
HAL Id: tel-04067758
https://theses.hal.science/tel-04067758

Submitted on 13 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nonlinear feedback control system development for an
autonomous river shuttle

Leticia Kinjo

To cite this version:
Leticia Kinjo. Nonlinear feedback control system development for an autonomous river shuttle. Au-
tomatic. Normandie Université; Hochschule Konstanz Technik, Wirtschaft und Gestaltung, 2023.
English. �NNT : 2023NORMC205�. �tel-04067758�

https://theses.hal.science/tel-04067758
https://hal.archives-ouvertes.fr


THÈSE
Pour obtenir le diplôme de doctorat

Spécialité AUTOMATIQUE, SIGNAL, PRODUCTIQUE, ROBOTIQUE

Préparée au sein de l'Université de Caen Normandie

En cotutelle internationale avec Université Hochschule Konstanz Technikv ,

ALLEMAGNE

Νοnlinear Feedback Cοntrοl System Develοpment fοr an
Αutοnοmοus River Shuttle

Présentée et soutenue par
LETICIA MAYUMI KINJO

Thèse soutenue le 02/02/2023
devant le jury composé de

MME SOPHIE TARBOURIECH Directeur de recherche, LAAS TOULOUSE Rapporteur du jury

M. EDMUND BREKKE Professeur associé, Norwegian University of Science and Tech Membre du jury

M. KNUT GRAICHEN Professeur, Université Friedrich-Alexander Erlangen Membre du jury

M. TOMAS MENARD Maître de conférences HDR, Université de Caen Normandie Membre du jury

M. TOBIAS RAFF Professeur associé, Université Hochschule Konstanz Technikv Membre du jury

M. ANDREAS RAUH Professeur, University of Oldenburg Président du jury

M. OLIVIER GEHAN Maître de conférences HDR, ENSICAEN Directeur de thèse

M. JOHANNES REUTER Professeur, Université de Konstanz Co-directeur de thèse

Thèse dirigée par OLIVIER GEHAN (Laboratoire d'Ingénierie des Systèmes) et
JOHANNES REUTER (Université de Konstanz)







Acknowledgment

I would like to express my gratitude to my advisors Prof. Olivier Gehan and Prof.

Johannes Reuter for their support, patience, and scientific knowledge throughout my

work on this thesis. I would also like to thank Prof. Tomas Menard, for his patience and

support, teaching me so much, not only about the theoretical aspects of the work but also

about different ways to think and see a problem.

My deep thanks go to Stefan Wirtensohn for the nice cultural exchange that we had

and for all his help since day one, from understanding Solgenia to the practical implemen-

tation and the tests we did together in Constance. This work could not be done without

his help. I also thank the ISD and LIS colleagues for the nice time together.

I would also like to thank my family and friends, which supported and encouraged

me to never give up even by distance, and a special thanks to my beloved Vinicius who

was with me every step of the way, helping me with all of the challenges this thesis has

brought me always patient and caring. Finally, I would like to thank everyone that I had

the opportunity to meet during these three years in France and in Germany that made

part of this journey and directly or indirectly made this work possible.

ii



Abbreviations

USV unmanned surface vessel
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Abstract

In the last decades, the interest in the marine domain has increased due to the exploration

of new solutions to execute marine operations such as autonomous surface vessels (ASV),

which represent a potential alternative to efficiently and safely automate the shipping

process, the exploration of harsh areas and the urban transportation. The ASV can be

operated with no crew onboard, since they rely on an integrated system responsible for

providing a navigation route and controlling the propulsion engines to follow or track it.

This thesis fits in the domain of motion control for ASV, and it presents the develop-

ment of two different state-feedback controllers to solve the trajectory tracking problem,

where the vessel needs to reach and follow a time-varying reference trajectory. This mo-

tion problem was addressed to a real-scaled fully-actuated surface vessel, whose dynamic

model had unknown hydrodynamic and propulsion parameters that were identified by

applying an experimental maneuver-based identification process.

This dynamic model was then used to develop the controllers. The first one was the

backstepping controller, which was designed with a local exponential stability proof. For

the NMPC, the controller was developed to minimize the tracking error, taking into ac-

count the thrusters’ constraints. Moreover, both of the controllers considered the thruster

allocation problem and counteracted environmental disturbance forces such as current,

waves and wind. The effectiveness of these approaches were verified in simulation using

Matlab/Simulink and GRAMPC (in the case of the NMPC), and also in experimental

scenarios, where they were applied to the vessel, performing docking maneuvers at the

Rhine river in Constance (Germany).
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Résumé

Au cours des dernières décennies, l’intérêt pour le domaine maritime a augmenté en

raison de l’exploration et de l’obtention de nouvelles solutions pour réaliser certaines

opérations. Parmi ces solutions, les véhicules autonomes de surface (VAS) représentent

une alternative prometteuse pour automatiser de manière efficace et en toute sécurité

le transport maritime de colis, l’exploration des zones les plus difficiles à atteindre et le

transport urbain. Les VAS peuvent être utilisés sans équipage à bord, puisqu’ils sont

entièrement gérés à l’aide d’un système intégré au véhicule qui fournit la trajectoire de

navigation et assure le pilotage des actionneurs du véhicule pour suivre cette trajectoire.

Les travaux réalisés dans cette thèse se situent dans le domaine du contrôle de mouve-

ment pour les VAS. Deux techniques différentes par retour de sortie sont proposées pour

résoudre le problème de suivi automatique de trajectoire, où le bateau doit atteindre et

suivre une trajectoire variant dans le temps. Ce problème a été traité pour un bateau en-

tièrement actionné, et dont le modèle dynamique dépend de paramètres hydrodynamiques

et du système de propulsion tous deux inconnus et qui ont été identifiés en utilisant une

procédure d’identification basée sur des données de manœuvre expérimentales.

Le modèle dynamique du bateau obtenu précédemment a ensuite été utilisé pour le

développement des lois de commande. La première loi de commande a été conçue en

utilisant une technique de type backstepping et une preuve de stabilité exponentielle locale

a été obenue. La deuxième loi de commande utilise une approche de type commande

prédictive nonlinéaire (CPNL). L’objectif de commande consiste alors à minimiser une

fonction coût en tenant compte des contraintes sur les actionneurs. Dans les deux cas, le
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Résumé vii

problème d’allocation des actionneurs a été abordé et traité et les effets des perturbations

liées au vent, au courant maritime, etc ont été compensés. L’efficacité des approches

présentées dans cette thèse ont été vérifiées en simulation, en utilisant Matlab/Simulink

et GRAMPC, ainsi que lors de tests expérimentaux réalisés sur un bateau à échelle réelle

dans le cadre de manoeuvres de docking sur le Rhin à Constance (Allemagne).
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Chapter 1

Introduction (french version)

Au cours des dernières décennies, le monde a subi une transformation importante passant

de l’ère industrielle à l’ère numérique, où la communication, la connexion, et la technolo-

gie de l’information sont devenues la base de la société moderne. Ces nouveaux standards

ont provoqué des changements fondamentaux non seulement dans les processus de pro-

duction industrielle et le marché de la consommation, mais aussi dans l’environnement,

le climat et dans la régulation de la défense côtière. Toutes ces transformations ont aug-

menté la demande à l’égard des secteurs scientifiques, commerciaux et militaires afin de

développer des solutions innovantes dans différents domaines. L’un d’entre eux concerne

les opérations maritimes telles que la surveillance des conditions océaniques, les vigilances

aux frontières maritimes, les opérations de recherche et de sauvetage [63] et la croissance

des demandes commerciales maritimes, dont le volume total à dépassé les 10 milliards de

tonnes pour l’ensemble des cargaisons depuis 2015 [88].

L’une des solutions les plus appropriées pour effectuer les tâches maritimes sont les

navires de surface sans équipage (NSSE), également connus comme véhicules de surface

autonomes (VSA), car ils peuvent fonctionner de manière autonome à l’aide d’une in-

telligence embarquée permettant de guider la navigation et de piloter les actionneurs du

système de propulsion du navire. Par conséquent, le NSSE peut automatiser la naviga-

tion de manière efficace et fiable, ainsi que permettre l’exploration de zones difficiles que

1
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les navires avec équipage à bord ne sont pas capables d’atteindre. La recherche et le

développement des NSSE se sont développés dans le monde entier, de nombreux pays tels

que la Norvège, la Finlande, la Chine, l’Allemagne, les États-Unis et le Royaume-Uni ont

notamment une contribution significative dans ce domaine. Une réussite importante qui

peut être soulignée est le bateau de recherche autonome Mayflower, qui a été développé

au Royaume-Uni et a traversé avec succès l’Atlantique, au printemps 2022, pour arriver

en Virginie puis à Washington aux États-Unis. Un autre exemple remarquable est le

cargo autonome Yara Birkeland développé en Norvège, qui a été lancé en 2021 pour son

premier voyage dans le fjord d’Oslo [82]. Certaines entreprises ont également investi dans

ce domaine, telles que Rolls-Royce, Kongsberg et Samsung, avec l’ambition de devenir le

leader de l’industrie du transport maritime autonome. [78]

Toutes ces réussites dans l’avancée du NSSE ont été possibles grâce à des différents

domaines de recherche, le domaine du contrôle du mouvement des navires contribuant

largement à cette croissance car il a un rôle important en termes d’autonomie. L’objectif

principal consiste à développer des algorithmes de commande pour résoudre un problème

de mouvement spécifique. Les lois de commande synthétisées calculent les valeurs des

commandes à appliquer aux actionneurs du navire, lui permettant ainsi d’effectuer des

manœuvres précises et sûres. Les problèmes de mouvement les plus courants sont le

suivi de trajectoire (path-following) et le tracking de trajectoire. Dans le premier cas,

l’algorithme de commande garantit que le bateau suit une trajectoire de référence qui n’est

pas temporellement paramétrée, tandis que dans le second cas, l’algorithme de commande

doit s’assurer que les forces et les moments demandés aux actionneurs permettront au

navire de suivre à chaque instant une trajectoire de référence variant dans le temps et

paramétrée temporellement.

Dans ce contexte, la principale motivation de ce travail est de développer des algo-

rithme de commmade afin de résoudre le problème de tracking de trajectoire et d’évaluer

ses performances non seulement en simulation mais aussi lors de scénari expérimentaux

sur le Rhin à Constance (Allemagne) avec un NSSE à échelle réelle de l’Université des
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sciences appliquées de Constance appelé Solgenia et illustré sur la Figure 1.1. Cette in-

troduction est constituée de trois parties différentes. La section 1.1 est consacrée à une

vue d’ensemble des navires autonomes et à leurs principaux composants structurels. Les

principales contributions de cette thèse sont ensuite détaillées en section 1.2. Pour finir,

la structure du document est décrite dans la section 1.3.

Figure 1.1: Bateau de recherche Solgenia de l’université des sciences appliquées de
Constance.

1.1 Navires Autonomes

Un NSSE peut avoir différents degrés d’autonomie, qui sont choisis en fonction de la tâche

à accomplir. La classification des degrés d’autonomie a été proposée par l’organisation

maritime internationale (OMI) [44] pour réglementer les opérations des NSSE en matière

de sûreté et de sécurité. Les quatre degrés d’autonomie sont décrits ci-dessous :

• Navires avec processus automatisés et aide à la décision : dans ce cas, le navire

est principalement exploité et contrôlé par l’équipage à bord. Certaines tâches

et décisions mineures sont automatisées pour assister cet équipage qui peut par

conséquent se concentrer sur les manœuvres et les opérations les plus pertinentes.
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• Navires télécommandés avec équipage à bord : le navire est généralement contrôlé

par une station au sol relativement éloignée du navire. En cas de problème de

communication ou de problème avec le navire, l’équipage à bord peut en prendre le

contrôle pendant la mission jusqu’à ce que le problème soit résolu.

• Navire télécommandé sans équipage à bord : le navire est généralement commandé

par une station au sol. Il présente un système de communication et de commande

robuste qui lui permet d’exécuter des tâches sans avoir besoin d’avoir un équipage

à bord.

• Navire entièrement autonome : les systèmes de guidage, de navigation et de com-

mande sont chargés de prendre des décisions et de prendre des mesures pour con-

trôler le navire et exécuter avec succès l’opération demandée sans aucun soutien

d’une station au sol ou d’un équipage à bord. Cependant, même si le navire est

entièrement autonome, l’organisation maritime internationale (OMI) [44] exige tou-

jours un équipage à bord.

De la même manière que les degrés d’autonomie du NSSE peuvent varier en fonction de

leurs applications, la conception, les matériaux et les fonctionnalités peuvent également

changer. Néanmoins, tous les NSSE sont composés des éléments essentiels décrits ci-

dessous :

• Structure du navire : dans l’industrie navale, il existe une variété de formes de

coque, qui peuvent avoir un impact direct sur le domaine d’utilisation du NSSE.

Les navires à simple coque étaient largement utilisés au début de l’industrie navale.

Puis, avec les progrès de la technologie, les catamarans (doubles coques) et les

trimarans (triples coques) ont été développés offrant plus de stabilité structurelle et

réduisant le risque de retournement dans des eaux agitées. Outre la forme du bateau,

le matériau constituant la coque peut différer d’un navire à l’autre (aluminium,

matériaux composites, etc.).
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• Système de propulsion : le contrôle du mouvement du navire dépend du système de

propulsion pour générer un ensemble de forces approprié afin de déplacer le navire.

La configuration la plus courante pour ce système est composée d’une hélice et d’un

gouvernail, mais il existe également d’autres types de propulsion, par exemple, la

propulsion à réaction hydraulique, la propulsion entièrement électrique, etc. De

plus, le NSSE peut être classé selon les degrés de liberté (DL) du navire et les

directions des forces indépendantes produites par le système de propulsion.

Les navires sous-actionnés ont une configuration d’actionneurs qui produit un nom-

bre de forces indépendantes inférieur au nombre de DL utilisé pour représenter

le mouvement du navire pour une tâche. Les navires entièrement actionnés sont

équipés d’un système de propulsion capable de générer des forces indépendantes

dans tous les DL utilisés. Enfin, dans le cas des navires sur-actionnés, le nombre de

directions de ces forces est supérieur au nombre de DL du navire.

• Système GNC : (Guidage, Navigation et Contrôle) il correspond au cerveau du NSSE

puisqu’il est chargé de prendre des décisions et de contrôler les actions du navire en

fonction de la mission donnée. Ce système sera exploré plus en détail plus loin dans

ce chapitre.

• Système de communication : cet élément concerne la communication embarquée

entre le système GNC et l’ensemble des capteurs (accéléromètre, gyroscope, etc.),

actionneurs (moteurs de propulsion) et autres équipements. De plus, s’il y a une

station au sol, une communication sans fil avec elle est également envisagée.

• Équipement de collecte de données : outre que les composants susmentionnés, selon

l’application, le NSSE est également équipé d’un système de positionnement global

(GPS), d’unités de mesure inertielle (IMU), de radars, de sonars, de caméras, de

thermomètres, etc.

Comme mentionné précédemment, le système GNC est chargé de garantir l’autonomie
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du NSSE et il est formé de trois sous-systèmes appelés guidage, navigation et contrôle

dans une configuration illustrée sur la Figure 1.2. Ces sous-systèmes échangent des in-

formations et travaillent les uns avec les autres pour exécuter le mouvement souhaité

malgré d’éventuelles forces environnementales, qui sont considérées comme des perturba-

tions pour le sous-système de contrôle [53].

Figure 1.2: Système GNC.

• Système de guidage : il est basé sur un algorithme qui calcule la meilleure tra-

jectoire de référence que le système de contrôle doit "traquer" ou suivre, en tenant

compte de l’objectif de la mission, des données du système de contrôle (valeurs

de commande envoyées aux actionneurs) et des données disponibles du système de

navigation, telles que la position et la vitesse actuelles du navire, les conditions

météorologiques (vitesse et direction du vent, courant, mouvement des vagues). Dès

que le système de guidage a déterminé la trajectoire de référence ou la prochaine

position souhaitée, celle-ci est transmise au système de contrôle.

• Système de navigation : il est chargé de fournir aux sous-systèmes de contrôle et

de guidage toutes les informations nécessaires sur l’état du navire, telles que la posi-

tion, l’angle de cap, les vitesses, les accélérations et les conditions environnementales
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externes comme mentionné précédemment. Afin de fournir ces données, deux op-

tions sont possibles. La première consiste à les collecter en traitant les informations

de tous les capteurs disponibles du NSSE. La deuxième option consiste à estimer

conjointement les états et les perturbations en développant un observateur d’état à

partir d’un nombre réduit de capteurs.

• Système de contrôle : il fournit les forces et les moments appropriés, qui seront

appliqués aux actionneurs du navire pour atteindre l’objectif fixé par le système de

guidage tout en compensant les perturbations environnementales. Par conséquent,

le système de contrôle doit recevoir des informations du système de guidage afin de

connaître la trajectoire de référence qui doit être "traquée" ou suivie. Il a également

besoin des données du système de navigation afin de déterminer les valeurs des

commandes des actionneurs en fonction de l’état actuel du navire et des conditions

extérieures qui pourraient éloigner le navire de sa trajectoire de référence.

1.2 Contributions Principales

Ce travail de thèse présente le développement de deux algorithmes de commande non

linéaire basés respectivement sur la technique du backstepping et la commande prédictive

non linéaire (CPNL) avec pour objectif de commande de résoudre le problème de tracking

de trajectoire pour les manœuvres lentes comme le docking. Un processus d’identification

des paramètres inconnus du navire de surface entièrement actionné et illustré sur la Figure

1.1 a été utilisé afin d’obtenir au préalable un modèle de commande du navire. Celui-ci a

ensuite été utilisé pour concevoir les deux systèmes de commande dont les performances

ont été évaluées en simulation puis lors d’essais temp-réel sur Solgenia. Les principales

contributions de ce travail sont :

• l’obtention d’un modèle dynamique précis pour le navire entièrement actionné et

illustré en Figure 1.1 grâce à l’identification non seulement des paramètres hydro-
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dynamiques du bateau, mais également des paramètres inconnus de son système de

propulsion. Ce processus d’identification est basé sur la résolution d’un problème

d’optimisation à l’aide de données expérimentales, puis sur une analyse de la qualité

du modèle ainsi obtenu afin d’éviter une surparamétrisation de ce dernier.

• le développement de solutions pour la résolution du problème de tracking de tra-

jectoire en concevant des lois de commande non linéaires à travers deux approches

différentes : la technique du backstepping et la commande prédictive non linéaire

(CPNL). La synthèse de ces deux lois de commande a été réalisée en considérant

les perturbations devant être compensées (vent, courant, effets non modélisés) et

en traitant le problème d’allocation des propulseurs. De plus, une action intégrale

multivariable a été ajoutée au modèle dynamique du navire pour augmenter la pré-

cision des systèmes de commande. Dans le cas de la commande CNPL, la résolution

du problème d’optimisation a été réalisée sur un horizon de prédiction fini au sens

d’un horizon fuyant et sous contrainte physique des actionneurs.

• l’évaluation des performances et de la robustesse des lois de commande en simula-

tion en analysant les différents impacts de la variation des paramètres de synthèse,

du resserrement des contraintes, de la compensation des perturbations et des in-

certitudes sur le modèle dynamique du navire. Les deux lois de commande ont été

implémentées en temps réel avec succès et leurs performances ont été évaluées sur

Solgenia sur une manœuvre de docking. Il s’agit d’une contribution importante

au regard de la faible quantité de résultats expérimentaux disponibles dans littéra-

ture. Enfin, les résultats obtenus en simulation et lors des essais temps-réel ont été

comparés.
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Les contributions suivantes ont été produites dans le cadre de la thèse

L. M. Kinjo, T. Menard, S. Wirtensohn, O. Gehan and J. Reuter (2022) "Backstepping

Control of a Fully-actuated Surface Vessel for Tracking a Docking Maneuver," Accepted

paper for the 10th International Conference on Systems and Control (ICSC 2022).

L. M. Kinjo, S. Wirtensohn, J. Reuter, T. Menard and O. Gehan (2022) "Trajectory

Tracking of a Fully-actuated Surface Vessel using Nonlinear Model Predictive Control:

Experimental Results," 2022 30th Mediterranean Conference on Control and Automation

(MED), pp. 693-698, doi: 10.1109/MED54222.2022.9837247.

L. M. Kinjo, S. Wirtensohn, J. Reuter, T. Menard, and O. Gehan (2021) “Trajectory

tracking of a fully-actuated surface vessel using nonlinear model predictive control,” IFAC-

PapersOnLine, vol. 54, no. 16, pp. 51–56, 13th IFAC Conference on Control Applications

in Marine Systems, Robotics, and Vehicles CAMS 2021. DOI: 10.1016/j.ifacol.2021.10.072

S. Wirtensohn, O. Hamburger, H. Homburger, L. M. Kinjo, and J. Reuter (2021)

“Comparison of advanced control strategies for automated docking,” IFAC-PapersOnLine,

vol. 54, no. 16, pp. 295–300, 13th IFAC Conference on Control Applications in Marine

Systems, Robotics, and Vehicles CAMS 2021. DOI: 10.1016/j.ifacol.2021.10.107
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1.3 Plan

Les chapitres suivants sont organisés comme suit :

Le chapitre 3 présente la définition des variables de mouvement du navire puis une

étude des récents résultats dans le domaine du contrôle du mouvement des NSSE en

mettant l’accent sur la résolution du problème de tracking de trajectoire. La dernière

partie du chapitre présente les principes généraux du backstepping et de la commande

prédictive non-lineaire (CPNL).

Dans le chapitre 4, les équations physiques du modèle dynamique d’un navire de

surface sont présentées, ainsi que les hypothèses et les simplifications utilisées par la suite

afin d’obtenir un modèle pouvant être utilisé pour la synthèse des lois de commande.

Afin de pouvoir traiter le problème d’allocation des propulseurs, une vue d’ensemble du

système de propulsion est également proposée. En outre, des détails sur le processus

d’identification et ses résultats sont présentés.

Le chapitre 5 détaille la conception des systèmes de commande en utilisant respec-

tivement le backstepping et la commande prédictive non linéaire sous-contrainte pour

résoudre le problème de tracking de trajectoire en considérant un modèle de commande

étendu où une action intégrale multivariable a été explicitement introduite. L’évaluation

de ces lois de commande en simulation est également présentée dans ce chapitre.

Le chapitre 6 présente les résultats expérimentaux obtenus à l’aide des deux lois de

commande (backstepping et CNPL) pour résoudre le problème de suivi de trajectoire dans

le cas d’une manoeuvre de docking. Les essais ont été réalisés sur Solgenia sur le Rhin à

Constance.

Enfin, la conclusion de cette thèse, les questions ouvertes restantes, ainsi que les per-

spectives de travaux futurs constituent le chapitre 7.



Chapter 2

Introduction

In recent decades, the world has been pushed to transition from an industrial to a digital

era, where communication, connection, and information technology have become the base

of modern society. These new standards have caused fundamental changes not only in

the industrial production process and the consumer market but also in the natural envi-

ronment and in coastal defense regulation. All these transformations have increased the

demand from scientific, commercial, and military sectors to develop innovative solutions

for different expertise, one of them being marine operations such as monitoring oceanic

conditions, patrolling border lines, search and rescue operations [63] and the increase of

seaborne trade demand, whose total volume has surpassed 10 billion tons of all cargos

since 2015 [88].

One of the most suitable solutions to perform such marine tasks are the unmanned

surface vessels (USV), which can be classified as autonomous surface vehicles (ASV), as

they can autonomously operate using an algorithmic system to guide the navigation and to

control the vessel’s propulsion engines. Hence, USV can automate shipping in an efficient

and reliable way, as well as allow for the exploration of harsh areas where manned vessels

are not capable to reach. The research and development of USV have grown worldwide,

many countries such as Norway, Finland, China, Germany, the United States, and the

United Kingdom have a significant contribution in this area. An important achievement

11
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that can be highlighted is the Mayflower autonomous research ship, which was developed

in the United Kingdom and successfully crossed the Atlantic, in the spring of 2022, to

arrive in Virginia and then in Washington in the United States. Another outstanding

example is the autonomous cargo ship Yara Birkeland developed in Norway, which was

launched in 2021 for its first voyage in the Oslo fjord [82]. Some companies have also been

investing in USV such as Rolls-Royce, Kongsberg, and Samsung to become the leader in

the autonomous shipping industry in the future. [78]

All these achievements in the advance of USV were possible thanks to different fields

of research, with the vessel motion control field largely contributing to this growth, since

it has an important role in terms of autonomy. Hence, the main goal of this area is

to develop a control algorithm to solve a specific motion problem, and as a result, it

provides control laws that calculate the values for the vessel’s actuators, allowing it to

perform accurate and safe maneuvers. The most common motion problems are path

following and trajectory tracking. In the first case, the control algorithm guarantees that

the position error w.r.t. the reference tends to zero without considering time, while in the

second case, the control algorithm needs to ensure that the forces and moment calculated

will make the vessel reach and follow a time-varying reference trajectory.

Within this context, the main motivation of this work is to develop a control algo-

rithm to solve the trajectory tracking problem and to assess its performance not only in

simulation but also in experimental scenarios at the Rhine river in Constance (Germany)

with a fully-actuated real-scaled USV from the University of Applied Sciences Constance

called Solgenia illustrated in Figure 2.1. The end of this introduction is composed of

three different parts. The first one is devoted to an overview of autonomous vessels and

their main structural components in Section 2.1. After that, the main contributions of

this thesis are given in Section 2.2 and, finally, the structure of the report is outlined in

Section 2.3.
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Figure 2.1: Research boat Solgenia from the university of applied sciences Constance.

2.1 Autonomous vessels

A USV can have different degrees of autonomy, which is chosen according to the task

that needs to be performed. Classification of degrees of autonomy was proposed by the

international maritime organization (IMO) [44] to regulate USV operations regarding

safety and security. The four degrees of autonomy are described below:

• Vessels with automated processes and decision support: in this case, the vessel

is mainly operated and controlled by the crew onboard. Some minor tasks and

decisions are automated to assist them, and, therefore, they can focus on the most

relevant maneuvers and operations.

• Remotely controlled vessels with crew onboard: the vessel is usually controlled by a

ground station relatively far from the vessel. Therefore, in case of a communication

problem or an issue with the vessel, the crew onboard can take control of it until

the problem is solved during the mission.

• Remotely controlled vessel without crew on board: the vessel is usually controlled

by a ground station. It presents a robust communication and control system which

allows it to execute tasks with no need to have a crew on board.
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• Fully autonomous vessel: the guidance, navigation, and control systems are respon-

sible for making decisions and taking actions to control the vessel and successfully

execute the operation demanded without any support of a ground station or an

onboard crew. However, even if the vessel is fully autonomous, the international

maritime organization (IMO) [44] still requires a crew onboard.

In the same way that USV’s degrees of autonomy can vary according to their appli-

cations, the design, material, and features can change as well. Nevertheless, all USVs are

composed of essential components described below:

• Vessel structure: In the ship industry there is a variety of hull forms, which can

impact directly the USV’s application. Single-hull vessels were widely used at the

beginning of the ship industry. Then, with the advances in technology, catamarans

(twin hulls) and trimarans (triple hulls) were developed providing more structural

stability and reducing the risk of turning over in agitated waters. Besides its form,

the hull can differ on the material used, for example, aluminum, composite materials,

etc.

• Propulsion system: Vessel motion control depends on the propulsion system to

generate a suitable set of forces in order to move the vessel. The most common

configuration for this system is composed of a propeller and rudder, but there are

also other types of propulsion, for example, hydraulic jet propulsion, full electric

propulsion, etc. Furthermore, USV can be classified according to the vessel’s degrees

of freedom (DOF) and the directions of the independent forces produced by the

propulsion system.

Underactuated vessels have an actuators’ configuration that produces a number

of independent forces lower than the number of DOF used to represent the vessel

motion for a task. On the other hand, fully-actuated vessels are equipped with

a propulsion system capable of generating independent forces into all used DOF.
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Besides, for over-actuated vessels, the number of directions of these forces is greater

than the DOF of the vessel.

• GNC System: (Guidance, Navigation and Control) system corresponds to the brain

of the USV since it is responsible for making decisions and controlling the actions

of the vessel according to the given mission. This system will be explored in more

details later in this chapter.

• Communication system: This system concerns the onboard communication between

the GNC system and all the sensors (accelerometer, gyroscope, etc.), actuators

(propulsion engines) and other equipment. Besides, if there is a ground station, a

wireless communication with it is considered as well.

• Data collection equipment: Besides the aforementioned components, depending on

the application, the USV is also equipped with a Global Positioning System (GPS),

Inertial measurement units (IMU), radars, sonar, cameras, thermometers, etc.

As mentioned before, the GNC system is responsible for guaranteeing the autonomy

of USV and it is formed by three subsystems known as guidance, navigation, and control

illustrated in Figure 2.2. These subsystems exchange information and work with each

other to execute the desired motion despite possible environmental forces, which are

considered as disturbances for the control subsystem [53].

• Guidance system: it is based on an algorithm that calculates the best reference

trajectory for the control system to follow or track, taking into account the goal of

the mission, the data from the control system (control values sent to the actuators),

and the data available from the navigation system, such as the vessel’s current

position and velocity, weather conditions (velocity and direction of the wind, current,

wave motion). Once the guidance system has computed the reference trajectory or

the next desired position, it will transmit it to the control system.
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Figure 2.2: GNC system.

• Navigation system: it is responsible for providing to the control and the guid-

ance subsystems all necessary information about the vessel’s state, such as position,

heading angle, velocities, accelerations, and the external environmental conditions

as previously mentioned. In order to provide these values, two options are possible.

The first one is to collect all these data by processing the information from all USV’s

available sensors, which were described in the data collection equipment. The sec-

ond option would be to estimate not only the states but also the disturbances by

developing a state estimator.

• Control system: it provides the suitable forces and moments, which will be applied

to the vessel’s actuators to achieve the goal set by the guidance system while it

counteracts environmental disturbances. Therefore, the control system needs to

receive information from the guidance system to have the reference that needs to

be followed or tracked. And it also needs the data from the navigation system to

be able to calculate the control values according to the vessel’s current state and

external conditions that could take the vessel away from its reference.
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2.2 Main Contributions

This thesis work presents the development of two nonlinear control algorithms based on

the backstepping technique and the nonlinear model predictive control (NMPC) with

the main goal of solving the trajectory tracking problem for slow maneuvers such as

docking. In addition, an identification process for the unknown parameters of the real-

scaled fully-actuated surface vessel Solgenia, illustrated in Figure 2.1, was carried out

to obtain beforehand a reliable vessel model, which was used for the controller’s design.

Furthermore, the controller’s performance was assessed not only in simulation but also in

real-time tests using Solgenia. The main contributions of this work are:

• Obtain an accurate dynamic model for the fully-actuated vessel from Figure 2.1

through the identification not only of the unknown hydrodynamic parameters, but

also the unknown parameters from the propulsion system that is considered as part

of the dynamic model. This identification process is based on solving an optimization

problem using experimental data and then performing a quality analysis to achieve

a non-overparametrized model.

• Develop solutions for the trajectory tracking problem by designing nonlinear control

laws through two different approaches: the backstepping technique and the nonlin-

ear model predictive control (NMPC). Both of these controllers have taken into

account the thruster allocation problem and disturbances, such as wind, current,

and unmodeled effects. Furthermore, a multivariable integral action was added to

the vessel’s dynamic model to increase the accuracy of the controllers’ performance.

Besides that, the NMPC has also considered the thrusters’ constraints for the min-

imization of the difference between the time-varying reference trajectory and the

current state values over a finite prediction horizon in a receding-horizon sense.

• Evaluate the controllers’ performance and robustness in simulation by analyzing

the different impacts of the design parameters variation, constraints tightening, the



Introduction 18

compensation of the disturbances, and uncertainties in the vessel’s dynamic model.

Furthermore, as in the literature there is a lack of experimental results using both

backstepping and NMPC for real-scaled USV, they are running in real-time and their

performances were also assessed using a docking maneuver as a reference trajectory

in experimental tests carried out using Solgenia at the Rhine river in Constance, and

the comparison between the simulated and experimental outcomes was investigated.

The following contributions were produced as part of the thesis

L. M. Kinjo, T. Menard, S. Wirtensohn, O. Gehan and J. Reuter (2022) "Backstepping

Control of a Fully-actuated Surface Vessel for Tracking a Docking Maneuver," Accepted
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2.3 Outline

The following chapters are organized as follows:

Chapter 2 presents the definition of the vessel’s motion variables followed by a review

of the recent outcomes in the vessel motion control field for USV with emphasis on solving

the trajectory tracking problem. After that, a more detailed review of backstepping and

model predictive control (MPC) is presented.

Chapter 3 provides the physical equations of the dynamic model of a surface vessel,

as well as, the assumptions and simplifications used to obtain a model suitable to be

employed in the controller. As the thruster allocation problem is considered, an overview

of the propulsion system is also given. Furthermore, details about the identification

process and its outcomes are presented.

Chapter 4 details the design of the backstepping controller and nonlinear model pre-

dictive control to solve the trajectory tracking problem considering an extended control

model, where a multivariable integral action was included, besides the disturbances, and

the thrusters’ constraints for the NMPC. Furthermore, the evaluation of these controllers

in simulation is also presented in this chapter.

Chapter 5 provides the experimental results of the tracking problem using the back-

stepping controller and the NMPC controller, whose performance is evaluated by com-

paring practical results of docking maneuvers performed by Solgenia at the Rhine river

in Constance (Germany).

Chapter 6 presents the conclusion of this thesis and the remaining open questions, and

the perspectives for future work.
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Chapter 3

State of the art

The research on vessel motion control has increased in the last decades to develop solutions

for motion problems such as dynamic positioning [5, 74, 85, 86], path following [7, 28,

58, 70], and trajectory tracking, the latter being the main focus of this state of the art

review. In this chapter, the nomenclature of the vessel’s motion variables according to

SNAME [83] is given in Section 3.1. Then, a general state-of-the-art review of USV’s

motion control for trajectory tracking is given in Section 3.2. A brief introduction to

backstepping is given in Section 3.3, followed by the state of the art of trajectory tracking

for USV applying backstepping control. In Section 3.4, a brief history of MPC is provided,

as well as a review of the MPC’s stability and, the state of the art for USV’s motion control

using MPC is presented.

3.1 Definition of USV’s motion variables

Vessels experience motion in 6 degrees of freedom as illustrated in Figure 3.1, i.e. six

independent motion variables are needed to represent the position and orientation of the

vessel. The position and the motion in the horizontal plane are expressed by three coor-

dinates considered here as variables: surge (longitudinal motion along the x-axis), sway

(sideways motion along the y-axis) and yaw (rotation about the z-axis). The remaining

21
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variables correspond to the orientation and the rotational motion: roll (rotation about the

x-axis), pitch (rotation about the y-axis) and heave (vertical motion about the z-axis) [34].

The names for the motion variables and the notation used to represent these variables are

summarized in Table 3.1.

Figure 3.1: Representation of the motion variables. Figure from [34].

DOF Forces
and mo-
ments

Linear
and an-
gular
velocities

Positions
and Euler
angles

motions in the x-direction (surge) X u x
motions in the y-direction (sway) Y v y
motions in the z-direction (heave) Z w z
rotation about the x-axis (roll,
heel)

K p ϕ

rotation about the y-axis (pitch,
trim)

M q θ

rotation about the z-axis (yaw) N r ψ

Table 3.1: The SNAME notations for marine vessels. [34]
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3.2 Literature review of motion control for USV

Many studies have proposed several designs for the controller to achieve autonomous tra-

jectory tracking for USV. In [13], a sliding mode controller (SMC) is developed for a

3-DOF fully-actuated surface vessel to track the position and heading angle, having its

performance evaluated only in simulation. On the other hand, in [6], the same technique

was implemented to develop a controller using two sliding surfaces to track not only the

position but also the surge and sway velocities for an underactuated vessel. This controller

was tested in an indoor pool using a small vessel, where the position and orientation were

measured based on the images captured by a camera, then the control values were cal-

culated at the ground station and sent back to the vessel via wireless communication.

In [27], the trajectory tracking problem is addressed as well for an underactuated vessel

using a control point different from the center of gravity (CG). Besides, a sliding mode

control law was developed to track the vessel’s position and orientation, being robust to

uncertainties and disturbances. Outdoor tests were carried out using a small trimaran

vessel successfully tracking an eight-shaped trajectory, which was designed to avoid pos-

sible actuator saturation since their constraints were not considered in the controller’s

development.

Adaptive controllers were widely implemented to achieve robustness to uncertainties of

the vessel’s dynamic model. In [62], an adaptive controller is proposed for an underactu-

ated surface vessel, where a neural network was used to approximate some characteristics

of the vessel’s dynamic model. Besides, a hierarchical sliding mode control was imple-

mented with a two-first-level sliding surface for calculating the yaw moment and a common

SMC for calculating the surge force. In [93], the tracking problem was solved using an

adaptive controller based on an optimized backstepping, where a reinforcement learn-

ing (RL) algorithm in an actor-critic structure was executed at every backstepping step,

guaranteeing that the virtual controls, as well as the actual controls, were all optimized

solutions of their correspondent subsystems.
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Besides the aforementioned control techniques, other methods were also considered,

as in [11], where a tracking control scheme was derived from a double integrator system

for an underactuated USV. Instead of considering the CG as the output point of the

system, another point on the body-fixed frame was chosen in a way that the obtained

nonlinear controller was more straightforward than the traditional backstepping approach.

Then, experimental tests using a small vessel were conducted to assess the controller’s

performance. In [80], the underactuated vessel’s dynamic model was reformulated as

a system of linear equations and the control values were obtained by finding the exact

solution for these equations, considering the reference as the next state values. This

controller was analyzed in simulation with and without external disturbances.

Although all the aforementioned researches have contributed with many important

outcomes to solve the trajectory tracking problem for USV, their major drawback is the

fact that neither input nor state constraints were explicitly taken into account in the

controller’s design, which could cause faulty control performance and deterioration or

damages on the USV’s propellers in experimental scenarios.

3.3 Literature review of Backstepping control

3.3.1 Introduction

Backstepping is a well-established technique in the control field, which main idea is to

recursively step back within the original system and derive subsystems with a stabilizing

feedback systematically associated with a control Lyapunov function until the actual

control inputs are reached and the control law that will guarantees stability for the original

system is finally constructed [52].

The first concept of integral backstepping appeared implicitly as a design tool in

[10, 84]. Later in [47], it has started to be used as a recursive design technique in order to

overcome the limitations presented in the feedback linearization, allowing the exploration
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of the system’s nonlinearities [35]. Furthermore, the backstepping technique has been

largely employed in the adaptive control field, being called adaptive backstepping, and it

is a powerful method to achieve stability for classes of nonlinear systems with uncertain-

ties [50]. Finally, the so-called robust backstepping achieves stability in the presence of

disturbances and is often combined with the adaptive method [4, 104].

3.3.2 Backstepping control for USV

The backstepping controller became an important control technique for USV due to its

flexibility in considering the nonlinearities of the vessel’s model. Hence, this method has

been applied in different motion problems such as dynamic positioning [24, 35, 86, 97],

path following [58, 59, 102, 103] and trajectory tracking. The first implementation of

a backstepping controller for solving the tracking problem of an underactuated surface

vessel was done in [40], where an assumption of non-zero surge velocity was made and an

optimal reference trajectory was calculated using splines. Later, in [87], an extension of the

previous work is done by considering the actuator’s forces not only in surge direction, but

also in sway and yaw directions, and these generalized forces were used in the backstepping

design, showing its ability to track a limited range of trajectories.

In [99], a robust controller was designed for a fully-actuated surface vessel to track

its pose under the presence of time-variant disturbances. In order to achieve that, an

observer was developed to estimate, and then compensate for the uncertainties caused

by the disturbances, then this observer was used in the vectorial backstepping technique

to conceive the controller, which was able to track an arbitrary reference trajectory in

simulation. In the same way, a non-singular backstepping controller considering external

disturbances was developed in [20]. A disturbance observer was conceived to estimate

the unknown disturbances in finite time, which was taken into account by the design

of the backstepping controller. Besides, the first-order Levant differentiator was used to

calculate the derivatives of the virtual controls avoiding the singular phenomenon. In

[39], the underactuated vessel’s model is transformed to be represented in a cascade form
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and a discontinuous backstepping was employed via partial state feedback to solve the

tracking problem ensuring a globally uniformly asymptotically convergence to the refer-

ence trajectory. In [21], the tracking problem was solved for an underactuated USV by

developing a nonlinear backstepping controller, which was conceived under the assump-

tion that the persistent exciting (PE) condition of the yaw velocity was relaxed, and an

integral action was incorporated into the controller to enhance its performance. In [30],

a comparison between the performance of a backstepping controller and a sliding mode

controller was made for an underactuated vessel under model uncertainties and distur-

bances. Both of the controllers were developed based on the error dynamics, which were

obtained from the transformation of the six states of the vessel’s dynamics. Experimental

and simulation results showed that both of them were robust regarding the compensation

of uncertainties and disturbances, and the SMC had a smoother performance compared

to the backstepping controller.

3.4 Literature review of Model Predictive Control

3.4.1 Introduction

In the last decades, model predictive control (MPC), also known as receding horizon

control or moving horizon control, has experienced exponential growth in industry and

in the academic field due to its ability to handle constraints directly for multivariable

systems in the optimal control problem formulation [67]. Some of the core MPC’s elements

started to appear in the 50s, with projects developed by oil and chemical industries, with

the concept of calculating the optimal process settings based on the current data obtained

from it [56]. Later in the 60s and the 70s, even though the technology available was limited

in terms of processing power and storage capacity, the first concepts of MPC started to

be explored and take the shape as it is known today [43], [55].

With the advent of more affordable and powerful microprocessors in the 80s, MPC
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gained more interest and it was implemented using different approaches such as model

heuristic predictive control (MHPC) [77] and dynamic matrix control (DMC) [19], which

were focused on solving multivariable constrained problems, while the generalized pre-

dictive control (GPC), developed by the adaptive control community, has helped the

self-tuning process of the regulators [16], [17].

MPC gained more space in the industry over the years being employed in different

applications mainly for the petrochemical, automotive, chemicals, aerospace sectors as

reviewed in [75]. Furthermore, with the advance of technology, diversification of MPC

has emerged such as the nonlinear MPC [41], stochastic MPC [68], Economic MPC [25],

and so forth. This excitement of the industry was followed by the academia that not

only established a solid foundation for the MPC algorithm but also provided theoretical

stability proofs.

3.4.2 Stability of Model Predictive Control

Achieving stability for MPC usually requires the use of two ingredients in the optimal

control problem formulation: terminal constraints and a terminal cost function [66]. The

first stability results for linear and nonlinear systems employed a terminal equality state

constraint at the origin [14, 48, 54, 65]. However, imposing such a constraint may lead

to numerical problems, since it is hard to satisfy it, and the performance would also

be affected. Therefore, other techniques were explored such as the dual-mode approach

applied to nonlinear systems, in which MPC drives the state into the terminal constraint

set where a local stabilizing controller is used [69].

Besides the terminal constraints, the terminal cost plays an important role to guarantee

stability as it was first demonstrated in [8, 76] for linear systems. In [45], the terminal

cost was chosen as a control Lyapunov function that provides an upper bound on the

cost-to-go, keeping the stability properties without the use of terminal constraints for

non-linear systems. In [60], the domain of attraction of MPC is determined without

terminal constraints and stability is achieved by using this domain of attraction and the
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terminal cost function.

In addition to the aforementioned approaches, most of the stabilizing MPC schemes

employ both a terminal cost function and terminal constraints, as in [12], where a terminal

inequality constraint is used to steer the states towards the terminal region at the end

of the prediction horizon, and it is defined offline together with the quadratic terminal

cost by finding a Lyapunov function for the linearized stabilizable system. In [32], the

terminal region and the terminal cost are defined to satisfy the stability conditions that

depend on the choice of the MPC design parameters.

3.4.3 Model Predictive Control for USV

Model predictive control (MPC) has been largely employed in the vessel motion control

field, since it can overcome the shortcomings of other techniques, by handling state and

input constraints directly in the optimal control problem (OPC) formulation. As the

other control methods, MPC was used to solve different motion problems such as dynamic

positioning [46, 57, 89], path following [2, 18, 38, 72, 79, 100], and trajectory tracking,

which is thoroughly reviewed in this section. The trajectory tracking problem for USV was

addressed in [101] through a comparison between the nonlinear MPC (NMPC), which has

directly used the nonlinear dynamic model of a vessel and solved a constrained nonlinear

optimization problem, and the linear MPC (LMPC), where the vessel’s dynamic model

was linearized, and a quadratic problem was solved at each time step. From the simulation

results, it was shown that NMPC was costly in computation time but more accurate

than the LMPC. In [42], an MPC controller was proposed for the tracking problem,

where different linearization methods were employed to obtain a quadratic programming

problem for the OCP. Moreover, the thruster allocation (TA) problem, which determines

the force and the direction of each thruster of the vessel, was also considered with the

goal of minimizing power consumption and rotation of the rotatable thrusters.

A neurodynamics-based MPC approach presented in [98] was implemented to solve the

trajectory tracking problem of an underactuated vessel. In the case where the disturbances
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were not considered, the OCP was solved by a one-layer recurrent neural network. Later,

in order to take account of the disturbances, the controller was reformulated and the

OCP was solved with a two-layer neural network since the one-layer structure could not

handle nonlinear inequality constraint. NMPC was also implemented in [61] to solve a

tracking problem for an underactuated vessel considering state, input, and input variation

constraints in the nonlinear OPC. The performance of this controller was evaluated with

and without environmental disturbances.

In the same way, in [3] the tracking problem of an underactuated USV was addressed

using an NMPC controller taking into account input constraints. The OCP was solved

using ACADO toolkit and qpOASES solver to evaluate its performance in real time.

Later, in [1], the NMPC controller was adapted to include collision avoidance constraints,

respecting the International Regulations for Preventing Collisions at Sea (COLREGS)

rules, and the disturbances were estimated using a moving horizon estimation (MHE)

algorithm. In [64], the tracking problem combined with collision avoidance was addressed

where a constrained MPC controller is designed using the flatness-based direct method

to plan and track a reference trajectory avoiding obstacles. A full actuation is assumed

to obtain the differential flatness model of the vessel and then constraints are applied to

represent the underactuated case. The same maneuvering control problem is treated in

[51] for an over-actuated river ferry, where a constrained NMPC controller using a direct

multiple shooting method was proposed to track a reference trajectory avoiding elliptical

obstacles and counteracting disturbances, which were estimated via an extended Kalman

filter (EKF). Furthermore, the controller was tested in a hardware-in-a-loop (HIL) test

bench to obtain more realistic results.

The NMPC was also employed in [90] for an autonomous over-actuated robotic boat.

First, the dynamic model of the robotic boat was identified through a nonlinear least

square method, then an NMPC controller was formulated to solve the tracking problem

considering input constraints. This controller was tested and validated in simulation and

in indoor and outdoor experimental scenarios. After that, in [91], an NMPC controller
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with state and input constraints was implemented for a large-scaled over-actuated robotic

boat to track a given reference trajectory. Furthermore, a nonlinear moving horizon esti-

mation (NMHE) algorithm was employed to estimate the state values for the controller. In

order to deal with payload changes for a robotic boat, an adaptive NMPC was proposed in

[92], where the real-time payload value was estimated through a pressure sensing method,

then, this value was updated online in the parametric cost function. The controller was

validated in simulation and in experimental tests in an indoor pool.

3.5 Conclusion

In this chapter, the state-of-the-art on motion control addressing the trajectory tracking

problem for USVs was provided. First, the nomenclature of the vessel’s motion variables

was detailed. Then, the general research using different control methods to solve the

tracking problem was presented. A particular emphasis was placed on the backstepping

method since a control law can be built with the help of a control Lyapunov function to

guarantee the stability of the system. This characteristic of the backstepping combined

with its consolidated application on the motion control area for USV has encouraged its

application in this work as well, in which a backstepping controller was conceived with a

local exponential stability proof.

Another important control technique highlighted in this chapter was the NMPC due

to its ability to handle input and state constraints directly. The aforementioned works,

presented in this chapter, have remarkable results and important contributions. Never-

theless, most of them neither take into account the thruster allocation problem nor test

or validate the controller experimentally using a real-scaled vessel, which are topics that

have been developed in this work. Furthermore, in order to guarantee NMPC’s stability,

the control Lyapunov function associated with the backstepping controller was used as a

constraint of the OPC formulation.
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Modeling and Parameter Identification

A model that accurately describes a maneuvering vessel is essential for achieving efficient

motion control. Since it is laborious to consider a dynamic model in 6-DOF to design the

controller, some assumptions and simplifications are made in order to derive a suitable

model for the controller that still provides a precise representation of the vessel’s dynamics.

Furthermore, the precision of the model will depend on applying an efficient parameter

identification method.

In this chapter, the definitions of the reference frames are given in Section 4.1, followed

by an introduction to the 3-DOF model of a vessel composed by the kinematic and kinetic

equations in Section 4.2. Then, the dynamic model considered for the fully-actuated

vessel Solgenia is detailed in Section 4.3 and, finally, the identification of the unknown

parameters of Solgenia’s model is presented in Section 4.4.

4.1 Reference frames

In general, to investigate the motion of a vessel in 6-DOF, two Earth-centered coordinate

frames, and two geographical reference frames can be defined as detailed below:

• ECI: The Earth-centered inertial frame {i} = (xi, yi, zi) is an inertial reference

frame where its origin oi is located at the Earth’s center, and it is commonly used
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by inertial navigation systems [34].

• ECEF: The Earth-centered Earth-fixed reference frame {e} = (xe, ye, ze) has its

origin oe fixed to the center of the Earth and its axes rotate with the angular speed

of the Earth relative to the inertial frame ECI, which is fixed in space. For vessels

moving with relatively low speed, the rotation of the Earth can be neglected and

the {e} frame can be considered as an inertial frame [34].

• NED: The North-East-Down coordinate system {n} = (xn, yn, zn) is also known as

a local tangent plane, where the origin is chosen as a point at the Earth’s surface

below the center of gravity of the vessel. For this system, the x-axis points to the

true north, the y-axis points towards the east and the z-axis points downwards

normal to the surface of Earth. The location of {n} relative to {e} is determined

by using two angles, the latitude and the longitude. Furthermore, when the vessel

is not accelerating, the longitude and latitude are almost constant and hence the

NED frame is considered as an inertial frame and it can be used for navigation [34].

• BODY: The body-fixed reference frame {b} = (xb, yb, zb) has its origin ob fixed

on the vessel, therefore it is a moving coordinate frame. While the vessel’s pose

is usually expressed relative to the inertial reference frame, the linear and angular

velocities are described using the body-fixed frame. The origin ob is normally chosen

to coincide with a point midships in the water line called CO [34]. The body axes

are chosen to coincide with the principal axes of inertia of the vessel, and they are

usually defined as:

– xb: longitudinal axis (directed from the back (aft) to the front (fore) of the

vessel);

– yb: transversal axis (directed to starboard);

– zb: normal axis (directed from top to bottom).
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4.2 3-DOF Maneuvering Model of USV

In the USV control field, considering a 6-DOF vessel’s model to design a controller is

a complex task. Therefore the model of the vessel can be simplified to a 3-DOF model

assuming that, for a horizontal plane motion of a USV, pitch, roll and heave are negligible

ϕ = θ = z ≈ 0 [34].

4.2.1 Rigid-body Kinematics

The rigid-body kinematics describes the motion of an object without taking into account

the forces that are causing the movement, i.e. it is a study of the geometrical aspects of

the motion. For a USV, the kinematic expression (4.1) describes the relationship between

the velocities in the body-fixed frame and in the NED frame, which can be considered as

an inertial frame since the vessel moves at a relatively low speed.

η̇ = R(ψ)ν (4.1)

where η = [ x, y, ψ]T represents the position and orientation of the vessel in the NED

frame, ν = [ u, v, r]T represents the vessel’s velocities in the body-fixed frame and

R(ψ) =


cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (4.2)

The rotation matrix R(ψ) given by (4.2) represents the rotation about the z-axis in the

NED frame by the angle ψ, and it is an orthogonal matrix, i.e. R(ψ)−1 = R(ψ)T →

R(ψ)TR(ψ) = I, and ∥R(ψ)∥ = 1.
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4.2.2 Rigid-body Kinetics

The kinetics of rigid-body studies the movement of a body caused by the forces acting on

it. The USV’s equation of motion is obtained in the body-fixed frame where its origin ob

is commonly located at the center-line of midships and it has a distance of xg from the

center of gravity, where the forces are applied.

Based on Newton’s second law, the vector equation describing the 3-DOF vessel’s

horizontal motion is given by [34]:

MRBν̇ +CRB(ν)ν = τRB (4.3)

where ν represents the generalized body-fixed velocities, τRB are the generalized external

forces and moments, MRB is the rigid-body mass matrix defined as

MRB =


m 0 0

0 m mxg

0 mxg Iz

 (4.4)

where m is the vessel’s mass, and Iz is the moment of inertia about the zb-axis. Due to

the rotation of the body-fixed frame about the inertial frame, the equation of motion has

the rigid-body Coriolis and centripetal matrix represented by:

CRB(ν) =


0 0 −m(xgr + v)

0 0 mu

m(xgr + v) −mu 0

 (4.5)

The kinematic transformation in (4.1) combined with the kinetics in (4.3) provide the

dynamic model of a vessel without interaction with the water. In order to describe such

interaction, it is necessary to divide the forces and moments represented by τRB into:

τRB = τhyd + τhs + τctrl + τd (4.6)
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where τhyd characterizes the hydrodynamic forces, τhs are the hydrostatic forces, τctrl =

[Xc, Yc, Nc]
T represents the control forces and moments due to the actuators of the vessel

and τd are the environmental forces due to waves, wind and current, being defined as

τd =


Xd

Yd

Nd

 (4.7)

where Xd, Yd are the disturbance force in xb and yb directions respectively and, Nd is the

moment about zb axis.

4.2.3 Hydrodynamic Forces

Traditionally the study of vessel dynamics is covered by two main theories: maneuvering

theory and seakeeping theory. While the maneuvering theory investigates the vessel’s

motion in calm water, the seakeeping theory studies the motion in the presence of wave

excitation while the vessel keeps its course and speed constant. This division of such

similar areas allows for different assumptions [34]. According to the maneuvering theory,

the hydrostatic forces can be neglected for a horizontal motion and the hydrodynamic

forces that represents hydrodynamic effects such as added mass, potential damping, etc

can be expressed as

τhyd = −MAν̇r −CA(νr)νr −D(νr)νr (4.8)

where MA is the added mass matrix, CA(νr) is the Coriolis and Centripetal matrix due

to the added mass, D(νr) is the damping matrix and νr is the relative velocity between

the hull and the fluid, and it is given by:

νr := ν − νc = [ur vr r]
T (4.9)
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where νc represents the fluid velocity vector in the body-fixed frame, which was obtained

from the earth-fixed velocity vc = R(ψ)νc. Assuming a non-rotational fluid with a con-

stant magnitude Vc and angle βc, the fluid velocity in the earth-fixed coordinates is given

by:

vc =


Vc cos(βc)

Vc sin(βc)

0

 (4.10)

Furthermore, the added mass matrix MA can be represented as

MA =


−Xu̇ 0 0

0 −Yv̇ −Yṙ

0 −Nv̇ −Nṙ

 (4.11)

The elements of this matrix are called hydrodynamic derivatives and they are represented

using the SNAME’s notation, for instance, the hydrodynamic force Y along the y-axis

due to an acceleration ṙ in the z-direction is given by [34]:

Y = Yṙṙ, Yṙ =
∂Y

∂ṙ
(4.12)

The Coriolis and centripetal added mass matrix CA(νr) is obtained using the property

6.2 in [34], and for a surface vessel it is given by:

CA(νr) =


0 0 Yv̇vr + Yṙr

0 0 −Xu̇ur

−Yv̇vr − Yṙr Xu̇ur 0

 (4.13)

The damping matrix D(νr) sums up all the hydrodynamic damping effects, which can be

divided into linear and quadratic damping:

D(νr) = D +Dn(νr) (4.14)
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where

D =


−Xu 0 0

0 −Yv −Yr

0 −Nv −Nr

 (4.15)

is the linear damping matrix composed of linear hydrodynamic damping terms Xu, Yv, Nr

in xb, yb, zb directions respectively, and coupling parameters of linear hydrodynamic damp-

ing (Yv, Nv). The nonlinear damping Dn(νr) can be expressed using second-order mod-

ulus functions first introduced in [29], [71].

Dn(νr) =


−X|u|u|ur| 0 0

0 −Y|v|v|vr| − Y|r|v|r| −Y|v|r|vr| − Y|r|r|r|

0 −N|v|v|vr| −N|r|v|r| −N|v|r|vr| −N|r|r|r|

 (4.16)

where X|u|u, Y|v|v, N|r|r are the quadratic damping in xb, yb, zb directions respectively, and

Y|r|v, Y|v|r, Y|r|r, N|v|v, N|r|v, N|v|r are the coupling parameters of the quadratic hydrody-

namic damping. Since it is complicated to separate the added mass Coriolis and cen-

tripetal terms in CA(νr) from the damping terms in D(νr), these two terms can be

combined resulting in the matrix N (νr):

N (νr) = CA(νr) +D(νr) (4.17)

Replacing the hydrodynamic forces and moments (4.8) into the kinetics expression

(4.3) and considering that for a horizontal motion τhs = 0, the equation of movement for

an USV is given by

MRBν̇ +MAν̇r +CRB(ν)ν +N(νr)νr = τctrl + τd (4.18)
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4.3 Solgenia’s maneuvering model

The 3-DOF maneuvering model of Solgenia can be derived from (4.1) and (4.18). Here,

the current effects will be taken into account in τd as an external disturbance force.

Therefore, νc = 0 and ν̇c = 0, resulting in the following expressions:

η̇ = R(ψ)ν (4.19)

Mν̇ +CRB(ν)ν +N (ν)ν = τctrl + τd (4.20)

From (4.20) the mass matrix M = MRB +MA is defined as

M =


m−Xu̇ 0 0

0 m− Yv̇ mxg − Yṙ

0 mxg −Nv̇ Jcomb

 (4.21)

where Jcomb = Iz − Nṙ combines the moment of inertia of the rigid body and the added

mass effects. Moreover, the term CRB(ν)ν can be manipulated as follows:

CRB(ν)ν =


0 0 −m(xgr + v)

0 0 mu

m(xgr + v) −mu 0



u

v

r

 =


−mr(xgr + v)

mur

mu(xgr + v)−muv

 (4.22)

From the final representation of the term CRB(ν)ν above, the Coriolis and centripetal

matrix CRB(ν) given by (4.5) can be rewritten to depend only on the rotational velocity

r:

CRB(ν)ν =


−mr(xgr + v)

mur

mxgr

 =


0 −mr −mxgr

mr 0 0

mxgr 0 0



u

v

r

 (4.23)
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Furthermore, in the case of Solgenia, the damping matrix N (ν) is formed only by the

linear damping terms since they were considered sufficient to represent the damping and

the added mass effects for slow maneuvers such as docking. Hence, it is given by:

N (ν) = D = −


Xu 0 0

0 Yv Yr

0 Nv Nr

 (4.24)

The action of external disturbance forces on Solgenia is represented by the vector τd, while

the input vector τctrl corresponds to the forces and moments produced by the Solgenia’s

propulsion system, which is composed of a 360° rotatable azimuth thruster in the back

and a bow thruster in the front as illustrated in Figure 4.1.

Figure 4.1: Structure of the real-scaled surface vessel Solgenia.

4.3.1 Propulsion System

According to [95], the thrust force F of a propeller can be expressed by
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F = KTρd
4
pn|n| (4.25)

where n is the rotational speed of the thruster, dp is the propeller’s diameter, ρ is the

water density, and KT is the non-dimensional thrust coefficient, which depends on the

advance ratio J given by

J =
ua
ndp

(4.26)

where ua is the relative speed of the propeller in the axial direction. The relationship in

(4.26) is usually highly nonlinear and it is determined by open water tests. Based on a

typical propeller open water diagram, an almost linear relationship between KT and J

can be assumed with the condition that n and ua have the same sign. Hence, a simplified

expression including non-dimensional parameters p1 and p2 can be obtained [9].

KT = p1 − p2J (4.27)

Replacing (4.26) and (4.27) into (4.25) yields

F = p1ρd
4
pn|n| − p2ρd

3
pua|n| (4.28)

The parameters p1 and p2 can have different values depending on the sign of n and ua,

which in turn, depends on the maneuvers performed by the vessel. Hence, a four-quadrant

model illustrated in Figure 4.2 is determined as

p1
p2

 =



(
a1 b1

)T
n ≥ 0 ∧ ua ≥ 0(

a1 0

)T
n ≥ 0 ∧ ua < 0(

a2 0

)T
n < 0 ∧ ua ≥ 0(

a2 b2

)T
n < 0 ∧ ua < 0

(4.29)
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Figure 4.2: Simplified four quadrant model.

This four quadrant model contains the parameters a1, a2, b1 and b2 that were identified

together with the unknown hydrodynamic parameters of the maneuvering model and the

details about the identification process are given in Section 4.4. The thrust force due to

the azimuth thruster FAT is given directly by (4.28) with n = nAT and the axial velocity

ua is calculated based on the body-fixed velocities:

ua = ucos(α) + (v − rLAT )sin(α) (4.30)

where α is the angle of the azimuth thruster and LAT is the distance of the azimuth

thruster to the origin of the body-fixed frame.

The bow thruster force takes into account the effectiveness of the transverse propulsion

by including an exponential term [73] into the thrust force expression defined in [9],

resulting in the following equation:

FBT = p3ρd
4
pnBT |nBT |e−cbu

2

(4.31)

where cb is a non-dimensional parameter, u is the surge velocity and the axial velocity ua

is neglected due to its small value. Hence, the four-quadrant model can be simplified and

the value of the constant p3 will be defined according to the value of the bow thruster’s
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speed nBT .

p3 =


c1 nBT ≥ 0

c2 nBT < 0

(4.32)

where c1, c2 and cb are unknown non-dimensional parameters that were identified in

Section 4.4. Using the geometric relations shown in Figure 4.1 the forces and torques

provided by the actuators are given by

τctrl =


FAT cos(α)

FAT sin(α) + FBT

FBTLBT − FAT sin(α)LAT

 (4.33)

where LBT corresponds to the distance from the origin of the body-fixed frame to the

position of the bow thruster. In order to achieve the desired set of forces and moments, it is

necessary to choose appropriate velocities for the thrusters (nAT , nBT ), as well as a suitable

azimuth thruster angle α. These choices are constrained by the physical conditions of the

thrusters given by:

nATMin ≤ nAT ≤ nATMax

nBTMin ≤ nBT ≤ nBTMax

|α̇| ≤ α̇Max

ṅATMin ≤ ṅAT ≤ ṅATMax

(4.34)

where nATMax, nATMin, ṅATMax, ṅATMin, nBTMax, nBTMin, and α̇Max, denote the upper and

lower bounds for azimuth thruster’s velocity and acceleration, bow thruster’s velocity, and

azimuth thruster’s panning rate respectively.
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4.4 Parameter identification

The model of Solgenia presented in Section 4.3 possesses unknown parameters related to

the dynamic model, which are (m,xg, Xu̇, Yv̇, Nv̇, Yṙ, Jcomb, Xu, Yv, Nv, Yr, Nr), and also un-

known parameters related to the formulation of the thrusters’ forces, which are (a1, a2, b1,

b2, c1, c2, cb). The vessel’s mass m was measured, xg is considered to be zero and it is

assumed that −Xu̇ ≈ 0.05 ·m for a surface vessel [33]. Hence, there are 14 parameters to

be identified.

4.4.1 Identification Method

In order to obtain the values of the aforementioned unknown parameters, the parameter

identification algorithm developed in [95] was applied. This method is based on exper-

imental data, obtained from maneuvers performed by Solgenia, not only to estimate all

the unknown parameters concurrently but also to validate the identified model.

The identification process consists of solving an optimization problem, which goal is

to minimize the difference between the measured values of the body-fixed velocities and

the simulated ones, obtained by numerically integrating the model using the estimated

values of the unknown parameters. A hybrid approach that combines the particle swarm

optimization and methods provided by Matlab such as the fmincon command was chosen

as the solver for this problem.

Once all the parameters are estimated using the whole sets of experimental data, they

are associated with the eigenvalues and eigenvectors of the Fisher information matrix to

perform a quality analysis, which evaluates the standard deviation and the correlation ma-

trix of the parameters to verify if some of them could be eliminated from the model. It is

important to highlight that the parameters in the set θ = (Yv̇, Nv̇, Yṙ, Jcomb, Xu, Yv, Nr, a1,

a2, c1, c2) could never be eliminated since they are essential to represent the vessel’s dy-

namics.

At each round of identification, the identified parameters are evaluated to verify if they
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can be eliminated from the model. This evaluation starts by choosing the parameter with

the biggest standard deviation, which needs to fulfill two conditions to be eliminated. The

first condition is that this parameter should not belong to the set of essential parameters

θ and the second condition is that its standard deviation should be greater than an upper

bound γr. If both of these conditions are met, then the elimination of this parameter is

executed. After that, the identification process starts again and the remaining parameters

are re-identified. The upper bound γr is chosen to establish a threshold between the

parameters that affect the sensitivity of the output (body-fixed velocities generated by the

identified model), and the ones that do not have an impact on it. Choosing a high value for

γr means that parameters that only marginally impact the dynamics of the vessel would

be considered, leading to a possible over-parameterized model. Conversely, a low value

for γr would restrict the model to essential parameters that have an important impact on

the output, which could lead to a limited representation of the vessel’s dynamics.

When all the parameters’ standard deviation are below γr, then the correlation matrix

is analyzed. In the same way as the standard deviation evaluation, the parameter with the

highest correlation coefficient is chosen, then two conditions are assessed: this parameter

should not belong to the set θ, and its correlation coefficient should be below the corre-

lation upper bound γc. Choosing a high value for γc means that parameters with high

correlation, i.e. that can compensate each other, are included into the model providing an

over-parameterized model. On the other hand, choosing a low value for γc would result in

a model with independent parameters, which could provide a poor representation of the

vessel’s dynamics [95]. If these conditions are fulfilled, then the parameter is eliminated.

Once again, the identification process restarts, re-identifying the remaining parameters.

The final model is obtained when all the parameters left have their standard deviation

and correlation coefficients below the upper bounds γr and γc. These upper bounds are

design parameters of the identification algorithm and they are chosen heuristically. For a

better understanding, the flowchart of the identification process described above can be

found in Appendix A.
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After the identification process is completed, a validation of the identified model takes

place, calculating the root mean square error (RMSE) values between the experimental

body-fixed velocities and the ones obtained from the simulated model using the identified

parameters. Furthermore, it is important to note that the experimental data used in the

identification process were different from the ones used during the validation phase.

4.4.2 Simulation Results

In order to identify the unknown parameters presented in Section 4.4, the first step

was to collect experimental data from different maneuvers performed by Solgenia at the

Rhine river in Constance (Germany). Solgenia is an 8 meters fully-actuated surface ves-

sel equipped with 3-axis automotive inertial measurement unit (IMU) and two antenna

Trimble (BX982) RTK-GPS system with 0.1m position accuracy and 0.1° accuracy for

the yaw angle.

The data collection was done under mild conditions, i.e. the effects of disturbances

(current, waves, and wind) were low and Solgenia carried out slow maneuvers using dif-

ferent configurations of the actuators, docking and undocking maneuvers to acquire a rich

set of experimental data to achieve an accurate parameter identification. Subsequently,

the data sets were smoothed using a Fixed-Point Kalman Smoother as presented in [15]

to reduce the measurement noise. Two categories of data were chosen, the identification

group, which was composed of 17 data sets, and the validation group, which was com-

posed of other 9 data sets. The data sets were divided into those groups according to the

maneuver that they represented, in a way that, in each group, there is the same variety of

maneuvers. The values obtained from the identification process are shown in Table 4.1.

As it can be observed, the parameters b1, b2 and cb were eliminated during the evaluation

phase as explained in Section 4.4.1. Therefore, the propulsion system can be represented

only using the parameters a1, a2, c1, c2.

Furthermore, the final result of the quality analysis is shown in Figure 4.3, where

one can notice that all the identified parameters have their standard deviation below the
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Table 4.1: Solgenia’s identified parameters.

m 3100kg Xu −86.5 N
m/s

a1 0.9047

xg 0m Yv −796 N
m/s

a2 0.6545

Xu̇ −155kg Nv −958 N
m/s

c1 0.0461

Yv̇ −1070kg Nr −5230 N
m/s

c2 0.0548

Nv̇ −3328kg Yr −896 N
m/s

Yṙ −1008kg
Jcomb 21179kgm2

upper bound γr represented by 15%. It is worth mentioning that, in this identification

method, more than one eigenvector of the Fisher information matrix can be associated

with the same parameter as happens with c1 and Yv̇. However, as these parameters cannot

be eliminated, this particularity of the algorithm has not interfered with the identification

of Solgenia’s model.

Figure 4.3: Standard deviation of the parameters.

Besides that, the correlation matrix displays the correlations of the parameters in

different colors, bright yellow and dark blue are the colors that represent a strong cor-

relation between the respective parameters. It can be seen in Figure 4.4 that there are

some high correlations such as c1/c2 (0.85), a1/a2 (0.84), Nr/c2 (0.81), Nr/c1 (0.81) and

Nv/c1 (0.82). The first two correlations do not impact the model, since these parameters

are used separately as explained in Section 4.3. The other correlations show that it is
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Figure 4.4: Correlation matrix of the parameters.

important to be aware of the correlation between the bow thruster’s parameter and the

linear damping in the zb direction.

The validation phase of the identified model is based on the evaluation of the RMSE

values between the experimentally measured body-fixed velocities and the simulated ones

generated by applying the same measured input values into the model using the identi-

fied parameters. As examples of this validation process, a frontal docking maneuver is

evaluated in Figure 4.5, a backward docking maneuver is illustrated in Figure 4.6, and a

slow sideways maneuver followed by a docking maneuver is depicted in Figure 4.7. For all

of these cases, it can be observed in Table 4.2, that the RMSE values for all body-fixed

velocities are of the order 1 × 10−2m/s, indicating that the identified model is accurate

enough to simulate the real vessel’s dynamics performing slow varying maneuvers.

Table 4.2: RMSE values for the comparison of the body-fixed velocities.

BF-velocities Frontal docking Backward docking Sideways maneuver
u[m/s] 0.0565 0.0543 0.0869
v[m/s] 0.0458 0.0795 0.0368
r[rad/s] 0.0128 0.0239 0.0109

Besides that, it is important to note that, the measurement values of the thrusters’

velocities were obtained in rotations per minute (RPM) and they were transformed in Hz
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(a) Comparison of body-fixed velocities for a frontal docking maneuver.

(b) Input values for a frontal docking maneuver.

Figure 4.5: Validation phase using a frontal docking maneuver.
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(a) Comparison of body-fixed velocities for a backward docking maneuver.

(b) Input values for a backward docking maneuver.

Figure 4.6: Validation phase using a backward docking maneuver.
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(a) Comparison of body-fixed velocities for a sideways and frontal docking maneuver.

(b) Input values for a sideways and frontal docking maneuver.

Figure 4.7: Validation phase using a sideways and frontal docking maneuver.
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on the Figures 4.5, 4.6, and 4.7 by dividing their values by 60.

4.5 Conclusion

In this chapter the maneuvering model of a vessel was presented starting with the common

reference frames and definitions used in the maritime domain, followed by the explana-

tion of a 3-DOF model of the vessel, which was used to derive the dynamic model of the

fully-actuated research vessel Solgenia. Then, this model presented unknown parameters,

which were identified and validated using experimental data collected from maneuvers

performed by Solgenia at the Rhine river in Constance (Germany). Solgenia’s model thus

obtained was used as a control model to design the controllers responsible for addressing

the trajectory tracking problem in the next chapters.



Modeling and Parameter Identification 52



Chapter 5

Nonlinear controllers for trajectory

tracking of an USV

The development of an USV controller needs to respect the imposed control objective

to be able to perform the required maneuvers considering their conditions. In the case

of this work, the control objective is to track a time-varying reference trajectory for the

fully-actuated surface vessel Solgenia, whose dynamic model was presented in Section

4.3. This chapter is divided into three main parts. In Section 5.1, the formulation of

the NMPC controller and the assessment of its parameters in simulation are presented.

Then, in Section 5.2, the design of the backstepping control and its respective simulation

results are provided. Finally, in Section 5.3, the control Lyapunov function found by

designing the backstepping controller was used as a contraction constraint in the NMPC

formulation to guarantee stability while solving the trajectory tracking problem.

53
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5.1 Nonlinear model predictive control (NMPC)

5.1.1 Introduction

The core idea of model predictive control is to predict the optimal future behavior of

the system based on its dynamic model and the available state values. The prediction is

obtained by solving an open-loop optimal control problem (OCP), in which the goal is

to minimize the difference between the predicted output and its reference, subject to the

system dynamics and, possibly, input and state constraints.

Figure 5.1: MPC scheme [94].

For a better understanding, this procedure is illustrated in Figure 5.1. At the current

instant k, the MPC controller receives the available measurements or the estimated values

of the states. Then, using these state values, it solves the OCP online over the prediction

horizon T , and as a result of this process, a sequence of optimal input values is obtained.

Due to disturbances and uncertainties of the dynamic model, the behavior of the system

differs from the predicted one, therefore only the first optimal input value is applied to

the system in a receding horizon sense. In this way, at the next time step k + 1, the

prediction horizon moves forward of one time step and the whole process described above

is repeated [31].
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5.1.2 General NMPC formulation

Considering a nonlinear system with input and state constraints described by the following

model:

ẋ(t) = f(x(t),u(t)) (5.1a)

x(0) = x0 (5.1b)

x(t) ∈ X ⊆ Rn, ∀ t ≥ 0 (5.1c)

u(t) ∈ U ⊆ Rm,∀ t ≥ 0 (5.1d)

where x(t) corresponds to the state vector, u(t) is the input vector, f : Rn × Rm → Rn

is continuous, U is the feasible set of the inputs and X is the feasible set of the states. A

straightforward representation of U and X is given by box constraints as follows

U := {u ∈ Rm|umin ≤ u ≤ umax} (5.2a)

X := {x ∈ Rn|xmin ≤ x ≤ xmax} (5.2b)

where umin,umax,xmin,xmax are constant vectors. The finite horizon open-loop optimal

control problem that drives the states of the system to the desired reference can be

formulated as follows:

min
u(·,t)

J(xt,u) = min
u(·,t)

∫ t+T

t

L(x(δ)),u(δ)))dδ +W (x(t+ T ))) (5.3)
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subject to

ẋ(δ) = f(x(δ),u(δ)) (5.4a)

x(t) = xt (5.4b)

u(δ) ∈ U, ∀ δ ∈ [t, t+ T ] (5.4c)

x(δ) ∈ X,∀ δ ∈ [t, t+ T ] (5.4d)

x(t+ T ) ∈ XT (5.4e)

where u(·, t) corresponds to the vector of optimal inputs u⋆ ∈ U, obtained by minimizing

the cost function, and the length of u(·, t) is defined by the prediction horizon T divided

by a sample time ∆t. W (·) and XT ⊆ X correspond to the terminal cost and the terminal

set respectively and they can be included in the cost function as one way to guarantee

stability as discussed in Chapter 3. L(·, ·) is the stage cost, which is chosen to be zero

when the optimal control inputs are applied to achieve the equilibrium point, and it is

positive elsewhere. Therefore, the stage cost is often chosen to have a standard quadratic

form:

L(x,u) = (x−xd)
TQ(x−xd) + (u−ud)

TR(u−ud) = ∥x−xd∥Q + ∥u−ud∥R (5.5)

where R and Q are positive definite, symmetric, weighting matrices, xd(t) corresponds

to the state reference and ud represents the input reference.

5.1.3 NMPC formulation for trajectory tracking of a surface ves-

sel

In order to design an NMPC controller to solve the trajectory tracking problem for Sol-

genia, an extended control model was considered, where a multivariable integral action is

explicitly introduced as in [37] to increase the controller’s design accuracy, leading to the
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following extended model:

η̇ = R(ψ)ν

ν̇ = M−1(τ (f)−CRB(ν)ν −Nν)

ḟ = µ+ µFF

(5.6)

where f is the vector composed of the physical control variables, i.e. f = [nAT , α, nBT ]
T ,

µ is the virtual input vector, and µFF is the feedforward term composed of the reference

trajectories of the virtual inputs µ.

Considering the extended control model (5.6), the thrusters’ physical constraints (4.34)

and the desired reference trajectories for ηd = [xd, yd, ψd]
T , νd = [ud, vd, rd]

T , and f d =

[nATd, αd, nBTd]
T , that were generated by a virtual version of Solgenia with the same

dynamics presented in Section 4.3, the optimal control problem can be formulated as:

min
µ(·,tk)

J(η,ν,f ,µ) = min
µ(·,tk)

∫ T+tk

tk

∥η − ηd∥
2
Qη

+ ∥ν − νd∥2Qν
+ ∥f − f d∥

2
Rf

+ ∥µ∥2Rµ
dt

(5.7)

subject to

η̇ = R(ψ)ν (5.8a)

ν̇ = M−1(τ (f)−CRB(ν)ν −Nν) (5.8b)

ḟ = µ+ µFF (5.8c)

nATMin ≤ nAT ≤ nATMax (5.8d)

nBTMin ≤ nBT ≤ nBTMax (5.8e)

µMin ≤ µ ≤ µMax (5.8f)

|µcurrent − µprevious| ≤ ∆µMax (5.8g)

where the cost function (5.7) is minimized over a finite prediction horizon T , with respect

to µ subjected to the dynamic model (5.8a), (5.8b), (5.8c), the physical constraints of the
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thrusters (5.8d), (5.8e) and constraints to limit the virtual inputs and its variations (5.8f)

and (5.8g) respectively. Usually, as in [64], there is no established boundary between

the input values from one step of NMPC to another, allowing possible wide variations in

the input values. Hence, the constraint (5.8g) was added to restrain this variation to a

maximum value given by ∆µMax. Qη, Qν , Rf and Rµ are positive definite weighting

matrices that penalize the deviations from the desired trajectories.

Furthermore, the cascade control technique was not applied in this work since the

main goal is to take into account the thrusters’ constraints into the NMPC formulation

to obtain feasible input values. The NMPC controller provides the piece-wise constant

values for accelerations and the panning rate of the thrusters, represented by µ, which are

then integrated resulting on smooth physical inputs that are applied to the vessel, hence

there is no need to parameterize the predictive control laws.

5.1.4 Simulation results

A virtual version of Solgenia was built from the identified dynamic model, presented in

Section 4.3, to generate the reference trajectories to be tracked for the states and inputs.

An evaluation of the performance of the proposed NMPC controller is made in simulation

using the GRAMPC framework [26] and Matlab.

In this case, a curved trajectory was chosen as a reference and it was generated by

applying nAT (t) = 3Hz, nBT (t) = 0Hz and α(t) = 2.4528 × 10−4 rad, where t is the

simulation time sampled with ∆t = 1s. The initial reference conditions used were:

xd(0) = 100m yd(0) = 200m ψd(0) = 0 rad

ud(0) = 0m/s vd(0) = 0m/s rd(0) = 0 rad/s

nAT (0) = 3Hz α(0) = 2.4528× 10−4 rad nBT (0) = 0Hz
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Besides that, a step disturbance was applied on the physical inputs f , being defined as:

δ =


[10, 0, 0]T for t ≥ 800 s

[0, 0, 0]T otherwise
(5.9)

The NMPC parameters, such as the prediction horizon, weighting matrices of the

cost function, together with state and input constraints have an important impact on the

controller’s performance. Hence, each one of these parameters was adjusted individually

in simulation to assess its influence on the NMPC controller. All the following cases

shared the same initial conditions and reference trajectories previously defined.

Prediction Horizon

Its impact on the trajectory tracking performance was studied by simulation results

as shown in Figures 5.2 and 5.3. For these first results, the constraints were inac-

tive and the weighting matrices chosen were: Qη = diag(1 1
m2 , 1

1
m2 , 30

1
rad2

), Qν =

diag(1 s2

m2 , 1
s2

m2 , 1
s2

rad2
), Rf = diag(1 s2, 1 1

rad2
, 1 s2) and Rµ = diag(1 s4, 1 s2

m2 , 1 s
4).

Figure 5.2: Trajectory tracking for different values of prediction horizon.

From Figure 5.2, it can be observed that for long prediction horizons as T = 200 s

or T = 100 s, the tracking performance of the controller was faster and more accurate

than the other ones, converging to the reference in 400 s. For T = 60 s, the trajectory

presents a loop at the beginning, due to the trajectory tracking characteristic, which

makes the controller calculate the closest position possible from the reference at each
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Figure 5.3: Tracking error for different values of the prediction horizon.

given time instant causing the loop maneuver. Besides that, in Figure 5.3, one can notice

that the tracking error increases around 100 s due to the loop, and then it decreases over

time, reaching the value of 0.2117m at the end of the trajectory. The tracking error was

defined as:

etracking =
√
(x− xref )2 + (y − yref )2 (5.10)

In Figure 5.3, one can also notice that for T = 30 s, the controller can not reach the

reference trajectory and it exhibits an unstable behavior with the chosen weighting ma-

trices and prediction horizon, leading to the biggest discrepancy comparing with the other

prediction horizon values.

Weighting Matrices

These are also important parameters that need to be tuned to obtain a more suitable

performance from the controller in a closed loop. Their influence can be observed by

choosing the unstable case shown in Figure 5.2 (T = 30 s). The most relevant results

were obtained when the weighting matrices were Qη = diag(300 1
m2 , 3000

1
m2 , 10

5 1
rad2

),

Qν = diag(1 s2

m2 , 1
s2

m2 , 1
s2

rad2
), Rf = diag(50 s2, 50 1

rad2
, 1 s2), Rµ = diag(50 s4, 50 s2

rad2
, 1 s4).

Figure 5.4 shows that, with the values found for the weighting matrices, the controller is

capable of achieving a stable behavior with a decreasing tracking error over time, which

stabilizes around 1m after the disturbance effect, demonstrating the controller’s high

sensitivity to the weighting matrices tuning process. Besides that, with the new weighting
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values, the controller is able to track the reference trajectories for both pose and velocities

states, rejecting the disturbance at 800 s as shown in Figures 5.5 and 5.6. For the physical

inputs taken after adding the input disturbance, one can observe in Figure 5.7 that the

input values, provided by the NMPC, counteract the disturbance effects, allowing them

to follow their reference trajectories as well.

Figure 5.4: Tracking error results tuning weighting matrices with T = 30 s.

Figure 5.5: Disturbances rejection at the states representing the position and heading
angle for T = 30 s.

Effect of the constraints

Besides the calibration of the NMPC parameters, the constraints also have a decisive

impact on the controller’s performance. Using T = 30 s and the weighting matrices
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Figure 5.6: Disturbances rejection at the body-fixed velocities states for T = 30s.

Figure 5.7: Disturbances rejection at the physical inputs for T = 30 s.

previously found, the outcome of tightening the state constraint (5.8d) was analyzed

as shown in Figure 5.8. As can be observed, even if the tracking error increases as the

constraint values get tighter, the controller is still stable and capable of rejecting the input

disturbance. Therefore, its performance could be improved, for instance, by changing the

weighting matrix values.

The same procedure was applied to analyze the effects of tightening the input con-
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Figure 5.8: Tracking error results varying state constraint.

straints (5.8f). The simulation results are illustrated in Figure 5.9, and it can be noticed

that the controller performs worst when input constraints start to tighten, however it is

still capable of rejecting the input disturbance. Furthermore, for constraint values be-

tween 0.7 and 0.5, the controller presented the same behavior with a tracking error that

increases over time and stabilizes around 3m.

Figure 5.9: Tracking error results from varying input constraints.

The constraint represented in (5.8g) is responsible for restraining the input’s variation

from one NMPC step to another. The effects of activating these constraints can be

observed in Figure 5.10. In the same way as the other constraints, the tracking error has

increased as the constraints have tightened. However, the variation of the tracking error

was not significant over time as the values obtained with the input constraints, showing

that the trajectory does not require fast variations of the inputs.

From the evaluation of the NMPC controller’s performance with the variation of the
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Figure 5.10: Tracking error results from varying input increment constraints.

constraints and NMPC parameters, it can be highlighted the high sensitivity of the con-

troller to the weighting matrices values and the respect of the constraints when they are

not too restricted. The main advantage of the NMPC is the ability to consider the input

and state constraints directly, and one disadvantage of the above formulation of NMPC is

that stability in a closed loop cannot be guaranteed. Hence, the backstepping controller

was the next control technique to be investigated in order to address the tracking problem

while guaranteeing closed-loop stability.

5.2 Backstepping control

5.2.1 Introduction

Backstepping is a recursive design method for nonlinear dynamic systems with a strict-

feedback structure. In order to illustrate this recursive method, the following second-order

single-input single-output (SISO) system is taken as an example:

ẋ1 =x2 + f1(x1)

ẋ2 =u+ f2(x1, x2)

y =x1

(5.11)

where x1, x2 ∈ R are the state variables, u ∈ R is the control input, f1, f2 are continuous

and differentiable functions with respect to the states, and y is the output. The main goal
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is to apply the backstepping method to build a control law that guarantees exponential

stability for the system (5.11), i.e. y = x1 → xref . For that, two steps are necessary and

the error vectors are defined as:

ς1 =x1 − xref (5.12)

ς2 =x2 − β (5.13)

where β corresponds to the stabilizing function, and xref is constant, hence ẋref = 0.

Step 1 : The first subsystem considered is the first equation of (5.11), for which the

error variable is given by (5.12). Then, the CLF candidate is chosen as

V1 =
1

2
ς21 (5.14)

the time derivative of V1 is given by

V̇1 = ς1ς̇1 (5.15)

From (5.12), one can obtain the time derivative of the error, which results in

ς̇1 = ẋ1 − ẋref = x2 + f1(x1) (5.16)

Replacing (5.16) and (5.13) into (5.15) yields:

V̇1 = ς1(ς2 + β + f1(x1)) (5.17)

Then, the stabilizing function β is chosen as

β = −g1ς1 − f1(x1) (5.18)

where g1 is a positive gain. Substituting (5.18) into (5.17), results in the final expression
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of V̇1

V̇1 = −g1ς21 + ς1ς2 (5.19)

The coupling term ς1ς2 will be canceled in the second step.

Step 2 : In this step, the subsystem to be considered corresponds to the second equation

of the system (5.11), and the Lyapunov function chosen is given by

V2 = V1 +
1

2
ς22 (5.20)

where V1 is the CLF from step 1, which was used to show that β stabilizes the first

subsystem, and the new term in V2 includes the error variable ς2 in the Lyapunov analysis.

Hence, the time-derivative of V2 gives

V̇2 = V̇1 + ς2ς̇2 (5.21)

Replacing (5.19) and taking the time-derivative of (5.13) yields

V̇2 = −g1ς21 + ς1ς2 + ς2(ẋ2 − β̇) = −g1ς21 + ς1ς2 + ς2(u+ f2(x1, x2)− β̇) (5.22)

The control law of the system u is chosen in a way to guarantee exponential stability

according to Theorem 1 in appendix D. Hence, we choose

u = −ς1 − g2ς2 − f2(x1, x2) + β̇ (5.23)

where g2 is a positive gain. Replacing (5.23) in (5.22) yields

V̇2 = −g1ς21 − g2ς
2
2 < −g(ς21 + ς22 ) (5.24)
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where g = min(g1, g2). Then, considering (5.20), (5.24) is rewritten as follows

V̇2 < −2gV2 =⇒ V̇2
V2

< −2g (5.25)

Integrating both sides of (5.25) yields

lnV2

∣∣∣t
0
< −2gt =⇒ V2 < V2(0)e

−2gt (5.26)

Therefore, the feedback law obtained from the backstepping method can guarantee

exponential stability for the system (5.11), and its performance will be determined by the

choices of the gains g1 and g2.

5.2.2 Backstepping design for trajectory tracking of a surface ves-

sel

Besides the NMPC, another method explored in simulation to address the trajectory

tracking problem was the backstepping control, which was designed for a modified version

of the extended control model from Section 5.1.3, in which the disturbance vector τd was

taken into account in the equation of motion, and only the multivariable integral action

was added to enhance the performance of the controller. Hence, the extended model

considered is given by

η̇ = R(ψ)ν

ν̇ = M−1(τ (f) + τd −CRB(ν)ν −Nν)

ḟ = µ

(5.27)

where the disturbance vector τd was included in the equation of motion, which represents

the forces and moments of the wind, currents, and unmodeled effects. An unscented

Kalman filter (UKF) was designed to estimate this disturbance vector τd and also to

filter the wave effects. In order to achieve that, the UKF was based on a model created
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from the vessel’s dynamics, presented in Section 4.3, and the wave-induced motion as in

[36], combined with an uncertainty vector that was modeled as a normally distributed

signal with zero mean. A thorough explanation of the motion estimation for Solgenia is

provided in [96].

In order to design the control law using the backstepping method, the following as-

sumption is considered:

Hypothesis 1. The reference trajectory of the physical inputs fd(t) belongs to the compact

set Uξ = {[−nATmax + ξ, nATmax − ξ]×]− π, π]× [−nBTmax + ξ, nBTmax − ξ]}.

where ξ < min(nATmax , nBTmax) which is used to provide a margin from the borders of

the feasible input set U, avoiding situations with unfeasible input values.

The backstepping design and its stability proof are developed in six steps. The control

law is designed in the first three steps using the backstepping method. Then, in the

fourth step, the error dynamics is reformulated using new coordinates provided by the

backstepping. In the fifth step, an inequality is obtained for the remaining term in the

derivative of the CLF. Finally, in the sixth step, the final inequality for the derivative of

the CLF is obtained, as well as the stability proof.

The design of the backstepping control starts by defining the error vectors as follows:

z1 =η − ηd (5.28)

z2 =ν −α1 (5.29)

z3 =f −α2 (5.30)

where α1, and α2 represent stabilizing function vectors.

Step 1 :

Choosing the following Lyapunov function candidate

V1 =
1

2
z1

Tz1 (5.31)
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the time derivative of V1 is given by

V̇1 = z1
T ż1 (5.32)

The derivative of z1 is expressed as follows

ż1 = η̇ − η̇d = R(ψ)ν − η̇d = R(ψ)(z2 +α1)− η̇d (5.33)

then, substituting (5.33) into (5.32) yields

V̇1 = z1
T [R(ψ)z2 +R(ψ)α1 − η̇d] (5.34)

The stabilization function vector is chosen as

α1 = R−1(ψ)(η̇d −K1z1) (5.35)

Replacing (5.35) into (5.34) yields

V̇1 = −z1
TK1z1 + z1

TR(ψ)z2 (5.36)

The term z1
TR(ψ)z2 will be canceled in the next step.

Step 2 :

Choosing the Lyapunov function candidate as

V2 = V1 +
1

2
z2

TMz2 (5.37)

The time derivative of V2 is given by

V̇2 = V̇1 + z2
TMż2 (5.38)
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From (5.29), the expression of ż2 results in

ż2 = ν̇ − α̇1 = M−1(−CRB(ν)ν −Nν + τ (f) + τd −Mα̇1) (5.39)

where the time derivative of α1 is given by

α̇1 =

(
d

dt
(R−1(ψ))

)
[−K1(η − ηd) + η̇d] +R−1(ψ)[−K1(η̇ − η̇d) + η̈d] (5.40)

with

d

dt
(R−1(ψ)) =

∂R−1(ψ)

∂ψ
ψ̇ =


−r sinψ r cosψ 0

−r cosψ −r sinψ 0

0 0 0



=


cosψ sinψ 0

− sinψ cosψ 0

0 0 1




0 r 0

−r 0 0

0 0 0

 = RT (ψ)S(r)

(5.41)

Substituting (5.39) and (5.36) into (5.38), we have

V̇2 =− z1
TK1z1 + z1

TR(ψ)z2

+ z2
TMM−1(−CRB(ν)ν −Nν + τ (f) + τd −Mα̇1)

(5.42)

Choosing α2 such as

τ (α2) = CRB(ν)ν +Nν +Mα̇1 − τd −K2z2 −RT (ψ)z1, (5.43)

the resulting expression of V̇2 is given by

V̇2 = −z1
TK1z1 − z2

TK2z2 + z2
T (τ (f)− τ (α2)) (5.44)

In the next steps, it will be necessary to find an expression that is negative and has a
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magnitude greater than the term z2
T (τ (f)−τ (α2)) to be able to prove local exponential

stability.

Step 3 :

Choosing the augmented Lyapunov function as

V3 = V2 +
1

2
z3

Tz3 (5.45)

the time derivative of (5.45) is expressed as

V̇3 = V̇2 + z3
T ż3 (5.46)

Considering the time derivative of (5.30) given by

ż3 = ḟ − α̇2 (5.47)

and replacing it in (5.46) yields

V̇3 = −z1
TK1z1 − z2

TK2z2 + z2
T (τ (f)− τ (α2)) + z3

T (ḟ − α̇2) (5.48)

Designing the virtual input vector ḟ as

ḟ = α̇2 −K3z3 (5.49)

and substituting (5.49) into (5.48) yields

V̇3 = −z1
TK1z1 − z2

TK2z2 − z3
TK3z3 + z2

T (τ (f)− τ (α2)) (5.50)

where K1 = K1
T > 0, K2 = K2

T > 0 and K3 = K3
T > 0 are control gain matrices,

which are used as parameters to tune the backstepping controller.
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Step 4 :

In this step, the error dynamics is defined by considering the vessel’s model and the

definition of the error vectors z = [z1, z2, z3]
T . Taking the time derivative of (5.28)

yields

ż1 = η̇ − η̇d (5.51)

Applying (4.19) into (5.51) gives the following expression

ż1 = R(ψ)ν − η̇d (5.52)

Replacing ν by (5.29) and α1 by (5.35) gives

ż1 = R(ψ)(z2 +α1)− η̇d = R(zψ1 + ψd)z2 −K1z1 = F1(z1, z2, t) (5.53)

where zψ1 is the heading angle of z1 = [zx1 , z
y
1 , z

ψ
1 ]
T and ψd is the time-varying reference

trajectory for the heading angle. In the same way, the time derivative of the error vector

z2 results in

ż2 = ν̇ − α̇1 (5.54)

Replacing ν̇ by (4.20) yields

ż2 = M−1(−CRB(ν)ν −Nν + τ (f) + τd −Mα̇1) (5.55)

Then, substituting (5.43) into (5.55) gives

ż2 =M−1(τ (f)− τ (α2)−K2z2 −R−1(ψ)z1)

=M−1(τ (z3 +α2(z1, z2, t))− τ (α2(z1, z2, t))−K2z2 −R−1(zψ1 + ψd)z1)

= F2(z1, z2, z3, t)

(5.56)
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Finally, the dynamics of z3 can be expressed as

ż3 = ḟ − α̇2 (5.57)

Substituting (5.49) into (5.57), we have

ż3 = −K3z3 = F3(z3) (5.58)

Hence, the dynamics of z can be written as

ż = F (z, t) =


F1(z1, z2, t)

F2(z1, z2, z3, t)

F3(z3)

 (5.59)

where the non-autonomous character of the dynamics comes from the fact that it depends

on the time-varying reference trajectories ηd(t) and their derivatives.

Step 5 :

Given the expression of V̇3 represented by (5.50), one needs to find an expression that

is negative and has a magnitude greater than the term z2
T (τ (f) − τ (α2)) in order to

obtain a local exponential convergence. First note that the following inequality holds:

z2
T (τ (f)− τ (α2)) ≤ ||z2|| ||τ (f)− τ (α2)|| (5.60)

Moreover, for the term ||τ (f) − τ (α2)||, an inequality of the form ||τ (f) − τ (α2)|| ≤

L∥f −α2∥ will be obtained.

Since τ is locally Lipschitz but not globally Lipschitz, one has to show that if z is

taken close enough to the origin, then for all t ≥ 0, both f and α2 belong to a compact

set, taken here as the feasible set of the inputs U.
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Replacing (5.29) and (5.40) into the definition of τ (α2) in (5.43) yields

τ (α2) =(CRB(z2 +α1) +N )(z2 +α1)− τd(t)−K2z2 −RT (ψ)z1

+M(RT (ψ)S(r)(−K1z1 + η̇d(t))) +MR−1(ψ)(−K1ż1 + η̈d(t))

(5.61)

Using the definition of α1 given by (5.35) into (5.61) results in

τ (α2) =(CRB(z2 +α1(z1, t)) +N )(z2 +R−1(zψ1 + ψd)(η̇d(t)−K1z1))− τd(t)

−K2z2 −RT (zψ1 + ψd)z1 +M(RT (zψ1 + ψd)S(r)(−K1z1 + η̇d(t)))

+MR−1(zψ1 + ψd)(−K1ż1 + η̈d(t))

=h(z1, z2, t)

(5.62)

where h(z1, z2, t) is a continuous function, which verifies h(0, 0, t) = τ (fd(t)). Then, we

have that

∀ ε > 0 ∃ δ > 0 | ∥z∥ < δ =⇒ ∥τ (α2)− τ (fd(t))∥ < ε (5.63)

The difficulty here is that τ is not injective, therefore ∥τ (α2) − τ (fd(t))∥ being small

does not mean that α2 and fd(t) are close, and then, fd(t) belonging to Uξ does not

necessarily mean that α2 belongs to U. The function τ was first defined in (4.33), and

here it is reformulated as

τ (nA, α, nB) =


pA(nA)

2 cosα

pA(nA)
2 sinα + pB(nB)

2

pB(nB)
2LB − pA(nA)

2 sinαLA

 =


FA cosα

FA sinα + FB

FBLB − FA sinαLA

 (5.64)

In order to simplify the problem, (5.64) is rewritten as

τ (nA, α, nB) = τ1 ◦ τ2(nA, α, nB) (5.65)
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where τ2 and τ1 are defined in (5.66) and (5.67) respectively.

τ2(nA, α, nB) =



pA(nA)
2

cosα

sinα

pB(nB)
2


(5.66)

τ1(FA, c, s, FB) =


FAc

FAs+ FB

LBFB − LAFAs

 (5.67)

where (c, s)T ∈ S2, hence τ2 : R3 → R × S2 × R and τ1 : R × S2 × R → R3 with

S2 = {(x, y) ∈ R2 | x2 + y2 = 1}. Furthermore, the reference of the physical inputs

fd = [nAd, αd, nBd]
T is associated to [FAd, cd, sd, FBd]

T through (5.66) as follows

τ2(nAd, αd, nBd) =



pA(nAd)
2

cosαd

sinαd

pB(nBd)
2


=



FAd

cd

sd

FBd


(5.68)

Since τ2 is injective, then only τ1 needs to be studied. More particularly, we will show

that there is a δ > 0 such that

if



FAd

cd

sd

FBd


∈ τ2(Uξ) and

∥∥∥∥∥∥∥∥∥∥∥∥∥
τ1



FAd

cd

sd

FBd


− τ1



FA

c

s

FB



∥∥∥∥∥∥∥∥∥∥∥∥∥
< δ then



FA

c

s

FB


∈ τ2(U) (5.69)

where τ2(Uξ) = {[pA(−nAmax+ξ)
2, pA(nAmax−ξ)2]×S2×[pB(−nBmax+ξ)

2, pB(nBmax−ξ)2]}.
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The function τ1 is not injective indeed, since

τ1



FA

c

s

FB


= τ1



−FA

−c

−s

FB


(5.70)

which comes from the fact that the azimuth thruster can turn 360°. Hence, each force can

be generated by two different configurations of the azimuth thruster. Then, a restriction

of τ1 is considered as τ̄1 : τ2(R+× ] − π, π] × R) → R3, which corresponds to forces

generated by a positive velocity of the azimuth thruster. Hence, proving (5.69) for τ̄1

also proves it for τ1, since if an antecedent of τ̄1 belongs to τ2(R+× ] − π, π] × R), it

means that the other antecedent of τ1 also belongs to τ2(U). Now, we state the following

lemma:

Lemma 1.

∃ δ > 0 | if



FAd

cd

sd

FBd


∈ τ2(Uξ) and

∥∥∥∥∥∥∥∥∥∥∥∥∥
τ̄1



FAd

cd

sd

FBd


− τ̄1



FA

c

s

FB



∥∥∥∥∥∥∥∥∥∥∥∥∥
< δ, then



FA

c

s

FB


∈ τ2(U)

The proof of Lemma 1 can be found in the appendix B. Moreover, Lemma 1 shows

that (FA, c, s, FB)T ∈ τ2(U), since U is symmetric and the second image of the inverse of

τ2 is [−nA,−α + π, nB]
T instead of [nA, α, nB]T . Hence, we have then proved that there

exists δ > 0 such that for all t ≥ 0 and z ∈ R9 verifying ∥z∥ < δ, the following inequality

holds

||τ (f)− τ (α2)|| ≤
[
sup
f∈U

∥∥∥∥∂τ∂f (f)

∥∥∥∥]︸ ︷︷ ︸
△
=L

||f −α2|| (5.71)

Step 6 :

The goal of this final step is to prove the local exponential convergence of z to zero. Let
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us prove that there exists an open neighborhood of the origin H ⊂ R9 such that

V̇3 = ⟨∇V3(z),F (z, t)⟩ ≤ −χ||z||2,∀ t ≥ 0 and∀ z ∈ H (5.72)

Using inequality (5.71) with (5.60) gives

z2
T (τ (f)− τ (α2)) ≤ (γ||z2||)

(
L

γ
||f −α2||

)
(5.73)

where the constant γ > 0 is introduced to give more freedom in the choice of the gains

K2 and K3.

Applying the Cauchy-Schwarz inequality on (5.73), we have

z2
T (τ (f)− τ (α2)) ≤

γ2

2
||z2||2 +

1

2

(
L

γ

)2

||f −α2||2 (5.74)

Replacing (5.74) into (5.50) yields

V̇3 ≤ −z1
TK1z1 − z2

T

(
K2 −

γ2

2
I

)
z2 − z3

T

(
K3 −

1

2

(
L

γ

)2

I

)
z3 (5.75)

where K2 >
γ2

2
I and K3 >

1
2

(
L
γ

)2
I. Then, using the Rayleigh quotient, we have

V̇3 ≤ −λmin(K1)||z1||2 − λmin

(
K2 −

γ2

2
I

)
||z2||2 − λmin

(
K3 −

1

2

(
L

γ

)2

I

)
||z3||2

≤ −χ||z||2

(5.76)

where

χ = min

(
λmin(K1), λmin

(
K2 −

γ2

2
I

)
, λmin

(
K3 −

1

2

(
L

γ

)2

I

))
(5.77)
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Finally, applying Theorem 1 in appendix D gives the local exponential stability.

The conditions obtained above for the gains are quite conservative since the value of L

is obtained through (5.71). As the Lyapunov function given by (5.45) does not depend on

the gain K3, a condition can be established to guarantee local exponential stability, while

adapting K3 in real-time in order to avoid applying high gains on the virtual inputs.

Condition 1 :

If V3 ≤ β, then K3 = I

Otherwise, if V3 > β, then V̇3 is evaluated:

If V̇3 ≤ −σ∥z∥2 with K3 = I and 0 < σ ≤ 1
2
, then this value of K3 can be kept.

Otherwise, if V̇3 > −σ∥z∥2 with K3 = I and 0 < σ ≤ 1
2
, then the value of K3 is

adjusted to K3 >
1
2

(
L
γ

)2
I.

An additional threshold β on the value of the Lyapunov function V3 is also introduced.

The value of the gains is kept low even if V̇3 > −σ∥z∥2, as long as the value of V3 is below

this threshold. While the introduction of this threshold leads to practical stability instead

of exponential stability, it allows to avoid possible oscillations of V3 around the origin in

the numerical simulations and in the experimental scenarios as well.

5.2.3 Simulation results

The backstepping controller designed in Section 5.2.2 was implemented in Matlab/Simulink.

Its performance and robustness were evaluated for a docking maneuver, where the ref-

erence trajectory was generated by a trajectory planner, which calculates the docking

trajectory based on the initial position of the vessel and the recorded docking spot. This

trajectory planner was first implemented in [96].

The first aspect of the controller to be investigated was its robustness to modeling

errors and to disturbances due to wind, current, and waves. Hence, Solgenia’s model

is simulated with an error of +10% added to all identified parameters. Besides, the

disturbance forces applied to the model of the vessel were generated in simulation and are

illustrated in Figure 5.11.
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Figure 5.11: Disturbance forces applied to Solgenia in simulation.

For all the following tests, the backstepping parameters were chosen as γ = 20, σ = 0.3,

K1 = I3, K2 = diag(103, 103, 104), respecting the condition obtained after (5.75), K3

depends on condition 1, and the threshold β is chosen as 10% of the initial value of V3.

Furthermore, α̇2 was numerically calculated in Matlab using a differentiator associated

with a second-order low-pass filter with a bandwidth of 10Hz.

As the backstepping guarantees local exponential stability when the physical inputs

f belong to the feasible input set U, saturation blocks were used in the Simulink model

to implement the thrusters’ constraints listed in Table 5.1.

Table 5.1: Constraints.

nATMin −33.33Hz
nATMax 33.33Hz
nBTMin −66.67Hz
nBTMax −66.67Hz

µMin [−75 1
s2
,−1.48 rad

s
,−100 1

s2
]T

µMax [75 1
s2
, 1.48 rad

s
, 100 1

s2
]T

∆µMax [0.5 1
s2
, 0.0873 rad

s
, 0.5 1

s2
]T

In order to simulate the docking maneuver, the initial conditions were xi(0) = 5m,

yi(0) = 10m, ψi(0) = 0 rad, ui(0) = 0m/s, vi(0) = 0m/s, ri(0) = 0 rad/s and the docking

position was established as xd(0) = 5.65m, yd(0) = −4.06m, ψd(0) = −2.06 rad.
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The progression of the docking maneuver is illustrated in Figure 5.12 and it can be

seen that the backstepping controller is robust enough to compensate for the disturbances

and the modeling errors, executing the tracking with an error below 20 cm, as shown in

Figure 5.13, demonstrating an accurate performance in simulation.

Figure 5.12: Docking maneuver performed by Solgenia in simulation.

Figure 5.13: Tracking error for the docking maneuver.
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Additionally, the Lyapunov function is depicted in Figure 5.14, which presents some

peaks due to disturbances that were not taken into account by the UKF. The derivative

of the Lyapunov function is shown in Figure 5.15, illustrating that the exponential local

stability is guaranteed during the trajectory, hence K3 = I3 as defined in Condition 1. All

the states representing the position, body-fixed velocities, and physical inputs were able

to track their reference correctly as depicted in Figures 5.16, 5.17 and 5.18 respectively.

Figure 5.14: Lyapunov function V3.

Figure 5.15: Derivative of the Lyapunov function.
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Figure 5.16: Pose states during the docking maneuver.

Figure 5.17: Evolution of body-fixed velocities during a docking maneuver.
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Figure 5.18: Velocities and angle of the thrusters during a docking maneuver.

Besides the performance analysis of the backstepping itself, a comparison was also

considered between the backstepping and the nonlinear PID control with flatness-based

feedforward, developed in [96], under the same conditions as the previous test. The

docking maneuver performed by both of the controllers is illustrated in Figure 5.19, where

the captured instants of the backstepping controller were some seconds in advance to

provide better visualization.
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Figure 5.19: Comparison of backstepping controller and nonlinear PID controller exe-
cuting a docking maneuver.

For the pose tracking errors, illustrated in Figure 5.20, it can be observed that the

backstepping controller presents a slightly better performance in position than the nonlin-

ear PID, as is confirmed by the RMSE values shown in Table 5.2. On the other hand, the

nonlinear PID controller presents a better performance for the heading angle ψ with the

error value always below 1°, while the maximum ψ error for the backstepping is around

1.2°.

The performance regarding the body-fixed velocities is similar for both of the con-

trollers, as shown in Figure 5.21. Furthermore, in Figure 5.22, it is illustrated the use of

the thrusters for both controllers, and it can be highlighted that the bow thruster has the

same velocity profile for both of them and the azimuth thruster was used in a mirrored

configuration from 40 s to 85 s for the backstepping compared to the nonlinear PID con-

troller, showing that different configurations of the thrusters can provide the same forces

for the thrusters to perform the docking maneuver.
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Table 5.2: Root means square error for backstepping and nonlinear PID.

States Backstepping RMSE Nonlinear PID RMSE
x[m] 0.0839 0.0853
y[m] 0.0302 0.0341
ψ[rad] 0.0107 0.0054
u[m/s] 0.0136 0.0075
v[m/s] 0.0118 0.0079
r[rad/s] 0.0040 0.0021

Figure 5.20: Position tracking error for backstepping and nonlinear PID controller.

Figure 5.21: Velocities tracking error for backstepping and nonlinear PID controller.
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Figure 5.22: Velocities and angle of the thrusters during a docking maneuver.

5.3 NMPC controller with contraction constraint

In this section, the goal is to reformulate the OCP of the NMPC controller from Section

5.1.3 to be able to provide an NMPC formulation capable of guaranteeing stability while

it solves the trajectory tracking problem.

As mentioned in Chapter 3, there is a variety of approaches to guarantee stability

for the NMPC controller. Therefore, the approach chosen to be studied in this thesis is

based on the work developed in [81], where a Lyapunov-based model predictive control

was developed to address the tracking problem for an autonomous underwater vehicle.

This method includes a terminal cost into the cost function combined with a contraction

constraint constructed from a nonlinear backstepping control law to guarantee closed-loop

stability. From this, the optimal control problem (5.7) can be reformulated as follows:

min
u(·,tk)

J = min
u(·,tk)

∫ T+tk

tk

∥η − ηd∥2Qη
+ ∥ν − νd∥2Qν

+ ∥f − fd∥2Rf
+ ∥µ∥2Rµ

dt

+ ∥η(T + tk)− ηd(T + tk)∥2Pη
+ ∥ν(T + tk)− νd(T + tk)∥2Pν

(5.78)
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subject to

η̇ = R(ψ)ν (5.79a)

ν̇ = M−1(τ (f)−CRB(ν)ν −Nν) (5.79b)

ḟ = µ (5.79c)

nATMin ≤ nAT ≤ nATMax (5.79d)

nBTMin ≤ nBT ≤ nBTMax (5.79e)

µMin ≤ µ ≤ µMax (5.79f)

⟨∇V3(z),F (z, t)⟩ ≤ 0 (5.79g)

where the thrusters’ constraint values are given in Table 5.1 and the constraint in (5.79g)

is the contraction constraint based on the derivative of the control Lyapunov function

(5.72) obtained from the nonlinear backstepping controller designed in Section 5.2.2. If

the problem is feasible, i.e, if there is an admissible control, then the main idea of this

formulation is that, for a small sample time ∆t, the NMPC will find an optimal solution,

which ensures that the derivative of the Lyapunov function, calculated using the opti-

mal input values provided by the NMPC, is negative semi-definite in order to guarantee

asymptotic stability for the closed-loop.

This new formulation of the NMPC was implemented using the GRAMPC framework

and Matlab to verify the controller’s performance and if it respected the contraction

constraint. The reference trajectories for the states were generated in the same way as

explained in Section 5.1 applying nAT (t) = 5, α(t) = 0, and nBT (t) = t + 5. The first

test was done using a simple curved trajectory, avoiding the singular set where nAT = 0.

Hence, the initial conditions of the reference trajectory were:

xd(0) = 20m yd(0) = 10m ψd(0) = 0.2rad

ud(0) = 0m/s vd(0) = 0m/s rd(0) = 0rad/s

nAT (0) = 5Hz α(0) = 0rad nBT (0) = 5Hz
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The NMPC parameters chosen were a sample time ∆t of 0.04 s, which is the same sample

time of the real-time system used in the experimental tests on Solgenia, a prediction

horizon of 5 s and the following weighting matrices: Qη = diag(102 1
m2 , 10

2 1
m2 , 10

3 1
rad2

),

Qν = diag(1 s2

m2 , 1
s2

m2 , 1
s2

rad2
), Rf = diag(1 s2, 1 1

rad2
, 1 s2), Rµ = diag(10 s4, 10 s2

rad2
, 10 s4),

Pη = diag(105 1
m2 , 10

5 1
m2 , 10

7 1
rad2

), and Pν = diag(1 s2

m2 , 1
s2

m2 , 1
s2

rad2
). The expression (5.48)

was used to implement the constraint (5.79g) where ḟ was replaced by the optimal input

values calculated by NMPC and τ (f) was calculated using (4.33). Moreover, an error of

5 cm was added in yi(0) to evaluate the performance of the controller.

The maneuver executed by the vessel with initial state values ηi = [20, 10.05, 0.2]T ,

ν = [0, 0, 0]T and f = [5, 0, 5]T is depicted in Figure 5.23. One can observe that the

NMPC controller is capable of tracking the reference trajectory correctly and the states

representing the pose and the body-fixed velocities were able to track their reference

trajectories as well as shown in Figures 5.24 and 5.25 respectively.

Figure 5.23: NMPC with contraction constraint tracking a curved trajectory.
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Figure 5.24: NMPC with contraction constraint tracking pose states.

Figure 5.25: NMPC with contraction constraint tracking body-fixed velocity states.
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Figure 5.26: Physical inputs generated by NMPC with contraction constraint.

The physical inputs, i.e. the velocities of the thrusters and the azimuth thruster

angle, are illustrated in Figure 5.26, showing that the NMPC controller was able to find

input values that match with the reference values without saturating any of the actuators.

Furthermore, the optimal input values were used to calculate the Lyapunov function and

its derivative that are depicted in Figures 5.27 and 5.28 respectively. From these figures,

it can be noticed that the derivative of the Lyapunov function is indeed negative semi-

definite and it takes 30 s to correct the initial error of 5 cm from y due to the asymptotic

stability condition of the constraint (5.79g).
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Figure 5.27: Lyapunov function value of contraction constraint.

Figure 5.28: Derivative of the Lyapunov function used in the contraction constraint.

Other tests were made with the objective of increasing the starting error, however,

for errors above 5 cm in x or y for example, the contraction constraint diverges and the

GRAMPC is not able to find a solution for the OCP stopping before the end of the

simulation. In order to investigate this problem, the same NMPC formulation given

by (5.78) and (5.79) was used without the contraction constraint (5.79g) to evaluate two

important points: the first one is to ensure that the NMPC without the constraint (5.79g)

is able to track the reference with initial errors higher than 5 cm. Then, the second point
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is to verify if the optimal input values, calculated by the NMPC in this configuration, are

able to respect the contraction constraint.

For this test, the same NMPC parameters were used and the initial pose changed to

ηi = [20, 15, 0.2]T , with an error of 5m in the initial position for y. The tracking result

for the curved trajectory is illustrated in Figure 5.29, showing that, the NMPC controller

without the contraction constraint is able to correct the initial pose, converging to the

reference trajectory as fast as possible, confirming the first point mentioned above. This

correction can also be observed for the pose and body-fixed velocities states shown in

Figures 5.30 and 5.31 respectively.

Figure 5.29: NMPC without contraction constraint tracking a curved trajectory.
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Figure 5.30: NMPC without contraction constraint tracking pose states.

Figure 5.31: NMPC without contraction constraint tracking body-fixed velocity states.

Both of the thrusters are highly requested to compensate for the initial position error

as can be seen in Figure 5.32, where the bow thruster saturates and the azimuth thruster

is at a high speed during the first 20 s before converging to the reference. The control

Lyapunov function and its derivative are depicted in Figures 5.33 and 5.34, demonstrating

that the latter is negative semi-definite for the most part of the simulation, except for the

peak around 10 s probably caused by a sub-optimal solution since, at this time, the NMPC
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is trying to compensate the initial error. Therefore the chosen NMPC parameters are

suitable to find a sequence of optimal input values that satisfies the contraction constraint.

Figure 5.32: Physical inputs generated by NMPC without contraction constraint.

Figure 5.33: Lyapunov function value of NMPC without contraction constraint.
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Figure 5.34: Derivative of the Lyapunov function using the input values of NMPC
without contraction constraint.

Another test, with more dynamic reference trajectories as a zig-zag maneuver, was

made and the NMPC with the contraction constraint was not able to find a solution for

the OCP with and without an initial error on the states, leading the GRAMPC to crash

and stop at the beginning of the simulation. On the other hand, the NMPC without the

contraction constraint was able to track the reference trajectory using the same NMPC

parameters as the previous test with an initial error of 5m in y as shown in Figure 5.35.

Moreover, all the states converge to their reference trajectories as depicted in Figures 5.36

and 5.37.
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Figure 5.35: NMPC without contraction constraint tracking a zig-zag maneuver.

Figure 5.36: NMPC without contraction constraint tracking pose states for a zig-zag
maneuver.
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Figure 5.37: NMPC without contraction constraint tracking body-fixed velocity states
for a zig-zag maneuver.

As in the previous test, the thrusters have saturated during the first 30 s of the simula-

tion to correct the initial position error. For this zig-zag maneuver, the control Lyapunov

function and its derivative are shown in Figures 5.39 and 5.40 respectively, where the

latter was negative semi-definite for the most part of the simulation, except for the same

peak, as illustrated in Figure 5.34, during the compensation of the initial position error.
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Figure 5.38: Physical inputs generated by NMPC without contraction constraint for a
zig-zag maneuver.

Figure 5.39: Lyapunov function value of NMPC without contraction constraint for a
zig-zag maneuver.



Nonlinear controllers for trajectory tracking of an USV 99

Figure 5.40: Derivative of the Lyapunov function using the input values of NMPC
without contraction constraint for a zig-zag maneuver.

Since it was verified that the chosen NMPC parameters are a suitable option to obtain

a negative semi-definite derivative of the control Lyapunov function, the divergence of the

contraction constraint, for the NMPC formulation given by (5.78) and (5.79), could be

explained by a fault on the implementation of the contraction constraint in the C-file used

by GRAMPC. Such implementation demanded the analytic expression of (5.46), as well

as the analytic expression of the partial derivatives of (5.46) related to the states and the

inputs in C for the gradient method used by GRAMPC. For Solgenia’s model combined

with an integral action, the process to obtain such expressions became complex, and due

to time constraints, this problem was not solved until the day this report was written.

Therefore, the ideas of possible solutions and further investigations of this part of the

work are provided in Chapter 7.

5.4 Conclusion

In this chapter, the trajectory tracking problem was addressed by two different con-

trol strategies. The first one was the NMPC controller, which was able to consider the

thrusters’ constraints directly in the optimal control problem. Besides that, the con-



Nonlinear controllers for trajectory tracking of an USV 100

troller’s performance has demonstrated a high dependency on the choices of the NMPC

parameters such as the weighting matrices values and the interval of the state and input

constraints.

The other control approach analyzed in this chapter was the backstepping control, for

which an exponential local stability proof was obtained and the tracking of a docking ma-

neuver was evaluated, showing its robustness to disturbances and to parameter mismatch

of the identified model. Furthermore, a comparison to the nonlinear position PID-Control

with flatness-based feedforward was analyzed, showing equivalent performances, with the

backstepping controller having a slightly better performance for tracking the position.

After that, the control Lyapunov function found in the development of the backstep-

ping controller was used as a constraint for the NMPC controller combined with a terminal

cost in order to guarantee stability in closed-loop. This new formulation of the NMPC

was able to satisfy the contraction constraint and to provide a reasonable performance

only when there were tiny state errors, otherwise, the GRAMPC was not able to find a

solution for the OCP.

An alternative implementation was also assessed where the same NMPC parameters

were used and the contraction constraint was not taken into account. For this NMPC

controller, it was verified that the GRAMPC was able to find a solution for the OCP

through the whole trajectory with a satisfying performance. Furthermore, the optimal

control input values were used to calculate the derivative of the Lyapunov function and

the results showed that it was negative semi-definite for different reference trajectories,

showing that the chosen NMPC parameters were able to provide an optimal solution that

satisfies the contraction constraint. Therefore, a future investigation into the implementa-

tion will be necessary in order to find the reason for this poor performance of the NMPC

with contraction constraint as discussed in the previous section.

The controllers validated in simulation will be tested on the fully-actuated real-scaled

vessel Solgenia at the Rhine river in Constance (Germany), which is the main focus of

the next chapter.



Chapter 6

Experimental results for trajectory

tracking

Ultimately, the main goal of developing a controller for USV is to provide the required

autonomy for a vessel to perform specific tasks. Therefore, evaluating the performance of

the controller not only in simulation but also in an experimental scenario with a real-scaled

vessel under real conditions is a crucial step for validation. This chapter is dedicated to

analyzing the experimental results obtained with Solgenia at the Rhine river in Constance

(Germany). In Section 6.1, a description of the experimental setup and the devices used

on Solgenia is provided. After that, in Section 6.2, the experimental outcomes obtained

using the NMPC controller are assessed, followed by the evaluation of the backstepping

controller’s results in Section 6.3. Finally, Section 6.4 concludes this chapter.

6.1 Experimental setup

In order to integrate the controller with Solgenia and collect experimental measurements,

it is crucial to know the equipment available on Solgenia and what measurements can

be provided. Furthermore, the model developed in simulation needs to be loaded into

a real-time system that will process the measurements and calculate the control values

101
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applied by the actuators.

6.1.1 Solgenia’s equipment

Solgenia is a solar surface vessel that is 8m long and weighs around 3 tons. The solar

panels are located on the roof, while the batteries were placed under the floor as illustrated

in Figure 6.1. In this figure, it is also depicted the RTK-GPS system, which uses two

Trimble (BX982) antennas. The vessel’s pose and velocities are provided by the first

antenna in an ECI frame with 0.1m accuracy. Then, these values of pose and velocity

are transformed to a local NED frame representation, in which the origin was located in

the operation area (university’s docking spot in Constance), allowing them to be used as

the actual measurements η and η̇, the latter is then converted to the body-fixed frame

to be used in the vessel’s dynamic model as ν. Additionally, both antennas are used to

provide the yaw angle with an accuracy of 0.1°. Solgenia is also equipped with 3-axis

automotive inertial measurement unit (IMU), which measures the rotational velocities in

the body-fixed frame, and the propulsion system uses a rotational encoder directly in the

propeller shaft to measure the thrusters’ velocities.

Another essential device is the Microautobox2 (MABX2) [22], which is a real-time

system with the IBM PPC 750GL processor (900 MHz), and different input and output

connections such as Ethernet, CAN bus, AD/DA converters, etc. The Microautobox2 is

responsible for receiving all the data coming from the sensors and, using the controller’s

model designed on Simulink, it processes this information and calculates the necessary

forces or velocities and angle for the azimuth and bow thrusters to perform the designated

task.

6.1.2 Chain of development

From the simulation in Matlab to the real-time implementation on Solgenia, intermediate

stages of development, illustrated in Figure 6.2, were necessary to efficiently test the
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Figure 6.1: Solar boat Solgenia and its equipment.

controller experimentally.

Figure 6.2: Stages of hardware-in-the-loop (HIL) test.

In stage A, the controller design was validated in simulation, as demonstrated in

Chapter 5, with the identified model of Solgenia and other important elements, such as

an Unscented Kalman Filter (UKF) to estimate the disturbances and the state values,

and a planning reference trajectory algorithm. Then, it was prepared to be used by

Microautobox2. This preparation included Simulink blocks, provided by the toolbox

from dSpace, to directly establish a communication between the Simulink model and the

Microautobox2 through Ethernet and CAN bus, allowing the Simulink model to use the

measurements provided by the sensors.
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After that, in stage B, an interface was created in a software called Control Desk by

dSpace [23], to visualize not only the measurements provided by the sensors but also other

important signals during the real-time test on the vessel. An example of this interface

is shown in Figure 6.3, where there is the measurements section, the choices of different

controllers, and other crucial variables, such as the docking active signal represented

by a circle that switches from red to green when the autonomous docking process is

active. Furthermore, Control desk establishes the connection between the interface and

the Microautobox2, and it allows the data, for the chosen variables from the Simulink

model, to be recorded with the possibility of exporting it for assessment.

Figure 6.3: Interface developed on Control desk.

Once the interface was created on Control Desk and the connection with the Microau-

tobox2 was tested, stage C is an optional step, which would test the whole implementation

using the identified model of Solgenia in the Simulink file to make sure that the controller

and the other parts of the system are working properly and the recorded data corresponds

to what one needs.

In the last stage, the Simulink file with the control algorithm was loaded into the

Microautobox2, which was then integrated into Solgenia. Subsequently, experimental



Experimental results for trajectory tracking 105

tests can be carried out using the interface, illustrated in Figure 6.3, to activate the

controller that will be tested, record measurements, and so on.

6.2 Nonlinear model predictive controller

The NMPC controller designed to solve the optimal control problem described in Section

5.1 using the extended control model, presented in Section 5.2.2, was implemented in

Matlab using the GRAMPC framework [26].

Even though some disturbances can be modeled, their future behavior cannot be

predicted and therefore, an assumption needs to be made. At every step of NMPC, the

controller obtains the estimated values of τd from the UKF, and they are assumed to be

constant over the entire prediction horizon in the optimization process. Besides that, the

disturbance forces generated from the jetty towards the vessel have a significant effect

when the vessel touches the jetty. In this work, such a situation only happens once the

docking maneuver is already accomplished, therefore these forces can be neglected. It is

important to highlight as well that the structure of the jetty allows the river to flow in its

natural direction, which does not generate substantial hydrodynamic disturbance forces

that could act on the vessel.

The reference trajectories used in the OCP (ηd,νd,f d) are calculated by a trajectory

planner as in [96], and the chosen NMPC design parameters were a sample time of 0.04 s,

which corresponds to the sampling time from the Microautobox2, a prediction horizon of

5 s and the following weighting matrices values: Qη = diag(106 1
m2 , 10

6 1
m2 , 10

7 1
rad2

), Qν =

diag(0 s2

m2 , 0
s2

m2 , 0
s2

rad2
), Rf = diag(0.1s2, 10 1

rad2
, 0.1s2) and Rµ = diag(102s4, 105 s2

rad2
, 10s4).

The constraints of the system are given in Table 5.1.

The validation procedure of the NMPC controller has respected the chain of devel-

opment, described in Section 6.1.2, and the experimental tests were performed at the

Rhine river in Constance (Germany) with the goal of tracking a trajectory to reach the

university’s docking spot. The trajectory planner, first used in [96], was employed here
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to calculate the reference trajectory between the known initial pose of the vessel and the

docking spot. The different docking maneuvers were carried out directly one after the

other using different initial poses and the same design parameters. After collecting all

experimental data, the same values of estimated disturbance forces τd and initial poses

were used in simulation to compare both performances.

The first docking scenario tested is illustrated in Figure 6.4 where the vessel was at

the left of the docking spot with an initial pose ηi = [−3.58, 31.92,−60.73◦]T . It can

be seen that the vessel is capable of performing the docking maneuver correctly during

the experiment using Solgenia. According to Table 6.1, the RMSE values between the

references and the experimental values are close to those obtained in simulation, showing

that the experimental performance was as accurate as the simulation.

The vessel’s pose tracks correctly its references as shown in Figure 6.5 and the body-

fixed velocities are illustrated in Figure 6.6, where one can observe that the surge and yaw

rate, respectively u and r, track the references appropriately. However, the sway velocity v

has a more pronounced variation due to the compensation of the lateral disturbance force

by the control law that takes into account τd, which the estimated values are illustrated

in Figure 6.8. This compensation is mainly done by the bow thruster, which reaches the

maximum of its velocity and saturates at some points as shown by nBT in Figure 6.7.
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Figure 6.4: Docking maneuver with initial pose ηi = [−3.58, 31.92,−60.73◦]T .

Table 6.1: Root mean square error.

States Experimental RMSE Simulation RMSE
x[m] 0.2104 0.2109
y[m] 0.2319 0.1509
ψ[rad] 0.0368 0.0308
u[m/s] 0.0368 0.0186
v[m/s] 0.0935 0.0516
r[rad/s] 0.0130 0.0071
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Figure 6.5: Vessel’s pose states with initial pose ηi = [−3.58, 31.92,−60.73◦]T .

Figure 6.6: Vessel’s body-fixed velocities states with initial pose ηi =

[−3.58, 31.92,−60.73◦]T .
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Figure 6.7: Physical inputs for initial pose ηi = [−3.58, 31.92,−60.73◦]T .

Figure 6.8: Estimated disturbances forces for initial pose ηi = [−3.58, 31.92,−60.73◦]T .

The second most relevant docking maneuver is the one depicted in Figure 6.9, where

the vessel was at the right of the docking spot with an initial pose ηi = [33.63, 25.63,−155.27◦]T .

Table 6.2 shows the RMSE values and, in this case, the simulation performs better than

the experimental scenario, but both of them present RMSE values below 20 centimeters,

which indicates an accurate performance.
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Figure 6.9: Docking maneuver with initial pose ηi = [33.63, 25.63,−155.27◦]T .

Table 6.2: Root means square error.

States Experimental RMSE Simulation RMSE
x[m] 0.1673 0.0836
y[m] 0.1686 0.1486
ψ[rad] 0.0348 0.0313
u[m/s] 0.03 0.0158
v[m/s] 0.0668 0.0316
r[rad/s] 0.0121 0.009

The states that represent the pose of the vessel are able to track the references as

shown in Figure 6.10. The body-fixed velocities are illustrated in Figure 6.11, and it can

be observed that the experimental sway velocity presents an important variation at the

beginning of the trajectory at 20 s and also at the end when the vessel performs the side-

way movement to get close to the jetty. These variations were caused by the disturbance

forces whose estimates are shown in Figure 6.13, and, as the control law has taken τd into

account, the variations observed in the sway velocity were also evident in Figure 6.12,

which shows both thrusters being actively requested to compensate the disturbances.

Moreover, the lateral speed v and the yaw rate r are not zero at the end of the docking

maneuver because the experimental data were recorded until the moment that Solgenia
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got close to the jetty, without waiting for the vessel to stop completely.

Figure 6.10: Vessel’s pose states with initial pose ηi = [33.63, 25.63,−155.27◦]T .

Figure 6.11: Vessel’s body-fixed velocities states with initial pose ηi =

[33.63, 25.63,−155.27◦]T .
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Figure 6.12: Physical inputs for initial pose ηi = [33.63, 25.63,−155.27◦]T .

Figure 6.13: Estimated disturbances forces for initial pose ηi =

[33.63, 25.63,−155.27◦]T .

The last important case was a docking maneuver where the vessel was aligned to the

docking spot with initial pose ηi = [20.28, 27.14,−115.74◦]T as shown in Figure 6.14. From

this figure, it can be observed that Solgenia was able to perform the docking maneuver

at the Rhine river, however, it is not as accurate as the simulation results. Table 6.3
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validates what was observed in Figure 6.14, showing that the experimental RMSE values

are far greater than the ones obtained in simulation.

Figure 6.14: Docking maneuver with initial pose ηi = [20.28, 27.14,−115.74◦]T .

Table 6.3: Root means square error.

States Experimental RMSE Simulation RMSE
x[m] 0.4783 0.1108
y[m] 0.2708 0.0598
ψ[rad] 0.0749 0.0168
u[m/s] 0.0340 0.0168
v[m/s] 0.1132 0.0325
r[rad/s] 0.0159 0.0066

The vessel’s pose is illustrated in Figure 6.15 and it shows that the heading angle yaw

was not able to track its reference during the first 40 s in the experimental case. In order to

correct this, the bow thruster is requested and it acts at the maximum speed as shown in

Figure 6.17. Therefore, the sway velocity and the yaw rate present important oscillations

during this period as depicted in Figure 6.16. The remaining velocities’ variations come

from the use of the bow thruster to compensate for the disturbances illustrated in Figure
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6.18.

Figure 6.15: Vessel’s pose states with initial pose ηi = [20.28, 27.14,−115.74◦]T .

Figure 6.16: Vessel’s body-fixed velocities states with initial pose ηi =

[20.28, 27.14,−115.74◦]T .
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Figure 6.17: Physical inputs for initial pose ηi = [20.28, 27.14,−115.74◦]T .

Figure 6.18: Estimated disturbances forces for initial pose ηi =

[20.28, 27.14,−115.74◦]T .

From the comparisons between the experimental and the simulation data for different

docking scenarios evaluated above, it can be observed that for the first two cases, the

results presented accurate performances with a reasonable position error around 20 cm

and for the last docking maneuver the performance was not as precise as the two previous
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cases, however it was still able to complete the maneuver correctly. Hence, the NMPC

controller was validated not only in simulation but also in experimental scenarios.

6.3 Backstepping controller

In the same way that the NMPC controller was validated in simulation and in real-

time tests, the backstepping controller presented in section 5.2 was also experimentally

evaluated using the same UKF to estimate the forces and moment of the disturbance

vector τd and the reference trajectories were generated as in [96]. The same sample

time used for the NMPC was used for the backstepping implementation. Furthermore,

based on the proof associated with the backstepping controller given in Section 5.2.2,

the gain matrices chosen were K1 = I3, K2 = diag(500, 500, 5000) and K3 depends

on Condition 1. The real-time tests were performed on Solgenia to execute, once again,

docking maneuvers with different initial positions.

The first forward docking started from an initial pose given by ηi = [−10, 30,−73.23◦]T ,

and the estimated disturbance values obtained during the experiment were applied to the

dynamic model of Solgenia in simulation to compare both performances. From Figure

6.19, one can notice that the tracking of the docking maneuver was done correctly both

in simulation and in the real-time test. Even though the latter presented higher RMSE

values compared to the simulation, as shown in Table 6.4, the experimental performance

was still accurate since the RMSE values were below 20 cm.
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Figure 6.19: Docking maneuver with initial pose ηi = [−10, 30,−73.23◦]T .

Table 6.4: RMSE values for the backstepping test with ηi = [−10, 30,−73.23◦]T .

States Experimental RMSE Simulation RMSE
x[m] 0.1362 0.0836
y[m] 0.2037 0.0455
ψ[rad] 0.0360 0.0113
u[m/s] 0.0197 0.0084
v[m/s] 0.0236 0.0081
r[rad/s] 0.0089 0.0026

The states representing the pose and the body-fixed velocities were able to track their

references as depicted in Figures 6.20 and 6.21, overcoming the disturbance forces shown in

Figure 6.23. Besides the states representing the position, the RMSE values for the heading

angle and the body-fixed velocities given in Table 6.4 were lower in the simulation than

in the experimental test, even if the latter were still reasonable error values.
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Figure 6.20: Solgenia’s pose states with initial pose ηi = [−10, 30,−73.23◦]T .

Figure 6.21: Solgenia’s body-fixed velocities states with ηi = [−10, 30,−73.23◦]T .

Figure 6.22 illustrates the physical inputs of the vessel i.e., the velocities and angle of

the thrusters, showing that none of the thrusters has reached the saturation values, shown

in Table 5.1, to execute the maneuver. Another point to be highlighted is the fact that

a different configuration for the thrusters was obtained during the experiment compared

to the simulation and both led to the same docking maneuver, demonstrating that the
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thruster allocation problem, in the case of Solgenia, can have multiple solutions to provide

the necessary forces to track the same trajectory. As an example, one can see clearly this

effect during the first 50 s in Figure 6.22, where the velocity of the bow thruster nBT in

simulation corresponds to the opposite in the real-time test, and a similar behavior can

be observed for the angle α during the same period. For the azimuth thruster velocity

nAT , this effect is observed after the first 25 s as well.

Figure 6.22: Physical inputs for initial pose ηi = [−10, 30,−73.23◦]T .
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Figure 6.23: Estimated disturbances forces for initial pose ηi = [−10, 30,−73.23◦]T .

Another case studied was the backward docking with an initial pose ηi = [25, 14, 10.08◦]T .

In this scenario, Solgenia was also able to perform the docking maneuver backward as de-

picted in Figure 6.24. The RMSE values for the experimental and simulated results are

given in Table 6.5, showing that the simulation performance was more accurate than the

real-time test, the latter presenting a position error slightly above 20 cm, which can still

be considered as precise enough for this type of maneuver.
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Figure 6.24: Docking maneuver with initial pose ηi = [25, 14, 10.08◦]T .

Table 6.5: RMSE values for the backstepping test with ηi = [25, 14, 10.08◦]T .

States Experimental RMSE Simulation RMSE
x[m] 0.1991 0.0680
y[m] 0.2336 0.0827
ψ[rad] 0.0421 0.0157
u[m/s] 0.0275 0.0118
v[m/s] 0.0269 0.0137
r[rad/s] 0.0130 0.0057

In this scenario, the states related to the pose and velocities were able to track their

reference trajectories and the difference between the simulation performance and the

experimental one, shown in Table 6.5, is also depicted in Figures 6.25 and 6.26 respectively.

As in the previous case, the physical inputs illustrated in Figure 6.27 have not saturated

to perform the backward docking in the presence of the disturbance forces depicted in

Figure 6.28. Moreover, the distinct configuration for the thrusters in simulation and in

the real-time test is shown in Figure 6.27 as well, being more explicit during the first 20 s.
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Figure 6.25: Solgenia’s pose states with initial pose ηi = [25, 14, 10.08◦]T .

Figure 6.26: Solgenia’s body-fixed velocities states with ηi = [25, 14, 10.08◦]T .
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Figure 6.27: Physical inputs for initial pose ηi = [25, 14, 10.08◦]T .

Figure 6.28: Estimated disturbances forces for initial pose ηi = [25, 14, 10.08◦]T .

The last case is a forward docking maneuver starting at ηi = [25, 14,−169.91◦]T that

was executed using on one hand a nonlinear PID controller developed in [96] and, on the

other hand, a controller that was designed using the presented backstepping approach. In

Figure 6.29, one can see that both controllers were able to precisely perform the docking

task. Furthermore, Table 6.6 reveals that the nonlinear PID controller presented a better
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performance since its RMSE values are lower than the ones from the backstepping. This

fact is clearly observed in Figures 6.30 and 6.31, where the error for the position and

body-fixed velocities states were depicted.

Figure 6.29: Docking maneuver with initial pose ηi = [25, 14,−169.91◦]T .

Table 6.6: RMSE values for comparison of different controllers executing a docking
maneuver.

States RMSE Backstepping RMSE Nonlinear PID
x[m] 0.1443 0.0269
y[m] 0.1031 0.0483
ψ[rad] 0.0334 0.0084
u[m/s] 0.0208 0.0132
v[m/s] 0.0262 0.0141
r[rad/s] 0.0105 0.0074
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Figure 6.30: Pose error for the docking maneuver with initial pose ηi =

[25, 14,−169.91◦]T .

Figure 6.31: Velocities errors with ηi = [25, 14,−169.91◦]T .

The physical inputs are shown in Figure 6.32, where one can see that, for both of the

controllers, the velocity of the bow thruster presented the same profile. In the case of

the azimuth thruster, the nonlinear PID controller requested dynamic changes in velocity

and angle, compared to the backstepping controller, which demanded less effort from the
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azimuth thruster and it still provided a reasonable performance.

Figure 6.32: Physical inputs for initial pose ηi = [25, 14,−169.91◦]T .

From the analysis presented above, the backstepping controller was validated in real-

time tests executing forward and backward docking maneuvers with reasonable accuracy

compared to the simulation and to the nonlinear PID controller results. Moreover, other

docking experiments were done using a different configuration for the UKF, which con-

sidered directly the velocities of the current instead of the general disturbance forces,

improving the performance of the backstepping controller.

6.4 Conclusion

In this chapter, the assessment and validation of an NMPC and a backstepping controller

to address the trajectory tracking problem for the fully-actuated surface vessel Solgenia

were done in real-time tests at the Rhine river in Germany. First, the structure of Solgenia

and its equipment were described, followed by an explanation of the process to implement

the controllers into the real-time system. Then, the experimental outcomes from the

NMPC and the backstepping for tracking a docking maneuver were evaluated, and it was
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verified a reasonable performance in real-time, contributing to the lack of literature on

experimental results for real-scaled USV using these types of controllers considering the

thruster allocation problem.
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Chapter 7

Conclusion and Perspectives

This thesis has proposed two different approaches, the nonlinear model predictive control

and the backstepping control, to address the trajectory tracking problem for the real-

scaled fully-actuated surface vessel Solgenia, with the aim of performing a real-time dock-

ing maneuver. In order to develop these state-feedback controllers, first it was necessary to

obtain an accurate maneuvering model to represent Solgenia’s dynamics. Therefore, a 3-

DOF nonlinear model was used, whose unknown parameters were identified by employing

a parameter identification algorithm, which was based on an optimization process fol-

lowed by a quality analysis using experimental data collected from maneuvers performed

by Solgenia.

Once Solgenia’s model was identified and validated, it was used as a control model,

combined with a multivariable integral action, to design the controllers. The NMPC

approach was chosen since it considers directly the state and input constraints in the

OCP, which was responsible for minimizing the tracking error, while it was subjected to

the vessel’s dynamics and the thrusters’ constraints. A study of the relationship between

the controller’s performance and the NMPC parameters variation and the constraints

tightening was done in simulation using the GRAMPC framework and Matlab, showing

the high sensibility of the controller to the choice of the NMPC parameters such as

the weighting matrices. Then, the NMPC was reformulated to consider the estimated

129



Conclusion and Perspectives 130

disturbance forces in the dynamic model of Solgenia, assuming that these forces were

constant over the prediction horizon. This new formulation was then tested and validated

in simulation and also in real-time tests performing a docking maneuver at the Rhine

river in Constance (Germany).

The drawback of the aforementioned NMPC formulation is the fact that the closed-

loop stability cannot be guaranteed. Motivated by this argument, the second approach

chosen was the backstepping method taking into account the disturbances and the thruster

allocation problem. A local exponential stability proof was provided for this controller

and its performance and robustness were assessed and validated first in simulation and

then in experimental scenarios executing a docking maneuver as well.

In order to overcome the drawback mentioned above, a new formulation for the NMPC

was provided to guarantee closed-loop stability, by adding a terminal cost into the cost

function and a contraction constraint, which used the derivative of the control Lyapunov

function obtained during the backstepping design. This new NMPC controller was evalu-

ated in simulation, however, the performance results were not satisfactory and the possible

causes for that were discussed in Chapter 5.

From the work developed in this thesis, some of the perspectives for future work are:

• The NMPC controller validated in real-time tests on Solgenia presented some satu-

ration at the bow thruster for all maneuvers as discussed in Chapter 6. In order to

improve that, the weighting matrices values could be chosen again, where the bow

thruster could have a higher penalization, which would possibly avoid saturation.

Another option to be explored would be to use the UKF that is able to provide

directly the velocities of the current, as discussed in Chapter 6. As it is assumed

that the disturbance is constant during the prediction horizon, having the current’s

velocity constant could be more accurate than the forces, therefore the performance

could improve as well.

• The problem discussed in Chapter 5 related to the implementation of the NMPC
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with the contraction constraint could be addressed by checking the partial deriva-

tives expressions used in the C-file through a comparison between the value obtained

in Matlab and the one obtained in C. Once this problem is treated, the disturbance

forces could be considered in this NMPC formulation as well in order to verify its

performance. Furthermore, the contraction constraint could be modified to obtain

a local exponential convergence as it was obtained for the backstepping controller.

After validating the NMPC controller considering the disturbance forces and the

contraction constraint in simulation, then it could be also tested and validated in

real-time on Solgenia.

• In Chapter 5, the NMPC with the contraction constraint was evaluated only for the

case where the physical inputs are far from the singular case. Therefore, as future

work, it would be also interesting to analyze what would be necessary to consider

the singular case, where the velocity of the azimuth thruster is zero. Besides, it

would be necessary to explore the theory behind this implementation by obtaining

theoretical stability proof as it was done for the backstepping controller.
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Appendix B

Proof of Lemma 1

The restriction τ̄1 is not injective, except outside of the subspaceW = {(0, c, s, nB)T | (c, s)T ∈

S2, nB ∈ R}, i.e. the following lemma holds

Lemma 2.

if



FAd

cd

sd

FBd


,



FA

c

s

FB


/∈ W then τ̄1



FAd

cd

sd

FBd


= τ̄1



FA

c

s

FB


=⇒



FAd

cd

sd

FBd


=



FA

c

s

FB


The proof of Lemma 2 can be found in appendix C. In order to prove Lemma 1, the

following subspace of τ2(U) is considered.

V(ζ) = {u ∈ τ2(U) | d(u,W ) ≥ ζ} (B.1)

where

d(u,W ) = min
v∈W

∥u− v∥ (B.2)

denotes the distance between u and the set W . Then, the following two cases are consid-

ered:

Case 1 : (FAd, cd, sd, FBd)
T /∈ V(ζ)
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In this case, given the definition of V(ζ), there is a point of the singular set W that is

close to (FAd, cd, sd, FBd)
T , indeed

for all



FAd

cd

sd

FBd


/∈ V(ζ) there is



0

c0

s0

FB0


∈ W such that
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−



0
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FB0



∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ ζ (B.3)

Then, we have
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+
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τ̄1
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− τ̄1
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∥∥∥∥∥∥∥∥∥∥∥∥∥
(B.4)

Since τ̄1 is Lipschitz continuous on U with a Lipschitz constant L, (B.4) can be reformu-

lated as follows ∥∥∥∥∥∥∥∥∥∥∥∥∥
τ̄1



0

c0

s0

FB0


− τ̄1



FA

c

s

FB



∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ Lζ + δ (B.5)

assuming that ∥∥∥∥∥∥∥∥∥∥∥∥∥
τ̄1
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sd

FBd


− τ̄1



FA

c

s

FB



∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ δ, with δ > 0 (B.6)
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Then, (B.5) can be expanded as

∥∥∥∥∥∥∥∥∥∥


−FAc

−FAs+ (FB0 − FB)

LAFAs+ LB(FB0 − FB)


∥∥∥∥∥∥∥∥∥∥
≤ Lζ + δ (B.7)

Consequently,

|−FAc| ≤Lζ + δ (B.8)

|−FAs+ (FB0 − FB)| ≤Lζ + δ (B.9)∣∣∣∣FAs+ LB
LA

(FB0 − FB)

∣∣∣∣ ≤ L

LA
ζ +

1

LA
δ (B.10)

where LB > LA. Applying the second triangle inequality in (B.9) and (B.10) yields

|FAs| − |FB0 − FB| ≤Lζ + δ (B.11)
LB
LA

|FB0 − FB| − |FAs| ≤
L

LA
ζ +

1

LA
δ (B.12)

Adding (B.11) to (B.12) results in

(
LB − LA
LA

)
|FB0 − FB| ≤ L

(
1 + LA
LA

)
ζ +

(
1 + LA
LA

)
δ (B.13)

Hence,

|FB0 − FB| ≤ L

(
1 + LA
LB − LA

)
ζ +

(
1 + LA
LB − LA

)
δ (B.14)

In the same way, (B.11) can be multiplied by
(
LB

LA

)
then added to (B.12) resulting in

(
LB − LA
LA

)
|FAs| ≤ L

(
1 + LB
LA

)
ζ +

(
1 + LB
LA

)
δ (B.15)

Hence,

|FAs| ≤ L

(
1 + LB
LB − LA

)
ζ +

(
1 + LB
LB − LA

)
δ (B.16)
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Elevating (B.8) and (B.16) to the square and adding each other yields

|FA|2 ≤
(
L

(
1 + LB
LB − LA

)
ζ +

(
1 + LB
LB − LA

)
δ

)2

+ (Lζ + δ)2

≤ 2L2

(
1 +

(
1 + LB
LB − LA

)2
)
ζ2 + 2

(
1 +

(
1 + LB
LB − LA

)2
)
δ2

(B.17)

Hence,

|FA| ≤

√√√√2L2

(
1 +

(
1 + LB
LB − LA

)2
)
ζ2 + 2

(
1 +

(
1 + LB
LB − LA

)2
)
δ2 (B.18)

Here ζ has to be chosen such that

L

(
1 + LA
LB − LA

)
ζ ≤ ξ

2
, and 2L2

(
1 +

(
1 + LB
LB − LA

)2
)
ζ2 ≤ ξ2

2
(B.19)

which results in |FB0 − FB| ≤ ξ =⇒ |FB| ≤ FBmax. Moreover, δ has to be chosen such

that

δ ≤ ξ

2

1
1+LA

LB−LA

, and δ ≤
√√√√√ 1

2

(
1 +

(
1+LB

LB−LA

)2) ξ22 (B.20)

where ξ < min(nATmax , nBTmax), then we have that |FA| ≤ ξ =⇒ |FA| ≤ FAmax

Therefore (FA, c, s, FB)
T ∈ τ2(U) and Lemma 1 is proved for this first case.
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Case 2 : (FAd, cd, sd, FBd)
T ∈ V(ζ)

Since τ̄1 is injective, as shown in Lemma 2, we want to show that for all ε > 0 there

is a δ > 0 such that

∀



FAd

cd

sd

FBd


∈ V(ζ),

∥∥∥∥∥∥∥∥∥∥∥∥∥
τ̄1



FAd

cd

sd

FBd


− τ̄1



FA

c

s

FB



∥∥∥∥∥∥∥∥∥∥∥∥∥
< δ =⇒

∥∥∥∥∥∥∥∥∥∥∥∥∥



FAd

cd

sd

FBd


−



FA

c

s

FB



∥∥∥∥∥∥∥∥∥∥∥∥∥
< ε (B.21)

Property (B.21) basically means that the inverse of τ̄1 is uniformly continuous on τ̄1(V(ζ)).

In order to prove the continuity, one explicitly computes τ̄1
−1 on τ̄1(V(ζ)). Then, the

following system needs to be solved:

τ̄1(FA, c, s, FB) =


X̄

Ȳ

N̄

 (B.22)

that is

X̄ =FAc (B.23)

Ȳ =FAs+ FB (B.24)

N̄ =FBLB − LAFAs (B.25)

Multiplying (B.24) by −LA, then adding to (B.25) results in

LAȲ + N̄ = FBLA + FBLB (B.26)

Hence, FB is given by

FB =
LAȲ + N̄

LA + LB
(B.27)
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In the same way, to obtain FA, (B.24) is multiplied by LB, and (B.25) is subtracted from

it

(LBȲ − N̄) = (LB + LA)FAs (B.28)

Elevating (B.28) and (B.23) to the square and adding each other

F 2
A = X̄2 +

(
LBȲ − N̄

LB + LA

)2

=⇒ FA =

√
X̄2 +

(
LBȲ − N̄

LB + LA

)2

(B.29)

As we are considering that FA ≥ ζ with ζ > 0, since for u = [FA, c, s, FB]
T ∈ V(ζ), we

have

|FA| =

∥∥∥∥∥∥∥∥∥∥∥∥∥



FA

c

s

FB


−



0

c

s

FB



∥∥∥∥∥∥∥∥∥∥∥∥∥
≥ min

v∈W
∥u− v∥ ≥ ζ (B.30)

Then, one has

c =
X̄

FA
(B.31)

s =
Ȳ − FB
FA

(B.32)

Hence, τ̄1−1 is continuous on τ̄1(V(ζ)). Furthermore, since V(ζ) is a compact set, τ̄1(V(ζ))

is also a compact set and τ̄1
−1 is uniformly continuous on τ̄1(V(ζ)). Therefore, property

(B.21) is proved.



Appendix C

Proof of Lemma 2

In order to prove Lemma 2, i.e. that τ̄1 is injective, one can use (B.23), (B.24), (B.25).

Then, we have

FAdcd =FAc (C.1)

FAdsd + FBd =FAs+ FB (C.2)

LBTFBd − LATFAdsd =LBTFB − LATFAs (C.3)

Multiplying (C.2) by LBT results in

LBTFAdsd + LBTFBd = LBTFAs+ LBTFB (C.4)

Subtracting (C.4) from (C.3) yields

(LBT + LAT )FAdsd = (LBT + LAT )FAs (C.5)

which implies that

FAdsd = FAs (C.6)
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Taking the square of (C.6) and (C.1) and summing up each other gives

(FAdsd)
2 + (FAdcd)

2 = (FAs)
2 + (FAc)

2 (C.7)

which results in

(FAd)
2 = (FA)

2 =⇒ FAd = FA (C.8)

Since (C.8) holds and FA ̸= 0, then cd = c from (C.1), sd = s from (C.6) and FBd = FB

from (C.2), proving that τ̄1 is injective.



Appendix D

Theorems of stability

The following theorem is taken from the book Nonlinear Systems by Hassan K. Khalil

third edition [49] and it was included in this thesis for the sake of completeness.

Theorem 1. [49, Theorem 4.10 on p.154] Let x = 0 be an equilibrium point for the

non-autonomous system ẋ = f(t, x), where f : [0,∞) ×D → Rn is piecewise continuous

in t and locally Lipschitz in x on [0,∞)×D, and D ⊂ Rn be a domain containing x = 0.

Let V : [0,∞)×H → R be a continuous differentiable function such that

k1∥x∥a ≤ V (t, x) ≤ k2∥x∥a (D.1)
∂V

∂t
+
∂V

∂x
f(t, x) ≤ −k3∥x∥a (D.2)

for all t ≥ 0 and for all x ∈ D, where k1, k2, k3, and a are positive constants. Then,

x = 0 is exponentially stable. If the assumptions hold globally, then x = 0 is globally

exponentially stable.
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Nonlinear Feedback Control System Development for an 

Autonomous River Shuttle 

 

Abstract: 

This thesis presents the development of two different state-feedback controllers to solve the 

trajectory tracking problem, where the vessel needs to reach and follow a time-varying 

reference trajectory. This motion problem was addressed to a real-scaled fully actuated 

surface vessel, whose dynamic model had unknown hydrodynamic and propulsion 

parameters that were identified by applying an experimental maneuver-based identification 

process. This dynamic model was then used to develop the controllers. The first one was the 

backstepping controller, which was designed with a local exponential stability proof. For the 

NMPC, the controller was developed to minimize the tracking error, considering the 

thrusters’ constraints. Moreover, both controllers considered the thruster allocation problem 

and counteracted environmental disturbance forces such as current, waves and wind.  

The effectiveness of these approaches was verified in simulation using Matlab/Simulink and 

GRAMPC (in the case of the NMPC), and in experimental scenarios, where they were applied 

to the vessel, performing docking maneuvers at the Rhine River in Constance (Germany). 

 

Keywords: autonomous vessels, trajectory tracking, backstepping control, model predictive 

control. 

 

Résumé :  

Cette thèse porte sur le développement de deux techniques différentes par retour de sortie 

pour résoudre le problème de suivi automatique de trajectoire, où le bateau doit atteindre et 

suivre une trajectoire variant dans le temps. Ce problème a été traité pour un bateau 

entièrement actionné, et dont le modèle dynamique dépend de paramètres hydrodynamiques 

et du système de propulsion tous deux inconnus et qui ont été identifiés en utilisant une 

procédure d’identification basée sur des données de manœuvre expérimentales.  

Le modèle dynamique du bateau obtenu précédemment a ensuite été utilisé pour le 

développement des lois de commande. La première loi de commande a été conçue en utilisant 

une technique de type backstepping et une preuve de stabilité exponentielle locale a été 

obtenue. La deuxième loi de commande utilise une approche de type commande prédictive 

non linéaire (CPNL). L'objectif de commande consiste alors à minimiser une fonction coût 

en tenant compte des contraintes sur les actionneurs. Dans les deux cas, le problème 

d’allocation des actionneurs a été abordé et traité et les effets des perturbations liées au vent, 

au courant maritime, etc ont été compensés. L'efficacité des approches présentées dans cette 

thèse ont été vérifiées en simulation, en utilisant Matlab/Simulink et GRAMPC, ainsi que 

lors de tests expérimentaux réalisés sur un bateau à échelle réelle dans le cadre de manœuvres 

de docking sur le Rhin à Constance (Allemagne). 

 

Mots-clés : navires autonomes, suivi de trajectoire, backstepping, commande prédictive 
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