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Abstract

Collaborative robots offer new possibilities to use robots in workspaces shared with humans.
These robots can interact with their environment and assist human beings in their task in a safer
way compared to standard industrial ones. They are required to be fast, precise, and efficient
during the accomplishment of their tasks. However, their strength can make them dangerous tools
around people. Therefore, to ensure safety they are often used in a sub-optimal way.

The aim of this work is to ensure the safety of a human interacting with a robot performing
a set of tasks. It is particularly focused on the generation of collision-free trajectories. Online
analysis of the current human motion is not sufficient to guarantee a fluent and safe interaction.
Instead, the robot needs to be able to anticipate human motion to be able to initiate actions in
time and to render long–term planning possible. These robots are also limited by their intrinsic
design. However, it’s impossible to guarantee that no collision will ever take place in a partially
unknown dynamic environment such as a shared workspace. In this situation, no matter what the
future trajectory of the robot is, a collision eventually occurs. But we can guarantee instead that,
if a collision takes place, the robot is at rest at the time of collision, so that it doesn’t inject its own
kinetic energy in the collision.

To that aim, this work formulates the planning problem as a constrained optimization one un-
der Model Predictive Control framework and solves it using Linear Quadratic Programming. The
collision-free constraint is based on a separating plane method to calculate the distance between
the robot and the person. As we anticipate the movement of the person so that the robot avoids
in advance when there is a potential collision, we need therefore to predict its movement. The
prediction is performed by neural networks which are efficient in predicting sequential data and
can learn certain motion patterns.

The proposed method is validated by implementing them for online trajectory generation on a
7 dof serial robotic manipulator. This robot is used in a shared workspace with a human. Using
external sensors it is shown that it is possible to realise tasks while reactively avoiding a potential
collision.

Keywords: Human/Robot Collaboration, Model Predictive Control, Safety, Quadratic Pro-
gramming, Redundant Robots, Motion Prediction, Deep Learning, Motion Planning
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Nomenclature

Abbreviations

C− space Configuration space

Do f Degree of freedom

EE End effector

HRC Human robot collaboration

HRI Human robot interaction

MPC Model predictive control

QP Quadratic programming

Symbols and Notation

u Upper bound of the control vector

u {u0,u1, . . . ,uN−1} is the predicted input vectors on control horizon

x {x1,x2, . . . ,xN} is the predicted state vectors on control horizon

u Lower bound of the control vector

{p1, p2, . . .} Vertices of a polyhedra which characterise a person

{r1,r2, . . .} Vertices of a polyhedra which characterise a robot

A A ∈ R2n×2n is the state transition matrix of linear dynamic system

a Normal vector of a separating plane

b Closest distance from the origin to the separating plane

Cdq Inequalities constraints matrix for a quadratic programming problem associated to joint
velocity

Cq Inequalities constraints matrix for a quadratic programming problem associated to joint
configuration

I n×n identity matrix

J The Jacobian of the robot’s end-effector expressed in the robot base frame

lbdq Lower bound of the inequalities constraints for a quadratic programming problem associ-
ated to joint velocity

lbq Lower bound of the inequalities constraints for a quadratic programming problem associ-
ated to joint configuration
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NOMENCLATURE

N The total sampling steps on prediction/control horizon

u Control vector, here is the piece-wise constant acceleration

ubdq Upper bound of the inequalities constraints for a quadratic programming problem associ-
ated to joint velocity

ubq Upper bound of the inequalities constraints for a quadratic programming problem associ-
ated to joint configuration

x Robot state configuration including joint position and joint velocity

xdes Desired robot state

∆t Time sampling interval

k Time sampling at step k

q Robot joint configuration
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Industrial robot begin their root in the mid of 20st-century. These automatic device are aim
to help humans work for heavy, dangerous and monotonous task. According to ISO 8373:2012,1

industrial robot is "an automatically controlled, reprogrammable multipurpose manipulator, which
can be either fixed or mobile for use in industrial automation application". While the first industrial
robot "Unimate" was deployed in 1962 for manufacturing, they was only able to accomplish simple
pick and place task. Then, in 1980s, industrial robot starts greatly expanded to many complex
tasks such as welding, painting, assembly because of the advance in mechanics, electronics and
computer software. Most industrial applications of robot manipulators use position control, the
performance of the robot is ensured by using a high control gain which lead the robot to become
very stiff.

While in a free space stiffness is a desired behaviour, but this can lead to potential danger
for a human operator working nearby and not anticipating the movement of the robot. In 1987,
a study about cause-and-effect analysis of robot accidents is reported by [Jiang1987]. This study
concludes that the most of accident happens during human-robot interaction when the robot is in
operational mode, and it could be avoid with proper safety design during robot installation.

Figure 1.1: (a) Robots in a car assembly line working in a workspace separated by cages. The
environment is perfectly know, the trajectories can be generated off-line. (b) Interaction between
human and robot in a shared workspace, robot movements are restricted because the operation
is moving around the robot. It should update it’s trajectory on-line to adapt to the change of
environment.

The trivial solution is to enclose robot in a protective barriers as shown in Figure 1.1(a) to
ensure the safety. In this separating cage, the environment is static, no external perturbation can
happen, the robot is able to perfectly execute a trajectory calculated offline. When the operator
enters to the cage, he must first turn off the robot power supply, and then restart the robot once he
is out. The robot becomes ineffective if this action happens frequently. Furthermore, they are not
flexible at all for various tasks, and are therefore more used for repetitive and long periodic tasks.
It is also time consuming to install such robot devices, for example, it takes 200 hours to program
(and reprogram) them in an automobile industry [Djuric2016]. In addition, building a production
line with industrial robots is very expensive. For all these reasons, industrial robots remain only a
powerful tool for large companies, and do not at all favour small and medium-sized companies.

1https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en
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Chapter 1. Introduction

1.1 Towards collaborative robots in shared spaces

Tableau 1.1: A comparison between industrial robots and collaborative robots. (source
[Matúšová2019])

Separating robots with cages is an efficient way to ensure safety as it prevents any possible con-
tact with the robot. However, the downside is that the automation process is either fully automated
or fully manual. There are applications that can benefit from a close collaboration between hu-
mans and robots, such as in the context of industrial 4.0 and circular economy [Mehrpouya2019].
The best solution is to combine the strengths, precision, and speed of industrial robots with the
ingenuity, judgment, and dexterity of human workers. This way, human workers can handle tasks
that require flexibility, while robots handle tasks that make the best use of their strength and speed.

As mentioned in the previous section, the inflexibilities and dangers of traditional manipulator
robots have limited their use in human-robot interaction applications. These limitations includes
a lack of safety sensor, hard to displace, and high operational speeds, as summarized in Tab 1.1.
To adress these issues and meet new needs such as collaborative assembly [Unhelkar2014, Be-
jarano2019], a home assistant has been developed to aid aging inviduals [Madarash-Hill2004]. A
considerable investment is being made in companies and laboratories for the development of col-
laborative robots. For example, the collaborative DLR LightWeight Robot [Albu-Schäffer2007] is
designed for interaction with humans in daily and unstructured environments with a load-to-weight
ration of approximately 1:1. The use of lightweight materials keeps the total system weight under
15 Kg. These DLR techniques have led to a more accessible collaborative robot called Franka
Emika Panda 2. Collaborative robots have several advantages, including ease of programming for
new tasks, faster and simpler set-up in new environments, and the ability to operate without the
need for enclosing cages due to embedded security features. A comprehensive comparison be-
tween traditional industrial robots and collaborative robots can be found in Tab 1.1. As the table
shows, the use cases for these two types of robots are very different. Traditional industrial robots
are well-suited for heavy tasks and static environments, while collaborative robots are better suited
for human-centered task or frequently changing assembly lines.

However, even if these collaborative robots are much less dangerous. One may still wonder
how can we be sure they won’t injure humans? The first document ISO 10218 entitled "Robots
and robotic devices - Safety requirements for industrial robots" has been proposed to provide stan-
dardization for maintaining safety during interactions between humans and industrial robots [for
Standardization2011]. The accompanying technical specification ISO/TS 15066 provides addi-
tional information and details on how to achieve the requirements established by ISO 10218 for
collaborative operation. In the following section, we will delve into the different methods proposed

2https://www.franka.de/
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1.2. Safety requirement in Human-Robot collaboration

by IOS 10218 and explain the motivation behind this thesis in this context.

1.2 Safety requirement in Human-Robot collaboration

source: [Magrini2020]

Figure 1.2: Four different modes of cooperation. Mode 1: Robot is fully stopped. Mode 2: Robot
is passively guided by human. Mode 3: Speed reduction when human approches. Mode 4: Power
and force limited

According to the technical specification ISO/TS 15066, there exists four different collaboration
modes as shown in Figure1.2:

• Safety-rated Monitored Stop
During interactions with operators in a shared workspace, the robot is stopped to ensure
safety. This type of collaboration is well-suited for situations where the robot is assisting
the operator in positionning heavy components or manually inserting object into the robot’s
end-effector [Vysocky2016]. A key feature of the safety-rated monitored stop is that the
robot resumes movement once the operator is no longer present, eliminating the need to
manually power it on again;

• Hand-guided
The robot is manually guided by the operator, who acts as a teacher, guiding the robot to
the desired positions by moving it directly, without the need for an intermediate program-
ming interface. Hand-guided is often used in conjunction with Safety-rated Monitored Stop
feature. When the robot is alone in shared space, it executes its automatic task. Once the
operator enters, the robot stops and allows the operator to activate the hand-guided mode. A
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more complete study of hand-guided, including its impact on safety, operability, and human
skill assistance, is carried out by [Fujii2016];

• Speed & Separation Monitoring The speed and trajectory of the robot are adjusted based
on the position of the person in the shared workspace. This allows the robot to continue its
tasks at a reduced speed [Joseph2018] without needing to stop compeletely. Additionally,
separation monitoring ensures that the robot maintais a safe distance from the operator,
effectively preventing collisions [Zheng2020];

• Power and Force Limited Direct contact between the operator and the robot can occur
intentionally and unintentionally. To ensure safety, the force that the robot can exert on
the operator is limited. The technical specification ISO/TS 15066 includes maximum force
values that must not be exceeded when the robot collide with body parts [Haddadin2008].

Tableau 1.2: The relation between four modes and the type of interaction

During interactions between the operator and the robot, there can be direct contact or no con-
tact at all. Therefore, we must distinguish the interaction in more specific terms: coexistence and
collaboration. Coexistence refers to the robot and operator sharing a workspace but not perform-
ing the same task simultaneously. An example is an operator performing a task side by side but
without having mutual contact. On the other hand, collaboration means that the robot and the op-
erator perform a task at the same time and in the same workspace. Direct physical contact between
the two is possible. The classification of the four modes of collaboration is presented in the Tab.
1.2. Depending on the type of interaction, the motion of the robot is constrained by the technical
specification. Thus, we need to determine an appropriate architectural control. In this work, we
don’t consider physical interactions between the robot and human, such as a handing an object or
holding it together, only situations where they share the same workspace and have to work sepa-
rately with as little interference as possible. For this situation, the appropriate safety requirement
could be define as "Speed and separation monitoring". Therefore, the robot is able to move around
the operator at a safe velocity and keep a safe distance.
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1.3. Motivations and contributions

1.3 Motivations and contributions

1.3.1 Motivations

Figure 1.3: The perception-decision-action loop for robot architecture.

Close interaction and collaboration with humans in shared workspaces require robots to be
able to coordinate their actions in space and time with their human partners. Online analysis of
the current human motion is not sufficient to guarantee a fluent and safe interaction. Instead, the
robot needs to be able to anticipate human motion, enabling them to initiate actions in time and
facilitate long–term planning.

A traditional autonomous robot system is described by a perception-decision-action loop [Thrun2002].
shown in Fig 1.3. This loop can be perfectly adopted for generating collision-free trajectory during
human robot collaboration:

• Perception: processing of exteroceptive sensor flows (camera) to extract information about
the environment. This correspond to the first column of Fig 1.3. We localise the position of
human’s arm and predict the arm motion during a short horizon of time.

• Decision: from the extracted information, and taking into account the robot’s objective, as
well as its possibilities of motion, the robot re-generate a collision-free trajectory as shown
in Figure 1.3.

• Action: performing low-level control command to follow the desired trajectory. thus the
action will influence the state of its environment.

However, it’s impossible to guarantee that no collision will ever take place in a partially un-
known dynamic environment such as a shared workspace. In this situation, no matter what the
future trajectory of the robot is, a collision eventually occurs [Fraichard2004]. But we can guar-
antee instead that, if a collision takes place, the robot is at rest at the time of collision, so that it
doesn’t inject its own kinetic energy in the collision [Bouraine2012]. This is called passive motion
safety, and this is what we aim for.
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Collision avoidance is classically implemented by restricting the motion of the robot in the di-
rection of the human, either with a repulsive potential field [Khatib1986], velocity dampers [Faver-
jon1987], safety index evaluation with links’ momentum projection [Tsai2014], control barrier
functions that provides inequality constraints in the control input [Ames2016], invariance con-
trol [Kimmel2017]. All these approaches share two major problems. The first is that these re-
strictions are defined arbitrarily, only loosely related to the dynamics of the robot, and generate
therefore suboptimal behaviors such as unnecessary detours or stops. The second is that they as-
sume that the proposed restriction can always be enforced and the collision avoided, which may
not be true when multiple constraints are affecting simultaneously the motion of the robot. In that
case, their behavior is undefined and a collision could happen in a completely uncontrolled way.

Perceiving the environment is typically accomplished using exteroceptive sensors. For ex-
ample, laser scanners can be used to survey an area and prevent workers from intruding into the
robot’s workspace [Ogura2012]. Other approachses, such as using a depth camera to evaluate
the distance between the robot and both static and moving obstacles, have also been proposed
by [Flacco2012a]. In addition, multi-depth camera fusion method have been applied by [Fab-
rizio2016] to reduce unobserved space. However, these approaches are limited to instantaneous
detection and do not take into account the future movement of objects. Since we argue that predict
and anticipate human arm’s motion can improve the safety issues in human robot collaboration .

The quality of collision-free trajectory generation is highly dependent on the accuracy of our
predictions. For instance, a manipulator robot moving at full speed (2 m.s−1) can stop in approxi-
mately 0.15 s and 0.15 m [Emika]. However, in that same amount of time, a human hand starting
from rest can cover more than 1 m for extreme motions such as boxing [Kimm2015a]. Therefore,
if the robot is required to stop before being punched by a human, the necessary safety distance
would be more than 1.15 m, which would greatly limit the possibility to sharing workspaces.
However, human reaching motions are typically 10 times slower, with maximum speed approxi-
mately 1 m.s−1 and acceleration of 5 m.s−2 [Grujić2015a]. We propose that these slower estimates
should be considered when designing the collision avoidance and passive motion safety capacities
of the robot. Even if a human moves faster and a collision occurs before the robot can stop, we
would still benefit from the low probability of serious injury discussed above [Albu-Schäffer2007].

The prediction of the motion of people comes in different forms: the prediction of the whole
body [Martinez2017a], a single rigid body [Fridovich-Keil2020], the arms [Pereira2017a] or the
hand [Ding2011a]. We will shortly describe these different approaches in this section and will
elaborate on them in detail in Chapter 4. The prediction method can generally be classified into
three categories: Physics-based, Planning-based, and Pattern-based [Rudenko2020]. Physics-
based methods define an explicit dynamical model based on Newton’s law of motion [Kakadi-
aris1996], [Pereira2017a], Pattern-based methods learn motion patterns from data of observed
trajectories [Ding2011a], [Mainprice2013a] and Planning-based methods reason on motion intent
of the person [Sylla2014b], [Mainprice2015]. These approaches will be later describe in chapter
V.

1.3.2 Contributions

The contributions of this thesis are:

• We propose an predictive control (MPC) scheme for generating collision-free trajectory in
real-time for a robot sharing a workspace with a human. Thus, if the collision is unavoidable,
we at least ensure that the robot is at rest at the time of collision by introducing passive
motion safety constraints.

• We introduce the "separating plane" method to calculate the distance between the robot and
the person. This approach avoids the abrupt change of the pair of closest points of two
objects.
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• We propose to use Encoder-Decoder LSTM neural network to predict the motion of the per-
son’s arm. This prediction is included in our MPC scheme to establish collision constraints.

• We demonstrate in real experimentation this real-time collision-free trajectory generator
with a robot of 7 dof (Franka Panda Emika).

1.4 Outline

here is a brief overview of the following chapters:
Chapter two: Theoretical Backgroud
Chapter 2 reviews several techniques in robotics and deep learning considered in this thesis.
Chapter three: Online motion generation in a shared workspace
Chapter 3 reviews the state of the art on motion generation of robot manipulator in the pres-

ence of obstacle. Then it introduces the general MPC scheme which is defined in three parts: i)
Task definition ii) Constraints formulation and iii) Problem solving as an Quadratic Programming.
The distance computing algorithm based on separating plane and passive motion safety will be
explained and explored in this chapter.

Chapter four: Human detection and arm motion prediction
Chapter 4 reviews the state of the art on human pose detection and motion prediction based

on deep learning. We construct an Encoder-Decoder LSTM (long short-term memory) neural
network to predict human arm’s motion and present the connection between this part and the MPC
scheme.

Chapter five: Implementation and Validation
Chapter 5 validates the MPC scheme for collision-free trajectory generation in real-time pre-

sented in Chapter 3. We illustrate the case for a seven degree of freedom robot manipulator per-
forming point-to-point operations in the presence of a dynamic human.

Chapter six: Conclusion
Chapter 6 concludes this thesis by summarising its contributions, discussing its limitations and

mentioning the future developments and research directions.
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Chapter 2. Background

The work realized in this thesis is a result of cross research. Techniques from the different re-
search areas contribute to the formulation and the resolution of the final motion generator. In this
chapter, we provide an overview of these techniques which is important for understanding the rest
of the thesis. This overview is not exhaustive and does not aim to provide a complete account of
what has been done in this field. Rather, it is intended to provide the reader with enough informa-
tion to situate this work with the relevant state-of-the-art approaches. In Section 2.1, we introduce
the notations and definitions necessary to understand robot kinematics, such as forward kinematics
and inverse kinematics. In Section 2.2, we give an overview of different trajectory planning ap-
proaches (local versus global planning) and the formulation of the optimization trajectory. Then,
in Section 2.3, we provide an overview of standard constrained optimization techniques and we
introduce Model Predictive Control which is closely related to optimization in Section 2.4. Finally
in Section 2.5, we review some basic ideas and notations that can help readers to understand Deep
Learning for computer vision systems.

2.1 Robot kinematics

Kinematics is the description of the motion (position, velocity and acceleration) of points,
bodies and systems of bodies, it only describes geometrically how they move without considering
the forces causing the motion. For a robot manipulator, kinematics is the study of the relationship
between the robot’s joint positions and its spatial layout. Kinematics is very important for many
scenarios such as positioning a gripper at a location, designing a mechanism that can move a
tool from point A to point B, or predicting whether a robot’s motion will collide with obstacles.
This section provides a brief introduction to rigid body motion in space and how it relates to
robot kinematics(forward and inverse kinematics). The velocity kinematics based on the idea of
Jacobian which connects the joint space velocity and the Cartesian space velocity is given at the
end of this section. For a detail reference, readers are invited to consult [Spong2006,Murray2017].

2.1.1 Rigid body transformation

Figure 2.1: Tranformation between a body fixed frame B and base frame S

In the general case, two reference frames have a position offset and a relative rotation, as
shown in Figure 2.1. As a result, the point q can be transformed from the body fixed frame B to
the base frame S using a homogeneous transformation matrix Tsb, which is a combined translation
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2.1. Robot kinematics

and rotation:

rsp = rsb + rbp (2.1a)

srsp = srsb +Rsb · brbp (2.1b)srsp

1

=

 Rsb srsb

01×3 1


︸ ︷︷ ︸

Tsb

brbp

1

 (2.1c)

The Equation 2.1a gives the physical meaning between two position vectors. However, numer-
ical calculations of vectors require them to be expressed in the same frame, in Equation 2.1b, all
vectors are expressed on the base frame S through the rotation matrix Rsb. Combine position offset
and rotation together, we obtain the homogeneous 4×4 matrix in Equation 2.1c. And consecutive
homogeneous transformations are given by

TSC = TSBTBC (2.2)

2.1.2 Forward kinematics

Figure 2.2: Geometric representation of the manipulator Franka Emika Panda and it’s associated
Denavit-Hartenberg parameters.

The forward kinematics problem for serial link manipulators is to determine the position and
orientation of the end effector given the values of the robot’s joint variables. The problem can
be solved by attaching coordinate frames to each link of the robot and expressing the relationship
between these frames as successive homogeneous transformations, as described previously.

The configuration of a frame requires six parameters, three for the position of the origin and
three for the orientation. However, with the appropriate position of the frame in each link, only
four parameters are needed to describe the configuration of a frame. this is so called Denavit-
Hartenberg convention. In this convention, each homogeneous transformation Ti is represented as
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a product of four basis transformations

T i−1
i (qi,di,ai,αi) = Rotz,qiTransz,diTransx,aiRotx,αi (2.3a)

=


cqi −sqi 0 0

sqi cqi 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1




1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1




1 0 0 ai

0 cαi −sαi 0

0 sαi cαi 0

0 0 0 1


(2.3b)

=


cqi −sqicαi sqisqi aicqi

sqi cθicαi −cqisαi aisθi

0 sαi cαi di

0 0 0 1

 (2.3c)

Where the four quantities qi,ai,di and αi are parameters related to link i and joint i. They
are called respectively link length, link twist, link offset and joint angle. Since the matrix Ti is a
function of a single variable, three of the above four quantities are constant for a given link, while
the fourth parameter, qi for a revolute joint and di for a prismatic joint, is the joint variable.

Therefore, the configuration of link 7 relative to the base frame (link 0) can be obtain by:

T 0
n =

n−1

∏
i=1

T i−1
i T i

i+1 (2.4)

Where n is the degree of freedom (dof), for Franka Emika Panda manipulator, n = 7.

2.1.3 Velocity kinematics

Figure 2.3: A generic link i of a serial manipulator.

Forward kinematic calculates the position and orientation of the robot end-effector frame for
a given set of joint configurations. In this section, we will explore how to calculate the velocity of
the end-effector of an manipulator from a give set of joint positions and velocities.

Consider a generic link i of a serial manipulator connect joints i and i+1 according to Devanit-
Hartenberg convetion. Let frame i attached to link i and has origin along joint i+1 axis, while
frame i-1 has origin along joint i axis as described in Figure 2.3.
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2.1. Robot kinematics

Let pi−1 and pi the position vectors of the origins of frames i-1 and i respect to base frame.
Furthermore, let ri−1

i−1,i denote the position of the origin of the frame i with respect to frame i-1
expressed in frame i-1, we have

pi = pi−1 +R0
i−1ri−1

i−1,i (2.5)

Where R0
i−1 is the rotation matrix from frame i-1 to base frame. Taken time derivative of

Equation 2.5 with respect to base frame, we obtain

ṗi = ṗi−1 +R0
i−1ṙi−1

i−1,i +ωi−1× ri−1,i (2.6)

Which gives the expression of the linear velocity of link i. And the link angular velocity is given
by

ωi = ωi−1 +ωi−1,i (2.7)

Where for a revolute joint, we have ωi−1,i = q̇izi−1 and R0
i−1ṙi−1

i−1,i = ωi−1,i× ri−1,i. Hence, the
expressions of angular velocity Equation 2.7 and linear velocity Equation 2.6 become

ωi = ωi−1 + q̇izi−1 (2.8a)

ṗi = ṗi−1 +ωi× ri−1,i (2.8b)

Thus, the angular and linear velocities of link i as completely determined by the angular and
linear velocities of the previous link i-1. This property can be efficiently used to recursively
compute the velocities of the end-effector by link velocity propagation, such as

ṗe =
n

∑
i=1

∂ pe

∂qi
q̇i =

n

∑
i=1

Jpi q̇i (2.9a)

ωe =
n

∑
i=1

ωi−1,i =
n

∑
i=1

JOi q̇i (2.9b)

For a revolute joint i, the contribution of the linear velocity is to be computed with reference
to the origin of the end-effector frame, it is

Jpi q̇i = ωi−1,i× ri−1,e = q̇izi−1× (pe− pi−1) (2.10)

Then
Jpi = zi−1× (pe− pi−1) (2.11)

And for angular contribution, we have

q̇iJOi = q̇izi−1 (2.12)

Then
JOi = zi−1 (2.13)

Therefore, we obtain the general form Jacobian of a n-dof serial manipulator as

Jq =

z0× (pe− p0) . . . zn−1× (pe− pn−1)

z0 . . . zn−1

 (2.14)

This Jacobian is called geometric Jacobian, which is the stacked angular and linear velocity com-
ponents.

The Jacobian matrix is extremely useful in robotic applications, from planification to robot
control. We will exploire how to use the Jacobian to map the Cartesian configuration of obstacles
into joint space in Chapter 3.
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2.1.4 Inverse kinematics

Figure 2.4: The relationship between forward kinematic and inverse kinematic

By using the Jacobian matrix, we can know how to solve the inverse kinematic problem numer-
ically in an efficient way. The inverse kinematics is the problem of finding the joint configuration
given a desired Cartesian end-effector configuration. We describe here only the numerical method
for solving the inverse kinematic, and leave readers to consult the analytic method.

Suppose we express the end-effector frame using a 4×4 homogeneous transformation

Te =

Re pe

0 1

 (2.15)

Here, the homogeneous transformation Te represents the desired position and orientation of
the end-effector. The goal of inverse kinematics is to find a solution or possible multiple solutions
of joint coordinates qd = (qd,1,qd,2, · · · ,qdn) such the equation T 0

n (qd) = Te.
Now, let Φd ∈Rm be a vector of Cartesian coordinate representation of homogeneous transfor-

mation TE . For example, Φd could represent the center position of the wrist (m=3) or the position
and orientation of the end-effector using a minimal representation of the orientation matrix (m=6).
Assume that the forward kinematic function f : Rn→ Rm is differentiable. Then, the goal is the
find joint coordinates qd such that

Φd− f (q) = 0 (2.16)

Given an initial guess q0 , the kinematics can be expressed as the Taylor first order expansion

Φd = f (qd) = f (q0)+
∂ f
∂q

∣∣∣
q0︸ ︷︷ ︸

J(q0)

(qd−q0)︸ ︷︷ ︸
∆q

(2.17)

Note that the Jacobian in Equation 2.17 is not the same Jacobian as presented in Equation 2.14.
Here, we are take the direct partial derivative of the end-effector configuration, which depends on
the parameterization of the end-effector orientation. In general case, J(q0) is not square m ̸= n, we
need to use the pseudo-inverse of the Jacobian to obtain

∆q = J†
a (q

0)(Φd− f (q0)) (2.18)
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To find a solution for Φd , we begin with an initial guess, q0, and form a sequence of successive
estimates, q1,q2,q3, · · · , as

qk = qk−1 +αkJ†
a (q

0)(Φd− f (qk−1)) (2.19)

Where α is the step size, always positive, which can be adjusted to aid convergence.
In this thesis, both forward kinematics and inverse kinematics are very useful for motion gen-

eration. For example, the position of the goal is given in the Cartesian space, if we control the
robot in joint space, we first need to compute the corresponding joint space position for the goal.
Therefore, if we control the robot directly in Cartesian space, we must compute the Cartesian er-
ror between the goal and the end-effector by using forward kinematics. In addition, the Jacobian
matrix is a key component for linearizing the kinematics constraints of the robot in Chapter 3.

2.2 Motion Planning

2.2.1 Joint space versus Cartesian workspace

Figure 2.5: (a) a 2R robot manipulator with joints q1 and q2. (b) The manipulator is moving in
workspace surrounding by obstacles A, B and C. (c) The same motion in the joint configuration
space, the 2R arm’s configuration is reduced to a point.

Motion planning is the problem of finding a robot motion from a start state to a goal state
that avoids obstacles in the environment and satisfies other constraints such as joint limits or time
optimality. Motion planning can be performed either in the joint configuration space (joint space)
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or in the Cartesian workspace.
In Figure 2.5(a), the geometry of a manipulator with two degree of freedom (Dof) is presented,

the configuration of the links is characterized by joint variables q1 and q2. The workspace and
joint configuration path planning is shown in Figure 2.5(b) and Figure 2.5(c). Trajectories in joint
space are computationally simpler for a robot manipulator because we don’t need to compute
the inverse kinematic problem online at each iteration. In addition, applying constraints in joint
position, velocity and acceleration will be straightforward because the control input is directly in
the joint space. However, in the presence of obstacles, trajectories in Cartesian workspace provide
a straightforward visualization and interpretation of the robot’s motion. Representing obstacle
configurations in joint space remains a difficult task, as shown in Figure 2.5(c).

In this thesis, we choose to define trajectories in joint space because this allows simple ap-
plication of constraints on joint range, velocity and acceleration. In addition, with the Jacobian
matrix, the locations of the obstacles can be expressed as a function of the positions of the joints,
this is explained in detail in Chapter 3. After introducing the two different spaces (joint space and
cartesian workspace), we wanted to point out the difference between path planning (which only
describes how to move from one configuration to another configuration) and trajectory planning
(which imposes additional constraints on the path such as the duration of the motion, dynamics
constraints and control input constraints).

Figure 2.6: General motion planning = path planning + trajectory planning

The path planning problem is a purely geometric problem and is a subproblem of the general
motion planning problem. It is a geometric description of the robot motion with the goal to find
a collision-free path p(s), s ∈ [0,1] from a start configuration p(0) = A to an end configuration
q(1) = B without considering the dynamics of the robot, the duration of the motion, the constraints
on the motion and on the robot are shown on the left side of the Figure 2.6. Where p(s) ∈ Rn is
the Cartesian position of the end-effector.

Once we have a set of interpolated points from the path planner defined by the parameter
s, the trajectory planner will generate the time-scaling constraint on the curvilinear abscissa to
obtain s(t). The curvilinear abscissa s(t) is defined by the path and the robot constraints such
as velocity, acceleration and control input bounds, as shown in the top of Figure 2.6. In this
thesis, there is no distinction between the path and the time law, since we determine a set of
joint’s acceleration that will cause the robot to satisfy the physical constraints (e.g. position,
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velocity and acceleration constraints) and environment constraints (e.g. obstacle avoidance) with
respect to some performance criteria, futhermore, we can use Euler integration applied to the
joint’s acceleration to obtain the joint space trajectory.

2.2.2 Local versus global planning

The problem of path planning is divided into local and global planning [LaValle2006]. In global
path planning the robot has a complete knowledge of its environment and aims to find the shortest
collision-free path for a complex workspace respecting all the constraints of the robot. In local
path planning, the robot has little or no information about its environment and must instead take
has to reactive approach to planning its path based on its perception of the environment.

Global path planning methods such as roadmap [Amato1996], [Hsu2006], cell decomposition
[Lingelbach2004] and potential field [Khatib1986], [Hwang1992] have been proposed. Roadmap
is defined as an union of curves such that for all start and goal points in free configuration space
(robot configuration without collision with obstacles) that can be connected by a path [Choset2005].
The roadmap method is based on a graph-searching algorithm in the free configuration space,
the well-known types of roadmaps are the visibility graph [Huang2004] and the Voronoi dia-
gram [Bhattacharya2008]. The cell decomposition method divides the robot configuration space
into cells. After this decomposition a connectivity graph between the initial configuration and the
final configuration is constructed according to the adjacency relationships between the cells. The
main disadvantage of the roadmap and cell decomposition methods is their high computational
requirements, and in the case of dynamic obstacles, a replanning would be required. The potential
field method considers the robot as a particle moving under the influence of a potential field that
is determined by the set of obstacles and desired goals. Obstacles are assigned as repulsive forces
while the goal position are assigned as the attractive force. However, this method is only effec-
tive in a stationary environment with stationary obstacles and suffers from the existence of a local
minimum where the robot gets stuck. Thus, global planning is not a suitable solution for real-time
planning of a robot manipulator in a dynamic environment.

On the contrary, local path planning is much computational efficient and do not need a com-
plete information about the environment. The path planner will react to obstacles and generate
collision free path in real time. Thus, this method are well suitable for real time application and
for dynamic environment that requires replanning. However, local planning do not guarantee find-
ing a solution and can stop in a local minimum even if a collision free path exist.

In this thesis, we propose a reactive trajectory planning algorithm that works in real time
avoiding dynamic person. Chapter 3 presents the general framework for local motion generation
based on a model predictive control (MPC) approach. Chapter 4 presents method to detect and
predict the motion of the dynamic person to anticaipate the future and help collision avoidance by
reacting to it in advance.

2.3 Optimisation Problem

The motion planning problem can be expressed as an optimal control problem where some
performance criteria must be optimized while respecting given constraints. The general problem
can be written in the following [Lynch2017]:

31



Chapter 2. Background

minimize
u(t),q(t),T

J(u(t),q(t),T ) (2.20a)

subject to ∀ t ∈ [0,T ], ẋ = f (x(t),q(t)), (2.20b)

∀ t ∈ [0,T ],u ∈U , (2.20c)

∀ t ∈ [0,T ],q(t) ∈ C f ree, (2.20d)

x(0) = xstart , (2.20e)

x(T ) = xend , (2.20f)

For the sake of simplicity and without loss of generality, the variables here are all one dimen-
sion. The variables u(t), q(t), T are the parameters to be optimized, corresponding to the robot’s
control input, the joint configuration and the total trajectory time, respectively. J(u,q,T ) (Equa-
tion 2.20a) is the perfomance criterion, also called the cost function and Equation 2.20b represents
the robot dynamics. The admissible control input space and the admissible joint configuration
space (without collision with obstacles) are denoted by U and C f ree, respectively. The initial and
final state constraints are given by Equation 2.20e and Equation 2.20f. Such a general form can be
very hard to solve if the cost function and constraints are nonlinear. It may be very difficult to find
a feasible point solution (i.e., the tuple (u,q,T) that satisfies all equality and inequality constraints)
and suffer from local optimum problem.

It turns out that if the objective function is convex and all constraint functions are affine,
then, any local minimum is also the global minimum and the feasibility of the convex problem
can be determined without ambiguity. The well-known convex optimization problem is called a
quadratic program (QP) if the objective function is quadratic and all constraint functions are affine.
A quadratic program is expressed in the form:

minimize
u,q,T

1
2
[ u(t) q(t) T ]H

[
u(t)
q(t)
T

]
+gT

[
u(t)
q(t)
T

]
(2.21a)

subject to G
[

u(t)
q(t)
T

]
≤ b (2.21b)

C
[

u(t)
q(t)
T

]
= d (2.21c)

In the quadratic form (Equation 2.21), H is the positive definite symmetric matrix and g is the
gradient of the objective function. G is a real matrix and b a vector denote with dimension equal to
the number of inequality constraints. By taking H = 0, the quadratic form becomes another well-
known convex optimization problem (linear programs). Several approaches are proposed to solve
convex optimization: Interior Point [Wright1997], Simplex Algorithm [Murty1988]. In a convex
optimization problem, if there is an optimal solution, it will be the global solution [Boyd2004a].

2.4 Model predictive control

Model Predictive Control (MPC) is an advanced method that is used to control a system while
satisfying a set of constraints. It has been widely used in the 1980s in various industrial sectors,
especially in chemical plants and oil fields. In MPC, the model is used to predict the future
behavior of the system over a finite time window, the horizon. Based on these predictions and
the current measured/estimated state of the system, the optimal control inputs with respect to a

32



2.5. Deep Learning for vision systems

Figure 2.7: Figure illustrating how model-based predictive control works with horizons N

defined control objective and subject to system constraints are computed as shown in Figure 2.7.
After a certain time interval, the measurement, estimation and computation process is repeated
with a shifted horizon. For this reason, this method is also called receding horizon control (RHC).
As we presented in the previous section, the motion planning problem can be expressed as an
optimal control problem, and model predictive control can also be expressed as an optimization
problem. Finally, methods developed to solve optimization problems can be efficiently applied to
solve the optimal control input for MPC.

In Chapter 3, we present our online collision-free motion planner in the MPC framework,
which not only improves the reactivity of the system, but also presents more accurate local lin-
ear approximations of the collision avoidance constraints, and also provides passive safety by an
appropriate choice of terminal constraint.

2.5 Deep Learning for vision systems

Figure 2.8: Illustration of traditional machine learning and deep learning working flow

In Section 1.3, we have shown that an autonomous robotic system is based on a perception-
decision-action architecture. The perception module is thus a key component for the motion plan-
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ner to generate a collision-free trajectory in a dynamic environment such as a human-robot collab-
oration scenario. Traditional computer vision algorithms use hand-crafted feature descriptors (e.g.
HOG [Shu2011], SIFT [Lowe2004], etc) along with statistical machine learning (ML) classifiers
to detect and track objects, as shown at the top of Figure 2.8. The difficulty with this traditional
approach is that it is necessary to choose which features are important in each given image. It’s
up to the author’s judgment and a long process of trial and error to decide which features best
describe different classes of objects.

In fact, Deep Learning (DL) introduces the concept of end-to-end learning where the algorithm
is just given a dataset of images which have been annotated with true labels. Then, the DL model
is trained on the dataset to discover the underlying patterns and learn to predict the corresponding
output, as shown below in Figure 2.8. Nowadays, DL has become an active research area in the
robotics community [Pierson2017] and [Caldera2018]. In the human-robot collaboration scenario,
DL has been applied for hand detection and localization [Gao2020], human motion recognization
[Wang2018], human motion prediction [Liu2019], etc.

In this work, we apply DL models to the image coming from an RGB-D depth camera sensor
to localize the human skeleton and thus predict its motion over a short time horizon. The predicted
information is then incorporated into the MPC framework to generate a collision-free trajectory.
In the following, we present some key concepts of DL to explain how the algorithms work.

2.5.1 Neural Networks

Figure 2.9: A deep network with multiple hidden layers, which transform the input representation
to the output layer.

The foundation of deep learning is based on a multi-layer neural network, as shown in Fig-
ure 2.9. Each layer consists of a number of neurons that have weighted connections to each neuron
in the previous layer. The neuron then forms an output by passing the weighted sum of its inputs
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through some nonlinear activation function (for example a relu activation, relu(a) = max(0,a)).
This hidden layer output is sent to the next layer. Ideally, each layer of features will represent a
better abstraction of the input data, so that the final layer of features will be a better representation
for some classifier than the raw features fed into the network. The mathematical representation for
this simple two-layer deep network is:

h[1]j = σ(
n

∑
i

oiW
[1]
i, j ) (2.22)

h[2]j = σ(
M1

∑
i

h[1]i W [1]
i, j ) (2.23)

y j = σ(
n

∑
i

h[2]j W [1]
i, j ) (2.24)

Where W [l] are the network weights for layer l, h[l] as the corresponding hidden output, Ml as the
size of this hidden representation of layer l, o as the raw input features with dimension n and y j as
j-th predicted output of the network. Not much can be done with these simple two-layer networks,
but the structure of deep learning is very flexible and can be extended or modified to make it deeper
and more complex. This modularity is the power of deep learning.

2.5.2 Convolutional Neural Networks

The input layer as shown in Figure 2.9 is a vector with n-dimensional features, but images are 3D
tensors, with a height, width, and number of channels to represent colors. The spatial property of
an image is not be preserved when it is applied to a neural network with the structure as shown in
Figure 2.9. A convolutional neural network (ConvNet/CNN) is a deep learning architecture that is
very efficient at handling structured input data such as an image.

Figure 2.10: Illustration of convolution operation applied to an input layer.

The name Convolutional Neural Network means that the network uses a mathematical oper-
ation called convolution instead of general multiplication in some of its layers. The convolution
operation is as follows:

S(i, j) = (I ∗K)(i, j) = ∑
m

∑
n

I(i−m, j−n)K(m,n) (2.25)
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Where I is the input two-dimensional grayscale image as input and K is also a two-dimensional
matrix which is called the kernel. The output S is called as the feature map. The convolutional
operation is illustrated in Figure 2.10. The kernel is usually smaller than the input which can detect
small and meaningful features such as edges that occupy only a few hundred of pixels. This allow
us to store fewer parameters in the kernel, which both reduces the model’s memory requirements
and improves its statistical efficiency. This idea is called to as sparse weights.

In the traditional neural network described above, each element of the weight matrix is used
exactly once to compute the output of a layer. In a convolutional neural network, however, each
element of the kernel is used at each position of the input. Again, this idea of parameter sharing
greatly reduce the memory required to store the kernel weight. As shown in Figure 2.10, the same
convolutional kernel is applied to each location of the input layer. To get an idea of the explosion
of parameters in traditional neutral networks, if we take as an example a colored image input
of 64× 64, the number of weights on just a single neuron of the first layer increases to 12,288
(64×64×3) plus one for the bias parameter.

Another important feature in convolutional neural networks is the pooling layer, which will
simply performs downsampling along the spatial dimensionality of the given input, thus further
reducing the number of parameters and the computational complexity of the model.

Figure 2.11: A common form of convolutional neural network architecture in which we succes-
sively apply convolution, relu nonlinear activation and pooling before going fully connected layer.

In Figure 2.11, we present the most common basic form of a convolutional neural network
architecture to handwritten digit recognization task. We successively apply convolution operation
(use kernel to extract interesting features) followed by a nonlinear activation such as relu. Then, we
apply max-pooling to the output feature maps from the convolutional-relu layer to further reduce
it’s size. Then, a final fully-connected layer is used to make the prediction, in this case to predict
the digit between 0 and 9.

2.5.3 Recurrent Neural Network

We discuss above that the convolutional neural networks are very efficient to handle hierarchical
structure such as an image, the CNN architecture only looked at one image and then output a
single prediction. However, remaining that in our human-robot collaboration scenario, we want
to predict the future motion of the person during a time horizon. Therefore, we need a more
appropriate network architecture to handle a sequence of images or data and produce a sequential
prediction. A more formal definition is given an observation sequence o = {o1,o2, . . . ,oT1} and its
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Figure 2.12

corresponding label y = {y1,y2, . . . ,yT2}, we want to learn a network architecture f : o→ y. Where
T1 and T2 are the length of the sequences.

Recurrent Neural Networks (RNN) are a variant of deep learning models that capture sequen-
tial data via recurrent connections. It models a dynamic system where the hidden state ht depends
not only on the current observation ot , but also relies on the previous hidden state ht−1. A sim-
ple single-layer RNN is shown in Figure 2.12, and the corresponding mathematical notation is as
follows:

ht = σ(Wxhot +Whhht−1 +b)

yt =Whyht
(2.26)

Where o is the input sequence containing a sequence of observations. To keep things simple we
assume that each observation is a scalar value with single feature. The idea can be extended to a
n-dimensional feature vector. y is the output sequence of the network, h is the vector storing the
values of the hidden units or state, which can contain a number m of hidden units. Wxh are weights
associated with inputs in the recurrent layer, Whh are weights associated with hidden units in the
recurrent layer, Why are weights associated with hidden to output units, and b is the bias in recurrent
layer. the nonlinear function σ corresponds to the activation function and is usually taken as Tanh
function ( ex−e−x

ex+e−x ) or relu function. However, the standard RNN models have two major problems,
exploding gradients and vanishing gradients. Exploding gradients occur when the algorithm places
a high values to the weights. Vanishing gradients occur when the values of a gradient are too small
and the model stops learning or takes way too long as a result. In the recent days, the state-of-the-
art variations of RNN models are Long Short-Term Memory (LSTM) and Gate Recurrent Unit
(GRU). A detailed description of LSTM and GRU can be found in [Staudemeyer2019]. In this
thesis, we don’t differentiate between RNN models and their variations, because they share the
same core idea and only differ in their architecture.

In this thesis, we will use convolutional neural network for person detection in an image, and
we will also extract it’s key-points. Moreover, we need to predict the person’s motion to enable
our model predictive control framework to actively compute a collision free trajectory.

2.6 Conclusion

In this chapter, we have reviewed several techniques in robotics and in computer vision that
have some common ground with the research work considered in this thesis. Our we goal here
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is to present the current challenging requirements considered in this thesis, and pointing out the
contribution of the presented work in this regard.

The goal of this thesis is to provide an online trajectory generator for robotic manipulators
in a dynamic environment such as moving people nearby. Specifically, our goal is to design a
reactive trajectory generator satisfies the following requirements: 1) Completes task as efficiently
as possible under given constraints. 2) Generates collision-free trajectories. 3) Works in real-time.
To help our online trajectory generator to perceive the dynamic environment, we apply current
state-of-the-shelf computer vision algorithm such as Convolutional Neural Network. CNN is very
effective to handle image data, therefore, we use it to effectively detect the location and the pose
of a moving person around the robot. In addition, the ability to incorporate the prediction of
the person’s motion provides important advantage for our online trajectory generator. The online
trajectory generator will be more reactive to avoid potential collisions because it predicts the future
changes. Thus, the motion prediction is handled by the recurrent neural network.
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Path planning in the presence of a dynamic person is a challenging problem due to the added
complexity. To account for the dynamic nature of the person, the robot must predict the future
trajectories of these obstacles in order to plan its own path accordingly. As a result, the trajectories
must be actively re-plannaed in order to handle the incorrect person dynamics and inaccurate
sensor data.

In this chapter, we will introduce the real-time trajectory generator under the model predictive
control framework described in the end of section 1. First, we present the state-of-the-art in robot
collision avoidance. We compare different methods and summarize their advantages and disadvan-
tages on the Tab.3.1. Based on the comparison, we argue that formulating the planning problem
as an optimization problem is the most appropriate method for human-robot collaboration. Then,
we give the mathematical definition of the trajectory generation problem in the dynamic environ-
ment and integrate it into our MPC framework. Finally, we illustrate the approach with several
simulations with different settings.

3.1 State of the art

Figure 3.1: Illustration of local minima in a potential field: (a) small distance between obstacles,
(b) the robot is surrounded by obstacles and the goal is opposite the exit, (c) the goal is too close
to the obstacle.

New, safer manipulator robots can share their workspace with humans, thanks to advanced
mechanical and control design that make sure that potential collisions between the robot and hu-
mans result in a low (5%) probability of serious injury even at speeds as high as 2 m.s−1 [Albu-
Schäffer2007]. Collisions would better be avoided nevertheless, not only because of the remaining
risk, however low it is, but also because each collision disrupts the tasks of both the robot and the
human.

The most popular and well known approach to dynamic environment planning for robots is
the use of potential fields [Khatib1986], [Connolly1990], where repulsive forces push the robot
away from obstacles and an attractive force pulls the robot towards the goal. In order to be fast
and thus limit the computation time, this reactive scheme consists of computing at each time step
only the next action that will move the robot closer to the goal without colliding with the envi-
ronment. However, this method can cause the robot to get stuck in local minima and suffer from
oscillations, as shown in Fig. 3.1. The oscillation problem of the potential field (Figure 3.1(c))
can be reduced using Newton’s method for calculating the gradient of the potential [Ren2006].
The local minima problem occurs when all attractive and repulsive forces cancel each other out,
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this happens when the exit is a small distance between obstacles or the goal is very close to the
obstacles (Figure 3.1(a)) or when the robot is surrounded by obstacles and the exit is opposite to
the goal (Figure 3.1(b)). The local minima can be avoided by combining global and local informa-
tion as shown in the elastic band framework [Quinlan1993], adding a virtual obstacle [Lee2003]
around local minima to help the robot to escape from it, using harmonic potential [Kim1992]
functions to construct a local minima free potential field by finding a solution of the Laplace equa-
tion. However, the drawback lies harmonic functions are computationally expensive and difficult
to implement in a dynamic environment that changes with time and some implement in a dynamic
environment do not ensure the existence of trajectory [Garrido2010].

Figure 3.2: Human-robot collision avoidance in depth space with potential field method.

An example of robot collaboration using artificial potential fields is shown in Figure 3.2, [Flacco2012b]
uses a depth camera to estimate the distance between a robot and an obstacle (including a hu-
man), which is used to generate the repulsive forces to control the robot for generic motion
task. [Polverini2014] introduces a kinetostatic safety field to estimate the level of danger near
rigid bodies. The safety field includes the relative position and velocity of the robot and the hu-
man, but is also influenced by the real shape and size of the human. A control input is then derived
from the cumulative safety field. In the above method, the obstacle is surrounded by an envelope
that is larger than its real dimensions, which may unnecessarily limit the robot’s movement.

Rather than generating a motion in the workspace, configuration space planning provides a uni-
fied aspect of the trajectory generation and control problem, and it can also reduce the complexity
of representing the robot topology in the workspace. The configuration of a robot is a specifica-
tion of the position of each point on a robot, and the configuration space is the set of all possible
robot configurations. Thus, the planning problem in workspace as described by the potential field
method can be reduced to path planning for a single point in the configuration space (Section. 2.2).
However, the difficulty of planning in the C-space lies in the obstacle representation, especially for
robots with many DOFs and for dynamic obstacles. Two well-known approaches have been de-
veloped to deal with this drawback, sampling-based algorithms such as rapidly-exploring random
trees (RRT) in [Kuffner2000] and probabilistic roadmaps (PRM) in [Kavraki1996]. By randomly
sampling in the C-space, a tree or a roadmap can be constructed to determine a connection be-
tween the start and the end configuration in C-space. The validation of the samples for collision
avoidance is checked by mapping the sample into the workspace using forward kinematics. An
efficient algorithm such as A∗ [Duchoň2014] can be applied to the tree or the roadmap to find
the path. We have summarized the advantages and disadvantages of the above described motion
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planners in Tab. 3.1.

method Advantages Disadvantages Suitability for Human-
Robot collaboration

Potential field Online capability. No need
for obstacle representation
in C-space.

Need to escape the local
minimum. No optimal con-
sideration of the motion.
Complex kinematics and dy-
namics representation.

Not suitable.

Planning in
C-space

The topology of the robot
is reduced to a point in C-
space. No need to represent
the kinematics.

Representation of obstacle
topology in C-space is very
time-consuming and com-
plicated. Not online com-
putable for high DOF robots
and dynamic obstacles.

Not suitable due to the
complicated obstacle
representation.

Sampling-
based planner

No need for kinematic repre-
sentation as path is planned
in C-space. No need
for obstacle representation
in C-space because colli-
sion checking is done in
the workspace with forward
kinematics. Real-time capa-
bility.

Heuristics in the approach.
Finite number of samples is
considered. Dynamics are
rarely considered.

Not suitable. Difficult to
formulate the heuristics
in the optimization prob-
lem. Difficult to check
collisions from the C-
space to the workspace.

Optimisation
formulation

No need for obstacle repre-
sentation in C-space. Real-
time capability. Easily in-
tegrated into the predictive
control framework.

Kinematics or dynamics
representation.

Suitable. Optimal solu-
tion with constraints sat-
isfaction.

Tableau 3.1: Comparison of different planner approach

The above methods have important drawbacks that make them unsuitable for human-robot
collaboration applications, sucha as the local minimum problem and the complexity of managing
the dynamic environment in the potential field, the time-consuming transformation of the obsta-
cle topology in the configuration space and the heuristic approach in the sampling-based planner.
None of these methods easily incorporate constraints such as robot dynamic limits, motion dura-
tion into the formulation, and they do not consider the motion of obstacles in the future or in a
time horizon. This has been pointed out by [Lasota2015] that simply preventing collisions as they
are about to occur can lead to inefficient human-robot interaction and negatively impact perceived
safety and comfort, therefore predicting the motion of obstacles and acting in advance is necessary
to improve human-robot collaboration. To address all these drawbacks, we formulate our motion
planning problem as an optimization problem, with equality and inequality constraints. In addi-
tion, it can be easily incorporated into a predictive framework such as model predictive control.
In the following, we describe some optimization-based applications in human-robot collaboration
and explain the problem formulation in more detail.

In [Meguenani2015, Joseph2018], they constrain the robot’s kinetic energy by reducing the
robot’s velocity when an obstacle comes close, but the robot does not dynamically avoid obsta-
cles. In [Balan2006], a collision-free trajectory is determined by solving an optimization problem
that includes predictions of the robot and the worker motions. In the formulation of optimization
problem, the robot and the worker are represented by spherical geometry and the collision checks
are computed for a number of time-steps ahead based on the prediction which is used to formulate
a cost function. In [Tsai2014,Ding2011b], the model predictive control framework is used to gen-
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erate the collision-free trajectory online. They differ by the definition of constraints, in [Tsai2014]
the momentum of the robot links are used to generate additional safety measures with the relative
distance between the robot and the person. The total distance safety index plus the momentum
safety index are used as constraints for obstacle avoidance. In [Ding2011b], a safety critical re-
gion in the workspace is determined by predicting the future positions of the human, and this
region is considered as a constraint that the robot is forbidden to enter.

A drawback of the above prediction methods is the distance computation strategy, because they
only compute the distance at one time step which cannot ensure the problem of interpenetration
during the interval of two time steps. The classical approach to monitor the distance between a
robot and its environment is with the Gilbert–Johnson–Keerthi distance algorithm, which provides
a pair of closest points between two objects [Gilbert1988]. But monitoring only a pair of closest
points can lead to catastrophic failures (collisions), since the closest points can change abruptly as
objects move [Kanehiro2008].

In this work, we define the distance by establishing the existence of a separating plane between
the robot and the obstacles. If such a plane exists, then we have evidence that the robot and the
obstacles don’t collide as illustrated in [Brossette2017]. In addition, this distance is immune to
changes in the closest points. Furthermore, the separating plane provides continuous trajectory
safety over entire time intervals at very low computational cost [Schulman2014]. The Figure 3.3

Task
(Section 3.2)

Perception
(Chapter 4)

MPC
Resolution

(Section 3.4)

Desired
trajectory

Robot

Robot
state

Model

Constraints
(Section 3.3)

Collision free trajectory planning

Figure 3.3: The structure of our predictive control framework

gives a global structure of the rest of the chapter and the goal of the following section is to present
these aspects:

1. Define online collision motion generation as an optimization-based planning problem. Prop-
erly define the task (Section 3.2), physical constraints, and obstacle avoidance constraint
(Section 3.3) in the optimization problem.

2. Define the collision avoidance constraint by separating plane (Section 3.3).

3. Extend the above method and incorporating passive safety into MPC framework (Sec-
tion 3.4).

The quality of the generated trajectory under Model Predictive Control (MPC) depends in
particular on the prediction of the dynamic changes in the environment (e.g. the future positions
of the person). Concerning the prediction of human motion, we will give a detailed discussion
in Chapter 4. In this chapter, we assume that the prediction of human motion is available, so we
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concentrate on the problem of formulating and solving the online collision-free motion generation
under the MPC framework.

3.2 Task definition

Consider the motion of an n link serial manipulator with joint position q ∈ Rn and piecewise
constant acceleration over time periods ∆t, represented as a linear discrete time system

xk+1 = Axk +Buk (3.1)

where

xk =

qk

q̇k

 ∈ R2n, (3.2)

A =

I I∆t

0 I

 ∈ R2n×2n, (3.3)

B =

I ∆t2

2

I∆t

 ∈ R2n×n (3.4)

with I an n× n identity matrix and uk = q̈k the piecewise constant acceleration.
Using the above discrete system (Equation 3.1), the objective function formulated in joint-

space is defined as the error to be minimized between the desired state xdes and the current joint
state xk with the desired acceleration udes

k :

minimize
uk

||xdes
k+1− xk+1||2Q + ||uk||2R (3.5)

Where Q and R are symmetric positive semie-definite weighting matrices, the ratio R/Q allows
to balance the minimization of the input acceleration while tracking the desired state xdes

k+1.
Formulating our objective as a quadratic form (Equation 3.5) means that the task can be written

as functions of positive semie-definite matrices. Thus, it can be transformed into a quadratic
program (Equation 2.21a), which is convex and admits a unique global solution [Boyd2004b].

3.3 Constraints definition

The robot is subject to various forms of constraints imposed by it’s own mechanical system
or by the environment. The equation of the linear discrete time system (Equation 3.1) is a form
of equality constraint. The physical bounds on joint position, velocity and acceleration are a form
of inequality constraint. And when the robot shares the workspace with an operator, the collision
avoidance constraint is also expressed as an inequality constraint. By expressing all the above
constraints as a function of the robot joint acceleration, it is possible to transform the constraint
into a quadratic programming (QP) problem as defined by the Equations 2.21b - 2.21c.
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3.3.1 Physicals constraints

Joint acceleration limits The joint accelerations are directly linked to the control variable. The
corresponding constraint is simple:

u≤ uk ≤ u (3.6)

uk = q̈k is the piecewise constant acceleration defined in Equation 3.5. This is the control
variable to be solved by the QP solver. u and u ∈ Rn are acceleration limits imposed by the joint.

According to the quadratic programming problem form presented in Equation 2.21b, the ac-
celeration constraint can be formulated as

lbu ≤Guuk ≤ ubu

with Gu = In

lbu = u

ubu = u

(3.7)

Joint velocity limits The joint velocity limits are defined as

q̇≤ q̇k+1 ≤ q̇ (3.8)

Where q̇k+1 ∈ Rn is the robot joint velocity after control input uk, q̇ and q̇ ∈ Rn the joint
velocity limits. Using Equation 3.1, we can directly select the joint velocity variable through a
selection matrix Cdq =

[
0n In

]
. Thus, we can express q̇k+1 as a function of uk.

q̇k+1 =Cdqxk+1

=CdqAxk +CdqBuk
(3.9)

Equation 3.8 can be written in the form

lbdq ≤Gdquk ≤ ubdq

with Gdq =CdqB

lbdq = q̇−CdqAxk

ubdq = q̇−CdqAxk

(3.10)

Joint position limits The joint position limits are defined as

q≤ qk+1 ≤ q (3.11)

Where qk+1 ∈ Rn is the robot joint position after control input uk, q and q ∈ Rn the joint

position limits. Same as for joint velocity constraint, we define a selection matrix Cq =
[
In 0n

]
and then the joint position variable can be directly obtain from Equation 3.1. Thus, we can express
qk+1 as a function of uk

qk+1 =Cqxk+1

=CqAxk +CqBuk
(3.12)

Equation 3.11 can be written in the form

lbq ≤Gquk ≤ ubq

with Gq =CqB

lbq = q̇−CqAxk

ubq = q̇−CqAxk

(3.13)
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Figure 3.4: If there exists a plane such that all vertices ri of the robot stay on one side of the
plane and all vertices p j of the person stay on the other side between instants k and k+1, we have
evidence that they don’t collide over this interval of time.

3.3.2 Collision avoidance constraint

The closest distance between the robot and obstacles is usually used to formulate collision avoid-
ance constraints, but it is not very convenient. Because finding these closes points is difficult,
and if an object is not strictly convex, the distance function of a pair of objects will be not be
continuously differentiable. A different approach to closest distance is the idea of separating
planes [Brossette2017], which can ensure the continuous collision avoidance between two inter-
vals of time step.

The notion of a separating plane is illustrated in Figure 3.4). If we represent the different parts
of the robot and the person as polyhedra with vertices {r1,r2, · · ·} and {p1, p2, · · ·} respectively.
Thus, if there exists a plane defined by a normal vector ak ∈ Rn and a scalar constant bk ∈ R such
that all vertices p j ∈ R3 of the person remain on one side between instants k and k+1:

aT
k p j

k ≤ bk, (3.14a)

aT
k p j

k+1 ≤ bk, (3.14b)

while all vertices ri ∈ R3 of the robot stay on the other side, with some additional distance d:

aT
k ri

k ≥ bk +d, (3.15a)

aT
k ri

k+1 ≥ bk +d, (3.15b)

then we have evidence that they don’t collide over this interval of time [Schulman2014].
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Optimisation formulation of separating planes

Given the robot trajectory computed at the previous sampling time and the current human motion
prediction, we can find planes that maximize the distance d:

maximize
ak,bk,d

d (3.16)

subject to constraints (3.14) and (3.15). If the current human motion happens to be faster than
the previously predicted one, it may not be possible to satisfy the constraints (3.15) with the
previously computed robot trajectory and a positive distance d. In this case, we temporarily accept
a negative “distance” and find the plane (ak,bk) that comes closest to separating the previously
computed robot trajectory from the current human motion prediction. When this plane is used to
compute a new collision-free robot trajectory in the next step, a fixed positive safety distance dsafe
is again enforced. Note that the constraints (3.14) and (3.15) are linear with respect to ak, bk and
d. For the maximization problem to be well-posed, we also need to bound the vector ak to a unit
norm (∥ak∥ ≤ 1). This is a nonlinear constraint, but it can be efficiently approximated with linear
constraints:

−


1

1

1

≤ ak ≤


1

1

1

 , (3.17)

1− ε ≤ aT
k ap

k ≤ 1 (3.18)

where ap
k is the vector ak computed at the previous sampling time and ε is a small positive constant.

In this way, the maximization (3.16) turns out to be a standard Linear Program. However, we
found it preferable to smooth the variations of the separating planes by considering a regularized
objective instead.

minimize
ak,bk,d

−d +αd2 +β∥ak−ap
k∥

2 +β∥bk−bp
k∥

2 (3.19)

with ap
k , bp

k the separating plane obtained at the previous sampling time and small weights α and
β . This results in a linearly constrained QP that can be efficiently with off-the-shelf solvers.

3.4 MPC framework

3.4.1 Reformulate tracking problem without collision avoidance constraints

The idea of Model Predictive Control is to solve at each sampling time an optimal control problem
over a finite horizon starting from the current state x0. Consider a control sequence {u0, u1, . . . uN−1}
of length N. A recursive application of the linear discrete time system (3.1) yields the resulting
sequence of states {x1, . . . xN}:

x1
...

xN


︸ ︷︷ ︸

x

=


A
...

AN


︸ ︷︷ ︸

Px

x0 +


B 0 0
...

. . . 0

AN−1B · · · B


︸ ︷︷ ︸

Pu


u0
...

uN−1


︸ ︷︷ ︸

u

. (3.20)
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The objective of the MPC scheme is to

minimize
u

N−1

∑
k=0
∥xk+1− xdes

k+1∥2
Q +∥uk−udes

k ||2R (3.21a)

subject to ∀k ∈ {0, . . .N−1}, u≤ uk ≤ u, (3.21b)

∀k ∈ {1, . . .N}, q≤ qk ≤ q, (3.21c)

∀k ∈ {1, . . .N−1}, q̇≤ q̇k ≤ q̇, (3.21d)

q̇N = 0 (3.21e)

where q, q, q̇, q̇, u, u indicate minimum and maximum joint position, velocity and acceleration
(we assume that q̇≤ 0≤ q̇ and u≤ 0≤ u). Here, the goal is to track a desired joint state trajectory
xdes

k with acceleration udes
k , so this optimal control problem takes the form of a simple linearly

constrained Quadratic Program (QP) that can be solved efficiently with off-the-shelf solvers. A
sample alternative is to consider a desired Cartesian motion of the robot’s end effector using its
forward kinematic model, but this makes the problem nonlinear. Finally, the robot follows the
obtained optimal control sequence until the next sampling time, and a new optimal control problem
is solved.

A key element of this approach is the terminal constraint (3.21e). It may seem to be an un-
necessarily constraint on the robot’s motion, but it provides recursive feasibility, guaranteeing that
when the optimal control sequence is applied to the robot, it will always lead to new states of the
robot where the optimal control problem (3.21) is once again feasible. This allows guaranteeing
that all constraints in (3.21) will always be satisfied [Mayne2000], which is crucial. More pre-
cisely, this terminal constraint enforces that the robot is at rest at the end of the prediction horizon.
When collision avoidance is introduced into this MPC framwork, this is what provides the passive
motion safety guarantee, ensuring that the robot is able to stop and remain at rest before a collision
occurs in the future. This is a central aspect of our proposed approach.

3.4.2 Reformulate tracking problem with collision avoidance constraints

We can compute a collision-free robot trajectory with the separating planes computed in the pre-
vious step. In the constraints (3.15), the positions of all vertices ri depend on the kinematics of
the robot, which is usually a nonlinear function of the joint position q. We propose to linearize the
kinematics of the robot around the trajectory qp

k computed at the previous sampling time:

∀k ∈ {1, . . .N}, ri
k = ri(qk)≈ ri(qp

k )+ J(qp
k )(qk−qp

k ) (3.22)

where J(qp
k ) is the Jacobian of the robot’s kinematics. In this way, the constraints (3.15) are trans-

formed into linear functions of q, and the MPC scheme (3.21) with these additional constraints is
kept in the form of a linearly constrained QP, which can be solved efficiently with off-the-shelf
solvers.

If we can’t find a trajectory that satisfies these constraints because the current human motion
has exceeded the robot’s collision avoidance capabilities, we can continue with the trajectory ob-
tained at the previous sampling time. It is designed to stop gracefully before a collision occurs, due
to the terminal constraint (3.21e), at least with what could be predicted from the human motion.
As long as our prediction is valid, this allows us to enforce passive motion safety. If our prediction
happens to be invalid because the human made a completely unexpectedly fast motion, we can still
rely on the intrinsic mechanical safety of the robot, with a low (5%) probability of serious injury
even at speeds as high as 2 m.s−1 [Albu-Schäffer2007].

To summarize, for each time interval [k, k + 1], k ∈ {0, . . .N − 1}, we compute separating
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planes with QPs:

min.
ak,bk,dk

−dk +αd2
k +β∥ak−a′k∥2 +β∥bk−b′k∥2 (3.23a)

s.t. ∀ j, aT
k p j

k ≤ bk, (3.23b)

∀ j, aT
k p j

k+1 ≤ bk, (3.23c)

∀ i, aT
k ri

k ≥ bk +d, (3.23d)

∀ i, aT
k ri

k+1 ≥ bk +d, (3.23e)

−


1

1

1

≤ ak ≤


1

1

1

 , (3.23f)

1− ε ≤ aT
k ap

k ≤ 1 (3.23g)

Then, we use these separating planes to compute the collision-free robot trajectory with a QP:

min.
u

N−1

∑
k=0
∥xk+1− xdes

k+1∥2
Q +∥uk−udes

k ||2R (3.24a)

s.t. ∀k ∈ {0, . . .N−1}, u≤ uk ≤ u, (3.24b)

∀k ∈ {1, . . .N}, q≤ qk ≤ q, (3.24c)

∀k ∈ {1, . . .N−1}, q̇≤ q̇k ≤ q̇, (3.24d)

q̇N = 0, (3.24e)

∀k ∈ {0, . . .N−1}, ∀ i,

aT
k ri(qp

k )+aT
k J(qp

k )(qk−qp
k )≥ bk +dsafe, (3.24f)

∀k ∈ {0, . . .N−1}, ∀ i,

aT
k ri(qp

k+1)+aT
k J(qp

k+1)(qk+1−qp
k+1)≥ bk +dsafe (3.24g)

where the sequence of states (qk, q̇k) is linearly related to the control sequence u through (3.20).

Algorithm 1: CollisionFreeTrajectoryComputation
Input: up, qp, ap, bp

Output: u
i = 0 ;
do

up = u ;
Update Robot’s parameters ;
{a,b}←− Solve QPs (3.23) ;
{u}←− Solve QP (3.24) ;
i ++;

while (||u−up||2 OR i≤MAX_ST EP);

The separating problem optimisation problem and collision-free robot trajectory optimisation

50



3.5. Simulations results

problem is indeed a linear approximation of the nonlinear problem :

min.
u,a,b,d

N−1

∑
k=0
∥xk+1− xdes

k+1∥2
Q +∥uk−udes

k ||2R+ (3.25a)

N−1

∑
k=0
−dk +αd2

k +β∥ak−a′k∥2 +β∥bk−b′k∥2 (3.25b)

s.t. ∀k ∈ {0, . . .N−1}, u≤ uk ≤ u, (3.25c)

∀k ∈ {1, . . .N}, q≤ qk ≤ q, (3.25d)

∀k ∈ {1, . . .N−1}, q̇≤ q̇k ≤ q̇, (3.25e)

q̇N = 0, (3.25f)

∀k ∈ {0, . . .N−1}, ∀ i,

aT
k ri(qk)≥ bk +dsafe, (3.25g)

∀k ∈ {0, . . .N−1}, ∀ i,

aT
k ri(qk+1)≥ bk +dsafe, (3.25h)

∀k ∈ {0, . . .N−1}, ∀ j, aT
k p j

k ≤ bk, (3.25i)

∀k ∈ {0, . . .N−1}, ∀ j, aT
k p j

k+1 ≤ bk, (3.25j)

∀k ∈ {0, . . .N−1}, ∀ i, aT
k rk(qk)

i ≥ bk +d, (3.25k)

∀k ∈ {0, . . .N−1}, ∀ i, aT
k rk+1(qk+1)

i ≥ bk +d, (3.25l)

∀k ∈ {0, . . .N−1}, ∥ak∥= 1, (3.25m)

Solving the above nonlinear problem with a nonlinear solver is fairly slow. We could use an al-
ternative method to solve (3.25). We first compute a given set of plane locations by solving (3.23)
with the variable u fixed, then, use the set of planes to solve the problem (3.24) with planes fixed.
Solving problem (3.24) gives new values of the planes positions to compute the next iteration and
repeat this process until convergence, as shown in algorithm 1.

3.5 Simulations results

The proposed MPC framework in Fig. 3.3 has been implemented on a Franka Emika Panda
robot and simulated with ROS, shown in Fig. 3.5. This 7-DOF manipulator robot was specifically
designed for human-robot interactions [Emika]. The Franka Emika has a payload of 3 kg for a
weight of 17.8 kg. Each axis has force/torque sensors that provide information about the forces
applied to the robot. Using this information, the robot can interact with its environment and can
detect potential collisions [Haddadin2008]. The robot provides low-level programming based on
C++ and Python APIs, or high-level programming based on web GUI, and is now widely used in
academic research and industry. In the next section, we will look at different scenarios, such as
the robot avoiding static and dynamic obstacles while performing pick-and-place tasks.

3.5.1 Tasks

The robot is performing a pick-and-place task between two positions GA =
(

0.4 −0.4 0.25
)T

and GB =
(

0.4 0.4 0.25
)T

as shown in Fig. 3.6. Recall our objective function of MPC scheme
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Chapter 3. Online motion generation in a shared workspace

Figure 3.5: Visualisation of Franka Emika Panda robot in RVIZ.

Figure 3.6: Two green spheres represent the desired pick-and-place positions for the manipulator.

is defined in Eq. (3.5.1) :

minimize
u

N−1

∑
k=0
∥xk+1− xdes

k+1∥2
Q +∥uk−udes

k ||2R

The first term minimizes the error between the current state of the robot and the desired state,

for a point-to-point task we can have zero desired velocity, which gives xdes =
[
GT 0 0 0

]T
.

The second term is used for regularization when we keep the desired u to zero. For the weighted
parameters Q and R, we will give the ratio as Q/R = 10e6. Then, we will rewrite these term into
quadratic form to be solved with any off-the-shelf solvers such as [Ferreau2014]:
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N−1

∑
k=0
∥xk+1− xdes

k+1∥2 +∥uk∥2

=
N−1

∑
k=0
∥ Pu︸︷︷︸

Ek

uk +Pxxk− xdes
k+1︸ ︷︷ ︸

fk

∥2 +∥uk∥2

=
N−1

∑
k=0

1
2

uT
k ET

k Ek︸ ︷︷ ︸
Hk

uk +uT
k ET

k fk︸︷︷︸
gk

+uT
k Inuk

=
1
2

uT Hu+uT g

with,

H ∈ RNn×Nn =


ET

0 E0 + In 0 0

0
. . . 0

0 0 ET
N−1EN−1 + In

 g ∈ RNn =


ET

0 f0
...

ET
N−1 fN−1


3.5.2 Constraints

Panda’s physical constraints

Name Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 Unit

qmax 2.897 1.763 2.897 -0.070 2.897 3.752 2.897 rad

qmin -2.897 -1.763 -2.897 -3.072 -2.897 -0.018 -2.897 rad

q̇max 2.175 2.175 2.175 2.175 2.610 2.610 2.610 rad.s−1

q̈max 15 7.5 10 12.5 15 20 20 rad.s−2

The physical constraints associated with Franka Emika Panda are summarized in the Tab. (3.5.2).
As in the previous section, the position, velocity and acceleration constraints are stacked in a vec-
tor and matrix to group the constraints over the prediction horizon. We get inequality constraints
in the form:

lb≤u≤ ub (3.26)

lbA≤Cu≤ ubA (3.27)

3.5.3 Task achievement in static environment without obstacle

In Figure (3.6), two green spheres represent alternate desired positions for the manipulator’s end-
effector. When the environment is static and without obstacles, the only constraints to be considred
are the physical constraints of the robot, as shown in Tab. (3.5.2). The choice of the prediction
horizon is based on the deceleration capacity of the different joints. For example, when the first
joint is at maximum speed with maximum acceleration, the robot needs about 0.15 s to stop and
for the second joint the stopping time is about 0.3 s. To satisfy the terminal constraint Eq. (3.21e)
which imposes that the robot is at rest at the end, the prediction horizon must therefore be longer
than 0.3 s. In this experiment, we choose for a prediction horizon of length 0.5 s with ∆t=0.1 s,
then N = 5.

Figure 3.7 gives a visualization of the generated trajectory for the next N time steps. Each
via-point is represented as a Cartesian frame with the x axis in red, the y axis in green and the z
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Figure 3.7: The robot moves towards the goal, the frames represent the next N points generated
on the prediction horizon.

axis in blue. Figure 3.8 shows the first four joint configurations and velocities, since the last three
are only useful for orientation. We can see that the first joint is working at full speed (2.1 rad.s−1)
and the Cartesian velocity on the y-axis reaches to 2 m.s−1 allowing the robot to move extremely
fast.

Figure 3.8: Joint positions and velocities.

3.5.4 Task achievement in a dynamic environment

In this section, we test our trajectory generator in a dynamic environment with an obstacle that
makes a circular motion and interferes with the robot’s task. In Figure 3.10, we get the view of the
environment in the XY plane. The obstacle is represented by a cylinder with a diameter of 10 cm
and a length of 50 cm, and the yellow circle represents its trajectory.
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Figure 3.9: End-effector Cartesian positions and velocities.

Figure 3.10: Circular motion of a cylinder shape obstacle.

Choice of the horizon of the prediction

The terminal constraint (3.21e) imposes that the robot is at rest at the end of the prediction horizon
in order to provide a passive motion safety guarantee. However, the prediction horizon must be
chosen appropriately, otherwise, two major problems can occur. They are 1) If the prediction
horizon is too short, the robot loses its performance due to the terminal constraint. 2) If the
prediction horizon is too long, the estimation of the person’s motion may not be accurate at all.

• Lower limit of the prediction horizon: The terminal constraint forces the robot to have zero
velocity at the end of the prediction horizon. Therefore, the robot’s velocity will depend on
the maximum deceleration capacity. A robot operating at maximum velocity needs Tlow =
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Vmax
amax

seconds to decelerate to zero velocity. Consequently, to enable the robot to move fast,
the prediction of the horizon must be greater than Tlow. For example, the first joint of the
robot at full speed needs about 0.15 s to stop and for the second joint the stopping time is
0.3 s. So Tlow is longer than 0.3 s.

• Upper bound of the prediction horizon: On the other hand, optimal collision-free trajectory
depends on how long the human motion can be predicted. It was shown in [Kimm2015b]
that the human’s hand motion can be very fast, 8.1±1.4 m.s−1 for males and 6.6±1.6 m.s−1

for females in extreme cases. A robot is not able to avoid the collision in this situation.
However, in a normal grasping situation, the human hand moves with maximum velocity of
about 1 m.s−1 and an acceleration of 5 m.s−2 [Grujic2015b]. An appropriate upper bound
can be chosen as 0.3 to 0.5 s since human motion prediction quickly becomes imprecise
when the prediction horizon is longer than 0.5 s [Toyer2017, Kratzer2019].

Figure 3.11: Snapshots of simulation. (a)-(c) The robot deviates its initial trajectory to avoid
potential collision with obstacle. (d)-(f) The robot change its trajectory according to the motion of
the obstacle to enable safe task accomplishment.

Figure 3.11 shows the snapshots of the simulation. In this scenario, we choose a prediction
horizon of length 0.5 s with ∆t = 0.1 s, N = 5 and the safety distance is set to 20 cm. The resulting
QPs (3.23) and (3.24) are solved with qpOASES [Ferreau2014]. The robot performs the same task
as shown in Figure 3.7 while avoiding collision with a moving obstacle. The obstacle is repre-
sented as a cylinder with 0.1 m for diameter and 0.5 m for length, it can be considered as a human
arm. The obstacle follows a circular trajectory as shown in Figure 3.10 with a rotation velocity of
1 rad.s−1. In Figure 3.11(a)-(f), the robot deviates from its initial trajectory as described in sec-
tion 3.5.3. This trajectory deviation is also justified by a significant variation of the end-effector
cartesian velocity in the z-axis as shown in Figure 3.13. Table 3.2 summarises the size and the
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Figure 3.12: Joint positions and velocities in the presence of a dynamic obstacle.

Figure 3.13: End-effector Cartesian positions and velocities in the presence of a dynamic obstacle.

computing time of separating plane problem and trajectory generation problem. It shows that the
two quadratic programming problems can be solved efficiently for real-time applications such as
human-robot collaboration.

It can happen that the goal is blocked by the obstacle as shown in Figure 3.14. The robot
will stay as close to the goal as possible while maintaining the imposed safety distance and the
constraint. Once the obstacle is out of the way, the robot continues its trajectory to complete the
task.
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Separating plane
(Eq. 3.23)

trajectory generation
(Eq. 3.24)

Number of
variables 5 35

Number of
constraints 21 86

Average
solving time (s) 0.00067 0.00612

Tableau 3.2: Problem size and computation time for separating plane and trajectory generation
problem

Figure 3.14: The obstacle blocked the goal

3.6 Conclusion

This chapter presents the general Model Predictive Control framework for safe trajectory gen-
eration, as outlined in Figure 3.3. We give mathematical details on how to formulate the robot’s
task and constraints in the MPC framework in Section 3.2 and Section 3.3. Simulation results
on trajectory generation in the free workspace and in the workspace with dynamic obstacles are
described in Section 3.5. However, the human model presented in the simulation is simplified into
a cylinder geometry and the prediction of the motion is known in advance. In the next chapter 4,
we will complete the perception module by adding human body detection and human hand motion
prediction.
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In the previous chapter, we introduced our MPC framework for generating a collision-free tra-
jectory in the presence of dynamic obstacles. In fact, collision avoidance is equivalent to finding a
plane that separates the robot and the object, which are located in the same space. Thus, the knowl-
edge of the object’s position has a strong impact on the performance of the trajectory generation.
Two methods for human and posture detection have been widely considered in the literature: vi-
sion based methods using a camera and inertial measurement units (IMUs) based on a special suit
for motion capture as shown in Fig 4.1. The latter is not suitable for collaborative applications due
to the need to wear a special uniform with sensing devices and is relatively complex, expensive,
and difficult to maintain.

This is dedicated to describe the perception module of the MPC framework. The goal is to
detect the position (x,y,z) of a person potentially entering the robot’s workspace using a single
RGB-D camera and to predict his or motion over a short time horizon. One challenge is that
human operators tend to follow different motion patterns, depending on several factors such as
intentions and the structure of the environment. Locating a person in an image and extracting their
key points is a challenging task due to occlusion, blur, illumination, rotation and scale variations.
Another challenge is that human operators tend to follow different motion patterns, depending on
several factors such as intentions and the structure of the environment.

Figure 4.1: A simplified taxonomy of the different sensors used for 3D human pose estimation and
pose representation

In the following, we will first discuss the state of the art on human pose detection and motion
prediction in Section 4.1. Pose detection based on an RGB-D camera is described in Section 4.2.
The hand motion prediction is explained in Section 4.3 and the results are presented in Section 4.4.
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4.1 State of art

Before we start discussing how to obtain the position of a person in a 3D environment, let us
briefly compare the different sensors that allow us to obtain a representation of the environment.
As shown in Figure 4.1, we can obtain a representation of the environment using a monocular
camera, a depth camera, or with 3D lidar. In addition, IMU systems for motion capture provide
a direct representation of the person’s pose. As we discussed before, the inertial sensor based
method is not suitable for collaborative tasks and the 3D lidar is relatively expensive. The vision
sensors method offers the choice of using a single camera or multiple cameras. The advantage of
multi-view is that it can provide more accurate position and robust results to the occlusion, but
the processing and fusion of data remains relatively complex. In this thesis, we focus on the use
of the RGB-D camera which is a combination of single view from monocular and depth sensors.
This provides a balance between simplicity and performance, for a more detailed comparison, we
suggest consulting the review written by [Wang2021].

Once the right sensor has been selected for data acquisition, the next step is to obtain the in-
formation of the detected human between the skeleton and the shape representation as shown in
Figure 4.1. The skeleton representation gives the key-points location of different joints as shown
in Figure 4.2(a) and the shape representation gives the contour of the human body as shown in
the bottom left image in Figure 4.2(b). For the collaborative task, the contour information is not
essential, the location of the key points is sufficient to inform us about the pose of the people
and then give the robot the necessary information to avoid collisions. In the following, we will
describe several different methods for 3D human pose estimation based on RGB-D camera. The

Figure 4.2: Illustration of human pose representation and pose estimation. a) Representation of
the human body joints with 15 key-points; b) 3D human pose estimation, 2D-3D pose lifting and
human pose and shape estimation.

depth camera based on time-of-flight (TOF) and structured light technologies [Sarbolandi2015]
can provide the distance information from a single depth image or a point cloud, thus, thus gives
the possibility to deal directly with 3D data. However, human pose estimation has some unique
characteristics and challenges such as flexible body configuration indicates complex interdepen-
dent joints, diverse body appearance and complex environment may cause occlusion. The existing
works can be divided into three categories such as template-based method, feature-based method
and learning-based method according to [Xu2021].

The template-based method compares the similarity between the detected object and the con-
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structed template to identify the motion category. [Zhu2010] proposes a head-neck-trunk de-
formable template represented by circles, trapezoids and rectangles. Mathematical template such
as Gaussian Mixture Mode (GMM) is applied by [Ye2014] to simultaneously extract pose and
shape of an articulated object from a single depth camera. However, template-based method needs
to establish a template library of parameterized template to compare with human body which
is time-consuming, and the accuracy of template-based methods is very limited due to the di-
versity of the different human pose in space. Feature-based methods uses geodesic distance in-
formation [Yuan2017], geometric feature such as silhouette [Xu2020] to estimate human joints.
Feature-based template has some disadvantages, for example, it requires prior knowledge to com-
bine with extracted global or local features to obtain the 3D pose and it is not suitable for changing
poses which is necessary to further optimize the robustness.

The learning-based method uses the network structure to automatically learn the required fea-
tures from the input data and then the learned features can be further used to extract the human
pose. Compared to the above two methods, the results can achieve higher accuracy by learning
in a large dataset and it is robust to scale processing. [Shotton2012] developed two algorithms
trained on a large dataset with decision forests and depth-invariant image features to effectively
detect different human poses. Recently, deep learning structure has become a very active research
area [Zhou2020], [Haque2016] trains neural networks based on convolutional and recurrent archi-
tecture to achieve depth image human pose estimation. In [Wang2020], the author directly uses a
sequence of point clouds as the input of a neural network to output the 3D human pose, because
point clouds can provide more geometry information than depth images. However, training such a
model requires a special dataset, which is not easy to construct, and the running time may not be
well suited for real-time application. Therefore, as a more accessible approach, estimating human
pose from RGB images captured by regular cameras and then transforming the 2D information
into 3D pose is attracting the attention of researchers.

The simplest method for estimating 3D human poses is to design an end-to-end network to
predict the 3D key-point locations directly from 2D images, as shown in Figure 4.2(b), where the
input data is a color image and the output of the model is the human joint locations or 3D mesh,
without any intermediate representation. [Li2014] directly estimates the joint locations relative to
the root joint locations, and [Kanazawa2018] infer 3D mesh parameters directly from image fea-
tures in an end-to-end manner. [Zhou2016] embeds a kinematic object model as prior knowledge
into the deep network model for general articulated object pose estimation.

The second method is the process of 2D-3D lifting as shown in the right side of Figure 4.2(b),
this consists of two-stage based cascaded frameworks that first performs 2D pose estimation to pre-
dict 3D joint positions in the a color image with 2D pose estimator and the lifts these 2D joints to
the 3D space. The key idea is that 2D pose estimation can be easily performed due to the availabil-
ity of large-scale datasets with 2D annotations in the wild. Examples include two of the state-of-
the-art 2D pose estimators such as Mediapipe [Zhang2020a] and Openpose [Cao2017]. MediaPipe
is a an open-source system from Google and OpenPose is a multi-person human key point detec-
tion system, both can achieve single image pose detection for real-time application. Benefiting
from the reliable performance of state-of-the-art 2D pose detectors, the 2D-3D pose lifting process
generally outperforms the methods that directly regress 3D poses from images. [Martinez2017b]
focused on lifting 2D poses to 3D by applying two fully connected layers with a residual connec-
tion to 2D to 3D key-point regression. [Moreno-Noguer2017] proposed to represent 2D and 3D
poses with N × N matrices of Euclidean distances between each pair of joints and formulated the
3D pose estimation problems as a 2D-to-3D distance matrix regression. However, recovering a
3D human pose from a single image suffers from the ill-defined problem that different 3D poses
can correspond to the same 2D images. While it is easy to obtain manual 2D pose annotations for
training datasets, it is difficult to collect accurate 3D pose annotations is difficult, and the lack of
real-world benchmark datasets makes the problem of 3D pose estimation very challenging. How-
ever, since we have the depth information from the RGB-D camera, we can effectively combine
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the 2D pose locations with depth images to obtain 3D pose locations. This idea is also explored in
the recent work of [Docekal2022] for the close-up human-robot interaction. They convert the 2D
positions of human key points into 3D by adding the depth information. This method is also called
naive-lifting in the study of [Zimmermann2018], which gives a pretty good result compared to it’s
simplicity.

In this thesis, we formulate our perception module for human pose detection in two parts: 1)
Detection of the human pose in Cartesian space as described above. 2) Prediction of the human’s
motion in a horizon prediction, which will be presented in the next section.

Human motion prediction is a more complex task. Existing prediction methods can gener-
ally be divided into model-based and learning-based methods. Model-based methods attempt
to directly model the human kinematics or dynamics to find the corresponding arm motor con-
trol. According to the human motor control literature, human movements follow an optimal feed-
back control strategy that links motor behavior, limb mechanics and neural control as described
in [Scott2004]. However, choosing the optimal trajectory cost is not trivial because the human
musculoskeletal system has more DOFs than are necessary to perform a given task. This kine-
matic, dynamic, and actuation redundancy problem is not straightforward in terms of the equations
of motion. Numerous cost functions have been identified in the literature. In [Flash1985], the au-
thors model the point-to-point kinematic motion of the hand with a minimum Cartesian jerk (third
derivative of the Cartesian coordinates) for an arm motion in the horizontal plane. The authors
in [Uno1989] include dynamics with a minimum torque change model in the horizontal plane,
but the results have not been validated for 3D motion. While it is difficult to manually define
these motor control criteria, the author in [Sylla2014a] defines a combination of seven different
criteria (such as Cartesian jerk, angular jerk, angular acceleration, torque change, torque, geodesic
and energy) and an inverse optimization method was used to find the weight associated with each
criterion. In [Pereira2017b], instead of artificially finding arm motor control, the authors overap-
proximate arm occupancy with a maximum velocity model, but this can be too restrictive when the
prediction horizon is long. There are problems with these approaches. First, human dynamics are
highly nonlinear and non-deterministic; they can vary with emotions and physical state, so direct
modeling can be quite inaccurate in different situations. Second, the hypothesis of the human ra-
tionality is often invalid, so the construction of optimization criteria based on this hypothesis can
be very ambiguous and the combination of the different criteria seems to be chosen manually.

Human motion is the result of complex biomechanical processes that are difficult to model. As
a result, state-of-the-art works in motion prediction focuses on data-driven models [Bishop2006].
A Gaussian Mixture Model (GMM) has been used in [Mainprice2013b] to regress collected tra-
jectories into different clusters in the offline stage. The encoded human motion library is then used
in the online stage to predict the future human motion. A probabilistic framework such as Hid-
den Markov Models (HMM) [Ding2011c] can be used to predict a safety-critical region that the
worker may occupy during the human-robot collaboration task. However, the continuous distribu-
tion of trajectories cannot be fully represented with HMM by transition probabilities, and they are
difficult to generalize to new environments.

Recent work on short-term human motion prediction has focused on recurrent neural network
(RNNs) because of their ability to handle sequential data, as described in Section 2.5.3. Because
of their internal memory structure, RNN’s can remember important things about the input they
have received, which allows them to be accurate in predicting the output. In [Wang2017], the
authors present a framework from vision-based hand movement prediction in a human-robot col-
laboration scenario to generate a collision-free trajectory. In their approach, a pre-trained CNN
model is used to extract visual features from the video input sequence, and a Long-Short Term
Memory (LSTM) model (a variation model of RNN) is trained to predict the hand movement.
However, since the input is the image, they only predict the relative displacement of the hand in
2D space. In [Zhang2020b], an RNN-based model incorporating uncertainties has been used to
predict human trajectory in collaborative assembly of an automobile engine.
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This goal of this chapter is to develop our perception module presented in Figure 3.3 of Chap-
ter 3. In order to generate a collision-free trajectory, our MPC controller must know the location
and future positions of an operator. Without loss of generality, and to illustrate the idea, we will
only predict the future positions of the hand, since it is the part of the body that enters the robot’s
workspace the most and can potentially have direct contact with the object being handled by the
robot. The structure of the rest of the chapter is to present these different components:

1. Define human pose detection in a RGB image in Section 4.2, which gives the human pose
location in 2D pixel levels.

2. Extract the corresponding hand’s Cartesian 3D position of the corresponding hand by com-
bining the knowledge of the depth image with the 2D pixel position of the hand using the
pinhole camera model as described in Section 4.2.2.

3. In Section 4.3, we define an LSTM neural network architecture to predict the hand’s future
step positions, which will allow our MPC controller to generate a collision-free trajectory.

4.2 Human 3D pose detection

In Section 4.1, several methods for human pose estimation in 3D space with different sen-
sors have been presented, and some of which are computationally expensive and not suitable for
real-time applications. In fact, we use an RGB-D camera which provides a good balance between
simplicity and performance, to localize human 3D poses in a human-robot collaboration environ-
ment. In the following section, we describe the detection workflow in detail: 1) extract human
keypoints from an RGB image. 2) mapping to depth camera to obtain 3D point locations. Due
to the limitation of the monocular camera, the problem of occlusion is inevitable, so not every
keypoint is detectable. Therefore, only the keypoints of the person’s left arm are considered.

Figure 4.3: Human keypoints detection from RGB-D camera by combining colour and depth image
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4.2.1 Human keypoints in RGB images

The convolution neural network (CNN) presented in Section 2.5 is very efficient for handling
structured data such as images. Through the CNN architecture, the first layer of convolutions
learns some basic features (such as edges and lines), the next layers learn features that are more
complex (circles, squares, etc...), the following layers find even more complex features (such as
parts of the face, a hand, a trunk, etc ...), and so on. In [Zeiler2014], the authors give a great
visualization of features learned from different layers of a CNN architecture, but mostly limited to
the first layer where projections to pixel space are possible.

Building a human pose estimation algorithm from scratch is not only time consuming but also
very expensive. First, it must select and develop appropriate learning algorithms and models,
second, collect a massive dataset to enable the models to learn features through. Finally, the
resource consumption must be balanced against the quality of the solutions. However, there are
several pre-trained models available in opensource, such as Mediapipe and Openpose presented in
Section 4.1. Furthermore, these models have been well tested on different datasets and they are
well optimized to be deployed in real-time applications.

In this thesis we use Mediapipe as our human pose estimation model because Mediapipe pro-
vides cross-platform solutions and the Python version of mediapipe can be easily modified to
integrate it into Robot Operating System (ROS). Figure 4.3(a) shows the keypoints location of
the upper-body in an RGB image is depicted. We will give more implementation details about
Mediapie in ROS in Chapter 5.

4.2.2 Human keypoints in 3D space

Figure 4.4: Pinhole camera model:(a) Projection of camera frame to image plane frame. (b) THe
origin of image plane moved to (v,u) with offset v0 and u0.

With an RGB image as Mediapipe’s input, we get as the output the position of the keypoints
in the image frame (i.e. expressed in pixels). To perform 2D to 3D conversion, we first need to
transform our keypoints expressed in image frame to camera center frame, and then add depth
information by pinhole camera model. The pinhole camera model describes the mathematical
relationship between the coordinates of a point in 3D space and its projection onto the image
plane, as shown in Figure 4.4(a). The mathematical expression for this projection is:(

X , Y, Z
)T
⇒

(
u, v

)T
=
(

fxX
Z +u0,

fyY
Z + v0

)T
(4.1)

Where (X ,Y,Z)T are the Euclidean coordinates of a point. (u,v)T is the project coordinate of
the 3D point in the image frame. f is the focal length, the distance between C (camera center) and
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P (principal point). (u0,v0)
T is the offset from the principal point to the upper left corner of the

image plane. In matrix form, we obtain:
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v

1

=


fx 0 u0 0

0 fy v0 0

0 0 1 0
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Y

Z

1

 (4.2)

Figure 4.5: Homogenous transformation between the camera frame and base frame.

Note that in Figure 4.4, the camera center is chosen as the world coordinate. Therefore, the
3D point is expressed in the camera frame. However, it is more practical to express the coordinate
of this point in the robot base frame, since we formulate all constraints and tasks in the robot
base frame. As shown in Figure 4.5, the change of the frame from the center of the camera to the
base frame is achieved by a homogeneous transformation Pcam =

[ R t
0T 1

]
Pbase. Where R ∈ SO(3)

is the rotation matrix and t ∈ R3 is the cartesian shift between two frames. Thus, the relationship
between a point in the robot base frame and its corresponding pixel value in the image plane is
expressed by:
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(4.3)

The equation 4.3 gives us the projection relation between a Cartesian 3D point and the im-
age plane. By adding the depth information from the depth image, we can therefore retrieve the
corresponding keypoints pixel’s Z values. This mapping requires a proper calibration of the cam-
era [Nowak2021]. This method is also called native-lifting by [Zimmermann2018] and the results
show that this method is effective regarding its simplicity and accuracy.

However, the information in the depth image is sensitive to disturbances and background fea-
tures, so to make the result more robust and accurate, we define a bounding box around the key-
point to eliminate outliers and average the distance, as shown in Figure 4.3(b). Finally, we suc-
cessfully map the key point’s from the RGB image to the 3D location, as shown in Figure 4.3(c).
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4.3 Human hand motion prediction

The dynamics of a human can be described in state-space by the Equation 4.4. Without loss
of generality, we consider only the dynamics of a human’s hand position to simplify the notation:

pk
t+1 = g(pk

t ,w
k
t ) (4.4)

where pk
t ∈ R3 is the discrete time variable describing the position of the k-th vertice’s of the

human, wk
t ∈ R3 is the muscle force or external effect causing the movement of the human, which

is unknown, the function g represents the dynamics of the human . We assume that the human’s
movement is not completely random and follows patterns as shown in Figure 4.8-(b), where the
dotted red lines denote representative motions to different goals.

Figure 4.6: Encoder-decoder LSTMs neural network model for human motion prediction

To anticipate the human’s future motion, it’s not enough to predict only one-step ahead, as
shown in Equation 4.4. In a more general scenario, we want to predict T steps ahead given a
current state pk

t and wk
t and consider L-order Markov assumptions. Therefore, we can formulate

this problem as: given a time-series input pk = {pk
t , pk

t−1, . . . , pk
t−L−1}, we want to find a function φ

such that: φ :pk→ yk . Where L is the number of past observations and yk = {pk
t+1, pk

t+2, . . . , pk
t+T}

with T being the number of steps to predict.
Modeling such a dynamic function is very challenging because the external factors are un-

measurable and unpredictable. In addition, human dynamics are highly nonlinear. However, the
neural network structure is efficient to learn such nonlinear mapping patterns. We define our pre-
diction network structure in Figure 4.6 as an encoder-decoder model. The past observation data is
encoded through several stacked Long Short-Term Memory (LSTM) layers to increase the depth
of the network. The LSTMs model is a special type of recurrent neural network introduced in
Section 2.5. The encoded information is passed to an LSTM decoder layer, followed by a fully
connected layer to produce the final multi-step prediction.

The structure of an LSTM cell is shown in Figure 4.7 and the mathematical formulation is as
follows:

ft = σ(Wf · [ht−1,xt ]+b f ) (4.5a)

it = σ(Wi · [ht−1,xt ]+bi) (4.5b)

C̃t = tanh(WC · [ht ,xt ]+bC) (4.5c)

Ct = ft ∗Ct−1 + it ∗C̃t (4.5d)

ot = σ(Wo · [ht−1,xt +bo] (4.5e)

ht = ot ∗ tanh(Ct) (4.5f)
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Figure 4.7: Overview of LSTM cell architecture

Where [Wf ,b f ], [Wi,bi], [WC,bC] and [Wo,bo] are learnable weights and biases, ft and it are
forget and update gates, ht−1 and ht are previous and current hidden states, respectively. ft and
it are the forget and update gates, respectively, and output a number between 0 and 1. C̃t is the
new candidate cell value. Thus, the new cell state Ct is updated by Ct−1 and C̃t with the associated
forgetting weight and update weight. The new output and hidden states are represented by ot and
ht .

4.3.1 Data preprocessing

Figure 4.8: Demonstration of the environment for dataset generation, (a) shows the person work-
ing in shared environment with a collaborative robot, and shows the possible goals to which the
hand should move, (b) shows a few different trajectories to reach each goal

Let us have learning data of K observation sequences collected by the RGB-D camera, S =
{S1, . . . ,SK}, Sk = {Sk

1, . . . ,S
k
Tk
}. Each element Sk

tk denotes the position of the hand in the Cartesian
space obtained by the human pose detection model. Therefore, each element of a trajectory Sk is
captured at the frequency of the RGB-D camera, which is at 33 Hz.

In this experiment, the human hand moves to several different goals, with some patterns shown
in Figure 4.8(a) denoted by red dotted lines. For each task, we generate five similar trajectories
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with small changes in position and velocity, the raw trajectory data are shown in Fig. 4.8(b).
However, the raw trajectories should not be used directly in the neural network because of the
noise which leads to poor training performance [Zamboni2022]. Therefore, we preprocess these
trajectories to get better results in our experiments. First, we transform the absolute coordinates

Figure 4.9: A sub-trajectory of length of 20 observations if divided into two sequences(red dots
for training input and bleue dots for training output).

of the hand’s position into relative coordinates (relative displacements) to make the coordinates
scene independent. In this way, the neural network learns the pattern of movement displacement
instead of memorizing the trajectory. Second, we apply a data augmentation method to increase the
generalization ability of our neural network. We use random rotation to each trajectory to make the
network learn rotation-invariant patterns. We add Gaussian noise with mean 0 and small standard
deviation to each point to make the network more robust to small perturbations and inaccuracies.
Further, we divide these trajectories into prediction windows. For example, we define a training
sample as χ = (x,y), where x is the observed hand position for a given time-step and y is the
predicted hand position, as shown in Figure 4.9, where the observations are drawn in the robot’s
absolute coordinate for better visualization.

4.4 Prediction results

The neural network model for hand motion prediction is shown in Figure 4.6. The encoder part
is modeled by two layers of LSTMs with 64 LSTM cells per later and a small kernel regularization
value to avoid overfitting. And the input data is followed by a Gaussian noise layer to increase the
generalization capabilities. The decoder part is symmetric with respect to the encoder part, which
is also modeled by two layers of LSTMs with 64 LSTM cells for each layer. The output of the
decoder is connected to a fully connected layer to predict the relative displacement of the hand
motion. The input and output time steps are both ten observations and the number of features
is three, which correspond to the cartesian x,y,z coordinate of the hand. The total number of
parameters of this model is equal to 116,675, which is a relatively small neural network. In
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Figure 4.10: The detailed architecture of our proposed neural network model.

Figure 4.10, we give a detailed description of each layer of our neural network.

Figure 4.11: The training result of proposed model, a) show the loss function during training
phase for training dataset and validation dataset, b) show the accuracy function during training
phase for training dataset and validation dataset.

The training detail is shown in Figure 4.11. In Figure 4.11(a), we observe the model training
and validation loss based on MSE (mean square error), which is widely used loss for regression
task. In Figure 4.11(b), we have the model training and validation accuracy. The optimization al-
gorithm for backpropagation is Adam [Kingma2014], which is an extension of stochastic gradient
descent that has recently seen wider adoption for deep learning applications. The learning rate is
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exponentially decaying with training steps, the initial learning rate is 1e−2, the decay rate is 0.9,
and decay steps are 5000, which corresponds to

learning_rate(step) = initial_learning_rate×decay_rate(
step

decay_steps ) (4.6)

Figure 4.12: Random prediction of some dataset samples. (a) and (b) show some curved pattarns
of hand movement, while (c) and (d) represent more rectilinear patterns.

In Figure 4.12, four random samples of the dataset are fed into the model (red dots), and we
compare the prediction of the hand movement (green dots) with the true movement (blue dots).
The model actually predicts the relative movement of the hand from the observations, and here we
present the movements in absolute coordinates for a better visualization. Each input observation
from these random samples shows different patterns, for example, in Figure 4.12(a) and (b), the
input observations encode a curve motion, while, the input observations in Figure 4.12(c) and (d)
appear to be a straight line. Then, by observing the predicted positions and the actual positions,
we confirm that the model has indeed learned some patterns. If the trajectory is more of a curve,
the predicted positions will also tend to be a curve, and if the trajectory is a straight line, the
output will tend to be a line. Even though the results on the Figure 4.12(a), (c) and (d) are quite
accurate, we still notice a clear difference between the prediction and the real positions for the
sample in Figure 4.12(b). One reason is that this sample is much more noisy and represents a less
common pattern than the others, yet the prediction tends to be in the right direction. This noise
comes from three sources: 1) during data acquisition, 2) addition of Gaussian noise in our dataset
for data augmentation, 3) Gaussian noise introduced in some neural network layers for model
generalization. Surprisingly, the trajectories predicted by the neural network are very smooth, the
noise is removed by the model, and a smooth trajectory is more consistent than a real movement.

Although our model has a good prediction in general, but for some observations, the prediction
is very wrong compared to the real motion as shown in Figure 4.13. For example, in Figure 4.13(a),
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Figure 4.13: Samples for which the model does not predict the correct trajectories. a)The input
observations is very noisy, b) the output trajectory gives a different pattern.

the sample seems to be wrong, because we have observations that are stationary (the ten observa-
tions are concentrated in the same small zone) and the real motion is spread over a long distance.
The model does not predict the same real trajectory. And, in Figure 4.13(b), the model predicts a
trajectory that is in the opposite direction of the real trajectory, this is because the hand movement
is going towards three different goals and they have a part of the common trajectory as shown in
Figure 4.8(a), if this common part is observed, the model prediction is ambiguous.

4.5 Conclusion

This chapter introduces the perception module to complete our general control schema 3.3.
This module consists of two parts: 1) Detection of the person’s pose by Mediapipe using an RGB-
D camera (Asus Xtion pro). The detected pose is expressed in pixel coordinates in the image
frame, then a mapping with the depth image is then applied to find the pose in Cartesian space
expressed in the robot base frame. 2) Predicting the person’s hand movement on a short time
horizon in order to allow our trajectory generator to anticipate in the future. The hand movement
is predicted by a neural network architecture called LSTM which is very effective for predicting
sequential data and the prediction results on some random samples show that the model has indeed
learned some hand movement patterns well.

In addition, our dataset is not perfect; the data is collected by the low-cost camera, which is
highly noisy during the recording phase. In addition, some of the samples have ambiguities that
erroneously predict a wrong trajectory for our model. For a better construction of the dataset, we
need to use more efficient and accurate recording tools such as optiTrack.

In the next Chapter 5 we will present our software system on which we will develop the
collision-free trajectory generation module, and we will see in detail how the different processing
modules communicate with each other (e.g. robot state, person’s hand motion, etc...). Once the
different modules are established, we will experiment our trajectory generator with a real person
moving next to it and check the good avoidance of potential collisions.
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In previous chapters, we presented our control framework for collision-free trajectory genera-
tion for a manipulator robot that shares its workspace with a human. This control framework was
introduced as an optimization problem in Chapter 3 which computes an optimal control input that
allows the robot to reach an objective (e.g. to follow a trajectory) while respecting the imposed
constraints (collision-free, joint limits, etc.). Moreover, this framework is predictive, it anticipates
the future movement of the person on a short time horizon in order to have a more reactive re-
sponse. Although the person’s movement is quite complex, we develop a predictive model based
on LSTM type neural networks to discover the movement patterns of the person’s hand when it
reaches an object.

In this chapter, we first describe the experimental setup and the Franka Emika control frame-
work in Section 5.1, we present the software implementation of different modules and how they
communicate data through the robot operating system framework which allows us to send com-
mand input to the robot. Then, in Section 5.2 to enable the high-level collision-free trajectory
generation. The results of the experiments are presented in Section 5.3 and we conclude this
chapter with the Section 5.4.

5.1 Experimentation setup

To realize and test our proposed methods, the demonstration platform shown in Figure 5.1
has been developed, where a collaborative robot manipulator works in the same space as a human
operator.

Figure 5.1: A demonstration platform for human-robot collaboration

The platform consist of several components

• A real-time framework to communicate with the robot manipulator and the trajectory gen-
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erator/controller connected to an Ubuntu OS via Ethernet, ensuring online adaptation of the
robot motion;

• A simulation environment for testing and debugging the proposed control framework;

• A human (hand) motion detection/prediction system using an RGB-D camera;

• Data communication via local router, Ethernet and Firewire.

The RGB-D camera is connected to the PC via Firewire, and the predicted human hand motion
is then transmitted to the other PC (connected to the robot) via a local router. In the second PC,
which is connected to the robot via Ethernet, the information from the perception module is used
to formulate the optimization problem and solved it directly to generate a collision-free trajectory.

Since the collision-free trajectory is calculated by a high-level module, we cannot give it di-
rectly to the robot as an input command. In fact, the robot is connected to a control box that has
two network ports. One is connected to the Internet and allows us to program the robot using a
graphical programming interface, but this approach has limited capabilities and does not allow the
user to send commands directly to the low-level controller from a high-level module. The other
port can connect to a user’s computer via Ethernet and execute the robot’s control code using UDP
(User Datagram Protocol) messages exchanged every millisecond. This is called the Franka Con-
trol Interface (FCI), which acts as an intermediary module to connect the high-level module to the
low-level control input.

Figure 5.2: Schematic overview of Franka Control Interface.

This Franka Control Interface is accessed through a library called LibFranka and is written in
C++, which allows the user’s C++ code to be executed at the robot’s servo frequency of 1 kHz as
shown on the right side of Figure 5.2. Since FCI provides low-level bi-directional communication,
the user can read the state of the robot to obtain sensor data at 1 kHz and can have the means
to calculate the desired kinematic and dynamic parameters. In addition to real-time arm control,
libfranka allows non real-time control with a gripper as shown in the left part of Figure 5.2.

Although LibFranka provides a fast and flexible connection to the robot arm and hand, it does
not take the advantage of the benefits of open-source libraries such as the Robot Operating Sys-
tem (ROS). ROS is a framework for writing robot software that includes a collection of tools and
libraries that simplify the task of creating complex and robust robot behavior. The philosophy of
ROS is to break a large robotics project into many small programs that quickly pass messages to
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each other. This paradigm facilitates and encourages the reuse of robotics software outside the spe-
cific robot and environment. Physical robots are not always be available to work with, and when
they are, the process is sometimes slow. Working with ROS provides two effective workarounds to
this problem: 1) Separate the low-level direct control of the hardware from the high-level process-
ing, and we can temporarily replace these low-level programs with a simulator such as Gazebo, to
test the behavior of the high-level part of the system. 2) Recording and replaying sensor data and
other types of messages allow us to replay them many times to test different ways of processing
the same data. In fact, there is a solution to connect LibFrank to ROS via Franka_Ros, which
which allows us to explore the powerful ROS framework with Franka Emika.

In the following section, we will describe in more detail our software implementation from
high-level collision-free trajectory planning to low-level robot motion control in ROS. The high-
level module is consists of perception and motion generation. The low-level module is a QP
optimal control package that computes optimal joint velocities that are input to the robot used by
Franka_ROS.

Figure 5.3: General control architecture to enable human-robot collaboration in a shared envi-
ronment.

5.2 An open-source software environment based on ROS

The software architecture of our general control framework is schematized and shown in Fig-
ure 5.3, which is composed of different packages. Each package is composed of several different
nodes, a node in ROS is a process that performs computation and nodes communicate with each
other using streaming topics (TCP/IP-based message exchange with publish/subscribe semantics).
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The camera package processes images provided by the RGB-D camera and it sends predicted hand
positions to our motion planner package. The motion planner package solves online an optimiza-
tion problem to generate a local collision free trajectory. This trajectory is used to control the robot
via Libfranka, which is integrated into ROS by the Franka_Ros package.

Figure 5.4: ROS implementation for the general control architecture

In Figure 5.4, we illustrate the ROS implementation of the general control architecture. A blue
rectangle represents a ROS node, and a yellow cloud represents the message topic that a node can
publish or subscribe to. It gives an overview of the message handling between modules, in the
following subsections we will describe each module in more detail.

5.2.1 Perception package

In this work, an RGB-D camera is used to measure the robot’s workspace at 30 Hz. The pro-
cess described in Figure 5.5 is implemented in an open source C++/Python code. First, the
openni2_launch for camera driver package is used to connect the RGB-D camera to ROS. Once
the package is launched, we are able to access to different data such as color images, depth images,
cloud points, etc. from the associated topic.

The neural network models presented in Chapter 4 are implemented in python using the rospy
library to interface with ROS. Based on the rostopic communication facilities, the predicted hand
movements of our seq2seq LSTMs model are published and later used in the motion planning
package.

5.2.2 Motion planning package

Recall that our obstacle avoidance constraint is ensured by the existence of the separating planes
shown in Figure 3.4. The separating_planes node subscribes to both the /hand_motion and /robot_state
topics to obtain the Cartesian position of the two bodies in order to compute the separating planes

79



Chapter 5. Implementation and validation

Figure 5.5: Overview of our camera package for perception module processing. The results of
each processing node are communicated via rostopic.

using the qpOASES solver [Ferreau2014]. The final motion planning node computes a collision
free trajectory using these planes. The desired collision-free trajectory is sent to the Franka Emika
velocity controller via franka_ros package provided by the manufacturer.

Figure 5.6: Overview of our motion planning package for collision free trajectory generation.

5.3 Application results

In this section, we present the results of the different components to validate the proposed
framework. First, we test the mapping of the Mediapipe results with the depth image to validate
the detection of the person’s pose in Cartesian space in Section 5.3.1. Then, using a sequence
of observations of the hand position, we verify the result of the hand motion prediction in Sec-
tion 5.3.2. Finally, we integrate it into our MPC framework to verify the generation of collision-
free trajectories in Section 5.3.3.
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Figure 5.7: Results of the pose detection model with real image inputs. The pose location in pixel
coordinates is shown in the color images (first column), the associated distance information is
shown in the depth image (third column), and the final Cartesian location is obtained by mapping
this information. For better visualization, the 3D position of the hand is shown in the second
column in a green sphere.

5.3.1 Pose validation in Cartesian locations

In Figure 5.7, we show a person sitting in front of the robot with two different postures. The
first column represents his posture in the color image, and the pose of the person is shown as a
skeleton, key points such as the hand and elbow and the head are marked by red circles. These
are the results obtained by Mediapipe as a pixel location in the color image reference. In the
third column, we have the same scenes, but in the form of a depth image, where the depth image
defines the distance of each pixel in the camera reference, and the intensity of the gray level shows
the variation of the distance. Having the camera parameters after the calibration, we can use the
pinhole camera model presented in Chapter 4 to reconstruct the person’s position in the Cartesian
space. For example, for a better visualization, in the middle column we present the position of the
person in the form of point clouds. And the Cartesian position of the hand is emphasized by the
green sphere.

By combining the data from the color image and the depth image with the pinhole model of
the camera, we verify that we can effectively extract the position of the person’s hand in Cartesian
space.

5.3.2 Hand motion prediction validation

The architecture of our LSTMs model for hand motion prediction was introduced in Section 4.4.
Here, with the same person sitting in front of the robot and performing a reaching task, we test
the error of the prediction on the whole trajectory. In Figure 5.8, we have shown the motion of
the person in the color images, and the results of the prediction of the hand’s motion are shown
in the first and third rows. In this test, we predict four steps ahead, and the time interval of each
prediction is equal to 0.03 s, which corresponds to the camera acquisition frequency. The green
sphere represents the actual observation of the hand’s position, and the series of yellow spheres
represents the predicted hand’s motion.
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Figure 5.8: An overview of the reaching motion of the person shown in the color images. The
result of the prediction of the hand’s motion on a short time horizon is shown in the first and third
rows. The green sphere represents the actual observation of the hand’s position, and the series of
yellow spheres represents the predicted hand’s motion. (a) The initial position, (b)-(f) The back
and forth of the reaching motion

The predicted motion compared to the true motion is shown in Figure 5.9. On the abscissa axis,
we plot the mean absolute error in meters in the x, y, and z directions. On the ordinate axis, we
plot the number of error samples. We can observe in the figure that most of the prediction samples
have a very low error around 1 cm, however, due to the noise and imperfect dataset, sometimes
the error becomes higher but remains rarely.
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Figure 5.9: Histogram presentation of the mean prediction error

Figure 5.10: The qualitative visualization of the collaborative environment between cobot and
human, a) shows the distance between cobot and hand, which is much larger than the safety
distance (20cm), b) shows the behavior of the cobot when the human hand is intentionally placed
for possible collision, the cobot deviates from its initial trajectory to avoid the collision, c) shows
that the cobot achieves its goal without stopping or hurting the human while maintaining a safe
distance. The sub-figures from (a’)-(c’) show the corresponding visualization of the same data in
RVIZ.
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Figure 5.11: A case study whare a collision cannot be avoided, a) The human intentionally blocks
the cobot’s motion, b) The trajectory generator ensures that the cobot is at rest to avoid a collision.

5.3.3 Collision free trajectory generation validation

Panda’s physical constraints

Name Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 Unit

qmax 2.897 1.763 2.897 -0.070 2.897 3.752 2.897 rad

qmin -2.897 -1.763 -2.897 -3.072 -2.897 -0.018 -2.897 rad

q̇max 2.175 2.175 2.175 2.175 2.610 2.610 2.610 rad.s−1

q̈max 15 7.5 10 12.5 15 20 20 rad.s−2

Once we have validated the perception module, we integrate it into the general controller
framework from ROS as shown in the Figure 5.3. The physical constraints such as joint position,
joint velocity and joint acceleration are specified according to the values in the Table 5.3.3. We
choose a prediction horizon of length 0.25 s, with the MPC sampling time ∆t = 0.1 s and N = 5,
where N is the number of steps , which covers the time necessary for the robot to stop under all
circumstances, in order to satisfy the terminal constraint (3.21e) and thus enable in this way the
passive motion safety guarantee. A longer prediction time could provide better collision avoid-
ance, but this would depend heavily on the accuracy of the longer-term human motion prediction.
The safety distance is chosen to be dsafe = 20 cm.

The qualitative visualization of the deployed model is shown in Figure 5.10. The safety dis-
tance is chosen equal to dsafe = 20 cm. The robot performs a pick-and-place task between the
positions GrA = (0.5, 0.4, 0.2) m and GrB = (0.5, -0.4, 0.2) m expressed in the frame of the robot
base link. Figure 5.10(a) and Figure 5.10(a’) show the robot moving from goal GrA to GrB, the
collision-free trajectory is shown as successive frames in green. Since the distance between the
cobot and the human is large enough, this trajectory is straight to the goal. The yellow spheres
represent the predicted positions of the human hand in five time-steps. The green plane repre-
sents the separating plane (only the first predicted step is shown here, we have a total of (N-1)
planes). In Figure 5.10(b-c) and Figure 5.10(b’-c’), the cobot deviates its trajectory in order to
avoid the human motion. The predicted positions are shown by the yellow sphere. Finally, the
cobot visits the position of GrB with successful collision avoidance, as shown in Figure 5.10(d)
and Figure 5.10(d’).

To ensure human safety in collaborative shared workspace, we evaluated different cases where
we ensured that cobot achieves its goal by avoiding the possible collision with human, as explained
in previous experiment, and we also tested a situation which creates a deadlock and it is not
achievable for the cobot to complete the task. The Figure 5.11 shows the result where the human
hand is placed for longer time, which does not creates an exception to complete the task. In this
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case, the motion generator keeps the cobot still at the desired safe distance.

Figure 5.12: The variation of robot’s end-effector Cartesian position and its linear velocity.

To measure the robot’s performance in avoiding of the person’s hand movement. We show
in the Figure 5.12 the variation of the robot’s end-effector position and its linear velocity. When
the person’s hand interferes with the robot’s initial trajectory, the robot changes its height (we
observe an increase in its z coordinate) to avoid the potential collision with the hand. However,
the performance of the robot is not much affected by this perturbation, because we observe that the
velocities in the x and y coordinates remain almost identical, despite of the change in the velocity
of the z coordinate. If there is no perturbation with the movement of motion the hand, the velocity
in z direction remains zero.

In Figure 5.13, we compare two trajectories generated with different prediction horizons (N=2
and N=5) to illustrate the advantage of anticipating the future motions. When N=2, the trajectory
generator produces only two steps of motion, and this prediction horizon is not able to predict in
advance the motion of the person on its future trajectory, so the robot starts to avoid the person’s
hand lately, only that they are very close (it can violate the safety distance) as shown in the first
two rows of Figure 5.13(a-c). As long as for N=5, the trajectory generator predicts an interfer-
ence between the hand motion and the previous trajectory of the robot, so it starts to plan a new
trajectory to avoid the collision as shown in the last two rows of Figure 5.13(a-c).

5.4 Conclusion

In this chapter, we have introduced the software architecture of our MPC based motion genera-
tor. We have explained in detail the processes of the different modules (e.g. perception module and
motion planning module) and the data communication between these modules. We then test and
validate these modules through experiments in a real-world scenario. These experiments show that
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Figure 5.13: Illustration of the impact of the prediction horizon for the generated trajectory when
the hand moves at a much faster speed.
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even when the initial trajectory of the robot is perturbed by the movement of the person’s hand, the
tasks are performed correctly, and the input control satisfies the constraints. Moreover, the MPC
predictive framework allows to anticipate the movement of the person present in the workspace in
order to avoid in advance a possible collision with the imposed safety distance. If the prediction
horizon is too short or not predicted at all, the robot will act too late when the person’s hand ap-
proaches, which may results in the safety distance not being maintained or even have a collision.
We conclude that MPC approaches show the desired behavior; however they still require more
work in the implementation and need more experiments for different scenarios.
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Chapter 6. Conclusion

The work presented in this thesis opens new interesting directions in the field of programming
collaborative robots in a shared workspace with humans. Several questions are raised in this
context:

1. How to select and design a framework for generating collision-free trajectories in real-time,
anticipating future changes in the environment ? How to properly consider the closest dis-
tance between the robot and the human ?

2. How to predict the future movement of the person presented in the shared workspace ?

3. How to implement this framework in the terms of software ?

6.1 Summary

In this thesis, we have presented a novel framework to deal with real-time collision avoid-
ance for robots performing tasks in a shared workspace. We have developed a reactive trajectory
generation algorithm that takes into account the future motion of the environment, following an
MPC design, and provides a practical way to generate locally collision-free optimal solutions. The
solutions are summarized in detail in this section.

6.1.1 Online motion generation in a shared workspace

The framework for generating collision-free trajectories is the Model Predictive Control (MPC)
framework, which not only improves the reactivity of the system, but also provides a more accurate
local linear approximations of the collision avoidance constraints. The passively-safety is ensured
by an appropriate choice of the terminal constraint. The generated trajectories are defined in joint
space because this allows easy integration of several constraints (e.g. joint range, joint velocity,
joint acceleration, etc ...).

The collision avoidance constraint in Cartesian space can be easily transported to joint space
by Jacobian and linearization techniques. This ensures that the closest distance between robot and
human is continuously differentiable, we adopt the idea of separating planes, which ensures that
two objects don’t collide over two intervals of time step by finding the existence of a plane.

We also transform our nonlinear motion generation optimization problem into two quadratic
programming (QP) problems because solving a nonlinear problem with a nonlinear solver is quite
slow. We first compute a given set of plane positions by solving a first QP with the robot joint
acceleration constant, then use the set of planes to solve the second QP with fixed planes. Solving
the first QP again gives new values of planes positions to compute the next iteration and repeat
this process until convergence.

6.1.2 Human motion prediction

Predicting the human’s motion is essential for generating a reactive collision-free trajectory, in
this thesis, we detect the human’s upper-body keypoints, but only predict the hand’s motion over
a short time horizon. The scenarios studied involve a closed distance collaboration between a
robot manipulator and a worker which both are performing some pick-and-place tasks. Thus, the
relevant motion of the person is the hand’s motion, which needs to extract its associated motion
patterns.

The motion prediction is divided into two parts: 1) Detection of the person’s pose by Medi-
apipe using an RGB-D camera (Asus Xtion pro). The detected pose is expressed in pixel coordi-
nates in the image frame, then a mapping with the depth image is then applied to find the pose in
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Cartesian space expressed in the robot base frame. 2) Predicting the hand movement of the person
on a short time horizon in order to allow our trajectory generator to anticipate in the future. The
hand movement is predicted by a neural network architecture called LSTM, which is very effective
for predicting sequential data and the prediction results on some random samples show that the
model has indeed learned some hand movement patterns well.

6.1.3 Implementation solution

Online computability is a necessary and a key component to validate our framework. The software
implementations are realized through several different components: 1) a real-time framework to
communicate with the robot manipulator and the trajectory generation module, 2) a simulation
environment for testing and debugging, 3) a human (hand) motion detection/prediction module, 4)
data communication strategies.

The low-level communication with robot is realized by using the libFranka package written
in C++, which allows us to send commands to control Franka Emika. The higher level com-
munication between hand motion prediction and trajectory generation was implemented in ROS,
they comminucate using streaming topic (TCP/IP based message exchange with publish/subsribe
semantics) to allow formulating QP optimization problem.

The proposed approach has been successfully realized in the demonstration platform. The
result described in Chapter 5 show that the robot can complete its tasks without much decreasing
its performing while avoidance collisions.

6.2 Future work

The concepts introduced in this thesis raise several questions for future work.

• Throughout this thesis, the robot trajectories have been defined at the kinematic level, know-
ing that there is a low level tracking controller that translates kinematic variables into motor
commands (libFranka). The dynamics of the robot and its hardware constraints are not
explicitly considered. However, they are implicity taken into account through various con-
straints (e.g. joint range, velocity and acceleration). An interesting improvement to this
work is to define robot trajectories at the dynamic level and apply the real physical con-
straints of the robot by explicitly considering the hardware constraints of the robot, such as
motor torques;

• In Chapter 5, we have validated our formulations by implementing them for online trajec-
tory generation for collaborative robots in a shared workspace. However, the scenario has
been greatly simplified, we only provide the motion of the hand. It could be interesting to
include the whole body or upper body motion prediction of the human, which will bring
the possibilities to integrate more complex collaborative task. In addition, the nonlinear
optimization have been approximated by iteratively solving two QP, which only provide a
suboptimal solution, an important future work will be to improve nonlinear optimization
numerical tools;

• In Chapter 4, the hand motion dataset were collected from a single RGB-D camera, which
is noisy and imprecise. During this thesis, there is no publicly available human robot close
collaboration dataset. A long-term future work would be to build a well designed human
robot collaboration dataset that includes several different scenarios with a motion capture
system. This will be an interesting development that will bring new opportunities to all
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collaboratif robotic communicty to implement and test there algorithms and open the door
to human robot collaboration;

• The motion prediction model outputs a set of deterministic future positions, but human
motion is very complex and cannot be accurately predict, which can lead to risky decisions
for robots. A future direction of work will be to integrate the probabilistic framework into
motion prediction, which will provide safer and higher quality trajectories, because it can
incorporate uncertainty that tells the robot if the outputs are reliable;

• In this thesis, we developed a reactive trajectory controller that plans over a short time
horizon following an MPC design, and it provides a locally optimal solutions. Another
future work would be to integrate our current approach with a global planning algorithm so
that we end up with a reactive trajectory that works in real time and generates a global time
optimal solution. solution.
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Vers des mouvements sûrs pour un bras
robotique opérant à proximité d’humains
Towards safe robot arm motion close
to humans.

Résumé

Les robots collaboratifs offrent de nouvelles possibilités d’utilisation des robots dans
les espaces de travail partagés avec les humains. Ces robots peuvent interagir avec
leur environnement et assister les êtres humains dans leurs tâches de manière plus
sûre que les robots industriels standard. Ils doivent être rapides, précis et efficaces
dans l’accomplissement de leurs tâches. Cependant, leur force peut en faire des
outils dangereux pour les personnes. Par conséquent, pour assurer la sécurité, ils
sont souvent utilisés de manière sous-optimale.
L’objectif de ce travail est d’assurer la sécurité d’un humain interagissant avec un
robot effectuant un ensemble de tâches. Il est plus particulièrement axé sur la
génération de trajectoires sans collision. Le robot doit être capable d’anticiper le
mouvement de l’homme pour pouvoir initier des actions à temps et rendre possible
la planification de trajectoires sans collision à long terme. La méthode proposée
est validée en l’implémentant pour la génération de trajectoire en ligne sur un ma-
nipulateur robotique série de 7 dof. Ce robot est utilisé dans un espace de travail
partagé avec un humain. En utilisant des capteurs externes, il est démontré qu’il
est possible de réaliser des tâches tout en évitant de manière réactive une collision
potentielle.

Mots-clés : Collaboration Homme-Robot, Commande Prédictive, Sécurité,
Programmation Quadratique, Robots Redondants, Prédiction du Mouvement, Ap-
prentissage Profond, Planification du Mouvement.

Abstract

Collaborative robots offer new possibilities to use robots in workspaces shared with
humans. These robots can interact with their environment and assist human beings
in their task in a safer way compared to standard industrial ones. They are required
to be fast, precise, and efficient during the accomplishment of their tasks. However,
their strength can make them dangerous tools around people. Therefore, to ensure
safety they are often used in a sub-optimal way.
The aim of this work is to ensure the safety of a human interacting with a robot
performing a set of tasks. It is more specifically focused on the collision-free trajec-
tory generation. The robot needs to be able to anticipate human motion to be able
to initiate actions in time and to render long–term collision-free trajectory planning
possible.The proposed method is validated by implementing them for online trajec-
tory generation on a 7 dof serial robotic manipulator. This robot is used in a shared
workspace with a human. Using external sensors it is shown that it is possible to
realise tasks while reactively avoiding a potential collision.

Keywords : Human/Robot Collaboration, Model Predictive Control, Safety,
Quadratic Programming, Redundant Robots, Motion Prediction, Deep Learning, Mo-
tion Planning
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