it is necessary to prevent sloping during the overturn.
Moreover, the initial condition is not well controlled as catching the tank at the top causes it to
shake, which introduces small perturbations. These perturbations were found to have higher
wavenumbers than the most unstable one and thus they were not significant. Other issues were
found with these experiments and are listed in Andrews & Dalziel [2010].
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3.3.1.2 The sliding barrier

The second experiment is the sliding barrier experiment (see Fig. 3.6a) which was developed by
Linden & Redondo [1991] in Cambridge University in order to provide a low Atwood number
three dimensional setup.

(a) (b) (c)

Figure 3.6: (a) Low aspect-ratio Rayleigh-Taylor box, showing its barrier fully withdrawn. Photo taken
from Lawrie [2009] (b) Composite sliding barrier tank with the barrier being withdrawn. The light grey
shading represents the nylon fabric wrapped around the dark grey metal plates. (c) Illustration of process
by which the fabric (dashed) is removed through the gap between the plates. Images taken from Andrews
& Dalziel [2010].

This experiment consists in separating initially the two fluids with a barrier that is later on
removed. Thus, the lighter fluid (fresh water) is placed beneath the barrier while the heavier
fluid (salt water) is put above it inside a cuboidal tank. Equal volumes are occupied by the
fluids. Then, the barrier is removed by sliding it through a slot at one end of the tank (see
Fig. 3.6b). The initial experimental setup introduced by Linden & Redondo [1991] had a simple
metal barrier which was then replaced by a pair of horizontal plates each wrapped in nylon
fabric (see Fig. 3.6c). The goal of this new type of barrier was to eliminate the viscous boundary
layers that forms on the upper and lower surfaces of the barrier as it is withdrawn. Indeed,
the plates are removed at speed U by pulling on the nylon fabric from the tank at speed 2U,
confining the shear between the plates and the nylon.

The two main issues with this experiment are: the finite time of the barrier withdrawal and
the asymmetrical filling of the void left after the removal of the plates by the upper fluid. The
former introduces a delay in the contact between the two fluids. The latter initiates a two-
dimensional vortex sheet seeding a large-scale two-dimensional component persisting through-
out the experiments. This can result in a jet that is accelerated as can be seen in Fig. 3.7 down
the right-hand wall in an experiment made by Dalziel et al. [1999].

Despite these drawbacks, this experimental setup was quite recently used by Holford et al.
[2003] to investigate the effect of an initial tilt on the interface, Jacobs & Dalziel [2005], Lawrie
[2009] and Davies Wykes & Dalziel [2014] to study the development of the Rayleigh-Taylor
instability in complex stratifications.
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(a) (b)
Figure 3.7: LIF images of a typical experiment at (a) t = 5 s and (b) t = 10 s. Pictures taken from Dalziel
et al. [1999].

3.3.1.3 The water tunnel

The third experiment is that of the water tunnel (see Fig. 3.8) developed by Andrews and collab-
orators (Snider & Andrews [1994], Wilson et al. [1999] and Wilson & Andrews [2002]) at Texas
A&M University.

In this experiment, the heavy fluid (cold water with typical temperature 20◦ C) is put over
a splitter plate and the lighter fluid (warm water with typical temperature 25◦ C) is below as
shown in Fig. 3.8. Hence, at the end of this plate, the lighter fluid is below the heavier one
and the mixing layer brought by the Rayleigh-Taylor instability develops downstream. The
densities of both fluids can be computed through an equation of state for water. Thus, in this
case the Atwood number is 7.4×10−4. It results in a spatially evolving mixing layer as the fluids
flow downstream as shown in Fig. 3.9.

Figure 3.8: Schematic of the water tunnel experimental setup. Figure taken from Andrews & Dalziel
[2010].
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Figure 3.9: Mixing layer development in the water tunnel experiment. Upper, clear, heavy water mixes
by Rayleigh-Taylor instability with lower, dark, light water generating turbulent mixing. Picture taken
from Andrews & Dalziel [2010].

The main goal behind the development of this experimental setup was to generate a statis-
tically steady Rayleigh-Taylor experiment in order to validate advanced statistical turbulence
models. The flow visualisation was developed by Snider & Andrews [1994], then Wilson & An-
drews [2002] introduced spectral measurements for this experiment and finally, Ramaprabhu
& Andrews [2004] used advanced PIV diagnostics to improve the data collection methods. Re-
cent works used chemical indicators to obtain direct measurements of the molecular mixing
(Mueschke et al. [2009]) and studied high Atwood number Rayleigh-Taylor instability through
the development of a new gas tunnel experiment at Texas A&M University (Banerjee & Andrews
[2006]).

3.3.2 Numerical simulations

As said previously, the numerical simulations’ main advantage is the control over the initial
conditions that is not easily achieved in experiments.

The first direct three-dimensional numerical simulations of the Rayleigh-Taylor instability
have been performed by Youngs [1984], Youngs [1991] and Youngs [1994] to investigate turbu-
lent mixing due to this instability. It was notably found in Youngs [1991] that the value of α

for miscible fluids may have been overestimated when evaluated from the immiscible fluids ex-
periments of Read [1984] or from the miscible fluids experiments of Linden & Redondo [1991].
Indeed, in those experiments they found α = 0.07 whereas Youngs [1991] found α = 0.04 (see
Fig. 3.10).

As mentioned before, the value of the growth rate was studied by the α-group (Dimonte
et al. [2004]) through an extensive numerical work using a variety of high-resolution, multi-
mode, three dimensional numerical simulations. Indeed, seven different codes named TUR-

MOIL3D, FLASH, WP/PPM, NAV/STK, RTI-3D, HYDRA and ALEGRA from five different institutes (AWE,
U. Chicago, LLNL, Texas A&M and Sandia NL) were compared, each with their own meth-
ods (Eulerian, Piecewise Parabolic Method, NS and Arbitrary Lagrangian Eulerian approach)
to study the turbulent Rayleigh-Taylor instability. They also used this important numerical
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Figure 3.10: Bubble penetration against τ2 = AG0t2/H (H × H × H being the computational domain size)
for ρ1/ρ2 = 20. The different symbols represent different meshes and even 2D simulations. Figure taken
from Youngs [1991].

Figure 3.11: 2D density slices showing dominant bubbles at Agt2/L ∼ 14 for the simulation code ALEGRA

and ∼ 22 for all other simulation codes. Figures from Dimonte et al. [2004].

database to investigate several effects such as the evolution of the mixing parameter or the
bubble densification shown in Fig. 3.11. They found smaller values of the growth rate α in
the simulations than in the experiments which they attributed, at least partially, to larger scales
initial conditions in the experiments.

Very recent work studied the suppression of the Rayleigh-Taylor turbulence by means of a
time-periodic acceleration through 3D simulations (Boffetta et al. [2019]). They discovered that
an alternating acceleration could relaminarise the turbulence. This periodic vertical acceleration,
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(a) (b) (c)
Figure 3.12: Vertical sections of size Lx × Lz of the temperature field (yellow=hot, blue=cold) for Rayleigh-
Taylor turbulence in periodic acceleration of period T = 3τ, where τ =

√
Lx/(AG0), at times (a) t = 1.5T,

(b) t = 4T and (c) t = 10T. Simulation sat resolution M = 512. Images taken from Boffetta et al. [2019].

alternating phases of unstable and stable stratification, initially produces a growing turbulent
mixing layer. However, after a few periods of the acceleration, an asymptotic state is reached
(see Fig. 3.12) in which the turbulence decays in time and becomes unable to develop further
instabilities. The finite extension of the mixing layer in this asymptotic state was found to have
an amplitude proportional to T2 where T is the period of the acceleration.

This thesis focuses on the dynamics of the Rayleigh-Taylor instability through a grid. As
such, the study of the Rayleigh-Taylor instability through a porous media was of particular
interest and is described hereafter.

3.4 Rayleigh-Taylor instability in porous media

A recent study by Boffetta & Musacchio [2022] addressed the effects of the dimensional confine-
ment on the evolution of the incompressible Rayleigh-Taylor mixing. This study used numerical
simulations both in a bulk flow and in a porous medium, either in a three dimensional case or in
an ideal two dimensional case where the confinement is not caused by the presence of side walls.
In the bulk flow, the dynamics is ruled by the Navier-Stokes equation whereas, in the porous
medium, it follows the Darcy equation. The vertical sections of the density field are shown in
Fig. 3.13 for these simulations.

It is evident that the structures are very different between a classical Rayleigh-Taylor insta-
bility (NS system) and a porous one (Darcy system). Indeed, in the NS configuration ((a) and (b)
of Fig. 3.13), we have the expected bubbles and mushrooms, while in the Darcy configuration
((c) and (d) of Fig. 3.13), there are only thin elongated ‘fingers’. Thus, the turbulent properties
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(a) (b) (c) (d)

Figure 3.13: Vertical sections of the density field for: (a) a three-dimensional Navier-Stokes simulation
(bulk flow), (b) a two-dimensional Navier-Stokes simulation, both at time t = 25, and for (c) a three-
dimensional Darcy simulation (porous medium) and (d) a two-dimensional Darcy simulation, both at
time t = 30. White represents light fluid while black represents heavy fluid and gravity is in the vertical
direction. Figure taken from Boffetta & Musacchio [2022].

and the mixing parameter are very likely to be very different as well.
However, it was found that both configurations show similar dependence on the dimen-

sionality. Indeed, at fixed time, for both configurations, the structures are more elongated in
two dimensions and less blurred than in three dimensions, meaning there is less mixing due to
the faster growth of the large structures. It was found that, in two-dimensional geometry, the
mass flux is more intense and the correlation between the vertical velocity field and the density
field is stronger, giving a bigger Nusselt number Nu, representing the dimensionless mass flux,
for the same Rayleigh number Ra. This increase correlation makes for a faster growth rate of the
mixing layer in two dimensions. Indeed, it is demonstrated by the authors that the growth rate
of the mixing zone width is larger by about 57% in the 2D simulations than in the 3D simulations
in both the Navier-Stokes and Darcy simulations. The α-group also reported a higher growth
rate in 2D than in 3D (Dimonte et al. [2004]). The downside of this larger correlation and faster
growth rate is the loss of homogeneisation of the density fluctuations within the mixing layer
in the two-dimensional geometry. This was shown by the much larger variance of the density
fluctuations in 2D compared to 3D (around 100% larger).
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Introduction

The Rayleigh-Taylor instability, described in Chapter 3, is known to be extremely hard to study
experimentally. Indeed, briefly, it consists of the superposition of a heavier fluid on top of a
lighter one in a gravitational field (Taylor [1950]). For ideal fluids (no viscosity nor surface
tension), this configuration is unstable to any perturbations. Thus getting the heavier fluid on
top of the lighter one, without perturbing the interface between the two fluids, is not an easy
task. Moreover, this instability dynamics is very sensitive to the initial conditions even in the late
time dynamics (Zhou [2017b]). This means that it is quite crucial to control perfectly these initial
conditions. However, most Rayleigh-Taylor experiments (Linden & Redondo [1991], Lawrie
[2009]) introduce a shear at the very beginning of the instability, thus the initial conditions are
not perfectly controlled. A good control of the initial conditions is important as it impacts the
growth rate in the long term.

In an attempt to better control the initial conditions, a new type of Rayleigh-Taylor experi-
ment is presented in this chapter (see Fig 4.1). The idea is to use a grid to maintain the heavier
fluid on top of air in a reversed container. Then the heavier and lighter fluids are put into contact
allowing for the instability to develop. The grid remaining at the interface between the two flu-
ids throughout the duration of the experiment, it is important to assess its impact on the overall
dynamics.

Heavy fluid

ρh

Light fluid

ρl

Grid

Figure 4.1: Operating principle of the new type of Rayleigh-Taylor experiment.

This chapter is organised as follows. First, the experimental setup, the linear stability anal-
ysis for the two interfaces of the system (water-air and brine-fresh water) and the experimental
data are presented in Section 4.1. The code and different numerical parameters used are after-
wards given in Section 4.2 and lastly, a numerical study to investigate the effect of the grid is
detailed in Section 4.3.
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Chapter 4. The Rayleigh-Taylor instability through a grid: Influence of the grid

4.1 Experimental work

The experiments were made at the Ecole Centrale de Lyon with the collaboration of Louis Gos-
tiaux and Marc Michard of the LMFA (CNRS, UMR) and the idea of using a grid first came from
Olivier Soulard (CEA, DAM, DIF).

4.1.1 Principle and Linear Stability Analysis

The entire experiment is based on the use of a grid and surface tension to maintain a body of
brine inside a reversed container. This means that a stable configuration, involving the super-
position of salt water on air, must be obtained. This can only occur if the holes of the grid are
small enough that the surface tension becomes strong enough to stop the brine from flowing
through them. Performing the linear stability analysis of the salt water-air interface, we can find
the critical wavelength above which this configuration becomes stable.

2π/k ρh

ρl

water

air

G0z

0 ξ

x
Figure 4.2: Sketch of the water-air interface.

Considering a 2D incompressible and inviscid system containing two uniform inviscid and
immiscible fluids of constant density separated by a horizontal boundary at z ∼ 0 (see Fig. 4.2),
the linearised equations of motion for the perturbation fields of small amplitude in each fluid
are (Chandrasekhar [1961]):





ρ∂tu = −∂x p,

ρ∂tw = −∂z p − G0ρ,
(4.1)

where p is the perturbation around the hydrostatic state of the pressure field G0 is the grav-
itational acceleration, u is the x-velocity component and w is the z-velocity component. The
density ρ is considered constant in each fluid and different from the density of the other fluid.
The incompressibility condition is given by:

∂u
∂x

+
∂w
∂z

= 0. (4.2)

We seek modal solutions of the stream function ψ, defined as (u, w) = (−∂zψ, ∂xψ), of the
form:

ψ = ψ̂(z) exp(ikx +Ωt), (4.3)
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where Ω is the growth rate of the perturbation and k is the horizontal wavenumber. We also
write p = p̂(z)eikx.

Rewriting equations (4.1) for the stream function, we obtain the degenerate Rayleigh equa-
tion:

(
∂2

zz − k2) ψ̂ = 0. (4.4)

The solution of this equation is of the form ψ̂+ = Ae−kz for z > 0 and ψ̂− = Ae+kz for z < 0.
The constant A is chosen to ensure the continuity of ψ across the interface (kinematic condition
written in Eq. (4.5)). Moreover, the normal velocity w = ∂xψ must also be continuous at the
interface.

The interface deformation is written ξ = ξ̂(z) exp(ikx + Ωt) and its amplitude is assumed
to be very small so we have ξ̂ ≪ 1. Thus, neglecting the second order terms, the kinematic
condition applied in z = 0 becomes:

Dξ̂

Dt
=
∂ξ̂

∂t
= w = ikψ̂ ⇐⇒ ξ̂ =

ikψ̂

Ω
. (4.5)

We know that the surface tension must play an important role for the stability of a water-air
interface, thus we need to take it into account in our analysis. For this, we write the Young-
Laplace equation at z = 0 giving:

∆P = γT(∂2
xxξ) (4.6)

where ∆P = P+ − P− is the pressure jump and γT is the surface tension. The solution of Eq. (4.4)
remains unchanged by the addition of the surface tension as it will only impact the boundary
condition at the interface which is derived form the Young-Laplace equation. Moreover, from
Eq. (4.1), we have ∂2

zzψ = ikp/ρ. Combining these with the Young-Laplace equation, we find that
the boundary condition that must be satisfied at the interface writes:

ρh∂zψ+
0 − ρl∂zψ−

0 = − k2

Ω2 [G0(ρh − ρl) − k2γT]ψ0, (4.7)

with ρh the density of the heavier fluid, ρl the density of the lighter fluid and ψ0 is the value of
ψ at z = 0.

Combining the solutions of Eq. (4.4) and Eq. (4.7), we find:

Dispersion relation with surface tension (see Chandrasekhar [1961])

Ω =
(

G0k
[
A− k2γT

G0(ρh + ρl)

])1/2

. (4.8)

Equation (4.8) is plotted in Fig. 4.3a taking the following parameter: ρh = 1000 kg.m−3,
ρl = 1 kg.m−3, A ∼ 1, G0 = 9.81 m.s−2 and γT = 72.7 × 10−3 N.m−1. Note that it gives a critical
wavenumber kc =

√
(ρh − ρl)G0/γT above which Ω2 becomes negative. Hence, for 0 < k < kc,

the arrangement is unstable and for all k > kc, the arrangement is stable. As a comparison, the
case without surface tension Ω =

√AG0k is given in Fig. 4.3b. Without the contribution of γT,
the arrangement stays unstable showing that it is indeed the surface tension that stabilises our
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Figure 4.3: Inviscid growth rate Ω (black line), as a function of the horizontal wavenumber k, (a) with
surface tension γT (see Eq. 4.8 and (b) without surface tension (Ω =

√
G0kA) in the case of two uniform

inviscid fluids (water and air) of constant density separated by a horizontal boundary. In (a), the critical
wavenumber kc (in dashed red line), the wavenumber of the most unstable mode k0 (in dashed blue line)
and the maximum growth rate Ω0 (in green dashed line) are also plotted.

system. Moreover, taking into account the surface tension gives a maximum growth rate Ω0 at
a certain wavenumber k0. For this most unstable mode the amplitude of the disturbance grows
the most rapidly. The wavenumber k0 can be evaluated from the critical wavenumber as it is
given by k0 = kc/

√
3 and thus the maximum growth rate is given by:

Ω0 =

[
2

33/2

(ρh − ρl)3/2G3/2
0

(ρh + ρl)γ
1/2
T

]
. (4.9)

In our case, we have k0 = 211.98 m−1 and Ω0 = 37.20 s−1. It gives a most unstable wavelength of
λ0 ∼ 3 cm.

The critical wavenumber given in Fig. 4.3a is kc = 367.34 m−1 meaning that the smallest
wavelength that can destabilize the system is λc = 1.7 cm. Thus, by choosing a grid whose holes
are smaller than this value, the system brine-air should be stabilised by the surface tension, as
the wavelengths larger than the grid mesh size cannot develop.

As a conclusion, we have seen that salt water can indeed be maintained on top of air using a
grid and the surface tension. However, the effect of the surface tension will no longer retain the
brine once it is put into contact with the fresh water, thus letting a Rayleigh-Taylor like instability
develop. This principle allows for a new type of experimental setup using the grid for the filling
and maintaining of the heavier fluid. The experimental setup is explained hereafter.

4.1.2 Experimental setup

The experimental setup consists of two cylindrical tanks one on top of the other of height
Hcyl = 30 cm and diameter 2Rcyl = 19.4 cm (see Fig. 4.4a). The one on the bottom is fixed and
filled from below, using a pump, with a mix of fresh water, ethanol and sulforhodamine. The
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Bottom tank

Upper tank

Salt water
ρh

Fresh water
+

Ethanol
+

Sulforhodamine
ρl

Grid

H
cyl =

30
cm2Rcyl = 19.4 cm

(a)

Bottom tank

Laser sheet

Continuous Laser

(b)

Figure 4.4: Experimental setup. (a) The two cylindrical tanks are in contact, with Hcyl and Rcyl the height
and radius of a cylindrical tank respectively; the grid is visible in between. (b) LIF method with the
bottom cylindrical tank and the laser sheet visible.

one on the top is movable and the grid is fixed on the lower part. It is filled with salt water
which gives us a small density contrast between the two fluids inside the two tanks. The At-
wood number A was varied in our experiments from 0.9 × 10−3 to 1.34 × 10−2. Having very
small Atwood numbers allows for slower dynamics of the instability and thus a better visualisa-
tion. Indeed, when the self similar regime is reached, the mixing zone width grows as a function
of the Atwood number (Eq. (3.1) of Chap. 3). Thus, the smaller the Atwood number, the slower
the growth of the mixing zone.

The upper tank is filled through aspiration created using pressurised air at the top of the
tank. Thus the water is sucked inside the tank through the grid as shown in Fig. 4.5, which is a
photo taken during the filling of the upper tank. We can see on it the upper tank, the grid fixed
at its bottom and the tube allowing for the sucking of the salt water using pressurised air. As
seen previously, the surface tension at the grid and the slight depression created at the top of the
tank are sufficient to retain the body of salt water inside, even as we move it through air to put
it into contact with the bottom reservoir.

Three grids were chosen for our experiments and are given in Tab. A. The grid mesh size d
and thread diameter l are shown in Fig. 4.6 and are used to define the porosity ϕ of the grid as
written in Eq. (4.10). The effects of the grid porosity, mesh size and thread diameter are studied
and discussed in Section 4.3.

Grid n◦ d [mm] l [mm] ϕ

1 1 0.56 0.41
2 1.8 0.8 0.48
3 2 0.9 0.48

Table A: Label, mesh size d, thread diameter l and porosity ϕ of the different grids used in the experi-
ments.
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Upper
cylinder

Tank filled
with salt

water

Aspiration of
air

Salt water
levels rising

Aspiration
through the

grid

Grid

Figure 4.5: Process of the upper tank filling. The upper cylinder with the grid fixed at the bottom is visible
along with the tube fixed at the top of the cylinder sucking the air, thus sucking the salt water inside the
cylinder.

l

d

Figure 4.6: Sketch of the grid geometry with the mesh size d and thread diameter l.

Porosity of the grid

ϕ =
d2

(d + l)2 . (4.10)

Note that the mesh size used is much smaller than the critical wavelength given by the linear
stability analysis, thus these grids can indeed be used to stabilise the system. Once the contact
between the fluids is made, the brine falls inside the fresh water in a Rayleigh-Taylor instability
like manner (Fig. 4.7). The linear stability analysis is also performed (Sec. 4.1.3) on this brine-
fresh water interface to better understand how the grid may help in getting more reproducible
experiments.
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1 cm

Figure 4.7: Instantaneous concentration field of a Rayleigh-Taylor instability beneath the grid in the plane
of the laser sheet at t = 2.8 s after contact for experiment EXPb5 with A = 0.0037 and a mesh size
d = 1.8 mm (see Tab. B). In dark is the heavier fluid falling into the lighter fluid in gray. The grid is visible
at the top of the image.

The visualisation of this phenomenon is made using the Planar Laser-Induced Fluorescence
(PLIF) method (Van Cruyningen et al. [1990]). As shown in Fig. 4.4b, this method requires the
projection of a continuous laser sheet onto the flow field in the bottom cylinder in order to
induce fluorescence. Indeed, as the fresh water is mixed with a fluorescent material, it emits
light at a very specific wavelength when illuminated by the laser sheet. In the experiments,
a 5 W continuous Spectra Physics-Millenia eV CW DPSS laser emitting at 532 nm (green) and
sulforhodamine as the fluorescent material emitting at 552 nm (yellow) were used.

The light emitted by the fluorescent material is recorded at 30 frames per second using a
camera and a filter for the laser light. Only the bottom cylinder can be recorded through this
process as it is where the laser sheet is created and the grid prevents it from being present
in the upper cylinder. This process gives images as shown in Fig. 4.7 with the fresh water in
light gray, the heavier fluid in black and the grid visible at the top of the image. From these
images, the concentration fields inside the bottom cylinder can be computed at any given time.
Indeed, the concentration in salt of a parcel of fluid can easily be deduced from the colour of
the corresponding pixel: the darker the pixel, the more salted the fluid is. These concentration
fields can the be used to compute other quantities like mean concentration profiles or mixing
zone widths.

Ethanol is also added to the mixture of fresh water and sulforhodamine in order to match
the optical index of the salt water and thus have a clear picture throughout the experiment.

4.1.3 Linear stability analysis of the brine-fresh water interface: experimental grids

When the two cylindrical tanks are put into contact, a salt water-fresh water interface appears.
The linear stability analysis of this interface is made in order to compare the growth rate Ω(k) to
the grid mesh size. The viscous and diffusive effects are taken into account in this study while
the surface tension is disregarded. Two cases are considered: the case of a sharp interface and
the case of a diffuse interface.

The linear stability theory for Rayleigh-Taylor instability onset states that the growth rate
can be written as Eq. (4.11) (see Duff et al. [1962] and Morgan & Black [2020]) when both the
viscous and diffusive effects are considered.
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Dispersion relation with viscosity and diffusivity

Ω =
(AG0k

ψ
+ ν2k4

)1/2

− (ν +D)k2, (4.11)

where ν is the kinematic viscosity, D is the diffusion coefficient and ψ = 1 + 0.375kδ and δ

is the diffusion thickness of the interface.

This value of ψ was found by Duff et al. [1962] for A = 0.5, which is much bigger than
the Atwood number used in our experiments. As shown in Duff et al. [1962], the smaller the
Atwood number, the bigger the slope of ψ as a function of kδ. This would shift the maximum
of Ω towards the smaller wavenumbers k slightly. However, ψ is only slightly dependent on the
Atwood number so the shift would be negligible.

4.1.3.1 Sharp interface

In the case of a sharp interface, ψ = 1 and thus the dispersion relation is written:

Ω =
(
AG0k + ν2k4

)1/2
− (ν +D)k2. (4.12)

This dispersion relation is plotted against the wavenumber k in Fig. 4.8 along with the fastest
growing wavenumber k0 in dashed blue line and the critical wavenumber kc in red dashed line.
The parameters taken here are those of a typical experiment: A = 0.0037, G0 = 9.81 m.s−2,
ν = 1 × 10−6 m2.s−1 and D taken so that the Schmidt number (Sc = ν/D) is around 700.

Figure 4.8 also shows the smallest wavenumber allowed by the experimental grid having the

0 5000 10000 15000 20000
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−2

0

2

4

Ω
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k0 = 1650.00 m−1

kg = 3141.59 m−1

kc = 23130.00 m−1

Figure 4.8: Viscous growth rate Ω (Eq. (4.12)) as a function of the wavenumber k for a sharp interface.
The critical wavenumber kc is indicated by the red dashed line, the fastest growing wavenumber k0 is
shown in dashed blue line and the smallest wavenumber allowed by the experimental grids kg = 2π/λg

(with λg = 2 mm) can be seen in dashed green. The parameters are A = 0.0037, G0 = 9.81 m.s−2,
ν = 1 × 10−6 m2.s−1 and D = ν/700.
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Figure 4.9: (a) Growth rate Ω (Eq. (4.12)) as a function of the wavenumber k. The critical wavenumber
kc is given in red dashed line, the fastest growing wavenumbers k0 is shown in dashed blue line and the
smallest wavenumber allowed by the experimental grids kg (with λg = 2 mm) can be seen in dashed
green line. The parameters are A = 0.0009 and A = 0.0134, G0 = 9.81 m.s−2, ν = 1 × 10−6 m2.s−1 and
D = ν/700. (b) Most unstable wavelength k0 as a function of the Atwood number A. The minimum
wavenumber kg for Grid1 and Grid3 are given in dashed cyan and green lines respectively.

largest mesh size in dashed green line (kg). The presence of a grid at the interface between the
two fluids prevents the development of any perturbation having a wavelength bigger than the
mesh size. Thus, looking at the experimental grids, the largest perturbation wavelength allowed
by the grids is 2 mm giving a wavenumber kg of around 3141 m−1. This wavenumber is much
smaller than the critical wavenumber kc, which is around 23130 m−1, above which the growth
rate becomes negative and diffusion is expected to stabilize the growth. This means that the
grid does not stabilize the instability between fresh water and salt water. The other two experi-
mental grids also have mesh grids giving wavenumbers smaller than the critical wavenumber.
However, we notice that kg is larger than k0: the most unstable wavelength cannot develop in
our system due to the presence of the grid. We would need a grid of mesh size 3.8 mm at the
smallest if we wanted to allow for the fastest growing wavelength to develop. Not having the
most unstable wavelength available means that the Rayleigh-Taylor instability early dynamics
will be impacted. This could then alter the long term dynamics. In the absence of the grid, the
selected wavelength will be the most unstable one given by 2π/k0 whereas when the grid is
present, it is very likely that the selected wavelength will be very close to the one given by the
mesh size (2π/(21/2kg) because it is not a 2D mode) as it is the one with the biggest growth rate.
The advantage however, is that the grid imposes an initial condition at small scales.

For bigger Atwood numbers, the maximum growth rate would be shifted towards the higher
wavenumbers. In order to verify if none of the Atwood numbers tested in our experiments allow
the development of the fastest growing wavelength, we plot in Fig. 4.9a the growth rate as a dark
gray area and corresponding k0 and kc for the smallest and largest Atwood numbers used in our
experiments. On this figure is also shown kg, the wavenumber of Grid3 which is the grid with
the largest mesh size.

Notice that even the largest Atwood number, A = 0.0134, is not big enough to have k0 larger
than kg which would allow for the development of the most unstable wavelength even with the

82



Chapter 4. The Rayleigh-Taylor instability through a grid: Influence of the grid

grid present. Indeed, the Atwood number from which k0 becomes larger than kg is around 0.026
for Grid3 and 0.2 for Grid1 (see Fig. 4.9b).

As a conclusion, it is clear than in every experiments made with these grids, the wavelength
that developed was always the one selected by the holes of the grid. This can help to better
control the initial conditions and thus to make more reproducible experiments.

4.1.3.2 Diffuse interface

The case of the diffuse interface is studied to understand the effect of the thickness of the in-
terface on the growth rate of the instability. Figure 4.10 shows the values the growth rate takes
when varying the interface thickness from the sharp interface (δ = 0 mm) to a diffusion thickness
δ = 5 mm. We do not know the diffusion thickness of the interface in the experiments, it is a
data that can only be speculated on. Here we consider that the interface thickness is not thicker
than 5 mm.

We notice that having a thick diffuse interface compared to a sharp one tends to shift the
growth rate towards smaller values and k0 and kc towards the smaller wavenumbers. Thus,
the most unstable wavenumber is shifted away from the smallest wavenumber allowed by the
experimental grids kg. Meaning that it would take an even higher Atwood number to allow for
the most unstable wavelength to develop despite the presence of the grid than the one found
in the case of a sharp interface. Moreover, there are less wavenumbers available between the
minimum wavenumber of the grids and the critical wavenumber, thus less wavelengths can
perturb our system.

The experiments made and their observations are described in the next section and it was
indeed observed that filaments of the size of the holes developed and then mixed very rapidly
with each other.
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Figure 4.10: Evolution of the viscous growth rate Ω(k) with the increase of the diffusion thickness of the
interface δ (dark area) from 0 to 5 mm. The evolution of the most unstable wavenumber k0 (blue area),
the critical wavenumber kc (red area) are also given and the grid wavenumber kg (dashed green line) are
also given. The parameters are A = 0.0037, G0 = 9.81 m.s−2, ν = 1 × 10−6 m2.s−1, D = ν/700.
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4.1.4 Observations

We made several experiments varying the grid and the Atwood number. These experiments
and their parameters are given in Tab. B. The series of runs are organized depending on the grid
used.

Series N◦ d [mm] ϕ A ρh [kg.m−3] ρl [kg.m−3] ACJ VDLJ [cm.s−1]
EXPa 1 1 0.41 0.0035 1003.1 996.1 ✓ 1.07

2 1 0.41 0.0037 1003.3 996.0 ✓ 1.07
3 1 0.41 0.0037 1003.4 996.1 ✓ 1.18
4 1 0.41 0.0037 1003.4 996.0 ✓ 1.76
5 1 0.41 0.0037 1003.4 996.0 ✓ 0.8
6 1 0.41 0.0037 1003.4 996.0 ✓ 1.76
7 1 0.41 0.0037 1007 999.5 ✗

8 1 0.41 0.0038 1003.5 995.9 ✓ 1.14
9 1 0.41 0.0038 1003.5 995.9 ✓ 1.58
10 1 0.41 0.0075 1008.1 993.1 ✓ 2.82

EXPb 1 1.8 0.48 0.0015 1001.9 998.9 ✓ 1.91
2 1.8 0.48 0.0024 1002.9 998.0 ✗

3 1.8 0.48 0.0037 1003.4 996.0 ✓ 2.01
4 1.8 0.48 0.0037 1003.6 996.2 ✓ 1.91
5 1.8 0.48 0.0037 1003.4 996.0 ✗

6 1.8 0.48 0.0038 1003.4 995.9 ✓ 1.41
7 1.8 0.48 0.0038 1003.4 995.9 ✓ 2.01
8 1.8 0.48 0.0038 1003.5 996.0 ✓ 1.91
9 1.8 0.48 0.0038 1003.3 995.8 ✗

10 1.8 0.48 0.0047 1003.8 994.5 ✓ 2.82
11 1.8 0.48 0.0047 1004.1 994.7 ✗

12 1.8 0.48 0.0048 1004.1 994.6 ✗

13 1.8 0.48 0.0060 1007.3 995.2 ✗

14 1.8 0.48 0.0073 1007.9 993.3 ✗

15 1.8 0.48 0.0074 1007.8 993.0 ✓ 2.35
16 1.8 0.48 0.0134 1015.1 988.2 ✓ 2.82

EXPc 1 2 0.48 0.0009 1001.1 999.2 ✓ 0.83
2 2 0.48 0.0036 1003.4 996.3 ✓ 1.76
3 2 0.48 0.0123 1015.0 990.4 ✓ 2.52

Table B: Label (series and number), mesh size d in millimeters, grid porosity ϕ, Atwood number A and
densities ρh and ρl of the heavy and light fluids respectively. Whether the ascending central jet (ACJ) was
seen in the experiment or not, along with the velocity of the descending lateral jets (VDLJ) are given in the
last two columns.

In 74% of experiments, we observed the appearance of an ascending central jet at the very
beginning of the instability, in which the lighter fluid goes up in the center of the cylinder, or at
least in the center of the plane formed by the laser sheet, while the heavier fluid goes down on
the sides of the cylinder (see Figure 4.11). In Tab. B, the velocity for the descending lateral jets
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(VDLJ) of heavier fluid is given in the last column. It seems that a larger grid porosity leads to
a larger VDLJ . Indeed, for A ∼ 0.0037 and ϕ = 0.41, the mean VDLJ is around 1.29 cm.s−1 while
for the same Atwood number but ϕ = 0.48, the mean descending lateral jet velocity is around
1.85 cm.s−1. The cause of the apparition of this central jet is investigated in Chapter 5.

In the other 26% experiments, a Rayleigh-Taylor like instability was observed as the one seen
in Fig. 4.7. Indeed, even if thin filaments of the size of the holes develop, as the grid’s threads are
extremely small, the mixing happens very close to the grid and mushroom like structures form.
In order to assess whether we recover the dynamics of the Rayleigh-Taylor instability, some of
these experiments are further studied.

1 cm

1 cm

1 cm

Figure 4.11: Instantaneous concentration field of a Rayleigh-Taylor instability beneath a grid in the plane
of the laser sheet at times t ∼ 2.3, 3.8 and 5.7 s (from top to bottom) after contact for experiment EXPc2
with A = 0.0036 and a mesh size d = 2.5 mm (see Tab. B). The heavier fluid is in dark and the lighter fluid
is in gray. The grid is visible at the top of the image. The dark red arrows show the falling movement of
the heavier fluid and the dark blue arrow shows the ascending movement of the lighter fluid.
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4.1.5 Experimental data

The homogeneous experiments are studied in this section with the purpose of focusing only on
the influence of the grid on the late time dynamics of the Rayleigh-Taylor instability. From the
recorded images, the mean horizontal concentration profile (Eq. (4.14)) can be computed. These
profiles are shown in Fig. 4.12 at times t ∼ 2 s and t ∼ 4 s for various experiments (EXPb2,
EXPb5, EXPb9, EXPb13 and EXPb14 of Tab. B) having the same grid but different Atwood num-
bers. Only the values of ⟨C⟩XY below z = 0 can be accessed as only the bottom cylinder is
recorded through the PLIF method.

The mean horizontal concentration is written:

Horizontal mean concentration

⟨C⟩XY(Z, t) =
1
S
∫ ∫

S
C(X, Y, Z, t) dXdY, (4.13)

where S is the surface of the XY plane.

As we only have access to the XZ plane in the experiments, the experimental mean horizon-
tal concentration is written:

⟨C⟩XY(z, t) =
1

Dcyl

∫ Rcyl

−Rcyl

C(X, Y, z, t) dX, (4.14)

A small jump in the concentration can be seen at the initial interface position (z = 0 mm)
which we attribute to the presence of the grid. In order to make this jump more visible, the mean
horizontal concentration ⟨C⟩XY is plotted against the height z for EXPb5 on Fig. 4.13a at two
different times (t ∼ 2 s and t ∼ 4 s) along with red lines evidencing the tendency of the profile
and a dashed black line showing a typical Rayleigh-Taylor mean concentration profile. Right
next to it (Fig. 4.13b) is shown the instantaneous concentration fields of the same experiment at
both times. These show the homogeneity of the experiment.

Note the flat portion of the mean cylindrical concentration profile around z = 0 m and how
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Figure 4.12: Mean cylindrical concentration ⟨C⟩XY as a function of z for EXPb2, EXPb5, EXPb9, EXPb13
and EXPb14 of Tab. B at times (a) t ∼ 2 s and (b) t ∼ 4 s.

86



Chapter 4. The Rayleigh-Taylor instability through a grid: Influence of the grid

it tends to become smaller with time. Indeed, the amplitude of the jump on Fig. 4.13a is much
larger at t ∼ 2 s than at t ∼ 4 s. This means that the jump in the mean concentration profile
tends to disappear as the instability develops. The reason behind the presence of this jump is
investigated further through direct numerical simulations (DNS) in Section 4.3.

Using the mean horizontal concentration profiles, the mixing zone width given in Eq. (4.15)
along with the growth rate α of Eq. (4.16) are computed for the same set of homogeneous ex-
periments (EXPb2, EXPb5, EXPb9, EXPb13 and EXPb14) and are plotted in Fig. 4.14. A moving
average was applied to L(t) in order to smooth the fluctuations.

Mixing zone size and Growth rate

• Mixing zone size (Andrews & Spalding [1990]):

L(t) = 6
∫

fluid
⟨C⟩XY(z, t) (1 − ⟨C⟩XY(z, t)) dz, (4.15)

• Growth rate:

α(t) =
L̇2

8AG0L
. (4.16)

Note the presence of a small artifact at the very beginning of the experiment with the mixing
zone width decreasing from an initial non zero value. This artifact probably comes from the lack
of definition of the origin point. Indeed, z is defined as zero at the top of the image but not at
the specific position where the instability begins.

We would expect that as the Atwood number increases, the mixing zone width becomes
larger. Indeed, a larger Atwood number means a greater buoyancy force. This is what we see
between experiments EXPb5, EXPb9 and experiments EXPb13, EXPb14. However, this state-
ment is true when the initial conditions are strictly the same. Otherwise, the transient regimes
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Figure 4.13: (a) Mean cylindrical concentration profiles for experiment EXPb5 at times t ∼ 2 s and t ∼ 4 s
with the jump in concentration shown at each time by the red lines and, in dashed black line, a typical
Rayleigh-Taylor mean concentration profile without grid. (b) Instantaneous concentration field of EXPb5
at times t ∼ 2 s and t ∼ 4 s.
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Figure 4.14: (a) Mixing zone width L as a function of time t for EXPb2, EXPb5, EXPb9, EXPb13 and
EXPb14 of Tab. B. (b) Growth rate α as a function of time for the same experiments. The value of α given
in the legend is the mean value computed between the two dotted gray line inside the gray area.

between two experiments can be very different with L(t) growing very rapidly initially and not
being caught up by the other L(t) with larger A. This is probably what happens for EXPb2 which
has the smallest Atwood number but a larger mixing zone width than EXPb5 and 9.

Looking at the growth rate α(t), a plateau seems to be reached at least for the experiments
EXPb2, 5 and 9. This indicates that the self-similar regime of the Rayleigh-Taylor instability is
reached. This is less evident for the last two experiments considered which could be due to their
obvious vertical confinement. Indeed, the height of the cylindrical tank is of 30 cm which is very
close to the width of the mixing zone at the end of these experiments. Moreover, if the instability
is vertically confined then it will no longer develop proportionally to t2, thus the desired plateau
of α will no longer exist. The values of the growth rate are obtained by taking the mean value
of α between t = 3 s and t = 7 s (gray area in Fig. 4.14b). Note that the values are around
0.034 which is an expected value for an experimental Rayleigh-Taylor instability (Dimonte et al.
[2004]).

Experimental data is lacking to truly deduce whether the grid’s presence influences the long
term dynamics of the instability and thus whether the Rayleigh-Taylor instability is recovered.
Hence, in order to gather more data, direct numerical simulations of a Rayleigh-Taylor-like in-
stability through a grid are performed in Section 4.3. The next Section (4.2) is dedicated to the
description of the direct numerical simulations.

4.2 Direct Numerical Simulations

As stated previously, several direct numerical simulations (DNS) are performed in this study in
order to investigate the dynamics of the instability when a grid is present at its interface. This
section is devoted to the description of the initial conditions and the penalisation method.
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4.2.1 Description of numerical simulations

These simulations solve numerically the Navier-Stokes equations under the Boussinesq approx-
imation and are performed in a triply periodic cubic box of length Lbox = 2π using the code
Stratospec already described in Chapter 2 (Viciconte et al. [2019], Viciconte [2019], Briard et al.
[2019] and Briard et al. [2020]), which is based on a pseudo-spectral collocation method with
two-third rule dealiasing. The time advancement is realized through a third-order low-storage
strong-stability-preserving Runge-Kutta scheme, with implicit viscous terms. The simulations
use a NpX × NpY × NpZ grid box with a pencil-decomposition on Np cores and an Atwood num-
ber of 0.003, Npi being the number of points in one direction.

4.2.2 Initial Conditions

The initial conditions on the velocity and concentration fields of the Stratospec code used for
this study are the following:

Initial conditions: velocity field

• Velocity field:
U(x, t = 0) = 0. (4.17)

• Concentration field (hyperbolic tangent concentration profile):

C(x, t = 0) =
1
2

[
1 + tanh

(
z − S(x, y)

σ

)]
+ Cinh(x), (4.18)

where σ defines the initial width of the interface δ = 3σ for δ = 6
∫
⟨C⟩XY(1−⟨C⟩XY)dz.

The initial condition on the concentration field is given by Eq. 4.18: its steepness is controlled
by σ (the smaller σ the steeper the tangent). This profile is shown in Fig. 4.16 in blue line.

The function S(x, y) gives the form of the interface and of the initial perturbations at this
interface. In the case of a planar interface, S(x, y) is the perturbation surface which is defined
from a 2D perturbation spectrum of the form:

E(k) = E0

(
k

kpeak

)si

exp

(
− si

2

(
k

kpeak

)2
)

=
∫

Sk

Ŝ(k)Ŝ∗(k)d2k′, (4.19)

where E0 is a renormalisation factor (linked to the amplitude of the deformation of the interface)
and si is the infrared slope of the spectrum, taken in the simulations as 1. In Eq. (4.19), kpeak

defines the wavenumber of the maximum of the spectrum E. The amplitude of the perturbations

at the interface is thus given by
√
S ′2 with S ′2 =

∫ +∞
0 E(k)dk and is set at 3×10−4 m (0.15% of

the height of the box) in our simulations. Moreover, in Eq. (4.19), Sk is the sphere of radius k,
where k = |k| and Ŝ is the Fourier transform of S ′. In Fig. 4.15, the 2D perturbation spectrum is
represented with kpeak shown with a red dashed line.

In order to ensure the periodicity in the vertical inhomogeneous direction, we need to change
the concentration field from its heavy value to its light value at the vertical boundaries. This is
done with Cinh(x) which is given by:
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Figure 4.15: 2D perturbation spectrum E (Eq. 4.19) as a function of k (continuous blue line) with kpeak = 20
m.s−1 (red dashed line) and the infrared slope taken as si = 1 (orange dotted line).
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Figure 4.16: Initial condition on the concentration profile C(z, t = 0) as a function of z for σ = 0.001 m (see
Eq. 4.18 and Eq. 4.20).

Cinh(x) = −1
2

[
tanh

(
z + Lbox/2

σ

)
+ tanh

(
z − Lbox/2

σ

)]
. (4.20)

This contribution to the initial concentration profile is shown as the red dashed line in Fig. 4.16.

4.2.3 The penalization method

Penalised layers with no-slip boundary conditions are added for various reasons, explained
below, inside the cubic box. The goal of this section is to describe the principle of the penalisation
method, also called immersed boundary method, and the different penalised layers added.

90



Chapter 4. The Rayleigh-Taylor instability through a grid: Influence of the grid

4.2.3.1 Equations

The penalisation method is described in Chap. 2, in Jause-Labert et al. [2012] and Kadoch et al.
[2012]. It consists of an additional force in the momentum equation (see Eq. (4.21)) and an
effective diffusivity in the advection-diffusion equation (see Eq. (4.22)).

Momentum equation with penalisation

∂U
∂t

+ (U · ∇)U = −∇P + ν∇2U − 1
ηu

χ(U − UPen), (4.21)

where P is the reduced pressure p/ρ0, where ρ0 ≡ (ρh + ρl)/2, ηu is the velocity penali-
sation parameter, χ is the mask function and UPen is the velocity field imposed inside the
penalisation layer.

The mask function is defined as a door function which is equal to 1 inside the penalisation
layer and 0 inside the fluid. As explained in Briard et al. [2020], this mask function is filtered
in spectral space to avoid Gibbs oscillations with exp(−Cs(k/Np)2), where Np is the number of
points in one direction and Cs is the filter parameter. Thus, the additional force only exists inside
the penalisation layer. The velocity penalisation parameter imposes a constraint on the time step
∆t ≤ ηu: the smaller ηu, the smaller the time step has to be to achieve convergence.

Advection-diffusion equation with penalisation

∂C
∂t

+ ((1 − χ)U · ∇)C + χ (UPen · ∇C) = ∇ · ((D(1 − χ) + ηcχ)∇C) , (4.22)

with D the diffusion coefficient and ηc the scalar penalisation parameter which can be in-
terpreted as an effective diffusivity inside the penalised layers.

The scalar penalisation parameter decreases the diffusion of the concentration inside the
penalised layer: as it does not impose any constraint on the time step, it can be chosen very
small in order to completely freeze that diffusion. The term χ (UPen · ∇C) is important if a non-
zero velocity field is imposed inside the penalised layer as it transports the artificial scalar field
created inside the layer.

In order for the created boundary to correspond to a solid wall, small values of the pair of
parameters (ηu, ηc) must be taken.

4.2.3.2 Cylindrical configuration

The Rayleigh-Taylor experiments through a grid were made inside cylindrical tanks whereas
the code used for the simulations only simulates a cubic domain. Thus, in order to reproduce
the experimental geometry in the simulations, penalisation layers are added on the sides of the
cubic box to create a cylinder, thus breaking the periodicity of the simulations. Penalisation
layers are also added at the top and bottom of the domain to ensure the periodicity in this direc-
tion and prevent any fluid exchange at this boundary. Two configurations are thus considered:
the Large Cylinder (LC) configuration and the Thin Cylinder (TC) configuration. The TC re-
produces the exact dimensions of the experimental tanks with a diameter of 2Rcyl = 0.194 m
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Figure 4.17: Sketches of the numerical simulation geometry. (a) Thin Cylinder: height 2Hcyl = 60 cm and
diameter 2Rcyl = 19.4 cm. (b) Large Cylinder: height 2Hcyl = 19.4 cm and diameter 2Rcyl = 19.4 cm. The
darker blue is the heavier fluid while the lighter blue is the lighter fluid. The gray areas correspond to
the penalized portions of the cube representing solid walls and the red hatched area corresponds to the
penalised portions of the cylinder representing the grid.

Configuration LPen,S [m] LPen,TB [m] ηu [s] ηc [m2.s−1] UPen

LC Lbox/2 − Rcyl = 0.01 Lbox/2 − Hcyl/2 = 0.01 1 × 10−2 1.2 × 10−10 0
TC Lbox/2 − Rcyl = 0.23 Lbox/2 − Hcyl/2 = 0.03 1 × 10−2 1.2 × 10−10 0

Table C: Parameters of the penalisation layers giving the two cylindrical configurations, Large Cylinder
(Fig. 4.17b) and Thin Cylinder (Fig. 4.17a): width of the penalised layer on the sides of the cylinder
LPen,S, width of the penalised layer on the top and bottom of the cylinder LPen,TB, velocity penalisation
parameter ηu, scalar penalisation parameter ηc and the velocity field in the penalisation layers UPen.

and a height of Hcyl = 0.3 m per cylinder. However, this configuration penalises a large part of
the computational domain. The LC represents a zoom in on the interface with a height of only
Hcyl = Rcyl = 0.097 m per tank. With this configuration, the structures are much better resolved
at the interface, but it will be more easily vertically confined. Both of these configurations are
shown in Fig. 4.17 where the penalised areas are presented in light gray.

The penalisation layers used to create these cylindrical tanks in the simulations need to mim-
ick solid walls, meaning that the smallest possible pair (ηu, ηc) should be chosen, without con-
straining too much the time step. Moreover, a null velocity field has to be imposed inside these
layers (UPen = 0). The parameters taken for the penalised layers of each configurations are given
in Tab. C with LPen,S and LPen,TB being the width of the layers on both sides and on the top and
bottom of the cylinder respectively.
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4.2.3.3 Validation of the cylindrical configuration

The cylindrical configuration can be achieved inside our simulation’s cubic box by adding pe-
nalisation layers on the sides (see Fig. 4.17). Thus, it is important to assess whether adding
these walls has an impact on the instability. Two configurations are compared, the cubic one
and the Large Cylinder one (see Tab. D), with the exact same initial conditions: A = 0.003, ν =
0.6 × 10−6 m2.s−1, D = ν, ηu = 1 × 10−2 s, ηc = 1.2 × 10−10 m2.s−1 and kpeak = 585.90 m−1. Simu-
lation DNSCubVSCyl1 is made inside a triply periodic cubic box whereas simulation DNSCub-
VSCyl2 is made inside the cylindrical geometry.

Series N◦ Configuration H [m] W [m]
DNSCubVSCyl 1 Cube 0.194 0.21

2 Cylinder 0.194 0.194

Table D: Label (series and number), configurations, height of the non penalised domain H and width of
the non penalised domain W (Lbox in the cubic case and 2Rcyl in the cylindrical case) are given for the
two simulations considered. The simulations have an Atwood number of 0.003 and 5123 points.

Figure 4.18 shows the instantaneous concentration fields at time t ∼ 5 s of simulations
DNSCubVSCyl1 and DNSCubVSCyl2 (see Tab. D). Aside from the geometrical differences be-
tween configurations, both images show a developed Rayleigh-Taylor instability. The penalisa-
tion layers do not seem to have a qualitative effect on the development of the instability.

(a) (b)

Figure 4.18: Instantaneous concentration fields of simulations in (a) a cube (DNSCubVSCyl1), (b) a cylin-
der (DNSCubVSCyl2), at t ∼ 5 s with A = 0.003 (see Tab. D). The heavier fluid is in red, the lighter one
in blue and the pure fluids are transparent.

In Fig. 4.19, the horizontal mean concentration profiles, ⟨C⟩XY (see Eq. (4.13)), are plotted at
t ∼ 5 s (see Fig. 4.19a) and the time evolution of the mixing zone size, L(t) (replacing ⟨C⟩θr by
⟨C⟩XY in Eq. (4.15)), for both simulations DNSCubVSCyl (see Fig. 4.19b).

As expected from the instantaneous concentration fields, very little difference is visible either
on the horizontal mean concentration or on the mixing zone width. The mixing zone width
grows slightly less in the cylindrical configuration as we see in Fig. 4.19b when comparing the
cubic configuration (blue) and cylindrical configurations (orange). This is probably due to the
no-slip boundary condition imposed by the penalised layers in the cylindrical configuration
which makes the fluid near the walls adhere to them a little.

We would expect greater differences between the two configurations in the case of a very thin

93



4.2. Direct Numerical Simulations

0.0 0.2 0.4 0.6 0.8 1.0

〈C〉XY

−0.10

−0.05

0.00

0.05

0.10

z
[m

]

Cube

Cylinder

(a)

0 1 2 3 4 5 6

t [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

L
[m

]

Cube

Cylinder

(b)

Figure 4.19: (a) Horizontal mean concentration profiles ⟨C⟩XY at time t ∼ 5 s and (b) evolution of the
mixing zone size L with time t for the two simulations DNSCubVSCyl (see Tab. D) presented in Fig. 4.18.

cylinder as the important quantity is the horizontal integral scale. Indeed, as was investigated
in Lawrie & Dalziel [2011], when the instability develops inside a laterally confined domain, the
evolution of the mixing zone width is constrained by the lateral walls rendering the scaling in
L(t) ∝ t2 obsolete in the long term. The instability does not seem horizontally confined by the
lateral walls in the configuration considered here.

As a conclusion, using penalisation layers to recreate a cylinder tends to slightly slow down
the dynamics of the instability. Since this effect is very small it should not prevent us from using
the cylindrical geometry to conduct our study.

4.2.3.4 Vertical confinement

As said previously, two cylindrical configurations (Thin Cylinder and Large Cylinder) can be
considered for the following numerical studies. The first is a better reproduction of the experi-
ment’s geometry whose main disadvantage is to lose a large part of the computational domain
to penalised layers; while the second is more of a close up on the interface between the two
fluids whose main disadvantage is to be vertically less elongated. Thus, it is important to assess
whether the configuration impacts the instability’s development: the goal of this section is to
evaluate whether the vertical confinement issues appear in the LC configuration.

Two simulations, whose parameters are given in Tab. E, were made to compare these two
configurations. The physical parameters are the same for the two simulations, the difference
is the size of the computational domain that is changed from Lbox ∼ 0.21 m for the LC con-
figuration, to Lbox ∼ 0.66 m for the TC configuration. However, the physical diameter of the
cylinder stays the same: Dcyl = 0.194 m. The simulations parameters are once again: A = 0.003,
ν = 0.6 × 10−6 m2.s−1, D = ν, ηu = 1 × 10−2 s and ηc = 1.2 × 10−10 m2.s−1.

The instantaneous concentration field at different times and the slices along the XZ plane
are given in Fig. 4.20 for both simulations. The slices of DNSTC are cropped to match the size of
the slices of DNSLC.

In order to ensure that no confinement effect appears in simulation DNSLC compared to
DNSTC, the mixing zone width as a function of time is plotted for both simulations on Fig. 4.21.
Only a very slight difference can be seen between the two simulations. Indeed, DNSLC grows
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Label Dcyl [m] 2Hcyl [m] kpeak [m−1]
DNSTC 0.194 0.6 585.90
DNSLC 0.194 0.194 585.90

Table E: Label, diameter of the cylinder Dcyl, height of both cylinder tanks 2Hcyl and initial wavenumber
kpeak are given in this table for the two simulations considered. The simulations have an Atwood number
of 0.003 and 5123 points.

t = 0s t = 0s t = 0s t = 0s

t = 2.0s t = 2.0s t = 2.0s t = 2.0s

t = 4.0s t = 4.0s t = 4.0s t = 4.0s

t = 6.0s
(a)

t = 6.0s
(b)

t = 6.0s
(c)

t = 6.0s
(d)

Figure 4.20: (a) and (c) Instantaneous 3D concentration field and (b) and (d) vertical slice along the XZ
plane for the configuration with a cylindrical tank of diameter 19.4 cm and height 60 cm (DNSTC (a)(b))
and for the configuration with a cylindrical tank of diameter 19.4 cm and height 19.4 cm (DNSLC (c)(d)).
The heavier fluid is in red and the lighter one in blue. The slices (b) are cropped to match the size of the
slices (d).

slightly faster than DNSTC. This difference is due to the better resolution, and therefore lesser
diffusion, of the simulation in the Large Cylinder configuration. This shows that the Large
Cylinder configuration is not vertically confined as it would mean a slower mixing zone growth.
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Figure 4.21: Mixing zone width L(t) for the simulations with the Thin Cylinder and Large Cylinder con-
figurations (Tab. E).
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Figure 4.22: Sketch of the Large Cylinder configuration with a twice higher computational domain, giving
a cylinder of diameter 2Rcyl = 0.194 m and height 2Hcyl = 0.388 m.

Thus, both configurations yield very similar results. As the Large Cylinder configuration is
better resolved than the Thin Cylinder one, it is a better candidate for the study of the early times
of the instability. However, as it would end up being vertically confined, for the study of the
late time dynamics, either the Thin Cylinder configuration, or the Large Cylinder configuration
with a computational domain twice as high as shown in Fig. 4.22, would be better choices.
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4.2.3.5 Grid definition

As the goal of this study is to assess the impact of the grid on the instability’s dynamics, a grid
is implemented at the interface between the two fluids using the penalisation method. Hence,
a new mask function, called χG, is created to define the position and width of the threads of a
squared threaded grid. In one-dimension, it is defined by either Eq. (4.23), giving a centered
grid with a thread at the position (x, y) = (0, 0), or by Eq (4.24), giving a non-centered grid (no
thread at (x, y) = (0, 0)).

• Centered grid in 1D:




χG(x) = 1 if |x|+ l/2 − (d + l) × F
(
|x|+l/2

d+l

)
< l,

χG(x) = 0 else
(4.23)

where F(x) is the floor function.

• Non-centered grid in 1D:




χG(x) = 1 if |x|+ d/2 − (d + l) × F
(
|x|+d/2

d+l

)
> d,

χG(x) = 0 else.
(4.24)

This definition of the mask function gives χG = 1 inside the threads of width l and χG = 0
inside the holes of width d. Thus, inside the threads the flow is penalised with (ηu, ηc) = (1 ×
10−2s, 1.2 × 10−10m2.s−1). Figure 4.23 shows the value of the mask function χG in 1D (along the
x-axis) with the holes being the white spaces between each thread in blue. The centered grid
(Fig. 4.23a) is n the left and the non-centered grid (Fig. 4.23b) is on the right. In this figure, the
thread diameter is l = 8 mm and the mesh size is d = 16 mm, meaning that the holes are twice
the size of the threads, giving a porosity of ϕ = 0.44.

A relevant question is: can we implement the same grid as the ones used in the experiments?
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Figure 4.23: Mask function χG, defining the grid, along the x-axis. The blue colored parts give for which
x the mask function is equal to 1. (a) Centered grid and (b) non centered grid.
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Indeed, we know that the experimental grids have very thin threads and holes, thus we would
need a very large resolution to make it possible (a minimum of 23833 points to have 10 points in
each threads for Grid3). However, this is not only a question of resolution but also of whether
the instability would develop in such small numerical holes. To answer this question, the linear
stability analysis for the simulations is made in the following section.

4.2.3.6 Linear stability analysis of the brine-fresh water interface: numerical grid

The linear stability analysis for this brine-fresh water interface taking the viscosity and diffusive
effects into account has already been made for the experiments. However, as the diffusion coef-
ficient is much larger in the simulations (D = ν) than in the experiments (D = ν/700), a different
result for the dispersion relation of Eq. (4.11) is expected.

Considering a simulation whose parameters are A = 0.003, G0 = 9.81 m.s−2, ν = 1.2 ×
10−6 m2.s−1, D = ν and δ = 3 mm, the growth rate Ω(k) is shown in Fig. 4.24. On the same
figure is plotted the growth rate ΩEXP considering a sharp interface and a diffusion coefficient
D = ν/700. These correspond to the conditions of the experiments, thus the differences between
the simulations Ω and the experiments growth rate ΩEXP are evidenced. The most unstable
wavenumber k0, the critical wavenumber kc and the minimum wavenumber allowed by the
experimental grids kg are also plotted on this figure.

Note that the critical wavenumber is around 2050 m−1, thus the smallest wavelength that
can be used to destabilize the system is λc = 3 mm which is larger than the biggest mesh size
available in the experimental grids. Hence, we cannot numerically implement one of the exper-
imental grids in our simulations due to the much bigger diffusion in the numerical simulations
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Figure 4.24: Growth rate Ω(k) (Eq. 4.11) (black continuous line) for simulation parameters (ν = D =
1.2 × 10−6 m2.s−1 and δ = 3 mm) compared to the growth rate ΩEXP(k) for experiment parameters (ν =
700D = 1× 10−6 m2.s−1 and δ = 0 mm). The red lines mark the critical wavenumber kc and the blue lines
give the fastest growing wavenumber k0. The smallest wavenumber allowed by the experimental grids
kg is given in green dashed line (with λg = 2 mm for Grid3). The common parameters are A = 0.003,
G0 = 9.81 m.s−2.
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which would stabilise the instability.

4.2.3.7 Grid convergence

In this section, the mesh convergence of the simulations with grid is evaluated. A good way to
gauge the mesh convergence is to compare the mixing zone width for simulations with different
spatial resolution, meaning different number of points in the X and Z directions. If the mesh
convergence is achieved, then the mixing zone width will be the same no matter the resolution.
Indeed, the averaging process involved in the computation of L(t) should counteract the dif-
ferences brought by the modification of the initial conditions when the resolution is changed.
However, implementing a grid means there are much less points inside the fluid around the
interface which could bring a greater sensitivity to the initial conditions despite the averaging
process.

In order to study the sensitivity to the initial conditions and more precisely the effect of
the random initialisation, four simulations are made in each resolution, NpX = NpZ = 512 and
NpX = NpZ = 1024. Due to time constraint and a desire for quick results, these simulations were
made with a 2D geometry. As such, the differences between 2D and 3D simulations need not
be forgotten (Chapter 3). The seed of the random function s is changed in each simulation of
each resolution as shown in Tab. F. The parameters of the simulations are taken as: A = 0.003,
ν = 1.2 × 10−6 m2.s−1, D = ν and λpeak = 2π/kpeak ∼ 11 mm. The grid’s mesh size and thread
diameter are d = 34 mm and l = 17 mm respectively, giving a porosity ϕ = 0.44.

Series N◦ NpX = NpZ s
DNSConvA 1 512 1

2 512 2
3 512 3
4 512 4

DNSConvB 1 1024 1
2 1024 2
3 1024 3
4 1024 4

Table F: Label (series and numbers), number of points in the X and Z directions NpX and NpZ respectively
and seed of the random function s. The quasi-2D simulations have an Atwood number A = 0.003, a
viscosity ν = 1.2 ×10−6 m2.s−1, a diffusion coefficient D = ν and a λpeak = 11 mm. The grid in these
simulations have a thread diameter of l = 17 mm and a mesh size of d = 34 mm giving a porosity ϕ = 0.44.

The mixing zone widths of all these simulations are plotted against time in Fig. 4.25a. Note
that none of the mixing zone width overlap, they are all very different from one another, mean-
ing that L(t) in this configuration strongly depends on the seed s of the random function used to
initialise the simulation. Hence, the number of fluid points being insufficient, the result of the
simulation is very sensitive to the initial condition. This dependence on the initial conditions
can be very clearly seen on the 2D instantaneous concentration fields shown in Fig. 4.26. Indeed,
very different structures can be seen from one seed to another or from one spatial resolution to
the other.
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Figure 4.25: (a) Mixing zone widths L as a function of time t for the simulations with the different seed
s and Np,XZ. (b) Range of the mixing zone widths L(t, s) taking into account all the simulations with
Np,XZ = 512 (blue colored area) and Np,XZ = 1024 (orange colored area) and their ensemble mean (see
Eq. (4.25)) in thin lines.
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Figure 4.26: Instantaneous concentration fields at t = 4 s for (a) NpX = 512 and s = 1, (b) NpX = 512 and
s = 2, (c) NpX = 512 and s = 3, (d) NpX = 512 and s = 4, (e) NpX = 1024 and s = 1, (f) NpX = 1024 and s = 2,
(g) NpX = 1024 and s = 3 and (h) NpX = 1024 and s = 4 of Tab. F. The heavier fluid is in red, the lighter
one in blue and the walls and grid are shown in black.

The range of mixing zone widths covered by the DNSConvA and by the DNSConvB are
given in Fig. 4.25b along with their ensemble mean defined by:

1
N ∑

N
L(t, s), (4.25)

where N is the number of simulations with the same spatial resolution (the same Np,XZ) and
L(t, s) is the seed-dependent mixing zone width.

These simulations serve another purpose: to see whether the lack of fluid points would
be compensated by the number of simulations. Indeed, the idea is that statistical convergence
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could be achieved by ensemble averages. However, these ensemble means do not overlap ei-
ther, meaning that to reach statistical convergence, a much higher number of simulations would
probably be needed. For practical reasons of cost and computation time, however, using such a
greater number of simulations in order to achieve mesh convergence cannot be done. We expect
to have fewer issues achieving convergence in a three-dimensional geometry as more points are
available in the fluid. Thus, a few three-dimensional simulations are performed (see Tab. G)
with the same grid as the ones presented above (l = 17 mm and d = 34 mm). Moreover, sim-
ulations with a smaller perturbation wavelength are made to understand its importance on the
mesh convergence. The simulations are made inside a cubic box, periodic along X and Y. Some
of the simulations only had threads along the X direction (DNSConv3DA and DNSConv3DC)
while others had a real grid, meaning threads along the X and Y directions (DNSConv3DB and
DNSConv3DD).

Series N◦ NpX = NpY = NpZ λpeak [mm]
DNSConv3DA 1 512 11

2 1024 11
DNSConv3DB 1 512 11

2 1024 11
DNSConv3DC 1 512 5

2 1024 5
DNSConv3DD 1 512 5

2 1024 5

Table G: Label (series and numbers), number of points in every directions NpX = NpY = NpZ and initial
perturbation wavelentgh λpeak. The 3D simulations have a viscosity of 1.2 ×10−6 m2.s−1. The grid’s
parameters in these simulations are: thread diameter l = 17 mm and mesh size d = 34 mm giving a
porosity of ϕ = 0.44. The DNSConv3DA and DNSConv3DC have threads only in the X direction while
the DNSConv3DB and DNSConv3DD have threads in both X and Y directions.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.27: Slice along the XZ plane of the instantaneous concentration fields at t = 4 s for (a)
DNSConv3DA1, (b) DNSConv3DB1, (c) DNSConv2DC1, (d) DNSConv3DD1, (e) DNSConv3DA2, (f)
DNSConv3DB2, (g) DNSConv3DC2 and (h) DNSConv3DD2 of Tab. G The heavier fluid is in red, the
lighter one in blue. The black parts show the grid. The upper walls are not visible.
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The slices along the XZ plane of the instantaneous concentration fields are given at t ∼ 4 s
for these simulations in Fig. 4.27. Note that for the smallest initial wavelength, the instability is
less developed as expected from the linear stability analysis and Fig. 4.28. Indeed, we can see
on Fig. 4.28 that even if both wavelengths are greater than the most unstable wavelength, the
smallest one is much closer to the critical wavelength, and thus has a much smaller growth rate
than the other.
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Figure 4.28: Growth rate Ω(k) (Eq. (4.11)) along with the most unstable wavelength λ0 (dashed red line)
and the critical wavelength (continuous red line). Both the initial wavelength λpeak of Tab. G are given in
dashed blue and orange lines. The mesh size is also indicated in dashed green line.

The mixing zone widths are plotted for these simulations in Fig. 4.29. The simulations with
threads only in the X direction are closer to mesh convergence than the ones with the threads
along both X and Y directions. This is in accordance with the assumption that the lack of points
in the fluid prevents the convergence. A slight difference can be seen between the simulations
of initial wavelength λ = 5 mm and λ = 11 mm. Indeed, the simulations with λ = 5 mm have a
slightly better mesh convergence than their counterparts with λ = 11 mm.

As expected, the mixing zone widths between different resolutions are closer for the 3D
simulations than for the 2D ones, thus the convergence is slightly better due to the increase in
the number of points. However, it is clear that achieving mesh convergence with a grid at the
interface is very difficult as even the 3D simulations are sensitive to the initial conditions.

A way to achieve this mesh convergence is to drastically increase the number of points inside
the fluid by decreasing the number of threads implemented. Thus, two periodic 2D simulations
are made with only one thread of width 17 mm in the middle of the domain with NpX = NpZ =
512 and NpX = Np2 = 1024.

The 2D instantaneous concentration fields are shown in Fig. 4.30 for t ∼ 4 s and the mixing
zone widths are given in Fig. 4.31.

Note that even if the concentration fields are not exactly the same due to the change of spatial
resolution giving slightly different initial conditions, the mixing zone widths overlap perfectly.
Thus, mesh convergence is reached in these simulations.
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Figure 4.29: Mixing zone width L as a function of time t for the simulations DNSConv3D of Tab. G.

(a) (b)

Figure 4.30: Quasi 2D simulations - Instantaneous concentration fields at t ∼ 4 s for (a) NpX = 512 and (b)
NpX = 1024 with one thread of width 17 mm. The heavier fluid is in red and the lighter one in blue. The
walls and grid are shown in black.

As a conclusion, adding a grid at the interface decreases the number of points in the fluid
domain and renders the simulations very sensitive to the initial conditions, which means that the
mesh convergence is very difficult to achieve. Increasing the porosity of the grid by increasing
the mesh size and thus having less threads will help improve the mesh convergence.
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Figure 4.31: Mixing zone width L as a function of time t for the 2D periodic simulations with one thread
of width 17 mm.

4.3 Numerical study of the influence of the grid

The main goal is to understand whether having a grid at the interface between the two fluids
impacts the dynamics of the Rayleigh-Taylor instability. In this section, numerical simulations of
the Rayleigh-Taylor instability through a grid are presented and compared to the experimental
results. All of the simulations presented in this section are performed inside a three-dimensional
periodic cubic domain.

4.3.1 Horizontal mean concentration profiles and model

In this section, different method of computing the mean horizontal concentration are detailed
and a model is created with the purpose of understanding the cause of the jump at the interface
of the mean concentration profiles observed in the experiments.

With the addition of the grid at the interface, three ways of computing the mean concentra-
tion profile exist. The first, giving ⟨C⟩XY,tot, is to consider every points even those inside the
threads of the grid (dashed white in Fig 4.32a). The second, giving ⟨C⟩XY,wg (wg meaning with-
out grid), is to consider all of the points except the ones inside the threads of the grid (dashed
white in Fig 4.32b). Lastly, the third method, giving ⟨C⟩XY,wgc (wgc meaning without the grid’s
columns), considers only the points inside the columns delimited by the holes (dashed white
in Fig 4.32c). This is summarized in Fig. 4.32 showing in dashed white the points taken into
account in the computation of the horizontal mean concentration for each of the three methods.
The simulation’s parameters considered here are: 5123 points, A = 0.003, ν = 1.2 × 10−6 m2.s−1,
D = ν, ηu = 1 × 10−4 s, ηc = 1.2 × 10−10 m2.s−1 and λpeak = 11 mm.

As expected, each method gives a different horizontal mean concentration profile. Indeed,
taking into account the points inside the columns delimited by the threads like in the first two
methods presented, clearly shifts the value of the mean concentration towards 0 below the in-
terface and towards 1 above the interface. This means that more pure, unmixed, fluid is taken
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(a) (b) (c)

Figure 4.32: Schematics showing on a 2D slice of a three-dimensional periodic cubic simulation at t ∼
4 s with a grid at the interface of mesh size d = 10 mm and thread diameter of l = 10 mm, giving a
porosity of ϕ = 0.25. In hatched white the points taken into account when computing the horizontal
mean concentration. (a) First method giving ⟨C⟩XY,tot. (b) Second method giving ⟨C⟩XY,wg. (c) Third
method giving ⟨C⟩XY,wgc.
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Figure 4.33: Horizontal mean concentration profiles ⟨C⟩XY,tot, ⟨C⟩XY,wg and ⟨C⟩XY,wgc at time t ∼ 5 s for
a 3D periodic cubic simulation with a grid at the interface of mesh size d = 10 mm and thread diameter
of l = 10 mm giving a porosity of ϕ = 0.25.

into consideration in the averaging process, hinting that the instability only develops inside the
columns delimited by the holes of the grid. These differences can be seen in Fig. 4.33, showing
the three horizontal mean concentration profiles at time t ∼ 5 s for a three-dimensional periodic
cubic simulation with a grid mesh size of d = 10 mm and a thread diameter of l = 10 mm.

To prove that the instability does, indeed, develop mainly in the columns delimited by the
holes of the grid, at least in the early dynamics, a model can be made. This model is based on
the fact that the columns above and below the threads of the grid are filled with pure unmixed
fluids, which allows to compute ⟨C⟩XY,tot knowing ⟨C⟩XY,wgc.

For this model, an elementary configuration that is a square of side length d + l composed
of a hole (square of side d) and two threads of width l (Fig. 4.34) is considered. The surface of
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the hole is thus d2, the surface of the threads is (d + l)2 − d2 meaning that the surface of the ele-
mentary configuration is (d+ l)2. Inside the hole, the mean horizontal concentration is ⟨C⟩XY,wgc

while inside the threads, the mean horizontal concentration would be the one taking only into
account the columns delimited by the threads ⟨C⟩XY,g. The value of ⟨C⟩XY,g is computed based
on the hypothesis that, above the thread is a column of pure dense fluid, ⟨C⟩XY,g = 1, and below
the thread is a column of pure lighter fluid, ⟨C⟩XY,g = 0. In the width of the interface δ, the value
of ⟨C⟩XY,g is considered to grow linearly from 0 to 1. This principle is summarised in Eq. (4.26).





⟨C⟩XY,g = 0 for z < − δ
2 ,

⟨C⟩XY,g = z
δ +

1
2 for − δ

2 ≤ z ≤ δ
2 ,

⟨C⟩XY,g = 1 for z > δ
2 .

(4.26)

l + d

d

Figure 4.34: Elementary configuration considered in the horizontal mean concentration model.

Taking into account the proportion of each horizontal mean concentration in the elementary
configuration to form the total horizontal mean concentration ⟨C⟩XY,tot, we get:

⟨C⟩XY,tot = ⟨C⟩XY,wgc
d2

(d + l)2 + ⟨C⟩XY,g
(d + l)2 − d2

(d + l)2 . (4.27)

Thus:

Model: Total horizontal mean concentration

⟨C⟩XY,tot = ⟨C⟩XY,wgcϕ + ⟨C⟩XY,g(1 − ϕ), (4.28)

Figure 4.35 shows the results of this model at time t ∼ 5 s in red line while the blue and
green lines are the computed horizontal mean concentrations ⟨C⟩XY,wgc and ⟨C⟩XY,tot. A very
good agreement can be observed between the model and simulation. As time grows, however,
the assumption of pure fluids inside the columns delimited by the threads of the grid become
less true and thus the model and the computed means tend to depart from each other.

The model does show that the shift seen in the horizontal mean concentrations between the
two first methods and the third is due to the presence of pure unmixed fluid trapped above and
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Figure 4.35: Horizontal mean concentration profiles. In blue, the horizontal mean concentration profile
⟨C⟩XY,wgc computed without taking into account the columns above and below each thread of the grid.
In green, the total horizontal mean concentration profile ⟨C⟩XY,tot computed by taking into account ev-
ery points. In red, the total horizontal mean concentration profile ⟨C⟩XY,tot computed with the model
Eq. (4.28).

below the threads of the grid. Well above or below the threads, the fluid will end up mixing and
will not stay pure which will cause the horizontal mean concentrations ⟨C⟩XY,tot and ⟨C⟩XY,wg

to become closer to ⟨C⟩XY,wgc. However, the fluid immediately surrounding the threads stays
trapped and unmixed, meaning that these mean concentrations will never be exactly the same.

Moreover, from the model it can be deduced that when the grid is more porous (when ϕ is
high), ⟨C⟩XY,wgc is closer to ⟨C⟩XY,tot, which can be very easily explained as less pure fluid is
trapped.

The jump in the concentration profile when considering ⟨C⟩XY,wgc can also be explained by
the no-slip boundary condition at the grid. Indeed, the no-slip boundary means that some pure
fluid is trapped right next to the threads inside each hole.

4.3.2 Adding a grid at the interface: Importance of k0 and effect of the porosity

In order to better understand the effect of a grid placed at the interface between two fluids in
the development of the Rayleigh-Taylor instability, several three-dimensional simulations are
made inside a periodic domain with an Atwood number of A = 0.003, a kinematic viscosity
of ν = 1.2 × 10−6 m2.s−1 and a diffusion coefficient of D = ν. The computational domain is
a rectangular one with a box that is twice as high as it is large as shown in gray in Fig. 4.22
(Lbox × Lbox × Lbox), thus the dimensions of the tank, and thus of the volume of fluid, are Lbox ×
Lbox × 2Hcyl ∼ 0.21 × 0.21 × 0.41 m.

This vertically elongated domain was chosen here so that the instability would not be con-
fined too rapidly compared to a cubic box. Moreover, the simulations were not made inside a
cylindrical tank as it was shown that the geometry should not impact the dynamics of the insta-
bility too much. Hence, the geometry was chosen to maximize the number of points inside the
fluid and thus being as close to convergence as possible.
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Several grids with different porosities, mesh sizes and thread diameters are tested along
with several initial wavelength for the perturbation. These varying parameters are given for
each simulation in Tab. H. The notation 13/5 in Tab. H refers to the fact that two wavelengths
are tested in the DNSGD cases: λpeak = 13 mm and λpeak = 5 mm.

Series N◦ λpeak [mm] d [mm] l [mm] ϕ

DNSGA 1 13 ∅ ∅ ∅
2 5 ∅ ∅ ∅

DNSGB 1 5 20 10 0.44
2 5 20 6 0.6
3 5 20 2 0.83

DNSGC 1 13 13 7 0.44
DNSGD 1 13/5 8 4 0.44

2 13/5 8 2 0.6
3 13/5 8 0.8 0.83

DNSGE 1 13 7 3 0.44

Table H: Label (series and numbers), initial wavelength of the perturbation λpeak, mesh size d of the grid,
thread diameter l of the grid and porosity ϕ for the simulations considered. The simulations have an
Atwood number of A = 0.003, a kinematic viscosity of ν = 1.2 × 10−6 m2.s−1 and a diffusion coefficient
of D = ν.

The aim is to compare a Rayleigh-Taylor simulation without grid (DNSGA) and a Rayleigh-
Taylor simulation with grid. However, several parameters are to be taken into account when
implementing a grid, like its porosity, its mesh size and especially the value of the mesh size
compared to the most unstable wavelength λ0 given by the linear stability analysis.

4.3.2.1 Simulations with kg < k0

Firstly, the DNSGB simulations are compared to the DNSGA2 one. These simulations corre-
spond to the grid with the biggest mesh size implemented and to the case that is furthest from
the experiments as its mesh size is larger than the most unstable wavelength, d > λ0. This is
shown in Fig. 4.36 where the growth rate is plotted against the horizontal wavenumber.

In this figure are given in red both the most unstable wavenumber k0 and the critical wavenum-
ber kc after which the growth rates become negative and the instability is stabilised by diffusion.
The wavenumber corresponding to the mesh size of the grid kg = 2π/d is given in blue and the
initial perturbation wavenumber kpeak is in green. The hatched gray area represents all of the
wavenumbers that cannot develop due to the presence of the grid.

As can be seen in Fig. 4.36, the most unstable wavelength is allowed to develop despite
the presence of the grid and thus is the wavelength that is expected to develop in the DNSGB
simulations.

The slices along the XZ plane of the instantaneous concentration fields are given at time
t ∼ 9 s for DNSGA2 and all of the DNSGB simulations in Fig. 4.37.

It is to be noted that the grid giving a porosity of ϕ = 0.83 of DNSGB3 in image 4.37b has
very few points inside each thread, which is why it is barely visible and its resolution could very
well be questioned. It was verified, however, that no fluid passes through the threads and that
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Figure 4.36: Growth rate Ω as a function of the wavenumber k for the parameters of DNSGB (Tab. H)
with, in red, the most unstable wavenumber k0 and the critical wavenumber kc, in blue, kg = 2π/d the
wavenumber corresponding to the mesh size and, in green, the initial perturbation wavenumber kpeak.
The gray hatched area corresponds to all of the wavenumber that are not allowed to develop by the grid.

(a) (b) (c) (d)

Figure 4.37: 2D slices along the XZ plane of the instantaneous concentration fields at time t ∼ 9 s of (a)
DNSGA2, (b) DNSGB3 (ϕ = 0.83), (c) DNSGB2 (ϕ = 0.6) and (d) DNSGB1 (ϕ = 0.44) in Tab. H.

the velocity stays null inside them.

Figure 4.37 shows that, as expected, the more porous the grid, the closer we get to the
Rayleigh-Taylor case without grid DNSGA2. Another noticeable feature is that, when the poros-
ity decreases, as the holes are kept of the same width, the threads grow in size (and decrease in
number) and the instability is more and more trapped inside the columns delimited by the holes
as was understood from the mean concentration model. Moreover, as the instability cannot de-
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velop sideways for the lower porosity, it develops more vertically and thus less mixing happens.
That is only true at the beginning of the instability, as we see here that the turbulent structures do
not stay trapped inside these holes delimited channels for the entirety of the simulation. Thus,
the horizontal scale becomes larger than the grid mesh size in the long term.

The presence of these elongated structures are corroborated by both the integral scale Lu

and the dimensionality parameter sin2(γ) (Gréa [2013]). A note of warning, these parameters
depend on spectral quantities in which the contribution of the grid cannot be easily removed
and can bring large fluctuations. This effect is in all probability negligible for small threads but
not for large threads. Thus, Lu and sin2(γ) aim only at bringing a qualitative confirmation of the
observations made. These quantities are plotted in Fig. 4.38a and Fig. 4.38b respectively for each
of the simulations presented in Fig. 4.37. The integral scale is defined as:

Lu =
E3/2

cin
ε

(4.29)

where Ecin is the kinetic energy and ε its dissipation. The integral scale shows the extension of
the structures, and as expected it becomes smaller as the porosity is decreased with for example
a factor two between the classical Rayleigh-Taylor case and for ϕ = 0.44. However, it does not
say whether the structures become thinner but more vertically elongated or wider but flatter.
In order to access this information, we look at the dimensionality parameter sin2(γ) (defined in
Gréa [2013]). Indeed, for isotropic structures, this parameter is equal to 2/3, if the structures are
more vertically elongated, it tends towards 1, whereas decreases below 2/3 for flat horizontal
structures. For the classical Rayleigh-Taylor case, we expect sin2(γ) ∼ 0.7 (Gréa [2013]) and this
is what is observed in Fig. 4.38b. When the porosity is decreased however, we observe larger
dimensionality parameters meaning that the structures are indeed more vertically elongated.
These confirm the observations made on the instantaneous concentration fields. Moreover, from
Fig. 4.38a, we see that the presence of the grid at the interface delays the transition to the self-
similar regime as Lu is supposed to be proportional to t2 in that regime.

To quantify further these effects, the mean horizontal concentration profiles, the mixing zone
widths and the growth rates are plotted on Fig. 4.39.

(a) (b)

Figure 4.38: (a) Integral scale Lu(t) (Eq. (4.29)) and (b) Dimensionality parameter sin2(γ)(t) (Gréa [2013]).
Plots made for the simulations DNSGA2, DNSGB1, DNSGB2 and DNSGB3 (Tab. H).
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(a) (b)

(c) (d)

Figure 4.39: (a) and (b) Horizontal mean concentration profiles ⟨C⟩XY,wgc(z) at times t ∼ 5 s and t ∼ 9 s
respectively. The gray area represents the height of the largest threads used in the simulations considered
(height = l = 10 mm). The dashed line represent the value of the arbitrary threshold use for the profile
method (ϵ = 0.03). (c) Mixing zone width L(t) and (d) growth rate α(t) computed with the integral
method and the profiles method using ⟨C⟩XY,wgc. The gray region shows the times onto which the growth
rate was averaged to give the values in the legend. Plots made for the simulations DNSGA2, DNSGB1,
DNSGB2 and DNSGB3 (Tab. H).

The mean horizontal concentration profiles plotted in Figs.4.39a and 4.39b were computed
through the third method ⟨C⟩XY,wgc described in Sec. 4.3.1 where only the points inside the
columns delimited by the holes of the grid are taken into account. The case DNSGA2, in blue
line, has no grid and is noted ϕ = 1 as it could be seen as a completely porous case. These profiles
are given at times t ∼ 5 s and t ∼ 9 s to understand the evolution of the profiles with time. Note
that for each simulation with a grid, a jump exists in the mean concentration profile, whatever
the porosity may be. This is as was seen in the mean concentration profiles of the experiments
studied earlier. On these profiles an inversion of slope can be seen just before the interface
(z = 0 m), both above and below it, that was not seen in the experiments. This is believed to
come from a portion of pure fluid that is trapped by the thread in its vicinity, probably in part
due to the cubic geometry of the threads in the simulations. These pouches of trapped fluid are
larger when the porosity is decreased. It is clearly visible on Fig. 4.39b that this behavior in the
mean horizontal concentration is present for the smallest porosity, ϕ = 0.44, which is due to the
larger thread diameter and thus larger pouches. Moreover, looking at the width of the jump at

111



4.3. Numerical study of the influence of the grid

the interface, it becomes smaller with time which is especially visible for the largest porosity,
ϕ = 0.83. However, its evolution is slower than in the experiments, and it does not disappear
entirely.

The mixing zone width in Fig. 4.39c is computed with two different methods. Indeed, the
classical method, the integral method given in Eq. (4.30), does not take into consideration small
filaments of fluids that passes through the holes of the grid and thus the resulting mixing zone
width is very sensitive to the porosity and holes size, and has a tendency to be smaller than what
could be seen from the instantaneous concentration fields.

Mixing zone width : Integral method

Lint(t) = 6
∫
⟨C⟩XY,wgc(1 − ⟨C⟩XY,wgc)dz. (4.30)

A way to take these filaments into account is to compute the mixing zone width with the pro-
file method given by Eq. 4.31. This method is based on an arbitrary threshold on the value of the
mean horizontal concentration giving the z-coordinates at which the mixing zone commences
and finishes in the mean concentration profiles.

Mixing zone width : Profile method

Lz(t) = z(⟨C⟩XY,wgc = 1 − ϵ) − z(⟨C⟩XY,wgc = ϵ), (4.31)

ϵ = 0.03 being the value of the arbitrary threshold.

The drawback of this second method is its sensitivity to small variations in the concentration
profiles (spike in the dashed green curve in Fig. 4.39c) and to the value of the threshold.

In Fig. 4.39c, as expected, Lint decreases as the porosity increases and gives much smaller
values than Lz. The value of the arbitrary threshold was chosen so that the mixing zone widths
would be similar for the case without grid with both methods. Thus the value chosen is ϵ = 0.03.
Note that when considering the mixing zone width Lz they are all very close together, with a
tendency to be slightly larger than the one without grid. This is in all probability due to the
larger vertical extension of the instability in the presence of a grid discussed earlier. With a less
porous grid, the structures are thinner and mix less which means that they grow faster than in a
classical Rayleigh-Taylor case, for which the mixing happens sooner.

As there are two ways of computing the mixing zone width, two α can also be computed:
αint coming from the integral method and αz coming from the profile method (Fig. 4.39d). The
growth rate considered in the experiments is the one computed from the integral method, αint.
In the case where the two mixing zone widths are similar, αint and αz should also be similar.
This can be seen for the DNSGA2 (ϕ = 1) simulation which shows a growth rate around 0.02
for both methods. However, the profile method gives way more fluctuations on the value of
the growth rate compared to the integral method. These fluctuations can be very intense (green
dashed curve around 6 s) and they make it difficult to understand whether a plateau has been
reached or not. As expected from the mixing zone width, αint becomes smaller as the porosity
decreases. This stays partially true for αz except for the simulation DNSGB1 with ϕ = 0.44 whose
growth rate is larger than the one for the simulation DNSGB2 with a porosity of 0.6 and as large
as the one for the porosity 0.83 (DNSGB3). Note that except for this occurrence, both methods
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of computing α give close values of growth rate despite their mixing zone width being quite
different. We have seen in Fig. 4.38a that the simulations with the less porous grids have not
reached the self-similar regime. This means that the growth rate α in Fig. 4.39d is not a measure
of the self-similar growth of the mixing zone with grid but only an evaluation of the growth rate
of the mixing zone.

The mean concentration chosen to compute the mixing zone width and its growth rate was
the one which does not take into account the columns of fluids above and below each thread
of the grid, ⟨C⟩XY,wgc. In the case where ⟨C⟩XY,tot is used instead, a higher effect of the grid
would be expected with larger mixing zone width discrepancies between each simulation, and
also larger growth rate for the simulations with grids because of the larger density contrast. This
behavior is shown in Fig. 4.40.

Indeed, the mixing zone widths for the simulations with grid part ways much sooner (around
1 s) than in Fig. 4.39c (around 6 s) which give a much smaller mixing zone at t = 10 s for simu-
lations DNSGB1 and DNSGB2. Moreover, the growth rates are indeed a bit larger than the ones
computed from Fig. 4.39d. However, the differences are not too important and do not change
the evolution of the growth rate with the porosity from one simulation to the next. Hence, both
mean horizontal concentration can be considered to study the impact of the grid on the dynam-
ics. One only takes into account the regions of the computational domain where the instability
is able to develop from the start, thus becoming slightly closer from the Rayleigh-Taylor with-
out grid case. The other takes every point into consideration and is thus closer to what can be
computed from the experiments.

As a conclusion, the grid imposes thinner and more elongated structures as the porosity is
decreased. As a consequence, the method used to compute the mixing zone width becomes
critical if we want to detect these structures. The same goes for the growth rate α as they are
even more sensitive to how L is computed.

(a) (b)

Figure 4.40: (a) Mixing zone width L(t) and (b) growth rate α(t) computed with the integral method and
the profiles method using ⟨C⟩XY,tot. The gray region shows the times onto which the growth rate was
averaged to give the values in the legend. Plots made for the simulations DNSGA2, DNSGB1, DNSGB2
and DNSGB3 (Tab. H).
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4.3.2.2 Simulations with kg > k0

In order to understand the importance of letting the most unstable wavelength λ0 develop or
not, the DNSGD simulations are compared to the DNSGA simulations. The grid that is closest
to the grid used in the experiments, from the linear stability analysis point of view, is the grid
used in DNSGD. Indeed, this grid keeps the same distance between kg and kc and between kg

and k0 than the experimental Grid3. However, this grid has a mesh size that is smaller than
the most unstable wavelentgh, d < λ0. This means that the most unstable wavelength cannot
develop and the wavelength with the largest growth rate is d: thus a perturbation of wavelength
d is expected to develop.

This is shown in Fig. 4.41 giving the growth rate as a function of the wavenumber. The
most unstable wavenumber k0 and the critical wavenumber kc are plotted in red, while the
grid wavenumber kg = 2π/d and the initial perturbation wavenumbers kpeak,1 and kpeak,2 are
given in blue, orange and green respectively. The gray hatched area gives the wavenumbers
that cannot be destabilised due to the grid. The initial perturbation wavenumber kpeak,1 was
especially chosen to be equal to the most unstable wavenumber. Thus, note that both kpeak,1 and
k0 are inside the gray hatched area and thus they cannot develop.

The simulations DNSGA and DNSGD were both made with two different initial perturba-
tion wavelengths, λpeak,1 = 13 mm and λpeak,2 = 5 mm. The instantaneous concentration fields
of Fig. 4.42 show at t ∼ 9 s the simulations done with λpeak,1 while the ones of Fig. 4.43 show at
t ∼ 9 s the simulations done with λpeak,2.

Observe that, as expected, the perturbation that develops in simulations DNSGD is of the
size of the holes whatever the initial perturbation wavelength may be. Indeed, for both initial
perturbation wavelengths, filaments of the hole’s diameter develop. This development of the
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Figure 4.41: Growth rate Ω as a function of the wavenumber k for the parameters of DNSGB (Tab. H)
with, in red, the most unstable wavenumber k0 and the critical wavenumber kc, in blue, kg = 2π/d the
wavenumber corresponding to the mesh size and, in green, the initial perturbation wavenumbers kpeak,1
and kpeak,2. The gray hatched area corresponds to all of the wavenumbers that are not allowed to develop
by the grid.
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(a) (b) (c) (d)

Figure 4.42: 2D slices along the XZ plane of the instantaneous concentration fields at time t ∼ 9 s of (a)
DNSGA1, (b) DNSGD3 (ϕ = 0.83), (c) DNSGD2 (ϕ = 0.6) and (d) DNSGD1 (ϕ = 0.44) in Tab. H with
λpeak = 13 mm.

(a) (b) (c) (d)

Figure 4.43: 2D slices along the XZ plane of the instantaneous concentration fields at time t ∼ 9 s of (a)
DNSGA2, (b) DNSGD3 (ϕ = 0.83), (c) DNSGD2 (ϕ = 0.6) and (d) DNSGD1 (ϕ = 0.44) in Tab. H with
λpeak = 5 mm.

instability is very different from the previous case when we had kg < k0. These filaments that de-
velop here provoke very little mixing, which becomes increasingly obvious as the grid’s porosity
decreases. It is in appearance very far from the known Rayleigh-Taylor instability development
which can be seen in both Fig. 4.42a and Fig. 4.43a.

Looking at both DNSGA simulations, the initial perturbation wavelength impacts the dy-
namics of the instability. Indeed, around the same time, Fig. 4.42a shows a mixing zone width
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(a) (b)

Figure 4.44: Mixing zone width L(t) computed with the integral method and the profiles method using
⟨C⟩XY,tot for (a) λpeak,1 and (b) λpeak,2. The gray region shows the times onto which the growth rate was
averaged. Plots made for the simulations DNSGA1, DNSGD1, DNSGD2 and DNSGD3 (Tab. H).

that is more developed than in Fig. 4.43a. This is an expected behavior as more energy is given
in DNSGA2 to a mode that has a much smaller growth rate Ω than k0 and which is quite close
to the critical wavenumber kc.

This phenomenon can be seen also when comparing Fig. 4.44a and Fig. 4.44b giving the
mixing zone widths computed from ⟨C⟩XY,tot for λpeak,1 and λpeak,2 respectively. Indeed, we see
on Fig. 4.44a that the mixing zone width for ϕ = 1 reaches much higher values than on Fig.4.44b.

This statement is less true for the simulations with grid: they have very similar mixing zone
widths despite the change of initial perturbation wavelengths. Once again however, the integral
method gives much smaller mixing zone widths for the simulations with grids than the profile
method, with a net decrease of L(t) with the porosity.

The growth rate of these 8 simulations are given in Fig. 4.45. Note that the initial perturbation
wavelength λpeak has a great influence on the growth rate α both for the simulations with and
without grid. Indeed, even if the grid mesh size prevents large wavelengths from developing,
the development of the instability is still sensitive to the smaller wavelengths present in the
system and their initial energy. As such, the transient regime is shorter with higher values of α

reached for λpeak,1 than for λpeak,2. In the self-similar regime, α for the classical Rayleigh-Taylor
is slightly larger for the largest initial perturbation wavelength whereas the contrary is seen for
the simulations with grid. The growth rate of the simulations width grid is rather larger when
using a smaller initial perturbation wavelength.

Thus, even if it is not clearly visible on the instantaneous concentration fields or on the mix-
ing zone widths, the value of the initial perturbation wavelength has an effect on the instability’s
dynamics even with a grid that seems to select its own wavelength.

The mean horizontal concentration profiles ⟨C⟩XY,wgc(z) for the λpeak,1 DNSGA and DNSGD
simulations are plotted in Fig. 4.46.

The jumps is clearly still present even if its amplitude tend to become smaller with time.
At t ∼ 5 s, the slope inversion is only visible for the simulation with ϕ = 0.83. That is due to
the lack of mixing in the simulations with lower porosity: there are only columns of pure fluid
ascending and descending. However, as time passes, the mean concentration profile reverts to
a linear profile thanks to the turbulence (before and after the jump) for the ϕ = 0.83 case while
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(a) (b)

Figure 4.45: Growth rate α(t) computed with the integral method and the profiles method using ⟨C⟩XY,tot
for (a) λpeak,1 and (b) λpeak,2. The gray region shows the times onto which the growth rate was averaged.
Plots made for the simulations DNSGA1, DNSGD1, DNSGD2 and DNSGD3 (Tab. H).

φ = 0.83 φ = 0.44

(a)

φ = 0.83 φ = 0.44

(b)

Figure 4.46: Mean horizontal concentration profiles ⟨C⟩XY,wgc for λpeak,1 at (a) t ∼ 5 s and (b) t ∼ 9 s with
the 2D slices of the instantaneous concentration fields of DNSGD1 and DNSGD3 as inserts. The gray
area represents the height of the largest threads used in the simulations considered (height = l = 4 mm).
The dashed line represent the value of the arbitrary threshold use for the profile method (ϵ = 0.03). Plots
made for the simulations DNSGA1, DNSGD1, DNSGD2 and DNSGD3 (Tab. H).

the slope inversion becomes visible for the other two simulations with grid as mixing occurs
(t ∼ 9 s). The filamentation of the instability slowing down the mixing, it also tend to slow
down the apparition of the slope inversion in the mean concentration profile.

As a conclusion, there seems to be an effect of whether d is larger or smaller than the most
unstable wavelength λ0. In the case where d < λ0 (the case of the experiments), only filaments
of width d develop. The less porous the grid and the more filamentous the instability becomes.
These thinner structures mix badly thus delaying the mixing in our system compared to a clas-
sical Rayleigh-Taylor instability.

4.3.3 Effect of the mesh size

Two other mesh sizes were tested with DNSGC and DNSGE that were equal and smaller than λ0

to understand whether the filamentation of the instability does come from the fact that d < λ0.
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Figure 4.47 shows the slices of the instantaneous concentration fields for DNSGC1, DNSGD1
(with λpeak,1) and DNSGE1.

We notice that DNSGC1, having a grid mesh size that only just allows the most unsta-
ble wavelength to develop, is less filamented than the other two simulations but more than
the DNSB1 simulation shown in Fig. 4.37d. Hence, we can assume that for d > λ0, several
wavelengths can develop in each hole bringing more mixing and less filamentation whereas for
d < λ0, only one wavelength can develop in each hole, mixing less and filamenting more. The
case d = λ0 is the transition case between these two limits. In the experiments, d < λ0, thus
the experimental grid only allows for perturbations of the size of the holes to develop. There is
a selection of the initial perturbation wavelength by the grid at the beginning of the instability.
Moreover, as long as the grid stays the same, the same wavelength will be selected thus it should
help the experiments to be more reproducible.

Moreover, the grid hole’s width has a great impact on the size of the vertical extension. This
is expected as the smaller the hole, the smaller the wavelength of the developing instability and
thus, the smaller the growth rate Ω. The smaller Ω, the more time the instability will take to
develop. This is why the vertical extension of the structures in the simulations with the smallest
mesh size d (DNSGE1 in Fig. 4.47c) is much smaller than the one in the simulation with the
largest mesh size (DNSC1 in Fig. 4.47a).

As a conclusion, the most important grid parameter in terms of the structures shapes, sizes
and selected wavelength is the mesh size and where it is situated compared to the most unstable
wavelength. The porosity of the grid also has an effect and that is to decrease the growth rate of
the instability in the self-similar regime and thus, to get further away from the wanted Rayleigh-
Taylor instability. The grid, no matter its porosity or mesh size, always seems to have an impact
on the mean concentration profiles by creating a jump at the interface and on the instability’s

(a) (b) (c)

Figure 4.47: 2D slices along the XZ plane of the instantaneous concentration fields at time t ∼ 5 s of
(a) DNSGC1 (d = λ0 = 13 mm), (b) DNSGD1 (d = 8 mm) and (c) DNSGE1 (d = 7 mm) in Tab. H with
λpeak = 13 mm. The heavier fluid is in red and the lighter one in blue. The walls and grid are shown in
black.
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dynamics.
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4.4 Conclusion

A new type of miscible Rayleigh-Taylor experiment was introduced in this chapter with a grid
positioned at the interface between the two fluids. The goal of the grid was to stabilize the heav-
ier fluid when the container is filled and to let the instability develop once the tanks containing
the lighter and heavier fluids are in contact. Thus, it would give an initial condition that does
not create any shear at the interface; hence, the grid could make the initial condition more con-
trollable. However, for this new type of experiment to be a good candidate to investigate the
Rayleigh-Taylor instability, we need to make sure that the grid does not influence the dynamics
of the instability by its continued presence during the experiments.

Unfortunately, most of the experiments made showed an ascending jet around the center of
the cylinder. Thus, only a few number of experiments could be studied to answer this question.
From these, however, it was found that the horizontal mean concentration profiles presented a
jump at the interface that should not appear in a ‘classical’ Rayleigh-Taylor instability. Hence,
the grid has an effect but it does not mean that it necessarily has an important impact on the
dynamics. Indeed, the mixing zone width and growth rate show that something resembling a
self-similar regime could be reached with values of the growth rates around 0.034 for some of
the experiments, which is an usual value for experiments of the Rayleigh-Taylor instability.

In order to get more data to study the effect of the grid, direct numerical simulations (DNS)
using the Stratospec code were performed. Using the penalisation method, different configu-
rations were tested and a grid was implemented at the interface between the two fluids. One
of the result of this study is that using the penalisation method to simulate a cylinder inside the
cubic computational domain does not impact much the development of the instability despite
the no-slip boundaries imposed. Thus, it is perfectly possible to reproduce the geometry of the
experiments.

More importantly, it was found that the grid does impact the development of the instability.
Indeed, one important result is the striking effect the grid mesh size has on the structures shapes
and sizes. The key parameter here is whether the ratio d/λ0 (λ0 being the most unstable wave-
length given by the linear stability analysis) is larger or smaller than one. For a ratio larger than
one, the structures that develop are very close to the ones observed in a Rayleigh-Taylor insta-
bility. Whereas, for a ratio smaller than one, the structures become thin filaments of the size of
the holes that mix very poorly. In the experiments, this ratio is smaller than one: hence the grid
imposes an initial condition of the size of the holes. Contrarily to the numerical simulations, the
experimental grid’s holes and threads are much smaller and thus mixing occurs very close to
the grid which makes the structures appear much less filamentous.

Moreover, as soon as a grid is implemented in the simulations, no matter the value of the
ratio d/λ0, the jump in the concentration profiles appears. As seen in the experiments, this
jump tends to shrink with time: so, as the instability develops, the presence of the grid has
less and less impact. A self-similar regime seems to be reached in the numerical simulations as
well, but this time with much smaller values of the growth rate than for the ‘classical’ Rayleigh-
Taylor instability. This value is greatly impacted by the porosity of the grid and the more porous
the grid, the higher the value of the growth rate α. However, with the apparition of the thin
filamentous structures, the quantities of interest, like the growth rate and the mixing zone width,
become very sensitive to how they are measured. This adds dispersion to the results meaning
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we should be careful when interpreting them.
In order to better answer the question of whether the grid impacts the long term dynamics

of the instability in the experiments, we could perform simulations with a higher resolution to
have finer grids and decrease the diffusion coefficient D imposed in the simulations in order to
allow more wavelengths to develop inside each holes and thus recover an earlier mixing.
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Introduction

In the previous Chapter, a new type of Rayleigh-Taylor experiment, involving a grid at the in-
terface between the two fluids, was described. This previous chapter was centered around the
influence of the grid on the dynamics of the instability. However, in 74% of the experiments de-
scribed, an inhomogeneity was observed: namely an ascending central jet. Thus, the goal of this
chapter is to find the cause of the appearance of that jet through direct numerical simulations.

To this aim, the mean azimuthal concentration, given by Eq. (5.1), will often be studied.

⟨C⟩θZ(r, t) =
1

4πHcyl

∫ 2π

0

∫ Hcyl

−Hcyl

C(r, θ, Z, t) dθdZ, (5.1)

with Hcyl the height of one of the cylindrical tank, Z is the vertical coordinate, (r =
√

X2 + Y2, θ)
are the radius and angle in the cylindrical coordinate system.

An ascending central jet of lighter fluid means, in the plane of the observations, two descend-
ing lateral jets of heavier fluid on the sides of the lower cylindrical tank, the only one visible in
the experiments. Thus, at the position of these jets (r = Rcyl), the mean azimuthal concentration
should increase while it should decrease in the center of the cylinder (r = 0). In the case where
no jets appear, the mean azimuthal concentration should be uniform and around 0.5 along the
radius of the cylinder for the simulations in which both the upper and lower tanks are taken in
consideration.

In the experiments, only a 2D plane for the bottom tank is visible. Thus, the mean concen-
tration is defined as:

⟨C⟩Z(X, t) =
1

Hcyl

∫ 0

−Hcyl

C(X, Z, t) dZ. (5.2)

Hence, if no descending jet is present then ⟨C⟩Z(X, t) = 0. An example of this behaviour is shown
in Fig. 5.1 for EXPa7 (Tab. B) at time t ∼ 7 s. The ascending jet in this experiment happened on
the right side of the cylinder and thus there is only one descending lateral jet on the left side.
The figure presents both the cropped instantaneous concentration field of EXPa7 at time t ∼ 7 s
and the mean concentration profile as a function of the radius r. As expected the highest value
of ⟨C⟩Z is reached at the position of the descending jet. A dark part of the grid is visible at the
top of the image which increases artificially the value of the mean concentration. This is why it
never quite reaches 0 even in the right part of the image where almost no heavier fluid can be
seen.

This chapter articulates as follows: first of all, various intuitive hypothesis are tested to re-
produce the ascending central jet, namely modifying the initial conditions. Unfortunately, this
is not enough to mimic the phenomenology of the experiments, meaning that more complex
mechanisms are at play. Hence, a simplified ‘aspiration model’ is derived, consisting in a time-
evolving forcing velocity field which results from the pressure jump between the two fluids
when contact is made.
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Figure 5.1: Instantaneous concentration field beneath the grid in the plane of the laser sheet at time
t ∼ 7 s for EXPa7 (with A = 0.0037, grid mesh size d = 1 mm and a porosity ϕ = 0.41) with the mean
concentration ⟨C⟩Z (in red) as a function of the horizontal coordinate X.

5.1 The cause of the apparition of the central jet

The first intuition one can have is that particular initial conditions may be at the origin of
the ascending central jet. Following this idea, direct numerical simulations, using the code
Stratospec, are performed, and three different initial conditions are tested, where we vary:

1. the wavelength for the initial perturbation λpeak

2. the curvature of the interface C

3. the amount of time it takes to establish the contact between the two fluids to

All of the simulations presented in this section are made using 5123 points in a cylindrical
geometry using 2Rcyl = 0.194 m and 2Hcyl = 0.194 m (Large Cylinder configuration presented in
Chapter 4) with an Atwood number A = 0.003, a kinematic viscosity ν = 0.6 × 10−6 m2.s−1 and
a diffusion coefficient D = ν. For these simulations, no grid is implemented at the interface.

5.1.1 Wavelength of the initial perturbation?

The ascending central jet visible in the experiment denotes the breaking of the lateral homogene-
ity and a breaking of the symmetry with respect to the z = 0 plane. Thus, the goal is to know
whether initialising our simulations with a perturbation of large wavelength, and thus possibly
confining laterally the instability, could help reproduce this phenomenon. Hence, we varied our
initial wavenumber kpeak given in Eq. (4.19) (and thus our initial wavelength λpeak = 2π/kpeak),
in order to find out its importance on the dynamics of the instability.

Changing the wavelength of the initial condition modifies the growth rate, defined in Eq. (4.11),
of the early linear regime of the Rayleigh-Taylor instability as shown in Fig. 5.2. It is to be noticed
that among the four simulations made, two of them possess a kpeak smaller than k0, the fastest
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Series N◦ Configuration kpeak [m−1] λpeak [m]
DNSλ 1 LC 292.95 0.021

2 LC 585.90 0.011
3 LC 1318.26 0.005
4 LC 1757.69 0.004

DNSTC TC 47.35 0.13

Table A: Label (series and numbers), configuration Large Cylinder (LC) or Thin Cylinder (TC) initial
unstable wavenumbers kpeak and the corresponding initial unstable wavelength λpeak are given for the
five simulations considered.
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kpeak = 47.35 m−1

kDcyl
= 32.39 m−1

Figure 5.2: Growth rate Ω as a function of the wavenumber k (Eq. (4.11)). The kpeak of the DNSλ and
DNSTC series of Tab. A are given in dashed lines of color blue, orange, green, red and purple for DNSλ1,
DNSλ2, DNSλ3, DNSλ4 and DNSTC respectively. The red continuous line indicates the wavenumber
corresponding to the diameter of the cylinder kDcyl .

growing wavenumber, and two of them have a higher one. All of them have a positive growth
rate, thus the diffusion cannot stabilize the growth of the instability. However, the diffusion will
affect more the simulations whose kpeak are bigger than k0. We expect the growth rates for the
four kpeak to be: ΩDNSλ1 = 2.6 s−1, ΩDNSλ2 = 3.2 s−1, ΩDNSλ3 = 2.7 s−1 and ΩDNSλ4 = 1.7 s−1.
So the one which should develop the most rapidly is DNSλ2 with kpeak = 585.90 m−1. In all of
the DNSλ simulations, we have kpeak ≫ kDcyl , where kDcyl = 2π/Dcyl is the wavenumber associ-
ated with the diameter of the cylinder. Thus, we do not expect these simulations to be laterally
confined.

The instantaneous 3D concentration fields and the vertical slices along the XZ plane are
shown on Fig. 5.3 for simulations DNSλ1 and DNSλ3 with kpeak = 292.95 m−1 and kpeak =
1318.26 m−1 respectively, giving an initial perturbation of wavelength 0.021 and 0.005 m. Note
that none of these images show an ascending central jet like the one observed in the experiments
(Fig. 4.11 in Chap. 4). Indeed, we only see the development of a homogeneous Rayleigh-Taylor
instability with different structure sizes and mixing zone widths. The symmetry is preserved
between the lighter and heavier fluids.

In order to confirm that no symmetry with respect to the z = 0 plane is broken in the simu-
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Figure 5.3: Instantaneous 3D concentration fields and 2D vertical slices along the XZ plane for (a) and
(b) an initial perturbation of wavelength λ = 0.021 m (DNSλ1) and (c) and (d) an initial perturbation
wavelength of λ = 0.005 m (DNSλ3) (see Tab. A). The heavier fluid is in red and the lighter one in blue.

lations and thus, no central jet appears even in the slightest, we give the mean azimuthal con-
centration profile ⟨C⟩θZ as a function of the radius r of the cylinder in Fig. 5.4a. This is shown
for all four simulations presented in Tab. A at time t = 4.5 s. We notice that all of the profiles
stay roughly around 0.5 throughout the length of the cylinder since there is the same amount of
heavy and light fluids at any given r. This stays true at all time during the simulations. Thus,
the profiles and the instantaneous concentration fields demonstrate that neither the symmetry
nor the homogeneity of the problem are broken by the change in the initial perturbation wave-
lengths.

To better understand the dynamics of the instability in each simulation, the mixing zone L
and its growth rate α, defined previously in Chapter 3 (Eqs. (3.1) and (3.2) respectively), and
recalled here for clarity: L(t) = 2αAGt2 and α = L̇2

8AGL , are investigated in Fig. 5.4 along with the
mixing parameter Θ, defined as:

Mixing parameter (see Youngs [1994])

Θ =

∫
⟨C(1 − C)⟩XY dZ∫

⟨C⟩XY(1 − ⟨C⟩XY) dZ
= 1 − 6

L

∫
⟨c′2⟩XY dZ, (5.3)

where 1
L

∫
⟨c′2⟩XY dZ is the concentration variance, and c′ = C − ⟨C⟩XY.
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Figure 5.4: (a) Azimuthal mean concentration profiles ⟨C⟩θZ(r, t) at time t = 4.5 s, (b) mixing zone width
L(t), (c) the mixing parameter Θ(t) and (d) the growth rate α(t) for simulations DNSλ and DNSTC (Tab. A).
The insert in (b) is a zoom on the earlier times of the mixing zone width L(t). The dotted gray line in (c)
and (d) represents the time from which the mixing parameter and the growth rate mean values, given in
the legend, are computed.

Thus, for two perfectly mixed fluids, the mixing parameter Θ tends towards 1. As demonstrated
in Gréa [2013], both α and Θ are related, and in particular, the larger Θ the smaller α. Indeed,
when the two fluids mix, their effective density contrast is reduced and so is the production term
of kinetic energy, causing the mixing zone to grow less rapidly. Looking at Figs. 5.4c and 5.4d,
the initial phase is indicated by Θ tending towards 0, no mixing occurs. Then, the transition to
turbulence is seen by the rapid increase (decrease) of Θ (α), the growth rate slows down and
mixing occurs.

We see in the insert of Fig. 5.4b and in the early times of Fig. 5.4d that simulation DNSλ2
has the fastest growth rate and thus the fastest growth of the mixing zone in the beginning of
the instability, as was expected from the linear stability analysis. However, this does not last
very long as the simulation DNSλ1 quickly catches up during the transient regime and has
the biggest growth rate before turbulence settles (around 0.16). When the self similar regime
is reached, we see that the mixing zone width is still larger for DNSλ1 due to the lead it took
during the transient state. But its growth rate is the smallest of the four simulations, consistently
with the largest Θ. This indicates that the bigger structures of the simulation DNSλ1 are less
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(a) (b) (c)

Figure 5.5: (a) Instantaneous 3D concentration fields and (b) 2D vertical slices along the XZ plane for
the configuration Thin Cylinder (height 2Hcyl = 60 cm and diameter 2Rcyl = 19.4 cm) with an initial
wavelength of λ = 0.13 m at time t ∼ 4 s. (c) Shows the 2D vertical slice at t ∼ 6 s. The heavier fluid is in
red and the lighter one in blue.

sensitive to diffusion, and thus they develop more rapidly in the beginning of the instability
and mix less. However, when the transition to turbulence occurs, their development is slowed
down meaning that more mixing occurs compared to smaller structures. Note that the mixing
parameter reaches a plateau in the self similar regime around 0.8 for all of the simulations which
is an expected value for a well developed mixing layer.

The growth rates α of all four simulations reach also a plateau in Fig. 5.4d, when the self
similar state is reached with expected values of around 0.02 (Dimonte et al. [2004]). This means
that the mixing zone width grows like t2, which shows that our simulations are not confined,
as expected, neither vertically nor laterally. Indeed, it was shown that when the instability is
confined, the mixing zone width time dependency in the self similar regime is affected. Focusing
on the lateral confinement, it was found (Debacq et al. [2003] and Lawrie & Dalziel [2011]),
that when the amplitudes of the Rayleigh-Taylor instability are large compared to the width
of the tank containing the fluids, the self-similar evolution of the mixing zone width becomes
proportional to t2/5.

Another simulation was made, in the configuration Thin Cylinder (see Fig. 4.20a in Chap. 4)
where the height of the cylinder is 60 cm and the diameter is 19.4 cm, with an initial wavelength
of 13 cm. This value is very close to the diameter of the cylinder so a lateral confinement is
expected (kpeak ∼ kDcyl). The 3D instantaneous concentration fields and 2D vertical slices along
the XZ plane are shown at time t ∼ 4 s in Fig. 5.5. Large structures are visible, around half the
diameter of the cylinder, but no central ascending jet is present. A slice at a later time is also
shown to convince ourselves that even later no central jet appears.

Figure 5.4 gives the mixing zone width L, the growth rate α and the mixing parameter Θ

as a function of time for the DNSTC simulation. Note that the initial phase, is much longer
in this case than the other simulations presented. Thus, the instability grows faster during the
transient regime. The cylinder being twice as high as in the previous simulations, the instability
is not vertically confined. As for the lateral confinement, the beginning of a self-similar regime
seems to be reached at the very end of the simulation. It is difficult to conclude on this point
but, whether it is laterally confined or not, no central jet can be seen. As the wavelengths chosen
in this study are already much larger than the ones allowed by the experimental grids (Tab. A
and Sec. 4.1.3), it was not considered pertinent to try even larger wavelengths. Moreover, the
ascending central jet develops rapidly at the beginning of the instability in the experiments.
Such a rapid development could not be observed by decreasing even further kpeak as the growth
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rate would become too small.
To conclude, we can safely deduce that the wavelength of the initial perturbation is not the

cause of the appearance of the central jet and that the choice of the kpeak influences mainly the
growth of the mixing zone width of the instability. For the following simulations kpeak will be
chosen to be 585.90 m−1.

5.1.2 Curvature of the interface?

In our experiments, the grids are not perfectly planar, they have a small curvature (of the order
of a millimeter) towards the bottom cylinder which allows for the evacuation of the air initially
trapped underneath the grid. Indeed, if the grid was perfectly planar, the air would stay trapped
and would form a bubble between the grid and the lighter fluid compromising the experiment.
This small curvature also creates a large scale perturbation, even larger than the ones tested
above by varying kpeak.

This curvature of the grid implies that the salt water-fresh water interface is slightly curved.
The question is: can this curvature have an effect on the homogeneity of the dynamics of the
mixing zone? Several simulations are performed, DNSCurv given in Tab. B, in which a curved
interface of 1 or 5 mm towards the lighter fluid is implemented as the initial condition. The
curvature of the grid is taken into account in these simulations but the grid is not implemented.

Series N◦ Cint [mm]
DNSCurv 1 1

2 5

Table B: Label (series and numbers) and the interface curvature Cint in millimeter are given for the two
simulations considered.

In order to curve the initial interface, the function S(x, y) (see Sec. 4.2.2 in Chap. 4) is rede-
fined as:

S(x, y) = ξ(x, y) + ainitRand, (5.4)

where Rand is a random function giving perturbations with amplitudes centered around 0 and
of maximum values ±ainit, and the ξ(x, y) is the paraboloid function defined in Eq. (5.5)

ξ(x, y) =
( x

b

)2
+
(y

b

)2
+ z0, (5.5)

with b giving the curvature of the paraboloid (the bigger b, the smaller the curvature) and z0

the position of the minimum. The value of b can be defined from the desired curvature of the
interface Cint by the following:

b =
Rcyl

C1/2
int

. (5.6)

The 3D instantaneous concentration fields of the DNSCurv simulations (Tab. B) and their
vertical slices along the XZ plane are given in Fig. 5.6 at different times. The curvature is initially
visible only for the 5 mm curvature (see Fig. 5.6d at time t = 0.1 s). We see that, as time goes by,
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Figure 5.6: Instantaneous 3D concentration fields and 2D vertical slices along the XZ plane for (a) and (b)
a curvature of 1 mm (DNSCurv1) and (c) and (d) a curvature of 5 mm (DNSCurv2) (Tab. B).

the lighter fluid goes upward on the sides of the cylinder and the heavier fluid goes down in the
center, following the curvature of the interface. This effect is particularly visible for DNSCurv2
with Cint = 5 mm but it is also present for DNSCurv1 with Cint = 1 mm, which is the curvature
of the grids in the experiments. Hence, the curvature has an effect on the development of the
instability and it does break the horizontal homogeneity. However, this effect is contrary to the
one we observed in the experiments where the heavier fluid would fall down on the sides of
the cylinder and the lighter fluid would go up in the center. Moreover, as seen in the previous
section, the smaller kpeak the smaller Ω. As implementing a curvature at the interface can be seen
as using particular and very small initial perturbation wavenumber, the effect of the curvature
develops over a long period of time wheres the jet develops rapidly in the experiments.

This effect of the curvature on the instability development is visible on the azimuthal mean
concentration profiles plotted in Fig. 5.7a. Indeed, the mean concentration is smaller on the sides
(r = Rcyl) than in the center of the cylinder (r = 0), meaning that, as shown in the instantaneous
concentration fields, the heavier fluid falls down in the middle and the lighter fluid goes up
on the sides. For the case with Cint = 1 mm, this effect is only just slightly visible as the mean
concentration stays very close to 0.5 whereas it is very clearly visible for Cint = 5 mm with a
mean concentration that reaches 0.8 in the center of the cylinder. The curvature has a significant
impact on the mixing zone growth in Fig. 5.7b as L increases much more rapidly for Cint = 5 mm
than for Cint = 1 mm. Note that the mixing zone width is initially bigger for DNSCurv2 even if
the same parameters were used: this means that the curvature artificially increases the mixing
zone width due to the breaking of the horizontal homogeneity.
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Figure 5.7: (a) Azimuthal mean concentration profiles ⟨C⟩θZ(r, t) at time t = 4.5 s and (b) mixing zone
width L(t) for simulations DNSCurv (see Tab. B).

As a conclusion, the curvature of the grid does have an effect on the development of the
instability but that effect is opposite to the one observed in the experiments. Thus, this curvature
cannot be the reason for the appearance of the central jet. In the following, a curvature of 1 mm
will sometimes be imposed to assess whether a combination of various effects may trigger or
inhibit the ascending central jet.

5.1.3 The time of contact between the two fluids?

As explained previously, the grid is slightly curved to allow for the air to be evacuated. This
means that the contact between the two fluids is not instantaneous everywhere. Indeed, this
contact is first made near the center of the grid and then propagates towards the extremities,
getting rid of the trapped air. This process, represented in Fig. 5.8b, takes about 0.5 s. If it is
not rapid enough it could lead to an asymmetry in time in the development of the instability
between the center of the cylinder and the sides.

To determine the importance of the contact time upon the dynamics, various simulations are
performed, whose parameters are given in Tab. C. To mimic this contact delay, a small cylindrical
solid wall of height Lpen,PW = 0.01 m is introduced by penalisation method, with the penalisation
parameters ηu = 1 × 10−2 s and ηc = 1.2 × 10−10 m2.s−1, at the center of the domain between the
two fluids (Fig. 5.8a). This wall opens from the center at speed vPW so that the contact radius is:

R(t) = vPWt. (5.7)

For simplicity, a linear dependence is chosen here, but other profiles could be considered
(an exponential profile is briefly addressed in Appendix A). At time to, later referred to as the
aperture time, one has R(to) = Rcyl. Once the wall is open, no grid is present at the interface
between the two fluids. Note that two different aperture velocities (vPW = 0.194 m.s−1 and
vPW = 0.0485 m.s−1) and two different types of interface (planar or curved) were tested.

The instantaneous concentration fields and vertical slices along the XZ plane are given at
different times in Fig. 5.9 for DNSContact3 and DNSContact4 (Tab. C). Observe that, in Fig. 5.9d
at t = 2.0 s, the Rayleigh-Taylor instability has had the time to start developing at the center
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Series N◦ kpeak [m−1] Cint [mm] to [s] vPW [m.s−1]
DNSContact 1 585.90 0 0.5 0.194

2 585.90 0 2 0.0485
3 - 1 0.5 0.194
4 - 1 2 0.0485

Table C: Label (Series and number), initial unstable wavenumber kpeak, curvature of the interface Cint, the
aperture time to and the aperture velocity vPW for the four simulations considered.
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R(t+ δt)

vPWδt
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R(to) = Rcyl

(a)

(b)

Figure 5.8: (a) Sketch of the wall opening with time (top view). (b) Zoom in on the interface in experiment
EXPa6 (Tab. B) during the contact of both tanks. It shows around half of the surface of the grid of heavier
fluid in contact with the lighter fluid. The initial contact was made on the top right of the image.

of the cylinder before the wall is completely opened (before to). An asymmetry is thus created
between the center of the cylinder and the sides. However, this effect is eventually overcome by
the effect of the curvature of the interface, where the lighter fluid will go up on the sides and the
heavier fluid will go down in the center. For an aperture time of 0.5 s, the instability does not
have the time to be triggered before the wall is completely opened (Fig. 5.9b at time t = 1.0 s)
and thus no asymmetry occurs and the effect of the curvature is the only one visible.

Hence, a competition exists between the asymmetry created by the time of contact between
the two fluids and the one created by the curvature of the interface. Be that as it may, this effect
is only seen for longer aperture time than the ones observed in the experiments. It also appears
that it is not a good candidate to explain the apparition of a central jet.

In order to confirm the observations made with the instantaneous concentration fields, the
azimuthal mean concentration profiles (Fig. 5.10a), the mixing zone widths (Fig. 5.10b), the mix-
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Figure 5.9: Instantaneous 3D concentration fields and 2D vertical slices along the XZ plane for (a) and (b)
DNSContact3 with vPW = 0.194 m.s−1 (to = 0.5 s) and (c) and (d) DNSContact4 with vPW = 0.049 m.s−1

(to = 2 s) for a curvature of the interface of 1 mm (Tab. C).

ing parameters (Fig. 5.10c) and the vertical kinetic energy profiles (Fig. 5.10d) are plotted for the
four simulations DNSContact given in Tab. C.

The azimuthal mean concentration profiles show the effect of the curvature of the inter-
face for DNSContact3 and DNSContact4 as they are close to the ones observed for DNSCurv of
Sec. 5.1.2. The effect of the aperture is also visible on the profile of DNSContact4 as the mean
concentration is higher in the center (r = 0) and smaller on the sides (r = Rcyl) than for DNSCon-
tact3. This comes from the fact that the instability had developed in the center before the sides
and thus the sides have a delay to catch up with. The profiles of the DNSContact1 and DNSCon-
tact2 oscillate around 0.5 with no sign of a central jet appearing.

The delay in contact between the fluids also influences the mixing zone width. Indeed,
its growth is delayed when comparing DNSContact1 and DNSContact2 or DNSContact3 and
DNSContact4 in Fig. 5.10b which was rather expected. Moreover, it can be observed that this
delay has a much greater effect on the dynamics of the Rayleigh-Taylor instability when it is
coupled with a curved interface. Indeed, in Fig. 5.10d, the vertical kinetic energy profiles are
rather flat and similar for DNSContact1 and DNSContact2, whereas strong peaks appear for
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Figure 5.10: (a) Azimuthal mean concentration profiles ⟨C⟩θZ(r, t) at time t = 4.5 s, (b) mixing zone width
L(t), (c) mixing rate Θ(t) and (d) vertical kinetic energy profiles ⟨v2

z⟩θZ(r, t) at time t = 4.5 s for simulations
DNSContact (Tab. C).

DNSContact3 and 4. This large peak, consistent with the ⟨C⟩θZ profile, is due to the delay of
growth between the sides and the center of the cylinder. The mixing parameters on Fig. 5.10c
show significant dispersion between the simulations with a curved interface and the one with a
planar interface. Indeed, the simulations with a curved interface seem much more sensitive to
the aperture time, as can be seen on the red curve representing DNSContact4 which decreases
almost linearly until the aperture time is reached. They also reach a much smaller value, around
0.6, while the simulations with a planar interface reach a value closer to 0.75. This seems to
indicate that the curvature actually slows down the mixing and the dynamics of the instability.

Hence, having a bigger aperture time than the time of development of the instability coupled
with a small curvature at the interface really changes the dynamics of the instability. However,
the aperture times during our experiments were closer to 0.5 s than 2 s, so this effect should not
be seen experimentally.. It will be taken in consideration in the rest of this work. In any way, it is
clear that changing the aperture time does not create the ascending central jet we have observed,
as it never breaks the horizontal homogeneity or symmetry.

As a conclusion, none of the initial conditions tested above can create the ascending central
jet that is observed in the experiments. Indeed, only the curvature was found to be able to
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Figure 5.11: Imposed vertical velocity uz at the interface z = 0 as a function of x with the parameter r0
indicated.

break the horizontal homogeneity of the instability but as it is oriented towards the lighter fluid,
it would rather tend to slow down the formation of an ascending central jet. Since none of the
above conditions could create the desired jet, simulations with an imposed vertical velocity field
at the interface in the early dynamics will be performed. Their goal is to find out what order of
magnitude the vertical velocity should have to create the ascending jet, in order to orientate our
search for what physical mechanism is behind the jet.

5.1.4 Parabolic vertical velocity

As said above, none of the initial conditions tested had the right effect, so direct numerical
simulations with a vertical velocity imposed at the interface in the center of the cylinder are
now performed. These simulations use the following initial incompressible velocity field:





ux = u0
2z
σ2 e−

z2

σ2
(

1
2 − 1

4
x2+y2

r2
0

)
x,

uy = u0
2z
σ2 e−
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(
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x2+y2
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0

)
y,
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z2

σ2
(

1 − x2+y2

r2
0

)
,

(5.8)

with r0 = Rcyl/2 = 0.0485 m, σ = 0.001 m the initial width of the interface and u0 being the initial
speed. This forms an initial ascending parabolic vertical velocity at the interface as shown in
Fig. 5.11 at the interface z = 0. This velocity field is imposed during the initialisation inside the
width of the interface.

The goal being to find an order of magnitude for the velocity, the parameter that is varied in
the simulations is u0 as shown in Tab. D. The two interface types (curved and planar) are also
tested as it is important to assess whether the velocity imposed can counteract the effect of the
curvature.

The instantaneous concentration fields for DNSInitU1 and DNSInitU2 are shown in Fig. 5.12.
We see that in both cases, but especially in the DNSInitU1 simulation, the heavier fluid tends
to fall on the sides of the cylinder and the lighter one tends to go up in the center. Both the
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Series N◦ kpeak [m−1] Cint [mm] u0 [m.s−1]
DNSInitU 1 585,90 0 0.194

2 585,90 0 0.039
3 - 1 0.194

Table D: Label (Series and number), initial unstable wavenumber kpeak, curvature of the interface Cint and
initial speed u0 for the three simulations considered.

t = 0s t = 0s t = 0s t = 0s

t = 1.5s t = 1.5s t = 1.5s t = 1.5s

t = 3.0s t = 3.0s t = 3.0s t = 3.0s

t = 4.5s
(a)

t = 4.5s
(b)

t = 4.5s
(c)

t = 4.5s
(d)

Figure 5.12: Instantaneous 3D concentration fields and 2D vertical slices along the XZ plane for (a) and
(b) u0 = 19.4 cm/s (DNSInitU1) and (c) and (d) u0 = 3.88 cm/s (DNSInitU2) (Tab. D).

horizontal homogeneity and the symmetry with respect to the z = 0 plane are visibly broken
in this simulation. This is very close to what was observed in the experiments: the ascending
central jet is created. The amplitude of this effect is very dependent on the initial speed u0.
Indeed, the DNSInitU2 case having a much smaller initial speed than the DNSInitU1 case, the
fall of the heavier fluid is less visible and it takes much more time to come into effect. So for
small initial speed, the effect is not instantaneous, contrary to the experiments, and develops
only after the triggering of the Rayleigh-Taylor instability.

This effect is corroborated by the azimuthal mean concentration profiles shown for the three
DNSInitU simulations in Fig. 5.13a. Moreover, as can be expected from the instantaneous con-
centration fields, the mean concentration profile shows less deformation and stays closer to 0.5
for DNSInitU2 than for DNSInitU1. This initial speed u0 also influences the growth of the mix-
ing zone which increases much more rapidly for the larger u0 in Fig. 5.13b. Another effect of
this difference of initial speed, is the fact that the concentration variance profile gets wider as
the initial speed is increased, which is visible when comparing DNSInitU1 and DNSInitU2 in
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Figure 5.13: (a) Azimuthal mean concentration profiles ⟨C⟩θZ(r, t) at time t = 4.5 s, (b) mixing zone
width L(t), (c) concentration variance ⟨c2⟩XY(z, t) at time t = 4.5 s and (d) vertical kinetic energy profiles
⟨v2

z⟩θZ(r, t) at time t = 4.5 s for simulations DNSInitU (see Tab. D).

Fig. 5.13c. This means that, for large u0 the fluids are more rapidly advected but they have less
time to mix. This is also visible on the vertical kinetic energy profiles of Fig. 5.13d with a much
smaller energy for DNSInitU2 than for DNSInitU1 and DNSInitU3.

From these simulations, we can deduce that the physical mechanism responsible for the ap-
pearance of the central jet must be able to produce large enough initial velocities at the interface,
at least of the order of the centimeter per second. Indeed, the jet in the experiments appears as
soon as the two fluids make contact. It seems also safe to say that even if the curvature of the
interface has an opposite effect to the desired one, it does not affect much the dynamics when
the jet is created. Thus, the effect of the curvature can in the end be neglected.

5.2 Aspiration Model

Within the experimental setup, it appears that only one mechanism can create a strong enough
vertical velocity field when contact between the two fluid is made: the curvature of the meniscii
formed inside the holes of the grid. These meniscii are created by the pressure jump between
the atmospheric pressure Pa and the salt water pressure P (in the upper cylinder). This pres-
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U

Pa

P

Figure 5.14: Effect of the grid meniscii with the suction case with P ≤ Pa. The black dots represents the
grid and the red dashed lines the different meniscii. U is the suction velocity.

sure jump is significant enough to induce a vertical velocity field of order a few cm/s. In the
following, an analytical model is derived to relate the induced velocity U to the pressure jump.

It is our assumption that, depending on the sign of the pressure jump at the interface between
salt water and fresh water, the fluid will either be sucked (ascending central jet, see Fig. 5.14) or
injected (descending central jet) when the contact between the two cylinders is made. Focusing
on the ascending jet, as it is what is most observed in the experiments, the denser fluid pressure
needs to be smaller than the atmospheric one. This will create a uniform ascending velocity, U,
at the contact zone which will end when P = Pa.

5.2.1 Calculations of the jet velocity created from the pressure jump

The pressure jump at the grid is given by the Laplace law applied at the interface salt water-air:

Pa − P = γ
2
r

, (5.9)

with r the radius of curvature of a meniscus.
Taking r = 1×10−3 m, the order of the grid mesh size, and γ = 72.7 × 10−3 N.m−1, the air-

water surface tension at 20°C, we find Pa − P0 ∼ 145 Pa, P0 being the initial pressure P at the
interface of the upper cylinder.

In Fig. 5.15 a sketch of an experiment in the case of an ascending vertical jet, is represented.
It also shows the development of the contact area between the two fluids which is assumed to
be a disk of radius:

R(t) = Rcyl

(
t
to

)
, (5.10)

where Rcyl = 0.098 m is the radius of the cylindrical tank and to ∼ 0.5 s is the aperture time.
Hence, if t ≥ to, we have R = Rcyl and the aperture velocity is Rcyl/to = 0.194 m.s−1.

Then, taking into account the conservation of volume of fluids in the upper tank, we have
the following relationship:

R2
cylV = R2U, (5.11)

where V is the velocity of the rising free surface at the top of the upper tank (see Fig. 5.15).
From the hydrostatic equilibrium, we can evaluate the pressure evolution as:

P − Ps = ρhG0(h − h0) = ρhG0

∫ t

0
Vdt′ = ρhG0

∫ t

0

R2U
R2

cyl
dt′ = ρhG0

∫ t

0

t2U
t2
o

dt′, (5.12)

where Ps is the pressure at the free surface and h − h0 is the displacement of the free surface (h0
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is the initial position of the free surface at t = 0 s).
Assuming a stationary flow and applying Bernoulli law to a stream line, we get:

U =
√

2(Pa − P)/ρl . (5.13)

Thus, we can deduce that the initial jet velocity U0 = 2 (γ/rρl)
1/2 = 0.54 m.s−1 with ρl = 996

kg.m−3, r = 1 mm and γ = 72.7 × 10−3 N.m−1.
Injecting Eq. (5.13) into Eq. (5.12), we find:

U2 = U2
0 − 2

ρh

ρl
G0

∫ t

0

R2U
R2

cyl
dt′. (5.14)

We have:

Jet velocity




U(t) = U0 − ρh
ρl

G0
t3

3t2
o

for t ≤ to,

U(t) = U0 − ρh
ρl

G0
(
t − 2

3 to
)

for t > to.
(5.15)

This process ends when P = Pa at a time called tP. At this time, the velocity U = 0. In all of
the cases considered hereafter, we have tP < to, thus:

U(t ≤ tP) = U0 −
ρh

ρl
G0

t3

3t2
o

and U(t > tP) = 0. (5.16)

2R

V

U

h

Pa

Pa

P

ρl

ρh

Figure 5.15: Sketch of an experiment in the suction configuration (Pa ≥ P) where the meniscii are oriented
toward the upper cylinder. It also shows the development of the initial interface between the two fluids.
The red dashed line represents either the fresh water-air interface or the initial fresh water-salt water
interface, the blue line shows the air still traped between the grid and the fresh water being evacuated,
and the green dashed line represents the free surface in the upper cylinder.
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Indeed, taking ρh = 1003.4 kg.m−3, U0 = 0.54 m.s−1 and to = 0.5 s, we get tP(U = 0) ∼ 0.34 s, so
the process ends before the contact is fully made between the two fluids. The equation (5.15) is
a general expression that stays true even if tP > to.

5.2.2 Displacement of the free surface and its velocity

Having the general expression for the jet velocity, we can calculate the displacement h(t) − h0

of the free surface due to this jet and the velocity V(t) at which this free surface is displaced.
Indeed, we know that R2

cylV(t) = R(t)2U(t), hence:

V(t) =
R(t)2

R2
cyl

U(t). (5.17)

Thus, we have:

Free surface velocity




V(t) = U(t) t2

t2
o

for t ≤ to,

V(t) = U(t) for t > to.
(5.18)

We also know that h(t) − h0 =
∫ t

0
R2(t′)
R2

cyl
U(t′)dt′, which gives:

Free surface displacement





h(t) − h0 = t3

3t2
o

[
U0 − ρh

ρl
G0

t3

6to

]
for t ≤ to,

h(t) − h0 = to
3

[
U0 − ρh

ρl
G0

to
6

]
+ (t − to)

[
U0 − ρh

ρl
G0

1
6 (3t − to)

]
for t > to.

(5.19)

In Fig. 5.16 is represented the displacement of the free surface and the velocities U(t) and
V(t) as a function of time t in the upper cylinder of 30 cm of height taking A = 0.003, h0 = 0.26
m and U0 = 0.54 m.s−1. In this case, the process ends before the contact is fully made, thus only
t ≤ to is shown. The displacement is shown in dashed red and the free surface position with the
air above it is shown in green. We see that in this case the free surface rises of 1.5 cm.
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Figure 5.16: (a) Displacement of the free surface h(t) and (b) velocities U(t) and V(t) as a function of time
for a case with A = 0.003, h0 ∼ 26 cm and U0 = 0.54 m/s.

5.3 Simulations with the aspiration model

The aspiration model allows to relate a pressure jump with induced vertical velocities. In the
simulations, we cannot take into account a difference in pressure, but we can implement these
velocity fields and displacements to reproduce its effect. The aim of this section is to imple-
ment the aspiration model in the simulations and find out if it is the right explanation for the
apparition of the ascending central jet in the experiments.

5.3.1 Implementation of the aspiration model

Three cases are considered for the numerical implementation of the model.

• Case I: presence of a wall at the interface that opens at the speed vPW as described in
Sec. 5.1.3. A slight opening in this wall is already present initially parametrised by the
initial contact radius R0. A two-dimensional sketch of this case is shown in Fig. 5.17a.

• Case II: in addition to the wall opening at the interface, the free surface velocity and dis-
placement described in Sec. 5.2.2 of the aspiration model are considered. The position of
the free surface is emulated by the displacement of a wall (top and bottom penalisation
layers, Fig. 5.17b). This displaces the interface between the lighter fluid and heavier fluid
from the top of the domain, at z = Hcyl, to the bottom of it due to the periodic boundaries
of the simulation. The velocity Upen = V(t)ez, where ez is the z-direction unit vector, is
forced inside these layers.

• Case III: the full model is simulated in this case with the opening of the wall, the displace-
ment of the free surface and the jet velocity U(t) forced inside a penalised layer at the
interface inside the opening. This is shown in Fig. 5.17c.

It is to be noticed that Case I is extremely similar to the simulations already made in Sec. 5.1.3
with the only difference being the slight initial opening in the wall at the interface.

For further reference, the gray mask in Fig. 5.17 is named χ and defines a solid wall, whereas
the red mask is called χu and serves as a support for the forced jet velocity. The evolution of
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both these mask functions with time are shown in 2D in Fig. 5.18 for Case III. We notice the
displacement of the top and bottom walls with time that would not be present in Case I and the
initial slight aperture R0 at t = 0 s in the wall at the interface, from which χu afterwards expands.
It is to be reminded that χu only exists in Case III, thus for Case I and Case II, this red area in
Fig. 5.18 would stay empty (whitish). The evolution of both velocities U(t) and V(t) with time
and for U0 = 0.54 m/s are given by Fig. 5.16b. This provides a general idea of their behaviour
and thus it will not be repeated here.

For the sake of brevity, these cases were studied in 3D cylindrical configurations in Ap-
pendix A. It is found that Case II is enough to create the desired ascending jet and is thus the
chosen configuration for the rest of this study as it is a good compromise between simplicity of
implementation and reproducing the jet.

Moreover, in this Appendix, convergence studies were performed to determine the optimal
numerical parameters for the penalisation. The conclusions are as follows: the filter parameter
Cs = 128 is the best compromise between sharpness of the mask and Gibbs oscillations and the
velocity penalisation parameter should be taken as ηu = 1 × 10−5 s up to to + 0.5 s and then be
released to ηu = 5 × 10−4 s.

5.3.2 Jet velocity and aperture time

It was seen from the Case II simulation in Appendix A that taking as initial jet velocity U0 = 45 cm.s−1

and an aperture time of to = 0.5 s gives a too violent effect with an ascending central jet that is
confined almost immediately and descending jet velocities that are around twice the values
found in the experiments (Chap. 4). The aperture time of 0.5 s was the original choice as it was
very close to what was observed in several of the experiments with a contact time of around
0.5 s. However, in those experiments, the lateral jets of heavier fluid descend much closer
to the walls of the cylindrical tank than in the simulations. Moreover, here a linear aperture
profile (Eq. (5.10)) is chosen for practical reasons which may very well not be the case in the
experiments. So by testing different aperture times, the goal here is to find a good compromise
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Lighter fluid
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V (t)

Heavier fluid
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(b)

vPW

vPW

V (t)

V (t)

U(t)
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Figure 5.17: (a) Case I in 2D with the wall opening at the interface at speed vPW. (b) Case II in 2D with the
wall opening at the interface at speed vPW and the top and bottom walls moving upwards at speed V(t).
(c) Case III in 2D with the wall opening at the interface at speed vPW, the top and bottom walls moving
upwards at speed V(t) and a layer at the interface (hatched red) in which the upward jet velocity U(t) is
forced. The gray hatched areas represents the walls defined via the penalisation method χ and χu.
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t = 0s t = 0.1s t = 0.3s t = 0.5s
Figure 5.18: Evolution of the mask functions χ (in green) and χU (in red) with time t in Case III.

between the experimental value of 0.5 s and the position of the lateral descending jets in the sim-
ulations. Thus, we need to find the right couple of parameters (U0,to) to get as close as possible
to the experimental observations.

Several simulations are performed with 5123 points, A = 0.003 and ν = D = 1.2× 10−6 m2.s−1

with different (U0, to) couples. These simulations are given in Tab. E with the chosen initial
velocity U0, corresponding to a certain radius of curvature r and pressure jump Pa − P, and the
chosen aperture time to.

Series N◦ U0 [cm.s−1] r [cm] Pa − P [Pa] to [s]
DNSU0toA 1

9 3.6 4
0.5

2 0.1
DNSU0toB 1

4.5 14.4 1
0.5

2 0.1
3 0.05

DNSU0toC 1
3 32.4 0.4

0.5
2 0.1

Table E: Label (series and numbers), initial jet velocity U0, radius of curvature of the meniscii r, pressure
jump Pa − P and contact time to for the simulations of Case II with different (U0,to) couples.

Note that for the initial velocities tested here, the pressure jump is very small (around 1 Pa)
while it was much larger for U0 = 45 cm.s−1 (around 100 Pa). Thus, we expect much less violent
central ascending jet.

The slices along the XZ plane of the instantaneous concentration fields are given at time
t ∼ 1 s in Tab. F for DNSU0toA, B and C for each initial velocity and both to = 0.5 and to = 0.1 s.
As expected, the smaller the initial velocity, the smaller the magnitude of the ascending central
jet. Moreover, the smaller the aperture time and the faster the jet develops, the larger it is and
thus the closer from the walls the lateral descending jets are.

As the initial velocity increases, the descending lateral jet velocity VDLJ increases. Indeed,
considering the cases to = 0.5 s, we find that, between t = 0 and t = 1 s, VDLJ = 1.76 cm.s−1 for
U0 = 9 cm.s−1, VDLJ = 1.3 cm.s−1 for U0 = 4.5 cm.s−1 and VDLJ = 0.97 cm.s−1 for U0 = 3 cm.s−1.
However, after some time, an optimal velocity seems to be reached as all of the simulations give
relatively close values of VDLJ (around 2 cm.s−1 between t = 1 and t = 3 s). At t = 1 s, we are still
very close to the initial conditions imposed by the model, thus it is more pertinent to measure
the descending lateral jet velocities further in time. All of the VDLJ converge towards the same
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value of 2 cm.s−1, which is quite close to the values found in the experiments. The highest U0

used here (9 cm/s) still gives a central jet that is very easily confined, especially for to = 0.1 s. On
the contrary, the jet develops too slowly for the smallest value of U0. Thus, the better solution in
our opinion to match the experiments is to use U0 = 4.5 cm/s as its central jet is not so quickly
confined, and the descending lateral jets are qualitatively compatible with the experimental ob-
servations. Had we a way to visualise the central ascending jet in the experiments, this decision
could be verified by looking at the jet magnitude, velocity and width. As we can not visualise
it, this decision can very well be challenged and will remain a hypothesis.

In addition to changing the initial velocity, changing the aperture time also has a direct im-
pact on the development of the descending lateral jets. Indeed, as said previously, the smaller
the aperture time, the faster the lateral jets develop. This is visible on Tab. F where two aper-
ture times were tested: to = 0.5 s and to = 0.1 s. From this, we found that the aperture time
to = 0.1 s gives better positioned lateral descending jets. In Fig. 5.19 we verify that this position
does not drastically change when using an even smaller aperture time of to = 0.05 s. Note that
the width of the lateral descending jets is slightly larger for to = 0.05 s but their positions do
not change much. The good compromise between position of the descending jets and measured
experimental aperture time seems to be around to = 0.1 s.

U0

to 0.5 s 0.1 s

9 cm/s

4.5 cm/s

3 cm/s

Table F: 2D slices along the XZ plane of the instantaneous concentration fields at time t = 1 s for each
(U0,to) couple given in Tab. E except (4.5, 0.05). The rows give the velocity U0 and the columns give the
aperture time to. The walls are shown in black. The heavier fluid is in red and the lighter one is in blue.
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(a) (b)

Figure 5.19: Vertical slices of the concentration field along the XZ plane at time t ∼ 1 s for two simulations
with U0 = 4.5 cm/s and (a) to = 0.1 s or (b) to = 0.05 s.

As a conclusion, the best couple of parameters (U0, to) to be used to match the observations
made in the experiments is (4.5 cm/s, 0.1 s).

5.4 Addition of a grid on the aspiration model

The ascending central jet seen in most of the experiments can be reproduced thanks to the as-
piration model presented previously. Adding a grid at the interface between the two fluids
enables us to almost fully copy the experimental conditions. The means of adding that grid in
the numerical simulations through the penalisation method is described in Chapter 4 and will
not be repeated here.

These simulations are performed in order to find which parameters for the grid porosity ϕ,
grid mesh size d, initial perturbation wavelength λpeak (called λp hereafter) and initial contact
radius R0, give the closest result to the experimental observations.

Twenty-eight high resolution simulations in a vertically extended domain were made with
the aspiration model and they are summarized in Fig. 5.20. As shown in the diagrams, two
porosities are tested: ϕ = 0.44 and ϕ = 0.6. For each porosity, two mesh sizes are used: d1 =
20 mm and d2 = 8.2 mm. For each mesh size, four initial perturbation wavelengths λpeak = λp

are studied (λp,1 = 19 mm, λp,2 = 13 mm, λp,3 = 8 mm and λp,4 = 5 mm) and almost for each of
these, two initial contact radii R0 are used: R0,1 = 14 mm and R0,2 = 42 mm.

Some of the parameters effects on the instability dynamics have already been explored in
Chapter 4 such as the grid porosity and mesh size. Here only two mesh sizes are studied (d =
20 mm and d = 8.2 mm) as they represent the two possible configurations: d > λ0 and d < λ0

with λ0 the most unstable wavelength given by the linear stability analysis (Eq. (4.11)). The grid
with the mesh size d = 8.2 mm is in the same configuration as the experimental grids (Tab. A),
the d < λ0 configuration.

All the simulations presented in this Section are made inside a vertically extended cylindrical
geometry with the parameters given in Tab. G. The velocity penalisation parameter is ηu =
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Figure 5.20: Diagrams of the simulations performed with the aspiration model and the grid at the inter-
face organized by value of the porosity: (a) ϕ = 0.6 and (b) ϕ = 0.44.

1 × 10−5 s until to + 0.5 s and then ηu = 5 × 10−4 s. No curvature was implemented here as it
was seen in Sec. 5.1.4 that it did not change much the velocity or the development of the central
jet.

N◦ of points A ν = D [m2.s−1] ηc [m2.s−1] to [s] U0 [cm.s−1] Cs

10242 × 2048 0.003 1.2 × 10−6 1.2 × 10−10 0.1 4.5 128

Table G: Parameters of the 2D simulations with the number of points, Atwood number A, viscosity and
diffusion coefficient ν = D, scalar penalisation parameters ηc, aperture time to, initial jet velocity U0 and
filter parameter Cs.

5.4.1 The influence of the initial perturbation wavelength λp

We start by investigating is the effect of the initial perturbation wavelength λp. We saw in
the previous chapter (Chap. 4) that λp tends to have an influence on the development of the
instability even with a grid that selects its own fastest growing wavelength. In order to find
out if that is still true with the addition of the aspiration model, several initial perturbation
wavelengths are studied for one fixed porosity, grid mesh size and initial contact radius. The
parameters of the simulations considered here are summed up in Tab. H.

The initial perturbation wavelengths were chosen so that two of them are in the inertial
regime and two in the diffusion regime. They are given in Fig. 5.21 with the grid mesh size d,
the growth rate Ω, the most unstable wavelength λ0 and the critical wavelength λc given by the
linear stability analysis (Eq. (4.11)).

Series N◦ ϕ d [mm] l [mm] λp [mm] R0 [mm]
DNSλp 1 0.44 20 10 19 14

2 0.44 20 10 13 14
3 0.44 20 10 8 14
4 0.44 20 10 5 14

Table H: Label (series and numbers), porosity ϕ, grid mesh size d, grid thread diameter l, initial pertur-
bation wavelentgh λp and initial contact radius R0 for the 4 simulations considered here.
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The 2D slices along the XZ plane of the instantaneous concentration fields of the DNSλp

simulations at time t ∼ 3 s are given in Fig. 5.22. Note that all of the simulations are very
similar. The biggest difference concerns the small scale instabilities developing near the walls
that tend to develop faster for the larger λp.

To study further the effect of the initial perturbation wavelength, the mixing zone widths
computed from ⟨C⟩XY,tot (Eq. (4.13)) with the integral (Eq. (4.30)) and profile (Eq. (4.31)) methods
using ϵ = 0.01 are plotted in Fig. 5.23a. Note that, in the presence of thin jets surrounded by pure
unmixed fluids, the notion of ‘mixing zone’ based on a horizontal homogeneity hypothesis can
be questioned. The quantity Lz, derived from the profile method, gives the vertical extension
of the jet provided ϵ is small enough, here 0.01. The jet here becomes rapidly confined, around
t = 4 s. Whereas Lint yields the extent of the true mixing zone, slightly biased by the thin
vertically elongated jets. Both Lz and Lint show that the results are independent of the initial
perturbation wavelength. This is different from the case of the grid alone studied in Chapter 4
without the aspiration model.

The integral method is used to compute the growth rates α of the DNSλp simulations given
in Fig. 5.23b. A note of warning, the growth rate α is normally only measured in the self-similar
regime. This regime is in all probability not reached here as the jet is rapidly confined. Still,
since Lint essentially captures the true mixing zone extent, one may argue that a sort of self-
similar regime is eventually reached for the mixing region. But, as explained before, as the
measure of Lint is biased by the jet, no quantitative results should be drawn from the present α.
Qualitatively, just as expected, the growth rates of each λp are very close and give very similar
results. Thus, the aspiration model and the creation of the central jet tend to make the instability
independent of the initial perturbation.
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λ0 = 13.37 mm

λc = 4.49 mm

d = 20.48 mm

λp,1 = 19.50 mm

λp,2 = 13.41 mm

λp,3 = 7.94 mm

λp,4 = 4.77 mm

Figure 5.21: Growth rate Ω(k) given by the linear stability analysis with the most unstable wavelength
λ0 (in red dashed line) and the critical wavelength λc (in continuous red line). The grid mesh size d is
also given (in dashed blue line) along with the initial perturbation wavelengths λp studied in the DNSλp
simulations (Tab. H). The gray hatched area are the wavelengths that cannot develop due to the grid.
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(a) (b) (c) (d)

Figure 5.22: Vertical slices of the concentration field along the XZ plane at t ∼ 3 s for (a) DNSλp1, (b)
DNSλp2, (c) DNSλp3 and (d) DNSλp4 of Tab. H. The heavier fluid is in red and the lighter one in blue.
The walls are in black.

(a) (b)

Figure 5.23: (a) Mixing zone widths L(t) computed from ⟨C⟩XY,tot with the integral and profile methods
using ϵ = 0.01 for the DNSλp simulations (Tab. H). (b) Growth rates α(t) computed from ⟨C⟩XY,tot with
the integral method for the DNSλp simulations. The gray area give the time zone in which the α are
averaged to give the value in the legend.

5.4.2 The influence of the initial contact radius R0

We have seen that the initial perturbation wavelength does not play a significant role when the
aspiration model is taken into account, thus for the study of the other parameters effects, λp is
fixed at 13 mm. The next study is on the effect of the initial contact radius R0. Indeed, as it
defines the size of the initial contact zone between the two fluids, we expect this parameter to
have an important effect on the development of the jet. Two values are considered, R0 = 14 mm
and R0 = 42 mm, and the simulations considered are given in Tab. I with their parameters. To
illustrate the initial opened portion of the wall compared to the diameter of the cylinder, a sketch
is proposed in Fig. 5.24.

The initial contact zone in the experiments is closer to the one given in Fig. 5.24a with R0 = 14
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Series N◦ ϕ d [mm] l [mm] λp [mm] R0 [mm]
DNSR0 1 0.44 20 10 13 14

2 0.44 20 10 13 42

Table I: Label (series and numbers), porosity ϕ, grid mesh size d, grid thread diameter l, initial perturba-
tion wavelentgh λp and initial contact radius R0 for the 2 simulations considered here.

R0,1

(a)

R0,2

(b)

Figure 5.24: Initial slight opening (in blue) in the wall at the interface (in gray) for (a) an initial contact
radius R0,1 = 14 mm and (b) an initial contact radius R0,2 = 42 mm.

mm. However, the same grids as in the experiments cannot be implemented in the simula-
tions in part due to the lack of resolution, and also due to the much larger diffusion coefficient,
which would stabilise the instability if such grids were used in the simulations (Section 4.2.3.6
of Chapter 4). Hence the grids used in the simulations have much larger threads and mesh size
meaning that we do not obtain the same number of threads inside the initial opening as in the
experiments. Indeed, considering an initial opening R0 = 14 mm in the experiments, around 5
threads would be present inside it with Grid3 (d = 2 mm and l = 0.9 mm) against less than 1 in
the simulations. Hence, the question is which is the right number to be preserved between the
experiments and the simulations? The size of the initial opening or the number of threads in it?

On the 2D slices along the XZ plane of the concentration fields given in Fig. 5.25 at t ∼ 5 s,
we notice that as the initial radius is increased, the central jet width is also increased and its de-
velopment is slowed down, which is expected as the aspiration applies on a larger initial surface.
The descending lateral jets are also very dependent on the initial radius of contact as their posi-
tion depends on the width of the ascending central jet. Indeed, with a larger R0, the descending
jets are much closer to the walls. The simulations that seem closer to the experimental observa-
tions are the ones made with R0 = 42 mm. For these simulations, almost 4 threads and 3 holes
are present in the initial opening contrarily to the simulations with R0 = 14 mm where the initial
opening just contains the central hole and a part of the two neighboring threads. Thus, it would
seem that the most important number to preserve is the amount of threads/holes available in
the initial contact zone.

The effects of the initial contact radius on the mixing zone width can be seen in Fig. 5.26. As
expected, the profile method shows that the central jet develops faster R0 = 14 mm. This jet has
already reached the top of the computational domain at t ∼ 5 s in Fig. 5.25a, changing the slope
of Lz. Thus the instability is completely confined very rapidly for R0 = 14 mm which is not the
case for R0 = 42 mm. The integral method indicates that the mixing zone grows more in the case
with the larger R0.
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5.4.3 The influence of the mesh size d

Now that the effect of the initial contact radius has been investigated, it can be fixed at R0 = 42
mm as it is the value for which the simulations resemble the most the experimental observations.
The grid mesh size and thread diameter are the next parameters to be studied by comparing two
simulations with different d and l but the same other parameters summarized in Tab. J.

In Fig. 5.27 we show the grid mesh sizes considered here compared to the most unstable
wavelength and the critical wavelength, given by the linear stability analysis. These two mesh

(a) (b)

Figure 5.25: Vertical slices of the concentration field along the XZ plane at t ∼ 5 s for (a) DNSR01 with
R0 = 14 mm and (b) DNSR02 with R0 = 42 mm (Tab. I). The heavier fluid is in red and the lighter one in
blue. The walls are in black.

Figure 5.26: Mixing zone widths L(t) computed from ⟨C⟩XY,tot with the integral and profile methods
using ϵ = 0.01 for the DNSR0 simulations (Tab. I).
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Series N◦ ϕ d [mm] l [mm] λp [mm] R0 [mm]
DNSd 1 0.44 20 10 13 42

2 0.44 8 4 13 42

Table J: Label (series and numbers), porosity ϕ, grid mesh size d, grid thread diameter l, initial perturba-
tion wavelentgh λp and initial contact radius R0 for the 2 simulations considered here.
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Figure 5.27: Growth rate Ω(k) given by the linear stability analysis with the most unstable wavelength
λ0 (in red dashed line) and the critical wavelength λc (in continuous red line). The grid mesh sizes d,
studied in the DNSd simulations (Tab. J), are also given (in dashed blue line and dashed green lines).

sizes have already been investigated in Chapter 4. It was found that the important dimension-
less ratio is d/λ0: if this ratio is larger than 1 then the wavelength that develops is λ0 whereas
if it is smaller than 1, only filaments of the size of the holes of the grid can develop. Does the
addition of the aspiration model change this feature?

In order to answer this question, 2D slices along the XZ plane of the instantaneous concen-
tration fields are given in Fig. 5.28 at time t ∼ 5 s. The instantaneous concentration field for
the grid whose ratio d/λ0 is smaller than 1 (d = 8 mm and l = 4 mm) does show a much more
filamentous sort of instability with less mixing and a visibly smaller mixing zone width. The
size of the grid holes still has a very important impact on the development of the instability
and the structures that can be seen. The fact that, despite being accelerated at the same speed,
one jet is much less vertically extended than the other is due to the diffusion slowing down the
development of the instability in the case of the smallest mesh size and the adherence to the
threads.

The lateral descending jets position and velocity point towards the simulations using d =
20 mm being closest to the experiments. However, the closest grid from the experimental ones
(Tab. A) is the grid with mesh size d = 8.2 mm (as d < λ0). If we choose to reproduce at best the
experimental grids, we cannot recover the right structures due to the much higher diffusion in
the simulations. Hence, in order to be less sensitive to diffusion a coarser grid mesh with mesh
size d = 20 mm is used hereafter.
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(a) (b)

Figure 5.28: Vertical slices of the concentration field along the XZ plane at t ∼ 5 s for (a) DNSd1 with
d = 20 mm and (b) DNSd2 with d = 8 mm (Tab. J). The heavier fluid is in red and the lighter one in blue.
The walls are in black.

5.4.4 The influence of the porosity ϕ

The only parameter left to study is the porosity. From the previous study, the grid mesh size is
fixed at d = 20 mm and two porosities are tested ϕ = 0.44 and ϕ = 0.6 by changing the thread
diameter l. The parameters of the two simulations are given in Tab. K.

In order to increase the porosity of the grid, the grid mesh size d is kept the same, in order
to preserve the d/λ0 ratio, and the thread diameter is decreased, meaning that more threads are
present for the same cylinder diameter. Indeed, here, six threads are available for the porosity
ϕ = 0.44 while eight threads can be seen for porosity ϕ = 0.6 (Fig. 5.29).

The slices along the XZ plane of the instantaneous concentration fields at time t ∼ 5 s given
in Fig. 5.29 show that as the porosity is increased, the merging and mixing of the structures
developing in adjoining holes is made much closer to the interface. This is due to the lower
height of the threads, meaning that the instability is less confined inside the channels delimited
by the holes and can cross to the adjacent hole more easily. Thus, as the porosity is increased,
the instability develops more horizontally and less vertically, yielding a smaller mixing zone
extension. This also means that the lateral jets descend more slowly as they also expend more
horizontally giving a smaller VDLJ : VDLJ ∼ 3 cm/s for ϕ = 0.44 and VDLJ ∼ 2 cm/s for ϕ = 0.6.

In the experiments, the threads diameter is very small meaning that mixing occurs very
close to the grid, like what is obtained in the simulation with ϕ = 0.6. Moreover, it has a closer

Series N◦ ϕ d [mm] l [mm] λp [mm] R0 [mm]
DNSϕ 1 0.44 20 10 13 42

2 0.6 20 10 13 42

Table K: Label (series and numbers), porosity ϕ, grid mesh size d, grid thread diameter l, initial perturba-
tion wavelentgh λp and initial contact radius R0 for the 2 simulations considered here.
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(a) (b)

Figure 5.29: Vertical slices of the concentration field along the XZ plane at t ∼ 5 s for (a) DNSϕ1 with
ϕ = 0.44 and (b) DNSϕ2 with ϕ = 0.6 (Tab. K). The heavier fluid is in red and the lighter one in blue. The
walls are in black.

lateral descending jet velocity than the simulation with porosity ϕ = 0.44. However, both in
terms of porosity and descending lateral jets velocity, the case ϕ = 0.44 is much closer to the
experimental data and parameters. The parameter that gives the simulation resembling the
most the experiments is ϕ = 0.6.

5.5 Conclusion

Rayleigh-Taylor experiments with a grid at the interface between the two fluids were made.
For a majority of these experiments an ascending central jet appeared, breaking the horizontal
homogeneity of the instability. Direct numerical simulations were performed to understand the
causes for the appearance of this jet, and hence to identify the mechanism that should be better
controlled to erase it.

The initial conditions were first investigated, and various configurations were addressed,
like large initial perturbations, a curved interface, and the contact delay between the two fluids,
modeled by a withdrawing wall at the interface. However, these effects could not explain the
origin of the central ascending jet and the breaking of the horizontal homogeneity. Thus, we
had to search for the cause elsewhere. We found that the central jet was very likely created by a
jump between the atmospheric pressure and the upper fluid pressure, visible with the meniscii
in the grid holes. When the two fluids make contact, the variation of pressure creates an up-
ward velocity at the contact point, thus sucking the lighter fluid inside the heavier one at this
point. It also slightly displaces the free surface above the heavier fluid. A model was derived to
account for this pressure jump at the interface, which results in imposing a free surface velocity
and displacement. Integrating this model into numerical simulations, and accounting for the
contact time between the two fluids, we were able to recreate a central ascending jet similar to
the one observed in the experiments. This model relies on several physical parameters. First, the
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contact between the two fluids, which is not instantaneous and homogeneous, is represented by
(i) a prescribed time evolution R(t), (ii) an initial opening radius R0, and (iii) the aperture time
to. Secondly, the intensity of the jet itself, given by (iv) the upward initial jet velocity U0, related
to the pressure jump and to the free surface velocity V. The first parameter is not determinant
but the three others are. They were tuned to reproduce qualitatively the jets observed in the ex-
periments, and also to produce descending lateral jet velocities which have a magnitude similar
to the experimental ones. In addition to these physical parameters, numerical parameters neces-
sary to implement the model through penalisation methods were studied as well: a compromise
was found between precision and cost in term of numerical resources.

The final step in the journey to reproduce the experimental results was to implement a grid
at the interface, again using penalisation methods. Obviously, by doing so, new parameters
come into play. This brings in new challenges, namely reproducing the phenomenology and
taking into account numerical limitations, since the experimental grids cannot be reproduced. It
was found that, mostly due to the effect of the diffusion, matching the parameters of the exper-
iments like the ratio of mesh size to the most unstable wavelength (given by the linear stability
analysis) d/λ0, and the initial contact zone radius R0, does not necessarily bring us closer to the
experimental observations. In particular, for the contact radius, the most important feature to
reproduce is the number of threads inside the contact area and not the size in itself. In the end,
the parameters chosen in the numerical simulations do not correspond to the parameters of the
experiments (like the grid dimensions), but allow to reproduce, at least qualitatively, the overall
dynamics with the central and lateral jets.

As perspectives, it could be interesting to perform zoomed simulations on the interface in or-
der to decrease the diffusion coefficient, and therefore to investigate in more detail the instability
development around threads which would have the size of the experimental grids. Moreover,
within the framework of the aspiration model in the simulations, it was found that even very
small pressure differences (< 1 Pa) gave an ascending central jet, thus the pressure needs to be
finely tuned to be able to control the jet appearance. The value from which the pressure jump
becomes too small to create the jet could be found through additional measurements: with this,
a new experimental setup could be proposed to fully erase the jets.
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Conclusion

The Inertial Confinement Fusion is a very complicated process involving several different phys-
ical phenomena. Our interest lies in the interfacial instabilities happening between the ablator
(heavy) and the fuel (light). These instabilities are subjected to variable accelerations, thus we
studied two elementary configurations in this thesis: a stable configuration under periodic ac-
celeration and an unstable configuration under a constant acceleration.

The first configuration studied is the stable one under periodic acceleration also known as
the Faraday instability. It consists of the superposition of two fluids, chosen as miscible for our
study, of different densities with the lighter one above. Under a periodic vertical acceleration,
the interface between the two fluids can be destabilized. It is a parametric instability involving
the resonance between the forcing frequency and the natural frequency of the interface. Both the
wavebreaking mechanism leading to turbulence of the Faraday waves and the mode selection
mechanism of the primary wave were investigated.

Considering the quantization induced by the geometry of the tank and the large forcing
accelerations used in our experiments, several subharmonic modes are given as unstable by the
Floquet linear theory. However, only one of them is selected by the primary Faraday wave. It
was demonstrated that the selection of the mode results from a nonlinear competition favoring
the modes with smaller wavelength. Indeed, when the primary wave amplitude grows, the
natural frequencies of the system decrease. This means that, when the amplitude reaches a
critical value, the supercritical modes (negative detuning) fall out of resonance with the forcing
frequency and are thus damped while the subcritical mode (positive detuning) becomes more
resonant. The subcritical modes are thus favored by the selection mechanism.

In order to study the transition to turbulence of the Faraday miscible standing waves, the
breaking of these waves must be understood. To this purpose, two theories were constructed.
The first is referred to as ‘global’ and is based on the horizontal averaging process. It evidenced
that the secondary instability breaking the wave is due to the oscillations of the primary wave.
A criterion giving the critical steepness of the wave at which wavebreaking is expected to occur
was derived. However, this breaking only happens at the node of the waves, which cannot be
explained by this theory. Thus, a second theory, referred to as ‘local’ was thought of. It focused
on the flow in a local frame attached to the node of the wave which showed the importance of

157



the shear in the development of the secondary instability. Indeed, it was shown that the un-
stable modes could be either of a parametric resonance type or of a Kelvin-Helmholtz type. To
determine to which of these types the mode belongs to, we compared the theories to the ex-
perimental and numerical data. The Thorpe displacement method, indicating an overturning,
was used to measure the primary wave amplitudes and the wavenumber associated with the
wavebreaking. From these comparisons, we found that the secondary instability is of paramet-
ric resonant nature, and develops earlier than the Kelvin-Helmholtz type during the growth of
the primary wave. Indeed, the results show that the wavebreaking is detected for wave steep-
nesses ka ∼ 0.75 inside the parametric resonant band. Thus, the wavebreaking comes from a
secondary parametric resonant subharmonic instability developing when the primary Faraday
wave amplitude reaches a critical value: it is of subcritical nature.

Numerical simulations with 2D initial conditions perturbed along the spanwise direction
were performed to show that it is indeed the wavebreaking that leads to turbulence. From
these, it was evidenced that the secondary instability developing at the node of the wave is the
origin of the final transition to turbulence.

The second configuration studied during this thesis is the unstable one under constant accel-
eration, called the Rayleigh-Taylor instability. It consists in superposing two fluids of different
densities with the heavier one above in a downward gravity field. This configuration is unstable
to any perturbation in an inviscid framework without surface tension. Thus, it can be easily un-
derstood that well controlled Rayleigh-Taylor experiments are very difficult to perform. This is
a true challenge in the understanding of the instability as a number of questions are still raised
and, in particular, the dependence on initial conditions.

In the hope of better controlling the initial conditions, we proposed a new type of Rayleigh-
Taylor experiment. In this new setup, a grid is positioned at the interface between the two
fluids, whose goal is to stabilise the heavier fluid during the filling of the tank; then, when the
contact is made, to let the instability develop freely once the contact between both fluids is made.
However, since the grid is present at the interface throughout the experiment, it is necessary to
ensure that it does not impact the dynamics of the instability.

Both experimental and numerical works were thus done to understand the effect the grid
may have on the development of the instability. From these, it was found that the grid can
have a significant impact on the shapes and sizes of the developing structures. Indeed, the grid
does not let perturbations with wavelength larger than the holes size develop. This means that
choosing a grid with a mesh size larger or smaller than the most unstable wavelength given
by the linear stability analysis greatly impacts the resulting instability. In the experiments, the
grids used did not let the most unstable wavelength develop. This means that thin filamentous
structures of the size of the holes of the grid developed. As the grid thread diameters were very
small, the mixing of the filaments with their neighbour happened very close to the grid, which
allowed to get larger structures resembling the typical Rayleigh-Taylor ones. Thus, the grid does
ensure a certain control over the initial conditions as we know that only the small wavelengths
are allowed to develop.

It was evidenced that the grid’s impact on the dynamics decreases with time. Indeed, with
the addition of the grid comes the creation of a jump on the concentration profiles. However, this
jump tends to disappear as the instability develops and more mixing occurs. As in the ‘classical’
Rayleigh-Taylor instability, a self-similar regime seems to be reached with values of growth rates
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for the experiments very close to what is obtained in the literature (α = 0.034). The values for
α in the simulations are smaller with grid than without, but this value is also impacted by the
porosity of the grid, the initial perturbation wavelength imposed, and the way it is computed.
Indeed, with the apparition of thin filaments, the growth rate and mixing zone width become
very sensitive to the method of computation. The results should thus be looked at with caution.

During the vast majority of the experiments, an ascending central jet developed as soon as
the fluids made contact. As we could only see the development of the instability in the bottom
cylinder, it was the lateral descending jets that were observed. If we want this new type of
experiment to be a good Rayleigh-Taylor experiment candidate, we need to understand what
causes the apparition of this jet and suppress it.

Thus, numerical simulations were performed to reproduce at best the conditions of the ex-
periments and determine the origin of the jet. It was found that the pressure jump at the heavy
fluid-air interface generates meniscii inside the holes of the grid, so that when the contact is
made, an upward vertical velocity is created at the contact point and is accompanied by the
displacement of the free surface at the top of the heavy fluid. A model was derived and im-
plemented in the simulations. With it, we were able to recreate the jet and find parameters that
would get us close to the experimental observations. To suppress this jet, the pressure inside
each fluid would need to be equalized.

For future research, it would be interesting for both the understanding of the grid effect and
of the jet, to be able to simulate a finer grid. For this the resolution could be improved and
the diffusion coefficient could be decreased. Decreasing the diffusion coefficient would indeed
allow much smaller wavelengths to develop, which would mean recovering an earlier mixing
with and without jet. Moreover, the exact pressure jump value for which the central jet stops
developing could be found.
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A.1 The three cases of the aspiration model

This section presents the three cases described when implementing the aspiration model in
Chapter 5. Case I has a wall opening at the interface between the two fluids in order to ac-
count for the delay in contact of the two fluids as given by Eq. (5.7). Case II implements on top
of that the free surface velocity and displacement (Sec. 5.2.2) and Case III adds the jet velocity U
at the interface (Eq. (5.15)). Three simulations are performed, one for each case and a qualitative
comparison of the density fields is made by showing the vertical slices along the XZ plane of
the instantaneous concentration fields.

N◦ of points A ν [m2.s−1] D [m2.s−1] ηu [s] ηc [m2.s−1]
5123 0.003 1.2 × 10−6 1.2 × 10−6 1 × 10−4 1.2 × 10−10

Table A: Parameters of the simulations with the number of points, Atwood number A, viscosity ν, diffu-
sion coefficient D and velocity and scalar penalisation parameters ηu and ηc respectively.

The scalar remains unpenalised inside χu (the mask imposing the jet velocity at the inter-
face) while the scalar penalisation parameter inside χ (the mask defining the top/bottom and
side walls) is ηc and the velocity penalisation parameters are taken in both masks as ηu. All
parameters are given in Tab. A.

A.1.1 Case I: Wall opening

Case I simulates the Rayleigh-Taylor instability in a cylindrical geometry with a wall at the in-
terface between the two fluids that opens with time, at the speed vPW = 0.194 m/s and aperture
time to = 0.5 s. The initial contact radius is R0 = 3.5 mm.

As expected from the study made in Sec. 5.1.3, no central ascending jet appears on the verti-
cal slices in Fig. A.1. A slight difference can be seen in the development of the instability when
comparing the center and the sides of the cylinder. This may be due to the no-slip boundary
conditions of the cylinder walls. This effect is also combined with the fact that the maximum
growth rate given by Eq. (4.11), ΩRT, is slightly bigger than the rate of aperture of the wall,
Ωo (ΩRT = 2.49 s−1 > Ωo = 2 s−1). Thus, the instability starts developing before the wall is
completely opened. In any case, this difference is minimal and does not impact much the devel-
opment of the mixing layer.

t = 0s t = 1s t = 2s t = 3s
Figure A.1: Vertical slices of the concentration field along the XZ plane at four different times t for Case
I. The heavier fluid is in red and the lighter one in blue.
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A.1.2 Case II: Free surface velocity

In addition of Case I, Case II simulates the displacement of the free surface caused by the pres-
sure jump of the aspiration model. The value of U0 chosen is 45 cm/s, and gives a radius of
curvature of 1.5 mm which is a mean value between the largest and smallest mesh size of the
experimental grids used. It is a large value not very realistic but it gives an idea of the most
extreme effect that could develop with just the displacement of the free surface. As a reminder,
the free surface velocity is given by V(t) = U(t)R2(t)/R2

cyl (Eq. (5.18)).
Notice how, on the vertical slice of Fig. A.2, the upper interface between the lighter and heav-

ier fluid is moved to the bottom of the domain at t = 1 s. As previously stated this displacement
is particularly important due to the choice of an extreme value of U0. This displacement creates
an ascending central jet at the center of the cylinder which reaches the upper boundary before
the first second of the simulation has passed. For similar Atwood number, the lateral descend-
ing jets in the experiments have a velocity of approximately 1.6 cm/s, whereas in this case they
have a velocity of around 2.7 cm/s. This shows that the effect created with this initial velocity is
much more violent than in the experiments and thus, here we will need to take a smaller velocity
U0.

t = 0s t = 1s
Figure A.2: Vertical slices of the concentration field along the XZ plane at two different times t for Case
II. The heavier fluid is in red and the lighter one in blue.

A.1.3 Case III: Jet velocity

For this case, we add a penalisation layer at the interface, inside the aperture of the opening
wall, in which the jet velocity U(t) is imposed. The same U0 is used as in Case II.

t = 0s t = 1s t = 2s
Figure A.3: Vertical slices of the concentration field along the XZ plane at three different times t for Case
III. The heavier fluid is in red and the lighter one in blue.
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The vertical slices along the XZ plane of the instantaneous concentration fields are given at
different times in Fig. A.3. Compared to Case II, there are no descending jets on the sides at t = 1
s, they appear later on (see image at t = 2 s). The central jet is also thinner in this case, thus the
descending jet are actually much closer to the center than in Case II. This is not what is observed
in the experiments where the descending jets are most often falling closer to the side walls of the
cylindrical tank.

As a conclusion, implementing only the free surface velocity of the aspiration model is
enough to see the apparition of a central ascending jet. Imposing the jet velocity U0 changes
the descending jets position which gives an effect further from the experiments. Thus, Case II of
the aspiration model will be implemented in the future simulations.

A.2 Convergence study

In the following, Case II is chosen as the reference configuration to create a central ascending
jet and descending jets close to the cylinder walls. Before going on with better resolved simu-
lations, it is necessary to determine optimal parameters in the penalisation layers to ensure that
the imposed free surface velocity V is indeed reproduced by the simulation. The numerical pa-
rameters to consider are the filtering intensity of the mask Cs, the penalisation intensity ηu, the
initial contact radius R0, the form of the contact radius R(t), and possibly the viscosity ν. Both
2D and 3D simulations are performed for this convergence study.

A.2.1 2D simulations

Using 2D simulations, the role of the viscosity and the filter parameter Cs, used in the Gaussian
filter expression exp(−Cs(k/Np)2) as a means to avoid Gibbs oscillations in the mask function,
is investigated (Jause-Labert [2012]). The parameters of the Case II simulations are given in
Tab. B. It was seen in the previous section on the implementation of the aspiration model that
U0 = 45 cm/s for the initial jet velocity is an unrealistic choice and gives a too strong jet. Thus,
a smaller value should be chosen for this convergence study. Hence, the initial velocity taken
in these simulations is U0 = 4.5 cm/s. This gives much more realistic values of the curvature
radius and the jet still exits.

N◦ of points A ν = D [m2.s−1] ηu [s] ηc [m2.s−1] to [s] R0 [mm] U0 [cm.s−1]
10242 0.003 1.2 × 10−6 1 × 10−4 1.2 × 10−10 0.5 3.5 4.5

Table B: Parameters of the 2D simulations with the number of points, Atwood number A, viscosity and
diffusion coefficient ν = D, velocity and scalar penalisation parameters ηu and ηc respectively, aperture
time to, initial contact radius R0 and initial jet velocity U0.

The effect of the resolution has also been tested but for the sake of brevity, the 5122 simula-
tions are not shown as it was found that they yield very similar results compared to the 10242

ones.

Viscosity: Two simulations are performed with ν = 2.3 × 10−6 m2.s−1 and ν = 0.6 × 10−6

m2.s−1. The vertical velocities inside the upper wall of both these simulations are compared to
the velocity imposed by the aspiration model given in Eq. (A.1) on Fig. A.4a.
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Figure A.4: Vertical velocities for (a) two 2D simulations with different viscosities ν and (b) two 2D
simulations with different filter parameter Cs compared to Vth(t), the imposed vertical velocity, in dotted
black line.





Vth(t) = U(t) t2

t2
o

for t ≤ to,

Vth(t) = U(t) for t > to.
(A.1)

In the simulations considered here, Pa − P = 0 before to is reached. Thus, the free surface
velocity is defined by Vth(t) = U(t) t2

t2
o

before to and V(t) = 0 after.
The vertical velocities given by the simulations are perfectly equal through time. Moreover,

the time evolution of the imposed velocity is well recovered by the simulations, despite a slight
difference of about 3 × 10−5 m/s around the maximum value. Thus, the viscosity has no influ-
ence on the convergence of the velocity.

Filter parameter: The filter parameter Cs is varied as we suspect that the slight gap observed
comes from the fact that for large values of Cs, the mask ‘leaks’ (less sharply defined). As the
filter parameter is decreased, the mask becomes more ‘abrupt’. However, for too small values
of Cs, Gibbs oscillations appear. Hence, a compromise has to be found. Three simulations are
performed with three different filter parameter: Cs = 256, Cs = 128 and Cs = 64. Again we
compare the vertical velocities given by each simulation to the theoretical one in Fig. A.4b.

Note that, when the filter parameter is decreased, we get closer to the theoretical value of
the vertical velocity. This difference being very small and the filter parameter Cs = 64 being a
bit small to efficiently remove all Gibbs oscillations for this mesh resolution, Cs = 128 will be the
filter parameter used hereafter.

A.2.2 3D simulations

The gap between the imposed velocity and the velocity given by the simulations persisting, 3D
simulations are performed to check if that is not a 2D vs 3D effect. These 3D simulations are
used to understand the effects of the penalisation parameters, the form of the contact radius
R(t) and the initial contact radius R0. The parameter ηu can be seen as a relaxation parameter
and it is expected to greatly influence how close to the theoretical input value the velocity inside
a penalised layer is. Thus, depending on the value of this parameter, the form and magnitude
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of V(t) will be changed, which will affect the form and magnitude of the jet resulting from the
aspiration visible on the concentration field.

N◦ of points A ν = D [m2.s−1] ηc [m2.s−1] to [s] U0 [cm.s−1] Cs

5123 0.003 1.2 × 10−6 1.2 × 10−10 0.1 4.5 128

Table C: Parameters of the 2D simulations with the number of points, Atwood number A, viscosity and
diffusion coefficient ν = D, scalar penalisation parameters ηc, aperture time to, initial jet velocity U0 and
filter parameter Cs.

As very similar results were obtained for simulations with 5122 points compared to simula-
tions 10242 points, 3D simulations are performed with 5123 points. Moreover, we verified that
the aperture time has no influence on the convergence of the simulation. Hence, as the time step
will be greatly decreased to study the effect of smaller penalisation parameter, the aperture time
is taken smaller than in the previous simulations (to = 0.1 s instead of to = 0.5 s).

Penalisation parameter and form of the contact radius: Seven simulations given in Tab. D are
performed in which the penalisation parameter ηu is varied with R0 = 7 mm.

Series N◦ ηu [s]
DNSηu 1 1 × 10−3

2 5 × 10−4

3 1 × 10−4

4 1 × 10−4 / 5 × 10−4

5 1 × 10−5

6 1 × 10−5 / 5 × 10−4

7 1 × 10−6 / 5 × 10−4

Table D: Label (series and numbers) and velocity penalisation parameter ηu for the Case II simulations
with different velocity penalisation parameter. The parameters of the simulations are given in Tab. C
with R0 = 7 mm.

The ones marked ηu,1/ηu,2 in Tab. D are simulations that were made using ηu = ηu,1 up to
t = to + 0.5 s and then ηu = ηu,2. This allows for faster simulations as the time step is increased
after to + 0.5 s. It was verified by comparing simulations DNSηu3 and DNSηu4 and simulations
DNSηu5 and DNSηu6 that it gave the same results than when ηu = ηu,1 throughout the entire
simulation, as seen on the instantaneous concentration fields in Fig. A.5.

Two types of aperture of the wall at the interface were used to check the importance of the
form of R(t):

• the usual linear aperture: R(t) = Rcyl
t
to

,

• an exponential one: R(t) = Rcyl
1−e−t/to

1−e−1 .

For the exponential aperture, the jet velocity and the free surface velocity are written:





U(t) = U0 − G0ρh

ρl(1−e−1)
2

{
t + to

[
e−t/to

(
2 − e−t/to

2

)
− 3

2

]}
for t ≤ to,

U(t) = U0 − G0ρh

ρl(1−e−1)
2 to

[
1 + e−1

(
2 − e−1

2

)
− 3

2

]
− ρh

ρl
G0(t − to) for t > to,

(A.2)
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(a) (b)

Figure A.5: Vertical slices of the concentration field along the XZ plane at t ∼ 2 s for (a) DNSηu3 and (b)
DNSηu4 of Tab. D. The heavier fluid is in red and the lighter one in blue. The walls are in black.

0.00 0.02 0.04 0.06 0.08 0.10

t [s]

0.000

0.001

0.002

0.003

0.004

V
[m

/s
]

DNSηu1

DNSηu2

DNSηu4

DNSηu6

DNSηu7

Vth

(a)

0.00 0.02 0.04 0.06 0.08 0.10

t [s]

0.000

0.001

0.002

0.003

0.004

V
[m

/s
]

DNSηu2

DNSηu4

DNSηu6

DNSηu7

Vth

(b)

Figure A.6: Vertical velocity V as a function of time t compared to the imposed velocity Vth(t) for (a)
the linear aperture and DNSηu1, DNSηu2, DNSηu4, DNSηu6 and DNSηu7 and for (b) the exponential
aperture and DNSηu2, DNSηu4, DNSηu6 and DNSηu7 (Tab. D).

and 



V(t) = (1−e−t/to)
2

(1−e−1)
2 U(t) for t ≤ to,

V(t) = U(t) for t > to,
(A.3)

Once again, the pressure equalisation happens before to is reached, thus only the expressions
for t ≤ to are of interest to us.

The results are given in Fig. A.6 with the vertical velocity inside the upper wall given as a
function of time and compared with Vth(t) given by Eqs. (5.18) and (A.3).

Note the very visible difference between the simulations when varying ηu up to ηu = 1× 10−5

s and how far they are from the imposed velocity in both the linear aperture and the exponential
one. These differences can also be seen on the instantaneous concentration fields with very
different central jets shown on Fig. A.7 for the linear aperture. Thus, the type of aperture (linear
or exponential) does not seem to impact the convergence of the simulations.
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(a) (b) (c) (d) (e)

Figure A.7: Vertical slices of the concentration field along the XZ plane at t ∼ 2 s for (a) DNSηu1, (b)
DNSηu2, (c) DNSηu4, (d) DNSηu6 and (e) DNSηu7 of Tab. D. The heavier fluid is in red and the lighter
one in blue. The walls are in black.

A slight difference can still be seen on the simulations DNSηu6 and DNSηu7. However, this
difference is small enough to consider that our simulations are converged at ηu = 1× 10−5 s. The
reason for these large discrepancies between the imposed V and the numerical results is that for
the largest ηu, the time step imposed by the penalisation ∆tη is much larger than the time step
∆tU imposed by U0. Hence, stronger penalisation parameters are required to reach ∆tη ∼ ∆tU .
Then, it was verified that for a small enough ηu (like 1 × 10−4), there is no difference by further
imposing an even smaller time step.

Initial contact radius: To further test out the effects of the initial opening on the convergence,
two values of R0 were used for DNSηu6 with the linear aperture: R0,1 = 7 mm and R0,2 = 42
mm. Figure A.8 shows both the vertical velocity and the vertical slices of the instantaneous
concentration field for these simulations. Note that the form and extension of the jet is com-
pletely different: indeed, a larger initial opening means more surface through which the lighter
fluid can be sucked and thus it gives a larger and less extended jet. However, looking at the
vertical velocity inside the upper wall (Fig. A.8a), there is very little difference between the two
simulations. This means that, changing the initial opening in the wall will not affect much the
convergence of the simulation.

A.2.3 Conclusion

As a summary, for this convergence study, the type of aperture is irrelevant and thus the linear
one is chosen for the following. The initial opening has not much effect for the convergence, but
its effect is more deeply investigated in Section 5.4. Regarding the penalisation parameters: (i)
the filtering parameter Cs = 128 is kept as a good compromise; (ii) the penalisation intensity ηu

is the most critical parameter. To make for less time-consuming simulations, ηu = 1 × 10−5 s is
imposed initially up to to + 0.5 s and then this strong constraint is released by decreasing the
penalisation parameter to ηu = 5 × 10−4 s.
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Figure A.8: (a) Vertical velocity V as a function of time t for DNSηu6 (Tab. D) with two different initial
opening in the wall at the interface R0. (b) Vertical slices of the concentration field along the XZ plane at
t ∼ 2 s for DNSηu6 with R0,1 = 7 mm at the top and for DNSηu6 with R0,2 = 42 mm at the bottom.
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