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Abstract

Year after year advances in deep learning allow to solve a rapidly increasing range of

challenging tasks, as well as to set new, even more ambitious goals. Such a success, however,

comes at a price of increasing requirements for all aspects of learning: large-scale models,

which tend to perform best, require large quantities of data, memory, computational resources

and time to be properly trained. This cannot always be achieved in practice, especially

on smaller datasets, which promotes exploration of the ways to transfer knowledge, i.e.

re-purposing existing state-of-the-art models to solving new tasks.

This problem of transferring knowledge between tasks comes with its own challenges

caused by different factors, such as the type of knowledge which needs to be transferred,

or availability of data. In this thesis we focus on two setups from this category: few-shot

learning and multi-domain learning. Both problems share the motivation to learn a model

that would be able to generalise to solving the same type of task, e.g. image classification, on

a number of different domains.

Our first contribution explores probabilistic modeling for few-shot classification, where

the model aims to solve a wide range of classification tasks, each accompanied with a handful

of labeled examples. Limited supervision leads to high uncertainty about the predictions,

which can be naturally tackled by probabilistic framework. We treat the task-specific classifier

as a latent variable, and propose a novel amortised variational inference scheme which uses

a single network to predict parameters of the distribution both for the prior and for the

approximated posterior of the latent variable in the considered graphical model. The prior is

conditioned on the support set of the task, while the approximated posterior is conditioned

on the union of the support and query sets. Minimisation of the distance between these two

distributions provides additional guidance from the support set during training, allowing

us to exploit the disparity between the two sets of data. We evaluate our model on several

few-shot classification benchmarks, and show that it can achieve competitive results on all of

them. We also demonstrate the benefits of modeling uncertainty by showing that a sampled

ensemble of classifiers slightly improves the performance compared to the inferred classifier

mean. This result that cannot be achieved by models relying on Monte Carlo approximations,

which, according to our experiments, tend to underestimate the true variance.



iii

Our second contribution proposes a novel type of adaptation modules for multi-domain

classification, which considers a fixed set of classification tasks on a limited number of

domains. We adopt the common approach of using a pre-trained feature extractor as a

base network, and adjusting it to novel domains using domain-specific adapters applied

to each convolutional layer in the base. For each output channel, our modulation adapter

separately scales each kernel in the convolutional weight tensor with its own output-specific

scalar. This results in a set of independent re-weightings of the input feature maps, which

makes the resulting feature adaptation more flexible compared to previous approaches. To

reduce the parameter budget, we factorise our modulation adapter as a product of the two

smaller matrices. We evaluate our model on the two common multi-domain classification

benchmarks, and show that both the full and the factorised versions achieve state-of-the-art

results. In addition to that, we provide results of our model on a span of parameter budgets,

which is one of the advantages of our approach. For each parameter budget, modulation

adapters outperform the competitors which generally offer only a single budget setting.
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Chapter 1

Introduction

Data has become one of the most valuable assets in the last few decades. Learning how

to extract knowledge from data provided the humanity with opportunities to solve tasks

that had not been successfully solved before, like learning to play Go (Silver et al., 2016)

or transferring image style (Gatys et al., 2016), and to gain better insights into different

areas of life, such as healthcare (Poplin et al., 2018), biology (Xu et al., 2020) or material

physics (Schmidt et al., 2019). There are many scientific disciplines that use data as a

primary subject of research, such as statistics, data analysis and data mining, which can be

grouped into the category data science. Machine learning is among the first disciplines in

this field that benefited from the growing amount of data. Its primary goal is to leverage the

experience in order to learn an inference model generalisable to unseen data. Complexity

of machine learning methods goes hand in hand with complexity of data itself, forming a

positive feedback loop: the more advanced the methods get, the more data and the more

complex data structures they tend to rely on, e.g. images accompanied with data from

LiDAR (Geiger et al., 2012) or text descriptions (Lin et al., 2014), and vice versa.

Classical machine learning is a term that represents early methods of data processing and

inference, e.g. linear and logistic regressions, k-Nearest Neighbour (k-NN), Support Vector

Machine (SVM), Decision Tree and many others (Bishop, 2006; Murphy, 2012). It focuses

both on supervised problems, such as classification and regression, and on unsupervised ones,

like clustering and anomaly detection. A common aspect of classical machine learning is the

sensitivity of the models to the quality of input data: noisiness and collinearity of features

are the known factors which negatively affect the model’s performance. Another challenge is

the curse of dimensionality (Hughes, 1968; Bellman, 1957) caused by the growing amount of

features that describe the data, which leads to exponentially growing requirements for the

amount of training examples. As a result, proper feature selection and engineering must be

applied prior to feeding data into a model.
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Fig. 1.1 Examples of images from different domains. Illustration taken from (Guo et al.,

2019a).

Deep learning and neural network development allow to deal with some of the challenges

in machine learning discussed above. Automatic feature learning performed by the networks

alleviates reliance on heuristics for feature engineering, ensuring direct optimisation of data

representations for the task at hand. Over the last 50 years, advances in deep learning not only

improved performance on the existing tasks, ranging from image classification (Krizhevsky

et al., 2012; He et al., 2016a) to speech recognition (Baevski et al., 2021) and natural language

processing (Devlin et al., 2018), but also offered solutions to more challenging problems,

such as text-to-image generation (Ramesh et al., 2021), prediction of protein folding (Jumper

et al., 2021), self-driving (Mullapudi et al., 2018; Bansal et al., 2019), etc. While neural

networks scale more efficiently with the amount of training data than models in classical

machine learning, their significant drawback is poor performance on smaller datasets. This

is the case due to over-parameterisation of neural networks, as it allows to remember the

observed examples instead of learning from them. Large number of parameters also requires

significant amount of memory to train and store the models, creating another challenge for

deep learning. At the same time, abundance of training examples and memory cannot always

be guaranteed, which provides motivation for parameter re-use and transfer of extracted

knowledge from one task to another.

1.1 Transfer of knowledge

The core idea behind knowledge transfer is to learn how to leverage models that have been

trained on some task in order to learn another task. The most common example of knowledge

transfer is pre-training of a deep neural network on a large (un)labelled dataset, e.g. on
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DA TT MTL CL FSL MDL

Task type is shared X X X X

Domain is shared X X

All tasks / domains are available simultaneously X X X

Observed tasks / domains can be revisited X X X X X

Performance on all task is equally important X X X X X

Task / parameter budget is limited X X

Table 1.1 Differences between the tasks that involve transfer of knowledge. DA: domain

adaptaion, TT: task transfer, MTL: multi-task learning, CL: continual learning, FSL: few-shot

learning, MDL: multi-domain learning.

ImageNet (Russakovsky et al., 2015), and then finetuning it on a smaller target dataset.

Beyond pre-training and finetuning, there is a wide range of learning paradigms that involve

some form of knowledge transfer. They differ from each other in the relationships and

interactions that are formed between the tasks, as well as in the number of tasks that are

considered in the first place, or the amount of data that is available during training.

There are several task attributes that can be used in various combinations to define a

transfer learning problem. In this thesis, we distinguish the transfer paradigms by considering

the following set of questions:

• Is the task type shared across all tasks? An example of two different task types would

be object classification and image segmentation, as shown in Figure 1.2. At the same

time car classification and flower classification tasks are considered to be of the same

type.

• Is the data domain shared across all tasks? Here, the domain is defined not only by

the data distribution, but also by the corresponding label space, as in Figure 1.1. For

example, in few-shot learning each task can be generated by subsampling a small

number of classes from the original dataset, which creates multiple associated task-

specific domains. An example of the shared domain would be learning to solve different

tasks on the same dataset, as in Figure 1.2.

• Are the domains and/or tasks available simultaneously? This question defines whether

joint training is possible, or whether the tasks should be considered in isolation from

each other.

• Is it possible to revisit the task which has already been trained on? The ability to

finetune the trained model can significantly improve the model’s performance when

the tasks are not available at once, and vice versa.
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Fig. 1.2 Examples of different tasks on the same domain. Illustration taken from (Zamir

et al., 2018).

• Are the tasks equally important in terms of their performance? The positive answer

to this question poses an additional challenge of preserving the extracted knowledge

from one task while switching to learning on another one.

• Is there any type of restriction imposed on the model? An example would be a limited

parameter budget available for the model, or the limited amount of tasks and/or domains

that can be used for training.

Table 1.1 provides a comparison of the most popular transfer learning problems using their

representation via the chosen attributes. Below, we take a closer look at the mentioned transfer

setups: we briefly discuss the motivation for each of them, and outline the corresponding

challenges that need to be addressed.
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Fig. 1.3 Task transfer paradigm. Illustration taken from (Zhang & Yang, 2021).

1.1.1 Domain adaptation

In domain adaptation (Glorot et al., 2011; Ganin & Lempitsky, 2015), the task – or at least

its type – remains the same during the train and the test phases, but the datasets come from

different data distributions, unlike standard supervised machine learning. This might be

caused by multiple reasons, e.g. by changes in the process that generates data, varying

conditions and sources of data acquisition, modifications of the data processing methods.

The common ground in all of these cases is the discrepancy between the domains in the train

and the test datasets, which are referred to as the source and the target domains. Although

the number of domains under consideration is not necessarily limited to two, it is usually

assumed to be a small number.

Domain adaptation problems can be further split into several categories defined by the

relationships between the source and the target domains. These relations depend not only on

the corresponding data distributions, but also on the associated label spaces, ranging from the

setup where all labels are shared, to the setup where either of the domains have additional

private categories (Farahani et al., 2021). The standard pipeline with training on the source

set and testing on the target set results in performance drop, so the main goal in domain

adaptation is to learn how to generalize a model trained on one domain to another domain by

directly addressing the domain shift and aligning the data distributions.

1.1.2 Task transfer

In contrast to domain adaptation, task transfer (Zamir et al., 2018) fixes the data domain

while considering a collection of tasks on it, e.g. image segmentation, colorization, point

matching etc. The goal is to maximise the overall performance on all of these tasks combined,

while imposing a supervision budget, i.e. the maximum number of tasks that can be trained
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Fig. 1.4 Multi-task learning paradigm. Illustration taken from (Zhang & Yang, 2021).

from scratch. These tasks are denoted as the source tasks, and the knowledge obtained from

learning on them is then transferred to the set of target tasks, as shown in Figure 1.3.

The core motivation of task transfer is to reduce the supervision requirements in deep

learning by utilizing relatedness and complementarity of the tasks. While it is possible

to apply the standard supervised learning quite efficiently, separately for each task in the

source and the target sets, such approach would require a lot of labeled data which might be

difficult or expensive to obtain, especially for dense tasks like semantic segmentation or depth

estimation. The learning pipeline in transfer learning consists of several parts, including

supervised learning on the source set of tasks, and learning transfer functions which adapt

the trained models to solving novel tasks from the target set. An important notion introduced

in task transfer is transferability between various pairs of tasks, which is measured in order

to structurise the space of deep learning tasks and to create a taxonomy (Zamir et al., 2018).

1.1.3 Multi-task learning

Similar to task transfer, multi-task learning (MTL) (Kokkinos, 2017; Misra et al., 2016)

aims to maximise the collective performance on a fixed set of tasks. There is no explicit

restriction on the number of domains, however, MTL benchmarks usually include one domain

simultaneously labeled for several different tasks (Lin et al., 2014; Zamir et al., 2018), as

in task transfer. The principal difference between these two problems is that MTL does not

impose any supervision budget, and the entire available supervision is utilised for training,

meaning that all tasks are trained concurrently, as shown in Figure 1.4. MTL does not favor

any task over the others, which distinguishes it from the problems that focus on a single

target task, while the remaining auxiliary tasks are of no interest, and are added solely to

improve learning on this main task.
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Ideally, task co-training should bring a lot of advantages. For example, related tasks

could benefit from similar representations, which facilitates parameter sharing and potentially

reduces the memory footprint of the models. In practice, not all tasks benefit from being

trained together, and additional knowledge might actually lead to deterioration in the model

performance which is described by the notion of negative transfer. MTL directly addresses

this problem by designing adaptive models that share the knowledge only within certain

groups of tasks which improve from co-training. Interestingly, the ability to successfully

co-train all tasks together, and the ability to avoid training on some set of tasks by pre-training

the model on another set are not necessarily correlated (Standley et al., 2020), which further

motivates to separate task transfer from MTL, even though the two problems share a large

portion of their motivation and goals.

1.1.4 Continual learning

The key requirement set by task transfer and multi-task learning problems is constant and

concurrent availability of data for all tasks. This might not always be the case in real life,

e.g. due to impossibility to keep data for ethical or legal reasons in off-line learning setups,

or due evolution of the data generating process over time in real-time systems. Continual

learning (Li & Hoiem, 2017; Castro et al., 2018), also referred to as lifelong learning and

incremental learning, tries to maximise the joint performance on a continual stream of tasks

under two main constraints: a) the model has access only to one task at a time, and b) every

task can only be visited once.

In general, relationships between the tasks are unconstrained: they can be of different

types, i.e. image classification and segmentation, and data can come from different domains.

The most considered setup, however, is the one where the type of the task remains the

same, e.g. only image classification, and each task has its own data domain and label space.

Equal importance of all tasks, combined with the impossibility to revisit old data makes the

standard supervised learning ineffective for continual learning. With changes in the data

distribution, neural networks tend to overwrite the knowledge the has been observed before,

resulting in the phenomenon called catastrophic forgetting (McCloskey & Cohen, 1989;

Ratcliff, 1990). Tackling this challenge is one of the main focuses of continual learning. The

straightforward solution would be to learn a separate model for each task, but this approach

is very expensive, might not always work efficiently when the amount of supervision is

insufficient and lacks positive transfer between the tasks. Even though there is no explicit

restriction on the parameter budget, it is commonly desired to aim for reduction in the total

size of the continual learning model.
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Fig. 1.5 Few-shot learning paradigm. Illustration taken from (Ravi & Larochelle, 2017).

1.1.5 Few-shot learning

Although it is not mentioned explicitly, the problems discussed above operate with the

assumption that all tasks and domains are accompanied with reasonable, albeit limited

amount of supervision, so that the expressive power of the chosen network architecture was

not limited by scarcity of labeled data. But in practice there might be tasks where the number

of training examples is very small, e.g. due to the high cost of labeling. This is the case in

few-shot learning (Vinyals et al., 2016; Oreshkin et al., 2018), where the training and testing

datasets consist of numerous supervised tasks, each containing just a handful of labeled

samples, as shown in Figure 1.5. Although all tasks are simultaneously available, similarly

to task transfer and MTL, the task distribution is different in the train and the test phases,

similarly to domain adaptation. Differently from all previous setups, the test dataset consists

of completely new tasks that have never been observed during training, with data coming

from the same or even from unseen domains. Novel tasks are still accompanied with the

same limited supervision, so the trained model should be able to generalise well from the

available labeled test data.

Standard supervised learning requires training a new model from scratch for each task,

which would result in quick overfitting since there is not enough training examples, especially

when the neural network has a lot of parameters. Alternatively, if we opt for a smaller network

in pursuit of handling overfitting, we can significantly limit the capacity and the predictive

abilities of the model. Both scenarios are undesirable, which calls for a better utilisation of

available supervision. Instead of relying entirely on the data distribution within a single task,
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few-shot learning shifts focus towards the task distribution, and extracts information on a

meta-level, which is sometimes referred to as learning to learn, or meta-learning (Finn et al.,

2017; Ravi & Larochelle, 2017).

1.1.6 Multi-domain learning

While few-shot learning can be viewed as an extreme case of data insufficiency, multi-

domain learning (MDL) (Rebuffi et al., 2017b; Mallya et al., 2018) considers a milder setup,

with task-specific datasets being of various yet reasonable sizes. Once more, the goal is to

maximise the collective performance on a pre-defined set of tasks. In MDL, all tasks are of

the same type, but they differ in the data domain and the corresponding output space, similar

to continual learning or domain adaptation. The pool of tasks or, equivalently, domains in

MDL is usually much smaller than in few-shot learning, but at the same time the number of

labeled examples per category is much higher. Conceptually, MDL is very close to MTL,

since all tasks are available concurrently, and there are no shifts in data distributions between

the train and the test phases.

Standard supervised learning applied individually to each domain is a reasonable way

to approach MDL. Such strategy, however, is memory inefficient, as it requires to store

a separate model instance for each domain, which can result in a large memory footprint

considering that state-of-the-art networks require billions of parameters to be trained. MDL

directly addresses the problem of uncontrollable growth of the model size when the same

type of task is solved on multiple domains, and aims to reduce the total number of learnable

parameters. While no specific parameter budget is imposed on the model, the core motivation

of MDL is to exploit relatedness of the tasks in order to improve the overall performance

while keeping the number of domain-specific parameters as small as possible.

1.1.7 Challenges and goals

We focus on the two transfer learning problems that aim to solve the same type of task

on multiple domains: few-shot learning and multi-domain learning. Both problems are

characterised by the scarcity of available data, which makes the model highly prone to

overfitting. Limited amount of data, while being a challenge on its own, imposes additional

restrictions on the possible architecture designs, since high-performing networks tend to

have a lot of trainable parameters. Our goal in this thesis is to develop models for these two

types of problems that would allow for high specialisation to each task and domain while

minimising the number of domain-specific trainable parameters.
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1.2 Contributions

This thesis is based on two main contributions towards few-shot learning, discussed in

Section 1.1.5, and multi-domain learning, discussed in Section 1.1.6. As the first contribution,

we propose a Bayesian framework with shared amortised variational inference for few-shot

learning. The second contribution introduces a novel multiplicative adaptation module for

efficient network re-use in the context of multi-domain learning. Below, we provide more

details regarding each of the contributions.

• Shared amortised variational inference for few-shot learning. When only a few

labeled examples are available per category, straightforward re-use of standard deep

learning models leads to overfitting and becomes unpractical (Finn et al., 2017; Vinyals

et al., 2016). The main goals of few-shot learning are to overcome the challenges

imposed by scarcity of data within a single task by having access to a large pool of

related tasks, and to leverage similarities between them through knowledge transfer.

Overfitting, however, is not the only problem in few-shot learning. Low data regime

also results in high variance of the model predictions which must be properly accounted

for. Probabilistic modeling is a natural way to handle model uncertainty, and it is the

reason we choose this framework to approach few-shot learning problem. With the

probabilistic framework, predictions are usually made by sampling from the prior or

the posterior which are defined by the considered graphical model. Previous works in

this realm use either fixed or learnable but task-agnostic priors. Additionally, some

models use implicit distributions obtained through meta-optimisation which can be

computationally expensive when the entire network is being meta-learned.

Our first contribution proposes a Bayesian approach, where parameters of the task-

specific classifier are viewed as latent variables. We model both the prior and the

posterior over these latent variables explicitly as conditional distributions, where the

prior is conditioned on the train set of the task, and the posterior is conditioned on

the union of the train and test sets. Since the true posterior is intractable, we use

variational inference (Kingma & Welling, 2014; Rezende et al., 2014) to approximate

it. We parameterise the prior and the posterior with the shared amortised inference

network which maps data to distribution parameters in a single feedforward pass. We

show that the proposed model, which we denote as SAMOVAR, not only achieves

competitive results on the three commonly used few-shot learning benchmarks, but

also preserves prediciton uncertainty, unlike the previous approach which only uses

the prior conditioned on the train set.

This work was published at the International Conference on Machine Learning in 2020.
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• Modulation adapters for multi-domain learning. An important property of multi-

domain learning (MDL), compared to other problems which involve transfer of knowl-

edge between tasks, is its focus on the parameter budget. MDL motivates to explore

various trade-offs between the model performance and the number of parameters

trained per domain, favoring solutions that are both well performing and memory

efficient. A reasonable approach to MDL is to share as many parameters as possible

between the domains, adding only a small memory overhead per task. In practice,

it is usually achieved by pre-training a feature extractor on the largest domain, and

adjusting it for the remaining ones. Approaches to network adjustment in the literature

vary a lot, and include binary masking of convolutional weight tensors, insertion of

adaptation layers in different parts of the network and data-dependent finetuning.

Our second contribution belongs to the group of works that modify pre-trained and fixed

base feature extractor with learnable domain-specific adaptation units. Prior works in

this group either leave pre-trained layers unchanged, placing domain-specific adapters

between the pre-trained convolutions, or they affect only a subset of parameters in the

pre-trained convolutional layer, which limits the potential for adaptation. We propose

a novel adaptation unit, named MAD, which, unlike previous continuous adapters,

affects the entire convolutional weight tensor in a multiplicative manner while having

fewer parameters than the layer itself. We also propose to factorise the adapter as

a product of two matrices with a smaller intermediate dimension to further reduce

the parameter budget. Both the full and the factorised versions of our model achieve

state-of-the-art results on the two most common multi-domain benchmarks. In ablation

studies we also show the benefit of multiplicative adaptation compared to additive.

1.3 Thesis outline

The rest of the thesis has the following structure:

• In Chapter 2, we describe the two tasks that are the main focus of this thesis: few-

shot learning and multi-domain learning. For each of these tasks we make a detailed

overview of the major directions of research that have been considered in the literature,

as well as review the works that explore the mentioned frameworks.

• The focus of Chapter 3, which presents the first contribution of the thesis, is the

few-shot learning problem. We propose a Bayesian approach to the task within the

probabilistic framework, where both the prior and the posterior are conditioned on the

data, and both distributions are modeled with a shared amortised inference network.
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• In Chapter 4, which presents the second contribution of the thesis, we focus on the

multi-domain learning problem. We propose a novel type of adaptation modules that

adjust pre-trained feature extractors to novel domains via modulation of filters in the

convolutional layers.

• Chapter 5 contains the summary of the presented contributions, as well as the discussion

of the possible ideas for future work.



Chapter 2

Background

In this chapter, we focus on the areas of transfer learning that are most relevant to the

contributions of this thesis. In Section 2.1, which is related to the contributions in Chapter 3,

we discuss major research directions in few-shot learning, and provide some examples of

work in them. Section 2.2, which is related to the contributions in Chapter 4, covers the

research that has been done in multi-domain learning.

2.1 Few-shot learning and meta-learning

One of the most fascinating features of the human brain is its ability to leverage previous

experience to generalise while learning new tasks, as opposed to standard deep learning

models which are usually highly specialised and restricted to solving specific problems.

Inspired by the human ability to adapt to new tasks while having access to just a handful of

labeled examples, meta-learning, often described as “learning to learn”, has attracted a lot

of attention recently. Meta-learning has a number of applications, including reinforcement

learning (Finn et al., 2017; Mishra et al., 2018) and few-shot learning (Snell et al., 2017;

Oreshkin et al., 2018). In this thesis, we focus on the few-shot image classification problem

where a model is trained to solve multiple classification tasks while observing a small number

(e.g. five or less) of training samples per category in each task. Unlike standard image

classification where the goal is to train the parameters θ of a model M which maps an image

to the label, meta-learning aims to learn the parameters Θ of the algorithm A which maps the

labeled small dataset to the parameters θ of the model M that would generalise well on the

task associated with this dataset.

More formally, for each few-shot image classification task there is a distribution over

classification tasks p(T ) which contains images from C fi C̃ classes (C fl C̃ = ÿ). During

the meta-training phase, each task τ is sampled from classes C and consists of the pair
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Dτ
meta-train = {Dτ

train, Dτ
test}, where Dτ

train is the train set (also referred to as the support set),

and Dτ
test is the test set (also referred to as the query set). Both sets have the same structure

and consist of the pairs {(Xτ,train
k,n , Y τ,train

k,n )}K,N
k,n=1 and {(Xτ,test

m,n , Y τ,test
m,n )}M,N

m,n=1, respectively.

Here, Xτ,train
k,n and Xτ,test

m,n are the images, Y τ,train
k,n and Y τ,test

m,n are the corresponding labels, N is

the total number of classes in the task τ , K and M are the number of train and test samples

per category. Originally, K and N used to be small numbers common for all tasks T , and

together they formed a K-shot N -way episode τ . However recently, a more general setup has

been considered where both K and and N may vary across the episodes (Triantafillou et al.,

2020). During meta-testing, the trained algorithm is evaluated on the D̃τ̃
meta-test which has the

same structure as Dτ
meta-train, but the tasks τ̃ are now sampled from the remaining classes C̃.

Approaches to few-shot learning that have been proposed in the literature vary a lot, and

include learning of metric spaces, meta-optimisation, probabilistic modeling and transductive

learning. Below, we discuss major directions of research on this topic and provide a few

examples that make use of these approaches.

2.1.1 Metric learning

Metric learning is one of the most well known approaches that are used for image classifica-

tion (Weinberger et al., 2006; Guillaumin et al., 2009). The idea is to learn a parameterised

distance metric so that examples that belong to the same category are as close to each other

as possible, while the opposite is true for those from different categories. The approach can

also be viewed as representation learning with a non-parametric classifier induced by the

chosen metric and the class assignment rule. In few-shot learning terms, this is a mapping

of the train data Dτ
train = {Xτ

train, Yτ
train} into a task-specific classifier cτ (·) which is able to

classify test samples Xτ
test. Models that fall into this category differ roughly in three aspects:

1) how the feature representation is computed, 2) the distance function, and 3) the decision

rule that assigns the label depending on the computed distance.

In Matching Networks, Vinyals et al. (2016) define the task-specific classifier cτ (·) as a

linear combination of the train labels Y τ
train with attention mechanism a(·, ·) as weights:

Y τ,test =
KN
ÿ

i=1

a(Xτ,test, Xτ,train
i )Y τ,train

i (2.1)

Depending on the form of a, the classifier can have different interpretations and, thus,

different properties. For example, if a is a kernel, (2.1) becomes a kernel density estimator.

It can be a k-nearest neighbors classifier, if a is non-zero only for k training samples Xτ,train
i

that are closest to Xτ,test according to some distance metric. In Matching Networks (Vinyals
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Fig. 2.1 For each class n, its prototype cn is obtained by averaging embeddings of the samples

from the support set that belong to the same class. Illustration taken from (Snell et al., 2017).

et al., 2016), the attention mechanism is the softmax over the cosine distance dcos:

a(Xτ,test, Xτ,train
i ) =

exp
1

dcos

1

f(Xτ,test), g(Xτ,train
i )

22

qKN
j=1 exp

1

dcos

1

f(Xτ,test), g(Xτ,train
j )

22 . (2.2)

Here f and g are embedding functions parameterised by neural networks. For better gen-

eralisation, the authors propose to make the embeddings task-specific by conditioning on

Dτ
train. In particular, for g(Xτ,train, Dτ

train) they use a bidirectional Long Short-Term Memory

(LSTM) network (Hochreiter & Schmidhuber, 1997) with Dτ
train considered as a sequence.

As for f(Xτ,test, Dτ
train), they use LSTM with read-attention over Dτ

train, with K unrolling

steps.

In Prototypical Networks, Snell et al. (2017) learn a non-linear mapping f such that

the embedded examples from the same category n form a cluster around a task-specific

representation of that category cτ
n, as shown in Figure 2.1. The latter is referred to as a

prototype, and it is computed as the average of the embedded examples of the same class

from the train data Dτ
train of the task τ :

cτ
n =

1

K

K
ÿ

i=1

f(Xτ,train
i )[Y τ,train

i = n]. (2.3)

Proximity of the embedded test sample Xτ,test to the class prototypes {cτ
n}N

n=1 is measured

by the predefined distance function d, and class probabilities are then assigned by computing

softmax over these distances:

p (Y τ,test = n|Xτ,test) =
exp (≠d(f(Xτ,test), cτ

n))
qN

j=1 exp
1

≠d(f(Xτ,test), cτ
j )

2 . (2.4)

The authors show that for distance functions that belong to the class of regular Bregman

divergences (Bregman, 1967), Prototypical Networks perform mixture density estimation on



2.1 Few-shot learning and meta-learning 16

Fig. 2.2 Visualisation of Relation Network architecture for few-shot learning. It consists of

two main blocks: feature extractor and relation module which predicts similarity between

embedded samples and class representations. Illustration taken from (Sung et al., 2018).

the support set with an exponential family density. In particular, they use Euclidean distance

which corresponds to spherical Gaussian densities. In one-shot setup (K = 1), Prototypical

Networks are equivalent to Matching Networks, since the prototype is computed over a single

example. This is no longer the case when K > 1.

Unlike previous approaches, Relation Network (Sung et al., 2018) directly learns a non-

linear comparator g named “relation module” which determines whether samples embedded

with a feature extractor f belong to the same categories. For each class n and task τ ,

feature embeddings of the training examples {f(Xτ,train
i,n )}K

i=1 are summed to form a class

representation cτ
n. After that, the embedded test sample f(Xτ,test) is concatenated with

cτ
n, and the resulting vector is put through the relation module g to obtain a relation score

r œ [0, 1] which measures similarity between f(Xτ,test) and cτ
n. This score is regressed to the

true label, which is equal to 1 when the test sample and the class representation belong to the

same class, and 0 otherwise. The model is trained by minimising the mean square error.

While being an important baseline for few-shot learning, Prototypical Networks have

one major drawback: the feature embedding is fixed after being trained, meaning that no

adaptation to newer tasks is possible during deployment. Oreshkin et al. (2018) build their

approach TADAM upon this model, and propose to condition the feature extractor f(X, Γ
τ )

on the train set Dτ
train of the task τ in order to make the metric space task-specific. For

that, they propose to use the FiLM conditioning layer (Perez et al., 2018) where a feature-

wise affine transformation with learnable parameters Γ
τ = {γτ , βτ } is applied after each
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Fig. 2.3 Few-shot learning architecture in TADAM. Feature embeddings of the support set

are averaged and put through the TEN module to obtain parameters of the FiLM layers.

Illustration taken from (Oreshkin et al., 2018).

convolutional layer of the feature extractor f :

hl+1 = γτ
l § hl + βτ

l . (2.5)

These coefficients are task-specific, and they are predicted by a separate task embedding

network (TEN) which takes as input the average of the prototypes 1
N

qN
n=1 cτ

n produced by

the unaltered feature extractor f(X, 0). This makes the latter dynamic, depending on whether

parameters Γ
τ of the transformation are being given to the network. The base network

f(X, 0) is in fact task-agnostic: it is fixed after being pre-trained on a standard classification

task on the entire meta-train set Dmeta-train, and only TEN is being few-shot learned through

episodic training. In addition to that, the authors suggest to scale the distance metric from

(2.4) with a non-negative temperature α, which can be either learned or cross-validated:

p (Y τ,test = n|Xτ,test) =
exp (≠αd(f(Xτ,test), cτ

n))
qN

j=1 exp
1

≠αd(f(Xτ,test), cτ
j )

2 . (2.6)

The authors show that, depending on the value, parameter α either minimises the overlap of

the clusters by pushing test embeddings closer to the corresponding prototypes, or performs

assignment correction by pushing apart the test embedding and the prototypes of the incorrect

categories. The full workflow of TADAM is shown in Figure 2.3.

Qiao et al. (2018) also propose to pre-train a feature embedding network fθ with parame-

ters θ on a standard classification task and then fix it. However, they replace the last fully

connected layer, which represents the linear classifier in the pre-training task, with the set of

category-specific vectors wτ = {wτ
n}N

n=1. As shown in Figure 2.4, for each category n the

corresponding weight vector wτ
n is the output of the category-agnostic amortised inference
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Fig. 2.4 For each class n, corresponding weight vector wτ
n in the classifier is obtained from

class representation sτ
n using inference network gφ. Illustration taken from (Qiao et al., 2018).

network gφ with parameters φ that takes the category representation sτ
n as input:

wτ
n = gφ(sτ

n). (2.7)

For task τ , with probability 1 ≠ pmean the statistic sτ
n is sampled uniformly from An, and with

probability pmean vector an is used as sτ
n, where An = fθ(Xn) is the set of all activations

obtained from the penultimate layer of the pre-trained feature extractor fθ fed with all

meta-train samples Xn from the category n, and an is the mean of these activations. The

minimisation loss then looks as follows:

L(φ) = Es

A

≠wτ
Yτ

test
fθ(X

τ
test) + log

N
ÿ

n=1

ew
τ
nfθ(Xτ

test)

B

+ λ||φ|| (2.8)

For inference on novel categories {m}M
m=1 during meta-test, the authors suggest to replace

the sampled category representation sτ̃
m with the set of all category-specific activations

Ãm = fθ(X̃train,m) obtained by putting the entire meta-test training set X̃train,m from the

category m through the feature extractor. These embeddings are put through the amortised

network gφ to obtain a set of category-specific classification vectors W̃m = {w̃m} = gφ(Ãm).

Then, for each meta-test test sample X̃ test, the corresponding logit l̃n in the softmax function

is the maximum response out of all responses obtained using W̃n:

l̃n = max W̃nfθ(X̃
test). (2.9)

CNAPS (Requeima et al., 2019) combines inference of FiLM parameters ψτ
f used to

adapt feature representations fθ(x; ψτ
f ) to the task τ , as in TADAM, with learning a func-

tion approximator that infers task- and category-specific parameters of the linear classifier

ψτ
w = {ψτ

w,n}N
n=1 from data representations {fθ(D

τ
train,n, ψτ

f )}N
n=1, as in (Qiao et al., 2018).
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Fig. 2.5 Few-shot learning architecture with autoregressive feature adaptation in CNAPS.

Layers of the feature extractor fθ are interleaved with the task encoding networks ψf . For

each layer f i
θ, the corresponding network ψi

f produces its FiLM parameters from the features

computed by the preceeding layer f i≠1
θ . Illustration taken from (Requeima et al., 2019).

Parameters θ of the shared task-agnostic feature extractor fθ are similarly pre-trained on some

large image classification dataset, and then fixed. While Qiao et al. (2018) uses the entire

meta-train set Dmeta-train to compute the category representation sτ
n , CNAPS remains within

the paradigm of K-shot N -way episodic training, and conditions the category representation

on the training data Dτ
train of the task at hand. Let Kτ

n be the number of train samples for

category n in the task τ . To aggregate these representations in a flexible and permutation

invariant manner, and to allow the model to work with arbitrary Kτ
n , the authors compute the

mean embedding, i.e. the prototype, and provide it as input to the task-agnostic network to

infer parameters ψτ
w,n:

ψτ
w,n = ψw

Q

c

a

1

Kτ
n

ÿ

XœDτ
train,n

fθ(X, ψτ
f )

R

d

b . (2.10)

As for adaptation of the feature extractor fθ, the authors propose autoregressive inference of

FiLM parameters, unlike TADAM which predicts all FiLM parameters at once, after a single

forward pass of Dτ
train through the network fθ. In CNAPS, the feature extractor is divided into

several parts denoted as “layers” f i
θ, and each layer i is accompanied by a separate shared

inference network ψi
f which produces corresponding FiLM parameters. Network ψi

f takes as

input a global task representation zτ
G produced by a global set encoder of Dτ

train, concatenated

with the local task representation zτ
AR obtained by a local set encoder of preceding feature

maps f i≠1
θ (Dτ

train, ψ
τ,i≠1
f ). Visualisation of the autoregressive feature extractor is shown in

Figure 2.5. Test samples Xτ
test are put through the adapted feature extractor fθ(x; ψτ

f ), and

the inferred classifier ψτ
w is applied to them to produce the softmax logits.

Bateni et al. (2020) build their model upon CNAPS, and refer to it as Simple CNAPS.

While considering the same architecture design for feature extractor as in Figure 2.5, the

authors argue that autoregressive adaptation is not necessary, and propose to condition
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prediction of FiLM parameters solely on zτ
G, the global set encoding of the training data

Dτ
train. Differently from CNAPS, Simple CNAPS does not use a linear classifier, and, as a

result, does not perform inference of its parameters. Instead, the authors use a well-known

metric-based classifier, similar to (2.4), but replace the Eucledian distance metric with the

Mahalanobis distance:

d(X, cτ
n) =

1

2
(X ≠ cτ

n)T (Qτ
n)≠1(X ≠ cτ

n). (2.11)

Here, Qτ
n

is a task- and category-specific covariance matrix that depends on the covariance

Σ
τ
n of the category n within the task τ , as well as on the total covariance Σ

τ of the task and

the hyper parameters λτ
n and β:

Qτ
n = λτ

nΣ
τ
n + (1 ≠ λτ

n)Στ + βI. (2.12)

2.1.2 Meta-optimisation

A significant drawback of the distance-based meta-learning is its limited model adaptation to

unseen tasks. Since the task-specific classifiers are determined by the similarity metric used

in a particular few-shot learning model, the only set of parameters that is trained directly in

this group of works is the feature extractor, and it stays unchanged during meta-testing. At the

opposite end of the spectrum, however, is full network finetuning on each task, both during

meta-training and meta-testing. Pre-training the network, common in few-shot learning,

can thus be viewed as learning a good network initialisation. There is no guarantee though

that this initialisation will actually be a good starting point for further parameter tuning.

Meta-optimisation aims to directly optimise model performance with respect to network

parameter initialisation, such that rapid adaptation through a small number of parameter

updates would lead to good performance on a new task.

Ravi & Larochelle (2017) observed that the gradient descent update rule resembles the

update of the cell state in an LSTM (Hochreiter & Schmidhuber, 1997). The latter is defined

as follows:

ct = ft § ct≠1 + it § c̃t, (2.13)

where ft and it are the forget and input gates at step t respectively, ct≠1 is the cell state at

step t ≠ 1, and c̃t is the candidate cell state at step t. Assuming ct = θt and ct≠1 = θt≠1

are the parameters of the model at steps t and t ≠ 1, c̃t = ≠Òθt≠1
Lt is the gradient of the

optimisation loss at step t, it = αt is the learning rate at step t, and ft = 1, (2.13) can indeed

be viewed as:

θt = θt≠1 ≠ αtÒθt≠1
Lt, (2.14)
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Fig. 2.6 Computational graph in Meta LSTM. Steps of the gradient descent are viewed as

updates of the cell state in LSTM. A task-specific learner is updated using a series of T
batches {(Xtrain,i; Ytrain,i)}

T
i=1 from the train set, with each update t being predicted by a

meta-learner from the gradient of the loss on the previous batch t ≠ 1. After T updates,

performance of the learner is evaluated on the test set (Xtest; Ytest), and the gradient of this

loss is used to train the meta-learner. Illustration taken from (Ravi & Larochelle, 2017).

which is the definition of the gradient descent update. The meta-training procedure of the

model, which was denoted as Meta LSTM, is shown in Figure 2.6. To make the learning rate

adaptive, as well as to have a controllable regularizer of the learner parameters, both it and

ft are learned as the following functions:

it = σ
1

WI ·
Ë

Òθt≠1
Lt, Lt, θt≠1, it≠1

È

+ bI

2

(2.15)

ft = σ
1

WF ·
Ë

Òθt≠1
Lt, Lt, θt≠1, ft≠1

È

+ bF

2

(2.16)

An interesting property of this meta-learner is that by learning c0 = θ0, it is actually learning

a good initialisation point for parameters θ, such that a small number T of LSTM state

updates would result in a model M(X; θT ) that generalises well on the current task.

Finn et al. (2017) later showed that learning a good initialisation of the model parameters

θ0 by meta-learning the gradient descent alone, while using constant learning rate and

regularizer provides better and more stable results. In their approach MAML, the authors

optimise the performance of the model M(Xτi
test; θτi

T ) with respect to θ0, where θτi

T represents

the parameters after T steps of the gradient descent with the constant learning rate α on

the train data Dτi

train = {Xτi

train, Yτi

train} of the task τi. For simplicity, let T = 1. Then the
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meta-objective is:

min
θ0

ÿ

τi≥p(T )

L [M(Xτi

test; θτi

1 ), Yτi

test]

= min
θ0

ÿ

τi≥p(T )

L [M (Xτi

test; θ0 ≠ αÒθ0
L [M (Xτi

train; θτi

0 ) , Yτi

train]) , Yτi

test] .
(2.17)

The procedure of the local, task-specific gradient update of θ0 on the training data Dτi

train of

the task τi with the constant learning rate α is sometimes referred to as the inner loop of the

meta-learning algorithm:

θτi

1 = θ0 ≠ αÒθ0
L [M (Xτi

train; θτi

0 ) , Yτi

train] , (2.18)

and it is followed by the global meta-gradient update of θ0 on the test data Dτi
test of the task τi

with the constant learning rate β, which is sometimes referred to as the outer loop:

θ0 = θ0 ≠ β
ÿ

τi≥p(T )

Òθ0
L [M (Xτi

test; θτi

1 ) , Yτi

test] . (2.19)

Since meta-optimisation of MAML requires computing gradients of the gradients, an ad-

ditional backward pass through M is necessary in order to compute the Hessian-vector

products. The authors also considered the first-order approximation of the model, where the

second derivatives are omitted, and this approach turned out to perform nearly as well.

In Reptile (Nichol et al., 2018), the authors further investigate the first-order optimisation

approach to meta-learning, where the goal is to learn a good initialisation of the neural

network parameters while treating the gradients as constants and ignoring the gradients

of higher order. Reptile is closely related to the first-order version of MAML, but it does

not require splitting the meta-train data Dτi

meta-train = {Xτi

meta-train, Yτi

meta-train} into the train

Dτi

train and the test Dτi
test sets for gradient updates. While using a similar “inner-outer loop”

structure of the algorithm, the authors propose to treat θτi

T ≠ θ0 as a gradient, and update the

initialisation in this direction instead of computing the gradient in the outer loop. The inner

loop here is still defined by (2.18), but the outer loop now looks as follows:

θ0 = θ0 + β
1

I

I
ÿ

i=1

θτi

1 ≠ θ0. (2.20)

When the number of the gradient updates T = 1, the algorithm corresponds to stochastic

gradient descent on the expected loss. However, when T > 1, as in Reptile, such corre-
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spondence no longer takes place, and the difference comes from the terms related to the

derivatives of the loss of second and higher orders.

All of the aforementioned approaches finetune and meta-learn initialisation for the entire

neural network, which scales poorly with the size of the network, and is much more prone to

overfitting as data is scarce on each task. MTL (Sun et al., 2019) parameterises the weight

tensor in the convolutional layers of the network as a product of the base weight tensor

R
M◊N◊K◊K and a tensor scaler RM◊N◊1◊1. The same representation is used for the bias

weight vector. The base tensors are first pre-trained with the standard classification task on

the meta-train set Dmeta-train, which will later stay fixed. After that, the newly introduced

scaler weight tensors are learned via the stochastic gradient descent on the expected loss,

while the task-specific linear classifiers are meta-trained using MAML. In addition to that,

the authors propose to keep track of the classes that yield the worst performance on the task

and use them to sample the “hard” tasks.

In R2-D2, Bertinetto et al. (2019) propose to replace the gradient descent or LSTM

updates in the inner loop of meta-optimisation models, referred to as the base learners,

with standard machine learning algorithms that involve closed-form solutions, such as ridge

regression. The idea is to meta-learn in the outer loop the feature embedding network f and

hyperparameters ρ of the base learner, so that the ridge regression applied to the last fully

connected layer W in f worked well on new tasks. In this case W serves as a linear predictor

which takes as input the feature embedding f≠1(X) produced by the preceding layers. As

in previous approaches, such formulation of the problem requires backpropagation through

the base learner. For each task τ , R2-D2 applies standard automatic differentiation to the

closed form solution of the ridge regression with a regularisation coefficient λ œ ρ to obtain

a task-specific classifier W τ :

W τ = arg min ||f≠1(X
τ
train)W ≠ Yτ

train||
2 + λ||W ||2

=
1

f≠1(X
τ
train)

T f≠1(X
τ
train) + λI

2≠1
f≠1(X

τ
train)

T Yτ
train.

(2.21)

To prevent a quadratic growth with the embedding size of the matrix f≠1(X
τ
train)

T f≠1(X
τ
train)

to be inverted, the authors use the Woodbury matrix identity (Petersen & Pedersen, 2008). In

addition to that, the linear classifier is affinely transformed with hyperparameters α, β œ ρ:

Yτ
test = αf≠1(X

τ
test)W

τ + β. (2.22)

In a similar vein, Lee et al. (2019) consider the support vector machine (SVM) as a base

learner in their MetaOptNet.
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Fig. 2.7 The probabilistic graphical model associated with MAML. Here xjn
corresponds to

Dτ in out notation, and φj corresponds to φτ . Illustration taken from (Grant et al., 2018).

2.1.3 Probabilistic modeling

One of the prominent features of few-shot learning compared to standard deep learning is

that the model predictions heavily depend not only on the model used for training but also on

the training data Dτi

train available for tasks τi œ T , since each of them is represented by just a

handful of labeled examples. Scarcity of data introduces high uncertainty about the obtained

solutions, but none of the approaches discussed so far measure it directly. This makes

probabilistic modeling a convenient framework to reason about the predictive functions and

to evaluate the confidence in the results. Another benefit of probabilistic inference is its

potential to make the models more robust and to prevent overfitting which is not uncommon

in a low data regime, as in few-shot learning (Mishra et al., 2018).

Grant et al. (2018) propose a hierarchical probabilistic model for meta-learning, and

suggest to view MAML as empirical Bayes. Assuming φτ are parameters that should

be specific to task τ œ T while simultaneously affecting parameters φτ Õ

for other tasks

τ Õ œ T , the mutual dependence of these parameters can be enforced through their individual

dependence on the shared task-agnostic parameters θ. The corresponding probabilistic

graphical model is shown in Figure 2.7. Then, the point estimate for θ can be obtained by

maximising the following marginal likelihood of test data Dτ
test:

p(Dτ
test|θ) =

⁄

p(Dτ
test|φ

τ )p(φτ |θ)dφτ . (2.23)

In the context of MAML, the local φτ are modelled as the updated parameters obtained after

one or a few steps of the inner loop gradient descent on Dτ
train, and the global θ are modelled

as the initialisation from which the optimisation starts. This fast adaptation procedure can be

viewed as an estimator φ̂τ of the true parameters φτ ≥ p(φτ |θ):

φ̂τ = θ ≠ αÒθ [≠ log p(Dτ
train|θ)] , (2.24)
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Fig. 2.8 Inference performed over φi transforms the original graphical model (left), which

corresponds to MAML, into the graphical model in the center. In PLATIPUS (right),

additional dependency of the prior on the training data is introduced. Here (xi,j, yi,j)
corresponds to Dτ in out notation, and φi, θi correspond to φτ and θτ , respectively. Illustration

taken from (Finn et al., 2018).

which can be used for maximisation of the approximated marginal likelihood (2.23) since the

integral is intractable:

≠ log p(Dτ
test|θ) ¥ ≠ logp(Dτ

test|φ̂
τ )

= ≠ log p(Dτ
test|θ ≠ αÒθ [≠ log p (Dτ

train|θ)]) .
(2.25)

This is the exact optimisation objective used in the original MAML paper, which makes

it an empirical Bayes applied to the hierarchical probabilistic model in Figure 2.7. The

authors argue that the truncated gradient descent provides an estimator φ̂τ which is a value of

the mode of an implicit posterior p(φτ |Dtest, θ). This posterior is the result of treating the

empirical loss as a negative log-likelihood p(Dtest|φ
τ ), as well as treating the regularisation

loss combined with early stopping as a prior p(φτ |θ):

p(φτ |Dtest, θ) Ã p(Dtest|φ
τ )p(φτ |θ) (2.26)

The authors also propose an improved version of MAML, referred to as LLAMA, which

replaces the point estimate in (2.23) with the Laplace approximation of the negative log

posterior:

≠ log p(Dτ
test|θ) ¥ ≠ log p(Dτ

test|φ̂
τ ) ≠ log p(φ̂τ |θ) +

1

2
log det(Hτ ), (2.27)

where det(Hτ ) is a determinant of the Hessian matrix of its second-order partial derivatives.
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In PLATIPUS, Finn et al. (2018) propose to use variational inference to model the un-

certainty in few-shot learning. Similarly to LLAMA, they consider a generative model

p(θ, φτ ) = p(φτ |θ)p(θ) shown in Figure 2.8 (left). They also use the same MAP approxi-

mation φ̂τ via truncated gradient descent from (2.24) as the inferred approximate posterior

q(φτ |θ, Yτ
train, Xτ

train) ¥ δ(φτ = φ̂τ ), where δ(·) is the Dirac delta. This creates a factor

over parameters φτ , and turns the original graphical model into the one shown in Figure 2.8

(middle), where the train data Dτ
train = {Yτ

train, Xτ
train} and the global parameters θ become

conditionally independent. To model the global parameters θ, the authors use a learnable

Gaussian prior p(θ) = N (µθ, σ2
θ), where the covariance σ2

θ is diagonal. The approximate

posterior qψ(θ|Yτ
test, Xτ

test) is then modelled with the following inference network with pa-

rameters ψ:

qψ(θ|Yτ
test, Xτ

test) = N (µθ + γqÒ log p(Yτ
test|X

τ
test, µθ); vq) , (2.28)

Where vq is the trainable variance. The optimisation objective is the variational lower bound

of the approximate marginal log-likelihood:

log p(Yτ
test|X

τ
test, Dτ

train)

Ø Eθ≥qψ

Ë

log p(Yτ
test|X

τ
test, φ̂τ ) + log p(θ)

È

+ H (qψ(θ|Xτ
test, yτ

test)) ,
(2.29)

where Eθ≥qψ
is an expectation over the approximate posterior qψ, and H is its entropy. The

authors admit that the proposed approximation of the marginal likelihood via the point

estimation φ̂τ is crude, and propose to to compensate for that by making the prior over θ more

expressive. This is achieved by making it task-specific and conditioning it on the training

data Dτ
train:

p(θτ |Yτ
train, Xτ

train) = N (µθ + γqÒ log p(Yτ
train|X

τ
train, µθ); vq) . (2.30)

Kim et al. (2018a) rely on the Stein Variational Gradient Descent (SVGD) (Liu & Wang,

2016) to perform non-parametric variational inference. The choice of SVGD is motivated by

its ability to draw samples from the target distribution without requiring it to be tractable,

unlike traditional variational inference, while having higher convergence rate compared to

MCMC. The authors consider Empirical Bayes applied to hierarchical probabilistic model,

similar to (2.23). Unlike Grant et al. (2018), however, they do not use a single point estimator

φ̂τ obtained via truncated gradient descent to approximate the intractable integral. Instead,

the learnable initialisation θ0 is replaced with an ensemble of M learnable initialisations

Θ0 viewed as M initial particles in SVGD. After that, SVGD is used to obtain M samples
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from the posterior p(φτ |Dτ
train, Θ0) in order to compute the Monte Carlo approximation of

the marginal likelihood:

p(Yτ
test|X

τ
test, Dτ

train, Θ0) ¥
1

M

M
ÿ

m=1

p(Yτ
test|X

τ
test, φτ

m), where φτ
m ≥ p(φτ |Dτ

train, Θ0). (2.31)

Algorithm-wise, this method, referred to as Bayesian Fast Adaptation (BFA), has the same

inner-outer loop structure as MAML, but the gradient descent updates in the inner loop are

replaced with SVGD updates, and there are M model instances that are being optimised both

in the inner and the outer loops, instead of one. BFA can be interpreted as Bayesian ensemble

with interaction between the individual models induced by SVGD, and it is equivalent to

MAML when M = 1, since SVGD reduces to gradient descent if there is only one particle.

The authors argue that, despite Bayesian inference, the model is prone to overfitting due to

performing empirical risk minimisation. For this reason they propose a novel Chaser Loss

defined by dissimilarity between the approximate task posterior p(φτ |Dτ
train, Θ0) and the true

task posterior p(φτ |Dτ
train fi Dτ

test, Θ0), which is measured by the distance d between the sets

of corresponding samples, and the final model is denoted as BMAML:

LBMAML(Θ0) =
ÿ

τœT

d(φτ
train, stopgrad(φτ

train + test))

=
ÿ

τœT

M
ÿ

m=1

||φτ
train,m ≠ stopgrad(φτ

train+test,m)||22.
(2.32)

All probabilistic models discussed so far are derived from MAML, and they directly

model network parameters as random variables, which limits their potential for probabilistic

inference and makes it computationally heavy. Similarly to the authors of PLATIPUS, Rusu

et al. (2019) replace the point estimation of the initialisation θ with the data dependent

distribution over it, as in (2.30). In their model LEO, the dimensionality problem is addressed

by replacing the direct modeling of network parameters θ with learning an amortised latent

encoding z of the data. The model embeds the training data Dτ
train into a low-dimensional

probabilistic latent space first, followed by meta-optimisation of the sampled embedding

“initalisation” zτ
0 in this space and subsequent decoding of the adapted latent representation

zτ into a distribution over task-specific classifier weights wτ . Both the latent code zτ and the

linear softmax classifier wτ are modelled as the sets of the class-specific vectors {zτ
n}N

n=1

and {wτ
n}N

n=1, respectively. More specifically, the training samples Xτ
train,n from the class n

go through a feature encoder, followed by Relation Net (Sung et al., 2018) which produces

parameters µτ
z,n and στ

z,n of the Gaussian distribution over the initialisation of the class-

specific latent code zτ
n,0 ≥ q(zτ

n,0|D
τ
train,n) = N (µτ

z,n, diag(στ
z,n)). After that, a sampled latent
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Fig. 2.9 Few-shot learning architecture in LEO. Illustration taken from (Rusu et al., 2019).

representation zτ
n,0 is decoded into the parameters µτ

w,n and στ
w,n of the Gaussian distribution

over the class-specific classifier weight vector wτ
n ≥ q(wτ

n|zτ
n,0) = N (µτ

w,n, diag(στ
w,n)). A

classifier wτ , composed of the sampled classifier vectors wτ
n stacked column-wise, is then

used to compute the loss on the train data Dτ
train for inner-loop optimisation of the latent

representations zτ = {zτ
n}N

n=1:

Ltrain(w
τ ) = ≠wY τ

train
· Xτ

train + log

A

N
ÿ

n=1

ew
τ
n·Xτ

train

B

, (2.33)

zτ
n = zτ

n,0 ≠ αÒzτ
n,0

Lτ
train. (2.34)

In the outer loop, which updates the parameters θ = {θe, θr, θd} of the encoder, relation and

decoder networks, the loss (2.33) is computed with updated weights wτ
n ≥ q(wτ

n|zτ
n) on the

test data Dτ
test, and it is combined with aditional terms for regularisation of the latent space:

Lτ
LEO(θ) = Ltest(w

τ ) + βDKL

1

q(zτ
n,0|D

τ
train,n)||p(zτ

n,0)
2

+ γ||stopgrad(zτ
n) ≠ zτ

n,0||
2
2 + R,

(2.35)

where p(zτ
n,0) = N (0, I), and R = λ1 (||φe||

2
2 + ||φr||

2
2 + ||φd||22) + λ2||Cd ≠ I||2, assuming

linear encoder, relation and decoder networks, and assuming Cd is the correlation matrix

between rows of φd. The full architecture of LEO is shown in Figure 2.9.

Gordon et al. (2019) use the same probabilistic model as in Figure 2.7 and Figure 2.8

(left). In their approach named VERSA, global parameters θ represent the parameters of the

shared feature extractor obtained through point estimation, and local parameters φτ © ψτ =

{wτ , bτ } represent the task-specific classifier and the bias vector inferred by the probabilistic

model. The goal is to learn an approximate predictive distribution further approximated with
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Fig. 2.10 Few-shot learning architecture in VERSA. For each class n, the corresponding

weight vector in the task-specific linear classifier is obtained by putting the class prototype

h
(n)

, computed on the support set of the task, through the amortised network. Illustration

taken from (Gordon et al., 2019).

L Monte Carlo samples:

q(Yτ
test|X

τ
test, Dτ

train, θ) =
⁄

p(Yτ
test|ψ

τ , θ)q(ψτ |Dτ
train, θ)dψτ

¥
1

L

L
ÿ

l=1

p(Yτ
test|ψ

τ
l , θ), where ψτ

l ≥ q(ψτ |Dτ
train, θ).

(2.36)

Similarly to (Qiao et al., 2018) and LEO (Rusu et al., 2019), VERSA performs context inde-

pendent amortised inference of the task-specific linear classifier wτ = {wτ
n}N

n=1 composed

of the class-specific vectors wτ
n:

qφ(wτ |Dτ
train, θ) =

N
Ÿ

n=1

qφ

1

wτ
n|Dτ

train,n, θ
2

. (2.37)

First, both the train samples Xτ
train and the test samples Xτ

test go through the feature extractor

hθ parameterised with θ. The prototype, i.e. the average embedding h
(n)

, is then computed

for each class n from Dτ
train. The amortisation network gφ with parameters φ takes each of

these prototypes as inputs, and infers parameters of the corresponding Gaussian distributions

over wτ
n and bτ

n with diagonal covariance. The classifier wτ and the bias vector bτ are sam-

pled from these distributions using the local reparameterisation trick (Kingma et al., 2015),

and they are further applied to the embedded test samples h(Xτ
test) to produce the softmax

output of the linear classification. The latter is used for the cross-entropy loss viewed as the

likelihood p(Yτ
test|ψ

τ , θ) in (2.36). The computational flow is shown in Figure 2.10. Due

to multiple amortisation, VERSA is able to handle tasks with arbitrary number of training

samples per class, i.e. “shots”, and with arbitrary number of classes per task, i.e. “ways”,



2.2 Multi-domain learning 30

which makes the model very flexible and easily scalable without changing the parameter

budget. Another advantage of the design is sole reliance on the feed-forward passes, which

enables fast inference at test time.

In Section 2.1 we discussed the most common directions of research in few-shot learning.

Despite the differences, many of them share the core incentive to develop an efficient way of

obtaining the task-specific parameters, e.g. a task-specific classifier for few-shot classification.

Our work in Chapter 3 is inspired by the approach to use probabilistic modeling in order

to infer weights of the task-specific classifier. Motivated by the lack of works that would

exploit the disparity between conditioning on the support set only, and conditioning on the

support and query sets combined, we propose a novel probabilistic inference scheme that

aims to minimise the distance between the distributions with these two types of conditioning.

2.2 Multi-domain learning

One of the biggest drawbacks of deep learning today is the requirement to train a new model

for each new task and domain, even when similar tasks have already been observed in the

past. Multi-domain learning (MDL) addresses this problem by training a universal model

which is able to solve a number of related tasks (e.g. image classification) on a number of

different data domains. MDL is partially related to the field of research which aims to create a

re-usable, universal (Bilen & Vedaldi, 2017) data representation capable of handling different

problems. However, this is not the direct goal of MDL. In general, multi-domain learning can

be described as searching for the trade-off between re-using fixed problem-agnostic feature

representations, and learning highly specialised problem-specific modules to adjust those

representations to the current task, all this while reducing the total number of parameters.

A common approach to MDL consists of two steps: a) pre-training and fixing some

feature extractor on a large dataset, e.g. ImageNet (Russakovsky et al., 2015), and b) adapting

it in some way with an additional set of learnable parameters specific to the domain at hand.

Various approaches to multi-domain learning have been proposed in the literature, which

can be roughly categorised into three families: masking methods, adaptation modules and

everything else. Below, we describe these groups in more details.

2.2.1 Masking methods

One way to adapt a pre-trained but fixed feature extractor to solving related tasks on new

domains is to partially re-use its convolutional filters by means of feature selection. Meth-
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ods which belong to this family choose relevant features for each domain d by applying

corresponding learnable masks αd to the weights in the pre-trained convolutional filters f .

These masks are binary (i.e. αd
mnkl œ {0, 1}), which is a significant advantage in terms of

per-task memory overhead, since they require as little as 1 extra bit per mask parameter. This

is especially valuable when masking is applied element-wise. Generally, neural network

weights are 32-bit float numbers, so binary masks would then result in 1/32 (3.12%) memory

overhead relative to the size of the base feature extractor (Mallya et al., 2018).

This is the case for Piggyback (Mallya et al., 2018), which is one of the first models that

introduced binary masks for MDL. For each domain d, and for each shared convolutional

layer with the weight tensor f œ R
M◊N◊K◊K , a real-valued tensor α̃d of the same shape is

learned. This tensor is first put through a hard binary thresholding function, also known as a

straight-through estimator, with hyperparameter τ as a threshold:

αd
mnkl =

Y

_

]

_

[

1, if α̃d
mnkl > τ,

0, otherwise
(2.38)

The obtained binary mask αd is then used for elementwise multiplication with the weight

tensor f , resulting in a new domain-specific convolutional weight tensor gd with the weights

[g]dmnkl = αd
mnkl · [f ]mnkl, (2.39)

where [g]dmnkl denotes an element of the convolution gd. Since the hard thresholding function

is non-differentiable, the authors suggest to update the real-valued tensor α̃d using gradients

computed for the masks αd, which can be viewed as noisy estimation of the true gradients

of αd. It is argued that such handling of backpropagation can serve as some form of

regularisation (Courbariaux et al., 2015; Hubara et al., 2016).

WTPB (Mancini et al., 2018) generalises the previous approach by considering an affine

transformation of the shared convolutional weight tensor f . This transformation depends

on the domain-specific binary mask αd, as well as domain-specific real-valued coefficients

kd
i , i œ {0, 1, 2, 3}:

gd = kd
0f + kd

11 + kd
2αd + kd

3f ¶ αd. (2.40)

Here, ¶ denotes an elementwise multiplication (otherwise known as Hadamard product), and

1 is a tensor of ones of the same shape as f . The process of learning the masks is the same as

in Piggyback: the binary tensor αd is obtained by applying the hard thresholding function

(2.38) to the real-valued tensor α̃d, and this function is replaced with the identity function

for backpropagation. Since there are only four additional real-valued parameters per layer
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compared to Piggyback, the final per-task memory overhead is still very small compared to

the base network.

Berriel et al. (2019) argue that different domains and/or tasks may have different memory

and computational complexity, with easier tasks requiring even less parameters, as opposed

to more difficult tasks. Their proposed model, denoted as BA2, is able to flexibly satisfy

the budget constraints defined by the user, by means of the channel-wise feature selection

applied to each shared convolution f œ R
M◊N◊K◊K in the base network. More precisely,

a binary control vector αd œ {0, 1}N is learned that masks entirely some of the N input

channels in f :

[g]dmnkl = αd
n · [f ]mnkl. (2.41)

This not only reduces the total number of domain-specific parameters even further, but also

affects the final compuatational graph: the masked convolutional channels can be removed

at inference time, resulting in lower computational complexity and storage requirements.

As in the aforementioned models, the binary mask vector αd is the output of the hard

thresholding function (2.38) applied to the real-valued vector α̃d, with the same approach to

backpropagation. To satisfy the specified budget β œ [0, 1], the authors define a constrained

optimisation problem with the following generalised Lagrange function:

αdú = arg min
αd

C

L(αd) + max
λØ0

A

λ

A

1

N

N
ÿ

n=1

αd
n ≠ β

BBD

, (2.42)

where L(αd) is the loss for domain d, and λ is the Karush-Kuhn-Tucker (KKT) multiplier.

2.2.2 Adaptation modules

Another common approach to MDL is to represent the network parameters as a combination

of domain-agnostic shared layers, referred to as the base network, and domain-specific

modules inserted into different parts of this base network, referred to as the adapters. This

structure is usually restricted to the feature extractor, and the following layers are generally

viewed as the output heads, which are individual for each domain and task. Adapters that

have been proposed in the literature differ not only in their expressive power, i.e. the degree

to which they can affect the parameters in the base network, but also in their connectivity, i.e.

how they interact with the layers in this base network. Similar to the masking approach, the

base network is pre-trained on some large dataset, and the weights of the feature extractor

are then fixed and shared across all domains.

In DAN (Rosenfeld & Tsotsos, 2018), each convolutional layer f œ R
M◊N◊K◊K in the

feature extractor is adapted to a new domain by applying a trainable linear transformation
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Fig. 2.11 Residual Adapters (left) vs Parallel Adapters (right). Illustration taken from (Rebuffi

et al., 2018).

αd œ R
M◊M to its weights. This is equivalent to inserting a 1◊1 domain-specific convolution

after each domain-agnostic K ◊ K convolution in the shared base network:

[g]dmnkl =
M
ÿ

i=1

αd
mi · [f ]inkl (2.43)

Adapters αd are only learned for new domains, and are not used for pre-training the feature

extractor. The authors argue that such linear transformations of the convolutional layers are

limited by the expressive power of the base network. This is probably not the case when

these convolutions have residual connections which preserve information from the previous

layers, making up for a possible loss of information in the base convolution.

Rebuffi et al. (2017a) go one step further, and add residual connections to these domain-

specific 1 ◊ 1 convolutions αd œ R
M◊M , referred to as Residual Adapters (RA):

[g]dmnkl =
M
ÿ

i=1

(1 + αd
mi) · [f ]inkl (2.44)

The structure of the residual block in the base ResNet feature extractor is described in

Figure 2.11 (left). Unlike DAN, RA uses these sequentially connected adaptation modules

during the pre-training stage, which empirically improves the model performance compared

to standard pre-tratining but makes the method less flexible about the changes in the design

of the adapters, e.g. when moving to a new task.

Parallel Adapters (PA) (Rebuffi et al., 2018) address this problem by proposing a different

topology of the adapter’s connectivity. More precisely, the sequential residual adaptation

module, which follows each K ◊ K convolution in the base network, is replaced with a
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Fig. 2.12 Procedure of covariance normalisation in CovNorm. As a result, each adaptation

layer A is approximated with a series of three transformations: projection into the input PCA

space with W̃x, followed by mini-adaptation with Mxy, and reconstruction into the output

PCA space with W̃y. Illustration taken from (Li & Vasconcelos, 2019).

learnable parallel residual bypass αd œ R
M◊N represented, again, by 1 ◊ 1 convolution:

[g]dmnkl = [f ]mnkl +

Y

]

[

αd
mn if k = l = (K ≠ 1)/2 + 1,

0 otherwise.
(2.45)

The structure of the ResNet block with the inserted PA modules is shown in Figure 2.11

(right). The additive nature of the adaptation allows to use the PA modules in a plug-and-

play manner, which increases their flexibility when moving to new domains and tasks, and

provides applicability to the off-the-shelf networks.

All the adaptation modules discussed so far make use of 1 ◊ 1 convolutions to modify the

weights of each K ◊ K convolution in the base network. This results in parameter reduction

≥ 1
K2 per layer compared to full finetuning. If there are a lot of domains (i.e. the number

of domains D ∫ K2), the total parameter budget may still be quite large. CovNorm (Li

& Vasconcelos, 2019) aims to further reduce the number of additional parameters required

for each domain d by using data-driven low rank approximation of existing adapters. The

algorithm consists of multiple steps, starting with learning an adaptation module for each

layer in the base network, e.g. the sequential adapter Ad œ R
M◊M from DAN. Assuming

that inputs xd and outputs yd of each adapter (yd = Adxd) are Gaussian random variables

with means µd
x, µd

y and covariances Σ
d
x, Σ

d
y, the PCAs are computed for xd and yd as

eigendecompositions of the corresponding covariance matrices. Then, kx and ky number

of most significant eigenvalues are kept, together with the corresponding eigenvectors. If

Ẽd
x and Ẽd

y are the diagonal matrices with these largest eigenvalues, and P̃ d
x and P̃ d

y are the
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Fig. 2.13 Standard convolution (left) vs depthwise separable convolution (right). Illustration

taken from (Guo et al., 2019a).

matrices of the corresponding eigenvectors, then the adapter Ad is approximated as follows:

yd = C̃d
y Md

x,yW̃ d
x (xd ≠ µd

x) + µd
y, (2.46)

where C̃d
y = P̃ d

y

Ò

Ẽd
y is a "coloring" matrix, W̃ d

x =
Ò

Ẽd
x(P̃ d

x )T is a "whitening" matrix, and

Md
x,y is a learnable mini-adaptation layer inserted to correct mismatch between the input and

output PCAs. The structure of the model is shown in Figure 2.12. The module Md
x,y is then

finetuned on the domain d, and absorbed into either C̃d
y or W̃ d

x , depending on which of the

numbers, ky or kx, is smaller. The final model has 2M min(kx, ky) parameters in total.

2.2.3 Other approaches to multi-domain learning

Both masking methods and models with continuous adaptation modules share one core idea

that the base network should be pre-trained once and then fixed, while all domain-specific

parts constitute a disjoint set of parameters, which are trained separately and do not affect

learning on other domains. The major advantage of this approach is that, once trained, the

performance on each domain is preserved and guaranteed not to decline, which allows to

use these models in the incremental learning setup where the tasks get observed sequentially,

and only once. This feature also provides the great flexibility in finetuning domain-specific

parameters to new data, if necessary, or even allows to choose an entirely different approach

for each domain, e.g. to use Piggyback masks on one domain, and PA on the other. On

the other hand, the disjoint nature of domain-specific parameters means that the correlation

between the domains is used very weakly, through relatedness of each domain to the one that

had been used during pre-training.

Despite the variety of approaches proposed for MDL in the literature, all of them use sim-

ilar off-the-shelf convolutional networks, e.g. ResNet (He et al., 2016a) or DenseNet (Huang

et al., 2017). As opposed to those, Guo et al. (2019a) suggest to replace the standard convo-
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Fig. 2.14 Multi-domain learning architecture in SpotTune. For each sample, the trainable

policy network infers routing decisions, defining whether the block in the feature extractor

should be fintuned or re-used after pre-training. Illustration taken from from (Guo et al.,

2019b).

lutional layers with the depthwise separable convolutions. The latter factorise the standard

M ◊ N ◊ K ◊ K convolutions into the sequences of the N ◊ K ◊ K depthwise and

M ◊ N ◊ 1 ◊ 1 pointwise convolutions, where M is the number of output channels, N is

the number of input channels, and K ◊ K is the filter resolution. The difference between

the two types of convolution is illustrated in Figure 2.13. Then, it is argued that different

domains might share cross-channel correlations while having different spatial correlations, so

the authors consider the pointwise convolutions to be the domain-agnostic shared parameters,

and the depthwise convolutions are viewed as the domain-specific learnable parameters. The

resulting network is very compact, since the pointwise convolutions make up the largest

portion of the depthwise separable convolutions, and sharing them across all domains greatly

reduces the total parameter count. In particular, the “base” convolutional layers, repre-

sented by the pointwise convolutions, now have MN parameters instead of MNK2, and the

“adapters”, represented by the depthwise separable convolutions, have NK2 parameters.

Unlike the previous models, MTAN (Liu et al., 2019a) jointly learns domain-specific

attention modules, together with the corresponsing convolutional blocks in the shared feature

extractor, which they are interconnected with. In this setup, all tasks affect the base network

which allows to benefit from the similarities between them. Each attention module consists

of two 1 ◊ 1 convolutions, and one 3 ◊ 3 convolution. A soft attention mask a, produced

inside each attention module and element-wise multiplied with the corresponding shared

representation, performs domain-specific feature selection, thus determining the relevance

of these features to the domain at hand. Inputs to all attention modules except the first

are concatenations of the corresponding shared features and the domain-specific features

produced by the preceding attention module.



2.2 Multi-domain learning 37

Instead of viewing the feature extractor as a completely shared set of parameters which

is augmented with a domain-specific set of parameters, SpotTune (Guo et al., 2019b) uses

a single base network which is selectively finetuned in the input-dependent parts based on

the learnable decision policy. The workflow of the model is illustrated in Figure 2.14. For

each layer l in the base network, the decision policy Il(x) is modelled as a binary random

variable sampled from the categorical distribution with parameters α1 and α2, and it decides

whether the layer should be finetuned or re-used from the base network. Parameters of this

distribution are produced by a small neural network which takes the instance x as an input,

and predicts probabilities α1 and α2. The discrete nature of the decision policy makes the

network non-differentiable, so the authors resort to the Gumbel-Softmax approach (Mad-

dison et al., 2017) to draw samples from the categorical distribution in a differentiable manner.

In Section 2.2 we made a survey of the works in multi-domain learning. The prevailing

approach to learning a model in this setup is to pre-train the feature extractor on a large

data set, and adapt it to the novel domains. The task-specific overheads, i.e. the classifier,

are usually out of scope and are trained from scratch, which moves the focus of the multi-

domain learning problem towards adjustment of feature extraction. We take inspiration

from the group of works which learn continuous adaptation units, specialised individually

for each domain, and we continue to investigate possible interactions between the adapters

and the convolutional weight tensors. As a result of this exploration, we propose a novel

multiplicative adaptation module for multi-domain learning in Chapter 4.



Chapter 3

Meta-Learning with Shared Amortised

Variational Inference

We propose a novel amortised variational inference scheme for an empirical Bayes meta-

learning model, where model parameters are treated as latent variables. We learn the prior

distribution over model parameters conditioned on limited training data using a variational

autoencoder approach. Our framework proposes sharing the same amortised inference net-

work between the conditional prior and variational posterior distributions over the model

parameters. While the posterior leverages both the labeled support and query data, the condi-

tional prior is based only on the labeled support data. We show that in earlier work, relying

on Monte-Carlo approximation, the conditional prior collapses to a Dirac delta function. In

contrast, our variational approach prevents this collapse and preserves uncertainty over the

model parameters. We evaluate our approach on the miniImageNet, CIFAR-FS and FC100

datasets, and present results demonstrating its advantages over previous work.

This chapter is based on the following publication:

Iakovleva, E., Verbeek, J., Alahari, K. Meta-Learning with Shared Amortised Variational

Inference. In ICML, 2020.

3.1 Introduction

While people have an outstanding ability to learn from just a few examples, generalisation

from small sample sizes has been one of the long-standing goals of machine learning. Meta-

learning, or “learning to learn” (Schmidhuber, 1999), aims to improve generalisation in small

sample-size settings by leveraging the experience of having learned to solve related tasks in
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the past. The core idea is to learn a meta model that, for any given task, maps a small set of

training samples to a model that generalises well. Figure 1.5 illustrates the structure of the

tasks in meta-learning.

A recent surge of interest in meta-learning has explored a wide spectrum of approaches.

This includes nearest neighbor based methods (Guillaumin et al., 2009; Vinyals et al., 2016),

nearest class-mean approaches (Dvornik et al., 2019; Mensink et al., 2012; Ren et al., 2018;

Snell et al., 2017), optimisation based methods (Finn et al., 2017; Ravi & Larochelle, 2017),

adversarial approaches (Zhang et al., 2018), and Bayesian models (Gordon et al., 2019; Grant

et al., 2018). The Bayesian approach is particularly interesting, since it provides a coherent

framework to reason about model uncertainty, not only in small sample-size settings, but

also others such as incremental learning (Kochurov et al., 2018), and ensemble learning

(Gal & Ghahramani, 2016). Despite its attractive properties, intractable integrals over model

parameters or other latent variables, which are at the heart of the Bayesian framework, make

it often necessary to turn to stochastic Monte Carlo or analytic approximations for practical

implementations.

In our work, we follow the Bayesian latent variable approach, and learn a prior over

the parameters of the classification model conditioned on a small training sample set for

the task. We use a variational inference framework to approximate the intractable marginal

likelihood function during training. The variational distribution approximates the posterior

over the parameters of the classification model, given training and test data. Both the prior

and posterior are parameterised as deep neural networks that take a set of labeled data points

as input. By sharing the inference network across these two distributions, we leverage more

data to learn these conditionals and avoid overfitting.

We compare the variational training approach with the Monte Carlo approach followed by

Gordon et al. (2019) on synthetic data. We find that when using a small number of samples

for stochastic back-propagation in the Monte Carlo approach, which results in faster training,

the prior collapses to a Dirac delta, and the model degenerates to a deterministic parameter

generating network. In contrast, our variational training approach does not suffer from this

deficiency, and leads to an accurate estimation of the variance. Experiments on few-shot

image classification using the miniImageNet, CIFAR-FS and FC100 datasets confirm these

findings, and we observe improved accuracy using the variational approach to train the

VERSA model (Gordon et al., 2019). Moreover, we use the same variational framework to

train a stochastic version of the TADAM few-shot image classification model (Oreshkin et al.,

2018), replacing the deterministic prototype classifier with a scaled cosine classifier with

stochastic weights. Our stochastic formulation significantly improves performance over the
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base architecture, and yields results competitive with the state of the art on the miniImageNet,

CIFAR-FS and FC100 datasets.

3.2 Related work

Distance-based classifiers. A straightforward approach to handle small training sets is

to use nearest neighbor (Weinberger et al., 2006; Guillaumin et al., 2009; Vinyals et al.,

2016), or nearest prototype (Mensink et al., 2012; Snell et al., 2017; Dvornik et al., 2019;

Ren et al., 2018; Oreshkin et al., 2018) classification methods. In a “meta” training phase, a

metric – or, more generally, a data representation – is learned using samples from a large

number of classes. At test time, the learned metric can then be used to classify samples

across a set of classes not seen during training, by relying on distances to individual samples

or “prototypes,” i.e., per-class averages. Alternatively, it is also possible to learn a network

that takes two samples as input and predicts whether they belong to the same class (Sung

et al., 2018). Other work has explored the use of task-adaptive metrics, by conditioning the

feature extractor on the class prototypes for the task at hand (Oreshkin et al., 2018). We show

that our latent variable approach is complementary and improves the effectiveness of the

latter task conditioning scheme.

Optimisation-based approaches. Deep neural networks are typically learned from large

datasets using SGD. To adapt to the regime of (very) small training datasets, optimisation-

based meta-learning techniques replace the vanilla SGD approach with a trainable update

mechanism (Bertinetto et al., 2019; Finn et al., 2017; Ravi & Larochelle, 2017). For example,

MAML (Finn et al., 2017) learns a parameter initialisation, such that a small number of

SGD updates yields good performance. In addition to parameter initialisation, application of

LSTM model as a means to control how gradient influences updates of the current parameters

has also been explored (Ravi & Larochelle, 2017). In our work, an amortised inference

network makes a single feed-forward pass through the data to estimate a distribution over the

parameters, instead of making multiple passes to update the parameters.

Latent variable models. Gradient-based estimators of parameters tend to have high variance

when the sample sizes are small. It is natural to explicitly model this variance by treating

parameters as latent variables in a Bayesian framework (Garnelo et al., 2018; Gordon et al.,

2019; Grant et al., 2018; Kim et al., 2019; MacKay, 1991; Neal, 1995). The marginal

likelihood of test labels given a training set is then obtained by integrating out these latent

model parameters. This integral, required for training and prediction, is typically intractable,

but it can be approximated using (amortised) variational inference (Garnelo et al., 2018;

Kim et al., 2019), Monte Carlo sampling (Gordon et al., 2019), or Laplace approximation
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(Grant et al., 2018). Neural processes (Garnelo et al., 2018; Kim et al., 2019) are also related

to our work in their structure and their use of a shared inference network for the prior and

the variational posterior. While neural processes use the task-specific latent variable as an

additional input to the classification network, we explicitly model parameters of the linear

classifier corresponding to each class as the latent variables. This increases interpretability of

the latent space, and allows for a varying number of classes in different tasks.

Interestingly, some optimisation-based approaches can be viewed as approximate infer-

ence methods in latent variable models (Grant et al., 2018; Rusu et al., 2019). Semi-amortised

inference techniques (Marino et al., 2018; Kim et al., 2018b), which combine feed-forward

parameter initialisation and iterative gradient-based refinement of the approximate posterior,

can be seen as a hybrid of optimisation-based and Bayesian approaches. Deterministic

approaches that generate a single parameter vector for the task model, given a set of training

samples (Bertinetto et al., 2016; Ha et al., 2017; Qiao et al., 2018), can be seen as a special

case of the latent variable model with Dirac delta conditional distributions of the parameters.

3.3 Our meta-learning approach

We follow the common meta-learning setting of episodic training for K-shot N -way classifi-

cation on the meta-train set with classes C (Finn et al., 2017; Gordon et al., 2019; Ravi &

Larochelle, 2017). For each classification task t sampled from a distribution over tasks p(T ),

the training data Dt = {(xt
k,n, yt

k,n)}K,N
k,n=1 (support set) consists of K pairs of samples xt

k,n

and their labels yt
k,n from each of N classes. The meta-learner takes the KN labeled samples

as input, and outputs a classifier across these N classes to classify MN unlabeled samples

from the testing data D̃t = {(x̃t
m,n, ỹt

m,n)}M,N
m,n=1 (query set). During the meta-train stage,

the meta-learner iterates over T episodes where each episode corresponds to a particular task

t. During the meta-test stage, the model is presented with new tasks where the support and

query sets are sampled from the meta-test set, which consists of previously unseen classes

C Õ. The support set is used as input to the trained meta-learner, and the classifier produced

by meta-learning is used to evaluate the performance on the query set. Results are averaged

over a large set of meta-test tasks.

In this section, we propose a probabilistic framework for meta-learning. In Section 3.3.1,

we start with the description of the multi-task graphical model that we adopt. We then

derive an amortised variational inference scheme with learnable prior for this generative

model in Section 3.3.2, and propose to share the amortised networks between the prior and

the approximate posterior. Finally, in Section 3.3.3 we describe the design of our model,

SAMOVAR, which is trained with the proposed shared variational inference method.
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Fig. 3.1 Hierarchical graphical model. The solid lines correspond to the generative process,

while the dashed lines correspond to the variational inference procedure. Shaded nodes

represent observed variables, non-shaded ones correspond to latent variables.

3.3.1 Generative meta-learning model

We employ a hierarchical graphical model shown in Figure 3.1. This multi-task model

includes latent parameters θ, shared across all the T tasks, and task-specific latent parameters

{wt}T
t=1. The marginal likelihood of the query labels Ỹ = {Ỹ t}T

t=1, given the query samples

X̃ = {X̃ t}T
t=1 and the support sets D = {Dt}T

t=1, is obtained as

p(Ỹ |X̃, D) =
⁄

p(θ)
T

Ÿ

t=1

⁄

p(Ỹ t|X̃ t, θ, wt)p(wt|Dt, θ)dwtdθ. (3.1)

The first term, p(θ), is the prior over the global task-independent parameters θ. The

second term, p(Ỹ t|X̃ t, θ, wt), is the likelihood of query labels Ỹ t, given query samples X̃ t,

task-agnostic parameters θ and task-specific parameters wt. For example, this could be a

linear classifier with weights wt over features f(·)θ computed by a network with parameters

θ from input X̃ t. The third term, p(wt|Dt, θ), is the conditional distribution on the task

parameters wt given the support set Dt and global parameters θ. We parameterize this

distribution with a deep neural network with parameters φ as pφ (wt|Dt, θ).
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Following Gordon et al. (2019); Grant et al. (2018); Hu et al. (2020), we consider a point

estimate for θ to simplify the model. The per-task marginal likelihood is then

p(Ỹ t|X̃ t, Dt, θ) =
M
Ÿ

m=1

p(ỹt
m|x̃t

m, Dt, θ), (3.2)

p(ỹt
m|x̃t

m, Dt, θ) =
⁄

p(ỹt
m|x̃t

m, θ, wt)pφ(wt|Dt, θ)dwt, (3.3)

To train the model, a Monte Carlo approximation of the integral in Eq. (3.3) was used in

Gordon et al. (2019):

L(θ, φ) =
1

TM

T
ÿ

t=1

M
ÿ

m=1

log
1

L

L
ÿ

l=1

p(ỹt
m|x̃t

m, θ, wt
l), (3.4)

where wt
l ≥ pφ(wt|Dt, θ). In our experiments in Section 3.4, we show that training with

this approximation tends to severely underestimate the variance in pφ(wt|Dt, θ), effectively

reducing the model to a deterministic one, and defying the use of a stochastic latent variable

model.

3.3.2 Shared amortised variational inference

To prevent the conditional prior pφ(wt|Dt, θ) from degenerating, we use amortised variational

inference (Kingma & Welling, 2014; Rezende et al., 2014) to approximate the intractable

true posterior p(wt|Ỹ t, X̃ t, Dt, θ). Using the approximate posterior qψ(wt|Ỹ t, X̃ t, Dt, θ)

parameterized by ψ, we obtain the variational evidence lower bound (ELBO) of Eq. (3.3) as

log p(Ỹ t|X̃ t, Dt, θ) Ø

Eqψ

Ë

log p(Ỹ t|X̃ t, θ, wt)
È

≠ DKL

1

qψ(wt|Ỹ t, X̃ t, Dt, θ)||pφ(wt|Dt, θ)
2

.
(3.5)

The first term can be interpreted as a reconstruction loss, that reconstructs the labels of

the query set using latent variables wt sampled from the approximate posterior, and the

second term as a regularizer that encourages the approximate posterior to remain close to

the conditional prior pφ(wt|Dt, θ). We approximate the reconstruction term using L Monte

Carlo samples, and add a regularization coefficient β to weigh the KL term (Higgins et al.,

2017). With this, our optimisation objective is:

L̂(Θ) =
1

T

T
ÿ

t=1

C

M
ÿ

m=1

1

L

L
ÿ

l=1

log p(ỹt
m|x̃t

m, θ, wt
l)

≠βDKL

1

qψ(wt|Ỹ t, X̃ t, Dt, θ)||pφ(wt|Dt, θ)
2È

,

(3.6)
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where wt
l ≥ qψ(w|Ỹ t, X̃ t, Dt, θ). We maximise the ELBO w.r.t. Θ = {θ, φ, ψ} to jointly

train the model parameters θ, φ, and the variational parameters ψ.

We use Monte Carlo sampling from the learned model to make predictions at test time as:

p(ỹt
m|x̃t

m, Dt, θ) ¥
1

L

L
ÿ

l=1

p(ỹt
m|x̃t

m, θ, wt
l), (3.7)

where wt
l ≥ pφ(wt|Dt, θ). In this manner, we leverage the stochasticity of our model by

averaging predictions over multiple realisations of wt.

The approach presented above suggests to train separate networks to parameterise the

conditional prior pφ(wt|Dt, θ) and the approximate posterior qψ(wt|Ỹ t, X̃ t, Dt, θ). However,

since in both cases the conditioning data consists of labeled samples, it is possible to share

the network for both distributions, and simply change the input of the network to obtain one

distribution or the other. Sharing has two advantages: (i) It reduces the number of parameters

to train, decreasing the memory footprint of the model and the risk of overfitting. (ii) It

facilitates learning a non-degenerate prior, i.e. a prior that is not a Dirac delta.

Let us elaborate on the second point. Omitting all dependencies for brevity, KL divergence

DKL(q||p) =
s

q(w) [log q(w) ≠ log p(w)] in Eq. (3.5) compares the posterior q(w) with

the prior p(w). Consider the case when the prior converges to a Dirac delta, while the

posterior does not. Then, there would exist points in the support of the posterior for which

p(w) ¥ 0, therefore, the KL divergence would tend to infinity. The only alternative in this

case is for the posterior to converge to the same Dirac delta. This means that, for different

inputs, the inference network would produce the same deterministic latent variable w. In

particular, additional conditioning data from the query set, which is available in the posterior,

would leave the inference unchanged, and the network would effectively ignore and fail to

incorporate new data. While in theory this is possible, we do not observe it in practice.

We coin our approach “SAMOVAR”, short for Shared AMOrtised VARiational inference.

Figure 3.2 illustrates the overall structure of our model.

3.3.3 Implementing SAMOVAR: architectural designs

The key properties we expect SAMOVAR to have are: (i) the ability to perform the inference

in a feed-forward way (unlike gradient-based models), and (ii) the ability to handle a variable

number of classes within the tasks. We build upon the work of Gordon et al. (2019); Qiao

et al. (2018), to meet both these requirements. We start with VERSA (Gordon et al., 2019)

where the feature extractor is followed by an amortised inference network, which returns a
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Fig. 3.2 SAMOVAR, our meta-learning model for few-shot image classification. For task

t, query data X̃ t and support data X t are put through a task-agnostic feature extractor

fθ(x). The features are then averaged class-wise, and mapped by the shared amortised

inference network into prior and posterior over the task-specific classifier weight vectors.

Classifiers wt
posterior and wt

prior sampled from these distributions map query features fθ(X̃
t)

to predictions on the query labels Ỹ t used in training and testing, respectively.

linear classifier with stochastic weights. SAMOVAR-base, our baseline architecture built this

way on VERSA, consists of the following components.

Task-independent feature extractor. We use a deep convolutional neural network (CNN),

fθ, shared across all tasks, to embed input images x in IRd. The extracted features are the

only information from the samples used in the rest of the model. The CNN architectures

used for different datasets are detailed in Section 3.4.2.

Task-specific linear classifier. Given the features, we use multi-class logistic discriminant

classifier, with task-specific weight matrix wt œ IRN◊d. That is, for the query samples x̃ we

obtain a distribution over the labels as:

p(ỹt
m|x̃t

m, θ, wt) = softmax
1

wtfθ(x̃
t
m)

2

. (3.8)

Shared amortised inference network. We use a deep permutation invariant network gφ

to parameterise the prior over the task-specific weight matrix wt, given a set of labeled

samples. The distribution over wt is factorised over its rows wt
1, . . . , wt

N to allow for variable

number of classes, and to simplify the structure of the model. For any class n, the inference

network gφ maps the corresponding set of support feature embeddings {fθ(x
t
k,n)}K

k=1 to the

parameters of a distribution over wt
n. We use a Gaussian with diagonal covariance to model

these distributions of the weight vectors, i.e.,

pφ(wt
n|Dt, θ) = N (µt

n, diag
1

σt
n

2

), (3.9)



3.3 Our meta-learning approach 46

where the mean and the variance are computed by the inference network as:

S

U

µt
n

σt
n

T

V = gφ

A

1

K

K
ÿ

k=1

fθ(x
t
k,n)

B

. (3.10)

To achieve permutation invariance among the samples, we average the feature vectors within

each class before feeding them into the inference network gφ. The approximate variational

posterior is obtained in the same manner, but in this case the feature average that is used

as input to the inference network is computed over the union of labeled support and query

samples.

To further improve the model, we employ techniques commonly used in meta-learning

classification models: scaled cosine similarity, task conditioning, and auxiliary co-training.

Scaled cosine similarity. Cosine similarity based classifiers have recently been widely

adopted in few-shot classification (Dvornik et al., 2019; Gidaris et al., 2019; Lee et al.,

2019; Oreshkin et al., 2018; Ye et al., 2018). Here, the linear classifier is replaced with a

classifier based on the cosine similarity with the weight vectors wt
n, scaled with a temperature

parameter α:

p(ỹt
m|x̃t

m, θ, wt
n) = softmax

A

α
fθ(x̃

t
m)€wt

n

||fθ(x̃t
m)|| · ||wt

n||

B

(3.11)

We refer to this version of our model as SAMOVAR-SC.

Task conditioning. The limitation of the above models is that the weight vectors wt
n depend

only on the samples from class n. To leverage the full context of the task, we adopt the task

embedding network (TEN) of Oreshkin et al. (2018). For each feature dimension of fθ, TEN

provides an affine transformation conditioned on the task data, similar to FiLM conditioning

layers (Perez et al., 2018) and conditional batch normalization (Munkhdalai et al., 2018;

Dumoulin et al., 2017). In particular, the input to TEN is the average ct = 1
N

q

n ct
n of the

per-class prototypes ct
n = 1

K

q

k fθ(x
t
kn) in the task t, and the outputs are the translation and

scale parameters for all feature channels in the feature extractor layers. In SAMOVAR, we

use TEN to modify both the support and query features fθ before they enter the inference

network gφ. The query features that enter the linear/cosine classifiers are left unchanged.

Auxiliary co-training. Large feature extractors can benefit from auxiliary co-training to

prevent overfitting, stabilise the training, and boost the performance (Oreshkin et al., 2018).

We leverage this by sharing the feature extractor fθ of the meta-learner with an auxiliary

classification task across all the classes in the meta-train set, using the cross-entropy loss for

a linear logistic classifier over fθ.
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3.4 Experiments

In this section we provide evaluation of the proposed model in various experimental setups.

We analyze the differences between training with Monte Carlo estimation and variational

inference with a controlled synthetic data experiment in Section 3.4.1. After that we present

the experimental setup that we use for few-shot image classification in Section 3.4.2. Finally,

we discuss the obtained results and compare our model to related work in Section 3.4.4.

3.4.1 Synthetic data experiments

We consider the same hierarchical generative process as Gordon et al. (2019), which allows

for exact inference:

p(ψt) = N (0, 1), p(yt|ψt) = N (ψt, σ2
y), (3.12)

where yt is an observed variable, and ψt is a latent variable. We sample T = 250 tasks,

each with K = 5 support observations Dt = {yt
k}K

k=1, and M = 15 query observations

D̃t = {ỹt
m}M

m=1. We use an inference network qφ(ψ|Dt) = N (µq, σ2
q ) parameterised with

φ = {W, b}, where

S

U

µq

log σ2
q

T

V = W
K

ÿ

k=1

yt
k + b. (3.13)

This inference network with trainable parameters φ is used to define the predictive distribution

p(D̃t|Dt) =
⁄

p(D̃t|ψ)qφ(ψ|Dt) dψ. (3.14)

Since the prior is conjugate to the Gaussian likelihood p(yt|ψt) in Eq. (3.12), we can

analytically compute the marginal p(D̃t|Dt) in Eq. (3.14), as well as the true posterior

p(ψ|Dt), which are both Gaussian. We then train the inference network by optimising the

logarithm of Eq. (3.14) in three different ways. Assuming T tasks with M query samples

each, optimisation objectives look as follows:

1. Exact marginal log-likelihood. We compute the task and sample mean of the loga-

rithm of the marginal likelihood computed analytically:

L(φ) = ≠
1

MT

T
ÿ

t=1

M
ÿ

m=1

log N (yt
m; µq(D

t), σ2
q (Dt) + σ2

y). (3.15)
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(a) σy = 0.1 (b) σy = 0.5 (c) σy = 1.0

Fig. 3.3 Ratio between the variance in ψ estimated by the trained inference network qφ(ψ|Dt)
and σ2

p in true posterior p(ψ|Dt), for different number of samples L from the inference

network during training.

2. Monte Carlo estimation. We draw L samples ψt
l ≥ qφ(ψ|Dt) from the rightmost

term in Eq. (3.14) to estimate this integral using Eq. (3.12):

L(φ) = ≠
1

MT

T
ÿ

t=1

M
ÿ

m=1

log
1

L

L
ÿ

l=1

N (yt
m; ψt

l , σ2
y). (3.16)

3. Variational inference. We use the inference network with a second set of parameters

φÕ as the variational posterior qψÕ conditioned on both D̃t and Dt. Using L samples

ψt
l ≥ qφÕ(ψ|D̃t, Dt), we obtain the variational lower bound:

L(φ) = ≠
1

T

T
ÿ

t=1

C

M
ÿ

m=1

1

L

L
ÿ

l=1

log N (yt
m; ψt

l , σ2
y) ≠ DKL(qφÕ(ψ|D̃t, Dt)||qφ(ψ|Dt))

D

.

(3.17)

We train these three losses with σy œ {0.1, 0.5, 1.0}. For Monte Carlo and variational

methods, we use the re-parameterisation trick (Kingma & Welling, 2014; Rezende et al.,

2014) in order to differentiate through sampling of ψ. We evaluate the quality of the trained

inference network by sampling data Dt for a new task from the data generating process

Eq. (3.12). For new data, we compare the true posterior p(ψ|Dt) with the distribution

qφ(ψ|Dt) produced by the trained inference network.

Results in Figure 3.3 show that both the analytic and variational approaches recover the

true posterior very well, including variational training with a single sample per parameter

update. Monte Carlo training, on the other hand, requires the use of significantly larger sets

of samples to produce results comparable to other two approaches. Optimisation with a small

number of samples leads to significant underestimation of the target variance. This makes the

Monte Carlo training approach either computationally expensive, or inaccurate in modeling

the uncertainty in the latent variable.
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3.4.2 Experimental setup for image classification

We now move to the experiments on the real image data. We consider three main benchmarks

for few-shot learning: MiniIamgeNet, FC100 and CIFAR-FS.

MiniImageNet (Vinyals et al., 2016) consists of 100 classes selected from ILSVRC-12

(Russakovsky et al., 2015). We follow the split from Ravi & Larochelle (2017) with 64 meta-

train, 16 meta-validation and 20 meta-test classes, and 600 images in each class. Following

Oreshkin et al. (2018), we use a central square crop, and resize it to 84◊84 pixels.

FC100 (Oreshkin et al., 2018) was derived from CIFAR-100 (Krizhevsky, 2009), which

consists of 100 classes, with 600 32◊32 images per class. All classes are grouped into 20

superclasses. The data is split by superclass to minimise the information overlap. There are

60 meta-train classes from 12 superclasses, 20 meta-validation, and 20 meta-test classes,

each from four corresponding superclasses.

CIFAR-FS (Bertinetto et al., 2019) is another meta-learning dataset derived from CIFAR-

100. It was created by a random split into 64 meta-train, 16 meta-validation and 20 meta-test

classes. For each class, there are 600 images of size 32◊32.

Unless explicitly mentioned, we do not use data augmentation. In cases where we do use

augmentation, it is performed with random horizontal flips, random crops, and color jitter

(brightness, contrast and saturation).

3.4.3 Network architectures and training specifications

We learn separate amortised inference networks to predict the mean µ and log-variance ln σ2

of the latent classification weight vectors wt. Both networks have the same architecture,

which depends on the feature extractor that is used. The inference networks are shared

between the prior and approximate posterior distributions. In this work, we use two feature

extractors: CONV-5 (Gordon et al., 2019) to compare with VERSA (Gordon et al., 2019),

and ResNet-12 (Oreshkin et al., 2018) for other experiments.

CONV-5 Feature Extractor. The embedding of the image returned by the CONV-5

feature extractor is a 256-dimensional vector. Each of the inference networks for the mean

and log variance of the classifier weights wt consists of three fully connected layers with 256

input and output features, and ELU non-linearity (Clevert et al., 2016) between the layers.

There are two additional inference networks that predict the mean and log variance of the

classifier biases bt. Both of them consist of two fully connected layers with 256 input and

output features followed by ELU non-linearity, and a fully connected layer with 256 input

and a single output feature. The design is the same as used in VERSA Gordon et al. (2019)



3.4 Experiments 50

to ensure comparability. For a fair comparison, we follow the same experimental setup,

including the network architectures, optimisation procedure, and episode sampling.

ResNet-12 Feature Extractor. With the ResNet-12 feature extractor, every image is

embedded into a 512-dimensional feature vector. Each of the two inference networks consists

of three fully connected layers with 512 input and output features, with skip connections and

swish-1 non-linearity (Ramachandran et al., 2017) applied before addition in the first two

dense layers. The cosine classifier is scaled by setting α to 25 when data augmentation is not

used, and 50 otherwise. The hyperparameters were chosen through cross-validation. The task

embedding network (TEN) used for task conditioning is the same as in Oreshkin et al. (2018).

The main and the auxiliary tasks are trained concurrently: in episode t out of T , the auxiliary

task is sampled with probability ρ = 0.9Â12t/T Ê. For comparison with TADAM (Oreshkin

et al., 2018) we use the same optimisation procedure, number of SGD updates, and weight

decay parameters for common parts of the architecture as in the paper. For experiments with

data augmentation on miniImageNet we use 40k SGD updates with momentum 0.9, and

early stopping based on meta-validation performance. We set the initial learning rate to 0.1,

and decrease it by a factor ten after 20k, 25k and 30k updates. On FC100 and CIFAR-FS, we

use 30k SGD updates with the same momentum and initial learning rate, and the latter is

decreased after 15k, 20k and 25k updates. We clip gradients at 0.1, and set separate weight

decay rates for the feature extractor, TEN, fully connected layer in the auxiliary task, and

inference networks. For the feature extractor and TEN the weight decay is 0.0005. For the

fully connected layer in the auxiliary task the weight decay is 0.00001 on miniImageNet, and

0.0005 on FC100 and CIFAR-FS. In the 1-shot setup, the inference networks are regularised

with the weight decay equal to 0.0005, regardless of the dataset. In the 5-shot setup, the

weight decay parameter in the inference networks is 0.00001 on miniImageNet, and 0.00005

on FC100 and CIFAR-FS. For the 5-shot setup, mini-batches consist of two episodes, each

with 32 query images. For the 1-shot setup, we sample 5 episodes per mini-batch, and 12

query images per episode. In both cases query images are sampled uniformly across classes,

without any restriction on the number per class. The auxiliary 64-way classification task is

trained with the batch size 64.

Choice of β. We empirically find that the regularisation coefficient β = K
Nd

produces

good results, and it can be used as a starting point for further parameter tuning. Here d is the

dimensionality of the feature vector fθ, N is the number of classes in the task, and K is the

total number of query samples in the task. On CONV-5, we set β to 0.0586 for the 5-shot

setup, and we multiply it by two for the 1-shot setup. On ResNet-12, we set β to 0.0125 for

both setups, and we use a value of β twice as large for the 1-shot setup without auxiliary

co-training.
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Table 1 Both approaches train the same meta-learning model.

5-SHOT 1-SHOT

VERSA (OUR IMPLEM.) 68.0 ± 0.2 52.5 ± 0.3

SAMOVAR-BASE 69.8 ± 0.2 52.4 ± 0.3

SAMOVAR-BASE (SEPARATE) 66.6 ± 0.2 50.8 ± 0.3

Evaluation. We evaluate classification accuracy by randomly sampling 5,000 episodes,

and 15 queries per class in each test episode. We also report 95% confidence intervals

computed over these 5,000 tasks. To make a prediction, we draw d = 1, 000 samples of

classifier weights for each class n from the corresponding prior, and average the resulting

probabilities for the final classification.

3.4.4 Few-shot image classification results

Comparison with VERSA. In our first experiment, we compare SAMOVAR-base with

VERSA (Gordon et al., 2019). Both use the same model, but differ in their training procedure.

We use the code provided by Gordon et al. (2019) to implement the two approaches, making

one important change: we avoid compression artefacts by storing image crops in PNG rather

than JPG format, which improves results noticeably. We evaluate both models in the 1-shot

ans 5-shot classification setups.

In Table 1, we report the accuracy on miniImageNet for these two models. In the 1-shot

setup, both the approaches lead to similar results, while SAMOVAR yields considerably

better performance in the 5-shot setup. To evaluate the effect of sharing the inference network

between the prior and posterior, we run SAMOVAR-base with separate neural networks for

the prior and approximate posterior, and with the reduced number of hidden units to even

out the total number of parameters. From the results in the last two lines of Table 1, it can

be seen that for both 1-shot and 5-shot classification sharing the inference network has a

positive impact on the performance.

While training VERSA, which estimates the loss using Monte Carlo method, every 250

optimisation steps we keep track of the largest variance of the weights and biases of the

predicted classifier in the batch. Figure 3.4 shows how this variance decreases with time,

resulting in variance collapse. For example, the largest variance of the weights first falls

below 0.001 at the step 4000 in the 5-shot setup, and at the step 3000 in the 1-shot setup.

We do not observe this collapse in SAMOVAR. This is consistent with the results obtained

on synthetic data.
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(a) 5-shot setup. (b) 5-shot setup zoomed in.

(c) 1-shot setup. (d) 1-shot setup zoomed in.

Fig. 3.4 Largest variance in VERSA as a function of the optimisation step. Results for

optimisation steps from Figure 3.4a and Figure 3.4c that follow the first encounter of variance

below 0.001 are zoomed in Figure 3.4b Figure 3.4d respectively.

Table 2 Accuracy and 95% confidence intervals of TADAM and SAMOVAR on the 5-way

classification task on miniImageNet. The first columns indicate the use of: cosine scaling

(α), auxiliary co-training (AT), and task embedding network (TEN).

5-SHOT 1-SHOT

α AT TEN TADAM SAMOVAR TADAM SAMOVAR

73.5 ± 0.2 75.3 ± 0.2 58.2 ± 0.3 59.3 ± 0.3

X 74.9 ± 0.2 76.9 ± 0.2 57.4 ± 0.3 58.2 ± 0.3

X 74.6 ± 0.2 76.4 ± 0.2 58.7 ± 0.3 59.8 ± 0.3

X 72.9 ± 0.2 74.9 ± 0.2 58.2 ± 0.3 58.8 ± 0.3

X X 75.7 ± 0.2 77.2 ± 0.2 57.3 ± 0.3 60.4 ± 0.3

X X 74.1 ± 0.2 77.3 ± 0.2 57.5 ± 0.3 59.5 ± 0.3

X X 74.9 ± 0.2 76.8 ± 0.2 57.3 ± 0.3 58.5 ± 0.3

X X X 75.9 ± 0.2 77.5 ± 0.2 57.6 ± 0.3 60.7 ± 0.3

Comparison with TADAM. In our second experiment, we use SAMOVAR in combi-

nation with the architecture of TADAM (Oreshkin et al., 2018). To fit our framework, we
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(a) 5-shot. (b) 5-shot, zoomed.

0

(c) 1-shot. (d) 1-shot, zoomed.

Fig. 3.5 Accuracy on miniImageNet as a function of the number of samples drawn from the

learned prior over the classifier weights, compared to using the mean of the distribution.

replace the prototype classifier of TADAM with the linear classifier with latent weights. We

compare TADAM and SAMOVAR with metric scaling (α), auxiliary co-training (AT) and

the task embedding network (TEN) included or not. When the metric is not scaled, we use

SAMOVAR-base with the linear classifier, otherwise we use SAMOVAR-SC with the scaled

cosine classifier. For this ablative study we fix the random seed to generate the same series

of meta-train, meta-validation and meta-test tasks for both models, and for all configurations.

Results in Table 2 show that SAMOVAR provides a consistent improvement over TADAM

across all tested ablations of TADAM architecture. Given that the two models differ in

whether they use probabilistic inference, this comparison supports the assumption that it

might be beneficial to incorporate uncertainty modeling.

Effect of sampling classifier weights. To assess the effect of the stochasticity of the

model, we evaluate the predictions obtained with the mean of the distribution over the

classifier weights, and with approximation of the predictive distribution Eq. (3.7) using

varying number of sampled classifier weights. For both the 5-shot and 1-shot setups, we fix
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(a) 5-shot setup (b) 1-shot setup

Fig. 3.6 Mean accuracy of SAMOVAR-base classifiers sampled from the prior and posterior

as a function of β. While training, we fix the random seed of the data to generate the same

series of miniImageNet tasks. The evaluation is performed over 5000 random tasks.

the random seed and evaluate SAMOVAR-SC-AT-TEN on the same 1,000 random 5-way

tasks. We compute accuracy 10 times for each number of samples.

Results of these experiments for 5-shot and 1-shot tasks are shown in Figure 3.5. It can

be seen that for both setups the mean classification accuracy is positively correlated with

the number of samples. This is expected as a larger sample size corresponds to a better

estimation of the predictive posterior distribution. The dispersion of accuracy for a fixed

n is slightly bigger for the 1-shot setup compared to the 5-shot setup, and in both cases it

decreases as we use more samples. This difference is also expected, as the 1-shot task is

much harder than the 5-shot task, so the model retains more uncertainty in the inference in

the former case. The results also show that the predicted classifier mean demonstrates good

results on both classification tasks, and it can be used instead of classifier samples in cases

where computational budget is critical. At the same time we can see that sampling of a large

number of classifiers leads to a better performance compared to the classifier mean. While

on the 5-shot setup the gain from classifier sampling over using the mean is small, around

0.1% with 10K samples, on the 1-shot setup the model benefits more from the stochasticity

yielding additional 0.4% accuracy with 10K samples.

Impact of β-scaling. Typically, in autoencoders the dimensionality of the latent space

is smaller than that of the observed variables. This is not the case in the meta-learning

classification task where the output is merely a one-hot-encoded label of the class, while

the latent space is of the same size as the output of the feature extractor. In our experiments

we observe that the large KL term suppresses the reconstruction term resulting in a weaker

performance. In particular, there is a trade off between these parts of the objective function
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L̂(Θ) in Eq. (3.6) which can be regulated by β-scaling of the KL term. Figure 3.6 shows

the accuracy of SAMOVAR-base with CONV-5 feature extractor as a function of β. Even

though in both setups there is a clear maximum, overall, the model is relatively robust to the

setting of β. Let’s denote the optimum β as βopt. Then for the 5-shot setup the range at least

from 0.83βopt to 2βopt produces results that are within the 1% interval from the maximum

accuracy at βopt. For the 1-shot setup, the same holds true for the range at least from 0.66βopt

to 2βopt. Interestingly, larger β significantly reduces the performance gap between the prior

and the posterior, but results in poorer performance in both.

Comparison to the state of the art. In Table 3.3, we compare SAMOVAR to the state

of the art on miniImageNet. For a fair comparison, we report results with and without

data augmentation. SAMOVAR yields competitive results, notably outperforming other

approaches using ResNet-12 features. The only approaches reporting better results explore

techniques that are complementary to ours. Self-supervised co-training was used by Gidaris

et al. (2019), which can be used as an alternative to the auxiliary 64-class classification

task we used. CTM (Li et al., 2019) is a recent transductive extension of the distance-based

models which identifies task-relevant features using inter- and intra-class relations. This

module can also be used in conjunction with SAMOVAR, in particular, as an input to the

inference network instead of the prototypes. Finally, knowledge distillation on the ensemble

of 20 metric-based classifiers was used by Dvornik et al. (2019), which can be used as an

alternative feature extractor in our work.

In Table 3.4, we compare to the state of the art on the FC100 dataset. We train our model

using data augmentation. SAMOVAR yields the best results on the 5-shot classification task.

Transductive fine-tuning (Dhillon et al., 2020) reports a higher accuracy for the 1-shot setting,

but is not directly comparable due to the transductive nature of their approach. MTL HT

(Sun et al., 2019) reports the best results (with large 95% confidence intervals due to the

small amount of data used in their evaluation) in the 1-shot setting. It samples hard tasks

after each meta-batch update by taking its m hardest classes, and makes additional updates

of the optimiser on these tasks. This is complementary, and can be used in combination with

our approach to further improve the results.

In Table 3.5, we compare our model to the state of the art on CIFAR-FS. Data augmen-

tation is used during training. Similar to the aforementioned datasets, SAMOVAR yields

competitive results on both tasks. On the 5-shot task, higher accuracy is reported by Dhillon

et al. (2020) and Gidaris et al. (2019), while transductive SIB (Hu et al., 2020) is comparable

to SAMOVAR. On the 1-shot task, SIB (Hu et al., 2020), transductive version by Dhillon

et al. (2020) and Gidaris et al. (2019) report better results. Overall, the observations are

consistent with those on miniImageNet.
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Table 3.3 Accuracy and 95% confidence intervals of the state-of-the-art models on the 5-way

task on miniImageNet. Versions of the models that use additional data during training are not

included. Exception is made only if this is the sole result provided by the authors. ú: Results

obtained with data augmentation. †: Transductive methods. ¶: Validation set is included into

training. —: Based on a 1.25◊wider ResNet-12 architecture.

METHOD FEATURES 5-SHOT 1-SHOT TEST PROTOCOL

MATCHING NETS(VINYALS ET AL., 2016) CONV-4 60.0 46.6

META LSTM(RAVI & LAROCHELLE, 2017) CONV-4 60.6 ± 0.7 43.4 ± 0.8 600 EP. / 5◊15

MAML (FINN ET AL., 2017) CONV-4 63.1 ± 0.9 48.7 ± 1.8 600 EP. / 5 ◊ SHOT

RELATIONNET (SUNG ET AL., 2018) CONV-4 65.3 ± 0.7 50.4 ± 0.8 600 EP. / 5 ◊ 15

PROTOTYPICAL NETS (SNELL ET AL., 2017) CONV-4 65.8 ± 0.7 46.6 ± 0.8 600 EP. / 5 ◊ 15

VERSA (GORDON ET AL., 2019) CONV-5 67.4 ± 0.9 53.4 ± 1.8 600 EP. / 5 ◊ SHOT

TPN (LIU ET AL., 2019B) CONV-4† 69.9 55.5 2000 EP. / 5 ◊ 15

SIB(HU ET AL., 2020) CONV-4† 70.7 ± 0.4 58.0 ± 0.6 2000 EP. / 5 ◊ 15

GIDARIS ET AL. (2019) CONV-4 71.9 ± 0.3 54.8 ± 0.4 2000 EP. / 5 ◊ 15

SAMOVAR-BASE (OURS) CONV-5 69.8 ± 0.2 52.4 ± 0.3 5000 EP. / 5 ◊ 15

QIAO ET AL. (2018) WRN-28-10 73.7 ± 0.2 59.6 ± 0.4 1000 EP. / 5 ◊ 15

MTL HT (SUN ET AL., 2019) RESNET-12 75.5 ± 0.8 61.2 ± 1.8 600 EP. / 5 ◊ SHOT

TADAM (ORESHKIN ET AL., 2018) RESNET-12 76.7 ± 0.3 58.5 ± 0.3 5000 EP. / 100

LEO (RUSU ET AL., 2019) WRN-28-10ú¶ 77.6 ± 0.1 61.8 ± 0.1 10000 EP. / 5 ◊ 15

FINE-TUNING (DHILLON ET AL., 2020) WRN-28-10ú 78.2 ± 0.5 57.7 ± 0.6 1000 EP. / 5 ◊ 15

TRANSDUCTIVE FINE-TUNING (DHILLON ET AL., 2020) WRN-28-10ú† 78.4 ± 0.5 65.7 ± 0.7 1000 EP. / 5 ◊ 15

METAOPTNET-SVM (LEE ET AL., 2019) RESNET-12ú— 78.6 ± 0.5 62.6 ± 0.6 2000 EP. / 5 ◊ 15

SIB (HU ET AL., 2020) WRN-28-10ú† 79.2 ± 0.4 70.0 ± 0.6 2000 EP. / 5 ◊ 15

GIDARIS ET AL. (2019) WRN-28-10ú 79.9 ± 0.3 62.9 ± 0.5 2000 EP. / 5 ◊ 15

CTM (LI ET AL., 2019) RESNET-18ú† 80.5 ± 0.1 64.1 ± 0.8 600 EP. / 5 ◊ 15

DVORNIK ET AL. (2019) WRN-28-10ú 80.6 ± 0.4 63.1 ± 0.6 1000 EP. / 5 ◊ 15

SAMOVAR-SC-AT-TEN (OURS) RESNET-12 77.5 ± 0.2 60.7 ± 0.3 5000 EP. / 100

SAMOVAR-SC-AT-TEN (OURS) RESNET-12ú 79.5 ± 0.2 63.3 ± 0.3 5000 EP. / 5 ◊ 15

Table 3.4 Accuracy and 95% confidence intervals of the state-of-the-art models on the 5-way

task on FC100. Versions of the models that use additional data during training are not

included. ú: Results obtained with data augmentation. ⇤: Results from Lee et al. (2019). †:

Transductive methods. —: Based on a 1.25◊wider ResNet-12 architecture.

METHOD FEATURES 5-SHOT 1-SHOT TEST PROTOCOL

PROTOTYPICAL NETS (SNELL ET AL., 2017) RESNET-12ú⇤— 52.5 ± 0.6 37.5 ± 0.6 2000 EP. / 5 ◊ 15

TADAM (ORESHKIN ET AL., 2018) RESNET-12 56.1 ± 0.4 40.1 ± 0.4 5000 EP. / 100

METAOPTNET-SVM (LEE ET AL., 2019) RESNET-12ú— 55.5 ± 0.6 41.1 ± 0.6 2000 EP. / 5 ◊ 15

FINE-TUNING (DHILLON ET AL., 2020) WRN-28-10ú 57.2 ± 0.6 38.3 ± 0.5 1000 EP. / 5 ◊ 15

TRANSDUCTIVE FINE-TUNING (DHILLON ET AL., 2020) WRN-28-10ú† 57.6 ± 0.6 43.2 ± 0.6 1000 EP. / 5 ◊ 15

MTL HT (SUN ET AL., 2019) RESNET-12ú 57.6 ± 0.9 45.1 ± 1.8 600 EP. / 5 ◊ SHOT

SAMOVAR-SC-AT-TEN (OURS) RESNET-12ú 57.9 ± 0.3 42.1 ± 0.3 5000 EP. / 5 ◊ 15
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Table 3.5 Accuracy and 95% confidence intervals of the state-of-the-art models on the 5-

way task on CIFAR-FS. Versions of the models that use additional data during training are

not included. All models use data augmentation. ⇤: Results from Lee et al. (2019). †:

Transductive methods. —: Based on a 1.25◊wider ResNet-12 architecture.

METHOD FEATURES 5-SHOT 1-SHOT TEST PROTOCOL

PROTOTYPICAL NETS (SNELL ET AL., 2017) RESNET-12⇤— 83.5 ± 0.5 72.2 ± 0.7 2000 EP. / 5 ◊ 15

METAOPTNET-SVM (LEE ET AL., 2019) RESNET-12— 84.2 ± 0.5 72.0 ± 0.7 2000 EP. / 5 ◊ 15

FINE-TUNING (DHILLON ET AL., 2020) WRN-28-10 86.1 ± 0.5 68.7 ± 0.7 1000 EP. / 5 ◊ 15

TRANSDUCTIVE FINE-TUNING (DHILLON ET AL., 2020) WRN-28-10† 85.8 ± 0.6 76.6 ± 0.7 1000 EP. / 5 ◊ 15

SIB (HU ET AL., 2020) WRN-28-10† 85.3 ± 0.4 80.0 ± 0.6 2000 EP. / 5 ◊ 15

GIDARIS ET AL. (2019) WRN-28-10 86.1 ± 0.2 73.6 ± 0.3 2000 EP. / 5 ◊ 15

SAMOVAR-SC-AT-TEN (OURS) RESNET-12 85.3 ± 0.2 72.5 ± 0.3 5000 EP. / 5 ◊ 15

3.5 Conclusion

We proposed SAMOVAR, a meta-learning model for few-shot image classification that

treats classifier weight vectors as latent variables, and uses a shared amortised variational

inference network for the prior and variational posterior. Through experiments on synthetic

data and few-shot image classification, we show that our variational approach avoids the

severe under-estimation of the variance in the classifier weights observed for training with

direct Monte Carlo approximation (Gordon et al., 2019). We integrate SAMOVAR with

the deterministic TADAM architecture (Oreshkin et al., 2018), and find that our stochastic

formulation leads to significantly improved performance, competitive with the state of the art

on the miniImageNet, CIFAR-FS and FC100 datasets.



Chapter 4

Modulation Adapters for Multi-Domain

Learning

Deep convolutional networks are ubiquitous in computer vision, due to their excellent per-

formance across different tasks for various domains. Models are, however, often trained

in isolation for each task, failing to exploit relatedness between tasks and domains to learn

more compact models that would generalise better in low-data regimes. Multi-domain

learning aims to handle related tasks, such as image classification across multiple domains,

simultaneously. Previous work on this problem explored the use of a pre-trained and fixed

domain-agnostic base network, in combination with smaller learnable domain-specific adapta-

tion modules. In this chapter, we introduce Modulation Adapters, which update convolutional

filter weights of the model in a multiplicative manner for each task. Parameterising these

adaptation weights in a factored manner allows us to scale the number of per-task parameters

in a flexible manner, and to strike different parameter-accuracy trade-offs. We evaluate our

approach on the Visual Decathlon challenge, composed of ten image classification tasks

across different domains, and on the ImageNet-to-Sketch benchmark, which consists of six

image classification tasks. Our approach yields excellent results, with accuracies that are

comparable to or better than those of existing state-of-the-art approaches.

4.1 Introduction

Deep learning models are ubiquitous across many tasks and application domains (LeCun

et al., 2015). Yet, one of their biggest limitations is the reliance on the large amounts of

labelled data to train these models, which often have millions if not billions of parameters.

Knowledge transfer is one of the main solutions to this problem, where knowledge obtained
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by learning to solve one task is leveraged to learn another task in a more sample-efficient

manner. A ubiquitous example of knowledge transfer is pre-training of a deep neural network

on a large (un)labelled dataset, e.g., on ImageNet (Russakovsky et al., 2015), and then

fine-tuning it on a smaller target dataset.

Beyond pre-training and fine-tuning, there is a wide range of learning paradigms that

involve some form of knowledge transfer. In multi-domain learning (MDL) (Rebuffi et al.,

2017a), which is the focus of this chapter, a single model is trained to solve several related

tasks on a number of different domains, e.g., digit recognition and object recognition. The

idea is to use knowledge from related tasks to induce regularisation across the considered

domains. The common view on MDL is to transfer knowledge across domains to maximise

predictive accuracy, while sharing as many parameters as possible across tasks, and adding

as few task-specific parameters as possible. A common approach is to learn a base network

on one of the domains, and then adapt it with a small number of parameters for tasks on other

domains. A wide range of solutions to such base network adaptation has been proposed in

the literature, which can be divided into two major groups of approaches. The first group

applies a task-specific binary mask to either the features or the weights in each layer of the

model (Berriel et al., 2019; Mallya et al., 2018; Mancini et al., 2018). While this adds a small

number of parameters per task, essentially one bit per weight or feature channel, its ability to

adapt to new tasks is limited for the same reason. The second group leaves the weights of the

base network unchanged, but adds a number of task-specific adaptation layers, for example,

a 1◊1 convolution parallel to each 3◊3 convolutational layer of the base network (Li &

Vasconcelos, 2019; Rebuffi et al., 2017a; Rosenfeld & Tsotsos, 2018). Depending on the

design of adaptation modules, this approach adds more parameters to adapt the model to

the task. However, by leaving the parameters of the base network layers unchanged, task

adaptation can only be achieved by added model capacity in the adaptation layers themselves,

without capitalising on adaptations of all of the backbone parameters.

To overcome the limitations of existing approaches, we propose a novel type of adaptation

module, which we call Modulation Adapters. Our approach adapts the weights of the existing

layers of the base network to the task by means of non-binary scaling. More specifically, to

adapt the base network to a new domain d, we learn a set of domain-specific adapters αd,

each modulating the fixed convolutional filters by multiplying them with a scalar αd
mn that is

specific to the pair (m, n) of the output and input channels to which the filter applies. See

Figure 4.1c for an illustration. The latter allows for nine-fold parameter reduction compared

to 3◊3 convolutions that constitute the core of common base networks, such as ResNets (He

et al., 2016b). To further reduce the memory footprint, we propose a factorised representation

of each adapter αd as a product of two matrices with a smaller intermediate dimensionality.
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(a) Residual Adapters (b) Parallel Adapters (c) Modulation Adapters

Fig. 4.1 Different adaptation units embedded into a residual block. Blocks in blue, adapters

αd and batch-norm (BN) layers, contain domain-specific parameters. Blocks in black in

the base network are domain-agnostic. Yellow blocks show that the 3 ◊ 3 convolutions of

the base network are modulated before being applied. Note that the BN blocks contribute a

negligible number of parameters compared to the Modulation Adapter blocks.

In contrast to other approaches, our adapters allow to modulate all weights in the base

network in a non-binary manner, while offering a scalable number of parameters.

We perform several ablative studies to assess the impact of multiplicative adaptation

compared to additive, and demonstrate the benefits of the proposed approach. We evaluate

our Modulation Adapters on the Visual Decathlon Challenge and the ImageNet-to-Sketch

benchmark. We obtain excellent results, with accuracies that are comparable or better than

those of existing state-of-the-art approaches across a wide range of parameter budgets.

4.2 Related work

Weight and feature masking. One way to approach multi-domain learning is to adapt

the convolutional layers of a base network that has been pre-trained on a large dataset.

The “piggy-back” approach of Mallya et al. (2018) learns element-wise binary masks for

the weights in the convolutional layers of the base network. Such parameterisation allows

memory-efficient storage of domain-specific parameters: requiring to store 1 bit for each

real-valued weight, i.e., a 32 fold reduction in storage for single-precision parameters. The

idea of adaptation through binary masks is further generalised in WTPB (Mancini et al.,

2018), where the authors use three scalars to define an affine transformation of convolutional
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filter weights based on the binary masks. In BA2 (Berriel et al., 2019), binary masks are

applied across the feature channels rather than the network weights. As a result, after

training masked feature maps can be removed from computational graph, reducing both the

memory footprint and the computational complexity. While reduction in memory budget is

an appealing property of the masking approach, the common downside is limited capability

of model adaptation due to simplicity of the binary masks. In our work, we propose a method

for non-binary multiplicative adaptation of the base network, which allows to span a large

range of parameter budgets.

Adaptation modules. Domain-specific trainable modules which adapt a pre-trained base

network have been explored in several works. Residual Adapters (Rebuffi et al., 2017a) use

an intermediate residual block with a trainable 1◊1 convolution after each pre-trained and

fixed 3◊3 convolution. Compared to the size of the base network, such type of adapters

leads to nine-fold reduction in the number of additional parameters being learned for a new

domain. In Parallel Adapters (Rebuffi et al., 2018), a domain-specific 1◊1 convolution

is used as an additive bypass to each domain-agnostic 3 ◊ 3 convolution. The Parallel

Adapter configuration provides more flexibility than the sequential one: it can be used

on top of existing pre-trained networks since the adapters need not be present when pre-

training. DAN (Rosenfeld & Tsotsos, 2018) learns linear transformations of the output

filters in the base convolutions, which is equivalent to insertion of an intermediate 1◊1

convolution after each base convolution. Unlike Residual Adapters, this model does not use

additional skip connections and batch normalisation layers during adaptation. CovNorm (Li

& Vasconcelos, 2019) learns an approximation of the sequential adaptation layers, which

consists of whitening, mini-adaptation and colouring operations. For each trained adapter,

the whitening and colouring matrices are obtained from PCA of the corresponding input and

output activations, while the mini-adaptation layer is learned from scratch. Our method also

falls into the category of models which contain the adaptation modules. Different from the

other approaches, we perform modulation of the fixed convolutional filters by scaling their

weights with a non-binary factor specific to each input-output channel combination.

Adapter modules have been investigated in the context of NLP (Houlsby et al., 2019)

to specialize Transformer models (Vaswani et al., 2017) to specific tasks. In the context

of generative image modeling, adapters have been used to adapt pre-trained GANs to new

domains with few samples (Atsuhiro & Tatsuya, 2019; Esther et al., 2020). Our model is

related to weight modulation approaches for GANs used in StyleGAN2 (Karras et al., 2020)

and in CISP (Anokhin et al., 2021).
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4.3 Method

We consider the multi-domain learning problem where a model is required to solve D

classification tasks on D data domains, while minimising the total number of parameters

being learned. We begin with the popular framework, e.g., Mallya et al. (2018); Mancini

et al. (2018); Rebuffi et al. (2017a), of pre-training a base feature extractor on a large dataset,

which is then fixed and shared across all domains. After that we learn a separate adapter for

each domain, which modifies the fixed feature extractor to improve its performance on the

given domain. Along with the adapters, we also learn domain-specific batch normalisation

layers and a classification head which predicts domain-specific labels. The objective function

is a sum of the domain-specific objective functions that correspond to individual tasks, and

in our case it is the sum of corresponding cross-entropy losses.

We detail our approach and its properties in Section 4.3.1, and discuss the factored

parametrisation in Section 4.3.2. Then, in Section 4.3.3, we provide a detailed comparison of

our approach with respect to the most related prior works.

4.3.1 Modulation Adapters

We suppose the CNN base network has already been pre-trained. Let f œ IRM◊N◊K◊K be

the filter of a specific layer in the base network, where K is the spatial filter size, N is the

number of input features, and M the number of output features.

To adapt the convolutional layers of the base network to a new domain d œ {1, . . . , D},

we define a modulation adaptation unit ρ, with domain specific parameters αd œ IRM◊N that

modulate the convolutional filter in a multiplicative manner. For an input x with N feature

maps, this unit produces an output y with M feature maps:

y = ρ(f , x, αd) =
1

f ¶ αd
2

ú x, (4.1)

where ú is the convolutional operator, and ¶ is an element-wise product with the adapter

parameters αd œ IRM◊N broadcasted across the spatial dimensions of the convolutional

weight tensor f œ IRM◊N◊K◊K . Adaptation module ρ applied to the pre-trained filter f is

equivalent to a new convolutional filter gd, with the weights obtained as:

[g]dmnkl = αd
mn · [f ]mnkl. (4.2)

Note that modulation of the filter weights for each domain can also be interpreted as applying

scaling of the input features, which is specific for each output channel. Therefore, with

modulation each output channel can mix the input channels in different ways, e.g., amplify
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some and ignore others. The input channels are, however, processed by the same spatial filter

for each input-output channel combination, leading to reduction in the number of trainable

parameters relative to the size of the base network.

We learn a separate set of modulation weights for each convolutional layer in the base

network, and denote our adaptation unit as a Modulation Adapter (MAD). Figure 4.1c shows

how Modulation Adapter units are incorporated into a single residual block. While all

convolutional weights are altered for a new domain, we only need to store the pre-trained

filters f as well as the Modulation Adapters, which are learned from scratch. The latter

contain MN parameters for each convolution in the base model. This is a reduction in

the number of parameters by a factor K2 (the spatial filter size), relative to size of the

corresponding convolution in the base network (e.g., for 3◊3 convolutions K2 = 3 ◊ 3 = 9).

4.3.2 Factorisation of Modulation Adapters

The number of parameters in our Modulation Adapters is given by the product of the

number of input channels and the number of output channels of a convolutional layer. For

residual blocks the number of input and output channels is the same, and thus the number

of adaptation parameters is quadratic in the number of channels. Therefore, the number of

adaptation parameters is typically largest in deeper layers of the base network which tend to

contain hundreds of feature channels. For example, the ResNet-26 architecture we use in

our experiments has 256 channels in the deeper layers, resulting in 64k parameters in each

adaptation module. An alternative, allowing for linear scaling of the number of parameters

with the number of feature channels, would be to separately scale the input and the output

feature channels of the convolutional layer. This scaling, however, could be absorbed in the

domain specific BatchNorm layers, which has been found to be too restrictive for effective

adaptation in previous work (Rebuffi et al., 2017a).

Inspired by parameter reduction demonstrated by matrix decomposition in CovNorm (Li

& Vasconcelos, 2019), we adopt a similar strategy in our work. However, instead of learning

an unconstrained full adapter and approximating it with a product of two (or more) matrices

using some form of matrix decomposition, e.g. SVD as in ConvNorm, we propose to directly

represent and learn MAD as a product of two matrices, each with a smaller intermediate

dimension I < min(M, N):

αd = βd ◊ γd, (4.3)

where βd œ IRM◊I , γd œ IRI◊N and ◊ denotes matrix multiplication. Such representation

limits the maximum rank of the MAD to I , and can be interpreted as a rank factorisation. In
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practice, we observe that for certain base networks the full Modulation Adapters are, indeed,

learned to be sparse, which we show in Section 4.5. This justifies restriction of the rank

promoted by the proposed representation, while direct learning of the factors reduces the

memory requirements during training.

We learn the factors βd and γd from scratch, and compute their product prior to scaling

the base filter bank f . The domain-specific convolution gd is obtained as:

[g]dmnkl =

A

I
ÿ

i=1

βd
mi · γd

in

B

· [f ]mnkl. (4.4)

In this case MAD can still be interpreted as scaling the input channels in a specific way

for each output channel, but the scaling coefficients are no longer completely independent.

This adapter factorisation reduces the number of parameters being trained from MN in

the full adapter to I(M + N) in the factorised case. The intermediate dimension I is a

hyper-parameter that can be used to trade-off the number of parameters with prediction

accuracy.

4.3.3 Comparison to related approaches

Some earlier work described in Section 4.2 can also be understood in terms of domain specific

filters gd obtained by applying the domain specific adapters αd to the fixed filters f of the

base network in order to modify the latter. This allows us to further clarify the differences

and similarities between prior work and our Modulation Adapters. In this discussion, both

gd and f have the same shapes as before, while the form of αd varies across the approaches.

Masking methods apply element-wise scaling of convolutional weights:

[g]dmnkl = αd
mnkl · [f ]mnkl, (4.5)

where the scaling coefficients αd
mnkl are either binary (Mallya et al., 2018), or take two

unique non-binary values (Mancini et al., 2018). Rather than masking individual weights,

BA2 (Berriel et al., 2019) masks the entire features:

[g]dmnkl = αd
m · [f ]mnkl. (4.6)

Although these adapters are compact to store, their binary nature and factored scaling of

features limit task adaptation. Non-binary weights in our Modulation Adapters provide more

degrees of freedom for adaptation, while our factorisation approach allows to control the

parameter budget.
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Linear feature combination methods (Rosenfeld & Tsotsos, 2018) learn adapters that

linearly combine filter outputs:

[g]dmnkl =
M
ÿ

i=1

αd
mi · [f ]inkl, (4.7)

which is equivalent to inserting a domain specific 1◊1 convolution after the (fixed) convolution

of the base network. Residual Adapters (Rebuffi et al., 2017a), depicted in Figure 4.1a, add a

skip-connection on top of the linear combination of features:

[g]dmnkl =
M
ÿ

i=1

(1 + αd
mi) · [f ]inkl. (4.8)

Linear combination approaches have a comparable parameter budget as our (non-factored)

Modulation Adapters: M2 for the former, and MN for the latter. These adapters are

implemented as additional linear layers applied to the output of the corresponding unaltered

convolutions. Our approach can not be viewed as a linear transformation applied to either

inputs or outputs, since we perform element-wise multiplication of adapters with parameters

of the convolutions.

Parallel Residual Adapters (Rebuffi et al., 2018), depicted in Figure 4.1b, adopt domain

specific 1◊1 convolutions in parallel to the fixed 3◊3 convolutions of the base network. This

is equivalent to adapting the central element of the pre-tained filters:

[g]dmnkl = [f ]mnkl +

Y

]

[

αd
mn if k = l = (K ≠ 1)/2 + 1,

0 otherwise.
(4.9)

While the number of adapter parameters is MN as in our approach, this adapter only affects

the central elements of the filters, which is restrictive and limits the space of possible

adaptations.

4.4 Experimental Evaluation

We describe our experimental setup in Section 4.4.1. After that, we present ablation experi-

ments in Section 4.4.2, followed by comparison to previous work in Section 4.4.3.
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4.4.1 Experimental setup

Datasets. In our experiments we use the two most common multi-domain learning bench-

marks: the Visual Decathlon Challenge (Rebuffi et al., 2017a) and ImageNet-to-Sketch (Mallya

et al., 2018), which contain image classification datasets from heterogeneous visual domains,

and each dataset contains different classes to recognise.

The Visual Decathlon Challenge consists of ten image classification datasets: ImageNet

(Russakovsky et al., 2015), CIFAR-100 (Krizhevsky, 2009), Aircraft (Maji et al., 2013),

Daimler pedestrian classification (Munder & Gavrila, 2006), Describable textures (Cimpoi

et al., 2014), German traffic signs (Stallkamp et al., 2012), Omniglot (Lake et al., 2015),

Street view house numbers (Netzer et al., 2011), UCF101 Dynamic Images (Soomro et al.,

2012; Bilen & Vedaldi, 2016), and VGG-Flowers (Nilsback & Zisserman, 2008).

The second benchmark, ImageNet-to-Sketch, consists of six image classification datasets:

ImageNet (Russakovsky et al., 2015), VGG-Flowers (Nilsback & Zisserman, 2008), Stanford

Cars (Krause et al., 2013), Caltech-UCSD Birds (Welinder et al., 2010), Skteches (Eitz et al.,

2012) and WikiArt (Saleh & Elgammal, 2016).

Training details. On the Visual Decathlon Challenge, we use ResNet-26 (Rebuffi et al.,

2017a; Rosenfeld & Tsotsos, 2018; Li & Vasconcelos, 2019) and the weights of its feature

extractor pre-trained on ImageNet from (Rebuffi et al., 2017a). All convolutional layers in the

feature extractor consist of 3◊3 filters, which are fixed after pre-training and accompanied

by domain-specific Modulation Adapters. The latter are initialised with ones and learned for

each domain separately. Batch normalisation layers, which follow each of these modulated

convolutions, are also finetuned for each domain separately, and are initialised with values

from the pre-trained base network. Finally, domain-specific fully connected layers used as

classification heads are learned from scratch, individually for each task. The model is trained

with SGD with momentum 0.9 for 140 epochs. Initial learning rate is set to 0.1, and decreased

by a factor ten after epochs 80 and 110. We set the weight decay to 0.0035 for VGG-Flowers,

0.0025 for Aircraft and Describable textures, 0.0015 for UCF101 Dynamic Images, 0.001 for

Daimler pedestrian classification and Omniglot, and 0.0005 for CIFAR-100, German traffic

signs and Street View House Numbers.

For the ImageNet-to-Sketch benchmark, we use DenseNet-121 (He et al., 2016a) as the

base network, which is commonly used in previous work (Mallya et al., 2018; Mancini et al.,

2018; Berriel et al., 2019; Guo et al., 2019b). Similarly to the Visual Decathlon Challenge, we

apply Modulation Adapters to all convolutions in the base network, including those with 1◊1

filters. Despite the absence of parameter reduction in the latter case, we empirically find that

modulation of such convolutions leads to better performance compared to finetuning them

directly. Domain-specific batch normalisation layers and classification heads are initialised
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Params ImNet Airc C100 DPed DTD GTSR Flwr Oglt SVHN UCF Mean Score

Modulation adapter (full) 2 60.8 66.8 79.2 97.9 56.9 99.2 86.4 90.0 97.0 52.5 78.7 ± 0.3 3828 ± 178

Scaling central element 2 60.8 39.6 74.7 97.7 53.1 98.0 76.5 85.8 94.8 44.0 72.5 ± 0.3 2252 ± 120

Additive 3◊3 adapt. 2 60.8 30.5 53.6 91.5 25.3 95.1 44.1 88.8 94.5 27.2 61.1 ± 0.2 916 ± 11

Modulation adapter (I = 36) 1.39 60.8 65.3 81.7 98.2 59.4 99.2 84.8 89.5 96.8 52.1 78.8 ± 0.1 3798 ± 134

Modulation adapter (best) 1.52 60.8 65.3 81.7 98.3 59.4 99.3 85.1 89.6 96.8 52.5 78.9 ± 0.1 3878 ± 68

Modulation adapter (LOO) 1.38 60.8 64.9 81.7 98.2 59.1 99.2 84.4 89.5 96.8 52.1 78.7 ± 0.3 3802 ± 123

Table 4.1 Ablation experiments. Classification accuracy is reported per dataset, along with

the mean, and the decathlon score. For the latter two we also report their standard deviations

across the ten repetitions of the experiments.

and trained the same way as for ResNet-26, while the weights of Modulation Adapters are

initialised with 0.15. The model is trained with AdamW (Loshchilov & Hutter, 2019) for 60

epochs. The initial learning rate is set to 0.001, and decreased by a factor ten after epochs 20

and 40. We set the weight decay to 0.0035 for Flowers, 0.001 for CUBS, Stanford Cars and

Sketch, and 0.0005 for WikiArt.

Evaluation metrics. We report average classification accuracy across all domains, as well

as domain-specific accuracies. Each model is trained 10 times with random initialisations,

and the average across these runs is reported. We also use the score function introduced in

(Rebuffi et al., 2017a). This score S is computed as:

S =
D

ÿ

d=1

ad max{0, Emax
d ≠ Ed}bd , (4.10)

where D is the number of domains in the benchmark, ad = 1000 (Emax
d )≠bd is the weight

which ensures a perfect score of 1000 on a single domain, Emax
d and Ed are the baseline

and the model’s test errors, respectively, and bd = 2 is the exponent that rewards more

significant reductions of the classification error. The baseline error Emax
d is twice the error of

a per-domain fully finetuned model. The score of the finetuning baseline is therefore 250 per

dataset. We report the total number of trainable parameters relative to the size of the base

feature extractor network, not counting the linear classification heads.

4.4.2 Ablation studies

We conduct ablation studies on the Visual Decathlon Challenge in order to assess several

variants of our model, as well as the effect of scaling, selecting the parameter budget, and the

complementarity with additive adapters.

Scaling central element vs. entire filter. We experiment with a version of Modulation

Adapter in which we only scale the central element of the 3◊3 filters, rather than the entire

filter. This is similar to additive Parallel Adapters (PA) (Rebuffi et al., 2018), which use
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Fig. 4.2 Mean accuracy vs. parameter budget for different adapter-based methods: decom-

posed version of our Modulation Adapters (MAD), decomposed version of Parallel Adapters

(PA, our implementation), hybrid adapters that combine MAD and PA.

1◊1 filters to adapt the central elements of the 3◊3 filters of the base network. With this

central-element-only scaling approach, we obtain a mean accuracy of 72.5% and a decathlon

score of 2252, see Table 4.1. This is significantly worse than the performance of our full

model (78.7% mean accuracy, and score 3828), showing the benefit of scaling the entire

3◊3 filter for each input-output channel combination. Interestingly, scaling only the central

element is also worse than the result of Parallel Adapters, which reported a mean accuracy of

78.1% and a score of 3412 (see Table 4.2). Although scaling the central element is equivalent

after training, our hypothesis is that optimising the scaling adapter with stochastic gradient

descend is more difficult than optimising the additive adapter. Using an optimiser with

adaptive learning rates, such as Adam (Kingma & Ba, 2015), may alleviate this.

Additive adaptation of all filter elements. In our second ablation, we consider a variant of

our approach in which we adapt all filter elements, as in Eq. (4.2), but in an additive rather

than multiplicative manner. This is similar to PA, but now the adapter updates all the filter

elements rather than only the central one. This variant leads to a substantially worse mean

accuracy of 61.1% and a decathlon score of 916, see line “Additive 3◊3 adapt.” in Table 4.1.

Our interpretation of this deterioration is that strong additive adaptation of all filter weights

leads to spatially uniform filters that fail to detect spatial patterns.

Decomposition of Modulation Adapters. In Figure 4.2, we consider the effect of de-

composing our Modulation Adapters as a product of two smaller matrices of weights, as in

Eq. (4.3). We vary the intermediate dimension I from 2 to 92, and plot the mean accuracy

against the parameter budget. We note that the mean accuracy quickly increases when

allowing more parameters, reaches a maximum at I = 36, and then slightly declines. The
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mean accuracy of the full, non-decomposed model, and the model with I = 36 are very

close at 78.7% and 78.8% respectively, see Table 4.1. The decomposed model with I = 36,

however, yields a saving of more than 60% in the parameter budget.

While on average there is a smooth trend between the accuracy and the parameter budget,

the optimal parameter budget differs per dataset. In Table 4.1 (line “Modulation Adapter

(best)”), we show what the optimal accuracy would be if we were to set this budget for

each dataset separately. We notice that this only leads to minor improvements of 0.1% and

0.2% on average across domains w.r.t. the I = 36 and the full models, which is within the

standard deviation of the reported results. We further illustrate the stability of the trade-off

between the accuracy and the parameter budget across the datasets with a leave-one-out

(LOO) experiment. In this case, for each dataset we select the parameter budget by taking the

optimal budget on all the other datasets. We then average the results across all the datasets.

As in previous cases, we only find minor deviations in the mean accuracy, reaching 78.7%,

which is the same as the performance of the full non-decomposed model.

Decomposition of Parallel Adapters. Similar to the decomposition used in our Modulation

Adapters, we implemented a factorised version of Parallel Adapters (PA) (Rebuffi et al., 2018),

where each 1◊1 adapter is given as a product of two matrices with a smaller intermediate

dimension I . As shown in Figure 4.2, unlike our approach, PA does not behave well

with decomposition relative to the full version of PA. Moreover, decomposed PA performs

consistently worse than our Modulation Adapters across all parameter budgets. For reference,

we also included the “full” non-decomposed version of MAD and PA in the graph.1

Hybrid adapters. To study the complementarity of multiplicative and additive adaptation,

we experiment with a hybrid approach that mixes our Modulation Adapters with Parallel

Adapters (Rebuffi et al., 2018). We use decomposed versions of MAD and PA, since our

goal is to keep the total number of parameters below the size of the full version of a single

model. The available parameter budget is evenly split between the two types of adapters. The

results in Figure 4.2 show that these adapters are not complementary: the hybrid approach is

consistently worse than our Modulation Adapters, in particular for small parameter budgets,

while providing a consistent improvement over the decomposed version of Parallel Adapters.

1Result for PA (full) taken from original paper: 78.1% mean accuracy and score 3412. We implemented the

decomposed version of PA (as well as our models) based on the public code-base of PA (full) from Rebuffi et al.

(2018). In our experiments, we obtained mean accuracy 77.7% and score 3206 for PA (full). If we take best

result across these ten runs, we obtain mean accuracy 78.2% and score 3460, consistent with the original paper.
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Fig. 4.3 Total score vs. parameter budget for Modulation Adapters (MAD) and the other

approaches.

4.4.3 Comparison to the state of the art

Visual Decathlon Challenge. In Figure 4.3, we compare the total score of our full and

decomposed Modulation Adapters to the state-of-the-art methods across a range of parameter

budgets. While other methods provide a single operating point, our decomposed Modulation

Adapters enable adaptation to new domains across a wide range of parameter budgets, and

yield better or comparable score. In particular, CovNorm (Li & Vasconcelos, 2019) has a

score 3713, and for a similar parameter budget our Modulation Adapters (I =24) obtain an

improved score 3816. Parallel Adapters (Rebuffi et al., 2018) report a score 3412, while at the

same parameter budget our non-decomposed Modulation Adapters obtain a score 3828. With

3507, DWSC (Guo et al., 2019a) achieves a lower score than the top-performing methods,

but uses a smaller parameter budget. Unlike the other methods, however, DWSC does not use

the ResNet-26 base network, but an architecture based on depthwise separable convolutions,

and is therefore not directly comparable. The number of parameters is still given relative to

the ResNet-26 model.

In Table 4.2, we additionally report the accuracy per dataset as well as the decathlon

score. Here, we also include three more baselines. The “Feature” baseline does not adapt the

base network, and only learns the linear classification head per dataset. This baseline obtains

poor mean accuracy (54.3%) and score (544), due to insufficient adaptation. The “BN Adapt.”

baseline only learns dataset-specific BatchNorm layers, but leaves all the other parameters

of the base network unchanged. This adds very few parameters, but leads to a remarkable

improvement with respect to the feature baseline, by scaling the output of the convolutional

layers in a dataset-specific manner. After training, this approach is equivalent to only scaling



4.4 Experimental Evaluation 71

Params ImNet Airc C100 DPed DTD GTSR Flwr Oglt SVHN UCF Mean Score Rank

Number of images 1.3m 7k 50k 30k 4k 40k 2k 26k 70k 9k

Feature (Rebuffi et al., 2017a) 1 59.7 23.3 63.1 80.3 45.4 68.2 73.7 58.8 43.5 26.8 54.3 544 14.7

BN Adapt. (Bilen & Vedaldi, 2017) ≥1 59.9 43.1 78.6 92.1 51.6 95.8 74.1 84.8 94.1 43.5 71.8 1363 13.4

BA2 (Berriel et al., 2019) 1.03 56.9 49.9 78.1 95.5 55.1 99.4 86.1 88.7 96.9 50.2 75.7 3199 8.9

Finetune (Rebuffi et al., 2017a) 10 59.9 60.3 82.1 92.8 55.5 97.5 81.4 87.7 96.6 51.2 76.5 2500 9.4

PB (Mallya et al., 2018) 1.28 57.7 65.3 79.9 97.0 57.5 97.3 79.1 87.6 97.2 47.5 76.6 2838 9.1

DAN (Rosenfeld & Tsotsos, 2018) 2.17 57.7 64.1 80.1 91.3 56.5 98.5 86.1 89.7 96.8 49.4 77.0 2851 8.3

RA (Rebuffi et al., 2017a) 2 60.3 61.9 81.2 93.9 57.1 99.3 81.7 89.6 96.6 50.1 77.2 3159 7.6

WTPB (full) (Mancini et al., 2018) 1.29 60.8 52.8 82.0 96.2 58.7 99.2 88.2 89.2 96.8 48.6 77.2 3497 5.8

DWSC (Guo et al., 2019a) ≥1 64.0 61.1 81.2 97.0 55.5 99.3 85.7 89.1 96.2 49.3 77.8 3507 7.4

SpotTune (Guo et al., 2019b) 11 60.3 63.9 80.5 96.5 57.1 99.5 85.2 88.8 96.7 52.3 78.1 3612 6.4

PA (Rebuffi et al., 2018) 2 60.3 64.2 81.9 94.7 58.8 99.4 84.7 89.2 96.5 50.9 78.1 3412 6.5

CovNorm (Li & Vasconcelos, 2019) 1.25 60.4 69.4 81.3 98.8 59.9 99.1 83.4 87.7 96.6 48.9 78.6 3713 6.6

MAD (full) 2 60.8 66.8 79.2 97.9 56.9 99.2 86.4 90.0 97.0 52.5 78.7 3828 4.1

MAD (I = 24) 1.26 60.8 64.9 81.5 98.2 59.1 99.2 85.1 89.5 96.8 52.3 78.7 3816 4

MAD (I = 36) 1.39 60.8 65.3 81.7 98.2 59.4 99.2 84.8 89.5 96.8 52.1 78.8 3798 3.9

Table 4.2 Comparison to the state-of-the-art methods on the Visual Decathlon Challenge.

Best results per metric (mean and per dataset classification accuracy, as well as score) are in

bold, and the second best are underlined.

the output channels of the filters. Our approach is similar, but scales filter weights in both

input and output dependent manner, leading to more adaptation and far superior results. The

“Finetune” baseline finetunes all the parameters of the base network for each dataset, and

does not offer any savings in the parameter budget. It is outperformed by other methods that

limit the number of free parameters, allowing for better generalisation to datasets with few

samples. We also include SpotTune, which improves over the Finetune baseline in prediction

accuracy, but does not offer reduction in the number of parameters.

Our Modulation Adapters (MAD) not only obtain high mean accuracy and score, but

also offer the best or comparable accuracy per domain. This is unlike the other methods

whose performance is often less consistent across datasets. To quantify this, we rank the

methods by accuracy (best first) on each domain, and then average the rank of each method

across domains. On the Decathlon Challenge, MAD (I=36), MAD (I=24) and MAD (full)

have average ranks 3.9, 4.0 and 4.1, respectively. These are the best three results on this

benchmark. CovNorm, which is our next competitor in terms of the score and accuracy, has

the average rank 6.6, which is the seventh-best result. Furthermore, MAD is significantly

easier to train than CovNorm. The latter consists of a complex multi-step algorithm: (i)

learning Residual Adapters (Rebuffi et al., 2017), (ii) computing PCA for input and output

activations, (iii) learning additional mini-adaptation layers, and (iv) joint finetuning of all

components of the final adapters. Training our model is comparable to the first step of

CovNorm: we learn a single multiplicative adapter per domain in a single training run.

ImageNet-to-Sketch benchmark. In Table 4.3, we compare our Modulation Adapters

with the state of the art on the ImageNet-to-Sketch benchmark. The full (non-decomposed)

model outperforms all the other methods both in terms of the average accuracy and the total
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Params ImNet CUBS Stanford Cars Flowers WikiArt Sketch Mean Score Rank

Number of images 1.3m 6k 8k 2k 42k 16k

Feature (Mallya et al., 2018) 1 74.4 73.5 56.8 83.4 54.9 53.1 66.0 324 6.8

PB (Mallya et al., 2018) 1.21 74.4 81.4 90.1 95.5 73.9 79.1 82.4 1209 5.8

BA2 (Berriel et al., 2019) 1.17 74.4 82.4 92.9 96.0 71.5 79.9 82.9 1434 4

WTPB (full) (Mancini et al., 2018) 1.21 74.4 81.7 91.6 96.9 75.7 79.8 83.4 1534 3.5

Finetune (Mallya et al., 2018) 6 74.4 81.9 91.4 96.5 76.4 80.5 83.5 1500 3

MAD (full) 4.61 74.4 83.9 91.9 96.9 76.9 81.0 84.2 1668 1.2

MAD (I=36) 2.33 74.4 83.1 90.6 96.4 75.3 80.2 83.3 1446 3.7

MAD (full) + WTPB (full) 1.26 74.4 82.7 91.4 96.9 76.2 80.1 83.6 1569 2.7

Table 4.3 Comparison to the state-of-the-art methods on the ImageNet-to-Sketch benchmark.

Best results per metric (mean and per dataset classification accuracy, as well as score) are in

bold, and the second best are underlined.

score, and is the only one to outperform finetuning the base network (“Finetune"). This

result further confirms the effectiveness of the proposed multiplicative adaptation strategy.

While our parameter budget is larger than those of our competitors (due to abundance of

1◊1 convolutions in the DenseNet-121 base network), it is still below the budget of the

fully finetuned models, which allows us to reduce the performance gap between the latter

and learning only domain-specific classification heads (“Feature"). As for individual tasks,

Modulation Adapters demonstrate the best performance on four datasets (CUBS, Flowers,

WikiArt and Sketch), and the second-best on Stanford Cars. Results on WikiArt and Sketch

are of special interest, since these datasets are quite different from ImageNet which was

used for pre-training. While the latter consists of natural images, the former two contain

paintings and sketches, which makes the multi-domain task on them more challenging. On

ImageNet-to-Sketch, MAD (full) obtains the best average rank 1.2, while next competitors

“Finetune”and WTPB obtain 3 and 3.5.

We found that factorisation of our Modulation Adapters is less effective on the ImageNet-

to-Sketch dataset: using I = 36 intermediate dimensions for decomposition (reducing the

parameter budget roughly by a factor two), we obtained an average accuracy of 83.3. The

different behaviour of decomposition across the two benchmarks may be related to the

relatively large number of parameters in 1◊1 convolutions in the DenseNet-121 architecture,

whereas in the ResNet-26 architecture most parameters reside in 3◊3 convolutions. We also

found that the learned adapters for the ImageNet-to-Sketch benchmark do not show the sparse

structure that we observe in the adapters learned for the Visual Decathlon Challenge, see

Section 4.5, making rank restriction less effective. Despite the less consistent performance,

MAD (I=36) still outperforms other competitors on Sketch and CUBS, improving over full

finetuning of the base network on the latter.

As an alternative strategy to reduce the parameter budget, we explored the possibility

of combining our method with other approaches. In particular, we trained a hybrid model
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(a) ResNet-26 modulation adapters learned on Visual Decathlon Challenge datasets.

(b) DenseNet-121 modulation adapters learned on ImageNet-to-Sketch benchmark datasets.

Fig. 4.4 Visualisation of the absolute weight values of Modulation Adapters. The vertical

axis represents the output channels, while the horizontal one represents the input channels.

where WTPB (Mancini et al., 2018) is applied to 1◊1 convolutions, while Modulation

Adapters are applied to 3◊3 convolutions (“MAD (full) + WTPB (full)”). The hybrid

model improves over WTPB on three datasets, bringing it closer to individual finetuning on

WikiArt and Sketch, and even outperforming it on CUBS. In terms of the average accuracy,

the total score and the average rank, the hybrid model is slightly better than individual

finetuning, second only to our Modulation Adapters. This shows that even more flexible

models could be created from existing approaches depending on the desired parameter budget

and performance requirements.

4.5 Visualisation of Modulation Adapters

Figure 4.4(a) shows the absolute weight values of Modulation Adapters (full) which adapt

the same 3◊3 convolutional layer at depth five in ResNet-26 on Aircraft, CIFAR-100 and

SVHN datasets from the Visual Decathlon Challenge. Figure 4.4(b) does the same for 3◊3
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convolutional layer at depth nine in DenseNet-121 on CUBS, WikiArt and Sketch datasets

from the ImageNet-to-Sketch benchmark.

Non-trivial adapters are learned, i.e., the matrices do not contain rows or columns with

uniform values. In addition to that, we can observe some feature selection happening in

ResNet-26: dark spots indicate zeroing of corresponding input feature maps. This is not

the case for DenseNet-121 used for ImageNet-to-Sketch benchmark. The low sparsity of

Modulation Adapters on the DenseNet-121 might also explain why the decomposed version

is less effective on this benchmark.

4.6 Conclusion

In this paper, we address the problem of learning across multiple domains while reducing

the total parameter budget. In contrast to previous works which rely on adaptation modules

that are limited in their capacity, or only adapt a part of the base network parameters, we

introduce Modulation Adapters, a novel type of adapters based on flexible weight modulation.

We design these adapters to update the weights of the pre-trained convolutional filters by

scaling their input and output channels, and provide an efficient parameterisation through

decomposition for further parameter reduction. Ablative analyses as well as our model’s

excellent performance on the popular Visual Decathlon Challenge and ImageNet-to-Sketch

benchmarks validate the benefits of our multiplicative adaptation method. At the same time

other means of parameter reduction for the full Modulation Adapter could be considered to

cover the setups where the learned adapters are not sparse.
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Conclusion

In this thesis we focus on the two problems that involve transfer of knowledge between a

number of tasks with limited amount of training data: few-shot learning and multi-domain

learning. Our general goal in both settings is to share as many parameters between the tasks

as possible, while minimising the overall number of trainable parameters within each of

them. We consider different approaches to feature adaptation, as well as different learning

frameworks, which results in two models: a probabilistic generator of classifier weights for

few-shot learning, and a modulation adaptor of convolutional weight tensors for multi-domain

learning. In Section 5.1 we summarise the contributions of this thesis, and in Section 5.2 we

discuss the ideas for future work in the considered transfer learning problems.

5.1 Summary of contributions

5.1.1 Shared amortised inference for few-shot learning

In Chapter 3, we propose a novel Bayesian inference scheme, where task- and class-specific

classifier weights are modelled as latent variables with learnable prior and posterior. Proba-

bilistic modeling of classifier weights directly addresses the model uncertainty, and provides

a means to incorporate variance into the model predictions. Definition of the prior over

classifier parameters through conditioning on the train set of the task, in conjunction with

definition of the posterior over the same parameters through conditioning on the union of

the train and test sets, makes the design easy to interpret: we want the model, which can

only observe the extremely limited train set, to mimic the predictions of the model that has

access to a larger set of labeled examples, forcing it to extract the knowledge more efficiently.

Shared amortised inference makes the parameter budget fixed for arbitrary number of tasks,
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and for arbitrary number of classes within each task, providing flexibility and allowing to

tackle overfitting which is one of the main challenges in few-shot learning.

Experiments on synthetic data show that, given a small number of samples of the latent

variable generated during training, variational inference promotes a more efficient recovery

of the true posterior compared to Monte Carlo training, which tends to underestimate the

variance. We also show that an ensemble of classifiers sampled from the predicted distribution

improves the performance compared to single classifier that only uses the predicted mean and

ignores the predicted variance. This result supports the initial argument for taking the model

uncertainty into consideration. Evaluation on several common few-shot learning benchmarks

shows that in certain setups our model, which uses the labeled train data alone to make

predictions on the meta-test set, can outperform some transductive models which additionally

use the unlabeled test data in order to make meta-test predictions.

5.1.2 Modulation adapters for multi-domain learning

In our second contribution, covered in Chapter 4, we propose a novel design of the trainable

adaptation module for multi-domain learning. For each domain, our adapter performs inde-

pendent scaling of kernels in convolutional layers of the shared feature extractor. Multiplica-

tive adaptation preserves pre-trained spatial patterns within each of them, while re-weighting

their relative importance, differently for each output feature. We factorise our modulation

adapters as a product of two matrices with a smaller intermediate dimension, which not

only reduces the number of domain-specific parameters, but also spans a large range of

parameter budgets, unlike previous approaches which generally offer a single budget setting.

Independent learning of adapters mitigates catastrophic forgetting, making the approach

more flexible and potentially applicable to incremental learning.

We perform multiple ablation studies to demonstrate the advantage of the proposed design

compared to other possible operations with convolutional kernels. Our experiments also

show that adapter factorisation can significantly reduce the number of trainable parameters

while maintaining accurate predictions. For any parameter budget, our model outperforms

the competitors, thus spanning a wide range of competitive solutions with different memory

requirements. Both the full and the factorised versions of modulation adapters achieve state-

of-the-art results on two common multi-domain learning benchmarks, the Visual Decathlon

Challenge (Rebuffi et al., 2017a) and ImageNet-to-Sketch (Mallya et al., 2018).
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5.2 Future work and perspectives

5.2.1 Improved feature extraction for few-shot learning

In Chapter 3 we show the benefits of probabilistic modeling in few-shot learning. However,

in our model probabilistic inference is limited to prediction of the distribution over weights

of the task-specific classifier, whereas feature embedding is performed in a completely

deterministic way. At the same time more complex feature extraction in the form of ensemble

learning has been successfully considered in the literature (Dvornik et al., 2019), which

is remotely related to infinite ensembles learned by statistical models. This brings forth

motivation to incorporate probabilistic modeling into feature extraction as well.

Approaches to representation learning for few-shot learning vary a lot. Nevertheless, a

considerable scope of works relies on FiLM layers (Perez et al., 2018) in order to adjust a

pre-trained feature extractor to the task at hand. Parameters of these layers could be viewed

as task-specific latent variables, conditioned on the data associated with the task, and inferred

from the task using either a task embedding network (TEN), as in TADAM (Oreshkin et al.,

2018), or more complex autoregressive task encoder, as in CNAPS (Requeima et al., 2019).

FiLM parameters could be obtained then using the same shared amortised inference as for

weights of the classifier in SAMOVAR.

Recently there has been an increased interest in learning universal representation (Bilen

& Vedaldi, 2017; Triantafillou et al., 2021) for few-shot learning generalisation problem,

where a model is required to solve the standard few-shot learning problem on a collection

of datasets rather than just on one of them. This is in line with multi-domain learning, so

taking inspiration from its adaptation strategies, another possible way of enhancing feature

extraction for few-shot learning could be development of more sophisticated means of feature

adaptation compared to FiLM. Although straightforward application of existing adapters is

theoretically possible, in practice this might be hindered by insufficient amount of labeled

data, with a high risk of overfitting. This risk could be reduced by using models with the

smaller parameter budget, including our factorised Modulation Adapters or binary masks.

5.2.2 Domain awareness in multi-domain learning

Independent learning of domain-specific adaptation modules, which is currently the most

popular approach to multi-domain learning, provides the model with a lot of flexibility,

and makes it easily applicable to other transfer learning setups, such as continual learning.

Combined with pre-trained and fixed feature extractor, this strategy naturally deals with

catastrophic forgetting, since domain-specific modules are only affected by data from the
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domain of interest. The same property, however, constitutes the biggest drawback of this

approach: being trained in isolation, these modules lack any positive transfer between the

domains, except for transfer from the domain that is used during the pre-training stage. This

problem can be addressed by introducing context to multi-domain learning, which would be

responsible for consolidation of knowledge from multiple domains on a meta-level.

There are many possible ways to implement such context. One of them could be using

HyperNetworks (Ha et al., 2017) as adaptor generators, which is also related to the concept

of “fast weights” (Schmidhuber, 1992) where one network predicts transformation of another

network. These networks could take the output of the previous convolutional layer as input,

and produce weights of the adaptor for the current convolution layer. Joint training of

HyperNetworks would result in a context-dependent inference of domain-specific adaptation

modules, introducing the desired domain awareness and increasing knowledge transfer

while keeping adaptors domain-specific, a concept that has been shown to work in our first

contribution, SAMOVAR. The factorised version of our Modulation Adaptors can potentially

reduce the burden of predicting high-dimensional objects, which is usually the case with

adaptors for the deeper layers of the feature extractor.

Fully joint training, however, might lead to negative transfer between some of the domains.

An alternative could be definition and computation of the domain taxonomy, in a similar vein

with the task taxonomy (Zamir et al., 2018) which measures transferability between different

pairs of tasks. Some form of this intuition has been applied in SpotTune (Guo et al., 2019b)

which learns a decision policy for selective, domain-specifc finetuning of certain layers in the

pre-trained feature extractor. This method still suffers from limited transferability, in addition

to providing no parameter reduction by design. Yet, the idea to develop a policy which

defines which domains can be co-trained, and which should be isolated, is an interesting

direction to explore.

Another possible way to introduce the context could be probabilistic modeling, more

precisely – learning a prior which would depend on the set of domains at hand. One approach

could be to directly model the context as a latent variable conditioned on the data from

multiple domains. Another strategy could be to reverse the conditioning, e.g. to model the

weights of the adapters as the latent variables, and to condition their distributions on the

context computed from the data. The second approach would require designing a domain

encoder that maps the set of domains to the context, which can be adopted from the practices

of task encoding in few-shot learning. Even with such adaptation, there are several challenges

to be tackled, e.g. how to aggregate the knowledge from the entire domain, since the are

much more labeled samples within one domain in multi-domain learning compared to one

task in few-shot learning.
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5.2.3 Multimodal transfer learning

Representation learning is a crucial step in every deep learning task (Bengio et al., 2013; Bilen

& Vedaldi, 2017). Many transfer learning models adopt the strategy of re-using a pre-traned

feature extractor, which decouples the initial task into the two parts: 1) data embedding, and

2) learning problem-specific network modules built on top of the feature extractor, e.g. FiLM

parameters in few-shot learning. Majority of works focus on the second part, and use feature

extractors pre-trained on common benchmarks, such as ImageNet (Russakovsky et al., 2015),

however, there is no guarantee that this is the best strategy.

In the last few years multimodal representation learning (Baltrušaitis et al., 2018), i.e.

learning representation of data which comes from different sources, such as image, text,

audio etc., has received a lot of attention. Most recently significant progress in this area has

been shown by CLIP (Radford et al., 2021), a large-scale language-vision model that uses

language supervision to learn image representation. One of the most impressive attributes of

this model is its potential for zero-shot transfer, when a model is required to generalise to new

tasks without any additional training on them. At the same time the authors acknowledge the

difficulties with incorporating additional data in the few-shot learning setup, as well as admit

that the model requires large validation sets to efficiently transfer the model to new tasks in

the zero-shot setup, which is unrepresentative of the true zero-shot learning.

Despite the challenges, task-agnostic large-scale pre-training looks very promising, and

it could potentially be adopted for other transfer learning problems. For example, it could

replace the commonly used pre-training on ImageNet in multi-domain learning. Since

Radford et al. (2021) use ResNet-50 as the network architecture, application of various

adapters is straightforward. Another intriguing direction or research in this setup could be

incorporation of the language part of the model for domain encoding, which could be further

combined with the ideas discussed in Section 5.2.2.
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